xref: /linux/net/core/dev.c (revision 6a128cdf1926b20a94d6af7d7d03b76ba19a4f8b)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitmap.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/isolation.h>
81 #include <linux/sched/mm.h>
82 #include <linux/smpboot.h>
83 #include <linux/mutex.h>
84 #include <linux/rwsem.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/ethtool_netlink.h>
96 #include <linux/skbuff.h>
97 #include <linux/kthread.h>
98 #include <linux/bpf.h>
99 #include <linux/bpf_trace.h>
100 #include <net/net_namespace.h>
101 #include <net/sock.h>
102 #include <net/busy_poll.h>
103 #include <linux/rtnetlink.h>
104 #include <linux/stat.h>
105 #include <net/dsa.h>
106 #include <net/dst.h>
107 #include <net/dst_metadata.h>
108 #include <net/gro.h>
109 #include <net/pkt_sched.h>
110 #include <net/pkt_cls.h>
111 #include <net/checksum.h>
112 #include <net/xfrm.h>
113 #include <net/tcx.h>
114 #include <linux/highmem.h>
115 #include <linux/init.h>
116 #include <linux/module.h>
117 #include <linux/netpoll.h>
118 #include <linux/rcupdate.h>
119 #include <linux/delay.h>
120 #include <net/iw_handler.h>
121 #include <asm/current.h>
122 #include <linux/audit.h>
123 #include <linux/dmaengine.h>
124 #include <linux/err.h>
125 #include <linux/ctype.h>
126 #include <linux/if_arp.h>
127 #include <linux/if_vlan.h>
128 #include <linux/ip.h>
129 #include <net/ip.h>
130 #include <net/mpls.h>
131 #include <linux/ipv6.h>
132 #include <linux/in.h>
133 #include <linux/jhash.h>
134 #include <linux/random.h>
135 #include <trace/events/napi.h>
136 #include <trace/events/net.h>
137 #include <trace/events/skb.h>
138 #include <trace/events/qdisc.h>
139 #include <trace/events/xdp.h>
140 #include <linux/inetdevice.h>
141 #include <linux/cpu_rmap.h>
142 #include <linux/static_key.h>
143 #include <linux/hashtable.h>
144 #include <linux/vmalloc.h>
145 #include <linux/if_macvlan.h>
146 #include <linux/errqueue.h>
147 #include <linux/hrtimer.h>
148 #include <linux/netfilter_netdev.h>
149 #include <linux/crash_dump.h>
150 #include <linux/sctp.h>
151 #include <net/udp_tunnel.h>
152 #include <linux/net_namespace.h>
153 #include <linux/indirect_call_wrapper.h>
154 #include <net/devlink.h>
155 #include <linux/pm_runtime.h>
156 #include <linux/prandom.h>
157 #include <linux/once_lite.h>
158 #include <net/netdev_rx_queue.h>
159 #include <net/page_pool/types.h>
160 #include <net/page_pool/helpers.h>
161 #include <net/rps.h>
162 #include <linux/phy_link_topology.h>
163 
164 #include "dev.h"
165 #include "devmem.h"
166 #include "net-sysfs.h"
167 
168 static DEFINE_SPINLOCK(ptype_lock);
169 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
170 
171 static int netif_rx_internal(struct sk_buff *skb);
172 static int call_netdevice_notifiers_extack(unsigned long val,
173 					   struct net_device *dev,
174 					   struct netlink_ext_ack *extack);
175 
176 static DEFINE_MUTEX(ifalias_mutex);
177 
178 /* protects napi_hash addition/deletion and napi_gen_id */
179 static DEFINE_SPINLOCK(napi_hash_lock);
180 
181 static unsigned int napi_gen_id = NR_CPUS;
182 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
183 
184 static inline void dev_base_seq_inc(struct net *net)
185 {
186 	unsigned int val = net->dev_base_seq + 1;
187 
188 	WRITE_ONCE(net->dev_base_seq, val ?: 1);
189 }
190 
191 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
192 {
193 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
194 
195 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
196 }
197 
198 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
199 {
200 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
201 }
202 
203 #ifndef CONFIG_PREEMPT_RT
204 
205 static DEFINE_STATIC_KEY_FALSE(use_backlog_threads_key);
206 
207 static int __init setup_backlog_napi_threads(char *arg)
208 {
209 	static_branch_enable(&use_backlog_threads_key);
210 	return 0;
211 }
212 early_param("thread_backlog_napi", setup_backlog_napi_threads);
213 
214 static bool use_backlog_threads(void)
215 {
216 	return static_branch_unlikely(&use_backlog_threads_key);
217 }
218 
219 #else
220 
221 static bool use_backlog_threads(void)
222 {
223 	return true;
224 }
225 
226 #endif
227 
228 static inline void backlog_lock_irq_save(struct softnet_data *sd,
229 					 unsigned long *flags)
230 {
231 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
232 		spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
233 	else
234 		local_irq_save(*flags);
235 }
236 
237 static inline void backlog_lock_irq_disable(struct softnet_data *sd)
238 {
239 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
240 		spin_lock_irq(&sd->input_pkt_queue.lock);
241 	else
242 		local_irq_disable();
243 }
244 
245 static inline void backlog_unlock_irq_restore(struct softnet_data *sd,
246 					      unsigned long *flags)
247 {
248 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
249 		spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
250 	else
251 		local_irq_restore(*flags);
252 }
253 
254 static inline void backlog_unlock_irq_enable(struct softnet_data *sd)
255 {
256 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
257 		spin_unlock_irq(&sd->input_pkt_queue.lock);
258 	else
259 		local_irq_enable();
260 }
261 
262 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
263 						       const char *name)
264 {
265 	struct netdev_name_node *name_node;
266 
267 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
268 	if (!name_node)
269 		return NULL;
270 	INIT_HLIST_NODE(&name_node->hlist);
271 	name_node->dev = dev;
272 	name_node->name = name;
273 	return name_node;
274 }
275 
276 static struct netdev_name_node *
277 netdev_name_node_head_alloc(struct net_device *dev)
278 {
279 	struct netdev_name_node *name_node;
280 
281 	name_node = netdev_name_node_alloc(dev, dev->name);
282 	if (!name_node)
283 		return NULL;
284 	INIT_LIST_HEAD(&name_node->list);
285 	return name_node;
286 }
287 
288 static void netdev_name_node_free(struct netdev_name_node *name_node)
289 {
290 	kfree(name_node);
291 }
292 
293 static void netdev_name_node_add(struct net *net,
294 				 struct netdev_name_node *name_node)
295 {
296 	hlist_add_head_rcu(&name_node->hlist,
297 			   dev_name_hash(net, name_node->name));
298 }
299 
300 static void netdev_name_node_del(struct netdev_name_node *name_node)
301 {
302 	hlist_del_rcu(&name_node->hlist);
303 }
304 
305 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
306 							const char *name)
307 {
308 	struct hlist_head *head = dev_name_hash(net, name);
309 	struct netdev_name_node *name_node;
310 
311 	hlist_for_each_entry(name_node, head, hlist)
312 		if (!strcmp(name_node->name, name))
313 			return name_node;
314 	return NULL;
315 }
316 
317 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
318 							    const char *name)
319 {
320 	struct hlist_head *head = dev_name_hash(net, name);
321 	struct netdev_name_node *name_node;
322 
323 	hlist_for_each_entry_rcu(name_node, head, hlist)
324 		if (!strcmp(name_node->name, name))
325 			return name_node;
326 	return NULL;
327 }
328 
329 bool netdev_name_in_use(struct net *net, const char *name)
330 {
331 	return netdev_name_node_lookup(net, name);
332 }
333 EXPORT_SYMBOL(netdev_name_in_use);
334 
335 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
336 {
337 	struct netdev_name_node *name_node;
338 	struct net *net = dev_net(dev);
339 
340 	name_node = netdev_name_node_lookup(net, name);
341 	if (name_node)
342 		return -EEXIST;
343 	name_node = netdev_name_node_alloc(dev, name);
344 	if (!name_node)
345 		return -ENOMEM;
346 	netdev_name_node_add(net, name_node);
347 	/* The node that holds dev->name acts as a head of per-device list. */
348 	list_add_tail_rcu(&name_node->list, &dev->name_node->list);
349 
350 	return 0;
351 }
352 
353 static void netdev_name_node_alt_free(struct rcu_head *head)
354 {
355 	struct netdev_name_node *name_node =
356 		container_of(head, struct netdev_name_node, rcu);
357 
358 	kfree(name_node->name);
359 	netdev_name_node_free(name_node);
360 }
361 
362 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
363 {
364 	netdev_name_node_del(name_node);
365 	list_del(&name_node->list);
366 	call_rcu(&name_node->rcu, netdev_name_node_alt_free);
367 }
368 
369 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
370 {
371 	struct netdev_name_node *name_node;
372 	struct net *net = dev_net(dev);
373 
374 	name_node = netdev_name_node_lookup(net, name);
375 	if (!name_node)
376 		return -ENOENT;
377 	/* lookup might have found our primary name or a name belonging
378 	 * to another device.
379 	 */
380 	if (name_node == dev->name_node || name_node->dev != dev)
381 		return -EINVAL;
382 
383 	__netdev_name_node_alt_destroy(name_node);
384 	return 0;
385 }
386 
387 static void netdev_name_node_alt_flush(struct net_device *dev)
388 {
389 	struct netdev_name_node *name_node, *tmp;
390 
391 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) {
392 		list_del(&name_node->list);
393 		netdev_name_node_alt_free(&name_node->rcu);
394 	}
395 }
396 
397 /* Device list insertion */
398 static void list_netdevice(struct net_device *dev)
399 {
400 	struct netdev_name_node *name_node;
401 	struct net *net = dev_net(dev);
402 
403 	ASSERT_RTNL();
404 
405 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
406 	netdev_name_node_add(net, dev->name_node);
407 	hlist_add_head_rcu(&dev->index_hlist,
408 			   dev_index_hash(net, dev->ifindex));
409 
410 	netdev_for_each_altname(dev, name_node)
411 		netdev_name_node_add(net, name_node);
412 
413 	/* We reserved the ifindex, this can't fail */
414 	WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL));
415 
416 	dev_base_seq_inc(net);
417 }
418 
419 /* Device list removal
420  * caller must respect a RCU grace period before freeing/reusing dev
421  */
422 static void unlist_netdevice(struct net_device *dev)
423 {
424 	struct netdev_name_node *name_node;
425 	struct net *net = dev_net(dev);
426 
427 	ASSERT_RTNL();
428 
429 	xa_erase(&net->dev_by_index, dev->ifindex);
430 
431 	netdev_for_each_altname(dev, name_node)
432 		netdev_name_node_del(name_node);
433 
434 	/* Unlink dev from the device chain */
435 	list_del_rcu(&dev->dev_list);
436 	netdev_name_node_del(dev->name_node);
437 	hlist_del_rcu(&dev->index_hlist);
438 
439 	dev_base_seq_inc(dev_net(dev));
440 }
441 
442 /*
443  *	Our notifier list
444  */
445 
446 static RAW_NOTIFIER_HEAD(netdev_chain);
447 
448 /*
449  *	Device drivers call our routines to queue packets here. We empty the
450  *	queue in the local softnet handler.
451  */
452 
453 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data) = {
454 	.process_queue_bh_lock = INIT_LOCAL_LOCK(process_queue_bh_lock),
455 };
456 EXPORT_PER_CPU_SYMBOL(softnet_data);
457 
458 /* Page_pool has a lockless array/stack to alloc/recycle pages.
459  * PP consumers must pay attention to run APIs in the appropriate context
460  * (e.g. NAPI context).
461  */
462 DEFINE_PER_CPU(struct page_pool *, system_page_pool);
463 
464 #ifdef CONFIG_LOCKDEP
465 /*
466  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
467  * according to dev->type
468  */
469 static const unsigned short netdev_lock_type[] = {
470 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
471 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
472 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
473 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
474 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
475 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
476 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
477 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
478 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
479 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
480 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
481 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
482 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
483 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
484 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
485 
486 static const char *const netdev_lock_name[] = {
487 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
488 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
489 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
490 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
491 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
492 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
493 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
494 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
495 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
496 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
497 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
498 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
499 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
500 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
501 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
502 
503 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
504 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
505 
506 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
507 {
508 	int i;
509 
510 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
511 		if (netdev_lock_type[i] == dev_type)
512 			return i;
513 	/* the last key is used by default */
514 	return ARRAY_SIZE(netdev_lock_type) - 1;
515 }
516 
517 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
518 						 unsigned short dev_type)
519 {
520 	int i;
521 
522 	i = netdev_lock_pos(dev_type);
523 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
524 				   netdev_lock_name[i]);
525 }
526 
527 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
528 {
529 	int i;
530 
531 	i = netdev_lock_pos(dev->type);
532 	lockdep_set_class_and_name(&dev->addr_list_lock,
533 				   &netdev_addr_lock_key[i],
534 				   netdev_lock_name[i]);
535 }
536 #else
537 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
538 						 unsigned short dev_type)
539 {
540 }
541 
542 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
543 {
544 }
545 #endif
546 
547 /*******************************************************************************
548  *
549  *		Protocol management and registration routines
550  *
551  *******************************************************************************/
552 
553 
554 /*
555  *	Add a protocol ID to the list. Now that the input handler is
556  *	smarter we can dispense with all the messy stuff that used to be
557  *	here.
558  *
559  *	BEWARE!!! Protocol handlers, mangling input packets,
560  *	MUST BE last in hash buckets and checking protocol handlers
561  *	MUST start from promiscuous ptype_all chain in net_bh.
562  *	It is true now, do not change it.
563  *	Explanation follows: if protocol handler, mangling packet, will
564  *	be the first on list, it is not able to sense, that packet
565  *	is cloned and should be copied-on-write, so that it will
566  *	change it and subsequent readers will get broken packet.
567  *							--ANK (980803)
568  */
569 
570 static inline struct list_head *ptype_head(const struct packet_type *pt)
571 {
572 	if (pt->type == htons(ETH_P_ALL))
573 		return pt->dev ? &pt->dev->ptype_all : &net_hotdata.ptype_all;
574 	else
575 		return pt->dev ? &pt->dev->ptype_specific :
576 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
577 }
578 
579 /**
580  *	dev_add_pack - add packet handler
581  *	@pt: packet type declaration
582  *
583  *	Add a protocol handler to the networking stack. The passed &packet_type
584  *	is linked into kernel lists and may not be freed until it has been
585  *	removed from the kernel lists.
586  *
587  *	This call does not sleep therefore it can not
588  *	guarantee all CPU's that are in middle of receiving packets
589  *	will see the new packet type (until the next received packet).
590  */
591 
592 void dev_add_pack(struct packet_type *pt)
593 {
594 	struct list_head *head = ptype_head(pt);
595 
596 	spin_lock(&ptype_lock);
597 	list_add_rcu(&pt->list, head);
598 	spin_unlock(&ptype_lock);
599 }
600 EXPORT_SYMBOL(dev_add_pack);
601 
602 /**
603  *	__dev_remove_pack	 - remove packet handler
604  *	@pt: packet type declaration
605  *
606  *	Remove a protocol handler that was previously added to the kernel
607  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
608  *	from the kernel lists and can be freed or reused once this function
609  *	returns.
610  *
611  *      The packet type might still be in use by receivers
612  *	and must not be freed until after all the CPU's have gone
613  *	through a quiescent state.
614  */
615 void __dev_remove_pack(struct packet_type *pt)
616 {
617 	struct list_head *head = ptype_head(pt);
618 	struct packet_type *pt1;
619 
620 	spin_lock(&ptype_lock);
621 
622 	list_for_each_entry(pt1, head, list) {
623 		if (pt == pt1) {
624 			list_del_rcu(&pt->list);
625 			goto out;
626 		}
627 	}
628 
629 	pr_warn("dev_remove_pack: %p not found\n", pt);
630 out:
631 	spin_unlock(&ptype_lock);
632 }
633 EXPORT_SYMBOL(__dev_remove_pack);
634 
635 /**
636  *	dev_remove_pack	 - remove packet handler
637  *	@pt: packet type declaration
638  *
639  *	Remove a protocol handler that was previously added to the kernel
640  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
641  *	from the kernel lists and can be freed or reused once this function
642  *	returns.
643  *
644  *	This call sleeps to guarantee that no CPU is looking at the packet
645  *	type after return.
646  */
647 void dev_remove_pack(struct packet_type *pt)
648 {
649 	__dev_remove_pack(pt);
650 
651 	synchronize_net();
652 }
653 EXPORT_SYMBOL(dev_remove_pack);
654 
655 
656 /*******************************************************************************
657  *
658  *			    Device Interface Subroutines
659  *
660  *******************************************************************************/
661 
662 /**
663  *	dev_get_iflink	- get 'iflink' value of a interface
664  *	@dev: targeted interface
665  *
666  *	Indicates the ifindex the interface is linked to.
667  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
668  */
669 
670 int dev_get_iflink(const struct net_device *dev)
671 {
672 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
673 		return dev->netdev_ops->ndo_get_iflink(dev);
674 
675 	return READ_ONCE(dev->ifindex);
676 }
677 EXPORT_SYMBOL(dev_get_iflink);
678 
679 /**
680  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
681  *	@dev: targeted interface
682  *	@skb: The packet.
683  *
684  *	For better visibility of tunnel traffic OVS needs to retrieve
685  *	egress tunnel information for a packet. Following API allows
686  *	user to get this info.
687  */
688 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
689 {
690 	struct ip_tunnel_info *info;
691 
692 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
693 		return -EINVAL;
694 
695 	info = skb_tunnel_info_unclone(skb);
696 	if (!info)
697 		return -ENOMEM;
698 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
699 		return -EINVAL;
700 
701 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
702 }
703 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
704 
705 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
706 {
707 	int k = stack->num_paths++;
708 
709 	if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
710 		return NULL;
711 
712 	return &stack->path[k];
713 }
714 
715 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
716 			  struct net_device_path_stack *stack)
717 {
718 	const struct net_device *last_dev;
719 	struct net_device_path_ctx ctx = {
720 		.dev	= dev,
721 	};
722 	struct net_device_path *path;
723 	int ret = 0;
724 
725 	memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
726 	stack->num_paths = 0;
727 	while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
728 		last_dev = ctx.dev;
729 		path = dev_fwd_path(stack);
730 		if (!path)
731 			return -1;
732 
733 		memset(path, 0, sizeof(struct net_device_path));
734 		ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
735 		if (ret < 0)
736 			return -1;
737 
738 		if (WARN_ON_ONCE(last_dev == ctx.dev))
739 			return -1;
740 	}
741 
742 	if (!ctx.dev)
743 		return ret;
744 
745 	path = dev_fwd_path(stack);
746 	if (!path)
747 		return -1;
748 	path->type = DEV_PATH_ETHERNET;
749 	path->dev = ctx.dev;
750 
751 	return ret;
752 }
753 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
754 
755 /* must be called under rcu_read_lock(), as we dont take a reference */
756 static struct napi_struct *napi_by_id(unsigned int napi_id)
757 {
758 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
759 	struct napi_struct *napi;
760 
761 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
762 		if (napi->napi_id == napi_id)
763 			return napi;
764 
765 	return NULL;
766 }
767 
768 /* must be called under rcu_read_lock(), as we dont take a reference */
769 static struct napi_struct *
770 netdev_napi_by_id(struct net *net, unsigned int napi_id)
771 {
772 	struct napi_struct *napi;
773 
774 	napi = napi_by_id(napi_id);
775 	if (!napi)
776 		return NULL;
777 
778 	if (WARN_ON_ONCE(!napi->dev))
779 		return NULL;
780 	if (!net_eq(net, dev_net(napi->dev)))
781 		return NULL;
782 
783 	return napi;
784 }
785 
786 /**
787  *	netdev_napi_by_id_lock() - find a device by NAPI ID and lock it
788  *	@net: the applicable net namespace
789  *	@napi_id: ID of a NAPI of a target device
790  *
791  *	Find a NAPI instance with @napi_id. Lock its device.
792  *	The device must be in %NETREG_REGISTERED state for lookup to succeed.
793  *	netdev_unlock() must be called to release it.
794  *
795  *	Return: pointer to NAPI, its device with lock held, NULL if not found.
796  */
797 struct napi_struct *
798 netdev_napi_by_id_lock(struct net *net, unsigned int napi_id)
799 {
800 	struct napi_struct *napi;
801 	struct net_device *dev;
802 
803 	rcu_read_lock();
804 	napi = netdev_napi_by_id(net, napi_id);
805 	if (!napi || READ_ONCE(napi->dev->reg_state) != NETREG_REGISTERED) {
806 		rcu_read_unlock();
807 		return NULL;
808 	}
809 
810 	dev = napi->dev;
811 	dev_hold(dev);
812 	rcu_read_unlock();
813 
814 	dev = __netdev_put_lock(dev);
815 	if (!dev)
816 		return NULL;
817 
818 	rcu_read_lock();
819 	napi = netdev_napi_by_id(net, napi_id);
820 	if (napi && napi->dev != dev)
821 		napi = NULL;
822 	rcu_read_unlock();
823 
824 	if (!napi)
825 		netdev_unlock(dev);
826 	return napi;
827 }
828 
829 /**
830  *	__dev_get_by_name	- find a device by its name
831  *	@net: the applicable net namespace
832  *	@name: name to find
833  *
834  *	Find an interface by name. Must be called under RTNL semaphore.
835  *	If the name is found a pointer to the device is returned.
836  *	If the name is not found then %NULL is returned. The
837  *	reference counters are not incremented so the caller must be
838  *	careful with locks.
839  */
840 
841 struct net_device *__dev_get_by_name(struct net *net, const char *name)
842 {
843 	struct netdev_name_node *node_name;
844 
845 	node_name = netdev_name_node_lookup(net, name);
846 	return node_name ? node_name->dev : NULL;
847 }
848 EXPORT_SYMBOL(__dev_get_by_name);
849 
850 /**
851  * dev_get_by_name_rcu	- find a device by its name
852  * @net: the applicable net namespace
853  * @name: name to find
854  *
855  * Find an interface by name.
856  * If the name is found a pointer to the device is returned.
857  * If the name is not found then %NULL is returned.
858  * The reference counters are not incremented so the caller must be
859  * careful with locks. The caller must hold RCU lock.
860  */
861 
862 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
863 {
864 	struct netdev_name_node *node_name;
865 
866 	node_name = netdev_name_node_lookup_rcu(net, name);
867 	return node_name ? node_name->dev : NULL;
868 }
869 EXPORT_SYMBOL(dev_get_by_name_rcu);
870 
871 /* Deprecated for new users, call netdev_get_by_name() instead */
872 struct net_device *dev_get_by_name(struct net *net, const char *name)
873 {
874 	struct net_device *dev;
875 
876 	rcu_read_lock();
877 	dev = dev_get_by_name_rcu(net, name);
878 	dev_hold(dev);
879 	rcu_read_unlock();
880 	return dev;
881 }
882 EXPORT_SYMBOL(dev_get_by_name);
883 
884 /**
885  *	netdev_get_by_name() - find a device by its name
886  *	@net: the applicable net namespace
887  *	@name: name to find
888  *	@tracker: tracking object for the acquired reference
889  *	@gfp: allocation flags for the tracker
890  *
891  *	Find an interface by name. This can be called from any
892  *	context and does its own locking. The returned handle has
893  *	the usage count incremented and the caller must use netdev_put() to
894  *	release it when it is no longer needed. %NULL is returned if no
895  *	matching device is found.
896  */
897 struct net_device *netdev_get_by_name(struct net *net, const char *name,
898 				      netdevice_tracker *tracker, gfp_t gfp)
899 {
900 	struct net_device *dev;
901 
902 	dev = dev_get_by_name(net, name);
903 	if (dev)
904 		netdev_tracker_alloc(dev, tracker, gfp);
905 	return dev;
906 }
907 EXPORT_SYMBOL(netdev_get_by_name);
908 
909 /**
910  *	__dev_get_by_index - find a device by its ifindex
911  *	@net: the applicable net namespace
912  *	@ifindex: index of device
913  *
914  *	Search for an interface by index. Returns %NULL if the device
915  *	is not found or a pointer to the device. The device has not
916  *	had its reference counter increased so the caller must be careful
917  *	about locking. The caller must hold the RTNL semaphore.
918  */
919 
920 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
921 {
922 	struct net_device *dev;
923 	struct hlist_head *head = dev_index_hash(net, ifindex);
924 
925 	hlist_for_each_entry(dev, head, index_hlist)
926 		if (dev->ifindex == ifindex)
927 			return dev;
928 
929 	return NULL;
930 }
931 EXPORT_SYMBOL(__dev_get_by_index);
932 
933 /**
934  *	dev_get_by_index_rcu - find a device by its ifindex
935  *	@net: the applicable net namespace
936  *	@ifindex: index of device
937  *
938  *	Search for an interface by index. Returns %NULL if the device
939  *	is not found or a pointer to the device. The device has not
940  *	had its reference counter increased so the caller must be careful
941  *	about locking. The caller must hold RCU lock.
942  */
943 
944 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
945 {
946 	struct net_device *dev;
947 	struct hlist_head *head = dev_index_hash(net, ifindex);
948 
949 	hlist_for_each_entry_rcu(dev, head, index_hlist)
950 		if (dev->ifindex == ifindex)
951 			return dev;
952 
953 	return NULL;
954 }
955 EXPORT_SYMBOL(dev_get_by_index_rcu);
956 
957 /* Deprecated for new users, call netdev_get_by_index() instead */
958 struct net_device *dev_get_by_index(struct net *net, int ifindex)
959 {
960 	struct net_device *dev;
961 
962 	rcu_read_lock();
963 	dev = dev_get_by_index_rcu(net, ifindex);
964 	dev_hold(dev);
965 	rcu_read_unlock();
966 	return dev;
967 }
968 EXPORT_SYMBOL(dev_get_by_index);
969 
970 /**
971  *	netdev_get_by_index() - find a device by its ifindex
972  *	@net: the applicable net namespace
973  *	@ifindex: index of device
974  *	@tracker: tracking object for the acquired reference
975  *	@gfp: allocation flags for the tracker
976  *
977  *	Search for an interface by index. Returns NULL if the device
978  *	is not found or a pointer to the device. The device returned has
979  *	had a reference added and the pointer is safe until the user calls
980  *	netdev_put() to indicate they have finished with it.
981  */
982 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
983 				       netdevice_tracker *tracker, gfp_t gfp)
984 {
985 	struct net_device *dev;
986 
987 	dev = dev_get_by_index(net, ifindex);
988 	if (dev)
989 		netdev_tracker_alloc(dev, tracker, gfp);
990 	return dev;
991 }
992 EXPORT_SYMBOL(netdev_get_by_index);
993 
994 /**
995  *	dev_get_by_napi_id - find a device by napi_id
996  *	@napi_id: ID of the NAPI struct
997  *
998  *	Search for an interface by NAPI ID. Returns %NULL if the device
999  *	is not found or a pointer to the device. The device has not had
1000  *	its reference counter increased so the caller must be careful
1001  *	about locking. The caller must hold RCU lock.
1002  */
1003 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
1004 {
1005 	struct napi_struct *napi;
1006 
1007 	WARN_ON_ONCE(!rcu_read_lock_held());
1008 
1009 	if (napi_id < MIN_NAPI_ID)
1010 		return NULL;
1011 
1012 	napi = napi_by_id(napi_id);
1013 
1014 	return napi ? napi->dev : NULL;
1015 }
1016 
1017 /* Release the held reference on the net_device, and if the net_device
1018  * is still registered try to lock the instance lock. If device is being
1019  * unregistered NULL will be returned (but the reference has been released,
1020  * either way!)
1021  *
1022  * This helper is intended for locking net_device after it has been looked up
1023  * using a lockless lookup helper. Lock prevents the instance from going away.
1024  */
1025 struct net_device *__netdev_put_lock(struct net_device *dev)
1026 {
1027 	netdev_lock(dev);
1028 	if (dev->reg_state > NETREG_REGISTERED) {
1029 		netdev_unlock(dev);
1030 		dev_put(dev);
1031 		return NULL;
1032 	}
1033 	dev_put(dev);
1034 	return dev;
1035 }
1036 
1037 /**
1038  *	netdev_get_by_index_lock() - find a device by its ifindex
1039  *	@net: the applicable net namespace
1040  *	@ifindex: index of device
1041  *
1042  *	Search for an interface by index. If a valid device
1043  *	with @ifindex is found it will be returned with netdev->lock held.
1044  *	netdev_unlock() must be called to release it.
1045  *
1046  *	Return: pointer to a device with lock held, NULL if not found.
1047  */
1048 struct net_device *netdev_get_by_index_lock(struct net *net, int ifindex)
1049 {
1050 	struct net_device *dev;
1051 
1052 	dev = dev_get_by_index(net, ifindex);
1053 	if (!dev)
1054 		return NULL;
1055 
1056 	return __netdev_put_lock(dev);
1057 }
1058 
1059 struct net_device *
1060 netdev_xa_find_lock(struct net *net, struct net_device *dev,
1061 		    unsigned long *index)
1062 {
1063 	if (dev)
1064 		netdev_unlock(dev);
1065 
1066 	do {
1067 		rcu_read_lock();
1068 		dev = xa_find(&net->dev_by_index, index, ULONG_MAX, XA_PRESENT);
1069 		if (!dev) {
1070 			rcu_read_unlock();
1071 			return NULL;
1072 		}
1073 		dev_hold(dev);
1074 		rcu_read_unlock();
1075 
1076 		dev = __netdev_put_lock(dev);
1077 		if (dev)
1078 			return dev;
1079 
1080 		(*index)++;
1081 	} while (true);
1082 }
1083 
1084 static DEFINE_SEQLOCK(netdev_rename_lock);
1085 
1086 void netdev_copy_name(struct net_device *dev, char *name)
1087 {
1088 	unsigned int seq;
1089 
1090 	do {
1091 		seq = read_seqbegin(&netdev_rename_lock);
1092 		strscpy(name, dev->name, IFNAMSIZ);
1093 	} while (read_seqretry(&netdev_rename_lock, seq));
1094 }
1095 
1096 /**
1097  *	netdev_get_name - get a netdevice name, knowing its ifindex.
1098  *	@net: network namespace
1099  *	@name: a pointer to the buffer where the name will be stored.
1100  *	@ifindex: the ifindex of the interface to get the name from.
1101  */
1102 int netdev_get_name(struct net *net, char *name, int ifindex)
1103 {
1104 	struct net_device *dev;
1105 	int ret;
1106 
1107 	rcu_read_lock();
1108 
1109 	dev = dev_get_by_index_rcu(net, ifindex);
1110 	if (!dev) {
1111 		ret = -ENODEV;
1112 		goto out;
1113 	}
1114 
1115 	netdev_copy_name(dev, name);
1116 
1117 	ret = 0;
1118 out:
1119 	rcu_read_unlock();
1120 	return ret;
1121 }
1122 
1123 /**
1124  *	dev_getbyhwaddr_rcu - find a device by its hardware address
1125  *	@net: the applicable net namespace
1126  *	@type: media type of device
1127  *	@ha: hardware address
1128  *
1129  *	Search for an interface by MAC address. Returns NULL if the device
1130  *	is not found or a pointer to the device.
1131  *	The caller must hold RCU or RTNL.
1132  *	The returned device has not had its ref count increased
1133  *	and the caller must therefore be careful about locking
1134  *
1135  */
1136 
1137 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1138 				       const char *ha)
1139 {
1140 	struct net_device *dev;
1141 
1142 	for_each_netdev_rcu(net, dev)
1143 		if (dev->type == type &&
1144 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
1145 			return dev;
1146 
1147 	return NULL;
1148 }
1149 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1150 
1151 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1152 {
1153 	struct net_device *dev, *ret = NULL;
1154 
1155 	rcu_read_lock();
1156 	for_each_netdev_rcu(net, dev)
1157 		if (dev->type == type) {
1158 			dev_hold(dev);
1159 			ret = dev;
1160 			break;
1161 		}
1162 	rcu_read_unlock();
1163 	return ret;
1164 }
1165 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1166 
1167 /**
1168  *	__dev_get_by_flags - find any device with given flags
1169  *	@net: the applicable net namespace
1170  *	@if_flags: IFF_* values
1171  *	@mask: bitmask of bits in if_flags to check
1172  *
1173  *	Search for any interface with the given flags. Returns NULL if a device
1174  *	is not found or a pointer to the device. Must be called inside
1175  *	rtnl_lock(), and result refcount is unchanged.
1176  */
1177 
1178 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1179 				      unsigned short mask)
1180 {
1181 	struct net_device *dev, *ret;
1182 
1183 	ASSERT_RTNL();
1184 
1185 	ret = NULL;
1186 	for_each_netdev(net, dev) {
1187 		if (((dev->flags ^ if_flags) & mask) == 0) {
1188 			ret = dev;
1189 			break;
1190 		}
1191 	}
1192 	return ret;
1193 }
1194 EXPORT_SYMBOL(__dev_get_by_flags);
1195 
1196 /**
1197  *	dev_valid_name - check if name is okay for network device
1198  *	@name: name string
1199  *
1200  *	Network device names need to be valid file names to
1201  *	allow sysfs to work.  We also disallow any kind of
1202  *	whitespace.
1203  */
1204 bool dev_valid_name(const char *name)
1205 {
1206 	if (*name == '\0')
1207 		return false;
1208 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1209 		return false;
1210 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1211 		return false;
1212 
1213 	while (*name) {
1214 		if (*name == '/' || *name == ':' || isspace(*name))
1215 			return false;
1216 		name++;
1217 	}
1218 	return true;
1219 }
1220 EXPORT_SYMBOL(dev_valid_name);
1221 
1222 /**
1223  *	__dev_alloc_name - allocate a name for a device
1224  *	@net: network namespace to allocate the device name in
1225  *	@name: name format string
1226  *	@res: result name string
1227  *
1228  *	Passed a format string - eg "lt%d" it will try and find a suitable
1229  *	id. It scans list of devices to build up a free map, then chooses
1230  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1231  *	while allocating the name and adding the device in order to avoid
1232  *	duplicates.
1233  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1234  *	Returns the number of the unit assigned or a negative errno code.
1235  */
1236 
1237 static int __dev_alloc_name(struct net *net, const char *name, char *res)
1238 {
1239 	int i = 0;
1240 	const char *p;
1241 	const int max_netdevices = 8*PAGE_SIZE;
1242 	unsigned long *inuse;
1243 	struct net_device *d;
1244 	char buf[IFNAMSIZ];
1245 
1246 	/* Verify the string as this thing may have come from the user.
1247 	 * There must be one "%d" and no other "%" characters.
1248 	 */
1249 	p = strchr(name, '%');
1250 	if (!p || p[1] != 'd' || strchr(p + 2, '%'))
1251 		return -EINVAL;
1252 
1253 	/* Use one page as a bit array of possible slots */
1254 	inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC);
1255 	if (!inuse)
1256 		return -ENOMEM;
1257 
1258 	for_each_netdev(net, d) {
1259 		struct netdev_name_node *name_node;
1260 
1261 		netdev_for_each_altname(d, name_node) {
1262 			if (!sscanf(name_node->name, name, &i))
1263 				continue;
1264 			if (i < 0 || i >= max_netdevices)
1265 				continue;
1266 
1267 			/* avoid cases where sscanf is not exact inverse of printf */
1268 			snprintf(buf, IFNAMSIZ, name, i);
1269 			if (!strncmp(buf, name_node->name, IFNAMSIZ))
1270 				__set_bit(i, inuse);
1271 		}
1272 		if (!sscanf(d->name, name, &i))
1273 			continue;
1274 		if (i < 0 || i >= max_netdevices)
1275 			continue;
1276 
1277 		/* avoid cases where sscanf is not exact inverse of printf */
1278 		snprintf(buf, IFNAMSIZ, name, i);
1279 		if (!strncmp(buf, d->name, IFNAMSIZ))
1280 			__set_bit(i, inuse);
1281 	}
1282 
1283 	i = find_first_zero_bit(inuse, max_netdevices);
1284 	bitmap_free(inuse);
1285 	if (i == max_netdevices)
1286 		return -ENFILE;
1287 
1288 	/* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */
1289 	strscpy(buf, name, IFNAMSIZ);
1290 	snprintf(res, IFNAMSIZ, buf, i);
1291 	return i;
1292 }
1293 
1294 /* Returns negative errno or allocated unit id (see __dev_alloc_name()) */
1295 static int dev_prep_valid_name(struct net *net, struct net_device *dev,
1296 			       const char *want_name, char *out_name,
1297 			       int dup_errno)
1298 {
1299 	if (!dev_valid_name(want_name))
1300 		return -EINVAL;
1301 
1302 	if (strchr(want_name, '%'))
1303 		return __dev_alloc_name(net, want_name, out_name);
1304 
1305 	if (netdev_name_in_use(net, want_name))
1306 		return -dup_errno;
1307 	if (out_name != want_name)
1308 		strscpy(out_name, want_name, IFNAMSIZ);
1309 	return 0;
1310 }
1311 
1312 /**
1313  *	dev_alloc_name - allocate a name for a device
1314  *	@dev: device
1315  *	@name: name format string
1316  *
1317  *	Passed a format string - eg "lt%d" it will try and find a suitable
1318  *	id. It scans list of devices to build up a free map, then chooses
1319  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1320  *	while allocating the name and adding the device in order to avoid
1321  *	duplicates.
1322  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1323  *	Returns the number of the unit assigned or a negative errno code.
1324  */
1325 
1326 int dev_alloc_name(struct net_device *dev, const char *name)
1327 {
1328 	return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE);
1329 }
1330 EXPORT_SYMBOL(dev_alloc_name);
1331 
1332 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1333 			      const char *name)
1334 {
1335 	int ret;
1336 
1337 	ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST);
1338 	return ret < 0 ? ret : 0;
1339 }
1340 
1341 /**
1342  *	dev_change_name - change name of a device
1343  *	@dev: device
1344  *	@newname: name (or format string) must be at least IFNAMSIZ
1345  *
1346  *	Change name of a device, can pass format strings "eth%d".
1347  *	for wildcarding.
1348  */
1349 int dev_change_name(struct net_device *dev, const char *newname)
1350 {
1351 	struct net *net = dev_net(dev);
1352 	unsigned char old_assign_type;
1353 	char oldname[IFNAMSIZ];
1354 	int err = 0;
1355 	int ret;
1356 
1357 	ASSERT_RTNL_NET(net);
1358 
1359 	if (!strncmp(newname, dev->name, IFNAMSIZ))
1360 		return 0;
1361 
1362 	memcpy(oldname, dev->name, IFNAMSIZ);
1363 
1364 	write_seqlock_bh(&netdev_rename_lock);
1365 	err = dev_get_valid_name(net, dev, newname);
1366 	write_sequnlock_bh(&netdev_rename_lock);
1367 
1368 	if (err < 0)
1369 		return err;
1370 
1371 	if (oldname[0] && !strchr(oldname, '%'))
1372 		netdev_info(dev, "renamed from %s%s\n", oldname,
1373 			    dev->flags & IFF_UP ? " (while UP)" : "");
1374 
1375 	old_assign_type = dev->name_assign_type;
1376 	WRITE_ONCE(dev->name_assign_type, NET_NAME_RENAMED);
1377 
1378 rollback:
1379 	ret = device_rename(&dev->dev, dev->name);
1380 	if (ret) {
1381 		write_seqlock_bh(&netdev_rename_lock);
1382 		memcpy(dev->name, oldname, IFNAMSIZ);
1383 		write_sequnlock_bh(&netdev_rename_lock);
1384 		WRITE_ONCE(dev->name_assign_type, old_assign_type);
1385 		return ret;
1386 	}
1387 
1388 	netdev_adjacent_rename_links(dev, oldname);
1389 
1390 	netdev_name_node_del(dev->name_node);
1391 
1392 	synchronize_net();
1393 
1394 	netdev_name_node_add(net, dev->name_node);
1395 
1396 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1397 	ret = notifier_to_errno(ret);
1398 
1399 	if (ret) {
1400 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1401 		if (err >= 0) {
1402 			err = ret;
1403 			write_seqlock_bh(&netdev_rename_lock);
1404 			memcpy(dev->name, oldname, IFNAMSIZ);
1405 			write_sequnlock_bh(&netdev_rename_lock);
1406 			memcpy(oldname, newname, IFNAMSIZ);
1407 			WRITE_ONCE(dev->name_assign_type, old_assign_type);
1408 			old_assign_type = NET_NAME_RENAMED;
1409 			goto rollback;
1410 		} else {
1411 			netdev_err(dev, "name change rollback failed: %d\n",
1412 				   ret);
1413 		}
1414 	}
1415 
1416 	return err;
1417 }
1418 
1419 /**
1420  *	dev_set_alias - change ifalias of a device
1421  *	@dev: device
1422  *	@alias: name up to IFALIASZ
1423  *	@len: limit of bytes to copy from info
1424  *
1425  *	Set ifalias for a device,
1426  */
1427 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1428 {
1429 	struct dev_ifalias *new_alias = NULL;
1430 
1431 	if (len >= IFALIASZ)
1432 		return -EINVAL;
1433 
1434 	if (len) {
1435 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1436 		if (!new_alias)
1437 			return -ENOMEM;
1438 
1439 		memcpy(new_alias->ifalias, alias, len);
1440 		new_alias->ifalias[len] = 0;
1441 	}
1442 
1443 	mutex_lock(&ifalias_mutex);
1444 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1445 					mutex_is_locked(&ifalias_mutex));
1446 	mutex_unlock(&ifalias_mutex);
1447 
1448 	if (new_alias)
1449 		kfree_rcu(new_alias, rcuhead);
1450 
1451 	return len;
1452 }
1453 EXPORT_SYMBOL(dev_set_alias);
1454 
1455 /**
1456  *	dev_get_alias - get ifalias of a device
1457  *	@dev: device
1458  *	@name: buffer to store name of ifalias
1459  *	@len: size of buffer
1460  *
1461  *	get ifalias for a device.  Caller must make sure dev cannot go
1462  *	away,  e.g. rcu read lock or own a reference count to device.
1463  */
1464 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1465 {
1466 	const struct dev_ifalias *alias;
1467 	int ret = 0;
1468 
1469 	rcu_read_lock();
1470 	alias = rcu_dereference(dev->ifalias);
1471 	if (alias)
1472 		ret = snprintf(name, len, "%s", alias->ifalias);
1473 	rcu_read_unlock();
1474 
1475 	return ret;
1476 }
1477 
1478 /**
1479  *	netdev_features_change - device changes features
1480  *	@dev: device to cause notification
1481  *
1482  *	Called to indicate a device has changed features.
1483  */
1484 void netdev_features_change(struct net_device *dev)
1485 {
1486 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1487 }
1488 EXPORT_SYMBOL(netdev_features_change);
1489 
1490 /**
1491  *	netdev_state_change - device changes state
1492  *	@dev: device to cause notification
1493  *
1494  *	Called to indicate a device has changed state. This function calls
1495  *	the notifier chains for netdev_chain and sends a NEWLINK message
1496  *	to the routing socket.
1497  */
1498 void netdev_state_change(struct net_device *dev)
1499 {
1500 	if (dev->flags & IFF_UP) {
1501 		struct netdev_notifier_change_info change_info = {
1502 			.info.dev = dev,
1503 		};
1504 
1505 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1506 					      &change_info.info);
1507 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1508 	}
1509 }
1510 EXPORT_SYMBOL(netdev_state_change);
1511 
1512 /**
1513  * __netdev_notify_peers - notify network peers about existence of @dev,
1514  * to be called when rtnl lock is already held.
1515  * @dev: network device
1516  *
1517  * Generate traffic such that interested network peers are aware of
1518  * @dev, such as by generating a gratuitous ARP. This may be used when
1519  * a device wants to inform the rest of the network about some sort of
1520  * reconfiguration such as a failover event or virtual machine
1521  * migration.
1522  */
1523 void __netdev_notify_peers(struct net_device *dev)
1524 {
1525 	ASSERT_RTNL();
1526 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1527 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1528 }
1529 EXPORT_SYMBOL(__netdev_notify_peers);
1530 
1531 /**
1532  * netdev_notify_peers - notify network peers about existence of @dev
1533  * @dev: network device
1534  *
1535  * Generate traffic such that interested network peers are aware of
1536  * @dev, such as by generating a gratuitous ARP. This may be used when
1537  * a device wants to inform the rest of the network about some sort of
1538  * reconfiguration such as a failover event or virtual machine
1539  * migration.
1540  */
1541 void netdev_notify_peers(struct net_device *dev)
1542 {
1543 	rtnl_lock();
1544 	__netdev_notify_peers(dev);
1545 	rtnl_unlock();
1546 }
1547 EXPORT_SYMBOL(netdev_notify_peers);
1548 
1549 static int napi_threaded_poll(void *data);
1550 
1551 static int napi_kthread_create(struct napi_struct *n)
1552 {
1553 	int err = 0;
1554 
1555 	/* Create and wake up the kthread once to put it in
1556 	 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1557 	 * warning and work with loadavg.
1558 	 */
1559 	n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1560 				n->dev->name, n->napi_id);
1561 	if (IS_ERR(n->thread)) {
1562 		err = PTR_ERR(n->thread);
1563 		pr_err("kthread_run failed with err %d\n", err);
1564 		n->thread = NULL;
1565 	}
1566 
1567 	return err;
1568 }
1569 
1570 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1571 {
1572 	const struct net_device_ops *ops = dev->netdev_ops;
1573 	int ret;
1574 
1575 	ASSERT_RTNL();
1576 	dev_addr_check(dev);
1577 
1578 	if (!netif_device_present(dev)) {
1579 		/* may be detached because parent is runtime-suspended */
1580 		if (dev->dev.parent)
1581 			pm_runtime_resume(dev->dev.parent);
1582 		if (!netif_device_present(dev))
1583 			return -ENODEV;
1584 	}
1585 
1586 	/* Block netpoll from trying to do any rx path servicing.
1587 	 * If we don't do this there is a chance ndo_poll_controller
1588 	 * or ndo_poll may be running while we open the device
1589 	 */
1590 	netpoll_poll_disable(dev);
1591 
1592 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1593 	ret = notifier_to_errno(ret);
1594 	if (ret)
1595 		return ret;
1596 
1597 	set_bit(__LINK_STATE_START, &dev->state);
1598 
1599 	if (ops->ndo_validate_addr)
1600 		ret = ops->ndo_validate_addr(dev);
1601 
1602 	if (!ret && ops->ndo_open)
1603 		ret = ops->ndo_open(dev);
1604 
1605 	netpoll_poll_enable(dev);
1606 
1607 	if (ret)
1608 		clear_bit(__LINK_STATE_START, &dev->state);
1609 	else {
1610 		netif_set_up(dev, true);
1611 		dev_set_rx_mode(dev);
1612 		dev_activate(dev);
1613 		add_device_randomness(dev->dev_addr, dev->addr_len);
1614 	}
1615 
1616 	return ret;
1617 }
1618 
1619 /**
1620  *	dev_open	- prepare an interface for use.
1621  *	@dev: device to open
1622  *	@extack: netlink extended ack
1623  *
1624  *	Takes a device from down to up state. The device's private open
1625  *	function is invoked and then the multicast lists are loaded. Finally
1626  *	the device is moved into the up state and a %NETDEV_UP message is
1627  *	sent to the netdev notifier chain.
1628  *
1629  *	Calling this function on an active interface is a nop. On a failure
1630  *	a negative errno code is returned.
1631  */
1632 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1633 {
1634 	int ret;
1635 
1636 	if (dev->flags & IFF_UP)
1637 		return 0;
1638 
1639 	ret = __dev_open(dev, extack);
1640 	if (ret < 0)
1641 		return ret;
1642 
1643 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1644 	call_netdevice_notifiers(NETDEV_UP, dev);
1645 
1646 	return ret;
1647 }
1648 EXPORT_SYMBOL(dev_open);
1649 
1650 static void __dev_close_many(struct list_head *head)
1651 {
1652 	struct net_device *dev;
1653 
1654 	ASSERT_RTNL();
1655 	might_sleep();
1656 
1657 	list_for_each_entry(dev, head, close_list) {
1658 		/* Temporarily disable netpoll until the interface is down */
1659 		netpoll_poll_disable(dev);
1660 
1661 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1662 
1663 		clear_bit(__LINK_STATE_START, &dev->state);
1664 
1665 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1666 		 * can be even on different cpu. So just clear netif_running().
1667 		 *
1668 		 * dev->stop() will invoke napi_disable() on all of it's
1669 		 * napi_struct instances on this device.
1670 		 */
1671 		smp_mb__after_atomic(); /* Commit netif_running(). */
1672 	}
1673 
1674 	dev_deactivate_many(head);
1675 
1676 	list_for_each_entry(dev, head, close_list) {
1677 		const struct net_device_ops *ops = dev->netdev_ops;
1678 
1679 		/*
1680 		 *	Call the device specific close. This cannot fail.
1681 		 *	Only if device is UP
1682 		 *
1683 		 *	We allow it to be called even after a DETACH hot-plug
1684 		 *	event.
