xref: /linux/net/core/dev.c (revision 66a0e2d579dbec5c676cfe446234ffebb267c564)
1 /*
2  * 	NET3	Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  * 		Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *              			to 2 if register_netdev gets called
25  *              			before net_dev_init & also removed a
26  *              			few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *		Alan Cox	: 	Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *		Alan Cox	: 	Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *              			indefinitely on dev->refcnt
71  * 		J Hadi Salim	:	- Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <linux/bpf.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <net/busy_poll.h>
101 #include <linux/rtnetlink.h>
102 #include <linux/stat.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/iw_handler.h>
115 #include <asm/current.h>
116 #include <linux/audit.h>
117 #include <linux/dmaengine.h>
118 #include <linux/err.h>
119 #include <linux/ctype.h>
120 #include <linux/if_arp.h>
121 #include <linux/if_vlan.h>
122 #include <linux/ip.h>
123 #include <net/ip.h>
124 #include <net/mpls.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
130 #include <trace/events/net.h>
131 #include <trace/events/skb.h>
132 #include <linux/pci.h>
133 #include <linux/inetdevice.h>
134 #include <linux/cpu_rmap.h>
135 #include <linux/static_key.h>
136 #include <linux/hashtable.h>
137 #include <linux/vmalloc.h>
138 #include <linux/if_macvlan.h>
139 #include <linux/errqueue.h>
140 #include <linux/hrtimer.h>
141 #include <linux/netfilter_ingress.h>
142 #include <linux/crash_dump.h>
143 
144 #include "net-sysfs.h"
145 
146 /* Instead of increasing this, you should create a hash table. */
147 #define MAX_GRO_SKBS 8
148 
149 /* This should be increased if a protocol with a bigger head is added. */
150 #define GRO_MAX_HEAD (MAX_HEADER + 128)
151 
152 static DEFINE_SPINLOCK(ptype_lock);
153 static DEFINE_SPINLOCK(offload_lock);
154 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
155 struct list_head ptype_all __read_mostly;	/* Taps */
156 static struct list_head offload_base __read_mostly;
157 
158 static int netif_rx_internal(struct sk_buff *skb);
159 static int call_netdevice_notifiers_info(unsigned long val,
160 					 struct net_device *dev,
161 					 struct netdev_notifier_info *info);
162 
163 /*
164  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
165  * semaphore.
166  *
167  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
168  *
169  * Writers must hold the rtnl semaphore while they loop through the
170  * dev_base_head list, and hold dev_base_lock for writing when they do the
171  * actual updates.  This allows pure readers to access the list even
172  * while a writer is preparing to update it.
173  *
174  * To put it another way, dev_base_lock is held for writing only to
175  * protect against pure readers; the rtnl semaphore provides the
176  * protection against other writers.
177  *
178  * See, for example usages, register_netdevice() and
179  * unregister_netdevice(), which must be called with the rtnl
180  * semaphore held.
181  */
182 DEFINE_RWLOCK(dev_base_lock);
183 EXPORT_SYMBOL(dev_base_lock);
184 
185 /* protects napi_hash addition/deletion and napi_gen_id */
186 static DEFINE_SPINLOCK(napi_hash_lock);
187 
188 static unsigned int napi_gen_id = NR_CPUS;
189 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
190 
191 static seqcount_t devnet_rename_seq;
192 
193 static inline void dev_base_seq_inc(struct net *net)
194 {
195 	while (++net->dev_base_seq == 0);
196 }
197 
198 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
199 {
200 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
201 
202 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
203 }
204 
205 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
206 {
207 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
208 }
209 
210 static inline void rps_lock(struct softnet_data *sd)
211 {
212 #ifdef CONFIG_RPS
213 	spin_lock(&sd->input_pkt_queue.lock);
214 #endif
215 }
216 
217 static inline void rps_unlock(struct softnet_data *sd)
218 {
219 #ifdef CONFIG_RPS
220 	spin_unlock(&sd->input_pkt_queue.lock);
221 #endif
222 }
223 
224 /* Device list insertion */
225 static void list_netdevice(struct net_device *dev)
226 {
227 	struct net *net = dev_net(dev);
228 
229 	ASSERT_RTNL();
230 
231 	write_lock_bh(&dev_base_lock);
232 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
233 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
234 	hlist_add_head_rcu(&dev->index_hlist,
235 			   dev_index_hash(net, dev->ifindex));
236 	write_unlock_bh(&dev_base_lock);
237 
238 	dev_base_seq_inc(net);
239 }
240 
241 /* Device list removal
242  * caller must respect a RCU grace period before freeing/reusing dev
243  */
244 static void unlist_netdevice(struct net_device *dev)
245 {
246 	ASSERT_RTNL();
247 
248 	/* Unlink dev from the device chain */
249 	write_lock_bh(&dev_base_lock);
250 	list_del_rcu(&dev->dev_list);
251 	hlist_del_rcu(&dev->name_hlist);
252 	hlist_del_rcu(&dev->index_hlist);
253 	write_unlock_bh(&dev_base_lock);
254 
255 	dev_base_seq_inc(dev_net(dev));
256 }
257 
258 /*
259  *	Our notifier list
260  */
261 
262 static RAW_NOTIFIER_HEAD(netdev_chain);
263 
264 /*
265  *	Device drivers call our routines to queue packets here. We empty the
266  *	queue in the local softnet handler.
267  */
268 
269 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
270 EXPORT_PER_CPU_SYMBOL(softnet_data);
271 
272 #ifdef CONFIG_LOCKDEP
273 /*
274  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
275  * according to dev->type
276  */
277 static const unsigned short netdev_lock_type[] =
278 	{ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
279 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
280 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
281 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
282 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
283 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
284 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
285 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
286 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
287 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
288 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
289 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
290 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
291 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
292 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
293 
294 static const char *const netdev_lock_name[] =
295 	{"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
296 	 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
297 	 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
298 	 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
299 	 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
300 	 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
301 	 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
302 	 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
303 	 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
304 	 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
305 	 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
306 	 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
307 	 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
308 	 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
309 	 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
310 
311 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
312 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
313 
314 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
315 {
316 	int i;
317 
318 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
319 		if (netdev_lock_type[i] == dev_type)
320 			return i;
321 	/* the last key is used by default */
322 	return ARRAY_SIZE(netdev_lock_type) - 1;
323 }
324 
325 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
326 						 unsigned short dev_type)
327 {
328 	int i;
329 
330 	i = netdev_lock_pos(dev_type);
331 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
332 				   netdev_lock_name[i]);
333 }
334 
335 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
336 {
337 	int i;
338 
339 	i = netdev_lock_pos(dev->type);
340 	lockdep_set_class_and_name(&dev->addr_list_lock,
341 				   &netdev_addr_lock_key[i],
342 				   netdev_lock_name[i]);
343 }
344 #else
345 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
346 						 unsigned short dev_type)
347 {
348 }
349 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
350 {
351 }
352 #endif
353 
354 /*******************************************************************************
355 
356 		Protocol management and registration routines
357 
358 *******************************************************************************/
359 
360 /*
361  *	Add a protocol ID to the list. Now that the input handler is
362  *	smarter we can dispense with all the messy stuff that used to be
363  *	here.
364  *
365  *	BEWARE!!! Protocol handlers, mangling input packets,
366  *	MUST BE last in hash buckets and checking protocol handlers
367  *	MUST start from promiscuous ptype_all chain in net_bh.
368  *	It is true now, do not change it.
369  *	Explanation follows: if protocol handler, mangling packet, will
370  *	be the first on list, it is not able to sense, that packet
371  *	is cloned and should be copied-on-write, so that it will
372  *	change it and subsequent readers will get broken packet.
373  *							--ANK (980803)
374  */
375 
376 static inline struct list_head *ptype_head(const struct packet_type *pt)
377 {
378 	if (pt->type == htons(ETH_P_ALL))
379 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
380 	else
381 		return pt->dev ? &pt->dev->ptype_specific :
382 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
383 }
384 
385 /**
386  *	dev_add_pack - add packet handler
387  *	@pt: packet type declaration
388  *
389  *	Add a protocol handler to the networking stack. The passed &packet_type
390  *	is linked into kernel lists and may not be freed until it has been
391  *	removed from the kernel lists.
392  *
393  *	This call does not sleep therefore it can not
394  *	guarantee all CPU's that are in middle of receiving packets
395  *	will see the new packet type (until the next received packet).
396  */
397 
398 void dev_add_pack(struct packet_type *pt)
399 {
400 	struct list_head *head = ptype_head(pt);
401 
402 	spin_lock(&ptype_lock);
403 	list_add_rcu(&pt->list, head);
404 	spin_unlock(&ptype_lock);
405 }
406 EXPORT_SYMBOL(dev_add_pack);
407 
408 /**
409  *	__dev_remove_pack	 - remove packet handler
410  *	@pt: packet type declaration
411  *
412  *	Remove a protocol handler that was previously added to the kernel
413  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
414  *	from the kernel lists and can be freed or reused once this function
415  *	returns.
416  *
417  *      The packet type might still be in use by receivers
418  *	and must not be freed until after all the CPU's have gone
419  *	through a quiescent state.
420  */
421 void __dev_remove_pack(struct packet_type *pt)
422 {
423 	struct list_head *head = ptype_head(pt);
424 	struct packet_type *pt1;
425 
426 	spin_lock(&ptype_lock);
427 
428 	list_for_each_entry(pt1, head, list) {
429 		if (pt == pt1) {
430 			list_del_rcu(&pt->list);
431 			goto out;
432 		}
433 	}
434 
435 	pr_warn("dev_remove_pack: %p not found\n", pt);
436 out:
437 	spin_unlock(&ptype_lock);
438 }
439 EXPORT_SYMBOL(__dev_remove_pack);
440 
441 /**
442  *	dev_remove_pack	 - remove packet handler
443  *	@pt: packet type declaration
444  *
445  *	Remove a protocol handler that was previously added to the kernel
446  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
447  *	from the kernel lists and can be freed or reused once this function
448  *	returns.
449  *
450  *	This call sleeps to guarantee that no CPU is looking at the packet
451  *	type after return.
452  */
453 void dev_remove_pack(struct packet_type *pt)
454 {
455 	__dev_remove_pack(pt);
456 
457 	synchronize_net();
458 }
459 EXPORT_SYMBOL(dev_remove_pack);
460 
461 
462 /**
463  *	dev_add_offload - register offload handlers
464  *	@po: protocol offload declaration
465  *
466  *	Add protocol offload handlers to the networking stack. The passed
467  *	&proto_offload is linked into kernel lists and may not be freed until
468  *	it has been removed from the kernel lists.
469  *
470  *	This call does not sleep therefore it can not
471  *	guarantee all CPU's that are in middle of receiving packets
472  *	will see the new offload handlers (until the next received packet).
473  */
474 void dev_add_offload(struct packet_offload *po)
475 {
476 	struct packet_offload *elem;
477 
478 	spin_lock(&offload_lock);
479 	list_for_each_entry(elem, &offload_base, list) {
480 		if (po->priority < elem->priority)
481 			break;
482 	}
483 	list_add_rcu(&po->list, elem->list.prev);
484 	spin_unlock(&offload_lock);
485 }
486 EXPORT_SYMBOL(dev_add_offload);
487 
488 /**
489  *	__dev_remove_offload	 - remove offload handler
490  *	@po: packet offload declaration
491  *
492  *	Remove a protocol offload handler that was previously added to the
493  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
494  *	is removed from the kernel lists and can be freed or reused once this
495  *	function returns.
496  *
497  *      The packet type might still be in use by receivers
498  *	and must not be freed until after all the CPU's have gone
499  *	through a quiescent state.
500  */
501 static void __dev_remove_offload(struct packet_offload *po)
502 {
503 	struct list_head *head = &offload_base;
504 	struct packet_offload *po1;
505 
506 	spin_lock(&offload_lock);
507 
508 	list_for_each_entry(po1, head, list) {
509 		if (po == po1) {
510 			list_del_rcu(&po->list);
511 			goto out;
512 		}
513 	}
514 
515 	pr_warn("dev_remove_offload: %p not found\n", po);
516 out:
517 	spin_unlock(&offload_lock);
518 }
519 
520 /**
521  *	dev_remove_offload	 - remove packet offload handler
522  *	@po: packet offload declaration
523  *
524  *	Remove a packet offload handler that was previously added to the kernel
525  *	offload handlers by dev_add_offload(). The passed &offload_type is
526  *	removed from the kernel lists and can be freed or reused once this
527  *	function returns.
528  *
529  *	This call sleeps to guarantee that no CPU is looking at the packet
530  *	type after return.
531  */
532 void dev_remove_offload(struct packet_offload *po)
533 {
534 	__dev_remove_offload(po);
535 
536 	synchronize_net();
537 }
538 EXPORT_SYMBOL(dev_remove_offload);
539 
540 /******************************************************************************
541 
542 		      Device Boot-time Settings Routines
543 
544 *******************************************************************************/
545 
546 /* Boot time configuration table */
547 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
548 
549 /**
550  *	netdev_boot_setup_add	- add new setup entry
551  *	@name: name of the device
552  *	@map: configured settings for the device
553  *
554  *	Adds new setup entry to the dev_boot_setup list.  The function
555  *	returns 0 on error and 1 on success.  This is a generic routine to
556  *	all netdevices.
557  */
558 static int netdev_boot_setup_add(char *name, struct ifmap *map)
559 {
560 	struct netdev_boot_setup *s;
561 	int i;
562 
563 	s = dev_boot_setup;
564 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
565 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
566 			memset(s[i].name, 0, sizeof(s[i].name));
567 			strlcpy(s[i].name, name, IFNAMSIZ);
568 			memcpy(&s[i].map, map, sizeof(s[i].map));
569 			break;
570 		}
571 	}
572 
573 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
574 }
575 
576 /**
577  *	netdev_boot_setup_check	- check boot time settings
578  *	@dev: the netdevice
579  *
580  * 	Check boot time settings for the device.
581  *	The found settings are set for the device to be used
582  *	later in the device probing.
583  *	Returns 0 if no settings found, 1 if they are.
584  */
585 int netdev_boot_setup_check(struct net_device *dev)
586 {
587 	struct netdev_boot_setup *s = dev_boot_setup;
588 	int i;
589 
590 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
591 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
592 		    !strcmp(dev->name, s[i].name)) {
593 			dev->irq 	= s[i].map.irq;
594 			dev->base_addr 	= s[i].map.base_addr;
595 			dev->mem_start 	= s[i].map.mem_start;
596 			dev->mem_end 	= s[i].map.mem_end;
597 			return 1;
598 		}
599 	}
600 	return 0;
601 }
602 EXPORT_SYMBOL(netdev_boot_setup_check);
603 
604 
605 /**
606  *	netdev_boot_base	- get address from boot time settings
607  *	@prefix: prefix for network device
608  *	@unit: id for network device
609  *
610  * 	Check boot time settings for the base address of device.
611  *	The found settings are set for the device to be used
612  *	later in the device probing.
613  *	Returns 0 if no settings found.
614  */
615 unsigned long netdev_boot_base(const char *prefix, int unit)
616 {
617 	const struct netdev_boot_setup *s = dev_boot_setup;
618 	char name[IFNAMSIZ];
619 	int i;
620 
621 	sprintf(name, "%s%d", prefix, unit);
622 
623 	/*
624 	 * If device already registered then return base of 1
625 	 * to indicate not to probe for this interface
626 	 */
627 	if (__dev_get_by_name(&init_net, name))
628 		return 1;
629 
630 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
631 		if (!strcmp(name, s[i].name))
632 			return s[i].map.base_addr;
633 	return 0;
634 }
635 
636 /*
637  * Saves at boot time configured settings for any netdevice.
638  */
639 int __init netdev_boot_setup(char *str)
640 {
641 	int ints[5];
642 	struct ifmap map;
643 
644 	str = get_options(str, ARRAY_SIZE(ints), ints);
645 	if (!str || !*str)
646 		return 0;
647 
648 	/* Save settings */
649 	memset(&map, 0, sizeof(map));
650 	if (ints[0] > 0)
651 		map.irq = ints[1];
652 	if (ints[0] > 1)
653 		map.base_addr = ints[2];
654 	if (ints[0] > 2)
655 		map.mem_start = ints[3];
656 	if (ints[0] > 3)
657 		map.mem_end = ints[4];
658 
659 	/* Add new entry to the list */
660 	return netdev_boot_setup_add(str, &map);
661 }
662 
663 __setup("netdev=", netdev_boot_setup);
664 
665 /*******************************************************************************
666 
667 			    Device Interface Subroutines
668 
669 *******************************************************************************/
670 
671 /**
672  *	dev_get_iflink	- get 'iflink' value of a interface
673  *	@dev: targeted interface
674  *
675  *	Indicates the ifindex the interface is linked to.
676  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
677  */
678 
679 int dev_get_iflink(const struct net_device *dev)
680 {
681 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
682 		return dev->netdev_ops->ndo_get_iflink(dev);
683 
684 	return dev->ifindex;
685 }
686 EXPORT_SYMBOL(dev_get_iflink);
687 
688 /**
689  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
690  *	@dev: targeted interface
691  *	@skb: The packet.
692  *
693  *	For better visibility of tunnel traffic OVS needs to retrieve
694  *	egress tunnel information for a packet. Following API allows
695  *	user to get this info.
696  */
697 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
698 {
699 	struct ip_tunnel_info *info;
700 
701 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
702 		return -EINVAL;
703 
704 	info = skb_tunnel_info_unclone(skb);
705 	if (!info)
706 		return -ENOMEM;
707 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
708 		return -EINVAL;
709 
710 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
711 }
712 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
713 
714 /**
715  *	__dev_get_by_name	- find a device by its name
716  *	@net: the applicable net namespace
717  *	@name: name to find
718  *
719  *	Find an interface by name. Must be called under RTNL semaphore
720  *	or @dev_base_lock. If the name is found a pointer to the device
721  *	is returned. If the name is not found then %NULL is returned. The
722  *	reference counters are not incremented so the caller must be
723  *	careful with locks.
724  */
725 
726 struct net_device *__dev_get_by_name(struct net *net, const char *name)
727 {
728 	struct net_device *dev;
729 	struct hlist_head *head = dev_name_hash(net, name);
730 
731 	hlist_for_each_entry(dev, head, name_hlist)
732 		if (!strncmp(dev->name, name, IFNAMSIZ))
733 			return dev;
734 
735 	return NULL;
736 }
737 EXPORT_SYMBOL(__dev_get_by_name);
738 
739 /**
740  *	dev_get_by_name_rcu	- find a device by its name
741  *	@net: the applicable net namespace
742  *	@name: name to find
743  *
744  *	Find an interface by name.
745  *	If the name is found a pointer to the device is returned.
746  * 	If the name is not found then %NULL is returned.
747  *	The reference counters are not incremented so the caller must be
748  *	careful with locks. The caller must hold RCU lock.
749  */
750 
751 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
752 {
753 	struct net_device *dev;
754 	struct hlist_head *head = dev_name_hash(net, name);
755 
756 	hlist_for_each_entry_rcu(dev, head, name_hlist)
757 		if (!strncmp(dev->name, name, IFNAMSIZ))
758 			return dev;
759 
760 	return NULL;
761 }
762 EXPORT_SYMBOL(dev_get_by_name_rcu);
763 
764 /**
765  *	dev_get_by_name		- find a device by its name
766  *	@net: the applicable net namespace
767  *	@name: name to find
768  *
769  *	Find an interface by name. This can be called from any
770  *	context and does its own locking. The returned handle has
771  *	the usage count incremented and the caller must use dev_put() to
772  *	release it when it is no longer needed. %NULL is returned if no
773  *	matching device is found.
774  */
775 
776 struct net_device *dev_get_by_name(struct net *net, const char *name)
777 {
778 	struct net_device *dev;
779 
780 	rcu_read_lock();
781 	dev = dev_get_by_name_rcu(net, name);
782 	if (dev)
783 		dev_hold(dev);
784 	rcu_read_unlock();
785 	return dev;
786 }
787 EXPORT_SYMBOL(dev_get_by_name);
788 
789 /**
790  *	__dev_get_by_index - find a device by its ifindex
791  *	@net: the applicable net namespace
792  *	@ifindex: index of device
793  *
794  *	Search for an interface by index. Returns %NULL if the device
795  *	is not found or a pointer to the device. The device has not
796  *	had its reference counter increased so the caller must be careful
797  *	about locking. The caller must hold either the RTNL semaphore
798  *	or @dev_base_lock.
799  */
800 
801 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
802 {
803 	struct net_device *dev;
804 	struct hlist_head *head = dev_index_hash(net, ifindex);
805 
806 	hlist_for_each_entry(dev, head, index_hlist)
807 		if (dev->ifindex == ifindex)
808 			return dev;
809 
810 	return NULL;
811 }
812 EXPORT_SYMBOL(__dev_get_by_index);
813 
814 /**
815  *	dev_get_by_index_rcu - find a device by its ifindex
816  *	@net: the applicable net namespace
817  *	@ifindex: index of device
818  *
819  *	Search for an interface by index. Returns %NULL if the device
820  *	is not found or a pointer to the device. The device has not
821  *	had its reference counter increased so the caller must be careful
822  *	about locking. The caller must hold RCU lock.
823  */
824 
825 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
826 {
827 	struct net_device *dev;
828 	struct hlist_head *head = dev_index_hash(net, ifindex);
829 
830 	hlist_for_each_entry_rcu(dev, head, index_hlist)
831 		if (dev->ifindex == ifindex)
832 			return dev;
833 
834 	return NULL;
835 }
836 EXPORT_SYMBOL(dev_get_by_index_rcu);
837 
838 
839 /**
840  *	dev_get_by_index - find a device by its ifindex
841  *	@net: the applicable net namespace
842  *	@ifindex: index of device
843  *
844  *	Search for an interface by index. Returns NULL if the device
845  *	is not found or a pointer to the device. The device returned has
846  *	had a reference added and the pointer is safe until the user calls
847  *	dev_put to indicate they have finished with it.
848  */
849 
850 struct net_device *dev_get_by_index(struct net *net, int ifindex)
851 {
852 	struct net_device *dev;
853 
854 	rcu_read_lock();
855 	dev = dev_get_by_index_rcu(net, ifindex);
856 	if (dev)
857 		dev_hold(dev);
858 	rcu_read_unlock();
859 	return dev;
860 }
861 EXPORT_SYMBOL(dev_get_by_index);
862 
863 /**
864  *	netdev_get_name - get a netdevice name, knowing its ifindex.
865  *	@net: network namespace
866  *	@name: a pointer to the buffer where the name will be stored.
867  *	@ifindex: the ifindex of the interface to get the name from.
868  *
869  *	The use of raw_seqcount_begin() and cond_resched() before
870  *	retrying is required as we want to give the writers a chance
871  *	to complete when CONFIG_PREEMPT is not set.
872  */
873 int netdev_get_name(struct net *net, char *name, int ifindex)
874 {
875 	struct net_device *dev;
876 	unsigned int seq;
877 
878 retry:
879 	seq = raw_seqcount_begin(&devnet_rename_seq);
880 	rcu_read_lock();
881 	dev = dev_get_by_index_rcu(net, ifindex);
882 	if (!dev) {
883 		rcu_read_unlock();
884 		return -ENODEV;
885 	}
886 
887 	strcpy(name, dev->name);
888 	rcu_read_unlock();
889 	if (read_seqcount_retry(&devnet_rename_seq, seq)) {
890 		cond_resched();
891 		goto retry;
892 	}
893 
894 	return 0;
895 }
896 
897 /**
898  *	dev_getbyhwaddr_rcu - find a device by its hardware address
899  *	@net: the applicable net namespace
900  *	@type: media type of device
901  *	@ha: hardware address
902  *
903  *	Search for an interface by MAC address. Returns NULL if the device
904  *	is not found or a pointer to the device.
905  *	The caller must hold RCU or RTNL.
906  *	The returned device has not had its ref count increased
907  *	and the caller must therefore be careful about locking
908  *
909  */
910 
911 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
912 				       const char *ha)
913 {
914 	struct net_device *dev;
915 
916 	for_each_netdev_rcu(net, dev)
917 		if (dev->type == type &&
918 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
919 			return dev;
920 
921 	return NULL;
922 }
923 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
924 
925 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
926 {
927 	struct net_device *dev;
928 
929 	ASSERT_RTNL();
930 	for_each_netdev(net, dev)
931 		if (dev->type == type)
932 			return dev;
933 
934 	return NULL;
935 }
936 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
937 
938 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
939 {
940 	struct net_device *dev, *ret = NULL;
941 
942 	rcu_read_lock();
943 	for_each_netdev_rcu(net, dev)
944 		if (dev->type == type) {
945 			dev_hold(dev);
946 			ret = dev;
947 			break;
948 		}
949 	rcu_read_unlock();
950 	return ret;
951 }
952 EXPORT_SYMBOL(dev_getfirstbyhwtype);
953 
954 /**
955  *	__dev_get_by_flags - find any device with given flags
956  *	@net: the applicable net namespace
957  *	@if_flags: IFF_* values
958  *	@mask: bitmask of bits in if_flags to check
959  *
960  *	Search for any interface with the given flags. Returns NULL if a device
961  *	is not found or a pointer to the device. Must be called inside
962  *	rtnl_lock(), and result refcount is unchanged.
963  */
964 
965 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
966 				      unsigned short mask)
967 {
968 	struct net_device *dev, *ret;
969 
970 	ASSERT_RTNL();
971 
972 	ret = NULL;
973 	for_each_netdev(net, dev) {
974 		if (((dev->flags ^ if_flags) & mask) == 0) {
975 			ret = dev;
976 			break;
977 		}
978 	}
979 	return ret;
980 }
981 EXPORT_SYMBOL(__dev_get_by_flags);
982 
983 /**
984  *	dev_valid_name - check if name is okay for network device
985  *	@name: name string
986  *
987  *	Network device names need to be valid file names to
988  *	to allow sysfs to work.  We also disallow any kind of
989  *	whitespace.
990  */
991 bool dev_valid_name(const char *name)
992 {
993 	if (*name == '\0')
994 		return false;
995 	if (strlen(name) >= IFNAMSIZ)
996 		return false;
997 	if (!strcmp(name, ".") || !strcmp(name, ".."))
998 		return false;
999 
1000 	while (*name) {
1001 		if (*name == '/' || *name == ':' || isspace(*name))
1002 			return false;
1003 		name++;
1004 	}
1005 	return true;
1006 }
1007 EXPORT_SYMBOL(dev_valid_name);
1008 
1009 /**
1010  *	__dev_alloc_name - allocate a name for a device
1011  *	@net: network namespace to allocate the device name in
1012  *	@name: name format string
1013  *	@buf:  scratch buffer and result name string
1014  *
1015  *	Passed a format string - eg "lt%d" it will try and find a suitable
1016  *	id. It scans list of devices to build up a free map, then chooses
1017  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1018  *	while allocating the name and adding the device in order to avoid
1019  *	duplicates.
1020  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1021  *	Returns the number of the unit assigned or a negative errno code.
1022  */
1023 
1024 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1025 {
1026 	int i = 0;
1027 	const char *p;
1028 	const int max_netdevices = 8*PAGE_SIZE;
1029 	unsigned long *inuse;
1030 	struct net_device *d;
1031 
1032 	p = strnchr(name, IFNAMSIZ-1, '%');
1033 	if (p) {
1034 		/*
1035 		 * Verify the string as this thing may have come from
1036 		 * the user.  There must be either one "%d" and no other "%"
1037 		 * characters.
1038 		 */
1039 		if (p[1] != 'd' || strchr(p + 2, '%'))
1040 			return -EINVAL;
1041 
1042 		/* Use one page as a bit array of possible slots */
1043 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1044 		if (!inuse)
1045 			return -ENOMEM;
1046 
1047 		for_each_netdev(net, d) {
1048 			if (!sscanf(d->name, name, &i))
1049 				continue;
1050 			if (i < 0 || i >= max_netdevices)
1051 				continue;
1052 
1053 			/*  avoid cases where sscanf is not exact inverse of printf */
1054 			snprintf(buf, IFNAMSIZ, name, i);
1055 			if (!strncmp(buf, d->name, IFNAMSIZ))
1056 				set_bit(i, inuse);
1057 		}
1058 
1059 		i = find_first_zero_bit(inuse, max_netdevices);
1060 		free_page((unsigned long) inuse);
1061 	}
1062 
1063 	if (buf != name)
1064 		snprintf(buf, IFNAMSIZ, name, i);
1065 	if (!__dev_get_by_name(net, buf))
1066 		return i;
1067 
1068 	/* It is possible to run out of possible slots
1069 	 * when the name is long and there isn't enough space left
1070 	 * for the digits, or if all bits are used.
1071 	 */
1072 	return -ENFILE;
1073 }
1074 
1075 /**
1076  *	dev_alloc_name - allocate a name for a device
1077  *	@dev: device
1078  *	@name: name format string
1079  *
1080  *	Passed a format string - eg "lt%d" it will try and find a suitable
1081  *	id. It scans list of devices to build up a free map, then chooses
1082  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1083  *	while allocating the name and adding the device in order to avoid
1084  *	duplicates.
1085  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1086  *	Returns the number of the unit assigned or a negative errno code.
1087  */
1088 
1089 int dev_alloc_name(struct net_device *dev, const char *name)
1090 {
1091 	char buf[IFNAMSIZ];
1092 	struct net *net;
1093 	int ret;
1094 
1095 	BUG_ON(!dev_net(dev));
1096 	net = dev_net(dev);
1097 	ret = __dev_alloc_name(net, name, buf);
1098 	if (ret >= 0)
1099 		strlcpy(dev->name, buf, IFNAMSIZ);
1100 	return ret;
1101 }
1102 EXPORT_SYMBOL(dev_alloc_name);
1103 
1104 static int dev_alloc_name_ns(struct net *net,
1105 			     struct net_device *dev,
1106 			     const char *name)
1107 {
1108 	char buf[IFNAMSIZ];
1109 	int ret;
1110 
1111 	ret = __dev_alloc_name(net, name, buf);
1112 	if (ret >= 0)
1113 		strlcpy(dev->name, buf, IFNAMSIZ);
1114 	return ret;
1115 }
1116 
1117 static int dev_get_valid_name(struct net *net,
1118 			      struct net_device *dev,
1119 			      const char *name)
1120 {
1121 	BUG_ON(!net);
1122 
1123 	if (!dev_valid_name(name))
1124 		return -EINVAL;
1125 
1126 	if (strchr(name, '%'))
1127 		return dev_alloc_name_ns(net, dev, name);
1128 	else if (__dev_get_by_name(net, name))
1129 		return -EEXIST;
1130 	else if (dev->name != name)
1131 		strlcpy(dev->name, name, IFNAMSIZ);
1132 
1133 	return 0;
1134 }
1135 
1136 /**
1137  *	dev_change_name - change name of a device
1138  *	@dev: device
1139  *	@newname: name (or format string) must be at least IFNAMSIZ
1140  *
1141  *	Change name of a device, can pass format strings "eth%d".
1142  *	for wildcarding.
