1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <linux/uaccess.h> 76 #include <linux/bitops.h> 77 #include <linux/capability.h> 78 #include <linux/cpu.h> 79 #include <linux/types.h> 80 #include <linux/kernel.h> 81 #include <linux/hash.h> 82 #include <linux/slab.h> 83 #include <linux/sched.h> 84 #include <linux/sched/mm.h> 85 #include <linux/mutex.h> 86 #include <linux/string.h> 87 #include <linux/mm.h> 88 #include <linux/socket.h> 89 #include <linux/sockios.h> 90 #include <linux/errno.h> 91 #include <linux/interrupt.h> 92 #include <linux/if_ether.h> 93 #include <linux/netdevice.h> 94 #include <linux/etherdevice.h> 95 #include <linux/ethtool.h> 96 #include <linux/notifier.h> 97 #include <linux/skbuff.h> 98 #include <linux/bpf.h> 99 #include <linux/bpf_trace.h> 100 #include <net/net_namespace.h> 101 #include <net/sock.h> 102 #include <net/busy_poll.h> 103 #include <linux/rtnetlink.h> 104 #include <linux/stat.h> 105 #include <net/dst.h> 106 #include <net/dst_metadata.h> 107 #include <net/pkt_sched.h> 108 #include <net/pkt_cls.h> 109 #include <net/checksum.h> 110 #include <net/xfrm.h> 111 #include <linux/highmem.h> 112 #include <linux/init.h> 113 #include <linux/module.h> 114 #include <linux/netpoll.h> 115 #include <linux/rcupdate.h> 116 #include <linux/delay.h> 117 #include <net/iw_handler.h> 118 #include <asm/current.h> 119 #include <linux/audit.h> 120 #include <linux/dmaengine.h> 121 #include <linux/err.h> 122 #include <linux/ctype.h> 123 #include <linux/if_arp.h> 124 #include <linux/if_vlan.h> 125 #include <linux/ip.h> 126 #include <net/ip.h> 127 #include <net/mpls.h> 128 #include <linux/ipv6.h> 129 #include <linux/in.h> 130 #include <linux/jhash.h> 131 #include <linux/random.h> 132 #include <trace/events/napi.h> 133 #include <trace/events/net.h> 134 #include <trace/events/skb.h> 135 #include <linux/pci.h> 136 #include <linux/inetdevice.h> 137 #include <linux/cpu_rmap.h> 138 #include <linux/static_key.h> 139 #include <linux/hashtable.h> 140 #include <linux/vmalloc.h> 141 #include <linux/if_macvlan.h> 142 #include <linux/errqueue.h> 143 #include <linux/hrtimer.h> 144 #include <linux/netfilter_ingress.h> 145 #include <linux/crash_dump.h> 146 #include <linux/sctp.h> 147 #include <net/udp_tunnel.h> 148 #include <linux/net_namespace.h> 149 150 #include "net-sysfs.h" 151 152 /* Instead of increasing this, you should create a hash table. */ 153 #define MAX_GRO_SKBS 8 154 155 /* This should be increased if a protocol with a bigger head is added. */ 156 #define GRO_MAX_HEAD (MAX_HEADER + 128) 157 158 static DEFINE_SPINLOCK(ptype_lock); 159 static DEFINE_SPINLOCK(offload_lock); 160 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 161 struct list_head ptype_all __read_mostly; /* Taps */ 162 static struct list_head offload_base __read_mostly; 163 164 static int netif_rx_internal(struct sk_buff *skb); 165 static int call_netdevice_notifiers_info(unsigned long val, 166 struct netdev_notifier_info *info); 167 static struct napi_struct *napi_by_id(unsigned int napi_id); 168 169 /* 170 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 171 * semaphore. 172 * 173 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 174 * 175 * Writers must hold the rtnl semaphore while they loop through the 176 * dev_base_head list, and hold dev_base_lock for writing when they do the 177 * actual updates. This allows pure readers to access the list even 178 * while a writer is preparing to update it. 179 * 180 * To put it another way, dev_base_lock is held for writing only to 181 * protect against pure readers; the rtnl semaphore provides the 182 * protection against other writers. 183 * 184 * See, for example usages, register_netdevice() and 185 * unregister_netdevice(), which must be called with the rtnl 186 * semaphore held. 187 */ 188 DEFINE_RWLOCK(dev_base_lock); 189 EXPORT_SYMBOL(dev_base_lock); 190 191 static DEFINE_MUTEX(ifalias_mutex); 192 193 /* protects napi_hash addition/deletion and napi_gen_id */ 194 static DEFINE_SPINLOCK(napi_hash_lock); 195 196 static unsigned int napi_gen_id = NR_CPUS; 197 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8); 198 199 static seqcount_t devnet_rename_seq; 200 201 static inline void dev_base_seq_inc(struct net *net) 202 { 203 while (++net->dev_base_seq == 0) 204 ; 205 } 206 207 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 208 { 209 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ)); 210 211 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 212 } 213 214 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 215 { 216 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 217 } 218 219 static inline void rps_lock(struct softnet_data *sd) 220 { 221 #ifdef CONFIG_RPS 222 spin_lock(&sd->input_pkt_queue.lock); 223 #endif 224 } 225 226 static inline void rps_unlock(struct softnet_data *sd) 227 { 228 #ifdef CONFIG_RPS 229 spin_unlock(&sd->input_pkt_queue.lock); 230 #endif 231 } 232 233 /* Device list insertion */ 234 static void list_netdevice(struct net_device *dev) 235 { 236 struct net *net = dev_net(dev); 237 238 ASSERT_RTNL(); 239 240 write_lock_bh(&dev_base_lock); 241 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 242 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 243 hlist_add_head_rcu(&dev->index_hlist, 244 dev_index_hash(net, dev->ifindex)); 245 write_unlock_bh(&dev_base_lock); 246 247 dev_base_seq_inc(net); 248 } 249 250 /* Device list removal 251 * caller must respect a RCU grace period before freeing/reusing dev 252 */ 253 static void unlist_netdevice(struct net_device *dev) 254 { 255 ASSERT_RTNL(); 256 257 /* Unlink dev from the device chain */ 258 write_lock_bh(&dev_base_lock); 259 list_del_rcu(&dev->dev_list); 260 hlist_del_rcu(&dev->name_hlist); 261 hlist_del_rcu(&dev->index_hlist); 262 write_unlock_bh(&dev_base_lock); 263 264 dev_base_seq_inc(dev_net(dev)); 265 } 266 267 /* 268 * Our notifier list 269 */ 270 271 static RAW_NOTIFIER_HEAD(netdev_chain); 272 273 /* 274 * Device drivers call our routines to queue packets here. We empty the 275 * queue in the local softnet handler. 276 */ 277 278 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 279 EXPORT_PER_CPU_SYMBOL(softnet_data); 280 281 #ifdef CONFIG_LOCKDEP 282 /* 283 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 284 * according to dev->type 285 */ 286 static const unsigned short netdev_lock_type[] = { 287 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 288 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 289 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 290 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 291 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 292 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 293 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 294 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 295 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 296 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 297 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 298 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 299 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 300 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 301 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 302 303 static const char *const netdev_lock_name[] = { 304 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 305 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 306 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 307 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 308 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 309 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 310 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 311 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 312 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 313 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 314 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 315 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 316 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 317 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 318 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 319 320 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 321 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 322 323 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 324 { 325 int i; 326 327 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 328 if (netdev_lock_type[i] == dev_type) 329 return i; 330 /* the last key is used by default */ 331 return ARRAY_SIZE(netdev_lock_type) - 1; 332 } 333 334 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 335 unsigned short dev_type) 336 { 337 int i; 338 339 i = netdev_lock_pos(dev_type); 340 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 341 netdev_lock_name[i]); 342 } 343 344 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 345 { 346 int i; 347 348 i = netdev_lock_pos(dev->type); 349 lockdep_set_class_and_name(&dev->addr_list_lock, 350 &netdev_addr_lock_key[i], 351 netdev_lock_name[i]); 352 } 353 #else 354 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 355 unsigned short dev_type) 356 { 357 } 358 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 359 { 360 } 361 #endif 362 363 /******************************************************************************* 364 * 365 * Protocol management and registration routines 366 * 367 *******************************************************************************/ 368 369 370 /* 371 * Add a protocol ID to the list. Now that the input handler is 372 * smarter we can dispense with all the messy stuff that used to be 373 * here. 374 * 375 * BEWARE!!! Protocol handlers, mangling input packets, 376 * MUST BE last in hash buckets and checking protocol handlers 377 * MUST start from promiscuous ptype_all chain in net_bh. 378 * It is true now, do not change it. 379 * Explanation follows: if protocol handler, mangling packet, will 380 * be the first on list, it is not able to sense, that packet 381 * is cloned and should be copied-on-write, so that it will 382 * change it and subsequent readers will get broken packet. 383 * --ANK (980803) 384 */ 385 386 static inline struct list_head *ptype_head(const struct packet_type *pt) 387 { 388 if (pt->type == htons(ETH_P_ALL)) 389 return pt->dev ? &pt->dev->ptype_all : &ptype_all; 390 else 391 return pt->dev ? &pt->dev->ptype_specific : 392 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 393 } 394 395 /** 396 * dev_add_pack - add packet handler 397 * @pt: packet type declaration 398 * 399 * Add a protocol handler to the networking stack. The passed &packet_type 400 * is linked into kernel lists and may not be freed until it has been 401 * removed from the kernel lists. 402 * 403 * This call does not sleep therefore it can not 404 * guarantee all CPU's that are in middle of receiving packets 405 * will see the new packet type (until the next received packet). 406 */ 407 408 void dev_add_pack(struct packet_type *pt) 409 { 410 struct list_head *head = ptype_head(pt); 411 412 spin_lock(&ptype_lock); 413 list_add_rcu(&pt->list, head); 414 spin_unlock(&ptype_lock); 415 } 416 EXPORT_SYMBOL(dev_add_pack); 417 418 /** 419 * __dev_remove_pack - remove packet handler 420 * @pt: packet type declaration 421 * 422 * Remove a protocol handler that was previously added to the kernel 423 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 424 * from the kernel lists and can be freed or reused once this function 425 * returns. 426 * 427 * The packet type might still be in use by receivers 428 * and must not be freed until after all the CPU's have gone 429 * through a quiescent state. 430 */ 431 void __dev_remove_pack(struct packet_type *pt) 432 { 433 struct list_head *head = ptype_head(pt); 434 struct packet_type *pt1; 435 436 spin_lock(&ptype_lock); 437 438 list_for_each_entry(pt1, head, list) { 439 if (pt == pt1) { 440 list_del_rcu(&pt->list); 441 goto out; 442 } 443 } 444 445 pr_warn("dev_remove_pack: %p not found\n", pt); 446 out: 447 spin_unlock(&ptype_lock); 448 } 449 EXPORT_SYMBOL(__dev_remove_pack); 450 451 /** 452 * dev_remove_pack - remove packet handler 453 * @pt: packet type declaration 454 * 455 * Remove a protocol handler that was previously added to the kernel 456 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 457 * from the kernel lists and can be freed or reused once this function 458 * returns. 459 * 460 * This call sleeps to guarantee that no CPU is looking at the packet 461 * type after return. 462 */ 463 void dev_remove_pack(struct packet_type *pt) 464 { 465 __dev_remove_pack(pt); 466 467 synchronize_net(); 468 } 469 EXPORT_SYMBOL(dev_remove_pack); 470 471 472 /** 473 * dev_add_offload - register offload handlers 474 * @po: protocol offload declaration 475 * 476 * Add protocol offload handlers to the networking stack. The passed 477 * &proto_offload is linked into kernel lists and may not be freed until 478 * it has been removed from the kernel lists. 479 * 480 * This call does not sleep therefore it can not 481 * guarantee all CPU's that are in middle of receiving packets 482 * will see the new offload handlers (until the next received packet). 483 */ 484 void dev_add_offload(struct packet_offload *po) 485 { 486 struct packet_offload *elem; 487 488 spin_lock(&offload_lock); 489 list_for_each_entry(elem, &offload_base, list) { 490 if (po->priority < elem->priority) 491 break; 492 } 493 list_add_rcu(&po->list, elem->list.prev); 494 spin_unlock(&offload_lock); 495 } 496 EXPORT_SYMBOL(dev_add_offload); 497 498 /** 499 * __dev_remove_offload - remove offload handler 500 * @po: packet offload declaration 501 * 502 * Remove a protocol offload handler that was previously added to the 503 * kernel offload handlers by dev_add_offload(). The passed &offload_type 504 * is removed from the kernel lists and can be freed or reused once this 505 * function returns. 506 * 507 * The packet type might still be in use by receivers 508 * and must not be freed until after all the CPU's have gone 509 * through a quiescent state. 510 */ 511 static void __dev_remove_offload(struct packet_offload *po) 512 { 513 struct list_head *head = &offload_base; 514 struct packet_offload *po1; 515 516 spin_lock(&offload_lock); 517 518 list_for_each_entry(po1, head, list) { 519 if (po == po1) { 520 list_del_rcu(&po->list); 521 goto out; 522 } 523 } 524 525 pr_warn("dev_remove_offload: %p not found\n", po); 526 out: 527 spin_unlock(&offload_lock); 528 } 529 530 /** 531 * dev_remove_offload - remove packet offload handler 532 * @po: packet offload declaration 533 * 534 * Remove a packet offload handler that was previously added to the kernel 535 * offload handlers by dev_add_offload(). The passed &offload_type is 536 * removed from the kernel lists and can be freed or reused once this 537 * function returns. 538 * 539 * This call sleeps to guarantee that no CPU is looking at the packet 540 * type after return. 541 */ 542 void dev_remove_offload(struct packet_offload *po) 543 { 544 __dev_remove_offload(po); 545 546 synchronize_net(); 547 } 548 EXPORT_SYMBOL(dev_remove_offload); 549 550 /****************************************************************************** 551 * 552 * Device Boot-time Settings Routines 553 * 554 ******************************************************************************/ 555 556 /* Boot time configuration table */ 557 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 558 559 /** 560 * netdev_boot_setup_add - add new setup entry 561 * @name: name of the device 562 * @map: configured settings for the device 563 * 564 * Adds new setup entry to the dev_boot_setup list. The function 565 * returns 0 on error and 1 on success. This is a generic routine to 566 * all netdevices. 567 */ 568 static int netdev_boot_setup_add(char *name, struct ifmap *map) 569 { 570 struct netdev_boot_setup *s; 571 int i; 572 573 s = dev_boot_setup; 574 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 575 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 576 memset(s[i].name, 0, sizeof(s[i].name)); 577 strlcpy(s[i].name, name, IFNAMSIZ); 578 memcpy(&s[i].map, map, sizeof(s[i].map)); 579 break; 580 } 581 } 582 583 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 584 } 585 586 /** 587 * netdev_boot_setup_check - check boot time settings 588 * @dev: the netdevice 589 * 590 * Check boot time settings for the device. 591 * The found settings are set for the device to be used 592 * later in the device probing. 593 * Returns 0 if no settings found, 1 if they are. 594 */ 595 int netdev_boot_setup_check(struct net_device *dev) 596 { 597 struct netdev_boot_setup *s = dev_boot_setup; 598 int i; 599 600 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 601 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 602 !strcmp(dev->name, s[i].name)) { 603 dev->irq = s[i].map.irq; 604 dev->base_addr = s[i].map.base_addr; 605 dev->mem_start = s[i].map.mem_start; 606 dev->mem_end = s[i].map.mem_end; 607 return 1; 608 } 609 } 610 return 0; 611 } 612 EXPORT_SYMBOL(netdev_boot_setup_check); 613 614 615 /** 616 * netdev_boot_base - get address from boot time settings 617 * @prefix: prefix for network device 618 * @unit: id for network device 619 * 620 * Check boot time settings for the base address of device. 621 * The found settings are set for the device to be used 622 * later in the device probing. 623 * Returns 0 if no settings found. 624 */ 625 unsigned long netdev_boot_base(const char *prefix, int unit) 626 { 627 const struct netdev_boot_setup *s = dev_boot_setup; 628 char name[IFNAMSIZ]; 629 int i; 630 631 sprintf(name, "%s%d", prefix, unit); 632 633 /* 634 * If device already registered then return base of 1 635 * to indicate not to probe for this interface 636 */ 637 if (__dev_get_by_name(&init_net, name)) 638 return 1; 639 640 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 641 if (!strcmp(name, s[i].name)) 642 return s[i].map.base_addr; 643 return 0; 644 } 645 646 /* 647 * Saves at boot time configured settings for any netdevice. 648 */ 649 int __init netdev_boot_setup(char *str) 650 { 651 int ints[5]; 652 struct ifmap map; 653 654 str = get_options(str, ARRAY_SIZE(ints), ints); 655 if (!str || !*str) 656 return 0; 657 658 /* Save settings */ 659 memset(&map, 0, sizeof(map)); 660 if (ints[0] > 0) 661 map.irq = ints[1]; 662 if (ints[0] > 1) 663 map.base_addr = ints[2]; 664 if (ints[0] > 2) 665 map.mem_start = ints[3]; 666 if (ints[0] > 3) 667 map.mem_end = ints[4]; 668 669 /* Add new entry to the list */ 670 return netdev_boot_setup_add(str, &map); 671 } 672 673 __setup("netdev=", netdev_boot_setup); 674 675 /******************************************************************************* 676 * 677 * Device Interface Subroutines 678 * 679 *******************************************************************************/ 680 681 /** 682 * dev_get_iflink - get 'iflink' value of a interface 683 * @dev: targeted interface 684 * 685 * Indicates the ifindex the interface is linked to. 686 * Physical interfaces have the same 'ifindex' and 'iflink' values. 687 */ 688 689 int dev_get_iflink(const struct net_device *dev) 690 { 691 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 692 return dev->netdev_ops->ndo_get_iflink(dev); 693 694 return dev->ifindex; 695 } 696 EXPORT_SYMBOL(dev_get_iflink); 697 698 /** 699 * dev_fill_metadata_dst - Retrieve tunnel egress information. 700 * @dev: targeted interface 701 * @skb: The packet. 702 * 703 * For better visibility of tunnel traffic OVS needs to retrieve 704 * egress tunnel information for a packet. Following API allows 705 * user to get this info. 706 */ 707 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) 708 { 709 struct ip_tunnel_info *info; 710 711 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) 712 return -EINVAL; 713 714 info = skb_tunnel_info_unclone(skb); 715 if (!info) 716 return -ENOMEM; 717 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) 718 return -EINVAL; 719 720 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); 721 } 722 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); 723 724 /** 725 * __dev_get_by_name - find a device by its name 726 * @net: the applicable net namespace 727 * @name: name to find 728 * 729 * Find an interface by name. Must be called under RTNL semaphore 730 * or @dev_base_lock. If the name is found a pointer to the device 731 * is returned. If the name is not found then %NULL is returned. The 732 * reference counters are not incremented so the caller must be 733 * careful with locks. 734 */ 735 736 struct net_device *__dev_get_by_name(struct net *net, const char *name) 737 { 738 struct net_device *dev; 739 struct hlist_head *head = dev_name_hash(net, name); 740 741 hlist_for_each_entry(dev, head, name_hlist) 742 if (!strncmp(dev->name, name, IFNAMSIZ)) 743 return dev; 744 745 return NULL; 746 } 747 EXPORT_SYMBOL(__dev_get_by_name); 748 749 /** 750 * dev_get_by_name_rcu - find a device by its name 751 * @net: the applicable net namespace 752 * @name: name to find 753 * 754 * Find an interface by name. 755 * If the name is found a pointer to the device is returned. 756 * If the name is not found then %NULL is returned. 757 * The reference counters are not incremented so the caller must be 758 * careful with locks. The caller must hold RCU lock. 759 */ 760 761 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 762 { 763 struct net_device *dev; 764 struct hlist_head *head = dev_name_hash(net, name); 765 766 hlist_for_each_entry_rcu(dev, head, name_hlist) 767 if (!strncmp(dev->name, name, IFNAMSIZ)) 768 return dev; 769 770 return NULL; 771 } 772 EXPORT_SYMBOL(dev_get_by_name_rcu); 773 774 /** 775 * dev_get_by_name - find a device by its name 776 * @net: the applicable net namespace 777 * @name: name to find 778 * 779 * Find an interface by name. This can be called from any 780 * context and does its own locking. The returned handle has 781 * the usage count incremented and the caller must use dev_put() to 782 * release it when it is no longer needed. %NULL is returned if no 783 * matching device is found. 784 */ 785 786 struct net_device *dev_get_by_name(struct net *net, const char *name) 787 { 788 struct net_device *dev; 789 790 rcu_read_lock(); 791 dev = dev_get_by_name_rcu(net, name); 792 if (dev) 793 dev_hold(dev); 794 rcu_read_unlock(); 795 return dev; 796 } 797 EXPORT_SYMBOL(dev_get_by_name); 798 799 /** 800 * __dev_get_by_index - find a device by its ifindex 801 * @net: the applicable net namespace 802 * @ifindex: index of device 803 * 804 * Search for an interface by index. Returns %NULL if the device 805 * is not found or a pointer to the device. The device has not 806 * had its reference counter increased so the caller must be careful 807 * about locking. The caller must hold either the RTNL semaphore 808 * or @dev_base_lock. 809 */ 810 811 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 812 { 813 struct net_device *dev; 814 struct hlist_head *head = dev_index_hash(net, ifindex); 815 816 hlist_for_each_entry(dev, head, index_hlist) 817 if (dev->ifindex == ifindex) 818 return dev; 819 820 return NULL; 821 } 822 EXPORT_SYMBOL(__dev_get_by_index); 823 824 /** 825 * dev_get_by_index_rcu - find a device by its ifindex 826 * @net: the applicable net namespace 827 * @ifindex: index of device 828 * 829 * Search for an interface by index. Returns %NULL if the device 830 * is not found or a pointer to the device. The device has not 831 * had its reference counter increased so the caller must be careful 832 * about locking. The caller must hold RCU lock. 833 */ 834 835 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 836 { 837 struct net_device *dev; 838 struct hlist_head *head = dev_index_hash(net, ifindex); 839 840 hlist_for_each_entry_rcu(dev, head, index_hlist) 841 if (dev->ifindex == ifindex) 842 return dev; 843 844 return NULL; 845 } 846 EXPORT_SYMBOL(dev_get_by_index_rcu); 847 848 849 /** 850 * dev_get_by_index - find a device by its ifindex 851 * @net: the applicable net namespace 852 * @ifindex: index of device 853 * 854 * Search for an interface by index. Returns NULL if the device 855 * is not found or a pointer to the device. The device returned has 856 * had a reference added and the pointer is safe until the user calls 857 * dev_put to indicate they have finished with it. 858 */ 859 860 struct net_device *dev_get_by_index(struct net *net, int ifindex) 861 { 862 struct net_device *dev; 863 864 rcu_read_lock(); 865 dev = dev_get_by_index_rcu(net, ifindex); 866 if (dev) 867 dev_hold(dev); 868 rcu_read_unlock(); 869 return dev; 870 } 871 EXPORT_SYMBOL(dev_get_by_index); 872 873 /** 874 * dev_get_by_napi_id - find a device by napi_id 875 * @napi_id: ID of the NAPI struct 876 * 877 * Search for an interface by NAPI ID. Returns %NULL if the device 878 * is not found or a pointer to the device. The device has not had 879 * its reference counter increased so the caller must be careful 880 * about locking. The caller must hold RCU lock. 881 */ 882 883 struct net_device *dev_get_by_napi_id(unsigned int napi_id) 884 { 885 struct napi_struct *napi; 886 887 WARN_ON_ONCE(!rcu_read_lock_held()); 888 889 if (napi_id < MIN_NAPI_ID) 890 return NULL; 891 892 napi = napi_by_id(napi_id); 893 894 return napi ? napi->dev : NULL; 895 } 896 EXPORT_SYMBOL(dev_get_by_napi_id); 897 898 /** 899 * netdev_get_name - get a netdevice name, knowing its ifindex. 900 * @net: network namespace 901 * @name: a pointer to the buffer where the name will be stored. 902 * @ifindex: the ifindex of the interface to get the name from. 903 * 904 * The use of raw_seqcount_begin() and cond_resched() before 905 * retrying is required as we want to give the writers a chance 906 * to complete when CONFIG_PREEMPT is not set. 907 */ 908 int netdev_get_name(struct net *net, char *name, int ifindex) 909 { 910 struct net_device *dev; 911 unsigned int seq; 912 913 retry: 914 seq = raw_seqcount_begin(&devnet_rename_seq); 915 rcu_read_lock(); 916 dev = dev_get_by_index_rcu(net, ifindex); 917 if (!dev) { 918 rcu_read_unlock(); 919 return -ENODEV; 920 } 921 922 strcpy(name, dev->name); 923 rcu_read_unlock(); 924 if (read_seqcount_retry(&devnet_rename_seq, seq)) { 925 cond_resched(); 926 goto retry; 927 } 928 929 return 0; 930 } 931 932 /** 933 * dev_getbyhwaddr_rcu - find a device by its hardware address 934 * @net: the applicable net namespace 935 * @type: media type of device 936 * @ha: hardware address 937 * 938 * Search for an interface by MAC address. Returns NULL if the device 939 * is not found or a pointer to the device. 940 * The caller must hold RCU or RTNL. 941 * The returned device has not had its ref count increased 942 * and the caller must therefore be careful about locking 943 * 944 */ 945 946 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 947 const char *ha) 948 { 949 struct net_device *dev; 950 951 for_each_netdev_rcu(net, dev) 952 if (dev->type == type && 953 !memcmp(dev->dev_addr, ha, dev->addr_len)) 954 return dev; 955 956 return NULL; 957 } 958 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 959 960 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 961 { 962 struct net_device *dev; 963 964 ASSERT_RTNL(); 965 for_each_netdev(net, dev) 966 if (dev->type == type) 967 return dev; 968 969 return NULL; 970 } 971 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 972 973 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 974 { 975 struct net_device *dev, *ret = NULL; 976 977 rcu_read_lock(); 978 for_each_netdev_rcu(net, dev) 979 if (dev->type == type) { 980 dev_hold(dev); 981 ret = dev; 982 break; 983 } 984 rcu_read_unlock(); 985 return ret; 986 } 987 EXPORT_SYMBOL(dev_getfirstbyhwtype); 988 989 /** 990 * __dev_get_by_flags - find any device with given flags 991 * @net: the applicable net namespace 992 * @if_flags: IFF_* values 993 * @mask: bitmask of bits in if_flags to check 994 * 995 * Search for any interface with the given flags. Returns NULL if a device 996 * is not found or a pointer to the device. Must be called inside 997 * rtnl_lock(), and result refcount is unchanged. 998 */ 999 1000 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags, 1001 unsigned short mask) 1002 { 1003 struct net_device *dev, *ret; 1004 1005 ASSERT_RTNL(); 1006 1007 ret = NULL; 1008 for_each_netdev(net, dev) { 1009 if (((dev->flags ^ if_flags) & mask) == 0) { 1010 ret = dev; 1011 break; 1012 } 1013 } 1014 return ret; 1015 } 1016 EXPORT_SYMBOL(__dev_get_by_flags); 1017 1018 /** 1019 * dev_valid_name - check if name is okay for network device 1020 * @name: name string 1021 * 1022 * Network device names need to be valid file names to 1023 * to allow sysfs to work. We also disallow any kind of 1024 * whitespace. 1025 */ 1026 bool dev_valid_name(const char *name) 1027 { 1028 if (*name == '\0') 1029 return false; 1030 if (strlen(name) >= IFNAMSIZ) 1031 return false; 1032 if (!strcmp(name, ".") || !strcmp(name, "..")) 1033 return false; 1034 1035 while (*name) { 1036 if (*name == '/' || *name == ':' || isspace(*name)) 1037 return false; 1038 name++; 1039 } 1040 return true; 1041 } 1042 EXPORT_SYMBOL(dev_valid_name); 1043 1044 /** 1045 * __dev_alloc_name - allocate a name for a device 1046 * @net: network namespace to allocate the device name in 1047 * @name: name format string 1048 * @buf: scratch buffer and result name string 1049 * 1050 * Passed a format string - eg "lt%d" it will try and find a suitable 1051 * id. It scans list of devices to build up a free map, then chooses 1052 * the first empty slot. The caller must hold the dev_base or rtnl lock 1053 * while allocating the name and adding the device in order to avoid 1054 * duplicates. 1055 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1056 * Returns the number of the unit assigned or a negative errno code. 1057 */ 1058 1059 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 1060 { 1061 int i = 0; 1062 const char *p; 1063 const int max_netdevices = 8*PAGE_SIZE; 1064 unsigned long *inuse; 1065 struct net_device *d; 1066 1067 if (!dev_valid_name(name)) 1068 return -EINVAL; 1069 1070 p = strchr(name, '%'); 1071 if (p) { 1072 /* 1073 * Verify the string as this thing may have come from 1074 * the user. There must be either one "%d" and no other "%" 1075 * characters. 1076 */ 1077 if (p[1] != 'd' || strchr(p + 2, '%')) 1078 return -EINVAL; 1079 1080 /* Use one page as a bit array of possible slots */ 1081 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 1082 if (!inuse) 1083 return -ENOMEM; 1084 1085 for_each_netdev(net, d) { 1086 if (!sscanf(d->name, name, &i)) 1087 continue; 1088 if (i < 0 || i >= max_netdevices) 1089 continue; 1090 1091 /* avoid cases where sscanf is not exact inverse of printf */ 1092 snprintf(buf, IFNAMSIZ, name, i); 1093 if (!strncmp(buf, d->name, IFNAMSIZ)) 1094 set_bit(i, inuse); 1095 } 1096 1097 i = find_first_zero_bit(inuse, max_netdevices); 1098 free_page((unsigned long) inuse); 1099 } 1100 1101 snprintf(buf, IFNAMSIZ, name, i); 1102 if (!__dev_get_by_name(net, buf)) 1103 return i; 1104 1105 /* It is possible to run out of possible slots 1106 * when the name is long and there isn't enough space left 1107 * for the digits, or if all bits are used. 1108 */ 1109 return -ENFILE; 1110 } 1111 1112 static int dev_alloc_name_ns(struct net *net, 1113 struct net_device *dev, 1114 const char *name) 1115 { 1116 char buf[IFNAMSIZ]; 1117 int ret; 1118 1119 BUG_ON(!net); 1120 ret = __dev_alloc_name(net, name, buf); 1121 if (ret >= 0) 1122 strlcpy(dev->name, buf, IFNAMSIZ); 1123 return ret; 1124 } 1125 1126 /** 1127 * dev_alloc_name - allocate a name for a device 1128 * @dev: device 1129 * @name: name format string 1130 * 1131 * Passed a format string - eg "lt%d" it will try and find a suitable 1132 * id. It scans list of devices to build up a free map, then chooses 1133 * the first empty slot. The caller must hold the dev_base or rtnl lock 1134 * while allocating the name and adding the device in order to avoid 1135 * duplicates. 