xref: /linux/net/core/dev.c (revision 6cccb3bb0561812539d7f0ab35382e8d8998076a)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitmap.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/isolation.h>
81 #include <linux/sched/mm.h>
82 #include <linux/smpboot.h>
83 #include <linux/mutex.h>
84 #include <linux/rwsem.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/ethtool_netlink.h>
96 #include <linux/skbuff.h>
97 #include <linux/kthread.h>
98 #include <linux/bpf.h>
99 #include <linux/bpf_trace.h>
100 #include <net/net_namespace.h>
101 #include <net/sock.h>
102 #include <net/busy_poll.h>
103 #include <linux/rtnetlink.h>
104 #include <linux/stat.h>
105 #include <net/dsa.h>
106 #include <net/dst.h>
107 #include <net/dst_metadata.h>
108 #include <net/gro.h>
109 #include <net/netdev_queues.h>
110 #include <net/pkt_sched.h>
111 #include <net/pkt_cls.h>
112 #include <net/checksum.h>
113 #include <net/xfrm.h>
114 #include <net/tcx.h>
115 #include <linux/highmem.h>
116 #include <linux/init.h>
117 #include <linux/module.h>
118 #include <linux/netpoll.h>
119 #include <linux/rcupdate.h>
120 #include <linux/delay.h>
121 #include <net/iw_handler.h>
122 #include <asm/current.h>
123 #include <linux/audit.h>
124 #include <linux/dmaengine.h>
125 #include <linux/err.h>
126 #include <linux/ctype.h>
127 #include <linux/if_arp.h>
128 #include <linux/if_vlan.h>
129 #include <linux/ip.h>
130 #include <net/ip.h>
131 #include <net/mpls.h>
132 #include <linux/ipv6.h>
133 #include <linux/in.h>
134 #include <linux/jhash.h>
135 #include <linux/random.h>
136 #include <trace/events/napi.h>
137 #include <trace/events/net.h>
138 #include <trace/events/skb.h>
139 #include <trace/events/qdisc.h>
140 #include <trace/events/xdp.h>
141 #include <linux/inetdevice.h>
142 #include <linux/cpu_rmap.h>
143 #include <linux/static_key.h>
144 #include <linux/hashtable.h>
145 #include <linux/vmalloc.h>
146 #include <linux/if_macvlan.h>
147 #include <linux/errqueue.h>
148 #include <linux/hrtimer.h>
149 #include <linux/netfilter_netdev.h>
150 #include <linux/crash_dump.h>
151 #include <linux/sctp.h>
152 #include <net/udp_tunnel.h>
153 #include <linux/net_namespace.h>
154 #include <linux/indirect_call_wrapper.h>
155 #include <net/devlink.h>
156 #include <linux/pm_runtime.h>
157 #include <linux/prandom.h>
158 #include <linux/once_lite.h>
159 #include <net/netdev_rx_queue.h>
160 #include <net/page_pool/types.h>
161 #include <net/page_pool/helpers.h>
162 #include <net/rps.h>
163 #include <linux/phy_link_topology.h>
164 
165 #include "dev.h"
166 #include "devmem.h"
167 #include "net-sysfs.h"
168 
169 static DEFINE_SPINLOCK(ptype_lock);
170 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
171 
172 static int netif_rx_internal(struct sk_buff *skb);
173 static int call_netdevice_notifiers_extack(unsigned long val,
174 					   struct net_device *dev,
175 					   struct netlink_ext_ack *extack);
176 
177 static DEFINE_MUTEX(ifalias_mutex);
178 
179 /* protects napi_hash addition/deletion and napi_gen_id */
180 static DEFINE_SPINLOCK(napi_hash_lock);
181 
182 static unsigned int napi_gen_id = NR_CPUS;
183 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
184 
185 static inline void dev_base_seq_inc(struct net *net)
186 {
187 	unsigned int val = net->dev_base_seq + 1;
188 
189 	WRITE_ONCE(net->dev_base_seq, val ?: 1);
190 }
191 
192 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
193 {
194 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
195 
196 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
197 }
198 
199 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
200 {
201 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
202 }
203 
204 #ifndef CONFIG_PREEMPT_RT
205 
206 static DEFINE_STATIC_KEY_FALSE(use_backlog_threads_key);
207 
208 static int __init setup_backlog_napi_threads(char *arg)
209 {
210 	static_branch_enable(&use_backlog_threads_key);
211 	return 0;
212 }
213 early_param("thread_backlog_napi", setup_backlog_napi_threads);
214 
215 static bool use_backlog_threads(void)
216 {
217 	return static_branch_unlikely(&use_backlog_threads_key);
218 }
219 
220 #else
221 
222 static bool use_backlog_threads(void)
223 {
224 	return true;
225 }
226 
227 #endif
228 
229 static inline void backlog_lock_irq_save(struct softnet_data *sd,
230 					 unsigned long *flags)
231 {
232 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
233 		spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
234 	else
235 		local_irq_save(*flags);
236 }
237 
238 static inline void backlog_lock_irq_disable(struct softnet_data *sd)
239 {
240 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
241 		spin_lock_irq(&sd->input_pkt_queue.lock);
242 	else
243 		local_irq_disable();
244 }
245 
246 static inline void backlog_unlock_irq_restore(struct softnet_data *sd,
247 					      unsigned long *flags)
248 {
249 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
250 		spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
251 	else
252 		local_irq_restore(*flags);
253 }
254 
255 static inline void backlog_unlock_irq_enable(struct softnet_data *sd)
256 {
257 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
258 		spin_unlock_irq(&sd->input_pkt_queue.lock);
259 	else
260 		local_irq_enable();
261 }
262 
263 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
264 						       const char *name)
265 {
266 	struct netdev_name_node *name_node;
267 
268 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
269 	if (!name_node)
270 		return NULL;
271 	INIT_HLIST_NODE(&name_node->hlist);
272 	name_node->dev = dev;
273 	name_node->name = name;
274 	return name_node;
275 }
276 
277 static struct netdev_name_node *
278 netdev_name_node_head_alloc(struct net_device *dev)
279 {
280 	struct netdev_name_node *name_node;
281 
282 	name_node = netdev_name_node_alloc(dev, dev->name);
283 	if (!name_node)
284 		return NULL;
285 	INIT_LIST_HEAD(&name_node->list);
286 	return name_node;
287 }
288 
289 static void netdev_name_node_free(struct netdev_name_node *name_node)
290 {
291 	kfree(name_node);
292 }
293 
294 static void netdev_name_node_add(struct net *net,
295 				 struct netdev_name_node *name_node)
296 {
297 	hlist_add_head_rcu(&name_node->hlist,
298 			   dev_name_hash(net, name_node->name));
299 }
300 
301 static void netdev_name_node_del(struct netdev_name_node *name_node)
302 {
303 	hlist_del_rcu(&name_node->hlist);
304 }
305 
306 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
307 							const char *name)
308 {
309 	struct hlist_head *head = dev_name_hash(net, name);
310 	struct netdev_name_node *name_node;
311 
312 	hlist_for_each_entry(name_node, head, hlist)
313 		if (!strcmp(name_node->name, name))
314 			return name_node;
315 	return NULL;
316 }
317 
318 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
319 							    const char *name)
320 {
321 	struct hlist_head *head = dev_name_hash(net, name);
322 	struct netdev_name_node *name_node;
323 
324 	hlist_for_each_entry_rcu(name_node, head, hlist)
325 		if (!strcmp(name_node->name, name))
326 			return name_node;
327 	return NULL;
328 }
329 
330 bool netdev_name_in_use(struct net *net, const char *name)
331 {
332 	return netdev_name_node_lookup(net, name);
333 }
334 EXPORT_SYMBOL(netdev_name_in_use);
335 
336 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
337 {
338 	struct netdev_name_node *name_node;
339 	struct net *net = dev_net(dev);
340 
341 	name_node = netdev_name_node_lookup(net, name);
342 	if (name_node)
343 		return -EEXIST;
344 	name_node = netdev_name_node_alloc(dev, name);
345 	if (!name_node)
346 		return -ENOMEM;
347 	netdev_name_node_add(net, name_node);
348 	/* The node that holds dev->name acts as a head of per-device list. */
349 	list_add_tail_rcu(&name_node->list, &dev->name_node->list);
350 
351 	return 0;
352 }
353 
354 static void netdev_name_node_alt_free(struct rcu_head *head)
355 {
356 	struct netdev_name_node *name_node =
357 		container_of(head, struct netdev_name_node, rcu);
358 
359 	kfree(name_node->name);
360 	netdev_name_node_free(name_node);
361 }
362 
363 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
364 {
365 	netdev_name_node_del(name_node);
366 	list_del(&name_node->list);
367 	call_rcu(&name_node->rcu, netdev_name_node_alt_free);
368 }
369 
370 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
371 {
372 	struct netdev_name_node *name_node;
373 	struct net *net = dev_net(dev);
374 
375 	name_node = netdev_name_node_lookup(net, name);
376 	if (!name_node)
377 		return -ENOENT;
378 	/* lookup might have found our primary name or a name belonging
379 	 * to another device.
380 	 */
381 	if (name_node == dev->name_node || name_node->dev != dev)
382 		return -EINVAL;
383 
384 	__netdev_name_node_alt_destroy(name_node);
385 	return 0;
386 }
387 
388 static void netdev_name_node_alt_flush(struct net_device *dev)
389 {
390 	struct netdev_name_node *name_node, *tmp;
391 
392 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) {
393 		list_del(&name_node->list);
394 		netdev_name_node_alt_free(&name_node->rcu);
395 	}
396 }
397 
398 /* Device list insertion */
399 static void list_netdevice(struct net_device *dev)
400 {
401 	struct netdev_name_node *name_node;
402 	struct net *net = dev_net(dev);
403 
404 	ASSERT_RTNL();
405 
406 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
407 	netdev_name_node_add(net, dev->name_node);
408 	hlist_add_head_rcu(&dev->index_hlist,
409 			   dev_index_hash(net, dev->ifindex));
410 
411 	netdev_for_each_altname(dev, name_node)
412 		netdev_name_node_add(net, name_node);
413 
414 	/* We reserved the ifindex, this can't fail */
415 	WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL));
416 
417 	dev_base_seq_inc(net);
418 }
419 
420 /* Device list removal
421  * caller must respect a RCU grace period before freeing/reusing dev
422  */
423 static void unlist_netdevice(struct net_device *dev)
424 {
425 	struct netdev_name_node *name_node;
426 	struct net *net = dev_net(dev);
427 
428 	ASSERT_RTNL();
429 
430 	xa_erase(&net->dev_by_index, dev->ifindex);
431 
432 	netdev_for_each_altname(dev, name_node)
433 		netdev_name_node_del(name_node);
434 
435 	/* Unlink dev from the device chain */
436 	list_del_rcu(&dev->dev_list);
437 	netdev_name_node_del(dev->name_node);
438 	hlist_del_rcu(&dev->index_hlist);
439 
440 	dev_base_seq_inc(dev_net(dev));
441 }
442 
443 /*
444  *	Our notifier list
445  */
446 
447 static RAW_NOTIFIER_HEAD(netdev_chain);
448 
449 /*
450  *	Device drivers call our routines to queue packets here. We empty the
451  *	queue in the local softnet handler.
452  */
453 
454 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data) = {
455 	.process_queue_bh_lock = INIT_LOCAL_LOCK(process_queue_bh_lock),
456 };
457 EXPORT_PER_CPU_SYMBOL(softnet_data);
458 
459 /* Page_pool has a lockless array/stack to alloc/recycle pages.
460  * PP consumers must pay attention to run APIs in the appropriate context
461  * (e.g. NAPI context).
462  */
463 DEFINE_PER_CPU(struct page_pool *, system_page_pool);
464 
465 #ifdef CONFIG_LOCKDEP
466 /*
467  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
468  * according to dev->type
469  */
470 static const unsigned short netdev_lock_type[] = {
471 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
472 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
473 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
474 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
475 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
476 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
477 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
478 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
479 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
480 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
481 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
482 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
483 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
484 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
485 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
486 
487 static const char *const netdev_lock_name[] = {
488 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
489 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
490 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
491 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
492 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
493 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
494 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
495 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
496 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
497 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
498 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
499 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
500 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
501 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
502 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
503 
504 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
505 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
506 
507 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
508 {
509 	int i;
510 
511 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
512 		if (netdev_lock_type[i] == dev_type)
513 			return i;
514 	/* the last key is used by default */
515 	return ARRAY_SIZE(netdev_lock_type) - 1;
516 }
517 
518 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
519 						 unsigned short dev_type)
520 {
521 	int i;
522 
523 	i = netdev_lock_pos(dev_type);
524 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
525 				   netdev_lock_name[i]);
526 }
527 
528 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
529 {
530 	int i;
531 
532 	i = netdev_lock_pos(dev->type);
533 	lockdep_set_class_and_name(&dev->addr_list_lock,
534 				   &netdev_addr_lock_key[i],
535 				   netdev_lock_name[i]);
536 }
537 #else
538 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
539 						 unsigned short dev_type)
540 {
541 }
542 
543 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
544 {
545 }
546 #endif
547 
548 /*******************************************************************************
549  *
550  *		Protocol management and registration routines
551  *
552  *******************************************************************************/
553 
554 
555 /*
556  *	Add a protocol ID to the list. Now that the input handler is
557  *	smarter we can dispense with all the messy stuff that used to be
558  *	here.
559  *
560  *	BEWARE!!! Protocol handlers, mangling input packets,
561  *	MUST BE last in hash buckets and checking protocol handlers
562  *	MUST start from promiscuous ptype_all chain in net_bh.
563  *	It is true now, do not change it.
564  *	Explanation follows: if protocol handler, mangling packet, will
565  *	be the first on list, it is not able to sense, that packet
566  *	is cloned and should be copied-on-write, so that it will
567  *	change it and subsequent readers will get broken packet.
568  *							--ANK (980803)
569  */
570 
571 static inline struct list_head *ptype_head(const struct packet_type *pt)
572 {
573 	if (pt->type == htons(ETH_P_ALL))
574 		return pt->dev ? &pt->dev->ptype_all : &net_hotdata.ptype_all;
575 	else
576 		return pt->dev ? &pt->dev->ptype_specific :
577 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
578 }
579 
580 /**
581  *	dev_add_pack - add packet handler
582  *	@pt: packet type declaration
583  *
584  *	Add a protocol handler to the networking stack. The passed &packet_type
585  *	is linked into kernel lists and may not be freed until it has been
586  *	removed from the kernel lists.
587  *
588  *	This call does not sleep therefore it can not
589  *	guarantee all CPU's that are in middle of receiving packets
590  *	will see the new packet type (until the next received packet).
591  */
592 
593 void dev_add_pack(struct packet_type *pt)
594 {
595 	struct list_head *head = ptype_head(pt);
596 
597 	spin_lock(&ptype_lock);
598 	list_add_rcu(&pt->list, head);
599 	spin_unlock(&ptype_lock);
600 }
601 EXPORT_SYMBOL(dev_add_pack);
602 
603 /**
604  *	__dev_remove_pack	 - remove packet handler
605  *	@pt: packet type declaration
606  *
607  *	Remove a protocol handler that was previously added to the kernel
608  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
609  *	from the kernel lists and can be freed or reused once this function
610  *	returns.
611  *
612  *      The packet type might still be in use by receivers
613  *	and must not be freed until after all the CPU's have gone
614  *	through a quiescent state.
615  */
616 void __dev_remove_pack(struct packet_type *pt)
617 {
618 	struct list_head *head = ptype_head(pt);
619 	struct packet_type *pt1;
620 
621 	spin_lock(&ptype_lock);
622 
623 	list_for_each_entry(pt1, head, list) {
624 		if (pt == pt1) {
625 			list_del_rcu(&pt->list);
626 			goto out;
627 		}
628 	}
629 
630 	pr_warn("dev_remove_pack: %p not found\n", pt);
631 out:
632 	spin_unlock(&ptype_lock);
633 }
634 EXPORT_SYMBOL(__dev_remove_pack);
635 
636 /**
637  *	dev_remove_pack	 - remove packet handler
638  *	@pt: packet type declaration
639  *
640  *	Remove a protocol handler that was previously added to the kernel
641  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
642  *	from the kernel lists and can be freed or reused once this function
643  *	returns.
644  *
645  *	This call sleeps to guarantee that no CPU is looking at the packet
646  *	type after return.
647  */
648 void dev_remove_pack(struct packet_type *pt)
649 {
650 	__dev_remove_pack(pt);
651 
652 	synchronize_net();
653 }
654 EXPORT_SYMBOL(dev_remove_pack);
655 
656 
657 /*******************************************************************************
658  *
659  *			    Device Interface Subroutines
660  *
661  *******************************************************************************/
662 
663 /**
664  *	dev_get_iflink	- get 'iflink' value of a interface
665  *	@dev: targeted interface
666  *
667  *	Indicates the ifindex the interface is linked to.
668  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
669  */
670 
671 int dev_get_iflink(const struct net_device *dev)
672 {
673 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
674 		return dev->netdev_ops->ndo_get_iflink(dev);
675 
676 	return READ_ONCE(dev->ifindex);
677 }
678 EXPORT_SYMBOL(dev_get_iflink);
679 
680 /**
681  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
682  *	@dev: targeted interface
683  *	@skb: The packet.
684  *
685  *	For better visibility of tunnel traffic OVS needs to retrieve
686  *	egress tunnel information for a packet. Following API allows
687  *	user to get this info.
688  */
689 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
690 {
691 	struct ip_tunnel_info *info;
692 
693 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
694 		return -EINVAL;
695 
696 	info = skb_tunnel_info_unclone(skb);
697 	if (!info)
698 		return -ENOMEM;
699 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
700 		return -EINVAL;
701 
702 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
703 }
704 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
705 
706 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
707 {
708 	int k = stack->num_paths++;
709 
710 	if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
711 		return NULL;
712 
713 	return &stack->path[k];
714 }
715 
716 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
717 			  struct net_device_path_stack *stack)
718 {
719 	const struct net_device *last_dev;
720 	struct net_device_path_ctx ctx = {
721 		.dev	= dev,
722 	};
723 	struct net_device_path *path;
724 	int ret = 0;
725 
726 	memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
727 	stack->num_paths = 0;
728 	while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
729 		last_dev = ctx.dev;
730 		path = dev_fwd_path(stack);
731 		if (!path)
732 			return -1;
733 
734 		memset(path, 0, sizeof(struct net_device_path));
735 		ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
736 		if (ret < 0)
737 			return -1;
738 
739 		if (WARN_ON_ONCE(last_dev == ctx.dev))
740 			return -1;
741 	}
742 
743 	if (!ctx.dev)
744 		return ret;
745 
746 	path = dev_fwd_path(stack);
747 	if (!path)
748 		return -1;
749 	path->type = DEV_PATH_ETHERNET;
750 	path->dev = ctx.dev;
751 
752 	return ret;
753 }
754 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
755 
756 /* must be called under rcu_read_lock(), as we dont take a reference */
757 static struct napi_struct *napi_by_id(unsigned int napi_id)
758 {
759 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
760 	struct napi_struct *napi;
761 
762 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
763 		if (napi->napi_id == napi_id)
764 			return napi;
765 
766 	return NULL;
767 }
768 
769 /* must be called under rcu_read_lock(), as we dont take a reference */
770 static struct napi_struct *
771 netdev_napi_by_id(struct net *net, unsigned int napi_id)
772 {
773 	struct napi_struct *napi;
774 
775 	napi = napi_by_id(napi_id);
776 	if (!napi)
777 		return NULL;
778 
779 	if (WARN_ON_ONCE(!napi->dev))
780 		return NULL;
781 	if (!net_eq(net, dev_net(napi->dev)))
782 		return NULL;
783 
784 	return napi;
785 }
786 
787 /**
788  *	netdev_napi_by_id_lock() - find a device by NAPI ID and lock it
789  *	@net: the applicable net namespace
790  *	@napi_id: ID of a NAPI of a target device
791  *
792  *	Find a NAPI instance with @napi_id. Lock its device.
793  *	The device must be in %NETREG_REGISTERED state for lookup to succeed.
794  *	netdev_unlock() must be called to release it.
795  *
796  *	Return: pointer to NAPI, its device with lock held, NULL if not found.
797  */
798 struct napi_struct *
799 netdev_napi_by_id_lock(struct net *net, unsigned int napi_id)
800 {
801 	struct napi_struct *napi;
802 	struct net_device *dev;
803 
804 	rcu_read_lock();
805 	napi = netdev_napi_by_id(net, napi_id);
806 	if (!napi || READ_ONCE(napi->dev->reg_state) != NETREG_REGISTERED) {
807 		rcu_read_unlock();
808 		return NULL;
809 	}
810 
811 	dev = napi->dev;
812 	dev_hold(dev);
813 	rcu_read_unlock();
814 
815 	dev = __netdev_put_lock(dev);
816 	if (!dev)
817 		return NULL;
818 
819 	rcu_read_lock();
820 	napi = netdev_napi_by_id(net, napi_id);
821 	if (napi && napi->dev != dev)
822 		napi = NULL;
823 	rcu_read_unlock();
824 
825 	if (!napi)
826 		netdev_unlock(dev);
827 	return napi;
828 }
829 
830 /**
831  *	__dev_get_by_name	- find a device by its name
832  *	@net: the applicable net namespace
833  *	@name: name to find
834  *
835  *	Find an interface by name. Must be called under RTNL semaphore.
836  *	If the name is found a pointer to the device is returned.
837  *	If the name is not found then %NULL is returned. The
838  *	reference counters are not incremented so the caller must be
839  *	careful with locks.
840  */
841 
842 struct net_device *__dev_get_by_name(struct net *net, const char *name)
843 {
844 	struct netdev_name_node *node_name;
845 
846 	node_name = netdev_name_node_lookup(net, name);
847 	return node_name ? node_name->dev : NULL;
848 }
849 EXPORT_SYMBOL(__dev_get_by_name);
850 
851 /**
852  * dev_get_by_name_rcu	- find a device by its name
853  * @net: the applicable net namespace
854  * @name: name to find
855  *
856  * Find an interface by name.
857  * If the name is found a pointer to the device is returned.
858  * If the name is not found then %NULL is returned.
859  * The reference counters are not incremented so the caller must be
860  * careful with locks. The caller must hold RCU lock.
861  */
862 
863 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
864 {
865 	struct netdev_name_node *node_name;
866 
867 	node_name = netdev_name_node_lookup_rcu(net, name);
868 	return node_name ? node_name->dev : NULL;
869 }
870 EXPORT_SYMBOL(dev_get_by_name_rcu);
871 
872 /* Deprecated for new users, call netdev_get_by_name() instead */
873 struct net_device *dev_get_by_name(struct net *net, const char *name)
874 {
875 	struct net_device *dev;
876 
877 	rcu_read_lock();
878 	dev = dev_get_by_name_rcu(net, name);
879 	dev_hold(dev);
880 	rcu_read_unlock();
881 	return dev;
882 }
883 EXPORT_SYMBOL(dev_get_by_name);
884 
885 /**
886  *	netdev_get_by_name() - find a device by its name
887  *	@net: the applicable net namespace
888  *	@name: name to find
889  *	@tracker: tracking object for the acquired reference
890  *	@gfp: allocation flags for the tracker
891  *
892  *	Find an interface by name. This can be called from any
893  *	context and does its own locking. The returned handle has
894  *	the usage count incremented and the caller must use netdev_put() to
895  *	release it when it is no longer needed. %NULL is returned if no
896  *	matching device is found.
897  */
898 struct net_device *netdev_get_by_name(struct net *net, const char *name,
899 				      netdevice_tracker *tracker, gfp_t gfp)
900 {
901 	struct net_device *dev;
902 
903 	dev = dev_get_by_name(net, name);
904 	if (dev)
905 		netdev_tracker_alloc(dev, tracker, gfp);
906 	return dev;
907 }
908 EXPORT_SYMBOL(netdev_get_by_name);
909 
910 /**
911  *	__dev_get_by_index - find a device by its ifindex
912  *	@net: the applicable net namespace
913  *	@ifindex: index of device
914  *
915  *	Search for an interface by index. Returns %NULL if the device
916  *	is not found or a pointer to the device. The device has not
917  *	had its reference counter increased so the caller must be careful
918  *	about locking. The caller must hold the RTNL semaphore.
919  */
920 
921 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
922 {
923 	struct net_device *dev;
924 	struct hlist_head *head = dev_index_hash(net, ifindex);
925 
926 	hlist_for_each_entry(dev, head, index_hlist)
927 		if (dev->ifindex == ifindex)
928 			return dev;
929 
930 	return NULL;
931 }
932 EXPORT_SYMBOL(__dev_get_by_index);
933 
934 /**
935  *	dev_get_by_index_rcu - find a device by its ifindex
936  *	@net: the applicable net namespace
937  *	@ifindex: index of device
938  *
939  *	Search for an interface by index. Returns %NULL if the device
940  *	is not found or a pointer to the device. The device has not
941  *	had its reference counter increased so the caller must be careful
942  *	about locking. The caller must hold RCU lock.
943  */
944 
945 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
946 {
947 	struct net_device *dev;
948 	struct hlist_head *head = dev_index_hash(net, ifindex);
949 
950 	hlist_for_each_entry_rcu(dev, head, index_hlist)
951 		if (dev->ifindex == ifindex)
952 			return dev;
953 
954 	return NULL;
955 }
956 EXPORT_SYMBOL(dev_get_by_index_rcu);
957 
958 /* Deprecated for new users, call netdev_get_by_index() instead */
959 struct net_device *dev_get_by_index(struct net *net, int ifindex)
960 {
961 	struct net_device *dev;
962 
963 	rcu_read_lock();
964 	dev = dev_get_by_index_rcu(net, ifindex);
965 	dev_hold(dev);
966 	rcu_read_unlock();
967 	return dev;
968 }
969 EXPORT_SYMBOL(dev_get_by_index);
970 
971 /**
972  *	netdev_get_by_index() - find a device by its ifindex
973  *	@net: the applicable net namespace
974  *	@ifindex: index of device
975  *	@tracker: tracking object for the acquired reference
976  *	@gfp: allocation flags for the tracker
977  *
978  *	Search for an interface by index. Returns NULL if the device
979  *	is not found or a pointer to the device. The device returned has
980  *	had a reference added and the pointer is safe until the user calls
981  *	netdev_put() to indicate they have finished with it.
982  */
983 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
984 				       netdevice_tracker *tracker, gfp_t gfp)
985 {
986 	struct net_device *dev;
987 
988 	dev = dev_get_by_index(net, ifindex);
989 	if (dev)
990 		netdev_tracker_alloc(dev, tracker, gfp);
991 	return dev;
992 }
993 EXPORT_SYMBOL(netdev_get_by_index);
994 
995 /**
996  *	dev_get_by_napi_id - find a device by napi_id
997  *	@napi_id: ID of the NAPI struct
998  *
999  *	Search for an interface by NAPI ID. Returns %NULL if the device
1000  *	is not found or a pointer to the device. The device has not had
1001  *	its reference counter increased so the caller must be careful
1002  *	about locking. The caller must hold RCU lock.
1003  */
1004 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
1005 {
1006 	struct napi_struct *napi;
1007 
1008 	WARN_ON_ONCE(!rcu_read_lock_held());
1009 
1010 	if (napi_id < MIN_NAPI_ID)
1011 		return NULL;
1012 
1013 	napi = napi_by_id(napi_id);
1014 
1015 	return napi ? napi->dev : NULL;
1016 }
1017 
1018 /* Release the held reference on the net_device, and if the net_device
1019  * is still registered try to lock the instance lock. If device is being
1020  * unregistered NULL will be returned (but the reference has been released,
1021  * either way!)
1022  *
1023  * This helper is intended for locking net_device after it has been looked up
1024  * using a lockless lookup helper. Lock prevents the instance from going away.
1025  */
1026 struct net_device *__netdev_put_lock(struct net_device *dev)
1027 {
1028 	netdev_lock(dev);
1029 	if (dev->reg_state > NETREG_REGISTERED) {
1030 		netdev_unlock(dev);
1031 		dev_put(dev);
1032 		return NULL;
1033 	}
1034 	dev_put(dev);
1035 	return dev;
1036 }
1037 
1038 /**
1039  *	netdev_get_by_index_lock() - find a device by its ifindex
1040  *	@net: the applicable net namespace
1041  *	@ifindex: index of device
1042  *
1043  *	Search for an interface by index. If a valid device
1044  *	with @ifindex is found it will be returned with netdev->lock held.
1045  *	netdev_unlock() must be called to release it.
1046  *
1047  *	Return: pointer to a device with lock held, NULL if not found.
1048  */
1049 struct net_device *netdev_get_by_index_lock(struct net *net, int ifindex)
1050 {
1051 	struct net_device *dev;
1052 
1053 	dev = dev_get_by_index(net, ifindex);
1054 	if (!dev)
1055 		return NULL;
1056 
1057 	return __netdev_put_lock(dev);
1058 }
1059 
1060 struct net_device *
1061 netdev_xa_find_lock(struct net *net, struct net_device *dev,
1062 		    unsigned long *index)
1063 {
1064 	if (dev)
1065 		netdev_unlock(dev);
1066 
1067 	do {
1068 		rcu_read_lock();
1069 		dev = xa_find(&net->dev_by_index, index, ULONG_MAX, XA_PRESENT);
1070 		if (!dev) {
1071 			rcu_read_unlock();
1072 			return NULL;
1073 		}
1074 		dev_hold(dev);
1075 		rcu_read_unlock();
1076 
1077 		dev = __netdev_put_lock(dev);
1078 		if (dev)
1079 			return dev;
1080 
1081 		(*index)++;
1082 	} while (true);
1083 }
1084 
1085 static DEFINE_SEQLOCK(netdev_rename_lock);
1086 
1087 void netdev_copy_name(struct net_device *dev, char *name)
1088 {
1089 	unsigned int seq;
1090 
1091 	do {
1092 		seq = read_seqbegin(&netdev_rename_lock);
1093 		strscpy(name, dev->name, IFNAMSIZ);
1094 	} while (read_seqretry(&netdev_rename_lock, seq));
1095 }
1096 
1097 /**
1098  *	netdev_get_name - get a netdevice name, knowing its ifindex.
1099  *	@net: network namespace
1100  *	@name: a pointer to the buffer where the name will be stored.
1101  *	@ifindex: the ifindex of the interface to get the name from.
1102  */
1103 int netdev_get_name(struct net *net, char *name, int ifindex)
1104 {
1105 	struct net_device *dev;
1106 	int ret;
1107 
1108 	rcu_read_lock();
1109 
1110 	dev = dev_get_by_index_rcu(net, ifindex);
1111 	if (!dev) {
1112 		ret = -ENODEV;
1113 		goto out;
1114 	}
1115 
1116 	netdev_copy_name(dev, name);
1117 
1118 	ret = 0;
1119 out:
1120 	rcu_read_unlock();
1121 	return ret;
1122 }
1123 
1124 /**
1125  *	dev_getbyhwaddr_rcu - find a device by its hardware address
1126  *	@net: the applicable net namespace
1127  *	@type: media type of device
1128  *	@ha: hardware address
1129  *
1130  *	Search for an interface by MAC address. Returns NULL if the device
1131  *	is not found or a pointer to the device.
1132  *	The caller must hold RCU or RTNL.
1133  *	The returned device has not had its ref count increased
1134  *	and the caller must therefore be careful about locking
1135  *
1136  */
1137 
1138 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1139 				       const char *ha)
1140 {
1141 	struct net_device *dev;
1142 
1143 	for_each_netdev_rcu(net, dev)
1144 		if (dev->type == type &&
1145 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
1146 			return dev;
1147 
1148 	return NULL;
1149 }
1150 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1151 
1152 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1153 {
1154 	struct net_device *dev, *ret = NULL;
1155 
1156 	rcu_read_lock();
1157 	for_each_netdev_rcu(net, dev)
1158 		if (dev->type == type) {
1159 			dev_hold(dev);
1160 			ret = dev;
1161 			break;
1162 		}
1163 	rcu_read_unlock();
1164 	return ret;
1165 }
1166 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1167 
1168 /**
1169  *	__dev_get_by_flags - find any device with given flags
1170  *	@net: the applicable net namespace
1171  *	@if_flags: IFF_* values
1172  *	@mask: bitmask of bits in if_flags to check
1173  *
1174  *	Search for any interface with the given flags. Returns NULL if a device
1175  *	is not found or a pointer to the device. Must be called inside
1176  *	rtnl_lock(), and result refcount is unchanged.
1177  */
1178 
1179 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1180 				      unsigned short mask)
1181 {
1182 	struct net_device *dev, *ret;
1183 
1184 	ASSERT_RTNL();
1185 
1186 	ret = NULL;
1187 	for_each_netdev(net, dev) {
1188 		if (((dev->flags ^ if_flags) & mask) == 0) {
1189 			ret = dev;
1190 			break;
1191 		}
1192 	}
1193 	return ret;
1194 }
1195 EXPORT_SYMBOL(__dev_get_by_flags);
1196 
1197 /**
1198  *	dev_valid_name - check if name is okay for network device
1199  *	@name: name string
1200  *
1201  *	Network device names need to be valid file names to
1202  *	allow sysfs to work.  We also disallow any kind of
1203  *	whitespace.
1204  */
1205 bool dev_valid_name(const char *name)
1206 {
1207 	if (*name == '\0')
1208 		return false;
1209 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1210 		return false;
1211 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1212 		return false;
1213 
1214 	while (*name) {
1215 		if (*name == '/' || *name == ':' || isspace(*name))
1216 			return false;
1217 		name++;
1218 	}
1219 	return true;
1220 }
1221 EXPORT_SYMBOL(dev_valid_name);
1222 
1223 /**
1224  *	__dev_alloc_name - allocate a name for a device
1225  *	@net: network namespace to allocate the device name in
1226  *	@name: name format string
1227  *	@res: result name string
1228  *
1229  *	Passed a format string - eg "lt%d" it will try and find a suitable
1230  *	id. It scans list of devices to build up a free map, then chooses
1231  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1232  *	while allocating the name and adding the device in order to avoid
1233  *	duplicates.
1234  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1235  *	Returns the number of the unit assigned or a negative errno code.
1236  */
1237 
1238 static int __dev_alloc_name(struct net *net, const char *name, char *res)
1239 {
1240 	int i = 0;
1241 	const char *p;
1242 	const int max_netdevices = 8*PAGE_SIZE;
1243 	unsigned long *inuse;
1244 	struct net_device *d;
1245 	char buf[IFNAMSIZ];
1246 
1247 	/* Verify the string as this thing may have come from the user.
1248 	 * There must be one "%d" and no other "%" characters.
1249 	 */
1250 	p = strchr(name, '%');
1251 	if (!p || p[1] != 'd' || strchr(p + 2, '%'))
1252 		return -EINVAL;
1253 
1254 	/* Use one page as a bit array of possible slots */
1255 	inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC);
1256 	if (!inuse)
1257 		return -ENOMEM;
1258 
1259 	for_each_netdev(net, d) {
1260 		struct netdev_name_node *name_node;
1261 
1262 		netdev_for_each_altname(d, name_node) {
1263 			if (!sscanf(name_node->name, name, &i))
1264 				continue;
1265 			if (i < 0 || i >= max_netdevices)
1266 				continue;
1267 
1268 			/* avoid cases where sscanf is not exact inverse of printf */
1269 			snprintf(buf, IFNAMSIZ, name, i);
1270 			if (!strncmp(buf, name_node->name, IFNAMSIZ))
1271 				__set_bit(i, inuse);
1272 		}
1273 		if (!sscanf(d->name, name, &i))
1274 			continue;
1275 		if (i < 0 || i >= max_netdevices)
1276 			continue;
1277 
1278 		/* avoid cases where sscanf is not exact inverse of printf */
1279 		snprintf(buf, IFNAMSIZ, name, i);
1280 		if (!strncmp(buf, d->name, IFNAMSIZ))
1281 			__set_bit(i, inuse);
1282 	}
1283 
1284 	i = find_first_zero_bit(inuse, max_netdevices);
1285 	bitmap_free(inuse);
1286 	if (i == max_netdevices)
1287 		return -ENFILE;
1288 
1289 	/* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */
1290 	strscpy(buf, name, IFNAMSIZ);
1291 	snprintf(res, IFNAMSIZ, buf, i);
1292 	return i;
1293 }
1294 
1295 /* Returns negative errno or allocated unit id (see __dev_alloc_name()) */
1296 static int dev_prep_valid_name(struct net *net, struct net_device *dev,
1297 			       const char *want_name, char *out_name,
1298 			       int dup_errno)
1299 {
1300 	if (!dev_valid_name(want_name))
1301 		return -EINVAL;
1302 
1303 	if (strchr(want_name, '%'))
1304 		return __dev_alloc_name(net, want_name, out_name);
1305 
1306 	if (netdev_name_in_use(net, want_name))
1307 		return -dup_errno;
1308 	if (out_name != want_name)
1309 		strscpy(out_name, want_name, IFNAMSIZ);
1310 	return 0;
1311 }
1312 
1313 /**
1314  *	dev_alloc_name - allocate a name for a device
1315  *	@dev: device
1316  *	@name: name format string
1317  *
1318  *	Passed a format string - eg "lt%d" it will try and find a suitable
1319  *	id. It scans list of devices to build up a free map, then chooses
1320  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1321  *	while allocating the name and adding the device in order to avoid
1322  *	duplicates.
1323  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1324  *	Returns the number of the unit assigned or a negative errno code.
1325  */
1326 
1327 int dev_alloc_name(struct net_device *dev, const char *name)
1328 {
1329 	return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE);
1330 }
1331 EXPORT_SYMBOL(dev_alloc_name);
1332 
1333 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1334 			      const char *name)
1335 {
1336 	int ret;
1337 
1338 	ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST);
1339 	return ret < 0 ? ret : 0;
1340 }
1341 
1342 /**
1343  *	dev_change_name - change name of a device
1344  *	@dev: device
1345  *	@newname: name (or format string) must be at least IFNAMSIZ
1346  *
1347  *	Change name of a device, can pass format strings "eth%d".
1348  *	for wildcarding.
1349  */
1350 int dev_change_name(struct net_device *dev, const char *newname)
1351 {
1352 	struct net *net = dev_net(dev);
1353 	unsigned char old_assign_type;
1354 	char oldname[IFNAMSIZ];
1355 	int err = 0;
1356 	int ret;
1357 
1358 	ASSERT_RTNL_NET(net);
1359 
1360 	if (!strncmp(newname, dev->name, IFNAMSIZ))
1361 		return 0;
1362 
1363 	memcpy(oldname, dev->name, IFNAMSIZ);
1364 
1365 	write_seqlock_bh(&netdev_rename_lock);
1366 	err = dev_get_valid_name(net, dev, newname);
1367 	write_sequnlock_bh(&netdev_rename_lock);
1368 
1369 	if (err < 0)
1370 		return err;
1371 
1372 	if (oldname[0] && !strchr(oldname, '%'))
1373 		netdev_info(dev, "renamed from %s%s\n", oldname,
1374 			    dev->flags & IFF_UP ? " (while UP)" : "");
1375 
1376 	old_assign_type = dev->name_assign_type;
1377 	WRITE_ONCE(dev->name_assign_type, NET_NAME_RENAMED);
1378 
1379 rollback:
1380 	ret = device_rename(&dev->dev, dev->name);
1381 	if (ret) {
1382 		write_seqlock_bh(&netdev_rename_lock);
1383 		memcpy(dev->name, oldname, IFNAMSIZ);
1384 		write_sequnlock_bh(&netdev_rename_lock);
1385 		WRITE_ONCE(dev->name_assign_type, old_assign_type);
1386 		return ret;
1387 	}
1388 
1389 	netdev_adjacent_rename_links(dev, oldname);
1390 
1391 	netdev_name_node_del(dev->name_node);
1392 
1393 	synchronize_net();
1394 
1395 	netdev_name_node_add(net, dev->name_node);
1396 
1397 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1398 	ret = notifier_to_errno(ret);
1399 
1400 	if (ret) {
1401 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1402 		if (err >= 0) {
1403 			err = ret;
1404 			write_seqlock_bh(&netdev_rename_lock);
1405 			memcpy(dev->name, oldname, IFNAMSIZ);
1406 			write_sequnlock_bh(&netdev_rename_lock);
1407 			memcpy(oldname, newname, IFNAMSIZ);
1408 			WRITE_ONCE(dev->name_assign_type, old_assign_type);
1409 			old_assign_type = NET_NAME_RENAMED;
1410 			goto rollback;
1411 		} else {
1412 			netdev_err(dev, "name change rollback failed: %d\n",
1413 				   ret);
1414 		}
1415 	}
1416 
1417 	return err;
1418 }
1419 
1420 /**
1421  *	dev_set_alias - change ifalias of a device
1422  *	@dev: device
1423  *	@alias: name up to IFALIASZ
1424  *	@len: limit of bytes to copy from info
1425  *
1426  *	Set ifalias for a device,
1427  */
1428 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1429 {
1430 	struct dev_ifalias *new_alias = NULL;
1431 
1432 	if (len >= IFALIASZ)
1433 		return -EINVAL;
1434 
1435 	if (len) {
1436 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1437 		if (!new_alias)
1438 			return -ENOMEM;
1439 
1440 		memcpy(new_alias->ifalias, alias, len);
1441 		new_alias->ifalias[len] = 0;
1442 	}
1443 
1444 	mutex_lock(&ifalias_mutex);
1445 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1446 					mutex_is_locked(&ifalias_mutex));
1447 	mutex_unlock(&ifalias_mutex);
1448 
1449 	if (new_alias)
1450 		kfree_rcu(new_alias, rcuhead);
1451 
1452 	return len;
1453 }
1454 EXPORT_SYMBOL(dev_set_alias);
1455 
1456 /**
1457  *	dev_get_alias - get ifalias of a device
1458  *	@dev: device
1459  *	@name: buffer to store name of ifalias
1460  *	@len: size of buffer
1461  *
1462  *	get ifalias for a device.  Caller must make sure dev cannot go
1463  *	away,  e.g. rcu read lock or own a reference count to device.
1464  */
1465 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1466 {
1467 	const struct dev_ifalias *alias;
1468 	int ret = 0;
1469 
1470 	rcu_read_lock();
1471 	alias = rcu_dereference(dev->ifalias);
1472 	if (alias)
1473 		ret = snprintf(name, len, "%s", alias->ifalias);
1474 	rcu_read_unlock();
1475 
1476 	return ret;
1477 }
1478 
1479 /**
1480  *	netdev_features_change - device changes features
1481  *	@dev: device to cause notification
1482  *
1483  *	Called to indicate a device has changed features.
1484  */
1485 void netdev_features_change(struct net_device *dev)
1486 {
1487 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1488 }
1489 EXPORT_SYMBOL(netdev_features_change);
1490 
1491 /**
1492  *	netdev_state_change - device changes state
1493  *	@dev: device to cause notification
1494  *
1495  *	Called to indicate a device has changed state. This function calls
1496  *	the notifier chains for netdev_chain and sends a NEWLINK message
1497  *	to the routing socket.
1498  */
1499 void netdev_state_change(struct net_device *dev)
1500 {
1501 	if (dev->flags & IFF_UP) {
1502 		struct netdev_notifier_change_info change_info = {
1503 			.info.dev = dev,
1504 		};
1505 
1506 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1507 					      &change_info.info);
1508 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1509 	}
1510 }
1511 EXPORT_SYMBOL(netdev_state_change);
1512 
1513 /**
1514  * __netdev_notify_peers - notify network peers about existence of @dev,
1515  * to be called when rtnl lock is already held.
1516  * @dev: network device
1517  *
1518  * Generate traffic such that interested network peers are aware of
1519  * @dev, such as by generating a gratuitous ARP. This may be used when
1520  * a device wants to inform the rest of the network about some sort of
1521  * reconfiguration such as a failover event or virtual machine
1522  * migration.
1523  */
1524 void __netdev_notify_peers(struct net_device *dev)
1525 {
1526 	ASSERT_RTNL();
1527 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1528 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1529 }
1530 EXPORT_SYMBOL(__netdev_notify_peers);
1531 
1532 /**
1533  * netdev_notify_peers - notify network peers about existence of @dev
1534  * @dev: network device
1535  *
1536  * Generate traffic such that interested network peers are aware of
1537  * @dev, such as by generating a gratuitous ARP. This may be used when
1538  * a device wants to inform the rest of the network about some sort of
1539  * reconfiguration such as a failover event or virtual machine
1540  * migration.
1541  */
1542 void netdev_notify_peers(struct net_device *dev)
1543 {
1544 	rtnl_lock();
1545 	__netdev_notify_peers(dev);
1546 	rtnl_unlock();
1547 }
1548 EXPORT_SYMBOL(netdev_notify_peers);
1549 
1550 static int napi_threaded_poll(void *data);
1551 
1552 static int napi_kthread_create(struct napi_struct *n)
1553 {
1554 	int err = 0;
1555 
1556 	/* Create and wake up the kthread once to put it in
1557 	 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1558 	 * warning and work with loadavg.
1559 	 */
1560 	n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1561 				n->dev->name, n->napi_id);
1562 	if (IS_ERR(n->thread)) {
1563 		err = PTR_ERR(n->thread);
1564 		pr_err("kthread_run failed with err %d\n", err);
1565 		n->thread = NULL;
1566 	}
1567 
1568 	return err;
1569 }
1570 
1571 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1572 {
1573 	const struct net_device_ops *ops = dev->netdev_ops;
1574 	int ret;
1575 
1576 	ASSERT_RTNL();
1577 	dev_addr_check(dev);
1578 
1579 	if (!netif_device_present(dev)) {
1580 		/* may be detached because parent is runtime-suspended */
1581 		if (dev->dev.parent)
1582 			pm_runtime_resume(dev->dev.parent);
1583 		if (!netif_device_present(dev))
1584 			return -ENODEV;
1585 	}
1586 
1587 	/* Block netpoll from trying to do any rx path servicing.
1588 	 * If we don't do this there is a chance ndo_poll_controller
1589 	 * or ndo_poll may be running while we open the device
1590 	 */
1591 	netpoll_poll_disable(dev);
1592 
1593 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1594 	ret = notifier_to_errno(ret);
1595 	if (ret)
1596 		return ret;
1597 
1598 	set_bit(__LINK_STATE_START, &dev->state);
1599 
1600 	if (ops->ndo_validate_addr)
1601 		ret = ops->ndo_validate_addr(dev);
1602 
1603 	if (!ret && ops->ndo_open)
1604 		ret = ops->ndo_open(dev);
1605 
1606 	netpoll_poll_enable(dev);
1607 
1608 	if (ret)
1609 		clear_bit(__LINK_STATE_START, &dev->state);
1610 	else {
1611 		netif_set_up(dev, true);
1612 		dev_set_rx_mode(dev);
1613 		dev_activate(dev);
1614 		add_device_randomness(dev->dev_addr, dev->addr_len);
1615 	}
1616 
1617 	return ret;
1618 }
1619 
1620 /**
1621  *	dev_open	- prepare an interface for use.
1622  *	@dev: device to open
1623  *	@extack: netlink extended ack
1624  *
1625  *	Takes a device from down to up state. The device's private open
1626  *	function is invoked and then the multicast lists are loaded. Finally
1627  *	the device is moved into the up state and a %NETDEV_UP message is
1628  *	sent to the netdev notifier chain.
1629  *
1630  *	Calling this function on an active interface is a nop. On a failure
1631  *	a negative errno code is returned.
1632  */
1633 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1634 {
1635 	int ret;
1636 
1637 	if (dev->flags & IFF_UP)
1638 		return 0;
1639 
1640 	ret = __dev_open(dev, extack);
1641 	if (ret < 0)
1642 		return ret;
1643 
1644 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1645 	call_netdevice_notifiers(NETDEV_UP, dev);
1646 
1647 	return ret;
1648 }
1649 EXPORT_SYMBOL(dev_open);
1650 
1651 static void __dev_close_many(struct list_head *head)
1652 {
1653 	struct net_device *dev;
1654 
1655 	ASSERT_RTNL();
1656 	might_sleep();
1657 
1658 	list_for_each_entry(dev, head, close_list) {
1659 		/* Temporarily disable netpoll until the interface is down */
1660 		netpoll_poll_disable(dev);
1661 
1662 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1663 
1664 		clear_bit(__LINK_STATE_START, &dev->state);
1665 
1666 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1667 		 * can be even on different cpu. So just clear netif_running().
1668 		 *
1669 		 * dev->stop() will invoke napi_disable() on all of it's
1670 		 * napi_struct instances on this device.
1671 		 */
1672 		smp_mb__after_atomic(); /* Commit netif_running(). */
1673 	}
1674 
1675 	dev_deactivate_many(head);
1676 
1677 	list_for_each_entry(dev, head, close_list) {
1678 		const struct net_device_ops *ops = dev->netdev_ops;
1679 
1680 		/*
1681 		 *	Call the device specific close. This cannot fail.
1682 		 *	Only if device is UP
1683 		 *
1684 		 *	We allow it to be called even after a DETACH hot-plug
1685 		 *	event.
