1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET3 Protocol independent device support routines. 4 * 5 * Derived from the non IP parts of dev.c 1.0.19 6 * Authors: Ross Biro 7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 8 * Mark Evans, <evansmp@uhura.aston.ac.uk> 9 * 10 * Additional Authors: 11 * Florian la Roche <rzsfl@rz.uni-sb.de> 12 * Alan Cox <gw4pts@gw4pts.ampr.org> 13 * David Hinds <dahinds@users.sourceforge.net> 14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 15 * Adam Sulmicki <adam@cfar.umd.edu> 16 * Pekka Riikonen <priikone@poesidon.pspt.fi> 17 * 18 * Changes: 19 * D.J. Barrow : Fixed bug where dev->refcnt gets set 20 * to 2 if register_netdev gets called 21 * before net_dev_init & also removed a 22 * few lines of code in the process. 23 * Alan Cox : device private ioctl copies fields back. 24 * Alan Cox : Transmit queue code does relevant 25 * stunts to keep the queue safe. 26 * Alan Cox : Fixed double lock. 27 * Alan Cox : Fixed promisc NULL pointer trap 28 * ???????? : Support the full private ioctl range 29 * Alan Cox : Moved ioctl permission check into 30 * drivers 31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 32 * Alan Cox : 100 backlog just doesn't cut it when 33 * you start doing multicast video 8) 34 * Alan Cox : Rewrote net_bh and list manager. 35 * Alan Cox : Fix ETH_P_ALL echoback lengths. 36 * Alan Cox : Took out transmit every packet pass 37 * Saved a few bytes in the ioctl handler 38 * Alan Cox : Network driver sets packet type before 39 * calling netif_rx. Saves a function 40 * call a packet. 41 * Alan Cox : Hashed net_bh() 42 * Richard Kooijman: Timestamp fixes. 43 * Alan Cox : Wrong field in SIOCGIFDSTADDR 44 * Alan Cox : Device lock protection. 45 * Alan Cox : Fixed nasty side effect of device close 46 * changes. 47 * Rudi Cilibrasi : Pass the right thing to 48 * set_mac_address() 49 * Dave Miller : 32bit quantity for the device lock to 50 * make it work out on a Sparc. 51 * Bjorn Ekwall : Added KERNELD hack. 52 * Alan Cox : Cleaned up the backlog initialise. 53 * Craig Metz : SIOCGIFCONF fix if space for under 54 * 1 device. 55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 56 * is no device open function. 57 * Andi Kleen : Fix error reporting for SIOCGIFCONF 58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 59 * Cyrus Durgin : Cleaned for KMOD 60 * Adam Sulmicki : Bug Fix : Network Device Unload 61 * A network device unload needs to purge 62 * the backlog queue. 63 * Paul Rusty Russell : SIOCSIFNAME 64 * Pekka Riikonen : Netdev boot-time settings code 65 * Andrew Morton : Make unregister_netdevice wait 66 * indefinitely on dev->refcnt 67 * J Hadi Salim : - Backlog queue sampling 68 * - netif_rx() feedback 69 */ 70 71 #include <linux/uaccess.h> 72 #include <linux/bitmap.h> 73 #include <linux/capability.h> 74 #include <linux/cpu.h> 75 #include <linux/types.h> 76 #include <linux/kernel.h> 77 #include <linux/hash.h> 78 #include <linux/slab.h> 79 #include <linux/sched.h> 80 #include <linux/sched/isolation.h> 81 #include <linux/sched/mm.h> 82 #include <linux/smpboot.h> 83 #include <linux/mutex.h> 84 #include <linux/rwsem.h> 85 #include <linux/string.h> 86 #include <linux/mm.h> 87 #include <linux/socket.h> 88 #include <linux/sockios.h> 89 #include <linux/errno.h> 90 #include <linux/interrupt.h> 91 #include <linux/if_ether.h> 92 #include <linux/netdevice.h> 93 #include <linux/etherdevice.h> 94 #include <linux/ethtool.h> 95 #include <linux/skbuff.h> 96 #include <linux/kthread.h> 97 #include <linux/bpf.h> 98 #include <linux/bpf_trace.h> 99 #include <net/net_namespace.h> 100 #include <net/sock.h> 101 #include <net/busy_poll.h> 102 #include <linux/rtnetlink.h> 103 #include <linux/stat.h> 104 #include <net/dsa.h> 105 #include <net/dst.h> 106 #include <net/dst_metadata.h> 107 #include <net/gro.h> 108 #include <net/pkt_sched.h> 109 #include <net/pkt_cls.h> 110 #include <net/checksum.h> 111 #include <net/xfrm.h> 112 #include <net/tcx.h> 113 #include <linux/highmem.h> 114 #include <linux/init.h> 115 #include <linux/module.h> 116 #include <linux/netpoll.h> 117 #include <linux/rcupdate.h> 118 #include <linux/delay.h> 119 #include <net/iw_handler.h> 120 #include <asm/current.h> 121 #include <linux/audit.h> 122 #include <linux/dmaengine.h> 123 #include <linux/err.h> 124 #include <linux/ctype.h> 125 #include <linux/if_arp.h> 126 #include <linux/if_vlan.h> 127 #include <linux/ip.h> 128 #include <net/ip.h> 129 #include <net/mpls.h> 130 #include <linux/ipv6.h> 131 #include <linux/in.h> 132 #include <linux/jhash.h> 133 #include <linux/random.h> 134 #include <trace/events/napi.h> 135 #include <trace/events/net.h> 136 #include <trace/events/skb.h> 137 #include <trace/events/qdisc.h> 138 #include <trace/events/xdp.h> 139 #include <linux/inetdevice.h> 140 #include <linux/cpu_rmap.h> 141 #include <linux/static_key.h> 142 #include <linux/hashtable.h> 143 #include <linux/vmalloc.h> 144 #include <linux/if_macvlan.h> 145 #include <linux/errqueue.h> 146 #include <linux/hrtimer.h> 147 #include <linux/netfilter_netdev.h> 148 #include <linux/crash_dump.h> 149 #include <linux/sctp.h> 150 #include <net/udp_tunnel.h> 151 #include <linux/net_namespace.h> 152 #include <linux/indirect_call_wrapper.h> 153 #include <net/devlink.h> 154 #include <linux/pm_runtime.h> 155 #include <linux/prandom.h> 156 #include <linux/once_lite.h> 157 #include <net/netdev_rx_queue.h> 158 #include <net/page_pool/types.h> 159 #include <net/page_pool/helpers.h> 160 #include <net/rps.h> 161 162 #include "dev.h" 163 #include "net-sysfs.h" 164 165 static DEFINE_SPINLOCK(ptype_lock); 166 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 167 168 static int netif_rx_internal(struct sk_buff *skb); 169 static int call_netdevice_notifiers_extack(unsigned long val, 170 struct net_device *dev, 171 struct netlink_ext_ack *extack); 172 173 static DEFINE_MUTEX(ifalias_mutex); 174 175 /* protects napi_hash addition/deletion and napi_gen_id */ 176 static DEFINE_SPINLOCK(napi_hash_lock); 177 178 static unsigned int napi_gen_id = NR_CPUS; 179 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8); 180 181 static DECLARE_RWSEM(devnet_rename_sem); 182 183 static inline void dev_base_seq_inc(struct net *net) 184 { 185 unsigned int val = net->dev_base_seq + 1; 186 187 WRITE_ONCE(net->dev_base_seq, val ?: 1); 188 } 189 190 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 191 { 192 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ)); 193 194 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 195 } 196 197 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 198 { 199 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 200 } 201 202 #ifndef CONFIG_PREEMPT_RT 203 204 static DEFINE_STATIC_KEY_FALSE(use_backlog_threads_key); 205 206 static int __init setup_backlog_napi_threads(char *arg) 207 { 208 static_branch_enable(&use_backlog_threads_key); 209 return 0; 210 } 211 early_param("thread_backlog_napi", setup_backlog_napi_threads); 212 213 static bool use_backlog_threads(void) 214 { 215 return static_branch_unlikely(&use_backlog_threads_key); 216 } 217 218 #else 219 220 static bool use_backlog_threads(void) 221 { 222 return true; 223 } 224 225 #endif 226 227 static inline void backlog_lock_irq_save(struct softnet_data *sd, 228 unsigned long *flags) 229 { 230 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads()) 231 spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags); 232 else if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 233 local_irq_save(*flags); 234 } 235 236 static inline void backlog_lock_irq_disable(struct softnet_data *sd) 237 { 238 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads()) 239 spin_lock_irq(&sd->input_pkt_queue.lock); 240 else if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 241 local_irq_disable(); 242 } 243 244 static inline void backlog_unlock_irq_restore(struct softnet_data *sd, 245 unsigned long *flags) 246 { 247 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads()) 248 spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags); 249 else if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 250 local_irq_restore(*flags); 251 } 252 253 static inline void backlog_unlock_irq_enable(struct softnet_data *sd) 254 { 255 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads()) 256 spin_unlock_irq(&sd->input_pkt_queue.lock); 257 else if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 258 local_irq_enable(); 259 } 260 261 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev, 262 const char *name) 263 { 264 struct netdev_name_node *name_node; 265 266 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL); 267 if (!name_node) 268 return NULL; 269 INIT_HLIST_NODE(&name_node->hlist); 270 name_node->dev = dev; 271 name_node->name = name; 272 return name_node; 273 } 274 275 static struct netdev_name_node * 276 netdev_name_node_head_alloc(struct net_device *dev) 277 { 278 struct netdev_name_node *name_node; 279 280 name_node = netdev_name_node_alloc(dev, dev->name); 281 if (!name_node) 282 return NULL; 283 INIT_LIST_HEAD(&name_node->list); 284 return name_node; 285 } 286 287 static void netdev_name_node_free(struct netdev_name_node *name_node) 288 { 289 kfree(name_node); 290 } 291 292 static void netdev_name_node_add(struct net *net, 293 struct netdev_name_node *name_node) 294 { 295 hlist_add_head_rcu(&name_node->hlist, 296 dev_name_hash(net, name_node->name)); 297 } 298 299 static void netdev_name_node_del(struct netdev_name_node *name_node) 300 { 301 hlist_del_rcu(&name_node->hlist); 302 } 303 304 static struct netdev_name_node *netdev_name_node_lookup(struct net *net, 305 const char *name) 306 { 307 struct hlist_head *head = dev_name_hash(net, name); 308 struct netdev_name_node *name_node; 309 310 hlist_for_each_entry(name_node, head, hlist) 311 if (!strcmp(name_node->name, name)) 312 return name_node; 313 return NULL; 314 } 315 316 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net, 317 const char *name) 318 { 319 struct hlist_head *head = dev_name_hash(net, name); 320 struct netdev_name_node *name_node; 321 322 hlist_for_each_entry_rcu(name_node, head, hlist) 323 if (!strcmp(name_node->name, name)) 324 return name_node; 325 return NULL; 326 } 327 328 bool netdev_name_in_use(struct net *net, const char *name) 329 { 330 return netdev_name_node_lookup(net, name); 331 } 332 EXPORT_SYMBOL(netdev_name_in_use); 333 334 int netdev_name_node_alt_create(struct net_device *dev, const char *name) 335 { 336 struct netdev_name_node *name_node; 337 struct net *net = dev_net(dev); 338 339 name_node = netdev_name_node_lookup(net, name); 340 if (name_node) 341 return -EEXIST; 342 name_node = netdev_name_node_alloc(dev, name); 343 if (!name_node) 344 return -ENOMEM; 345 netdev_name_node_add(net, name_node); 346 /* The node that holds dev->name acts as a head of per-device list. */ 347 list_add_tail_rcu(&name_node->list, &dev->name_node->list); 348 349 return 0; 350 } 351 352 static void netdev_name_node_alt_free(struct rcu_head *head) 353 { 354 struct netdev_name_node *name_node = 355 container_of(head, struct netdev_name_node, rcu); 356 357 kfree(name_node->name); 358 netdev_name_node_free(name_node); 359 } 360 361 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node) 362 { 363 netdev_name_node_del(name_node); 364 list_del(&name_node->list); 365 call_rcu(&name_node->rcu, netdev_name_node_alt_free); 366 } 367 368 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name) 369 { 370 struct netdev_name_node *name_node; 371 struct net *net = dev_net(dev); 372 373 name_node = netdev_name_node_lookup(net, name); 374 if (!name_node) 375 return -ENOENT; 376 /* lookup might have found our primary name or a name belonging 377 * to another device. 378 */ 379 if (name_node == dev->name_node || name_node->dev != dev) 380 return -EINVAL; 381 382 __netdev_name_node_alt_destroy(name_node); 383 return 0; 384 } 385 386 static void netdev_name_node_alt_flush(struct net_device *dev) 387 { 388 struct netdev_name_node *name_node, *tmp; 389 390 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) { 391 list_del(&name_node->list); 392 netdev_name_node_alt_free(&name_node->rcu); 393 } 394 } 395 396 /* Device list insertion */ 397 static void list_netdevice(struct net_device *dev) 398 { 399 struct netdev_name_node *name_node; 400 struct net *net = dev_net(dev); 401 402 ASSERT_RTNL(); 403 404 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 405 netdev_name_node_add(net, dev->name_node); 406 hlist_add_head_rcu(&dev->index_hlist, 407 dev_index_hash(net, dev->ifindex)); 408 409 netdev_for_each_altname(dev, name_node) 410 netdev_name_node_add(net, name_node); 411 412 /* We reserved the ifindex, this can't fail */ 413 WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL)); 414 415 dev_base_seq_inc(net); 416 } 417 418 /* Device list removal 419 * caller must respect a RCU grace period before freeing/reusing dev 420 */ 421 static void unlist_netdevice(struct net_device *dev) 422 { 423 struct netdev_name_node *name_node; 424 struct net *net = dev_net(dev); 425 426 ASSERT_RTNL(); 427 428 xa_erase(&net->dev_by_index, dev->ifindex); 429 430 netdev_for_each_altname(dev, name_node) 431 netdev_name_node_del(name_node); 432 433 /* Unlink dev from the device chain */ 434 list_del_rcu(&dev->dev_list); 435 netdev_name_node_del(dev->name_node); 436 hlist_del_rcu(&dev->index_hlist); 437 438 dev_base_seq_inc(dev_net(dev)); 439 } 440 441 /* 442 * Our notifier list 443 */ 444 445 static RAW_NOTIFIER_HEAD(netdev_chain); 446 447 /* 448 * Device drivers call our routines to queue packets here. We empty the 449 * queue in the local softnet handler. 450 */ 451 452 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 453 EXPORT_PER_CPU_SYMBOL(softnet_data); 454 455 /* Page_pool has a lockless array/stack to alloc/recycle pages. 456 * PP consumers must pay attention to run APIs in the appropriate context 457 * (e.g. NAPI context). 458 */ 459 static DEFINE_PER_CPU(struct page_pool *, system_page_pool); 460 461 #ifdef CONFIG_LOCKDEP 462 /* 463 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 464 * according to dev->type 465 */ 466 static const unsigned short netdev_lock_type[] = { 467 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 468 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 469 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 470 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 471 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 472 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 473 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 474 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 475 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 476 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 477 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 478 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 479 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 480 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 481 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 482 483 static const char *const netdev_lock_name[] = { 484 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 485 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 486 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 487 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 488 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 489 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 490 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 491 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 492 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 493 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 494 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 495 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 496 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 497 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 498 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 499 500 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 501 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 502 503 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 504 { 505 int i; 506 507 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 508 if (netdev_lock_type[i] == dev_type) 509 return i; 510 /* the last key is used by default */ 511 return ARRAY_SIZE(netdev_lock_type) - 1; 512 } 513 514 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 515 unsigned short dev_type) 516 { 517 int i; 518 519 i = netdev_lock_pos(dev_type); 520 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 521 netdev_lock_name[i]); 522 } 523 524 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 525 { 526 int i; 527 528 i = netdev_lock_pos(dev->type); 529 lockdep_set_class_and_name(&dev->addr_list_lock, 530 &netdev_addr_lock_key[i], 531 netdev_lock_name[i]); 532 } 533 #else 534 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 535 unsigned short dev_type) 536 { 537 } 538 539 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 540 { 541 } 542 #endif 543 544 /******************************************************************************* 545 * 546 * Protocol management and registration routines 547 * 548 *******************************************************************************/ 549 550 551 /* 552 * Add a protocol ID to the list. Now that the input handler is 553 * smarter we can dispense with all the messy stuff that used to be 554 * here. 555 * 556 * BEWARE!!! Protocol handlers, mangling input packets, 557 * MUST BE last in hash buckets and checking protocol handlers 558 * MUST start from promiscuous ptype_all chain in net_bh. 559 * It is true now, do not change it. 560 * Explanation follows: if protocol handler, mangling packet, will 561 * be the first on list, it is not able to sense, that packet 562 * is cloned and should be copied-on-write, so that it will 563 * change it and subsequent readers will get broken packet. 564 * --ANK (980803) 565 */ 566 567 static inline struct list_head *ptype_head(const struct packet_type *pt) 568 { 569 if (pt->type == htons(ETH_P_ALL)) 570 return pt->dev ? &pt->dev->ptype_all : &net_hotdata.ptype_all; 571 else 572 return pt->dev ? &pt->dev->ptype_specific : 573 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 574 } 575 576 /** 577 * dev_add_pack - add packet handler 578 * @pt: packet type declaration 579 * 580 * Add a protocol handler to the networking stack. The passed &packet_type 581 * is linked into kernel lists and may not be freed until it has been 582 * removed from the kernel lists. 583 * 584 * This call does not sleep therefore it can not 585 * guarantee all CPU's that are in middle of receiving packets 586 * will see the new packet type (until the next received packet). 587 */ 588 589 void dev_add_pack(struct packet_type *pt) 590 { 591 struct list_head *head = ptype_head(pt); 592 593 spin_lock(&ptype_lock); 594 list_add_rcu(&pt->list, head); 595 spin_unlock(&ptype_lock); 596 } 597 EXPORT_SYMBOL(dev_add_pack); 598 599 /** 600 * __dev_remove_pack - remove packet handler 601 * @pt: packet type declaration 602 * 603 * Remove a protocol handler that was previously added to the kernel 604 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 605 * from the kernel lists and can be freed or reused once this function 606 * returns. 607 * 608 * The packet type might still be in use by receivers 609 * and must not be freed until after all the CPU's have gone 610 * through a quiescent state. 611 */ 612 void __dev_remove_pack(struct packet_type *pt) 613 { 614 struct list_head *head = ptype_head(pt); 615 struct packet_type *pt1; 616 617 spin_lock(&ptype_lock); 618 619 list_for_each_entry(pt1, head, list) { 620 if (pt == pt1) { 621 list_del_rcu(&pt->list); 622 goto out; 623 } 624 } 625 626 pr_warn("dev_remove_pack: %p not found\n", pt); 627 out: 628 spin_unlock(&ptype_lock); 629 } 630 EXPORT_SYMBOL(__dev_remove_pack); 631 632 /** 633 * dev_remove_pack - remove packet handler 634 * @pt: packet type declaration 635 * 636 * Remove a protocol handler that was previously added to the kernel 637 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 638 * from the kernel lists and can be freed or reused once this function 639 * returns. 640 * 641 * This call sleeps to guarantee that no CPU is looking at the packet 642 * type after return. 643 */ 644 void dev_remove_pack(struct packet_type *pt) 645 { 646 __dev_remove_pack(pt); 647 648 synchronize_net(); 649 } 650 EXPORT_SYMBOL(dev_remove_pack); 651 652 653 /******************************************************************************* 654 * 655 * Device Interface Subroutines 656 * 657 *******************************************************************************/ 658 659 /** 660 * dev_get_iflink - get 'iflink' value of a interface 661 * @dev: targeted interface 662 * 663 * Indicates the ifindex the interface is linked to. 664 * Physical interfaces have the same 'ifindex' and 'iflink' values. 665 */ 666 667 int dev_get_iflink(const struct net_device *dev) 668 { 669 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 670 return dev->netdev_ops->ndo_get_iflink(dev); 671 672 return READ_ONCE(dev->ifindex); 673 } 674 EXPORT_SYMBOL(dev_get_iflink); 675 676 /** 677 * dev_fill_metadata_dst - Retrieve tunnel egress information. 678 * @dev: targeted interface 679 * @skb: The packet. 680 * 681 * For better visibility of tunnel traffic OVS needs to retrieve 682 * egress tunnel information for a packet. Following API allows 683 * user to get this info. 684 */ 685 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) 686 { 687 struct ip_tunnel_info *info; 688 689 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) 690 return -EINVAL; 691 692 info = skb_tunnel_info_unclone(skb); 693 if (!info) 694 return -ENOMEM; 695 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) 696 return -EINVAL; 697 698 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); 699 } 700 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); 701 702 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack) 703 { 704 int k = stack->num_paths++; 705 706 if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX)) 707 return NULL; 708 709 return &stack->path[k]; 710 } 711 712 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr, 713 struct net_device_path_stack *stack) 714 { 715 const struct net_device *last_dev; 716 struct net_device_path_ctx ctx = { 717 .dev = dev, 718 }; 719 struct net_device_path *path; 720 int ret = 0; 721 722 memcpy(ctx.daddr, daddr, sizeof(ctx.daddr)); 723 stack->num_paths = 0; 724 while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) { 725 last_dev = ctx.dev; 726 path = dev_fwd_path(stack); 727 if (!path) 728 return -1; 729 730 memset(path, 0, sizeof(struct net_device_path)); 731 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path); 732 if (ret < 0) 733 return -1; 734 735 if (WARN_ON_ONCE(last_dev == ctx.dev)) 736 return -1; 737 } 738 739 if (!ctx.dev) 740 return ret; 741 742 path = dev_fwd_path(stack); 743 if (!path) 744 return -1; 745 path->type = DEV_PATH_ETHERNET; 746 path->dev = ctx.dev; 747 748 return ret; 749 } 750 EXPORT_SYMBOL_GPL(dev_fill_forward_path); 751 752 /** 753 * __dev_get_by_name - find a device by its name 754 * @net: the applicable net namespace 755 * @name: name to find 756 * 757 * Find an interface by name. Must be called under RTNL semaphore. 758 * If the name is found a pointer to the device is returned. 759 * If the name is not found then %NULL is returned. The 760 * reference counters are not incremented so the caller must be 761 * careful with locks. 762 */ 763 764 struct net_device *__dev_get_by_name(struct net *net, const char *name) 765 { 766 struct netdev_name_node *node_name; 767 768 node_name = netdev_name_node_lookup(net, name); 769 return node_name ? node_name->dev : NULL; 770 } 771 EXPORT_SYMBOL(__dev_get_by_name); 772 773 /** 774 * dev_get_by_name_rcu - find a device by its name 775 * @net: the applicable net namespace 776 * @name: name to find 777 * 778 * Find an interface by name. 779 * If the name is found a pointer to the device is returned. 780 * If the name is not found then %NULL is returned. 781 * The reference counters are not incremented so the caller must be 782 * careful with locks. The caller must hold RCU lock. 783 */ 784 785 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 786 { 787 struct netdev_name_node *node_name; 788 789 node_name = netdev_name_node_lookup_rcu(net, name); 790 return node_name ? node_name->dev : NULL; 791 } 792 EXPORT_SYMBOL(dev_get_by_name_rcu); 793 794 /* Deprecated for new users, call netdev_get_by_name() instead */ 795 struct net_device *dev_get_by_name(struct net *net, const char *name) 796 { 797 struct net_device *dev; 798 799 rcu_read_lock(); 800 dev = dev_get_by_name_rcu(net, name); 801 dev_hold(dev); 802 rcu_read_unlock(); 803 return dev; 804 } 805 EXPORT_SYMBOL(dev_get_by_name); 806 807 /** 808 * netdev_get_by_name() - find a device by its name 809 * @net: the applicable net namespace 810 * @name: name to find 811 * @tracker: tracking object for the acquired reference 812 * @gfp: allocation flags for the tracker 813 * 814 * Find an interface by name. This can be called from any 815 * context and does its own locking. The returned handle has 816 * the usage count incremented and the caller must use netdev_put() to 817 * release it when it is no longer needed. %NULL is returned if no 818 * matching device is found. 819 */ 820 struct net_device *netdev_get_by_name(struct net *net, const char *name, 821 netdevice_tracker *tracker, gfp_t gfp) 822 { 823 struct net_device *dev; 824 825 dev = dev_get_by_name(net, name); 826 if (dev) 827 netdev_tracker_alloc(dev, tracker, gfp); 828 return dev; 829 } 830 EXPORT_SYMBOL(netdev_get_by_name); 831 832 /** 833 * __dev_get_by_index - find a device by its ifindex 834 * @net: the applicable net namespace 835 * @ifindex: index of device 836 * 837 * Search for an interface by index. Returns %NULL if the device 838 * is not found or a pointer to the device. The device has not 839 * had its reference counter increased so the caller must be careful 840 * about locking. The caller must hold the RTNL semaphore. 841 */ 842 843 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 844 { 845 struct net_device *dev; 846 struct hlist_head *head = dev_index_hash(net, ifindex); 847 848 hlist_for_each_entry(dev, head, index_hlist) 849 if (dev->ifindex == ifindex) 850 return dev; 851 852 return NULL; 853 } 854 EXPORT_SYMBOL(__dev_get_by_index); 855 856 /** 857 * dev_get_by_index_rcu - find a device by its ifindex 858 * @net: the applicable net namespace 859 * @ifindex: index of device 860 * 861 * Search for an interface by index. Returns %NULL if the device 862 * is not found or a pointer to the device. The device has not 863 * had its reference counter increased so the caller must be careful 864 * about locking. The caller must hold RCU lock. 865 */ 866 867 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 868 { 869 struct net_device *dev; 870 struct hlist_head *head = dev_index_hash(net, ifindex); 871 872 hlist_for_each_entry_rcu(dev, head, index_hlist) 873 if (dev->ifindex == ifindex) 874 return dev; 875 876 return NULL; 877 } 878 EXPORT_SYMBOL(dev_get_by_index_rcu); 879 880 /* Deprecated for new users, call netdev_get_by_index() instead */ 881 struct net_device *dev_get_by_index(struct net *net, int ifindex) 882 { 883 struct net_device *dev; 884 885 rcu_read_lock(); 886 dev = dev_get_by_index_rcu(net, ifindex); 887 dev_hold(dev); 888 rcu_read_unlock(); 889 return dev; 890 } 891 EXPORT_SYMBOL(dev_get_by_index); 892 893 /** 894 * netdev_get_by_index() - find a device by its ifindex 895 * @net: the applicable net namespace 896 * @ifindex: index of device 897 * @tracker: tracking object for the acquired reference 898 * @gfp: allocation flags for the tracker 899 * 900 * Search for an interface by index. Returns NULL if the device 901 * is not found or a pointer to the device. The device returned has 902 * had a reference added and the pointer is safe until the user calls 903 * netdev_put() to indicate they have finished with it. 904 */ 905 struct net_device *netdev_get_by_index(struct net *net, int ifindex, 906 netdevice_tracker *tracker, gfp_t gfp) 907 { 908 struct net_device *dev; 909 910 dev = dev_get_by_index(net, ifindex); 911 if (dev) 912 netdev_tracker_alloc(dev, tracker, gfp); 913 return dev; 914 } 915 EXPORT_SYMBOL(netdev_get_by_index); 916 917 /** 918 * dev_get_by_napi_id - find a device by napi_id 919 * @napi_id: ID of the NAPI struct 920 * 921 * Search for an interface by NAPI ID. Returns %NULL if the device 922 * is not found or a pointer to the device. The device has not had 923 * its reference counter increased so the caller must be careful 924 * about locking. The caller must hold RCU lock. 925 */ 926 927 struct net_device *dev_get_by_napi_id(unsigned int napi_id) 928 { 929 struct napi_struct *napi; 930 931 WARN_ON_ONCE(!rcu_read_lock_held()); 932 933 if (napi_id < MIN_NAPI_ID) 934 return NULL; 935 936 napi = napi_by_id(napi_id); 937 938 return napi ? napi->dev : NULL; 939 } 940 EXPORT_SYMBOL(dev_get_by_napi_id); 941 942 static DEFINE_SEQLOCK(netdev_rename_lock); 943 944 void netdev_copy_name(struct net_device *dev, char *name) 945 { 946 unsigned int seq; 947 948 do { 949 seq = read_seqbegin(&netdev_rename_lock); 950 strscpy(name, dev->name, IFNAMSIZ); 951 } while (read_seqretry(&netdev_rename_lock, seq)); 952 } 953 954 /** 955 * netdev_get_name - get a netdevice name, knowing its ifindex. 956 * @net: network namespace 957 * @name: a pointer to the buffer where the name will be stored. 958 * @ifindex: the ifindex of the interface to get the name from. 959 */ 960 int netdev_get_name(struct net *net, char *name, int ifindex) 961 { 962 struct net_device *dev; 963 int ret; 964 965 rcu_read_lock(); 966 967 dev = dev_get_by_index_rcu(net, ifindex); 968 if (!dev) { 969 ret = -ENODEV; 970 goto out; 971 } 972 973 netdev_copy_name(dev, name); 974 975 ret = 0; 976 out: 977 rcu_read_unlock(); 978 return ret; 979 } 980 981 /** 982 * dev_getbyhwaddr_rcu - find a device by its hardware address 983 * @net: the applicable net namespace 984 * @type: media type of device 985 * @ha: hardware address 986 * 987 * Search for an interface by MAC address. Returns NULL if the device 988 * is not found or a pointer to the device. 989 * The caller must hold RCU or RTNL. 990 * The returned device has not had its ref count increased 991 * and the caller must therefore be careful about locking 992 * 993 */ 994 995 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 996 const char *ha) 997 { 998 struct net_device *dev; 999 1000 for_each_netdev_rcu(net, dev) 1001 if (dev->type == type && 1002 !memcmp(dev->dev_addr, ha, dev->addr_len)) 1003 return dev; 1004 1005 return NULL; 1006 } 1007 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 1008 1009 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 1010 { 1011 struct net_device *dev, *ret = NULL; 1012 1013 rcu_read_lock(); 1014 for_each_netdev_rcu(net, dev) 1015 if (dev->type == type) { 1016 dev_hold(dev); 1017 ret = dev; 1018 break; 1019 } 1020 rcu_read_unlock(); 1021 return ret; 1022 } 1023 EXPORT_SYMBOL(dev_getfirstbyhwtype); 1024 1025 /** 1026 * __dev_get_by_flags - find any device with given flags 1027 * @net: the applicable net namespace 1028 * @if_flags: IFF_* values 1029 * @mask: bitmask of bits in if_flags to check 1030 * 1031 * Search for any interface with the given flags. Returns NULL if a device 1032 * is not found or a pointer to the device. Must be called inside 1033 * rtnl_lock(), and result refcount is unchanged. 1034 */ 1035 1036 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags, 1037 unsigned short mask) 1038 { 1039 struct net_device *dev, *ret; 1040 1041 ASSERT_RTNL(); 1042 1043 ret = NULL; 1044 for_each_netdev(net, dev) { 1045 if (((dev->flags ^ if_flags) & mask) == 0) { 1046 ret = dev; 1047 break; 1048 } 1049 } 1050 return ret; 1051 } 1052 EXPORT_SYMBOL(__dev_get_by_flags); 1053 1054 /** 1055 * dev_valid_name - check if name is okay for network device 1056 * @name: name string 1057 * 1058 * Network device names need to be valid file names to 1059 * allow sysfs to work. We also disallow any kind of 1060 * whitespace. 1061 */ 1062 bool dev_valid_name(const char *name) 1063 { 1064 if (*name == '\0') 1065 return false; 1066 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ) 1067 return false; 1068 if (!strcmp(name, ".") || !strcmp(name, "..")) 1069 return false; 1070 1071 while (*name) { 1072 if (*name == '/' || *name == ':' || isspace(*name)) 1073 return false; 1074 name++; 1075 } 1076 return true; 1077 } 1078 EXPORT_SYMBOL(dev_valid_name); 1079 1080 /** 1081 * __dev_alloc_name - allocate a name for a device 1082 * @net: network namespace to allocate the device name in 1083 * @name: name format string 1084 * @res: result name string 1085 * 1086 * Passed a format string - eg "lt%d" it will try and find a suitable 1087 * id. It scans list of devices to build up a free map, then chooses 1088 * the first empty slot. The caller must hold the dev_base or rtnl lock 1089 * while allocating the name and adding the device in order to avoid 1090 * duplicates. 1091 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1092 * Returns the number of the unit assigned or a negative errno code. 1093 */ 1094 1095 static int __dev_alloc_name(struct net *net, const char *name, char *res) 1096 { 1097 int i = 0; 1098 const char *p; 1099 const int max_netdevices = 8*PAGE_SIZE; 1100 unsigned long *inuse; 1101 struct net_device *d; 1102 char buf[IFNAMSIZ]; 1103 1104 /* Verify the string as this thing may have come from the user. 1105 * There must be one "%d" and no other "%" characters. 1106 */ 1107 p = strchr(name, '%'); 1108 if (!p || p[1] != 'd' || strchr(p + 2, '%')) 1109 return -EINVAL; 1110 1111 /* Use one page as a bit array of possible slots */ 1112 inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC); 1113 if (!inuse) 1114 return -ENOMEM; 1115 1116 for_each_netdev(net, d) { 1117 struct netdev_name_node *name_node; 1118 1119 netdev_for_each_altname(d, name_node) { 1120 if (!sscanf(name_node->name, name, &i)) 1121 continue; 1122 if (i < 0 || i >= max_netdevices) 1123 continue; 1124 1125 /* avoid cases where sscanf is not exact inverse of printf */ 1126 snprintf(buf, IFNAMSIZ, name, i); 1127 if (!strncmp(buf, name_node->name, IFNAMSIZ)) 1128 __set_bit(i, inuse); 1129 } 1130 if (!sscanf(d->name, name, &i)) 1131 continue; 1132 if (i < 0 || i >= max_netdevices) 1133 continue; 1134 1135 /* avoid cases where sscanf is not exact inverse of printf */ 1136 snprintf(buf, IFNAMSIZ, name, i); 1137 if (!strncmp(buf, d->name, IFNAMSIZ)) 1138 __set_bit(i, inuse); 1139 } 1140 1141 i = find_first_zero_bit(inuse, max_netdevices); 1142 bitmap_free(inuse); 1143 if (i == max_netdevices) 1144 return -ENFILE; 1145 1146 /* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */ 1147 strscpy(buf, name, IFNAMSIZ); 1148 snprintf(res, IFNAMSIZ, buf, i); 1149 return i; 1150 } 1151 1152 /* Returns negative errno or allocated unit id (see __dev_alloc_name()) */ 1153 static int dev_prep_valid_name(struct net *net, struct net_device *dev, 1154 const char *want_name, char *out_name, 1155 int dup_errno) 1156 { 1157 if (!dev_valid_name(want_name)) 1158 return -EINVAL; 1159 1160 if (strchr(want_name, '%')) 1161 return __dev_alloc_name(net, want_name, out_name); 1162 1163 if (netdev_name_in_use(net, want_name)) 1164 return -dup_errno; 1165 if (out_name != want_name) 1166 strscpy(out_name, want_name, IFNAMSIZ); 1167 return 0; 1168 } 1169 1170 /** 1171 * dev_alloc_name - allocate a name for a device 1172 * @dev: device 1173 * @name: name format string 1174 * 1175 * Passed a format string - eg "lt%d" it will try and find a suitable 1176 * id. It scans list of devices to build up a free map, then chooses 1177 * the first empty slot. The caller must hold the dev_base or rtnl lock 1178 * while allocating the name and adding the device in order to avoid 1179 * duplicates. 1180 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1181 * Returns the number of the unit assigned or a negative errno code. 1182 */ 1183 1184 int dev_alloc_name(struct net_device *dev, const char *name) 1185 { 1186 return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE); 1187 } 1188 EXPORT_SYMBOL(dev_alloc_name); 1189 1190 static int dev_get_valid_name(struct net *net, struct net_device *dev, 1191 const char *name) 1192 { 1193 int ret; 1194 1195 ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST); 1196 return ret < 0 ? ret : 0; 1197 } 1198 1199 /** 1200 * dev_change_name - change name of a device 1201 * @dev: device 1202 * @newname: name (or format string) must be at least IFNAMSIZ 1203 * 1204 * Change name of a device, can pass format strings "eth%d". 1205 * for wildcarding. 1206 */ 1207 int dev_change_name(struct net_device *dev, const char *newname) 1208 { 1209 unsigned char old_assign_type; 1210 char oldname[IFNAMSIZ]; 1211 int err = 0; 1212 int ret; 1213 struct net *net; 1214 1215 ASSERT_RTNL(); 1216 BUG_ON(!dev_net(dev)); 1217 1218 net = dev_net(dev); 1219 1220 down_write(&devnet_rename_sem); 1221 1222 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1223 up_write(&devnet_rename_sem); 1224 return 0; 1225 } 1226 1227 memcpy(oldname, dev->name, IFNAMSIZ); 1228 1229 write_seqlock_bh(&netdev_rename_lock); 1230 err = dev_get_valid_name(net, dev, newname); 1231 write_sequnlock_bh(&netdev_rename_lock); 1232 1233 if (err < 0) { 1234 up_write(&devnet_rename_sem); 1235 return err; 1236 } 1237 1238 if (oldname[0] && !strchr(oldname, '%')) 1239 netdev_info(dev, "renamed from %s%s\n", oldname, 1240 dev->flags & IFF_UP ? " (while UP)" : ""); 1241 1242 old_assign_type = dev->name_assign_type; 1243 WRITE_ONCE(dev->name_assign_type, NET_NAME_RENAMED); 1244 1245 rollback: 1246 ret = device_rename(&dev->dev, dev->name); 1247 if (ret) { 1248 memcpy(dev->name, oldname, IFNAMSIZ); 1249 WRITE_ONCE(dev->name_assign_type, old_assign_type); 1250 up_write(&devnet_rename_sem); 1251 return ret; 1252 } 1253 1254 up_write(&devnet_rename_sem); 1255 1256 netdev_adjacent_rename_links(dev, oldname); 1257 1258 netdev_name_node_del(dev->name_node); 1259 1260 synchronize_net(); 1261 1262 netdev_name_node_add(net, dev->name_node); 1263 1264 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1265 ret = notifier_to_errno(ret); 1266 1267 if (ret) { 1268 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1269 if (err >= 0) { 1270 err = ret; 1271 down_write(&devnet_rename_sem); 1272 write_seqlock_bh(&netdev_rename_lock); 1273 memcpy(dev->name, oldname, IFNAMSIZ); 1274 write_sequnlock_bh(&netdev_rename_lock); 1275 memcpy(oldname, newname, IFNAMSIZ); 1276 WRITE_ONCE(dev->name_assign_type, old_assign_type); 1277 old_assign_type = NET_NAME_RENAMED; 1278 goto rollback; 1279 } else { 1280 netdev_err(dev, "name change rollback failed: %d\n", 1281 ret); 1282 } 1283 } 1284 1285 return err; 1286 } 1287 1288 /** 1289 * dev_set_alias - change ifalias of a device 1290 * @dev: device 1291 * @alias: name up to IFALIASZ 1292 * @len: limit of bytes to copy from info 1293 * 1294 * Set ifalias for a device, 1295 */ 1296 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1297 { 1298 struct dev_ifalias *new_alias = NULL; 1299 1300 if (len >= IFALIASZ) 1301 return -EINVAL; 1302 1303 if (len) { 1304 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL); 1305 if (!new_alias) 1306 return -ENOMEM; 1307 1308 memcpy(new_alias->ifalias, alias, len); 1309 new_alias->ifalias[len] = 0; 1310 } 1311 1312 mutex_lock(&ifalias_mutex); 1313 new_alias = rcu_replace_pointer(dev->ifalias, new_alias, 1314 mutex_is_locked(&ifalias_mutex)); 1315 mutex_unlock(&ifalias_mutex); 1316 1317 if (new_alias) 1318 kfree_rcu(new_alias, rcuhead); 1319 1320 return len; 1321 } 1322 EXPORT_SYMBOL(dev_set_alias); 1323 1324 /** 1325 * dev_get_alias - get ifalias of a device 1326 * @dev: device 1327 * @name: buffer to store name of ifalias 1328 * @len: size of buffer 1329 * 1330 * get ifalias for a device. Caller must make sure dev cannot go 1331 * away, e.g. rcu read lock or own a reference count to device. 1332 */ 1333 int dev_get_alias(const struct net_device *dev, char *name, size_t len) 1334 { 1335 const struct dev_ifalias *alias; 1336 int ret = 0; 1337 1338 rcu_read_lock(); 1339 alias = rcu_dereference(dev->ifalias); 1340 if (alias) 1341 ret = snprintf(name, len, "%s", alias->ifalias); 1342 rcu_read_unlock(); 1343 1344 return ret; 1345 } 1346 1347 /** 1348 * netdev_features_change - device changes features 1349 * @dev: device to cause notification 1350 * 1351 * Called to indicate a device has changed features. 1352 */ 1353 void netdev_features_change(struct net_device *dev) 1354 { 1355 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1356 } 1357 EXPORT_SYMBOL(netdev_features_change); 1358 1359 /** 1360 * netdev_state_change - device changes state 1361 * @dev: device to cause notification 1362 * 1363 * Called to indicate a device has changed state. This function calls 1364 * the notifier chains for netdev_chain and sends a NEWLINK message 1365 * to the routing socket. 1366 */ 1367 void netdev_state_change(struct net_device *dev) 1368 { 1369 if (dev->flags & IFF_UP) { 1370 struct netdev_notifier_change_info change_info = { 1371 .info.dev = dev, 1372 }; 1373 1374 call_netdevice_notifiers_info(NETDEV_CHANGE, 1375 &change_info.info); 1376 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL); 1377 } 1378 } 1379 EXPORT_SYMBOL(netdev_state_change); 1380 1381 /** 1382 * __netdev_notify_peers - notify network peers about existence of @dev, 1383 * to be called when rtnl lock is already held. 1384 * @dev: network device 1385 * 1386 * Generate traffic such that interested network peers are aware of 1387 * @dev, such as by generating a gratuitous ARP. This may be used when 1388 * a device wants to inform the rest of the network about some sort of 1389 * reconfiguration such as a failover event or virtual machine 1390 * migration. 1391 */ 1392 void __netdev_notify_peers(struct net_device *dev) 1393 { 1394 ASSERT_RTNL(); 1395 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1396 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev); 1397 } 1398 EXPORT_SYMBOL(__netdev_notify_peers); 1399 1400 /** 1401 * netdev_notify_peers - notify network peers about existence of @dev 1402 * @dev: network device 1403 * 1404 * Generate traffic such that interested network peers are aware of 1405 * @dev, such as by generating a gratuitous ARP. This may be used when 1406 * a device wants to inform the rest of the network about some sort of 1407 * reconfiguration such as a failover event or virtual machine 1408 * migration. 1409 */ 1410 void netdev_notify_peers(struct net_device *dev) 1411 { 1412 rtnl_lock(); 1413 __netdev_notify_peers(dev); 1414 rtnl_unlock(); 1415 } 1416 EXPORT_SYMBOL(netdev_notify_peers); 1417 1418 static int napi_threaded_poll(void *data); 1419 1420 static int napi_kthread_create(struct napi_struct *n) 1421 { 1422 int err = 0; 1423 1424 /* Create and wake up the kthread once to put it in 1425 * TASK_INTERRUPTIBLE mode to avoid the blocked task 1426 * warning and work with loadavg. 