1685 		 */
1686 		if (ops->ndo_stop)
1687 			ops->ndo_stop(dev);
1688 
1689 		netif_set_up(dev, false);
1690 		netpoll_poll_enable(dev);
1691 	}
1692 }
1693 
1694 static void __dev_close(struct net_device *dev)
1695 {
1696 	LIST_HEAD(single);
1697 
1698 	list_add(&dev->close_list, &single);
1699 	__dev_close_many(&single);
1700 	list_del(&single);
1701 }
1702 
1703 void dev_close_many(struct list_head *head, bool unlink)
1704 {
1705 	struct net_device *dev, *tmp;
1706 
1707 	/* Remove the devices that don't need to be closed */
1708 	list_for_each_entry_safe(dev, tmp, head, close_list)
1709 		if (!(dev->flags & IFF_UP))
1710 			list_del_init(&dev->close_list);
1711 
1712 	__dev_close_many(head);
1713 
1714 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1715 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1716 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1717 		if (unlink)
1718 			list_del_init(&dev->close_list);
1719 	}
1720 }
1721 EXPORT_SYMBOL(dev_close_many);
1722 
1723 /**
1724  *	dev_close - shutdown an interface.
1725  *	@dev: device to shutdown
1726  *
1727  *	This function moves an active device into down state. A
1728  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1729  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1730  *	chain.
1731  */
1732 void dev_close(struct net_device *dev)
1733 {
1734 	if (dev->flags & IFF_UP) {
1735 		LIST_HEAD(single);
1736 
1737 		list_add(&dev->close_list, &single);
1738 		dev_close_many(&single, true);
1739 		list_del(&single);
1740 	}
1741 }
1742 EXPORT_SYMBOL(dev_close);
1743 
1744 
1745 /**
1746  *	dev_disable_lro - disable Large Receive Offload on a device
1747  *	@dev: device
1748  *
1749  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1750  *	called under RTNL.  This is needed if received packets may be
1751  *	forwarded to another interface.
1752  */
1753 void dev_disable_lro(struct net_device *dev)
1754 {
1755 	struct net_device *lower_dev;
1756 	struct list_head *iter;
1757 
1758 	dev->wanted_features &= ~NETIF_F_LRO;
1759 	netdev_update_features(dev);
1760 
1761 	if (unlikely(dev->features & NETIF_F_LRO))
1762 		netdev_WARN(dev, "failed to disable LRO!\n");
1763 
1764 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1765 		dev_disable_lro(lower_dev);
1766 }
1767 EXPORT_SYMBOL(dev_disable_lro);
1768 
1769 /**
1770  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1771  *	@dev: device
1772  *
1773  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1774  *	called under RTNL.  This is needed if Generic XDP is installed on
1775  *	the device.
1776  */
1777 static void dev_disable_gro_hw(struct net_device *dev)
1778 {
1779 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1780 	netdev_update_features(dev);
1781 
1782 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1783 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1784 }
1785 
1786 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1787 {
1788 #define N(val) 						\
1789 	case NETDEV_##val:				\
1790 		return "NETDEV_" __stringify(val);
1791 	switch (cmd) {
1792 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1793 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1794 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1795 	N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1796 	N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1797 	N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1798 	N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1799 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1800 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1801 	N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1802 	N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1803 	N(XDP_FEAT_CHANGE)
1804 	}
1805 #undef N
1806 	return "UNKNOWN_NETDEV_EVENT";
1807 }
1808 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1809 
1810 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1811 				   struct net_device *dev)
1812 {
1813 	struct netdev_notifier_info info = {
1814 		.dev = dev,
1815 	};
1816 
1817 	return nb->notifier_call(nb, val, &info);
1818 }
1819 
1820 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1821 					     struct net_device *dev)
1822 {
1823 	int err;
1824 
1825 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1826 	err = notifier_to_errno(err);
1827 	if (err)
1828 		return err;
1829 
1830 	if (!(dev->flags & IFF_UP))
1831 		return 0;
1832 
1833 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1834 	return 0;
1835 }
1836 
1837 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1838 						struct net_device *dev)
1839 {
1840 	if (dev->flags & IFF_UP) {
1841 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1842 					dev);
1843 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1844 	}
1845 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1846 }
1847 
1848 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1849 						 struct net *net)
1850 {
1851 	struct net_device *dev;
1852 	int err;
1853 
1854 	for_each_netdev(net, dev) {
1855 		err = call_netdevice_register_notifiers(nb, dev);
1856 		if (err)
1857 			goto rollback;
1858 	}
1859 	return 0;
1860 
1861 rollback:
1862 	for_each_netdev_continue_reverse(net, dev)
1863 		call_netdevice_unregister_notifiers(nb, dev);
1864 	return err;
1865 }
1866 
1867 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1868 						    struct net *net)
1869 {
1870 	struct net_device *dev;
1871 
1872 	for_each_netdev(net, dev)
1873 		call_netdevice_unregister_notifiers(nb, dev);
1874 }
1875 
1876 static int dev_boot_phase = 1;
1877 
1878 /**
1879  * register_netdevice_notifier - register a network notifier block
1880  * @nb: notifier
1881  *
1882  * Register a notifier to be called when network device events occur.
1883  * The notifier passed is linked into the kernel structures and must
1884  * not be reused until it has been unregistered. A negative errno code
1885  * is returned on a failure.
1886  *
1887  * When registered all registration and up events are replayed
1888  * to the new notifier to allow device to have a race free
1889  * view of the network device list.
1890  */
1891 
1892 int register_netdevice_notifier(struct notifier_block *nb)
1893 {
1894 	struct net *net;
1895 	int err;
1896 
1897 	/* Close race with setup_net() and cleanup_net() */
1898 	down_write(&pernet_ops_rwsem);
1899 
1900 	/* When RTNL is removed, we need protection for netdev_chain. */
1901 	rtnl_lock();
1902 
1903 	err = raw_notifier_chain_register(&netdev_chain, nb);
1904 	if (err)
1905 		goto unlock;
1906 	if (dev_boot_phase)
1907 		goto unlock;
1908 	for_each_net(net) {
1909 		__rtnl_net_lock(net);
1910 		err = call_netdevice_register_net_notifiers(nb, net);
1911 		__rtnl_net_unlock(net);
1912 		if (err)
1913 			goto rollback;
1914 	}
1915 
1916 unlock:
1917 	rtnl_unlock();
1918 	up_write(&pernet_ops_rwsem);
1919 	return err;
1920 
1921 rollback:
1922 	for_each_net_continue_reverse(net) {
1923 		__rtnl_net_lock(net);
1924 		call_netdevice_unregister_net_notifiers(nb, net);
1925 		__rtnl_net_unlock(net);
1926 	}
1927 
1928 	raw_notifier_chain_unregister(&netdev_chain, nb);
1929 	goto unlock;
1930 }
1931 EXPORT_SYMBOL(register_netdevice_notifier);
1932 
1933 /**
1934  * unregister_netdevice_notifier - unregister a network notifier block
1935  * @nb: notifier
1936  *
1937  * Unregister a notifier previously registered by
1938  * register_netdevice_notifier(). The notifier is unlinked into the
1939  * kernel structures and may then be reused. A negative errno code
1940  * is returned on a failure.
1941  *
1942  * After unregistering unregister and down device events are synthesized
1943  * for all devices on the device list to the removed notifier to remove
1944  * the need for special case cleanup code.
1945  */
1946 
1947 int unregister_netdevice_notifier(struct notifier_block *nb)
1948 {
1949 	struct net *net;
1950 	int err;
1951 
1952 	/* Close race with setup_net() and cleanup_net() */
1953 	down_write(&pernet_ops_rwsem);
1954 	rtnl_lock();
1955 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1956 	if (err)
1957 		goto unlock;
1958 
1959 	for_each_net(net) {
1960 		__rtnl_net_lock(net);
1961 		call_netdevice_unregister_net_notifiers(nb, net);
1962 		__rtnl_net_unlock(net);
1963 	}
1964 
1965 unlock:
1966 	rtnl_unlock();
1967 	up_write(&pernet_ops_rwsem);
1968 	return err;
1969 }
1970 EXPORT_SYMBOL(unregister_netdevice_notifier);
1971 
1972 static int __register_netdevice_notifier_net(struct net *net,
1973 					     struct notifier_block *nb,
1974 					     bool ignore_call_fail)
1975 {
1976 	int err;
1977 
1978 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
1979 	if (err)
1980 		return err;
1981 	if (dev_boot_phase)
1982 		return 0;
1983 
1984 	err = call_netdevice_register_net_notifiers(nb, net);
1985 	if (err && !ignore_call_fail)
1986 		goto chain_unregister;
1987 
1988 	return 0;
1989 
1990 chain_unregister:
1991 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
1992 	return err;
1993 }
1994 
1995 static int __unregister_netdevice_notifier_net(struct net *net,
1996 					       struct notifier_block *nb)
1997 {
1998 	int err;
1999 
2000 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
2001 	if (err)
2002 		return err;
2003 
2004 	call_netdevice_unregister_net_notifiers(nb, net);
2005 	return 0;
2006 }
2007 
2008 /**
2009  * register_netdevice_notifier_net - register a per-netns network notifier block
2010  * @net: network namespace
2011  * @nb: notifier
2012  *
2013  * Register a notifier to be called when network device events occur.
2014  * The notifier passed is linked into the kernel structures and must
2015  * not be reused until it has been unregistered. A negative errno code
2016  * is returned on a failure.
2017  *
2018  * When registered all registration and up events are replayed
2019  * to the new notifier to allow device to have a race free
2020  * view of the network device list.
2021  */
2022 
2023 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
2024 {
2025 	int err;
2026 
2027 	rtnl_net_lock(net);
2028 	err = __register_netdevice_notifier_net(net, nb, false);
2029 	rtnl_net_unlock(net);
2030 
2031 	return err;
2032 }
2033 EXPORT_SYMBOL(register_netdevice_notifier_net);
2034 
2035 /**
2036  * unregister_netdevice_notifier_net - unregister a per-netns
2037  *                                     network notifier block
2038  * @net: network namespace
2039  * @nb: notifier
2040  *
2041  * Unregister a notifier previously registered by
2042  * register_netdevice_notifier_net(). The notifier is unlinked from the
2043  * kernel structures and may then be reused. A negative errno code
2044  * is returned on a failure.
2045  *
2046  * After unregistering unregister and down device events are synthesized
2047  * for all devices on the device list to the removed notifier to remove
2048  * the need for special case cleanup code.
2049  */
2050 
2051 int unregister_netdevice_notifier_net(struct net *net,
2052 				      struct notifier_block *nb)
2053 {
2054 	int err;
2055 
2056 	rtnl_net_lock(net);
2057 	err = __unregister_netdevice_notifier_net(net, nb);
2058 	rtnl_net_unlock(net);
2059 
2060 	return err;
2061 }
2062 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
2063 
2064 static void __move_netdevice_notifier_net(struct net *src_net,
2065 					  struct net *dst_net,
2066 					  struct notifier_block *nb)
2067 {
2068 	__unregister_netdevice_notifier_net(src_net, nb);
2069 	__register_netdevice_notifier_net(dst_net, nb, true);
2070 }
2071 
2072 int register_netdevice_notifier_dev_net(struct net_device *dev,
2073 					struct notifier_block *nb,
2074 					struct netdev_net_notifier *nn)
2075 {
2076 	struct net *net = dev_net(dev);
2077 	int err;
2078 
2079 	rtnl_net_lock(net);
2080 	err = __register_netdevice_notifier_net(net, nb, false);
2081 	if (!err) {
2082 		nn->nb = nb;
2083 		list_add(&nn->list, &dev->net_notifier_list);
2084 	}
2085 	rtnl_net_unlock(net);
2086 
2087 	return err;
2088 }
2089 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
2090 
2091 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2092 					  struct notifier_block *nb,
2093 					  struct netdev_net_notifier *nn)
2094 {
2095 	struct net *net = dev_net(dev);
2096 	int err;
2097 
2098 	rtnl_net_lock(net);
2099 	list_del(&nn->list);
2100 	err = __unregister_netdevice_notifier_net(net, nb);
2101 	rtnl_net_unlock(net);
2102 
2103 	return err;
2104 }
2105 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
2106 
2107 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
2108 					     struct net *net)
2109 {
2110 	struct netdev_net_notifier *nn;
2111 
2112 	list_for_each_entry(nn, &dev->net_notifier_list, list)
2113 		__move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
2114 }
2115 
2116 /**
2117  *	call_netdevice_notifiers_info - call all network notifier blocks
2118  *	@val: value passed unmodified to notifier function
2119  *	@info: notifier information data
2120  *
2121  *	Call all network notifier blocks.  Parameters and return value
2122  *	are as for raw_notifier_call_chain().
2123  */
2124 
2125 int call_netdevice_notifiers_info(unsigned long val,
2126 				  struct netdev_notifier_info *info)
2127 {
2128 	struct net *net = dev_net(info->dev);
2129 	int ret;
2130 
2131 	ASSERT_RTNL();
2132 
2133 	/* Run per-netns notifier block chain first, then run the global one.
2134 	 * Hopefully, one day, the global one is going to be removed after
2135 	 * all notifier block registrators get converted to be per-netns.
2136 	 */
2137 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2138 	if (ret & NOTIFY_STOP_MASK)
2139 		return ret;
2140 	return raw_notifier_call_chain(&netdev_chain, val, info);
2141 }
2142 
2143 /**
2144  *	call_netdevice_notifiers_info_robust - call per-netns notifier blocks
2145  *	                                       for and rollback on error
2146  *	@val_up: value passed unmodified to notifier function
2147  *	@val_down: value passed unmodified to the notifier function when
2148  *	           recovering from an error on @val_up
2149  *	@info: notifier information data
2150  *
2151  *	Call all per-netns network notifier blocks, but not notifier blocks on
2152  *	the global notifier chain. Parameters and return value are as for
2153  *	raw_notifier_call_chain_robust().
2154  */
2155 
2156 static int
2157 call_netdevice_notifiers_info_robust(unsigned long val_up,
2158 				     unsigned long val_down,
2159 				     struct netdev_notifier_info *info)
2160 {
2161 	struct net *net = dev_net(info->dev);
2162 
2163 	ASSERT_RTNL();
2164 
2165 	return raw_notifier_call_chain_robust(&net->netdev_chain,
2166 					      val_up, val_down, info);
2167 }
2168 
2169 static int call_netdevice_notifiers_extack(unsigned long val,
2170 					   struct net_device *dev,
2171 					   struct netlink_ext_ack *extack)
2172 {
2173 	struct netdev_notifier_info info = {
2174 		.dev = dev,
2175 		.extack = extack,
2176 	};
2177 
2178 	return call_netdevice_notifiers_info(val, &info);
2179 }
2180 
2181 /**
2182  *	call_netdevice_notifiers - call all network notifier blocks
2183  *      @val: value passed unmodified to notifier function
2184  *      @dev: net_device pointer passed unmodified to notifier function
2185  *
2186  *	Call all network notifier blocks.  Parameters and return value
2187  *	are as for raw_notifier_call_chain().
2188  */
2189 
2190 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2191 {
2192 	return call_netdevice_notifiers_extack(val, dev, NULL);
2193 }
2194 EXPORT_SYMBOL(call_netdevice_notifiers);
2195 
2196 /**
2197  *	call_netdevice_notifiers_mtu - call all network notifier blocks
2198  *	@val: value passed unmodified to notifier function
2199  *	@dev: net_device pointer passed unmodified to notifier function
2200  *	@arg: additional u32 argument passed to the notifier function
2201  *
2202  *	Call all network notifier blocks.  Parameters and return value
2203  *	are as for raw_notifier_call_chain().
2204  */
2205 static int call_netdevice_notifiers_mtu(unsigned long val,
2206 					struct net_device *dev, u32 arg)
2207 {
2208 	struct netdev_notifier_info_ext info = {
2209 		.info.dev = dev,
2210 		.ext.mtu = arg,
2211 	};
2212 
2213 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2214 
2215 	return call_netdevice_notifiers_info(val, &info.info);
2216 }
2217 
2218 #ifdef CONFIG_NET_INGRESS
2219 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2220 
2221 void net_inc_ingress_queue(void)
2222 {
2223 	static_branch_inc(&ingress_needed_key);
2224 }
2225 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2226 
2227 void net_dec_ingress_queue(void)
2228 {
2229 	static_branch_dec(&ingress_needed_key);
2230 }
2231 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2232 #endif
2233 
2234 #ifdef CONFIG_NET_EGRESS
2235 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2236 
2237 void net_inc_egress_queue(void)
2238 {
2239 	static_branch_inc(&egress_needed_key);
2240 }
2241 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2242 
2243 void net_dec_egress_queue(void)
2244 {
2245 	static_branch_dec(&egress_needed_key);
2246 }
2247 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2248 #endif
2249 
2250 #ifdef CONFIG_NET_CLS_ACT
2251 DEFINE_STATIC_KEY_FALSE(tcf_bypass_check_needed_key);
2252 EXPORT_SYMBOL(tcf_bypass_check_needed_key);
2253 #endif
2254 
2255 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2256 EXPORT_SYMBOL(netstamp_needed_key);
2257 #ifdef CONFIG_JUMP_LABEL
2258 static atomic_t netstamp_needed_deferred;
2259 static atomic_t netstamp_wanted;
2260 static void netstamp_clear(struct work_struct *work)
2261 {
2262 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2263 	int wanted;
2264 
2265 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2266 	if (wanted > 0)
2267 		static_branch_enable(&netstamp_needed_key);
2268 	else
2269 		static_branch_disable(&netstamp_needed_key);
2270 }
2271 static DECLARE_WORK(netstamp_work, netstamp_clear);
2272 #endif
2273 
2274 void net_enable_timestamp(void)
2275 {
2276 #ifdef CONFIG_JUMP_LABEL
2277 	int wanted = atomic_read(&netstamp_wanted);
2278 
2279 	while (wanted > 0) {
2280 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2281 			return;
2282 	}
2283 	atomic_inc(&netstamp_needed_deferred);
2284 	schedule_work(&netstamp_work);
2285 #else
2286 	static_branch_inc(&netstamp_needed_key);
2287 #endif
2288 }
2289 EXPORT_SYMBOL(net_enable_timestamp);
2290 
2291 void net_disable_timestamp(void)
2292 {
2293 #ifdef CONFIG_JUMP_LABEL
2294 	int wanted = atomic_read(&netstamp_wanted);
2295 
2296 	while (wanted > 1) {
2297 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2298 			return;
2299 	}
2300 	atomic_dec(&netstamp_needed_deferred);
2301 	schedule_work(&netstamp_work);
2302 #else
2303 	static_branch_dec(&netstamp_needed_key);
2304 #endif
2305 }
2306 EXPORT_SYMBOL(net_disable_timestamp);
2307 
2308 static inline void net_timestamp_set(struct sk_buff *skb)
2309 {
2310 	skb->tstamp = 0;
2311 	skb->tstamp_type = SKB_CLOCK_REALTIME;
2312 	if (static_branch_unlikely(&netstamp_needed_key))
2313 		skb->tstamp = ktime_get_real();
2314 }
2315 
2316 #define net_timestamp_check(COND, SKB)				\
2317 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2318 		if ((COND) && !(SKB)->tstamp)			\
2319 			(SKB)->tstamp = ktime_get_real();	\
2320 	}							\
2321 
2322 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2323 {
2324 	return __is_skb_forwardable(dev, skb, true);
2325 }
2326 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2327 
2328 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2329 			      bool check_mtu)
2330 {
2331 	int ret = ____dev_forward_skb(dev, skb, check_mtu);
2332 
2333 	if (likely(!ret)) {
2334 		skb->protocol = eth_type_trans(skb, dev);
2335 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2336 	}
2337 
2338 	return ret;
2339 }
2340 
2341 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2342 {
2343 	return __dev_forward_skb2(dev, skb, true);
2344 }
2345 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2346 
2347 /**
2348  * dev_forward_skb - loopback an skb to another netif
2349  *
2350  * @dev: destination network device
2351  * @skb: buffer to forward
2352  *
2353  * return values:
2354  *	NET_RX_SUCCESS	(no congestion)
2355  *	NET_RX_DROP     (packet was dropped, but freed)
2356  *
2357  * dev_forward_skb can be used for injecting an skb from the
2358  * start_xmit function of one device into the receive queue
2359  * of another device.
2360  *
2361  * The receiving device may be in another namespace, so
2362  * we have to clear all information in the skb that could
2363  * impact namespace isolation.
2364  */
2365 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2366 {
2367 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2368 }
2369 EXPORT_SYMBOL_GPL(dev_forward_skb);
2370 
2371 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2372 {
2373 	return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2374 }
2375 
2376 static inline int deliver_skb(struct sk_buff *skb,
2377 			      struct packet_type *pt_prev,
2378 			      struct net_device *orig_dev)
2379 {
2380 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2381 		return -ENOMEM;
2382 	refcount_inc(&skb->users);
2383 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2384 }
2385 
2386 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2387 					  struct packet_type **pt,
2388 					  struct net_device *orig_dev,
2389 					  __be16 type,
2390 					  struct list_head *ptype_list)
2391 {
2392 	struct packet_type *ptype, *pt_prev = *pt;
2393 
2394 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2395 		if (ptype->type != type)
2396 			continue;
2397 		if (pt_prev)
2398 			deliver_skb(skb, pt_prev, orig_dev);
2399 		pt_prev = ptype;
2400 	}
2401 	*pt = pt_prev;
2402 }
2403 
2404 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2405 {
2406 	if (!ptype->af_packet_priv || !skb->sk)
2407 		return false;
2408 
2409 	if (ptype->id_match)
2410 		return ptype->id_match(ptype, skb->sk);
2411 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2412 		return true;
2413 
2414 	return false;
2415 }
2416 
2417 /**
2418  * dev_nit_active - return true if any network interface taps are in use
2419  *
2420  * @dev: network device to check for the presence of taps
2421  */
2422 bool dev_nit_active(struct net_device *dev)
2423 {
2424 	return !list_empty(&net_hotdata.ptype_all) ||
2425 	       !list_empty(&dev->ptype_all);
2426 }
2427 EXPORT_SYMBOL_GPL(dev_nit_active);
2428 
2429 /*
2430  *	Support routine. Sends outgoing frames to any network
2431  *	taps currently in use.
2432  */
2433 
2434 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2435 {
2436 	struct list_head *ptype_list = &net_hotdata.ptype_all;
2437 	struct packet_type *ptype, *pt_prev = NULL;
2438 	struct sk_buff *skb2 = NULL;
2439 
2440 	rcu_read_lock();
2441 again:
2442 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2443 		if (READ_ONCE(ptype->ignore_outgoing))
2444 			continue;
2445 
2446 		/* Never send packets back to the socket
2447 		 * they originated from - MvS (miquels@drinkel.ow.org)
2448 		 */
2449 		if (skb_loop_sk(ptype, skb))
2450 			continue;
2451 
2452 		if (pt_prev) {
2453 			deliver_skb(skb2, pt_prev, skb->dev);
2454 			pt_prev = ptype;
2455 			continue;
2456 		}
2457 
2458 		/* need to clone skb, done only once */
2459 		skb2 = skb_clone(skb, GFP_ATOMIC);
2460 		if (!skb2)
2461 			goto out_unlock;
2462 
2463 		net_timestamp_set(skb2);
2464 
2465 		/* skb->nh should be correctly
2466 		 * set by sender, so that the second statement is
2467 		 * just protection against buggy protocols.
2468 		 */
2469 		skb_reset_mac_header(skb2);
2470 
2471 		if (skb_network_header(skb2) < skb2->data ||
2472 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2473 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2474 					     ntohs(skb2->protocol),
2475 					     dev->name);
2476 			skb_reset_network_header(skb2);
2477 		}
2478 
2479 		skb2->transport_header = skb2->network_header;
2480 		skb2->pkt_type = PACKET_OUTGOING;
2481 		pt_prev = ptype;
2482 	}
2483 
2484 	if (ptype_list == &net_hotdata.ptype_all) {
2485 		ptype_list = &dev->ptype_all;
2486 		goto again;
2487 	}
2488 out_unlock:
2489 	if (pt_prev) {
2490 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2491 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2492 		else
2493 			kfree_skb(skb2);
2494 	}
2495 	rcu_read_unlock();
2496 }
2497 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2498 
2499 /**
2500  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2501  * @dev: Network device
2502  * @txq: number of queues available
2503  *
2504  * If real_num_tx_queues is changed the tc mappings may no longer be
2505  * valid. To resolve this verify the tc mapping remains valid and if
2506  * not NULL the mapping. With no priorities mapping to this
2507  * offset/count pair it will no longer be used. In the worst case TC0
2508  * is invalid nothing can be done so disable priority mappings. If is
2509  * expected that drivers will fix this mapping if they can before
2510  * calling netif_set_real_num_tx_queues.
2511  */
2512 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2513 {
2514 	int i;
2515 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2516 
2517 	/* If TC0 is invalidated disable TC mapping */
2518 	if (tc->offset + tc->count > txq) {
2519 		netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2520 		dev->num_tc = 0;
2521 		return;
2522 	}
2523 
2524 	/* Invalidated prio to tc mappings set to TC0 */
2525 	for (i = 1; i < TC_BITMASK + 1; i++) {
2526 		int q = netdev_get_prio_tc_map(dev, i);
2527 
2528 		tc = &dev->tc_to_txq[q];
2529 		if (tc->offset + tc->count > txq) {
2530 			netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2531 				    i, q);
2532 			netdev_set_prio_tc_map(dev, i, 0);
2533 		}
2534 	}
2535 }
2536 
2537 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2538 {
2539 	if (dev->num_tc) {
2540 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2541 		int i;
2542 
2543 		/* walk through the TCs and see if it falls into any of them */
2544 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2545 			if ((txq - tc->offset) < tc->count)
2546 				return i;
2547 		}
2548 
2549 		/* didn't find it, just return -1 to indicate no match */
2550 		return -1;
2551 	}
2552 
2553 	return 0;
2554 }
2555 EXPORT_SYMBOL(netdev_txq_to_tc);
2556 
2557 #ifdef CONFIG_XPS
2558 static struct static_key xps_needed __read_mostly;
2559 static struct static_key xps_rxqs_needed __read_mostly;
2560 static DEFINE_MUTEX(xps_map_mutex);
2561 #define xmap_dereference(P)		\
2562 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2563 
2564 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2565 			     struct xps_dev_maps *old_maps, int tci, u16 index)
2566 {
2567 	struct xps_map *map = NULL;
2568 	int pos;
2569 
2570 	map = xmap_dereference(dev_maps->attr_map[tci]);
2571 	if (!map)
2572 		return false;
2573 
2574 	for (pos = map->len; pos--;) {
2575 		if (map->queues[pos] != index)
2576 			continue;
2577 
2578 		if (map->len > 1) {
2579 			map->queues[pos] = map->queues[--map->len];
2580 			break;
2581 		}
2582 
2583 		if (old_maps)
2584 			RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2585 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2586 		kfree_rcu(map, rcu);
2587 		return false;
2588 	}
2589 
2590 	return true;
2591 }
2592 
2593 static bool remove_xps_queue_cpu(struct net_device *dev,
2594 				 struct xps_dev_maps *dev_maps,
2595 				 int cpu, u16 offset, u16 count)
2596 {
2597 	int num_tc = dev_maps->num_tc;
2598 	bool active = false;
2599 	int tci;
2600 
2601 	for (tci = cpu * num_tc; num_tc--; tci++) {
2602 		int i, j;
2603 
2604 		for (i = count, j = offset; i--; j++) {
2605 			if (!remove_xps_queue(dev_maps, NULL, tci, j))
2606 				break;
2607 		}
2608 
2609 		active |= i < 0;
2610 	}
2611 
2612 	return active;
2613 }
2614 
2615 static void reset_xps_maps(struct net_device *dev,
2616 			   struct xps_dev_maps *dev_maps,
2617 			   enum xps_map_type type)
2618 {
2619 	static_key_slow_dec_cpuslocked(&xps_needed);
2620 	if (type == XPS_RXQS)
2621 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2622 
2623 	RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2624 
2625 	kfree_rcu(dev_maps, rcu);
2626 }
2627 
2628 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2629 			   u16 offset, u16 count)
2630 {
2631 	struct xps_dev_maps *dev_maps;
2632 	bool active = false;
2633 	int i, j;
2634 
2635 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2636 	if (!dev_maps)
2637 		return;
2638 
2639 	for (j = 0; j < dev_maps->nr_ids; j++)
2640 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2641 	if (!active)
2642 		reset_xps_maps(dev, dev_maps, type);
2643 
2644 	if (type == XPS_CPUS) {
2645 		for (i = offset + (count - 1); count--; i--)
2646 			netdev_queue_numa_node_write(
2647 				netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2648 	}
2649 }
2650 
2651 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2652 				   u16 count)
2653 {
2654 	if (!static_key_false(&xps_needed))
2655 		return;
2656 
2657 	cpus_read_lock();
2658 	mutex_lock(&xps_map_mutex);
2659 
2660 	if (static_key_false(&xps_rxqs_needed))
2661 		clean_xps_maps(dev, XPS_RXQS, offset, count);
2662 
2663 	clean_xps_maps(dev, XPS_CPUS, offset, count);
2664 
2665 	mutex_unlock(&xps_map_mutex);
2666 	cpus_read_unlock();
2667 }
2668 
2669 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2670 {
2671 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2672 }
2673 
2674 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2675 				      u16 index, bool is_rxqs_map)
2676 {
2677 	struct xps_map *new_map;
2678 	int alloc_len = XPS_MIN_MAP_ALLOC;
2679 	int i, pos;
2680 
2681 	for (pos = 0; map && pos < map->len; pos++) {
2682 		if (map->queues[pos] != index)
2683 			continue;
2684 		return map;
2685 	}
2686 
2687 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2688 	if (map) {
2689 		if (pos < map->alloc_len)
2690 			return map;
2691 
2692 		alloc_len = map->alloc_len * 2;
2693 	}
2694 
2695 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2696 	 *  map
2697 	 */
2698 	if (is_rxqs_map)
2699 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2700 	else
2701 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2702 				       cpu_to_node(attr_index));
2703 	if (!new_map)
2704 		return NULL;
2705 
2706 	for (i = 0; i < pos; i++)
2707 		new_map->queues[i] = map->queues[i];
2708 	new_map->alloc_len = alloc_len;
2709 	new_map->len = pos;
2710 
2711 	return new_map;
2712 }
2713 
2714 /* Copy xps maps at a given index */
2715 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2716 			      struct xps_dev_maps *new_dev_maps, int index,
2717 			      int tc, bool skip_tc)
2718 {
2719 	int i, tci = index * dev_maps->num_tc;
2720 	struct xps_map *map;
2721 
2722 	/* copy maps belonging to foreign traffic classes */
2723 	for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2724 		if (i == tc && skip_tc)
2725 			continue;
2726 
2727 		/* fill in the new device map from the old device map */
2728 		map = xmap_dereference(dev_maps->attr_map[tci]);
2729 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2730 	}
2731 }
2732 
2733 /* Must be called under cpus_read_lock */
2734 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2735 			  u16 index, enum xps_map_type type)
2736 {
2737 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2738 	const unsigned long *online_mask = NULL;
2739 	bool active = false, copy = false;
2740 	int i, j, tci, numa_node_id = -2;
2741 	int maps_sz, num_tc = 1, tc = 0;
2742 	struct xps_map *map, *new_map;
2743 	unsigned int nr_ids;
2744 
2745 	WARN_ON_ONCE(index >= dev->num_tx_queues);
2746 
2747 	if (dev->num_tc) {
2748 		/* Do not allow XPS on subordinate device directly */
2749 		num_tc = dev->num_tc;
2750 		if (num_tc < 0)
2751 			return -EINVAL;
2752 
2753 		/* If queue belongs to subordinate dev use its map */
2754 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2755 
2756 		tc = netdev_txq_to_tc(dev, index);
2757 		if (tc < 0)
2758 			return -EINVAL;
2759 	}
2760 
2761 	mutex_lock(&xps_map_mutex);
2762 
2763 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2764 	if (type == XPS_RXQS) {
2765 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2766 		nr_ids = dev->num_rx_queues;
2767 	} else {
2768 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2769 		if (num_possible_cpus() > 1)
2770 			online_mask = cpumask_bits(cpu_online_mask);
2771 		nr_ids = nr_cpu_ids;
2772 	}
2773 
2774 	if (maps_sz < L1_CACHE_BYTES)
2775 		maps_sz = L1_CACHE_BYTES;
2776 
2777 	/* The old dev_maps could be larger or smaller than the one we're
2778 	 * setting up now, as dev->num_tc or nr_ids could have been updated in
2779 	 * between. We could try to be smart, but let's be safe instead and only
2780 	 * copy foreign traffic classes if the two map sizes match.
2781 	 */
2782 	if (dev_maps &&
2783 	    dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2784 		copy = true;
2785 
2786 	/* allocate memory for queue storage */
2787 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2788 	     j < nr_ids;) {
2789 		if (!new_dev_maps) {
2790 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2791 			if (!new_dev_maps) {
2792 				mutex_unlock(&xps_map_mutex);
2793 				return -ENOMEM;
2794 			}
2795 
2796 			new_dev_maps->nr_ids = nr_ids;
2797 			new_dev_maps->num_tc = num_tc;
2798 		}
2799 
2800 		tci = j * num_tc + tc;
2801 		map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2802 
2803 		map = expand_xps_map(map, j, index, type == XPS_RXQS);
2804 		if (!map)
2805 			goto error;
2806 
2807 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2808 	}
2809 
2810 	if (!new_dev_maps)
2811 		goto out_no_new_maps;
2812 
2813 	if (!dev_maps) {
2814 		/* Increment static keys at most once per type */
2815 		static_key_slow_inc_cpuslocked(&xps_needed);
2816 		if (type == XPS_RXQS)
2817 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2818 	}
2819 
2820 	for (j = 0; j < nr_ids; j++) {
2821 		bool skip_tc = false;
2822 
2823 		tci = j * num_tc + tc;
2824 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2825 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2826 			/* add tx-queue to CPU/rx-queue maps */
2827 			int pos = 0;
2828 
2829 			skip_tc = true;
2830 
2831 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2832 			while ((pos < map->len) && (map->queues[pos] != index))
2833 				pos++;
2834 
2835 			if (pos == map->len)
2836 				map->queues[map->len++] = index;
2837 #ifdef CONFIG_NUMA
2838 			if (type == XPS_CPUS) {
2839 				if (numa_node_id == -2)
2840 					numa_node_id = cpu_to_node(j);
2841 				else if (numa_node_id != cpu_to_node(j))
2842 					numa_node_id = -1;
2843 			}
2844 #endif
2845 		}
2846 
2847 		if (copy)
2848 			xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2849 					  skip_tc);
2850 	}
2851 
2852 	rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2853 
2854 	/* Cleanup old maps */
2855 	if (!dev_maps)
2856 		goto out_no_old_maps;
2857 
2858 	for (j = 0; j < dev_maps->nr_ids; j++) {
2859 		for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2860 			map = xmap_dereference(dev_maps->attr_map[tci]);
2861 			if (!map)
2862 				continue;
2863 
2864 			if (copy) {
2865 				new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2866 				if (map == new_map)
2867 					continue;
2868 			}
2869 
2870 			RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2871 			kfree_rcu(map, rcu);
2872 		}
2873 	}
2874 
2875 	old_dev_maps = dev_maps;
2876 
2877 out_no_old_maps:
2878 	dev_maps = new_dev_maps;
2879 	active = true;
2880 
2881 out_no_new_maps:
2882 	if (type == XPS_CPUS)
2883 		/* update Tx queue numa node */
2884 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2885 					     (numa_node_id >= 0) ?
2886 					     numa_node_id : NUMA_NO_NODE);
2887 
2888 	if (!dev_maps)
2889 		goto out_no_maps;
2890 
2891 	/* removes tx-queue from unused CPUs/rx-queues */
2892 	for (j = 0; j < dev_maps->nr_ids; j++) {
2893 		tci = j * dev_maps->num_tc;
2894 
2895 		for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2896 			if (i == tc &&
2897 			    netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2898 			    netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2899 				continue;
2900 
2901 			active |= remove_xps_queue(dev_maps,
2902 						   copy ? old_dev_maps : NULL,
2903 						   tci, index);
2904 		}
2905 	}
2906 
2907 	if (old_dev_maps)
2908 		kfree_rcu(old_dev_maps, rcu);
2909 
2910 	/* free map if not active */
2911 	if (!active)
2912 		reset_xps_maps(dev, dev_maps, type);
2913 
2914 out_no_maps:
2915 	mutex_unlock(&xps_map_mutex);
2916 
2917 	return 0;
2918 error:
2919 	/* remove any maps that we added */
2920 	for (j = 0; j < nr_ids; j++) {
2921 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2922 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2923 			map = copy ?
2924 			      xmap_dereference(dev_maps->attr_map[tci]) :
2925 			      NULL;
2926 			if (new_map && new_map != map)
2927 				kfree(new_map);
2928 		}
2929 	}
2930 
2931 	mutex_unlock(&xps_map_mutex);
2932 
2933 	kfree(new_dev_maps);
2934 	return -ENOMEM;
2935 }
2936 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2937 
2938 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2939 			u16 index)
2940 {
2941 	int ret;
2942 
2943 	cpus_read_lock();
2944 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2945 	cpus_read_unlock();
2946 
2947 	return ret;
2948 }
2949 EXPORT_SYMBOL(netif_set_xps_queue);
2950 
2951 #endif
2952 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2953 {
2954 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2955 
2956 	/* Unbind any subordinate channels */
2957 	while (txq-- != &dev->_tx[0]) {
2958 		if (txq->sb_dev)
2959 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2960 	}
2961 }
2962 
2963 void netdev_reset_tc(struct net_device *dev)
2964 {
2965 #ifdef CONFIG_XPS
2966 	netif_reset_xps_queues_gt(dev, 0);
2967 #endif
2968 	netdev_unbind_all_sb_channels(dev);
2969 
2970 	/* Reset TC configuration of device */
2971 	dev->num_tc = 0;
2972 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2973 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2974 }
2975 EXPORT_SYMBOL(netdev_reset_tc);
2976 
2977 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2978 {
2979 	if (tc >= dev->num_tc)
2980 		return -EINVAL;
2981 
2982 #ifdef CONFIG_XPS
2983 	netif_reset_xps_queues(dev, offset, count);
2984 #endif
2985 	dev->tc_to_txq[tc].count = count;
2986 	dev->tc_to_txq[tc].offset = offset;
2987 	return 0;
2988 }
2989 EXPORT_SYMBOL(netdev_set_tc_queue);
2990 
2991 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2992 {
2993 	if (num_tc > TC_MAX_QUEUE)
2994 		return -EINVAL;
2995 
2996 #ifdef CONFIG_XPS
2997 	netif_reset_xps_queues_gt(dev, 0);
2998 #endif
2999 	netdev_unbind_all_sb_channels(dev);
3000 
3001 	dev->num_tc = num_tc;
3002 	return 0;
3003 }
3004 EXPORT_SYMBOL(netdev_set_num_tc);
3005 
3006 void netdev_unbind_sb_channel(struct net_device *dev,
3007 			      struct net_device *sb_dev)
3008 {
3009 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
3010 
3011 #ifdef CONFIG_XPS
3012 	netif_reset_xps_queues_gt(sb_dev, 0);
3013 #endif
3014 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
3015 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
3016 
3017 	while (txq-- != &dev->_tx[0]) {
3018 		if (txq->sb_dev == sb_dev)
3019 			txq->sb_dev = NULL;
3020 	}
3021 }
3022 EXPORT_SYMBOL(netdev_unbind_sb_channel);
3023 
3024 int netdev_bind_sb_channel_queue(struct net_device *dev,
3025 				 struct net_device *sb_dev,
3026 				 u8 tc, u16 count, u16 offset)
3027 {
3028 	/* Make certain the sb_dev and dev are already configured */
3029 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
3030 		return -EINVAL;
3031 
3032 	/* We cannot hand out queues we don't have */
3033 	if ((offset + count) > dev->real_num_tx_queues)
3034 		return -EINVAL;
3035 
3036 	/* Record the mapping */
3037 	sb_dev->tc_to_txq[tc].count = count;
3038 	sb_dev->tc_to_txq[tc].offset = offset;
3039 
3040 	/* Provide a way for Tx queue to find the tc_to_txq map or
3041 	 * XPS map for itself.
3042 	 */
3043 	while (count--)
3044 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
3045 
3046 	return 0;
3047 }
3048 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
3049 
3050 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
3051 {
3052 	/* Do not use a multiqueue device to represent a subordinate channel */
3053 	if (netif_is_multiqueue(dev))
3054 		return -ENODEV;
3055 
3056 	/* We allow channels 1 - 32767 to be used for subordinate channels.
3057 	 * Channel 0 is meant to be "native" mode and used only to represent
3058 	 * the main root device. We allow writing 0 to reset the device back
3059 	 * to normal mode after being used as a subordinate channel.
3060 	 */
3061 	if (channel > S16_MAX)
3062 		return -EINVAL;
3063 
3064 	dev->num_tc = -channel;
3065 
3066 	return 0;
3067 }
3068 EXPORT_SYMBOL(netdev_set_sb_channel);
3069 
3070 /*
3071  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
3072  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
3073  */
3074 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
3075 {
3076 	bool disabling;
3077 	int rc;
3078 
3079 	disabling = txq < dev->real_num_tx_queues;
3080 
3081 	if (txq < 1 || txq > dev->num_tx_queues)
3082 		return -EINVAL;
3083 
3084 	if (dev->reg_state == NETREG_REGISTERED ||
3085 	    dev->reg_state == NETREG_UNREGISTERING) {
3086 		ASSERT_RTNL();
3087 
3088 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
3089 						  txq);
3090 		if (rc)
3091 			return rc;
3092 
3093 		if (dev->num_tc)
3094 			netif_setup_tc(dev, txq);
3095 
3096 		net_shaper_set_real_num_tx_queues(dev, txq);
3097 
3098 		dev_qdisc_change_real_num_tx(dev, txq);
3099 
3100 		dev->real_num_tx_queues = txq;
3101 
3102 		if (disabling) {
3103 			synchronize_net();
3104 			qdisc_reset_all_tx_gt(dev, txq);
3105 #ifdef CONFIG_XPS
3106 			netif_reset_xps_queues_gt(dev, txq);
3107 #endif
3108 		}
3109 	} else {
3110 		dev->real_num_tx_queues = txq;
3111 	}
3112 
3113 	return 0;
3114 }
3115 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
3116 
3117 #ifdef CONFIG_SYSFS
3118 /**
3119  *	netif_set_real_num_rx_queues - set actual number of RX queues used
3120  *	@dev: Network device
3121  *	@rxq: Actual number of RX queues
3122  *
3123  *	This must be called either with the rtnl_lock held or before
3124  *	registration of the net device.  Returns 0 on success, or a
3125  *	negative error code.  If called before registration, it always
3126  *	succeeds.
3127  */
3128 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
3129 {
3130 	int rc;
3131 
3132 	if (rxq < 1 || rxq > dev->num_rx_queues)
3133 		return -EINVAL;
3134 
3135 	if (dev->reg_state == NETREG_REGISTERED) {
3136 		ASSERT_RTNL();
3137 
3138 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3139 						  rxq);
3140 		if (rc)
3141 			return rc;
3142 	}
3143 
3144 	dev->real_num_rx_queues = rxq;
3145 	return 0;
3146 }
3147 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3148 #endif
3149 
3150 /**
3151  *	netif_set_real_num_queues - set actual number of RX and TX queues used
3152  *	@dev: Network device
3153  *	@txq: Actual number of TX queues
3154  *	@rxq: Actual number of RX queues
3155  *
3156  *	Set the real number of both TX and RX queues.
3157  *	Does nothing if the number of queues is already correct.
3158  */
3159 int netif_set_real_num_queues(struct net_device *dev,
3160 			      unsigned int txq, unsigned int rxq)
3161 {
3162 	unsigned int old_rxq = dev->real_num_rx_queues;
3163 	int err;
3164 
3165 	if (txq < 1 || txq > dev->num_tx_queues ||
3166 	    rxq < 1 || rxq > dev->num_rx_queues)
3167 		return -EINVAL;
3168 
3169 	/* Start from increases, so the error path only does decreases -
3170 	 * decreases can't fail.
3171 	 */
3172 	if (rxq > dev->real_num_rx_queues) {
3173 		err = netif_set_real_num_rx_queues(dev, rxq);
3174 		if (err)
3175 			return err;
3176 	}
3177 	if (txq > dev->real_num_tx_queues) {
3178 		err = netif_set_real_num_tx_queues(dev, txq);
3179 		if (err)
3180 			goto undo_rx;
3181 	}
3182 	if (rxq < dev->real_num_rx_queues)
3183 		WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3184 	if (txq < dev->real_num_tx_queues)
3185 		WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3186 
3187 	return 0;
3188 undo_rx:
3189 	WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3190 	return err;
3191 }
3192 EXPORT_SYMBOL(netif_set_real_num_queues);
3193 
3194 /**
3195  * netif_set_tso_max_size() - set the max size of TSO frames supported
3196  * @dev:	netdev to update
3197  * @size:	max skb->len of a TSO frame
3198  *
3199  * Set the limit on the size of TSO super-frames the device can handle.
3200  * Unless explicitly set the stack will assume the value of
3201  * %GSO_LEGACY_MAX_SIZE.
3202  */
3203 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3204 {
3205 	dev->tso_max_size = min(GSO_MAX_SIZE, size);
3206 	if (size < READ_ONCE(dev->gso_max_size))
3207 		netif_set_gso_max_size(dev, size);
3208 	if (size < READ_ONCE(dev->gso_ipv4_max_size))
3209 		netif_set_gso_ipv4_max_size(dev, size);
3210 }
3211 EXPORT_SYMBOL(netif_set_tso_max_size);
3212 
3213 /**
3214  * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3215  * @dev:	netdev to update
3216  * @segs:	max number of TCP segments
3217  *
3218  * Set the limit on the number of TCP segments the device can generate from
3219  * a single TSO super-frame.
3220  * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3221  */
3222 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3223 {
3224 	dev->tso_max_segs = segs;
3225 	if (segs < READ_ONCE(dev->gso_max_segs))
3226 		netif_set_gso_max_segs(dev, segs);
3227 }
3228 EXPORT_SYMBOL(netif_set_tso_max_segs);
3229 
3230 /**
3231  * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3232  * @to:		netdev to update
3233  * @from:	netdev from which to copy the limits
3234  */
3235 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3236 {
3237 	netif_set_tso_max_size(to, from->tso_max_size);
3238 	netif_set_tso_max_segs(to, from->tso_max_segs);
3239 }
3240 EXPORT_SYMBOL(netif_inherit_tso_max);
3241 
3242 /**
3243  * netif_get_num_default_rss_queues - default number of RSS queues
3244  *
3245  * Default value is the number of physical cores if there are only 1 or 2, or
3246  * divided by 2 if there are more.
3247  */
3248 int netif_get_num_default_rss_queues(void)
3249 {
3250 	cpumask_var_t cpus;
3251 	int cpu, count = 0;
3252 
3253 	if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3254 		return 1;
3255 
3256 	cpumask_copy(cpus, cpu_online_mask);
3257 	for_each_cpu(cpu, cpus) {
3258 		++count;
3259 		cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3260 	}
3261 	free_cpumask_var(cpus);
3262 
3263 	return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3264 }
3265 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3266 
3267 static void __netif_reschedule(struct Qdisc *q)
3268 {
3269 	struct softnet_data *sd;
3270 	unsigned long flags;
3271 
3272 	local_irq_save(flags);
3273 	sd = this_cpu_ptr(&softnet_data);
3274 	q->next_sched = NULL;
3275 	*sd->output_queue_tailp = q;
3276 	sd->output_queue_tailp = &q->next_sched;
3277 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3278 	local_irq_restore(flags);
3279 }
3280 
3281 void __netif_schedule(struct Qdisc *q)
3282 {
3283 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3284 		__netif_reschedule(q);
3285 }
3286 EXPORT_SYMBOL(__netif_schedule);
3287 
3288 struct dev_kfree_skb_cb {
3289 	enum skb_drop_reason reason;
3290 };
3291 
3292 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3293 {
3294 	return (struct dev_kfree_skb_cb *)skb->cb;
3295 }
3296 
3297 void netif_schedule_queue(struct netdev_queue *txq)
3298 {
3299 	rcu_read_lock();
3300 	if (!netif_xmit_stopped(txq)) {
3301 		struct Qdisc *q = rcu_dereference(txq->qdisc);
3302 
3303 		__netif_schedule(q);
3304 	}
3305 	rcu_read_unlock();
3306 }
3307 EXPORT_SYMBOL(netif_schedule_queue);
3308 
3309 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3310 {
3311 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3312 		struct Qdisc *q;
3313 
3314 		rcu_read_lock();
3315 		q = rcu_dereference(dev_queue->qdisc);
3316 		__netif_schedule(q);
3317 		rcu_read_unlock();
3318 	}
3319 }
3320 EXPORT_SYMBOL(netif_tx_wake_queue);
3321 
3322 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3323 {
3324 	unsigned long flags;
3325 
3326 	if (unlikely(!skb))
3327 		return;
3328 
3329 	if (likely(refcount_read(&skb->users) == 1)) {
3330 		smp_rmb();
3331 		refcount_set(&skb->users, 0);
3332 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3333 		return;
3334 	}
3335 	get_kfree_skb_cb(skb)->reason = reason;
3336 	local_irq_save(flags);
3337 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3338 	__this_cpu_write(softnet_data.completion_queue, skb);
3339 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3340 	local_irq_restore(flags);
3341 }
3342 EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
3343 
3344 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3345 {
3346 	if (in_hardirq() || irqs_disabled())
3347 		dev_kfree_skb_irq_reason(skb, reason);
3348 	else
3349 		kfree_skb_reason(skb, reason);
3350 }
3351 EXPORT_SYMBOL(dev_kfree_skb_any_reason);
3352 
3353 
3354 /**
3355  * netif_device_detach - mark device as removed
3356  * @dev: network device
3357  *
3358  * Mark device as removed from system and therefore no longer available.
