xref: /linux/net/core/dev.c (revision 6ca80638b90cec66547011ee1ef79e534589989a)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitmap.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <net/tcx.h>
111 #include <linux/highmem.h>
112 #include <linux/init.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/iw_handler.h>
118 #include <asm/current.h>
119 #include <linux/audit.h>
120 #include <linux/dmaengine.h>
121 #include <linux/err.h>
122 #include <linux/ctype.h>
123 #include <linux/if_arp.h>
124 #include <linux/if_vlan.h>
125 #include <linux/ip.h>
126 #include <net/ip.h>
127 #include <net/mpls.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <trace/events/net.h>
134 #include <trace/events/skb.h>
135 #include <trace/events/qdisc.h>
136 #include <trace/events/xdp.h>
137 #include <linux/inetdevice.h>
138 #include <linux/cpu_rmap.h>
139 #include <linux/static_key.h>
140 #include <linux/hashtable.h>
141 #include <linux/vmalloc.h>
142 #include <linux/if_macvlan.h>
143 #include <linux/errqueue.h>
144 #include <linux/hrtimer.h>
145 #include <linux/netfilter_netdev.h>
146 #include <linux/crash_dump.h>
147 #include <linux/sctp.h>
148 #include <net/udp_tunnel.h>
149 #include <linux/net_namespace.h>
150 #include <linux/indirect_call_wrapper.h>
151 #include <net/devlink.h>
152 #include <linux/pm_runtime.h>
153 #include <linux/prandom.h>
154 #include <linux/once_lite.h>
155 #include <net/netdev_rx_queue.h>
156 
157 #include "dev.h"
158 #include "net-sysfs.h"
159 
160 static DEFINE_SPINLOCK(ptype_lock);
161 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
162 struct list_head ptype_all __read_mostly;	/* Taps */
163 
164 static int netif_rx_internal(struct sk_buff *skb);
165 static int call_netdevice_notifiers_extack(unsigned long val,
166 					   struct net_device *dev,
167 					   struct netlink_ext_ack *extack);
168 static struct napi_struct *napi_by_id(unsigned int napi_id);
169 
170 /*
171  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
172  * semaphore.
173  *
174  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
175  *
176  * Writers must hold the rtnl semaphore while they loop through the
177  * dev_base_head list, and hold dev_base_lock for writing when they do the
178  * actual updates.  This allows pure readers to access the list even
179  * while a writer is preparing to update it.
180  *
181  * To put it another way, dev_base_lock is held for writing only to
182  * protect against pure readers; the rtnl semaphore provides the
183  * protection against other writers.
184  *
185  * See, for example usages, register_netdevice() and
186  * unregister_netdevice(), which must be called with the rtnl
187  * semaphore held.
188  */
189 DEFINE_RWLOCK(dev_base_lock);
190 EXPORT_SYMBOL(dev_base_lock);
191 
192 static DEFINE_MUTEX(ifalias_mutex);
193 
194 /* protects napi_hash addition/deletion and napi_gen_id */
195 static DEFINE_SPINLOCK(napi_hash_lock);
196 
197 static unsigned int napi_gen_id = NR_CPUS;
198 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
199 
200 static DECLARE_RWSEM(devnet_rename_sem);
201 
202 static inline void dev_base_seq_inc(struct net *net)
203 {
204 	while (++net->dev_base_seq == 0)
205 		;
206 }
207 
208 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
209 {
210 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
211 
212 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
213 }
214 
215 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
216 {
217 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
218 }
219 
220 static inline void rps_lock_irqsave(struct softnet_data *sd,
221 				    unsigned long *flags)
222 {
223 	if (IS_ENABLED(CONFIG_RPS))
224 		spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
225 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
226 		local_irq_save(*flags);
227 }
228 
229 static inline void rps_lock_irq_disable(struct softnet_data *sd)
230 {
231 	if (IS_ENABLED(CONFIG_RPS))
232 		spin_lock_irq(&sd->input_pkt_queue.lock);
233 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
234 		local_irq_disable();
235 }
236 
237 static inline void rps_unlock_irq_restore(struct softnet_data *sd,
238 					  unsigned long *flags)
239 {
240 	if (IS_ENABLED(CONFIG_RPS))
241 		spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
242 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
243 		local_irq_restore(*flags);
244 }
245 
246 static inline void rps_unlock_irq_enable(struct softnet_data *sd)
247 {
248 	if (IS_ENABLED(CONFIG_RPS))
249 		spin_unlock_irq(&sd->input_pkt_queue.lock);
250 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
251 		local_irq_enable();
252 }
253 
254 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
255 						       const char *name)
256 {
257 	struct netdev_name_node *name_node;
258 
259 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
260 	if (!name_node)
261 		return NULL;
262 	INIT_HLIST_NODE(&name_node->hlist);
263 	name_node->dev = dev;
264 	name_node->name = name;
265 	return name_node;
266 }
267 
268 static struct netdev_name_node *
269 netdev_name_node_head_alloc(struct net_device *dev)
270 {
271 	struct netdev_name_node *name_node;
272 
273 	name_node = netdev_name_node_alloc(dev, dev->name);
274 	if (!name_node)
275 		return NULL;
276 	INIT_LIST_HEAD(&name_node->list);
277 	return name_node;
278 }
279 
280 static void netdev_name_node_free(struct netdev_name_node *name_node)
281 {
282 	kfree(name_node);
283 }
284 
285 static void netdev_name_node_add(struct net *net,
286 				 struct netdev_name_node *name_node)
287 {
288 	hlist_add_head_rcu(&name_node->hlist,
289 			   dev_name_hash(net, name_node->name));
290 }
291 
292 static void netdev_name_node_del(struct netdev_name_node *name_node)
293 {
294 	hlist_del_rcu(&name_node->hlist);
295 }
296 
297 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
298 							const char *name)
299 {
300 	struct hlist_head *head = dev_name_hash(net, name);
301 	struct netdev_name_node *name_node;
302 
303 	hlist_for_each_entry(name_node, head, hlist)
304 		if (!strcmp(name_node->name, name))
305 			return name_node;
306 	return NULL;
307 }
308 
309 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
310 							    const char *name)
311 {
312 	struct hlist_head *head = dev_name_hash(net, name);
313 	struct netdev_name_node *name_node;
314 
315 	hlist_for_each_entry_rcu(name_node, head, hlist)
316 		if (!strcmp(name_node->name, name))
317 			return name_node;
318 	return NULL;
319 }
320 
321 bool netdev_name_in_use(struct net *net, const char *name)
322 {
323 	return netdev_name_node_lookup(net, name);
324 }
325 EXPORT_SYMBOL(netdev_name_in_use);
326 
327 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
328 {
329 	struct netdev_name_node *name_node;
330 	struct net *net = dev_net(dev);
331 
332 	name_node = netdev_name_node_lookup(net, name);
333 	if (name_node)
334 		return -EEXIST;
335 	name_node = netdev_name_node_alloc(dev, name);
336 	if (!name_node)
337 		return -ENOMEM;
338 	netdev_name_node_add(net, name_node);
339 	/* The node that holds dev->name acts as a head of per-device list. */
340 	list_add_tail(&name_node->list, &dev->name_node->list);
341 
342 	return 0;
343 }
344 
345 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
346 {
347 	list_del(&name_node->list);
348 	kfree(name_node->name);
349 	netdev_name_node_free(name_node);
350 }
351 
352 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
353 {
354 	struct netdev_name_node *name_node;
355 	struct net *net = dev_net(dev);
356 
357 	name_node = netdev_name_node_lookup(net, name);
358 	if (!name_node)
359 		return -ENOENT;
360 	/* lookup might have found our primary name or a name belonging
361 	 * to another device.
362 	 */
363 	if (name_node == dev->name_node || name_node->dev != dev)
364 		return -EINVAL;
365 
366 	netdev_name_node_del(name_node);
367 	synchronize_rcu();
368 	__netdev_name_node_alt_destroy(name_node);
369 
370 	return 0;
371 }
372 
373 static void netdev_name_node_alt_flush(struct net_device *dev)
374 {
375 	struct netdev_name_node *name_node, *tmp;
376 
377 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
378 		__netdev_name_node_alt_destroy(name_node);
379 }
380 
381 /* Device list insertion */
382 static void list_netdevice(struct net_device *dev)
383 {
384 	struct netdev_name_node *name_node;
385 	struct net *net = dev_net(dev);
386 
387 	ASSERT_RTNL();
388 
389 	write_lock(&dev_base_lock);
390 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
391 	netdev_name_node_add(net, dev->name_node);
392 	hlist_add_head_rcu(&dev->index_hlist,
393 			   dev_index_hash(net, dev->ifindex));
394 	write_unlock(&dev_base_lock);
395 
396 	netdev_for_each_altname(dev, name_node)
397 		netdev_name_node_add(net, name_node);
398 
399 	/* We reserved the ifindex, this can't fail */
400 	WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL));
401 
402 	dev_base_seq_inc(net);
403 }
404 
405 /* Device list removal
406  * caller must respect a RCU grace period before freeing/reusing dev
407  */
408 static void unlist_netdevice(struct net_device *dev, bool lock)
409 {
410 	struct netdev_name_node *name_node;
411 	struct net *net = dev_net(dev);
412 
413 	ASSERT_RTNL();
414 
415 	xa_erase(&net->dev_by_index, dev->ifindex);
416 
417 	netdev_for_each_altname(dev, name_node)
418 		netdev_name_node_del(name_node);
419 
420 	/* Unlink dev from the device chain */
421 	if (lock)
422 		write_lock(&dev_base_lock);
423 	list_del_rcu(&dev->dev_list);
424 	netdev_name_node_del(dev->name_node);
425 	hlist_del_rcu(&dev->index_hlist);
426 	if (lock)
427 		write_unlock(&dev_base_lock);
428 
429 	dev_base_seq_inc(dev_net(dev));
430 }
431 
432 /*
433  *	Our notifier list
434  */
435 
436 static RAW_NOTIFIER_HEAD(netdev_chain);
437 
438 /*
439  *	Device drivers call our routines to queue packets here. We empty the
440  *	queue in the local softnet handler.
441  */
442 
443 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
444 EXPORT_PER_CPU_SYMBOL(softnet_data);
445 
446 #ifdef CONFIG_LOCKDEP
447 /*
448  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
449  * according to dev->type
450  */
451 static const unsigned short netdev_lock_type[] = {
452 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
453 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
454 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
455 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
456 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
457 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
458 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
459 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
460 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
461 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
462 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
463 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
464 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
465 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
466 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
467 
468 static const char *const netdev_lock_name[] = {
469 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
470 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
471 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
472 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
473 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
474 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
475 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
476 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
477 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
478 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
479 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
480 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
481 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
482 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
483 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
484 
485 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
486 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
487 
488 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
489 {
490 	int i;
491 
492 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
493 		if (netdev_lock_type[i] == dev_type)
494 			return i;
495 	/* the last key is used by default */
496 	return ARRAY_SIZE(netdev_lock_type) - 1;
497 }
498 
499 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
500 						 unsigned short dev_type)
501 {
502 	int i;
503 
504 	i = netdev_lock_pos(dev_type);
505 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
506 				   netdev_lock_name[i]);
507 }
508 
509 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
510 {
511 	int i;
512 
513 	i = netdev_lock_pos(dev->type);
514 	lockdep_set_class_and_name(&dev->addr_list_lock,
515 				   &netdev_addr_lock_key[i],
516 				   netdev_lock_name[i]);
517 }
518 #else
519 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
520 						 unsigned short dev_type)
521 {
522 }
523 
524 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
525 {
526 }
527 #endif
528 
529 /*******************************************************************************
530  *
531  *		Protocol management and registration routines
532  *
533  *******************************************************************************/
534 
535 
536 /*
537  *	Add a protocol ID to the list. Now that the input handler is
538  *	smarter we can dispense with all the messy stuff that used to be
539  *	here.
540  *
541  *	BEWARE!!! Protocol handlers, mangling input packets,
542  *	MUST BE last in hash buckets and checking protocol handlers
543  *	MUST start from promiscuous ptype_all chain in net_bh.
544  *	It is true now, do not change it.
545  *	Explanation follows: if protocol handler, mangling packet, will
546  *	be the first on list, it is not able to sense, that packet
547  *	is cloned and should be copied-on-write, so that it will
548  *	change it and subsequent readers will get broken packet.
549  *							--ANK (980803)
550  */
551 
552 static inline struct list_head *ptype_head(const struct packet_type *pt)
553 {
554 	if (pt->type == htons(ETH_P_ALL))
555 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
556 	else
557 		return pt->dev ? &pt->dev->ptype_specific :
558 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
559 }
560 
561 /**
562  *	dev_add_pack - add packet handler
563  *	@pt: packet type declaration
564  *
565  *	Add a protocol handler to the networking stack. The passed &packet_type
566  *	is linked into kernel lists and may not be freed until it has been
567  *	removed from the kernel lists.
568  *
569  *	This call does not sleep therefore it can not
570  *	guarantee all CPU's that are in middle of receiving packets
571  *	will see the new packet type (until the next received packet).
572  */
573 
574 void dev_add_pack(struct packet_type *pt)
575 {
576 	struct list_head *head = ptype_head(pt);
577 
578 	spin_lock(&ptype_lock);
579 	list_add_rcu(&pt->list, head);
580 	spin_unlock(&ptype_lock);
581 }
582 EXPORT_SYMBOL(dev_add_pack);
583 
584 /**
585  *	__dev_remove_pack	 - remove packet handler
586  *	@pt: packet type declaration
587  *
588  *	Remove a protocol handler that was previously added to the kernel
589  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
590  *	from the kernel lists and can be freed or reused once this function
591  *	returns.
592  *
593  *      The packet type might still be in use by receivers
594  *	and must not be freed until after all the CPU's have gone
595  *	through a quiescent state.
596  */
597 void __dev_remove_pack(struct packet_type *pt)
598 {
599 	struct list_head *head = ptype_head(pt);
600 	struct packet_type *pt1;
601 
602 	spin_lock(&ptype_lock);
603 
604 	list_for_each_entry(pt1, head, list) {
605 		if (pt == pt1) {
606 			list_del_rcu(&pt->list);
607 			goto out;
608 		}
609 	}
610 
611 	pr_warn("dev_remove_pack: %p not found\n", pt);
612 out:
613 	spin_unlock(&ptype_lock);
614 }
615 EXPORT_SYMBOL(__dev_remove_pack);
616 
617 /**
618  *	dev_remove_pack	 - remove packet handler
619  *	@pt: packet type declaration
620  *
621  *	Remove a protocol handler that was previously added to the kernel
622  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
623  *	from the kernel lists and can be freed or reused once this function
624  *	returns.
625  *
626  *	This call sleeps to guarantee that no CPU is looking at the packet
627  *	type after return.
628  */
629 void dev_remove_pack(struct packet_type *pt)
630 {
631 	__dev_remove_pack(pt);
632 
633 	synchronize_net();
634 }
635 EXPORT_SYMBOL(dev_remove_pack);
636 
637 
638 /*******************************************************************************
639  *
640  *			    Device Interface Subroutines
641  *
642  *******************************************************************************/
643 
644 /**
645  *	dev_get_iflink	- get 'iflink' value of a interface
646  *	@dev: targeted interface
647  *
648  *	Indicates the ifindex the interface is linked to.
649  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
650  */
651 
652 int dev_get_iflink(const struct net_device *dev)
653 {
654 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
655 		return dev->netdev_ops->ndo_get_iflink(dev);
656 
657 	return dev->ifindex;
658 }
659 EXPORT_SYMBOL(dev_get_iflink);
660 
661 /**
662  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
663  *	@dev: targeted interface
664  *	@skb: The packet.
665  *
666  *	For better visibility of tunnel traffic OVS needs to retrieve
667  *	egress tunnel information for a packet. Following API allows
668  *	user to get this info.
669  */
670 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
671 {
672 	struct ip_tunnel_info *info;
673 
674 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
675 		return -EINVAL;
676 
677 	info = skb_tunnel_info_unclone(skb);
678 	if (!info)
679 		return -ENOMEM;
680 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
681 		return -EINVAL;
682 
683 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
684 }
685 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
686 
687 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
688 {
689 	int k = stack->num_paths++;
690 
691 	if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
692 		return NULL;
693 
694 	return &stack->path[k];
695 }
696 
697 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
698 			  struct net_device_path_stack *stack)
699 {
700 	const struct net_device *last_dev;
701 	struct net_device_path_ctx ctx = {
702 		.dev	= dev,
703 	};
704 	struct net_device_path *path;
705 	int ret = 0;
706 
707 	memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
708 	stack->num_paths = 0;
709 	while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
710 		last_dev = ctx.dev;
711 		path = dev_fwd_path(stack);
712 		if (!path)
713 			return -1;
714 
715 		memset(path, 0, sizeof(struct net_device_path));
716 		ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
717 		if (ret < 0)
718 			return -1;
719 
720 		if (WARN_ON_ONCE(last_dev == ctx.dev))
721 			return -1;
722 	}
723 
724 	if (!ctx.dev)
725 		return ret;
726 
727 	path = dev_fwd_path(stack);
728 	if (!path)
729 		return -1;
730 	path->type = DEV_PATH_ETHERNET;
731 	path->dev = ctx.dev;
732 
733 	return ret;
734 }
735 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
736 
737 /**
738  *	__dev_get_by_name	- find a device by its name
739  *	@net: the applicable net namespace
740  *	@name: name to find
741  *
742  *	Find an interface by name. Must be called under RTNL semaphore
743  *	or @dev_base_lock. If the name is found a pointer to the device
744  *	is returned. If the name is not found then %NULL is returned. The
745  *	reference counters are not incremented so the caller must be
746  *	careful with locks.
747  */
748 
749 struct net_device *__dev_get_by_name(struct net *net, const char *name)
750 {
751 	struct netdev_name_node *node_name;
752 
753 	node_name = netdev_name_node_lookup(net, name);
754 	return node_name ? node_name->dev : NULL;
755 }
756 EXPORT_SYMBOL(__dev_get_by_name);
757 
758 /**
759  * dev_get_by_name_rcu	- find a device by its name
760  * @net: the applicable net namespace
761  * @name: name to find
762  *
763  * Find an interface by name.
764  * If the name is found a pointer to the device is returned.
765  * If the name is not found then %NULL is returned.
766  * The reference counters are not incremented so the caller must be
767  * careful with locks. The caller must hold RCU lock.
768  */
769 
770 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
771 {
772 	struct netdev_name_node *node_name;
773 
774 	node_name = netdev_name_node_lookup_rcu(net, name);
775 	return node_name ? node_name->dev : NULL;
776 }
777 EXPORT_SYMBOL(dev_get_by_name_rcu);
778 
779 /* Deprecated for new users, call netdev_get_by_name() instead */
780 struct net_device *dev_get_by_name(struct net *net, const char *name)
781 {
782 	struct net_device *dev;
783 
784 	rcu_read_lock();
785 	dev = dev_get_by_name_rcu(net, name);
786 	dev_hold(dev);
787 	rcu_read_unlock();
788 	return dev;
789 }
790 EXPORT_SYMBOL(dev_get_by_name);
791 
792 /**
793  *	netdev_get_by_name() - find a device by its name
794  *	@net: the applicable net namespace
795  *	@name: name to find
796  *	@tracker: tracking object for the acquired reference
797  *	@gfp: allocation flags for the tracker
798  *
799  *	Find an interface by name. This can be called from any
800  *	context and does its own locking. The returned handle has
801  *	the usage count incremented and the caller must use netdev_put() to
802  *	release it when it is no longer needed. %NULL is returned if no
803  *	matching device is found.
804  */
805 struct net_device *netdev_get_by_name(struct net *net, const char *name,
806 				      netdevice_tracker *tracker, gfp_t gfp)
807 {
808 	struct net_device *dev;
809 
810 	dev = dev_get_by_name(net, name);
811 	if (dev)
812 		netdev_tracker_alloc(dev, tracker, gfp);
813 	return dev;
814 }
815 EXPORT_SYMBOL(netdev_get_by_name);
816 
817 /**
818  *	__dev_get_by_index - find a device by its ifindex
819  *	@net: the applicable net namespace
820  *	@ifindex: index of device
821  *
822  *	Search for an interface by index. Returns %NULL if the device
823  *	is not found or a pointer to the device. The device has not
824  *	had its reference counter increased so the caller must be careful
825  *	about locking. The caller must hold either the RTNL semaphore
826  *	or @dev_base_lock.
827  */
828 
829 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
830 {
831 	struct net_device *dev;
832 	struct hlist_head *head = dev_index_hash(net, ifindex);
833 
834 	hlist_for_each_entry(dev, head, index_hlist)
835 		if (dev->ifindex == ifindex)
836 			return dev;
837 
838 	return NULL;
839 }
840 EXPORT_SYMBOL(__dev_get_by_index);
841 
842 /**
843  *	dev_get_by_index_rcu - find a device by its ifindex
844  *	@net: the applicable net namespace
845  *	@ifindex: index of device
846  *
847  *	Search for an interface by index. Returns %NULL if the device
848  *	is not found or a pointer to the device. The device has not
849  *	had its reference counter increased so the caller must be careful
850  *	about locking. The caller must hold RCU lock.
851  */
852 
853 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
854 {
855 	struct net_device *dev;
856 	struct hlist_head *head = dev_index_hash(net, ifindex);
857 
858 	hlist_for_each_entry_rcu(dev, head, index_hlist)
859 		if (dev->ifindex == ifindex)
860 			return dev;
861 
862 	return NULL;
863 }
864 EXPORT_SYMBOL(dev_get_by_index_rcu);
865 
866 /* Deprecated for new users, call netdev_get_by_index() instead */
867 struct net_device *dev_get_by_index(struct net *net, int ifindex)
868 {
869 	struct net_device *dev;
870 
871 	rcu_read_lock();
872 	dev = dev_get_by_index_rcu(net, ifindex);
873 	dev_hold(dev);
874 	rcu_read_unlock();
875 	return dev;
876 }
877 EXPORT_SYMBOL(dev_get_by_index);
878 
879 /**
880  *	netdev_get_by_index() - find a device by its ifindex
881  *	@net: the applicable net namespace
882  *	@ifindex: index of device
883  *	@tracker: tracking object for the acquired reference
884  *	@gfp: allocation flags for the tracker
885  *
886  *	Search for an interface by index. Returns NULL if the device
887  *	is not found or a pointer to the device. The device returned has
888  *	had a reference added and the pointer is safe until the user calls
889  *	netdev_put() to indicate they have finished with it.
890  */
891 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
892 				       netdevice_tracker *tracker, gfp_t gfp)
893 {
894 	struct net_device *dev;
895 
896 	dev = dev_get_by_index(net, ifindex);
897 	if (dev)
898 		netdev_tracker_alloc(dev, tracker, gfp);
899 	return dev;
900 }
901 EXPORT_SYMBOL(netdev_get_by_index);
902 
903 /**
904  *	dev_get_by_napi_id - find a device by napi_id
905  *	@napi_id: ID of the NAPI struct
906  *
907  *	Search for an interface by NAPI ID. Returns %NULL if the device
908  *	is not found or a pointer to the device. The device has not had
909  *	its reference counter increased so the caller must be careful
910  *	about locking. The caller must hold RCU lock.
911  */
912 
913 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
914 {
915 	struct napi_struct *napi;
916 
917 	WARN_ON_ONCE(!rcu_read_lock_held());
918 
919 	if (napi_id < MIN_NAPI_ID)
920 		return NULL;
921 
922 	napi = napi_by_id(napi_id);
923 
924 	return napi ? napi->dev : NULL;
925 }
926 EXPORT_SYMBOL(dev_get_by_napi_id);
927 
928 /**
929  *	netdev_get_name - get a netdevice name, knowing its ifindex.
930  *	@net: network namespace
931  *	@name: a pointer to the buffer where the name will be stored.
932  *	@ifindex: the ifindex of the interface to get the name from.
933  */
934 int netdev_get_name(struct net *net, char *name, int ifindex)
935 {
936 	struct net_device *dev;
937 	int ret;
938 
939 	down_read(&devnet_rename_sem);
940 	rcu_read_lock();
941 
942 	dev = dev_get_by_index_rcu(net, ifindex);
943 	if (!dev) {
944 		ret = -ENODEV;
945 		goto out;
946 	}
947 
948 	strcpy(name, dev->name);
949 
950 	ret = 0;
951 out:
952 	rcu_read_unlock();
953 	up_read(&devnet_rename_sem);
954 	return ret;
955 }
956 
957 /**
958  *	dev_getbyhwaddr_rcu - find a device by its hardware address
959  *	@net: the applicable net namespace
960  *	@type: media type of device
961  *	@ha: hardware address
962  *
963  *	Search for an interface by MAC address. Returns NULL if the device
964  *	is not found or a pointer to the device.
965  *	The caller must hold RCU or RTNL.
966  *	The returned device has not had its ref count increased
967  *	and the caller must therefore be careful about locking
968  *
969  */
970 
971 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
972 				       const char *ha)
973 {
974 	struct net_device *dev;
975 
976 	for_each_netdev_rcu(net, dev)
977 		if (dev->type == type &&
978 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
979 			return dev;
980 
981 	return NULL;
982 }
983 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
984 
985 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
986 {
987 	struct net_device *dev, *ret = NULL;
988 
989 	rcu_read_lock();
990 	for_each_netdev_rcu(net, dev)
991 		if (dev->type == type) {
992 			dev_hold(dev);
993 			ret = dev;
994 			break;
995 		}
996 	rcu_read_unlock();
997 	return ret;
998 }
999 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1000 
1001 /**
1002  *	__dev_get_by_flags - find any device with given flags
1003  *	@net: the applicable net namespace
1004  *	@if_flags: IFF_* values
1005  *	@mask: bitmask of bits in if_flags to check
1006  *
1007  *	Search for any interface with the given flags. Returns NULL if a device
1008  *	is not found or a pointer to the device. Must be called inside
1009  *	rtnl_lock(), and result refcount is unchanged.
1010  */
1011 
1012 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1013 				      unsigned short mask)
1014 {
1015 	struct net_device *dev, *ret;
1016 
1017 	ASSERT_RTNL();
1018 
1019 	ret = NULL;
1020 	for_each_netdev(net, dev) {
1021 		if (((dev->flags ^ if_flags) & mask) == 0) {
1022 			ret = dev;
1023 			break;
1024 		}
1025 	}
1026 	return ret;
1027 }
1028 EXPORT_SYMBOL(__dev_get_by_flags);
1029 
1030 /**
1031  *	dev_valid_name - check if name is okay for network device
1032  *	@name: name string
1033  *
1034  *	Network device names need to be valid file names to
1035  *	allow sysfs to work.  We also disallow any kind of
1036  *	whitespace.
1037  */
1038 bool dev_valid_name(const char *name)
1039 {
1040 	if (*name == '\0')
1041 		return false;
1042 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1043 		return false;
1044 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1045 		return false;
1046 
1047 	while (*name) {
1048 		if (*name == '/' || *name == ':' || isspace(*name))
1049 			return false;
1050 		name++;
1051 	}
1052 	return true;
1053 }
1054 EXPORT_SYMBOL(dev_valid_name);
1055 
1056 /**
1057  *	__dev_alloc_name - allocate a name for a device
1058  *	@net: network namespace to allocate the device name in
1059  *	@name: name format string
1060  *	@res: result name string
1061  *
1062  *	Passed a format string - eg "lt%d" it will try and find a suitable
1063  *	id. It scans list of devices to build up a free map, then chooses
1064  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1065  *	while allocating the name and adding the device in order to avoid
1066  *	duplicates.
1067  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1068  *	Returns the number of the unit assigned or a negative errno code.
1069  */
1070 
1071 static int __dev_alloc_name(struct net *net, const char *name, char *res)
1072 {
1073 	int i = 0;
1074 	const char *p;
1075 	const int max_netdevices = 8*PAGE_SIZE;
1076 	unsigned long *inuse;
1077 	struct net_device *d;
1078 	char buf[IFNAMSIZ];
1079 
1080 	/* Verify the string as this thing may have come from the user.
1081 	 * There must be one "%d" and no other "%" characters.
1082 	 */
1083 	p = strchr(name, '%');
1084 	if (!p || p[1] != 'd' || strchr(p + 2, '%'))
1085 		return -EINVAL;
1086 
1087 	/* Use one page as a bit array of possible slots */
1088 	inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC);
1089 	if (!inuse)
1090 		return -ENOMEM;
1091 
1092 	for_each_netdev(net, d) {
1093 		struct netdev_name_node *name_node;
1094 
1095 		netdev_for_each_altname(d, name_node) {
1096 			if (!sscanf(name_node->name, name, &i))
1097 				continue;
1098 			if (i < 0 || i >= max_netdevices)
1099 				continue;
1100 
1101 			/* avoid cases where sscanf is not exact inverse of printf */
1102 			snprintf(buf, IFNAMSIZ, name, i);
1103 			if (!strncmp(buf, name_node->name, IFNAMSIZ))
1104 				__set_bit(i, inuse);
1105 		}
1106 		if (!sscanf(d->name, name, &i))
1107 			continue;
1108 		if (i < 0 || i >= max_netdevices)
1109 			continue;
1110 
1111 		/* avoid cases where sscanf is not exact inverse of printf */
1112 		snprintf(buf, IFNAMSIZ, name, i);
1113 		if (!strncmp(buf, d->name, IFNAMSIZ))
1114 			__set_bit(i, inuse);
1115 	}
1116 
1117 	i = find_first_zero_bit(inuse, max_netdevices);
1118 	bitmap_free(inuse);
1119 	if (i == max_netdevices)
1120 		return -ENFILE;
1121 
1122 	snprintf(res, IFNAMSIZ, name, i);
1123 	return i;
1124 }
1125 
1126 /* Returns negative errno or allocated unit id (see __dev_alloc_name()) */
1127 static int dev_prep_valid_name(struct net *net, struct net_device *dev,
1128 			       const char *want_name, char *out_name,
1129 			       int dup_errno)
1130 {
1131 	if (!dev_valid_name(want_name))
1132 		return -EINVAL;
1133 
1134 	if (strchr(want_name, '%'))
1135 		return __dev_alloc_name(net, want_name, out_name);
1136 
1137 	if (netdev_name_in_use(net, want_name))
1138 		return -dup_errno;
1139 	if (out_name != want_name)
1140 		strscpy(out_name, want_name, IFNAMSIZ);
1141 	return 0;
1142 }
1143 
1144 /**
1145  *	dev_alloc_name - allocate a name for a device
1146  *	@dev: device
1147  *	@name: name format string
1148  *
1149  *	Passed a format string - eg "lt%d" it will try and find a suitable
1150  *	id. It scans list of devices to build up a free map, then chooses
1151  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1152  *	while allocating the name and adding the device in order to avoid
1153  *	duplicates.
1154  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1155  *	Returns the number of the unit assigned or a negative errno code.
1156  */
1157 
1158 int dev_alloc_name(struct net_device *dev, const char *name)
1159 {
1160 	return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE);
1161 }
1162 EXPORT_SYMBOL(dev_alloc_name);
1163 
1164 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1165 			      const char *name)
1166 {
1167 	int ret;
1168 
1169 	ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST);
1170 	return ret < 0 ? ret : 0;
1171 }
1172 
1173 /**
1174  *	dev_change_name - change name of a device
1175  *	@dev: device
1176  *	@newname: name (or format string) must be at least IFNAMSIZ
1177  *
1178  *	Change name of a device, can pass format strings "eth%d".
1179  *	for wildcarding.
1180  */
1181 int dev_change_name(struct net_device *dev, const char *newname)
1182 {
1183 	unsigned char old_assign_type;
1184 	char oldname[IFNAMSIZ];
1185 	int err = 0;
1186 	int ret;
1187 	struct net *net;
1188 
1189 	ASSERT_RTNL();
1190 	BUG_ON(!dev_net(dev));
1191 
1192 	net = dev_net(dev);
1193 
1194 	down_write(&devnet_rename_sem);
1195 
1196 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1197 		up_write(&devnet_rename_sem);
1198 		return 0;
1199 	}
1200 
1201 	memcpy(oldname, dev->name, IFNAMSIZ);
1202 
1203 	err = dev_get_valid_name(net, dev, newname);
1204 	if (err < 0) {
1205 		up_write(&devnet_rename_sem);
1206 		return err;
1207 	}
1208 
1209 	if (oldname[0] && !strchr(oldname, '%'))
1210 		netdev_info(dev, "renamed from %s%s\n", oldname,
1211 			    dev->flags & IFF_UP ? " (while UP)" : "");
1212 
1213 	old_assign_type = dev->name_assign_type;
1214 	dev->name_assign_type = NET_NAME_RENAMED;
1215 
1216 rollback:
1217 	ret = device_rename(&dev->dev, dev->name);
1218 	if (ret) {
1219 		memcpy(dev->name, oldname, IFNAMSIZ);
1220 		dev->name_assign_type = old_assign_type;
1221 		up_write(&devnet_rename_sem);
1222 		return ret;
1223 	}
1224 
1225 	up_write(&devnet_rename_sem);
1226 
1227 	netdev_adjacent_rename_links(dev, oldname);
1228 
1229 	write_lock(&dev_base_lock);
1230 	netdev_name_node_del(dev->name_node);
1231 	write_unlock(&dev_base_lock);
1232 
1233 	synchronize_rcu();
1234 
1235 	write_lock(&dev_base_lock);
1236 	netdev_name_node_add(net, dev->name_node);
1237 	write_unlock(&dev_base_lock);
1238 
1239 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1240 	ret = notifier_to_errno(ret);
1241 
1242 	if (ret) {
1243 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1244 		if (err >= 0) {
1245 			err = ret;
1246 			down_write(&devnet_rename_sem);
1247 			memcpy(dev->name, oldname, IFNAMSIZ);
1248 			memcpy(oldname, newname, IFNAMSIZ);
1249 			dev->name_assign_type = old_assign_type;
1250 			old_assign_type = NET_NAME_RENAMED;
1251 			goto rollback;
1252 		} else {
1253 			netdev_err(dev, "name change rollback failed: %d\n",
1254 				   ret);
1255 		}
1256 	}
1257 
1258 	return err;
1259 }
1260 
1261 /**
1262  *	dev_set_alias - change ifalias of a device
1263  *	@dev: device
1264  *	@alias: name up to IFALIASZ
1265  *	@len: limit of bytes to copy from info
1266  *
1267  *	Set ifalias for a device,
1268  */
1269 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1270 {
1271 	struct dev_ifalias *new_alias = NULL;
1272 
1273 	if (len >= IFALIASZ)
1274 		return -EINVAL;
1275 
1276 	if (len) {
1277 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1278 		if (!new_alias)
1279 			return -ENOMEM;
1280 
1281 		memcpy(new_alias->ifalias, alias, len);
1282 		new_alias->ifalias[len] = 0;
1283 	}
1284 
1285 	mutex_lock(&ifalias_mutex);
1286 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1287 					mutex_is_locked(&ifalias_mutex));
1288 	mutex_unlock(&ifalias_mutex);
1289 
1290 	if (new_alias)
1291 		kfree_rcu(new_alias, rcuhead);
1292 
1293 	return len;
1294 }
1295 EXPORT_SYMBOL(dev_set_alias);
1296 
1297 /**
1298  *	dev_get_alias - get ifalias of a device
1299  *	@dev: device
1300  *	@name: buffer to store name of ifalias
1301  *	@len: size of buffer
1302  *
1303  *	get ifalias for a device.  Caller must make sure dev cannot go
1304  *	away,  e.g. rcu read lock or own a reference count to device.
1305  */
1306 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1307 {
1308 	const struct dev_ifalias *alias;
1309 	int ret = 0;
1310 
1311 	rcu_read_lock();
1312 	alias = rcu_dereference(dev->ifalias);
1313 	if (alias)
1314 		ret = snprintf(name, len, "%s", alias->ifalias);
1315 	rcu_read_unlock();
1316 
1317 	return ret;
1318 }
1319 
1320 /**
1321  *	netdev_features_change - device changes features
1322  *	@dev: device to cause notification
1323  *
1324  *	Called to indicate a device has changed features.
1325  */
1326 void netdev_features_change(struct net_device *dev)
1327 {
1328 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1329 }
1330 EXPORT_SYMBOL(netdev_features_change);
1331 
1332 /**
1333  *	netdev_state_change - device changes state
1334  *	@dev: device to cause notification
1335  *
1336  *	Called to indicate a device has changed state. This function calls
1337  *	the notifier chains for netdev_chain and sends a NEWLINK message
1338  *	to the routing socket.
1339  */
1340 void netdev_state_change(struct net_device *dev)
1341 {
1342 	if (dev->flags & IFF_UP) {
1343 		struct netdev_notifier_change_info change_info = {
1344 			.info.dev = dev,
1345 		};
1346 
1347 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1348 					      &change_info.info);
1349 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1350 	}
1351 }
1352 EXPORT_SYMBOL(netdev_state_change);
1353 
1354 /**
1355  * __netdev_notify_peers - notify network peers about existence of @dev,
1356  * to be called when rtnl lock is already held.
1357  * @dev: network device
1358  *
1359  * Generate traffic such that interested network peers are aware of
1360  * @dev, such as by generating a gratuitous ARP. This may be used when
1361  * a device wants to inform the rest of the network about some sort of
1362  * reconfiguration such as a failover event or virtual machine
1363  * migration.
1364  */
1365 void __netdev_notify_peers(struct net_device *dev)
1366 {
1367 	ASSERT_RTNL();
1368 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1369 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1370 }
1371 EXPORT_SYMBOL(__netdev_notify_peers);
1372 
1373 /**
1374  * netdev_notify_peers - notify network peers about existence of @dev
1375  * @dev: network device
1376  *
1377  * Generate traffic such that interested network peers are aware of
1378  * @dev, such as by generating a gratuitous ARP. This may be used when
1379  * a device wants to inform the rest of the network about some sort of
1380  * reconfiguration such as a failover event or virtual machine
1381  * migration.
1382  */
1383 void netdev_notify_peers(struct net_device *dev)
1384 {
1385 	rtnl_lock();
1386 	__netdev_notify_peers(dev);
1387 	rtnl_unlock();
1388 }
1389 EXPORT_SYMBOL(netdev_notify_peers);
1390 
1391 static int napi_threaded_poll(void *data);
1392 
1393 static int napi_kthread_create(struct napi_struct *n)
1394 {
1395 	int err = 0;
1396 
1397 	/* Create and wake up the kthread once to put it in
1398 	 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1399 	 * warning and work with loadavg.
1400 	 */
1401 	n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1402 				n->dev->name, n->napi_id);
1403 	if (IS_ERR(n->thread)) {
1404 		err = PTR_ERR(n->thread);
1405 		pr_err("kthread_run failed with err %d\n", err);
1406 		n->thread = NULL;
1407 	}
1408 
1409 	return err;
1410 }
1411 
1412 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1413 {
1414 	const struct net_device_ops *ops = dev->netdev_ops;
1415 	int ret;
1416 
1417 	ASSERT_RTNL();
1418 	dev_addr_check(dev);
1419 
1420 	if (!netif_device_present(dev)) {
1421 		/* may be detached because parent is runtime-suspended */
1422 		if (dev->dev.parent)
1423 			pm_runtime_resume(dev->dev.parent);
1424 		if (!netif_device_present(dev))
1425 			return -ENODEV;
1426 	}
1427 
1428 	/* Block netpoll from trying to do any rx path servicing.
1429 	 * If we don't do this there is a chance ndo_poll_controller
1430 	 * or ndo_poll may be running while we open the device
1431 	 */
1432 	netpoll_poll_disable(dev);
1433 
1434 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1435 	ret = notifier_to_errno(ret);
1436 	if (ret)
1437 		return ret;
1438 
1439 	set_bit(__LINK_STATE_START, &dev->state);
1440 
1441 	if (ops->ndo_validate_addr)
1442 		ret = ops->ndo_validate_addr(dev);
1443 
1444 	if (!ret && ops->ndo_open)
1445 		ret = ops->ndo_open(dev);
1446 
1447 	netpoll_poll_enable(dev);
1448 
1449 	if (ret)
1450 		clear_bit(__LINK_STATE_START, &dev->state);
1451 	else {
1452 		dev->flags |= IFF_UP;
1453 		dev_set_rx_mode(dev);
1454 		dev_activate(dev);
1455 		add_device_randomness(dev->dev_addr, dev->addr_len);
1456 	}
1457 
1458 	return ret;
1459 }
1460 
1461 /**
1462  *	dev_open	- prepare an interface for use.
1463  *	@dev: device to open
1464  *	@extack: netlink extended ack
1465  *
1466  *	Takes a device from down to up state. The device's private open
1467  *	function is invoked and then the multicast lists are loaded. Finally
1468  *	the device is moved into the up state and a %NETDEV_UP message is
1469  *	sent to the netdev notifier chain.
1470  *
1471  *	Calling this function on an active interface is a nop. On a failure
1472  *	a negative errno code is returned.
1473  */
1474 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1475 {
1476 	int ret;
1477 
1478 	if (dev->flags & IFF_UP)
1479 		return 0;
1480 
1481 	ret = __dev_open(dev, extack);
1482 	if (ret < 0)
1483 		return ret;
1484 
1485 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1486 	call_netdevice_notifiers(NETDEV_UP, dev);
1487 
1488 	return ret;
1489 }
1490 EXPORT_SYMBOL(dev_open);
1491 
1492 static void __dev_close_many(struct list_head *head)
1493 {
1494 	struct net_device *dev;
1495 
1496 	ASSERT_RTNL();
1497 	might_sleep();
1498 
1499 	list_for_each_entry(dev, head, close_list) {
1500 		/* Temporarily disable netpoll until the interface is down */
1501 		netpoll_poll_disable(dev);
1502 
1503 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1504 
1505 		clear_bit(__LINK_STATE_START, &dev->state);
1506 
1507 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1508 		 * can be even on different cpu. So just clear netif_running().
1509 		 *
1510 		 * dev->stop() will invoke napi_disable() on all of it's
1511 		 * napi_struct instances on this device.
1512 		 */
1513 		smp_mb__after_atomic(); /* Commit netif_running(). */
1514 	}
1515 
1516 	dev_deactivate_many(head);
1517 
1518 	list_for_each_entry(dev, head, close_list) {
1519 		const struct net_device_ops *ops = dev->netdev_ops;
1520 
1521 		/*
1522 		 *	Call the device specific close. This cannot fail.
1523 		 *	Only if device is UP
1524 		 *
1525 		 *	We allow it to be called even after a DETACH hot-plug
1526 		 *	event.
1527 		 */
1528 		if (ops->ndo_stop)
1529 			ops->ndo_stop(dev);
1530 
1531 		dev->flags &= ~IFF_UP;
1532 		netpoll_poll_enable(dev);
1533 	}
1534 }
1535 
1536 static void __dev_close(struct net_device *dev)
1537 {
1538 	LIST_HEAD(single);
1539 
1540 	list_add(&dev->close_list, &single);
1541 	__dev_close_many(&single);
1542 	list_del(&single);
1543 }
1544 
1545 void dev_close_many(struct list_head *head, bool unlink)
1546 {
1547 	struct net_device *dev, *tmp;
1548 
1549 	/* Remove the devices that don't need to be closed */
1550 	list_for_each_entry_safe(dev, tmp, head, close_list)
1551 		if (!(dev->flags & IFF_UP))
1552 			list_del_init(&dev->close_list);
1553 
1554 	__dev_close_many(head);
1555 
1556 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1557 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1558 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1559 		if (unlink)
1560 			list_del_init(&dev->close_list);
1561 	}
1562 }
1563 EXPORT_SYMBOL(dev_close_many);
1564 
1565 /**
1566  *	dev_close - shutdown an interface.
1567  *	@dev: device to shutdown
1568  *
1569  *	This function moves an active device into down state. A
1570  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1571  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1572  *	chain.
1573  */
1574 void dev_close(struct net_device *dev)
1575 {
1576 	if (dev->flags & IFF_UP) {
1577 		LIST_HEAD(single);
1578 
1579 		list_add(&dev->close_list, &single);
1580 		dev_close_many(&single, true);
1581 		list_del(&single);
1582 	}
1583 }
1584 EXPORT_SYMBOL(dev_close);
1585 
1586 
1587 /**
1588  *	dev_disable_lro - disable Large Receive Offload on a device
1589  *	@dev: device
1590  *
1591  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1592  *	called under RTNL.  This is needed if received packets may be
1593  *	forwarded to another interface.
