1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <asm/uaccess.h> 76 #include <asm/system.h> 77 #include <linux/bitops.h> 78 #include <linux/capability.h> 79 #include <linux/cpu.h> 80 #include <linux/types.h> 81 #include <linux/kernel.h> 82 #include <linux/sched.h> 83 #include <linux/mutex.h> 84 #include <linux/string.h> 85 #include <linux/mm.h> 86 #include <linux/socket.h> 87 #include <linux/sockios.h> 88 #include <linux/errno.h> 89 #include <linux/interrupt.h> 90 #include <linux/if_ether.h> 91 #include <linux/netdevice.h> 92 #include <linux/etherdevice.h> 93 #include <linux/notifier.h> 94 #include <linux/skbuff.h> 95 #include <net/sock.h> 96 #include <linux/rtnetlink.h> 97 #include <linux/proc_fs.h> 98 #include <linux/seq_file.h> 99 #include <linux/stat.h> 100 #include <linux/if_bridge.h> 101 #include <linux/divert.h> 102 #include <net/dst.h> 103 #include <net/pkt_sched.h> 104 #include <net/checksum.h> 105 #include <linux/highmem.h> 106 #include <linux/init.h> 107 #include <linux/kmod.h> 108 #include <linux/module.h> 109 #include <linux/kallsyms.h> 110 #include <linux/netpoll.h> 111 #include <linux/rcupdate.h> 112 #include <linux/delay.h> 113 #include <linux/wireless.h> 114 #include <net/iw_handler.h> 115 #include <asm/current.h> 116 #include <linux/audit.h> 117 #include <linux/dmaengine.h> 118 #include <linux/err.h> 119 120 /* 121 * The list of packet types we will receive (as opposed to discard) 122 * and the routines to invoke. 123 * 124 * Why 16. Because with 16 the only overlap we get on a hash of the 125 * low nibble of the protocol value is RARP/SNAP/X.25. 126 * 127 * NOTE: That is no longer true with the addition of VLAN tags. Not 128 * sure which should go first, but I bet it won't make much 129 * difference if we are running VLANs. The good news is that 130 * this protocol won't be in the list unless compiled in, so 131 * the average user (w/out VLANs) will not be adversely affected. 132 * --BLG 133 * 134 * 0800 IP 135 * 8100 802.1Q VLAN 136 * 0001 802.3 137 * 0002 AX.25 138 * 0004 802.2 139 * 8035 RARP 140 * 0005 SNAP 141 * 0805 X.25 142 * 0806 ARP 143 * 8137 IPX 144 * 0009 Localtalk 145 * 86DD IPv6 146 */ 147 148 static DEFINE_SPINLOCK(ptype_lock); 149 static struct list_head ptype_base[16]; /* 16 way hashed list */ 150 static struct list_head ptype_all; /* Taps */ 151 152 #ifdef CONFIG_NET_DMA 153 static struct dma_client *net_dma_client; 154 static unsigned int net_dma_count; 155 static spinlock_t net_dma_event_lock; 156 #endif 157 158 /* 159 * The @dev_base list is protected by @dev_base_lock and the rtnl 160 * semaphore. 161 * 162 * Pure readers hold dev_base_lock for reading. 163 * 164 * Writers must hold the rtnl semaphore while they loop through the 165 * dev_base list, and hold dev_base_lock for writing when they do the 166 * actual updates. This allows pure readers to access the list even 167 * while a writer is preparing to update it. 168 * 169 * To put it another way, dev_base_lock is held for writing only to 170 * protect against pure readers; the rtnl semaphore provides the 171 * protection against other writers. 172 * 173 * See, for example usages, register_netdevice() and 174 * unregister_netdevice(), which must be called with the rtnl 175 * semaphore held. 176 */ 177 struct net_device *dev_base; 178 static struct net_device **dev_tail = &dev_base; 179 DEFINE_RWLOCK(dev_base_lock); 180 181 EXPORT_SYMBOL(dev_base); 182 EXPORT_SYMBOL(dev_base_lock); 183 184 #define NETDEV_HASHBITS 8 185 static struct hlist_head dev_name_head[1<<NETDEV_HASHBITS]; 186 static struct hlist_head dev_index_head[1<<NETDEV_HASHBITS]; 187 188 static inline struct hlist_head *dev_name_hash(const char *name) 189 { 190 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 191 return &dev_name_head[hash & ((1<<NETDEV_HASHBITS)-1)]; 192 } 193 194 static inline struct hlist_head *dev_index_hash(int ifindex) 195 { 196 return &dev_index_head[ifindex & ((1<<NETDEV_HASHBITS)-1)]; 197 } 198 199 /* 200 * Our notifier list 201 */ 202 203 static RAW_NOTIFIER_HEAD(netdev_chain); 204 205 /* 206 * Device drivers call our routines to queue packets here. We empty the 207 * queue in the local softnet handler. 208 */ 209 DEFINE_PER_CPU(struct softnet_data, softnet_data) = { NULL }; 210 211 #ifdef CONFIG_SYSFS 212 extern int netdev_sysfs_init(void); 213 extern int netdev_register_sysfs(struct net_device *); 214 extern void netdev_unregister_sysfs(struct net_device *); 215 #else 216 #define netdev_sysfs_init() (0) 217 #define netdev_register_sysfs(dev) (0) 218 #define netdev_unregister_sysfs(dev) do { } while(0) 219 #endif 220 221 222 /******************************************************************************* 223 224 Protocol management and registration routines 225 226 *******************************************************************************/ 227 228 /* 229 * For efficiency 230 */ 231 232 static int netdev_nit; 233 234 /* 235 * Add a protocol ID to the list. Now that the input handler is 236 * smarter we can dispense with all the messy stuff that used to be 237 * here. 238 * 239 * BEWARE!!! Protocol handlers, mangling input packets, 240 * MUST BE last in hash buckets and checking protocol handlers 241 * MUST start from promiscuous ptype_all chain in net_bh. 242 * It is true now, do not change it. 243 * Explanation follows: if protocol handler, mangling packet, will 244 * be the first on list, it is not able to sense, that packet 245 * is cloned and should be copied-on-write, so that it will 246 * change it and subsequent readers will get broken packet. 247 * --ANK (980803) 248 */ 249 250 /** 251 * dev_add_pack - add packet handler 252 * @pt: packet type declaration 253 * 254 * Add a protocol handler to the networking stack. The passed &packet_type 255 * is linked into kernel lists and may not be freed until it has been 256 * removed from the kernel lists. 257 * 258 * This call does not sleep therefore it can not 259 * guarantee all CPU's that are in middle of receiving packets 260 * will see the new packet type (until the next received packet). 261 */ 262 263 void dev_add_pack(struct packet_type *pt) 264 { 265 int hash; 266 267 spin_lock_bh(&ptype_lock); 268 if (pt->type == htons(ETH_P_ALL)) { 269 netdev_nit++; 270 list_add_rcu(&pt->list, &ptype_all); 271 } else { 272 hash = ntohs(pt->type) & 15; 273 list_add_rcu(&pt->list, &ptype_base[hash]); 274 } 275 spin_unlock_bh(&ptype_lock); 276 } 277 278 /** 279 * __dev_remove_pack - remove packet handler 280 * @pt: packet type declaration 281 * 282 * Remove a protocol handler that was previously added to the kernel 283 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 284 * from the kernel lists and can be freed or reused once this function 285 * returns. 286 * 287 * The packet type might still be in use by receivers 288 * and must not be freed until after all the CPU's have gone 289 * through a quiescent state. 290 */ 291 void __dev_remove_pack(struct packet_type *pt) 292 { 293 struct list_head *head; 294 struct packet_type *pt1; 295 296 spin_lock_bh(&ptype_lock); 297 298 if (pt->type == htons(ETH_P_ALL)) { 299 netdev_nit--; 300 head = &ptype_all; 301 } else 302 head = &ptype_base[ntohs(pt->type) & 15]; 303 304 list_for_each_entry(pt1, head, list) { 305 if (pt == pt1) { 306 list_del_rcu(&pt->list); 307 goto out; 308 } 309 } 310 311 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt); 312 out: 313 spin_unlock_bh(&ptype_lock); 314 } 315 /** 316 * dev_remove_pack - remove packet handler 317 * @pt: packet type declaration 318 * 319 * Remove a protocol handler that was previously added to the kernel 320 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 321 * from the kernel lists and can be freed or reused once this function 322 * returns. 323 * 324 * This call sleeps to guarantee that no CPU is looking at the packet 325 * type after return. 326 */ 327 void dev_remove_pack(struct packet_type *pt) 328 { 329 __dev_remove_pack(pt); 330 331 synchronize_net(); 332 } 333 334 /****************************************************************************** 335 336 Device Boot-time Settings Routines 337 338 *******************************************************************************/ 339 340 /* Boot time configuration table */ 341 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 342 343 /** 344 * netdev_boot_setup_add - add new setup entry 345 * @name: name of the device 346 * @map: configured settings for the device 347 * 348 * Adds new setup entry to the dev_boot_setup list. The function 349 * returns 0 on error and 1 on success. This is a generic routine to 350 * all netdevices. 351 */ 352 static int netdev_boot_setup_add(char *name, struct ifmap *map) 353 { 354 struct netdev_boot_setup *s; 355 int i; 356 357 s = dev_boot_setup; 358 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 359 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 360 memset(s[i].name, 0, sizeof(s[i].name)); 361 strcpy(s[i].name, name); 362 memcpy(&s[i].map, map, sizeof(s[i].map)); 363 break; 364 } 365 } 366 367 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 368 } 369 370 /** 371 * netdev_boot_setup_check - check boot time settings 372 * @dev: the netdevice 373 * 374 * Check boot time settings for the device. 375 * The found settings are set for the device to be used 376 * later in the device probing. 377 * Returns 0 if no settings found, 1 if they are. 378 */ 379 int netdev_boot_setup_check(struct net_device *dev) 380 { 381 struct netdev_boot_setup *s = dev_boot_setup; 382 int i; 383 384 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 385 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 386 !strncmp(dev->name, s[i].name, strlen(s[i].name))) { 387 dev->irq = s[i].map.irq; 388 dev->base_addr = s[i].map.base_addr; 389 dev->mem_start = s[i].map.mem_start; 390 dev->mem_end = s[i].map.mem_end; 391 return 1; 392 } 393 } 394 return 0; 395 } 396 397 398 /** 399 * netdev_boot_base - get address from boot time settings 400 * @prefix: prefix for network device 401 * @unit: id for network device 402 * 403 * Check boot time settings for the base address of device. 404 * The found settings are set for the device to be used 405 * later in the device probing. 406 * Returns 0 if no settings found. 407 */ 408 unsigned long netdev_boot_base(const char *prefix, int unit) 409 { 410 const struct netdev_boot_setup *s = dev_boot_setup; 411 char name[IFNAMSIZ]; 412 int i; 413 414 sprintf(name, "%s%d", prefix, unit); 415 416 /* 417 * If device already registered then return base of 1 418 * to indicate not to probe for this interface 419 */ 420 if (__dev_get_by_name(name)) 421 return 1; 422 423 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 424 if (!strcmp(name, s[i].name)) 425 return s[i].map.base_addr; 426 return 0; 427 } 428 429 /* 430 * Saves at boot time configured settings for any netdevice. 431 */ 432 int __init netdev_boot_setup(char *str) 433 { 434 int ints[5]; 435 struct ifmap map; 436 437 str = get_options(str, ARRAY_SIZE(ints), ints); 438 if (!str || !*str) 439 return 0; 440 441 /* Save settings */ 442 memset(&map, 0, sizeof(map)); 443 if (ints[0] > 0) 444 map.irq = ints[1]; 445 if (ints[0] > 1) 446 map.base_addr = ints[2]; 447 if (ints[0] > 2) 448 map.mem_start = ints[3]; 449 if (ints[0] > 3) 450 map.mem_end = ints[4]; 451 452 /* Add new entry to the list */ 453 return netdev_boot_setup_add(str, &map); 454 } 455 456 __setup("netdev=", netdev_boot_setup); 457 458 /******************************************************************************* 459 460 Device Interface Subroutines 461 462 *******************************************************************************/ 463 464 /** 465 * __dev_get_by_name - find a device by its name 466 * @name: name to find 467 * 468 * Find an interface by name. Must be called under RTNL semaphore 469 * or @dev_base_lock. If the name is found a pointer to the device 470 * is returned. If the name is not found then %NULL is returned. The 471 * reference counters are not incremented so the caller must be 472 * careful with locks. 