3359  */
3360 void netif_device_detach(struct net_device *dev)
3361 {
3362 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3363 	    netif_running(dev)) {
3364 		netif_tx_stop_all_queues(dev);
3365 	}
3366 }
3367 EXPORT_SYMBOL(netif_device_detach);
3368 
3369 /**
3370  * netif_device_attach - mark device as attached
3371  * @dev: network device
3372  *
3373  * Mark device as attached from system and restart if needed.
3374  */
3375 void netif_device_attach(struct net_device *dev)
3376 {
3377 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3378 	    netif_running(dev)) {
3379 		netif_tx_wake_all_queues(dev);
3380 		netdev_watchdog_up(dev);
3381 	}
3382 }
3383 EXPORT_SYMBOL(netif_device_attach);
3384 
3385 /*
3386  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3387  * to be used as a distribution range.
3388  */
3389 static u16 skb_tx_hash(const struct net_device *dev,
3390 		       const struct net_device *sb_dev,
3391 		       struct sk_buff *skb)
3392 {
3393 	u32 hash;
3394 	u16 qoffset = 0;
3395 	u16 qcount = dev->real_num_tx_queues;
3396 
3397 	if (dev->num_tc) {
3398 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3399 
3400 		qoffset = sb_dev->tc_to_txq[tc].offset;
3401 		qcount = sb_dev->tc_to_txq[tc].count;
3402 		if (unlikely(!qcount)) {
3403 			net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3404 					     sb_dev->name, qoffset, tc);
3405 			qoffset = 0;
3406 			qcount = dev->real_num_tx_queues;
3407 		}
3408 	}
3409 
3410 	if (skb_rx_queue_recorded(skb)) {
3411 		DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3412 		hash = skb_get_rx_queue(skb);
3413 		if (hash >= qoffset)
3414 			hash -= qoffset;
3415 		while (unlikely(hash >= qcount))
3416 			hash -= qcount;
3417 		return hash + qoffset;
3418 	}
3419 
3420 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3421 }
3422 
3423 void skb_warn_bad_offload(const struct sk_buff *skb)
3424 {
3425 	static const netdev_features_t null_features;
3426 	struct net_device *dev = skb->dev;
3427 	const char *name = "";
3428 
3429 	if (!net_ratelimit())
3430 		return;
3431 
3432 	if (dev) {
3433 		if (dev->dev.parent)
3434 			name = dev_driver_string(dev->dev.parent);
3435 		else
3436 			name = netdev_name(dev);
3437 	}
3438 	skb_dump(KERN_WARNING, skb, false);
3439 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3440 	     name, dev ? &dev->features : &null_features,
3441 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3442 }
3443 
3444 /*
3445  * Invalidate hardware checksum when packet is to be mangled, and
3446  * complete checksum manually on outgoing path.
3447  */
3448 int skb_checksum_help(struct sk_buff *skb)
3449 {
3450 	__wsum csum;
3451 	int ret = 0, offset;
3452 
3453 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3454 		goto out_set_summed;
3455 
3456 	if (unlikely(skb_is_gso(skb))) {
3457 		skb_warn_bad_offload(skb);
3458 		return -EINVAL;
3459 	}
3460 
3461 	if (!skb_frags_readable(skb)) {
3462 		return -EFAULT;
3463 	}
3464 
3465 	/* Before computing a checksum, we should make sure no frag could
3466 	 * be modified by an external entity : checksum could be wrong.
3467 	 */
3468 	if (skb_has_shared_frag(skb)) {
3469 		ret = __skb_linearize(skb);
3470 		if (ret)
3471 			goto out;
3472 	}
3473 
3474 	offset = skb_checksum_start_offset(skb);
3475 	ret = -EINVAL;
3476 	if (unlikely(offset >= skb_headlen(skb))) {
3477 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3478 		WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n",
3479 			  offset, skb_headlen(skb));
3480 		goto out;
3481 	}
3482 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3483 
3484 	offset += skb->csum_offset;
3485 	if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) {
3486 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3487 		WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n",
3488 			  offset + sizeof(__sum16), skb_headlen(skb));
3489 		goto out;
3490 	}
3491 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3492 	if (ret)
3493 		goto out;
3494 
3495 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3496 out_set_summed:
3497 	skb->ip_summed = CHECKSUM_NONE;
3498 out:
3499 	return ret;
3500 }
3501 EXPORT_SYMBOL(skb_checksum_help);
3502 
3503 int skb_crc32c_csum_help(struct sk_buff *skb)
3504 {
3505 	__le32 crc32c_csum;
3506 	int ret = 0, offset, start;
3507 
3508 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3509 		goto out;
3510 
3511 	if (unlikely(skb_is_gso(skb)))
3512 		goto out;
3513 
3514 	/* Before computing a checksum, we should make sure no frag could
3515 	 * be modified by an external entity : checksum could be wrong.
3516 	 */
3517 	if (unlikely(skb_has_shared_frag(skb))) {
3518 		ret = __skb_linearize(skb);
3519 		if (ret)
3520 			goto out;
3521 	}
3522 	start = skb_checksum_start_offset(skb);
3523 	offset = start + offsetof(struct sctphdr, checksum);
3524 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3525 		ret = -EINVAL;
3526 		goto out;
3527 	}
3528 
3529 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3530 	if (ret)
3531 		goto out;
3532 
3533 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3534 						  skb->len - start, ~(__u32)0,
3535 						  crc32c_csum_stub));
3536 	*(__le32 *)(skb->data + offset) = crc32c_csum;
3537 	skb_reset_csum_not_inet(skb);
3538 out:
3539 	return ret;
3540 }
3541 EXPORT_SYMBOL(skb_crc32c_csum_help);
3542 
3543 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3544 {
3545 	__be16 type = skb->protocol;
3546 
3547 	/* Tunnel gso handlers can set protocol to ethernet. */
3548 	if (type == htons(ETH_P_TEB)) {
3549 		struct ethhdr *eth;
3550 
3551 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3552 			return 0;
3553 
3554 		eth = (struct ethhdr *)skb->data;
3555 		type = eth->h_proto;
3556 	}
3557 
3558 	return vlan_get_protocol_and_depth(skb, type, depth);
3559 }
3560 
3561 
3562 /* Take action when hardware reception checksum errors are detected. */
3563 #ifdef CONFIG_BUG
3564 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3565 {
3566 	netdev_err(dev, "hw csum failure\n");
3567 	skb_dump(KERN_ERR, skb, true);
3568 	dump_stack();
3569 }
3570 
3571 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3572 {
3573 	DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3574 }
3575 EXPORT_SYMBOL(netdev_rx_csum_fault);
3576 #endif
3577 
3578 /* XXX: check that highmem exists at all on the given machine. */
3579 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3580 {
3581 #ifdef CONFIG_HIGHMEM
3582 	int i;
3583 
3584 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3585 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3586 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3587 			struct page *page = skb_frag_page(frag);
3588 
3589 			if (page && PageHighMem(page))
3590 				return 1;
3591 		}
3592 	}
3593 #endif
3594 	return 0;
3595 }
3596 
3597 /* If MPLS offload request, verify we are testing hardware MPLS features
3598  * instead of standard features for the netdev.
3599  */
3600 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3601 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3602 					   netdev_features_t features,
3603 					   __be16 type)
3604 {
3605 	if (eth_p_mpls(type))
3606 		features &= skb->dev->mpls_features;
3607 
3608 	return features;
3609 }
3610 #else
3611 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3612 					   netdev_features_t features,
3613 					   __be16 type)
3614 {
3615 	return features;
3616 }
3617 #endif
3618 
3619 static netdev_features_t harmonize_features(struct sk_buff *skb,
3620 	netdev_features_t features)
3621 {
3622 	__be16 type;
3623 
3624 	type = skb_network_protocol(skb, NULL);
3625 	features = net_mpls_features(skb, features, type);
3626 
3627 	if (skb->ip_summed != CHECKSUM_NONE &&
3628 	    !can_checksum_protocol(features, type)) {
3629 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3630 	}
3631 	if (illegal_highdma(skb->dev, skb))
3632 		features &= ~NETIF_F_SG;
3633 
3634 	return features;
3635 }
3636 
3637 netdev_features_t passthru_features_check(struct sk_buff *skb,
3638 					  struct net_device *dev,
3639 					  netdev_features_t features)
3640 {
3641 	return features;
3642 }
3643 EXPORT_SYMBOL(passthru_features_check);
3644 
3645 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3646 					     struct net_device *dev,
3647 					     netdev_features_t features)
3648 {
3649 	return vlan_features_check(skb, features);
3650 }
3651 
3652 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3653 					    struct net_device *dev,
3654 					    netdev_features_t features)
3655 {
3656 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3657 
3658 	if (gso_segs > READ_ONCE(dev->gso_max_segs))
3659 		return features & ~NETIF_F_GSO_MASK;
3660 
3661 	if (unlikely(skb->len >= netif_get_gso_max_size(dev, skb)))
3662 		return features & ~NETIF_F_GSO_MASK;
3663 
3664 	if (!skb_shinfo(skb)->gso_type) {
3665 		skb_warn_bad_offload(skb);
3666 		return features & ~NETIF_F_GSO_MASK;
3667 	}
3668 
3669 	/* Support for GSO partial features requires software
3670 	 * intervention before we can actually process the packets
3671 	 * so we need to strip support for any partial features now
3672 	 * and we can pull them back in after we have partially
3673 	 * segmented the frame.
3674 	 */
3675 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3676 		features &= ~dev->gso_partial_features;
3677 
3678 	/* Make sure to clear the IPv4 ID mangling feature if the
3679 	 * IPv4 header has the potential to be fragmented.
3680 	 */
3681 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3682 		struct iphdr *iph = skb->encapsulation ?
3683 				    inner_ip_hdr(skb) : ip_hdr(skb);
3684 
3685 		if (!(iph->frag_off & htons(IP_DF)))
3686 			features &= ~NETIF_F_TSO_MANGLEID;
3687 	}
3688 
3689 	return features;
3690 }
3691 
3692 netdev_features_t netif_skb_features(struct sk_buff *skb)
3693 {
3694 	struct net_device *dev = skb->dev;
3695 	netdev_features_t features = dev->features;
3696 
3697 	if (skb_is_gso(skb))
3698 		features = gso_features_check(skb, dev, features);
3699 
3700 	/* If encapsulation offload request, verify we are testing
3701 	 * hardware encapsulation features instead of standard
3702 	 * features for the netdev
3703 	 */
3704 	if (skb->encapsulation)
3705 		features &= dev->hw_enc_features;
3706 
3707 	if (skb_vlan_tagged(skb))
3708 		features = netdev_intersect_features(features,
3709 						     dev->vlan_features |
3710 						     NETIF_F_HW_VLAN_CTAG_TX |
3711 						     NETIF_F_HW_VLAN_STAG_TX);
3712 
3713 	if (dev->netdev_ops->ndo_features_check)
3714 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3715 								features);
3716 	else
3717 		features &= dflt_features_check(skb, dev, features);
3718 
3719 	return harmonize_features(skb, features);
3720 }
3721 EXPORT_SYMBOL(netif_skb_features);
3722 
3723 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3724 		    struct netdev_queue *txq, bool more)
3725 {
3726 	unsigned int len;
3727 	int rc;
3728 
3729 	if (dev_nit_active(dev))
3730 		dev_queue_xmit_nit(skb, dev);
3731 
3732 	len = skb->len;
3733 	trace_net_dev_start_xmit(skb, dev);
3734 	rc = netdev_start_xmit(skb, dev, txq, more);
3735 	trace_net_dev_xmit(skb, rc, dev, len);
3736 
3737 	return rc;
3738 }
3739 
3740 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3741 				    struct netdev_queue *txq, int *ret)
3742 {
3743 	struct sk_buff *skb = first;
3744 	int rc = NETDEV_TX_OK;
3745 
3746 	while (skb) {
3747 		struct sk_buff *next = skb->next;
3748 
3749 		skb_mark_not_on_list(skb);
3750 		rc = xmit_one(skb, dev, txq, next != NULL);
3751 		if (unlikely(!dev_xmit_complete(rc))) {
3752 			skb->next = next;
3753 			goto out;
3754 		}
3755 
3756 		skb = next;
3757 		if (netif_tx_queue_stopped(txq) && skb) {
3758 			rc = NETDEV_TX_BUSY;
3759 			break;
3760 		}
3761 	}
3762 
3763 out:
3764 	*ret = rc;
3765 	return skb;
3766 }
3767 
3768 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3769 					  netdev_features_t features)
3770 {
3771 	if (skb_vlan_tag_present(skb) &&
3772 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3773 		skb = __vlan_hwaccel_push_inside(skb);
3774 	return skb;
3775 }
3776 
3777 int skb_csum_hwoffload_help(struct sk_buff *skb,
3778 			    const netdev_features_t features)
3779 {
3780 	if (unlikely(skb_csum_is_sctp(skb)))
3781 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3782 			skb_crc32c_csum_help(skb);
3783 
3784 	if (features & NETIF_F_HW_CSUM)
3785 		return 0;
3786 
3787 	if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3788 		if (vlan_get_protocol(skb) == htons(ETH_P_IPV6) &&
3789 		    skb_network_header_len(skb) != sizeof(struct ipv6hdr) &&
3790 		    !ipv6_has_hopopt_jumbo(skb))
3791 			goto sw_checksum;
3792 
3793 		switch (skb->csum_offset) {
3794 		case offsetof(struct tcphdr, check):
3795 		case offsetof(struct udphdr, check):
3796 			return 0;
3797 		}
3798 	}
3799 
3800 sw_checksum:
3801 	return skb_checksum_help(skb);
3802 }
3803 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3804 
3805 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3806 {
3807 	netdev_features_t features;
3808 
3809 	features = netif_skb_features(skb);
3810 	skb = validate_xmit_vlan(skb, features);
3811 	if (unlikely(!skb))
3812 		goto out_null;
3813 
3814 	skb = sk_validate_xmit_skb(skb, dev);
3815 	if (unlikely(!skb))
3816 		goto out_null;
3817 
3818 	if (netif_needs_gso(skb, features)) {
3819 		struct sk_buff *segs;
3820 
3821 		segs = skb_gso_segment(skb, features);
3822 		if (IS_ERR(segs)) {
3823 			goto out_kfree_skb;
3824 		} else if (segs) {
3825 			consume_skb(skb);
3826 			skb = segs;
3827 		}
3828 	} else {
3829 		if (skb_needs_linearize(skb, features) &&
3830 		    __skb_linearize(skb))
3831 			goto out_kfree_skb;
3832 
3833 		/* If packet is not checksummed and device does not
3834 		 * support checksumming for this protocol, complete
3835 		 * checksumming here.
3836 		 */
3837 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3838 			if (skb->encapsulation)
3839 				skb_set_inner_transport_header(skb,
3840 							       skb_checksum_start_offset(skb));
3841 			else
3842 				skb_set_transport_header(skb,
3843 							 skb_checksum_start_offset(skb));
3844 			if (skb_csum_hwoffload_help(skb, features))
3845 				goto out_kfree_skb;
3846 		}
3847 	}
3848 
3849 	skb = validate_xmit_xfrm(skb, features, again);
3850 
3851 	return skb;
3852 
3853 out_kfree_skb:
3854 	kfree_skb(skb);
3855 out_null:
3856 	dev_core_stats_tx_dropped_inc(dev);
3857 	return NULL;
3858 }
3859 
3860 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3861 {
3862 	struct sk_buff *next, *head = NULL, *tail;
3863 
3864 	for (; skb != NULL; skb = next) {
3865 		next = skb->next;
3866 		skb_mark_not_on_list(skb);
3867 
3868 		/* in case skb won't be segmented, point to itself */
3869 		skb->prev = skb;
3870 
3871 		skb = validate_xmit_skb(skb, dev, again);
3872 		if (!skb)
3873 			continue;
3874 
3875 		if (!head)
3876 			head = skb;
3877 		else
3878 			tail->next = skb;
3879 		/* If skb was segmented, skb->prev points to
3880 		 * the last segment. If not, it still contains skb.
3881 		 */
3882 		tail = skb->prev;
3883 	}
3884 	return head;
3885 }
3886 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3887 
3888 static void qdisc_pkt_len_init(struct sk_buff *skb)
3889 {
3890 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3891 
3892 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3893 
3894 	/* To get more precise estimation of bytes sent on wire,
3895 	 * we add to pkt_len the headers size of all segments
3896 	 */
3897 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3898 		u16 gso_segs = shinfo->gso_segs;
3899 		unsigned int hdr_len;
3900 
3901 		/* mac layer + network layer */
3902 		hdr_len = skb_transport_offset(skb);
3903 
3904 		/* + transport layer */
3905 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3906 			const struct tcphdr *th;
3907 			struct tcphdr _tcphdr;
3908 
3909 			th = skb_header_pointer(skb, hdr_len,
3910 						sizeof(_tcphdr), &_tcphdr);
3911 			if (likely(th))
3912 				hdr_len += __tcp_hdrlen(th);
3913 		} else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
3914 			struct udphdr _udphdr;
3915 
3916 			if (skb_header_pointer(skb, hdr_len,
3917 					       sizeof(_udphdr), &_udphdr))
3918 				hdr_len += sizeof(struct udphdr);
3919 		}
3920 
3921 		if (unlikely(shinfo->gso_type & SKB_GSO_DODGY)) {
3922 			int payload = skb->len - hdr_len;
3923 
3924 			/* Malicious packet. */
3925 			if (payload <= 0)
3926 				return;
3927 			gso_segs = DIV_ROUND_UP(payload, shinfo->gso_size);
3928 		}
3929 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3930 	}
3931 }
3932 
3933 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3934 			     struct sk_buff **to_free,
3935 			     struct netdev_queue *txq)
3936 {
3937 	int rc;
3938 
3939 	rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3940 	if (rc == NET_XMIT_SUCCESS)
3941 		trace_qdisc_enqueue(q, txq, skb);
3942 	return rc;
3943 }
3944 
3945 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3946 				 struct net_device *dev,
3947 				 struct netdev_queue *txq)
3948 {
3949 	spinlock_t *root_lock = qdisc_lock(q);
3950 	struct sk_buff *to_free = NULL;
3951 	bool contended;
3952 	int rc;
3953 
3954 	qdisc_calculate_pkt_len(skb, q);
3955 
3956 	tcf_set_drop_reason(skb, SKB_DROP_REASON_QDISC_DROP);
3957 
3958 	if (q->flags & TCQ_F_NOLOCK) {
3959 		if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3960 		    qdisc_run_begin(q)) {
3961 			/* Retest nolock_qdisc_is_empty() within the protection
3962 			 * of q->seqlock to protect from racing with requeuing.
3963 			 */
3964 			if (unlikely(!nolock_qdisc_is_empty(q))) {
3965 				rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3966 				__qdisc_run(q);
3967 				qdisc_run_end(q);
3968 
3969 				goto no_lock_out;
3970 			}
3971 
3972 			qdisc_bstats_cpu_update(q, skb);
3973 			if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3974 			    !nolock_qdisc_is_empty(q))
3975 				__qdisc_run(q);
3976 
3977 			qdisc_run_end(q);
3978 			return NET_XMIT_SUCCESS;
3979 		}
3980 
3981 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3982 		qdisc_run(q);
3983 
3984 no_lock_out:
3985 		if (unlikely(to_free))
3986 			kfree_skb_list_reason(to_free,
3987 					      tcf_get_drop_reason(to_free));
3988 		return rc;
3989 	}
3990 
3991 	if (unlikely(READ_ONCE(q->owner) == smp_processor_id())) {
3992 		kfree_skb_reason(skb, SKB_DROP_REASON_TC_RECLASSIFY_LOOP);
3993 		return NET_XMIT_DROP;
3994 	}
3995 	/*
3996 	 * Heuristic to force contended enqueues to serialize on a
3997 	 * separate lock before trying to get qdisc main lock.
3998 	 * This permits qdisc->running owner to get the lock more
3999 	 * often and dequeue packets faster.
4000 	 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
4001 	 * and then other tasks will only enqueue packets. The packets will be
4002 	 * sent after the qdisc owner is scheduled again. To prevent this
4003 	 * scenario the task always serialize on the lock.
4004 	 */
4005 	contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
4006 	if (unlikely(contended))
4007 		spin_lock(&q->busylock);
4008 
4009 	spin_lock(root_lock);
4010 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
4011 		__qdisc_drop(skb, &to_free);
4012 		rc = NET_XMIT_DROP;
4013 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
4014 		   qdisc_run_begin(q)) {
4015 		/*
4016 		 * This is a work-conserving queue; there are no old skbs
4017 		 * waiting to be sent out; and the qdisc is not running -
4018 		 * xmit the skb directly.
4019 		 */
4020 
4021 		qdisc_bstats_update(q, skb);
4022 
4023 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
4024 			if (unlikely(contended)) {
4025 				spin_unlock(&q->busylock);
4026 				contended = false;
4027 			}
4028 			__qdisc_run(q);
4029 		}
4030 
4031 		qdisc_run_end(q);
4032 		rc = NET_XMIT_SUCCESS;
4033 	} else {
4034 		WRITE_ONCE(q->owner, smp_processor_id());
4035 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4036 		WRITE_ONCE(q->owner, -1);
4037 		if (qdisc_run_begin(q)) {
4038 			if (unlikely(contended)) {
4039 				spin_unlock(&q->busylock);
4040 				contended = false;
4041 			}
4042 			__qdisc_run(q);
4043 			qdisc_run_end(q);
4044 		}
4045 	}
4046 	spin_unlock(root_lock);
4047 	if (unlikely(to_free))
4048 		kfree_skb_list_reason(to_free,
4049 				      tcf_get_drop_reason(to_free));
4050 	if (unlikely(contended))
4051 		spin_unlock(&q->busylock);
4052 	return rc;
4053 }
4054 
4055 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
4056 static void skb_update_prio(struct sk_buff *skb)
4057 {
4058 	const struct netprio_map *map;
4059 	const struct sock *sk;
4060 	unsigned int prioidx;
4061 
4062 	if (skb->priority)
4063 		return;
4064 	map = rcu_dereference_bh(skb->dev->priomap);
4065 	if (!map)
4066 		return;
4067 	sk = skb_to_full_sk(skb);
4068 	if (!sk)
4069 		return;
4070 
4071 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
4072 
4073 	if (prioidx < map->priomap_len)
4074 		skb->priority = map->priomap[prioidx];
4075 }
4076 #else
4077 #define skb_update_prio(skb)
4078 #endif
4079 
4080 /**
4081  *	dev_loopback_xmit - loop back @skb
4082  *	@net: network namespace this loopback is happening in
4083  *	@sk:  sk needed to be a netfilter okfn
4084  *	@skb: buffer to transmit
4085  */
4086 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
4087 {
4088 	skb_reset_mac_header(skb);
4089 	__skb_pull(skb, skb_network_offset(skb));
4090 	skb->pkt_type = PACKET_LOOPBACK;
4091 	if (skb->ip_summed == CHECKSUM_NONE)
4092 		skb->ip_summed = CHECKSUM_UNNECESSARY;
4093 	DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
4094 	skb_dst_force(skb);
4095 	netif_rx(skb);
4096 	return 0;
4097 }
4098 EXPORT_SYMBOL(dev_loopback_xmit);
4099 
4100 #ifdef CONFIG_NET_EGRESS
4101 static struct netdev_queue *
4102 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
4103 {
4104 	int qm = skb_get_queue_mapping(skb);
4105 
4106 	return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
4107 }
4108 
4109 #ifndef CONFIG_PREEMPT_RT
4110 static bool netdev_xmit_txqueue_skipped(void)
4111 {
4112 	return __this_cpu_read(softnet_data.xmit.skip_txqueue);
4113 }
4114 
4115 void netdev_xmit_skip_txqueue(bool skip)
4116 {
4117 	__this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
4118 }
4119 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
4120 
4121 #else
4122 static bool netdev_xmit_txqueue_skipped(void)
4123 {
4124 	return current->net_xmit.skip_txqueue;
4125 }
4126 
4127 void netdev_xmit_skip_txqueue(bool skip)
4128 {
4129 	current->net_xmit.skip_txqueue = skip;
4130 }
4131 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
4132 #endif
4133 #endif /* CONFIG_NET_EGRESS */
4134 
4135 #ifdef CONFIG_NET_XGRESS
4136 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb,
4137 		  enum skb_drop_reason *drop_reason)
4138 {
4139 	int ret = TC_ACT_UNSPEC;
4140 #ifdef CONFIG_NET_CLS_ACT
4141 	struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq);
4142 	struct tcf_result res;
4143 
4144 	if (!miniq)
4145 		return ret;
4146 
4147 	if (static_branch_unlikely(&tcf_bypass_check_needed_key)) {
4148 		if (tcf_block_bypass_sw(miniq->block))
4149 			return ret;
4150 	}
4151 
4152 	tc_skb_cb(skb)->mru = 0;
4153 	tc_skb_cb(skb)->post_ct = false;
4154 	tcf_set_drop_reason(skb, *drop_reason);
4155 
4156 	mini_qdisc_bstats_cpu_update(miniq, skb);
4157 	ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false);
4158 	/* Only tcf related quirks below. */
4159 	switch (ret) {
4160 	case TC_ACT_SHOT:
4161 		*drop_reason = tcf_get_drop_reason(skb);
4162 		mini_qdisc_qstats_cpu_drop(miniq);
4163 		break;
4164 	case TC_ACT_OK:
4165 	case TC_ACT_RECLASSIFY:
4166 		skb->tc_index = TC_H_MIN(res.classid);
4167 		break;
4168 	}
4169 #endif /* CONFIG_NET_CLS_ACT */
4170 	return ret;
4171 }
4172 
4173 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key);
4174 
4175 void tcx_inc(void)
4176 {
4177 	static_branch_inc(&tcx_needed_key);
4178 }
4179 
4180 void tcx_dec(void)
4181 {
4182 	static_branch_dec(&tcx_needed_key);
4183 }
4184 
4185 static __always_inline enum tcx_action_base
4186 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb,
4187 	const bool needs_mac)
4188 {
4189 	const struct bpf_mprog_fp *fp;
4190 	const struct bpf_prog *prog;
4191 	int ret = TCX_NEXT;
4192 
4193 	if (needs_mac)
4194 		__skb_push(skb, skb->mac_len);
4195 	bpf_mprog_foreach_prog(entry, fp, prog) {
4196 		bpf_compute_data_pointers(skb);
4197 		ret = bpf_prog_run(prog, skb);
4198 		if (ret != TCX_NEXT)
4199 			break;
4200 	}
4201 	if (needs_mac)
4202 		__skb_pull(skb, skb->mac_len);
4203 	return tcx_action_code(skb, ret);
4204 }
4205 
4206 static __always_inline struct sk_buff *
4207 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4208 		   struct net_device *orig_dev, bool *another)
4209 {
4210 	struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress);
4211 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS;
4212 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4213 	int sch_ret;
4214 
4215 	if (!entry)
4216 		return skb;
4217 
4218 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4219 	if (*pt_prev) {
4220 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4221 		*pt_prev = NULL;
4222 	}
4223 
4224 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4225 	tcx_set_ingress(skb, true);
4226 
4227 	if (static_branch_unlikely(&tcx_needed_key)) {
4228 		sch_ret = tcx_run(entry, skb, true);
4229 		if (sch_ret != TC_ACT_UNSPEC)
4230 			goto ingress_verdict;
4231 	}
4232 	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4233 ingress_verdict:
4234 	switch (sch_ret) {
4235 	case TC_ACT_REDIRECT:
4236 		/* skb_mac_header check was done by BPF, so we can safely
4237 		 * push the L2 header back before redirecting to another
4238 		 * netdev.
4239 		 */
4240 		__skb_push(skb, skb->mac_len);
4241 		if (skb_do_redirect(skb) == -EAGAIN) {
4242 			__skb_pull(skb, skb->mac_len);
4243 			*another = true;
4244 			break;
4245 		}
4246 		*ret = NET_RX_SUCCESS;
4247 		bpf_net_ctx_clear(bpf_net_ctx);
4248 		return NULL;
4249 	case TC_ACT_SHOT:
4250 		kfree_skb_reason(skb, drop_reason);
4251 		*ret = NET_RX_DROP;
4252 		bpf_net_ctx_clear(bpf_net_ctx);
4253 		return NULL;
4254 	/* used by tc_run */
4255 	case TC_ACT_STOLEN:
4256 	case TC_ACT_QUEUED:
4257 	case TC_ACT_TRAP:
4258 		consume_skb(skb);
4259 		fallthrough;
4260 	case TC_ACT_CONSUMED:
4261 		*ret = NET_RX_SUCCESS;
4262 		bpf_net_ctx_clear(bpf_net_ctx);
4263 		return NULL;
4264 	}
4265 	bpf_net_ctx_clear(bpf_net_ctx);
4266 
4267 	return skb;
4268 }
4269 
4270 static __always_inline struct sk_buff *
4271 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4272 {
4273 	struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress);
4274 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS;
4275 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4276 	int sch_ret;
4277 
4278 	if (!entry)
4279 		return skb;
4280 
4281 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4282 
4283 	/* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
4284 	 * already set by the caller.
4285 	 */
4286 	if (static_branch_unlikely(&tcx_needed_key)) {
4287 		sch_ret = tcx_run(entry, skb, false);
4288 		if (sch_ret != TC_ACT_UNSPEC)
4289 			goto egress_verdict;
4290 	}
4291 	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4292 egress_verdict:
4293 	switch (sch_ret) {
4294 	case TC_ACT_REDIRECT:
4295 		/* No need to push/pop skb's mac_header here on egress! */
4296 		skb_do_redirect(skb);
4297 		*ret = NET_XMIT_SUCCESS;
4298 		bpf_net_ctx_clear(bpf_net_ctx);
4299 		return NULL;
4300 	case TC_ACT_SHOT:
4301 		kfree_skb_reason(skb, drop_reason);
4302 		*ret = NET_XMIT_DROP;
4303 		bpf_net_ctx_clear(bpf_net_ctx);
4304 		return NULL;
4305 	/* used by tc_run */
4306 	case TC_ACT_STOLEN:
4307 	case TC_ACT_QUEUED:
4308 	case TC_ACT_TRAP:
4309 		consume_skb(skb);
4310 		fallthrough;
4311 	case TC_ACT_CONSUMED:
4312 		*ret = NET_XMIT_SUCCESS;
4313 		bpf_net_ctx_clear(bpf_net_ctx);
4314 		return NULL;
4315 	}
4316 	bpf_net_ctx_clear(bpf_net_ctx);
4317 
4318 	return skb;
4319 }
4320 #else
4321 static __always_inline struct sk_buff *
4322 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4323 		   struct net_device *orig_dev, bool *another)
4324 {
4325 	return skb;
4326 }
4327 
4328 static __always_inline struct sk_buff *
4329 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4330 {
4331 	return skb;
4332 }
4333 #endif /* CONFIG_NET_XGRESS */
4334 
4335 #ifdef CONFIG_XPS
4336 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4337 			       struct xps_dev_maps *dev_maps, unsigned int tci)
4338 {
4339 	int tc = netdev_get_prio_tc_map(dev, skb->priority);
4340 	struct xps_map *map;
4341 	int queue_index = -1;
4342 
4343 	if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4344 		return queue_index;
4345 
4346 	tci *= dev_maps->num_tc;
4347 	tci += tc;
4348 
4349 	map = rcu_dereference(dev_maps->attr_map[tci]);
4350 	if (map) {
4351 		if (map->len == 1)
4352 			queue_index = map->queues[0];
4353 		else
4354 			queue_index = map->queues[reciprocal_scale(
4355 						skb_get_hash(skb), map->len)];
4356 		if (unlikely(queue_index >= dev->real_num_tx_queues))
4357 			queue_index = -1;
4358 	}
4359 	return queue_index;
4360 }
4361 #endif
4362 
4363 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4364 			 struct sk_buff *skb)
4365 {
4366 #ifdef CONFIG_XPS
4367 	struct xps_dev_maps *dev_maps;
4368 	struct sock *sk = skb->sk;
4369 	int queue_index = -1;
4370 
4371 	if (!static_key_false(&xps_needed))
4372 		return -1;
4373 
4374 	rcu_read_lock();
4375 	if (!static_key_false(&xps_rxqs_needed))
4376 		goto get_cpus_map;
4377 
4378 	dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4379 	if (dev_maps) {
4380 		int tci = sk_rx_queue_get(sk);
4381 
4382 		if (tci >= 0)
4383 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4384 							  tci);
4385 	}
4386 
4387 get_cpus_map:
4388 	if (queue_index < 0) {
4389 		dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4390 		if (dev_maps) {
4391 			unsigned int tci = skb->sender_cpu - 1;
4392 
4393 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4394 							  tci);
4395 		}
4396 	}
4397 	rcu_read_unlock();
4398 
4399 	return queue_index;
4400 #else
4401 	return -1;
4402 #endif
4403 }
4404 
4405 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4406 		     struct net_device *sb_dev)
4407 {
4408 	return 0;
4409 }
4410 EXPORT_SYMBOL(dev_pick_tx_zero);
4411 
4412 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4413 		     struct net_device *sb_dev)
4414 {
4415 	struct sock *sk = skb->sk;
4416 	int queue_index = sk_tx_queue_get(sk);
4417 
4418 	sb_dev = sb_dev ? : dev;
4419 
4420 	if (queue_index < 0 || skb->ooo_okay ||
4421 	    queue_index >= dev->real_num_tx_queues) {
4422 		int new_index = get_xps_queue(dev, sb_dev, skb);
4423 
4424 		if (new_index < 0)
4425 			new_index = skb_tx_hash(dev, sb_dev, skb);
4426 
4427 		if (queue_index != new_index && sk &&
4428 		    sk_fullsock(sk) &&
4429 		    rcu_access_pointer(sk->sk_dst_cache))
4430 			sk_tx_queue_set(sk, new_index);
4431 
4432 		queue_index = new_index;
4433 	}
4434 
4435 	return queue_index;
4436 }
4437 EXPORT_SYMBOL(netdev_pick_tx);
4438 
4439 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4440 					 struct sk_buff *skb,
4441 					 struct net_device *sb_dev)
4442 {
4443 	int queue_index = 0;
4444 
4445 #ifdef CONFIG_XPS
4446 	u32 sender_cpu = skb->sender_cpu - 1;
4447 
4448 	if (sender_cpu >= (u32)NR_CPUS)
4449 		skb->sender_cpu = raw_smp_processor_id() + 1;
4450 #endif
4451 
4452 	if (dev->real_num_tx_queues != 1) {
4453 		const struct net_device_ops *ops = dev->netdev_ops;
4454 
4455 		if (ops->ndo_select_queue)
4456 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4457 		else
4458 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4459 
4460 		queue_index = netdev_cap_txqueue(dev, queue_index);
4461 	}
4462 
4463 	skb_set_queue_mapping(skb, queue_index);
4464 	return netdev_get_tx_queue(dev, queue_index);
4465 }
4466 
4467 /**
4468  * __dev_queue_xmit() - transmit a buffer
4469  * @skb:	buffer to transmit
4470  * @sb_dev:	suboordinate device used for L2 forwarding offload
4471  *
4472  * Queue a buffer for transmission to a network device. The caller must
4473  * have set the device and priority and built the buffer before calling
4474  * this function. The function can be called from an interrupt.
4475  *
4476  * When calling this method, interrupts MUST be enabled. This is because
4477  * the BH enable code must have IRQs enabled so that it will not deadlock.
4478  *
4479  * Regardless of the return value, the skb is consumed, so it is currently
4480  * difficult to retry a send to this method. (You can bump the ref count
4481  * before sending to hold a reference for retry if you are careful.)
4482  *
4483  * Return:
4484  * * 0				- buffer successfully transmitted
4485  * * positive qdisc return code	- NET_XMIT_DROP etc.
4486  * * negative errno		- other errors
4487  */
4488 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4489 {
4490 	struct net_device *dev = skb->dev;
4491 	struct netdev_queue *txq = NULL;
4492 	struct Qdisc *q;
4493 	int rc = -ENOMEM;
4494 	bool again = false;
4495 
4496 	skb_reset_mac_header(skb);
4497 	skb_assert_len(skb);
4498 
4499 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4500 		__skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4501 
4502 	/* Disable soft irqs for various locks below. Also
4503 	 * stops preemption for RCU.
4504 	 */
4505 	rcu_read_lock_bh();
4506 
4507 	skb_update_prio(skb);
4508 
4509 	qdisc_pkt_len_init(skb);
4510 	tcx_set_ingress(skb, false);
4511 #ifdef CONFIG_NET_EGRESS
4512 	if (static_branch_unlikely(&egress_needed_key)) {
4513 		if (nf_hook_egress_active()) {
4514 			skb = nf_hook_egress(skb, &rc, dev);
4515 			if (!skb)
4516 				goto out;
4517 		}
4518 
4519 		netdev_xmit_skip_txqueue(false);
4520 
4521 		nf_skip_egress(skb, true);
4522 		skb = sch_handle_egress(skb, &rc, dev);
4523 		if (!skb)
4524 			goto out;
4525 		nf_skip_egress(skb, false);
4526 
4527 		if (netdev_xmit_txqueue_skipped())
4528 			txq = netdev_tx_queue_mapping(dev, skb);
4529 	}
4530 #endif
4531 	/* If device/qdisc don't need skb->dst, release it right now while
4532 	 * its hot in this cpu cache.
4533 	 */
4534 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4535 		skb_dst_drop(skb);
4536 	else
4537 		skb_dst_force(skb);
4538 
4539 	if (!txq)
4540 		txq = netdev_core_pick_tx(dev, skb, sb_dev);
4541 
4542 	q = rcu_dereference_bh(txq->qdisc);
4543 
4544 	trace_net_dev_queue(skb);
4545 	if (q->enqueue) {
4546 		rc = __dev_xmit_skb(skb, q, dev, txq);
4547 		goto out;
4548 	}
4549 
4550 	/* The device has no queue. Common case for software devices:
4551 	 * loopback, all the sorts of tunnels...
4552 
4553 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4554 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4555 	 * counters.)
4556 	 * However, it is possible, that they rely on protection
4557 	 * made by us here.
4558 
4559 	 * Check this and shot the lock. It is not prone from deadlocks.
4560 	 *Either shot noqueue qdisc, it is even simpler 8)
4561 	 */
4562 	if (dev->flags & IFF_UP) {
4563 		int cpu = smp_processor_id(); /* ok because BHs are off */
4564 
4565 		/* Other cpus might concurrently change txq->xmit_lock_owner
4566 		 * to -1 or to their cpu id, but not to our id.
4567 		 */
4568 		if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4569 			if (dev_xmit_recursion())
4570 				goto recursion_alert;
4571 
4572 			skb = validate_xmit_skb(skb, dev, &again);
4573 			if (!skb)
4574 				goto out;
4575 
4576 			HARD_TX_LOCK(dev, txq, cpu);
4577 
4578 			if (!netif_xmit_stopped(txq)) {
4579 				dev_xmit_recursion_inc();
4580 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4581 				dev_xmit_recursion_dec();
4582 				if (dev_xmit_complete(rc)) {
4583 					HARD_TX_UNLOCK(dev, txq);
4584 					goto out;
4585 				}
4586 			}
4587 			HARD_TX_UNLOCK(dev, txq);
4588 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4589 					     dev->name);
4590 		} else {
4591 			/* Recursion is detected! It is possible,
4592 			 * unfortunately
4593 			 */
4594 recursion_alert:
4595 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4596 					     dev->name);
4597 		}
4598 	}
4599 
4600 	rc = -ENETDOWN;
4601 	rcu_read_unlock_bh();
4602 
4603 	dev_core_stats_tx_dropped_inc(dev);
4604 	kfree_skb_list(skb);
4605 	return rc;
4606 out:
4607 	rcu_read_unlock_bh();
4608 	return rc;
4609 }
4610 EXPORT_SYMBOL(__dev_queue_xmit);
4611 
4612 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4613 {
4614 	struct net_device *dev = skb->dev;
4615 	struct sk_buff *orig_skb = skb;
4616 	struct netdev_queue *txq;
4617 	int ret = NETDEV_TX_BUSY;
4618 	bool again = false;
4619 
4620 	if (unlikely(!netif_running(dev) ||
4621 		     !netif_carrier_ok(dev)))
4622 		goto drop;
4623 
4624 	skb = validate_xmit_skb_list(skb, dev, &again);
4625 	if (skb != orig_skb)
4626 		goto drop;
4627 
4628 	skb_set_queue_mapping(skb, queue_id);
4629 	txq = skb_get_tx_queue(dev, skb);
4630 
4631 	local_bh_disable();
4632 
4633 	dev_xmit_recursion_inc();
4634 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4635 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4636 		ret = netdev_start_xmit(skb, dev, txq, false);
4637 	HARD_TX_UNLOCK(dev, txq);
4638 	dev_xmit_recursion_dec();
4639 
4640 	local_bh_enable();
4641 	return ret;
4642 drop:
4643 	dev_core_stats_tx_dropped_inc(dev);
4644 	kfree_skb_list(skb);
4645 	return NET_XMIT_DROP;
4646 }
4647 EXPORT_SYMBOL(__dev_direct_xmit);
4648 
4649 /*************************************************************************
4650  *			Receiver routines
4651  *************************************************************************/
4652 static DEFINE_PER_CPU(struct task_struct *, backlog_napi);
4653 
4654 int weight_p __read_mostly = 64;           /* old backlog weight */
4655 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4656 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4657 
4658 /* Called with irq disabled */
4659 static inline void ____napi_schedule(struct softnet_data *sd,
4660 				     struct napi_struct *napi)
4661 {
4662 	struct task_struct *thread;
4663 
4664 	lockdep_assert_irqs_disabled();
4665 
4666 	if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4667 		/* Paired with smp_mb__before_atomic() in
4668 		 * napi_enable()/dev_set_threaded().
4669 		 * Use READ_ONCE() to guarantee a complete
4670 		 * read on napi->thread. Only call
4671 		 * wake_up_process() when it's not NULL.
4672 		 */
4673 		thread = READ_ONCE(napi->thread);
4674 		if (thread) {
4675 			if (use_backlog_threads() && thread == raw_cpu_read(backlog_napi))
4676 				goto use_local_napi;
4677 
4678 			set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4679 			wake_up_process(thread);
4680 			return;
4681 		}
4682 	}
4683 
4684 use_local_napi:
4685 	list_add_tail(&napi->poll_list, &sd->poll_list);
4686 	WRITE_ONCE(napi->list_owner, smp_processor_id());
4687 	/* If not called from net_rx_action()
4688 	 * we have to raise NET_RX_SOFTIRQ.
4689 	 */
4690 	if (!sd->in_net_rx_action)
4691 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4692 }
4693 
4694 #ifdef CONFIG_RPS
4695 
4696 struct static_key_false rps_needed __read_mostly;
4697 EXPORT_SYMBOL(rps_needed);
4698 struct static_key_false rfs_needed __read_mostly;
4699 EXPORT_SYMBOL(rfs_needed);
4700 
4701 static struct rps_dev_flow *
4702 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4703 	    struct rps_dev_flow *rflow, u16 next_cpu)
4704 {
4705 	if (next_cpu < nr_cpu_ids) {
4706 		u32 head;
4707 #ifdef CONFIG_RFS_ACCEL
4708 		struct netdev_rx_queue *rxqueue;
4709 		struct rps_dev_flow_table *flow_table;
4710 		struct rps_dev_flow *old_rflow;
4711 		u16 rxq_index;
4712 		u32 flow_id;
4713 		int rc;
4714 
4715 		/* Should we steer this flow to a different hardware queue? */
4716 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4717 		    !(dev->features & NETIF_F_NTUPLE))
4718 			goto out;
4719 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4720 		if (rxq_index == skb_get_rx_queue(skb))
4721 			goto out;
4722 
4723 		rxqueue = dev->_rx + rxq_index;
4724 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4725 		if (!flow_table)
4726 			goto out;
4727 		flow_id = skb_get_hash(skb) & flow_table->mask;
4728 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4729 							rxq_index, flow_id);
4730 		if (rc < 0)
4731 			goto out;
4732 		old_rflow = rflow;
4733 		rflow = &flow_table->flows[flow_id];
4734 		WRITE_ONCE(rflow->filter, rc);
4735 		if (old_rflow->filter == rc)
4736 			WRITE_ONCE(old_rflow->filter, RPS_NO_FILTER);
4737 	out:
4738 #endif
4739 		head = READ_ONCE(per_cpu(softnet_data, next_cpu).input_queue_head);
4740 		rps_input_queue_tail_save(&rflow->last_qtail, head);
4741 	}
4742 
4743 	WRITE_ONCE(rflow->cpu, next_cpu);
4744 	return rflow;
4745 }
4746 
4747 /*
4748  * get_rps_cpu is called from netif_receive_skb and returns the target
4749  * CPU from the RPS map of the receiving queue for a given skb.
4750  * rcu_read_lock must be held on entry.
4751  */
4752 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4753 		       struct rps_dev_flow **rflowp)
4754 {
4755 	const struct rps_sock_flow_table *sock_flow_table;
4756 	struct netdev_rx_queue *rxqueue = dev->_rx;
4757 	struct rps_dev_flow_table *flow_table;
4758 	struct rps_map *map;
4759 	int cpu = -1;
4760 	u32 tcpu;
4761 	u32 hash;
4762 
4763 	if (skb_rx_queue_recorded(skb)) {
4764 		u16 index = skb_get_rx_queue(skb);
4765 
4766 		if (unlikely(index >= dev->real_num_rx_queues)) {
4767 			WARN_ONCE(dev->real_num_rx_queues > 1,
4768 				  "%s received packet on queue %u, but number "
4769 				  "of RX queues is %u\n",
4770 				  dev->name, index, dev->real_num_rx_queues);
4771 			goto done;
4772 		}
4773 		rxqueue += index;
4774 	}
4775 
4776 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4777 
4778 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4779 	map = rcu_dereference(rxqueue->rps_map);
4780 	if (!flow_table && !map)
4781 		goto done;
4782 
4783 	skb_reset_network_header(skb);
4784 	hash = skb_get_hash(skb);
4785 	if (!hash)
4786 		goto done;
4787 
4788 	sock_flow_table = rcu_dereference(net_hotdata.rps_sock_flow_table);
4789 	if (flow_table && sock_flow_table) {
4790 		struct rps_dev_flow *rflow;
4791 		u32 next_cpu;
4792 		u32 ident;
4793 
4794 		/* First check into global flow table if there is a match.
4795 		 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
4796 		 */
4797 		ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
4798 		if ((ident ^ hash) & ~net_hotdata.rps_cpu_mask)
4799 			goto try_rps;
4800 
4801 		next_cpu = ident & net_hotdata.rps_cpu_mask;
4802 
4803 		/* OK, now we know there is a match,
4804 		 * we can look at the local (per receive queue) flow table
4805 		 */
4806 		rflow = &flow_table->flows[hash & flow_table->mask];
4807 		tcpu = rflow->cpu;
4808 
4809 		/*
4810 		 * If the desired CPU (where last recvmsg was done) is
4811 		 * different from current CPU (one in the rx-queue flow
4812 		 * table entry), switch if one of the following holds:
4813 		 *   - Current CPU is unset (>= nr_cpu_ids).
4814 		 *   - Current CPU is offline.
4815 		 *   - The current CPU's queue tail has advanced beyond the
4816 		 *     last packet that was enqueued using this table entry.
4817 		 *     This guarantees that all previous packets for the flow
4818 		 *     have been dequeued, thus preserving in order delivery.
4819 		 */
4820 		if (unlikely(tcpu != next_cpu) &&
4821 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4822 		     ((int)(READ_ONCE(per_cpu(softnet_data, tcpu).input_queue_head) -
4823 		      rflow->last_qtail)) >= 0)) {
4824 			tcpu = next_cpu;
4825 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4826 		}
4827 
4828 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4829 			*rflowp = rflow;
4830 			cpu = tcpu;
4831 			goto done;
4832 		}
4833 	}
4834 
4835 try_rps:
4836 
4837 	if (map) {
4838 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4839 		if (cpu_online(tcpu)) {
4840 			cpu = tcpu;
4841 			goto done;
4842 		}
4843 	}
4844 
4845 done:
4846 	return cpu;
4847 }
4848 
4849 #ifdef CONFIG_RFS_ACCEL
4850 
4851 /**
4852  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4853  * @dev: Device on which the filter was set
4854  * @rxq_index: RX queue index
4855  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4856  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4857  *
4858  * Drivers that implement ndo_rx_flow_steer() should periodically call
4859  * this function for each installed filter and remove the filters for
4860  * which it returns %true.
4861  */
4862 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4863 			 u32 flow_id, u16 filter_id)
4864 {
4865 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4866 	struct rps_dev_flow_table *flow_table;
4867 	struct rps_dev_flow *rflow;
4868 	bool expire = true;
4869 	unsigned int cpu;
4870 
4871 	rcu_read_lock();
4872 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4873 	if (flow_table && flow_id <= flow_table->mask) {
4874 		rflow = &flow_table->flows[flow_id];
4875 		cpu = READ_ONCE(rflow->cpu);
4876 		if (READ_ONCE(rflow->filter) == filter_id && cpu < nr_cpu_ids &&
4877 		    ((int)(READ_ONCE(per_cpu(softnet_data, cpu).input_queue_head) -
4878 			   READ_ONCE(rflow->last_qtail)) <
4879 		     (int)(10 * flow_table->mask)))
4880 			expire = false;
4881 	}
4882 	rcu_read_unlock();
4883 	return expire;
4884 }
4885 EXPORT_SYMBOL(rps_may_expire_flow);
4886 
4887 #endif /* CONFIG_RFS_ACCEL */
4888 
4889 /* Called from hardirq (IPI) context */
4890 static void rps_trigger_softirq(void *data)
4891 {
4892 	struct softnet_data *sd = data;
4893 
4894 	____napi_schedule(sd, &sd->backlog);
4895 	sd->received_rps++;
4896 }
4897 
4898 #endif /* CONFIG_RPS */
4899 
4900 /* Called from hardirq (IPI) context */
4901 static void trigger_rx_softirq(void *data)
4902 {
4903 	struct softnet_data *sd = data;
4904 
4905 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4906 	smp_store_release(&sd->defer_ipi_scheduled, 0);
4907 }
4908 
4909 /*
4910  * After we queued a packet into sd->input_pkt_queue,
4911  * we need to make sure this queue is serviced soon.