1594  */
1595 void dev_disable_lro(struct net_device *dev)
1596 {
1597 	struct net_device *lower_dev;
1598 	struct list_head *iter;
1599 
1600 	dev->wanted_features &= ~NETIF_F_LRO;
1601 	netdev_update_features(dev);
1602 
1603 	if (unlikely(dev->features & NETIF_F_LRO))
1604 		netdev_WARN(dev, "failed to disable LRO!\n");
1605 
1606 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1607 		dev_disable_lro(lower_dev);
1608 }
1609 EXPORT_SYMBOL(dev_disable_lro);
1610 
1611 /**
1612  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1613  *	@dev: device
1614  *
1615  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1616  *	called under RTNL.  This is needed if Generic XDP is installed on
1617  *	the device.
1618  */
1619 static void dev_disable_gro_hw(struct net_device *dev)
1620 {
1621 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1622 	netdev_update_features(dev);
1623 
1624 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1625 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1626 }
1627 
1628 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1629 {
1630 #define N(val) 						\
1631 	case NETDEV_##val:				\
1632 		return "NETDEV_" __stringify(val);
1633 	switch (cmd) {
1634 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1635 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1636 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1637 	N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1638 	N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1639 	N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1640 	N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1641 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1642 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1643 	N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1644 	N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1645 	N(XDP_FEAT_CHANGE)
1646 	}
1647 #undef N
1648 	return "UNKNOWN_NETDEV_EVENT";
1649 }
1650 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1651 
1652 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1653 				   struct net_device *dev)
1654 {
1655 	struct netdev_notifier_info info = {
1656 		.dev = dev,
1657 	};
1658 
1659 	return nb->notifier_call(nb, val, &info);
1660 }
1661 
1662 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1663 					     struct net_device *dev)
1664 {
1665 	int err;
1666 
1667 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1668 	err = notifier_to_errno(err);
1669 	if (err)
1670 		return err;
1671 
1672 	if (!(dev->flags & IFF_UP))
1673 		return 0;
1674 
1675 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1676 	return 0;
1677 }
1678 
1679 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1680 						struct net_device *dev)
1681 {
1682 	if (dev->flags & IFF_UP) {
1683 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1684 					dev);
1685 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1686 	}
1687 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1688 }
1689 
1690 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1691 						 struct net *net)
1692 {
1693 	struct net_device *dev;
1694 	int err;
1695 
1696 	for_each_netdev(net, dev) {
1697 		err = call_netdevice_register_notifiers(nb, dev);
1698 		if (err)
1699 			goto rollback;
1700 	}
1701 	return 0;
1702 
1703 rollback:
1704 	for_each_netdev_continue_reverse(net, dev)
1705 		call_netdevice_unregister_notifiers(nb, dev);
1706 	return err;
1707 }
1708 
1709 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1710 						    struct net *net)
1711 {
1712 	struct net_device *dev;
1713 
1714 	for_each_netdev(net, dev)
1715 		call_netdevice_unregister_notifiers(nb, dev);
1716 }
1717 
1718 static int dev_boot_phase = 1;
1719 
1720 /**
1721  * register_netdevice_notifier - register a network notifier block
1722  * @nb: notifier
1723  *
1724  * Register a notifier to be called when network device events occur.
1725  * The notifier passed is linked into the kernel structures and must
1726  * not be reused until it has been unregistered. A negative errno code
1727  * is returned on a failure.
1728  *
1729  * When registered all registration and up events are replayed
1730  * to the new notifier to allow device to have a race free
1731  * view of the network device list.
1732  */
1733 
1734 int register_netdevice_notifier(struct notifier_block *nb)
1735 {
1736 	struct net *net;
1737 	int err;
1738 
1739 	/* Close race with setup_net() and cleanup_net() */
1740 	down_write(&pernet_ops_rwsem);
1741 	rtnl_lock();
1742 	err = raw_notifier_chain_register(&netdev_chain, nb);
1743 	if (err)
1744 		goto unlock;
1745 	if (dev_boot_phase)
1746 		goto unlock;
1747 	for_each_net(net) {
1748 		err = call_netdevice_register_net_notifiers(nb, net);
1749 		if (err)
1750 			goto rollback;
1751 	}
1752 
1753 unlock:
1754 	rtnl_unlock();
1755 	up_write(&pernet_ops_rwsem);
1756 	return err;
1757 
1758 rollback:
1759 	for_each_net_continue_reverse(net)
1760 		call_netdevice_unregister_net_notifiers(nb, net);
1761 
1762 	raw_notifier_chain_unregister(&netdev_chain, nb);
1763 	goto unlock;
1764 }
1765 EXPORT_SYMBOL(register_netdevice_notifier);
1766 
1767 /**
1768  * unregister_netdevice_notifier - unregister a network notifier block
1769  * @nb: notifier
1770  *
1771  * Unregister a notifier previously registered by
1772  * register_netdevice_notifier(). The notifier is unlinked into the
1773  * kernel structures and may then be reused. A negative errno code
1774  * is returned on a failure.
1775  *
1776  * After unregistering unregister and down device events are synthesized
1777  * for all devices on the device list to the removed notifier to remove
1778  * the need for special case cleanup code.
1779  */
1780 
1781 int unregister_netdevice_notifier(struct notifier_block *nb)
1782 {
1783 	struct net *net;
1784 	int err;
1785 
1786 	/* Close race with setup_net() and cleanup_net() */
1787 	down_write(&pernet_ops_rwsem);
1788 	rtnl_lock();
1789 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1790 	if (err)
1791 		goto unlock;
1792 
1793 	for_each_net(net)
1794 		call_netdevice_unregister_net_notifiers(nb, net);
1795 
1796 unlock:
1797 	rtnl_unlock();
1798 	up_write(&pernet_ops_rwsem);
1799 	return err;
1800 }
1801 EXPORT_SYMBOL(unregister_netdevice_notifier);
1802 
1803 static int __register_netdevice_notifier_net(struct net *net,
1804 					     struct notifier_block *nb,
1805 					     bool ignore_call_fail)
1806 {
1807 	int err;
1808 
1809 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
1810 	if (err)
1811 		return err;
1812 	if (dev_boot_phase)
1813 		return 0;
1814 
1815 	err = call_netdevice_register_net_notifiers(nb, net);
1816 	if (err && !ignore_call_fail)
1817 		goto chain_unregister;
1818 
1819 	return 0;
1820 
1821 chain_unregister:
1822 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
1823 	return err;
1824 }
1825 
1826 static int __unregister_netdevice_notifier_net(struct net *net,
1827 					       struct notifier_block *nb)
1828 {
1829 	int err;
1830 
1831 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1832 	if (err)
1833 		return err;
1834 
1835 	call_netdevice_unregister_net_notifiers(nb, net);
1836 	return 0;
1837 }
1838 
1839 /**
1840  * register_netdevice_notifier_net - register a per-netns network notifier block
1841  * @net: network namespace
1842  * @nb: notifier
1843  *
1844  * Register a notifier to be called when network device events occur.
1845  * The notifier passed is linked into the kernel structures and must
1846  * not be reused until it has been unregistered. A negative errno code
1847  * is returned on a failure.
1848  *
1849  * When registered all registration and up events are replayed
1850  * to the new notifier to allow device to have a race free
1851  * view of the network device list.
1852  */
1853 
1854 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1855 {
1856 	int err;
1857 
1858 	rtnl_lock();
1859 	err = __register_netdevice_notifier_net(net, nb, false);
1860 	rtnl_unlock();
1861 	return err;
1862 }
1863 EXPORT_SYMBOL(register_netdevice_notifier_net);
1864 
1865 /**
1866  * unregister_netdevice_notifier_net - unregister a per-netns
1867  *                                     network notifier block
1868  * @net: network namespace
1869  * @nb: notifier
1870  *
1871  * Unregister a notifier previously registered by
1872  * register_netdevice_notifier_net(). The notifier is unlinked from the
1873  * kernel structures and may then be reused. A negative errno code
1874  * is returned on a failure.
1875  *
1876  * After unregistering unregister and down device events are synthesized
1877  * for all devices on the device list to the removed notifier to remove
1878  * the need for special case cleanup code.
1879  */
1880 
1881 int unregister_netdevice_notifier_net(struct net *net,
1882 				      struct notifier_block *nb)
1883 {
1884 	int err;
1885 
1886 	rtnl_lock();
1887 	err = __unregister_netdevice_notifier_net(net, nb);
1888 	rtnl_unlock();
1889 	return err;
1890 }
1891 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1892 
1893 static void __move_netdevice_notifier_net(struct net *src_net,
1894 					  struct net *dst_net,
1895 					  struct notifier_block *nb)
1896 {
1897 	__unregister_netdevice_notifier_net(src_net, nb);
1898 	__register_netdevice_notifier_net(dst_net, nb, true);
1899 }
1900 
1901 int register_netdevice_notifier_dev_net(struct net_device *dev,
1902 					struct notifier_block *nb,
1903 					struct netdev_net_notifier *nn)
1904 {
1905 	int err;
1906 
1907 	rtnl_lock();
1908 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1909 	if (!err) {
1910 		nn->nb = nb;
1911 		list_add(&nn->list, &dev->net_notifier_list);
1912 	}
1913 	rtnl_unlock();
1914 	return err;
1915 }
1916 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1917 
1918 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1919 					  struct notifier_block *nb,
1920 					  struct netdev_net_notifier *nn)
1921 {
1922 	int err;
1923 
1924 	rtnl_lock();
1925 	list_del(&nn->list);
1926 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1927 	rtnl_unlock();
1928 	return err;
1929 }
1930 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1931 
1932 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1933 					     struct net *net)
1934 {
1935 	struct netdev_net_notifier *nn;
1936 
1937 	list_for_each_entry(nn, &dev->net_notifier_list, list)
1938 		__move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
1939 }
1940 
1941 /**
1942  *	call_netdevice_notifiers_info - call all network notifier blocks
1943  *	@val: value passed unmodified to notifier function
1944  *	@info: notifier information data
1945  *
1946  *	Call all network notifier blocks.  Parameters and return value
1947  *	are as for raw_notifier_call_chain().
1948  */
1949 
1950 int call_netdevice_notifiers_info(unsigned long val,
1951 				  struct netdev_notifier_info *info)
1952 {
1953 	struct net *net = dev_net(info->dev);
1954 	int ret;
1955 
1956 	ASSERT_RTNL();
1957 
1958 	/* Run per-netns notifier block chain first, then run the global one.
1959 	 * Hopefully, one day, the global one is going to be removed after
1960 	 * all notifier block registrators get converted to be per-netns.
1961 	 */
1962 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1963 	if (ret & NOTIFY_STOP_MASK)
1964 		return ret;
1965 	return raw_notifier_call_chain(&netdev_chain, val, info);
1966 }
1967 
1968 /**
1969  *	call_netdevice_notifiers_info_robust - call per-netns notifier blocks
1970  *	                                       for and rollback on error
1971  *	@val_up: value passed unmodified to notifier function
1972  *	@val_down: value passed unmodified to the notifier function when
1973  *	           recovering from an error on @val_up
1974  *	@info: notifier information data
1975  *
1976  *	Call all per-netns network notifier blocks, but not notifier blocks on
1977  *	the global notifier chain. Parameters and return value are as for
1978  *	raw_notifier_call_chain_robust().
1979  */
1980 
1981 static int
1982 call_netdevice_notifiers_info_robust(unsigned long val_up,
1983 				     unsigned long val_down,
1984 				     struct netdev_notifier_info *info)
1985 {
1986 	struct net *net = dev_net(info->dev);
1987 
1988 	ASSERT_RTNL();
1989 
1990 	return raw_notifier_call_chain_robust(&net->netdev_chain,
1991 					      val_up, val_down, info);
1992 }
1993 
1994 static int call_netdevice_notifiers_extack(unsigned long val,
1995 					   struct net_device *dev,
1996 					   struct netlink_ext_ack *extack)
1997 {
1998 	struct netdev_notifier_info info = {
1999 		.dev = dev,
2000 		.extack = extack,
2001 	};
2002 
2003 	return call_netdevice_notifiers_info(val, &info);
2004 }
2005 
2006 /**
2007  *	call_netdevice_notifiers - call all network notifier blocks
2008  *      @val: value passed unmodified to notifier function
2009  *      @dev: net_device pointer passed unmodified to notifier function
2010  *
2011  *	Call all network notifier blocks.  Parameters and return value
2012  *	are as for raw_notifier_call_chain().
2013  */
2014 
2015 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2016 {
2017 	return call_netdevice_notifiers_extack(val, dev, NULL);
2018 }
2019 EXPORT_SYMBOL(call_netdevice_notifiers);
2020 
2021 /**
2022  *	call_netdevice_notifiers_mtu - call all network notifier blocks
2023  *	@val: value passed unmodified to notifier function
2024  *	@dev: net_device pointer passed unmodified to notifier function
2025  *	@arg: additional u32 argument passed to the notifier function
2026  *
2027  *	Call all network notifier blocks.  Parameters and return value
2028  *	are as for raw_notifier_call_chain().
2029  */
2030 static int call_netdevice_notifiers_mtu(unsigned long val,
2031 					struct net_device *dev, u32 arg)
2032 {
2033 	struct netdev_notifier_info_ext info = {
2034 		.info.dev = dev,
2035 		.ext.mtu = arg,
2036 	};
2037 
2038 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2039 
2040 	return call_netdevice_notifiers_info(val, &info.info);
2041 }
2042 
2043 #ifdef CONFIG_NET_INGRESS
2044 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2045 
2046 void net_inc_ingress_queue(void)
2047 {
2048 	static_branch_inc(&ingress_needed_key);
2049 }
2050 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2051 
2052 void net_dec_ingress_queue(void)
2053 {
2054 	static_branch_dec(&ingress_needed_key);
2055 }
2056 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2057 #endif
2058 
2059 #ifdef CONFIG_NET_EGRESS
2060 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2061 
2062 void net_inc_egress_queue(void)
2063 {
2064 	static_branch_inc(&egress_needed_key);
2065 }
2066 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2067 
2068 void net_dec_egress_queue(void)
2069 {
2070 	static_branch_dec(&egress_needed_key);
2071 }
2072 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2073 #endif
2074 
2075 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2076 EXPORT_SYMBOL(netstamp_needed_key);
2077 #ifdef CONFIG_JUMP_LABEL
2078 static atomic_t netstamp_needed_deferred;
2079 static atomic_t netstamp_wanted;
2080 static void netstamp_clear(struct work_struct *work)
2081 {
2082 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2083 	int wanted;
2084 
2085 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2086 	if (wanted > 0)
2087 		static_branch_enable(&netstamp_needed_key);
2088 	else
2089 		static_branch_disable(&netstamp_needed_key);
2090 }
2091 static DECLARE_WORK(netstamp_work, netstamp_clear);
2092 #endif
2093 
2094 void net_enable_timestamp(void)
2095 {
2096 #ifdef CONFIG_JUMP_LABEL
2097 	int wanted = atomic_read(&netstamp_wanted);
2098 
2099 	while (wanted > 0) {
2100 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2101 			return;
2102 	}
2103 	atomic_inc(&netstamp_needed_deferred);
2104 	schedule_work(&netstamp_work);
2105 #else
2106 	static_branch_inc(&netstamp_needed_key);
2107 #endif
2108 }
2109 EXPORT_SYMBOL(net_enable_timestamp);
2110 
2111 void net_disable_timestamp(void)
2112 {
2113 #ifdef CONFIG_JUMP_LABEL
2114 	int wanted = atomic_read(&netstamp_wanted);
2115 
2116 	while (wanted > 1) {
2117 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2118 			return;
2119 	}
2120 	atomic_dec(&netstamp_needed_deferred);
2121 	schedule_work(&netstamp_work);
2122 #else
2123 	static_branch_dec(&netstamp_needed_key);
2124 #endif
2125 }
2126 EXPORT_SYMBOL(net_disable_timestamp);
2127 
2128 static inline void net_timestamp_set(struct sk_buff *skb)
2129 {
2130 	skb->tstamp = 0;
2131 	skb->mono_delivery_time = 0;
2132 	if (static_branch_unlikely(&netstamp_needed_key))
2133 		skb->tstamp = ktime_get_real();
2134 }
2135 
2136 #define net_timestamp_check(COND, SKB)				\
2137 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2138 		if ((COND) && !(SKB)->tstamp)			\
2139 			(SKB)->tstamp = ktime_get_real();	\
2140 	}							\
2141 
2142 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2143 {
2144 	return __is_skb_forwardable(dev, skb, true);
2145 }
2146 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2147 
2148 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2149 			      bool check_mtu)
2150 {
2151 	int ret = ____dev_forward_skb(dev, skb, check_mtu);
2152 
2153 	if (likely(!ret)) {
2154 		skb->protocol = eth_type_trans(skb, dev);
2155 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2156 	}
2157 
2158 	return ret;
2159 }
2160 
2161 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2162 {
2163 	return __dev_forward_skb2(dev, skb, true);
2164 }
2165 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2166 
2167 /**
2168  * dev_forward_skb - loopback an skb to another netif
2169  *
2170  * @dev: destination network device
2171  * @skb: buffer to forward
2172  *
2173  * return values:
2174  *	NET_RX_SUCCESS	(no congestion)
2175  *	NET_RX_DROP     (packet was dropped, but freed)
2176  *
2177  * dev_forward_skb can be used for injecting an skb from the
2178  * start_xmit function of one device into the receive queue
2179  * of another device.
2180  *
2181  * The receiving device may be in another namespace, so
2182  * we have to clear all information in the skb that could
2183  * impact namespace isolation.
2184  */
2185 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2186 {
2187 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2188 }
2189 EXPORT_SYMBOL_GPL(dev_forward_skb);
2190 
2191 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2192 {
2193 	return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2194 }
2195 
2196 static inline int deliver_skb(struct sk_buff *skb,
2197 			      struct packet_type *pt_prev,
2198 			      struct net_device *orig_dev)
2199 {
2200 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2201 		return -ENOMEM;
2202 	refcount_inc(&skb->users);
2203 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2204 }
2205 
2206 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2207 					  struct packet_type **pt,
2208 					  struct net_device *orig_dev,
2209 					  __be16 type,
2210 					  struct list_head *ptype_list)
2211 {
2212 	struct packet_type *ptype, *pt_prev = *pt;
2213 
2214 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2215 		if (ptype->type != type)
2216 			continue;
2217 		if (pt_prev)
2218 			deliver_skb(skb, pt_prev, orig_dev);
2219 		pt_prev = ptype;
2220 	}
2221 	*pt = pt_prev;
2222 }
2223 
2224 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2225 {
2226 	if (!ptype->af_packet_priv || !skb->sk)
2227 		return false;
2228 
2229 	if (ptype->id_match)
2230 		return ptype->id_match(ptype, skb->sk);
2231 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2232 		return true;
2233 
2234 	return false;
2235 }
2236 
2237 /**
2238  * dev_nit_active - return true if any network interface taps are in use
2239  *
2240  * @dev: network device to check for the presence of taps
2241  */
2242 bool dev_nit_active(struct net_device *dev)
2243 {
2244 	return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2245 }
2246 EXPORT_SYMBOL_GPL(dev_nit_active);
2247 
2248 /*
2249  *	Support routine. Sends outgoing frames to any network
2250  *	taps currently in use.
2251  */
2252 
2253 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2254 {
2255 	struct packet_type *ptype;
2256 	struct sk_buff *skb2 = NULL;
2257 	struct packet_type *pt_prev = NULL;
2258 	struct list_head *ptype_list = &ptype_all;
2259 
2260 	rcu_read_lock();
2261 again:
2262 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2263 		if (ptype->ignore_outgoing)
2264 			continue;
2265 
2266 		/* Never send packets back to the socket
2267 		 * they originated from - MvS (miquels@drinkel.ow.org)
2268 		 */
2269 		if (skb_loop_sk(ptype, skb))
2270 			continue;
2271 
2272 		if (pt_prev) {
2273 			deliver_skb(skb2, pt_prev, skb->dev);
2274 			pt_prev = ptype;
2275 			continue;
2276 		}
2277 
2278 		/* need to clone skb, done only once */
2279 		skb2 = skb_clone(skb, GFP_ATOMIC);
2280 		if (!skb2)
2281 			goto out_unlock;
2282 
2283 		net_timestamp_set(skb2);
2284 
2285 		/* skb->nh should be correctly
2286 		 * set by sender, so that the second statement is
2287 		 * just protection against buggy protocols.
2288 		 */
2289 		skb_reset_mac_header(skb2);
2290 
2291 		if (skb_network_header(skb2) < skb2->data ||
2292 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2293 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2294 					     ntohs(skb2->protocol),
2295 					     dev->name);
2296 			skb_reset_network_header(skb2);
2297 		}
2298 
2299 		skb2->transport_header = skb2->network_header;
2300 		skb2->pkt_type = PACKET_OUTGOING;
2301 		pt_prev = ptype;
2302 	}
2303 
2304 	if (ptype_list == &ptype_all) {
2305 		ptype_list = &dev->ptype_all;
2306 		goto again;
2307 	}
2308 out_unlock:
2309 	if (pt_prev) {
2310 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2311 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2312 		else
2313 			kfree_skb(skb2);
2314 	}
2315 	rcu_read_unlock();
2316 }
2317 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2318 
2319 /**
2320  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2321  * @dev: Network device
2322  * @txq: number of queues available
2323  *
2324  * If real_num_tx_queues is changed the tc mappings may no longer be
2325  * valid. To resolve this verify the tc mapping remains valid and if
2326  * not NULL the mapping. With no priorities mapping to this
2327  * offset/count pair it will no longer be used. In the worst case TC0
2328  * is invalid nothing can be done so disable priority mappings. If is
2329  * expected that drivers will fix this mapping if they can before
2330  * calling netif_set_real_num_tx_queues.
2331  */
2332 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2333 {
2334 	int i;
2335 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2336 
2337 	/* If TC0 is invalidated disable TC mapping */
2338 	if (tc->offset + tc->count > txq) {
2339 		netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2340 		dev->num_tc = 0;
2341 		return;
2342 	}
2343 
2344 	/* Invalidated prio to tc mappings set to TC0 */
2345 	for (i = 1; i < TC_BITMASK + 1; i++) {
2346 		int q = netdev_get_prio_tc_map(dev, i);
2347 
2348 		tc = &dev->tc_to_txq[q];
2349 		if (tc->offset + tc->count > txq) {
2350 			netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2351 				    i, q);
2352 			netdev_set_prio_tc_map(dev, i, 0);
2353 		}
2354 	}
2355 }
2356 
2357 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2358 {
2359 	if (dev->num_tc) {
2360 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2361 		int i;
2362 
2363 		/* walk through the TCs and see if it falls into any of them */
2364 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2365 			if ((txq - tc->offset) < tc->count)
2366 				return i;
2367 		}
2368 
2369 		/* didn't find it, just return -1 to indicate no match */
2370 		return -1;
2371 	}
2372 
2373 	return 0;
2374 }
2375 EXPORT_SYMBOL(netdev_txq_to_tc);
2376 
2377 #ifdef CONFIG_XPS
2378 static struct static_key xps_needed __read_mostly;
2379 static struct static_key xps_rxqs_needed __read_mostly;
2380 static DEFINE_MUTEX(xps_map_mutex);
2381 #define xmap_dereference(P)		\
2382 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2383 
2384 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2385 			     struct xps_dev_maps *old_maps, int tci, u16 index)
2386 {
2387 	struct xps_map *map = NULL;
2388 	int pos;
2389 
2390 	map = xmap_dereference(dev_maps->attr_map[tci]);
2391 	if (!map)
2392 		return false;
2393 
2394 	for (pos = map->len; pos--;) {
2395 		if (map->queues[pos] != index)
2396 			continue;
2397 
2398 		if (map->len > 1) {
2399 			map->queues[pos] = map->queues[--map->len];
2400 			break;
2401 		}
2402 
2403 		if (old_maps)
2404 			RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2405 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2406 		kfree_rcu(map, rcu);
2407 		return false;
2408 	}
2409 
2410 	return true;
2411 }
2412 
2413 static bool remove_xps_queue_cpu(struct net_device *dev,
2414 				 struct xps_dev_maps *dev_maps,
2415 				 int cpu, u16 offset, u16 count)
2416 {
2417 	int num_tc = dev_maps->num_tc;
2418 	bool active = false;
2419 	int tci;
2420 
2421 	for (tci = cpu * num_tc; num_tc--; tci++) {
2422 		int i, j;
2423 
2424 		for (i = count, j = offset; i--; j++) {
2425 			if (!remove_xps_queue(dev_maps, NULL, tci, j))
2426 				break;
2427 		}
2428 
2429 		active |= i < 0;
2430 	}
2431 
2432 	return active;
2433 }
2434 
2435 static void reset_xps_maps(struct net_device *dev,
2436 			   struct xps_dev_maps *dev_maps,
2437 			   enum xps_map_type type)
2438 {
2439 	static_key_slow_dec_cpuslocked(&xps_needed);
2440 	if (type == XPS_RXQS)
2441 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2442 
2443 	RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2444 
2445 	kfree_rcu(dev_maps, rcu);
2446 }
2447 
2448 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2449 			   u16 offset, u16 count)
2450 {
2451 	struct xps_dev_maps *dev_maps;
2452 	bool active = false;
2453 	int i, j;
2454 
2455 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2456 	if (!dev_maps)
2457 		return;
2458 
2459 	for (j = 0; j < dev_maps->nr_ids; j++)
2460 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2461 	if (!active)
2462 		reset_xps_maps(dev, dev_maps, type);
2463 
2464 	if (type == XPS_CPUS) {
2465 		for (i = offset + (count - 1); count--; i--)
2466 			netdev_queue_numa_node_write(
2467 				netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2468 	}
2469 }
2470 
2471 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2472 				   u16 count)
2473 {
2474 	if (!static_key_false(&xps_needed))
2475 		return;
2476 
2477 	cpus_read_lock();
2478 	mutex_lock(&xps_map_mutex);
2479 
2480 	if (static_key_false(&xps_rxqs_needed))
2481 		clean_xps_maps(dev, XPS_RXQS, offset, count);
2482 
2483 	clean_xps_maps(dev, XPS_CPUS, offset, count);
2484 
2485 	mutex_unlock(&xps_map_mutex);
2486 	cpus_read_unlock();
2487 }
2488 
2489 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2490 {
2491 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2492 }
2493 
2494 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2495 				      u16 index, bool is_rxqs_map)
2496 {
2497 	struct xps_map *new_map;
2498 	int alloc_len = XPS_MIN_MAP_ALLOC;
2499 	int i, pos;
2500 
2501 	for (pos = 0; map && pos < map->len; pos++) {
2502 		if (map->queues[pos] != index)
2503 			continue;
2504 		return map;
2505 	}
2506 
2507 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2508 	if (map) {
2509 		if (pos < map->alloc_len)
2510 			return map;
2511 
2512 		alloc_len = map->alloc_len * 2;
2513 	}
2514 
2515 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2516 	 *  map
2517 	 */
2518 	if (is_rxqs_map)
2519 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2520 	else
2521 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2522 				       cpu_to_node(attr_index));
2523 	if (!new_map)
2524 		return NULL;
2525 
2526 	for (i = 0; i < pos; i++)
2527 		new_map->queues[i] = map->queues[i];
2528 	new_map->alloc_len = alloc_len;
2529 	new_map->len = pos;
2530 
2531 	return new_map;
2532 }
2533 
2534 /* Copy xps maps at a given index */
2535 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2536 			      struct xps_dev_maps *new_dev_maps, int index,
2537 			      int tc, bool skip_tc)
2538 {
2539 	int i, tci = index * dev_maps->num_tc;
2540 	struct xps_map *map;
2541 
2542 	/* copy maps belonging to foreign traffic classes */
2543 	for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2544 		if (i == tc && skip_tc)
2545 			continue;
2546 
2547 		/* fill in the new device map from the old device map */
2548 		map = xmap_dereference(dev_maps->attr_map[tci]);
2549 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2550 	}
2551 }
2552 
2553 /* Must be called under cpus_read_lock */
2554 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2555 			  u16 index, enum xps_map_type type)
2556 {
2557 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2558 	const unsigned long *online_mask = NULL;
2559 	bool active = false, copy = false;
2560 	int i, j, tci, numa_node_id = -2;
2561 	int maps_sz, num_tc = 1, tc = 0;
2562 	struct xps_map *map, *new_map;
2563 	unsigned int nr_ids;
2564 
2565 	WARN_ON_ONCE(index >= dev->num_tx_queues);
2566 
2567 	if (dev->num_tc) {
2568 		/* Do not allow XPS on subordinate device directly */
2569 		num_tc = dev->num_tc;
2570 		if (num_tc < 0)
2571 			return -EINVAL;
2572 
2573 		/* If queue belongs to subordinate dev use its map */
2574 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2575 
2576 		tc = netdev_txq_to_tc(dev, index);
2577 		if (tc < 0)
2578 			return -EINVAL;
2579 	}
2580 
2581 	mutex_lock(&xps_map_mutex);
2582 
2583 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2584 	if (type == XPS_RXQS) {
2585 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2586 		nr_ids = dev->num_rx_queues;
2587 	} else {
2588 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2589 		if (num_possible_cpus() > 1)
2590 			online_mask = cpumask_bits(cpu_online_mask);
2591 		nr_ids = nr_cpu_ids;
2592 	}
2593 
2594 	if (maps_sz < L1_CACHE_BYTES)
2595 		maps_sz = L1_CACHE_BYTES;
2596 
2597 	/* The old dev_maps could be larger or smaller than the one we're
2598 	 * setting up now, as dev->num_tc or nr_ids could have been updated in
2599 	 * between. We could try to be smart, but let's be safe instead and only
2600 	 * copy foreign traffic classes if the two map sizes match.
2601 	 */
2602 	if (dev_maps &&
2603 	    dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2604 		copy = true;
2605 
2606 	/* allocate memory for queue storage */
2607 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2608 	     j < nr_ids;) {
2609 		if (!new_dev_maps) {
2610 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2611 			if (!new_dev_maps) {
2612 				mutex_unlock(&xps_map_mutex);
2613 				return -ENOMEM;
2614 			}
2615 
2616 			new_dev_maps->nr_ids = nr_ids;
2617 			new_dev_maps->num_tc = num_tc;
2618 		}
2619 
2620 		tci = j * num_tc + tc;
2621 		map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2622 
2623 		map = expand_xps_map(map, j, index, type == XPS_RXQS);
2624 		if (!map)
2625 			goto error;
2626 
2627 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2628 	}
2629 
2630 	if (!new_dev_maps)
2631 		goto out_no_new_maps;
2632 
2633 	if (!dev_maps) {
2634 		/* Increment static keys at most once per type */
2635 		static_key_slow_inc_cpuslocked(&xps_needed);
2636 		if (type == XPS_RXQS)
2637 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2638 	}
2639 
2640 	for (j = 0; j < nr_ids; j++) {
2641 		bool skip_tc = false;
2642 
2643 		tci = j * num_tc + tc;
2644 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2645 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2646 			/* add tx-queue to CPU/rx-queue maps */
2647 			int pos = 0;
2648 
2649 			skip_tc = true;
2650 
2651 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2652 			while ((pos < map->len) && (map->queues[pos] != index))
2653 				pos++;
2654 
2655 			if (pos == map->len)
2656 				map->queues[map->len++] = index;
2657 #ifdef CONFIG_NUMA
2658 			if (type == XPS_CPUS) {
2659 				if (numa_node_id == -2)
2660 					numa_node_id = cpu_to_node(j);
2661 				else if (numa_node_id != cpu_to_node(j))
2662 					numa_node_id = -1;
2663 			}
2664 #endif
2665 		}
2666 
2667 		if (copy)
2668 			xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2669 					  skip_tc);
2670 	}
2671 
2672 	rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2673 
2674 	/* Cleanup old maps */
2675 	if (!dev_maps)
2676 		goto out_no_old_maps;
2677 
2678 	for (j = 0; j < dev_maps->nr_ids; j++) {
2679 		for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2680 			map = xmap_dereference(dev_maps->attr_map[tci]);
2681 			if (!map)
2682 				continue;
2683 
2684 			if (copy) {
2685 				new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2686 				if (map == new_map)
2687 					continue;
2688 			}
2689 
2690 			RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2691 			kfree_rcu(map, rcu);
2692 		}
2693 	}
2694 
2695 	old_dev_maps = dev_maps;
2696 
2697 out_no_old_maps:
2698 	dev_maps = new_dev_maps;
2699 	active = true;
2700 
2701 out_no_new_maps:
2702 	if (type == XPS_CPUS)
2703 		/* update Tx queue numa node */
2704 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2705 					     (numa_node_id >= 0) ?
2706 					     numa_node_id : NUMA_NO_NODE);
2707 
2708 	if (!dev_maps)
2709 		goto out_no_maps;
2710 
2711 	/* removes tx-queue from unused CPUs/rx-queues */
2712 	for (j = 0; j < dev_maps->nr_ids; j++) {
2713 		tci = j * dev_maps->num_tc;
2714 
2715 		for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2716 			if (i == tc &&
2717 			    netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2718 			    netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2719 				continue;
2720 
2721 			active |= remove_xps_queue(dev_maps,
2722 						   copy ? old_dev_maps : NULL,
2723 						   tci, index);
2724 		}
2725 	}
2726 
2727 	if (old_dev_maps)
2728 		kfree_rcu(old_dev_maps, rcu);
2729 
2730 	/* free map if not active */
2731 	if (!active)
2732 		reset_xps_maps(dev, dev_maps, type);
2733 
2734 out_no_maps:
2735 	mutex_unlock(&xps_map_mutex);
2736 
2737 	return 0;
2738 error:
2739 	/* remove any maps that we added */
2740 	for (j = 0; j < nr_ids; j++) {
2741 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2742 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2743 			map = copy ?
2744 			      xmap_dereference(dev_maps->attr_map[tci]) :
2745 			      NULL;
2746 			if (new_map && new_map != map)
2747 				kfree(new_map);
2748 		}
2749 	}
2750 
2751 	mutex_unlock(&xps_map_mutex);
2752 
2753 	kfree(new_dev_maps);
2754 	return -ENOMEM;
2755 }
2756 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2757 
2758 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2759 			u16 index)
2760 {
2761 	int ret;
2762 
2763 	cpus_read_lock();
2764 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2765 	cpus_read_unlock();
2766 
2767 	return ret;
2768 }
2769 EXPORT_SYMBOL(netif_set_xps_queue);
2770 
2771 #endif
2772 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2773 {
2774 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2775 
2776 	/* Unbind any subordinate channels */
2777 	while (txq-- != &dev->_tx[0]) {
2778 		if (txq->sb_dev)
2779 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2780 	}
2781 }
2782 
2783 void netdev_reset_tc(struct net_device *dev)
2784 {
2785 #ifdef CONFIG_XPS
2786 	netif_reset_xps_queues_gt(dev, 0);
2787 #endif
2788 	netdev_unbind_all_sb_channels(dev);
2789 
2790 	/* Reset TC configuration of device */
2791 	dev->num_tc = 0;
2792 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2793 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2794 }
2795 EXPORT_SYMBOL(netdev_reset_tc);
2796 
2797 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2798 {
2799 	if (tc >= dev->num_tc)
2800 		return -EINVAL;
2801 
2802 #ifdef CONFIG_XPS
2803 	netif_reset_xps_queues(dev, offset, count);
2804 #endif
2805 	dev->tc_to_txq[tc].count = count;
2806 	dev->tc_to_txq[tc].offset = offset;
2807 	return 0;
2808 }
2809 EXPORT_SYMBOL(netdev_set_tc_queue);
2810 
2811 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2812 {
2813 	if (num_tc > TC_MAX_QUEUE)
2814 		return -EINVAL;
2815 
2816 #ifdef CONFIG_XPS
2817 	netif_reset_xps_queues_gt(dev, 0);
2818 #endif
2819 	netdev_unbind_all_sb_channels(dev);
2820 
2821 	dev->num_tc = num_tc;
2822 	return 0;
2823 }
2824 EXPORT_SYMBOL(netdev_set_num_tc);
2825 
2826 void netdev_unbind_sb_channel(struct net_device *dev,
2827 			      struct net_device *sb_dev)
2828 {
2829 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2830 
2831 #ifdef CONFIG_XPS
2832 	netif_reset_xps_queues_gt(sb_dev, 0);
2833 #endif
2834 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2835 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2836 
2837 	while (txq-- != &dev->_tx[0]) {
2838 		if (txq->sb_dev == sb_dev)
2839 			txq->sb_dev = NULL;
2840 	}
2841 }
2842 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2843 
2844 int netdev_bind_sb_channel_queue(struct net_device *dev,
2845 				 struct net_device *sb_dev,
2846 				 u8 tc, u16 count, u16 offset)
2847 {
2848 	/* Make certain the sb_dev and dev are already configured */
2849 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2850 		return -EINVAL;
2851 
2852 	/* We cannot hand out queues we don't have */
2853 	if ((offset + count) > dev->real_num_tx_queues)
2854 		return -EINVAL;
2855 
2856 	/* Record the mapping */
2857 	sb_dev->tc_to_txq[tc].count = count;
2858 	sb_dev->tc_to_txq[tc].offset = offset;
2859 
2860 	/* Provide a way for Tx queue to find the tc_to_txq map or
2861 	 * XPS map for itself.
2862 	 */
2863 	while (count--)
2864 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2865 
2866 	return 0;
2867 }
2868 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2869 
2870 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2871 {
2872 	/* Do not use a multiqueue device to represent a subordinate channel */
2873 	if (netif_is_multiqueue(dev))
2874 		return -ENODEV;
2875 
2876 	/* We allow channels 1 - 32767 to be used for subordinate channels.
2877 	 * Channel 0 is meant to be "native" mode and used only to represent
2878 	 * the main root device. We allow writing 0 to reset the device back
2879 	 * to normal mode after being used as a subordinate channel.
2880 	 */
2881 	if (channel > S16_MAX)
2882 		return -EINVAL;
2883 
2884 	dev->num_tc = -channel;
2885 
2886 	return 0;
2887 }
2888 EXPORT_SYMBOL(netdev_set_sb_channel);
2889 
2890 /*
2891  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2892  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2893  */
2894 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2895 {
2896 	bool disabling;
2897 	int rc;
2898 
2899 	disabling = txq < dev->real_num_tx_queues;
2900 
2901 	if (txq < 1 || txq > dev->num_tx_queues)
2902 		return -EINVAL;
2903 
2904 	if (dev->reg_state == NETREG_REGISTERED ||
2905 	    dev->reg_state == NETREG_UNREGISTERING) {
2906 		ASSERT_RTNL();
2907 
2908 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2909 						  txq);
2910 		if (rc)
2911 			return rc;
2912 
2913 		if (dev->num_tc)
2914 			netif_setup_tc(dev, txq);
2915 
2916 		dev_qdisc_change_real_num_tx(dev, txq);
2917 
2918 		dev->real_num_tx_queues = txq;
2919 
2920 		if (disabling) {
2921 			synchronize_net();
2922 			qdisc_reset_all_tx_gt(dev, txq);
2923 #ifdef CONFIG_XPS
2924 			netif_reset_xps_queues_gt(dev, txq);
2925 #endif
2926 		}
2927 	} else {
2928 		dev->real_num_tx_queues = txq;
2929 	}
2930 
2931 	return 0;
2932 }
2933 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2934 
2935 #ifdef CONFIG_SYSFS
2936 /**
2937  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2938  *	@dev: Network device
2939  *	@rxq: Actual number of RX queues
2940  *
2941  *	This must be called either with the rtnl_lock held or before
2942  *	registration of the net device.  Returns 0 on success, or a
2943  *	negative error code.  If called before registration, it always
2944  *	succeeds.
2945  */
2946 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2947 {
2948 	int rc;
2949 
2950 	if (rxq < 1 || rxq > dev->num_rx_queues)
2951 		return -EINVAL;
2952 
2953 	if (dev->reg_state == NETREG_REGISTERED) {
2954 		ASSERT_RTNL();
2955 
2956 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2957 						  rxq);
2958 		if (rc)
2959 			return rc;
2960 	}
2961 
2962 	dev->real_num_rx_queues = rxq;
2963 	return 0;
2964 }
2965 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2966 #endif
2967 
2968 /**
2969  *	netif_set_real_num_queues - set actual number of RX and TX queues used
2970  *	@dev: Network device
2971  *	@txq: Actual number of TX queues
2972  *	@rxq: Actual number of RX queues
2973  *
2974  *	Set the real number of both TX and RX queues.
2975  *	Does nothing if the number of queues is already correct.
2976  */
2977 int netif_set_real_num_queues(struct net_device *dev,
2978 			      unsigned int txq, unsigned int rxq)
2979 {
2980 	unsigned int old_rxq = dev->real_num_rx_queues;
2981 	int err;
2982 
2983 	if (txq < 1 || txq > dev->num_tx_queues ||
2984 	    rxq < 1 || rxq > dev->num_rx_queues)
2985 		return -EINVAL;
2986 
2987 	/* Start from increases, so the error path only does decreases -
2988 	 * decreases can't fail.
2989 	 */
2990 	if (rxq > dev->real_num_rx_queues) {
2991 		err = netif_set_real_num_rx_queues(dev, rxq);
2992 		if (err)
2993 			return err;
2994 	}
2995 	if (txq > dev->real_num_tx_queues) {
2996 		err = netif_set_real_num_tx_queues(dev, txq);
2997 		if (err)
2998 			goto undo_rx;
2999 	}
3000 	if (rxq < dev->real_num_rx_queues)
3001 		WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3002 	if (txq < dev->real_num_tx_queues)
3003 		WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3004 
3005 	return 0;
3006 undo_rx:
3007 	WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3008 	return err;
3009 }
3010 EXPORT_SYMBOL(netif_set_real_num_queues);
3011 
3012 /**
3013  * netif_set_tso_max_size() - set the max size of TSO frames supported
3014  * @dev:	netdev to update
3015  * @size:	max skb->len of a TSO frame
3016  *
3017  * Set the limit on the size of TSO super-frames the device can handle.
3018  * Unless explicitly set the stack will assume the value of
3019  * %GSO_LEGACY_MAX_SIZE.
3020  */
3021 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3022 {
3023 	dev->tso_max_size = min(GSO_MAX_SIZE, size);
3024 	if (size < READ_ONCE(dev->gso_max_size))
3025 		netif_set_gso_max_size(dev, size);
3026 	if (size < READ_ONCE(dev->gso_ipv4_max_size))
3027 		netif_set_gso_ipv4_max_size(dev, size);
3028 }
3029 EXPORT_SYMBOL(netif_set_tso_max_size);
3030 
3031 /**
3032  * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3033  * @dev:	netdev to update
3034  * @segs:	max number of TCP segments
3035  *
3036  * Set the limit on the number of TCP segments the device can generate from
3037  * a single TSO super-frame.
3038  * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3039  */
3040 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3041 {
3042 	dev->tso_max_segs = segs;
3043 	if (segs < READ_ONCE(dev->gso_max_segs))
3044 		netif_set_gso_max_segs(dev, segs);
3045 }
3046 EXPORT_SYMBOL(netif_set_tso_max_segs);
3047 
3048 /**
3049  * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3050  * @to:		netdev to update
3051  * @from:	netdev from which to copy the limits
3052  */
3053 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3054 {
3055 	netif_set_tso_max_size(to, from->tso_max_size);
3056 	netif_set_tso_max_segs(to, from->tso_max_segs);
3057 }
3058 EXPORT_SYMBOL(netif_inherit_tso_max);
3059 
3060 /**
3061  * netif_get_num_default_rss_queues - default number of RSS queues
3062  *
3063  * Default value is the number of physical cores if there are only 1 or 2, or
3064  * divided by 2 if there are more.