473 */ 474 475 struct net_device *__dev_get_by_name(const char *name) 476 { 477 struct hlist_node *p; 478 479 hlist_for_each(p, dev_name_hash(name)) { 480 struct net_device *dev 481 = hlist_entry(p, struct net_device, name_hlist); 482 if (!strncmp(dev->name, name, IFNAMSIZ)) 483 return dev; 484 } 485 return NULL; 486 } 487 488 /** 489 * dev_get_by_name - find a device by its name 490 * @name: name to find 491 * 492 * Find an interface by name. This can be called from any 493 * context and does its own locking. The returned handle has 494 * the usage count incremented and the caller must use dev_put() to 495 * release it when it is no longer needed. %NULL is returned if no 496 * matching device is found. 497 */ 498 499 struct net_device *dev_get_by_name(const char *name) 500 { 501 struct net_device *dev; 502 503 read_lock(&dev_base_lock); 504 dev = __dev_get_by_name(name); 505 if (dev) 506 dev_hold(dev); 507 read_unlock(&dev_base_lock); 508 return dev; 509 } 510 511 /** 512 * __dev_get_by_index - find a device by its ifindex 513 * @ifindex: index of device 514 * 515 * Search for an interface by index. Returns %NULL if the device 516 * is not found or a pointer to the device. The device has not 517 * had its reference counter increased so the caller must be careful 518 * about locking. The caller must hold either the RTNL semaphore 519 * or @dev_base_lock. 520 */ 521 522 struct net_device *__dev_get_by_index(int ifindex) 523 { 524 struct hlist_node *p; 525 526 hlist_for_each(p, dev_index_hash(ifindex)) { 527 struct net_device *dev 528 = hlist_entry(p, struct net_device, index_hlist); 529 if (dev->ifindex == ifindex) 530 return dev; 531 } 532 return NULL; 533 } 534 535 536 /** 537 * dev_get_by_index - find a device by its ifindex 538 * @ifindex: index of device 539 * 540 * Search for an interface by index. Returns NULL if the device 541 * is not found or a pointer to the device. The device returned has 542 * had a reference added and the pointer is safe until the user calls 543 * dev_put to indicate they have finished with it. 544 */ 545 546 struct net_device *dev_get_by_index(int ifindex) 547 { 548 struct net_device *dev; 549 550 read_lock(&dev_base_lock); 551 dev = __dev_get_by_index(ifindex); 552 if (dev) 553 dev_hold(dev); 554 read_unlock(&dev_base_lock); 555 return dev; 556 } 557 558 /** 559 * dev_getbyhwaddr - find a device by its hardware address 560 * @type: media type of device 561 * @ha: hardware address 562 * 563 * Search for an interface by MAC address. Returns NULL if the device 564 * is not found or a pointer to the device. The caller must hold the 565 * rtnl semaphore. The returned device has not had its ref count increased 566 * and the caller must therefore be careful about locking 567 * 568 * BUGS: 569 * If the API was consistent this would be __dev_get_by_hwaddr 570 */ 571 572 struct net_device *dev_getbyhwaddr(unsigned short type, char *ha) 573 { 574 struct net_device *dev; 575 576 ASSERT_RTNL(); 577 578 for (dev = dev_base; dev; dev = dev->next) 579 if (dev->type == type && 580 !memcmp(dev->dev_addr, ha, dev->addr_len)) 581 break; 582 return dev; 583 } 584 585 EXPORT_SYMBOL(dev_getbyhwaddr); 586 587 struct net_device *dev_getfirstbyhwtype(unsigned short type) 588 { 589 struct net_device *dev; 590 591 rtnl_lock(); 592 for (dev = dev_base; dev; dev = dev->next) { 593 if (dev->type == type) { 594 dev_hold(dev); 595 break; 596 } 597 } 598 rtnl_unlock(); 599 return dev; 600 } 601 602 EXPORT_SYMBOL(dev_getfirstbyhwtype); 603 604 /** 605 * dev_get_by_flags - find any device with given flags 606 * @if_flags: IFF_* values 607 * @mask: bitmask of bits in if_flags to check 608 * 609 * Search for any interface with the given flags. Returns NULL if a device 610 * is not found or a pointer to the device. The device returned has 611 * had a reference added and the pointer is safe until the user calls 612 * dev_put to indicate they have finished with it. 613 */ 614 615 struct net_device * dev_get_by_flags(unsigned short if_flags, unsigned short mask) 616 { 617 struct net_device *dev; 618 619 read_lock(&dev_base_lock); 620 for (dev = dev_base; dev != NULL; dev = dev->next) { 621 if (((dev->flags ^ if_flags) & mask) == 0) { 622 dev_hold(dev); 623 break; 624 } 625 } 626 read_unlock(&dev_base_lock); 627 return dev; 628 } 629 630 /** 631 * dev_valid_name - check if name is okay for network device 632 * @name: name string 633 * 634 * Network device names need to be valid file names to 635 * to allow sysfs to work 636 */ 637 int dev_valid_name(const char *name) 638 { 639 return !(*name == '\0' 640 || !strcmp(name, ".") 641 || !strcmp(name, "..") 642 || strchr(name, '/')); 643 } 644 645 /** 646 * dev_alloc_name - allocate a name for a device 647 * @dev: device 648 * @name: name format string 649 * 650 * Passed a format string - eg "lt%d" it will try and find a suitable 651 * id. It scans list of devices to build up a free map, then chooses 652 * the first empty slot. The caller must hold the dev_base or rtnl lock 653 * while allocating the name and adding the device in order to avoid 654 * duplicates. 655 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 656 * Returns the number of the unit assigned or a negative errno code. 657 */ 658 659 int dev_alloc_name(struct net_device *dev, const char *name) 660 { 661 int i = 0; 662 char buf[IFNAMSIZ]; 663 const char *p; 664 const int max_netdevices = 8*PAGE_SIZE; 665 long *inuse; 666 struct net_device *d; 667 668 p = strnchr(name, IFNAMSIZ-1, '%'); 669 if (p) { 670 /* 671 * Verify the string as this thing may have come from 672 * the user. There must be either one "%d" and no other "%" 673 * characters. 674 */ 675 if (p[1] != 'd' || strchr(p + 2, '%')) 676 return -EINVAL; 677 678 /* Use one page as a bit array of possible slots */ 679 inuse = (long *) get_zeroed_page(GFP_ATOMIC); 680 if (!inuse) 681 return -ENOMEM; 682 683 for (d = dev_base; d; d = d->next) { 684 if (!sscanf(d->name, name, &i)) 685 continue; 686 if (i < 0 || i >= max_netdevices) 687 continue; 688 689 /* avoid cases where sscanf is not exact inverse of printf */ 690 snprintf(buf, sizeof(buf), name, i); 691 if (!strncmp(buf, d->name, IFNAMSIZ)) 692 set_bit(i, inuse); 693 } 694 695 i = find_first_zero_bit(inuse, max_netdevices); 696 free_page((unsigned long) inuse); 697 } 698 699 snprintf(buf, sizeof(buf), name, i); 700 if (!__dev_get_by_name(buf)) { 701 strlcpy(dev->name, buf, IFNAMSIZ); 702 return i; 703 } 704 705 /* It is possible to run out of possible slots 706 * when the name is long and there isn't enough space left 707 * for the digits, or if all bits are used. 708 */ 709 return -ENFILE; 710 } 711 712 713 /** 714 * dev_change_name - change name of a device 715 * @dev: device 716 * @newname: name (or format string) must be at least IFNAMSIZ 717 * 718 * Change name of a device, can pass format strings "eth%d". 719 * for wildcarding. 720 */ 721 int dev_change_name(struct net_device *dev, char *newname) 722 { 723 int err = 0; 724 725 ASSERT_RTNL(); 726 727 if (dev->flags & IFF_UP) 728 return -EBUSY; 729 730 if (!dev_valid_name(newname)) 731 return -EINVAL; 732 733 if (strchr(newname, '%')) { 734 err = dev_alloc_name(dev, newname); 735 if (err < 0) 736 return err; 737 strcpy(newname, dev->name); 738 } 739 else if (__dev_get_by_name(newname)) 740 return -EEXIST; 741 else 742 strlcpy(dev->name, newname, IFNAMSIZ); 743 744 err = class_device_rename(&dev->class_dev, dev->name); 745 if (!err) { 746 hlist_del(&dev->name_hlist); 747 hlist_add_head(&dev->name_hlist, dev_name_hash(dev->name)); 748 raw_notifier_call_chain(&netdev_chain, 749 NETDEV_CHANGENAME, dev); 750 } 751 752 return err; 753 } 754 755 /** 756 * netdev_features_change - device changes features 757 * @dev: device to cause notification 758 * 759 * Called to indicate a device has changed features. 760 */ 761 void netdev_features_change(struct net_device *dev) 762 { 763 raw_notifier_call_chain(&netdev_chain, NETDEV_FEAT_CHANGE, dev); 764 } 765 EXPORT_SYMBOL(netdev_features_change); 766 767 /** 768 * netdev_state_change - device changes state 769 * @dev: device to cause notification 770 * 771 * Called to indicate a device has changed state. This function calls 772 * the notifier chains for netdev_chain and sends a NEWLINK message 773 * to the routing socket. 774 */ 775 void netdev_state_change(struct net_device *dev) 776 { 777 if (dev->flags & IFF_UP) { 778 raw_notifier_call_chain(&netdev_chain, 779 NETDEV_CHANGE, dev); 780 rtmsg_ifinfo(RTM_NEWLINK, dev, 0); 781 } 782 } 783 784 /** 785 * dev_load - load a network module 786 * @name: name of interface 787 * 788 * If a network interface is not present and the process has suitable 789 * privileges this function loads the module. If module loading is not 790 * available in this kernel then it becomes a nop. 791 */ 792 793 void dev_load(const char *name) 794 { 795 struct net_device *dev; 796 797 read_lock(&dev_base_lock); 798 dev = __dev_get_by_name(name); 799 read_unlock(&dev_base_lock); 800 801 if (!dev && capable(CAP_SYS_MODULE)) 802 request_module("%s", name); 803 } 804 805 static int default_rebuild_header(struct sk_buff *skb) 806 { 807 printk(KERN_DEBUG "%s: default_rebuild_header called -- BUG!\n", 808 skb->dev ? skb->dev->name : "NULL!!!"); 809 kfree_skb(skb); 810 return 1; 811 } 812 813 814 /** 815 * dev_open - prepare an interface for use. 816 * @dev: device to open 817 * 818 * Takes a device from down to up state. The device's private open 819 * function is invoked and then the multicast lists are loaded. Finally 820 * the device is moved into the up state and a %NETDEV_UP message is 821 * sent to the netdev notifier chain. 822 * 823 * Calling this function on an active interface is a nop. On a failure 824 * a negative errno code is returned. 825 */ 826 int dev_open(struct net_device *dev) 827 { 828 int ret = 0; 829 830 /* 831 * Is it already up? 832 */ 833 834 if (dev->flags & IFF_UP) 835 return 0; 836 837 /* 838 * Is it even present? 839 */ 840 if (!netif_device_present(dev)) 841 return -ENODEV; 842 843 /* 844 * Call device private open method 845 */ 846 set_bit(__LINK_STATE_START, &dev->state); 847 if (dev->open) { 848 ret = dev->open(dev); 849 if (ret) 850 clear_bit(__LINK_STATE_START, &dev->state); 851 } 852 853 /* 854 * If it went open OK then: 855 */ 856 857 if (!ret) { 858 /* 859 * Set the flags. 860 */ 861 dev->flags |= IFF_UP; 862 863 /* 864 * Initialize multicasting status 865 */ 866 dev_mc_upload(dev); 867 868 /* 869 * Wakeup transmit queue engine 870 */ 871 dev_activate(dev); 872 873 /* 874 * ... and announce new interface. 875 */ 876 raw_notifier_call_chain(&netdev_chain, NETDEV_UP, dev); 877 } 878 return ret; 879 } 880 881 /** 882 * dev_close - shutdown an interface. 883 * @dev: device to shutdown 884 * 885 * This function moves an active device into down state. A 886 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 887 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 888 * chain. 889 */ 890 int dev_close(struct net_device *dev) 891 { 892 if (!(dev->flags & IFF_UP)) 893 return 0; 894 895 /* 896 * Tell people we are going down, so that they can 897 * prepare to death, when device is still operating. 898 */ 899 raw_notifier_call_chain(&netdev_chain, NETDEV_GOING_DOWN, dev); 900 901 dev_deactivate(dev); 902 903 clear_bit(__LINK_STATE_START, &dev->state); 904 905 /* Synchronize to scheduled poll. We cannot touch poll list, 906 * it can be even on different cpu. So just clear netif_running(), 907 * and wait when poll really will happen. Actually, the best place 908 * for this is inside dev->stop() after device stopped its irq 909 * engine, but this requires more changes in devices. */ 910 911 smp_mb__after_clear_bit(); /* Commit netif_running(). */ 912 while (test_bit(__LINK_STATE_RX_SCHED, &dev->state)) { 913 /* No hurry. */ 914 msleep(1); 915 } 916 917 /* 918 * Call the device specific close. This cannot fail. 919 * Only if device is UP 920 * 921 * We allow it to be called even after a DETACH hot-plug 922 * event. 