1427 */ 1428 n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d", 1429 n->dev->name, n->napi_id); 1430 if (IS_ERR(n->thread)) { 1431 err = PTR_ERR(n->thread); 1432 pr_err("kthread_run failed with err %d\n", err); 1433 n->thread = NULL; 1434 } 1435 1436 return err; 1437 } 1438 1439 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack) 1440 { 1441 const struct net_device_ops *ops = dev->netdev_ops; 1442 int ret; 1443 1444 ASSERT_RTNL(); 1445 dev_addr_check(dev); 1446 1447 if (!netif_device_present(dev)) { 1448 /* may be detached because parent is runtime-suspended */ 1449 if (dev->dev.parent) 1450 pm_runtime_resume(dev->dev.parent); 1451 if (!netif_device_present(dev)) 1452 return -ENODEV; 1453 } 1454 1455 /* Block netpoll from trying to do any rx path servicing. 1456 * If we don't do this there is a chance ndo_poll_controller 1457 * or ndo_poll may be running while we open the device 1458 */ 1459 netpoll_poll_disable(dev); 1460 1461 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack); 1462 ret = notifier_to_errno(ret); 1463 if (ret) 1464 return ret; 1465 1466 set_bit(__LINK_STATE_START, &dev->state); 1467 1468 if (ops->ndo_validate_addr) 1469 ret = ops->ndo_validate_addr(dev); 1470 1471 if (!ret && ops->ndo_open) 1472 ret = ops->ndo_open(dev); 1473 1474 netpoll_poll_enable(dev); 1475 1476 if (ret) 1477 clear_bit(__LINK_STATE_START, &dev->state); 1478 else { 1479 dev->flags |= IFF_UP; 1480 dev_set_rx_mode(dev); 1481 dev_activate(dev); 1482 add_device_randomness(dev->dev_addr, dev->addr_len); 1483 } 1484 1485 return ret; 1486 } 1487 1488 /** 1489 * dev_open - prepare an interface for use. 1490 * @dev: device to open 1491 * @extack: netlink extended ack 1492 * 1493 * Takes a device from down to up state. The device's private open 1494 * function is invoked and then the multicast lists are loaded. Finally 1495 * the device is moved into the up state and a %NETDEV_UP message is 1496 * sent to the netdev notifier chain. 1497 * 1498 * Calling this function on an active interface is a nop. On a failure 1499 * a negative errno code is returned. 1500 */ 1501 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack) 1502 { 1503 int ret; 1504 1505 if (dev->flags & IFF_UP) 1506 return 0; 1507 1508 ret = __dev_open(dev, extack); 1509 if (ret < 0) 1510 return ret; 1511 1512 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL); 1513 call_netdevice_notifiers(NETDEV_UP, dev); 1514 1515 return ret; 1516 } 1517 EXPORT_SYMBOL(dev_open); 1518 1519 static void __dev_close_many(struct list_head *head) 1520 { 1521 struct net_device *dev; 1522 1523 ASSERT_RTNL(); 1524 might_sleep(); 1525 1526 list_for_each_entry(dev, head, close_list) { 1527 /* Temporarily disable netpoll until the interface is down */ 1528 netpoll_poll_disable(dev); 1529 1530 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1531 1532 clear_bit(__LINK_STATE_START, &dev->state); 1533 1534 /* Synchronize to scheduled poll. We cannot touch poll list, it 1535 * can be even on different cpu. So just clear netif_running(). 1536 * 1537 * dev->stop() will invoke napi_disable() on all of it's 1538 * napi_struct instances on this device. 1539 */ 1540 smp_mb__after_atomic(); /* Commit netif_running(). */ 1541 } 1542 1543 dev_deactivate_many(head); 1544 1545 list_for_each_entry(dev, head, close_list) { 1546 const struct net_device_ops *ops = dev->netdev_ops; 1547 1548 /* 1549 * Call the device specific close. This cannot fail. 1550 * Only if device is UP 1551 * 1552 * We allow it to be called even after a DETACH hot-plug 1553 * event. 1554 */ 1555 if (ops->ndo_stop) 1556 ops->ndo_stop(dev); 1557 1558 dev->flags &= ~IFF_UP; 1559 netpoll_poll_enable(dev); 1560 } 1561 } 1562 1563 static void __dev_close(struct net_device *dev) 1564 { 1565 LIST_HEAD(single); 1566 1567 list_add(&dev->close_list, &single); 1568 __dev_close_many(&single); 1569 list_del(&single); 1570 } 1571 1572 void dev_close_many(struct list_head *head, bool unlink) 1573 { 1574 struct net_device *dev, *tmp; 1575 1576 /* Remove the devices that don't need to be closed */ 1577 list_for_each_entry_safe(dev, tmp, head, close_list) 1578 if (!(dev->flags & IFF_UP)) 1579 list_del_init(&dev->close_list); 1580 1581 __dev_close_many(head); 1582 1583 list_for_each_entry_safe(dev, tmp, head, close_list) { 1584 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL); 1585 call_netdevice_notifiers(NETDEV_DOWN, dev); 1586 if (unlink) 1587 list_del_init(&dev->close_list); 1588 } 1589 } 1590 EXPORT_SYMBOL(dev_close_many); 1591 1592 /** 1593 * dev_close - shutdown an interface. 1594 * @dev: device to shutdown 1595 * 1596 * This function moves an active device into down state. A 1597 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1598 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1599 * chain. 1600 */ 1601 void dev_close(struct net_device *dev) 1602 { 1603 if (dev->flags & IFF_UP) { 1604 LIST_HEAD(single); 1605 1606 list_add(&dev->close_list, &single); 1607 dev_close_many(&single, true); 1608 list_del(&single); 1609 } 1610 } 1611 EXPORT_SYMBOL(dev_close); 1612 1613 1614 /** 1615 * dev_disable_lro - disable Large Receive Offload on a device 1616 * @dev: device 1617 * 1618 * Disable Large Receive Offload (LRO) on a net device. Must be 1619 * called under RTNL. This is needed if received packets may be 1620 * forwarded to another interface. 1621 */ 1622 void dev_disable_lro(struct net_device *dev) 1623 { 1624 struct net_device *lower_dev; 1625 struct list_head *iter; 1626 1627 dev->wanted_features &= ~NETIF_F_LRO; 1628 netdev_update_features(dev); 1629 1630 if (unlikely(dev->features & NETIF_F_LRO)) 1631 netdev_WARN(dev, "failed to disable LRO!\n"); 1632 1633 netdev_for_each_lower_dev(dev, lower_dev, iter) 1634 dev_disable_lro(lower_dev); 1635 } 1636 EXPORT_SYMBOL(dev_disable_lro); 1637 1638 /** 1639 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device 1640 * @dev: device 1641 * 1642 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be 1643 * called under RTNL. This is needed if Generic XDP is installed on 1644 * the device. 1645 */ 1646 static void dev_disable_gro_hw(struct net_device *dev) 1647 { 1648 dev->wanted_features &= ~NETIF_F_GRO_HW; 1649 netdev_update_features(dev); 1650 1651 if (unlikely(dev->features & NETIF_F_GRO_HW)) 1652 netdev_WARN(dev, "failed to disable GRO_HW!\n"); 1653 } 1654 1655 const char *netdev_cmd_to_name(enum netdev_cmd cmd) 1656 { 1657 #define N(val) \ 1658 case NETDEV_##val: \ 1659 return "NETDEV_" __stringify(val); 1660 switch (cmd) { 1661 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER) 1662 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE) 1663 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE) 1664 N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) 1665 N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) 1666 N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE) 1667 N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN) 1668 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO) 1669 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO) 1670 N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE) 1671 N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA) 1672 N(XDP_FEAT_CHANGE) 1673 } 1674 #undef N 1675 return "UNKNOWN_NETDEV_EVENT"; 1676 } 1677 EXPORT_SYMBOL_GPL(netdev_cmd_to_name); 1678 1679 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1680 struct net_device *dev) 1681 { 1682 struct netdev_notifier_info info = { 1683 .dev = dev, 1684 }; 1685 1686 return nb->notifier_call(nb, val, &info); 1687 } 1688 1689 static int call_netdevice_register_notifiers(struct notifier_block *nb, 1690 struct net_device *dev) 1691 { 1692 int err; 1693 1694 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1695 err = notifier_to_errno(err); 1696 if (err) 1697 return err; 1698 1699 if (!(dev->flags & IFF_UP)) 1700 return 0; 1701 1702 call_netdevice_notifier(nb, NETDEV_UP, dev); 1703 return 0; 1704 } 1705 1706 static void call_netdevice_unregister_notifiers(struct notifier_block *nb, 1707 struct net_device *dev) 1708 { 1709 if (dev->flags & IFF_UP) { 1710 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1711 dev); 1712 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1713 } 1714 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1715 } 1716 1717 static int call_netdevice_register_net_notifiers(struct notifier_block *nb, 1718 struct net *net) 1719 { 1720 struct net_device *dev; 1721 int err; 1722 1723 for_each_netdev(net, dev) { 1724 err = call_netdevice_register_notifiers(nb, dev); 1725 if (err) 1726 goto rollback; 1727 } 1728 return 0; 1729 1730 rollback: 1731 for_each_netdev_continue_reverse(net, dev) 1732 call_netdevice_unregister_notifiers(nb, dev); 1733 return err; 1734 } 1735 1736 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb, 1737 struct net *net) 1738 { 1739 struct net_device *dev; 1740 1741 for_each_netdev(net, dev) 1742 call_netdevice_unregister_notifiers(nb, dev); 1743 } 1744 1745 static int dev_boot_phase = 1; 1746 1747 /** 1748 * register_netdevice_notifier - register a network notifier block 1749 * @nb: notifier 1750 * 1751 * Register a notifier to be called when network device events occur. 1752 * The notifier passed is linked into the kernel structures and must 1753 * not be reused until it has been unregistered. A negative errno code 1754 * is returned on a failure. 1755 * 1756 * When registered all registration and up events are replayed 1757 * to the new notifier to allow device to have a race free 1758 * view of the network device list. 1759 */ 1760 1761 int register_netdevice_notifier(struct notifier_block *nb) 1762 { 1763 struct net *net; 1764 int err; 1765 1766 /* Close race with setup_net() and cleanup_net() */ 1767 down_write(&pernet_ops_rwsem); 1768 rtnl_lock(); 1769 err = raw_notifier_chain_register(&netdev_chain, nb); 1770 if (err) 1771 goto unlock; 1772 if (dev_boot_phase) 1773 goto unlock; 1774 for_each_net(net) { 1775 err = call_netdevice_register_net_notifiers(nb, net); 1776 if (err) 1777 goto rollback; 1778 } 1779 1780 unlock: 1781 rtnl_unlock(); 1782 up_write(&pernet_ops_rwsem); 1783 return err; 1784 1785 rollback: 1786 for_each_net_continue_reverse(net) 1787 call_netdevice_unregister_net_notifiers(nb, net); 1788 1789 raw_notifier_chain_unregister(&netdev_chain, nb); 1790 goto unlock; 1791 } 1792 EXPORT_SYMBOL(register_netdevice_notifier); 1793 1794 /** 1795 * unregister_netdevice_notifier - unregister a network notifier block 1796 * @nb: notifier 1797 * 1798 * Unregister a notifier previously registered by 1799 * register_netdevice_notifier(). The notifier is unlinked into the 1800 * kernel structures and may then be reused. A negative errno code 1801 * is returned on a failure. 1802 * 1803 * After unregistering unregister and down device events are synthesized 1804 * for all devices on the device list to the removed notifier to remove 1805 * the need for special case cleanup code. 1806 */ 1807 1808 int unregister_netdevice_notifier(struct notifier_block *nb) 1809 { 1810 struct net *net; 1811 int err; 1812 1813 /* Close race with setup_net() and cleanup_net() */ 1814 down_write(&pernet_ops_rwsem); 1815 rtnl_lock(); 1816 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1817 if (err) 1818 goto unlock; 1819 1820 for_each_net(net) 1821 call_netdevice_unregister_net_notifiers(nb, net); 1822 1823 unlock: 1824 rtnl_unlock(); 1825 up_write(&pernet_ops_rwsem); 1826 return err; 1827 } 1828 EXPORT_SYMBOL(unregister_netdevice_notifier); 1829 1830 static int __register_netdevice_notifier_net(struct net *net, 1831 struct notifier_block *nb, 1832 bool ignore_call_fail) 1833 { 1834 int err; 1835 1836 err = raw_notifier_chain_register(&net->netdev_chain, nb); 1837 if (err) 1838 return err; 1839 if (dev_boot_phase) 1840 return 0; 1841 1842 err = call_netdevice_register_net_notifiers(nb, net); 1843 if (err && !ignore_call_fail) 1844 goto chain_unregister; 1845 1846 return 0; 1847 1848 chain_unregister: 1849 raw_notifier_chain_unregister(&net->netdev_chain, nb); 1850 return err; 1851 } 1852 1853 static int __unregister_netdevice_notifier_net(struct net *net, 1854 struct notifier_block *nb) 1855 { 1856 int err; 1857 1858 err = raw_notifier_chain_unregister(&net->netdev_chain, nb); 1859 if (err) 1860 return err; 1861 1862 call_netdevice_unregister_net_notifiers(nb, net); 1863 return 0; 1864 } 1865 1866 /** 1867 * register_netdevice_notifier_net - register a per-netns network notifier block 1868 * @net: network namespace 1869 * @nb: notifier 1870 * 1871 * Register a notifier to be called when network device events occur. 1872 * The notifier passed is linked into the kernel structures and must 1873 * not be reused until it has been unregistered. A negative errno code 1874 * is returned on a failure. 1875 * 1876 * When registered all registration and up events are replayed 1877 * to the new notifier to allow device to have a race free 1878 * view of the network device list. 1879 */ 1880 1881 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb) 1882 { 1883 int err; 1884 1885 rtnl_lock(); 1886 err = __register_netdevice_notifier_net(net, nb, false); 1887 rtnl_unlock(); 1888 return err; 1889 } 1890 EXPORT_SYMBOL(register_netdevice_notifier_net); 1891 1892 /** 1893 * unregister_netdevice_notifier_net - unregister a per-netns 1894 * network notifier block 1895 * @net: network namespace 1896 * @nb: notifier 1897 * 1898 * Unregister a notifier previously registered by 1899 * register_netdevice_notifier_net(). The notifier is unlinked from the 1900 * kernel structures and may then be reused. A negative errno code 1901 * is returned on a failure. 1902 * 1903 * After unregistering unregister and down device events are synthesized 1904 * for all devices on the device list to the removed notifier to remove 1905 * the need for special case cleanup code. 1906 */ 1907 1908 int unregister_netdevice_notifier_net(struct net *net, 1909 struct notifier_block *nb) 1910 { 1911 int err; 1912 1913 rtnl_lock(); 1914 err = __unregister_netdevice_notifier_net(net, nb); 1915 rtnl_unlock(); 1916 return err; 1917 } 1918 EXPORT_SYMBOL(unregister_netdevice_notifier_net); 1919 1920 static void __move_netdevice_notifier_net(struct net *src_net, 1921 struct net *dst_net, 1922 struct notifier_block *nb) 1923 { 1924 __unregister_netdevice_notifier_net(src_net, nb); 1925 __register_netdevice_notifier_net(dst_net, nb, true); 1926 } 1927 1928 int register_netdevice_notifier_dev_net(struct net_device *dev, 1929 struct notifier_block *nb, 1930 struct netdev_net_notifier *nn) 1931 { 1932 int err; 1933 1934 rtnl_lock(); 1935 err = __register_netdevice_notifier_net(dev_net(dev), nb, false); 1936 if (!err) { 1937 nn->nb = nb; 1938 list_add(&nn->list, &dev->net_notifier_list); 1939 } 1940 rtnl_unlock(); 1941 return err; 1942 } 1943 EXPORT_SYMBOL(register_netdevice_notifier_dev_net); 1944 1945 int unregister_netdevice_notifier_dev_net(struct net_device *dev, 1946 struct notifier_block *nb, 1947 struct netdev_net_notifier *nn) 1948 { 1949 int err; 1950 1951 rtnl_lock(); 1952 list_del(&nn->list); 1953 err = __unregister_netdevice_notifier_net(dev_net(dev), nb); 1954 rtnl_unlock(); 1955 return err; 1956 } 1957 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net); 1958 1959 static void move_netdevice_notifiers_dev_net(struct net_device *dev, 1960 struct net *net) 1961 { 1962 struct netdev_net_notifier *nn; 1963 1964 list_for_each_entry(nn, &dev->net_notifier_list, list) 1965 __move_netdevice_notifier_net(dev_net(dev), net, nn->nb); 1966 } 1967 1968 /** 1969 * call_netdevice_notifiers_info - call all network notifier blocks 1970 * @val: value passed unmodified to notifier function 1971 * @info: notifier information data 1972 * 1973 * Call all network notifier blocks. Parameters and return value 1974 * are as for raw_notifier_call_chain(). 1975 */ 1976 1977 int call_netdevice_notifiers_info(unsigned long val, 1978 struct netdev_notifier_info *info) 1979 { 1980 struct net *net = dev_net(info->dev); 1981 int ret; 1982 1983 ASSERT_RTNL(); 1984 1985 /* Run per-netns notifier block chain first, then run the global one. 1986 * Hopefully, one day, the global one is going to be removed after 1987 * all notifier block registrators get converted to be per-netns. 1988 */ 1989 ret = raw_notifier_call_chain(&net->netdev_chain, val, info); 1990 if (ret & NOTIFY_STOP_MASK) 1991 return ret; 1992 return raw_notifier_call_chain(&netdev_chain, val, info); 1993 } 1994 1995 /** 1996 * call_netdevice_notifiers_info_robust - call per-netns notifier blocks 1997 * for and rollback on error 1998 * @val_up: value passed unmodified to notifier function 1999 * @val_down: value passed unmodified to the notifier function when 2000 * recovering from an error on @val_up 2001 * @info: notifier information data 2002 * 2003 * Call all per-netns network notifier blocks, but not notifier blocks on 2004 * the global notifier chain. Parameters and return value are as for 2005 * raw_notifier_call_chain_robust(). 2006 */ 2007 2008 static int 2009 call_netdevice_notifiers_info_robust(unsigned long val_up, 2010 unsigned long val_down, 2011 struct netdev_notifier_info *info) 2012 { 2013 struct net *net = dev_net(info->dev); 2014 2015 ASSERT_RTNL(); 2016 2017 return raw_notifier_call_chain_robust(&net->netdev_chain, 2018 val_up, val_down, info); 2019 } 2020 2021 static int call_netdevice_notifiers_extack(unsigned long val, 2022 struct net_device *dev, 2023 struct netlink_ext_ack *extack) 2024 { 2025 struct netdev_notifier_info info = { 2026 .dev = dev, 2027 .extack = extack, 2028 }; 2029 2030 return call_netdevice_notifiers_info(val, &info); 2031 } 2032 2033 /** 2034 * call_netdevice_notifiers - call all network notifier blocks 2035 * @val: value passed unmodified to notifier function 2036 * @dev: net_device pointer passed unmodified to notifier function 2037 * 2038 * Call all network notifier blocks. Parameters and return value 2039 * are as for raw_notifier_call_chain(). 2040 */ 2041 2042 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 2043 { 2044 return call_netdevice_notifiers_extack(val, dev, NULL); 2045 } 2046 EXPORT_SYMBOL(call_netdevice_notifiers); 2047 2048 /** 2049 * call_netdevice_notifiers_mtu - call all network notifier blocks 2050 * @val: value passed unmodified to notifier function 2051 * @dev: net_device pointer passed unmodified to notifier function 2052 * @arg: additional u32 argument passed to the notifier function 2053 * 2054 * Call all network notifier blocks. Parameters and return value 2055 * are as for raw_notifier_call_chain(). 2056 */ 2057 static int call_netdevice_notifiers_mtu(unsigned long val, 2058 struct net_device *dev, u32 arg) 2059 { 2060 struct netdev_notifier_info_ext info = { 2061 .info.dev = dev, 2062 .ext.mtu = arg, 2063 }; 2064 2065 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0); 2066 2067 return call_netdevice_notifiers_info(val, &info.info); 2068 } 2069 2070 #ifdef CONFIG_NET_INGRESS 2071 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key); 2072 2073 void net_inc_ingress_queue(void) 2074 { 2075 static_branch_inc(&ingress_needed_key); 2076 } 2077 EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 2078 2079 void net_dec_ingress_queue(void) 2080 { 2081 static_branch_dec(&ingress_needed_key); 2082 } 2083 EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 2084 #endif 2085 2086 #ifdef CONFIG_NET_EGRESS 2087 static DEFINE_STATIC_KEY_FALSE(egress_needed_key); 2088 2089 void net_inc_egress_queue(void) 2090 { 2091 static_branch_inc(&egress_needed_key); 2092 } 2093 EXPORT_SYMBOL_GPL(net_inc_egress_queue); 2094 2095 void net_dec_egress_queue(void) 2096 { 2097 static_branch_dec(&egress_needed_key); 2098 } 2099 EXPORT_SYMBOL_GPL(net_dec_egress_queue); 2100 #endif 2101 2102 #ifdef CONFIG_NET_CLS_ACT 2103 DEFINE_STATIC_KEY_FALSE(tcf_bypass_check_needed_key); 2104 EXPORT_SYMBOL(tcf_bypass_check_needed_key); 2105 #endif 2106 2107 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key); 2108 EXPORT_SYMBOL(netstamp_needed_key); 2109 #ifdef CONFIG_JUMP_LABEL 2110 static atomic_t netstamp_needed_deferred; 2111 static atomic_t netstamp_wanted; 2112 static void netstamp_clear(struct work_struct *work) 2113 { 2114 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 2115 int wanted; 2116 2117 wanted = atomic_add_return(deferred, &netstamp_wanted); 2118 if (wanted > 0) 2119 static_branch_enable(&netstamp_needed_key); 2120 else 2121 static_branch_disable(&netstamp_needed_key); 2122 } 2123 static DECLARE_WORK(netstamp_work, netstamp_clear); 2124 #endif 2125 2126 void net_enable_timestamp(void) 2127 { 2128 #ifdef CONFIG_JUMP_LABEL 2129 int wanted = atomic_read(&netstamp_wanted); 2130 2131 while (wanted > 0) { 2132 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1)) 2133 return; 2134 } 2135 atomic_inc(&netstamp_needed_deferred); 2136 schedule_work(&netstamp_work); 2137 #else 2138 static_branch_inc(&netstamp_needed_key); 2139 #endif 2140 } 2141 EXPORT_SYMBOL(net_enable_timestamp); 2142 2143 void net_disable_timestamp(void) 2144 { 2145 #ifdef CONFIG_JUMP_LABEL 2146 int wanted = atomic_read(&netstamp_wanted); 2147 2148 while (wanted > 1) { 2149 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1)) 2150 return; 2151 } 2152 atomic_dec(&netstamp_needed_deferred); 2153 schedule_work(&netstamp_work); 2154 #else 2155 static_branch_dec(&netstamp_needed_key); 2156 #endif 2157 } 2158 EXPORT_SYMBOL(net_disable_timestamp); 2159 2160 static inline void net_timestamp_set(struct sk_buff *skb) 2161 { 2162 skb->tstamp = 0; 2163 skb->mono_delivery_time = 0; 2164 if (static_branch_unlikely(&netstamp_needed_key)) 2165 skb->tstamp = ktime_get_real(); 2166 } 2167 2168 #define net_timestamp_check(COND, SKB) \ 2169 if (static_branch_unlikely(&netstamp_needed_key)) { \ 2170 if ((COND) && !(SKB)->tstamp) \ 2171 (SKB)->tstamp = ktime_get_real(); \ 2172 } \ 2173 2174 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb) 2175 { 2176 return __is_skb_forwardable(dev, skb, true); 2177 } 2178 EXPORT_SYMBOL_GPL(is_skb_forwardable); 2179 2180 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb, 2181 bool check_mtu) 2182 { 2183 int ret = ____dev_forward_skb(dev, skb, check_mtu); 2184 2185 if (likely(!ret)) { 2186 skb->protocol = eth_type_trans(skb, dev); 2187 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 2188 } 2189 2190 return ret; 2191 } 2192 2193 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 2194 { 2195 return __dev_forward_skb2(dev, skb, true); 2196 } 2197 EXPORT_SYMBOL_GPL(__dev_forward_skb); 2198 2199 /** 2200 * dev_forward_skb - loopback an skb to another netif 2201 * 2202 * @dev: destination network device 2203 * @skb: buffer to forward 2204 * 2205 * return values: 2206 * NET_RX_SUCCESS (no congestion) 2207 * NET_RX_DROP (packet was dropped, but freed) 2208 * 2209 * dev_forward_skb can be used for injecting an skb from the 2210 * start_xmit function of one device into the receive queue 2211 * of another device. 2212 * 2213 * The receiving device may be in another namespace, so 2214 * we have to clear all information in the skb that could 2215 * impact namespace isolation. 2216 */ 2217 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 2218 { 2219 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 2220 } 2221 EXPORT_SYMBOL_GPL(dev_forward_skb); 2222 2223 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb) 2224 { 2225 return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb); 2226 } 2227 2228 static inline int deliver_skb(struct sk_buff *skb, 2229 struct packet_type *pt_prev, 2230 struct net_device *orig_dev) 2231 { 2232 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 2233 return -ENOMEM; 2234 refcount_inc(&skb->users); 2235 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2236 } 2237 2238 static inline void deliver_ptype_list_skb(struct sk_buff *skb, 2239 struct packet_type **pt, 2240 struct net_device *orig_dev, 2241 __be16 type, 2242 struct list_head *ptype_list) 2243 { 2244 struct packet_type *ptype, *pt_prev = *pt; 2245 2246 list_for_each_entry_rcu(ptype, ptype_list, list) { 2247 if (ptype->type != type) 2248 continue; 2249 if (pt_prev) 2250 deliver_skb(skb, pt_prev, orig_dev); 2251 pt_prev = ptype; 2252 } 2253 *pt = pt_prev; 2254 } 2255 2256 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 2257 { 2258 if (!ptype->af_packet_priv || !skb->sk) 2259 return false; 2260 2261 if (ptype->id_match) 2262 return ptype->id_match(ptype, skb->sk); 2263 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 2264 return true; 2265 2266 return false; 2267 } 2268 2269 /** 2270 * dev_nit_active - return true if any network interface taps are in use 2271 * 2272 * @dev: network device to check for the presence of taps 2273 */ 2274 bool dev_nit_active(struct net_device *dev) 2275 { 2276 return !list_empty(&net_hotdata.ptype_all) || 2277 !list_empty(&dev->ptype_all); 2278 } 2279 EXPORT_SYMBOL_GPL(dev_nit_active); 2280 2281 /* 2282 * Support routine. Sends outgoing frames to any network 2283 * taps currently in use. 2284 */ 2285 2286 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 2287 { 2288 struct list_head *ptype_list = &net_hotdata.ptype_all; 2289 struct packet_type *ptype, *pt_prev = NULL; 2290 struct sk_buff *skb2 = NULL; 2291 2292 rcu_read_lock(); 2293 again: 2294 list_for_each_entry_rcu(ptype, ptype_list, list) { 2295 if (READ_ONCE(ptype->ignore_outgoing)) 2296 continue; 2297 2298 /* Never send packets back to the socket 2299 * they originated from - MvS (miquels@drinkel.ow.org) 2300 */ 2301 if (skb_loop_sk(ptype, skb)) 2302 continue; 2303 2304 if (pt_prev) { 2305 deliver_skb(skb2, pt_prev, skb->dev); 2306 pt_prev = ptype; 2307 continue; 2308 } 2309 2310 /* need to clone skb, done only once */ 2311 skb2 = skb_clone(skb, GFP_ATOMIC); 2312 if (!skb2) 2313 goto out_unlock; 2314 2315 net_timestamp_set(skb2); 2316 2317 /* skb->nh should be correctly 2318 * set by sender, so that the second statement is 2319 * just protection against buggy protocols. 2320 */ 2321 skb_reset_mac_header(skb2); 2322 2323 if (skb_network_header(skb2) < skb2->data || 2324 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 2325 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 2326 ntohs(skb2->protocol), 2327 dev->name); 2328 skb_reset_network_header(skb2); 2329 } 2330 2331 skb2->transport_header = skb2->network_header; 2332 skb2->pkt_type = PACKET_OUTGOING; 2333 pt_prev = ptype; 2334 } 2335 2336 if (ptype_list == &net_hotdata.ptype_all) { 2337 ptype_list = &dev->ptype_all; 2338 goto again; 2339 } 2340 out_unlock: 2341 if (pt_prev) { 2342 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC)) 2343 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 2344 else 2345 kfree_skb(skb2); 2346 } 2347 rcu_read_unlock(); 2348 } 2349 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit); 2350 2351 /** 2352 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 2353 * @dev: Network device 2354 * @txq: number of queues available 2355 * 2356 * If real_num_tx_queues is changed the tc mappings may no longer be 2357 * valid. To resolve this verify the tc mapping remains valid and if 2358 * not NULL the mapping. With no priorities mapping to this 2359 * offset/count pair it will no longer be used. In the worst case TC0 2360 * is invalid nothing can be done so disable priority mappings. If is 2361 * expected that drivers will fix this mapping if they can before 2362 * calling netif_set_real_num_tx_queues. 2363 */ 2364 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 2365 { 2366 int i; 2367 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2368 2369 /* If TC0 is invalidated disable TC mapping */ 2370 if (tc->offset + tc->count > txq) { 2371 netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 2372 dev->num_tc = 0; 2373 return; 2374 } 2375 2376 /* Invalidated prio to tc mappings set to TC0 */ 2377 for (i = 1; i < TC_BITMASK + 1; i++) { 2378 int q = netdev_get_prio_tc_map(dev, i); 2379 2380 tc = &dev->tc_to_txq[q]; 2381 if (tc->offset + tc->count > txq) { 2382 netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 2383 i, q); 2384 netdev_set_prio_tc_map(dev, i, 0); 2385 } 2386 } 2387 } 2388 2389 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq) 2390 { 2391 if (dev->num_tc) { 2392 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2393 int i; 2394 2395 /* walk through the TCs and see if it falls into any of them */ 2396 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) { 2397 if ((txq - tc->offset) < tc->count) 2398 return i; 2399 } 2400 2401 /* didn't find it, just return -1 to indicate no match */ 2402 return -1; 2403 } 2404 2405 return 0; 2406 } 2407 EXPORT_SYMBOL(netdev_txq_to_tc); 2408 2409 #ifdef CONFIG_XPS 2410 static struct static_key xps_needed __read_mostly; 2411 static struct static_key xps_rxqs_needed __read_mostly; 2412 static DEFINE_MUTEX(xps_map_mutex); 2413 #define xmap_dereference(P) \ 2414 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 2415 2416 static bool remove_xps_queue(struct xps_dev_maps *dev_maps, 2417 struct xps_dev_maps *old_maps, int tci, u16 index) 2418 { 2419 struct xps_map *map = NULL; 2420 int pos; 2421 2422 map = xmap_dereference(dev_maps->attr_map[tci]); 2423 if (!map) 2424 return false; 2425 2426 for (pos = map->len; pos--;) { 2427 if (map->queues[pos] != index) 2428 continue; 2429 2430 if (map->len > 1) { 2431 map->queues[pos] = map->queues[--map->len]; 2432 break; 2433 } 2434 2435 if (old_maps) 2436 RCU_INIT_POINTER(old_maps->attr_map[tci], NULL); 2437 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); 2438 kfree_rcu(map, rcu); 2439 return false; 2440 } 2441 2442 return true; 2443 } 2444 2445 static bool remove_xps_queue_cpu(struct net_device *dev, 2446 struct xps_dev_maps *dev_maps, 2447 int cpu, u16 offset, u16 count) 2448 { 2449 int num_tc = dev_maps->num_tc; 2450 bool active = false; 2451 int tci; 2452 2453 for (tci = cpu * num_tc; num_tc--; tci++) { 2454 int i, j; 2455 2456 for (i = count, j = offset; i--; j++) { 2457 if (!remove_xps_queue(dev_maps, NULL, tci, j)) 2458 break; 2459 } 2460 2461 active |= i < 0; 2462 } 2463 2464 return active; 2465 } 2466 2467 static void reset_xps_maps(struct net_device *dev, 2468 struct xps_dev_maps *dev_maps, 2469 enum xps_map_type type) 2470 { 2471 static_key_slow_dec_cpuslocked(&xps_needed); 2472 if (type == XPS_RXQS) 2473 static_key_slow_dec_cpuslocked(&xps_rxqs_needed); 2474 2475 RCU_INIT_POINTER(dev->xps_maps[type], NULL); 2476 2477 kfree_rcu(dev_maps, rcu); 2478 } 2479 2480 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type, 2481 u16 offset, u16 count) 2482 { 2483 struct xps_dev_maps *dev_maps; 2484 bool active = false; 2485 int i, j; 2486 2487 dev_maps = xmap_dereference(dev->xps_maps[type]); 2488 if (!dev_maps) 2489 return; 2490 2491 for (j = 0; j < dev_maps->nr_ids; j++) 2492 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count); 2493 if (!active) 2494 reset_xps_maps(dev, dev_maps, type); 2495 2496 if (type == XPS_CPUS) { 2497 for (i = offset + (count - 1); count--; i--) 2498 netdev_queue_numa_node_write( 2499 netdev_get_tx_queue(dev, i), NUMA_NO_NODE); 2500 } 2501 } 2502 2503 static void netif_reset_xps_queues(struct net_device *dev, u16 offset, 2504 u16 count) 2505 { 2506 if (!static_key_false(&xps_needed)) 2507 return; 2508 2509 cpus_read_lock(); 2510 mutex_lock(&xps_map_mutex); 2511 2512 if (static_key_false(&xps_rxqs_needed)) 2513 clean_xps_maps(dev, XPS_RXQS, offset, count); 2514 2515 clean_xps_maps(dev, XPS_CPUS, offset, count); 2516 2517 mutex_unlock(&xps_map_mutex); 2518 cpus_read_unlock(); 2519 } 2520 2521 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 2522 { 2523 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index); 2524 } 2525 2526 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index, 2527 u16 index, bool is_rxqs_map) 2528 { 2529 struct xps_map *new_map; 2530 int alloc_len = XPS_MIN_MAP_ALLOC; 2531 int i, pos; 2532 2533 for (pos = 0; map && pos < map->len; pos++) { 2534 if (map->queues[pos] != index) 2535 continue; 2536 return map; 2537 } 2538 2539 /* Need to add tx-queue to this CPU's/rx-queue's existing map */ 2540 if (map) { 2541 if (pos < map->alloc_len) 2542 return map; 2543 2544 alloc_len = map->alloc_len * 2; 2545 } 2546 2547 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's 2548 * map 2549 */ 2550 if (is_rxqs_map) 2551 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL); 2552 else 2553 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 2554 cpu_to_node(attr_index)); 2555 if (!new_map) 2556 return NULL; 2557 2558 for (i = 0; i < pos; i++) 2559 new_map->queues[i] = map->queues[i]; 2560 new_map->alloc_len = alloc_len; 2561 new_map->len = pos; 2562 2563 return new_map; 2564 } 2565 2566 /* Copy xps maps at a given index */ 2567 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps, 2568 struct xps_dev_maps *new_dev_maps, int index, 2569 int tc, bool skip_tc) 2570 { 2571 int i, tci = index * dev_maps->num_tc; 2572 struct xps_map *map; 2573 2574 /* copy maps belonging to foreign traffic classes */ 2575 for (i = 0; i < dev_maps->num_tc; i++, tci++) { 2576 if (i == tc && skip_tc) 2577 continue; 2578 2579 /* fill in the new device map from the old device map */ 2580 map = xmap_dereference(dev_maps->attr_map[tci]); 2581 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2582 } 2583 } 2584 2585 /* Must be called under cpus_read_lock */ 2586 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 2587 u16 index, enum xps_map_type type) 2588 { 2589 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL; 2590 const unsigned long *online_mask = NULL; 2591 bool active = false, copy = false; 2592 int i, j, tci, numa_node_id = -2; 2593 int maps_sz, num_tc = 1, tc = 0; 2594 struct xps_map *map, *new_map; 2595 unsigned int nr_ids; 2596 2597 WARN_ON_ONCE(index >= dev->num_tx_queues); 2598 2599 if (dev->num_tc) { 2600 /* Do not allow XPS on subordinate device directly */ 2601 num_tc = dev->num_tc; 2602 if (num_tc < 0) 2603 return -EINVAL; 2604 2605 /* If queue belongs to subordinate dev use its map */ 2606 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev; 2607 2608 tc = netdev_txq_to_tc(dev, index); 2609 if (tc < 0) 2610 return -EINVAL; 2611 } 2612 2613 mutex_lock(&xps_map_mutex); 2614 2615 dev_maps = xmap_dereference(dev->xps_maps[type]); 2616 if (type == XPS_RXQS) { 2617 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues); 2618 nr_ids = dev->num_rx_queues; 2619 } else { 2620 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc); 2621 if (num_possible_cpus() > 1) 2622 online_mask = cpumask_bits(cpu_online_mask); 2623 nr_ids = nr_cpu_ids; 2624 } 2625 2626 if (maps_sz < L1_CACHE_BYTES) 2627 maps_sz = L1_CACHE_BYTES; 2628 2629 /* The old dev_maps could be larger or smaller than the one we're 2630 * setting up now, as dev->num_tc or nr_ids could have been updated in 2631 * between. We could try to be smart, but let's be safe instead and only 2632 * copy foreign traffic classes if the two map sizes match. 2633 */ 2634 if (dev_maps && 2635 dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids) 2636 copy = true; 2637 2638 /* allocate memory for queue storage */ 2639 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids), 2640 j < nr_ids;) { 2641 if (!new_dev_maps) { 2642 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2643 if (!new_dev_maps) { 2644 mutex_unlock(&xps_map_mutex); 2645 return -ENOMEM; 2646 } 2647 2648 new_dev_maps->nr_ids = nr_ids; 2649 new_dev_maps->num_tc = num_tc; 2650 } 2651 2652 tci = j * num_tc + tc; 2653 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL; 2654 2655 map = expand_xps_map(map, j, index, type == XPS_RXQS); 2656 if (!map) 2657 goto error; 2658 2659 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2660 } 2661 2662 if (!new_dev_maps) 2663 goto out_no_new_maps; 2664 2665 if (!dev_maps) { 2666 /* Increment static keys at most once per type */ 2667 static_key_slow_inc_cpuslocked(&xps_needed); 2668 if (type == XPS_RXQS) 2669 static_key_slow_inc_cpuslocked(&xps_rxqs_needed); 2670 } 2671 2672 for (j = 0; j < nr_ids; j++) { 2673 bool skip_tc = false; 2674 2675 tci = j * num_tc + tc; 2676 if (netif_attr_test_mask(j, mask, nr_ids) && 2677 netif_attr_test_online(j, online_mask, nr_ids)) { 2678 /* add tx-queue to CPU/rx-queue maps */ 2679 int pos = 0; 2680 2681 skip_tc = true; 2682 2683 map = xmap_dereference(new_dev_maps->attr_map[tci]); 2684 while ((pos < map->len) && (map->queues[pos] != index)) 2685 pos++; 2686 2687 if (pos == map->len) 2688 map->queues[map->len++] = index; 2689 #ifdef CONFIG_NUMA 2690 if (type == XPS_CPUS) { 2691 if (numa_node_id == -2) 2692 numa_node_id = cpu_to_node(j); 2693 else if (numa_node_id != cpu_to_node(j)) 2694 numa_node_id = -1; 2695 } 2696 #endif 2697 } 2698 2699 if (copy) 2700 xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc, 2701 skip_tc); 2702 } 2703 2704 rcu_assign_pointer(dev->xps_maps[type], new_dev_maps); 2705 2706 /* Cleanup old maps */ 2707 if (!dev_maps) 2708 goto out_no_old_maps; 2709 2710 for (j = 0; j < dev_maps->nr_ids; j++) { 2711 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) { 2712 map = xmap_dereference(dev_maps->attr_map[tci]); 2713 if (!map) 2714 continue; 2715 2716 if (copy) { 2717 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2718 if (map == new_map) 2719 continue; 2720 } 2721 2722 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); 2723 kfree_rcu(map, rcu); 2724 } 2725 } 2726 2727 old_dev_maps = dev_maps; 2728 2729 out_no_old_maps: 2730 dev_maps = new_dev_maps; 2731 active = true; 2732 2733 out_no_new_maps: 2734 if (type == XPS_CPUS) 2735 /* update Tx queue numa node */ 2736 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2737 (numa_node_id >= 0) ? 2738 numa_node_id : NUMA_NO_NODE); 2739 2740 if (!dev_maps) 2741 goto out_no_maps; 2742 2743 /* removes tx-queue from unused CPUs/rx-queues */ 2744 for (j = 0; j < dev_maps->nr_ids; j++) { 2745 tci = j * dev_maps->num_tc; 2746 2747 for (i = 0; i < dev_maps->num_tc; i++, tci++) { 2748 if (i == tc && 2749 netif_attr_test_mask(j, mask, dev_maps->nr_ids) && 2750 netif_attr_test_online(j, online_mask, dev_maps->nr_ids)) 2751 continue; 2752 2753 active |= remove_xps_queue(dev_maps, 2754 copy ? old_dev_maps : NULL, 2755 tci, index); 2756 } 2757 } 2758 2759 if (old_dev_maps) 2760 kfree_rcu(old_dev_maps, rcu); 2761 2762 /* free map if not active */ 2763 if (!active) 2764 reset_xps_maps(dev, dev_maps, type); 2765 2766 out_no_maps: 2767 mutex_unlock(&xps_map_mutex); 2768 2769 return 0; 2770 error: 2771 /* remove any maps that we added */ 2772 for (j = 0; j < nr_ids; j++) { 2773 for (i = num_tc, tci = j * num_tc; i--; tci++) { 2774 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2775 map = copy ? 2776 xmap_dereference(dev_maps->attr_map[tci]) : 2777 NULL; 2778 if (new_map && new_map != map) 2779 kfree(new_map); 2780 } 2781 } 2782 2783 mutex_unlock(&xps_map_mutex); 2784 2785 kfree(new_dev_maps); 2786 return -ENOMEM; 2787 } 2788 EXPORT_SYMBOL_GPL(__netif_set_xps_queue); 2789 2790 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 2791 u16 index) 2792 { 2793 int ret; 2794 2795 cpus_read_lock(); 2796 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS); 2797 cpus_read_unlock(); 2798 2799 return ret; 2800 } 2801 EXPORT_SYMBOL(netif_set_xps_queue); 2802 2803 #endif 2804 static void netdev_unbind_all_sb_channels(struct net_device *dev) 2805 { 2806 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 2807 2808 /* Unbind any subordinate channels */ 2809 while (txq-- != &dev->_tx[0]) { 2810 if (txq->sb_dev) 2811 netdev_unbind_sb_channel(dev, txq->sb_dev); 2812 } 2813 } 2814 2815 void netdev_reset_tc(struct net_device *dev) 2816 { 2817 #ifdef CONFIG_XPS 2818 netif_reset_xps_queues_gt(dev, 0); 2819 #endif 2820 netdev_unbind_all_sb_channels(dev); 2821 2822 /* Reset TC configuration of device */ 2823 dev->num_tc = 0; 2824 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 2825 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 2826 } 2827 EXPORT_SYMBOL(netdev_reset_tc); 2828 2829 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 2830 { 2831 if (tc >= dev->num_tc) 2832 return -EINVAL; 2833 2834 #ifdef CONFIG_XPS 2835 netif_reset_xps_queues(dev, offset, count); 2836 #endif 2837 dev->tc_to_txq[tc].count = count; 2838 dev->tc_to_txq[tc].offset = offset; 2839 return 0; 2840 } 2841 EXPORT_SYMBOL(netdev_set_tc_queue); 2842 2843 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 2844 { 2845 if (num_tc > TC_MAX_QUEUE) 2846 return -EINVAL; 2847 2848 #ifdef CONFIG_XPS 2849 netif_reset_xps_queues_gt(dev, 0); 2850 #endif 2851 netdev_unbind_all_sb_channels(dev); 2852 2853 dev->num_tc = num_tc; 2854 return 0; 2855 } 2856 EXPORT_SYMBOL(netdev_set_num_tc); 2857 2858 void netdev_unbind_sb_channel(struct net_device *dev, 2859 struct net_device *sb_dev) 2860 { 2861 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 2862 2863 #ifdef CONFIG_XPS 2864 netif_reset_xps_queues_gt(sb_dev, 0); 2865 #endif 2866 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq)); 2867 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map)); 2868 2869 while (txq-- != &dev->_tx[0]) { 2870 if (txq->sb_dev == sb_dev) 2871 txq->sb_dev = NULL; 2872 } 2873 } 2874 EXPORT_SYMBOL(netdev_unbind_sb_channel); 2875 2876 int netdev_bind_sb_channel_queue(struct net_device *dev, 2877 struct net_device *sb_dev, 2878 u8 tc, u16 count, u16 offset) 2879 { 2880 /* Make certain the sb_dev and dev are already configured */ 2881 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc) 2882 return -EINVAL; 2883 2884 /* We cannot hand out queues we don't have */ 2885 if ((offset + count) > dev->real_num_tx_queues) 2886 return -EINVAL; 2887 2888 /* Record the mapping */ 2889 sb_dev->tc_to_txq[tc].count = count; 2890 sb_dev->tc_to_txq[tc].offset = offset; 2891 2892 /* Provide a way for Tx queue to find the tc_to_txq map or 2893 * XPS map for itself. 2894 */ 2895 while (count--) 2896 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev; 2897 2898 return 0; 2899 } 2900 EXPORT_SYMBOL(netdev_bind_sb_channel_queue); 2901 2902 int netdev_set_sb_channel(struct net_device *dev, u16 channel) 2903 { 2904 /* Do not use a multiqueue device to represent a subordinate channel */ 2905 if (netif_is_multiqueue(dev)) 2906 return -ENODEV; 2907 2908 /* We allow channels 1 - 32767 to be used for subordinate channels. 2909 * Channel 0 is meant to be "native" mode and used only to represent 2910 * the main root device. We allow writing 0 to reset the device back 2911 * to normal mode after being used as a subordinate channel. 2912 */ 2913 if (channel > S16_MAX) 2914 return -EINVAL; 2915 2916 dev->num_tc = -channel; 2917 2918 return 0; 2919 } 2920 EXPORT_SYMBOL(netdev_set_sb_channel); 2921 2922 /* 2923 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2924 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed. 2925 */ 2926 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2927 { 2928 bool disabling; 2929 int rc; 2930 2931 disabling = txq < dev->real_num_tx_queues; 2932 2933 if (txq < 1 || txq > dev->num_tx_queues) 2934 return -EINVAL; 2935 2936 if (dev->reg_state == NETREG_REGISTERED || 2937 dev->reg_state == NETREG_UNREGISTERING) { 2938 ASSERT_RTNL(); 2939 2940 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2941 txq); 2942 if (rc) 2943 return rc; 2944 2945 if (dev->num_tc) 2946 netif_setup_tc(dev, txq); 2947 2948 dev_qdisc_change_real_num_tx(dev, txq); 2949 2950 dev->real_num_tx_queues = txq; 2951 2952 if (disabling) { 2953 synchronize_net(); 2954 qdisc_reset_all_tx_gt(dev, txq); 2955 #ifdef CONFIG_XPS 2956 netif_reset_xps_queues_gt(dev, txq); 2957 #endif 2958 } 2959 } else { 2960 dev->real_num_tx_queues = txq; 2961 } 2962 2963 return 0; 2964 } 2965 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2966 2967 #ifdef CONFIG_SYSFS 2968 /** 2969 * netif_set_real_num_rx_queues - set actual number of RX queues used 2970 * @dev: Network device 2971 * @rxq: Actual number of RX queues 2972 * 2973 * This must be called either with the rtnl_lock held or before 2974 * registration of the net device. Returns 0 on success, or a 2975 * negative error code. If called before registration, it always 2976 * succeeds. 