3065  */
3066 int netif_get_num_default_rss_queues(void)
3067 {
3068 	cpumask_var_t cpus;
3069 	int cpu, count = 0;
3070 
3071 	if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3072 		return 1;
3073 
3074 	cpumask_copy(cpus, cpu_online_mask);
3075 	for_each_cpu(cpu, cpus) {
3076 		++count;
3077 		cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3078 	}
3079 	free_cpumask_var(cpus);
3080 
3081 	return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3082 }
3083 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3084 
3085 static void __netif_reschedule(struct Qdisc *q)
3086 {
3087 	struct softnet_data *sd;
3088 	unsigned long flags;
3089 
3090 	local_irq_save(flags);
3091 	sd = this_cpu_ptr(&softnet_data);
3092 	q->next_sched = NULL;
3093 	*sd->output_queue_tailp = q;
3094 	sd->output_queue_tailp = &q->next_sched;
3095 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3096 	local_irq_restore(flags);
3097 }
3098 
3099 void __netif_schedule(struct Qdisc *q)
3100 {
3101 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3102 		__netif_reschedule(q);
3103 }
3104 EXPORT_SYMBOL(__netif_schedule);
3105 
3106 struct dev_kfree_skb_cb {
3107 	enum skb_drop_reason reason;
3108 };
3109 
3110 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3111 {
3112 	return (struct dev_kfree_skb_cb *)skb->cb;
3113 }
3114 
3115 void netif_schedule_queue(struct netdev_queue *txq)
3116 {
3117 	rcu_read_lock();
3118 	if (!netif_xmit_stopped(txq)) {
3119 		struct Qdisc *q = rcu_dereference(txq->qdisc);
3120 
3121 		__netif_schedule(q);
3122 	}
3123 	rcu_read_unlock();
3124 }
3125 EXPORT_SYMBOL(netif_schedule_queue);
3126 
3127 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3128 {
3129 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3130 		struct Qdisc *q;
3131 
3132 		rcu_read_lock();
3133 		q = rcu_dereference(dev_queue->qdisc);
3134 		__netif_schedule(q);
3135 		rcu_read_unlock();
3136 	}
3137 }
3138 EXPORT_SYMBOL(netif_tx_wake_queue);
3139 
3140 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3141 {
3142 	unsigned long flags;
3143 
3144 	if (unlikely(!skb))
3145 		return;
3146 
3147 	if (likely(refcount_read(&skb->users) == 1)) {
3148 		smp_rmb();
3149 		refcount_set(&skb->users, 0);
3150 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3151 		return;
3152 	}
3153 	get_kfree_skb_cb(skb)->reason = reason;
3154 	local_irq_save(flags);
3155 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3156 	__this_cpu_write(softnet_data.completion_queue, skb);
3157 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3158 	local_irq_restore(flags);
3159 }
3160 EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
3161 
3162 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3163 {
3164 	if (in_hardirq() || irqs_disabled())
3165 		dev_kfree_skb_irq_reason(skb, reason);
3166 	else
3167 		kfree_skb_reason(skb, reason);
3168 }
3169 EXPORT_SYMBOL(dev_kfree_skb_any_reason);
3170 
3171 
3172 /**
3173  * netif_device_detach - mark device as removed
3174  * @dev: network device
3175  *
3176  * Mark device as removed from system and therefore no longer available.
3177  */
3178 void netif_device_detach(struct net_device *dev)
3179 {
3180 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3181 	    netif_running(dev)) {
3182 		netif_tx_stop_all_queues(dev);
3183 	}
3184 }
3185 EXPORT_SYMBOL(netif_device_detach);
3186 
3187 /**
3188  * netif_device_attach - mark device as attached
3189  * @dev: network device
3190  *
3191  * Mark device as attached from system and restart if needed.
3192  */
3193 void netif_device_attach(struct net_device *dev)
3194 {
3195 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3196 	    netif_running(dev)) {
3197 		netif_tx_wake_all_queues(dev);
3198 		__netdev_watchdog_up(dev);
3199 	}
3200 }
3201 EXPORT_SYMBOL(netif_device_attach);
3202 
3203 /*
3204  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3205  * to be used as a distribution range.
3206  */
3207 static u16 skb_tx_hash(const struct net_device *dev,
3208 		       const struct net_device *sb_dev,
3209 		       struct sk_buff *skb)
3210 {
3211 	u32 hash;
3212 	u16 qoffset = 0;
3213 	u16 qcount = dev->real_num_tx_queues;
3214 
3215 	if (dev->num_tc) {
3216 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3217 
3218 		qoffset = sb_dev->tc_to_txq[tc].offset;
3219 		qcount = sb_dev->tc_to_txq[tc].count;
3220 		if (unlikely(!qcount)) {
3221 			net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3222 					     sb_dev->name, qoffset, tc);
3223 			qoffset = 0;
3224 			qcount = dev->real_num_tx_queues;
3225 		}
3226 	}
3227 
3228 	if (skb_rx_queue_recorded(skb)) {
3229 		DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3230 		hash = skb_get_rx_queue(skb);
3231 		if (hash >= qoffset)
3232 			hash -= qoffset;
3233 		while (unlikely(hash >= qcount))
3234 			hash -= qcount;
3235 		return hash + qoffset;
3236 	}
3237 
3238 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3239 }
3240 
3241 void skb_warn_bad_offload(const struct sk_buff *skb)
3242 {
3243 	static const netdev_features_t null_features;
3244 	struct net_device *dev = skb->dev;
3245 	const char *name = "";
3246 
3247 	if (!net_ratelimit())
3248 		return;
3249 
3250 	if (dev) {
3251 		if (dev->dev.parent)
3252 			name = dev_driver_string(dev->dev.parent);
3253 		else
3254 			name = netdev_name(dev);
3255 	}
3256 	skb_dump(KERN_WARNING, skb, false);
3257 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3258 	     name, dev ? &dev->features : &null_features,
3259 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3260 }
3261 
3262 /*
3263  * Invalidate hardware checksum when packet is to be mangled, and
3264  * complete checksum manually on outgoing path.
3265  */
3266 int skb_checksum_help(struct sk_buff *skb)
3267 {
3268 	__wsum csum;
3269 	int ret = 0, offset;
3270 
3271 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3272 		goto out_set_summed;
3273 
3274 	if (unlikely(skb_is_gso(skb))) {
3275 		skb_warn_bad_offload(skb);
3276 		return -EINVAL;
3277 	}
3278 
3279 	/* Before computing a checksum, we should make sure no frag could
3280 	 * be modified by an external entity : checksum could be wrong.
3281 	 */
3282 	if (skb_has_shared_frag(skb)) {
3283 		ret = __skb_linearize(skb);
3284 		if (ret)
3285 			goto out;
3286 	}
3287 
3288 	offset = skb_checksum_start_offset(skb);
3289 	ret = -EINVAL;
3290 	if (unlikely(offset >= skb_headlen(skb))) {
3291 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3292 		WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n",
3293 			  offset, skb_headlen(skb));
3294 		goto out;
3295 	}
3296 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3297 
3298 	offset += skb->csum_offset;
3299 	if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) {
3300 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3301 		WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n",
3302 			  offset + sizeof(__sum16), skb_headlen(skb));
3303 		goto out;
3304 	}
3305 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3306 	if (ret)
3307 		goto out;
3308 
3309 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3310 out_set_summed:
3311 	skb->ip_summed = CHECKSUM_NONE;
3312 out:
3313 	return ret;
3314 }
3315 EXPORT_SYMBOL(skb_checksum_help);
3316 
3317 int skb_crc32c_csum_help(struct sk_buff *skb)
3318 {
3319 	__le32 crc32c_csum;
3320 	int ret = 0, offset, start;
3321 
3322 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3323 		goto out;
3324 
3325 	if (unlikely(skb_is_gso(skb)))
3326 		goto out;
3327 
3328 	/* Before computing a checksum, we should make sure no frag could
3329 	 * be modified by an external entity : checksum could be wrong.
3330 	 */
3331 	if (unlikely(skb_has_shared_frag(skb))) {
3332 		ret = __skb_linearize(skb);
3333 		if (ret)
3334 			goto out;
3335 	}
3336 	start = skb_checksum_start_offset(skb);
3337 	offset = start + offsetof(struct sctphdr, checksum);
3338 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3339 		ret = -EINVAL;
3340 		goto out;
3341 	}
3342 
3343 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3344 	if (ret)
3345 		goto out;
3346 
3347 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3348 						  skb->len - start, ~(__u32)0,
3349 						  crc32c_csum_stub));
3350 	*(__le32 *)(skb->data + offset) = crc32c_csum;
3351 	skb_reset_csum_not_inet(skb);
3352 out:
3353 	return ret;
3354 }
3355 
3356 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3357 {
3358 	__be16 type = skb->protocol;
3359 
3360 	/* Tunnel gso handlers can set protocol to ethernet. */
3361 	if (type == htons(ETH_P_TEB)) {
3362 		struct ethhdr *eth;
3363 
3364 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3365 			return 0;
3366 
3367 		eth = (struct ethhdr *)skb->data;
3368 		type = eth->h_proto;
3369 	}
3370 
3371 	return vlan_get_protocol_and_depth(skb, type, depth);
3372 }
3373 
3374 
3375 /* Take action when hardware reception checksum errors are detected. */
3376 #ifdef CONFIG_BUG
3377 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3378 {
3379 	netdev_err(dev, "hw csum failure\n");
3380 	skb_dump(KERN_ERR, skb, true);
3381 	dump_stack();
3382 }
3383 
3384 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3385 {
3386 	DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3387 }
3388 EXPORT_SYMBOL(netdev_rx_csum_fault);
3389 #endif
3390 
3391 /* XXX: check that highmem exists at all on the given machine. */
3392 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3393 {
3394 #ifdef CONFIG_HIGHMEM
3395 	int i;
3396 
3397 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3398 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3399 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3400 
3401 			if (PageHighMem(skb_frag_page(frag)))
3402 				return 1;
3403 		}
3404 	}
3405 #endif
3406 	return 0;
3407 }
3408 
3409 /* If MPLS offload request, verify we are testing hardware MPLS features
3410  * instead of standard features for the netdev.
3411  */
3412 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3413 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3414 					   netdev_features_t features,
3415 					   __be16 type)
3416 {
3417 	if (eth_p_mpls(type))
3418 		features &= skb->dev->mpls_features;
3419 
3420 	return features;
3421 }
3422 #else
3423 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3424 					   netdev_features_t features,
3425 					   __be16 type)
3426 {
3427 	return features;
3428 }
3429 #endif
3430 
3431 static netdev_features_t harmonize_features(struct sk_buff *skb,
3432 	netdev_features_t features)
3433 {
3434 	__be16 type;
3435 
3436 	type = skb_network_protocol(skb, NULL);
3437 	features = net_mpls_features(skb, features, type);
3438 
3439 	if (skb->ip_summed != CHECKSUM_NONE &&
3440 	    !can_checksum_protocol(features, type)) {
3441 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3442 	}
3443 	if (illegal_highdma(skb->dev, skb))
3444 		features &= ~NETIF_F_SG;
3445 
3446 	return features;
3447 }
3448 
3449 netdev_features_t passthru_features_check(struct sk_buff *skb,
3450 					  struct net_device *dev,
3451 					  netdev_features_t features)
3452 {
3453 	return features;
3454 }
3455 EXPORT_SYMBOL(passthru_features_check);
3456 
3457 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3458 					     struct net_device *dev,
3459 					     netdev_features_t features)
3460 {
3461 	return vlan_features_check(skb, features);
3462 }
3463 
3464 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3465 					    struct net_device *dev,
3466 					    netdev_features_t features)
3467 {
3468 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3469 
3470 	if (gso_segs > READ_ONCE(dev->gso_max_segs))
3471 		return features & ~NETIF_F_GSO_MASK;
3472 
3473 	if (!skb_shinfo(skb)->gso_type) {
3474 		skb_warn_bad_offload(skb);
3475 		return features & ~NETIF_F_GSO_MASK;
3476 	}
3477 
3478 	/* Support for GSO partial features requires software
3479 	 * intervention before we can actually process the packets
3480 	 * so we need to strip support for any partial features now
3481 	 * and we can pull them back in after we have partially
3482 	 * segmented the frame.
3483 	 */
3484 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3485 		features &= ~dev->gso_partial_features;
3486 
3487 	/* Make sure to clear the IPv4 ID mangling feature if the
3488 	 * IPv4 header has the potential to be fragmented.
3489 	 */
3490 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3491 		struct iphdr *iph = skb->encapsulation ?
3492 				    inner_ip_hdr(skb) : ip_hdr(skb);
3493 
3494 		if (!(iph->frag_off & htons(IP_DF)))
3495 			features &= ~NETIF_F_TSO_MANGLEID;
3496 	}
3497 
3498 	return features;
3499 }
3500 
3501 netdev_features_t netif_skb_features(struct sk_buff *skb)
3502 {
3503 	struct net_device *dev = skb->dev;
3504 	netdev_features_t features = dev->features;
3505 
3506 	if (skb_is_gso(skb))
3507 		features = gso_features_check(skb, dev, features);
3508 
3509 	/* If encapsulation offload request, verify we are testing
3510 	 * hardware encapsulation features instead of standard
3511 	 * features for the netdev
3512 	 */
3513 	if (skb->encapsulation)
3514 		features &= dev->hw_enc_features;
3515 
3516 	if (skb_vlan_tagged(skb))
3517 		features = netdev_intersect_features(features,
3518 						     dev->vlan_features |
3519 						     NETIF_F_HW_VLAN_CTAG_TX |
3520 						     NETIF_F_HW_VLAN_STAG_TX);
3521 
3522 	if (dev->netdev_ops->ndo_features_check)
3523 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3524 								features);
3525 	else
3526 		features &= dflt_features_check(skb, dev, features);
3527 
3528 	return harmonize_features(skb, features);
3529 }
3530 EXPORT_SYMBOL(netif_skb_features);
3531 
3532 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3533 		    struct netdev_queue *txq, bool more)
3534 {
3535 	unsigned int len;
3536 	int rc;
3537 
3538 	if (dev_nit_active(dev))
3539 		dev_queue_xmit_nit(skb, dev);
3540 
3541 	len = skb->len;
3542 	trace_net_dev_start_xmit(skb, dev);
3543 	rc = netdev_start_xmit(skb, dev, txq, more);
3544 	trace_net_dev_xmit(skb, rc, dev, len);
3545 
3546 	return rc;
3547 }
3548 
3549 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3550 				    struct netdev_queue *txq, int *ret)
3551 {
3552 	struct sk_buff *skb = first;
3553 	int rc = NETDEV_TX_OK;
3554 
3555 	while (skb) {
3556 		struct sk_buff *next = skb->next;
3557 
3558 		skb_mark_not_on_list(skb);
3559 		rc = xmit_one(skb, dev, txq, next != NULL);
3560 		if (unlikely(!dev_xmit_complete(rc))) {
3561 			skb->next = next;
3562 			goto out;
3563 		}
3564 
3565 		skb = next;
3566 		if (netif_tx_queue_stopped(txq) && skb) {
3567 			rc = NETDEV_TX_BUSY;
3568 			break;
3569 		}
3570 	}
3571 
3572 out:
3573 	*ret = rc;
3574 	return skb;
3575 }
3576 
3577 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3578 					  netdev_features_t features)
3579 {
3580 	if (skb_vlan_tag_present(skb) &&
3581 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3582 		skb = __vlan_hwaccel_push_inside(skb);
3583 	return skb;
3584 }
3585 
3586 int skb_csum_hwoffload_help(struct sk_buff *skb,
3587 			    const netdev_features_t features)
3588 {
3589 	if (unlikely(skb_csum_is_sctp(skb)))
3590 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3591 			skb_crc32c_csum_help(skb);
3592 
3593 	if (features & NETIF_F_HW_CSUM)
3594 		return 0;
3595 
3596 	if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3597 		switch (skb->csum_offset) {
3598 		case offsetof(struct tcphdr, check):
3599 		case offsetof(struct udphdr, check):
3600 			return 0;
3601 		}
3602 	}
3603 
3604 	return skb_checksum_help(skb);
3605 }
3606 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3607 
3608 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3609 {
3610 	netdev_features_t features;
3611 
3612 	features = netif_skb_features(skb);
3613 	skb = validate_xmit_vlan(skb, features);
3614 	if (unlikely(!skb))
3615 		goto out_null;
3616 
3617 	skb = sk_validate_xmit_skb(skb, dev);
3618 	if (unlikely(!skb))
3619 		goto out_null;
3620 
3621 	if (netif_needs_gso(skb, features)) {
3622 		struct sk_buff *segs;
3623 
3624 		segs = skb_gso_segment(skb, features);
3625 		if (IS_ERR(segs)) {
3626 			goto out_kfree_skb;
3627 		} else if (segs) {
3628 			consume_skb(skb);
3629 			skb = segs;
3630 		}
3631 	} else {
3632 		if (skb_needs_linearize(skb, features) &&
3633 		    __skb_linearize(skb))
3634 			goto out_kfree_skb;
3635 
3636 		/* If packet is not checksummed and device does not
3637 		 * support checksumming for this protocol, complete
3638 		 * checksumming here.
3639 		 */
3640 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3641 			if (skb->encapsulation)
3642 				skb_set_inner_transport_header(skb,
3643 							       skb_checksum_start_offset(skb));
3644 			else
3645 				skb_set_transport_header(skb,
3646 							 skb_checksum_start_offset(skb));
3647 			if (skb_csum_hwoffload_help(skb, features))
3648 				goto out_kfree_skb;
3649 		}
3650 	}
3651 
3652 	skb = validate_xmit_xfrm(skb, features, again);
3653 
3654 	return skb;
3655 
3656 out_kfree_skb:
3657 	kfree_skb(skb);
3658 out_null:
3659 	dev_core_stats_tx_dropped_inc(dev);
3660 	return NULL;
3661 }
3662 
3663 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3664 {
3665 	struct sk_buff *next, *head = NULL, *tail;
3666 
3667 	for (; skb != NULL; skb = next) {
3668 		next = skb->next;
3669 		skb_mark_not_on_list(skb);
3670 
3671 		/* in case skb wont be segmented, point to itself */
3672 		skb->prev = skb;
3673 
3674 		skb = validate_xmit_skb(skb, dev, again);
3675 		if (!skb)
3676 			continue;
3677 
3678 		if (!head)
3679 			head = skb;
3680 		else
3681 			tail->next = skb;
3682 		/* If skb was segmented, skb->prev points to
3683 		 * the last segment. If not, it still contains skb.
3684 		 */
3685 		tail = skb->prev;
3686 	}
3687 	return head;
3688 }
3689 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3690 
3691 static void qdisc_pkt_len_init(struct sk_buff *skb)
3692 {
3693 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3694 
3695 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3696 
3697 	/* To get more precise estimation of bytes sent on wire,
3698 	 * we add to pkt_len the headers size of all segments
3699 	 */
3700 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3701 		u16 gso_segs = shinfo->gso_segs;
3702 		unsigned int hdr_len;
3703 
3704 		/* mac layer + network layer */
3705 		hdr_len = skb_transport_offset(skb);
3706 
3707 		/* + transport layer */
3708 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3709 			const struct tcphdr *th;
3710 			struct tcphdr _tcphdr;
3711 
3712 			th = skb_header_pointer(skb, hdr_len,
3713 						sizeof(_tcphdr), &_tcphdr);
3714 			if (likely(th))
3715 				hdr_len += __tcp_hdrlen(th);
3716 		} else {
3717 			struct udphdr _udphdr;
3718 
3719 			if (skb_header_pointer(skb, hdr_len,
3720 					       sizeof(_udphdr), &_udphdr))
3721 				hdr_len += sizeof(struct udphdr);
3722 		}
3723 
3724 		if (shinfo->gso_type & SKB_GSO_DODGY)
3725 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3726 						shinfo->gso_size);
3727 
3728 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3729 	}
3730 }
3731 
3732 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3733 			     struct sk_buff **to_free,
3734 			     struct netdev_queue *txq)
3735 {
3736 	int rc;
3737 
3738 	rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3739 	if (rc == NET_XMIT_SUCCESS)
3740 		trace_qdisc_enqueue(q, txq, skb);
3741 	return rc;
3742 }
3743 
3744 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3745 				 struct net_device *dev,
3746 				 struct netdev_queue *txq)
3747 {
3748 	spinlock_t *root_lock = qdisc_lock(q);
3749 	struct sk_buff *to_free = NULL;
3750 	bool contended;
3751 	int rc;
3752 
3753 	qdisc_calculate_pkt_len(skb, q);
3754 
3755 	if (q->flags & TCQ_F_NOLOCK) {
3756 		if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3757 		    qdisc_run_begin(q)) {
3758 			/* Retest nolock_qdisc_is_empty() within the protection
3759 			 * of q->seqlock to protect from racing with requeuing.
3760 			 */
3761 			if (unlikely(!nolock_qdisc_is_empty(q))) {
3762 				rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3763 				__qdisc_run(q);
3764 				qdisc_run_end(q);
3765 
3766 				goto no_lock_out;
3767 			}
3768 
3769 			qdisc_bstats_cpu_update(q, skb);
3770 			if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3771 			    !nolock_qdisc_is_empty(q))
3772 				__qdisc_run(q);
3773 
3774 			qdisc_run_end(q);
3775 			return NET_XMIT_SUCCESS;
3776 		}
3777 
3778 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3779 		qdisc_run(q);
3780 
3781 no_lock_out:
3782 		if (unlikely(to_free))
3783 			kfree_skb_list_reason(to_free,
3784 					      SKB_DROP_REASON_QDISC_DROP);
3785 		return rc;
3786 	}
3787 
3788 	/*
3789 	 * Heuristic to force contended enqueues to serialize on a
3790 	 * separate lock before trying to get qdisc main lock.
3791 	 * This permits qdisc->running owner to get the lock more
3792 	 * often and dequeue packets faster.
3793 	 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3794 	 * and then other tasks will only enqueue packets. The packets will be
3795 	 * sent after the qdisc owner is scheduled again. To prevent this
3796 	 * scenario the task always serialize on the lock.
3797 	 */
3798 	contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
3799 	if (unlikely(contended))
3800 		spin_lock(&q->busylock);
3801 
3802 	spin_lock(root_lock);
3803 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3804 		__qdisc_drop(skb, &to_free);
3805 		rc = NET_XMIT_DROP;
3806 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3807 		   qdisc_run_begin(q)) {
3808 		/*
3809 		 * This is a work-conserving queue; there are no old skbs
3810 		 * waiting to be sent out; and the qdisc is not running -
3811 		 * xmit the skb directly.
3812 		 */
3813 
3814 		qdisc_bstats_update(q, skb);
3815 
3816 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3817 			if (unlikely(contended)) {
3818 				spin_unlock(&q->busylock);
3819 				contended = false;
3820 			}
3821 			__qdisc_run(q);
3822 		}
3823 
3824 		qdisc_run_end(q);
3825 		rc = NET_XMIT_SUCCESS;
3826 	} else {
3827 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3828 		if (qdisc_run_begin(q)) {
3829 			if (unlikely(contended)) {
3830 				spin_unlock(&q->busylock);
3831 				contended = false;
3832 			}
3833 			__qdisc_run(q);
3834 			qdisc_run_end(q);
3835 		}
3836 	}
3837 	spin_unlock(root_lock);
3838 	if (unlikely(to_free))
3839 		kfree_skb_list_reason(to_free, SKB_DROP_REASON_QDISC_DROP);
3840 	if (unlikely(contended))
3841 		spin_unlock(&q->busylock);
3842 	return rc;
3843 }
3844 
3845 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3846 static void skb_update_prio(struct sk_buff *skb)
3847 {
3848 	const struct netprio_map *map;
3849 	const struct sock *sk;
3850 	unsigned int prioidx;
3851 
3852 	if (skb->priority)
3853 		return;
3854 	map = rcu_dereference_bh(skb->dev->priomap);
3855 	if (!map)
3856 		return;
3857 	sk = skb_to_full_sk(skb);
3858 	if (!sk)
3859 		return;
3860 
3861 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3862 
3863 	if (prioidx < map->priomap_len)
3864 		skb->priority = map->priomap[prioidx];
3865 }
3866 #else
3867 #define skb_update_prio(skb)
3868 #endif
3869 
3870 /**
3871  *	dev_loopback_xmit - loop back @skb
3872  *	@net: network namespace this loopback is happening in
3873  *	@sk:  sk needed to be a netfilter okfn
3874  *	@skb: buffer to transmit
3875  */
3876 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3877 {
3878 	skb_reset_mac_header(skb);
3879 	__skb_pull(skb, skb_network_offset(skb));
3880 	skb->pkt_type = PACKET_LOOPBACK;
3881 	if (skb->ip_summed == CHECKSUM_NONE)
3882 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3883 	DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
3884 	skb_dst_force(skb);
3885 	netif_rx(skb);
3886 	return 0;
3887 }
3888 EXPORT_SYMBOL(dev_loopback_xmit);
3889 
3890 #ifdef CONFIG_NET_EGRESS
3891 static struct netdev_queue *
3892 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
3893 {
3894 	int qm = skb_get_queue_mapping(skb);
3895 
3896 	return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
3897 }
3898 
3899 static bool netdev_xmit_txqueue_skipped(void)
3900 {
3901 	return __this_cpu_read(softnet_data.xmit.skip_txqueue);
3902 }
3903 
3904 void netdev_xmit_skip_txqueue(bool skip)
3905 {
3906 	__this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
3907 }
3908 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
3909 #endif /* CONFIG_NET_EGRESS */
3910 
3911 #ifdef CONFIG_NET_XGRESS
3912 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb,
3913 		  enum skb_drop_reason *drop_reason)
3914 {
3915 	int ret = TC_ACT_UNSPEC;
3916 #ifdef CONFIG_NET_CLS_ACT
3917 	struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq);
3918 	struct tcf_result res;
3919 
3920 	if (!miniq)
3921 		return ret;
3922 
3923 	tc_skb_cb(skb)->mru = 0;
3924 	tc_skb_cb(skb)->post_ct = false;
3925 	res.drop_reason = *drop_reason;
3926 
3927 	mini_qdisc_bstats_cpu_update(miniq, skb);
3928 	ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false);
3929 	/* Only tcf related quirks below. */
3930 	switch (ret) {
3931 	case TC_ACT_SHOT:
3932 		*drop_reason = res.drop_reason;
3933 		mini_qdisc_qstats_cpu_drop(miniq);
3934 		break;
3935 	case TC_ACT_OK:
3936 	case TC_ACT_RECLASSIFY:
3937 		skb->tc_index = TC_H_MIN(res.classid);
3938 		break;
3939 	}
3940 #endif /* CONFIG_NET_CLS_ACT */
3941 	return ret;
3942 }
3943 
3944 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key);
3945 
3946 void tcx_inc(void)
3947 {
3948 	static_branch_inc(&tcx_needed_key);
3949 }
3950 
3951 void tcx_dec(void)
3952 {
3953 	static_branch_dec(&tcx_needed_key);
3954 }
3955 
3956 static __always_inline enum tcx_action_base
3957 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb,
3958 	const bool needs_mac)
3959 {
3960 	const struct bpf_mprog_fp *fp;
3961 	const struct bpf_prog *prog;
3962 	int ret = TCX_NEXT;
3963 
3964 	if (needs_mac)
3965 		__skb_push(skb, skb->mac_len);
3966 	bpf_mprog_foreach_prog(entry, fp, prog) {
3967 		bpf_compute_data_pointers(skb);
3968 		ret = bpf_prog_run(prog, skb);
3969 		if (ret != TCX_NEXT)
3970 			break;
3971 	}
3972 	if (needs_mac)
3973 		__skb_pull(skb, skb->mac_len);
3974 	return tcx_action_code(skb, ret);
3975 }
3976 
3977 static __always_inline struct sk_buff *
3978 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3979 		   struct net_device *orig_dev, bool *another)
3980 {
3981 	struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress);
3982 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS;
3983 	int sch_ret;
3984 
3985 	if (!entry)
3986 		return skb;
3987 	if (*pt_prev) {
3988 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
3989 		*pt_prev = NULL;
3990 	}
3991 
3992 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3993 	tcx_set_ingress(skb, true);
3994 
3995 	if (static_branch_unlikely(&tcx_needed_key)) {
3996 		sch_ret = tcx_run(entry, skb, true);
3997 		if (sch_ret != TC_ACT_UNSPEC)
3998 			goto ingress_verdict;
3999 	}
4000 	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4001 ingress_verdict:
4002 	switch (sch_ret) {
4003 	case TC_ACT_REDIRECT:
4004 		/* skb_mac_header check was done by BPF, so we can safely
4005 		 * push the L2 header back before redirecting to another
4006 		 * netdev.
4007 		 */
4008 		__skb_push(skb, skb->mac_len);
4009 		if (skb_do_redirect(skb) == -EAGAIN) {
4010 			__skb_pull(skb, skb->mac_len);
4011 			*another = true;
4012 			break;
4013 		}
4014 		*ret = NET_RX_SUCCESS;
4015 		return NULL;
4016 	case TC_ACT_SHOT:
4017 		kfree_skb_reason(skb, drop_reason);
4018 		*ret = NET_RX_DROP;
4019 		return NULL;
4020 	/* used by tc_run */
4021 	case TC_ACT_STOLEN:
4022 	case TC_ACT_QUEUED:
4023 	case TC_ACT_TRAP:
4024 		consume_skb(skb);
4025 		fallthrough;
4026 	case TC_ACT_CONSUMED:
4027 		*ret = NET_RX_SUCCESS;
4028 		return NULL;
4029 	}
4030 
4031 	return skb;
4032 }
4033 
4034 static __always_inline struct sk_buff *
4035 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4036 {
4037 	struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress);
4038 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS;
4039 	int sch_ret;
4040 
4041 	if (!entry)
4042 		return skb;
4043 
4044 	/* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
4045 	 * already set by the caller.
4046 	 */
4047 	if (static_branch_unlikely(&tcx_needed_key)) {
4048 		sch_ret = tcx_run(entry, skb, false);
4049 		if (sch_ret != TC_ACT_UNSPEC)
4050 			goto egress_verdict;
4051 	}
4052 	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4053 egress_verdict:
4054 	switch (sch_ret) {
4055 	case TC_ACT_REDIRECT:
4056 		/* No need to push/pop skb's mac_header here on egress! */
4057 		skb_do_redirect(skb);
4058 		*ret = NET_XMIT_SUCCESS;
4059 		return NULL;
4060 	case TC_ACT_SHOT:
4061 		kfree_skb_reason(skb, drop_reason);
4062 		*ret = NET_XMIT_DROP;
4063 		return NULL;
4064 	/* used by tc_run */
4065 	case TC_ACT_STOLEN:
4066 	case TC_ACT_QUEUED:
4067 	case TC_ACT_TRAP:
4068 		consume_skb(skb);
4069 		fallthrough;
4070 	case TC_ACT_CONSUMED:
4071 		*ret = NET_XMIT_SUCCESS;
4072 		return NULL;
4073 	}
4074 
4075 	return skb;
4076 }
4077 #else
4078 static __always_inline struct sk_buff *
4079 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4080 		   struct net_device *orig_dev, bool *another)
4081 {
4082 	return skb;
4083 }
4084 
4085 static __always_inline struct sk_buff *
4086 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4087 {
4088 	return skb;
4089 }
4090 #endif /* CONFIG_NET_XGRESS */
4091 
4092 #ifdef CONFIG_XPS
4093 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4094 			       struct xps_dev_maps *dev_maps, unsigned int tci)
4095 {
4096 	int tc = netdev_get_prio_tc_map(dev, skb->priority);
4097 	struct xps_map *map;
4098 	int queue_index = -1;
4099 
4100 	if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4101 		return queue_index;
4102 
4103 	tci *= dev_maps->num_tc;
4104 	tci += tc;
4105 
4106 	map = rcu_dereference(dev_maps->attr_map[tci]);
4107 	if (map) {
4108 		if (map->len == 1)
4109 			queue_index = map->queues[0];
4110 		else
4111 			queue_index = map->queues[reciprocal_scale(
4112 						skb_get_hash(skb), map->len)];
4113 		if (unlikely(queue_index >= dev->real_num_tx_queues))
4114 			queue_index = -1;
4115 	}
4116 	return queue_index;
4117 }
4118 #endif
4119 
4120 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4121 			 struct sk_buff *skb)
4122 {
4123 #ifdef CONFIG_XPS
4124 	struct xps_dev_maps *dev_maps;
4125 	struct sock *sk = skb->sk;
4126 	int queue_index = -1;
4127 
4128 	if (!static_key_false(&xps_needed))
4129 		return -1;
4130 
4131 	rcu_read_lock();
4132 	if (!static_key_false(&xps_rxqs_needed))
4133 		goto get_cpus_map;
4134 
4135 	dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4136 	if (dev_maps) {
4137 		int tci = sk_rx_queue_get(sk);
4138 
4139 		if (tci >= 0)
4140 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4141 							  tci);
4142 	}
4143 
4144 get_cpus_map:
4145 	if (queue_index < 0) {
4146 		dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4147 		if (dev_maps) {
4148 			unsigned int tci = skb->sender_cpu - 1;
4149 
4150 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4151 							  tci);
4152 		}
4153 	}
4154 	rcu_read_unlock();
4155 
4156 	return queue_index;
4157 #else
4158 	return -1;
4159 #endif
4160 }
4161 
4162 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4163 		     struct net_device *sb_dev)
4164 {
4165 	return 0;
4166 }
4167 EXPORT_SYMBOL(dev_pick_tx_zero);
4168 
4169 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4170 		       struct net_device *sb_dev)
4171 {
4172 	return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4173 }
4174 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4175 
4176 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4177 		     struct net_device *sb_dev)
4178 {
4179 	struct sock *sk = skb->sk;
4180 	int queue_index = sk_tx_queue_get(sk);
4181 
4182 	sb_dev = sb_dev ? : dev;
4183 
4184 	if (queue_index < 0 || skb->ooo_okay ||
4185 	    queue_index >= dev->real_num_tx_queues) {
4186 		int new_index = get_xps_queue(dev, sb_dev, skb);
4187 
4188 		if (new_index < 0)
4189 			new_index = skb_tx_hash(dev, sb_dev, skb);
4190 
4191 		if (queue_index != new_index && sk &&
4192 		    sk_fullsock(sk) &&
4193 		    rcu_access_pointer(sk->sk_dst_cache))
4194 			sk_tx_queue_set(sk, new_index);
4195 
4196 		queue_index = new_index;
4197 	}
4198 
4199 	return queue_index;
4200 }
4201 EXPORT_SYMBOL(netdev_pick_tx);
4202 
4203 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4204 					 struct sk_buff *skb,
4205 					 struct net_device *sb_dev)
4206 {
4207 	int queue_index = 0;
4208 
4209 #ifdef CONFIG_XPS
4210 	u32 sender_cpu = skb->sender_cpu - 1;
4211 
4212 	if (sender_cpu >= (u32)NR_CPUS)
4213 		skb->sender_cpu = raw_smp_processor_id() + 1;
4214 #endif
4215 
4216 	if (dev->real_num_tx_queues != 1) {
4217 		const struct net_device_ops *ops = dev->netdev_ops;
4218 
4219 		if (ops->ndo_select_queue)
4220 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4221 		else
4222 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4223 
4224 		queue_index = netdev_cap_txqueue(dev, queue_index);
4225 	}
4226 
4227 	skb_set_queue_mapping(skb, queue_index);
4228 	return netdev_get_tx_queue(dev, queue_index);
4229 }
4230 
4231 /**
4232  * __dev_queue_xmit() - transmit a buffer
4233  * @skb:	buffer to transmit
4234  * @sb_dev:	suboordinate device used for L2 forwarding offload
4235  *
4236  * Queue a buffer for transmission to a network device. The caller must
4237  * have set the device and priority and built the buffer before calling
4238  * this function. The function can be called from an interrupt.
4239  *
4240  * When calling this method, interrupts MUST be enabled. This is because
4241  * the BH enable code must have IRQs enabled so that it will not deadlock.
4242  *
4243  * Regardless of the return value, the skb is consumed, so it is currently
4244  * difficult to retry a send to this method. (You can bump the ref count
4245  * before sending to hold a reference for retry if you are careful.)
4246  *
4247  * Return:
4248  * * 0				- buffer successfully transmitted
4249  * * positive qdisc return code	- NET_XMIT_DROP etc.
4250  * * negative errno		- other errors
4251  */
4252 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4253 {
4254 	struct net_device *dev = skb->dev;
4255 	struct netdev_queue *txq = NULL;
4256 	struct Qdisc *q;
4257 	int rc = -ENOMEM;
4258 	bool again = false;
4259 
4260 	skb_reset_mac_header(skb);
4261 	skb_assert_len(skb);
4262 
4263 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4264 		__skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4265 
4266 	/* Disable soft irqs for various locks below. Also
4267 	 * stops preemption for RCU.
4268 	 */
4269 	rcu_read_lock_bh();
4270 
4271 	skb_update_prio(skb);
4272 
4273 	qdisc_pkt_len_init(skb);
4274 	tcx_set_ingress(skb, false);
4275 #ifdef CONFIG_NET_EGRESS
4276 	if (static_branch_unlikely(&egress_needed_key)) {
4277 		if (nf_hook_egress_active()) {
4278 			skb = nf_hook_egress(skb, &rc, dev);
4279 			if (!skb)
4280 				goto out;
4281 		}
4282 
4283 		netdev_xmit_skip_txqueue(false);
4284 
4285 		nf_skip_egress(skb, true);
4286 		skb = sch_handle_egress(skb, &rc, dev);
4287 		if (!skb)
4288 			goto out;
4289 		nf_skip_egress(skb, false);
4290 
4291 		if (netdev_xmit_txqueue_skipped())
4292 			txq = netdev_tx_queue_mapping(dev, skb);
4293 	}
4294 #endif
4295 	/* If device/qdisc don't need skb->dst, release it right now while
4296 	 * its hot in this cpu cache.
4297 	 */
4298 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4299 		skb_dst_drop(skb);
4300 	else
4301 		skb_dst_force(skb);
4302 
4303 	if (!txq)
4304 		txq = netdev_core_pick_tx(dev, skb, sb_dev);
4305 
4306 	q = rcu_dereference_bh(txq->qdisc);
4307 
4308 	trace_net_dev_queue(skb);
4309 	if (q->enqueue) {
4310 		rc = __dev_xmit_skb(skb, q, dev, txq);
4311 		goto out;
4312 	}
4313 
4314 	/* The device has no queue. Common case for software devices:
4315 	 * loopback, all the sorts of tunnels...
4316 
4317 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4318 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4319 	 * counters.)
4320 	 * However, it is possible, that they rely on protection
4321 	 * made by us here.
4322 
4323 	 * Check this and shot the lock. It is not prone from deadlocks.
4324 	 *Either shot noqueue qdisc, it is even simpler 8)
4325 	 */
4326 	if (dev->flags & IFF_UP) {
4327 		int cpu = smp_processor_id(); /* ok because BHs are off */
4328 
4329 		/* Other cpus might concurrently change txq->xmit_lock_owner
4330 		 * to -1 or to their cpu id, but not to our id.
4331 		 */
4332 		if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4333 			if (dev_xmit_recursion())
4334 				goto recursion_alert;
4335 
4336 			skb = validate_xmit_skb(skb, dev, &again);
4337 			if (!skb)
4338 				goto out;
4339 
4340 			HARD_TX_LOCK(dev, txq, cpu);
4341 
4342 			if (!netif_xmit_stopped(txq)) {
4343 				dev_xmit_recursion_inc();
4344 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4345 				dev_xmit_recursion_dec();
4346 				if (dev_xmit_complete(rc)) {
4347 					HARD_TX_UNLOCK(dev, txq);
4348 					goto out;
4349 				}
4350 			}
4351 			HARD_TX_UNLOCK(dev, txq);
4352 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4353 					     dev->name);
4354 		} else {
4355 			/* Recursion is detected! It is possible,
4356 			 * unfortunately
4357 			 */
4358 recursion_alert:
4359 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4360 					     dev->name);
4361 		}
4362 	}
4363 
4364 	rc = -ENETDOWN;
4365 	rcu_read_unlock_bh();
4366 
4367 	dev_core_stats_tx_dropped_inc(dev);
4368 	kfree_skb_list(skb);
4369 	return rc;
4370 out:
4371 	rcu_read_unlock_bh();
4372 	return rc;
4373 }
4374 EXPORT_SYMBOL(__dev_queue_xmit);
4375 
4376 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4377 {
4378 	struct net_device *dev = skb->dev;
4379 	struct sk_buff *orig_skb = skb;
4380 	struct netdev_queue *txq;
4381 	int ret = NETDEV_TX_BUSY;
4382 	bool again = false;
4383 
4384 	if (unlikely(!netif_running(dev) ||
4385 		     !netif_carrier_ok(dev)))
4386 		goto drop;
4387 
4388 	skb = validate_xmit_skb_list(skb, dev, &again);
4389 	if (skb != orig_skb)
4390 		goto drop;
4391 
4392 	skb_set_queue_mapping(skb, queue_id);
4393 	txq = skb_get_tx_queue(dev, skb);
4394 
4395 	local_bh_disable();
4396 
4397 	dev_xmit_recursion_inc();
4398 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4399 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4400 		ret = netdev_start_xmit(skb, dev, txq, false);
4401 	HARD_TX_UNLOCK(dev, txq);
4402 	dev_xmit_recursion_dec();
4403 
4404 	local_bh_enable();
4405 	return ret;
4406 drop:
4407 	dev_core_stats_tx_dropped_inc(dev);
4408 	kfree_skb_list(skb);
4409 	return NET_XMIT_DROP;
4410 }
4411 EXPORT_SYMBOL(__dev_direct_xmit);
4412 
4413 /*************************************************************************
4414  *			Receiver routines
4415  *************************************************************************/
4416 
4417 int netdev_max_backlog __read_mostly = 1000;
4418 EXPORT_SYMBOL(netdev_max_backlog);
4419 
4420 int netdev_tstamp_prequeue __read_mostly = 1;
4421 unsigned int sysctl_skb_defer_max __read_mostly = 64;
4422 int netdev_budget __read_mostly = 300;
4423 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4424 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4425 int weight_p __read_mostly = 64;           /* old backlog weight */
4426 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4427 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4428 int dev_rx_weight __read_mostly = 64;
4429 int dev_tx_weight __read_mostly = 64;
4430 
4431 /* Called with irq disabled */
4432 static inline void ____napi_schedule(struct softnet_data *sd,
4433 				     struct napi_struct *napi)
4434 {
4435 	struct task_struct *thread;
4436 
4437 	lockdep_assert_irqs_disabled();
4438 
4439 	if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4440 		/* Paired with smp_mb__before_atomic() in
4441 		 * napi_enable()/dev_set_threaded().
4442 		 * Use READ_ONCE() to guarantee a complete
4443 		 * read on napi->thread. Only call
4444 		 * wake_up_process() when it's not NULL.
4445 		 */
4446 		thread = READ_ONCE(napi->thread);
4447 		if (thread) {
4448 			/* Avoid doing set_bit() if the thread is in
4449 			 * INTERRUPTIBLE state, cause napi_thread_wait()
4450 			 * makes sure to proceed with napi polling
4451 			 * if the thread is explicitly woken from here.
4452 			 */
4453 			if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4454 				set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4455 			wake_up_process(thread);
4456 			return;
4457 		}
4458 	}
4459 
4460 	list_add_tail(&napi->poll_list, &sd->poll_list);
4461 	WRITE_ONCE(napi->list_owner, smp_processor_id());
4462 	/* If not called from net_rx_action()
4463 	 * we have to raise NET_RX_SOFTIRQ.