1136 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1137 * Returns the number of the unit assigned or a negative errno code. 1138 */ 1139 1140 int dev_alloc_name(struct net_device *dev, const char *name) 1141 { 1142 return dev_alloc_name_ns(dev_net(dev), dev, name); 1143 } 1144 EXPORT_SYMBOL(dev_alloc_name); 1145 1146 int dev_get_valid_name(struct net *net, struct net_device *dev, 1147 const char *name) 1148 { 1149 return dev_alloc_name_ns(net, dev, name); 1150 } 1151 EXPORT_SYMBOL(dev_get_valid_name); 1152 1153 /** 1154 * dev_change_name - change name of a device 1155 * @dev: device 1156 * @newname: name (or format string) must be at least IFNAMSIZ 1157 * 1158 * Change name of a device, can pass format strings "eth%d". 1159 * for wildcarding. 1160 */ 1161 int dev_change_name(struct net_device *dev, const char *newname) 1162 { 1163 unsigned char old_assign_type; 1164 char oldname[IFNAMSIZ]; 1165 int err = 0; 1166 int ret; 1167 struct net *net; 1168 1169 ASSERT_RTNL(); 1170 BUG_ON(!dev_net(dev)); 1171 1172 net = dev_net(dev); 1173 if (dev->flags & IFF_UP) 1174 return -EBUSY; 1175 1176 write_seqcount_begin(&devnet_rename_seq); 1177 1178 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1179 write_seqcount_end(&devnet_rename_seq); 1180 return 0; 1181 } 1182 1183 memcpy(oldname, dev->name, IFNAMSIZ); 1184 1185 err = dev_get_valid_name(net, dev, newname); 1186 if (err < 0) { 1187 write_seqcount_end(&devnet_rename_seq); 1188 return err; 1189 } 1190 1191 if (oldname[0] && !strchr(oldname, '%')) 1192 netdev_info(dev, "renamed from %s\n", oldname); 1193 1194 old_assign_type = dev->name_assign_type; 1195 dev->name_assign_type = NET_NAME_RENAMED; 1196 1197 rollback: 1198 ret = device_rename(&dev->dev, dev->name); 1199 if (ret) { 1200 memcpy(dev->name, oldname, IFNAMSIZ); 1201 dev->name_assign_type = old_assign_type; 1202 write_seqcount_end(&devnet_rename_seq); 1203 return ret; 1204 } 1205 1206 write_seqcount_end(&devnet_rename_seq); 1207 1208 netdev_adjacent_rename_links(dev, oldname); 1209 1210 write_lock_bh(&dev_base_lock); 1211 hlist_del_rcu(&dev->name_hlist); 1212 write_unlock_bh(&dev_base_lock); 1213 1214 synchronize_rcu(); 1215 1216 write_lock_bh(&dev_base_lock); 1217 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1218 write_unlock_bh(&dev_base_lock); 1219 1220 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1221 ret = notifier_to_errno(ret); 1222 1223 if (ret) { 1224 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1225 if (err >= 0) { 1226 err = ret; 1227 write_seqcount_begin(&devnet_rename_seq); 1228 memcpy(dev->name, oldname, IFNAMSIZ); 1229 memcpy(oldname, newname, IFNAMSIZ); 1230 dev->name_assign_type = old_assign_type; 1231 old_assign_type = NET_NAME_RENAMED; 1232 goto rollback; 1233 } else { 1234 pr_err("%s: name change rollback failed: %d\n", 1235 dev->name, ret); 1236 } 1237 } 1238 1239 return err; 1240 } 1241 1242 /** 1243 * dev_set_alias - change ifalias of a device 1244 * @dev: device 1245 * @alias: name up to IFALIASZ 1246 * @len: limit of bytes to copy from info 1247 * 1248 * Set ifalias for a device, 1249 */ 1250 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1251 { 1252 struct dev_ifalias *new_alias = NULL; 1253 1254 if (len >= IFALIASZ) 1255 return -EINVAL; 1256 1257 if (len) { 1258 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL); 1259 if (!new_alias) 1260 return -ENOMEM; 1261 1262 memcpy(new_alias->ifalias, alias, len); 1263 new_alias->ifalias[len] = 0; 1264 } 1265 1266 mutex_lock(&ifalias_mutex); 1267 rcu_swap_protected(dev->ifalias, new_alias, 1268 mutex_is_locked(&ifalias_mutex)); 1269 mutex_unlock(&ifalias_mutex); 1270 1271 if (new_alias) 1272 kfree_rcu(new_alias, rcuhead); 1273 1274 return len; 1275 } 1276 1277 /** 1278 * dev_get_alias - get ifalias of a device 1279 * @dev: device 1280 * @name: buffer to store name of ifalias 1281 * @len: size of buffer 1282 * 1283 * get ifalias for a device. Caller must make sure dev cannot go 1284 * away, e.g. rcu read lock or own a reference count to device. 1285 */ 1286 int dev_get_alias(const struct net_device *dev, char *name, size_t len) 1287 { 1288 const struct dev_ifalias *alias; 1289 int ret = 0; 1290 1291 rcu_read_lock(); 1292 alias = rcu_dereference(dev->ifalias); 1293 if (alias) 1294 ret = snprintf(name, len, "%s", alias->ifalias); 1295 rcu_read_unlock(); 1296 1297 return ret; 1298 } 1299 1300 /** 1301 * netdev_features_change - device changes features 1302 * @dev: device to cause notification 1303 * 1304 * Called to indicate a device has changed features. 1305 */ 1306 void netdev_features_change(struct net_device *dev) 1307 { 1308 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1309 } 1310 EXPORT_SYMBOL(netdev_features_change); 1311 1312 /** 1313 * netdev_state_change - device changes state 1314 * @dev: device to cause notification 1315 * 1316 * Called to indicate a device has changed state. This function calls 1317 * the notifier chains for netdev_chain and sends a NEWLINK message 1318 * to the routing socket. 1319 */ 1320 void netdev_state_change(struct net_device *dev) 1321 { 1322 if (dev->flags & IFF_UP) { 1323 struct netdev_notifier_change_info change_info = { 1324 .info.dev = dev, 1325 }; 1326 1327 call_netdevice_notifiers_info(NETDEV_CHANGE, 1328 &change_info.info); 1329 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL); 1330 } 1331 } 1332 EXPORT_SYMBOL(netdev_state_change); 1333 1334 /** 1335 * netdev_notify_peers - notify network peers about existence of @dev 1336 * @dev: network device 1337 * 1338 * Generate traffic such that interested network peers are aware of 1339 * @dev, such as by generating a gratuitous ARP. This may be used when 1340 * a device wants to inform the rest of the network about some sort of 1341 * reconfiguration such as a failover event or virtual machine 1342 * migration. 1343 */ 1344 void netdev_notify_peers(struct net_device *dev) 1345 { 1346 rtnl_lock(); 1347 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1348 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev); 1349 rtnl_unlock(); 1350 } 1351 EXPORT_SYMBOL(netdev_notify_peers); 1352 1353 static int __dev_open(struct net_device *dev) 1354 { 1355 const struct net_device_ops *ops = dev->netdev_ops; 1356 int ret; 1357 1358 ASSERT_RTNL(); 1359 1360 if (!netif_device_present(dev)) 1361 return -ENODEV; 1362 1363 /* Block netpoll from trying to do any rx path servicing. 1364 * If we don't do this there is a chance ndo_poll_controller 1365 * or ndo_poll may be running while we open the device 1366 */ 1367 netpoll_poll_disable(dev); 1368 1369 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1370 ret = notifier_to_errno(ret); 1371 if (ret) 1372 return ret; 1373 1374 set_bit(__LINK_STATE_START, &dev->state); 1375 1376 if (ops->ndo_validate_addr) 1377 ret = ops->ndo_validate_addr(dev); 1378 1379 if (!ret && ops->ndo_open) 1380 ret = ops->ndo_open(dev); 1381 1382 netpoll_poll_enable(dev); 1383 1384 if (ret) 1385 clear_bit(__LINK_STATE_START, &dev->state); 1386 else { 1387 dev->flags |= IFF_UP; 1388 dev_set_rx_mode(dev); 1389 dev_activate(dev); 1390 add_device_randomness(dev->dev_addr, dev->addr_len); 1391 } 1392 1393 return ret; 1394 } 1395 1396 /** 1397 * dev_open - prepare an interface for use. 1398 * @dev: device to open 1399 * 1400 * Takes a device from down to up state. The device's private open 1401 * function is invoked and then the multicast lists are loaded. Finally 1402 * the device is moved into the up state and a %NETDEV_UP message is 1403 * sent to the netdev notifier chain. 1404 * 1405 * Calling this function on an active interface is a nop. On a failure 1406 * a negative errno code is returned. 1407 */ 1408 int dev_open(struct net_device *dev) 1409 { 1410 int ret; 1411 1412 if (dev->flags & IFF_UP) 1413 return 0; 1414 1415 ret = __dev_open(dev); 1416 if (ret < 0) 1417 return ret; 1418 1419 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1420 call_netdevice_notifiers(NETDEV_UP, dev); 1421 1422 return ret; 1423 } 1424 EXPORT_SYMBOL(dev_open); 1425 1426 static void __dev_close_many(struct list_head *head) 1427 { 1428 struct net_device *dev; 1429 1430 ASSERT_RTNL(); 1431 might_sleep(); 1432 1433 list_for_each_entry(dev, head, close_list) { 1434 /* Temporarily disable netpoll until the interface is down */ 1435 netpoll_poll_disable(dev); 1436 1437 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1438 1439 clear_bit(__LINK_STATE_START, &dev->state); 1440 1441 /* Synchronize to scheduled poll. We cannot touch poll list, it 1442 * can be even on different cpu. So just clear netif_running(). 1443 * 1444 * dev->stop() will invoke napi_disable() on all of it's 1445 * napi_struct instances on this device. 1446 */ 1447 smp_mb__after_atomic(); /* Commit netif_running(). */ 1448 } 1449 1450 dev_deactivate_many(head); 1451 1452 list_for_each_entry(dev, head, close_list) { 1453 const struct net_device_ops *ops = dev->netdev_ops; 1454 1455 /* 1456 * Call the device specific close. This cannot fail. 1457 * Only if device is UP 1458 * 1459 * We allow it to be called even after a DETACH hot-plug 1460 * event. 1461 */ 1462 if (ops->ndo_stop) 1463 ops->ndo_stop(dev); 1464 1465 dev->flags &= ~IFF_UP; 1466 netpoll_poll_enable(dev); 1467 } 1468 } 1469 1470 static void __dev_close(struct net_device *dev) 1471 { 1472 LIST_HEAD(single); 1473 1474 list_add(&dev->close_list, &single); 1475 __dev_close_many(&single); 1476 list_del(&single); 1477 } 1478 1479 void dev_close_many(struct list_head *head, bool unlink) 1480 { 1481 struct net_device *dev, *tmp; 1482 1483 /* Remove the devices that don't need to be closed */ 1484 list_for_each_entry_safe(dev, tmp, head, close_list) 1485 if (!(dev->flags & IFF_UP)) 1486 list_del_init(&dev->close_list); 1487 1488 __dev_close_many(head); 1489 1490 list_for_each_entry_safe(dev, tmp, head, close_list) { 1491 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1492 call_netdevice_notifiers(NETDEV_DOWN, dev); 1493 if (unlink) 1494 list_del_init(&dev->close_list); 1495 } 1496 } 1497 EXPORT_SYMBOL(dev_close_many); 1498 1499 /** 1500 * dev_close - shutdown an interface. 1501 * @dev: device to shutdown 1502 * 1503 * This function moves an active device into down state. A 1504 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1505 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1506 * chain. 1507 */ 1508 void dev_close(struct net_device *dev) 1509 { 1510 if (dev->flags & IFF_UP) { 1511 LIST_HEAD(single); 1512 1513 list_add(&dev->close_list, &single); 1514 dev_close_many(&single, true); 1515 list_del(&single); 1516 } 1517 } 1518 EXPORT_SYMBOL(dev_close); 1519 1520 1521 /** 1522 * dev_disable_lro - disable Large Receive Offload on a device 1523 * @dev: device 1524 * 1525 * Disable Large Receive Offload (LRO) on a net device. Must be 1526 * called under RTNL. This is needed if received packets may be 1527 * forwarded to another interface. 1528 */ 1529 void dev_disable_lro(struct net_device *dev) 1530 { 1531 struct net_device *lower_dev; 1532 struct list_head *iter; 1533 1534 dev->wanted_features &= ~NETIF_F_LRO; 1535 netdev_update_features(dev); 1536 1537 if (unlikely(dev->features & NETIF_F_LRO)) 1538 netdev_WARN(dev, "failed to disable LRO!\n"); 1539 1540 netdev_for_each_lower_dev(dev, lower_dev, iter) 1541 dev_disable_lro(lower_dev); 1542 } 1543 EXPORT_SYMBOL(dev_disable_lro); 1544 1545 /** 1546 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device 1547 * @dev: device 1548 * 1549 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be 1550 * called under RTNL. This is needed if Generic XDP is installed on 1551 * the device. 1552 */ 1553 static void dev_disable_gro_hw(struct net_device *dev) 1554 { 1555 dev->wanted_features &= ~NETIF_F_GRO_HW; 1556 netdev_update_features(dev); 1557 1558 if (unlikely(dev->features & NETIF_F_GRO_HW)) 1559 netdev_WARN(dev, "failed to disable GRO_HW!\n"); 1560 } 1561 1562 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1563 struct net_device *dev) 1564 { 1565 struct netdev_notifier_info info = { 1566 .dev = dev, 1567 }; 1568 1569 return nb->notifier_call(nb, val, &info); 1570 } 1571 1572 static int dev_boot_phase = 1; 1573 1574 /** 1575 * register_netdevice_notifier - register a network notifier block 1576 * @nb: notifier 1577 * 1578 * Register a notifier to be called when network device events occur. 1579 * The notifier passed is linked into the kernel structures and must 1580 * not be reused until it has been unregistered. A negative errno code 1581 * is returned on a failure. 1582 * 1583 * When registered all registration and up events are replayed 1584 * to the new notifier to allow device to have a race free 1585 * view of the network device list. 1586 */ 1587 1588 int register_netdevice_notifier(struct notifier_block *nb) 1589 { 1590 struct net_device *dev; 1591 struct net_device *last; 1592 struct net *net; 1593 int err; 1594 1595 rtnl_lock(); 1596 err = raw_notifier_chain_register(&netdev_chain, nb); 1597 if (err) 1598 goto unlock; 1599 if (dev_boot_phase) 1600 goto unlock; 1601 for_each_net(net) { 1602 for_each_netdev(net, dev) { 1603 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1604 err = notifier_to_errno(err); 1605 if (err) 1606 goto rollback; 1607 1608 if (!(dev->flags & IFF_UP)) 1609 continue; 1610 1611 call_netdevice_notifier(nb, NETDEV_UP, dev); 1612 } 1613 } 1614 1615 unlock: 1616 rtnl_unlock(); 1617 return err; 1618 1619 rollback: 1620 last = dev; 1621 for_each_net(net) { 1622 for_each_netdev(net, dev) { 1623 if (dev == last) 1624 goto outroll; 1625 1626 if (dev->flags & IFF_UP) { 1627 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1628 dev); 1629 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1630 } 1631 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1632 } 1633 } 1634 1635 outroll: 1636 raw_notifier_chain_unregister(&netdev_chain, nb); 1637 goto unlock; 1638 } 1639 EXPORT_SYMBOL(register_netdevice_notifier); 1640 1641 /** 1642 * unregister_netdevice_notifier - unregister a network notifier block 1643 * @nb: notifier 1644 * 1645 * Unregister a notifier previously registered by 1646 * register_netdevice_notifier(). The notifier is unlinked into the 1647 * kernel structures and may then be reused. A negative errno code 1648 * is returned on a failure. 1649 * 1650 * After unregistering unregister and down device events are synthesized 1651 * for all devices on the device list to the removed notifier to remove 1652 * the need for special case cleanup code. 1653 */ 1654 1655 int unregister_netdevice_notifier(struct notifier_block *nb) 1656 { 1657 struct net_device *dev; 1658 struct net *net; 1659 int err; 1660 1661 rtnl_lock(); 1662 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1663 if (err) 1664 goto unlock; 1665 1666 for_each_net(net) { 1667 for_each_netdev(net, dev) { 1668 if (dev->flags & IFF_UP) { 1669 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1670 dev); 1671 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1672 } 1673 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1674 } 1675 } 1676 unlock: 1677 rtnl_unlock(); 1678 return err; 1679 } 1680 EXPORT_SYMBOL(unregister_netdevice_notifier); 1681 1682 /** 1683 * call_netdevice_notifiers_info - call all network notifier blocks 1684 * @val: value passed unmodified to notifier function 1685 * @dev: net_device pointer passed unmodified to notifier function 1686 * @info: notifier information data 1687 * 1688 * Call all network notifier blocks. Parameters and return value 1689 * are as for raw_notifier_call_chain(). 1690 */ 1691 1692 static int call_netdevice_notifiers_info(unsigned long val, 1693 struct netdev_notifier_info *info) 1694 { 1695 ASSERT_RTNL(); 1696 return raw_notifier_call_chain(&netdev_chain, val, info); 1697 } 1698 1699 /** 1700 * call_netdevice_notifiers - call all network notifier blocks 1701 * @val: value passed unmodified to notifier function 1702 * @dev: net_device pointer passed unmodified to notifier function 1703 * 1704 * Call all network notifier blocks. Parameters and return value 1705 * are as for raw_notifier_call_chain(). 1706 */ 1707 1708 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1709 { 1710 struct netdev_notifier_info info = { 1711 .dev = dev, 1712 }; 1713 1714 return call_netdevice_notifiers_info(val, &info); 1715 } 1716 EXPORT_SYMBOL(call_netdevice_notifiers); 1717 1718 #ifdef CONFIG_NET_INGRESS 1719 static struct static_key ingress_needed __read_mostly; 1720 1721 void net_inc_ingress_queue(void) 1722 { 1723 static_key_slow_inc(&ingress_needed); 1724 } 1725 EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 1726 1727 void net_dec_ingress_queue(void) 1728 { 1729 static_key_slow_dec(&ingress_needed); 1730 } 1731 EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 1732 #endif 1733 1734 #ifdef CONFIG_NET_EGRESS 1735 static struct static_key egress_needed __read_mostly; 1736 1737 void net_inc_egress_queue(void) 1738 { 1739 static_key_slow_inc(&egress_needed); 1740 } 1741 EXPORT_SYMBOL_GPL(net_inc_egress_queue); 1742 1743 void net_dec_egress_queue(void) 1744 { 1745 static_key_slow_dec(&egress_needed); 1746 } 1747 EXPORT_SYMBOL_GPL(net_dec_egress_queue); 1748 #endif 1749 1750 static struct static_key netstamp_needed __read_mostly; 1751 #ifdef HAVE_JUMP_LABEL 1752 static atomic_t netstamp_needed_deferred; 1753 static atomic_t netstamp_wanted; 1754 static void netstamp_clear(struct work_struct *work) 1755 { 1756 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 1757 int wanted; 1758 1759 wanted = atomic_add_return(deferred, &netstamp_wanted); 1760 if (wanted > 0) 1761 static_key_enable(&netstamp_needed); 1762 else 1763 static_key_disable(&netstamp_needed); 1764 } 1765 static DECLARE_WORK(netstamp_work, netstamp_clear); 1766 #endif 1767 1768 void net_enable_timestamp(void) 1769 { 1770 #ifdef HAVE_JUMP_LABEL 1771 int wanted; 1772 1773 while (1) { 1774 wanted = atomic_read(&netstamp_wanted); 1775 if (wanted <= 0) 1776 break; 1777 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted) 1778 return; 1779 } 1780 atomic_inc(&netstamp_needed_deferred); 1781 schedule_work(&netstamp_work); 1782 #else 1783 static_key_slow_inc(&netstamp_needed); 1784 #endif 1785 } 1786 EXPORT_SYMBOL(net_enable_timestamp); 1787 1788 void net_disable_timestamp(void) 1789 { 1790 #ifdef HAVE_JUMP_LABEL 1791 int wanted; 1792 1793 while (1) { 1794 wanted = atomic_read(&netstamp_wanted); 1795 if (wanted <= 1) 1796 break; 1797 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted) 1798 return; 1799 } 1800 atomic_dec(&netstamp_needed_deferred); 1801 schedule_work(&netstamp_work); 1802 #else 1803 static_key_slow_dec(&netstamp_needed); 1804 #endif 1805 } 1806 EXPORT_SYMBOL(net_disable_timestamp); 1807 1808 static inline void net_timestamp_set(struct sk_buff *skb) 1809 { 1810 skb->tstamp = 0; 1811 if (static_key_false(&netstamp_needed)) 1812 __net_timestamp(skb); 1813 } 1814 1815 #define net_timestamp_check(COND, SKB) \ 1816 if (static_key_false(&netstamp_needed)) { \ 1817 if ((COND) && !(SKB)->tstamp) \ 1818 __net_timestamp(SKB); \ 1819 } \ 1820 1821 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb) 1822 { 1823 unsigned int len; 1824 1825 if (!(dev->flags & IFF_UP)) 1826 return false; 1827 1828 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 1829 if (skb->len <= len) 1830 return true; 1831 1832 /* if TSO is enabled, we don't care about the length as the packet 1833 * could be forwarded without being segmented before 1834 */ 1835 if (skb_is_gso(skb)) 1836 return true; 1837 1838 return false; 1839 } 1840 EXPORT_SYMBOL_GPL(is_skb_forwardable); 1841 1842 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1843 { 1844 int ret = ____dev_forward_skb(dev, skb); 1845 1846 if (likely(!ret)) { 1847 skb->protocol = eth_type_trans(skb, dev); 1848 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 1849 } 1850 1851 return ret; 1852 } 1853 EXPORT_SYMBOL_GPL(__dev_forward_skb); 1854 1855 /** 1856 * dev_forward_skb - loopback an skb to another netif 1857 * 1858 * @dev: destination network device 1859 * @skb: buffer to forward 1860 * 1861 * return values: 1862 * NET_RX_SUCCESS (no congestion) 1863 * NET_RX_DROP (packet was dropped, but freed) 1864 * 1865 * dev_forward_skb can be used for injecting an skb from the 1866 * start_xmit function of one device into the receive queue 1867 * of another device. 1868 * 1869 * The receiving device may be in another namespace, so 1870 * we have to clear all information in the skb that could 1871 * impact namespace isolation. 1872 */ 1873 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1874 { 1875 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 1876 } 1877 EXPORT_SYMBOL_GPL(dev_forward_skb); 1878 1879 static inline int deliver_skb(struct sk_buff *skb, 1880 struct packet_type *pt_prev, 1881 struct net_device *orig_dev) 1882 { 1883 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 1884 return -ENOMEM; 1885 refcount_inc(&skb->users); 1886 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1887 } 1888 1889 static inline void deliver_ptype_list_skb(struct sk_buff *skb, 1890 struct packet_type **pt, 1891 struct net_device *orig_dev, 1892 __be16 type, 1893 struct list_head *ptype_list) 1894 { 1895 struct packet_type *ptype, *pt_prev = *pt; 1896 1897 list_for_each_entry_rcu(ptype, ptype_list, list) { 1898 if (ptype->type != type) 1899 continue; 1900 if (pt_prev) 1901 deliver_skb(skb, pt_prev, orig_dev); 1902 pt_prev = ptype; 1903 } 1904 *pt = pt_prev; 1905 } 1906 1907 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 1908 { 1909 if (!ptype->af_packet_priv || !skb->sk) 1910 return false; 1911 1912 if (ptype->id_match) 1913 return ptype->id_match(ptype, skb->sk); 1914 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 1915 return true; 1916 1917 return false; 1918 } 1919 1920 /* 1921 * Support routine. Sends outgoing frames to any network 1922 * taps currently in use. 1923 */ 1924 1925 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1926 { 1927 struct packet_type *ptype; 1928 struct sk_buff *skb2 = NULL; 1929 struct packet_type *pt_prev = NULL; 1930 struct list_head *ptype_list = &ptype_all; 1931 1932 rcu_read_lock(); 1933 again: 1934 list_for_each_entry_rcu(ptype, ptype_list, list) { 1935 /* Never send packets back to the socket 1936 * they originated from - MvS (miquels@drinkel.ow.org) 1937 */ 1938 if (skb_loop_sk(ptype, skb)) 1939 continue; 1940 1941 if (pt_prev) { 1942 deliver_skb(skb2, pt_prev, skb->dev); 1943 pt_prev = ptype; 1944 continue; 1945 } 1946 1947 /* need to clone skb, done only once */ 1948 skb2 = skb_clone(skb, GFP_ATOMIC); 1949 if (!skb2) 1950 goto out_unlock; 1951 1952 net_timestamp_set(skb2); 1953 1954 /* skb->nh should be correctly 1955 * set by sender, so that the second statement is 1956 * just protection against buggy protocols. 1957 */ 1958 skb_reset_mac_header(skb2); 1959 1960 if (skb_network_header(skb2) < skb2->data || 1961 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 1962 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 1963 ntohs(skb2->protocol), 1964 dev->name); 1965 skb_reset_network_header(skb2); 1966 } 1967 1968 skb2->transport_header = skb2->network_header; 1969 skb2->pkt_type = PACKET_OUTGOING; 1970 pt_prev = ptype; 1971 } 1972 1973 if (ptype_list == &ptype_all) { 1974 ptype_list = &dev->ptype_all; 1975 goto again; 1976 } 1977 out_unlock: 1978 if (pt_prev) { 1979 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC)) 1980 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 1981 else 1982 kfree_skb(skb2); 1983 } 1984 rcu_read_unlock(); 1985 } 1986 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit); 1987 1988 /** 1989 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 1990 * @dev: Network device 1991 * @txq: number of queues available 1992 * 1993 * If real_num_tx_queues is changed the tc mappings may no longer be 1994 * valid. To resolve this verify the tc mapping remains valid and if 1995 * not NULL the mapping. With no priorities mapping to this 1996 * offset/count pair it will no longer be used. In the worst case TC0 1997 * is invalid nothing can be done so disable priority mappings. If is 1998 * expected that drivers will fix this mapping if they can before 1999 * calling netif_set_real_num_tx_queues. 2000 */ 2001 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 2002 { 2003 int i; 2004 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2005 2006 /* If TC0 is invalidated disable TC mapping */ 2007 if (tc->offset + tc->count > txq) { 2008 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 2009 dev->num_tc = 0; 2010 return; 2011 } 2012 2013 /* Invalidated prio to tc mappings set to TC0 */ 2014 for (i = 1; i < TC_BITMASK + 1; i++) { 2015 int q = netdev_get_prio_tc_map(dev, i); 2016 2017 tc = &dev->tc_to_txq[q]; 2018 if (tc->offset + tc->count > txq) { 2019 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 2020 i, q); 2021 netdev_set_prio_tc_map(dev, i, 0); 2022 } 2023 } 2024 } 2025 2026 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq) 2027 { 2028 if (dev->num_tc) { 2029 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2030 int i; 2031 2032 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) { 2033 if ((txq - tc->offset) < tc->count) 2034 return i; 2035 } 2036 2037 return -1; 2038 } 2039 2040 return 0; 2041 } 2042 EXPORT_SYMBOL(netdev_txq_to_tc); 2043 2044 #ifdef CONFIG_XPS 2045 static DEFINE_MUTEX(xps_map_mutex); 2046 #define xmap_dereference(P) \ 2047 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 2048 2049 static bool remove_xps_queue(struct xps_dev_maps *dev_maps, 2050 int tci, u16 index) 2051 { 2052 struct xps_map *map = NULL; 2053 int pos; 2054 2055 if (dev_maps) 2056 map = xmap_dereference(dev_maps->cpu_map[tci]); 2057 if (!map) 2058 return false; 2059 2060 for (pos = map->len; pos--;) { 2061 if (map->queues[pos] != index) 2062 continue; 2063 2064 if (map->len > 1) { 2065 map->queues[pos] = map->queues[--map->len]; 2066 break; 2067 } 2068 2069 RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL); 2070 kfree_rcu(map, rcu); 2071 return false; 2072 } 2073 2074 return true; 2075 } 2076 2077 static bool remove_xps_queue_cpu(struct net_device *dev, 2078 struct xps_dev_maps *dev_maps, 2079 int cpu, u16 offset, u16 count) 2080 { 2081 int num_tc = dev->num_tc ? : 1; 2082 bool active = false; 2083 int tci; 2084 2085 for (tci = cpu * num_tc; num_tc--; tci++) { 2086 int i, j; 2087 2088 for (i = count, j = offset; i--; j++) { 2089 if (!remove_xps_queue(dev_maps, cpu, j)) 2090 break; 2091 } 2092 2093 active |= i < 0; 2094 } 2095 2096 return active; 2097 } 2098 2099 static void netif_reset_xps_queues(struct net_device *dev, u16 offset, 2100 u16 count) 2101 { 2102 struct xps_dev_maps *dev_maps; 2103 int cpu, i; 2104 bool active = false; 2105 2106 mutex_lock(&xps_map_mutex); 2107 dev_maps = xmap_dereference(dev->xps_maps); 2108 2109 if (!dev_maps) 2110 goto out_no_maps; 2111 2112 for_each_possible_cpu(cpu) 2113 active |= remove_xps_queue_cpu(dev, dev_maps, cpu, 2114 offset, count); 2115 2116 if (!active) { 2117 RCU_INIT_POINTER(dev->xps_maps, NULL); 2118 kfree_rcu(dev_maps, rcu); 2119 } 2120 2121 for (i = offset + (count - 1); count--; i--) 2122 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i), 2123 NUMA_NO_NODE); 2124 2125 out_no_maps: 2126 mutex_unlock(&xps_map_mutex); 2127 } 2128 2129 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 2130 { 2131 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index); 2132 } 2133 2134 static struct xps_map *expand_xps_map(struct xps_map *map, 2135 int cpu, u16 index) 2136 { 2137 struct xps_map *new_map; 2138 int alloc_len = XPS_MIN_MAP_ALLOC; 2139 int i, pos; 2140 2141 for (pos = 0; map && pos < map->len; pos++) { 2142 if (map->queues[pos] != index) 2143 continue; 2144 return map; 2145 } 2146 2147 /* Need to add queue to this CPU's existing map */ 2148 if (map) { 2149 if (pos < map->alloc_len) 2150 return map; 2151 2152 alloc_len = map->alloc_len * 2; 2153 } 2154 2155 /* Need to allocate new map to store queue on this CPU's map */ 2156 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 2157 cpu_to_node(cpu)); 2158 if (!new_map) 2159 return NULL; 2160 2161 for (i = 0; i < pos; i++) 2162 new_map->queues[i] = map->queues[i]; 2163 new_map->alloc_len = alloc_len; 2164 new_map->len = pos; 2165 2166 return new_map; 2167 } 2168 2169 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 2170 u16 index) 2171 { 2172 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL; 2173 int i, cpu, tci, numa_node_id = -2; 2174 int maps_sz, num_tc = 1, tc = 0; 2175 struct xps_map *map, *new_map; 2176 bool active = false; 2177 2178 if (dev->num_tc) { 2179 num_tc = dev->num_tc; 2180 tc = netdev_txq_to_tc(dev, index); 2181 if (tc < 0) 2182 return -EINVAL; 2183 } 2184 2185 maps_sz = XPS_DEV_MAPS_SIZE(num_tc); 2186 if (maps_sz < L1_CACHE_BYTES) 2187 maps_sz = L1_CACHE_BYTES; 2188 2189 mutex_lock(&xps_map_mutex); 2190 2191 dev_maps = xmap_dereference(dev->xps_maps); 2192 2193 /* allocate memory for queue storage */ 2194 for_each_cpu_and(cpu, cpu_online_mask, mask) { 2195 if (!new_dev_maps) 2196 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2197 if (!new_dev_maps) { 2198 mutex_unlock(&xps_map_mutex); 2199 return -ENOMEM; 2200 } 2201 2202 tci = cpu * num_tc + tc; 2203 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) : 2204 NULL; 2205 2206 map = expand_xps_map(map, cpu, index); 2207 if (!map) 2208 goto error; 2209 2210 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2211 } 2212 2213 if (!new_dev_maps) 2214 goto out_no_new_maps; 2215 2216 for_each_possible_cpu(cpu) { 2217 /* copy maps belonging to foreign traffic classes */ 2218 for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) { 2219 /* fill in the new device map from the old device map */ 2220 map = xmap_dereference(dev_maps->cpu_map[tci]); 2221 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2222 } 2223 2224 /* We need to explicitly update tci as prevous loop 2225 * could break out early if dev_maps is NULL. 2226 */ 2227 tci = cpu * num_tc + tc; 2228 2229 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) { 2230 /* add queue to CPU maps */ 2231 int pos = 0; 2232 2233 map = xmap_dereference(new_dev_maps->cpu_map[tci]); 2234 while ((pos < map->len) && (map->queues[pos] != index)) 2235 pos++; 2236 2237 if (pos == map->len) 2238 map->queues[map->len++] = index; 2239 #ifdef CONFIG_NUMA 2240 if (numa_node_id == -2) 2241 numa_node_id = cpu_to_node(cpu); 2242 else if (numa_node_id != cpu_to_node(cpu)) 2243 numa_node_id = -1; 2244 #endif 2245 } else if (dev_maps) { 2246 /* fill in the new device map from the old device map */ 2247 map = xmap_dereference(dev_maps->cpu_map[tci]); 2248 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2249 } 2250 2251 /* copy maps belonging to foreign traffic classes */ 2252 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) { 2253 /* fill in the new device map from the old device map */ 2254 map = xmap_dereference(dev_maps->cpu_map[tci]); 2255 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2256 } 2257 } 2258 2259 rcu_assign_pointer(dev->xps_maps, new_dev_maps); 2260 2261 /* Cleanup old maps */ 2262 if (!dev_maps) 2263 goto out_no_old_maps; 2264 2265 for_each_possible_cpu(cpu) { 2266 for (i = num_tc, tci = cpu * num_tc; i--; tci++) { 2267 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]); 2268 map = xmap_dereference(dev_maps->cpu_map[tci]); 2269 if (map && map != new_map) 2270 kfree_rcu(map, rcu); 2271 } 2272 } 2273 2274 kfree_rcu(dev_maps, rcu); 2275 2276 out_no_old_maps: 2277 dev_maps = new_dev_maps; 2278 active = true; 2279 2280 out_no_new_maps: 2281 /* update Tx queue numa node */ 2282 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2283 (numa_node_id >= 0) ? numa_node_id : 2284 NUMA_NO_NODE); 2285 2286 if (!dev_maps) 2287 goto out_no_maps; 2288 2289 /* removes queue from unused CPUs */ 2290 for_each_possible_cpu(cpu) { 2291 for (i = tc, tci = cpu * num_tc; i--; tci++) 2292 active |= remove_xps_queue(dev_maps, tci, index); 2293 if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu)) 2294 active |= remove_xps_queue(dev_maps, tci, index); 2295 for (i = num_tc - tc, tci++; --i; tci++) 2296 active |= remove_xps_queue(dev_maps, tci, index); 2297 } 2298 2299 /* free map if not active */ 2300 if (!active) { 2301 RCU_INIT_POINTER(dev->xps_maps, NULL); 2302 kfree_rcu(dev_maps, rcu); 2303 } 2304 2305 out_no_maps: 2306 mutex_unlock(&xps_map_mutex); 2307 2308 return 0; 2309 error: 2310 /* remove any maps that we added */ 2311 for_each_possible_cpu(cpu) { 2312 for (i = num_tc, tci = cpu * num_tc; i--; tci++) { 2313 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]); 2314 map = dev_maps ? 