1143  */
1144 int dev_change_name(struct net_device *dev, const char *newname)
1145 {
1146 	unsigned char old_assign_type;
1147 	char oldname[IFNAMSIZ];
1148 	int err = 0;
1149 	int ret;
1150 	struct net *net;
1151 
1152 	ASSERT_RTNL();
1153 	BUG_ON(!dev_net(dev));
1154 
1155 	net = dev_net(dev);
1156 	if (dev->flags & IFF_UP)
1157 		return -EBUSY;
1158 
1159 	write_seqcount_begin(&devnet_rename_seq);
1160 
1161 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1162 		write_seqcount_end(&devnet_rename_seq);
1163 		return 0;
1164 	}
1165 
1166 	memcpy(oldname, dev->name, IFNAMSIZ);
1167 
1168 	err = dev_get_valid_name(net, dev, newname);
1169 	if (err < 0) {
1170 		write_seqcount_end(&devnet_rename_seq);
1171 		return err;
1172 	}
1173 
1174 	if (oldname[0] && !strchr(oldname, '%'))
1175 		netdev_info(dev, "renamed from %s\n", oldname);
1176 
1177 	old_assign_type = dev->name_assign_type;
1178 	dev->name_assign_type = NET_NAME_RENAMED;
1179 
1180 rollback:
1181 	ret = device_rename(&dev->dev, dev->name);
1182 	if (ret) {
1183 		memcpy(dev->name, oldname, IFNAMSIZ);
1184 		dev->name_assign_type = old_assign_type;
1185 		write_seqcount_end(&devnet_rename_seq);
1186 		return ret;
1187 	}
1188 
1189 	write_seqcount_end(&devnet_rename_seq);
1190 
1191 	netdev_adjacent_rename_links(dev, oldname);
1192 
1193 	write_lock_bh(&dev_base_lock);
1194 	hlist_del_rcu(&dev->name_hlist);
1195 	write_unlock_bh(&dev_base_lock);
1196 
1197 	synchronize_rcu();
1198 
1199 	write_lock_bh(&dev_base_lock);
1200 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1201 	write_unlock_bh(&dev_base_lock);
1202 
1203 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1204 	ret = notifier_to_errno(ret);
1205 
1206 	if (ret) {
1207 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1208 		if (err >= 0) {
1209 			err = ret;
1210 			write_seqcount_begin(&devnet_rename_seq);
1211 			memcpy(dev->name, oldname, IFNAMSIZ);
1212 			memcpy(oldname, newname, IFNAMSIZ);
1213 			dev->name_assign_type = old_assign_type;
1214 			old_assign_type = NET_NAME_RENAMED;
1215 			goto rollback;
1216 		} else {
1217 			pr_err("%s: name change rollback failed: %d\n",
1218 			       dev->name, ret);
1219 		}
1220 	}
1221 
1222 	return err;
1223 }
1224 
1225 /**
1226  *	dev_set_alias - change ifalias of a device
1227  *	@dev: device
1228  *	@alias: name up to IFALIASZ
1229  *	@len: limit of bytes to copy from info
1230  *
1231  *	Set ifalias for a device,
1232  */
1233 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1234 {
1235 	char *new_ifalias;
1236 
1237 	ASSERT_RTNL();
1238 
1239 	if (len >= IFALIASZ)
1240 		return -EINVAL;
1241 
1242 	if (!len) {
1243 		kfree(dev->ifalias);
1244 		dev->ifalias = NULL;
1245 		return 0;
1246 	}
1247 
1248 	new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1249 	if (!new_ifalias)
1250 		return -ENOMEM;
1251 	dev->ifalias = new_ifalias;
1252 
1253 	strlcpy(dev->ifalias, alias, len+1);
1254 	return len;
1255 }
1256 
1257 
1258 /**
1259  *	netdev_features_change - device changes features
1260  *	@dev: device to cause notification
1261  *
1262  *	Called to indicate a device has changed features.
1263  */
1264 void netdev_features_change(struct net_device *dev)
1265 {
1266 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1267 }
1268 EXPORT_SYMBOL(netdev_features_change);
1269 
1270 /**
1271  *	netdev_state_change - device changes state
1272  *	@dev: device to cause notification
1273  *
1274  *	Called to indicate a device has changed state. This function calls
1275  *	the notifier chains for netdev_chain and sends a NEWLINK message
1276  *	to the routing socket.
1277  */
1278 void netdev_state_change(struct net_device *dev)
1279 {
1280 	if (dev->flags & IFF_UP) {
1281 		struct netdev_notifier_change_info change_info;
1282 
1283 		change_info.flags_changed = 0;
1284 		call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1285 					      &change_info.info);
1286 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1287 	}
1288 }
1289 EXPORT_SYMBOL(netdev_state_change);
1290 
1291 /**
1292  * 	netdev_notify_peers - notify network peers about existence of @dev
1293  * 	@dev: network device
1294  *
1295  * Generate traffic such that interested network peers are aware of
1296  * @dev, such as by generating a gratuitous ARP. This may be used when
1297  * a device wants to inform the rest of the network about some sort of
1298  * reconfiguration such as a failover event or virtual machine
1299  * migration.
1300  */
1301 void netdev_notify_peers(struct net_device *dev)
1302 {
1303 	rtnl_lock();
1304 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1305 	rtnl_unlock();
1306 }
1307 EXPORT_SYMBOL(netdev_notify_peers);
1308 
1309 static int __dev_open(struct net_device *dev)
1310 {
1311 	const struct net_device_ops *ops = dev->netdev_ops;
1312 	int ret;
1313 
1314 	ASSERT_RTNL();
1315 
1316 	if (!netif_device_present(dev))
1317 		return -ENODEV;
1318 
1319 	/* Block netpoll from trying to do any rx path servicing.
1320 	 * If we don't do this there is a chance ndo_poll_controller
1321 	 * or ndo_poll may be running while we open the device
1322 	 */
1323 	netpoll_poll_disable(dev);
1324 
1325 	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1326 	ret = notifier_to_errno(ret);
1327 	if (ret)
1328 		return ret;
1329 
1330 	set_bit(__LINK_STATE_START, &dev->state);
1331 
1332 	if (ops->ndo_validate_addr)
1333 		ret = ops->ndo_validate_addr(dev);
1334 
1335 	if (!ret && ops->ndo_open)
1336 		ret = ops->ndo_open(dev);
1337 
1338 	netpoll_poll_enable(dev);
1339 
1340 	if (ret)
1341 		clear_bit(__LINK_STATE_START, &dev->state);
1342 	else {
1343 		dev->flags |= IFF_UP;
1344 		dev_set_rx_mode(dev);
1345 		dev_activate(dev);
1346 		add_device_randomness(dev->dev_addr, dev->addr_len);
1347 	}
1348 
1349 	return ret;
1350 }
1351 
1352 /**
1353  *	dev_open	- prepare an interface for use.
1354  *	@dev:	device to open
1355  *
1356  *	Takes a device from down to up state. The device's private open
1357  *	function is invoked and then the multicast lists are loaded. Finally
1358  *	the device is moved into the up state and a %NETDEV_UP message is
1359  *	sent to the netdev notifier chain.
1360  *
1361  *	Calling this function on an active interface is a nop. On a failure
1362  *	a negative errno code is returned.
1363  */
1364 int dev_open(struct net_device *dev)
1365 {
1366 	int ret;
1367 
1368 	if (dev->flags & IFF_UP)
1369 		return 0;
1370 
1371 	ret = __dev_open(dev);
1372 	if (ret < 0)
1373 		return ret;
1374 
1375 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1376 	call_netdevice_notifiers(NETDEV_UP, dev);
1377 
1378 	return ret;
1379 }
1380 EXPORT_SYMBOL(dev_open);
1381 
1382 static int __dev_close_many(struct list_head *head)
1383 {
1384 	struct net_device *dev;
1385 
1386 	ASSERT_RTNL();
1387 	might_sleep();
1388 
1389 	list_for_each_entry(dev, head, close_list) {
1390 		/* Temporarily disable netpoll until the interface is down */
1391 		netpoll_poll_disable(dev);
1392 
1393 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1394 
1395 		clear_bit(__LINK_STATE_START, &dev->state);
1396 
1397 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1398 		 * can be even on different cpu. So just clear netif_running().
1399 		 *
1400 		 * dev->stop() will invoke napi_disable() on all of it's
1401 		 * napi_struct instances on this device.
1402 		 */
1403 		smp_mb__after_atomic(); /* Commit netif_running(). */
1404 	}
1405 
1406 	dev_deactivate_many(head);
1407 
1408 	list_for_each_entry(dev, head, close_list) {
1409 		const struct net_device_ops *ops = dev->netdev_ops;
1410 
1411 		/*
1412 		 *	Call the device specific close. This cannot fail.
1413 		 *	Only if device is UP
1414 		 *
1415 		 *	We allow it to be called even after a DETACH hot-plug
1416 		 *	event.
1417 		 */
1418 		if (ops->ndo_stop)
1419 			ops->ndo_stop(dev);
1420 
1421 		dev->flags &= ~IFF_UP;
1422 		netpoll_poll_enable(dev);
1423 	}
1424 
1425 	return 0;
1426 }
1427 
1428 static int __dev_close(struct net_device *dev)
1429 {
1430 	int retval;
1431 	LIST_HEAD(single);
1432 
1433 	list_add(&dev->close_list, &single);
1434 	retval = __dev_close_many(&single);
1435 	list_del(&single);
1436 
1437 	return retval;
1438 }
1439 
1440 int dev_close_many(struct list_head *head, bool unlink)
1441 {
1442 	struct net_device *dev, *tmp;
1443 
1444 	/* Remove the devices that don't need to be closed */
1445 	list_for_each_entry_safe(dev, tmp, head, close_list)
1446 		if (!(dev->flags & IFF_UP))
1447 			list_del_init(&dev->close_list);
1448 
1449 	__dev_close_many(head);
1450 
1451 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1452 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1453 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1454 		if (unlink)
1455 			list_del_init(&dev->close_list);
1456 	}
1457 
1458 	return 0;
1459 }
1460 EXPORT_SYMBOL(dev_close_many);
1461 
1462 /**
1463  *	dev_close - shutdown an interface.
1464  *	@dev: device to shutdown
1465  *
1466  *	This function moves an active device into down state. A
1467  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1468  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1469  *	chain.
1470  */
1471 int dev_close(struct net_device *dev)
1472 {
1473 	if (dev->flags & IFF_UP) {
1474 		LIST_HEAD(single);
1475 
1476 		list_add(&dev->close_list, &single);
1477 		dev_close_many(&single, true);
1478 		list_del(&single);
1479 	}
1480 	return 0;
1481 }
1482 EXPORT_SYMBOL(dev_close);
1483 
1484 
1485 /**
1486  *	dev_disable_lro - disable Large Receive Offload on a device
1487  *	@dev: device
1488  *
1489  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1490  *	called under RTNL.  This is needed if received packets may be
1491  *	forwarded to another interface.
1492  */
1493 void dev_disable_lro(struct net_device *dev)
1494 {
1495 	struct net_device *lower_dev;
1496 	struct list_head *iter;
1497 
1498 	dev->wanted_features &= ~NETIF_F_LRO;
1499 	netdev_update_features(dev);
1500 
1501 	if (unlikely(dev->features & NETIF_F_LRO))
1502 		netdev_WARN(dev, "failed to disable LRO!\n");
1503 
1504 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1505 		dev_disable_lro(lower_dev);
1506 }
1507 EXPORT_SYMBOL(dev_disable_lro);
1508 
1509 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1510 				   struct net_device *dev)
1511 {
1512 	struct netdev_notifier_info info;
1513 
1514 	netdev_notifier_info_init(&info, dev);
1515 	return nb->notifier_call(nb, val, &info);
1516 }
1517 
1518 static int dev_boot_phase = 1;
1519 
1520 /**
1521  *	register_netdevice_notifier - register a network notifier block
1522  *	@nb: notifier
1523  *
1524  *	Register a notifier to be called when network device events occur.
1525  *	The notifier passed is linked into the kernel structures and must
1526  *	not be reused until it has been unregistered. A negative errno code
1527  *	is returned on a failure.
1528  *
1529  * 	When registered all registration and up events are replayed
1530  *	to the new notifier to allow device to have a race free
1531  *	view of the network device list.
1532  */
1533 
1534 int register_netdevice_notifier(struct notifier_block *nb)
1535 {
1536 	struct net_device *dev;
1537 	struct net_device *last;
1538 	struct net *net;
1539 	int err;
1540 
1541 	rtnl_lock();
1542 	err = raw_notifier_chain_register(&netdev_chain, nb);
1543 	if (err)
1544 		goto unlock;
1545 	if (dev_boot_phase)
1546 		goto unlock;
1547 	for_each_net(net) {
1548 		for_each_netdev(net, dev) {
1549 			err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1550 			err = notifier_to_errno(err);
1551 			if (err)
1552 				goto rollback;
1553 
1554 			if (!(dev->flags & IFF_UP))
1555 				continue;
1556 
1557 			call_netdevice_notifier(nb, NETDEV_UP, dev);
1558 		}
1559 	}
1560 
1561 unlock:
1562 	rtnl_unlock();
1563 	return err;
1564 
1565 rollback:
1566 	last = dev;
1567 	for_each_net(net) {
1568 		for_each_netdev(net, dev) {
1569 			if (dev == last)
1570 				goto outroll;
1571 
1572 			if (dev->flags & IFF_UP) {
1573 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1574 							dev);
1575 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1576 			}
1577 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1578 		}
1579 	}
1580 
1581 outroll:
1582 	raw_notifier_chain_unregister(&netdev_chain, nb);
1583 	goto unlock;
1584 }
1585 EXPORT_SYMBOL(register_netdevice_notifier);
1586 
1587 /**
1588  *	unregister_netdevice_notifier - unregister a network notifier block
1589  *	@nb: notifier
1590  *
1591  *	Unregister a notifier previously registered by
1592  *	register_netdevice_notifier(). The notifier is unlinked into the
1593  *	kernel structures and may then be reused. A negative errno code
1594  *	is returned on a failure.
1595  *
1596  * 	After unregistering unregister and down device events are synthesized
1597  *	for all devices on the device list to the removed notifier to remove
1598  *	the need for special case cleanup code.
1599  */
1600 
1601 int unregister_netdevice_notifier(struct notifier_block *nb)
1602 {
1603 	struct net_device *dev;
1604 	struct net *net;
1605 	int err;
1606 
1607 	rtnl_lock();
1608 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1609 	if (err)
1610 		goto unlock;
1611 
1612 	for_each_net(net) {
1613 		for_each_netdev(net, dev) {
1614 			if (dev->flags & IFF_UP) {
1615 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1616 							dev);
1617 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1618 			}
1619 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1620 		}
1621 	}
1622 unlock:
1623 	rtnl_unlock();
1624 	return err;
1625 }
1626 EXPORT_SYMBOL(unregister_netdevice_notifier);
1627 
1628 /**
1629  *	call_netdevice_notifiers_info - call all network notifier blocks
1630  *	@val: value passed unmodified to notifier function
1631  *	@dev: net_device pointer passed unmodified to notifier function
1632  *	@info: notifier information data
1633  *
1634  *	Call all network notifier blocks.  Parameters and return value
1635  *	are as for raw_notifier_call_chain().
1636  */
1637 
1638 static int call_netdevice_notifiers_info(unsigned long val,
1639 					 struct net_device *dev,
1640 					 struct netdev_notifier_info *info)
1641 {
1642 	ASSERT_RTNL();
1643 	netdev_notifier_info_init(info, dev);
1644 	return raw_notifier_call_chain(&netdev_chain, val, info);
1645 }
1646 
1647 /**
1648  *	call_netdevice_notifiers - call all network notifier blocks
1649  *      @val: value passed unmodified to notifier function
1650  *      @dev: net_device pointer passed unmodified to notifier function
1651  *
1652  *	Call all network notifier blocks.  Parameters and return value
1653  *	are as for raw_notifier_call_chain().
1654  */
1655 
1656 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1657 {
1658 	struct netdev_notifier_info info;
1659 
1660 	return call_netdevice_notifiers_info(val, dev, &info);
1661 }
1662 EXPORT_SYMBOL(call_netdevice_notifiers);
1663 
1664 #ifdef CONFIG_NET_INGRESS
1665 static struct static_key ingress_needed __read_mostly;
1666 
1667 void net_inc_ingress_queue(void)
1668 {
1669 	static_key_slow_inc(&ingress_needed);
1670 }
1671 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1672 
1673 void net_dec_ingress_queue(void)
1674 {
1675 	static_key_slow_dec(&ingress_needed);
1676 }
1677 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1678 #endif
1679 
1680 #ifdef CONFIG_NET_EGRESS
1681 static struct static_key egress_needed __read_mostly;
1682 
1683 void net_inc_egress_queue(void)
1684 {
1685 	static_key_slow_inc(&egress_needed);
1686 }
1687 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1688 
1689 void net_dec_egress_queue(void)
1690 {
1691 	static_key_slow_dec(&egress_needed);
1692 }
1693 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1694 #endif
1695 
1696 static struct static_key netstamp_needed __read_mostly;
1697 #ifdef HAVE_JUMP_LABEL
1698 static atomic_t netstamp_needed_deferred;
1699 static void netstamp_clear(struct work_struct *work)
1700 {
1701 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1702 
1703 	while (deferred--)
1704 		static_key_slow_dec(&netstamp_needed);
1705 }
1706 static DECLARE_WORK(netstamp_work, netstamp_clear);
1707 #endif
1708 
1709 void net_enable_timestamp(void)
1710 {
1711 	static_key_slow_inc(&netstamp_needed);
1712 }
1713 EXPORT_SYMBOL(net_enable_timestamp);
1714 
1715 void net_disable_timestamp(void)
1716 {
1717 #ifdef HAVE_JUMP_LABEL
1718 	/* net_disable_timestamp() can be called from non process context */
1719 	atomic_inc(&netstamp_needed_deferred);
1720 	schedule_work(&netstamp_work);
1721 #else
1722 	static_key_slow_dec(&netstamp_needed);
1723 #endif
1724 }
1725 EXPORT_SYMBOL(net_disable_timestamp);
1726 
1727 static inline void net_timestamp_set(struct sk_buff *skb)
1728 {
1729 	skb->tstamp = 0;
1730 	if (static_key_false(&netstamp_needed))
1731 		__net_timestamp(skb);
1732 }
1733 
1734 #define net_timestamp_check(COND, SKB)			\
1735 	if (static_key_false(&netstamp_needed)) {		\
1736 		if ((COND) && !(SKB)->tstamp)	\
1737 			__net_timestamp(SKB);		\
1738 	}						\
1739 
1740 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1741 {
1742 	unsigned int len;
1743 
1744 	if (!(dev->flags & IFF_UP))
1745 		return false;
1746 
1747 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1748 	if (skb->len <= len)
1749 		return true;
1750 
1751 	/* if TSO is enabled, we don't care about the length as the packet
1752 	 * could be forwarded without being segmented before
1753 	 */
1754 	if (skb_is_gso(skb))
1755 		return true;
1756 
1757 	return false;
1758 }
1759 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1760 
1761 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1762 {
1763 	int ret = ____dev_forward_skb(dev, skb);
1764 
1765 	if (likely(!ret)) {
1766 		skb->protocol = eth_type_trans(skb, dev);
1767 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1768 	}
1769 
1770 	return ret;
1771 }
1772 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1773 
1774 /**
1775  * dev_forward_skb - loopback an skb to another netif
1776  *
1777  * @dev: destination network device
1778  * @skb: buffer to forward
1779  *
1780  * return values:
1781  *	NET_RX_SUCCESS	(no congestion)
1782  *	NET_RX_DROP     (packet was dropped, but freed)
1783  *
1784  * dev_forward_skb can be used for injecting an skb from the
1785  * start_xmit function of one device into the receive queue
1786  * of another device.
1787  *
1788  * The receiving device may be in another namespace, so
1789  * we have to clear all information in the skb that could
1790  * impact namespace isolation.
1791  */
1792 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1793 {
1794 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1795 }
1796 EXPORT_SYMBOL_GPL(dev_forward_skb);
1797 
1798 static inline int deliver_skb(struct sk_buff *skb,
1799 			      struct packet_type *pt_prev,
1800 			      struct net_device *orig_dev)
1801 {
1802 	if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1803 		return -ENOMEM;
1804 	atomic_inc(&skb->users);
1805 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1806 }
1807 
1808 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1809 					  struct packet_type **pt,
1810 					  struct net_device *orig_dev,
1811 					  __be16 type,
1812 					  struct list_head *ptype_list)
1813 {
1814 	struct packet_type *ptype, *pt_prev = *pt;
1815 
1816 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1817 		if (ptype->type != type)
1818 			continue;
1819 		if (pt_prev)
1820 			deliver_skb(skb, pt_prev, orig_dev);
1821 		pt_prev = ptype;
1822 	}
1823 	*pt = pt_prev;
1824 }
1825 
1826 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1827 {
1828 	if (!ptype->af_packet_priv || !skb->sk)
1829 		return false;
1830 
1831 	if (ptype->id_match)
1832 		return ptype->id_match(ptype, skb->sk);
1833 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1834 		return true;
1835 
1836 	return false;
1837 }
1838 
1839 /*
1840  *	Support routine. Sends outgoing frames to any network
1841  *	taps currently in use.
1842  */
1843 
1844 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1845 {
1846 	struct packet_type *ptype;
1847 	struct sk_buff *skb2 = NULL;
1848 	struct packet_type *pt_prev = NULL;
1849 	struct list_head *ptype_list = &ptype_all;
1850 
1851 	rcu_read_lock();
1852 again:
1853 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1854 		/* Never send packets back to the socket
1855 		 * they originated from - MvS (miquels@drinkel.ow.org)
1856 		 */
1857 		if (skb_loop_sk(ptype, skb))
1858 			continue;
1859 
1860 		if (pt_prev) {
1861 			deliver_skb(skb2, pt_prev, skb->dev);
1862 			pt_prev = ptype;
1863 			continue;
1864 		}
1865 
1866 		/* need to clone skb, done only once */
1867 		skb2 = skb_clone(skb, GFP_ATOMIC);
1868 		if (!skb2)
1869 			goto out_unlock;
1870 
1871 		net_timestamp_set(skb2);
1872 
1873 		/* skb->nh should be correctly
1874 		 * set by sender, so that the second statement is
1875 		 * just protection against buggy protocols.
1876 		 */
1877 		skb_reset_mac_header(skb2);
1878 
1879 		if (skb_network_header(skb2) < skb2->data ||
1880 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1881 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1882 					     ntohs(skb2->protocol),
1883 					     dev->name);
1884 			skb_reset_network_header(skb2);
1885 		}
1886 
1887 		skb2->transport_header = skb2->network_header;
1888 		skb2->pkt_type = PACKET_OUTGOING;
1889 		pt_prev = ptype;
1890 	}
1891 
1892 	if (ptype_list == &ptype_all) {
1893 		ptype_list = &dev->ptype_all;
1894 		goto again;
1895 	}
1896 out_unlock:
1897 	if (pt_prev)
1898 		pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1899 	rcu_read_unlock();
1900 }
1901 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1902 
1903 /**
1904  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1905  * @dev: Network device
1906  * @txq: number of queues available
1907  *
1908  * If real_num_tx_queues is changed the tc mappings may no longer be
1909  * valid. To resolve this verify the tc mapping remains valid and if
1910  * not NULL the mapping. With no priorities mapping to this
1911  * offset/count pair it will no longer be used. In the worst case TC0
1912  * is invalid nothing can be done so disable priority mappings. If is
1913  * expected that drivers will fix this mapping if they can before
1914  * calling netif_set_real_num_tx_queues.
1915  */
1916 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1917 {
1918 	int i;
1919 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1920 
1921 	/* If TC0 is invalidated disable TC mapping */
1922 	if (tc->offset + tc->count > txq) {
1923 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1924 		dev->num_tc = 0;
1925 		return;
1926 	}
1927 
1928 	/* Invalidated prio to tc mappings set to TC0 */
1929 	for (i = 1; i < TC_BITMASK + 1; i++) {
1930 		int q = netdev_get_prio_tc_map(dev, i);
1931 
1932 		tc = &dev->tc_to_txq[q];
1933 		if (tc->offset + tc->count > txq) {
1934 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1935 				i, q);
1936 			netdev_set_prio_tc_map(dev, i, 0);
1937 		}
1938 	}
1939 }
1940 
1941 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
1942 {
1943 	if (dev->num_tc) {
1944 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1945 		int i;
1946 
1947 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
1948 			if ((txq - tc->offset) < tc->count)
1949 				return i;
1950 		}
1951 
1952 		return -1;
1953 	}
1954 
1955 	return 0;
1956 }
1957 
1958 #ifdef CONFIG_XPS
1959 static DEFINE_MUTEX(xps_map_mutex);
1960 #define xmap_dereference(P)		\
1961 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1962 
1963 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
1964 			     int tci, u16 index)
1965 {
1966 	struct xps_map *map = NULL;
1967 	int pos;
1968 
1969 	if (dev_maps)
1970 		map = xmap_dereference(dev_maps->cpu_map[tci]);
1971 	if (!map)
1972 		return false;
1973 
1974 	for (pos = map->len; pos--;) {
1975 		if (map->queues[pos] != index)
1976 			continue;
1977 
1978 		if (map->len > 1) {
1979 			map->queues[pos] = map->queues[--map->len];
1980 			break;
1981 		}
1982 
1983 		RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL);
1984 		kfree_rcu(map, rcu);
1985 		return false;
1986 	}
1987 
1988 	return true;
1989 }
1990 
1991 static bool remove_xps_queue_cpu(struct net_device *dev,
1992 				 struct xps_dev_maps *dev_maps,
1993 				 int cpu, u16 offset, u16 count)
1994 {
1995 	int num_tc = dev->num_tc ? : 1;
1996 	bool active = false;
1997 	int tci;
1998 
1999 	for (tci = cpu * num_tc; num_tc--; tci++) {
2000 		int i, j;
2001 
2002 		for (i = count, j = offset; i--; j++) {
2003 			if (!remove_xps_queue(dev_maps, cpu, j))
2004 				break;
2005 		}
2006 
2007 		active |= i < 0;
2008 	}
2009 
2010 	return active;
2011 }
2012 
2013 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2014 				   u16 count)
2015 {
2016 	struct xps_dev_maps *dev_maps;
2017 	int cpu, i;
2018 	bool active = false;
2019 
2020 	mutex_lock(&xps_map_mutex);
2021 	dev_maps = xmap_dereference(dev->xps_maps);
2022 
2023 	if (!dev_maps)
2024 		goto out_no_maps;
2025 
2026 	for_each_possible_cpu(cpu)
2027 		active |= remove_xps_queue_cpu(dev, dev_maps, cpu,
2028 					       offset, count);
2029 
2030 	if (!active) {
2031 		RCU_INIT_POINTER(dev->xps_maps, NULL);
2032 		kfree_rcu(dev_maps, rcu);
2033 	}
2034 
2035 	for (i = offset + (count - 1); count--; i--)
2036 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2037 					     NUMA_NO_NODE);
2038 
2039 out_no_maps:
2040 	mutex_unlock(&xps_map_mutex);
2041 }
2042 
2043 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2044 {
2045 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2046 }
2047 
2048 static struct xps_map *expand_xps_map(struct xps_map *map,
2049 				      int cpu, u16 index)
2050 {
2051 	struct xps_map *new_map;
2052 	int alloc_len = XPS_MIN_MAP_ALLOC;
2053 	int i, pos;
2054 
2055 	for (pos = 0; map && pos < map->len; pos++) {
2056 		if (map->queues[pos] != index)
2057 			continue;
2058 		return map;
2059 	}
2060 
2061 	/* Need to add queue to this CPU's existing map */
2062 	if (map) {
2063 		if (pos < map->alloc_len)
2064 			return map;
2065 
2066 		alloc_len = map->alloc_len * 2;
2067 	}
2068 
2069 	/* Need to allocate new map to store queue on this CPU's map */
2070 	new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2071 			       cpu_to_node(cpu));
2072 	if (!new_map)
2073 		return NULL;
2074 
2075 	for (i = 0; i < pos; i++)
2076 		new_map->queues[i] = map->queues[i];
2077 	new_map->alloc_len = alloc_len;
2078 	new_map->len = pos;
2079 
2080 	return new_map;
2081 }
2082 
2083 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2084 			u16 index)
2085 {
2086 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2087 	int i, cpu, tci, numa_node_id = -2;
2088 	int maps_sz, num_tc = 1, tc = 0;
2089 	struct xps_map *map, *new_map;
2090 	bool active = false;
2091 
2092 	if (dev->num_tc) {
2093 		num_tc = dev->num_tc;
2094 		tc = netdev_txq_to_tc(dev, index);
2095 		if (tc < 0)
2096 			return -EINVAL;
2097 	}
2098 
2099 	maps_sz = XPS_DEV_MAPS_SIZE(num_tc);
2100 	if (maps_sz < L1_CACHE_BYTES)
2101 		maps_sz = L1_CACHE_BYTES;
2102 
2103 	mutex_lock(&xps_map_mutex);
2104 
2105 	dev_maps = xmap_dereference(dev->xps_maps);
2106 
2107 	/* allocate memory for queue storage */
2108 	for_each_cpu_and(cpu, cpu_online_mask, mask) {
2109 		if (!new_dev_maps)
2110 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2111 		if (!new_dev_maps) {
2112 			mutex_unlock(&xps_map_mutex);
2113 			return -ENOMEM;
2114 		}
2115 
2116 		tci = cpu * num_tc + tc;
2117 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) :
2118 				 NULL;
2119 
2120 		map = expand_xps_map(map, cpu, index);
2121 		if (!map)
2122 			goto error;
2123 
2124 		RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2125 	}
2126 
2127 	if (!new_dev_maps)
2128 		goto out_no_new_maps;
2129 
2130 	for_each_possible_cpu(cpu) {
2131 		/* copy maps belonging to foreign traffic classes */
2132 		for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) {
2133 			/* fill in the new device map from the old device map */
2134 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2135 			RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2136 		}
2137 
2138 		/* We need to explicitly update tci as prevous loop
2139 		 * could break out early if dev_maps is NULL.
2140 		 */
2141 		tci = cpu * num_tc + tc;
2142 
2143 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2144 			/* add queue to CPU maps */
2145 			int pos = 0;
2146 
2147 			map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2148 			while ((pos < map->len) && (map->queues[pos] != index))
2149 				pos++;
2150 
2151 			if (pos == map->len)
2152 				map->queues[map->len++] = index;
2153 #ifdef CONFIG_NUMA
2154 			if (numa_node_id == -2)
2155 				numa_node_id = cpu_to_node(cpu);
2156 			else if (numa_node_id != cpu_to_node(cpu))
2157 				numa_node_id = -1;
2158 #endif
2159 		} else if (dev_maps) {
2160 			/* fill in the new device map from the old device map */
2161 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2162 			RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2163 		}
2164 
2165 		/* copy maps belonging to foreign traffic classes */
2166 		for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2167 			/* fill in the new device map from the old device map */
2168 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2169 			RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2170 		}
2171 	}
2172 
2173 	rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2174 
2175 	/* Cleanup old maps */
2176 	if (!dev_maps)
2177 		goto out_no_old_maps;
2178 
2179 	for_each_possible_cpu(cpu) {
2180 		for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2181 			new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2182 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2183 			if (map && map != new_map)
2184 				kfree_rcu(map, rcu);
2185 		}
2186 	}
2187 
2188 	kfree_rcu(dev_maps, rcu);
2189 
2190 out_no_old_maps:
2191 	dev_maps = new_dev_maps;
2192 	active = true;
2193 
2194 out_no_new_maps:
2195 	/* update Tx queue numa node */
2196 	netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2197 				     (numa_node_id >= 0) ? numa_node_id :
2198 				     NUMA_NO_NODE);
2199 
2200 	if (!dev_maps)
2201 		goto out_no_maps;
2202 
2203 	/* removes queue from unused CPUs */
2204 	for_each_possible_cpu(cpu) {
2205 		for (i = tc, tci = cpu * num_tc; i--; tci++)
2206 			active |= remove_xps_queue(dev_maps, tci, index);
2207 		if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu))
2208 			active |= remove_xps_queue(dev_maps, tci, index);
2209 		for (i = num_tc - tc, tci++; --i; tci++)
2210 			active |= remove_xps_queue(dev_maps, tci, index);
2211 	}
2212 
2213 	/* free map if not active */
2214 	if (!active) {
2215 		RCU_INIT_POINTER(dev->xps_maps, NULL);
2216 		kfree_rcu(dev_maps, rcu);
2217 	}
2218 
2219 out_no_maps:
2220 	mutex_unlock(&xps_map_mutex);
2221 
2222 	return 0;
2223 error:
2224 	/* remove any maps that we added */
2225 	for_each_possible_cpu(cpu) {
2226 		for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2227 			new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2228 			map = dev_maps ?