2977 */ 2978 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2979 { 2980 int rc; 2981 2982 if (rxq < 1 || rxq > dev->num_rx_queues) 2983 return -EINVAL; 2984 2985 if (dev->reg_state == NETREG_REGISTERED) { 2986 ASSERT_RTNL(); 2987 2988 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 2989 rxq); 2990 if (rc) 2991 return rc; 2992 } 2993 2994 dev->real_num_rx_queues = rxq; 2995 return 0; 2996 } 2997 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 2998 #endif 2999 3000 /** 3001 * netif_set_real_num_queues - set actual number of RX and TX queues used 3002 * @dev: Network device 3003 * @txq: Actual number of TX queues 3004 * @rxq: Actual number of RX queues 3005 * 3006 * Set the real number of both TX and RX queues. 3007 * Does nothing if the number of queues is already correct. 3008 */ 3009 int netif_set_real_num_queues(struct net_device *dev, 3010 unsigned int txq, unsigned int rxq) 3011 { 3012 unsigned int old_rxq = dev->real_num_rx_queues; 3013 int err; 3014 3015 if (txq < 1 || txq > dev->num_tx_queues || 3016 rxq < 1 || rxq > dev->num_rx_queues) 3017 return -EINVAL; 3018 3019 /* Start from increases, so the error path only does decreases - 3020 * decreases can't fail. 3021 */ 3022 if (rxq > dev->real_num_rx_queues) { 3023 err = netif_set_real_num_rx_queues(dev, rxq); 3024 if (err) 3025 return err; 3026 } 3027 if (txq > dev->real_num_tx_queues) { 3028 err = netif_set_real_num_tx_queues(dev, txq); 3029 if (err) 3030 goto undo_rx; 3031 } 3032 if (rxq < dev->real_num_rx_queues) 3033 WARN_ON(netif_set_real_num_rx_queues(dev, rxq)); 3034 if (txq < dev->real_num_tx_queues) 3035 WARN_ON(netif_set_real_num_tx_queues(dev, txq)); 3036 3037 return 0; 3038 undo_rx: 3039 WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq)); 3040 return err; 3041 } 3042 EXPORT_SYMBOL(netif_set_real_num_queues); 3043 3044 /** 3045 * netif_set_tso_max_size() - set the max size of TSO frames supported 3046 * @dev: netdev to update 3047 * @size: max skb->len of a TSO frame 3048 * 3049 * Set the limit on the size of TSO super-frames the device can handle. 3050 * Unless explicitly set the stack will assume the value of 3051 * %GSO_LEGACY_MAX_SIZE. 3052 */ 3053 void netif_set_tso_max_size(struct net_device *dev, unsigned int size) 3054 { 3055 dev->tso_max_size = min(GSO_MAX_SIZE, size); 3056 if (size < READ_ONCE(dev->gso_max_size)) 3057 netif_set_gso_max_size(dev, size); 3058 if (size < READ_ONCE(dev->gso_ipv4_max_size)) 3059 netif_set_gso_ipv4_max_size(dev, size); 3060 } 3061 EXPORT_SYMBOL(netif_set_tso_max_size); 3062 3063 /** 3064 * netif_set_tso_max_segs() - set the max number of segs supported for TSO 3065 * @dev: netdev to update 3066 * @segs: max number of TCP segments 3067 * 3068 * Set the limit on the number of TCP segments the device can generate from 3069 * a single TSO super-frame. 3070 * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS. 3071 */ 3072 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs) 3073 { 3074 dev->tso_max_segs = segs; 3075 if (segs < READ_ONCE(dev->gso_max_segs)) 3076 netif_set_gso_max_segs(dev, segs); 3077 } 3078 EXPORT_SYMBOL(netif_set_tso_max_segs); 3079 3080 /** 3081 * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper 3082 * @to: netdev to update 3083 * @from: netdev from which to copy the limits 3084 */ 3085 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from) 3086 { 3087 netif_set_tso_max_size(to, from->tso_max_size); 3088 netif_set_tso_max_segs(to, from->tso_max_segs); 3089 } 3090 EXPORT_SYMBOL(netif_inherit_tso_max); 3091 3092 /** 3093 * netif_get_num_default_rss_queues - default number of RSS queues 3094 * 3095 * Default value is the number of physical cores if there are only 1 or 2, or 3096 * divided by 2 if there are more. 3097 */ 3098 int netif_get_num_default_rss_queues(void) 3099 { 3100 cpumask_var_t cpus; 3101 int cpu, count = 0; 3102 3103 if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL))) 3104 return 1; 3105 3106 cpumask_copy(cpus, cpu_online_mask); 3107 for_each_cpu(cpu, cpus) { 3108 ++count; 3109 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu)); 3110 } 3111 free_cpumask_var(cpus); 3112 3113 return count > 2 ? DIV_ROUND_UP(count, 2) : count; 3114 } 3115 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 3116 3117 static void __netif_reschedule(struct Qdisc *q) 3118 { 3119 struct softnet_data *sd; 3120 unsigned long flags; 3121 3122 local_irq_save(flags); 3123 sd = this_cpu_ptr(&softnet_data); 3124 q->next_sched = NULL; 3125 *sd->output_queue_tailp = q; 3126 sd->output_queue_tailp = &q->next_sched; 3127 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3128 local_irq_restore(flags); 3129 } 3130 3131 void __netif_schedule(struct Qdisc *q) 3132 { 3133 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 3134 __netif_reschedule(q); 3135 } 3136 EXPORT_SYMBOL(__netif_schedule); 3137 3138 struct dev_kfree_skb_cb { 3139 enum skb_drop_reason reason; 3140 }; 3141 3142 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 3143 { 3144 return (struct dev_kfree_skb_cb *)skb->cb; 3145 } 3146 3147 void netif_schedule_queue(struct netdev_queue *txq) 3148 { 3149 rcu_read_lock(); 3150 if (!netif_xmit_stopped(txq)) { 3151 struct Qdisc *q = rcu_dereference(txq->qdisc); 3152 3153 __netif_schedule(q); 3154 } 3155 rcu_read_unlock(); 3156 } 3157 EXPORT_SYMBOL(netif_schedule_queue); 3158 3159 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 3160 { 3161 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 3162 struct Qdisc *q; 3163 3164 rcu_read_lock(); 3165 q = rcu_dereference(dev_queue->qdisc); 3166 __netif_schedule(q); 3167 rcu_read_unlock(); 3168 } 3169 } 3170 EXPORT_SYMBOL(netif_tx_wake_queue); 3171 3172 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason) 3173 { 3174 unsigned long flags; 3175 3176 if (unlikely(!skb)) 3177 return; 3178 3179 if (likely(refcount_read(&skb->users) == 1)) { 3180 smp_rmb(); 3181 refcount_set(&skb->users, 0); 3182 } else if (likely(!refcount_dec_and_test(&skb->users))) { 3183 return; 3184 } 3185 get_kfree_skb_cb(skb)->reason = reason; 3186 local_irq_save(flags); 3187 skb->next = __this_cpu_read(softnet_data.completion_queue); 3188 __this_cpu_write(softnet_data.completion_queue, skb); 3189 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3190 local_irq_restore(flags); 3191 } 3192 EXPORT_SYMBOL(dev_kfree_skb_irq_reason); 3193 3194 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason) 3195 { 3196 if (in_hardirq() || irqs_disabled()) 3197 dev_kfree_skb_irq_reason(skb, reason); 3198 else 3199 kfree_skb_reason(skb, reason); 3200 } 3201 EXPORT_SYMBOL(dev_kfree_skb_any_reason); 3202 3203 3204 /** 3205 * netif_device_detach - mark device as removed 3206 * @dev: network device 3207 * 3208 * Mark device as removed from system and therefore no longer available. 3209 */ 3210 void netif_device_detach(struct net_device *dev) 3211 { 3212 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 3213 netif_running(dev)) { 3214 netif_tx_stop_all_queues(dev); 3215 } 3216 } 3217 EXPORT_SYMBOL(netif_device_detach); 3218 3219 /** 3220 * netif_device_attach - mark device as attached 3221 * @dev: network device 3222 * 3223 * Mark device as attached from system and restart if needed. 3224 */ 3225 void netif_device_attach(struct net_device *dev) 3226 { 3227 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 3228 netif_running(dev)) { 3229 netif_tx_wake_all_queues(dev); 3230 __netdev_watchdog_up(dev); 3231 } 3232 } 3233 EXPORT_SYMBOL(netif_device_attach); 3234 3235 /* 3236 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 3237 * to be used as a distribution range. 3238 */ 3239 static u16 skb_tx_hash(const struct net_device *dev, 3240 const struct net_device *sb_dev, 3241 struct sk_buff *skb) 3242 { 3243 u32 hash; 3244 u16 qoffset = 0; 3245 u16 qcount = dev->real_num_tx_queues; 3246 3247 if (dev->num_tc) { 3248 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 3249 3250 qoffset = sb_dev->tc_to_txq[tc].offset; 3251 qcount = sb_dev->tc_to_txq[tc].count; 3252 if (unlikely(!qcount)) { 3253 net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n", 3254 sb_dev->name, qoffset, tc); 3255 qoffset = 0; 3256 qcount = dev->real_num_tx_queues; 3257 } 3258 } 3259 3260 if (skb_rx_queue_recorded(skb)) { 3261 DEBUG_NET_WARN_ON_ONCE(qcount == 0); 3262 hash = skb_get_rx_queue(skb); 3263 if (hash >= qoffset) 3264 hash -= qoffset; 3265 while (unlikely(hash >= qcount)) 3266 hash -= qcount; 3267 return hash + qoffset; 3268 } 3269 3270 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; 3271 } 3272 3273 void skb_warn_bad_offload(const struct sk_buff *skb) 3274 { 3275 static const netdev_features_t null_features; 3276 struct net_device *dev = skb->dev; 3277 const char *name = ""; 3278 3279 if (!net_ratelimit()) 3280 return; 3281 3282 if (dev) { 3283 if (dev->dev.parent) 3284 name = dev_driver_string(dev->dev.parent); 3285 else 3286 name = netdev_name(dev); 3287 } 3288 skb_dump(KERN_WARNING, skb, false); 3289 WARN(1, "%s: caps=(%pNF, %pNF)\n", 3290 name, dev ? &dev->features : &null_features, 3291 skb->sk ? &skb->sk->sk_route_caps : &null_features); 3292 } 3293 3294 /* 3295 * Invalidate hardware checksum when packet is to be mangled, and 3296 * complete checksum manually on outgoing path. 3297 */ 3298 int skb_checksum_help(struct sk_buff *skb) 3299 { 3300 __wsum csum; 3301 int ret = 0, offset; 3302 3303 if (skb->ip_summed == CHECKSUM_COMPLETE) 3304 goto out_set_summed; 3305 3306 if (unlikely(skb_is_gso(skb))) { 3307 skb_warn_bad_offload(skb); 3308 return -EINVAL; 3309 } 3310 3311 /* Before computing a checksum, we should make sure no frag could 3312 * be modified by an external entity : checksum could be wrong. 3313 */ 3314 if (skb_has_shared_frag(skb)) { 3315 ret = __skb_linearize(skb); 3316 if (ret) 3317 goto out; 3318 } 3319 3320 offset = skb_checksum_start_offset(skb); 3321 ret = -EINVAL; 3322 if (unlikely(offset >= skb_headlen(skb))) { 3323 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false); 3324 WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n", 3325 offset, skb_headlen(skb)); 3326 goto out; 3327 } 3328 csum = skb_checksum(skb, offset, skb->len - offset, 0); 3329 3330 offset += skb->csum_offset; 3331 if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) { 3332 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false); 3333 WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n", 3334 offset + sizeof(__sum16), skb_headlen(skb)); 3335 goto out; 3336 } 3337 ret = skb_ensure_writable(skb, offset + sizeof(__sum16)); 3338 if (ret) 3339 goto out; 3340 3341 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0; 3342 out_set_summed: 3343 skb->ip_summed = CHECKSUM_NONE; 3344 out: 3345 return ret; 3346 } 3347 EXPORT_SYMBOL(skb_checksum_help); 3348 3349 int skb_crc32c_csum_help(struct sk_buff *skb) 3350 { 3351 __le32 crc32c_csum; 3352 int ret = 0, offset, start; 3353 3354 if (skb->ip_summed != CHECKSUM_PARTIAL) 3355 goto out; 3356 3357 if (unlikely(skb_is_gso(skb))) 3358 goto out; 3359 3360 /* Before computing a checksum, we should make sure no frag could 3361 * be modified by an external entity : checksum could be wrong. 3362 */ 3363 if (unlikely(skb_has_shared_frag(skb))) { 3364 ret = __skb_linearize(skb); 3365 if (ret) 3366 goto out; 3367 } 3368 start = skb_checksum_start_offset(skb); 3369 offset = start + offsetof(struct sctphdr, checksum); 3370 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) { 3371 ret = -EINVAL; 3372 goto out; 3373 } 3374 3375 ret = skb_ensure_writable(skb, offset + sizeof(__le32)); 3376 if (ret) 3377 goto out; 3378 3379 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start, 3380 skb->len - start, ~(__u32)0, 3381 crc32c_csum_stub)); 3382 *(__le32 *)(skb->data + offset) = crc32c_csum; 3383 skb_reset_csum_not_inet(skb); 3384 out: 3385 return ret; 3386 } 3387 3388 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 3389 { 3390 __be16 type = skb->protocol; 3391 3392 /* Tunnel gso handlers can set protocol to ethernet. */ 3393 if (type == htons(ETH_P_TEB)) { 3394 struct ethhdr *eth; 3395 3396 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 3397 return 0; 3398 3399 eth = (struct ethhdr *)skb->data; 3400 type = eth->h_proto; 3401 } 3402 3403 return vlan_get_protocol_and_depth(skb, type, depth); 3404 } 3405 3406 3407 /* Take action when hardware reception checksum errors are detected. */ 3408 #ifdef CONFIG_BUG 3409 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb) 3410 { 3411 netdev_err(dev, "hw csum failure\n"); 3412 skb_dump(KERN_ERR, skb, true); 3413 dump_stack(); 3414 } 3415 3416 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb) 3417 { 3418 DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb); 3419 } 3420 EXPORT_SYMBOL(netdev_rx_csum_fault); 3421 #endif 3422 3423 /* XXX: check that highmem exists at all on the given machine. */ 3424 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 3425 { 3426 #ifdef CONFIG_HIGHMEM 3427 int i; 3428 3429 if (!(dev->features & NETIF_F_HIGHDMA)) { 3430 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3431 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3432 3433 if (PageHighMem(skb_frag_page(frag))) 3434 return 1; 3435 } 3436 } 3437 #endif 3438 return 0; 3439 } 3440 3441 /* If MPLS offload request, verify we are testing hardware MPLS features 3442 * instead of standard features for the netdev. 3443 */ 3444 #if IS_ENABLED(CONFIG_NET_MPLS_GSO) 3445 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3446 netdev_features_t features, 3447 __be16 type) 3448 { 3449 if (eth_p_mpls(type)) 3450 features &= skb->dev->mpls_features; 3451 3452 return features; 3453 } 3454 #else 3455 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3456 netdev_features_t features, 3457 __be16 type) 3458 { 3459 return features; 3460 } 3461 #endif 3462 3463 static netdev_features_t harmonize_features(struct sk_buff *skb, 3464 netdev_features_t features) 3465 { 3466 __be16 type; 3467 3468 type = skb_network_protocol(skb, NULL); 3469 features = net_mpls_features(skb, features, type); 3470 3471 if (skb->ip_summed != CHECKSUM_NONE && 3472 !can_checksum_protocol(features, type)) { 3473 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3474 } 3475 if (illegal_highdma(skb->dev, skb)) 3476 features &= ~NETIF_F_SG; 3477 3478 return features; 3479 } 3480 3481 netdev_features_t passthru_features_check(struct sk_buff *skb, 3482 struct net_device *dev, 3483 netdev_features_t features) 3484 { 3485 return features; 3486 } 3487 EXPORT_SYMBOL(passthru_features_check); 3488 3489 static netdev_features_t dflt_features_check(struct sk_buff *skb, 3490 struct net_device *dev, 3491 netdev_features_t features) 3492 { 3493 return vlan_features_check(skb, features); 3494 } 3495 3496 static netdev_features_t gso_features_check(const struct sk_buff *skb, 3497 struct net_device *dev, 3498 netdev_features_t features) 3499 { 3500 u16 gso_segs = skb_shinfo(skb)->gso_segs; 3501 3502 if (gso_segs > READ_ONCE(dev->gso_max_segs)) 3503 return features & ~NETIF_F_GSO_MASK; 3504 3505 if (unlikely(skb->len >= READ_ONCE(dev->gso_max_size))) 3506 return features & ~NETIF_F_GSO_MASK; 3507 3508 if (!skb_shinfo(skb)->gso_type) { 3509 skb_warn_bad_offload(skb); 3510 return features & ~NETIF_F_GSO_MASK; 3511 } 3512 3513 /* Support for GSO partial features requires software 3514 * intervention before we can actually process the packets 3515 * so we need to strip support for any partial features now 3516 * and we can pull them back in after we have partially 3517 * segmented the frame. 3518 */ 3519 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL)) 3520 features &= ~dev->gso_partial_features; 3521 3522 /* Make sure to clear the IPv4 ID mangling feature if the 3523 * IPv4 header has the potential to be fragmented. 3524 */ 3525 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { 3526 struct iphdr *iph = skb->encapsulation ? 3527 inner_ip_hdr(skb) : ip_hdr(skb); 3528 3529 if (!(iph->frag_off & htons(IP_DF))) 3530 features &= ~NETIF_F_TSO_MANGLEID; 3531 } 3532 3533 return features; 3534 } 3535 3536 netdev_features_t netif_skb_features(struct sk_buff *skb) 3537 { 3538 struct net_device *dev = skb->dev; 3539 netdev_features_t features = dev->features; 3540 3541 if (skb_is_gso(skb)) 3542 features = gso_features_check(skb, dev, features); 3543 3544 /* If encapsulation offload request, verify we are testing 3545 * hardware encapsulation features instead of standard 3546 * features for the netdev 3547 */ 3548 if (skb->encapsulation) 3549 features &= dev->hw_enc_features; 3550 3551 if (skb_vlan_tagged(skb)) 3552 features = netdev_intersect_features(features, 3553 dev->vlan_features | 3554 NETIF_F_HW_VLAN_CTAG_TX | 3555 NETIF_F_HW_VLAN_STAG_TX); 3556 3557 if (dev->netdev_ops->ndo_features_check) 3558 features &= dev->netdev_ops->ndo_features_check(skb, dev, 3559 features); 3560 else 3561 features &= dflt_features_check(skb, dev, features); 3562 3563 return harmonize_features(skb, features); 3564 } 3565 EXPORT_SYMBOL(netif_skb_features); 3566 3567 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 3568 struct netdev_queue *txq, bool more) 3569 { 3570 unsigned int len; 3571 int rc; 3572 3573 if (dev_nit_active(dev)) 3574 dev_queue_xmit_nit(skb, dev); 3575 3576 len = skb->len; 3577 trace_net_dev_start_xmit(skb, dev); 3578 rc = netdev_start_xmit(skb, dev, txq, more); 3579 trace_net_dev_xmit(skb, rc, dev, len); 3580 3581 return rc; 3582 } 3583 3584 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 3585 struct netdev_queue *txq, int *ret) 3586 { 3587 struct sk_buff *skb = first; 3588 int rc = NETDEV_TX_OK; 3589 3590 while (skb) { 3591 struct sk_buff *next = skb->next; 3592 3593 skb_mark_not_on_list(skb); 3594 rc = xmit_one(skb, dev, txq, next != NULL); 3595 if (unlikely(!dev_xmit_complete(rc))) { 3596 skb->next = next; 3597 goto out; 3598 } 3599 3600 skb = next; 3601 if (netif_tx_queue_stopped(txq) && skb) { 3602 rc = NETDEV_TX_BUSY; 3603 break; 3604 } 3605 } 3606 3607 out: 3608 *ret = rc; 3609 return skb; 3610 } 3611 3612 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 3613 netdev_features_t features) 3614 { 3615 if (skb_vlan_tag_present(skb) && 3616 !vlan_hw_offload_capable(features, skb->vlan_proto)) 3617 skb = __vlan_hwaccel_push_inside(skb); 3618 return skb; 3619 } 3620 3621 int skb_csum_hwoffload_help(struct sk_buff *skb, 3622 const netdev_features_t features) 3623 { 3624 if (unlikely(skb_csum_is_sctp(skb))) 3625 return !!(features & NETIF_F_SCTP_CRC) ? 0 : 3626 skb_crc32c_csum_help(skb); 3627 3628 if (features & NETIF_F_HW_CSUM) 3629 return 0; 3630 3631 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) { 3632 switch (skb->csum_offset) { 3633 case offsetof(struct tcphdr, check): 3634 case offsetof(struct udphdr, check): 3635 return 0; 3636 } 3637 } 3638 3639 return skb_checksum_help(skb); 3640 } 3641 EXPORT_SYMBOL(skb_csum_hwoffload_help); 3642 3643 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again) 3644 { 3645 netdev_features_t features; 3646 3647 features = netif_skb_features(skb); 3648 skb = validate_xmit_vlan(skb, features); 3649 if (unlikely(!skb)) 3650 goto out_null; 3651 3652 skb = sk_validate_xmit_skb(skb, dev); 3653 if (unlikely(!skb)) 3654 goto out_null; 3655 3656 if (netif_needs_gso(skb, features)) { 3657 struct sk_buff *segs; 3658 3659 segs = skb_gso_segment(skb, features); 3660 if (IS_ERR(segs)) { 3661 goto out_kfree_skb; 3662 } else if (segs) { 3663 consume_skb(skb); 3664 skb = segs; 3665 } 3666 } else { 3667 if (skb_needs_linearize(skb, features) && 3668 __skb_linearize(skb)) 3669 goto out_kfree_skb; 3670 3671 /* If packet is not checksummed and device does not 3672 * support checksumming for this protocol, complete 3673 * checksumming here. 3674 */ 3675 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3676 if (skb->encapsulation) 3677 skb_set_inner_transport_header(skb, 3678 skb_checksum_start_offset(skb)); 3679 else 3680 skb_set_transport_header(skb, 3681 skb_checksum_start_offset(skb)); 3682 if (skb_csum_hwoffload_help(skb, features)) 3683 goto out_kfree_skb; 3684 } 3685 } 3686 3687 skb = validate_xmit_xfrm(skb, features, again); 3688 3689 return skb; 3690 3691 out_kfree_skb: 3692 kfree_skb(skb); 3693 out_null: 3694 dev_core_stats_tx_dropped_inc(dev); 3695 return NULL; 3696 } 3697 3698 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again) 3699 { 3700 struct sk_buff *next, *head = NULL, *tail; 3701 3702 for (; skb != NULL; skb = next) { 3703 next = skb->next; 3704 skb_mark_not_on_list(skb); 3705 3706 /* in case skb wont be segmented, point to itself */ 3707 skb->prev = skb; 3708 3709 skb = validate_xmit_skb(skb, dev, again); 3710 if (!skb) 3711 continue; 3712 3713 if (!head) 3714 head = skb; 3715 else 3716 tail->next = skb; 3717 /* If skb was segmented, skb->prev points to 3718 * the last segment. If not, it still contains skb. 3719 */ 3720 tail = skb->prev; 3721 } 3722 return head; 3723 } 3724 EXPORT_SYMBOL_GPL(validate_xmit_skb_list); 3725 3726 static void qdisc_pkt_len_init(struct sk_buff *skb) 3727 { 3728 const struct skb_shared_info *shinfo = skb_shinfo(skb); 3729 3730 qdisc_skb_cb(skb)->pkt_len = skb->len; 3731 3732 /* To get more precise estimation of bytes sent on wire, 3733 * we add to pkt_len the headers size of all segments 3734 */ 3735 if (shinfo->gso_size && skb_transport_header_was_set(skb)) { 3736 u16 gso_segs = shinfo->gso_segs; 3737 unsigned int hdr_len; 3738 3739 /* mac layer + network layer */ 3740 hdr_len = skb_transport_offset(skb); 3741 3742 /* + transport layer */ 3743 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 3744 const struct tcphdr *th; 3745 struct tcphdr _tcphdr; 3746 3747 th = skb_header_pointer(skb, hdr_len, 3748 sizeof(_tcphdr), &_tcphdr); 3749 if (likely(th)) 3750 hdr_len += __tcp_hdrlen(th); 3751 } else { 3752 struct udphdr _udphdr; 3753 3754 if (skb_header_pointer(skb, hdr_len, 3755 sizeof(_udphdr), &_udphdr)) 3756 hdr_len += sizeof(struct udphdr); 3757 } 3758 3759 if (shinfo->gso_type & SKB_GSO_DODGY) 3760 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 3761 shinfo->gso_size); 3762 3763 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 3764 } 3765 } 3766 3767 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q, 3768 struct sk_buff **to_free, 3769 struct netdev_queue *txq) 3770 { 3771 int rc; 3772 3773 rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK; 3774 if (rc == NET_XMIT_SUCCESS) 3775 trace_qdisc_enqueue(q, txq, skb); 3776 return rc; 3777 } 3778 3779 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 3780 struct net_device *dev, 3781 struct netdev_queue *txq) 3782 { 3783 spinlock_t *root_lock = qdisc_lock(q); 3784 struct sk_buff *to_free = NULL; 3785 bool contended; 3786 int rc; 3787 3788 qdisc_calculate_pkt_len(skb, q); 3789 3790 tcf_set_drop_reason(skb, SKB_DROP_REASON_QDISC_DROP); 3791 3792 if (q->flags & TCQ_F_NOLOCK) { 3793 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) && 3794 qdisc_run_begin(q)) { 3795 /* Retest nolock_qdisc_is_empty() within the protection 3796 * of q->seqlock to protect from racing with requeuing. 3797 */ 3798 if (unlikely(!nolock_qdisc_is_empty(q))) { 3799 rc = dev_qdisc_enqueue(skb, q, &to_free, txq); 3800 __qdisc_run(q); 3801 qdisc_run_end(q); 3802 3803 goto no_lock_out; 3804 } 3805 3806 qdisc_bstats_cpu_update(q, skb); 3807 if (sch_direct_xmit(skb, q, dev, txq, NULL, true) && 3808 !nolock_qdisc_is_empty(q)) 3809 __qdisc_run(q); 3810 3811 qdisc_run_end(q); 3812 return NET_XMIT_SUCCESS; 3813 } 3814 3815 rc = dev_qdisc_enqueue(skb, q, &to_free, txq); 3816 qdisc_run(q); 3817 3818 no_lock_out: 3819 if (unlikely(to_free)) 3820 kfree_skb_list_reason(to_free, 3821 tcf_get_drop_reason(to_free)); 3822 return rc; 3823 } 3824 3825 if (unlikely(READ_ONCE(q->owner) == smp_processor_id())) { 3826 kfree_skb_reason(skb, SKB_DROP_REASON_TC_RECLASSIFY_LOOP); 3827 return NET_XMIT_DROP; 3828 } 3829 /* 3830 * Heuristic to force contended enqueues to serialize on a 3831 * separate lock before trying to get qdisc main lock. 3832 * This permits qdisc->running owner to get the lock more 3833 * often and dequeue packets faster. 3834 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit 3835 * and then other tasks will only enqueue packets. The packets will be 3836 * sent after the qdisc owner is scheduled again. To prevent this 3837 * scenario the task always serialize on the lock. 3838 */ 3839 contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT); 3840 if (unlikely(contended)) 3841 spin_lock(&q->busylock); 3842 3843 spin_lock(root_lock); 3844 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 3845 __qdisc_drop(skb, &to_free); 3846 rc = NET_XMIT_DROP; 3847 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 3848 qdisc_run_begin(q)) { 3849 /* 3850 * This is a work-conserving queue; there are no old skbs 3851 * waiting to be sent out; and the qdisc is not running - 3852 * xmit the skb directly. 3853 */ 3854 3855 qdisc_bstats_update(q, skb); 3856 3857 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 3858 if (unlikely(contended)) { 3859 spin_unlock(&q->busylock); 3860 contended = false; 3861 } 3862 __qdisc_run(q); 3863 } 3864 3865 qdisc_run_end(q); 3866 rc = NET_XMIT_SUCCESS; 3867 } else { 3868 WRITE_ONCE(q->owner, smp_processor_id()); 3869 rc = dev_qdisc_enqueue(skb, q, &to_free, txq); 3870 WRITE_ONCE(q->owner, -1); 3871 if (qdisc_run_begin(q)) { 3872 if (unlikely(contended)) { 3873 spin_unlock(&q->busylock); 3874 contended = false; 3875 } 3876 __qdisc_run(q); 3877 qdisc_run_end(q); 3878 } 3879 } 3880 spin_unlock(root_lock); 3881 if (unlikely(to_free)) 3882 kfree_skb_list_reason(to_free, 3883 tcf_get_drop_reason(to_free)); 3884 if (unlikely(contended)) 3885 spin_unlock(&q->busylock); 3886 return rc; 3887 } 3888 3889 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 3890 static void skb_update_prio(struct sk_buff *skb) 3891 { 3892 const struct netprio_map *map; 3893 const struct sock *sk; 3894 unsigned int prioidx; 3895 3896 if (skb->priority) 3897 return; 3898 map = rcu_dereference_bh(skb->dev->priomap); 3899 if (!map) 3900 return; 3901 sk = skb_to_full_sk(skb); 3902 if (!sk) 3903 return; 3904 3905 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data); 3906 3907 if (prioidx < map->priomap_len) 3908 skb->priority = map->priomap[prioidx]; 3909 } 3910 #else 3911 #define skb_update_prio(skb) 3912 #endif 3913 3914 /** 3915 * dev_loopback_xmit - loop back @skb 3916 * @net: network namespace this loopback is happening in 3917 * @sk: sk needed to be a netfilter okfn 3918 * @skb: buffer to transmit 3919 */ 3920 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) 3921 { 3922 skb_reset_mac_header(skb); 3923 __skb_pull(skb, skb_network_offset(skb)); 3924 skb->pkt_type = PACKET_LOOPBACK; 3925 if (skb->ip_summed == CHECKSUM_NONE) 3926 skb->ip_summed = CHECKSUM_UNNECESSARY; 3927 DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb)); 3928 skb_dst_force(skb); 3929 netif_rx(skb); 3930 return 0; 3931 } 3932 EXPORT_SYMBOL(dev_loopback_xmit); 3933 3934 #ifdef CONFIG_NET_EGRESS 3935 static struct netdev_queue * 3936 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb) 3937 { 3938 int qm = skb_get_queue_mapping(skb); 3939 3940 return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm)); 3941 } 3942 3943 static bool netdev_xmit_txqueue_skipped(void) 3944 { 3945 return __this_cpu_read(softnet_data.xmit.skip_txqueue); 3946 } 3947 3948 void netdev_xmit_skip_txqueue(bool skip) 3949 { 3950 __this_cpu_write(softnet_data.xmit.skip_txqueue, skip); 3951 } 3952 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue); 3953 #endif /* CONFIG_NET_EGRESS */ 3954 3955 #ifdef CONFIG_NET_XGRESS 3956 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb, 3957 enum skb_drop_reason *drop_reason) 3958 { 3959 int ret = TC_ACT_UNSPEC; 3960 #ifdef CONFIG_NET_CLS_ACT 3961 struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq); 3962 struct tcf_result res; 3963 3964 if (!miniq) 3965 return ret; 3966 3967 if (static_branch_unlikely(&tcf_bypass_check_needed_key)) { 3968 if (tcf_block_bypass_sw(miniq->block)) 3969 return ret; 3970 } 3971 3972 tc_skb_cb(skb)->mru = 0; 3973 tc_skb_cb(skb)->post_ct = false; 3974 tcf_set_drop_reason(skb, *drop_reason); 3975 3976 mini_qdisc_bstats_cpu_update(miniq, skb); 3977 ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false); 3978 /* Only tcf related quirks below. */ 3979 switch (ret) { 3980 case TC_ACT_SHOT: 3981 *drop_reason = tcf_get_drop_reason(skb); 3982 mini_qdisc_qstats_cpu_drop(miniq); 3983 break; 3984 case TC_ACT_OK: 3985 case TC_ACT_RECLASSIFY: 3986 skb->tc_index = TC_H_MIN(res.classid); 3987 break; 3988 } 3989 #endif /* CONFIG_NET_CLS_ACT */ 3990 return ret; 3991 } 3992 3993 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key); 3994 3995 void tcx_inc(void) 3996 { 3997 static_branch_inc(&tcx_needed_key); 3998 } 3999 4000 void tcx_dec(void) 4001 { 4002 static_branch_dec(&tcx_needed_key); 4003 } 4004 4005 static __always_inline enum tcx_action_base 4006 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb, 4007 const bool needs_mac) 4008 { 4009 const struct bpf_mprog_fp *fp; 4010 const struct bpf_prog *prog; 4011 int ret = TCX_NEXT; 4012 4013 if (needs_mac) 4014 __skb_push(skb, skb->mac_len); 4015 bpf_mprog_foreach_prog(entry, fp, prog) { 4016 bpf_compute_data_pointers(skb); 4017 ret = bpf_prog_run(prog, skb); 4018 if (ret != TCX_NEXT) 4019 break; 4020 } 4021 if (needs_mac) 4022 __skb_pull(skb, skb->mac_len); 4023 return tcx_action_code(skb, ret); 4024 } 4025 4026 static __always_inline struct sk_buff * 4027 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 4028 struct net_device *orig_dev, bool *another) 4029 { 4030 struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress); 4031 enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS; 4032 int sch_ret; 4033 4034 if (!entry) 4035 return skb; 4036 if (*pt_prev) { 4037 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4038 *pt_prev = NULL; 4039 } 4040 4041 qdisc_skb_cb(skb)->pkt_len = skb->len; 4042 tcx_set_ingress(skb, true); 4043 4044 if (static_branch_unlikely(&tcx_needed_key)) { 4045 sch_ret = tcx_run(entry, skb, true); 4046 if (sch_ret != TC_ACT_UNSPEC) 4047 goto ingress_verdict; 4048 } 4049 sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason); 4050 ingress_verdict: 4051 switch (sch_ret) { 4052 case TC_ACT_REDIRECT: 4053 /* skb_mac_header check was done by BPF, so we can safely 4054 * push the L2 header back before redirecting to another 4055 * netdev. 4056 */ 4057 __skb_push(skb, skb->mac_len); 4058 if (skb_do_redirect(skb) == -EAGAIN) { 4059 __skb_pull(skb, skb->mac_len); 4060 *another = true; 4061 break; 4062 } 4063 *ret = NET_RX_SUCCESS; 4064 return NULL; 4065 case TC_ACT_SHOT: 4066 kfree_skb_reason(skb, drop_reason); 4067 *ret = NET_RX_DROP; 4068 return NULL; 4069 /* used by tc_run */ 4070 case TC_ACT_STOLEN: 4071 case TC_ACT_QUEUED: 4072 case TC_ACT_TRAP: 4073 consume_skb(skb); 4074 fallthrough; 4075 case TC_ACT_CONSUMED: 4076 *ret = NET_RX_SUCCESS; 4077 return NULL; 4078 } 4079 4080 return skb; 4081 } 4082 4083 static __always_inline struct sk_buff * 4084 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 4085 { 4086 struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress); 4087 enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS; 4088 int sch_ret; 4089 4090 if (!entry) 4091 return skb; 4092 4093 /* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was 4094 * already set by the caller. 4095 */ 4096 if (static_branch_unlikely(&tcx_needed_key)) { 4097 sch_ret = tcx_run(entry, skb, false); 4098 if (sch_ret != TC_ACT_UNSPEC) 4099 goto egress_verdict; 4100 } 4101 sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason); 4102 egress_verdict: 4103 switch (sch_ret) { 4104 case TC_ACT_REDIRECT: 4105 /* No need to push/pop skb's mac_header here on egress! */ 4106 skb_do_redirect(skb); 4107 *ret = NET_XMIT_SUCCESS; 4108 return NULL; 4109 case TC_ACT_SHOT: 4110 kfree_skb_reason(skb, drop_reason); 4111 *ret = NET_XMIT_DROP; 4112 return NULL; 4113 /* used by tc_run */ 4114 case TC_ACT_STOLEN: 4115 case TC_ACT_QUEUED: 4116 case TC_ACT_TRAP: 4117 consume_skb(skb); 4118 fallthrough; 4119 case TC_ACT_CONSUMED: 4120 *ret = NET_XMIT_SUCCESS; 4121 return NULL; 4122 } 4123 4124 return skb; 4125 } 4126 #else 4127 static __always_inline struct sk_buff * 4128 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 4129 struct net_device *orig_dev, bool *another) 4130 { 4131 return skb; 4132 } 4133 4134 static __always_inline struct sk_buff * 4135 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 4136 { 4137 return skb; 4138 } 4139 #endif /* CONFIG_NET_XGRESS */ 4140 4141 #ifdef CONFIG_XPS 4142 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb, 4143 struct xps_dev_maps *dev_maps, unsigned int tci) 4144 { 4145 int tc = netdev_get_prio_tc_map(dev, skb->priority); 4146 struct xps_map *map; 4147 int queue_index = -1; 4148 4149 if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids) 4150 return queue_index; 4151 4152 tci *= dev_maps->num_tc; 4153 tci += tc; 4154 4155 map = rcu_dereference(dev_maps->attr_map[tci]); 4156 if (map) { 4157 if (map->len == 1) 4158 queue_index = map->queues[0]; 4159 else 4160 queue_index = map->queues[reciprocal_scale( 4161 skb_get_hash(skb), map->len)]; 4162 if (unlikely(queue_index >= dev->real_num_tx_queues)) 4163 queue_index = -1; 4164 } 4165 return queue_index; 4166 } 4167 #endif 4168 4169 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev, 4170 struct sk_buff *skb) 4171 { 4172 #ifdef CONFIG_XPS 4173 struct xps_dev_maps *dev_maps; 4174 struct sock *sk = skb->sk; 4175 int queue_index = -1; 4176 4177 if (!static_key_false(&xps_needed)) 4178 return -1; 4179 4180 rcu_read_lock(); 4181 if (!static_key_false(&xps_rxqs_needed)) 4182 goto get_cpus_map; 4183 4184 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]); 4185 if (dev_maps) { 4186 int tci = sk_rx_queue_get(sk); 4187 4188 if (tci >= 0) 4189 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 4190 tci); 4191 } 4192 4193 get_cpus_map: 4194 if (queue_index < 0) { 4195 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]); 4196 if (dev_maps) { 4197 unsigned int tci = skb->sender_cpu - 1; 4198 4199 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 4200 tci); 4201 } 4202 } 4203 rcu_read_unlock(); 4204 4205 return queue_index; 4206 #else 4207 return -1; 4208 #endif 4209 } 4210 4211 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 4212 struct net_device *sb_dev) 4213 { 4214 return 0; 4215 } 4216 EXPORT_SYMBOL(dev_pick_tx_zero); 4217 4218 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb, 4219 struct net_device *sb_dev) 4220 { 4221 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues; 4222 } 4223 EXPORT_SYMBOL(dev_pick_tx_cpu_id); 4224 4225 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 4226 struct net_device *sb_dev) 4227 { 4228 struct sock *sk = skb->sk; 4229 int queue_index = sk_tx_queue_get(sk); 4230 4231 sb_dev = sb_dev ? : dev; 4232 4233 if (queue_index < 0 || skb->ooo_okay || 4234 queue_index >= dev->real_num_tx_queues) { 4235 int new_index = get_xps_queue(dev, sb_dev, skb); 4236 4237 if (new_index < 0) 4238 new_index = skb_tx_hash(dev, sb_dev, skb); 4239 4240 if (queue_index != new_index && sk && 4241 sk_fullsock(sk) && 4242 rcu_access_pointer(sk->sk_dst_cache)) 4243 sk_tx_queue_set(sk, new_index); 4244 4245 queue_index = new_index; 4246 } 4247 4248 return queue_index; 4249 } 4250 EXPORT_SYMBOL(netdev_pick_tx); 4251 4252 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, 4253 struct sk_buff *skb, 4254 struct net_device *sb_dev) 4255 { 4256 int queue_index = 0; 4257 4258 #ifdef CONFIG_XPS 4259 u32 sender_cpu = skb->sender_cpu - 1; 4260 4261 if (sender_cpu >= (u32)NR_CPUS) 4262 skb->sender_cpu = raw_smp_processor_id() + 1; 4263 #endif 4264 4265 if (dev->real_num_tx_queues != 1) { 4266 const struct net_device_ops *ops = dev->netdev_ops; 4267 4268 if (ops->ndo_select_queue) 4269 queue_index = ops->ndo_select_queue(dev, skb, sb_dev); 4270 else 4271 queue_index = netdev_pick_tx(dev, skb, sb_dev); 4272 4273 queue_index = netdev_cap_txqueue(dev, queue_index); 4274 } 4275 4276 skb_set_queue_mapping(skb, queue_index); 4277 return netdev_get_tx_queue(dev, queue_index); 4278 } 4279 4280 /** 4281 * __dev_queue_xmit() - transmit a buffer 4282 * @skb: buffer to transmit 4283 * @sb_dev: suboordinate device used for L2 forwarding offload 4284 * 4285 * Queue a buffer for transmission to a network device. The caller must 4286 * have set the device and priority and built the buffer before calling 4287 * this function. The function can be called from an interrupt. 4288 * 4289 * When calling this method, interrupts MUST be enabled. This is because 4290 * the BH enable code must have IRQs enabled so that it will not deadlock. 4291 * 4292 * Regardless of the return value, the skb is consumed, so it is currently 4293 * difficult to retry a send to this method. (You can bump the ref count 4294 * before sending to hold a reference for retry if you are careful.) 4295 * 4296 * Return: 4297 * * 0 - buffer successfully transmitted 4298 * * positive qdisc return code - NET_XMIT_DROP etc. 4299 * * negative errno - other errors 4300 */ 4301 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev) 4302 { 4303 struct net_device *dev = skb->dev; 4304 struct netdev_queue *txq = NULL; 4305 struct Qdisc *q; 4306 int rc = -ENOMEM; 4307 bool again = false; 4308 4309 skb_reset_mac_header(skb); 4310 skb_assert_len(skb); 4311 4312 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP)) 4313 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED); 4314 4315 /* Disable soft irqs for various locks below. Also 4316 * stops preemption for RCU. 4317 */ 4318 rcu_read_lock_bh(); 4319 4320 skb_update_prio(skb); 4321 4322 qdisc_pkt_len_init(skb); 4323 tcx_set_ingress(skb, false); 4324 #ifdef CONFIG_NET_EGRESS 4325 if (static_branch_unlikely(&egress_needed_key)) { 4326 if (nf_hook_egress_active()) { 4327 skb = nf_hook_egress(skb, &rc, dev); 4328 if (!skb) 4329 goto out; 4330 } 4331 4332 netdev_xmit_skip_txqueue(false); 4333 4334 nf_skip_egress(skb, true); 4335 skb = sch_handle_egress(skb, &rc, dev); 4336 if (!skb) 4337 goto out; 4338 nf_skip_egress(skb, false); 4339 4340 if (netdev_xmit_txqueue_skipped()) 4341 txq = netdev_tx_queue_mapping(dev, skb); 4342 } 4343 #endif 4344 /* If device/qdisc don't need skb->dst, release it right now while 4345 * its hot in this cpu cache. 4346 */ 4347 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 4348 skb_dst_drop(skb); 4349 else 4350 skb_dst_force(skb); 4351 4352 if (!txq) 4353 txq = netdev_core_pick_tx(dev, skb, sb_dev); 4354 4355 q = rcu_dereference_bh(txq->qdisc); 4356 4357 trace_net_dev_queue(skb); 4358 if (q->enqueue) { 4359 rc = __dev_xmit_skb(skb, q, dev, txq); 4360 goto out; 4361 } 4362 4363 /* The device has no queue. Common case for software devices: 4364 * loopback, all the sorts of tunnels... 4365 4366 * Really, it is unlikely that netif_tx_lock protection is necessary 4367 * here. (f.e. loopback and IP tunnels are clean ignoring statistics 4368 * counters.) 4369 * However, it is possible, that they rely on protection 4370 * made by us here. 4371 4372 * Check this and shot the lock. It is not prone from deadlocks. 4373 *Either shot noqueue qdisc, it is even simpler 8) 4374 */ 4375 if (dev->flags & IFF_UP) { 4376 int cpu = smp_processor_id(); /* ok because BHs are off */ 4377 4378 /* Other cpus might concurrently change txq->xmit_lock_owner 4379 * to -1 or to their cpu id, but not to our id. 4380 */ 4381 if (READ_ONCE(txq->xmit_lock_owner) != cpu) { 4382 if (dev_xmit_recursion()) 4383 goto recursion_alert; 4384 4385 skb = validate_xmit_skb(skb, dev, &again); 4386 if (!skb) 4387 goto out; 4388 4389 HARD_TX_LOCK(dev, txq, cpu); 4390 4391 if (!netif_xmit_stopped(txq)) { 4392 dev_xmit_recursion_inc(); 4393 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 4394 dev_xmit_recursion_dec(); 4395 if (dev_xmit_complete(rc)) { 4396 HARD_TX_UNLOCK(dev, txq); 4397 goto out; 4398 } 4399 } 4400 HARD_TX_UNLOCK(dev, txq); 4401 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 4402 dev->name); 4403 } else { 4404 /* Recursion is detected! It is possible, 4405 * unfortunately 4406 */ 4407 recursion_alert: 4408 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 4409 dev->name); 4410 } 4411 } 4412 4413 rc = -ENETDOWN; 4414 rcu_read_unlock_bh(); 4415 4416 dev_core_stats_tx_dropped_inc(dev); 4417 kfree_skb_list(skb); 4418 return rc; 4419 out: 4420 rcu_read_unlock_bh(); 4421 return rc; 4422 } 4423 EXPORT_SYMBOL(__dev_queue_xmit); 4424 4425 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id) 4426 { 4427 struct net_device *dev = skb->dev; 4428 struct sk_buff *orig_skb = skb; 4429 struct netdev_queue *txq; 4430 int ret = NETDEV_TX_BUSY; 4431 bool again = false; 4432 4433 if (unlikely(!netif_running(dev) || 4434 !netif_carrier_ok(dev))) 4435 goto drop; 4436 4437 skb = validate_xmit_skb_list(skb, dev, &again); 4438 if (skb != orig_skb) 4439 goto drop; 4440 4441 skb_set_queue_mapping(skb, queue_id); 4442 txq = skb_get_tx_queue(dev, skb); 4443 4444 local_bh_disable(); 4445 4446 dev_xmit_recursion_inc(); 4447 HARD_TX_LOCK(dev, txq, smp_processor_id()); 4448 if (!netif_xmit_frozen_or_drv_stopped(txq)) 4449 ret = netdev_start_xmit(skb, dev, txq, false); 4450 HARD_TX_UNLOCK(dev, txq); 4451 dev_xmit_recursion_dec(); 4452 4453 local_bh_enable(); 4454 return ret; 4455 drop: 4456 dev_core_stats_tx_dropped_inc(dev); 4457 kfree_skb_list(skb); 4458 return NET_XMIT_DROP; 4459 } 4460 EXPORT_SYMBOL(__dev_direct_xmit); 4461 4462 /************************************************************************* 4463 * Receiver routines 4464 *************************************************************************/ 4465 static DEFINE_PER_CPU(struct task_struct *, backlog_napi); 4466 4467 int weight_p __read_mostly = 64; /* old backlog weight */ 4468 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */ 4469 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */ 4470 4471 /* Called with irq disabled */ 4472 static inline void ____napi_schedule(struct softnet_data *sd, 4473 struct napi_struct *napi) 4474 { 4475 struct task_struct *thread; 4476 4477 lockdep_assert_irqs_disabled(); 4478 4479 if (test_bit(NAPI_STATE_THREADED, &napi->state)) { 4480 /* Paired with smp_mb__before_atomic() in 4481 * napi_enable()/dev_set_threaded(). 4482 * Use READ_ONCE() to guarantee a complete 4483 * read on napi->thread. Only call 4484 * wake_up_process() when it's not NULL. 4485 */ 4486 thread = READ_ONCE(napi->thread); 4487 if (thread) { 4488 if (use_backlog_threads() && thread == raw_cpu_read(backlog_napi)) 4489 goto use_local_napi; 4490 4491 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state); 4492 wake_up_process(thread); 4493 return; 4494 } 4495 } 4496 4497 use_local_napi: 4498 list_add_tail(&napi->poll_list, &sd->poll_list); 4499 WRITE_ONCE(napi->list_owner, smp_processor_id()); 4500 /* If not called from net_rx_action() 4501 * we have to raise NET_RX_SOFTIRQ. 4502 */ 4503 if (!sd->in_net_rx_action) 4504 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4505 } 4506 4507 #ifdef CONFIG_RPS 4508 4509 struct static_key_false rps_needed __read_mostly; 4510 EXPORT_SYMBOL(rps_needed); 4511 struct static_key_false rfs_needed __read_mostly; 4512 EXPORT_SYMBOL(rfs_needed); 4513 4514 static struct rps_dev_flow * 4515 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4516 struct rps_dev_flow *rflow, u16 next_cpu) 4517 { 4518 if (next_cpu < nr_cpu_ids) { 4519 u32 head; 4520 #ifdef CONFIG_RFS_ACCEL 4521 struct netdev_rx_queue *rxqueue; 4522 struct rps_dev_flow_table *flow_table; 4523 struct rps_dev_flow *old_rflow; 4524 u16 rxq_index; 4525 u32 flow_id; 4526 int rc; 4527 4528 /* Should we steer this flow to a different hardware queue? */ 4529 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 4530 !