2315 xmap_dereference(dev_maps->cpu_map[tci]) : 2316 NULL; 2317 if (new_map && new_map != map) 2318 kfree(new_map); 2319 } 2320 } 2321 2322 mutex_unlock(&xps_map_mutex); 2323 2324 kfree(new_dev_maps); 2325 return -ENOMEM; 2326 } 2327 EXPORT_SYMBOL(netif_set_xps_queue); 2328 2329 #endif 2330 void netdev_reset_tc(struct net_device *dev) 2331 { 2332 #ifdef CONFIG_XPS 2333 netif_reset_xps_queues_gt(dev, 0); 2334 #endif 2335 dev->num_tc = 0; 2336 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 2337 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 2338 } 2339 EXPORT_SYMBOL(netdev_reset_tc); 2340 2341 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 2342 { 2343 if (tc >= dev->num_tc) 2344 return -EINVAL; 2345 2346 #ifdef CONFIG_XPS 2347 netif_reset_xps_queues(dev, offset, count); 2348 #endif 2349 dev->tc_to_txq[tc].count = count; 2350 dev->tc_to_txq[tc].offset = offset; 2351 return 0; 2352 } 2353 EXPORT_SYMBOL(netdev_set_tc_queue); 2354 2355 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 2356 { 2357 if (num_tc > TC_MAX_QUEUE) 2358 return -EINVAL; 2359 2360 #ifdef CONFIG_XPS 2361 netif_reset_xps_queues_gt(dev, 0); 2362 #endif 2363 dev->num_tc = num_tc; 2364 return 0; 2365 } 2366 EXPORT_SYMBOL(netdev_set_num_tc); 2367 2368 /* 2369 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2370 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed. 2371 */ 2372 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2373 { 2374 int rc; 2375 2376 if (txq < 1 || txq > dev->num_tx_queues) 2377 return -EINVAL; 2378 2379 if (dev->reg_state == NETREG_REGISTERED || 2380 dev->reg_state == NETREG_UNREGISTERING) { 2381 ASSERT_RTNL(); 2382 2383 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2384 txq); 2385 if (rc) 2386 return rc; 2387 2388 if (dev->num_tc) 2389 netif_setup_tc(dev, txq); 2390 2391 if (txq < dev->real_num_tx_queues) { 2392 qdisc_reset_all_tx_gt(dev, txq); 2393 #ifdef CONFIG_XPS 2394 netif_reset_xps_queues_gt(dev, txq); 2395 #endif 2396 } 2397 } 2398 2399 dev->real_num_tx_queues = txq; 2400 return 0; 2401 } 2402 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2403 2404 #ifdef CONFIG_SYSFS 2405 /** 2406 * netif_set_real_num_rx_queues - set actual number of RX queues used 2407 * @dev: Network device 2408 * @rxq: Actual number of RX queues 2409 * 2410 * This must be called either with the rtnl_lock held or before 2411 * registration of the net device. Returns 0 on success, or a 2412 * negative error code. If called before registration, it always 2413 * succeeds. 2414 */ 2415 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2416 { 2417 int rc; 2418 2419 if (rxq < 1 || rxq > dev->num_rx_queues) 2420 return -EINVAL; 2421 2422 if (dev->reg_state == NETREG_REGISTERED) { 2423 ASSERT_RTNL(); 2424 2425 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 2426 rxq); 2427 if (rc) 2428 return rc; 2429 } 2430 2431 dev->real_num_rx_queues = rxq; 2432 return 0; 2433 } 2434 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 2435 #endif 2436 2437 /** 2438 * netif_get_num_default_rss_queues - default number of RSS queues 2439 * 2440 * This routine should set an upper limit on the number of RSS queues 2441 * used by default by multiqueue devices. 2442 */ 2443 int netif_get_num_default_rss_queues(void) 2444 { 2445 return is_kdump_kernel() ? 2446 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 2447 } 2448 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 2449 2450 static void __netif_reschedule(struct Qdisc *q) 2451 { 2452 struct softnet_data *sd; 2453 unsigned long flags; 2454 2455 local_irq_save(flags); 2456 sd = this_cpu_ptr(&softnet_data); 2457 q->next_sched = NULL; 2458 *sd->output_queue_tailp = q; 2459 sd->output_queue_tailp = &q->next_sched; 2460 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2461 local_irq_restore(flags); 2462 } 2463 2464 void __netif_schedule(struct Qdisc *q) 2465 { 2466 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 2467 __netif_reschedule(q); 2468 } 2469 EXPORT_SYMBOL(__netif_schedule); 2470 2471 struct dev_kfree_skb_cb { 2472 enum skb_free_reason reason; 2473 }; 2474 2475 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 2476 { 2477 return (struct dev_kfree_skb_cb *)skb->cb; 2478 } 2479 2480 void netif_schedule_queue(struct netdev_queue *txq) 2481 { 2482 rcu_read_lock(); 2483 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) { 2484 struct Qdisc *q = rcu_dereference(txq->qdisc); 2485 2486 __netif_schedule(q); 2487 } 2488 rcu_read_unlock(); 2489 } 2490 EXPORT_SYMBOL(netif_schedule_queue); 2491 2492 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 2493 { 2494 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 2495 struct Qdisc *q; 2496 2497 rcu_read_lock(); 2498 q = rcu_dereference(dev_queue->qdisc); 2499 __netif_schedule(q); 2500 rcu_read_unlock(); 2501 } 2502 } 2503 EXPORT_SYMBOL(netif_tx_wake_queue); 2504 2505 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason) 2506 { 2507 unsigned long flags; 2508 2509 if (unlikely(!skb)) 2510 return; 2511 2512 if (likely(refcount_read(&skb->users) == 1)) { 2513 smp_rmb(); 2514 refcount_set(&skb->users, 0); 2515 } else if (likely(!refcount_dec_and_test(&skb->users))) { 2516 return; 2517 } 2518 get_kfree_skb_cb(skb)->reason = reason; 2519 local_irq_save(flags); 2520 skb->next = __this_cpu_read(softnet_data.completion_queue); 2521 __this_cpu_write(softnet_data.completion_queue, skb); 2522 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2523 local_irq_restore(flags); 2524 } 2525 EXPORT_SYMBOL(__dev_kfree_skb_irq); 2526 2527 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason) 2528 { 2529 if (in_irq() || irqs_disabled()) 2530 __dev_kfree_skb_irq(skb, reason); 2531 else 2532 dev_kfree_skb(skb); 2533 } 2534 EXPORT_SYMBOL(__dev_kfree_skb_any); 2535 2536 2537 /** 2538 * netif_device_detach - mark device as removed 2539 * @dev: network device 2540 * 2541 * Mark device as removed from system and therefore no longer available. 2542 */ 2543 void netif_device_detach(struct net_device *dev) 2544 { 2545 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 2546 netif_running(dev)) { 2547 netif_tx_stop_all_queues(dev); 2548 } 2549 } 2550 EXPORT_SYMBOL(netif_device_detach); 2551 2552 /** 2553 * netif_device_attach - mark device as attached 2554 * @dev: network device 2555 * 2556 * Mark device as attached from system and restart if needed. 2557 */ 2558 void netif_device_attach(struct net_device *dev) 2559 { 2560 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 2561 netif_running(dev)) { 2562 netif_tx_wake_all_queues(dev); 2563 __netdev_watchdog_up(dev); 2564 } 2565 } 2566 EXPORT_SYMBOL(netif_device_attach); 2567 2568 /* 2569 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 2570 * to be used as a distribution range. 2571 */ 2572 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb, 2573 unsigned int num_tx_queues) 2574 { 2575 u32 hash; 2576 u16 qoffset = 0; 2577 u16 qcount = num_tx_queues; 2578 2579 if (skb_rx_queue_recorded(skb)) { 2580 hash = skb_get_rx_queue(skb); 2581 while (unlikely(hash >= num_tx_queues)) 2582 hash -= num_tx_queues; 2583 return hash; 2584 } 2585 2586 if (dev->num_tc) { 2587 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 2588 2589 qoffset = dev->tc_to_txq[tc].offset; 2590 qcount = dev->tc_to_txq[tc].count; 2591 } 2592 2593 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; 2594 } 2595 EXPORT_SYMBOL(__skb_tx_hash); 2596 2597 static void skb_warn_bad_offload(const struct sk_buff *skb) 2598 { 2599 static const netdev_features_t null_features; 2600 struct net_device *dev = skb->dev; 2601 const char *name = ""; 2602 2603 if (!net_ratelimit()) 2604 return; 2605 2606 if (dev) { 2607 if (dev->dev.parent) 2608 name = dev_driver_string(dev->dev.parent); 2609 else 2610 name = netdev_name(dev); 2611 } 2612 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d " 2613 "gso_type=%d ip_summed=%d\n", 2614 name, dev ? &dev->features : &null_features, 2615 skb->sk ? &skb->sk->sk_route_caps : &null_features, 2616 skb->len, skb->data_len, skb_shinfo(skb)->gso_size, 2617 skb_shinfo(skb)->gso_type, skb->ip_summed); 2618 } 2619 2620 /* 2621 * Invalidate hardware checksum when packet is to be mangled, and 2622 * complete checksum manually on outgoing path. 2623 */ 2624 int skb_checksum_help(struct sk_buff *skb) 2625 { 2626 __wsum csum; 2627 int ret = 0, offset; 2628 2629 if (skb->ip_summed == CHECKSUM_COMPLETE) 2630 goto out_set_summed; 2631 2632 if (unlikely(skb_shinfo(skb)->gso_size)) { 2633 skb_warn_bad_offload(skb); 2634 return -EINVAL; 2635 } 2636 2637 /* Before computing a checksum, we should make sure no frag could 2638 * be modified by an external entity : checksum could be wrong. 2639 */ 2640 if (skb_has_shared_frag(skb)) { 2641 ret = __skb_linearize(skb); 2642 if (ret) 2643 goto out; 2644 } 2645 2646 offset = skb_checksum_start_offset(skb); 2647 BUG_ON(offset >= skb_headlen(skb)); 2648 csum = skb_checksum(skb, offset, skb->len - offset, 0); 2649 2650 offset += skb->csum_offset; 2651 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 2652 2653 if (skb_cloned(skb) && 2654 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 2655 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2656 if (ret) 2657 goto out; 2658 } 2659 2660 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0; 2661 out_set_summed: 2662 skb->ip_summed = CHECKSUM_NONE; 2663 out: 2664 return ret; 2665 } 2666 EXPORT_SYMBOL(skb_checksum_help); 2667 2668 int skb_crc32c_csum_help(struct sk_buff *skb) 2669 { 2670 __le32 crc32c_csum; 2671 int ret = 0, offset, start; 2672 2673 if (skb->ip_summed != CHECKSUM_PARTIAL) 2674 goto out; 2675 2676 if (unlikely(skb_is_gso(skb))) 2677 goto out; 2678 2679 /* Before computing a checksum, we should make sure no frag could 2680 * be modified by an external entity : checksum could be wrong. 2681 */ 2682 if (unlikely(skb_has_shared_frag(skb))) { 2683 ret = __skb_linearize(skb); 2684 if (ret) 2685 goto out; 2686 } 2687 start = skb_checksum_start_offset(skb); 2688 offset = start + offsetof(struct sctphdr, checksum); 2689 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) { 2690 ret = -EINVAL; 2691 goto out; 2692 } 2693 if (skb_cloned(skb) && 2694 !skb_clone_writable(skb, offset + sizeof(__le32))) { 2695 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2696 if (ret) 2697 goto out; 2698 } 2699 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start, 2700 skb->len - start, ~(__u32)0, 2701 crc32c_csum_stub)); 2702 *(__le32 *)(skb->data + offset) = crc32c_csum; 2703 skb->ip_summed = CHECKSUM_NONE; 2704 skb->csum_not_inet = 0; 2705 out: 2706 return ret; 2707 } 2708 2709 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 2710 { 2711 __be16 type = skb->protocol; 2712 2713 /* Tunnel gso handlers can set protocol to ethernet. */ 2714 if (type == htons(ETH_P_TEB)) { 2715 struct ethhdr *eth; 2716 2717 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 2718 return 0; 2719 2720 eth = (struct ethhdr *)skb_mac_header(skb); 2721 type = eth->h_proto; 2722 } 2723 2724 return __vlan_get_protocol(skb, type, depth); 2725 } 2726 2727 /** 2728 * skb_mac_gso_segment - mac layer segmentation handler. 2729 * @skb: buffer to segment 2730 * @features: features for the output path (see dev->features) 2731 */ 2732 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 2733 netdev_features_t features) 2734 { 2735 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 2736 struct packet_offload *ptype; 2737 int vlan_depth = skb->mac_len; 2738 __be16 type = skb_network_protocol(skb, &vlan_depth); 2739 2740 if (unlikely(!type)) 2741 return ERR_PTR(-EINVAL); 2742 2743 __skb_pull(skb, vlan_depth); 2744 2745 rcu_read_lock(); 2746 list_for_each_entry_rcu(ptype, &offload_base, list) { 2747 if (ptype->type == type && ptype->callbacks.gso_segment) { 2748 segs = ptype->callbacks.gso_segment(skb, features); 2749 break; 2750 } 2751 } 2752 rcu_read_unlock(); 2753 2754 __skb_push(skb, skb->data - skb_mac_header(skb)); 2755 2756 return segs; 2757 } 2758 EXPORT_SYMBOL(skb_mac_gso_segment); 2759 2760 2761 /* openvswitch calls this on rx path, so we need a different check. 2762 */ 2763 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) 2764 { 2765 if (tx_path) 2766 return skb->ip_summed != CHECKSUM_PARTIAL && 2767 skb->ip_summed != CHECKSUM_UNNECESSARY; 2768 2769 return skb->ip_summed == CHECKSUM_NONE; 2770 } 2771 2772 /** 2773 * __skb_gso_segment - Perform segmentation on skb. 2774 * @skb: buffer to segment 2775 * @features: features for the output path (see dev->features) 2776 * @tx_path: whether it is called in TX path 2777 * 2778 * This function segments the given skb and returns a list of segments. 2779 * 2780 * It may return NULL if the skb requires no segmentation. This is 2781 * only possible when GSO is used for verifying header integrity. 2782 * 2783 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb. 2784 */ 2785 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 2786 netdev_features_t features, bool tx_path) 2787 { 2788 struct sk_buff *segs; 2789 2790 if (unlikely(skb_needs_check(skb, tx_path))) { 2791 int err; 2792 2793 /* We're going to init ->check field in TCP or UDP header */ 2794 err = skb_cow_head(skb, 0); 2795 if (err < 0) 2796 return ERR_PTR(err); 2797 } 2798 2799 /* Only report GSO partial support if it will enable us to 2800 * support segmentation on this frame without needing additional 2801 * work. 2802 */ 2803 if (features & NETIF_F_GSO_PARTIAL) { 2804 netdev_features_t partial_features = NETIF_F_GSO_ROBUST; 2805 struct net_device *dev = skb->dev; 2806 2807 partial_features |= dev->features & dev->gso_partial_features; 2808 if (!skb_gso_ok(skb, features | partial_features)) 2809 features &= ~NETIF_F_GSO_PARTIAL; 2810 } 2811 2812 BUILD_BUG_ON(SKB_SGO_CB_OFFSET + 2813 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb)); 2814 2815 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); 2816 SKB_GSO_CB(skb)->encap_level = 0; 2817 2818 skb_reset_mac_header(skb); 2819 skb_reset_mac_len(skb); 2820 2821 segs = skb_mac_gso_segment(skb, features); 2822 2823 if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs))) 2824 skb_warn_bad_offload(skb); 2825 2826 return segs; 2827 } 2828 EXPORT_SYMBOL(__skb_gso_segment); 2829 2830 /* Take action when hardware reception checksum errors are detected. */ 2831 #ifdef CONFIG_BUG 2832 void netdev_rx_csum_fault(struct net_device *dev) 2833 { 2834 if (net_ratelimit()) { 2835 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 2836 dump_stack(); 2837 } 2838 } 2839 EXPORT_SYMBOL(netdev_rx_csum_fault); 2840 #endif 2841 2842 /* Actually, we should eliminate this check as soon as we know, that: 2843 * 1. IOMMU is present and allows to map all the memory. 2844 * 2. No high memory really exists on this machine. 2845 */ 2846 2847 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 2848 { 2849 #ifdef CONFIG_HIGHMEM 2850 int i; 2851 2852 if (!(dev->features & NETIF_F_HIGHDMA)) { 2853 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2854 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2855 2856 if (PageHighMem(skb_frag_page(frag))) 2857 return 1; 2858 } 2859 } 2860 2861 if (PCI_DMA_BUS_IS_PHYS) { 2862 struct device *pdev = dev->dev.parent; 2863 2864 if (!pdev) 2865 return 0; 2866 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2867 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2868 dma_addr_t addr = page_to_phys(skb_frag_page(frag)); 2869 2870 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask) 2871 return 1; 2872 } 2873 } 2874 #endif 2875 return 0; 2876 } 2877 2878 /* If MPLS offload request, verify we are testing hardware MPLS features 2879 * instead of standard features for the netdev. 2880 */ 2881 #if IS_ENABLED(CONFIG_NET_MPLS_GSO) 2882 static netdev_features_t net_mpls_features(struct sk_buff *skb, 2883 netdev_features_t features, 2884 __be16 type) 2885 { 2886 if (eth_p_mpls(type)) 2887 features &= skb->dev->mpls_features; 2888 2889 return features; 2890 } 2891 #else 2892 static netdev_features_t net_mpls_features(struct sk_buff *skb, 2893 netdev_features_t features, 2894 __be16 type) 2895 { 2896 return features; 2897 } 2898 #endif 2899 2900 static netdev_features_t harmonize_features(struct sk_buff *skb, 2901 netdev_features_t features) 2902 { 2903 int tmp; 2904 __be16 type; 2905 2906 type = skb_network_protocol(skb, &tmp); 2907 features = net_mpls_features(skb, features, type); 2908 2909 if (skb->ip_summed != CHECKSUM_NONE && 2910 !can_checksum_protocol(features, type)) { 2911 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 2912 } 2913 if (illegal_highdma(skb->dev, skb)) 2914 features &= ~NETIF_F_SG; 2915 2916 return features; 2917 } 2918 2919 netdev_features_t passthru_features_check(struct sk_buff *skb, 2920 struct net_device *dev, 2921 netdev_features_t features) 2922 { 2923 return features; 2924 } 2925 EXPORT_SYMBOL(passthru_features_check); 2926 2927 static netdev_features_t dflt_features_check(const struct sk_buff *skb, 2928 struct net_device *dev, 2929 netdev_features_t features) 2930 { 2931 return vlan_features_check(skb, features); 2932 } 2933 2934 static netdev_features_t gso_features_check(const struct sk_buff *skb, 2935 struct net_device *dev, 2936 netdev_features_t features) 2937 { 2938 u16 gso_segs = skb_shinfo(skb)->gso_segs; 2939 2940 if (gso_segs > dev->gso_max_segs) 2941 return features & ~NETIF_F_GSO_MASK; 2942 2943 /* Support for GSO partial features requires software 2944 * intervention before we can actually process the packets 2945 * so we need to strip support for any partial features now 2946 * and we can pull them back in after we have partially 2947 * segmented the frame. 2948 */ 2949 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL)) 2950 features &= ~dev->gso_partial_features; 2951 2952 /* Make sure to clear the IPv4 ID mangling feature if the 2953 * IPv4 header has the potential to be fragmented. 2954 */ 2955 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { 2956 struct iphdr *iph = skb->encapsulation ? 2957 inner_ip_hdr(skb) : ip_hdr(skb); 2958 2959 if (!(iph->frag_off & htons(IP_DF))) 2960 features &= ~NETIF_F_TSO_MANGLEID; 2961 } 2962 2963 return features; 2964 } 2965 2966 netdev_features_t netif_skb_features(struct sk_buff *skb) 2967 { 2968 struct net_device *dev = skb->dev; 2969 netdev_features_t features = dev->features; 2970 2971 if (skb_is_gso(skb)) 2972 features = gso_features_check(skb, dev, features); 2973 2974 /* If encapsulation offload request, verify we are testing 2975 * hardware encapsulation features instead of standard 2976 * features for the netdev 2977 */ 2978 if (skb->encapsulation) 2979 features &= dev->hw_enc_features; 2980 2981 if (skb_vlan_tagged(skb)) 2982 features = netdev_intersect_features(features, 2983 dev->vlan_features | 2984 NETIF_F_HW_VLAN_CTAG_TX | 2985 NETIF_F_HW_VLAN_STAG_TX); 2986 2987 if (dev->netdev_ops->ndo_features_check) 2988 features &= dev->netdev_ops->ndo_features_check(skb, dev, 2989 features); 2990 else 2991 features &= dflt_features_check(skb, dev, features); 2992 2993 return harmonize_features(skb, features); 2994 } 2995 EXPORT_SYMBOL(netif_skb_features); 2996 2997 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 2998 struct netdev_queue *txq, bool more) 2999 { 3000 unsigned int len; 3001 int rc; 3002 3003 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all)) 3004 dev_queue_xmit_nit(skb, dev); 3005 3006 len = skb->len; 3007 trace_net_dev_start_xmit(skb, dev); 3008 rc = netdev_start_xmit(skb, dev, txq, more); 3009 trace_net_dev_xmit(skb, rc, dev, len); 3010 3011 return rc; 3012 } 3013 3014 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 3015 struct netdev_queue *txq, int *ret) 3016 { 3017 struct sk_buff *skb = first; 3018 int rc = NETDEV_TX_OK; 3019 3020 while (skb) { 3021 struct sk_buff *next = skb->next; 3022 3023 skb->next = NULL; 3024 rc = xmit_one(skb, dev, txq, next != NULL); 3025 if (unlikely(!dev_xmit_complete(rc))) { 3026 skb->next = next; 3027 goto out; 3028 } 3029 3030 skb = next; 3031 if (netif_xmit_stopped(txq) && skb) { 3032 rc = NETDEV_TX_BUSY; 3033 break; 3034 } 3035 } 3036 3037 out: 3038 *ret = rc; 3039 return skb; 3040 } 3041 3042 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 3043 netdev_features_t features) 3044 { 3045 if (skb_vlan_tag_present(skb) && 3046 !vlan_hw_offload_capable(features, skb->vlan_proto)) 3047 skb = __vlan_hwaccel_push_inside(skb); 3048 return skb; 3049 } 3050 3051 int skb_csum_hwoffload_help(struct sk_buff *skb, 3052 const netdev_features_t features) 3053 { 3054 if (unlikely(skb->csum_not_inet)) 3055 return !!(features & NETIF_F_SCTP_CRC) ? 0 : 3056 skb_crc32c_csum_help(skb); 3057 3058 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb); 3059 } 3060 EXPORT_SYMBOL(skb_csum_hwoffload_help); 3061 3062 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again) 3063 { 3064 netdev_features_t features; 3065 3066 features = netif_skb_features(skb); 3067 skb = validate_xmit_vlan(skb, features); 3068 if (unlikely(!skb)) 3069 goto out_null; 3070 3071 if (netif_needs_gso(skb, features)) { 3072 struct sk_buff *segs; 3073 3074 segs = skb_gso_segment(skb, features); 3075 if (IS_ERR(segs)) { 3076 goto out_kfree_skb; 3077 } else if (segs) { 3078 consume_skb(skb); 3079 skb = segs; 3080 } 3081 } else { 3082 if (skb_needs_linearize(skb, features) && 3083 __skb_linearize(skb)) 3084 goto out_kfree_skb; 3085 3086 /* If packet is not checksummed and device does not 3087 * support checksumming for this protocol, complete 3088 * checksumming here. 3089 */ 3090 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3091 if (skb->encapsulation) 3092 skb_set_inner_transport_header(skb, 3093 skb_checksum_start_offset(skb)); 3094 else 3095 skb_set_transport_header(skb, 3096 skb_checksum_start_offset(skb)); 3097 if (skb_csum_hwoffload_help(skb, features)) 3098 goto out_kfree_skb; 3099 } 3100 } 3101 3102 skb = validate_xmit_xfrm(skb, features, again); 3103 3104 return skb; 3105 3106 out_kfree_skb: 3107 kfree_skb(skb); 3108 out_null: 3109 atomic_long_inc(&dev->tx_dropped); 3110 return NULL; 3111 } 3112 3113 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again) 3114 { 3115 struct sk_buff *next, *head = NULL, *tail; 3116 3117 for (; skb != NULL; skb = next) { 3118 next = skb->next; 3119 skb->next = NULL; 3120 3121 /* in case skb wont be segmented, point to itself */ 3122 skb->prev = skb; 3123 3124 skb = validate_xmit_skb(skb, dev, again); 3125 if (!skb) 3126 continue; 3127 3128 if (!head) 3129 head = skb; 3130 else 3131 tail->next = skb; 3132 /* If skb was segmented, skb->prev points to 3133 * the last segment. If not, it still contains skb. 3134 */ 3135 tail = skb->prev; 3136 } 3137 return head; 3138 } 3139 EXPORT_SYMBOL_GPL(validate_xmit_skb_list); 3140 3141 static void qdisc_pkt_len_init(struct sk_buff *skb) 3142 { 3143 const struct skb_shared_info *shinfo = skb_shinfo(skb); 3144 3145 qdisc_skb_cb(skb)->pkt_len = skb->len; 3146 3147 /* To get more precise estimation of bytes sent on wire, 3148 * we add to pkt_len the headers size of all segments 3149 */ 3150 if (shinfo->gso_size) { 3151 unsigned int hdr_len; 3152 u16 gso_segs = shinfo->gso_segs; 3153 3154 /* mac layer + network layer */ 3155 hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 3156 3157 /* + transport layer */ 3158 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 3159 hdr_len += tcp_hdrlen(skb); 3160 else 3161 hdr_len += sizeof(struct udphdr); 3162 3163 if (shinfo->gso_type & SKB_GSO_DODGY) 3164 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 3165 shinfo->gso_size); 3166 3167 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 3168 } 3169 } 3170 3171 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 3172 struct net_device *dev, 3173 struct netdev_queue *txq) 3174 { 3175 spinlock_t *root_lock = qdisc_lock(q); 3176 struct sk_buff *to_free = NULL; 3177 bool contended; 3178 int rc; 3179 3180 qdisc_calculate_pkt_len(skb, q); 3181 3182 if (q->flags & TCQ_F_NOLOCK) { 3183 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 3184 __qdisc_drop(skb, &to_free); 3185 rc = NET_XMIT_DROP; 3186 } else { 3187 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3188 __qdisc_run(q); 3189 } 3190 3191 if (unlikely(to_free)) 3192 kfree_skb_list(to_free); 3193 return rc; 3194 } 3195 3196 /* 3197 * Heuristic to force contended enqueues to serialize on a 3198 * separate lock before trying to get qdisc main lock. 3199 * This permits qdisc->running owner to get the lock more 3200 * often and dequeue packets faster. 3201 */ 3202 contended = qdisc_is_running(q); 3203 if (unlikely(contended)) 3204 spin_lock(&q->busylock); 3205 3206 spin_lock(root_lock); 3207 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 3208 __qdisc_drop(skb, &to_free); 3209 rc = NET_XMIT_DROP; 3210 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 3211 qdisc_run_begin(q)) { 3212 /* 3213 * This is a work-conserving queue; there are no old skbs 3214 * waiting to be sent out; and the qdisc is not running - 3215 * xmit the skb directly. 3216 */ 3217 3218 qdisc_bstats_update(q, skb); 3219 3220 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 3221 if (unlikely(contended)) { 3222 spin_unlock(&q->busylock); 3223 contended = false; 3224 } 3225 __qdisc_run(q); 3226 } 3227 3228 qdisc_run_end(q); 3229 rc = NET_XMIT_SUCCESS; 3230 } else { 3231 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3232 if (qdisc_run_begin(q)) { 3233 if (unlikely(contended)) { 3234 spin_unlock(&q->busylock); 3235 contended = false; 3236 } 3237 __qdisc_run(q); 3238 qdisc_run_end(q); 3239 } 3240 } 3241 spin_unlock(root_lock); 3242 if (unlikely(to_free)) 3243 kfree_skb_list(to_free); 3244 if (unlikely(contended)) 3245 spin_unlock(&q->busylock); 3246 return rc; 3247 } 3248 3249 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 3250 static void skb_update_prio(struct sk_buff *skb) 3251 { 3252 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap); 3253 3254 if (!skb->priority && skb->sk && map) { 3255 unsigned int prioidx = 3256 sock_cgroup_prioidx(&skb->sk->sk_cgrp_data); 3257 3258 if (prioidx < map->priomap_len) 3259 skb->priority = map->priomap[prioidx]; 3260 } 3261 } 3262 #else 3263 #define skb_update_prio(skb) 3264 #endif 3265 3266 DEFINE_PER_CPU(int, xmit_recursion); 3267 EXPORT_SYMBOL(xmit_recursion); 3268 3269 /** 3270 * dev_loopback_xmit - loop back @skb 3271 * @net: network namespace this loopback is happening in 3272 * @sk: sk needed to be a netfilter okfn 3273 * @skb: buffer to transmit 3274 */ 3275 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) 3276 { 3277 skb_reset_mac_header(skb); 3278 __skb_pull(skb, skb_network_offset(skb)); 3279 skb->pkt_type = PACKET_LOOPBACK; 3280 skb->ip_summed = CHECKSUM_UNNECESSARY; 3281 WARN_ON(!skb_dst(skb)); 3282 skb_dst_force(skb); 3283 netif_rx_ni(skb); 3284 return 0; 3285 } 3286 EXPORT_SYMBOL(dev_loopback_xmit); 3287 3288 #ifdef CONFIG_NET_EGRESS 3289 static struct sk_buff * 3290 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 3291 { 3292 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress); 3293 struct tcf_result cl_res; 3294 3295 if (!miniq) 3296 return skb; 3297 3298 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */ 3299 mini_qdisc_bstats_cpu_update(miniq, skb); 3300 3301 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) { 3302 case TC_ACT_OK: 3303 case TC_ACT_RECLASSIFY: 3304 skb->tc_index = TC_H_MIN(cl_res.classid); 3305 break; 3306 case TC_ACT_SHOT: 3307 mini_qdisc_qstats_cpu_drop(miniq); 3308 *ret = NET_XMIT_DROP; 3309 kfree_skb(skb); 3310 return NULL; 3311 case TC_ACT_STOLEN: 3312 case TC_ACT_QUEUED: 3313 case TC_ACT_TRAP: 3314 *ret = NET_XMIT_SUCCESS; 3315 consume_skb(skb); 3316 return NULL; 3317 case TC_ACT_REDIRECT: 3318 /* No need to push/pop skb's mac_header here on egress! */ 3319 skb_do_redirect(skb); 3320 *ret = NET_XMIT_SUCCESS; 3321 return NULL; 3322 default: 3323 break; 3324 } 3325 3326 return skb; 3327 } 3328 #endif /* CONFIG_NET_EGRESS */ 3329 3330 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb) 3331 { 3332 #ifdef CONFIG_XPS 3333 struct xps_dev_maps *dev_maps; 3334 struct xps_map *map; 3335 int queue_index = -1; 3336 3337 rcu_read_lock(); 3338 dev_maps = rcu_dereference(dev->xps_maps); 3339 if (dev_maps) { 3340 unsigned int tci = skb->sender_cpu - 1; 3341 3342 if (dev->num_tc) { 3343 tci *= dev->num_tc; 3344 tci += netdev_get_prio_tc_map(dev, skb->priority); 3345 } 3346 3347 map = rcu_dereference(dev_maps->cpu_map[tci]); 3348 if (map) { 3349 if (map->len == 1) 3350 queue_index = map->queues[0]; 3351 else 3352 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb), 3353 map->len)]; 3354 if (unlikely(queue_index >= dev->real_num_tx_queues)) 3355 queue_index = -1; 3356 } 3357 } 3358 rcu_read_unlock(); 3359 3360 return queue_index; 3361 #else 3362 return -1; 3363 #endif 3364 } 3365 3366 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb) 3367 { 3368 struct sock *sk = skb->sk; 3369 int queue_index = sk_tx_queue_get(sk); 3370 3371 if (queue_index < 0 || skb->ooo_okay || 3372 queue_index >= dev->real_num_tx_queues) { 3373 int new_index = get_xps_queue(dev, skb); 3374 3375 if (new_index < 0) 3376 new_index = skb_tx_hash(dev, skb); 3377 3378 if (queue_index != new_index && sk && 3379 sk_fullsock(sk) && 3380 rcu_access_pointer(sk->sk_dst_cache)) 3381 sk_tx_queue_set(sk, new_index); 3382 3383 queue_index = new_index; 3384 } 3385 3386 return queue_index; 3387 } 3388 3389 struct netdev_queue *netdev_pick_tx(struct net_device *dev, 3390 struct sk_buff *skb, 3391 void *accel_priv) 3392 { 3393 int queue_index = 0; 3394 3395 #ifdef CONFIG_XPS 3396 u32 sender_cpu = skb->sender_cpu - 1; 3397 3398 if (sender_cpu >= (u32)NR_CPUS) 3399 skb->sender_cpu = raw_smp_processor_id() + 1; 3400 #endif 3401 3402 if (dev->real_num_tx_queues != 1) { 3403 const struct net_device_ops *ops = dev->netdev_ops; 3404 3405 if (ops->ndo_select_queue) 3406 queue_index = ops->ndo_select_queue(dev, skb, accel_priv, 3407 __netdev_pick_tx); 3408 else 3409 queue_index = __netdev_pick_tx(dev, skb); 3410 3411 if (!accel_priv) 3412 queue_index = netdev_cap_txqueue(dev, queue_index); 3413 } 3414 3415 skb_set_queue_mapping(skb, queue_index); 3416 return netdev_get_tx_queue(dev, queue_index); 3417 } 3418 3419 /** 3420 * __dev_queue_xmit - transmit a buffer 3421 * @skb: buffer to transmit 3422 * @accel_priv: private data used for L2 forwarding offload 3423 * 3424 * Queue a buffer for transmission to a network device. The caller must 3425 * have set the device and priority and built the buffer before calling 3426 * this function. The function can be called from an interrupt. 