xref: /linux/net/core/dev.c (revision 6b2d2cec1081a979e0efd6a1e9559e5a01a3c10e)
1 /*
2  * 	NET3	Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  * 		Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *              			to 2 if register_netdev gets called
25  *              			before net_dev_init & also removed a
26  *              			few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *		Alan Cox	: 	Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *		Alan Cox	: 	Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *              			indefinitely on dev->refcnt
71  * 		J Hadi Salim	:	- Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/sched.h>
83 #include <linux/mutex.h>
84 #include <linux/string.h>
85 #include <linux/mm.h>
86 #include <linux/socket.h>
87 #include <linux/sockios.h>
88 #include <linux/errno.h>
89 #include <linux/interrupt.h>
90 #include <linux/if_ether.h>
91 #include <linux/netdevice.h>
92 #include <linux/etherdevice.h>
93 #include <linux/notifier.h>
94 #include <linux/skbuff.h>
95 #include <net/net_namespace.h>
96 #include <net/sock.h>
97 #include <linux/rtnetlink.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <linux/stat.h>
101 #include <linux/if_bridge.h>
102 #include <linux/if_macvlan.h>
103 #include <net/dst.h>
104 #include <net/pkt_sched.h>
105 #include <net/checksum.h>
106 #include <linux/highmem.h>
107 #include <linux/init.h>
108 #include <linux/kmod.h>
109 #include <linux/module.h>
110 #include <linux/kallsyms.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/wext.h>
115 #include <net/iw_handler.h>
116 #include <asm/current.h>
117 #include <linux/audit.h>
118 #include <linux/dmaengine.h>
119 #include <linux/err.h>
120 #include <linux/ctype.h>
121 #include <linux/if_arp.h>
122 
123 #include "net-sysfs.h"
124 
125 /*
126  *	The list of packet types we will receive (as opposed to discard)
127  *	and the routines to invoke.
128  *
129  *	Why 16. Because with 16 the only overlap we get on a hash of the
130  *	low nibble of the protocol value is RARP/SNAP/X.25.
131  *
132  *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
133  *             sure which should go first, but I bet it won't make much
134  *             difference if we are running VLANs.  The good news is that
135  *             this protocol won't be in the list unless compiled in, so
136  *             the average user (w/out VLANs) will not be adversely affected.
137  *             --BLG
138  *
139  *		0800	IP
140  *		8100    802.1Q VLAN
141  *		0001	802.3
142  *		0002	AX.25
143  *		0004	802.2
144  *		8035	RARP
145  *		0005	SNAP
146  *		0805	X.25
147  *		0806	ARP
148  *		8137	IPX
149  *		0009	Localtalk
150  *		86DD	IPv6
151  */
152 
153 static DEFINE_SPINLOCK(ptype_lock);
154 static struct list_head ptype_base[16] __read_mostly;	/* 16 way hashed list */
155 static struct list_head ptype_all __read_mostly;	/* Taps */
156 
157 #ifdef CONFIG_NET_DMA
158 struct net_dma {
159 	struct dma_client client;
160 	spinlock_t lock;
161 	cpumask_t channel_mask;
162 	struct dma_chan *channels[NR_CPUS];
163 };
164 
165 static enum dma_state_client
166 netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
167 	enum dma_state state);
168 
169 static struct net_dma net_dma = {
170 	.client = {
171 		.event_callback = netdev_dma_event,
172 	},
173 };
174 #endif
175 
176 /*
177  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
178  * semaphore.
179  *
180  * Pure readers hold dev_base_lock for reading.
181  *
182  * Writers must hold the rtnl semaphore while they loop through the
183  * dev_base_head list, and hold dev_base_lock for writing when they do the
184  * actual updates.  This allows pure readers to access the list even
185  * while a writer is preparing to update it.
186  *
187  * To put it another way, dev_base_lock is held for writing only to
188  * protect against pure readers; the rtnl semaphore provides the
189  * protection against other writers.
190  *
191  * See, for example usages, register_netdevice() and
192  * unregister_netdevice(), which must be called with the rtnl
193  * semaphore held.
194  */
195 DEFINE_RWLOCK(dev_base_lock);
196 
197 EXPORT_SYMBOL(dev_base_lock);
198 
199 #define NETDEV_HASHBITS	8
200 #define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS)
201 
202 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
203 {
204 	unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
205 	return &net->dev_name_head[hash & ((1 << NETDEV_HASHBITS) - 1)];
206 }
207 
208 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
209 {
210 	return &net->dev_index_head[ifindex & ((1 << NETDEV_HASHBITS) - 1)];
211 }
212 
213 /* Device list insertion */
214 static int list_netdevice(struct net_device *dev)
215 {
216 	struct net *net = dev->nd_net;
217 
218 	ASSERT_RTNL();
219 
220 	write_lock_bh(&dev_base_lock);
221 	list_add_tail(&dev->dev_list, &net->dev_base_head);
222 	hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
223 	hlist_add_head(&dev->index_hlist, dev_index_hash(net, dev->ifindex));
224 	write_unlock_bh(&dev_base_lock);
225 	return 0;
226 }
227 
228 /* Device list removal */
229 static void unlist_netdevice(struct net_device *dev)
230 {
231 	ASSERT_RTNL();
232 
233 	/* Unlink dev from the device chain */
234 	write_lock_bh(&dev_base_lock);
235 	list_del(&dev->dev_list);
236 	hlist_del(&dev->name_hlist);
237 	hlist_del(&dev->index_hlist);
238 	write_unlock_bh(&dev_base_lock);
239 }
240 
241 /*
242  *	Our notifier list
243  */
244 
245 static RAW_NOTIFIER_HEAD(netdev_chain);
246 
247 /*
248  *	Device drivers call our routines to queue packets here. We empty the
249  *	queue in the local softnet handler.
250  */
251 
252 DEFINE_PER_CPU(struct softnet_data, softnet_data);
253 
254 #ifdef CONFIG_DEBUG_LOCK_ALLOC
255 /*
256  * register_netdevice() inits dev->_xmit_lock and sets lockdep class
257  * according to dev->type
258  */
259 static const unsigned short netdev_lock_type[] =
260 	{ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
261 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
262 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
263 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
264 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
265 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
266 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
267 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
268 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
269 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
270 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
271 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
272 	 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
273 	 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_VOID,
274 	 ARPHRD_NONE};
275 
276 static const char *netdev_lock_name[] =
277 	{"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
278 	 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
279 	 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
280 	 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
281 	 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
282 	 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
283 	 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
284 	 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
285 	 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
286 	 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
287 	 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
288 	 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
289 	 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
290 	 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_VOID",
291 	 "_xmit_NONE"};
292 
293 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
294 
295 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
296 {
297 	int i;
298 
299 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
300 		if (netdev_lock_type[i] == dev_type)
301 			return i;
302 	/* the last key is used by default */
303 	return ARRAY_SIZE(netdev_lock_type) - 1;
304 }
305 
306 static inline void netdev_set_lockdep_class(spinlock_t *lock,
307 					    unsigned short dev_type)
308 {
309 	int i;
310 
311 	i = netdev_lock_pos(dev_type);
312 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
313 				   netdev_lock_name[i]);
314 }
315 #else
316 static inline void netdev_set_lockdep_class(spinlock_t *lock,
317 					    unsigned short dev_type)
318 {
319 }
320 #endif
321 
322 /*******************************************************************************
323 
324 		Protocol management and registration routines
325 
326 *******************************************************************************/
327 
328 /*
329  *	Add a protocol ID to the list. Now that the input handler is
330  *	smarter we can dispense with all the messy stuff that used to be
331  *	here.
332  *
333  *	BEWARE!!! Protocol handlers, mangling input packets,
334  *	MUST BE last in hash buckets and checking protocol handlers
335  *	MUST start from promiscuous ptype_all chain in net_bh.
336  *	It is true now, do not change it.
337  *	Explanation follows: if protocol handler, mangling packet, will
338  *	be the first on list, it is not able to sense, that packet
339  *	is cloned and should be copied-on-write, so that it will
340  *	change it and subsequent readers will get broken packet.
341  *							--ANK (980803)
342  */
343 
344 /**
345  *	dev_add_pack - add packet handler
346  *	@pt: packet type declaration
347  *
348  *	Add a protocol handler to the networking stack. The passed &packet_type
349  *	is linked into kernel lists and may not be freed until it has been
350  *	removed from the kernel lists.
351  *
352  *	This call does not sleep therefore it can not
353  *	guarantee all CPU's that are in middle of receiving packets
354  *	will see the new packet type (until the next received packet).
355  */
356 
357 void dev_add_pack(struct packet_type *pt)
358 {
359 	int hash;
360 
361 	spin_lock_bh(&ptype_lock);
362 	if (pt->type == htons(ETH_P_ALL))
363 		list_add_rcu(&pt->list, &ptype_all);
364 	else {
365 		hash = ntohs(pt->type) & 15;
366 		list_add_rcu(&pt->list, &ptype_base[hash]);
367 	}
368 	spin_unlock_bh(&ptype_lock);
369 }
370 
371 /**
372  *	__dev_remove_pack	 - remove packet handler
373  *	@pt: packet type declaration
374  *
375  *	Remove a protocol handler that was previously added to the kernel
376  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
377  *	from the kernel lists and can be freed or reused once this function
378  *	returns.
379  *
380  *      The packet type might still be in use by receivers
381  *	and must not be freed until after all the CPU's have gone
382  *	through a quiescent state.
383  */
384 void __dev_remove_pack(struct packet_type *pt)
385 {
386 	struct list_head *head;
387 	struct packet_type *pt1;
388 
389 	spin_lock_bh(&ptype_lock);
390 
391 	if (pt->type == htons(ETH_P_ALL))
392 		head = &ptype_all;
393 	else
394 		head = &ptype_base[ntohs(pt->type) & 15];
395 
396 	list_for_each_entry(pt1, head, list) {
397 		if (pt == pt1) {
398 			list_del_rcu(&pt->list);
399 			goto out;
400 		}
401 	}
402 
403 	printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
404 out:
405 	spin_unlock_bh(&ptype_lock);
406 }
407 /**
408  *	dev_remove_pack	 - remove packet handler
409  *	@pt: packet type declaration
410  *
411  *	Remove a protocol handler that was previously added to the kernel
412  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
413  *	from the kernel lists and can be freed or reused once this function
414  *	returns.
415  *
416  *	This call sleeps to guarantee that no CPU is looking at the packet
417  *	type after return.
418  */
419 void dev_remove_pack(struct packet_type *pt)
420 {
421 	__dev_remove_pack(pt);
422 
423 	synchronize_net();
424 }
425 
426 /******************************************************************************
427 
428 		      Device Boot-time Settings Routines
429 
430 *******************************************************************************/
431 
432 /* Boot time configuration table */
433 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
434 
435 /**
436  *	netdev_boot_setup_add	- add new setup entry
437  *	@name: name of the device
438  *	@map: configured settings for the device
439  *
440  *	Adds new setup entry to the dev_boot_setup list.  The function
441  *	returns 0 on error and 1 on success.  This is a generic routine to
442  *	all netdevices.
443  */
444 static int netdev_boot_setup_add(char *name, struct ifmap *map)
445 {
446 	struct netdev_boot_setup *s;
447 	int i;
448 
449 	s = dev_boot_setup;
450 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
451 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
452 			memset(s[i].name, 0, sizeof(s[i].name));
453 			strcpy(s[i].name, name);
454 			memcpy(&s[i].map, map, sizeof(s[i].map));
455 			break;
456 		}
457 	}
458 
459 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
460 }
461 
462 /**
463  *	netdev_boot_setup_check	- check boot time settings
464  *	@dev: the netdevice
465  *
466  * 	Check boot time settings for the device.
467  *	The found settings are set for the device to be used
468  *	later in the device probing.
469  *	Returns 0 if no settings found, 1 if they are.
470  */
471 int netdev_boot_setup_check(struct net_device *dev)
472 {
473 	struct netdev_boot_setup *s = dev_boot_setup;
474 	int i;
475 
476 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
477 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
478 		    !strncmp(dev->name, s[i].name, strlen(s[i].name))) {
479 			dev->irq 	= s[i].map.irq;
480 			dev->base_addr 	= s[i].map.base_addr;
481 			dev->mem_start 	= s[i].map.mem_start;
482 			dev->mem_end 	= s[i].map.mem_end;
483 			return 1;
484 		}
485 	}
486 	return 0;
487 }
488 
489 
490 /**
491  *	netdev_boot_base	- get address from boot time settings
492  *	@prefix: prefix for network device
493  *	@unit: id for network device
494  *
495  * 	Check boot time settings for the base address of device.
496  *	The found settings are set for the device to be used
497  *	later in the device probing.
498  *	Returns 0 if no settings found.
499  */
500 unsigned long netdev_boot_base(const char *prefix, int unit)
501 {
502 	const struct netdev_boot_setup *s = dev_boot_setup;
503 	char name[IFNAMSIZ];
504 	int i;
505 
506 	sprintf(name, "%s%d", prefix, unit);
507 
508 	/*
509 	 * If device already registered then return base of 1
510 	 * to indicate not to probe for this interface
511 	 */
512 	if (__dev_get_by_name(&init_net, name))
513 		return 1;
514 
515 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
516 		if (!strcmp(name, s[i].name))
517 			return s[i].map.base_addr;
518 	return 0;
519 }
520 
521 /*
522  * Saves at boot time configured settings for any netdevice.
523  */
524 int __init netdev_boot_setup(char *str)
525 {
526 	int ints[5];
527 	struct ifmap map;
528 
529 	str = get_options(str, ARRAY_SIZE(ints), ints);
530 	if (!str || !*str)
531 		return 0;
532 
533 	/* Save settings */
534 	memset(&map, 0, sizeof(map));
535 	if (ints[0] > 0)
536 		map.irq = ints[1];
537 	if (ints[0] > 1)
538 		map.base_addr = ints[2];
539 	if (ints[0] > 2)
540 		map.mem_start = ints[3];
541 	if (ints[0] > 3)
542 		map.mem_end = ints[4];
543 
544 	/* Add new entry to the list */
545 	return netdev_boot_setup_add(str, &map);
546 }
547 
548 __setup("netdev=", netdev_boot_setup);
549 
550 /*******************************************************************************
551 
552 			    Device Interface Subroutines
553 
554 *******************************************************************************/
555 
556 /**
557  *	__dev_get_by_name	- find a device by its name
558  *	@net: the applicable net namespace
559  *	@name: name to find
560  *
561  *	Find an interface by name. Must be called under RTNL semaphore
562  *	or @dev_base_lock. If the name is found a pointer to the device
563  *	is returned. If the name is not found then %NULL is returned. The
564  *	reference counters are not incremented so the caller must be
565  *	careful with locks.
566  */
567 
568 struct net_device *__dev_get_by_name(struct net *net, const char *name)
569 {
570 	struct hlist_node *p;
571 
572 	hlist_for_each(p, dev_name_hash(net, name)) {
573 		struct net_device *dev
574 			= hlist_entry(p, struct net_device, name_hlist);
575 		if (!strncmp(dev->name, name, IFNAMSIZ))
576 			return dev;
577 	}
578 	return NULL;
579 }
580 
581 /**
582  *	dev_get_by_name		- find a device by its name
583  *	@net: the applicable net namespace
584  *	@name: name to find
585  *
586  *	Find an interface by name. This can be called from any
587  *	context and does its own locking. The returned handle has
588  *	the usage count incremented and the caller must use dev_put() to
589  *	release it when it is no longer needed. %NULL is returned if no
590  *	matching device is found.
591  */
592 
593 struct net_device *dev_get_by_name(struct net *net, const char *name)
594 {
595 	struct net_device *dev;
596 
597 	read_lock(&dev_base_lock);
598 	dev = __dev_get_by_name(net, name);
599 	if (dev)
600 		dev_hold(dev);
601 	read_unlock(&dev_base_lock);
602 	return dev;
603 }
604 
605 /**
606  *	__dev_get_by_index - find a device by its ifindex
607  *	@net: the applicable net namespace
608  *	@ifindex: index of device
609  *
610  *	Search for an interface by index. Returns %NULL if the device
611  *	is not found or a pointer to the device. The device has not
612  *	had its reference counter increased so the caller must be careful
613  *	about locking. The caller must hold either the RTNL semaphore
614  *	or @dev_base_lock.
615  */
616 
617 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
618 {
619 	struct hlist_node *p;
620 
621 	hlist_for_each(p, dev_index_hash(net, ifindex)) {
622 		struct net_device *dev
623 			= hlist_entry(p, struct net_device, index_hlist);
624 		if (dev->ifindex == ifindex)
625 			return dev;
626 	}
627 	return NULL;
628 }
629 
630 
631 /**
632  *	dev_get_by_index - find a device by its ifindex
633  *	@net: the applicable net namespace
634  *	@ifindex: index of device
635  *
636  *	Search for an interface by index. Returns NULL if the device
637  *	is not found or a pointer to the device. The device returned has
638  *	had a reference added and the pointer is safe until the user calls
639  *	dev_put to indicate they have finished with it.