4912  *
4913  * - If this is another cpu queue, link it to our rps_ipi_list,
4914  *   and make sure we will process rps_ipi_list from net_rx_action().
4915  *
4916  * - If this is our own queue, NAPI schedule our backlog.
4917  *   Note that this also raises NET_RX_SOFTIRQ.
4918  */
4919 static void napi_schedule_rps(struct softnet_data *sd)
4920 {
4921 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4922 
4923 #ifdef CONFIG_RPS
4924 	if (sd != mysd) {
4925 		if (use_backlog_threads()) {
4926 			__napi_schedule_irqoff(&sd->backlog);
4927 			return;
4928 		}
4929 
4930 		sd->rps_ipi_next = mysd->rps_ipi_list;
4931 		mysd->rps_ipi_list = sd;
4932 
4933 		/* If not called from net_rx_action() or napi_threaded_poll()
4934 		 * we have to raise NET_RX_SOFTIRQ.
4935 		 */
4936 		if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
4937 			__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4938 		return;
4939 	}
4940 #endif /* CONFIG_RPS */
4941 	__napi_schedule_irqoff(&mysd->backlog);
4942 }
4943 
4944 void kick_defer_list_purge(struct softnet_data *sd, unsigned int cpu)
4945 {
4946 	unsigned long flags;
4947 
4948 	if (use_backlog_threads()) {
4949 		backlog_lock_irq_save(sd, &flags);
4950 
4951 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4952 			__napi_schedule_irqoff(&sd->backlog);
4953 
4954 		backlog_unlock_irq_restore(sd, &flags);
4955 
4956 	} else if (!cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) {
4957 		smp_call_function_single_async(cpu, &sd->defer_csd);
4958 	}
4959 }
4960 
4961 #ifdef CONFIG_NET_FLOW_LIMIT
4962 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4963 #endif
4964 
4965 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4966 {
4967 #ifdef CONFIG_NET_FLOW_LIMIT
4968 	struct sd_flow_limit *fl;
4969 	struct softnet_data *sd;
4970 	unsigned int old_flow, new_flow;
4971 
4972 	if (qlen < (READ_ONCE(net_hotdata.max_backlog) >> 1))
4973 		return false;
4974 
4975 	sd = this_cpu_ptr(&softnet_data);
4976 
4977 	rcu_read_lock();
4978 	fl = rcu_dereference(sd->flow_limit);
4979 	if (fl) {
4980 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4981 		old_flow = fl->history[fl->history_head];
4982 		fl->history[fl->history_head] = new_flow;
4983 
4984 		fl->history_head++;
4985 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4986 
4987 		if (likely(fl->buckets[old_flow]))
4988 			fl->buckets[old_flow]--;
4989 
4990 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4991 			fl->count++;
4992 			rcu_read_unlock();
4993 			return true;
4994 		}
4995 	}
4996 	rcu_read_unlock();
4997 #endif
4998 	return false;
4999 }
5000 
5001 /*
5002  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
5003  * queue (may be a remote CPU queue).
5004  */
5005 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
5006 			      unsigned int *qtail)
5007 {
5008 	enum skb_drop_reason reason;
5009 	struct softnet_data *sd;
5010 	unsigned long flags;
5011 	unsigned int qlen;
5012 	int max_backlog;
5013 	u32 tail;
5014 
5015 	reason = SKB_DROP_REASON_DEV_READY;
5016 	if (!netif_running(skb->dev))
5017 		goto bad_dev;
5018 
5019 	reason = SKB_DROP_REASON_CPU_BACKLOG;
5020 	sd = &per_cpu(softnet_data, cpu);
5021 
5022 	qlen = skb_queue_len_lockless(&sd->input_pkt_queue);
5023 	max_backlog = READ_ONCE(net_hotdata.max_backlog);
5024 	if (unlikely(qlen > max_backlog))
5025 		goto cpu_backlog_drop;
5026 	backlog_lock_irq_save(sd, &flags);
5027 	qlen = skb_queue_len(&sd->input_pkt_queue);
5028 	if (qlen <= max_backlog && !skb_flow_limit(skb, qlen)) {
5029 		if (!qlen) {
5030 			/* Schedule NAPI for backlog device. We can use
5031 			 * non atomic operation as we own the queue lock.
5032 			 */
5033 			if (!__test_and_set_bit(NAPI_STATE_SCHED,
5034 						&sd->backlog.state))
5035 				napi_schedule_rps(sd);
5036 		}
5037 		__skb_queue_tail(&sd->input_pkt_queue, skb);
5038 		tail = rps_input_queue_tail_incr(sd);
5039 		backlog_unlock_irq_restore(sd, &flags);
5040 
5041 		/* save the tail outside of the critical section */
5042 		rps_input_queue_tail_save(qtail, tail);
5043 		return NET_RX_SUCCESS;
5044 	}
5045 
5046 	backlog_unlock_irq_restore(sd, &flags);
5047 
5048 cpu_backlog_drop:
5049 	atomic_inc(&sd->dropped);
5050 bad_dev:
5051 	dev_core_stats_rx_dropped_inc(skb->dev);
5052 	kfree_skb_reason(skb, reason);
5053 	return NET_RX_DROP;
5054 }
5055 
5056 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
5057 {
5058 	struct net_device *dev = skb->dev;
5059 	struct netdev_rx_queue *rxqueue;
5060 
5061 	rxqueue = dev->_rx;
5062 
5063 	if (skb_rx_queue_recorded(skb)) {
5064 		u16 index = skb_get_rx_queue(skb);
5065 
5066 		if (unlikely(index >= dev->real_num_rx_queues)) {
5067 			WARN_ONCE(dev->real_num_rx_queues > 1,
5068 				  "%s received packet on queue %u, but number "
5069 				  "of RX queues is %u\n",
5070 				  dev->name, index, dev->real_num_rx_queues);
5071 
5072 			return rxqueue; /* Return first rxqueue */
5073 		}
5074 		rxqueue += index;
5075 	}
5076 	return rxqueue;
5077 }
5078 
5079 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
5080 			     const struct bpf_prog *xdp_prog)
5081 {
5082 	void *orig_data, *orig_data_end, *hard_start;
5083 	struct netdev_rx_queue *rxqueue;
5084 	bool orig_bcast, orig_host;
5085 	u32 mac_len, frame_sz;
5086 	__be16 orig_eth_type;
5087 	struct ethhdr *eth;
5088 	u32 metalen, act;
5089 	int off;
5090 
5091 	/* The XDP program wants to see the packet starting at the MAC
5092 	 * header.
5093 	 */
5094 	mac_len = skb->data - skb_mac_header(skb);
5095 	hard_start = skb->data - skb_headroom(skb);
5096 
5097 	/* SKB "head" area always have tailroom for skb_shared_info */
5098 	frame_sz = (void *)skb_end_pointer(skb) - hard_start;
5099 	frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
5100 
5101 	rxqueue = netif_get_rxqueue(skb);
5102 	xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
5103 	xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
5104 			 skb_headlen(skb) + mac_len, true);
5105 	if (skb_is_nonlinear(skb)) {
5106 		skb_shinfo(skb)->xdp_frags_size = skb->data_len;
5107 		xdp_buff_set_frags_flag(xdp);
5108 	} else {
5109 		xdp_buff_clear_frags_flag(xdp);
5110 	}
5111 
5112 	orig_data_end = xdp->data_end;
5113 	orig_data = xdp->data;
5114 	eth = (struct ethhdr *)xdp->data;
5115 	orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
5116 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
5117 	orig_eth_type = eth->h_proto;
5118 
5119 	act = bpf_prog_run_xdp(xdp_prog, xdp);
5120 
5121 	/* check if bpf_xdp_adjust_head was used */
5122 	off = xdp->data - orig_data;
5123 	if (off) {
5124 		if (off > 0)
5125 			__skb_pull(skb, off);
5126 		else if (off < 0)
5127 			__skb_push(skb, -off);
5128 
5129 		skb->mac_header += off;
5130 		skb_reset_network_header(skb);
5131 	}
5132 
5133 	/* check if bpf_xdp_adjust_tail was used */
5134 	off = xdp->data_end - orig_data_end;
5135 	if (off != 0) {
5136 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
5137 		skb->len += off; /* positive on grow, negative on shrink */
5138 	}
5139 
5140 	/* XDP frag metadata (e.g. nr_frags) are updated in eBPF helpers
5141 	 * (e.g. bpf_xdp_adjust_tail), we need to update data_len here.
5142 	 */
5143 	if (xdp_buff_has_frags(xdp))
5144 		skb->data_len = skb_shinfo(skb)->xdp_frags_size;
5145 	else
5146 		skb->data_len = 0;
5147 
5148 	/* check if XDP changed eth hdr such SKB needs update */
5149 	eth = (struct ethhdr *)xdp->data;
5150 	if ((orig_eth_type != eth->h_proto) ||
5151 	    (orig_host != ether_addr_equal_64bits(eth->h_dest,
5152 						  skb->dev->dev_addr)) ||
5153 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
5154 		__skb_push(skb, ETH_HLEN);
5155 		skb->pkt_type = PACKET_HOST;
5156 		skb->protocol = eth_type_trans(skb, skb->dev);
5157 	}
5158 
5159 	/* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
5160 	 * before calling us again on redirect path. We do not call do_redirect
5161 	 * as we leave that up to the caller.
5162 	 *
5163 	 * Caller is responsible for managing lifetime of skb (i.e. calling
5164 	 * kfree_skb in response to actions it cannot handle/XDP_DROP).
5165 	 */
5166 	switch (act) {
5167 	case XDP_REDIRECT:
5168 	case XDP_TX:
5169 		__skb_push(skb, mac_len);
5170 		break;
5171 	case XDP_PASS:
5172 		metalen = xdp->data - xdp->data_meta;
5173 		if (metalen)
5174 			skb_metadata_set(skb, metalen);
5175 		break;
5176 	}
5177 
5178 	return act;
5179 }
5180 
5181 static int
5182 netif_skb_check_for_xdp(struct sk_buff **pskb, const struct bpf_prog *prog)
5183 {
5184 	struct sk_buff *skb = *pskb;
5185 	int err, hroom, troom;
5186 
5187 	if (!skb_cow_data_for_xdp(this_cpu_read(system_page_pool), pskb, prog))
5188 		return 0;
5189 
5190 	/* In case we have to go down the path and also linearize,
5191 	 * then lets do the pskb_expand_head() work just once here.
5192 	 */
5193 	hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
5194 	troom = skb->tail + skb->data_len - skb->end;
5195 	err = pskb_expand_head(skb,
5196 			       hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
5197 			       troom > 0 ? troom + 128 : 0, GFP_ATOMIC);
5198 	if (err)
5199 		return err;
5200 
5201 	return skb_linearize(skb);
5202 }
5203 
5204 static u32 netif_receive_generic_xdp(struct sk_buff **pskb,
5205 				     struct xdp_buff *xdp,
5206 				     const struct bpf_prog *xdp_prog)
5207 {
5208 	struct sk_buff *skb = *pskb;
5209 	u32 mac_len, act = XDP_DROP;
5210 
5211 	/* Reinjected packets coming from act_mirred or similar should
5212 	 * not get XDP generic processing.
5213 	 */
5214 	if (skb_is_redirected(skb))
5215 		return XDP_PASS;
5216 
5217 	/* XDP packets must have sufficient headroom of XDP_PACKET_HEADROOM
5218 	 * bytes. This is the guarantee that also native XDP provides,
5219 	 * thus we need to do it here as well.
5220 	 */
5221 	mac_len = skb->data - skb_mac_header(skb);
5222 	__skb_push(skb, mac_len);
5223 
5224 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
5225 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
5226 		if (netif_skb_check_for_xdp(pskb, xdp_prog))
5227 			goto do_drop;
5228 	}
5229 
5230 	__skb_pull(*pskb, mac_len);
5231 
5232 	act = bpf_prog_run_generic_xdp(*pskb, xdp, xdp_prog);
5233 	switch (act) {
5234 	case XDP_REDIRECT:
5235 	case XDP_TX:
5236 	case XDP_PASS:
5237 		break;
5238 	default:
5239 		bpf_warn_invalid_xdp_action((*pskb)->dev, xdp_prog, act);
5240 		fallthrough;
5241 	case XDP_ABORTED:
5242 		trace_xdp_exception((*pskb)->dev, xdp_prog, act);
5243 		fallthrough;
5244 	case XDP_DROP:
5245 	do_drop:
5246 		kfree_skb(*pskb);
5247 		break;
5248 	}
5249 
5250 	return act;
5251 }
5252 
5253 /* When doing generic XDP we have to bypass the qdisc layer and the
5254  * network taps in order to match in-driver-XDP behavior. This also means
5255  * that XDP packets are able to starve other packets going through a qdisc,
5256  * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
5257  * queues, so they do not have this starvation issue.
5258  */
5259 void generic_xdp_tx(struct sk_buff *skb, const struct bpf_prog *xdp_prog)
5260 {
5261 	struct net_device *dev = skb->dev;
5262 	struct netdev_queue *txq;
5263 	bool free_skb = true;
5264 	int cpu, rc;
5265 
5266 	txq = netdev_core_pick_tx(dev, skb, NULL);
5267 	cpu = smp_processor_id();
5268 	HARD_TX_LOCK(dev, txq, cpu);
5269 	if (!netif_xmit_frozen_or_drv_stopped(txq)) {
5270 		rc = netdev_start_xmit(skb, dev, txq, 0);
5271 		if (dev_xmit_complete(rc))
5272 			free_skb = false;
5273 	}
5274 	HARD_TX_UNLOCK(dev, txq);
5275 	if (free_skb) {
5276 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
5277 		dev_core_stats_tx_dropped_inc(dev);
5278 		kfree_skb(skb);
5279 	}
5280 }
5281 
5282 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
5283 
5284 int do_xdp_generic(const struct bpf_prog *xdp_prog, struct sk_buff **pskb)
5285 {
5286 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
5287 
5288 	if (xdp_prog) {
5289 		struct xdp_buff xdp;
5290 		u32 act;
5291 		int err;
5292 
5293 		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
5294 		act = netif_receive_generic_xdp(pskb, &xdp, xdp_prog);
5295 		if (act != XDP_PASS) {
5296 			switch (act) {
5297 			case XDP_REDIRECT:
5298 				err = xdp_do_generic_redirect((*pskb)->dev, *pskb,
5299 							      &xdp, xdp_prog);
5300 				if (err)
5301 					goto out_redir;
5302 				break;
5303 			case XDP_TX:
5304 				generic_xdp_tx(*pskb, xdp_prog);
5305 				break;
5306 			}
5307 			bpf_net_ctx_clear(bpf_net_ctx);
5308 			return XDP_DROP;
5309 		}
5310 		bpf_net_ctx_clear(bpf_net_ctx);
5311 	}
5312 	return XDP_PASS;
5313 out_redir:
5314 	bpf_net_ctx_clear(bpf_net_ctx);
5315 	kfree_skb_reason(*pskb, SKB_DROP_REASON_XDP);
5316 	return XDP_DROP;
5317 }
5318 EXPORT_SYMBOL_GPL(do_xdp_generic);
5319 
5320 static int netif_rx_internal(struct sk_buff *skb)
5321 {
5322 	int ret;
5323 
5324 	net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5325 
5326 	trace_netif_rx(skb);
5327 
5328 #ifdef CONFIG_RPS
5329 	if (static_branch_unlikely(&rps_needed)) {
5330 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5331 		int cpu;
5332 
5333 		rcu_read_lock();
5334 
5335 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
5336 		if (cpu < 0)
5337 			cpu = smp_processor_id();
5338 
5339 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5340 
5341 		rcu_read_unlock();
5342 	} else
5343 #endif
5344 	{
5345 		unsigned int qtail;
5346 
5347 		ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
5348 	}
5349 	return ret;
5350 }
5351 
5352 /**
5353  *	__netif_rx	-	Slightly optimized version of netif_rx
5354  *	@skb: buffer to post
5355  *
5356  *	This behaves as netif_rx except that it does not disable bottom halves.
5357  *	As a result this function may only be invoked from the interrupt context
5358  *	(either hard or soft interrupt).
5359  */
5360 int __netif_rx(struct sk_buff *skb)
5361 {
5362 	int ret;
5363 
5364 	lockdep_assert_once(hardirq_count() | softirq_count());
5365 
5366 	trace_netif_rx_entry(skb);
5367 	ret = netif_rx_internal(skb);
5368 	trace_netif_rx_exit(ret);
5369 	return ret;
5370 }
5371 EXPORT_SYMBOL(__netif_rx);
5372 
5373 /**
5374  *	netif_rx	-	post buffer to the network code
5375  *	@skb: buffer to post
5376  *
5377  *	This function receives a packet from a device driver and queues it for
5378  *	the upper (protocol) levels to process via the backlog NAPI device. It
5379  *	always succeeds. The buffer may be dropped during processing for
5380  *	congestion control or by the protocol layers.
5381  *	The network buffer is passed via the backlog NAPI device. Modern NIC
5382  *	driver should use NAPI and GRO.
5383  *	This function can used from interrupt and from process context. The
5384  *	caller from process context must not disable interrupts before invoking
5385  *	this function.
5386  *
5387  *	return values:
5388  *	NET_RX_SUCCESS	(no congestion)
5389  *	NET_RX_DROP     (packet was dropped)
5390  *
5391  */
5392 int netif_rx(struct sk_buff *skb)
5393 {
5394 	bool need_bh_off = !(hardirq_count() | softirq_count());
5395 	int ret;
5396 
5397 	if (need_bh_off)
5398 		local_bh_disable();
5399 	trace_netif_rx_entry(skb);
5400 	ret = netif_rx_internal(skb);
5401 	trace_netif_rx_exit(ret);
5402 	if (need_bh_off)
5403 		local_bh_enable();
5404 	return ret;
5405 }
5406 EXPORT_SYMBOL(netif_rx);
5407 
5408 static __latent_entropy void net_tx_action(void)
5409 {
5410 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5411 
5412 	if (sd->completion_queue) {
5413 		struct sk_buff *clist;
5414 
5415 		local_irq_disable();
5416 		clist = sd->completion_queue;
5417 		sd->completion_queue = NULL;
5418 		local_irq_enable();
5419 
5420 		while (clist) {
5421 			struct sk_buff *skb = clist;
5422 
5423 			clist = clist->next;
5424 
5425 			WARN_ON(refcount_read(&skb->users));
5426 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
5427 				trace_consume_skb(skb, net_tx_action);
5428 			else
5429 				trace_kfree_skb(skb, net_tx_action,
5430 						get_kfree_skb_cb(skb)->reason, NULL);
5431 
5432 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5433 				__kfree_skb(skb);
5434 			else
5435 				__napi_kfree_skb(skb,
5436 						 get_kfree_skb_cb(skb)->reason);
5437 		}
5438 	}
5439 
5440 	if (sd->output_queue) {
5441 		struct Qdisc *head;
5442 
5443 		local_irq_disable();
5444 		head = sd->output_queue;
5445 		sd->output_queue = NULL;
5446 		sd->output_queue_tailp = &sd->output_queue;
5447 		local_irq_enable();
5448 
5449 		rcu_read_lock();
5450 
5451 		while (head) {
5452 			struct Qdisc *q = head;
5453 			spinlock_t *root_lock = NULL;
5454 
5455 			head = head->next_sched;
5456 
5457 			/* We need to make sure head->next_sched is read
5458 			 * before clearing __QDISC_STATE_SCHED
5459 			 */
5460 			smp_mb__before_atomic();
5461 
5462 			if (!(q->flags & TCQ_F_NOLOCK)) {
5463 				root_lock = qdisc_lock(q);
5464 				spin_lock(root_lock);
5465 			} else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5466 						     &q->state))) {
5467 				/* There is a synchronize_net() between
5468 				 * STATE_DEACTIVATED flag being set and
5469 				 * qdisc_reset()/some_qdisc_is_busy() in
5470 				 * dev_deactivate(), so we can safely bail out
5471 				 * early here to avoid data race between
5472 				 * qdisc_deactivate() and some_qdisc_is_busy()
5473 				 * for lockless qdisc.
5474 				 */
5475 				clear_bit(__QDISC_STATE_SCHED, &q->state);
5476 				continue;
5477 			}
5478 
5479 			clear_bit(__QDISC_STATE_SCHED, &q->state);
5480 			qdisc_run(q);
5481 			if (root_lock)
5482 				spin_unlock(root_lock);
5483 		}
5484 
5485 		rcu_read_unlock();
5486 	}
5487 
5488 	xfrm_dev_backlog(sd);
5489 }
5490 
5491 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5492 /* This hook is defined here for ATM LANE */
5493 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5494 			     unsigned char *addr) __read_mostly;
5495 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5496 #endif
5497 
5498 /**
5499  *	netdev_is_rx_handler_busy - check if receive handler is registered
5500  *	@dev: device to check
5501  *
5502  *	Check if a receive handler is already registered for a given device.
5503  *	Return true if there one.
5504  *
5505  *	The caller must hold the rtnl_mutex.
5506  */
5507 bool netdev_is_rx_handler_busy(struct net_device *dev)
5508 {
5509 	ASSERT_RTNL();
5510 	return dev && rtnl_dereference(dev->rx_handler);
5511 }
5512 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5513 
5514 /**
5515  *	netdev_rx_handler_register - register receive handler
5516  *	@dev: device to register a handler for
5517  *	@rx_handler: receive handler to register
5518  *	@rx_handler_data: data pointer that is used by rx handler
5519  *
5520  *	Register a receive handler for a device. This handler will then be
5521  *	called from __netif_receive_skb. A negative errno code is returned
5522  *	on a failure.
5523  *
5524  *	The caller must hold the rtnl_mutex.
5525  *
5526  *	For a general description of rx_handler, see enum rx_handler_result.
5527  */
5528 int netdev_rx_handler_register(struct net_device *dev,
5529 			       rx_handler_func_t *rx_handler,
5530 			       void *rx_handler_data)
5531 {
5532 	if (netdev_is_rx_handler_busy(dev))
5533 		return -EBUSY;
5534 
5535 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
5536 		return -EINVAL;
5537 
5538 	/* Note: rx_handler_data must be set before rx_handler */
5539 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5540 	rcu_assign_pointer(dev->rx_handler, rx_handler);
5541 
5542 	return 0;
5543 }
5544 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5545 
5546 /**
5547  *	netdev_rx_handler_unregister - unregister receive handler
5548  *	@dev: device to unregister a handler from
5549  *
5550  *	Unregister a receive handler from a device.
5551  *
5552  *	The caller must hold the rtnl_mutex.
5553  */
5554 void netdev_rx_handler_unregister(struct net_device *dev)
5555 {
5556 
5557 	ASSERT_RTNL();
5558 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5559 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5560 	 * section has a guarantee to see a non NULL rx_handler_data
5561 	 * as well.
5562 	 */
5563 	synchronize_net();
5564 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5565 }
5566 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5567 
5568 /*
5569  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5570  * the special handling of PFMEMALLOC skbs.
5571  */
5572 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5573 {
5574 	switch (skb->protocol) {
5575 	case htons(ETH_P_ARP):
5576 	case htons(ETH_P_IP):
5577 	case htons(ETH_P_IPV6):
5578 	case htons(ETH_P_8021Q):
5579 	case htons(ETH_P_8021AD):
5580 		return true;
5581 	default:
5582 		return false;
5583 	}
5584 }
5585 
5586 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5587 			     int *ret, struct net_device *orig_dev)
5588 {
5589 	if (nf_hook_ingress_active(skb)) {
5590 		int ingress_retval;
5591 
5592 		if (*pt_prev) {
5593 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5594 			*pt_prev = NULL;
5595 		}
5596 
5597 		rcu_read_lock();
5598 		ingress_retval = nf_hook_ingress(skb);
5599 		rcu_read_unlock();
5600 		return ingress_retval;
5601 	}
5602 	return 0;
5603 }
5604 
5605 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5606 				    struct packet_type **ppt_prev)
5607 {
5608 	struct packet_type *ptype, *pt_prev;
5609 	rx_handler_func_t *rx_handler;
5610 	struct sk_buff *skb = *pskb;
5611 	struct net_device *orig_dev;
5612 	bool deliver_exact = false;
5613 	int ret = NET_RX_DROP;
5614 	__be16 type;
5615 
5616 	net_timestamp_check(!READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5617 
5618 	trace_netif_receive_skb(skb);
5619 
5620 	orig_dev = skb->dev;
5621 
5622 	skb_reset_network_header(skb);
5623 #if !defined(CONFIG_DEBUG_NET)
5624 	/* We plan to no longer reset the transport header here.
5625 	 * Give some time to fuzzers and dev build to catch bugs
5626 	 * in network stacks.
5627 	 */
5628 	if (!skb_transport_header_was_set(skb))
5629 		skb_reset_transport_header(skb);
5630 #endif
5631 	skb_reset_mac_len(skb);
5632 
5633 	pt_prev = NULL;
5634 
5635 another_round:
5636 	skb->skb_iif = skb->dev->ifindex;
5637 
5638 	__this_cpu_inc(softnet_data.processed);
5639 
5640 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5641 		int ret2;
5642 
5643 		migrate_disable();
5644 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog),
5645 				      &skb);
5646 		migrate_enable();
5647 
5648 		if (ret2 != XDP_PASS) {
5649 			ret = NET_RX_DROP;
5650 			goto out;
5651 		}
5652 	}
5653 
5654 	if (eth_type_vlan(skb->protocol)) {
5655 		skb = skb_vlan_untag(skb);
5656 		if (unlikely(!skb))
5657 			goto out;
5658 	}
5659 
5660 	if (skb_skip_tc_classify(skb))
5661 		goto skip_classify;
5662 
5663 	if (pfmemalloc)
5664 		goto skip_taps;
5665 
5666 	list_for_each_entry_rcu(ptype, &net_hotdata.ptype_all, list) {
5667 		if (pt_prev)
5668 			ret = deliver_skb(skb, pt_prev, orig_dev);
5669 		pt_prev = ptype;
5670 	}
5671 
5672 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5673 		if (pt_prev)
5674 			ret = deliver_skb(skb, pt_prev, orig_dev);
5675 		pt_prev = ptype;
5676 	}
5677 
5678 skip_taps:
5679 #ifdef CONFIG_NET_INGRESS
5680 	if (static_branch_unlikely(&ingress_needed_key)) {
5681 		bool another = false;
5682 
5683 		nf_skip_egress(skb, true);
5684 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5685 					 &another);
5686 		if (another)
5687 			goto another_round;
5688 		if (!skb)
5689 			goto out;
5690 
5691 		nf_skip_egress(skb, false);
5692 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5693 			goto out;
5694 	}
5695 #endif
5696 	skb_reset_redirect(skb);
5697 skip_classify:
5698 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5699 		goto drop;
5700 
5701 	if (skb_vlan_tag_present(skb)) {
5702 		if (pt_prev) {
5703 			ret = deliver_skb(skb, pt_prev, orig_dev);
5704 			pt_prev = NULL;
5705 		}
5706 		if (vlan_do_receive(&skb))
5707 			goto another_round;
5708 		else if (unlikely(!skb))
5709 			goto out;
5710 	}
5711 
5712 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5713 	if (rx_handler) {
5714 		if (pt_prev) {
5715 			ret = deliver_skb(skb, pt_prev, orig_dev);
5716 			pt_prev = NULL;
5717 		}
5718 		switch (rx_handler(&skb)) {
5719 		case RX_HANDLER_CONSUMED:
5720 			ret = NET_RX_SUCCESS;
5721 			goto out;
5722 		case RX_HANDLER_ANOTHER:
5723 			goto another_round;
5724 		case RX_HANDLER_EXACT:
5725 			deliver_exact = true;
5726 			break;
5727 		case RX_HANDLER_PASS:
5728 			break;
5729 		default:
5730 			BUG();
5731 		}
5732 	}
5733 
5734 	if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5735 check_vlan_id:
5736 		if (skb_vlan_tag_get_id(skb)) {
5737 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5738 			 * find vlan device.
5739 			 */
5740 			skb->pkt_type = PACKET_OTHERHOST;
5741 		} else if (eth_type_vlan(skb->protocol)) {
5742 			/* Outer header is 802.1P with vlan 0, inner header is
5743 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5744 			 * not find vlan dev for vlan id 0.
5745 			 */
5746 			__vlan_hwaccel_clear_tag(skb);
5747 			skb = skb_vlan_untag(skb);
5748 			if (unlikely(!skb))
5749 				goto out;
5750 			if (vlan_do_receive(&skb))
5751 				/* After stripping off 802.1P header with vlan 0
5752 				 * vlan dev is found for inner header.
5753 				 */
5754 				goto another_round;
5755 			else if (unlikely(!skb))
5756 				goto out;
5757 			else
5758 				/* We have stripped outer 802.1P vlan 0 header.
5759 				 * But could not find vlan dev.
5760 				 * check again for vlan id to set OTHERHOST.
5761 				 */
5762 				goto check_vlan_id;
5763 		}
5764 		/* Note: we might in the future use prio bits
5765 		 * and set skb->priority like in vlan_do_receive()
5766 		 * For the time being, just ignore Priority Code Point
5767 		 */
5768 		__vlan_hwaccel_clear_tag(skb);
5769 	}
5770 
5771 	type = skb->protocol;
5772 
5773 	/* deliver only exact match when indicated */
5774 	if (likely(!deliver_exact)) {
5775 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5776 				       &ptype_base[ntohs(type) &
5777 						   PTYPE_HASH_MASK]);
5778 	}
5779 
5780 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5781 			       &orig_dev->ptype_specific);
5782 
5783 	if (unlikely(skb->dev != orig_dev)) {
5784 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5785 				       &skb->dev->ptype_specific);
5786 	}
5787 
5788 	if (pt_prev) {
5789 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5790 			goto drop;
5791 		*ppt_prev = pt_prev;
5792 	} else {
5793 drop:
5794 		if (!deliver_exact)
5795 			dev_core_stats_rx_dropped_inc(skb->dev);
5796 		else
5797 			dev_core_stats_rx_nohandler_inc(skb->dev);
5798 		kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5799 		/* Jamal, now you will not able to escape explaining
5800 		 * me how you were going to use this. :-)
5801 		 */
5802 		ret = NET_RX_DROP;
5803 	}
5804 
5805 out:
5806 	/* The invariant here is that if *ppt_prev is not NULL
5807 	 * then skb should also be non-NULL.
5808 	 *
5809 	 * Apparently *ppt_prev assignment above holds this invariant due to
5810 	 * skb dereferencing near it.
5811 	 */
5812 	*pskb = skb;
5813 	return ret;
5814 }
5815 
5816 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5817 {
5818 	struct net_device *orig_dev = skb->dev;
5819 	struct packet_type *pt_prev = NULL;
5820 	int ret;
5821 
5822 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5823 	if (pt_prev)
5824 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5825 					 skb->dev, pt_prev, orig_dev);
5826 	return ret;
5827 }
5828 
5829 /**
5830  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5831  *	@skb: buffer to process
5832  *
5833  *	More direct receive version of netif_receive_skb().  It should
5834  *	only be used by callers that have a need to skip RPS and Generic XDP.
5835  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5836  *
5837  *	This function may only be called from softirq context and interrupts
5838  *	should be enabled.
5839  *
5840  *	Return values (usually ignored):
5841  *	NET_RX_SUCCESS: no congestion
5842  *	NET_RX_DROP: packet was dropped
5843  */
5844 int netif_receive_skb_core(struct sk_buff *skb)
5845 {
5846 	int ret;
5847 
5848 	rcu_read_lock();
5849 	ret = __netif_receive_skb_one_core(skb, false);
5850 	rcu_read_unlock();
5851 
5852 	return ret;
5853 }
5854 EXPORT_SYMBOL(netif_receive_skb_core);
5855 
5856 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5857 						  struct packet_type *pt_prev,
5858 						  struct net_device *orig_dev)
5859 {
5860 	struct sk_buff *skb, *next;
5861 
5862 	if (!pt_prev)
5863 		return;
5864 	if (list_empty(head))
5865 		return;
5866 	if (pt_prev->list_func != NULL)
5867 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5868 				   ip_list_rcv, head, pt_prev, orig_dev);
5869 	else
5870 		list_for_each_entry_safe(skb, next, head, list) {
5871 			skb_list_del_init(skb);
5872 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5873 		}
5874 }
5875 
5876 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5877 {
5878 	/* Fast-path assumptions:
5879 	 * - There is no RX handler.
5880 	 * - Only one packet_type matches.
5881 	 * If either of these fails, we will end up doing some per-packet
5882 	 * processing in-line, then handling the 'last ptype' for the whole
5883 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5884 	 * because the 'last ptype' must be constant across the sublist, and all
5885 	 * other ptypes are handled per-packet.
5886 	 */
5887 	/* Current (common) ptype of sublist */
5888 	struct packet_type *pt_curr = NULL;
5889 	/* Current (common) orig_dev of sublist */
5890 	struct net_device *od_curr = NULL;
5891 	struct sk_buff *skb, *next;
5892 	LIST_HEAD(sublist);
5893 
5894 	list_for_each_entry_safe(skb, next, head, list) {
5895 		struct net_device *orig_dev = skb->dev;
5896 		struct packet_type *pt_prev = NULL;
5897 
5898 		skb_list_del_init(skb);
5899 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5900 		if (!pt_prev)
5901 			continue;
5902 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5903 			/* dispatch old sublist */
5904 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5905 			/* start new sublist */
5906 			INIT_LIST_HEAD(&sublist);
5907 			pt_curr = pt_prev;
5908 			od_curr = orig_dev;
5909 		}
5910 		list_add_tail(&skb->list, &sublist);
5911 	}
5912 
5913 	/* dispatch final sublist */
5914 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5915 }
5916 
5917 static int __netif_receive_skb(struct sk_buff *skb)
5918 {
5919 	int ret;
5920 
5921 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5922 		unsigned int noreclaim_flag;
5923 
5924 		/*
5925 		 * PFMEMALLOC skbs are special, they should
5926 		 * - be delivered to SOCK_MEMALLOC sockets only
5927 		 * - stay away from userspace
5928 		 * - have bounded memory usage
5929 		 *
5930 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5931 		 * context down to all allocation sites.
5932 		 */
5933 		noreclaim_flag = memalloc_noreclaim_save();
5934 		ret = __netif_receive_skb_one_core(skb, true);
5935 		memalloc_noreclaim_restore(noreclaim_flag);
5936 	} else
5937 		ret = __netif_receive_skb_one_core(skb, false);
5938 
5939 	return ret;
5940 }
5941 
5942 static void __netif_receive_skb_list(struct list_head *head)
5943 {
5944 	unsigned long noreclaim_flag = 0;
5945 	struct sk_buff *skb, *next;
5946 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5947 
5948 	list_for_each_entry_safe(skb, next, head, list) {
5949 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5950 			struct list_head sublist;
5951 
5952 			/* Handle the previous sublist */
5953 			list_cut_before(&sublist, head, &skb->list);
5954 			if (!list_empty(&sublist))
5955 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5956 			pfmemalloc = !pfmemalloc;
5957 			/* See comments in __netif_receive_skb */
5958 			if (pfmemalloc)
5959 				noreclaim_flag = memalloc_noreclaim_save();
5960 			else
5961 				memalloc_noreclaim_restore(noreclaim_flag);
5962 		}
5963 	}
5964 	/* Handle the remaining sublist */
5965 	if (!list_empty(head))
5966 		__netif_receive_skb_list_core(head, pfmemalloc);
5967 	/* Restore pflags */
5968 	if (pfmemalloc)
5969 		memalloc_noreclaim_restore(noreclaim_flag);
5970 }
5971 
5972 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5973 {
5974 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5975 	struct bpf_prog *new = xdp->prog;
5976 	int ret = 0;
5977 
5978 	switch (xdp->command) {
5979 	case XDP_SETUP_PROG:
5980 		rcu_assign_pointer(dev->xdp_prog, new);
5981 		if (old)
5982 			bpf_prog_put(old);
5983 
5984 		if (old && !new) {
5985 			static_branch_dec(&generic_xdp_needed_key);
5986 		} else if (new && !old) {
5987 			static_branch_inc(&generic_xdp_needed_key);
5988 			dev_disable_lro(dev);
5989 			dev_disable_gro_hw(dev);
5990 		}
5991 		break;
5992 
5993 	default:
5994 		ret = -EINVAL;
5995 		break;
5996 	}
5997 
5998 	return ret;
5999 }
6000 
6001 static int netif_receive_skb_internal(struct sk_buff *skb)
6002 {
6003 	int ret;
6004 
6005 	net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
6006 
6007 	if (skb_defer_rx_timestamp(skb))
6008 		return NET_RX_SUCCESS;
6009 
6010 	rcu_read_lock();
6011 #ifdef CONFIG_RPS
6012 	if (static_branch_unlikely(&rps_needed)) {
6013 		struct rps_dev_flow voidflow, *rflow = &voidflow;
6014 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
6015 
6016 		if (cpu >= 0) {
6017 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
6018 			rcu_read_unlock();
6019 			return ret;
6020 		}
6021 	}
6022 #endif
6023 	ret = __netif_receive_skb(skb);
6024 	rcu_read_unlock();
6025 	return ret;
6026 }
6027 
6028 void netif_receive_skb_list_internal(struct list_head *head)
6029 {
6030 	struct sk_buff *skb, *next;
6031 	LIST_HEAD(sublist);
6032 
6033 	list_for_each_entry_safe(skb, next, head, list) {
6034 		net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue),
6035 				    skb);
6036 		skb_list_del_init(skb);
6037 		if (!skb_defer_rx_timestamp(skb))
6038 			list_add_tail(&skb->list, &sublist);
6039 	}
6040 	list_splice_init(&sublist, head);
6041 
6042 	rcu_read_lock();
6043 #ifdef CONFIG_RPS
6044 	if (static_branch_unlikely(&rps_needed)) {
6045 		list_for_each_entry_safe(skb, next, head, list) {
6046 			struct rps_dev_flow voidflow, *rflow = &voidflow;
6047 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
6048 
6049 			if (cpu >= 0) {
6050 				/* Will be handled, remove from list */
6051 				skb_list_del_init(skb);
6052 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
6053 			}
6054 		}
6055 	}
6056 #endif
6057 	__netif_receive_skb_list(head);
6058 	rcu_read_unlock();
6059 }
6060 
6061 /**
6062  *	netif_receive_skb - process receive buffer from network
6063  *	@skb: buffer to process
6064  *
6065  *	netif_receive_skb() is the main receive data processing function.
6066  *	It always succeeds. The buffer may be dropped during processing
6067  *	for congestion control or by the protocol layers.
6068  *
6069  *	This function may only be called from softirq context and interrupts
6070  *	should be enabled.
6071  *
6072  *	Return values (usually ignored):
6073  *	NET_RX_SUCCESS: no congestion
6074  *	NET_RX_DROP: packet was dropped
6075  */
6076 int netif_receive_skb(struct sk_buff *skb)
6077 {
6078 	int ret;
6079 
6080 	trace_netif_receive_skb_entry(skb);
6081 
6082 	ret = netif_receive_skb_internal(skb);
6083 	trace_netif_receive_skb_exit(ret);
6084 
6085 	return ret;
6086 }
6087 EXPORT_SYMBOL(netif_receive_skb);
6088 
6089 /**
6090  *	netif_receive_skb_list - process many receive buffers from network
6091  *	@head: list of skbs to process.
6092  *
6093  *	Since return value of netif_receive_skb() is normally ignored, and
6094  *	wouldn't be meaningful for a list, this function returns void.
6095  *
6096  *	This function may only be called from softirq context and interrupts
6097  *	should be enabled.
6098  */
6099 void netif_receive_skb_list(struct list_head *head)
6100 {
6101 	struct sk_buff *skb;
6102 
6103 	if (list_empty(head))
6104 		return;
6105 	if (trace_netif_receive_skb_list_entry_enabled()) {
6106 		list_for_each_entry(skb, head, list)
6107 			trace_netif_receive_skb_list_entry(skb);
6108 	}
6109 	netif_receive_skb_list_internal(head);
6110 	trace_netif_receive_skb_list_exit(0);
6111 }
6112 EXPORT_SYMBOL(netif_receive_skb_list);
6113 
6114 /* Network device is going away, flush any packets still pending */
6115 static void flush_backlog(struct work_struct *work)
6116 {
6117 	struct sk_buff *skb, *tmp;
6118 	struct softnet_data *sd;
6119 
6120 	local_bh_disable();
6121 	sd = this_cpu_ptr(&softnet_data);
6122 
6123 	backlog_lock_irq_disable(sd);
6124 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
6125 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
6126 			__skb_unlink(skb, &sd->input_pkt_queue);
6127 			dev_kfree_skb_irq(skb);
6128 			rps_input_queue_head_incr(sd);
6129 		}
6130 	}
6131 	backlog_unlock_irq_enable(sd);
6132 
6133 	local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6134 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
6135 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
6136 			__skb_unlink(skb, &sd->process_queue);
6137 			kfree_skb(skb);
6138 			rps_input_queue_head_incr(sd);
6139 		}
6140 	}
6141 	local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6142 	local_bh_enable();
6143 }
6144 
6145 static bool flush_required(int cpu)
6146 {
6147 #if IS_ENABLED(CONFIG_RPS)
6148 	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
6149 	bool do_flush;
6150 
6151 	backlog_lock_irq_disable(sd);
6152 
6153 	/* as insertion into process_queue happens with the rps lock held,
6154 	 * process_queue access may race only with dequeue
6155 	 */
6156 	do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
6157 		   !skb_queue_empty_lockless(&sd->process_queue);
6158 	backlog_unlock_irq_enable(sd);
6159 
6160 	return do_flush;
6161 #endif
6162 	/* without RPS we can't safely check input_pkt_queue: during a
6163 	 * concurrent remote skb_queue_splice() we can detect as empty both
6164 	 * input_pkt_queue and process_queue even if the latter could end-up
6165 	 * containing a lot of packets.
6166 	 */
6167 	return true;
6168 }
6169 
6170 struct flush_backlogs {
6171 	cpumask_t		flush_cpus;
6172 	struct work_struct	w[];
6173 };
6174 
6175 static struct flush_backlogs *flush_backlogs_alloc(void)
6176 {
6177 	return kmalloc(struct_size_t(struct flush_backlogs, w, nr_cpu_ids),
6178 		       GFP_KERNEL);
6179 }
6180 
6181 static struct flush_backlogs *flush_backlogs_fallback;
6182 static DEFINE_MUTEX(flush_backlogs_mutex);
6183 
6184 static void flush_all_backlogs(void)
6185 {
6186 	struct flush_backlogs *ptr = flush_backlogs_alloc();
6187 	unsigned int cpu;
6188 
6189 	if (!ptr) {
6190 		mutex_lock(&flush_backlogs_mutex);
6191 		ptr = flush_backlogs_fallback;
6192 	}
6193 	cpumask_clear(&ptr->flush_cpus);
6194 
6195 	cpus_read_lock();
6196 
6197 	for_each_online_cpu(cpu) {
6198 		if (flush_required(cpu)) {
6199 			INIT_WORK(&ptr->w[cpu], flush_backlog);
6200 			queue_work_on(cpu, system_highpri_wq, &ptr->w[cpu]);
6201 			__cpumask_set_cpu(cpu, &ptr->flush_cpus);
6202 		}
6203 	}
6204 
6205 	/* we can have in flight packet[s] on the cpus we are not flushing,
6206 	 * synchronize_net() in unregister_netdevice_many() will take care of
6207 	 * them.
6208 	 */
6209 	for_each_cpu(cpu, &ptr->flush_cpus)
6210 		flush_work(&ptr->w[cpu]);
6211 
6212 	cpus_read_unlock();
6213 
6214 	if (ptr != flush_backlogs_fallback)
6215 		kfree(ptr);
6216 	else
6217 		mutex_unlock(&flush_backlogs_mutex);
6218 }
6219 
6220 static void net_rps_send_ipi(struct softnet_data *remsd)
6221 {
6222 #ifdef CONFIG_RPS
6223 	while (remsd) {
6224 		struct softnet_data *next = remsd->rps_ipi_next;
6225 
6226 		if (cpu_online(remsd->cpu))
6227 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
6228 		remsd = next;
6229 	}
6230 #endif
6231 }
6232 
6233 /*
6234  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6235  * Note: called with local irq disabled, but exits with local irq enabled.
6236  */
6237 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6238 {
6239 #ifdef CONFIG_RPS
6240 	struct softnet_data *remsd = sd->rps_ipi_list;
6241 
6242 	if (!use_backlog_threads() && remsd) {
6243 		sd->rps_ipi_list = NULL;
6244 
6245 		local_irq_enable();
6246 
6247 		/* Send pending IPI's to kick RPS processing on remote cpus. */
6248 		net_rps_send_ipi(remsd);
6249 	} else
6250 #endif
6251 		local_irq_enable();
6252 }
6253 
6254 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6255 {
6256 #ifdef CONFIG_RPS
6257 	return !use_backlog_threads() && sd->rps_ipi_list;
6258 #else
6259 	return false;
6260 #endif
6261 }
6262 
6263 static int process_backlog(struct napi_struct *napi, int quota)
6264 {
6265 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6266 	bool again = true;
6267 	int work = 0;
6268 
6269 	/* Check if we have pending ipi, its better to send them now,
6270 	 * not waiting net_rx_action() end.
6271 	 */
6272 	if (sd_has_rps_ipi_waiting(sd)) {
6273 		local_irq_disable();
6274 		net_rps_action_and_irq_enable(sd);
6275 	}
6276 
6277 	napi->weight = READ_ONCE(net_hotdata.dev_rx_weight);
6278 	while (again) {
6279 		struct sk_buff *skb;
6280 
6281 		local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6282 		while ((skb = __skb_dequeue(&sd->process_queue))) {
6283 			local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6284 			rcu_read_lock();
6285 			__netif_receive_skb(skb);
6286 			rcu_read_unlock();
6287 			if (++work >= quota) {
6288 				rps_input_queue_head_add(sd, work);
6289 				return work;
6290 			}
6291 
6292 			local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6293 		}
6294 		local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6295 
6296 		backlog_lock_irq_disable(sd);
6297 		if (skb_queue_empty(&sd->input_pkt_queue)) {
6298 			/*
6299 			 * Inline a custom version of __napi_complete().
6300 			 * only current cpu owns and manipulates this napi,
6301 			 * and NAPI_STATE_SCHED is the only possible flag set
6302 			 * on backlog.
6303 			 * We can use a plain write instead of clear_bit(),
6304 			 * and we dont need an smp_mb() memory barrier.
6305 			 */
6306 			napi->state &= NAPIF_STATE_THREADED;
6307 			again = false;
6308 		} else {
6309 			local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6310 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
6311 						   &sd->process_queue);
6312 			local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6313 		}
6314 		backlog_unlock_irq_enable(sd);
6315 	}
6316 
6317 	if (work)
6318 		rps_input_queue_head_add(sd, work);
6319 	return work;
6320 }
6321 
6322 /**
6323  * __napi_schedule - schedule for receive
6324  * @n: entry to schedule
6325  *
6326  * The entry's receive function will be scheduled to run.
6327  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6328  */
6329 void __napi_schedule(struct napi_struct *n)
6330 {
6331 	unsigned long flags;
6332 
6333 	local_irq_save(flags);
6334 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6335 	local_irq_restore(flags);
6336 }
6337 EXPORT_SYMBOL(__napi_schedule);
6338 
6339 /**
6340  *	napi_schedule_prep - check if napi can be scheduled
6341  *	@n: napi context
6342  *
6343  * Test if NAPI routine is already running, and if not mark
6344  * it as running.  This is used as a condition variable to
6345  * insure only one NAPI poll instance runs.  We also make
6346  * sure there is no pending NAPI disable.
6347  */
6348 bool napi_schedule_prep(struct napi_struct *n)
6349 {
6350 	unsigned long new, val = READ_ONCE(n->state);
6351 
6352 	do {
6353 		if (unlikely(val & NAPIF_STATE_DISABLE))
6354 			return false;
6355 		new = val | NAPIF_STATE_SCHED;
6356 
6357 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
6358 		 * This was suggested by Alexander Duyck, as compiler
6359 		 * emits better code than :
6360 		 * if (val & NAPIF_STATE_SCHED)
6361 		 *     new |= NAPIF_STATE_MISSED;
6362 		 */
6363 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6364 						   NAPIF_STATE_MISSED;
6365 	} while (!try_cmpxchg(&n->state, &val, new));
6366 
6367 	return !(val & NAPIF_STATE_SCHED);
6368 }
6369 EXPORT_SYMBOL(napi_schedule_prep);
6370 
6371 /**
6372  * __napi_schedule_irqoff - schedule for receive
6373  * @n: entry to schedule
6374  *
6375  * Variant of __napi_schedule() assuming hard irqs are masked.