4464 	 */
4465 	if (!sd->in_net_rx_action)
4466 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4467 }
4468 
4469 #ifdef CONFIG_RPS
4470 
4471 /* One global table that all flow-based protocols share. */
4472 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4473 EXPORT_SYMBOL(rps_sock_flow_table);
4474 u32 rps_cpu_mask __read_mostly;
4475 EXPORT_SYMBOL(rps_cpu_mask);
4476 
4477 struct static_key_false rps_needed __read_mostly;
4478 EXPORT_SYMBOL(rps_needed);
4479 struct static_key_false rfs_needed __read_mostly;
4480 EXPORT_SYMBOL(rfs_needed);
4481 
4482 static struct rps_dev_flow *
4483 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4484 	    struct rps_dev_flow *rflow, u16 next_cpu)
4485 {
4486 	if (next_cpu < nr_cpu_ids) {
4487 #ifdef CONFIG_RFS_ACCEL
4488 		struct netdev_rx_queue *rxqueue;
4489 		struct rps_dev_flow_table *flow_table;
4490 		struct rps_dev_flow *old_rflow;
4491 		u32 flow_id;
4492 		u16 rxq_index;
4493 		int rc;
4494 
4495 		/* Should we steer this flow to a different hardware queue? */
4496 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4497 		    !(dev->features & NETIF_F_NTUPLE))
4498 			goto out;
4499 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4500 		if (rxq_index == skb_get_rx_queue(skb))
4501 			goto out;
4502 
4503 		rxqueue = dev->_rx + rxq_index;
4504 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4505 		if (!flow_table)
4506 			goto out;
4507 		flow_id = skb_get_hash(skb) & flow_table->mask;
4508 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4509 							rxq_index, flow_id);
4510 		if (rc < 0)
4511 			goto out;
4512 		old_rflow = rflow;
4513 		rflow = &flow_table->flows[flow_id];
4514 		rflow->filter = rc;
4515 		if (old_rflow->filter == rflow->filter)
4516 			old_rflow->filter = RPS_NO_FILTER;
4517 	out:
4518 #endif
4519 		rflow->last_qtail =
4520 			per_cpu(softnet_data, next_cpu).input_queue_head;
4521 	}
4522 
4523 	rflow->cpu = next_cpu;
4524 	return rflow;
4525 }
4526 
4527 /*
4528  * get_rps_cpu is called from netif_receive_skb and returns the target
4529  * CPU from the RPS map of the receiving queue for a given skb.
4530  * rcu_read_lock must be held on entry.
4531  */
4532 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4533 		       struct rps_dev_flow **rflowp)
4534 {
4535 	const struct rps_sock_flow_table *sock_flow_table;
4536 	struct netdev_rx_queue *rxqueue = dev->_rx;
4537 	struct rps_dev_flow_table *flow_table;
4538 	struct rps_map *map;
4539 	int cpu = -1;
4540 	u32 tcpu;
4541 	u32 hash;
4542 
4543 	if (skb_rx_queue_recorded(skb)) {
4544 		u16 index = skb_get_rx_queue(skb);
4545 
4546 		if (unlikely(index >= dev->real_num_rx_queues)) {
4547 			WARN_ONCE(dev->real_num_rx_queues > 1,
4548 				  "%s received packet on queue %u, but number "
4549 				  "of RX queues is %u\n",
4550 				  dev->name, index, dev->real_num_rx_queues);
4551 			goto done;
4552 		}
4553 		rxqueue += index;
4554 	}
4555 
4556 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4557 
4558 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4559 	map = rcu_dereference(rxqueue->rps_map);
4560 	if (!flow_table && !map)
4561 		goto done;
4562 
4563 	skb_reset_network_header(skb);
4564 	hash = skb_get_hash(skb);
4565 	if (!hash)
4566 		goto done;
4567 
4568 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
4569 	if (flow_table && sock_flow_table) {
4570 		struct rps_dev_flow *rflow;
4571 		u32 next_cpu;
4572 		u32 ident;
4573 
4574 		/* First check into global flow table if there is a match.
4575 		 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
4576 		 */
4577 		ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
4578 		if ((ident ^ hash) & ~rps_cpu_mask)
4579 			goto try_rps;
4580 
4581 		next_cpu = ident & rps_cpu_mask;
4582 
4583 		/* OK, now we know there is a match,
4584 		 * we can look at the local (per receive queue) flow table
4585 		 */
4586 		rflow = &flow_table->flows[hash & flow_table->mask];
4587 		tcpu = rflow->cpu;
4588 
4589 		/*
4590 		 * If the desired CPU (where last recvmsg was done) is
4591 		 * different from current CPU (one in the rx-queue flow
4592 		 * table entry), switch if one of the following holds:
4593 		 *   - Current CPU is unset (>= nr_cpu_ids).
4594 		 *   - Current CPU is offline.
4595 		 *   - The current CPU's queue tail has advanced beyond the
4596 		 *     last packet that was enqueued using this table entry.
4597 		 *     This guarantees that all previous packets for the flow
4598 		 *     have been dequeued, thus preserving in order delivery.
4599 		 */
4600 		if (unlikely(tcpu != next_cpu) &&
4601 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4602 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4603 		      rflow->last_qtail)) >= 0)) {
4604 			tcpu = next_cpu;
4605 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4606 		}
4607 
4608 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4609 			*rflowp = rflow;
4610 			cpu = tcpu;
4611 			goto done;
4612 		}
4613 	}
4614 
4615 try_rps:
4616 
4617 	if (map) {
4618 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4619 		if (cpu_online(tcpu)) {
4620 			cpu = tcpu;
4621 			goto done;
4622 		}
4623 	}
4624 
4625 done:
4626 	return cpu;
4627 }
4628 
4629 #ifdef CONFIG_RFS_ACCEL
4630 
4631 /**
4632  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4633  * @dev: Device on which the filter was set
4634  * @rxq_index: RX queue index
4635  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4636  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4637  *
4638  * Drivers that implement ndo_rx_flow_steer() should periodically call
4639  * this function for each installed filter and remove the filters for
4640  * which it returns %true.
4641  */
4642 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4643 			 u32 flow_id, u16 filter_id)
4644 {
4645 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4646 	struct rps_dev_flow_table *flow_table;
4647 	struct rps_dev_flow *rflow;
4648 	bool expire = true;
4649 	unsigned int cpu;
4650 
4651 	rcu_read_lock();
4652 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4653 	if (flow_table && flow_id <= flow_table->mask) {
4654 		rflow = &flow_table->flows[flow_id];
4655 		cpu = READ_ONCE(rflow->cpu);
4656 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4657 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4658 			   rflow->last_qtail) <
4659 		     (int)(10 * flow_table->mask)))
4660 			expire = false;
4661 	}
4662 	rcu_read_unlock();
4663 	return expire;
4664 }
4665 EXPORT_SYMBOL(rps_may_expire_flow);
4666 
4667 #endif /* CONFIG_RFS_ACCEL */
4668 
4669 /* Called from hardirq (IPI) context */
4670 static void rps_trigger_softirq(void *data)
4671 {
4672 	struct softnet_data *sd = data;
4673 
4674 	____napi_schedule(sd, &sd->backlog);
4675 	sd->received_rps++;
4676 }
4677 
4678 #endif /* CONFIG_RPS */
4679 
4680 /* Called from hardirq (IPI) context */
4681 static void trigger_rx_softirq(void *data)
4682 {
4683 	struct softnet_data *sd = data;
4684 
4685 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4686 	smp_store_release(&sd->defer_ipi_scheduled, 0);
4687 }
4688 
4689 /*
4690  * After we queued a packet into sd->input_pkt_queue,
4691  * we need to make sure this queue is serviced soon.
4692  *
4693  * - If this is another cpu queue, link it to our rps_ipi_list,
4694  *   and make sure we will process rps_ipi_list from net_rx_action().
4695  *
4696  * - If this is our own queue, NAPI schedule our backlog.
4697  *   Note that this also raises NET_RX_SOFTIRQ.
4698  */
4699 static void napi_schedule_rps(struct softnet_data *sd)
4700 {
4701 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4702 
4703 #ifdef CONFIG_RPS
4704 	if (sd != mysd) {
4705 		sd->rps_ipi_next = mysd->rps_ipi_list;
4706 		mysd->rps_ipi_list = sd;
4707 
4708 		/* If not called from net_rx_action() or napi_threaded_poll()
4709 		 * we have to raise NET_RX_SOFTIRQ.
4710 		 */
4711 		if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
4712 			__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4713 		return;
4714 	}
4715 #endif /* CONFIG_RPS */
4716 	__napi_schedule_irqoff(&mysd->backlog);
4717 }
4718 
4719 #ifdef CONFIG_NET_FLOW_LIMIT
4720 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4721 #endif
4722 
4723 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4724 {
4725 #ifdef CONFIG_NET_FLOW_LIMIT
4726 	struct sd_flow_limit *fl;
4727 	struct softnet_data *sd;
4728 	unsigned int old_flow, new_flow;
4729 
4730 	if (qlen < (READ_ONCE(netdev_max_backlog) >> 1))
4731 		return false;
4732 
4733 	sd = this_cpu_ptr(&softnet_data);
4734 
4735 	rcu_read_lock();
4736 	fl = rcu_dereference(sd->flow_limit);
4737 	if (fl) {
4738 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4739 		old_flow = fl->history[fl->history_head];
4740 		fl->history[fl->history_head] = new_flow;
4741 
4742 		fl->history_head++;
4743 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4744 
4745 		if (likely(fl->buckets[old_flow]))
4746 			fl->buckets[old_flow]--;
4747 
4748 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4749 			fl->count++;
4750 			rcu_read_unlock();
4751 			return true;
4752 		}
4753 	}
4754 	rcu_read_unlock();
4755 #endif
4756 	return false;
4757 }
4758 
4759 /*
4760  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4761  * queue (may be a remote CPU queue).
4762  */
4763 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4764 			      unsigned int *qtail)
4765 {
4766 	enum skb_drop_reason reason;
4767 	struct softnet_data *sd;
4768 	unsigned long flags;
4769 	unsigned int qlen;
4770 
4771 	reason = SKB_DROP_REASON_NOT_SPECIFIED;
4772 	sd = &per_cpu(softnet_data, cpu);
4773 
4774 	rps_lock_irqsave(sd, &flags);
4775 	if (!netif_running(skb->dev))
4776 		goto drop;
4777 	qlen = skb_queue_len(&sd->input_pkt_queue);
4778 	if (qlen <= READ_ONCE(netdev_max_backlog) && !skb_flow_limit(skb, qlen)) {
4779 		if (qlen) {
4780 enqueue:
4781 			__skb_queue_tail(&sd->input_pkt_queue, skb);
4782 			input_queue_tail_incr_save(sd, qtail);
4783 			rps_unlock_irq_restore(sd, &flags);
4784 			return NET_RX_SUCCESS;
4785 		}
4786 
4787 		/* Schedule NAPI for backlog device
4788 		 * We can use non atomic operation since we own the queue lock
4789 		 */
4790 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4791 			napi_schedule_rps(sd);
4792 		goto enqueue;
4793 	}
4794 	reason = SKB_DROP_REASON_CPU_BACKLOG;
4795 
4796 drop:
4797 	sd->dropped++;
4798 	rps_unlock_irq_restore(sd, &flags);
4799 
4800 	dev_core_stats_rx_dropped_inc(skb->dev);
4801 	kfree_skb_reason(skb, reason);
4802 	return NET_RX_DROP;
4803 }
4804 
4805 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4806 {
4807 	struct net_device *dev = skb->dev;
4808 	struct netdev_rx_queue *rxqueue;
4809 
4810 	rxqueue = dev->_rx;
4811 
4812 	if (skb_rx_queue_recorded(skb)) {
4813 		u16 index = skb_get_rx_queue(skb);
4814 
4815 		if (unlikely(index >= dev->real_num_rx_queues)) {
4816 			WARN_ONCE(dev->real_num_rx_queues > 1,
4817 				  "%s received packet on queue %u, but number "
4818 				  "of RX queues is %u\n",
4819 				  dev->name, index, dev->real_num_rx_queues);
4820 
4821 			return rxqueue; /* Return first rxqueue */
4822 		}
4823 		rxqueue += index;
4824 	}
4825 	return rxqueue;
4826 }
4827 
4828 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4829 			     struct bpf_prog *xdp_prog)
4830 {
4831 	void *orig_data, *orig_data_end, *hard_start;
4832 	struct netdev_rx_queue *rxqueue;
4833 	bool orig_bcast, orig_host;
4834 	u32 mac_len, frame_sz;
4835 	__be16 orig_eth_type;
4836 	struct ethhdr *eth;
4837 	u32 metalen, act;
4838 	int off;
4839 
4840 	/* The XDP program wants to see the packet starting at the MAC
4841 	 * header.
4842 	 */
4843 	mac_len = skb->data - skb_mac_header(skb);
4844 	hard_start = skb->data - skb_headroom(skb);
4845 
4846 	/* SKB "head" area always have tailroom for skb_shared_info */
4847 	frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4848 	frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4849 
4850 	rxqueue = netif_get_rxqueue(skb);
4851 	xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4852 	xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4853 			 skb_headlen(skb) + mac_len, true);
4854 
4855 	orig_data_end = xdp->data_end;
4856 	orig_data = xdp->data;
4857 	eth = (struct ethhdr *)xdp->data;
4858 	orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4859 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4860 	orig_eth_type = eth->h_proto;
4861 
4862 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4863 
4864 	/* check if bpf_xdp_adjust_head was used */
4865 	off = xdp->data - orig_data;
4866 	if (off) {
4867 		if (off > 0)
4868 			__skb_pull(skb, off);
4869 		else if (off < 0)
4870 			__skb_push(skb, -off);
4871 
4872 		skb->mac_header += off;
4873 		skb_reset_network_header(skb);
4874 	}
4875 
4876 	/* check if bpf_xdp_adjust_tail was used */
4877 	off = xdp->data_end - orig_data_end;
4878 	if (off != 0) {
4879 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4880 		skb->len += off; /* positive on grow, negative on shrink */
4881 	}
4882 
4883 	/* check if XDP changed eth hdr such SKB needs update */
4884 	eth = (struct ethhdr *)xdp->data;
4885 	if ((orig_eth_type != eth->h_proto) ||
4886 	    (orig_host != ether_addr_equal_64bits(eth->h_dest,
4887 						  skb->dev->dev_addr)) ||
4888 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4889 		__skb_push(skb, ETH_HLEN);
4890 		skb->pkt_type = PACKET_HOST;
4891 		skb->protocol = eth_type_trans(skb, skb->dev);
4892 	}
4893 
4894 	/* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4895 	 * before calling us again on redirect path. We do not call do_redirect
4896 	 * as we leave that up to the caller.
4897 	 *
4898 	 * Caller is responsible for managing lifetime of skb (i.e. calling
4899 	 * kfree_skb in response to actions it cannot handle/XDP_DROP).
4900 	 */
4901 	switch (act) {
4902 	case XDP_REDIRECT:
4903 	case XDP_TX:
4904 		__skb_push(skb, mac_len);
4905 		break;
4906 	case XDP_PASS:
4907 		metalen = xdp->data - xdp->data_meta;
4908 		if (metalen)
4909 			skb_metadata_set(skb, metalen);
4910 		break;
4911 	}
4912 
4913 	return act;
4914 }
4915 
4916 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4917 				     struct xdp_buff *xdp,
4918 				     struct bpf_prog *xdp_prog)
4919 {
4920 	u32 act = XDP_DROP;
4921 
4922 	/* Reinjected packets coming from act_mirred or similar should
4923 	 * not get XDP generic processing.
4924 	 */
4925 	if (skb_is_redirected(skb))
4926 		return XDP_PASS;
4927 
4928 	/* XDP packets must be linear and must have sufficient headroom
4929 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4930 	 * native XDP provides, thus we need to do it here as well.
4931 	 */
4932 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4933 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4934 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4935 		int troom = skb->tail + skb->data_len - skb->end;
4936 
4937 		/* In case we have to go down the path and also linearize,
4938 		 * then lets do the pskb_expand_head() work just once here.
4939 		 */
4940 		if (pskb_expand_head(skb,
4941 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4942 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4943 			goto do_drop;
4944 		if (skb_linearize(skb))
4945 			goto do_drop;
4946 	}
4947 
4948 	act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4949 	switch (act) {
4950 	case XDP_REDIRECT:
4951 	case XDP_TX:
4952 	case XDP_PASS:
4953 		break;
4954 	default:
4955 		bpf_warn_invalid_xdp_action(skb->dev, xdp_prog, act);
4956 		fallthrough;
4957 	case XDP_ABORTED:
4958 		trace_xdp_exception(skb->dev, xdp_prog, act);
4959 		fallthrough;
4960 	case XDP_DROP:
4961 	do_drop:
4962 		kfree_skb(skb);
4963 		break;
4964 	}
4965 
4966 	return act;
4967 }
4968 
4969 /* When doing generic XDP we have to bypass the qdisc layer and the
4970  * network taps in order to match in-driver-XDP behavior. This also means
4971  * that XDP packets are able to starve other packets going through a qdisc,
4972  * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
4973  * queues, so they do not have this starvation issue.
4974  */
4975 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4976 {
4977 	struct net_device *dev = skb->dev;
4978 	struct netdev_queue *txq;
4979 	bool free_skb = true;
4980 	int cpu, rc;
4981 
4982 	txq = netdev_core_pick_tx(dev, skb, NULL);
4983 	cpu = smp_processor_id();
4984 	HARD_TX_LOCK(dev, txq, cpu);
4985 	if (!netif_xmit_frozen_or_drv_stopped(txq)) {
4986 		rc = netdev_start_xmit(skb, dev, txq, 0);
4987 		if (dev_xmit_complete(rc))
4988 			free_skb = false;
4989 	}
4990 	HARD_TX_UNLOCK(dev, txq);
4991 	if (free_skb) {
4992 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
4993 		dev_core_stats_tx_dropped_inc(dev);
4994 		kfree_skb(skb);
4995 	}
4996 }
4997 
4998 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4999 
5000 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
5001 {
5002 	if (xdp_prog) {
5003 		struct xdp_buff xdp;
5004 		u32 act;
5005 		int err;
5006 
5007 		act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
5008 		if (act != XDP_PASS) {
5009 			switch (act) {
5010 			case XDP_REDIRECT:
5011 				err = xdp_do_generic_redirect(skb->dev, skb,
5012 							      &xdp, xdp_prog);
5013 				if (err)
5014 					goto out_redir;
5015 				break;
5016 			case XDP_TX:
5017 				generic_xdp_tx(skb, xdp_prog);
5018 				break;
5019 			}
5020 			return XDP_DROP;
5021 		}
5022 	}
5023 	return XDP_PASS;
5024 out_redir:
5025 	kfree_skb_reason(skb, SKB_DROP_REASON_XDP);
5026 	return XDP_DROP;
5027 }
5028 EXPORT_SYMBOL_GPL(do_xdp_generic);
5029 
5030 static int netif_rx_internal(struct sk_buff *skb)
5031 {
5032 	int ret;
5033 
5034 	net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5035 
5036 	trace_netif_rx(skb);
5037 
5038 #ifdef CONFIG_RPS
5039 	if (static_branch_unlikely(&rps_needed)) {
5040 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5041 		int cpu;
5042 
5043 		rcu_read_lock();
5044 
5045 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
5046 		if (cpu < 0)
5047 			cpu = smp_processor_id();
5048 
5049 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5050 
5051 		rcu_read_unlock();
5052 	} else
5053 #endif
5054 	{
5055 		unsigned int qtail;
5056 
5057 		ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
5058 	}
5059 	return ret;
5060 }
5061 
5062 /**
5063  *	__netif_rx	-	Slightly optimized version of netif_rx
5064  *	@skb: buffer to post
5065  *
5066  *	This behaves as netif_rx except that it does not disable bottom halves.
5067  *	As a result this function may only be invoked from the interrupt context
5068  *	(either hard or soft interrupt).
5069  */
5070 int __netif_rx(struct sk_buff *skb)
5071 {
5072 	int ret;
5073 
5074 	lockdep_assert_once(hardirq_count() | softirq_count());
5075 
5076 	trace_netif_rx_entry(skb);
5077 	ret = netif_rx_internal(skb);
5078 	trace_netif_rx_exit(ret);
5079 	return ret;
5080 }
5081 EXPORT_SYMBOL(__netif_rx);
5082 
5083 /**
5084  *	netif_rx	-	post buffer to the network code
5085  *	@skb: buffer to post
5086  *
5087  *	This function receives a packet from a device driver and queues it for
5088  *	the upper (protocol) levels to process via the backlog NAPI device. It
5089  *	always succeeds. The buffer may be dropped during processing for
5090  *	congestion control or by the protocol layers.
5091  *	The network buffer is passed via the backlog NAPI device. Modern NIC
5092  *	driver should use NAPI and GRO.
5093  *	This function can used from interrupt and from process context. The
5094  *	caller from process context must not disable interrupts before invoking
5095  *	this function.
5096  *
5097  *	return values:
5098  *	NET_RX_SUCCESS	(no congestion)
5099  *	NET_RX_DROP     (packet was dropped)
5100  *
5101  */
5102 int netif_rx(struct sk_buff *skb)
5103 {
5104 	bool need_bh_off = !(hardirq_count() | softirq_count());
5105 	int ret;
5106 
5107 	if (need_bh_off)
5108 		local_bh_disable();
5109 	trace_netif_rx_entry(skb);
5110 	ret = netif_rx_internal(skb);
5111 	trace_netif_rx_exit(ret);
5112 	if (need_bh_off)
5113 		local_bh_enable();
5114 	return ret;
5115 }
5116 EXPORT_SYMBOL(netif_rx);
5117 
5118 static __latent_entropy void net_tx_action(struct softirq_action *h)
5119 {
5120 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5121 
5122 	if (sd->completion_queue) {
5123 		struct sk_buff *clist;
5124 
5125 		local_irq_disable();
5126 		clist = sd->completion_queue;
5127 		sd->completion_queue = NULL;
5128 		local_irq_enable();
5129 
5130 		while (clist) {
5131 			struct sk_buff *skb = clist;
5132 
5133 			clist = clist->next;
5134 
5135 			WARN_ON(refcount_read(&skb->users));
5136 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
5137 				trace_consume_skb(skb, net_tx_action);
5138 			else
5139 				trace_kfree_skb(skb, net_tx_action,
5140 						get_kfree_skb_cb(skb)->reason);
5141 
5142 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5143 				__kfree_skb(skb);
5144 			else
5145 				__napi_kfree_skb(skb,
5146 						 get_kfree_skb_cb(skb)->reason);
5147 		}
5148 	}
5149 
5150 	if (sd->output_queue) {
5151 		struct Qdisc *head;
5152 
5153 		local_irq_disable();
5154 		head = sd->output_queue;
5155 		sd->output_queue = NULL;
5156 		sd->output_queue_tailp = &sd->output_queue;
5157 		local_irq_enable();
5158 
5159 		rcu_read_lock();
5160 
5161 		while (head) {
5162 			struct Qdisc *q = head;
5163 			spinlock_t *root_lock = NULL;
5164 
5165 			head = head->next_sched;
5166 
5167 			/* We need to make sure head->next_sched is read
5168 			 * before clearing __QDISC_STATE_SCHED
5169 			 */
5170 			smp_mb__before_atomic();
5171 
5172 			if (!(q->flags & TCQ_F_NOLOCK)) {
5173 				root_lock = qdisc_lock(q);
5174 				spin_lock(root_lock);
5175 			} else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5176 						     &q->state))) {
5177 				/* There is a synchronize_net() between
5178 				 * STATE_DEACTIVATED flag being set and
5179 				 * qdisc_reset()/some_qdisc_is_busy() in
5180 				 * dev_deactivate(), so we can safely bail out
5181 				 * early here to avoid data race between
5182 				 * qdisc_deactivate() and some_qdisc_is_busy()
5183 				 * for lockless qdisc.
5184 				 */
5185 				clear_bit(__QDISC_STATE_SCHED, &q->state);
5186 				continue;
5187 			}
5188 
5189 			clear_bit(__QDISC_STATE_SCHED, &q->state);
5190 			qdisc_run(q);
5191 			if (root_lock)
5192 				spin_unlock(root_lock);
5193 		}
5194 
5195 		rcu_read_unlock();
5196 	}
5197 
5198 	xfrm_dev_backlog(sd);
5199 }
5200 
5201 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5202 /* This hook is defined here for ATM LANE */
5203 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5204 			     unsigned char *addr) __read_mostly;
5205 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5206 #endif
5207 
5208 /**
5209  *	netdev_is_rx_handler_busy - check if receive handler is registered
5210  *	@dev: device to check
5211  *
5212  *	Check if a receive handler is already registered for a given device.
5213  *	Return true if there one.
5214  *
5215  *	The caller must hold the rtnl_mutex.
5216  */
5217 bool netdev_is_rx_handler_busy(struct net_device *dev)
5218 {
5219 	ASSERT_RTNL();
5220 	return dev && rtnl_dereference(dev->rx_handler);
5221 }
5222 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5223 
5224 /**
5225  *	netdev_rx_handler_register - register receive handler
5226  *	@dev: device to register a handler for
5227  *	@rx_handler: receive handler to register
5228  *	@rx_handler_data: data pointer that is used by rx handler
5229  *
5230  *	Register a receive handler for a device. This handler will then be
5231  *	called from __netif_receive_skb. A negative errno code is returned
5232  *	on a failure.
5233  *
5234  *	The caller must hold the rtnl_mutex.
5235  *
5236  *	For a general description of rx_handler, see enum rx_handler_result.
5237  */
5238 int netdev_rx_handler_register(struct net_device *dev,
5239 			       rx_handler_func_t *rx_handler,
5240 			       void *rx_handler_data)
5241 {
5242 	if (netdev_is_rx_handler_busy(dev))
5243 		return -EBUSY;
5244 
5245 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
5246 		return -EINVAL;
5247 
5248 	/* Note: rx_handler_data must be set before rx_handler */
5249 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5250 	rcu_assign_pointer(dev->rx_handler, rx_handler);
5251 
5252 	return 0;
5253 }
5254 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5255 
5256 /**
5257  *	netdev_rx_handler_unregister - unregister receive handler
5258  *	@dev: device to unregister a handler from
5259  *
5260  *	Unregister a receive handler from a device.
5261  *
5262  *	The caller must hold the rtnl_mutex.
5263  */
5264 void netdev_rx_handler_unregister(struct net_device *dev)
5265 {
5266 
5267 	ASSERT_RTNL();
5268 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5269 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5270 	 * section has a guarantee to see a non NULL rx_handler_data
5271 	 * as well.
5272 	 */
5273 	synchronize_net();
5274 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5275 }
5276 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5277 
5278 /*
5279  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5280  * the special handling of PFMEMALLOC skbs.
5281  */
5282 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5283 {
5284 	switch (skb->protocol) {
5285 	case htons(ETH_P_ARP):
5286 	case htons(ETH_P_IP):
5287 	case htons(ETH_P_IPV6):
5288 	case htons(ETH_P_8021Q):
5289 	case htons(ETH_P_8021AD):
5290 		return true;
5291 	default:
5292 		return false;
5293 	}
5294 }
5295 
5296 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5297 			     int *ret, struct net_device *orig_dev)
5298 {
5299 	if (nf_hook_ingress_active(skb)) {
5300 		int ingress_retval;
5301 
5302 		if (*pt_prev) {
5303 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5304 			*pt_prev = NULL;
5305 		}
5306 
5307 		rcu_read_lock();
5308 		ingress_retval = nf_hook_ingress(skb);
5309 		rcu_read_unlock();
5310 		return ingress_retval;
5311 	}
5312 	return 0;
5313 }
5314 
5315 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5316 				    struct packet_type **ppt_prev)
5317 {
5318 	struct packet_type *ptype, *pt_prev;
5319 	rx_handler_func_t *rx_handler;
5320 	struct sk_buff *skb = *pskb;
5321 	struct net_device *orig_dev;
5322 	bool deliver_exact = false;
5323 	int ret = NET_RX_DROP;
5324 	__be16 type;
5325 
5326 	net_timestamp_check(!READ_ONCE(netdev_tstamp_prequeue), skb);
5327 
5328 	trace_netif_receive_skb(skb);
5329 
5330 	orig_dev = skb->dev;
5331 
5332 	skb_reset_network_header(skb);
5333 	if (!skb_transport_header_was_set(skb))
5334 		skb_reset_transport_header(skb);
5335 	skb_reset_mac_len(skb);
5336 
5337 	pt_prev = NULL;
5338 
5339 another_round:
5340 	skb->skb_iif = skb->dev->ifindex;
5341 
5342 	__this_cpu_inc(softnet_data.processed);
5343 
5344 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5345 		int ret2;
5346 
5347 		migrate_disable();
5348 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5349 		migrate_enable();
5350 
5351 		if (ret2 != XDP_PASS) {
5352 			ret = NET_RX_DROP;
5353 			goto out;
5354 		}
5355 	}
5356 
5357 	if (eth_type_vlan(skb->protocol)) {
5358 		skb = skb_vlan_untag(skb);
5359 		if (unlikely(!skb))
5360 			goto out;
5361 	}
5362 
5363 	if (skb_skip_tc_classify(skb))
5364 		goto skip_classify;
5365 
5366 	if (pfmemalloc)
5367 		goto skip_taps;
5368 
5369 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
5370 		if (pt_prev)
5371 			ret = deliver_skb(skb, pt_prev, orig_dev);
5372 		pt_prev = ptype;
5373 	}
5374 
5375 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5376 		if (pt_prev)
5377 			ret = deliver_skb(skb, pt_prev, orig_dev);
5378 		pt_prev = ptype;
5379 	}
5380 
5381 skip_taps:
5382 #ifdef CONFIG_NET_INGRESS
5383 	if (static_branch_unlikely(&ingress_needed_key)) {
5384 		bool another = false;
5385 
5386 		nf_skip_egress(skb, true);
5387 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5388 					 &another);
5389 		if (another)
5390 			goto another_round;
5391 		if (!skb)
5392 			goto out;
5393 
5394 		nf_skip_egress(skb, false);
5395 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5396 			goto out;
5397 	}
5398 #endif
5399 	skb_reset_redirect(skb);
5400 skip_classify:
5401 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5402 		goto drop;
5403 
5404 	if (skb_vlan_tag_present(skb)) {
5405 		if (pt_prev) {
5406 			ret = deliver_skb(skb, pt_prev, orig_dev);
5407 			pt_prev = NULL;
5408 		}
5409 		if (vlan_do_receive(&skb))
5410 			goto another_round;
5411 		else if (unlikely(!skb))
5412 			goto out;
5413 	}
5414 
5415 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5416 	if (rx_handler) {
5417 		if (pt_prev) {
5418 			ret = deliver_skb(skb, pt_prev, orig_dev);
5419 			pt_prev = NULL;
5420 		}
5421 		switch (rx_handler(&skb)) {
5422 		case RX_HANDLER_CONSUMED:
5423 			ret = NET_RX_SUCCESS;
5424 			goto out;
5425 		case RX_HANDLER_ANOTHER:
5426 			goto another_round;
5427 		case RX_HANDLER_EXACT:
5428 			deliver_exact = true;
5429 			break;
5430 		case RX_HANDLER_PASS:
5431 			break;
5432 		default:
5433 			BUG();
5434 		}
5435 	}
5436 
5437 	if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5438 check_vlan_id:
5439 		if (skb_vlan_tag_get_id(skb)) {
5440 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5441 			 * find vlan device.
5442 			 */
5443 			skb->pkt_type = PACKET_OTHERHOST;
5444 		} else if (eth_type_vlan(skb->protocol)) {
5445 			/* Outer header is 802.1P with vlan 0, inner header is
5446 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5447 			 * not find vlan dev for vlan id 0.
5448 			 */
5449 			__vlan_hwaccel_clear_tag(skb);
5450 			skb = skb_vlan_untag(skb);
5451 			if (unlikely(!skb))
5452 				goto out;
5453 			if (vlan_do_receive(&skb))
5454 				/* After stripping off 802.1P header with vlan 0
5455 				 * vlan dev is found for inner header.
5456 				 */
5457 				goto another_round;
5458 			else if (unlikely(!skb))
5459 				goto out;
5460 			else
5461 				/* We have stripped outer 802.1P vlan 0 header.
5462 				 * But could not find vlan dev.
5463 				 * check again for vlan id to set OTHERHOST.
5464 				 */
5465 				goto check_vlan_id;
5466 		}
5467 		/* Note: we might in the future use prio bits
5468 		 * and set skb->priority like in vlan_do_receive()
5469 		 * For the time being, just ignore Priority Code Point
5470 		 */
5471 		__vlan_hwaccel_clear_tag(skb);
5472 	}
5473 
5474 	type = skb->protocol;
5475 
5476 	/* deliver only exact match when indicated */
5477 	if (likely(!deliver_exact)) {
5478 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5479 				       &ptype_base[ntohs(type) &
5480 						   PTYPE_HASH_MASK]);
5481 	}
5482 
5483 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5484 			       &orig_dev->ptype_specific);
5485 
5486 	if (unlikely(skb->dev != orig_dev)) {
5487 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5488 				       &skb->dev->ptype_specific);
5489 	}
5490 
5491 	if (pt_prev) {
5492 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5493 			goto drop;
5494 		*ppt_prev = pt_prev;
5495 	} else {
5496 drop:
5497 		if (!deliver_exact)
5498 			dev_core_stats_rx_dropped_inc(skb->dev);
5499 		else
5500 			dev_core_stats_rx_nohandler_inc(skb->dev);
5501 		kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5502 		/* Jamal, now you will not able to escape explaining
5503 		 * me how you were going to use this. :-)
5504 		 */
5505 		ret = NET_RX_DROP;
5506 	}
5507 
5508 out:
5509 	/* The invariant here is that if *ppt_prev is not NULL
5510 	 * then skb should also be non-NULL.
5511 	 *
5512 	 * Apparently *ppt_prev assignment above holds this invariant due to
5513 	 * skb dereferencing near it.
5514 	 */
5515 	*pskb = skb;
5516 	return ret;
5517 }
5518 
5519 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5520 {
5521 	struct net_device *orig_dev = skb->dev;
5522 	struct packet_type *pt_prev = NULL;
5523 	int ret;
5524 
5525 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5526 	if (pt_prev)
5527 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5528 					 skb->dev, pt_prev, orig_dev);
5529 	return ret;
5530 }
5531 
5532 /**
5533  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5534  *	@skb: buffer to process
5535  *
5536  *	More direct receive version of netif_receive_skb().  It should
5537  *	only be used by callers that have a need to skip RPS and Generic XDP.
5538  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5539  *
5540  *	This function may only be called from softirq context and interrupts
5541  *	should be enabled.
5542  *
5543  *	Return values (usually ignored):
5544  *	NET_RX_SUCCESS: no congestion
5545  *	NET_RX_DROP: packet was dropped
5546  */
5547 int netif_receive_skb_core(struct sk_buff *skb)
5548 {
5549 	int ret;
5550 
5551 	rcu_read_lock();
5552 	ret = __netif_receive_skb_one_core(skb, false);
5553 	rcu_read_unlock();
5554 
5555 	return ret;
5556 }
5557 EXPORT_SYMBOL(netif_receive_skb_core);
5558 
5559 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5560 						  struct packet_type *pt_prev,
5561 						  struct net_device *orig_dev)
5562 {
5563 	struct sk_buff *skb, *next;
5564 
5565 	if (!pt_prev)
5566 		return;
5567 	if (list_empty(head))
5568 		return;
5569 	if (pt_prev->list_func != NULL)
5570 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5571 				   ip_list_rcv, head, pt_prev, orig_dev);
5572 	else
5573 		list_for_each_entry_safe(skb, next, head, list) {
5574 			skb_list_del_init(skb);
5575 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5576 		}
5577 }
5578 
5579 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5580 {
5581 	/* Fast-path assumptions:
5582 	 * - There is no RX handler.
5583 	 * - Only one packet_type matches.
5584 	 * If either of these fails, we will end up doing some per-packet
5585 	 * processing in-line, then handling the 'last ptype' for the whole
5586 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5587 	 * because the 'last ptype' must be constant across the sublist, and all
5588 	 * other ptypes are handled per-packet.
5589 	 */
5590 	/* Current (common) ptype of sublist */
5591 	struct packet_type *pt_curr = NULL;
5592 	/* Current (common) orig_dev of sublist */
5593 	struct net_device *od_curr = NULL;
5594 	struct list_head sublist;
5595 	struct sk_buff *skb, *next;
5596 
5597 	INIT_LIST_HEAD(&sublist);
5598 	list_for_each_entry_safe(skb, next, head, list) {
5599 		struct net_device *orig_dev = skb->dev;
5600 		struct packet_type *pt_prev = NULL;
5601 
5602 		skb_list_del_init(skb);
5603 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5604 		if (!pt_prev)
5605 			continue;
5606 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5607 			/* dispatch old sublist */
5608 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5609 			/* start new sublist */
5610 			INIT_LIST_HEAD(&sublist);
5611 			pt_curr = pt_prev;
5612 			od_curr = orig_dev;
5613 		}
5614 		list_add_tail(&skb->list, &sublist);
5615 	}
5616 
5617 	/* dispatch final sublist */
5618 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5619 }
5620 
5621 static int __netif_receive_skb(struct sk_buff *skb)
5622 {
5623 	int ret;
5624 
5625 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5626 		unsigned int noreclaim_flag;
5627 
5628 		/*
5629 		 * PFMEMALLOC skbs are special, they should
5630 		 * - be delivered to SOCK_MEMALLOC sockets only
5631 		 * - stay away from userspace
5632 		 * - have bounded memory usage
5633 		 *
5634 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5635 		 * context down to all allocation sites.
5636 		 */
5637 		noreclaim_flag = memalloc_noreclaim_save();
5638 		ret = __netif_receive_skb_one_core(skb, true);
5639 		memalloc_noreclaim_restore(noreclaim_flag);
5640 	} else
5641 		ret = __netif_receive_skb_one_core(skb, false);
5642 
5643 	return ret;
5644 }
5645 
5646 static void __netif_receive_skb_list(struct list_head *head)
5647 {
5648 	unsigned long noreclaim_flag = 0;
5649 	struct sk_buff *skb, *next;
5650 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5651 
5652 	list_for_each_entry_safe(skb, next, head, list) {
5653 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5654 			struct list_head sublist;
5655 
5656 			/* Handle the previous sublist */
5657 			list_cut_before(&sublist, head, &skb->list);
5658 			if (!list_empty(&sublist))
5659 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5660 			pfmemalloc = !pfmemalloc;
5661 			/* See comments in __netif_receive_skb */
5662 			if (pfmemalloc)
5663 				noreclaim_flag = memalloc_noreclaim_save();
5664 			else
5665 				memalloc_noreclaim_restore(noreclaim_flag);
5666 		}
5667 	}
5668 	/* Handle the remaining sublist */
5669 	if (!list_empty(head))
5670 		__netif_receive_skb_list_core(head, pfmemalloc);
5671 	/* Restore pflags */
5672 	if (pfmemalloc)
5673 		memalloc_noreclaim_restore(noreclaim_flag);
5674 }
5675 
5676 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5677 {
5678 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5679 	struct bpf_prog *new = xdp->prog;
5680 	int ret = 0;
5681 
5682 	switch (xdp->command) {
5683 	case XDP_SETUP_PROG:
5684 		rcu_assign_pointer(dev->xdp_prog, new);
5685 		if (old)
5686 			bpf_prog_put(old);
5687 
5688 		if (old && !new) {
5689 			static_branch_dec(&generic_xdp_needed_key);
5690 		} else if (new && !old) {
5691 			static_branch_inc(&generic_xdp_needed_key);
5692 			dev_disable_lro(dev);
5693 			dev_disable_gro_hw(dev);
5694 		}
5695 		break;
5696 
5697 	default:
5698 		ret = -EINVAL;
5699 		break;
5700 	}
5701 
5702 	return ret;
5703 }
5704 
5705 static int netif_receive_skb_internal(struct sk_buff *skb)
5706 {
5707 	int ret;
5708 
5709 	net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5710 
5711 	if (skb_defer_rx_timestamp(skb))
5712 		return NET_RX_SUCCESS;
5713 
5714 	rcu_read_lock();
5715 #ifdef CONFIG_RPS
5716 	if (static_branch_unlikely(&rps_needed)) {
5717 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5718 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5719 
5720 		if (cpu >= 0) {
5721 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5722 			rcu_read_unlock();
5723 			return ret;
5724 		}
5725 	}
5726 #endif
5727 	ret = __netif_receive_skb(skb);
5728 	rcu_read_unlock();
5729 	return ret;
5730 }
5731 
5732 void netif_receive_skb_list_internal(struct list_head *head)
5733 {
5734 	struct sk_buff *skb, *next;
5735 	struct list_head sublist;
5736 
5737 	INIT_LIST_HEAD(&sublist);
5738 	list_for_each_entry_safe(skb, next, head, list) {
5739 		net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5740 		skb_list_del_init(skb);
5741 		if (!skb_defer_rx_timestamp(skb))
5742 			list_add_tail(&skb->list, &sublist);
5743 	}
5744 	list_splice_init(&sublist, head);
5745 
5746 	rcu_read_lock();
5747 #ifdef CONFIG_RPS
5748 	if (static_branch_unlikely(&rps_needed)) {
5749 		list_for_each_entry_safe(skb, next, head, list) {
5750 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5751 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5752 
5753 			if (cpu >= 0) {
5754 				/* Will be handled, remove from list */
5755 				skb_list_del_init(skb);
5756 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5757 			}
5758 		}
5759 	}
5760 #endif
5761 	__netif_receive_skb_list(head);
5762 	rcu_read_unlock();
5763 }
5764 
5765 /**
5766  *	netif_receive_skb - process receive buffer from network
5767  *	@skb: buffer to process
5768  *
5769  *	netif_receive_skb() is the main receive data processing function.
5770  *	It always succeeds. The buffer may be dropped during processing
5771  *	for congestion control or by the protocol layers.
5772  *
5773  *	This function may only be called from softirq context and interrupts
5774  *	should be enabled.
5775  *
5776  *	Return values (usually ignored):
5777  *	NET_RX_SUCCESS: no congestion
5778  *	NET_RX_DROP: packet was dropped
5779  */
5780 int netif_receive_skb(struct sk_buff *skb)
5781 {
5782 	int ret;
5783 
5784 	trace_netif_receive_skb_entry(skb);
5785 
5786 	ret = netif_receive_skb_internal(skb);
5787 	trace_netif_receive_skb_exit(ret);
5788 
5789 	return ret;
5790 }
5791 EXPORT_SYMBOL(netif_receive_skb);
5792 
5793 /**
5794  *	netif_receive_skb_list - process many receive buffers from network
5795  *	@head: list of skbs to process.
5796  *
5797  *	Since return value of netif_receive_skb() is normally ignored, and
5798  *	wouldn't be meaningful for a list, this function returns void.
5799  *
5800  *	This function may only be called from softirq context and interrupts
5801  *	should be enabled.
5802  */
5803 void netif_receive_skb_list(struct list_head *head)
5804 {
5805 	struct sk_buff *skb;
5806 
5807 	if (list_empty(head))
5808 		return;
5809 	if (trace_netif_receive_skb_list_entry_enabled()) {
5810 		list_for_each_entry(skb, head, list)
5811 			trace_netif_receive_skb_list_entry(skb);
5812 	}
5813 	netif_receive_skb_list_internal(head);
5814 	trace_netif_receive_skb_list_exit(0);
5815 }
5816 EXPORT_SYMBOL(netif_receive_skb_list);
5817 
5818 static DEFINE_PER_CPU(struct work_struct, flush_works);
5819 
5820 /* Network device is going away, flush any packets still pending */
5821 static void flush_backlog(struct work_struct *work)
5822 {
5823 	struct sk_buff *skb, *tmp;
5824 	struct softnet_data *sd;
5825 
5826 	local_bh_disable();
5827 	sd = this_cpu_ptr(&softnet_data);
5828 
5829 	rps_lock_irq_disable(sd);
5830 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5831 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5832 			__skb_unlink(skb, &sd->input_pkt_queue);
5833 			dev_kfree_skb_irq(skb);
5834 			input_queue_head_incr(sd);
5835 		}
5836 	}
5837 	rps_unlock_irq_enable(sd);
5838 
5839 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5840 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5841 			__skb_unlink(skb, &sd->process_queue);
5842 			kfree_skb(skb);
5843 			input_queue_head_incr(sd);
5844 		}
5845 	}
5846 	local_bh_enable();
5847 }
5848 
5849 static bool flush_required(int cpu)
5850 {
5851 #if IS_ENABLED(CONFIG_RPS)
5852 	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5853 	bool do_flush;
5854 
5855 	rps_lock_irq_disable(sd);
5856 
5857 	/* as insertion into process_queue happens with the rps lock held,
5858 	 * process_queue access may race only with dequeue
5859 	 */
5860 	do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5861 		   !skb_queue_empty_lockless(&sd->process_queue);
5862 	rps_unlock_irq_enable(sd);
5863 
5864 	return do_flush;
5865 #endif
5866 	/* without RPS we can't safely check input_pkt_queue: during a
5867 	 * concurrent remote skb_queue_splice() we can detect as empty both
5868 	 * input_pkt_queue and process_queue even if the latter could end-up
5869 	 * containing a lot of packets.