640  */
641 
642 struct net_device *dev_get_by_index(struct net *net, int ifindex)
643 {
644 	struct net_device *dev;
645 
646 	read_lock(&dev_base_lock);
647 	dev = __dev_get_by_index(net, ifindex);
648 	if (dev)
649 		dev_hold(dev);
650 	read_unlock(&dev_base_lock);
651 	return dev;
652 }
653 
654 /**
655  *	dev_getbyhwaddr - find a device by its hardware address
656  *	@net: the applicable net namespace
657  *	@type: media type of device
658  *	@ha: hardware address
659  *
660  *	Search for an interface by MAC address. Returns NULL if the device
661  *	is not found or a pointer to the device. The caller must hold the
662  *	rtnl semaphore. The returned device has not had its ref count increased
663  *	and the caller must therefore be careful about locking
664  *
665  *	BUGS:
666  *	If the API was consistent this would be __dev_get_by_hwaddr
667  */
668 
669 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
670 {
671 	struct net_device *dev;
672 
673 	ASSERT_RTNL();
674 
675 	for_each_netdev(&init_net, dev)
676 		if (dev->type == type &&
677 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
678 			return dev;
679 
680 	return NULL;
681 }
682 
683 EXPORT_SYMBOL(dev_getbyhwaddr);
684 
685 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
686 {
687 	struct net_device *dev;
688 
689 	ASSERT_RTNL();
690 	for_each_netdev(net, dev)
691 		if (dev->type == type)
692 			return dev;
693 
694 	return NULL;
695 }
696 
697 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
698 
699 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
700 {
701 	struct net_device *dev;
702 
703 	rtnl_lock();
704 	dev = __dev_getfirstbyhwtype(net, type);
705 	if (dev)
706 		dev_hold(dev);
707 	rtnl_unlock();
708 	return dev;
709 }
710 
711 EXPORT_SYMBOL(dev_getfirstbyhwtype);
712 
713 /**
714  *	dev_get_by_flags - find any device with given flags
715  *	@net: the applicable net namespace
716  *	@if_flags: IFF_* values
717  *	@mask: bitmask of bits in if_flags to check
718  *
719  *	Search for any interface with the given flags. Returns NULL if a device
720  *	is not found or a pointer to the device. The device returned has
721  *	had a reference added and the pointer is safe until the user calls
722  *	dev_put to indicate they have finished with it.
723  */
724 
725 struct net_device * dev_get_by_flags(struct net *net, unsigned short if_flags, unsigned short mask)
726 {
727 	struct net_device *dev, *ret;
728 
729 	ret = NULL;
730 	read_lock(&dev_base_lock);
731 	for_each_netdev(net, dev) {
732 		if (((dev->flags ^ if_flags) & mask) == 0) {
733 			dev_hold(dev);
734 			ret = dev;
735 			break;
736 		}
737 	}
738 	read_unlock(&dev_base_lock);
739 	return ret;
740 }
741 
742 /**
743  *	dev_valid_name - check if name is okay for network device
744  *	@name: name string
745  *
746  *	Network device names need to be valid file names to
747  *	to allow sysfs to work.  We also disallow any kind of
748  *	whitespace.
749  */
750 int dev_valid_name(const char *name)
751 {
752 	if (*name == '\0')
753 		return 0;
754 	if (strlen(name) >= IFNAMSIZ)
755 		return 0;
756 	if (!strcmp(name, ".") || !strcmp(name, ".."))
757 		return 0;
758 
759 	while (*name) {
760 		if (*name == '/' || isspace(*name))
761 			return 0;
762 		name++;
763 	}
764 	return 1;
765 }
766 
767 /**
768  *	__dev_alloc_name - allocate a name for a device
769  *	@net: network namespace to allocate the device name in
770  *	@name: name format string
771  *	@buf:  scratch buffer and result name string
772  *
773  *	Passed a format string - eg "lt%d" it will try and find a suitable
774  *	id. It scans list of devices to build up a free map, then chooses
775  *	the first empty slot. The caller must hold the dev_base or rtnl lock
776  *	while allocating the name and adding the device in order to avoid
777  *	duplicates.
778  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
779  *	Returns the number of the unit assigned or a negative errno code.
780  */
781 
782 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
783 {
784 	int i = 0;
785 	const char *p;
786 	const int max_netdevices = 8*PAGE_SIZE;
787 	unsigned long *inuse;
788 	struct net_device *d;
789 
790 	p = strnchr(name, IFNAMSIZ-1, '%');
791 	if (p) {
792 		/*
793 		 * Verify the string as this thing may have come from
794 		 * the user.  There must be either one "%d" and no other "%"
795 		 * characters.
796 		 */
797 		if (p[1] != 'd' || strchr(p + 2, '%'))
798 			return -EINVAL;
799 
800 		/* Use one page as a bit array of possible slots */
801 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
802 		if (!inuse)
803 			return -ENOMEM;
804 
805 		for_each_netdev(net, d) {
806 			if (!sscanf(d->name, name, &i))
807 				continue;
808 			if (i < 0 || i >= max_netdevices)
809 				continue;
810 
811 			/*  avoid cases where sscanf is not exact inverse of printf */
812 			snprintf(buf, IFNAMSIZ, name, i);
813 			if (!strncmp(buf, d->name, IFNAMSIZ))
814 				set_bit(i, inuse);
815 		}
816 
817 		i = find_first_zero_bit(inuse, max_netdevices);
818 		free_page((unsigned long) inuse);
819 	}
820 
821 	snprintf(buf, IFNAMSIZ, name, i);
822 	if (!__dev_get_by_name(net, buf))
823 		return i;
824 
825 	/* It is possible to run out of possible slots
826 	 * when the name is long and there isn't enough space left
827 	 * for the digits, or if all bits are used.
828 	 */
829 	return -ENFILE;
830 }
831 
832 /**
833  *	dev_alloc_name - allocate a name for a device
834  *	@dev: device
835  *	@name: name format string
836  *
837  *	Passed a format string - eg "lt%d" it will try and find a suitable
838  *	id. It scans list of devices to build up a free map, then chooses
839  *	the first empty slot. The caller must hold the dev_base or rtnl lock
840  *	while allocating the name and adding the device in order to avoid
841  *	duplicates.
842  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
843  *	Returns the number of the unit assigned or a negative errno code.
844  */
845 
846 int dev_alloc_name(struct net_device *dev, const char *name)
847 {
848 	char buf[IFNAMSIZ];
849 	struct net *net;
850 	int ret;
851 
852 	BUG_ON(!dev->nd_net);
853 	net = dev->nd_net;
854 	ret = __dev_alloc_name(net, name, buf);
855 	if (ret >= 0)
856 		strlcpy(dev->name, buf, IFNAMSIZ);
857 	return ret;
858 }
859 
860 
861 /**
862  *	dev_change_name - change name of a device
863  *	@dev: device
864  *	@newname: name (or format string) must be at least IFNAMSIZ
865  *
866  *	Change name of a device, can pass format strings "eth%d".
867  *	for wildcarding.
868  */
869 int dev_change_name(struct net_device *dev, char *newname)
870 {
871 	char oldname[IFNAMSIZ];
872 	int err = 0;
873 	int ret;
874 	struct net *net;
875 
876 	ASSERT_RTNL();
877 	BUG_ON(!dev->nd_net);
878 
879 	net = dev->nd_net;
880 	if (dev->flags & IFF_UP)
881 		return -EBUSY;
882 
883 	if (!dev_valid_name(newname))
884 		return -EINVAL;
885 
886 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
887 		return 0;
888 
889 	memcpy(oldname, dev->name, IFNAMSIZ);
890 
891 	if (strchr(newname, '%')) {
892 		err = dev_alloc_name(dev, newname);
893 		if (err < 0)
894 			return err;
895 		strcpy(newname, dev->name);
896 	}
897 	else if (__dev_get_by_name(net, newname))
898 		return -EEXIST;
899 	else
900 		strlcpy(dev->name, newname, IFNAMSIZ);
901 
902 rollback:
903 	device_rename(&dev->dev, dev->name);
904 
905 	write_lock_bh(&dev_base_lock);
906 	hlist_del(&dev->name_hlist);
907 	hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
908 	write_unlock_bh(&dev_base_lock);
909 
910 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
911 	ret = notifier_to_errno(ret);
912 
913 	if (ret) {
914 		if (err) {
915 			printk(KERN_ERR
916 			       "%s: name change rollback failed: %d.\n",
917 			       dev->name, ret);
918 		} else {
919 			err = ret;
920 			memcpy(dev->name, oldname, IFNAMSIZ);
921 			goto rollback;
922 		}
923 	}
924 
925 	return err;
926 }
927 
928 /**
929  *	netdev_features_change - device changes features
930  *	@dev: device to cause notification
931  *
932  *	Called to indicate a device has changed features.
933  */
934 void netdev_features_change(struct net_device *dev)
935 {
936 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
937 }
938 EXPORT_SYMBOL(netdev_features_change);
939 
940 /**
941  *	netdev_state_change - device changes state
942  *	@dev: device to cause notification
943  *
944  *	Called to indicate a device has changed state. This function calls
945  *	the notifier chains for netdev_chain and sends a NEWLINK message
946  *	to the routing socket.
947  */
948 void netdev_state_change(struct net_device *dev)
949 {
950 	if (dev->flags & IFF_UP) {
951 		call_netdevice_notifiers(NETDEV_CHANGE, dev);
952 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
953 	}
954 }
955 
956 /**
957  *	dev_load 	- load a network module
958  *	@net: the applicable net namespace
959  *	@name: name of interface
960  *
961  *	If a network interface is not present and the process has suitable
962  *	privileges this function loads the module. If module loading is not
963  *	available in this kernel then it becomes a nop.
964  */
965 
966 void dev_load(struct net *net, const char *name)
967 {
968 	struct net_device *dev;
969 
970 	read_lock(&dev_base_lock);
971 	dev = __dev_get_by_name(net, name);
972 	read_unlock(&dev_base_lock);
973 
974 	if (!dev && capable(CAP_SYS_MODULE))
975 		request_module("%s", name);
976 }
977 
978 /**
979  *	dev_open	- prepare an interface for use.
980  *	@dev:	device to open
981  *
982  *	Takes a device from down to up state. The device's private open
983  *	function is invoked and then the multicast lists are loaded. Finally
984  *	the device is moved into the up state and a %NETDEV_UP message is
985  *	sent to the netdev notifier chain.
986  *
987  *	Calling this function on an active interface is a nop. On a failure
988  *	a negative errno code is returned.
989  */
990 int dev_open(struct net_device *dev)
991 {
992 	int ret = 0;
993 
994 	/*
995 	 *	Is it already up?
996 	 */
997 
998 	if (dev->flags & IFF_UP)
999 		return 0;
1000 
1001 	/*
1002 	 *	Is it even present?
1003 	 */
1004 	if (!netif_device_present(dev))
1005 		return -ENODEV;
1006 
1007 	/*
1008 	 *	Call device private open method
1009 	 */
1010 	set_bit(__LINK_STATE_START, &dev->state);
1011 
1012 	if (dev->validate_addr)
1013 		ret = dev->validate_addr(dev);
1014 
1015 	if (!ret && dev->open)
1016 		ret = dev->open(dev);
1017 
1018 	/*
1019 	 *	If it went open OK then:
1020 	 */
1021 
1022 	if (ret)
1023 		clear_bit(__LINK_STATE_START, &dev->state);
1024 	else {
1025 		/*
1026 		 *	Set the flags.
1027 		 */
1028 		dev->flags |= IFF_UP;
1029 
1030 		/*
1031 		 *	Initialize multicasting status
1032 		 */
1033 		dev_set_rx_mode(dev);
1034 
1035 		/*
1036 		 *	Wakeup transmit queue engine
1037 		 */
1038 		dev_activate(dev);
1039 
1040 		/*
1041 		 *	... and announce new interface.
1042 		 */
1043 		call_netdevice_notifiers(NETDEV_UP, dev);
1044 	}
1045 
1046 	return ret;
1047 }
1048 
1049 /**
1050  *	dev_close - shutdown an interface.
1051  *	@dev: device to shutdown
1052  *
1053  *	This function moves an active device into down state. A
1054  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1055  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1056  *	chain.
1057  */
1058 int dev_close(struct net_device *dev)
1059 {
1060 	might_sleep();
1061 
1062 	if (!(dev->flags & IFF_UP))
1063 		return 0;
1064 
1065 	/*
1066 	 *	Tell people we are going down, so that they can
1067 	 *	prepare to death, when device is still operating.
1068 	 */
1069 	call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1070 
1071 	dev_deactivate(dev);
1072 
1073 	clear_bit(__LINK_STATE_START, &dev->state);
1074 
1075 	/* Synchronize to scheduled poll. We cannot touch poll list,
1076 	 * it can be even on different cpu. So just clear netif_running().
1077 	 *
1078 	 * dev->stop() will invoke napi_disable() on all of it's
1079 	 * napi_struct instances on this device.
1080 	 */
1081 	smp_mb__after_clear_bit(); /* Commit netif_running(). */
1082 
1083 	/*
1084 	 *	Call the device specific close. This cannot fail.
1085 	 *	Only if device is UP
1086 	 *
1087 	 *	We allow it to be called even after a DETACH hot-plug
1088 	 *	event.
1089 	 */
1090 	if (dev->stop)
1091 		dev->stop(dev);
1092 
1093 	/*
1094 	 *	Device is now down.
1095 	 */
1096 
1097 	dev->flags &= ~IFF_UP;
1098 
1099 	/*
1100 	 * Tell people we are down
1101 	 */
1102 	call_netdevice_notifiers(NETDEV_DOWN, dev);
1103 
1104 	return 0;
1105 }
1106 
1107 
1108 static int dev_boot_phase = 1;
1109 
1110 /*
1111  *	Device change register/unregister. These are not inline or static
1112  *	as we export them to the world.
1113  */
1114 
1115 /**
1116  *	register_netdevice_notifier - register a network notifier block
1117  *	@nb: notifier
1118  *
1119  *	Register a notifier to be called when network device events occur.
1120  *	The notifier passed is linked into the kernel structures and must
1121  *	not be reused until it has been unregistered. A negative errno code
1122  *	is returned on a failure.
1123  *
1124  * 	When registered all registration and up events are replayed
1125  *	to the new notifier to allow device to have a race free
1126  *	view of the network device list.
1127  */
1128 
1129 int register_netdevice_notifier(struct notifier_block *nb)
1130 {
1131 	struct net_device *dev;
1132 	struct net_device *last;
1133 	struct net *net;
1134 	int err;
1135 
1136 	rtnl_lock();
1137 	err = raw_notifier_chain_register(&netdev_chain, nb);
1138 	if (err)
1139 		goto unlock;
1140 	if (dev_boot_phase)
1141 		goto unlock;
1142 	for_each_net(net) {
1143 		for_each_netdev(net, dev) {
1144 			err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1145 			err = notifier_to_errno(err);
1146 			if (err)
1147 				goto rollback;
1148 
1149 			if (!(dev->flags & IFF_UP))
1150 				continue;
1151 
1152 			nb->notifier_call(nb, NETDEV_UP, dev);
1153 		}
1154 	}
1155 
1156 unlock:
1157 	rtnl_unlock();
1158 	return err;
1159 
1160 rollback:
1161 	last = dev;
1162 	for_each_net(net) {
1163 		for_each_netdev(net, dev) {
1164 			if (dev == last)
1165 				break;
1166 
1167 			if (dev->flags & IFF_UP) {
1168 				nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1169 				nb->notifier_call(nb, NETDEV_DOWN, dev);
1170 			}
1171 			nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1172 		}
1173 	}
1174 
1175 	raw_notifier_chain_unregister(&netdev_chain, nb);
1176 	goto unlock;
1177 }
1178 
1179 /**
1180  *	unregister_netdevice_notifier - unregister a network notifier block
1181  *	@nb: notifier
1182  *
1183  *	Unregister a notifier previously registered by
1184  *	register_netdevice_notifier(). The notifier is unlinked into the
1185  *	kernel structures and may then be reused. A negative errno code
1186  *	is returned on a failure.
1187  */
1188 
1189 int unregister_netdevice_notifier(struct notifier_block *nb)
1190 {
1191 	int err;
1192 
1193 	rtnl_lock();
1194 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1195 	rtnl_unlock();
1196 	return err;
1197 }
1198 
1199 /**
1200  *	call_netdevice_notifiers - call all network notifier blocks
1201  *      @val: value passed unmodified to notifier function
1202  *      @dev: net_device pointer passed unmodified to notifier function
1203  *
1204  *	Call all network notifier blocks.  Parameters and return value
1205  *	are as for raw_notifier_call_chain().
1206  */
1207 
1208 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1209 {
1210 	return raw_notifier_call_chain(&netdev_chain, val, dev);
1211 }
1212 
1213 /* When > 0 there are consumers of rx skb time stamps */
1214 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1215 
1216 void net_enable_timestamp(void)
1217 {
1218 	atomic_inc(&netstamp_needed);
1219 }
1220 
1221 void net_disable_timestamp(void)
1222 {
1223 	atomic_dec(&netstamp_needed);
1224 }
1225 
1226 static inline void net_timestamp(struct sk_buff *skb)
1227 {
1228 	if (atomic_read(&netstamp_needed))
1229 		__net_timestamp(skb);
1230 	else
1231 		skb->tstamp.tv64 = 0;
1232 }
1233 
1234 /*
1235  *	Support routine. Sends outgoing frames to any network
1236  *	taps currently in use.
1237  */
1238 
1239 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1240 {
1241 	struct packet_type *ptype;
1242 
1243 	net_timestamp(skb);
1244 
1245 	rcu_read_lock();
1246 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
1247 		/* Never send packets back to the socket
1248 		 * they originated from - MvS (miquels@drinkel.ow.org)
1249 		 */
1250 		if ((ptype->dev == dev || !ptype->dev) &&
1251 		    (ptype->af_packet_priv == NULL ||
1252 		     (struct sock *)ptype->af_packet_priv != skb->sk)) {
1253 			struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC);
1254 			if (!skb2)
1255 				break;
1256 
1257 			/* skb->nh should be correctly
1258 			   set by sender, so that the second statement is
1259 			   just protection against buggy protocols.