923 */ 924 if (dev->stop) 925 dev->stop(dev); 926 927 /* 928 * Device is now down. 929 */ 930 931 dev->flags &= ~IFF_UP; 932 933 /* 934 * Tell people we are down 935 */ 936 raw_notifier_call_chain(&netdev_chain, NETDEV_DOWN, dev); 937 938 return 0; 939 } 940 941 942 /* 943 * Device change register/unregister. These are not inline or static 944 * as we export them to the world. 945 */ 946 947 /** 948 * register_netdevice_notifier - register a network notifier block 949 * @nb: notifier 950 * 951 * Register a notifier to be called when network device events occur. 952 * The notifier passed is linked into the kernel structures and must 953 * not be reused until it has been unregistered. A negative errno code 954 * is returned on a failure. 955 * 956 * When registered all registration and up events are replayed 957 * to the new notifier to allow device to have a race free 958 * view of the network device list. 959 */ 960 961 int register_netdevice_notifier(struct notifier_block *nb) 962 { 963 struct net_device *dev; 964 int err; 965 966 rtnl_lock(); 967 err = raw_notifier_chain_register(&netdev_chain, nb); 968 if (!err) { 969 for (dev = dev_base; dev; dev = dev->next) { 970 nb->notifier_call(nb, NETDEV_REGISTER, dev); 971 972 if (dev->flags & IFF_UP) 973 nb->notifier_call(nb, NETDEV_UP, dev); 974 } 975 } 976 rtnl_unlock(); 977 return err; 978 } 979 980 /** 981 * unregister_netdevice_notifier - unregister a network notifier block 982 * @nb: notifier 983 * 984 * Unregister a notifier previously registered by 985 * register_netdevice_notifier(). The notifier is unlinked into the 986 * kernel structures and may then be reused. A negative errno code 987 * is returned on a failure. 988 */ 989 990 int unregister_netdevice_notifier(struct notifier_block *nb) 991 { 992 int err; 993 994 rtnl_lock(); 995 err = raw_notifier_chain_unregister(&netdev_chain, nb); 996 rtnl_unlock(); 997 return err; 998 } 999 1000 /** 1001 * call_netdevice_notifiers - call all network notifier blocks 1002 * @val: value passed unmodified to notifier function 1003 * @v: pointer passed unmodified to notifier function 1004 * 1005 * Call all network notifier blocks. Parameters and return value 1006 * are as for raw_notifier_call_chain(). 1007 */ 1008 1009 int call_netdevice_notifiers(unsigned long val, void *v) 1010 { 1011 return raw_notifier_call_chain(&netdev_chain, val, v); 1012 } 1013 1014 /* When > 0 there are consumers of rx skb time stamps */ 1015 static atomic_t netstamp_needed = ATOMIC_INIT(0); 1016 1017 void net_enable_timestamp(void) 1018 { 1019 atomic_inc(&netstamp_needed); 1020 } 1021 1022 void net_disable_timestamp(void) 1023 { 1024 atomic_dec(&netstamp_needed); 1025 } 1026 1027 void __net_timestamp(struct sk_buff *skb) 1028 { 1029 struct timeval tv; 1030 1031 do_gettimeofday(&tv); 1032 skb_set_timestamp(skb, &tv); 1033 } 1034 EXPORT_SYMBOL(__net_timestamp); 1035 1036 static inline void net_timestamp(struct sk_buff *skb) 1037 { 1038 if (atomic_read(&netstamp_needed)) 1039 __net_timestamp(skb); 1040 else { 1041 skb->tstamp.off_sec = 0; 1042 skb->tstamp.off_usec = 0; 1043 } 1044 } 1045 1046 /* 1047 * Support routine. Sends outgoing frames to any network 1048 * taps currently in use. 1049 */ 1050 1051 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1052 { 1053 struct packet_type *ptype; 1054 1055 net_timestamp(skb); 1056 1057 rcu_read_lock(); 1058 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1059 /* Never send packets back to the socket 1060 * they originated from - MvS (miquels@drinkel.ow.org) 1061 */ 1062 if ((ptype->dev == dev || !ptype->dev) && 1063 (ptype->af_packet_priv == NULL || 1064 (struct sock *)ptype->af_packet_priv != skb->sk)) { 1065 struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC); 1066 if (!skb2) 1067 break; 1068 1069 /* skb->nh should be correctly 1070 set by sender, so that the second statement is 1071 just protection against buggy protocols. 1072 */ 1073 skb2->mac.raw = skb2->data; 1074 1075 if (skb2->nh.raw < skb2->data || 1076 skb2->nh.raw > skb2->tail) { 1077 if (net_ratelimit()) 1078 printk(KERN_CRIT "protocol %04x is " 1079 "buggy, dev %s\n", 1080 skb2->protocol, dev->name); 1081 skb2->nh.raw = skb2->data; 1082 } 1083 1084 skb2->h.raw = skb2->nh.raw; 1085 skb2->pkt_type = PACKET_OUTGOING; 1086 ptype->func(skb2, skb->dev, ptype, skb->dev); 1087 } 1088 } 1089 rcu_read_unlock(); 1090 } 1091 1092 1093 void __netif_schedule(struct net_device *dev) 1094 { 1095 if (!test_and_set_bit(__LINK_STATE_SCHED, &dev->state)) { 1096 unsigned long flags; 1097 struct softnet_data *sd; 1098 1099 local_irq_save(flags); 1100 sd = &__get_cpu_var(softnet_data); 1101 dev->next_sched = sd->output_queue; 1102 sd->output_queue = dev; 1103 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1104 local_irq_restore(flags); 1105 } 1106 } 1107 EXPORT_SYMBOL(__netif_schedule); 1108 1109 void __netif_rx_schedule(struct net_device *dev) 1110 { 1111 unsigned long flags; 1112 1113 local_irq_save(flags); 1114 dev_hold(dev); 1115 list_add_tail(&dev->poll_list, &__get_cpu_var(softnet_data).poll_list); 1116 if (dev->quota < 0) 1117 dev->quota += dev->weight; 1118 else 1119 dev->quota = dev->weight; 1120 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 1121 local_irq_restore(flags); 1122 } 1123 EXPORT_SYMBOL(__netif_rx_schedule); 1124 1125 void dev_kfree_skb_any(struct sk_buff *skb) 1126 { 1127 if (in_irq() || irqs_disabled()) 1128 dev_kfree_skb_irq(skb); 1129 else 1130 dev_kfree_skb(skb); 1131 } 1132 EXPORT_SYMBOL(dev_kfree_skb_any); 1133 1134 1135 /* Hot-plugging. */ 1136 void netif_device_detach(struct net_device *dev) 1137 { 1138 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 1139 netif_running(dev)) { 1140 netif_stop_queue(dev); 1141 } 1142 } 1143 EXPORT_SYMBOL(netif_device_detach); 1144 1145 void netif_device_attach(struct net_device *dev) 1146 { 1147 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 1148 netif_running(dev)) { 1149 netif_wake_queue(dev); 1150 __netdev_watchdog_up(dev); 1151 } 1152 } 1153 EXPORT_SYMBOL(netif_device_attach); 1154 1155 1156 /* 1157 * Invalidate hardware checksum when packet is to be mangled, and 1158 * complete checksum manually on outgoing path. 1159 */ 1160 int skb_checksum_help(struct sk_buff *skb, int inward) 1161 { 1162 unsigned int csum; 1163 int ret = 0, offset = skb->h.raw - skb->data; 1164 1165 if (inward) 1166 goto out_set_summed; 1167 1168 if (unlikely(skb_shinfo(skb)->gso_size)) { 1169 /* Let GSO fix up the checksum. */ 1170 goto out_set_summed; 1171 } 1172 1173 if (skb_cloned(skb)) { 1174 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 1175 if (ret) 1176 goto out; 1177 } 1178 1179 BUG_ON(offset > (int)skb->len); 1180 csum = skb_checksum(skb, offset, skb->len-offset, 0); 1181 1182 offset = skb->tail - skb->h.raw; 1183 BUG_ON(offset <= 0); 1184 BUG_ON(skb->csum + 2 > offset); 1185 1186 *(u16*)(skb->h.raw + skb->csum) = csum_fold(csum); 1187 1188 out_set_summed: 1189 skb->ip_summed = CHECKSUM_NONE; 1190 out: 1191 return ret; 1192 } 1193 1194 /** 1195 * skb_gso_segment - Perform segmentation on skb. 1196 * @skb: buffer to segment 1197 * @features: features for the output path (see dev->features) 1198 * 1199 * This function segments the given skb and returns a list of segments. 1200 * 1201 * It may return NULL if the skb requires no segmentation. This is 1202 * only possible when GSO is used for verifying header integrity. 1203 */ 1204 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features) 1205 { 1206 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 1207 struct packet_type *ptype; 1208 int type = skb->protocol; 1209 int err; 1210 1211 BUG_ON(skb_shinfo(skb)->frag_list); 1212 1213 skb->mac.raw = skb->data; 1214 skb->mac_len = skb->nh.raw - skb->data; 1215 __skb_pull(skb, skb->mac_len); 1216 1217 if (unlikely(skb->ip_summed != CHECKSUM_HW)) { 1218 if (skb_header_cloned(skb) && 1219 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))) 1220 return ERR_PTR(err); 1221 } 1222 1223 rcu_read_lock(); 1224 list_for_each_entry_rcu(ptype, &ptype_base[ntohs(type) & 15], list) { 1225 if (ptype->type == type && !ptype->dev && ptype->gso_segment) { 1226 if (unlikely(skb->ip_summed != CHECKSUM_HW)) { 1227 err = ptype->gso_send_check(skb); 1228 segs = ERR_PTR(err); 1229 if (err || skb_gso_ok(skb, features)) 1230 break; 1231 __skb_push(skb, skb->data - skb->nh.raw); 1232 } 1233 segs = ptype->gso_segment(skb, features); 1234 break; 1235 } 1236 } 1237 rcu_read_unlock(); 1238 1239 __skb_push(skb, skb->data - skb->mac.raw); 1240 1241 return segs; 1242 } 1243 1244 EXPORT_SYMBOL(skb_gso_segment); 1245 1246 /* Take action when hardware reception checksum errors are detected. */ 1247 #ifdef CONFIG_BUG 1248 void netdev_rx_csum_fault(struct net_device *dev) 1249 { 1250 if (net_ratelimit()) { 1251 printk(KERN_ERR "%s: hw csum failure.\n", 1252 dev ? dev->name : "<unknown>"); 1253 dump_stack(); 1254 } 1255 } 1256 EXPORT_SYMBOL(netdev_rx_csum_fault); 1257 #endif 1258 1259 /* Actually, we should eliminate this check as soon as we know, that: 1260 * 1. IOMMU is present and allows to map all the memory. 1261 * 2. No high memory really exists on this machine. 1262 */ 1263 1264 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 1265 { 1266 #ifdef CONFIG_HIGHMEM 1267 int i; 1268 1269 if (dev->features & NETIF_F_HIGHDMA) 1270 return 0; 1271 1272 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1273 if (PageHighMem(skb_shinfo(skb)->frags[i].page)) 1274 return 1; 1275 1276 #endif 1277 return 0; 1278 } 1279 1280 struct dev_gso_cb { 1281 void (*destructor)(struct sk_buff *skb); 1282 }; 1283 1284 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb) 1285 1286 static void dev_gso_skb_destructor(struct sk_buff *skb) 1287 { 1288 struct dev_gso_cb *cb; 1289 1290 do { 1291 struct sk_buff *nskb = skb->next; 1292 1293 skb->next = nskb->next; 1294 nskb->next = NULL; 1295 kfree_skb(nskb); 1296 } while (skb->next); 1297 1298 cb = DEV_GSO_CB(skb); 1299 if (cb->destructor) 1300 cb->destructor(skb); 1301 } 1302 1303 /** 1304 * dev_gso_segment - Perform emulated hardware segmentation on skb. 1305 * @skb: buffer to segment 1306 * 1307 * This function segments the given skb and stores the list of segments 1308 * in skb->next. 1309 */ 1310 static int dev_gso_segment(struct sk_buff *skb) 1311 { 1312 struct net_device *dev = skb->dev; 1313 struct sk_buff *segs; 1314 int features = dev->features & ~(illegal_highdma(dev, skb) ? 1315 NETIF_F_SG : 0); 1316 1317 segs = skb_gso_segment(skb, features); 1318 1319 /* Verifying header integrity only. */ 1320 if (!segs) 1321 return 0; 1322 1323 if (unlikely(IS_ERR(segs))) 1324 return PTR_ERR(segs); 1325 1326 skb->next = segs; 1327 DEV_GSO_CB(skb)->destructor = skb->destructor; 1328 skb->destructor = dev_gso_skb_destructor; 1329 1330 return 0; 1331 } 1332 1333 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev) 1334 { 1335 if (likely(!skb->next)) { 1336 if (netdev_nit) 1337 dev_queue_xmit_nit(skb, dev); 1338 1339 if (netif_needs_gso(dev, skb)) { 1340 if (unlikely(dev_gso_segment(skb))) 1341 goto out_kfree_skb; 1342 if (skb->next) 1343 goto gso; 1344 } 1345 1346 return dev->hard_start_xmit(skb, dev); 1347 } 1348 1349 gso: 1350 do { 1351 struct sk_buff *nskb = skb->next; 1352 int rc; 1353 1354 skb->next = nskb->next; 1355 nskb->next = NULL; 1356 rc = dev->hard_start_xmit(nskb, dev); 1357 if (unlikely(rc)) { 1358 nskb->next = skb->next; 1359 skb->next = nskb; 1360 return rc; 1361 } 1362 if (unlikely(netif_queue_stopped(dev) && skb->next)) 1363 return NETDEV_TX_BUSY; 1364 } while (skb->next); 1365 1366 skb->destructor = DEV_GSO_CB(skb)->destructor; 1367 1368 out_kfree_skb: 1369 kfree_skb(skb); 1370 return 0; 1371 } 1372 1373 #define HARD_TX_LOCK(dev, cpu) { \ 1374 if ((dev->features & NETIF_F_LLTX) == 0) { \ 1375 netif_tx_lock(dev); \ 1376 } \ 1377 } 1378 1379 #define HARD_TX_UNLOCK(dev) { \ 1380 if ((dev->features & NETIF_F_LLTX) == 0) { \ 1381 netif_tx_unlock(dev); \ 1382 } \ 1383 } 1384 1385 /** 1386 * dev_queue_xmit - transmit a buffer 1387 * @skb: buffer to transmit 1388 * 1389 * Queue a buffer for transmission to a network device. The caller must 1390 * have set the device and priority and built the buffer before calling 1391 * this function. The function can be called from an interrupt. 