1686 		 */
1687 		if (ops->ndo_stop)
1688 			ops->ndo_stop(dev);
1689 
1690 		netif_set_up(dev, false);
1691 		netpoll_poll_enable(dev);
1692 	}
1693 }
1694 
1695 static void __dev_close(struct net_device *dev)
1696 {
1697 	LIST_HEAD(single);
1698 
1699 	list_add(&dev->close_list, &single);
1700 	__dev_close_many(&single);
1701 	list_del(&single);
1702 }
1703 
1704 void dev_close_many(struct list_head *head, bool unlink)
1705 {
1706 	struct net_device *dev, *tmp;
1707 
1708 	/* Remove the devices that don't need to be closed */
1709 	list_for_each_entry_safe(dev, tmp, head, close_list)
1710 		if (!(dev->flags & IFF_UP))
1711 			list_del_init(&dev->close_list);
1712 
1713 	__dev_close_many(head);
1714 
1715 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1716 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1717 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1718 		if (unlink)
1719 			list_del_init(&dev->close_list);
1720 	}
1721 }
1722 EXPORT_SYMBOL(dev_close_many);
1723 
1724 /**
1725  *	dev_close - shutdown an interface.
1726  *	@dev: device to shutdown
1727  *
1728  *	This function moves an active device into down state. A
1729  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1730  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1731  *	chain.
1732  */
1733 void dev_close(struct net_device *dev)
1734 {
1735 	if (dev->flags & IFF_UP) {
1736 		LIST_HEAD(single);
1737 
1738 		list_add(&dev->close_list, &single);
1739 		dev_close_many(&single, true);
1740 		list_del(&single);
1741 	}
1742 }
1743 EXPORT_SYMBOL(dev_close);
1744 
1745 
1746 /**
1747  *	dev_disable_lro - disable Large Receive Offload on a device
1748  *	@dev: device
1749  *
1750  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1751  *	called under RTNL.  This is needed if received packets may be
1752  *	forwarded to another interface.
1753  */
1754 void dev_disable_lro(struct net_device *dev)
1755 {
1756 	struct net_device *lower_dev;
1757 	struct list_head *iter;
1758 
1759 	dev->wanted_features &= ~NETIF_F_LRO;
1760 	netdev_update_features(dev);
1761 
1762 	if (unlikely(dev->features & NETIF_F_LRO))
1763 		netdev_WARN(dev, "failed to disable LRO!\n");
1764 
1765 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1766 		dev_disable_lro(lower_dev);
1767 }
1768 EXPORT_SYMBOL(dev_disable_lro);
1769 
1770 /**
1771  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1772  *	@dev: device
1773  *
1774  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1775  *	called under RTNL.  This is needed if Generic XDP is installed on
1776  *	the device.
1777  */
1778 static void dev_disable_gro_hw(struct net_device *dev)
1779 {
1780 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1781 	netdev_update_features(dev);
1782 
1783 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1784 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1785 }
1786 
1787 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1788 {
1789 #define N(val) 						\
1790 	case NETDEV_##val:				\
1791 		return "NETDEV_" __stringify(val);
1792 	switch (cmd) {
1793 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1794 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1795 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1796 	N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1797 	N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1798 	N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1799 	N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1800 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1801 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1802 	N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1803 	N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1804 	N(XDP_FEAT_CHANGE)
1805 	}
1806 #undef N
1807 	return "UNKNOWN_NETDEV_EVENT";
1808 }
1809 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1810 
1811 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1812 				   struct net_device *dev)
1813 {
1814 	struct netdev_notifier_info info = {
1815 		.dev = dev,
1816 	};
1817 
1818 	return nb->notifier_call(nb, val, &info);
1819 }
1820 
1821 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1822 					     struct net_device *dev)
1823 {
1824 	int err;
1825 
1826 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1827 	err = notifier_to_errno(err);
1828 	if (err)
1829 		return err;
1830 
1831 	if (!(dev->flags & IFF_UP))
1832 		return 0;
1833 
1834 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1835 	return 0;
1836 }
1837 
1838 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1839 						struct net_device *dev)
1840 {
1841 	if (dev->flags & IFF_UP) {
1842 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1843 					dev);
1844 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1845 	}
1846 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1847 }
1848 
1849 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1850 						 struct net *net)
1851 {
1852 	struct net_device *dev;
1853 	int err;
1854 
1855 	for_each_netdev(net, dev) {
1856 		err = call_netdevice_register_notifiers(nb, dev);
1857 		if (err)
1858 			goto rollback;
1859 	}
1860 	return 0;
1861 
1862 rollback:
1863 	for_each_netdev_continue_reverse(net, dev)
1864 		call_netdevice_unregister_notifiers(nb, dev);
1865 	return err;
1866 }
1867 
1868 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1869 						    struct net *net)
1870 {
1871 	struct net_device *dev;
1872 
1873 	for_each_netdev(net, dev)
1874 		call_netdevice_unregister_notifiers(nb, dev);
1875 }
1876 
1877 static int dev_boot_phase = 1;
1878 
1879 /**
1880  * register_netdevice_notifier - register a network notifier block
1881  * @nb: notifier
1882  *
1883  * Register a notifier to be called when network device events occur.
1884  * The notifier passed is linked into the kernel structures and must
1885  * not be reused until it has been unregistered. A negative errno code
1886  * is returned on a failure.
1887  *
1888  * When registered all registration and up events are replayed
1889  * to the new notifier to allow device to have a race free
1890  * view of the network device list.
1891  */
1892 
1893 int register_netdevice_notifier(struct notifier_block *nb)
1894 {
1895 	struct net *net;
1896 	int err;
1897 
1898 	/* Close race with setup_net() and cleanup_net() */
1899 	down_write(&pernet_ops_rwsem);
1900 
1901 	/* When RTNL is removed, we need protection for netdev_chain. */
1902 	rtnl_lock();
1903 
1904 	err = raw_notifier_chain_register(&netdev_chain, nb);
1905 	if (err)
1906 		goto unlock;
1907 	if (dev_boot_phase)
1908 		goto unlock;
1909 	for_each_net(net) {
1910 		__rtnl_net_lock(net);
1911 		err = call_netdevice_register_net_notifiers(nb, net);
1912 		__rtnl_net_unlock(net);
1913 		if (err)
1914 			goto rollback;
1915 	}
1916 
1917 unlock:
1918 	rtnl_unlock();
1919 	up_write(&pernet_ops_rwsem);
1920 	return err;
1921 
1922 rollback:
1923 	for_each_net_continue_reverse(net) {
1924 		__rtnl_net_lock(net);
1925 		call_netdevice_unregister_net_notifiers(nb, net);
1926 		__rtnl_net_unlock(net);
1927 	}
1928 
1929 	raw_notifier_chain_unregister(&netdev_chain, nb);
1930 	goto unlock;
1931 }
1932 EXPORT_SYMBOL(register_netdevice_notifier);
1933 
1934 /**
1935  * unregister_netdevice_notifier - unregister a network notifier block
1936  * @nb: notifier
1937  *
1938  * Unregister a notifier previously registered by
1939  * register_netdevice_notifier(). The notifier is unlinked into the
1940  * kernel structures and may then be reused. A negative errno code
1941  * is returned on a failure.
1942  *
1943  * After unregistering unregister and down device events are synthesized
1944  * for all devices on the device list to the removed notifier to remove
1945  * the need for special case cleanup code.
1946  */
1947 
1948 int unregister_netdevice_notifier(struct notifier_block *nb)
1949 {
1950 	struct net *net;
1951 	int err;
1952 
1953 	/* Close race with setup_net() and cleanup_net() */
1954 	down_write(&pernet_ops_rwsem);
1955 	rtnl_lock();
1956 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1957 	if (err)
1958 		goto unlock;
1959 
1960 	for_each_net(net) {
1961 		__rtnl_net_lock(net);
1962 		call_netdevice_unregister_net_notifiers(nb, net);
1963 		__rtnl_net_unlock(net);
1964 	}
1965 
1966 unlock:
1967 	rtnl_unlock();
1968 	up_write(&pernet_ops_rwsem);
1969 	return err;
1970 }
1971 EXPORT_SYMBOL(unregister_netdevice_notifier);
1972 
1973 static int __register_netdevice_notifier_net(struct net *net,
1974 					     struct notifier_block *nb,
1975 					     bool ignore_call_fail)
1976 {
1977 	int err;
1978 
1979 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
1980 	if (err)
1981 		return err;
1982 	if (dev_boot_phase)
1983 		return 0;
1984 
1985 	err = call_netdevice_register_net_notifiers(nb, net);
1986 	if (err && !ignore_call_fail)
1987 		goto chain_unregister;
1988 
1989 	return 0;
1990 
1991 chain_unregister:
1992 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
1993 	return err;
1994 }
1995 
1996 static int __unregister_netdevice_notifier_net(struct net *net,
1997 					       struct notifier_block *nb)
1998 {
1999 	int err;
2000 
2001 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
2002 	if (err)
2003 		return err;
2004 
2005 	call_netdevice_unregister_net_notifiers(nb, net);
2006 	return 0;
2007 }
2008 
2009 /**
2010  * register_netdevice_notifier_net - register a per-netns network notifier block
2011  * @net: network namespace
2012  * @nb: notifier
2013  *
2014  * Register a notifier to be called when network device events occur.
2015  * The notifier passed is linked into the kernel structures and must
2016  * not be reused until it has been unregistered. A negative errno code
2017  * is returned on a failure.
2018  *
2019  * When registered all registration and up events are replayed
2020  * to the new notifier to allow device to have a race free
2021  * view of the network device list.
2022  */
2023 
2024 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
2025 {
2026 	int err;
2027 
2028 	rtnl_net_lock(net);
2029 	err = __register_netdevice_notifier_net(net, nb, false);
2030 	rtnl_net_unlock(net);
2031 
2032 	return err;
2033 }
2034 EXPORT_SYMBOL(register_netdevice_notifier_net);
2035 
2036 /**
2037  * unregister_netdevice_notifier_net - unregister a per-netns
2038  *                                     network notifier block
2039  * @net: network namespace
2040  * @nb: notifier
2041  *
2042  * Unregister a notifier previously registered by
2043  * register_netdevice_notifier_net(). The notifier is unlinked from the
2044  * kernel structures and may then be reused. A negative errno code
2045  * is returned on a failure.
2046  *
2047  * After unregistering unregister and down device events are synthesized
2048  * for all devices on the device list to the removed notifier to remove
2049  * the need for special case cleanup code.
2050  */
2051 
2052 int unregister_netdevice_notifier_net(struct net *net,
2053 				      struct notifier_block *nb)
2054 {
2055 	int err;
2056 
2057 	rtnl_net_lock(net);
2058 	err = __unregister_netdevice_notifier_net(net, nb);
2059 	rtnl_net_unlock(net);
2060 
2061 	return err;
2062 }
2063 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
2064 
2065 static void __move_netdevice_notifier_net(struct net *src_net,
2066 					  struct net *dst_net,
2067 					  struct notifier_block *nb)
2068 {
2069 	__unregister_netdevice_notifier_net(src_net, nb);
2070 	__register_netdevice_notifier_net(dst_net, nb, true);
2071 }
2072 
2073 int register_netdevice_notifier_dev_net(struct net_device *dev,
2074 					struct notifier_block *nb,
2075 					struct netdev_net_notifier *nn)
2076 {
2077 	struct net *net = dev_net(dev);
2078 	int err;
2079 
2080 	rtnl_net_lock(net);
2081 	err = __register_netdevice_notifier_net(net, nb, false);
2082 	if (!err) {
2083 		nn->nb = nb;
2084 		list_add(&nn->list, &dev->net_notifier_list);
2085 	}
2086 	rtnl_net_unlock(net);
2087 
2088 	return err;
2089 }
2090 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
2091 
2092 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2093 					  struct notifier_block *nb,
2094 					  struct netdev_net_notifier *nn)
2095 {
2096 	struct net *net = dev_net(dev);
2097 	int err;
2098 
2099 	rtnl_net_lock(net);
2100 	list_del(&nn->list);
2101 	err = __unregister_netdevice_notifier_net(net, nb);
2102 	rtnl_net_unlock(net);
2103 
2104 	return err;
2105 }
2106 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
2107 
2108 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
2109 					     struct net *net)
2110 {
2111 	struct netdev_net_notifier *nn;
2112 
2113 	list_for_each_entry(nn, &dev->net_notifier_list, list)
2114 		__move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
2115 }
2116 
2117 /**
2118  *	call_netdevice_notifiers_info - call all network notifier blocks
2119  *	@val: value passed unmodified to notifier function
2120  *	@info: notifier information data
2121  *
2122  *	Call all network notifier blocks.  Parameters and return value
2123  *	are as for raw_notifier_call_chain().
2124  */
2125 
2126 int call_netdevice_notifiers_info(unsigned long val,
2127 				  struct netdev_notifier_info *info)
2128 {
2129 	struct net *net = dev_net(info->dev);
2130 	int ret;
2131 
2132 	ASSERT_RTNL();
2133 
2134 	/* Run per-netns notifier block chain first, then run the global one.
2135 	 * Hopefully, one day, the global one is going to be removed after
2136 	 * all notifier block registrators get converted to be per-netns.
2137 	 */
2138 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2139 	if (ret & NOTIFY_STOP_MASK)
2140 		return ret;
2141 	return raw_notifier_call_chain(&netdev_chain, val, info);
2142 }
2143 
2144 /**
2145  *	call_netdevice_notifiers_info_robust - call per-netns notifier blocks
2146  *	                                       for and rollback on error
2147  *	@val_up: value passed unmodified to notifier function
2148  *	@val_down: value passed unmodified to the notifier function when
2149  *	           recovering from an error on @val_up
2150  *	@info: notifier information data
2151  *
2152  *	Call all per-netns network notifier blocks, but not notifier blocks on
2153  *	the global notifier chain. Parameters and return value are as for
2154  *	raw_notifier_call_chain_robust().
2155  */
2156 
2157 static int
2158 call_netdevice_notifiers_info_robust(unsigned long val_up,
2159 				     unsigned long val_down,
2160 				     struct netdev_notifier_info *info)
2161 {
2162 	struct net *net = dev_net(info->dev);
2163 
2164 	ASSERT_RTNL();
2165 
2166 	return raw_notifier_call_chain_robust(&net->netdev_chain,
2167 					      val_up, val_down, info);
2168 }
2169 
2170 static int call_netdevice_notifiers_extack(unsigned long val,
2171 					   struct net_device *dev,
2172 					   struct netlink_ext_ack *extack)
2173 {
2174 	struct netdev_notifier_info info = {
2175 		.dev = dev,
2176 		.extack = extack,
2177 	};
2178 
2179 	return call_netdevice_notifiers_info(val, &info);
2180 }
2181 
2182 /**
2183  *	call_netdevice_notifiers - call all network notifier blocks
2184  *      @val: value passed unmodified to notifier function
2185  *      @dev: net_device pointer passed unmodified to notifier function
2186  *
2187  *	Call all network notifier blocks.  Parameters and return value
2188  *	are as for raw_notifier_call_chain().
2189  */
2190 
2191 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2192 {
2193 	return call_netdevice_notifiers_extack(val, dev, NULL);
2194 }
2195 EXPORT_SYMBOL(call_netdevice_notifiers);
2196 
2197 /**
2198  *	call_netdevice_notifiers_mtu - call all network notifier blocks
2199  *	@val: value passed unmodified to notifier function
2200  *	@dev: net_device pointer passed unmodified to notifier function
2201  *	@arg: additional u32 argument passed to the notifier function
2202  *
2203  *	Call all network notifier blocks.  Parameters and return value
2204  *	are as for raw_notifier_call_chain().
2205  */
2206 static int call_netdevice_notifiers_mtu(unsigned long val,
2207 					struct net_device *dev, u32 arg)
2208 {
2209 	struct netdev_notifier_info_ext info = {
2210 		.info.dev = dev,
2211 		.ext.mtu = arg,
2212 	};
2213 
2214 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2215 
2216 	return call_netdevice_notifiers_info(val, &info.info);
2217 }
2218 
2219 #ifdef CONFIG_NET_INGRESS
2220 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2221 
2222 void net_inc_ingress_queue(void)
2223 {
2224 	static_branch_inc(&ingress_needed_key);
2225 }
2226 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2227 
2228 void net_dec_ingress_queue(void)
2229 {
2230 	static_branch_dec(&ingress_needed_key);
2231 }
2232 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2233 #endif
2234 
2235 #ifdef CONFIG_NET_EGRESS
2236 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2237 
2238 void net_inc_egress_queue(void)
2239 {
2240 	static_branch_inc(&egress_needed_key);
2241 }
2242 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2243 
2244 void net_dec_egress_queue(void)
2245 {
2246 	static_branch_dec(&egress_needed_key);
2247 }
2248 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2249 #endif
2250 
2251 #ifdef CONFIG_NET_CLS_ACT
2252 DEFINE_STATIC_KEY_FALSE(tcf_sw_enabled_key);
2253 EXPORT_SYMBOL(tcf_sw_enabled_key);
2254 #endif
2255 
2256 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2257 EXPORT_SYMBOL(netstamp_needed_key);
2258 #ifdef CONFIG_JUMP_LABEL
2259 static atomic_t netstamp_needed_deferred;
2260 static atomic_t netstamp_wanted;
2261 static void netstamp_clear(struct work_struct *work)
2262 {
2263 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2264 	int wanted;
2265 
2266 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2267 	if (wanted > 0)
2268 		static_branch_enable(&netstamp_needed_key);
2269 	else
2270 		static_branch_disable(&netstamp_needed_key);
2271 }
2272 static DECLARE_WORK(netstamp_work, netstamp_clear);
2273 #endif
2274 
2275 void net_enable_timestamp(void)
2276 {
2277 #ifdef CONFIG_JUMP_LABEL
2278 	int wanted = atomic_read(&netstamp_wanted);
2279 
2280 	while (wanted > 0) {
2281 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2282 			return;
2283 	}
2284 	atomic_inc(&netstamp_needed_deferred);
2285 	schedule_work(&netstamp_work);
2286 #else
2287 	static_branch_inc(&netstamp_needed_key);
2288 #endif
2289 }
2290 EXPORT_SYMBOL(net_enable_timestamp);
2291 
2292 void net_disable_timestamp(void)
2293 {
2294 #ifdef CONFIG_JUMP_LABEL
2295 	int wanted = atomic_read(&netstamp_wanted);
2296 
2297 	while (wanted > 1) {
2298 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2299 			return;
2300 	}
2301 	atomic_dec(&netstamp_needed_deferred);
2302 	schedule_work(&netstamp_work);
2303 #else
2304 	static_branch_dec(&netstamp_needed_key);
2305 #endif
2306 }
2307 EXPORT_SYMBOL(net_disable_timestamp);
2308 
2309 static inline void net_timestamp_set(struct sk_buff *skb)
2310 {
2311 	skb->tstamp = 0;
2312 	skb->tstamp_type = SKB_CLOCK_REALTIME;
2313 	if (static_branch_unlikely(&netstamp_needed_key))
2314 		skb->tstamp = ktime_get_real();
2315 }
2316 
2317 #define net_timestamp_check(COND, SKB)				\
2318 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2319 		if ((COND) && !(SKB)->tstamp)			\
2320 			(SKB)->tstamp = ktime_get_real();	\
2321 	}							\
2322 
2323 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2324 {
2325 	return __is_skb_forwardable(dev, skb, true);
2326 }
2327 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2328 
2329 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2330 			      bool check_mtu)
2331 {
2332 	int ret = ____dev_forward_skb(dev, skb, check_mtu);
2333 
2334 	if (likely(!ret)) {
2335 		skb->protocol = eth_type_trans(skb, dev);
2336 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2337 	}
2338 
2339 	return ret;
2340 }
2341 
2342 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2343 {
2344 	return __dev_forward_skb2(dev, skb, true);
2345 }
2346 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2347 
2348 /**
2349  * dev_forward_skb - loopback an skb to another netif
2350  *
2351  * @dev: destination network device
2352  * @skb: buffer to forward
2353  *
2354  * return values:
2355  *	NET_RX_SUCCESS	(no congestion)
2356  *	NET_RX_DROP     (packet was dropped, but freed)
2357  *
2358  * dev_forward_skb can be used for injecting an skb from the
2359  * start_xmit function of one device into the receive queue
2360  * of another device.
2361  *
2362  * The receiving device may be in another namespace, so
2363  * we have to clear all information in the skb that could
2364  * impact namespace isolation.
2365  */
2366 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2367 {
2368 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2369 }
2370 EXPORT_SYMBOL_GPL(dev_forward_skb);
2371 
2372 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2373 {
2374 	return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2375 }
2376 
2377 static inline int deliver_skb(struct sk_buff *skb,
2378 			      struct packet_type *pt_prev,
2379 			      struct net_device *orig_dev)
2380 {
2381 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2382 		return -ENOMEM;
2383 	refcount_inc(&skb->users);
2384 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2385 }
2386 
2387 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2388 					  struct packet_type **pt,
2389 					  struct net_device *orig_dev,
2390 					  __be16 type,
2391 					  struct list_head *ptype_list)
2392 {
2393 	struct packet_type *ptype, *pt_prev = *pt;
2394 
2395 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2396 		if (ptype->type != type)
2397 			continue;
2398 		if (pt_prev)
2399 			deliver_skb(skb, pt_prev, orig_dev);
2400 		pt_prev = ptype;
2401 	}
2402 	*pt = pt_prev;
2403 }
2404 
2405 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2406 {
2407 	if (!ptype->af_packet_priv || !skb->sk)
2408 		return false;
2409 
2410 	if (ptype->id_match)
2411 		return ptype->id_match(ptype, skb->sk);
2412 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2413 		return true;
2414 
2415 	return false;
2416 }
2417 
2418 /**
2419  * dev_nit_active - return true if any network interface taps are in use
2420  *
2421  * @dev: network device to check for the presence of taps
2422  */
2423 bool dev_nit_active(struct net_device *dev)
2424 {
2425 	return !list_empty(&net_hotdata.ptype_all) ||
2426 	       !list_empty(&dev->ptype_all);
2427 }
2428 EXPORT_SYMBOL_GPL(dev_nit_active);
2429 
2430 /*
2431  *	Support routine. Sends outgoing frames to any network
2432  *	taps currently in use.
2433  */
2434 
2435 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2436 {
2437 	struct list_head *ptype_list = &net_hotdata.ptype_all;
2438 	struct packet_type *ptype, *pt_prev = NULL;
2439 	struct sk_buff *skb2 = NULL;
2440 
2441 	rcu_read_lock();
2442 again:
2443 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2444 		if (READ_ONCE(ptype->ignore_outgoing))
2445 			continue;
2446 
2447 		/* Never send packets back to the socket
2448 		 * they originated from - MvS (miquels@drinkel.ow.org)
2449 		 */
2450 		if (skb_loop_sk(ptype, skb))
2451 			continue;
2452 
2453 		if (pt_prev) {
2454 			deliver_skb(skb2, pt_prev, skb->dev);
2455 			pt_prev = ptype;
2456 			continue;
2457 		}
2458 
2459 		/* need to clone skb, done only once */
2460 		skb2 = skb_clone(skb, GFP_ATOMIC);
2461 		if (!skb2)
2462 			goto out_unlock;
2463 
2464 		net_timestamp_set(skb2);
2465 
2466 		/* skb->nh should be correctly
2467 		 * set by sender, so that the second statement is
2468 		 * just protection against buggy protocols.
2469 		 */
2470 		skb_reset_mac_header(skb2);
2471 
2472 		if (skb_network_header(skb2) < skb2->data ||
2473 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2474 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2475 					     ntohs(skb2->protocol),
2476 					     dev->name);
2477 			skb_reset_network_header(skb2);
2478 		}
2479 
2480 		skb2->transport_header = skb2->network_header;
2481 		skb2->pkt_type = PACKET_OUTGOING;
2482 		pt_prev = ptype;
2483 	}
2484 
2485 	if (ptype_list == &net_hotdata.ptype_all) {
2486 		ptype_list = &dev->ptype_all;
2487 		goto again;
2488 	}
2489 out_unlock:
2490 	if (pt_prev) {
2491 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2492 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2493 		else
2494 			kfree_skb(skb2);
2495 	}
2496 	rcu_read_unlock();
2497 }
2498 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2499 
2500 /**
2501  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2502  * @dev: Network device
2503  * @txq: number of queues available
2504  *
2505  * If real_num_tx_queues is changed the tc mappings may no longer be
2506  * valid. To resolve this verify the tc mapping remains valid and if
2507  * not NULL the mapping. With no priorities mapping to this
2508  * offset/count pair it will no longer be used. In the worst case TC0
2509  * is invalid nothing can be done so disable priority mappings. If is
2510  * expected that drivers will fix this mapping if they can before
2511  * calling netif_set_real_num_tx_queues.
2512  */
2513 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2514 {
2515 	int i;
2516 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2517 
2518 	/* If TC0 is invalidated disable TC mapping */
2519 	if (tc->offset + tc->count > txq) {
2520 		netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2521 		dev->num_tc = 0;
2522 		return;
2523 	}
2524 
2525 	/* Invalidated prio to tc mappings set to TC0 */
2526 	for (i = 1; i < TC_BITMASK + 1; i++) {
2527 		int q = netdev_get_prio_tc_map(dev, i);
2528 
2529 		tc = &dev->tc_to_txq[q];
2530 		if (tc->offset + tc->count > txq) {
2531 			netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2532 				    i, q);
2533 			netdev_set_prio_tc_map(dev, i, 0);
2534 		}
2535 	}
2536 }
2537 
2538 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2539 {
2540 	if (dev->num_tc) {
2541 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2542 		int i;
2543 
2544 		/* walk through the TCs and see if it falls into any of them */
2545 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2546 			if ((txq - tc->offset) < tc->count)
2547 				return i;
2548 		}
2549 
2550 		/* didn't find it, just return -1 to indicate no match */
2551 		return -1;
2552 	}
2553 
2554 	return 0;
2555 }
2556 EXPORT_SYMBOL(netdev_txq_to_tc);
2557 
2558 #ifdef CONFIG_XPS
2559 static struct static_key xps_needed __read_mostly;
2560 static struct static_key xps_rxqs_needed __read_mostly;
2561 static DEFINE_MUTEX(xps_map_mutex);
2562 #define xmap_dereference(P)		\
2563 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2564 
2565 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2566 			     struct xps_dev_maps *old_maps, int tci, u16 index)
2567 {
2568 	struct xps_map *map = NULL;
2569 	int pos;
2570 
2571 	map = xmap_dereference(dev_maps->attr_map[tci]);
2572 	if (!map)
2573 		return false;
2574 
2575 	for (pos = map->len; pos--;) {
2576 		if (map->queues[pos] != index)
2577 			continue;
2578 
2579 		if (map->len > 1) {
2580 			map->queues[pos] = map->queues[--map->len];
2581 			break;
2582 		}
2583 
2584 		if (old_maps)
2585 			RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2586 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2587 		kfree_rcu(map, rcu);
2588 		return false;
2589 	}
2590 
2591 	return true;
2592 }
2593 
2594 static bool remove_xps_queue_cpu(struct net_device *dev,
2595 				 struct xps_dev_maps *dev_maps,
2596 				 int cpu, u16 offset, u16 count)
2597 {
2598 	int num_tc = dev_maps->num_tc;
2599 	bool active = false;
2600 	int tci;
2601 
2602 	for (tci = cpu * num_tc; num_tc--; tci++) {
2603 		int i, j;
2604 
2605 		for (i = count, j = offset; i--; j++) {
2606 			if (!remove_xps_queue(dev_maps, NULL, tci, j))
2607 				break;
2608 		}
2609 
2610 		active |= i < 0;
2611 	}
2612 
2613 	return active;
2614 }
2615 
2616 static void reset_xps_maps(struct net_device *dev,
2617 			   struct xps_dev_maps *dev_maps,
2618 			   enum xps_map_type type)
2619 {
2620 	static_key_slow_dec_cpuslocked(&xps_needed);
2621 	if (type == XPS_RXQS)
2622 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2623 
2624 	RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2625 
2626 	kfree_rcu(dev_maps, rcu);
2627 }
2628 
2629 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2630 			   u16 offset, u16 count)
2631 {
2632 	struct xps_dev_maps *dev_maps;
2633 	bool active = false;
2634 	int i, j;
2635 
2636 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2637 	if (!dev_maps)
2638 		return;
2639 
2640 	for (j = 0; j < dev_maps->nr_ids; j++)
2641 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2642 	if (!active)
2643 		reset_xps_maps(dev, dev_maps, type);
2644 
2645 	if (type == XPS_CPUS) {
2646 		for (i = offset + (count - 1); count--; i--)
2647 			netdev_queue_numa_node_write(
2648 				netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2649 	}
2650 }
2651 
2652 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2653 				   u16 count)
2654 {
2655 	if (!static_key_false(&xps_needed))
2656 		return;
2657 
2658 	cpus_read_lock();
2659 	mutex_lock(&xps_map_mutex);
2660 
2661 	if (static_key_false(&xps_rxqs_needed))
2662 		clean_xps_maps(dev, XPS_RXQS, offset, count);
2663 
2664 	clean_xps_maps(dev, XPS_CPUS, offset, count);
2665 
2666 	mutex_unlock(&xps_map_mutex);
2667 	cpus_read_unlock();
2668 }
2669 
2670 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2671 {
2672 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2673 }
2674 
2675 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2676 				      u16 index, bool is_rxqs_map)
2677 {
2678 	struct xps_map *new_map;
2679 	int alloc_len = XPS_MIN_MAP_ALLOC;
2680 	int i, pos;
2681 
2682 	for (pos = 0; map && pos < map->len; pos++) {
2683 		if (map->queues[pos] != index)
2684 			continue;
2685 		return map;
2686 	}
2687 
2688 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2689 	if (map) {
2690 		if (pos < map->alloc_len)
2691 			return map;
2692 
2693 		alloc_len = map->alloc_len * 2;
2694 	}
2695 
2696 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2697 	 *  map
2698 	 */
2699 	if (is_rxqs_map)
2700 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2701 	else
2702 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2703 				       cpu_to_node(attr_index));
2704 	if (!new_map)
2705 		return NULL;
2706 
2707 	for (i = 0; i < pos; i++)
2708 		new_map->queues[i] = map->queues[i];
2709 	new_map->alloc_len = alloc_len;
2710 	new_map->len = pos;
2711 
2712 	return new_map;
2713 }
2714 
2715 /* Copy xps maps at a given index */
2716 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2717 			      struct xps_dev_maps *new_dev_maps, int index,
2718 			      int tc, bool skip_tc)
2719 {
2720 	int i, tci = index * dev_maps->num_tc;
2721 	struct xps_map *map;
2722 
2723 	/* copy maps belonging to foreign traffic classes */
2724 	for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2725 		if (i == tc && skip_tc)
2726 			continue;
2727 
2728 		/* fill in the new device map from the old device map */
2729 		map = xmap_dereference(dev_maps->attr_map[tci]);
2730 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2731 	}
2732 }
2733 
2734 /* Must be called under cpus_read_lock */
2735 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2736 			  u16 index, enum xps_map_type type)
2737 {
2738 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2739 	const unsigned long *online_mask = NULL;
2740 	bool active = false, copy = false;
2741 	int i, j, tci, numa_node_id = -2;
2742 	int maps_sz, num_tc = 1, tc = 0;
2743 	struct xps_map *map, *new_map;
2744 	unsigned int nr_ids;
2745 
2746 	WARN_ON_ONCE(index >= dev->num_tx_queues);
2747 
2748 	if (dev->num_tc) {
2749 		/* Do not allow XPS on subordinate device directly */
2750 		num_tc = dev->num_tc;
2751 		if (num_tc < 0)
2752 			return -EINVAL;
2753 
2754 		/* If queue belongs to subordinate dev use its map */
2755 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2756 
2757 		tc = netdev_txq_to_tc(dev, index);
2758 		if (tc < 0)
2759 			return -EINVAL;
2760 	}
2761 
2762 	mutex_lock(&xps_map_mutex);
2763 
2764 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2765 	if (type == XPS_RXQS) {
2766 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2767 		nr_ids = dev->num_rx_queues;
2768 	} else {
2769 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2770 		if (num_possible_cpus() > 1)
2771 			online_mask = cpumask_bits(cpu_online_mask);
2772 		nr_ids = nr_cpu_ids;
2773 	}
2774 
2775 	if (maps_sz < L1_CACHE_BYTES)
2776 		maps_sz = L1_CACHE_BYTES;
2777 
2778 	/* The old dev_maps could be larger or smaller than the one we're
2779 	 * setting up now, as dev->num_tc or nr_ids could have been updated in
2780 	 * between. We could try to be smart, but let's be safe instead and only
2781 	 * copy foreign traffic classes if the two map sizes match.
2782 	 */
2783 	if (dev_maps &&
2784 	    dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2785 		copy = true;
2786 
2787 	/* allocate memory for queue storage */
2788 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2789 	     j < nr_ids;) {
2790 		if (!new_dev_maps) {
2791 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2792 			if (!new_dev_maps) {
2793 				mutex_unlock(&xps_map_mutex);
2794 				return -ENOMEM;
2795 			}
2796 
2797 			new_dev_maps->nr_ids = nr_ids;
2798 			new_dev_maps->num_tc = num_tc;
2799 		}
2800 
2801 		tci = j * num_tc + tc;
2802 		map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2803 
2804 		map = expand_xps_map(map, j, index, type == XPS_RXQS);
2805 		if (!map)
2806 			goto error;
2807 
2808 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2809 	}
2810 
2811 	if (!new_dev_maps)
2812 		goto out_no_new_maps;
2813 
2814 	if (!dev_maps) {
2815 		/* Increment static keys at most once per type */
2816 		static_key_slow_inc_cpuslocked(&xps_needed);
2817 		if (type == XPS_RXQS)
2818 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2819 	}
2820 
2821 	for (j = 0; j < nr_ids; j++) {
2822 		bool skip_tc = false;
2823 
2824 		tci = j * num_tc + tc;
2825 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2826 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2827 			/* add tx-queue to CPU/rx-queue maps */
2828 			int pos = 0;
2829 
2830 			skip_tc = true;
2831 
2832 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2833 			while ((pos < map->len) && (map->queues[pos] != index))
2834 				pos++;
2835 
2836 			if (pos == map->len)
2837 				map->queues[map->len++] = index;
2838 #ifdef CONFIG_NUMA
2839 			if (type == XPS_CPUS) {
2840 				if (numa_node_id == -2)
2841 					numa_node_id = cpu_to_node(j);
2842 				else if (numa_node_id != cpu_to_node(j))
2843 					numa_node_id = -1;
2844 			}
2845 #endif
2846 		}
2847 
2848 		if (copy)
2849 			xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2850 					  skip_tc);
2851 	}
2852 
2853 	rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2854 
2855 	/* Cleanup old maps */
2856 	if (!dev_maps)
2857 		goto out_no_old_maps;
2858 
2859 	for (j = 0; j < dev_maps->nr_ids; j++) {
2860 		for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2861 			map = xmap_dereference(dev_maps->attr_map[tci]);
2862 			if (!map)
2863 				continue;
2864 
2865 			if (copy) {
2866 				new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2867 				if (map == new_map)
2868 					continue;
2869 			}
2870 
2871 			RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2872 			kfree_rcu(map, rcu);
2873 		}
2874 	}
2875 
2876 	old_dev_maps = dev_maps;
2877 
2878 out_no_old_maps:
2879 	dev_maps = new_dev_maps;
2880 	active = true;
2881 
2882 out_no_new_maps:
2883 	if (type == XPS_CPUS)
2884 		/* update Tx queue numa node */
2885 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2886 					     (numa_node_id >= 0) ?
2887 					     numa_node_id : NUMA_NO_NODE);
2888 
2889 	if (!dev_maps)
2890 		goto out_no_maps;
2891 
2892 	/* removes tx-queue from unused CPUs/rx-queues */
2893 	for (j = 0; j < dev_maps->nr_ids; j++) {
2894 		tci = j * dev_maps->num_tc;
2895 
2896 		for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2897 			if (i == tc &&
2898 			    netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2899 			    netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2900 				continue;
2901 
2902 			active |= remove_xps_queue(dev_maps,
2903 						   copy ? old_dev_maps : NULL,
2904 						   tci, index);
2905 		}
2906 	}
2907 
2908 	if (old_dev_maps)
2909 		kfree_rcu(old_dev_maps, rcu);
2910 
2911 	/* free map if not active */
2912 	if (!active)
2913 		reset_xps_maps(dev, dev_maps, type);
2914 
2915 out_no_maps:
2916 	mutex_unlock(&xps_map_mutex);
2917 
2918 	return 0;
2919 error:
2920 	/* remove any maps that we added */
2921 	for (j = 0; j < nr_ids; j++) {
2922 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2923 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2924 			map = copy ?
2925 			      xmap_dereference(dev_maps->attr_map[tci]) :
2926 			      NULL;
2927 			if (new_map && new_map != map)
2928 				kfree(new_map);
2929 		}
2930 	}
2931 
2932 	mutex_unlock(&xps_map_mutex);
2933 
2934 	kfree(new_dev_maps);
2935 	return -ENOMEM;
2936 }
2937 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2938 
2939 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2940 			u16 index)
2941 {
2942 	int ret;
2943 
2944 	cpus_read_lock();
2945 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2946 	cpus_read_unlock();
2947 
2948 	return ret;
2949 }
2950 EXPORT_SYMBOL(netif_set_xps_queue);
2951 
2952 #endif
2953 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2954 {
2955 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2956 
2957 	/* Unbind any subordinate channels */
2958 	while (txq-- != &dev->_tx[0]) {
2959 		if (txq->sb_dev)
2960 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2961 	}
2962 }
2963 
2964 void netdev_reset_tc(struct net_device *dev)
2965 {
2966 #ifdef CONFIG_XPS
2967 	netif_reset_xps_queues_gt(dev, 0);
2968 #endif
2969 	netdev_unbind_all_sb_channels(dev);
2970 
2971 	/* Reset TC configuration of device */
2972 	dev->num_tc = 0;
2973 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2974 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2975 }
2976 EXPORT_SYMBOL(netdev_reset_tc);
2977 
2978 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2979 {
2980 	if (tc >= dev->num_tc)
2981 		return -EINVAL;
2982 
2983 #ifdef CONFIG_XPS
2984 	netif_reset_xps_queues(dev, offset, count);
2985 #endif
2986 	dev->tc_to_txq[tc].count = count;
2987 	dev->tc_to_txq[tc].offset = offset;
2988 	return 0;
2989 }
2990 EXPORT_SYMBOL(netdev_set_tc_queue);
2991 
2992 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2993 {
2994 	if (num_tc > TC_MAX_QUEUE)
2995 		return -EINVAL;
2996 
2997 #ifdef CONFIG_XPS
2998 	netif_reset_xps_queues_gt(dev, 0);
2999 #endif
3000 	netdev_unbind_all_sb_channels(dev);
3001 
3002 	dev->num_tc = num_tc;
3003 	return 0;
3004 }
3005 EXPORT_SYMBOL(netdev_set_num_tc);
3006 
3007 void netdev_unbind_sb_channel(struct net_device *dev,
3008 			      struct net_device *sb_dev)
3009 {
3010 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
3011 
3012 #ifdef CONFIG_XPS
3013 	netif_reset_xps_queues_gt(sb_dev, 0);
3014 #endif
3015 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
3016 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
3017 
3018 	while (txq-- != &dev->_tx[0]) {
3019 		if (txq->sb_dev == sb_dev)
3020 			txq->sb_dev = NULL;
3021 	}
3022 }
3023 EXPORT_SYMBOL(netdev_unbind_sb_channel);
3024 
3025 int netdev_bind_sb_channel_queue(struct net_device *dev,
3026 				 struct net_device *sb_dev,
3027 				 u8 tc, u16 count, u16 offset)
3028 {
3029 	/* Make certain the sb_dev and dev are already configured */
3030 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
3031 		return -EINVAL;
3032 
3033 	/* We cannot hand out queues we don't have */
3034 	if ((offset + count) > dev->real_num_tx_queues)
3035 		return -EINVAL;
3036 
3037 	/* Record the mapping */
3038 	sb_dev->tc_to_txq[tc].count = count;
3039 	sb_dev->tc_to_txq[tc].offset = offset;
3040 
3041 	/* Provide a way for Tx queue to find the tc_to_txq map or
3042 	 * XPS map for itself.
3043 	 */
3044 	while (count--)
3045 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
3046 
3047 	return 0;
3048 }
3049 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
3050 
3051 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
3052 {
3053 	/* Do not use a multiqueue device to represent a subordinate channel */
3054 	if (netif_is_multiqueue(dev))
3055 		return -ENODEV;
3056 
3057 	/* We allow channels 1 - 32767 to be used for subordinate channels.
3058 	 * Channel 0 is meant to be "native" mode and used only to represent
3059 	 * the main root device. We allow writing 0 to reset the device back
3060 	 * to normal mode after being used as a subordinate channel.
3061 	 */
3062 	if (channel > S16_MAX)
3063 		return -EINVAL;
3064 
3065 	dev->num_tc = -channel;
3066 
3067 	return 0;
3068 }
3069 EXPORT_SYMBOL(netdev_set_sb_channel);
3070 
3071 /*
3072  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
3073  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
3074  */
3075 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
3076 {
3077 	bool disabling;
3078 	int rc;
3079 
3080 	disabling = txq < dev->real_num_tx_queues;
3081 
3082 	if (txq < 1 || txq > dev->num_tx_queues)
3083 		return -EINVAL;
3084 
3085 	if (dev->reg_state == NETREG_REGISTERED ||
3086 	    dev->reg_state == NETREG_UNREGISTERING) {
3087 		ASSERT_RTNL();
3088 
3089 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
3090 						  txq);
3091 		if (rc)
3092 			return rc;
3093 
3094 		if (dev->num_tc)
3095 			netif_setup_tc(dev, txq);
3096 
3097 		net_shaper_set_real_num_tx_queues(dev, txq);
3098 
3099 		dev_qdisc_change_real_num_tx(dev, txq);
3100 
3101 		dev->real_num_tx_queues = txq;
3102 
3103 		if (disabling) {
3104 			synchronize_net();
3105 			qdisc_reset_all_tx_gt(dev, txq);
3106 #ifdef CONFIG_XPS
3107 			netif_reset_xps_queues_gt(dev, txq);
3108 #endif
3109 		}
3110 	} else {
3111 		dev->real_num_tx_queues = txq;
3112 	}
3113 
3114 	return 0;
3115 }
3116 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
3117 
3118 #ifdef CONFIG_SYSFS
3119 /**
3120  *	netif_set_real_num_rx_queues - set actual number of RX queues used
3121  *	@dev: Network device
3122  *	@rxq: Actual number of RX queues
3123  *
3124  *	This must be called either with the rtnl_lock held or before
3125  *	registration of the net device.  Returns 0 on success, or a
3126  *	negative error code.  If called before registration, it always
3127  *	succeeds.
3128  */
3129 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
3130 {
3131 	int rc;
3132 
3133 	if (rxq < 1 || rxq > dev->num_rx_queues)
3134 		return -EINVAL;
3135 
3136 	if (dev->reg_state == NETREG_REGISTERED) {
3137 		ASSERT_RTNL();
3138 
3139 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3140 						  rxq);
3141 		if (rc)
3142 			return rc;
3143 	}
3144 
3145 	dev->real_num_rx_queues = rxq;
3146 	return 0;
3147 }
3148 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3149 #endif
3150 
3151 /**
3152  *	netif_set_real_num_queues - set actual number of RX and TX queues used
3153  *	@dev: Network device
3154  *	@txq: Actual number of TX queues
3155  *	@rxq: Actual number of RX queues
3156  *
3157  *	Set the real number of both TX and RX queues.
3158  *	Does nothing if the number of queues is already correct.
3159  */
3160 int netif_set_real_num_queues(struct net_device *dev,
3161 			      unsigned int txq, unsigned int rxq)
3162 {
3163 	unsigned int old_rxq = dev->real_num_rx_queues;
3164 	int err;
3165 
3166 	if (txq < 1 || txq > dev->num_tx_queues ||
3167 	    rxq < 1 || rxq > dev->num_rx_queues)
3168 		return -EINVAL;
3169 
3170 	/* Start from increases, so the error path only does decreases -
3171 	 * decreases can't fail.
3172 	 */
3173 	if (rxq > dev->real_num_rx_queues) {
3174 		err = netif_set_real_num_rx_queues(dev, rxq);
3175 		if (err)
3176 			return err;
3177 	}
3178 	if (txq > dev->real_num_tx_queues) {
3179 		err = netif_set_real_num_tx_queues(dev, txq);
3180 		if (err)
3181 			goto undo_rx;
3182 	}
3183 	if (rxq < dev->real_num_rx_queues)
3184 		WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3185 	if (txq < dev->real_num_tx_queues)
3186 		WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3187 
3188 	return 0;
3189 undo_rx:
3190 	WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3191 	return err;
3192 }
3193 EXPORT_SYMBOL(netif_set_real_num_queues);
3194 
3195 /**
3196  * netif_set_tso_max_size() - set the max size of TSO frames supported
3197  * @dev:	netdev to update
3198  * @size:	max skb->len of a TSO frame
3199  *
3200  * Set the limit on the size of TSO super-frames the device can handle.
3201  * Unless explicitly set the stack will assume the value of
3202  * %GSO_LEGACY_MAX_SIZE.
3203  */
3204 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3205 {
3206 	dev->tso_max_size = min(GSO_MAX_SIZE, size);
3207 	if (size < READ_ONCE(dev->gso_max_size))
3208 		netif_set_gso_max_size(dev, size);
3209 	if (size < READ_ONCE(dev->gso_ipv4_max_size))
3210 		netif_set_gso_ipv4_max_size(dev, size);
3211 }
3212 EXPORT_SYMBOL(netif_set_tso_max_size);
3213 
3214 /**
3215  * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3216  * @dev:	netdev to update
3217  * @segs:	max number of TCP segments
3218  *
3219  * Set the limit on the number of TCP segments the device can generate from
3220  * a single TSO super-frame.
3221  * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3222  */
3223 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3224 {
3225 	dev->tso_max_segs = segs;
3226 	if (segs < READ_ONCE(dev->gso_max_segs))
3227 		netif_set_gso_max_segs(dev, segs);
3228 }
3229 EXPORT_SYMBOL(netif_set_tso_max_segs);
3230 
3231 /**
3232  * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3233  * @to:		netdev to update
3234  * @from:	netdev from which to copy the limits
3235  */
3236 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3237 {
3238 	netif_set_tso_max_size(to, from->tso_max_size);
3239 	netif_set_tso_max_segs(to, from->tso_max_segs);
3240 }
3241 EXPORT_SYMBOL(netif_inherit_tso_max);
3242 
3243 /**
3244  * netif_get_num_default_rss_queues - default number of RSS queues
3245  *
3246  * Default value is the number of physical cores if there are only 1 or 2, or
3247  * divided by 2 if there are more.
3248  */
3249 int netif_get_num_default_rss_queues(void)
3250 {
3251 	cpumask_var_t cpus;
3252 	int cpu, count = 0;
3253 
3254 	if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3255 		return 1;
3256 
3257 	cpumask_copy(cpus, cpu_online_mask);
3258 	for_each_cpu(cpu, cpus) {
3259 		++count;
3260 		cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3261 	}
3262 	free_cpumask_var(cpus);
3263 
3264 	return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3265 }
3266 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3267 
3268 static void __netif_reschedule(struct Qdisc *q)
3269 {
3270 	struct softnet_data *sd;
3271 	unsigned long flags;
3272 
3273 	local_irq_save(flags);
3274 	sd = this_cpu_ptr(&softnet_data);
3275 	q->next_sched = NULL;
3276 	*sd->output_queue_tailp = q;
3277 	sd->output_queue_tailp = &q->next_sched;
3278 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3279 	local_irq_restore(flags);
3280 }
3281 
3282 void __netif_schedule(struct Qdisc *q)
3283 {
3284 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3285 		__netif_reschedule(q);
3286 }
3287 EXPORT_SYMBOL(__netif_schedule);
3288 
3289 struct dev_kfree_skb_cb {
3290 	enum skb_drop_reason reason;
3291 };
3292 
3293 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3294 {
3295 	return (struct dev_kfree_skb_cb *)skb->cb;
3296 }
3297 
3298 void netif_schedule_queue(struct netdev_queue *txq)
3299 {
3300 	rcu_read_lock();
3301 	if (!netif_xmit_stopped(txq)) {
3302 		struct Qdisc *q = rcu_dereference(txq->qdisc);
3303 
3304 		__netif_schedule(q);
3305 	}
3306 	rcu_read_unlock();
3307 }
3308 EXPORT_SYMBOL(netif_schedule_queue);
3309 
3310 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3311 {
3312 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3313 		struct Qdisc *q;
3314 
3315 		rcu_read_lock();
3316 		q = rcu_dereference(dev_queue->qdisc);
3317 		__netif_schedule(q);
3318 		rcu_read_unlock();
3319 	}
3320 }
3321 EXPORT_SYMBOL(netif_tx_wake_queue);
3322 
3323 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3324 {
3325 	unsigned long flags;
3326 
3327 	if (unlikely(!skb))
3328 		return;
3329 
3330 	if (likely(refcount_read(&skb->users) == 1)) {
3331 		smp_rmb();
3332 		refcount_set(&skb->users, 0);
3333 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3334 		return;
3335 	}
3336 	get_kfree_skb_cb(skb)->reason = reason;
3337 	local_irq_save(flags);
3338 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3339 	__this_cpu_write(softnet_data.completion_queue, skb);
3340 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3341 	local_irq_restore(flags);
3342 }
3343 EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
3344 
3345 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3346 {
3347 	if (in_hardirq() || irqs_disabled())
3348 		dev_kfree_skb_irq_reason(skb, reason);
3349 	else
3350 		kfree_skb_reason(skb, reason);
3351 }
3352 EXPORT_SYMBOL(dev_kfree_skb_any_reason);
3353 
3354 
3355 /**
3356  * netif_device_detach - mark device as removed
3357  * @dev: network device
3358  *
3359  * Mark device as removed from system and therefore no longer available.