1260 			 */
1261 			skb_reset_mac_header(skb2);
1262 
1263 			if (skb_network_header(skb2) < skb2->data ||
1264 			    skb2->network_header > skb2->tail) {
1265 				if (net_ratelimit())
1266 					printk(KERN_CRIT "protocol %04x is "
1267 					       "buggy, dev %s\n",
1268 					       skb2->protocol, dev->name);
1269 				skb_reset_network_header(skb2);
1270 			}
1271 
1272 			skb2->transport_header = skb2->network_header;
1273 			skb2->pkt_type = PACKET_OUTGOING;
1274 			ptype->func(skb2, skb->dev, ptype, skb->dev);
1275 		}
1276 	}
1277 	rcu_read_unlock();
1278 }
1279 
1280 
1281 void __netif_schedule(struct net_device *dev)
1282 {
1283 	if (!test_and_set_bit(__LINK_STATE_SCHED, &dev->state)) {
1284 		unsigned long flags;
1285 		struct softnet_data *sd;
1286 
1287 		local_irq_save(flags);
1288 		sd = &__get_cpu_var(softnet_data);
1289 		dev->next_sched = sd->output_queue;
1290 		sd->output_queue = dev;
1291 		raise_softirq_irqoff(NET_TX_SOFTIRQ);
1292 		local_irq_restore(flags);
1293 	}
1294 }
1295 EXPORT_SYMBOL(__netif_schedule);
1296 
1297 void dev_kfree_skb_irq(struct sk_buff *skb)
1298 {
1299 	if (atomic_dec_and_test(&skb->users)) {
1300 		struct softnet_data *sd;
1301 		unsigned long flags;
1302 
1303 		local_irq_save(flags);
1304 		sd = &__get_cpu_var(softnet_data);
1305 		skb->next = sd->completion_queue;
1306 		sd->completion_queue = skb;
1307 		raise_softirq_irqoff(NET_TX_SOFTIRQ);
1308 		local_irq_restore(flags);
1309 	}
1310 }
1311 EXPORT_SYMBOL(dev_kfree_skb_irq);
1312 
1313 void dev_kfree_skb_any(struct sk_buff *skb)
1314 {
1315 	if (in_irq() || irqs_disabled())
1316 		dev_kfree_skb_irq(skb);
1317 	else
1318 		dev_kfree_skb(skb);
1319 }
1320 EXPORT_SYMBOL(dev_kfree_skb_any);
1321 
1322 
1323 /**
1324  * netif_device_detach - mark device as removed
1325  * @dev: network device
1326  *
1327  * Mark device as removed from system and therefore no longer available.
1328  */
1329 void netif_device_detach(struct net_device *dev)
1330 {
1331 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1332 	    netif_running(dev)) {
1333 		netif_stop_queue(dev);
1334 	}
1335 }
1336 EXPORT_SYMBOL(netif_device_detach);
1337 
1338 /**
1339  * netif_device_attach - mark device as attached
1340  * @dev: network device
1341  *
1342  * Mark device as attached from system and restart if needed.
1343  */
1344 void netif_device_attach(struct net_device *dev)
1345 {
1346 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1347 	    netif_running(dev)) {
1348 		netif_wake_queue(dev);
1349 		__netdev_watchdog_up(dev);
1350 	}
1351 }
1352 EXPORT_SYMBOL(netif_device_attach);
1353 
1354 
1355 /*
1356  * Invalidate hardware checksum when packet is to be mangled, and
1357  * complete checksum manually on outgoing path.
1358  */
1359 int skb_checksum_help(struct sk_buff *skb)
1360 {
1361 	__wsum csum;
1362 	int ret = 0, offset;
1363 
1364 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1365 		goto out_set_summed;
1366 
1367 	if (unlikely(skb_shinfo(skb)->gso_size)) {
1368 		/* Let GSO fix up the checksum. */
1369 		goto out_set_summed;
1370 	}
1371 
1372 	offset = skb->csum_start - skb_headroom(skb);
1373 	BUG_ON(offset >= skb_headlen(skb));
1374 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
1375 
1376 	offset += skb->csum_offset;
1377 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1378 
1379 	if (skb_cloned(skb) &&
1380 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1381 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1382 		if (ret)
1383 			goto out;
1384 	}
1385 
1386 	*(__sum16 *)(skb->data + offset) = csum_fold(csum);
1387 out_set_summed:
1388 	skb->ip_summed = CHECKSUM_NONE;
1389 out:
1390 	return ret;
1391 }
1392 
1393 /**
1394  *	skb_gso_segment - Perform segmentation on skb.
1395  *	@skb: buffer to segment
1396  *	@features: features for the output path (see dev->features)
1397  *
1398  *	This function segments the given skb and returns a list of segments.
1399  *
1400  *	It may return NULL if the skb requires no segmentation.  This is
1401  *	only possible when GSO is used for verifying header integrity.
1402  */
1403 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1404 {
1405 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1406 	struct packet_type *ptype;
1407 	__be16 type = skb->protocol;
1408 	int err;
1409 
1410 	BUG_ON(skb_shinfo(skb)->frag_list);
1411 
1412 	skb_reset_mac_header(skb);
1413 	skb->mac_len = skb->network_header - skb->mac_header;
1414 	__skb_pull(skb, skb->mac_len);
1415 
1416 	if (WARN_ON(skb->ip_summed != CHECKSUM_PARTIAL)) {
1417 		if (skb_header_cloned(skb) &&
1418 		    (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1419 			return ERR_PTR(err);
1420 	}
1421 
1422 	rcu_read_lock();
1423 	list_for_each_entry_rcu(ptype, &ptype_base[ntohs(type) & 15], list) {
1424 		if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1425 			if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1426 				err = ptype->gso_send_check(skb);
1427 				segs = ERR_PTR(err);
1428 				if (err || skb_gso_ok(skb, features))
1429 					break;
1430 				__skb_push(skb, (skb->data -
1431 						 skb_network_header(skb)));
1432 			}
1433 			segs = ptype->gso_segment(skb, features);
1434 			break;
1435 		}
1436 	}
1437 	rcu_read_unlock();
1438 
1439 	__skb_push(skb, skb->data - skb_mac_header(skb));
1440 
1441 	return segs;
1442 }
1443 
1444 EXPORT_SYMBOL(skb_gso_segment);
1445 
1446 /* Take action when hardware reception checksum errors are detected. */
1447 #ifdef CONFIG_BUG
1448 void netdev_rx_csum_fault(struct net_device *dev)
1449 {
1450 	if (net_ratelimit()) {
1451 		printk(KERN_ERR "%s: hw csum failure.\n",
1452 			dev ? dev->name : "<unknown>");
1453 		dump_stack();
1454 	}
1455 }
1456 EXPORT_SYMBOL(netdev_rx_csum_fault);
1457 #endif
1458 
1459 /* Actually, we should eliminate this check as soon as we know, that:
1460  * 1. IOMMU is present and allows to map all the memory.
1461  * 2. No high memory really exists on this machine.
1462  */
1463 
1464 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1465 {
1466 #ifdef CONFIG_HIGHMEM
1467 	int i;
1468 
1469 	if (dev->features & NETIF_F_HIGHDMA)
1470 		return 0;
1471 
1472 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1473 		if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1474 			return 1;
1475 
1476 #endif
1477 	return 0;
1478 }
1479 
1480 struct dev_gso_cb {
1481 	void (*destructor)(struct sk_buff *skb);
1482 };
1483 
1484 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1485 
1486 static void dev_gso_skb_destructor(struct sk_buff *skb)
1487 {
1488 	struct dev_gso_cb *cb;
1489 
1490 	do {
1491 		struct sk_buff *nskb = skb->next;
1492 
1493 		skb->next = nskb->next;
1494 		nskb->next = NULL;
1495 		kfree_skb(nskb);
1496 	} while (skb->next);
1497 
1498 	cb = DEV_GSO_CB(skb);
1499 	if (cb->destructor)
1500 		cb->destructor(skb);
1501 }
1502 
1503 /**
1504  *	dev_gso_segment - Perform emulated hardware segmentation on skb.
1505  *	@skb: buffer to segment
1506  *
1507  *	This function segments the given skb and stores the list of segments
1508  *	in skb->next.
1509  */
1510 static int dev_gso_segment(struct sk_buff *skb)
1511 {
1512 	struct net_device *dev = skb->dev;
1513 	struct sk_buff *segs;
1514 	int features = dev->features & ~(illegal_highdma(dev, skb) ?
1515 					 NETIF_F_SG : 0);
1516 
1517 	segs = skb_gso_segment(skb, features);
1518 
1519 	/* Verifying header integrity only. */
1520 	if (!segs)
1521 		return 0;
1522 
1523 	if (unlikely(IS_ERR(segs)))
1524 		return PTR_ERR(segs);
1525 
1526 	skb->next = segs;
1527 	DEV_GSO_CB(skb)->destructor = skb->destructor;
1528 	skb->destructor = dev_gso_skb_destructor;
1529 
1530 	return 0;
1531 }
1532 
1533 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
1534 {
1535 	if (likely(!skb->next)) {
1536 		if (!list_empty(&ptype_all))
1537 			dev_queue_xmit_nit(skb, dev);
1538 
1539 		if (netif_needs_gso(dev, skb)) {
1540 			if (unlikely(dev_gso_segment(skb)))
1541 				goto out_kfree_skb;
1542 			if (skb->next)
1543 				goto gso;
1544 		}
1545 
1546 		return dev->hard_start_xmit(skb, dev);
1547 	}
1548 
1549 gso:
1550 	do {
1551 		struct sk_buff *nskb = skb->next;
1552 		int rc;
1553 
1554 		skb->next = nskb->next;
1555 		nskb->next = NULL;
1556 		rc = dev->hard_start_xmit(nskb, dev);
1557 		if (unlikely(rc)) {
1558 			nskb->next = skb->next;
1559 			skb->next = nskb;
1560 			return rc;
1561 		}
1562 		if (unlikely((netif_queue_stopped(dev) ||
1563 			     netif_subqueue_stopped(dev, skb)) &&
1564 			     skb->next))
1565 			return NETDEV_TX_BUSY;
1566 	} while (skb->next);
1567 
1568 	skb->destructor = DEV_GSO_CB(skb)->destructor;
1569 
1570 out_kfree_skb:
1571 	kfree_skb(skb);
1572 	return 0;
1573 }
1574 
1575 /**
1576  *	dev_queue_xmit - transmit a buffer
1577  *	@skb: buffer to transmit
1578  *
1579  *	Queue a buffer for transmission to a network device. The caller must
1580  *	have set the device and priority and built the buffer before calling
1581  *	this function. The function can be called from an interrupt.
1582  *
1583  *	A negative errno code is returned on a failure. A success does not
1584  *	guarantee the frame will be transmitted as it may be dropped due
1585  *	to congestion or traffic shaping.
1586  *
1587  * -----------------------------------------------------------------------------------
1588  *      I notice this method can also return errors from the queue disciplines,
1589  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
1590  *      be positive.
1591  *
1592  *      Regardless of the return value, the skb is consumed, so it is currently
1593  *      difficult to retry a send to this method.  (You can bump the ref count
1594  *      before sending to hold a reference for retry if you are careful.)
1595  *
1596  *      When calling this method, interrupts MUST be enabled.  This is because
1597  *      the BH enable code must have IRQs enabled so that it will not deadlock.
1598  *          --BLG
1599  */
1600 
1601 int dev_queue_xmit(struct sk_buff *skb)
1602 {
1603 	struct net_device *dev = skb->dev;
1604 	struct Qdisc *q;
1605 	int rc = -ENOMEM;
1606 
1607 	/* GSO will handle the following emulations directly. */
1608 	if (netif_needs_gso(dev, skb))
1609 		goto gso;
1610 
1611 	if (skb_shinfo(skb)->frag_list &&
1612 	    !(dev->features & NETIF_F_FRAGLIST) &&
1613 	    __skb_linearize(skb))
1614 		goto out_kfree_skb;
1615 
1616 	/* Fragmented skb is linearized if device does not support SG,
1617 	 * or if at least one of fragments is in highmem and device
1618 	 * does not support DMA from it.
1619 	 */
1620 	if (skb_shinfo(skb)->nr_frags &&
1621 	    (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) &&
1622 	    __skb_linearize(skb))
1623 		goto out_kfree_skb;
1624 
1625 	/* If packet is not checksummed and device does not support
1626 	 * checksumming for this protocol, complete checksumming here.
1627 	 */
1628 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1629 		skb_set_transport_header(skb, skb->csum_start -
1630 					      skb_headroom(skb));
1631 
1632 		if (!(dev->features & NETIF_F_GEN_CSUM) &&
1633 		    !((dev->features & NETIF_F_IP_CSUM) &&
1634 		      skb->protocol == htons(ETH_P_IP)) &&
1635 		    !((dev->features & NETIF_F_IPV6_CSUM) &&
1636 		      skb->protocol == htons(ETH_P_IPV6)))
1637 			if (skb_checksum_help(skb))
1638 				goto out_kfree_skb;
1639 	}
1640 
1641 gso:
1642 	spin_lock_prefetch(&dev->queue_lock);
1643 
1644 	/* Disable soft irqs for various locks below. Also
1645 	 * stops preemption for RCU.
1646 	 */
1647 	rcu_read_lock_bh();
1648 
1649 	/* Updates of qdisc are serialized by queue_lock.
1650 	 * The struct Qdisc which is pointed to by qdisc is now a
1651 	 * rcu structure - it may be accessed without acquiring
1652 	 * a lock (but the structure may be stale.) The freeing of the
1653 	 * qdisc will be deferred until it's known that there are no
1654 	 * more references to it.
1655 	 *
1656 	 * If the qdisc has an enqueue function, we still need to
1657 	 * hold the queue_lock before calling it, since queue_lock
1658 	 * also serializes access to the device queue.
1659 	 */
1660 
1661 	q = rcu_dereference(dev->qdisc);
1662 #ifdef CONFIG_NET_CLS_ACT
1663 	skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS);
1664 #endif
1665 	if (q->enqueue) {
1666 		/* Grab device queue */
1667 		spin_lock(&dev->queue_lock);
1668 		q = dev->qdisc;
1669 		if (q->enqueue) {
1670 			/* reset queue_mapping to zero */
1671 			skb_set_queue_mapping(skb, 0);
1672 			rc = q->enqueue(skb, q);
1673 			qdisc_run(dev);
1674 			spin_unlock(&dev->queue_lock);
1675 
1676 			rc = rc == NET_XMIT_BYPASS ? NET_XMIT_SUCCESS : rc;
1677 			goto out;
1678 		}
1679 		spin_unlock(&dev->queue_lock);
1680 	}
1681 
1682 	/* The device has no queue. Common case for software devices:
1683 	   loopback, all the sorts of tunnels...
1684 
1685 	   Really, it is unlikely that netif_tx_lock protection is necessary
1686 	   here.  (f.e. loopback and IP tunnels are clean ignoring statistics
1687 	   counters.)
1688 	   However, it is possible, that they rely on protection
1689 	   made by us here.
1690 
1691 	   Check this and shot the lock. It is not prone from deadlocks.
1692 	   Either shot noqueue qdisc, it is even simpler 8)
1693 	 */
1694 	if (dev->flags & IFF_UP) {
1695 		int cpu = smp_processor_id(); /* ok because BHs are off */
1696 
1697 		if (dev->xmit_lock_owner != cpu) {
1698 
1699 			HARD_TX_LOCK(dev, cpu);
1700 
1701 			if (!netif_queue_stopped(dev) &&
1702 			    !netif_subqueue_stopped(dev, skb)) {
1703 				rc = 0;
1704 				if (!dev_hard_start_xmit(skb, dev)) {
1705 					HARD_TX_UNLOCK(dev);
1706 					goto out;
1707 				}
1708 			}
1709 			HARD_TX_UNLOCK(dev);
1710 			if (net_ratelimit())
1711 				printk(KERN_CRIT "Virtual device %s asks to "
1712 				       "queue packet!\n", dev->name);
1713 		} else {
1714 			/* Recursion is detected! It is possible,
1715 			 * unfortunately */
1716 			if (net_ratelimit())
1717 				printk(KERN_CRIT "Dead loop on virtual device "
1718 				       "%s, fix it urgently!\n", dev->name);
1719 		}
1720 	}
1721 
1722 	rc = -ENETDOWN;
1723 	rcu_read_unlock_bh();
1724 
1725 out_kfree_skb:
1726 	kfree_skb(skb);
1727 	return rc;
1728 out:
1729 	rcu_read_unlock_bh();
1730 	return rc;
1731 }
1732 
1733 
1734 /*=======================================================================
1735 			Receiver routines
1736   =======================================================================*/
1737 
1738 int netdev_max_backlog __read_mostly = 1000;
1739 int netdev_budget __read_mostly = 300;
1740 int weight_p __read_mostly = 64;            /* old backlog weight */
1741 
1742 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
1743 
1744 
1745 /**
1746  *	netif_rx	-	post buffer to the network code
1747  *	@skb: buffer to post
1748  *
1749  *	This function receives a packet from a device driver and queues it for
1750  *	the upper (protocol) levels to process.  It always succeeds. The buffer
1751  *	may be dropped during processing for congestion control or by the
1752  *	protocol layers.
1753  *
1754  *	return values:
1755  *	NET_RX_SUCCESS	(no congestion)
1756  *	NET_RX_DROP     (packet was dropped)
1757  *
1758  */
1759 
1760 int netif_rx(struct sk_buff *skb)
1761 {
1762 	struct softnet_data *queue;
1763 	unsigned long flags;
1764 
1765 	/* if netpoll wants it, pretend we never saw it */
1766 	if (netpoll_rx(skb))
1767 		return NET_RX_DROP;
1768 
1769 	if (!skb->tstamp.tv64)
1770 		net_timestamp(skb);
1771 
1772 	/*
1773 	 * The code is rearranged so that the path is the most
1774 	 * short when CPU is congested, but is still operating.