(dev->features & NETIF_F_NTUPLE)) 4531 goto out; 4532 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 4533 if (rxq_index == skb_get_rx_queue(skb)) 4534 goto out; 4535 4536 rxqueue = dev->_rx + rxq_index; 4537 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4538 if (!flow_table) 4539 goto out; 4540 flow_id = skb_get_hash(skb) & flow_table->mask; 4541 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 4542 rxq_index, flow_id); 4543 if (rc < 0) 4544 goto out; 4545 old_rflow = rflow; 4546 rflow = &flow_table->flows[flow_id]; 4547 WRITE_ONCE(rflow->filter, rc); 4548 if (old_rflow->filter == rc) 4549 WRITE_ONCE(old_rflow->filter, RPS_NO_FILTER); 4550 out: 4551 #endif 4552 head = READ_ONCE(per_cpu(softnet_data, next_cpu).input_queue_head); 4553 rps_input_queue_tail_save(&rflow->last_qtail, head); 4554 } 4555 4556 WRITE_ONCE(rflow->cpu, next_cpu); 4557 return rflow; 4558 } 4559 4560 /* 4561 * get_rps_cpu is called from netif_receive_skb and returns the target 4562 * CPU from the RPS map of the receiving queue for a given skb. 4563 * rcu_read_lock must be held on entry. 4564 */ 4565 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4566 struct rps_dev_flow **rflowp) 4567 { 4568 const struct rps_sock_flow_table *sock_flow_table; 4569 struct netdev_rx_queue *rxqueue = dev->_rx; 4570 struct rps_dev_flow_table *flow_table; 4571 struct rps_map *map; 4572 int cpu = -1; 4573 u32 tcpu; 4574 u32 hash; 4575 4576 if (skb_rx_queue_recorded(skb)) { 4577 u16 index = skb_get_rx_queue(skb); 4578 4579 if (unlikely(index >= dev->real_num_rx_queues)) { 4580 WARN_ONCE(dev->real_num_rx_queues > 1, 4581 "%s received packet on queue %u, but number " 4582 "of RX queues is %u\n", 4583 dev->name, index, dev->real_num_rx_queues); 4584 goto done; 4585 } 4586 rxqueue += index; 4587 } 4588 4589 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 4590 4591 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4592 map = rcu_dereference(rxqueue->rps_map); 4593 if (!flow_table && !map) 4594 goto done; 4595 4596 skb_reset_network_header(skb); 4597 hash = skb_get_hash(skb); 4598 if (!hash) 4599 goto done; 4600 4601 sock_flow_table = rcu_dereference(net_hotdata.rps_sock_flow_table); 4602 if (flow_table && sock_flow_table) { 4603 struct rps_dev_flow *rflow; 4604 u32 next_cpu; 4605 u32 ident; 4606 4607 /* First check into global flow table if there is a match. 4608 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow(). 4609 */ 4610 ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]); 4611 if ((ident ^ hash) & ~net_hotdata.rps_cpu_mask) 4612 goto try_rps; 4613 4614 next_cpu = ident & net_hotdata.rps_cpu_mask; 4615 4616 /* OK, now we know there is a match, 4617 * we can look at the local (per receive queue) flow table 4618 */ 4619 rflow = &flow_table->flows[hash & flow_table->mask]; 4620 tcpu = rflow->cpu; 4621 4622 /* 4623 * If the desired CPU (where last recvmsg was done) is 4624 * different from current CPU (one in the rx-queue flow 4625 * table entry), switch if one of the following holds: 4626 * - Current CPU is unset (>= nr_cpu_ids). 4627 * - Current CPU is offline. 4628 * - The current CPU's queue tail has advanced beyond the 4629 * last packet that was enqueued using this table entry. 4630 * This guarantees that all previous packets for the flow 4631 * have been dequeued, thus preserving in order delivery. 4632 */ 4633 if (unlikely(tcpu != next_cpu) && 4634 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 4635 ((int)(READ_ONCE(per_cpu(softnet_data, tcpu).input_queue_head) - 4636 rflow->last_qtail)) >= 0)) { 4637 tcpu = next_cpu; 4638 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 4639 } 4640 4641 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 4642 *rflowp = rflow; 4643 cpu = tcpu; 4644 goto done; 4645 } 4646 } 4647 4648 try_rps: 4649 4650 if (map) { 4651 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 4652 if (cpu_online(tcpu)) { 4653 cpu = tcpu; 4654 goto done; 4655 } 4656 } 4657 4658 done: 4659 return cpu; 4660 } 4661 4662 #ifdef CONFIG_RFS_ACCEL 4663 4664 /** 4665 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 4666 * @dev: Device on which the filter was set 4667 * @rxq_index: RX queue index 4668 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 4669 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 4670 * 4671 * Drivers that implement ndo_rx_flow_steer() should periodically call 4672 * this function for each installed filter and remove the filters for 4673 * which it returns %true. 4674 */ 4675 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 4676 u32 flow_id, u16 filter_id) 4677 { 4678 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 4679 struct rps_dev_flow_table *flow_table; 4680 struct rps_dev_flow *rflow; 4681 bool expire = true; 4682 unsigned int cpu; 4683 4684 rcu_read_lock(); 4685 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4686 if (flow_table && flow_id <= flow_table->mask) { 4687 rflow = &flow_table->flows[flow_id]; 4688 cpu = READ_ONCE(rflow->cpu); 4689 if (READ_ONCE(rflow->filter) == filter_id && cpu < nr_cpu_ids && 4690 ((int)(READ_ONCE(per_cpu(softnet_data, cpu).input_queue_head) - 4691 READ_ONCE(rflow->last_qtail)) < 4692 (int)(10 * flow_table->mask))) 4693 expire = false; 4694 } 4695 rcu_read_unlock(); 4696 return expire; 4697 } 4698 EXPORT_SYMBOL(rps_may_expire_flow); 4699 4700 #endif /* CONFIG_RFS_ACCEL */ 4701 4702 /* Called from hardirq (IPI) context */ 4703 static void rps_trigger_softirq(void *data) 4704 { 4705 struct softnet_data *sd = data; 4706 4707 ____napi_schedule(sd, &sd->backlog); 4708 sd->received_rps++; 4709 } 4710 4711 #endif /* CONFIG_RPS */ 4712 4713 /* Called from hardirq (IPI) context */ 4714 static void trigger_rx_softirq(void *data) 4715 { 4716 struct softnet_data *sd = data; 4717 4718 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4719 smp_store_release(&sd->defer_ipi_scheduled, 0); 4720 } 4721 4722 /* 4723 * After we queued a packet into sd->input_pkt_queue, 4724 * we need to make sure this queue is serviced soon. 4725 * 4726 * - If this is another cpu queue, link it to our rps_ipi_list, 4727 * and make sure we will process rps_ipi_list from net_rx_action(). 4728 * 4729 * - If this is our own queue, NAPI schedule our backlog. 4730 * Note that this also raises NET_RX_SOFTIRQ. 4731 */ 4732 static void napi_schedule_rps(struct softnet_data *sd) 4733 { 4734 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 4735 4736 #ifdef CONFIG_RPS 4737 if (sd != mysd) { 4738 if (use_backlog_threads()) { 4739 __napi_schedule_irqoff(&sd->backlog); 4740 return; 4741 } 4742 4743 sd->rps_ipi_next = mysd->rps_ipi_list; 4744 mysd->rps_ipi_list = sd; 4745 4746 /* If not called from net_rx_action() or napi_threaded_poll() 4747 * we have to raise NET_RX_SOFTIRQ. 4748 */ 4749 if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll) 4750 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4751 return; 4752 } 4753 #endif /* CONFIG_RPS */ 4754 __napi_schedule_irqoff(&mysd->backlog); 4755 } 4756 4757 void kick_defer_list_purge(struct softnet_data *sd, unsigned int cpu) 4758 { 4759 unsigned long flags; 4760 4761 if (use_backlog_threads()) { 4762 backlog_lock_irq_save(sd, &flags); 4763 4764 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) 4765 __napi_schedule_irqoff(&sd->backlog); 4766 4767 backlog_unlock_irq_restore(sd, &flags); 4768 4769 } else if (!cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) { 4770 smp_call_function_single_async(cpu, &sd->defer_csd); 4771 } 4772 } 4773 4774 #ifdef CONFIG_NET_FLOW_LIMIT 4775 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 4776 #endif 4777 4778 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 4779 { 4780 #ifdef CONFIG_NET_FLOW_LIMIT 4781 struct sd_flow_limit *fl; 4782 struct softnet_data *sd; 4783 unsigned int old_flow, new_flow; 4784 4785 if (qlen < (READ_ONCE(net_hotdata.max_backlog) >> 1)) 4786 return false; 4787 4788 sd = this_cpu_ptr(&softnet_data); 4789 4790 rcu_read_lock(); 4791 fl = rcu_dereference(sd->flow_limit); 4792 if (fl) { 4793 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); 4794 old_flow = fl->history[fl->history_head]; 4795 fl->history[fl->history_head] = new_flow; 4796 4797 fl->history_head++; 4798 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 4799 4800 if (likely(fl->buckets[old_flow])) 4801 fl->buckets[old_flow]--; 4802 4803 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 4804 fl->count++; 4805 rcu_read_unlock(); 4806 return true; 4807 } 4808 } 4809 rcu_read_unlock(); 4810 #endif 4811 return false; 4812 } 4813 4814 /* 4815 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 4816 * queue (may be a remote CPU queue). 4817 */ 4818 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 4819 unsigned int *qtail) 4820 { 4821 enum skb_drop_reason reason; 4822 struct softnet_data *sd; 4823 unsigned long flags; 4824 unsigned int qlen; 4825 int max_backlog; 4826 u32 tail; 4827 4828 reason = SKB_DROP_REASON_DEV_READY; 4829 if (!netif_running(skb->dev)) 4830 goto bad_dev; 4831 4832 reason = SKB_DROP_REASON_CPU_BACKLOG; 4833 sd = &per_cpu(softnet_data, cpu); 4834 4835 qlen = skb_queue_len_lockless(&sd->input_pkt_queue); 4836 max_backlog = READ_ONCE(net_hotdata.max_backlog); 4837 if (unlikely(qlen > max_backlog)) 4838 goto cpu_backlog_drop; 4839 backlog_lock_irq_save(sd, &flags); 4840 qlen = skb_queue_len(&sd->input_pkt_queue); 4841 if (qlen <= max_backlog && !skb_flow_limit(skb, qlen)) { 4842 if (!qlen) { 4843 /* Schedule NAPI for backlog device. We can use 4844 * non atomic operation as we own the queue lock. 4845 */ 4846 if (!__test_and_set_bit(NAPI_STATE_SCHED, 4847 &sd->backlog.state)) 4848 napi_schedule_rps(sd); 4849 } 4850 __skb_queue_tail(&sd->input_pkt_queue, skb); 4851 tail = rps_input_queue_tail_incr(sd); 4852 backlog_unlock_irq_restore(sd, &flags); 4853 4854 /* save the tail outside of the critical section */ 4855 rps_input_queue_tail_save(qtail, tail); 4856 return NET_RX_SUCCESS; 4857 } 4858 4859 backlog_unlock_irq_restore(sd, &flags); 4860 4861 cpu_backlog_drop: 4862 atomic_inc(&sd->dropped); 4863 bad_dev: 4864 dev_core_stats_rx_dropped_inc(skb->dev); 4865 kfree_skb_reason(skb, reason); 4866 return NET_RX_DROP; 4867 } 4868 4869 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb) 4870 { 4871 struct net_device *dev = skb->dev; 4872 struct netdev_rx_queue *rxqueue; 4873 4874 rxqueue = dev->_rx; 4875 4876 if (skb_rx_queue_recorded(skb)) { 4877 u16 index = skb_get_rx_queue(skb); 4878 4879 if (unlikely(index >= dev->real_num_rx_queues)) { 4880 WARN_ONCE(dev->real_num_rx_queues > 1, 4881 "%s received packet on queue %u, but number " 4882 "of RX queues is %u\n", 4883 dev->name, index, dev->real_num_rx_queues); 4884 4885 return rxqueue; /* Return first rxqueue */ 4886 } 4887 rxqueue += index; 4888 } 4889 return rxqueue; 4890 } 4891 4892 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp, 4893 struct bpf_prog *xdp_prog) 4894 { 4895 void *orig_data, *orig_data_end, *hard_start; 4896 struct netdev_rx_queue *rxqueue; 4897 bool orig_bcast, orig_host; 4898 u32 mac_len, frame_sz; 4899 __be16 orig_eth_type; 4900 struct ethhdr *eth; 4901 u32 metalen, act; 4902 int off; 4903 4904 /* The XDP program wants to see the packet starting at the MAC 4905 * header. 4906 */ 4907 mac_len = skb->data - skb_mac_header(skb); 4908 hard_start = skb->data - skb_headroom(skb); 4909 4910 /* SKB "head" area always have tailroom for skb_shared_info */ 4911 frame_sz = (void *)skb_end_pointer(skb) - hard_start; 4912 frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 4913 4914 rxqueue = netif_get_rxqueue(skb); 4915 xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq); 4916 xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len, 4917 skb_headlen(skb) + mac_len, true); 4918 if (skb_is_nonlinear(skb)) { 4919 skb_shinfo(skb)->xdp_frags_size = skb->data_len; 4920 xdp_buff_set_frags_flag(xdp); 4921 } else { 4922 xdp_buff_clear_frags_flag(xdp); 4923 } 4924 4925 orig_data_end = xdp->data_end; 4926 orig_data = xdp->data; 4927 eth = (struct ethhdr *)xdp->data; 4928 orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr); 4929 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest); 4930 orig_eth_type = eth->h_proto; 4931 4932 act = bpf_prog_run_xdp(xdp_prog, xdp); 4933 4934 /* check if bpf_xdp_adjust_head was used */ 4935 off = xdp->data - orig_data; 4936 if (off) { 4937 if (off > 0) 4938 __skb_pull(skb, off); 4939 else if (off < 0) 4940 __skb_push(skb, -off); 4941 4942 skb->mac_header += off; 4943 skb_reset_network_header(skb); 4944 } 4945 4946 /* check if bpf_xdp_adjust_tail was used */ 4947 off = xdp->data_end - orig_data_end; 4948 if (off != 0) { 4949 skb_set_tail_pointer(skb, xdp->data_end - xdp->data); 4950 skb->len += off; /* positive on grow, negative on shrink */ 4951 } 4952 4953 /* XDP frag metadata (e.g. nr_frags) are updated in eBPF helpers 4954 * (e.g. bpf_xdp_adjust_tail), we need to update data_len here. 4955 */ 4956 if (xdp_buff_has_frags(xdp)) 4957 skb->data_len = skb_shinfo(skb)->xdp_frags_size; 4958 else 4959 skb->data_len = 0; 4960 4961 /* check if XDP changed eth hdr such SKB needs update */ 4962 eth = (struct ethhdr *)xdp->data; 4963 if ((orig_eth_type != eth->h_proto) || 4964 (orig_host != ether_addr_equal_64bits(eth->h_dest, 4965 skb->dev->dev_addr)) || 4966 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) { 4967 __skb_push(skb, ETH_HLEN); 4968 skb->pkt_type = PACKET_HOST; 4969 skb->protocol = eth_type_trans(skb, skb->dev); 4970 } 4971 4972 /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull 4973 * before calling us again on redirect path. We do not call do_redirect 4974 * as we leave that up to the caller. 4975 * 4976 * Caller is responsible for managing lifetime of skb (i.e. calling 4977 * kfree_skb in response to actions it cannot handle/XDP_DROP). 4978 */ 4979 switch (act) { 4980 case XDP_REDIRECT: 4981 case XDP_TX: 4982 __skb_push(skb, mac_len); 4983 break; 4984 case XDP_PASS: 4985 metalen = xdp->data - xdp->data_meta; 4986 if (metalen) 4987 skb_metadata_set(skb, metalen); 4988 break; 4989 } 4990 4991 return act; 4992 } 4993 4994 static int 4995 netif_skb_check_for_xdp(struct sk_buff **pskb, struct bpf_prog *prog) 4996 { 4997 struct sk_buff *skb = *pskb; 4998 int err, hroom, troom; 4999 5000 if (!skb_cow_data_for_xdp(this_cpu_read(system_page_pool), pskb, prog)) 5001 return 0; 5002 5003 /* In case we have to go down the path and also linearize, 5004 * then lets do the pskb_expand_head() work just once here. 5005 */ 5006 hroom = XDP_PACKET_HEADROOM - skb_headroom(skb); 5007 troom = skb->tail + skb->data_len - skb->end; 5008 err = pskb_expand_head(skb, 5009 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0, 5010 troom > 0 ? troom + 128 : 0, GFP_ATOMIC); 5011 if (err) 5012 return err; 5013 5014 return skb_linearize(skb); 5015 } 5016 5017 static u32 netif_receive_generic_xdp(struct sk_buff **pskb, 5018 struct xdp_buff *xdp, 5019 struct bpf_prog *xdp_prog) 5020 { 5021 struct sk_buff *skb = *pskb; 5022 u32 mac_len, act = XDP_DROP; 5023 5024 /* Reinjected packets coming from act_mirred or similar should 5025 * not get XDP generic processing. 5026 */ 5027 if (skb_is_redirected(skb)) 5028 return XDP_PASS; 5029 5030 /* XDP packets must have sufficient headroom of XDP_PACKET_HEADROOM 5031 * bytes. This is the guarantee that also native XDP provides, 5032 * thus we need to do it here as well. 5033 */ 5034 mac_len = skb->data - skb_mac_header(skb); 5035 __skb_push(skb, mac_len); 5036 5037 if (skb_cloned(skb) || skb_is_nonlinear(skb) || 5038 skb_headroom(skb) < XDP_PACKET_HEADROOM) { 5039 if (netif_skb_check_for_xdp(pskb, xdp_prog)) 5040 goto do_drop; 5041 } 5042 5043 __skb_pull(*pskb, mac_len); 5044 5045 act = bpf_prog_run_generic_xdp(*pskb, xdp, xdp_prog); 5046 switch (act) { 5047 case XDP_REDIRECT: 5048 case XDP_TX: 5049 case XDP_PASS: 5050 break; 5051 default: 5052 bpf_warn_invalid_xdp_action((*pskb)->dev, xdp_prog, act); 5053 fallthrough; 5054 case XDP_ABORTED: 5055 trace_xdp_exception((*pskb)->dev, xdp_prog, act); 5056 fallthrough; 5057 case XDP_DROP: 5058 do_drop: 5059 kfree_skb(*pskb); 5060 break; 5061 } 5062 5063 return act; 5064 } 5065 5066 /* When doing generic XDP we have to bypass the qdisc layer and the 5067 * network taps in order to match in-driver-XDP behavior. This also means 5068 * that XDP packets are able to starve other packets going through a qdisc, 5069 * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX 5070 * queues, so they do not have this starvation issue. 5071 */ 5072 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog) 5073 { 5074 struct net_device *dev = skb->dev; 5075 struct netdev_queue *txq; 5076 bool free_skb = true; 5077 int cpu, rc; 5078 5079 txq = netdev_core_pick_tx(dev, skb, NULL); 5080 cpu = smp_processor_id(); 5081 HARD_TX_LOCK(dev, txq, cpu); 5082 if (!netif_xmit_frozen_or_drv_stopped(txq)) { 5083 rc = netdev_start_xmit(skb, dev, txq, 0); 5084 if (dev_xmit_complete(rc)) 5085 free_skb = false; 5086 } 5087 HARD_TX_UNLOCK(dev, txq); 5088 if (free_skb) { 5089 trace_xdp_exception(dev, xdp_prog, XDP_TX); 5090 dev_core_stats_tx_dropped_inc(dev); 5091 kfree_skb(skb); 5092 } 5093 } 5094 5095 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key); 5096 5097 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff **pskb) 5098 { 5099 if (xdp_prog) { 5100 struct xdp_buff xdp; 5101 u32 act; 5102 int err; 5103 5104 act = netif_receive_generic_xdp(pskb, &xdp, xdp_prog); 5105 if (act != XDP_PASS) { 5106 switch (act) { 5107 case XDP_REDIRECT: 5108 err = xdp_do_generic_redirect((*pskb)->dev, *pskb, 5109 &xdp, xdp_prog); 5110 if (err) 5111 goto out_redir; 5112 break; 5113 case XDP_TX: 5114 generic_xdp_tx(*pskb, xdp_prog); 5115 break; 5116 } 5117 return XDP_DROP; 5118 } 5119 } 5120 return XDP_PASS; 5121 out_redir: 5122 kfree_skb_reason(*pskb, SKB_DROP_REASON_XDP); 5123 return XDP_DROP; 5124 } 5125 EXPORT_SYMBOL_GPL(do_xdp_generic); 5126 5127 static int netif_rx_internal(struct sk_buff *skb) 5128 { 5129 int ret; 5130 5131 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb); 5132 5133 trace_netif_rx(skb); 5134 5135 #ifdef CONFIG_RPS 5136 if (static_branch_unlikely(&rps_needed)) { 5137 struct rps_dev_flow voidflow, *rflow = &voidflow; 5138 int cpu; 5139 5140 rcu_read_lock(); 5141 5142 cpu = get_rps_cpu(skb->dev, skb, &rflow); 5143 if (cpu < 0) 5144 cpu = smp_processor_id(); 5145 5146 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5147 5148 rcu_read_unlock(); 5149 } else 5150 #endif 5151 { 5152 unsigned int qtail; 5153 5154 ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail); 5155 } 5156 return ret; 5157 } 5158 5159 /** 5160 * __netif_rx - Slightly optimized version of netif_rx 5161 * @skb: buffer to post 5162 * 5163 * This behaves as netif_rx except that it does not disable bottom halves. 5164 * As a result this function may only be invoked from the interrupt context 5165 * (either hard or soft interrupt). 5166 */ 5167 int __netif_rx(struct sk_buff *skb) 5168 { 5169 int ret; 5170 5171 lockdep_assert_once(hardirq_count() | softirq_count()); 5172 5173 trace_netif_rx_entry(skb); 5174 ret = netif_rx_internal(skb); 5175 trace_netif_rx_exit(ret); 5176 return ret; 5177 } 5178 EXPORT_SYMBOL(__netif_rx); 5179 5180 /** 5181 * netif_rx - post buffer to the network code 5182 * @skb: buffer to post 5183 * 5184 * This function receives a packet from a device driver and queues it for 5185 * the upper (protocol) levels to process via the backlog NAPI device. It 5186 * always succeeds. The buffer may be dropped during processing for 5187 * congestion control or by the protocol layers. 5188 * The network buffer is passed via the backlog NAPI device. Modern NIC 5189 * driver should use NAPI and GRO. 5190 * This function can used from interrupt and from process context. The 5191 * caller from process context must not disable interrupts before invoking 5192 * this function. 5193 * 5194 * return values: 5195 * NET_RX_SUCCESS (no congestion) 5196 * NET_RX_DROP (packet was dropped) 5197 * 5198 */ 5199 int netif_rx(struct sk_buff *skb) 5200 { 5201 bool need_bh_off = !(hardirq_count() | softirq_count()); 5202 int ret; 5203 5204 if (need_bh_off) 5205 local_bh_disable(); 5206 trace_netif_rx_entry(skb); 5207 ret = netif_rx_internal(skb); 5208 trace_netif_rx_exit(ret); 5209 if (need_bh_off) 5210 local_bh_enable(); 5211 return ret; 5212 } 5213 EXPORT_SYMBOL(netif_rx); 5214 5215 static __latent_entropy void net_tx_action(struct softirq_action *h) 5216 { 5217 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 5218 5219 if (sd->completion_queue) { 5220 struct sk_buff *clist; 5221 5222 local_irq_disable(); 5223 clist = sd->completion_queue; 5224 sd->completion_queue = NULL; 5225 local_irq_enable(); 5226 5227 while (clist) { 5228 struct sk_buff *skb = clist; 5229 5230 clist = clist->next; 5231 5232 WARN_ON(refcount_read(&skb->users)); 5233 if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED)) 5234 trace_consume_skb(skb, net_tx_action); 5235 else 5236 trace_kfree_skb(skb, net_tx_action, 5237 get_kfree_skb_cb(skb)->reason); 5238 5239 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) 5240 __kfree_skb(skb); 5241 else 5242 __napi_kfree_skb(skb, 5243 get_kfree_skb_cb(skb)->reason); 5244 } 5245 } 5246 5247 if (sd->output_queue) { 5248 struct Qdisc *head; 5249 5250 local_irq_disable(); 5251 head = sd->output_queue; 5252 sd->output_queue = NULL; 5253 sd->output_queue_tailp = &sd->output_queue; 5254 local_irq_enable(); 5255 5256 rcu_read_lock(); 5257 5258 while (head) { 5259 struct Qdisc *q = head; 5260 spinlock_t *root_lock = NULL; 5261 5262 head = head->next_sched; 5263 5264 /* We need to make sure head->next_sched is read 5265 * before clearing __QDISC_STATE_SCHED 5266 */ 5267 smp_mb__before_atomic(); 5268 5269 if (!(q->flags & TCQ_F_NOLOCK)) { 5270 root_lock = qdisc_lock(q); 5271 spin_lock(root_lock); 5272 } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, 5273 &q->state))) { 5274 /* There is a synchronize_net() between 5275 * STATE_DEACTIVATED flag being set and 5276 * qdisc_reset()/some_qdisc_is_busy() in 5277 * dev_deactivate(), so we can safely bail out 5278 * early here to avoid data race between 5279 * qdisc_deactivate() and some_qdisc_is_busy() 5280 * for lockless qdisc. 5281 */ 5282 clear_bit(__QDISC_STATE_SCHED, &q->state); 5283 continue; 5284 } 5285 5286 clear_bit(__QDISC_STATE_SCHED, &q->state); 5287 qdisc_run(q); 5288 if (root_lock) 5289 spin_unlock(root_lock); 5290 } 5291 5292 rcu_read_unlock(); 5293 } 5294 5295 xfrm_dev_backlog(sd); 5296 } 5297 5298 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE) 5299 /* This hook is defined here for ATM LANE */ 5300 int (*br_fdb_test_addr_hook)(struct net_device *dev, 5301 unsigned char *addr) __read_mostly; 5302 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 5303 #endif 5304 5305 /** 5306 * netdev_is_rx_handler_busy - check if receive handler is registered 5307 * @dev: device to check 5308 * 5309 * Check if a receive handler is already registered for a given device. 5310 * Return true if there one. 5311 * 5312 * The caller must hold the rtnl_mutex. 5313 */ 5314 bool netdev_is_rx_handler_busy(struct net_device *dev) 5315 { 5316 ASSERT_RTNL(); 5317 return dev && rtnl_dereference(dev->rx_handler); 5318 } 5319 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy); 5320 5321 /** 5322 * netdev_rx_handler_register - register receive handler 5323 * @dev: device to register a handler for 5324 * @rx_handler: receive handler to register 5325 * @rx_handler_data: data pointer that is used by rx handler 5326 * 5327 * Register a receive handler for a device. This handler will then be 5328 * called from __netif_receive_skb. A negative errno code is returned 5329 * on a failure. 5330 * 5331 * The caller must hold the rtnl_mutex. 5332 * 5333 * For a general description of rx_handler, see enum rx_handler_result. 5334 */ 5335 int netdev_rx_handler_register(struct net_device *dev, 5336 rx_handler_func_t *rx_handler, 5337 void *rx_handler_data) 5338 { 5339 if (netdev_is_rx_handler_busy(dev)) 5340 return -EBUSY; 5341 5342 if (dev->priv_flags & IFF_NO_RX_HANDLER) 5343 return -EINVAL; 5344 5345 /* Note: rx_handler_data must be set before rx_handler */ 5346 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 5347 rcu_assign_pointer(dev->rx_handler, rx_handler); 5348 5349 return 0; 5350 } 5351 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 5352 5353 /** 5354 * netdev_rx_handler_unregister - unregister receive handler 5355 * @dev: device to unregister a handler from 5356 * 5357 * Unregister a receive handler from a device. 5358 * 5359 * The caller must hold the rtnl_mutex. 5360 */ 5361 void netdev_rx_handler_unregister(struct net_device *dev) 5362 { 5363 5364 ASSERT_RTNL(); 5365 RCU_INIT_POINTER(dev->rx_handler, NULL); 5366 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 5367 * section has a guarantee to see a non NULL rx_handler_data 5368 * as well. 5369 */ 5370 synchronize_net(); 5371 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 5372 } 5373 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 5374 5375 /* 5376 * Limit the use of PFMEMALLOC reserves to those protocols that implement 5377 * the special handling of PFMEMALLOC skbs. 5378 */ 5379 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 5380 { 5381 switch (skb->protocol) { 5382 case htons(ETH_P_ARP): 5383 case htons(ETH_P_IP): 5384 case htons(ETH_P_IPV6): 5385 case htons(ETH_P_8021Q): 5386 case htons(ETH_P_8021AD): 5387 return true; 5388 default: 5389 return false; 5390 } 5391 } 5392 5393 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, 5394 int *ret, struct net_device *orig_dev) 5395 { 5396 if (nf_hook_ingress_active(skb)) { 5397 int ingress_retval; 5398 5399 if (*pt_prev) { 5400 *ret = deliver_skb(skb, *pt_prev, orig_dev); 5401 *pt_prev = NULL; 5402 } 5403 5404 rcu_read_lock(); 5405 ingress_retval = nf_hook_ingress(skb); 5406 rcu_read_unlock(); 5407 return ingress_retval; 5408 } 5409 return 0; 5410 } 5411 5412 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc, 5413 struct packet_type **ppt_prev) 5414 { 5415 struct packet_type *ptype, *pt_prev; 5416 rx_handler_func_t *rx_handler; 5417 struct sk_buff *skb = *pskb; 5418 struct net_device *orig_dev; 5419 bool deliver_exact = false; 5420 int ret = NET_RX_DROP; 5421 __be16 type; 5422 5423 net_timestamp_check(!READ_ONCE(net_hotdata.tstamp_prequeue), skb); 5424 5425 trace_netif_receive_skb(skb); 5426 5427 orig_dev = skb->dev; 5428 5429 skb_reset_network_header(skb); 5430 if (!skb_transport_header_was_set(skb)) 5431 skb_reset_transport_header(skb); 5432 skb_reset_mac_len(skb); 5433 5434 pt_prev = NULL; 5435 5436 another_round: 5437 skb->skb_iif = skb->dev->ifindex; 5438 5439 __this_cpu_inc(softnet_data.processed); 5440 5441 if (static_branch_unlikely(&generic_xdp_needed_key)) { 5442 int ret2; 5443 5444 migrate_disable(); 5445 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), 5446 &skb); 5447 migrate_enable(); 5448 5449 if (ret2 != XDP_PASS) { 5450 ret = NET_RX_DROP; 5451 goto out; 5452 } 5453 } 5454 5455 if (eth_type_vlan(skb->protocol)) { 5456 skb = skb_vlan_untag(skb); 5457 if (unlikely(!skb)) 5458 goto out; 5459 } 5460 5461 if (skb_skip_tc_classify(skb)) 5462 goto skip_classify; 5463 5464 if (pfmemalloc) 5465 goto skip_taps; 5466 5467 list_for_each_entry_rcu(ptype, &net_hotdata.ptype_all, list) { 5468 if (pt_prev) 5469 ret = deliver_skb(skb, pt_prev, orig_dev); 5470 pt_prev = ptype; 5471 } 5472 5473 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 5474 if (pt_prev) 5475 ret = deliver_skb(skb, pt_prev, orig_dev); 5476 pt_prev = ptype; 5477 } 5478 5479 skip_taps: 5480 #ifdef CONFIG_NET_INGRESS 5481 if (static_branch_unlikely(&ingress_needed_key)) { 5482 bool another = false; 5483 5484 nf_skip_egress(skb, true); 5485 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev, 5486 &another); 5487 if (another) 5488 goto another_round; 5489 if (!skb) 5490 goto out; 5491 5492 nf_skip_egress(skb, false); 5493 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) 5494 goto out; 5495 } 5496 #endif 5497 skb_reset_redirect(skb); 5498 skip_classify: 5499 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 5500 goto drop; 5501 5502 if (skb_vlan_tag_present(skb)) { 5503 if (pt_prev) { 5504 ret = deliver_skb(skb, pt_prev, orig_dev); 5505 pt_prev = NULL; 5506 } 5507 if (vlan_do_receive(&skb)) 5508 goto another_round; 5509 else if (unlikely(!skb)) 5510 goto out; 5511 } 5512 5513 rx_handler = rcu_dereference(skb->dev->rx_handler); 5514 if (rx_handler) { 5515 if (pt_prev) { 5516 ret = deliver_skb(skb, pt_prev, orig_dev); 5517 pt_prev = NULL; 5518 } 5519 switch (rx_handler(&skb)) { 5520 case RX_HANDLER_CONSUMED: 5521 ret = NET_RX_SUCCESS; 5522 goto out; 5523 case RX_HANDLER_ANOTHER: 5524 goto another_round; 5525 case RX_HANDLER_EXACT: 5526 deliver_exact = true; 5527 break; 5528 case RX_HANDLER_PASS: 5529 break; 5530 default: 5531 BUG(); 5532 } 5533 } 5534 5535 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) { 5536 check_vlan_id: 5537 if (skb_vlan_tag_get_id(skb)) { 5538 /* Vlan id is non 0 and vlan_do_receive() above couldn't 5539 * find vlan device. 5540 */ 5541 skb->pkt_type = PACKET_OTHERHOST; 5542 } else if (eth_type_vlan(skb->protocol)) { 5543 /* Outer header is 802.1P with vlan 0, inner header is 5544 * 802.1Q or 802.1AD and vlan_do_receive() above could 5545 * not find vlan dev for vlan id 0. 5546 */ 5547 __vlan_hwaccel_clear_tag(skb); 5548 skb = skb_vlan_untag(skb); 5549 if (unlikely(!skb)) 5550 goto out; 5551 if (vlan_do_receive(&skb)) 5552 /* After stripping off 802.1P header with vlan 0 5553 * vlan dev is found for inner header. 5554 */ 5555 goto another_round; 5556 else if (unlikely(!skb)) 5557 goto out; 5558 else 5559 /* We have stripped outer 802.1P vlan 0 header. 5560 * But could not find vlan dev. 5561 * check again for vlan id to set OTHERHOST. 5562 */ 5563 goto check_vlan_id; 5564 } 5565 /* Note: we might in the future use prio bits 5566 * and set skb->priority like in vlan_do_receive() 5567 * For the time being, just ignore Priority Code Point 5568 */ 5569 __vlan_hwaccel_clear_tag(skb); 5570 } 5571 5572 type = skb->protocol; 5573 5574 /* deliver only exact match when indicated */ 5575 if (likely(!deliver_exact)) { 5576 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5577 &ptype_base[ntohs(type) & 5578 PTYPE_HASH_MASK]); 5579 } 5580 5581 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5582 &orig_dev->ptype_specific); 5583 5584 if (unlikely(skb->dev != orig_dev)) { 5585 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5586 &skb->dev->ptype_specific); 5587 } 5588 5589 if (pt_prev) { 5590 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 5591 goto drop; 5592 *ppt_prev = pt_prev; 5593 } else { 5594 drop: 5595 if (!deliver_exact) 5596 dev_core_stats_rx_dropped_inc(skb->dev); 5597 else 5598 dev_core_stats_rx_nohandler_inc(skb->dev); 5599 kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO); 5600 /* Jamal, now you will not able to escape explaining 5601 * me how you were going to use this. :-) 5602 */ 5603 ret = NET_RX_DROP; 5604 } 5605 5606 out: 5607 /* The invariant here is that if *ppt_prev is not NULL 5608 * then skb should also be non-NULL. 5609 * 5610 * Apparently *ppt_prev assignment above holds this invariant due to 5611 * skb dereferencing near it. 5612 */ 5613 *pskb = skb; 5614 return ret; 5615 } 5616 5617 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc) 5618 { 5619 struct net_device *orig_dev = skb->dev; 5620 struct packet_type *pt_prev = NULL; 5621 int ret; 5622 5623 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev); 5624 if (pt_prev) 5625 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb, 5626 skb->dev, pt_prev, orig_dev); 5627 return ret; 5628 } 5629 5630 /** 5631 * netif_receive_skb_core - special purpose version of netif_receive_skb 5632 * @skb: buffer to process 5633 * 5634 * More direct receive version of netif_receive_skb(). It should 5635 * only be used by callers that have a need to skip RPS and Generic XDP. 5636 * Caller must also take care of handling if ``(page_is_)pfmemalloc``. 5637 * 5638 * This function may only be called from softirq context and interrupts 5639 * should be enabled. 5640 * 5641 * Return values (usually ignored): 5642 * NET_RX_SUCCESS: no congestion 5643 * NET_RX_DROP: packet was dropped 5644 */ 5645 int netif_receive_skb_core(struct sk_buff *skb) 5646 { 5647 int ret; 5648 5649 rcu_read_lock(); 5650 ret = __netif_receive_skb_one_core(skb, false); 5651 rcu_read_unlock(); 5652 5653 return ret; 5654 } 5655 EXPORT_SYMBOL(netif_receive_skb_core); 5656 5657 static inline void __netif_receive_skb_list_ptype(struct list_head *head, 5658 struct packet_type *pt_prev, 5659 struct net_device *orig_dev) 5660 { 5661 struct sk_buff *skb, *next; 5662 5663 if (!pt_prev) 5664 return; 5665 if (list_empty(head)) 5666 return; 5667 if (pt_prev->list_func != NULL) 5668 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv, 5669 ip_list_rcv, head, pt_prev, orig_dev); 5670 else 5671 list_for_each_entry_safe(skb, next, head, list) { 5672 skb_list_del_init(skb); 5673 pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 5674 } 5675 } 5676 5677 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc) 5678 { 5679 /* Fast-path assumptions: 5680 * - There is no RX handler. 5681 * - Only one packet_type matches. 5682 * If either of these fails, we will end up doing some per-packet 5683 * processing in-line, then handling the 'last ptype' for the whole 5684 * sublist. This can't cause out-of-order delivery to any single ptype, 5685 * because the 'last ptype' must be constant across the sublist, and all 5686 * other ptypes are handled per-packet. 5687 */ 5688 /* Current (common) ptype of sublist */ 5689 struct packet_type *pt_curr = NULL; 5690 /* Current (common) orig_dev of sublist */ 5691 struct net_device *od_curr = NULL; 5692 struct list_head sublist; 5693 struct sk_buff *skb, *next; 5694 5695 INIT_LIST_HEAD(&sublist); 5696 list_for_each_entry_safe(skb, next, head, list) { 5697 struct net_device *orig_dev = skb->dev; 5698 struct packet_type *pt_prev = NULL; 5699 5700 skb_list_del_init(skb); 5701 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev); 5702 if (!pt_prev) 5703 continue; 5704 if (pt_curr != pt_prev || od_curr != orig_dev) { 5705 /* dispatch old sublist */ 5706 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 5707 /* start new sublist */ 5708 INIT_LIST_HEAD(&sublist); 5709 pt_curr = pt_prev; 5710 od_curr = orig_dev; 5711 } 5712 list_add_tail(&skb->list, &sublist); 5713 } 5714 5715 /* dispatch final sublist */ 5716 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 5717 } 5718 5719 static int __netif_receive_skb(struct sk_buff *skb) 5720 { 5721 int ret; 5722 5723 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 5724 unsigned int noreclaim_flag; 5725 5726 /* 5727 * PFMEMALLOC skbs are special, they should 5728 * - be delivered to SOCK_MEMALLOC sockets only 5729 * - stay away from userspace 5730 * - have bounded memory usage 5731 * 5732 * Use PF_MEMALLOC as this saves us from propagating the allocation 5733 * context down to all allocation sites. 5734 */ 5735 noreclaim_flag = memalloc_noreclaim_save(); 5736 ret = __netif_receive_skb_one_core(skb, true); 5737 memalloc_noreclaim_restore(noreclaim_flag); 5738 } else 5739 ret = __netif_receive_skb_one_core(skb, false); 5740 5741 return ret; 5742 } 5743 5744 static void __netif_receive_skb_list(struct list_head *head) 5745 { 5746 unsigned long noreclaim_flag = 0; 5747 struct sk_buff *skb, *next; 5748 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */ 5749 5750 list_for_each_entry_safe(skb, next, head, list) { 5751 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) { 5752 struct list_head sublist; 5753 5754 /* Handle the previous sublist */ 5755 list_cut_before(&sublist, head, &skb->list); 5756 if (!list_empty(&sublist)) 5757 __netif_receive_skb_list_core(&sublist, pfmemalloc); 5758 pfmemalloc = !pfmemalloc; 5759 /* See comments in __netif_receive_skb */ 5760 if (pfmemalloc) 5761 noreclaim_flag = memalloc_noreclaim_save(); 5762 else 5763 memalloc_noreclaim_restore(noreclaim_flag); 5764 } 5765 } 5766 /* Handle the remaining sublist */ 5767 if (!list_empty(head)) 5768 __netif_receive_skb_list_core(head, pfmemalloc); 5769 /* Restore pflags */ 5770 if (pfmemalloc) 5771 memalloc_noreclaim_restore(noreclaim_flag); 5772 } 5773 5774 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp) 5775 { 5776 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog); 5777 struct bpf_prog *new = xdp->prog; 5778 int ret = 0; 5779 5780 switch (xdp->command) { 5781 case XDP_SETUP_PROG: 5782 rcu_assign_pointer(dev->xdp_prog, new); 5783 if (old) 5784 bpf_prog_put(old); 5785 5786 if (old && !new) { 5787 static_branch_dec(&generic_xdp_needed_key); 5788 } else if (new && !old) { 5789 static_branch_inc(&generic_xdp_needed_key); 5790 dev_disable_lro(dev); 5791 dev_disable_gro_hw(dev); 5792 } 5793 break; 5794 5795 default: 5796 ret = -EINVAL; 5797 break; 5798 } 5799 5800 return ret; 5801 } 5802 5803 static int netif_receive_skb_internal(struct sk_buff *skb) 5804 { 5805 int ret; 5806 5807 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb); 5808 5809 if (skb_defer_rx_timestamp(skb)) 5810 return NET_RX_SUCCESS; 5811 5812 rcu_read_lock(); 5813 #ifdef CONFIG_RPS 5814 if (static_branch_unlikely(&rps_needed)) { 5815 struct rps_dev_flow voidflow, *rflow = &voidflow; 5816 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 5817 5818 if (cpu >= 0) { 5819 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5820 rcu_read_unlock(); 5821 return ret; 5822 } 5823 } 5824 #endif 5825 ret = __netif_receive_skb(skb); 5826 rcu_read_unlock(); 5827 return ret; 5828 } 5829 5830 void netif_receive_skb_list_internal(struct list_head *head) 5831 { 5832 struct sk_buff *skb, *next; 5833 struct list_head sublist; 5834 5835 INIT_LIST_HEAD(&sublist); 5836 list_for_each_entry_safe(skb, next, head, list) { 5837 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), 5838 skb); 5839 skb_list_del_init(skb); 5840 if (!skb_defer_rx_timestamp(skb)) 5841 list_add_tail(&skb->list, &sublist); 5842 } 5843 list_splice_init(&sublist, head); 5844 5845 rcu_read_lock(); 5846 #ifdef CONFIG_RPS 5847 if (static_branch_unlikely(&rps_needed)) { 5848 list_for_each_entry_safe(skb, next, head, list) { 5849 struct rps_dev_flow voidflow, *rflow = &voidflow; 5850 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 5851 5852 if (cpu >= 0) { 5853 /* Will be handled, remove from list */ 5854 skb_list_del_init(skb); 5855 enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5856 } 5857 } 5858 } 5859 #endif 5860 __netif_receive_skb_list(head); 5861 rcu_read_unlock(); 5862 } 5863 5864 /** 5865 * netif_receive_skb - process receive buffer from network 5866 * @skb: buffer to process 5867 * 5868 * netif_receive_skb() is the main receive data processing function. 5869 * It always succeeds. The buffer may be dropped during processing 5870 * for congestion control or by the protocol layers. 5871 * 5872 * This function may only be called from softirq context and interrupts 5873 * should be enabled. 5874 * 5875 * Return values (usually ignored): 5876 * NET_RX_SUCCESS: no congestion 5877 * NET_RX_DROP: packet was dropped 5878 */ 5879 int netif_receive_skb(struct sk_buff *skb) 5880 { 5881 int ret; 5882 5883 trace_netif_receive_skb_entry(skb); 5884 5885 ret = netif_receive_skb_internal(skb); 5886 trace_netif_receive_skb_exit(ret); 5887 5888 return ret; 5889 } 5890 EXPORT_SYMBOL(netif_receive_skb); 5891 5892 /** 5893 * netif_receive_skb_list - process many receive buffers from network 5894 * @head: list of skbs to process. 5895 * 5896 * Since return value of netif_receive_skb() is normally ignored, and 5897 * wouldn't be meaningful for a list, this function returns void. 5898 * 5899 * This function may only be called from softirq context and interrupts 5900 * should be enabled. 5901 */ 5902 void netif_receive_skb_list(struct list_head *head) 5903 { 5904 struct sk_buff *skb; 5905 5906 if (list_empty(head)) 5907 return; 5908 if (trace_netif_receive_skb_list_entry_enabled()) { 5909 list_for_each_entry(skb, head, list) 5910 trace_netif_receive_skb_list_entry(skb); 5911 } 5912 netif_receive_skb_list_internal(head); 5913 trace_netif_receive_skb_list_exit(0); 5914 } 5915 EXPORT_SYMBOL(netif_receive_skb_list); 5916 5917 static DEFINE_PER_CPU(struct work_struct, flush_works); 5918 5919 /* Network device is going away, flush any packets still pending */ 5920 static void flush_backlog(struct work_struct *work) 5921 { 5922 struct sk_buff *skb, *tmp; 5923 struct softnet_data *sd; 5924 5925 local_bh_disable(); 5926 sd = this_cpu_ptr(&softnet_data); 5927 5928 backlog_lock_irq_disable(sd); 5929 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 5930 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 5931 __skb_unlink(skb, &sd->input_pkt_queue); 5932 dev_kfree_skb_irq(skb); 5933 rps_input_queue_head_incr(sd); 5934 } 5935 } 5936 backlog_unlock_irq_enable(sd); 5937 5938 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 5939 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 5940 __skb_unlink(skb, &sd->process_queue); 5941 kfree_skb(skb); 5942 rps_input_queue_head_incr(sd); 5943 } 5944 } 5945 local_bh_enable(); 5946 } 5947 5948 static bool flush_required(int cpu) 5949 { 5950 #if IS_ENABLED(CONFIG_RPS) 5951 struct softnet_data *sd = &per_cpu(softnet_data, cpu); 5952 bool do_flush; 5953 5954 backlog_lock_irq_disable(sd); 5955 5956 /* as insertion into process_queue happens with the rps lock held, 5957 * process_queue access may race only with dequeue 5958 */ 5959 do_flush = !skb_queue_empty(&sd->input_pkt_queue) || 5960 !skb_queue_empty_lockless(&sd->process_queue); 5961 backlog_unlock_irq_enable(sd); 5962 5963 return do_flush; 5964 #endif 5965 /* without RPS we can't safely check input_pkt_queue: during a 5966 * concurrent remote skb_queue_splice() we can detect as empty both 5967 * input_pkt_queue and process_queue even if the latter could end-up 5968 * containing a lot of packets. 5969 */ 5970 return true; 5971 } 5972 5973 static void flush_all_backlogs(void) 5974 { 5975 static cpumask_t flush_cpus; 5976 unsigned int cpu; 5977 5978 /* since we are under rtnl lock protection we can use static data 5979 * for the cpumask and avoid allocating on stack the possibly 5980 * large mask 5981 */ 5982 ASSERT_RTNL(); 5983 5984 cpus_read_lock(); 5985 5986 cpumask_clear(&flush_cpus); 5987 for_each_online_cpu(cpu) { 5988 if (flush_required(cpu)) { 5989 queue_work_on(cpu, system_highpri_wq, 5990 per_cpu_ptr(&flush_works, cpu)); 5991 cpumask_set_cpu(cpu, &flush_cpus); 5992 } 5993 } 5994 5995 /* we can have in flight packet[s] on the cpus we are not flushing, 5996 * synchronize_net() in unregister_netdevice_many() will take care of 5997 * them 5998 */ 5999 for_each_cpu(cpu, &flush_cpus) 6000 flush_work(per_cpu_ptr(&flush_works, cpu)); 6001 6002 cpus_read_unlock(); 6003 } 6004 6005 static void net_rps_send_ipi(struct softnet_data *remsd) 6006 { 6007 #ifdef CONFIG_RPS 6008 while (remsd) { 6009 struct softnet_data *next = remsd->rps_ipi_next; 6010 6011 if (cpu_online(remsd->cpu)) 6012 smp_call_function_single_async(remsd->cpu, &remsd->csd); 6013 remsd = next; 6014 } 6015 #endif 6016 } 6017 6018 /* 6019 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 6020 * Note: called with local irq disabled, but exits with local irq enabled. 