3427 * 3428 * A negative errno code is returned on a failure. A success does not 3429 * guarantee the frame will be transmitted as it may be dropped due 3430 * to congestion or traffic shaping. 3431 * 3432 * ----------------------------------------------------------------------------------- 3433 * I notice this method can also return errors from the queue disciplines, 3434 * including NET_XMIT_DROP, which is a positive value. So, errors can also 3435 * be positive. 3436 * 3437 * Regardless of the return value, the skb is consumed, so it is currently 3438 * difficult to retry a send to this method. (You can bump the ref count 3439 * before sending to hold a reference for retry if you are careful.) 3440 * 3441 * When calling this method, interrupts MUST be enabled. This is because 3442 * the BH enable code must have IRQs enabled so that it will not deadlock. 3443 * --BLG 3444 */ 3445 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv) 3446 { 3447 struct net_device *dev = skb->dev; 3448 struct netdev_queue *txq; 3449 struct Qdisc *q; 3450 int rc = -ENOMEM; 3451 bool again = false; 3452 3453 skb_reset_mac_header(skb); 3454 3455 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP)) 3456 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED); 3457 3458 /* Disable soft irqs for various locks below. Also 3459 * stops preemption for RCU. 3460 */ 3461 rcu_read_lock_bh(); 3462 3463 skb_update_prio(skb); 3464 3465 qdisc_pkt_len_init(skb); 3466 #ifdef CONFIG_NET_CLS_ACT 3467 skb->tc_at_ingress = 0; 3468 # ifdef CONFIG_NET_EGRESS 3469 if (static_key_false(&egress_needed)) { 3470 skb = sch_handle_egress(skb, &rc, dev); 3471 if (!skb) 3472 goto out; 3473 } 3474 # endif 3475 #endif 3476 /* If device/qdisc don't need skb->dst, release it right now while 3477 * its hot in this cpu cache. 3478 */ 3479 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 3480 skb_dst_drop(skb); 3481 else 3482 skb_dst_force(skb); 3483 3484 txq = netdev_pick_tx(dev, skb, accel_priv); 3485 q = rcu_dereference_bh(txq->qdisc); 3486 3487 trace_net_dev_queue(skb); 3488 if (q->enqueue) { 3489 rc = __dev_xmit_skb(skb, q, dev, txq); 3490 goto out; 3491 } 3492 3493 /* The device has no queue. Common case for software devices: 3494 * loopback, all the sorts of tunnels... 3495 3496 * Really, it is unlikely that netif_tx_lock protection is necessary 3497 * here. (f.e. loopback and IP tunnels are clean ignoring statistics 3498 * counters.) 3499 * However, it is possible, that they rely on protection 3500 * made by us here. 3501 3502 * Check this and shot the lock. It is not prone from deadlocks. 3503 *Either shot noqueue qdisc, it is even simpler 8) 3504 */ 3505 if (dev->flags & IFF_UP) { 3506 int cpu = smp_processor_id(); /* ok because BHs are off */ 3507 3508 if (txq->xmit_lock_owner != cpu) { 3509 if (unlikely(__this_cpu_read(xmit_recursion) > 3510 XMIT_RECURSION_LIMIT)) 3511 goto recursion_alert; 3512 3513 skb = validate_xmit_skb(skb, dev, &again); 3514 if (!skb) 3515 goto out; 3516 3517 HARD_TX_LOCK(dev, txq, cpu); 3518 3519 if (!netif_xmit_stopped(txq)) { 3520 __this_cpu_inc(xmit_recursion); 3521 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 3522 __this_cpu_dec(xmit_recursion); 3523 if (dev_xmit_complete(rc)) { 3524 HARD_TX_UNLOCK(dev, txq); 3525 goto out; 3526 } 3527 } 3528 HARD_TX_UNLOCK(dev, txq); 3529 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 3530 dev->name); 3531 } else { 3532 /* Recursion is detected! It is possible, 3533 * unfortunately 3534 */ 3535 recursion_alert: 3536 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 3537 dev->name); 3538 } 3539 } 3540 3541 rc = -ENETDOWN; 3542 rcu_read_unlock_bh(); 3543 3544 atomic_long_inc(&dev->tx_dropped); 3545 kfree_skb_list(skb); 3546 return rc; 3547 out: 3548 rcu_read_unlock_bh(); 3549 return rc; 3550 } 3551 3552 int dev_queue_xmit(struct sk_buff *skb) 3553 { 3554 return __dev_queue_xmit(skb, NULL); 3555 } 3556 EXPORT_SYMBOL(dev_queue_xmit); 3557 3558 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv) 3559 { 3560 return __dev_queue_xmit(skb, accel_priv); 3561 } 3562 EXPORT_SYMBOL(dev_queue_xmit_accel); 3563 3564 3565 /************************************************************************* 3566 * Receiver routines 3567 *************************************************************************/ 3568 3569 int netdev_max_backlog __read_mostly = 1000; 3570 EXPORT_SYMBOL(netdev_max_backlog); 3571 3572 int netdev_tstamp_prequeue __read_mostly = 1; 3573 int netdev_budget __read_mostly = 300; 3574 unsigned int __read_mostly netdev_budget_usecs = 2000; 3575 int weight_p __read_mostly = 64; /* old backlog weight */ 3576 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */ 3577 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */ 3578 int dev_rx_weight __read_mostly = 64; 3579 int dev_tx_weight __read_mostly = 64; 3580 3581 /* Called with irq disabled */ 3582 static inline void ____napi_schedule(struct softnet_data *sd, 3583 struct napi_struct *napi) 3584 { 3585 list_add_tail(&napi->poll_list, &sd->poll_list); 3586 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3587 } 3588 3589 #ifdef CONFIG_RPS 3590 3591 /* One global table that all flow-based protocols share. */ 3592 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 3593 EXPORT_SYMBOL(rps_sock_flow_table); 3594 u32 rps_cpu_mask __read_mostly; 3595 EXPORT_SYMBOL(rps_cpu_mask); 3596 3597 struct static_key rps_needed __read_mostly; 3598 EXPORT_SYMBOL(rps_needed); 3599 struct static_key rfs_needed __read_mostly; 3600 EXPORT_SYMBOL(rfs_needed); 3601 3602 static struct rps_dev_flow * 3603 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3604 struct rps_dev_flow *rflow, u16 next_cpu) 3605 { 3606 if (next_cpu < nr_cpu_ids) { 3607 #ifdef CONFIG_RFS_ACCEL 3608 struct netdev_rx_queue *rxqueue; 3609 struct rps_dev_flow_table *flow_table; 3610 struct rps_dev_flow *old_rflow; 3611 u32 flow_id; 3612 u16 rxq_index; 3613 int rc; 3614 3615 /* Should we steer this flow to a different hardware queue? */ 3616 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 3617 !(dev->features & NETIF_F_NTUPLE)) 3618 goto out; 3619 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 3620 if (rxq_index == skb_get_rx_queue(skb)) 3621 goto out; 3622 3623 rxqueue = dev->_rx + rxq_index; 3624 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3625 if (!flow_table) 3626 goto out; 3627 flow_id = skb_get_hash(skb) & flow_table->mask; 3628 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 3629 rxq_index, flow_id); 3630 if (rc < 0) 3631 goto out; 3632 old_rflow = rflow; 3633 rflow = &flow_table->flows[flow_id]; 3634 rflow->filter = rc; 3635 if (old_rflow->filter == rflow->filter) 3636 old_rflow->filter = RPS_NO_FILTER; 3637 out: 3638 #endif 3639 rflow->last_qtail = 3640 per_cpu(softnet_data, next_cpu).input_queue_head; 3641 } 3642 3643 rflow->cpu = next_cpu; 3644 return rflow; 3645 } 3646 3647 /* 3648 * get_rps_cpu is called from netif_receive_skb and returns the target 3649 * CPU from the RPS map of the receiving queue for a given skb. 3650 * rcu_read_lock must be held on entry. 3651 */ 3652 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3653 struct rps_dev_flow **rflowp) 3654 { 3655 const struct rps_sock_flow_table *sock_flow_table; 3656 struct netdev_rx_queue *rxqueue = dev->_rx; 3657 struct rps_dev_flow_table *flow_table; 3658 struct rps_map *map; 3659 int cpu = -1; 3660 u32 tcpu; 3661 u32 hash; 3662 3663 if (skb_rx_queue_recorded(skb)) { 3664 u16 index = skb_get_rx_queue(skb); 3665 3666 if (unlikely(index >= dev->real_num_rx_queues)) { 3667 WARN_ONCE(dev->real_num_rx_queues > 1, 3668 "%s received packet on queue %u, but number " 3669 "of RX queues is %u\n", 3670 dev->name, index, dev->real_num_rx_queues); 3671 goto done; 3672 } 3673 rxqueue += index; 3674 } 3675 3676 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 3677 3678 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3679 map = rcu_dereference(rxqueue->rps_map); 3680 if (!flow_table && !map) 3681 goto done; 3682 3683 skb_reset_network_header(skb); 3684 hash = skb_get_hash(skb); 3685 if (!hash) 3686 goto done; 3687 3688 sock_flow_table = rcu_dereference(rps_sock_flow_table); 3689 if (flow_table && sock_flow_table) { 3690 struct rps_dev_flow *rflow; 3691 u32 next_cpu; 3692 u32 ident; 3693 3694 /* First check into global flow table if there is a match */ 3695 ident = sock_flow_table->ents[hash & sock_flow_table->mask]; 3696 if ((ident ^ hash) & ~rps_cpu_mask) 3697 goto try_rps; 3698 3699 next_cpu = ident & rps_cpu_mask; 3700 3701 /* OK, now we know there is a match, 3702 * we can look at the local (per receive queue) flow table 3703 */ 3704 rflow = &flow_table->flows[hash & flow_table->mask]; 3705 tcpu = rflow->cpu; 3706 3707 /* 3708 * If the desired CPU (where last recvmsg was done) is 3709 * different from current CPU (one in the rx-queue flow 3710 * table entry), switch if one of the following holds: 3711 * - Current CPU is unset (>= nr_cpu_ids). 3712 * - Current CPU is offline. 3713 * - The current CPU's queue tail has advanced beyond the 3714 * last packet that was enqueued using this table entry. 3715 * This guarantees that all previous packets for the flow 3716 * have been dequeued, thus preserving in order delivery. 3717 */ 3718 if (unlikely(tcpu != next_cpu) && 3719 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 3720 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 3721 rflow->last_qtail)) >= 0)) { 3722 tcpu = next_cpu; 3723 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 3724 } 3725 3726 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 3727 *rflowp = rflow; 3728 cpu = tcpu; 3729 goto done; 3730 } 3731 } 3732 3733 try_rps: 3734 3735 if (map) { 3736 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 3737 if (cpu_online(tcpu)) { 3738 cpu = tcpu; 3739 goto done; 3740 } 3741 } 3742 3743 done: 3744 return cpu; 3745 } 3746 3747 #ifdef CONFIG_RFS_ACCEL 3748 3749 /** 3750 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 3751 * @dev: Device on which the filter was set 3752 * @rxq_index: RX queue index 3753 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 3754 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 3755 * 3756 * Drivers that implement ndo_rx_flow_steer() should periodically call 3757 * this function for each installed filter and remove the filters for 3758 * which it returns %true. 3759 */ 3760 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 3761 u32 flow_id, u16 filter_id) 3762 { 3763 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 3764 struct rps_dev_flow_table *flow_table; 3765 struct rps_dev_flow *rflow; 3766 bool expire = true; 3767 unsigned int cpu; 3768 3769 rcu_read_lock(); 3770 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3771 if (flow_table && flow_id <= flow_table->mask) { 3772 rflow = &flow_table->flows[flow_id]; 3773 cpu = READ_ONCE(rflow->cpu); 3774 if (rflow->filter == filter_id && cpu < nr_cpu_ids && 3775 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 3776 rflow->last_qtail) < 3777 (int)(10 * flow_table->mask))) 3778 expire = false; 3779 } 3780 rcu_read_unlock(); 3781 return expire; 3782 } 3783 EXPORT_SYMBOL(rps_may_expire_flow); 3784 3785 #endif /* CONFIG_RFS_ACCEL */ 3786 3787 /* Called from hardirq (IPI) context */ 3788 static void rps_trigger_softirq(void *data) 3789 { 3790 struct softnet_data *sd = data; 3791 3792 ____napi_schedule(sd, &sd->backlog); 3793 sd->received_rps++; 3794 } 3795 3796 #endif /* CONFIG_RPS */ 3797 3798 /* 3799 * Check if this softnet_data structure is another cpu one 3800 * If yes, queue it to our IPI list and return 1 3801 * If no, return 0 3802 */ 3803 static int rps_ipi_queued(struct softnet_data *sd) 3804 { 3805 #ifdef CONFIG_RPS 3806 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 3807 3808 if (sd != mysd) { 3809 sd->rps_ipi_next = mysd->rps_ipi_list; 3810 mysd->rps_ipi_list = sd; 3811 3812 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3813 return 1; 3814 } 3815 #endif /* CONFIG_RPS */ 3816 return 0; 3817 } 3818 3819 #ifdef CONFIG_NET_FLOW_LIMIT 3820 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 3821 #endif 3822 3823 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 3824 { 3825 #ifdef CONFIG_NET_FLOW_LIMIT 3826 struct sd_flow_limit *fl; 3827 struct softnet_data *sd; 3828 unsigned int old_flow, new_flow; 3829 3830 if (qlen < (netdev_max_backlog >> 1)) 3831 return false; 3832 3833 sd = this_cpu_ptr(&softnet_data); 3834 3835 rcu_read_lock(); 3836 fl = rcu_dereference(sd->flow_limit); 3837 if (fl) { 3838 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); 3839 old_flow = fl->history[fl->history_head]; 3840 fl->history[fl->history_head] = new_flow; 3841 3842 fl->history_head++; 3843 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 3844 3845 if (likely(fl->buckets[old_flow])) 3846 fl->buckets[old_flow]--; 3847 3848 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 3849 fl->count++; 3850 rcu_read_unlock(); 3851 return true; 3852 } 3853 } 3854 rcu_read_unlock(); 3855 #endif 3856 return false; 3857 } 3858 3859 /* 3860 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 3861 * queue (may be a remote CPU queue). 3862 */ 3863 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 3864 unsigned int *qtail) 3865 { 3866 struct softnet_data *sd; 3867 unsigned long flags; 3868 unsigned int qlen; 3869 3870 sd = &per_cpu(softnet_data, cpu); 3871 3872 local_irq_save(flags); 3873 3874 rps_lock(sd); 3875 if (!netif_running(skb->dev)) 3876 goto drop; 3877 qlen = skb_queue_len(&sd->input_pkt_queue); 3878 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) { 3879 if (qlen) { 3880 enqueue: 3881 __skb_queue_tail(&sd->input_pkt_queue, skb); 3882 input_queue_tail_incr_save(sd, qtail); 3883 rps_unlock(sd); 3884 local_irq_restore(flags); 3885 return NET_RX_SUCCESS; 3886 } 3887 3888 /* Schedule NAPI for backlog device 3889 * We can use non atomic operation since we own the queue lock 3890 */ 3891 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 3892 if (!rps_ipi_queued(sd)) 3893 ____napi_schedule(sd, &sd->backlog); 3894 } 3895 goto enqueue; 3896 } 3897 3898 drop: 3899 sd->dropped++; 3900 rps_unlock(sd); 3901 3902 local_irq_restore(flags); 3903 3904 atomic_long_inc(&skb->dev->rx_dropped); 3905 kfree_skb(skb); 3906 return NET_RX_DROP; 3907 } 3908 3909 static u32 netif_receive_generic_xdp(struct sk_buff *skb, 3910 struct bpf_prog *xdp_prog) 3911 { 3912 u32 metalen, act = XDP_DROP; 3913 struct xdp_buff xdp; 3914 void *orig_data; 3915 int hlen, off; 3916 u32 mac_len; 3917 3918 /* Reinjected packets coming from act_mirred or similar should 3919 * not get XDP generic processing. 3920 */ 3921 if (skb_cloned(skb)) 3922 return XDP_PASS; 3923 3924 /* XDP packets must be linear and must have sufficient headroom 3925 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also 3926 * native XDP provides, thus we need to do it here as well. 3927 */ 3928 if (skb_is_nonlinear(skb) || 3929 skb_headroom(skb) < XDP_PACKET_HEADROOM) { 3930 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb); 3931 int troom = skb->tail + skb->data_len - skb->end; 3932 3933 /* In case we have to go down the path and also linearize, 3934 * then lets do the pskb_expand_head() work just once here. 3935 */ 3936 if (pskb_expand_head(skb, 3937 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0, 3938 troom > 0 ? troom + 128 : 0, GFP_ATOMIC)) 3939 goto do_drop; 3940 if (skb_linearize(skb)) 3941 goto do_drop; 3942 } 3943 3944 /* The XDP program wants to see the packet starting at the MAC 3945 * header. 3946 */ 3947 mac_len = skb->data - skb_mac_header(skb); 3948 hlen = skb_headlen(skb) + mac_len; 3949 xdp.data = skb->data - mac_len; 3950 xdp.data_meta = xdp.data; 3951 xdp.data_end = xdp.data + hlen; 3952 xdp.data_hard_start = skb->data - skb_headroom(skb); 3953 orig_data = xdp.data; 3954 3955 act = bpf_prog_run_xdp(xdp_prog, &xdp); 3956 3957 off = xdp.data - orig_data; 3958 if (off > 0) 3959 __skb_pull(skb, off); 3960 else if (off < 0) 3961 __skb_push(skb, -off); 3962 skb->mac_header += off; 3963 3964 switch (act) { 3965 case XDP_REDIRECT: 3966 case XDP_TX: 3967 __skb_push(skb, mac_len); 3968 break; 3969 case XDP_PASS: 3970 metalen = xdp.data - xdp.data_meta; 3971 if (metalen) 3972 skb_metadata_set(skb, metalen); 3973 break; 3974 default: 3975 bpf_warn_invalid_xdp_action(act); 3976 /* fall through */ 3977 case XDP_ABORTED: 3978 trace_xdp_exception(skb->dev, xdp_prog, act); 3979 /* fall through */ 3980 case XDP_DROP: 3981 do_drop: 3982 kfree_skb(skb); 3983 break; 3984 } 3985 3986 return act; 3987 } 3988 3989 /* When doing generic XDP we have to bypass the qdisc layer and the 3990 * network taps in order to match in-driver-XDP behavior. 3991 */ 3992 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog) 3993 { 3994 struct net_device *dev = skb->dev; 3995 struct netdev_queue *txq; 3996 bool free_skb = true; 3997 int cpu, rc; 3998 3999 txq = netdev_pick_tx(dev, skb, NULL); 4000 cpu = smp_processor_id(); 4001 HARD_TX_LOCK(dev, txq, cpu); 4002 if (!netif_xmit_stopped(txq)) { 4003 rc = netdev_start_xmit(skb, dev, txq, 0); 4004 if (dev_xmit_complete(rc)) 4005 free_skb = false; 4006 } 4007 HARD_TX_UNLOCK(dev, txq); 4008 if (free_skb) { 4009 trace_xdp_exception(dev, xdp_prog, XDP_TX); 4010 kfree_skb(skb); 4011 } 4012 } 4013 EXPORT_SYMBOL_GPL(generic_xdp_tx); 4014 4015 static struct static_key generic_xdp_needed __read_mostly; 4016 4017 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb) 4018 { 4019 if (xdp_prog) { 4020 u32 act = netif_receive_generic_xdp(skb, xdp_prog); 4021 int err; 4022 4023 if (act != XDP_PASS) { 4024 switch (act) { 4025 case XDP_REDIRECT: 4026 err = xdp_do_generic_redirect(skb->dev, skb, 4027 xdp_prog); 4028 if (err) 4029 goto out_redir; 4030 /* fallthru to submit skb */ 4031 case XDP_TX: 4032 generic_xdp_tx(skb, xdp_prog); 4033 break; 4034 } 4035 return XDP_DROP; 4036 } 4037 } 4038 return XDP_PASS; 4039 out_redir: 4040 kfree_skb(skb); 4041 return XDP_DROP; 4042 } 4043 EXPORT_SYMBOL_GPL(do_xdp_generic); 4044 4045 static int netif_rx_internal(struct sk_buff *skb) 4046 { 4047 int ret; 4048 4049 net_timestamp_check(netdev_tstamp_prequeue, skb); 4050 4051 trace_netif_rx(skb); 4052 4053 if (static_key_false(&generic_xdp_needed)) { 4054 int ret; 4055 4056 preempt_disable(); 4057 rcu_read_lock(); 4058 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb); 4059 rcu_read_unlock(); 4060 preempt_enable(); 4061 4062 /* Consider XDP consuming the packet a success from 4063 * the netdev point of view we do not want to count 4064 * this as an error. 4065 */ 4066 if (ret != XDP_PASS) 4067 return NET_RX_SUCCESS; 4068 } 4069 4070 #ifdef CONFIG_RPS 4071 if (static_key_false(&rps_needed)) { 4072 struct rps_dev_flow voidflow, *rflow = &voidflow; 4073 int cpu; 4074 4075 preempt_disable(); 4076 rcu_read_lock(); 4077 4078 cpu = get_rps_cpu(skb->dev, skb, &rflow); 4079 if (cpu < 0) 4080 cpu = smp_processor_id(); 4081 4082 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 4083 4084 rcu_read_unlock(); 4085 preempt_enable(); 4086 } else 4087 #endif 4088 { 4089 unsigned int qtail; 4090 4091 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 4092 put_cpu(); 4093 } 4094 return ret; 4095 } 4096 4097 /** 4098 * netif_rx - post buffer to the network code 4099 * @skb: buffer to post 4100 * 4101 * This function receives a packet from a device driver and queues it for 4102 * the upper (protocol) levels to process. It always succeeds. The buffer 4103 * may be dropped during processing for congestion control or by the 4104 * protocol layers. 4105 * 4106 * return values: 4107 * NET_RX_SUCCESS (no congestion) 4108 * NET_RX_DROP (packet was dropped) 4109 * 4110 */ 4111 4112 int netif_rx(struct sk_buff *skb) 4113 { 4114 trace_netif_rx_entry(skb); 4115 4116 return netif_rx_internal(skb); 4117 } 4118 EXPORT_SYMBOL(netif_rx); 4119 4120 int netif_rx_ni(struct sk_buff *skb) 4121 { 4122 int err; 4123 4124 trace_netif_rx_ni_entry(skb); 4125 4126 preempt_disable(); 4127 err = netif_rx_internal(skb); 4128 if (local_softirq_pending()) 4129 do_softirq(); 4130 preempt_enable(); 4131 4132 return err; 4133 } 4134 EXPORT_SYMBOL(netif_rx_ni); 4135 4136 static __latent_entropy void net_tx_action(struct softirq_action *h) 4137 { 4138 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 4139 4140 if (sd->completion_queue) { 4141 struct sk_buff *clist; 4142 4143 local_irq_disable(); 4144 clist = sd->completion_queue; 4145 sd->completion_queue = NULL; 4146 local_irq_enable(); 4147 4148 while (clist) { 4149 struct sk_buff *skb = clist; 4150 4151 clist = clist->next; 4152 4153 WARN_ON(refcount_read(&skb->users)); 4154 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED)) 4155 trace_consume_skb(skb); 4156 else 4157 trace_kfree_skb(skb, net_tx_action); 4158 4159 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) 4160 __kfree_skb(skb); 4161 else 4162 __kfree_skb_defer(skb); 4163 } 4164 4165 __kfree_skb_flush(); 4166 } 4167 4168 if (sd->output_queue) { 4169 struct Qdisc *head; 4170 4171 local_irq_disable(); 4172 head = sd->output_queue; 4173 sd->output_queue = NULL; 4174 sd->output_queue_tailp = &sd->output_queue; 4175 local_irq_enable(); 4176 4177 while (head) { 4178 struct Qdisc *q = head; 4179 spinlock_t *root_lock = NULL; 4180 4181 head = head->next_sched; 4182 4183 if (!(q->flags & TCQ_F_NOLOCK)) { 4184 root_lock = qdisc_lock(q); 4185 spin_lock(root_lock); 4186 } 4187 /* We need to make sure head->next_sched is read 4188 * before clearing __QDISC_STATE_SCHED 4189 */ 4190 smp_mb__before_atomic(); 4191 clear_bit(__QDISC_STATE_SCHED, &q->state); 4192 qdisc_run(q); 4193 if (root_lock) 4194 spin_unlock(root_lock); 4195 } 4196 } 4197 4198 xfrm_dev_backlog(sd); 4199 } 4200 4201 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE) 4202 /* This hook is defined here for ATM LANE */ 4203 int (*br_fdb_test_addr_hook)(struct net_device *dev, 4204 unsigned char *addr) __read_mostly; 4205 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 4206 #endif 4207 4208 static inline struct sk_buff * 4209 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 4210 struct net_device *orig_dev) 4211 { 4212 #ifdef CONFIG_NET_CLS_ACT 4213 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress); 4214 struct tcf_result cl_res; 4215 4216 /* If there's at least one ingress present somewhere (so 4217 * we get here via enabled static key), remaining devices 4218 * that are not configured with an ingress qdisc will bail 4219 * out here. 4220 */ 4221 if (!miniq) 4222 return skb; 4223 4224 if (*pt_prev) { 4225 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4226 *pt_prev = NULL; 4227 } 4228 4229 qdisc_skb_cb(skb)->pkt_len = skb->len; 4230 skb->tc_at_ingress = 1; 4231 mini_qdisc_bstats_cpu_update(miniq, skb); 4232 4233 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) { 4234 case TC_ACT_OK: 4235 case TC_ACT_RECLASSIFY: 4236 skb->tc_index = TC_H_MIN(cl_res.classid); 4237 break; 4238 case TC_ACT_SHOT: 4239 mini_qdisc_qstats_cpu_drop(miniq); 4240 kfree_skb(skb); 4241 return NULL; 4242 case TC_ACT_STOLEN: 4243 case TC_ACT_QUEUED: 4244 case TC_ACT_TRAP: 4245 consume_skb(skb); 4246 return NULL; 4247 case TC_ACT_REDIRECT: 4248 /* skb_mac_header check was done by cls/act_bpf, so 4249 * we can safely push the L2 header back before 4250 * redirecting to another netdev 4251 */ 4252 __skb_push(skb, skb->mac_len); 4253 skb_do_redirect(skb); 4254 return NULL; 4255 default: 4256 break; 4257 } 4258 #endif /* CONFIG_NET_CLS_ACT */ 4259 return skb; 4260 } 4261 4262 /** 4263 * netdev_is_rx_handler_busy - check if receive handler is registered 4264 * @dev: device to check 4265 * 4266 * Check if a receive handler is already registered for a given device. 4267 * Return true if there one. 4268 * 4269 * The caller must hold the rtnl_mutex. 4270 */ 4271 bool netdev_is_rx_handler_busy(struct net_device *dev) 4272 { 4273 ASSERT_RTNL(); 4274 return dev && rtnl_dereference(dev->rx_handler); 4275 } 4276 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy); 4277 4278 /** 4279 * netdev_rx_handler_register - register receive handler 4280 * @dev: device to register a handler for 4281 * @rx_handler: receive handler to register 4282 * @rx_handler_data: data pointer that is used by rx handler 4283 * 4284 * Register a receive handler for a device. This handler will then be 4285 * called from __netif_receive_skb. A negative errno code is returned 4286 * on a failure. 4287 * 4288 * The caller must hold the rtnl_mutex. 4289 * 4290 * For a general description of rx_handler, see enum rx_handler_result. 4291 */ 4292 int netdev_rx_handler_register(struct net_device *dev, 4293 rx_handler_func_t *rx_handler, 4294 void *rx_handler_data) 4295 { 4296 if (netdev_is_rx_handler_busy(dev)) 4297 return -EBUSY; 4298 4299 /* Note: rx_handler_data must be set before rx_handler */ 4300 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 4301 rcu_assign_pointer(dev->rx_handler, rx_handler); 4302 4303 return 0; 4304 } 4305 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 4306 4307 /** 4308 * netdev_rx_handler_unregister - unregister receive handler 4309 * @dev: device to unregister a handler from 4310 * 4311 * Unregister a receive handler from a device. 4312 * 4313 * The caller must hold the rtnl_mutex. 4314 */ 4315 void netdev_rx_handler_unregister(struct net_device *dev) 4316 { 4317 4318 ASSERT_RTNL(); 4319 RCU_INIT_POINTER(dev->rx_handler, NULL); 4320 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 4321 * section has a guarantee to see a non NULL rx_handler_data 4322 * as well. 4323 */ 4324 synchronize_net(); 4325 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 4326 } 4327 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 4328 4329 /* 4330 * Limit the use of PFMEMALLOC reserves to those protocols that implement 4331 * the special handling of PFMEMALLOC skbs. 4332 */ 4333 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 4334 { 4335 switch (skb->protocol) { 4336 case htons(ETH_P_ARP): 4337 case htons(ETH_P_IP): 4338 case htons(ETH_P_IPV6): 4339 case htons(ETH_P_8021Q): 4340 case htons(ETH_P_8021AD): 4341 return true; 4342 default: 4343 return false; 4344 } 4345 } 4346 4347 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, 4348 int *ret, struct net_device *orig_dev) 4349 { 4350 #ifdef CONFIG_NETFILTER_INGRESS 4351 if (nf_hook_ingress_active(skb)) { 4352 int ingress_retval; 4353 4354 if (*pt_prev) { 4355 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4356 *pt_prev = NULL; 4357 } 4358 4359 rcu_read_lock(); 4360 ingress_retval = nf_hook_ingress(skb); 4361 rcu_read_unlock(); 4362 return ingress_retval; 4363 } 4364 #endif /* CONFIG_NETFILTER_INGRESS */ 4365 return 0; 4366 } 4367 4368 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc) 4369 { 4370 struct packet_type *ptype, *pt_prev; 4371 rx_handler_func_t *rx_handler; 4372 struct net_device *orig_dev; 4373 bool deliver_exact = false; 4374 int ret = NET_RX_DROP; 4375 __be16 type; 4376 4377 net_timestamp_check(!netdev_tstamp_prequeue, skb); 4378 4379 trace_netif_receive_skb(skb); 4380 4381 orig_dev = skb->dev; 4382 4383 skb_reset_network_header(skb); 4384 if (!skb_transport_header_was_set(skb)) 4385 skb_reset_transport_header(skb); 4386 skb_reset_mac_len(skb); 4387 4388 pt_prev = NULL; 4389 4390 another_round: 4391 skb->skb_iif = skb->dev->ifindex; 4392 4393 __this_cpu_inc(softnet_data.processed); 4394 4395 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 4396 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 4397 skb = skb_vlan_untag(skb); 4398 if (unlikely(!skb)) 4399 goto out; 4400 } 4401 4402 if (skb_skip_tc_classify(skb)) 4403 goto skip_classify; 4404 4405 if (pfmemalloc) 4406 goto skip_taps; 4407 4408 list_for_each_entry_rcu(ptype, &ptype_all, list) { 4409 if (pt_prev) 4410 ret = deliver_skb(skb, pt_prev, orig_dev); 4411 pt_prev = ptype; 4412 } 4413 4414 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 4415 if (pt_prev) 4416 ret = deliver_skb(skb, pt_prev, orig_dev); 4417 pt_prev = ptype; 4418 } 4419 4420 skip_taps: 4421 #ifdef CONFIG_NET_INGRESS 4422 if (static_key_false(&ingress_needed)) { 4423 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev); 4424 if (!skb) 4425 goto out; 4426 4427 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) 4428 goto out; 4429 } 4430 #endif 4431 skb_reset_tc(skb); 4432 skip_classify: 4433 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 4434 goto drop; 4435 4436 if (skb_vlan_tag_present(skb)) { 4437 if (pt_prev) { 4438 ret = deliver_skb(skb, pt_prev, orig_dev); 4439 pt_prev = NULL; 4440 } 4441 if (vlan_do_receive(&skb)) 4442 goto another_round; 4443 else if (unlikely(!skb)) 4444 goto out; 4445 } 4446 4447 rx_handler = rcu_dereference(skb->dev->rx_handler); 4448 if (rx_handler) { 4449 if (pt_prev) { 4450 ret = deliver_skb(skb, pt_prev, orig_dev); 4451 pt_prev = NULL; 4452 } 4453 switch (rx_handler(&skb)) { 4454 case RX_HANDLER_CONSUMED: 4455 ret = NET_RX_SUCCESS; 4456 goto out; 4457 case RX_HANDLER_ANOTHER: 4458 goto another_round; 4459 case RX_HANDLER_EXACT: 4460 deliver_exact = true; 4461 case RX_HANDLER_PASS: 4462 break; 4463 default: 4464 BUG(); 4465 } 4466 } 4467 4468 if (unlikely(skb_vlan_tag_present(skb))) { 4469 if (skb_vlan_tag_get_id(skb)) 4470 skb->pkt_type = PACKET_OTHERHOST; 4471 /* Note: we might in the future use prio bits 4472 * and set skb->priority like in vlan_do_receive() 4473 * For the time being, just ignore Priority Code Point 4474 */ 4475 skb->vlan_tci = 0; 4476 } 4477 4478 type = skb->protocol; 4479 4480 /* deliver only exact match when indicated */ 4481 if (likely(!deliver_exact)) { 4482 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4483 &ptype_base[ntohs(type) & 4484 PTYPE_HASH_MASK]); 4485 } 4486 4487 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4488 &orig_dev->ptype_specific); 4489 4490 if (unlikely(skb->dev != orig_dev)) { 4491 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4492 &skb->dev->ptype_specific); 4493 } 4494 4495 if (pt_prev) { 4496 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 4497 goto drop; 4498 else 4499 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 4500 } else { 4501 drop: 4502 if (!deliver_exact) 4503 atomic_long_inc(&skb->dev->rx_dropped); 4504 else 4505 atomic_long_inc(&skb->dev->rx_nohandler); 4506 kfree_skb(skb); 4507 /* Jamal, now you will not able to escape explaining 4508 * me how you were going to use this. :-) 4509 */ 4510 ret = NET_RX_DROP; 4511 } 4512 4513 out: 4514 return ret; 4515 } 4516 4517 /** 4518 * netif_receive_skb_core - special purpose version of netif_receive_skb 4519 * @skb: buffer to process 4520 * 4521 * More direct receive version of netif_receive_skb(). It should 4522 * only be used by callers that have a need to skip RPS and Generic XDP. 4523 * Caller must also take care of handling if (page_is_)pfmemalloc. 