3360  */
3361 void netif_device_detach(struct net_device *dev)
3362 {
3363 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3364 	    netif_running(dev)) {
3365 		netif_tx_stop_all_queues(dev);
3366 	}
3367 }
3368 EXPORT_SYMBOL(netif_device_detach);
3369 
3370 /**
3371  * netif_device_attach - mark device as attached
3372  * @dev: network device
3373  *
3374  * Mark device as attached from system and restart if needed.
3375  */
3376 void netif_device_attach(struct net_device *dev)
3377 {
3378 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3379 	    netif_running(dev)) {
3380 		netif_tx_wake_all_queues(dev);
3381 		netdev_watchdog_up(dev);
3382 	}
3383 }
3384 EXPORT_SYMBOL(netif_device_attach);
3385 
3386 /*
3387  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3388  * to be used as a distribution range.
3389  */
3390 static u16 skb_tx_hash(const struct net_device *dev,
3391 		       const struct net_device *sb_dev,
3392 		       struct sk_buff *skb)
3393 {
3394 	u32 hash;
3395 	u16 qoffset = 0;
3396 	u16 qcount = dev->real_num_tx_queues;
3397 
3398 	if (dev->num_tc) {
3399 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3400 
3401 		qoffset = sb_dev->tc_to_txq[tc].offset;
3402 		qcount = sb_dev->tc_to_txq[tc].count;
3403 		if (unlikely(!qcount)) {
3404 			net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3405 					     sb_dev->name, qoffset, tc);
3406 			qoffset = 0;
3407 			qcount = dev->real_num_tx_queues;
3408 		}
3409 	}
3410 
3411 	if (skb_rx_queue_recorded(skb)) {
3412 		DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3413 		hash = skb_get_rx_queue(skb);
3414 		if (hash >= qoffset)
3415 			hash -= qoffset;
3416 		while (unlikely(hash >= qcount))
3417 			hash -= qcount;
3418 		return hash + qoffset;
3419 	}
3420 
3421 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3422 }
3423 
3424 void skb_warn_bad_offload(const struct sk_buff *skb)
3425 {
3426 	static const netdev_features_t null_features;
3427 	struct net_device *dev = skb->dev;
3428 	const char *name = "";
3429 
3430 	if (!net_ratelimit())
3431 		return;
3432 
3433 	if (dev) {
3434 		if (dev->dev.parent)
3435 			name = dev_driver_string(dev->dev.parent);
3436 		else
3437 			name = netdev_name(dev);
3438 	}
3439 	skb_dump(KERN_WARNING, skb, false);
3440 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3441 	     name, dev ? &dev->features : &null_features,
3442 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3443 }
3444 
3445 /*
3446  * Invalidate hardware checksum when packet is to be mangled, and
3447  * complete checksum manually on outgoing path.
3448  */
3449 int skb_checksum_help(struct sk_buff *skb)
3450 {
3451 	__wsum csum;
3452 	int ret = 0, offset;
3453 
3454 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3455 		goto out_set_summed;
3456 
3457 	if (unlikely(skb_is_gso(skb))) {
3458 		skb_warn_bad_offload(skb);
3459 		return -EINVAL;
3460 	}
3461 
3462 	if (!skb_frags_readable(skb)) {
3463 		return -EFAULT;
3464 	}
3465 
3466 	/* Before computing a checksum, we should make sure no frag could
3467 	 * be modified by an external entity : checksum could be wrong.
3468 	 */
3469 	if (skb_has_shared_frag(skb)) {
3470 		ret = __skb_linearize(skb);
3471 		if (ret)
3472 			goto out;
3473 	}
3474 
3475 	offset = skb_checksum_start_offset(skb);
3476 	ret = -EINVAL;
3477 	if (unlikely(offset >= skb_headlen(skb))) {
3478 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3479 		WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n",
3480 			  offset, skb_headlen(skb));
3481 		goto out;
3482 	}
3483 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3484 
3485 	offset += skb->csum_offset;
3486 	if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) {
3487 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3488 		WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n",
3489 			  offset + sizeof(__sum16), skb_headlen(skb));
3490 		goto out;
3491 	}
3492 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3493 	if (ret)
3494 		goto out;
3495 
3496 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3497 out_set_summed:
3498 	skb->ip_summed = CHECKSUM_NONE;
3499 out:
3500 	return ret;
3501 }
3502 EXPORT_SYMBOL(skb_checksum_help);
3503 
3504 int skb_crc32c_csum_help(struct sk_buff *skb)
3505 {
3506 	__le32 crc32c_csum;
3507 	int ret = 0, offset, start;
3508 
3509 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3510 		goto out;
3511 
3512 	if (unlikely(skb_is_gso(skb)))
3513 		goto out;
3514 
3515 	/* Before computing a checksum, we should make sure no frag could
3516 	 * be modified by an external entity : checksum could be wrong.
3517 	 */
3518 	if (unlikely(skb_has_shared_frag(skb))) {
3519 		ret = __skb_linearize(skb);
3520 		if (ret)
3521 			goto out;
3522 	}
3523 	start = skb_checksum_start_offset(skb);
3524 	offset = start + offsetof(struct sctphdr, checksum);
3525 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3526 		ret = -EINVAL;
3527 		goto out;
3528 	}
3529 
3530 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3531 	if (ret)
3532 		goto out;
3533 
3534 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3535 						  skb->len - start, ~(__u32)0,
3536 						  crc32c_csum_stub));
3537 	*(__le32 *)(skb->data + offset) = crc32c_csum;
3538 	skb_reset_csum_not_inet(skb);
3539 out:
3540 	return ret;
3541 }
3542 EXPORT_SYMBOL(skb_crc32c_csum_help);
3543 
3544 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3545 {
3546 	__be16 type = skb->protocol;
3547 
3548 	/* Tunnel gso handlers can set protocol to ethernet. */
3549 	if (type == htons(ETH_P_TEB)) {
3550 		struct ethhdr *eth;
3551 
3552 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3553 			return 0;
3554 
3555 		eth = (struct ethhdr *)skb->data;
3556 		type = eth->h_proto;
3557 	}
3558 
3559 	return vlan_get_protocol_and_depth(skb, type, depth);
3560 }
3561 
3562 
3563 /* Take action when hardware reception checksum errors are detected. */
3564 #ifdef CONFIG_BUG
3565 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3566 {
3567 	netdev_err(dev, "hw csum failure\n");
3568 	skb_dump(KERN_ERR, skb, true);
3569 	dump_stack();
3570 }
3571 
3572 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3573 {
3574 	DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3575 }
3576 EXPORT_SYMBOL(netdev_rx_csum_fault);
3577 #endif
3578 
3579 /* XXX: check that highmem exists at all on the given machine. */
3580 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3581 {
3582 #ifdef CONFIG_HIGHMEM
3583 	int i;
3584 
3585 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3586 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3587 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3588 			struct page *page = skb_frag_page(frag);
3589 
3590 			if (page && PageHighMem(page))
3591 				return 1;
3592 		}
3593 	}
3594 #endif
3595 	return 0;
3596 }
3597 
3598 /* If MPLS offload request, verify we are testing hardware MPLS features
3599  * instead of standard features for the netdev.
3600  */
3601 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3602 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3603 					   netdev_features_t features,
3604 					   __be16 type)
3605 {
3606 	if (eth_p_mpls(type))
3607 		features &= skb->dev->mpls_features;
3608 
3609 	return features;
3610 }
3611 #else
3612 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3613 					   netdev_features_t features,
3614 					   __be16 type)
3615 {
3616 	return features;
3617 }
3618 #endif
3619 
3620 static netdev_features_t harmonize_features(struct sk_buff *skb,
3621 	netdev_features_t features)
3622 {
3623 	__be16 type;
3624 
3625 	type = skb_network_protocol(skb, NULL);
3626 	features = net_mpls_features(skb, features, type);
3627 
3628 	if (skb->ip_summed != CHECKSUM_NONE &&
3629 	    !can_checksum_protocol(features, type)) {
3630 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3631 	}
3632 	if (illegal_highdma(skb->dev, skb))
3633 		features &= ~NETIF_F_SG;
3634 
3635 	return features;
3636 }
3637 
3638 netdev_features_t passthru_features_check(struct sk_buff *skb,
3639 					  struct net_device *dev,
3640 					  netdev_features_t features)
3641 {
3642 	return features;
3643 }
3644 EXPORT_SYMBOL(passthru_features_check);
3645 
3646 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3647 					     struct net_device *dev,
3648 					     netdev_features_t features)
3649 {
3650 	return vlan_features_check(skb, features);
3651 }
3652 
3653 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3654 					    struct net_device *dev,
3655 					    netdev_features_t features)
3656 {
3657 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3658 
3659 	if (gso_segs > READ_ONCE(dev->gso_max_segs))
3660 		return features & ~NETIF_F_GSO_MASK;
3661 
3662 	if (unlikely(skb->len >= netif_get_gso_max_size(dev, skb)))
3663 		return features & ~NETIF_F_GSO_MASK;
3664 
3665 	if (!skb_shinfo(skb)->gso_type) {
3666 		skb_warn_bad_offload(skb);
3667 		return features & ~NETIF_F_GSO_MASK;
3668 	}
3669 
3670 	/* Support for GSO partial features requires software
3671 	 * intervention before we can actually process the packets
3672 	 * so we need to strip support for any partial features now
3673 	 * and we can pull them back in after we have partially
3674 	 * segmented the frame.
3675 	 */
3676 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3677 		features &= ~dev->gso_partial_features;
3678 
3679 	/* Make sure to clear the IPv4 ID mangling feature if the
3680 	 * IPv4 header has the potential to be fragmented.
3681 	 */
3682 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3683 		struct iphdr *iph = skb->encapsulation ?
3684 				    inner_ip_hdr(skb) : ip_hdr(skb);
3685 
3686 		if (!(iph->frag_off & htons(IP_DF)))
3687 			features &= ~NETIF_F_TSO_MANGLEID;
3688 	}
3689 
3690 	return features;
3691 }
3692 
3693 netdev_features_t netif_skb_features(struct sk_buff *skb)
3694 {
3695 	struct net_device *dev = skb->dev;
3696 	netdev_features_t features = dev->features;
3697 
3698 	if (skb_is_gso(skb))
3699 		features = gso_features_check(skb, dev, features);
3700 
3701 	/* If encapsulation offload request, verify we are testing
3702 	 * hardware encapsulation features instead of standard
3703 	 * features for the netdev
3704 	 */
3705 	if (skb->encapsulation)
3706 		features &= dev->hw_enc_features;
3707 
3708 	if (skb_vlan_tagged(skb))
3709 		features = netdev_intersect_features(features,
3710 						     dev->vlan_features |
3711 						     NETIF_F_HW_VLAN_CTAG_TX |
3712 						     NETIF_F_HW_VLAN_STAG_TX);
3713 
3714 	if (dev->netdev_ops->ndo_features_check)
3715 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3716 								features);
3717 	else
3718 		features &= dflt_features_check(skb, dev, features);
3719 
3720 	return harmonize_features(skb, features);
3721 }
3722 EXPORT_SYMBOL(netif_skb_features);
3723 
3724 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3725 		    struct netdev_queue *txq, bool more)
3726 {
3727 	unsigned int len;
3728 	int rc;
3729 
3730 	if (dev_nit_active(dev))
3731 		dev_queue_xmit_nit(skb, dev);
3732 
3733 	len = skb->len;
3734 	trace_net_dev_start_xmit(skb, dev);
3735 	rc = netdev_start_xmit(skb, dev, txq, more);
3736 	trace_net_dev_xmit(skb, rc, dev, len);
3737 
3738 	return rc;
3739 }
3740 
3741 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3742 				    struct netdev_queue *txq, int *ret)
3743 {
3744 	struct sk_buff *skb = first;
3745 	int rc = NETDEV_TX_OK;
3746 
3747 	while (skb) {
3748 		struct sk_buff *next = skb->next;
3749 
3750 		skb_mark_not_on_list(skb);
3751 		rc = xmit_one(skb, dev, txq, next != NULL);
3752 		if (unlikely(!dev_xmit_complete(rc))) {
3753 			skb->next = next;
3754 			goto out;
3755 		}
3756 
3757 		skb = next;
3758 		if (netif_tx_queue_stopped(txq) && skb) {
3759 			rc = NETDEV_TX_BUSY;
3760 			break;
3761 		}
3762 	}
3763 
3764 out:
3765 	*ret = rc;
3766 	return skb;
3767 }
3768 
3769 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3770 					  netdev_features_t features)
3771 {
3772 	if (skb_vlan_tag_present(skb) &&
3773 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3774 		skb = __vlan_hwaccel_push_inside(skb);
3775 	return skb;
3776 }
3777 
3778 int skb_csum_hwoffload_help(struct sk_buff *skb,
3779 			    const netdev_features_t features)
3780 {
3781 	if (unlikely(skb_csum_is_sctp(skb)))
3782 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3783 			skb_crc32c_csum_help(skb);
3784 
3785 	if (features & NETIF_F_HW_CSUM)
3786 		return 0;
3787 
3788 	if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3789 		if (vlan_get_protocol(skb) == htons(ETH_P_IPV6) &&
3790 		    skb_network_header_len(skb) != sizeof(struct ipv6hdr) &&
3791 		    !ipv6_has_hopopt_jumbo(skb))
3792 			goto sw_checksum;
3793 
3794 		switch (skb->csum_offset) {
3795 		case offsetof(struct tcphdr, check):
3796 		case offsetof(struct udphdr, check):
3797 			return 0;
3798 		}
3799 	}
3800 
3801 sw_checksum:
3802 	return skb_checksum_help(skb);
3803 }
3804 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3805 
3806 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3807 {
3808 	netdev_features_t features;
3809 
3810 	features = netif_skb_features(skb);
3811 	skb = validate_xmit_vlan(skb, features);
3812 	if (unlikely(!skb))
3813 		goto out_null;
3814 
3815 	skb = sk_validate_xmit_skb(skb, dev);
3816 	if (unlikely(!skb))
3817 		goto out_null;
3818 
3819 	if (netif_needs_gso(skb, features)) {
3820 		struct sk_buff *segs;
3821 
3822 		segs = skb_gso_segment(skb, features);
3823 		if (IS_ERR(segs)) {
3824 			goto out_kfree_skb;
3825 		} else if (segs) {
3826 			consume_skb(skb);
3827 			skb = segs;
3828 		}
3829 	} else {
3830 		if (skb_needs_linearize(skb, features) &&
3831 		    __skb_linearize(skb))
3832 			goto out_kfree_skb;
3833 
3834 		/* If packet is not checksummed and device does not
3835 		 * support checksumming for this protocol, complete
3836 		 * checksumming here.
3837 		 */
3838 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3839 			if (skb->encapsulation)
3840 				skb_set_inner_transport_header(skb,
3841 							       skb_checksum_start_offset(skb));
3842 			else
3843 				skb_set_transport_header(skb,
3844 							 skb_checksum_start_offset(skb));
3845 			if (skb_csum_hwoffload_help(skb, features))
3846 				goto out_kfree_skb;
3847 		}
3848 	}
3849 
3850 	skb = validate_xmit_xfrm(skb, features, again);
3851 
3852 	return skb;
3853 
3854 out_kfree_skb:
3855 	kfree_skb(skb);
3856 out_null:
3857 	dev_core_stats_tx_dropped_inc(dev);
3858 	return NULL;
3859 }
3860 
3861 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3862 {
3863 	struct sk_buff *next, *head = NULL, *tail;
3864 
3865 	for (; skb != NULL; skb = next) {
3866 		next = skb->next;
3867 		skb_mark_not_on_list(skb);
3868 
3869 		/* in case skb won't be segmented, point to itself */
3870 		skb->prev = skb;
3871 
3872 		skb = validate_xmit_skb(skb, dev, again);
3873 		if (!skb)
3874 			continue;
3875 
3876 		if (!head)
3877 			head = skb;
3878 		else
3879 			tail->next = skb;
3880 		/* If skb was segmented, skb->prev points to
3881 		 * the last segment. If not, it still contains skb.
3882 		 */
3883 		tail = skb->prev;
3884 	}
3885 	return head;
3886 }
3887 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3888 
3889 static void qdisc_pkt_len_init(struct sk_buff *skb)
3890 {
3891 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3892 
3893 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3894 
3895 	/* To get more precise estimation of bytes sent on wire,
3896 	 * we add to pkt_len the headers size of all segments
3897 	 */
3898 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3899 		u16 gso_segs = shinfo->gso_segs;
3900 		unsigned int hdr_len;
3901 
3902 		/* mac layer + network layer */
3903 		hdr_len = skb_transport_offset(skb);
3904 
3905 		/* + transport layer */
3906 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3907 			const struct tcphdr *th;
3908 			struct tcphdr _tcphdr;
3909 
3910 			th = skb_header_pointer(skb, hdr_len,
3911 						sizeof(_tcphdr), &_tcphdr);
3912 			if (likely(th))
3913 				hdr_len += __tcp_hdrlen(th);
3914 		} else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
3915 			struct udphdr _udphdr;
3916 
3917 			if (skb_header_pointer(skb, hdr_len,
3918 					       sizeof(_udphdr), &_udphdr))
3919 				hdr_len += sizeof(struct udphdr);
3920 		}
3921 
3922 		if (unlikely(shinfo->gso_type & SKB_GSO_DODGY)) {
3923 			int payload = skb->len - hdr_len;
3924 
3925 			/* Malicious packet. */
3926 			if (payload <= 0)
3927 				return;
3928 			gso_segs = DIV_ROUND_UP(payload, shinfo->gso_size);
3929 		}
3930 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3931 	}
3932 }
3933 
3934 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3935 			     struct sk_buff **to_free,
3936 			     struct netdev_queue *txq)
3937 {
3938 	int rc;
3939 
3940 	rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3941 	if (rc == NET_XMIT_SUCCESS)
3942 		trace_qdisc_enqueue(q, txq, skb);
3943 	return rc;
3944 }
3945 
3946 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3947 				 struct net_device *dev,
3948 				 struct netdev_queue *txq)
3949 {
3950 	spinlock_t *root_lock = qdisc_lock(q);
3951 	struct sk_buff *to_free = NULL;
3952 	bool contended;
3953 	int rc;
3954 
3955 	qdisc_calculate_pkt_len(skb, q);
3956 
3957 	tcf_set_drop_reason(skb, SKB_DROP_REASON_QDISC_DROP);
3958 
3959 	if (q->flags & TCQ_F_NOLOCK) {
3960 		if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3961 		    qdisc_run_begin(q)) {
3962 			/* Retest nolock_qdisc_is_empty() within the protection
3963 			 * of q->seqlock to protect from racing with requeuing.
3964 			 */
3965 			if (unlikely(!nolock_qdisc_is_empty(q))) {
3966 				rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3967 				__qdisc_run(q);
3968 				qdisc_run_end(q);
3969 
3970 				goto no_lock_out;
3971 			}
3972 
3973 			qdisc_bstats_cpu_update(q, skb);
3974 			if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3975 			    !nolock_qdisc_is_empty(q))
3976 				__qdisc_run(q);
3977 
3978 			qdisc_run_end(q);
3979 			return NET_XMIT_SUCCESS;
3980 		}
3981 
3982 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3983 		qdisc_run(q);
3984 
3985 no_lock_out:
3986 		if (unlikely(to_free))
3987 			kfree_skb_list_reason(to_free,
3988 					      tcf_get_drop_reason(to_free));
3989 		return rc;
3990 	}
3991 
3992 	if (unlikely(READ_ONCE(q->owner) == smp_processor_id())) {
3993 		kfree_skb_reason(skb, SKB_DROP_REASON_TC_RECLASSIFY_LOOP);
3994 		return NET_XMIT_DROP;
3995 	}
3996 	/*
3997 	 * Heuristic to force contended enqueues to serialize on a
3998 	 * separate lock before trying to get qdisc main lock.
3999 	 * This permits qdisc->running owner to get the lock more
4000 	 * often and dequeue packets faster.
4001 	 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
4002 	 * and then other tasks will only enqueue packets. The packets will be
4003 	 * sent after the qdisc owner is scheduled again. To prevent this
4004 	 * scenario the task always serialize on the lock.
4005 	 */
4006 	contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
4007 	if (unlikely(contended))
4008 		spin_lock(&q->busylock);
4009 
4010 	spin_lock(root_lock);
4011 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
4012 		__qdisc_drop(skb, &to_free);
4013 		rc = NET_XMIT_DROP;
4014 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
4015 		   qdisc_run_begin(q)) {
4016 		/*
4017 		 * This is a work-conserving queue; there are no old skbs
4018 		 * waiting to be sent out; and the qdisc is not running -
4019 		 * xmit the skb directly.
4020 		 */
4021 
4022 		qdisc_bstats_update(q, skb);
4023 
4024 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
4025 			if (unlikely(contended)) {
4026 				spin_unlock(&q->busylock);
4027 				contended = false;
4028 			}
4029 			__qdisc_run(q);
4030 		}
4031 
4032 		qdisc_run_end(q);
4033 		rc = NET_XMIT_SUCCESS;
4034 	} else {
4035 		WRITE_ONCE(q->owner, smp_processor_id());
4036 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4037 		WRITE_ONCE(q->owner, -1);
4038 		if (qdisc_run_begin(q)) {
4039 			if (unlikely(contended)) {
4040 				spin_unlock(&q->busylock);
4041 				contended = false;
4042 			}
4043 			__qdisc_run(q);
4044 			qdisc_run_end(q);
4045 		}
4046 	}
4047 	spin_unlock(root_lock);
4048 	if (unlikely(to_free))
4049 		kfree_skb_list_reason(to_free,
4050 				      tcf_get_drop_reason(to_free));
4051 	if (unlikely(contended))
4052 		spin_unlock(&q->busylock);
4053 	return rc;
4054 }
4055 
4056 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
4057 static void skb_update_prio(struct sk_buff *skb)
4058 {
4059 	const struct netprio_map *map;
4060 	const struct sock *sk;
4061 	unsigned int prioidx;
4062 
4063 	if (skb->priority)
4064 		return;
4065 	map = rcu_dereference_bh(skb->dev->priomap);
4066 	if (!map)
4067 		return;
4068 	sk = skb_to_full_sk(skb);
4069 	if (!sk)
4070 		return;
4071 
4072 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
4073 
4074 	if (prioidx < map->priomap_len)
4075 		skb->priority = map->priomap[prioidx];
4076 }
4077 #else
4078 #define skb_update_prio(skb)
4079 #endif
4080 
4081 /**
4082  *	dev_loopback_xmit - loop back @skb
4083  *	@net: network namespace this loopback is happening in
4084  *	@sk:  sk needed to be a netfilter okfn
4085  *	@skb: buffer to transmit
4086  */
4087 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
4088 {
4089 	skb_reset_mac_header(skb);
4090 	__skb_pull(skb, skb_network_offset(skb));
4091 	skb->pkt_type = PACKET_LOOPBACK;
4092 	if (skb->ip_summed == CHECKSUM_NONE)
4093 		skb->ip_summed = CHECKSUM_UNNECESSARY;
4094 	DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
4095 	skb_dst_force(skb);
4096 	netif_rx(skb);
4097 	return 0;
4098 }
4099 EXPORT_SYMBOL(dev_loopback_xmit);
4100 
4101 #ifdef CONFIG_NET_EGRESS
4102 static struct netdev_queue *
4103 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
4104 {
4105 	int qm = skb_get_queue_mapping(skb);
4106 
4107 	return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
4108 }
4109 
4110 #ifndef CONFIG_PREEMPT_RT
4111 static bool netdev_xmit_txqueue_skipped(void)
4112 {
4113 	return __this_cpu_read(softnet_data.xmit.skip_txqueue);
4114 }
4115 
4116 void netdev_xmit_skip_txqueue(bool skip)
4117 {
4118 	__this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
4119 }
4120 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
4121 
4122 #else
4123 static bool netdev_xmit_txqueue_skipped(void)
4124 {
4125 	return current->net_xmit.skip_txqueue;
4126 }
4127 
4128 void netdev_xmit_skip_txqueue(bool skip)
4129 {
4130 	current->net_xmit.skip_txqueue = skip;
4131 }
4132 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
4133 #endif
4134 #endif /* CONFIG_NET_EGRESS */
4135 
4136 #ifdef CONFIG_NET_XGRESS
4137 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb,
4138 		  enum skb_drop_reason *drop_reason)
4139 {
4140 	int ret = TC_ACT_UNSPEC;
4141 #ifdef CONFIG_NET_CLS_ACT
4142 	struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq);
4143 	struct tcf_result res;
4144 
4145 	if (!miniq)
4146 		return ret;
4147 
4148 	/* Global bypass */
4149 	if (!static_branch_likely(&tcf_sw_enabled_key))
4150 		return ret;
4151 
4152 	/* Block-wise bypass */
4153 	if (tcf_block_bypass_sw(miniq->block))
4154 		return ret;
4155 
4156 	tc_skb_cb(skb)->mru = 0;
4157 	tc_skb_cb(skb)->post_ct = false;
4158 	tcf_set_drop_reason(skb, *drop_reason);
4159 
4160 	mini_qdisc_bstats_cpu_update(miniq, skb);
4161 	ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false);
4162 	/* Only tcf related quirks below. */
4163 	switch (ret) {
4164 	case TC_ACT_SHOT:
4165 		*drop_reason = tcf_get_drop_reason(skb);
4166 		mini_qdisc_qstats_cpu_drop(miniq);
4167 		break;
4168 	case TC_ACT_OK:
4169 	case TC_ACT_RECLASSIFY:
4170 		skb->tc_index = TC_H_MIN(res.classid);
4171 		break;
4172 	}
4173 #endif /* CONFIG_NET_CLS_ACT */
4174 	return ret;
4175 }
4176 
4177 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key);
4178 
4179 void tcx_inc(void)
4180 {
4181 	static_branch_inc(&tcx_needed_key);
4182 }
4183 
4184 void tcx_dec(void)
4185 {
4186 	static_branch_dec(&tcx_needed_key);
4187 }
4188 
4189 static __always_inline enum tcx_action_base
4190 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb,
4191 	const bool needs_mac)
4192 {
4193 	const struct bpf_mprog_fp *fp;
4194 	const struct bpf_prog *prog;
4195 	int ret = TCX_NEXT;
4196 
4197 	if (needs_mac)
4198 		__skb_push(skb, skb->mac_len);
4199 	bpf_mprog_foreach_prog(entry, fp, prog) {
4200 		bpf_compute_data_pointers(skb);
4201 		ret = bpf_prog_run(prog, skb);
4202 		if (ret != TCX_NEXT)
4203 			break;
4204 	}
4205 	if (needs_mac)
4206 		__skb_pull(skb, skb->mac_len);
4207 	return tcx_action_code(skb, ret);
4208 }
4209 
4210 static __always_inline struct sk_buff *
4211 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4212 		   struct net_device *orig_dev, bool *another)
4213 {
4214 	struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress);
4215 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS;
4216 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4217 	int sch_ret;
4218 
4219 	if (!entry)
4220 		return skb;
4221 
4222 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4223 	if (*pt_prev) {
4224 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4225 		*pt_prev = NULL;
4226 	}
4227 
4228 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4229 	tcx_set_ingress(skb, true);
4230 
4231 	if (static_branch_unlikely(&tcx_needed_key)) {
4232 		sch_ret = tcx_run(entry, skb, true);
4233 		if (sch_ret != TC_ACT_UNSPEC)
4234 			goto ingress_verdict;
4235 	}
4236 	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4237 ingress_verdict:
4238 	switch (sch_ret) {
4239 	case TC_ACT_REDIRECT:
4240 		/* skb_mac_header check was done by BPF, so we can safely
4241 		 * push the L2 header back before redirecting to another
4242 		 * netdev.
4243 		 */
4244 		__skb_push(skb, skb->mac_len);
4245 		if (skb_do_redirect(skb) == -EAGAIN) {
4246 			__skb_pull(skb, skb->mac_len);
4247 			*another = true;
4248 			break;
4249 		}
4250 		*ret = NET_RX_SUCCESS;
4251 		bpf_net_ctx_clear(bpf_net_ctx);
4252 		return NULL;
4253 	case TC_ACT_SHOT:
4254 		kfree_skb_reason(skb, drop_reason);
4255 		*ret = NET_RX_DROP;
4256 		bpf_net_ctx_clear(bpf_net_ctx);
4257 		return NULL;
4258 	/* used by tc_run */
4259 	case TC_ACT_STOLEN:
4260 	case TC_ACT_QUEUED:
4261 	case TC_ACT_TRAP:
4262 		consume_skb(skb);
4263 		fallthrough;
4264 	case TC_ACT_CONSUMED:
4265 		*ret = NET_RX_SUCCESS;
4266 		bpf_net_ctx_clear(bpf_net_ctx);
4267 		return NULL;
4268 	}
4269 	bpf_net_ctx_clear(bpf_net_ctx);
4270 
4271 	return skb;
4272 }
4273 
4274 static __always_inline struct sk_buff *
4275 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4276 {
4277 	struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress);
4278 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS;
4279 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4280 	int sch_ret;
4281 
4282 	if (!entry)
4283 		return skb;
4284 
4285 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4286 
4287 	/* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
4288 	 * already set by the caller.
4289 	 */
4290 	if (static_branch_unlikely(&tcx_needed_key)) {
4291 		sch_ret = tcx_run(entry, skb, false);
4292 		if (sch_ret != TC_ACT_UNSPEC)
4293 			goto egress_verdict;
4294 	}
4295 	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4296 egress_verdict:
4297 	switch (sch_ret) {
4298 	case TC_ACT_REDIRECT:
4299 		/* No need to push/pop skb's mac_header here on egress! */
4300 		skb_do_redirect(skb);
4301 		*ret = NET_XMIT_SUCCESS;
4302 		bpf_net_ctx_clear(bpf_net_ctx);
4303 		return NULL;
4304 	case TC_ACT_SHOT:
4305 		kfree_skb_reason(skb, drop_reason);
4306 		*ret = NET_XMIT_DROP;
4307 		bpf_net_ctx_clear(bpf_net_ctx);
4308 		return NULL;
4309 	/* used by tc_run */
4310 	case TC_ACT_STOLEN:
4311 	case TC_ACT_QUEUED:
4312 	case TC_ACT_TRAP:
4313 		consume_skb(skb);
4314 		fallthrough;
4315 	case TC_ACT_CONSUMED:
4316 		*ret = NET_XMIT_SUCCESS;
4317 		bpf_net_ctx_clear(bpf_net_ctx);
4318 		return NULL;
4319 	}
4320 	bpf_net_ctx_clear(bpf_net_ctx);
4321 
4322 	return skb;
4323 }
4324 #else
4325 static __always_inline struct sk_buff *
4326 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4327 		   struct net_device *orig_dev, bool *another)
4328 {
4329 	return skb;
4330 }
4331 
4332 static __always_inline struct sk_buff *
4333 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4334 {
4335 	return skb;
4336 }
4337 #endif /* CONFIG_NET_XGRESS */
4338 
4339 #ifdef CONFIG_XPS
4340 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4341 			       struct xps_dev_maps *dev_maps, unsigned int tci)
4342 {
4343 	int tc = netdev_get_prio_tc_map(dev, skb->priority);
4344 	struct xps_map *map;
4345 	int queue_index = -1;
4346 
4347 	if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4348 		return queue_index;
4349 
4350 	tci *= dev_maps->num_tc;
4351 	tci += tc;
4352 
4353 	map = rcu_dereference(dev_maps->attr_map[tci]);
4354 	if (map) {
4355 		if (map->len == 1)
4356 			queue_index = map->queues[0];
4357 		else
4358 			queue_index = map->queues[reciprocal_scale(
4359 						skb_get_hash(skb), map->len)];
4360 		if (unlikely(queue_index >= dev->real_num_tx_queues))
4361 			queue_index = -1;
4362 	}
4363 	return queue_index;
4364 }
4365 #endif
4366 
4367 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4368 			 struct sk_buff *skb)
4369 {
4370 #ifdef CONFIG_XPS
4371 	struct xps_dev_maps *dev_maps;
4372 	struct sock *sk = skb->sk;
4373 	int queue_index = -1;
4374 
4375 	if (!static_key_false(&xps_needed))
4376 		return -1;
4377 
4378 	rcu_read_lock();
4379 	if (!static_key_false(&xps_rxqs_needed))
4380 		goto get_cpus_map;
4381 
4382 	dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4383 	if (dev_maps) {
4384 		int tci = sk_rx_queue_get(sk);
4385 
4386 		if (tci >= 0)
4387 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4388 							  tci);
4389 	}
4390 
4391 get_cpus_map:
4392 	if (queue_index < 0) {
4393 		dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4394 		if (dev_maps) {
4395 			unsigned int tci = skb->sender_cpu - 1;
4396 
4397 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4398 							  tci);
4399 		}
4400 	}
4401 	rcu_read_unlock();
4402 
4403 	return queue_index;
4404 #else
4405 	return -1;
4406 #endif
4407 }
4408 
4409 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4410 		     struct net_device *sb_dev)
4411 {
4412 	return 0;
4413 }
4414 EXPORT_SYMBOL(dev_pick_tx_zero);
4415 
4416 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4417 		     struct net_device *sb_dev)
4418 {
4419 	struct sock *sk = skb->sk;
4420 	int queue_index = sk_tx_queue_get(sk);
4421 
4422 	sb_dev = sb_dev ? : dev;
4423 
4424 	if (queue_index < 0 || skb->ooo_okay ||
4425 	    queue_index >= dev->real_num_tx_queues) {
4426 		int new_index = get_xps_queue(dev, sb_dev, skb);
4427 
4428 		if (new_index < 0)
4429 			new_index = skb_tx_hash(dev, sb_dev, skb);
4430 
4431 		if (queue_index != new_index && sk &&
4432 		    sk_fullsock(sk) &&
4433 		    rcu_access_pointer(sk->sk_dst_cache))
4434 			sk_tx_queue_set(sk, new_index);
4435 
4436 		queue_index = new_index;
4437 	}
4438 
4439 	return queue_index;
4440 }
4441 EXPORT_SYMBOL(netdev_pick_tx);
4442 
4443 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4444 					 struct sk_buff *skb,
4445 					 struct net_device *sb_dev)
4446 {
4447 	int queue_index = 0;
4448 
4449 #ifdef CONFIG_XPS
4450 	u32 sender_cpu = skb->sender_cpu - 1;
4451 
4452 	if (sender_cpu >= (u32)NR_CPUS)
4453 		skb->sender_cpu = raw_smp_processor_id() + 1;
4454 #endif
4455 
4456 	if (dev->real_num_tx_queues != 1) {
4457 		const struct net_device_ops *ops = dev->netdev_ops;
4458 
4459 		if (ops->ndo_select_queue)
4460 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4461 		else
4462 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4463 
4464 		queue_index = netdev_cap_txqueue(dev, queue_index);
4465 	}
4466 
4467 	skb_set_queue_mapping(skb, queue_index);
4468 	return netdev_get_tx_queue(dev, queue_index);
4469 }
4470 
4471 /**
4472  * __dev_queue_xmit() - transmit a buffer
4473  * @skb:	buffer to transmit
4474  * @sb_dev:	suboordinate device used for L2 forwarding offload
4475  *
4476  * Queue a buffer for transmission to a network device. The caller must
4477  * have set the device and priority and built the buffer before calling
4478  * this function. The function can be called from an interrupt.
4479  *
4480  * When calling this method, interrupts MUST be enabled. This is because
4481  * the BH enable code must have IRQs enabled so that it will not deadlock.
4482  *
4483  * Regardless of the return value, the skb is consumed, so it is currently
4484  * difficult to retry a send to this method. (You can bump the ref count
4485  * before sending to hold a reference for retry if you are careful.)
4486  *
4487  * Return:
4488  * * 0				- buffer successfully transmitted
4489  * * positive qdisc return code	- NET_XMIT_DROP etc.
4490  * * negative errno		- other errors
4491  */
4492 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4493 {
4494 	struct net_device *dev = skb->dev;
4495 	struct netdev_queue *txq = NULL;
4496 	struct Qdisc *q;
4497 	int rc = -ENOMEM;
4498 	bool again = false;
4499 
4500 	skb_reset_mac_header(skb);
4501 	skb_assert_len(skb);
4502 
4503 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4504 		__skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4505 
4506 	/* Disable soft irqs for various locks below. Also
4507 	 * stops preemption for RCU.
4508 	 */
4509 	rcu_read_lock_bh();
4510 
4511 	skb_update_prio(skb);
4512 
4513 	qdisc_pkt_len_init(skb);
4514 	tcx_set_ingress(skb, false);
4515 #ifdef CONFIG_NET_EGRESS
4516 	if (static_branch_unlikely(&egress_needed_key)) {
4517 		if (nf_hook_egress_active()) {
4518 			skb = nf_hook_egress(skb, &rc, dev);
4519 			if (!skb)
4520 				goto out;
4521 		}
4522 
4523 		netdev_xmit_skip_txqueue(false);
4524 
4525 		nf_skip_egress(skb, true);
4526 		skb = sch_handle_egress(skb, &rc, dev);
4527 		if (!skb)
4528 			goto out;
4529 		nf_skip_egress(skb, false);
4530 
4531 		if (netdev_xmit_txqueue_skipped())
4532 			txq = netdev_tx_queue_mapping(dev, skb);
4533 	}
4534 #endif
4535 	/* If device/qdisc don't need skb->dst, release it right now while
4536 	 * its hot in this cpu cache.
4537 	 */
4538 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4539 		skb_dst_drop(skb);
4540 	else
4541 		skb_dst_force(skb);
4542 
4543 	if (!txq)
4544 		txq = netdev_core_pick_tx(dev, skb, sb_dev);
4545 
4546 	q = rcu_dereference_bh(txq->qdisc);
4547 
4548 	trace_net_dev_queue(skb);
4549 	if (q->enqueue) {
4550 		rc = __dev_xmit_skb(skb, q, dev, txq);
4551 		goto out;
4552 	}
4553 
4554 	/* The device has no queue. Common case for software devices:
4555 	 * loopback, all the sorts of tunnels...
4556 
4557 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4558 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4559 	 * counters.)
4560 	 * However, it is possible, that they rely on protection
4561 	 * made by us here.
4562 
4563 	 * Check this and shot the lock. It is not prone from deadlocks.
4564 	 *Either shot noqueue qdisc, it is even simpler 8)
4565 	 */
4566 	if (dev->flags & IFF_UP) {
4567 		int cpu = smp_processor_id(); /* ok because BHs are off */
4568 
4569 		/* Other cpus might concurrently change txq->xmit_lock_owner
4570 		 * to -1 or to their cpu id, but not to our id.
4571 		 */
4572 		if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4573 			if (dev_xmit_recursion())
4574 				goto recursion_alert;
4575 
4576 			skb = validate_xmit_skb(skb, dev, &again);
4577 			if (!skb)
4578 				goto out;
4579 
4580 			HARD_TX_LOCK(dev, txq, cpu);
4581 
4582 			if (!netif_xmit_stopped(txq)) {
4583 				dev_xmit_recursion_inc();
4584 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4585 				dev_xmit_recursion_dec();
4586 				if (dev_xmit_complete(rc)) {
4587 					HARD_TX_UNLOCK(dev, txq);
4588 					goto out;
4589 				}
4590 			}
4591 			HARD_TX_UNLOCK(dev, txq);
4592 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4593 					     dev->name);
4594 		} else {
4595 			/* Recursion is detected! It is possible,
4596 			 * unfortunately
4597 			 */
4598 recursion_alert:
4599 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4600 					     dev->name);
4601 		}
4602 	}
4603 
4604 	rc = -ENETDOWN;
4605 	rcu_read_unlock_bh();
4606 
4607 	dev_core_stats_tx_dropped_inc(dev);
4608 	kfree_skb_list(skb);
4609 	return rc;
4610 out:
4611 	rcu_read_unlock_bh();
4612 	return rc;
4613 }
4614 EXPORT_SYMBOL(__dev_queue_xmit);
4615 
4616 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4617 {
4618 	struct net_device *dev = skb->dev;
4619 	struct sk_buff *orig_skb = skb;
4620 	struct netdev_queue *txq;
4621 	int ret = NETDEV_TX_BUSY;
4622 	bool again = false;
4623 
4624 	if (unlikely(!netif_running(dev) ||
4625 		     !netif_carrier_ok(dev)))
4626 		goto drop;
4627 
4628 	skb = validate_xmit_skb_list(skb, dev, &again);
4629 	if (skb != orig_skb)
4630 		goto drop;
4631 
4632 	skb_set_queue_mapping(skb, queue_id);
4633 	txq = skb_get_tx_queue(dev, skb);
4634 
4635 	local_bh_disable();
4636 
4637 	dev_xmit_recursion_inc();
4638 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4639 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4640 		ret = netdev_start_xmit(skb, dev, txq, false);
4641 	HARD_TX_UNLOCK(dev, txq);
4642 	dev_xmit_recursion_dec();
4643 
4644 	local_bh_enable();
4645 	return ret;
4646 drop:
4647 	dev_core_stats_tx_dropped_inc(dev);
4648 	kfree_skb_list(skb);
4649 	return NET_XMIT_DROP;
4650 }
4651 EXPORT_SYMBOL(__dev_direct_xmit);
4652 
4653 /*************************************************************************
4654  *			Receiver routines
4655  *************************************************************************/
4656 static DEFINE_PER_CPU(struct task_struct *, backlog_napi);
4657 
4658 int weight_p __read_mostly = 64;           /* old backlog weight */
4659 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4660 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4661 
4662 /* Called with irq disabled */
4663 static inline void ____napi_schedule(struct softnet_data *sd,
4664 				     struct napi_struct *napi)
4665 {
4666 	struct task_struct *thread;
4667 
4668 	lockdep_assert_irqs_disabled();
4669 
4670 	if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4671 		/* Paired with smp_mb__before_atomic() in
4672 		 * napi_enable()/dev_set_threaded().
4673 		 * Use READ_ONCE() to guarantee a complete
4674 		 * read on napi->thread. Only call
4675 		 * wake_up_process() when it's not NULL.
4676 		 */
4677 		thread = READ_ONCE(napi->thread);
4678 		if (thread) {
4679 			if (use_backlog_threads() && thread == raw_cpu_read(backlog_napi))
4680 				goto use_local_napi;
4681 
4682 			set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4683 			wake_up_process(thread);
4684 			return;
4685 		}
4686 	}
4687 
4688 use_local_napi:
4689 	list_add_tail(&napi->poll_list, &sd->poll_list);
4690 	WRITE_ONCE(napi->list_owner, smp_processor_id());
4691 	/* If not called from net_rx_action()
4692 	 * we have to raise NET_RX_SOFTIRQ.
4693 	 */
4694 	if (!sd->in_net_rx_action)
4695 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4696 }
4697 
4698 #ifdef CONFIG_RPS
4699 
4700 struct static_key_false rps_needed __read_mostly;
4701 EXPORT_SYMBOL(rps_needed);
4702 struct static_key_false rfs_needed __read_mostly;
4703 EXPORT_SYMBOL(rfs_needed);
4704 
4705 static struct rps_dev_flow *
4706 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4707 	    struct rps_dev_flow *rflow, u16 next_cpu)
4708 {
4709 	if (next_cpu < nr_cpu_ids) {
4710 		u32 head;
4711 #ifdef CONFIG_RFS_ACCEL
4712 		struct netdev_rx_queue *rxqueue;
4713 		struct rps_dev_flow_table *flow_table;
4714 		struct rps_dev_flow *old_rflow;
4715 		u16 rxq_index;
4716 		u32 flow_id;
4717 		int rc;
4718 
4719 		/* Should we steer this flow to a different hardware queue? */
4720 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4721 		    !(dev->features & NETIF_F_NTUPLE))
4722 			goto out;
4723 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4724 		if (rxq_index == skb_get_rx_queue(skb))
4725 			goto out;
4726 
4727 		rxqueue = dev->_rx + rxq_index;
4728 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4729 		if (!flow_table)
4730 			goto out;
4731 		flow_id = skb_get_hash(skb) & flow_table->mask;
4732 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4733 							rxq_index, flow_id);
4734 		if (rc < 0)
4735 			goto out;
4736 		old_rflow = rflow;
4737 		rflow = &flow_table->flows[flow_id];
4738 		WRITE_ONCE(rflow->filter, rc);
4739 		if (old_rflow->filter == rc)
4740 			WRITE_ONCE(old_rflow->filter, RPS_NO_FILTER);
4741 	out:
4742 #endif
4743 		head = READ_ONCE(per_cpu(softnet_data, next_cpu).input_queue_head);
4744 		rps_input_queue_tail_save(&rflow->last_qtail, head);
4745 	}
4746 
4747 	WRITE_ONCE(rflow->cpu, next_cpu);
4748 	return rflow;
4749 }
4750 
4751 /*
4752  * get_rps_cpu is called from netif_receive_skb and returns the target
4753  * CPU from the RPS map of the receiving queue for a given skb.
4754  * rcu_read_lock must be held on entry.
4755  */
4756 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4757 		       struct rps_dev_flow **rflowp)
4758 {
4759 	const struct rps_sock_flow_table *sock_flow_table;
4760 	struct netdev_rx_queue *rxqueue = dev->_rx;
4761 	struct rps_dev_flow_table *flow_table;
4762 	struct rps_map *map;
4763 	int cpu = -1;
4764 	u32 tcpu;
4765 	u32 hash;
4766 
4767 	if (skb_rx_queue_recorded(skb)) {
4768 		u16 index = skb_get_rx_queue(skb);
4769 
4770 		if (unlikely(index >= dev->real_num_rx_queues)) {
4771 			WARN_ONCE(dev->real_num_rx_queues > 1,
4772 				  "%s received packet on queue %u, but number "
4773 				  "of RX queues is %u\n",
4774 				  dev->name, index, dev->real_num_rx_queues);
4775 			goto done;
4776 		}
4777 		rxqueue += index;
4778 	}
4779 
4780 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4781 
4782 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4783 	map = rcu_dereference(rxqueue->rps_map);
4784 	if (!flow_table && !map)
4785 		goto done;
4786 
4787 	skb_reset_network_header(skb);
4788 	hash = skb_get_hash(skb);
4789 	if (!hash)
4790 		goto done;
4791 
4792 	sock_flow_table = rcu_dereference(net_hotdata.rps_sock_flow_table);
4793 	if (flow_table && sock_flow_table) {
4794 		struct rps_dev_flow *rflow;
4795 		u32 next_cpu;
4796 		u32 ident;
4797 
4798 		/* First check into global flow table if there is a match.
4799 		 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
4800 		 */
4801 		ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
4802 		if ((ident ^ hash) & ~net_hotdata.rps_cpu_mask)
4803 			goto try_rps;
4804 
4805 		next_cpu = ident & net_hotdata.rps_cpu_mask;
4806 
4807 		/* OK, now we know there is a match,
4808 		 * we can look at the local (per receive queue) flow table
4809 		 */
4810 		rflow = &flow_table->flows[hash & flow_table->mask];
4811 		tcpu = rflow->cpu;
4812 
4813 		/*
4814 		 * If the desired CPU (where last recvmsg was done) is
4815 		 * different from current CPU (one in the rx-queue flow
4816 		 * table entry), switch if one of the following holds:
4817 		 *   - Current CPU is unset (>= nr_cpu_ids).
4818 		 *   - Current CPU is offline.
4819 		 *   - The current CPU's queue tail has advanced beyond the
4820 		 *     last packet that was enqueued using this table entry.
4821 		 *     This guarantees that all previous packets for the flow
4822 		 *     have been dequeued, thus preserving in order delivery.
4823 		 */
4824 		if (unlikely(tcpu != next_cpu) &&
4825 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4826 		     ((int)(READ_ONCE(per_cpu(softnet_data, tcpu).input_queue_head) -
4827 		      rflow->last_qtail)) >= 0)) {
4828 			tcpu = next_cpu;
4829 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4830 		}
4831 
4832 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4833 			*rflowp = rflow;
4834 			cpu = tcpu;
4835 			goto done;
4836 		}
4837 	}
4838 
4839 try_rps:
4840 
4841 	if (map) {
4842 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4843 		if (cpu_online(tcpu)) {
4844 			cpu = tcpu;
4845 			goto done;
4846 		}
4847 	}
4848 
4849 done:
4850 	return cpu;
4851 }
4852 
4853 #ifdef CONFIG_RFS_ACCEL
4854 
4855 /**
4856  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4857  * @dev: Device on which the filter was set
4858  * @rxq_index: RX queue index
4859  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4860  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4861  *
4862  * Drivers that implement ndo_rx_flow_steer() should periodically call
4863  * this function for each installed filter and remove the filters for
4864  * which it returns %true.
4865  */
4866 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4867 			 u32 flow_id, u16 filter_id)
4868 {
4869 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4870 	struct rps_dev_flow_table *flow_table;
4871 	struct rps_dev_flow *rflow;
4872 	bool expire = true;
4873 	unsigned int cpu;
4874 
4875 	rcu_read_lock();
4876 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4877 	if (flow_table && flow_id <= flow_table->mask) {
4878 		rflow = &flow_table->flows[flow_id];
4879 		cpu = READ_ONCE(rflow->cpu);
4880 		if (READ_ONCE(rflow->filter) == filter_id && cpu < nr_cpu_ids &&
4881 		    ((int)(READ_ONCE(per_cpu(softnet_data, cpu).input_queue_head) -
4882 			   READ_ONCE(rflow->last_qtail)) <
4883 		     (int)(10 * flow_table->mask)))
4884 			expire = false;
4885 	}
4886 	rcu_read_unlock();
4887 	return expire;
4888 }
4889 EXPORT_SYMBOL(rps_may_expire_flow);
4890 
4891 #endif /* CONFIG_RFS_ACCEL */
4892 
4893 /* Called from hardirq (IPI) context */
4894 static void rps_trigger_softirq(void *data)
4895 {
4896 	struct softnet_data *sd = data;
4897 
4898 	____napi_schedule(sd, &sd->backlog);
4899 	sd->received_rps++;
4900 }
4901 
4902 #endif /* CONFIG_RPS */
4903 
4904 /* Called from hardirq (IPI) context */
4905 static void trigger_rx_softirq(void *data)
4906 {
4907 	struct softnet_data *sd = data;
4908 
4909 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4910 	smp_store_release(&sd->defer_ipi_scheduled, 0);
4911 }
4912 
4913 /*
4914  * After we queued a packet into sd->input_pkt_queue,
4915  * we need to make sure this queue is serviced soon.