6376  *
6377  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6378  * because the interrupt disabled assumption might not be true
6379  * due to force-threaded interrupts and spinlock substitution.
6380  */
6381 void __napi_schedule_irqoff(struct napi_struct *n)
6382 {
6383 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6384 		____napi_schedule(this_cpu_ptr(&softnet_data), n);
6385 	else
6386 		__napi_schedule(n);
6387 }
6388 EXPORT_SYMBOL(__napi_schedule_irqoff);
6389 
6390 bool napi_complete_done(struct napi_struct *n, int work_done)
6391 {
6392 	unsigned long flags, val, new, timeout = 0;
6393 	bool ret = true;
6394 
6395 	/*
6396 	 * 1) Don't let napi dequeue from the cpu poll list
6397 	 *    just in case its running on a different cpu.
6398 	 * 2) If we are busy polling, do nothing here, we have
6399 	 *    the guarantee we will be called later.
6400 	 */
6401 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6402 				 NAPIF_STATE_IN_BUSY_POLL)))
6403 		return false;
6404 
6405 	if (work_done) {
6406 		if (n->gro_bitmask)
6407 			timeout = napi_get_gro_flush_timeout(n);
6408 		n->defer_hard_irqs_count = napi_get_defer_hard_irqs(n);
6409 	}
6410 	if (n->defer_hard_irqs_count > 0) {
6411 		n->defer_hard_irqs_count--;
6412 		timeout = napi_get_gro_flush_timeout(n);
6413 		if (timeout)
6414 			ret = false;
6415 	}
6416 	if (n->gro_bitmask) {
6417 		/* When the NAPI instance uses a timeout and keeps postponing
6418 		 * it, we need to bound somehow the time packets are kept in
6419 		 * the GRO layer
6420 		 */
6421 		napi_gro_flush(n, !!timeout);
6422 	}
6423 
6424 	gro_normal_list(n);
6425 
6426 	if (unlikely(!list_empty(&n->poll_list))) {
6427 		/* If n->poll_list is not empty, we need to mask irqs */
6428 		local_irq_save(flags);
6429 		list_del_init(&n->poll_list);
6430 		local_irq_restore(flags);
6431 	}
6432 	WRITE_ONCE(n->list_owner, -1);
6433 
6434 	val = READ_ONCE(n->state);
6435 	do {
6436 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6437 
6438 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6439 			      NAPIF_STATE_SCHED_THREADED |
6440 			      NAPIF_STATE_PREFER_BUSY_POLL);
6441 
6442 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6443 		 * because we will call napi->poll() one more time.
6444 		 * This C code was suggested by Alexander Duyck to help gcc.
6445 		 */
6446 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6447 						    NAPIF_STATE_SCHED;
6448 	} while (!try_cmpxchg(&n->state, &val, new));
6449 
6450 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6451 		__napi_schedule(n);
6452 		return false;
6453 	}
6454 
6455 	if (timeout)
6456 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
6457 			      HRTIMER_MODE_REL_PINNED);
6458 	return ret;
6459 }
6460 EXPORT_SYMBOL(napi_complete_done);
6461 
6462 static void skb_defer_free_flush(struct softnet_data *sd)
6463 {
6464 	struct sk_buff *skb, *next;
6465 
6466 	/* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6467 	if (!READ_ONCE(sd->defer_list))
6468 		return;
6469 
6470 	spin_lock(&sd->defer_lock);
6471 	skb = sd->defer_list;
6472 	sd->defer_list = NULL;
6473 	sd->defer_count = 0;
6474 	spin_unlock(&sd->defer_lock);
6475 
6476 	while (skb != NULL) {
6477 		next = skb->next;
6478 		napi_consume_skb(skb, 1);
6479 		skb = next;
6480 	}
6481 }
6482 
6483 #if defined(CONFIG_NET_RX_BUSY_POLL)
6484 
6485 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6486 {
6487 	if (!skip_schedule) {
6488 		gro_normal_list(napi);
6489 		__napi_schedule(napi);
6490 		return;
6491 	}
6492 
6493 	if (napi->gro_bitmask) {
6494 		/* flush too old packets
6495 		 * If HZ < 1000, flush all packets.
6496 		 */
6497 		napi_gro_flush(napi, HZ >= 1000);
6498 	}
6499 
6500 	gro_normal_list(napi);
6501 	clear_bit(NAPI_STATE_SCHED, &napi->state);
6502 }
6503 
6504 enum {
6505 	NAPI_F_PREFER_BUSY_POLL	= 1,
6506 	NAPI_F_END_ON_RESCHED	= 2,
6507 };
6508 
6509 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock,
6510 			   unsigned flags, u16 budget)
6511 {
6512 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6513 	bool skip_schedule = false;
6514 	unsigned long timeout;
6515 	int rc;
6516 
6517 	/* Busy polling means there is a high chance device driver hard irq
6518 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6519 	 * set in napi_schedule_prep().
6520 	 * Since we are about to call napi->poll() once more, we can safely
6521 	 * clear NAPI_STATE_MISSED.
6522 	 *
6523 	 * Note: x86 could use a single "lock and ..." instruction
6524 	 * to perform these two clear_bit()
6525 	 */
6526 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6527 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6528 
6529 	local_bh_disable();
6530 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6531 
6532 	if (flags & NAPI_F_PREFER_BUSY_POLL) {
6533 		napi->defer_hard_irqs_count = napi_get_defer_hard_irqs(napi);
6534 		timeout = napi_get_gro_flush_timeout(napi);
6535 		if (napi->defer_hard_irqs_count && timeout) {
6536 			hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6537 			skip_schedule = true;
6538 		}
6539 	}
6540 
6541 	/* All we really want here is to re-enable device interrupts.
6542 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6543 	 */
6544 	rc = napi->poll(napi, budget);
6545 	/* We can't gro_normal_list() here, because napi->poll() might have
6546 	 * rearmed the napi (napi_complete_done()) in which case it could
6547 	 * already be running on another CPU.
6548 	 */
6549 	trace_napi_poll(napi, rc, budget);
6550 	netpoll_poll_unlock(have_poll_lock);
6551 	if (rc == budget)
6552 		__busy_poll_stop(napi, skip_schedule);
6553 	bpf_net_ctx_clear(bpf_net_ctx);
6554 	local_bh_enable();
6555 }
6556 
6557 static void __napi_busy_loop(unsigned int napi_id,
6558 		      bool (*loop_end)(void *, unsigned long),
6559 		      void *loop_end_arg, unsigned flags, u16 budget)
6560 {
6561 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6562 	int (*napi_poll)(struct napi_struct *napi, int budget);
6563 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6564 	void *have_poll_lock = NULL;
6565 	struct napi_struct *napi;
6566 
6567 	WARN_ON_ONCE(!rcu_read_lock_held());
6568 
6569 restart:
6570 	napi_poll = NULL;
6571 
6572 	napi = napi_by_id(napi_id);
6573 	if (!napi)
6574 		return;
6575 
6576 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6577 		preempt_disable();
6578 	for (;;) {
6579 		int work = 0;
6580 
6581 		local_bh_disable();
6582 		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6583 		if (!napi_poll) {
6584 			unsigned long val = READ_ONCE(napi->state);
6585 
6586 			/* If multiple threads are competing for this napi,
6587 			 * we avoid dirtying napi->state as much as we can.
6588 			 */
6589 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6590 				   NAPIF_STATE_IN_BUSY_POLL)) {
6591 				if (flags & NAPI_F_PREFER_BUSY_POLL)
6592 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6593 				goto count;
6594 			}
6595 			if (cmpxchg(&napi->state, val,
6596 				    val | NAPIF_STATE_IN_BUSY_POLL |
6597 					  NAPIF_STATE_SCHED) != val) {
6598 				if (flags & NAPI_F_PREFER_BUSY_POLL)
6599 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6600 				goto count;
6601 			}
6602 			have_poll_lock = netpoll_poll_lock(napi);
6603 			napi_poll = napi->poll;
6604 		}
6605 		work = napi_poll(napi, budget);
6606 		trace_napi_poll(napi, work, budget);
6607 		gro_normal_list(napi);
6608 count:
6609 		if (work > 0)
6610 			__NET_ADD_STATS(dev_net(napi->dev),
6611 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6612 		skb_defer_free_flush(this_cpu_ptr(&softnet_data));
6613 		bpf_net_ctx_clear(bpf_net_ctx);
6614 		local_bh_enable();
6615 
6616 		if (!loop_end || loop_end(loop_end_arg, start_time))
6617 			break;
6618 
6619 		if (unlikely(need_resched())) {
6620 			if (flags & NAPI_F_END_ON_RESCHED)
6621 				break;
6622 			if (napi_poll)
6623 				busy_poll_stop(napi, have_poll_lock, flags, budget);
6624 			if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6625 				preempt_enable();
6626 			rcu_read_unlock();
6627 			cond_resched();
6628 			rcu_read_lock();
6629 			if (loop_end(loop_end_arg, start_time))
6630 				return;
6631 			goto restart;
6632 		}
6633 		cpu_relax();
6634 	}
6635 	if (napi_poll)
6636 		busy_poll_stop(napi, have_poll_lock, flags, budget);
6637 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6638 		preempt_enable();
6639 }
6640 
6641 void napi_busy_loop_rcu(unsigned int napi_id,
6642 			bool (*loop_end)(void *, unsigned long),
6643 			void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6644 {
6645 	unsigned flags = NAPI_F_END_ON_RESCHED;
6646 
6647 	if (prefer_busy_poll)
6648 		flags |= NAPI_F_PREFER_BUSY_POLL;
6649 
6650 	__napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6651 }
6652 
6653 void napi_busy_loop(unsigned int napi_id,
6654 		    bool (*loop_end)(void *, unsigned long),
6655 		    void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6656 {
6657 	unsigned flags = prefer_busy_poll ? NAPI_F_PREFER_BUSY_POLL : 0;
6658 
6659 	rcu_read_lock();
6660 	__napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6661 	rcu_read_unlock();
6662 }
6663 EXPORT_SYMBOL(napi_busy_loop);
6664 
6665 void napi_suspend_irqs(unsigned int napi_id)
6666 {
6667 	struct napi_struct *napi;
6668 
6669 	rcu_read_lock();
6670 	napi = napi_by_id(napi_id);
6671 	if (napi) {
6672 		unsigned long timeout = napi_get_irq_suspend_timeout(napi);
6673 
6674 		if (timeout)
6675 			hrtimer_start(&napi->timer, ns_to_ktime(timeout),
6676 				      HRTIMER_MODE_REL_PINNED);
6677 	}
6678 	rcu_read_unlock();
6679 }
6680 
6681 void napi_resume_irqs(unsigned int napi_id)
6682 {
6683 	struct napi_struct *napi;
6684 
6685 	rcu_read_lock();
6686 	napi = napi_by_id(napi_id);
6687 	if (napi) {
6688 		/* If irq_suspend_timeout is set to 0 between the call to
6689 		 * napi_suspend_irqs and now, the original value still
6690 		 * determines the safety timeout as intended and napi_watchdog
6691 		 * will resume irq processing.
6692 		 */
6693 		if (napi_get_irq_suspend_timeout(napi)) {
6694 			local_bh_disable();
6695 			napi_schedule(napi);
6696 			local_bh_enable();
6697 		}
6698 	}
6699 	rcu_read_unlock();
6700 }
6701 
6702 #endif /* CONFIG_NET_RX_BUSY_POLL */
6703 
6704 static void __napi_hash_add_with_id(struct napi_struct *napi,
6705 				    unsigned int napi_id)
6706 {
6707 	napi->napi_id = napi_id;
6708 	hlist_add_head_rcu(&napi->napi_hash_node,
6709 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6710 }
6711 
6712 static void napi_hash_add_with_id(struct napi_struct *napi,
6713 				  unsigned int napi_id)
6714 {
6715 	unsigned long flags;
6716 
6717 	spin_lock_irqsave(&napi_hash_lock, flags);
6718 	WARN_ON_ONCE(napi_by_id(napi_id));
6719 	__napi_hash_add_with_id(napi, napi_id);
6720 	spin_unlock_irqrestore(&napi_hash_lock, flags);
6721 }
6722 
6723 static void napi_hash_add(struct napi_struct *napi)
6724 {
6725 	unsigned long flags;
6726 
6727 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6728 		return;
6729 
6730 	spin_lock_irqsave(&napi_hash_lock, flags);
6731 
6732 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6733 	do {
6734 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6735 			napi_gen_id = MIN_NAPI_ID;
6736 	} while (napi_by_id(napi_gen_id));
6737 
6738 	__napi_hash_add_with_id(napi, napi_gen_id);
6739 
6740 	spin_unlock_irqrestore(&napi_hash_lock, flags);
6741 }
6742 
6743 /* Warning : caller is responsible to make sure rcu grace period
6744  * is respected before freeing memory containing @napi
6745  */
6746 static void napi_hash_del(struct napi_struct *napi)
6747 {
6748 	unsigned long flags;
6749 
6750 	spin_lock_irqsave(&napi_hash_lock, flags);
6751 
6752 	hlist_del_init_rcu(&napi->napi_hash_node);
6753 
6754 	spin_unlock_irqrestore(&napi_hash_lock, flags);
6755 }
6756 
6757 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6758 {
6759 	struct napi_struct *napi;
6760 
6761 	napi = container_of(timer, struct napi_struct, timer);
6762 
6763 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6764 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6765 	 */
6766 	if (!napi_disable_pending(napi) &&
6767 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6768 		clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6769 		__napi_schedule_irqoff(napi);
6770 	}
6771 
6772 	return HRTIMER_NORESTART;
6773 }
6774 
6775 static void init_gro_hash(struct napi_struct *napi)
6776 {
6777 	int i;
6778 
6779 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6780 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6781 		napi->gro_hash[i].count = 0;
6782 	}
6783 	napi->gro_bitmask = 0;
6784 }
6785 
6786 int dev_set_threaded(struct net_device *dev, bool threaded)
6787 {
6788 	struct napi_struct *napi;
6789 	int err = 0;
6790 
6791 	netdev_assert_locked_or_invisible(dev);
6792 
6793 	if (dev->threaded == threaded)
6794 		return 0;
6795 
6796 	if (threaded) {
6797 		list_for_each_entry(napi, &dev->napi_list, dev_list) {
6798 			if (!napi->thread) {
6799 				err = napi_kthread_create(napi);
6800 				if (err) {
6801 					threaded = false;
6802 					break;
6803 				}
6804 			}
6805 		}
6806 	}
6807 
6808 	WRITE_ONCE(dev->threaded, threaded);
6809 
6810 	/* Make sure kthread is created before THREADED bit
6811 	 * is set.
6812 	 */
6813 	smp_mb__before_atomic();
6814 
6815 	/* Setting/unsetting threaded mode on a napi might not immediately
6816 	 * take effect, if the current napi instance is actively being
6817 	 * polled. In this case, the switch between threaded mode and
6818 	 * softirq mode will happen in the next round of napi_schedule().
6819 	 * This should not cause hiccups/stalls to the live traffic.
6820 	 */
6821 	list_for_each_entry(napi, &dev->napi_list, dev_list)
6822 		assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
6823 
6824 	return err;
6825 }
6826 EXPORT_SYMBOL(dev_set_threaded);
6827 
6828 /**
6829  * netif_queue_set_napi - Associate queue with the napi
6830  * @dev: device to which NAPI and queue belong
6831  * @queue_index: Index of queue
6832  * @type: queue type as RX or TX
6833  * @napi: NAPI context, pass NULL to clear previously set NAPI
6834  *
6835  * Set queue with its corresponding napi context. This should be done after
6836  * registering the NAPI handler for the queue-vector and the queues have been
6837  * mapped to the corresponding interrupt vector.
6838  */
6839 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index,
6840 			  enum netdev_queue_type type, struct napi_struct *napi)
6841 {
6842 	struct netdev_rx_queue *rxq;
6843 	struct netdev_queue *txq;
6844 
6845 	if (WARN_ON_ONCE(napi && !napi->dev))
6846 		return;
6847 	if (dev->reg_state >= NETREG_REGISTERED)
6848 		ASSERT_RTNL();
6849 
6850 	switch (type) {
6851 	case NETDEV_QUEUE_TYPE_RX:
6852 		rxq = __netif_get_rx_queue(dev, queue_index);
6853 		rxq->napi = napi;
6854 		return;
6855 	case NETDEV_QUEUE_TYPE_TX:
6856 		txq = netdev_get_tx_queue(dev, queue_index);
6857 		txq->napi = napi;
6858 		return;
6859 	default:
6860 		return;
6861 	}
6862 }
6863 EXPORT_SYMBOL(netif_queue_set_napi);
6864 
6865 static void napi_restore_config(struct napi_struct *n)
6866 {
6867 	n->defer_hard_irqs = n->config->defer_hard_irqs;
6868 	n->gro_flush_timeout = n->config->gro_flush_timeout;
6869 	n->irq_suspend_timeout = n->config->irq_suspend_timeout;
6870 	/* a NAPI ID might be stored in the config, if so use it. if not, use
6871 	 * napi_hash_add to generate one for us.
6872 	 */
6873 	if (n->config->napi_id) {
6874 		napi_hash_add_with_id(n, n->config->napi_id);
6875 	} else {
6876 		napi_hash_add(n);
6877 		n->config->napi_id = n->napi_id;
6878 	}
6879 }
6880 
6881 static void napi_save_config(struct napi_struct *n)
6882 {
6883 	n->config->defer_hard_irqs = n->defer_hard_irqs;
6884 	n->config->gro_flush_timeout = n->gro_flush_timeout;
6885 	n->config->irq_suspend_timeout = n->irq_suspend_timeout;
6886 	napi_hash_del(n);
6887 }
6888 
6889 /* Netlink wants the NAPI list to be sorted by ID, if adding a NAPI which will
6890  * inherit an existing ID try to insert it at the right position.
6891  */
6892 static void
6893 netif_napi_dev_list_add(struct net_device *dev, struct napi_struct *napi)
6894 {
6895 	unsigned int new_id, pos_id;
6896 	struct list_head *higher;
6897 	struct napi_struct *pos;
6898 
6899 	new_id = UINT_MAX;
6900 	if (napi->config && napi->config->napi_id)
6901 		new_id = napi->config->napi_id;
6902 
6903 	higher = &dev->napi_list;
6904 	list_for_each_entry(pos, &dev->napi_list, dev_list) {
6905 		if (pos->napi_id >= MIN_NAPI_ID)
6906 			pos_id = pos->napi_id;
6907 		else if (pos->config)
6908 			pos_id = pos->config->napi_id;
6909 		else
6910 			pos_id = UINT_MAX;
6911 
6912 		if (pos_id <= new_id)
6913 			break;
6914 		higher = &pos->dev_list;
6915 	}
6916 	list_add_rcu(&napi->dev_list, higher); /* adds after higher */
6917 }
6918 
6919 void netif_napi_add_weight_locked(struct net_device *dev,
6920 				  struct napi_struct *napi,
6921 				  int (*poll)(struct napi_struct *, int),
6922 				  int weight)
6923 {
6924 	netdev_assert_locked(dev);
6925 	if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6926 		return;
6927 
6928 	INIT_LIST_HEAD(&napi->poll_list);
6929 	INIT_HLIST_NODE(&napi->napi_hash_node);
6930 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6931 	napi->timer.function = napi_watchdog;
6932 	init_gro_hash(napi);
6933 	napi->skb = NULL;
6934 	INIT_LIST_HEAD(&napi->rx_list);
6935 	napi->rx_count = 0;
6936 	napi->poll = poll;
6937 	if (weight > NAPI_POLL_WEIGHT)
6938 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6939 				weight);
6940 	napi->weight = weight;
6941 	napi->dev = dev;
6942 #ifdef CONFIG_NETPOLL
6943 	napi->poll_owner = -1;
6944 #endif
6945 	napi->list_owner = -1;
6946 	set_bit(NAPI_STATE_SCHED, &napi->state);
6947 	set_bit(NAPI_STATE_NPSVC, &napi->state);
6948 	netif_napi_dev_list_add(dev, napi);
6949 
6950 	/* default settings from sysfs are applied to all NAPIs. any per-NAPI
6951 	 * configuration will be loaded in napi_enable
6952 	 */
6953 	napi_set_defer_hard_irqs(napi, READ_ONCE(dev->napi_defer_hard_irqs));
6954 	napi_set_gro_flush_timeout(napi, READ_ONCE(dev->gro_flush_timeout));
6955 
6956 	napi_get_frags_check(napi);
6957 	/* Create kthread for this napi if dev->threaded is set.
6958 	 * Clear dev->threaded if kthread creation failed so that
6959 	 * threaded mode will not be enabled in napi_enable().
6960 	 */
6961 	if (dev->threaded && napi_kthread_create(napi))
6962 		dev->threaded = false;
6963 	netif_napi_set_irq_locked(napi, -1);
6964 }
6965 EXPORT_SYMBOL(netif_napi_add_weight_locked);
6966 
6967 void napi_disable_locked(struct napi_struct *n)
6968 {
6969 	unsigned long val, new;
6970 
6971 	might_sleep();
6972 	netdev_assert_locked(n->dev);
6973 
6974 	set_bit(NAPI_STATE_DISABLE, &n->state);
6975 
6976 	val = READ_ONCE(n->state);
6977 	do {
6978 		while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6979 			usleep_range(20, 200);
6980 			val = READ_ONCE(n->state);
6981 		}
6982 
6983 		new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6984 		new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6985 	} while (!try_cmpxchg(&n->state, &val, new));
6986 
6987 	hrtimer_cancel(&n->timer);
6988 
6989 	if (n->config)
6990 		napi_save_config(n);
6991 	else
6992 		napi_hash_del(n);
6993 
6994 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6995 }
6996 EXPORT_SYMBOL(napi_disable_locked);
6997 
6998 /**
6999  * napi_disable() - prevent NAPI from scheduling
7000  * @n: NAPI context
7001  *
7002  * Stop NAPI from being scheduled on this context.
7003  * Waits till any outstanding processing completes.
7004  * Takes netdev_lock() for associated net_device.
7005  */
7006 void napi_disable(struct napi_struct *n)
7007 {
7008 	netdev_lock(n->dev);
7009 	napi_disable_locked(n);
7010 	netdev_unlock(n->dev);
7011 }
7012 EXPORT_SYMBOL(napi_disable);
7013 
7014 void napi_enable_locked(struct napi_struct *n)
7015 {
7016 	unsigned long new, val = READ_ONCE(n->state);
7017 
7018 	if (n->config)
7019 		napi_restore_config(n);
7020 	else
7021 		napi_hash_add(n);
7022 
7023 	do {
7024 		BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
7025 
7026 		new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
7027 		if (n->dev->threaded && n->thread)
7028 			new |= NAPIF_STATE_THREADED;
7029 	} while (!try_cmpxchg(&n->state, &val, new));
7030 }
7031 EXPORT_SYMBOL(napi_enable_locked);
7032 
7033 /**
7034  * napi_enable() - enable NAPI scheduling
7035  * @n: NAPI context
7036  *
7037  * Enable scheduling of a NAPI instance.
7038  * Must be paired with napi_disable().
7039  * Takes netdev_lock() for associated net_device.
7040  */
7041 void napi_enable(struct napi_struct *n)
7042 {
7043 	netdev_lock(n->dev);
7044 	napi_enable_locked(n);
7045 	netdev_unlock(n->dev);
7046 }
7047 EXPORT_SYMBOL(napi_enable);
7048 
7049 static void flush_gro_hash(struct napi_struct *napi)
7050 {
7051 	int i;
7052 
7053 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
7054 		struct sk_buff *skb, *n;
7055 
7056 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
7057 			kfree_skb(skb);
7058 		napi->gro_hash[i].count = 0;
7059 	}
7060 }
7061 
7062 /* Must be called in process context */
7063 void __netif_napi_del_locked(struct napi_struct *napi)
7064 {
7065 	netdev_assert_locked(napi->dev);
7066 
7067 	if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
7068 		return;
7069 
7070 	if (napi->config) {
7071 		napi->index = -1;
7072 		napi->config = NULL;
7073 	}
7074 
7075 	list_del_rcu(&napi->dev_list);
7076 	napi_free_frags(napi);
7077 
7078 	flush_gro_hash(napi);
7079 	napi->gro_bitmask = 0;
7080 
7081 	if (napi->thread) {
7082 		kthread_stop(napi->thread);
7083 		napi->thread = NULL;
7084 	}
7085 }
7086 EXPORT_SYMBOL(__netif_napi_del_locked);
7087 
7088 static int __napi_poll(struct napi_struct *n, bool *repoll)
7089 {
7090 	int work, weight;
7091 
7092 	weight = n->weight;
7093 
7094 	/* This NAPI_STATE_SCHED test is for avoiding a race
7095 	 * with netpoll's poll_napi().  Only the entity which
7096 	 * obtains the lock and sees NAPI_STATE_SCHED set will
7097 	 * actually make the ->poll() call.  Therefore we avoid
7098 	 * accidentally calling ->poll() when NAPI is not scheduled.
7099 	 */
7100 	work = 0;
7101 	if (napi_is_scheduled(n)) {
7102 		work = n->poll(n, weight);
7103 		trace_napi_poll(n, work, weight);
7104 
7105 		xdp_do_check_flushed(n);
7106 	}
7107 
7108 	if (unlikely(work > weight))
7109 		netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
7110 				n->poll, work, weight);
7111 
7112 	if (likely(work < weight))
7113 		return work;
7114 
7115 	/* Drivers must not modify the NAPI state if they
7116 	 * consume the entire weight.  In such cases this code
7117 	 * still "owns" the NAPI instance and therefore can
7118 	 * move the instance around on the list at-will.
7119 	 */
7120 	if (unlikely(napi_disable_pending(n))) {
7121 		napi_complete(n);
7122 		return work;
7123 	}
7124 
7125 	/* The NAPI context has more processing work, but busy-polling
7126 	 * is preferred. Exit early.
7127 	 */
7128 	if (napi_prefer_busy_poll(n)) {
7129 		if (napi_complete_done(n, work)) {
7130 			/* If timeout is not set, we need to make sure
7131 			 * that the NAPI is re-scheduled.
7132 			 */
7133 			napi_schedule(n);
7134 		}
7135 		return work;
7136 	}
7137 
7138 	if (n->gro_bitmask) {
7139 		/* flush too old packets
7140 		 * If HZ < 1000, flush all packets.
7141 		 */
7142 		napi_gro_flush(n, HZ >= 1000);
7143 	}
7144 
7145 	gro_normal_list(n);
7146 
7147 	/* Some drivers may have called napi_schedule
7148 	 * prior to exhausting their budget.
7149 	 */
7150 	if (unlikely(!list_empty(&n->poll_list))) {
7151 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
7152 			     n->dev ? n->dev->name : "backlog");
7153 		return work;
7154 	}
7155 
7156 	*repoll = true;
7157 
7158 	return work;
7159 }
7160 
7161 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
7162 {
7163 	bool do_repoll = false;
7164 	void *have;
7165 	int work;
7166 
7167 	list_del_init(&n->poll_list);
7168 
7169 	have = netpoll_poll_lock(n);
7170 
7171 	work = __napi_poll(n, &do_repoll);
7172 
7173 	if (do_repoll)
7174 		list_add_tail(&n->poll_list, repoll);
7175 
7176 	netpoll_poll_unlock(have);
7177 
7178 	return work;
7179 }
7180 
7181 static int napi_thread_wait(struct napi_struct *napi)
7182 {
7183 	set_current_state(TASK_INTERRUPTIBLE);
7184 
7185 	while (!kthread_should_stop()) {
7186 		/* Testing SCHED_THREADED bit here to make sure the current
7187 		 * kthread owns this napi and could poll on this napi.
7188 		 * Testing SCHED bit is not enough because SCHED bit might be
7189 		 * set by some other busy poll thread or by napi_disable().
7190 		 */
7191 		if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state)) {
7192 			WARN_ON(!list_empty(&napi->poll_list));
7193 			__set_current_state(TASK_RUNNING);
7194 			return 0;
7195 		}
7196 
7197 		schedule();
7198 		set_current_state(TASK_INTERRUPTIBLE);
7199 	}
7200 	__set_current_state(TASK_RUNNING);
7201 
7202 	return -1;
7203 }
7204 
7205 static void napi_threaded_poll_loop(struct napi_struct *napi)
7206 {
7207 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
7208 	struct softnet_data *sd;
7209 	unsigned long last_qs = jiffies;
7210 
7211 	for (;;) {
7212 		bool repoll = false;
7213 		void *have;
7214 
7215 		local_bh_disable();
7216 		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
7217 
7218 		sd = this_cpu_ptr(&softnet_data);
7219 		sd->in_napi_threaded_poll = true;
7220 
7221 		have = netpoll_poll_lock(napi);
7222 		__napi_poll(napi, &repoll);
7223 		netpoll_poll_unlock(have);
7224 
7225 		sd->in_napi_threaded_poll = false;
7226 		barrier();
7227 
7228 		if (sd_has_rps_ipi_waiting(sd)) {
7229 			local_irq_disable();
7230 			net_rps_action_and_irq_enable(sd);
7231 		}
7232 		skb_defer_free_flush(sd);
7233 		bpf_net_ctx_clear(bpf_net_ctx);
7234 		local_bh_enable();
7235 
7236 		if (!repoll)
7237 			break;
7238 
7239 		rcu_softirq_qs_periodic(last_qs);
7240 		cond_resched();
7241 	}
7242 }
7243 
7244 static int napi_threaded_poll(void *data)
7245 {
7246 	struct napi_struct *napi = data;
7247 
7248 	while (!napi_thread_wait(napi))
7249 		napi_threaded_poll_loop(napi);
7250 
7251 	return 0;
7252 }
7253 
7254 static __latent_entropy void net_rx_action(void)
7255 {
7256 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7257 	unsigned long time_limit = jiffies +
7258 		usecs_to_jiffies(READ_ONCE(net_hotdata.netdev_budget_usecs));
7259 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
7260 	int budget = READ_ONCE(net_hotdata.netdev_budget);
7261 	LIST_HEAD(list);
7262 	LIST_HEAD(repoll);
7263 
7264 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
7265 start:
7266 	sd->in_net_rx_action = true;
7267 	local_irq_disable();
7268 	list_splice_init(&sd->poll_list, &list);
7269 	local_irq_enable();
7270 
7271 	for (;;) {
7272 		struct napi_struct *n;
7273 
7274 		skb_defer_free_flush(sd);
7275 
7276 		if (list_empty(&list)) {
7277 			if (list_empty(&repoll)) {
7278 				sd->in_net_rx_action = false;
7279 				barrier();
7280 				/* We need to check if ____napi_schedule()
7281 				 * had refilled poll_list while
7282 				 * sd->in_net_rx_action was true.
7283 				 */
7284 				if (!list_empty(&sd->poll_list))
7285 					goto start;
7286 				if (!sd_has_rps_ipi_waiting(sd))
7287 					goto end;
7288 			}
7289 			break;
7290 		}
7291 
7292 		n = list_first_entry(&list, struct napi_struct, poll_list);
7293 		budget -= napi_poll(n, &repoll);
7294 
7295 		/* If softirq window is exhausted then punt.
7296 		 * Allow this to run for 2 jiffies since which will allow
7297 		 * an average latency of 1.5/HZ.
7298 		 */
7299 		if (unlikely(budget <= 0 ||
7300 			     time_after_eq(jiffies, time_limit))) {
7301 			sd->time_squeeze++;
7302 			break;
7303 		}
7304 	}
7305 
7306 	local_irq_disable();
7307 
7308 	list_splice_tail_init(&sd->poll_list, &list);
7309 	list_splice_tail(&repoll, &list);
7310 	list_splice(&list, &sd->poll_list);
7311 	if (!list_empty(&sd->poll_list))
7312 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
7313 	else
7314 		sd->in_net_rx_action = false;
7315 
7316 	net_rps_action_and_irq_enable(sd);
7317 end:
7318 	bpf_net_ctx_clear(bpf_net_ctx);
7319 }
7320 
7321 struct netdev_adjacent {
7322 	struct net_device *dev;
7323 	netdevice_tracker dev_tracker;
7324 
7325 	/* upper master flag, there can only be one master device per list */
7326 	bool master;
7327 
7328 	/* lookup ignore flag */
7329 	bool ignore;
7330 
7331 	/* counter for the number of times this device was added to us */
7332 	u16 ref_nr;
7333 
7334 	/* private field for the users */
7335 	void *private;
7336 
7337 	struct list_head list;
7338 	struct rcu_head rcu;
7339 };
7340 
7341 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7342 						 struct list_head *adj_list)
7343 {
7344 	struct netdev_adjacent *adj;
7345 
7346 	list_for_each_entry(adj, adj_list, list) {
7347 		if (adj->dev == adj_dev)
7348 			return adj;
7349 	}
7350 	return NULL;
7351 }
7352 
7353 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7354 				    struct netdev_nested_priv *priv)
7355 {
7356 	struct net_device *dev = (struct net_device *)priv->data;
7357 
7358 	return upper_dev == dev;
7359 }
7360 
7361 /**
7362  * netdev_has_upper_dev - Check if device is linked to an upper device
7363  * @dev: device
7364  * @upper_dev: upper device to check
7365  *
7366  * Find out if a device is linked to specified upper device and return true
7367  * in case it is. Note that this checks only immediate upper device,
7368  * not through a complete stack of devices. The caller must hold the RTNL lock.
7369  */
7370 bool netdev_has_upper_dev(struct net_device *dev,
7371 			  struct net_device *upper_dev)
7372 {
7373 	struct netdev_nested_priv priv = {
7374 		.data = (void *)upper_dev,
7375 	};
7376 
7377 	ASSERT_RTNL();
7378 
7379 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7380 					     &priv);
7381 }
7382 EXPORT_SYMBOL(netdev_has_upper_dev);
7383 
7384 /**
7385  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7386  * @dev: device
7387  * @upper_dev: upper device to check
7388  *
7389  * Find out if a device is linked to specified upper device and return true
7390  * in case it is. Note that this checks the entire upper device chain.
7391  * The caller must hold rcu lock.
7392  */
7393 
7394 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7395 				  struct net_device *upper_dev)
7396 {
7397 	struct netdev_nested_priv priv = {
7398 		.data = (void *)upper_dev,
7399 	};
7400 
7401 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7402 					       &priv);
7403 }
7404 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7405 
7406 /**
7407  * netdev_has_any_upper_dev - Check if device is linked to some device
7408  * @dev: device
7409  *
7410  * Find out if a device is linked to an upper device and return true in case
7411  * it is. The caller must hold the RTNL lock.
7412  */
7413 bool netdev_has_any_upper_dev(struct net_device *dev)
7414 {
7415 	ASSERT_RTNL();
7416 
7417 	return !list_empty(&dev->adj_list.upper);
7418 }
7419 EXPORT_SYMBOL(netdev_has_any_upper_dev);
7420 
7421 /**
7422  * netdev_master_upper_dev_get - Get master upper device
7423  * @dev: device
7424  *
7425  * Find a master upper device and return pointer to it or NULL in case
7426  * it's not there. The caller must hold the RTNL lock.
7427  */
7428 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7429 {
7430 	struct netdev_adjacent *upper;
7431 
7432 	ASSERT_RTNL();
7433 
7434 	if (list_empty(&dev->adj_list.upper))
7435 		return NULL;
7436 
7437 	upper = list_first_entry(&dev->adj_list.upper,
7438 				 struct netdev_adjacent, list);
7439 	if (likely(upper->master))
7440 		return upper->dev;
7441 	return NULL;
7442 }
7443 EXPORT_SYMBOL(netdev_master_upper_dev_get);
7444 
7445 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7446 {
7447 	struct netdev_adjacent *upper;
7448 
7449 	ASSERT_RTNL();
7450 
7451 	if (list_empty(&dev->adj_list.upper))
7452 		return NULL;
7453 
7454 	upper = list_first_entry(&dev->adj_list.upper,
7455 				 struct netdev_adjacent, list);
7456 	if (likely(upper->master) && !upper->ignore)
7457 		return upper->dev;
7458 	return NULL;
7459 }
7460 
7461 /**
7462  * netdev_has_any_lower_dev - Check if device is linked to some device
7463  * @dev: device
7464  *
7465  * Find out if a device is linked to a lower device and return true in case
7466  * it is. The caller must hold the RTNL lock.
7467  */
7468 static bool netdev_has_any_lower_dev(struct net_device *dev)
7469 {
7470 	ASSERT_RTNL();
7471 
7472 	return !list_empty(&dev->adj_list.lower);
7473 }
7474 
7475 void *netdev_adjacent_get_private(struct list_head *adj_list)
7476 {
7477 	struct netdev_adjacent *adj;
7478 
7479 	adj = list_entry(adj_list, struct netdev_adjacent, list);
7480 
7481 	return adj->private;
7482 }
7483 EXPORT_SYMBOL(netdev_adjacent_get_private);
7484 
7485 /**
7486  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7487  * @dev: device
7488  * @iter: list_head ** of the current position
7489  *
7490  * Gets the next device from the dev's upper list, starting from iter
7491  * position. The caller must hold RCU read lock.
7492  */
7493 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7494 						 struct list_head **iter)
7495 {
7496 	struct netdev_adjacent *upper;
7497 
7498 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7499 
7500 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7501 
7502 	if (&upper->list == &dev->adj_list.upper)
7503 		return NULL;
7504 
7505 	*iter = &upper->list;
7506 
7507 	return upper->dev;
7508 }
7509 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7510 
7511 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7512 						  struct list_head **iter,
7513 						  bool *ignore)
7514 {
7515 	struct netdev_adjacent *upper;
7516 
7517 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7518 
7519 	if (&upper->list == &dev->adj_list.upper)
7520 		return NULL;
7521 
7522 	*iter = &upper->list;
7523 	*ignore = upper->ignore;
7524 
7525 	return upper->dev;
7526 }
7527 
7528 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7529 						    struct list_head **iter)
7530 {
7531 	struct netdev_adjacent *upper;
7532 
7533 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7534 
7535 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7536 
7537 	if (&upper->list == &dev->adj_list.upper)
7538 		return NULL;
7539 
7540 	*iter = &upper->list;
7541 
7542 	return upper->dev;
7543 }
7544 
7545 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7546 				       int (*fn)(struct net_device *dev,
7547 					 struct netdev_nested_priv *priv),
7548 				       struct netdev_nested_priv *priv)
7549 {
7550 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7551 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7552 	int ret, cur = 0;
7553 	bool ignore;
7554 
7555 	now = dev;
7556 	iter = &dev->adj_list.upper;
7557 
7558 	while (1) {
7559 		if (now != dev) {
7560 			ret = fn(now, priv);
7561 			if (ret)
7562 				return ret;
7563 		}
7564 
7565 		next = NULL;
7566 		while (1) {
7567 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
7568 			if (!udev)
7569 				break;
7570 			if (ignore)
7571 				continue;
7572 
7573 			next = udev;
7574 			niter = &udev->adj_list.upper;
7575 			dev_stack[cur] = now;
7576 			iter_stack[cur++] = iter;
7577 			break;
7578 		}
7579 
7580 		if (!next) {
7581 			if (!cur)
7582 				return 0;
7583 			next = dev_stack[--cur];
7584 			niter = iter_stack[cur];
7585 		}
7586 
7587 		now = next;
7588 		iter = niter;
7589 	}
7590 
7591 	return 0;
7592 }
7593 
7594 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7595 				  int (*fn)(struct net_device *dev,
7596 					    struct netdev_nested_priv *priv),
7597 				  struct netdev_nested_priv *priv)
7598 {
7599 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7600 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7601 	int ret, cur = 0;
7602 
7603 	now = dev;
7604 	iter = &dev->adj_list.upper;
7605 
7606 	while (1) {
7607 		if (now != dev) {
7608 			ret = fn(now, priv);
7609 			if (ret)
7610 				return ret;
7611 		}
7612 
7613 		next = NULL;
7614 		while (1) {
7615 			udev = netdev_next_upper_dev_rcu(now, &iter);
7616 			if (!udev)
7617 				break;
7618 
7619 			next = udev;
7620 			niter = &udev->adj_list.upper;
7621 			dev_stack[cur] = now;
7622 			iter_stack[cur++] = iter;
7623 			break;
7624 		}
7625 
7626 		if (!next) {
7627 			if (!cur)
7628 				return 0;
7629 			next = dev_stack[--cur];
7630 			niter = iter_stack[cur];
7631 		}
7632 
7633 		now = next;
7634 		iter = niter;
7635 	}
7636 
7637 	return 0;
7638 }
7639 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7640 
7641 static bool __netdev_has_upper_dev(struct net_device *dev,
7642 				   struct net_device *upper_dev)
7643 {
7644 	struct netdev_nested_priv priv = {
7645 		.flags = 0,
7646 		.data = (void *)upper_dev,
7647 	};
7648 
7649 	ASSERT_RTNL();
7650 
7651 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7652 					   &priv);
7653 }
7654 
7655 /**
7656  * netdev_lower_get_next_private - Get the next ->private from the
7657  *				   lower neighbour list
7658  * @dev: device
7659  * @iter: list_head ** of the current position
7660  *
7661  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7662  * list, starting from iter position. The caller must hold either hold the
7663  * RTNL lock or its own locking that guarantees that the neighbour lower
7664  * list will remain unchanged.
7665  */
7666 void *netdev_lower_get_next_private(struct net_device *dev,
7667 				    struct list_head **iter)
7668 {
7669 	struct netdev_adjacent *lower;
7670 
7671 	lower = list_entry(*iter, struct netdev_adjacent, list);
7672 
7673 	if (&lower->list == &dev->adj_list.lower)
7674 		return NULL;
7675 
7676 	*iter = lower->list.next;
7677 
7678 	return lower->private;
7679 }
7680 EXPORT_SYMBOL(netdev_lower_get_next_private);
7681 
7682 /**
7683  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7684  *				       lower neighbour list, RCU
7685  *				       variant
7686  * @dev: device
7687  * @iter: list_head ** of the current position
7688  *
7689  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7690  * list, starting from iter position. The caller must hold RCU read lock.
7691  */
7692 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7693 					struct list_head **iter)
7694 {
7695 	struct netdev_adjacent *lower;
7696 
7697 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7698 
7699 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7700 
7701 	if (&lower->list == &dev->adj_list.lower)
7702 		return NULL;
7703 
7704 	*iter = &lower->list;
7705 
7706 	return lower->private;
7707 }
7708 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7709 
7710 /**
7711  * netdev_lower_get_next - Get the next device from the lower neighbour
7712  *                         list
7713  * @dev: device
7714  * @iter: list_head ** of the current position
7715  *
7716  * Gets the next netdev_adjacent from the dev's lower neighbour
7717  * list, starting from iter position. The caller must hold RTNL lock or
7718  * its own locking that guarantees that the neighbour lower
7719  * list will remain unchanged.
7720  */
7721 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7722 {
7723 	struct netdev_adjacent *lower;
7724 
7725 	lower = list_entry(*iter, struct netdev_adjacent, list);
7726 
7727 	if (&lower->list == &dev->adj_list.lower)
7728 		return NULL;
7729 
7730 	*iter = lower->list.next;
7731 
7732 	return lower->dev;
7733 }
7734 EXPORT_SYMBOL(netdev_lower_get_next);
7735 
7736 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7737 						struct list_head **iter)
7738 {
7739 	struct netdev_adjacent *lower;
7740 
7741 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7742 
7743 	if (&lower->list == &dev->adj_list.lower)
7744 		return NULL;
7745 
7746 	*iter = &lower->list;
7747 
7748 	return lower->dev;
7749 }
7750 
7751 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7752 						  struct list_head **iter,
7753 						  bool *ignore)
7754 {
7755 	struct netdev_adjacent *lower;
7756 
7757 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7758 
7759 	if (&lower->list == &dev->adj_list.lower)
7760 		return NULL;
7761 
7762 	*iter = &lower->list;
7763 	*ignore = lower->ignore;
7764 
7765 	return lower->dev;
7766 }
7767 
7768 int netdev_walk_all_lower_dev(struct net_device *dev,
7769 			      int (*fn)(struct net_device *dev,
7770 					struct netdev_nested_priv *priv),
7771 			      struct netdev_nested_priv *priv)
7772 {
7773 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7774 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7775 	int ret, cur = 0;
7776 
7777 	now = dev;
7778 	iter = &dev->adj_list.lower;
7779 
7780 	while (1) {
7781 		if (now != dev) {
7782 			ret = fn(now, priv);
7783 			if (ret)
7784 				return ret;
7785 		}
7786 
7787 		next = NULL;
7788 		while (1) {
7789 			ldev = netdev_next_lower_dev(now, &iter);
7790 			if (!ldev)
7791 				break;
7792 
7793 			next = ldev;
7794 			niter = &ldev->adj_list.lower;
7795 			dev_stack[cur] = now;
7796 			iter_stack[cur++] = iter;
7797 			break;
7798 		}
7799 
7800 		if (!next) {
7801 			if (!cur)
7802 				return 0;
7803 			next = dev_stack[--cur];
7804 			niter = iter_stack[cur];
7805 		}
7806 
7807 		now = next;
7808 		iter = niter;
7809 	}
7810 
7811 	return 0;
7812 }
7813 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7814 
7815 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7816 				       int (*fn)(struct net_device *dev,
7817 					 struct netdev_nested_priv *priv),
7818 				       struct netdev_nested_priv *priv)
7819 {
7820 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7821 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7822 	int ret, cur = 0;
7823 	bool ignore;
7824 
7825 	now = dev;
7826 	iter = &dev->adj_list.lower;
7827 
7828 	while (1) {
7829 		if (now != dev) {
7830 			ret = fn(now, priv);
7831 			if (ret)
7832 				return ret;
7833 		}
7834 
7835 		next = NULL;
7836 		while (1) {
7837 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7838 			if (!ldev)
7839 				break;
7840 			if (ignore)
7841 				continue;
7842 
7843 			next = ldev;
7844 			niter = &ldev->adj_list.lower;
7845 			dev_stack[cur] = now;
7846 			iter_stack[cur++] = iter;
7847 			break;
7848 		}
7849 
7850 		if (!next) {
7851 			if (!cur)
7852 				return 0;
7853 			next = dev_stack[--cur];
7854 			niter = iter_stack[cur];
7855 		}
7856 
7857 		now = next;
7858 		iter = niter;
7859 	}
7860 
7861 	return 0;
7862 }
7863 
7864 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7865 					     struct list_head **iter)
7866 {
7867 	struct netdev_adjacent *lower;
7868 
7869 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7870 	if (&lower->list == &dev->adj_list.lower)
7871 		return NULL;
7872 
7873 	*iter = &lower->list;
7874 
7875 	return lower->dev;
7876 }
7877 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7878 
7879 static u8 __netdev_upper_depth(struct net_device *dev)
7880 {
7881 	struct net_device *udev;
7882 	struct list_head *iter;
7883 	u8 max_depth = 0;
7884 	bool ignore;
7885 
7886 	for (iter = &dev->adj_list.upper,
7887 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7888 	     udev;
7889 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7890 		if (ignore)
7891 			continue;
7892 		if (max_depth < udev->upper_level)
7893 			max_depth = udev->upper_level;
7894 	}
7895 
7896 	return max_depth;
7897 }
7898 
7899 static u8 __netdev_lower_depth(struct net_device *dev)
7900 {
7901 	struct net_device *ldev;
7902 	struct list_head *iter;
7903 	u8 max_depth = 0;
7904 	bool ignore;
7905 
7906 	for (iter = &dev->adj_list.lower,
7907 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7908 	     ldev;
7909 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7910 		if (ignore)
7911 			continue;
7912 		if (max_depth < ldev->lower_level)
7913 			max_depth = ldev->lower_level;
7914 	}
7915 
7916 	return max_depth;
7917 }
7918 
7919 static int __netdev_update_upper_level(struct net_device *dev,
7920 				       struct netdev_nested_priv *__unused)
7921 {
7922 	dev->upper_level = __netdev_upper_depth(dev) + 1;
7923 	return 0;
7924 }
7925 
7926 #ifdef CONFIG_LOCKDEP
7927 static LIST_HEAD(net_unlink_list);
7928 
7929 static void net_unlink_todo(struct net_device *dev)
7930 {
7931 	if (list_empty(&dev->unlink_list))
7932 		list_add_tail(&dev->unlink_list, &net_unlink_list);
7933 }
7934 #endif
7935 
7936 static int __netdev_update_lower_level(struct net_device *dev,
7937 				       struct netdev_nested_priv *priv)
7938 {
7939 	dev->lower_level = __netdev_lower_depth(dev) + 1;
7940 
7941 #ifdef CONFIG_LOCKDEP
7942 	if (!priv)
7943 		return 0;
7944 
7945 	if (priv->flags & NESTED_SYNC_IMM)
7946 		dev->nested_level = dev->lower_level - 1;
7947 	if (priv->flags & NESTED_SYNC_TODO)
7948 		net_unlink_todo(dev);
7949 #endif
7950 	return 0;
7951 }
7952 
7953 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7954 				  int (*fn)(struct net_device *dev,
7955 					    struct netdev_nested_priv *priv),
7956 				  struct netdev_nested_priv *priv)
7957 {
7958 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7959 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7960 	int ret, cur = 0;
7961 
7962 	now = dev;
7963 	iter = &dev->adj_list.lower;
7964 
7965 	while (1) {
7966 		if (now != dev) {
7967 			ret = fn(now, priv);
7968 			if (ret)
7969 				return ret;
7970 		}
7971 
7972 		next = NULL;
7973 		while (1) {
7974 			ldev = netdev_next_lower_dev_rcu(now, &iter);
7975 			if (!ldev)
7976 				break;
7977 
7978 			next = ldev;
7979 			niter = &ldev->adj_list.lower;
7980 			dev_stack[cur] = now;
7981 			iter_stack[cur++] = iter;
7982 			break;
7983 		}
7984 
7985 		if (!next) {
7986 			if (!cur)
7987 				return 0;
7988 			next = dev_stack[--cur];
7989 			niter = iter_stack[cur];
7990 		}
7991 
7992 		now = next;
7993 		iter = niter;
7994 	}
7995 
7996 	return 0;
7997 }
7998 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7999 
8000 /**
8001  * netdev_lower_get_first_private_rcu - Get the first ->private from the
8002  *				       lower neighbour list, RCU
8003  *				       variant
8004  * @dev: device
8005  *
8006  * Gets the first netdev_adjacent->private from the dev's lower neighbour
8007  * list. The caller must hold RCU read lock.