1775 	 */
1776 	local_irq_save(flags);
1777 	queue = &__get_cpu_var(softnet_data);
1778 
1779 	__get_cpu_var(netdev_rx_stat).total++;
1780 	if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
1781 		if (queue->input_pkt_queue.qlen) {
1782 enqueue:
1783 			dev_hold(skb->dev);
1784 			__skb_queue_tail(&queue->input_pkt_queue, skb);
1785 			local_irq_restore(flags);
1786 			return NET_RX_SUCCESS;
1787 		}
1788 
1789 		napi_schedule(&queue->backlog);
1790 		goto enqueue;
1791 	}
1792 
1793 	__get_cpu_var(netdev_rx_stat).dropped++;
1794 	local_irq_restore(flags);
1795 
1796 	kfree_skb(skb);
1797 	return NET_RX_DROP;
1798 }
1799 
1800 int netif_rx_ni(struct sk_buff *skb)
1801 {
1802 	int err;
1803 
1804 	preempt_disable();
1805 	err = netif_rx(skb);
1806 	if (local_softirq_pending())
1807 		do_softirq();
1808 	preempt_enable();
1809 
1810 	return err;
1811 }
1812 
1813 EXPORT_SYMBOL(netif_rx_ni);
1814 
1815 static inline struct net_device *skb_bond(struct sk_buff *skb)
1816 {
1817 	struct net_device *dev = skb->dev;
1818 
1819 	if (dev->master) {
1820 		if (skb_bond_should_drop(skb)) {
1821 			kfree_skb(skb);
1822 			return NULL;
1823 		}
1824 		skb->dev = dev->master;
1825 	}
1826 
1827 	return dev;
1828 }
1829 
1830 
1831 static void net_tx_action(struct softirq_action *h)
1832 {
1833 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
1834 
1835 	if (sd->completion_queue) {
1836 		struct sk_buff *clist;
1837 
1838 		local_irq_disable();
1839 		clist = sd->completion_queue;
1840 		sd->completion_queue = NULL;
1841 		local_irq_enable();
1842 
1843 		while (clist) {
1844 			struct sk_buff *skb = clist;
1845 			clist = clist->next;
1846 
1847 			BUG_TRAP(!atomic_read(&skb->users));
1848 			__kfree_skb(skb);
1849 		}
1850 	}
1851 
1852 	if (sd->output_queue) {
1853 		struct net_device *head;
1854 
1855 		local_irq_disable();
1856 		head = sd->output_queue;
1857 		sd->output_queue = NULL;
1858 		local_irq_enable();
1859 
1860 		while (head) {
1861 			struct net_device *dev = head;
1862 			head = head->next_sched;
1863 
1864 			smp_mb__before_clear_bit();
1865 			clear_bit(__LINK_STATE_SCHED, &dev->state);
1866 
1867 			if (spin_trylock(&dev->queue_lock)) {
1868 				qdisc_run(dev);
1869 				spin_unlock(&dev->queue_lock);
1870 			} else {
1871 				netif_schedule(dev);
1872 			}
1873 		}
1874 	}
1875 }
1876 
1877 static inline int deliver_skb(struct sk_buff *skb,
1878 			      struct packet_type *pt_prev,
1879 			      struct net_device *orig_dev)
1880 {
1881 	atomic_inc(&skb->users);
1882 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1883 }
1884 
1885 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
1886 /* These hooks defined here for ATM */
1887 struct net_bridge;
1888 struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br,
1889 						unsigned char *addr);
1890 void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent) __read_mostly;
1891 
1892 /*
1893  * If bridge module is loaded call bridging hook.
1894  *  returns NULL if packet was consumed.
1895  */
1896 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
1897 					struct sk_buff *skb) __read_mostly;
1898 static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
1899 					    struct packet_type **pt_prev, int *ret,
1900 					    struct net_device *orig_dev)
1901 {
1902 	struct net_bridge_port *port;
1903 
1904 	if (skb->pkt_type == PACKET_LOOPBACK ||
1905 	    (port = rcu_dereference(skb->dev->br_port)) == NULL)
1906 		return skb;
1907 
1908 	if (*pt_prev) {
1909 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
1910 		*pt_prev = NULL;
1911 	}
1912 
1913 	return br_handle_frame_hook(port, skb);
1914 }
1915 #else
1916 #define handle_bridge(skb, pt_prev, ret, orig_dev)	(skb)
1917 #endif
1918 
1919 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
1920 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
1921 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
1922 
1923 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
1924 					     struct packet_type **pt_prev,
1925 					     int *ret,
1926 					     struct net_device *orig_dev)
1927 {
1928 	if (skb->dev->macvlan_port == NULL)
1929 		return skb;
1930 
1931 	if (*pt_prev) {
1932 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
1933 		*pt_prev = NULL;
1934 	}
1935 	return macvlan_handle_frame_hook(skb);
1936 }
1937 #else
1938 #define handle_macvlan(skb, pt_prev, ret, orig_dev)	(skb)
1939 #endif
1940 
1941 #ifdef CONFIG_NET_CLS_ACT
1942 /* TODO: Maybe we should just force sch_ingress to be compiled in
1943  * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
1944  * a compare and 2 stores extra right now if we dont have it on
1945  * but have CONFIG_NET_CLS_ACT
1946  * NOTE: This doesnt stop any functionality; if you dont have
1947  * the ingress scheduler, you just cant add policies on ingress.
1948  *
1949  */
1950 static int ing_filter(struct sk_buff *skb)
1951 {
1952 	struct Qdisc *q;
1953 	struct net_device *dev = skb->dev;
1954 	int result = TC_ACT_OK;
1955 	u32 ttl = G_TC_RTTL(skb->tc_verd);
1956 
1957 	if (MAX_RED_LOOP < ttl++) {
1958 		printk(KERN_WARNING
1959 		       "Redir loop detected Dropping packet (%d->%d)\n",
1960 		       skb->iif, dev->ifindex);
1961 		return TC_ACT_SHOT;
1962 	}
1963 
1964 	skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
1965 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
1966 
1967 	spin_lock(&dev->ingress_lock);
1968 	if ((q = dev->qdisc_ingress) != NULL)
1969 		result = q->enqueue(skb, q);
1970 	spin_unlock(&dev->ingress_lock);
1971 
1972 	return result;
1973 }
1974 
1975 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
1976 					 struct packet_type **pt_prev,
1977 					 int *ret, struct net_device *orig_dev)
1978 {
1979 	if (!skb->dev->qdisc_ingress)
1980 		goto out;
1981 
1982 	if (*pt_prev) {
1983 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
1984 		*pt_prev = NULL;
1985 	} else {
1986 		/* Huh? Why does turning on AF_PACKET affect this? */
1987 		skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
1988 	}
1989 
1990 	switch (ing_filter(skb)) {
1991 	case TC_ACT_SHOT:
1992 	case TC_ACT_STOLEN:
1993 		kfree_skb(skb);
1994 		return NULL;
1995 	}
1996 
1997 out:
1998 	skb->tc_verd = 0;
1999 	return skb;
2000 }
2001 #endif
2002 
2003 /**
2004  *	netif_receive_skb - process receive buffer from network
2005  *	@skb: buffer to process
2006  *
2007  *	netif_receive_skb() is the main receive data processing function.
2008  *	It always succeeds. The buffer may be dropped during processing
2009  *	for congestion control or by the protocol layers.
2010  *
2011  *	This function may only be called from softirq context and interrupts
2012  *	should be enabled.
2013  *
2014  *	Return values (usually ignored):
2015  *	NET_RX_SUCCESS: no congestion
2016  *	NET_RX_DROP: packet was dropped
2017  */
2018 int netif_receive_skb(struct sk_buff *skb)
2019 {
2020 	struct packet_type *ptype, *pt_prev;
2021 	struct net_device *orig_dev;
2022 	int ret = NET_RX_DROP;
2023 	__be16 type;
2024 
2025 	/* if we've gotten here through NAPI, check netpoll */
2026 	if (netpoll_receive_skb(skb))
2027 		return NET_RX_DROP;
2028 
2029 	if (!skb->tstamp.tv64)
2030 		net_timestamp(skb);
2031 
2032 	if (!skb->iif)
2033 		skb->iif = skb->dev->ifindex;
2034 
2035 	orig_dev = skb_bond(skb);
2036 
2037 	if (!orig_dev)
2038 		return NET_RX_DROP;
2039 
2040 	__get_cpu_var(netdev_rx_stat).total++;
2041 
2042 	skb_reset_network_header(skb);
2043 	skb_reset_transport_header(skb);
2044 	skb->mac_len = skb->network_header - skb->mac_header;
2045 
2046 	pt_prev = NULL;
2047 
2048 	rcu_read_lock();
2049 
2050 #ifdef CONFIG_NET_CLS_ACT
2051 	if (skb->tc_verd & TC_NCLS) {
2052 		skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2053 		goto ncls;
2054 	}
2055 #endif
2056 
2057 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
2058 		if (!ptype->dev || ptype->dev == skb->dev) {
2059 			if (pt_prev)
2060 				ret = deliver_skb(skb, pt_prev, orig_dev);
2061 			pt_prev = ptype;
2062 		}
2063 	}
2064 
2065 #ifdef CONFIG_NET_CLS_ACT
2066 	skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2067 	if (!skb)
2068 		goto out;
2069 ncls:
2070 #endif
2071 
2072 	skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2073 	if (!skb)
2074 		goto out;
2075 	skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2076 	if (!skb)
2077 		goto out;
2078 
2079 	type = skb->protocol;
2080 	list_for_each_entry_rcu(ptype, &ptype_base[ntohs(type)&15], list) {
2081 		if (ptype->type == type &&
2082 		    (!ptype->dev || ptype->dev == skb->dev)) {
2083 			if (pt_prev)
2084 				ret = deliver_skb(skb, pt_prev, orig_dev);
2085 			pt_prev = ptype;
2086 		}
2087 	}
2088 
2089 	if (pt_prev) {
2090 		ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2091 	} else {
2092 		kfree_skb(skb);
2093 		/* Jamal, now you will not able to escape explaining
2094 		 * me how you were going to use this. :-)
2095 		 */
2096 		ret = NET_RX_DROP;
2097 	}
2098 
2099 out:
2100 	rcu_read_unlock();
2101 	return ret;
2102 }
2103 
2104 static int process_backlog(struct napi_struct *napi, int quota)
2105 {
2106 	int work = 0;
2107 	struct softnet_data *queue = &__get_cpu_var(softnet_data);
2108 	unsigned long start_time = jiffies;
2109 
2110 	napi->weight = weight_p;
2111 	do {
2112 		struct sk_buff *skb;
2113 		struct net_device *dev;
2114 
2115 		local_irq_disable();
2116 		skb = __skb_dequeue(&queue->input_pkt_queue);
2117 		if (!skb) {
2118 			__napi_complete(napi);
2119 			local_irq_enable();
2120 			break;
2121 		}
2122 
2123 		local_irq_enable();
2124 
2125 		dev = skb->dev;
2126 
2127 		netif_receive_skb(skb);
2128 
2129 		dev_put(dev);
2130 	} while (++work < quota && jiffies == start_time);
2131 
2132 	return work;
2133 }
2134 
2135 /**
2136  * __napi_schedule - schedule for receive
2137  * @n: entry to schedule
2138  *
2139  * The entry's receive function will be scheduled to run
2140  */
2141 void fastcall __napi_schedule(struct napi_struct *n)
2142 {
2143 	unsigned long flags;
2144 
2145 	local_irq_save(flags);
2146 	list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
2147 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
2148 	local_irq_restore(flags);
2149 }
2150 EXPORT_SYMBOL(__napi_schedule);
2151 
2152 
2153 static void net_rx_action(struct softirq_action *h)
2154 {
2155 	struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
2156 	unsigned long start_time = jiffies;
2157 	int budget = netdev_budget;
2158 	void *have;
2159 
2160 	local_irq_disable();
2161 
2162 	while (!list_empty(list)) {
2163 		struct napi_struct *n;
2164 		int work, weight;
2165 
2166 		/* If softirq window is exhuasted then punt.
2167 		 *
2168 		 * Note that this is a slight policy change from the
2169 		 * previous NAPI code, which would allow up to 2
2170 		 * jiffies to pass before breaking out.  The test
2171 		 * used to be "jiffies - start_time > 1".
2172 		 */
2173 		if (unlikely(budget <= 0 || jiffies != start_time))
2174 			goto softnet_break;
2175 
2176 		local_irq_enable();
2177 
2178 		/* Even though interrupts have been re-enabled, this
2179 		 * access is safe because interrupts can only add new
2180 		 * entries to the tail of this list, and only ->poll()
2181 		 * calls can remove this head entry from the list.
2182 		 */
2183 		n = list_entry(list->next, struct napi_struct, poll_list);
2184 
2185 		have = netpoll_poll_lock(n);
2186 
2187 		weight = n->weight;
2188 
2189 		/* This NAPI_STATE_SCHED test is for avoiding a race
2190 		 * with netpoll's poll_napi().  Only the entity which
2191 		 * obtains the lock and sees NAPI_STATE_SCHED set will
2192 		 * actually make the ->poll() call.  Therefore we avoid
2193 		 * accidently calling ->poll() when NAPI is not scheduled.
2194 		 */
2195 		work = 0;
2196 		if (test_bit(NAPI_STATE_SCHED, &n->state))
2197 			work = n->poll(n, weight);
2198 
2199 		WARN_ON_ONCE(work > weight);
2200 
2201 		budget -= work;
2202 
2203 		local_irq_disable();
2204 
2205 		/* Drivers must not modify the NAPI state if they
2206 		 * consume the entire weight.  In such cases this code
2207 		 * still "owns" the NAPI instance and therefore can
2208 		 * move the instance around on the list at-will.
2209 		 */
2210 		if (unlikely(work == weight)) {
2211 			if (unlikely(napi_disable_pending(n)))
2212 				__napi_complete(n);
2213 			else
2214 				list_move_tail(&n->poll_list, list);
2215 		}
2216 
2217 		netpoll_poll_unlock(have);
2218 	}
2219 out:
2220 	local_irq_enable();
2221 
2222 #ifdef CONFIG_NET_DMA
2223 	/*
2224 	 * There may not be any more sk_buffs coming right now, so push
2225 	 * any pending DMA copies to hardware
2226 	 */
2227 	if (!cpus_empty(net_dma.channel_mask)) {
2228 		int chan_idx;
2229 		for_each_cpu_mask(chan_idx, net_dma.channel_mask) {
2230 			struct dma_chan *chan = net_dma.channels[chan_idx];
2231 			if (chan)
2232 				dma_async_memcpy_issue_pending(chan);
2233 		}
2234 	}
2235 #endif
2236 
2237 	return;
2238 
2239 softnet_break:
2240 	__get_cpu_var(netdev_rx_stat).time_squeeze++;
2241 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
2242 	goto out;
2243 }
2244 
2245 static gifconf_func_t * gifconf_list [NPROTO];
2246 
2247 /**
2248  *	register_gifconf	-	register a SIOCGIF handler
2249  *	@family: Address family
2250  *	@gifconf: Function handler
2251  *
2252  *	Register protocol dependent address dumping routines. The handler
2253  *	that is passed must not be freed or reused until it has been replaced
2254  *	by another handler.
2255  */
2256 int register_gifconf(unsigned int family, gifconf_func_t * gifconf)
2257 {
2258 	if (family >= NPROTO)
2259 		return -EINVAL;
2260 	gifconf_list[family] = gifconf;
2261 	return 0;
2262 }
2263 
2264 
2265 /*
2266  *	Map an interface index to its name (SIOCGIFNAME)
2267  */
2268 
2269 /*
2270  *	We need this ioctl for efficient implementation of the
2271  *	if_indextoname() function required by the IPv6 API.  Without
2272  *	it, we would have to search all the interfaces to find a
2273  *	match.  --pb
2274  */
2275 
2276 static int dev_ifname(struct net *net, struct ifreq __user *arg)
2277 {
2278 	struct net_device *dev;
2279 	struct ifreq ifr;
2280 
2281 	/*
2282 	 *	Fetch the caller's info block.
2283 	 */
2284 
2285 	if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
2286 		return -EFAULT;
2287 
2288 	read_lock(&dev_base_lock);
2289 	dev = __dev_get_by_index(net, ifr.ifr_ifindex);
2290 	if (!dev) {
2291 		read_unlock(&dev_base_lock);
2292 		return -ENODEV;
2293 	}
2294 
2295 	strcpy(ifr.ifr_name, dev->name);
2296 	read_unlock(&dev_base_lock);
2297 
2298 	if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
2299 		return -EFAULT;
2300 	return 0;
2301 }
2302 
2303 /*
2304  *	Perform a SIOCGIFCONF call. This structure will change
2305  *	size eventually, and there is nothing I can do about it.
2306  *	Thus we will need a 'compatibility mode'.
2307  */
2308 
2309 static int dev_ifconf(struct net *net, char __user *arg)
2310 {
2311 	struct ifconf ifc;
2312 	struct net_device *dev;
2313 	char __user *pos;
2314 	int len;
2315 	int total;
2316 	int i;
2317 
2318 	/*
2319 	 *	Fetch the caller's info block.
2320 	 */
2321 
2322 	if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
2323 		return -EFAULT;
2324 
2325 	pos = ifc.ifc_buf;
2326 	len = ifc.ifc_len;
2327 
2328 	/*
2329 	 *	Loop over the interfaces, and write an info block for each.
2330 	 */
2331 
2332 	total = 0;
2333 	for_each_netdev(net, dev) {
2334 		for (i = 0; i < NPROTO; i++) {
2335 			if (gifconf_list[i]) {
2336 				int done;
2337 				if (!pos)
2338 					done = gifconf_list[i](dev, NULL, 0);
2339 				else
2340 					done = gifconf_list[i](dev, pos + total,
2341 							       len - total);
2342 				if (done < 0)
2343 					return -EFAULT;
2344 				total += done;
2345 			}
2346 		}
2347 	}
2348 
2349 	/*
2350 	 *	All done.  Write the updated control block back to the caller.
2351 	 */
2352 	ifc.ifc_len = total;
2353 
2354 	/*
2355 	 * 	Both BSD and Solaris return 0 here, so we do too.
2356 	 */
2357 	return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
2358 }
2359 
2360 #ifdef CONFIG_PROC_FS
2361 /*
2362  *	This is invoked by the /proc filesystem handler to display a device
2363  *	in detail.
2364  */
2365 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
2366 {
2367 	struct net *net = seq->private;
2368 	loff_t off;
2369 	struct net_device *dev;
2370 
2371 	read_lock(&dev_base_lock);
2372 	if (!*pos)
2373 		return SEQ_START_TOKEN;
2374 
2375 	off = 1;
2376 	for_each_netdev(net, dev)
2377 		if (off++ == *pos)
2378 			return dev;
2379 
2380 	return NULL;
2381 }
2382 
2383 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2384 {
2385 	struct net *net = seq->private;
2386 	++*pos;
2387 	return v == SEQ_START_TOKEN ?