6021 */ 6022 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 6023 { 6024 #ifdef CONFIG_RPS 6025 struct softnet_data *remsd = sd->rps_ipi_list; 6026 6027 if (!use_backlog_threads() && remsd) { 6028 sd->rps_ipi_list = NULL; 6029 6030 local_irq_enable(); 6031 6032 /* Send pending IPI's to kick RPS processing on remote cpus. */ 6033 net_rps_send_ipi(remsd); 6034 } else 6035 #endif 6036 local_irq_enable(); 6037 } 6038 6039 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 6040 { 6041 #ifdef CONFIG_RPS 6042 return !use_backlog_threads() && sd->rps_ipi_list; 6043 #else 6044 return false; 6045 #endif 6046 } 6047 6048 static int process_backlog(struct napi_struct *napi, int quota) 6049 { 6050 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 6051 bool again = true; 6052 int work = 0; 6053 6054 /* Check if we have pending ipi, its better to send them now, 6055 * not waiting net_rx_action() end. 6056 */ 6057 if (sd_has_rps_ipi_waiting(sd)) { 6058 local_irq_disable(); 6059 net_rps_action_and_irq_enable(sd); 6060 } 6061 6062 napi->weight = READ_ONCE(net_hotdata.dev_rx_weight); 6063 while (again) { 6064 struct sk_buff *skb; 6065 6066 while ((skb = __skb_dequeue(&sd->process_queue))) { 6067 rcu_read_lock(); 6068 __netif_receive_skb(skb); 6069 rcu_read_unlock(); 6070 if (++work >= quota) { 6071 rps_input_queue_head_add(sd, work); 6072 return work; 6073 } 6074 6075 } 6076 6077 backlog_lock_irq_disable(sd); 6078 if (skb_queue_empty(&sd->input_pkt_queue)) { 6079 /* 6080 * Inline a custom version of __napi_complete(). 6081 * only current cpu owns and manipulates this napi, 6082 * and NAPI_STATE_SCHED is the only possible flag set 6083 * on backlog. 6084 * We can use a plain write instead of clear_bit(), 6085 * and we dont need an smp_mb() memory barrier. 6086 */ 6087 napi->state &= NAPIF_STATE_THREADED; 6088 again = false; 6089 } else { 6090 skb_queue_splice_tail_init(&sd->input_pkt_queue, 6091 &sd->process_queue); 6092 } 6093 backlog_unlock_irq_enable(sd); 6094 } 6095 6096 if (work) 6097 rps_input_queue_head_add(sd, work); 6098 return work; 6099 } 6100 6101 /** 6102 * __napi_schedule - schedule for receive 6103 * @n: entry to schedule 6104 * 6105 * The entry's receive function will be scheduled to run. 6106 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 6107 */ 6108 void __napi_schedule(struct napi_struct *n) 6109 { 6110 unsigned long flags; 6111 6112 local_irq_save(flags); 6113 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 6114 local_irq_restore(flags); 6115 } 6116 EXPORT_SYMBOL(__napi_schedule); 6117 6118 /** 6119 * napi_schedule_prep - check if napi can be scheduled 6120 * @n: napi context 6121 * 6122 * Test if NAPI routine is already running, and if not mark 6123 * it as running. This is used as a condition variable to 6124 * insure only one NAPI poll instance runs. We also make 6125 * sure there is no pending NAPI disable. 6126 */ 6127 bool napi_schedule_prep(struct napi_struct *n) 6128 { 6129 unsigned long new, val = READ_ONCE(n->state); 6130 6131 do { 6132 if (unlikely(val & NAPIF_STATE_DISABLE)) 6133 return false; 6134 new = val | NAPIF_STATE_SCHED; 6135 6136 /* Sets STATE_MISSED bit if STATE_SCHED was already set 6137 * This was suggested by Alexander Duyck, as compiler 6138 * emits better code than : 6139 * if (val & NAPIF_STATE_SCHED) 6140 * new |= NAPIF_STATE_MISSED; 6141 */ 6142 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED * 6143 NAPIF_STATE_MISSED; 6144 } while (!try_cmpxchg(&n->state, &val, new)); 6145 6146 return !(val & NAPIF_STATE_SCHED); 6147 } 6148 EXPORT_SYMBOL(napi_schedule_prep); 6149 6150 /** 6151 * __napi_schedule_irqoff - schedule for receive 6152 * @n: entry to schedule 6153 * 6154 * Variant of __napi_schedule() assuming hard irqs are masked. 6155 * 6156 * On PREEMPT_RT enabled kernels this maps to __napi_schedule() 6157 * because the interrupt disabled assumption might not be true 6158 * due to force-threaded interrupts and spinlock substitution. 6159 */ 6160 void __napi_schedule_irqoff(struct napi_struct *n) 6161 { 6162 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6163 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 6164 else 6165 __napi_schedule(n); 6166 } 6167 EXPORT_SYMBOL(__napi_schedule_irqoff); 6168 6169 bool napi_complete_done(struct napi_struct *n, int work_done) 6170 { 6171 unsigned long flags, val, new, timeout = 0; 6172 bool ret = true; 6173 6174 /* 6175 * 1) Don't let napi dequeue from the cpu poll list 6176 * just in case its running on a different cpu. 6177 * 2) If we are busy polling, do nothing here, we have 6178 * the guarantee we will be called later. 6179 */ 6180 if (unlikely(n->state & (NAPIF_STATE_NPSVC | 6181 NAPIF_STATE_IN_BUSY_POLL))) 6182 return false; 6183 6184 if (work_done) { 6185 if (n->gro_bitmask) 6186 timeout = READ_ONCE(n->dev->gro_flush_timeout); 6187 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs); 6188 } 6189 if (n->defer_hard_irqs_count > 0) { 6190 n->defer_hard_irqs_count--; 6191 timeout = READ_ONCE(n->dev->gro_flush_timeout); 6192 if (timeout) 6193 ret = false; 6194 } 6195 if (n->gro_bitmask) { 6196 /* When the NAPI instance uses a timeout and keeps postponing 6197 * it, we need to bound somehow the time packets are kept in 6198 * the GRO layer 6199 */ 6200 napi_gro_flush(n, !!timeout); 6201 } 6202 6203 gro_normal_list(n); 6204 6205 if (unlikely(!list_empty(&n->poll_list))) { 6206 /* If n->poll_list is not empty, we need to mask irqs */ 6207 local_irq_save(flags); 6208 list_del_init(&n->poll_list); 6209 local_irq_restore(flags); 6210 } 6211 WRITE_ONCE(n->list_owner, -1); 6212 6213 val = READ_ONCE(n->state); 6214 do { 6215 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED)); 6216 6217 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED | 6218 NAPIF_STATE_SCHED_THREADED | 6219 NAPIF_STATE_PREFER_BUSY_POLL); 6220 6221 /* If STATE_MISSED was set, leave STATE_SCHED set, 6222 * because we will call napi->poll() one more time. 6223 * This C code was suggested by Alexander Duyck to help gcc. 6224 */ 6225 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED * 6226 NAPIF_STATE_SCHED; 6227 } while (!try_cmpxchg(&n->state, &val, new)); 6228 6229 if (unlikely(val & NAPIF_STATE_MISSED)) { 6230 __napi_schedule(n); 6231 return false; 6232 } 6233 6234 if (timeout) 6235 hrtimer_start(&n->timer, ns_to_ktime(timeout), 6236 HRTIMER_MODE_REL_PINNED); 6237 return ret; 6238 } 6239 EXPORT_SYMBOL(napi_complete_done); 6240 6241 /* must be called under rcu_read_lock(), as we dont take a reference */ 6242 struct napi_struct *napi_by_id(unsigned int napi_id) 6243 { 6244 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 6245 struct napi_struct *napi; 6246 6247 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 6248 if (napi->napi_id == napi_id) 6249 return napi; 6250 6251 return NULL; 6252 } 6253 6254 static void skb_defer_free_flush(struct softnet_data *sd) 6255 { 6256 struct sk_buff *skb, *next; 6257 6258 /* Paired with WRITE_ONCE() in skb_attempt_defer_free() */ 6259 if (!READ_ONCE(sd->defer_list)) 6260 return; 6261 6262 spin_lock(&sd->defer_lock); 6263 skb = sd->defer_list; 6264 sd->defer_list = NULL; 6265 sd->defer_count = 0; 6266 spin_unlock(&sd->defer_lock); 6267 6268 while (skb != NULL) { 6269 next = skb->next; 6270 napi_consume_skb(skb, 1); 6271 skb = next; 6272 } 6273 } 6274 6275 #if defined(CONFIG_NET_RX_BUSY_POLL) 6276 6277 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule) 6278 { 6279 if (!skip_schedule) { 6280 gro_normal_list(napi); 6281 __napi_schedule(napi); 6282 return; 6283 } 6284 6285 if (napi->gro_bitmask) { 6286 /* flush too old packets 6287 * If HZ < 1000, flush all packets. 6288 */ 6289 napi_gro_flush(napi, HZ >= 1000); 6290 } 6291 6292 gro_normal_list(napi); 6293 clear_bit(NAPI_STATE_SCHED, &napi->state); 6294 } 6295 6296 enum { 6297 NAPI_F_PREFER_BUSY_POLL = 1, 6298 NAPI_F_END_ON_RESCHED = 2, 6299 }; 6300 6301 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, 6302 unsigned flags, u16 budget) 6303 { 6304 bool skip_schedule = false; 6305 unsigned long timeout; 6306 int rc; 6307 6308 /* Busy polling means there is a high chance device driver hard irq 6309 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was 6310 * set in napi_schedule_prep(). 6311 * Since we are about to call napi->poll() once more, we can safely 6312 * clear NAPI_STATE_MISSED. 6313 * 6314 * Note: x86 could use a single "lock and ..." instruction 6315 * to perform these two clear_bit() 6316 */ 6317 clear_bit(NAPI_STATE_MISSED, &napi->state); 6318 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state); 6319 6320 local_bh_disable(); 6321 6322 if (flags & NAPI_F_PREFER_BUSY_POLL) { 6323 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs); 6324 timeout = READ_ONCE(napi->dev->gro_flush_timeout); 6325 if (napi->defer_hard_irqs_count && timeout) { 6326 hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED); 6327 skip_schedule = true; 6328 } 6329 } 6330 6331 /* All we really want here is to re-enable device interrupts. 6332 * Ideally, a new ndo_busy_poll_stop() could avoid another round. 6333 */ 6334 rc = napi->poll(napi, budget); 6335 /* We can't gro_normal_list() here, because napi->poll() might have 6336 * rearmed the napi (napi_complete_done()) in which case it could 6337 * already be running on another CPU. 6338 */ 6339 trace_napi_poll(napi, rc, budget); 6340 netpoll_poll_unlock(have_poll_lock); 6341 if (rc == budget) 6342 __busy_poll_stop(napi, skip_schedule); 6343 local_bh_enable(); 6344 } 6345 6346 static void __napi_busy_loop(unsigned int napi_id, 6347 bool (*loop_end)(void *, unsigned long), 6348 void *loop_end_arg, unsigned flags, u16 budget) 6349 { 6350 unsigned long start_time = loop_end ? busy_loop_current_time() : 0; 6351 int (*napi_poll)(struct napi_struct *napi, int budget); 6352 void *have_poll_lock = NULL; 6353 struct napi_struct *napi; 6354 6355 WARN_ON_ONCE(!rcu_read_lock_held()); 6356 6357 restart: 6358 napi_poll = NULL; 6359 6360 napi = napi_by_id(napi_id); 6361 if (!napi) 6362 return; 6363 6364 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6365 preempt_disable(); 6366 for (;;) { 6367 int work = 0; 6368 6369 local_bh_disable(); 6370 if (!napi_poll) { 6371 unsigned long val = READ_ONCE(napi->state); 6372 6373 /* If multiple threads are competing for this napi, 6374 * we avoid dirtying napi->state as much as we can. 6375 */ 6376 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED | 6377 NAPIF_STATE_IN_BUSY_POLL)) { 6378 if (flags & NAPI_F_PREFER_BUSY_POLL) 6379 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6380 goto count; 6381 } 6382 if (cmpxchg(&napi->state, val, 6383 val | NAPIF_STATE_IN_BUSY_POLL | 6384 NAPIF_STATE_SCHED) != val) { 6385 if (flags & NAPI_F_PREFER_BUSY_POLL) 6386 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6387 goto count; 6388 } 6389 have_poll_lock = netpoll_poll_lock(napi); 6390 napi_poll = napi->poll; 6391 } 6392 work = napi_poll(napi, budget); 6393 trace_napi_poll(napi, work, budget); 6394 gro_normal_list(napi); 6395 count: 6396 if (work > 0) 6397 __NET_ADD_STATS(dev_net(napi->dev), 6398 LINUX_MIB_BUSYPOLLRXPACKETS, work); 6399 skb_defer_free_flush(this_cpu_ptr(&softnet_data)); 6400 local_bh_enable(); 6401 6402 if (!loop_end || loop_end(loop_end_arg, start_time)) 6403 break; 6404 6405 if (unlikely(need_resched())) { 6406 if (flags & NAPI_F_END_ON_RESCHED) 6407 break; 6408 if (napi_poll) 6409 busy_poll_stop(napi, have_poll_lock, flags, budget); 6410 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6411 preempt_enable(); 6412 rcu_read_unlock(); 6413 cond_resched(); 6414 rcu_read_lock(); 6415 if (loop_end(loop_end_arg, start_time)) 6416 return; 6417 goto restart; 6418 } 6419 cpu_relax(); 6420 } 6421 if (napi_poll) 6422 busy_poll_stop(napi, have_poll_lock, flags, budget); 6423 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6424 preempt_enable(); 6425 } 6426 6427 void napi_busy_loop_rcu(unsigned int napi_id, 6428 bool (*loop_end)(void *, unsigned long), 6429 void *loop_end_arg, bool prefer_busy_poll, u16 budget) 6430 { 6431 unsigned flags = NAPI_F_END_ON_RESCHED; 6432 6433 if (prefer_busy_poll) 6434 flags |= NAPI_F_PREFER_BUSY_POLL; 6435 6436 __napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget); 6437 } 6438 6439 void napi_busy_loop(unsigned int napi_id, 6440 bool (*loop_end)(void *, unsigned long), 6441 void *loop_end_arg, bool prefer_busy_poll, u16 budget) 6442 { 6443 unsigned flags = prefer_busy_poll ? NAPI_F_PREFER_BUSY_POLL : 0; 6444 6445 rcu_read_lock(); 6446 __napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget); 6447 rcu_read_unlock(); 6448 } 6449 EXPORT_SYMBOL(napi_busy_loop); 6450 6451 #endif /* CONFIG_NET_RX_BUSY_POLL */ 6452 6453 static void napi_hash_add(struct napi_struct *napi) 6454 { 6455 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state)) 6456 return; 6457 6458 spin_lock(&napi_hash_lock); 6459 6460 /* 0..NR_CPUS range is reserved for sender_cpu use */ 6461 do { 6462 if (unlikely(++napi_gen_id < MIN_NAPI_ID)) 6463 napi_gen_id = MIN_NAPI_ID; 6464 } while (napi_by_id(napi_gen_id)); 6465 napi->napi_id = napi_gen_id; 6466 6467 hlist_add_head_rcu(&napi->napi_hash_node, 6468 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 6469 6470 spin_unlock(&napi_hash_lock); 6471 } 6472 6473 /* Warning : caller is responsible to make sure rcu grace period 6474 * is respected before freeing memory containing @napi 6475 */ 6476 static void napi_hash_del(struct napi_struct *napi) 6477 { 6478 spin_lock(&napi_hash_lock); 6479 6480 hlist_del_init_rcu(&napi->napi_hash_node); 6481 6482 spin_unlock(&napi_hash_lock); 6483 } 6484 6485 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 6486 { 6487 struct napi_struct *napi; 6488 6489 napi = container_of(timer, struct napi_struct, timer); 6490 6491 /* Note : we use a relaxed variant of napi_schedule_prep() not setting 6492 * NAPI_STATE_MISSED, since we do not react to a device IRQ. 6493 */ 6494 if (!napi_disable_pending(napi) && 6495 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) { 6496 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6497 __napi_schedule_irqoff(napi); 6498 } 6499 6500 return HRTIMER_NORESTART; 6501 } 6502 6503 static void init_gro_hash(struct napi_struct *napi) 6504 { 6505 int i; 6506 6507 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 6508 INIT_LIST_HEAD(&napi->gro_hash[i].list); 6509 napi->gro_hash[i].count = 0; 6510 } 6511 napi->gro_bitmask = 0; 6512 } 6513 6514 int dev_set_threaded(struct net_device *dev, bool threaded) 6515 { 6516 struct napi_struct *napi; 6517 int err = 0; 6518 6519 if (dev->threaded == threaded) 6520 return 0; 6521 6522 if (threaded) { 6523 list_for_each_entry(napi, &dev->napi_list, dev_list) { 6524 if (!napi->thread) { 6525 err = napi_kthread_create(napi); 6526 if (err) { 6527 threaded = false; 6528 break; 6529 } 6530 } 6531 } 6532 } 6533 6534 WRITE_ONCE(dev->threaded, threaded); 6535 6536 /* Make sure kthread is created before THREADED bit 6537 * is set. 6538 */ 6539 smp_mb__before_atomic(); 6540 6541 /* Setting/unsetting threaded mode on a napi might not immediately 6542 * take effect, if the current napi instance is actively being 6543 * polled. In this case, the switch between threaded mode and 6544 * softirq mode will happen in the next round of napi_schedule(). 6545 * This should not cause hiccups/stalls to the live traffic. 6546 */ 6547 list_for_each_entry(napi, &dev->napi_list, dev_list) 6548 assign_bit(NAPI_STATE_THREADED, &napi->state, threaded); 6549 6550 return err; 6551 } 6552 EXPORT_SYMBOL(dev_set_threaded); 6553 6554 /** 6555 * netif_queue_set_napi - Associate queue with the napi 6556 * @dev: device to which NAPI and queue belong 6557 * @queue_index: Index of queue 6558 * @type: queue type as RX or TX 6559 * @napi: NAPI context, pass NULL to clear previously set NAPI 6560 * 6561 * Set queue with its corresponding napi context. This should be done after 6562 * registering the NAPI handler for the queue-vector and the queues have been 6563 * mapped to the corresponding interrupt vector. 6564 */ 6565 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index, 6566 enum netdev_queue_type type, struct napi_struct *napi) 6567 { 6568 struct netdev_rx_queue *rxq; 6569 struct netdev_queue *txq; 6570 6571 if (WARN_ON_ONCE(napi && !napi->dev)) 6572 return; 6573 if (dev->reg_state >= NETREG_REGISTERED) 6574 ASSERT_RTNL(); 6575 6576 switch (type) { 6577 case NETDEV_QUEUE_TYPE_RX: 6578 rxq = __netif_get_rx_queue(dev, queue_index); 6579 rxq->napi = napi; 6580 return; 6581 case NETDEV_QUEUE_TYPE_TX: 6582 txq = netdev_get_tx_queue(dev, queue_index); 6583 txq->napi = napi; 6584 return; 6585 default: 6586 return; 6587 } 6588 } 6589 EXPORT_SYMBOL(netif_queue_set_napi); 6590 6591 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi, 6592 int (*poll)(struct napi_struct *, int), int weight) 6593 { 6594 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state))) 6595 return; 6596 6597 INIT_LIST_HEAD(&napi->poll_list); 6598 INIT_HLIST_NODE(&napi->napi_hash_node); 6599 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 6600 napi->timer.function = napi_watchdog; 6601 init_gro_hash(napi); 6602 napi->skb = NULL; 6603 INIT_LIST_HEAD(&napi->rx_list); 6604 napi->rx_count = 0; 6605 napi->poll = poll; 6606 if (weight > NAPI_POLL_WEIGHT) 6607 netdev_err_once(dev, "%s() called with weight %d\n", __func__, 6608 weight); 6609 napi->weight = weight; 6610 napi->dev = dev; 6611 #ifdef CONFIG_NETPOLL 6612 napi->poll_owner = -1; 6613 #endif 6614 napi->list_owner = -1; 6615 set_bit(NAPI_STATE_SCHED, &napi->state); 6616 set_bit(NAPI_STATE_NPSVC, &napi->state); 6617 list_add_rcu(&napi->dev_list, &dev->napi_list); 6618 napi_hash_add(napi); 6619 napi_get_frags_check(napi); 6620 /* Create kthread for this napi if dev->threaded is set. 6621 * Clear dev->threaded if kthread creation failed so that 6622 * threaded mode will not be enabled in napi_enable(). 6623 */ 6624 if (dev->threaded && napi_kthread_create(napi)) 6625 dev->threaded = false; 6626 netif_napi_set_irq(napi, -1); 6627 } 6628 EXPORT_SYMBOL(netif_napi_add_weight); 6629 6630 void napi_disable(struct napi_struct *n) 6631 { 6632 unsigned long val, new; 6633 6634 might_sleep(); 6635 set_bit(NAPI_STATE_DISABLE, &n->state); 6636 6637 val = READ_ONCE(n->state); 6638 do { 6639 while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) { 6640 usleep_range(20, 200); 6641 val = READ_ONCE(n->state); 6642 } 6643 6644 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC; 6645 new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL); 6646 } while (!try_cmpxchg(&n->state, &val, new)); 6647 6648 hrtimer_cancel(&n->timer); 6649 6650 clear_bit(NAPI_STATE_DISABLE, &n->state); 6651 } 6652 EXPORT_SYMBOL(napi_disable); 6653 6654 /** 6655 * napi_enable - enable NAPI scheduling 6656 * @n: NAPI context 6657 * 6658 * Resume NAPI from being scheduled on this context. 6659 * Must be paired with napi_disable. 6660 */ 6661 void napi_enable(struct napi_struct *n) 6662 { 6663 unsigned long new, val = READ_ONCE(n->state); 6664 6665 do { 6666 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val)); 6667 6668 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC); 6669 if (n->dev->threaded && n->thread) 6670 new |= NAPIF_STATE_THREADED; 6671 } while (!try_cmpxchg(&n->state, &val, new)); 6672 } 6673 EXPORT_SYMBOL(napi_enable); 6674 6675 static void flush_gro_hash(struct napi_struct *napi) 6676 { 6677 int i; 6678 6679 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 6680 struct sk_buff *skb, *n; 6681 6682 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list) 6683 kfree_skb(skb); 6684 napi->gro_hash[i].count = 0; 6685 } 6686 } 6687 6688 /* Must be called in process context */ 6689 void __netif_napi_del(struct napi_struct *napi) 6690 { 6691 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state)) 6692 return; 6693 6694 napi_hash_del(napi); 6695 list_del_rcu(&napi->dev_list); 6696 napi_free_frags(napi); 6697 6698 flush_gro_hash(napi); 6699 napi->gro_bitmask = 0; 6700 6701 if (napi->thread) { 6702 kthread_stop(napi->thread); 6703 napi->thread = NULL; 6704 } 6705 } 6706 EXPORT_SYMBOL(__netif_napi_del); 6707 6708 static int __napi_poll(struct napi_struct *n, bool *repoll) 6709 { 6710 int work, weight; 6711 6712 weight = n->weight; 6713 6714 /* This NAPI_STATE_SCHED test is for avoiding a race 6715 * with netpoll's poll_napi(). Only the entity which 6716 * obtains the lock and sees NAPI_STATE_SCHED set will 6717 * actually make the ->poll() call. Therefore we avoid 6718 * accidentally calling ->poll() when NAPI is not scheduled. 6719 */ 6720 work = 0; 6721 if (napi_is_scheduled(n)) { 6722 work = n->poll(n, weight); 6723 trace_napi_poll(n, work, weight); 6724 6725 xdp_do_check_flushed(n); 6726 } 6727 6728 if (unlikely(work > weight)) 6729 netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n", 6730 n->poll, work, weight); 6731 6732 if (likely(work < weight)) 6733 return work; 6734 6735 /* Drivers must not modify the NAPI state if they 6736 * consume the entire weight. In such cases this code 6737 * still "owns" the NAPI instance and therefore can 6738 * move the instance around on the list at-will. 6739 */ 6740 if (unlikely(napi_disable_pending(n))) { 6741 napi_complete(n); 6742 return work; 6743 } 6744 6745 /* The NAPI context has more processing work, but busy-polling 6746 * is preferred. Exit early. 6747 */ 6748 if (napi_prefer_busy_poll(n)) { 6749 if (napi_complete_done(n, work)) { 6750 /* If timeout is not set, we need to make sure 6751 * that the NAPI is re-scheduled. 6752 */ 6753 napi_schedule(n); 6754 } 6755 return work; 6756 } 6757 6758 if (n->gro_bitmask) { 6759 /* flush too old packets 6760 * If HZ < 1000, flush all packets. 6761 */ 6762 napi_gro_flush(n, HZ >= 1000); 6763 } 6764 6765 gro_normal_list(n); 6766 6767 /* Some drivers may have called napi_schedule 6768 * prior to exhausting their budget. 6769 */ 6770 if (unlikely(!list_empty(&n->poll_list))) { 6771 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 6772 n->dev ? n->dev->name : "backlog"); 6773 return work; 6774 } 6775 6776 *repoll = true; 6777 6778 return work; 6779 } 6780 6781 static int napi_poll(struct napi_struct *n, struct list_head *repoll) 6782 { 6783 bool do_repoll = false; 6784 void *have; 6785 int work; 6786 6787 list_del_init(&n->poll_list); 6788 6789 have = netpoll_poll_lock(n); 6790 6791 work = __napi_poll(n, &do_repoll); 6792 6793 if (do_repoll) 6794 list_add_tail(&n->poll_list, repoll); 6795 6796 netpoll_poll_unlock(have); 6797 6798 return work; 6799 } 6800 6801 static int napi_thread_wait(struct napi_struct *napi) 6802 { 6803 set_current_state(TASK_INTERRUPTIBLE); 6804 6805 while (!kthread_should_stop()) { 6806 /* Testing SCHED_THREADED bit here to make sure the current 6807 * kthread owns this napi and could poll on this napi. 6808 * Testing SCHED bit is not enough because SCHED bit might be 6809 * set by some other busy poll thread or by napi_disable(). 6810 */ 6811 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state)) { 6812 WARN_ON(!list_empty(&napi->poll_list)); 6813 __set_current_state(TASK_RUNNING); 6814 return 0; 6815 } 6816 6817 schedule(); 6818 set_current_state(TASK_INTERRUPTIBLE); 6819 } 6820 __set_current_state(TASK_RUNNING); 6821 6822 return -1; 6823 } 6824 6825 static void napi_threaded_poll_loop(struct napi_struct *napi) 6826 { 6827 struct softnet_data *sd; 6828 unsigned long last_qs = jiffies; 6829 6830 for (;;) { 6831 bool repoll = false; 6832 void *have; 6833 6834 local_bh_disable(); 6835 sd = this_cpu_ptr(&softnet_data); 6836 sd->in_napi_threaded_poll = true; 6837 6838 have = netpoll_poll_lock(napi); 6839 __napi_poll(napi, &repoll); 6840 netpoll_poll_unlock(have); 6841 6842 sd->in_napi_threaded_poll = false; 6843 barrier(); 6844 6845 if (sd_has_rps_ipi_waiting(sd)) { 6846 local_irq_disable(); 6847 net_rps_action_and_irq_enable(sd); 6848 } 6849 skb_defer_free_flush(sd); 6850 local_bh_enable(); 6851 6852 if (!repoll) 6853 break; 6854 6855 rcu_softirq_qs_periodic(last_qs); 6856 cond_resched(); 6857 } 6858 } 6859 6860 static int napi_threaded_poll(void *data) 6861 { 6862 struct napi_struct *napi = data; 6863 6864 while (!napi_thread_wait(napi)) 6865 napi_threaded_poll_loop(napi); 6866 6867 return 0; 6868 } 6869 6870 static __latent_entropy void net_rx_action(struct softirq_action *h) 6871 { 6872 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 6873 unsigned long time_limit = jiffies + 6874 usecs_to_jiffies(READ_ONCE(net_hotdata.netdev_budget_usecs)); 6875 int budget = READ_ONCE(net_hotdata.netdev_budget); 6876 LIST_HEAD(list); 6877 LIST_HEAD(repoll); 6878 6879 start: 6880 sd->in_net_rx_action = true; 6881 local_irq_disable(); 6882 list_splice_init(&sd->poll_list, &list); 6883 local_irq_enable(); 6884 6885 for (;;) { 6886 struct napi_struct *n; 6887 6888 skb_defer_free_flush(sd); 6889 6890 if (list_empty(&list)) { 6891 if (list_empty(&repoll)) { 6892 sd->in_net_rx_action = false; 6893 barrier(); 6894 /* We need to check if ____napi_schedule() 6895 * had refilled poll_list while 6896 * sd->in_net_rx_action was true. 6897 */ 6898 if (!list_empty(&sd->poll_list)) 6899 goto start; 6900 if (!sd_has_rps_ipi_waiting(sd)) 6901 goto end; 6902 } 6903 break; 6904 } 6905 6906 n = list_first_entry(&list, struct napi_struct, poll_list); 6907 budget -= napi_poll(n, &repoll); 6908 6909 /* If softirq window is exhausted then punt. 6910 * Allow this to run for 2 jiffies since which will allow 6911 * an average latency of 1.5/HZ. 6912 */ 6913 if (unlikely(budget <= 0 || 6914 time_after_eq(jiffies, time_limit))) { 6915 sd->time_squeeze++; 6916 break; 6917 } 6918 } 6919 6920 local_irq_disable(); 6921 6922 list_splice_tail_init(&sd->poll_list, &list); 6923 list_splice_tail(&repoll, &list); 6924 list_splice(&list, &sd->poll_list); 6925 if (!list_empty(&sd->poll_list)) 6926 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 6927 else 6928 sd->in_net_rx_action = false; 6929 6930 net_rps_action_and_irq_enable(sd); 6931 end:; 6932 } 6933 6934 struct netdev_adjacent { 6935 struct net_device *dev; 6936 netdevice_tracker dev_tracker; 6937 6938 /* upper master flag, there can only be one master device per list */ 6939 bool master; 6940 6941 /* lookup ignore flag */ 6942 bool ignore; 6943 6944 /* counter for the number of times this device was added to us */ 6945 u16 ref_nr; 6946 6947 /* private field for the users */ 6948 void *private; 6949 6950 struct list_head list; 6951 struct rcu_head rcu; 6952 }; 6953 6954 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, 6955 struct list_head *adj_list) 6956 { 6957 struct netdev_adjacent *adj; 6958 6959 list_for_each_entry(adj, adj_list, list) { 6960 if (adj->dev == adj_dev) 6961 return adj; 6962 } 6963 return NULL; 6964 } 6965 6966 static int ____netdev_has_upper_dev(struct net_device *upper_dev, 6967 struct netdev_nested_priv *priv) 6968 { 6969 struct net_device *dev = (struct net_device *)priv->data; 6970 6971 return upper_dev == dev; 6972 } 6973 6974 /** 6975 * netdev_has_upper_dev - Check if device is linked to an upper device 6976 * @dev: device 6977 * @upper_dev: upper device to check 6978 * 6979 * Find out if a device is linked to specified upper device and return true 6980 * in case it is. Note that this checks only immediate upper device, 6981 * not through a complete stack of devices. The caller must hold the RTNL lock. 6982 */ 6983 bool netdev_has_upper_dev(struct net_device *dev, 6984 struct net_device *upper_dev) 6985 { 6986 struct netdev_nested_priv priv = { 6987 .data = (void *)upper_dev, 6988 }; 6989 6990 ASSERT_RTNL(); 6991 6992 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev, 6993 &priv); 6994 } 6995 EXPORT_SYMBOL(netdev_has_upper_dev); 6996 6997 /** 6998 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device 6999 * @dev: device 7000 * @upper_dev: upper device to check 7001 * 7002 * Find out if a device is linked to specified upper device and return true 7003 * in case it is. Note that this checks the entire upper device chain. 7004 * The caller must hold rcu lock. 7005 */ 7006 7007 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 7008 struct net_device *upper_dev) 7009 { 7010 struct netdev_nested_priv priv = { 7011 .data = (void *)upper_dev, 7012 }; 7013 7014 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev, 7015 &priv); 7016 } 7017 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu); 7018 7019 /** 7020 * netdev_has_any_upper_dev - Check if device is linked to some device 7021 * @dev: device 7022 * 7023 * Find out if a device is linked to an upper device and return true in case 7024 * it is. The caller must hold the RTNL lock. 7025 */ 7026 bool netdev_has_any_upper_dev(struct net_device *dev) 7027 { 7028 ASSERT_RTNL(); 7029 7030 return !list_empty(&dev->adj_list.upper); 7031 } 7032 EXPORT_SYMBOL(netdev_has_any_upper_dev); 7033 7034 /** 7035 * netdev_master_upper_dev_get - Get master upper device 7036 * @dev: device 7037 * 7038 * Find a master upper device and return pointer to it or NULL in case 7039 * it's not there. The caller must hold the RTNL lock. 7040 */ 7041 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 7042 { 7043 struct netdev_adjacent *upper; 7044 7045 ASSERT_RTNL(); 7046 7047 if (list_empty(&dev->adj_list.upper)) 7048 return NULL; 7049 7050 upper = list_first_entry(&dev->adj_list.upper, 7051 struct netdev_adjacent, list); 7052 if (likely(upper->master)) 7053 return upper->dev; 7054 return NULL; 7055 } 7056 EXPORT_SYMBOL(netdev_master_upper_dev_get); 7057 7058 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev) 7059 { 7060 struct netdev_adjacent *upper; 7061 7062 ASSERT_RTNL(); 7063 7064 if (list_empty(&dev->adj_list.upper)) 7065 return NULL; 7066 7067 upper = list_first_entry(&dev->adj_list.upper, 7068 struct netdev_adjacent, list); 7069 if (likely(upper->master) && !upper->ignore) 7070 return upper->dev; 7071 return NULL; 7072 } 7073 7074 /** 7075 * netdev_has_any_lower_dev - Check if device is linked to some device 7076 * @dev: device 7077 * 7078 * Find out if a device is linked to a lower device and return true in case 7079 * it is. The caller must hold the RTNL lock. 7080 */ 7081 static bool netdev_has_any_lower_dev(struct net_device *dev) 7082 { 7083 ASSERT_RTNL(); 7084 7085 return !list_empty(&dev->adj_list.lower); 7086 } 7087 7088 void *netdev_adjacent_get_private(struct list_head *adj_list) 7089 { 7090 struct netdev_adjacent *adj; 7091 7092 adj = list_entry(adj_list, struct netdev_adjacent, list); 7093 7094 return adj->private; 7095 } 7096 EXPORT_SYMBOL(netdev_adjacent_get_private); 7097 7098 /** 7099 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 7100 * @dev: device 7101 * @iter: list_head ** of the current position 7102 * 7103 * Gets the next device from the dev's upper list, starting from iter 7104 * position. The caller must hold RCU read lock. 7105 */ 7106 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 7107 struct list_head **iter) 7108 { 7109 struct netdev_adjacent *upper; 7110 7111 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 7112 7113 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7114 7115 if (&upper->list == &dev->adj_list.upper) 7116 return NULL; 7117 7118 *iter = &upper->list; 7119 7120 return upper->dev; 7121 } 7122 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 7123 7124 static struct net_device *__netdev_next_upper_dev(struct net_device *dev, 7125 struct list_head **iter, 7126 bool *ignore) 7127 { 7128 struct netdev_adjacent *upper; 7129 7130 upper = list_entry((*iter)->next, struct netdev_adjacent, list); 7131 7132 if (&upper->list == &dev->adj_list.upper) 7133 return NULL; 7134 7135 *iter = &upper->list; 7136 *ignore = upper->ignore; 7137 7138 return upper->dev; 7139 } 7140 7141 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev, 7142 struct list_head **iter) 7143 { 7144 struct netdev_adjacent *upper; 7145 7146 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 7147 7148 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7149 7150 if (&upper->list == &dev->adj_list.upper) 7151 return NULL; 7152 7153 *iter = &upper->list; 7154 7155 return upper->dev; 7156 } 7157 7158 static int __netdev_walk_all_upper_dev(struct net_device *dev, 7159 int (*fn)(struct net_device *dev, 7160 struct netdev_nested_priv *priv), 7161 struct netdev_nested_priv *priv) 7162 { 7163 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7164 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7165 int ret, cur = 0; 7166 bool ignore; 7167 7168 now = dev; 7169 iter = &dev->adj_list.upper; 7170 7171 while (1) { 7172 if (now != dev) { 7173 ret = fn(now, priv); 7174 if (ret) 7175 return ret; 7176 } 7177 7178 next = NULL; 7179 while (1) { 7180 udev = __netdev_next_upper_dev(now, &iter, &ignore); 7181 if (!udev) 7182 break; 7183 if (ignore) 7184 continue; 7185 7186 next = udev; 7187 niter = &udev->adj_list.upper; 7188 dev_stack[cur] = now; 7189 iter_stack[cur++] = iter; 7190 break; 7191 } 7192 7193 if (!next) { 7194 if (!cur) 7195 return 0; 7196 next = dev_stack[--cur]; 7197 niter = iter_stack[cur]; 7198 } 7199 7200 now = next; 7201 iter = niter; 7202 } 7203 7204 return 0; 7205 } 7206 7207 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 7208 int (*fn)(struct net_device *dev, 7209 struct netdev_nested_priv *priv), 7210 struct netdev_nested_priv *priv) 7211 { 7212 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7213 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7214 int ret, cur = 0; 7215 7216 now = dev; 7217 iter = &dev->adj_list.upper; 7218 7219 while (1) { 7220 if (now != dev) { 7221 ret = fn(now, priv); 7222 if (ret) 7223 return ret; 7224 } 7225 7226 next = NULL; 7227 while (1) { 7228 udev = netdev_next_upper_dev_rcu(now, &iter); 7229 if (!udev) 7230 break; 7231 7232 next = udev; 7233 niter = &udev->adj_list.upper; 7234 dev_stack[cur] = now; 7235 iter_stack[cur++] = iter; 7236 break; 7237 } 7238 7239 if (!next) { 7240 if (!cur) 7241 return 0; 7242 next = dev_stack[--cur]; 7243 niter = iter_stack[cur]; 7244 } 7245 7246 now = next; 7247 iter = niter; 7248 } 7249 7250 return 0; 7251 } 7252 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu); 7253 7254 static bool __netdev_has_upper_dev(struct net_device *dev, 7255 struct net_device *upper_dev) 7256 { 7257 struct netdev_nested_priv priv = { 7258 .flags = 0, 7259 .data = (void *)upper_dev, 7260 }; 7261 7262 ASSERT_RTNL(); 7263 7264 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev, 7265 &priv); 7266 } 7267 7268 /** 7269 * netdev_lower_get_next_private - Get the next ->private from the 7270 * lower neighbour list 7271 * @dev: device 7272 * @iter: list_head ** of the current position 7273 * 7274 * Gets the next netdev_adjacent->private from the dev's lower neighbour 7275 * list, starting from iter position. The caller must hold either hold the 7276 * RTNL lock or its own locking that guarantees that the neighbour lower 7277 * list will remain unchanged. 7278 */ 7279 void *netdev_lower_get_next_private(struct net_device *dev, 7280 struct list_head **iter) 7281 { 7282 struct netdev_adjacent *lower; 7283 7284 lower = list_entry(*iter, struct netdev_adjacent, list); 7285 7286 if (&lower->list == &dev->adj_list.lower) 7287 return NULL; 7288 7289 *iter = lower->list.next; 7290 7291 return lower->private; 7292 } 7293 EXPORT_SYMBOL(netdev_lower_get_next_private); 7294 7295 /** 7296 * netdev_lower_get_next_private_rcu - Get the next ->private from the 7297 * lower neighbour list, RCU 7298 * variant 7299 * @dev: device 7300 * @iter: list_head ** of the current position 7301 * 7302 * Gets the next netdev_adjacent->private from the dev's lower neighbour 7303 * list, starting from iter position. The caller must hold RCU read lock. 7304 */ 7305 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 7306 struct list_head **iter) 7307 { 7308 struct netdev_adjacent *lower; 7309 7310 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 7311 7312 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7313 7314 if (&lower->list == &dev->adj_list.lower) 7315 return NULL; 7316 7317 *iter = &lower->list; 7318 7319 return lower->private; 7320 } 7321 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 7322 7323 /** 7324 * netdev_lower_get_next - Get the next device from the lower neighbour 7325 * list 7326 * @dev: device 7327 * @iter: list_head ** of the current position 7328 * 7329 * Gets the next netdev_adjacent from the dev's lower neighbour 7330 * list, starting from iter position. The caller must hold RTNL lock or 7331 * its own locking that guarantees that the neighbour lower 7332 * list will remain unchanged. 7333 */ 7334 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 7335 { 7336 struct netdev_adjacent *lower; 7337 7338 lower = list_entry(*iter, struct netdev_adjacent, list); 7339 7340 if (&lower->list == &dev->adj_list.lower) 7341 return NULL; 7342 7343 *iter = lower->list.next; 7344 7345 return lower->dev; 7346 } 7347 EXPORT_SYMBOL(netdev_lower_get_next); 7348 7349 static struct net_device *netdev_next_lower_dev(struct net_device *dev, 7350 struct list_head **iter) 7351 { 7352 struct netdev_adjacent *lower; 7353 7354 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 7355 7356 if (&lower->list == &dev->adj_list.lower) 7357 return NULL; 7358 7359 *iter = &lower->list; 7360 7361 return lower->dev; 7362 } 7363 7364 static struct net_device *__netdev_next_lower_dev(struct net_device *dev, 7365 struct list_head **iter, 7366 bool *ignore) 7367 { 7368 struct netdev_adjacent *lower; 7369 7370 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 7371 7372 if (&lower->list == &dev->adj_list.lower) 7373 return NULL; 7374 7375 *iter = &lower->list; 7376 *ignore = lower->ignore; 7377 7378 return lower->dev; 7379 } 7380 7381 int netdev_walk_all_lower_dev(struct net_device *dev, 7382 int (*fn)(struct net_device *dev, 7383 struct netdev_nested_priv *priv), 7384 struct netdev_nested_priv *priv) 7385 { 7386 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7387 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7388 int ret, cur = 0; 7389 7390 now = dev; 7391 iter = &dev->adj_list.lower; 7392 7393 while (1) { 7394 if (now != dev) { 7395 ret = fn(now, priv); 7396 if (ret) 7397 return ret; 7398 } 7399 7400 next = NULL; 7401 while (1) { 7402 ldev = netdev_next_lower_dev(now, &iter); 7403 if (!ldev) 7404 break; 7405 7406 next = ldev; 7407 niter = &ldev->adj_list.lower; 7408 dev_stack[cur] = now; 7409 iter_stack[cur++] = iter; 7410 break; 7411 } 7412 7413 if (!next) { 7414 if (!cur) 7415 return 0; 7416 next = dev_stack[--cur]; 7417 niter = iter_stack[cur]; 7418 } 7419 7420 now = next; 7421 iter = niter; 7422 } 7423 7424 return 0; 7425 } 7426 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev); 7427 7428 static int __netdev_walk_all_lower_dev(struct net_device *dev, 7429 int (*fn)(struct net_device *dev, 7430 struct netdev_nested_priv *priv), 7431 struct netdev_nested_priv *priv) 7432 { 7433 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7434 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7435 int ret, cur = 0; 7436 bool ignore; 7437 7438 now = dev; 7439 iter = &dev->adj_list.lower; 7440 7441 while (1) { 7442 if (now != dev) { 7443 ret = fn(now, priv); 7444 if (ret) 7445 return ret; 7446 } 7447 7448 next = NULL; 7449 while (1) { 7450 ldev = __netdev_next_lower_dev(now, &iter, &ignore); 7451 if (!ldev) 7452 break; 7453 if (ignore) 7454 continue; 7455 7456 next = ldev; 7457 niter = &ldev->adj_list.lower; 7458 dev_stack[cur] = now; 7459 iter_stack[cur++] = iter; 7460 break; 7461 } 7462 7463 if (!next) { 7464 if (!cur) 7465 return 0; 7466 next = dev_stack[--cur]; 7467 niter = iter_stack[cur]; 7468 } 7469 7470 now = next; 7471 iter = niter; 7472 } 7473 7474 return 0; 7475 } 7476 7477 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 7478 struct list_head **iter) 7479 { 7480 struct netdev_adjacent *lower; 7481 7482 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7483 if (&lower->list == &dev->adj_list.lower) 7484 return NULL; 7485 7486 *iter = &lower->list; 7487 7488 return lower->dev; 7489 } 7490 EXPORT_SYMBOL(netdev_next_lower_dev_rcu); 7491 7492 static u8 __netdev_upper_depth(struct net_device *dev) 7493 { 7494 struct net_device *udev; 7495 struct list_head *iter; 7496 u8 max_depth = 0; 7497 bool ignore; 7498 7499 for (iter = &dev->adj_list.upper, 7500 udev = __netdev_next_upper_dev(dev, &iter, &ignore); 7501 udev; 7502 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) { 7503 if (ignore) 7504 continue; 7505 if (max_depth < udev->upper_level) 7506 max_depth = udev->upper_level; 7507 } 7508 7509 return max_depth; 7510 } 7511 7512 static u8 __netdev_lower_depth(struct net_device *dev) 7513 { 7514 struct net_device *ldev; 7515 struct list_head *iter; 7516 u8 max_depth = 0; 7517 bool ignore; 7518 7519 for (iter = &dev->adj_list.lower, 7520 ldev = __netdev_next_lower_dev(dev, &iter, &ignore); 7521 ldev; 7522 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) { 7523 if (ignore) 7524 continue; 7525 if (max_depth < ldev->lower_level) 7526 max_depth = ldev->lower_level; 7527 } 7528 7529 return max_depth; 7530 } 7531 7532 static int __netdev_update_upper_level(struct net_device *dev, 7533 struct netdev_nested_priv *__unused) 7534 { 7535 dev->upper_level = __netdev_upper_depth(dev) + 1; 7536 return 0; 7537 } 7538 7539 #ifdef CONFIG_LOCKDEP 7540 static LIST_HEAD(net_unlink_list); 7541 7542 static void net_unlink_todo(struct net_device *dev) 7543 { 7544 if (list_empty(&dev->unlink_list)) 7545 list_add_tail(&dev->unlink_list, &net_unlink_list); 7546 } 7547 #endif 7548 7549 static int __netdev_update_lower_level(struct net_device *dev, 7550 struct netdev_nested_priv *priv) 7551 { 7552 dev->lower_level = __netdev_lower_depth(dev) + 1; 7553 7554 #ifdef CONFIG_LOCKDEP 7555 if (!priv) 7556 return 0; 7557 7558 if (priv->flags & NESTED_SYNC_IMM) 7559 dev->nested_level = dev->lower_level - 1; 7560 if (priv->flags & NESTED_SYNC_TODO) 7561 net_unlink_todo(dev); 7562 #endif 7563 return 0; 7564 } 7565 7566 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 7567 int (*fn)(struct net_device *dev, 7568 struct netdev_nested_priv *priv), 7569 struct netdev_nested_priv *priv) 7570 { 7571 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7572 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7573 int ret, cur = 0; 7574 7575 now = dev; 7576 iter = &dev->adj_list.lower; 7577 7578 while (1) { 7579 if (now != dev) { 7580 ret = fn(now, priv); 7581 if (ret) 7582 return ret; 7583 } 7584 7585 next = NULL; 7586 while (1) { 7587 ldev = netdev_next_lower_dev_rcu(now, &iter); 7588 if (!ldev) 7589 break; 7590 7591 next = ldev; 7592 niter = &ldev->adj_list.lower; 7593 dev_stack[cur] = now; 7594 iter_stack[cur++] = iter; 7595 break; 7596 } 7597 7598 if (!next) { 7599 if (!cur) 7600 return 0; 7601 next = dev_stack[--cur]; 7602 niter = iter_stack[cur]; 7603 } 7604 7605 now = next; 7606 iter = niter; 7607 } 7608 7609 return 0; 7610 } 7611 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu); 7612 7613 /** 7614 * netdev_lower_get_first_private_rcu - Get the first ->private from the 7615 * lower neighbour list, RCU 7616 * variant 7617 * @dev: device 7618 * 7619 * Gets the first netdev_adjacent->private from the dev's lower neighbour 7620 * list. The caller must hold RCU read lock. 7621 */ 7622 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 7623 { 7624 struct netdev_adjacent *lower; 7625 7626 lower = list_first_or_null_rcu(&dev->adj_list.lower, 7627 struct netdev_adjacent, list); 7628 if (lower) 7629 return lower->private; 7630 return NULL; 7631 } 7632 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 7633 7634 /** 7635 * netdev_master_upper_dev_get_rcu - Get master upper device 7636 * @dev: device 7637 * 7638 * Find a master upper device and return pointer to it or NULL in case 7639 * it's not there. The caller must hold the RCU read lock. 7640 */ 7641 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 7642 { 7643 struct netdev_adjacent *upper; 7644 7645 upper = list_first_or_null_rcu(&dev->adj_list.upper, 7646 struct netdev_adjacent, list); 7647 if (upper && likely(upper->master)) 7648 return upper->dev; 7649 return NULL; 7650 } 7651 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 7652 7653 static int netdev_adjacent_sysfs_add(struct net_device *dev, 7654 struct net_device *adj_dev, 7655 struct list_head *dev_list) 7656 { 7657 char linkname[IFNAMSIZ+7]; 7658 7659 sprintf(linkname, dev_list == &dev->adj_list.upper ? 