2229 			      xmap_dereference(dev_maps->cpu_map[tci]) :
2230 			      NULL;
2231 			if (new_map && new_map != map)
2232 				kfree(new_map);
2233 		}
2234 	}
2235 
2236 	mutex_unlock(&xps_map_mutex);
2237 
2238 	kfree(new_dev_maps);
2239 	return -ENOMEM;
2240 }
2241 EXPORT_SYMBOL(netif_set_xps_queue);
2242 
2243 #endif
2244 void netdev_reset_tc(struct net_device *dev)
2245 {
2246 #ifdef CONFIG_XPS
2247 	netif_reset_xps_queues_gt(dev, 0);
2248 #endif
2249 	dev->num_tc = 0;
2250 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2251 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2252 }
2253 EXPORT_SYMBOL(netdev_reset_tc);
2254 
2255 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2256 {
2257 	if (tc >= dev->num_tc)
2258 		return -EINVAL;
2259 
2260 #ifdef CONFIG_XPS
2261 	netif_reset_xps_queues(dev, offset, count);
2262 #endif
2263 	dev->tc_to_txq[tc].count = count;
2264 	dev->tc_to_txq[tc].offset = offset;
2265 	return 0;
2266 }
2267 EXPORT_SYMBOL(netdev_set_tc_queue);
2268 
2269 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2270 {
2271 	if (num_tc > TC_MAX_QUEUE)
2272 		return -EINVAL;
2273 
2274 #ifdef CONFIG_XPS
2275 	netif_reset_xps_queues_gt(dev, 0);
2276 #endif
2277 	dev->num_tc = num_tc;
2278 	return 0;
2279 }
2280 EXPORT_SYMBOL(netdev_set_num_tc);
2281 
2282 /*
2283  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2284  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2285  */
2286 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2287 {
2288 	int rc;
2289 
2290 	if (txq < 1 || txq > dev->num_tx_queues)
2291 		return -EINVAL;
2292 
2293 	if (dev->reg_state == NETREG_REGISTERED ||
2294 	    dev->reg_state == NETREG_UNREGISTERING) {
2295 		ASSERT_RTNL();
2296 
2297 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2298 						  txq);
2299 		if (rc)
2300 			return rc;
2301 
2302 		if (dev->num_tc)
2303 			netif_setup_tc(dev, txq);
2304 
2305 		if (txq < dev->real_num_tx_queues) {
2306 			qdisc_reset_all_tx_gt(dev, txq);
2307 #ifdef CONFIG_XPS
2308 			netif_reset_xps_queues_gt(dev, txq);
2309 #endif
2310 		}
2311 	}
2312 
2313 	dev->real_num_tx_queues = txq;
2314 	return 0;
2315 }
2316 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2317 
2318 #ifdef CONFIG_SYSFS
2319 /**
2320  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2321  *	@dev: Network device
2322  *	@rxq: Actual number of RX queues
2323  *
2324  *	This must be called either with the rtnl_lock held or before
2325  *	registration of the net device.  Returns 0 on success, or a
2326  *	negative error code.  If called before registration, it always
2327  *	succeeds.
2328  */
2329 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2330 {
2331 	int rc;
2332 
2333 	if (rxq < 1 || rxq > dev->num_rx_queues)
2334 		return -EINVAL;
2335 
2336 	if (dev->reg_state == NETREG_REGISTERED) {
2337 		ASSERT_RTNL();
2338 
2339 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2340 						  rxq);
2341 		if (rc)
2342 			return rc;
2343 	}
2344 
2345 	dev->real_num_rx_queues = rxq;
2346 	return 0;
2347 }
2348 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2349 #endif
2350 
2351 /**
2352  * netif_get_num_default_rss_queues - default number of RSS queues
2353  *
2354  * This routine should set an upper limit on the number of RSS queues
2355  * used by default by multiqueue devices.
2356  */
2357 int netif_get_num_default_rss_queues(void)
2358 {
2359 	return is_kdump_kernel() ?
2360 		1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2361 }
2362 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2363 
2364 static void __netif_reschedule(struct Qdisc *q)
2365 {
2366 	struct softnet_data *sd;
2367 	unsigned long flags;
2368 
2369 	local_irq_save(flags);
2370 	sd = this_cpu_ptr(&softnet_data);
2371 	q->next_sched = NULL;
2372 	*sd->output_queue_tailp = q;
2373 	sd->output_queue_tailp = &q->next_sched;
2374 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2375 	local_irq_restore(flags);
2376 }
2377 
2378 void __netif_schedule(struct Qdisc *q)
2379 {
2380 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2381 		__netif_reschedule(q);
2382 }
2383 EXPORT_SYMBOL(__netif_schedule);
2384 
2385 struct dev_kfree_skb_cb {
2386 	enum skb_free_reason reason;
2387 };
2388 
2389 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2390 {
2391 	return (struct dev_kfree_skb_cb *)skb->cb;
2392 }
2393 
2394 void netif_schedule_queue(struct netdev_queue *txq)
2395 {
2396 	rcu_read_lock();
2397 	if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2398 		struct Qdisc *q = rcu_dereference(txq->qdisc);
2399 
2400 		__netif_schedule(q);
2401 	}
2402 	rcu_read_unlock();
2403 }
2404 EXPORT_SYMBOL(netif_schedule_queue);
2405 
2406 /**
2407  *	netif_wake_subqueue - allow sending packets on subqueue
2408  *	@dev: network device
2409  *	@queue_index: sub queue index
2410  *
2411  * Resume individual transmit queue of a device with multiple transmit queues.
2412  */
2413 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2414 {
2415 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2416 
2417 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2418 		struct Qdisc *q;
2419 
2420 		rcu_read_lock();
2421 		q = rcu_dereference(txq->qdisc);
2422 		__netif_schedule(q);
2423 		rcu_read_unlock();
2424 	}
2425 }
2426 EXPORT_SYMBOL(netif_wake_subqueue);
2427 
2428 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2429 {
2430 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2431 		struct Qdisc *q;
2432 
2433 		rcu_read_lock();
2434 		q = rcu_dereference(dev_queue->qdisc);
2435 		__netif_schedule(q);
2436 		rcu_read_unlock();
2437 	}
2438 }
2439 EXPORT_SYMBOL(netif_tx_wake_queue);
2440 
2441 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2442 {
2443 	unsigned long flags;
2444 
2445 	if (likely(atomic_read(&skb->users) == 1)) {
2446 		smp_rmb();
2447 		atomic_set(&skb->users, 0);
2448 	} else if (likely(!atomic_dec_and_test(&skb->users))) {
2449 		return;
2450 	}
2451 	get_kfree_skb_cb(skb)->reason = reason;
2452 	local_irq_save(flags);
2453 	skb->next = __this_cpu_read(softnet_data.completion_queue);
2454 	__this_cpu_write(softnet_data.completion_queue, skb);
2455 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2456 	local_irq_restore(flags);
2457 }
2458 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2459 
2460 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2461 {
2462 	if (in_irq() || irqs_disabled())
2463 		__dev_kfree_skb_irq(skb, reason);
2464 	else
2465 		dev_kfree_skb(skb);
2466 }
2467 EXPORT_SYMBOL(__dev_kfree_skb_any);
2468 
2469 
2470 /**
2471  * netif_device_detach - mark device as removed
2472  * @dev: network device
2473  *
2474  * Mark device as removed from system and therefore no longer available.
2475  */
2476 void netif_device_detach(struct net_device *dev)
2477 {
2478 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2479 	    netif_running(dev)) {
2480 		netif_tx_stop_all_queues(dev);
2481 	}
2482 }
2483 EXPORT_SYMBOL(netif_device_detach);
2484 
2485 /**
2486  * netif_device_attach - mark device as attached
2487  * @dev: network device
2488  *
2489  * Mark device as attached from system and restart if needed.
2490  */
2491 void netif_device_attach(struct net_device *dev)
2492 {
2493 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2494 	    netif_running(dev)) {
2495 		netif_tx_wake_all_queues(dev);
2496 		__netdev_watchdog_up(dev);
2497 	}
2498 }
2499 EXPORT_SYMBOL(netif_device_attach);
2500 
2501 /*
2502  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2503  * to be used as a distribution range.
2504  */
2505 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2506 		  unsigned int num_tx_queues)
2507 {
2508 	u32 hash;
2509 	u16 qoffset = 0;
2510 	u16 qcount = num_tx_queues;
2511 
2512 	if (skb_rx_queue_recorded(skb)) {
2513 		hash = skb_get_rx_queue(skb);
2514 		while (unlikely(hash >= num_tx_queues))
2515 			hash -= num_tx_queues;
2516 		return hash;
2517 	}
2518 
2519 	if (dev->num_tc) {
2520 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2521 		qoffset = dev->tc_to_txq[tc].offset;
2522 		qcount = dev->tc_to_txq[tc].count;
2523 	}
2524 
2525 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2526 }
2527 EXPORT_SYMBOL(__skb_tx_hash);
2528 
2529 static void skb_warn_bad_offload(const struct sk_buff *skb)
2530 {
2531 	static const netdev_features_t null_features;
2532 	struct net_device *dev = skb->dev;
2533 	const char *name = "";
2534 
2535 	if (!net_ratelimit())
2536 		return;
2537 
2538 	if (dev) {
2539 		if (dev->dev.parent)
2540 			name = dev_driver_string(dev->dev.parent);
2541 		else
2542 			name = netdev_name(dev);
2543 	}
2544 	WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2545 	     "gso_type=%d ip_summed=%d\n",
2546 	     name, dev ? &dev->features : &null_features,
2547 	     skb->sk ? &skb->sk->sk_route_caps : &null_features,
2548 	     skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2549 	     skb_shinfo(skb)->gso_type, skb->ip_summed);
2550 }
2551 
2552 /*
2553  * Invalidate hardware checksum when packet is to be mangled, and
2554  * complete checksum manually on outgoing path.
2555  */
2556 int skb_checksum_help(struct sk_buff *skb)
2557 {
2558 	__wsum csum;
2559 	int ret = 0, offset;
2560 
2561 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2562 		goto out_set_summed;
2563 
2564 	if (unlikely(skb_shinfo(skb)->gso_size)) {
2565 		skb_warn_bad_offload(skb);
2566 		return -EINVAL;
2567 	}
2568 
2569 	/* Before computing a checksum, we should make sure no frag could
2570 	 * be modified by an external entity : checksum could be wrong.
2571 	 */
2572 	if (skb_has_shared_frag(skb)) {
2573 		ret = __skb_linearize(skb);
2574 		if (ret)
2575 			goto out;
2576 	}
2577 
2578 	offset = skb_checksum_start_offset(skb);
2579 	BUG_ON(offset >= skb_headlen(skb));
2580 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
2581 
2582 	offset += skb->csum_offset;
2583 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2584 
2585 	if (skb_cloned(skb) &&
2586 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2587 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2588 		if (ret)
2589 			goto out;
2590 	}
2591 
2592 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2593 out_set_summed:
2594 	skb->ip_summed = CHECKSUM_NONE;
2595 out:
2596 	return ret;
2597 }
2598 EXPORT_SYMBOL(skb_checksum_help);
2599 
2600 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2601 {
2602 	__be16 type = skb->protocol;
2603 
2604 	/* Tunnel gso handlers can set protocol to ethernet. */
2605 	if (type == htons(ETH_P_TEB)) {
2606 		struct ethhdr *eth;
2607 
2608 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2609 			return 0;
2610 
2611 		eth = (struct ethhdr *)skb_mac_header(skb);
2612 		type = eth->h_proto;
2613 	}
2614 
2615 	return __vlan_get_protocol(skb, type, depth);
2616 }
2617 
2618 /**
2619  *	skb_mac_gso_segment - mac layer segmentation handler.
2620  *	@skb: buffer to segment
2621  *	@features: features for the output path (see dev->features)
2622  */
2623 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2624 				    netdev_features_t features)
2625 {
2626 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2627 	struct packet_offload *ptype;
2628 	int vlan_depth = skb->mac_len;
2629 	__be16 type = skb_network_protocol(skb, &vlan_depth);
2630 
2631 	if (unlikely(!type))
2632 		return ERR_PTR(-EINVAL);
2633 
2634 	__skb_pull(skb, vlan_depth);
2635 
2636 	rcu_read_lock();
2637 	list_for_each_entry_rcu(ptype, &offload_base, list) {
2638 		if (ptype->type == type && ptype->callbacks.gso_segment) {
2639 			segs = ptype->callbacks.gso_segment(skb, features);
2640 			break;
2641 		}
2642 	}
2643 	rcu_read_unlock();
2644 
2645 	__skb_push(skb, skb->data - skb_mac_header(skb));
2646 
2647 	return segs;
2648 }
2649 EXPORT_SYMBOL(skb_mac_gso_segment);
2650 
2651 
2652 /* openvswitch calls this on rx path, so we need a different check.
2653  */
2654 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2655 {
2656 	if (tx_path)
2657 		return skb->ip_summed != CHECKSUM_PARTIAL;
2658 	else
2659 		return skb->ip_summed == CHECKSUM_NONE;
2660 }
2661 
2662 /**
2663  *	__skb_gso_segment - Perform segmentation on skb.
2664  *	@skb: buffer to segment
2665  *	@features: features for the output path (see dev->features)
2666  *	@tx_path: whether it is called in TX path
2667  *
2668  *	This function segments the given skb and returns a list of segments.
2669  *
2670  *	It may return NULL if the skb requires no segmentation.  This is
2671  *	only possible when GSO is used for verifying header integrity.
2672  *
2673  *	Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2674  */
2675 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2676 				  netdev_features_t features, bool tx_path)
2677 {
2678 	if (unlikely(skb_needs_check(skb, tx_path))) {
2679 		int err;
2680 
2681 		skb_warn_bad_offload(skb);
2682 
2683 		err = skb_cow_head(skb, 0);
2684 		if (err < 0)
2685 			return ERR_PTR(err);
2686 	}
2687 
2688 	/* Only report GSO partial support if it will enable us to
2689 	 * support segmentation on this frame without needing additional
2690 	 * work.
2691 	 */
2692 	if (features & NETIF_F_GSO_PARTIAL) {
2693 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2694 		struct net_device *dev = skb->dev;
2695 
2696 		partial_features |= dev->features & dev->gso_partial_features;
2697 		if (!skb_gso_ok(skb, features | partial_features))
2698 			features &= ~NETIF_F_GSO_PARTIAL;
2699 	}
2700 
2701 	BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2702 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2703 
2704 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2705 	SKB_GSO_CB(skb)->encap_level = 0;
2706 
2707 	skb_reset_mac_header(skb);
2708 	skb_reset_mac_len(skb);
2709 
2710 	return skb_mac_gso_segment(skb, features);
2711 }
2712 EXPORT_SYMBOL(__skb_gso_segment);
2713 
2714 /* Take action when hardware reception checksum errors are detected. */
2715 #ifdef CONFIG_BUG
2716 void netdev_rx_csum_fault(struct net_device *dev)
2717 {
2718 	if (net_ratelimit()) {
2719 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2720 		dump_stack();
2721 	}
2722 }
2723 EXPORT_SYMBOL(netdev_rx_csum_fault);
2724 #endif
2725 
2726 /* Actually, we should eliminate this check as soon as we know, that:
2727  * 1. IOMMU is present and allows to map all the memory.
2728  * 2. No high memory really exists on this machine.
2729  */
2730 
2731 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2732 {
2733 #ifdef CONFIG_HIGHMEM
2734 	int i;
2735 	if (!(dev->features & NETIF_F_HIGHDMA)) {
2736 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2737 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2738 			if (PageHighMem(skb_frag_page(frag)))
2739 				return 1;
2740 		}
2741 	}
2742 
2743 	if (PCI_DMA_BUS_IS_PHYS) {
2744 		struct device *pdev = dev->dev.parent;
2745 
2746 		if (!pdev)
2747 			return 0;
2748 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2749 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2750 			dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2751 			if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2752 				return 1;
2753 		}
2754 	}
2755 #endif
2756 	return 0;
2757 }
2758 
2759 /* If MPLS offload request, verify we are testing hardware MPLS features
2760  * instead of standard features for the netdev.
2761  */
2762 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2763 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2764 					   netdev_features_t features,
2765 					   __be16 type)
2766 {
2767 	if (eth_p_mpls(type))
2768 		features &= skb->dev->mpls_features;
2769 
2770 	return features;
2771 }
2772 #else
2773 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2774 					   netdev_features_t features,
2775 					   __be16 type)
2776 {
2777 	return features;
2778 }
2779 #endif
2780 
2781 static netdev_features_t harmonize_features(struct sk_buff *skb,
2782 	netdev_features_t features)
2783 {
2784 	int tmp;
2785 	__be16 type;
2786 
2787 	type = skb_network_protocol(skb, &tmp);
2788 	features = net_mpls_features(skb, features, type);
2789 
2790 	if (skb->ip_summed != CHECKSUM_NONE &&
2791 	    !can_checksum_protocol(features, type)) {
2792 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2793 	}
2794 	if (illegal_highdma(skb->dev, skb))
2795 		features &= ~NETIF_F_SG;
2796 
2797 	return features;
2798 }
2799 
2800 netdev_features_t passthru_features_check(struct sk_buff *skb,
2801 					  struct net_device *dev,
2802 					  netdev_features_t features)
2803 {
2804 	return features;
2805 }
2806 EXPORT_SYMBOL(passthru_features_check);
2807 
2808 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2809 					     struct net_device *dev,
2810 					     netdev_features_t features)
2811 {
2812 	return vlan_features_check(skb, features);
2813 }
2814 
2815 static netdev_features_t gso_features_check(const struct sk_buff *skb,
2816 					    struct net_device *dev,
2817 					    netdev_features_t features)
2818 {
2819 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
2820 
2821 	if (gso_segs > dev->gso_max_segs)
2822 		return features & ~NETIF_F_GSO_MASK;
2823 
2824 	/* Support for GSO partial features requires software
2825 	 * intervention before we can actually process the packets
2826 	 * so we need to strip support for any partial features now
2827 	 * and we can pull them back in after we have partially
2828 	 * segmented the frame.
2829 	 */
2830 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2831 		features &= ~dev->gso_partial_features;
2832 
2833 	/* Make sure to clear the IPv4 ID mangling feature if the
2834 	 * IPv4 header has the potential to be fragmented.
2835 	 */
2836 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2837 		struct iphdr *iph = skb->encapsulation ?
2838 				    inner_ip_hdr(skb) : ip_hdr(skb);
2839 
2840 		if (!(iph->frag_off & htons(IP_DF)))
2841 			features &= ~NETIF_F_TSO_MANGLEID;
2842 	}
2843 
2844 	return features;
2845 }
2846 
2847 netdev_features_t netif_skb_features(struct sk_buff *skb)
2848 {
2849 	struct net_device *dev = skb->dev;
2850 	netdev_features_t features = dev->features;
2851 
2852 	if (skb_is_gso(skb))
2853 		features = gso_features_check(skb, dev, features);
2854 
2855 	/* If encapsulation offload request, verify we are testing
2856 	 * hardware encapsulation features instead of standard
2857 	 * features for the netdev
2858 	 */
2859 	if (skb->encapsulation)
2860 		features &= dev->hw_enc_features;
2861 
2862 	if (skb_vlan_tagged(skb))
2863 		features = netdev_intersect_features(features,
2864 						     dev->vlan_features |
2865 						     NETIF_F_HW_VLAN_CTAG_TX |
2866 						     NETIF_F_HW_VLAN_STAG_TX);
2867 
2868 	if (dev->netdev_ops->ndo_features_check)
2869 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
2870 								features);
2871 	else
2872 		features &= dflt_features_check(skb, dev, features);
2873 
2874 	return harmonize_features(skb, features);
2875 }
2876 EXPORT_SYMBOL(netif_skb_features);
2877 
2878 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2879 		    struct netdev_queue *txq, bool more)
2880 {
2881 	unsigned int len;
2882 	int rc;
2883 
2884 	if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2885 		dev_queue_xmit_nit(skb, dev);
2886 
2887 	len = skb->len;
2888 	trace_net_dev_start_xmit(skb, dev);
2889 	rc = netdev_start_xmit(skb, dev, txq, more);
2890 	trace_net_dev_xmit(skb, rc, dev, len);
2891 
2892 	return rc;
2893 }
2894 
2895 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2896 				    struct netdev_queue *txq, int *ret)
2897 {
2898 	struct sk_buff *skb = first;
2899 	int rc = NETDEV_TX_OK;
2900 
2901 	while (skb) {
2902 		struct sk_buff *next = skb->next;
2903 
2904 		skb->next = NULL;
2905 		rc = xmit_one(skb, dev, txq, next != NULL);
2906 		if (unlikely(!dev_xmit_complete(rc))) {
2907 			skb->next = next;
2908 			goto out;
2909 		}
2910 
2911 		skb = next;
2912 		if (netif_xmit_stopped(txq) && skb) {
2913 			rc = NETDEV_TX_BUSY;
2914 			break;
2915 		}
2916 	}
2917 
2918 out:
2919 	*ret = rc;
2920 	return skb;
2921 }
2922 
2923 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2924 					  netdev_features_t features)
2925 {
2926 	if (skb_vlan_tag_present(skb) &&
2927 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
2928 		skb = __vlan_hwaccel_push_inside(skb);
2929 	return skb;
2930 }
2931 
2932 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2933 {
2934 	netdev_features_t features;
2935 
2936 	features = netif_skb_features(skb);
2937 	skb = validate_xmit_vlan(skb, features);
2938 	if (unlikely(!skb))
2939 		goto out_null;
2940 
2941 	if (netif_needs_gso(skb, features)) {
2942 		struct sk_buff *segs;
2943 
2944 		segs = skb_gso_segment(skb, features);
2945 		if (IS_ERR(segs)) {
2946 			goto out_kfree_skb;
2947 		} else if (segs) {
2948 			consume_skb(skb);
2949 			skb = segs;
2950 		}
2951 	} else {
2952 		if (skb_needs_linearize(skb, features) &&
2953 		    __skb_linearize(skb))
2954 			goto out_kfree_skb;
2955 
2956 		/* If packet is not checksummed and device does not
2957 		 * support checksumming for this protocol, complete
2958 		 * checksumming here.
2959 		 */
2960 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
2961 			if (skb->encapsulation)
2962 				skb_set_inner_transport_header(skb,
2963 							       skb_checksum_start_offset(skb));
2964 			else
2965 				skb_set_transport_header(skb,
2966 							 skb_checksum_start_offset(skb));
2967 			if (!(features & NETIF_F_CSUM_MASK) &&
2968 			    skb_checksum_help(skb))
2969 				goto out_kfree_skb;
2970 		}
2971 	}
2972 
2973 	return skb;
2974 
2975 out_kfree_skb:
2976 	kfree_skb(skb);
2977 out_null:
2978 	atomic_long_inc(&dev->tx_dropped);
2979 	return NULL;
2980 }
2981 
2982 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2983 {
2984 	struct sk_buff *next, *head = NULL, *tail;
2985 
2986 	for (; skb != NULL; skb = next) {
2987 		next = skb->next;
2988 		skb->next = NULL;
2989 
2990 		/* in case skb wont be segmented, point to itself */
2991 		skb->prev = skb;
2992 
2993 		skb = validate_xmit_skb(skb, dev);
2994 		if (!skb)
2995 			continue;
2996 
2997 		if (!head)
2998 			head = skb;
2999 		else
3000 			tail->next = skb;
3001 		/* If skb was segmented, skb->prev points to
3002 		 * the last segment. If not, it still contains skb.
3003 		 */
3004 		tail = skb->prev;
3005 	}
3006 	return head;
3007 }
3008 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3009 
3010 static void qdisc_pkt_len_init(struct sk_buff *skb)
3011 {
3012 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3013 
3014 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3015 
3016 	/* To get more precise estimation of bytes sent on wire,
3017 	 * we add to pkt_len the headers size of all segments
3018 	 */
3019 	if (shinfo->gso_size)  {
3020 		unsigned int hdr_len;
3021 		u16 gso_segs = shinfo->gso_segs;
3022 
3023 		/* mac layer + network layer */
3024 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3025 
3026 		/* + transport layer */
3027 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3028 			hdr_len += tcp_hdrlen(skb);
3029 		else
3030 			hdr_len += sizeof(struct udphdr);
3031 
3032 		if (shinfo->gso_type & SKB_GSO_DODGY)
3033 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3034 						shinfo->gso_size);
3035 
3036 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3037 	}
3038 }
3039 
3040 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3041 				 struct net_device *dev,
3042 				 struct netdev_queue *txq)
3043 {
3044 	spinlock_t *root_lock = qdisc_lock(q);
3045 	struct sk_buff *to_free = NULL;
3046 	bool contended;
3047 	int rc;
3048 
3049 	qdisc_calculate_pkt_len(skb, q);
3050 	/*
3051 	 * Heuristic to force contended enqueues to serialize on a
3052 	 * separate lock before trying to get qdisc main lock.
3053 	 * This permits qdisc->running owner to get the lock more
3054 	 * often and dequeue packets faster.
3055 	 */
3056 	contended = qdisc_is_running(q);
3057 	if (unlikely(contended))
3058 		spin_lock(&q->busylock);
3059 
3060 	spin_lock(root_lock);
3061 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3062 		__qdisc_drop(skb, &to_free);
3063 		rc = NET_XMIT_DROP;
3064 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3065 		   qdisc_run_begin(q)) {
3066 		/*
3067 		 * This is a work-conserving queue; there are no old skbs
3068 		 * waiting to be sent out; and the qdisc is not running -
3069 		 * xmit the skb directly.
3070 		 */
3071 
3072 		qdisc_bstats_update(q, skb);
3073 
3074 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3075 			if (unlikely(contended)) {
3076 				spin_unlock(&q->busylock);
3077 				contended = false;
3078 			}
3079 			__qdisc_run(q);
3080 		} else
3081 			qdisc_run_end(q);
3082 
3083 		rc = NET_XMIT_SUCCESS;
3084 	} else {
3085 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3086 		if (qdisc_run_begin(q)) {
3087 			if (unlikely(contended)) {
3088 				spin_unlock(&q->busylock);
3089 				contended = false;
3090 			}
3091 			__qdisc_run(q);
3092 		}
3093 	}
3094 	spin_unlock(root_lock);
3095 	if (unlikely(to_free))
3096 		kfree_skb_list(to_free);
3097 	if (unlikely(contended))
3098 		spin_unlock(&q->busylock);
3099 	return rc;
3100 }
3101 
3102 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3103 static void skb_update_prio(struct sk_buff *skb)
3104 {
3105 	struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
3106 
3107 	if (!skb->priority && skb->sk && map) {
3108 		unsigned int prioidx =
3109 			sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
3110 
3111 		if (prioidx < map->priomap_len)
3112 			skb->priority = map->priomap[prioidx];
3113 	}
3114 }
3115 #else
3116 #define skb_update_prio(skb)
3117 #endif
3118 
3119 DEFINE_PER_CPU(int, xmit_recursion);
3120 EXPORT_SYMBOL(xmit_recursion);
3121 
3122 /**
3123  *	dev_loopback_xmit - loop back @skb
3124  *	@net: network namespace this loopback is happening in
3125  *	@sk:  sk needed to be a netfilter okfn
3126  *	@skb: buffer to transmit
3127  */
3128 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3129 {
3130 	skb_reset_mac_header(skb);
3131 	__skb_pull(skb, skb_network_offset(skb));
3132 	skb->pkt_type = PACKET_LOOPBACK;
3133 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3134 	WARN_ON(!skb_dst(skb));
3135 	skb_dst_force(skb);
3136 	netif_rx_ni(skb);
3137 	return 0;
3138 }
3139 EXPORT_SYMBOL(dev_loopback_xmit);
3140 
3141 #ifdef CONFIG_NET_EGRESS
3142 static struct sk_buff *
3143 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3144 {
3145 	struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3146 	struct tcf_result cl_res;
3147 
3148 	if (!cl)
3149 		return skb;
3150 
3151 	/* skb->tc_verd and qdisc_skb_cb(skb)->pkt_len were already set
3152 	 * earlier by the caller.