4916  *
4917  * - If this is another cpu queue, link it to our rps_ipi_list,
4918  *   and make sure we will process rps_ipi_list from net_rx_action().
4919  *
4920  * - If this is our own queue, NAPI schedule our backlog.
4921  *   Note that this also raises NET_RX_SOFTIRQ.
4922  */
4923 static void napi_schedule_rps(struct softnet_data *sd)
4924 {
4925 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4926 
4927 #ifdef CONFIG_RPS
4928 	if (sd != mysd) {
4929 		if (use_backlog_threads()) {
4930 			__napi_schedule_irqoff(&sd->backlog);
4931 			return;
4932 		}
4933 
4934 		sd->rps_ipi_next = mysd->rps_ipi_list;
4935 		mysd->rps_ipi_list = sd;
4936 
4937 		/* If not called from net_rx_action() or napi_threaded_poll()
4938 		 * we have to raise NET_RX_SOFTIRQ.
4939 		 */
4940 		if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
4941 			__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4942 		return;
4943 	}
4944 #endif /* CONFIG_RPS */
4945 	__napi_schedule_irqoff(&mysd->backlog);
4946 }
4947 
4948 void kick_defer_list_purge(struct softnet_data *sd, unsigned int cpu)
4949 {
4950 	unsigned long flags;
4951 
4952 	if (use_backlog_threads()) {
4953 		backlog_lock_irq_save(sd, &flags);
4954 
4955 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4956 			__napi_schedule_irqoff(&sd->backlog);
4957 
4958 		backlog_unlock_irq_restore(sd, &flags);
4959 
4960 	} else if (!cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) {
4961 		smp_call_function_single_async(cpu, &sd->defer_csd);
4962 	}
4963 }
4964 
4965 #ifdef CONFIG_NET_FLOW_LIMIT
4966 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4967 #endif
4968 
4969 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4970 {
4971 #ifdef CONFIG_NET_FLOW_LIMIT
4972 	struct sd_flow_limit *fl;
4973 	struct softnet_data *sd;
4974 	unsigned int old_flow, new_flow;
4975 
4976 	if (qlen < (READ_ONCE(net_hotdata.max_backlog) >> 1))
4977 		return false;
4978 
4979 	sd = this_cpu_ptr(&softnet_data);
4980 
4981 	rcu_read_lock();
4982 	fl = rcu_dereference(sd->flow_limit);
4983 	if (fl) {
4984 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4985 		old_flow = fl->history[fl->history_head];
4986 		fl->history[fl->history_head] = new_flow;
4987 
4988 		fl->history_head++;
4989 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4990 
4991 		if (likely(fl->buckets[old_flow]))
4992 			fl->buckets[old_flow]--;
4993 
4994 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4995 			fl->count++;
4996 			rcu_read_unlock();
4997 			return true;
4998 		}
4999 	}
5000 	rcu_read_unlock();
5001 #endif
5002 	return false;
5003 }
5004 
5005 /*
5006  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
5007  * queue (may be a remote CPU queue).
5008  */
5009 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
5010 			      unsigned int *qtail)
5011 {
5012 	enum skb_drop_reason reason;
5013 	struct softnet_data *sd;
5014 	unsigned long flags;
5015 	unsigned int qlen;
5016 	int max_backlog;
5017 	u32 tail;
5018 
5019 	reason = SKB_DROP_REASON_DEV_READY;
5020 	if (!netif_running(skb->dev))
5021 		goto bad_dev;
5022 
5023 	reason = SKB_DROP_REASON_CPU_BACKLOG;
5024 	sd = &per_cpu(softnet_data, cpu);
5025 
5026 	qlen = skb_queue_len_lockless(&sd->input_pkt_queue);
5027 	max_backlog = READ_ONCE(net_hotdata.max_backlog);
5028 	if (unlikely(qlen > max_backlog))
5029 		goto cpu_backlog_drop;
5030 	backlog_lock_irq_save(sd, &flags);
5031 	qlen = skb_queue_len(&sd->input_pkt_queue);
5032 	if (qlen <= max_backlog && !skb_flow_limit(skb, qlen)) {
5033 		if (!qlen) {
5034 			/* Schedule NAPI for backlog device. We can use
5035 			 * non atomic operation as we own the queue lock.
5036 			 */
5037 			if (!__test_and_set_bit(NAPI_STATE_SCHED,
5038 						&sd->backlog.state))
5039 				napi_schedule_rps(sd);
5040 		}
5041 		__skb_queue_tail(&sd->input_pkt_queue, skb);
5042 		tail = rps_input_queue_tail_incr(sd);
5043 		backlog_unlock_irq_restore(sd, &flags);
5044 
5045 		/* save the tail outside of the critical section */
5046 		rps_input_queue_tail_save(qtail, tail);
5047 		return NET_RX_SUCCESS;
5048 	}
5049 
5050 	backlog_unlock_irq_restore(sd, &flags);
5051 
5052 cpu_backlog_drop:
5053 	atomic_inc(&sd->dropped);
5054 bad_dev:
5055 	dev_core_stats_rx_dropped_inc(skb->dev);
5056 	kfree_skb_reason(skb, reason);
5057 	return NET_RX_DROP;
5058 }
5059 
5060 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
5061 {
5062 	struct net_device *dev = skb->dev;
5063 	struct netdev_rx_queue *rxqueue;
5064 
5065 	rxqueue = dev->_rx;
5066 
5067 	if (skb_rx_queue_recorded(skb)) {
5068 		u16 index = skb_get_rx_queue(skb);
5069 
5070 		if (unlikely(index >= dev->real_num_rx_queues)) {
5071 			WARN_ONCE(dev->real_num_rx_queues > 1,
5072 				  "%s received packet on queue %u, but number "
5073 				  "of RX queues is %u\n",
5074 				  dev->name, index, dev->real_num_rx_queues);
5075 
5076 			return rxqueue; /* Return first rxqueue */
5077 		}
5078 		rxqueue += index;
5079 	}
5080 	return rxqueue;
5081 }
5082 
5083 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
5084 			     const struct bpf_prog *xdp_prog)
5085 {
5086 	void *orig_data, *orig_data_end, *hard_start;
5087 	struct netdev_rx_queue *rxqueue;
5088 	bool orig_bcast, orig_host;
5089 	u32 mac_len, frame_sz;
5090 	__be16 orig_eth_type;
5091 	struct ethhdr *eth;
5092 	u32 metalen, act;
5093 	int off;
5094 
5095 	/* The XDP program wants to see the packet starting at the MAC
5096 	 * header.
5097 	 */
5098 	mac_len = skb->data - skb_mac_header(skb);
5099 	hard_start = skb->data - skb_headroom(skb);
5100 
5101 	/* SKB "head" area always have tailroom for skb_shared_info */
5102 	frame_sz = (void *)skb_end_pointer(skb) - hard_start;
5103 	frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
5104 
5105 	rxqueue = netif_get_rxqueue(skb);
5106 	xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
5107 	xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
5108 			 skb_headlen(skb) + mac_len, true);
5109 	if (skb_is_nonlinear(skb)) {
5110 		skb_shinfo(skb)->xdp_frags_size = skb->data_len;
5111 		xdp_buff_set_frags_flag(xdp);
5112 	} else {
5113 		xdp_buff_clear_frags_flag(xdp);
5114 	}
5115 
5116 	orig_data_end = xdp->data_end;
5117 	orig_data = xdp->data;
5118 	eth = (struct ethhdr *)xdp->data;
5119 	orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
5120 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
5121 	orig_eth_type = eth->h_proto;
5122 
5123 	act = bpf_prog_run_xdp(xdp_prog, xdp);
5124 
5125 	/* check if bpf_xdp_adjust_head was used */
5126 	off = xdp->data - orig_data;
5127 	if (off) {
5128 		if (off > 0)
5129 			__skb_pull(skb, off);
5130 		else if (off < 0)
5131 			__skb_push(skb, -off);
5132 
5133 		skb->mac_header += off;
5134 		skb_reset_network_header(skb);
5135 	}
5136 
5137 	/* check if bpf_xdp_adjust_tail was used */
5138 	off = xdp->data_end - orig_data_end;
5139 	if (off != 0) {
5140 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
5141 		skb->len += off; /* positive on grow, negative on shrink */
5142 	}
5143 
5144 	/* XDP frag metadata (e.g. nr_frags) are updated in eBPF helpers
5145 	 * (e.g. bpf_xdp_adjust_tail), we need to update data_len here.
5146 	 */
5147 	if (xdp_buff_has_frags(xdp))
5148 		skb->data_len = skb_shinfo(skb)->xdp_frags_size;
5149 	else
5150 		skb->data_len = 0;
5151 
5152 	/* check if XDP changed eth hdr such SKB needs update */
5153 	eth = (struct ethhdr *)xdp->data;
5154 	if ((orig_eth_type != eth->h_proto) ||
5155 	    (orig_host != ether_addr_equal_64bits(eth->h_dest,
5156 						  skb->dev->dev_addr)) ||
5157 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
5158 		__skb_push(skb, ETH_HLEN);
5159 		skb->pkt_type = PACKET_HOST;
5160 		skb->protocol = eth_type_trans(skb, skb->dev);
5161 	}
5162 
5163 	/* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
5164 	 * before calling us again on redirect path. We do not call do_redirect
5165 	 * as we leave that up to the caller.
5166 	 *
5167 	 * Caller is responsible for managing lifetime of skb (i.e. calling
5168 	 * kfree_skb in response to actions it cannot handle/XDP_DROP).
5169 	 */
5170 	switch (act) {
5171 	case XDP_REDIRECT:
5172 	case XDP_TX:
5173 		__skb_push(skb, mac_len);
5174 		break;
5175 	case XDP_PASS:
5176 		metalen = xdp->data - xdp->data_meta;
5177 		if (metalen)
5178 			skb_metadata_set(skb, metalen);
5179 		break;
5180 	}
5181 
5182 	return act;
5183 }
5184 
5185 static int
5186 netif_skb_check_for_xdp(struct sk_buff **pskb, const struct bpf_prog *prog)
5187 {
5188 	struct sk_buff *skb = *pskb;
5189 	int err, hroom, troom;
5190 
5191 	if (!skb_cow_data_for_xdp(this_cpu_read(system_page_pool), pskb, prog))
5192 		return 0;
5193 
5194 	/* In case we have to go down the path and also linearize,
5195 	 * then lets do the pskb_expand_head() work just once here.
5196 	 */
5197 	hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
5198 	troom = skb->tail + skb->data_len - skb->end;
5199 	err = pskb_expand_head(skb,
5200 			       hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
5201 			       troom > 0 ? troom + 128 : 0, GFP_ATOMIC);
5202 	if (err)
5203 		return err;
5204 
5205 	return skb_linearize(skb);
5206 }
5207 
5208 static u32 netif_receive_generic_xdp(struct sk_buff **pskb,
5209 				     struct xdp_buff *xdp,
5210 				     const struct bpf_prog *xdp_prog)
5211 {
5212 	struct sk_buff *skb = *pskb;
5213 	u32 mac_len, act = XDP_DROP;
5214 
5215 	/* Reinjected packets coming from act_mirred or similar should
5216 	 * not get XDP generic processing.
5217 	 */
5218 	if (skb_is_redirected(skb))
5219 		return XDP_PASS;
5220 
5221 	/* XDP packets must have sufficient headroom of XDP_PACKET_HEADROOM
5222 	 * bytes. This is the guarantee that also native XDP provides,
5223 	 * thus we need to do it here as well.
5224 	 */
5225 	mac_len = skb->data - skb_mac_header(skb);
5226 	__skb_push(skb, mac_len);
5227 
5228 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
5229 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
5230 		if (netif_skb_check_for_xdp(pskb, xdp_prog))
5231 			goto do_drop;
5232 	}
5233 
5234 	__skb_pull(*pskb, mac_len);
5235 
5236 	act = bpf_prog_run_generic_xdp(*pskb, xdp, xdp_prog);
5237 	switch (act) {
5238 	case XDP_REDIRECT:
5239 	case XDP_TX:
5240 	case XDP_PASS:
5241 		break;
5242 	default:
5243 		bpf_warn_invalid_xdp_action((*pskb)->dev, xdp_prog, act);
5244 		fallthrough;
5245 	case XDP_ABORTED:
5246 		trace_xdp_exception((*pskb)->dev, xdp_prog, act);
5247 		fallthrough;
5248 	case XDP_DROP:
5249 	do_drop:
5250 		kfree_skb(*pskb);
5251 		break;
5252 	}
5253 
5254 	return act;
5255 }
5256 
5257 /* When doing generic XDP we have to bypass the qdisc layer and the
5258  * network taps in order to match in-driver-XDP behavior. This also means
5259  * that XDP packets are able to starve other packets going through a qdisc,
5260  * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
5261  * queues, so they do not have this starvation issue.
5262  */
5263 void generic_xdp_tx(struct sk_buff *skb, const struct bpf_prog *xdp_prog)
5264 {
5265 	struct net_device *dev = skb->dev;
5266 	struct netdev_queue *txq;
5267 	bool free_skb = true;
5268 	int cpu, rc;
5269 
5270 	txq = netdev_core_pick_tx(dev, skb, NULL);
5271 	cpu = smp_processor_id();
5272 	HARD_TX_LOCK(dev, txq, cpu);
5273 	if (!netif_xmit_frozen_or_drv_stopped(txq)) {
5274 		rc = netdev_start_xmit(skb, dev, txq, 0);
5275 		if (dev_xmit_complete(rc))
5276 			free_skb = false;
5277 	}
5278 	HARD_TX_UNLOCK(dev, txq);
5279 	if (free_skb) {
5280 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
5281 		dev_core_stats_tx_dropped_inc(dev);
5282 		kfree_skb(skb);
5283 	}
5284 }
5285 
5286 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
5287 
5288 int do_xdp_generic(const struct bpf_prog *xdp_prog, struct sk_buff **pskb)
5289 {
5290 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
5291 
5292 	if (xdp_prog) {
5293 		struct xdp_buff xdp;
5294 		u32 act;
5295 		int err;
5296 
5297 		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
5298 		act = netif_receive_generic_xdp(pskb, &xdp, xdp_prog);
5299 		if (act != XDP_PASS) {
5300 			switch (act) {
5301 			case XDP_REDIRECT:
5302 				err = xdp_do_generic_redirect((*pskb)->dev, *pskb,
5303 							      &xdp, xdp_prog);
5304 				if (err)
5305 					goto out_redir;
5306 				break;
5307 			case XDP_TX:
5308 				generic_xdp_tx(*pskb, xdp_prog);
5309 				break;
5310 			}
5311 			bpf_net_ctx_clear(bpf_net_ctx);
5312 			return XDP_DROP;
5313 		}
5314 		bpf_net_ctx_clear(bpf_net_ctx);
5315 	}
5316 	return XDP_PASS;
5317 out_redir:
5318 	bpf_net_ctx_clear(bpf_net_ctx);
5319 	kfree_skb_reason(*pskb, SKB_DROP_REASON_XDP);
5320 	return XDP_DROP;
5321 }
5322 EXPORT_SYMBOL_GPL(do_xdp_generic);
5323 
5324 static int netif_rx_internal(struct sk_buff *skb)
5325 {
5326 	int ret;
5327 
5328 	net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5329 
5330 	trace_netif_rx(skb);
5331 
5332 #ifdef CONFIG_RPS
5333 	if (static_branch_unlikely(&rps_needed)) {
5334 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5335 		int cpu;
5336 
5337 		rcu_read_lock();
5338 
5339 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
5340 		if (cpu < 0)
5341 			cpu = smp_processor_id();
5342 
5343 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5344 
5345 		rcu_read_unlock();
5346 	} else
5347 #endif
5348 	{
5349 		unsigned int qtail;
5350 
5351 		ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
5352 	}
5353 	return ret;
5354 }
5355 
5356 /**
5357  *	__netif_rx	-	Slightly optimized version of netif_rx
5358  *	@skb: buffer to post
5359  *
5360  *	This behaves as netif_rx except that it does not disable bottom halves.
5361  *	As a result this function may only be invoked from the interrupt context
5362  *	(either hard or soft interrupt).
5363  */
5364 int __netif_rx(struct sk_buff *skb)
5365 {
5366 	int ret;
5367 
5368 	lockdep_assert_once(hardirq_count() | softirq_count());
5369 
5370 	trace_netif_rx_entry(skb);
5371 	ret = netif_rx_internal(skb);
5372 	trace_netif_rx_exit(ret);
5373 	return ret;
5374 }
5375 EXPORT_SYMBOL(__netif_rx);
5376 
5377 /**
5378  *	netif_rx	-	post buffer to the network code
5379  *	@skb: buffer to post
5380  *
5381  *	This function receives a packet from a device driver and queues it for
5382  *	the upper (protocol) levels to process via the backlog NAPI device. It
5383  *	always succeeds. The buffer may be dropped during processing for
5384  *	congestion control or by the protocol layers.
5385  *	The network buffer is passed via the backlog NAPI device. Modern NIC
5386  *	driver should use NAPI and GRO.
5387  *	This function can used from interrupt and from process context. The
5388  *	caller from process context must not disable interrupts before invoking
5389  *	this function.
5390  *
5391  *	return values:
5392  *	NET_RX_SUCCESS	(no congestion)
5393  *	NET_RX_DROP     (packet was dropped)
5394  *
5395  */
5396 int netif_rx(struct sk_buff *skb)
5397 {
5398 	bool need_bh_off = !(hardirq_count() | softirq_count());
5399 	int ret;
5400 
5401 	if (need_bh_off)
5402 		local_bh_disable();
5403 	trace_netif_rx_entry(skb);
5404 	ret = netif_rx_internal(skb);
5405 	trace_netif_rx_exit(ret);
5406 	if (need_bh_off)
5407 		local_bh_enable();
5408 	return ret;
5409 }
5410 EXPORT_SYMBOL(netif_rx);
5411 
5412 static __latent_entropy void net_tx_action(void)
5413 {
5414 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5415 
5416 	if (sd->completion_queue) {
5417 		struct sk_buff *clist;
5418 
5419 		local_irq_disable();
5420 		clist = sd->completion_queue;
5421 		sd->completion_queue = NULL;
5422 		local_irq_enable();
5423 
5424 		while (clist) {
5425 			struct sk_buff *skb = clist;
5426 
5427 			clist = clist->next;
5428 
5429 			WARN_ON(refcount_read(&skb->users));
5430 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
5431 				trace_consume_skb(skb, net_tx_action);
5432 			else
5433 				trace_kfree_skb(skb, net_tx_action,
5434 						get_kfree_skb_cb(skb)->reason, NULL);
5435 
5436 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5437 				__kfree_skb(skb);
5438 			else
5439 				__napi_kfree_skb(skb,
5440 						 get_kfree_skb_cb(skb)->reason);
5441 		}
5442 	}
5443 
5444 	if (sd->output_queue) {
5445 		struct Qdisc *head;
5446 
5447 		local_irq_disable();
5448 		head = sd->output_queue;
5449 		sd->output_queue = NULL;
5450 		sd->output_queue_tailp = &sd->output_queue;
5451 		local_irq_enable();
5452 
5453 		rcu_read_lock();
5454 
5455 		while (head) {
5456 			struct Qdisc *q = head;
5457 			spinlock_t *root_lock = NULL;
5458 
5459 			head = head->next_sched;
5460 
5461 			/* We need to make sure head->next_sched is read
5462 			 * before clearing __QDISC_STATE_SCHED
5463 			 */
5464 			smp_mb__before_atomic();
5465 
5466 			if (!(q->flags & TCQ_F_NOLOCK)) {
5467 				root_lock = qdisc_lock(q);
5468 				spin_lock(root_lock);
5469 			} else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5470 						     &q->state))) {
5471 				/* There is a synchronize_net() between
5472 				 * STATE_DEACTIVATED flag being set and
5473 				 * qdisc_reset()/some_qdisc_is_busy() in
5474 				 * dev_deactivate(), so we can safely bail out
5475 				 * early here to avoid data race between
5476 				 * qdisc_deactivate() and some_qdisc_is_busy()
5477 				 * for lockless qdisc.
5478 				 */
5479 				clear_bit(__QDISC_STATE_SCHED, &q->state);
5480 				continue;
5481 			}
5482 
5483 			clear_bit(__QDISC_STATE_SCHED, &q->state);
5484 			qdisc_run(q);
5485 			if (root_lock)
5486 				spin_unlock(root_lock);
5487 		}
5488 
5489 		rcu_read_unlock();
5490 	}
5491 
5492 	xfrm_dev_backlog(sd);
5493 }
5494 
5495 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5496 /* This hook is defined here for ATM LANE */
5497 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5498 			     unsigned char *addr) __read_mostly;
5499 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5500 #endif
5501 
5502 /**
5503  *	netdev_is_rx_handler_busy - check if receive handler is registered
5504  *	@dev: device to check
5505  *
5506  *	Check if a receive handler is already registered for a given device.
5507  *	Return true if there one.
5508  *
5509  *	The caller must hold the rtnl_mutex.
5510  */
5511 bool netdev_is_rx_handler_busy(struct net_device *dev)
5512 {
5513 	ASSERT_RTNL();
5514 	return dev && rtnl_dereference(dev->rx_handler);
5515 }
5516 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5517 
5518 /**
5519  *	netdev_rx_handler_register - register receive handler
5520  *	@dev: device to register a handler for
5521  *	@rx_handler: receive handler to register
5522  *	@rx_handler_data: data pointer that is used by rx handler
5523  *
5524  *	Register a receive handler for a device. This handler will then be
5525  *	called from __netif_receive_skb. A negative errno code is returned
5526  *	on a failure.
5527  *
5528  *	The caller must hold the rtnl_mutex.
5529  *
5530  *	For a general description of rx_handler, see enum rx_handler_result.
5531  */
5532 int netdev_rx_handler_register(struct net_device *dev,
5533 			       rx_handler_func_t *rx_handler,
5534 			       void *rx_handler_data)
5535 {
5536 	if (netdev_is_rx_handler_busy(dev))
5537 		return -EBUSY;
5538 
5539 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
5540 		return -EINVAL;
5541 
5542 	/* Note: rx_handler_data must be set before rx_handler */
5543 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5544 	rcu_assign_pointer(dev->rx_handler, rx_handler);
5545 
5546 	return 0;
5547 }
5548 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5549 
5550 /**
5551  *	netdev_rx_handler_unregister - unregister receive handler
5552  *	@dev: device to unregister a handler from
5553  *
5554  *	Unregister a receive handler from a device.
5555  *
5556  *	The caller must hold the rtnl_mutex.
5557  */
5558 void netdev_rx_handler_unregister(struct net_device *dev)
5559 {
5560 
5561 	ASSERT_RTNL();
5562 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5563 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5564 	 * section has a guarantee to see a non NULL rx_handler_data
5565 	 * as well.
5566 	 */
5567 	synchronize_net();
5568 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5569 }
5570 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5571 
5572 /*
5573  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5574  * the special handling of PFMEMALLOC skbs.
5575  */
5576 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5577 {
5578 	switch (skb->protocol) {
5579 	case htons(ETH_P_ARP):
5580 	case htons(ETH_P_IP):
5581 	case htons(ETH_P_IPV6):
5582 	case htons(ETH_P_8021Q):
5583 	case htons(ETH_P_8021AD):
5584 		return true;
5585 	default:
5586 		return false;
5587 	}
5588 }
5589 
5590 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5591 			     int *ret, struct net_device *orig_dev)
5592 {
5593 	if (nf_hook_ingress_active(skb)) {
5594 		int ingress_retval;
5595 
5596 		if (*pt_prev) {
5597 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5598 			*pt_prev = NULL;
5599 		}
5600 
5601 		rcu_read_lock();
5602 		ingress_retval = nf_hook_ingress(skb);
5603 		rcu_read_unlock();
5604 		return ingress_retval;
5605 	}
5606 	return 0;
5607 }
5608 
5609 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5610 				    struct packet_type **ppt_prev)
5611 {
5612 	struct packet_type *ptype, *pt_prev;
5613 	rx_handler_func_t *rx_handler;
5614 	struct sk_buff *skb = *pskb;
5615 	struct net_device *orig_dev;
5616 	bool deliver_exact = false;
5617 	int ret = NET_RX_DROP;
5618 	__be16 type;
5619 
5620 	net_timestamp_check(!READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5621 
5622 	trace_netif_receive_skb(skb);
5623 
5624 	orig_dev = skb->dev;
5625 
5626 	skb_reset_network_header(skb);
5627 #if !defined(CONFIG_DEBUG_NET)
5628 	/* We plan to no longer reset the transport header here.
5629 	 * Give some time to fuzzers and dev build to catch bugs
5630 	 * in network stacks.
5631 	 */
5632 	if (!skb_transport_header_was_set(skb))
5633 		skb_reset_transport_header(skb);
5634 #endif
5635 	skb_reset_mac_len(skb);
5636 
5637 	pt_prev = NULL;
5638 
5639 another_round:
5640 	skb->skb_iif = skb->dev->ifindex;
5641 
5642 	__this_cpu_inc(softnet_data.processed);
5643 
5644 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5645 		int ret2;
5646 
5647 		migrate_disable();
5648 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog),
5649 				      &skb);
5650 		migrate_enable();
5651 
5652 		if (ret2 != XDP_PASS) {
5653 			ret = NET_RX_DROP;
5654 			goto out;
5655 		}
5656 	}
5657 
5658 	if (eth_type_vlan(skb->protocol)) {
5659 		skb = skb_vlan_untag(skb);
5660 		if (unlikely(!skb))
5661 			goto out;
5662 	}
5663 
5664 	if (skb_skip_tc_classify(skb))
5665 		goto skip_classify;
5666 
5667 	if (pfmemalloc)
5668 		goto skip_taps;
5669 
5670 	list_for_each_entry_rcu(ptype, &net_hotdata.ptype_all, list) {
5671 		if (pt_prev)
5672 			ret = deliver_skb(skb, pt_prev, orig_dev);
5673 		pt_prev = ptype;
5674 	}
5675 
5676 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5677 		if (pt_prev)
5678 			ret = deliver_skb(skb, pt_prev, orig_dev);
5679 		pt_prev = ptype;
5680 	}
5681 
5682 skip_taps:
5683 #ifdef CONFIG_NET_INGRESS
5684 	if (static_branch_unlikely(&ingress_needed_key)) {
5685 		bool another = false;
5686 
5687 		nf_skip_egress(skb, true);
5688 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5689 					 &another);
5690 		if (another)
5691 			goto another_round;
5692 		if (!skb)
5693 			goto out;
5694 
5695 		nf_skip_egress(skb, false);
5696 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5697 			goto out;
5698 	}
5699 #endif
5700 	skb_reset_redirect(skb);
5701 skip_classify:
5702 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5703 		goto drop;
5704 
5705 	if (skb_vlan_tag_present(skb)) {
5706 		if (pt_prev) {
5707 			ret = deliver_skb(skb, pt_prev, orig_dev);
5708 			pt_prev = NULL;
5709 		}
5710 		if (vlan_do_receive(&skb))
5711 			goto another_round;
5712 		else if (unlikely(!skb))
5713 			goto out;
5714 	}
5715 
5716 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5717 	if (rx_handler) {
5718 		if (pt_prev) {
5719 			ret = deliver_skb(skb, pt_prev, orig_dev);
5720 			pt_prev = NULL;
5721 		}
5722 		switch (rx_handler(&skb)) {
5723 		case RX_HANDLER_CONSUMED:
5724 			ret = NET_RX_SUCCESS;
5725 			goto out;
5726 		case RX_HANDLER_ANOTHER:
5727 			goto another_round;
5728 		case RX_HANDLER_EXACT:
5729 			deliver_exact = true;
5730 			break;
5731 		case RX_HANDLER_PASS:
5732 			break;
5733 		default:
5734 			BUG();
5735 		}
5736 	}
5737 
5738 	if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5739 check_vlan_id:
5740 		if (skb_vlan_tag_get_id(skb)) {
5741 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5742 			 * find vlan device.
5743 			 */
5744 			skb->pkt_type = PACKET_OTHERHOST;
5745 		} else if (eth_type_vlan(skb->protocol)) {
5746 			/* Outer header is 802.1P with vlan 0, inner header is
5747 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5748 			 * not find vlan dev for vlan id 0.
5749 			 */
5750 			__vlan_hwaccel_clear_tag(skb);
5751 			skb = skb_vlan_untag(skb);
5752 			if (unlikely(!skb))
5753 				goto out;
5754 			if (vlan_do_receive(&skb))
5755 				/* After stripping off 802.1P header with vlan 0
5756 				 * vlan dev is found for inner header.
5757 				 */
5758 				goto another_round;
5759 			else if (unlikely(!skb))
5760 				goto out;
5761 			else
5762 				/* We have stripped outer 802.1P vlan 0 header.
5763 				 * But could not find vlan dev.
5764 				 * check again for vlan id to set OTHERHOST.
5765 				 */
5766 				goto check_vlan_id;
5767 		}
5768 		/* Note: we might in the future use prio bits
5769 		 * and set skb->priority like in vlan_do_receive()
5770 		 * For the time being, just ignore Priority Code Point
5771 		 */
5772 		__vlan_hwaccel_clear_tag(skb);
5773 	}
5774 
5775 	type = skb->protocol;
5776 
5777 	/* deliver only exact match when indicated */
5778 	if (likely(!deliver_exact)) {
5779 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5780 				       &ptype_base[ntohs(type) &
5781 						   PTYPE_HASH_MASK]);
5782 	}
5783 
5784 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5785 			       &orig_dev->ptype_specific);
5786 
5787 	if (unlikely(skb->dev != orig_dev)) {
5788 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5789 				       &skb->dev->ptype_specific);
5790 	}
5791 
5792 	if (pt_prev) {
5793 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5794 			goto drop;
5795 		*ppt_prev = pt_prev;
5796 	} else {
5797 drop:
5798 		if (!deliver_exact)
5799 			dev_core_stats_rx_dropped_inc(skb->dev);
5800 		else
5801 			dev_core_stats_rx_nohandler_inc(skb->dev);
5802 		kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5803 		/* Jamal, now you will not able to escape explaining
5804 		 * me how you were going to use this. :-)
5805 		 */
5806 		ret = NET_RX_DROP;
5807 	}
5808 
5809 out:
5810 	/* The invariant here is that if *ppt_prev is not NULL
5811 	 * then skb should also be non-NULL.
5812 	 *
5813 	 * Apparently *ppt_prev assignment above holds this invariant due to
5814 	 * skb dereferencing near it.
5815 	 */
5816 	*pskb = skb;
5817 	return ret;
5818 }
5819 
5820 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5821 {
5822 	struct net_device *orig_dev = skb->dev;
5823 	struct packet_type *pt_prev = NULL;
5824 	int ret;
5825 
5826 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5827 	if (pt_prev)
5828 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5829 					 skb->dev, pt_prev, orig_dev);
5830 	return ret;
5831 }
5832 
5833 /**
5834  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5835  *	@skb: buffer to process
5836  *
5837  *	More direct receive version of netif_receive_skb().  It should
5838  *	only be used by callers that have a need to skip RPS and Generic XDP.
5839  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5840  *
5841  *	This function may only be called from softirq context and interrupts
5842  *	should be enabled.
5843  *
5844  *	Return values (usually ignored):
5845  *	NET_RX_SUCCESS: no congestion
5846  *	NET_RX_DROP: packet was dropped
5847  */
5848 int netif_receive_skb_core(struct sk_buff *skb)
5849 {
5850 	int ret;
5851 
5852 	rcu_read_lock();
5853 	ret = __netif_receive_skb_one_core(skb, false);
5854 	rcu_read_unlock();
5855 
5856 	return ret;
5857 }
5858 EXPORT_SYMBOL(netif_receive_skb_core);
5859 
5860 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5861 						  struct packet_type *pt_prev,
5862 						  struct net_device *orig_dev)
5863 {
5864 	struct sk_buff *skb, *next;
5865 
5866 	if (!pt_prev)
5867 		return;
5868 	if (list_empty(head))
5869 		return;
5870 	if (pt_prev->list_func != NULL)
5871 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5872 				   ip_list_rcv, head, pt_prev, orig_dev);
5873 	else
5874 		list_for_each_entry_safe(skb, next, head, list) {
5875 			skb_list_del_init(skb);
5876 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5877 		}
5878 }
5879 
5880 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5881 {
5882 	/* Fast-path assumptions:
5883 	 * - There is no RX handler.
5884 	 * - Only one packet_type matches.
5885 	 * If either of these fails, we will end up doing some per-packet
5886 	 * processing in-line, then handling the 'last ptype' for the whole
5887 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5888 	 * because the 'last ptype' must be constant across the sublist, and all
5889 	 * other ptypes are handled per-packet.
5890 	 */
5891 	/* Current (common) ptype of sublist */
5892 	struct packet_type *pt_curr = NULL;
5893 	/* Current (common) orig_dev of sublist */
5894 	struct net_device *od_curr = NULL;
5895 	struct sk_buff *skb, *next;
5896 	LIST_HEAD(sublist);
5897 
5898 	list_for_each_entry_safe(skb, next, head, list) {
5899 		struct net_device *orig_dev = skb->dev;
5900 		struct packet_type *pt_prev = NULL;
5901 
5902 		skb_list_del_init(skb);
5903 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5904 		if (!pt_prev)
5905 			continue;
5906 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5907 			/* dispatch old sublist */
5908 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5909 			/* start new sublist */
5910 			INIT_LIST_HEAD(&sublist);
5911 			pt_curr = pt_prev;
5912 			od_curr = orig_dev;
5913 		}
5914 		list_add_tail(&skb->list, &sublist);
5915 	}
5916 
5917 	/* dispatch final sublist */
5918 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5919 }
5920 
5921 static int __netif_receive_skb(struct sk_buff *skb)
5922 {
5923 	int ret;
5924 
5925 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5926 		unsigned int noreclaim_flag;
5927 
5928 		/*
5929 		 * PFMEMALLOC skbs are special, they should
5930 		 * - be delivered to SOCK_MEMALLOC sockets only
5931 		 * - stay away from userspace
5932 		 * - have bounded memory usage
5933 		 *
5934 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5935 		 * context down to all allocation sites.
5936 		 */
5937 		noreclaim_flag = memalloc_noreclaim_save();
5938 		ret = __netif_receive_skb_one_core(skb, true);
5939 		memalloc_noreclaim_restore(noreclaim_flag);
5940 	} else
5941 		ret = __netif_receive_skb_one_core(skb, false);
5942 
5943 	return ret;
5944 }
5945 
5946 static void __netif_receive_skb_list(struct list_head *head)
5947 {
5948 	unsigned long noreclaim_flag = 0;
5949 	struct sk_buff *skb, *next;
5950 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5951 
5952 	list_for_each_entry_safe(skb, next, head, list) {
5953 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5954 			struct list_head sublist;
5955 
5956 			/* Handle the previous sublist */
5957 			list_cut_before(&sublist, head, &skb->list);
5958 			if (!list_empty(&sublist))
5959 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5960 			pfmemalloc = !pfmemalloc;
5961 			/* See comments in __netif_receive_skb */
5962 			if (pfmemalloc)
5963 				noreclaim_flag = memalloc_noreclaim_save();
5964 			else
5965 				memalloc_noreclaim_restore(noreclaim_flag);
5966 		}
5967 	}
5968 	/* Handle the remaining sublist */
5969 	if (!list_empty(head))
5970 		__netif_receive_skb_list_core(head, pfmemalloc);
5971 	/* Restore pflags */
5972 	if (pfmemalloc)
5973 		memalloc_noreclaim_restore(noreclaim_flag);
5974 }
5975 
5976 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5977 {
5978 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5979 	struct bpf_prog *new = xdp->prog;
5980 	int ret = 0;
5981 
5982 	switch (xdp->command) {
5983 	case XDP_SETUP_PROG:
5984 		rcu_assign_pointer(dev->xdp_prog, new);
5985 		if (old)
5986 			bpf_prog_put(old);
5987 
5988 		if (old && !new) {
5989 			static_branch_dec(&generic_xdp_needed_key);
5990 		} else if (new && !old) {
5991 			static_branch_inc(&generic_xdp_needed_key);
5992 			dev_disable_lro(dev);
5993 			dev_disable_gro_hw(dev);
5994 		}
5995 		break;
5996 
5997 	default:
5998 		ret = -EINVAL;
5999 		break;
6000 	}
6001 
6002 	return ret;
6003 }
6004 
6005 static int netif_receive_skb_internal(struct sk_buff *skb)
6006 {
6007 	int ret;
6008 
6009 	net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
6010 
6011 	if (skb_defer_rx_timestamp(skb))
6012 		return NET_RX_SUCCESS;
6013 
6014 	rcu_read_lock();
6015 #ifdef CONFIG_RPS
6016 	if (static_branch_unlikely(&rps_needed)) {
6017 		struct rps_dev_flow voidflow, *rflow = &voidflow;
6018 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
6019 
6020 		if (cpu >= 0) {
6021 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
6022 			rcu_read_unlock();
6023 			return ret;
6024 		}
6025 	}
6026 #endif
6027 	ret = __netif_receive_skb(skb);
6028 	rcu_read_unlock();
6029 	return ret;
6030 }
6031 
6032 void netif_receive_skb_list_internal(struct list_head *head)
6033 {
6034 	struct sk_buff *skb, *next;
6035 	LIST_HEAD(sublist);
6036 
6037 	list_for_each_entry_safe(skb, next, head, list) {
6038 		net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue),
6039 				    skb);
6040 		skb_list_del_init(skb);
6041 		if (!skb_defer_rx_timestamp(skb))
6042 			list_add_tail(&skb->list, &sublist);
6043 	}
6044 	list_splice_init(&sublist, head);
6045 
6046 	rcu_read_lock();
6047 #ifdef CONFIG_RPS
6048 	if (static_branch_unlikely(&rps_needed)) {
6049 		list_for_each_entry_safe(skb, next, head, list) {
6050 			struct rps_dev_flow voidflow, *rflow = &voidflow;
6051 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
6052 
6053 			if (cpu >= 0) {
6054 				/* Will be handled, remove from list */
6055 				skb_list_del_init(skb);
6056 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
6057 			}
6058 		}
6059 	}
6060 #endif
6061 	__netif_receive_skb_list(head);
6062 	rcu_read_unlock();
6063 }
6064 
6065 /**
6066  *	netif_receive_skb - process receive buffer from network
6067  *	@skb: buffer to process
6068  *
6069  *	netif_receive_skb() is the main receive data processing function.
6070  *	It always succeeds. The buffer may be dropped during processing
6071  *	for congestion control or by the protocol layers.
6072  *
6073  *	This function may only be called from softirq context and interrupts
6074  *	should be enabled.
6075  *
6076  *	Return values (usually ignored):
6077  *	NET_RX_SUCCESS: no congestion
6078  *	NET_RX_DROP: packet was dropped
6079  */
6080 int netif_receive_skb(struct sk_buff *skb)
6081 {
6082 	int ret;
6083 
6084 	trace_netif_receive_skb_entry(skb);
6085 
6086 	ret = netif_receive_skb_internal(skb);
6087 	trace_netif_receive_skb_exit(ret);
6088 
6089 	return ret;
6090 }
6091 EXPORT_SYMBOL(netif_receive_skb);
6092 
6093 /**
6094  *	netif_receive_skb_list - process many receive buffers from network
6095  *	@head: list of skbs to process.
6096  *
6097  *	Since return value of netif_receive_skb() is normally ignored, and
6098  *	wouldn't be meaningful for a list, this function returns void.
6099  *
6100  *	This function may only be called from softirq context and interrupts
6101  *	should be enabled.
6102  */
6103 void netif_receive_skb_list(struct list_head *head)
6104 {
6105 	struct sk_buff *skb;
6106 
6107 	if (list_empty(head))
6108 		return;
6109 	if (trace_netif_receive_skb_list_entry_enabled()) {
6110 		list_for_each_entry(skb, head, list)
6111 			trace_netif_receive_skb_list_entry(skb);
6112 	}
6113 	netif_receive_skb_list_internal(head);
6114 	trace_netif_receive_skb_list_exit(0);
6115 }
6116 EXPORT_SYMBOL(netif_receive_skb_list);
6117 
6118 /* Network device is going away, flush any packets still pending */
6119 static void flush_backlog(struct work_struct *work)
6120 {
6121 	struct sk_buff *skb, *tmp;
6122 	struct softnet_data *sd;
6123 
6124 	local_bh_disable();
6125 	sd = this_cpu_ptr(&softnet_data);
6126 
6127 	backlog_lock_irq_disable(sd);
6128 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
6129 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
6130 			__skb_unlink(skb, &sd->input_pkt_queue);
6131 			dev_kfree_skb_irq(skb);
6132 			rps_input_queue_head_incr(sd);
6133 		}
6134 	}
6135 	backlog_unlock_irq_enable(sd);
6136 
6137 	local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6138 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
6139 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
6140 			__skb_unlink(skb, &sd->process_queue);
6141 			kfree_skb(skb);
6142 			rps_input_queue_head_incr(sd);
6143 		}
6144 	}
6145 	local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6146 	local_bh_enable();
6147 }
6148 
6149 static bool flush_required(int cpu)
6150 {
6151 #if IS_ENABLED(CONFIG_RPS)
6152 	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
6153 	bool do_flush;
6154 
6155 	backlog_lock_irq_disable(sd);
6156 
6157 	/* as insertion into process_queue happens with the rps lock held,
6158 	 * process_queue access may race only with dequeue
6159 	 */
6160 	do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
6161 		   !skb_queue_empty_lockless(&sd->process_queue);
6162 	backlog_unlock_irq_enable(sd);
6163 
6164 	return do_flush;
6165 #endif
6166 	/* without RPS we can't safely check input_pkt_queue: during a
6167 	 * concurrent remote skb_queue_splice() we can detect as empty both
6168 	 * input_pkt_queue and process_queue even if the latter could end-up
6169 	 * containing a lot of packets.
6170 	 */
6171 	return true;
6172 }
6173 
6174 struct flush_backlogs {
6175 	cpumask_t		flush_cpus;
6176 	struct work_struct	w[];
6177 };
6178 
6179 static struct flush_backlogs *flush_backlogs_alloc(void)
6180 {
6181 	return kmalloc(struct_size_t(struct flush_backlogs, w, nr_cpu_ids),
6182 		       GFP_KERNEL);
6183 }
6184 
6185 static struct flush_backlogs *flush_backlogs_fallback;
6186 static DEFINE_MUTEX(flush_backlogs_mutex);
6187 
6188 static void flush_all_backlogs(void)
6189 {
6190 	struct flush_backlogs *ptr = flush_backlogs_alloc();
6191 	unsigned int cpu;
6192 
6193 	if (!ptr) {
6194 		mutex_lock(&flush_backlogs_mutex);
6195 		ptr = flush_backlogs_fallback;
6196 	}
6197 	cpumask_clear(&ptr->flush_cpus);
6198 
6199 	cpus_read_lock();
6200 
6201 	for_each_online_cpu(cpu) {
6202 		if (flush_required(cpu)) {
6203 			INIT_WORK(&ptr->w[cpu], flush_backlog);
6204 			queue_work_on(cpu, system_highpri_wq, &ptr->w[cpu]);
6205 			__cpumask_set_cpu(cpu, &ptr->flush_cpus);
6206 		}
6207 	}
6208 
6209 	/* we can have in flight packet[s] on the cpus we are not flushing,
6210 	 * synchronize_net() in unregister_netdevice_many() will take care of
6211 	 * them.
6212 	 */
6213 	for_each_cpu(cpu, &ptr->flush_cpus)
6214 		flush_work(&ptr->w[cpu]);
6215 
6216 	cpus_read_unlock();
6217 
6218 	if (ptr != flush_backlogs_fallback)
6219 		kfree(ptr);
6220 	else
6221 		mutex_unlock(&flush_backlogs_mutex);
6222 }
6223 
6224 static void net_rps_send_ipi(struct softnet_data *remsd)
6225 {
6226 #ifdef CONFIG_RPS
6227 	while (remsd) {
6228 		struct softnet_data *next = remsd->rps_ipi_next;
6229 
6230 		if (cpu_online(remsd->cpu))
6231 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
6232 		remsd = next;
6233 	}
6234 #endif
6235 }
6236 
6237 /*
6238  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6239  * Note: called with local irq disabled, but exits with local irq enabled.
6240  */
6241 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6242 {
6243 #ifdef CONFIG_RPS
6244 	struct softnet_data *remsd = sd->rps_ipi_list;
6245 
6246 	if (!use_backlog_threads() && remsd) {
6247 		sd->rps_ipi_list = NULL;
6248 
6249 		local_irq_enable();
6250 
6251 		/* Send pending IPI's to kick RPS processing on remote cpus. */
6252 		net_rps_send_ipi(remsd);
6253 	} else
6254 #endif
6255 		local_irq_enable();
6256 }
6257 
6258 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6259 {
6260 #ifdef CONFIG_RPS
6261 	return !use_backlog_threads() && sd->rps_ipi_list;
6262 #else
6263 	return false;
6264 #endif
6265 }
6266 
6267 static int process_backlog(struct napi_struct *napi, int quota)
6268 {
6269 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6270 	bool again = true;
6271 	int work = 0;
6272 
6273 	/* Check if we have pending ipi, its better to send them now,
6274 	 * not waiting net_rx_action() end.
6275 	 */
6276 	if (sd_has_rps_ipi_waiting(sd)) {
6277 		local_irq_disable();
6278 		net_rps_action_and_irq_enable(sd);
6279 	}
6280 
6281 	napi->weight = READ_ONCE(net_hotdata.dev_rx_weight);
6282 	while (again) {
6283 		struct sk_buff *skb;
6284 
6285 		local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6286 		while ((skb = __skb_dequeue(&sd->process_queue))) {
6287 			local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6288 			rcu_read_lock();
6289 			__netif_receive_skb(skb);
6290 			rcu_read_unlock();
6291 			if (++work >= quota) {
6292 				rps_input_queue_head_add(sd, work);
6293 				return work;
6294 			}
6295 
6296 			local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6297 		}
6298 		local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6299 
6300 		backlog_lock_irq_disable(sd);
6301 		if (skb_queue_empty(&sd->input_pkt_queue)) {
6302 			/*
6303 			 * Inline a custom version of __napi_complete().
6304 			 * only current cpu owns and manipulates this napi,
6305 			 * and NAPI_STATE_SCHED is the only possible flag set
6306 			 * on backlog.
6307 			 * We can use a plain write instead of clear_bit(),
6308 			 * and we dont need an smp_mb() memory barrier.
6309 			 */
6310 			napi->state &= NAPIF_STATE_THREADED;
6311 			again = false;
6312 		} else {
6313 			local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6314 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
6315 						   &sd->process_queue);
6316 			local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6317 		}
6318 		backlog_unlock_irq_enable(sd);
6319 	}
6320 
6321 	if (work)
6322 		rps_input_queue_head_add(sd, work);
6323 	return work;
6324 }
6325 
6326 /**
6327  * __napi_schedule - schedule for receive
6328  * @n: entry to schedule
6329  *
6330  * The entry's receive function will be scheduled to run.
6331  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6332  */
6333 void __napi_schedule(struct napi_struct *n)
6334 {
6335 	unsigned long flags;
6336 
6337 	local_irq_save(flags);
6338 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6339 	local_irq_restore(flags);
6340 }
6341 EXPORT_SYMBOL(__napi_schedule);
6342 
6343 /**
6344  *	napi_schedule_prep - check if napi can be scheduled
6345  *	@n: napi context
6346  *
6347  * Test if NAPI routine is already running, and if not mark
6348  * it as running.  This is used as a condition variable to
6349  * insure only one NAPI poll instance runs.  We also make
6350  * sure there is no pending NAPI disable.
6351  */
6352 bool napi_schedule_prep(struct napi_struct *n)
6353 {
6354 	unsigned long new, val = READ_ONCE(n->state);
6355 
6356 	do {
6357 		if (unlikely(val & NAPIF_STATE_DISABLE))
6358 			return false;
6359 		new = val | NAPIF_STATE_SCHED;
6360 
6361 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
6362 		 * This was suggested by Alexander Duyck, as compiler
6363 		 * emits better code than :
6364 		 * if (val & NAPIF_STATE_SCHED)
6365 		 *     new |= NAPIF_STATE_MISSED;
6366 		 */
6367 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6368 						   NAPIF_STATE_MISSED;
6369 	} while (!try_cmpxchg(&n->state, &val, new));
6370 
6371 	return !(val & NAPIF_STATE_SCHED);
6372 }
6373 EXPORT_SYMBOL(napi_schedule_prep);
6374 
6375 /**
6376  * __napi_schedule_irqoff - schedule for receive
6377  * @n: entry to schedule
6378  *
6379  * Variant of __napi_schedule() assuming hard irqs are masked.