4524 * 4525 * This function may only be called from softirq context and interrupts 4526 * should be enabled. 4527 * 4528 * Return values (usually ignored): 4529 * NET_RX_SUCCESS: no congestion 4530 * NET_RX_DROP: packet was dropped 4531 */ 4532 int netif_receive_skb_core(struct sk_buff *skb) 4533 { 4534 int ret; 4535 4536 rcu_read_lock(); 4537 ret = __netif_receive_skb_core(skb, false); 4538 rcu_read_unlock(); 4539 4540 return ret; 4541 } 4542 EXPORT_SYMBOL(netif_receive_skb_core); 4543 4544 static int __netif_receive_skb(struct sk_buff *skb) 4545 { 4546 int ret; 4547 4548 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 4549 unsigned int noreclaim_flag; 4550 4551 /* 4552 * PFMEMALLOC skbs are special, they should 4553 * - be delivered to SOCK_MEMALLOC sockets only 4554 * - stay away from userspace 4555 * - have bounded memory usage 4556 * 4557 * Use PF_MEMALLOC as this saves us from propagating the allocation 4558 * context down to all allocation sites. 4559 */ 4560 noreclaim_flag = memalloc_noreclaim_save(); 4561 ret = __netif_receive_skb_core(skb, true); 4562 memalloc_noreclaim_restore(noreclaim_flag); 4563 } else 4564 ret = __netif_receive_skb_core(skb, false); 4565 4566 return ret; 4567 } 4568 4569 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp) 4570 { 4571 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog); 4572 struct bpf_prog *new = xdp->prog; 4573 int ret = 0; 4574 4575 switch (xdp->command) { 4576 case XDP_SETUP_PROG: 4577 rcu_assign_pointer(dev->xdp_prog, new); 4578 if (old) 4579 bpf_prog_put(old); 4580 4581 if (old && !new) { 4582 static_key_slow_dec(&generic_xdp_needed); 4583 } else if (new && !old) { 4584 static_key_slow_inc(&generic_xdp_needed); 4585 dev_disable_lro(dev); 4586 dev_disable_gro_hw(dev); 4587 } 4588 break; 4589 4590 case XDP_QUERY_PROG: 4591 xdp->prog_attached = !!old; 4592 xdp->prog_id = old ? old->aux->id : 0; 4593 break; 4594 4595 default: 4596 ret = -EINVAL; 4597 break; 4598 } 4599 4600 return ret; 4601 } 4602 4603 static int netif_receive_skb_internal(struct sk_buff *skb) 4604 { 4605 int ret; 4606 4607 net_timestamp_check(netdev_tstamp_prequeue, skb); 4608 4609 if (skb_defer_rx_timestamp(skb)) 4610 return NET_RX_SUCCESS; 4611 4612 if (static_key_false(&generic_xdp_needed)) { 4613 int ret; 4614 4615 preempt_disable(); 4616 rcu_read_lock(); 4617 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb); 4618 rcu_read_unlock(); 4619 preempt_enable(); 4620 4621 if (ret != XDP_PASS) 4622 return NET_RX_DROP; 4623 } 4624 4625 rcu_read_lock(); 4626 #ifdef CONFIG_RPS 4627 if (static_key_false(&rps_needed)) { 4628 struct rps_dev_flow voidflow, *rflow = &voidflow; 4629 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 4630 4631 if (cpu >= 0) { 4632 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 4633 rcu_read_unlock(); 4634 return ret; 4635 } 4636 } 4637 #endif 4638 ret = __netif_receive_skb(skb); 4639 rcu_read_unlock(); 4640 return ret; 4641 } 4642 4643 /** 4644 * netif_receive_skb - process receive buffer from network 4645 * @skb: buffer to process 4646 * 4647 * netif_receive_skb() is the main receive data processing function. 4648 * It always succeeds. The buffer may be dropped during processing 4649 * for congestion control or by the protocol layers. 4650 * 4651 * This function may only be called from softirq context and interrupts 4652 * should be enabled. 4653 * 4654 * Return values (usually ignored): 4655 * NET_RX_SUCCESS: no congestion 4656 * NET_RX_DROP: packet was dropped 4657 */ 4658 int netif_receive_skb(struct sk_buff *skb) 4659 { 4660 trace_netif_receive_skb_entry(skb); 4661 4662 return netif_receive_skb_internal(skb); 4663 } 4664 EXPORT_SYMBOL(netif_receive_skb); 4665 4666 DEFINE_PER_CPU(struct work_struct, flush_works); 4667 4668 /* Network device is going away, flush any packets still pending */ 4669 static void flush_backlog(struct work_struct *work) 4670 { 4671 struct sk_buff *skb, *tmp; 4672 struct softnet_data *sd; 4673 4674 local_bh_disable(); 4675 sd = this_cpu_ptr(&softnet_data); 4676 4677 local_irq_disable(); 4678 rps_lock(sd); 4679 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 4680 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 4681 __skb_unlink(skb, &sd->input_pkt_queue); 4682 kfree_skb(skb); 4683 input_queue_head_incr(sd); 4684 } 4685 } 4686 rps_unlock(sd); 4687 local_irq_enable(); 4688 4689 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 4690 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 4691 __skb_unlink(skb, &sd->process_queue); 4692 kfree_skb(skb); 4693 input_queue_head_incr(sd); 4694 } 4695 } 4696 local_bh_enable(); 4697 } 4698 4699 static void flush_all_backlogs(void) 4700 { 4701 unsigned int cpu; 4702 4703 get_online_cpus(); 4704 4705 for_each_online_cpu(cpu) 4706 queue_work_on(cpu, system_highpri_wq, 4707 per_cpu_ptr(&flush_works, cpu)); 4708 4709 for_each_online_cpu(cpu) 4710 flush_work(per_cpu_ptr(&flush_works, cpu)); 4711 4712 put_online_cpus(); 4713 } 4714 4715 static int napi_gro_complete(struct sk_buff *skb) 4716 { 4717 struct packet_offload *ptype; 4718 __be16 type = skb->protocol; 4719 struct list_head *head = &offload_base; 4720 int err = -ENOENT; 4721 4722 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb)); 4723 4724 if (NAPI_GRO_CB(skb)->count == 1) { 4725 skb_shinfo(skb)->gso_size = 0; 4726 goto out; 4727 } 4728 4729 rcu_read_lock(); 4730 list_for_each_entry_rcu(ptype, head, list) { 4731 if (ptype->type != type || !ptype->callbacks.gro_complete) 4732 continue; 4733 4734 err = ptype->callbacks.gro_complete(skb, 0); 4735 break; 4736 } 4737 rcu_read_unlock(); 4738 4739 if (err) { 4740 WARN_ON(&ptype->list == head); 4741 kfree_skb(skb); 4742 return NET_RX_SUCCESS; 4743 } 4744 4745 out: 4746 return netif_receive_skb_internal(skb); 4747 } 4748 4749 /* napi->gro_list contains packets ordered by age. 4750 * youngest packets at the head of it. 4751 * Complete skbs in reverse order to reduce latencies. 4752 */ 4753 void napi_gro_flush(struct napi_struct *napi, bool flush_old) 4754 { 4755 struct sk_buff *skb, *prev = NULL; 4756 4757 /* scan list and build reverse chain */ 4758 for (skb = napi->gro_list; skb != NULL; skb = skb->next) { 4759 skb->prev = prev; 4760 prev = skb; 4761 } 4762 4763 for (skb = prev; skb; skb = prev) { 4764 skb->next = NULL; 4765 4766 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies) 4767 return; 4768 4769 prev = skb->prev; 4770 napi_gro_complete(skb); 4771 napi->gro_count--; 4772 } 4773 4774 napi->gro_list = NULL; 4775 } 4776 EXPORT_SYMBOL(napi_gro_flush); 4777 4778 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb) 4779 { 4780 struct sk_buff *p; 4781 unsigned int maclen = skb->dev->hard_header_len; 4782 u32 hash = skb_get_hash_raw(skb); 4783 4784 for (p = napi->gro_list; p; p = p->next) { 4785 unsigned long diffs; 4786 4787 NAPI_GRO_CB(p)->flush = 0; 4788 4789 if (hash != skb_get_hash_raw(p)) { 4790 NAPI_GRO_CB(p)->same_flow = 0; 4791 continue; 4792 } 4793 4794 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 4795 diffs |= p->vlan_tci ^ skb->vlan_tci; 4796 diffs |= skb_metadata_dst_cmp(p, skb); 4797 diffs |= skb_metadata_differs(p, skb); 4798 if (maclen == ETH_HLEN) 4799 diffs |= compare_ether_header(skb_mac_header(p), 4800 skb_mac_header(skb)); 4801 else if (!diffs) 4802 diffs = memcmp(skb_mac_header(p), 4803 skb_mac_header(skb), 4804 maclen); 4805 NAPI_GRO_CB(p)->same_flow = !diffs; 4806 } 4807 } 4808 4809 static void skb_gro_reset_offset(struct sk_buff *skb) 4810 { 4811 const struct skb_shared_info *pinfo = skb_shinfo(skb); 4812 const skb_frag_t *frag0 = &pinfo->frags[0]; 4813 4814 NAPI_GRO_CB(skb)->data_offset = 0; 4815 NAPI_GRO_CB(skb)->frag0 = NULL; 4816 NAPI_GRO_CB(skb)->frag0_len = 0; 4817 4818 if (skb_mac_header(skb) == skb_tail_pointer(skb) && 4819 pinfo->nr_frags && 4820 !PageHighMem(skb_frag_page(frag0))) { 4821 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0); 4822 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int, 4823 skb_frag_size(frag0), 4824 skb->end - skb->tail); 4825 } 4826 } 4827 4828 static void gro_pull_from_frag0(struct sk_buff *skb, int grow) 4829 { 4830 struct skb_shared_info *pinfo = skb_shinfo(skb); 4831 4832 BUG_ON(skb->end - skb->tail < grow); 4833 4834 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 4835 4836 skb->data_len -= grow; 4837 skb->tail += grow; 4838 4839 pinfo->frags[0].page_offset += grow; 4840 skb_frag_size_sub(&pinfo->frags[0], grow); 4841 4842 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) { 4843 skb_frag_unref(skb, 0); 4844 memmove(pinfo->frags, pinfo->frags + 1, 4845 --pinfo->nr_frags * sizeof(pinfo->frags[0])); 4846 } 4847 } 4848 4849 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 4850 { 4851 struct sk_buff **pp = NULL; 4852 struct packet_offload *ptype; 4853 __be16 type = skb->protocol; 4854 struct list_head *head = &offload_base; 4855 int same_flow; 4856 enum gro_result ret; 4857 int grow; 4858 4859 if (netif_elide_gro(skb->dev)) 4860 goto normal; 4861 4862 gro_list_prepare(napi, skb); 4863 4864 rcu_read_lock(); 4865 list_for_each_entry_rcu(ptype, head, list) { 4866 if (ptype->type != type || !ptype->callbacks.gro_receive) 4867 continue; 4868 4869 skb_set_network_header(skb, skb_gro_offset(skb)); 4870 skb_reset_mac_len(skb); 4871 NAPI_GRO_CB(skb)->same_flow = 0; 4872 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb); 4873 NAPI_GRO_CB(skb)->free = 0; 4874 NAPI_GRO_CB(skb)->encap_mark = 0; 4875 NAPI_GRO_CB(skb)->recursion_counter = 0; 4876 NAPI_GRO_CB(skb)->is_fou = 0; 4877 NAPI_GRO_CB(skb)->is_atomic = 1; 4878 NAPI_GRO_CB(skb)->gro_remcsum_start = 0; 4879 4880 /* Setup for GRO checksum validation */ 4881 switch (skb->ip_summed) { 4882 case CHECKSUM_COMPLETE: 4883 NAPI_GRO_CB(skb)->csum = skb->csum; 4884 NAPI_GRO_CB(skb)->csum_valid = 1; 4885 NAPI_GRO_CB(skb)->csum_cnt = 0; 4886 break; 4887 case CHECKSUM_UNNECESSARY: 4888 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1; 4889 NAPI_GRO_CB(skb)->csum_valid = 0; 4890 break; 4891 default: 4892 NAPI_GRO_CB(skb)->csum_cnt = 0; 4893 NAPI_GRO_CB(skb)->csum_valid = 0; 4894 } 4895 4896 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb); 4897 break; 4898 } 4899 rcu_read_unlock(); 4900 4901 if (&ptype->list == head) 4902 goto normal; 4903 4904 if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) { 4905 ret = GRO_CONSUMED; 4906 goto ok; 4907 } 4908 4909 same_flow = NAPI_GRO_CB(skb)->same_flow; 4910 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 4911 4912 if (pp) { 4913 struct sk_buff *nskb = *pp; 4914 4915 *pp = nskb->next; 4916 nskb->next = NULL; 4917 napi_gro_complete(nskb); 4918 napi->gro_count--; 4919 } 4920 4921 if (same_flow) 4922 goto ok; 4923 4924 if (NAPI_GRO_CB(skb)->flush) 4925 goto normal; 4926 4927 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) { 4928 struct sk_buff *nskb = napi->gro_list; 4929 4930 /* locate the end of the list to select the 'oldest' flow */ 4931 while (nskb->next) { 4932 pp = &nskb->next; 4933 nskb = *pp; 4934 } 4935 *pp = NULL; 4936 nskb->next = NULL; 4937 napi_gro_complete(nskb); 4938 } else { 4939 napi->gro_count++; 4940 } 4941 NAPI_GRO_CB(skb)->count = 1; 4942 NAPI_GRO_CB(skb)->age = jiffies; 4943 NAPI_GRO_CB(skb)->last = skb; 4944 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 4945 skb->next = napi->gro_list; 4946 napi->gro_list = skb; 4947 ret = GRO_HELD; 4948 4949 pull: 4950 grow = skb_gro_offset(skb) - skb_headlen(skb); 4951 if (grow > 0) 4952 gro_pull_from_frag0(skb, grow); 4953 ok: 4954 return ret; 4955 4956 normal: 4957 ret = GRO_NORMAL; 4958 goto pull; 4959 } 4960 4961 struct packet_offload *gro_find_receive_by_type(__be16 type) 4962 { 4963 struct list_head *offload_head = &offload_base; 4964 struct packet_offload *ptype; 4965 4966 list_for_each_entry_rcu(ptype, offload_head, list) { 4967 if (ptype->type != type || !ptype->callbacks.gro_receive) 4968 continue; 4969 return ptype; 4970 } 4971 return NULL; 4972 } 4973 EXPORT_SYMBOL(gro_find_receive_by_type); 4974 4975 struct packet_offload *gro_find_complete_by_type(__be16 type) 4976 { 4977 struct list_head *offload_head = &offload_base; 4978 struct packet_offload *ptype; 4979 4980 list_for_each_entry_rcu(ptype, offload_head, list) { 4981 if (ptype->type != type || !ptype->callbacks.gro_complete) 4982 continue; 4983 return ptype; 4984 } 4985 return NULL; 4986 } 4987 EXPORT_SYMBOL(gro_find_complete_by_type); 4988 4989 static void napi_skb_free_stolen_head(struct sk_buff *skb) 4990 { 4991 skb_dst_drop(skb); 4992 secpath_reset(skb); 4993 kmem_cache_free(skbuff_head_cache, skb); 4994 } 4995 4996 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 4997 { 4998 switch (ret) { 4999 case GRO_NORMAL: 5000 if (netif_receive_skb_internal(skb)) 5001 ret = GRO_DROP; 5002 break; 5003 5004 case GRO_DROP: 5005 kfree_skb(skb); 5006 break; 5007 5008 case GRO_MERGED_FREE: 5009 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 5010 napi_skb_free_stolen_head(skb); 5011 else 5012 __kfree_skb(skb); 5013 break; 5014 5015 case GRO_HELD: 5016 case GRO_MERGED: 5017 case GRO_CONSUMED: 5018 break; 5019 } 5020 5021 return ret; 5022 } 5023 5024 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 5025 { 5026 skb_mark_napi_id(skb, napi); 5027 trace_napi_gro_receive_entry(skb); 5028 5029 skb_gro_reset_offset(skb); 5030 5031 return napi_skb_finish(dev_gro_receive(napi, skb), skb); 5032 } 5033 EXPORT_SYMBOL(napi_gro_receive); 5034 5035 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 5036 { 5037 if (unlikely(skb->pfmemalloc)) { 5038 consume_skb(skb); 5039 return; 5040 } 5041 __skb_pull(skb, skb_headlen(skb)); 5042 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 5043 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 5044 skb->vlan_tci = 0; 5045 skb->dev = napi->dev; 5046 skb->skb_iif = 0; 5047 skb->encapsulation = 0; 5048 skb_shinfo(skb)->gso_type = 0; 5049 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 5050 secpath_reset(skb); 5051 5052 napi->skb = skb; 5053 } 5054 5055 struct sk_buff *napi_get_frags(struct napi_struct *napi) 5056 { 5057 struct sk_buff *skb = napi->skb; 5058 5059 if (!skb) { 5060 skb = napi_alloc_skb(napi, GRO_MAX_HEAD); 5061 if (skb) { 5062 napi->skb = skb; 5063 skb_mark_napi_id(skb, napi); 5064 } 5065 } 5066 return skb; 5067 } 5068 EXPORT_SYMBOL(napi_get_frags); 5069 5070 static gro_result_t napi_frags_finish(struct napi_struct *napi, 5071 struct sk_buff *skb, 5072 gro_result_t ret) 5073 { 5074 switch (ret) { 5075 case GRO_NORMAL: 5076 case GRO_HELD: 5077 __skb_push(skb, ETH_HLEN); 5078 skb->protocol = eth_type_trans(skb, skb->dev); 5079 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb)) 5080 ret = GRO_DROP; 5081 break; 5082 5083 case GRO_DROP: 5084 napi_reuse_skb(napi, skb); 5085 break; 5086 5087 case GRO_MERGED_FREE: 5088 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 5089 napi_skb_free_stolen_head(skb); 5090 else 5091 napi_reuse_skb(napi, skb); 5092 break; 5093 5094 case GRO_MERGED: 5095 case GRO_CONSUMED: 5096 break; 5097 } 5098 5099 return ret; 5100 } 5101 5102 /* Upper GRO stack assumes network header starts at gro_offset=0 5103 * Drivers could call both napi_gro_frags() and napi_gro_receive() 5104 * We copy ethernet header into skb->data to have a common layout. 5105 */ 5106 static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 5107 { 5108 struct sk_buff *skb = napi->skb; 5109 const struct ethhdr *eth; 5110 unsigned int hlen = sizeof(*eth); 5111 5112 napi->skb = NULL; 5113 5114 skb_reset_mac_header(skb); 5115 skb_gro_reset_offset(skb); 5116 5117 eth = skb_gro_header_fast(skb, 0); 5118 if (unlikely(skb_gro_header_hard(skb, hlen))) { 5119 eth = skb_gro_header_slow(skb, hlen, 0); 5120 if (unlikely(!eth)) { 5121 net_warn_ratelimited("%s: dropping impossible skb from %s\n", 5122 __func__, napi->dev->name); 5123 napi_reuse_skb(napi, skb); 5124 return NULL; 5125 } 5126 } else { 5127 gro_pull_from_frag0(skb, hlen); 5128 NAPI_GRO_CB(skb)->frag0 += hlen; 5129 NAPI_GRO_CB(skb)->frag0_len -= hlen; 5130 } 5131 __skb_pull(skb, hlen); 5132 5133 /* 5134 * This works because the only protocols we care about don't require 5135 * special handling. 5136 * We'll fix it up properly in napi_frags_finish() 5137 */ 5138 skb->protocol = eth->h_proto; 5139 5140 return skb; 5141 } 5142 5143 gro_result_t napi_gro_frags(struct napi_struct *napi) 5144 { 5145 struct sk_buff *skb = napi_frags_skb(napi); 5146 5147 if (!skb) 5148 return GRO_DROP; 5149 5150 trace_napi_gro_frags_entry(skb); 5151 5152 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb)); 5153 } 5154 EXPORT_SYMBOL(napi_gro_frags); 5155 5156 /* Compute the checksum from gro_offset and return the folded value 5157 * after adding in any pseudo checksum. 5158 */ 5159 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb) 5160 { 5161 __wsum wsum; 5162 __sum16 sum; 5163 5164 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0); 5165 5166 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */ 5167 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum)); 5168 if (likely(!sum)) { 5169 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 5170 !skb->csum_complete_sw) 5171 netdev_rx_csum_fault(skb->dev); 5172 } 5173 5174 NAPI_GRO_CB(skb)->csum = wsum; 5175 NAPI_GRO_CB(skb)->csum_valid = 1; 5176 5177 return sum; 5178 } 5179 EXPORT_SYMBOL(__skb_gro_checksum_complete); 5180 5181 static void net_rps_send_ipi(struct softnet_data *remsd) 5182 { 5183 #ifdef CONFIG_RPS 5184 while (remsd) { 5185 struct softnet_data *next = remsd->rps_ipi_next; 5186 5187 if (cpu_online(remsd->cpu)) 5188 smp_call_function_single_async(remsd->cpu, &remsd->csd); 5189 remsd = next; 5190 } 5191 #endif 5192 } 5193 5194 /* 5195 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 5196 * Note: called with local irq disabled, but exits with local irq enabled. 5197 */ 5198 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 5199 { 5200 #ifdef CONFIG_RPS 5201 struct softnet_data *remsd = sd->rps_ipi_list; 5202 5203 if (remsd) { 5204 sd->rps_ipi_list = NULL; 5205 5206 local_irq_enable(); 5207 5208 /* Send pending IPI's to kick RPS processing on remote cpus. */ 5209 net_rps_send_ipi(remsd); 5210 } else 5211 #endif 5212 local_irq_enable(); 5213 } 5214 5215 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 5216 { 5217 #ifdef CONFIG_RPS 5218 return sd->rps_ipi_list != NULL; 5219 #else 5220 return false; 5221 #endif 5222 } 5223 5224 static int process_backlog(struct napi_struct *napi, int quota) 5225 { 5226 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 5227 bool again = true; 5228 int work = 0; 5229 5230 /* Check if we have pending ipi, its better to send them now, 5231 * not waiting net_rx_action() end. 5232 */ 5233 if (sd_has_rps_ipi_waiting(sd)) { 5234 local_irq_disable(); 5235 net_rps_action_and_irq_enable(sd); 5236 } 5237 5238 napi->weight = dev_rx_weight; 5239 while (again) { 5240 struct sk_buff *skb; 5241 5242 while ((skb = __skb_dequeue(&sd->process_queue))) { 5243 rcu_read_lock(); 5244 __netif_receive_skb(skb); 5245 rcu_read_unlock(); 5246 input_queue_head_incr(sd); 5247 if (++work >= quota) 5248 return work; 5249 5250 } 5251 5252 local_irq_disable(); 5253 rps_lock(sd); 5254 if (skb_queue_empty(&sd->input_pkt_queue)) { 5255 /* 5256 * Inline a custom version of __napi_complete(). 5257 * only current cpu owns and manipulates this napi, 5258 * and NAPI_STATE_SCHED is the only possible flag set 5259 * on backlog. 5260 * We can use a plain write instead of clear_bit(), 5261 * and we dont need an smp_mb() memory barrier. 5262 */ 5263 napi->state = 0; 5264 again = false; 5265 } else { 5266 skb_queue_splice_tail_init(&sd->input_pkt_queue, 5267 &sd->process_queue); 5268 } 5269 rps_unlock(sd); 5270 local_irq_enable(); 5271 } 5272 5273 return work; 5274 } 5275 5276 /** 5277 * __napi_schedule - schedule for receive 5278 * @n: entry to schedule 5279 * 5280 * The entry's receive function will be scheduled to run. 5281 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 5282 */ 5283 void __napi_schedule(struct napi_struct *n) 5284 { 5285 unsigned long flags; 5286 5287 local_irq_save(flags); 5288 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 5289 local_irq_restore(flags); 5290 } 5291 EXPORT_SYMBOL(__napi_schedule); 5292 5293 /** 5294 * napi_schedule_prep - check if napi can be scheduled 5295 * @n: napi context 5296 * 5297 * Test if NAPI routine is already running, and if not mark 5298 * it as running. This is used as a condition variable 5299 * insure only one NAPI poll instance runs. We also make 5300 * sure there is no pending NAPI disable. 5301 */ 5302 bool napi_schedule_prep(struct napi_struct *n) 5303 { 5304 unsigned long val, new; 5305 5306 do { 5307 val = READ_ONCE(n->state); 5308 if (unlikely(val & NAPIF_STATE_DISABLE)) 5309 return false; 5310 new = val | NAPIF_STATE_SCHED; 5311 5312 /* Sets STATE_MISSED bit if STATE_SCHED was already set 5313 * This was suggested by Alexander Duyck, as compiler 5314 * emits better code than : 5315 * if (val & NAPIF_STATE_SCHED) 5316 * new |= NAPIF_STATE_MISSED; 5317 */ 5318 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED * 5319 NAPIF_STATE_MISSED; 5320 } while (cmpxchg(&n->state, val, new) != val); 5321 5322 return !(val & NAPIF_STATE_SCHED); 5323 } 5324 EXPORT_SYMBOL(napi_schedule_prep); 5325 5326 /** 5327 * __napi_schedule_irqoff - schedule for receive 5328 * @n: entry to schedule 5329 * 5330 * Variant of __napi_schedule() assuming hard irqs are masked 5331 */ 5332 void __napi_schedule_irqoff(struct napi_struct *n) 5333 { 5334 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 5335 } 5336 EXPORT_SYMBOL(__napi_schedule_irqoff); 5337 5338 bool napi_complete_done(struct napi_struct *n, int work_done) 5339 { 5340 unsigned long flags, val, new; 5341 5342 /* 5343 * 1) Don't let napi dequeue from the cpu poll list 5344 * just in case its running on a different cpu. 5345 * 2) If we are busy polling, do nothing here, we have 5346 * the guarantee we will be called later. 5347 */ 5348 if (unlikely(n->state & (NAPIF_STATE_NPSVC | 5349 NAPIF_STATE_IN_BUSY_POLL))) 5350 return false; 5351 5352 if (n->gro_list) { 5353 unsigned long timeout = 0; 5354 5355 if (work_done) 5356 timeout = n->dev->gro_flush_timeout; 5357 5358 if (timeout) 5359 hrtimer_start(&n->timer, ns_to_ktime(timeout), 5360 HRTIMER_MODE_REL_PINNED); 5361 else 5362 napi_gro_flush(n, false); 5363 } 5364 if (unlikely(!list_empty(&n->poll_list))) { 5365 /* If n->poll_list is not empty, we need to mask irqs */ 5366 local_irq_save(flags); 5367 list_del_init(&n->poll_list); 5368 local_irq_restore(flags); 5369 } 5370 5371 do { 5372 val = READ_ONCE(n->state); 5373 5374 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED)); 5375 5376 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED); 5377 5378 /* If STATE_MISSED was set, leave STATE_SCHED set, 5379 * because we will call napi->poll() one more time. 5380 * This C code was suggested by Alexander Duyck to help gcc. 5381 */ 5382 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED * 5383 NAPIF_STATE_SCHED; 5384 } while (cmpxchg(&n->state, val, new) != val); 5385 5386 if (unlikely(val & NAPIF_STATE_MISSED)) { 5387 __napi_schedule(n); 5388 return false; 5389 } 5390 5391 return true; 5392 } 5393 EXPORT_SYMBOL(napi_complete_done); 5394 5395 /* must be called under rcu_read_lock(), as we dont take a reference */ 5396 static struct napi_struct *napi_by_id(unsigned int napi_id) 5397 { 5398 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 5399 struct napi_struct *napi; 5400 5401 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 5402 if (napi->napi_id == napi_id) 5403 return napi; 5404 5405 return NULL; 5406 } 5407 5408 #if defined(CONFIG_NET_RX_BUSY_POLL) 5409 5410 #define BUSY_POLL_BUDGET 8 5411 5412 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock) 5413 { 5414 int rc; 5415 5416 /* Busy polling means there is a high chance device driver hard irq 5417 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was 5418 * set in napi_schedule_prep(). 5419 * Since we are about to call napi->poll() once more, we can safely 5420 * clear NAPI_STATE_MISSED. 5421 * 5422 * Note: x86 could use a single "lock and ..." instruction 5423 * to perform these two clear_bit() 5424 */ 5425 clear_bit(NAPI_STATE_MISSED, &napi->state); 5426 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state); 5427 5428 local_bh_disable(); 5429 5430 /* All we really want here is to re-enable device interrupts. 5431 * Ideally, a new ndo_busy_poll_stop() could avoid another round. 5432 */ 5433 rc = napi->poll(napi, BUSY_POLL_BUDGET); 5434 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET); 5435 netpoll_poll_unlock(have_poll_lock); 5436 if (rc == BUSY_POLL_BUDGET) 5437 __napi_schedule(napi); 5438 local_bh_enable(); 5439 } 5440 5441 void napi_busy_loop(unsigned int napi_id, 5442 bool (*loop_end)(void *, unsigned long), 5443 void *loop_end_arg) 5444 { 5445 unsigned long start_time = loop_end ? busy_loop_current_time() : 0; 5446 int (*napi_poll)(struct napi_struct *napi, int budget); 5447 void *have_poll_lock = NULL; 5448 struct napi_struct *napi; 5449 5450 restart: 5451 napi_poll = NULL; 5452 5453 rcu_read_lock(); 5454 5455 napi = napi_by_id(napi_id); 5456 if (!napi) 5457 goto out; 5458 5459 preempt_disable(); 5460 for (;;) { 5461 int work = 0; 5462 5463 local_bh_disable(); 5464 if (!napi_poll) { 5465 unsigned long val = READ_ONCE(napi->state); 5466 5467 /* If multiple threads are competing for this napi, 5468 * we avoid dirtying napi->state as much as we can. 5469 */ 5470 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED | 5471 NAPIF_STATE_IN_BUSY_POLL)) 5472 goto count; 5473 if (cmpxchg(&napi->state, val, 5474 val | NAPIF_STATE_IN_BUSY_POLL | 5475 NAPIF_STATE_SCHED) != val) 5476 goto count; 5477 have_poll_lock = netpoll_poll_lock(napi); 5478 napi_poll = napi->poll; 5479 } 5480 work = napi_poll(napi, BUSY_POLL_BUDGET); 5481 trace_napi_poll(napi, work, BUSY_POLL_BUDGET); 5482 count: 5483 if (work > 0) 5484 __NET_ADD_STATS(dev_net(napi->dev), 5485 LINUX_MIB_BUSYPOLLRXPACKETS, work); 5486 local_bh_enable(); 5487 5488 if (!loop_end || loop_end(loop_end_arg, start_time)) 5489 break; 5490 5491 if (unlikely(need_resched())) { 5492 if (napi_poll) 5493 busy_poll_stop(napi, have_poll_lock); 5494 preempt_enable(); 5495 rcu_read_unlock(); 5496 cond_resched(); 5497 if (loop_end(loop_end_arg, start_time)) 5498 return; 5499 goto restart; 5500 } 5501 cpu_relax(); 5502 } 5503 if (napi_poll) 5504 busy_poll_stop(napi, have_poll_lock); 5505 preempt_enable(); 5506 out: 5507 rcu_read_unlock(); 5508 } 5509 EXPORT_SYMBOL(napi_busy_loop); 5510 5511 #endif /* CONFIG_NET_RX_BUSY_POLL */ 5512 5513 static void napi_hash_add(struct napi_struct *napi) 5514 { 5515 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) || 5516 test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) 5517 return; 5518 5519 spin_lock(&napi_hash_lock); 5520 5521 /* 0..NR_CPUS range is reserved for sender_cpu use */ 5522 do { 5523 if (unlikely(++napi_gen_id < MIN_NAPI_ID)) 5524 napi_gen_id = MIN_NAPI_ID; 5525 } while (napi_by_id(napi_gen_id)); 5526 napi->napi_id = napi_gen_id; 5527 5528 hlist_add_head_rcu(&napi->napi_hash_node, 5529 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 5530 5531 spin_unlock(&napi_hash_lock); 5532 } 5533 5534 /* Warning : caller is responsible to make sure rcu grace period 5535 * is respected before freeing memory containing @napi 5536 */ 5537 bool napi_hash_del(struct napi_struct *napi) 5538 { 5539 bool rcu_sync_needed = false; 5540 5541 spin_lock(&napi_hash_lock); 5542 5543 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) { 5544 rcu_sync_needed = true; 5545 hlist_del_rcu(&napi->napi_hash_node); 5546 } 5547 spin_unlock(&napi_hash_lock); 5548 return rcu_sync_needed; 5549 } 5550 EXPORT_SYMBOL_GPL(napi_hash_del); 5551 5552 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 5553 { 5554 struct napi_struct *napi; 5555 5556 napi = container_of(timer, struct napi_struct, timer); 5557 5558 /* Note : we use a relaxed variant of napi_schedule_prep() not setting 5559 * NAPI_STATE_MISSED, since we do not react to a device IRQ. 5560 */ 5561 if (napi->gro_list && !napi_disable_pending(napi) && 5562 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) 5563 __napi_schedule_irqoff(napi); 5564 5565 return HRTIMER_NORESTART; 5566 } 5567 5568 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 5569 int (*poll)(struct napi_struct *, int), int weight) 5570 { 5571 INIT_LIST_HEAD(&napi->poll_list); 5572 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 5573 napi->timer.function = napi_watchdog; 5574 napi->gro_count = 0; 5575 napi->gro_list = NULL; 5576 napi->skb = NULL; 5577 napi->poll = poll; 5578 if (weight > NAPI_POLL_WEIGHT) 5579 pr_err_once("netif_napi_add() called with weight %d on device %s\n", 5580 weight, dev->name); 5581 napi->weight = weight; 5582 list_add(&napi->dev_list, &dev->napi_list); 5583 napi->dev = dev; 5584 #ifdef CONFIG_NETPOLL 5585 napi->poll_owner = -1; 5586 #endif 5587 set_bit(NAPI_STATE_SCHED, &napi->state); 5588 napi_hash_add(napi); 5589 } 5590 EXPORT_SYMBOL(netif_napi_add); 5591 5592 void napi_disable(struct napi_struct *n) 5593 { 5594 might_sleep(); 5595 set_bit(NAPI_STATE_DISABLE, &n->state); 5596 5597 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state)) 5598 msleep(1); 5599 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state)) 5600 msleep(1); 5601 5602 hrtimer_cancel(&n->timer); 5603 5604 clear_bit(NAPI_STATE_DISABLE, &n->state); 5605 } 5606 EXPORT_SYMBOL(napi_disable); 5607 5608 /* Must be called in process context */ 5609 void netif_napi_del(struct napi_struct *napi) 5610 { 5611 might_sleep(); 5612 if (napi_hash_del(napi)) 5613 synchronize_net(); 5614 list_del_init(&napi->dev_list); 5615 napi_free_frags(napi); 5616 5617 kfree_skb_list(napi->gro_list); 5618 napi->gro_list = NULL; 5619 napi->gro_count = 0; 5620 } 5621 EXPORT_SYMBOL(netif_napi_del); 5622 5623 static int napi_poll(struct napi_struct *n, struct list_head *repoll) 5624 { 5625 void *have; 5626 int work, weight; 5627 5628 list_del_init(&n->poll_list); 5629 5630 have = netpoll_poll_lock(n); 5631 5632 weight = n->weight; 5633 5634 /* This NAPI_STATE_SCHED test is for avoiding a race 5635 * with netpoll's poll_napi(). Only the entity which 5636 * obtains the lock and sees NAPI_STATE_SCHED set will 5637 * actually make the ->poll() call. Therefore we avoid 5638 * accidentally calling ->poll() when NAPI is not scheduled. 5639 */ 5640 work = 0; 5641 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 5642 work = n->poll(n, weight); 5643 trace_napi_poll(n, work, weight); 5644 } 5645 5646 WARN_ON_ONCE(work > weight); 5647 5648 if (likely(work < weight)) 5649 goto out_unlock; 5650 5651 /* Drivers must not modify the NAPI state if they 5652 * consume the entire weight. In such cases this code 5653 * still "owns" the NAPI instance and therefore can 5654 * move the instance around on the list at-will. 5655 */ 5656 if (unlikely(napi_disable_pending(n))) { 5657 napi_complete(n); 5658 goto out_unlock; 5659 } 5660 5661 if (n->gro_list) { 5662 /* flush too old packets 5663 * If HZ < 1000, flush all packets. 5664 */ 5665 napi_gro_flush(n, HZ >= 1000); 5666 } 5667 5668 /* Some drivers may have called napi_schedule 5669 * prior to exhausting their budget. 