3153 	 */
3154 	qdisc_bstats_cpu_update(cl->q, skb);
3155 
3156 	switch (tc_classify(skb, cl, &cl_res, false)) {
3157 	case TC_ACT_OK:
3158 	case TC_ACT_RECLASSIFY:
3159 		skb->tc_index = TC_H_MIN(cl_res.classid);
3160 		break;
3161 	case TC_ACT_SHOT:
3162 		qdisc_qstats_cpu_drop(cl->q);
3163 		*ret = NET_XMIT_DROP;
3164 		kfree_skb(skb);
3165 		return NULL;
3166 	case TC_ACT_STOLEN:
3167 	case TC_ACT_QUEUED:
3168 		*ret = NET_XMIT_SUCCESS;
3169 		consume_skb(skb);
3170 		return NULL;
3171 	case TC_ACT_REDIRECT:
3172 		/* No need to push/pop skb's mac_header here on egress! */
3173 		skb_do_redirect(skb);
3174 		*ret = NET_XMIT_SUCCESS;
3175 		return NULL;
3176 	default:
3177 		break;
3178 	}
3179 
3180 	return skb;
3181 }
3182 #endif /* CONFIG_NET_EGRESS */
3183 
3184 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3185 {
3186 #ifdef CONFIG_XPS
3187 	struct xps_dev_maps *dev_maps;
3188 	struct xps_map *map;
3189 	int queue_index = -1;
3190 
3191 	rcu_read_lock();
3192 	dev_maps = rcu_dereference(dev->xps_maps);
3193 	if (dev_maps) {
3194 		unsigned int tci = skb->sender_cpu - 1;
3195 
3196 		if (dev->num_tc) {
3197 			tci *= dev->num_tc;
3198 			tci += netdev_get_prio_tc_map(dev, skb->priority);
3199 		}
3200 
3201 		map = rcu_dereference(dev_maps->cpu_map[tci]);
3202 		if (map) {
3203 			if (map->len == 1)
3204 				queue_index = map->queues[0];
3205 			else
3206 				queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3207 									   map->len)];
3208 			if (unlikely(queue_index >= dev->real_num_tx_queues))
3209 				queue_index = -1;
3210 		}
3211 	}
3212 	rcu_read_unlock();
3213 
3214 	return queue_index;
3215 #else
3216 	return -1;
3217 #endif
3218 }
3219 
3220 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3221 {
3222 	struct sock *sk = skb->sk;
3223 	int queue_index = sk_tx_queue_get(sk);
3224 
3225 	if (queue_index < 0 || skb->ooo_okay ||
3226 	    queue_index >= dev->real_num_tx_queues) {
3227 		int new_index = get_xps_queue(dev, skb);
3228 		if (new_index < 0)
3229 			new_index = skb_tx_hash(dev, skb);
3230 
3231 		if (queue_index != new_index && sk &&
3232 		    sk_fullsock(sk) &&
3233 		    rcu_access_pointer(sk->sk_dst_cache))
3234 			sk_tx_queue_set(sk, new_index);
3235 
3236 		queue_index = new_index;
3237 	}
3238 
3239 	return queue_index;
3240 }
3241 
3242 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3243 				    struct sk_buff *skb,
3244 				    void *accel_priv)
3245 {
3246 	int queue_index = 0;
3247 
3248 #ifdef CONFIG_XPS
3249 	u32 sender_cpu = skb->sender_cpu - 1;
3250 
3251 	if (sender_cpu >= (u32)NR_CPUS)
3252 		skb->sender_cpu = raw_smp_processor_id() + 1;
3253 #endif
3254 
3255 	if (dev->real_num_tx_queues != 1) {
3256 		const struct net_device_ops *ops = dev->netdev_ops;
3257 		if (ops->ndo_select_queue)
3258 			queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3259 							    __netdev_pick_tx);
3260 		else
3261 			queue_index = __netdev_pick_tx(dev, skb);
3262 
3263 		if (!accel_priv)
3264 			queue_index = netdev_cap_txqueue(dev, queue_index);
3265 	}
3266 
3267 	skb_set_queue_mapping(skb, queue_index);
3268 	return netdev_get_tx_queue(dev, queue_index);
3269 }
3270 
3271 /**
3272  *	__dev_queue_xmit - transmit a buffer
3273  *	@skb: buffer to transmit
3274  *	@accel_priv: private data used for L2 forwarding offload
3275  *
3276  *	Queue a buffer for transmission to a network device. The caller must
3277  *	have set the device and priority and built the buffer before calling
3278  *	this function. The function can be called from an interrupt.
3279  *
3280  *	A negative errno code is returned on a failure. A success does not
3281  *	guarantee the frame will be transmitted as it may be dropped due
3282  *	to congestion or traffic shaping.
3283  *
3284  * -----------------------------------------------------------------------------------
3285  *      I notice this method can also return errors from the queue disciplines,
3286  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3287  *      be positive.
3288  *
3289  *      Regardless of the return value, the skb is consumed, so it is currently
3290  *      difficult to retry a send to this method.  (You can bump the ref count
3291  *      before sending to hold a reference for retry if you are careful.)
3292  *
3293  *      When calling this method, interrupts MUST be enabled.  This is because
3294  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3295  *          --BLG
3296  */
3297 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3298 {
3299 	struct net_device *dev = skb->dev;
3300 	struct netdev_queue *txq;
3301 	struct Qdisc *q;
3302 	int rc = -ENOMEM;
3303 
3304 	skb_reset_mac_header(skb);
3305 
3306 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3307 		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3308 
3309 	/* Disable soft irqs for various locks below. Also
3310 	 * stops preemption for RCU.
3311 	 */
3312 	rcu_read_lock_bh();
3313 
3314 	skb_update_prio(skb);
3315 
3316 	qdisc_pkt_len_init(skb);
3317 #ifdef CONFIG_NET_CLS_ACT
3318 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
3319 # ifdef CONFIG_NET_EGRESS
3320 	if (static_key_false(&egress_needed)) {
3321 		skb = sch_handle_egress(skb, &rc, dev);
3322 		if (!skb)
3323 			goto out;
3324 	}
3325 # endif
3326 #endif
3327 	/* If device/qdisc don't need skb->dst, release it right now while
3328 	 * its hot in this cpu cache.
3329 	 */
3330 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3331 		skb_dst_drop(skb);
3332 	else
3333 		skb_dst_force(skb);
3334 
3335 	txq = netdev_pick_tx(dev, skb, accel_priv);
3336 	q = rcu_dereference_bh(txq->qdisc);
3337 
3338 	trace_net_dev_queue(skb);
3339 	if (q->enqueue) {
3340 		rc = __dev_xmit_skb(skb, q, dev, txq);
3341 		goto out;
3342 	}
3343 
3344 	/* The device has no queue. Common case for software devices:
3345 	   loopback, all the sorts of tunnels...
3346 
3347 	   Really, it is unlikely that netif_tx_lock protection is necessary
3348 	   here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3349 	   counters.)
3350 	   However, it is possible, that they rely on protection
3351 	   made by us here.
3352 
3353 	   Check this and shot the lock. It is not prone from deadlocks.
3354 	   Either shot noqueue qdisc, it is even simpler 8)
3355 	 */
3356 	if (dev->flags & IFF_UP) {
3357 		int cpu = smp_processor_id(); /* ok because BHs are off */
3358 
3359 		if (txq->xmit_lock_owner != cpu) {
3360 			if (unlikely(__this_cpu_read(xmit_recursion) >
3361 				     XMIT_RECURSION_LIMIT))
3362 				goto recursion_alert;
3363 
3364 			skb = validate_xmit_skb(skb, dev);
3365 			if (!skb)
3366 				goto out;
3367 
3368 			HARD_TX_LOCK(dev, txq, cpu);
3369 
3370 			if (!netif_xmit_stopped(txq)) {
3371 				__this_cpu_inc(xmit_recursion);
3372 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3373 				__this_cpu_dec(xmit_recursion);
3374 				if (dev_xmit_complete(rc)) {
3375 					HARD_TX_UNLOCK(dev, txq);
3376 					goto out;
3377 				}
3378 			}
3379 			HARD_TX_UNLOCK(dev, txq);
3380 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3381 					     dev->name);
3382 		} else {
3383 			/* Recursion is detected! It is possible,
3384 			 * unfortunately
3385 			 */
3386 recursion_alert:
3387 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3388 					     dev->name);
3389 		}
3390 	}
3391 
3392 	rc = -ENETDOWN;
3393 	rcu_read_unlock_bh();
3394 
3395 	atomic_long_inc(&dev->tx_dropped);
3396 	kfree_skb_list(skb);
3397 	return rc;
3398 out:
3399 	rcu_read_unlock_bh();
3400 	return rc;
3401 }
3402 
3403 int dev_queue_xmit(struct sk_buff *skb)
3404 {
3405 	return __dev_queue_xmit(skb, NULL);
3406 }
3407 EXPORT_SYMBOL(dev_queue_xmit);
3408 
3409 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3410 {
3411 	return __dev_queue_xmit(skb, accel_priv);
3412 }
3413 EXPORT_SYMBOL(dev_queue_xmit_accel);
3414 
3415 
3416 /*=======================================================================
3417 			Receiver routines
3418   =======================================================================*/
3419 
3420 int netdev_max_backlog __read_mostly = 1000;
3421 EXPORT_SYMBOL(netdev_max_backlog);
3422 
3423 int netdev_tstamp_prequeue __read_mostly = 1;
3424 int netdev_budget __read_mostly = 300;
3425 int weight_p __read_mostly = 64;            /* old backlog weight */
3426 
3427 /* Called with irq disabled */
3428 static inline void ____napi_schedule(struct softnet_data *sd,
3429 				     struct napi_struct *napi)
3430 {
3431 	list_add_tail(&napi->poll_list, &sd->poll_list);
3432 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3433 }
3434 
3435 #ifdef CONFIG_RPS
3436 
3437 /* One global table that all flow-based protocols share. */
3438 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3439 EXPORT_SYMBOL(rps_sock_flow_table);
3440 u32 rps_cpu_mask __read_mostly;
3441 EXPORT_SYMBOL(rps_cpu_mask);
3442 
3443 struct static_key rps_needed __read_mostly;
3444 EXPORT_SYMBOL(rps_needed);
3445 struct static_key rfs_needed __read_mostly;
3446 EXPORT_SYMBOL(rfs_needed);
3447 
3448 static struct rps_dev_flow *
3449 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3450 	    struct rps_dev_flow *rflow, u16 next_cpu)
3451 {
3452 	if (next_cpu < nr_cpu_ids) {
3453 #ifdef CONFIG_RFS_ACCEL
3454 		struct netdev_rx_queue *rxqueue;
3455 		struct rps_dev_flow_table *flow_table;
3456 		struct rps_dev_flow *old_rflow;
3457 		u32 flow_id;
3458 		u16 rxq_index;
3459 		int rc;
3460 
3461 		/* Should we steer this flow to a different hardware queue? */
3462 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3463 		    !(dev->features & NETIF_F_NTUPLE))
3464 			goto out;
3465 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3466 		if (rxq_index == skb_get_rx_queue(skb))
3467 			goto out;
3468 
3469 		rxqueue = dev->_rx + rxq_index;
3470 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
3471 		if (!flow_table)
3472 			goto out;
3473 		flow_id = skb_get_hash(skb) & flow_table->mask;
3474 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3475 							rxq_index, flow_id);
3476 		if (rc < 0)
3477 			goto out;
3478 		old_rflow = rflow;
3479 		rflow = &flow_table->flows[flow_id];
3480 		rflow->filter = rc;
3481 		if (old_rflow->filter == rflow->filter)
3482 			old_rflow->filter = RPS_NO_FILTER;
3483 	out:
3484 #endif
3485 		rflow->last_qtail =
3486 			per_cpu(softnet_data, next_cpu).input_queue_head;
3487 	}
3488 
3489 	rflow->cpu = next_cpu;
3490 	return rflow;
3491 }
3492 
3493 /*
3494  * get_rps_cpu is called from netif_receive_skb and returns the target
3495  * CPU from the RPS map of the receiving queue for a given skb.
3496  * rcu_read_lock must be held on entry.
3497  */
3498 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3499 		       struct rps_dev_flow **rflowp)
3500 {
3501 	const struct rps_sock_flow_table *sock_flow_table;
3502 	struct netdev_rx_queue *rxqueue = dev->_rx;
3503 	struct rps_dev_flow_table *flow_table;
3504 	struct rps_map *map;
3505 	int cpu = -1;
3506 	u32 tcpu;
3507 	u32 hash;
3508 
3509 	if (skb_rx_queue_recorded(skb)) {
3510 		u16 index = skb_get_rx_queue(skb);
3511 
3512 		if (unlikely(index >= dev->real_num_rx_queues)) {
3513 			WARN_ONCE(dev->real_num_rx_queues > 1,
3514 				  "%s received packet on queue %u, but number "
3515 				  "of RX queues is %u\n",
3516 				  dev->name, index, dev->real_num_rx_queues);
3517 			goto done;
3518 		}
3519 		rxqueue += index;
3520 	}
3521 
3522 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3523 
3524 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3525 	map = rcu_dereference(rxqueue->rps_map);
3526 	if (!flow_table && !map)
3527 		goto done;
3528 
3529 	skb_reset_network_header(skb);
3530 	hash = skb_get_hash(skb);
3531 	if (!hash)
3532 		goto done;
3533 
3534 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
3535 	if (flow_table && sock_flow_table) {
3536 		struct rps_dev_flow *rflow;
3537 		u32 next_cpu;
3538 		u32 ident;
3539 
3540 		/* First check into global flow table if there is a match */
3541 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3542 		if ((ident ^ hash) & ~rps_cpu_mask)
3543 			goto try_rps;
3544 
3545 		next_cpu = ident & rps_cpu_mask;
3546 
3547 		/* OK, now we know there is a match,
3548 		 * we can look at the local (per receive queue) flow table
3549 		 */
3550 		rflow = &flow_table->flows[hash & flow_table->mask];
3551 		tcpu = rflow->cpu;
3552 
3553 		/*
3554 		 * If the desired CPU (where last recvmsg was done) is
3555 		 * different from current CPU (one in the rx-queue flow
3556 		 * table entry), switch if one of the following holds:
3557 		 *   - Current CPU is unset (>= nr_cpu_ids).
3558 		 *   - Current CPU is offline.
3559 		 *   - The current CPU's queue tail has advanced beyond the
3560 		 *     last packet that was enqueued using this table entry.
3561 		 *     This guarantees that all previous packets for the flow
3562 		 *     have been dequeued, thus preserving in order delivery.
3563 		 */
3564 		if (unlikely(tcpu != next_cpu) &&
3565 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3566 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3567 		      rflow->last_qtail)) >= 0)) {
3568 			tcpu = next_cpu;
3569 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3570 		}
3571 
3572 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3573 			*rflowp = rflow;
3574 			cpu = tcpu;
3575 			goto done;
3576 		}
3577 	}
3578 
3579 try_rps:
3580 
3581 	if (map) {
3582 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3583 		if (cpu_online(tcpu)) {
3584 			cpu = tcpu;
3585 			goto done;
3586 		}
3587 	}
3588 
3589 done:
3590 	return cpu;
3591 }
3592 
3593 #ifdef CONFIG_RFS_ACCEL
3594 
3595 /**
3596  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3597  * @dev: Device on which the filter was set
3598  * @rxq_index: RX queue index
3599  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3600  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3601  *
3602  * Drivers that implement ndo_rx_flow_steer() should periodically call
3603  * this function for each installed filter and remove the filters for
3604  * which it returns %true.
3605  */
3606 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3607 			 u32 flow_id, u16 filter_id)
3608 {
3609 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3610 	struct rps_dev_flow_table *flow_table;
3611 	struct rps_dev_flow *rflow;
3612 	bool expire = true;
3613 	unsigned int cpu;
3614 
3615 	rcu_read_lock();
3616 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3617 	if (flow_table && flow_id <= flow_table->mask) {
3618 		rflow = &flow_table->flows[flow_id];
3619 		cpu = ACCESS_ONCE(rflow->cpu);
3620 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3621 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3622 			   rflow->last_qtail) <
3623 		     (int)(10 * flow_table->mask)))
3624 			expire = false;
3625 	}
3626 	rcu_read_unlock();
3627 	return expire;
3628 }
3629 EXPORT_SYMBOL(rps_may_expire_flow);
3630 
3631 #endif /* CONFIG_RFS_ACCEL */
3632 
3633 /* Called from hardirq (IPI) context */
3634 static void rps_trigger_softirq(void *data)
3635 {
3636 	struct softnet_data *sd = data;
3637 
3638 	____napi_schedule(sd, &sd->backlog);
3639 	sd->received_rps++;
3640 }
3641 
3642 #endif /* CONFIG_RPS */
3643 
3644 /*
3645  * Check if this softnet_data structure is another cpu one
3646  * If yes, queue it to our IPI list and return 1
3647  * If no, return 0
3648  */
3649 static int rps_ipi_queued(struct softnet_data *sd)
3650 {
3651 #ifdef CONFIG_RPS
3652 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3653 
3654 	if (sd != mysd) {
3655 		sd->rps_ipi_next = mysd->rps_ipi_list;
3656 		mysd->rps_ipi_list = sd;
3657 
3658 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3659 		return 1;
3660 	}
3661 #endif /* CONFIG_RPS */
3662 	return 0;
3663 }
3664 
3665 #ifdef CONFIG_NET_FLOW_LIMIT
3666 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3667 #endif
3668 
3669 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3670 {
3671 #ifdef CONFIG_NET_FLOW_LIMIT
3672 	struct sd_flow_limit *fl;
3673 	struct softnet_data *sd;
3674 	unsigned int old_flow, new_flow;
3675 
3676 	if (qlen < (netdev_max_backlog >> 1))
3677 		return false;
3678 
3679 	sd = this_cpu_ptr(&softnet_data);
3680 
3681 	rcu_read_lock();
3682 	fl = rcu_dereference(sd->flow_limit);
3683 	if (fl) {
3684 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3685 		old_flow = fl->history[fl->history_head];
3686 		fl->history[fl->history_head] = new_flow;
3687 
3688 		fl->history_head++;
3689 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3690 
3691 		if (likely(fl->buckets[old_flow]))
3692 			fl->buckets[old_flow]--;
3693 
3694 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3695 			fl->count++;
3696 			rcu_read_unlock();
3697 			return true;
3698 		}
3699 	}
3700 	rcu_read_unlock();
3701 #endif
3702 	return false;
3703 }
3704 
3705 /*
3706  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3707  * queue (may be a remote CPU queue).
3708  */
3709 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3710 			      unsigned int *qtail)
3711 {
3712 	struct softnet_data *sd;
3713 	unsigned long flags;
3714 	unsigned int qlen;
3715 
3716 	sd = &per_cpu(softnet_data, cpu);
3717 
3718 	local_irq_save(flags);
3719 
3720 	rps_lock(sd);
3721 	if (!netif_running(skb->dev))
3722 		goto drop;
3723 	qlen = skb_queue_len(&sd->input_pkt_queue);
3724 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3725 		if (qlen) {
3726 enqueue:
3727 			__skb_queue_tail(&sd->input_pkt_queue, skb);
3728 			input_queue_tail_incr_save(sd, qtail);
3729 			rps_unlock(sd);
3730 			local_irq_restore(flags);
3731 			return NET_RX_SUCCESS;
3732 		}
3733 
3734 		/* Schedule NAPI for backlog device
3735 		 * We can use non atomic operation since we own the queue lock
3736 		 */
3737 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3738 			if (!rps_ipi_queued(sd))
3739 				____napi_schedule(sd, &sd->backlog);
3740 		}
3741 		goto enqueue;
3742 	}
3743 
3744 drop:
3745 	sd->dropped++;
3746 	rps_unlock(sd);
3747 
3748 	local_irq_restore(flags);
3749 
3750 	atomic_long_inc(&skb->dev->rx_dropped);
3751 	kfree_skb(skb);
3752 	return NET_RX_DROP;
3753 }
3754 
3755 static int netif_rx_internal(struct sk_buff *skb)
3756 {
3757 	int ret;
3758 
3759 	net_timestamp_check(netdev_tstamp_prequeue, skb);
3760 
3761 	trace_netif_rx(skb);
3762 #ifdef CONFIG_RPS
3763 	if (static_key_false(&rps_needed)) {
3764 		struct rps_dev_flow voidflow, *rflow = &voidflow;
3765 		int cpu;
3766 
3767 		preempt_disable();
3768 		rcu_read_lock();
3769 
3770 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
3771 		if (cpu < 0)
3772 			cpu = smp_processor_id();
3773 
3774 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3775 
3776 		rcu_read_unlock();
3777 		preempt_enable();
3778 	} else
3779 #endif
3780 	{
3781 		unsigned int qtail;
3782 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3783 		put_cpu();
3784 	}
3785 	return ret;
3786 }
3787 
3788 /**
3789  *	netif_rx	-	post buffer to the network code
3790  *	@skb: buffer to post
3791  *
3792  *	This function receives a packet from a device driver and queues it for
3793  *	the upper (protocol) levels to process.  It always succeeds. The buffer
3794  *	may be dropped during processing for congestion control or by the
3795  *	protocol layers.
3796  *
3797  *	return values:
3798  *	NET_RX_SUCCESS	(no congestion)
3799  *	NET_RX_DROP     (packet was dropped)
3800  *
3801  */
3802 
3803 int netif_rx(struct sk_buff *skb)
3804 {
3805 	trace_netif_rx_entry(skb);
3806 
3807 	return netif_rx_internal(skb);
3808 }
3809 EXPORT_SYMBOL(netif_rx);
3810 
3811 int netif_rx_ni(struct sk_buff *skb)
3812 {
3813 	int err;
3814 
3815 	trace_netif_rx_ni_entry(skb);
3816 
3817 	preempt_disable();
3818 	err = netif_rx_internal(skb);
3819 	if (local_softirq_pending())
3820 		do_softirq();
3821 	preempt_enable();
3822 
3823 	return err;
3824 }
3825 EXPORT_SYMBOL(netif_rx_ni);
3826 
3827 static __latent_entropy void net_tx_action(struct softirq_action *h)
3828 {
3829 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3830 
3831 	if (sd->completion_queue) {
3832 		struct sk_buff *clist;
3833 
3834 		local_irq_disable();
3835 		clist = sd->completion_queue;
3836 		sd->completion_queue = NULL;
3837 		local_irq_enable();
3838 
3839 		while (clist) {
3840 			struct sk_buff *skb = clist;
3841 			clist = clist->next;
3842 
3843 			WARN_ON(atomic_read(&skb->users));
3844 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3845 				trace_consume_skb(skb);
3846 			else
3847 				trace_kfree_skb(skb, net_tx_action);
3848 
3849 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
3850 				__kfree_skb(skb);
3851 			else
3852 				__kfree_skb_defer(skb);
3853 		}
3854 
3855 		__kfree_skb_flush();
3856 	}
3857 
3858 	if (sd->output_queue) {
3859 		struct Qdisc *head;
3860 
3861 		local_irq_disable();
3862 		head = sd->output_queue;
3863 		sd->output_queue = NULL;
3864 		sd->output_queue_tailp = &sd->output_queue;
3865 		local_irq_enable();
3866 
3867 		while (head) {
3868 			struct Qdisc *q = head;
3869 			spinlock_t *root_lock;
3870 
3871 			head = head->next_sched;
3872 
3873 			root_lock = qdisc_lock(q);
3874 			spin_lock(root_lock);
3875 			/* We need to make sure head->next_sched is read
3876 			 * before clearing __QDISC_STATE_SCHED
3877 			 */
3878 			smp_mb__before_atomic();
3879 			clear_bit(__QDISC_STATE_SCHED, &q->state);
3880 			qdisc_run(q);
3881 			spin_unlock(root_lock);
3882 		}
3883 	}
3884 }
3885 
3886 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
3887 /* This hook is defined here for ATM LANE */
3888 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3889 			     unsigned char *addr) __read_mostly;
3890 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3891 #endif
3892 
3893 static inline struct sk_buff *
3894 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3895 		   struct net_device *orig_dev)
3896 {
3897 #ifdef CONFIG_NET_CLS_ACT
3898 	struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3899 	struct tcf_result cl_res;
3900 
3901 	/* If there's at least one ingress present somewhere (so
3902 	 * we get here via enabled static key), remaining devices
3903 	 * that are not configured with an ingress qdisc will bail
3904 	 * out here.
3905 	 */
3906 	if (!cl)
3907 		return skb;
3908 	if (*pt_prev) {
3909 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
3910 		*pt_prev = NULL;
3911 	}
3912 
3913 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3914 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3915 	qdisc_bstats_cpu_update(cl->q, skb);
3916 
3917 	switch (tc_classify(skb, cl, &cl_res, false)) {
3918 	case TC_ACT_OK:
3919 	case TC_ACT_RECLASSIFY:
3920 		skb->tc_index = TC_H_MIN(cl_res.classid);
3921 		break;
3922 	case TC_ACT_SHOT:
3923 		qdisc_qstats_cpu_drop(cl->q);
3924 		kfree_skb(skb);
3925 		return NULL;
3926 	case TC_ACT_STOLEN:
3927 	case TC_ACT_QUEUED:
3928 		consume_skb(skb);
3929 		return NULL;
3930 	case TC_ACT_REDIRECT:
3931 		/* skb_mac_header check was done by cls/act_bpf, so
3932 		 * we can safely push the L2 header back before
3933 		 * redirecting to another netdev
3934 		 */
3935 		__skb_push(skb, skb->mac_len);
3936 		skb_do_redirect(skb);
3937 		return NULL;
3938 	default:
3939 		break;
3940 	}
3941 #endif /* CONFIG_NET_CLS_ACT */
3942 	return skb;
3943 }
3944 
3945 /**
3946  *	netdev_is_rx_handler_busy - check if receive handler is registered
3947  *	@dev: device to check
3948  *
3949  *	Check if a receive handler is already registered for a given device.
3950  *	Return true if there one.
3951  *
3952  *	The caller must hold the rtnl_mutex.
3953  */
3954 bool netdev_is_rx_handler_busy(struct net_device *dev)
3955 {
3956 	ASSERT_RTNL();
3957 	return dev && rtnl_dereference(dev->rx_handler);
3958 }
3959 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
3960 
3961 /**
3962  *	netdev_rx_handler_register - register receive handler
3963  *	@dev: device to register a handler for
3964  *	@rx_handler: receive handler to register
3965  *	@rx_handler_data: data pointer that is used by rx handler
3966  *
3967  *	Register a receive handler for a device. This handler will then be
3968  *	called from __netif_receive_skb. A negative errno code is returned
3969  *	on a failure.
3970  *
3971  *	The caller must hold the rtnl_mutex.
3972  *
3973  *	For a general description of rx_handler, see enum rx_handler_result.
3974  */
3975 int netdev_rx_handler_register(struct net_device *dev,
3976 			       rx_handler_func_t *rx_handler,
3977 			       void *rx_handler_data)
3978 {
3979 	ASSERT_RTNL();
3980 
3981 	if (dev->rx_handler)
3982 		return -EBUSY;
3983 
3984 	/* Note: rx_handler_data must be set before rx_handler */
3985 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3986 	rcu_assign_pointer(dev->rx_handler, rx_handler);
3987 
3988 	return 0;
3989 }
3990 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3991 
3992 /**
3993  *	netdev_rx_handler_unregister - unregister receive handler
3994  *	@dev: device to unregister a handler from
3995  *
3996  *	Unregister a receive handler from a device.
3997  *
3998  *	The caller must hold the rtnl_mutex.
3999  */
4000 void netdev_rx_handler_unregister(struct net_device *dev)
4001 {
4002 
4003 	ASSERT_RTNL();
4004 	RCU_INIT_POINTER(dev->rx_handler, NULL);
4005 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4006 	 * section has a guarantee to see a non NULL rx_handler_data
4007 	 * as well.
4008 	 */
4009 	synchronize_net();
4010 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4011 }
4012 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4013 
4014 /*
4015  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4016  * the special handling of PFMEMALLOC skbs.
4017  */
4018 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4019 {
4020 	switch (skb->protocol) {
4021 	case htons(ETH_P_ARP):
4022 	case htons(ETH_P_IP):
4023 	case htons(ETH_P_IPV6):
4024 	case htons(ETH_P_8021Q):
4025 	case htons(ETH_P_8021AD):
4026 		return true;
4027 	default:
4028 		return false;
4029 	}
4030 }
4031 
4032 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4033 			     int *ret, struct net_device *orig_dev)
4034 {
4035 #ifdef CONFIG_NETFILTER_INGRESS
4036 	if (nf_hook_ingress_active(skb)) {
4037 		int ingress_retval;
4038 
4039 		if (*pt_prev) {
4040 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
4041 			*pt_prev = NULL;
4042 		}
4043 
4044 		rcu_read_lock();
4045 		ingress_retval = nf_hook_ingress(skb);
4046 		rcu_read_unlock();
4047 		return ingress_retval;
4048 	}
4049 #endif /* CONFIG_NETFILTER_INGRESS */
4050 	return 0;
4051 }
4052 
4053 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4054 {
4055 	struct packet_type *ptype, *pt_prev;
4056 	rx_handler_func_t *rx_handler;
4057 	struct net_device *orig_dev;
4058 	bool deliver_exact = false;
4059 	int ret = NET_RX_DROP;
4060 	__be16 type;
4061 
4062 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
4063 
4064 	trace_netif_receive_skb(skb);
4065 
4066 	orig_dev = skb->dev;
4067 
4068 	skb_reset_network_header(skb);
4069 	if (!skb_transport_header_was_set(skb))
4070 		skb_reset_transport_header(skb);
4071 	skb_reset_mac_len(skb);
4072 
4073 	pt_prev = NULL;
4074 
4075 another_round:
4076 	skb->skb_iif = skb->dev->ifindex;
4077 
4078 	__this_cpu_inc(softnet_data.processed);
4079 
4080 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4081 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4082 		skb = skb_vlan_untag(skb);
4083 		if (unlikely(!skb))
4084 			goto out;
4085 	}
4086 
4087 #ifdef CONFIG_NET_CLS_ACT
4088 	if (skb->tc_verd & TC_NCLS) {
4089 		skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
4090 		goto ncls;
4091 	}
4092 #endif
4093 
4094 	if (pfmemalloc)
4095 		goto skip_taps;
4096 
4097 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
4098 		if (pt_prev)
4099 			ret = deliver_skb(skb, pt_prev, orig_dev);
4100 		pt_prev = ptype;
4101 	}
4102 
4103 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4104 		if (pt_prev)
4105 			ret = deliver_skb(skb, pt_prev, orig_dev);
4106 		pt_prev = ptype;
4107 	}
4108 
4109 skip_taps:
4110 #ifdef CONFIG_NET_INGRESS
4111 	if (static_key_false(&ingress_needed)) {
4112 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4113 		if (!skb)
4114 			goto out;
4115 
4116 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4117 			goto out;
4118 	}
4119 #endif
4120 #ifdef CONFIG_NET_CLS_ACT
4121 	skb->tc_verd = 0;
4122 ncls:
4123 #endif
4124 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4125 		goto drop;
4126 
4127 	if (skb_vlan_tag_present(skb)) {
4128 		if (pt_prev) {
4129 			ret = deliver_skb(skb, pt_prev, orig_dev);
4130 			pt_prev = NULL;
4131 		}
4132 		if (vlan_do_receive(&skb))
4133 			goto another_round;
4134 		else if (unlikely(!skb))
4135 			goto out;
4136 	}
4137 
4138 	rx_handler = rcu_dereference(skb->dev->rx_handler);
4139 	if (rx_handler) {
4140 		if (pt_prev) {
4141 			ret = deliver_skb(skb, pt_prev, orig_dev);
4142 			pt_prev = NULL;
4143 		}
4144 		switch (rx_handler(&skb)) {
4145 		case RX_HANDLER_CONSUMED:
4146 			ret = NET_RX_SUCCESS;
4147 			goto out;
4148 		case RX_HANDLER_ANOTHER:
4149 			goto another_round;
4150 		case RX_HANDLER_EXACT:
4151 			deliver_exact = true;
4152 		case RX_HANDLER_PASS:
4153 			break;
4154 		default:
4155 			BUG();
4156 		}
4157 	}
4158 
4159 	if (unlikely(skb_vlan_tag_present(skb))) {
4160 		if (skb_vlan_tag_get_id(skb))
4161 			skb->pkt_type = PACKET_OTHERHOST;
4162 		/* Note: we might in the future use prio bits
4163 		 * and set skb->priority like in vlan_do_receive()
4164 		 * For the time being, just ignore Priority Code Point
4165 		 */
4166 		skb->vlan_tci = 0;
4167 	}
4168 
4169 	type = skb->protocol;
4170 
4171 	/* deliver only exact match when indicated */
4172 	if (likely(!deliver_exact)) {
4173 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4174 				       &ptype_base[ntohs(type) &
4175 						   PTYPE_HASH_MASK]);
4176 	}
4177 
4178 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4179 			       &orig_dev->ptype_specific);
4180 
4181 	if (unlikely(skb->dev != orig_dev)) {
4182 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4183 				       &skb->dev->ptype_specific);
4184 	}
4185 
4186 	if (pt_prev) {
4187 		if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
4188 			goto drop;
4189 		else
4190 			ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4191 	} else {
4192 drop:
4193 		if (!deliver_exact)
4194 			atomic_long_inc(&skb->dev->rx_dropped);
4195 		else
4196 			atomic_long_inc(&skb->dev->rx_nohandler);
4197 		kfree_skb(skb);
4198 		/* Jamal, now you will not able to escape explaining
4199 		 * me how you were going to use this. :-)
4200 		 */
4201 		ret = NET_RX_DROP;
4202 	}
4203 
4204 out:
4205 	return ret;
4206 }
4207 
4208 static int __netif_receive_skb(struct sk_buff *skb)
4209 {
4210 	int ret;
4211 
4212 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4213 		unsigned long pflags = current->flags;
4214 
4215 		/*
4216 		 * PFMEMALLOC skbs are special, they should
4217 		 * - be delivered to SOCK_MEMALLOC sockets only
4218 		 * - stay away from userspace
4219 		 * - have bounded memory usage
4220 		 *
4221 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
4222 		 * context down to all allocation sites.