1392 * 1393 * A negative errno code is returned on a failure. A success does not 1394 * guarantee the frame will be transmitted as it may be dropped due 1395 * to congestion or traffic shaping. 1396 * 1397 * ----------------------------------------------------------------------------------- 1398 * I notice this method can also return errors from the queue disciplines, 1399 * including NET_XMIT_DROP, which is a positive value. So, errors can also 1400 * be positive. 1401 * 1402 * Regardless of the return value, the skb is consumed, so it is currently 1403 * difficult to retry a send to this method. (You can bump the ref count 1404 * before sending to hold a reference for retry if you are careful.) 1405 * 1406 * When calling this method, interrupts MUST be enabled. This is because 1407 * the BH enable code must have IRQs enabled so that it will not deadlock. 1408 * --BLG 1409 */ 1410 1411 int dev_queue_xmit(struct sk_buff *skb) 1412 { 1413 struct net_device *dev = skb->dev; 1414 struct Qdisc *q; 1415 int rc = -ENOMEM; 1416 1417 /* GSO will handle the following emulations directly. */ 1418 if (netif_needs_gso(dev, skb)) 1419 goto gso; 1420 1421 if (skb_shinfo(skb)->frag_list && 1422 !(dev->features & NETIF_F_FRAGLIST) && 1423 __skb_linearize(skb)) 1424 goto out_kfree_skb; 1425 1426 /* Fragmented skb is linearized if device does not support SG, 1427 * or if at least one of fragments is in highmem and device 1428 * does not support DMA from it. 1429 */ 1430 if (skb_shinfo(skb)->nr_frags && 1431 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) && 1432 __skb_linearize(skb)) 1433 goto out_kfree_skb; 1434 1435 /* If packet is not checksummed and device does not support 1436 * checksumming for this protocol, complete checksumming here. 1437 */ 1438 if (skb->ip_summed == CHECKSUM_HW && 1439 (!(dev->features & NETIF_F_GEN_CSUM) && 1440 (!(dev->features & NETIF_F_IP_CSUM) || 1441 skb->protocol != htons(ETH_P_IP)))) 1442 if (skb_checksum_help(skb, 0)) 1443 goto out_kfree_skb; 1444 1445 gso: 1446 spin_lock_prefetch(&dev->queue_lock); 1447 1448 /* Disable soft irqs for various locks below. Also 1449 * stops preemption for RCU. 1450 */ 1451 rcu_read_lock_bh(); 1452 1453 /* Updates of qdisc are serialized by queue_lock. 1454 * The struct Qdisc which is pointed to by qdisc is now a 1455 * rcu structure - it may be accessed without acquiring 1456 * a lock (but the structure may be stale.) The freeing of the 1457 * qdisc will be deferred until it's known that there are no 1458 * more references to it. 1459 * 1460 * If the qdisc has an enqueue function, we still need to 1461 * hold the queue_lock before calling it, since queue_lock 1462 * also serializes access to the device queue. 1463 */ 1464 1465 q = rcu_dereference(dev->qdisc); 1466 #ifdef CONFIG_NET_CLS_ACT 1467 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS); 1468 #endif 1469 if (q->enqueue) { 1470 /* Grab device queue */ 1471 spin_lock(&dev->queue_lock); 1472 1473 rc = q->enqueue(skb, q); 1474 1475 qdisc_run(dev); 1476 1477 spin_unlock(&dev->queue_lock); 1478 rc = rc == NET_XMIT_BYPASS ? NET_XMIT_SUCCESS : rc; 1479 goto out; 1480 } 1481 1482 /* The device has no queue. Common case for software devices: 1483 loopback, all the sorts of tunnels... 1484 1485 Really, it is unlikely that netif_tx_lock protection is necessary 1486 here. (f.e. loopback and IP tunnels are clean ignoring statistics 1487 counters.) 1488 However, it is possible, that they rely on protection 1489 made by us here. 1490 1491 Check this and shot the lock. It is not prone from deadlocks. 1492 Either shot noqueue qdisc, it is even simpler 8) 1493 */ 1494 if (dev->flags & IFF_UP) { 1495 int cpu = smp_processor_id(); /* ok because BHs are off */ 1496 1497 if (dev->xmit_lock_owner != cpu) { 1498 1499 HARD_TX_LOCK(dev, cpu); 1500 1501 if (!netif_queue_stopped(dev)) { 1502 rc = 0; 1503 if (!dev_hard_start_xmit(skb, dev)) { 1504 HARD_TX_UNLOCK(dev); 1505 goto out; 1506 } 1507 } 1508 HARD_TX_UNLOCK(dev); 1509 if (net_ratelimit()) 1510 printk(KERN_CRIT "Virtual device %s asks to " 1511 "queue packet!\n", dev->name); 1512 } else { 1513 /* Recursion is detected! It is possible, 1514 * unfortunately */ 1515 if (net_ratelimit()) 1516 printk(KERN_CRIT "Dead loop on virtual device " 1517 "%s, fix it urgently!\n", dev->name); 1518 } 1519 } 1520 1521 rc = -ENETDOWN; 1522 rcu_read_unlock_bh(); 1523 1524 out_kfree_skb: 1525 kfree_skb(skb); 1526 return rc; 1527 out: 1528 rcu_read_unlock_bh(); 1529 return rc; 1530 } 1531 1532 1533 /*======================================================================= 1534 Receiver routines 1535 =======================================================================*/ 1536 1537 int netdev_max_backlog = 1000; 1538 int netdev_budget = 300; 1539 int weight_p = 64; /* old backlog weight */ 1540 1541 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, }; 1542 1543 1544 /** 1545 * netif_rx - post buffer to the network code 1546 * @skb: buffer to post 1547 * 1548 * This function receives a packet from a device driver and queues it for 1549 * the upper (protocol) levels to process. It always succeeds. The buffer 1550 * may be dropped during processing for congestion control or by the 1551 * protocol layers. 1552 * 1553 * return values: 1554 * NET_RX_SUCCESS (no congestion) 1555 * NET_RX_CN_LOW (low congestion) 1556 * NET_RX_CN_MOD (moderate congestion) 1557 * NET_RX_CN_HIGH (high congestion) 1558 * NET_RX_DROP (packet was dropped) 1559 * 1560 */ 1561 1562 int netif_rx(struct sk_buff *skb) 1563 { 1564 struct softnet_data *queue; 1565 unsigned long flags; 1566 1567 /* if netpoll wants it, pretend we never saw it */ 1568 if (netpoll_rx(skb)) 1569 return NET_RX_DROP; 1570 1571 if (!skb->tstamp.off_sec) 1572 net_timestamp(skb); 1573 1574 /* 1575 * The code is rearranged so that the path is the most 1576 * short when CPU is congested, but is still operating. 1577 */ 1578 local_irq_save(flags); 1579 queue = &__get_cpu_var(softnet_data); 1580 1581 __get_cpu_var(netdev_rx_stat).total++; 1582 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) { 1583 if (queue->input_pkt_queue.qlen) { 1584 enqueue: 1585 dev_hold(skb->dev); 1586 __skb_queue_tail(&queue->input_pkt_queue, skb); 1587 local_irq_restore(flags); 1588 return NET_RX_SUCCESS; 1589 } 1590 1591 netif_rx_schedule(&queue->backlog_dev); 1592 goto enqueue; 1593 } 1594 1595 __get_cpu_var(netdev_rx_stat).dropped++; 1596 local_irq_restore(flags); 1597 1598 kfree_skb(skb); 1599 return NET_RX_DROP; 1600 } 1601 1602 int netif_rx_ni(struct sk_buff *skb) 1603 { 1604 int err; 1605 1606 preempt_disable(); 1607 err = netif_rx(skb); 1608 if (local_softirq_pending()) 1609 do_softirq(); 1610 preempt_enable(); 1611 1612 return err; 1613 } 1614 1615 EXPORT_SYMBOL(netif_rx_ni); 1616 1617 static inline struct net_device *skb_bond(struct sk_buff *skb) 1618 { 1619 struct net_device *dev = skb->dev; 1620 1621 if (dev->master) { 1622 /* 1623 * On bonding slaves other than the currently active 1624 * slave, suppress duplicates except for 802.3ad 1625 * ETH_P_SLOW and alb non-mcast/bcast. 1626 */ 1627 if (dev->priv_flags & IFF_SLAVE_INACTIVE) { 1628 if (dev->master->priv_flags & IFF_MASTER_ALB) { 1629 if (skb->pkt_type != PACKET_BROADCAST && 1630 skb->pkt_type != PACKET_MULTICAST) 1631 goto keep; 1632 } 1633 1634 if (dev->master->priv_flags & IFF_MASTER_8023AD && 1635 skb->protocol == __constant_htons(ETH_P_SLOW)) 1636 goto keep; 1637 1638 kfree_skb(skb); 1639 return NULL; 1640 } 1641 keep: 1642 skb->dev = dev->master; 1643 } 1644 1645 return dev; 1646 } 1647 1648 static void net_tx_action(struct softirq_action *h) 1649 { 1650 struct softnet_data *sd = &__get_cpu_var(softnet_data); 1651 1652 if (sd->completion_queue) { 1653 struct sk_buff *clist; 1654 1655 local_irq_disable(); 1656 clist = sd->completion_queue; 1657 sd->completion_queue = NULL; 1658 local_irq_enable(); 1659 1660 while (clist) { 1661 struct sk_buff *skb = clist; 1662 clist = clist->next; 1663 1664 BUG_TRAP(!atomic_read(&skb->users)); 1665 __kfree_skb(skb); 1666 } 1667 } 1668 1669 if (sd->output_queue) { 1670 struct net_device *head; 1671 1672 local_irq_disable(); 1673 head = sd->output_queue; 1674 sd->output_queue = NULL; 1675 local_irq_enable(); 1676 1677 while (head) { 1678 struct net_device *dev = head; 1679 head = head->next_sched; 1680 1681 smp_mb__before_clear_bit(); 1682 clear_bit(__LINK_STATE_SCHED, &dev->state); 1683 1684 if (spin_trylock(&dev->queue_lock)) { 1685 qdisc_run(dev); 1686 spin_unlock(&dev->queue_lock); 1687 } else { 1688 netif_schedule(dev); 1689 } 1690 } 1691 } 1692 } 1693 1694 static __inline__ int deliver_skb(struct sk_buff *skb, 1695 struct packet_type *pt_prev, 1696 struct net_device *orig_dev) 1697 { 1698 atomic_inc(&skb->users); 1699 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1700 } 1701 1702 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE) 1703 int (*br_handle_frame_hook)(struct net_bridge_port *p, struct sk_buff **pskb); 1704 struct net_bridge; 1705 struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br, 1706 unsigned char *addr); 1707 void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent); 1708 1709 static __inline__ int handle_bridge(struct sk_buff **pskb, 1710 struct packet_type **pt_prev, int *ret, 1711 struct net_device *orig_dev) 1712 { 1713 struct net_bridge_port *port; 1714 1715 if ((*pskb)->pkt_type == PACKET_LOOPBACK || 1716 (port = rcu_dereference((*pskb)->dev->br_port)) == NULL) 1717 return 0; 1718 1719 if (*pt_prev) { 1720 *ret = deliver_skb(*pskb, *pt_prev, orig_dev); 1721 *pt_prev = NULL; 1722 } 1723 1724 return br_handle_frame_hook(port, pskb); 1725 } 1726 #else 1727 #define handle_bridge(skb, pt_prev, ret, orig_dev) (0) 1728 #endif 1729 1730 #ifdef CONFIG_NET_CLS_ACT 1731 /* TODO: Maybe we should just force sch_ingress to be compiled in 1732 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions 1733 * a compare and 2 stores extra right now if we dont have it on 1734 * but have CONFIG_NET_CLS_ACT 1735 * NOTE: This doesnt stop any functionality; if you dont have 1736 * the ingress scheduler, you just cant add policies on ingress. 1737 * 1738 */ 1739 static int ing_filter(struct sk_buff *skb) 1740 { 1741 struct Qdisc *q; 1742 struct net_device *dev = skb->dev; 1743 int result = TC_ACT_OK; 1744 1745 if (dev->qdisc_ingress) { 1746 __u32 ttl = (__u32) G_TC_RTTL(skb->tc_verd); 1747 if (MAX_RED_LOOP < ttl++) { 1748 printk(KERN_WARNING "Redir loop detected Dropping packet (%s->%s)\n", 1749 skb->input_dev->name, skb->dev->name); 1750 return TC_ACT_SHOT; 1751 } 1752 1753 skb->tc_verd = SET_TC_RTTL(skb->tc_verd,ttl); 1754 1755 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_INGRESS); 1756 1757 spin_lock(&dev->ingress_lock); 1758 if ((q = dev->qdisc_ingress) != NULL) 1759 result = q->enqueue(skb, q); 1760 spin_unlock(&dev->ingress_lock); 1761 1762 } 1763 1764 return result; 1765 } 1766 #endif 1767 1768 int netif_receive_skb(struct sk_buff *skb) 1769 { 1770 struct packet_type *ptype, *pt_prev; 1771 struct net_device *orig_dev; 1772 int ret = NET_RX_DROP; 1773 unsigned short type; 1774 1775 /* if we've gotten here through NAPI, check netpoll */ 1776 if (skb->dev->poll && netpoll_rx(skb)) 1777 return NET_RX_DROP; 1778 1779 if (!skb->tstamp.off_sec) 1780 net_timestamp(skb); 1781 1782 if (!skb->input_dev) 1783 skb->input_dev = skb->dev; 1784 1785 orig_dev = skb_bond(skb); 1786 1787 if (!orig_dev) 1788 return NET_RX_DROP; 1789 1790 __get_cpu_var(netdev_rx_stat).total++; 1791 1792 skb->h.raw = skb->nh.raw = skb->data; 1793 skb->mac_len = skb->nh.raw - skb->mac.raw; 1794 1795 pt_prev = NULL; 1796 1797 rcu_read_lock(); 1798 1799 #ifdef CONFIG_NET_CLS_ACT 1800 if (skb->tc_verd & TC_NCLS) { 1801 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 1802 goto ncls; 1803 } 1804 #endif 1805 1806 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1807 if (!ptype->dev || ptype->dev == skb->dev) { 1808 if (pt_prev) 1809 ret = deliver_skb(skb, pt_prev, orig_dev); 1810 pt_prev = ptype; 1811 } 1812 } 1813 1814 #ifdef CONFIG_NET_CLS_ACT 1815 if (pt_prev) { 1816 ret = deliver_skb(skb, pt_prev, orig_dev); 1817 pt_prev = NULL; /* noone else should process this after*/ 1818 } else { 1819 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd); 1820 } 1821 1822 ret = ing_filter(skb); 1823 1824 if (ret == TC_ACT_SHOT || (ret == TC_ACT_STOLEN)) { 1825 kfree_skb(skb); 1826 goto out; 1827 } 1828 1829 skb->tc_verd = 0; 1830 ncls: 1831 #endif 1832 1833 handle_diverter(skb); 1834 1835 if (handle_bridge(&skb, &pt_prev, &ret, orig_dev)) 1836 goto out; 1837 1838 type = skb->protocol; 1839 list_for_each_entry_rcu(ptype, &ptype_base[ntohs(type)&15], list) { 1840 if (ptype->type == type && 1841 (!ptype->dev || ptype->dev == skb->dev)) { 1842 if (pt_prev) 1843 ret = deliver_skb(skb, pt_prev, orig_dev); 1844 pt_prev = ptype; 1845 } 1846 } 1847 1848 if (pt_prev) { 1849 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1850 } else { 1851 kfree_skb(skb); 1852 /* Jamal, now you will not able to escape explaining 1853 * me how you were going to use this. :-) 1854 */ 1855 ret = NET_RX_DROP; 1856 } 1857 1858 out: 1859 rcu_read_unlock(); 1860 return ret; 1861 } 1862 1863 static int process_backlog(struct net_device *backlog_dev, int *budget) 1864 { 1865 int work = 0; 1866 int quota = min(backlog_dev->quota, *budget); 1867 struct softnet_data *queue = &__get_cpu_var(softnet_data); 1868 unsigned long start_time = jiffies; 1869 1870 backlog_dev->weight = weight_p; 1871 for (;;) { 1872 struct sk_buff *skb; 1873 struct net_device *dev; 1874 1875 local_irq_disable(); 1876 skb = __skb_dequeue(&queue->input_pkt_queue); 1877 if (!skb) 1878 goto job_done; 1879 local_irq_enable(); 1880 1881 dev = skb->dev; 1882 1883 netif_receive_skb(skb); 1884 1885 dev_put(dev); 1886 1887 work++; 1888 1889 if (work >= quota || jiffies - start_time > 1) 1890 break; 1891 1892 } 1893 1894 backlog_dev->quota -= work; 1895 *budget -= work; 1896 return -1; 1897 1898 job_done: 1899 backlog_dev->quota -= work; 1900 *budget -= work; 1901 1902 list_del(&backlog_dev->poll_list); 1903 smp_mb__before_clear_bit(); 1904 netif_poll_enable(backlog_dev); 1905 1906 local_irq_enable(); 1907 return 0; 1908 } 1909 1910 static void net_rx_action(struct softirq_action *h) 1911 { 1912 struct softnet_data *queue = &__get_cpu_var(softnet_data); 1913 unsigned long start_time = jiffies; 1914 int budget = netdev_budget; 1915 void *have; 1916 1917 local_irq_disable(); 1918 1919 while (!list_empty(&queue->poll_list)) { 1920 struct net_device *dev; 1921 1922 if (budget <= 0 || jiffies - start_time > 1) 1923 goto softnet_break; 1924 1925 local_irq_enable(); 1926 1927 dev = list_entry(queue->poll_list.next, 1928 struct net_device, poll_list); 1929 have = netpoll_poll_lock(dev); 1930 1931 if (dev->quota <= 0 || dev->poll(dev, &budget)) { 1932 netpoll_poll_unlock(have); 1933 local_irq_disable(); 1934 list_move_tail(&dev->poll_list, &queue->poll_list); 1935 if (dev->quota < 0) 1936 dev->quota += dev->weight; 1937 else 1938 dev->quota = dev->weight; 1939 } else { 1940 netpoll_poll_unlock(have); 1941 dev_put(dev); 1942 local_irq_disable(); 1943 } 1944 } 1945 out: 1946 #ifdef CONFIG_NET_DMA 1947 /* 1948 * There may not be any more sk_buffs coming right now, so push 1949 * any pending DMA copies to hardware 1950 */ 1951 if (net_dma_client) { 1952 struct dma_chan *chan; 1953 rcu_read_lock(); 1954 list_for_each_entry_rcu(chan, &net_dma_client->channels, client_node) 1955 dma_async_memcpy_issue_pending(chan); 1956 rcu_read_unlock(); 1957 } 1958 #endif 1959 local_irq_enable(); 1960 return; 1961 1962 softnet_break: 1963 __get_cpu_var(netdev_rx_stat).time_squeeze++; 1964 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 1965 goto out; 1966 } 1967 1968 static gifconf_func_t * gifconf_list [NPROTO]; 1969 1970 /** 1971 * register_gifconf - register a SIOCGIF handler 1972 * @family: Address family 1973 * @gifconf: Function handler 1974 * 1975 * Register protocol dependent address dumping routines. The handler 1976 * that is passed must not be freed or reused until it has been replaced 1977 * by another handler. 1978 */ 1979 int register_gifconf(unsigned int family, gifconf_func_t * gifconf) 1980 { 1981 if (family >= NPROTO) 1982 return -EINVAL; 1983 gifconf_list[family] = gifconf; 1984 return 0; 1985 } 1986 1987 1988 /* 1989 * Map an interface index to its name (SIOCGIFNAME) 1990 */ 1991 1992 /* 1993 * We need this ioctl for efficient implementation of the 1994 * if_indextoname() function required by the IPv6 API. Without 1995 * it, we would have to search all the interfaces to find a 1996 * match. --pb 1997 */ 1998 1999 static int dev_ifname(struct ifreq __user *arg) 2000 { 2001 struct net_device *dev; 2002 struct ifreq ifr; 2003 2004 /* 2005 * Fetch the caller's info block. 2006 */ 2007 2008 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 2009 return -EFAULT; 2010 2011 read_lock(&dev_base_lock); 2012 dev = __dev_get_by_index(ifr.ifr_ifindex); 2013 if (!dev) { 2014 read_unlock(&dev_base_lock); 2015 return -ENODEV; 2016 } 2017 2018 strcpy(ifr.ifr_name, dev->name); 2019 read_unlock(&dev_base_lock); 2020 2021 if (copy_to_user(arg, &ifr, sizeof(struct ifreq))) 2022 return -EFAULT; 2023 return 0; 2024 } 2025 2026 /* 2027 * Perform a SIOCGIFCONF call. This structure will change 2028 * size eventually, and there is nothing I can do about it. 2029 * Thus we will need a 'compatibility mode'. 2030 */ 2031 2032 static int dev_ifconf(char __user *arg) 2033 { 2034 struct ifconf ifc; 2035 struct net_device *dev; 2036 char __user *pos; 2037 int len; 2038 int total; 2039 int i; 2040 2041 /* 2042 * Fetch the caller's info block. 2043 */ 2044 2045 if (copy_from_user(&ifc, arg, sizeof(struct ifconf))) 2046 return -EFAULT; 2047 2048 pos = ifc.ifc_buf; 2049 len = ifc.ifc_len; 2050 2051 /* 2052 * Loop over the interfaces, and write an info block for each. 2053 */ 2054 2055 total = 0; 2056 for (dev = dev_base; dev; dev = dev->next) { 2057 for (i = 0; i < NPROTO; i++) { 2058 if (gifconf_list[i]) { 2059 int done; 2060 if (!pos) 2061 done = gifconf_list[i](dev, NULL, 0); 2062 else 2063 done = gifconf_list[i](dev, pos + total, 2064 len - total); 2065 if (done < 0) 2066 return -EFAULT; 2067 total += done; 2068 } 2069 } 2070 } 2071 2072 /* 2073 * All done. Write the updated control block back to the caller. 2074 */ 2075 ifc.ifc_len = total; 2076 2077 /* 2078 * Both BSD and Solaris return 0 here, so we do too. 2079 */ 2080 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0; 2081 } 2082 2083 #ifdef CONFIG_PROC_FS 2084 /* 2085 * This is invoked by the /proc filesystem handler to display a device 2086 * in detail. 2087 */ 2088 static __inline__ struct net_device *dev_get_idx(loff_t pos) 2089 { 2090 struct net_device *dev; 2091 loff_t i; 2092 2093 for (i = 0, dev = dev_base; dev && i < pos; ++i, dev = dev->next); 2094 2095 return i == pos ? dev : NULL; 2096 } 2097 2098 void *dev_seq_start(struct seq_file *seq, loff_t *pos) 2099 { 2100 read_lock(&dev_base_lock); 2101 return *pos ? dev_get_idx(*pos - 1) : SEQ_START_TOKEN; 2102 } 2103 2104 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2105 { 2106 ++*pos; 2107 return v == SEQ_START_TOKEN ? dev_base : ((struct net_device *)v)->next; 2108 } 2109 2110 void dev_seq_stop(struct seq_file *seq, void *v) 2111 { 2112 read_unlock(&dev_base_lock); 2113 } 2114 2115 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev) 2116 { 2117 if (dev->get_stats) { 2118 struct net_device_stats *stats = dev->get_stats(dev); 2119 2120 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu " 2121 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n", 2122 dev->name, stats->rx_bytes, stats->rx_packets, 2123 stats->rx_errors, 2124 stats->rx_dropped + stats->rx_missed_errors, 2125 stats->rx_fifo_errors, 2126 stats->rx_length_errors + stats->rx_over_errors + 2127 stats->rx_crc_errors + stats->rx_frame_errors, 2128 stats->rx_compressed, stats->multicast, 2129 stats->tx_bytes, stats->tx_packets, 2130 stats->tx_errors, stats->tx_dropped, 2131 stats->tx_fifo_errors, stats->collisions, 2132 stats->tx_carrier_errors + 2133 stats->tx_aborted_errors + 2134 stats->tx_window_errors + 2135 stats->tx_heartbeat_errors, 2136 stats->tx_compressed); 2137 } else 2138 seq_printf(seq, "%6s: No statistics available.\n", dev->name); 2139 } 2140 2141 /* 2142 * Called from the PROCfs module. This now uses the new arbitrary sized 2143 * /proc/net interface to create /proc/net/dev 2144 */ 2145 static int dev_seq_show(struct seq_file *seq, void *v) 2146 { 2147 if (v == SEQ_START_TOKEN) 2148 seq_puts(seq, "Inter-| Receive " 2149 " | Transmit\n" 2150 " face |bytes packets errs drop fifo frame " 2151 "compressed multicast|bytes packets errs " 2152 "drop fifo colls carrier compressed\n"); 2153 else 2154 dev_seq_printf_stats(seq, v); 2155 return 0; 2156 } 2157 2158 static struct netif_rx_stats *softnet_get_online(loff_t *pos) 2159 { 2160 struct netif_rx_stats *rc = NULL; 2161 2162 while (*pos < NR_CPUS) 2163 if (cpu_online(*pos)) { 2164 rc = &per_cpu(netdev_rx_stat, *pos); 2165 break; 2166 } else 2167 ++*pos; 2168 return rc; 2169 } 2170 2171 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos) 2172 { 2173 return softnet_get_online(pos); 2174 } 2175 2176 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2177 { 2178 ++*pos; 2179 return softnet_get_online(pos); 2180 } 2181 2182 static void softnet_seq_stop(struct seq_file *seq, void *v) 2183 { 2184 } 2185 2186 static int softnet_seq_show(struct seq_file *seq, void *v) 2187 { 2188 struct netif_rx_stats *s = v; 2189 2190 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n", 2191 s->total, s->dropped, s->time_squeeze, 0, 2192 0, 0, 0, 0, /* was fastroute */ 2193 s->cpu_collision ); 2194 return 0; 2195 } 2196 2197 static struct seq_operations dev_seq_ops = { 2198 .start = dev_seq_start, 2199 .next = dev_seq_next, 2200 .stop = dev_seq_stop, 2201 .show = dev_seq_show, 2202 }; 2203 2204 static int dev_seq_open(struct inode *inode, struct file *file) 2205 { 2206 return seq_open(file, &dev_seq_ops); 2207 } 2208 2209 static struct file_operations dev_seq_fops = { 2210 .owner = THIS_MODULE, 2211 .open = dev_seq_open, 2212 .read = seq_read, 2213 .llseek = seq_lseek, 2214 .release = seq_release, 2215 }; 2216 2217 static struct seq_operations softnet_seq_ops = { 2218 .start = softnet_seq_start, 2219 .next = softnet_seq_next, 2220 .stop = softnet_seq_stop, 2221 .show = softnet_seq_show, 2222 }; 2223 2224 static int softnet_seq_open(struct inode *inode, struct file *file) 2225 { 2226 return seq_open(file, &softnet_seq_ops); 2227 } 2228 2229 static struct file_operations softnet_seq_fops = { 2230 .owner = THIS_MODULE, 2231 .open = softnet_seq_open, 2232 .read = seq_read, 2233 .llseek = seq_lseek, 2234 .release = seq_release, 2235 }; 2236 2237 #ifdef CONFIG_WIRELESS_EXT 2238 extern int wireless_proc_init(void); 2239 #else 2240 #define wireless_proc_init() 0 2241 #endif 2242 2243 static int __init dev_proc_init(void) 2244 { 2245 int rc = -ENOMEM; 2246 2247 if (!proc_net_fops_create("dev", S_IRUGO, &dev_seq_fops)) 2248 goto out; 2249 if (!proc_net_fops_create("softnet_stat", S_IRUGO, &softnet_seq_fops)) 2250 goto out_dev; 2251 if (wireless_proc_init()) 2252 goto out_softnet; 2253 rc = 0; 2254 out: 2255 return rc; 2256 out_softnet: 2257 proc_net_remove("softnet_stat"); 2258 out_dev: 2259 proc_net_remove("dev"); 2260 goto out; 2261 } 2262 #else 2263 #define dev_proc_init() 0 2264 #endif /* CONFIG_PROC_FS */ 2265 2266 2267 /** 2268 * netdev_set_master - set up master/slave pair 2269 * @slave: slave device 2270 * @master: new master device 2271 * 2272 * Changes the master device of the slave. Pass %NULL to break the 2273 * bonding. The caller must hold the RTNL semaphore. On a failure 2274 * a negative errno code is returned. On success the reference counts 2275 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the 2276 * function returns zero. 2277 */ 2278 int netdev_set_master(struct net_device *slave, struct net_device *master) 2279 { 2280 struct net_device *old = slave->master; 2281 2282 ASSERT_RTNL(); 2283 2284 if (master) { 2285 if (old) 2286 return -EBUSY; 2287 dev_hold(master); 2288 } 2289 2290 slave->master = master; 2291 2292 synchronize_net(); 2293 2294 if (old) 2295 dev_put(old); 2296 2297 if (master) 2298 slave->flags |= IFF_SLAVE; 2299 else 2300 slave->flags &= ~IFF_SLAVE; 2301 2302 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE); 2303 return 0; 2304 } 2305 2306 /** 2307 * dev_set_promiscuity - update promiscuity count on a device 2308 * @dev: device 2309 * @inc: modifier 2310 * 2311 * Add or remove promiscuity from a device. While the count in the device 2312 * remains above zero the interface remains promiscuous. Once it hits zero 2313 * the device reverts back to normal filtering operation. A negative inc 2314 * value is used to drop promiscuity on the device. 