8008  */
8009 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
8010 {
8011 	struct netdev_adjacent *lower;
8012 
8013 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
8014 			struct netdev_adjacent, list);
8015 	if (lower)
8016 		return lower->private;
8017 	return NULL;
8018 }
8019 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
8020 
8021 /**
8022  * netdev_master_upper_dev_get_rcu - Get master upper device
8023  * @dev: device
8024  *
8025  * Find a master upper device and return pointer to it or NULL in case
8026  * it's not there. The caller must hold the RCU read lock.
8027  */
8028 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
8029 {
8030 	struct netdev_adjacent *upper;
8031 
8032 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
8033 				       struct netdev_adjacent, list);
8034 	if (upper && likely(upper->master))
8035 		return upper->dev;
8036 	return NULL;
8037 }
8038 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
8039 
8040 static int netdev_adjacent_sysfs_add(struct net_device *dev,
8041 			      struct net_device *adj_dev,
8042 			      struct list_head *dev_list)
8043 {
8044 	char linkname[IFNAMSIZ+7];
8045 
8046 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
8047 		"upper_%s" : "lower_%s", adj_dev->name);
8048 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
8049 				 linkname);
8050 }
8051 static void netdev_adjacent_sysfs_del(struct net_device *dev,
8052 			       char *name,
8053 			       struct list_head *dev_list)
8054 {
8055 	char linkname[IFNAMSIZ+7];
8056 
8057 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
8058 		"upper_%s" : "lower_%s", name);
8059 	sysfs_remove_link(&(dev->dev.kobj), linkname);
8060 }
8061 
8062 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
8063 						 struct net_device *adj_dev,
8064 						 struct list_head *dev_list)
8065 {
8066 	return (dev_list == &dev->adj_list.upper ||
8067 		dev_list == &dev->adj_list.lower) &&
8068 		net_eq(dev_net(dev), dev_net(adj_dev));
8069 }
8070 
8071 static int __netdev_adjacent_dev_insert(struct net_device *dev,
8072 					struct net_device *adj_dev,
8073 					struct list_head *dev_list,
8074 					void *private, bool master)
8075 {
8076 	struct netdev_adjacent *adj;
8077 	int ret;
8078 
8079 	adj = __netdev_find_adj(adj_dev, dev_list);
8080 
8081 	if (adj) {
8082 		adj->ref_nr += 1;
8083 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
8084 			 dev->name, adj_dev->name, adj->ref_nr);
8085 
8086 		return 0;
8087 	}
8088 
8089 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
8090 	if (!adj)
8091 		return -ENOMEM;
8092 
8093 	adj->dev = adj_dev;
8094 	adj->master = master;
8095 	adj->ref_nr = 1;
8096 	adj->private = private;
8097 	adj->ignore = false;
8098 	netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
8099 
8100 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
8101 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
8102 
8103 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
8104 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
8105 		if (ret)
8106 			goto free_adj;
8107 	}
8108 
8109 	/* Ensure that master link is always the first item in list. */
8110 	if (master) {
8111 		ret = sysfs_create_link(&(dev->dev.kobj),
8112 					&(adj_dev->dev.kobj), "master");
8113 		if (ret)
8114 			goto remove_symlinks;
8115 
8116 		list_add_rcu(&adj->list, dev_list);
8117 	} else {
8118 		list_add_tail_rcu(&adj->list, dev_list);
8119 	}
8120 
8121 	return 0;
8122 
8123 remove_symlinks:
8124 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8125 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8126 free_adj:
8127 	netdev_put(adj_dev, &adj->dev_tracker);
8128 	kfree(adj);
8129 
8130 	return ret;
8131 }
8132 
8133 static void __netdev_adjacent_dev_remove(struct net_device *dev,
8134 					 struct net_device *adj_dev,
8135 					 u16 ref_nr,
8136 					 struct list_head *dev_list)
8137 {
8138 	struct netdev_adjacent *adj;
8139 
8140 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
8141 		 dev->name, adj_dev->name, ref_nr);
8142 
8143 	adj = __netdev_find_adj(adj_dev, dev_list);
8144 
8145 	if (!adj) {
8146 		pr_err("Adjacency does not exist for device %s from %s\n",
8147 		       dev->name, adj_dev->name);
8148 		WARN_ON(1);
8149 		return;
8150 	}
8151 
8152 	if (adj->ref_nr > ref_nr) {
8153 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
8154 			 dev->name, adj_dev->name, ref_nr,
8155 			 adj->ref_nr - ref_nr);
8156 		adj->ref_nr -= ref_nr;
8157 		return;
8158 	}
8159 
8160 	if (adj->master)
8161 		sysfs_remove_link(&(dev->dev.kobj), "master");
8162 
8163 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8164 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8165 
8166 	list_del_rcu(&adj->list);
8167 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
8168 		 adj_dev->name, dev->name, adj_dev->name);
8169 	netdev_put(adj_dev, &adj->dev_tracker);
8170 	kfree_rcu(adj, rcu);
8171 }
8172 
8173 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
8174 					    struct net_device *upper_dev,
8175 					    struct list_head *up_list,
8176 					    struct list_head *down_list,
8177 					    void *private, bool master)
8178 {
8179 	int ret;
8180 
8181 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
8182 					   private, master);
8183 	if (ret)
8184 		return ret;
8185 
8186 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
8187 					   private, false);
8188 	if (ret) {
8189 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
8190 		return ret;
8191 	}
8192 
8193 	return 0;
8194 }
8195 
8196 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
8197 					       struct net_device *upper_dev,
8198 					       u16 ref_nr,
8199 					       struct list_head *up_list,
8200 					       struct list_head *down_list)
8201 {
8202 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
8203 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
8204 }
8205 
8206 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
8207 						struct net_device *upper_dev,
8208 						void *private, bool master)
8209 {
8210 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
8211 						&dev->adj_list.upper,
8212 						&upper_dev->adj_list.lower,
8213 						private, master);
8214 }
8215 
8216 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
8217 						   struct net_device *upper_dev)
8218 {
8219 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
8220 					   &dev->adj_list.upper,
8221 					   &upper_dev->adj_list.lower);
8222 }
8223 
8224 static int __netdev_upper_dev_link(struct net_device *dev,
8225 				   struct net_device *upper_dev, bool master,
8226 				   void *upper_priv, void *upper_info,
8227 				   struct netdev_nested_priv *priv,
8228 				   struct netlink_ext_ack *extack)
8229 {
8230 	struct netdev_notifier_changeupper_info changeupper_info = {
8231 		.info = {
8232 			.dev = dev,
8233 			.extack = extack,
8234 		},
8235 		.upper_dev = upper_dev,
8236 		.master = master,
8237 		.linking = true,
8238 		.upper_info = upper_info,
8239 	};
8240 	struct net_device *master_dev;
8241 	int ret = 0;
8242 
8243 	ASSERT_RTNL();
8244 
8245 	if (dev == upper_dev)
8246 		return -EBUSY;
8247 
8248 	/* To prevent loops, check if dev is not upper device to upper_dev. */
8249 	if (__netdev_has_upper_dev(upper_dev, dev))
8250 		return -EBUSY;
8251 
8252 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
8253 		return -EMLINK;
8254 
8255 	if (!master) {
8256 		if (__netdev_has_upper_dev(dev, upper_dev))
8257 			return -EEXIST;
8258 	} else {
8259 		master_dev = __netdev_master_upper_dev_get(dev);
8260 		if (master_dev)
8261 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
8262 	}
8263 
8264 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8265 					    &changeupper_info.info);
8266 	ret = notifier_to_errno(ret);
8267 	if (ret)
8268 		return ret;
8269 
8270 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
8271 						   master);
8272 	if (ret)
8273 		return ret;
8274 
8275 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8276 					    &changeupper_info.info);
8277 	ret = notifier_to_errno(ret);
8278 	if (ret)
8279 		goto rollback;
8280 
8281 	__netdev_update_upper_level(dev, NULL);
8282 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8283 
8284 	__netdev_update_lower_level(upper_dev, priv);
8285 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8286 				    priv);
8287 
8288 	return 0;
8289 
8290 rollback:
8291 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8292 
8293 	return ret;
8294 }
8295 
8296 /**
8297  * netdev_upper_dev_link - Add a link to the upper device
8298  * @dev: device
8299  * @upper_dev: new upper device
8300  * @extack: netlink extended ack
8301  *
8302  * Adds a link to device which is upper to this one. The caller must hold
8303  * the RTNL lock. On a failure a negative errno code is returned.
8304  * On success the reference counts are adjusted and the function
8305  * returns zero.
8306  */
8307 int netdev_upper_dev_link(struct net_device *dev,
8308 			  struct net_device *upper_dev,
8309 			  struct netlink_ext_ack *extack)
8310 {
8311 	struct netdev_nested_priv priv = {
8312 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8313 		.data = NULL,
8314 	};
8315 
8316 	return __netdev_upper_dev_link(dev, upper_dev, false,
8317 				       NULL, NULL, &priv, extack);
8318 }
8319 EXPORT_SYMBOL(netdev_upper_dev_link);
8320 
8321 /**
8322  * netdev_master_upper_dev_link - Add a master link to the upper device
8323  * @dev: device
8324  * @upper_dev: new upper device
8325  * @upper_priv: upper device private
8326  * @upper_info: upper info to be passed down via notifier
8327  * @extack: netlink extended ack
8328  *
8329  * Adds a link to device which is upper to this one. In this case, only
8330  * one master upper device can be linked, although other non-master devices
8331  * might be linked as well. The caller must hold the RTNL lock.
8332  * On a failure a negative errno code is returned. On success the reference
8333  * counts are adjusted and the function returns zero.
8334  */
8335 int netdev_master_upper_dev_link(struct net_device *dev,
8336 				 struct net_device *upper_dev,
8337 				 void *upper_priv, void *upper_info,
8338 				 struct netlink_ext_ack *extack)
8339 {
8340 	struct netdev_nested_priv priv = {
8341 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8342 		.data = NULL,
8343 	};
8344 
8345 	return __netdev_upper_dev_link(dev, upper_dev, true,
8346 				       upper_priv, upper_info, &priv, extack);
8347 }
8348 EXPORT_SYMBOL(netdev_master_upper_dev_link);
8349 
8350 static void __netdev_upper_dev_unlink(struct net_device *dev,
8351 				      struct net_device *upper_dev,
8352 				      struct netdev_nested_priv *priv)
8353 {
8354 	struct netdev_notifier_changeupper_info changeupper_info = {
8355 		.info = {
8356 			.dev = dev,
8357 		},
8358 		.upper_dev = upper_dev,
8359 		.linking = false,
8360 	};
8361 
8362 	ASSERT_RTNL();
8363 
8364 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8365 
8366 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8367 				      &changeupper_info.info);
8368 
8369 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8370 
8371 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8372 				      &changeupper_info.info);
8373 
8374 	__netdev_update_upper_level(dev, NULL);
8375 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8376 
8377 	__netdev_update_lower_level(upper_dev, priv);
8378 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8379 				    priv);
8380 }
8381 
8382 /**
8383  * netdev_upper_dev_unlink - Removes a link to upper device
8384  * @dev: device
8385  * @upper_dev: new upper device
8386  *
8387  * Removes a link to device which is upper to this one. The caller must hold
8388  * the RTNL lock.
8389  */
8390 void netdev_upper_dev_unlink(struct net_device *dev,
8391 			     struct net_device *upper_dev)
8392 {
8393 	struct netdev_nested_priv priv = {
8394 		.flags = NESTED_SYNC_TODO,
8395 		.data = NULL,
8396 	};
8397 
8398 	__netdev_upper_dev_unlink(dev, upper_dev, &priv);
8399 }
8400 EXPORT_SYMBOL(netdev_upper_dev_unlink);
8401 
8402 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8403 				      struct net_device *lower_dev,
8404 				      bool val)
8405 {
8406 	struct netdev_adjacent *adj;
8407 
8408 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8409 	if (adj)
8410 		adj->ignore = val;
8411 
8412 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8413 	if (adj)
8414 		adj->ignore = val;
8415 }
8416 
8417 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8418 					struct net_device *lower_dev)
8419 {
8420 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8421 }
8422 
8423 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8424 				       struct net_device *lower_dev)
8425 {
8426 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8427 }
8428 
8429 int netdev_adjacent_change_prepare(struct net_device *old_dev,
8430 				   struct net_device *new_dev,
8431 				   struct net_device *dev,
8432 				   struct netlink_ext_ack *extack)
8433 {
8434 	struct netdev_nested_priv priv = {
8435 		.flags = 0,
8436 		.data = NULL,
8437 	};
8438 	int err;
8439 
8440 	if (!new_dev)
8441 		return 0;
8442 
8443 	if (old_dev && new_dev != old_dev)
8444 		netdev_adjacent_dev_disable(dev, old_dev);
8445 	err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8446 				      extack);
8447 	if (err) {
8448 		if (old_dev && new_dev != old_dev)
8449 			netdev_adjacent_dev_enable(dev, old_dev);
8450 		return err;
8451 	}
8452 
8453 	return 0;
8454 }
8455 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8456 
8457 void netdev_adjacent_change_commit(struct net_device *old_dev,
8458 				   struct net_device *new_dev,
8459 				   struct net_device *dev)
8460 {
8461 	struct netdev_nested_priv priv = {
8462 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8463 		.data = NULL,
8464 	};
8465 
8466 	if (!new_dev || !old_dev)
8467 		return;
8468 
8469 	if (new_dev == old_dev)
8470 		return;
8471 
8472 	netdev_adjacent_dev_enable(dev, old_dev);
8473 	__netdev_upper_dev_unlink(old_dev, dev, &priv);
8474 }
8475 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8476 
8477 void netdev_adjacent_change_abort(struct net_device *old_dev,
8478 				  struct net_device *new_dev,
8479 				  struct net_device *dev)
8480 {
8481 	struct netdev_nested_priv priv = {
8482 		.flags = 0,
8483 		.data = NULL,
8484 	};
8485 
8486 	if (!new_dev)
8487 		return;
8488 
8489 	if (old_dev && new_dev != old_dev)
8490 		netdev_adjacent_dev_enable(dev, old_dev);
8491 
8492 	__netdev_upper_dev_unlink(new_dev, dev, &priv);
8493 }
8494 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8495 
8496 /**
8497  * netdev_bonding_info_change - Dispatch event about slave change
8498  * @dev: device
8499  * @bonding_info: info to dispatch
8500  *
8501  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8502  * The caller must hold the RTNL lock.
8503  */
8504 void netdev_bonding_info_change(struct net_device *dev,
8505 				struct netdev_bonding_info *bonding_info)
8506 {
8507 	struct netdev_notifier_bonding_info info = {
8508 		.info.dev = dev,
8509 	};
8510 
8511 	memcpy(&info.bonding_info, bonding_info,
8512 	       sizeof(struct netdev_bonding_info));
8513 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8514 				      &info.info);
8515 }
8516 EXPORT_SYMBOL(netdev_bonding_info_change);
8517 
8518 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
8519 					   struct netlink_ext_ack *extack)
8520 {
8521 	struct netdev_notifier_offload_xstats_info info = {
8522 		.info.dev = dev,
8523 		.info.extack = extack,
8524 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8525 	};
8526 	int err;
8527 	int rc;
8528 
8529 	dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
8530 					 GFP_KERNEL);
8531 	if (!dev->offload_xstats_l3)
8532 		return -ENOMEM;
8533 
8534 	rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
8535 						  NETDEV_OFFLOAD_XSTATS_DISABLE,
8536 						  &info.info);
8537 	err = notifier_to_errno(rc);
8538 	if (err)
8539 		goto free_stats;
8540 
8541 	return 0;
8542 
8543 free_stats:
8544 	kfree(dev->offload_xstats_l3);
8545 	dev->offload_xstats_l3 = NULL;
8546 	return err;
8547 }
8548 
8549 int netdev_offload_xstats_enable(struct net_device *dev,
8550 				 enum netdev_offload_xstats_type type,
8551 				 struct netlink_ext_ack *extack)
8552 {
8553 	ASSERT_RTNL();
8554 
8555 	if (netdev_offload_xstats_enabled(dev, type))
8556 		return -EALREADY;
8557 
8558 	switch (type) {
8559 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8560 		return netdev_offload_xstats_enable_l3(dev, extack);
8561 	}
8562 
8563 	WARN_ON(1);
8564 	return -EINVAL;
8565 }
8566 EXPORT_SYMBOL(netdev_offload_xstats_enable);
8567 
8568 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
8569 {
8570 	struct netdev_notifier_offload_xstats_info info = {
8571 		.info.dev = dev,
8572 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8573 	};
8574 
8575 	call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
8576 				      &info.info);
8577 	kfree(dev->offload_xstats_l3);
8578 	dev->offload_xstats_l3 = NULL;
8579 }
8580 
8581 int netdev_offload_xstats_disable(struct net_device *dev,
8582 				  enum netdev_offload_xstats_type type)
8583 {
8584 	ASSERT_RTNL();
8585 
8586 	if (!netdev_offload_xstats_enabled(dev, type))
8587 		return -EALREADY;
8588 
8589 	switch (type) {
8590 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8591 		netdev_offload_xstats_disable_l3(dev);
8592 		return 0;
8593 	}
8594 
8595 	WARN_ON(1);
8596 	return -EINVAL;
8597 }
8598 EXPORT_SYMBOL(netdev_offload_xstats_disable);
8599 
8600 static void netdev_offload_xstats_disable_all(struct net_device *dev)
8601 {
8602 	netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
8603 }
8604 
8605 static struct rtnl_hw_stats64 *
8606 netdev_offload_xstats_get_ptr(const struct net_device *dev,
8607 			      enum netdev_offload_xstats_type type)
8608 {
8609 	switch (type) {
8610 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8611 		return dev->offload_xstats_l3;
8612 	}
8613 
8614 	WARN_ON(1);
8615 	return NULL;
8616 }
8617 
8618 bool netdev_offload_xstats_enabled(const struct net_device *dev,
8619 				   enum netdev_offload_xstats_type type)
8620 {
8621 	ASSERT_RTNL();
8622 
8623 	return netdev_offload_xstats_get_ptr(dev, type);
8624 }
8625 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
8626 
8627 struct netdev_notifier_offload_xstats_ru {
8628 	bool used;
8629 };
8630 
8631 struct netdev_notifier_offload_xstats_rd {
8632 	struct rtnl_hw_stats64 stats;
8633 	bool used;
8634 };
8635 
8636 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8637 				  const struct rtnl_hw_stats64 *src)
8638 {
8639 	dest->rx_packets	  += src->rx_packets;
8640 	dest->tx_packets	  += src->tx_packets;
8641 	dest->rx_bytes		  += src->rx_bytes;
8642 	dest->tx_bytes		  += src->tx_bytes;
8643 	dest->rx_errors		  += src->rx_errors;
8644 	dest->tx_errors		  += src->tx_errors;
8645 	dest->rx_dropped	  += src->rx_dropped;
8646 	dest->tx_dropped	  += src->tx_dropped;
8647 	dest->multicast		  += src->multicast;
8648 }
8649 
8650 static int netdev_offload_xstats_get_used(struct net_device *dev,
8651 					  enum netdev_offload_xstats_type type,
8652 					  bool *p_used,
8653 					  struct netlink_ext_ack *extack)
8654 {
8655 	struct netdev_notifier_offload_xstats_ru report_used = {};
8656 	struct netdev_notifier_offload_xstats_info info = {
8657 		.info.dev = dev,
8658 		.info.extack = extack,
8659 		.type = type,
8660 		.report_used = &report_used,
8661 	};
8662 	int rc;
8663 
8664 	WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8665 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8666 					   &info.info);
8667 	*p_used = report_used.used;
8668 	return notifier_to_errno(rc);
8669 }
8670 
8671 static int netdev_offload_xstats_get_stats(struct net_device *dev,
8672 					   enum netdev_offload_xstats_type type,
8673 					   struct rtnl_hw_stats64 *p_stats,
8674 					   bool *p_used,
8675 					   struct netlink_ext_ack *extack)
8676 {
8677 	struct netdev_notifier_offload_xstats_rd report_delta = {};
8678 	struct netdev_notifier_offload_xstats_info info = {
8679 		.info.dev = dev,
8680 		.info.extack = extack,
8681 		.type = type,
8682 		.report_delta = &report_delta,
8683 	};
8684 	struct rtnl_hw_stats64 *stats;
8685 	int rc;
8686 
8687 	stats = netdev_offload_xstats_get_ptr(dev, type);
8688 	if (WARN_ON(!stats))
8689 		return -EINVAL;
8690 
8691 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8692 					   &info.info);
8693 
8694 	/* Cache whatever we got, even if there was an error, otherwise the
8695 	 * successful stats retrievals would get lost.
8696 	 */
8697 	netdev_hw_stats64_add(stats, &report_delta.stats);
8698 
8699 	if (p_stats)
8700 		*p_stats = *stats;
8701 	*p_used = report_delta.used;
8702 
8703 	return notifier_to_errno(rc);
8704 }
8705 
8706 int netdev_offload_xstats_get(struct net_device *dev,
8707 			      enum netdev_offload_xstats_type type,
8708 			      struct rtnl_hw_stats64 *p_stats, bool *p_used,
8709 			      struct netlink_ext_ack *extack)
8710 {
8711 	ASSERT_RTNL();
8712 
8713 	if (p_stats)
8714 		return netdev_offload_xstats_get_stats(dev, type, p_stats,
8715 						       p_used, extack);
8716 	else
8717 		return netdev_offload_xstats_get_used(dev, type, p_used,
8718 						      extack);
8719 }
8720 EXPORT_SYMBOL(netdev_offload_xstats_get);
8721 
8722 void
8723 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8724 				   const struct rtnl_hw_stats64 *stats)
8725 {
8726 	report_delta->used = true;
8727 	netdev_hw_stats64_add(&report_delta->stats, stats);
8728 }
8729 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8730 
8731 void
8732 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8733 {
8734 	report_used->used = true;
8735 }
8736 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8737 
8738 void netdev_offload_xstats_push_delta(struct net_device *dev,
8739 				      enum netdev_offload_xstats_type type,
8740 				      const struct rtnl_hw_stats64 *p_stats)
8741 {
8742 	struct rtnl_hw_stats64 *stats;
8743 
8744 	ASSERT_RTNL();
8745 
8746 	stats = netdev_offload_xstats_get_ptr(dev, type);
8747 	if (WARN_ON(!stats))
8748 		return;
8749 
8750 	netdev_hw_stats64_add(stats, p_stats);
8751 }
8752 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8753 
8754 /**
8755  * netdev_get_xmit_slave - Get the xmit slave of master device
8756  * @dev: device
8757  * @skb: The packet
8758  * @all_slaves: assume all the slaves are active
8759  *
8760  * The reference counters are not incremented so the caller must be
8761  * careful with locks. The caller must hold RCU lock.
8762  * %NULL is returned if no slave is found.
8763  */
8764 
8765 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8766 					 struct sk_buff *skb,
8767 					 bool all_slaves)
8768 {
8769 	const struct net_device_ops *ops = dev->netdev_ops;
8770 
8771 	if (!ops->ndo_get_xmit_slave)
8772 		return NULL;
8773 	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8774 }
8775 EXPORT_SYMBOL(netdev_get_xmit_slave);
8776 
8777 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8778 						  struct sock *sk)
8779 {
8780 	const struct net_device_ops *ops = dev->netdev_ops;
8781 
8782 	if (!ops->ndo_sk_get_lower_dev)
8783 		return NULL;
8784 	return ops->ndo_sk_get_lower_dev(dev, sk);
8785 }
8786 
8787 /**
8788  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8789  * @dev: device
8790  * @sk: the socket
8791  *
8792  * %NULL is returned if no lower device is found.
8793  */
8794 
8795 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8796 					    struct sock *sk)
8797 {
8798 	struct net_device *lower;
8799 
8800 	lower = netdev_sk_get_lower_dev(dev, sk);
8801 	while (lower) {
8802 		dev = lower;
8803 		lower = netdev_sk_get_lower_dev(dev, sk);
8804 	}
8805 
8806 	return dev;
8807 }
8808 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8809 
8810 static void netdev_adjacent_add_links(struct net_device *dev)
8811 {
8812 	struct netdev_adjacent *iter;
8813 
8814 	struct net *net = dev_net(dev);
8815 
8816 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8817 		if (!net_eq(net, dev_net(iter->dev)))
8818 			continue;
8819 		netdev_adjacent_sysfs_add(iter->dev, dev,
8820 					  &iter->dev->adj_list.lower);
8821 		netdev_adjacent_sysfs_add(dev, iter->dev,
8822 					  &dev->adj_list.upper);
8823 	}
8824 
8825 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8826 		if (!net_eq(net, dev_net(iter->dev)))
8827 			continue;
8828 		netdev_adjacent_sysfs_add(iter->dev, dev,
8829 					  &iter->dev->adj_list.upper);
8830 		netdev_adjacent_sysfs_add(dev, iter->dev,
8831 					  &dev->adj_list.lower);
8832 	}
8833 }
8834 
8835 static void netdev_adjacent_del_links(struct net_device *dev)
8836 {
8837 	struct netdev_adjacent *iter;
8838 
8839 	struct net *net = dev_net(dev);
8840 
8841 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8842 		if (!net_eq(net, dev_net(iter->dev)))
8843 			continue;
8844 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8845 					  &iter->dev->adj_list.lower);
8846 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8847 					  &dev->adj_list.upper);
8848 	}
8849 
8850 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8851 		if (!net_eq(net, dev_net(iter->dev)))
8852 			continue;
8853 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8854 					  &iter->dev->adj_list.upper);
8855 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8856 					  &dev->adj_list.lower);
8857 	}
8858 }
8859 
8860 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8861 {
8862 	struct netdev_adjacent *iter;
8863 
8864 	struct net *net = dev_net(dev);
8865 
8866 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8867 		if (!net_eq(net, dev_net(iter->dev)))
8868 			continue;
8869 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8870 					  &iter->dev->adj_list.lower);
8871 		netdev_adjacent_sysfs_add(iter->dev, dev,
8872 					  &iter->dev->adj_list.lower);
8873 	}
8874 
8875 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8876 		if (!net_eq(net, dev_net(iter->dev)))
8877 			continue;
8878 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8879 					  &iter->dev->adj_list.upper);
8880 		netdev_adjacent_sysfs_add(iter->dev, dev,
8881 					  &iter->dev->adj_list.upper);
8882 	}
8883 }
8884 
8885 void *netdev_lower_dev_get_private(struct net_device *dev,
8886 				   struct net_device *lower_dev)
8887 {
8888 	struct netdev_adjacent *lower;
8889 
8890 	if (!lower_dev)
8891 		return NULL;
8892 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8893 	if (!lower)
8894 		return NULL;
8895 
8896 	return lower->private;
8897 }
8898 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8899 
8900 
8901 /**
8902  * netdev_lower_state_changed - Dispatch event about lower device state change
8903  * @lower_dev: device
8904  * @lower_state_info: state to dispatch
8905  *
8906  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8907  * The caller must hold the RTNL lock.
8908  */
8909 void netdev_lower_state_changed(struct net_device *lower_dev,
8910 				void *lower_state_info)
8911 {
8912 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8913 		.info.dev = lower_dev,
8914 	};
8915 
8916 	ASSERT_RTNL();
8917 	changelowerstate_info.lower_state_info = lower_state_info;
8918 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8919 				      &changelowerstate_info.info);
8920 }
8921 EXPORT_SYMBOL(netdev_lower_state_changed);
8922 
8923 static void dev_change_rx_flags(struct net_device *dev, int flags)
8924 {
8925 	const struct net_device_ops *ops = dev->netdev_ops;
8926 
8927 	if (ops->ndo_change_rx_flags)
8928 		ops->ndo_change_rx_flags(dev, flags);
8929 }
8930 
8931 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8932 {
8933 	unsigned int old_flags = dev->flags;
8934 	unsigned int promiscuity, flags;
8935 	kuid_t uid;
8936 	kgid_t gid;
8937 
8938 	ASSERT_RTNL();
8939 
8940 	promiscuity = dev->promiscuity + inc;
8941 	if (promiscuity == 0) {
8942 		/*
8943 		 * Avoid overflow.
8944 		 * If inc causes overflow, untouch promisc and return error.
8945 		 */
8946 		if (unlikely(inc > 0)) {
8947 			netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8948 			return -EOVERFLOW;
8949 		}
8950 		flags = old_flags & ~IFF_PROMISC;
8951 	} else {
8952 		flags = old_flags | IFF_PROMISC;
8953 	}
8954 	WRITE_ONCE(dev->promiscuity, promiscuity);
8955 	if (flags != old_flags) {
8956 		WRITE_ONCE(dev->flags, flags);
8957 		netdev_info(dev, "%s promiscuous mode\n",
8958 			    dev->flags & IFF_PROMISC ? "entered" : "left");
8959 		if (audit_enabled) {
8960 			current_uid_gid(&uid, &gid);
8961 			audit_log(audit_context(), GFP_ATOMIC,
8962 				  AUDIT_ANOM_PROMISCUOUS,
8963 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8964 				  dev->name, (dev->flags & IFF_PROMISC),
8965 				  (old_flags & IFF_PROMISC),
8966 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
8967 				  from_kuid(&init_user_ns, uid),
8968 				  from_kgid(&init_user_ns, gid),
8969 				  audit_get_sessionid(current));
8970 		}
8971 
8972 		dev_change_rx_flags(dev, IFF_PROMISC);
8973 	}
8974 	if (notify)
8975 		__dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
8976 	return 0;
8977 }
8978 
8979 /**
8980  *	dev_set_promiscuity	- update promiscuity count on a device
8981  *	@dev: device
8982  *	@inc: modifier
8983  *
8984  *	Add or remove promiscuity from a device. While the count in the device
8985  *	remains above zero the interface remains promiscuous. Once it hits zero
8986  *	the device reverts back to normal filtering operation. A negative inc
8987  *	value is used to drop promiscuity on the device.
8988  *	Return 0 if successful or a negative errno code on error.
8989  */
8990 int dev_set_promiscuity(struct net_device *dev, int inc)
8991 {
8992 	unsigned int old_flags = dev->flags;
8993 	int err;
8994 
8995 	err = __dev_set_promiscuity(dev, inc, true);
8996 	if (err < 0)
8997 		return err;
8998 	if (dev->flags != old_flags)
8999 		dev_set_rx_mode(dev);
9000 	return err;
9001 }
9002 EXPORT_SYMBOL(dev_set_promiscuity);
9003 
9004 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
9005 {
9006 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
9007 	unsigned int allmulti, flags;
9008 
9009 	ASSERT_RTNL();
9010 
9011 	allmulti = dev->allmulti + inc;
9012 	if (allmulti == 0) {
9013 		/*
9014 		 * Avoid overflow.
9015 		 * If inc causes overflow, untouch allmulti and return error.
9016 		 */
9017 		if (unlikely(inc > 0)) {
9018 			netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
9019 			return -EOVERFLOW;
9020 		}
9021 		flags = old_flags & ~IFF_ALLMULTI;
9022 	} else {
9023 		flags = old_flags | IFF_ALLMULTI;
9024 	}
9025 	WRITE_ONCE(dev->allmulti, allmulti);
9026 	if (flags != old_flags) {
9027 		WRITE_ONCE(dev->flags, flags);
9028 		netdev_info(dev, "%s allmulticast mode\n",
9029 			    dev->flags & IFF_ALLMULTI ? "entered" : "left");
9030 		dev_change_rx_flags(dev, IFF_ALLMULTI);
9031 		dev_set_rx_mode(dev);
9032 		if (notify)
9033 			__dev_notify_flags(dev, old_flags,
9034 					   dev->gflags ^ old_gflags, 0, NULL);
9035 	}
9036 	return 0;
9037 }
9038 
9039 /**
9040  *	dev_set_allmulti	- update allmulti count on a device
9041  *	@dev: device
9042  *	@inc: modifier
9043  *
9044  *	Add or remove reception of all multicast frames to a device. While the
9045  *	count in the device remains above zero the interface remains listening
9046  *	to all interfaces. Once it hits zero the device reverts back to normal
9047  *	filtering operation. A negative @inc value is used to drop the counter
9048  *	when releasing a resource needing all multicasts.
9049  *	Return 0 if successful or a negative errno code on error.
9050  */
9051 
9052 int dev_set_allmulti(struct net_device *dev, int inc)
9053 {
9054 	return __dev_set_allmulti(dev, inc, true);
9055 }
9056 EXPORT_SYMBOL(dev_set_allmulti);
9057 
9058 /*
9059  *	Upload unicast and multicast address lists to device and
9060  *	configure RX filtering. When the device doesn't support unicast
9061  *	filtering it is put in promiscuous mode while unicast addresses
9062  *	are present.
9063  */
9064 void __dev_set_rx_mode(struct net_device *dev)
9065 {
9066 	const struct net_device_ops *ops = dev->netdev_ops;
9067 
9068 	/* dev_open will call this function so the list will stay sane. */
9069 	if (!(dev->flags&IFF_UP))
9070 		return;
9071 
9072 	if (!netif_device_present(dev))
9073 		return;
9074 
9075 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
9076 		/* Unicast addresses changes may only happen under the rtnl,
9077 		 * therefore calling __dev_set_promiscuity here is safe.
9078 		 */
9079 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
9080 			__dev_set_promiscuity(dev, 1, false);
9081 			dev->uc_promisc = true;
9082 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
9083 			__dev_set_promiscuity(dev, -1, false);
9084 			dev->uc_promisc = false;
9085 		}
9086 	}
9087 
9088 	if (ops->ndo_set_rx_mode)
9089 		ops->ndo_set_rx_mode(dev);
9090 }
9091 
9092 void dev_set_rx_mode(struct net_device *dev)
9093 {
9094 	netif_addr_lock_bh(dev);
9095 	__dev_set_rx_mode(dev);
9096 	netif_addr_unlock_bh(dev);
9097 }
9098 
9099 /**
9100  *	dev_get_flags - get flags reported to userspace
9101  *	@dev: device
9102  *
9103  *	Get the combination of flag bits exported through APIs to userspace.
9104  */
9105 unsigned int dev_get_flags(const struct net_device *dev)
9106 {
9107 	unsigned int flags;
9108 
9109 	flags = (READ_ONCE(dev->flags) & ~(IFF_PROMISC |
9110 				IFF_ALLMULTI |
9111 				IFF_RUNNING |
9112 				IFF_LOWER_UP |
9113 				IFF_DORMANT)) |
9114 		(READ_ONCE(dev->gflags) & (IFF_PROMISC |
9115 				IFF_ALLMULTI));
9116 
9117 	if (netif_running(dev)) {
9118 		if (netif_oper_up(dev))
9119 			flags |= IFF_RUNNING;
9120 		if (netif_carrier_ok(dev))
9121 			flags |= IFF_LOWER_UP;
9122 		if (netif_dormant(dev))
9123 			flags |= IFF_DORMANT;
9124 	}
9125 
9126 	return flags;
9127 }
9128 EXPORT_SYMBOL(dev_get_flags);
9129 
9130 int __dev_change_flags(struct net_device *dev, unsigned int flags,
9131 		       struct netlink_ext_ack *extack)
9132 {
9133 	unsigned int old_flags = dev->flags;
9134 	int ret;
9135 
9136 	ASSERT_RTNL();
9137 
9138 	/*
9139 	 *	Set the flags on our device.
9140 	 */
9141 
9142 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
9143 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
9144 			       IFF_AUTOMEDIA)) |
9145 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
9146 				    IFF_ALLMULTI));
9147 
9148 	/*
9149 	 *	Load in the correct multicast list now the flags have changed.
9150 	 */
9151 
9152 	if ((old_flags ^ flags) & IFF_MULTICAST)
9153 		dev_change_rx_flags(dev, IFF_MULTICAST);
9154 
9155 	dev_set_rx_mode(dev);
9156 
9157 	/*
9158 	 *	Have we downed the interface. We handle IFF_UP ourselves
9159 	 *	according to user attempts to set it, rather than blindly
9160 	 *	setting it.
9161 	 */
9162 
9163 	ret = 0;
9164 	if ((old_flags ^ flags) & IFF_UP) {
9165 		if (old_flags & IFF_UP)
9166 			__dev_close(dev);
9167 		else
9168 			ret = __dev_open(dev, extack);
9169 	}
9170 
9171 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
9172 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
9173 		unsigned int old_flags = dev->flags;
9174 
9175 		dev->gflags ^= IFF_PROMISC;
9176 
9177 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
9178 			if (dev->flags != old_flags)
9179 				dev_set_rx_mode(dev);
9180 	}
9181 
9182 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
9183 	 * is important. Some (broken) drivers set IFF_PROMISC, when
9184 	 * IFF_ALLMULTI is requested not asking us and not reporting.
9185 	 */
9186 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
9187 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
9188 
9189 		dev->gflags ^= IFF_ALLMULTI;
9190 		__dev_set_allmulti(dev, inc, false);
9191 	}
9192 
9193 	return ret;
9194 }
9195 
9196 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
9197 			unsigned int gchanges, u32 portid,
9198 			const struct nlmsghdr *nlh)
9199 {
9200 	unsigned int changes = dev->flags ^ old_flags;
9201 
9202 	if (gchanges)
9203 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
9204 
9205 	if (changes & IFF_UP) {
9206 		if (dev->flags & IFF_UP)
9207 			call_netdevice_notifiers(NETDEV_UP, dev);
9208 		else
9209 			call_netdevice_notifiers(NETDEV_DOWN, dev);
9210 	}
9211 
9212 	if (dev->flags & IFF_UP &&
9213 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
9214 		struct netdev_notifier_change_info change_info = {
9215 			.info = {
9216 				.dev = dev,
9217 			},
9218 			.flags_changed = changes,
9219 		};
9220 
9221 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
9222 	}
9223 }
9224 
9225 /**
9226  *	dev_change_flags - change device settings
9227  *	@dev: device
9228  *	@flags: device state flags
9229  *	@extack: netlink extended ack
9230  *
9231  *	Change settings on device based state flags. The flags are
9232  *	in the userspace exported format.
9233  */
9234 int dev_change_flags(struct net_device *dev, unsigned int flags,
9235 		     struct netlink_ext_ack *extack)
9236 {
9237 	int ret;
9238 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
9239 
9240 	ret = __dev_change_flags(dev, flags, extack);
9241 	if (ret < 0)
9242 		return ret;
9243 
9244 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
9245 	__dev_notify_flags(dev, old_flags, changes, 0, NULL);
9246 	return ret;
9247 }
9248 EXPORT_SYMBOL(dev_change_flags);
9249 
9250 int __dev_set_mtu(struct net_device *dev, int new_mtu)
9251 {
9252 	const struct net_device_ops *ops = dev->netdev_ops;
9253 
9254 	if (ops->ndo_change_mtu)
9255 		return ops->ndo_change_mtu(dev, new_mtu);
9256 
9257 	/* Pairs with all the lockless reads of dev->mtu in the stack */
9258 	WRITE_ONCE(dev->mtu, new_mtu);
9259 	return 0;
9260 }
9261 EXPORT_SYMBOL(__dev_set_mtu);
9262 
9263 int dev_validate_mtu(struct net_device *dev, int new_mtu,
9264 		     struct netlink_ext_ack *extack)
9265 {
9266 	/* MTU must be positive, and in range */
9267 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
9268 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
9269 		return -EINVAL;
9270 	}
9271 
9272 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
9273 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
9274 		return -EINVAL;
9275 	}
9276 	return 0;
9277 }
9278 
9279 /**
9280  *	dev_set_mtu_ext - Change maximum transfer unit
9281  *	@dev: device
9282  *	@new_mtu: new transfer unit
9283  *	@extack: netlink extended ack
9284  *
9285  *	Change the maximum transfer size of the network device.
9286  */
9287 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
9288 		    struct netlink_ext_ack *extack)
9289 {
9290 	int err, orig_mtu;
9291 
9292 	if (new_mtu == dev->mtu)
9293 		return 0;
9294 
9295 	err = dev_validate_mtu(dev, new_mtu, extack);
9296 	if (err)
9297 		return err;
9298 
9299 	if (!netif_device_present(dev))
9300 		return -ENODEV;
9301 
9302 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
9303 	err = notifier_to_errno(err);
9304 	if (err)
9305 		return err;
9306 
9307 	orig_mtu = dev->mtu;
9308 	err = __dev_set_mtu(dev, new_mtu);
9309 
9310 	if (!err) {
9311 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
9312 						   orig_mtu);
9313 		err = notifier_to_errno(err);
9314 		if (err) {
9315 			/* setting mtu back and notifying everyone again,
9316 			 * so that they have a chance to revert changes.
9317 			 */
9318 			__dev_set_mtu(dev, orig_mtu);
9319 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
9320 						     new_mtu);
9321 		}
9322 	}
9323 	return err;
9324 }
9325 
9326 int dev_set_mtu(struct net_device *dev, int new_mtu)
9327 {
9328 	struct netlink_ext_ack extack;
9329 	int err;
9330 
9331 	memset(&extack, 0, sizeof(extack));
9332 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
9333 	if (err && extack._msg)
9334 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
9335 	return err;
9336 }
9337 EXPORT_SYMBOL(dev_set_mtu);
9338 
9339 /**
9340  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
9341  *	@dev: device
9342  *	@new_len: new tx queue length
9343  */
9344 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
9345 {
9346 	unsigned int orig_len = dev->tx_queue_len;
9347 	int res;
9348 
9349 	if (new_len != (unsigned int)new_len)
9350 		return -ERANGE;
9351 
9352 	if (new_len != orig_len) {
9353 		WRITE_ONCE(dev->tx_queue_len, new_len);
9354 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
9355 		res = notifier_to_errno(res);
9356 		if (res)
9357 			goto err_rollback;
9358 		res = dev_qdisc_change_tx_queue_len(dev);
9359 		if (res)
9360 			goto err_rollback;
9361 	}
9362 
9363 	return 0;
9364 
9365 err_rollback:
9366 	netdev_err(dev, "refused to change device tx_queue_len\n");
9367 	WRITE_ONCE(dev->tx_queue_len, orig_len);
9368 	return res;
9369 }
9370 
9371 /**
9372  *	dev_set_group - Change group this device belongs to
9373  *	@dev: device
9374  *	@new_group: group this device should belong to
9375  */
9376 void dev_set_group(struct net_device *dev, int new_group)
9377 {
9378 	dev->group = new_group;
9379 }
9380 
9381 /**
9382  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
9383  *	@dev: device
9384  *	@addr: new address
9385  *	@extack: netlink extended ack
9386  */
9387 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
9388 			      struct netlink_ext_ack *extack)
9389 {
9390 	struct netdev_notifier_pre_changeaddr_info info = {
9391 		.info.dev = dev,
9392 		.info.extack = extack,
9393 		.dev_addr = addr,
9394 	};
9395 	int rc;
9396 
9397 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
9398 	return notifier_to_errno(rc);
9399 }
9400 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
9401 
9402 /**
9403  *	dev_set_mac_address - Change Media Access Control Address
9404  *	@dev: device
9405  *	@sa: new address
9406  *	@extack: netlink extended ack
9407  *
9408  *	Change the hardware (MAC) address of the device
9409  */
9410 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
9411 			struct netlink_ext_ack *extack)
9412 {
9413 	const struct net_device_ops *ops = dev->netdev_ops;
9414 	int err;
9415 
9416 	if (!ops->ndo_set_mac_address)
9417 		return -EOPNOTSUPP;
9418 	if (sa->sa_family != dev->type)
9419 		return -EINVAL;
9420 	if (!netif_device_present(dev))
9421 		return -ENODEV;
9422 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
9423 	if (err)
9424 		return err;
9425 	if (memcmp(dev->dev_addr, sa->sa_data, dev->addr_len)) {
9426 		err = ops->ndo_set_mac_address(dev, sa);
9427 		if (err)
9428 			return err;
9429 	}
9430 	dev->addr_assign_type = NET_ADDR_SET;
9431 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
9432 	add_device_randomness(dev->dev_addr, dev->addr_len);
9433 	return 0;
9434 }
9435 EXPORT_SYMBOL(dev_set_mac_address);
9436 
9437 DECLARE_RWSEM(dev_addr_sem);
9438 
9439 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
9440 			     struct netlink_ext_ack *extack)
9441 {
9442 	int ret;
9443 
9444 	down_write(&dev_addr_sem);
9445 	ret = dev_set_mac_address(dev, sa, extack);
9446 	up_write(&dev_addr_sem);
9447 	return ret;
9448 }
9449 EXPORT_SYMBOL(dev_set_mac_address_user);
9450 
9451 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
9452 {
9453 	size_t size = sizeof(sa->sa_data_min);
9454 	struct net_device *dev;
9455 	int ret = 0;
9456 
9457 	down_read(&dev_addr_sem);
9458 	rcu_read_lock();
9459 
9460 	dev = dev_get_by_name_rcu(net, dev_name);
9461 	if (!dev) {
9462 		ret = -ENODEV;
9463 		goto unlock;
9464 	}
9465 	if (!dev->addr_len)
9466 		memset(sa->sa_data, 0, size);
9467 	else
9468 		memcpy(sa->sa_data, dev->dev_addr,
9469 		       min_t(size_t, size, dev->addr_len));
9470 	sa->sa_family = dev->type;
9471 
9472 unlock:
9473 	rcu_read_unlock();
9474 	up_read(&dev_addr_sem);
9475 	return ret;
9476 }
9477 EXPORT_SYMBOL(dev_get_mac_address);
9478 
9479 /**
9480  *	dev_change_carrier - Change device carrier
9481  *	@dev: device
9482  *	@new_carrier: new value
9483  *
9484  *	Change device carrier
9485  */
9486 int dev_change_carrier(struct net_device *dev, bool new_carrier)
9487 {
9488 	const struct net_device_ops *ops = dev->netdev_ops;
9489 
9490 	if (!ops->ndo_change_carrier)
9491 		return -EOPNOTSUPP;
9492 	if (!netif_device_present(dev))
9493 		return -ENODEV;
9494 	return ops->ndo_change_carrier(dev, new_carrier);
9495 }
9496 
9497 /**
9498  *	dev_get_phys_port_id - Get device physical port ID
9499  *	@dev: device
9500  *	@ppid: port ID
9501  *
9502  *	Get device physical port ID
9503  */
9504 int dev_get_phys_port_id(struct net_device *dev,
9505 			 struct netdev_phys_item_id *ppid)
9506 {
9507 	const struct net_device_ops *ops = dev->netdev_ops;
9508 
9509 	if (!ops->ndo_get_phys_port_id)
9510 		return -EOPNOTSUPP;
9511 	return ops->ndo_get_phys_port_id(dev, ppid);
9512 }
9513 
9514 /**
9515  *	dev_get_phys_port_name - Get device physical port name
9516  *	@dev: device
9517  *	@name: port name
9518  *	@len: limit of bytes to copy to name
9519  *
9520  *	Get device physical port name
9521  */
9522 int dev_get_phys_port_name(struct net_device *dev,
9523 			   char *name, size_t len)
9524 {
9525 	const struct net_device_ops *ops = dev->netdev_ops;
9526 	int err;
9527 
9528 	if (ops->ndo_get_phys_port_name) {
9529 		err = ops->ndo_get_phys_port_name(dev, name, len);
9530 		if (err != -EOPNOTSUPP)
9531 			return err;
9532 	}
9533 	return devlink_compat_phys_port_name_get(dev, name, len);
9534 }
9535 
9536 /**
9537  *	dev_get_port_parent_id - Get the device's port parent identifier
9538  *	@dev: network device
9539  *	@ppid: pointer to a storage for the port's parent identifier
9540  *	@recurse: allow/disallow recursion to lower devices
9541  *
9542  *	Get the devices's port parent identifier
9543  */
9544 int dev_get_port_parent_id(struct net_device *dev,
9545 			   struct netdev_phys_item_id *ppid,
9546 			   bool recurse)
9547 {
9548 	const struct net_device_ops *ops = dev->netdev_ops;
9549 	struct netdev_phys_item_id first = { };
9550 	struct net_device *lower_dev;
9551 	struct list_head *iter;
9552 	int err;
9553 
9554 	if (ops->ndo_get_port_parent_id) {
9555 		err = ops->ndo_get_port_parent_id(dev, ppid);
9556 		if (err != -EOPNOTSUPP)
9557 			return err;
9558 	}
9559 
9560 	err = devlink_compat_switch_id_get(dev, ppid);
9561 	if (!recurse || err != -EOPNOTSUPP)
9562 		return err;
9563 
9564 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
9565 		err = dev_get_port_parent_id(lower_dev, ppid, true);
9566 		if (err)
9567 			break;
9568 		if (!first.id_len)
9569 			first = *ppid;
9570 		else if (memcmp(&first, ppid, sizeof(*ppid)))
9571 			return -EOPNOTSUPP;
9572 	}
9573 
9574 	return err;
9575 }
9576 EXPORT_SYMBOL(dev_get_port_parent_id);
9577 
9578 /**
9579  *	netdev_port_same_parent_id - Indicate if two network devices have
9580  *	the same port parent identifier
9581  *	@a: first network device
9582  *	@b: second network device
9583  */
9584 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9585 {
9586 	struct netdev_phys_item_id a_id = { };
9587 	struct netdev_phys_item_id b_id = { };
9588 
9589 	if (dev_get_port_parent_id(a, &a_id, true) ||
9590 	    dev_get_port_parent_id(b, &b_id, true))
9591 		return false;
9592 
9593 	return netdev_phys_item_id_same(&a_id, &b_id);
9594 }
9595 EXPORT_SYMBOL(netdev_port_same_parent_id);
9596 
9597 /**
9598  *	dev_change_proto_down - set carrier according to proto_down.