2388 		first_net_device(net) : next_net_device((struct net_device *)v);
2389 }
2390 
2391 void dev_seq_stop(struct seq_file *seq, void *v)
2392 {
2393 	read_unlock(&dev_base_lock);
2394 }
2395 
2396 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
2397 {
2398 	struct net_device_stats *stats = dev->get_stats(dev);
2399 
2400 	seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
2401 		   "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
2402 		   dev->name, stats->rx_bytes, stats->rx_packets,
2403 		   stats->rx_errors,
2404 		   stats->rx_dropped + stats->rx_missed_errors,
2405 		   stats->rx_fifo_errors,
2406 		   stats->rx_length_errors + stats->rx_over_errors +
2407 		    stats->rx_crc_errors + stats->rx_frame_errors,
2408 		   stats->rx_compressed, stats->multicast,
2409 		   stats->tx_bytes, stats->tx_packets,
2410 		   stats->tx_errors, stats->tx_dropped,
2411 		   stats->tx_fifo_errors, stats->collisions,
2412 		   stats->tx_carrier_errors +
2413 		    stats->tx_aborted_errors +
2414 		    stats->tx_window_errors +
2415 		    stats->tx_heartbeat_errors,
2416 		   stats->tx_compressed);
2417 }
2418 
2419 /*
2420  *	Called from the PROCfs module. This now uses the new arbitrary sized
2421  *	/proc/net interface to create /proc/net/dev
2422  */
2423 static int dev_seq_show(struct seq_file *seq, void *v)
2424 {
2425 	if (v == SEQ_START_TOKEN)
2426 		seq_puts(seq, "Inter-|   Receive                            "
2427 			      "                    |  Transmit\n"
2428 			      " face |bytes    packets errs drop fifo frame "
2429 			      "compressed multicast|bytes    packets errs "
2430 			      "drop fifo colls carrier compressed\n");
2431 	else
2432 		dev_seq_printf_stats(seq, v);
2433 	return 0;
2434 }
2435 
2436 static struct netif_rx_stats *softnet_get_online(loff_t *pos)
2437 {
2438 	struct netif_rx_stats *rc = NULL;
2439 
2440 	while (*pos < NR_CPUS)
2441 		if (cpu_online(*pos)) {
2442 			rc = &per_cpu(netdev_rx_stat, *pos);
2443 			break;
2444 		} else
2445 			++*pos;
2446 	return rc;
2447 }
2448 
2449 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
2450 {
2451 	return softnet_get_online(pos);
2452 }
2453 
2454 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2455 {
2456 	++*pos;
2457 	return softnet_get_online(pos);
2458 }
2459 
2460 static void softnet_seq_stop(struct seq_file *seq, void *v)
2461 {
2462 }
2463 
2464 static int softnet_seq_show(struct seq_file *seq, void *v)
2465 {
2466 	struct netif_rx_stats *s = v;
2467 
2468 	seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
2469 		   s->total, s->dropped, s->time_squeeze, 0,
2470 		   0, 0, 0, 0, /* was fastroute */
2471 		   s->cpu_collision );
2472 	return 0;
2473 }
2474 
2475 static const struct seq_operations dev_seq_ops = {
2476 	.start = dev_seq_start,
2477 	.next  = dev_seq_next,
2478 	.stop  = dev_seq_stop,
2479 	.show  = dev_seq_show,
2480 };
2481 
2482 static int dev_seq_open(struct inode *inode, struct file *file)
2483 {
2484 	struct seq_file *seq;
2485 	int res;
2486 	res =  seq_open(file, &dev_seq_ops);
2487 	if (!res) {
2488 		seq = file->private_data;
2489 		seq->private = get_proc_net(inode);
2490 		if (!seq->private) {
2491 			seq_release(inode, file);
2492 			res = -ENXIO;
2493 		}
2494 	}
2495 	return res;
2496 }
2497 
2498 static int dev_seq_release(struct inode *inode, struct file *file)
2499 {
2500 	struct seq_file *seq = file->private_data;
2501 	struct net *net = seq->private;
2502 	put_net(net);
2503 	return seq_release(inode, file);
2504 }
2505 
2506 static const struct file_operations dev_seq_fops = {
2507 	.owner	 = THIS_MODULE,
2508 	.open    = dev_seq_open,
2509 	.read    = seq_read,
2510 	.llseek  = seq_lseek,
2511 	.release = dev_seq_release,
2512 };
2513 
2514 static const struct seq_operations softnet_seq_ops = {
2515 	.start = softnet_seq_start,
2516 	.next  = softnet_seq_next,
2517 	.stop  = softnet_seq_stop,
2518 	.show  = softnet_seq_show,
2519 };
2520 
2521 static int softnet_seq_open(struct inode *inode, struct file *file)
2522 {
2523 	return seq_open(file, &softnet_seq_ops);
2524 }
2525 
2526 static const struct file_operations softnet_seq_fops = {
2527 	.owner	 = THIS_MODULE,
2528 	.open    = softnet_seq_open,
2529 	.read    = seq_read,
2530 	.llseek  = seq_lseek,
2531 	.release = seq_release,
2532 };
2533 
2534 static void *ptype_get_idx(loff_t pos)
2535 {
2536 	struct packet_type *pt = NULL;
2537 	loff_t i = 0;
2538 	int t;
2539 
2540 	list_for_each_entry_rcu(pt, &ptype_all, list) {
2541 		if (i == pos)
2542 			return pt;
2543 		++i;
2544 	}
2545 
2546 	for (t = 0; t < 16; t++) {
2547 		list_for_each_entry_rcu(pt, &ptype_base[t], list) {
2548 			if (i == pos)
2549 				return pt;
2550 			++i;
2551 		}
2552 	}
2553 	return NULL;
2554 }
2555 
2556 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
2557 {
2558 	rcu_read_lock();
2559 	return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
2560 }
2561 
2562 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2563 {
2564 	struct packet_type *pt;
2565 	struct list_head *nxt;
2566 	int hash;
2567 
2568 	++*pos;
2569 	if (v == SEQ_START_TOKEN)
2570 		return ptype_get_idx(0);
2571 
2572 	pt = v;
2573 	nxt = pt->list.next;
2574 	if (pt->type == htons(ETH_P_ALL)) {
2575 		if (nxt != &ptype_all)
2576 			goto found;
2577 		hash = 0;
2578 		nxt = ptype_base[0].next;
2579 	} else
2580 		hash = ntohs(pt->type) & 15;
2581 
2582 	while (nxt == &ptype_base[hash]) {
2583 		if (++hash >= 16)
2584 			return NULL;
2585 		nxt = ptype_base[hash].next;
2586 	}
2587 found:
2588 	return list_entry(nxt, struct packet_type, list);
2589 }
2590 
2591 static void ptype_seq_stop(struct seq_file *seq, void *v)
2592 {
2593 	rcu_read_unlock();
2594 }
2595 
2596 static void ptype_seq_decode(struct seq_file *seq, void *sym)
2597 {
2598 #ifdef CONFIG_KALLSYMS
2599 	unsigned long offset = 0, symsize;
2600 	const char *symname;
2601 	char *modname;
2602 	char namebuf[128];
2603 
2604 	symname = kallsyms_lookup((unsigned long)sym, &symsize, &offset,
2605 				  &modname, namebuf);
2606 
2607 	if (symname) {
2608 		char *delim = ":";
2609 
2610 		if (!modname)
2611 			modname = delim = "";
2612 		seq_printf(seq, "%s%s%s%s+0x%lx", delim, modname, delim,
2613 			   symname, offset);
2614 		return;
2615 	}
2616 #endif
2617 
2618 	seq_printf(seq, "[%p]", sym);
2619 }
2620 
2621 static int ptype_seq_show(struct seq_file *seq, void *v)
2622 {
2623 	struct packet_type *pt = v;
2624 
2625 	if (v == SEQ_START_TOKEN)
2626 		seq_puts(seq, "Type Device      Function\n");
2627 	else {
2628 		if (pt->type == htons(ETH_P_ALL))
2629 			seq_puts(seq, "ALL ");
2630 		else
2631 			seq_printf(seq, "%04x", ntohs(pt->type));
2632 
2633 		seq_printf(seq, " %-8s ",
2634 			   pt->dev ? pt->dev->name : "");
2635 		ptype_seq_decode(seq,  pt->func);
2636 		seq_putc(seq, '\n');
2637 	}
2638 
2639 	return 0;
2640 }
2641 
2642 static const struct seq_operations ptype_seq_ops = {
2643 	.start = ptype_seq_start,
2644 	.next  = ptype_seq_next,
2645 	.stop  = ptype_seq_stop,
2646 	.show  = ptype_seq_show,
2647 };
2648 
2649 static int ptype_seq_open(struct inode *inode, struct file *file)
2650 {
2651 	return seq_open(file, &ptype_seq_ops);
2652 }
2653 
2654 static const struct file_operations ptype_seq_fops = {
2655 	.owner	 = THIS_MODULE,
2656 	.open    = ptype_seq_open,
2657 	.read    = seq_read,
2658 	.llseek  = seq_lseek,
2659 	.release = seq_release,
2660 };
2661 
2662 
2663 static int __net_init dev_proc_net_init(struct net *net)
2664 {
2665 	int rc = -ENOMEM;
2666 
2667 	if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
2668 		goto out;
2669 	if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
2670 		goto out_dev;
2671 	if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
2672 		goto out_softnet;
2673 
2674 	if (wext_proc_init(net))
2675 		goto out_ptype;
2676 	rc = 0;
2677 out:
2678 	return rc;
2679 out_ptype:
2680 	proc_net_remove(net, "ptype");
2681 out_softnet:
2682 	proc_net_remove(net, "softnet_stat");
2683 out_dev:
2684 	proc_net_remove(net, "dev");
2685 	goto out;
2686 }
2687 
2688 static void __net_exit dev_proc_net_exit(struct net *net)
2689 {
2690 	wext_proc_exit(net);
2691 
2692 	proc_net_remove(net, "ptype");
2693 	proc_net_remove(net, "softnet_stat");
2694 	proc_net_remove(net, "dev");
2695 }
2696 
2697 static struct pernet_operations __net_initdata dev_proc_ops = {
2698 	.init = dev_proc_net_init,
2699 	.exit = dev_proc_net_exit,
2700 };
2701 
2702 static int __init dev_proc_init(void)
2703 {
2704 	return register_pernet_subsys(&dev_proc_ops);
2705 }
2706 #else
2707 #define dev_proc_init() 0
2708 #endif	/* CONFIG_PROC_FS */
2709 
2710 
2711 /**
2712  *	netdev_set_master	-	set up master/slave pair
2713  *	@slave: slave device
2714  *	@master: new master device
2715  *
2716  *	Changes the master device of the slave. Pass %NULL to break the
2717  *	bonding. The caller must hold the RTNL semaphore. On a failure
2718  *	a negative errno code is returned. On success the reference counts
2719  *	are adjusted, %RTM_NEWLINK is sent to the routing socket and the
2720  *	function returns zero.
2721  */
2722 int netdev_set_master(struct net_device *slave, struct net_device *master)
2723 {
2724 	struct net_device *old = slave->master;
2725 
2726 	ASSERT_RTNL();
2727 
2728 	if (master) {
2729 		if (old)
2730 			return -EBUSY;
2731 		dev_hold(master);
2732 	}
2733 
2734 	slave->master = master;
2735 
2736 	synchronize_net();
2737 
2738 	if (old)
2739 		dev_put(old);
2740 
2741 	if (master)
2742 		slave->flags |= IFF_SLAVE;
2743 	else
2744 		slave->flags &= ~IFF_SLAVE;
2745 
2746 	rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
2747 	return 0;
2748 }
2749 
2750 static void __dev_set_promiscuity(struct net_device *dev, int inc)
2751 {
2752 	unsigned short old_flags = dev->flags;
2753 
2754 	ASSERT_RTNL();
2755 
2756 	if ((dev->promiscuity += inc) == 0)
2757 		dev->flags &= ~IFF_PROMISC;
2758 	else
2759 		dev->flags |= IFF_PROMISC;
2760 	if (dev->flags != old_flags) {
2761 		printk(KERN_INFO "device %s %s promiscuous mode\n",
2762 		       dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
2763 							       "left");
2764 		audit_log(current->audit_context, GFP_ATOMIC,
2765 			AUDIT_ANOM_PROMISCUOUS,
2766 			"dev=%s prom=%d old_prom=%d auid=%u",
2767 			dev->name, (dev->flags & IFF_PROMISC),
2768 			(old_flags & IFF_PROMISC),
2769 			audit_get_loginuid(current->audit_context));
2770 
2771 		if (dev->change_rx_flags)
2772 			dev->change_rx_flags(dev, IFF_PROMISC);
2773 	}
2774 }
2775 
2776 /**
2777  *	dev_set_promiscuity	- update promiscuity count on a device
2778  *	@dev: device
2779  *	@inc: modifier
2780  *
2781  *	Add or remove promiscuity from a device. While the count in the device
2782  *	remains above zero the interface remains promiscuous. Once it hits zero
2783  *	the device reverts back to normal filtering operation. A negative inc
2784  *	value is used to drop promiscuity on the device.
2785  */
2786 void dev_set_promiscuity(struct net_device *dev, int inc)
2787 {
2788 	unsigned short old_flags = dev->flags;
2789 
2790 	__dev_set_promiscuity(dev, inc);
2791 	if (dev->flags != old_flags)
2792 		dev_set_rx_mode(dev);
2793 }
2794 
2795 /**
2796  *	dev_set_allmulti	- update allmulti count on a device
2797  *	@dev: device
2798  *	@inc: modifier
2799  *
2800  *	Add or remove reception of all multicast frames to a device. While the
2801  *	count in the device remains above zero the interface remains listening
2802  *	to all interfaces. Once it hits zero the device reverts back to normal
2803  *	filtering operation. A negative @inc value is used to drop the counter
2804  *	when releasing a resource needing all multicasts.
2805  */
2806 
2807 void dev_set_allmulti(struct net_device *dev, int inc)
2808 {
2809 	unsigned short old_flags = dev->flags;
2810 
2811 	ASSERT_RTNL();
2812 
2813 	dev->flags |= IFF_ALLMULTI;
2814 	if ((dev->allmulti += inc) == 0)
2815 		dev->flags &= ~IFF_ALLMULTI;
2816 	if (dev->flags ^ old_flags) {
2817 		if (dev->change_rx_flags)
2818 			dev->change_rx_flags(dev, IFF_ALLMULTI);
2819 		dev_set_rx_mode(dev);
2820 	}
2821 }
2822 
2823 /*
2824  *	Upload unicast and multicast address lists to device and
2825  *	configure RX filtering. When the device doesn't support unicast
2826  *	filtering it is put in promiscuous mode while unicast addresses
2827  *	are present.
2828  */
2829 void __dev_set_rx_mode(struct net_device *dev)
2830 {
2831 	/* dev_open will call this function so the list will stay sane. */
2832 	if (!(dev->flags&IFF_UP))
2833 		return;
2834 
2835 	if (!netif_device_present(dev))
2836 		return;
2837 
2838 	if (dev->set_rx_mode)
2839 		dev->set_rx_mode(dev);
2840 	else {
2841 		/* Unicast addresses changes may only happen under the rtnl,
2842 		 * therefore calling __dev_set_promiscuity here is safe.
2843 		 */
2844 		if (dev->uc_count > 0 && !dev->uc_promisc) {
2845 			__dev_set_promiscuity(dev, 1);
2846 			dev->uc_promisc = 1;
2847 		} else if (dev->uc_count == 0 && dev->uc_promisc) {
2848 			__dev_set_promiscuity(dev, -1);
2849 			dev->uc_promisc = 0;
2850 		}
2851 
2852 		if (dev->set_multicast_list)
2853 			dev->set_multicast_list(dev);
2854 	}
2855 }
2856 
2857 void dev_set_rx_mode(struct net_device *dev)
2858 {
2859 	netif_tx_lock_bh(dev);
2860 	__dev_set_rx_mode(dev);
2861 	netif_tx_unlock_bh(dev);
2862 }
2863 
2864 int __dev_addr_delete(struct dev_addr_list **list, int *count,
2865 		      void *addr, int alen, int glbl)
2866 {
2867 	struct dev_addr_list *da;
2868 
2869 	for (; (da = *list) != NULL; list = &da->next) {
2870 		if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
2871 		    alen == da->da_addrlen) {
2872 			if (glbl) {
2873 				int old_glbl = da->da_gusers;
2874 				da->da_gusers = 0;
2875 				if (old_glbl == 0)
2876 					break;
2877 			}
2878 			if (--da->da_users)
2879 				return 0;
2880 
2881 			*list = da->next;
2882 			kfree(da);
2883 			(*count)--;
2884 			return 0;
2885 		}
2886 	}
2887 	return -ENOENT;
2888 }
2889 
2890 int __dev_addr_add(struct dev_addr_list **list, int *count,
2891 		   void *addr, int alen, int glbl)
2892 {
2893 	struct dev_addr_list *da;
2894 
2895 	for (da = *list; da != NULL; da = da->next) {
2896 		if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
2897 		    da->da_addrlen == alen) {
2898 			if (glbl) {
2899 				int old_glbl = da->da_gusers;
2900 				da->da_gusers = 1;
2901 				if (old_glbl)
2902 					return 0;
2903 			}
2904 			da->da_users++;
2905 			return 0;
2906 		}
2907 	}
2908 
2909 	da = kmalloc(sizeof(*da), GFP_ATOMIC);
2910 	if (da == NULL)
2911 		return -ENOMEM;
2912 	memcpy(da->da_addr, addr, alen);
2913 	da->da_addrlen = alen;
2914 	da->da_users = 1;
2915 	da->da_gusers = glbl ? 1 : 0;
2916 	da->next = *list;
2917 	*list = da;
2918 	(*count)++;
2919 	return 0;
2920 }
2921 
2922 /**
2923  *	dev_unicast_delete	- Release secondary unicast address.
2924  *	@dev: device
2925  *	@addr: address to delete
2926  *	@alen: length of @addr
2927  *
2928  *	Release reference to a secondary unicast address and remove it
2929  *	from the device if the reference count drops to zero.
2930  *
2931  * 	The caller must hold the rtnl_mutex.