5670 */ 5671 if (unlikely(!list_empty(&n->poll_list))) { 5672 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 5673 n->dev ? n->dev->name : "backlog"); 5674 goto out_unlock; 5675 } 5676 5677 list_add_tail(&n->poll_list, repoll); 5678 5679 out_unlock: 5680 netpoll_poll_unlock(have); 5681 5682 return work; 5683 } 5684 5685 static __latent_entropy void net_rx_action(struct softirq_action *h) 5686 { 5687 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 5688 unsigned long time_limit = jiffies + 5689 usecs_to_jiffies(netdev_budget_usecs); 5690 int budget = netdev_budget; 5691 LIST_HEAD(list); 5692 LIST_HEAD(repoll); 5693 5694 local_irq_disable(); 5695 list_splice_init(&sd->poll_list, &list); 5696 local_irq_enable(); 5697 5698 for (;;) { 5699 struct napi_struct *n; 5700 5701 if (list_empty(&list)) { 5702 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll)) 5703 goto out; 5704 break; 5705 } 5706 5707 n = list_first_entry(&list, struct napi_struct, poll_list); 5708 budget -= napi_poll(n, &repoll); 5709 5710 /* If softirq window is exhausted then punt. 5711 * Allow this to run for 2 jiffies since which will allow 5712 * an average latency of 1.5/HZ. 5713 */ 5714 if (unlikely(budget <= 0 || 5715 time_after_eq(jiffies, time_limit))) { 5716 sd->time_squeeze++; 5717 break; 5718 } 5719 } 5720 5721 local_irq_disable(); 5722 5723 list_splice_tail_init(&sd->poll_list, &list); 5724 list_splice_tail(&repoll, &list); 5725 list_splice(&list, &sd->poll_list); 5726 if (!list_empty(&sd->poll_list)) 5727 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 5728 5729 net_rps_action_and_irq_enable(sd); 5730 out: 5731 __kfree_skb_flush(); 5732 } 5733 5734 struct netdev_adjacent { 5735 struct net_device *dev; 5736 5737 /* upper master flag, there can only be one master device per list */ 5738 bool master; 5739 5740 /* counter for the number of times this device was added to us */ 5741 u16 ref_nr; 5742 5743 /* private field for the users */ 5744 void *private; 5745 5746 struct list_head list; 5747 struct rcu_head rcu; 5748 }; 5749 5750 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, 5751 struct list_head *adj_list) 5752 { 5753 struct netdev_adjacent *adj; 5754 5755 list_for_each_entry(adj, adj_list, list) { 5756 if (adj->dev == adj_dev) 5757 return adj; 5758 } 5759 return NULL; 5760 } 5761 5762 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data) 5763 { 5764 struct net_device *dev = data; 5765 5766 return upper_dev == dev; 5767 } 5768 5769 /** 5770 * netdev_has_upper_dev - Check if device is linked to an upper device 5771 * @dev: device 5772 * @upper_dev: upper device to check 5773 * 5774 * Find out if a device is linked to specified upper device and return true 5775 * in case it is. Note that this checks only immediate upper device, 5776 * not through a complete stack of devices. The caller must hold the RTNL lock. 5777 */ 5778 bool netdev_has_upper_dev(struct net_device *dev, 5779 struct net_device *upper_dev) 5780 { 5781 ASSERT_RTNL(); 5782 5783 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev, 5784 upper_dev); 5785 } 5786 EXPORT_SYMBOL(netdev_has_upper_dev); 5787 5788 /** 5789 * netdev_has_upper_dev_all - Check if device is linked to an upper device 5790 * @dev: device 5791 * @upper_dev: upper device to check 5792 * 5793 * Find out if a device is linked to specified upper device and return true 5794 * in case it is. Note that this checks the entire upper device chain. 5795 * The caller must hold rcu lock. 5796 */ 5797 5798 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 5799 struct net_device *upper_dev) 5800 { 5801 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev, 5802 upper_dev); 5803 } 5804 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu); 5805 5806 /** 5807 * netdev_has_any_upper_dev - Check if device is linked to some device 5808 * @dev: device 5809 * 5810 * Find out if a device is linked to an upper device and return true in case 5811 * it is. The caller must hold the RTNL lock. 5812 */ 5813 bool netdev_has_any_upper_dev(struct net_device *dev) 5814 { 5815 ASSERT_RTNL(); 5816 5817 return !list_empty(&dev->adj_list.upper); 5818 } 5819 EXPORT_SYMBOL(netdev_has_any_upper_dev); 5820 5821 /** 5822 * netdev_master_upper_dev_get - Get master upper device 5823 * @dev: device 5824 * 5825 * Find a master upper device and return pointer to it or NULL in case 5826 * it's not there. The caller must hold the RTNL lock. 5827 */ 5828 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 5829 { 5830 struct netdev_adjacent *upper; 5831 5832 ASSERT_RTNL(); 5833 5834 if (list_empty(&dev->adj_list.upper)) 5835 return NULL; 5836 5837 upper = list_first_entry(&dev->adj_list.upper, 5838 struct netdev_adjacent, list); 5839 if (likely(upper->master)) 5840 return upper->dev; 5841 return NULL; 5842 } 5843 EXPORT_SYMBOL(netdev_master_upper_dev_get); 5844 5845 /** 5846 * netdev_has_any_lower_dev - Check if device is linked to some device 5847 * @dev: device 5848 * 5849 * Find out if a device is linked to a lower device and return true in case 5850 * it is. The caller must hold the RTNL lock. 5851 */ 5852 static bool netdev_has_any_lower_dev(struct net_device *dev) 5853 { 5854 ASSERT_RTNL(); 5855 5856 return !list_empty(&dev->adj_list.lower); 5857 } 5858 5859 void *netdev_adjacent_get_private(struct list_head *adj_list) 5860 { 5861 struct netdev_adjacent *adj; 5862 5863 adj = list_entry(adj_list, struct netdev_adjacent, list); 5864 5865 return adj->private; 5866 } 5867 EXPORT_SYMBOL(netdev_adjacent_get_private); 5868 5869 /** 5870 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 5871 * @dev: device 5872 * @iter: list_head ** of the current position 5873 * 5874 * Gets the next device from the dev's upper list, starting from iter 5875 * position. The caller must hold RCU read lock. 5876 */ 5877 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 5878 struct list_head **iter) 5879 { 5880 struct netdev_adjacent *upper; 5881 5882 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 5883 5884 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5885 5886 if (&upper->list == &dev->adj_list.upper) 5887 return NULL; 5888 5889 *iter = &upper->list; 5890 5891 return upper->dev; 5892 } 5893 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 5894 5895 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev, 5896 struct list_head **iter) 5897 { 5898 struct netdev_adjacent *upper; 5899 5900 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 5901 5902 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5903 5904 if (&upper->list == &dev->adj_list.upper) 5905 return NULL; 5906 5907 *iter = &upper->list; 5908 5909 return upper->dev; 5910 } 5911 5912 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 5913 int (*fn)(struct net_device *dev, 5914 void *data), 5915 void *data) 5916 { 5917 struct net_device *udev; 5918 struct list_head *iter; 5919 int ret; 5920 5921 for (iter = &dev->adj_list.upper, 5922 udev = netdev_next_upper_dev_rcu(dev, &iter); 5923 udev; 5924 udev = netdev_next_upper_dev_rcu(dev, &iter)) { 5925 /* first is the upper device itself */ 5926 ret = fn(udev, data); 5927 if (ret) 5928 return ret; 5929 5930 /* then look at all of its upper devices */ 5931 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data); 5932 if (ret) 5933 return ret; 5934 } 5935 5936 return 0; 5937 } 5938 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu); 5939 5940 /** 5941 * netdev_lower_get_next_private - Get the next ->private from the 5942 * lower neighbour list 5943 * @dev: device 5944 * @iter: list_head ** of the current position 5945 * 5946 * Gets the next netdev_adjacent->private from the dev's lower neighbour 5947 * list, starting from iter position. The caller must hold either hold the 5948 * RTNL lock or its own locking that guarantees that the neighbour lower 5949 * list will remain unchanged. 5950 */ 5951 void *netdev_lower_get_next_private(struct net_device *dev, 5952 struct list_head **iter) 5953 { 5954 struct netdev_adjacent *lower; 5955 5956 lower = list_entry(*iter, struct netdev_adjacent, list); 5957 5958 if (&lower->list == &dev->adj_list.lower) 5959 return NULL; 5960 5961 *iter = lower->list.next; 5962 5963 return lower->private; 5964 } 5965 EXPORT_SYMBOL(netdev_lower_get_next_private); 5966 5967 /** 5968 * netdev_lower_get_next_private_rcu - Get the next ->private from the 5969 * lower neighbour list, RCU 5970 * variant 5971 * @dev: device 5972 * @iter: list_head ** of the current position 5973 * 5974 * Gets the next netdev_adjacent->private from the dev's lower neighbour 5975 * list, starting from iter position. The caller must hold RCU read lock. 5976 */ 5977 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 5978 struct list_head **iter) 5979 { 5980 struct netdev_adjacent *lower; 5981 5982 WARN_ON_ONCE(!rcu_read_lock_held()); 5983 5984 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5985 5986 if (&lower->list == &dev->adj_list.lower) 5987 return NULL; 5988 5989 *iter = &lower->list; 5990 5991 return lower->private; 5992 } 5993 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 5994 5995 /** 5996 * netdev_lower_get_next - Get the next device from the lower neighbour 5997 * list 5998 * @dev: device 5999 * @iter: list_head ** of the current position 6000 * 6001 * Gets the next netdev_adjacent from the dev's lower neighbour 6002 * list, starting from iter position. The caller must hold RTNL lock or 6003 * its own locking that guarantees that the neighbour lower 6004 * list will remain unchanged. 6005 */ 6006 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 6007 { 6008 struct netdev_adjacent *lower; 6009 6010 lower = list_entry(*iter, struct netdev_adjacent, list); 6011 6012 if (&lower->list == &dev->adj_list.lower) 6013 return NULL; 6014 6015 *iter = lower->list.next; 6016 6017 return lower->dev; 6018 } 6019 EXPORT_SYMBOL(netdev_lower_get_next); 6020 6021 static struct net_device *netdev_next_lower_dev(struct net_device *dev, 6022 struct list_head **iter) 6023 { 6024 struct netdev_adjacent *lower; 6025 6026 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 6027 6028 if (&lower->list == &dev->adj_list.lower) 6029 return NULL; 6030 6031 *iter = &lower->list; 6032 6033 return lower->dev; 6034 } 6035 6036 int netdev_walk_all_lower_dev(struct net_device *dev, 6037 int (*fn)(struct net_device *dev, 6038 void *data), 6039 void *data) 6040 { 6041 struct net_device *ldev; 6042 struct list_head *iter; 6043 int ret; 6044 6045 for (iter = &dev->adj_list.lower, 6046 ldev = netdev_next_lower_dev(dev, &iter); 6047 ldev; 6048 ldev = netdev_next_lower_dev(dev, &iter)) { 6049 /* first is the lower device itself */ 6050 ret = fn(ldev, data); 6051 if (ret) 6052 return ret; 6053 6054 /* then look at all of its lower devices */ 6055 ret = netdev_walk_all_lower_dev(ldev, fn, data); 6056 if (ret) 6057 return ret; 6058 } 6059 6060 return 0; 6061 } 6062 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev); 6063 6064 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 6065 struct list_head **iter) 6066 { 6067 struct netdev_adjacent *lower; 6068 6069 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6070 if (&lower->list == &dev->adj_list.lower) 6071 return NULL; 6072 6073 *iter = &lower->list; 6074 6075 return lower->dev; 6076 } 6077 6078 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 6079 int (*fn)(struct net_device *dev, 6080 void *data), 6081 void *data) 6082 { 6083 struct net_device *ldev; 6084 struct list_head *iter; 6085 int ret; 6086 6087 for (iter = &dev->adj_list.lower, 6088 ldev = netdev_next_lower_dev_rcu(dev, &iter); 6089 ldev; 6090 ldev = netdev_next_lower_dev_rcu(dev, &iter)) { 6091 /* first is the lower device itself */ 6092 ret = fn(ldev, data); 6093 if (ret) 6094 return ret; 6095 6096 /* then look at all of its lower devices */ 6097 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data); 6098 if (ret) 6099 return ret; 6100 } 6101 6102 return 0; 6103 } 6104 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu); 6105 6106 /** 6107 * netdev_lower_get_first_private_rcu - Get the first ->private from the 6108 * lower neighbour list, RCU 6109 * variant 6110 * @dev: device 6111 * 6112 * Gets the first netdev_adjacent->private from the dev's lower neighbour 6113 * list. The caller must hold RCU read lock. 6114 */ 6115 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 6116 { 6117 struct netdev_adjacent *lower; 6118 6119 lower = list_first_or_null_rcu(&dev->adj_list.lower, 6120 struct netdev_adjacent, list); 6121 if (lower) 6122 return lower->private; 6123 return NULL; 6124 } 6125 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 6126 6127 /** 6128 * netdev_master_upper_dev_get_rcu - Get master upper device 6129 * @dev: device 6130 * 6131 * Find a master upper device and return pointer to it or NULL in case 6132 * it's not there. The caller must hold the RCU read lock. 6133 */ 6134 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 6135 { 6136 struct netdev_adjacent *upper; 6137 6138 upper = list_first_or_null_rcu(&dev->adj_list.upper, 6139 struct netdev_adjacent, list); 6140 if (upper && likely(upper->master)) 6141 return upper->dev; 6142 return NULL; 6143 } 6144 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 6145 6146 static int netdev_adjacent_sysfs_add(struct net_device *dev, 6147 struct net_device *adj_dev, 6148 struct list_head *dev_list) 6149 { 6150 char linkname[IFNAMSIZ+7]; 6151 6152 sprintf(linkname, dev_list == &dev->adj_list.upper ? 6153 "upper_%s" : "lower_%s", adj_dev->name); 6154 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 6155 linkname); 6156 } 6157 static void netdev_adjacent_sysfs_del(struct net_device *dev, 6158 char *name, 6159 struct list_head *dev_list) 6160 { 6161 char linkname[IFNAMSIZ+7]; 6162 6163 sprintf(linkname, dev_list == &dev->adj_list.upper ? 6164 "upper_%s" : "lower_%s", name); 6165 sysfs_remove_link(&(dev->dev.kobj), linkname); 6166 } 6167 6168 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 6169 struct net_device *adj_dev, 6170 struct list_head *dev_list) 6171 { 6172 return (dev_list == &dev->adj_list.upper || 6173 dev_list == &dev->adj_list.lower) && 6174 net_eq(dev_net(dev), dev_net(adj_dev)); 6175 } 6176 6177 static int __netdev_adjacent_dev_insert(struct net_device *dev, 6178 struct net_device *adj_dev, 6179 struct list_head *dev_list, 6180 void *private, bool master) 6181 { 6182 struct netdev_adjacent *adj; 6183 int ret; 6184 6185 adj = __netdev_find_adj(adj_dev, dev_list); 6186 6187 if (adj) { 6188 adj->ref_nr += 1; 6189 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n", 6190 dev->name, adj_dev->name, adj->ref_nr); 6191 6192 return 0; 6193 } 6194 6195 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 6196 if (!adj) 6197 return -ENOMEM; 6198 6199 adj->dev = adj_dev; 6200 adj->master = master; 6201 adj->ref_nr = 1; 6202 adj->private = private; 6203 dev_hold(adj_dev); 6204 6205 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n", 6206 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name); 6207 6208 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 6209 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 6210 if (ret) 6211 goto free_adj; 6212 } 6213 6214 /* Ensure that master link is always the first item in list. */ 6215 if (master) { 6216 ret = sysfs_create_link(&(dev->dev.kobj), 6217 &(adj_dev->dev.kobj), "master"); 6218 if (ret) 6219 goto remove_symlinks; 6220 6221 list_add_rcu(&adj->list, dev_list); 6222 } else { 6223 list_add_tail_rcu(&adj->list, dev_list); 6224 } 6225 6226 return 0; 6227 6228 remove_symlinks: 6229 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 6230 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 6231 free_adj: 6232 kfree(adj); 6233 dev_put(adj_dev); 6234 6235 return ret; 6236 } 6237 6238 static void __netdev_adjacent_dev_remove(struct net_device *dev, 6239 struct net_device *adj_dev, 6240 u16 ref_nr, 6241 struct list_head *dev_list) 6242 { 6243 struct netdev_adjacent *adj; 6244 6245 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n", 6246 dev->name, adj_dev->name, ref_nr); 6247 6248 adj = __netdev_find_adj(adj_dev, dev_list); 6249 6250 if (!adj) { 6251 pr_err("Adjacency does not exist for device %s from %s\n", 6252 dev->name, adj_dev->name); 6253 WARN_ON(1); 6254 return; 6255 } 6256 6257 if (adj->ref_nr > ref_nr) { 6258 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n", 6259 dev->name, adj_dev->name, ref_nr, 6260 adj->ref_nr - ref_nr); 6261 adj->ref_nr -= ref_nr; 6262 return; 6263 } 6264 6265 if (adj->master) 6266 sysfs_remove_link(&(dev->dev.kobj), "master"); 6267 6268 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 6269 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 6270 6271 list_del_rcu(&adj->list); 6272 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n", 6273 adj_dev->name, dev->name, adj_dev->name); 6274 dev_put(adj_dev); 6275 kfree_rcu(adj, rcu); 6276 } 6277 6278 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 6279 struct net_device *upper_dev, 6280 struct list_head *up_list, 6281 struct list_head *down_list, 6282 void *private, bool master) 6283 { 6284 int ret; 6285 6286 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, 6287 private, master); 6288 if (ret) 6289 return ret; 6290 6291 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, 6292 private, false); 6293 if (ret) { 6294 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list); 6295 return ret; 6296 } 6297 6298 return 0; 6299 } 6300 6301 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 6302 struct net_device *upper_dev, 6303 u16 ref_nr, 6304 struct list_head *up_list, 6305 struct list_head *down_list) 6306 { 6307 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list); 6308 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list); 6309 } 6310 6311 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 6312 struct net_device *upper_dev, 6313 void *private, bool master) 6314 { 6315 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 6316 &dev->adj_list.upper, 6317 &upper_dev->adj_list.lower, 6318 private, master); 6319 } 6320 6321 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 6322 struct net_device *upper_dev) 6323 { 6324 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1, 6325 &dev->adj_list.upper, 6326 &upper_dev->adj_list.lower); 6327 } 6328 6329 static int __netdev_upper_dev_link(struct net_device *dev, 6330 struct net_device *upper_dev, bool master, 6331 void *upper_priv, void *upper_info, 6332 struct netlink_ext_ack *extack) 6333 { 6334 struct netdev_notifier_changeupper_info changeupper_info = { 6335 .info = { 6336 .dev = dev, 6337 .extack = extack, 6338 }, 6339 .upper_dev = upper_dev, 6340 .master = master, 6341 .linking = true, 6342 .upper_info = upper_info, 6343 }; 6344 int ret = 0; 6345 6346 ASSERT_RTNL(); 6347 6348 if (dev == upper_dev) 6349 return -EBUSY; 6350 6351 /* To prevent loops, check if dev is not upper device to upper_dev. */ 6352 if (netdev_has_upper_dev(upper_dev, dev)) 6353 return -EBUSY; 6354 6355 if (netdev_has_upper_dev(dev, upper_dev)) 6356 return -EEXIST; 6357 6358 if (master && netdev_master_upper_dev_get(dev)) 6359 return -EBUSY; 6360 6361 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 6362 &changeupper_info.info); 6363 ret = notifier_to_errno(ret); 6364 if (ret) 6365 return ret; 6366 6367 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv, 6368 master); 6369 if (ret) 6370 return ret; 6371 6372 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 6373 &changeupper_info.info); 6374 ret = notifier_to_errno(ret); 6375 if (ret) 6376 goto rollback; 6377 6378 return 0; 6379 6380 rollback: 6381 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 6382 6383 return ret; 6384 } 6385 6386 /** 6387 * netdev_upper_dev_link - Add a link to the upper device 6388 * @dev: device 6389 * @upper_dev: new upper device 6390 * 6391 * Adds a link to device which is upper to this one. The caller must hold 6392 * the RTNL lock. On a failure a negative errno code is returned. 6393 * On success the reference counts are adjusted and the function 6394 * returns zero. 6395 */ 6396 int netdev_upper_dev_link(struct net_device *dev, 6397 struct net_device *upper_dev, 6398 struct netlink_ext_ack *extack) 6399 { 6400 return __netdev_upper_dev_link(dev, upper_dev, false, 6401 NULL, NULL, extack); 6402 } 6403 EXPORT_SYMBOL(netdev_upper_dev_link); 6404 6405 /** 6406 * netdev_master_upper_dev_link - Add a master link to the upper device 6407 * @dev: device 6408 * @upper_dev: new upper device 6409 * @upper_priv: upper device private 6410 * @upper_info: upper info to be passed down via notifier 6411 * 6412 * Adds a link to device which is upper to this one. In this case, only 6413 * one master upper device can be linked, although other non-master devices 6414 * might be linked as well. The caller must hold the RTNL lock. 6415 * On a failure a negative errno code is returned. On success the reference 6416 * counts are adjusted and the function returns zero. 6417 */ 6418 int netdev_master_upper_dev_link(struct net_device *dev, 6419 struct net_device *upper_dev, 6420 void *upper_priv, void *upper_info, 6421 struct netlink_ext_ack *extack) 6422 { 6423 return __netdev_upper_dev_link(dev, upper_dev, true, 6424 upper_priv, upper_info, extack); 6425 } 6426 EXPORT_SYMBOL(netdev_master_upper_dev_link); 6427 6428 /** 6429 * netdev_upper_dev_unlink - Removes a link to upper device 6430 * @dev: device 6431 * @upper_dev: new upper device 6432 * 6433 * Removes a link to device which is upper to this one. The caller must hold 6434 * the RTNL lock. 6435 */ 6436 void netdev_upper_dev_unlink(struct net_device *dev, 6437 struct net_device *upper_dev) 6438 { 6439 struct netdev_notifier_changeupper_info changeupper_info = { 6440 .info = { 6441 .dev = dev, 6442 }, 6443 .upper_dev = upper_dev, 6444 .linking = false, 6445 }; 6446 6447 ASSERT_RTNL(); 6448 6449 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; 6450 6451 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 6452 &changeupper_info.info); 6453 6454 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 6455 6456 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 6457 &changeupper_info.info); 6458 } 6459 EXPORT_SYMBOL(netdev_upper_dev_unlink); 6460 6461 /** 6462 * netdev_bonding_info_change - Dispatch event about slave change 6463 * @dev: device 6464 * @bonding_info: info to dispatch 6465 * 6466 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 6467 * The caller must hold the RTNL lock. 6468 */ 6469 void netdev_bonding_info_change(struct net_device *dev, 6470 struct netdev_bonding_info *bonding_info) 6471 { 6472 struct netdev_notifier_bonding_info info = { 6473 .info.dev = dev, 6474 }; 6475 6476 memcpy(&info.bonding_info, bonding_info, 6477 sizeof(struct netdev_bonding_info)); 6478 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, 6479 &info.info); 6480 } 6481 EXPORT_SYMBOL(netdev_bonding_info_change); 6482 6483 static void netdev_adjacent_add_links(struct net_device *dev) 6484 { 6485 struct netdev_adjacent *iter; 6486 6487 struct net *net = dev_net(dev); 6488 6489 list_for_each_entry(iter, &dev->adj_list.upper, list) { 6490 if (!net_eq(net, dev_net(iter->dev))) 6491 continue; 6492 netdev_adjacent_sysfs_add(iter->dev, dev, 6493 &iter->dev->adj_list.lower); 6494 netdev_adjacent_sysfs_add(dev, iter->dev, 6495 &dev->adj_list.upper); 6496 } 6497 6498 list_for_each_entry(iter, &dev->adj_list.lower, list) { 6499 if (!net_eq(net, dev_net(iter->dev))) 6500 continue; 6501 netdev_adjacent_sysfs_add(iter->dev, dev, 6502 &iter->dev->adj_list.upper); 6503 netdev_adjacent_sysfs_add(dev, iter->dev, 6504 &dev->adj_list.lower); 6505 } 6506 } 6507 6508 static void netdev_adjacent_del_links(struct net_device *dev) 6509 { 6510 struct netdev_adjacent *iter; 6511 6512 struct net *net = dev_net(dev); 6513 6514 list_for_each_entry(iter, &dev->adj_list.upper, list) { 6515 if (!net_eq(net, dev_net(iter->dev))) 6516 continue; 6517 netdev_adjacent_sysfs_del(iter->dev, dev->name, 6518 &iter->dev->adj_list.lower); 6519 netdev_adjacent_sysfs_del(dev, iter->dev->name, 6520 &dev->adj_list.upper); 6521 } 6522 6523 list_for_each_entry(iter, &dev->adj_list.lower, list) { 6524 if (!net_eq(net, dev_net(iter->dev))) 6525 continue; 6526 netdev_adjacent_sysfs_del(iter->dev, dev->name, 6527 &iter->dev->adj_list.upper); 6528 netdev_adjacent_sysfs_del(dev, iter->dev->name, 6529 &dev->adj_list.lower); 6530 } 6531 } 6532 6533 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 6534 { 6535 struct netdev_adjacent *iter; 6536 6537 struct net *net = dev_net(dev); 6538 6539 list_for_each_entry(iter, &dev->adj_list.upper, list) { 6540 if (!net_eq(net, dev_net(iter->dev))) 6541 continue; 6542 netdev_adjacent_sysfs_del(iter->dev, oldname, 6543 &iter->dev->adj_list.lower); 6544 netdev_adjacent_sysfs_add(iter->dev, dev, 6545 &iter->dev->adj_list.lower); 6546 } 6547 6548 list_for_each_entry(iter, &dev->adj_list.lower, list) { 6549 if (!net_eq(net, dev_net(iter->dev))) 6550 continue; 6551 netdev_adjacent_sysfs_del(iter->dev, oldname, 6552 &iter->dev->adj_list.upper); 6553 netdev_adjacent_sysfs_add(iter->dev, dev, 6554 &iter->dev->adj_list.upper); 6555 } 6556 } 6557 6558 void *netdev_lower_dev_get_private(struct net_device *dev, 6559 struct net_device *lower_dev) 6560 { 6561 struct netdev_adjacent *lower; 6562 6563 if (!lower_dev) 6564 return NULL; 6565 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower); 6566 if (!lower) 6567 return NULL; 6568 6569 return lower->private; 6570 } 6571 EXPORT_SYMBOL(netdev_lower_dev_get_private); 6572 6573 6574 int dev_get_nest_level(struct net_device *dev) 6575 { 6576 struct net_device *lower = NULL; 6577 struct list_head *iter; 6578 int max_nest = -1; 6579 int nest; 6580 6581 ASSERT_RTNL(); 6582 6583 netdev_for_each_lower_dev(dev, lower, iter) { 6584 nest = dev_get_nest_level(lower); 6585 if (max_nest < nest) 6586 max_nest = nest; 6587 } 6588 6589 return max_nest + 1; 6590 } 6591 EXPORT_SYMBOL(dev_get_nest_level); 6592 6593 /** 6594 * netdev_lower_change - Dispatch event about lower device state change 6595 * @lower_dev: device 6596 * @lower_state_info: state to dispatch 6597 * 6598 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info. 6599 * The caller must hold the RTNL lock. 6600 */ 6601 void netdev_lower_state_changed(struct net_device *lower_dev, 6602 void *lower_state_info) 6603 { 6604 struct netdev_notifier_changelowerstate_info changelowerstate_info = { 6605 .info.dev = lower_dev, 6606 }; 6607 6608 ASSERT_RTNL(); 6609 changelowerstate_info.lower_state_info = lower_state_info; 6610 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, 6611 &changelowerstate_info.info); 6612 } 6613 EXPORT_SYMBOL(netdev_lower_state_changed); 6614 6615 static void dev_change_rx_flags(struct net_device *dev, int flags) 6616 { 6617 const struct net_device_ops *ops = dev->netdev_ops; 6618 6619 if (ops->ndo_change_rx_flags) 6620 ops->ndo_change_rx_flags(dev, flags); 6621 } 6622 6623 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 6624 { 6625 unsigned int old_flags = dev->flags; 6626 kuid_t uid; 6627 kgid_t gid; 6628 6629 ASSERT_RTNL(); 6630 6631 dev->flags |= IFF_PROMISC; 6632 dev->promiscuity += inc; 6633 if (dev->promiscuity == 0) { 6634 /* 6635 * Avoid overflow. 6636 * If inc causes overflow, untouch promisc and return error. 6637 */ 6638 if (inc < 0) 6639 dev->flags &= ~IFF_PROMISC; 6640 else { 6641 dev->promiscuity -= inc; 6642 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 6643 dev->name); 6644 return -EOVERFLOW; 6645 } 6646 } 6647 if (dev->flags != old_flags) { 6648 pr_info("device %s %s promiscuous mode\n", 6649 dev->name, 6650 dev->flags & IFF_PROMISC ? "entered" : "left"); 6651 if (audit_enabled) { 6652 current_uid_gid(&uid, &gid); 6653 audit_log(current->audit_context, GFP_ATOMIC, 6654 AUDIT_ANOM_PROMISCUOUS, 6655 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 6656 dev->name, (dev->flags & IFF_PROMISC), 6657 (old_flags & IFF_PROMISC), 6658 from_kuid(&init_user_ns, audit_get_loginuid(current)), 6659 from_kuid(&init_user_ns, uid), 6660 from_kgid(&init_user_ns, gid), 6661 audit_get_sessionid(current)); 6662 } 6663 6664 dev_change_rx_flags(dev, IFF_PROMISC); 6665 } 6666 if (notify) 6667 __dev_notify_flags(dev, old_flags, IFF_PROMISC); 6668 return 0; 6669 } 6670 6671 /** 6672 * dev_set_promiscuity - update promiscuity count on a device 6673 * @dev: device 6674 * @inc: modifier 6675 * 6676 * Add or remove promiscuity from a device. While the count in the device 6677 * remains above zero the interface remains promiscuous. Once it hits zero 6678 * the device reverts back to normal filtering operation. A negative inc 6679 * value is used to drop promiscuity on the device. 6680 * Return 0 if successful or a negative errno code on error. 6681 */ 6682 int dev_set_promiscuity(struct net_device *dev, int inc) 6683 { 6684 unsigned int old_flags = dev->flags; 6685 int err; 6686 6687 err = __dev_set_promiscuity(dev, inc, true); 6688 if (err < 0) 6689 return err; 6690 if (dev->flags != old_flags) 6691 dev_set_rx_mode(dev); 6692 return err; 6693 } 6694 EXPORT_SYMBOL(dev_set_promiscuity); 6695 6696 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 6697 { 6698 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 6699 6700 ASSERT_RTNL(); 6701 6702 dev->flags |= IFF_ALLMULTI; 6703 dev->allmulti += inc; 6704 if (dev->allmulti == 0) { 6705 /* 6706 * Avoid overflow. 6707 * If inc causes overflow, untouch allmulti and return error. 6708 */ 6709 if (inc < 0) 6710 dev->flags &= ~IFF_ALLMULTI; 6711 else { 6712 dev->allmulti -= inc; 6713 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 6714 dev->name); 6715 return -EOVERFLOW; 6716 } 6717 } 6718 if (dev->flags ^ old_flags) { 6719 dev_change_rx_flags(dev, IFF_ALLMULTI); 6720 dev_set_rx_mode(dev); 6721 if (notify) 6722 __dev_notify_flags(dev, old_flags, 6723 dev->gflags ^ old_gflags); 6724 } 6725 return 0; 6726 } 6727 6728 /** 6729 * dev_set_allmulti - update allmulti count on a device 6730 * @dev: device 6731 * @inc: modifier 6732 * 6733 * Add or remove reception of all multicast frames to a device. While the 6734 * count in the device remains above zero the interface remains listening 6735 * to all interfaces. Once it hits zero the device reverts back to normal 6736 * filtering operation. A negative @inc value is used to drop the counter 6737 * when releasing a resource needing all multicasts. 6738 * Return 0 if successful or a negative errno code on error. 6739 */ 6740 6741 int dev_set_allmulti(struct net_device *dev, int inc) 6742 { 6743 return __dev_set_allmulti(dev, inc, true); 6744 } 6745 EXPORT_SYMBOL(dev_set_allmulti); 6746 6747 /* 6748 * Upload unicast and multicast address lists to device and 6749 * configure RX filtering. When the device doesn't support unicast 6750 * filtering it is put in promiscuous mode while unicast addresses 6751 * are present. 6752 */ 6753 void __dev_set_rx_mode(struct net_device *dev) 6754 { 6755 const struct net_device_ops *ops = dev->netdev_ops; 6756 6757 /* dev_open will call this function so the list will stay sane. */ 6758 if (!(dev->flags&IFF_UP)) 6759 return; 6760 6761 if (!netif_device_present(dev)) 6762 return; 6763 6764 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 6765 /* Unicast addresses changes may only happen under the rtnl, 6766 * therefore calling __dev_set_promiscuity here is safe. 6767 */ 6768 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 6769 __dev_set_promiscuity(dev, 1, false); 6770 dev->uc_promisc = true; 6771 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 6772 __dev_set_promiscuity(dev, -1, false); 6773 dev->uc_promisc = false; 6774 } 6775 } 6776 6777 if (ops->ndo_set_rx_mode) 6778 ops->ndo_set_rx_mode(dev); 6779 } 6780 6781 void dev_set_rx_mode(struct net_device *dev) 6782 { 6783 netif_addr_lock_bh(dev); 6784 __dev_set_rx_mode(dev); 6785 netif_addr_unlock_bh(dev); 6786 } 6787 6788 /** 6789 * dev_get_flags - get flags reported to userspace 6790 * @dev: device 6791 * 6792 * Get the combination of flag bits exported through APIs to userspace. 