7660 "upper_%s" : "lower_%s", adj_dev->name); 7661 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 7662 linkname); 7663 } 7664 static void netdev_adjacent_sysfs_del(struct net_device *dev, 7665 char *name, 7666 struct list_head *dev_list) 7667 { 7668 char linkname[IFNAMSIZ+7]; 7669 7670 sprintf(linkname, dev_list == &dev->adj_list.upper ? 7671 "upper_%s" : "lower_%s", name); 7672 sysfs_remove_link(&(dev->dev.kobj), linkname); 7673 } 7674 7675 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 7676 struct net_device *adj_dev, 7677 struct list_head *dev_list) 7678 { 7679 return (dev_list == &dev->adj_list.upper || 7680 dev_list == &dev->adj_list.lower) && 7681 net_eq(dev_net(dev), dev_net(adj_dev)); 7682 } 7683 7684 static int __netdev_adjacent_dev_insert(struct net_device *dev, 7685 struct net_device *adj_dev, 7686 struct list_head *dev_list, 7687 void *private, bool master) 7688 { 7689 struct netdev_adjacent *adj; 7690 int ret; 7691 7692 adj = __netdev_find_adj(adj_dev, dev_list); 7693 7694 if (adj) { 7695 adj->ref_nr += 1; 7696 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n", 7697 dev->name, adj_dev->name, adj->ref_nr); 7698 7699 return 0; 7700 } 7701 7702 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 7703 if (!adj) 7704 return -ENOMEM; 7705 7706 adj->dev = adj_dev; 7707 adj->master = master; 7708 adj->ref_nr = 1; 7709 adj->private = private; 7710 adj->ignore = false; 7711 netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL); 7712 7713 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n", 7714 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name); 7715 7716 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 7717 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 7718 if (ret) 7719 goto free_adj; 7720 } 7721 7722 /* Ensure that master link is always the first item in list. */ 7723 if (master) { 7724 ret = sysfs_create_link(&(dev->dev.kobj), 7725 &(adj_dev->dev.kobj), "master"); 7726 if (ret) 7727 goto remove_symlinks; 7728 7729 list_add_rcu(&adj->list, dev_list); 7730 } else { 7731 list_add_tail_rcu(&adj->list, dev_list); 7732 } 7733 7734 return 0; 7735 7736 remove_symlinks: 7737 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 7738 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 7739 free_adj: 7740 netdev_put(adj_dev, &adj->dev_tracker); 7741 kfree(adj); 7742 7743 return ret; 7744 } 7745 7746 static void __netdev_adjacent_dev_remove(struct net_device *dev, 7747 struct net_device *adj_dev, 7748 u16 ref_nr, 7749 struct list_head *dev_list) 7750 { 7751 struct netdev_adjacent *adj; 7752 7753 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n", 7754 dev->name, adj_dev->name, ref_nr); 7755 7756 adj = __netdev_find_adj(adj_dev, dev_list); 7757 7758 if (!adj) { 7759 pr_err("Adjacency does not exist for device %s from %s\n", 7760 dev->name, adj_dev->name); 7761 WARN_ON(1); 7762 return; 7763 } 7764 7765 if (adj->ref_nr > ref_nr) { 7766 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n", 7767 dev->name, adj_dev->name, ref_nr, 7768 adj->ref_nr - ref_nr); 7769 adj->ref_nr -= ref_nr; 7770 return; 7771 } 7772 7773 if (adj->master) 7774 sysfs_remove_link(&(dev->dev.kobj), "master"); 7775 7776 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 7777 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 7778 7779 list_del_rcu(&adj->list); 7780 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n", 7781 adj_dev->name, dev->name, adj_dev->name); 7782 netdev_put(adj_dev, &adj->dev_tracker); 7783 kfree_rcu(adj, rcu); 7784 } 7785 7786 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 7787 struct net_device *upper_dev, 7788 struct list_head *up_list, 7789 struct list_head *down_list, 7790 void *private, bool master) 7791 { 7792 int ret; 7793 7794 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, 7795 private, master); 7796 if (ret) 7797 return ret; 7798 7799 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, 7800 private, false); 7801 if (ret) { 7802 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list); 7803 return ret; 7804 } 7805 7806 return 0; 7807 } 7808 7809 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 7810 struct net_device *upper_dev, 7811 u16 ref_nr, 7812 struct list_head *up_list, 7813 struct list_head *down_list) 7814 { 7815 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list); 7816 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list); 7817 } 7818 7819 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 7820 struct net_device *upper_dev, 7821 void *private, bool master) 7822 { 7823 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 7824 &dev->adj_list.upper, 7825 &upper_dev->adj_list.lower, 7826 private, master); 7827 } 7828 7829 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 7830 struct net_device *upper_dev) 7831 { 7832 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1, 7833 &dev->adj_list.upper, 7834 &upper_dev->adj_list.lower); 7835 } 7836 7837 static int __netdev_upper_dev_link(struct net_device *dev, 7838 struct net_device *upper_dev, bool master, 7839 void *upper_priv, void *upper_info, 7840 struct netdev_nested_priv *priv, 7841 struct netlink_ext_ack *extack) 7842 { 7843 struct netdev_notifier_changeupper_info changeupper_info = { 7844 .info = { 7845 .dev = dev, 7846 .extack = extack, 7847 }, 7848 .upper_dev = upper_dev, 7849 .master = master, 7850 .linking = true, 7851 .upper_info = upper_info, 7852 }; 7853 struct net_device *master_dev; 7854 int ret = 0; 7855 7856 ASSERT_RTNL(); 7857 7858 if (dev == upper_dev) 7859 return -EBUSY; 7860 7861 /* To prevent loops, check if dev is not upper device to upper_dev. */ 7862 if (__netdev_has_upper_dev(upper_dev, dev)) 7863 return -EBUSY; 7864 7865 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV) 7866 return -EMLINK; 7867 7868 if (!master) { 7869 if (__netdev_has_upper_dev(dev, upper_dev)) 7870 return -EEXIST; 7871 } else { 7872 master_dev = __netdev_master_upper_dev_get(dev); 7873 if (master_dev) 7874 return master_dev == upper_dev ? -EEXIST : -EBUSY; 7875 } 7876 7877 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 7878 &changeupper_info.info); 7879 ret = notifier_to_errno(ret); 7880 if (ret) 7881 return ret; 7882 7883 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv, 7884 master); 7885 if (ret) 7886 return ret; 7887 7888 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 7889 &changeupper_info.info); 7890 ret = notifier_to_errno(ret); 7891 if (ret) 7892 goto rollback; 7893 7894 __netdev_update_upper_level(dev, NULL); 7895 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 7896 7897 __netdev_update_lower_level(upper_dev, priv); 7898 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, 7899 priv); 7900 7901 return 0; 7902 7903 rollback: 7904 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 7905 7906 return ret; 7907 } 7908 7909 /** 7910 * netdev_upper_dev_link - Add a link to the upper device 7911 * @dev: device 7912 * @upper_dev: new upper device 7913 * @extack: netlink extended ack 7914 * 7915 * Adds a link to device which is upper to this one. The caller must hold 7916 * the RTNL lock. On a failure a negative errno code is returned. 7917 * On success the reference counts are adjusted and the function 7918 * returns zero. 7919 */ 7920 int netdev_upper_dev_link(struct net_device *dev, 7921 struct net_device *upper_dev, 7922 struct netlink_ext_ack *extack) 7923 { 7924 struct netdev_nested_priv priv = { 7925 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 7926 .data = NULL, 7927 }; 7928 7929 return __netdev_upper_dev_link(dev, upper_dev, false, 7930 NULL, NULL, &priv, extack); 7931 } 7932 EXPORT_SYMBOL(netdev_upper_dev_link); 7933 7934 /** 7935 * netdev_master_upper_dev_link - Add a master link to the upper device 7936 * @dev: device 7937 * @upper_dev: new upper device 7938 * @upper_priv: upper device private 7939 * @upper_info: upper info to be passed down via notifier 7940 * @extack: netlink extended ack 7941 * 7942 * Adds a link to device which is upper to this one. In this case, only 7943 * one master upper device can be linked, although other non-master devices 7944 * might be linked as well. The caller must hold the RTNL lock. 7945 * On a failure a negative errno code is returned. On success the reference 7946 * counts are adjusted and the function returns zero. 7947 */ 7948 int netdev_master_upper_dev_link(struct net_device *dev, 7949 struct net_device *upper_dev, 7950 void *upper_priv, void *upper_info, 7951 struct netlink_ext_ack *extack) 7952 { 7953 struct netdev_nested_priv priv = { 7954 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 7955 .data = NULL, 7956 }; 7957 7958 return __netdev_upper_dev_link(dev, upper_dev, true, 7959 upper_priv, upper_info, &priv, extack); 7960 } 7961 EXPORT_SYMBOL(netdev_master_upper_dev_link); 7962 7963 static void __netdev_upper_dev_unlink(struct net_device *dev, 7964 struct net_device *upper_dev, 7965 struct netdev_nested_priv *priv) 7966 { 7967 struct netdev_notifier_changeupper_info changeupper_info = { 7968 .info = { 7969 .dev = dev, 7970 }, 7971 .upper_dev = upper_dev, 7972 .linking = false, 7973 }; 7974 7975 ASSERT_RTNL(); 7976 7977 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; 7978 7979 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 7980 &changeupper_info.info); 7981 7982 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 7983 7984 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 7985 &changeupper_info.info); 7986 7987 __netdev_update_upper_level(dev, NULL); 7988 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 7989 7990 __netdev_update_lower_level(upper_dev, priv); 7991 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, 7992 priv); 7993 } 7994 7995 /** 7996 * netdev_upper_dev_unlink - Removes a link to upper device 7997 * @dev: device 7998 * @upper_dev: new upper device 7999 * 8000 * Removes a link to device which is upper to this one. The caller must hold 8001 * the RTNL lock. 8002 */ 8003 void netdev_upper_dev_unlink(struct net_device *dev, 8004 struct net_device *upper_dev) 8005 { 8006 struct netdev_nested_priv priv = { 8007 .flags = NESTED_SYNC_TODO, 8008 .data = NULL, 8009 }; 8010 8011 __netdev_upper_dev_unlink(dev, upper_dev, &priv); 8012 } 8013 EXPORT_SYMBOL(netdev_upper_dev_unlink); 8014 8015 static void __netdev_adjacent_dev_set(struct net_device *upper_dev, 8016 struct net_device *lower_dev, 8017 bool val) 8018 { 8019 struct netdev_adjacent *adj; 8020 8021 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower); 8022 if (adj) 8023 adj->ignore = val; 8024 8025 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper); 8026 if (adj) 8027 adj->ignore = val; 8028 } 8029 8030 static void netdev_adjacent_dev_disable(struct net_device *upper_dev, 8031 struct net_device *lower_dev) 8032 { 8033 __netdev_adjacent_dev_set(upper_dev, lower_dev, true); 8034 } 8035 8036 static void netdev_adjacent_dev_enable(struct net_device *upper_dev, 8037 struct net_device *lower_dev) 8038 { 8039 __netdev_adjacent_dev_set(upper_dev, lower_dev, false); 8040 } 8041 8042 int netdev_adjacent_change_prepare(struct net_device *old_dev, 8043 struct net_device *new_dev, 8044 struct net_device *dev, 8045 struct netlink_ext_ack *extack) 8046 { 8047 struct netdev_nested_priv priv = { 8048 .flags = 0, 8049 .data = NULL, 8050 }; 8051 int err; 8052 8053 if (!new_dev) 8054 return 0; 8055 8056 if (old_dev && new_dev != old_dev) 8057 netdev_adjacent_dev_disable(dev, old_dev); 8058 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv, 8059 extack); 8060 if (err) { 8061 if (old_dev && new_dev != old_dev) 8062 netdev_adjacent_dev_enable(dev, old_dev); 8063 return err; 8064 } 8065 8066 return 0; 8067 } 8068 EXPORT_SYMBOL(netdev_adjacent_change_prepare); 8069 8070 void netdev_adjacent_change_commit(struct net_device *old_dev, 8071 struct net_device *new_dev, 8072 struct net_device *dev) 8073 { 8074 struct netdev_nested_priv priv = { 8075 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 8076 .data = NULL, 8077 }; 8078 8079 if (!new_dev || !old_dev) 8080 return; 8081 8082 if (new_dev == old_dev) 8083 return; 8084 8085 netdev_adjacent_dev_enable(dev, old_dev); 8086 __netdev_upper_dev_unlink(old_dev, dev, &priv); 8087 } 8088 EXPORT_SYMBOL(netdev_adjacent_change_commit); 8089 8090 void netdev_adjacent_change_abort(struct net_device *old_dev, 8091 struct net_device *new_dev, 8092 struct net_device *dev) 8093 { 8094 struct netdev_nested_priv priv = { 8095 .flags = 0, 8096 .data = NULL, 8097 }; 8098 8099 if (!new_dev) 8100 return; 8101 8102 if (old_dev && new_dev != old_dev) 8103 netdev_adjacent_dev_enable(dev, old_dev); 8104 8105 __netdev_upper_dev_unlink(new_dev, dev, &priv); 8106 } 8107 EXPORT_SYMBOL(netdev_adjacent_change_abort); 8108 8109 /** 8110 * netdev_bonding_info_change - Dispatch event about slave change 8111 * @dev: device 8112 * @bonding_info: info to dispatch 8113 * 8114 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 8115 * The caller must hold the RTNL lock. 8116 */ 8117 void netdev_bonding_info_change(struct net_device *dev, 8118 struct netdev_bonding_info *bonding_info) 8119 { 8120 struct netdev_notifier_bonding_info info = { 8121 .info.dev = dev, 8122 }; 8123 8124 memcpy(&info.bonding_info, bonding_info, 8125 sizeof(struct netdev_bonding_info)); 8126 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, 8127 &info.info); 8128 } 8129 EXPORT_SYMBOL(netdev_bonding_info_change); 8130 8131 static int netdev_offload_xstats_enable_l3(struct net_device *dev, 8132 struct netlink_ext_ack *extack) 8133 { 8134 struct netdev_notifier_offload_xstats_info info = { 8135 .info.dev = dev, 8136 .info.extack = extack, 8137 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3, 8138 }; 8139 int err; 8140 int rc; 8141 8142 dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3), 8143 GFP_KERNEL); 8144 if (!dev->offload_xstats_l3) 8145 return -ENOMEM; 8146 8147 rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE, 8148 NETDEV_OFFLOAD_XSTATS_DISABLE, 8149 &info.info); 8150 err = notifier_to_errno(rc); 8151 if (err) 8152 goto free_stats; 8153 8154 return 0; 8155 8156 free_stats: 8157 kfree(dev->offload_xstats_l3); 8158 dev->offload_xstats_l3 = NULL; 8159 return err; 8160 } 8161 8162 int netdev_offload_xstats_enable(struct net_device *dev, 8163 enum netdev_offload_xstats_type type, 8164 struct netlink_ext_ack *extack) 8165 { 8166 ASSERT_RTNL(); 8167 8168 if (netdev_offload_xstats_enabled(dev, type)) 8169 return -EALREADY; 8170 8171 switch (type) { 8172 case NETDEV_OFFLOAD_XSTATS_TYPE_L3: 8173 return netdev_offload_xstats_enable_l3(dev, extack); 8174 } 8175 8176 WARN_ON(1); 8177 return -EINVAL; 8178 } 8179 EXPORT_SYMBOL(netdev_offload_xstats_enable); 8180 8181 static void netdev_offload_xstats_disable_l3(struct net_device *dev) 8182 { 8183 struct netdev_notifier_offload_xstats_info info = { 8184 .info.dev = dev, 8185 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3, 8186 }; 8187 8188 call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE, 8189 &info.info); 8190 kfree(dev->offload_xstats_l3); 8191 dev->offload_xstats_l3 = NULL; 8192 } 8193 8194 int netdev_offload_xstats_disable(struct net_device *dev, 8195 enum netdev_offload_xstats_type type) 8196 { 8197 ASSERT_RTNL(); 8198 8199 if (!netdev_offload_xstats_enabled(dev, type)) 8200 return -EALREADY; 8201 8202 switch (type) { 8203 case NETDEV_OFFLOAD_XSTATS_TYPE_L3: 8204 netdev_offload_xstats_disable_l3(dev); 8205 return 0; 8206 } 8207 8208 WARN_ON(1); 8209 return -EINVAL; 8210 } 8211 EXPORT_SYMBOL(netdev_offload_xstats_disable); 8212 8213 static void netdev_offload_xstats_disable_all(struct net_device *dev) 8214 { 8215 netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3); 8216 } 8217 8218 static struct rtnl_hw_stats64 * 8219 netdev_offload_xstats_get_ptr(const struct net_device *dev, 8220 enum netdev_offload_xstats_type type) 8221 { 8222 switch (type) { 8223 case NETDEV_OFFLOAD_XSTATS_TYPE_L3: 8224 return dev->offload_xstats_l3; 8225 } 8226 8227 WARN_ON(1); 8228 return NULL; 8229 } 8230 8231 bool netdev_offload_xstats_enabled(const struct net_device *dev, 8232 enum netdev_offload_xstats_type type) 8233 { 8234 ASSERT_RTNL(); 8235 8236 return netdev_offload_xstats_get_ptr(dev, type); 8237 } 8238 EXPORT_SYMBOL(netdev_offload_xstats_enabled); 8239 8240 struct netdev_notifier_offload_xstats_ru { 8241 bool used; 8242 }; 8243 8244 struct netdev_notifier_offload_xstats_rd { 8245 struct rtnl_hw_stats64 stats; 8246 bool used; 8247 }; 8248 8249 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest, 8250 const struct rtnl_hw_stats64 *src) 8251 { 8252 dest->rx_packets += src->rx_packets; 8253 dest->tx_packets += src->tx_packets; 8254 dest->rx_bytes += src->rx_bytes; 8255 dest->tx_bytes += src->tx_bytes; 8256 dest->rx_errors += src->rx_errors; 8257 dest->tx_errors += src->tx_errors; 8258 dest->rx_dropped += src->rx_dropped; 8259 dest->tx_dropped += src->tx_dropped; 8260 dest->multicast += src->multicast; 8261 } 8262 8263 static int netdev_offload_xstats_get_used(struct net_device *dev, 8264 enum netdev_offload_xstats_type type, 8265 bool *p_used, 8266 struct netlink_ext_ack *extack) 8267 { 8268 struct netdev_notifier_offload_xstats_ru report_used = {}; 8269 struct netdev_notifier_offload_xstats_info info = { 8270 .info.dev = dev, 8271 .info.extack = extack, 8272 .type = type, 8273 .report_used = &report_used, 8274 }; 8275 int rc; 8276 8277 WARN_ON(!netdev_offload_xstats_enabled(dev, type)); 8278 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED, 8279 &info.info); 8280 *p_used = report_used.used; 8281 return notifier_to_errno(rc); 8282 } 8283 8284 static int netdev_offload_xstats_get_stats(struct net_device *dev, 8285 enum netdev_offload_xstats_type type, 8286 struct rtnl_hw_stats64 *p_stats, 8287 bool *p_used, 8288 struct netlink_ext_ack *extack) 8289 { 8290 struct netdev_notifier_offload_xstats_rd report_delta = {}; 8291 struct netdev_notifier_offload_xstats_info info = { 8292 .info.dev = dev, 8293 .info.extack = extack, 8294 .type = type, 8295 .report_delta = &report_delta, 8296 }; 8297 struct rtnl_hw_stats64 *stats; 8298 int rc; 8299 8300 stats = netdev_offload_xstats_get_ptr(dev, type); 8301 if (WARN_ON(!stats)) 8302 return -EINVAL; 8303 8304 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA, 8305 &info.info); 8306 8307 /* Cache whatever we got, even if there was an error, otherwise the 8308 * successful stats retrievals would get lost. 8309 */ 8310 netdev_hw_stats64_add(stats, &report_delta.stats); 8311 8312 if (p_stats) 8313 *p_stats = *stats; 8314 *p_used = report_delta.used; 8315 8316 return notifier_to_errno(rc); 8317 } 8318 8319 int netdev_offload_xstats_get(struct net_device *dev, 8320 enum netdev_offload_xstats_type type, 8321 struct rtnl_hw_stats64 *p_stats, bool *p_used, 8322 struct netlink_ext_ack *extack) 8323 { 8324 ASSERT_RTNL(); 8325 8326 if (p_stats) 8327 return netdev_offload_xstats_get_stats(dev, type, p_stats, 8328 p_used, extack); 8329 else 8330 return netdev_offload_xstats_get_used(dev, type, p_used, 8331 extack); 8332 } 8333 EXPORT_SYMBOL(netdev_offload_xstats_get); 8334 8335 void 8336 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta, 8337 const struct rtnl_hw_stats64 *stats) 8338 { 8339 report_delta->used = true; 8340 netdev_hw_stats64_add(&report_delta->stats, stats); 8341 } 8342 EXPORT_SYMBOL(netdev_offload_xstats_report_delta); 8343 8344 void 8345 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used) 8346 { 8347 report_used->used = true; 8348 } 8349 EXPORT_SYMBOL(netdev_offload_xstats_report_used); 8350 8351 void netdev_offload_xstats_push_delta(struct net_device *dev, 8352 enum netdev_offload_xstats_type type, 8353 const struct rtnl_hw_stats64 *p_stats) 8354 { 8355 struct rtnl_hw_stats64 *stats; 8356 8357 ASSERT_RTNL(); 8358 8359 stats = netdev_offload_xstats_get_ptr(dev, type); 8360 if (WARN_ON(!stats)) 8361 return; 8362 8363 netdev_hw_stats64_add(stats, p_stats); 8364 } 8365 EXPORT_SYMBOL(netdev_offload_xstats_push_delta); 8366 8367 /** 8368 * netdev_get_xmit_slave - Get the xmit slave of master device 8369 * @dev: device 8370 * @skb: The packet 8371 * @all_slaves: assume all the slaves are active 8372 * 8373 * The reference counters are not incremented so the caller must be 8374 * careful with locks. The caller must hold RCU lock. 8375 * %NULL is returned if no slave is found. 8376 */ 8377 8378 struct net_device *netdev_get_xmit_slave(struct net_device *dev, 8379 struct sk_buff *skb, 8380 bool all_slaves) 8381 { 8382 const struct net_device_ops *ops = dev->netdev_ops; 8383 8384 if (!ops->ndo_get_xmit_slave) 8385 return NULL; 8386 return ops->ndo_get_xmit_slave(dev, skb, all_slaves); 8387 } 8388 EXPORT_SYMBOL(netdev_get_xmit_slave); 8389 8390 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev, 8391 struct sock *sk) 8392 { 8393 const struct net_device_ops *ops = dev->netdev_ops; 8394 8395 if (!ops->ndo_sk_get_lower_dev) 8396 return NULL; 8397 return ops->ndo_sk_get_lower_dev(dev, sk); 8398 } 8399 8400 /** 8401 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket 8402 * @dev: device 8403 * @sk: the socket 8404 * 8405 * %NULL is returned if no lower device is found. 8406 */ 8407 8408 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev, 8409 struct sock *sk) 8410 { 8411 struct net_device *lower; 8412 8413 lower = netdev_sk_get_lower_dev(dev, sk); 8414 while (lower) { 8415 dev = lower; 8416 lower = netdev_sk_get_lower_dev(dev, sk); 8417 } 8418 8419 return dev; 8420 } 8421 EXPORT_SYMBOL(netdev_sk_get_lowest_dev); 8422 8423 static void netdev_adjacent_add_links(struct net_device *dev) 8424 { 8425 struct netdev_adjacent *iter; 8426 8427 struct net *net = dev_net(dev); 8428 8429 list_for_each_entry(iter, &dev->adj_list.upper, list) { 8430 if (!net_eq(net, dev_net(iter->dev))) 8431 continue; 8432 netdev_adjacent_sysfs_add(iter->dev, dev, 8433 &iter->dev->adj_list.lower); 8434 netdev_adjacent_sysfs_add(dev, iter->dev, 8435 &dev->adj_list.upper); 8436 } 8437 8438 list_for_each_entry(iter, &dev->adj_list.lower, list) { 8439 if (!net_eq(net, dev_net(iter->dev))) 8440 continue; 8441 netdev_adjacent_sysfs_add(iter->dev, dev, 8442 &iter->dev->adj_list.upper); 8443 netdev_adjacent_sysfs_add(dev, iter->dev, 8444 &dev->adj_list.lower); 8445 } 8446 } 8447 8448 static void netdev_adjacent_del_links(struct net_device *dev) 8449 { 8450 struct netdev_adjacent *iter; 8451 8452 struct net *net = dev_net(dev); 8453 8454 list_for_each_entry(iter, &dev->adj_list.upper, list) { 8455 if (!net_eq(net, dev_net(iter->dev))) 8456 continue; 8457 netdev_adjacent_sysfs_del(iter->dev, dev->name, 8458 &iter->dev->adj_list.lower); 8459 netdev_adjacent_sysfs_del(dev, iter->dev->name, 8460 &dev->adj_list.upper); 8461 } 8462 8463 list_for_each_entry(iter, &dev->adj_list.lower, list) { 8464 if (!net_eq(net, dev_net(iter->dev))) 8465 continue; 8466 netdev_adjacent_sysfs_del(iter->dev, dev->name, 8467 &iter->dev->adj_list.upper); 8468 netdev_adjacent_sysfs_del(dev, iter->dev->name, 8469 &dev->adj_list.lower); 8470 } 8471 } 8472 8473 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 8474 { 8475 struct netdev_adjacent *iter; 8476 8477 struct net *net = dev_net(dev); 8478 8479 list_for_each_entry(iter, &dev->adj_list.upper, list) { 8480 if (!net_eq(net, dev_net(iter->dev))) 8481 continue; 8482 netdev_adjacent_sysfs_del(iter->dev, oldname, 8483 &iter->dev->adj_list.lower); 8484 netdev_adjacent_sysfs_add(iter->dev, dev, 8485 &iter->dev->adj_list.lower); 8486 } 8487 8488 list_for_each_entry(iter, &dev->adj_list.lower, list) { 8489 if (!net_eq(net, dev_net(iter->dev))) 8490 continue; 8491 netdev_adjacent_sysfs_del(iter->dev, oldname, 8492 &iter->dev->adj_list.upper); 8493 netdev_adjacent_sysfs_add(iter->dev, dev, 8494 &iter->dev->adj_list.upper); 8495 } 8496 } 8497 8498 void *netdev_lower_dev_get_private(struct net_device *dev, 8499 struct net_device *lower_dev) 8500 { 8501 struct netdev_adjacent *lower; 8502 8503 if (!lower_dev) 8504 return NULL; 8505 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower); 8506 if (!lower) 8507 return NULL; 8508 8509 return lower->private; 8510 } 8511 EXPORT_SYMBOL(netdev_lower_dev_get_private); 8512 8513 8514 /** 8515 * netdev_lower_state_changed - Dispatch event about lower device state change 8516 * @lower_dev: device 8517 * @lower_state_info: state to dispatch 8518 * 8519 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info. 8520 * The caller must hold the RTNL lock. 8521 */ 8522 void netdev_lower_state_changed(struct net_device *lower_dev, 8523 void *lower_state_info) 8524 { 8525 struct netdev_notifier_changelowerstate_info changelowerstate_info = { 8526 .info.dev = lower_dev, 8527 }; 8528 8529 ASSERT_RTNL(); 8530 changelowerstate_info.lower_state_info = lower_state_info; 8531 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, 8532 &changelowerstate_info.info); 8533 } 8534 EXPORT_SYMBOL(netdev_lower_state_changed); 8535 8536 static void dev_change_rx_flags(struct net_device *dev, int flags) 8537 { 8538 const struct net_device_ops *ops = dev->netdev_ops; 8539 8540 if (ops->ndo_change_rx_flags) 8541 ops->ndo_change_rx_flags(dev, flags); 8542 } 8543 8544 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 8545 { 8546 unsigned int old_flags = dev->flags; 8547 unsigned int promiscuity, flags; 8548 kuid_t uid; 8549 kgid_t gid; 8550 8551 ASSERT_RTNL(); 8552 8553 promiscuity = dev->promiscuity + inc; 8554 if (promiscuity == 0) { 8555 /* 8556 * Avoid overflow. 8557 * If inc causes overflow, untouch promisc and return error. 8558 */ 8559 if (unlikely(inc > 0)) { 8560 netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n"); 8561 return -EOVERFLOW; 8562 } 8563 flags = old_flags & ~IFF_PROMISC; 8564 } else { 8565 flags = old_flags | IFF_PROMISC; 8566 } 8567 WRITE_ONCE(dev->promiscuity, promiscuity); 8568 if (flags != old_flags) { 8569 WRITE_ONCE(dev->flags, flags); 8570 netdev_info(dev, "%s promiscuous mode\n", 8571 dev->flags & IFF_PROMISC ? "entered" : "left"); 8572 if (audit_enabled) { 8573 current_uid_gid(&uid, &gid); 8574 audit_log(audit_context(), GFP_ATOMIC, 8575 AUDIT_ANOM_PROMISCUOUS, 8576 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 8577 dev->name, (dev->flags & IFF_PROMISC), 8578 (old_flags & IFF_PROMISC), 8579 from_kuid(&init_user_ns, audit_get_loginuid(current)), 8580 from_kuid(&init_user_ns, uid), 8581 from_kgid(&init_user_ns, gid), 8582 audit_get_sessionid(current)); 8583 } 8584 8585 dev_change_rx_flags(dev, IFF_PROMISC); 8586 } 8587 if (notify) 8588 __dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL); 8589 return 0; 8590 } 8591 8592 /** 8593 * dev_set_promiscuity - update promiscuity count on a device 8594 * @dev: device 8595 * @inc: modifier 8596 * 8597 * Add or remove promiscuity from a device. While the count in the device 8598 * remains above zero the interface remains promiscuous. Once it hits zero 8599 * the device reverts back to normal filtering operation. A negative inc 8600 * value is used to drop promiscuity on the device. 8601 * Return 0 if successful or a negative errno code on error. 8602 */ 8603 int dev_set_promiscuity(struct net_device *dev, int inc) 8604 { 8605 unsigned int old_flags = dev->flags; 8606 int err; 8607 8608 err = __dev_set_promiscuity(dev, inc, true); 8609 if (err < 0) 8610 return err; 8611 if (dev->flags != old_flags) 8612 dev_set_rx_mode(dev); 8613 return err; 8614 } 8615 EXPORT_SYMBOL(dev_set_promiscuity); 8616 8617 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 8618 { 8619 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 8620 unsigned int allmulti, flags; 8621 8622 ASSERT_RTNL(); 8623 8624 allmulti = dev->allmulti + inc; 8625 if (allmulti == 0) { 8626 /* 8627 * Avoid overflow. 8628 * If inc causes overflow, untouch allmulti and return error. 8629 */ 8630 if (unlikely(inc > 0)) { 8631 netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n"); 8632 return -EOVERFLOW; 8633 } 8634 flags = old_flags & ~IFF_ALLMULTI; 8635 } else { 8636 flags = old_flags | IFF_ALLMULTI; 8637 } 8638 WRITE_ONCE(dev->allmulti, allmulti); 8639 if (flags != old_flags) { 8640 WRITE_ONCE(dev->flags, flags); 8641 netdev_info(dev, "%s allmulticast mode\n", 8642 dev->flags & IFF_ALLMULTI ? "entered" : "left"); 8643 dev_change_rx_flags(dev, IFF_ALLMULTI); 8644 dev_set_rx_mode(dev); 8645 if (notify) 8646 __dev_notify_flags(dev, old_flags, 8647 dev->gflags ^ old_gflags, 0, NULL); 8648 } 8649 return 0; 8650 } 8651 8652 /** 8653 * dev_set_allmulti - update allmulti count on a device 8654 * @dev: device 8655 * @inc: modifier 8656 * 8657 * Add or remove reception of all multicast frames to a device. While the 8658 * count in the device remains above zero the interface remains listening 8659 * to all interfaces. Once it hits zero the device reverts back to normal 8660 * filtering operation. A negative @inc value is used to drop the counter 8661 * when releasing a resource needing all multicasts. 8662 * Return 0 if successful or a negative errno code on error. 8663 */ 8664 8665 int dev_set_allmulti(struct net_device *dev, int inc) 8666 { 8667 return __dev_set_allmulti(dev, inc, true); 8668 } 8669 EXPORT_SYMBOL(dev_set_allmulti); 8670 8671 /* 8672 * Upload unicast and multicast address lists to device and 8673 * configure RX filtering. When the device doesn't support unicast 8674 * filtering it is put in promiscuous mode while unicast addresses 8675 * are present. 8676 */ 8677 void __dev_set_rx_mode(struct net_device *dev) 8678 { 8679 const struct net_device_ops *ops = dev->netdev_ops; 8680 8681 /* dev_open will call this function so the list will stay sane. */ 8682 if (!(dev->flags&IFF_UP)) 8683 return; 8684 8685 if (!netif_device_present(dev)) 8686 return; 8687 8688 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 8689 /* Unicast addresses changes may only happen under the rtnl, 8690 * therefore calling __dev_set_promiscuity here is safe. 8691 */ 8692 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 8693 __dev_set_promiscuity(dev, 1, false); 8694 dev->uc_promisc = true; 8695 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 8696 __dev_set_promiscuity(dev, -1, false); 8697 dev->uc_promisc = false; 8698 } 8699 } 8700 8701 if (ops->ndo_set_rx_mode) 8702 ops->ndo_set_rx_mode(dev); 8703 } 8704 8705 void dev_set_rx_mode(struct net_device *dev) 8706 { 8707 netif_addr_lock_bh(dev); 8708 __dev_set_rx_mode(dev); 8709 netif_addr_unlock_bh(dev); 8710 } 8711 8712 /** 8713 * dev_get_flags - get flags reported to userspace 8714 * @dev: device 8715 * 8716 * Get the combination of flag bits exported through APIs to userspace. 8717 */ 8718 unsigned int dev_get_flags(const struct net_device *dev) 8719 { 8720 unsigned int flags; 8721 8722 flags = (READ_ONCE(dev->flags) & ~(IFF_PROMISC | 8723 IFF_ALLMULTI | 8724 IFF_RUNNING | 8725 IFF_LOWER_UP | 8726 IFF_DORMANT)) | 8727 (READ_ONCE(dev->gflags) & (IFF_PROMISC | 8728 IFF_ALLMULTI)); 8729 8730 if (netif_running(dev)) { 8731 if (netif_oper_up(dev)) 8732 flags |= IFF_RUNNING; 8733 if (netif_carrier_ok(dev)) 8734 flags |= IFF_LOWER_UP; 8735 if (netif_dormant(dev)) 8736 flags |= IFF_DORMANT; 8737 } 8738 8739 return flags; 8740 } 8741 EXPORT_SYMBOL(dev_get_flags); 8742 8743 int __dev_change_flags(struct net_device *dev, unsigned int flags, 8744 struct netlink_ext_ack *extack) 8745 { 8746 unsigned int old_flags = dev->flags; 8747 int ret; 8748 8749 ASSERT_RTNL(); 8750 8751 /* 8752 * Set the flags on our device. 8753 */ 8754 8755 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 8756 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 8757 IFF_AUTOMEDIA)) | 8758 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 8759 IFF_ALLMULTI)); 8760 8761 /* 8762 * Load in the correct multicast list now the flags have changed. 8763 */ 8764 8765 if ((old_flags ^ flags) & IFF_MULTICAST) 8766 dev_change_rx_flags(dev, IFF_MULTICAST); 8767 8768 dev_set_rx_mode(dev); 8769 8770 /* 8771 * Have we downed the interface. We handle IFF_UP ourselves 8772 * according to user attempts to set it, rather than blindly 8773 * setting it. 8774 */ 8775 8776 ret = 0; 8777 if ((old_flags ^ flags) & IFF_UP) { 8778 if (old_flags & IFF_UP) 8779 __dev_close(dev); 8780 else 8781 ret = __dev_open(dev, extack); 8782 } 8783 8784 if ((flags ^ dev->gflags) & IFF_PROMISC) { 8785 int inc = (flags & IFF_PROMISC) ? 1 : -1; 8786 unsigned int old_flags = dev->flags; 8787 8788 dev->gflags ^= IFF_PROMISC; 8789 8790 if (__dev_set_promiscuity(dev, inc, false) >= 0) 8791 if (dev->flags != old_flags) 8792 dev_set_rx_mode(dev); 8793 } 8794 8795 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 8796 * is important. Some (broken) drivers set IFF_PROMISC, when 8797 * IFF_ALLMULTI is requested not asking us and not reporting. 8798 */ 8799 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 8800 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 8801 8802 dev->gflags ^= IFF_ALLMULTI; 8803 __dev_set_allmulti(dev, inc, false); 8804 } 8805 8806 return ret; 8807 } 8808 8809 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 8810 unsigned int gchanges, u32 portid, 8811 const struct nlmsghdr *nlh) 8812 { 8813 unsigned int changes = dev->flags ^ old_flags; 8814 8815 if (gchanges) 8816 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh); 8817 8818 if (changes & IFF_UP) { 8819 if (dev->flags & IFF_UP) 8820 call_netdevice_notifiers(NETDEV_UP, dev); 8821 else 8822 call_netdevice_notifiers(NETDEV_DOWN, dev); 8823 } 8824 8825 if (dev->flags & IFF_UP && 8826 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 8827 struct netdev_notifier_change_info change_info = { 8828 .info = { 8829 .dev = dev, 8830 }, 8831 .flags_changed = changes, 8832 }; 8833 8834 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info); 8835 } 8836 } 8837 8838 /** 8839 * dev_change_flags - change device settings 8840 * @dev: device 8841 * @flags: device state flags 8842 * @extack: netlink extended ack 8843 * 8844 * Change settings on device based state flags. The flags are 8845 * in the userspace exported format. 8846 */ 8847 int dev_change_flags(struct net_device *dev, unsigned int flags, 8848 struct netlink_ext_ack *extack) 8849 { 8850 int ret; 8851 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 8852 8853 ret = __dev_change_flags(dev, flags, extack); 8854 if (ret < 0) 8855 return ret; 8856 8857 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 8858 __dev_notify_flags(dev, old_flags, changes, 0, NULL); 8859 return ret; 8860 } 8861 EXPORT_SYMBOL(dev_change_flags); 8862 8863 int __dev_set_mtu(struct net_device *dev, int new_mtu) 8864 { 8865 const struct net_device_ops *ops = dev->netdev_ops; 8866 8867 if (ops->ndo_change_mtu) 8868 return ops->ndo_change_mtu(dev, new_mtu); 8869 8870 /* Pairs with all the lockless reads of dev->mtu in the stack */ 8871 WRITE_ONCE(dev->mtu, new_mtu); 8872 return 0; 8873 } 8874 EXPORT_SYMBOL(__dev_set_mtu); 8875 8876 int dev_validate_mtu(struct net_device *dev, int new_mtu, 8877 struct netlink_ext_ack *extack) 8878 { 8879 /* MTU must be positive, and in range */ 8880 if (new_mtu < 0 || new_mtu < dev->min_mtu) { 8881 NL_SET_ERR_MSG(extack, "mtu less than device minimum"); 8882 return -EINVAL; 8883 } 8884 8885 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) { 8886 NL_SET_ERR_MSG(extack, "mtu greater than device maximum"); 8887 return -EINVAL; 8888 } 8889 return 0; 8890 } 8891 8892 /** 8893 * dev_set_mtu_ext - Change maximum transfer unit 8894 * @dev: device 8895 * @new_mtu: new transfer unit 8896 * @extack: netlink extended ack 8897 * 8898 * Change the maximum transfer size of the network device. 8899 */ 8900 int dev_set_mtu_ext(struct net_device *dev, int new_mtu, 8901 struct netlink_ext_ack *extack) 8902 { 8903 int err, orig_mtu; 8904 8905 if (new_mtu == dev->mtu) 8906 return 0; 8907 8908 err = dev_validate_mtu(dev, new_mtu, extack); 8909 if (err) 8910 return err; 8911 8912 if (!netif_device_present(dev)) 8913 return -ENODEV; 8914 8915 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 8916 err = notifier_to_errno(err); 8917 if (err) 8918 return err; 8919 8920 orig_mtu = dev->mtu; 8921 err = __dev_set_mtu(dev, new_mtu); 8922 8923 if (!err) { 8924 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 8925 orig_mtu); 8926 err = notifier_to_errno(err); 8927 if (err) { 8928 /* setting mtu back and notifying everyone again, 8929 * so that they have a chance to revert changes. 8930 */ 8931 __dev_set_mtu(dev, orig_mtu); 8932 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 8933 new_mtu); 8934 } 8935 } 8936 return err; 8937 } 8938 8939 int dev_set_mtu(struct net_device *dev, int new_mtu) 8940 { 8941 struct netlink_ext_ack extack; 8942 int err; 8943 8944 memset(&extack, 0, sizeof(extack)); 8945 err = dev_set_mtu_ext(dev, new_mtu, &extack); 8946 if (err && extack._msg) 8947 net_err_ratelimited("%s: %s\n", dev->name, extack._msg); 8948 return err; 8949 } 8950 EXPORT_SYMBOL(dev_set_mtu); 8951 8952 /** 8953 * dev_change_tx_queue_len - Change TX queue length of a netdevice 8954 * @dev: device 8955 * @new_len: new tx queue length 8956 */ 8957 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len) 8958 { 8959 unsigned int orig_len = dev->tx_queue_len; 8960 int res; 8961 8962 if (new_len != (unsigned int)new_len) 8963 return -ERANGE; 8964 8965 if (new_len != orig_len) { 8966 WRITE_ONCE(dev->tx_queue_len, new_len); 8967 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev); 8968 res = notifier_to_errno(res); 8969 if (res) 8970 goto err_rollback; 8971 res = dev_qdisc_change_tx_queue_len(dev); 8972 if (res) 8973 goto err_rollback; 8974 } 8975 8976 return 0; 8977 8978 err_rollback: 8979 netdev_err(dev, "refused to change device tx_queue_len\n"); 8980 WRITE_ONCE(dev->tx_queue_len, orig_len); 8981 return res; 8982 } 8983 8984 /** 8985 * dev_set_group - Change group this device belongs to 8986 * @dev: device 8987 * @new_group: group this device should belong to 8988 */ 8989 void dev_set_group(struct net_device *dev, int new_group) 8990 { 8991 dev->group = new_group; 8992 } 8993 8994 /** 8995 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR. 8996 * @dev: device 8997 * @addr: new address 8998 * @extack: netlink extended ack 8999 */ 9000 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr, 9001 struct netlink_ext_ack *extack) 9002 { 9003 struct netdev_notifier_pre_changeaddr_info info = { 9004 .info.dev = dev, 9005 .info.extack = extack, 9006 .dev_addr = addr, 9007 }; 9008 int rc; 9009 9010 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info); 9011 return notifier_to_errno(rc); 9012 } 9013 EXPORT_SYMBOL(dev_pre_changeaddr_notify); 9014 9015 /** 9016 * dev_set_mac_address - Change Media Access Control Address 9017 * @dev: device 9018 * @sa: new address 9019 * @extack: netlink extended ack 9020 * 9021 * Change the hardware (MAC) address of the device 9022 */ 9023 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa, 9024 struct netlink_ext_ack *extack) 9025 { 9026 const struct net_device_ops *ops = dev->netdev_ops; 9027 int err; 9028 9029 if (!ops->ndo_set_mac_address) 9030 return -EOPNOTSUPP; 9031 if (sa->sa_family != dev->type) 9032 return -EINVAL; 9033 if (!netif_device_present(dev)) 9034 return -ENODEV; 9035 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack); 9036 if (err) 9037 return err; 9038 if (memcmp(dev->dev_addr, sa->sa_data, dev->addr_len)) { 9039 err = ops->ndo_set_mac_address(dev, sa); 9040 if (err) 9041 return err; 9042 } 9043 dev->addr_assign_type = NET_ADDR_SET; 9044 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 9045 add_device_randomness(dev->dev_addr, dev->addr_len); 9046 return 0; 9047 } 9048 EXPORT_SYMBOL(dev_set_mac_address); 9049 9050 DECLARE_RWSEM(dev_addr_sem); 9051 9052 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa, 9053 struct netlink_ext_ack *extack) 9054 { 9055 int ret; 9056 9057 down_write(&dev_addr_sem); 9058 ret = dev_set_mac_address(dev, sa, extack); 9059 up_write(&dev_addr_sem); 9060 return ret; 9061 } 9062 EXPORT_SYMBOL(dev_set_mac_address_user); 9063 9064 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name) 9065 { 9066 size_t size = sizeof(sa->sa_data_min); 9067 struct net_device *dev; 9068 int ret = 0; 9069 9070 down_read(&dev_addr_sem); 9071 rcu_read_lock(); 9072 9073 dev = dev_get_by_name_rcu(net, dev_name); 9074 if (!dev) { 9075 ret = -ENODEV; 9076 goto unlock; 9077 } 9078 if (!dev->addr_len) 9079 memset(sa->sa_data, 0, size); 9080 else 9081 memcpy(sa->sa_data, dev->dev_addr, 9082 min_t(size_t, size, dev->addr_len)); 9083 sa->sa_family = dev->type; 9084 9085 unlock: 9086 rcu_read_unlock(); 9087 up_read(&dev_addr_sem); 9088 return ret; 9089 } 9090 EXPORT_SYMBOL(dev_get_mac_address); 9091 9092 /** 9093 * dev_change_carrier - Change device carrier 9094 * @dev: device 9095 * @new_carrier: new value 9096 * 9097 * Change device carrier 9098 */ 9099 int dev_change_carrier(struct net_device *dev, bool new_carrier) 9100 { 9101 const struct net_device_ops *ops = dev->netdev_ops; 9102 9103 if (!ops->ndo_change_carrier) 9104 return -EOPNOTSUPP; 9105 if (!netif_device_present(dev)) 9106 return -ENODEV; 9107 return ops->ndo_change_carrier(dev, new_carrier); 9108 } 9109 9110 /** 9111 * dev_get_phys_port_id - Get device physical port ID 9112 * @dev: device 9113 * @ppid: port ID 9114 * 9115 * Get device physical port ID 9116 */ 9117 int dev_get_phys_port_id(struct net_device *dev, 9118 struct netdev_phys_item_id *ppid) 9119 { 9120 const struct net_device_ops *ops = dev->netdev_ops; 9121 9122 if (!ops->ndo_get_phys_port_id) 9123 return -EOPNOTSUPP; 9124 return ops->ndo_get_phys_port_id(dev, ppid); 9125 } 9126 9127 /** 9128 * dev_get_phys_port_name - Get device physical port name 9129 * @dev: device 9130 * @name: port name 9131 * @len: limit of bytes to copy to name 9132 * 9133 * Get device physical port name 9134 */ 9135 int dev_get_phys_port_name(struct net_device *dev, 9136 char *name, size_t len) 9137 { 9138 const struct net_device_ops *ops = dev->netdev_ops; 9139 int err; 9140 9141 if (ops->ndo_get_phys_port_name) { 9142 err = ops->ndo_get_phys_port_name(dev, name, len); 9143 if (err != -EOPNOTSUPP) 9144 return err; 9145 } 9146 return devlink_compat_phys_port_name_get(dev, name, len); 9147 } 9148 9149 /** 9150 * dev_get_port_parent_id - Get the device's port parent identifier 9151 * @dev: network device 9152 * @ppid: pointer to a storage for the port's parent identifier 9153 * @recurse: allow/disallow recursion to lower devices 9154 * 9155 * Get the devices's port parent identifier 9156 */ 9157 int dev_get_port_parent_id(struct net_device *dev, 9158 struct netdev_phys_item_id *ppid, 9159 bool recurse) 9160 { 9161 const struct net_device_ops *ops = dev->netdev_ops; 9162 struct netdev_phys_item_id first = { }; 9163 struct net_device *lower_dev; 9164 struct list_head *iter; 9165 int err; 9166 9167 if (ops->ndo_get_port_parent_id) { 9168 err = ops->ndo_get_port_parent_id(dev, ppid); 9169 if (err != -EOPNOTSUPP) 9170 return err; 9171 } 9172 9173 err = devlink_compat_switch_id_get(dev, ppid); 9174 if (!recurse || err != -EOPNOTSUPP) 9175 return err; 9176 9177 netdev_for_each_lower_dev(dev, lower_dev, iter) { 9178 err = dev_get_port_parent_id(lower_dev, ppid, true); 9179 if (err) 9180 break; 9181 if (!first.id_len) 9182 first = *ppid; 9183 else if (memcmp(&first, ppid, sizeof(*ppid))) 9184 return -EOPNOTSUPP; 9185 } 9186 9187 return err; 9188 } 9189 EXPORT_SYMBOL(dev_get_port_parent_id); 9190 9191 /** 9192 * netdev_port_same_parent_id - Indicate if two network devices have 9193 * the same port parent identifier 9194 * @a: first network device 9195 * @b: second network device 9196 */ 9197 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b) 9198 { 9199 struct netdev_phys_item_id a_id = { }; 9200 struct netdev_phys_item_id b_id = { }; 9201 9202 if (dev_get_port_parent_id(a, &a_id, true) || 9203 dev_get_port_parent_id(b, &b_id, true)) 9204 return false; 9205 9206 return netdev_phys_item_id_same(&a_id, &b_id); 9207 } 9208 EXPORT_SYMBOL(netdev_port_same_parent_id); 9209 9210 /** 9211 * dev_change_proto_down - set carrier according to proto_down. 9212 * 9213 * @dev: device 9214 * @proto_down: new value 9215 */ 9216 int dev_change_proto_down(struct net_device *dev, bool proto_down) 9217 { 9218 if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN)) 9219 return -EOPNOTSUPP; 9220 if (!netif_device_present(dev)) 9221 return -ENODEV; 9222 if (proto_down) 9223 netif_carrier_off(dev); 9224 else 9225 netif_carrier_on(dev); 9226 WRITE_ONCE(dev->proto_down, proto_down); 9227 return 0; 9228 } 9229 9230 /** 9231 * dev_change_proto_down_reason - proto down reason 9232 * 9233 * @dev: device 9234 * @mask: proto down mask 9235 * @value: proto down value 9236 */ 9237 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask, 9238 u32 value) 9239 { 9240 u32 proto_down_reason; 9241 int b; 9242 9243 if (!mask) { 9244 proto_down_reason = value; 9245 } else { 9246 proto_down_reason = dev->proto_down_reason; 9247 for_each_set_bit(b, &mask, 32) { 9248 if (value & (1 << b)) 9249 proto_down_reason |= BIT(b); 9250 else 9251 proto_down_reason &= ~BIT(b); 9252 } 9253 } 9254 WRITE_ONCE(dev->proto_down_reason, proto_down_reason); 9255 } 9256 9257 struct bpf_xdp_link { 9258 struct bpf_link link; 9259 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */ 9260 int flags; 9261 }; 9262 9263 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags) 9264 { 9265 if (flags & XDP_FLAGS_HW_MODE) 9266 return XDP_MODE_HW; 9267 if (flags & XDP_FLAGS_DRV_MODE) 9268 return XDP_MODE_DRV; 9269 if (flags & XDP_FLAGS_SKB_MODE) 9270 return XDP_MODE_SKB; 9271 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB; 9272 } 9273 9274 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode) 9275 { 9276 switch (mode) { 9277 case XDP_MODE_SKB: 9278 return generic_xdp_install; 9279 case XDP_MODE_DRV: 9280 case XDP_MODE_HW: 9281 return dev->netdev_ops->ndo_bpf; 9282 default: 9283 return NULL; 9284 } 9285 } 9286 9287 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev, 9288 enum bpf_xdp_mode mode) 9289 { 9290 return dev->xdp_state[mode].link; 9291 } 9292 9293 static struct bpf_prog *dev_xdp_prog(struct net_device *dev, 9294 enum bpf_xdp_mode mode) 9295 { 9296 struct bpf_xdp_link *link = dev_xdp_link(dev, mode); 9297 9298 if (link) 9299 return link->link.prog; 9300 return dev->xdp_state[mode].prog; 9301 } 9302 9303 u8 dev_xdp_prog_count(struct net_device *dev) 9304 { 9305 u8 count = 0; 9306 int i; 9307 9308 for (i = 0; i < __MAX_XDP_MODE; i++) 9309 if (dev->xdp_state[i].prog || dev->xdp_state[i].link) 9310 count++; 9311 return count; 9312 } 9313 EXPORT_SYMBOL_GPL(dev_xdp_prog_count); 9314 9315 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode) 9316 { 9317 struct bpf_prog *prog = dev_xdp_prog(dev, mode); 9318 9319 return prog ? prog->aux->id : 0; 9320 } 9321 9322 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode, 9323 struct bpf_xdp_link *link) 9324 { 9325 dev->xdp_state[mode].link = link; 9326 dev->xdp_state[mode].prog = NULL; 9327 } 9328 9329 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode, 9330 struct bpf_prog *prog) 9331 { 9332 dev->xdp_state[mode].link = NULL; 9333 dev->xdp_state[mode].prog = prog; 9334 } 9335 9336 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode, 9337 bpf_op_t bpf_op, struct netlink_ext_ack *extack, 9338 u32 flags, struct bpf_prog *prog) 9339 { 9340 struct netdev_bpf xdp; 9341 int err; 9342 9343 memset(&xdp, 0, sizeof(xdp)); 9344 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG; 9345 xdp.extack = extack; 9346 xdp.flags = flags; 9347 xdp.prog = prog; 9348 9349 /* Drivers assume refcnt is already incremented (i.e, prog pointer is 9350 * "moved" into driver), so they don't increment it on their own, but 9351 * they do decrement refcnt when program is detached or replaced. 