5870 	 */
5871 	return true;
5872 }
5873 
5874 static void flush_all_backlogs(void)
5875 {
5876 	static cpumask_t flush_cpus;
5877 	unsigned int cpu;
5878 
5879 	/* since we are under rtnl lock protection we can use static data
5880 	 * for the cpumask and avoid allocating on stack the possibly
5881 	 * large mask
5882 	 */
5883 	ASSERT_RTNL();
5884 
5885 	cpus_read_lock();
5886 
5887 	cpumask_clear(&flush_cpus);
5888 	for_each_online_cpu(cpu) {
5889 		if (flush_required(cpu)) {
5890 			queue_work_on(cpu, system_highpri_wq,
5891 				      per_cpu_ptr(&flush_works, cpu));
5892 			cpumask_set_cpu(cpu, &flush_cpus);
5893 		}
5894 	}
5895 
5896 	/* we can have in flight packet[s] on the cpus we are not flushing,
5897 	 * synchronize_net() in unregister_netdevice_many() will take care of
5898 	 * them
5899 	 */
5900 	for_each_cpu(cpu, &flush_cpus)
5901 		flush_work(per_cpu_ptr(&flush_works, cpu));
5902 
5903 	cpus_read_unlock();
5904 }
5905 
5906 static void net_rps_send_ipi(struct softnet_data *remsd)
5907 {
5908 #ifdef CONFIG_RPS
5909 	while (remsd) {
5910 		struct softnet_data *next = remsd->rps_ipi_next;
5911 
5912 		if (cpu_online(remsd->cpu))
5913 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
5914 		remsd = next;
5915 	}
5916 #endif
5917 }
5918 
5919 /*
5920  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5921  * Note: called with local irq disabled, but exits with local irq enabled.
5922  */
5923 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5924 {
5925 #ifdef CONFIG_RPS
5926 	struct softnet_data *remsd = sd->rps_ipi_list;
5927 
5928 	if (remsd) {
5929 		sd->rps_ipi_list = NULL;
5930 
5931 		local_irq_enable();
5932 
5933 		/* Send pending IPI's to kick RPS processing on remote cpus. */
5934 		net_rps_send_ipi(remsd);
5935 	} else
5936 #endif
5937 		local_irq_enable();
5938 }
5939 
5940 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5941 {
5942 #ifdef CONFIG_RPS
5943 	return sd->rps_ipi_list != NULL;
5944 #else
5945 	return false;
5946 #endif
5947 }
5948 
5949 static int process_backlog(struct napi_struct *napi, int quota)
5950 {
5951 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5952 	bool again = true;
5953 	int work = 0;
5954 
5955 	/* Check if we have pending ipi, its better to send them now,
5956 	 * not waiting net_rx_action() end.
5957 	 */
5958 	if (sd_has_rps_ipi_waiting(sd)) {
5959 		local_irq_disable();
5960 		net_rps_action_and_irq_enable(sd);
5961 	}
5962 
5963 	napi->weight = READ_ONCE(dev_rx_weight);
5964 	while (again) {
5965 		struct sk_buff *skb;
5966 
5967 		while ((skb = __skb_dequeue(&sd->process_queue))) {
5968 			rcu_read_lock();
5969 			__netif_receive_skb(skb);
5970 			rcu_read_unlock();
5971 			input_queue_head_incr(sd);
5972 			if (++work >= quota)
5973 				return work;
5974 
5975 		}
5976 
5977 		rps_lock_irq_disable(sd);
5978 		if (skb_queue_empty(&sd->input_pkt_queue)) {
5979 			/*
5980 			 * Inline a custom version of __napi_complete().
5981 			 * only current cpu owns and manipulates this napi,
5982 			 * and NAPI_STATE_SCHED is the only possible flag set
5983 			 * on backlog.
5984 			 * We can use a plain write instead of clear_bit(),
5985 			 * and we dont need an smp_mb() memory barrier.
5986 			 */
5987 			napi->state = 0;
5988 			again = false;
5989 		} else {
5990 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
5991 						   &sd->process_queue);
5992 		}
5993 		rps_unlock_irq_enable(sd);
5994 	}
5995 
5996 	return work;
5997 }
5998 
5999 /**
6000  * __napi_schedule - schedule for receive
6001  * @n: entry to schedule
6002  *
6003  * The entry's receive function will be scheduled to run.
6004  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6005  */
6006 void __napi_schedule(struct napi_struct *n)
6007 {
6008 	unsigned long flags;
6009 
6010 	local_irq_save(flags);
6011 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6012 	local_irq_restore(flags);
6013 }
6014 EXPORT_SYMBOL(__napi_schedule);
6015 
6016 /**
6017  *	napi_schedule_prep - check if napi can be scheduled
6018  *	@n: napi context
6019  *
6020  * Test if NAPI routine is already running, and if not mark
6021  * it as running.  This is used as a condition variable to
6022  * insure only one NAPI poll instance runs.  We also make
6023  * sure there is no pending NAPI disable.
6024  */
6025 bool napi_schedule_prep(struct napi_struct *n)
6026 {
6027 	unsigned long new, val = READ_ONCE(n->state);
6028 
6029 	do {
6030 		if (unlikely(val & NAPIF_STATE_DISABLE))
6031 			return false;
6032 		new = val | NAPIF_STATE_SCHED;
6033 
6034 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
6035 		 * This was suggested by Alexander Duyck, as compiler
6036 		 * emits better code than :
6037 		 * if (val & NAPIF_STATE_SCHED)
6038 		 *     new |= NAPIF_STATE_MISSED;
6039 		 */
6040 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6041 						   NAPIF_STATE_MISSED;
6042 	} while (!try_cmpxchg(&n->state, &val, new));
6043 
6044 	return !(val & NAPIF_STATE_SCHED);
6045 }
6046 EXPORT_SYMBOL(napi_schedule_prep);
6047 
6048 /**
6049  * __napi_schedule_irqoff - schedule for receive
6050  * @n: entry to schedule
6051  *
6052  * Variant of __napi_schedule() assuming hard irqs are masked.
6053  *
6054  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6055  * because the interrupt disabled assumption might not be true
6056  * due to force-threaded interrupts and spinlock substitution.
6057  */
6058 void __napi_schedule_irqoff(struct napi_struct *n)
6059 {
6060 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6061 		____napi_schedule(this_cpu_ptr(&softnet_data), n);
6062 	else
6063 		__napi_schedule(n);
6064 }
6065 EXPORT_SYMBOL(__napi_schedule_irqoff);
6066 
6067 bool napi_complete_done(struct napi_struct *n, int work_done)
6068 {
6069 	unsigned long flags, val, new, timeout = 0;
6070 	bool ret = true;
6071 
6072 	/*
6073 	 * 1) Don't let napi dequeue from the cpu poll list
6074 	 *    just in case its running on a different cpu.
6075 	 * 2) If we are busy polling, do nothing here, we have
6076 	 *    the guarantee we will be called later.
6077 	 */
6078 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6079 				 NAPIF_STATE_IN_BUSY_POLL)))
6080 		return false;
6081 
6082 	if (work_done) {
6083 		if (n->gro_bitmask)
6084 			timeout = READ_ONCE(n->dev->gro_flush_timeout);
6085 		n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6086 	}
6087 	if (n->defer_hard_irqs_count > 0) {
6088 		n->defer_hard_irqs_count--;
6089 		timeout = READ_ONCE(n->dev->gro_flush_timeout);
6090 		if (timeout)
6091 			ret = false;
6092 	}
6093 	if (n->gro_bitmask) {
6094 		/* When the NAPI instance uses a timeout and keeps postponing
6095 		 * it, we need to bound somehow the time packets are kept in
6096 		 * the GRO layer
6097 		 */
6098 		napi_gro_flush(n, !!timeout);
6099 	}
6100 
6101 	gro_normal_list(n);
6102 
6103 	if (unlikely(!list_empty(&n->poll_list))) {
6104 		/* If n->poll_list is not empty, we need to mask irqs */
6105 		local_irq_save(flags);
6106 		list_del_init(&n->poll_list);
6107 		local_irq_restore(flags);
6108 	}
6109 	WRITE_ONCE(n->list_owner, -1);
6110 
6111 	val = READ_ONCE(n->state);
6112 	do {
6113 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6114 
6115 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6116 			      NAPIF_STATE_SCHED_THREADED |
6117 			      NAPIF_STATE_PREFER_BUSY_POLL);
6118 
6119 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6120 		 * because we will call napi->poll() one more time.
6121 		 * This C code was suggested by Alexander Duyck to help gcc.
6122 		 */
6123 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6124 						    NAPIF_STATE_SCHED;
6125 	} while (!try_cmpxchg(&n->state, &val, new));
6126 
6127 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6128 		__napi_schedule(n);
6129 		return false;
6130 	}
6131 
6132 	if (timeout)
6133 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
6134 			      HRTIMER_MODE_REL_PINNED);
6135 	return ret;
6136 }
6137 EXPORT_SYMBOL(napi_complete_done);
6138 
6139 /* must be called under rcu_read_lock(), as we dont take a reference */
6140 static struct napi_struct *napi_by_id(unsigned int napi_id)
6141 {
6142 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6143 	struct napi_struct *napi;
6144 
6145 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6146 		if (napi->napi_id == napi_id)
6147 			return napi;
6148 
6149 	return NULL;
6150 }
6151 
6152 #if defined(CONFIG_NET_RX_BUSY_POLL)
6153 
6154 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6155 {
6156 	if (!skip_schedule) {
6157 		gro_normal_list(napi);
6158 		__napi_schedule(napi);
6159 		return;
6160 	}
6161 
6162 	if (napi->gro_bitmask) {
6163 		/* flush too old packets
6164 		 * If HZ < 1000, flush all packets.
6165 		 */
6166 		napi_gro_flush(napi, HZ >= 1000);
6167 	}
6168 
6169 	gro_normal_list(napi);
6170 	clear_bit(NAPI_STATE_SCHED, &napi->state);
6171 }
6172 
6173 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6174 			   u16 budget)
6175 {
6176 	bool skip_schedule = false;
6177 	unsigned long timeout;
6178 	int rc;
6179 
6180 	/* Busy polling means there is a high chance device driver hard irq
6181 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6182 	 * set in napi_schedule_prep().
6183 	 * Since we are about to call napi->poll() once more, we can safely
6184 	 * clear NAPI_STATE_MISSED.
6185 	 *
6186 	 * Note: x86 could use a single "lock and ..." instruction
6187 	 * to perform these two clear_bit()
6188 	 */
6189 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6190 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6191 
6192 	local_bh_disable();
6193 
6194 	if (prefer_busy_poll) {
6195 		napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6196 		timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6197 		if (napi->defer_hard_irqs_count && timeout) {
6198 			hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6199 			skip_schedule = true;
6200 		}
6201 	}
6202 
6203 	/* All we really want here is to re-enable device interrupts.
6204 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6205 	 */
6206 	rc = napi->poll(napi, budget);
6207 	/* We can't gro_normal_list() here, because napi->poll() might have
6208 	 * rearmed the napi (napi_complete_done()) in which case it could
6209 	 * already be running on another CPU.
6210 	 */
6211 	trace_napi_poll(napi, rc, budget);
6212 	netpoll_poll_unlock(have_poll_lock);
6213 	if (rc == budget)
6214 		__busy_poll_stop(napi, skip_schedule);
6215 	local_bh_enable();
6216 }
6217 
6218 void napi_busy_loop(unsigned int napi_id,
6219 		    bool (*loop_end)(void *, unsigned long),
6220 		    void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6221 {
6222 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6223 	int (*napi_poll)(struct napi_struct *napi, int budget);
6224 	void *have_poll_lock = NULL;
6225 	struct napi_struct *napi;
6226 
6227 restart:
6228 	napi_poll = NULL;
6229 
6230 	rcu_read_lock();
6231 
6232 	napi = napi_by_id(napi_id);
6233 	if (!napi)
6234 		goto out;
6235 
6236 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6237 		preempt_disable();
6238 	for (;;) {
6239 		int work = 0;
6240 
6241 		local_bh_disable();
6242 		if (!napi_poll) {
6243 			unsigned long val = READ_ONCE(napi->state);
6244 
6245 			/* If multiple threads are competing for this napi,
6246 			 * we avoid dirtying napi->state as much as we can.
6247 			 */
6248 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6249 				   NAPIF_STATE_IN_BUSY_POLL)) {
6250 				if (prefer_busy_poll)
6251 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6252 				goto count;
6253 			}
6254 			if (cmpxchg(&napi->state, val,
6255 				    val | NAPIF_STATE_IN_BUSY_POLL |
6256 					  NAPIF_STATE_SCHED) != val) {
6257 				if (prefer_busy_poll)
6258 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6259 				goto count;
6260 			}
6261 			have_poll_lock = netpoll_poll_lock(napi);
6262 			napi_poll = napi->poll;
6263 		}
6264 		work = napi_poll(napi, budget);
6265 		trace_napi_poll(napi, work, budget);
6266 		gro_normal_list(napi);
6267 count:
6268 		if (work > 0)
6269 			__NET_ADD_STATS(dev_net(napi->dev),
6270 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6271 		local_bh_enable();
6272 
6273 		if (!loop_end || loop_end(loop_end_arg, start_time))
6274 			break;
6275 
6276 		if (unlikely(need_resched())) {
6277 			if (napi_poll)
6278 				busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6279 			if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6280 				preempt_enable();
6281 			rcu_read_unlock();
6282 			cond_resched();
6283 			if (loop_end(loop_end_arg, start_time))
6284 				return;
6285 			goto restart;
6286 		}
6287 		cpu_relax();
6288 	}
6289 	if (napi_poll)
6290 		busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6291 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6292 		preempt_enable();
6293 out:
6294 	rcu_read_unlock();
6295 }
6296 EXPORT_SYMBOL(napi_busy_loop);
6297 
6298 #endif /* CONFIG_NET_RX_BUSY_POLL */
6299 
6300 static void napi_hash_add(struct napi_struct *napi)
6301 {
6302 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6303 		return;
6304 
6305 	spin_lock(&napi_hash_lock);
6306 
6307 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6308 	do {
6309 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6310 			napi_gen_id = MIN_NAPI_ID;
6311 	} while (napi_by_id(napi_gen_id));
6312 	napi->napi_id = napi_gen_id;
6313 
6314 	hlist_add_head_rcu(&napi->napi_hash_node,
6315 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6316 
6317 	spin_unlock(&napi_hash_lock);
6318 }
6319 
6320 /* Warning : caller is responsible to make sure rcu grace period
6321  * is respected before freeing memory containing @napi
6322  */
6323 static void napi_hash_del(struct napi_struct *napi)
6324 {
6325 	spin_lock(&napi_hash_lock);
6326 
6327 	hlist_del_init_rcu(&napi->napi_hash_node);
6328 
6329 	spin_unlock(&napi_hash_lock);
6330 }
6331 
6332 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6333 {
6334 	struct napi_struct *napi;
6335 
6336 	napi = container_of(timer, struct napi_struct, timer);
6337 
6338 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6339 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6340 	 */
6341 	if (!napi_disable_pending(napi) &&
6342 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6343 		clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6344 		__napi_schedule_irqoff(napi);
6345 	}
6346 
6347 	return HRTIMER_NORESTART;
6348 }
6349 
6350 static void init_gro_hash(struct napi_struct *napi)
6351 {
6352 	int i;
6353 
6354 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6355 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6356 		napi->gro_hash[i].count = 0;
6357 	}
6358 	napi->gro_bitmask = 0;
6359 }
6360 
6361 int dev_set_threaded(struct net_device *dev, bool threaded)
6362 {
6363 	struct napi_struct *napi;
6364 	int err = 0;
6365 
6366 	if (dev->threaded == threaded)
6367 		return 0;
6368 
6369 	if (threaded) {
6370 		list_for_each_entry(napi, &dev->napi_list, dev_list) {
6371 			if (!napi->thread) {
6372 				err = napi_kthread_create(napi);
6373 				if (err) {
6374 					threaded = false;
6375 					break;
6376 				}
6377 			}
6378 		}
6379 	}
6380 
6381 	dev->threaded = threaded;
6382 
6383 	/* Make sure kthread is created before THREADED bit
6384 	 * is set.
6385 	 */
6386 	smp_mb__before_atomic();
6387 
6388 	/* Setting/unsetting threaded mode on a napi might not immediately
6389 	 * take effect, if the current napi instance is actively being
6390 	 * polled. In this case, the switch between threaded mode and
6391 	 * softirq mode will happen in the next round of napi_schedule().
6392 	 * This should not cause hiccups/stalls to the live traffic.
6393 	 */
6394 	list_for_each_entry(napi, &dev->napi_list, dev_list)
6395 		assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
6396 
6397 	return err;
6398 }
6399 EXPORT_SYMBOL(dev_set_threaded);
6400 
6401 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
6402 			   int (*poll)(struct napi_struct *, int), int weight)
6403 {
6404 	if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6405 		return;
6406 
6407 	INIT_LIST_HEAD(&napi->poll_list);
6408 	INIT_HLIST_NODE(&napi->napi_hash_node);
6409 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6410 	napi->timer.function = napi_watchdog;
6411 	init_gro_hash(napi);
6412 	napi->skb = NULL;
6413 	INIT_LIST_HEAD(&napi->rx_list);
6414 	napi->rx_count = 0;
6415 	napi->poll = poll;
6416 	if (weight > NAPI_POLL_WEIGHT)
6417 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6418 				weight);
6419 	napi->weight = weight;
6420 	napi->dev = dev;
6421 #ifdef CONFIG_NETPOLL
6422 	napi->poll_owner = -1;
6423 #endif
6424 	napi->list_owner = -1;
6425 	set_bit(NAPI_STATE_SCHED, &napi->state);
6426 	set_bit(NAPI_STATE_NPSVC, &napi->state);
6427 	list_add_rcu(&napi->dev_list, &dev->napi_list);
6428 	napi_hash_add(napi);
6429 	napi_get_frags_check(napi);
6430 	/* Create kthread for this napi if dev->threaded is set.
6431 	 * Clear dev->threaded if kthread creation failed so that
6432 	 * threaded mode will not be enabled in napi_enable().
6433 	 */
6434 	if (dev->threaded && napi_kthread_create(napi))
6435 		dev->threaded = 0;
6436 }
6437 EXPORT_SYMBOL(netif_napi_add_weight);
6438 
6439 void napi_disable(struct napi_struct *n)
6440 {
6441 	unsigned long val, new;
6442 
6443 	might_sleep();
6444 	set_bit(NAPI_STATE_DISABLE, &n->state);
6445 
6446 	val = READ_ONCE(n->state);
6447 	do {
6448 		while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6449 			usleep_range(20, 200);
6450 			val = READ_ONCE(n->state);
6451 		}
6452 
6453 		new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6454 		new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6455 	} while (!try_cmpxchg(&n->state, &val, new));
6456 
6457 	hrtimer_cancel(&n->timer);
6458 
6459 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6460 }
6461 EXPORT_SYMBOL(napi_disable);
6462 
6463 /**
6464  *	napi_enable - enable NAPI scheduling
6465  *	@n: NAPI context
6466  *
6467  * Resume NAPI from being scheduled on this context.
6468  * Must be paired with napi_disable.
6469  */
6470 void napi_enable(struct napi_struct *n)
6471 {
6472 	unsigned long new, val = READ_ONCE(n->state);
6473 
6474 	do {
6475 		BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6476 
6477 		new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6478 		if (n->dev->threaded && n->thread)
6479 			new |= NAPIF_STATE_THREADED;
6480 	} while (!try_cmpxchg(&n->state, &val, new));
6481 }
6482 EXPORT_SYMBOL(napi_enable);
6483 
6484 static void flush_gro_hash(struct napi_struct *napi)
6485 {
6486 	int i;
6487 
6488 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6489 		struct sk_buff *skb, *n;
6490 
6491 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6492 			kfree_skb(skb);
6493 		napi->gro_hash[i].count = 0;
6494 	}
6495 }
6496 
6497 /* Must be called in process context */
6498 void __netif_napi_del(struct napi_struct *napi)
6499 {
6500 	if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6501 		return;
6502 
6503 	napi_hash_del(napi);
6504 	list_del_rcu(&napi->dev_list);
6505 	napi_free_frags(napi);
6506 
6507 	flush_gro_hash(napi);
6508 	napi->gro_bitmask = 0;
6509 
6510 	if (napi->thread) {
6511 		kthread_stop(napi->thread);
6512 		napi->thread = NULL;
6513 	}
6514 }
6515 EXPORT_SYMBOL(__netif_napi_del);
6516 
6517 static int __napi_poll(struct napi_struct *n, bool *repoll)
6518 {
6519 	int work, weight;
6520 
6521 	weight = n->weight;
6522 
6523 	/* This NAPI_STATE_SCHED test is for avoiding a race
6524 	 * with netpoll's poll_napi().  Only the entity which
6525 	 * obtains the lock and sees NAPI_STATE_SCHED set will
6526 	 * actually make the ->poll() call.  Therefore we avoid
6527 	 * accidentally calling ->poll() when NAPI is not scheduled.
6528 	 */
6529 	work = 0;
6530 	if (napi_is_scheduled(n)) {
6531 		work = n->poll(n, weight);
6532 		trace_napi_poll(n, work, weight);
6533 	}
6534 
6535 	if (unlikely(work > weight))
6536 		netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6537 				n->poll, work, weight);
6538 
6539 	if (likely(work < weight))
6540 		return work;
6541 
6542 	/* Drivers must not modify the NAPI state if they
6543 	 * consume the entire weight.  In such cases this code
6544 	 * still "owns" the NAPI instance and therefore can
6545 	 * move the instance around on the list at-will.
6546 	 */
6547 	if (unlikely(napi_disable_pending(n))) {
6548 		napi_complete(n);
6549 		return work;
6550 	}
6551 
6552 	/* The NAPI context has more processing work, but busy-polling
6553 	 * is preferred. Exit early.
6554 	 */
6555 	if (napi_prefer_busy_poll(n)) {
6556 		if (napi_complete_done(n, work)) {
6557 			/* If timeout is not set, we need to make sure
6558 			 * that the NAPI is re-scheduled.
6559 			 */
6560 			napi_schedule(n);
6561 		}
6562 		return work;
6563 	}
6564 
6565 	if (n->gro_bitmask) {
6566 		/* flush too old packets
6567 		 * If HZ < 1000, flush all packets.
6568 		 */
6569 		napi_gro_flush(n, HZ >= 1000);
6570 	}
6571 
6572 	gro_normal_list(n);
6573 
6574 	/* Some drivers may have called napi_schedule
6575 	 * prior to exhausting their budget.
6576 	 */
6577 	if (unlikely(!list_empty(&n->poll_list))) {
6578 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6579 			     n->dev ? n->dev->name : "backlog");
6580 		return work;
6581 	}
6582 
6583 	*repoll = true;
6584 
6585 	return work;
6586 }
6587 
6588 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6589 {
6590 	bool do_repoll = false;
6591 	void *have;
6592 	int work;
6593 
6594 	list_del_init(&n->poll_list);
6595 
6596 	have = netpoll_poll_lock(n);
6597 
6598 	work = __napi_poll(n, &do_repoll);
6599 
6600 	if (do_repoll)
6601 		list_add_tail(&n->poll_list, repoll);
6602 
6603 	netpoll_poll_unlock(have);
6604 
6605 	return work;
6606 }
6607 
6608 static int napi_thread_wait(struct napi_struct *napi)
6609 {
6610 	bool woken = false;
6611 
6612 	set_current_state(TASK_INTERRUPTIBLE);
6613 
6614 	while (!kthread_should_stop()) {
6615 		/* Testing SCHED_THREADED bit here to make sure the current
6616 		 * kthread owns this napi and could poll on this napi.
6617 		 * Testing SCHED bit is not enough because SCHED bit might be
6618 		 * set by some other busy poll thread or by napi_disable().
6619 		 */
6620 		if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
6621 			WARN_ON(!list_empty(&napi->poll_list));
6622 			__set_current_state(TASK_RUNNING);
6623 			return 0;
6624 		}
6625 
6626 		schedule();
6627 		/* woken being true indicates this thread owns this napi. */
6628 		woken = true;
6629 		set_current_state(TASK_INTERRUPTIBLE);
6630 	}
6631 	__set_current_state(TASK_RUNNING);
6632 
6633 	return -1;
6634 }
6635 
6636 static void skb_defer_free_flush(struct softnet_data *sd)
6637 {
6638 	struct sk_buff *skb, *next;
6639 
6640 	/* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6641 	if (!READ_ONCE(sd->defer_list))
6642 		return;
6643 
6644 	spin_lock(&sd->defer_lock);
6645 	skb = sd->defer_list;
6646 	sd->defer_list = NULL;
6647 	sd->defer_count = 0;
6648 	spin_unlock(&sd->defer_lock);
6649 
6650 	while (skb != NULL) {
6651 		next = skb->next;
6652 		napi_consume_skb(skb, 1);
6653 		skb = next;
6654 	}
6655 }
6656 
6657 static int napi_threaded_poll(void *data)
6658 {
6659 	struct napi_struct *napi = data;
6660 	struct softnet_data *sd;
6661 	void *have;
6662 
6663 	while (!napi_thread_wait(napi)) {
6664 		for (;;) {
6665 			bool repoll = false;
6666 
6667 			local_bh_disable();
6668 			sd = this_cpu_ptr(&softnet_data);
6669 			sd->in_napi_threaded_poll = true;
6670 
6671 			have = netpoll_poll_lock(napi);
6672 			__napi_poll(napi, &repoll);
6673 			netpoll_poll_unlock(have);
6674 
6675 			sd->in_napi_threaded_poll = false;
6676 			barrier();
6677 
6678 			if (sd_has_rps_ipi_waiting(sd)) {
6679 				local_irq_disable();
6680 				net_rps_action_and_irq_enable(sd);
6681 			}
6682 			skb_defer_free_flush(sd);
6683 			local_bh_enable();
6684 
6685 			if (!repoll)
6686 				break;
6687 
6688 			cond_resched();
6689 		}
6690 	}
6691 	return 0;
6692 }
6693 
6694 static __latent_entropy void net_rx_action(struct softirq_action *h)
6695 {
6696 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6697 	unsigned long time_limit = jiffies +
6698 		usecs_to_jiffies(READ_ONCE(netdev_budget_usecs));
6699 	int budget = READ_ONCE(netdev_budget);
6700 	LIST_HEAD(list);
6701 	LIST_HEAD(repoll);
6702 
6703 start:
6704 	sd->in_net_rx_action = true;
6705 	local_irq_disable();
6706 	list_splice_init(&sd->poll_list, &list);
6707 	local_irq_enable();
6708 
6709 	for (;;) {
6710 		struct napi_struct *n;
6711 
6712 		skb_defer_free_flush(sd);
6713 
6714 		if (list_empty(&list)) {
6715 			if (list_empty(&repoll)) {
6716 				sd->in_net_rx_action = false;
6717 				barrier();
6718 				/* We need to check if ____napi_schedule()
6719 				 * had refilled poll_list while
6720 				 * sd->in_net_rx_action was true.
6721 				 */
6722 				if (!list_empty(&sd->poll_list))
6723 					goto start;
6724 				if (!sd_has_rps_ipi_waiting(sd))
6725 					goto end;
6726 			}
6727 			break;
6728 		}
6729 
6730 		n = list_first_entry(&list, struct napi_struct, poll_list);
6731 		budget -= napi_poll(n, &repoll);
6732 
6733 		/* If softirq window is exhausted then punt.
6734 		 * Allow this to run for 2 jiffies since which will allow
6735 		 * an average latency of 1.5/HZ.
6736 		 */
6737 		if (unlikely(budget <= 0 ||
6738 			     time_after_eq(jiffies, time_limit))) {
6739 			sd->time_squeeze++;
6740 			break;
6741 		}
6742 	}
6743 
6744 	local_irq_disable();
6745 
6746 	list_splice_tail_init(&sd->poll_list, &list);
6747 	list_splice_tail(&repoll, &list);
6748 	list_splice(&list, &sd->poll_list);
6749 	if (!list_empty(&sd->poll_list))
6750 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
6751 	else
6752 		sd->in_net_rx_action = false;
6753 
6754 	net_rps_action_and_irq_enable(sd);
6755 end:;
6756 }
6757 
6758 struct netdev_adjacent {
6759 	struct net_device *dev;
6760 	netdevice_tracker dev_tracker;
6761 
6762 	/* upper master flag, there can only be one master device per list */
6763 	bool master;
6764 
6765 	/* lookup ignore flag */
6766 	bool ignore;
6767 
6768 	/* counter for the number of times this device was added to us */
6769 	u16 ref_nr;
6770 
6771 	/* private field for the users */
6772 	void *private;
6773 
6774 	struct list_head list;
6775 	struct rcu_head rcu;
6776 };
6777 
6778 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6779 						 struct list_head *adj_list)
6780 {
6781 	struct netdev_adjacent *adj;
6782 
6783 	list_for_each_entry(adj, adj_list, list) {
6784 		if (adj->dev == adj_dev)
6785 			return adj;
6786 	}
6787 	return NULL;
6788 }
6789 
6790 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6791 				    struct netdev_nested_priv *priv)
6792 {
6793 	struct net_device *dev = (struct net_device *)priv->data;
6794 
6795 	return upper_dev == dev;
6796 }
6797 
6798 /**
6799  * netdev_has_upper_dev - Check if device is linked to an upper device
6800  * @dev: device
6801  * @upper_dev: upper device to check
6802  *
6803  * Find out if a device is linked to specified upper device and return true
6804  * in case it is. Note that this checks only immediate upper device,
6805  * not through a complete stack of devices. The caller must hold the RTNL lock.
6806  */
6807 bool netdev_has_upper_dev(struct net_device *dev,
6808 			  struct net_device *upper_dev)
6809 {
6810 	struct netdev_nested_priv priv = {
6811 		.data = (void *)upper_dev,
6812 	};
6813 
6814 	ASSERT_RTNL();
6815 
6816 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6817 					     &priv);
6818 }
6819 EXPORT_SYMBOL(netdev_has_upper_dev);
6820 
6821 /**
6822  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
6823  * @dev: device
6824  * @upper_dev: upper device to check
6825  *
6826  * Find out if a device is linked to specified upper device and return true
6827  * in case it is. Note that this checks the entire upper device chain.
6828  * The caller must hold rcu lock.
6829  */
6830 
6831 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6832 				  struct net_device *upper_dev)
6833 {
6834 	struct netdev_nested_priv priv = {
6835 		.data = (void *)upper_dev,
6836 	};
6837 
6838 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6839 					       &priv);
6840 }
6841 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6842 
6843 /**
6844  * netdev_has_any_upper_dev - Check if device is linked to some device
6845  * @dev: device
6846  *
6847  * Find out if a device is linked to an upper device and return true in case
6848  * it is. The caller must hold the RTNL lock.
6849  */
6850 bool netdev_has_any_upper_dev(struct net_device *dev)
6851 {
6852 	ASSERT_RTNL();
6853 
6854 	return !list_empty(&dev->adj_list.upper);
6855 }
6856 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6857 
6858 /**
6859  * netdev_master_upper_dev_get - Get master upper device
6860  * @dev: device
6861  *
6862  * Find a master upper device and return pointer to it or NULL in case
6863  * it's not there. The caller must hold the RTNL lock.
6864  */
6865 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6866 {
6867 	struct netdev_adjacent *upper;
6868 
6869 	ASSERT_RTNL();
6870 
6871 	if (list_empty(&dev->adj_list.upper))
6872 		return NULL;
6873 
6874 	upper = list_first_entry(&dev->adj_list.upper,
6875 				 struct netdev_adjacent, list);
6876 	if (likely(upper->master))
6877 		return upper->dev;
6878 	return NULL;
6879 }
6880 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6881 
6882 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6883 {
6884 	struct netdev_adjacent *upper;
6885 
6886 	ASSERT_RTNL();
6887 
6888 	if (list_empty(&dev->adj_list.upper))
6889 		return NULL;
6890 
6891 	upper = list_first_entry(&dev->adj_list.upper,
6892 				 struct netdev_adjacent, list);
6893 	if (likely(upper->master) && !upper->ignore)
6894 		return upper->dev;
6895 	return NULL;
6896 }
6897 
6898 /**
6899  * netdev_has_any_lower_dev - Check if device is linked to some device
6900  * @dev: device
6901  *
6902  * Find out if a device is linked to a lower device and return true in case
6903  * it is. The caller must hold the RTNL lock.
6904  */
6905 static bool netdev_has_any_lower_dev(struct net_device *dev)
6906 {
6907 	ASSERT_RTNL();
6908 
6909 	return !list_empty(&dev->adj_list.lower);
6910 }
6911 
6912 void *netdev_adjacent_get_private(struct list_head *adj_list)
6913 {
6914 	struct netdev_adjacent *adj;
6915 
6916 	adj = list_entry(adj_list, struct netdev_adjacent, list);
6917 
6918 	return adj->private;
6919 }
6920 EXPORT_SYMBOL(netdev_adjacent_get_private);
6921 
6922 /**
6923  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6924  * @dev: device
6925  * @iter: list_head ** of the current position
6926  *
6927  * Gets the next device from the dev's upper list, starting from iter
6928  * position. The caller must hold RCU read lock.
6929  */
6930 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6931 						 struct list_head **iter)
6932 {
6933 	struct netdev_adjacent *upper;
6934 
6935 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6936 
6937 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6938 
6939 	if (&upper->list == &dev->adj_list.upper)
6940 		return NULL;
6941 
6942 	*iter = &upper->list;
6943 
6944 	return upper->dev;
6945 }
6946 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6947 
6948 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6949 						  struct list_head **iter,
6950 						  bool *ignore)
6951 {
6952 	struct netdev_adjacent *upper;
6953 
6954 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6955 
6956 	if (&upper->list == &dev->adj_list.upper)
6957 		return NULL;
6958 
6959 	*iter = &upper->list;
6960 	*ignore = upper->ignore;
6961 
6962 	return upper->dev;
6963 }
6964 
6965 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6966 						    struct list_head **iter)
6967 {
6968 	struct netdev_adjacent *upper;
6969 
6970 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6971 
6972 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6973 
6974 	if (&upper->list == &dev->adj_list.upper)
6975 		return NULL;
6976 
6977 	*iter = &upper->list;
6978 
6979 	return upper->dev;
6980 }
6981 
6982 static int __netdev_walk_all_upper_dev(struct net_device *dev,
6983 				       int (*fn)(struct net_device *dev,
6984 					 struct netdev_nested_priv *priv),
6985 				       struct netdev_nested_priv *priv)
6986 {
6987 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6988 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6989 	int ret, cur = 0;
6990 	bool ignore;
6991 
6992 	now = dev;
6993 	iter = &dev->adj_list.upper;
6994 
6995 	while (1) {
6996 		if (now != dev) {
6997 			ret = fn(now, priv);
6998 			if (ret)
6999 				return ret;
7000 		}
7001 
7002 		next = NULL;
7003 		while (1) {
7004 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
7005 			if (!udev)
7006 				break;
7007 			if (ignore)
7008 				continue;
7009 
7010 			next = udev;
7011 			niter = &udev->adj_list.upper;
7012 			dev_stack[cur] = now;
7013 			iter_stack[cur++] = iter;
7014 			break;
7015 		}
7016 
7017 		if (!next) {
7018 			if (!cur)
7019 				return 0;
7020 			next = dev_stack[--cur];
7021 			niter = iter_stack[cur];
7022 		}
7023 
7024 		now = next;
7025 		iter = niter;
7026 	}
7027 
7028 	return 0;
7029 }
7030 
7031 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7032 				  int (*fn)(struct net_device *dev,
7033 					    struct netdev_nested_priv *priv),
7034 				  struct netdev_nested_priv *priv)
7035 {
7036 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7037 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7038 	int ret, cur = 0;
7039 
7040 	now = dev;
7041 	iter = &dev->adj_list.upper;
7042 
7043 	while (1) {
7044 		if (now != dev) {
7045 			ret = fn(now, priv);
7046 			if (ret)
7047 				return ret;
7048 		}
7049 
7050 		next = NULL;
7051 		while (1) {
7052 			udev = netdev_next_upper_dev_rcu(now, &iter);
7053 			if (!udev)
7054 				break;
7055 
7056 			next = udev;
7057 			niter = &udev->adj_list.upper;
7058 			dev_stack[cur] = now;
7059 			iter_stack[cur++] = iter;
7060 			break;
7061 		}
7062 
7063 		if (!next) {
7064 			if (!cur)
7065 				return 0;
7066 			next = dev_stack[--cur];
7067 			niter = iter_stack[cur];
7068 		}
7069 
7070 		now = next;
7071 		iter = niter;
7072 	}
7073 
7074 	return 0;
7075 }
7076 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7077 
7078 static bool __netdev_has_upper_dev(struct net_device *dev,
7079 				   struct net_device *upper_dev)
7080 {
7081 	struct netdev_nested_priv priv = {
7082 		.flags = 0,
7083 		.data = (void *)upper_dev,
7084 	};
7085 
7086 	ASSERT_RTNL();
7087 
7088 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7089 					   &priv);
7090 }
7091 
7092 /**
7093  * netdev_lower_get_next_private - Get the next ->private from the
7094  *				   lower neighbour list
7095  * @dev: device
7096  * @iter: list_head ** of the current position
7097  *
7098  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7099  * list, starting from iter position. The caller must hold either hold the
7100  * RTNL lock or its own locking that guarantees that the neighbour lower
7101  * list will remain unchanged.
7102  */
7103 void *netdev_lower_get_next_private(struct net_device *dev,
7104 				    struct list_head **iter)
7105 {
7106 	struct netdev_adjacent *lower;
7107 
7108 	lower = list_entry(*iter, struct netdev_adjacent, list);
7109 
7110 	if (&lower->list == &dev->adj_list.lower)
7111 		return NULL;
7112 
7113 	*iter = lower->list.next;
7114 
7115 	return lower->private;
7116 }
7117 EXPORT_SYMBOL(netdev_lower_get_next_private);
7118 
7119 /**
7120  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7121  *				       lower neighbour list, RCU
7122  *				       variant
7123  * @dev: device
7124  * @iter: list_head ** of the current position
7125  *
7126  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7127  * list, starting from iter position. The caller must hold RCU read lock.
7128  */
7129 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7130 					struct list_head **iter)
7131 {
7132 	struct netdev_adjacent *lower;
7133 
7134 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7135 
7136 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7137 
7138 	if (&lower->list == &dev->adj_list.lower)
7139 		return NULL;
7140 
7141 	*iter = &lower->list;
7142 
7143 	return lower->private;
7144 }
7145 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7146 
7147 /**
7148  * netdev_lower_get_next - Get the next device from the lower neighbour
7149  *                         list
7150  * @dev: device
7151  * @iter: list_head ** of the current position
7152  *
7153  * Gets the next netdev_adjacent from the dev's lower neighbour
7154  * list, starting from iter position. The caller must hold RTNL lock or
7155  * its own locking that guarantees that the neighbour lower
7156  * list will remain unchanged.
7157  */
7158 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7159 {
7160 	struct netdev_adjacent *lower;
7161 
7162 	lower = list_entry(*iter, struct netdev_adjacent, list);
7163 
7164 	if (&lower->list == &dev->adj_list.lower)
7165 		return NULL;
7166 
7167 	*iter = lower->list.next;
7168 
7169 	return lower->dev;
7170 }
7171 EXPORT_SYMBOL(netdev_lower_get_next);
7172 
7173 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7174 						struct list_head **iter)
7175 {
7176 	struct netdev_adjacent *lower;
7177 
7178 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7179 
7180 	if (&lower->list == &dev->adj_list.lower)
7181 		return NULL;
7182 
7183 	*iter = &lower->list;
7184 
7185 	return lower->dev;
7186 }
7187 
7188 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7189 						  struct list_head **iter,
7190 						  bool *ignore)
7191 {
7192 	struct netdev_adjacent *lower;
7193 
7194 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7195 
7196 	if (&lower->list == &dev->adj_list.lower)
7197 		return NULL;
7198 
7199 	*iter = &lower->list;
7200 	*ignore = lower->ignore;
7201 
7202 	return lower->dev;
7203 }
7204 
7205 int netdev_walk_all_lower_dev(struct net_device *dev,
7206 			      int (*fn)(struct net_device *dev,
7207 					struct netdev_nested_priv *priv),
7208 			      struct netdev_nested_priv *priv)
7209 {
7210 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7211 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7212 	int ret, cur = 0;
7213 
7214 	now = dev;
7215 	iter = &dev->adj_list.lower;
7216 
7217 	while (1) {
7218 		if (now != dev) {
7219 			ret = fn(now, priv);
7220 			if (ret)
7221 				return ret;
7222 		}
7223 
7224 		next = NULL;
7225 		while (1) {
7226 			ldev = netdev_next_lower_dev(now, &iter);
7227 			if (!ldev)
7228 				break;
7229 
7230 			next = ldev;
7231 			niter = &ldev->adj_list.lower;
7232 			dev_stack[cur] = now;
7233 			iter_stack[cur++] = iter;
7234 			break;
7235 		}
7236 
7237 		if (!next) {
7238 			if (!cur)
7239 				return 0;
7240 			next = dev_stack[--cur];
7241 			niter = iter_stack[cur];
7242 		}
7243 
7244 		now = next;
7245 		iter = niter;
7246 	}
7247 
7248 	return 0;
7249 }
7250 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7251 
7252 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7253 				       int (*fn)(struct net_device *dev,
7254 					 struct netdev_nested_priv *priv),
7255 				       struct netdev_nested_priv *priv)
7256 {
7257 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7258 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7259 	int ret, cur = 0;
7260 	bool ignore;
7261 
7262 	now = dev;
7263 	iter = &dev->adj_list.lower;
7264 
7265 	while (1) {
7266 		if (now != dev) {
7267 			ret = fn(now, priv);
7268 			if (ret)
7269 				return ret;
7270 		}
7271 
7272 		next = NULL;
7273 		while (1) {
7274 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7275 			if (!ldev)
7276 				break;
7277 			if (ignore)
7278 				continue;
7279 
7280 			next = ldev;
7281 			niter = &ldev->adj_list.lower;
7282 			dev_stack[cur] = now;
7283 			iter_stack[cur++] = iter;
7284 			break;
7285 		}
7286 
7287 		if (!next) {
7288 			if (!cur)
7289 				return 0;
7290 			next = dev_stack[--cur];
7291 			niter = iter_stack[cur];
7292 		}
7293 
7294 		now = next;
7295 		iter = niter;
7296 	}
7297 
7298 	return 0;
7299 }
7300 
7301 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7302 					     struct list_head **iter)
7303 {
7304 	struct netdev_adjacent *lower;
7305 
7306 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7307 	if (&lower->list == &dev->adj_list.lower)
7308 		return NULL;
7309 
7310 	*iter = &lower->list;
7311 
7312 	return lower->dev;
7313 }
7314 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7315 
7316 static u8 __netdev_upper_depth(struct net_device *dev)
7317 {
7318 	struct net_device *udev;
7319 	struct list_head *iter;
7320 	u8 max_depth = 0;
7321 	bool ignore;
7322 
7323 	for (iter = &dev->adj_list.upper,
7324 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7325 	     udev;
7326 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7327 		if (ignore)
7328 			continue;
7329 		if (max_depth < udev->upper_level)
7330 			max_depth = udev->upper_level;
7331 	}
7332 
7333 	return max_depth;
7334 }
7335 
7336 static u8 __netdev_lower_depth(struct net_device *dev)
7337 {
7338 	struct net_device *ldev;
7339 	struct list_head *iter;
7340 	u8 max_depth = 0;
7341 	bool ignore;
7342 
7343 	for (iter = &dev->adj_list.lower,
7344 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7345 	     ldev;
7346 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7347 		if (ignore)
7348 			continue;
7349 		if (max_depth < ldev->lower_level)
7350 			max_depth = ldev->lower_level;
7351 	}
7352 
7353 	return max_depth;
7354 }
7355 
7356 static int __netdev_update_upper_level(struct net_device *dev,
7357 				       struct netdev_nested_priv *__unused)
7358 {
7359 	dev->upper_level = __netdev_upper_depth(dev) + 1;
7360 	return 0;
7361 }
7362 
7363 #ifdef CONFIG_LOCKDEP
7364 static LIST_HEAD(net_unlink_list);
7365 
7366 static void net_unlink_todo(struct net_device *dev)
7367 {
7368 	if (list_empty(&dev->unlink_list))
7369 		list_add_tail(&dev->unlink_list, &net_unlink_list);
7370 }
7371 #endif
7372 
7373 static int __netdev_update_lower_level(struct net_device *dev,
7374 				       struct netdev_nested_priv *priv)
7375 {
7376 	dev->lower_level = __netdev_lower_depth(dev) + 1;
7377 
7378 #ifdef CONFIG_LOCKDEP
7379 	if (!priv)
7380 		return 0;
7381 
7382 	if (priv->flags & NESTED_SYNC_IMM)
7383 		dev->nested_level = dev->lower_level - 1;
7384 	if (priv->flags & NESTED_SYNC_TODO)
7385 		net_unlink_todo(dev);
7386 #endif
7387 	return 0;
7388 }
7389 
7390 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7391 				  int (*fn)(struct net_device *dev,
7392 					    struct netdev_nested_priv *priv),
7393 				  struct netdev_nested_priv *priv)
7394 {
7395 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7396 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7397 	int ret, cur = 0;
7398 
7399 	now = dev;
7400 	iter = &dev->adj_list.lower;
7401 
7402 	while (1) {
7403 		if (now != dev) {
7404 			ret = fn(now, priv);
7405 			if (ret)
7406 				return ret;
7407 		}
7408 
7409 		next = NULL;
7410 		while (1) {
7411 			ldev = netdev_next_lower_dev_rcu(now, &iter);
7412 			if (!ldev)
7413 				break;
7414 
7415 			next = ldev;
7416 			niter = &ldev->adj_list.lower;
7417 			dev_stack[cur] = now;
7418 			iter_stack[cur++] = iter;
7419 			break;
7420 		}
7421 
7422 		if (!next) {
7423 			if (!cur)
7424 				return 0;
7425 			next = dev_stack[--cur];
7426 			niter = iter_stack[cur];
7427 		}
7428 
7429 		now = next;
7430 		iter = niter;
7431 	}
7432 
7433 	return 0;
7434 }
7435 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7436 
7437 /**
7438  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7439  *				       lower neighbour list, RCU
7440  *				       variant
7441  * @dev: device
7442  *
7443  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7444  * list. The caller must hold RCU read lock.