9599  *
9600  *	@dev: device
9601  *	@proto_down: new value
9602  */
9603 int dev_change_proto_down(struct net_device *dev, bool proto_down)
9604 {
9605 	if (!dev->change_proto_down)
9606 		return -EOPNOTSUPP;
9607 	if (!netif_device_present(dev))
9608 		return -ENODEV;
9609 	if (proto_down)
9610 		netif_carrier_off(dev);
9611 	else
9612 		netif_carrier_on(dev);
9613 	WRITE_ONCE(dev->proto_down, proto_down);
9614 	return 0;
9615 }
9616 
9617 /**
9618  *	dev_change_proto_down_reason - proto down reason
9619  *
9620  *	@dev: device
9621  *	@mask: proto down mask
9622  *	@value: proto down value
9623  */
9624 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9625 				  u32 value)
9626 {
9627 	u32 proto_down_reason;
9628 	int b;
9629 
9630 	if (!mask) {
9631 		proto_down_reason = value;
9632 	} else {
9633 		proto_down_reason = dev->proto_down_reason;
9634 		for_each_set_bit(b, &mask, 32) {
9635 			if (value & (1 << b))
9636 				proto_down_reason |= BIT(b);
9637 			else
9638 				proto_down_reason &= ~BIT(b);
9639 		}
9640 	}
9641 	WRITE_ONCE(dev->proto_down_reason, proto_down_reason);
9642 }
9643 
9644 struct bpf_xdp_link {
9645 	struct bpf_link link;
9646 	struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9647 	int flags;
9648 };
9649 
9650 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9651 {
9652 	if (flags & XDP_FLAGS_HW_MODE)
9653 		return XDP_MODE_HW;
9654 	if (flags & XDP_FLAGS_DRV_MODE)
9655 		return XDP_MODE_DRV;
9656 	if (flags & XDP_FLAGS_SKB_MODE)
9657 		return XDP_MODE_SKB;
9658 	return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9659 }
9660 
9661 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9662 {
9663 	switch (mode) {
9664 	case XDP_MODE_SKB:
9665 		return generic_xdp_install;
9666 	case XDP_MODE_DRV:
9667 	case XDP_MODE_HW:
9668 		return dev->netdev_ops->ndo_bpf;
9669 	default:
9670 		return NULL;
9671 	}
9672 }
9673 
9674 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9675 					 enum bpf_xdp_mode mode)
9676 {
9677 	return dev->xdp_state[mode].link;
9678 }
9679 
9680 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9681 				     enum bpf_xdp_mode mode)
9682 {
9683 	struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9684 
9685 	if (link)
9686 		return link->link.prog;
9687 	return dev->xdp_state[mode].prog;
9688 }
9689 
9690 u8 dev_xdp_prog_count(struct net_device *dev)
9691 {
9692 	u8 count = 0;
9693 	int i;
9694 
9695 	for (i = 0; i < __MAX_XDP_MODE; i++)
9696 		if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9697 			count++;
9698 	return count;
9699 }
9700 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9701 
9702 u8 dev_xdp_sb_prog_count(struct net_device *dev)
9703 {
9704 	u8 count = 0;
9705 	int i;
9706 
9707 	for (i = 0; i < __MAX_XDP_MODE; i++)
9708 		if (dev->xdp_state[i].prog &&
9709 		    !dev->xdp_state[i].prog->aux->xdp_has_frags)
9710 			count++;
9711 	return count;
9712 }
9713 
9714 int dev_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf)
9715 {
9716 	if (!dev->netdev_ops->ndo_bpf)
9717 		return -EOPNOTSUPP;
9718 
9719 	if (dev->ethtool->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED &&
9720 	    bpf->command == XDP_SETUP_PROG &&
9721 	    bpf->prog && !bpf->prog->aux->xdp_has_frags) {
9722 		NL_SET_ERR_MSG(bpf->extack,
9723 			       "unable to propagate XDP to device using tcp-data-split");
9724 		return -EBUSY;
9725 	}
9726 
9727 	if (dev_get_min_mp_channel_count(dev)) {
9728 		NL_SET_ERR_MSG(bpf->extack, "unable to propagate XDP to device using memory provider");
9729 		return -EBUSY;
9730 	}
9731 
9732 	return dev->netdev_ops->ndo_bpf(dev, bpf);
9733 }
9734 EXPORT_SYMBOL_GPL(dev_xdp_propagate);
9735 
9736 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9737 {
9738 	struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9739 
9740 	return prog ? prog->aux->id : 0;
9741 }
9742 
9743 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9744 			     struct bpf_xdp_link *link)
9745 {
9746 	dev->xdp_state[mode].link = link;
9747 	dev->xdp_state[mode].prog = NULL;
9748 }
9749 
9750 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9751 			     struct bpf_prog *prog)
9752 {
9753 	dev->xdp_state[mode].link = NULL;
9754 	dev->xdp_state[mode].prog = prog;
9755 }
9756 
9757 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9758 			   bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9759 			   u32 flags, struct bpf_prog *prog)
9760 {
9761 	struct netdev_bpf xdp;
9762 	int err;
9763 
9764 	if (dev->ethtool->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED &&
9765 	    prog && !prog->aux->xdp_has_frags) {
9766 		NL_SET_ERR_MSG(extack, "unable to install XDP to device using tcp-data-split");
9767 		return -EBUSY;
9768 	}
9769 
9770 	if (dev_get_min_mp_channel_count(dev)) {
9771 		NL_SET_ERR_MSG(extack, "unable to install XDP to device using memory provider");
9772 		return -EBUSY;
9773 	}
9774 
9775 	memset(&xdp, 0, sizeof(xdp));
9776 	xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9777 	xdp.extack = extack;
9778 	xdp.flags = flags;
9779 	xdp.prog = prog;
9780 
9781 	/* Drivers assume refcnt is already incremented (i.e, prog pointer is
9782 	 * "moved" into driver), so they don't increment it on their own, but
9783 	 * they do decrement refcnt when program is detached or replaced.
9784 	 * Given net_device also owns link/prog, we need to bump refcnt here
9785 	 * to prevent drivers from underflowing it.
9786 	 */
9787 	if (prog)
9788 		bpf_prog_inc(prog);
9789 	err = bpf_op(dev, &xdp);
9790 	if (err) {
9791 		if (prog)
9792 			bpf_prog_put(prog);
9793 		return err;
9794 	}
9795 
9796 	if (mode != XDP_MODE_HW)
9797 		bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9798 
9799 	return 0;
9800 }
9801 
9802 static void dev_xdp_uninstall(struct net_device *dev)
9803 {
9804 	struct bpf_xdp_link *link;
9805 	struct bpf_prog *prog;
9806 	enum bpf_xdp_mode mode;
9807 	bpf_op_t bpf_op;
9808 
9809 	ASSERT_RTNL();
9810 
9811 	for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9812 		prog = dev_xdp_prog(dev, mode);
9813 		if (!prog)
9814 			continue;
9815 
9816 		bpf_op = dev_xdp_bpf_op(dev, mode);
9817 		if (!bpf_op)
9818 			continue;
9819 
9820 		WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9821 
9822 		/* auto-detach link from net device */
9823 		link = dev_xdp_link(dev, mode);
9824 		if (link)
9825 			link->dev = NULL;
9826 		else
9827 			bpf_prog_put(prog);
9828 
9829 		dev_xdp_set_link(dev, mode, NULL);
9830 	}
9831 }
9832 
9833 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9834 			  struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9835 			  struct bpf_prog *old_prog, u32 flags)
9836 {
9837 	unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9838 	struct bpf_prog *cur_prog;
9839 	struct net_device *upper;
9840 	struct list_head *iter;
9841 	enum bpf_xdp_mode mode;
9842 	bpf_op_t bpf_op;
9843 	int err;
9844 
9845 	ASSERT_RTNL();
9846 
9847 	/* either link or prog attachment, never both */
9848 	if (link && (new_prog || old_prog))
9849 		return -EINVAL;
9850 	/* link supports only XDP mode flags */
9851 	if (link && (flags & ~XDP_FLAGS_MODES)) {
9852 		NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9853 		return -EINVAL;
9854 	}
9855 	/* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9856 	if (num_modes > 1) {
9857 		NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9858 		return -EINVAL;
9859 	}
9860 	/* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9861 	if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9862 		NL_SET_ERR_MSG(extack,
9863 			       "More than one program loaded, unset mode is ambiguous");
9864 		return -EINVAL;
9865 	}
9866 	/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9867 	if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9868 		NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9869 		return -EINVAL;
9870 	}
9871 
9872 	mode = dev_xdp_mode(dev, flags);
9873 	/* can't replace attached link */
9874 	if (dev_xdp_link(dev, mode)) {
9875 		NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9876 		return -EBUSY;
9877 	}
9878 
9879 	/* don't allow if an upper device already has a program */
9880 	netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9881 		if (dev_xdp_prog_count(upper) > 0) {
9882 			NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9883 			return -EEXIST;
9884 		}
9885 	}
9886 
9887 	cur_prog = dev_xdp_prog(dev, mode);
9888 	/* can't replace attached prog with link */
9889 	if (link && cur_prog) {
9890 		NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9891 		return -EBUSY;
9892 	}
9893 	if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9894 		NL_SET_ERR_MSG(extack, "Active program does not match expected");
9895 		return -EEXIST;
9896 	}
9897 
9898 	/* put effective new program into new_prog */
9899 	if (link)
9900 		new_prog = link->link.prog;
9901 
9902 	if (new_prog) {
9903 		bool offload = mode == XDP_MODE_HW;
9904 		enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9905 					       ? XDP_MODE_DRV : XDP_MODE_SKB;
9906 
9907 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9908 			NL_SET_ERR_MSG(extack, "XDP program already attached");
9909 			return -EBUSY;
9910 		}
9911 		if (!offload && dev_xdp_prog(dev, other_mode)) {
9912 			NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9913 			return -EEXIST;
9914 		}
9915 		if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
9916 			NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
9917 			return -EINVAL;
9918 		}
9919 		if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
9920 			NL_SET_ERR_MSG(extack, "Program bound to different device");
9921 			return -EINVAL;
9922 		}
9923 		if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9924 			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9925 			return -EINVAL;
9926 		}
9927 		if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9928 			NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9929 			return -EINVAL;
9930 		}
9931 	}
9932 
9933 	/* don't call drivers if the effective program didn't change */
9934 	if (new_prog != cur_prog) {
9935 		bpf_op = dev_xdp_bpf_op(dev, mode);
9936 		if (!bpf_op) {
9937 			NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9938 			return -EOPNOTSUPP;
9939 		}
9940 
9941 		err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9942 		if (err)
9943 			return err;
9944 	}
9945 
9946 	if (link)
9947 		dev_xdp_set_link(dev, mode, link);
9948 	else
9949 		dev_xdp_set_prog(dev, mode, new_prog);
9950 	if (cur_prog)
9951 		bpf_prog_put(cur_prog);
9952 
9953 	return 0;
9954 }
9955 
9956 static int dev_xdp_attach_link(struct net_device *dev,
9957 			       struct netlink_ext_ack *extack,
9958 			       struct bpf_xdp_link *link)
9959 {
9960 	return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9961 }
9962 
9963 static int dev_xdp_detach_link(struct net_device *dev,
9964 			       struct netlink_ext_ack *extack,
9965 			       struct bpf_xdp_link *link)
9966 {
9967 	enum bpf_xdp_mode mode;
9968 	bpf_op_t bpf_op;
9969 
9970 	ASSERT_RTNL();
9971 
9972 	mode = dev_xdp_mode(dev, link->flags);
9973 	if (dev_xdp_link(dev, mode) != link)
9974 		return -EINVAL;
9975 
9976 	bpf_op = dev_xdp_bpf_op(dev, mode);
9977 	WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9978 	dev_xdp_set_link(dev, mode, NULL);
9979 	return 0;
9980 }
9981 
9982 static void bpf_xdp_link_release(struct bpf_link *link)
9983 {
9984 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9985 
9986 	rtnl_lock();
9987 
9988 	/* if racing with net_device's tear down, xdp_link->dev might be
9989 	 * already NULL, in which case link was already auto-detached
9990 	 */
9991 	if (xdp_link->dev) {
9992 		WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9993 		xdp_link->dev = NULL;
9994 	}
9995 
9996 	rtnl_unlock();
9997 }
9998 
9999 static int bpf_xdp_link_detach(struct bpf_link *link)
10000 {
10001 	bpf_xdp_link_release(link);
10002 	return 0;
10003 }
10004 
10005 static void bpf_xdp_link_dealloc(struct bpf_link *link)
10006 {
10007 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10008 
10009 	kfree(xdp_link);
10010 }
10011 
10012 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
10013 				     struct seq_file *seq)
10014 {
10015 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10016 	u32 ifindex = 0;
10017 
10018 	rtnl_lock();
10019 	if (xdp_link->dev)
10020 		ifindex = xdp_link->dev->ifindex;
10021 	rtnl_unlock();
10022 
10023 	seq_printf(seq, "ifindex:\t%u\n", ifindex);
10024 }
10025 
10026 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
10027 				       struct bpf_link_info *info)
10028 {
10029 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10030 	u32 ifindex = 0;
10031 
10032 	rtnl_lock();
10033 	if (xdp_link->dev)
10034 		ifindex = xdp_link->dev->ifindex;
10035 	rtnl_unlock();
10036 
10037 	info->xdp.ifindex = ifindex;
10038 	return 0;
10039 }
10040 
10041 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
10042 			       struct bpf_prog *old_prog)
10043 {
10044 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10045 	enum bpf_xdp_mode mode;
10046 	bpf_op_t bpf_op;
10047 	int err = 0;
10048 
10049 	rtnl_lock();
10050 
10051 	/* link might have been auto-released already, so fail */
10052 	if (!xdp_link->dev) {
10053 		err = -ENOLINK;
10054 		goto out_unlock;
10055 	}
10056 
10057 	if (old_prog && link->prog != old_prog) {
10058 		err = -EPERM;
10059 		goto out_unlock;
10060 	}
10061 	old_prog = link->prog;
10062 	if (old_prog->type != new_prog->type ||
10063 	    old_prog->expected_attach_type != new_prog->expected_attach_type) {
10064 		err = -EINVAL;
10065 		goto out_unlock;
10066 	}
10067 
10068 	if (old_prog == new_prog) {
10069 		/* no-op, don't disturb drivers */
10070 		bpf_prog_put(new_prog);
10071 		goto out_unlock;
10072 	}
10073 
10074 	mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
10075 	bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
10076 	err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
10077 			      xdp_link->flags, new_prog);
10078 	if (err)
10079 		goto out_unlock;
10080 
10081 	old_prog = xchg(&link->prog, new_prog);
10082 	bpf_prog_put(old_prog);
10083 
10084 out_unlock:
10085 	rtnl_unlock();
10086 	return err;
10087 }
10088 
10089 static const struct bpf_link_ops bpf_xdp_link_lops = {
10090 	.release = bpf_xdp_link_release,
10091 	.dealloc = bpf_xdp_link_dealloc,
10092 	.detach = bpf_xdp_link_detach,
10093 	.show_fdinfo = bpf_xdp_link_show_fdinfo,
10094 	.fill_link_info = bpf_xdp_link_fill_link_info,
10095 	.update_prog = bpf_xdp_link_update,
10096 };
10097 
10098 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
10099 {
10100 	struct net *net = current->nsproxy->net_ns;
10101 	struct bpf_link_primer link_primer;
10102 	struct netlink_ext_ack extack = {};
10103 	struct bpf_xdp_link *link;
10104 	struct net_device *dev;
10105 	int err, fd;
10106 
10107 	rtnl_lock();
10108 	dev = dev_get_by_index(net, attr->link_create.target_ifindex);
10109 	if (!dev) {
10110 		rtnl_unlock();
10111 		return -EINVAL;
10112 	}
10113 
10114 	link = kzalloc(sizeof(*link), GFP_USER);
10115 	if (!link) {
10116 		err = -ENOMEM;
10117 		goto unlock;
10118 	}
10119 
10120 	bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
10121 	link->dev = dev;
10122 	link->flags = attr->link_create.flags;
10123 
10124 	err = bpf_link_prime(&link->link, &link_primer);
10125 	if (err) {
10126 		kfree(link);
10127 		goto unlock;
10128 	}
10129 
10130 	err = dev_xdp_attach_link(dev, &extack, link);
10131 	rtnl_unlock();
10132 
10133 	if (err) {
10134 		link->dev = NULL;
10135 		bpf_link_cleanup(&link_primer);
10136 		trace_bpf_xdp_link_attach_failed(extack._msg);
10137 		goto out_put_dev;
10138 	}
10139 
10140 	fd = bpf_link_settle(&link_primer);
10141 	/* link itself doesn't hold dev's refcnt to not complicate shutdown */
10142 	dev_put(dev);
10143 	return fd;
10144 
10145 unlock:
10146 	rtnl_unlock();
10147 
10148 out_put_dev:
10149 	dev_put(dev);
10150 	return err;
10151 }
10152 
10153 /**
10154  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
10155  *	@dev: device
10156  *	@extack: netlink extended ack
10157  *	@fd: new program fd or negative value to clear
10158  *	@expected_fd: old program fd that userspace expects to replace or clear
10159  *	@flags: xdp-related flags
10160  *
10161  *	Set or clear a bpf program for a device
10162  */
10163 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
10164 		      int fd, int expected_fd, u32 flags)
10165 {
10166 	enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
10167 	struct bpf_prog *new_prog = NULL, *old_prog = NULL;
10168 	int err;
10169 
10170 	ASSERT_RTNL();
10171 
10172 	if (fd >= 0) {
10173 		new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
10174 						 mode != XDP_MODE_SKB);
10175 		if (IS_ERR(new_prog))
10176 			return PTR_ERR(new_prog);
10177 	}
10178 
10179 	if (expected_fd >= 0) {
10180 		old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
10181 						 mode != XDP_MODE_SKB);
10182 		if (IS_ERR(old_prog)) {
10183 			err = PTR_ERR(old_prog);
10184 			old_prog = NULL;
10185 			goto err_out;
10186 		}
10187 	}
10188 
10189 	err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
10190 
10191 err_out:
10192 	if (err && new_prog)
10193 		bpf_prog_put(new_prog);
10194 	if (old_prog)
10195 		bpf_prog_put(old_prog);
10196 	return err;
10197 }
10198 
10199 u32 dev_get_min_mp_channel_count(const struct net_device *dev)
10200 {
10201 	int i;
10202 
10203 	ASSERT_RTNL();
10204 
10205 	for (i = dev->real_num_rx_queues - 1; i >= 0; i--)
10206 		if (dev->_rx[i].mp_params.mp_priv)
10207 			/* The channel count is the idx plus 1. */
10208 			return i + 1;
10209 
10210 	return 0;
10211 }
10212 
10213 /**
10214  * dev_index_reserve() - allocate an ifindex in a namespace
10215  * @net: the applicable net namespace
10216  * @ifindex: requested ifindex, pass %0 to get one allocated
10217  *
10218  * Allocate a ifindex for a new device. Caller must either use the ifindex
10219  * to store the device (via list_netdevice()) or call dev_index_release()
10220  * to give the index up.
10221  *
10222  * Return: a suitable unique value for a new device interface number or -errno.
10223  */
10224 static int dev_index_reserve(struct net *net, u32 ifindex)
10225 {
10226 	int err;
10227 
10228 	if (ifindex > INT_MAX) {
10229 		DEBUG_NET_WARN_ON_ONCE(1);
10230 		return -EINVAL;
10231 	}
10232 
10233 	if (!ifindex)
10234 		err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL,
10235 				      xa_limit_31b, &net->ifindex, GFP_KERNEL);
10236 	else
10237 		err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL);
10238 	if (err < 0)
10239 		return err;
10240 
10241 	return ifindex;
10242 }
10243 
10244 static void dev_index_release(struct net *net, int ifindex)
10245 {
10246 	/* Expect only unused indexes, unlist_netdevice() removes the used */
10247 	WARN_ON(xa_erase(&net->dev_by_index, ifindex));
10248 }
10249 
10250 static bool from_cleanup_net(void)
10251 {
10252 #ifdef CONFIG_NET_NS
10253 	return current == cleanup_net_task;
10254 #else
10255 	return false;
10256 #endif
10257 }
10258 
10259 static void rtnl_drop_if_cleanup_net(void)
10260 {
10261 	if (from_cleanup_net())
10262 		__rtnl_unlock();
10263 }
10264 
10265 static void rtnl_acquire_if_cleanup_net(void)
10266 {
10267 	if (from_cleanup_net())
10268 		rtnl_lock();
10269 }
10270 
10271 /* Delayed registration/unregisteration */
10272 LIST_HEAD(net_todo_list);
10273 static LIST_HEAD(net_todo_list_for_cleanup_net);
10274 
10275 /* TODO: net_todo_list/net_todo_list_for_cleanup_net should probably
10276  * be provided by callers, instead of being static, rtnl protected.
10277  */
10278 static struct list_head *todo_list(void)
10279 {
10280 	return from_cleanup_net() ? &net_todo_list_for_cleanup_net :
10281 				    &net_todo_list;
10282 }
10283 
10284 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
10285 atomic_t dev_unreg_count = ATOMIC_INIT(0);
10286 
10287 static void net_set_todo(struct net_device *dev)
10288 {
10289 	list_add_tail(&dev->todo_list, todo_list());
10290 }
10291 
10292 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
10293 	struct net_device *upper, netdev_features_t features)
10294 {
10295 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
10296 	netdev_features_t feature;
10297 	int feature_bit;
10298 
10299 	for_each_netdev_feature(upper_disables, feature_bit) {
10300 		feature = __NETIF_F_BIT(feature_bit);
10301 		if (!(upper->wanted_features & feature)
10302 		    && (features & feature)) {
10303 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
10304 				   &feature, upper->name);
10305 			features &= ~feature;
10306 		}
10307 	}
10308 
10309 	return features;
10310 }
10311 
10312 static void netdev_sync_lower_features(struct net_device *upper,
10313 	struct net_device *lower, netdev_features_t features)
10314 {
10315 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
10316 	netdev_features_t feature;
10317 	int feature_bit;
10318 
10319 	for_each_netdev_feature(upper_disables, feature_bit) {
10320 		feature = __NETIF_F_BIT(feature_bit);
10321 		if (!(features & feature) && (lower->features & feature)) {
10322 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
10323 				   &feature, lower->name);
10324 			lower->wanted_features &= ~feature;
10325 			__netdev_update_features(lower);
10326 
10327 			if (unlikely(lower->features & feature))
10328 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
10329 					    &feature, lower->name);
10330 			else
10331 				netdev_features_change(lower);
10332 		}
10333 	}
10334 }
10335 
10336 static bool netdev_has_ip_or_hw_csum(netdev_features_t features)
10337 {
10338 	netdev_features_t ip_csum_mask = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
10339 	bool ip_csum = (features & ip_csum_mask) == ip_csum_mask;
10340 	bool hw_csum = features & NETIF_F_HW_CSUM;
10341 
10342 	return ip_csum || hw_csum;
10343 }
10344 
10345 static netdev_features_t netdev_fix_features(struct net_device *dev,
10346 	netdev_features_t features)
10347 {
10348 	/* Fix illegal checksum combinations */
10349 	if ((features & NETIF_F_HW_CSUM) &&
10350 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
10351 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
10352 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
10353 	}
10354 
10355 	/* TSO requires that SG is present as well. */
10356 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
10357 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
10358 		features &= ~NETIF_F_ALL_TSO;
10359 	}
10360 
10361 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
10362 					!(features & NETIF_F_IP_CSUM)) {
10363 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
10364 		features &= ~NETIF_F_TSO;
10365 		features &= ~NETIF_F_TSO_ECN;
10366 	}
10367 
10368 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
10369 					 !(features & NETIF_F_IPV6_CSUM)) {
10370 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
10371 		features &= ~NETIF_F_TSO6;
10372 	}
10373 
10374 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
10375 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
10376 		features &= ~NETIF_F_TSO_MANGLEID;
10377 
10378 	/* TSO ECN requires that TSO is present as well. */
10379 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
10380 		features &= ~NETIF_F_TSO_ECN;
10381 
10382 	/* Software GSO depends on SG. */
10383 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
10384 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
10385 		features &= ~NETIF_F_GSO;
10386 	}
10387 
10388 	/* GSO partial features require GSO partial be set */
10389 	if ((features & dev->gso_partial_features) &&
10390 	    !(features & NETIF_F_GSO_PARTIAL)) {
10391 		netdev_dbg(dev,
10392 			   "Dropping partially supported GSO features since no GSO partial.\n");
10393 		features &= ~dev->gso_partial_features;
10394 	}
10395 
10396 	if (!(features & NETIF_F_RXCSUM)) {
10397 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
10398 		 * successfully merged by hardware must also have the
10399 		 * checksum verified by hardware.  If the user does not
10400 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
10401 		 */
10402 		if (features & NETIF_F_GRO_HW) {
10403 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
10404 			features &= ~NETIF_F_GRO_HW;
10405 		}
10406 	}
10407 
10408 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
10409 	if (features & NETIF_F_RXFCS) {
10410 		if (features & NETIF_F_LRO) {
10411 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
10412 			features &= ~NETIF_F_LRO;
10413 		}
10414 
10415 		if (features & NETIF_F_GRO_HW) {
10416 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
10417 			features &= ~NETIF_F_GRO_HW;
10418 		}
10419 	}
10420 
10421 	if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
10422 		netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
10423 		features &= ~NETIF_F_LRO;
10424 	}
10425 
10426 	if ((features & NETIF_F_HW_TLS_TX) && !netdev_has_ip_or_hw_csum(features)) {
10427 		netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
10428 		features &= ~NETIF_F_HW_TLS_TX;
10429 	}
10430 
10431 	if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
10432 		netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
10433 		features &= ~NETIF_F_HW_TLS_RX;
10434 	}
10435 
10436 	if ((features & NETIF_F_GSO_UDP_L4) && !netdev_has_ip_or_hw_csum(features)) {
10437 		netdev_dbg(dev, "Dropping USO feature since no CSUM feature.\n");
10438 		features &= ~NETIF_F_GSO_UDP_L4;
10439 	}
10440 
10441 	return features;
10442 }
10443 
10444 int __netdev_update_features(struct net_device *dev)
10445 {
10446 	struct net_device *upper, *lower;
10447 	netdev_features_t features;
10448 	struct list_head *iter;
10449 	int err = -1;
10450 
10451 	ASSERT_RTNL();
10452 
10453 	features = netdev_get_wanted_features(dev);
10454 
10455 	if (dev->netdev_ops->ndo_fix_features)
10456 		features = dev->netdev_ops->ndo_fix_features(dev, features);
10457 
10458 	/* driver might be less strict about feature dependencies */
10459 	features = netdev_fix_features(dev, features);
10460 
10461 	/* some features can't be enabled if they're off on an upper device */
10462 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
10463 		features = netdev_sync_upper_features(dev, upper, features);
10464 
10465 	if (dev->features == features)
10466 		goto sync_lower;
10467 
10468 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
10469 		&dev->features, &features);
10470 
10471 	if (dev->netdev_ops->ndo_set_features)
10472 		err = dev->netdev_ops->ndo_set_features(dev, features);
10473 	else
10474 		err = 0;
10475 
10476 	if (unlikely(err < 0)) {
10477 		netdev_err(dev,
10478 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
10479 			err, &features, &dev->features);
10480 		/* return non-0 since some features might have changed and
10481 		 * it's better to fire a spurious notification than miss it
10482 		 */
10483 		return -1;
10484 	}
10485 
10486 sync_lower:
10487 	/* some features must be disabled on lower devices when disabled
10488 	 * on an upper device (think: bonding master or bridge)
10489 	 */
10490 	netdev_for_each_lower_dev(dev, lower, iter)
10491 		netdev_sync_lower_features(dev, lower, features);
10492 
10493 	if (!err) {
10494 		netdev_features_t diff = features ^ dev->features;
10495 
10496 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
10497 			/* udp_tunnel_{get,drop}_rx_info both need
10498 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
10499 			 * device, or they won't do anything.
10500 			 * Thus we need to update dev->features
10501 			 * *before* calling udp_tunnel_get_rx_info,
10502 			 * but *after* calling udp_tunnel_drop_rx_info.
10503 			 */
10504 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
10505 				dev->features = features;
10506 				udp_tunnel_get_rx_info(dev);
10507 			} else {
10508 				udp_tunnel_drop_rx_info(dev);
10509 			}
10510 		}
10511 
10512 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
10513 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
10514 				dev->features = features;
10515 				err |= vlan_get_rx_ctag_filter_info(dev);
10516 			} else {
10517 				vlan_drop_rx_ctag_filter_info(dev);
10518 			}
10519 		}
10520 
10521 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
10522 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
10523 				dev->features = features;
10524 				err |= vlan_get_rx_stag_filter_info(dev);
10525 			} else {
10526 				vlan_drop_rx_stag_filter_info(dev);
10527 			}
10528 		}
10529 
10530 		dev->features = features;
10531 	}
10532 
10533 	return err < 0 ? 0 : 1;
10534 }
10535 
10536 /**
10537  *	netdev_update_features - recalculate device features
10538  *	@dev: the device to check
10539  *
10540  *	Recalculate dev->features set and send notifications if it
10541  *	has changed. Should be called after driver or hardware dependent
10542  *	conditions might have changed that influence the features.
10543  */
10544 void netdev_update_features(struct net_device *dev)
10545 {
10546 	if (__netdev_update_features(dev))
10547 		netdev_features_change(dev);
10548 }
10549 EXPORT_SYMBOL(netdev_update_features);
10550 
10551 /**
10552  *	netdev_change_features - recalculate device features
10553  *	@dev: the device to check
10554  *
10555  *	Recalculate dev->features set and send notifications even
10556  *	if they have not changed. Should be called instead of
10557  *	netdev_update_features() if also dev->vlan_features might
10558  *	have changed to allow the changes to be propagated to stacked
10559  *	VLAN devices.
10560  */
10561 void netdev_change_features(struct net_device *dev)
10562 {
10563 	__netdev_update_features(dev);
10564 	netdev_features_change(dev);
10565 }
10566 EXPORT_SYMBOL(netdev_change_features);
10567 
10568 /**
10569  *	netif_stacked_transfer_operstate -	transfer operstate
10570  *	@rootdev: the root or lower level device to transfer state from
10571  *	@dev: the device to transfer operstate to
10572  *
10573  *	Transfer operational state from root to device. This is normally
10574  *	called when a stacking relationship exists between the root
10575  *	device and the device(a leaf device).
10576  */
10577 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
10578 					struct net_device *dev)
10579 {
10580 	if (rootdev->operstate == IF_OPER_DORMANT)
10581 		netif_dormant_on(dev);
10582 	else
10583 		netif_dormant_off(dev);
10584 
10585 	if (rootdev->operstate == IF_OPER_TESTING)
10586 		netif_testing_on(dev);
10587 	else
10588 		netif_testing_off(dev);
10589 
10590 	if (netif_carrier_ok(rootdev))
10591 		netif_carrier_on(dev);
10592 	else
10593 		netif_carrier_off(dev);
10594 }
10595 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
10596 
10597 static int netif_alloc_rx_queues(struct net_device *dev)
10598 {
10599 	unsigned int i, count = dev->num_rx_queues;
10600 	struct netdev_rx_queue *rx;
10601 	size_t sz = count * sizeof(*rx);
10602 	int err = 0;
10603 
10604 	BUG_ON(count < 1);
10605 
10606 	rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10607 	if (!rx)
10608 		return -ENOMEM;
10609 
10610 	dev->_rx = rx;
10611 
10612 	for (i = 0; i < count; i++) {
10613 		rx[i].dev = dev;
10614 
10615 		/* XDP RX-queue setup */
10616 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10617 		if (err < 0)
10618 			goto err_rxq_info;
10619 	}
10620 	return 0;
10621 
10622 err_rxq_info:
10623 	/* Rollback successful reg's and free other resources */
10624 	while (i--)
10625 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10626 	kvfree(dev->_rx);
10627 	dev->_rx = NULL;
10628 	return err;
10629 }
10630 
10631 static void netif_free_rx_queues(struct net_device *dev)
10632 {
10633 	unsigned int i, count = dev->num_rx_queues;
10634 
10635 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10636 	if (!dev->_rx)
10637 		return;
10638 
10639 	for (i = 0; i < count; i++)
10640 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10641 
10642 	kvfree(dev->_rx);
10643 }
10644 
10645 static void netdev_init_one_queue(struct net_device *dev,
10646 				  struct netdev_queue *queue, void *_unused)
10647 {
10648 	/* Initialize queue lock */
10649 	spin_lock_init(&queue->_xmit_lock);
10650 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10651 	queue->xmit_lock_owner = -1;
10652 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10653 	queue->dev = dev;
10654 #ifdef CONFIG_BQL
10655 	dql_init(&queue->dql, HZ);
10656 #endif
10657 }
10658 
10659 static void netif_free_tx_queues(struct net_device *dev)
10660 {
10661 	kvfree(dev->_tx);
10662 }
10663 
10664 static int netif_alloc_netdev_queues(struct net_device *dev)
10665 {
10666 	unsigned int count = dev->num_tx_queues;
10667 	struct netdev_queue *tx;
10668 	size_t sz = count * sizeof(*tx);
10669 
10670 	if (count < 1 || count > 0xffff)
10671 		return -EINVAL;
10672 
10673 	tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10674 	if (!tx)
10675 		return -ENOMEM;
10676 
10677 	dev->_tx = tx;
10678 
10679 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10680 	spin_lock_init(&dev->tx_global_lock);
10681 
10682 	return 0;
10683 }
10684 
10685 void netif_tx_stop_all_queues(struct net_device *dev)
10686 {
10687 	unsigned int i;
10688 
10689 	for (i = 0; i < dev->num_tx_queues; i++) {
10690 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10691 
10692 		netif_tx_stop_queue(txq);
10693 	}
10694 }
10695 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10696 
10697 static int netdev_do_alloc_pcpu_stats(struct net_device *dev)
10698 {
10699 	void __percpu *v;
10700 
10701 	/* Drivers implementing ndo_get_peer_dev must support tstat
10702 	 * accounting, so that skb_do_redirect() can bump the dev's
10703 	 * RX stats upon network namespace switch.
10704 	 */
10705 	if (dev->netdev_ops->ndo_get_peer_dev &&
10706 	    dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS)
10707 		return -EOPNOTSUPP;
10708 
10709 	switch (dev->pcpu_stat_type) {
10710 	case NETDEV_PCPU_STAT_NONE:
10711 		return 0;
10712 	case NETDEV_PCPU_STAT_LSTATS:
10713 		v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats);
10714 		break;
10715 	case NETDEV_PCPU_STAT_TSTATS:
10716 		v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats);
10717 		break;
10718 	case NETDEV_PCPU_STAT_DSTATS:
10719 		v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
10720 		break;
10721 	default:
10722 		return -EINVAL;
10723 	}
10724 
10725 	return v ? 0 : -ENOMEM;
10726 }
10727 
10728 static void netdev_do_free_pcpu_stats(struct net_device *dev)
10729 {
10730 	switch (dev->pcpu_stat_type) {
10731 	case NETDEV_PCPU_STAT_NONE:
10732 		return;
10733 	case NETDEV_PCPU_STAT_LSTATS:
10734 		free_percpu(dev->lstats);
10735 		break;
10736 	case NETDEV_PCPU_STAT_TSTATS:
10737 		free_percpu(dev->tstats);
10738 		break;
10739 	case NETDEV_PCPU_STAT_DSTATS:
10740 		free_percpu(dev->dstats);
10741 		break;
10742 	}
10743 }
10744 
10745 static void netdev_free_phy_link_topology(struct net_device *dev)
10746 {
10747 	struct phy_link_topology *topo = dev->link_topo;
10748 
10749 	if (IS_ENABLED(CONFIG_PHYLIB) && topo) {
10750 		xa_destroy(&topo->phys);
10751 		kfree(topo);
10752 		dev->link_topo = NULL;
10753 	}
10754 }
10755 
10756 /**
10757  * register_netdevice() - register a network device
10758  * @dev: device to register
10759  *
10760  * Take a prepared network device structure and make it externally accessible.
10761  * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
10762  * Callers must hold the rtnl lock - you may want register_netdev()
10763  * instead of this.
10764  */
10765 int register_netdevice(struct net_device *dev)
10766 {
10767 	int ret;
10768 	struct net *net = dev_net(dev);
10769 
10770 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10771 		     NETDEV_FEATURE_COUNT);
10772 	BUG_ON(dev_boot_phase);
10773 	ASSERT_RTNL();
10774 
10775 	might_sleep();
10776 
10777 	/* When net_device's are persistent, this will be fatal. */
10778 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10779 	BUG_ON(!net);
10780 
10781 	ret = ethtool_check_ops(dev->ethtool_ops);
10782 	if (ret)
10783 		return ret;
10784 
10785 	/* rss ctx ID 0 is reserved for the default context, start from 1 */
10786 	xa_init_flags(&dev->ethtool->rss_ctx, XA_FLAGS_ALLOC1);
10787 	mutex_init(&dev->ethtool->rss_lock);
10788 
10789 	spin_lock_init(&dev->addr_list_lock);
10790 	netdev_set_addr_lockdep_class(dev);
10791 
10792 	ret = dev_get_valid_name(net, dev, dev->name);
10793 	if (ret < 0)
10794 		goto out;
10795 
10796 	ret = -ENOMEM;
10797 	dev->name_node = netdev_name_node_head_alloc(dev);
10798 	if (!dev->name_node)
10799 		goto out;
10800 
10801 	/* Init, if this function is available */
10802 	if (dev->netdev_ops->ndo_init) {
10803 		ret = dev->netdev_ops->ndo_init(dev);
10804 		if (ret) {
10805 			if (ret > 0)
10806 				ret = -EIO;
10807 			goto err_free_name;
10808 		}
10809 	}
10810 
10811 	if (((dev->hw_features | dev->features) &
10812 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
10813 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10814 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10815 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10816 		ret = -EINVAL;
10817 		goto err_uninit;
10818 	}
10819 
10820 	ret = netdev_do_alloc_pcpu_stats(dev);
10821 	if (ret)
10822 		goto err_uninit;
10823 
10824 	ret = dev_index_reserve(net, dev->ifindex);
10825 	if (ret < 0)
10826 		goto err_free_pcpu;
10827 	dev->ifindex = ret;
10828 
10829 	/* Transfer changeable features to wanted_features and enable
10830 	 * software offloads (GSO and GRO).
10831 	 */
10832 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10833 	dev->features |= NETIF_F_SOFT_FEATURES;
10834 
10835 	if (dev->udp_tunnel_nic_info) {
10836 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10837 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10838 	}
10839 
10840 	dev->wanted_features = dev->features & dev->hw_features;
10841 
10842 	if (!(dev->flags & IFF_LOOPBACK))
10843 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
10844 
10845 	/* If IPv4 TCP segmentation offload is supported we should also
10846 	 * allow the device to enable segmenting the frame with the option
10847 	 * of ignoring a static IP ID value.  This doesn't enable the
10848 	 * feature itself but allows the user to enable it later.
10849 	 */
10850 	if (dev->hw_features & NETIF_F_TSO)
10851 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
10852 	if (dev->vlan_features & NETIF_F_TSO)
10853 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10854 	if (dev->mpls_features & NETIF_F_TSO)
10855 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10856 	if (dev->hw_enc_features & NETIF_F_TSO)
10857 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10858 
10859 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10860 	 */
10861 	dev->vlan_features |= NETIF_F_HIGHDMA;
10862 
10863 	/* Make NETIF_F_SG inheritable to tunnel devices.
10864 	 */
10865 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10866 
10867 	/* Make NETIF_F_SG inheritable to MPLS.
10868 	 */
10869 	dev->mpls_features |= NETIF_F_SG;
10870 
10871 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10872 	ret = notifier_to_errno(ret);
10873 	if (ret)
10874 		goto err_ifindex_release;
10875 
10876 	ret = netdev_register_kobject(dev);
10877 
10878 	netdev_lock(dev);
10879 	WRITE_ONCE(dev->reg_state, ret ? NETREG_UNREGISTERED : NETREG_REGISTERED);
10880 	netdev_unlock(dev);
10881 
10882 	if (ret)
10883 		goto err_uninit_notify;
10884 
10885 	__netdev_update_features(dev);
10886 
10887 	/*
10888 	 *	Default initial state at registry is that the
10889 	 *	device is present.
10890 	 */
10891 
10892 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10893 
10894 	linkwatch_init_dev(dev);
10895 
10896 	dev_init_scheduler(dev);
10897 
10898 	netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
10899 	list_netdevice(dev);
10900 
10901 	add_device_randomness(dev->dev_addr, dev->addr_len);
10902 
10903 	/* If the device has permanent device address, driver should
10904 	 * set dev_addr and also addr_assign_type should be set to
10905 	 * NET_ADDR_PERM (default value).
10906 	 */
10907 	if (dev->addr_assign_type == NET_ADDR_PERM)
10908 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10909 
10910 	/* Notify protocols, that a new device appeared. */
10911 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10912 	ret = notifier_to_errno(ret);
10913 	if (ret) {
10914 		/* Expect explicit free_netdev() on failure */
10915 		dev->needs_free_netdev = false;
10916 		unregister_netdevice_queue(dev, NULL);
10917 		goto out;
10918 	}
10919 	/*
10920 	 *	Prevent userspace races by waiting until the network
10921 	 *	device is fully setup before sending notifications.
10922 	 */
10923 	if (!dev->rtnl_link_ops ||
10924 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10925 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
10926 
10927 out:
10928 	return ret;
10929 
10930 err_uninit_notify:
10931 	call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10932 err_ifindex_release:
10933 	dev_index_release(net, dev->ifindex);
10934 err_free_pcpu:
10935 	netdev_do_free_pcpu_stats(dev);
10936 err_uninit:
10937 	if (dev->netdev_ops->ndo_uninit)
10938 		dev->netdev_ops->ndo_uninit(dev);
10939 	if (dev->priv_destructor)
10940 		dev->priv_destructor(dev);
10941 err_free_name:
10942 	netdev_name_node_free(dev->name_node);
10943 	goto out;
10944 }
10945 EXPORT_SYMBOL(register_netdevice);
10946 
10947 /* Initialize the core of a dummy net device.
10948  * The setup steps dummy netdevs need which normal netdevs get by going
10949  * through register_netdevice().
10950  */
10951 static void init_dummy_netdev(struct net_device *dev)
10952 {
10953 	/* make sure we BUG if trying to hit standard
10954 	 * register/unregister code path
10955 	 */
10956 	dev->reg_state = NETREG_DUMMY;
10957 
10958 	/* a dummy interface is started by default */
10959 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10960 	set_bit(__LINK_STATE_START, &dev->state);
10961 
10962 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
10963 	 * because users of this 'device' dont need to change
10964 	 * its refcount.
10965 	 */
10966 }
10967 
10968 /**
10969  *	register_netdev	- register a network device
10970  *	@dev: device to register
10971  *
10972  *	Take a completed network device structure and add it to the kernel
10973  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10974  *	chain. 0 is returned on success. A negative errno code is returned
10975  *	on a failure to set up the device, or if the name is a duplicate.
10976  *
10977  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
10978  *	and expands the device name if you passed a format string to
10979  *	alloc_netdev.
10980  */
10981 int register_netdev(struct net_device *dev)
10982 {
10983 	struct net *net = dev_net(dev);
10984 	int err;
10985 
10986 	if (rtnl_net_lock_killable(net))
10987 		return -EINTR;
10988 
10989 	err = register_netdevice(dev);
10990 
10991 	rtnl_net_unlock(net);
10992 
10993 	return err;
10994 }
10995 EXPORT_SYMBOL(register_netdev);
10996 
10997 int netdev_refcnt_read(const struct net_device *dev)
10998 {
10999 #ifdef CONFIG_PCPU_DEV_REFCNT
11000 	int i, refcnt = 0;
11001 
11002 	for_each_possible_cpu(i)
11003 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
11004 	return refcnt;
11005 #else
11006 	return refcount_read(&dev->dev_refcnt);
11007 #endif
11008 }
11009 EXPORT_SYMBOL(netdev_refcnt_read);
11010 
11011 int netdev_unregister_timeout_secs __read_mostly = 10;
11012 
11013 #define WAIT_REFS_MIN_MSECS 1
11014 #define WAIT_REFS_MAX_MSECS 250
11015 /**
11016  * netdev_wait_allrefs_any - wait until all references are gone.
11017  * @list: list of net_devices to wait on
11018  *
11019  * This is called when unregistering network devices.
11020  *
11021  * Any protocol or device that holds a reference should register
11022  * for netdevice notification, and cleanup and put back the
11023  * reference if they receive an UNREGISTER event.
11024  * We can get stuck here if buggy protocols don't correctly
11025  * call dev_put.
11026  */
11027 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
11028 {
11029 	unsigned long rebroadcast_time, warning_time;
11030 	struct net_device *dev;
11031 	int wait = 0;
11032 
11033 	rebroadcast_time = warning_time = jiffies;
11034 
11035 	list_for_each_entry(dev, list, todo_list)
11036 		if (netdev_refcnt_read(dev) == 1)
11037 			return dev;
11038 
11039 	while (true) {
11040 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
11041 			rtnl_lock();
11042 
11043 			/* Rebroadcast unregister notification */
11044 			list_for_each_entry(dev, list, todo_list)
11045 				call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11046 
11047 			__rtnl_unlock();
11048 			rcu_barrier();
11049 			rtnl_lock();
11050 
11051 			list_for_each_entry(dev, list, todo_list)
11052 				if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
11053 					     &dev->state)) {
11054 					/* We must not have linkwatch events
11055 					 * pending on unregister. If this
11056 					 * happens, we simply run the queue
11057 					 * unscheduled, resulting in a noop
11058 					 * for this device.
11059 					 */
11060 					linkwatch_run_queue();
11061 					break;
11062 				}
11063 
11064 			__rtnl_unlock();
11065 
11066 			rebroadcast_time = jiffies;
11067 		}
11068 
11069 		rcu_barrier();
11070 
11071 		if (!wait) {
11072 			wait = WAIT_REFS_MIN_MSECS;
11073 		} else {
11074 			msleep(wait);
11075 			wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
11076 		}
11077 
11078 		list_for_each_entry(dev, list, todo_list)
11079 			if (netdev_refcnt_read(dev) == 1)
11080 				return dev;
11081 
11082 		if (time_after(jiffies, warning_time +
11083 			       READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
11084 			list_for_each_entry(dev, list, todo_list) {
11085 				pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
11086 					 dev->name, netdev_refcnt_read(dev));
11087 				ref_tracker_dir_print(&dev->refcnt_tracker, 10);
11088 			}
11089 
11090 			warning_time = jiffies;
11091 		}
11092 	}
11093 }
11094 
11095 /* The sequence is:
11096  *
11097  *	rtnl_lock();
11098  *	...
11099  *	register_netdevice(x1);
11100  *	register_netdevice(x2);
11101  *	...
11102  *	unregister_netdevice(y1);
11103  *	unregister_netdevice(y2);
11104  *      ...
11105  *	rtnl_unlock();
11106  *	free_netdev(y1);
11107  *	free_netdev(y2);
11108  *
11109  * We are invoked by rtnl_unlock().
11110  * This allows us to deal with problems:
11111  * 1) We can delete sysfs objects which invoke hotplug
11112  *    without deadlocking with linkwatch via keventd.
11113  * 2) Since we run with the RTNL semaphore not held, we can sleep
11114  *    safely in order to wait for the netdev refcnt to drop to zero.
11115  *
11116  * We must not return until all unregister events added during
11117  * the interval the lock was held have been completed.