9352 * Given net_device also owns link/prog, we need to bump refcnt here 9353 * to prevent drivers from underflowing it. 9354 */ 9355 if (prog) 9356 bpf_prog_inc(prog); 9357 err = bpf_op(dev, &xdp); 9358 if (err) { 9359 if (prog) 9360 bpf_prog_put(prog); 9361 return err; 9362 } 9363 9364 if (mode != XDP_MODE_HW) 9365 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog); 9366 9367 return 0; 9368 } 9369 9370 static void dev_xdp_uninstall(struct net_device *dev) 9371 { 9372 struct bpf_xdp_link *link; 9373 struct bpf_prog *prog; 9374 enum bpf_xdp_mode mode; 9375 bpf_op_t bpf_op; 9376 9377 ASSERT_RTNL(); 9378 9379 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) { 9380 prog = dev_xdp_prog(dev, mode); 9381 if (!prog) 9382 continue; 9383 9384 bpf_op = dev_xdp_bpf_op(dev, mode); 9385 if (!bpf_op) 9386 continue; 9387 9388 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL)); 9389 9390 /* auto-detach link from net device */ 9391 link = dev_xdp_link(dev, mode); 9392 if (link) 9393 link->dev = NULL; 9394 else 9395 bpf_prog_put(prog); 9396 9397 dev_xdp_set_link(dev, mode, NULL); 9398 } 9399 } 9400 9401 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack, 9402 struct bpf_xdp_link *link, struct bpf_prog *new_prog, 9403 struct bpf_prog *old_prog, u32 flags) 9404 { 9405 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES); 9406 struct bpf_prog *cur_prog; 9407 struct net_device *upper; 9408 struct list_head *iter; 9409 enum bpf_xdp_mode mode; 9410 bpf_op_t bpf_op; 9411 int err; 9412 9413 ASSERT_RTNL(); 9414 9415 /* either link or prog attachment, never both */ 9416 if (link && (new_prog || old_prog)) 9417 return -EINVAL; 9418 /* link supports only XDP mode flags */ 9419 if (link && (flags & ~XDP_FLAGS_MODES)) { 9420 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment"); 9421 return -EINVAL; 9422 } 9423 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */ 9424 if (num_modes > 1) { 9425 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set"); 9426 return -EINVAL; 9427 } 9428 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */ 9429 if (!num_modes && dev_xdp_prog_count(dev) > 1) { 9430 NL_SET_ERR_MSG(extack, 9431 "More than one program loaded, unset mode is ambiguous"); 9432 return -EINVAL; 9433 } 9434 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */ 9435 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) { 9436 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified"); 9437 return -EINVAL; 9438 } 9439 9440 mode = dev_xdp_mode(dev, flags); 9441 /* can't replace attached link */ 9442 if (dev_xdp_link(dev, mode)) { 9443 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link"); 9444 return -EBUSY; 9445 } 9446 9447 /* don't allow if an upper device already has a program */ 9448 netdev_for_each_upper_dev_rcu(dev, upper, iter) { 9449 if (dev_xdp_prog_count(upper) > 0) { 9450 NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program"); 9451 return -EEXIST; 9452 } 9453 } 9454 9455 cur_prog = dev_xdp_prog(dev, mode); 9456 /* can't replace attached prog with link */ 9457 if (link && cur_prog) { 9458 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link"); 9459 return -EBUSY; 9460 } 9461 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) { 9462 NL_SET_ERR_MSG(extack, "Active program does not match expected"); 9463 return -EEXIST; 9464 } 9465 9466 /* put effective new program into new_prog */ 9467 if (link) 9468 new_prog = link->link.prog; 9469 9470 if (new_prog) { 9471 bool offload = mode == XDP_MODE_HW; 9472 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB 9473 ? XDP_MODE_DRV : XDP_MODE_SKB; 9474 9475 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) { 9476 NL_SET_ERR_MSG(extack, "XDP program already attached"); 9477 return -EBUSY; 9478 } 9479 if (!offload && dev_xdp_prog(dev, other_mode)) { 9480 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time"); 9481 return -EEXIST; 9482 } 9483 if (!offload && bpf_prog_is_offloaded(new_prog->aux)) { 9484 NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported"); 9485 return -EINVAL; 9486 } 9487 if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) { 9488 NL_SET_ERR_MSG(extack, "Program bound to different device"); 9489 return -EINVAL; 9490 } 9491 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) { 9492 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device"); 9493 return -EINVAL; 9494 } 9495 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) { 9496 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device"); 9497 return -EINVAL; 9498 } 9499 } 9500 9501 /* don't call drivers if the effective program didn't change */ 9502 if (new_prog != cur_prog) { 9503 bpf_op = dev_xdp_bpf_op(dev, mode); 9504 if (!bpf_op) { 9505 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode"); 9506 return -EOPNOTSUPP; 9507 } 9508 9509 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog); 9510 if (err) 9511 return err; 9512 } 9513 9514 if (link) 9515 dev_xdp_set_link(dev, mode, link); 9516 else 9517 dev_xdp_set_prog(dev, mode, new_prog); 9518 if (cur_prog) 9519 bpf_prog_put(cur_prog); 9520 9521 return 0; 9522 } 9523 9524 static int dev_xdp_attach_link(struct net_device *dev, 9525 struct netlink_ext_ack *extack, 9526 struct bpf_xdp_link *link) 9527 { 9528 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags); 9529 } 9530 9531 static int dev_xdp_detach_link(struct net_device *dev, 9532 struct netlink_ext_ack *extack, 9533 struct bpf_xdp_link *link) 9534 { 9535 enum bpf_xdp_mode mode; 9536 bpf_op_t bpf_op; 9537 9538 ASSERT_RTNL(); 9539 9540 mode = dev_xdp_mode(dev, link->flags); 9541 if (dev_xdp_link(dev, mode) != link) 9542 return -EINVAL; 9543 9544 bpf_op = dev_xdp_bpf_op(dev, mode); 9545 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL)); 9546 dev_xdp_set_link(dev, mode, NULL); 9547 return 0; 9548 } 9549 9550 static void bpf_xdp_link_release(struct bpf_link *link) 9551 { 9552 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9553 9554 rtnl_lock(); 9555 9556 /* if racing with net_device's tear down, xdp_link->dev might be 9557 * already NULL, in which case link was already auto-detached 9558 */ 9559 if (xdp_link->dev) { 9560 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link)); 9561 xdp_link->dev = NULL; 9562 } 9563 9564 rtnl_unlock(); 9565 } 9566 9567 static int bpf_xdp_link_detach(struct bpf_link *link) 9568 { 9569 bpf_xdp_link_release(link); 9570 return 0; 9571 } 9572 9573 static void bpf_xdp_link_dealloc(struct bpf_link *link) 9574 { 9575 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9576 9577 kfree(xdp_link); 9578 } 9579 9580 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link, 9581 struct seq_file *seq) 9582 { 9583 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9584 u32 ifindex = 0; 9585 9586 rtnl_lock(); 9587 if (xdp_link->dev) 9588 ifindex = xdp_link->dev->ifindex; 9589 rtnl_unlock(); 9590 9591 seq_printf(seq, "ifindex:\t%u\n", ifindex); 9592 } 9593 9594 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link, 9595 struct bpf_link_info *info) 9596 { 9597 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9598 u32 ifindex = 0; 9599 9600 rtnl_lock(); 9601 if (xdp_link->dev) 9602 ifindex = xdp_link->dev->ifindex; 9603 rtnl_unlock(); 9604 9605 info->xdp.ifindex = ifindex; 9606 return 0; 9607 } 9608 9609 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog, 9610 struct bpf_prog *old_prog) 9611 { 9612 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9613 enum bpf_xdp_mode mode; 9614 bpf_op_t bpf_op; 9615 int err = 0; 9616 9617 rtnl_lock(); 9618 9619 /* link might have been auto-released already, so fail */ 9620 if (!xdp_link->dev) { 9621 err = -ENOLINK; 9622 goto out_unlock; 9623 } 9624 9625 if (old_prog && link->prog != old_prog) { 9626 err = -EPERM; 9627 goto out_unlock; 9628 } 9629 old_prog = link->prog; 9630 if (old_prog->type != new_prog->type || 9631 old_prog->expected_attach_type != new_prog->expected_attach_type) { 9632 err = -EINVAL; 9633 goto out_unlock; 9634 } 9635 9636 if (old_prog == new_prog) { 9637 /* no-op, don't disturb drivers */ 9638 bpf_prog_put(new_prog); 9639 goto out_unlock; 9640 } 9641 9642 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags); 9643 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode); 9644 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL, 9645 xdp_link->flags, new_prog); 9646 if (err) 9647 goto out_unlock; 9648 9649 old_prog = xchg(&link->prog, new_prog); 9650 bpf_prog_put(old_prog); 9651 9652 out_unlock: 9653 rtnl_unlock(); 9654 return err; 9655 } 9656 9657 static const struct bpf_link_ops bpf_xdp_link_lops = { 9658 .release = bpf_xdp_link_release, 9659 .dealloc = bpf_xdp_link_dealloc, 9660 .detach = bpf_xdp_link_detach, 9661 .show_fdinfo = bpf_xdp_link_show_fdinfo, 9662 .fill_link_info = bpf_xdp_link_fill_link_info, 9663 .update_prog = bpf_xdp_link_update, 9664 }; 9665 9666 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog) 9667 { 9668 struct net *net = current->nsproxy->net_ns; 9669 struct bpf_link_primer link_primer; 9670 struct netlink_ext_ack extack = {}; 9671 struct bpf_xdp_link *link; 9672 struct net_device *dev; 9673 int err, fd; 9674 9675 rtnl_lock(); 9676 dev = dev_get_by_index(net, attr->link_create.target_ifindex); 9677 if (!dev) { 9678 rtnl_unlock(); 9679 return -EINVAL; 9680 } 9681 9682 link = kzalloc(sizeof(*link), GFP_USER); 9683 if (!link) { 9684 err = -ENOMEM; 9685 goto unlock; 9686 } 9687 9688 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog); 9689 link->dev = dev; 9690 link->flags = attr->link_create.flags; 9691 9692 err = bpf_link_prime(&link->link, &link_primer); 9693 if (err) { 9694 kfree(link); 9695 goto unlock; 9696 } 9697 9698 err = dev_xdp_attach_link(dev, &extack, link); 9699 rtnl_unlock(); 9700 9701 if (err) { 9702 link->dev = NULL; 9703 bpf_link_cleanup(&link_primer); 9704 trace_bpf_xdp_link_attach_failed(extack._msg); 9705 goto out_put_dev; 9706 } 9707 9708 fd = bpf_link_settle(&link_primer); 9709 /* link itself doesn't hold dev's refcnt to not complicate shutdown */ 9710 dev_put(dev); 9711 return fd; 9712 9713 unlock: 9714 rtnl_unlock(); 9715 9716 out_put_dev: 9717 dev_put(dev); 9718 return err; 9719 } 9720 9721 /** 9722 * dev_change_xdp_fd - set or clear a bpf program for a device rx path 9723 * @dev: device 9724 * @extack: netlink extended ack 9725 * @fd: new program fd or negative value to clear 9726 * @expected_fd: old program fd that userspace expects to replace or clear 9727 * @flags: xdp-related flags 9728 * 9729 * Set or clear a bpf program for a device 9730 */ 9731 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 9732 int fd, int expected_fd, u32 flags) 9733 { 9734 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags); 9735 struct bpf_prog *new_prog = NULL, *old_prog = NULL; 9736 int err; 9737 9738 ASSERT_RTNL(); 9739 9740 if (fd >= 0) { 9741 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP, 9742 mode != XDP_MODE_SKB); 9743 if (IS_ERR(new_prog)) 9744 return PTR_ERR(new_prog); 9745 } 9746 9747 if (expected_fd >= 0) { 9748 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP, 9749 mode != XDP_MODE_SKB); 9750 if (IS_ERR(old_prog)) { 9751 err = PTR_ERR(old_prog); 9752 old_prog = NULL; 9753 goto err_out; 9754 } 9755 } 9756 9757 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags); 9758 9759 err_out: 9760 if (err && new_prog) 9761 bpf_prog_put(new_prog); 9762 if (old_prog) 9763 bpf_prog_put(old_prog); 9764 return err; 9765 } 9766 9767 /** 9768 * dev_index_reserve() - allocate an ifindex in a namespace 9769 * @net: the applicable net namespace 9770 * @ifindex: requested ifindex, pass %0 to get one allocated 9771 * 9772 * Allocate a ifindex for a new device. Caller must either use the ifindex 9773 * to store the device (via list_netdevice()) or call dev_index_release() 9774 * to give the index up. 9775 * 9776 * Return: a suitable unique value for a new device interface number or -errno. 9777 */ 9778 static int dev_index_reserve(struct net *net, u32 ifindex) 9779 { 9780 int err; 9781 9782 if (ifindex > INT_MAX) { 9783 DEBUG_NET_WARN_ON_ONCE(1); 9784 return -EINVAL; 9785 } 9786 9787 if (!ifindex) 9788 err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL, 9789 xa_limit_31b, &net->ifindex, GFP_KERNEL); 9790 else 9791 err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL); 9792 if (err < 0) 9793 return err; 9794 9795 return ifindex; 9796 } 9797 9798 static void dev_index_release(struct net *net, int ifindex) 9799 { 9800 /* Expect only unused indexes, unlist_netdevice() removes the used */ 9801 WARN_ON(xa_erase(&net->dev_by_index, ifindex)); 9802 } 9803 9804 /* Delayed registration/unregisteration */ 9805 LIST_HEAD(net_todo_list); 9806 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 9807 atomic_t dev_unreg_count = ATOMIC_INIT(0); 9808 9809 static void net_set_todo(struct net_device *dev) 9810 { 9811 list_add_tail(&dev->todo_list, &net_todo_list); 9812 } 9813 9814 static netdev_features_t netdev_sync_upper_features(struct net_device *lower, 9815 struct net_device *upper, netdev_features_t features) 9816 { 9817 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 9818 netdev_features_t feature; 9819 int feature_bit; 9820 9821 for_each_netdev_feature(upper_disables, feature_bit) { 9822 feature = __NETIF_F_BIT(feature_bit); 9823 if (!(upper->wanted_features & feature) 9824 && (features & feature)) { 9825 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n", 9826 &feature, upper->name); 9827 features &= ~feature; 9828 } 9829 } 9830 9831 return features; 9832 } 9833 9834 static void netdev_sync_lower_features(struct net_device *upper, 9835 struct net_device *lower, netdev_features_t features) 9836 { 9837 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 9838 netdev_features_t feature; 9839 int feature_bit; 9840 9841 for_each_netdev_feature(upper_disables, feature_bit) { 9842 feature = __NETIF_F_BIT(feature_bit); 9843 if (!(features & feature) && (lower->features & feature)) { 9844 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n", 9845 &feature, lower->name); 9846 lower->wanted_features &= ~feature; 9847 __netdev_update_features(lower); 9848 9849 if (unlikely(lower->features & feature)) 9850 netdev_WARN(upper, "failed to disable %pNF on %s!\n", 9851 &feature, lower->name); 9852 else 9853 netdev_features_change(lower); 9854 } 9855 } 9856 } 9857 9858 static netdev_features_t netdev_fix_features(struct net_device *dev, 9859 netdev_features_t features) 9860 { 9861 /* Fix illegal checksum combinations */ 9862 if ((features & NETIF_F_HW_CSUM) && 9863 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 9864 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 9865 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 9866 } 9867 9868 /* TSO requires that SG is present as well. */ 9869 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 9870 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 9871 features &= ~NETIF_F_ALL_TSO; 9872 } 9873 9874 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 9875 !(features & NETIF_F_IP_CSUM)) { 9876 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 9877 features &= ~NETIF_F_TSO; 9878 features &= ~NETIF_F_TSO_ECN; 9879 } 9880 9881 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 9882 !(features & NETIF_F_IPV6_CSUM)) { 9883 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 9884 features &= ~NETIF_F_TSO6; 9885 } 9886 9887 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */ 9888 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO)) 9889 features &= ~NETIF_F_TSO_MANGLEID; 9890 9891 /* TSO ECN requires that TSO is present as well. */ 9892 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 9893 features &= ~NETIF_F_TSO_ECN; 9894 9895 /* Software GSO depends on SG. */ 9896 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 9897 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 9898 features &= ~NETIF_F_GSO; 9899 } 9900 9901 /* GSO partial features require GSO partial be set */ 9902 if ((features & dev->gso_partial_features) && 9903 !(features & NETIF_F_GSO_PARTIAL)) { 9904 netdev_dbg(dev, 9905 "Dropping partially supported GSO features since no GSO partial.\n"); 9906 features &= ~dev->gso_partial_features; 9907 } 9908 9909 if (!(features & NETIF_F_RXCSUM)) { 9910 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet 9911 * successfully merged by hardware must also have the 9912 * checksum verified by hardware. If the user does not 9913 * want to enable RXCSUM, logically, we should disable GRO_HW. 9914 */ 9915 if (features & NETIF_F_GRO_HW) { 9916 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n"); 9917 features &= ~NETIF_F_GRO_HW; 9918 } 9919 } 9920 9921 /* LRO/HW-GRO features cannot be combined with RX-FCS */ 9922 if (features & NETIF_F_RXFCS) { 9923 if (features & NETIF_F_LRO) { 9924 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n"); 9925 features &= ~NETIF_F_LRO; 9926 } 9927 9928 if (features & NETIF_F_GRO_HW) { 9929 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n"); 9930 features &= ~NETIF_F_GRO_HW; 9931 } 9932 } 9933 9934 if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) { 9935 netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n"); 9936 features &= ~NETIF_F_LRO; 9937 } 9938 9939 if (features & NETIF_F_HW_TLS_TX) { 9940 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) == 9941 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM); 9942 bool hw_csum = features & NETIF_F_HW_CSUM; 9943 9944 if (!ip_csum && !hw_csum) { 9945 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n"); 9946 features &= ~NETIF_F_HW_TLS_TX; 9947 } 9948 } 9949 9950 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) { 9951 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n"); 9952 features &= ~NETIF_F_HW_TLS_RX; 9953 } 9954 9955 return features; 9956 } 9957 9958 int __netdev_update_features(struct net_device *dev) 9959 { 9960 struct net_device *upper, *lower; 9961 netdev_features_t features; 9962 struct list_head *iter; 9963 int err = -1; 9964 9965 ASSERT_RTNL(); 9966 9967 features = netdev_get_wanted_features(dev); 9968 9969 if (dev->netdev_ops->ndo_fix_features) 9970 features = dev->netdev_ops->ndo_fix_features(dev, features); 9971 9972 /* driver might be less strict about feature dependencies */ 9973 features = netdev_fix_features(dev, features); 9974 9975 /* some features can't be enabled if they're off on an upper device */ 9976 netdev_for_each_upper_dev_rcu(dev, upper, iter) 9977 features = netdev_sync_upper_features(dev, upper, features); 9978 9979 if (dev->features == features) 9980 goto sync_lower; 9981 9982 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 9983 &dev->features, &features); 9984 9985 if (dev->netdev_ops->ndo_set_features) 9986 err = dev->netdev_ops->ndo_set_features(dev, features); 9987 else 9988 err = 0; 9989 9990 if (unlikely(err < 0)) { 9991 netdev_err(dev, 9992 "set_features() failed (%d); wanted %pNF, left %pNF\n", 9993 err, &features, &dev->features); 9994 /* return non-0 since some features might have changed and 9995 * it's better to fire a spurious notification than miss it 9996 */ 9997 return -1; 9998 } 9999 10000 sync_lower: 10001 /* some features must be disabled on lower devices when disabled 10002 * on an upper device (think: bonding master or bridge) 10003 */ 10004 netdev_for_each_lower_dev(dev, lower, iter) 10005 netdev_sync_lower_features(dev, lower, features); 10006 10007 if (!err) { 10008 netdev_features_t diff = features ^ dev->features; 10009 10010 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) { 10011 /* udp_tunnel_{get,drop}_rx_info both need 10012 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the 10013 * device, or they won't do anything. 10014 * Thus we need to update dev->features 10015 * *before* calling udp_tunnel_get_rx_info, 10016 * but *after* calling udp_tunnel_drop_rx_info. 10017 */ 10018 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) { 10019 dev->features = features; 10020 udp_tunnel_get_rx_info(dev); 10021 } else { 10022 udp_tunnel_drop_rx_info(dev); 10023 } 10024 } 10025 10026 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) { 10027 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) { 10028 dev->features = features; 10029 err |= vlan_get_rx_ctag_filter_info(dev); 10030 } else { 10031 vlan_drop_rx_ctag_filter_info(dev); 10032 } 10033 } 10034 10035 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) { 10036 if (features & NETIF_F_HW_VLAN_STAG_FILTER) { 10037 dev->features = features; 10038 err |= vlan_get_rx_stag_filter_info(dev); 10039 } else { 10040 vlan_drop_rx_stag_filter_info(dev); 10041 } 10042 } 10043 10044 dev->features = features; 10045 } 10046 10047 return err < 0 ? 0 : 1; 10048 } 10049 10050 /** 10051 * netdev_update_features - recalculate device features 10052 * @dev: the device to check 10053 * 10054 * Recalculate dev->features set and send notifications if it 10055 * has changed. Should be called after driver or hardware dependent 10056 * conditions might have changed that influence the features. 10057 */ 10058 void netdev_update_features(struct net_device *dev) 10059 { 10060 if (__netdev_update_features(dev)) 10061 netdev_features_change(dev); 10062 } 10063 EXPORT_SYMBOL(netdev_update_features); 10064 10065 /** 10066 * netdev_change_features - recalculate device features 10067 * @dev: the device to check 10068 * 10069 * Recalculate dev->features set and send notifications even 10070 * if they have not changed. Should be called instead of 10071 * netdev_update_features() if also dev->vlan_features might 10072 * have changed to allow the changes to be propagated to stacked 10073 * VLAN devices. 10074 */ 10075 void netdev_change_features(struct net_device *dev) 10076 { 10077 __netdev_update_features(dev); 10078 netdev_features_change(dev); 10079 } 10080 EXPORT_SYMBOL(netdev_change_features); 10081 10082 /** 10083 * netif_stacked_transfer_operstate - transfer operstate 10084 * @rootdev: the root or lower level device to transfer state from 10085 * @dev: the device to transfer operstate to 10086 * 10087 * Transfer operational state from root to device. This is normally 10088 * called when a stacking relationship exists between the root 10089 * device and the device(a leaf device). 10090 */ 10091 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 10092 struct net_device *dev) 10093 { 10094 if (rootdev->operstate == IF_OPER_DORMANT) 10095 netif_dormant_on(dev); 10096 else 10097 netif_dormant_off(dev); 10098 10099 if (rootdev->operstate == IF_OPER_TESTING) 10100 netif_testing_on(dev); 10101 else 10102 netif_testing_off(dev); 10103 10104 if (netif_carrier_ok(rootdev)) 10105 netif_carrier_on(dev); 10106 else 10107 netif_carrier_off(dev); 10108 } 10109 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 10110 10111 static int netif_alloc_rx_queues(struct net_device *dev) 10112 { 10113 unsigned int i, count = dev->num_rx_queues; 10114 struct netdev_rx_queue *rx; 10115 size_t sz = count * sizeof(*rx); 10116 int err = 0; 10117 10118 BUG_ON(count < 1); 10119 10120 rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); 10121 if (!rx) 10122 return -ENOMEM; 10123 10124 dev->_rx = rx; 10125 10126 for (i = 0; i < count; i++) { 10127 rx[i].dev = dev; 10128 10129 /* XDP RX-queue setup */ 10130 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0); 10131 if (err < 0) 10132 goto err_rxq_info; 10133 } 10134 return 0; 10135 10136 err_rxq_info: 10137 /* Rollback successful reg's and free other resources */ 10138 while (i--) 10139 xdp_rxq_info_unreg(&rx[i].xdp_rxq); 10140 kvfree(dev->_rx); 10141 dev->_rx = NULL; 10142 return err; 10143 } 10144 10145 static void netif_free_rx_queues(struct net_device *dev) 10146 { 10147 unsigned int i, count = dev->num_rx_queues; 10148 10149 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */ 10150 if (!dev->_rx) 10151 return; 10152 10153 for (i = 0; i < count; i++) 10154 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq); 10155 10156 kvfree(dev->_rx); 10157 } 10158 10159 static void netdev_init_one_queue(struct net_device *dev, 10160 struct netdev_queue *queue, void *_unused) 10161 { 10162 /* Initialize queue lock */ 10163 spin_lock_init(&queue->_xmit_lock); 10164 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 10165 queue->xmit_lock_owner = -1; 10166 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 10167 queue->dev = dev; 10168 #ifdef CONFIG_BQL 10169 dql_init(&queue->dql, HZ); 10170 #endif 10171 } 10172 10173 static void netif_free_tx_queues(struct net_device *dev) 10174 { 10175 kvfree(dev->_tx); 10176 } 10177 10178 static int netif_alloc_netdev_queues(struct net_device *dev) 10179 { 10180 unsigned int count = dev->num_tx_queues; 10181 struct netdev_queue *tx; 10182 size_t sz = count * sizeof(*tx); 10183 10184 if (count < 1 || count > 0xffff) 10185 return -EINVAL; 10186 10187 tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); 10188 if (!tx) 10189 return -ENOMEM; 10190 10191 dev->_tx = tx; 10192 10193 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 10194 spin_lock_init(&dev->tx_global_lock); 10195 10196 return 0; 10197 } 10198 10199 void netif_tx_stop_all_queues(struct net_device *dev) 10200 { 10201 unsigned int i; 10202 10203 for (i = 0; i < dev->num_tx_queues; i++) { 10204 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 10205 10206 netif_tx_stop_queue(txq); 10207 } 10208 } 10209 EXPORT_SYMBOL(netif_tx_stop_all_queues); 10210 10211 static int netdev_do_alloc_pcpu_stats(struct net_device *dev) 10212 { 10213 void __percpu *v; 10214 10215 /* Drivers implementing ndo_get_peer_dev must support tstat 10216 * accounting, so that skb_do_redirect() can bump the dev's 10217 * RX stats upon network namespace switch. 10218 */ 10219 if (dev->netdev_ops->ndo_get_peer_dev && 10220 dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS) 10221 return -EOPNOTSUPP; 10222 10223 switch (dev->pcpu_stat_type) { 10224 case NETDEV_PCPU_STAT_NONE: 10225 return 0; 10226 case NETDEV_PCPU_STAT_LSTATS: 10227 v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats); 10228 break; 10229 case NETDEV_PCPU_STAT_TSTATS: 10230 v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats); 10231 break; 10232 case NETDEV_PCPU_STAT_DSTATS: 10233 v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats); 10234 break; 10235 default: 10236 return -EINVAL; 10237 } 10238 10239 return v ? 0 : -ENOMEM; 10240 } 10241 10242 static void netdev_do_free_pcpu_stats(struct net_device *dev) 10243 { 10244 switch (dev->pcpu_stat_type) { 10245 case NETDEV_PCPU_STAT_NONE: 10246 return; 10247 case NETDEV_PCPU_STAT_LSTATS: 10248 free_percpu(dev->lstats); 10249 break; 10250 case NETDEV_PCPU_STAT_TSTATS: 10251 free_percpu(dev->tstats); 10252 break; 10253 case NETDEV_PCPU_STAT_DSTATS: 10254 free_percpu(dev->dstats); 10255 break; 10256 } 10257 } 10258 10259 /** 10260 * register_netdevice() - register a network device 10261 * @dev: device to register 10262 * 10263 * Take a prepared network device structure and make it externally accessible. 10264 * A %NETDEV_REGISTER message is sent to the netdev notifier chain. 10265 * Callers must hold the rtnl lock - you may want register_netdev() 10266 * instead of this. 10267 */ 10268 int register_netdevice(struct net_device *dev) 10269 { 10270 int ret; 10271 struct net *net = dev_net(dev); 10272 10273 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE < 10274 NETDEV_FEATURE_COUNT); 10275 BUG_ON(dev_boot_phase); 10276 ASSERT_RTNL(); 10277 10278 might_sleep(); 10279 10280 /* When net_device's are persistent, this will be fatal. */ 10281 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 10282 BUG_ON(!net); 10283 10284 ret = ethtool_check_ops(dev->ethtool_ops); 10285 if (ret) 10286 return ret; 10287 10288 spin_lock_init(&dev->addr_list_lock); 10289 netdev_set_addr_lockdep_class(dev); 10290 10291 ret = dev_get_valid_name(net, dev, dev->name); 10292 if (ret < 0) 10293 goto out; 10294 10295 ret = -ENOMEM; 10296 dev->name_node = netdev_name_node_head_alloc(dev); 10297 if (!dev->name_node) 10298 goto out; 10299 10300 /* Init, if this function is available */ 10301 if (dev->netdev_ops->ndo_init) { 10302 ret = dev->netdev_ops->ndo_init(dev); 10303 if (ret) { 10304 if (ret > 0) 10305 ret = -EIO; 10306 goto err_free_name; 10307 } 10308 } 10309 10310 if (((dev->hw_features | dev->features) & 10311 NETIF_F_HW_VLAN_CTAG_FILTER) && 10312 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 10313 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 10314 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 10315 ret = -EINVAL; 10316 goto err_uninit; 10317 } 10318 10319 ret = netdev_do_alloc_pcpu_stats(dev); 10320 if (ret) 10321 goto err_uninit; 10322 10323 ret = dev_index_reserve(net, dev->ifindex); 10324 if (ret < 0) 10325 goto err_free_pcpu; 10326 dev->ifindex = ret; 10327 10328 /* Transfer changeable features to wanted_features and enable 10329 * software offloads (GSO and GRO). 10330 */ 10331 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF); 10332 dev->features |= NETIF_F_SOFT_FEATURES; 10333 10334 if (dev->udp_tunnel_nic_info) { 10335 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT; 10336 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT; 10337 } 10338 10339 dev->wanted_features = dev->features & dev->hw_features; 10340 10341 if (!(dev->flags & IFF_LOOPBACK)) 10342 dev->hw_features |= NETIF_F_NOCACHE_COPY; 10343 10344 /* If IPv4 TCP segmentation offload is supported we should also 10345 * allow the device to enable segmenting the frame with the option 10346 * of ignoring a static IP ID value. This doesn't enable the 10347 * feature itself but allows the user to enable it later. 10348 */ 10349 if (dev->hw_features & NETIF_F_TSO) 10350 dev->hw_features |= NETIF_F_TSO_MANGLEID; 10351 if (dev->vlan_features & NETIF_F_TSO) 10352 dev->vlan_features |= NETIF_F_TSO_MANGLEID; 10353 if (dev->mpls_features & NETIF_F_TSO) 10354 dev->mpls_features |= NETIF_F_TSO_MANGLEID; 10355 if (dev->hw_enc_features & NETIF_F_TSO) 10356 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 10357 10358 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 10359 */ 10360 dev->vlan_features |= NETIF_F_HIGHDMA; 10361 10362 /* Make NETIF_F_SG inheritable to tunnel devices. 10363 */ 10364 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL; 10365 10366 /* Make NETIF_F_SG inheritable to MPLS. 10367 */ 10368 dev->mpls_features |= NETIF_F_SG; 10369 10370 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 10371 ret = notifier_to_errno(ret); 10372 if (ret) 10373 goto err_ifindex_release; 10374 10375 ret = netdev_register_kobject(dev); 10376 10377 WRITE_ONCE(dev->reg_state, ret ? NETREG_UNREGISTERED : NETREG_REGISTERED); 10378 10379 if (ret) 10380 goto err_uninit_notify; 10381 10382 __netdev_update_features(dev); 10383 10384 /* 10385 * Default initial state at registry is that the 10386 * device is present. 10387 */ 10388 10389 set_bit(__LINK_STATE_PRESENT, &dev->state); 10390 10391 linkwatch_init_dev(dev); 10392 10393 dev_init_scheduler(dev); 10394 10395 netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL); 10396 list_netdevice(dev); 10397 10398 add_device_randomness(dev->dev_addr, dev->addr_len); 10399 10400 /* If the device has permanent device address, driver should 10401 * set dev_addr and also addr_assign_type should be set to 10402 * NET_ADDR_PERM (default value). 10403 */ 10404 if (dev->addr_assign_type == NET_ADDR_PERM) 10405 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 10406 10407 /* Notify protocols, that a new device appeared. */ 10408 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 10409 ret = notifier_to_errno(ret); 10410 if (ret) { 10411 /* Expect explicit free_netdev() on failure */ 10412 dev->needs_free_netdev = false; 10413 unregister_netdevice_queue(dev, NULL); 10414 goto out; 10415 } 10416 /* 10417 * Prevent userspace races by waiting until the network 10418 * device is fully setup before sending notifications. 10419 */ 10420 if (!dev->rtnl_link_ops || 10421 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 10422 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL); 10423 10424 out: 10425 return ret; 10426 10427 err_uninit_notify: 10428 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev); 10429 err_ifindex_release: 10430 dev_index_release(net, dev->ifindex); 10431 err_free_pcpu: 10432 netdev_do_free_pcpu_stats(dev); 10433 err_uninit: 10434 if (dev->netdev_ops->ndo_uninit) 10435 dev->netdev_ops->ndo_uninit(dev); 10436 if (dev->priv_destructor) 10437 dev->priv_destructor(dev); 10438 err_free_name: 10439 netdev_name_node_free(dev->name_node); 10440 goto out; 10441 } 10442 EXPORT_SYMBOL(register_netdevice); 10443 10444 /* Initialize the core of a dummy net device. 10445 * This is useful if you are calling this function after alloc_netdev(), 10446 * since it does not memset the net_device fields. 10447 */ 10448 static void init_dummy_netdev_core(struct net_device *dev) 10449 { 10450 /* make sure we BUG if trying to hit standard 10451 * register/unregister code path 10452 */ 10453 dev->reg_state = NETREG_DUMMY; 10454 10455 /* NAPI wants this */ 10456 INIT_LIST_HEAD(&dev->napi_list); 10457 10458 /* a dummy interface is started by default */ 10459 set_bit(__LINK_STATE_PRESENT, &dev->state); 10460 set_bit(__LINK_STATE_START, &dev->state); 10461 10462 /* napi_busy_loop stats accounting wants this */ 10463 dev_net_set(dev, &init_net); 10464 10465 /* Note : We dont allocate pcpu_refcnt for dummy devices, 10466 * because users of this 'device' dont need to change 10467 * its refcount. 10468 */ 10469 } 10470 10471 /** 10472 * init_dummy_netdev - init a dummy network device for NAPI 10473 * @dev: device to init 10474 * 10475 * This takes a network device structure and initializes the minimum 10476 * amount of fields so it can be used to schedule NAPI polls without 10477 * registering a full blown interface. This is to be used by drivers 10478 * that need to tie several hardware interfaces to a single NAPI 10479 * poll scheduler due to HW limitations. 10480 */ 10481 void init_dummy_netdev(struct net_device *dev) 10482 { 10483 /* Clear everything. Note we don't initialize spinlocks 10484 * as they aren't supposed to be taken by any of the 10485 * NAPI code and this dummy netdev is supposed to be 10486 * only ever used for NAPI polls 10487 */ 10488 memset(dev, 0, sizeof(struct net_device)); 10489 init_dummy_netdev_core(dev); 10490 } 10491 EXPORT_SYMBOL_GPL(init_dummy_netdev); 10492 10493 /** 10494 * register_netdev - register a network device 10495 * @dev: device to register 10496 * 10497 * Take a completed network device structure and add it to the kernel 10498 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 10499 * chain. 0 is returned on success. A negative errno code is returned 10500 * on a failure to set up the device, or if the name is a duplicate. 10501 * 10502 * This is a wrapper around register_netdevice that takes the rtnl semaphore 10503 * and expands the device name if you passed a format string to 10504 * alloc_netdev. 10505 */ 10506 int register_netdev(struct net_device *dev) 10507 { 10508 int err; 10509 10510 if (rtnl_lock_killable()) 10511 return -EINTR; 10512 err = register_netdevice(dev); 10513 rtnl_unlock(); 10514 return err; 10515 } 10516 EXPORT_SYMBOL(register_netdev); 10517 10518 int netdev_refcnt_read(const struct net_device *dev) 10519 { 10520 #ifdef CONFIG_PCPU_DEV_REFCNT 10521 int i, refcnt = 0; 10522 10523 for_each_possible_cpu(i) 10524 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 10525 return refcnt; 10526 #else 10527 return refcount_read(&dev->dev_refcnt); 10528 #endif 10529 } 10530 EXPORT_SYMBOL(netdev_refcnt_read); 10531 10532 int netdev_unregister_timeout_secs __read_mostly = 10; 10533 10534 #define WAIT_REFS_MIN_MSECS 1 10535 #define WAIT_REFS_MAX_MSECS 250 10536 /** 10537 * netdev_wait_allrefs_any - wait until all references are gone. 10538 * @list: list of net_devices to wait on 10539 * 10540 * This is called when unregistering network devices. 10541 * 10542 * Any protocol or device that holds a reference should register 10543 * for netdevice notification, and cleanup and put back the 10544 * reference if they receive an UNREGISTER event. 10545 * We can get stuck here if buggy protocols don't correctly 10546 * call dev_put. 10547 */ 10548 static struct net_device *netdev_wait_allrefs_any(struct list_head *list) 10549 { 10550 unsigned long rebroadcast_time, warning_time; 10551 struct net_device *dev; 10552 int wait = 0; 10553 10554 rebroadcast_time = warning_time = jiffies; 10555 10556 list_for_each_entry(dev, list, todo_list) 10557 if (netdev_refcnt_read(dev) == 1) 10558 return dev; 10559 10560 while (true) { 10561 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 10562 rtnl_lock(); 10563 10564 /* Rebroadcast unregister notification */ 10565 list_for_each_entry(dev, list, todo_list) 10566 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 10567 10568 __rtnl_unlock(); 10569 rcu_barrier(); 10570 rtnl_lock(); 10571 10572 list_for_each_entry(dev, list, todo_list) 10573 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 10574 &dev->state)) { 10575 /* We must not have linkwatch events 10576 * pending on unregister. If this 10577 * happens, we simply run the queue 10578 * unscheduled, resulting in a noop 10579 * for this device. 10580 */ 10581 linkwatch_run_queue(); 10582 break; 10583 } 10584 10585 __rtnl_unlock(); 10586 10587 rebroadcast_time = jiffies; 10588 } 10589 10590 rcu_barrier(); 10591 10592 if (!wait) { 10593 wait = WAIT_REFS_MIN_MSECS; 10594 } else { 10595 msleep(wait); 10596 wait = min(wait << 1, WAIT_REFS_MAX_MSECS); 10597 } 10598 10599 list_for_each_entry(dev, list, todo_list) 10600 if (netdev_refcnt_read(dev) == 1) 10601 return dev; 10602 10603 if (time_after(jiffies, warning_time + 10604 READ_ONCE(netdev_unregister_timeout_secs) * HZ)) { 10605 list_for_each_entry(dev, list, todo_list) { 10606 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 10607 dev->name, netdev_refcnt_read(dev)); 10608 ref_tracker_dir_print(&dev->refcnt_tracker, 10); 10609 } 10610 10611 warning_time = jiffies; 10612 } 10613 } 10614 } 10615 10616 /* The sequence is: 10617 * 10618 * rtnl_lock(); 10619 * ... 10620 * register_netdevice(x1); 10621 * register_netdevice(x2); 10622 * ... 10623 * unregister_netdevice(y1); 10624 * unregister_netdevice(y2); 10625 * ... 10626 * rtnl_unlock(); 10627 * free_netdev(y1); 10628 * free_netdev(y2); 10629 * 10630 * We are invoked by rtnl_unlock(). 10631 * This allows us to deal with problems: 10632 * 1) We can delete sysfs objects which invoke hotplug 10633 * without deadlocking with linkwatch via keventd. 