2932  */
2933 int dev_unicast_delete(struct net_device *dev, void *addr, int alen)
2934 {
2935 	int err;
2936 
2937 	ASSERT_RTNL();
2938 
2939 	netif_tx_lock_bh(dev);
2940 	err = __dev_addr_delete(&dev->uc_list, &dev->uc_count, addr, alen, 0);
2941 	if (!err)
2942 		__dev_set_rx_mode(dev);
2943 	netif_tx_unlock_bh(dev);
2944 	return err;
2945 }
2946 EXPORT_SYMBOL(dev_unicast_delete);
2947 
2948 /**
2949  *	dev_unicast_add		- add a secondary unicast address
2950  *	@dev: device
2951  *	@addr: address to delete
2952  *	@alen: length of @addr
2953  *
2954  *	Add a secondary unicast address to the device or increase
2955  *	the reference count if it already exists.
2956  *
2957  *	The caller must hold the rtnl_mutex.
2958  */
2959 int dev_unicast_add(struct net_device *dev, void *addr, int alen)
2960 {
2961 	int err;
2962 
2963 	ASSERT_RTNL();
2964 
2965 	netif_tx_lock_bh(dev);
2966 	err = __dev_addr_add(&dev->uc_list, &dev->uc_count, addr, alen, 0);
2967 	if (!err)
2968 		__dev_set_rx_mode(dev);
2969 	netif_tx_unlock_bh(dev);
2970 	return err;
2971 }
2972 EXPORT_SYMBOL(dev_unicast_add);
2973 
2974 static void __dev_addr_discard(struct dev_addr_list **list)
2975 {
2976 	struct dev_addr_list *tmp;
2977 
2978 	while (*list != NULL) {
2979 		tmp = *list;
2980 		*list = tmp->next;
2981 		if (tmp->da_users > tmp->da_gusers)
2982 			printk("__dev_addr_discard: address leakage! "
2983 			       "da_users=%d\n", tmp->da_users);
2984 		kfree(tmp);
2985 	}
2986 }
2987 
2988 static void dev_addr_discard(struct net_device *dev)
2989 {
2990 	netif_tx_lock_bh(dev);
2991 
2992 	__dev_addr_discard(&dev->uc_list);
2993 	dev->uc_count = 0;
2994 
2995 	__dev_addr_discard(&dev->mc_list);
2996 	dev->mc_count = 0;
2997 
2998 	netif_tx_unlock_bh(dev);
2999 }
3000 
3001 unsigned dev_get_flags(const struct net_device *dev)
3002 {
3003 	unsigned flags;
3004 
3005 	flags = (dev->flags & ~(IFF_PROMISC |
3006 				IFF_ALLMULTI |
3007 				IFF_RUNNING |
3008 				IFF_LOWER_UP |
3009 				IFF_DORMANT)) |
3010 		(dev->gflags & (IFF_PROMISC |
3011 				IFF_ALLMULTI));
3012 
3013 	if (netif_running(dev)) {
3014 		if (netif_oper_up(dev))
3015 			flags |= IFF_RUNNING;
3016 		if (netif_carrier_ok(dev))
3017 			flags |= IFF_LOWER_UP;
3018 		if (netif_dormant(dev))
3019 			flags |= IFF_DORMANT;
3020 	}
3021 
3022 	return flags;
3023 }
3024 
3025 int dev_change_flags(struct net_device *dev, unsigned flags)
3026 {
3027 	int ret, changes;
3028 	int old_flags = dev->flags;
3029 
3030 	ASSERT_RTNL();
3031 
3032 	/*
3033 	 *	Set the flags on our device.
3034 	 */
3035 
3036 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
3037 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
3038 			       IFF_AUTOMEDIA)) |
3039 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
3040 				    IFF_ALLMULTI));
3041 
3042 	/*
3043 	 *	Load in the correct multicast list now the flags have changed.
3044 	 */
3045 
3046 	if (dev->change_rx_flags && (dev->flags ^ flags) & IFF_MULTICAST)
3047 		dev->change_rx_flags(dev, IFF_MULTICAST);
3048 
3049 	dev_set_rx_mode(dev);
3050 
3051 	/*
3052 	 *	Have we downed the interface. We handle IFF_UP ourselves
3053 	 *	according to user attempts to set it, rather than blindly
3054 	 *	setting it.
3055 	 */
3056 
3057 	ret = 0;
3058 	if ((old_flags ^ flags) & IFF_UP) {	/* Bit is different  ? */
3059 		ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev);
3060 
3061 		if (!ret)
3062 			dev_set_rx_mode(dev);
3063 	}
3064 
3065 	if (dev->flags & IFF_UP &&
3066 	    ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI |
3067 					  IFF_VOLATILE)))
3068 		call_netdevice_notifiers(NETDEV_CHANGE, dev);
3069 
3070 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
3071 		int inc = (flags & IFF_PROMISC) ? +1 : -1;
3072 		dev->gflags ^= IFF_PROMISC;
3073 		dev_set_promiscuity(dev, inc);
3074 	}
3075 
3076 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
3077 	   is important. Some (broken) drivers set IFF_PROMISC, when
3078 	   IFF_ALLMULTI is requested not asking us and not reporting.
3079 	 */
3080 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
3081 		int inc = (flags & IFF_ALLMULTI) ? +1 : -1;
3082 		dev->gflags ^= IFF_ALLMULTI;
3083 		dev_set_allmulti(dev, inc);
3084 	}
3085 
3086 	/* Exclude state transition flags, already notified */
3087 	changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING);
3088 	if (changes)
3089 		rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
3090 
3091 	return ret;
3092 }
3093 
3094 int dev_set_mtu(struct net_device *dev, int new_mtu)
3095 {
3096 	int err;
3097 
3098 	if (new_mtu == dev->mtu)
3099 		return 0;
3100 
3101 	/*	MTU must be positive.	 */
3102 	if (new_mtu < 0)
3103 		return -EINVAL;
3104 
3105 	if (!netif_device_present(dev))
3106 		return -ENODEV;
3107 
3108 	err = 0;
3109 	if (dev->change_mtu)
3110 		err = dev->change_mtu(dev, new_mtu);
3111 	else
3112 		dev->mtu = new_mtu;
3113 	if (!err && dev->flags & IFF_UP)
3114 		call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
3115 	return err;
3116 }
3117 
3118 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
3119 {
3120 	int err;
3121 
3122 	if (!dev->set_mac_address)
3123 		return -EOPNOTSUPP;
3124 	if (sa->sa_family != dev->type)
3125 		return -EINVAL;
3126 	if (!netif_device_present(dev))
3127 		return -ENODEV;
3128 	err = dev->set_mac_address(dev, sa);
3129 	if (!err)
3130 		call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3131 	return err;
3132 }
3133 
3134 /*
3135  *	Perform the SIOCxIFxxx calls, inside read_lock(dev_base_lock)
3136  */
3137 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
3138 {
3139 	int err;
3140 	struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3141 
3142 	if (!dev)
3143 		return -ENODEV;
3144 
3145 	switch (cmd) {
3146 		case SIOCGIFFLAGS:	/* Get interface flags */
3147 			ifr->ifr_flags = dev_get_flags(dev);
3148 			return 0;
3149 
3150 		case SIOCGIFMETRIC:	/* Get the metric on the interface
3151 					   (currently unused) */
3152 			ifr->ifr_metric = 0;
3153 			return 0;
3154 
3155 		case SIOCGIFMTU:	/* Get the MTU of a device */
3156 			ifr->ifr_mtu = dev->mtu;
3157 			return 0;
3158 
3159 		case SIOCGIFHWADDR:
3160 			if (!dev->addr_len)
3161 				memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
3162 			else
3163 				memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
3164 				       min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3165 			ifr->ifr_hwaddr.sa_family = dev->type;
3166 			return 0;
3167 
3168 		case SIOCGIFSLAVE:
3169 			err = -EINVAL;
3170 			break;
3171 
3172 		case SIOCGIFMAP:
3173 			ifr->ifr_map.mem_start = dev->mem_start;
3174 			ifr->ifr_map.mem_end   = dev->mem_end;
3175 			ifr->ifr_map.base_addr = dev->base_addr;
3176 			ifr->ifr_map.irq       = dev->irq;
3177 			ifr->ifr_map.dma       = dev->dma;
3178 			ifr->ifr_map.port      = dev->if_port;
3179 			return 0;
3180 
3181 		case SIOCGIFINDEX:
3182 			ifr->ifr_ifindex = dev->ifindex;
3183 			return 0;
3184 
3185 		case SIOCGIFTXQLEN:
3186 			ifr->ifr_qlen = dev->tx_queue_len;
3187 			return 0;
3188 
3189 		default:
3190 			/* dev_ioctl() should ensure this case
3191 			 * is never reached
3192 			 */
3193 			WARN_ON(1);
3194 			err = -EINVAL;
3195 			break;
3196 
3197 	}
3198 	return err;
3199 }
3200 
3201 /*
3202  *	Perform the SIOCxIFxxx calls, inside rtnl_lock()
3203  */
3204 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
3205 {
3206 	int err;
3207 	struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3208 
3209 	if (!dev)
3210 		return -ENODEV;
3211 
3212 	switch (cmd) {
3213 		case SIOCSIFFLAGS:	/* Set interface flags */
3214 			return dev_change_flags(dev, ifr->ifr_flags);
3215 
3216 		case SIOCSIFMETRIC:	/* Set the metric on the interface
3217 					   (currently unused) */
3218 			return -EOPNOTSUPP;
3219 
3220 		case SIOCSIFMTU:	/* Set the MTU of a device */
3221 			return dev_set_mtu(dev, ifr->ifr_mtu);
3222 
3223 		case SIOCSIFHWADDR:
3224 			return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
3225 
3226 		case SIOCSIFHWBROADCAST:
3227 			if (ifr->ifr_hwaddr.sa_family != dev->type)
3228 				return -EINVAL;
3229 			memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
3230 			       min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3231 			call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3232 			return 0;
3233 
3234 		case SIOCSIFMAP:
3235 			if (dev->set_config) {
3236 				if (!netif_device_present(dev))
3237 					return -ENODEV;
3238 				return dev->set_config(dev, &ifr->ifr_map);
3239 			}
3240 			return -EOPNOTSUPP;
3241 
3242 		case SIOCADDMULTI:
3243 			if (!dev->set_multicast_list ||
3244 			    ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3245 				return -EINVAL;
3246 			if (!netif_device_present(dev))
3247 				return -ENODEV;
3248 			return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
3249 					  dev->addr_len, 1);
3250 
3251 		case SIOCDELMULTI:
3252 			if (!dev->set_multicast_list ||
3253 			    ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3254 				return -EINVAL;
3255 			if (!netif_device_present(dev))
3256 				return -ENODEV;
3257 			return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
3258 					     dev->addr_len, 1);
3259 
3260 		case SIOCSIFTXQLEN:
3261 			if (ifr->ifr_qlen < 0)
3262 				return -EINVAL;
3263 			dev->tx_queue_len = ifr->ifr_qlen;
3264 			return 0;
3265 
3266 		case SIOCSIFNAME:
3267 			ifr->ifr_newname[IFNAMSIZ-1] = '\0';
3268 			return dev_change_name(dev, ifr->ifr_newname);
3269 
3270 		/*
3271 		 *	Unknown or private ioctl
3272 		 */
3273 
3274 		default:
3275 			if ((cmd >= SIOCDEVPRIVATE &&
3276 			    cmd <= SIOCDEVPRIVATE + 15) ||
3277 			    cmd == SIOCBONDENSLAVE ||
3278 			    cmd == SIOCBONDRELEASE ||
3279 			    cmd == SIOCBONDSETHWADDR ||
3280 			    cmd == SIOCBONDSLAVEINFOQUERY ||
3281 			    cmd == SIOCBONDINFOQUERY ||
3282 			    cmd == SIOCBONDCHANGEACTIVE ||
3283 			    cmd == SIOCGMIIPHY ||
3284 			    cmd == SIOCGMIIREG ||
3285 			    cmd == SIOCSMIIREG ||
3286 			    cmd == SIOCBRADDIF ||
3287 			    cmd == SIOCBRDELIF ||
3288 			    cmd == SIOCWANDEV) {
3289 				err = -EOPNOTSUPP;
3290 				if (dev->do_ioctl) {
3291 					if (netif_device_present(dev))
3292 						err = dev->do_ioctl(dev, ifr,
3293 								    cmd);
3294 					else
3295 						err = -ENODEV;
3296 				}
3297 			} else
3298 				err = -EINVAL;
3299 
3300 	}
3301 	return err;
3302 }
3303 
3304 /*
3305  *	This function handles all "interface"-type I/O control requests. The actual
3306  *	'doing' part of this is dev_ifsioc above.
3307  */
3308 
3309 /**
3310  *	dev_ioctl	-	network device ioctl
3311  *	@net: the applicable net namespace
3312  *	@cmd: command to issue
3313  *	@arg: pointer to a struct ifreq in user space
3314  *
3315  *	Issue ioctl functions to devices. This is normally called by the
3316  *	user space syscall interfaces but can sometimes be useful for
3317  *	other purposes. The return value is the return from the syscall if
3318  *	positive or a negative errno code on error.
3319  */
3320 
3321 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
3322 {
3323 	struct ifreq ifr;
3324 	int ret;
3325 	char *colon;
3326 
3327 	/* One special case: SIOCGIFCONF takes ifconf argument
3328 	   and requires shared lock, because it sleeps writing
3329 	   to user space.
3330 	 */
3331 
3332 	if (cmd == SIOCGIFCONF) {
3333 		rtnl_lock();
3334 		ret = dev_ifconf(net, (char __user *) arg);
3335 		rtnl_unlock();
3336 		return ret;
3337 	}
3338 	if (cmd == SIOCGIFNAME)
3339 		return dev_ifname(net, (struct ifreq __user *)arg);
3340 
3341 	if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3342 		return -EFAULT;
3343 
3344 	ifr.ifr_name[IFNAMSIZ-1] = 0;
3345 
3346 	colon = strchr(ifr.ifr_name, ':');
3347 	if (colon)
3348 		*colon = 0;
3349 
3350 	/*
3351 	 *	See which interface the caller is talking about.
3352 	 */
3353 
3354 	switch (cmd) {
3355 		/*
3356 		 *	These ioctl calls:
3357 		 *	- can be done by all.
3358 		 *	- atomic and do not require locking.
3359 		 *	- return a value
3360 		 */
3361 		case SIOCGIFFLAGS:
3362 		case SIOCGIFMETRIC:
3363 		case SIOCGIFMTU:
3364 		case SIOCGIFHWADDR:
3365 		case SIOCGIFSLAVE:
3366 		case SIOCGIFMAP:
3367 		case SIOCGIFINDEX:
3368 		case SIOCGIFTXQLEN:
3369 			dev_load(net, ifr.ifr_name);
3370 			read_lock(&dev_base_lock);
3371 			ret = dev_ifsioc_locked(net, &ifr, cmd);
3372 			read_unlock(&dev_base_lock);
3373 			if (!ret) {
3374 				if (colon)
3375 					*colon = ':';
3376 				if (copy_to_user(arg, &ifr,
3377 						 sizeof(struct ifreq)))
3378 					ret = -EFAULT;
3379 			}
3380 			return ret;
3381 
3382 		case SIOCETHTOOL:
3383 			dev_load(net, ifr.ifr_name);
3384 			rtnl_lock();
3385 			ret = dev_ethtool(net, &ifr);
3386 			rtnl_unlock();
3387 			if (!ret) {
3388 				if (colon)
3389 					*colon = ':';
3390 				if (copy_to_user(arg, &ifr,
3391 						 sizeof(struct ifreq)))
3392 					ret = -EFAULT;
3393 			}
3394 			return ret;
3395 
3396 		/*
3397 		 *	These ioctl calls:
3398 		 *	- require superuser power.
3399 		 *	- require strict serialization.
3400 		 *	- return a value
3401 		 */
3402 		case SIOCGMIIPHY:
3403 		case SIOCGMIIREG:
3404 		case SIOCSIFNAME:
3405 			if (!capable(CAP_NET_ADMIN))
3406 				return -EPERM;
3407 			dev_load(net, ifr.ifr_name);
3408 			rtnl_lock();
3409 			ret = dev_ifsioc(net, &ifr, cmd);
3410 			rtnl_unlock();
3411 			if (!ret) {
3412 				if (colon)
3413 					*colon = ':';
3414 				if (copy_to_user(arg, &ifr,
3415 						 sizeof(struct ifreq)))
3416 					ret = -EFAULT;
3417 			}
3418 			return ret;
3419 
3420 		/*
3421 		 *	These ioctl calls:
3422 		 *	- require superuser power.
3423 		 *	- require strict serialization.
3424 		 *	- do not return a value
3425 		 */
3426 		case SIOCSIFFLAGS:
3427 		case SIOCSIFMETRIC:
3428 		case SIOCSIFMTU:
3429 		case SIOCSIFMAP:
3430 		case SIOCSIFHWADDR:
3431 		case SIOCSIFSLAVE:
3432 		case SIOCADDMULTI:
3433 		case SIOCDELMULTI:
3434 		case SIOCSIFHWBROADCAST:
3435 		case SIOCSIFTXQLEN:
3436 		case SIOCSMIIREG:
3437 		case SIOCBONDENSLAVE:
3438 		case SIOCBONDRELEASE:
3439 		case SIOCBONDSETHWADDR:
3440 		case SIOCBONDCHANGEACTIVE:
3441 		case SIOCBRADDIF:
3442 		case SIOCBRDELIF:
3443 			if (!capable(CAP_NET_ADMIN))
3444 				return -EPERM;
3445 			/* fall through */
3446 		case SIOCBONDSLAVEINFOQUERY:
3447 		case SIOCBONDINFOQUERY:
3448 			dev_load(net, ifr.ifr_name);
3449 			rtnl_lock();
3450 			ret = dev_ifsioc(net, &ifr, cmd);
3451 			rtnl_unlock();
3452 			return ret;
3453 
3454 		case SIOCGIFMEM:
3455 			/* Get the per device memory space. We can add this but
3456 			 * currently do not support it */
3457 		case SIOCSIFMEM:
3458 			/* Set the per device memory buffer space.
3459 			 * Not applicable in our case */
3460 		case SIOCSIFLINK:
3461 			return -EINVAL;
3462 
3463 		/*
3464 		 *	Unknown or private ioctl.