6793 */ 6794 unsigned int dev_get_flags(const struct net_device *dev) 6795 { 6796 unsigned int flags; 6797 6798 flags = (dev->flags & ~(IFF_PROMISC | 6799 IFF_ALLMULTI | 6800 IFF_RUNNING | 6801 IFF_LOWER_UP | 6802 IFF_DORMANT)) | 6803 (dev->gflags & (IFF_PROMISC | 6804 IFF_ALLMULTI)); 6805 6806 if (netif_running(dev)) { 6807 if (netif_oper_up(dev)) 6808 flags |= IFF_RUNNING; 6809 if (netif_carrier_ok(dev)) 6810 flags |= IFF_LOWER_UP; 6811 if (netif_dormant(dev)) 6812 flags |= IFF_DORMANT; 6813 } 6814 6815 return flags; 6816 } 6817 EXPORT_SYMBOL(dev_get_flags); 6818 6819 int __dev_change_flags(struct net_device *dev, unsigned int flags) 6820 { 6821 unsigned int old_flags = dev->flags; 6822 int ret; 6823 6824 ASSERT_RTNL(); 6825 6826 /* 6827 * Set the flags on our device. 6828 */ 6829 6830 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 6831 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 6832 IFF_AUTOMEDIA)) | 6833 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 6834 IFF_ALLMULTI)); 6835 6836 /* 6837 * Load in the correct multicast list now the flags have changed. 6838 */ 6839 6840 if ((old_flags ^ flags) & IFF_MULTICAST) 6841 dev_change_rx_flags(dev, IFF_MULTICAST); 6842 6843 dev_set_rx_mode(dev); 6844 6845 /* 6846 * Have we downed the interface. We handle IFF_UP ourselves 6847 * according to user attempts to set it, rather than blindly 6848 * setting it. 6849 */ 6850 6851 ret = 0; 6852 if ((old_flags ^ flags) & IFF_UP) { 6853 if (old_flags & IFF_UP) 6854 __dev_close(dev); 6855 else 6856 ret = __dev_open(dev); 6857 } 6858 6859 if ((flags ^ dev->gflags) & IFF_PROMISC) { 6860 int inc = (flags & IFF_PROMISC) ? 1 : -1; 6861 unsigned int old_flags = dev->flags; 6862 6863 dev->gflags ^= IFF_PROMISC; 6864 6865 if (__dev_set_promiscuity(dev, inc, false) >= 0) 6866 if (dev->flags != old_flags) 6867 dev_set_rx_mode(dev); 6868 } 6869 6870 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 6871 * is important. Some (broken) drivers set IFF_PROMISC, when 6872 * IFF_ALLMULTI is requested not asking us and not reporting. 6873 */ 6874 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 6875 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 6876 6877 dev->gflags ^= IFF_ALLMULTI; 6878 __dev_set_allmulti(dev, inc, false); 6879 } 6880 6881 return ret; 6882 } 6883 6884 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 6885 unsigned int gchanges) 6886 { 6887 unsigned int changes = dev->flags ^ old_flags; 6888 6889 if (gchanges) 6890 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC); 6891 6892 if (changes & IFF_UP) { 6893 if (dev->flags & IFF_UP) 6894 call_netdevice_notifiers(NETDEV_UP, dev); 6895 else 6896 call_netdevice_notifiers(NETDEV_DOWN, dev); 6897 } 6898 6899 if (dev->flags & IFF_UP && 6900 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 6901 struct netdev_notifier_change_info change_info = { 6902 .info = { 6903 .dev = dev, 6904 }, 6905 .flags_changed = changes, 6906 }; 6907 6908 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info); 6909 } 6910 } 6911 6912 /** 6913 * dev_change_flags - change device settings 6914 * @dev: device 6915 * @flags: device state flags 6916 * 6917 * Change settings on device based state flags. The flags are 6918 * in the userspace exported format. 6919 */ 6920 int dev_change_flags(struct net_device *dev, unsigned int flags) 6921 { 6922 int ret; 6923 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 6924 6925 ret = __dev_change_flags(dev, flags); 6926 if (ret < 0) 6927 return ret; 6928 6929 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 6930 __dev_notify_flags(dev, old_flags, changes); 6931 return ret; 6932 } 6933 EXPORT_SYMBOL(dev_change_flags); 6934 6935 int __dev_set_mtu(struct net_device *dev, int new_mtu) 6936 { 6937 const struct net_device_ops *ops = dev->netdev_ops; 6938 6939 if (ops->ndo_change_mtu) 6940 return ops->ndo_change_mtu(dev, new_mtu); 6941 6942 dev->mtu = new_mtu; 6943 return 0; 6944 } 6945 EXPORT_SYMBOL(__dev_set_mtu); 6946 6947 /** 6948 * dev_set_mtu - Change maximum transfer unit 6949 * @dev: device 6950 * @new_mtu: new transfer unit 6951 * 6952 * Change the maximum transfer size of the network device. 6953 */ 6954 int dev_set_mtu(struct net_device *dev, int new_mtu) 6955 { 6956 int err, orig_mtu; 6957 6958 if (new_mtu == dev->mtu) 6959 return 0; 6960 6961 /* MTU must be positive, and in range */ 6962 if (new_mtu < 0 || new_mtu < dev->min_mtu) { 6963 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n", 6964 dev->name, new_mtu, dev->min_mtu); 6965 return -EINVAL; 6966 } 6967 6968 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) { 6969 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n", 6970 dev->name, new_mtu, dev->max_mtu); 6971 return -EINVAL; 6972 } 6973 6974 if (!netif_device_present(dev)) 6975 return -ENODEV; 6976 6977 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 6978 err = notifier_to_errno(err); 6979 if (err) 6980 return err; 6981 6982 orig_mtu = dev->mtu; 6983 err = __dev_set_mtu(dev, new_mtu); 6984 6985 if (!err) { 6986 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 6987 err = notifier_to_errno(err); 6988 if (err) { 6989 /* setting mtu back and notifying everyone again, 6990 * so that they have a chance to revert changes. 6991 */ 6992 __dev_set_mtu(dev, orig_mtu); 6993 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 6994 } 6995 } 6996 return err; 6997 } 6998 EXPORT_SYMBOL(dev_set_mtu); 6999 7000 /** 7001 * dev_set_group - Change group this device belongs to 7002 * @dev: device 7003 * @new_group: group this device should belong to 7004 */ 7005 void dev_set_group(struct net_device *dev, int new_group) 7006 { 7007 dev->group = new_group; 7008 } 7009 EXPORT_SYMBOL(dev_set_group); 7010 7011 /** 7012 * dev_set_mac_address - Change Media Access Control Address 7013 * @dev: device 7014 * @sa: new address 7015 * 7016 * Change the hardware (MAC) address of the device 7017 */ 7018 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 7019 { 7020 const struct net_device_ops *ops = dev->netdev_ops; 7021 int err; 7022 7023 if (!ops->ndo_set_mac_address) 7024 return -EOPNOTSUPP; 7025 if (sa->sa_family != dev->type) 7026 return -EINVAL; 7027 if (!netif_device_present(dev)) 7028 return -ENODEV; 7029 err = ops->ndo_set_mac_address(dev, sa); 7030 if (err) 7031 return err; 7032 dev->addr_assign_type = NET_ADDR_SET; 7033 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 7034 add_device_randomness(dev->dev_addr, dev->addr_len); 7035 return 0; 7036 } 7037 EXPORT_SYMBOL(dev_set_mac_address); 7038 7039 /** 7040 * dev_change_carrier - Change device carrier 7041 * @dev: device 7042 * @new_carrier: new value 7043 * 7044 * Change device carrier 7045 */ 7046 int dev_change_carrier(struct net_device *dev, bool new_carrier) 7047 { 7048 const struct net_device_ops *ops = dev->netdev_ops; 7049 7050 if (!ops->ndo_change_carrier) 7051 return -EOPNOTSUPP; 7052 if (!netif_device_present(dev)) 7053 return -ENODEV; 7054 return ops->ndo_change_carrier(dev, new_carrier); 7055 } 7056 EXPORT_SYMBOL(dev_change_carrier); 7057 7058 /** 7059 * dev_get_phys_port_id - Get device physical port ID 7060 * @dev: device 7061 * @ppid: port ID 7062 * 7063 * Get device physical port ID 7064 */ 7065 int dev_get_phys_port_id(struct net_device *dev, 7066 struct netdev_phys_item_id *ppid) 7067 { 7068 const struct net_device_ops *ops = dev->netdev_ops; 7069 7070 if (!ops->ndo_get_phys_port_id) 7071 return -EOPNOTSUPP; 7072 return ops->ndo_get_phys_port_id(dev, ppid); 7073 } 7074 EXPORT_SYMBOL(dev_get_phys_port_id); 7075 7076 /** 7077 * dev_get_phys_port_name - Get device physical port name 7078 * @dev: device 7079 * @name: port name 7080 * @len: limit of bytes to copy to name 7081 * 7082 * Get device physical port name 7083 */ 7084 int dev_get_phys_port_name(struct net_device *dev, 7085 char *name, size_t len) 7086 { 7087 const struct net_device_ops *ops = dev->netdev_ops; 7088 7089 if (!ops->ndo_get_phys_port_name) 7090 return -EOPNOTSUPP; 7091 return ops->ndo_get_phys_port_name(dev, name, len); 7092 } 7093 EXPORT_SYMBOL(dev_get_phys_port_name); 7094 7095 /** 7096 * dev_change_proto_down - update protocol port state information 7097 * @dev: device 7098 * @proto_down: new value 7099 * 7100 * This info can be used by switch drivers to set the phys state of the 7101 * port. 7102 */ 7103 int dev_change_proto_down(struct net_device *dev, bool proto_down) 7104 { 7105 const struct net_device_ops *ops = dev->netdev_ops; 7106 7107 if (!ops->ndo_change_proto_down) 7108 return -EOPNOTSUPP; 7109 if (!netif_device_present(dev)) 7110 return -ENODEV; 7111 return ops->ndo_change_proto_down(dev, proto_down); 7112 } 7113 EXPORT_SYMBOL(dev_change_proto_down); 7114 7115 void __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op, 7116 struct netdev_bpf *xdp) 7117 { 7118 memset(xdp, 0, sizeof(*xdp)); 7119 xdp->command = XDP_QUERY_PROG; 7120 7121 /* Query must always succeed. */ 7122 WARN_ON(bpf_op(dev, xdp) < 0); 7123 } 7124 7125 static u8 __dev_xdp_attached(struct net_device *dev, bpf_op_t bpf_op) 7126 { 7127 struct netdev_bpf xdp; 7128 7129 __dev_xdp_query(dev, bpf_op, &xdp); 7130 7131 return xdp.prog_attached; 7132 } 7133 7134 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op, 7135 struct netlink_ext_ack *extack, u32 flags, 7136 struct bpf_prog *prog) 7137 { 7138 struct netdev_bpf xdp; 7139 7140 memset(&xdp, 0, sizeof(xdp)); 7141 if (flags & XDP_FLAGS_HW_MODE) 7142 xdp.command = XDP_SETUP_PROG_HW; 7143 else 7144 xdp.command = XDP_SETUP_PROG; 7145 xdp.extack = extack; 7146 xdp.flags = flags; 7147 xdp.prog = prog; 7148 7149 return bpf_op(dev, &xdp); 7150 } 7151 7152 static void dev_xdp_uninstall(struct net_device *dev) 7153 { 7154 struct netdev_bpf xdp; 7155 bpf_op_t ndo_bpf; 7156 7157 /* Remove generic XDP */ 7158 WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL)); 7159 7160 /* Remove from the driver */ 7161 ndo_bpf = dev->netdev_ops->ndo_bpf; 7162 if (!ndo_bpf) 7163 return; 7164 7165 __dev_xdp_query(dev, ndo_bpf, &xdp); 7166 if (xdp.prog_attached == XDP_ATTACHED_NONE) 7167 return; 7168 7169 /* Program removal should always succeed */ 7170 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags, NULL)); 7171 } 7172 7173 /** 7174 * dev_change_xdp_fd - set or clear a bpf program for a device rx path 7175 * @dev: device 7176 * @extack: netlink extended ack 7177 * @fd: new program fd or negative value to clear 7178 * @flags: xdp-related flags 7179 * 7180 * Set or clear a bpf program for a device 7181 */ 7182 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 7183 int fd, u32 flags) 7184 { 7185 const struct net_device_ops *ops = dev->netdev_ops; 7186 struct bpf_prog *prog = NULL; 7187 bpf_op_t bpf_op, bpf_chk; 7188 int err; 7189 7190 ASSERT_RTNL(); 7191 7192 bpf_op = bpf_chk = ops->ndo_bpf; 7193 if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) 7194 return -EOPNOTSUPP; 7195 if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE)) 7196 bpf_op = generic_xdp_install; 7197 if (bpf_op == bpf_chk) 7198 bpf_chk = generic_xdp_install; 7199 7200 if (fd >= 0) { 7201 if (bpf_chk && __dev_xdp_attached(dev, bpf_chk)) 7202 return -EEXIST; 7203 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && 7204 __dev_xdp_attached(dev, bpf_op)) 7205 return -EBUSY; 7206 7207 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP, 7208 bpf_op == ops->ndo_bpf); 7209 if (IS_ERR(prog)) 7210 return PTR_ERR(prog); 7211 7212 if (!(flags & XDP_FLAGS_HW_MODE) && 7213 bpf_prog_is_dev_bound(prog->aux)) { 7214 NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported"); 7215 bpf_prog_put(prog); 7216 return -EINVAL; 7217 } 7218 } 7219 7220 err = dev_xdp_install(dev, bpf_op, extack, flags, prog); 7221 if (err < 0 && prog) 7222 bpf_prog_put(prog); 7223 7224 return err; 7225 } 7226 7227 /** 7228 * dev_new_index - allocate an ifindex 7229 * @net: the applicable net namespace 7230 * 7231 * Returns a suitable unique value for a new device interface 7232 * number. The caller must hold the rtnl semaphore or the 7233 * dev_base_lock to be sure it remains unique. 7234 */ 7235 static int dev_new_index(struct net *net) 7236 { 7237 int ifindex = net->ifindex; 7238 7239 for (;;) { 7240 if (++ifindex <= 0) 7241 ifindex = 1; 7242 if (!__dev_get_by_index(net, ifindex)) 7243 return net->ifindex = ifindex; 7244 } 7245 } 7246 7247 /* Delayed registration/unregisteration */ 7248 static LIST_HEAD(net_todo_list); 7249 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 7250 7251 static void net_set_todo(struct net_device *dev) 7252 { 7253 list_add_tail(&dev->todo_list, &net_todo_list); 7254 dev_net(dev)->dev_unreg_count++; 7255 } 7256 7257 static void rollback_registered_many(struct list_head *head) 7258 { 7259 struct net_device *dev, *tmp; 7260 LIST_HEAD(close_head); 7261 7262 BUG_ON(dev_boot_phase); 7263 ASSERT_RTNL(); 7264 7265 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 7266 /* Some devices call without registering 7267 * for initialization unwind. Remove those 7268 * devices and proceed with the remaining. 7269 */ 7270 if (dev->reg_state == NETREG_UNINITIALIZED) { 7271 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 7272 dev->name, dev); 7273 7274 WARN_ON(1); 7275 list_del(&dev->unreg_list); 7276 continue; 7277 } 7278 dev->dismantle = true; 7279 BUG_ON(dev->reg_state != NETREG_REGISTERED); 7280 } 7281 7282 /* If device is running, close it first. */ 7283 list_for_each_entry(dev, head, unreg_list) 7284 list_add_tail(&dev->close_list, &close_head); 7285 dev_close_many(&close_head, true); 7286 7287 list_for_each_entry(dev, head, unreg_list) { 7288 /* And unlink it from device chain. */ 7289 unlist_netdevice(dev); 7290 7291 dev->reg_state = NETREG_UNREGISTERING; 7292 } 7293 flush_all_backlogs(); 7294 7295 synchronize_net(); 7296 7297 list_for_each_entry(dev, head, unreg_list) { 7298 struct sk_buff *skb = NULL; 7299 7300 /* Shutdown queueing discipline. */ 7301 dev_shutdown(dev); 7302 7303 dev_xdp_uninstall(dev); 7304 7305 /* Notify protocols, that we are about to destroy 7306 * this device. They should clean all the things. 7307 */ 7308 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 7309 7310 if (!dev->rtnl_link_ops || 7311 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 7312 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0, 7313 GFP_KERNEL, NULL); 7314 7315 /* 7316 * Flush the unicast and multicast chains 7317 */ 7318 dev_uc_flush(dev); 7319 dev_mc_flush(dev); 7320 7321 if (dev->netdev_ops->ndo_uninit) 7322 dev->netdev_ops->ndo_uninit(dev); 7323 7324 if (skb) 7325 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL); 7326 7327 /* Notifier chain MUST detach us all upper devices. */ 7328 WARN_ON(netdev_has_any_upper_dev(dev)); 7329 WARN_ON(netdev_has_any_lower_dev(dev)); 7330 7331 /* Remove entries from kobject tree */ 7332 netdev_unregister_kobject(dev); 7333 #ifdef CONFIG_XPS 7334 /* Remove XPS queueing entries */ 7335 netif_reset_xps_queues_gt(dev, 0); 7336 #endif 7337 } 7338 7339 synchronize_net(); 7340 7341 list_for_each_entry(dev, head, unreg_list) 7342 dev_put(dev); 7343 } 7344 7345 static void rollback_registered(struct net_device *dev) 7346 { 7347 LIST_HEAD(single); 7348 7349 list_add(&dev->unreg_list, &single); 7350 rollback_registered_many(&single); 7351 list_del(&single); 7352 } 7353 7354 static netdev_features_t netdev_sync_upper_features(struct net_device *lower, 7355 struct net_device *upper, netdev_features_t features) 7356 { 7357 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 7358 netdev_features_t feature; 7359 int feature_bit; 7360 7361 for_each_netdev_feature(&upper_disables, feature_bit) { 7362 feature = __NETIF_F_BIT(feature_bit); 7363 if (!(upper->wanted_features & feature) 7364 && (features & feature)) { 7365 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n", 7366 &feature, upper->name); 7367 features &= ~feature; 7368 } 7369 } 7370 7371 return features; 7372 } 7373 7374 static void netdev_sync_lower_features(struct net_device *upper, 7375 struct net_device *lower, netdev_features_t features) 7376 { 7377 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 7378 netdev_features_t feature; 7379 int feature_bit; 7380 7381 for_each_netdev_feature(&upper_disables, feature_bit) { 7382 feature = __NETIF_F_BIT(feature_bit); 7383 if (!(features & feature) && (lower->features & feature)) { 7384 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n", 7385 &feature, lower->name); 7386 lower->wanted_features &= ~feature; 7387 netdev_update_features(lower); 7388 7389 if (unlikely(lower->features & feature)) 7390 netdev_WARN(upper, "failed to disable %pNF on %s!\n", 7391 &feature, lower->name); 7392 } 7393 } 7394 } 7395 7396 static netdev_features_t netdev_fix_features(struct net_device *dev, 7397 netdev_features_t features) 7398 { 7399 /* Fix illegal checksum combinations */ 7400 if ((features & NETIF_F_HW_CSUM) && 7401 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 7402 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 7403 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 7404 } 7405 7406 /* TSO requires that SG is present as well. */ 7407 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 7408 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 7409 features &= ~NETIF_F_ALL_TSO; 7410 } 7411 7412 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 7413 !(features & NETIF_F_IP_CSUM)) { 7414 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 7415 features &= ~NETIF_F_TSO; 7416 features &= ~NETIF_F_TSO_ECN; 7417 } 7418 7419 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 7420 !(features & NETIF_F_IPV6_CSUM)) { 7421 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 7422 features &= ~NETIF_F_TSO6; 7423 } 7424 7425 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */ 7426 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO)) 7427 features &= ~NETIF_F_TSO_MANGLEID; 7428 7429 /* TSO ECN requires that TSO is present as well. */ 7430 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 7431 features &= ~NETIF_F_TSO_ECN; 7432 7433 /* Software GSO depends on SG. */ 7434 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 7435 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 7436 features &= ~NETIF_F_GSO; 7437 } 7438 7439 /* GSO partial features require GSO partial be set */ 7440 if ((features & dev->gso_partial_features) && 7441 !(features & NETIF_F_GSO_PARTIAL)) { 7442 netdev_dbg(dev, 7443 "Dropping partially supported GSO features since no GSO partial.\n"); 7444 features &= ~dev->gso_partial_features; 7445 } 7446 7447 if (!(features & NETIF_F_RXCSUM)) { 7448 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet 7449 * successfully merged by hardware must also have the 7450 * checksum verified by hardware. If the user does not 7451 * want to enable RXCSUM, logically, we should disable GRO_HW. 7452 */ 7453 if (features & NETIF_F_GRO_HW) { 7454 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n"); 7455 features &= ~NETIF_F_GRO_HW; 7456 } 7457 } 7458 7459 return features; 7460 } 7461 7462 int __netdev_update_features(struct net_device *dev) 7463 { 7464 struct net_device *upper, *lower; 7465 netdev_features_t features; 7466 struct list_head *iter; 7467 int err = -1; 7468 7469 ASSERT_RTNL(); 7470 7471 features = netdev_get_wanted_features(dev); 7472 7473 if (dev->netdev_ops->ndo_fix_features) 7474 features = dev->netdev_ops->ndo_fix_features(dev, features); 7475 7476 /* driver might be less strict about feature dependencies */ 7477 features = netdev_fix_features(dev, features); 7478 7479 /* some features can't be enabled if they're off an an upper device */ 7480 netdev_for_each_upper_dev_rcu(dev, upper, iter) 7481 features = netdev_sync_upper_features(dev, upper, features); 7482 7483 if (dev->features == features) 7484 goto sync_lower; 7485 7486 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 7487 &dev->features, &features); 7488 7489 if (dev->netdev_ops->ndo_set_features) 7490 err = dev->netdev_ops->ndo_set_features(dev, features); 7491 else 7492 err = 0; 7493 7494 if (unlikely(err < 0)) { 7495 netdev_err(dev, 7496 "set_features() failed (%d); wanted %pNF, left %pNF\n", 7497 err, &features, &dev->features); 7498 /* return non-0 since some features might have changed and 7499 * it's better to fire a spurious notification than miss it 7500 */ 7501 return -1; 7502 } 7503 7504 sync_lower: 7505 /* some features must be disabled on lower devices when disabled 7506 * on an upper device (think: bonding master or bridge) 7507 */ 7508 netdev_for_each_lower_dev(dev, lower, iter) 7509 netdev_sync_lower_features(dev, lower, features); 7510 7511 if (!err) { 7512 netdev_features_t diff = features ^ dev->features; 7513 7514 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) { 7515 /* udp_tunnel_{get,drop}_rx_info both need 7516 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the 7517 * device, or they won't do anything. 7518 * Thus we need to update dev->features 7519 * *before* calling udp_tunnel_get_rx_info, 7520 * but *after* calling udp_tunnel_drop_rx_info. 7521 */ 7522 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) { 7523 dev->features = features; 7524 udp_tunnel_get_rx_info(dev); 7525 } else { 7526 udp_tunnel_drop_rx_info(dev); 7527 } 7528 } 7529 7530 dev->features = features; 7531 } 7532 7533 return err < 0 ? 0 : 1; 7534 } 7535 7536 /** 7537 * netdev_update_features - recalculate device features 7538 * @dev: the device to check 7539 * 7540 * Recalculate dev->features set and send notifications if it 7541 * has changed. Should be called after driver or hardware dependent 7542 * conditions might have changed that influence the features. 7543 */ 7544 void netdev_update_features(struct net_device *dev) 7545 { 7546 if (__netdev_update_features(dev)) 7547 netdev_features_change(dev); 7548 } 7549 EXPORT_SYMBOL(netdev_update_features); 7550 7551 /** 7552 * netdev_change_features - recalculate device features 7553 * @dev: the device to check 7554 * 7555 * Recalculate dev->features set and send notifications even 7556 * if they have not changed. Should be called instead of 7557 * netdev_update_features() if also dev->vlan_features might 7558 * have changed to allow the changes to be propagated to stacked 7559 * VLAN devices. 7560 */ 7561 void netdev_change_features(struct net_device *dev) 7562 { 7563 __netdev_update_features(dev); 7564 netdev_features_change(dev); 7565 } 7566 EXPORT_SYMBOL(netdev_change_features); 7567 7568 /** 7569 * netif_stacked_transfer_operstate - transfer operstate 7570 * @rootdev: the root or lower level device to transfer state from 7571 * @dev: the device to transfer operstate to 7572 * 7573 * Transfer operational state from root to device. This is normally 7574 * called when a stacking relationship exists between the root 7575 * device and the device(a leaf device). 7576 */ 7577 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 7578 struct net_device *dev) 7579 { 7580 if (rootdev->operstate == IF_OPER_DORMANT) 7581 netif_dormant_on(dev); 7582 else 7583 netif_dormant_off(dev); 7584 7585 if (netif_carrier_ok(rootdev)) 7586 netif_carrier_on(dev); 7587 else 7588 netif_carrier_off(dev); 7589 } 7590 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 7591 7592 #ifdef CONFIG_SYSFS 7593 static int netif_alloc_rx_queues(struct net_device *dev) 7594 { 7595 unsigned int i, count = dev->num_rx_queues; 7596 struct netdev_rx_queue *rx; 7597 size_t sz = count * sizeof(*rx); 7598 7599 BUG_ON(count < 1); 7600 7601 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 7602 if (!rx) 7603 return -ENOMEM; 7604 7605 dev->_rx = rx; 7606 7607 for (i = 0; i < count; i++) 7608 rx[i].dev = dev; 7609 return 0; 7610 } 7611 #endif 7612 7613 static void netdev_init_one_queue(struct net_device *dev, 7614 struct netdev_queue *queue, void *_unused) 7615 { 7616 /* Initialize queue lock */ 7617 spin_lock_init(&queue->_xmit_lock); 7618 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 7619 queue->xmit_lock_owner = -1; 7620 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 7621 queue->dev = dev; 7622 #ifdef CONFIG_BQL 7623 dql_init(&queue->dql, HZ); 7624 #endif 7625 } 7626 7627 static void netif_free_tx_queues(struct net_device *dev) 7628 { 7629 kvfree(dev->_tx); 7630 } 7631 7632 static int netif_alloc_netdev_queues(struct net_device *dev) 7633 { 7634 unsigned int count = dev->num_tx_queues; 7635 struct netdev_queue *tx; 7636 size_t sz = count * sizeof(*tx); 7637 7638 if (count < 1 || count > 0xffff) 7639 return -EINVAL; 7640 7641 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 7642 if (!tx) 7643 return -ENOMEM; 7644 7645 dev->_tx = tx; 7646 7647 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 7648 spin_lock_init(&dev->tx_global_lock); 7649 7650 return 0; 7651 } 7652 7653 void netif_tx_stop_all_queues(struct net_device *dev) 7654 { 7655 unsigned int i; 7656 7657 for (i = 0; i < dev->num_tx_queues; i++) { 7658 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 7659 7660 netif_tx_stop_queue(txq); 7661 } 7662 } 7663 EXPORT_SYMBOL(netif_tx_stop_all_queues); 7664 7665 /** 7666 * register_netdevice - register a network device 7667 * @dev: device to register 7668 * 7669 * Take a completed network device structure and add it to the kernel 7670 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 7671 * chain. 0 is returned on success. A negative errno code is returned 7672 * on a failure to set up the device, or if the name is a duplicate. 7673 * 7674 * Callers must hold the rtnl semaphore. You may want 7675 * register_netdev() instead of this. 7676 * 7677 * BUGS: 7678 * The locking appears insufficient to guarantee two parallel registers 7679 * will not get the same name. 7680 */ 7681 7682 int register_netdevice(struct net_device *dev) 7683 { 7684 int ret; 7685 struct net *net = dev_net(dev); 7686 7687 BUG_ON(dev_boot_phase); 7688 ASSERT_RTNL(); 7689 7690 might_sleep(); 7691 7692 /* When net_device's are persistent, this will be fatal. */ 7693 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 7694 BUG_ON(!net); 7695 7696 spin_lock_init(&dev->addr_list_lock); 7697 netdev_set_addr_lockdep_class(dev); 7698 7699 ret = dev_get_valid_name(net, dev, dev->name); 7700 if (ret < 0) 7701 goto out; 7702 7703 /* Init, if this function is available */ 7704 if (dev->netdev_ops->ndo_init) { 7705 ret = dev->netdev_ops->ndo_init(dev); 7706 if (ret) { 7707 if (ret > 0) 7708 ret = -EIO; 7709 goto out; 7710 } 7711 } 7712 7713 if (((dev->hw_features | dev->features) & 7714 NETIF_F_HW_VLAN_CTAG_FILTER) && 7715 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 7716 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 7717 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 7718 ret = -EINVAL; 7719 goto err_uninit; 7720 } 7721 7722 ret = -EBUSY; 7723 if (!dev->ifindex) 7724 dev->ifindex = dev_new_index(net); 7725 else if (__dev_get_by_index(net, dev->ifindex)) 7726 goto err_uninit; 7727 7728 /* Transfer changeable features to wanted_features and enable 7729 * software offloads (GSO and GRO). 7730 */ 7731 dev->hw_features |= NETIF_F_SOFT_FEATURES; 7732 dev->features |= NETIF_F_SOFT_FEATURES; 7733 7734 if (dev->netdev_ops->ndo_udp_tunnel_add) { 7735 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT; 7736 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT; 7737 } 7738 7739 dev->wanted_features = dev->features & dev->hw_features; 7740 7741 if (!(dev->flags & IFF_LOOPBACK)) 7742 dev->hw_features |= NETIF_F_NOCACHE_COPY; 7743 7744 /* If IPv4 TCP segmentation offload is supported we should also 7745 * allow the device to enable segmenting the frame with the option 7746 * of ignoring a static IP ID value. This doesn't enable the 7747 * feature itself but allows the user to enable it later. 7748 */ 7749 if (dev->hw_features & NETIF_F_TSO) 7750 dev->hw_features |= NETIF_F_TSO_MANGLEID; 7751 if (dev->vlan_features & NETIF_F_TSO) 7752 dev->vlan_features |= NETIF_F_TSO_MANGLEID; 7753 if (dev->mpls_features & NETIF_F_TSO) 7754 dev->mpls_features |= NETIF_F_TSO_MANGLEID; 7755 if (dev->hw_enc_features & NETIF_F_TSO) 7756 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 7757 7758 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 7759 */ 7760 dev->vlan_features |= NETIF_F_HIGHDMA; 7761 7762 /* Make NETIF_F_SG inheritable to tunnel devices. 7763 */ 7764 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL; 7765 7766 /* Make NETIF_F_SG inheritable to MPLS. 7767 */ 7768 dev->mpls_features |= NETIF_F_SG; 7769 7770 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 7771 ret = notifier_to_errno(ret); 7772 if (ret) 7773 goto err_uninit; 7774 7775 ret = netdev_register_kobject(dev); 7776 if (ret) 7777 goto err_uninit; 7778 dev->reg_state = NETREG_REGISTERED; 7779 7780 __netdev_update_features(dev); 7781 7782 /* 7783 * Default initial state at registry is that the 7784 * device is present. 7785 */ 7786 7787 set_bit(__LINK_STATE_PRESENT, &dev->state); 7788 7789 linkwatch_init_dev(dev); 7790 7791 dev_init_scheduler(dev); 7792 dev_hold(dev); 7793 list_netdevice(dev); 7794 add_device_randomness(dev->dev_addr, dev->addr_len); 7795 7796 /* If the device has permanent device address, driver should 7797 * set dev_addr and also addr_assign_type should be set to 7798 * NET_ADDR_PERM (default value). 7799 */ 7800 if (dev->addr_assign_type == NET_ADDR_PERM) 7801 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 7802 7803 /* Notify protocols, that a new device appeared. */ 7804 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 7805 ret = notifier_to_errno(ret); 7806 if (ret) { 7807 rollback_registered(dev); 7808 dev->reg_state = NETREG_UNREGISTERED; 7809 } 7810 /* 7811 * Prevent userspace races by waiting until the network 7812 * device is fully setup before sending notifications. 7813 */ 7814 if (!dev->rtnl_link_ops || 7815 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 7816 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 7817 7818 out: 7819 return ret; 7820 7821 err_uninit: 7822 if (dev->netdev_ops->ndo_uninit) 7823 dev->netdev_ops->ndo_uninit(dev); 7824 if (dev->priv_destructor) 7825 dev->priv_destructor(dev); 7826 goto out; 7827 } 7828 EXPORT_SYMBOL(register_netdevice); 7829 7830 /** 7831 * init_dummy_netdev - init a dummy network device for NAPI 7832 * @dev: device to init 7833 * 7834 * This takes a network device structure and initialize the minimum 7835 * amount of fields so it can be used to schedule NAPI polls without 7836 * registering a full blown interface. This is to be used by drivers 7837 * that need to tie several hardware interfaces to a single NAPI 7838 * poll scheduler due to HW limitations. 7839 */ 7840 int init_dummy_netdev(struct net_device *dev) 7841 { 7842 /* Clear everything. Note we don't initialize spinlocks 7843 * are they aren't supposed to be taken by any of the 7844 * NAPI code and this dummy netdev is supposed to be 7845 * only ever used for NAPI polls 7846 */ 7847 memset(dev, 0, sizeof(struct net_device)); 7848 7849 /* make sure we BUG if trying to hit standard 7850 * register/unregister code path 7851 */ 7852 dev->reg_state = NETREG_DUMMY; 7853 7854 /* NAPI wants this */ 7855 INIT_LIST_HEAD(&dev->napi_list); 7856 7857 /* a dummy interface is started by default */ 7858 set_bit(__LINK_STATE_PRESENT, &dev->state); 7859 set_bit(__LINK_STATE_START, &dev->state); 7860 7861 /* Note : We dont allocate pcpu_refcnt for dummy devices, 7862 * because users of this 'device' dont need to change 7863 * its refcount. 