6380  *
6381  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6382  * because the interrupt disabled assumption might not be true
6383  * due to force-threaded interrupts and spinlock substitution.
6384  */
6385 void __napi_schedule_irqoff(struct napi_struct *n)
6386 {
6387 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6388 		____napi_schedule(this_cpu_ptr(&softnet_data), n);
6389 	else
6390 		__napi_schedule(n);
6391 }
6392 EXPORT_SYMBOL(__napi_schedule_irqoff);
6393 
6394 bool napi_complete_done(struct napi_struct *n, int work_done)
6395 {
6396 	unsigned long flags, val, new, timeout = 0;
6397 	bool ret = true;
6398 
6399 	/*
6400 	 * 1) Don't let napi dequeue from the cpu poll list
6401 	 *    just in case its running on a different cpu.
6402 	 * 2) If we are busy polling, do nothing here, we have
6403 	 *    the guarantee we will be called later.
6404 	 */
6405 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6406 				 NAPIF_STATE_IN_BUSY_POLL)))
6407 		return false;
6408 
6409 	if (work_done) {
6410 		if (n->gro_bitmask)
6411 			timeout = napi_get_gro_flush_timeout(n);
6412 		n->defer_hard_irqs_count = napi_get_defer_hard_irqs(n);
6413 	}
6414 	if (n->defer_hard_irqs_count > 0) {
6415 		n->defer_hard_irqs_count--;
6416 		timeout = napi_get_gro_flush_timeout(n);
6417 		if (timeout)
6418 			ret = false;
6419 	}
6420 	if (n->gro_bitmask) {
6421 		/* When the NAPI instance uses a timeout and keeps postponing
6422 		 * it, we need to bound somehow the time packets are kept in
6423 		 * the GRO layer
6424 		 */
6425 		napi_gro_flush(n, !!timeout);
6426 	}
6427 
6428 	gro_normal_list(n);
6429 
6430 	if (unlikely(!list_empty(&n->poll_list))) {
6431 		/* If n->poll_list is not empty, we need to mask irqs */
6432 		local_irq_save(flags);
6433 		list_del_init(&n->poll_list);
6434 		local_irq_restore(flags);
6435 	}
6436 	WRITE_ONCE(n->list_owner, -1);
6437 
6438 	val = READ_ONCE(n->state);
6439 	do {
6440 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6441 
6442 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6443 			      NAPIF_STATE_SCHED_THREADED |
6444 			      NAPIF_STATE_PREFER_BUSY_POLL);
6445 
6446 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6447 		 * because we will call napi->poll() one more time.
6448 		 * This C code was suggested by Alexander Duyck to help gcc.
6449 		 */
6450 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6451 						    NAPIF_STATE_SCHED;
6452 	} while (!try_cmpxchg(&n->state, &val, new));
6453 
6454 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6455 		__napi_schedule(n);
6456 		return false;
6457 	}
6458 
6459 	if (timeout)
6460 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
6461 			      HRTIMER_MODE_REL_PINNED);
6462 	return ret;
6463 }
6464 EXPORT_SYMBOL(napi_complete_done);
6465 
6466 static void skb_defer_free_flush(struct softnet_data *sd)
6467 {
6468 	struct sk_buff *skb, *next;
6469 
6470 	/* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6471 	if (!READ_ONCE(sd->defer_list))
6472 		return;
6473 
6474 	spin_lock(&sd->defer_lock);
6475 	skb = sd->defer_list;
6476 	sd->defer_list = NULL;
6477 	sd->defer_count = 0;
6478 	spin_unlock(&sd->defer_lock);
6479 
6480 	while (skb != NULL) {
6481 		next = skb->next;
6482 		napi_consume_skb(skb, 1);
6483 		skb = next;
6484 	}
6485 }
6486 
6487 #if defined(CONFIG_NET_RX_BUSY_POLL)
6488 
6489 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6490 {
6491 	if (!skip_schedule) {
6492 		gro_normal_list(napi);
6493 		__napi_schedule(napi);
6494 		return;
6495 	}
6496 
6497 	if (napi->gro_bitmask) {
6498 		/* flush too old packets
6499 		 * If HZ < 1000, flush all packets.
6500 		 */
6501 		napi_gro_flush(napi, HZ >= 1000);
6502 	}
6503 
6504 	gro_normal_list(napi);
6505 	clear_bit(NAPI_STATE_SCHED, &napi->state);
6506 }
6507 
6508 enum {
6509 	NAPI_F_PREFER_BUSY_POLL	= 1,
6510 	NAPI_F_END_ON_RESCHED	= 2,
6511 };
6512 
6513 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock,
6514 			   unsigned flags, u16 budget)
6515 {
6516 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6517 	bool skip_schedule = false;
6518 	unsigned long timeout;
6519 	int rc;
6520 
6521 	/* Busy polling means there is a high chance device driver hard irq
6522 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6523 	 * set in napi_schedule_prep().
6524 	 * Since we are about to call napi->poll() once more, we can safely
6525 	 * clear NAPI_STATE_MISSED.
6526 	 *
6527 	 * Note: x86 could use a single "lock and ..." instruction
6528 	 * to perform these two clear_bit()
6529 	 */
6530 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6531 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6532 
6533 	local_bh_disable();
6534 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6535 
6536 	if (flags & NAPI_F_PREFER_BUSY_POLL) {
6537 		napi->defer_hard_irqs_count = napi_get_defer_hard_irqs(napi);
6538 		timeout = napi_get_gro_flush_timeout(napi);
6539 		if (napi->defer_hard_irqs_count && timeout) {
6540 			hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6541 			skip_schedule = true;
6542 		}
6543 	}
6544 
6545 	/* All we really want here is to re-enable device interrupts.
6546 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6547 	 */
6548 	rc = napi->poll(napi, budget);
6549 	/* We can't gro_normal_list() here, because napi->poll() might have
6550 	 * rearmed the napi (napi_complete_done()) in which case it could
6551 	 * already be running on another CPU.
6552 	 */
6553 	trace_napi_poll(napi, rc, budget);
6554 	netpoll_poll_unlock(have_poll_lock);
6555 	if (rc == budget)
6556 		__busy_poll_stop(napi, skip_schedule);
6557 	bpf_net_ctx_clear(bpf_net_ctx);
6558 	local_bh_enable();
6559 }
6560 
6561 static void __napi_busy_loop(unsigned int napi_id,
6562 		      bool (*loop_end)(void *, unsigned long),
6563 		      void *loop_end_arg, unsigned flags, u16 budget)
6564 {
6565 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6566 	int (*napi_poll)(struct napi_struct *napi, int budget);
6567 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6568 	void *have_poll_lock = NULL;
6569 	struct napi_struct *napi;
6570 
6571 	WARN_ON_ONCE(!rcu_read_lock_held());
6572 
6573 restart:
6574 	napi_poll = NULL;
6575 
6576 	napi = napi_by_id(napi_id);
6577 	if (!napi)
6578 		return;
6579 
6580 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6581 		preempt_disable();
6582 	for (;;) {
6583 		int work = 0;
6584 
6585 		local_bh_disable();
6586 		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6587 		if (!napi_poll) {
6588 			unsigned long val = READ_ONCE(napi->state);
6589 
6590 			/* If multiple threads are competing for this napi,
6591 			 * we avoid dirtying napi->state as much as we can.
6592 			 */
6593 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6594 				   NAPIF_STATE_IN_BUSY_POLL)) {
6595 				if (flags & NAPI_F_PREFER_BUSY_POLL)
6596 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6597 				goto count;
6598 			}
6599 			if (cmpxchg(&napi->state, val,
6600 				    val | NAPIF_STATE_IN_BUSY_POLL |
6601 					  NAPIF_STATE_SCHED) != val) {
6602 				if (flags & NAPI_F_PREFER_BUSY_POLL)
6603 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6604 				goto count;
6605 			}
6606 			have_poll_lock = netpoll_poll_lock(napi);
6607 			napi_poll = napi->poll;
6608 		}
6609 		work = napi_poll(napi, budget);
6610 		trace_napi_poll(napi, work, budget);
6611 		gro_normal_list(napi);
6612 count:
6613 		if (work > 0)
6614 			__NET_ADD_STATS(dev_net(napi->dev),
6615 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6616 		skb_defer_free_flush(this_cpu_ptr(&softnet_data));
6617 		bpf_net_ctx_clear(bpf_net_ctx);
6618 		local_bh_enable();
6619 
6620 		if (!loop_end || loop_end(loop_end_arg, start_time))
6621 			break;
6622 
6623 		if (unlikely(need_resched())) {
6624 			if (flags & NAPI_F_END_ON_RESCHED)
6625 				break;
6626 			if (napi_poll)
6627 				busy_poll_stop(napi, have_poll_lock, flags, budget);
6628 			if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6629 				preempt_enable();
6630 			rcu_read_unlock();
6631 			cond_resched();
6632 			rcu_read_lock();
6633 			if (loop_end(loop_end_arg, start_time))
6634 				return;
6635 			goto restart;
6636 		}
6637 		cpu_relax();
6638 	}
6639 	if (napi_poll)
6640 		busy_poll_stop(napi, have_poll_lock, flags, budget);
6641 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6642 		preempt_enable();
6643 }
6644 
6645 void napi_busy_loop_rcu(unsigned int napi_id,
6646 			bool (*loop_end)(void *, unsigned long),
6647 			void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6648 {
6649 	unsigned flags = NAPI_F_END_ON_RESCHED;
6650 
6651 	if (prefer_busy_poll)
6652 		flags |= NAPI_F_PREFER_BUSY_POLL;
6653 
6654 	__napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6655 }
6656 
6657 void napi_busy_loop(unsigned int napi_id,
6658 		    bool (*loop_end)(void *, unsigned long),
6659 		    void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6660 {
6661 	unsigned flags = prefer_busy_poll ? NAPI_F_PREFER_BUSY_POLL : 0;
6662 
6663 	rcu_read_lock();
6664 	__napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6665 	rcu_read_unlock();
6666 }
6667 EXPORT_SYMBOL(napi_busy_loop);
6668 
6669 void napi_suspend_irqs(unsigned int napi_id)
6670 {
6671 	struct napi_struct *napi;
6672 
6673 	rcu_read_lock();
6674 	napi = napi_by_id(napi_id);
6675 	if (napi) {
6676 		unsigned long timeout = napi_get_irq_suspend_timeout(napi);
6677 
6678 		if (timeout)
6679 			hrtimer_start(&napi->timer, ns_to_ktime(timeout),
6680 				      HRTIMER_MODE_REL_PINNED);
6681 	}
6682 	rcu_read_unlock();
6683 }
6684 
6685 void napi_resume_irqs(unsigned int napi_id)
6686 {
6687 	struct napi_struct *napi;
6688 
6689 	rcu_read_lock();
6690 	napi = napi_by_id(napi_id);
6691 	if (napi) {
6692 		/* If irq_suspend_timeout is set to 0 between the call to
6693 		 * napi_suspend_irqs and now, the original value still
6694 		 * determines the safety timeout as intended and napi_watchdog
6695 		 * will resume irq processing.
6696 		 */
6697 		if (napi_get_irq_suspend_timeout(napi)) {
6698 			local_bh_disable();
6699 			napi_schedule(napi);
6700 			local_bh_enable();
6701 		}
6702 	}
6703 	rcu_read_unlock();
6704 }
6705 
6706 #endif /* CONFIG_NET_RX_BUSY_POLL */
6707 
6708 static void __napi_hash_add_with_id(struct napi_struct *napi,
6709 				    unsigned int napi_id)
6710 {
6711 	WRITE_ONCE(napi->napi_id, napi_id);
6712 	hlist_add_head_rcu(&napi->napi_hash_node,
6713 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6714 }
6715 
6716 static void napi_hash_add_with_id(struct napi_struct *napi,
6717 				  unsigned int napi_id)
6718 {
6719 	unsigned long flags;
6720 
6721 	spin_lock_irqsave(&napi_hash_lock, flags);
6722 	WARN_ON_ONCE(napi_by_id(napi_id));
6723 	__napi_hash_add_with_id(napi, napi_id);
6724 	spin_unlock_irqrestore(&napi_hash_lock, flags);
6725 }
6726 
6727 static void napi_hash_add(struct napi_struct *napi)
6728 {
6729 	unsigned long flags;
6730 
6731 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6732 		return;
6733 
6734 	spin_lock_irqsave(&napi_hash_lock, flags);
6735 
6736 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6737 	do {
6738 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6739 			napi_gen_id = MIN_NAPI_ID;
6740 	} while (napi_by_id(napi_gen_id));
6741 
6742 	__napi_hash_add_with_id(napi, napi_gen_id);
6743 
6744 	spin_unlock_irqrestore(&napi_hash_lock, flags);
6745 }
6746 
6747 /* Warning : caller is responsible to make sure rcu grace period
6748  * is respected before freeing memory containing @napi
6749  */
6750 static void napi_hash_del(struct napi_struct *napi)
6751 {
6752 	unsigned long flags;
6753 
6754 	spin_lock_irqsave(&napi_hash_lock, flags);
6755 
6756 	hlist_del_init_rcu(&napi->napi_hash_node);
6757 
6758 	spin_unlock_irqrestore(&napi_hash_lock, flags);
6759 }
6760 
6761 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6762 {
6763 	struct napi_struct *napi;
6764 
6765 	napi = container_of(timer, struct napi_struct, timer);
6766 
6767 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6768 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6769 	 */
6770 	if (!napi_disable_pending(napi) &&
6771 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6772 		clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6773 		__napi_schedule_irqoff(napi);
6774 	}
6775 
6776 	return HRTIMER_NORESTART;
6777 }
6778 
6779 static void init_gro_hash(struct napi_struct *napi)
6780 {
6781 	int i;
6782 
6783 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6784 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6785 		napi->gro_hash[i].count = 0;
6786 	}
6787 	napi->gro_bitmask = 0;
6788 }
6789 
6790 int dev_set_threaded(struct net_device *dev, bool threaded)
6791 {
6792 	struct napi_struct *napi;
6793 	int err = 0;
6794 
6795 	netdev_assert_locked_or_invisible(dev);
6796 
6797 	if (dev->threaded == threaded)
6798 		return 0;
6799 
6800 	if (threaded) {
6801 		list_for_each_entry(napi, &dev->napi_list, dev_list) {
6802 			if (!napi->thread) {
6803 				err = napi_kthread_create(napi);
6804 				if (err) {
6805 					threaded = false;
6806 					break;
6807 				}
6808 			}
6809 		}
6810 	}
6811 
6812 	WRITE_ONCE(dev->threaded, threaded);
6813 
6814 	/* Make sure kthread is created before THREADED bit
6815 	 * is set.
6816 	 */
6817 	smp_mb__before_atomic();
6818 
6819 	/* Setting/unsetting threaded mode on a napi might not immediately
6820 	 * take effect, if the current napi instance is actively being
6821 	 * polled. In this case, the switch between threaded mode and
6822 	 * softirq mode will happen in the next round of napi_schedule().
6823 	 * This should not cause hiccups/stalls to the live traffic.
6824 	 */
6825 	list_for_each_entry(napi, &dev->napi_list, dev_list)
6826 		assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
6827 
6828 	return err;
6829 }
6830 EXPORT_SYMBOL(dev_set_threaded);
6831 
6832 /**
6833  * netif_queue_set_napi - Associate queue with the napi
6834  * @dev: device to which NAPI and queue belong
6835  * @queue_index: Index of queue
6836  * @type: queue type as RX or TX
6837  * @napi: NAPI context, pass NULL to clear previously set NAPI
6838  *
6839  * Set queue with its corresponding napi context. This should be done after
6840  * registering the NAPI handler for the queue-vector and the queues have been
6841  * mapped to the corresponding interrupt vector.
6842  */
6843 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index,
6844 			  enum netdev_queue_type type, struct napi_struct *napi)
6845 {
6846 	struct netdev_rx_queue *rxq;
6847 	struct netdev_queue *txq;
6848 
6849 	if (WARN_ON_ONCE(napi && !napi->dev))
6850 		return;
6851 	if (dev->reg_state >= NETREG_REGISTERED)
6852 		ASSERT_RTNL();
6853 
6854 	switch (type) {
6855 	case NETDEV_QUEUE_TYPE_RX:
6856 		rxq = __netif_get_rx_queue(dev, queue_index);
6857 		rxq->napi = napi;
6858 		return;
6859 	case NETDEV_QUEUE_TYPE_TX:
6860 		txq = netdev_get_tx_queue(dev, queue_index);
6861 		txq->napi = napi;
6862 		return;
6863 	default:
6864 		return;
6865 	}
6866 }
6867 EXPORT_SYMBOL(netif_queue_set_napi);
6868 
6869 static void napi_restore_config(struct napi_struct *n)
6870 {
6871 	n->defer_hard_irqs = n->config->defer_hard_irqs;
6872 	n->gro_flush_timeout = n->config->gro_flush_timeout;
6873 	n->irq_suspend_timeout = n->config->irq_suspend_timeout;
6874 	/* a NAPI ID might be stored in the config, if so use it. if not, use
6875 	 * napi_hash_add to generate one for us.
6876 	 */
6877 	if (n->config->napi_id) {
6878 		napi_hash_add_with_id(n, n->config->napi_id);
6879 	} else {
6880 		napi_hash_add(n);
6881 		n->config->napi_id = n->napi_id;
6882 	}
6883 }
6884 
6885 static void napi_save_config(struct napi_struct *n)
6886 {
6887 	n->config->defer_hard_irqs = n->defer_hard_irqs;
6888 	n->config->gro_flush_timeout = n->gro_flush_timeout;
6889 	n->config->irq_suspend_timeout = n->irq_suspend_timeout;
6890 	napi_hash_del(n);
6891 }
6892 
6893 /* Netlink wants the NAPI list to be sorted by ID, if adding a NAPI which will
6894  * inherit an existing ID try to insert it at the right position.
6895  */
6896 static void
6897 netif_napi_dev_list_add(struct net_device *dev, struct napi_struct *napi)
6898 {
6899 	unsigned int new_id, pos_id;
6900 	struct list_head *higher;
6901 	struct napi_struct *pos;
6902 
6903 	new_id = UINT_MAX;
6904 	if (napi->config && napi->config->napi_id)
6905 		new_id = napi->config->napi_id;
6906 
6907 	higher = &dev->napi_list;
6908 	list_for_each_entry(pos, &dev->napi_list, dev_list) {
6909 		if (pos->napi_id >= MIN_NAPI_ID)
6910 			pos_id = pos->napi_id;
6911 		else if (pos->config)
6912 			pos_id = pos->config->napi_id;
6913 		else
6914 			pos_id = UINT_MAX;
6915 
6916 		if (pos_id <= new_id)
6917 			break;
6918 		higher = &pos->dev_list;
6919 	}
6920 	list_add_rcu(&napi->dev_list, higher); /* adds after higher */
6921 }
6922 
6923 void netif_napi_add_weight_locked(struct net_device *dev,
6924 				  struct napi_struct *napi,
6925 				  int (*poll)(struct napi_struct *, int),
6926 				  int weight)
6927 {
6928 	netdev_assert_locked(dev);
6929 	if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6930 		return;
6931 
6932 	INIT_LIST_HEAD(&napi->poll_list);
6933 	INIT_HLIST_NODE(&napi->napi_hash_node);
6934 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6935 	napi->timer.function = napi_watchdog;
6936 	init_gro_hash(napi);
6937 	napi->skb = NULL;
6938 	INIT_LIST_HEAD(&napi->rx_list);
6939 	napi->rx_count = 0;
6940 	napi->poll = poll;
6941 	if (weight > NAPI_POLL_WEIGHT)
6942 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6943 				weight);
6944 	napi->weight = weight;
6945 	napi->dev = dev;
6946 #ifdef CONFIG_NETPOLL
6947 	napi->poll_owner = -1;
6948 #endif
6949 	napi->list_owner = -1;
6950 	set_bit(NAPI_STATE_SCHED, &napi->state);
6951 	set_bit(NAPI_STATE_NPSVC, &napi->state);
6952 	netif_napi_dev_list_add(dev, napi);
6953 
6954 	/* default settings from sysfs are applied to all NAPIs. any per-NAPI
6955 	 * configuration will be loaded in napi_enable
6956 	 */
6957 	napi_set_defer_hard_irqs(napi, READ_ONCE(dev->napi_defer_hard_irqs));
6958 	napi_set_gro_flush_timeout(napi, READ_ONCE(dev->gro_flush_timeout));
6959 
6960 	napi_get_frags_check(napi);
6961 	/* Create kthread for this napi if dev->threaded is set.
6962 	 * Clear dev->threaded if kthread creation failed so that
6963 	 * threaded mode will not be enabled in napi_enable().
6964 	 */
6965 	if (dev->threaded && napi_kthread_create(napi))
6966 		dev->threaded = false;
6967 	netif_napi_set_irq_locked(napi, -1);
6968 }
6969 EXPORT_SYMBOL(netif_napi_add_weight_locked);
6970 
6971 void napi_disable_locked(struct napi_struct *n)
6972 {
6973 	unsigned long val, new;
6974 
6975 	might_sleep();
6976 	netdev_assert_locked(n->dev);
6977 
6978 	set_bit(NAPI_STATE_DISABLE, &n->state);
6979 
6980 	val = READ_ONCE(n->state);
6981 	do {
6982 		while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6983 			usleep_range(20, 200);
6984 			val = READ_ONCE(n->state);
6985 		}
6986 
6987 		new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6988 		new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6989 	} while (!try_cmpxchg(&n->state, &val, new));
6990 
6991 	hrtimer_cancel(&n->timer);
6992 
6993 	if (n->config)
6994 		napi_save_config(n);
6995 	else
6996 		napi_hash_del(n);
6997 
6998 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6999 }
7000 EXPORT_SYMBOL(napi_disable_locked);
7001 
7002 /**
7003  * napi_disable() - prevent NAPI from scheduling
7004  * @n: NAPI context
7005  *
7006  * Stop NAPI from being scheduled on this context.
7007  * Waits till any outstanding processing completes.
7008  * Takes netdev_lock() for associated net_device.
7009  */
7010 void napi_disable(struct napi_struct *n)
7011 {
7012 	netdev_lock(n->dev);
7013 	napi_disable_locked(n);
7014 	netdev_unlock(n->dev);
7015 }
7016 EXPORT_SYMBOL(napi_disable);
7017 
7018 void napi_enable_locked(struct napi_struct *n)
7019 {
7020 	unsigned long new, val = READ_ONCE(n->state);
7021 
7022 	if (n->config)
7023 		napi_restore_config(n);
7024 	else
7025 		napi_hash_add(n);
7026 
7027 	do {
7028 		BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
7029 
7030 		new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
7031 		if (n->dev->threaded && n->thread)
7032 			new |= NAPIF_STATE_THREADED;
7033 	} while (!try_cmpxchg(&n->state, &val, new));
7034 }
7035 EXPORT_SYMBOL(napi_enable_locked);
7036 
7037 /**
7038  * napi_enable() - enable NAPI scheduling
7039  * @n: NAPI context
7040  *
7041  * Enable scheduling of a NAPI instance.
7042  * Must be paired with napi_disable().
7043  * Takes netdev_lock() for associated net_device.
7044  */
7045 void napi_enable(struct napi_struct *n)
7046 {
7047 	netdev_lock(n->dev);
7048 	napi_enable_locked(n);
7049 	netdev_unlock(n->dev);
7050 }
7051 EXPORT_SYMBOL(napi_enable);
7052 
7053 static void flush_gro_hash(struct napi_struct *napi)
7054 {
7055 	int i;
7056 
7057 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
7058 		struct sk_buff *skb, *n;
7059 
7060 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
7061 			kfree_skb(skb);
7062 		napi->gro_hash[i].count = 0;
7063 	}
7064 }
7065 
7066 /* Must be called in process context */
7067 void __netif_napi_del_locked(struct napi_struct *napi)
7068 {
7069 	netdev_assert_locked(napi->dev);
7070 
7071 	if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
7072 		return;
7073 
7074 	/* Make sure NAPI is disabled (or was never enabled). */
7075 	WARN_ON(!test_bit(NAPI_STATE_SCHED, &napi->state));
7076 
7077 	if (napi->config) {
7078 		napi->index = -1;
7079 		napi->config = NULL;
7080 	}
7081 
7082 	list_del_rcu(&napi->dev_list);
7083 	napi_free_frags(napi);
7084 
7085 	flush_gro_hash(napi);
7086 	napi->gro_bitmask = 0;
7087 
7088 	if (napi->thread) {
7089 		kthread_stop(napi->thread);
7090 		napi->thread = NULL;
7091 	}
7092 }
7093 EXPORT_SYMBOL(__netif_napi_del_locked);
7094 
7095 static int __napi_poll(struct napi_struct *n, bool *repoll)
7096 {
7097 	int work, weight;
7098 
7099 	weight = n->weight;
7100 
7101 	/* This NAPI_STATE_SCHED test is for avoiding a race
7102 	 * with netpoll's poll_napi().  Only the entity which
7103 	 * obtains the lock and sees NAPI_STATE_SCHED set will
7104 	 * actually make the ->poll() call.  Therefore we avoid
7105 	 * accidentally calling ->poll() when NAPI is not scheduled.
7106 	 */
7107 	work = 0;
7108 	if (napi_is_scheduled(n)) {
7109 		work = n->poll(n, weight);
7110 		trace_napi_poll(n, work, weight);
7111 
7112 		xdp_do_check_flushed(n);
7113 	}
7114 
7115 	if (unlikely(work > weight))
7116 		netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
7117 				n->poll, work, weight);
7118 
7119 	if (likely(work < weight))
7120 		return work;
7121 
7122 	/* Drivers must not modify the NAPI state if they
7123 	 * consume the entire weight.  In such cases this code
7124 	 * still "owns" the NAPI instance and therefore can
7125 	 * move the instance around on the list at-will.
7126 	 */
7127 	if (unlikely(napi_disable_pending(n))) {
7128 		napi_complete(n);
7129 		return work;
7130 	}
7131 
7132 	/* The NAPI context has more processing work, but busy-polling
7133 	 * is preferred. Exit early.
7134 	 */
7135 	if (napi_prefer_busy_poll(n)) {
7136 		if (napi_complete_done(n, work)) {
7137 			/* If timeout is not set, we need to make sure
7138 			 * that the NAPI is re-scheduled.
7139 			 */
7140 			napi_schedule(n);
7141 		}
7142 		return work;
7143 	}
7144 
7145 	if (n->gro_bitmask) {
7146 		/* flush too old packets
7147 		 * If HZ < 1000, flush all packets.
7148 		 */
7149 		napi_gro_flush(n, HZ >= 1000);
7150 	}
7151 
7152 	gro_normal_list(n);
7153 
7154 	/* Some drivers may have called napi_schedule
7155 	 * prior to exhausting their budget.
7156 	 */
7157 	if (unlikely(!list_empty(&n->poll_list))) {
7158 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
7159 			     n->dev ? n->dev->name : "backlog");
7160 		return work;
7161 	}
7162 
7163 	*repoll = true;
7164 
7165 	return work;
7166 }
7167 
7168 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
7169 {
7170 	bool do_repoll = false;
7171 	void *have;
7172 	int work;
7173 
7174 	list_del_init(&n->poll_list);
7175 
7176 	have = netpoll_poll_lock(n);
7177 
7178 	work = __napi_poll(n, &do_repoll);
7179 
7180 	if (do_repoll)
7181 		list_add_tail(&n->poll_list, repoll);
7182 
7183 	netpoll_poll_unlock(have);
7184 
7185 	return work;
7186 }
7187 
7188 static int napi_thread_wait(struct napi_struct *napi)
7189 {
7190 	set_current_state(TASK_INTERRUPTIBLE);
7191 
7192 	while (!kthread_should_stop()) {
7193 		/* Testing SCHED_THREADED bit here to make sure the current
7194 		 * kthread owns this napi and could poll on this napi.
7195 		 * Testing SCHED bit is not enough because SCHED bit might be
7196 		 * set by some other busy poll thread or by napi_disable().
7197 		 */
7198 		if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state)) {
7199 			WARN_ON(!list_empty(&napi->poll_list));
7200 			__set_current_state(TASK_RUNNING);
7201 			return 0;
7202 		}
7203 
7204 		schedule();
7205 		set_current_state(TASK_INTERRUPTIBLE);
7206 	}
7207 	__set_current_state(TASK_RUNNING);
7208 
7209 	return -1;
7210 }
7211 
7212 static void napi_threaded_poll_loop(struct napi_struct *napi)
7213 {
7214 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
7215 	struct softnet_data *sd;
7216 	unsigned long last_qs = jiffies;
7217 
7218 	for (;;) {
7219 		bool repoll = false;
7220 		void *have;
7221 
7222 		local_bh_disable();
7223 		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
7224 
7225 		sd = this_cpu_ptr(&softnet_data);
7226 		sd->in_napi_threaded_poll = true;
7227 
7228 		have = netpoll_poll_lock(napi);
7229 		__napi_poll(napi, &repoll);
7230 		netpoll_poll_unlock(have);
7231 
7232 		sd->in_napi_threaded_poll = false;
7233 		barrier();
7234 
7235 		if (sd_has_rps_ipi_waiting(sd)) {
7236 			local_irq_disable();
7237 			net_rps_action_and_irq_enable(sd);
7238 		}
7239 		skb_defer_free_flush(sd);
7240 		bpf_net_ctx_clear(bpf_net_ctx);
7241 		local_bh_enable();
7242 
7243 		if (!repoll)
7244 			break;
7245 
7246 		rcu_softirq_qs_periodic(last_qs);
7247 		cond_resched();
7248 	}
7249 }
7250 
7251 static int napi_threaded_poll(void *data)
7252 {
7253 	struct napi_struct *napi = data;
7254 
7255 	while (!napi_thread_wait(napi))
7256 		napi_threaded_poll_loop(napi);
7257 
7258 	return 0;
7259 }
7260 
7261 static __latent_entropy void net_rx_action(void)
7262 {
7263 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7264 	unsigned long time_limit = jiffies +
7265 		usecs_to_jiffies(READ_ONCE(net_hotdata.netdev_budget_usecs));
7266 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
7267 	int budget = READ_ONCE(net_hotdata.netdev_budget);
7268 	LIST_HEAD(list);
7269 	LIST_HEAD(repoll);
7270 
7271 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
7272 start:
7273 	sd->in_net_rx_action = true;
7274 	local_irq_disable();
7275 	list_splice_init(&sd->poll_list, &list);
7276 	local_irq_enable();
7277 
7278 	for (;;) {
7279 		struct napi_struct *n;
7280 
7281 		skb_defer_free_flush(sd);
7282 
7283 		if (list_empty(&list)) {
7284 			if (list_empty(&repoll)) {
7285 				sd->in_net_rx_action = false;
7286 				barrier();
7287 				/* We need to check if ____napi_schedule()
7288 				 * had refilled poll_list while
7289 				 * sd->in_net_rx_action was true.
7290 				 */
7291 				if (!list_empty(&sd->poll_list))
7292 					goto start;
7293 				if (!sd_has_rps_ipi_waiting(sd))
7294 					goto end;
7295 			}
7296 			break;
7297 		}
7298 
7299 		n = list_first_entry(&list, struct napi_struct, poll_list);
7300 		budget -= napi_poll(n, &repoll);
7301 
7302 		/* If softirq window is exhausted then punt.
7303 		 * Allow this to run for 2 jiffies since which will allow
7304 		 * an average latency of 1.5/HZ.
7305 		 */
7306 		if (unlikely(budget <= 0 ||
7307 			     time_after_eq(jiffies, time_limit))) {
7308 			sd->time_squeeze++;
7309 			break;
7310 		}
7311 	}
7312 
7313 	local_irq_disable();
7314 
7315 	list_splice_tail_init(&sd->poll_list, &list);
7316 	list_splice_tail(&repoll, &list);
7317 	list_splice(&list, &sd->poll_list);
7318 	if (!list_empty(&sd->poll_list))
7319 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
7320 	else
7321 		sd->in_net_rx_action = false;
7322 
7323 	net_rps_action_and_irq_enable(sd);
7324 end:
7325 	bpf_net_ctx_clear(bpf_net_ctx);
7326 }
7327 
7328 struct netdev_adjacent {
7329 	struct net_device *dev;
7330 	netdevice_tracker dev_tracker;
7331 
7332 	/* upper master flag, there can only be one master device per list */
7333 	bool master;
7334 
7335 	/* lookup ignore flag */
7336 	bool ignore;
7337 
7338 	/* counter for the number of times this device was added to us */
7339 	u16 ref_nr;
7340 
7341 	/* private field for the users */
7342 	void *private;
7343 
7344 	struct list_head list;
7345 	struct rcu_head rcu;
7346 };
7347 
7348 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7349 						 struct list_head *adj_list)
7350 {
7351 	struct netdev_adjacent *adj;
7352 
7353 	list_for_each_entry(adj, adj_list, list) {
7354 		if (adj->dev == adj_dev)
7355 			return adj;
7356 	}
7357 	return NULL;
7358 }
7359 
7360 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7361 				    struct netdev_nested_priv *priv)
7362 {
7363 	struct net_device *dev = (struct net_device *)priv->data;
7364 
7365 	return upper_dev == dev;
7366 }
7367 
7368 /**
7369  * netdev_has_upper_dev - Check if device is linked to an upper device
7370  * @dev: device
7371  * @upper_dev: upper device to check
7372  *
7373  * Find out if a device is linked to specified upper device and return true
7374  * in case it is. Note that this checks only immediate upper device,
7375  * not through a complete stack of devices. The caller must hold the RTNL lock.
7376  */
7377 bool netdev_has_upper_dev(struct net_device *dev,
7378 			  struct net_device *upper_dev)
7379 {
7380 	struct netdev_nested_priv priv = {
7381 		.data = (void *)upper_dev,
7382 	};
7383 
7384 	ASSERT_RTNL();
7385 
7386 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7387 					     &priv);
7388 }
7389 EXPORT_SYMBOL(netdev_has_upper_dev);
7390 
7391 /**
7392  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7393  * @dev: device
7394  * @upper_dev: upper device to check
7395  *
7396  * Find out if a device is linked to specified upper device and return true
7397  * in case it is. Note that this checks the entire upper device chain.
7398  * The caller must hold rcu lock.
7399  */
7400 
7401 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7402 				  struct net_device *upper_dev)
7403 {
7404 	struct netdev_nested_priv priv = {
7405 		.data = (void *)upper_dev,
7406 	};
7407 
7408 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7409 					       &priv);
7410 }
7411 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7412 
7413 /**
7414  * netdev_has_any_upper_dev - Check if device is linked to some device
7415  * @dev: device
7416  *
7417  * Find out if a device is linked to an upper device and return true in case
7418  * it is. The caller must hold the RTNL lock.
7419  */
7420 bool netdev_has_any_upper_dev(struct net_device *dev)
7421 {
7422 	ASSERT_RTNL();
7423 
7424 	return !list_empty(&dev->adj_list.upper);
7425 }
7426 EXPORT_SYMBOL(netdev_has_any_upper_dev);
7427 
7428 /**
7429  * netdev_master_upper_dev_get - Get master upper device
7430  * @dev: device
7431  *
7432  * Find a master upper device and return pointer to it or NULL in case
7433  * it's not there. The caller must hold the RTNL lock.
7434  */
7435 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7436 {
7437 	struct netdev_adjacent *upper;
7438 
7439 	ASSERT_RTNL();
7440 
7441 	if (list_empty(&dev->adj_list.upper))
7442 		return NULL;
7443 
7444 	upper = list_first_entry(&dev->adj_list.upper,
7445 				 struct netdev_adjacent, list);
7446 	if (likely(upper->master))
7447 		return upper->dev;
7448 	return NULL;
7449 }
7450 EXPORT_SYMBOL(netdev_master_upper_dev_get);
7451 
7452 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7453 {
7454 	struct netdev_adjacent *upper;
7455 
7456 	ASSERT_RTNL();
7457 
7458 	if (list_empty(&dev->adj_list.upper))
7459 		return NULL;
7460 
7461 	upper = list_first_entry(&dev->adj_list.upper,
7462 				 struct netdev_adjacent, list);
7463 	if (likely(upper->master) && !upper->ignore)
7464 		return upper->dev;
7465 	return NULL;
7466 }
7467 
7468 /**
7469  * netdev_has_any_lower_dev - Check if device is linked to some device
7470  * @dev: device
7471  *
7472  * Find out if a device is linked to a lower device and return true in case
7473  * it is. The caller must hold the RTNL lock.
7474  */
7475 static bool netdev_has_any_lower_dev(struct net_device *dev)
7476 {
7477 	ASSERT_RTNL();
7478 
7479 	return !list_empty(&dev->adj_list.lower);
7480 }
7481 
7482 void *netdev_adjacent_get_private(struct list_head *adj_list)
7483 {
7484 	struct netdev_adjacent *adj;
7485 
7486 	adj = list_entry(adj_list, struct netdev_adjacent, list);
7487 
7488 	return adj->private;
7489 }
7490 EXPORT_SYMBOL(netdev_adjacent_get_private);
7491 
7492 /**
7493  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7494  * @dev: device
7495  * @iter: list_head ** of the current position
7496  *
7497  * Gets the next device from the dev's upper list, starting from iter
7498  * position. The caller must hold RCU read lock.
7499  */
7500 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7501 						 struct list_head **iter)
7502 {
7503 	struct netdev_adjacent *upper;
7504 
7505 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7506 
7507 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7508 
7509 	if (&upper->list == &dev->adj_list.upper)
7510 		return NULL;
7511 
7512 	*iter = &upper->list;
7513 
7514 	return upper->dev;
7515 }
7516 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7517 
7518 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7519 						  struct list_head **iter,
7520 						  bool *ignore)
7521 {
7522 	struct netdev_adjacent *upper;
7523 
7524 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7525 
7526 	if (&upper->list == &dev->adj_list.upper)
7527 		return NULL;
7528 
7529 	*iter = &upper->list;
7530 	*ignore = upper->ignore;
7531 
7532 	return upper->dev;
7533 }
7534 
7535 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7536 						    struct list_head **iter)
7537 {
7538 	struct netdev_adjacent *upper;
7539 
7540 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7541 
7542 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7543 
7544 	if (&upper->list == &dev->adj_list.upper)
7545 		return NULL;
7546 
7547 	*iter = &upper->list;
7548 
7549 	return upper->dev;
7550 }
7551 
7552 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7553 				       int (*fn)(struct net_device *dev,
7554 					 struct netdev_nested_priv *priv),
7555 				       struct netdev_nested_priv *priv)
7556 {
7557 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7558 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7559 	int ret, cur = 0;
7560 	bool ignore;
7561 
7562 	now = dev;
7563 	iter = &dev->adj_list.upper;
7564 
7565 	while (1) {
7566 		if (now != dev) {
7567 			ret = fn(now, priv);
7568 			if (ret)
7569 				return ret;
7570 		}
7571 
7572 		next = NULL;
7573 		while (1) {
7574 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
7575 			if (!udev)
7576 				break;
7577 			if (ignore)
7578 				continue;
7579 
7580 			next = udev;
7581 			niter = &udev->adj_list.upper;
7582 			dev_stack[cur] = now;
7583 			iter_stack[cur++] = iter;
7584 			break;
7585 		}
7586 
7587 		if (!next) {
7588 			if (!cur)
7589 				return 0;
7590 			next = dev_stack[--cur];
7591 			niter = iter_stack[cur];
7592 		}
7593 
7594 		now = next;
7595 		iter = niter;
7596 	}
7597 
7598 	return 0;
7599 }
7600 
7601 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7602 				  int (*fn)(struct net_device *dev,
7603 					    struct netdev_nested_priv *priv),
7604 				  struct netdev_nested_priv *priv)
7605 {
7606 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7607 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7608 	int ret, cur = 0;
7609 
7610 	now = dev;
7611 	iter = &dev->adj_list.upper;
7612 
7613 	while (1) {
7614 		if (now != dev) {
7615 			ret = fn(now, priv);
7616 			if (ret)
7617 				return ret;
7618 		}
7619 
7620 		next = NULL;
7621 		while (1) {
7622 			udev = netdev_next_upper_dev_rcu(now, &iter);
7623 			if (!udev)
7624 				break;
7625 
7626 			next = udev;
7627 			niter = &udev->adj_list.upper;
7628 			dev_stack[cur] = now;
7629 			iter_stack[cur++] = iter;
7630 			break;
7631 		}
7632 
7633 		if (!next) {
7634 			if (!cur)
7635 				return 0;
7636 			next = dev_stack[--cur];
7637 			niter = iter_stack[cur];
7638 		}
7639 
7640 		now = next;
7641 		iter = niter;
7642 	}
7643 
7644 	return 0;
7645 }
7646 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7647 
7648 static bool __netdev_has_upper_dev(struct net_device *dev,
7649 				   struct net_device *upper_dev)
7650 {
7651 	struct netdev_nested_priv priv = {
7652 		.flags = 0,
7653 		.data = (void *)upper_dev,
7654 	};
7655 
7656 	ASSERT_RTNL();
7657 
7658 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7659 					   &priv);
7660 }
7661 
7662 /**
7663  * netdev_lower_get_next_private - Get the next ->private from the
7664  *				   lower neighbour list
7665  * @dev: device
7666  * @iter: list_head ** of the current position
7667  *
7668  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7669  * list, starting from iter position. The caller must hold either hold the
7670  * RTNL lock or its own locking that guarantees that the neighbour lower
7671  * list will remain unchanged.
7672  */
7673 void *netdev_lower_get_next_private(struct net_device *dev,
7674 				    struct list_head **iter)
7675 {
7676 	struct netdev_adjacent *lower;
7677 
7678 	lower = list_entry(*iter, struct netdev_adjacent, list);
7679 
7680 	if (&lower->list == &dev->adj_list.lower)
7681 		return NULL;
7682 
7683 	*iter = lower->list.next;
7684 
7685 	return lower->private;
7686 }
7687 EXPORT_SYMBOL(netdev_lower_get_next_private);
7688 
7689 /**
7690  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7691  *				       lower neighbour list, RCU
7692  *				       variant
7693  * @dev: device
7694  * @iter: list_head ** of the current position
7695  *
7696  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7697  * list, starting from iter position. The caller must hold RCU read lock.
7698  */
7699 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7700 					struct list_head **iter)
7701 {
7702 	struct netdev_adjacent *lower;
7703 
7704 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7705 
7706 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7707 
7708 	if (&lower->list == &dev->adj_list.lower)
7709 		return NULL;
7710 
7711 	*iter = &lower->list;
7712 
7713 	return lower->private;
7714 }
7715 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7716 
7717 /**
7718  * netdev_lower_get_next - Get the next device from the lower neighbour
7719  *                         list
7720  * @dev: device
7721  * @iter: list_head ** of the current position
7722  *
7723  * Gets the next netdev_adjacent from the dev's lower neighbour
7724  * list, starting from iter position. The caller must hold RTNL lock or
7725  * its own locking that guarantees that the neighbour lower
7726  * list will remain unchanged.
7727  */
7728 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7729 {
7730 	struct netdev_adjacent *lower;
7731 
7732 	lower = list_entry(*iter, struct netdev_adjacent, list);
7733 
7734 	if (&lower->list == &dev->adj_list.lower)
7735 		return NULL;
7736 
7737 	*iter = lower->list.next;
7738 
7739 	return lower->dev;
7740 }
7741 EXPORT_SYMBOL(netdev_lower_get_next);
7742 
7743 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7744 						struct list_head **iter)
7745 {
7746 	struct netdev_adjacent *lower;
7747 
7748 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7749 
7750 	if (&lower->list == &dev->adj_list.lower)
7751 		return NULL;
7752 
7753 	*iter = &lower->list;
7754 
7755 	return lower->dev;
7756 }
7757 
7758 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7759 						  struct list_head **iter,
7760 						  bool *ignore)
7761 {
7762 	struct netdev_adjacent *lower;
7763 
7764 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7765 
7766 	if (&lower->list == &dev->adj_list.lower)
7767 		return NULL;
7768 
7769 	*iter = &lower->list;
7770 	*ignore = lower->ignore;
7771 
7772 	return lower->dev;
7773 }
7774 
7775 int netdev_walk_all_lower_dev(struct net_device *dev,
7776 			      int (*fn)(struct net_device *dev,
7777 					struct netdev_nested_priv *priv),
7778 			      struct netdev_nested_priv *priv)
7779 {
7780 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7781 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7782 	int ret, cur = 0;
7783 
7784 	now = dev;
7785 	iter = &dev->adj_list.lower;
7786 
7787 	while (1) {
7788 		if (now != dev) {
7789 			ret = fn(now, priv);
7790 			if (ret)
7791 				return ret;
7792 		}
7793 
7794 		next = NULL;
7795 		while (1) {
7796 			ldev = netdev_next_lower_dev(now, &iter);
7797 			if (!ldev)
7798 				break;
7799 
7800 			next = ldev;
7801 			niter = &ldev->adj_list.lower;
7802 			dev_stack[cur] = now;
7803 			iter_stack[cur++] = iter;
7804 			break;
7805 		}
7806 
7807 		if (!next) {
7808 			if (!cur)
7809 				return 0;
7810 			next = dev_stack[--cur];
7811 			niter = iter_stack[cur];
7812 		}
7813 
7814 		now = next;
7815 		iter = niter;
7816 	}
7817 
7818 	return 0;
7819 }
7820 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7821 
7822 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7823 				       int (*fn)(struct net_device *dev,
7824 					 struct netdev_nested_priv *priv),
7825 				       struct netdev_nested_priv *priv)
7826 {
7827 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7828 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7829 	int ret, cur = 0;
7830 	bool ignore;
7831 
7832 	now = dev;
7833 	iter = &dev->adj_list.lower;
7834 
7835 	while (1) {
7836 		if (now != dev) {
7837 			ret = fn(now, priv);
7838 			if (ret)
7839 				return ret;
7840 		}
7841 
7842 		next = NULL;
7843 		while (1) {
7844 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7845 			if (!ldev)
7846 				break;
7847 			if (ignore)
7848 				continue;
7849 
7850 			next = ldev;
7851 			niter = &ldev->adj_list.lower;
7852 			dev_stack[cur] = now;
7853 			iter_stack[cur++] = iter;
7854 			break;
7855 		}
7856 
7857 		if (!next) {
7858 			if (!cur)
7859 				return 0;
7860 			next = dev_stack[--cur];
7861 			niter = iter_stack[cur];
7862 		}
7863 
7864 		now = next;
7865 		iter = niter;
7866 	}
7867 
7868 	return 0;
7869 }
7870 
7871 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7872 					     struct list_head **iter)
7873 {
7874 	struct netdev_adjacent *lower;
7875 
7876 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7877 	if (&lower->list == &dev->adj_list.lower)
7878 		return NULL;
7879 
7880 	*iter = &lower->list;
7881 
7882 	return lower->dev;
7883 }
7884 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7885 
7886 static u8 __netdev_upper_depth(struct net_device *dev)
7887 {
7888 	struct net_device *udev;
7889 	struct list_head *iter;
7890 	u8 max_depth = 0;
7891 	bool ignore;
7892 
7893 	for (iter = &dev->adj_list.upper,
7894 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7895 	     udev;
7896 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7897 		if (ignore)
7898 			continue;
7899 		if (max_depth < udev->upper_level)
7900 			max_depth = udev->upper_level;
7901 	}
7902 
7903 	return max_depth;
7904 }
7905 
7906 static u8 __netdev_lower_depth(struct net_device *dev)
7907 {
7908 	struct net_device *ldev;
7909 	struct list_head *iter;
7910 	u8 max_depth = 0;
7911 	bool ignore;
7912 
7913 	for (iter = &dev->adj_list.lower,
7914 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7915 	     ldev;
7916 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7917 		if (ignore)
7918 			continue;
7919 		if (max_depth < ldev->lower_level)
7920 			max_depth = ldev->lower_level;
7921 	}
7922 
7923 	return max_depth;
7924 }
7925 
7926 static int __netdev_update_upper_level(struct net_device *dev,
7927 				       struct netdev_nested_priv *__unused)
7928 {
7929 	dev->upper_level = __netdev_upper_depth(dev) + 1;
7930 	return 0;
7931 }
7932 
7933 #ifdef CONFIG_LOCKDEP
7934 static LIST_HEAD(net_unlink_list);
7935 
7936 static void net_unlink_todo(struct net_device *dev)
7937 {
7938 	if (list_empty(&dev->unlink_list))
7939 		list_add_tail(&dev->unlink_list, &net_unlink_list);
7940 }
7941 #endif
7942 
7943 static int __netdev_update_lower_level(struct net_device *dev,
7944 				       struct netdev_nested_priv *priv)
7945 {
7946 	dev->lower_level = __netdev_lower_depth(dev) + 1;
7947 
7948 #ifdef CONFIG_LOCKDEP
7949 	if (!priv)
7950 		return 0;
7951 
7952 	if (priv->flags & NESTED_SYNC_IMM)
7953 		dev->nested_level = dev->lower_level - 1;
7954 	if (priv->flags & NESTED_SYNC_TODO)
7955 		net_unlink_todo(dev);
7956 #endif
7957 	return 0;
7958 }
7959 
7960 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7961 				  int (*fn)(struct net_device *dev,
7962 					    struct netdev_nested_priv *priv),
7963 				  struct netdev_nested_priv *priv)
7964 {
7965 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7966 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7967 	int ret, cur = 0;
7968 
7969 	now = dev;
7970 	iter = &dev->adj_list.lower;
7971 
7972 	while (1) {
7973 		if (now != dev) {
7974 			ret = fn(now, priv);
7975 			if (ret)
7976 				return ret;
7977 		}
7978 
7979 		next = NULL;
7980 		while (1) {
7981 			ldev = netdev_next_lower_dev_rcu(now, &iter);
7982 			if (!ldev)
7983 				break;
7984 
7985 			next = ldev;
7986 			niter = &ldev->adj_list.lower;
7987 			dev_stack[cur] = now;
7988 			iter_stack[cur++] = iter;
7989 			break;
7990 		}
7991 
7992 		if (!next) {
7993 			if (!cur)
7994 				return 0;
7995 			next = dev_stack[--cur];
7996 			niter = iter_stack[cur];
7997 		}
7998 
7999 		now = next;
8000 		iter = niter;
8001 	}
8002 
8003 	return 0;
8004 }
8005 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
8006 
8007 /**
8008  * netdev_lower_get_first_private_rcu - Get the first ->private from the
8009  *				       lower neighbour list, RCU
8010  *				       variant
8011  * @dev: device
8012  *
8013  * Gets the first netdev_adjacent->private from the dev's lower neighbour
8014  * list. The caller must hold RCU read lock.