7445  */
7446 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7447 {
7448 	struct netdev_adjacent *lower;
7449 
7450 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
7451 			struct netdev_adjacent, list);
7452 	if (lower)
7453 		return lower->private;
7454 	return NULL;
7455 }
7456 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7457 
7458 /**
7459  * netdev_master_upper_dev_get_rcu - Get master upper device
7460  * @dev: device
7461  *
7462  * Find a master upper device and return pointer to it or NULL in case
7463  * it's not there. The caller must hold the RCU read lock.
7464  */
7465 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7466 {
7467 	struct netdev_adjacent *upper;
7468 
7469 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
7470 				       struct netdev_adjacent, list);
7471 	if (upper && likely(upper->master))
7472 		return upper->dev;
7473 	return NULL;
7474 }
7475 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7476 
7477 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7478 			      struct net_device *adj_dev,
7479 			      struct list_head *dev_list)
7480 {
7481 	char linkname[IFNAMSIZ+7];
7482 
7483 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7484 		"upper_%s" : "lower_%s", adj_dev->name);
7485 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7486 				 linkname);
7487 }
7488 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7489 			       char *name,
7490 			       struct list_head *dev_list)
7491 {
7492 	char linkname[IFNAMSIZ+7];
7493 
7494 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7495 		"upper_%s" : "lower_%s", name);
7496 	sysfs_remove_link(&(dev->dev.kobj), linkname);
7497 }
7498 
7499 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7500 						 struct net_device *adj_dev,
7501 						 struct list_head *dev_list)
7502 {
7503 	return (dev_list == &dev->adj_list.upper ||
7504 		dev_list == &dev->adj_list.lower) &&
7505 		net_eq(dev_net(dev), dev_net(adj_dev));
7506 }
7507 
7508 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7509 					struct net_device *adj_dev,
7510 					struct list_head *dev_list,
7511 					void *private, bool master)
7512 {
7513 	struct netdev_adjacent *adj;
7514 	int ret;
7515 
7516 	adj = __netdev_find_adj(adj_dev, dev_list);
7517 
7518 	if (adj) {
7519 		adj->ref_nr += 1;
7520 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7521 			 dev->name, adj_dev->name, adj->ref_nr);
7522 
7523 		return 0;
7524 	}
7525 
7526 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7527 	if (!adj)
7528 		return -ENOMEM;
7529 
7530 	adj->dev = adj_dev;
7531 	adj->master = master;
7532 	adj->ref_nr = 1;
7533 	adj->private = private;
7534 	adj->ignore = false;
7535 	netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
7536 
7537 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7538 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7539 
7540 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7541 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7542 		if (ret)
7543 			goto free_adj;
7544 	}
7545 
7546 	/* Ensure that master link is always the first item in list. */
7547 	if (master) {
7548 		ret = sysfs_create_link(&(dev->dev.kobj),
7549 					&(adj_dev->dev.kobj), "master");
7550 		if (ret)
7551 			goto remove_symlinks;
7552 
7553 		list_add_rcu(&adj->list, dev_list);
7554 	} else {
7555 		list_add_tail_rcu(&adj->list, dev_list);
7556 	}
7557 
7558 	return 0;
7559 
7560 remove_symlinks:
7561 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7562 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7563 free_adj:
7564 	netdev_put(adj_dev, &adj->dev_tracker);
7565 	kfree(adj);
7566 
7567 	return ret;
7568 }
7569 
7570 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7571 					 struct net_device *adj_dev,
7572 					 u16 ref_nr,
7573 					 struct list_head *dev_list)
7574 {
7575 	struct netdev_adjacent *adj;
7576 
7577 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7578 		 dev->name, adj_dev->name, ref_nr);
7579 
7580 	adj = __netdev_find_adj(adj_dev, dev_list);
7581 
7582 	if (!adj) {
7583 		pr_err("Adjacency does not exist for device %s from %s\n",
7584 		       dev->name, adj_dev->name);
7585 		WARN_ON(1);
7586 		return;
7587 	}
7588 
7589 	if (adj->ref_nr > ref_nr) {
7590 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7591 			 dev->name, adj_dev->name, ref_nr,
7592 			 adj->ref_nr - ref_nr);
7593 		adj->ref_nr -= ref_nr;
7594 		return;
7595 	}
7596 
7597 	if (adj->master)
7598 		sysfs_remove_link(&(dev->dev.kobj), "master");
7599 
7600 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7601 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7602 
7603 	list_del_rcu(&adj->list);
7604 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7605 		 adj_dev->name, dev->name, adj_dev->name);
7606 	netdev_put(adj_dev, &adj->dev_tracker);
7607 	kfree_rcu(adj, rcu);
7608 }
7609 
7610 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7611 					    struct net_device *upper_dev,
7612 					    struct list_head *up_list,
7613 					    struct list_head *down_list,
7614 					    void *private, bool master)
7615 {
7616 	int ret;
7617 
7618 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7619 					   private, master);
7620 	if (ret)
7621 		return ret;
7622 
7623 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7624 					   private, false);
7625 	if (ret) {
7626 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7627 		return ret;
7628 	}
7629 
7630 	return 0;
7631 }
7632 
7633 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7634 					       struct net_device *upper_dev,
7635 					       u16 ref_nr,
7636 					       struct list_head *up_list,
7637 					       struct list_head *down_list)
7638 {
7639 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7640 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7641 }
7642 
7643 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7644 						struct net_device *upper_dev,
7645 						void *private, bool master)
7646 {
7647 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7648 						&dev->adj_list.upper,
7649 						&upper_dev->adj_list.lower,
7650 						private, master);
7651 }
7652 
7653 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7654 						   struct net_device *upper_dev)
7655 {
7656 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7657 					   &dev->adj_list.upper,
7658 					   &upper_dev->adj_list.lower);
7659 }
7660 
7661 static int __netdev_upper_dev_link(struct net_device *dev,
7662 				   struct net_device *upper_dev, bool master,
7663 				   void *upper_priv, void *upper_info,
7664 				   struct netdev_nested_priv *priv,
7665 				   struct netlink_ext_ack *extack)
7666 {
7667 	struct netdev_notifier_changeupper_info changeupper_info = {
7668 		.info = {
7669 			.dev = dev,
7670 			.extack = extack,
7671 		},
7672 		.upper_dev = upper_dev,
7673 		.master = master,
7674 		.linking = true,
7675 		.upper_info = upper_info,
7676 	};
7677 	struct net_device *master_dev;
7678 	int ret = 0;
7679 
7680 	ASSERT_RTNL();
7681 
7682 	if (dev == upper_dev)
7683 		return -EBUSY;
7684 
7685 	/* To prevent loops, check if dev is not upper device to upper_dev. */
7686 	if (__netdev_has_upper_dev(upper_dev, dev))
7687 		return -EBUSY;
7688 
7689 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7690 		return -EMLINK;
7691 
7692 	if (!master) {
7693 		if (__netdev_has_upper_dev(dev, upper_dev))
7694 			return -EEXIST;
7695 	} else {
7696 		master_dev = __netdev_master_upper_dev_get(dev);
7697 		if (master_dev)
7698 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
7699 	}
7700 
7701 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7702 					    &changeupper_info.info);
7703 	ret = notifier_to_errno(ret);
7704 	if (ret)
7705 		return ret;
7706 
7707 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7708 						   master);
7709 	if (ret)
7710 		return ret;
7711 
7712 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7713 					    &changeupper_info.info);
7714 	ret = notifier_to_errno(ret);
7715 	if (ret)
7716 		goto rollback;
7717 
7718 	__netdev_update_upper_level(dev, NULL);
7719 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7720 
7721 	__netdev_update_lower_level(upper_dev, priv);
7722 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7723 				    priv);
7724 
7725 	return 0;
7726 
7727 rollback:
7728 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7729 
7730 	return ret;
7731 }
7732 
7733 /**
7734  * netdev_upper_dev_link - Add a link to the upper device
7735  * @dev: device
7736  * @upper_dev: new upper device
7737  * @extack: netlink extended ack
7738  *
7739  * Adds a link to device which is upper to this one. The caller must hold
7740  * the RTNL lock. On a failure a negative errno code is returned.
7741  * On success the reference counts are adjusted and the function
7742  * returns zero.
7743  */
7744 int netdev_upper_dev_link(struct net_device *dev,
7745 			  struct net_device *upper_dev,
7746 			  struct netlink_ext_ack *extack)
7747 {
7748 	struct netdev_nested_priv priv = {
7749 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7750 		.data = NULL,
7751 	};
7752 
7753 	return __netdev_upper_dev_link(dev, upper_dev, false,
7754 				       NULL, NULL, &priv, extack);
7755 }
7756 EXPORT_SYMBOL(netdev_upper_dev_link);
7757 
7758 /**
7759  * netdev_master_upper_dev_link - Add a master link to the upper device
7760  * @dev: device
7761  * @upper_dev: new upper device
7762  * @upper_priv: upper device private
7763  * @upper_info: upper info to be passed down via notifier
7764  * @extack: netlink extended ack
7765  *
7766  * Adds a link to device which is upper to this one. In this case, only
7767  * one master upper device can be linked, although other non-master devices
7768  * might be linked as well. The caller must hold the RTNL lock.
7769  * On a failure a negative errno code is returned. On success the reference
7770  * counts are adjusted and the function returns zero.
7771  */
7772 int netdev_master_upper_dev_link(struct net_device *dev,
7773 				 struct net_device *upper_dev,
7774 				 void *upper_priv, void *upper_info,
7775 				 struct netlink_ext_ack *extack)
7776 {
7777 	struct netdev_nested_priv priv = {
7778 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7779 		.data = NULL,
7780 	};
7781 
7782 	return __netdev_upper_dev_link(dev, upper_dev, true,
7783 				       upper_priv, upper_info, &priv, extack);
7784 }
7785 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7786 
7787 static void __netdev_upper_dev_unlink(struct net_device *dev,
7788 				      struct net_device *upper_dev,
7789 				      struct netdev_nested_priv *priv)
7790 {
7791 	struct netdev_notifier_changeupper_info changeupper_info = {
7792 		.info = {
7793 			.dev = dev,
7794 		},
7795 		.upper_dev = upper_dev,
7796 		.linking = false,
7797 	};
7798 
7799 	ASSERT_RTNL();
7800 
7801 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7802 
7803 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7804 				      &changeupper_info.info);
7805 
7806 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7807 
7808 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7809 				      &changeupper_info.info);
7810 
7811 	__netdev_update_upper_level(dev, NULL);
7812 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7813 
7814 	__netdev_update_lower_level(upper_dev, priv);
7815 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7816 				    priv);
7817 }
7818 
7819 /**
7820  * netdev_upper_dev_unlink - Removes a link to upper device
7821  * @dev: device
7822  * @upper_dev: new upper device
7823  *
7824  * Removes a link to device which is upper to this one. The caller must hold
7825  * the RTNL lock.
7826  */
7827 void netdev_upper_dev_unlink(struct net_device *dev,
7828 			     struct net_device *upper_dev)
7829 {
7830 	struct netdev_nested_priv priv = {
7831 		.flags = NESTED_SYNC_TODO,
7832 		.data = NULL,
7833 	};
7834 
7835 	__netdev_upper_dev_unlink(dev, upper_dev, &priv);
7836 }
7837 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7838 
7839 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7840 				      struct net_device *lower_dev,
7841 				      bool val)
7842 {
7843 	struct netdev_adjacent *adj;
7844 
7845 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7846 	if (adj)
7847 		adj->ignore = val;
7848 
7849 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7850 	if (adj)
7851 		adj->ignore = val;
7852 }
7853 
7854 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7855 					struct net_device *lower_dev)
7856 {
7857 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7858 }
7859 
7860 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7861 				       struct net_device *lower_dev)
7862 {
7863 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7864 }
7865 
7866 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7867 				   struct net_device *new_dev,
7868 				   struct net_device *dev,
7869 				   struct netlink_ext_ack *extack)
7870 {
7871 	struct netdev_nested_priv priv = {
7872 		.flags = 0,
7873 		.data = NULL,
7874 	};
7875 	int err;
7876 
7877 	if (!new_dev)
7878 		return 0;
7879 
7880 	if (old_dev && new_dev != old_dev)
7881 		netdev_adjacent_dev_disable(dev, old_dev);
7882 	err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
7883 				      extack);
7884 	if (err) {
7885 		if (old_dev && new_dev != old_dev)
7886 			netdev_adjacent_dev_enable(dev, old_dev);
7887 		return err;
7888 	}
7889 
7890 	return 0;
7891 }
7892 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7893 
7894 void netdev_adjacent_change_commit(struct net_device *old_dev,
7895 				   struct net_device *new_dev,
7896 				   struct net_device *dev)
7897 {
7898 	struct netdev_nested_priv priv = {
7899 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7900 		.data = NULL,
7901 	};
7902 
7903 	if (!new_dev || !old_dev)
7904 		return;
7905 
7906 	if (new_dev == old_dev)
7907 		return;
7908 
7909 	netdev_adjacent_dev_enable(dev, old_dev);
7910 	__netdev_upper_dev_unlink(old_dev, dev, &priv);
7911 }
7912 EXPORT_SYMBOL(netdev_adjacent_change_commit);
7913 
7914 void netdev_adjacent_change_abort(struct net_device *old_dev,
7915 				  struct net_device *new_dev,
7916 				  struct net_device *dev)
7917 {
7918 	struct netdev_nested_priv priv = {
7919 		.flags = 0,
7920 		.data = NULL,
7921 	};
7922 
7923 	if (!new_dev)
7924 		return;
7925 
7926 	if (old_dev && new_dev != old_dev)
7927 		netdev_adjacent_dev_enable(dev, old_dev);
7928 
7929 	__netdev_upper_dev_unlink(new_dev, dev, &priv);
7930 }
7931 EXPORT_SYMBOL(netdev_adjacent_change_abort);
7932 
7933 /**
7934  * netdev_bonding_info_change - Dispatch event about slave change
7935  * @dev: device
7936  * @bonding_info: info to dispatch
7937  *
7938  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7939  * The caller must hold the RTNL lock.
7940  */
7941 void netdev_bonding_info_change(struct net_device *dev,
7942 				struct netdev_bonding_info *bonding_info)
7943 {
7944 	struct netdev_notifier_bonding_info info = {
7945 		.info.dev = dev,
7946 	};
7947 
7948 	memcpy(&info.bonding_info, bonding_info,
7949 	       sizeof(struct netdev_bonding_info));
7950 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7951 				      &info.info);
7952 }
7953 EXPORT_SYMBOL(netdev_bonding_info_change);
7954 
7955 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
7956 					   struct netlink_ext_ack *extack)
7957 {
7958 	struct netdev_notifier_offload_xstats_info info = {
7959 		.info.dev = dev,
7960 		.info.extack = extack,
7961 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
7962 	};
7963 	int err;
7964 	int rc;
7965 
7966 	dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
7967 					 GFP_KERNEL);
7968 	if (!dev->offload_xstats_l3)
7969 		return -ENOMEM;
7970 
7971 	rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
7972 						  NETDEV_OFFLOAD_XSTATS_DISABLE,
7973 						  &info.info);
7974 	err = notifier_to_errno(rc);
7975 	if (err)
7976 		goto free_stats;
7977 
7978 	return 0;
7979 
7980 free_stats:
7981 	kfree(dev->offload_xstats_l3);
7982 	dev->offload_xstats_l3 = NULL;
7983 	return err;
7984 }
7985 
7986 int netdev_offload_xstats_enable(struct net_device *dev,
7987 				 enum netdev_offload_xstats_type type,
7988 				 struct netlink_ext_ack *extack)
7989 {
7990 	ASSERT_RTNL();
7991 
7992 	if (netdev_offload_xstats_enabled(dev, type))
7993 		return -EALREADY;
7994 
7995 	switch (type) {
7996 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7997 		return netdev_offload_xstats_enable_l3(dev, extack);
7998 	}
7999 
8000 	WARN_ON(1);
8001 	return -EINVAL;
8002 }
8003 EXPORT_SYMBOL(netdev_offload_xstats_enable);
8004 
8005 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
8006 {
8007 	struct netdev_notifier_offload_xstats_info info = {
8008 		.info.dev = dev,
8009 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8010 	};
8011 
8012 	call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
8013 				      &info.info);
8014 	kfree(dev->offload_xstats_l3);
8015 	dev->offload_xstats_l3 = NULL;
8016 }
8017 
8018 int netdev_offload_xstats_disable(struct net_device *dev,
8019 				  enum netdev_offload_xstats_type type)
8020 {
8021 	ASSERT_RTNL();
8022 
8023 	if (!netdev_offload_xstats_enabled(dev, type))
8024 		return -EALREADY;
8025 
8026 	switch (type) {
8027 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8028 		netdev_offload_xstats_disable_l3(dev);
8029 		return 0;
8030 	}
8031 
8032 	WARN_ON(1);
8033 	return -EINVAL;
8034 }
8035 EXPORT_SYMBOL(netdev_offload_xstats_disable);
8036 
8037 static void netdev_offload_xstats_disable_all(struct net_device *dev)
8038 {
8039 	netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
8040 }
8041 
8042 static struct rtnl_hw_stats64 *
8043 netdev_offload_xstats_get_ptr(const struct net_device *dev,
8044 			      enum netdev_offload_xstats_type type)
8045 {
8046 	switch (type) {
8047 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8048 		return dev->offload_xstats_l3;
8049 	}
8050 
8051 	WARN_ON(1);
8052 	return NULL;
8053 }
8054 
8055 bool netdev_offload_xstats_enabled(const struct net_device *dev,
8056 				   enum netdev_offload_xstats_type type)
8057 {
8058 	ASSERT_RTNL();
8059 
8060 	return netdev_offload_xstats_get_ptr(dev, type);
8061 }
8062 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
8063 
8064 struct netdev_notifier_offload_xstats_ru {
8065 	bool used;
8066 };
8067 
8068 struct netdev_notifier_offload_xstats_rd {
8069 	struct rtnl_hw_stats64 stats;
8070 	bool used;
8071 };
8072 
8073 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8074 				  const struct rtnl_hw_stats64 *src)
8075 {
8076 	dest->rx_packets	  += src->rx_packets;
8077 	dest->tx_packets	  += src->tx_packets;
8078 	dest->rx_bytes		  += src->rx_bytes;
8079 	dest->tx_bytes		  += src->tx_bytes;
8080 	dest->rx_errors		  += src->rx_errors;
8081 	dest->tx_errors		  += src->tx_errors;
8082 	dest->rx_dropped	  += src->rx_dropped;
8083 	dest->tx_dropped	  += src->tx_dropped;
8084 	dest->multicast		  += src->multicast;
8085 }
8086 
8087 static int netdev_offload_xstats_get_used(struct net_device *dev,
8088 					  enum netdev_offload_xstats_type type,
8089 					  bool *p_used,
8090 					  struct netlink_ext_ack *extack)
8091 {
8092 	struct netdev_notifier_offload_xstats_ru report_used = {};
8093 	struct netdev_notifier_offload_xstats_info info = {
8094 		.info.dev = dev,
8095 		.info.extack = extack,
8096 		.type = type,
8097 		.report_used = &report_used,
8098 	};
8099 	int rc;
8100 
8101 	WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8102 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8103 					   &info.info);
8104 	*p_used = report_used.used;
8105 	return notifier_to_errno(rc);
8106 }
8107 
8108 static int netdev_offload_xstats_get_stats(struct net_device *dev,
8109 					   enum netdev_offload_xstats_type type,
8110 					   struct rtnl_hw_stats64 *p_stats,
8111 					   bool *p_used,
8112 					   struct netlink_ext_ack *extack)
8113 {
8114 	struct netdev_notifier_offload_xstats_rd report_delta = {};
8115 	struct netdev_notifier_offload_xstats_info info = {
8116 		.info.dev = dev,
8117 		.info.extack = extack,
8118 		.type = type,
8119 		.report_delta = &report_delta,
8120 	};
8121 	struct rtnl_hw_stats64 *stats;
8122 	int rc;
8123 
8124 	stats = netdev_offload_xstats_get_ptr(dev, type);
8125 	if (WARN_ON(!stats))
8126 		return -EINVAL;
8127 
8128 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8129 					   &info.info);
8130 
8131 	/* Cache whatever we got, even if there was an error, otherwise the
8132 	 * successful stats retrievals would get lost.
8133 	 */
8134 	netdev_hw_stats64_add(stats, &report_delta.stats);
8135 
8136 	if (p_stats)
8137 		*p_stats = *stats;
8138 	*p_used = report_delta.used;
8139 
8140 	return notifier_to_errno(rc);
8141 }
8142 
8143 int netdev_offload_xstats_get(struct net_device *dev,
8144 			      enum netdev_offload_xstats_type type,
8145 			      struct rtnl_hw_stats64 *p_stats, bool *p_used,
8146 			      struct netlink_ext_ack *extack)
8147 {
8148 	ASSERT_RTNL();
8149 
8150 	if (p_stats)
8151 		return netdev_offload_xstats_get_stats(dev, type, p_stats,
8152 						       p_used, extack);
8153 	else
8154 		return netdev_offload_xstats_get_used(dev, type, p_used,
8155 						      extack);
8156 }
8157 EXPORT_SYMBOL(netdev_offload_xstats_get);
8158 
8159 void
8160 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8161 				   const struct rtnl_hw_stats64 *stats)
8162 {
8163 	report_delta->used = true;
8164 	netdev_hw_stats64_add(&report_delta->stats, stats);
8165 }
8166 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8167 
8168 void
8169 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8170 {
8171 	report_used->used = true;
8172 }
8173 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8174 
8175 void netdev_offload_xstats_push_delta(struct net_device *dev,
8176 				      enum netdev_offload_xstats_type type,
8177 				      const struct rtnl_hw_stats64 *p_stats)
8178 {
8179 	struct rtnl_hw_stats64 *stats;
8180 
8181 	ASSERT_RTNL();
8182 
8183 	stats = netdev_offload_xstats_get_ptr(dev, type);
8184 	if (WARN_ON(!stats))
8185 		return;
8186 
8187 	netdev_hw_stats64_add(stats, p_stats);
8188 }
8189 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8190 
8191 /**
8192  * netdev_get_xmit_slave - Get the xmit slave of master device
8193  * @dev: device
8194  * @skb: The packet
8195  * @all_slaves: assume all the slaves are active
8196  *
8197  * The reference counters are not incremented so the caller must be
8198  * careful with locks. The caller must hold RCU lock.
8199  * %NULL is returned if no slave is found.
8200  */
8201 
8202 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8203 					 struct sk_buff *skb,
8204 					 bool all_slaves)
8205 {
8206 	const struct net_device_ops *ops = dev->netdev_ops;
8207 
8208 	if (!ops->ndo_get_xmit_slave)
8209 		return NULL;
8210 	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8211 }
8212 EXPORT_SYMBOL(netdev_get_xmit_slave);
8213 
8214 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8215 						  struct sock *sk)
8216 {
8217 	const struct net_device_ops *ops = dev->netdev_ops;
8218 
8219 	if (!ops->ndo_sk_get_lower_dev)
8220 		return NULL;
8221 	return ops->ndo_sk_get_lower_dev(dev, sk);
8222 }
8223 
8224 /**
8225  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8226  * @dev: device
8227  * @sk: the socket
8228  *
8229  * %NULL is returned if no lower device is found.
8230  */
8231 
8232 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8233 					    struct sock *sk)
8234 {
8235 	struct net_device *lower;
8236 
8237 	lower = netdev_sk_get_lower_dev(dev, sk);
8238 	while (lower) {
8239 		dev = lower;
8240 		lower = netdev_sk_get_lower_dev(dev, sk);
8241 	}
8242 
8243 	return dev;
8244 }
8245 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8246 
8247 static void netdev_adjacent_add_links(struct net_device *dev)
8248 {
8249 	struct netdev_adjacent *iter;
8250 
8251 	struct net *net = dev_net(dev);
8252 
8253 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8254 		if (!net_eq(net, dev_net(iter->dev)))
8255 			continue;
8256 		netdev_adjacent_sysfs_add(iter->dev, dev,
8257 					  &iter->dev->adj_list.lower);
8258 		netdev_adjacent_sysfs_add(dev, iter->dev,
8259 					  &dev->adj_list.upper);
8260 	}
8261 
8262 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8263 		if (!net_eq(net, dev_net(iter->dev)))
8264 			continue;
8265 		netdev_adjacent_sysfs_add(iter->dev, dev,
8266 					  &iter->dev->adj_list.upper);
8267 		netdev_adjacent_sysfs_add(dev, iter->dev,
8268 					  &dev->adj_list.lower);
8269 	}
8270 }
8271 
8272 static void netdev_adjacent_del_links(struct net_device *dev)
8273 {
8274 	struct netdev_adjacent *iter;
8275 
8276 	struct net *net = dev_net(dev);
8277 
8278 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8279 		if (!net_eq(net, dev_net(iter->dev)))
8280 			continue;
8281 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8282 					  &iter->dev->adj_list.lower);
8283 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8284 					  &dev->adj_list.upper);
8285 	}
8286 
8287 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8288 		if (!net_eq(net, dev_net(iter->dev)))
8289 			continue;
8290 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8291 					  &iter->dev->adj_list.upper);
8292 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8293 					  &dev->adj_list.lower);
8294 	}
8295 }
8296 
8297 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8298 {
8299 	struct netdev_adjacent *iter;
8300 
8301 	struct net *net = dev_net(dev);
8302 
8303 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8304 		if (!net_eq(net, dev_net(iter->dev)))
8305 			continue;
8306 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8307 					  &iter->dev->adj_list.lower);
8308 		netdev_adjacent_sysfs_add(iter->dev, dev,
8309 					  &iter->dev->adj_list.lower);
8310 	}
8311 
8312 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8313 		if (!net_eq(net, dev_net(iter->dev)))
8314 			continue;
8315 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8316 					  &iter->dev->adj_list.upper);
8317 		netdev_adjacent_sysfs_add(iter->dev, dev,
8318 					  &iter->dev->adj_list.upper);
8319 	}
8320 }
8321 
8322 void *netdev_lower_dev_get_private(struct net_device *dev,
8323 				   struct net_device *lower_dev)
8324 {
8325 	struct netdev_adjacent *lower;
8326 
8327 	if (!lower_dev)
8328 		return NULL;
8329 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8330 	if (!lower)
8331 		return NULL;
8332 
8333 	return lower->private;
8334 }
8335 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8336 
8337 
8338 /**
8339  * netdev_lower_state_changed - Dispatch event about lower device state change
8340  * @lower_dev: device
8341  * @lower_state_info: state to dispatch
8342  *
8343  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8344  * The caller must hold the RTNL lock.
8345  */
8346 void netdev_lower_state_changed(struct net_device *lower_dev,
8347 				void *lower_state_info)
8348 {
8349 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8350 		.info.dev = lower_dev,
8351 	};
8352 
8353 	ASSERT_RTNL();
8354 	changelowerstate_info.lower_state_info = lower_state_info;
8355 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8356 				      &changelowerstate_info.info);
8357 }
8358 EXPORT_SYMBOL(netdev_lower_state_changed);
8359 
8360 static void dev_change_rx_flags(struct net_device *dev, int flags)
8361 {
8362 	const struct net_device_ops *ops = dev->netdev_ops;
8363 
8364 	if (ops->ndo_change_rx_flags)
8365 		ops->ndo_change_rx_flags(dev, flags);
8366 }
8367 
8368 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8369 {
8370 	unsigned int old_flags = dev->flags;
8371 	kuid_t uid;
8372 	kgid_t gid;
8373 
8374 	ASSERT_RTNL();
8375 
8376 	dev->flags |= IFF_PROMISC;
8377 	dev->promiscuity += inc;
8378 	if (dev->promiscuity == 0) {
8379 		/*
8380 		 * Avoid overflow.
8381 		 * If inc causes overflow, untouch promisc and return error.
8382 		 */
8383 		if (inc < 0)
8384 			dev->flags &= ~IFF_PROMISC;
8385 		else {
8386 			dev->promiscuity -= inc;
8387 			netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8388 			return -EOVERFLOW;
8389 		}
8390 	}
8391 	if (dev->flags != old_flags) {
8392 		netdev_info(dev, "%s promiscuous mode\n",
8393 			    dev->flags & IFF_PROMISC ? "entered" : "left");
8394 		if (audit_enabled) {
8395 			current_uid_gid(&uid, &gid);
8396 			audit_log(audit_context(), GFP_ATOMIC,
8397 				  AUDIT_ANOM_PROMISCUOUS,
8398 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8399 				  dev->name, (dev->flags & IFF_PROMISC),
8400 				  (old_flags & IFF_PROMISC),
8401 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
8402 				  from_kuid(&init_user_ns, uid),
8403 				  from_kgid(&init_user_ns, gid),
8404 				  audit_get_sessionid(current));
8405 		}
8406 
8407 		dev_change_rx_flags(dev, IFF_PROMISC);
8408 	}
8409 	if (notify)
8410 		__dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
8411 	return 0;
8412 }
8413 
8414 /**
8415  *	dev_set_promiscuity	- update promiscuity count on a device
8416  *	@dev: device
8417  *	@inc: modifier
8418  *
8419  *	Add or remove promiscuity from a device. While the count in the device
8420  *	remains above zero the interface remains promiscuous. Once it hits zero
8421  *	the device reverts back to normal filtering operation. A negative inc
8422  *	value is used to drop promiscuity on the device.
8423  *	Return 0 if successful or a negative errno code on error.
8424  */
8425 int dev_set_promiscuity(struct net_device *dev, int inc)
8426 {
8427 	unsigned int old_flags = dev->flags;
8428 	int err;
8429 
8430 	err = __dev_set_promiscuity(dev, inc, true);
8431 	if (err < 0)
8432 		return err;
8433 	if (dev->flags != old_flags)
8434 		dev_set_rx_mode(dev);
8435 	return err;
8436 }
8437 EXPORT_SYMBOL(dev_set_promiscuity);
8438 
8439 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8440 {
8441 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8442 
8443 	ASSERT_RTNL();
8444 
8445 	dev->flags |= IFF_ALLMULTI;
8446 	dev->allmulti += inc;
8447 	if (dev->allmulti == 0) {
8448 		/*
8449 		 * Avoid overflow.
8450 		 * If inc causes overflow, untouch allmulti and return error.
8451 		 */
8452 		if (inc < 0)
8453 			dev->flags &= ~IFF_ALLMULTI;
8454 		else {
8455 			dev->allmulti -= inc;
8456 			netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8457 			return -EOVERFLOW;
8458 		}
8459 	}
8460 	if (dev->flags ^ old_flags) {
8461 		netdev_info(dev, "%s allmulticast mode\n",
8462 			    dev->flags & IFF_ALLMULTI ? "entered" : "left");
8463 		dev_change_rx_flags(dev, IFF_ALLMULTI);
8464 		dev_set_rx_mode(dev);
8465 		if (notify)
8466 			__dev_notify_flags(dev, old_flags,
8467 					   dev->gflags ^ old_gflags, 0, NULL);
8468 	}
8469 	return 0;
8470 }
8471 
8472 /**
8473  *	dev_set_allmulti	- update allmulti count on a device
8474  *	@dev: device
8475  *	@inc: modifier
8476  *
8477  *	Add or remove reception of all multicast frames to a device. While the
8478  *	count in the device remains above zero the interface remains listening
8479  *	to all interfaces. Once it hits zero the device reverts back to normal
8480  *	filtering operation. A negative @inc value is used to drop the counter
8481  *	when releasing a resource needing all multicasts.
8482  *	Return 0 if successful or a negative errno code on error.
8483  */
8484 
8485 int dev_set_allmulti(struct net_device *dev, int inc)
8486 {
8487 	return __dev_set_allmulti(dev, inc, true);
8488 }
8489 EXPORT_SYMBOL(dev_set_allmulti);
8490 
8491 /*
8492  *	Upload unicast and multicast address lists to device and
8493  *	configure RX filtering. When the device doesn't support unicast
8494  *	filtering it is put in promiscuous mode while unicast addresses
8495  *	are present.
8496  */
8497 void __dev_set_rx_mode(struct net_device *dev)
8498 {
8499 	const struct net_device_ops *ops = dev->netdev_ops;
8500 
8501 	/* dev_open will call this function so the list will stay sane. */
8502 	if (!(dev->flags&IFF_UP))
8503 		return;
8504 
8505 	if (!netif_device_present(dev))
8506 		return;
8507 
8508 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8509 		/* Unicast addresses changes may only happen under the rtnl,
8510 		 * therefore calling __dev_set_promiscuity here is safe.
8511 		 */
8512 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8513 			__dev_set_promiscuity(dev, 1, false);
8514 			dev->uc_promisc = true;
8515 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8516 			__dev_set_promiscuity(dev, -1, false);
8517 			dev->uc_promisc = false;
8518 		}
8519 	}
8520 
8521 	if (ops->ndo_set_rx_mode)
8522 		ops->ndo_set_rx_mode(dev);
8523 }
8524 
8525 void dev_set_rx_mode(struct net_device *dev)
8526 {
8527 	netif_addr_lock_bh(dev);
8528 	__dev_set_rx_mode(dev);
8529 	netif_addr_unlock_bh(dev);
8530 }
8531 
8532 /**
8533  *	dev_get_flags - get flags reported to userspace
8534  *	@dev: device
8535  *
8536  *	Get the combination of flag bits exported through APIs to userspace.
8537  */
8538 unsigned int dev_get_flags(const struct net_device *dev)
8539 {
8540 	unsigned int flags;
8541 
8542 	flags = (dev->flags & ~(IFF_PROMISC |
8543 				IFF_ALLMULTI |
8544 				IFF_RUNNING |
8545 				IFF_LOWER_UP |
8546 				IFF_DORMANT)) |
8547 		(dev->gflags & (IFF_PROMISC |
8548 				IFF_ALLMULTI));
8549 
8550 	if (netif_running(dev)) {
8551 		if (netif_oper_up(dev))
8552 			flags |= IFF_RUNNING;
8553 		if (netif_carrier_ok(dev))
8554 			flags |= IFF_LOWER_UP;
8555 		if (netif_dormant(dev))
8556 			flags |= IFF_DORMANT;
8557 	}
8558 
8559 	return flags;
8560 }
8561 EXPORT_SYMBOL(dev_get_flags);
8562 
8563 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8564 		       struct netlink_ext_ack *extack)
8565 {
8566 	unsigned int old_flags = dev->flags;
8567 	int ret;
8568 
8569 	ASSERT_RTNL();
8570 
8571 	/*
8572 	 *	Set the flags on our device.
8573 	 */
8574 
8575 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8576 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8577 			       IFF_AUTOMEDIA)) |
8578 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8579 				    IFF_ALLMULTI));
8580 
8581 	/*
8582 	 *	Load in the correct multicast list now the flags have changed.
8583 	 */
8584 
8585 	if ((old_flags ^ flags) & IFF_MULTICAST)
8586 		dev_change_rx_flags(dev, IFF_MULTICAST);
8587 
8588 	dev_set_rx_mode(dev);
8589 
8590 	/*
8591 	 *	Have we downed the interface. We handle IFF_UP ourselves
8592 	 *	according to user attempts to set it, rather than blindly
8593 	 *	setting it.
8594 	 */
8595 
8596 	ret = 0;
8597 	if ((old_flags ^ flags) & IFF_UP) {
8598 		if (old_flags & IFF_UP)
8599 			__dev_close(dev);
8600 		else
8601 			ret = __dev_open(dev, extack);
8602 	}
8603 
8604 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
8605 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
8606 		unsigned int old_flags = dev->flags;
8607 
8608 		dev->gflags ^= IFF_PROMISC;
8609 
8610 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
8611 			if (dev->flags != old_flags)
8612 				dev_set_rx_mode(dev);
8613 	}
8614 
8615 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8616 	 * is important. Some (broken) drivers set IFF_PROMISC, when
8617 	 * IFF_ALLMULTI is requested not asking us and not reporting.
8618 	 */
8619 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8620 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8621 
8622 		dev->gflags ^= IFF_ALLMULTI;
8623 		__dev_set_allmulti(dev, inc, false);
8624 	}
8625 
8626 	return ret;
8627 }
8628 
8629 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8630 			unsigned int gchanges, u32 portid,
8631 			const struct nlmsghdr *nlh)
8632 {
8633 	unsigned int changes = dev->flags ^ old_flags;
8634 
8635 	if (gchanges)
8636 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
8637 
8638 	if (changes & IFF_UP) {
8639 		if (dev->flags & IFF_UP)
8640 			call_netdevice_notifiers(NETDEV_UP, dev);
8641 		else
8642 			call_netdevice_notifiers(NETDEV_DOWN, dev);
8643 	}
8644 
8645 	if (dev->flags & IFF_UP &&
8646 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8647 		struct netdev_notifier_change_info change_info = {
8648 			.info = {
8649 				.dev = dev,
8650 			},
8651 			.flags_changed = changes,
8652 		};
8653 
8654 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8655 	}
8656 }
8657 
8658 /**
8659  *	dev_change_flags - change device settings
8660  *	@dev: device
8661  *	@flags: device state flags
8662  *	@extack: netlink extended ack
8663  *
8664  *	Change settings on device based state flags. The flags are
8665  *	in the userspace exported format.
8666  */
8667 int dev_change_flags(struct net_device *dev, unsigned int flags,
8668 		     struct netlink_ext_ack *extack)
8669 {
8670 	int ret;
8671 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8672 
8673 	ret = __dev_change_flags(dev, flags, extack);
8674 	if (ret < 0)
8675 		return ret;
8676 
8677 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8678 	__dev_notify_flags(dev, old_flags, changes, 0, NULL);
8679 	return ret;
8680 }
8681 EXPORT_SYMBOL(dev_change_flags);
8682 
8683 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8684 {
8685 	const struct net_device_ops *ops = dev->netdev_ops;
8686 
8687 	if (ops->ndo_change_mtu)
8688 		return ops->ndo_change_mtu(dev, new_mtu);
8689 
8690 	/* Pairs with all the lockless reads of dev->mtu in the stack */
8691 	WRITE_ONCE(dev->mtu, new_mtu);
8692 	return 0;
8693 }
8694 EXPORT_SYMBOL(__dev_set_mtu);
8695 
8696 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8697 		     struct netlink_ext_ack *extack)
8698 {
8699 	/* MTU must be positive, and in range */
8700 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8701 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8702 		return -EINVAL;
8703 	}
8704 
8705 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8706 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8707 		return -EINVAL;
8708 	}
8709 	return 0;
8710 }
8711 
8712 /**
8713  *	dev_set_mtu_ext - Change maximum transfer unit
8714  *	@dev: device
8715  *	@new_mtu: new transfer unit
8716  *	@extack: netlink extended ack
8717  *
8718  *	Change the maximum transfer size of the network device.
8719  */
8720 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8721 		    struct netlink_ext_ack *extack)
8722 {
8723 	int err, orig_mtu;
8724 
8725 	if (new_mtu == dev->mtu)
8726 		return 0;
8727 
8728 	err = dev_validate_mtu(dev, new_mtu, extack);
8729 	if (err)
8730 		return err;
8731 
8732 	if (!netif_device_present(dev))
8733 		return -ENODEV;
8734 
8735 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8736 	err = notifier_to_errno(err);
8737 	if (err)
8738 		return err;
8739 
8740 	orig_mtu = dev->mtu;
8741 	err = __dev_set_mtu(dev, new_mtu);
8742 
8743 	if (!err) {
8744 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8745 						   orig_mtu);
8746 		err = notifier_to_errno(err);
8747 		if (err) {
8748 			/* setting mtu back and notifying everyone again,
8749 			 * so that they have a chance to revert changes.