7864 */ 7865 7866 return 0; 7867 } 7868 EXPORT_SYMBOL_GPL(init_dummy_netdev); 7869 7870 7871 /** 7872 * register_netdev - register a network device 7873 * @dev: device to register 7874 * 7875 * Take a completed network device structure and add it to the kernel 7876 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 7877 * chain. 0 is returned on success. A negative errno code is returned 7878 * on a failure to set up the device, or if the name is a duplicate. 7879 * 7880 * This is a wrapper around register_netdevice that takes the rtnl semaphore 7881 * and expands the device name if you passed a format string to 7882 * alloc_netdev. 7883 */ 7884 int register_netdev(struct net_device *dev) 7885 { 7886 int err; 7887 7888 rtnl_lock(); 7889 err = register_netdevice(dev); 7890 rtnl_unlock(); 7891 return err; 7892 } 7893 EXPORT_SYMBOL(register_netdev); 7894 7895 int netdev_refcnt_read(const struct net_device *dev) 7896 { 7897 int i, refcnt = 0; 7898 7899 for_each_possible_cpu(i) 7900 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 7901 return refcnt; 7902 } 7903 EXPORT_SYMBOL(netdev_refcnt_read); 7904 7905 /** 7906 * netdev_wait_allrefs - wait until all references are gone. 7907 * @dev: target net_device 7908 * 7909 * This is called when unregistering network devices. 7910 * 7911 * Any protocol or device that holds a reference should register 7912 * for netdevice notification, and cleanup and put back the 7913 * reference if they receive an UNREGISTER event. 7914 * We can get stuck here if buggy protocols don't correctly 7915 * call dev_put. 7916 */ 7917 static void netdev_wait_allrefs(struct net_device *dev) 7918 { 7919 unsigned long rebroadcast_time, warning_time; 7920 int refcnt; 7921 7922 linkwatch_forget_dev(dev); 7923 7924 rebroadcast_time = warning_time = jiffies; 7925 refcnt = netdev_refcnt_read(dev); 7926 7927 while (refcnt != 0) { 7928 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 7929 rtnl_lock(); 7930 7931 /* Rebroadcast unregister notification */ 7932 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 7933 7934 __rtnl_unlock(); 7935 rcu_barrier(); 7936 rtnl_lock(); 7937 7938 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 7939 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 7940 &dev->state)) { 7941 /* We must not have linkwatch events 7942 * pending on unregister. If this 7943 * happens, we simply run the queue 7944 * unscheduled, resulting in a noop 7945 * for this device. 7946 */ 7947 linkwatch_run_queue(); 7948 } 7949 7950 __rtnl_unlock(); 7951 7952 rebroadcast_time = jiffies; 7953 } 7954 7955 msleep(250); 7956 7957 refcnt = netdev_refcnt_read(dev); 7958 7959 if (time_after(jiffies, warning_time + 10 * HZ)) { 7960 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 7961 dev->name, refcnt); 7962 warning_time = jiffies; 7963 } 7964 } 7965 } 7966 7967 /* The sequence is: 7968 * 7969 * rtnl_lock(); 7970 * ... 7971 * register_netdevice(x1); 7972 * register_netdevice(x2); 7973 * ... 7974 * unregister_netdevice(y1); 7975 * unregister_netdevice(y2); 7976 * ... 7977 * rtnl_unlock(); 7978 * free_netdev(y1); 7979 * free_netdev(y2); 7980 * 7981 * We are invoked by rtnl_unlock(). 7982 * This allows us to deal with problems: 7983 * 1) We can delete sysfs objects which invoke hotplug 7984 * without deadlocking with linkwatch via keventd. 7985 * 2) Since we run with the RTNL semaphore not held, we can sleep 7986 * safely in order to wait for the netdev refcnt to drop to zero. 7987 * 7988 * We must not return until all unregister events added during 7989 * the interval the lock was held have been completed. 7990 */ 7991 void netdev_run_todo(void) 7992 { 7993 struct list_head list; 7994 7995 /* Snapshot list, allow later requests */ 7996 list_replace_init(&net_todo_list, &list); 7997 7998 __rtnl_unlock(); 7999 8000 8001 /* Wait for rcu callbacks to finish before next phase */ 8002 if (!list_empty(&list)) 8003 rcu_barrier(); 8004 8005 while (!list_empty(&list)) { 8006 struct net_device *dev 8007 = list_first_entry(&list, struct net_device, todo_list); 8008 list_del(&dev->todo_list); 8009 8010 rtnl_lock(); 8011 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 8012 __rtnl_unlock(); 8013 8014 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 8015 pr_err("network todo '%s' but state %d\n", 8016 dev->name, dev->reg_state); 8017 dump_stack(); 8018 continue; 8019 } 8020 8021 dev->reg_state = NETREG_UNREGISTERED; 8022 8023 netdev_wait_allrefs(dev); 8024 8025 /* paranoia */ 8026 BUG_ON(netdev_refcnt_read(dev)); 8027 BUG_ON(!list_empty(&dev->ptype_all)); 8028 BUG_ON(!list_empty(&dev->ptype_specific)); 8029 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 8030 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 8031 WARN_ON(dev->dn_ptr); 8032 8033 if (dev->priv_destructor) 8034 dev->priv_destructor(dev); 8035 if (dev->needs_free_netdev) 8036 free_netdev(dev); 8037 8038 /* Report a network device has been unregistered */ 8039 rtnl_lock(); 8040 dev_net(dev)->dev_unreg_count--; 8041 __rtnl_unlock(); 8042 wake_up(&netdev_unregistering_wq); 8043 8044 /* Free network device */ 8045 kobject_put(&dev->dev.kobj); 8046 } 8047 } 8048 8049 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has 8050 * all the same fields in the same order as net_device_stats, with only 8051 * the type differing, but rtnl_link_stats64 may have additional fields 8052 * at the end for newer counters. 8053 */ 8054 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 8055 const struct net_device_stats *netdev_stats) 8056 { 8057 #if BITS_PER_LONG == 64 8058 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats)); 8059 memcpy(stats64, netdev_stats, sizeof(*netdev_stats)); 8060 /* zero out counters that only exist in rtnl_link_stats64 */ 8061 memset((char *)stats64 + sizeof(*netdev_stats), 0, 8062 sizeof(*stats64) - sizeof(*netdev_stats)); 8063 #else 8064 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long); 8065 const unsigned long *src = (const unsigned long *)netdev_stats; 8066 u64 *dst = (u64 *)stats64; 8067 8068 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64)); 8069 for (i = 0; i < n; i++) 8070 dst[i] = src[i]; 8071 /* zero out counters that only exist in rtnl_link_stats64 */ 8072 memset((char *)stats64 + n * sizeof(u64), 0, 8073 sizeof(*stats64) - n * sizeof(u64)); 8074 #endif 8075 } 8076 EXPORT_SYMBOL(netdev_stats_to_stats64); 8077 8078 /** 8079 * dev_get_stats - get network device statistics 8080 * @dev: device to get statistics from 8081 * @storage: place to store stats 8082 * 8083 * Get network statistics from device. Return @storage. 8084 * The device driver may provide its own method by setting 8085 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 8086 * otherwise the internal statistics structure is used. 8087 */ 8088 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 8089 struct rtnl_link_stats64 *storage) 8090 { 8091 const struct net_device_ops *ops = dev->netdev_ops; 8092 8093 if (ops->ndo_get_stats64) { 8094 memset(storage, 0, sizeof(*storage)); 8095 ops->ndo_get_stats64(dev, storage); 8096 } else if (ops->ndo_get_stats) { 8097 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 8098 } else { 8099 netdev_stats_to_stats64(storage, &dev->stats); 8100 } 8101 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped); 8102 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped); 8103 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler); 8104 return storage; 8105 } 8106 EXPORT_SYMBOL(dev_get_stats); 8107 8108 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 8109 { 8110 struct netdev_queue *queue = dev_ingress_queue(dev); 8111 8112 #ifdef CONFIG_NET_CLS_ACT 8113 if (queue) 8114 return queue; 8115 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 8116 if (!queue) 8117 return NULL; 8118 netdev_init_one_queue(dev, queue, NULL); 8119 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 8120 queue->qdisc_sleeping = &noop_qdisc; 8121 rcu_assign_pointer(dev->ingress_queue, queue); 8122 #endif 8123 return queue; 8124 } 8125 8126 static const struct ethtool_ops default_ethtool_ops; 8127 8128 void netdev_set_default_ethtool_ops(struct net_device *dev, 8129 const struct ethtool_ops *ops) 8130 { 8131 if (dev->ethtool_ops == &default_ethtool_ops) 8132 dev->ethtool_ops = ops; 8133 } 8134 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 8135 8136 void netdev_freemem(struct net_device *dev) 8137 { 8138 char *addr = (char *)dev - dev->padded; 8139 8140 kvfree(addr); 8141 } 8142 8143 /** 8144 * alloc_netdev_mqs - allocate network device 8145 * @sizeof_priv: size of private data to allocate space for 8146 * @name: device name format string 8147 * @name_assign_type: origin of device name 8148 * @setup: callback to initialize device 8149 * @txqs: the number of TX subqueues to allocate 8150 * @rxqs: the number of RX subqueues to allocate 8151 * 8152 * Allocates a struct net_device with private data area for driver use 8153 * and performs basic initialization. Also allocates subqueue structs 8154 * for each queue on the device. 8155 */ 8156 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 8157 unsigned char name_assign_type, 8158 void (*setup)(struct net_device *), 8159 unsigned int txqs, unsigned int rxqs) 8160 { 8161 struct net_device *dev; 8162 unsigned int alloc_size; 8163 struct net_device *p; 8164 8165 BUG_ON(strlen(name) >= sizeof(dev->name)); 8166 8167 if (txqs < 1) { 8168 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 8169 return NULL; 8170 } 8171 8172 #ifdef CONFIG_SYSFS 8173 if (rxqs < 1) { 8174 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 8175 return NULL; 8176 } 8177 #endif 8178 8179 alloc_size = sizeof(struct net_device); 8180 if (sizeof_priv) { 8181 /* ensure 32-byte alignment of private area */ 8182 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 8183 alloc_size += sizeof_priv; 8184 } 8185 /* ensure 32-byte alignment of whole construct */ 8186 alloc_size += NETDEV_ALIGN - 1; 8187 8188 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 8189 if (!p) 8190 return NULL; 8191 8192 dev = PTR_ALIGN(p, NETDEV_ALIGN); 8193 dev->padded = (char *)dev - (char *)p; 8194 8195 dev->pcpu_refcnt = alloc_percpu(int); 8196 if (!dev->pcpu_refcnt) 8197 goto free_dev; 8198 8199 if (dev_addr_init(dev)) 8200 goto free_pcpu; 8201 8202 dev_mc_init(dev); 8203 dev_uc_init(dev); 8204 8205 dev_net_set(dev, &init_net); 8206 8207 dev->gso_max_size = GSO_MAX_SIZE; 8208 dev->gso_max_segs = GSO_MAX_SEGS; 8209 8210 INIT_LIST_HEAD(&dev->napi_list); 8211 INIT_LIST_HEAD(&dev->unreg_list); 8212 INIT_LIST_HEAD(&dev->close_list); 8213 INIT_LIST_HEAD(&dev->link_watch_list); 8214 INIT_LIST_HEAD(&dev->adj_list.upper); 8215 INIT_LIST_HEAD(&dev->adj_list.lower); 8216 INIT_LIST_HEAD(&dev->ptype_all); 8217 INIT_LIST_HEAD(&dev->ptype_specific); 8218 #ifdef CONFIG_NET_SCHED 8219 hash_init(dev->qdisc_hash); 8220 #endif 8221 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 8222 setup(dev); 8223 8224 if (!dev->tx_queue_len) { 8225 dev->priv_flags |= IFF_NO_QUEUE; 8226 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; 8227 } 8228 8229 dev->num_tx_queues = txqs; 8230 dev->real_num_tx_queues = txqs; 8231 if (netif_alloc_netdev_queues(dev)) 8232 goto free_all; 8233 8234 #ifdef CONFIG_SYSFS 8235 dev->num_rx_queues = rxqs; 8236 dev->real_num_rx_queues = rxqs; 8237 if (netif_alloc_rx_queues(dev)) 8238 goto free_all; 8239 #endif 8240 8241 strcpy(dev->name, name); 8242 dev->name_assign_type = name_assign_type; 8243 dev->group = INIT_NETDEV_GROUP; 8244 if (!dev->ethtool_ops) 8245 dev->ethtool_ops = &default_ethtool_ops; 8246 8247 nf_hook_ingress_init(dev); 8248 8249 return dev; 8250 8251 free_all: 8252 free_netdev(dev); 8253 return NULL; 8254 8255 free_pcpu: 8256 free_percpu(dev->pcpu_refcnt); 8257 free_dev: 8258 netdev_freemem(dev); 8259 return NULL; 8260 } 8261 EXPORT_SYMBOL(alloc_netdev_mqs); 8262 8263 /** 8264 * free_netdev - free network device 8265 * @dev: device 8266 * 8267 * This function does the last stage of destroying an allocated device 8268 * interface. The reference to the device object is released. If this 8269 * is the last reference then it will be freed.Must be called in process 8270 * context. 8271 */ 8272 void free_netdev(struct net_device *dev) 8273 { 8274 struct napi_struct *p, *n; 8275 8276 might_sleep(); 8277 netif_free_tx_queues(dev); 8278 #ifdef CONFIG_SYSFS 8279 kvfree(dev->_rx); 8280 #endif 8281 8282 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 8283 8284 /* Flush device addresses */ 8285 dev_addr_flush(dev); 8286 8287 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 8288 netif_napi_del(p); 8289 8290 free_percpu(dev->pcpu_refcnt); 8291 dev->pcpu_refcnt = NULL; 8292 8293 /* Compatibility with error handling in drivers */ 8294 if (dev->reg_state == NETREG_UNINITIALIZED) { 8295 netdev_freemem(dev); 8296 return; 8297 } 8298 8299 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 8300 dev->reg_state = NETREG_RELEASED; 8301 8302 /* will free via device release */ 8303 put_device(&dev->dev); 8304 } 8305 EXPORT_SYMBOL(free_netdev); 8306 8307 /** 8308 * synchronize_net - Synchronize with packet receive processing 8309 * 8310 * Wait for packets currently being received to be done. 8311 * Does not block later packets from starting. 8312 */ 8313 void synchronize_net(void) 8314 { 8315 might_sleep(); 8316 if (rtnl_is_locked()) 8317 synchronize_rcu_expedited(); 8318 else 8319 synchronize_rcu(); 8320 } 8321 EXPORT_SYMBOL(synchronize_net); 8322 8323 /** 8324 * unregister_netdevice_queue - remove device from the kernel 8325 * @dev: device 8326 * @head: list 8327 * 8328 * This function shuts down a device interface and removes it 8329 * from the kernel tables. 8330 * If head not NULL, device is queued to be unregistered later. 8331 * 8332 * Callers must hold the rtnl semaphore. You may want 8333 * unregister_netdev() instead of this. 8334 */ 8335 8336 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 8337 { 8338 ASSERT_RTNL(); 8339 8340 if (head) { 8341 list_move_tail(&dev->unreg_list, head); 8342 } else { 8343 rollback_registered(dev); 8344 /* Finish processing unregister after unlock */ 8345 net_set_todo(dev); 8346 } 8347 } 8348 EXPORT_SYMBOL(unregister_netdevice_queue); 8349 8350 /** 8351 * unregister_netdevice_many - unregister many devices 8352 * @head: list of devices 8353 * 8354 * Note: As most callers use a stack allocated list_head, 8355 * we force a list_del() to make sure stack wont be corrupted later. 8356 */ 8357 void unregister_netdevice_many(struct list_head *head) 8358 { 8359 struct net_device *dev; 8360 8361 if (!list_empty(head)) { 8362 rollback_registered_many(head); 8363 list_for_each_entry(dev, head, unreg_list) 8364 net_set_todo(dev); 8365 list_del(head); 8366 } 8367 } 8368 EXPORT_SYMBOL(unregister_netdevice_many); 8369 8370 /** 8371 * unregister_netdev - remove device from the kernel 8372 * @dev: device 8373 * 8374 * This function shuts down a device interface and removes it 8375 * from the kernel tables. 8376 * 8377 * This is just a wrapper for unregister_netdevice that takes 8378 * the rtnl semaphore. In general you want to use this and not 8379 * unregister_netdevice. 8380 */ 8381 void unregister_netdev(struct net_device *dev) 8382 { 8383 rtnl_lock(); 8384 unregister_netdevice(dev); 8385 rtnl_unlock(); 8386 } 8387 EXPORT_SYMBOL(unregister_netdev); 8388 8389 /** 8390 * dev_change_net_namespace - move device to different nethost namespace 8391 * @dev: device 8392 * @net: network namespace 8393 * @pat: If not NULL name pattern to try if the current device name 8394 * is already taken in the destination network namespace. 8395 * 8396 * This function shuts down a device interface and moves it 8397 * to a new network namespace. On success 0 is returned, on 8398 * a failure a netagive errno code is returned. 8399 * 8400 * Callers must hold the rtnl semaphore. 8401 */ 8402 8403 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 8404 { 8405 int err, new_nsid; 8406 8407 ASSERT_RTNL(); 8408 8409 /* Don't allow namespace local devices to be moved. */ 8410 err = -EINVAL; 8411 if (dev->features & NETIF_F_NETNS_LOCAL) 8412 goto out; 8413 8414 /* Ensure the device has been registrered */ 8415 if (dev->reg_state != NETREG_REGISTERED) 8416 goto out; 8417 8418 /* Get out if there is nothing todo */ 8419 err = 0; 8420 if (net_eq(dev_net(dev), net)) 8421 goto out; 8422 8423 /* Pick the destination device name, and ensure 8424 * we can use it in the destination network namespace. 8425 */ 8426 err = -EEXIST; 8427 if (__dev_get_by_name(net, dev->name)) { 8428 /* We get here if we can't use the current device name */ 8429 if (!pat) 8430 goto out; 8431 if (dev_get_valid_name(net, dev, pat) < 0) 8432 goto out; 8433 } 8434 8435 /* 8436 * And now a mini version of register_netdevice unregister_netdevice. 8437 */ 8438 8439 /* If device is running close it first. */ 8440 dev_close(dev); 8441 8442 /* And unlink it from device chain */ 8443 err = -ENODEV; 8444 unlist_netdevice(dev); 8445 8446 synchronize_net(); 8447 8448 /* Shutdown queueing discipline. */ 8449 dev_shutdown(dev); 8450 8451 /* Notify protocols, that we are about to destroy 8452 * this device. They should clean all the things. 8453 * 8454 * Note that dev->reg_state stays at NETREG_REGISTERED. 8455 * This is wanted because this way 8021q and macvlan know 8456 * the device is just moving and can keep their slaves up. 8457 */ 8458 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 8459 rcu_barrier(); 8460 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 8461 if (dev->rtnl_link_ops && dev->rtnl_link_ops->get_link_net) 8462 new_nsid = peernet2id_alloc(dev_net(dev), net); 8463 else 8464 new_nsid = peernet2id(dev_net(dev), net); 8465 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid); 8466 8467 /* 8468 * Flush the unicast and multicast chains 8469 */ 8470 dev_uc_flush(dev); 8471 dev_mc_flush(dev); 8472 8473 /* Send a netdev-removed uevent to the old namespace */ 8474 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 8475 netdev_adjacent_del_links(dev); 8476 8477 /* Actually switch the network namespace */ 8478 dev_net_set(dev, net); 8479 8480 /* If there is an ifindex conflict assign a new one */ 8481 if (__dev_get_by_index(net, dev->ifindex)) 8482 dev->ifindex = dev_new_index(net); 8483 8484 /* Send a netdev-add uevent to the new namespace */ 8485 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 8486 netdev_adjacent_add_links(dev); 8487 8488 /* Fixup kobjects */ 8489 err = device_rename(&dev->dev, dev->name); 8490 WARN_ON(err); 8491 8492 /* Add the device back in the hashes */ 8493 list_netdevice(dev); 8494 8495 /* Notify protocols, that a new device appeared. */ 8496 call_netdevice_notifiers(NETDEV_REGISTER, dev); 8497 8498 /* 8499 * Prevent userspace races by waiting until the network 8500 * device is fully setup before sending notifications. 8501 */ 8502 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 8503 8504 synchronize_net(); 8505 err = 0; 8506 out: 8507 return err; 8508 } 8509 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 8510 8511 static int dev_cpu_dead(unsigned int oldcpu) 8512 { 8513 struct sk_buff **list_skb; 8514 struct sk_buff *skb; 8515 unsigned int cpu; 8516 struct softnet_data *sd, *oldsd, *remsd = NULL; 8517 8518 local_irq_disable(); 8519 cpu = smp_processor_id(); 8520 sd = &per_cpu(softnet_data, cpu); 8521 oldsd = &per_cpu(softnet_data, oldcpu); 8522 8523 /* Find end of our completion_queue. */ 8524 list_skb = &sd->completion_queue; 8525 while (*list_skb) 8526 list_skb = &(*list_skb)->next; 8527 /* Append completion queue from offline CPU. */ 8528 *list_skb = oldsd->completion_queue; 8529 oldsd->completion_queue = NULL; 8530 8531 /* Append output queue from offline CPU. */ 8532 if (oldsd->output_queue) { 8533 *sd->output_queue_tailp = oldsd->output_queue; 8534 sd->output_queue_tailp = oldsd->output_queue_tailp; 8535 oldsd->output_queue = NULL; 8536 oldsd->output_queue_tailp = &oldsd->output_queue; 8537 } 8538 /* Append NAPI poll list from offline CPU, with one exception : 8539 * process_backlog() must be called by cpu owning percpu backlog. 8540 * We properly handle process_queue & input_pkt_queue later. 8541 */ 8542 while (!list_empty(&oldsd->poll_list)) { 8543 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 8544 struct napi_struct, 8545 poll_list); 8546 8547 list_del_init(&napi->poll_list); 8548 if (napi->poll == process_backlog) 8549 napi->state = 0; 8550 else 8551 ____napi_schedule(sd, napi); 8552 } 8553 8554 raise_softirq_irqoff(NET_TX_SOFTIRQ); 8555 local_irq_enable(); 8556 8557 #ifdef CONFIG_RPS 8558 remsd = oldsd->rps_ipi_list; 8559 oldsd->rps_ipi_list = NULL; 8560 #endif 8561 /* send out pending IPI's on offline CPU */ 8562 net_rps_send_ipi(remsd); 8563 8564 /* Process offline CPU's input_pkt_queue */ 8565 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 8566 netif_rx_ni(skb); 8567 input_queue_head_incr(oldsd); 8568 } 8569 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 8570 netif_rx_ni(skb); 8571 input_queue_head_incr(oldsd); 8572 } 8573 8574 return 0; 8575 } 8576 8577 /** 8578 * netdev_increment_features - increment feature set by one 8579 * @all: current feature set 8580 * @one: new feature set 8581 * @mask: mask feature set 8582 * 8583 * Computes a new feature set after adding a device with feature set 8584 * @one to the master device with current feature set @all. Will not 8585 * enable anything that is off in @mask. Returns the new feature set. 8586 */ 8587 netdev_features_t netdev_increment_features(netdev_features_t all, 8588 netdev_features_t one, netdev_features_t mask) 8589 { 8590 if (mask & NETIF_F_HW_CSUM) 8591 mask |= NETIF_F_CSUM_MASK; 8592 mask |= NETIF_F_VLAN_CHALLENGED; 8593 8594 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask; 8595 all &= one | ~NETIF_F_ALL_FOR_ALL; 8596 8597 /* If one device supports hw checksumming, set for all. */ 8598 if (all & NETIF_F_HW_CSUM) 8599 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM); 8600 8601 return all; 8602 } 8603 EXPORT_SYMBOL(netdev_increment_features); 8604 8605 static struct hlist_head * __net_init netdev_create_hash(void) 8606 { 8607 int i; 8608 struct hlist_head *hash; 8609 8610 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 8611 if (hash != NULL) 8612 for (i = 0; i < NETDEV_HASHENTRIES; i++) 8613 INIT_HLIST_HEAD(&hash[i]); 8614 8615 return hash; 8616 } 8617 8618 /* Initialize per network namespace state */ 8619 static int __net_init netdev_init(struct net *net) 8620 { 8621 if (net != &init_net) 8622 INIT_LIST_HEAD(&net->dev_base_head); 8623 8624 net->dev_name_head = netdev_create_hash(); 8625 if (net->dev_name_head == NULL) 8626 goto err_name; 8627 8628 net->dev_index_head = netdev_create_hash(); 8629 if (net->dev_index_head == NULL) 8630 goto err_idx; 8631 8632 return 0; 8633 8634 err_idx: 8635 kfree(net->dev_name_head); 8636 err_name: 8637 return -ENOMEM; 8638 } 8639 8640 /** 8641 * netdev_drivername - network driver for the device 8642 * @dev: network device 8643 * 8644 * Determine network driver for device. 8645 */ 8646 const char *netdev_drivername(const struct net_device *dev) 8647 { 8648 const struct device_driver *driver; 8649 const struct device *parent; 8650 const char *empty = ""; 8651 8652 parent = dev->dev.parent; 8653 if (!parent) 8654 return empty; 8655 8656 driver = parent->driver; 8657 if (driver && driver->name) 8658 return driver->name; 8659 return empty; 8660 } 8661 8662 static void __netdev_printk(const char *level, const struct net_device *dev, 8663 struct va_format *vaf) 8664 { 8665 if (dev && dev->dev.parent) { 8666 dev_printk_emit(level[1] - '0', 8667 dev->dev.parent, 8668 "%s %s %s%s: %pV", 8669 dev_driver_string(dev->dev.parent), 8670 dev_name(dev->dev.parent), 8671 netdev_name(dev), netdev_reg_state(dev), 8672 vaf); 8673 } else if (dev) { 8674 printk("%s%s%s: %pV", 8675 level, netdev_name(dev), netdev_reg_state(dev), vaf); 8676 } else { 8677 printk("%s(NULL net_device): %pV", level, vaf); 8678 } 8679 } 8680 8681 void netdev_printk(const char *level, const struct net_device *dev, 8682 const char *format, ...) 8683 { 8684 struct va_format vaf; 8685 va_list args; 8686 8687 va_start(args, format); 8688 8689 vaf.fmt = format; 8690 vaf.va = &args; 8691 8692 __netdev_printk(level, dev, &vaf); 8693 8694 va_end(args); 8695 } 8696 EXPORT_SYMBOL(netdev_printk); 8697 8698 #define define_netdev_printk_level(func, level) \ 8699 void func(const struct net_device *dev, const char *fmt, ...) \ 8700 { \ 8701 struct va_format vaf; \ 8702 va_list args; \ 8703 \ 8704 va_start(args, fmt); \ 8705 \ 8706 vaf.fmt = fmt; \ 8707 vaf.va = &args; \ 8708 \ 8709 __netdev_printk(level, dev, &vaf); \ 8710 \ 8711 va_end(args); \ 8712 } \ 8713 EXPORT_SYMBOL(func); 8714 8715 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 8716 define_netdev_printk_level(netdev_alert, KERN_ALERT); 8717 define_netdev_printk_level(netdev_crit, KERN_CRIT); 8718 define_netdev_printk_level(netdev_err, KERN_ERR); 8719 define_netdev_printk_level(netdev_warn, KERN_WARNING); 8720 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 8721 define_netdev_printk_level(netdev_info, KERN_INFO); 8722 8723 static void __net_exit netdev_exit(struct net *net) 8724 { 8725 kfree(net->dev_name_head); 8726 kfree(net->dev_index_head); 8727 if (net != &init_net) 8728 WARN_ON_ONCE(!list_empty(&net->dev_base_head)); 8729 } 8730 8731 static struct pernet_operations __net_initdata netdev_net_ops = { 8732 .init = netdev_init, 8733 .exit = netdev_exit, 8734 }; 8735 8736 static void __net_exit default_device_exit(struct net *net) 8737 { 8738 struct net_device *dev, *aux; 8739 /* 8740 * Push all migratable network devices back to the 8741 * initial network namespace 8742 */ 8743 rtnl_lock(); 8744 for_each_netdev_safe(net, dev, aux) { 8745 int err; 8746 char fb_name[IFNAMSIZ]; 8747 8748 /* Ignore unmoveable devices (i.e. loopback) */ 8749 if (dev->features & NETIF_F_NETNS_LOCAL) 8750 continue; 8751 8752 /* Leave virtual devices for the generic cleanup */ 8753 if (dev->rtnl_link_ops) 8754 continue; 8755 8756 /* Push remaining network devices to init_net */ 8757 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 8758 err = dev_change_net_namespace(dev, &init_net, fb_name); 8759 if (err) { 8760 pr_emerg("%s: failed to move %s to init_net: %d\n", 8761 __func__, dev->name, err); 8762 BUG(); 8763 } 8764 } 8765 rtnl_unlock(); 8766 } 8767 8768 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list) 8769 { 8770 /* Return with the rtnl_lock held when there are no network 8771 * devices unregistering in any network namespace in net_list. 8772 */ 8773 struct net *net; 8774 bool unregistering; 8775 DEFINE_WAIT_FUNC(wait, woken_wake_function); 8776 8777 add_wait_queue(&netdev_unregistering_wq, &wait); 8778 for (;;) { 8779 unregistering = false; 8780 rtnl_lock(); 8781 list_for_each_entry(net, net_list, exit_list) { 8782 if (net->dev_unreg_count > 0) { 8783 unregistering = true; 8784 break; 8785 } 8786 } 8787 if (!unregistering) 8788 break; 8789 __rtnl_unlock(); 8790 8791 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 8792 } 8793 remove_wait_queue(&netdev_unregistering_wq, &wait); 8794 } 8795 8796 static void __net_exit default_device_exit_batch(struct list_head *net_list) 8797 { 8798 /* At exit all network devices most be removed from a network 8799 * namespace. Do this in the reverse order of registration. 8800 * Do this across as many network namespaces as possible to 8801 * improve batching efficiency. 8802 */ 8803 struct net_device *dev; 8804 struct net *net; 8805 LIST_HEAD(dev_kill_list); 8806 8807 /* To prevent network device cleanup code from dereferencing 8808 * loopback devices or network devices that have been freed 8809 * wait here for all pending unregistrations to complete, 8810 * before unregistring the loopback device and allowing the 8811 * network namespace be freed. 8812 * 8813 * The netdev todo list containing all network devices 8814 * unregistrations that happen in default_device_exit_batch 8815 * will run in the rtnl_unlock() at the end of 8816 * default_device_exit_batch. 8817 */ 8818 rtnl_lock_unregistering(net_list); 8819 list_for_each_entry(net, net_list, exit_list) { 8820 for_each_netdev_reverse(net, dev) { 8821 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 8822 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 8823 else 8824 unregister_netdevice_queue(dev, &dev_kill_list); 8825 } 8826 } 8827 unregister_netdevice_many(&dev_kill_list); 8828 rtnl_unlock(); 8829 } 8830 8831 static struct pernet_operations __net_initdata default_device_ops = { 8832 .exit = default_device_exit, 8833 .exit_batch = default_device_exit_batch, 8834 }; 8835 8836 /* 8837 * Initialize the DEV module. At boot time this walks the device list and 8838 * unhooks any devices that fail to initialise (normally hardware not 8839 * present) and leaves us with a valid list of present and active devices. 8840 * 8841 */ 8842 8843 /* 8844 * This is called single threaded during boot, so no need 8845 * to take the rtnl semaphore. 8846 */ 8847 static int __init net_dev_init(void) 8848 { 8849 int i, rc = -ENOMEM; 8850 8851 BUG_ON(!dev_boot_phase); 8852 8853 if (dev_proc_init()) 8854 goto out; 8855 8856 if (netdev_kobject_init()) 8857 goto out; 8858 8859 INIT_LIST_HEAD(&ptype_all); 8860 for (i = 0; i < PTYPE_HASH_SIZE; i++) 8861 INIT_LIST_HEAD(&ptype_base[i]); 8862 8863 INIT_LIST_HEAD(&offload_base); 8864 8865 if (register_pernet_subsys(&netdev_net_ops)) 8866 goto out; 8867 8868 /* 8869 * Initialise the packet receive queues. 8870 */ 8871 8872 for_each_possible_cpu(i) { 8873 struct work_struct *flush = per_cpu_ptr(&flush_works, i); 8874 struct softnet_data *sd = &per_cpu(softnet_data, i); 8875 8876 INIT_WORK(flush, flush_backlog); 8877 8878 skb_queue_head_init(&sd->input_pkt_queue); 8879 skb_queue_head_init(&sd->process_queue); 8880 #ifdef CONFIG_XFRM_OFFLOAD 8881 skb_queue_head_init(&sd->xfrm_backlog); 8882 #endif 8883 INIT_LIST_HEAD(&sd->poll_list); 8884 sd->output_queue_tailp = &sd->output_queue; 8885 #ifdef CONFIG_RPS 8886 sd->csd.func = rps_trigger_softirq; 8887 sd->csd.info = sd; 8888 sd->cpu = i; 8889 #endif 8890 8891 sd->backlog.poll = process_backlog; 8892 sd->backlog.weight = weight_p; 8893 } 8894 8895 dev_boot_phase = 0; 8896 8897 /* The loopback device is special if any other network devices 8898 * is present in a network namespace the loopback device must 8899 * be present. Since we now dynamically allocate and free the 8900 * loopback device ensure this invariant is maintained by 8901 * keeping the loopback device as the first device on the 8902 * list of network devices. Ensuring the loopback devices 8903 * is the first device that appears and the last network device 8904 * that disappears. 8905 */ 8906 if (register_pernet_device(&loopback_net_ops)) 8907 goto out; 8908 8909 if (register_pernet_device(&default_device_ops)) 8910 goto out; 8911 8912 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 8913 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 8914 8915 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead", 8916 NULL, dev_cpu_dead); 8917 WARN_ON(rc < 0); 8918 rc = 0; 8919 out: 8920 return rc; 8921 } 8922 8923 subsys_initcall(net_dev_init); 8924