8015  */
8016 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
8017 {
8018 	struct netdev_adjacent *lower;
8019 
8020 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
8021 			struct netdev_adjacent, list);
8022 	if (lower)
8023 		return lower->private;
8024 	return NULL;
8025 }
8026 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
8027 
8028 /**
8029  * netdev_master_upper_dev_get_rcu - Get master upper device
8030  * @dev: device
8031  *
8032  * Find a master upper device and return pointer to it or NULL in case
8033  * it's not there. The caller must hold the RCU read lock.
8034  */
8035 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
8036 {
8037 	struct netdev_adjacent *upper;
8038 
8039 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
8040 				       struct netdev_adjacent, list);
8041 	if (upper && likely(upper->master))
8042 		return upper->dev;
8043 	return NULL;
8044 }
8045 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
8046 
8047 static int netdev_adjacent_sysfs_add(struct net_device *dev,
8048 			      struct net_device *adj_dev,
8049 			      struct list_head *dev_list)
8050 {
8051 	char linkname[IFNAMSIZ+7];
8052 
8053 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
8054 		"upper_%s" : "lower_%s", adj_dev->name);
8055 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
8056 				 linkname);
8057 }
8058 static void netdev_adjacent_sysfs_del(struct net_device *dev,
8059 			       char *name,
8060 			       struct list_head *dev_list)
8061 {
8062 	char linkname[IFNAMSIZ+7];
8063 
8064 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
8065 		"upper_%s" : "lower_%s", name);
8066 	sysfs_remove_link(&(dev->dev.kobj), linkname);
8067 }
8068 
8069 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
8070 						 struct net_device *adj_dev,
8071 						 struct list_head *dev_list)
8072 {
8073 	return (dev_list == &dev->adj_list.upper ||
8074 		dev_list == &dev->adj_list.lower) &&
8075 		net_eq(dev_net(dev), dev_net(adj_dev));
8076 }
8077 
8078 static int __netdev_adjacent_dev_insert(struct net_device *dev,
8079 					struct net_device *adj_dev,
8080 					struct list_head *dev_list,
8081 					void *private, bool master)
8082 {
8083 	struct netdev_adjacent *adj;
8084 	int ret;
8085 
8086 	adj = __netdev_find_adj(adj_dev, dev_list);
8087 
8088 	if (adj) {
8089 		adj->ref_nr += 1;
8090 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
8091 			 dev->name, adj_dev->name, adj->ref_nr);
8092 
8093 		return 0;
8094 	}
8095 
8096 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
8097 	if (!adj)
8098 		return -ENOMEM;
8099 
8100 	adj->dev = adj_dev;
8101 	adj->master = master;
8102 	adj->ref_nr = 1;
8103 	adj->private = private;
8104 	adj->ignore = false;
8105 	netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
8106 
8107 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
8108 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
8109 
8110 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
8111 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
8112 		if (ret)
8113 			goto free_adj;
8114 	}
8115 
8116 	/* Ensure that master link is always the first item in list. */
8117 	if (master) {
8118 		ret = sysfs_create_link(&(dev->dev.kobj),
8119 					&(adj_dev->dev.kobj), "master");
8120 		if (ret)
8121 			goto remove_symlinks;
8122 
8123 		list_add_rcu(&adj->list, dev_list);
8124 	} else {
8125 		list_add_tail_rcu(&adj->list, dev_list);
8126 	}
8127 
8128 	return 0;
8129 
8130 remove_symlinks:
8131 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8132 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8133 free_adj:
8134 	netdev_put(adj_dev, &adj->dev_tracker);
8135 	kfree(adj);
8136 
8137 	return ret;
8138 }
8139 
8140 static void __netdev_adjacent_dev_remove(struct net_device *dev,
8141 					 struct net_device *adj_dev,
8142 					 u16 ref_nr,
8143 					 struct list_head *dev_list)
8144 {
8145 	struct netdev_adjacent *adj;
8146 
8147 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
8148 		 dev->name, adj_dev->name, ref_nr);
8149 
8150 	adj = __netdev_find_adj(adj_dev, dev_list);
8151 
8152 	if (!adj) {
8153 		pr_err("Adjacency does not exist for device %s from %s\n",
8154 		       dev->name, adj_dev->name);
8155 		WARN_ON(1);
8156 		return;
8157 	}
8158 
8159 	if (adj->ref_nr > ref_nr) {
8160 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
8161 			 dev->name, adj_dev->name, ref_nr,
8162 			 adj->ref_nr - ref_nr);
8163 		adj->ref_nr -= ref_nr;
8164 		return;
8165 	}
8166 
8167 	if (adj->master)
8168 		sysfs_remove_link(&(dev->dev.kobj), "master");
8169 
8170 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8171 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8172 
8173 	list_del_rcu(&adj->list);
8174 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
8175 		 adj_dev->name, dev->name, adj_dev->name);
8176 	netdev_put(adj_dev, &adj->dev_tracker);
8177 	kfree_rcu(adj, rcu);
8178 }
8179 
8180 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
8181 					    struct net_device *upper_dev,
8182 					    struct list_head *up_list,
8183 					    struct list_head *down_list,
8184 					    void *private, bool master)
8185 {
8186 	int ret;
8187 
8188 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
8189 					   private, master);
8190 	if (ret)
8191 		return ret;
8192 
8193 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
8194 					   private, false);
8195 	if (ret) {
8196 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
8197 		return ret;
8198 	}
8199 
8200 	return 0;
8201 }
8202 
8203 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
8204 					       struct net_device *upper_dev,
8205 					       u16 ref_nr,
8206 					       struct list_head *up_list,
8207 					       struct list_head *down_list)
8208 {
8209 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
8210 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
8211 }
8212 
8213 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
8214 						struct net_device *upper_dev,
8215 						void *private, bool master)
8216 {
8217 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
8218 						&dev->adj_list.upper,
8219 						&upper_dev->adj_list.lower,
8220 						private, master);
8221 }
8222 
8223 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
8224 						   struct net_device *upper_dev)
8225 {
8226 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
8227 					   &dev->adj_list.upper,
8228 					   &upper_dev->adj_list.lower);
8229 }
8230 
8231 static int __netdev_upper_dev_link(struct net_device *dev,
8232 				   struct net_device *upper_dev, bool master,
8233 				   void *upper_priv, void *upper_info,
8234 				   struct netdev_nested_priv *priv,
8235 				   struct netlink_ext_ack *extack)
8236 {
8237 	struct netdev_notifier_changeupper_info changeupper_info = {
8238 		.info = {
8239 			.dev = dev,
8240 			.extack = extack,
8241 		},
8242 		.upper_dev = upper_dev,
8243 		.master = master,
8244 		.linking = true,
8245 		.upper_info = upper_info,
8246 	};
8247 	struct net_device *master_dev;
8248 	int ret = 0;
8249 
8250 	ASSERT_RTNL();
8251 
8252 	if (dev == upper_dev)
8253 		return -EBUSY;
8254 
8255 	/* To prevent loops, check if dev is not upper device to upper_dev. */
8256 	if (__netdev_has_upper_dev(upper_dev, dev))
8257 		return -EBUSY;
8258 
8259 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
8260 		return -EMLINK;
8261 
8262 	if (!master) {
8263 		if (__netdev_has_upper_dev(dev, upper_dev))
8264 			return -EEXIST;
8265 	} else {
8266 		master_dev = __netdev_master_upper_dev_get(dev);
8267 		if (master_dev)
8268 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
8269 	}
8270 
8271 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8272 					    &changeupper_info.info);
8273 	ret = notifier_to_errno(ret);
8274 	if (ret)
8275 		return ret;
8276 
8277 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
8278 						   master);
8279 	if (ret)
8280 		return ret;
8281 
8282 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8283 					    &changeupper_info.info);
8284 	ret = notifier_to_errno(ret);
8285 	if (ret)
8286 		goto rollback;
8287 
8288 	__netdev_update_upper_level(dev, NULL);
8289 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8290 
8291 	__netdev_update_lower_level(upper_dev, priv);
8292 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8293 				    priv);
8294 
8295 	return 0;
8296 
8297 rollback:
8298 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8299 
8300 	return ret;
8301 }
8302 
8303 /**
8304  * netdev_upper_dev_link - Add a link to the upper device
8305  * @dev: device
8306  * @upper_dev: new upper device
8307  * @extack: netlink extended ack
8308  *
8309  * Adds a link to device which is upper to this one. The caller must hold
8310  * the RTNL lock. On a failure a negative errno code is returned.
8311  * On success the reference counts are adjusted and the function
8312  * returns zero.
8313  */
8314 int netdev_upper_dev_link(struct net_device *dev,
8315 			  struct net_device *upper_dev,
8316 			  struct netlink_ext_ack *extack)
8317 {
8318 	struct netdev_nested_priv priv = {
8319 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8320 		.data = NULL,
8321 	};
8322 
8323 	return __netdev_upper_dev_link(dev, upper_dev, false,
8324 				       NULL, NULL, &priv, extack);
8325 }
8326 EXPORT_SYMBOL(netdev_upper_dev_link);
8327 
8328 /**
8329  * netdev_master_upper_dev_link - Add a master link to the upper device
8330  * @dev: device
8331  * @upper_dev: new upper device
8332  * @upper_priv: upper device private
8333  * @upper_info: upper info to be passed down via notifier
8334  * @extack: netlink extended ack
8335  *
8336  * Adds a link to device which is upper to this one. In this case, only
8337  * one master upper device can be linked, although other non-master devices
8338  * might be linked as well. The caller must hold the RTNL lock.
8339  * On a failure a negative errno code is returned. On success the reference
8340  * counts are adjusted and the function returns zero.
8341  */
8342 int netdev_master_upper_dev_link(struct net_device *dev,
8343 				 struct net_device *upper_dev,
8344 				 void *upper_priv, void *upper_info,
8345 				 struct netlink_ext_ack *extack)
8346 {
8347 	struct netdev_nested_priv priv = {
8348 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8349 		.data = NULL,
8350 	};
8351 
8352 	return __netdev_upper_dev_link(dev, upper_dev, true,
8353 				       upper_priv, upper_info, &priv, extack);
8354 }
8355 EXPORT_SYMBOL(netdev_master_upper_dev_link);
8356 
8357 static void __netdev_upper_dev_unlink(struct net_device *dev,
8358 				      struct net_device *upper_dev,
8359 				      struct netdev_nested_priv *priv)
8360 {
8361 	struct netdev_notifier_changeupper_info changeupper_info = {
8362 		.info = {
8363 			.dev = dev,
8364 		},
8365 		.upper_dev = upper_dev,
8366 		.linking = false,
8367 	};
8368 
8369 	ASSERT_RTNL();
8370 
8371 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8372 
8373 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8374 				      &changeupper_info.info);
8375 
8376 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8377 
8378 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8379 				      &changeupper_info.info);
8380 
8381 	__netdev_update_upper_level(dev, NULL);
8382 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8383 
8384 	__netdev_update_lower_level(upper_dev, priv);
8385 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8386 				    priv);
8387 }
8388 
8389 /**
8390  * netdev_upper_dev_unlink - Removes a link to upper device
8391  * @dev: device
8392  * @upper_dev: new upper device
8393  *
8394  * Removes a link to device which is upper to this one. The caller must hold
8395  * the RTNL lock.
8396  */
8397 void netdev_upper_dev_unlink(struct net_device *dev,
8398 			     struct net_device *upper_dev)
8399 {
8400 	struct netdev_nested_priv priv = {
8401 		.flags = NESTED_SYNC_TODO,
8402 		.data = NULL,
8403 	};
8404 
8405 	__netdev_upper_dev_unlink(dev, upper_dev, &priv);
8406 }
8407 EXPORT_SYMBOL(netdev_upper_dev_unlink);
8408 
8409 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8410 				      struct net_device *lower_dev,
8411 				      bool val)
8412 {
8413 	struct netdev_adjacent *adj;
8414 
8415 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8416 	if (adj)
8417 		adj->ignore = val;
8418 
8419 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8420 	if (adj)
8421 		adj->ignore = val;
8422 }
8423 
8424 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8425 					struct net_device *lower_dev)
8426 {
8427 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8428 }
8429 
8430 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8431 				       struct net_device *lower_dev)
8432 {
8433 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8434 }
8435 
8436 int netdev_adjacent_change_prepare(struct net_device *old_dev,
8437 				   struct net_device *new_dev,
8438 				   struct net_device *dev,
8439 				   struct netlink_ext_ack *extack)
8440 {
8441 	struct netdev_nested_priv priv = {
8442 		.flags = 0,
8443 		.data = NULL,
8444 	};
8445 	int err;
8446 
8447 	if (!new_dev)
8448 		return 0;
8449 
8450 	if (old_dev && new_dev != old_dev)
8451 		netdev_adjacent_dev_disable(dev, old_dev);
8452 	err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8453 				      extack);
8454 	if (err) {
8455 		if (old_dev && new_dev != old_dev)
8456 			netdev_adjacent_dev_enable(dev, old_dev);
8457 		return err;
8458 	}
8459 
8460 	return 0;
8461 }
8462 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8463 
8464 void netdev_adjacent_change_commit(struct net_device *old_dev,
8465 				   struct net_device *new_dev,
8466 				   struct net_device *dev)
8467 {
8468 	struct netdev_nested_priv priv = {
8469 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8470 		.data = NULL,
8471 	};
8472 
8473 	if (!new_dev || !old_dev)
8474 		return;
8475 
8476 	if (new_dev == old_dev)
8477 		return;
8478 
8479 	netdev_adjacent_dev_enable(dev, old_dev);
8480 	__netdev_upper_dev_unlink(old_dev, dev, &priv);
8481 }
8482 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8483 
8484 void netdev_adjacent_change_abort(struct net_device *old_dev,
8485 				  struct net_device *new_dev,
8486 				  struct net_device *dev)
8487 {
8488 	struct netdev_nested_priv priv = {
8489 		.flags = 0,
8490 		.data = NULL,
8491 	};
8492 
8493 	if (!new_dev)
8494 		return;
8495 
8496 	if (old_dev && new_dev != old_dev)
8497 		netdev_adjacent_dev_enable(dev, old_dev);
8498 
8499 	__netdev_upper_dev_unlink(new_dev, dev, &priv);
8500 }
8501 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8502 
8503 /**
8504  * netdev_bonding_info_change - Dispatch event about slave change
8505  * @dev: device
8506  * @bonding_info: info to dispatch
8507  *
8508  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8509  * The caller must hold the RTNL lock.
8510  */
8511 void netdev_bonding_info_change(struct net_device *dev,
8512 				struct netdev_bonding_info *bonding_info)
8513 {
8514 	struct netdev_notifier_bonding_info info = {
8515 		.info.dev = dev,
8516 	};
8517 
8518 	memcpy(&info.bonding_info, bonding_info,
8519 	       sizeof(struct netdev_bonding_info));
8520 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8521 				      &info.info);
8522 }
8523 EXPORT_SYMBOL(netdev_bonding_info_change);
8524 
8525 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
8526 					   struct netlink_ext_ack *extack)
8527 {
8528 	struct netdev_notifier_offload_xstats_info info = {
8529 		.info.dev = dev,
8530 		.info.extack = extack,
8531 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8532 	};
8533 	int err;
8534 	int rc;
8535 
8536 	dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
8537 					 GFP_KERNEL);
8538 	if (!dev->offload_xstats_l3)
8539 		return -ENOMEM;
8540 
8541 	rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
8542 						  NETDEV_OFFLOAD_XSTATS_DISABLE,
8543 						  &info.info);
8544 	err = notifier_to_errno(rc);
8545 	if (err)
8546 		goto free_stats;
8547 
8548 	return 0;
8549 
8550 free_stats:
8551 	kfree(dev->offload_xstats_l3);
8552 	dev->offload_xstats_l3 = NULL;
8553 	return err;
8554 }
8555 
8556 int netdev_offload_xstats_enable(struct net_device *dev,
8557 				 enum netdev_offload_xstats_type type,
8558 				 struct netlink_ext_ack *extack)
8559 {
8560 	ASSERT_RTNL();
8561 
8562 	if (netdev_offload_xstats_enabled(dev, type))
8563 		return -EALREADY;
8564 
8565 	switch (type) {
8566 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8567 		return netdev_offload_xstats_enable_l3(dev, extack);
8568 	}
8569 
8570 	WARN_ON(1);
8571 	return -EINVAL;
8572 }
8573 EXPORT_SYMBOL(netdev_offload_xstats_enable);
8574 
8575 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
8576 {
8577 	struct netdev_notifier_offload_xstats_info info = {
8578 		.info.dev = dev,
8579 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8580 	};
8581 
8582 	call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
8583 				      &info.info);
8584 	kfree(dev->offload_xstats_l3);
8585 	dev->offload_xstats_l3 = NULL;
8586 }
8587 
8588 int netdev_offload_xstats_disable(struct net_device *dev,
8589 				  enum netdev_offload_xstats_type type)
8590 {
8591 	ASSERT_RTNL();
8592 
8593 	if (!netdev_offload_xstats_enabled(dev, type))
8594 		return -EALREADY;
8595 
8596 	switch (type) {
8597 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8598 		netdev_offload_xstats_disable_l3(dev);
8599 		return 0;
8600 	}
8601 
8602 	WARN_ON(1);
8603 	return -EINVAL;
8604 }
8605 EXPORT_SYMBOL(netdev_offload_xstats_disable);
8606 
8607 static void netdev_offload_xstats_disable_all(struct net_device *dev)
8608 {
8609 	netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
8610 }
8611 
8612 static struct rtnl_hw_stats64 *
8613 netdev_offload_xstats_get_ptr(const struct net_device *dev,
8614 			      enum netdev_offload_xstats_type type)
8615 {
8616 	switch (type) {
8617 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8618 		return dev->offload_xstats_l3;
8619 	}
8620 
8621 	WARN_ON(1);
8622 	return NULL;
8623 }
8624 
8625 bool netdev_offload_xstats_enabled(const struct net_device *dev,
8626 				   enum netdev_offload_xstats_type type)
8627 {
8628 	ASSERT_RTNL();
8629 
8630 	return netdev_offload_xstats_get_ptr(dev, type);
8631 }
8632 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
8633 
8634 struct netdev_notifier_offload_xstats_ru {
8635 	bool used;
8636 };
8637 
8638 struct netdev_notifier_offload_xstats_rd {
8639 	struct rtnl_hw_stats64 stats;
8640 	bool used;
8641 };
8642 
8643 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8644 				  const struct rtnl_hw_stats64 *src)
8645 {
8646 	dest->rx_packets	  += src->rx_packets;
8647 	dest->tx_packets	  += src->tx_packets;
8648 	dest->rx_bytes		  += src->rx_bytes;
8649 	dest->tx_bytes		  += src->tx_bytes;
8650 	dest->rx_errors		  += src->rx_errors;
8651 	dest->tx_errors		  += src->tx_errors;
8652 	dest->rx_dropped	  += src->rx_dropped;
8653 	dest->tx_dropped	  += src->tx_dropped;
8654 	dest->multicast		  += src->multicast;
8655 }
8656 
8657 static int netdev_offload_xstats_get_used(struct net_device *dev,
8658 					  enum netdev_offload_xstats_type type,
8659 					  bool *p_used,
8660 					  struct netlink_ext_ack *extack)
8661 {
8662 	struct netdev_notifier_offload_xstats_ru report_used = {};
8663 	struct netdev_notifier_offload_xstats_info info = {
8664 		.info.dev = dev,
8665 		.info.extack = extack,
8666 		.type = type,
8667 		.report_used = &report_used,
8668 	};
8669 	int rc;
8670 
8671 	WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8672 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8673 					   &info.info);
8674 	*p_used = report_used.used;
8675 	return notifier_to_errno(rc);
8676 }
8677 
8678 static int netdev_offload_xstats_get_stats(struct net_device *dev,
8679 					   enum netdev_offload_xstats_type type,
8680 					   struct rtnl_hw_stats64 *p_stats,
8681 					   bool *p_used,
8682 					   struct netlink_ext_ack *extack)
8683 {
8684 	struct netdev_notifier_offload_xstats_rd report_delta = {};
8685 	struct netdev_notifier_offload_xstats_info info = {
8686 		.info.dev = dev,
8687 		.info.extack = extack,
8688 		.type = type,
8689 		.report_delta = &report_delta,
8690 	};
8691 	struct rtnl_hw_stats64 *stats;
8692 	int rc;
8693 
8694 	stats = netdev_offload_xstats_get_ptr(dev, type);
8695 	if (WARN_ON(!stats))
8696 		return -EINVAL;
8697 
8698 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8699 					   &info.info);
8700 
8701 	/* Cache whatever we got, even if there was an error, otherwise the
8702 	 * successful stats retrievals would get lost.
8703 	 */
8704 	netdev_hw_stats64_add(stats, &report_delta.stats);
8705 
8706 	if (p_stats)
8707 		*p_stats = *stats;
8708 	*p_used = report_delta.used;
8709 
8710 	return notifier_to_errno(rc);
8711 }
8712 
8713 int netdev_offload_xstats_get(struct net_device *dev,
8714 			      enum netdev_offload_xstats_type type,
8715 			      struct rtnl_hw_stats64 *p_stats, bool *p_used,
8716 			      struct netlink_ext_ack *extack)
8717 {
8718 	ASSERT_RTNL();
8719 
8720 	if (p_stats)
8721 		return netdev_offload_xstats_get_stats(dev, type, p_stats,
8722 						       p_used, extack);
8723 	else
8724 		return netdev_offload_xstats_get_used(dev, type, p_used,
8725 						      extack);
8726 }
8727 EXPORT_SYMBOL(netdev_offload_xstats_get);
8728 
8729 void
8730 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8731 				   const struct rtnl_hw_stats64 *stats)
8732 {
8733 	report_delta->used = true;
8734 	netdev_hw_stats64_add(&report_delta->stats, stats);
8735 }
8736 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8737 
8738 void
8739 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8740 {
8741 	report_used->used = true;
8742 }
8743 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8744 
8745 void netdev_offload_xstats_push_delta(struct net_device *dev,
8746 				      enum netdev_offload_xstats_type type,
8747 				      const struct rtnl_hw_stats64 *p_stats)
8748 {
8749 	struct rtnl_hw_stats64 *stats;
8750 
8751 	ASSERT_RTNL();
8752 
8753 	stats = netdev_offload_xstats_get_ptr(dev, type);
8754 	if (WARN_ON(!stats))
8755 		return;
8756 
8757 	netdev_hw_stats64_add(stats, p_stats);
8758 }
8759 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8760 
8761 /**
8762  * netdev_get_xmit_slave - Get the xmit slave of master device
8763  * @dev: device
8764  * @skb: The packet
8765  * @all_slaves: assume all the slaves are active
8766  *
8767  * The reference counters are not incremented so the caller must be
8768  * careful with locks. The caller must hold RCU lock.
8769  * %NULL is returned if no slave is found.
8770  */
8771 
8772 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8773 					 struct sk_buff *skb,
8774 					 bool all_slaves)
8775 {
8776 	const struct net_device_ops *ops = dev->netdev_ops;
8777 
8778 	if (!ops->ndo_get_xmit_slave)
8779 		return NULL;
8780 	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8781 }
8782 EXPORT_SYMBOL(netdev_get_xmit_slave);
8783 
8784 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8785 						  struct sock *sk)
8786 {
8787 	const struct net_device_ops *ops = dev->netdev_ops;
8788 
8789 	if (!ops->ndo_sk_get_lower_dev)
8790 		return NULL;
8791 	return ops->ndo_sk_get_lower_dev(dev, sk);
8792 }
8793 
8794 /**
8795  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8796  * @dev: device
8797  * @sk: the socket
8798  *
8799  * %NULL is returned if no lower device is found.
8800  */
8801 
8802 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8803 					    struct sock *sk)
8804 {
8805 	struct net_device *lower;
8806 
8807 	lower = netdev_sk_get_lower_dev(dev, sk);
8808 	while (lower) {
8809 		dev = lower;
8810 		lower = netdev_sk_get_lower_dev(dev, sk);
8811 	}
8812 
8813 	return dev;
8814 }
8815 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8816 
8817 static void netdev_adjacent_add_links(struct net_device *dev)
8818 {
8819 	struct netdev_adjacent *iter;
8820 
8821 	struct net *net = dev_net(dev);
8822 
8823 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8824 		if (!net_eq(net, dev_net(iter->dev)))
8825 			continue;
8826 		netdev_adjacent_sysfs_add(iter->dev, dev,
8827 					  &iter->dev->adj_list.lower);
8828 		netdev_adjacent_sysfs_add(dev, iter->dev,
8829 					  &dev->adj_list.upper);
8830 	}
8831 
8832 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8833 		if (!net_eq(net, dev_net(iter->dev)))
8834 			continue;
8835 		netdev_adjacent_sysfs_add(iter->dev, dev,
8836 					  &iter->dev->adj_list.upper);
8837 		netdev_adjacent_sysfs_add(dev, iter->dev,
8838 					  &dev->adj_list.lower);
8839 	}
8840 }
8841 
8842 static void netdev_adjacent_del_links(struct net_device *dev)
8843 {
8844 	struct netdev_adjacent *iter;
8845 
8846 	struct net *net = dev_net(dev);
8847 
8848 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8849 		if (!net_eq(net, dev_net(iter->dev)))
8850 			continue;
8851 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8852 					  &iter->dev->adj_list.lower);
8853 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8854 					  &dev->adj_list.upper);
8855 	}
8856 
8857 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8858 		if (!net_eq(net, dev_net(iter->dev)))
8859 			continue;
8860 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8861 					  &iter->dev->adj_list.upper);
8862 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8863 					  &dev->adj_list.lower);
8864 	}
8865 }
8866 
8867 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8868 {
8869 	struct netdev_adjacent *iter;
8870 
8871 	struct net *net = dev_net(dev);
8872 
8873 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8874 		if (!net_eq(net, dev_net(iter->dev)))
8875 			continue;
8876 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8877 					  &iter->dev->adj_list.lower);
8878 		netdev_adjacent_sysfs_add(iter->dev, dev,
8879 					  &iter->dev->adj_list.lower);
8880 	}
8881 
8882 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8883 		if (!net_eq(net, dev_net(iter->dev)))
8884 			continue;
8885 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8886 					  &iter->dev->adj_list.upper);
8887 		netdev_adjacent_sysfs_add(iter->dev, dev,
8888 					  &iter->dev->adj_list.upper);
8889 	}
8890 }
8891 
8892 void *netdev_lower_dev_get_private(struct net_device *dev,
8893 				   struct net_device *lower_dev)
8894 {
8895 	struct netdev_adjacent *lower;
8896 
8897 	if (!lower_dev)
8898 		return NULL;
8899 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8900 	if (!lower)
8901 		return NULL;
8902 
8903 	return lower->private;
8904 }
8905 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8906 
8907 
8908 /**
8909  * netdev_lower_state_changed - Dispatch event about lower device state change
8910  * @lower_dev: device
8911  * @lower_state_info: state to dispatch
8912  *
8913  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8914  * The caller must hold the RTNL lock.
8915  */
8916 void netdev_lower_state_changed(struct net_device *lower_dev,
8917 				void *lower_state_info)
8918 {
8919 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8920 		.info.dev = lower_dev,
8921 	};
8922 
8923 	ASSERT_RTNL();
8924 	changelowerstate_info.lower_state_info = lower_state_info;
8925 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8926 				      &changelowerstate_info.info);
8927 }
8928 EXPORT_SYMBOL(netdev_lower_state_changed);
8929 
8930 static void dev_change_rx_flags(struct net_device *dev, int flags)
8931 {
8932 	const struct net_device_ops *ops = dev->netdev_ops;
8933 
8934 	if (ops->ndo_change_rx_flags)
8935 		ops->ndo_change_rx_flags(dev, flags);
8936 }
8937 
8938 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8939 {
8940 	unsigned int old_flags = dev->flags;
8941 	unsigned int promiscuity, flags;
8942 	kuid_t uid;
8943 	kgid_t gid;
8944 
8945 	ASSERT_RTNL();
8946 
8947 	promiscuity = dev->promiscuity + inc;
8948 	if (promiscuity == 0) {
8949 		/*
8950 		 * Avoid overflow.
8951 		 * If inc causes overflow, untouch promisc and return error.
8952 		 */
8953 		if (unlikely(inc > 0)) {
8954 			netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8955 			return -EOVERFLOW;
8956 		}
8957 		flags = old_flags & ~IFF_PROMISC;
8958 	} else {
8959 		flags = old_flags | IFF_PROMISC;
8960 	}
8961 	WRITE_ONCE(dev->promiscuity, promiscuity);
8962 	if (flags != old_flags) {
8963 		WRITE_ONCE(dev->flags, flags);
8964 		netdev_info(dev, "%s promiscuous mode\n",
8965 			    dev->flags & IFF_PROMISC ? "entered" : "left");
8966 		if (audit_enabled) {
8967 			current_uid_gid(&uid, &gid);
8968 			audit_log(audit_context(), GFP_ATOMIC,
8969 				  AUDIT_ANOM_PROMISCUOUS,
8970 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8971 				  dev->name, (dev->flags & IFF_PROMISC),
8972 				  (old_flags & IFF_PROMISC),
8973 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
8974 				  from_kuid(&init_user_ns, uid),
8975 				  from_kgid(&init_user_ns, gid),
8976 				  audit_get_sessionid(current));
8977 		}
8978 
8979 		dev_change_rx_flags(dev, IFF_PROMISC);
8980 	}
8981 	if (notify)
8982 		__dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
8983 	return 0;
8984 }
8985 
8986 /**
8987  *	dev_set_promiscuity	- update promiscuity count on a device
8988  *	@dev: device
8989  *	@inc: modifier
8990  *
8991  *	Add or remove promiscuity from a device. While the count in the device
8992  *	remains above zero the interface remains promiscuous. Once it hits zero
8993  *	the device reverts back to normal filtering operation. A negative inc
8994  *	value is used to drop promiscuity on the device.
8995  *	Return 0 if successful or a negative errno code on error.
8996  */
8997 int dev_set_promiscuity(struct net_device *dev, int inc)
8998 {
8999 	unsigned int old_flags = dev->flags;
9000 	int err;
9001 
9002 	err = __dev_set_promiscuity(dev, inc, true);
9003 	if (err < 0)
9004 		return err;
9005 	if (dev->flags != old_flags)
9006 		dev_set_rx_mode(dev);
9007 	return err;
9008 }
9009 EXPORT_SYMBOL(dev_set_promiscuity);
9010 
9011 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
9012 {
9013 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
9014 	unsigned int allmulti, flags;
9015 
9016 	ASSERT_RTNL();
9017 
9018 	allmulti = dev->allmulti + inc;
9019 	if (allmulti == 0) {
9020 		/*
9021 		 * Avoid overflow.
9022 		 * If inc causes overflow, untouch allmulti and return error.
9023 		 */
9024 		if (unlikely(inc > 0)) {
9025 			netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
9026 			return -EOVERFLOW;
9027 		}
9028 		flags = old_flags & ~IFF_ALLMULTI;
9029 	} else {
9030 		flags = old_flags | IFF_ALLMULTI;
9031 	}
9032 	WRITE_ONCE(dev->allmulti, allmulti);
9033 	if (flags != old_flags) {
9034 		WRITE_ONCE(dev->flags, flags);
9035 		netdev_info(dev, "%s allmulticast mode\n",
9036 			    dev->flags & IFF_ALLMULTI ? "entered" : "left");
9037 		dev_change_rx_flags(dev, IFF_ALLMULTI);
9038 		dev_set_rx_mode(dev);
9039 		if (notify)
9040 			__dev_notify_flags(dev, old_flags,
9041 					   dev->gflags ^ old_gflags, 0, NULL);
9042 	}
9043 	return 0;
9044 }
9045 
9046 /**
9047  *	dev_set_allmulti	- update allmulti count on a device
9048  *	@dev: device
9049  *	@inc: modifier
9050  *
9051  *	Add or remove reception of all multicast frames to a device. While the
9052  *	count in the device remains above zero the interface remains listening
9053  *	to all interfaces. Once it hits zero the device reverts back to normal
9054  *	filtering operation. A negative @inc value is used to drop the counter
9055  *	when releasing a resource needing all multicasts.
9056  *	Return 0 if successful or a negative errno code on error.
9057  */
9058 
9059 int dev_set_allmulti(struct net_device *dev, int inc)
9060 {
9061 	return __dev_set_allmulti(dev, inc, true);
9062 }
9063 EXPORT_SYMBOL(dev_set_allmulti);
9064 
9065 /*
9066  *	Upload unicast and multicast address lists to device and
9067  *	configure RX filtering. When the device doesn't support unicast
9068  *	filtering it is put in promiscuous mode while unicast addresses
9069  *	are present.
9070  */
9071 void __dev_set_rx_mode(struct net_device *dev)
9072 {
9073 	const struct net_device_ops *ops = dev->netdev_ops;
9074 
9075 	/* dev_open will call this function so the list will stay sane. */
9076 	if (!(dev->flags&IFF_UP))
9077 		return;
9078 
9079 	if (!netif_device_present(dev))
9080 		return;
9081 
9082 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
9083 		/* Unicast addresses changes may only happen under the rtnl,
9084 		 * therefore calling __dev_set_promiscuity here is safe.
9085 		 */
9086 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
9087 			__dev_set_promiscuity(dev, 1, false);
9088 			dev->uc_promisc = true;
9089 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
9090 			__dev_set_promiscuity(dev, -1, false);
9091 			dev->uc_promisc = false;
9092 		}
9093 	}
9094 
9095 	if (ops->ndo_set_rx_mode)
9096 		ops->ndo_set_rx_mode(dev);
9097 }
9098 
9099 void dev_set_rx_mode(struct net_device *dev)
9100 {
9101 	netif_addr_lock_bh(dev);
9102 	__dev_set_rx_mode(dev);
9103 	netif_addr_unlock_bh(dev);
9104 }
9105 
9106 /**
9107  *	dev_get_flags - get flags reported to userspace
9108  *	@dev: device
9109  *
9110  *	Get the combination of flag bits exported through APIs to userspace.
9111  */
9112 unsigned int dev_get_flags(const struct net_device *dev)
9113 {
9114 	unsigned int flags;
9115 
9116 	flags = (READ_ONCE(dev->flags) & ~(IFF_PROMISC |
9117 				IFF_ALLMULTI |
9118 				IFF_RUNNING |
9119 				IFF_LOWER_UP |
9120 				IFF_DORMANT)) |
9121 		(READ_ONCE(dev->gflags) & (IFF_PROMISC |
9122 				IFF_ALLMULTI));
9123 
9124 	if (netif_running(dev)) {
9125 		if (netif_oper_up(dev))
9126 			flags |= IFF_RUNNING;
9127 		if (netif_carrier_ok(dev))
9128 			flags |= IFF_LOWER_UP;
9129 		if (netif_dormant(dev))
9130 			flags |= IFF_DORMANT;
9131 	}
9132 
9133 	return flags;
9134 }
9135 EXPORT_SYMBOL(dev_get_flags);
9136 
9137 int __dev_change_flags(struct net_device *dev, unsigned int flags,
9138 		       struct netlink_ext_ack *extack)
9139 {
9140 	unsigned int old_flags = dev->flags;
9141 	int ret;
9142 
9143 	ASSERT_RTNL();
9144 
9145 	/*
9146 	 *	Set the flags on our device.
9147 	 */
9148 
9149 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
9150 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
9151 			       IFF_AUTOMEDIA)) |
9152 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
9153 				    IFF_ALLMULTI));
9154 
9155 	/*
9156 	 *	Load in the correct multicast list now the flags have changed.
9157 	 */
9158 
9159 	if ((old_flags ^ flags) & IFF_MULTICAST)
9160 		dev_change_rx_flags(dev, IFF_MULTICAST);
9161 
9162 	dev_set_rx_mode(dev);
9163 
9164 	/*
9165 	 *	Have we downed the interface. We handle IFF_UP ourselves
9166 	 *	according to user attempts to set it, rather than blindly
9167 	 *	setting it.
9168 	 */
9169 
9170 	ret = 0;
9171 	if ((old_flags ^ flags) & IFF_UP) {
9172 		if (old_flags & IFF_UP)
9173 			__dev_close(dev);
9174 		else
9175 			ret = __dev_open(dev, extack);
9176 	}
9177 
9178 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
9179 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
9180 		unsigned int old_flags = dev->flags;
9181 
9182 		dev->gflags ^= IFF_PROMISC;
9183 
9184 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
9185 			if (dev->flags != old_flags)
9186 				dev_set_rx_mode(dev);
9187 	}
9188 
9189 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
9190 	 * is important. Some (broken) drivers set IFF_PROMISC, when
9191 	 * IFF_ALLMULTI is requested not asking us and not reporting.
9192 	 */
9193 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
9194 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
9195 
9196 		dev->gflags ^= IFF_ALLMULTI;
9197 		__dev_set_allmulti(dev, inc, false);
9198 	}
9199 
9200 	return ret;
9201 }
9202 
9203 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
9204 			unsigned int gchanges, u32 portid,
9205 			const struct nlmsghdr *nlh)
9206 {
9207 	unsigned int changes = dev->flags ^ old_flags;
9208 
9209 	if (gchanges)
9210 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
9211 
9212 	if (changes & IFF_UP) {
9213 		if (dev->flags & IFF_UP)
9214 			call_netdevice_notifiers(NETDEV_UP, dev);
9215 		else
9216 			call_netdevice_notifiers(NETDEV_DOWN, dev);
9217 	}
9218 
9219 	if (dev->flags & IFF_UP &&
9220 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
9221 		struct netdev_notifier_change_info change_info = {
9222 			.info = {
9223 				.dev = dev,
9224 			},
9225 			.flags_changed = changes,
9226 		};
9227 
9228 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
9229 	}
9230 }
9231 
9232 /**
9233  *	dev_change_flags - change device settings
9234  *	@dev: device
9235  *	@flags: device state flags
9236  *	@extack: netlink extended ack
9237  *
9238  *	Change settings on device based state flags. The flags are
9239  *	in the userspace exported format.
9240  */
9241 int dev_change_flags(struct net_device *dev, unsigned int flags,
9242 		     struct netlink_ext_ack *extack)
9243 {
9244 	int ret;
9245 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
9246 
9247 	ret = __dev_change_flags(dev, flags, extack);
9248 	if (ret < 0)
9249 		return ret;
9250 
9251 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
9252 	__dev_notify_flags(dev, old_flags, changes, 0, NULL);
9253 	return ret;
9254 }
9255 EXPORT_SYMBOL(dev_change_flags);
9256 
9257 int __dev_set_mtu(struct net_device *dev, int new_mtu)
9258 {
9259 	const struct net_device_ops *ops = dev->netdev_ops;
9260 
9261 	if (ops->ndo_change_mtu)
9262 		return ops->ndo_change_mtu(dev, new_mtu);
9263 
9264 	/* Pairs with all the lockless reads of dev->mtu in the stack */
9265 	WRITE_ONCE(dev->mtu, new_mtu);
9266 	return 0;
9267 }
9268 EXPORT_SYMBOL(__dev_set_mtu);
9269 
9270 int dev_validate_mtu(struct net_device *dev, int new_mtu,
9271 		     struct netlink_ext_ack *extack)
9272 {
9273 	/* MTU must be positive, and in range */
9274 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
9275 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
9276 		return -EINVAL;
9277 	}
9278 
9279 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
9280 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
9281 		return -EINVAL;
9282 	}
9283 	return 0;
9284 }
9285 
9286 /**
9287  *	dev_set_mtu_ext - Change maximum transfer unit
9288  *	@dev: device
9289  *	@new_mtu: new transfer unit
9290  *	@extack: netlink extended ack
9291  *
9292  *	Change the maximum transfer size of the network device.
9293  */
9294 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
9295 		    struct netlink_ext_ack *extack)
9296 {
9297 	int err, orig_mtu;
9298 
9299 	if (new_mtu == dev->mtu)
9300 		return 0;
9301 
9302 	err = dev_validate_mtu(dev, new_mtu, extack);
9303 	if (err)
9304 		return err;
9305 
9306 	if (!netif_device_present(dev))
9307 		return -ENODEV;
9308 
9309 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
9310 	err = notifier_to_errno(err);
9311 	if (err)
9312 		return err;
9313 
9314 	orig_mtu = dev->mtu;
9315 	err = __dev_set_mtu(dev, new_mtu);
9316 
9317 	if (!err) {
9318 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
9319 						   orig_mtu);
9320 		err = notifier_to_errno(err);
9321 		if (err) {
9322 			/* setting mtu back and notifying everyone again,
9323 			 * so that they have a chance to revert changes.
9324 			 */
9325 			__dev_set_mtu(dev, orig_mtu);
9326 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
9327 						     new_mtu);
9328 		}
9329 	}
9330 	return err;
9331 }
9332 
9333 int dev_set_mtu(struct net_device *dev, int new_mtu)
9334 {
9335 	struct netlink_ext_ack extack;
9336 	int err;
9337 
9338 	memset(&extack, 0, sizeof(extack));
9339 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
9340 	if (err && extack._msg)
9341 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
9342 	return err;
9343 }
9344 EXPORT_SYMBOL(dev_set_mtu);
9345 
9346 /**
9347  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
9348  *	@dev: device
9349  *	@new_len: new tx queue length
9350  */
9351 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
9352 {
9353 	unsigned int orig_len = dev->tx_queue_len;
9354 	int res;
9355 
9356 	if (new_len != (unsigned int)new_len)
9357 		return -ERANGE;
9358 
9359 	if (new_len != orig_len) {
9360 		WRITE_ONCE(dev->tx_queue_len, new_len);
9361 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
9362 		res = notifier_to_errno(res);
9363 		if (res)
9364 			goto err_rollback;
9365 		res = dev_qdisc_change_tx_queue_len(dev);
9366 		if (res)
9367 			goto err_rollback;
9368 	}
9369 
9370 	return 0;
9371 
9372 err_rollback:
9373 	netdev_err(dev, "refused to change device tx_queue_len\n");
9374 	WRITE_ONCE(dev->tx_queue_len, orig_len);
9375 	return res;
9376 }
9377 
9378 /**
9379  *	dev_set_group - Change group this device belongs to
9380  *	@dev: device
9381  *	@new_group: group this device should belong to
9382  */
9383 void dev_set_group(struct net_device *dev, int new_group)
9384 {
9385 	dev->group = new_group;
9386 }
9387 
9388 /**
9389  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
9390  *	@dev: device
9391  *	@addr: new address
9392  *	@extack: netlink extended ack
9393  */
9394 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
9395 			      struct netlink_ext_ack *extack)
9396 {
9397 	struct netdev_notifier_pre_changeaddr_info info = {
9398 		.info.dev = dev,
9399 		.info.extack = extack,
9400 		.dev_addr = addr,
9401 	};
9402 	int rc;
9403 
9404 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
9405 	return notifier_to_errno(rc);
9406 }
9407 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
9408 
9409 /**
9410  *	dev_set_mac_address - Change Media Access Control Address
9411  *	@dev: device
9412  *	@sa: new address
9413  *	@extack: netlink extended ack
9414  *
9415  *	Change the hardware (MAC) address of the device
9416  */
9417 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
9418 			struct netlink_ext_ack *extack)
9419 {
9420 	const struct net_device_ops *ops = dev->netdev_ops;
9421 	int err;
9422 
9423 	if (!ops->ndo_set_mac_address)
9424 		return -EOPNOTSUPP;
9425 	if (sa->sa_family != dev->type)
9426 		return -EINVAL;
9427 	if (!netif_device_present(dev))
9428 		return -ENODEV;
9429 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
9430 	if (err)
9431 		return err;
9432 	if (memcmp(dev->dev_addr, sa->sa_data, dev->addr_len)) {
9433 		err = ops->ndo_set_mac_address(dev, sa);
9434 		if (err)
9435 			return err;
9436 	}
9437 	dev->addr_assign_type = NET_ADDR_SET;
9438 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
9439 	add_device_randomness(dev->dev_addr, dev->addr_len);
9440 	return 0;
9441 }
9442 EXPORT_SYMBOL(dev_set_mac_address);
9443 
9444 DECLARE_RWSEM(dev_addr_sem);
9445 
9446 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
9447 			     struct netlink_ext_ack *extack)
9448 {
9449 	int ret;
9450 
9451 	down_write(&dev_addr_sem);
9452 	ret = dev_set_mac_address(dev, sa, extack);
9453 	up_write(&dev_addr_sem);
9454 	return ret;
9455 }
9456 EXPORT_SYMBOL(dev_set_mac_address_user);
9457 
9458 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
9459 {
9460 	size_t size = sizeof(sa->sa_data_min);
9461 	struct net_device *dev;
9462 	int ret = 0;
9463 
9464 	down_read(&dev_addr_sem);
9465 	rcu_read_lock();
9466 
9467 	dev = dev_get_by_name_rcu(net, dev_name);
9468 	if (!dev) {
9469 		ret = -ENODEV;
9470 		goto unlock;
9471 	}
9472 	if (!dev->addr_len)
9473 		memset(sa->sa_data, 0, size);
9474 	else
9475 		memcpy(sa->sa_data, dev->dev_addr,
9476 		       min_t(size_t, size, dev->addr_len));
9477 	sa->sa_family = dev->type;
9478 
9479 unlock:
9480 	rcu_read_unlock();
9481 	up_read(&dev_addr_sem);
9482 	return ret;
9483 }
9484 EXPORT_SYMBOL(dev_get_mac_address);
9485 
9486 /**
9487  *	dev_change_carrier - Change device carrier
9488  *	@dev: device
9489  *	@new_carrier: new value
9490  *
9491  *	Change device carrier
9492  */
9493 int dev_change_carrier(struct net_device *dev, bool new_carrier)
9494 {
9495 	const struct net_device_ops *ops = dev->netdev_ops;
9496 
9497 	if (!ops->ndo_change_carrier)
9498 		return -EOPNOTSUPP;
9499 	if (!netif_device_present(dev))
9500 		return -ENODEV;
9501 	return ops->ndo_change_carrier(dev, new_carrier);
9502 }
9503 
9504 /**
9505  *	dev_get_phys_port_id - Get device physical port ID
9506  *	@dev: device
9507  *	@ppid: port ID
9508  *
9509  *	Get device physical port ID
9510  */
9511 int dev_get_phys_port_id(struct net_device *dev,
9512 			 struct netdev_phys_item_id *ppid)
9513 {
9514 	const struct net_device_ops *ops = dev->netdev_ops;
9515 
9516 	if (!ops->ndo_get_phys_port_id)
9517 		return -EOPNOTSUPP;
9518 	return ops->ndo_get_phys_port_id(dev, ppid);
9519 }
9520 
9521 /**
9522  *	dev_get_phys_port_name - Get device physical port name
9523  *	@dev: device
9524  *	@name: port name
9525  *	@len: limit of bytes to copy to name
9526  *
9527  *	Get device physical port name
9528  */
9529 int dev_get_phys_port_name(struct net_device *dev,
9530 			   char *name, size_t len)
9531 {
9532 	const struct net_device_ops *ops = dev->netdev_ops;
9533 	int err;
9534 
9535 	if (ops->ndo_get_phys_port_name) {
9536 		err = ops->ndo_get_phys_port_name(dev, name, len);
9537 		if (err != -EOPNOTSUPP)
9538 			return err;
9539 	}
9540 	return devlink_compat_phys_port_name_get(dev, name, len);
9541 }
9542 
9543 /**
9544  *	dev_get_port_parent_id - Get the device's port parent identifier
9545  *	@dev: network device
9546  *	@ppid: pointer to a storage for the port's parent identifier
9547  *	@recurse: allow/disallow recursion to lower devices
9548  *
9549  *	Get the devices's port parent identifier
9550  */
9551 int dev_get_port_parent_id(struct net_device *dev,
9552 			   struct netdev_phys_item_id *ppid,
9553 			   bool recurse)
9554 {
9555 	const struct net_device_ops *ops = dev->netdev_ops;
9556 	struct netdev_phys_item_id first = { };
9557 	struct net_device *lower_dev;
9558 	struct list_head *iter;
9559 	int err;
9560 
9561 	if (ops->ndo_get_port_parent_id) {
9562 		err = ops->ndo_get_port_parent_id(dev, ppid);
9563 		if (err != -EOPNOTSUPP)
9564 			return err;
9565 	}
9566 
9567 	err = devlink_compat_switch_id_get(dev, ppid);
9568 	if (!recurse || err != -EOPNOTSUPP)
9569 		return err;
9570 
9571 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
9572 		err = dev_get_port_parent_id(lower_dev, ppid, true);
9573 		if (err)
9574 			break;
9575 		if (!first.id_len)
9576 			first = *ppid;
9577 		else if (memcmp(&first, ppid, sizeof(*ppid)))
9578 			return -EOPNOTSUPP;
9579 	}
9580 
9581 	return err;
9582 }
9583 EXPORT_SYMBOL(dev_get_port_parent_id);
9584 
9585 /**
9586  *	netdev_port_same_parent_id - Indicate if two network devices have
9587  *	the same port parent identifier
9588  *	@a: first network device
9589  *	@b: second network device
9590  */
9591 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9592 {
9593 	struct netdev_phys_item_id a_id = { };
9594 	struct netdev_phys_item_id b_id = { };
9595 
9596 	if (dev_get_port_parent_id(a, &a_id, true) ||
9597 	    dev_get_port_parent_id(b, &b_id, true))
9598 		return false;
9599 
9600 	return netdev_phys_item_id_same(&a_id, &b_id);
9601 }
9602 EXPORT_SYMBOL(netdev_port_same_parent_id);
9603 
9604 /**
9605  *	dev_change_proto_down - set carrier according to proto_down.