4223 		 */
4224 		current->flags |= PF_MEMALLOC;
4225 		ret = __netif_receive_skb_core(skb, true);
4226 		tsk_restore_flags(current, pflags, PF_MEMALLOC);
4227 	} else
4228 		ret = __netif_receive_skb_core(skb, false);
4229 
4230 	return ret;
4231 }
4232 
4233 static int netif_receive_skb_internal(struct sk_buff *skb)
4234 {
4235 	int ret;
4236 
4237 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4238 
4239 	if (skb_defer_rx_timestamp(skb))
4240 		return NET_RX_SUCCESS;
4241 
4242 	rcu_read_lock();
4243 
4244 #ifdef CONFIG_RPS
4245 	if (static_key_false(&rps_needed)) {
4246 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4247 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4248 
4249 		if (cpu >= 0) {
4250 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4251 			rcu_read_unlock();
4252 			return ret;
4253 		}
4254 	}
4255 #endif
4256 	ret = __netif_receive_skb(skb);
4257 	rcu_read_unlock();
4258 	return ret;
4259 }
4260 
4261 /**
4262  *	netif_receive_skb - process receive buffer from network
4263  *	@skb: buffer to process
4264  *
4265  *	netif_receive_skb() is the main receive data processing function.
4266  *	It always succeeds. The buffer may be dropped during processing
4267  *	for congestion control or by the protocol layers.
4268  *
4269  *	This function may only be called from softirq context and interrupts
4270  *	should be enabled.
4271  *
4272  *	Return values (usually ignored):
4273  *	NET_RX_SUCCESS: no congestion
4274  *	NET_RX_DROP: packet was dropped
4275  */
4276 int netif_receive_skb(struct sk_buff *skb)
4277 {
4278 	trace_netif_receive_skb_entry(skb);
4279 
4280 	return netif_receive_skb_internal(skb);
4281 }
4282 EXPORT_SYMBOL(netif_receive_skb);
4283 
4284 DEFINE_PER_CPU(struct work_struct, flush_works);
4285 
4286 /* Network device is going away, flush any packets still pending */
4287 static void flush_backlog(struct work_struct *work)
4288 {
4289 	struct sk_buff *skb, *tmp;
4290 	struct softnet_data *sd;
4291 
4292 	local_bh_disable();
4293 	sd = this_cpu_ptr(&softnet_data);
4294 
4295 	local_irq_disable();
4296 	rps_lock(sd);
4297 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4298 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4299 			__skb_unlink(skb, &sd->input_pkt_queue);
4300 			kfree_skb(skb);
4301 			input_queue_head_incr(sd);
4302 		}
4303 	}
4304 	rps_unlock(sd);
4305 	local_irq_enable();
4306 
4307 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4308 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4309 			__skb_unlink(skb, &sd->process_queue);
4310 			kfree_skb(skb);
4311 			input_queue_head_incr(sd);
4312 		}
4313 	}
4314 	local_bh_enable();
4315 }
4316 
4317 static void flush_all_backlogs(void)
4318 {
4319 	unsigned int cpu;
4320 
4321 	get_online_cpus();
4322 
4323 	for_each_online_cpu(cpu)
4324 		queue_work_on(cpu, system_highpri_wq,
4325 			      per_cpu_ptr(&flush_works, cpu));
4326 
4327 	for_each_online_cpu(cpu)
4328 		flush_work(per_cpu_ptr(&flush_works, cpu));
4329 
4330 	put_online_cpus();
4331 }
4332 
4333 static int napi_gro_complete(struct sk_buff *skb)
4334 {
4335 	struct packet_offload *ptype;
4336 	__be16 type = skb->protocol;
4337 	struct list_head *head = &offload_base;
4338 	int err = -ENOENT;
4339 
4340 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4341 
4342 	if (NAPI_GRO_CB(skb)->count == 1) {
4343 		skb_shinfo(skb)->gso_size = 0;
4344 		goto out;
4345 	}
4346 
4347 	rcu_read_lock();
4348 	list_for_each_entry_rcu(ptype, head, list) {
4349 		if (ptype->type != type || !ptype->callbacks.gro_complete)
4350 			continue;
4351 
4352 		err = ptype->callbacks.gro_complete(skb, 0);
4353 		break;
4354 	}
4355 	rcu_read_unlock();
4356 
4357 	if (err) {
4358 		WARN_ON(&ptype->list == head);
4359 		kfree_skb(skb);
4360 		return NET_RX_SUCCESS;
4361 	}
4362 
4363 out:
4364 	return netif_receive_skb_internal(skb);
4365 }
4366 
4367 /* napi->gro_list contains packets ordered by age.
4368  * youngest packets at the head of it.
4369  * Complete skbs in reverse order to reduce latencies.
4370  */
4371 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4372 {
4373 	struct sk_buff *skb, *prev = NULL;
4374 
4375 	/* scan list and build reverse chain */
4376 	for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4377 		skb->prev = prev;
4378 		prev = skb;
4379 	}
4380 
4381 	for (skb = prev; skb; skb = prev) {
4382 		skb->next = NULL;
4383 
4384 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4385 			return;
4386 
4387 		prev = skb->prev;
4388 		napi_gro_complete(skb);
4389 		napi->gro_count--;
4390 	}
4391 
4392 	napi->gro_list = NULL;
4393 }
4394 EXPORT_SYMBOL(napi_gro_flush);
4395 
4396 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4397 {
4398 	struct sk_buff *p;
4399 	unsigned int maclen = skb->dev->hard_header_len;
4400 	u32 hash = skb_get_hash_raw(skb);
4401 
4402 	for (p = napi->gro_list; p; p = p->next) {
4403 		unsigned long diffs;
4404 
4405 		NAPI_GRO_CB(p)->flush = 0;
4406 
4407 		if (hash != skb_get_hash_raw(p)) {
4408 			NAPI_GRO_CB(p)->same_flow = 0;
4409 			continue;
4410 		}
4411 
4412 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4413 		diffs |= p->vlan_tci ^ skb->vlan_tci;
4414 		diffs |= skb_metadata_dst_cmp(p, skb);
4415 		if (maclen == ETH_HLEN)
4416 			diffs |= compare_ether_header(skb_mac_header(p),
4417 						      skb_mac_header(skb));
4418 		else if (!diffs)
4419 			diffs = memcmp(skb_mac_header(p),
4420 				       skb_mac_header(skb),
4421 				       maclen);
4422 		NAPI_GRO_CB(p)->same_flow = !diffs;
4423 	}
4424 }
4425 
4426 static void skb_gro_reset_offset(struct sk_buff *skb)
4427 {
4428 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
4429 	const skb_frag_t *frag0 = &pinfo->frags[0];
4430 
4431 	NAPI_GRO_CB(skb)->data_offset = 0;
4432 	NAPI_GRO_CB(skb)->frag0 = NULL;
4433 	NAPI_GRO_CB(skb)->frag0_len = 0;
4434 
4435 	if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4436 	    pinfo->nr_frags &&
4437 	    !PageHighMem(skb_frag_page(frag0))) {
4438 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4439 		NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
4440 						    skb_frag_size(frag0),
4441 						    skb->end - skb->tail);
4442 	}
4443 }
4444 
4445 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4446 {
4447 	struct skb_shared_info *pinfo = skb_shinfo(skb);
4448 
4449 	BUG_ON(skb->end - skb->tail < grow);
4450 
4451 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4452 
4453 	skb->data_len -= grow;
4454 	skb->tail += grow;
4455 
4456 	pinfo->frags[0].page_offset += grow;
4457 	skb_frag_size_sub(&pinfo->frags[0], grow);
4458 
4459 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4460 		skb_frag_unref(skb, 0);
4461 		memmove(pinfo->frags, pinfo->frags + 1,
4462 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
4463 	}
4464 }
4465 
4466 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4467 {
4468 	struct sk_buff **pp = NULL;
4469 	struct packet_offload *ptype;
4470 	__be16 type = skb->protocol;
4471 	struct list_head *head = &offload_base;
4472 	int same_flow;
4473 	enum gro_result ret;
4474 	int grow;
4475 
4476 	if (!(skb->dev->features & NETIF_F_GRO))
4477 		goto normal;
4478 
4479 	if (skb->csum_bad)
4480 		goto normal;
4481 
4482 	gro_list_prepare(napi, skb);
4483 
4484 	rcu_read_lock();
4485 	list_for_each_entry_rcu(ptype, head, list) {
4486 		if (ptype->type != type || !ptype->callbacks.gro_receive)
4487 			continue;
4488 
4489 		skb_set_network_header(skb, skb_gro_offset(skb));
4490 		skb_reset_mac_len(skb);
4491 		NAPI_GRO_CB(skb)->same_flow = 0;
4492 		NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
4493 		NAPI_GRO_CB(skb)->free = 0;
4494 		NAPI_GRO_CB(skb)->encap_mark = 0;
4495 		NAPI_GRO_CB(skb)->recursion_counter = 0;
4496 		NAPI_GRO_CB(skb)->is_fou = 0;
4497 		NAPI_GRO_CB(skb)->is_atomic = 1;
4498 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4499 
4500 		/* Setup for GRO checksum validation */
4501 		switch (skb->ip_summed) {
4502 		case CHECKSUM_COMPLETE:
4503 			NAPI_GRO_CB(skb)->csum = skb->csum;
4504 			NAPI_GRO_CB(skb)->csum_valid = 1;
4505 			NAPI_GRO_CB(skb)->csum_cnt = 0;
4506 			break;
4507 		case CHECKSUM_UNNECESSARY:
4508 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4509 			NAPI_GRO_CB(skb)->csum_valid = 0;
4510 			break;
4511 		default:
4512 			NAPI_GRO_CB(skb)->csum_cnt = 0;
4513 			NAPI_GRO_CB(skb)->csum_valid = 0;
4514 		}
4515 
4516 		pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4517 		break;
4518 	}
4519 	rcu_read_unlock();
4520 
4521 	if (&ptype->list == head)
4522 		goto normal;
4523 
4524 	same_flow = NAPI_GRO_CB(skb)->same_flow;
4525 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4526 
4527 	if (pp) {
4528 		struct sk_buff *nskb = *pp;
4529 
4530 		*pp = nskb->next;
4531 		nskb->next = NULL;
4532 		napi_gro_complete(nskb);
4533 		napi->gro_count--;
4534 	}
4535 
4536 	if (same_flow)
4537 		goto ok;
4538 
4539 	if (NAPI_GRO_CB(skb)->flush)
4540 		goto normal;
4541 
4542 	if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4543 		struct sk_buff *nskb = napi->gro_list;
4544 
4545 		/* locate the end of the list to select the 'oldest' flow */
4546 		while (nskb->next) {
4547 			pp = &nskb->next;
4548 			nskb = *pp;
4549 		}
4550 		*pp = NULL;
4551 		nskb->next = NULL;
4552 		napi_gro_complete(nskb);
4553 	} else {
4554 		napi->gro_count++;
4555 	}
4556 	NAPI_GRO_CB(skb)->count = 1;
4557 	NAPI_GRO_CB(skb)->age = jiffies;
4558 	NAPI_GRO_CB(skb)->last = skb;
4559 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4560 	skb->next = napi->gro_list;
4561 	napi->gro_list = skb;
4562 	ret = GRO_HELD;
4563 
4564 pull:
4565 	grow = skb_gro_offset(skb) - skb_headlen(skb);
4566 	if (grow > 0)
4567 		gro_pull_from_frag0(skb, grow);
4568 ok:
4569 	return ret;
4570 
4571 normal:
4572 	ret = GRO_NORMAL;
4573 	goto pull;
4574 }
4575 
4576 struct packet_offload *gro_find_receive_by_type(__be16 type)
4577 {
4578 	struct list_head *offload_head = &offload_base;
4579 	struct packet_offload *ptype;
4580 
4581 	list_for_each_entry_rcu(ptype, offload_head, list) {
4582 		if (ptype->type != type || !ptype->callbacks.gro_receive)
4583 			continue;
4584 		return ptype;
4585 	}
4586 	return NULL;
4587 }
4588 EXPORT_SYMBOL(gro_find_receive_by_type);
4589 
4590 struct packet_offload *gro_find_complete_by_type(__be16 type)
4591 {
4592 	struct list_head *offload_head = &offload_base;
4593 	struct packet_offload *ptype;
4594 
4595 	list_for_each_entry_rcu(ptype, offload_head, list) {
4596 		if (ptype->type != type || !ptype->callbacks.gro_complete)
4597 			continue;
4598 		return ptype;
4599 	}
4600 	return NULL;
4601 }
4602 EXPORT_SYMBOL(gro_find_complete_by_type);
4603 
4604 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4605 {
4606 	switch (ret) {
4607 	case GRO_NORMAL:
4608 		if (netif_receive_skb_internal(skb))
4609 			ret = GRO_DROP;
4610 		break;
4611 
4612 	case GRO_DROP:
4613 		kfree_skb(skb);
4614 		break;
4615 
4616 	case GRO_MERGED_FREE:
4617 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) {
4618 			skb_dst_drop(skb);
4619 			kmem_cache_free(skbuff_head_cache, skb);
4620 		} else {
4621 			__kfree_skb(skb);
4622 		}
4623 		break;
4624 
4625 	case GRO_HELD:
4626 	case GRO_MERGED:
4627 		break;
4628 	}
4629 
4630 	return ret;
4631 }
4632 
4633 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4634 {
4635 	skb_mark_napi_id(skb, napi);
4636 	trace_napi_gro_receive_entry(skb);
4637 
4638 	skb_gro_reset_offset(skb);
4639 
4640 	return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4641 }
4642 EXPORT_SYMBOL(napi_gro_receive);
4643 
4644 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4645 {
4646 	if (unlikely(skb->pfmemalloc)) {
4647 		consume_skb(skb);
4648 		return;
4649 	}
4650 	__skb_pull(skb, skb_headlen(skb));
4651 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
4652 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4653 	skb->vlan_tci = 0;
4654 	skb->dev = napi->dev;
4655 	skb->skb_iif = 0;
4656 	skb->encapsulation = 0;
4657 	skb_shinfo(skb)->gso_type = 0;
4658 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4659 
4660 	napi->skb = skb;
4661 }
4662 
4663 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4664 {
4665 	struct sk_buff *skb = napi->skb;
4666 
4667 	if (!skb) {
4668 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4669 		if (skb) {
4670 			napi->skb = skb;
4671 			skb_mark_napi_id(skb, napi);
4672 		}
4673 	}
4674 	return skb;
4675 }
4676 EXPORT_SYMBOL(napi_get_frags);
4677 
4678 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4679 				      struct sk_buff *skb,
4680 				      gro_result_t ret)
4681 {
4682 	switch (ret) {
4683 	case GRO_NORMAL:
4684 	case GRO_HELD:
4685 		__skb_push(skb, ETH_HLEN);
4686 		skb->protocol = eth_type_trans(skb, skb->dev);
4687 		if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4688 			ret = GRO_DROP;
4689 		break;
4690 
4691 	case GRO_DROP:
4692 	case GRO_MERGED_FREE:
4693 		napi_reuse_skb(napi, skb);
4694 		break;
4695 
4696 	case GRO_MERGED:
4697 		break;
4698 	}
4699 
4700 	return ret;
4701 }
4702 
4703 /* Upper GRO stack assumes network header starts at gro_offset=0
4704  * Drivers could call both napi_gro_frags() and napi_gro_receive()
4705  * We copy ethernet header into skb->data to have a common layout.
4706  */
4707 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4708 {
4709 	struct sk_buff *skb = napi->skb;
4710 	const struct ethhdr *eth;
4711 	unsigned int hlen = sizeof(*eth);
4712 
4713 	napi->skb = NULL;
4714 
4715 	skb_reset_mac_header(skb);
4716 	skb_gro_reset_offset(skb);
4717 
4718 	eth = skb_gro_header_fast(skb, 0);
4719 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
4720 		eth = skb_gro_header_slow(skb, hlen, 0);
4721 		if (unlikely(!eth)) {
4722 			net_warn_ratelimited("%s: dropping impossible skb from %s\n",
4723 					     __func__, napi->dev->name);
4724 			napi_reuse_skb(napi, skb);
4725 			return NULL;
4726 		}
4727 	} else {
4728 		gro_pull_from_frag0(skb, hlen);
4729 		NAPI_GRO_CB(skb)->frag0 += hlen;
4730 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
4731 	}
4732 	__skb_pull(skb, hlen);
4733 
4734 	/*
4735 	 * This works because the only protocols we care about don't require
4736 	 * special handling.
4737 	 * We'll fix it up properly in napi_frags_finish()
4738 	 */
4739 	skb->protocol = eth->h_proto;
4740 
4741 	return skb;
4742 }
4743 
4744 gro_result_t napi_gro_frags(struct napi_struct *napi)
4745 {
4746 	struct sk_buff *skb = napi_frags_skb(napi);
4747 
4748 	if (!skb)
4749 		return GRO_DROP;
4750 
4751 	trace_napi_gro_frags_entry(skb);
4752 
4753 	return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4754 }
4755 EXPORT_SYMBOL(napi_gro_frags);
4756 
4757 /* Compute the checksum from gro_offset and return the folded value
4758  * after adding in any pseudo checksum.
4759  */
4760 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4761 {
4762 	__wsum wsum;
4763 	__sum16 sum;
4764 
4765 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4766 
4767 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4768 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4769 	if (likely(!sum)) {
4770 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4771 		    !skb->csum_complete_sw)
4772 			netdev_rx_csum_fault(skb->dev);
4773 	}
4774 
4775 	NAPI_GRO_CB(skb)->csum = wsum;
4776 	NAPI_GRO_CB(skb)->csum_valid = 1;
4777 
4778 	return sum;
4779 }
4780 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4781 
4782 /*
4783  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4784  * Note: called with local irq disabled, but exits with local irq enabled.
4785  */
4786 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4787 {
4788 #ifdef CONFIG_RPS
4789 	struct softnet_data *remsd = sd->rps_ipi_list;
4790 
4791 	if (remsd) {
4792 		sd->rps_ipi_list = NULL;
4793 
4794 		local_irq_enable();
4795 
4796 		/* Send pending IPI's to kick RPS processing on remote cpus. */
4797 		while (remsd) {
4798 			struct softnet_data *next = remsd->rps_ipi_next;
4799 
4800 			if (cpu_online(remsd->cpu))
4801 				smp_call_function_single_async(remsd->cpu,
4802 							   &remsd->csd);
4803 			remsd = next;
4804 		}
4805 	} else
4806 #endif
4807 		local_irq_enable();
4808 }
4809 
4810 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4811 {
4812 #ifdef CONFIG_RPS
4813 	return sd->rps_ipi_list != NULL;
4814 #else
4815 	return false;
4816 #endif
4817 }
4818 
4819 static int process_backlog(struct napi_struct *napi, int quota)
4820 {
4821 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4822 	bool again = true;
4823 	int work = 0;
4824 
4825 	/* Check if we have pending ipi, its better to send them now,
4826 	 * not waiting net_rx_action() end.
4827 	 */
4828 	if (sd_has_rps_ipi_waiting(sd)) {
4829 		local_irq_disable();
4830 		net_rps_action_and_irq_enable(sd);
4831 	}
4832 
4833 	napi->weight = weight_p;
4834 	while (again) {
4835 		struct sk_buff *skb;
4836 
4837 		while ((skb = __skb_dequeue(&sd->process_queue))) {
4838 			rcu_read_lock();
4839 			__netif_receive_skb(skb);
4840 			rcu_read_unlock();
4841 			input_queue_head_incr(sd);
4842 			if (++work >= quota)
4843 				return work;
4844 
4845 		}
4846 
4847 		local_irq_disable();
4848 		rps_lock(sd);
4849 		if (skb_queue_empty(&sd->input_pkt_queue)) {
4850 			/*
4851 			 * Inline a custom version of __napi_complete().
4852 			 * only current cpu owns and manipulates this napi,
4853 			 * and NAPI_STATE_SCHED is the only possible flag set
4854 			 * on backlog.
4855 			 * We can use a plain write instead of clear_bit(),
4856 			 * and we dont need an smp_mb() memory barrier.
4857 			 */
4858 			napi->state = 0;
4859 			again = false;
4860 		} else {
4861 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
4862 						   &sd->process_queue);
4863 		}
4864 		rps_unlock(sd);
4865 		local_irq_enable();
4866 	}
4867 
4868 	return work;
4869 }
4870 
4871 /**
4872  * __napi_schedule - schedule for receive
4873  * @n: entry to schedule
4874  *
4875  * The entry's receive function will be scheduled to run.
4876  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4877  */
4878 void __napi_schedule(struct napi_struct *n)
4879 {
4880 	unsigned long flags;
4881 
4882 	local_irq_save(flags);
4883 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
4884 	local_irq_restore(flags);
4885 }
4886 EXPORT_SYMBOL(__napi_schedule);
4887 
4888 /**
4889  * __napi_schedule_irqoff - schedule for receive
4890  * @n: entry to schedule
4891  *
4892  * Variant of __napi_schedule() assuming hard irqs are masked
4893  */
4894 void __napi_schedule_irqoff(struct napi_struct *n)
4895 {
4896 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
4897 }
4898 EXPORT_SYMBOL(__napi_schedule_irqoff);
4899 
4900 bool __napi_complete(struct napi_struct *n)
4901 {
4902 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4903 
4904 	/* Some drivers call us directly, instead of calling
4905 	 * napi_complete_done().
4906 	 */
4907 	if (unlikely(test_bit(NAPI_STATE_IN_BUSY_POLL, &n->state)))
4908 		return false;
4909 
4910 	list_del_init(&n->poll_list);
4911 	smp_mb__before_atomic();
4912 	clear_bit(NAPI_STATE_SCHED, &n->state);
4913 	return true;
4914 }
4915 EXPORT_SYMBOL(__napi_complete);
4916 
4917 bool napi_complete_done(struct napi_struct *n, int work_done)
4918 {
4919 	unsigned long flags;
4920 
4921 	/*
4922 	 * 1) Don't let napi dequeue from the cpu poll list
4923 	 *    just in case its running on a different cpu.
4924 	 * 2) If we are busy polling, do nothing here, we have
4925 	 *    the guarantee we will be called later.
4926 	 */
4927 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
4928 				 NAPIF_STATE_IN_BUSY_POLL)))
4929 		return false;
4930 
4931 	if (n->gro_list) {
4932 		unsigned long timeout = 0;
4933 
4934 		if (work_done)
4935 			timeout = n->dev->gro_flush_timeout;
4936 
4937 		if (timeout)
4938 			hrtimer_start(&n->timer, ns_to_ktime(timeout),
4939 				      HRTIMER_MODE_REL_PINNED);
4940 		else
4941 			napi_gro_flush(n, false);
4942 	}
4943 	if (likely(list_empty(&n->poll_list))) {
4944 		WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4945 	} else {
4946 		/* If n->poll_list is not empty, we need to mask irqs */
4947 		local_irq_save(flags);
4948 		__napi_complete(n);
4949 		local_irq_restore(flags);
4950 	}
4951 	return true;
4952 }
4953 EXPORT_SYMBOL(napi_complete_done);
4954 
4955 /* must be called under rcu_read_lock(), as we dont take a reference */
4956 static struct napi_struct *napi_by_id(unsigned int napi_id)
4957 {
4958 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4959 	struct napi_struct *napi;
4960 
4961 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4962 		if (napi->napi_id == napi_id)
4963 			return napi;
4964 
4965 	return NULL;
4966 }
4967 
4968 #if defined(CONFIG_NET_RX_BUSY_POLL)
4969 
4970 #define BUSY_POLL_BUDGET 8
4971 
4972 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
4973 {
4974 	int rc;
4975 
4976 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
4977 
4978 	local_bh_disable();
4979 
4980 	/* All we really want here is to re-enable device interrupts.
4981 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
4982 	 */
4983 	rc = napi->poll(napi, BUSY_POLL_BUDGET);
4984 	netpoll_poll_unlock(have_poll_lock);
4985 	if (rc == BUSY_POLL_BUDGET)
4986 		__napi_schedule(napi);
4987 	local_bh_enable();
4988 	if (local_softirq_pending())
4989 		do_softirq();
4990 }
4991 
4992 bool sk_busy_loop(struct sock *sk, int nonblock)
4993 {
4994 	unsigned long end_time = !nonblock ? sk_busy_loop_end_time(sk) : 0;
4995 	int (*napi_poll)(struct napi_struct *napi, int budget);
4996 	int (*busy_poll)(struct napi_struct *dev);
4997 	void *have_poll_lock = NULL;
4998 	struct napi_struct *napi;
4999 	int rc;
5000 
5001 restart:
5002 	rc = false;
5003 	napi_poll = NULL;
5004 
5005 	rcu_read_lock();
5006 
5007 	napi = napi_by_id(sk->sk_napi_id);
5008 	if (!napi)
5009 		goto out;
5010 
5011 	/* Note: ndo_busy_poll method is optional in linux-4.5 */
5012 	busy_poll = napi->dev->netdev_ops->ndo_busy_poll;
5013 
5014 	preempt_disable();
5015 	for (;;) {
5016 		rc = 0;
5017 		local_bh_disable();
5018 		if (busy_poll) {
5019 			rc = busy_poll(napi);
5020 			goto count;
5021 		}
5022 		if (!napi_poll) {
5023 			unsigned long val = READ_ONCE(napi->state);
5024 
5025 			/* If multiple threads are competing for this napi,
5026 			 * we avoid dirtying napi->state as much as we can.
5027 			 */
5028 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
5029 				   NAPIF_STATE_IN_BUSY_POLL))
5030 				goto count;
5031 			if (cmpxchg(&napi->state, val,
5032 				    val | NAPIF_STATE_IN_BUSY_POLL |
5033 					  NAPIF_STATE_SCHED) != val)
5034 				goto count;
5035 			have_poll_lock = netpoll_poll_lock(napi);
5036 			napi_poll = napi->poll;
5037 		}
5038 		rc = napi_poll(napi, BUSY_POLL_BUDGET);
5039 		trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
5040 count:
5041 		if (rc > 0)
5042 			__NET_ADD_STATS(sock_net(sk),
5043 					LINUX_MIB_BUSYPOLLRXPACKETS, rc);
5044 		local_bh_enable();
5045 
5046 		if (rc == LL_FLUSH_FAILED)
5047 			break; /* permanent failure */
5048 
5049 		if (nonblock || !skb_queue_empty(&sk->sk_receive_queue) ||
5050 		    busy_loop_timeout(end_time))
5051 			break;
5052 
5053 		if (unlikely(need_resched())) {
5054 			if (napi_poll)
5055 				busy_poll_stop(napi, have_poll_lock);
5056 			preempt_enable();
5057 			rcu_read_unlock();
5058 			cond_resched();
5059 			rc = !skb_queue_empty(&sk->sk_receive_queue);
5060 			if (rc || busy_loop_timeout(end_time))
5061 				return rc;
5062 			goto restart;
5063 		}
5064 		cpu_relax();
5065 	}
5066 	if (napi_poll)
5067 		busy_poll_stop(napi, have_poll_lock);
5068 	preempt_enable();
5069 	rc = !skb_queue_empty(&sk->sk_receive_queue);
5070 out:
5071 	rcu_read_unlock();
5072 	return rc;
5073 }
5074 EXPORT_SYMBOL(sk_busy_loop);
5075 
5076 #endif /* CONFIG_NET_RX_BUSY_POLL */
5077 
5078 static void napi_hash_add(struct napi_struct *napi)
5079 {
5080 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5081 	    test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5082 		return;
5083 
5084 	spin_lock(&napi_hash_lock);
5085 
5086 	/* 0..NR_CPUS+1 range is reserved for sender_cpu use */
5087 	do {
5088 		if (unlikely(++napi_gen_id < NR_CPUS + 1))
5089 			napi_gen_id = NR_CPUS + 1;
5090 	} while (napi_by_id(napi_gen_id));
5091 	napi->napi_id = napi_gen_id;
5092 
5093 	hlist_add_head_rcu(&napi->napi_hash_node,
5094 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5095 
5096 	spin_unlock(&napi_hash_lock);
5097 }
5098 
5099 /* Warning : caller is responsible to make sure rcu grace period
5100  * is respected before freeing memory containing @napi
5101  */
5102 bool napi_hash_del(struct napi_struct *napi)
5103 {
5104 	bool rcu_sync_needed = false;
5105 
5106 	spin_lock(&napi_hash_lock);
5107 
5108 	if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5109 		rcu_sync_needed = true;
5110 		hlist_del_rcu(&napi->napi_hash_node);
5111 	}
5112 	spin_unlock(&napi_hash_lock);
5113 	return rcu_sync_needed;
5114 }
5115 EXPORT_SYMBOL_GPL(napi_hash_del);
5116 
5117 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5118 {
5119 	struct napi_struct *napi;
5120 
5121 	napi = container_of(timer, struct napi_struct, timer);
5122 	if (napi->gro_list)
5123 		napi_schedule(napi);
5124 
5125 	return HRTIMER_NORESTART;
5126 }
5127 
5128 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5129 		    int (*poll)(struct napi_struct *, int), int weight)
5130 {
5131 	INIT_LIST_HEAD(&napi->poll_list);
5132 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5133 	napi->timer.function = napi_watchdog;
5134 	napi->gro_count = 0;
5135 	napi->gro_list = NULL;
5136 	napi->skb = NULL;
5137 	napi->poll = poll;
5138 	if (weight > NAPI_POLL_WEIGHT)
5139 		pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5140 			    weight, dev->name);
5141 	napi->weight = weight;
5142 	list_add(&napi->dev_list, &dev->napi_list);
5143 	napi->dev = dev;
5144 #ifdef CONFIG_NETPOLL
5145 	napi->poll_owner = -1;
5146 #endif
5147 	set_bit(NAPI_STATE_SCHED, &napi->state);
5148 	napi_hash_add(napi);
5149 }
5150 EXPORT_SYMBOL(netif_napi_add);
5151 
5152 void napi_disable(struct napi_struct *n)
5153 {
5154 	might_sleep();
5155 	set_bit(NAPI_STATE_DISABLE, &n->state);
5156 
5157 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5158 		msleep(1);
5159 	while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5160 		msleep(1);
5161 
5162 	hrtimer_cancel(&n->timer);
5163 
5164 	clear_bit(NAPI_STATE_DISABLE, &n->state);
5165 }
5166 EXPORT_SYMBOL(napi_disable);
5167 
5168 /* Must be called in process context */
5169 void netif_napi_del(struct napi_struct *napi)
5170 {
5171 	might_sleep();
5172 	if (napi_hash_del(napi))
5173 		synchronize_net();
5174 	list_del_init(&napi->dev_list);
5175 	napi_free_frags(napi);
5176 
5177 	kfree_skb_list(napi->gro_list);
5178 	napi->gro_list = NULL;
5179 	napi->gro_count = 0;
5180 }
5181 EXPORT_SYMBOL(netif_napi_del);
5182 
5183 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5184 {
5185 	void *have;
5186 	int work, weight;
5187 
5188 	list_del_init(&n->poll_list);
5189 
5190 	have = netpoll_poll_lock(n);
5191 
5192 	weight = n->weight;
5193 
5194 	/* This NAPI_STATE_SCHED test is for avoiding a race
5195 	 * with netpoll's poll_napi().  Only the entity which
5196 	 * obtains the lock and sees NAPI_STATE_SCHED set will
5197 	 * actually make the ->poll() call.  Therefore we avoid
5198 	 * accidentally calling ->poll() when NAPI is not scheduled.