3465 		 */
3466 		default:
3467 			if (cmd == SIOCWANDEV ||
3468 			    (cmd >= SIOCDEVPRIVATE &&
3469 			     cmd <= SIOCDEVPRIVATE + 15)) {
3470 				dev_load(net, ifr.ifr_name);
3471 				rtnl_lock();
3472 				ret = dev_ifsioc(net, &ifr, cmd);
3473 				rtnl_unlock();
3474 				if (!ret && copy_to_user(arg, &ifr,
3475 							 sizeof(struct ifreq)))
3476 					ret = -EFAULT;
3477 				return ret;
3478 			}
3479 			/* Take care of Wireless Extensions */
3480 			if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
3481 				return wext_handle_ioctl(net, &ifr, cmd, arg);
3482 			return -EINVAL;
3483 	}
3484 }
3485 
3486 
3487 /**
3488  *	dev_new_index	-	allocate an ifindex
3489  *	@net: the applicable net namespace
3490  *
3491  *	Returns a suitable unique value for a new device interface
3492  *	number.  The caller must hold the rtnl semaphore or the
3493  *	dev_base_lock to be sure it remains unique.
3494  */
3495 static int dev_new_index(struct net *net)
3496 {
3497 	static int ifindex;
3498 	for (;;) {
3499 		if (++ifindex <= 0)
3500 			ifindex = 1;
3501 		if (!__dev_get_by_index(net, ifindex))
3502 			return ifindex;
3503 	}
3504 }
3505 
3506 /* Delayed registration/unregisteration */
3507 static DEFINE_SPINLOCK(net_todo_list_lock);
3508 static struct list_head net_todo_list = LIST_HEAD_INIT(net_todo_list);
3509 
3510 static void net_set_todo(struct net_device *dev)
3511 {
3512 	spin_lock(&net_todo_list_lock);
3513 	list_add_tail(&dev->todo_list, &net_todo_list);
3514 	spin_unlock(&net_todo_list_lock);
3515 }
3516 
3517 static void rollback_registered(struct net_device *dev)
3518 {
3519 	BUG_ON(dev_boot_phase);
3520 	ASSERT_RTNL();
3521 
3522 	/* Some devices call without registering for initialization unwind. */
3523 	if (dev->reg_state == NETREG_UNINITIALIZED) {
3524 		printk(KERN_DEBUG "unregister_netdevice: device %s/%p never "
3525 				  "was registered\n", dev->name, dev);
3526 
3527 		WARN_ON(1);
3528 		return;
3529 	}
3530 
3531 	BUG_ON(dev->reg_state != NETREG_REGISTERED);
3532 
3533 	/* If device is running, close it first. */
3534 	dev_close(dev);
3535 
3536 	/* And unlink it from device chain. */
3537 	unlist_netdevice(dev);
3538 
3539 	dev->reg_state = NETREG_UNREGISTERING;
3540 
3541 	synchronize_net();
3542 
3543 	/* Shutdown queueing discipline. */
3544 	dev_shutdown(dev);
3545 
3546 
3547 	/* Notify protocols, that we are about to destroy
3548 	   this device. They should clean all the things.
3549 	*/
3550 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
3551 
3552 	/*
3553 	 *	Flush the unicast and multicast chains
3554 	 */
3555 	dev_addr_discard(dev);
3556 
3557 	if (dev->uninit)
3558 		dev->uninit(dev);
3559 
3560 	/* Notifier chain MUST detach us from master device. */
3561 	BUG_TRAP(!dev->master);
3562 
3563 	/* Remove entries from kobject tree */
3564 	netdev_unregister_kobject(dev);
3565 
3566 	synchronize_net();
3567 
3568 	dev_put(dev);
3569 }
3570 
3571 /**
3572  *	register_netdevice	- register a network device
3573  *	@dev: device to register
3574  *
3575  *	Take a completed network device structure and add it to the kernel
3576  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
3577  *	chain. 0 is returned on success. A negative errno code is returned
3578  *	on a failure to set up the device, or if the name is a duplicate.
3579  *
3580  *	Callers must hold the rtnl semaphore. You may want
3581  *	register_netdev() instead of this.
3582  *
3583  *	BUGS:
3584  *	The locking appears insufficient to guarantee two parallel registers
3585  *	will not get the same name.
3586  */
3587 
3588 int register_netdevice(struct net_device *dev)
3589 {
3590 	struct hlist_head *head;
3591 	struct hlist_node *p;
3592 	int ret;
3593 	struct net *net;
3594 
3595 	BUG_ON(dev_boot_phase);
3596 	ASSERT_RTNL();
3597 
3598 	might_sleep();
3599 
3600 	/* When net_device's are persistent, this will be fatal. */
3601 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
3602 	BUG_ON(!dev->nd_net);
3603 	net = dev->nd_net;
3604 
3605 	spin_lock_init(&dev->queue_lock);
3606 	spin_lock_init(&dev->_xmit_lock);
3607 	netdev_set_lockdep_class(&dev->_xmit_lock, dev->type);
3608 	dev->xmit_lock_owner = -1;
3609 	spin_lock_init(&dev->ingress_lock);
3610 
3611 	dev->iflink = -1;
3612 
3613 	/* Init, if this function is available */
3614 	if (dev->init) {
3615 		ret = dev->init(dev);
3616 		if (ret) {
3617 			if (ret > 0)
3618 				ret = -EIO;
3619 			goto out;
3620 		}
3621 	}
3622 
3623 	if (!dev_valid_name(dev->name)) {
3624 		ret = -EINVAL;
3625 		goto err_uninit;
3626 	}
3627 
3628 	dev->ifindex = dev_new_index(net);
3629 	if (dev->iflink == -1)
3630 		dev->iflink = dev->ifindex;
3631 
3632 	/* Check for existence of name */
3633 	head = dev_name_hash(net, dev->name);
3634 	hlist_for_each(p, head) {
3635 		struct net_device *d
3636 			= hlist_entry(p, struct net_device, name_hlist);
3637 		if (!strncmp(d->name, dev->name, IFNAMSIZ)) {
3638 			ret = -EEXIST;
3639 			goto err_uninit;
3640 		}
3641 	}
3642 
3643 	/* Fix illegal checksum combinations */
3644 	if ((dev->features & NETIF_F_HW_CSUM) &&
3645 	    (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
3646 		printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
3647 		       dev->name);
3648 		dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
3649 	}
3650 
3651 	if ((dev->features & NETIF_F_NO_CSUM) &&
3652 	    (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
3653 		printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
3654 		       dev->name);
3655 		dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
3656 	}
3657 
3658 
3659 	/* Fix illegal SG+CSUM combinations. */
3660 	if ((dev->features & NETIF_F_SG) &&
3661 	    !(dev->features & NETIF_F_ALL_CSUM)) {
3662 		printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no checksum feature.\n",
3663 		       dev->name);
3664 		dev->features &= ~NETIF_F_SG;
3665 	}
3666 
3667 	/* TSO requires that SG is present as well. */
3668 	if ((dev->features & NETIF_F_TSO) &&
3669 	    !(dev->features & NETIF_F_SG)) {
3670 		printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no SG feature.\n",
3671 		       dev->name);
3672 		dev->features &= ~NETIF_F_TSO;
3673 	}
3674 	if (dev->features & NETIF_F_UFO) {
3675 		if (!(dev->features & NETIF_F_HW_CSUM)) {
3676 			printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no "
3677 					"NETIF_F_HW_CSUM feature.\n",
3678 							dev->name);
3679 			dev->features &= ~NETIF_F_UFO;
3680 		}
3681 		if (!(dev->features & NETIF_F_SG)) {
3682 			printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no "
3683 					"NETIF_F_SG feature.\n",
3684 					dev->name);
3685 			dev->features &= ~NETIF_F_UFO;
3686 		}
3687 	}
3688 
3689 	ret = netdev_register_kobject(dev);
3690 	if (ret)
3691 		goto err_uninit;
3692 	dev->reg_state = NETREG_REGISTERED;
3693 
3694 	/*
3695 	 *	Default initial state at registry is that the
3696 	 *	device is present.
3697 	 */
3698 
3699 	set_bit(__LINK_STATE_PRESENT, &dev->state);
3700 
3701 	dev_init_scheduler(dev);
3702 	dev_hold(dev);
3703 	list_netdevice(dev);
3704 
3705 	/* Notify protocols, that a new device appeared. */
3706 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
3707 	ret = notifier_to_errno(ret);
3708 	if (ret) {
3709 		rollback_registered(dev);
3710 		dev->reg_state = NETREG_UNREGISTERED;
3711 	}
3712 
3713 out:
3714 	return ret;
3715 
3716 err_uninit:
3717 	if (dev->uninit)
3718 		dev->uninit(dev);
3719 	goto out;
3720 }
3721 
3722 /**
3723  *	register_netdev	- register a network device
3724  *	@dev: device to register
3725  *
3726  *	Take a completed network device structure and add it to the kernel
3727  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
3728  *	chain. 0 is returned on success. A negative errno code is returned
3729  *	on a failure to set up the device, or if the name is a duplicate.
3730  *
3731  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
3732  *	and expands the device name if you passed a format string to
3733  *	alloc_netdev.
3734  */
3735 int register_netdev(struct net_device *dev)
3736 {
3737 	int err;
3738 
3739 	rtnl_lock();
3740 
3741 	/*
3742 	 * If the name is a format string the caller wants us to do a
3743 	 * name allocation.
3744 	 */
3745 	if (strchr(dev->name, '%')) {
3746 		err = dev_alloc_name(dev, dev->name);
3747 		if (err < 0)
3748 			goto out;
3749 	}
3750 
3751 	err = register_netdevice(dev);
3752 out:
3753 	rtnl_unlock();
3754 	return err;
3755 }
3756 EXPORT_SYMBOL(register_netdev);
3757 
3758 /*
3759  * netdev_wait_allrefs - wait until all references are gone.
3760  *
3761  * This is called when unregistering network devices.
3762  *
3763  * Any protocol or device that holds a reference should register
3764  * for netdevice notification, and cleanup and put back the
3765  * reference if they receive an UNREGISTER event.
3766  * We can get stuck here if buggy protocols don't correctly
3767  * call dev_put.
3768  */
3769 static void netdev_wait_allrefs(struct net_device *dev)
3770 {
3771 	unsigned long rebroadcast_time, warning_time;
3772 
3773 	rebroadcast_time = warning_time = jiffies;
3774 	while (atomic_read(&dev->refcnt) != 0) {
3775 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
3776 			rtnl_lock();
3777 
3778 			/* Rebroadcast unregister notification */
3779 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
3780 
3781 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
3782 				     &dev->state)) {
3783 				/* We must not have linkwatch events
3784 				 * pending on unregister. If this
3785 				 * happens, we simply run the queue
3786 				 * unscheduled, resulting in a noop
3787 				 * for this device.
3788 				 */
3789 				linkwatch_run_queue();
3790 			}
3791 
3792 			__rtnl_unlock();
3793 
3794 			rebroadcast_time = jiffies;
3795 		}
3796 
3797 		msleep(250);
3798 
3799 		if (time_after(jiffies, warning_time + 10 * HZ)) {
3800 			printk(KERN_EMERG "unregister_netdevice: "
3801 			       "waiting for %s to become free. Usage "
3802 			       "count = %d\n",
3803 			       dev->name, atomic_read(&dev->refcnt));
3804 			warning_time = jiffies;
3805 		}
3806 	}
3807 }
3808 
3809 /* The sequence is:
3810  *
3811  *	rtnl_lock();
3812  *	...
3813  *	register_netdevice(x1);
3814  *	register_netdevice(x2);
3815  *	...
3816  *	unregister_netdevice(y1);
3817  *	unregister_netdevice(y2);
3818  *      ...
3819  *	rtnl_unlock();
3820  *	free_netdev(y1);
3821  *	free_netdev(y2);
3822  *
3823  * We are invoked by rtnl_unlock() after it drops the semaphore.
3824  * This allows us to deal with problems:
3825  * 1) We can delete sysfs objects which invoke hotplug
3826  *    without deadlocking with linkwatch via keventd.
3827  * 2) Since we run with the RTNL semaphore not held, we can sleep
3828  *    safely in order to wait for the netdev refcnt to drop to zero.
3829  */
3830 static DEFINE_MUTEX(net_todo_run_mutex);
3831 void netdev_run_todo(void)
3832 {
3833 	struct list_head list;
3834 
3835 	/* Need to guard against multiple cpu's getting out of order. */
3836 	mutex_lock(&net_todo_run_mutex);
3837 
3838 	/* Not safe to do outside the semaphore.  We must not return
3839 	 * until all unregister events invoked by the local processor
3840 	 * have been completed (either by this todo run, or one on
3841 	 * another cpu).
3842 	 */
3843 	if (list_empty(&net_todo_list))
3844 		goto out;
3845 
3846 	/* Snapshot list, allow later requests */
3847 	spin_lock(&net_todo_list_lock);
3848 	list_replace_init(&net_todo_list, &list);
3849 	spin_unlock(&net_todo_list_lock);
3850 
3851 	while (!list_empty(&list)) {
3852 		struct net_device *dev
3853 			= list_entry(list.next, struct net_device, todo_list);
3854 		list_del(&dev->todo_list);
3855 
3856 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
3857 			printk(KERN_ERR "network todo '%s' but state %d\n",
3858 			       dev->name, dev->reg_state);
3859 			dump_stack();
3860 			continue;
3861 		}
3862 
3863 		dev->reg_state = NETREG_UNREGISTERED;
3864 
3865 		netdev_wait_allrefs(dev);
3866 
3867 		/* paranoia */
3868 		BUG_ON(atomic_read(&dev->refcnt));
3869 		BUG_TRAP(!dev->ip_ptr);
3870 		BUG_TRAP(!dev->ip6_ptr);
3871 		BUG_TRAP(!dev->dn_ptr);
3872 
3873 		if (dev->destructor)
3874 			dev->destructor(dev);
3875 
3876 		/* Free network device */
3877 		kobject_put(&dev->dev.kobj);
3878 	}
3879 
3880 out:
3881 	mutex_unlock(&net_todo_run_mutex);
3882 }
3883 
3884 static struct net_device_stats *internal_stats(struct net_device *dev)
3885 {
3886 	return &dev->stats;
3887 }
3888 
3889 /**
3890  *	alloc_netdev_mq - allocate network device
3891  *	@sizeof_priv:	size of private data to allocate space for
3892  *	@name:		device name format string
3893  *	@setup:		callback to initialize device
3894  *	@queue_count:	the number of subqueues to allocate
3895  *
3896  *	Allocates a struct net_device with private data area for driver use
3897  *	and performs basic initialization.  Also allocates subquue structs
3898  *	for each queue on the device at the end of the netdevice.
3899  */
3900 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
3901 		void (*setup)(struct net_device *), unsigned int queue_count)
3902 {
3903 	void *p;
3904 	struct net_device *dev;
3905 	int alloc_size;
3906 
3907 	BUG_ON(strlen(name) >= sizeof(dev->name));
3908 
3909 	/* ensure 32-byte alignment of both the device and private area */
3910 	alloc_size = (sizeof(*dev) + NETDEV_ALIGN_CONST +
3911 		     (sizeof(struct net_device_subqueue) * (queue_count - 1))) &
3912 		     ~NETDEV_ALIGN_CONST;
3913 	alloc_size += sizeof_priv + NETDEV_ALIGN_CONST;
3914 
3915 	p = kzalloc(alloc_size, GFP_KERNEL);
3916 	if (!p) {
3917 		printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
3918 		return NULL;
3919 	}
3920 
3921 	dev = (struct net_device *)
3922 		(((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST);
3923 	dev->padded = (char *)dev - (char *)p;
3924 	dev->nd_net = &init_net;
3925 
3926 	if (sizeof_priv) {
3927 		dev->priv = ((char *)dev +
3928 			     ((sizeof(struct net_device) +
3929 			       (sizeof(struct net_device_subqueue) *
3930 				(queue_count - 1)) + NETDEV_ALIGN_CONST)
3931 			      & ~NETDEV_ALIGN_CONST));
3932 	}
3933 
3934 	dev->egress_subqueue_count = queue_count;
3935 
3936 	dev->get_stats = internal_stats;
3937 	netpoll_netdev_init(dev);
3938 	setup(dev);
3939 	strcpy(dev->name, name);
3940 	return dev;
3941 }
3942 EXPORT_SYMBOL(alloc_netdev_mq);
3943 
3944 /**
3945  *	free_netdev - free network device
3946  *	@dev: device
3947  *
3948  *	This function does the last stage of destroying an allocated device
3949  * 	interface. The reference to the device object is released.
3950  *	If this is the last reference then it will be freed.
3951  */
3952 void free_netdev(struct net_device *dev)
3953 {
3954 	/*  Compatibility with error handling in drivers */
3955 	if (dev->reg_state == NETREG_UNINITIALIZED) {
3956 		kfree((char *)dev - dev->padded);
3957 		return;
3958 	}
3959 
3960 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
3961 	dev->reg_state = NETREG_RELEASED;
3962 
3963 	/* will free via device release */
3964 	put_device(&dev->dev);
3965 }
3966 
3967 /* Synchronize with packet receive processing. */
3968 void synchronize_net(void)
3969 {
3970 	might_sleep();
3971 	synchronize_rcu();
3972 }
3973 
3974 /**
3975  *	unregister_netdevice - remove device from the kernel
3976  *	@dev: device
3977  *
3978  *	This function shuts down a device interface and removes it
3979  *	from the kernel tables.
3980  *
3981  *	Callers must hold the rtnl semaphore.  You may want
3982  *	unregister_netdev() instead of this.
3983  */
3984 
3985 void unregister_netdevice(struct net_device *dev)
3986 {
3987 	rollback_registered(dev);
3988 	/* Finish processing unregister after unlock */
3989 	net_set_todo(dev);
3990 }
3991 
3992 /**
3993  *	unregister_netdev - remove device from the kernel
3994  *	@dev: device
3995  *
3996  *	This function shuts down a device interface and removes it
3997  *	from the kernel tables.
3998  *
3999  *	This is just a wrapper for unregister_netdevice that takes
4000  *	the rtnl semaphore.  In general you want to use this and not
4001  *	unregister_netdevice.