9606  *
9607  *	@dev: device
9608  *	@proto_down: new value
9609  */
9610 int dev_change_proto_down(struct net_device *dev, bool proto_down)
9611 {
9612 	if (!dev->change_proto_down)
9613 		return -EOPNOTSUPP;
9614 	if (!netif_device_present(dev))
9615 		return -ENODEV;
9616 	if (proto_down)
9617 		netif_carrier_off(dev);
9618 	else
9619 		netif_carrier_on(dev);
9620 	WRITE_ONCE(dev->proto_down, proto_down);
9621 	return 0;
9622 }
9623 
9624 /**
9625  *	dev_change_proto_down_reason - proto down reason
9626  *
9627  *	@dev: device
9628  *	@mask: proto down mask
9629  *	@value: proto down value
9630  */
9631 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9632 				  u32 value)
9633 {
9634 	u32 proto_down_reason;
9635 	int b;
9636 
9637 	if (!mask) {
9638 		proto_down_reason = value;
9639 	} else {
9640 		proto_down_reason = dev->proto_down_reason;
9641 		for_each_set_bit(b, &mask, 32) {
9642 			if (value & (1 << b))
9643 				proto_down_reason |= BIT(b);
9644 			else
9645 				proto_down_reason &= ~BIT(b);
9646 		}
9647 	}
9648 	WRITE_ONCE(dev->proto_down_reason, proto_down_reason);
9649 }
9650 
9651 struct bpf_xdp_link {
9652 	struct bpf_link link;
9653 	struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9654 	int flags;
9655 };
9656 
9657 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9658 {
9659 	if (flags & XDP_FLAGS_HW_MODE)
9660 		return XDP_MODE_HW;
9661 	if (flags & XDP_FLAGS_DRV_MODE)
9662 		return XDP_MODE_DRV;
9663 	if (flags & XDP_FLAGS_SKB_MODE)
9664 		return XDP_MODE_SKB;
9665 	return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9666 }
9667 
9668 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9669 {
9670 	switch (mode) {
9671 	case XDP_MODE_SKB:
9672 		return generic_xdp_install;
9673 	case XDP_MODE_DRV:
9674 	case XDP_MODE_HW:
9675 		return dev->netdev_ops->ndo_bpf;
9676 	default:
9677 		return NULL;
9678 	}
9679 }
9680 
9681 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9682 					 enum bpf_xdp_mode mode)
9683 {
9684 	return dev->xdp_state[mode].link;
9685 }
9686 
9687 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9688 				     enum bpf_xdp_mode mode)
9689 {
9690 	struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9691 
9692 	if (link)
9693 		return link->link.prog;
9694 	return dev->xdp_state[mode].prog;
9695 }
9696 
9697 u8 dev_xdp_prog_count(struct net_device *dev)
9698 {
9699 	u8 count = 0;
9700 	int i;
9701 
9702 	for (i = 0; i < __MAX_XDP_MODE; i++)
9703 		if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9704 			count++;
9705 	return count;
9706 }
9707 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9708 
9709 u8 dev_xdp_sb_prog_count(struct net_device *dev)
9710 {
9711 	u8 count = 0;
9712 	int i;
9713 
9714 	for (i = 0; i < __MAX_XDP_MODE; i++)
9715 		if (dev->xdp_state[i].prog &&
9716 		    !dev->xdp_state[i].prog->aux->xdp_has_frags)
9717 			count++;
9718 	return count;
9719 }
9720 
9721 int dev_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf)
9722 {
9723 	if (!dev->netdev_ops->ndo_bpf)
9724 		return -EOPNOTSUPP;
9725 
9726 	if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED &&
9727 	    bpf->command == XDP_SETUP_PROG &&
9728 	    bpf->prog && !bpf->prog->aux->xdp_has_frags) {
9729 		NL_SET_ERR_MSG(bpf->extack,
9730 			       "unable to propagate XDP to device using tcp-data-split");
9731 		return -EBUSY;
9732 	}
9733 
9734 	if (dev_get_min_mp_channel_count(dev)) {
9735 		NL_SET_ERR_MSG(bpf->extack, "unable to propagate XDP to device using memory provider");
9736 		return -EBUSY;
9737 	}
9738 
9739 	return dev->netdev_ops->ndo_bpf(dev, bpf);
9740 }
9741 EXPORT_SYMBOL_GPL(dev_xdp_propagate);
9742 
9743 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9744 {
9745 	struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9746 
9747 	return prog ? prog->aux->id : 0;
9748 }
9749 
9750 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9751 			     struct bpf_xdp_link *link)
9752 {
9753 	dev->xdp_state[mode].link = link;
9754 	dev->xdp_state[mode].prog = NULL;
9755 }
9756 
9757 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9758 			     struct bpf_prog *prog)
9759 {
9760 	dev->xdp_state[mode].link = NULL;
9761 	dev->xdp_state[mode].prog = prog;
9762 }
9763 
9764 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9765 			   bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9766 			   u32 flags, struct bpf_prog *prog)
9767 {
9768 	struct netdev_bpf xdp;
9769 	int err;
9770 
9771 	if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED &&
9772 	    prog && !prog->aux->xdp_has_frags) {
9773 		NL_SET_ERR_MSG(extack, "unable to install XDP to device using tcp-data-split");
9774 		return -EBUSY;
9775 	}
9776 
9777 	if (dev_get_min_mp_channel_count(dev)) {
9778 		NL_SET_ERR_MSG(extack, "unable to install XDP to device using memory provider");
9779 		return -EBUSY;
9780 	}
9781 
9782 	memset(&xdp, 0, sizeof(xdp));
9783 	xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9784 	xdp.extack = extack;
9785 	xdp.flags = flags;
9786 	xdp.prog = prog;
9787 
9788 	/* Drivers assume refcnt is already incremented (i.e, prog pointer is
9789 	 * "moved" into driver), so they don't increment it on their own, but
9790 	 * they do decrement refcnt when program is detached or replaced.
9791 	 * Given net_device also owns link/prog, we need to bump refcnt here
9792 	 * to prevent drivers from underflowing it.
9793 	 */
9794 	if (prog)
9795 		bpf_prog_inc(prog);
9796 	err = bpf_op(dev, &xdp);
9797 	if (err) {
9798 		if (prog)
9799 			bpf_prog_put(prog);
9800 		return err;
9801 	}
9802 
9803 	if (mode != XDP_MODE_HW)
9804 		bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9805 
9806 	return 0;
9807 }
9808 
9809 static void dev_xdp_uninstall(struct net_device *dev)
9810 {
9811 	struct bpf_xdp_link *link;
9812 	struct bpf_prog *prog;
9813 	enum bpf_xdp_mode mode;
9814 	bpf_op_t bpf_op;
9815 
9816 	ASSERT_RTNL();
9817 
9818 	for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9819 		prog = dev_xdp_prog(dev, mode);
9820 		if (!prog)
9821 			continue;
9822 
9823 		bpf_op = dev_xdp_bpf_op(dev, mode);
9824 		if (!bpf_op)
9825 			continue;
9826 
9827 		WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9828 
9829 		/* auto-detach link from net device */
9830 		link = dev_xdp_link(dev, mode);
9831 		if (link)
9832 			link->dev = NULL;
9833 		else
9834 			bpf_prog_put(prog);
9835 
9836 		dev_xdp_set_link(dev, mode, NULL);
9837 	}
9838 }
9839 
9840 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9841 			  struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9842 			  struct bpf_prog *old_prog, u32 flags)
9843 {
9844 	unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9845 	struct bpf_prog *cur_prog;
9846 	struct net_device *upper;
9847 	struct list_head *iter;
9848 	enum bpf_xdp_mode mode;
9849 	bpf_op_t bpf_op;
9850 	int err;
9851 
9852 	ASSERT_RTNL();
9853 
9854 	/* either link or prog attachment, never both */
9855 	if (link && (new_prog || old_prog))
9856 		return -EINVAL;
9857 	/* link supports only XDP mode flags */
9858 	if (link && (flags & ~XDP_FLAGS_MODES)) {
9859 		NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9860 		return -EINVAL;
9861 	}
9862 	/* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9863 	if (num_modes > 1) {
9864 		NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9865 		return -EINVAL;
9866 	}
9867 	/* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9868 	if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9869 		NL_SET_ERR_MSG(extack,
9870 			       "More than one program loaded, unset mode is ambiguous");
9871 		return -EINVAL;
9872 	}
9873 	/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9874 	if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9875 		NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9876 		return -EINVAL;
9877 	}
9878 
9879 	mode = dev_xdp_mode(dev, flags);
9880 	/* can't replace attached link */
9881 	if (dev_xdp_link(dev, mode)) {
9882 		NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9883 		return -EBUSY;
9884 	}
9885 
9886 	/* don't allow if an upper device already has a program */
9887 	netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9888 		if (dev_xdp_prog_count(upper) > 0) {
9889 			NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9890 			return -EEXIST;
9891 		}
9892 	}
9893 
9894 	cur_prog = dev_xdp_prog(dev, mode);
9895 	/* can't replace attached prog with link */
9896 	if (link && cur_prog) {
9897 		NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9898 		return -EBUSY;
9899 	}
9900 	if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9901 		NL_SET_ERR_MSG(extack, "Active program does not match expected");
9902 		return -EEXIST;
9903 	}
9904 
9905 	/* put effective new program into new_prog */
9906 	if (link)
9907 		new_prog = link->link.prog;
9908 
9909 	if (new_prog) {
9910 		bool offload = mode == XDP_MODE_HW;
9911 		enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9912 					       ? XDP_MODE_DRV : XDP_MODE_SKB;
9913 
9914 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9915 			NL_SET_ERR_MSG(extack, "XDP program already attached");
9916 			return -EBUSY;
9917 		}
9918 		if (!offload && dev_xdp_prog(dev, other_mode)) {
9919 			NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9920 			return -EEXIST;
9921 		}
9922 		if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
9923 			NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
9924 			return -EINVAL;
9925 		}
9926 		if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
9927 			NL_SET_ERR_MSG(extack, "Program bound to different device");
9928 			return -EINVAL;
9929 		}
9930 		if (bpf_prog_is_dev_bound(new_prog->aux) && mode == XDP_MODE_SKB) {
9931 			NL_SET_ERR_MSG(extack, "Can't attach device-bound programs in generic mode");
9932 			return -EINVAL;
9933 		}
9934 		if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9935 			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9936 			return -EINVAL;
9937 		}
9938 		if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9939 			NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9940 			return -EINVAL;
9941 		}
9942 	}
9943 
9944 	/* don't call drivers if the effective program didn't change */
9945 	if (new_prog != cur_prog) {
9946 		bpf_op = dev_xdp_bpf_op(dev, mode);
9947 		if (!bpf_op) {
9948 			NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9949 			return -EOPNOTSUPP;
9950 		}
9951 
9952 		err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9953 		if (err)
9954 			return err;
9955 	}
9956 
9957 	if (link)
9958 		dev_xdp_set_link(dev, mode, link);
9959 	else
9960 		dev_xdp_set_prog(dev, mode, new_prog);
9961 	if (cur_prog)
9962 		bpf_prog_put(cur_prog);
9963 
9964 	return 0;
9965 }
9966 
9967 static int dev_xdp_attach_link(struct net_device *dev,
9968 			       struct netlink_ext_ack *extack,
9969 			       struct bpf_xdp_link *link)
9970 {
9971 	return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9972 }
9973 
9974 static int dev_xdp_detach_link(struct net_device *dev,
9975 			       struct netlink_ext_ack *extack,
9976 			       struct bpf_xdp_link *link)
9977 {
9978 	enum bpf_xdp_mode mode;
9979 	bpf_op_t bpf_op;
9980 
9981 	ASSERT_RTNL();
9982 
9983 	mode = dev_xdp_mode(dev, link->flags);
9984 	if (dev_xdp_link(dev, mode) != link)
9985 		return -EINVAL;
9986 
9987 	bpf_op = dev_xdp_bpf_op(dev, mode);
9988 	WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9989 	dev_xdp_set_link(dev, mode, NULL);
9990 	return 0;
9991 }
9992 
9993 static void bpf_xdp_link_release(struct bpf_link *link)
9994 {
9995 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9996 
9997 	rtnl_lock();
9998 
9999 	/* if racing with net_device's tear down, xdp_link->dev might be
10000 	 * already NULL, in which case link was already auto-detached
10001 	 */
10002 	if (xdp_link->dev) {
10003 		WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
10004 		xdp_link->dev = NULL;
10005 	}
10006 
10007 	rtnl_unlock();
10008 }
10009 
10010 static int bpf_xdp_link_detach(struct bpf_link *link)
10011 {
10012 	bpf_xdp_link_release(link);
10013 	return 0;
10014 }
10015 
10016 static void bpf_xdp_link_dealloc(struct bpf_link *link)
10017 {
10018 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10019 
10020 	kfree(xdp_link);
10021 }
10022 
10023 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
10024 				     struct seq_file *seq)
10025 {
10026 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10027 	u32 ifindex = 0;
10028 
10029 	rtnl_lock();
10030 	if (xdp_link->dev)
10031 		ifindex = xdp_link->dev->ifindex;
10032 	rtnl_unlock();
10033 
10034 	seq_printf(seq, "ifindex:\t%u\n", ifindex);
10035 }
10036 
10037 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
10038 				       struct bpf_link_info *info)
10039 {
10040 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10041 	u32 ifindex = 0;
10042 
10043 	rtnl_lock();
10044 	if (xdp_link->dev)
10045 		ifindex = xdp_link->dev->ifindex;
10046 	rtnl_unlock();
10047 
10048 	info->xdp.ifindex = ifindex;
10049 	return 0;
10050 }
10051 
10052 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
10053 			       struct bpf_prog *old_prog)
10054 {
10055 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10056 	enum bpf_xdp_mode mode;
10057 	bpf_op_t bpf_op;
10058 	int err = 0;
10059 
10060 	rtnl_lock();
10061 
10062 	/* link might have been auto-released already, so fail */
10063 	if (!xdp_link->dev) {
10064 		err = -ENOLINK;
10065 		goto out_unlock;
10066 	}
10067 
10068 	if (old_prog && link->prog != old_prog) {
10069 		err = -EPERM;
10070 		goto out_unlock;
10071 	}
10072 	old_prog = link->prog;
10073 	if (old_prog->type != new_prog->type ||
10074 	    old_prog->expected_attach_type != new_prog->expected_attach_type) {
10075 		err = -EINVAL;
10076 		goto out_unlock;
10077 	}
10078 
10079 	if (old_prog == new_prog) {
10080 		/* no-op, don't disturb drivers */
10081 		bpf_prog_put(new_prog);
10082 		goto out_unlock;
10083 	}
10084 
10085 	mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
10086 	bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
10087 	err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
10088 			      xdp_link->flags, new_prog);
10089 	if (err)
10090 		goto out_unlock;
10091 
10092 	old_prog = xchg(&link->prog, new_prog);
10093 	bpf_prog_put(old_prog);
10094 
10095 out_unlock:
10096 	rtnl_unlock();
10097 	return err;
10098 }
10099 
10100 static const struct bpf_link_ops bpf_xdp_link_lops = {
10101 	.release = bpf_xdp_link_release,
10102 	.dealloc = bpf_xdp_link_dealloc,
10103 	.detach = bpf_xdp_link_detach,
10104 	.show_fdinfo = bpf_xdp_link_show_fdinfo,
10105 	.fill_link_info = bpf_xdp_link_fill_link_info,
10106 	.update_prog = bpf_xdp_link_update,
10107 };
10108 
10109 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
10110 {
10111 	struct net *net = current->nsproxy->net_ns;
10112 	struct bpf_link_primer link_primer;
10113 	struct netlink_ext_ack extack = {};
10114 	struct bpf_xdp_link *link;
10115 	struct net_device *dev;
10116 	int err, fd;
10117 
10118 	rtnl_lock();
10119 	dev = dev_get_by_index(net, attr->link_create.target_ifindex);
10120 	if (!dev) {
10121 		rtnl_unlock();
10122 		return -EINVAL;
10123 	}
10124 
10125 	link = kzalloc(sizeof(*link), GFP_USER);
10126 	if (!link) {
10127 		err = -ENOMEM;
10128 		goto unlock;
10129 	}
10130 
10131 	bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
10132 	link->dev = dev;
10133 	link->flags = attr->link_create.flags;
10134 
10135 	err = bpf_link_prime(&link->link, &link_primer);
10136 	if (err) {
10137 		kfree(link);
10138 		goto unlock;
10139 	}
10140 
10141 	err = dev_xdp_attach_link(dev, &extack, link);
10142 	rtnl_unlock();
10143 
10144 	if (err) {
10145 		link->dev = NULL;
10146 		bpf_link_cleanup(&link_primer);
10147 		trace_bpf_xdp_link_attach_failed(extack._msg);
10148 		goto out_put_dev;
10149 	}
10150 
10151 	fd = bpf_link_settle(&link_primer);
10152 	/* link itself doesn't hold dev's refcnt to not complicate shutdown */
10153 	dev_put(dev);
10154 	return fd;
10155 
10156 unlock:
10157 	rtnl_unlock();
10158 
10159 out_put_dev:
10160 	dev_put(dev);
10161 	return err;
10162 }
10163 
10164 /**
10165  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
10166  *	@dev: device
10167  *	@extack: netlink extended ack
10168  *	@fd: new program fd or negative value to clear
10169  *	@expected_fd: old program fd that userspace expects to replace or clear
10170  *	@flags: xdp-related flags
10171  *
10172  *	Set or clear a bpf program for a device
10173  */
10174 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
10175 		      int fd, int expected_fd, u32 flags)
10176 {
10177 	enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
10178 	struct bpf_prog *new_prog = NULL, *old_prog = NULL;
10179 	int err;
10180 
10181 	ASSERT_RTNL();
10182 
10183 	if (fd >= 0) {
10184 		new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
10185 						 mode != XDP_MODE_SKB);
10186 		if (IS_ERR(new_prog))
10187 			return PTR_ERR(new_prog);
10188 	}
10189 
10190 	if (expected_fd >= 0) {
10191 		old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
10192 						 mode != XDP_MODE_SKB);
10193 		if (IS_ERR(old_prog)) {
10194 			err = PTR_ERR(old_prog);
10195 			old_prog = NULL;
10196 			goto err_out;
10197 		}
10198 	}
10199 
10200 	err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
10201 
10202 err_out:
10203 	if (err && new_prog)
10204 		bpf_prog_put(new_prog);
10205 	if (old_prog)
10206 		bpf_prog_put(old_prog);
10207 	return err;
10208 }
10209 
10210 u32 dev_get_min_mp_channel_count(const struct net_device *dev)
10211 {
10212 	int i;
10213 
10214 	ASSERT_RTNL();
10215 
10216 	for (i = dev->real_num_rx_queues - 1; i >= 0; i--)
10217 		if (dev->_rx[i].mp_params.mp_priv)
10218 			/* The channel count is the idx plus 1. */
10219 			return i + 1;
10220 
10221 	return 0;
10222 }
10223 
10224 /**
10225  * dev_index_reserve() - allocate an ifindex in a namespace
10226  * @net: the applicable net namespace
10227  * @ifindex: requested ifindex, pass %0 to get one allocated
10228  *
10229  * Allocate a ifindex for a new device. Caller must either use the ifindex
10230  * to store the device (via list_netdevice()) or call dev_index_release()
10231  * to give the index up.
10232  *
10233  * Return: a suitable unique value for a new device interface number or -errno.
10234  */
10235 static int dev_index_reserve(struct net *net, u32 ifindex)
10236 {
10237 	int err;
10238 
10239 	if (ifindex > INT_MAX) {
10240 		DEBUG_NET_WARN_ON_ONCE(1);
10241 		return -EINVAL;
10242 	}
10243 
10244 	if (!ifindex)
10245 		err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL,
10246 				      xa_limit_31b, &net->ifindex, GFP_KERNEL);
10247 	else
10248 		err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL);
10249 	if (err < 0)
10250 		return err;
10251 
10252 	return ifindex;
10253 }
10254 
10255 static void dev_index_release(struct net *net, int ifindex)
10256 {
10257 	/* Expect only unused indexes, unlist_netdevice() removes the used */
10258 	WARN_ON(xa_erase(&net->dev_by_index, ifindex));
10259 }
10260 
10261 static bool from_cleanup_net(void)
10262 {
10263 #ifdef CONFIG_NET_NS
10264 	return current == cleanup_net_task;
10265 #else
10266 	return false;
10267 #endif
10268 }
10269 
10270 /* Delayed registration/unregisteration */
10271 LIST_HEAD(net_todo_list);
10272 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
10273 atomic_t dev_unreg_count = ATOMIC_INIT(0);
10274 
10275 static void net_set_todo(struct net_device *dev)
10276 {
10277 	list_add_tail(&dev->todo_list, &net_todo_list);
10278 }
10279 
10280 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
10281 	struct net_device *upper, netdev_features_t features)
10282 {
10283 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
10284 	netdev_features_t feature;
10285 	int feature_bit;
10286 
10287 	for_each_netdev_feature(upper_disables, feature_bit) {
10288 		feature = __NETIF_F_BIT(feature_bit);
10289 		if (!(upper->wanted_features & feature)
10290 		    && (features & feature)) {
10291 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
10292 				   &feature, upper->name);
10293 			features &= ~feature;
10294 		}
10295 	}
10296 
10297 	return features;
10298 }
10299 
10300 static void netdev_sync_lower_features(struct net_device *upper,
10301 	struct net_device *lower, netdev_features_t features)
10302 {
10303 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
10304 	netdev_features_t feature;
10305 	int feature_bit;
10306 
10307 	for_each_netdev_feature(upper_disables, feature_bit) {
10308 		feature = __NETIF_F_BIT(feature_bit);
10309 		if (!(features & feature) && (lower->features & feature)) {
10310 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
10311 				   &feature, lower->name);
10312 			lower->wanted_features &= ~feature;
10313 			__netdev_update_features(lower);
10314 
10315 			if (unlikely(lower->features & feature))
10316 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
10317 					    &feature, lower->name);
10318 			else
10319 				netdev_features_change(lower);
10320 		}
10321 	}
10322 }
10323 
10324 static bool netdev_has_ip_or_hw_csum(netdev_features_t features)
10325 {
10326 	netdev_features_t ip_csum_mask = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
10327 	bool ip_csum = (features & ip_csum_mask) == ip_csum_mask;
10328 	bool hw_csum = features & NETIF_F_HW_CSUM;
10329 
10330 	return ip_csum || hw_csum;
10331 }
10332 
10333 static netdev_features_t netdev_fix_features(struct net_device *dev,
10334 	netdev_features_t features)
10335 {
10336 	/* Fix illegal checksum combinations */
10337 	if ((features & NETIF_F_HW_CSUM) &&
10338 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
10339 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
10340 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
10341 	}
10342 
10343 	/* TSO requires that SG is present as well. */
10344 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
10345 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
10346 		features &= ~NETIF_F_ALL_TSO;
10347 	}
10348 
10349 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
10350 					!(features & NETIF_F_IP_CSUM)) {
10351 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
10352 		features &= ~NETIF_F_TSO;
10353 		features &= ~NETIF_F_TSO_ECN;
10354 	}
10355 
10356 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
10357 					 !(features & NETIF_F_IPV6_CSUM)) {
10358 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
10359 		features &= ~NETIF_F_TSO6;
10360 	}
10361 
10362 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
10363 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
10364 		features &= ~NETIF_F_TSO_MANGLEID;
10365 
10366 	/* TSO ECN requires that TSO is present as well. */
10367 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
10368 		features &= ~NETIF_F_TSO_ECN;
10369 
10370 	/* Software GSO depends on SG. */
10371 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
10372 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
10373 		features &= ~NETIF_F_GSO;
10374 	}
10375 
10376 	/* GSO partial features require GSO partial be set */
10377 	if ((features & dev->gso_partial_features) &&
10378 	    !(features & NETIF_F_GSO_PARTIAL)) {
10379 		netdev_dbg(dev,
10380 			   "Dropping partially supported GSO features since no GSO partial.\n");
10381 		features &= ~dev->gso_partial_features;
10382 	}
10383 
10384 	if (!(features & NETIF_F_RXCSUM)) {
10385 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
10386 		 * successfully merged by hardware must also have the
10387 		 * checksum verified by hardware.  If the user does not
10388 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
10389 		 */
10390 		if (features & NETIF_F_GRO_HW) {
10391 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
10392 			features &= ~NETIF_F_GRO_HW;
10393 		}
10394 	}
10395 
10396 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
10397 	if (features & NETIF_F_RXFCS) {
10398 		if (features & NETIF_F_LRO) {
10399 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
10400 			features &= ~NETIF_F_LRO;
10401 		}
10402 
10403 		if (features & NETIF_F_GRO_HW) {
10404 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
10405 			features &= ~NETIF_F_GRO_HW;
10406 		}
10407 	}
10408 
10409 	if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
10410 		netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
10411 		features &= ~NETIF_F_LRO;
10412 	}
10413 
10414 	if ((features & NETIF_F_HW_TLS_TX) && !netdev_has_ip_or_hw_csum(features)) {
10415 		netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
10416 		features &= ~NETIF_F_HW_TLS_TX;
10417 	}
10418 
10419 	if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
10420 		netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
10421 		features &= ~NETIF_F_HW_TLS_RX;
10422 	}
10423 
10424 	if ((features & NETIF_F_GSO_UDP_L4) && !netdev_has_ip_or_hw_csum(features)) {
10425 		netdev_dbg(dev, "Dropping USO feature since no CSUM feature.\n");
10426 		features &= ~NETIF_F_GSO_UDP_L4;
10427 	}
10428 
10429 	return features;
10430 }
10431 
10432 int __netdev_update_features(struct net_device *dev)
10433 {
10434 	struct net_device *upper, *lower;
10435 	netdev_features_t features;
10436 	struct list_head *iter;
10437 	int err = -1;
10438 
10439 	ASSERT_RTNL();
10440 
10441 	features = netdev_get_wanted_features(dev);
10442 
10443 	if (dev->netdev_ops->ndo_fix_features)
10444 		features = dev->netdev_ops->ndo_fix_features(dev, features);
10445 
10446 	/* driver might be less strict about feature dependencies */
10447 	features = netdev_fix_features(dev, features);
10448 
10449 	/* some features can't be enabled if they're off on an upper device */
10450 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
10451 		features = netdev_sync_upper_features(dev, upper, features);
10452 
10453 	if (dev->features == features)
10454 		goto sync_lower;
10455 
10456 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
10457 		&dev->features, &features);
10458 
10459 	if (dev->netdev_ops->ndo_set_features)
10460 		err = dev->netdev_ops->ndo_set_features(dev, features);
10461 	else
10462 		err = 0;
10463 
10464 	if (unlikely(err < 0)) {
10465 		netdev_err(dev,
10466 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
10467 			err, &features, &dev->features);
10468 		/* return non-0 since some features might have changed and
10469 		 * it's better to fire a spurious notification than miss it
10470 		 */
10471 		return -1;
10472 	}
10473 
10474 sync_lower:
10475 	/* some features must be disabled on lower devices when disabled
10476 	 * on an upper device (think: bonding master or bridge)
10477 	 */
10478 	netdev_for_each_lower_dev(dev, lower, iter)
10479 		netdev_sync_lower_features(dev, lower, features);
10480 
10481 	if (!err) {
10482 		netdev_features_t diff = features ^ dev->features;
10483 
10484 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
10485 			/* udp_tunnel_{get,drop}_rx_info both need
10486 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
10487 			 * device, or they won't do anything.
10488 			 * Thus we need to update dev->features
10489 			 * *before* calling udp_tunnel_get_rx_info,
10490 			 * but *after* calling udp_tunnel_drop_rx_info.
10491 			 */
10492 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
10493 				dev->features = features;
10494 				udp_tunnel_get_rx_info(dev);
10495 			} else {
10496 				udp_tunnel_drop_rx_info(dev);
10497 			}
10498 		}
10499 
10500 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
10501 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
10502 				dev->features = features;
10503 				err |= vlan_get_rx_ctag_filter_info(dev);
10504 			} else {
10505 				vlan_drop_rx_ctag_filter_info(dev);
10506 			}
10507 		}
10508 
10509 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
10510 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
10511 				dev->features = features;
10512 				err |= vlan_get_rx_stag_filter_info(dev);
10513 			} else {
10514 				vlan_drop_rx_stag_filter_info(dev);
10515 			}
10516 		}
10517 
10518 		dev->features = features;
10519 	}
10520 
10521 	return err < 0 ? 0 : 1;
10522 }
10523 
10524 /**
10525  *	netdev_update_features - recalculate device features
10526  *	@dev: the device to check
10527  *
10528  *	Recalculate dev->features set and send notifications if it
10529  *	has changed. Should be called after driver or hardware dependent
10530  *	conditions might have changed that influence the features.
10531  */
10532 void netdev_update_features(struct net_device *dev)
10533 {
10534 	if (__netdev_update_features(dev))
10535 		netdev_features_change(dev);
10536 }
10537 EXPORT_SYMBOL(netdev_update_features);
10538 
10539 /**
10540  *	netdev_change_features - recalculate device features
10541  *	@dev: the device to check
10542  *
10543  *	Recalculate dev->features set and send notifications even
10544  *	if they have not changed. Should be called instead of
10545  *	netdev_update_features() if also dev->vlan_features might
10546  *	have changed to allow the changes to be propagated to stacked
10547  *	VLAN devices.
10548  */
10549 void netdev_change_features(struct net_device *dev)
10550 {
10551 	__netdev_update_features(dev);
10552 	netdev_features_change(dev);
10553 }
10554 EXPORT_SYMBOL(netdev_change_features);
10555 
10556 /**
10557  *	netif_stacked_transfer_operstate -	transfer operstate
10558  *	@rootdev: the root or lower level device to transfer state from
10559  *	@dev: the device to transfer operstate to
10560  *
10561  *	Transfer operational state from root to device. This is normally
10562  *	called when a stacking relationship exists between the root
10563  *	device and the device(a leaf device).
10564  */
10565 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
10566 					struct net_device *dev)
10567 {
10568 	if (rootdev->operstate == IF_OPER_DORMANT)
10569 		netif_dormant_on(dev);
10570 	else
10571 		netif_dormant_off(dev);
10572 
10573 	if (rootdev->operstate == IF_OPER_TESTING)
10574 		netif_testing_on(dev);
10575 	else
10576 		netif_testing_off(dev);
10577 
10578 	if (netif_carrier_ok(rootdev))
10579 		netif_carrier_on(dev);
10580 	else
10581 		netif_carrier_off(dev);
10582 }
10583 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
10584 
10585 static int netif_alloc_rx_queues(struct net_device *dev)
10586 {
10587 	unsigned int i, count = dev->num_rx_queues;
10588 	struct netdev_rx_queue *rx;
10589 	size_t sz = count * sizeof(*rx);
10590 	int err = 0;
10591 
10592 	BUG_ON(count < 1);
10593 
10594 	rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10595 	if (!rx)
10596 		return -ENOMEM;
10597 
10598 	dev->_rx = rx;
10599 
10600 	for (i = 0; i < count; i++) {
10601 		rx[i].dev = dev;
10602 
10603 		/* XDP RX-queue setup */
10604 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10605 		if (err < 0)
10606 			goto err_rxq_info;
10607 	}
10608 	return 0;
10609 
10610 err_rxq_info:
10611 	/* Rollback successful reg's and free other resources */
10612 	while (i--)
10613 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10614 	kvfree(dev->_rx);
10615 	dev->_rx = NULL;
10616 	return err;
10617 }
10618 
10619 static void netif_free_rx_queues(struct net_device *dev)
10620 {
10621 	unsigned int i, count = dev->num_rx_queues;
10622 
10623 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10624 	if (!dev->_rx)
10625 		return;
10626 
10627 	for (i = 0; i < count; i++)
10628 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10629 
10630 	kvfree(dev->_rx);
10631 }
10632 
10633 static void netdev_init_one_queue(struct net_device *dev,
10634 				  struct netdev_queue *queue, void *_unused)
10635 {
10636 	/* Initialize queue lock */
10637 	spin_lock_init(&queue->_xmit_lock);
10638 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10639 	queue->xmit_lock_owner = -1;
10640 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10641 	queue->dev = dev;
10642 #ifdef CONFIG_BQL
10643 	dql_init(&queue->dql, HZ);
10644 #endif
10645 }
10646 
10647 static void netif_free_tx_queues(struct net_device *dev)
10648 {
10649 	kvfree(dev->_tx);
10650 }
10651 
10652 static int netif_alloc_netdev_queues(struct net_device *dev)
10653 {
10654 	unsigned int count = dev->num_tx_queues;
10655 	struct netdev_queue *tx;
10656 	size_t sz = count * sizeof(*tx);
10657 
10658 	if (count < 1 || count > 0xffff)
10659 		return -EINVAL;
10660 
10661 	tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10662 	if (!tx)
10663 		return -ENOMEM;
10664 
10665 	dev->_tx = tx;
10666 
10667 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10668 	spin_lock_init(&dev->tx_global_lock);
10669 
10670 	return 0;
10671 }
10672 
10673 void netif_tx_stop_all_queues(struct net_device *dev)
10674 {
10675 	unsigned int i;
10676 
10677 	for (i = 0; i < dev->num_tx_queues; i++) {
10678 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10679 
10680 		netif_tx_stop_queue(txq);
10681 	}
10682 }
10683 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10684 
10685 static int netdev_do_alloc_pcpu_stats(struct net_device *dev)
10686 {
10687 	void __percpu *v;
10688 
10689 	/* Drivers implementing ndo_get_peer_dev must support tstat
10690 	 * accounting, so that skb_do_redirect() can bump the dev's
10691 	 * RX stats upon network namespace switch.
10692 	 */
10693 	if (dev->netdev_ops->ndo_get_peer_dev &&
10694 	    dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS)
10695 		return -EOPNOTSUPP;
10696 
10697 	switch (dev->pcpu_stat_type) {
10698 	case NETDEV_PCPU_STAT_NONE:
10699 		return 0;
10700 	case NETDEV_PCPU_STAT_LSTATS:
10701 		v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats);
10702 		break;
10703 	case NETDEV_PCPU_STAT_TSTATS:
10704 		v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats);
10705 		break;
10706 	case NETDEV_PCPU_STAT_DSTATS:
10707 		v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
10708 		break;
10709 	default:
10710 		return -EINVAL;
10711 	}
10712 
10713 	return v ? 0 : -ENOMEM;
10714 }
10715 
10716 static void netdev_do_free_pcpu_stats(struct net_device *dev)
10717 {
10718 	switch (dev->pcpu_stat_type) {
10719 	case NETDEV_PCPU_STAT_NONE:
10720 		return;
10721 	case NETDEV_PCPU_STAT_LSTATS:
10722 		free_percpu(dev->lstats);
10723 		break;
10724 	case NETDEV_PCPU_STAT_TSTATS:
10725 		free_percpu(dev->tstats);
10726 		break;
10727 	case NETDEV_PCPU_STAT_DSTATS:
10728 		free_percpu(dev->dstats);
10729 		break;
10730 	}
10731 }
10732 
10733 static void netdev_free_phy_link_topology(struct net_device *dev)
10734 {
10735 	struct phy_link_topology *topo = dev->link_topo;
10736 
10737 	if (IS_ENABLED(CONFIG_PHYLIB) && topo) {
10738 		xa_destroy(&topo->phys);
10739 		kfree(topo);
10740 		dev->link_topo = NULL;
10741 	}
10742 }
10743 
10744 /**
10745  * register_netdevice() - register a network device
10746  * @dev: device to register
10747  *
10748  * Take a prepared network device structure and make it externally accessible.
10749  * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
10750  * Callers must hold the rtnl lock - you may want register_netdev()
10751  * instead of this.
10752  */
10753 int register_netdevice(struct net_device *dev)
10754 {
10755 	int ret;
10756 	struct net *net = dev_net(dev);
10757 
10758 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10759 		     NETDEV_FEATURE_COUNT);
10760 	BUG_ON(dev_boot_phase);
10761 	ASSERT_RTNL();
10762 
10763 	might_sleep();
10764 
10765 	/* When net_device's are persistent, this will be fatal. */
10766 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10767 	BUG_ON(!net);
10768 
10769 	ret = ethtool_check_ops(dev->ethtool_ops);
10770 	if (ret)
10771 		return ret;
10772 
10773 	/* rss ctx ID 0 is reserved for the default context, start from 1 */
10774 	xa_init_flags(&dev->ethtool->rss_ctx, XA_FLAGS_ALLOC1);
10775 	mutex_init(&dev->ethtool->rss_lock);
10776 
10777 	spin_lock_init(&dev->addr_list_lock);
10778 	netdev_set_addr_lockdep_class(dev);
10779 
10780 	ret = dev_get_valid_name(net, dev, dev->name);
10781 	if (ret < 0)
10782 		goto out;
10783 
10784 	ret = -ENOMEM;
10785 	dev->name_node = netdev_name_node_head_alloc(dev);
10786 	if (!dev->name_node)
10787 		goto out;
10788 
10789 	/* Init, if this function is available */
10790 	if (dev->netdev_ops->ndo_init) {
10791 		ret = dev->netdev_ops->ndo_init(dev);
10792 		if (ret) {
10793 			if (ret > 0)
10794 				ret = -EIO;
10795 			goto err_free_name;
10796 		}
10797 	}
10798 
10799 	if (((dev->hw_features | dev->features) &
10800 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
10801 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10802 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10803 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10804 		ret = -EINVAL;
10805 		goto err_uninit;
10806 	}
10807 
10808 	ret = netdev_do_alloc_pcpu_stats(dev);
10809 	if (ret)
10810 		goto err_uninit;
10811 
10812 	ret = dev_index_reserve(net, dev->ifindex);
10813 	if (ret < 0)
10814 		goto err_free_pcpu;
10815 	dev->ifindex = ret;
10816 
10817 	/* Transfer changeable features to wanted_features and enable
10818 	 * software offloads (GSO and GRO).
10819 	 */
10820 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10821 	dev->features |= NETIF_F_SOFT_FEATURES;
10822 
10823 	if (dev->udp_tunnel_nic_info) {
10824 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10825 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10826 	}
10827 
10828 	dev->wanted_features = dev->features & dev->hw_features;
10829 
10830 	if (!(dev->flags & IFF_LOOPBACK))
10831 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
10832 
10833 	/* If IPv4 TCP segmentation offload is supported we should also
10834 	 * allow the device to enable segmenting the frame with the option
10835 	 * of ignoring a static IP ID value.  This doesn't enable the
10836 	 * feature itself but allows the user to enable it later.
10837 	 */
10838 	if (dev->hw_features & NETIF_F_TSO)
10839 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
10840 	if (dev->vlan_features & NETIF_F_TSO)
10841 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10842 	if (dev->mpls_features & NETIF_F_TSO)
10843 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10844 	if (dev->hw_enc_features & NETIF_F_TSO)
10845 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10846 
10847 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10848 	 */
10849 	dev->vlan_features |= NETIF_F_HIGHDMA;
10850 
10851 	/* Make NETIF_F_SG inheritable to tunnel devices.
10852 	 */
10853 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10854 
10855 	/* Make NETIF_F_SG inheritable to MPLS.
10856 	 */
10857 	dev->mpls_features |= NETIF_F_SG;
10858 
10859 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10860 	ret = notifier_to_errno(ret);
10861 	if (ret)
10862 		goto err_ifindex_release;
10863 
10864 	ret = netdev_register_kobject(dev);
10865 
10866 	netdev_lock(dev);
10867 	WRITE_ONCE(dev->reg_state, ret ? NETREG_UNREGISTERED : NETREG_REGISTERED);
10868 	netdev_unlock(dev);
10869 
10870 	if (ret)
10871 		goto err_uninit_notify;
10872 
10873 	__netdev_update_features(dev);
10874 
10875 	/*
10876 	 *	Default initial state at registry is that the
10877 	 *	device is present.
10878 	 */
10879 
10880 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10881 
10882 	linkwatch_init_dev(dev);
10883 
10884 	dev_init_scheduler(dev);
10885 
10886 	netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
10887 	list_netdevice(dev);
10888 
10889 	add_device_randomness(dev->dev_addr, dev->addr_len);
10890 
10891 	/* If the device has permanent device address, driver should
10892 	 * set dev_addr and also addr_assign_type should be set to
10893 	 * NET_ADDR_PERM (default value).
10894 	 */
10895 	if (dev->addr_assign_type == NET_ADDR_PERM)
10896 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10897 
10898 	/* Notify protocols, that a new device appeared. */
10899 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10900 	ret = notifier_to_errno(ret);
10901 	if (ret) {
10902 		/* Expect explicit free_netdev() on failure */
10903 		dev->needs_free_netdev = false;
10904 		unregister_netdevice_queue(dev, NULL);
10905 		goto out;
10906 	}
10907 	/*
10908 	 *	Prevent userspace races by waiting until the network
10909 	 *	device is fully setup before sending notifications.
10910 	 */
10911 	if (!dev->rtnl_link_ops ||
10912 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10913 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
10914 
10915 out:
10916 	return ret;
10917 
10918 err_uninit_notify:
10919 	call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10920 err_ifindex_release:
10921 	dev_index_release(net, dev->ifindex);
10922 err_free_pcpu:
10923 	netdev_do_free_pcpu_stats(dev);
10924 err_uninit:
10925 	if (dev->netdev_ops->ndo_uninit)
10926 		dev->netdev_ops->ndo_uninit(dev);
10927 	if (dev->priv_destructor)
10928 		dev->priv_destructor(dev);
10929 err_free_name:
10930 	netdev_name_node_free(dev->name_node);
10931 	goto out;
10932 }
10933 EXPORT_SYMBOL(register_netdevice);
10934 
10935 /* Initialize the core of a dummy net device.
10936  * The setup steps dummy netdevs need which normal netdevs get by going
10937  * through register_netdevice().
10938  */
10939 static void init_dummy_netdev(struct net_device *dev)
10940 {
10941 	/* make sure we BUG if trying to hit standard
10942 	 * register/unregister code path
10943 	 */
10944 	dev->reg_state = NETREG_DUMMY;
10945 
10946 	/* a dummy interface is started by default */
10947 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10948 	set_bit(__LINK_STATE_START, &dev->state);
10949 
10950 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
10951 	 * because users of this 'device' dont need to change
10952 	 * its refcount.
10953 	 */
10954 }
10955 
10956 /**
10957  *	register_netdev	- register a network device
10958  *	@dev: device to register
10959  *
10960  *	Take a completed network device structure and add it to the kernel
10961  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10962  *	chain. 0 is returned on success. A negative errno code is returned
10963  *	on a failure to set up the device, or if the name is a duplicate.
10964  *
10965  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
10966  *	and expands the device name if you passed a format string to
10967  *	alloc_netdev.
10968  */
10969 int register_netdev(struct net_device *dev)
10970 {
10971 	struct net *net = dev_net(dev);
10972 	int err;
10973 
10974 	if (rtnl_net_lock_killable(net))
10975 		return -EINTR;
10976 
10977 	err = register_netdevice(dev);
10978 
10979 	rtnl_net_unlock(net);
10980 
10981 	return err;
10982 }
10983 EXPORT_SYMBOL(register_netdev);
10984 
10985 int netdev_refcnt_read(const struct net_device *dev)
10986 {
10987 #ifdef CONFIG_PCPU_DEV_REFCNT
10988 	int i, refcnt = 0;
10989 
10990 	for_each_possible_cpu(i)
10991 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10992 	return refcnt;
10993 #else
10994 	return refcount_read(&dev->dev_refcnt);
10995 #endif
10996 }
10997 EXPORT_SYMBOL(netdev_refcnt_read);
10998 
10999 int netdev_unregister_timeout_secs __read_mostly = 10;
11000 
11001 #define WAIT_REFS_MIN_MSECS 1
11002 #define WAIT_REFS_MAX_MSECS 250
11003 /**
11004  * netdev_wait_allrefs_any - wait until all references are gone.
11005  * @list: list of net_devices to wait on
11006  *
11007  * This is called when unregistering network devices.
11008  *
11009  * Any protocol or device that holds a reference should register
11010  * for netdevice notification, and cleanup and put back the
11011  * reference if they receive an UNREGISTER event.
11012  * We can get stuck here if buggy protocols don't correctly
11013  * call dev_put.
11014  */
11015 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
11016 {
11017 	unsigned long rebroadcast_time, warning_time;
11018 	struct net_device *dev;
11019 	int wait = 0;
11020 
11021 	rebroadcast_time = warning_time = jiffies;
11022 
11023 	list_for_each_entry(dev, list, todo_list)
11024 		if (netdev_refcnt_read(dev) == 1)
11025 			return dev;
11026 
11027 	while (true) {
11028 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
11029 			rtnl_lock();
11030 
11031 			/* Rebroadcast unregister notification */
11032 			list_for_each_entry(dev, list, todo_list)
11033 				call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11034 
11035 			__rtnl_unlock();
11036 			rcu_barrier();
11037 			rtnl_lock();
11038 
11039 			list_for_each_entry(dev, list, todo_list)
11040 				if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
11041 					     &dev->state)) {
11042 					/* We must not have linkwatch events
11043 					 * pending on unregister. If this
11044 					 * happens, we simply run the queue
11045 					 * unscheduled, resulting in a noop
11046 					 * for this device.
11047 					 */
11048 					linkwatch_run_queue();
11049 					break;
11050 				}
11051 
11052 			__rtnl_unlock();
11053 
11054 			rebroadcast_time = jiffies;
11055 		}
11056 
11057 		rcu_barrier();
11058 
11059 		if (!wait) {
11060 			wait = WAIT_REFS_MIN_MSECS;
11061 		} else {
11062 			msleep(wait);
11063 			wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
11064 		}
11065 
11066 		list_for_each_entry(dev, list, todo_list)
11067 			if (netdev_refcnt_read(dev) == 1)
11068 				return dev;
11069 
11070 		if (time_after(jiffies, warning_time +
11071 			       READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
11072 			list_for_each_entry(dev, list, todo_list) {
11073 				pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
11074 					 dev->name, netdev_refcnt_read(dev));
11075 				ref_tracker_dir_print(&dev->refcnt_tracker, 10);
11076 			}
11077 
11078 			warning_time = jiffies;
11079 		}
11080 	}
11081 }
11082 
11083 /* The sequence is:
11084  *
11085  *	rtnl_lock();
11086  *	...
11087  *	register_netdevice(x1);
11088  *	register_netdevice(x2);
11089  *	...
11090  *	unregister_netdevice(y1);
11091  *	unregister_netdevice(y2);
11092  *      ...
11093  *	rtnl_unlock();
11094  *	free_netdev(y1);
11095  *	free_netdev(y2);
11096  *
11097  * We are invoked by rtnl_unlock().
11098  * This allows us to deal with problems:
11099  * 1) We can delete sysfs objects which invoke hotplug
11100  *    without deadlocking with linkwatch via keventd.
11101  * 2) Since we run with the RTNL semaphore not held, we can sleep
11102  *    safely in order to wait for the netdev refcnt to drop to zero.
11103  *
11104  * We must not return until all unregister events added during
11105  * the interval the lock was held have been completed.
11106  */
11107 void netdev_run_todo(void)
11108 {
11109 	struct net_device *dev, *tmp;
11110 	struct list_head list;
11111 	int cnt;
11112 #ifdef CONFIG_LOCKDEP
11113 	struct list_head unlink_list;
11114 
11115 	list_replace_init(&net_unlink_list, &unlink_list);
11116 
11117 	while (!list_empty(&unlink_list)) {
11118 		struct net_device *dev = list_first_entry(&unlink_list,
11119 							  struct net_device,
11120 							  unlink_list);
11121 		list_del_init(&dev->unlink_list);
11122 		dev->nested_level = dev->lower_level - 1;
11123 	}
11124 #endif
11125 
11126 	/* Snapshot list, allow later requests */
11127 	list_replace_init(&net_todo_list, &list);
11128 
11129 	__rtnl_unlock();
11130 
11131 	/* Wait for rcu callbacks to finish before next phase */
11132 	if (!list_empty(&list))
11133 		rcu_barrier();
11134 
11135 	list_for_each_entry_safe(dev, tmp, &list, todo_list) {
11136 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
11137 			netdev_WARN(dev, "run_todo but not unregistering\n");
11138 			list_del(&dev->todo_list);
11139 			continue;
11140 		}
11141 
11142 		netdev_lock(dev);
11143 		WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERED);
11144 		netdev_unlock(dev);
11145 		linkwatch_sync_dev(dev);
11146 	}
11147 
11148 	cnt = 0;
11149 	while (!list_empty(&list)) {
11150 		dev = netdev_wait_allrefs_any(&list);
11151 		list_del(&dev->todo_list);
11152 
11153 		/* paranoia */
11154 		BUG_ON(netdev_refcnt_read(dev) != 1);
11155 		BUG_ON(!list_empty(&dev->ptype_all));
11156 		BUG_ON(!list_empty(&dev->ptype_specific));
11157 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
11158 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
11159 
11160 		netdev_do_free_pcpu_stats(dev);
11161 		if (dev->priv_destructor)
11162 			dev->priv_destructor(dev);
11163 		if (dev->needs_free_netdev)
11164 			free_netdev(dev);
11165 
11166 		cnt++;
11167 
11168 		/* Free network device */
11169 		kobject_put(&dev->dev.kobj);
11170 	}
11171 	if (cnt && atomic_sub_and_test(cnt, &dev_unreg_count))
11172 		wake_up(&netdev_unregistering_wq);
11173 }
11174 
11175 /* Collate per-cpu network dstats statistics
11176  *
11177  * Read per-cpu network statistics from dev->dstats and populate the related
11178  * fields in @s.