8750 			 */
8751 			__dev_set_mtu(dev, orig_mtu);
8752 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8753 						     new_mtu);
8754 		}
8755 	}
8756 	return err;
8757 }
8758 
8759 int dev_set_mtu(struct net_device *dev, int new_mtu)
8760 {
8761 	struct netlink_ext_ack extack;
8762 	int err;
8763 
8764 	memset(&extack, 0, sizeof(extack));
8765 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
8766 	if (err && extack._msg)
8767 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8768 	return err;
8769 }
8770 EXPORT_SYMBOL(dev_set_mtu);
8771 
8772 /**
8773  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
8774  *	@dev: device
8775  *	@new_len: new tx queue length
8776  */
8777 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8778 {
8779 	unsigned int orig_len = dev->tx_queue_len;
8780 	int res;
8781 
8782 	if (new_len != (unsigned int)new_len)
8783 		return -ERANGE;
8784 
8785 	if (new_len != orig_len) {
8786 		dev->tx_queue_len = new_len;
8787 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8788 		res = notifier_to_errno(res);
8789 		if (res)
8790 			goto err_rollback;
8791 		res = dev_qdisc_change_tx_queue_len(dev);
8792 		if (res)
8793 			goto err_rollback;
8794 	}
8795 
8796 	return 0;
8797 
8798 err_rollback:
8799 	netdev_err(dev, "refused to change device tx_queue_len\n");
8800 	dev->tx_queue_len = orig_len;
8801 	return res;
8802 }
8803 
8804 /**
8805  *	dev_set_group - Change group this device belongs to
8806  *	@dev: device
8807  *	@new_group: group this device should belong to
8808  */
8809 void dev_set_group(struct net_device *dev, int new_group)
8810 {
8811 	dev->group = new_group;
8812 }
8813 
8814 /**
8815  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8816  *	@dev: device
8817  *	@addr: new address
8818  *	@extack: netlink extended ack
8819  */
8820 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8821 			      struct netlink_ext_ack *extack)
8822 {
8823 	struct netdev_notifier_pre_changeaddr_info info = {
8824 		.info.dev = dev,
8825 		.info.extack = extack,
8826 		.dev_addr = addr,
8827 	};
8828 	int rc;
8829 
8830 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8831 	return notifier_to_errno(rc);
8832 }
8833 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8834 
8835 /**
8836  *	dev_set_mac_address - Change Media Access Control Address
8837  *	@dev: device
8838  *	@sa: new address
8839  *	@extack: netlink extended ack
8840  *
8841  *	Change the hardware (MAC) address of the device
8842  */
8843 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8844 			struct netlink_ext_ack *extack)
8845 {
8846 	const struct net_device_ops *ops = dev->netdev_ops;
8847 	int err;
8848 
8849 	if (!ops->ndo_set_mac_address)
8850 		return -EOPNOTSUPP;
8851 	if (sa->sa_family != dev->type)
8852 		return -EINVAL;
8853 	if (!netif_device_present(dev))
8854 		return -ENODEV;
8855 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8856 	if (err)
8857 		return err;
8858 	if (memcmp(dev->dev_addr, sa->sa_data, dev->addr_len)) {
8859 		err = ops->ndo_set_mac_address(dev, sa);
8860 		if (err)
8861 			return err;
8862 	}
8863 	dev->addr_assign_type = NET_ADDR_SET;
8864 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8865 	add_device_randomness(dev->dev_addr, dev->addr_len);
8866 	return 0;
8867 }
8868 EXPORT_SYMBOL(dev_set_mac_address);
8869 
8870 static DECLARE_RWSEM(dev_addr_sem);
8871 
8872 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8873 			     struct netlink_ext_ack *extack)
8874 {
8875 	int ret;
8876 
8877 	down_write(&dev_addr_sem);
8878 	ret = dev_set_mac_address(dev, sa, extack);
8879 	up_write(&dev_addr_sem);
8880 	return ret;
8881 }
8882 EXPORT_SYMBOL(dev_set_mac_address_user);
8883 
8884 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8885 {
8886 	size_t size = sizeof(sa->sa_data_min);
8887 	struct net_device *dev;
8888 	int ret = 0;
8889 
8890 	down_read(&dev_addr_sem);
8891 	rcu_read_lock();
8892 
8893 	dev = dev_get_by_name_rcu(net, dev_name);
8894 	if (!dev) {
8895 		ret = -ENODEV;
8896 		goto unlock;
8897 	}
8898 	if (!dev->addr_len)
8899 		memset(sa->sa_data, 0, size);
8900 	else
8901 		memcpy(sa->sa_data, dev->dev_addr,
8902 		       min_t(size_t, size, dev->addr_len));
8903 	sa->sa_family = dev->type;
8904 
8905 unlock:
8906 	rcu_read_unlock();
8907 	up_read(&dev_addr_sem);
8908 	return ret;
8909 }
8910 EXPORT_SYMBOL(dev_get_mac_address);
8911 
8912 /**
8913  *	dev_change_carrier - Change device carrier
8914  *	@dev: device
8915  *	@new_carrier: new value
8916  *
8917  *	Change device carrier
8918  */
8919 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8920 {
8921 	const struct net_device_ops *ops = dev->netdev_ops;
8922 
8923 	if (!ops->ndo_change_carrier)
8924 		return -EOPNOTSUPP;
8925 	if (!netif_device_present(dev))
8926 		return -ENODEV;
8927 	return ops->ndo_change_carrier(dev, new_carrier);
8928 }
8929 
8930 /**
8931  *	dev_get_phys_port_id - Get device physical port ID
8932  *	@dev: device
8933  *	@ppid: port ID
8934  *
8935  *	Get device physical port ID
8936  */
8937 int dev_get_phys_port_id(struct net_device *dev,
8938 			 struct netdev_phys_item_id *ppid)
8939 {
8940 	const struct net_device_ops *ops = dev->netdev_ops;
8941 
8942 	if (!ops->ndo_get_phys_port_id)
8943 		return -EOPNOTSUPP;
8944 	return ops->ndo_get_phys_port_id(dev, ppid);
8945 }
8946 
8947 /**
8948  *	dev_get_phys_port_name - Get device physical port name
8949  *	@dev: device
8950  *	@name: port name
8951  *	@len: limit of bytes to copy to name
8952  *
8953  *	Get device physical port name
8954  */
8955 int dev_get_phys_port_name(struct net_device *dev,
8956 			   char *name, size_t len)
8957 {
8958 	const struct net_device_ops *ops = dev->netdev_ops;
8959 	int err;
8960 
8961 	if (ops->ndo_get_phys_port_name) {
8962 		err = ops->ndo_get_phys_port_name(dev, name, len);
8963 		if (err != -EOPNOTSUPP)
8964 			return err;
8965 	}
8966 	return devlink_compat_phys_port_name_get(dev, name, len);
8967 }
8968 
8969 /**
8970  *	dev_get_port_parent_id - Get the device's port parent identifier
8971  *	@dev: network device
8972  *	@ppid: pointer to a storage for the port's parent identifier
8973  *	@recurse: allow/disallow recursion to lower devices
8974  *
8975  *	Get the devices's port parent identifier
8976  */
8977 int dev_get_port_parent_id(struct net_device *dev,
8978 			   struct netdev_phys_item_id *ppid,
8979 			   bool recurse)
8980 {
8981 	const struct net_device_ops *ops = dev->netdev_ops;
8982 	struct netdev_phys_item_id first = { };
8983 	struct net_device *lower_dev;
8984 	struct list_head *iter;
8985 	int err;
8986 
8987 	if (ops->ndo_get_port_parent_id) {
8988 		err = ops->ndo_get_port_parent_id(dev, ppid);
8989 		if (err != -EOPNOTSUPP)
8990 			return err;
8991 	}
8992 
8993 	err = devlink_compat_switch_id_get(dev, ppid);
8994 	if (!recurse || err != -EOPNOTSUPP)
8995 		return err;
8996 
8997 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
8998 		err = dev_get_port_parent_id(lower_dev, ppid, true);
8999 		if (err)
9000 			break;
9001 		if (!first.id_len)
9002 			first = *ppid;
9003 		else if (memcmp(&first, ppid, sizeof(*ppid)))
9004 			return -EOPNOTSUPP;
9005 	}
9006 
9007 	return err;
9008 }
9009 EXPORT_SYMBOL(dev_get_port_parent_id);
9010 
9011 /**
9012  *	netdev_port_same_parent_id - Indicate if two network devices have
9013  *	the same port parent identifier
9014  *	@a: first network device
9015  *	@b: second network device
9016  */
9017 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9018 {
9019 	struct netdev_phys_item_id a_id = { };
9020 	struct netdev_phys_item_id b_id = { };
9021 
9022 	if (dev_get_port_parent_id(a, &a_id, true) ||
9023 	    dev_get_port_parent_id(b, &b_id, true))
9024 		return false;
9025 
9026 	return netdev_phys_item_id_same(&a_id, &b_id);
9027 }
9028 EXPORT_SYMBOL(netdev_port_same_parent_id);
9029 
9030 static void netdev_dpll_pin_assign(struct net_device *dev, struct dpll_pin *dpll_pin)
9031 {
9032 #if IS_ENABLED(CONFIG_DPLL)
9033 	rtnl_lock();
9034 	dev->dpll_pin = dpll_pin;
9035 	rtnl_unlock();
9036 #endif
9037 }
9038 
9039 void netdev_dpll_pin_set(struct net_device *dev, struct dpll_pin *dpll_pin)
9040 {
9041 	WARN_ON(!dpll_pin);
9042 	netdev_dpll_pin_assign(dev, dpll_pin);
9043 }
9044 EXPORT_SYMBOL(netdev_dpll_pin_set);
9045 
9046 void netdev_dpll_pin_clear(struct net_device *dev)
9047 {
9048 	netdev_dpll_pin_assign(dev, NULL);
9049 }
9050 EXPORT_SYMBOL(netdev_dpll_pin_clear);
9051 
9052 /**
9053  *	dev_change_proto_down - set carrier according to proto_down.
9054  *
9055  *	@dev: device
9056  *	@proto_down: new value
9057  */
9058 int dev_change_proto_down(struct net_device *dev, bool proto_down)
9059 {
9060 	if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN))
9061 		return -EOPNOTSUPP;
9062 	if (!netif_device_present(dev))
9063 		return -ENODEV;
9064 	if (proto_down)
9065 		netif_carrier_off(dev);
9066 	else
9067 		netif_carrier_on(dev);
9068 	dev->proto_down = proto_down;
9069 	return 0;
9070 }
9071 
9072 /**
9073  *	dev_change_proto_down_reason - proto down reason
9074  *
9075  *	@dev: device
9076  *	@mask: proto down mask
9077  *	@value: proto down value
9078  */
9079 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9080 				  u32 value)
9081 {
9082 	int b;
9083 
9084 	if (!mask) {
9085 		dev->proto_down_reason = value;
9086 	} else {
9087 		for_each_set_bit(b, &mask, 32) {
9088 			if (value & (1 << b))
9089 				dev->proto_down_reason |= BIT(b);
9090 			else
9091 				dev->proto_down_reason &= ~BIT(b);
9092 		}
9093 	}
9094 }
9095 
9096 struct bpf_xdp_link {
9097 	struct bpf_link link;
9098 	struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9099 	int flags;
9100 };
9101 
9102 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9103 {
9104 	if (flags & XDP_FLAGS_HW_MODE)
9105 		return XDP_MODE_HW;
9106 	if (flags & XDP_FLAGS_DRV_MODE)
9107 		return XDP_MODE_DRV;
9108 	if (flags & XDP_FLAGS_SKB_MODE)
9109 		return XDP_MODE_SKB;
9110 	return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9111 }
9112 
9113 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9114 {
9115 	switch (mode) {
9116 	case XDP_MODE_SKB:
9117 		return generic_xdp_install;
9118 	case XDP_MODE_DRV:
9119 	case XDP_MODE_HW:
9120 		return dev->netdev_ops->ndo_bpf;
9121 	default:
9122 		return NULL;
9123 	}
9124 }
9125 
9126 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9127 					 enum bpf_xdp_mode mode)
9128 {
9129 	return dev->xdp_state[mode].link;
9130 }
9131 
9132 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9133 				     enum bpf_xdp_mode mode)
9134 {
9135 	struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9136 
9137 	if (link)
9138 		return link->link.prog;
9139 	return dev->xdp_state[mode].prog;
9140 }
9141 
9142 u8 dev_xdp_prog_count(struct net_device *dev)
9143 {
9144 	u8 count = 0;
9145 	int i;
9146 
9147 	for (i = 0; i < __MAX_XDP_MODE; i++)
9148 		if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9149 			count++;
9150 	return count;
9151 }
9152 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9153 
9154 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9155 {
9156 	struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9157 
9158 	return prog ? prog->aux->id : 0;
9159 }
9160 
9161 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9162 			     struct bpf_xdp_link *link)
9163 {
9164 	dev->xdp_state[mode].link = link;
9165 	dev->xdp_state[mode].prog = NULL;
9166 }
9167 
9168 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9169 			     struct bpf_prog *prog)
9170 {
9171 	dev->xdp_state[mode].link = NULL;
9172 	dev->xdp_state[mode].prog = prog;
9173 }
9174 
9175 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9176 			   bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9177 			   u32 flags, struct bpf_prog *prog)
9178 {
9179 	struct netdev_bpf xdp;
9180 	int err;
9181 
9182 	memset(&xdp, 0, sizeof(xdp));
9183 	xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9184 	xdp.extack = extack;
9185 	xdp.flags = flags;
9186 	xdp.prog = prog;
9187 
9188 	/* Drivers assume refcnt is already incremented (i.e, prog pointer is
9189 	 * "moved" into driver), so they don't increment it on their own, but
9190 	 * they do decrement refcnt when program is detached or replaced.
9191 	 * Given net_device also owns link/prog, we need to bump refcnt here
9192 	 * to prevent drivers from underflowing it.
9193 	 */
9194 	if (prog)
9195 		bpf_prog_inc(prog);
9196 	err = bpf_op(dev, &xdp);
9197 	if (err) {
9198 		if (prog)
9199 			bpf_prog_put(prog);
9200 		return err;
9201 	}
9202 
9203 	if (mode != XDP_MODE_HW)
9204 		bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9205 
9206 	return 0;
9207 }
9208 
9209 static void dev_xdp_uninstall(struct net_device *dev)
9210 {
9211 	struct bpf_xdp_link *link;
9212 	struct bpf_prog *prog;
9213 	enum bpf_xdp_mode mode;
9214 	bpf_op_t bpf_op;
9215 
9216 	ASSERT_RTNL();
9217 
9218 	for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9219 		prog = dev_xdp_prog(dev, mode);
9220 		if (!prog)
9221 			continue;
9222 
9223 		bpf_op = dev_xdp_bpf_op(dev, mode);
9224 		if (!bpf_op)
9225 			continue;
9226 
9227 		WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9228 
9229 		/* auto-detach link from net device */
9230 		link = dev_xdp_link(dev, mode);
9231 		if (link)
9232 			link->dev = NULL;
9233 		else
9234 			bpf_prog_put(prog);
9235 
9236 		dev_xdp_set_link(dev, mode, NULL);
9237 	}
9238 }
9239 
9240 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9241 			  struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9242 			  struct bpf_prog *old_prog, u32 flags)
9243 {
9244 	unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9245 	struct bpf_prog *cur_prog;
9246 	struct net_device *upper;
9247 	struct list_head *iter;
9248 	enum bpf_xdp_mode mode;
9249 	bpf_op_t bpf_op;
9250 	int err;
9251 
9252 	ASSERT_RTNL();
9253 
9254 	/* either link or prog attachment, never both */
9255 	if (link && (new_prog || old_prog))
9256 		return -EINVAL;
9257 	/* link supports only XDP mode flags */
9258 	if (link && (flags & ~XDP_FLAGS_MODES)) {
9259 		NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9260 		return -EINVAL;
9261 	}
9262 	/* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9263 	if (num_modes > 1) {
9264 		NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9265 		return -EINVAL;
9266 	}
9267 	/* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9268 	if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9269 		NL_SET_ERR_MSG(extack,
9270 			       "More than one program loaded, unset mode is ambiguous");
9271 		return -EINVAL;
9272 	}
9273 	/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9274 	if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9275 		NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9276 		return -EINVAL;
9277 	}
9278 
9279 	mode = dev_xdp_mode(dev, flags);
9280 	/* can't replace attached link */
9281 	if (dev_xdp_link(dev, mode)) {
9282 		NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9283 		return -EBUSY;
9284 	}
9285 
9286 	/* don't allow if an upper device already has a program */
9287 	netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9288 		if (dev_xdp_prog_count(upper) > 0) {
9289 			NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9290 			return -EEXIST;
9291 		}
9292 	}
9293 
9294 	cur_prog = dev_xdp_prog(dev, mode);
9295 	/* can't replace attached prog with link */
9296 	if (link && cur_prog) {
9297 		NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9298 		return -EBUSY;
9299 	}
9300 	if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9301 		NL_SET_ERR_MSG(extack, "Active program does not match expected");
9302 		return -EEXIST;
9303 	}
9304 
9305 	/* put effective new program into new_prog */
9306 	if (link)
9307 		new_prog = link->link.prog;
9308 
9309 	if (new_prog) {
9310 		bool offload = mode == XDP_MODE_HW;
9311 		enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9312 					       ? XDP_MODE_DRV : XDP_MODE_SKB;
9313 
9314 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9315 			NL_SET_ERR_MSG(extack, "XDP program already attached");
9316 			return -EBUSY;
9317 		}
9318 		if (!offload && dev_xdp_prog(dev, other_mode)) {
9319 			NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9320 			return -EEXIST;
9321 		}
9322 		if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
9323 			NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
9324 			return -EINVAL;
9325 		}
9326 		if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
9327 			NL_SET_ERR_MSG(extack, "Program bound to different device");
9328 			return -EINVAL;
9329 		}
9330 		if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9331 			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9332 			return -EINVAL;
9333 		}
9334 		if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9335 			NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9336 			return -EINVAL;
9337 		}
9338 	}
9339 
9340 	/* don't call drivers if the effective program didn't change */
9341 	if (new_prog != cur_prog) {
9342 		bpf_op = dev_xdp_bpf_op(dev, mode);
9343 		if (!bpf_op) {
9344 			NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9345 			return -EOPNOTSUPP;
9346 		}
9347 
9348 		err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9349 		if (err)
9350 			return err;
9351 	}
9352 
9353 	if (link)
9354 		dev_xdp_set_link(dev, mode, link);
9355 	else
9356 		dev_xdp_set_prog(dev, mode, new_prog);
9357 	if (cur_prog)
9358 		bpf_prog_put(cur_prog);
9359 
9360 	return 0;
9361 }
9362 
9363 static int dev_xdp_attach_link(struct net_device *dev,
9364 			       struct netlink_ext_ack *extack,
9365 			       struct bpf_xdp_link *link)
9366 {
9367 	return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9368 }
9369 
9370 static int dev_xdp_detach_link(struct net_device *dev,
9371 			       struct netlink_ext_ack *extack,
9372 			       struct bpf_xdp_link *link)
9373 {
9374 	enum bpf_xdp_mode mode;
9375 	bpf_op_t bpf_op;
9376 
9377 	ASSERT_RTNL();
9378 
9379 	mode = dev_xdp_mode(dev, link->flags);
9380 	if (dev_xdp_link(dev, mode) != link)
9381 		return -EINVAL;
9382 
9383 	bpf_op = dev_xdp_bpf_op(dev, mode);
9384 	WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9385 	dev_xdp_set_link(dev, mode, NULL);
9386 	return 0;
9387 }
9388 
9389 static void bpf_xdp_link_release(struct bpf_link *link)
9390 {
9391 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9392 
9393 	rtnl_lock();
9394 
9395 	/* if racing with net_device's tear down, xdp_link->dev might be
9396 	 * already NULL, in which case link was already auto-detached
9397 	 */
9398 	if (xdp_link->dev) {
9399 		WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9400 		xdp_link->dev = NULL;
9401 	}
9402 
9403 	rtnl_unlock();
9404 }
9405 
9406 static int bpf_xdp_link_detach(struct bpf_link *link)
9407 {
9408 	bpf_xdp_link_release(link);
9409 	return 0;
9410 }
9411 
9412 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9413 {
9414 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9415 
9416 	kfree(xdp_link);
9417 }
9418 
9419 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9420 				     struct seq_file *seq)
9421 {
9422 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9423 	u32 ifindex = 0;
9424 
9425 	rtnl_lock();
9426 	if (xdp_link->dev)
9427 		ifindex = xdp_link->dev->ifindex;
9428 	rtnl_unlock();
9429 
9430 	seq_printf(seq, "ifindex:\t%u\n", ifindex);
9431 }
9432 
9433 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9434 				       struct bpf_link_info *info)
9435 {
9436 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9437 	u32 ifindex = 0;
9438 
9439 	rtnl_lock();
9440 	if (xdp_link->dev)
9441 		ifindex = xdp_link->dev->ifindex;
9442 	rtnl_unlock();
9443 
9444 	info->xdp.ifindex = ifindex;
9445 	return 0;
9446 }
9447 
9448 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9449 			       struct bpf_prog *old_prog)
9450 {
9451 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9452 	enum bpf_xdp_mode mode;
9453 	bpf_op_t bpf_op;
9454 	int err = 0;
9455 
9456 	rtnl_lock();
9457 
9458 	/* link might have been auto-released already, so fail */
9459 	if (!xdp_link->dev) {
9460 		err = -ENOLINK;
9461 		goto out_unlock;
9462 	}
9463 
9464 	if (old_prog && link->prog != old_prog) {
9465 		err = -EPERM;
9466 		goto out_unlock;
9467 	}
9468 	old_prog = link->prog;
9469 	if (old_prog->type != new_prog->type ||
9470 	    old_prog->expected_attach_type != new_prog->expected_attach_type) {
9471 		err = -EINVAL;
9472 		goto out_unlock;
9473 	}
9474 
9475 	if (old_prog == new_prog) {
9476 		/* no-op, don't disturb drivers */
9477 		bpf_prog_put(new_prog);
9478 		goto out_unlock;
9479 	}
9480 
9481 	mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9482 	bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9483 	err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9484 			      xdp_link->flags, new_prog);
9485 	if (err)
9486 		goto out_unlock;
9487 
9488 	old_prog = xchg(&link->prog, new_prog);
9489 	bpf_prog_put(old_prog);
9490 
9491 out_unlock:
9492 	rtnl_unlock();
9493 	return err;
9494 }
9495 
9496 static const struct bpf_link_ops bpf_xdp_link_lops = {
9497 	.release = bpf_xdp_link_release,
9498 	.dealloc = bpf_xdp_link_dealloc,
9499 	.detach = bpf_xdp_link_detach,
9500 	.show_fdinfo = bpf_xdp_link_show_fdinfo,
9501 	.fill_link_info = bpf_xdp_link_fill_link_info,
9502 	.update_prog = bpf_xdp_link_update,
9503 };
9504 
9505 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9506 {
9507 	struct net *net = current->nsproxy->net_ns;
9508 	struct bpf_link_primer link_primer;
9509 	struct netlink_ext_ack extack = {};
9510 	struct bpf_xdp_link *link;
9511 	struct net_device *dev;
9512 	int err, fd;
9513 
9514 	rtnl_lock();
9515 	dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9516 	if (!dev) {
9517 		rtnl_unlock();
9518 		return -EINVAL;
9519 	}
9520 
9521 	link = kzalloc(sizeof(*link), GFP_USER);
9522 	if (!link) {
9523 		err = -ENOMEM;
9524 		goto unlock;
9525 	}
9526 
9527 	bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9528 	link->dev = dev;
9529 	link->flags = attr->link_create.flags;
9530 
9531 	err = bpf_link_prime(&link->link, &link_primer);
9532 	if (err) {
9533 		kfree(link);
9534 		goto unlock;
9535 	}
9536 
9537 	err = dev_xdp_attach_link(dev, &extack, link);
9538 	rtnl_unlock();
9539 
9540 	if (err) {
9541 		link->dev = NULL;
9542 		bpf_link_cleanup(&link_primer);
9543 		trace_bpf_xdp_link_attach_failed(extack._msg);
9544 		goto out_put_dev;
9545 	}
9546 
9547 	fd = bpf_link_settle(&link_primer);
9548 	/* link itself doesn't hold dev's refcnt to not complicate shutdown */
9549 	dev_put(dev);
9550 	return fd;
9551 
9552 unlock:
9553 	rtnl_unlock();
9554 
9555 out_put_dev:
9556 	dev_put(dev);
9557 	return err;
9558 }
9559 
9560 /**
9561  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
9562  *	@dev: device
9563  *	@extack: netlink extended ack
9564  *	@fd: new program fd or negative value to clear
9565  *	@expected_fd: old program fd that userspace expects to replace or clear
9566  *	@flags: xdp-related flags
9567  *
9568  *	Set or clear a bpf program for a device
9569  */
9570 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9571 		      int fd, int expected_fd, u32 flags)
9572 {
9573 	enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9574 	struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9575 	int err;
9576 
9577 	ASSERT_RTNL();
9578 
9579 	if (fd >= 0) {
9580 		new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9581 						 mode != XDP_MODE_SKB);
9582 		if (IS_ERR(new_prog))
9583 			return PTR_ERR(new_prog);
9584 	}
9585 
9586 	if (expected_fd >= 0) {
9587 		old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9588 						 mode != XDP_MODE_SKB);
9589 		if (IS_ERR(old_prog)) {
9590 			err = PTR_ERR(old_prog);
9591 			old_prog = NULL;
9592 			goto err_out;
9593 		}
9594 	}
9595 
9596 	err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9597 
9598 err_out:
9599 	if (err && new_prog)
9600 		bpf_prog_put(new_prog);
9601 	if (old_prog)
9602 		bpf_prog_put(old_prog);
9603 	return err;
9604 }
9605 
9606 /**
9607  * dev_index_reserve() - allocate an ifindex in a namespace
9608  * @net: the applicable net namespace
9609  * @ifindex: requested ifindex, pass %0 to get one allocated
9610  *
9611  * Allocate a ifindex for a new device. Caller must either use the ifindex
9612  * to store the device (via list_netdevice()) or call dev_index_release()
9613  * to give the index up.
9614  *
9615  * Return: a suitable unique value for a new device interface number or -errno.
9616  */
9617 static int dev_index_reserve(struct net *net, u32 ifindex)
9618 {
9619 	int err;
9620 
9621 	if (ifindex > INT_MAX) {
9622 		DEBUG_NET_WARN_ON_ONCE(1);
9623 		return -EINVAL;
9624 	}
9625 
9626 	if (!ifindex)
9627 		err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL,
9628 				      xa_limit_31b, &net->ifindex, GFP_KERNEL);
9629 	else
9630 		err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL);
9631 	if (err < 0)
9632 		return err;
9633 
9634 	return ifindex;
9635 }
9636 
9637 static void dev_index_release(struct net *net, int ifindex)
9638 {
9639 	/* Expect only unused indexes, unlist_netdevice() removes the used */
9640 	WARN_ON(xa_erase(&net->dev_by_index, ifindex));
9641 }
9642 
9643 /* Delayed registration/unregisteration */
9644 LIST_HEAD(net_todo_list);
9645 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9646 
9647 static void net_set_todo(struct net_device *dev)
9648 {
9649 	list_add_tail(&dev->todo_list, &net_todo_list);
9650 	atomic_inc(&dev_net(dev)->dev_unreg_count);
9651 }
9652 
9653 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9654 	struct net_device *upper, netdev_features_t features)
9655 {
9656 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9657 	netdev_features_t feature;
9658 	int feature_bit;
9659 
9660 	for_each_netdev_feature(upper_disables, feature_bit) {
9661 		feature = __NETIF_F_BIT(feature_bit);
9662 		if (!(upper->wanted_features & feature)
9663 		    && (features & feature)) {
9664 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9665 				   &feature, upper->name);
9666 			features &= ~feature;
9667 		}
9668 	}
9669 
9670 	return features;
9671 }
9672 
9673 static void netdev_sync_lower_features(struct net_device *upper,
9674 	struct net_device *lower, netdev_features_t features)
9675 {
9676 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9677 	netdev_features_t feature;
9678 	int feature_bit;
9679 
9680 	for_each_netdev_feature(upper_disables, feature_bit) {
9681 		feature = __NETIF_F_BIT(feature_bit);
9682 		if (!(features & feature) && (lower->features & feature)) {
9683 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9684 				   &feature, lower->name);
9685 			lower->wanted_features &= ~feature;
9686 			__netdev_update_features(lower);
9687 
9688 			if (unlikely(lower->features & feature))
9689 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9690 					    &feature, lower->name);
9691 			else
9692 				netdev_features_change(lower);
9693 		}
9694 	}
9695 }
9696 
9697 static netdev_features_t netdev_fix_features(struct net_device *dev,
9698 	netdev_features_t features)
9699 {
9700 	/* Fix illegal checksum combinations */
9701 	if ((features & NETIF_F_HW_CSUM) &&
9702 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9703 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9704 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9705 	}
9706 
9707 	/* TSO requires that SG is present as well. */
9708 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9709 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9710 		features &= ~NETIF_F_ALL_TSO;
9711 	}
9712 
9713 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9714 					!(features & NETIF_F_IP_CSUM)) {
9715 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9716 		features &= ~NETIF_F_TSO;
9717 		features &= ~NETIF_F_TSO_ECN;
9718 	}
9719 
9720 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9721 					 !(features & NETIF_F_IPV6_CSUM)) {
9722 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9723 		features &= ~NETIF_F_TSO6;
9724 	}
9725 
9726 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9727 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9728 		features &= ~NETIF_F_TSO_MANGLEID;
9729 
9730 	/* TSO ECN requires that TSO is present as well. */
9731 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9732 		features &= ~NETIF_F_TSO_ECN;
9733 
9734 	/* Software GSO depends on SG. */
9735 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9736 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9737 		features &= ~NETIF_F_GSO;
9738 	}
9739 
9740 	/* GSO partial features require GSO partial be set */
9741 	if ((features & dev->gso_partial_features) &&
9742 	    !(features & NETIF_F_GSO_PARTIAL)) {
9743 		netdev_dbg(dev,
9744 			   "Dropping partially supported GSO features since no GSO partial.\n");
9745 		features &= ~dev->gso_partial_features;
9746 	}
9747 
9748 	if (!(features & NETIF_F_RXCSUM)) {
9749 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9750 		 * successfully merged by hardware must also have the
9751 		 * checksum verified by hardware.  If the user does not
9752 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
9753 		 */
9754 		if (features & NETIF_F_GRO_HW) {
9755 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9756 			features &= ~NETIF_F_GRO_HW;
9757 		}
9758 	}
9759 
9760 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
9761 	if (features & NETIF_F_RXFCS) {
9762 		if (features & NETIF_F_LRO) {
9763 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9764 			features &= ~NETIF_F_LRO;
9765 		}
9766 
9767 		if (features & NETIF_F_GRO_HW) {
9768 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9769 			features &= ~NETIF_F_GRO_HW;
9770 		}
9771 	}
9772 
9773 	if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
9774 		netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
9775 		features &= ~NETIF_F_LRO;
9776 	}
9777 
9778 	if (features & NETIF_F_HW_TLS_TX) {
9779 		bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9780 			(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9781 		bool hw_csum = features & NETIF_F_HW_CSUM;
9782 
9783 		if (!ip_csum && !hw_csum) {
9784 			netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9785 			features &= ~NETIF_F_HW_TLS_TX;
9786 		}
9787 	}
9788 
9789 	if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9790 		netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9791 		features &= ~NETIF_F_HW_TLS_RX;
9792 	}
9793 
9794 	return features;
9795 }
9796 
9797 int __netdev_update_features(struct net_device *dev)
9798 {
9799 	struct net_device *upper, *lower;
9800 	netdev_features_t features;
9801 	struct list_head *iter;
9802 	int err = -1;
9803 
9804 	ASSERT_RTNL();
9805 
9806 	features = netdev_get_wanted_features(dev);
9807 
9808 	if (dev->netdev_ops->ndo_fix_features)
9809 		features = dev->netdev_ops->ndo_fix_features(dev, features);
9810 
9811 	/* driver might be less strict about feature dependencies */
9812 	features = netdev_fix_features(dev, features);
9813 
9814 	/* some features can't be enabled if they're off on an upper device */
9815 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
9816 		features = netdev_sync_upper_features(dev, upper, features);
9817 
9818 	if (dev->features == features)
9819 		goto sync_lower;
9820 
9821 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9822 		&dev->features, &features);
9823 
9824 	if (dev->netdev_ops->ndo_set_features)
9825 		err = dev->netdev_ops->ndo_set_features(dev, features);
9826 	else
9827 		err = 0;
9828 
9829 	if (unlikely(err < 0)) {
9830 		netdev_err(dev,
9831 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
9832 			err, &features, &dev->features);
9833 		/* return non-0 since some features might have changed and
9834 		 * it's better to fire a spurious notification than miss it
9835 		 */
9836 		return -1;
9837 	}
9838 
9839 sync_lower:
9840 	/* some features must be disabled on lower devices when disabled
9841 	 * on an upper device (think: bonding master or bridge)
9842 	 */
9843 	netdev_for_each_lower_dev(dev, lower, iter)
9844 		netdev_sync_lower_features(dev, lower, features);
9845 
9846 	if (!err) {
9847 		netdev_features_t diff = features ^ dev->features;
9848 
9849 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9850 			/* udp_tunnel_{get,drop}_rx_info both need
9851 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9852 			 * device, or they won't do anything.
9853 			 * Thus we need to update dev->features
9854 			 * *before* calling udp_tunnel_get_rx_info,
9855 			 * but *after* calling udp_tunnel_drop_rx_info.
9856 			 */
9857 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9858 				dev->features = features;
9859 				udp_tunnel_get_rx_info(dev);
9860 			} else {
9861 				udp_tunnel_drop_rx_info(dev);
9862 			}
9863 		}
9864 
9865 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9866 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9867 				dev->features = features;
9868 				err |= vlan_get_rx_ctag_filter_info(dev);
9869 			} else {
9870 				vlan_drop_rx_ctag_filter_info(dev);
9871 			}
9872 		}
9873 
9874 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9875 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9876 				dev->features = features;
9877 				err |= vlan_get_rx_stag_filter_info(dev);
9878 			} else {
9879 				vlan_drop_rx_stag_filter_info(dev);
9880 			}
9881 		}
9882 
9883 		dev->features = features;
9884 	}
9885 
9886 	return err < 0 ? 0 : 1;
9887 }
9888 
9889 /**
9890  *	netdev_update_features - recalculate device features
9891  *	@dev: the device to check
9892  *
9893  *	Recalculate dev->features set and send notifications if it
9894  *	has changed. Should be called after driver or hardware dependent
9895  *	conditions might have changed that influence the features.
9896  */
9897 void netdev_update_features(struct net_device *dev)
9898 {
9899 	if (__netdev_update_features(dev))
9900 		netdev_features_change(dev);
9901 }
9902 EXPORT_SYMBOL(netdev_update_features);
9903 
9904 /**
9905  *	netdev_change_features - recalculate device features
9906  *	@dev: the device to check
9907  *
9908  *	Recalculate dev->features set and send notifications even
9909  *	if they have not changed. Should be called instead of
9910  *	netdev_update_features() if also dev->vlan_features might
9911  *	have changed to allow the changes to be propagated to stacked
9912  *	VLAN devices.
9913  */
9914 void netdev_change_features(struct net_device *dev)
9915 {
9916 	__netdev_update_features(dev);
9917 	netdev_features_change(dev);
9918 }
9919 EXPORT_SYMBOL(netdev_change_features);
9920 
9921 /**
9922  *	netif_stacked_transfer_operstate -	transfer operstate
9923  *	@rootdev: the root or lower level device to transfer state from
9924  *	@dev: the device to transfer operstate to
9925  *
9926  *	Transfer operational state from root to device. This is normally
9927  *	called when a stacking relationship exists between the root
9928  *	device and the device(a leaf device).
9929  */
9930 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9931 					struct net_device *dev)
9932 {
9933 	if (rootdev->operstate == IF_OPER_DORMANT)
9934 		netif_dormant_on(dev);
9935 	else
9936 		netif_dormant_off(dev);
9937 
9938 	if (rootdev->operstate == IF_OPER_TESTING)
9939 		netif_testing_on(dev);
9940 	else
9941 		netif_testing_off(dev);
9942 
9943 	if (netif_carrier_ok(rootdev))
9944 		netif_carrier_on(dev);
9945 	else
9946 		netif_carrier_off(dev);
9947 }
9948 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9949 
9950 static int netif_alloc_rx_queues(struct net_device *dev)
9951 {
9952 	unsigned int i, count = dev->num_rx_queues;
9953 	struct netdev_rx_queue *rx;
9954 	size_t sz = count * sizeof(*rx);
9955 	int err = 0;
9956 
9957 	BUG_ON(count < 1);
9958 
9959 	rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9960 	if (!rx)
9961 		return -ENOMEM;
9962 
9963 	dev->_rx = rx;
9964 
9965 	for (i = 0; i < count; i++) {
9966 		rx[i].dev = dev;
9967 
9968 		/* XDP RX-queue setup */
9969 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
9970 		if (err < 0)
9971 			goto err_rxq_info;
9972 	}
9973 	return 0;
9974 
9975 err_rxq_info:
9976 	/* Rollback successful reg's and free other resources */
9977 	while (i--)
9978 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9979 	kvfree(dev->_rx);
9980 	dev->_rx = NULL;
9981 	return err;
9982 }
9983 
9984 static void netif_free_rx_queues(struct net_device *dev)
9985 {
9986 	unsigned int i, count = dev->num_rx_queues;
9987 
9988 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9989 	if (!dev->_rx)
9990 		return;
9991 
9992 	for (i = 0; i < count; i++)
9993 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9994 
9995 	kvfree(dev->_rx);
9996 }
9997 
9998 static void netdev_init_one_queue(struct net_device *dev,
9999 				  struct netdev_queue *queue, void *_unused)
10000 {
10001 	/* Initialize queue lock */
10002 	spin_lock_init(&queue->_xmit_lock);
10003 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10004 	queue->xmit_lock_owner = -1;
10005 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10006 	queue->dev = dev;
10007 #ifdef CONFIG_BQL
10008 	dql_init(&queue->dql, HZ);
10009 #endif
10010 }
10011 
10012 static void netif_free_tx_queues(struct net_device *dev)
10013 {
10014 	kvfree(dev->_tx);
10015 }
10016 
10017 static int netif_alloc_netdev_queues(struct net_device *dev)
10018 {
10019 	unsigned int count = dev->num_tx_queues;
10020 	struct netdev_queue *tx;
10021 	size_t sz = count * sizeof(*tx);
10022 
10023 	if (count < 1 || count > 0xffff)
10024 		return -EINVAL;
10025 
10026 	tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10027 	if (!tx)
10028 		return -ENOMEM;
10029 
10030 	dev->_tx = tx;
10031 
10032 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10033 	spin_lock_init(&dev->tx_global_lock);
10034 
10035 	return 0;
10036 }
10037 
10038 void netif_tx_stop_all_queues(struct net_device *dev)
10039 {
10040 	unsigned int i;
10041 
10042 	for (i = 0; i < dev->num_tx_queues; i++) {
10043 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10044 
10045 		netif_tx_stop_queue(txq);
10046 	}
10047 }
10048 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10049 
10050 /**
10051  * register_netdevice() - register a network device
10052  * @dev: device to register
10053  *
10054  * Take a prepared network device structure and make it externally accessible.
10055  * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
10056  * Callers must hold the rtnl lock - you may want register_netdev()
10057  * instead of this.
10058  */
10059 int register_netdevice(struct net_device *dev)
10060 {
10061 	int ret;
10062 	struct net *net = dev_net(dev);
10063 
10064 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10065 		     NETDEV_FEATURE_COUNT);
10066 	BUG_ON(dev_boot_phase);
10067 	ASSERT_RTNL();
10068 
10069 	might_sleep();
10070 
10071 	/* When net_device's are persistent, this will be fatal. */
10072 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10073 	BUG_ON(!net);
10074 
10075 	ret = ethtool_check_ops(dev->ethtool_ops);
10076 	if (ret)
10077 		return ret;
10078 
10079 	spin_lock_init(&dev->addr_list_lock);
10080 	netdev_set_addr_lockdep_class(dev);
10081 
10082 	ret = dev_get_valid_name(net, dev, dev->name);
10083 	if (ret < 0)
10084 		goto out;
10085 
10086 	ret = -ENOMEM;
10087 	dev->name_node = netdev_name_node_head_alloc(dev);
10088 	if (!dev->name_node)
10089 		goto out;
10090 
10091 	/* Init, if this function is available */
10092 	if (dev->netdev_ops->ndo_init) {
10093 		ret = dev->netdev_ops->ndo_init(dev);
10094 		if (ret) {
10095 			if (ret > 0)
10096 				ret = -EIO;
10097 			goto err_free_name;
10098 		}
10099 	}
10100 
10101 	if (((dev->hw_features | dev->features) &
10102 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
10103 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10104 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10105 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10106 		ret = -EINVAL;
10107 		goto err_uninit;
10108 	}
10109 
10110 	ret = dev_index_reserve(net, dev->ifindex);
10111 	if (ret < 0)
10112 		goto err_uninit;
10113 	dev->ifindex = ret;
10114 
10115 	/* Transfer changeable features to wanted_features and enable
10116 	 * software offloads (GSO and GRO).
10117 	 */
10118 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10119 	dev->features |= NETIF_F_SOFT_FEATURES;
10120 
10121 	if (dev->udp_tunnel_nic_info) {
10122 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10123 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10124 	}
10125 
10126 	dev->wanted_features = dev->features & dev->hw_features;
10127 
10128 	if (!(dev->flags & IFF_LOOPBACK))
10129 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
10130 
10131 	/* If IPv4 TCP segmentation offload is supported we should also
10132 	 * allow the device to enable segmenting the frame with the option
10133 	 * of ignoring a static IP ID value.  This doesn't enable the
10134 	 * feature itself but allows the user to enable it later.
10135 	 */
10136 	if (dev->hw_features & NETIF_F_TSO)
10137 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
10138 	if (dev->vlan_features & NETIF_F_TSO)
10139 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10140 	if (dev->mpls_features & NETIF_F_TSO)
10141 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10142 	if (dev->hw_enc_features & NETIF_F_TSO)
10143 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10144 
10145 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10146 	 */
10147 	dev->vlan_features |= NETIF_F_HIGHDMA;
10148 
10149 	/* Make NETIF_F_SG inheritable to tunnel devices.
10150 	 */
10151 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10152 
10153 	/* Make NETIF_F_SG inheritable to MPLS.
10154 	 */
10155 	dev->mpls_features |= NETIF_F_SG;
10156 
10157 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10158 	ret = notifier_to_errno(ret);
10159 	if (ret)
10160 		goto err_ifindex_release;
10161 
10162 	ret = netdev_register_kobject(dev);
10163 	write_lock(&dev_base_lock);
10164 	dev->reg_state = ret ? NETREG_UNREGISTERED : NETREG_REGISTERED;
10165 	write_unlock(&dev_base_lock);
10166 	if (ret)
10167 		goto err_uninit_notify;
10168 
10169 	__netdev_update_features(dev);
10170 
10171 	/*
10172 	 *	Default initial state at registry is that the
10173 	 *	device is present.
10174 	 */
10175 
10176 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10177 
10178 	linkwatch_init_dev(dev);
10179 
10180 	dev_init_scheduler(dev);
10181 
10182 	netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
10183 	list_netdevice(dev);
10184 
10185 	add_device_randomness(dev->dev_addr, dev->addr_len);
10186 
10187 	/* If the device has permanent device address, driver should
10188 	 * set dev_addr and also addr_assign_type should be set to
10189 	 * NET_ADDR_PERM (default value).
10190 	 */
10191 	if (dev->addr_assign_type == NET_ADDR_PERM)
10192 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10193 
10194 	/* Notify protocols, that a new device appeared. */
10195 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10196 	ret = notifier_to_errno(ret);
10197 	if (ret) {
10198 		/* Expect explicit free_netdev() on failure */
10199 		dev->needs_free_netdev = false;
10200 		unregister_netdevice_queue(dev, NULL);
10201 		goto out;
10202 	}
10203 	/*
10204 	 *	Prevent userspace races by waiting until the network
10205 	 *	device is fully setup before sending notifications.
10206 	 */
10207 	if (!dev->rtnl_link_ops ||
10208 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10209 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
10210 
10211 out:
10212 	return ret;
10213 
10214 err_uninit_notify:
10215 	call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10216 err_ifindex_release:
10217 	dev_index_release(net, dev->ifindex);
10218 err_uninit:
10219 	if (dev->netdev_ops->ndo_uninit)
10220 		dev->netdev_ops->ndo_uninit(dev);
10221 	if (dev->priv_destructor)
10222 		dev->priv_destructor(dev);
10223 err_free_name:
10224 	netdev_name_node_free(dev->name_node);
10225 	goto out;
10226 }
10227 EXPORT_SYMBOL(register_netdevice);
10228 
10229 /**
10230  *	init_dummy_netdev	- init a dummy network device for NAPI
10231  *	@dev: device to init
10232  *
10233  *	This takes a network device structure and initialize the minimum
10234  *	amount of fields so it can be used to schedule NAPI polls without
10235  *	registering a full blown interface. This is to be used by drivers
10236  *	that need to tie several hardware interfaces to a single NAPI
10237  *	poll scheduler due to HW limitations.
10238  */
10239 int init_dummy_netdev(struct net_device *dev)
10240 {
10241 	/* Clear everything. Note we don't initialize spinlocks
10242 	 * are they aren't supposed to be taken by any of the
10243 	 * NAPI code and this dummy netdev is supposed to be
10244 	 * only ever used for NAPI polls
10245 	 */
10246 	memset(dev, 0, sizeof(struct net_device));
10247 
10248 	/* make sure we BUG if trying to hit standard
10249 	 * register/unregister code path
10250 	 */
10251 	dev->reg_state = NETREG_DUMMY;
10252 
10253 	/* NAPI wants this */
10254 	INIT_LIST_HEAD(&dev->napi_list);
10255 
10256 	/* a dummy interface is started by default */
10257 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10258 	set_bit(__LINK_STATE_START, &dev->state);
10259 
10260 	/* napi_busy_loop stats accounting wants this */
10261 	dev_net_set(dev, &init_net);
10262 
10263 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
10264 	 * because users of this 'device' dont need to change
10265 	 * its refcount.