5199 	 */
5200 	work = 0;
5201 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5202 		work = n->poll(n, weight);
5203 		trace_napi_poll(n, work, weight);
5204 	}
5205 
5206 	WARN_ON_ONCE(work > weight);
5207 
5208 	if (likely(work < weight))
5209 		goto out_unlock;
5210 
5211 	/* Drivers must not modify the NAPI state if they
5212 	 * consume the entire weight.  In such cases this code
5213 	 * still "owns" the NAPI instance and therefore can
5214 	 * move the instance around on the list at-will.
5215 	 */
5216 	if (unlikely(napi_disable_pending(n))) {
5217 		napi_complete(n);
5218 		goto out_unlock;
5219 	}
5220 
5221 	if (n->gro_list) {
5222 		/* flush too old packets
5223 		 * If HZ < 1000, flush all packets.
5224 		 */
5225 		napi_gro_flush(n, HZ >= 1000);
5226 	}
5227 
5228 	/* Some drivers may have called napi_schedule
5229 	 * prior to exhausting their budget.
5230 	 */
5231 	if (unlikely(!list_empty(&n->poll_list))) {
5232 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5233 			     n->dev ? n->dev->name : "backlog");
5234 		goto out_unlock;
5235 	}
5236 
5237 	list_add_tail(&n->poll_list, repoll);
5238 
5239 out_unlock:
5240 	netpoll_poll_unlock(have);
5241 
5242 	return work;
5243 }
5244 
5245 static __latent_entropy void net_rx_action(struct softirq_action *h)
5246 {
5247 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5248 	unsigned long time_limit = jiffies + 2;
5249 	int budget = netdev_budget;
5250 	LIST_HEAD(list);
5251 	LIST_HEAD(repoll);
5252 
5253 	local_irq_disable();
5254 	list_splice_init(&sd->poll_list, &list);
5255 	local_irq_enable();
5256 
5257 	for (;;) {
5258 		struct napi_struct *n;
5259 
5260 		if (list_empty(&list)) {
5261 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5262 				goto out;
5263 			break;
5264 		}
5265 
5266 		n = list_first_entry(&list, struct napi_struct, poll_list);
5267 		budget -= napi_poll(n, &repoll);
5268 
5269 		/* If softirq window is exhausted then punt.
5270 		 * Allow this to run for 2 jiffies since which will allow
5271 		 * an average latency of 1.5/HZ.
5272 		 */
5273 		if (unlikely(budget <= 0 ||
5274 			     time_after_eq(jiffies, time_limit))) {
5275 			sd->time_squeeze++;
5276 			break;
5277 		}
5278 	}
5279 
5280 	local_irq_disable();
5281 
5282 	list_splice_tail_init(&sd->poll_list, &list);
5283 	list_splice_tail(&repoll, &list);
5284 	list_splice(&list, &sd->poll_list);
5285 	if (!list_empty(&sd->poll_list))
5286 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
5287 
5288 	net_rps_action_and_irq_enable(sd);
5289 out:
5290 	__kfree_skb_flush();
5291 }
5292 
5293 struct netdev_adjacent {
5294 	struct net_device *dev;
5295 
5296 	/* upper master flag, there can only be one master device per list */
5297 	bool master;
5298 
5299 	/* counter for the number of times this device was added to us */
5300 	u16 ref_nr;
5301 
5302 	/* private field for the users */
5303 	void *private;
5304 
5305 	struct list_head list;
5306 	struct rcu_head rcu;
5307 };
5308 
5309 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5310 						 struct list_head *adj_list)
5311 {
5312 	struct netdev_adjacent *adj;
5313 
5314 	list_for_each_entry(adj, adj_list, list) {
5315 		if (adj->dev == adj_dev)
5316 			return adj;
5317 	}
5318 	return NULL;
5319 }
5320 
5321 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5322 {
5323 	struct net_device *dev = data;
5324 
5325 	return upper_dev == dev;
5326 }
5327 
5328 /**
5329  * netdev_has_upper_dev - Check if device is linked to an upper device
5330  * @dev: device
5331  * @upper_dev: upper device to check
5332  *
5333  * Find out if a device is linked to specified upper device and return true
5334  * in case it is. Note that this checks only immediate upper device,
5335  * not through a complete stack of devices. The caller must hold the RTNL lock.
5336  */
5337 bool netdev_has_upper_dev(struct net_device *dev,
5338 			  struct net_device *upper_dev)
5339 {
5340 	ASSERT_RTNL();
5341 
5342 	return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5343 					     upper_dev);
5344 }
5345 EXPORT_SYMBOL(netdev_has_upper_dev);
5346 
5347 /**
5348  * netdev_has_upper_dev_all - Check if device is linked to an upper device
5349  * @dev: device
5350  * @upper_dev: upper device to check
5351  *
5352  * Find out if a device is linked to specified upper device and return true
5353  * in case it is. Note that this checks the entire upper device chain.
5354  * The caller must hold rcu lock.
5355  */
5356 
5357 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5358 				  struct net_device *upper_dev)
5359 {
5360 	return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5361 					       upper_dev);
5362 }
5363 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5364 
5365 /**
5366  * netdev_has_any_upper_dev - Check if device is linked to some device
5367  * @dev: device
5368  *
5369  * Find out if a device is linked to an upper device and return true in case
5370  * it is. The caller must hold the RTNL lock.
5371  */
5372 static bool netdev_has_any_upper_dev(struct net_device *dev)
5373 {
5374 	ASSERT_RTNL();
5375 
5376 	return !list_empty(&dev->adj_list.upper);
5377 }
5378 
5379 /**
5380  * netdev_master_upper_dev_get - Get master upper device
5381  * @dev: device
5382  *
5383  * Find a master upper device and return pointer to it or NULL in case
5384  * it's not there. The caller must hold the RTNL lock.
5385  */
5386 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5387 {
5388 	struct netdev_adjacent *upper;
5389 
5390 	ASSERT_RTNL();
5391 
5392 	if (list_empty(&dev->adj_list.upper))
5393 		return NULL;
5394 
5395 	upper = list_first_entry(&dev->adj_list.upper,
5396 				 struct netdev_adjacent, list);
5397 	if (likely(upper->master))
5398 		return upper->dev;
5399 	return NULL;
5400 }
5401 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5402 
5403 /**
5404  * netdev_has_any_lower_dev - Check if device is linked to some device
5405  * @dev: device
5406  *
5407  * Find out if a device is linked to a lower device and return true in case
5408  * it is. The caller must hold the RTNL lock.
5409  */
5410 static bool netdev_has_any_lower_dev(struct net_device *dev)
5411 {
5412 	ASSERT_RTNL();
5413 
5414 	return !list_empty(&dev->adj_list.lower);
5415 }
5416 
5417 void *netdev_adjacent_get_private(struct list_head *adj_list)
5418 {
5419 	struct netdev_adjacent *adj;
5420 
5421 	adj = list_entry(adj_list, struct netdev_adjacent, list);
5422 
5423 	return adj->private;
5424 }
5425 EXPORT_SYMBOL(netdev_adjacent_get_private);
5426 
5427 /**
5428  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5429  * @dev: device
5430  * @iter: list_head ** of the current position
5431  *
5432  * Gets the next device from the dev's upper list, starting from iter
5433  * position. The caller must hold RCU read lock.
5434  */
5435 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5436 						 struct list_head **iter)
5437 {
5438 	struct netdev_adjacent *upper;
5439 
5440 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5441 
5442 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5443 
5444 	if (&upper->list == &dev->adj_list.upper)
5445 		return NULL;
5446 
5447 	*iter = &upper->list;
5448 
5449 	return upper->dev;
5450 }
5451 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5452 
5453 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
5454 						    struct list_head **iter)
5455 {
5456 	struct netdev_adjacent *upper;
5457 
5458 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5459 
5460 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5461 
5462 	if (&upper->list == &dev->adj_list.upper)
5463 		return NULL;
5464 
5465 	*iter = &upper->list;
5466 
5467 	return upper->dev;
5468 }
5469 
5470 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
5471 				  int (*fn)(struct net_device *dev,
5472 					    void *data),
5473 				  void *data)
5474 {
5475 	struct net_device *udev;
5476 	struct list_head *iter;
5477 	int ret;
5478 
5479 	for (iter = &dev->adj_list.upper,
5480 	     udev = netdev_next_upper_dev_rcu(dev, &iter);
5481 	     udev;
5482 	     udev = netdev_next_upper_dev_rcu(dev, &iter)) {
5483 		/* first is the upper device itself */
5484 		ret = fn(udev, data);
5485 		if (ret)
5486 			return ret;
5487 
5488 		/* then look at all of its upper devices */
5489 		ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
5490 		if (ret)
5491 			return ret;
5492 	}
5493 
5494 	return 0;
5495 }
5496 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
5497 
5498 /**
5499  * netdev_lower_get_next_private - Get the next ->private from the
5500  *				   lower neighbour list
5501  * @dev: device
5502  * @iter: list_head ** of the current position
5503  *
5504  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5505  * list, starting from iter position. The caller must hold either hold the
5506  * RTNL lock or its own locking that guarantees that the neighbour lower
5507  * list will remain unchanged.
5508  */
5509 void *netdev_lower_get_next_private(struct net_device *dev,
5510 				    struct list_head **iter)
5511 {
5512 	struct netdev_adjacent *lower;
5513 
5514 	lower = list_entry(*iter, struct netdev_adjacent, list);
5515 
5516 	if (&lower->list == &dev->adj_list.lower)
5517 		return NULL;
5518 
5519 	*iter = lower->list.next;
5520 
5521 	return lower->private;
5522 }
5523 EXPORT_SYMBOL(netdev_lower_get_next_private);
5524 
5525 /**
5526  * netdev_lower_get_next_private_rcu - Get the next ->private from the
5527  *				       lower neighbour list, RCU
5528  *				       variant
5529  * @dev: device
5530  * @iter: list_head ** of the current position
5531  *
5532  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5533  * list, starting from iter position. The caller must hold RCU read lock.
5534  */
5535 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5536 					struct list_head **iter)
5537 {
5538 	struct netdev_adjacent *lower;
5539 
5540 	WARN_ON_ONCE(!rcu_read_lock_held());
5541 
5542 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5543 
5544 	if (&lower->list == &dev->adj_list.lower)
5545 		return NULL;
5546 
5547 	*iter = &lower->list;
5548 
5549 	return lower->private;
5550 }
5551 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5552 
5553 /**
5554  * netdev_lower_get_next - Get the next device from the lower neighbour
5555  *                         list
5556  * @dev: device
5557  * @iter: list_head ** of the current position
5558  *
5559  * Gets the next netdev_adjacent from the dev's lower neighbour
5560  * list, starting from iter position. The caller must hold RTNL lock or
5561  * its own locking that guarantees that the neighbour lower
5562  * list will remain unchanged.
5563  */
5564 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5565 {
5566 	struct netdev_adjacent *lower;
5567 
5568 	lower = list_entry(*iter, struct netdev_adjacent, list);
5569 
5570 	if (&lower->list == &dev->adj_list.lower)
5571 		return NULL;
5572 
5573 	*iter = lower->list.next;
5574 
5575 	return lower->dev;
5576 }
5577 EXPORT_SYMBOL(netdev_lower_get_next);
5578 
5579 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
5580 						struct list_head **iter)
5581 {
5582 	struct netdev_adjacent *lower;
5583 
5584 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
5585 
5586 	if (&lower->list == &dev->adj_list.lower)
5587 		return NULL;
5588 
5589 	*iter = &lower->list;
5590 
5591 	return lower->dev;
5592 }
5593 
5594 int netdev_walk_all_lower_dev(struct net_device *dev,
5595 			      int (*fn)(struct net_device *dev,
5596 					void *data),
5597 			      void *data)
5598 {
5599 	struct net_device *ldev;
5600 	struct list_head *iter;
5601 	int ret;
5602 
5603 	for (iter = &dev->adj_list.lower,
5604 	     ldev = netdev_next_lower_dev(dev, &iter);
5605 	     ldev;
5606 	     ldev = netdev_next_lower_dev(dev, &iter)) {
5607 		/* first is the lower device itself */
5608 		ret = fn(ldev, data);
5609 		if (ret)
5610 			return ret;
5611 
5612 		/* then look at all of its lower devices */
5613 		ret = netdev_walk_all_lower_dev(ldev, fn, data);
5614 		if (ret)
5615 			return ret;
5616 	}
5617 
5618 	return 0;
5619 }
5620 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
5621 
5622 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
5623 						    struct list_head **iter)
5624 {
5625 	struct netdev_adjacent *lower;
5626 
5627 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5628 	if (&lower->list == &dev->adj_list.lower)
5629 		return NULL;
5630 
5631 	*iter = &lower->list;
5632 
5633 	return lower->dev;
5634 }
5635 
5636 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
5637 				  int (*fn)(struct net_device *dev,
5638 					    void *data),
5639 				  void *data)
5640 {
5641 	struct net_device *ldev;
5642 	struct list_head *iter;
5643 	int ret;
5644 
5645 	for (iter = &dev->adj_list.lower,
5646 	     ldev = netdev_next_lower_dev_rcu(dev, &iter);
5647 	     ldev;
5648 	     ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
5649 		/* first is the lower device itself */
5650 		ret = fn(ldev, data);
5651 		if (ret)
5652 			return ret;
5653 
5654 		/* then look at all of its lower devices */
5655 		ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
5656 		if (ret)
5657 			return ret;
5658 	}
5659 
5660 	return 0;
5661 }
5662 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
5663 
5664 /**
5665  * netdev_lower_get_first_private_rcu - Get the first ->private from the
5666  *				       lower neighbour list, RCU
5667  *				       variant
5668  * @dev: device
5669  *
5670  * Gets the first netdev_adjacent->private from the dev's lower neighbour
5671  * list. The caller must hold RCU read lock.
5672  */
5673 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5674 {
5675 	struct netdev_adjacent *lower;
5676 
5677 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
5678 			struct netdev_adjacent, list);
5679 	if (lower)
5680 		return lower->private;
5681 	return NULL;
5682 }
5683 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5684 
5685 /**
5686  * netdev_master_upper_dev_get_rcu - Get master upper device
5687  * @dev: device
5688  *
5689  * Find a master upper device and return pointer to it or NULL in case
5690  * it's not there. The caller must hold the RCU read lock.
5691  */
5692 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5693 {
5694 	struct netdev_adjacent *upper;
5695 
5696 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
5697 				       struct netdev_adjacent, list);
5698 	if (upper && likely(upper->master))
5699 		return upper->dev;
5700 	return NULL;
5701 }
5702 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5703 
5704 static int netdev_adjacent_sysfs_add(struct net_device *dev,
5705 			      struct net_device *adj_dev,
5706 			      struct list_head *dev_list)
5707 {
5708 	char linkname[IFNAMSIZ+7];
5709 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
5710 		"upper_%s" : "lower_%s", adj_dev->name);
5711 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5712 				 linkname);
5713 }
5714 static void netdev_adjacent_sysfs_del(struct net_device *dev,
5715 			       char *name,
5716 			       struct list_head *dev_list)
5717 {
5718 	char linkname[IFNAMSIZ+7];
5719 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
5720 		"upper_%s" : "lower_%s", name);
5721 	sysfs_remove_link(&(dev->dev.kobj), linkname);
5722 }
5723 
5724 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5725 						 struct net_device *adj_dev,
5726 						 struct list_head *dev_list)
5727 {
5728 	return (dev_list == &dev->adj_list.upper ||
5729 		dev_list == &dev->adj_list.lower) &&
5730 		net_eq(dev_net(dev), dev_net(adj_dev));
5731 }
5732 
5733 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5734 					struct net_device *adj_dev,
5735 					struct list_head *dev_list,
5736 					void *private, bool master)
5737 {
5738 	struct netdev_adjacent *adj;
5739 	int ret;
5740 
5741 	adj = __netdev_find_adj(adj_dev, dev_list);
5742 
5743 	if (adj) {
5744 		adj->ref_nr += 1;
5745 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
5746 			 dev->name, adj_dev->name, adj->ref_nr);
5747 
5748 		return 0;
5749 	}
5750 
5751 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5752 	if (!adj)
5753 		return -ENOMEM;
5754 
5755 	adj->dev = adj_dev;
5756 	adj->master = master;
5757 	adj->ref_nr = 1;
5758 	adj->private = private;
5759 	dev_hold(adj_dev);
5760 
5761 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
5762 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
5763 
5764 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5765 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5766 		if (ret)
5767 			goto free_adj;
5768 	}
5769 
5770 	/* Ensure that master link is always the first item in list. */
5771 	if (master) {
5772 		ret = sysfs_create_link(&(dev->dev.kobj),
5773 					&(adj_dev->dev.kobj), "master");
5774 		if (ret)
5775 			goto remove_symlinks;
5776 
5777 		list_add_rcu(&adj->list, dev_list);
5778 	} else {
5779 		list_add_tail_rcu(&adj->list, dev_list);
5780 	}
5781 
5782 	return 0;
5783 
5784 remove_symlinks:
5785 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5786 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5787 free_adj:
5788 	kfree(adj);
5789 	dev_put(adj_dev);
5790 
5791 	return ret;
5792 }
5793 
5794 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5795 					 struct net_device *adj_dev,
5796 					 u16 ref_nr,
5797 					 struct list_head *dev_list)
5798 {
5799 	struct netdev_adjacent *adj;
5800 
5801 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
5802 		 dev->name, adj_dev->name, ref_nr);
5803 
5804 	adj = __netdev_find_adj(adj_dev, dev_list);
5805 
5806 	if (!adj) {
5807 		pr_err("Adjacency does not exist for device %s from %s\n",
5808 		       dev->name, adj_dev->name);
5809 		WARN_ON(1);
5810 		return;
5811 	}
5812 
5813 	if (adj->ref_nr > ref_nr) {
5814 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
5815 			 dev->name, adj_dev->name, ref_nr,
5816 			 adj->ref_nr - ref_nr);
5817 		adj->ref_nr -= ref_nr;
5818 		return;
5819 	}
5820 
5821 	if (adj->master)
5822 		sysfs_remove_link(&(dev->dev.kobj), "master");
5823 
5824 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5825 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5826 
5827 	list_del_rcu(&adj->list);
5828 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
5829 		 adj_dev->name, dev->name, adj_dev->name);
5830 	dev_put(adj_dev);
5831 	kfree_rcu(adj, rcu);
5832 }
5833 
5834 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5835 					    struct net_device *upper_dev,
5836 					    struct list_head *up_list,
5837 					    struct list_head *down_list,
5838 					    void *private, bool master)
5839 {
5840 	int ret;
5841 
5842 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
5843 					   private, master);
5844 	if (ret)
5845 		return ret;
5846 
5847 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
5848 					   private, false);
5849 	if (ret) {
5850 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
5851 		return ret;
5852 	}
5853 
5854 	return 0;
5855 }
5856 
5857 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5858 					       struct net_device *upper_dev,
5859 					       u16 ref_nr,
5860 					       struct list_head *up_list,
5861 					       struct list_head *down_list)
5862 {
5863 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
5864 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
5865 }
5866 
5867 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5868 						struct net_device *upper_dev,
5869 						void *private, bool master)
5870 {
5871 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5872 						&dev->adj_list.upper,
5873 						&upper_dev->adj_list.lower,
5874 						private, master);
5875 }
5876 
5877 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5878 						   struct net_device *upper_dev)
5879 {
5880 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
5881 					   &dev->adj_list.upper,
5882 					   &upper_dev->adj_list.lower);
5883 }
5884 
5885 static int __netdev_upper_dev_link(struct net_device *dev,
5886 				   struct net_device *upper_dev, bool master,
5887 				   void *upper_priv, void *upper_info)
5888 {
5889 	struct netdev_notifier_changeupper_info changeupper_info;
5890 	int ret = 0;
5891 
5892 	ASSERT_RTNL();
5893 
5894 	if (dev == upper_dev)
5895 		return -EBUSY;
5896 
5897 	/* To prevent loops, check if dev is not upper device to upper_dev. */
5898 	if (netdev_has_upper_dev(upper_dev, dev))
5899 		return -EBUSY;
5900 
5901 	if (netdev_has_upper_dev(dev, upper_dev))
5902 		return -EEXIST;
5903 
5904 	if (master && netdev_master_upper_dev_get(dev))
5905 		return -EBUSY;
5906 
5907 	changeupper_info.upper_dev = upper_dev;
5908 	changeupper_info.master = master;
5909 	changeupper_info.linking = true;
5910 	changeupper_info.upper_info = upper_info;
5911 
5912 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5913 					    &changeupper_info.info);
5914 	ret = notifier_to_errno(ret);
5915 	if (ret)
5916 		return ret;
5917 
5918 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
5919 						   master);
5920 	if (ret)
5921 		return ret;
5922 
5923 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5924 					    &changeupper_info.info);
5925 	ret = notifier_to_errno(ret);
5926 	if (ret)
5927 		goto rollback;
5928 
5929 	return 0;
5930 
5931 rollback:
5932 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5933 
5934 	return ret;
5935 }
5936 
5937 /**
5938  * netdev_upper_dev_link - Add a link to the upper device
5939  * @dev: device
5940  * @upper_dev: new upper device
5941  *
5942  * Adds a link to device which is upper to this one. The caller must hold
5943  * the RTNL lock. On a failure a negative errno code is returned.
5944  * On success the reference counts are adjusted and the function
5945  * returns zero.
5946  */
5947 int netdev_upper_dev_link(struct net_device *dev,
5948 			  struct net_device *upper_dev)
5949 {
5950 	return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
5951 }
5952 EXPORT_SYMBOL(netdev_upper_dev_link);
5953 
5954 /**
5955  * netdev_master_upper_dev_link - Add a master link to the upper device
5956  * @dev: device
5957  * @upper_dev: new upper device
5958  * @upper_priv: upper device private
5959  * @upper_info: upper info to be passed down via notifier
5960  *
5961  * Adds a link to device which is upper to this one. In this case, only
5962  * one master upper device can be linked, although other non-master devices
5963  * might be linked as well. The caller must hold the RTNL lock.
5964  * On a failure a negative errno code is returned. On success the reference
5965  * counts are adjusted and the function returns zero.
5966  */
5967 int netdev_master_upper_dev_link(struct net_device *dev,
5968 				 struct net_device *upper_dev,
5969 				 void *upper_priv, void *upper_info)
5970 {
5971 	return __netdev_upper_dev_link(dev, upper_dev, true,
5972 				       upper_priv, upper_info);
5973 }
5974 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5975 
5976 /**
5977  * netdev_upper_dev_unlink - Removes a link to upper device
5978  * @dev: device
5979  * @upper_dev: new upper device
5980  *
5981  * Removes a link to device which is upper to this one. The caller must hold
5982  * the RTNL lock.
5983  */
5984 void netdev_upper_dev_unlink(struct net_device *dev,
5985 			     struct net_device *upper_dev)
5986 {
5987 	struct netdev_notifier_changeupper_info changeupper_info;
5988 	ASSERT_RTNL();
5989 
5990 	changeupper_info.upper_dev = upper_dev;
5991 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5992 	changeupper_info.linking = false;
5993 
5994 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5995 				      &changeupper_info.info);
5996 
5997 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5998 
5999 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
6000 				      &changeupper_info.info);
6001 }
6002 EXPORT_SYMBOL(netdev_upper_dev_unlink);
6003 
6004 /**
6005  * netdev_bonding_info_change - Dispatch event about slave change
6006  * @dev: device
6007  * @bonding_info: info to dispatch
6008  *
6009  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
6010  * The caller must hold the RTNL lock.
6011  */
6012 void netdev_bonding_info_change(struct net_device *dev,
6013 				struct netdev_bonding_info *bonding_info)
6014 {
6015 	struct netdev_notifier_bonding_info	info;
6016 
6017 	memcpy(&info.bonding_info, bonding_info,
6018 	       sizeof(struct netdev_bonding_info));
6019 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
6020 				      &info.info);
6021 }
6022 EXPORT_SYMBOL(netdev_bonding_info_change);
6023 
6024 static void netdev_adjacent_add_links(struct net_device *dev)
6025 {
6026 	struct netdev_adjacent *iter;
6027 
6028 	struct net *net = dev_net(dev);
6029 
6030 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
6031 		if (!net_eq(net, dev_net(iter->dev)))
6032 			continue;
6033 		netdev_adjacent_sysfs_add(iter->dev, dev,
6034 					  &iter->dev->adj_list.lower);
6035 		netdev_adjacent_sysfs_add(dev, iter->dev,
6036 					  &dev->adj_list.upper);
6037 	}
6038 
6039 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
6040 		if (!net_eq(net, dev_net(iter->dev)))
6041 			continue;
6042 		netdev_adjacent_sysfs_add(iter->dev, dev,
6043 					  &iter->dev->adj_list.upper);
6044 		netdev_adjacent_sysfs_add(dev, iter->dev,
6045 					  &dev->adj_list.lower);
6046 	}
6047 }
6048 
6049 static void netdev_adjacent_del_links(struct net_device *dev)
6050 {
6051 	struct netdev_adjacent *iter;
6052 
6053 	struct net *net = dev_net(dev);
6054 
6055 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
6056 		if (!net_eq(net, dev_net(iter->dev)))
6057 			continue;
6058 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
6059 					  &iter->dev->adj_list.lower);
6060 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
6061 					  &dev->adj_list.upper);
6062 	}
6063 
6064 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
6065 		if (!net_eq(net, dev_net(iter->dev)))
6066 			continue;
6067 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
6068 					  &iter->dev->adj_list.upper);
6069 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
6070 					  &dev->adj_list.lower);
6071 	}
6072 }
6073 
6074 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6075 {
6076 	struct netdev_adjacent *iter;
6077 
6078 	struct net *net = dev_net(dev);
6079 
6080 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
6081 		if (!net_eq(net, dev_net(iter->dev)))
6082 			continue;
6083 		netdev_adjacent_sysfs_del(iter->dev, oldname,
6084 					  &iter->dev->adj_list.lower);
6085 		netdev_adjacent_sysfs_add(iter->dev, dev,
6086 					  &iter->dev->adj_list.lower);
6087 	}
6088 
6089 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
6090 		if (!net_eq(net, dev_net(iter->dev)))
6091 			continue;
6092 		netdev_adjacent_sysfs_del(iter->dev, oldname,
6093 					  &iter->dev->adj_list.upper);
6094 		netdev_adjacent_sysfs_add(iter->dev, dev,
6095 					  &iter->dev->adj_list.upper);
6096 	}
6097 }
6098 
6099 void *netdev_lower_dev_get_private(struct net_device *dev,
6100 				   struct net_device *lower_dev)
6101 {
6102 	struct netdev_adjacent *lower;
6103 
6104 	if (!lower_dev)
6105 		return NULL;
6106 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
6107 	if (!lower)
6108 		return NULL;
6109 
6110 	return lower->private;
6111 }
6112 EXPORT_SYMBOL(netdev_lower_dev_get_private);
6113 
6114 
6115 int dev_get_nest_level(struct net_device *dev)
6116 {
6117 	struct net_device *lower = NULL;
6118 	struct list_head *iter;
6119 	int max_nest = -1;
6120 	int nest;
6121 
6122 	ASSERT_RTNL();
6123 
6124 	netdev_for_each_lower_dev(dev, lower, iter) {
6125 		nest = dev_get_nest_level(lower);
6126 		if (max_nest < nest)
6127 			max_nest = nest;
6128 	}
6129 
6130 	return max_nest + 1;
6131 }
6132 EXPORT_SYMBOL(dev_get_nest_level);
6133 
6134 /**
6135  * netdev_lower_change - Dispatch event about lower device state change
6136  * @lower_dev: device
6137  * @lower_state_info: state to dispatch
6138  *
6139  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6140  * The caller must hold the RTNL lock.
6141  */
6142 void netdev_lower_state_changed(struct net_device *lower_dev,
6143 				void *lower_state_info)
6144 {
6145 	struct netdev_notifier_changelowerstate_info changelowerstate_info;
6146 
6147 	ASSERT_RTNL();
6148 	changelowerstate_info.lower_state_info = lower_state_info;
6149 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
6150 				      &changelowerstate_info.info);
6151 }
6152 EXPORT_SYMBOL(netdev_lower_state_changed);
6153 
6154 int netdev_default_l2upper_neigh_construct(struct net_device *dev,
6155 					   struct neighbour *n)
6156 {
6157 	struct net_device *lower_dev, *stop_dev;
6158 	struct list_head *iter;
6159 	int err;
6160 
6161 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
6162 		if (!lower_dev->netdev_ops->ndo_neigh_construct)
6163 			continue;
6164 		err = lower_dev->netdev_ops->ndo_neigh_construct(lower_dev, n);
6165 		if (err) {
6166 			stop_dev = lower_dev;
6167 			goto rollback;
6168 		}
6169 	}
6170 	return 0;
6171 
6172 rollback:
6173 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
6174 		if (lower_dev == stop_dev)
6175 			break;
6176 		if (!lower_dev->netdev_ops->ndo_neigh_destroy)
6177 			continue;
6178 		lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n);
6179 	}
6180 	return err;
6181 }
6182 EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_construct);
6183 
6184 void netdev_default_l2upper_neigh_destroy(struct net_device *dev,
6185 					  struct neighbour *n)
6186 {
6187 	struct net_device *lower_dev;
6188 	struct list_head *iter;
6189 
6190 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
6191 		if (!lower_dev->netdev_ops->ndo_neigh_destroy)
6192 			continue;
6193 		lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n);
6194 	}
6195 }
6196 EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_destroy);
6197 
6198 static void dev_change_rx_flags(struct net_device *dev, int flags)
6199 {
6200 	const struct net_device_ops *ops = dev->netdev_ops;
6201 
6202 	if (ops->ndo_change_rx_flags)
6203 		ops->ndo_change_rx_flags(dev, flags);
6204 }
6205 
6206 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6207 {
6208 	unsigned int old_flags = dev->flags;
6209 	kuid_t uid;
6210 	kgid_t gid;
6211 
6212 	ASSERT_RTNL();
6213 
6214 	dev->flags |= IFF_PROMISC;
6215 	dev->promiscuity += inc;
6216 	if (dev->promiscuity == 0) {
6217 		/*
6218 		 * Avoid overflow.
6219 		 * If inc causes overflow, untouch promisc and return error.