11179  */
11180 static void dev_fetch_dstats(struct rtnl_link_stats64 *s,
11181 			     const struct pcpu_dstats __percpu *dstats)
11182 {
11183 	int cpu;
11184 
11185 	for_each_possible_cpu(cpu) {
11186 		u64 rx_packets, rx_bytes, rx_drops;
11187 		u64 tx_packets, tx_bytes, tx_drops;
11188 		const struct pcpu_dstats *stats;
11189 		unsigned int start;
11190 
11191 		stats = per_cpu_ptr(dstats, cpu);
11192 		do {
11193 			start = u64_stats_fetch_begin(&stats->syncp);
11194 			rx_packets = u64_stats_read(&stats->rx_packets);
11195 			rx_bytes   = u64_stats_read(&stats->rx_bytes);
11196 			rx_drops   = u64_stats_read(&stats->rx_drops);
11197 			tx_packets = u64_stats_read(&stats->tx_packets);
11198 			tx_bytes   = u64_stats_read(&stats->tx_bytes);
11199 			tx_drops   = u64_stats_read(&stats->tx_drops);
11200 		} while (u64_stats_fetch_retry(&stats->syncp, start));
11201 
11202 		s->rx_packets += rx_packets;
11203 		s->rx_bytes   += rx_bytes;
11204 		s->rx_dropped += rx_drops;
11205 		s->tx_packets += tx_packets;
11206 		s->tx_bytes   += tx_bytes;
11207 		s->tx_dropped += tx_drops;
11208 	}
11209 }
11210 
11211 /* ndo_get_stats64 implementation for dtstats-based accounting.
11212  *
11213  * Populate @s from dev->stats and dev->dstats. This is used internally by the
11214  * core for NETDEV_PCPU_STAT_DSTAT-type stats collection.
11215  */
11216 static void dev_get_dstats64(const struct net_device *dev,
11217 			     struct rtnl_link_stats64 *s)
11218 {
11219 	netdev_stats_to_stats64(s, &dev->stats);
11220 	dev_fetch_dstats(s, dev->dstats);
11221 }
11222 
11223 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
11224  * all the same fields in the same order as net_device_stats, with only
11225  * the type differing, but rtnl_link_stats64 may have additional fields
11226  * at the end for newer counters.
11227  */
11228 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
11229 			     const struct net_device_stats *netdev_stats)
11230 {
11231 	size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
11232 	const atomic_long_t *src = (atomic_long_t *)netdev_stats;
11233 	u64 *dst = (u64 *)stats64;
11234 
11235 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
11236 	for (i = 0; i < n; i++)
11237 		dst[i] = (unsigned long)atomic_long_read(&src[i]);
11238 	/* zero out counters that only exist in rtnl_link_stats64 */
11239 	memset((char *)stats64 + n * sizeof(u64), 0,
11240 	       sizeof(*stats64) - n * sizeof(u64));
11241 }
11242 EXPORT_SYMBOL(netdev_stats_to_stats64);
11243 
11244 static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc(
11245 		struct net_device *dev)
11246 {
11247 	struct net_device_core_stats __percpu *p;
11248 
11249 	p = alloc_percpu_gfp(struct net_device_core_stats,
11250 			     GFP_ATOMIC | __GFP_NOWARN);
11251 
11252 	if (p && cmpxchg(&dev->core_stats, NULL, p))
11253 		free_percpu(p);
11254 
11255 	/* This READ_ONCE() pairs with the cmpxchg() above */
11256 	return READ_ONCE(dev->core_stats);
11257 }
11258 
11259 noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset)
11260 {
11261 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
11262 	struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
11263 	unsigned long __percpu *field;
11264 
11265 	if (unlikely(!p)) {
11266 		p = netdev_core_stats_alloc(dev);
11267 		if (!p)
11268 			return;
11269 	}
11270 
11271 	field = (unsigned long __percpu *)((void __percpu *)p + offset);
11272 	this_cpu_inc(*field);
11273 }
11274 EXPORT_SYMBOL_GPL(netdev_core_stats_inc);
11275 
11276 /**
11277  *	dev_get_stats	- get network device statistics
11278  *	@dev: device to get statistics from
11279  *	@storage: place to store stats
11280  *
11281  *	Get network statistics from device. Return @storage.
11282  *	The device driver may provide its own method by setting
11283  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
11284  *	otherwise the internal statistics structure is used.
11285  */
11286 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
11287 					struct rtnl_link_stats64 *storage)
11288 {
11289 	const struct net_device_ops *ops = dev->netdev_ops;
11290 	const struct net_device_core_stats __percpu *p;
11291 
11292 	if (ops->ndo_get_stats64) {
11293 		memset(storage, 0, sizeof(*storage));
11294 		ops->ndo_get_stats64(dev, storage);
11295 	} else if (ops->ndo_get_stats) {
11296 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
11297 	} else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_TSTATS) {
11298 		dev_get_tstats64(dev, storage);
11299 	} else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_DSTATS) {
11300 		dev_get_dstats64(dev, storage);
11301 	} else {
11302 		netdev_stats_to_stats64(storage, &dev->stats);
11303 	}
11304 
11305 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
11306 	p = READ_ONCE(dev->core_stats);
11307 	if (p) {
11308 		const struct net_device_core_stats *core_stats;
11309 		int i;
11310 
11311 		for_each_possible_cpu(i) {
11312 			core_stats = per_cpu_ptr(p, i);
11313 			storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
11314 			storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
11315 			storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
11316 			storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
11317 		}
11318 	}
11319 	return storage;
11320 }
11321 EXPORT_SYMBOL(dev_get_stats);
11322 
11323 /**
11324  *	dev_fetch_sw_netstats - get per-cpu network device statistics
11325  *	@s: place to store stats
11326  *	@netstats: per-cpu network stats to read from
11327  *
11328  *	Read per-cpu network statistics and populate the related fields in @s.
11329  */
11330 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
11331 			   const struct pcpu_sw_netstats __percpu *netstats)
11332 {
11333 	int cpu;
11334 
11335 	for_each_possible_cpu(cpu) {
11336 		u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
11337 		const struct pcpu_sw_netstats *stats;
11338 		unsigned int start;
11339 
11340 		stats = per_cpu_ptr(netstats, cpu);
11341 		do {
11342 			start = u64_stats_fetch_begin(&stats->syncp);
11343 			rx_packets = u64_stats_read(&stats->rx_packets);
11344 			rx_bytes   = u64_stats_read(&stats->rx_bytes);
11345 			tx_packets = u64_stats_read(&stats->tx_packets);
11346 			tx_bytes   = u64_stats_read(&stats->tx_bytes);
11347 		} while (u64_stats_fetch_retry(&stats->syncp, start));
11348 
11349 		s->rx_packets += rx_packets;
11350 		s->rx_bytes   += rx_bytes;
11351 		s->tx_packets += tx_packets;
11352 		s->tx_bytes   += tx_bytes;
11353 	}
11354 }
11355 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
11356 
11357 /**
11358  *	dev_get_tstats64 - ndo_get_stats64 implementation
11359  *	@dev: device to get statistics from
11360  *	@s: place to store stats
11361  *
11362  *	Populate @s from dev->stats and dev->tstats. Can be used as
11363  *	ndo_get_stats64() callback.
11364  */
11365 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
11366 {
11367 	netdev_stats_to_stats64(s, &dev->stats);
11368 	dev_fetch_sw_netstats(s, dev->tstats);
11369 }
11370 EXPORT_SYMBOL_GPL(dev_get_tstats64);
11371 
11372 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
11373 {
11374 	struct netdev_queue *queue = dev_ingress_queue(dev);
11375 
11376 #ifdef CONFIG_NET_CLS_ACT
11377 	if (queue)
11378 		return queue;
11379 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
11380 	if (!queue)
11381 		return NULL;
11382 	netdev_init_one_queue(dev, queue, NULL);
11383 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
11384 	RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
11385 	rcu_assign_pointer(dev->ingress_queue, queue);
11386 #endif
11387 	return queue;
11388 }
11389 
11390 static const struct ethtool_ops default_ethtool_ops;
11391 
11392 void netdev_set_default_ethtool_ops(struct net_device *dev,
11393 				    const struct ethtool_ops *ops)
11394 {
11395 	if (dev->ethtool_ops == &default_ethtool_ops)
11396 		dev->ethtool_ops = ops;
11397 }
11398 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
11399 
11400 /**
11401  * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
11402  * @dev: netdev to enable the IRQ coalescing on
11403  *
11404  * Sets a conservative default for SW IRQ coalescing. Users can use
11405  * sysfs attributes to override the default values.
11406  */
11407 void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
11408 {
11409 	WARN_ON(dev->reg_state == NETREG_REGISTERED);
11410 
11411 	if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
11412 		netdev_set_gro_flush_timeout(dev, 20000);
11413 		netdev_set_defer_hard_irqs(dev, 1);
11414 	}
11415 }
11416 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
11417 
11418 /**
11419  * alloc_netdev_mqs - allocate network device
11420  * @sizeof_priv: size of private data to allocate space for
11421  * @name: device name format string
11422  * @name_assign_type: origin of device name
11423  * @setup: callback to initialize device
11424  * @txqs: the number of TX subqueues to allocate
11425  * @rxqs: the number of RX subqueues to allocate
11426  *
11427  * Allocates a struct net_device with private data area for driver use
11428  * and performs basic initialization.  Also allocates subqueue structs
11429  * for each queue on the device.
11430  */
11431 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
11432 		unsigned char name_assign_type,
11433 		void (*setup)(struct net_device *),
11434 		unsigned int txqs, unsigned int rxqs)
11435 {
11436 	struct net_device *dev;
11437 	size_t napi_config_sz;
11438 	unsigned int maxqs;
11439 
11440 	BUG_ON(strlen(name) >= sizeof(dev->name));
11441 
11442 	if (txqs < 1) {
11443 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
11444 		return NULL;
11445 	}
11446 
11447 	if (rxqs < 1) {
11448 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
11449 		return NULL;
11450 	}
11451 
11452 	maxqs = max(txqs, rxqs);
11453 
11454 	dev = kvzalloc(struct_size(dev, priv, sizeof_priv),
11455 		       GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
11456 	if (!dev)
11457 		return NULL;
11458 
11459 	dev->priv_len = sizeof_priv;
11460 
11461 	ref_tracker_dir_init(&dev->refcnt_tracker, 128, name);
11462 #ifdef CONFIG_PCPU_DEV_REFCNT
11463 	dev->pcpu_refcnt = alloc_percpu(int);
11464 	if (!dev->pcpu_refcnt)
11465 		goto free_dev;
11466 	__dev_hold(dev);
11467 #else
11468 	refcount_set(&dev->dev_refcnt, 1);
11469 #endif
11470 
11471 	if (dev_addr_init(dev))
11472 		goto free_pcpu;
11473 
11474 	dev_mc_init(dev);
11475 	dev_uc_init(dev);
11476 
11477 	dev_net_set(dev, &init_net);
11478 
11479 	dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
11480 	dev->xdp_zc_max_segs = 1;
11481 	dev->gso_max_segs = GSO_MAX_SEGS;
11482 	dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
11483 	dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
11484 	dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
11485 	dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
11486 	dev->tso_max_segs = TSO_MAX_SEGS;
11487 	dev->upper_level = 1;
11488 	dev->lower_level = 1;
11489 #ifdef CONFIG_LOCKDEP
11490 	dev->nested_level = 0;
11491 	INIT_LIST_HEAD(&dev->unlink_list);
11492 #endif
11493 
11494 	INIT_LIST_HEAD(&dev->napi_list);
11495 	INIT_LIST_HEAD(&dev->unreg_list);
11496 	INIT_LIST_HEAD(&dev->close_list);
11497 	INIT_LIST_HEAD(&dev->link_watch_list);
11498 	INIT_LIST_HEAD(&dev->adj_list.upper);
11499 	INIT_LIST_HEAD(&dev->adj_list.lower);
11500 	INIT_LIST_HEAD(&dev->ptype_all);
11501 	INIT_LIST_HEAD(&dev->ptype_specific);
11502 	INIT_LIST_HEAD(&dev->net_notifier_list);
11503 #ifdef CONFIG_NET_SCHED
11504 	hash_init(dev->qdisc_hash);
11505 #endif
11506 
11507 	mutex_init(&dev->lock);
11508 
11509 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
11510 	setup(dev);
11511 
11512 	if (!dev->tx_queue_len) {
11513 		dev->priv_flags |= IFF_NO_QUEUE;
11514 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
11515 	}
11516 
11517 	dev->num_tx_queues = txqs;
11518 	dev->real_num_tx_queues = txqs;
11519 	if (netif_alloc_netdev_queues(dev))
11520 		goto free_all;
11521 
11522 	dev->num_rx_queues = rxqs;
11523 	dev->real_num_rx_queues = rxqs;
11524 	if (netif_alloc_rx_queues(dev))
11525 		goto free_all;
11526 	dev->ethtool = kzalloc(sizeof(*dev->ethtool), GFP_KERNEL_ACCOUNT);
11527 	if (!dev->ethtool)
11528 		goto free_all;
11529 
11530 	dev->cfg = kzalloc(sizeof(*dev->cfg), GFP_KERNEL_ACCOUNT);
11531 	if (!dev->cfg)
11532 		goto free_all;
11533 	dev->cfg_pending = dev->cfg;
11534 
11535 	napi_config_sz = array_size(maxqs, sizeof(*dev->napi_config));
11536 	dev->napi_config = kvzalloc(napi_config_sz, GFP_KERNEL_ACCOUNT);
11537 	if (!dev->napi_config)
11538 		goto free_all;
11539 
11540 	strscpy(dev->name, name);
11541 	dev->name_assign_type = name_assign_type;
11542 	dev->group = INIT_NETDEV_GROUP;
11543 	if (!dev->ethtool_ops)
11544 		dev->ethtool_ops = &default_ethtool_ops;
11545 
11546 	nf_hook_netdev_init(dev);
11547 
11548 	return dev;
11549 
11550 free_all:
11551 	free_netdev(dev);
11552 	return NULL;
11553 
11554 free_pcpu:
11555 #ifdef CONFIG_PCPU_DEV_REFCNT
11556 	free_percpu(dev->pcpu_refcnt);
11557 free_dev:
11558 #endif
11559 	kvfree(dev);
11560 	return NULL;
11561 }
11562 EXPORT_SYMBOL(alloc_netdev_mqs);
11563 
11564 static void netdev_napi_exit(struct net_device *dev)
11565 {
11566 	if (!list_empty(&dev->napi_list)) {
11567 		struct napi_struct *p, *n;
11568 
11569 		netdev_lock(dev);
11570 		list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
11571 			__netif_napi_del_locked(p);
11572 		netdev_unlock(dev);
11573 
11574 		synchronize_net();
11575 	}
11576 
11577 	kvfree(dev->napi_config);
11578 }
11579 
11580 /**
11581  * free_netdev - free network device
11582  * @dev: device
11583  *
11584  * This function does the last stage of destroying an allocated device
11585  * interface. The reference to the device object is released. If this
11586  * is the last reference then it will be freed.Must be called in process
11587  * context.
11588  */
11589 void free_netdev(struct net_device *dev)
11590 {
11591 	might_sleep();
11592 
11593 	/* When called immediately after register_netdevice() failed the unwind
11594 	 * handling may still be dismantling the device. Handle that case by
11595 	 * deferring the free.
11596 	 */
11597 	if (dev->reg_state == NETREG_UNREGISTERING) {
11598 		ASSERT_RTNL();
11599 		dev->needs_free_netdev = true;
11600 		return;
11601 	}
11602 
11603 	WARN_ON(dev->cfg != dev->cfg_pending);
11604 	kfree(dev->cfg);
11605 	kfree(dev->ethtool);
11606 	netif_free_tx_queues(dev);
11607 	netif_free_rx_queues(dev);
11608 
11609 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
11610 
11611 	/* Flush device addresses */
11612 	dev_addr_flush(dev);
11613 
11614 	netdev_napi_exit(dev);
11615 
11616 	ref_tracker_dir_exit(&dev->refcnt_tracker);
11617 #ifdef CONFIG_PCPU_DEV_REFCNT
11618 	free_percpu(dev->pcpu_refcnt);
11619 	dev->pcpu_refcnt = NULL;
11620 #endif
11621 	free_percpu(dev->core_stats);
11622 	dev->core_stats = NULL;
11623 	free_percpu(dev->xdp_bulkq);
11624 	dev->xdp_bulkq = NULL;
11625 
11626 	netdev_free_phy_link_topology(dev);
11627 
11628 	mutex_destroy(&dev->lock);
11629 
11630 	/*  Compatibility with error handling in drivers */
11631 	if (dev->reg_state == NETREG_UNINITIALIZED ||
11632 	    dev->reg_state == NETREG_DUMMY) {
11633 		kvfree(dev);
11634 		return;
11635 	}
11636 
11637 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
11638 	WRITE_ONCE(dev->reg_state, NETREG_RELEASED);
11639 
11640 	/* will free via device release */
11641 	put_device(&dev->dev);
11642 }
11643 EXPORT_SYMBOL(free_netdev);
11644 
11645 /**
11646  * alloc_netdev_dummy - Allocate and initialize a dummy net device.
11647  * @sizeof_priv: size of private data to allocate space for
11648  *
11649  * Return: the allocated net_device on success, NULL otherwise
11650  */
11651 struct net_device *alloc_netdev_dummy(int sizeof_priv)
11652 {
11653 	return alloc_netdev(sizeof_priv, "dummy#", NET_NAME_UNKNOWN,
11654 			    init_dummy_netdev);
11655 }
11656 EXPORT_SYMBOL_GPL(alloc_netdev_dummy);
11657 
11658 /**
11659  *	synchronize_net -  Synchronize with packet receive processing
11660  *
11661  *	Wait for packets currently being received to be done.
11662  *	Does not block later packets from starting.
11663  */
11664 void synchronize_net(void)
11665 {
11666 	might_sleep();
11667 	if (from_cleanup_net() || rtnl_is_locked())
11668 		synchronize_rcu_expedited();
11669 	else
11670 		synchronize_rcu();
11671 }
11672 EXPORT_SYMBOL(synchronize_net);
11673 
11674 static void netdev_rss_contexts_free(struct net_device *dev)
11675 {
11676 	struct ethtool_rxfh_context *ctx;
11677 	unsigned long context;
11678 
11679 	mutex_lock(&dev->ethtool->rss_lock);
11680 	xa_for_each(&dev->ethtool->rss_ctx, context, ctx) {
11681 		struct ethtool_rxfh_param rxfh;
11682 
11683 		rxfh.indir = ethtool_rxfh_context_indir(ctx);
11684 		rxfh.key = ethtool_rxfh_context_key(ctx);
11685 		rxfh.hfunc = ctx->hfunc;
11686 		rxfh.input_xfrm = ctx->input_xfrm;
11687 		rxfh.rss_context = context;
11688 		rxfh.rss_delete = true;
11689 
11690 		xa_erase(&dev->ethtool->rss_ctx, context);
11691 		if (dev->ethtool_ops->create_rxfh_context)
11692 			dev->ethtool_ops->remove_rxfh_context(dev, ctx,
11693 							      context, NULL);
11694 		else
11695 			dev->ethtool_ops->set_rxfh(dev, &rxfh, NULL);
11696 		kfree(ctx);
11697 	}
11698 	xa_destroy(&dev->ethtool->rss_ctx);
11699 	mutex_unlock(&dev->ethtool->rss_lock);
11700 }
11701 
11702 /**
11703  *	unregister_netdevice_queue - remove device from the kernel
11704  *	@dev: device
11705  *	@head: list
11706  *
11707  *	This function shuts down a device interface and removes it
11708  *	from the kernel tables.
11709  *	If head not NULL, device is queued to be unregistered later.
11710  *
11711  *	Callers must hold the rtnl semaphore.  You may want
11712  *	unregister_netdev() instead of this.
11713  */
11714 
11715 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
11716 {
11717 	ASSERT_RTNL();
11718 
11719 	if (head) {
11720 		list_move_tail(&dev->unreg_list, head);
11721 	} else {
11722 		LIST_HEAD(single);
11723 
11724 		list_add(&dev->unreg_list, &single);
11725 		unregister_netdevice_many(&single);
11726 	}
11727 }
11728 EXPORT_SYMBOL(unregister_netdevice_queue);
11729 
11730 void unregister_netdevice_many_notify(struct list_head *head,
11731 				      u32 portid, const struct nlmsghdr *nlh)
11732 {
11733 	struct net_device *dev, *tmp;
11734 	LIST_HEAD(close_head);
11735 	int cnt = 0;
11736 
11737 	BUG_ON(dev_boot_phase);
11738 	ASSERT_RTNL();
11739 
11740 	if (list_empty(head))
11741 		return;
11742 
11743 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
11744 		/* Some devices call without registering
11745 		 * for initialization unwind. Remove those
11746 		 * devices and proceed with the remaining.
11747 		 */
11748 		if (dev->reg_state == NETREG_UNINITIALIZED) {
11749 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
11750 				 dev->name, dev);
11751 
11752 			WARN_ON(1);
11753 			list_del(&dev->unreg_list);
11754 			continue;
11755 		}
11756 		dev->dismantle = true;
11757 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
11758 	}
11759 
11760 	/* If device is running, close it first. */
11761 	list_for_each_entry(dev, head, unreg_list)
11762 		list_add_tail(&dev->close_list, &close_head);
11763 	dev_close_many(&close_head, true);
11764 
11765 	list_for_each_entry(dev, head, unreg_list) {
11766 		/* And unlink it from device chain. */
11767 		unlist_netdevice(dev);
11768 		netdev_lock(dev);
11769 		WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERING);
11770 		netdev_unlock(dev);
11771 	}
11772 	flush_all_backlogs();
11773 
11774 	synchronize_net();
11775 
11776 	list_for_each_entry(dev, head, unreg_list) {
11777 		struct sk_buff *skb = NULL;
11778 
11779 		/* Shutdown queueing discipline. */
11780 		dev_shutdown(dev);
11781 		dev_tcx_uninstall(dev);
11782 		dev_xdp_uninstall(dev);
11783 		bpf_dev_bound_netdev_unregister(dev);
11784 		dev_dmabuf_uninstall(dev);
11785 
11786 		netdev_offload_xstats_disable_all(dev);
11787 
11788 		/* Notify protocols, that we are about to destroy
11789 		 * this device. They should clean all the things.
11790 		 */
11791 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11792 
11793 		if (!dev->rtnl_link_ops ||
11794 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11795 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11796 						     GFP_KERNEL, NULL, 0,
11797 						     portid, nlh);
11798 
11799 		/*
11800 		 *	Flush the unicast and multicast chains
11801 		 */
11802 		dev_uc_flush(dev);
11803 		dev_mc_flush(dev);
11804 
11805 		netdev_name_node_alt_flush(dev);
11806 		netdev_name_node_free(dev->name_node);
11807 
11808 		netdev_rss_contexts_free(dev);
11809 
11810 		call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
11811 
11812 		if (dev->netdev_ops->ndo_uninit)
11813 			dev->netdev_ops->ndo_uninit(dev);
11814 
11815 		mutex_destroy(&dev->ethtool->rss_lock);
11816 
11817 		net_shaper_flush_netdev(dev);
11818 
11819 		if (skb)
11820 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
11821 
11822 		/* Notifier chain MUST detach us all upper devices. */
11823 		WARN_ON(netdev_has_any_upper_dev(dev));
11824 		WARN_ON(netdev_has_any_lower_dev(dev));
11825 
11826 		/* Remove entries from kobject tree */
11827 		netdev_unregister_kobject(dev);
11828 #ifdef CONFIG_XPS
11829 		/* Remove XPS queueing entries */
11830 		netif_reset_xps_queues_gt(dev, 0);
11831 #endif
11832 	}
11833 
11834 	synchronize_net();
11835 
11836 	list_for_each_entry(dev, head, unreg_list) {
11837 		netdev_put(dev, &dev->dev_registered_tracker);
11838 		net_set_todo(dev);
11839 		cnt++;
11840 	}
11841 	atomic_add(cnt, &dev_unreg_count);
11842 
11843 	list_del(head);
11844 }
11845 
11846 /**
11847  *	unregister_netdevice_many - unregister many devices
11848  *	@head: list of devices
11849  *
11850  *  Note: As most callers use a stack allocated list_head,
11851  *  we force a list_del() to make sure stack won't be corrupted later.
11852  */
11853 void unregister_netdevice_many(struct list_head *head)
11854 {
11855 	unregister_netdevice_many_notify(head, 0, NULL);
11856 }
11857 EXPORT_SYMBOL(unregister_netdevice_many);
11858 
11859 /**
11860  *	unregister_netdev - remove device from the kernel
11861  *	@dev: device
11862  *
11863  *	This function shuts down a device interface and removes it
11864  *	from the kernel tables.
11865  *
11866  *	This is just a wrapper for unregister_netdevice that takes
11867  *	the rtnl semaphore.  In general you want to use this and not
11868  *	unregister_netdevice.
11869  */
11870 void unregister_netdev(struct net_device *dev)
11871 {
11872 	struct net *net = dev_net(dev);
11873 
11874 	rtnl_net_lock(net);
11875 	unregister_netdevice(dev);
11876 	rtnl_net_unlock(net);
11877 }
11878 EXPORT_SYMBOL(unregister_netdev);
11879 
11880 /**
11881  *	__dev_change_net_namespace - move device to different nethost namespace
11882  *	@dev: device
11883  *	@net: network namespace
11884  *	@pat: If not NULL name pattern to try if the current device name
11885  *	      is already taken in the destination network namespace.
11886  *	@new_ifindex: If not zero, specifies device index in the target
11887  *	              namespace.
11888  *
11889  *	This function shuts down a device interface and moves it
11890  *	to a new network namespace. On success 0 is returned, on
11891  *	a failure a netagive errno code is returned.
11892  *
11893  *	Callers must hold the rtnl semaphore.
11894  */
11895 
11896 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11897 			       const char *pat, int new_ifindex)
11898 {
11899 	struct netdev_name_node *name_node;
11900 	struct net *net_old = dev_net(dev);
11901 	char new_name[IFNAMSIZ] = {};
11902 	int err, new_nsid;
11903 
11904 	ASSERT_RTNL();
11905 
11906 	/* Don't allow namespace local devices to be moved. */
11907 	err = -EINVAL;
11908 	if (dev->netns_local)
11909 		goto out;
11910 
11911 	/* Ensure the device has been registered */
11912 	if (dev->reg_state != NETREG_REGISTERED)
11913 		goto out;
11914 
11915 	/* Get out if there is nothing todo */
11916 	err = 0;
11917 	if (net_eq(net_old, net))
11918 		goto out;
11919 
11920 	/* Pick the destination device name, and ensure
11921 	 * we can use it in the destination network namespace.
11922 	 */
11923 	err = -EEXIST;
11924 	if (netdev_name_in_use(net, dev->name)) {
11925 		/* We get here if we can't use the current device name */
11926 		if (!pat)
11927 			goto out;
11928 		err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST);
11929 		if (err < 0)
11930 			goto out;
11931 	}
11932 	/* Check that none of the altnames conflicts. */
11933 	err = -EEXIST;
11934 	netdev_for_each_altname(dev, name_node)
11935 		if (netdev_name_in_use(net, name_node->name))
11936 			goto out;
11937 
11938 	/* Check that new_ifindex isn't used yet. */
11939 	if (new_ifindex) {
11940 		err = dev_index_reserve(net, new_ifindex);
11941 		if (err < 0)
11942 			goto out;
11943 	} else {
11944 		/* If there is an ifindex conflict assign a new one */
11945 		err = dev_index_reserve(net, dev->ifindex);
11946 		if (err == -EBUSY)
11947 			err = dev_index_reserve(net, 0);
11948 		if (err < 0)
11949 			goto out;
11950 		new_ifindex = err;
11951 	}
11952 
11953 	/*
11954 	 * And now a mini version of register_netdevice unregister_netdevice.
11955 	 */
11956 
11957 	/* If device is running close it first. */
11958 	dev_close(dev);
11959 
11960 	/* And unlink it from device chain */
11961 	unlist_netdevice(dev);
11962 
11963 	synchronize_net();
11964 
11965 	/* Shutdown queueing discipline. */
11966 	dev_shutdown(dev);
11967 
11968 	/* Notify protocols, that we are about to destroy
11969 	 * this device. They should clean all the things.
11970 	 *
11971 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
11972 	 * This is wanted because this way 8021q and macvlan know
11973 	 * the device is just moving and can keep their slaves up.
11974 	 */
11975 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11976 	rcu_barrier();
11977 
11978 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11979 
11980 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11981 			    new_ifindex);
11982 
11983 	/*
11984 	 *	Flush the unicast and multicast chains
11985 	 */
11986 	dev_uc_flush(dev);
11987 	dev_mc_flush(dev);
11988 
11989 	/* Send a netdev-removed uevent to the old namespace */
11990 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11991 	netdev_adjacent_del_links(dev);
11992 
11993 	/* Move per-net netdevice notifiers that are following the netdevice */
11994 	move_netdevice_notifiers_dev_net(dev, net);
11995 
11996 	/* Actually switch the network namespace */
11997 	dev_net_set(dev, net);
11998 	dev->ifindex = new_ifindex;
11999 
12000 	if (new_name[0]) {
12001 		/* Rename the netdev to prepared name */
12002 		write_seqlock_bh(&netdev_rename_lock);
12003 		strscpy(dev->name, new_name, IFNAMSIZ);
12004 		write_sequnlock_bh(&netdev_rename_lock);
12005 	}
12006 
12007 	/* Fixup kobjects */
12008 	dev_set_uevent_suppress(&dev->dev, 1);
12009 	err = device_rename(&dev->dev, dev->name);
12010 	dev_set_uevent_suppress(&dev->dev, 0);
12011 	WARN_ON(err);
12012 
12013 	/* Send a netdev-add uevent to the new namespace */
12014 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
12015 	netdev_adjacent_add_links(dev);
12016 
12017 	/* Adapt owner in case owning user namespace of target network
12018 	 * namespace is different from the original one.
12019 	 */
12020 	err = netdev_change_owner(dev, net_old, net);
12021 	WARN_ON(err);
12022 
12023 	/* Add the device back in the hashes */
12024 	list_netdevice(dev);
12025 
12026 	/* Notify protocols, that a new device appeared. */
12027 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
12028 
12029 	/*
12030 	 *	Prevent userspace races by waiting until the network
12031 	 *	device is fully setup before sending notifications.
12032 	 */
12033 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
12034 
12035 	synchronize_net();
12036 	err = 0;
12037 out:
12038 	return err;
12039 }
12040 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
12041 
12042 static int dev_cpu_dead(unsigned int oldcpu)
12043 {
12044 	struct sk_buff **list_skb;
12045 	struct sk_buff *skb;
12046 	unsigned int cpu;
12047 	struct softnet_data *sd, *oldsd, *remsd = NULL;
12048 
12049 	local_irq_disable();
12050 	cpu = smp_processor_id();
12051 	sd = &per_cpu(softnet_data, cpu);
12052 	oldsd = &per_cpu(softnet_data, oldcpu);
12053 
12054 	/* Find end of our completion_queue. */
12055 	list_skb = &sd->completion_queue;
12056 	while (*list_skb)
12057 		list_skb = &(*list_skb)->next;
12058 	/* Append completion queue from offline CPU. */
12059 	*list_skb = oldsd->completion_queue;
12060 	oldsd->completion_queue = NULL;
12061 
12062 	/* Append output queue from offline CPU. */
12063 	if (oldsd->output_queue) {
12064 		*sd->output_queue_tailp = oldsd->output_queue;
12065 		sd->output_queue_tailp = oldsd->output_queue_tailp;
12066 		oldsd->output_queue = NULL;
12067 		oldsd->output_queue_tailp = &oldsd->output_queue;
12068 	}
12069 	/* Append NAPI poll list from offline CPU, with one exception :
12070 	 * process_backlog() must be called by cpu owning percpu backlog.
12071 	 * We properly handle process_queue & input_pkt_queue later.
12072 	 */
12073 	while (!list_empty(&oldsd->poll_list)) {
12074 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
12075 							    struct napi_struct,
12076 							    poll_list);
12077 
12078 		list_del_init(&napi->poll_list);
12079 		if (napi->poll == process_backlog)
12080 			napi->state &= NAPIF_STATE_THREADED;
12081 		else
12082 			____napi_schedule(sd, napi);
12083 	}
12084 
12085 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
12086 	local_irq_enable();
12087 
12088 	if (!use_backlog_threads()) {
12089 #ifdef CONFIG_RPS
12090 		remsd = oldsd->rps_ipi_list;
12091 		oldsd->rps_ipi_list = NULL;
12092 #endif
12093 		/* send out pending IPI's on offline CPU */
12094 		net_rps_send_ipi(remsd);
12095 	}
12096 
12097 	/* Process offline CPU's input_pkt_queue */
12098 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
12099 		netif_rx(skb);
12100 		rps_input_queue_head_incr(oldsd);
12101 	}
12102 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
12103 		netif_rx(skb);
12104 		rps_input_queue_head_incr(oldsd);
12105 	}
12106 
12107 	return 0;
12108 }
12109 
12110 /**
12111  *	netdev_increment_features - increment feature set by one
12112  *	@all: current feature set
12113  *	@one: new feature set
12114  *	@mask: mask feature set
12115  *
12116  *	Computes a new feature set after adding a device with feature set
12117  *	@one to the master device with current feature set @all.  Will not
12118  *	enable anything that is off in @mask. Returns the new feature set.
12119  */
12120 netdev_features_t netdev_increment_features(netdev_features_t all,
12121 	netdev_features_t one, netdev_features_t mask)
12122 {
12123 	if (mask & NETIF_F_HW_CSUM)
12124 		mask |= NETIF_F_CSUM_MASK;
12125 	mask |= NETIF_F_VLAN_CHALLENGED;
12126 
12127 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
12128 	all &= one | ~NETIF_F_ALL_FOR_ALL;
12129 
12130 	/* If one device supports hw checksumming, set for all. */
12131 	if (all & NETIF_F_HW_CSUM)
12132 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
12133 
12134 	return all;
12135 }
12136 EXPORT_SYMBOL(netdev_increment_features);
12137 
12138 static struct hlist_head * __net_init netdev_create_hash(void)
12139 {
12140 	int i;
12141 	struct hlist_head *hash;
12142 
12143 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
12144 	if (hash != NULL)
12145 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
12146 			INIT_HLIST_HEAD(&hash[i]);
12147 
12148 	return hash;
12149 }
12150 
12151 /* Initialize per network namespace state */
12152 static int __net_init netdev_init(struct net *net)
12153 {
12154 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
12155 		     8 * sizeof_field(struct napi_struct, gro_bitmask));
12156 
12157 	INIT_LIST_HEAD(&net->dev_base_head);
12158 
12159 	net->dev_name_head = netdev_create_hash();
12160 	if (net->dev_name_head == NULL)
12161 		goto err_name;
12162 
12163 	net->dev_index_head = netdev_create_hash();
12164 	if (net->dev_index_head == NULL)
12165 		goto err_idx;
12166 
12167 	xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1);
12168 
12169 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
12170 
12171 	return 0;
12172 
12173 err_idx:
12174 	kfree(net->dev_name_head);
12175 err_name:
12176 	return -ENOMEM;
12177 }
12178 
12179 /**
12180  *	netdev_drivername - network driver for the device
12181  *	@dev: network device
12182  *
12183  *	Determine network driver for device.
12184  */
12185 const char *netdev_drivername(const struct net_device *dev)
12186 {
12187 	const struct device_driver *driver;
12188 	const struct device *parent;
12189 	const char *empty = "";
12190 
12191 	parent = dev->dev.parent;
12192 	if (!parent)
12193 		return empty;
12194 
12195 	driver = parent->driver;
12196 	if (driver && driver->name)
12197 		return driver->name;
12198 	return empty;
12199 }
12200 
12201 static void __netdev_printk(const char *level, const struct net_device *dev,
12202 			    struct va_format *vaf)
12203 {
12204 	if (dev && dev->dev.parent) {
12205 		dev_printk_emit(level[1] - '0',
12206 				dev->dev.parent,
12207 				"%s %s %s%s: %pV",
12208 				dev_driver_string(dev->dev.parent),
12209 				dev_name(dev->dev.parent),
12210 				netdev_name(dev), netdev_reg_state(dev),
12211 				vaf);
12212 	} else if (dev) {
12213 		printk("%s%s%s: %pV",
12214 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
12215 	} else {
12216 		printk("%s(NULL net_device): %pV", level, vaf);
12217 	}
12218 }
12219 
12220 void netdev_printk(const char *level, const struct net_device *dev,
12221 		   const char *format, ...)
12222 {
12223 	struct va_format vaf;
12224 	va_list args;
12225 
12226 	va_start(args, format);
12227 
12228 	vaf.fmt = format;
12229 	vaf.va = &args;
12230 
12231 	__netdev_printk(level, dev, &vaf);
12232 
12233 	va_end(args);
12234 }
12235 EXPORT_SYMBOL(netdev_printk);
12236 
12237 #define define_netdev_printk_level(func, level)			\
12238 void func(const struct net_device *dev, const char *fmt, ...)	\
12239 {								\
12240 	struct va_format vaf;					\
12241 	va_list args;						\
12242 								\
12243 	va_start(args, fmt);					\
12244 								\
12245 	vaf.fmt = fmt;						\
12246 	vaf.va = &args;						\
12247 								\
12248 	__netdev_printk(level, dev, &vaf);			\
12249 								\
12250 	va_end(args);						\
12251 }								\
12252 EXPORT_SYMBOL(func);
12253 
12254 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
12255 define_netdev_printk_level(netdev_alert, KERN_ALERT);
12256 define_netdev_printk_level(netdev_crit, KERN_CRIT);
12257 define_netdev_printk_level(netdev_err, KERN_ERR);
12258 define_netdev_printk_level(netdev_warn, KERN_WARNING);
12259 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
12260 define_netdev_printk_level(netdev_info, KERN_INFO);
12261 
12262 static void __net_exit netdev_exit(struct net *net)
12263 {
12264 	kfree(net->dev_name_head);
12265 	kfree(net->dev_index_head);
12266 	xa_destroy(&net->dev_by_index);
12267 	if (net != &init_net)
12268 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
12269 }
12270 
12271 static struct pernet_operations __net_initdata netdev_net_ops = {
12272 	.init = netdev_init,
12273 	.exit = netdev_exit,
12274 };
12275 
12276 static void __net_exit default_device_exit_net(struct net *net)
12277 {
12278 	struct netdev_name_node *name_node, *tmp;
12279 	struct net_device *dev, *aux;
12280 	/*
12281 	 * Push all migratable network devices back to the
12282 	 * initial network namespace
12283 	 */
12284 	ASSERT_RTNL();
12285 	for_each_netdev_safe(net, dev, aux) {
12286 		int err;
12287 		char fb_name[IFNAMSIZ];
12288 
12289 		/* Ignore unmoveable devices (i.e. loopback) */
12290 		if (dev->netns_local)
12291 			continue;
12292 
12293 		/* Leave virtual devices for the generic cleanup */
12294 		if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
12295 			continue;
12296 
12297 		/* Push remaining network devices to init_net */
12298 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
12299 		if (netdev_name_in_use(&init_net, fb_name))
12300 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
12301 
12302 		netdev_for_each_altname_safe(dev, name_node, tmp)
12303 			if (netdev_name_in_use(&init_net, name_node->name))
12304 				__netdev_name_node_alt_destroy(name_node);
12305 
12306 		err = dev_change_net_namespace(dev, &init_net, fb_name);
12307 		if (err) {
12308 			pr_emerg("%s: failed to move %s to init_net: %d\n",
12309 				 __func__, dev->name, err);
12310 			BUG();
12311 		}
12312 	}
12313 }
12314 
12315 static void __net_exit default_device_exit_batch(struct list_head *net_list)
12316 {
12317 	/* At exit all network devices most be removed from a network
12318 	 * namespace.  Do this in the reverse order of registration.
12319 	 * Do this across as many network namespaces as possible to
12320 	 * improve batching efficiency.
12321 	 */
12322 	struct net_device *dev;
12323 	struct net *net;
12324 	LIST_HEAD(dev_kill_list);
12325 
12326 	rtnl_lock();
12327 	list_for_each_entry(net, net_list, exit_list) {
12328 		default_device_exit_net(net);
12329 		cond_resched();
12330 	}
12331 
12332 	list_for_each_entry(net, net_list, exit_list) {
12333 		for_each_netdev_reverse(net, dev) {
12334 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
12335 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
12336 			else
12337 				unregister_netdevice_queue(dev, &dev_kill_list);
12338 		}
12339 	}
12340 	unregister_netdevice_many(&dev_kill_list);
12341 	rtnl_unlock();
12342 }
12343 
12344 static struct pernet_operations __net_initdata default_device_ops = {
12345 	.exit_batch = default_device_exit_batch,
12346 };
12347 
12348 static void __init net_dev_struct_check(void)
12349 {
12350 	/* TX read-mostly hotpath */
12351 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, priv_flags_fast);
12352 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, netdev_ops);
12353 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, header_ops);
12354 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, _tx);
12355 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, real_num_tx_queues);
12356 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_size);
12357 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_ipv4_max_size);
12358 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_segs);
12359 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_partial_features);
12360 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, num_tc);
12361 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, mtu);
12362 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, needed_headroom);
12363 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tc_to_txq);
12364 #ifdef CONFIG_XPS
12365 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, xps_maps);
12366 #endif
12367 #ifdef CONFIG_NETFILTER_EGRESS
12368 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, nf_hooks_egress);
12369 #endif
12370 #ifdef CONFIG_NET_XGRESS
12371 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tcx_egress);
12372 #endif
12373 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_tx, 160);
12374 
12375 	/* TXRX read-mostly hotpath */
12376 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, lstats);
12377 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, state);
12378 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, flags);
12379 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, hard_header_len);
12380 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, features);
12381 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, ip6_ptr);
12382 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_txrx, 46);
12383 
12384 	/* RX read-mostly hotpath */
12385 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ptype_specific);
12386 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ifindex);
12387 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, real_num_rx_queues);
12388 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, _rx);
12389 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_max_size);
12390 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_ipv4_max_size);
12391 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler);
12392 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler_data);
12393 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, nd_net);
12394 #ifdef CONFIG_NETPOLL
12395 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, npinfo);
12396 #endif
12397 #ifdef CONFIG_NET_XGRESS
12398 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, tcx_ingress);
12399 #endif
12400 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_rx, 92);
12401 }
12402 
12403 /*
12404  *	Initialize the DEV module. At boot time this walks the device list and
12405  *	unhooks any devices that fail to initialise (normally hardware not
12406  *	present) and leaves us with a valid list of present and active devices.
12407  *
12408  */
12409 
12410 /* We allocate 256 pages for each CPU if PAGE_SHIFT is 12 */
12411 #define SYSTEM_PERCPU_PAGE_POOL_SIZE	((1 << 20) / PAGE_SIZE)
12412 
12413 static int net_page_pool_create(int cpuid)
12414 {
12415 #if IS_ENABLED(CONFIG_PAGE_POOL)
12416 	struct page_pool_params page_pool_params = {
12417 		.pool_size = SYSTEM_PERCPU_PAGE_POOL_SIZE,
12418 		.flags = PP_FLAG_SYSTEM_POOL,
12419 		.nid = cpu_to_mem(cpuid),
12420 	};
12421 	struct page_pool *pp_ptr;
12422 	int err;
12423 
12424 	pp_ptr = page_pool_create_percpu(&page_pool_params, cpuid);
12425 	if (IS_ERR(pp_ptr))
12426 		return -ENOMEM;
12427 
12428 	err = xdp_reg_page_pool(pp_ptr);
12429 	if (err) {
12430 		page_pool_destroy(pp_ptr);
12431 		return err;
12432 	}
12433 
12434 	per_cpu(system_page_pool, cpuid) = pp_ptr;
12435 #endif
12436 	return 0;
12437 }
12438 
12439 static int backlog_napi_should_run(unsigned int cpu)
12440 {
12441 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12442 	struct napi_struct *napi = &sd->backlog;
12443 
12444 	return test_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
12445 }
12446 
12447 static void run_backlog_napi(unsigned int cpu)
12448 {
12449 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12450 
12451 	napi_threaded_poll_loop(&sd->backlog);
12452 }
12453 
12454 static void backlog_napi_setup(unsigned int cpu)
12455 {
12456 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12457 	struct napi_struct *napi = &sd->backlog;
12458 
12459 	napi->thread = this_cpu_read(backlog_napi);
12460 	set_bit(NAPI_STATE_THREADED, &napi->state);
12461 }
12462 
12463 static struct smp_hotplug_thread backlog_threads = {
12464 	.store			= &backlog_napi,
12465 	.thread_should_run	= backlog_napi_should_run,
12466 	.thread_fn		= run_backlog_napi,
12467 	.thread_comm		= "backlog_napi/%u",
12468 	.setup			= backlog_napi_setup,
12469 };
12470 
12471 /*
12472  *       This is called single threaded during boot, so no need
12473  *       to take the rtnl semaphore.
12474  */
12475 static int __init net_dev_init(void)
12476 {
12477 	int i, rc = -ENOMEM;
12478 
12479 	BUG_ON(!dev_boot_phase);
12480 
12481 	net_dev_struct_check();
12482 
12483 	if (dev_proc_init())
12484 		goto out;
12485 
12486 	if (netdev_kobject_init())
12487 		goto out;
12488 
12489 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
12490 		INIT_LIST_HEAD(&ptype_base[i]);
12491 
12492 	if (register_pernet_subsys(&netdev_net_ops))
12493 		goto out;
12494 
12495 	/*
12496 	 *	Initialise the packet receive queues.
12497 	 */
12498 
12499 	flush_backlogs_fallback = flush_backlogs_alloc();
12500 	if (!flush_backlogs_fallback)
12501 		goto out;
12502 
12503 	for_each_possible_cpu(i) {
12504 		struct softnet_data *sd = &per_cpu(softnet_data, i);
12505 
12506 		skb_queue_head_init(&sd->input_pkt_queue);
12507 		skb_queue_head_init(&sd->process_queue);
12508 #ifdef CONFIG_XFRM_OFFLOAD
12509 		skb_queue_head_init(&sd->xfrm_backlog);
12510 #endif
12511 		INIT_LIST_HEAD(&sd->poll_list);
12512 		sd->output_queue_tailp = &sd->output_queue;
12513 #ifdef CONFIG_RPS
12514 		INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
12515 		sd->cpu = i;
12516 #endif
12517 		INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
12518 		spin_lock_init(&sd->defer_lock);
12519 
12520 		init_gro_hash(&sd->backlog);
12521 		sd->backlog.poll = process_backlog;
12522 		sd->backlog.weight = weight_p;
12523 		INIT_LIST_HEAD(&sd->backlog.poll_list);
12524 
12525 		if (net_page_pool_create(i))
12526 			goto out;
12527 	}
12528 	if (use_backlog_threads())
12529 		smpboot_register_percpu_thread(&backlog_threads);
12530 
12531 	dev_boot_phase = 0;
12532 
12533 	/* The loopback device is special if any other network devices
12534 	 * is present in a network namespace the loopback device must
12535 	 * be present. Since we now dynamically allocate and free the
12536 	 * loopback device ensure this invariant is maintained by
12537 	 * keeping the loopback device as the first device on the
12538 	 * list of network devices.  Ensuring the loopback devices
12539 	 * is the first device that appears and the last network device
12540 	 * that disappears.
12541 	 */
12542 	if (register_pernet_device(&loopback_net_ops))
12543 		goto out;
12544 
12545 	if (register_pernet_device(&default_device_ops))
12546 		goto out;
12547 
12548 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
12549 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
12550 
12551 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
12552 				       NULL, dev_cpu_dead);
12553 	WARN_ON(rc < 0);
12554 	rc = 0;
12555 
12556 	/* avoid static key IPIs to isolated CPUs */
12557 	if (housekeeping_enabled(HK_TYPE_MISC))
12558 		net_enable_timestamp();
12559 out:
12560 	if (rc < 0) {
12561 		for_each_possible_cpu(i) {
12562 			struct page_pool *pp_ptr;
12563 
12564 			pp_ptr = per_cpu(system_page_pool, i);
12565 			if (!pp_ptr)
12566 				continue;
12567 
12568 			xdp_unreg_page_pool(pp_ptr);
12569 			page_pool_destroy(pp_ptr);
12570 			per_cpu(system_page_pool, i) = NULL;
12571 		}
12572 	}
12573 
12574 	return rc;
12575 }
12576 
12577 subsys_initcall(net_dev_init);
12578