2315 */ 2316 void dev_set_promiscuity(struct net_device *dev, int inc) 2317 { 2318 unsigned short old_flags = dev->flags; 2319 2320 if ((dev->promiscuity += inc) == 0) 2321 dev->flags &= ~IFF_PROMISC; 2322 else 2323 dev->flags |= IFF_PROMISC; 2324 if (dev->flags != old_flags) { 2325 dev_mc_upload(dev); 2326 printk(KERN_INFO "device %s %s promiscuous mode\n", 2327 dev->name, (dev->flags & IFF_PROMISC) ? "entered" : 2328 "left"); 2329 audit_log(current->audit_context, GFP_ATOMIC, 2330 AUDIT_ANOM_PROMISCUOUS, 2331 "dev=%s prom=%d old_prom=%d auid=%u", 2332 dev->name, (dev->flags & IFF_PROMISC), 2333 (old_flags & IFF_PROMISC), 2334 audit_get_loginuid(current->audit_context)); 2335 } 2336 } 2337 2338 /** 2339 * dev_set_allmulti - update allmulti count on a device 2340 * @dev: device 2341 * @inc: modifier 2342 * 2343 * Add or remove reception of all multicast frames to a device. While the 2344 * count in the device remains above zero the interface remains listening 2345 * to all interfaces. Once it hits zero the device reverts back to normal 2346 * filtering operation. A negative @inc value is used to drop the counter 2347 * when releasing a resource needing all multicasts. 2348 */ 2349 2350 void dev_set_allmulti(struct net_device *dev, int inc) 2351 { 2352 unsigned short old_flags = dev->flags; 2353 2354 dev->flags |= IFF_ALLMULTI; 2355 if ((dev->allmulti += inc) == 0) 2356 dev->flags &= ~IFF_ALLMULTI; 2357 if (dev->flags ^ old_flags) 2358 dev_mc_upload(dev); 2359 } 2360 2361 unsigned dev_get_flags(const struct net_device *dev) 2362 { 2363 unsigned flags; 2364 2365 flags = (dev->flags & ~(IFF_PROMISC | 2366 IFF_ALLMULTI | 2367 IFF_RUNNING | 2368 IFF_LOWER_UP | 2369 IFF_DORMANT)) | 2370 (dev->gflags & (IFF_PROMISC | 2371 IFF_ALLMULTI)); 2372 2373 if (netif_running(dev)) { 2374 if (netif_oper_up(dev)) 2375 flags |= IFF_RUNNING; 2376 if (netif_carrier_ok(dev)) 2377 flags |= IFF_LOWER_UP; 2378 if (netif_dormant(dev)) 2379 flags |= IFF_DORMANT; 2380 } 2381 2382 return flags; 2383 } 2384 2385 int dev_change_flags(struct net_device *dev, unsigned flags) 2386 { 2387 int ret; 2388 int old_flags = dev->flags; 2389 2390 /* 2391 * Set the flags on our device. 2392 */ 2393 2394 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 2395 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 2396 IFF_AUTOMEDIA)) | 2397 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 2398 IFF_ALLMULTI)); 2399 2400 /* 2401 * Load in the correct multicast list now the flags have changed. 2402 */ 2403 2404 dev_mc_upload(dev); 2405 2406 /* 2407 * Have we downed the interface. We handle IFF_UP ourselves 2408 * according to user attempts to set it, rather than blindly 2409 * setting it. 2410 */ 2411 2412 ret = 0; 2413 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */ 2414 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev); 2415 2416 if (!ret) 2417 dev_mc_upload(dev); 2418 } 2419 2420 if (dev->flags & IFF_UP && 2421 ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI | 2422 IFF_VOLATILE))) 2423 raw_notifier_call_chain(&netdev_chain, 2424 NETDEV_CHANGE, dev); 2425 2426 if ((flags ^ dev->gflags) & IFF_PROMISC) { 2427 int inc = (flags & IFF_PROMISC) ? +1 : -1; 2428 dev->gflags ^= IFF_PROMISC; 2429 dev_set_promiscuity(dev, inc); 2430 } 2431 2432 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 2433 is important. Some (broken) drivers set IFF_PROMISC, when 2434 IFF_ALLMULTI is requested not asking us and not reporting. 2435 */ 2436 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 2437 int inc = (flags & IFF_ALLMULTI) ? +1 : -1; 2438 dev->gflags ^= IFF_ALLMULTI; 2439 dev_set_allmulti(dev, inc); 2440 } 2441 2442 if (old_flags ^ dev->flags) 2443 rtmsg_ifinfo(RTM_NEWLINK, dev, old_flags ^ dev->flags); 2444 2445 return ret; 2446 } 2447 2448 int dev_set_mtu(struct net_device *dev, int new_mtu) 2449 { 2450 int err; 2451 2452 if (new_mtu == dev->mtu) 2453 return 0; 2454 2455 /* MTU must be positive. */ 2456 if (new_mtu < 0) 2457 return -EINVAL; 2458 2459 if (!netif_device_present(dev)) 2460 return -ENODEV; 2461 2462 err = 0; 2463 if (dev->change_mtu) 2464 err = dev->change_mtu(dev, new_mtu); 2465 else 2466 dev->mtu = new_mtu; 2467 if (!err && dev->flags & IFF_UP) 2468 raw_notifier_call_chain(&netdev_chain, 2469 NETDEV_CHANGEMTU, dev); 2470 return err; 2471 } 2472 2473 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 2474 { 2475 int err; 2476 2477 if (!dev->set_mac_address) 2478 return -EOPNOTSUPP; 2479 if (sa->sa_family != dev->type) 2480 return -EINVAL; 2481 if (!netif_device_present(dev)) 2482 return -ENODEV; 2483 err = dev->set_mac_address(dev, sa); 2484 if (!err) 2485 raw_notifier_call_chain(&netdev_chain, 2486 NETDEV_CHANGEADDR, dev); 2487 return err; 2488 } 2489 2490 /* 2491 * Perform the SIOCxIFxxx calls. 2492 */ 2493 static int dev_ifsioc(struct ifreq *ifr, unsigned int cmd) 2494 { 2495 int err; 2496 struct net_device *dev = __dev_get_by_name(ifr->ifr_name); 2497 2498 if (!dev) 2499 return -ENODEV; 2500 2501 switch (cmd) { 2502 case SIOCGIFFLAGS: /* Get interface flags */ 2503 ifr->ifr_flags = dev_get_flags(dev); 2504 return 0; 2505 2506 case SIOCSIFFLAGS: /* Set interface flags */ 2507 return dev_change_flags(dev, ifr->ifr_flags); 2508 2509 case SIOCGIFMETRIC: /* Get the metric on the interface 2510 (currently unused) */ 2511 ifr->ifr_metric = 0; 2512 return 0; 2513 2514 case SIOCSIFMETRIC: /* Set the metric on the interface 2515 (currently unused) */ 2516 return -EOPNOTSUPP; 2517 2518 case SIOCGIFMTU: /* Get the MTU of a device */ 2519 ifr->ifr_mtu = dev->mtu; 2520 return 0; 2521 2522 case SIOCSIFMTU: /* Set the MTU of a device */ 2523 return dev_set_mtu(dev, ifr->ifr_mtu); 2524 2525 case SIOCGIFHWADDR: 2526 if (!dev->addr_len) 2527 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data); 2528 else 2529 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr, 2530 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 2531 ifr->ifr_hwaddr.sa_family = dev->type; 2532 return 0; 2533 2534 case SIOCSIFHWADDR: 2535 return dev_set_mac_address(dev, &ifr->ifr_hwaddr); 2536 2537 case SIOCSIFHWBROADCAST: 2538 if (ifr->ifr_hwaddr.sa_family != dev->type) 2539 return -EINVAL; 2540 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data, 2541 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 2542 raw_notifier_call_chain(&netdev_chain, 2543 NETDEV_CHANGEADDR, dev); 2544 return 0; 2545 2546 case SIOCGIFMAP: 2547 ifr->ifr_map.mem_start = dev->mem_start; 2548 ifr->ifr_map.mem_end = dev->mem_end; 2549 ifr->ifr_map.base_addr = dev->base_addr; 2550 ifr->ifr_map.irq = dev->irq; 2551 ifr->ifr_map.dma = dev->dma; 2552 ifr->ifr_map.port = dev->if_port; 2553 return 0; 2554 2555 case SIOCSIFMAP: 2556 if (dev->set_config) { 2557 if (!netif_device_present(dev)) 2558 return -ENODEV; 2559 return dev->set_config(dev, &ifr->ifr_map); 2560 } 2561 return -EOPNOTSUPP; 2562 2563 case SIOCADDMULTI: 2564 if (!dev->set_multicast_list || 2565 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 2566 return -EINVAL; 2567 if (!netif_device_present(dev)) 2568 return -ENODEV; 2569 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data, 2570 dev->addr_len, 1); 2571 2572 case SIOCDELMULTI: 2573 if (!dev->set_multicast_list || 2574 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 2575 return -EINVAL; 2576 if (!netif_device_present(dev)) 2577 return -ENODEV; 2578 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data, 2579 dev->addr_len, 1); 2580 2581 case SIOCGIFINDEX: 2582 ifr->ifr_ifindex = dev->ifindex; 2583 return 0; 2584 2585 case SIOCGIFTXQLEN: 2586 ifr->ifr_qlen = dev->tx_queue_len; 2587 return 0; 2588 2589 case SIOCSIFTXQLEN: 2590 if (ifr->ifr_qlen < 0) 2591 return -EINVAL; 2592 dev->tx_queue_len = ifr->ifr_qlen; 2593 return 0; 2594 2595 case SIOCSIFNAME: 2596 ifr->ifr_newname[IFNAMSIZ-1] = '\0'; 2597 return dev_change_name(dev, ifr->ifr_newname); 2598 2599 /* 2600 * Unknown or private ioctl 2601 */ 2602 2603 default: 2604 if ((cmd >= SIOCDEVPRIVATE && 2605 cmd <= SIOCDEVPRIVATE + 15) || 2606 cmd == SIOCBONDENSLAVE || 2607 cmd == SIOCBONDRELEASE || 2608 cmd == SIOCBONDSETHWADDR || 2609 cmd == SIOCBONDSLAVEINFOQUERY || 2610 cmd == SIOCBONDINFOQUERY || 2611 cmd == SIOCBONDCHANGEACTIVE || 2612 cmd == SIOCGMIIPHY || 2613 cmd == SIOCGMIIREG || 2614 cmd == SIOCSMIIREG || 2615 cmd == SIOCBRADDIF || 2616 cmd == SIOCBRDELIF || 2617 cmd == SIOCWANDEV) { 2618 err = -EOPNOTSUPP; 2619 if (dev->do_ioctl) { 2620 if (netif_device_present(dev)) 2621 err = dev->do_ioctl(dev, ifr, 2622 cmd); 2623 else 2624 err = -ENODEV; 2625 } 2626 } else 2627 err = -EINVAL; 2628 2629 } 2630 return err; 2631 } 2632 2633 /* 2634 * This function handles all "interface"-type I/O control requests. The actual 2635 * 'doing' part of this is dev_ifsioc above. 2636 */ 2637 2638 /** 2639 * dev_ioctl - network device ioctl 2640 * @cmd: command to issue 2641 * @arg: pointer to a struct ifreq in user space 2642 * 2643 * Issue ioctl functions to devices. This is normally called by the 2644 * user space syscall interfaces but can sometimes be useful for 2645 * other purposes. The return value is the return from the syscall if 2646 * positive or a negative errno code on error. 2647 */ 2648 2649 int dev_ioctl(unsigned int cmd, void __user *arg) 2650 { 2651 struct ifreq ifr; 2652 int ret; 2653 char *colon; 2654 2655 /* One special case: SIOCGIFCONF takes ifconf argument 2656 and requires shared lock, because it sleeps writing 2657 to user space. 2658 */ 2659 2660 if (cmd == SIOCGIFCONF) { 2661 rtnl_lock(); 2662 ret = dev_ifconf((char __user *) arg); 2663 rtnl_unlock(); 2664 return ret; 2665 } 2666 if (cmd == SIOCGIFNAME) 2667 return dev_ifname((struct ifreq __user *)arg); 2668 2669 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 2670 return -EFAULT; 2671 2672 ifr.ifr_name[IFNAMSIZ-1] = 0; 2673 2674 colon = strchr(ifr.ifr_name, ':'); 2675 if (colon) 2676 *colon = 0; 2677 2678 /* 2679 * See which interface the caller is talking about. 2680 */ 2681 2682 switch (cmd) { 2683 /* 2684 * These ioctl calls: 2685 * - can be done by all. 2686 * - atomic and do not require locking. 2687 * - return a value 2688 */ 2689 case SIOCGIFFLAGS: 2690 case SIOCGIFMETRIC: 2691 case SIOCGIFMTU: 2692 case SIOCGIFHWADDR: 2693 case SIOCGIFSLAVE: 2694 case SIOCGIFMAP: 2695 case SIOCGIFINDEX: 2696 case SIOCGIFTXQLEN: 2697 dev_load(ifr.ifr_name); 2698 read_lock(&dev_base_lock); 2699 ret = dev_ifsioc(&ifr, cmd); 2700 read_unlock(&dev_base_lock); 2701 if (!ret) { 2702 if (colon) 2703 *colon = ':'; 2704 if (copy_to_user(arg, &ifr, 2705 sizeof(struct ifreq))) 2706 ret = -EFAULT; 2707 } 2708 return ret; 2709 2710 case SIOCETHTOOL: 2711 dev_load(ifr.ifr_name); 2712 rtnl_lock(); 2713 ret = dev_ethtool(&ifr); 2714 rtnl_unlock(); 2715 if (!ret) { 2716 if (colon) 2717 *colon = ':'; 2718 if (copy_to_user(arg, &ifr, 2719 sizeof(struct ifreq))) 2720 ret = -EFAULT; 2721 } 2722 return ret; 2723 2724 /* 2725 * These ioctl calls: 2726 * - require superuser power. 2727 * - require strict serialization. 2728 * - return a value 2729 */ 2730 case SIOCGMIIPHY: 2731 case SIOCGMIIREG: 2732 case SIOCSIFNAME: 2733 if (!capable(CAP_NET_ADMIN)) 2734 return -EPERM; 2735 dev_load(ifr.ifr_name); 2736 rtnl_lock(); 2737 ret = dev_ifsioc(&ifr, cmd); 2738 rtnl_unlock(); 2739 if (!ret) { 2740 if (colon) 2741 *colon = ':'; 2742 if (copy_to_user(arg, &ifr, 2743 sizeof(struct ifreq))) 2744 ret = -EFAULT; 2745 } 2746 return ret; 2747 2748 /* 2749 * These ioctl calls: 2750 * - require superuser power. 