4002  */
4003 void unregister_netdev(struct net_device *dev)
4004 {
4005 	rtnl_lock();
4006 	unregister_netdevice(dev);
4007 	rtnl_unlock();
4008 }
4009 
4010 EXPORT_SYMBOL(unregister_netdev);
4011 
4012 /**
4013  *	dev_change_net_namespace - move device to different nethost namespace
4014  *	@dev: device
4015  *	@net: network namespace
4016  *	@pat: If not NULL name pattern to try if the current device name
4017  *	      is already taken in the destination network namespace.
4018  *
4019  *	This function shuts down a device interface and moves it
4020  *	to a new network namespace. On success 0 is returned, on
4021  *	a failure a netagive errno code is returned.
4022  *
4023  *	Callers must hold the rtnl semaphore.
4024  */
4025 
4026 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
4027 {
4028 	char buf[IFNAMSIZ];
4029 	const char *destname;
4030 	int err;
4031 
4032 	ASSERT_RTNL();
4033 
4034 	/* Don't allow namespace local devices to be moved. */
4035 	err = -EINVAL;
4036 	if (dev->features & NETIF_F_NETNS_LOCAL)
4037 		goto out;
4038 
4039 	/* Ensure the device has been registrered */
4040 	err = -EINVAL;
4041 	if (dev->reg_state != NETREG_REGISTERED)
4042 		goto out;
4043 
4044 	/* Get out if there is nothing todo */
4045 	err = 0;
4046 	if (dev->nd_net == net)
4047 		goto out;
4048 
4049 	/* Pick the destination device name, and ensure
4050 	 * we can use it in the destination network namespace.
4051 	 */
4052 	err = -EEXIST;
4053 	destname = dev->name;
4054 	if (__dev_get_by_name(net, destname)) {
4055 		/* We get here if we can't use the current device name */
4056 		if (!pat)
4057 			goto out;
4058 		if (!dev_valid_name(pat))
4059 			goto out;
4060 		if (strchr(pat, '%')) {
4061 			if (__dev_alloc_name(net, pat, buf) < 0)
4062 				goto out;
4063 			destname = buf;
4064 		} else
4065 			destname = pat;
4066 		if (__dev_get_by_name(net, destname))
4067 			goto out;
4068 	}
4069 
4070 	/*
4071 	 * And now a mini version of register_netdevice unregister_netdevice.
4072 	 */
4073 
4074 	/* If device is running close it first. */
4075 	dev_close(dev);
4076 
4077 	/* And unlink it from device chain */
4078 	err = -ENODEV;
4079 	unlist_netdevice(dev);
4080 
4081 	synchronize_net();
4082 
4083 	/* Shutdown queueing discipline. */
4084 	dev_shutdown(dev);
4085 
4086 	/* Notify protocols, that we are about to destroy
4087 	   this device. They should clean all the things.
4088 	*/
4089 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4090 
4091 	/*
4092 	 *	Flush the unicast and multicast chains
4093 	 */
4094 	dev_addr_discard(dev);
4095 
4096 	/* Actually switch the network namespace */
4097 	dev->nd_net = net;
4098 
4099 	/* Assign the new device name */
4100 	if (destname != dev->name)
4101 		strcpy(dev->name, destname);
4102 
4103 	/* If there is an ifindex conflict assign a new one */
4104 	if (__dev_get_by_index(net, dev->ifindex)) {
4105 		int iflink = (dev->iflink == dev->ifindex);
4106 		dev->ifindex = dev_new_index(net);
4107 		if (iflink)
4108 			dev->iflink = dev->ifindex;
4109 	}
4110 
4111 	/* Fixup kobjects */
4112 	err = device_rename(&dev->dev, dev->name);
4113 	WARN_ON(err);
4114 
4115 	/* Add the device back in the hashes */
4116 	list_netdevice(dev);
4117 
4118 	/* Notify protocols, that a new device appeared. */
4119 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
4120 
4121 	synchronize_net();
4122 	err = 0;
4123 out:
4124 	return err;
4125 }
4126 
4127 static int dev_cpu_callback(struct notifier_block *nfb,
4128 			    unsigned long action,
4129 			    void *ocpu)
4130 {
4131 	struct sk_buff **list_skb;
4132 	struct net_device **list_net;
4133 	struct sk_buff *skb;
4134 	unsigned int cpu, oldcpu = (unsigned long)ocpu;
4135 	struct softnet_data *sd, *oldsd;
4136 
4137 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
4138 		return NOTIFY_OK;
4139 
4140 	local_irq_disable();
4141 	cpu = smp_processor_id();
4142 	sd = &per_cpu(softnet_data, cpu);
4143 	oldsd = &per_cpu(softnet_data, oldcpu);
4144 
4145 	/* Find end of our completion_queue. */
4146 	list_skb = &sd->completion_queue;
4147 	while (*list_skb)
4148 		list_skb = &(*list_skb)->next;
4149 	/* Append completion queue from offline CPU. */
4150 	*list_skb = oldsd->completion_queue;
4151 	oldsd->completion_queue = NULL;
4152 
4153 	/* Find end of our output_queue. */
4154 	list_net = &sd->output_queue;
4155 	while (*list_net)
4156 		list_net = &(*list_net)->next_sched;
4157 	/* Append output queue from offline CPU. */
4158 	*list_net = oldsd->output_queue;
4159 	oldsd->output_queue = NULL;
4160 
4161 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
4162 	local_irq_enable();
4163 
4164 	/* Process offline CPU's input_pkt_queue */
4165 	while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
4166 		netif_rx(skb);
4167 
4168 	return NOTIFY_OK;
4169 }
4170 
4171 #ifdef CONFIG_NET_DMA
4172 /**
4173  * net_dma_rebalance - try to maintain one DMA channel per CPU
4174  * @net_dma: DMA client and associated data (lock, channels, channel_mask)
4175  *
4176  * This is called when the number of channels allocated to the net_dma client
4177  * changes.  The net_dma client tries to have one DMA channel per CPU.
4178  */
4179 
4180 static void net_dma_rebalance(struct net_dma *net_dma)
4181 {
4182 	unsigned int cpu, i, n, chan_idx;
4183 	struct dma_chan *chan;
4184 
4185 	if (cpus_empty(net_dma->channel_mask)) {
4186 		for_each_online_cpu(cpu)
4187 			rcu_assign_pointer(per_cpu(softnet_data, cpu).net_dma, NULL);
4188 		return;
4189 	}
4190 
4191 	i = 0;
4192 	cpu = first_cpu(cpu_online_map);
4193 
4194 	for_each_cpu_mask(chan_idx, net_dma->channel_mask) {
4195 		chan = net_dma->channels[chan_idx];
4196 
4197 		n = ((num_online_cpus() / cpus_weight(net_dma->channel_mask))
4198 		   + (i < (num_online_cpus() %
4199 			cpus_weight(net_dma->channel_mask)) ? 1 : 0));
4200 
4201 		while(n) {
4202 			per_cpu(softnet_data, cpu).net_dma = chan;
4203 			cpu = next_cpu(cpu, cpu_online_map);
4204 			n--;
4205 		}
4206 		i++;
4207 	}
4208 }
4209 
4210 /**
4211  * netdev_dma_event - event callback for the net_dma_client
4212  * @client: should always be net_dma_client
4213  * @chan: DMA channel for the event
4214  * @state: DMA state to be handled
4215  */
4216 static enum dma_state_client
4217 netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
4218 	enum dma_state state)
4219 {
4220 	int i, found = 0, pos = -1;
4221 	struct net_dma *net_dma =
4222 		container_of(client, struct net_dma, client);
4223 	enum dma_state_client ack = DMA_DUP; /* default: take no action */
4224 
4225 	spin_lock(&net_dma->lock);
4226 	switch (state) {
4227 	case DMA_RESOURCE_AVAILABLE:
4228 		for (i = 0; i < NR_CPUS; i++)
4229 			if (net_dma->channels[i] == chan) {
4230 				found = 1;
4231 				break;
4232 			} else if (net_dma->channels[i] == NULL && pos < 0)
4233 				pos = i;
4234 
4235 		if (!found && pos >= 0) {
4236 			ack = DMA_ACK;
4237 			net_dma->channels[pos] = chan;
4238 			cpu_set(pos, net_dma->channel_mask);
4239 			net_dma_rebalance(net_dma);
4240 		}
4241 		break;
4242 	case DMA_RESOURCE_REMOVED:
4243 		for (i = 0; i < NR_CPUS; i++)
4244 			if (net_dma->channels[i] == chan) {
4245 				found = 1;
4246 				pos = i;
4247 				break;
4248 			}
4249 
4250 		if (found) {
4251 			ack = DMA_ACK;
4252 			cpu_clear(pos, net_dma->channel_mask);
4253 			net_dma->channels[i] = NULL;
4254 			net_dma_rebalance(net_dma);
4255 		}
4256 		break;
4257 	default:
4258 		break;
4259 	}
4260 	spin_unlock(&net_dma->lock);
4261 
4262 	return ack;
4263 }
4264 
4265 /**
4266  * netdev_dma_regiser - register the networking subsystem as a DMA client
4267  */
4268 static int __init netdev_dma_register(void)
4269 {
4270 	spin_lock_init(&net_dma.lock);
4271 	dma_cap_set(DMA_MEMCPY, net_dma.client.cap_mask);
4272 	dma_async_client_register(&net_dma.client);
4273 	dma_async_client_chan_request(&net_dma.client);
4274 	return 0;
4275 }
4276 
4277 #else
4278 static int __init netdev_dma_register(void) { return -ENODEV; }
4279 #endif /* CONFIG_NET_DMA */
4280 
4281 /**
4282  *	netdev_compute_feature - compute conjunction of two feature sets
4283  *	@all: first feature set
4284  *	@one: second feature set
4285  *
4286  *	Computes a new feature set after adding a device with feature set
4287  *	@one to the master device with current feature set @all.  Returns
4288  *	the new feature set.
4289  */
4290 int netdev_compute_features(unsigned long all, unsigned long one)
4291 {
4292 	/* if device needs checksumming, downgrade to hw checksumming */
4293 	if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
4294 		all ^= NETIF_F_NO_CSUM | NETIF_F_HW_CSUM;
4295 
4296 	/* if device can't do all checksum, downgrade to ipv4/ipv6 */
4297 	if (all & NETIF_F_HW_CSUM && !(one & NETIF_F_HW_CSUM))
4298 		all ^= NETIF_F_HW_CSUM
4299 			| NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
4300 
4301 	if (one & NETIF_F_GSO)
4302 		one |= NETIF_F_GSO_SOFTWARE;
4303 	one |= NETIF_F_GSO;
4304 
4305 	/* If even one device supports robust GSO, enable it for all. */
4306 	if (one & NETIF_F_GSO_ROBUST)
4307 		all |= NETIF_F_GSO_ROBUST;
4308 
4309 	all &= one | NETIF_F_LLTX;
4310 
4311 	if (!(all & NETIF_F_ALL_CSUM))
4312 		all &= ~NETIF_F_SG;
4313 	if (!(all & NETIF_F_SG))
4314 		all &= ~NETIF_F_GSO_MASK;
4315 
4316 	return all;
4317 }
4318 EXPORT_SYMBOL(netdev_compute_features);
4319 
4320 static struct hlist_head *netdev_create_hash(void)
4321 {
4322 	int i;
4323 	struct hlist_head *hash;
4324 
4325 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
4326 	if (hash != NULL)
4327 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
4328 			INIT_HLIST_HEAD(&hash[i]);
4329 
4330 	return hash;
4331 }
4332 
4333 /* Initialize per network namespace state */
4334 static int __net_init netdev_init(struct net *net)
4335 {
4336 	INIT_LIST_HEAD(&net->dev_base_head);
4337 
4338 	net->dev_name_head = netdev_create_hash();
4339 	if (net->dev_name_head == NULL)
4340 		goto err_name;
4341 
4342 	net->dev_index_head = netdev_create_hash();
4343 	if (net->dev_index_head == NULL)
4344 		goto err_idx;
4345 
4346 	return 0;
4347 
4348 err_idx:
4349 	kfree(net->dev_name_head);
4350 err_name:
4351 	return -ENOMEM;
4352 }
4353 
4354 static void __net_exit netdev_exit(struct net *net)
4355 {
4356 	kfree(net->dev_name_head);
4357 	kfree(net->dev_index_head);
4358 }
4359 
4360 static struct pernet_operations __net_initdata netdev_net_ops = {
4361 	.init = netdev_init,
4362 	.exit = netdev_exit,
4363 };
4364 
4365 static void __net_exit default_device_exit(struct net *net)
4366 {
4367 	struct net_device *dev, *next;
4368 	/*
4369 	 * Push all migratable of the network devices back to the
4370 	 * initial network namespace
4371 	 */
4372 	rtnl_lock();
4373 	for_each_netdev_safe(net, dev, next) {
4374 		int err;
4375 
4376 		/* Ignore unmoveable devices (i.e. loopback) */
4377 		if (dev->features & NETIF_F_NETNS_LOCAL)
4378 			continue;
4379 
4380 		/* Push remaing network devices to init_net */
4381 		err = dev_change_net_namespace(dev, &init_net, "dev%d");
4382 		if (err) {
4383 			printk(KERN_WARNING "%s: failed to move %s to init_net: %d\n",
4384 				__func__, dev->name, err);
4385 			unregister_netdevice(dev);
4386 		}
4387 	}
4388 	rtnl_unlock();
4389 }
4390 
4391 static struct pernet_operations __net_initdata default_device_ops = {
4392 	.exit = default_device_exit,
4393 };
4394 
4395 /*
4396  *	Initialize the DEV module. At boot time this walks the device list and
4397  *	unhooks any devices that fail to initialise (normally hardware not
4398  *	present) and leaves us with a valid list of present and active devices.
4399  *
4400  */
4401 
4402 /*
4403  *       This is called single threaded during boot, so no need
4404  *       to take the rtnl semaphore.
4405  */
4406 static int __init net_dev_init(void)
4407 {
4408 	int i, rc = -ENOMEM;
4409 
4410 	BUG_ON(!dev_boot_phase);
4411 
4412 	if (dev_proc_init())
4413 		goto out;
4414 
4415 	if (netdev_kobject_init())
4416 		goto out;
4417 
4418 	INIT_LIST_HEAD(&ptype_all);
4419 	for (i = 0; i < 16; i++)
4420 		INIT_LIST_HEAD(&ptype_base[i]);
4421 
4422 	if (register_pernet_subsys(&netdev_net_ops))
4423 		goto out;
4424 
4425 	if (register_pernet_device(&default_device_ops))
4426 		goto out;
4427 
4428 	/*
4429 	 *	Initialise the packet receive queues.
4430 	 */
4431 
4432 	for_each_possible_cpu(i) {
4433 		struct softnet_data *queue;
4434 
4435 		queue = &per_cpu(softnet_data, i);
4436 		skb_queue_head_init(&queue->input_pkt_queue);
4437 		queue->completion_queue = NULL;
4438 		INIT_LIST_HEAD(&queue->poll_list);
4439 
4440 		queue->backlog.poll = process_backlog;
4441 		queue->backlog.weight = weight_p;
4442 	}
4443 
4444 	netdev_dma_register();
4445 
4446 	dev_boot_phase = 0;
4447 
4448 	open_softirq(NET_TX_SOFTIRQ, net_tx_action, NULL);
4449 	open_softirq(NET_RX_SOFTIRQ, net_rx_action, NULL);
4450 
4451 	hotcpu_notifier(dev_cpu_callback, 0);
4452 	dst_init();
4453 	dev_mcast_init();
4454 	rc = 0;
4455 out:
4456 	return rc;
4457 }
4458 
4459 subsys_initcall(net_dev_init);
4460 
4461 EXPORT_SYMBOL(__dev_get_by_index);
4462 EXPORT_SYMBOL(__dev_get_by_name);
4463 EXPORT_SYMBOL(__dev_remove_pack);
4464 EXPORT_SYMBOL(dev_valid_name);
4465 EXPORT_SYMBOL(dev_add_pack);
4466 EXPORT_SYMBOL(dev_alloc_name);
4467 EXPORT_SYMBOL(dev_close);
4468 EXPORT_SYMBOL(dev_get_by_flags);
4469 EXPORT_SYMBOL(dev_get_by_index);
4470 EXPORT_SYMBOL(dev_get_by_name);
4471 EXPORT_SYMBOL(dev_open);
4472 EXPORT_SYMBOL(dev_queue_xmit);
4473 EXPORT_SYMBOL(dev_remove_pack);
4474 EXPORT_SYMBOL(dev_set_allmulti);
4475 EXPORT_SYMBOL(dev_set_promiscuity);
4476 EXPORT_SYMBOL(dev_change_flags);
4477 EXPORT_SYMBOL(dev_set_mtu);
4478 EXPORT_SYMBOL(dev_set_mac_address);
4479 EXPORT_SYMBOL(free_netdev);
4480 EXPORT_SYMBOL(netdev_boot_setup_check);
4481 EXPORT_SYMBOL(netdev_set_master);
4482 EXPORT_SYMBOL(netdev_state_change);
4483 EXPORT_SYMBOL(netif_receive_skb);
4484 EXPORT_SYMBOL(netif_rx);
4485 EXPORT_SYMBOL(register_gifconf);
4486 EXPORT_SYMBOL(register_netdevice);
4487 EXPORT_SYMBOL(register_netdevice_notifier);
4488 EXPORT_SYMBOL(skb_checksum_help);
4489 EXPORT_SYMBOL(synchronize_net);
4490 EXPORT_SYMBOL(unregister_netdevice);
4491 EXPORT_SYMBOL(unregister_netdevice_notifier);
4492 EXPORT_SYMBOL(net_enable_timestamp);
4493 EXPORT_SYMBOL(net_disable_timestamp);
4494 EXPORT_SYMBOL(dev_get_flags);
4495 
4496 #if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)
4497 EXPORT_SYMBOL(br_handle_frame_hook);
4498 EXPORT_SYMBOL(br_fdb_get_hook);
4499 EXPORT_SYMBOL(br_fdb_put_hook);
4500 #endif
4501 
4502 #ifdef CONFIG_KMOD
4503 EXPORT_SYMBOL(dev_load);
4504 #endif
4505 
4506 EXPORT_PER_CPU_SYMBOL(softnet_data);
4507