6220 		 */
6221 		if (inc < 0)
6222 			dev->flags &= ~IFF_PROMISC;
6223 		else {
6224 			dev->promiscuity -= inc;
6225 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6226 				dev->name);
6227 			return -EOVERFLOW;
6228 		}
6229 	}
6230 	if (dev->flags != old_flags) {
6231 		pr_info("device %s %s promiscuous mode\n",
6232 			dev->name,
6233 			dev->flags & IFF_PROMISC ? "entered" : "left");
6234 		if (audit_enabled) {
6235 			current_uid_gid(&uid, &gid);
6236 			audit_log(current->audit_context, GFP_ATOMIC,
6237 				AUDIT_ANOM_PROMISCUOUS,
6238 				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6239 				dev->name, (dev->flags & IFF_PROMISC),
6240 				(old_flags & IFF_PROMISC),
6241 				from_kuid(&init_user_ns, audit_get_loginuid(current)),
6242 				from_kuid(&init_user_ns, uid),
6243 				from_kgid(&init_user_ns, gid),
6244 				audit_get_sessionid(current));
6245 		}
6246 
6247 		dev_change_rx_flags(dev, IFF_PROMISC);
6248 	}
6249 	if (notify)
6250 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
6251 	return 0;
6252 }
6253 
6254 /**
6255  *	dev_set_promiscuity	- update promiscuity count on a device
6256  *	@dev: device
6257  *	@inc: modifier
6258  *
6259  *	Add or remove promiscuity from a device. While the count in the device
6260  *	remains above zero the interface remains promiscuous. Once it hits zero
6261  *	the device reverts back to normal filtering operation. A negative inc
6262  *	value is used to drop promiscuity on the device.
6263  *	Return 0 if successful or a negative errno code on error.
6264  */
6265 int dev_set_promiscuity(struct net_device *dev, int inc)
6266 {
6267 	unsigned int old_flags = dev->flags;
6268 	int err;
6269 
6270 	err = __dev_set_promiscuity(dev, inc, true);
6271 	if (err < 0)
6272 		return err;
6273 	if (dev->flags != old_flags)
6274 		dev_set_rx_mode(dev);
6275 	return err;
6276 }
6277 EXPORT_SYMBOL(dev_set_promiscuity);
6278 
6279 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6280 {
6281 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6282 
6283 	ASSERT_RTNL();
6284 
6285 	dev->flags |= IFF_ALLMULTI;
6286 	dev->allmulti += inc;
6287 	if (dev->allmulti == 0) {
6288 		/*
6289 		 * Avoid overflow.
6290 		 * If inc causes overflow, untouch allmulti and return error.
6291 		 */
6292 		if (inc < 0)
6293 			dev->flags &= ~IFF_ALLMULTI;
6294 		else {
6295 			dev->allmulti -= inc;
6296 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6297 				dev->name);
6298 			return -EOVERFLOW;
6299 		}
6300 	}
6301 	if (dev->flags ^ old_flags) {
6302 		dev_change_rx_flags(dev, IFF_ALLMULTI);
6303 		dev_set_rx_mode(dev);
6304 		if (notify)
6305 			__dev_notify_flags(dev, old_flags,
6306 					   dev->gflags ^ old_gflags);
6307 	}
6308 	return 0;
6309 }
6310 
6311 /**
6312  *	dev_set_allmulti	- update allmulti count on a device
6313  *	@dev: device
6314  *	@inc: modifier
6315  *
6316  *	Add or remove reception of all multicast frames to a device. While the
6317  *	count in the device remains above zero the interface remains listening
6318  *	to all interfaces. Once it hits zero the device reverts back to normal
6319  *	filtering operation. A negative @inc value is used to drop the counter
6320  *	when releasing a resource needing all multicasts.
6321  *	Return 0 if successful or a negative errno code on error.
6322  */
6323 
6324 int dev_set_allmulti(struct net_device *dev, int inc)
6325 {
6326 	return __dev_set_allmulti(dev, inc, true);
6327 }
6328 EXPORT_SYMBOL(dev_set_allmulti);
6329 
6330 /*
6331  *	Upload unicast and multicast address lists to device and
6332  *	configure RX filtering. When the device doesn't support unicast
6333  *	filtering it is put in promiscuous mode while unicast addresses
6334  *	are present.
6335  */
6336 void __dev_set_rx_mode(struct net_device *dev)
6337 {
6338 	const struct net_device_ops *ops = dev->netdev_ops;
6339 
6340 	/* dev_open will call this function so the list will stay sane. */
6341 	if (!(dev->flags&IFF_UP))
6342 		return;
6343 
6344 	if (!netif_device_present(dev))
6345 		return;
6346 
6347 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6348 		/* Unicast addresses changes may only happen under the rtnl,
6349 		 * therefore calling __dev_set_promiscuity here is safe.
6350 		 */
6351 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6352 			__dev_set_promiscuity(dev, 1, false);
6353 			dev->uc_promisc = true;
6354 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6355 			__dev_set_promiscuity(dev, -1, false);
6356 			dev->uc_promisc = false;
6357 		}
6358 	}
6359 
6360 	if (ops->ndo_set_rx_mode)
6361 		ops->ndo_set_rx_mode(dev);
6362 }
6363 
6364 void dev_set_rx_mode(struct net_device *dev)
6365 {
6366 	netif_addr_lock_bh(dev);
6367 	__dev_set_rx_mode(dev);
6368 	netif_addr_unlock_bh(dev);
6369 }
6370 
6371 /**
6372  *	dev_get_flags - get flags reported to userspace
6373  *	@dev: device
6374  *
6375  *	Get the combination of flag bits exported through APIs to userspace.
6376  */
6377 unsigned int dev_get_flags(const struct net_device *dev)
6378 {
6379 	unsigned int flags;
6380 
6381 	flags = (dev->flags & ~(IFF_PROMISC |
6382 				IFF_ALLMULTI |
6383 				IFF_RUNNING |
6384 				IFF_LOWER_UP |
6385 				IFF_DORMANT)) |
6386 		(dev->gflags & (IFF_PROMISC |
6387 				IFF_ALLMULTI));
6388 
6389 	if (netif_running(dev)) {
6390 		if (netif_oper_up(dev))
6391 			flags |= IFF_RUNNING;
6392 		if (netif_carrier_ok(dev))
6393 			flags |= IFF_LOWER_UP;
6394 		if (netif_dormant(dev))
6395 			flags |= IFF_DORMANT;
6396 	}
6397 
6398 	return flags;
6399 }
6400 EXPORT_SYMBOL(dev_get_flags);
6401 
6402 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6403 {
6404 	unsigned int old_flags = dev->flags;
6405 	int ret;
6406 
6407 	ASSERT_RTNL();
6408 
6409 	/*
6410 	 *	Set the flags on our device.
6411 	 */
6412 
6413 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6414 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6415 			       IFF_AUTOMEDIA)) |
6416 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6417 				    IFF_ALLMULTI));
6418 
6419 	/*
6420 	 *	Load in the correct multicast list now the flags have changed.
6421 	 */
6422 
6423 	if ((old_flags ^ flags) & IFF_MULTICAST)
6424 		dev_change_rx_flags(dev, IFF_MULTICAST);
6425 
6426 	dev_set_rx_mode(dev);
6427 
6428 	/*
6429 	 *	Have we downed the interface. We handle IFF_UP ourselves
6430 	 *	according to user attempts to set it, rather than blindly
6431 	 *	setting it.
6432 	 */
6433 
6434 	ret = 0;
6435 	if ((old_flags ^ flags) & IFF_UP)
6436 		ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
6437 
6438 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
6439 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
6440 		unsigned int old_flags = dev->flags;
6441 
6442 		dev->gflags ^= IFF_PROMISC;
6443 
6444 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
6445 			if (dev->flags != old_flags)
6446 				dev_set_rx_mode(dev);
6447 	}
6448 
6449 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6450 	   is important. Some (broken) drivers set IFF_PROMISC, when
6451 	   IFF_ALLMULTI is requested not asking us and not reporting.
6452 	 */
6453 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6454 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6455 
6456 		dev->gflags ^= IFF_ALLMULTI;
6457 		__dev_set_allmulti(dev, inc, false);
6458 	}
6459 
6460 	return ret;
6461 }
6462 
6463 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6464 			unsigned int gchanges)
6465 {
6466 	unsigned int changes = dev->flags ^ old_flags;
6467 
6468 	if (gchanges)
6469 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6470 
6471 	if (changes & IFF_UP) {
6472 		if (dev->flags & IFF_UP)
6473 			call_netdevice_notifiers(NETDEV_UP, dev);
6474 		else
6475 			call_netdevice_notifiers(NETDEV_DOWN, dev);
6476 	}
6477 
6478 	if (dev->flags & IFF_UP &&
6479 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6480 		struct netdev_notifier_change_info change_info;
6481 
6482 		change_info.flags_changed = changes;
6483 		call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6484 					      &change_info.info);
6485 	}
6486 }
6487 
6488 /**
6489  *	dev_change_flags - change device settings
6490  *	@dev: device
6491  *	@flags: device state flags
6492  *
6493  *	Change settings on device based state flags. The flags are
6494  *	in the userspace exported format.
6495  */
6496 int dev_change_flags(struct net_device *dev, unsigned int flags)
6497 {
6498 	int ret;
6499 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6500 
6501 	ret = __dev_change_flags(dev, flags);
6502 	if (ret < 0)
6503 		return ret;
6504 
6505 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6506 	__dev_notify_flags(dev, old_flags, changes);
6507 	return ret;
6508 }
6509 EXPORT_SYMBOL(dev_change_flags);
6510 
6511 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6512 {
6513 	const struct net_device_ops *ops = dev->netdev_ops;
6514 
6515 	if (ops->ndo_change_mtu)
6516 		return ops->ndo_change_mtu(dev, new_mtu);
6517 
6518 	dev->mtu = new_mtu;
6519 	return 0;
6520 }
6521 
6522 /**
6523  *	dev_set_mtu - Change maximum transfer unit
6524  *	@dev: device
6525  *	@new_mtu: new transfer unit
6526  *
6527  *	Change the maximum transfer size of the network device.
6528  */
6529 int dev_set_mtu(struct net_device *dev, int new_mtu)
6530 {
6531 	int err, orig_mtu;
6532 
6533 	if (new_mtu == dev->mtu)
6534 		return 0;
6535 
6536 	/* MTU must be positive, and in range */
6537 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
6538 		net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
6539 				    dev->name, new_mtu, dev->min_mtu);
6540 		return -EINVAL;
6541 	}
6542 
6543 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
6544 		net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
6545 				    dev->name, new_mtu, dev->max_mtu);
6546 		return -EINVAL;
6547 	}
6548 
6549 	if (!netif_device_present(dev))
6550 		return -ENODEV;
6551 
6552 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6553 	err = notifier_to_errno(err);
6554 	if (err)
6555 		return err;
6556 
6557 	orig_mtu = dev->mtu;
6558 	err = __dev_set_mtu(dev, new_mtu);
6559 
6560 	if (!err) {
6561 		err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6562 		err = notifier_to_errno(err);
6563 		if (err) {
6564 			/* setting mtu back and notifying everyone again,
6565 			 * so that they have a chance to revert changes.
6566 			 */
6567 			__dev_set_mtu(dev, orig_mtu);
6568 			call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6569 		}
6570 	}
6571 	return err;
6572 }
6573 EXPORT_SYMBOL(dev_set_mtu);
6574 
6575 /**
6576  *	dev_set_group - Change group this device belongs to
6577  *	@dev: device
6578  *	@new_group: group this device should belong to
6579  */
6580 void dev_set_group(struct net_device *dev, int new_group)
6581 {
6582 	dev->group = new_group;
6583 }
6584 EXPORT_SYMBOL(dev_set_group);
6585 
6586 /**
6587  *	dev_set_mac_address - Change Media Access Control Address
6588  *	@dev: device
6589  *	@sa: new address
6590  *
6591  *	Change the hardware (MAC) address of the device
6592  */
6593 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6594 {
6595 	const struct net_device_ops *ops = dev->netdev_ops;
6596 	int err;
6597 
6598 	if (!ops->ndo_set_mac_address)
6599 		return -EOPNOTSUPP;
6600 	if (sa->sa_family != dev->type)
6601 		return -EINVAL;
6602 	if (!netif_device_present(dev))
6603 		return -ENODEV;
6604 	err = ops->ndo_set_mac_address(dev, sa);
6605 	if (err)
6606 		return err;
6607 	dev->addr_assign_type = NET_ADDR_SET;
6608 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6609 	add_device_randomness(dev->dev_addr, dev->addr_len);
6610 	return 0;
6611 }
6612 EXPORT_SYMBOL(dev_set_mac_address);
6613 
6614 /**
6615  *	dev_change_carrier - Change device carrier
6616  *	@dev: device
6617  *	@new_carrier: new value
6618  *
6619  *	Change device carrier
6620  */
6621 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6622 {
6623 	const struct net_device_ops *ops = dev->netdev_ops;
6624 
6625 	if (!ops->ndo_change_carrier)
6626 		return -EOPNOTSUPP;
6627 	if (!netif_device_present(dev))
6628 		return -ENODEV;
6629 	return ops->ndo_change_carrier(dev, new_carrier);
6630 }
6631 EXPORT_SYMBOL(dev_change_carrier);
6632 
6633 /**
6634  *	dev_get_phys_port_id - Get device physical port ID
6635  *	@dev: device
6636  *	@ppid: port ID
6637  *
6638  *	Get device physical port ID
6639  */
6640 int dev_get_phys_port_id(struct net_device *dev,
6641 			 struct netdev_phys_item_id *ppid)
6642 {
6643 	const struct net_device_ops *ops = dev->netdev_ops;
6644 
6645 	if (!ops->ndo_get_phys_port_id)
6646 		return -EOPNOTSUPP;
6647 	return ops->ndo_get_phys_port_id(dev, ppid);
6648 }
6649 EXPORT_SYMBOL(dev_get_phys_port_id);
6650 
6651 /**
6652  *	dev_get_phys_port_name - Get device physical port name
6653  *	@dev: device
6654  *	@name: port name
6655  *	@len: limit of bytes to copy to name
6656  *
6657  *	Get device physical port name
6658  */
6659 int dev_get_phys_port_name(struct net_device *dev,
6660 			   char *name, size_t len)
6661 {
6662 	const struct net_device_ops *ops = dev->netdev_ops;
6663 
6664 	if (!ops->ndo_get_phys_port_name)
6665 		return -EOPNOTSUPP;
6666 	return ops->ndo_get_phys_port_name(dev, name, len);
6667 }
6668 EXPORT_SYMBOL(dev_get_phys_port_name);
6669 
6670 /**
6671  *	dev_change_proto_down - update protocol port state information
6672  *	@dev: device
6673  *	@proto_down: new value
6674  *
6675  *	This info can be used by switch drivers to set the phys state of the
6676  *	port.
6677  */
6678 int dev_change_proto_down(struct net_device *dev, bool proto_down)
6679 {
6680 	const struct net_device_ops *ops = dev->netdev_ops;
6681 
6682 	if (!ops->ndo_change_proto_down)
6683 		return -EOPNOTSUPP;
6684 	if (!netif_device_present(dev))
6685 		return -ENODEV;
6686 	return ops->ndo_change_proto_down(dev, proto_down);
6687 }
6688 EXPORT_SYMBOL(dev_change_proto_down);
6689 
6690 /**
6691  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
6692  *	@dev: device
6693  *	@fd: new program fd or negative value to clear
6694  *	@flags: xdp-related flags
6695  *
6696  *	Set or clear a bpf program for a device
6697  */
6698 int dev_change_xdp_fd(struct net_device *dev, int fd, u32 flags)
6699 {
6700 	const struct net_device_ops *ops = dev->netdev_ops;
6701 	struct bpf_prog *prog = NULL;
6702 	struct netdev_xdp xdp;
6703 	int err;
6704 
6705 	ASSERT_RTNL();
6706 
6707 	if (!ops->ndo_xdp)
6708 		return -EOPNOTSUPP;
6709 	if (fd >= 0) {
6710 		if (flags & XDP_FLAGS_UPDATE_IF_NOEXIST) {
6711 			memset(&xdp, 0, sizeof(xdp));
6712 			xdp.command = XDP_QUERY_PROG;
6713 
6714 			err = ops->ndo_xdp(dev, &xdp);
6715 			if (err < 0)
6716 				return err;
6717 			if (xdp.prog_attached)
6718 				return -EBUSY;
6719 		}
6720 
6721 		prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
6722 		if (IS_ERR(prog))
6723 			return PTR_ERR(prog);
6724 	}
6725 
6726 	memset(&xdp, 0, sizeof(xdp));
6727 	xdp.command = XDP_SETUP_PROG;
6728 	xdp.prog = prog;
6729 
6730 	err = ops->ndo_xdp(dev, &xdp);
6731 	if (err < 0 && prog)
6732 		bpf_prog_put(prog);
6733 
6734 	return err;
6735 }
6736 EXPORT_SYMBOL(dev_change_xdp_fd);
6737 
6738 /**
6739  *	dev_new_index	-	allocate an ifindex
6740  *	@net: the applicable net namespace
6741  *
6742  *	Returns a suitable unique value for a new device interface
6743  *	number.  The caller must hold the rtnl semaphore or the
6744  *	dev_base_lock to be sure it remains unique.
6745  */
6746 static int dev_new_index(struct net *net)
6747 {
6748 	int ifindex = net->ifindex;
6749 	for (;;) {
6750 		if (++ifindex <= 0)
6751 			ifindex = 1;
6752 		if (!__dev_get_by_index(net, ifindex))
6753 			return net->ifindex = ifindex;
6754 	}
6755 }
6756 
6757 /* Delayed registration/unregisteration */
6758 static LIST_HEAD(net_todo_list);
6759 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
6760 
6761 static void net_set_todo(struct net_device *dev)
6762 {
6763 	list_add_tail(&dev->todo_list, &net_todo_list);
6764 	dev_net(dev)->dev_unreg_count++;
6765 }
6766 
6767 static void rollback_registered_many(struct list_head *head)
6768 {
6769 	struct net_device *dev, *tmp;
6770 	LIST_HEAD(close_head);
6771 
6772 	BUG_ON(dev_boot_phase);
6773 	ASSERT_RTNL();
6774 
6775 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6776 		/* Some devices call without registering
6777 		 * for initialization unwind. Remove those
6778 		 * devices and proceed with the remaining.
6779 		 */
6780 		if (dev->reg_state == NETREG_UNINITIALIZED) {
6781 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6782 				 dev->name, dev);
6783 
6784 			WARN_ON(1);
6785 			list_del(&dev->unreg_list);
6786 			continue;
6787 		}
6788 		dev->dismantle = true;
6789 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
6790 	}
6791 
6792 	/* If device is running, close it first. */
6793 	list_for_each_entry(dev, head, unreg_list)
6794 		list_add_tail(&dev->close_list, &close_head);
6795 	dev_close_many(&close_head, true);
6796 
6797 	list_for_each_entry(dev, head, unreg_list) {
6798 		/* And unlink it from device chain. */
6799 		unlist_netdevice(dev);
6800 
6801 		dev->reg_state = NETREG_UNREGISTERING;
6802 	}
6803 	flush_all_backlogs();
6804 
6805 	synchronize_net();
6806 
6807 	list_for_each_entry(dev, head, unreg_list) {
6808 		struct sk_buff *skb = NULL;
6809 
6810 		/* Shutdown queueing discipline. */
6811 		dev_shutdown(dev);
6812 
6813 
6814 		/* Notify protocols, that we are about to destroy
6815 		   this device. They should clean all the things.
6816 		*/
6817 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6818 
6819 		if (!dev->rtnl_link_ops ||
6820 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6821 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6822 						     GFP_KERNEL);
6823 
6824 		/*
6825 		 *	Flush the unicast and multicast chains
6826 		 */
6827 		dev_uc_flush(dev);
6828 		dev_mc_flush(dev);
6829 
6830 		if (dev->netdev_ops->ndo_uninit)
6831 			dev->netdev_ops->ndo_uninit(dev);
6832 
6833 		if (skb)
6834 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6835 
6836 		/* Notifier chain MUST detach us all upper devices. */
6837 		WARN_ON(netdev_has_any_upper_dev(dev));
6838 		WARN_ON(netdev_has_any_lower_dev(dev));
6839 
6840 		/* Remove entries from kobject tree */
6841 		netdev_unregister_kobject(dev);
6842 #ifdef CONFIG_XPS
6843 		/* Remove XPS queueing entries */
6844 		netif_reset_xps_queues_gt(dev, 0);
6845 #endif
6846 	}
6847 
6848 	synchronize_net();
6849 
6850 	list_for_each_entry(dev, head, unreg_list)
6851 		dev_put(dev);
6852 }
6853 
6854 static void rollback_registered(struct net_device *dev)
6855 {
6856 	LIST_HEAD(single);
6857 
6858 	list_add(&dev->unreg_list, &single);
6859 	rollback_registered_many(&single);
6860 	list_del(&single);
6861 }
6862 
6863 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
6864 	struct net_device *upper, netdev_features_t features)
6865 {
6866 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6867 	netdev_features_t feature;
6868 	int feature_bit;
6869 
6870 	for_each_netdev_feature(&upper_disables, feature_bit) {
6871 		feature = __NETIF_F_BIT(feature_bit);
6872 		if (!(upper->wanted_features & feature)
6873 		    && (features & feature)) {
6874 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
6875 				   &feature, upper->name);
6876 			features &= ~feature;
6877 		}
6878 	}
6879 
6880 	return features;
6881 }
6882 
6883 static void netdev_sync_lower_features(struct net_device *upper,
6884 	struct net_device *lower, netdev_features_t features)
6885 {
6886 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6887 	netdev_features_t feature;
6888 	int feature_bit;
6889 
6890 	for_each_netdev_feature(&upper_disables, feature_bit) {
6891 		feature = __NETIF_F_BIT(feature_bit);
6892 		if (!(features & feature) && (lower->features & feature)) {
6893 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
6894 				   &feature, lower->name);
6895 			lower->wanted_features &= ~feature;
6896 			netdev_update_features(lower);
6897 
6898 			if (unlikely(lower->features & feature))
6899 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
6900 					    &feature, lower->name);
6901 		}
6902 	}
6903 }
6904 
6905 static netdev_features_t netdev_fix_features(struct net_device *dev,
6906 	netdev_features_t features)
6907 {
6908 	/* Fix illegal checksum combinations */
6909 	if ((features & NETIF_F_HW_CSUM) &&
6910 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6911 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6912 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6913 	}
6914 
6915 	/* TSO requires that SG is present as well. */
6916 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6917 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6918 		features &= ~NETIF_F_ALL_TSO;
6919 	}
6920 
6921 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6922 					!(features & NETIF_F_IP_CSUM)) {
6923 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6924 		features &= ~NETIF_F_TSO;
6925 		features &= ~NETIF_F_TSO_ECN;
6926 	}
6927 
6928 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6929 					 !(features & NETIF_F_IPV6_CSUM)) {
6930 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6931 		features &= ~NETIF_F_TSO6;
6932 	}
6933 
6934 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
6935 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
6936 		features &= ~NETIF_F_TSO_MANGLEID;
6937 
6938 	/* TSO ECN requires that TSO is present as well. */
6939 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6940 		features &= ~NETIF_F_TSO_ECN;
6941 
6942 	/* Software GSO depends on SG. */
6943 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6944 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6945 		features &= ~NETIF_F_GSO;
6946 	}
6947 
6948 	/* UFO needs SG and checksumming */
6949 	if (features & NETIF_F_UFO) {
6950 		/* maybe split UFO into V4 and V6? */
6951 		if (!(features & NETIF_F_HW_CSUM) &&
6952 		    ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) !=
6953 		     (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) {
6954 			netdev_dbg(dev,
6955 				"Dropping NETIF_F_UFO since no checksum offload features.\n");
6956 			features &= ~NETIF_F_UFO;
6957 		}
6958 
6959 		if (!(features & NETIF_F_SG)) {
6960 			netdev_dbg(dev,
6961 				"Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6962 			features &= ~NETIF_F_UFO;
6963 		}
6964 	}
6965 
6966 	/* GSO partial features require GSO partial be set */
6967 	if ((features & dev->gso_partial_features) &&
6968 	    !(features & NETIF_F_GSO_PARTIAL)) {
6969 		netdev_dbg(dev,
6970 			   "Dropping partially supported GSO features since no GSO partial.\n");
6971 		features &= ~dev->gso_partial_features;
6972 	}
6973 
6974 #ifdef CONFIG_NET_RX_BUSY_POLL
6975 	if (dev->netdev_ops->ndo_busy_poll)
6976 		features |= NETIF_F_BUSY_POLL;
6977 	else
6978 #endif
6979 		features &= ~NETIF_F_BUSY_POLL;
6980 
6981 	return features;
6982 }
6983 
6984 int __netdev_update_features(struct net_device *dev)
6985 {
6986 	struct net_device *upper, *lower;
6987 	netdev_features_t features;
6988 	struct list_head *iter;
6989 	int err = -1;
6990 
6991 	ASSERT_RTNL();
6992 
6993 	features = netdev_get_wanted_features(dev);
6994 
6995 	if (dev->netdev_ops->ndo_fix_features)
6996 		features = dev->netdev_ops->ndo_fix_features(dev, features);
6997 
6998 	/* driver might be less strict about feature dependencies */
6999 	features = netdev_fix_features(dev, features);
7000 
7001 	/* some features can't be enabled if they're off an an upper device */
7002 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
7003 		features = netdev_sync_upper_features(dev, upper, features);
7004 
7005 	if (dev->features == features)
7006 		goto sync_lower;
7007 
7008 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
7009 		&dev->features, &features);
7010 
7011 	if (dev->netdev_ops->ndo_set_features)
7012 		err = dev->netdev_ops->ndo_set_features(dev, features);
7013 	else
7014 		err = 0;
7015 
7016 	if (unlikely(err < 0)) {
7017 		netdev_err(dev,
7018 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
7019 			err, &features, &dev->features);
7020 		/* return non-0 since some features might have changed and
7021 		 * it's better to fire a spurious notification than miss it
7022 		 */
7023 		return -1;
7024 	}
7025 
7026 sync_lower:
7027 	/* some features must be disabled on lower devices when disabled
7028 	 * on an upper device (think: bonding master or bridge)
7029 	 */
7030 	netdev_for_each_lower_dev(dev, lower, iter)
7031 		netdev_sync_lower_features(dev, lower, features);
7032 
7033 	if (!err)
7034 		dev->features = features;
7035 
7036 	return err < 0 ? 0 : 1;
7037 }
7038 
7039 /**
7040  *	netdev_update_features - recalculate device features
7041  *	@dev: the device to check
7042  *
7043  *	Recalculate dev->features set and send notifications if it
7044  *	has changed. Should be called after driver or hardware dependent
7045  *	conditions might have changed that influence the features.
7046  */
7047 void netdev_update_features(struct net_device *dev)
7048 {
7049 	if (__netdev_update_features(dev))
7050 		netdev_features_change(dev);
7051 }
7052 EXPORT_SYMBOL(netdev_update_features);
7053 
7054 /**
7055  *	netdev_change_features - recalculate device features
7056  *	@dev: the device to check
7057  *
7058  *	Recalculate dev->features set and send notifications even
7059  *	if they have not changed. Should be called instead of
7060  *	netdev_update_features() if also dev->vlan_features might
7061  *	have changed to allow the changes to be propagated to stacked
7062  *	VLAN devices.
7063  */
7064 void netdev_change_features(struct net_device *dev)
7065 {
7066 	__netdev_update_features(dev);
7067 	netdev_features_change(dev);
7068 }
7069 EXPORT_SYMBOL(netdev_change_features);
7070 
7071 /**
7072  *	netif_stacked_transfer_operstate -	transfer operstate
7073  *	@rootdev: the root or lower level device to transfer state from
7074  *	@dev: the device to transfer operstate to
7075  *
7076  *	Transfer operational state from root to device. This is normally
7077  *	called when a stacking relationship exists between the root
7078  *	device and the device(a leaf device).
7079  */
7080 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7081 					struct net_device *dev)
7082 {
7083 	if (rootdev->operstate == IF_OPER_DORMANT)
7084 		netif_dormant_on(dev);
7085 	else
7086 		netif_dormant_off(dev);
7087 
7088 	if (netif_carrier_ok(rootdev)) {
7089 		if (!netif_carrier_ok(dev))
7090 			netif_carrier_on(dev);
7091 	} else {
7092 		if (netif_carrier_ok(dev))
7093 			netif_carrier_off(dev);
7094 	}
7095 }
7096 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7097 
7098 #ifdef CONFIG_SYSFS
7099 static int netif_alloc_rx_queues(struct net_device *dev)
7100 {
7101 	unsigned int i, count = dev->num_rx_queues;
7102 	struct netdev_rx_queue *rx;
7103 	size_t sz = count * sizeof(*rx);
7104 
7105 	BUG_ON(count < 1);
7106 
7107 	rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7108 	if (!rx) {
7109 		rx = vzalloc(sz);
7110 		if (!rx)
7111 			return -ENOMEM;
7112 	}
7113 	dev->_rx = rx;
7114 
7115 	for (i = 0; i < count; i++)
7116 		rx[i].dev = dev;
7117 	return 0;
7118 }
7119 #endif
7120 
7121 static void netdev_init_one_queue(struct net_device *dev,
7122 				  struct netdev_queue *queue, void *_unused)
7123 {
7124 	/* Initialize queue lock */
7125 	spin_lock_init(&queue->_xmit_lock);
7126 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7127 	queue->xmit_lock_owner = -1;
7128 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
7129 	queue->dev = dev;
7130 #ifdef CONFIG_BQL
7131 	dql_init(&queue->dql, HZ);
7132 #endif
7133 }
7134 
7135 static void netif_free_tx_queues(struct net_device *dev)
7136 {
7137 	kvfree(dev->_tx);
7138 }
7139 
7140 static int netif_alloc_netdev_queues(struct net_device *dev)
7141 {
7142 	unsigned int count = dev->num_tx_queues;
7143 	struct netdev_queue *tx;
7144 	size_t sz = count * sizeof(*tx);
7145 
7146 	if (count < 1 || count > 0xffff)
7147 		return -EINVAL;
7148 
7149 	tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7150 	if (!tx) {
7151 		tx = vzalloc(sz);
7152 		if (!tx)
7153 			return -ENOMEM;
7154 	}
7155 	dev->_tx = tx;
7156 
7157 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7158 	spin_lock_init(&dev->tx_global_lock);
7159 
7160 	return 0;
7161 }
7162 
7163 void netif_tx_stop_all_queues(struct net_device *dev)
7164 {
7165 	unsigned int i;
7166 
7167 	for (i = 0; i < dev->num_tx_queues; i++) {
7168 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7169 		netif_tx_stop_queue(txq);
7170 	}
7171 }
7172 EXPORT_SYMBOL(netif_tx_stop_all_queues);
7173 
7174 /**
7175  *	register_netdevice	- register a network device
7176  *	@dev: device to register
7177  *
7178  *	Take a completed network device structure and add it to the kernel
7179  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7180  *	chain. 0 is returned on success. A negative errno code is returned
7181  *	on a failure to set up the device, or if the name is a duplicate.
7182  *
7183  *	Callers must hold the rtnl semaphore. You may want
7184  *	register_netdev() instead of this.
7185  *
7186  *	BUGS:
7187  *	The locking appears insufficient to guarantee two parallel registers
7188  *	will not get the same name.