2751 * - require strict serialization. 2752 * - do not return a value 2753 */ 2754 case SIOCSIFFLAGS: 2755 case SIOCSIFMETRIC: 2756 case SIOCSIFMTU: 2757 case SIOCSIFMAP: 2758 case SIOCSIFHWADDR: 2759 case SIOCSIFSLAVE: 2760 case SIOCADDMULTI: 2761 case SIOCDELMULTI: 2762 case SIOCSIFHWBROADCAST: 2763 case SIOCSIFTXQLEN: 2764 case SIOCSMIIREG: 2765 case SIOCBONDENSLAVE: 2766 case SIOCBONDRELEASE: 2767 case SIOCBONDSETHWADDR: 2768 case SIOCBONDCHANGEACTIVE: 2769 case SIOCBRADDIF: 2770 case SIOCBRDELIF: 2771 if (!capable(CAP_NET_ADMIN)) 2772 return -EPERM; 2773 /* fall through */ 2774 case SIOCBONDSLAVEINFOQUERY: 2775 case SIOCBONDINFOQUERY: 2776 dev_load(ifr.ifr_name); 2777 rtnl_lock(); 2778 ret = dev_ifsioc(&ifr, cmd); 2779 rtnl_unlock(); 2780 return ret; 2781 2782 case SIOCGIFMEM: 2783 /* Get the per device memory space. We can add this but 2784 * currently do not support it */ 2785 case SIOCSIFMEM: 2786 /* Set the per device memory buffer space. 2787 * Not applicable in our case */ 2788 case SIOCSIFLINK: 2789 return -EINVAL; 2790 2791 /* 2792 * Unknown or private ioctl. 2793 */ 2794 default: 2795 if (cmd == SIOCWANDEV || 2796 (cmd >= SIOCDEVPRIVATE && 2797 cmd <= SIOCDEVPRIVATE + 15)) { 2798 dev_load(ifr.ifr_name); 2799 rtnl_lock(); 2800 ret = dev_ifsioc(&ifr, cmd); 2801 rtnl_unlock(); 2802 if (!ret && copy_to_user(arg, &ifr, 2803 sizeof(struct ifreq))) 2804 ret = -EFAULT; 2805 return ret; 2806 } 2807 #ifdef CONFIG_WIRELESS_EXT 2808 /* Take care of Wireless Extensions */ 2809 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 2810 /* If command is `set a parameter', or 2811 * `get the encoding parameters', check if 2812 * the user has the right to do it */ 2813 if (IW_IS_SET(cmd) || cmd == SIOCGIWENCODE 2814 || cmd == SIOCGIWENCODEEXT) { 2815 if (!capable(CAP_NET_ADMIN)) 2816 return -EPERM; 2817 } 2818 dev_load(ifr.ifr_name); 2819 rtnl_lock(); 2820 /* Follow me in net/core/wireless.c */ 2821 ret = wireless_process_ioctl(&ifr, cmd); 2822 rtnl_unlock(); 2823 if (IW_IS_GET(cmd) && 2824 copy_to_user(arg, &ifr, 2825 sizeof(struct ifreq))) 2826 ret = -EFAULT; 2827 return ret; 2828 } 2829 #endif /* CONFIG_WIRELESS_EXT */ 2830 return -EINVAL; 2831 } 2832 } 2833 2834 2835 /** 2836 * dev_new_index - allocate an ifindex 2837 * 2838 * Returns a suitable unique value for a new device interface 2839 * number. The caller must hold the rtnl semaphore or the 2840 * dev_base_lock to be sure it remains unique. 2841 */ 2842 static int dev_new_index(void) 2843 { 2844 static int ifindex; 2845 for (;;) { 2846 if (++ifindex <= 0) 2847 ifindex = 1; 2848 if (!__dev_get_by_index(ifindex)) 2849 return ifindex; 2850 } 2851 } 2852 2853 static int dev_boot_phase = 1; 2854 2855 /* Delayed registration/unregisteration */ 2856 static DEFINE_SPINLOCK(net_todo_list_lock); 2857 static struct list_head net_todo_list = LIST_HEAD_INIT(net_todo_list); 2858 2859 static inline void net_set_todo(struct net_device *dev) 2860 { 2861 spin_lock(&net_todo_list_lock); 2862 list_add_tail(&dev->todo_list, &net_todo_list); 2863 spin_unlock(&net_todo_list_lock); 2864 } 2865 2866 /** 2867 * register_netdevice - register a network device 2868 * @dev: device to register 2869 * 2870 * Take a completed network device structure and add it to the kernel 2871 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 2872 * chain. 0 is returned on success. A negative errno code is returned 2873 * on a failure to set up the device, or if the name is a duplicate. 2874 * 2875 * Callers must hold the rtnl semaphore. You may want 2876 * register_netdev() instead of this. 2877 * 2878 * BUGS: 2879 * The locking appears insufficient to guarantee two parallel registers 2880 * will not get the same name. 2881 */ 2882 2883 int register_netdevice(struct net_device *dev) 2884 { 2885 struct hlist_head *head; 2886 struct hlist_node *p; 2887 int ret; 2888 2889 BUG_ON(dev_boot_phase); 2890 ASSERT_RTNL(); 2891 2892 might_sleep(); 2893 2894 /* When net_device's are persistent, this will be fatal. */ 2895 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 2896 2897 spin_lock_init(&dev->queue_lock); 2898 spin_lock_init(&dev->_xmit_lock); 2899 dev->xmit_lock_owner = -1; 2900 #ifdef CONFIG_NET_CLS_ACT 2901 spin_lock_init(&dev->ingress_lock); 2902 #endif 2903 2904 ret = alloc_divert_blk(dev); 2905 if (ret) 2906 goto out; 2907 2908 dev->iflink = -1; 2909 2910 /* Init, if this function is available */ 2911 if (dev->init) { 2912 ret = dev->init(dev); 2913 if (ret) { 2914 if (ret > 0) 2915 ret = -EIO; 2916 goto out_err; 2917 } 2918 } 2919 2920 if (!dev_valid_name(dev->name)) { 2921 ret = -EINVAL; 2922 goto out_err; 2923 } 2924 2925 dev->ifindex = dev_new_index(); 2926 if (dev->iflink == -1) 2927 dev->iflink = dev->ifindex; 2928 2929 /* Check for existence of name */ 2930 head = dev_name_hash(dev->name); 2931 hlist_for_each(p, head) { 2932 struct net_device *d 2933 = hlist_entry(p, struct net_device, name_hlist); 2934 if (!strncmp(d->name, dev->name, IFNAMSIZ)) { 2935 ret = -EEXIST; 2936 goto out_err; 2937 } 2938 } 2939 2940 /* Fix illegal SG+CSUM combinations. */ 2941 if ((dev->features & NETIF_F_SG) && 2942 !(dev->features & NETIF_F_ALL_CSUM)) { 2943 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no checksum feature.\n", 2944 dev->name); 2945 dev->features &= ~NETIF_F_SG; 2946 } 2947 2948 /* TSO requires that SG is present as well. */ 2949 if ((dev->features & NETIF_F_TSO) && 2950 !(dev->features & NETIF_F_SG)) { 2951 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no SG feature.\n", 2952 dev->name); 2953 dev->features &= ~NETIF_F_TSO; 2954 } 2955 if (dev->features & NETIF_F_UFO) { 2956 if (!(dev->features & NETIF_F_HW_CSUM)) { 2957 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no " 2958 "NETIF_F_HW_CSUM feature.\n", 2959 dev->name); 2960 dev->features &= ~NETIF_F_UFO; 2961 } 2962 if (!(dev->features & NETIF_F_SG)) { 2963 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no " 2964 "NETIF_F_SG feature.\n", 2965 dev->name); 2966 dev->features &= ~NETIF_F_UFO; 2967 } 2968 } 2969 2970 /* 2971 * nil rebuild_header routine, 2972 * that should be never called and used as just bug trap. 2973 */ 2974 2975 if (!dev->rebuild_header) 2976 dev->rebuild_header = default_rebuild_header; 2977 2978 ret = netdev_register_sysfs(dev); 2979 if (ret) 2980 goto out_err; 2981 dev->reg_state = NETREG_REGISTERED; 2982 2983 /* 2984 * Default initial state at registry is that the 2985 * device is present. 2986 */ 2987 2988 set_bit(__LINK_STATE_PRESENT, &dev->state); 2989 2990 dev->next = NULL; 2991 dev_init_scheduler(dev); 2992 write_lock_bh(&dev_base_lock); 2993 *dev_tail = dev; 2994 dev_tail = &dev->next; 2995 hlist_add_head(&dev->name_hlist, head); 2996 hlist_add_head(&dev->index_hlist, dev_index_hash(dev->ifindex)); 2997 dev_hold(dev); 2998 write_unlock_bh(&dev_base_lock); 2999 3000 /* Notify protocols, that a new device appeared. */ 3001 raw_notifier_call_chain(&netdev_chain, NETDEV_REGISTER, dev); 3002 3003 ret = 0; 3004 3005 out: 3006 return ret; 3007 out_err: 3008 free_divert_blk(dev); 3009 goto out; 3010 } 3011 3012 /** 3013 * register_netdev - register a network device 3014 * @dev: device to register 3015 * 3016 * Take a completed network device structure and add it to the kernel 3017 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 3018 * chain. 0 is returned on success. A negative errno code is returned 3019 * on a failure to set up the device, or if the name is a duplicate. 3020 * 3021 * This is a wrapper around register_netdev that takes the rtnl semaphore 3022 * and expands the device name if you passed a format string to 3023 * alloc_netdev. 3024 */ 3025 int register_netdev(struct net_device *dev) 3026 { 3027 int err; 3028 3029 rtnl_lock(); 3030 3031 /* 3032 * If the name is a format string the caller wants us to do a 3033 * name allocation. 3034 */ 3035 if (strchr(dev->name, '%')) { 3036 err = dev_alloc_name(dev, dev->name); 3037 if (err < 0) 3038 goto out; 3039 } 3040 3041 /* 3042 * Back compatibility hook. Kill this one in 2.5 3043 */ 3044 if (dev->name[0] == 0 || dev->name[0] == ' ') { 3045 err = dev_alloc_name(dev, "eth%d"); 3046 if (err < 0) 3047 goto out; 3048 } 3049 3050 err = register_netdevice(dev); 3051 out: 3052 rtnl_unlock(); 3053 return err; 3054 } 3055 EXPORT_SYMBOL(register_netdev); 3056 3057 /* 3058 * netdev_wait_allrefs - wait until all references are gone. 3059 * 3060 * This is called when unregistering network devices. 3061 * 3062 * Any protocol or device that holds a reference should register 3063 * for netdevice notification, and cleanup and put back the 3064 * reference if they receive an UNREGISTER event. 3065 * We can get stuck here if buggy protocols don't correctly 3066 * call dev_put. 3067 */ 3068 static void netdev_wait_allrefs(struct net_device *dev) 3069 { 3070 unsigned long rebroadcast_time, warning_time; 3071 3072 rebroadcast_time = warning_time = jiffies; 3073 while (atomic_read(&dev->refcnt) != 0) { 3074 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 3075 rtnl_lock(); 3076 3077 /* Rebroadcast unregister notification */ 3078 raw_notifier_call_chain(&netdev_chain, 3079 NETDEV_UNREGISTER, dev); 3080 3081 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 3082 &dev->state)) { 3083 /* We must not have linkwatch events 3084 * pending on unregister. If this 3085 * happens, we simply run the queue 3086 * unscheduled, resulting in a noop 3087 * for this device. 3088 */ 3089 linkwatch_run_queue(); 3090 } 3091 3092 __rtnl_unlock(); 3093 3094 rebroadcast_time = jiffies; 3095 } 3096 3097 msleep(250); 3098 3099 if (time_after(jiffies, warning_time + 10 * HZ)) { 3100 printk(KERN_EMERG "unregister_netdevice: " 3101 "waiting for %s to become free. Usage " 3102 "count = %d\n", 3103 dev->name, atomic_read(&dev->refcnt)); 3104 warning_time = jiffies; 3105 } 3106 } 3107 } 3108 3109 /* The sequence is: 3110 * 3111 * rtnl_lock(); 3112 * ... 3113 * register_netdevice(x1); 3114 * register_netdevice(x2); 3115 * ... 3116 * unregister_netdevice(y1); 3117 * unregister_netdevice(y2); 3118 * ... 3119 * rtnl_unlock(); 3120 * free_netdev(y1); 3121 * free_netdev(y2); 3122 * 3123 * We are invoked by rtnl_unlock() after it drops the semaphore. 3124 * This allows us to deal with problems: 3125 * 1) We can delete sysfs objects which invoke hotplug 3126 * without deadlocking with linkwatch via keventd. 3127 * 2) Since we run with the RTNL semaphore not held, we can sleep 3128 * safely in order to wait for the netdev refcnt to drop to zero. 3129 */ 3130 static DEFINE_MUTEX(net_todo_run_mutex); 3131 void netdev_run_todo(void) 3132 { 3133 struct list_head list; 3134 3135 /* Need to guard against multiple cpu's getting out of order. */ 3136 mutex_lock(&net_todo_run_mutex); 3137 3138 /* Not safe to do outside the semaphore. We must not return 3139 * until all unregister events invoked by the local processor 3140 * have been completed (either by this todo run, or one on 3141 * another cpu). 3142 */ 3143 if (list_empty(&net_todo_list)) 3144 goto out; 3145 3146 /* Snapshot list, allow later requests */ 3147 spin_lock(&net_todo_list_lock); 3148 list_replace_init(&net_todo_list, &list); 3149 spin_unlock(&net_todo_list_lock); 3150 3151 while (!list_empty(&list)) { 3152 struct net_device *dev 3153 = list_entry(list.next, struct net_device, todo_list); 3154 list_del(&dev->todo_list); 3155 3156 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 3157 printk(KERN_ERR "network todo '%s' but state %d\n", 3158 dev->name, dev->reg_state); 3159 dump_stack(); 3160 continue; 3161 } 3162 3163 netdev_unregister_sysfs(dev); 3164 dev->reg_state = NETREG_UNREGISTERED; 3165 3166 netdev_wait_allrefs(dev); 3167 3168 /* paranoia */ 3169 BUG_ON(atomic_read(&dev->refcnt)); 3170 BUG_TRAP(!dev->ip_ptr); 3171 BUG_TRAP(!dev->ip6_ptr); 3172 BUG_TRAP(!dev->dn_ptr); 3173 3174 /* It must be the very last action, 3175 * after this 'dev' may point to freed up memory. 