10634 * 2) Since we run with the RTNL semaphore not held, we can sleep 10635 * safely in order to wait for the netdev refcnt to drop to zero. 10636 * 10637 * We must not return until all unregister events added during 10638 * the interval the lock was held have been completed. 10639 */ 10640 void netdev_run_todo(void) 10641 { 10642 struct net_device *dev, *tmp; 10643 struct list_head list; 10644 int cnt; 10645 #ifdef CONFIG_LOCKDEP 10646 struct list_head unlink_list; 10647 10648 list_replace_init(&net_unlink_list, &unlink_list); 10649 10650 while (!list_empty(&unlink_list)) { 10651 struct net_device *dev = list_first_entry(&unlink_list, 10652 struct net_device, 10653 unlink_list); 10654 list_del_init(&dev->unlink_list); 10655 dev->nested_level = dev->lower_level - 1; 10656 } 10657 #endif 10658 10659 /* Snapshot list, allow later requests */ 10660 list_replace_init(&net_todo_list, &list); 10661 10662 __rtnl_unlock(); 10663 10664 /* Wait for rcu callbacks to finish before next phase */ 10665 if (!list_empty(&list)) 10666 rcu_barrier(); 10667 10668 list_for_each_entry_safe(dev, tmp, &list, todo_list) { 10669 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 10670 netdev_WARN(dev, "run_todo but not unregistering\n"); 10671 list_del(&dev->todo_list); 10672 continue; 10673 } 10674 10675 WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERED); 10676 linkwatch_sync_dev(dev); 10677 } 10678 10679 cnt = 0; 10680 while (!list_empty(&list)) { 10681 dev = netdev_wait_allrefs_any(&list); 10682 list_del(&dev->todo_list); 10683 10684 /* paranoia */ 10685 BUG_ON(netdev_refcnt_read(dev) != 1); 10686 BUG_ON(!list_empty(&dev->ptype_all)); 10687 BUG_ON(!list_empty(&dev->ptype_specific)); 10688 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 10689 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 10690 10691 netdev_do_free_pcpu_stats(dev); 10692 if (dev->priv_destructor) 10693 dev->priv_destructor(dev); 10694 if (dev->needs_free_netdev) 10695 free_netdev(dev); 10696 10697 cnt++; 10698 10699 /* Free network device */ 10700 kobject_put(&dev->dev.kobj); 10701 } 10702 if (cnt && atomic_sub_and_test(cnt, &dev_unreg_count)) 10703 wake_up(&netdev_unregistering_wq); 10704 } 10705 10706 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has 10707 * all the same fields in the same order as net_device_stats, with only 10708 * the type differing, but rtnl_link_stats64 may have additional fields 10709 * at the end for newer counters. 10710 */ 10711 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 10712 const struct net_device_stats *netdev_stats) 10713 { 10714 size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t); 10715 const atomic_long_t *src = (atomic_long_t *)netdev_stats; 10716 u64 *dst = (u64 *)stats64; 10717 10718 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64)); 10719 for (i = 0; i < n; i++) 10720 dst[i] = (unsigned long)atomic_long_read(&src[i]); 10721 /* zero out counters that only exist in rtnl_link_stats64 */ 10722 memset((char *)stats64 + n * sizeof(u64), 0, 10723 sizeof(*stats64) - n * sizeof(u64)); 10724 } 10725 EXPORT_SYMBOL(netdev_stats_to_stats64); 10726 10727 static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc( 10728 struct net_device *dev) 10729 { 10730 struct net_device_core_stats __percpu *p; 10731 10732 p = alloc_percpu_gfp(struct net_device_core_stats, 10733 GFP_ATOMIC | __GFP_NOWARN); 10734 10735 if (p && cmpxchg(&dev->core_stats, NULL, p)) 10736 free_percpu(p); 10737 10738 /* This READ_ONCE() pairs with the cmpxchg() above */ 10739 return READ_ONCE(dev->core_stats); 10740 } 10741 10742 noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset) 10743 { 10744 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */ 10745 struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats); 10746 unsigned long __percpu *field; 10747 10748 if (unlikely(!p)) { 10749 p = netdev_core_stats_alloc(dev); 10750 if (!p) 10751 return; 10752 } 10753 10754 field = (__force unsigned long __percpu *)((__force void *)p + offset); 10755 this_cpu_inc(*field); 10756 } 10757 EXPORT_SYMBOL_GPL(netdev_core_stats_inc); 10758 10759 /** 10760 * dev_get_stats - get network device statistics 10761 * @dev: device to get statistics from 10762 * @storage: place to store stats 10763 * 10764 * Get network statistics from device. Return @storage. 10765 * The device driver may provide its own method by setting 10766 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 10767 * otherwise the internal statistics structure is used. 10768 */ 10769 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 10770 struct rtnl_link_stats64 *storage) 10771 { 10772 const struct net_device_ops *ops = dev->netdev_ops; 10773 const struct net_device_core_stats __percpu *p; 10774 10775 if (ops->ndo_get_stats64) { 10776 memset(storage, 0, sizeof(*storage)); 10777 ops->ndo_get_stats64(dev, storage); 10778 } else if (ops->ndo_get_stats) { 10779 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 10780 } else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_TSTATS) { 10781 dev_get_tstats64(dev, storage); 10782 } else { 10783 netdev_stats_to_stats64(storage, &dev->stats); 10784 } 10785 10786 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */ 10787 p = READ_ONCE(dev->core_stats); 10788 if (p) { 10789 const struct net_device_core_stats *core_stats; 10790 int i; 10791 10792 for_each_possible_cpu(i) { 10793 core_stats = per_cpu_ptr(p, i); 10794 storage->rx_dropped += READ_ONCE(core_stats->rx_dropped); 10795 storage->tx_dropped += READ_ONCE(core_stats->tx_dropped); 10796 storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler); 10797 storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped); 10798 } 10799 } 10800 return storage; 10801 } 10802 EXPORT_SYMBOL(dev_get_stats); 10803 10804 /** 10805 * dev_fetch_sw_netstats - get per-cpu network device statistics 10806 * @s: place to store stats 10807 * @netstats: per-cpu network stats to read from 10808 * 10809 * Read per-cpu network statistics and populate the related fields in @s. 10810 */ 10811 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s, 10812 const struct pcpu_sw_netstats __percpu *netstats) 10813 { 10814 int cpu; 10815 10816 for_each_possible_cpu(cpu) { 10817 u64 rx_packets, rx_bytes, tx_packets, tx_bytes; 10818 const struct pcpu_sw_netstats *stats; 10819 unsigned int start; 10820 10821 stats = per_cpu_ptr(netstats, cpu); 10822 do { 10823 start = u64_stats_fetch_begin(&stats->syncp); 10824 rx_packets = u64_stats_read(&stats->rx_packets); 10825 rx_bytes = u64_stats_read(&stats->rx_bytes); 10826 tx_packets = u64_stats_read(&stats->tx_packets); 10827 tx_bytes = u64_stats_read(&stats->tx_bytes); 10828 } while (u64_stats_fetch_retry(&stats->syncp, start)); 10829 10830 s->rx_packets += rx_packets; 10831 s->rx_bytes += rx_bytes; 10832 s->tx_packets += tx_packets; 10833 s->tx_bytes += tx_bytes; 10834 } 10835 } 10836 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats); 10837 10838 /** 10839 * dev_get_tstats64 - ndo_get_stats64 implementation 10840 * @dev: device to get statistics from 10841 * @s: place to store stats 10842 * 10843 * Populate @s from dev->stats and dev->tstats. Can be used as 10844 * ndo_get_stats64() callback. 10845 */ 10846 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s) 10847 { 10848 netdev_stats_to_stats64(s, &dev->stats); 10849 dev_fetch_sw_netstats(s, dev->tstats); 10850 } 10851 EXPORT_SYMBOL_GPL(dev_get_tstats64); 10852 10853 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 10854 { 10855 struct netdev_queue *queue = dev_ingress_queue(dev); 10856 10857 #ifdef CONFIG_NET_CLS_ACT 10858 if (queue) 10859 return queue; 10860 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 10861 if (!queue) 10862 return NULL; 10863 netdev_init_one_queue(dev, queue, NULL); 10864 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 10865 RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc); 10866 rcu_assign_pointer(dev->ingress_queue, queue); 10867 #endif 10868 return queue; 10869 } 10870 10871 static const struct ethtool_ops default_ethtool_ops; 10872 10873 void netdev_set_default_ethtool_ops(struct net_device *dev, 10874 const struct ethtool_ops *ops) 10875 { 10876 if (dev->ethtool_ops == &default_ethtool_ops) 10877 dev->ethtool_ops = ops; 10878 } 10879 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 10880 10881 /** 10882 * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default 10883 * @dev: netdev to enable the IRQ coalescing on 10884 * 10885 * Sets a conservative default for SW IRQ coalescing. Users can use 10886 * sysfs attributes to override the default values. 10887 */ 10888 void netdev_sw_irq_coalesce_default_on(struct net_device *dev) 10889 { 10890 WARN_ON(dev->reg_state == NETREG_REGISTERED); 10891 10892 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) { 10893 dev->gro_flush_timeout = 20000; 10894 dev->napi_defer_hard_irqs = 1; 10895 } 10896 } 10897 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on); 10898 10899 void netdev_freemem(struct net_device *dev) 10900 { 10901 char *addr = (char *)dev - dev->padded; 10902 10903 kvfree(addr); 10904 } 10905 10906 /** 10907 * alloc_netdev_mqs - allocate network device 10908 * @sizeof_priv: size of private data to allocate space for 10909 * @name: device name format string 10910 * @name_assign_type: origin of device name 10911 * @setup: callback to initialize device 10912 * @txqs: the number of TX subqueues to allocate 10913 * @rxqs: the number of RX subqueues to allocate 10914 * 10915 * Allocates a struct net_device with private data area for driver use 10916 * and performs basic initialization. Also allocates subqueue structs 10917 * for each queue on the device. 10918 */ 10919 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 10920 unsigned char name_assign_type, 10921 void (*setup)(struct net_device *), 10922 unsigned int txqs, unsigned int rxqs) 10923 { 10924 struct net_device *dev; 10925 unsigned int alloc_size; 10926 struct net_device *p; 10927 10928 BUG_ON(strlen(name) >= sizeof(dev->name)); 10929 10930 if (txqs < 1) { 10931 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 10932 return NULL; 10933 } 10934 10935 if (rxqs < 1) { 10936 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 10937 return NULL; 10938 } 10939 10940 alloc_size = sizeof(struct net_device); 10941 if (sizeof_priv) { 10942 /* ensure 32-byte alignment of private area */ 10943 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 10944 alloc_size += sizeof_priv; 10945 } 10946 /* ensure 32-byte alignment of whole construct */ 10947 alloc_size += NETDEV_ALIGN - 1; 10948 10949 p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); 10950 if (!p) 10951 return NULL; 10952 10953 dev = PTR_ALIGN(p, NETDEV_ALIGN); 10954 dev->padded = (char *)dev - (char *)p; 10955 10956 ref_tracker_dir_init(&dev->refcnt_tracker, 128, name); 10957 #ifdef CONFIG_PCPU_DEV_REFCNT 10958 dev->pcpu_refcnt = alloc_percpu(int); 10959 if (!dev->pcpu_refcnt) 10960 goto free_dev; 10961 __dev_hold(dev); 10962 #else 10963 refcount_set(&dev->dev_refcnt, 1); 10964 #endif 10965 10966 if (dev_addr_init(dev)) 10967 goto free_pcpu; 10968 10969 dev_mc_init(dev); 10970 dev_uc_init(dev); 10971 10972 dev_net_set(dev, &init_net); 10973 10974 dev->gso_max_size = GSO_LEGACY_MAX_SIZE; 10975 dev->xdp_zc_max_segs = 1; 10976 dev->gso_max_segs = GSO_MAX_SEGS; 10977 dev->gro_max_size = GRO_LEGACY_MAX_SIZE; 10978 dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE; 10979 dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE; 10980 dev->tso_max_size = TSO_LEGACY_MAX_SIZE; 10981 dev->tso_max_segs = TSO_MAX_SEGS; 10982 dev->upper_level = 1; 10983 dev->lower_level = 1; 10984 #ifdef CONFIG_LOCKDEP 10985 dev->nested_level = 0; 10986 INIT_LIST_HEAD(&dev->unlink_list); 10987 #endif 10988 10989 INIT_LIST_HEAD(&dev->napi_list); 10990 INIT_LIST_HEAD(&dev->unreg_list); 10991 INIT_LIST_HEAD(&dev->close_list); 10992 INIT_LIST_HEAD(&dev->link_watch_list); 10993 INIT_LIST_HEAD(&dev->adj_list.upper); 10994 INIT_LIST_HEAD(&dev->adj_list.lower); 10995 INIT_LIST_HEAD(&dev->ptype_all); 10996 INIT_LIST_HEAD(&dev->ptype_specific); 10997 INIT_LIST_HEAD(&dev->net_notifier_list); 10998 #ifdef CONFIG_NET_SCHED 10999 hash_init(dev->qdisc_hash); 11000 #endif 11001 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 11002 setup(dev); 11003 11004 if (!dev->tx_queue_len) { 11005 dev->priv_flags |= IFF_NO_QUEUE; 11006 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; 11007 } 11008 11009 dev->num_tx_queues = txqs; 11010 dev->real_num_tx_queues = txqs; 11011 if (netif_alloc_netdev_queues(dev)) 11012 goto free_all; 11013 11014 dev->num_rx_queues = rxqs; 11015 dev->real_num_rx_queues = rxqs; 11016 if (netif_alloc_rx_queues(dev)) 11017 goto free_all; 11018 11019 strcpy(dev->name, name); 11020 dev->name_assign_type = name_assign_type; 11021 dev->group = INIT_NETDEV_GROUP; 11022 if (!dev->ethtool_ops) 11023 dev->ethtool_ops = &default_ethtool_ops; 11024 11025 nf_hook_netdev_init(dev); 11026 11027 return dev; 11028 11029 free_all: 11030 free_netdev(dev); 11031 return NULL; 11032 11033 free_pcpu: 11034 #ifdef CONFIG_PCPU_DEV_REFCNT 11035 free_percpu(dev->pcpu_refcnt); 11036 free_dev: 11037 #endif 11038 netdev_freemem(dev); 11039 return NULL; 11040 } 11041 EXPORT_SYMBOL(alloc_netdev_mqs); 11042 11043 /** 11044 * free_netdev - free network device 11045 * @dev: device 11046 * 11047 * This function does the last stage of destroying an allocated device 11048 * interface. The reference to the device object is released. If this 11049 * is the last reference then it will be freed.Must be called in process 11050 * context. 11051 */ 11052 void free_netdev(struct net_device *dev) 11053 { 11054 struct napi_struct *p, *n; 11055 11056 might_sleep(); 11057 11058 /* When called immediately after register_netdevice() failed the unwind 11059 * handling may still be dismantling the device. Handle that case by 11060 * deferring the free. 11061 */ 11062 if (dev->reg_state == NETREG_UNREGISTERING) { 11063 ASSERT_RTNL(); 11064 dev->needs_free_netdev = true; 11065 return; 11066 } 11067 11068 netif_free_tx_queues(dev); 11069 netif_free_rx_queues(dev); 11070 11071 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 11072 11073 /* Flush device addresses */ 11074 dev_addr_flush(dev); 11075 11076 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 11077 netif_napi_del(p); 11078 11079 ref_tracker_dir_exit(&dev->refcnt_tracker); 11080 #ifdef CONFIG_PCPU_DEV_REFCNT 11081 free_percpu(dev->pcpu_refcnt); 11082 dev->pcpu_refcnt = NULL; 11083 #endif 11084 free_percpu(dev->core_stats); 11085 dev->core_stats = NULL; 11086 free_percpu(dev->xdp_bulkq); 11087 dev->xdp_bulkq = NULL; 11088 11089 /* Compatibility with error handling in drivers */ 11090 if (dev->reg_state == NETREG_UNINITIALIZED || 11091 dev->reg_state == NETREG_DUMMY) { 11092 netdev_freemem(dev); 11093 return; 11094 } 11095 11096 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 11097 WRITE_ONCE(dev->reg_state, NETREG_RELEASED); 11098 11099 /* will free via device release */ 11100 put_device(&dev->dev); 11101 } 11102 EXPORT_SYMBOL(free_netdev); 11103 11104 /** 11105 * alloc_netdev_dummy - Allocate and initialize a dummy net device. 11106 * @sizeof_priv: size of private data to allocate space for 11107 * 11108 * Return: the allocated net_device on success, NULL otherwise 11109 */ 11110 struct net_device *alloc_netdev_dummy(int sizeof_priv) 11111 { 11112 return alloc_netdev(sizeof_priv, "dummy#", NET_NAME_UNKNOWN, 11113 init_dummy_netdev_core); 11114 } 11115 EXPORT_SYMBOL_GPL(alloc_netdev_dummy); 11116 11117 /** 11118 * synchronize_net - Synchronize with packet receive processing 11119 * 11120 * Wait for packets currently being received to be done. 11121 * Does not block later packets from starting. 11122 */ 11123 void synchronize_net(void) 11124 { 11125 might_sleep(); 11126 if (rtnl_is_locked()) 11127 synchronize_rcu_expedited(); 11128 else 11129 synchronize_rcu(); 11130 } 11131 EXPORT_SYMBOL(synchronize_net); 11132 11133 /** 11134 * unregister_netdevice_queue - remove device from the kernel 11135 * @dev: device 11136 * @head: list 11137 * 11138 * This function shuts down a device interface and removes it 11139 * from the kernel tables. 11140 * If head not NULL, device is queued to be unregistered later. 11141 * 11142 * Callers must hold the rtnl semaphore. You may want 11143 * unregister_netdev() instead of this. 11144 */ 11145 11146 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 11147 { 11148 ASSERT_RTNL(); 11149 11150 if (head) { 11151 list_move_tail(&dev->unreg_list, head); 11152 } else { 11153 LIST_HEAD(single); 11154 11155 list_add(&dev->unreg_list, &single); 11156 unregister_netdevice_many(&single); 11157 } 11158 } 11159 EXPORT_SYMBOL(unregister_netdevice_queue); 11160 11161 void unregister_netdevice_many_notify(struct list_head *head, 11162 u32 portid, const struct nlmsghdr *nlh) 11163 { 11164 struct net_device *dev, *tmp; 11165 LIST_HEAD(close_head); 11166 int cnt = 0; 11167 11168 BUG_ON(dev_boot_phase); 11169 ASSERT_RTNL(); 11170 11171 if (list_empty(head)) 11172 return; 11173 11174 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 11175 /* Some devices call without registering 11176 * for initialization unwind. Remove those 11177 * devices and proceed with the remaining. 11178 */ 11179 if (dev->reg_state == NETREG_UNINITIALIZED) { 11180 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 11181 dev->name, dev); 11182 11183 WARN_ON(1); 11184 list_del(&dev->unreg_list); 11185 continue; 11186 } 11187 dev->dismantle = true; 11188 BUG_ON(dev->reg_state != NETREG_REGISTERED); 11189 } 11190 11191 /* If device is running, close it first. */ 11192 list_for_each_entry(dev, head, unreg_list) 11193 list_add_tail(&dev->close_list, &close_head); 11194 dev_close_many(&close_head, true); 11195 11196 list_for_each_entry(dev, head, unreg_list) { 11197 /* And unlink it from device chain. */ 11198 unlist_netdevice(dev); 11199 WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERING); 11200 } 11201 flush_all_backlogs(); 11202 11203 synchronize_net(); 11204 11205 list_for_each_entry(dev, head, unreg_list) { 11206 struct sk_buff *skb = NULL; 11207 11208 /* Shutdown queueing discipline. */ 11209 dev_shutdown(dev); 11210 dev_tcx_uninstall(dev); 11211 dev_xdp_uninstall(dev); 11212 bpf_dev_bound_netdev_unregister(dev); 11213 11214 netdev_offload_xstats_disable_all(dev); 11215 11216 /* Notify protocols, that we are about to destroy 11217 * this device. They should clean all the things. 11218 */ 11219 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 11220 11221 if (!dev->rtnl_link_ops || 11222 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 11223 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0, 11224 GFP_KERNEL, NULL, 0, 11225 portid, nlh); 11226 11227 /* 11228 * Flush the unicast and multicast chains 11229 */ 11230 dev_uc_flush(dev); 11231 dev_mc_flush(dev); 11232 11233 netdev_name_node_alt_flush(dev); 11234 netdev_name_node_free(dev->name_node); 11235 11236 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev); 11237 11238 if (dev->netdev_ops->ndo_uninit) 11239 dev->netdev_ops->ndo_uninit(dev); 11240 11241 if (skb) 11242 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh); 11243 11244 /* Notifier chain MUST detach us all upper devices. */ 11245 WARN_ON(netdev_has_any_upper_dev(dev)); 11246 WARN_ON(netdev_has_any_lower_dev(dev)); 11247 11248 /* Remove entries from kobject tree */ 11249 netdev_unregister_kobject(dev); 11250 #ifdef CONFIG_XPS 11251 /* Remove XPS queueing entries */ 11252 netif_reset_xps_queues_gt(dev, 0); 11253 #endif 11254 } 11255 11256 synchronize_net(); 11257 11258 list_for_each_entry(dev, head, unreg_list) { 11259 netdev_put(dev, &dev->dev_registered_tracker); 11260 net_set_todo(dev); 11261 cnt++; 11262 } 11263 atomic_add(cnt, &dev_unreg_count); 11264 11265 list_del(head); 11266 } 11267 11268 /** 11269 * unregister_netdevice_many - unregister many devices 11270 * @head: list of devices 11271 * 11272 * Note: As most callers use a stack allocated list_head, 11273 * we force a list_del() to make sure stack wont be corrupted later. 11274 */ 11275 void unregister_netdevice_many(struct list_head *head) 11276 { 11277 unregister_netdevice_many_notify(head, 0, NULL); 11278 } 11279 EXPORT_SYMBOL(unregister_netdevice_many); 11280 11281 /** 11282 * unregister_netdev - remove device from the kernel 11283 * @dev: device 11284 * 11285 * This function shuts down a device interface and removes it 11286 * from the kernel tables. 11287 * 11288 * This is just a wrapper for unregister_netdevice that takes 11289 * the rtnl semaphore. In general you want to use this and not 11290 * unregister_netdevice. 11291 */ 11292 void unregister_netdev(struct net_device *dev) 11293 { 11294 rtnl_lock(); 11295 unregister_netdevice(dev); 11296 rtnl_unlock(); 11297 } 11298 EXPORT_SYMBOL(unregister_netdev); 11299 11300 /** 11301 * __dev_change_net_namespace - move device to different nethost namespace 11302 * @dev: device 11303 * @net: network namespace 11304 * @pat: If not NULL name pattern to try if the current device name 11305 * is already taken in the destination network namespace. 11306 * @new_ifindex: If not zero, specifies device index in the target 11307 * namespace. 11308 * 11309 * This function shuts down a device interface and moves it 11310 * to a new network namespace. On success 0 is returned, on 11311 * a failure a netagive errno code is returned. 11312 * 11313 * Callers must hold the rtnl semaphore. 11314 */ 11315 11316 int __dev_change_net_namespace(struct net_device *dev, struct net *net, 11317 const char *pat, int new_ifindex) 11318 { 11319 struct netdev_name_node *name_node; 11320 struct net *net_old = dev_net(dev); 11321 char new_name[IFNAMSIZ] = {}; 11322 int err, new_nsid; 11323 11324 ASSERT_RTNL(); 11325 11326 /* Don't allow namespace local devices to be moved. */ 11327 err = -EINVAL; 11328 if (dev->features & NETIF_F_NETNS_LOCAL) 11329 goto out; 11330 11331 /* Ensure the device has been registrered */ 11332 if (dev->reg_state != NETREG_REGISTERED) 11333 goto out; 11334 11335 /* Get out if there is nothing todo */ 11336 err = 0; 11337 if (net_eq(net_old, net)) 11338 goto out; 11339 11340 /* Pick the destination device name, and ensure 11341 * we can use it in the destination network namespace. 11342 */ 11343 err = -EEXIST; 11344 if (netdev_name_in_use(net, dev->name)) { 11345 /* We get here if we can't use the current device name */ 11346 if (!pat) 11347 goto out; 11348 err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST); 11349 if (err < 0) 11350 goto out; 11351 } 11352 /* Check that none of the altnames conflicts. */ 11353 err = -EEXIST; 11354 netdev_for_each_altname(dev, name_node) 11355 if (netdev_name_in_use(net, name_node->name)) 11356 goto out; 11357 11358 /* Check that new_ifindex isn't used yet. */ 11359 if (new_ifindex) { 11360 err = dev_index_reserve(net, new_ifindex); 11361 if (err < 0) 11362 goto out; 11363 } else { 11364 /* If there is an ifindex conflict assign a new one */ 11365 err = dev_index_reserve(net, dev->ifindex); 11366 if (err == -EBUSY) 11367 err = dev_index_reserve(net, 0); 11368 if (err < 0) 11369 goto out; 11370 new_ifindex = err; 11371 } 11372 11373 /* 11374 * And now a mini version of register_netdevice unregister_netdevice. 11375 */ 11376 11377 /* If device is running close it first. */ 11378 dev_close(dev); 11379 11380 /* And unlink it from device chain */ 11381 unlist_netdevice(dev); 11382 11383 synchronize_net(); 11384 11385 /* Shutdown queueing discipline. */ 11386 dev_shutdown(dev); 11387 11388 /* Notify protocols, that we are about to destroy 11389 * this device. They should clean all the things. 11390 * 11391 * Note that dev->reg_state stays at NETREG_REGISTERED. 11392 * This is wanted because this way 8021q and macvlan know 11393 * the device is just moving and can keep their slaves up. 11394 */ 11395 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 11396 rcu_barrier(); 11397 11398 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL); 11399 11400 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid, 11401 new_ifindex); 11402 11403 /* 11404 * Flush the unicast and multicast chains 11405 */ 11406 dev_uc_flush(dev); 11407 dev_mc_flush(dev); 11408 11409 /* Send a netdev-removed uevent to the old namespace */ 11410 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 11411 netdev_adjacent_del_links(dev); 11412 11413 /* Move per-net netdevice notifiers that are following the netdevice */ 11414 move_netdevice_notifiers_dev_net(dev, net); 11415 11416 /* Actually switch the network namespace */ 11417 dev_net_set(dev, net); 11418 dev->ifindex = new_ifindex; 11419 11420 if (new_name[0]) { 11421 /* Rename the netdev to prepared name */ 11422 write_seqlock_bh(&netdev_rename_lock); 11423 strscpy(dev->name, new_name, IFNAMSIZ); 11424 write_sequnlock_bh(&netdev_rename_lock); 11425 } 11426 11427 /* Fixup kobjects */ 11428 dev_set_uevent_suppress(&dev->dev, 1); 11429 err = device_rename(&dev->dev, dev->name); 11430 dev_set_uevent_suppress(&dev->dev, 0); 11431 WARN_ON(err); 11432 11433 /* Send a netdev-add uevent to the new namespace */ 11434 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 11435 netdev_adjacent_add_links(dev); 11436 11437 /* Adapt owner in case owning user namespace of target network 11438 * namespace is different from the original one. 11439 */ 11440 err = netdev_change_owner(dev, net_old, net); 11441 WARN_ON(err); 11442 11443 /* Add the device back in the hashes */ 11444 list_netdevice(dev); 11445 11446 /* Notify protocols, that a new device appeared. */ 11447 call_netdevice_notifiers(NETDEV_REGISTER, dev); 11448 11449 /* 11450 * Prevent userspace races by waiting until the network 11451 * device is fully setup before sending notifications. 11452 */ 11453 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL); 11454 11455 synchronize_net(); 11456 err = 0; 11457 out: 11458 return err; 11459 } 11460 EXPORT_SYMBOL_GPL(__dev_change_net_namespace); 11461 11462 static int dev_cpu_dead(unsigned int oldcpu) 11463 { 11464 struct sk_buff **list_skb; 11465 struct sk_buff *skb; 11466 unsigned int cpu; 11467 struct softnet_data *sd, *oldsd, *remsd = NULL; 11468 11469 local_irq_disable(); 11470 cpu = smp_processor_id(); 11471 sd = &per_cpu(softnet_data, cpu); 11472 oldsd = &per_cpu(softnet_data, oldcpu); 11473 11474 /* Find end of our completion_queue. */ 11475 list_skb = &sd->completion_queue; 11476 while (*list_skb) 11477 list_skb = &(*list_skb)->next; 11478 /* Append completion queue from offline CPU. */ 11479 *list_skb = oldsd->completion_queue; 11480 oldsd->completion_queue = NULL; 11481 11482 /* Append output queue from offline CPU. */ 11483 if (oldsd->output_queue) { 11484 *sd->output_queue_tailp = oldsd->output_queue; 11485 sd->output_queue_tailp = oldsd->output_queue_tailp; 11486 oldsd->output_queue = NULL; 11487 oldsd->output_queue_tailp = &oldsd->output_queue; 11488 } 11489 /* Append NAPI poll list from offline CPU, with one exception : 11490 * process_backlog() must be called by cpu owning percpu backlog. 11491 * We properly handle process_queue & input_pkt_queue later. 11492 */ 11493 while (!list_empty(&oldsd->poll_list)) { 11494 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 11495 struct napi_struct, 11496 poll_list); 11497 11498 list_del_init(&napi->poll_list); 11499 if (napi->poll == process_backlog) 11500 napi->state &= NAPIF_STATE_THREADED; 11501 else 11502 ____napi_schedule(sd, napi); 11503 } 11504 11505 raise_softirq_irqoff(NET_TX_SOFTIRQ); 11506 local_irq_enable(); 11507 11508 if (!use_backlog_threads()) { 11509 #ifdef CONFIG_RPS 11510 remsd = oldsd->rps_ipi_list; 11511 oldsd->rps_ipi_list = NULL; 11512 #endif 11513 /* send out pending IPI's on offline CPU */ 11514 net_rps_send_ipi(remsd); 11515 } 11516 11517 /* Process offline CPU's input_pkt_queue */ 11518 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 11519 netif_rx(skb); 11520 rps_input_queue_head_incr(oldsd); 11521 } 11522 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 11523 netif_rx(skb); 11524 rps_input_queue_head_incr(oldsd); 11525 } 11526 11527 return 0; 11528 } 11529 11530 /** 11531 * netdev_increment_features - increment feature set by one 11532 * @all: current feature set 11533 * @one: new feature set 11534 * @mask: mask feature set 11535 * 11536 * Computes a new feature set after adding a device with feature set 11537 * @one to the master device with current feature set @all. Will not 11538 * enable anything that is off in @mask. Returns the new feature set. 11539 */ 11540 netdev_features_t netdev_increment_features(netdev_features_t all, 11541 netdev_features_t one, netdev_features_t mask) 11542 { 11543 if (mask & NETIF_F_HW_CSUM) 11544 mask |= NETIF_F_CSUM_MASK; 11545 mask |= NETIF_F_VLAN_CHALLENGED; 11546 11547 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask; 11548 all &= one | ~NETIF_F_ALL_FOR_ALL; 11549 11550 /* If one device supports hw checksumming, set for all. */ 11551 if (all & NETIF_F_HW_CSUM) 11552 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM); 11553 11554 return all; 11555 } 11556 EXPORT_SYMBOL(netdev_increment_features); 11557 11558 static struct hlist_head * __net_init netdev_create_hash(void) 11559 { 11560 int i; 11561 struct hlist_head *hash; 11562 11563 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL); 11564 if (hash != NULL) 11565 for (i = 0; i < NETDEV_HASHENTRIES; i++) 11566 INIT_HLIST_HEAD(&hash[i]); 11567 11568 return hash; 11569 } 11570 11571 /* Initialize per network namespace state */ 11572 static int __net_init netdev_init(struct net *net) 11573 { 11574 BUILD_BUG_ON(GRO_HASH_BUCKETS > 11575 8 * sizeof_field(struct napi_struct, gro_bitmask)); 11576 11577 INIT_LIST_HEAD(&net->dev_base_head); 11578 11579 net->dev_name_head = netdev_create_hash(); 11580 if (net->dev_name_head == NULL) 11581 goto err_name; 11582 11583 net->dev_index_head = netdev_create_hash(); 11584 if (net->dev_index_head == NULL) 11585 goto err_idx; 11586 11587 xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1); 11588 11589 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain); 11590 11591 return 0; 11592 11593 err_idx: 11594 kfree(net->dev_name_head); 11595 err_name: 11596 return -ENOMEM; 11597 } 11598 11599 /** 11600 * netdev_drivername - network driver for the device 11601 * @dev: network device 11602 * 11603 * Determine network driver for device. 11604 */ 11605 const char *netdev_drivername(const struct net_device *dev) 11606 { 11607 const struct device_driver *driver; 11608 const struct device *parent; 11609 const char *empty = ""; 11610 11611 parent = dev->dev.parent; 11612 if (!parent) 11613 return empty; 11614 11615 driver = parent->driver; 11616 if (driver && driver->name) 11617 return driver->name; 11618 return empty; 11619 } 11620 11621 static void __netdev_printk(const char *level, const struct net_device *dev, 11622 struct va_format *vaf) 11623 { 11624 if (dev && dev->dev.parent) { 11625 dev_printk_emit(level[1] - '0', 11626 dev->dev.parent, 11627 "%s %s %s%s: %pV", 11628 dev_driver_string(dev->dev.parent), 11629 dev_name(dev->dev.parent), 11630 netdev_name(dev), netdev_reg_state(dev), 11631 vaf); 11632 } else if (dev) { 11633 printk("%s%s%s: %pV", 11634 level, netdev_name(dev), netdev_reg_state(dev), vaf); 11635 } else { 11636 printk("%s(NULL net_device): %pV", level, vaf); 11637 } 11638 } 11639 11640 void netdev_printk(const char *level, const struct net_device *dev, 11641 const char *format, ...) 11642 { 11643 struct va_format vaf; 11644 va_list args; 11645 11646 va_start(args, format); 11647 11648 vaf.fmt = format; 11649 vaf.va = &args; 11650 11651 __netdev_printk(level, dev, &vaf); 11652 11653 va_end(args); 11654 } 11655 EXPORT_SYMBOL(netdev_printk); 11656 11657 #define define_netdev_printk_level(func, level) \ 11658 void func(const struct net_device *dev, const char *fmt, ...) \ 11659 { \ 11660 struct va_format vaf; \ 11661 va_list args; \ 11662 \ 11663 va_start(args, fmt); \ 11664 \ 11665 vaf.fmt = fmt; \ 11666 vaf.va = &args; \ 11667 \ 11668 __netdev_printk(level, dev, &vaf); \ 11669 \ 11670 va_end(args); \ 11671 } \ 11672 EXPORT_SYMBOL(func); 11673 11674 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 11675 define_netdev_printk_level(netdev_alert, KERN_ALERT); 11676 define_netdev_printk_level(netdev_crit, KERN_CRIT); 11677 define_netdev_printk_level(netdev_err, KERN_ERR); 11678 define_netdev_printk_level(netdev_warn, KERN_WARNING); 11679 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 11680 define_netdev_printk_level(netdev_info, KERN_INFO); 11681 11682 static void __net_exit netdev_exit(struct net *net) 11683 { 11684 kfree(net->dev_name_head); 11685 kfree(net->dev_index_head); 11686 xa_destroy(&net->dev_by_index); 11687 if (net != &init_net) 11688 WARN_ON_ONCE(!list_empty(&net->dev_base_head)); 11689 } 11690 11691 static struct pernet_operations __net_initdata netdev_net_ops = { 11692 .init = netdev_init, 11693 .exit = netdev_exit, 11694 }; 11695 11696 static void __net_exit default_device_exit_net(struct net *net) 11697 { 11698 struct netdev_name_node *name_node, *tmp; 11699 struct net_device *dev, *aux; 11700 /* 11701 * Push all migratable network devices back to the 11702 * initial network namespace 11703 */ 11704 ASSERT_RTNL(); 11705 for_each_netdev_safe(net, dev, aux) { 11706 int err; 11707 char fb_name[IFNAMSIZ]; 11708 11709 /* Ignore unmoveable devices (i.e. loopback) */ 11710 if (dev->features & NETIF_F_NETNS_LOCAL) 11711 continue; 11712 11713 /* Leave virtual devices for the generic cleanup */ 11714 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund) 11715 continue; 11716 11717 /* Push remaining network devices to init_net */ 11718 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 11719 if (netdev_name_in_use(&init_net, fb_name)) 11720 snprintf(fb_name, IFNAMSIZ, "dev%%d"); 11721 11722 netdev_for_each_altname_safe(dev, name_node, tmp) 11723 if (netdev_name_in_use(&init_net, name_node->name)) 11724 __netdev_name_node_alt_destroy(name_node); 11725 11726 err = dev_change_net_namespace(dev, &init_net, fb_name); 11727 if (err) { 11728 pr_emerg("%s: failed to move %s to init_net: %d\n", 11729 __func__, dev->name, err); 11730 BUG(); 11731 } 11732 } 11733 } 11734 11735 static void __net_exit default_device_exit_batch(struct list_head *net_list) 11736 { 11737 /* At exit all network devices most be removed from a network 11738 * namespace. Do this in the reverse order of registration. 11739 * Do this across as many network namespaces as possible to 11740 * improve batching efficiency. 11741 */ 11742 struct net_device *dev; 11743 struct net *net; 11744 LIST_HEAD(dev_kill_list); 11745 11746 rtnl_lock(); 11747 list_for_each_entry(net, net_list, exit_list) { 11748 default_device_exit_net(net); 11749 cond_resched(); 11750 } 11751 11752 list_for_each_entry(net, net_list, exit_list) { 11753 for_each_netdev_reverse(net, dev) { 11754 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 11755 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 11756 else 11757 unregister_netdevice_queue(dev, &dev_kill_list); 11758 } 11759 } 11760 unregister_netdevice_many(&dev_kill_list); 11761 rtnl_unlock(); 11762 } 11763 11764 static struct pernet_operations __net_initdata default_device_ops = { 11765 .exit_batch = default_device_exit_batch, 11766 }; 11767 11768 static void __init net_dev_struct_check(void) 11769 { 11770 /* TX read-mostly hotpath */ 11771 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, priv_flags); 11772 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, netdev_ops); 11773 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, header_ops); 11774 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, _tx); 11775 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, real_num_tx_queues); 11776 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_size); 11777 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_ipv4_max_size); 11778 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_segs); 11779 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_partial_features); 11780 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, num_tc); 11781 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, mtu); 11782 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, needed_headroom); 11783 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tc_to_txq); 11784 #ifdef CONFIG_XPS 11785 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, xps_maps); 11786 #endif 11787 #ifdef CONFIG_NETFILTER_EGRESS 11788 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, nf_hooks_egress); 11789 #endif 11790 #ifdef CONFIG_NET_XGRESS 11791 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tcx_egress); 11792 #endif 11793 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_tx, 160); 11794 11795 /* TXRX read-mostly hotpath */ 11796 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, lstats); 11797 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, state); 11798 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, flags); 11799 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, hard_header_len); 11800 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, features); 11801 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, ip6_ptr); 11802 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_txrx, 46); 11803 11804 /* RX read-mostly hotpath */ 11805 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ptype_specific); 11806 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ifindex); 11807 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, real_num_rx_queues); 11808 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, _rx); 11809 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_flush_timeout); 11810 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, napi_defer_hard_irqs); 11811 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_max_size); 11812 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_ipv4_max_size); 11813 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler); 11814 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler_data); 11815 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, nd_net); 11816 #ifdef CONFIG_NETPOLL 11817 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, npinfo); 11818 #endif 11819 #ifdef CONFIG_NET_XGRESS 11820 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, tcx_ingress); 11821 #endif 11822 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_rx, 104); 11823 } 11824 11825 /* 11826 * Initialize the DEV module. At boot time this walks the device list and 11827 * unhooks any devices that fail to initialise (normally hardware not 11828 * present) and leaves us with a valid list of present and active devices. 11829 * 11830 */ 11831 11832 /* We allocate 256 pages for each CPU if PAGE_SHIFT is 12 */ 11833 #define SYSTEM_PERCPU_PAGE_POOL_SIZE ((1 << 20) / PAGE_SIZE) 11834 11835 static int net_page_pool_create(int cpuid) 11836 { 11837 #if IS_ENABLED(CONFIG_PAGE_POOL) 11838 struct page_pool_params page_pool_params = { 11839 .pool_size = SYSTEM_PERCPU_PAGE_POOL_SIZE, 11840 .flags = PP_FLAG_SYSTEM_POOL, 11841 .nid = cpu_to_mem(cpuid), 11842 }; 11843 struct page_pool *pp_ptr; 11844 11845 pp_ptr = page_pool_create_percpu(&page_pool_params, cpuid); 11846 if (IS_ERR(pp_ptr)) 11847 return -ENOMEM; 11848 11849 per_cpu(system_page_pool, cpuid) = pp_ptr; 11850 #endif 11851 return 0; 11852 } 11853 11854 static int backlog_napi_should_run(unsigned int cpu) 11855 { 11856 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu); 11857 struct napi_struct *napi = &sd->backlog; 11858 11859 return test_bit(NAPI_STATE_SCHED_THREADED, &napi->state); 11860 } 11861 11862 static void run_backlog_napi(unsigned int cpu) 11863 { 11864 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu); 11865 11866 napi_threaded_poll_loop(&sd->backlog); 11867 } 11868 11869 static void backlog_napi_setup(unsigned int cpu) 11870 { 11871 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu); 11872 struct napi_struct *napi = &sd->backlog; 11873 11874 napi->thread = this_cpu_read(backlog_napi); 11875 set_bit(NAPI_STATE_THREADED, &napi->state); 11876 } 11877 11878 static struct smp_hotplug_thread backlog_threads = { 11879 .store = &backlog_napi, 11880 .thread_should_run = backlog_napi_should_run, 11881 .thread_fn = run_backlog_napi, 11882 .thread_comm = "backlog_napi/%u", 11883 .setup = backlog_napi_setup, 11884 }; 11885 11886 /* 11887 * This is called single threaded during boot, so no need 11888 * to take the rtnl semaphore. 11889 */ 11890 static int __init net_dev_init(void) 11891 { 11892 int i, rc = -ENOMEM; 11893 11894 BUG_ON(!dev_boot_phase); 11895 11896 net_dev_struct_check(); 11897 11898 if (dev_proc_init()) 11899 goto out; 11900 11901 if (netdev_kobject_init()) 11902 goto out; 11903 11904 for (i = 0; i < PTYPE_HASH_SIZE; i++) 11905 INIT_LIST_HEAD(&ptype_base[i]); 11906 11907 if (register_pernet_subsys(&netdev_net_ops)) 11908 goto out; 11909 11910 /* 11911 * Initialise the packet receive queues. 11912 */ 11913 11914 for_each_possible_cpu(i) { 11915 struct work_struct *flush = per_cpu_ptr(&flush_works, i); 11916 struct softnet_data *sd = &per_cpu(softnet_data, i); 11917 11918 INIT_WORK(flush, flush_backlog); 11919 11920 skb_queue_head_init(&sd->input_pkt_queue); 11921 skb_queue_head_init(&sd->process_queue); 11922 #ifdef CONFIG_XFRM_OFFLOAD 11923 skb_queue_head_init(&sd->xfrm_backlog); 11924 #endif 11925 INIT_LIST_HEAD(&sd->poll_list); 11926 sd->output_queue_tailp = &sd->output_queue; 11927 #ifdef CONFIG_RPS 11928 INIT_CSD(&sd->csd, rps_trigger_softirq, sd); 11929 sd->cpu = i; 11930 #endif 11931 INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd); 11932 spin_lock_init(&sd->defer_lock); 11933 11934 init_gro_hash(&sd->backlog); 11935 sd->backlog.poll = process_backlog; 11936 sd->backlog.weight = weight_p; 11937 INIT_LIST_HEAD(&sd->backlog.poll_list); 11938 11939 if (net_page_pool_create(i)) 11940 goto out; 11941 } 11942 if (use_backlog_threads()) 11943 smpboot_register_percpu_thread(&backlog_threads); 11944 11945 dev_boot_phase = 0; 11946 11947 /* The loopback device is special if any other network devices 11948 * is present in a network namespace the loopback device must 11949 * be present. Since we now dynamically allocate and free the 11950 * loopback device ensure this invariant is maintained by 11951 * keeping the loopback device as the first device on the 11952 * list of network devices. Ensuring the loopback devices 11953 * is the first device that appears and the last network device 11954 * that disappears. 11955 */ 11956 if (register_pernet_device(&loopback_net_ops)) 11957 goto out; 11958 11959 if (register_pernet_device(&default_device_ops)) 11960 goto out; 11961 11962 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 11963 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 11964 11965 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead", 11966 NULL, dev_cpu_dead); 11967 WARN_ON(rc < 0); 11968 rc = 0; 11969 11970 /* avoid static key IPIs to isolated CPUs */ 11971 if (housekeeping_enabled(HK_TYPE_MISC)) 11972 net_enable_timestamp(); 11973 out: 11974 if (rc < 0) { 11975 for_each_possible_cpu(i) { 11976 struct page_pool *pp_ptr; 11977 11978 pp_ptr = per_cpu(system_page_pool, i); 11979 if (!pp_ptr) 11980 continue; 11981 11982 page_pool_destroy(pp_ptr); 11983 per_cpu(system_page_pool, i) = NULL; 11984 } 11985 } 11986 11987 return rc; 11988 } 11989 11990 subsys_initcall(net_dev_init); 11991