11118  */
11119 void netdev_run_todo(void)
11120 {
11121 	struct net_device *dev, *tmp;
11122 	struct list_head list;
11123 	int cnt;
11124 #ifdef CONFIG_LOCKDEP
11125 	struct list_head unlink_list;
11126 
11127 	list_replace_init(&net_unlink_list, &unlink_list);
11128 
11129 	while (!list_empty(&unlink_list)) {
11130 		struct net_device *dev = list_first_entry(&unlink_list,
11131 							  struct net_device,
11132 							  unlink_list);
11133 		list_del_init(&dev->unlink_list);
11134 		dev->nested_level = dev->lower_level - 1;
11135 	}
11136 #endif
11137 
11138 	/* Snapshot list, allow later requests */
11139 	list_replace_init(todo_list(), &list);
11140 
11141 	__rtnl_unlock();
11142 
11143 	/* Wait for rcu callbacks to finish before next phase */
11144 	if (!list_empty(&list))
11145 		rcu_barrier();
11146 
11147 	list_for_each_entry_safe(dev, tmp, &list, todo_list) {
11148 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
11149 			netdev_WARN(dev, "run_todo but not unregistering\n");
11150 			list_del(&dev->todo_list);
11151 			continue;
11152 		}
11153 
11154 		netdev_lock(dev);
11155 		WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERED);
11156 		netdev_unlock(dev);
11157 		linkwatch_sync_dev(dev);
11158 	}
11159 
11160 	cnt = 0;
11161 	while (!list_empty(&list)) {
11162 		dev = netdev_wait_allrefs_any(&list);
11163 		list_del(&dev->todo_list);
11164 
11165 		/* paranoia */
11166 		BUG_ON(netdev_refcnt_read(dev) != 1);
11167 		BUG_ON(!list_empty(&dev->ptype_all));
11168 		BUG_ON(!list_empty(&dev->ptype_specific));
11169 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
11170 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
11171 
11172 		netdev_do_free_pcpu_stats(dev);
11173 		if (dev->priv_destructor)
11174 			dev->priv_destructor(dev);
11175 		if (dev->needs_free_netdev)
11176 			free_netdev(dev);
11177 
11178 		cnt++;
11179 
11180 		/* Free network device */
11181 		kobject_put(&dev->dev.kobj);
11182 	}
11183 	if (cnt && atomic_sub_and_test(cnt, &dev_unreg_count))
11184 		wake_up(&netdev_unregistering_wq);
11185 }
11186 
11187 /* Collate per-cpu network dstats statistics
11188  *
11189  * Read per-cpu network statistics from dev->dstats and populate the related
11190  * fields in @s.
11191  */
11192 static void dev_fetch_dstats(struct rtnl_link_stats64 *s,
11193 			     const struct pcpu_dstats __percpu *dstats)
11194 {
11195 	int cpu;
11196 
11197 	for_each_possible_cpu(cpu) {
11198 		u64 rx_packets, rx_bytes, rx_drops;
11199 		u64 tx_packets, tx_bytes, tx_drops;
11200 		const struct pcpu_dstats *stats;
11201 		unsigned int start;
11202 
11203 		stats = per_cpu_ptr(dstats, cpu);
11204 		do {
11205 			start = u64_stats_fetch_begin(&stats->syncp);
11206 			rx_packets = u64_stats_read(&stats->rx_packets);
11207 			rx_bytes   = u64_stats_read(&stats->rx_bytes);
11208 			rx_drops   = u64_stats_read(&stats->rx_drops);
11209 			tx_packets = u64_stats_read(&stats->tx_packets);
11210 			tx_bytes   = u64_stats_read(&stats->tx_bytes);
11211 			tx_drops   = u64_stats_read(&stats->tx_drops);
11212 		} while (u64_stats_fetch_retry(&stats->syncp, start));
11213 
11214 		s->rx_packets += rx_packets;
11215 		s->rx_bytes   += rx_bytes;
11216 		s->rx_dropped += rx_drops;
11217 		s->tx_packets += tx_packets;
11218 		s->tx_bytes   += tx_bytes;
11219 		s->tx_dropped += tx_drops;
11220 	}
11221 }
11222 
11223 /* ndo_get_stats64 implementation for dtstats-based accounting.
11224  *
11225  * Populate @s from dev->stats and dev->dstats. This is used internally by the
11226  * core for NETDEV_PCPU_STAT_DSTAT-type stats collection.
11227  */
11228 static void dev_get_dstats64(const struct net_device *dev,
11229 			     struct rtnl_link_stats64 *s)
11230 {
11231 	netdev_stats_to_stats64(s, &dev->stats);
11232 	dev_fetch_dstats(s, dev->dstats);
11233 }
11234 
11235 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
11236  * all the same fields in the same order as net_device_stats, with only
11237  * the type differing, but rtnl_link_stats64 may have additional fields
11238  * at the end for newer counters.
11239  */
11240 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
11241 			     const struct net_device_stats *netdev_stats)
11242 {
11243 	size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
11244 	const atomic_long_t *src = (atomic_long_t *)netdev_stats;
11245 	u64 *dst = (u64 *)stats64;
11246 
11247 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
11248 	for (i = 0; i < n; i++)
11249 		dst[i] = (unsigned long)atomic_long_read(&src[i]);
11250 	/* zero out counters that only exist in rtnl_link_stats64 */
11251 	memset((char *)stats64 + n * sizeof(u64), 0,
11252 	       sizeof(*stats64) - n * sizeof(u64));
11253 }
11254 EXPORT_SYMBOL(netdev_stats_to_stats64);
11255 
11256 static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc(
11257 		struct net_device *dev)
11258 {
11259 	struct net_device_core_stats __percpu *p;
11260 
11261 	p = alloc_percpu_gfp(struct net_device_core_stats,
11262 			     GFP_ATOMIC | __GFP_NOWARN);
11263 
11264 	if (p && cmpxchg(&dev->core_stats, NULL, p))
11265 		free_percpu(p);
11266 
11267 	/* This READ_ONCE() pairs with the cmpxchg() above */
11268 	return READ_ONCE(dev->core_stats);
11269 }
11270 
11271 noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset)
11272 {
11273 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
11274 	struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
11275 	unsigned long __percpu *field;
11276 
11277 	if (unlikely(!p)) {
11278 		p = netdev_core_stats_alloc(dev);
11279 		if (!p)
11280 			return;
11281 	}
11282 
11283 	field = (unsigned long __percpu *)((void __percpu *)p + offset);
11284 	this_cpu_inc(*field);
11285 }
11286 EXPORT_SYMBOL_GPL(netdev_core_stats_inc);
11287 
11288 /**
11289  *	dev_get_stats	- get network device statistics
11290  *	@dev: device to get statistics from
11291  *	@storage: place to store stats
11292  *
11293  *	Get network statistics from device. Return @storage.
11294  *	The device driver may provide its own method by setting
11295  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
11296  *	otherwise the internal statistics structure is used.
11297  */
11298 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
11299 					struct rtnl_link_stats64 *storage)
11300 {
11301 	const struct net_device_ops *ops = dev->netdev_ops;
11302 	const struct net_device_core_stats __percpu *p;
11303 
11304 	if (ops->ndo_get_stats64) {
11305 		memset(storage, 0, sizeof(*storage));
11306 		ops->ndo_get_stats64(dev, storage);
11307 	} else if (ops->ndo_get_stats) {
11308 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
11309 	} else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_TSTATS) {
11310 		dev_get_tstats64(dev, storage);
11311 	} else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_DSTATS) {
11312 		dev_get_dstats64(dev, storage);
11313 	} else {
11314 		netdev_stats_to_stats64(storage, &dev->stats);
11315 	}
11316 
11317 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
11318 	p = READ_ONCE(dev->core_stats);
11319 	if (p) {
11320 		const struct net_device_core_stats *core_stats;
11321 		int i;
11322 
11323 		for_each_possible_cpu(i) {
11324 			core_stats = per_cpu_ptr(p, i);
11325 			storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
11326 			storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
11327 			storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
11328 			storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
11329 		}
11330 	}
11331 	return storage;
11332 }
11333 EXPORT_SYMBOL(dev_get_stats);
11334 
11335 /**
11336  *	dev_fetch_sw_netstats - get per-cpu network device statistics
11337  *	@s: place to store stats
11338  *	@netstats: per-cpu network stats to read from
11339  *
11340  *	Read per-cpu network statistics and populate the related fields in @s.
11341  */
11342 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
11343 			   const struct pcpu_sw_netstats __percpu *netstats)
11344 {
11345 	int cpu;
11346 
11347 	for_each_possible_cpu(cpu) {
11348 		u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
11349 		const struct pcpu_sw_netstats *stats;
11350 		unsigned int start;
11351 
11352 		stats = per_cpu_ptr(netstats, cpu);
11353 		do {
11354 			start = u64_stats_fetch_begin(&stats->syncp);
11355 			rx_packets = u64_stats_read(&stats->rx_packets);
11356 			rx_bytes   = u64_stats_read(&stats->rx_bytes);
11357 			tx_packets = u64_stats_read(&stats->tx_packets);
11358 			tx_bytes   = u64_stats_read(&stats->tx_bytes);
11359 		} while (u64_stats_fetch_retry(&stats->syncp, start));
11360 
11361 		s->rx_packets += rx_packets;
11362 		s->rx_bytes   += rx_bytes;
11363 		s->tx_packets += tx_packets;
11364 		s->tx_bytes   += tx_bytes;
11365 	}
11366 }
11367 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
11368 
11369 /**
11370  *	dev_get_tstats64 - ndo_get_stats64 implementation
11371  *	@dev: device to get statistics from
11372  *	@s: place to store stats
11373  *
11374  *	Populate @s from dev->stats and dev->tstats. Can be used as
11375  *	ndo_get_stats64() callback.
11376  */
11377 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
11378 {
11379 	netdev_stats_to_stats64(s, &dev->stats);
11380 	dev_fetch_sw_netstats(s, dev->tstats);
11381 }
11382 EXPORT_SYMBOL_GPL(dev_get_tstats64);
11383 
11384 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
11385 {
11386 	struct netdev_queue *queue = dev_ingress_queue(dev);
11387 
11388 #ifdef CONFIG_NET_CLS_ACT
11389 	if (queue)
11390 		return queue;
11391 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
11392 	if (!queue)
11393 		return NULL;
11394 	netdev_init_one_queue(dev, queue, NULL);
11395 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
11396 	RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
11397 	rcu_assign_pointer(dev->ingress_queue, queue);
11398 #endif
11399 	return queue;
11400 }
11401 
11402 static const struct ethtool_ops default_ethtool_ops;
11403 
11404 void netdev_set_default_ethtool_ops(struct net_device *dev,
11405 				    const struct ethtool_ops *ops)
11406 {
11407 	if (dev->ethtool_ops == &default_ethtool_ops)
11408 		dev->ethtool_ops = ops;
11409 }
11410 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
11411 
11412 /**
11413  * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
11414  * @dev: netdev to enable the IRQ coalescing on
11415  *
11416  * Sets a conservative default for SW IRQ coalescing. Users can use
11417  * sysfs attributes to override the default values.
11418  */
11419 void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
11420 {
11421 	WARN_ON(dev->reg_state == NETREG_REGISTERED);
11422 
11423 	if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
11424 		netdev_set_gro_flush_timeout(dev, 20000);
11425 		netdev_set_defer_hard_irqs(dev, 1);
11426 	}
11427 }
11428 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
11429 
11430 /**
11431  * alloc_netdev_mqs - allocate network device
11432  * @sizeof_priv: size of private data to allocate space for
11433  * @name: device name format string
11434  * @name_assign_type: origin of device name
11435  * @setup: callback to initialize device
11436  * @txqs: the number of TX subqueues to allocate
11437  * @rxqs: the number of RX subqueues to allocate
11438  *
11439  * Allocates a struct net_device with private data area for driver use
11440  * and performs basic initialization.  Also allocates subqueue structs
11441  * for each queue on the device.
11442  */
11443 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
11444 		unsigned char name_assign_type,
11445 		void (*setup)(struct net_device *),
11446 		unsigned int txqs, unsigned int rxqs)
11447 {
11448 	struct net_device *dev;
11449 	size_t napi_config_sz;
11450 	unsigned int maxqs;
11451 
11452 	BUG_ON(strlen(name) >= sizeof(dev->name));
11453 
11454 	if (txqs < 1) {
11455 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
11456 		return NULL;
11457 	}
11458 
11459 	if (rxqs < 1) {
11460 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
11461 		return NULL;
11462 	}
11463 
11464 	maxqs = max(txqs, rxqs);
11465 
11466 	dev = kvzalloc(struct_size(dev, priv, sizeof_priv),
11467 		       GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
11468 	if (!dev)
11469 		return NULL;
11470 
11471 	dev->priv_len = sizeof_priv;
11472 
11473 	ref_tracker_dir_init(&dev->refcnt_tracker, 128, name);
11474 #ifdef CONFIG_PCPU_DEV_REFCNT
11475 	dev->pcpu_refcnt = alloc_percpu(int);
11476 	if (!dev->pcpu_refcnt)
11477 		goto free_dev;
11478 	__dev_hold(dev);
11479 #else
11480 	refcount_set(&dev->dev_refcnt, 1);
11481 #endif
11482 
11483 	if (dev_addr_init(dev))
11484 		goto free_pcpu;
11485 
11486 	dev_mc_init(dev);
11487 	dev_uc_init(dev);
11488 
11489 	dev_net_set(dev, &init_net);
11490 
11491 	dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
11492 	dev->xdp_zc_max_segs = 1;
11493 	dev->gso_max_segs = GSO_MAX_SEGS;
11494 	dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
11495 	dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
11496 	dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
11497 	dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
11498 	dev->tso_max_segs = TSO_MAX_SEGS;
11499 	dev->upper_level = 1;
11500 	dev->lower_level = 1;
11501 #ifdef CONFIG_LOCKDEP
11502 	dev->nested_level = 0;
11503 	INIT_LIST_HEAD(&dev->unlink_list);
11504 #endif
11505 
11506 	INIT_LIST_HEAD(&dev->napi_list);
11507 	INIT_LIST_HEAD(&dev->unreg_list);
11508 	INIT_LIST_HEAD(&dev->close_list);
11509 	INIT_LIST_HEAD(&dev->link_watch_list);
11510 	INIT_LIST_HEAD(&dev->adj_list.upper);
11511 	INIT_LIST_HEAD(&dev->adj_list.lower);
11512 	INIT_LIST_HEAD(&dev->ptype_all);
11513 	INIT_LIST_HEAD(&dev->ptype_specific);
11514 	INIT_LIST_HEAD(&dev->net_notifier_list);
11515 #ifdef CONFIG_NET_SCHED
11516 	hash_init(dev->qdisc_hash);
11517 #endif
11518 
11519 	mutex_init(&dev->lock);
11520 
11521 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
11522 	setup(dev);
11523 
11524 	if (!dev->tx_queue_len) {
11525 		dev->priv_flags |= IFF_NO_QUEUE;
11526 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
11527 	}
11528 
11529 	dev->num_tx_queues = txqs;
11530 	dev->real_num_tx_queues = txqs;
11531 	if (netif_alloc_netdev_queues(dev))
11532 		goto free_all;
11533 
11534 	dev->num_rx_queues = rxqs;
11535 	dev->real_num_rx_queues = rxqs;
11536 	if (netif_alloc_rx_queues(dev))
11537 		goto free_all;
11538 	dev->ethtool = kzalloc(sizeof(*dev->ethtool), GFP_KERNEL_ACCOUNT);
11539 	if (!dev->ethtool)
11540 		goto free_all;
11541 
11542 	napi_config_sz = array_size(maxqs, sizeof(*dev->napi_config));
11543 	dev->napi_config = kvzalloc(napi_config_sz, GFP_KERNEL_ACCOUNT);
11544 	if (!dev->napi_config)
11545 		goto free_all;
11546 
11547 	strscpy(dev->name, name);
11548 	dev->name_assign_type = name_assign_type;
11549 	dev->group = INIT_NETDEV_GROUP;
11550 	if (!dev->ethtool_ops)
11551 		dev->ethtool_ops = &default_ethtool_ops;
11552 
11553 	nf_hook_netdev_init(dev);
11554 
11555 	return dev;
11556 
11557 free_all:
11558 	free_netdev(dev);
11559 	return NULL;
11560 
11561 free_pcpu:
11562 #ifdef CONFIG_PCPU_DEV_REFCNT
11563 	free_percpu(dev->pcpu_refcnt);
11564 free_dev:
11565 #endif
11566 	kvfree(dev);
11567 	return NULL;
11568 }
11569 EXPORT_SYMBOL(alloc_netdev_mqs);
11570 
11571 /**
11572  * free_netdev - free network device
11573  * @dev: device
11574  *
11575  * This function does the last stage of destroying an allocated device
11576  * interface. The reference to the device object is released. If this
11577  * is the last reference then it will be freed.Must be called in process
11578  * context.
11579  */
11580 void free_netdev(struct net_device *dev)
11581 {
11582 	struct napi_struct *p, *n;
11583 
11584 	might_sleep();
11585 
11586 	/* When called immediately after register_netdevice() failed the unwind
11587 	 * handling may still be dismantling the device. Handle that case by
11588 	 * deferring the free.
11589 	 */
11590 	if (dev->reg_state == NETREG_UNREGISTERING) {
11591 		ASSERT_RTNL();
11592 		dev->needs_free_netdev = true;
11593 		return;
11594 	}
11595 
11596 	mutex_destroy(&dev->lock);
11597 
11598 	kfree(dev->ethtool);
11599 	netif_free_tx_queues(dev);
11600 	netif_free_rx_queues(dev);
11601 
11602 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
11603 
11604 	/* Flush device addresses */
11605 	dev_addr_flush(dev);
11606 
11607 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
11608 		netif_napi_del(p);
11609 
11610 	kvfree(dev->napi_config);
11611 
11612 	ref_tracker_dir_exit(&dev->refcnt_tracker);
11613 #ifdef CONFIG_PCPU_DEV_REFCNT
11614 	free_percpu(dev->pcpu_refcnt);
11615 	dev->pcpu_refcnt = NULL;
11616 #endif
11617 	free_percpu(dev->core_stats);
11618 	dev->core_stats = NULL;
11619 	free_percpu(dev->xdp_bulkq);
11620 	dev->xdp_bulkq = NULL;
11621 
11622 	netdev_free_phy_link_topology(dev);
11623 
11624 	/*  Compatibility with error handling in drivers */
11625 	if (dev->reg_state == NETREG_UNINITIALIZED ||
11626 	    dev->reg_state == NETREG_DUMMY) {
11627 		kvfree(dev);
11628 		return;
11629 	}
11630 
11631 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
11632 	WRITE_ONCE(dev->reg_state, NETREG_RELEASED);
11633 
11634 	/* will free via device release */
11635 	put_device(&dev->dev);
11636 }
11637 EXPORT_SYMBOL(free_netdev);
11638 
11639 /**
11640  * alloc_netdev_dummy - Allocate and initialize a dummy net device.
11641  * @sizeof_priv: size of private data to allocate space for
11642  *
11643  * Return: the allocated net_device on success, NULL otherwise
11644  */
11645 struct net_device *alloc_netdev_dummy(int sizeof_priv)
11646 {
11647 	return alloc_netdev(sizeof_priv, "dummy#", NET_NAME_UNKNOWN,
11648 			    init_dummy_netdev);
11649 }
11650 EXPORT_SYMBOL_GPL(alloc_netdev_dummy);
11651 
11652 /**
11653  *	synchronize_net -  Synchronize with packet receive processing
11654  *
11655  *	Wait for packets currently being received to be done.
11656  *	Does not block later packets from starting.
11657  */
11658 void synchronize_net(void)
11659 {
11660 	might_sleep();
11661 	if (from_cleanup_net() || rtnl_is_locked())
11662 		synchronize_rcu_expedited();
11663 	else
11664 		synchronize_rcu();
11665 }
11666 EXPORT_SYMBOL(synchronize_net);
11667 
11668 static void netdev_rss_contexts_free(struct net_device *dev)
11669 {
11670 	struct ethtool_rxfh_context *ctx;
11671 	unsigned long context;
11672 
11673 	mutex_lock(&dev->ethtool->rss_lock);
11674 	xa_for_each(&dev->ethtool->rss_ctx, context, ctx) {
11675 		struct ethtool_rxfh_param rxfh;
11676 
11677 		rxfh.indir = ethtool_rxfh_context_indir(ctx);
11678 		rxfh.key = ethtool_rxfh_context_key(ctx);
11679 		rxfh.hfunc = ctx->hfunc;
11680 		rxfh.input_xfrm = ctx->input_xfrm;
11681 		rxfh.rss_context = context;
11682 		rxfh.rss_delete = true;
11683 
11684 		xa_erase(&dev->ethtool->rss_ctx, context);
11685 		if (dev->ethtool_ops->create_rxfh_context)
11686 			dev->ethtool_ops->remove_rxfh_context(dev, ctx,
11687 							      context, NULL);
11688 		else
11689 			dev->ethtool_ops->set_rxfh(dev, &rxfh, NULL);
11690 		kfree(ctx);
11691 	}
11692 	xa_destroy(&dev->ethtool->rss_ctx);
11693 	mutex_unlock(&dev->ethtool->rss_lock);
11694 }
11695 
11696 /**
11697  *	unregister_netdevice_queue - remove device from the kernel
11698  *	@dev: device
11699  *	@head: list
11700  *
11701  *	This function shuts down a device interface and removes it
11702  *	from the kernel tables.
11703  *	If head not NULL, device is queued to be unregistered later.
11704  *
11705  *	Callers must hold the rtnl semaphore.  You may want
11706  *	unregister_netdev() instead of this.
11707  */
11708 
11709 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
11710 {
11711 	ASSERT_RTNL();
11712 
11713 	if (head) {
11714 		list_move_tail(&dev->unreg_list, head);
11715 	} else {
11716 		LIST_HEAD(single);
11717 
11718 		list_add(&dev->unreg_list, &single);
11719 		unregister_netdevice_many(&single);
11720 	}
11721 }
11722 EXPORT_SYMBOL(unregister_netdevice_queue);
11723 
11724 void unregister_netdevice_many_notify(struct list_head *head,
11725 				      u32 portid, const struct nlmsghdr *nlh)
11726 {
11727 	struct net_device *dev, *tmp;
11728 	LIST_HEAD(close_head);
11729 	int cnt = 0;
11730 
11731 	BUG_ON(dev_boot_phase);
11732 	ASSERT_RTNL();
11733 
11734 	if (list_empty(head))
11735 		return;
11736 
11737 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
11738 		/* Some devices call without registering
11739 		 * for initialization unwind. Remove those
11740 		 * devices and proceed with the remaining.
11741 		 */
11742 		if (dev->reg_state == NETREG_UNINITIALIZED) {
11743 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
11744 				 dev->name, dev);
11745 
11746 			WARN_ON(1);
11747 			list_del(&dev->unreg_list);
11748 			continue;
11749 		}
11750 		dev->dismantle = true;
11751 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
11752 	}
11753 
11754 	/* If device is running, close it first. */
11755 	list_for_each_entry(dev, head, unreg_list)
11756 		list_add_tail(&dev->close_list, &close_head);
11757 	dev_close_many(&close_head, true);
11758 
11759 	list_for_each_entry(dev, head, unreg_list) {
11760 		/* And unlink it from device chain. */
11761 		unlist_netdevice(dev);
11762 		netdev_lock(dev);
11763 		WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERING);
11764 		netdev_unlock(dev);
11765 	}
11766 
11767 	rtnl_drop_if_cleanup_net();
11768 	flush_all_backlogs();
11769 	synchronize_net();
11770 	rtnl_acquire_if_cleanup_net();
11771 
11772 	list_for_each_entry(dev, head, unreg_list) {
11773 		struct sk_buff *skb = NULL;
11774 
11775 		/* Shutdown queueing discipline. */
11776 		dev_shutdown(dev);
11777 		dev_tcx_uninstall(dev);
11778 		dev_xdp_uninstall(dev);
11779 		bpf_dev_bound_netdev_unregister(dev);
11780 		dev_dmabuf_uninstall(dev);
11781 
11782 		netdev_offload_xstats_disable_all(dev);
11783 
11784 		/* Notify protocols, that we are about to destroy
11785 		 * this device. They should clean all the things.
11786 		 */
11787 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11788 
11789 		if (!dev->rtnl_link_ops ||
11790 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11791 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11792 						     GFP_KERNEL, NULL, 0,
11793 						     portid, nlh);
11794 
11795 		/*
11796 		 *	Flush the unicast and multicast chains
11797 		 */
11798 		dev_uc_flush(dev);
11799 		dev_mc_flush(dev);
11800 
11801 		netdev_name_node_alt_flush(dev);
11802 		netdev_name_node_free(dev->name_node);
11803 
11804 		netdev_rss_contexts_free(dev);
11805 
11806 		call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
11807 
11808 		if (dev->netdev_ops->ndo_uninit)
11809 			dev->netdev_ops->ndo_uninit(dev);
11810 
11811 		mutex_destroy(&dev->ethtool->rss_lock);
11812 
11813 		net_shaper_flush_netdev(dev);
11814 
11815 		if (skb)
11816 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
11817 
11818 		/* Notifier chain MUST detach us all upper devices. */
11819 		WARN_ON(netdev_has_any_upper_dev(dev));
11820 		WARN_ON(netdev_has_any_lower_dev(dev));
11821 
11822 		/* Remove entries from kobject tree */
11823 		netdev_unregister_kobject(dev);
11824 #ifdef CONFIG_XPS
11825 		/* Remove XPS queueing entries */
11826 		netif_reset_xps_queues_gt(dev, 0);
11827 #endif
11828 	}
11829 
11830 	rtnl_drop_if_cleanup_net();
11831 	synchronize_net();
11832 	rtnl_acquire_if_cleanup_net();
11833 
11834 	list_for_each_entry(dev, head, unreg_list) {
11835 		netdev_put(dev, &dev->dev_registered_tracker);
11836 		net_set_todo(dev);
11837 		cnt++;
11838 	}
11839 	atomic_add(cnt, &dev_unreg_count);
11840 
11841 	list_del(head);
11842 }
11843 
11844 /**
11845  *	unregister_netdevice_many - unregister many devices
11846  *	@head: list of devices
11847  *
11848  *  Note: As most callers use a stack allocated list_head,
11849  *  we force a list_del() to make sure stack won't be corrupted later.
11850  */
11851 void unregister_netdevice_many(struct list_head *head)
11852 {
11853 	unregister_netdevice_many_notify(head, 0, NULL);
11854 }
11855 EXPORT_SYMBOL(unregister_netdevice_many);
11856 
11857 /**
11858  *	unregister_netdev - remove device from the kernel
11859  *	@dev: device
11860  *
11861  *	This function shuts down a device interface and removes it
11862  *	from the kernel tables.
11863  *
11864  *	This is just a wrapper for unregister_netdevice that takes
11865  *	the rtnl semaphore.  In general you want to use this and not
11866  *	unregister_netdevice.
11867  */
11868 void unregister_netdev(struct net_device *dev)
11869 {
11870 	struct net *net = dev_net(dev);
11871 
11872 	rtnl_net_lock(net);
11873 	unregister_netdevice(dev);
11874 	rtnl_net_unlock(net);
11875 }
11876 EXPORT_SYMBOL(unregister_netdev);
11877 
11878 /**
11879  *	__dev_change_net_namespace - move device to different nethost namespace
11880  *	@dev: device
11881  *	@net: network namespace
11882  *	@pat: If not NULL name pattern to try if the current device name
11883  *	      is already taken in the destination network namespace.
11884  *	@new_ifindex: If not zero, specifies device index in the target
11885  *	              namespace.
11886  *
11887  *	This function shuts down a device interface and moves it
11888  *	to a new network namespace. On success 0 is returned, on
11889  *	a failure a netagive errno code is returned.
11890  *
11891  *	Callers must hold the rtnl semaphore.
11892  */
11893 
11894 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11895 			       const char *pat, int new_ifindex)
11896 {
11897 	struct netdev_name_node *name_node;
11898 	struct net *net_old = dev_net(dev);
11899 	char new_name[IFNAMSIZ] = {};
11900 	int err, new_nsid;
11901 
11902 	ASSERT_RTNL();
11903 
11904 	/* Don't allow namespace local devices to be moved. */
11905 	err = -EINVAL;
11906 	if (dev->netns_local)
11907 		goto out;
11908 
11909 	/* Ensure the device has been registered */
11910 	if (dev->reg_state != NETREG_REGISTERED)
11911 		goto out;
11912 
11913 	/* Get out if there is nothing todo */
11914 	err = 0;
11915 	if (net_eq(net_old, net))
11916 		goto out;
11917 
11918 	/* Pick the destination device name, and ensure
11919 	 * we can use it in the destination network namespace.
11920 	 */
11921 	err = -EEXIST;
11922 	if (netdev_name_in_use(net, dev->name)) {
11923 		/* We get here if we can't use the current device name */
11924 		if (!pat)
11925 			goto out;
11926 		err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST);
11927 		if (err < 0)
11928 			goto out;
11929 	}
11930 	/* Check that none of the altnames conflicts. */
11931 	err = -EEXIST;
11932 	netdev_for_each_altname(dev, name_node)
11933 		if (netdev_name_in_use(net, name_node->name))
11934 			goto out;
11935 
11936 	/* Check that new_ifindex isn't used yet. */
11937 	if (new_ifindex) {
11938 		err = dev_index_reserve(net, new_ifindex);
11939 		if (err < 0)
11940 			goto out;
11941 	} else {
11942 		/* If there is an ifindex conflict assign a new one */
11943 		err = dev_index_reserve(net, dev->ifindex);
11944 		if (err == -EBUSY)
11945 			err = dev_index_reserve(net, 0);
11946 		if (err < 0)
11947 			goto out;
11948 		new_ifindex = err;
11949 	}
11950 
11951 	/*
11952 	 * And now a mini version of register_netdevice unregister_netdevice.
11953 	 */
11954 
11955 	/* If device is running close it first. */
11956 	dev_close(dev);
11957 
11958 	/* And unlink it from device chain */
11959 	unlist_netdevice(dev);
11960 
11961 	synchronize_net();
11962 
11963 	/* Shutdown queueing discipline. */
11964 	dev_shutdown(dev);
11965 
11966 	/* Notify protocols, that we are about to destroy
11967 	 * this device. They should clean all the things.
11968 	 *
11969 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
11970 	 * This is wanted because this way 8021q and macvlan know
11971 	 * the device is just moving and can keep their slaves up.
11972 	 */
11973 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11974 	rcu_barrier();
11975 
11976 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11977 
11978 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11979 			    new_ifindex);
11980 
11981 	/*
11982 	 *	Flush the unicast and multicast chains
11983 	 */
11984 	dev_uc_flush(dev);
11985 	dev_mc_flush(dev);
11986 
11987 	/* Send a netdev-removed uevent to the old namespace */
11988 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11989 	netdev_adjacent_del_links(dev);
11990 
11991 	/* Move per-net netdevice notifiers that are following the netdevice */
11992 	move_netdevice_notifiers_dev_net(dev, net);
11993 
11994 	/* Actually switch the network namespace */
11995 	dev_net_set(dev, net);
11996 	dev->ifindex = new_ifindex;
11997 
11998 	if (new_name[0]) {
11999 		/* Rename the netdev to prepared name */
12000 		write_seqlock_bh(&netdev_rename_lock);
12001 		strscpy(dev->name, new_name, IFNAMSIZ);
12002 		write_sequnlock_bh(&netdev_rename_lock);
12003 	}
12004 
12005 	/* Fixup kobjects */
12006 	dev_set_uevent_suppress(&dev->dev, 1);
12007 	err = device_rename(&dev->dev, dev->name);
12008 	dev_set_uevent_suppress(&dev->dev, 0);
12009 	WARN_ON(err);
12010 
12011 	/* Send a netdev-add uevent to the new namespace */
12012 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
12013 	netdev_adjacent_add_links(dev);
12014 
12015 	/* Adapt owner in case owning user namespace of target network
12016 	 * namespace is different from the original one.
12017 	 */
12018 	err = netdev_change_owner(dev, net_old, net);
12019 	WARN_ON(err);
12020 
12021 	/* Add the device back in the hashes */
12022 	list_netdevice(dev);
12023 
12024 	/* Notify protocols, that a new device appeared. */
12025 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
12026 
12027 	/*
12028 	 *	Prevent userspace races by waiting until the network
12029 	 *	device is fully setup before sending notifications.
12030 	 */
12031 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
12032 
12033 	synchronize_net();
12034 	err = 0;
12035 out:
12036 	return err;
12037 }
12038 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
12039 
12040 static int dev_cpu_dead(unsigned int oldcpu)
12041 {
12042 	struct sk_buff **list_skb;
12043 	struct sk_buff *skb;
12044 	unsigned int cpu;
12045 	struct softnet_data *sd, *oldsd, *remsd = NULL;
12046 
12047 	local_irq_disable();
12048 	cpu = smp_processor_id();
12049 	sd = &per_cpu(softnet_data, cpu);
12050 	oldsd = &per_cpu(softnet_data, oldcpu);
12051 
12052 	/* Find end of our completion_queue. */
12053 	list_skb = &sd->completion_queue;
12054 	while (*list_skb)
12055 		list_skb = &(*list_skb)->next;
12056 	/* Append completion queue from offline CPU. */
12057 	*list_skb = oldsd->completion_queue;
12058 	oldsd->completion_queue = NULL;
12059 
12060 	/* Append output queue from offline CPU. */
12061 	if (oldsd->output_queue) {
12062 		*sd->output_queue_tailp = oldsd->output_queue;
12063 		sd->output_queue_tailp = oldsd->output_queue_tailp;
12064 		oldsd->output_queue = NULL;
12065 		oldsd->output_queue_tailp = &oldsd->output_queue;
12066 	}
12067 	/* Append NAPI poll list from offline CPU, with one exception :
12068 	 * process_backlog() must be called by cpu owning percpu backlog.
12069 	 * We properly handle process_queue & input_pkt_queue later.
12070 	 */
12071 	while (!list_empty(&oldsd->poll_list)) {
12072 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
12073 							    struct napi_struct,
12074 							    poll_list);
12075 
12076 		list_del_init(&napi->poll_list);
12077 		if (napi->poll == process_backlog)
12078 			napi->state &= NAPIF_STATE_THREADED;
12079 		else
12080 			____napi_schedule(sd, napi);
12081 	}
12082 
12083 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
12084 	local_irq_enable();
12085 
12086 	if (!use_backlog_threads()) {
12087 #ifdef CONFIG_RPS
12088 		remsd = oldsd->rps_ipi_list;
12089 		oldsd->rps_ipi_list = NULL;
12090 #endif
12091 		/* send out pending IPI's on offline CPU */
12092 		net_rps_send_ipi(remsd);
12093 	}
12094 
12095 	/* Process offline CPU's input_pkt_queue */
12096 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
12097 		netif_rx(skb);
12098 		rps_input_queue_head_incr(oldsd);
12099 	}
12100 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
12101 		netif_rx(skb);
12102 		rps_input_queue_head_incr(oldsd);
12103 	}
12104 
12105 	return 0;
12106 }
12107 
12108 /**
12109  *	netdev_increment_features - increment feature set by one
12110  *	@all: current feature set
12111  *	@one: new feature set
12112  *	@mask: mask feature set
12113  *
12114  *	Computes a new feature set after adding a device with feature set
12115  *	@one to the master device with current feature set @all.  Will not
12116  *	enable anything that is off in @mask. Returns the new feature set.
12117  */
12118 netdev_features_t netdev_increment_features(netdev_features_t all,
12119 	netdev_features_t one, netdev_features_t mask)
12120 {
12121 	if (mask & NETIF_F_HW_CSUM)
12122 		mask |= NETIF_F_CSUM_MASK;
12123 	mask |= NETIF_F_VLAN_CHALLENGED;
12124 
12125 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
12126 	all &= one | ~NETIF_F_ALL_FOR_ALL;
12127 
12128 	/* If one device supports hw checksumming, set for all. */
12129 	if (all & NETIF_F_HW_CSUM)
12130 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
12131 
12132 	return all;
12133 }
12134 EXPORT_SYMBOL(netdev_increment_features);
12135 
12136 static struct hlist_head * __net_init netdev_create_hash(void)
12137 {
12138 	int i;
12139 	struct hlist_head *hash;
12140 
12141 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
12142 	if (hash != NULL)
12143 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
12144 			INIT_HLIST_HEAD(&hash[i]);
12145 
12146 	return hash;
12147 }
12148 
12149 /* Initialize per network namespace state */
12150 static int __net_init netdev_init(struct net *net)
12151 {
12152 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
12153 		     8 * sizeof_field(struct napi_struct, gro_bitmask));
12154 
12155 	INIT_LIST_HEAD(&net->dev_base_head);
12156 
12157 	net->dev_name_head = netdev_create_hash();
12158 	if (net->dev_name_head == NULL)
12159 		goto err_name;
12160 
12161 	net->dev_index_head = netdev_create_hash();
12162 	if (net->dev_index_head == NULL)
12163 		goto err_idx;
12164 
12165 	xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1);
12166 
12167 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
12168 
12169 	return 0;
12170 
12171 err_idx:
12172 	kfree(net->dev_name_head);
12173 err_name:
12174 	return -ENOMEM;
12175 }
12176 
12177 /**
12178  *	netdev_drivername - network driver for the device
12179  *	@dev: network device
12180  *
12181  *	Determine network driver for device.
12182  */
12183 const char *netdev_drivername(const struct net_device *dev)
12184 {
12185 	const struct device_driver *driver;
12186 	const struct device *parent;
12187 	const char *empty = "";
12188 
12189 	parent = dev->dev.parent;
12190 	if (!parent)
12191 		return empty;
12192 
12193 	driver = parent->driver;
12194 	if (driver && driver->name)
12195 		return driver->name;
12196 	return empty;
12197 }
12198 
12199 static void __netdev_printk(const char *level, const struct net_device *dev,
12200 			    struct va_format *vaf)
12201 {
12202 	if (dev && dev->dev.parent) {
12203 		dev_printk_emit(level[1] - '0',
12204 				dev->dev.parent,
12205 				"%s %s %s%s: %pV",
12206 				dev_driver_string(dev->dev.parent),
12207 				dev_name(dev->dev.parent),
12208 				netdev_name(dev), netdev_reg_state(dev),
12209 				vaf);
12210 	} else if (dev) {
12211 		printk("%s%s%s: %pV",
12212 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
12213 	} else {
12214 		printk("%s(NULL net_device): %pV", level, vaf);
12215 	}
12216 }
12217 
12218 void netdev_printk(const char *level, const struct net_device *dev,
12219 		   const char *format, ...)
12220 {
12221 	struct va_format vaf;
12222 	va_list args;
12223 
12224 	va_start(args, format);
12225 
12226 	vaf.fmt = format;
12227 	vaf.va = &args;
12228 
12229 	__netdev_printk(level, dev, &vaf);
12230 
12231 	va_end(args);
12232 }
12233 EXPORT_SYMBOL(netdev_printk);
12234 
12235 #define define_netdev_printk_level(func, level)			\
12236 void func(const struct net_device *dev, const char *fmt, ...)	\
12237 {								\
12238 	struct va_format vaf;					\
12239 	va_list args;						\
12240 								\
12241 	va_start(args, fmt);					\
12242 								\
12243 	vaf.fmt = fmt;						\
12244 	vaf.va = &args;						\
12245 								\
12246 	__netdev_printk(level, dev, &vaf);			\
12247 								\
12248 	va_end(args);						\
12249 }								\
12250 EXPORT_SYMBOL(func);
12251 
12252 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
12253 define_netdev_printk_level(netdev_alert, KERN_ALERT);
12254 define_netdev_printk_level(netdev_crit, KERN_CRIT);
12255 define_netdev_printk_level(netdev_err, KERN_ERR);
12256 define_netdev_printk_level(netdev_warn, KERN_WARNING);
12257 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
12258 define_netdev_printk_level(netdev_info, KERN_INFO);
12259 
12260 static void __net_exit netdev_exit(struct net *net)
12261 {
12262 	kfree(net->dev_name_head);
12263 	kfree(net->dev_index_head);
12264 	xa_destroy(&net->dev_by_index);
12265 	if (net != &init_net)
12266 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
12267 }
12268 
12269 static struct pernet_operations __net_initdata netdev_net_ops = {
12270 	.init = netdev_init,
12271 	.exit = netdev_exit,
12272 };
12273 
12274 static void __net_exit default_device_exit_net(struct net *net)
12275 {
12276 	struct netdev_name_node *name_node, *tmp;
12277 	struct net_device *dev, *aux;
12278 	/*
12279 	 * Push all migratable network devices back to the
12280 	 * initial network namespace
12281 	 */
12282 	ASSERT_RTNL();
12283 	for_each_netdev_safe(net, dev, aux) {
12284 		int err;
12285 		char fb_name[IFNAMSIZ];
12286 
12287 		/* Ignore unmoveable devices (i.e. loopback) */
12288 		if (dev->netns_local)
12289 			continue;
12290 
12291 		/* Leave virtual devices for the generic cleanup */
12292 		if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
12293 			continue;
12294 
12295 		/* Push remaining network devices to init_net */
12296 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
12297 		if (netdev_name_in_use(&init_net, fb_name))
12298 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
12299 
12300 		netdev_for_each_altname_safe(dev, name_node, tmp)
12301 			if (netdev_name_in_use(&init_net, name_node->name))
12302 				__netdev_name_node_alt_destroy(name_node);
12303 
12304 		err = dev_change_net_namespace(dev, &init_net, fb_name);
12305 		if (err) {
12306 			pr_emerg("%s: failed to move %s to init_net: %d\n",
12307 				 __func__, dev->name, err);
12308 			BUG();
12309 		}
12310 	}
12311 }
12312 
12313 static void __net_exit default_device_exit_batch(struct list_head *net_list)
12314 {
12315 	/* At exit all network devices most be removed from a network
12316 	 * namespace.  Do this in the reverse order of registration.
12317 	 * Do this across as many network namespaces as possible to
12318 	 * improve batching efficiency.
12319 	 */
12320 	struct net_device *dev;
12321 	struct net *net;
12322 	LIST_HEAD(dev_kill_list);
12323 
12324 	rtnl_lock();
12325 	list_for_each_entry(net, net_list, exit_list) {
12326 		default_device_exit_net(net);
12327 		cond_resched();
12328 	}
12329 
12330 	list_for_each_entry(net, net_list, exit_list) {
12331 		for_each_netdev_reverse(net, dev) {
12332 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
12333 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
12334 			else
12335 				unregister_netdevice_queue(dev, &dev_kill_list);
12336 		}
12337 	}
12338 	unregister_netdevice_many(&dev_kill_list);
12339 	rtnl_unlock();
12340 }
12341 
12342 static struct pernet_operations __net_initdata default_device_ops = {
12343 	.exit_batch = default_device_exit_batch,
12344 };
12345 
12346 static void __init net_dev_struct_check(void)
12347 {
12348 	/* TX read-mostly hotpath */
12349 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, priv_flags_fast);
12350 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, netdev_ops);
12351 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, header_ops);
12352 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, _tx);
12353 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, real_num_tx_queues);
12354 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_size);
12355 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_ipv4_max_size);
12356 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_segs);
12357 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_partial_features);
12358 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, num_tc);
12359 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, mtu);
12360 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, needed_headroom);
12361 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tc_to_txq);
12362 #ifdef CONFIG_XPS
12363 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, xps_maps);
12364 #endif
12365 #ifdef CONFIG_NETFILTER_EGRESS
12366 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, nf_hooks_egress);
12367 #endif
12368 #ifdef CONFIG_NET_XGRESS
12369 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tcx_egress);
12370 #endif
12371 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_tx, 160);
12372 
12373 	/* TXRX read-mostly hotpath */
12374 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, lstats);
12375 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, state);
12376 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, flags);
12377 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, hard_header_len);
12378 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, features);
12379 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, ip6_ptr);
12380 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_txrx, 46);
12381 
12382 	/* RX read-mostly hotpath */
12383 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ptype_specific);
12384 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ifindex);
12385 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, real_num_rx_queues);
12386 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, _rx);
12387 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_max_size);
12388 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_ipv4_max_size);
12389 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler);
12390 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler_data);
12391 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, nd_net);
12392 #ifdef CONFIG_NETPOLL
12393 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, npinfo);
12394 #endif
12395 #ifdef CONFIG_NET_XGRESS
12396 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, tcx_ingress);
12397 #endif
12398 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_rx, 92);
12399 }
12400 
12401 /*
12402  *	Initialize the DEV module. At boot time this walks the device list and
12403  *	unhooks any devices that fail to initialise (normally hardware not
12404  *	present) and leaves us with a valid list of present and active devices.
12405  *
12406  */
12407 
12408 /* We allocate 256 pages for each CPU if PAGE_SHIFT is 12 */
12409 #define SYSTEM_PERCPU_PAGE_POOL_SIZE	((1 << 20) / PAGE_SIZE)
12410 
12411 static int net_page_pool_create(int cpuid)
12412 {
12413 #if IS_ENABLED(CONFIG_PAGE_POOL)
12414 	struct page_pool_params page_pool_params = {
12415 		.pool_size = SYSTEM_PERCPU_PAGE_POOL_SIZE,
12416 		.flags = PP_FLAG_SYSTEM_POOL,
12417 		.nid = cpu_to_mem(cpuid),
12418 	};
12419 	struct page_pool *pp_ptr;
12420 	int err;
12421 
12422 	pp_ptr = page_pool_create_percpu(&page_pool_params, cpuid);
12423 	if (IS_ERR(pp_ptr))
12424 		return -ENOMEM;
12425 
12426 	err = xdp_reg_page_pool(pp_ptr);
12427 	if (err) {
12428 		page_pool_destroy(pp_ptr);
12429 		return err;
12430 	}
12431 
12432 	per_cpu(system_page_pool, cpuid) = pp_ptr;
12433 #endif
12434 	return 0;
12435 }
12436 
12437 static int backlog_napi_should_run(unsigned int cpu)
12438 {
12439 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12440 	struct napi_struct *napi = &sd->backlog;
12441 
12442 	return test_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
12443 }
12444 
12445 static void run_backlog_napi(unsigned int cpu)
12446 {
12447 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12448 
12449 	napi_threaded_poll_loop(&sd->backlog);
12450 }
12451 
12452 static void backlog_napi_setup(unsigned int cpu)
12453 {
12454 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12455 	struct napi_struct *napi = &sd->backlog;
12456 
12457 	napi->thread = this_cpu_read(backlog_napi);
12458 	set_bit(NAPI_STATE_THREADED, &napi->state);
12459 }
12460 
12461 static struct smp_hotplug_thread backlog_threads = {
12462 	.store			= &backlog_napi,
12463 	.thread_should_run	= backlog_napi_should_run,
12464 	.thread_fn		= run_backlog_napi,
12465 	.thread_comm		= "backlog_napi/%u",
12466 	.setup			= backlog_napi_setup,
12467 };
12468 
12469 /*
12470  *       This is called single threaded during boot, so no need
12471  *       to take the rtnl semaphore.
12472  */
12473 static int __init net_dev_init(void)
12474 {
12475 	int i, rc = -ENOMEM;
12476 
12477 	BUG_ON(!dev_boot_phase);
12478 
12479 	net_dev_struct_check();
12480 
12481 	if (dev_proc_init())
12482 		goto out;
12483 
12484 	if (netdev_kobject_init())
12485 		goto out;
12486 
12487 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
12488 		INIT_LIST_HEAD(&ptype_base[i]);
12489 
12490 	if (register_pernet_subsys(&netdev_net_ops))
12491 		goto out;
12492 
12493 	/*
12494 	 *	Initialise the packet receive queues.
12495 	 */
12496 
12497 	flush_backlogs_fallback = flush_backlogs_alloc();
12498 	if (!flush_backlogs_fallback)
12499 		goto out;
12500 
12501 	for_each_possible_cpu(i) {
12502 		struct softnet_data *sd = &per_cpu(softnet_data, i);
12503 
12504 		skb_queue_head_init(&sd->input_pkt_queue);
12505 		skb_queue_head_init(&sd->process_queue);
12506 #ifdef CONFIG_XFRM_OFFLOAD
12507 		skb_queue_head_init(&sd->xfrm_backlog);
12508 #endif
12509 		INIT_LIST_HEAD(&sd->poll_list);
12510 		sd->output_queue_tailp = &sd->output_queue;
12511 #ifdef CONFIG_RPS
12512 		INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
12513 		sd->cpu = i;
12514 #endif
12515 		INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
12516 		spin_lock_init(&sd->defer_lock);
12517 
12518 		init_gro_hash(&sd->backlog);
12519 		sd->backlog.poll = process_backlog;
12520 		sd->backlog.weight = weight_p;
12521 		INIT_LIST_HEAD(&sd->backlog.poll_list);
12522 
12523 		if (net_page_pool_create(i))
12524 			goto out;
12525 	}
12526 	if (use_backlog_threads())
12527 		smpboot_register_percpu_thread(&backlog_threads);
12528 
12529 	dev_boot_phase = 0;
12530 
12531 	/* The loopback device is special if any other network devices
12532 	 * is present in a network namespace the loopback device must
12533 	 * be present. Since we now dynamically allocate and free the
12534 	 * loopback device ensure this invariant is maintained by
12535 	 * keeping the loopback device as the first device on the
12536 	 * list of network devices.  Ensuring the loopback devices
12537 	 * is the first device that appears and the last network device
12538 	 * that disappears.
12539 	 */
12540 	if (register_pernet_device(&loopback_net_ops))
12541 		goto out;
12542 
12543 	if (register_pernet_device(&default_device_ops))
12544 		goto out;
12545 
12546 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
12547 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
12548 
12549 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
12550 				       NULL, dev_cpu_dead);
12551 	WARN_ON(rc < 0);
12552 	rc = 0;
12553 
12554 	/* avoid static key IPIs to isolated CPUs */
12555 	if (housekeeping_enabled(HK_TYPE_MISC))
12556 		net_enable_timestamp();
12557 out:
12558 	if (rc < 0) {
12559 		for_each_possible_cpu(i) {
12560 			struct page_pool *pp_ptr;
12561 
12562 			pp_ptr = per_cpu(system_page_pool, i);
12563 			if (!pp_ptr)
12564 				continue;
12565 
12566 			xdp_unreg_page_pool(pp_ptr);
12567 			page_pool_destroy(pp_ptr);
12568 			per_cpu(system_page_pool, i) = NULL;
12569 		}
12570 	}
12571 
12572 	return rc;
12573 }
12574 
12575 subsys_initcall(net_dev_init);
12576