3176 */ 3177 if (dev->destructor) 3178 dev->destructor(dev); 3179 } 3180 3181 out: 3182 mutex_unlock(&net_todo_run_mutex); 3183 } 3184 3185 /** 3186 * alloc_netdev - allocate network device 3187 * @sizeof_priv: size of private data to allocate space for 3188 * @name: device name format string 3189 * @setup: callback to initialize device 3190 * 3191 * Allocates a struct net_device with private data area for driver use 3192 * and performs basic initialization. 3193 */ 3194 struct net_device *alloc_netdev(int sizeof_priv, const char *name, 3195 void (*setup)(struct net_device *)) 3196 { 3197 void *p; 3198 struct net_device *dev; 3199 int alloc_size; 3200 3201 /* ensure 32-byte alignment of both the device and private area */ 3202 alloc_size = (sizeof(*dev) + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST; 3203 alloc_size += sizeof_priv + NETDEV_ALIGN_CONST; 3204 3205 p = kzalloc(alloc_size, GFP_KERNEL); 3206 if (!p) { 3207 printk(KERN_ERR "alloc_dev: Unable to allocate device.\n"); 3208 return NULL; 3209 } 3210 3211 dev = (struct net_device *) 3212 (((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST); 3213 dev->padded = (char *)dev - (char *)p; 3214 3215 if (sizeof_priv) 3216 dev->priv = netdev_priv(dev); 3217 3218 setup(dev); 3219 strcpy(dev->name, name); 3220 return dev; 3221 } 3222 EXPORT_SYMBOL(alloc_netdev); 3223 3224 /** 3225 * free_netdev - free network device 3226 * @dev: device 3227 * 3228 * This function does the last stage of destroying an allocated device 3229 * interface. The reference to the device object is released. 3230 * If this is the last reference then it will be freed. 3231 */ 3232 void free_netdev(struct net_device *dev) 3233 { 3234 #ifdef CONFIG_SYSFS 3235 /* Compatibility with error handling in drivers */ 3236 if (dev->reg_state == NETREG_UNINITIALIZED) { 3237 kfree((char *)dev - dev->padded); 3238 return; 3239 } 3240 3241 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 3242 dev->reg_state = NETREG_RELEASED; 3243 3244 /* will free via class release */ 3245 class_device_put(&dev->class_dev); 3246 #else 3247 kfree((char *)dev - dev->padded); 3248 #endif 3249 } 3250 3251 /* Synchronize with packet receive processing. */ 3252 void synchronize_net(void) 3253 { 3254 might_sleep(); 3255 synchronize_rcu(); 3256 } 3257 3258 /** 3259 * unregister_netdevice - remove device from the kernel 3260 * @dev: device 3261 * 3262 * This function shuts down a device interface and removes it 3263 * from the kernel tables. On success 0 is returned, on a failure 3264 * a negative errno code is returned. 3265 * 3266 * Callers must hold the rtnl semaphore. You may want 3267 * unregister_netdev() instead of this. 3268 */ 3269 3270 int unregister_netdevice(struct net_device *dev) 3271 { 3272 struct net_device *d, **dp; 3273 3274 BUG_ON(dev_boot_phase); 3275 ASSERT_RTNL(); 3276 3277 /* Some devices call without registering for initialization unwind. */ 3278 if (dev->reg_state == NETREG_UNINITIALIZED) { 3279 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never " 3280 "was registered\n", dev->name, dev); 3281 return -ENODEV; 3282 } 3283 3284 BUG_ON(dev->reg_state != NETREG_REGISTERED); 3285 3286 /* If device is running, close it first. */ 3287 if (dev->flags & IFF_UP) 3288 dev_close(dev); 3289 3290 /* And unlink it from device chain. */ 3291 for (dp = &dev_base; (d = *dp) != NULL; dp = &d->next) { 3292 if (d == dev) { 3293 write_lock_bh(&dev_base_lock); 3294 hlist_del(&dev->name_hlist); 3295 hlist_del(&dev->index_hlist); 3296 if (dev_tail == &dev->next) 3297 dev_tail = dp; 3298 *dp = d->next; 3299 write_unlock_bh(&dev_base_lock); 3300 break; 3301 } 3302 } 3303 if (!d) { 3304 printk(KERN_ERR "unregister net_device: '%s' not found\n", 3305 dev->name); 3306 return -ENODEV; 3307 } 3308 3309 dev->reg_state = NETREG_UNREGISTERING; 3310 3311 synchronize_net(); 3312 3313 /* Shutdown queueing discipline. */ 3314 dev_shutdown(dev); 3315 3316 3317 /* Notify protocols, that we are about to destroy 3318 this device. They should clean all the things. 3319 */ 3320 raw_notifier_call_chain(&netdev_chain, NETDEV_UNREGISTER, dev); 3321 3322 /* 3323 * Flush the multicast chain 3324 */ 3325 dev_mc_discard(dev); 3326 3327 if (dev->uninit) 3328 dev->uninit(dev); 3329 3330 /* Notifier chain MUST detach us from master device. */ 3331 BUG_TRAP(!dev->master); 3332 3333 free_divert_blk(dev); 3334 3335 /* Finish processing unregister after unlock */ 3336 net_set_todo(dev); 3337 3338 synchronize_net(); 3339 3340 dev_put(dev); 3341 return 0; 3342 } 3343 3344 /** 3345 * unregister_netdev - remove device from the kernel 3346 * @dev: device 3347 * 3348 * This function shuts down a device interface and removes it 3349 * from the kernel tables. On success 0 is returned, on a failure 3350 * a negative errno code is returned. 3351 * 3352 * This is just a wrapper for unregister_netdevice that takes 3353 * the rtnl semaphore. In general you want to use this and not 3354 * unregister_netdevice. 3355 */ 3356 void unregister_netdev(struct net_device *dev) 3357 { 3358 rtnl_lock(); 3359 unregister_netdevice(dev); 3360 rtnl_unlock(); 3361 } 3362 3363 EXPORT_SYMBOL(unregister_netdev); 3364 3365 #ifdef CONFIG_HOTPLUG_CPU 3366 static int dev_cpu_callback(struct notifier_block *nfb, 3367 unsigned long action, 3368 void *ocpu) 3369 { 3370 struct sk_buff **list_skb; 3371 struct net_device **list_net; 3372 struct sk_buff *skb; 3373 unsigned int cpu, oldcpu = (unsigned long)ocpu; 3374 struct softnet_data *sd, *oldsd; 3375 3376 if (action != CPU_DEAD) 3377 return NOTIFY_OK; 3378 3379 local_irq_disable(); 3380 cpu = smp_processor_id(); 3381 sd = &per_cpu(softnet_data, cpu); 3382 oldsd = &per_cpu(softnet_data, oldcpu); 3383 3384 /* Find end of our completion_queue. */ 3385 list_skb = &sd->completion_queue; 3386 while (*list_skb) 3387 list_skb = &(*list_skb)->next; 3388 /* Append completion queue from offline CPU. */ 3389 *list_skb = oldsd->completion_queue; 3390 oldsd->completion_queue = NULL; 3391 3392 /* Find end of our output_queue. */ 3393 list_net = &sd->output_queue; 3394 while (*list_net) 3395 list_net = &(*list_net)->next_sched; 3396 /* Append output queue from offline CPU. */ 3397 *list_net = oldsd->output_queue; 3398 oldsd->output_queue = NULL; 3399 3400 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3401 local_irq_enable(); 3402 3403 /* Process offline CPU's input_pkt_queue */ 3404 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) 3405 netif_rx(skb); 3406 3407 return NOTIFY_OK; 3408 } 3409 #endif /* CONFIG_HOTPLUG_CPU */ 3410 3411 #ifdef CONFIG_NET_DMA 3412 /** 3413 * net_dma_rebalance - 3414 * This is called when the number of channels allocated to the net_dma_client 3415 * changes. The net_dma_client tries to have one DMA channel per CPU. 3416 */ 3417 static void net_dma_rebalance(void) 3418 { 3419 unsigned int cpu, i, n; 3420 struct dma_chan *chan; 3421 3422 if (net_dma_count == 0) { 3423 for_each_online_cpu(cpu) 3424 rcu_assign_pointer(per_cpu(softnet_data, cpu).net_dma, NULL); 3425 return; 3426 } 3427 3428 i = 0; 3429 cpu = first_cpu(cpu_online_map); 3430 3431 rcu_read_lock(); 3432 list_for_each_entry(chan, &net_dma_client->channels, client_node) { 3433 n = ((num_online_cpus() / net_dma_count) 3434 + (i < (num_online_cpus() % net_dma_count) ? 1 : 0)); 3435 3436 while(n) { 3437 per_cpu(softnet_data, cpu).net_dma = chan; 3438 cpu = next_cpu(cpu, cpu_online_map); 3439 n--; 3440 } 3441 i++; 3442 } 3443 rcu_read_unlock(); 3444 } 3445 3446 /** 3447 * netdev_dma_event - event callback for the net_dma_client 3448 * @client: should always be net_dma_client 3449 * @chan: DMA channel for the event 3450 * @event: event type 3451 */ 3452 static void netdev_dma_event(struct dma_client *client, struct dma_chan *chan, 3453 enum dma_event event) 3454 { 3455 spin_lock(&net_dma_event_lock); 3456 switch (event) { 3457 case DMA_RESOURCE_ADDED: 3458 net_dma_count++; 3459 net_dma_rebalance(); 3460 break; 3461 case DMA_RESOURCE_REMOVED: 3462 net_dma_count--; 3463 net_dma_rebalance(); 3464 break; 3465 default: 3466 break; 3467 } 3468 spin_unlock(&net_dma_event_lock); 3469 } 3470 3471 /** 3472 * netdev_dma_regiser - register the networking subsystem as a DMA client 3473 */ 3474 static int __init netdev_dma_register(void) 3475 { 3476 spin_lock_init(&net_dma_event_lock); 3477 net_dma_client = dma_async_client_register(netdev_dma_event); 3478 if (net_dma_client == NULL) 3479 return -ENOMEM; 3480 3481 dma_async_client_chan_request(net_dma_client, num_online_cpus()); 3482 return 0; 3483 } 3484 3485 #else 3486 static int __init netdev_dma_register(void) { return -ENODEV; } 3487 #endif /* CONFIG_NET_DMA */ 3488 3489 /* 3490 * Initialize the DEV module. At boot time this walks the device list and 3491 * unhooks any devices that fail to initialise (normally hardware not 3492 * present) and leaves us with a valid list of present and active devices. 3493 * 3494 */ 3495 3496 /* 3497 * This is called single threaded during boot, so no need 3498 * to take the rtnl semaphore. 3499 */ 3500 static int __init net_dev_init(void) 3501 { 3502 int i, rc = -ENOMEM; 3503 3504 BUG_ON(!dev_boot_phase); 3505 3506 net_random_init(); 3507 3508 if (dev_proc_init()) 3509 goto out; 3510 3511 if (netdev_sysfs_init()) 3512 goto out; 3513 3514 INIT_LIST_HEAD(&ptype_all); 3515 for (i = 0; i < 16; i++) 3516 INIT_LIST_HEAD(&ptype_base[i]); 3517 3518 for (i = 0; i < ARRAY_SIZE(dev_name_head); i++) 3519 INIT_HLIST_HEAD(&dev_name_head[i]); 3520 3521 for (i = 0; i < ARRAY_SIZE(dev_index_head); i++) 3522 INIT_HLIST_HEAD(&dev_index_head[i]); 3523 3524 /* 3525 * Initialise the packet receive queues. 3526 */ 3527 3528 for_each_possible_cpu(i) { 3529 struct softnet_data *queue; 3530 3531 queue = &per_cpu(softnet_data, i); 3532 skb_queue_head_init(&queue->input_pkt_queue); 3533 queue->completion_queue = NULL; 3534 INIT_LIST_HEAD(&queue->poll_list); 3535 set_bit(__LINK_STATE_START, &queue->backlog_dev.state); 3536 queue->backlog_dev.weight = weight_p; 3537 queue->backlog_dev.poll = process_backlog; 3538 atomic_set(&queue->backlog_dev.refcnt, 1); 3539 } 3540 3541 netdev_dma_register(); 3542 3543 dev_boot_phase = 0; 3544 3545 open_softirq(NET_TX_SOFTIRQ, net_tx_action, NULL); 3546 open_softirq(NET_RX_SOFTIRQ, net_rx_action, NULL); 3547 3548 hotcpu_notifier(dev_cpu_callback, 0); 3549 dst_init(); 3550 dev_mcast_init(); 3551 rc = 0; 3552 out: 3553 return rc; 3554 } 3555 3556 subsys_initcall(net_dev_init); 3557 3558 EXPORT_SYMBOL(__dev_get_by_index); 3559 EXPORT_SYMBOL(__dev_get_by_name); 3560 EXPORT_SYMBOL(__dev_remove_pack); 3561 EXPORT_SYMBOL(dev_valid_name); 3562 EXPORT_SYMBOL(dev_add_pack); 3563 EXPORT_SYMBOL(dev_alloc_name); 3564 EXPORT_SYMBOL(dev_close); 3565 EXPORT_SYMBOL(dev_get_by_flags); 3566 EXPORT_SYMBOL(dev_get_by_index); 3567 EXPORT_SYMBOL(dev_get_by_name); 3568 EXPORT_SYMBOL(dev_open); 3569 EXPORT_SYMBOL(dev_queue_xmit); 3570 EXPORT_SYMBOL(dev_remove_pack); 3571 EXPORT_SYMBOL(dev_set_allmulti); 3572 EXPORT_SYMBOL(dev_set_promiscuity); 3573 EXPORT_SYMBOL(dev_change_flags); 3574 EXPORT_SYMBOL(dev_set_mtu); 3575 EXPORT_SYMBOL(dev_set_mac_address); 3576 EXPORT_SYMBOL(free_netdev); 3577 EXPORT_SYMBOL(netdev_boot_setup_check); 3578 EXPORT_SYMBOL(netdev_set_master); 3579 EXPORT_SYMBOL(netdev_state_change); 3580 EXPORT_SYMBOL(netif_receive_skb); 3581 EXPORT_SYMBOL(netif_rx); 3582 EXPORT_SYMBOL(register_gifconf); 3583 EXPORT_SYMBOL(register_netdevice); 3584 EXPORT_SYMBOL(register_netdevice_notifier); 3585 EXPORT_SYMBOL(skb_checksum_help); 3586 EXPORT_SYMBOL(synchronize_net); 3587 EXPORT_SYMBOL(unregister_netdevice); 3588 EXPORT_SYMBOL(unregister_netdevice_notifier); 3589 EXPORT_SYMBOL(net_enable_timestamp); 3590 EXPORT_SYMBOL(net_disable_timestamp); 3591 EXPORT_SYMBOL(dev_get_flags); 3592 3593 #if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE) 3594 EXPORT_SYMBOL(br_handle_frame_hook); 3595 EXPORT_SYMBOL(br_fdb_get_hook); 3596 EXPORT_SYMBOL(br_fdb_put_hook); 3597 #endif 3598 3599 #ifdef CONFIG_KMOD 3600 EXPORT_SYMBOL(dev_load); 3601 #endif 3602 3603 EXPORT_PER_CPU_SYMBOL(softnet_data); 3604