10266 	 */
10267 
10268 	return 0;
10269 }
10270 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10271 
10272 
10273 /**
10274  *	register_netdev	- register a network device
10275  *	@dev: device to register
10276  *
10277  *	Take a completed network device structure and add it to the kernel
10278  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10279  *	chain. 0 is returned on success. A negative errno code is returned
10280  *	on a failure to set up the device, or if the name is a duplicate.
10281  *
10282  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
10283  *	and expands the device name if you passed a format string to
10284  *	alloc_netdev.
10285  */
10286 int register_netdev(struct net_device *dev)
10287 {
10288 	int err;
10289 
10290 	if (rtnl_lock_killable())
10291 		return -EINTR;
10292 	err = register_netdevice(dev);
10293 	rtnl_unlock();
10294 	return err;
10295 }
10296 EXPORT_SYMBOL(register_netdev);
10297 
10298 int netdev_refcnt_read(const struct net_device *dev)
10299 {
10300 #ifdef CONFIG_PCPU_DEV_REFCNT
10301 	int i, refcnt = 0;
10302 
10303 	for_each_possible_cpu(i)
10304 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10305 	return refcnt;
10306 #else
10307 	return refcount_read(&dev->dev_refcnt);
10308 #endif
10309 }
10310 EXPORT_SYMBOL(netdev_refcnt_read);
10311 
10312 int netdev_unregister_timeout_secs __read_mostly = 10;
10313 
10314 #define WAIT_REFS_MIN_MSECS 1
10315 #define WAIT_REFS_MAX_MSECS 250
10316 /**
10317  * netdev_wait_allrefs_any - wait until all references are gone.
10318  * @list: list of net_devices to wait on
10319  *
10320  * This is called when unregistering network devices.
10321  *
10322  * Any protocol or device that holds a reference should register
10323  * for netdevice notification, and cleanup and put back the
10324  * reference if they receive an UNREGISTER event.
10325  * We can get stuck here if buggy protocols don't correctly
10326  * call dev_put.
10327  */
10328 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
10329 {
10330 	unsigned long rebroadcast_time, warning_time;
10331 	struct net_device *dev;
10332 	int wait = 0;
10333 
10334 	rebroadcast_time = warning_time = jiffies;
10335 
10336 	list_for_each_entry(dev, list, todo_list)
10337 		if (netdev_refcnt_read(dev) == 1)
10338 			return dev;
10339 
10340 	while (true) {
10341 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10342 			rtnl_lock();
10343 
10344 			/* Rebroadcast unregister notification */
10345 			list_for_each_entry(dev, list, todo_list)
10346 				call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10347 
10348 			__rtnl_unlock();
10349 			rcu_barrier();
10350 			rtnl_lock();
10351 
10352 			list_for_each_entry(dev, list, todo_list)
10353 				if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10354 					     &dev->state)) {
10355 					/* We must not have linkwatch events
10356 					 * pending on unregister. If this
10357 					 * happens, we simply run the queue
10358 					 * unscheduled, resulting in a noop
10359 					 * for this device.
10360 					 */
10361 					linkwatch_run_queue();
10362 					break;
10363 				}
10364 
10365 			__rtnl_unlock();
10366 
10367 			rebroadcast_time = jiffies;
10368 		}
10369 
10370 		if (!wait) {
10371 			rcu_barrier();
10372 			wait = WAIT_REFS_MIN_MSECS;
10373 		} else {
10374 			msleep(wait);
10375 			wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10376 		}
10377 
10378 		list_for_each_entry(dev, list, todo_list)
10379 			if (netdev_refcnt_read(dev) == 1)
10380 				return dev;
10381 
10382 		if (time_after(jiffies, warning_time +
10383 			       READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
10384 			list_for_each_entry(dev, list, todo_list) {
10385 				pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10386 					 dev->name, netdev_refcnt_read(dev));
10387 				ref_tracker_dir_print(&dev->refcnt_tracker, 10);
10388 			}
10389 
10390 			warning_time = jiffies;
10391 		}
10392 	}
10393 }
10394 
10395 /* The sequence is:
10396  *
10397  *	rtnl_lock();
10398  *	...
10399  *	register_netdevice(x1);
10400  *	register_netdevice(x2);
10401  *	...
10402  *	unregister_netdevice(y1);
10403  *	unregister_netdevice(y2);
10404  *      ...
10405  *	rtnl_unlock();
10406  *	free_netdev(y1);
10407  *	free_netdev(y2);
10408  *
10409  * We are invoked by rtnl_unlock().
10410  * This allows us to deal with problems:
10411  * 1) We can delete sysfs objects which invoke hotplug
10412  *    without deadlocking with linkwatch via keventd.
10413  * 2) Since we run with the RTNL semaphore not held, we can sleep
10414  *    safely in order to wait for the netdev refcnt to drop to zero.
10415  *
10416  * We must not return until all unregister events added during
10417  * the interval the lock was held have been completed.
10418  */
10419 void netdev_run_todo(void)
10420 {
10421 	struct net_device *dev, *tmp;
10422 	struct list_head list;
10423 #ifdef CONFIG_LOCKDEP
10424 	struct list_head unlink_list;
10425 
10426 	list_replace_init(&net_unlink_list, &unlink_list);
10427 
10428 	while (!list_empty(&unlink_list)) {
10429 		struct net_device *dev = list_first_entry(&unlink_list,
10430 							  struct net_device,
10431 							  unlink_list);
10432 		list_del_init(&dev->unlink_list);
10433 		dev->nested_level = dev->lower_level - 1;
10434 	}
10435 #endif
10436 
10437 	/* Snapshot list, allow later requests */
10438 	list_replace_init(&net_todo_list, &list);
10439 
10440 	__rtnl_unlock();
10441 
10442 	/* Wait for rcu callbacks to finish before next phase */
10443 	if (!list_empty(&list))
10444 		rcu_barrier();
10445 
10446 	list_for_each_entry_safe(dev, tmp, &list, todo_list) {
10447 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10448 			netdev_WARN(dev, "run_todo but not unregistering\n");
10449 			list_del(&dev->todo_list);
10450 			continue;
10451 		}
10452 
10453 		write_lock(&dev_base_lock);
10454 		dev->reg_state = NETREG_UNREGISTERED;
10455 		write_unlock(&dev_base_lock);
10456 		linkwatch_forget_dev(dev);
10457 	}
10458 
10459 	while (!list_empty(&list)) {
10460 		dev = netdev_wait_allrefs_any(&list);
10461 		list_del(&dev->todo_list);
10462 
10463 		/* paranoia */
10464 		BUG_ON(netdev_refcnt_read(dev) != 1);
10465 		BUG_ON(!list_empty(&dev->ptype_all));
10466 		BUG_ON(!list_empty(&dev->ptype_specific));
10467 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
10468 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10469 
10470 		if (dev->priv_destructor)
10471 			dev->priv_destructor(dev);
10472 		if (dev->needs_free_netdev)
10473 			free_netdev(dev);
10474 
10475 		if (atomic_dec_and_test(&dev_net(dev)->dev_unreg_count))
10476 			wake_up(&netdev_unregistering_wq);
10477 
10478 		/* Free network device */
10479 		kobject_put(&dev->dev.kobj);
10480 	}
10481 }
10482 
10483 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10484  * all the same fields in the same order as net_device_stats, with only
10485  * the type differing, but rtnl_link_stats64 may have additional fields
10486  * at the end for newer counters.
10487  */
10488 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10489 			     const struct net_device_stats *netdev_stats)
10490 {
10491 	size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
10492 	const atomic_long_t *src = (atomic_long_t *)netdev_stats;
10493 	u64 *dst = (u64 *)stats64;
10494 
10495 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10496 	for (i = 0; i < n; i++)
10497 		dst[i] = (unsigned long)atomic_long_read(&src[i]);
10498 	/* zero out counters that only exist in rtnl_link_stats64 */
10499 	memset((char *)stats64 + n * sizeof(u64), 0,
10500 	       sizeof(*stats64) - n * sizeof(u64));
10501 }
10502 EXPORT_SYMBOL(netdev_stats_to_stats64);
10503 
10504 static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc(
10505 		struct net_device *dev)
10506 {
10507 	struct net_device_core_stats __percpu *p;
10508 
10509 	p = alloc_percpu_gfp(struct net_device_core_stats,
10510 			     GFP_ATOMIC | __GFP_NOWARN);
10511 
10512 	if (p && cmpxchg(&dev->core_stats, NULL, p))
10513 		free_percpu(p);
10514 
10515 	/* This READ_ONCE() pairs with the cmpxchg() above */
10516 	return READ_ONCE(dev->core_stats);
10517 }
10518 
10519 noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset)
10520 {
10521 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10522 	struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
10523 	unsigned long __percpu *field;
10524 
10525 	if (unlikely(!p)) {
10526 		p = netdev_core_stats_alloc(dev);
10527 		if (!p)
10528 			return;
10529 	}
10530 
10531 	field = (__force unsigned long __percpu *)((__force void *)p + offset);
10532 	this_cpu_inc(*field);
10533 }
10534 EXPORT_SYMBOL_GPL(netdev_core_stats_inc);
10535 
10536 /**
10537  *	dev_get_stats	- get network device statistics
10538  *	@dev: device to get statistics from
10539  *	@storage: place to store stats
10540  *
10541  *	Get network statistics from device. Return @storage.
10542  *	The device driver may provide its own method by setting
10543  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10544  *	otherwise the internal statistics structure is used.
10545  */
10546 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10547 					struct rtnl_link_stats64 *storage)
10548 {
10549 	const struct net_device_ops *ops = dev->netdev_ops;
10550 	const struct net_device_core_stats __percpu *p;
10551 
10552 	if (ops->ndo_get_stats64) {
10553 		memset(storage, 0, sizeof(*storage));
10554 		ops->ndo_get_stats64(dev, storage);
10555 	} else if (ops->ndo_get_stats) {
10556 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10557 	} else {
10558 		netdev_stats_to_stats64(storage, &dev->stats);
10559 	}
10560 
10561 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10562 	p = READ_ONCE(dev->core_stats);
10563 	if (p) {
10564 		const struct net_device_core_stats *core_stats;
10565 		int i;
10566 
10567 		for_each_possible_cpu(i) {
10568 			core_stats = per_cpu_ptr(p, i);
10569 			storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
10570 			storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
10571 			storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
10572 			storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
10573 		}
10574 	}
10575 	return storage;
10576 }
10577 EXPORT_SYMBOL(dev_get_stats);
10578 
10579 /**
10580  *	dev_fetch_sw_netstats - get per-cpu network device statistics
10581  *	@s: place to store stats
10582  *	@netstats: per-cpu network stats to read from
10583  *
10584  *	Read per-cpu network statistics and populate the related fields in @s.
10585  */
10586 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10587 			   const struct pcpu_sw_netstats __percpu *netstats)
10588 {
10589 	int cpu;
10590 
10591 	for_each_possible_cpu(cpu) {
10592 		u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
10593 		const struct pcpu_sw_netstats *stats;
10594 		unsigned int start;
10595 
10596 		stats = per_cpu_ptr(netstats, cpu);
10597 		do {
10598 			start = u64_stats_fetch_begin(&stats->syncp);
10599 			rx_packets = u64_stats_read(&stats->rx_packets);
10600 			rx_bytes   = u64_stats_read(&stats->rx_bytes);
10601 			tx_packets = u64_stats_read(&stats->tx_packets);
10602 			tx_bytes   = u64_stats_read(&stats->tx_bytes);
10603 		} while (u64_stats_fetch_retry(&stats->syncp, start));
10604 
10605 		s->rx_packets += rx_packets;
10606 		s->rx_bytes   += rx_bytes;
10607 		s->tx_packets += tx_packets;
10608 		s->tx_bytes   += tx_bytes;
10609 	}
10610 }
10611 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10612 
10613 /**
10614  *	dev_get_tstats64 - ndo_get_stats64 implementation
10615  *	@dev: device to get statistics from
10616  *	@s: place to store stats
10617  *
10618  *	Populate @s from dev->stats and dev->tstats. Can be used as
10619  *	ndo_get_stats64() callback.
10620  */
10621 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10622 {
10623 	netdev_stats_to_stats64(s, &dev->stats);
10624 	dev_fetch_sw_netstats(s, dev->tstats);
10625 }
10626 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10627 
10628 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10629 {
10630 	struct netdev_queue *queue = dev_ingress_queue(dev);
10631 
10632 #ifdef CONFIG_NET_CLS_ACT
10633 	if (queue)
10634 		return queue;
10635 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10636 	if (!queue)
10637 		return NULL;
10638 	netdev_init_one_queue(dev, queue, NULL);
10639 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10640 	RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
10641 	rcu_assign_pointer(dev->ingress_queue, queue);
10642 #endif
10643 	return queue;
10644 }
10645 
10646 static const struct ethtool_ops default_ethtool_ops;
10647 
10648 void netdev_set_default_ethtool_ops(struct net_device *dev,
10649 				    const struct ethtool_ops *ops)
10650 {
10651 	if (dev->ethtool_ops == &default_ethtool_ops)
10652 		dev->ethtool_ops = ops;
10653 }
10654 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10655 
10656 /**
10657  * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
10658  * @dev: netdev to enable the IRQ coalescing on
10659  *
10660  * Sets a conservative default for SW IRQ coalescing. Users can use
10661  * sysfs attributes to override the default values.
10662  */
10663 void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
10664 {
10665 	WARN_ON(dev->reg_state == NETREG_REGISTERED);
10666 
10667 	if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
10668 		dev->gro_flush_timeout = 20000;
10669 		dev->napi_defer_hard_irqs = 1;
10670 	}
10671 }
10672 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
10673 
10674 void netdev_freemem(struct net_device *dev)
10675 {
10676 	char *addr = (char *)dev - dev->padded;
10677 
10678 	kvfree(addr);
10679 }
10680 
10681 /**
10682  * alloc_netdev_mqs - allocate network device
10683  * @sizeof_priv: size of private data to allocate space for
10684  * @name: device name format string
10685  * @name_assign_type: origin of device name
10686  * @setup: callback to initialize device
10687  * @txqs: the number of TX subqueues to allocate
10688  * @rxqs: the number of RX subqueues to allocate
10689  *
10690  * Allocates a struct net_device with private data area for driver use
10691  * and performs basic initialization.  Also allocates subqueue structs
10692  * for each queue on the device.
10693  */
10694 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10695 		unsigned char name_assign_type,
10696 		void (*setup)(struct net_device *),
10697 		unsigned int txqs, unsigned int rxqs)
10698 {
10699 	struct net_device *dev;
10700 	unsigned int alloc_size;
10701 	struct net_device *p;
10702 
10703 	BUG_ON(strlen(name) >= sizeof(dev->name));
10704 
10705 	if (txqs < 1) {
10706 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10707 		return NULL;
10708 	}
10709 
10710 	if (rxqs < 1) {
10711 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10712 		return NULL;
10713 	}
10714 
10715 	alloc_size = sizeof(struct net_device);
10716 	if (sizeof_priv) {
10717 		/* ensure 32-byte alignment of private area */
10718 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10719 		alloc_size += sizeof_priv;
10720 	}
10721 	/* ensure 32-byte alignment of whole construct */
10722 	alloc_size += NETDEV_ALIGN - 1;
10723 
10724 	p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10725 	if (!p)
10726 		return NULL;
10727 
10728 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
10729 	dev->padded = (char *)dev - (char *)p;
10730 
10731 	ref_tracker_dir_init(&dev->refcnt_tracker, 128, name);
10732 #ifdef CONFIG_PCPU_DEV_REFCNT
10733 	dev->pcpu_refcnt = alloc_percpu(int);
10734 	if (!dev->pcpu_refcnt)
10735 		goto free_dev;
10736 	__dev_hold(dev);
10737 #else
10738 	refcount_set(&dev->dev_refcnt, 1);
10739 #endif
10740 
10741 	if (dev_addr_init(dev))
10742 		goto free_pcpu;
10743 
10744 	dev_mc_init(dev);
10745 	dev_uc_init(dev);
10746 
10747 	dev_net_set(dev, &init_net);
10748 
10749 	dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
10750 	dev->xdp_zc_max_segs = 1;
10751 	dev->gso_max_segs = GSO_MAX_SEGS;
10752 	dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
10753 	dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
10754 	dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
10755 	dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
10756 	dev->tso_max_segs = TSO_MAX_SEGS;
10757 	dev->upper_level = 1;
10758 	dev->lower_level = 1;
10759 #ifdef CONFIG_LOCKDEP
10760 	dev->nested_level = 0;
10761 	INIT_LIST_HEAD(&dev->unlink_list);
10762 #endif
10763 
10764 	INIT_LIST_HEAD(&dev->napi_list);
10765 	INIT_LIST_HEAD(&dev->unreg_list);
10766 	INIT_LIST_HEAD(&dev->close_list);
10767 	INIT_LIST_HEAD(&dev->link_watch_list);
10768 	INIT_LIST_HEAD(&dev->adj_list.upper);
10769 	INIT_LIST_HEAD(&dev->adj_list.lower);
10770 	INIT_LIST_HEAD(&dev->ptype_all);
10771 	INIT_LIST_HEAD(&dev->ptype_specific);
10772 	INIT_LIST_HEAD(&dev->net_notifier_list);
10773 #ifdef CONFIG_NET_SCHED
10774 	hash_init(dev->qdisc_hash);
10775 #endif
10776 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10777 	setup(dev);
10778 
10779 	if (!dev->tx_queue_len) {
10780 		dev->priv_flags |= IFF_NO_QUEUE;
10781 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10782 	}
10783 
10784 	dev->num_tx_queues = txqs;
10785 	dev->real_num_tx_queues = txqs;
10786 	if (netif_alloc_netdev_queues(dev))
10787 		goto free_all;
10788 
10789 	dev->num_rx_queues = rxqs;
10790 	dev->real_num_rx_queues = rxqs;
10791 	if (netif_alloc_rx_queues(dev))
10792 		goto free_all;
10793 
10794 	strcpy(dev->name, name);
10795 	dev->name_assign_type = name_assign_type;
10796 	dev->group = INIT_NETDEV_GROUP;
10797 	if (!dev->ethtool_ops)
10798 		dev->ethtool_ops = &default_ethtool_ops;
10799 
10800 	nf_hook_netdev_init(dev);
10801 
10802 	return dev;
10803 
10804 free_all:
10805 	free_netdev(dev);
10806 	return NULL;
10807 
10808 free_pcpu:
10809 #ifdef CONFIG_PCPU_DEV_REFCNT
10810 	free_percpu(dev->pcpu_refcnt);
10811 free_dev:
10812 #endif
10813 	netdev_freemem(dev);
10814 	return NULL;
10815 }
10816 EXPORT_SYMBOL(alloc_netdev_mqs);
10817 
10818 /**
10819  * free_netdev - free network device
10820  * @dev: device
10821  *
10822  * This function does the last stage of destroying an allocated device
10823  * interface. The reference to the device object is released. If this
10824  * is the last reference then it will be freed.Must be called in process
10825  * context.
10826  */
10827 void free_netdev(struct net_device *dev)
10828 {
10829 	struct napi_struct *p, *n;
10830 
10831 	might_sleep();
10832 
10833 	/* When called immediately after register_netdevice() failed the unwind
10834 	 * handling may still be dismantling the device. Handle that case by
10835 	 * deferring the free.
10836 	 */
10837 	if (dev->reg_state == NETREG_UNREGISTERING) {
10838 		ASSERT_RTNL();
10839 		dev->needs_free_netdev = true;
10840 		return;
10841 	}
10842 
10843 	netif_free_tx_queues(dev);
10844 	netif_free_rx_queues(dev);
10845 
10846 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10847 
10848 	/* Flush device addresses */
10849 	dev_addr_flush(dev);
10850 
10851 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10852 		netif_napi_del(p);
10853 
10854 	ref_tracker_dir_exit(&dev->refcnt_tracker);
10855 #ifdef CONFIG_PCPU_DEV_REFCNT
10856 	free_percpu(dev->pcpu_refcnt);
10857 	dev->pcpu_refcnt = NULL;
10858 #endif
10859 	free_percpu(dev->core_stats);
10860 	dev->core_stats = NULL;
10861 	free_percpu(dev->xdp_bulkq);
10862 	dev->xdp_bulkq = NULL;
10863 
10864 	/*  Compatibility with error handling in drivers */
10865 	if (dev->reg_state == NETREG_UNINITIALIZED) {
10866 		netdev_freemem(dev);
10867 		return;
10868 	}
10869 
10870 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10871 	dev->reg_state = NETREG_RELEASED;
10872 
10873 	/* will free via device release */
10874 	put_device(&dev->dev);
10875 }
10876 EXPORT_SYMBOL(free_netdev);
10877 
10878 /**
10879  *	synchronize_net -  Synchronize with packet receive processing
10880  *
10881  *	Wait for packets currently being received to be done.
10882  *	Does not block later packets from starting.
10883  */
10884 void synchronize_net(void)
10885 {
10886 	might_sleep();
10887 	if (rtnl_is_locked())
10888 		synchronize_rcu_expedited();
10889 	else
10890 		synchronize_rcu();
10891 }
10892 EXPORT_SYMBOL(synchronize_net);
10893 
10894 /**
10895  *	unregister_netdevice_queue - remove device from the kernel
10896  *	@dev: device
10897  *	@head: list
10898  *
10899  *	This function shuts down a device interface and removes it
10900  *	from the kernel tables.
10901  *	If head not NULL, device is queued to be unregistered later.
10902  *
10903  *	Callers must hold the rtnl semaphore.  You may want
10904  *	unregister_netdev() instead of this.
10905  */
10906 
10907 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10908 {
10909 	ASSERT_RTNL();
10910 
10911 	if (head) {
10912 		list_move_tail(&dev->unreg_list, head);
10913 	} else {
10914 		LIST_HEAD(single);
10915 
10916 		list_add(&dev->unreg_list, &single);
10917 		unregister_netdevice_many(&single);
10918 	}
10919 }
10920 EXPORT_SYMBOL(unregister_netdevice_queue);
10921 
10922 void unregister_netdevice_many_notify(struct list_head *head,
10923 				      u32 portid, const struct nlmsghdr *nlh)
10924 {
10925 	struct net_device *dev, *tmp;
10926 	LIST_HEAD(close_head);
10927 
10928 	BUG_ON(dev_boot_phase);
10929 	ASSERT_RTNL();
10930 
10931 	if (list_empty(head))
10932 		return;
10933 
10934 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
10935 		/* Some devices call without registering
10936 		 * for initialization unwind. Remove those
10937 		 * devices and proceed with the remaining.
10938 		 */
10939 		if (dev->reg_state == NETREG_UNINITIALIZED) {
10940 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
10941 				 dev->name, dev);
10942 
10943 			WARN_ON(1);
10944 			list_del(&dev->unreg_list);
10945 			continue;
10946 		}
10947 		dev->dismantle = true;
10948 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
10949 	}
10950 
10951 	/* If device is running, close it first. */
10952 	list_for_each_entry(dev, head, unreg_list)
10953 		list_add_tail(&dev->close_list, &close_head);
10954 	dev_close_many(&close_head, true);
10955 
10956 	list_for_each_entry(dev, head, unreg_list) {
10957 		/* And unlink it from device chain. */
10958 		write_lock(&dev_base_lock);
10959 		unlist_netdevice(dev, false);
10960 		dev->reg_state = NETREG_UNREGISTERING;
10961 		write_unlock(&dev_base_lock);
10962 	}
10963 	flush_all_backlogs();
10964 
10965 	synchronize_net();
10966 
10967 	list_for_each_entry(dev, head, unreg_list) {
10968 		struct sk_buff *skb = NULL;
10969 
10970 		/* Shutdown queueing discipline. */
10971 		dev_shutdown(dev);
10972 		dev_tcx_uninstall(dev);
10973 		dev_xdp_uninstall(dev);
10974 		bpf_dev_bound_netdev_unregister(dev);
10975 
10976 		netdev_offload_xstats_disable_all(dev);
10977 
10978 		/* Notify protocols, that we are about to destroy
10979 		 * this device. They should clean all the things.
10980 		 */
10981 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10982 
10983 		if (!dev->rtnl_link_ops ||
10984 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10985 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
10986 						     GFP_KERNEL, NULL, 0,
10987 						     portid, nlh);
10988 
10989 		/*
10990 		 *	Flush the unicast and multicast chains
10991 		 */
10992 		dev_uc_flush(dev);
10993 		dev_mc_flush(dev);
10994 
10995 		netdev_name_node_alt_flush(dev);
10996 		netdev_name_node_free(dev->name_node);
10997 
10998 		call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10999 
11000 		if (dev->netdev_ops->ndo_uninit)
11001 			dev->netdev_ops->ndo_uninit(dev);
11002 
11003 		if (skb)
11004 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
11005 
11006 		/* Notifier chain MUST detach us all upper devices. */
11007 		WARN_ON(netdev_has_any_upper_dev(dev));
11008 		WARN_ON(netdev_has_any_lower_dev(dev));
11009 
11010 		/* Remove entries from kobject tree */
11011 		netdev_unregister_kobject(dev);
11012 #ifdef CONFIG_XPS
11013 		/* Remove XPS queueing entries */
11014 		netif_reset_xps_queues_gt(dev, 0);
11015 #endif
11016 	}
11017 
11018 	synchronize_net();
11019 
11020 	list_for_each_entry(dev, head, unreg_list) {
11021 		netdev_put(dev, &dev->dev_registered_tracker);
11022 		net_set_todo(dev);
11023 	}
11024 
11025 	list_del(head);
11026 }
11027 
11028 /**
11029  *	unregister_netdevice_many - unregister many devices
11030  *	@head: list of devices
11031  *
11032  *  Note: As most callers use a stack allocated list_head,
11033  *  we force a list_del() to make sure stack wont be corrupted later.
11034  */
11035 void unregister_netdevice_many(struct list_head *head)
11036 {
11037 	unregister_netdevice_many_notify(head, 0, NULL);
11038 }
11039 EXPORT_SYMBOL(unregister_netdevice_many);
11040 
11041 /**
11042  *	unregister_netdev - remove device from the kernel
11043  *	@dev: device
11044  *
11045  *	This function shuts down a device interface and removes it
11046  *	from the kernel tables.
11047  *
11048  *	This is just a wrapper for unregister_netdevice that takes
11049  *	the rtnl semaphore.  In general you want to use this and not
11050  *	unregister_netdevice.
11051  */
11052 void unregister_netdev(struct net_device *dev)
11053 {
11054 	rtnl_lock();
11055 	unregister_netdevice(dev);
11056 	rtnl_unlock();
11057 }
11058 EXPORT_SYMBOL(unregister_netdev);
11059 
11060 /**
11061  *	__dev_change_net_namespace - move device to different nethost namespace
11062  *	@dev: device
11063  *	@net: network namespace
11064  *	@pat: If not NULL name pattern to try if the current device name
11065  *	      is already taken in the destination network namespace.
11066  *	@new_ifindex: If not zero, specifies device index in the target
11067  *	              namespace.
11068  *
11069  *	This function shuts down a device interface and moves it
11070  *	to a new network namespace. On success 0 is returned, on
11071  *	a failure a netagive errno code is returned.
11072  *
11073  *	Callers must hold the rtnl semaphore.
11074  */
11075 
11076 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11077 			       const char *pat, int new_ifindex)
11078 {
11079 	struct netdev_name_node *name_node;
11080 	struct net *net_old = dev_net(dev);
11081 	char new_name[IFNAMSIZ] = {};
11082 	int err, new_nsid;
11083 
11084 	ASSERT_RTNL();
11085 
11086 	/* Don't allow namespace local devices to be moved. */
11087 	err = -EINVAL;
11088 	if (dev->features & NETIF_F_NETNS_LOCAL)
11089 		goto out;
11090 
11091 	/* Ensure the device has been registrered */
11092 	if (dev->reg_state != NETREG_REGISTERED)
11093 		goto out;
11094 
11095 	/* Get out if there is nothing todo */
11096 	err = 0;
11097 	if (net_eq(net_old, net))
11098 		goto out;
11099 
11100 	/* Pick the destination device name, and ensure
11101 	 * we can use it in the destination network namespace.
11102 	 */
11103 	err = -EEXIST;
11104 	if (netdev_name_in_use(net, dev->name)) {
11105 		/* We get here if we can't use the current device name */
11106 		if (!pat)
11107 			goto out;
11108 		err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST);
11109 		if (err < 0)
11110 			goto out;
11111 	}
11112 	/* Check that none of the altnames conflicts. */
11113 	err = -EEXIST;
11114 	netdev_for_each_altname(dev, name_node)
11115 		if (netdev_name_in_use(net, name_node->name))
11116 			goto out;
11117 
11118 	/* Check that new_ifindex isn't used yet. */
11119 	if (new_ifindex) {
11120 		err = dev_index_reserve(net, new_ifindex);
11121 		if (err < 0)
11122 			goto out;
11123 	} else {
11124 		/* If there is an ifindex conflict assign a new one */
11125 		err = dev_index_reserve(net, dev->ifindex);
11126 		if (err == -EBUSY)
11127 			err = dev_index_reserve(net, 0);
11128 		if (err < 0)
11129 			goto out;
11130 		new_ifindex = err;
11131 	}
11132 
11133 	/*
11134 	 * And now a mini version of register_netdevice unregister_netdevice.
11135 	 */
11136 
11137 	/* If device is running close it first. */
11138 	dev_close(dev);
11139 
11140 	/* And unlink it from device chain */
11141 	unlist_netdevice(dev, true);
11142 
11143 	synchronize_net();
11144 
11145 	/* Shutdown queueing discipline. */
11146 	dev_shutdown(dev);
11147 
11148 	/* Notify protocols, that we are about to destroy
11149 	 * this device. They should clean all the things.
11150 	 *
11151 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
11152 	 * This is wanted because this way 8021q and macvlan know
11153 	 * the device is just moving and can keep their slaves up.
11154 	 */
11155 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11156 	rcu_barrier();
11157 
11158 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11159 
11160 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11161 			    new_ifindex);
11162 
11163 	/*
11164 	 *	Flush the unicast and multicast chains
11165 	 */
11166 	dev_uc_flush(dev);
11167 	dev_mc_flush(dev);
11168 
11169 	/* Send a netdev-removed uevent to the old namespace */
11170 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11171 	netdev_adjacent_del_links(dev);
11172 
11173 	/* Move per-net netdevice notifiers that are following the netdevice */
11174 	move_netdevice_notifiers_dev_net(dev, net);
11175 
11176 	/* Actually switch the network namespace */
11177 	dev_net_set(dev, net);
11178 	dev->ifindex = new_ifindex;
11179 
11180 	/* Send a netdev-add uevent to the new namespace */
11181 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11182 	netdev_adjacent_add_links(dev);
11183 
11184 	if (new_name[0]) /* Rename the netdev to prepared name */
11185 		strscpy(dev->name, new_name, IFNAMSIZ);
11186 
11187 	/* Fixup kobjects */
11188 	err = device_rename(&dev->dev, dev->name);
11189 	WARN_ON(err);
11190 
11191 	/* Adapt owner in case owning user namespace of target network
11192 	 * namespace is different from the original one.
11193 	 */
11194 	err = netdev_change_owner(dev, net_old, net);
11195 	WARN_ON(err);
11196 
11197 	/* Add the device back in the hashes */
11198 	list_netdevice(dev);
11199 
11200 	/* Notify protocols, that a new device appeared. */
11201 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
11202 
11203 	/*
11204 	 *	Prevent userspace races by waiting until the network
11205 	 *	device is fully setup before sending notifications.
11206 	 */
11207 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11208 
11209 	synchronize_net();
11210 	err = 0;
11211 out:
11212 	return err;
11213 }
11214 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11215 
11216 static int dev_cpu_dead(unsigned int oldcpu)
11217 {
11218 	struct sk_buff **list_skb;
11219 	struct sk_buff *skb;
11220 	unsigned int cpu;
11221 	struct softnet_data *sd, *oldsd, *remsd = NULL;
11222 
11223 	local_irq_disable();
11224 	cpu = smp_processor_id();
11225 	sd = &per_cpu(softnet_data, cpu);
11226 	oldsd = &per_cpu(softnet_data, oldcpu);
11227 
11228 	/* Find end of our completion_queue. */
11229 	list_skb = &sd->completion_queue;
11230 	while (*list_skb)
11231 		list_skb = &(*list_skb)->next;
11232 	/* Append completion queue from offline CPU. */
11233 	*list_skb = oldsd->completion_queue;
11234 	oldsd->completion_queue = NULL;
11235 
11236 	/* Append output queue from offline CPU. */
11237 	if (oldsd->output_queue) {
11238 		*sd->output_queue_tailp = oldsd->output_queue;
11239 		sd->output_queue_tailp = oldsd->output_queue_tailp;
11240 		oldsd->output_queue = NULL;
11241 		oldsd->output_queue_tailp = &oldsd->output_queue;
11242 	}
11243 	/* Append NAPI poll list from offline CPU, with one exception :
11244 	 * process_backlog() must be called by cpu owning percpu backlog.
11245 	 * We properly handle process_queue & input_pkt_queue later.
11246 	 */
11247 	while (!list_empty(&oldsd->poll_list)) {
11248 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11249 							    struct napi_struct,
11250 							    poll_list);
11251 
11252 		list_del_init(&napi->poll_list);
11253 		if (napi->poll == process_backlog)
11254 			napi->state = 0;
11255 		else
11256 			____napi_schedule(sd, napi);
11257 	}
11258 
11259 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
11260 	local_irq_enable();
11261 
11262 #ifdef CONFIG_RPS
11263 	remsd = oldsd->rps_ipi_list;
11264 	oldsd->rps_ipi_list = NULL;
11265 #endif
11266 	/* send out pending IPI's on offline CPU */
11267 	net_rps_send_ipi(remsd);
11268 
11269 	/* Process offline CPU's input_pkt_queue */
11270 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11271 		netif_rx(skb);
11272 		input_queue_head_incr(oldsd);
11273 	}
11274 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11275 		netif_rx(skb);
11276 		input_queue_head_incr(oldsd);
11277 	}
11278 
11279 	return 0;
11280 }
11281 
11282 /**
11283  *	netdev_increment_features - increment feature set by one
11284  *	@all: current feature set
11285  *	@one: new feature set
11286  *	@mask: mask feature set
11287  *
11288  *	Computes a new feature set after adding a device with feature set
11289  *	@one to the master device with current feature set @all.  Will not
11290  *	enable anything that is off in @mask. Returns the new feature set.
11291  */
11292 netdev_features_t netdev_increment_features(netdev_features_t all,
11293 	netdev_features_t one, netdev_features_t mask)
11294 {
11295 	if (mask & NETIF_F_HW_CSUM)
11296 		mask |= NETIF_F_CSUM_MASK;
11297 	mask |= NETIF_F_VLAN_CHALLENGED;
11298 
11299 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11300 	all &= one | ~NETIF_F_ALL_FOR_ALL;
11301 
11302 	/* If one device supports hw checksumming, set for all. */
11303 	if (all & NETIF_F_HW_CSUM)
11304 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11305 
11306 	return all;
11307 }
11308 EXPORT_SYMBOL(netdev_increment_features);
11309 
11310 static struct hlist_head * __net_init netdev_create_hash(void)
11311 {
11312 	int i;
11313 	struct hlist_head *hash;
11314 
11315 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11316 	if (hash != NULL)
11317 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
11318 			INIT_HLIST_HEAD(&hash[i]);
11319 
11320 	return hash;
11321 }
11322 
11323 /* Initialize per network namespace state */
11324 static int __net_init netdev_init(struct net *net)
11325 {
11326 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
11327 		     8 * sizeof_field(struct napi_struct, gro_bitmask));
11328 
11329 	INIT_LIST_HEAD(&net->dev_base_head);
11330 
11331 	net->dev_name_head = netdev_create_hash();
11332 	if (net->dev_name_head == NULL)
11333 		goto err_name;
11334 
11335 	net->dev_index_head = netdev_create_hash();
11336 	if (net->dev_index_head == NULL)
11337 		goto err_idx;
11338 
11339 	xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1);
11340 
11341 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11342 
11343 	return 0;
11344 
11345 err_idx:
11346 	kfree(net->dev_name_head);
11347 err_name:
11348 	return -ENOMEM;
11349 }
11350 
11351 /**
11352  *	netdev_drivername - network driver for the device
11353  *	@dev: network device
11354  *
11355  *	Determine network driver for device.
11356  */
11357 const char *netdev_drivername(const struct net_device *dev)
11358 {
11359 	const struct device_driver *driver;
11360 	const struct device *parent;
11361 	const char *empty = "";
11362 
11363 	parent = dev->dev.parent;
11364 	if (!parent)
11365 		return empty;
11366 
11367 	driver = parent->driver;
11368 	if (driver && driver->name)
11369 		return driver->name;
11370 	return empty;
11371 }
11372 
11373 static void __netdev_printk(const char *level, const struct net_device *dev,
11374 			    struct va_format *vaf)
11375 {
11376 	if (dev && dev->dev.parent) {
11377 		dev_printk_emit(level[1] - '0',
11378 				dev->dev.parent,
11379 				"%s %s %s%s: %pV",
11380 				dev_driver_string(dev->dev.parent),
11381 				dev_name(dev->dev.parent),
11382 				netdev_name(dev), netdev_reg_state(dev),
11383 				vaf);
11384 	} else if (dev) {
11385 		printk("%s%s%s: %pV",
11386 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
11387 	} else {
11388 		printk("%s(NULL net_device): %pV", level, vaf);
11389 	}
11390 }
11391 
11392 void netdev_printk(const char *level, const struct net_device *dev,
11393 		   const char *format, ...)
11394 {
11395 	struct va_format vaf;
11396 	va_list args;
11397 
11398 	va_start(args, format);
11399 
11400 	vaf.fmt = format;
11401 	vaf.va = &args;
11402 
11403 	__netdev_printk(level, dev, &vaf);
11404 
11405 	va_end(args);
11406 }
11407 EXPORT_SYMBOL(netdev_printk);
11408 
11409 #define define_netdev_printk_level(func, level)			\
11410 void func(const struct net_device *dev, const char *fmt, ...)	\
11411 {								\
11412 	struct va_format vaf;					\
11413 	va_list args;						\
11414 								\
11415 	va_start(args, fmt);					\
11416 								\
11417 	vaf.fmt = fmt;						\
11418 	vaf.va = &args;						\
11419 								\
11420 	__netdev_printk(level, dev, &vaf);			\
11421 								\
11422 	va_end(args);						\
11423 }								\
11424 EXPORT_SYMBOL(func);
11425 
11426 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11427 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11428 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11429 define_netdev_printk_level(netdev_err, KERN_ERR);
11430 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11431 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11432 define_netdev_printk_level(netdev_info, KERN_INFO);
11433 
11434 static void __net_exit netdev_exit(struct net *net)
11435 {
11436 	kfree(net->dev_name_head);
11437 	kfree(net->dev_index_head);
11438 	xa_destroy(&net->dev_by_index);
11439 	if (net != &init_net)
11440 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11441 }
11442 
11443 static struct pernet_operations __net_initdata netdev_net_ops = {
11444 	.init = netdev_init,
11445 	.exit = netdev_exit,
11446 };
11447 
11448 static void __net_exit default_device_exit_net(struct net *net)
11449 {
11450 	struct net_device *dev, *aux;
11451 	/*
11452 	 * Push all migratable network devices back to the
11453 	 * initial network namespace
11454 	 */
11455 	ASSERT_RTNL();
11456 	for_each_netdev_safe(net, dev, aux) {
11457 		int err;
11458 		char fb_name[IFNAMSIZ];
11459 
11460 		/* Ignore unmoveable devices (i.e. loopback) */
11461 		if (dev->features & NETIF_F_NETNS_LOCAL)
11462 			continue;
11463 
11464 		/* Leave virtual devices for the generic cleanup */
11465 		if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11466 			continue;
11467 
11468 		/* Push remaining network devices to init_net */
11469 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11470 		if (netdev_name_in_use(&init_net, fb_name))
11471 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
11472 		err = dev_change_net_namespace(dev, &init_net, fb_name);
11473 		if (err) {
11474 			pr_emerg("%s: failed to move %s to init_net: %d\n",
11475 				 __func__, dev->name, err);
11476 			BUG();
11477 		}
11478 	}
11479 }
11480 
11481 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11482 {
11483 	/* At exit all network devices most be removed from a network
11484 	 * namespace.  Do this in the reverse order of registration.
11485 	 * Do this across as many network namespaces as possible to
11486 	 * improve batching efficiency.
11487 	 */
11488 	struct net_device *dev;
11489 	struct net *net;
11490 	LIST_HEAD(dev_kill_list);
11491 
11492 	rtnl_lock();
11493 	list_for_each_entry(net, net_list, exit_list) {
11494 		default_device_exit_net(net);
11495 		cond_resched();
11496 	}
11497 
11498 	list_for_each_entry(net, net_list, exit_list) {
11499 		for_each_netdev_reverse(net, dev) {
11500 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11501 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11502 			else
11503 				unregister_netdevice_queue(dev, &dev_kill_list);
11504 		}
11505 	}
11506 	unregister_netdevice_many(&dev_kill_list);
11507 	rtnl_unlock();
11508 }
11509 
11510 static struct pernet_operations __net_initdata default_device_ops = {
11511 	.exit_batch = default_device_exit_batch,
11512 };
11513 
11514 /*
11515  *	Initialize the DEV module. At boot time this walks the device list and
11516  *	unhooks any devices that fail to initialise (normally hardware not
11517  *	present) and leaves us with a valid list of present and active devices.
11518  *
11519  */
11520 
11521 /*
11522  *       This is called single threaded during boot, so no need
11523  *       to take the rtnl semaphore.
11524  */
11525 static int __init net_dev_init(void)
11526 {
11527 	int i, rc = -ENOMEM;
11528 
11529 	BUG_ON(!dev_boot_phase);
11530 
11531 	if (dev_proc_init())
11532 		goto out;
11533 
11534 	if (netdev_kobject_init())
11535 		goto out;
11536 
11537 	INIT_LIST_HEAD(&ptype_all);
11538 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
11539 		INIT_LIST_HEAD(&ptype_base[i]);
11540 
11541 	if (register_pernet_subsys(&netdev_net_ops))
11542 		goto out;
11543 
11544 	/*
11545 	 *	Initialise the packet receive queues.
11546 	 */
11547 
11548 	for_each_possible_cpu(i) {
11549 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11550 		struct softnet_data *sd = &per_cpu(softnet_data, i);
11551 
11552 		INIT_WORK(flush, flush_backlog);
11553 
11554 		skb_queue_head_init(&sd->input_pkt_queue);
11555 		skb_queue_head_init(&sd->process_queue);
11556 #ifdef CONFIG_XFRM_OFFLOAD
11557 		skb_queue_head_init(&sd->xfrm_backlog);
11558 #endif
11559 		INIT_LIST_HEAD(&sd->poll_list);
11560 		sd->output_queue_tailp = &sd->output_queue;
11561 #ifdef CONFIG_RPS
11562 		INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11563 		sd->cpu = i;
11564 #endif
11565 		INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
11566 		spin_lock_init(&sd->defer_lock);
11567 
11568 		init_gro_hash(&sd->backlog);
11569 		sd->backlog.poll = process_backlog;
11570 		sd->backlog.weight = weight_p;
11571 	}
11572 
11573 	dev_boot_phase = 0;
11574 
11575 	/* The loopback device is special if any other network devices
11576 	 * is present in a network namespace the loopback device must
11577 	 * be present. Since we now dynamically allocate and free the
11578 	 * loopback device ensure this invariant is maintained by
11579 	 * keeping the loopback device as the first device on the
11580 	 * list of network devices.  Ensuring the loopback devices
11581 	 * is the first device that appears and the last network device
11582 	 * that disappears.
11583 	 */
11584 	if (register_pernet_device(&loopback_net_ops))
11585 		goto out;
11586 
11587 	if (register_pernet_device(&default_device_ops))
11588 		goto out;
11589 
11590 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11591 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11592 
11593 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11594 				       NULL, dev_cpu_dead);
11595 	WARN_ON(rc < 0);
11596 	rc = 0;
11597 out:
11598 	return rc;
11599 }
11600 
11601 subsys_initcall(net_dev_init);
11602