7189  */
7190 
7191 int register_netdevice(struct net_device *dev)
7192 {
7193 	int ret;
7194 	struct net *net = dev_net(dev);
7195 
7196 	BUG_ON(dev_boot_phase);
7197 	ASSERT_RTNL();
7198 
7199 	might_sleep();
7200 
7201 	/* When net_device's are persistent, this will be fatal. */
7202 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
7203 	BUG_ON(!net);
7204 
7205 	spin_lock_init(&dev->addr_list_lock);
7206 	netdev_set_addr_lockdep_class(dev);
7207 
7208 	ret = dev_get_valid_name(net, dev, dev->name);
7209 	if (ret < 0)
7210 		goto out;
7211 
7212 	/* Init, if this function is available */
7213 	if (dev->netdev_ops->ndo_init) {
7214 		ret = dev->netdev_ops->ndo_init(dev);
7215 		if (ret) {
7216 			if (ret > 0)
7217 				ret = -EIO;
7218 			goto out;
7219 		}
7220 	}
7221 
7222 	if (((dev->hw_features | dev->features) &
7223 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
7224 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7225 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7226 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7227 		ret = -EINVAL;
7228 		goto err_uninit;
7229 	}
7230 
7231 	ret = -EBUSY;
7232 	if (!dev->ifindex)
7233 		dev->ifindex = dev_new_index(net);
7234 	else if (__dev_get_by_index(net, dev->ifindex))
7235 		goto err_uninit;
7236 
7237 	/* Transfer changeable features to wanted_features and enable
7238 	 * software offloads (GSO and GRO).
7239 	 */
7240 	dev->hw_features |= NETIF_F_SOFT_FEATURES;
7241 	dev->features |= NETIF_F_SOFT_FEATURES;
7242 	dev->wanted_features = dev->features & dev->hw_features;
7243 
7244 	if (!(dev->flags & IFF_LOOPBACK))
7245 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
7246 
7247 	/* If IPv4 TCP segmentation offload is supported we should also
7248 	 * allow the device to enable segmenting the frame with the option
7249 	 * of ignoring a static IP ID value.  This doesn't enable the
7250 	 * feature itself but allows the user to enable it later.
7251 	 */
7252 	if (dev->hw_features & NETIF_F_TSO)
7253 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
7254 	if (dev->vlan_features & NETIF_F_TSO)
7255 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7256 	if (dev->mpls_features & NETIF_F_TSO)
7257 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7258 	if (dev->hw_enc_features & NETIF_F_TSO)
7259 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7260 
7261 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7262 	 */
7263 	dev->vlan_features |= NETIF_F_HIGHDMA;
7264 
7265 	/* Make NETIF_F_SG inheritable to tunnel devices.
7266 	 */
7267 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7268 
7269 	/* Make NETIF_F_SG inheritable to MPLS.
7270 	 */
7271 	dev->mpls_features |= NETIF_F_SG;
7272 
7273 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7274 	ret = notifier_to_errno(ret);
7275 	if (ret)
7276 		goto err_uninit;
7277 
7278 	ret = netdev_register_kobject(dev);
7279 	if (ret)
7280 		goto err_uninit;
7281 	dev->reg_state = NETREG_REGISTERED;
7282 
7283 	__netdev_update_features(dev);
7284 
7285 	/*
7286 	 *	Default initial state at registry is that the
7287 	 *	device is present.
7288 	 */
7289 
7290 	set_bit(__LINK_STATE_PRESENT, &dev->state);
7291 
7292 	linkwatch_init_dev(dev);
7293 
7294 	dev_init_scheduler(dev);
7295 	dev_hold(dev);
7296 	list_netdevice(dev);
7297 	add_device_randomness(dev->dev_addr, dev->addr_len);
7298 
7299 	/* If the device has permanent device address, driver should
7300 	 * set dev_addr and also addr_assign_type should be set to
7301 	 * NET_ADDR_PERM (default value).
7302 	 */
7303 	if (dev->addr_assign_type == NET_ADDR_PERM)
7304 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7305 
7306 	/* Notify protocols, that a new device appeared. */
7307 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7308 	ret = notifier_to_errno(ret);
7309 	if (ret) {
7310 		rollback_registered(dev);
7311 		dev->reg_state = NETREG_UNREGISTERED;
7312 	}
7313 	/*
7314 	 *	Prevent userspace races by waiting until the network
7315 	 *	device is fully setup before sending notifications.
7316 	 */
7317 	if (!dev->rtnl_link_ops ||
7318 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7319 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7320 
7321 out:
7322 	return ret;
7323 
7324 err_uninit:
7325 	if (dev->netdev_ops->ndo_uninit)
7326 		dev->netdev_ops->ndo_uninit(dev);
7327 	goto out;
7328 }
7329 EXPORT_SYMBOL(register_netdevice);
7330 
7331 /**
7332  *	init_dummy_netdev	- init a dummy network device for NAPI
7333  *	@dev: device to init
7334  *
7335  *	This takes a network device structure and initialize the minimum
7336  *	amount of fields so it can be used to schedule NAPI polls without
7337  *	registering a full blown interface. This is to be used by drivers
7338  *	that need to tie several hardware interfaces to a single NAPI
7339  *	poll scheduler due to HW limitations.
7340  */
7341 int init_dummy_netdev(struct net_device *dev)
7342 {
7343 	/* Clear everything. Note we don't initialize spinlocks
7344 	 * are they aren't supposed to be taken by any of the
7345 	 * NAPI code and this dummy netdev is supposed to be
7346 	 * only ever used for NAPI polls
7347 	 */
7348 	memset(dev, 0, sizeof(struct net_device));
7349 
7350 	/* make sure we BUG if trying to hit standard
7351 	 * register/unregister code path
7352 	 */
7353 	dev->reg_state = NETREG_DUMMY;
7354 
7355 	/* NAPI wants this */
7356 	INIT_LIST_HEAD(&dev->napi_list);
7357 
7358 	/* a dummy interface is started by default */
7359 	set_bit(__LINK_STATE_PRESENT, &dev->state);
7360 	set_bit(__LINK_STATE_START, &dev->state);
7361 
7362 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
7363 	 * because users of this 'device' dont need to change
7364 	 * its refcount.
7365 	 */
7366 
7367 	return 0;
7368 }
7369 EXPORT_SYMBOL_GPL(init_dummy_netdev);
7370 
7371 
7372 /**
7373  *	register_netdev	- register a network device
7374  *	@dev: device to register
7375  *
7376  *	Take a completed network device structure and add it to the kernel
7377  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7378  *	chain. 0 is returned on success. A negative errno code is returned
7379  *	on a failure to set up the device, or if the name is a duplicate.
7380  *
7381  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
7382  *	and expands the device name if you passed a format string to
7383  *	alloc_netdev.
7384  */
7385 int register_netdev(struct net_device *dev)
7386 {
7387 	int err;
7388 
7389 	rtnl_lock();
7390 	err = register_netdevice(dev);
7391 	rtnl_unlock();
7392 	return err;
7393 }
7394 EXPORT_SYMBOL(register_netdev);
7395 
7396 int netdev_refcnt_read(const struct net_device *dev)
7397 {
7398 	int i, refcnt = 0;
7399 
7400 	for_each_possible_cpu(i)
7401 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7402 	return refcnt;
7403 }
7404 EXPORT_SYMBOL(netdev_refcnt_read);
7405 
7406 /**
7407  * netdev_wait_allrefs - wait until all references are gone.
7408  * @dev: target net_device
7409  *
7410  * This is called when unregistering network devices.
7411  *
7412  * Any protocol or device that holds a reference should register
7413  * for netdevice notification, and cleanup and put back the
7414  * reference if they receive an UNREGISTER event.
7415  * We can get stuck here if buggy protocols don't correctly
7416  * call dev_put.
7417  */
7418 static void netdev_wait_allrefs(struct net_device *dev)
7419 {
7420 	unsigned long rebroadcast_time, warning_time;
7421 	int refcnt;
7422 
7423 	linkwatch_forget_dev(dev);
7424 
7425 	rebroadcast_time = warning_time = jiffies;
7426 	refcnt = netdev_refcnt_read(dev);
7427 
7428 	while (refcnt != 0) {
7429 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
7430 			rtnl_lock();
7431 
7432 			/* Rebroadcast unregister notification */
7433 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7434 
7435 			__rtnl_unlock();
7436 			rcu_barrier();
7437 			rtnl_lock();
7438 
7439 			call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7440 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7441 				     &dev->state)) {
7442 				/* We must not have linkwatch events
7443 				 * pending on unregister. If this
7444 				 * happens, we simply run the queue
7445 				 * unscheduled, resulting in a noop
7446 				 * for this device.
7447 				 */
7448 				linkwatch_run_queue();
7449 			}
7450 
7451 			__rtnl_unlock();
7452 
7453 			rebroadcast_time = jiffies;
7454 		}
7455 
7456 		msleep(250);
7457 
7458 		refcnt = netdev_refcnt_read(dev);
7459 
7460 		if (time_after(jiffies, warning_time + 10 * HZ)) {
7461 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7462 				 dev->name, refcnt);
7463 			warning_time = jiffies;
7464 		}
7465 	}
7466 }
7467 
7468 /* The sequence is:
7469  *
7470  *	rtnl_lock();
7471  *	...
7472  *	register_netdevice(x1);
7473  *	register_netdevice(x2);
7474  *	...
7475  *	unregister_netdevice(y1);
7476  *	unregister_netdevice(y2);
7477  *      ...
7478  *	rtnl_unlock();
7479  *	free_netdev(y1);
7480  *	free_netdev(y2);
7481  *
7482  * We are invoked by rtnl_unlock().
7483  * This allows us to deal with problems:
7484  * 1) We can delete sysfs objects which invoke hotplug
7485  *    without deadlocking with linkwatch via keventd.
7486  * 2) Since we run with the RTNL semaphore not held, we can sleep
7487  *    safely in order to wait for the netdev refcnt to drop to zero.
7488  *
7489  * We must not return until all unregister events added during
7490  * the interval the lock was held have been completed.
7491  */
7492 void netdev_run_todo(void)
7493 {
7494 	struct list_head list;
7495 
7496 	/* Snapshot list, allow later requests */
7497 	list_replace_init(&net_todo_list, &list);
7498 
7499 	__rtnl_unlock();
7500 
7501 
7502 	/* Wait for rcu callbacks to finish before next phase */
7503 	if (!list_empty(&list))
7504 		rcu_barrier();
7505 
7506 	while (!list_empty(&list)) {
7507 		struct net_device *dev
7508 			= list_first_entry(&list, struct net_device, todo_list);
7509 		list_del(&dev->todo_list);
7510 
7511 		rtnl_lock();
7512 		call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7513 		__rtnl_unlock();
7514 
7515 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7516 			pr_err("network todo '%s' but state %d\n",
7517 			       dev->name, dev->reg_state);
7518 			dump_stack();
7519 			continue;
7520 		}
7521 
7522 		dev->reg_state = NETREG_UNREGISTERED;
7523 
7524 		netdev_wait_allrefs(dev);
7525 
7526 		/* paranoia */
7527 		BUG_ON(netdev_refcnt_read(dev));
7528 		BUG_ON(!list_empty(&dev->ptype_all));
7529 		BUG_ON(!list_empty(&dev->ptype_specific));
7530 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
7531 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
7532 		WARN_ON(dev->dn_ptr);
7533 
7534 		if (dev->destructor)
7535 			dev->destructor(dev);
7536 
7537 		/* Report a network device has been unregistered */
7538 		rtnl_lock();
7539 		dev_net(dev)->dev_unreg_count--;
7540 		__rtnl_unlock();
7541 		wake_up(&netdev_unregistering_wq);
7542 
7543 		/* Free network device */
7544 		kobject_put(&dev->dev.kobj);
7545 	}
7546 }
7547 
7548 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7549  * all the same fields in the same order as net_device_stats, with only
7550  * the type differing, but rtnl_link_stats64 may have additional fields
7551  * at the end for newer counters.
7552  */
7553 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7554 			     const struct net_device_stats *netdev_stats)
7555 {
7556 #if BITS_PER_LONG == 64
7557 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
7558 	memcpy(stats64, netdev_stats, sizeof(*stats64));
7559 	/* zero out counters that only exist in rtnl_link_stats64 */
7560 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
7561 	       sizeof(*stats64) - sizeof(*netdev_stats));
7562 #else
7563 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
7564 	const unsigned long *src = (const unsigned long *)netdev_stats;
7565 	u64 *dst = (u64 *)stats64;
7566 
7567 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
7568 	for (i = 0; i < n; i++)
7569 		dst[i] = src[i];
7570 	/* zero out counters that only exist in rtnl_link_stats64 */
7571 	memset((char *)stats64 + n * sizeof(u64), 0,
7572 	       sizeof(*stats64) - n * sizeof(u64));
7573 #endif
7574 }
7575 EXPORT_SYMBOL(netdev_stats_to_stats64);
7576 
7577 /**
7578  *	dev_get_stats	- get network device statistics
7579  *	@dev: device to get statistics from
7580  *	@storage: place to store stats
7581  *
7582  *	Get network statistics from device. Return @storage.
7583  *	The device driver may provide its own method by setting
7584  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7585  *	otherwise the internal statistics structure is used.
7586  */
7587 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7588 					struct rtnl_link_stats64 *storage)
7589 {
7590 	const struct net_device_ops *ops = dev->netdev_ops;
7591 
7592 	if (ops->ndo_get_stats64) {
7593 		memset(storage, 0, sizeof(*storage));
7594 		ops->ndo_get_stats64(dev, storage);
7595 	} else if (ops->ndo_get_stats) {
7596 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
7597 	} else {
7598 		netdev_stats_to_stats64(storage, &dev->stats);
7599 	}
7600 	storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
7601 	storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
7602 	storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler);
7603 	return storage;
7604 }
7605 EXPORT_SYMBOL(dev_get_stats);
7606 
7607 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
7608 {
7609 	struct netdev_queue *queue = dev_ingress_queue(dev);
7610 
7611 #ifdef CONFIG_NET_CLS_ACT
7612 	if (queue)
7613 		return queue;
7614 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7615 	if (!queue)
7616 		return NULL;
7617 	netdev_init_one_queue(dev, queue, NULL);
7618 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
7619 	queue->qdisc_sleeping = &noop_qdisc;
7620 	rcu_assign_pointer(dev->ingress_queue, queue);
7621 #endif
7622 	return queue;
7623 }
7624 
7625 static const struct ethtool_ops default_ethtool_ops;
7626 
7627 void netdev_set_default_ethtool_ops(struct net_device *dev,
7628 				    const struct ethtool_ops *ops)
7629 {
7630 	if (dev->ethtool_ops == &default_ethtool_ops)
7631 		dev->ethtool_ops = ops;
7632 }
7633 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7634 
7635 void netdev_freemem(struct net_device *dev)
7636 {
7637 	char *addr = (char *)dev - dev->padded;
7638 
7639 	kvfree(addr);
7640 }
7641 
7642 /**
7643  *	alloc_netdev_mqs - allocate network device
7644  *	@sizeof_priv:		size of private data to allocate space for
7645  *	@name:			device name format string
7646  *	@name_assign_type: 	origin of device name
7647  *	@setup:			callback to initialize device
7648  *	@txqs:			the number of TX subqueues to allocate
7649  *	@rxqs:			the number of RX subqueues to allocate
7650  *
7651  *	Allocates a struct net_device with private data area for driver use
7652  *	and performs basic initialization.  Also allocates subqueue structs
7653  *	for each queue on the device.
7654  */
7655 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
7656 		unsigned char name_assign_type,
7657 		void (*setup)(struct net_device *),
7658 		unsigned int txqs, unsigned int rxqs)
7659 {
7660 	struct net_device *dev;
7661 	size_t alloc_size;
7662 	struct net_device *p;
7663 
7664 	BUG_ON(strlen(name) >= sizeof(dev->name));
7665 
7666 	if (txqs < 1) {
7667 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
7668 		return NULL;
7669 	}
7670 
7671 #ifdef CONFIG_SYSFS
7672 	if (rxqs < 1) {
7673 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
7674 		return NULL;
7675 	}
7676 #endif
7677 
7678 	alloc_size = sizeof(struct net_device);
7679 	if (sizeof_priv) {
7680 		/* ensure 32-byte alignment of private area */
7681 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
7682 		alloc_size += sizeof_priv;
7683 	}
7684 	/* ensure 32-byte alignment of whole construct */
7685 	alloc_size += NETDEV_ALIGN - 1;
7686 
7687 	p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7688 	if (!p)
7689 		p = vzalloc(alloc_size);
7690 	if (!p)
7691 		return NULL;
7692 
7693 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
7694 	dev->padded = (char *)dev - (char *)p;
7695 
7696 	dev->pcpu_refcnt = alloc_percpu(int);
7697 	if (!dev->pcpu_refcnt)
7698 		goto free_dev;
7699 
7700 	if (dev_addr_init(dev))
7701 		goto free_pcpu;
7702 
7703 	dev_mc_init(dev);
7704 	dev_uc_init(dev);
7705 
7706 	dev_net_set(dev, &init_net);
7707 
7708 	dev->gso_max_size = GSO_MAX_SIZE;
7709 	dev->gso_max_segs = GSO_MAX_SEGS;
7710 
7711 	INIT_LIST_HEAD(&dev->napi_list);
7712 	INIT_LIST_HEAD(&dev->unreg_list);
7713 	INIT_LIST_HEAD(&dev->close_list);
7714 	INIT_LIST_HEAD(&dev->link_watch_list);
7715 	INIT_LIST_HEAD(&dev->adj_list.upper);
7716 	INIT_LIST_HEAD(&dev->adj_list.lower);
7717 	INIT_LIST_HEAD(&dev->ptype_all);
7718 	INIT_LIST_HEAD(&dev->ptype_specific);
7719 #ifdef CONFIG_NET_SCHED
7720 	hash_init(dev->qdisc_hash);
7721 #endif
7722 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
7723 	setup(dev);
7724 
7725 	if (!dev->tx_queue_len) {
7726 		dev->priv_flags |= IFF_NO_QUEUE;
7727 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
7728 	}
7729 
7730 	dev->num_tx_queues = txqs;
7731 	dev->real_num_tx_queues = txqs;
7732 	if (netif_alloc_netdev_queues(dev))
7733 		goto free_all;
7734 
7735 #ifdef CONFIG_SYSFS
7736 	dev->num_rx_queues = rxqs;
7737 	dev->real_num_rx_queues = rxqs;
7738 	if (netif_alloc_rx_queues(dev))
7739 		goto free_all;
7740 #endif
7741 
7742 	strcpy(dev->name, name);
7743 	dev->name_assign_type = name_assign_type;
7744 	dev->group = INIT_NETDEV_GROUP;
7745 	if (!dev->ethtool_ops)
7746 		dev->ethtool_ops = &default_ethtool_ops;
7747 
7748 	nf_hook_ingress_init(dev);
7749 
7750 	return dev;
7751 
7752 free_all:
7753 	free_netdev(dev);
7754 	return NULL;
7755 
7756 free_pcpu:
7757 	free_percpu(dev->pcpu_refcnt);
7758 free_dev:
7759 	netdev_freemem(dev);
7760 	return NULL;
7761 }
7762 EXPORT_SYMBOL(alloc_netdev_mqs);
7763 
7764 /**
7765  *	free_netdev - free network device
7766  *	@dev: device
7767  *
7768  *	This function does the last stage of destroying an allocated device
7769  * 	interface. The reference to the device object is released.
7770  *	If this is the last reference then it will be freed.
7771  *	Must be called in process context.
7772  */
7773 void free_netdev(struct net_device *dev)
7774 {
7775 	struct napi_struct *p, *n;
7776 
7777 	might_sleep();
7778 	netif_free_tx_queues(dev);
7779 #ifdef CONFIG_SYSFS
7780 	kvfree(dev->_rx);
7781 #endif
7782 
7783 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
7784 
7785 	/* Flush device addresses */
7786 	dev_addr_flush(dev);
7787 
7788 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7789 		netif_napi_del(p);
7790 
7791 	free_percpu(dev->pcpu_refcnt);
7792 	dev->pcpu_refcnt = NULL;
7793 
7794 	/*  Compatibility with error handling in drivers */
7795 	if (dev->reg_state == NETREG_UNINITIALIZED) {
7796 		netdev_freemem(dev);
7797 		return;
7798 	}
7799 
7800 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7801 	dev->reg_state = NETREG_RELEASED;
7802 
7803 	/* will free via device release */
7804 	put_device(&dev->dev);
7805 }
7806 EXPORT_SYMBOL(free_netdev);
7807 
7808 /**
7809  *	synchronize_net -  Synchronize with packet receive processing
7810  *
7811  *	Wait for packets currently being received to be done.
7812  *	Does not block later packets from starting.
7813  */
7814 void synchronize_net(void)
7815 {
7816 	might_sleep();
7817 	if (rtnl_is_locked())
7818 		synchronize_rcu_expedited();
7819 	else
7820 		synchronize_rcu();
7821 }
7822 EXPORT_SYMBOL(synchronize_net);
7823 
7824 /**
7825  *	unregister_netdevice_queue - remove device from the kernel
7826  *	@dev: device
7827  *	@head: list
7828  *
7829  *	This function shuts down a device interface and removes it
7830  *	from the kernel tables.
7831  *	If head not NULL, device is queued to be unregistered later.
7832  *
7833  *	Callers must hold the rtnl semaphore.  You may want
7834  *	unregister_netdev() instead of this.
7835  */
7836 
7837 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
7838 {
7839 	ASSERT_RTNL();
7840 
7841 	if (head) {
7842 		list_move_tail(&dev->unreg_list, head);
7843 	} else {
7844 		rollback_registered(dev);
7845 		/* Finish processing unregister after unlock */
7846 		net_set_todo(dev);
7847 	}
7848 }
7849 EXPORT_SYMBOL(unregister_netdevice_queue);
7850 
7851 /**
7852  *	unregister_netdevice_many - unregister many devices
7853  *	@head: list of devices
7854  *
7855  *  Note: As most callers use a stack allocated list_head,
7856  *  we force a list_del() to make sure stack wont be corrupted later.
7857  */
7858 void unregister_netdevice_many(struct list_head *head)
7859 {
7860 	struct net_device *dev;
7861 
7862 	if (!list_empty(head)) {
7863 		rollback_registered_many(head);
7864 		list_for_each_entry(dev, head, unreg_list)
7865 			net_set_todo(dev);
7866 		list_del(head);
7867 	}
7868 }
7869 EXPORT_SYMBOL(unregister_netdevice_many);
7870 
7871 /**
7872  *	unregister_netdev - remove device from the kernel
7873  *	@dev: device
7874  *
7875  *	This function shuts down a device interface and removes it
7876  *	from the kernel tables.
7877  *
7878  *	This is just a wrapper for unregister_netdevice that takes
7879  *	the rtnl semaphore.  In general you want to use this and not
7880  *	unregister_netdevice.
7881  */
7882 void unregister_netdev(struct net_device *dev)
7883 {
7884 	rtnl_lock();
7885 	unregister_netdevice(dev);
7886 	rtnl_unlock();
7887 }
7888 EXPORT_SYMBOL(unregister_netdev);
7889 
7890 /**
7891  *	dev_change_net_namespace - move device to different nethost namespace
7892  *	@dev: device
7893  *	@net: network namespace
7894  *	@pat: If not NULL name pattern to try if the current device name
7895  *	      is already taken in the destination network namespace.
7896  *
7897  *	This function shuts down a device interface and moves it
7898  *	to a new network namespace. On success 0 is returned, on
7899  *	a failure a netagive errno code is returned.
7900  *
7901  *	Callers must hold the rtnl semaphore.
7902  */
7903 
7904 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7905 {
7906 	int err;
7907 
7908 	ASSERT_RTNL();
7909 
7910 	/* Don't allow namespace local devices to be moved. */
7911 	err = -EINVAL;
7912 	if (dev->features & NETIF_F_NETNS_LOCAL)
7913 		goto out;
7914 
7915 	/* Ensure the device has been registrered */
7916 	if (dev->reg_state != NETREG_REGISTERED)
7917 		goto out;
7918 
7919 	/* Get out if there is nothing todo */
7920 	err = 0;
7921 	if (net_eq(dev_net(dev), net))
7922 		goto out;
7923 
7924 	/* Pick the destination device name, and ensure
7925 	 * we can use it in the destination network namespace.
7926 	 */
7927 	err = -EEXIST;
7928 	if (__dev_get_by_name(net, dev->name)) {
7929 		/* We get here if we can't use the current device name */
7930 		if (!pat)
7931 			goto out;
7932 		if (dev_get_valid_name(net, dev, pat) < 0)
7933 			goto out;
7934 	}
7935 
7936 	/*
7937 	 * And now a mini version of register_netdevice unregister_netdevice.
7938 	 */
7939 
7940 	/* If device is running close it first. */
7941 	dev_close(dev);
7942 
7943 	/* And unlink it from device chain */
7944 	err = -ENODEV;
7945 	unlist_netdevice(dev);
7946 
7947 	synchronize_net();
7948 
7949 	/* Shutdown queueing discipline. */
7950 	dev_shutdown(dev);
7951 
7952 	/* Notify protocols, that we are about to destroy
7953 	   this device. They should clean all the things.
7954 
7955 	   Note that dev->reg_state stays at NETREG_REGISTERED.
7956 	   This is wanted because this way 8021q and macvlan know
7957 	   the device is just moving and can keep their slaves up.
7958 	*/
7959 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7960 	rcu_barrier();
7961 	call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7962 	rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7963 
7964 	/*
7965 	 *	Flush the unicast and multicast chains
7966 	 */
7967 	dev_uc_flush(dev);
7968 	dev_mc_flush(dev);
7969 
7970 	/* Send a netdev-removed uevent to the old namespace */
7971 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7972 	netdev_adjacent_del_links(dev);
7973 
7974 	/* Actually switch the network namespace */
7975 	dev_net_set(dev, net);
7976 
7977 	/* If there is an ifindex conflict assign a new one */
7978 	if (__dev_get_by_index(net, dev->ifindex))
7979 		dev->ifindex = dev_new_index(net);
7980 
7981 	/* Send a netdev-add uevent to the new namespace */
7982 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7983 	netdev_adjacent_add_links(dev);
7984 
7985 	/* Fixup kobjects */
7986 	err = device_rename(&dev->dev, dev->name);
7987 	WARN_ON(err);
7988 
7989 	/* Add the device back in the hashes */
7990 	list_netdevice(dev);
7991 
7992 	/* Notify protocols, that a new device appeared. */
7993 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
7994 
7995 	/*
7996 	 *	Prevent userspace races by waiting until the network
7997 	 *	device is fully setup before sending notifications.
7998 	 */
7999 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8000 
8001 	synchronize_net();
8002 	err = 0;
8003 out:
8004 	return err;
8005 }
8006 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
8007 
8008 static int dev_cpu_dead(unsigned int oldcpu)
8009 {
8010 	struct sk_buff **list_skb;
8011 	struct sk_buff *skb;
8012 	unsigned int cpu;
8013 	struct softnet_data *sd, *oldsd;
8014 
8015 	local_irq_disable();
8016 	cpu = smp_processor_id();
8017 	sd = &per_cpu(softnet_data, cpu);
8018 	oldsd = &per_cpu(softnet_data, oldcpu);
8019 
8020 	/* Find end of our completion_queue. */
8021 	list_skb = &sd->completion_queue;
8022 	while (*list_skb)
8023 		list_skb = &(*list_skb)->next;
8024 	/* Append completion queue from offline CPU. */
8025 	*list_skb = oldsd->completion_queue;
8026 	oldsd->completion_queue = NULL;
8027 
8028 	/* Append output queue from offline CPU. */
8029 	if (oldsd->output_queue) {
8030 		*sd->output_queue_tailp = oldsd->output_queue;
8031 		sd->output_queue_tailp = oldsd->output_queue_tailp;
8032 		oldsd->output_queue = NULL;
8033 		oldsd->output_queue_tailp = &oldsd->output_queue;
8034 	}
8035 	/* Append NAPI poll list from offline CPU, with one exception :
8036 	 * process_backlog() must be called by cpu owning percpu backlog.
8037 	 * We properly handle process_queue & input_pkt_queue later.
8038 	 */
8039 	while (!list_empty(&oldsd->poll_list)) {
8040 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
8041 							    struct napi_struct,
8042 							    poll_list);
8043 
8044 		list_del_init(&napi->poll_list);
8045 		if (napi->poll == process_backlog)
8046 			napi->state = 0;
8047 		else
8048 			____napi_schedule(sd, napi);
8049 	}
8050 
8051 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
8052 	local_irq_enable();
8053 
8054 	/* Process offline CPU's input_pkt_queue */
8055 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
8056 		netif_rx_ni(skb);
8057 		input_queue_head_incr(oldsd);
8058 	}
8059 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
8060 		netif_rx_ni(skb);
8061 		input_queue_head_incr(oldsd);
8062 	}
8063 
8064 	return 0;
8065 }
8066 
8067 /**
8068  *	netdev_increment_features - increment feature set by one
8069  *	@all: current feature set
8070  *	@one: new feature set
8071  *	@mask: mask feature set
8072  *
8073  *	Computes a new feature set after adding a device with feature set
8074  *	@one to the master device with current feature set @all.  Will not
8075  *	enable anything that is off in @mask. Returns the new feature set.
8076  */
8077 netdev_features_t netdev_increment_features(netdev_features_t all,
8078 	netdev_features_t one, netdev_features_t mask)
8079 {
8080 	if (mask & NETIF_F_HW_CSUM)
8081 		mask |= NETIF_F_CSUM_MASK;
8082 	mask |= NETIF_F_VLAN_CHALLENGED;
8083 
8084 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
8085 	all &= one | ~NETIF_F_ALL_FOR_ALL;
8086 
8087 	/* If one device supports hw checksumming, set for all. */
8088 	if (all & NETIF_F_HW_CSUM)
8089 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
8090 
8091 	return all;
8092 }
8093 EXPORT_SYMBOL(netdev_increment_features);
8094 
8095 static struct hlist_head * __net_init netdev_create_hash(void)
8096 {
8097 	int i;
8098 	struct hlist_head *hash;
8099 
8100 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8101 	if (hash != NULL)
8102 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
8103 			INIT_HLIST_HEAD(&hash[i]);
8104 
8105 	return hash;
8106 }
8107 
8108 /* Initialize per network namespace state */
8109 static int __net_init netdev_init(struct net *net)
8110 {
8111 	if (net != &init_net)
8112 		INIT_LIST_HEAD(&net->dev_base_head);
8113 
8114 	net->dev_name_head = netdev_create_hash();
8115 	if (net->dev_name_head == NULL)
8116 		goto err_name;
8117 
8118 	net->dev_index_head = netdev_create_hash();
8119 	if (net->dev_index_head == NULL)
8120 		goto err_idx;
8121 
8122 	return 0;
8123 
8124 err_idx:
8125 	kfree(net->dev_name_head);
8126 err_name:
8127 	return -ENOMEM;
8128 }
8129 
8130 /**
8131  *	netdev_drivername - network driver for the device
8132  *	@dev: network device
8133  *
8134  *	Determine network driver for device.
8135  */
8136 const char *netdev_drivername(const struct net_device *dev)
8137 {
8138 	const struct device_driver *driver;
8139 	const struct device *parent;
8140 	const char *empty = "";
8141 
8142 	parent = dev->dev.parent;
8143 	if (!parent)
8144 		return empty;
8145 
8146 	driver = parent->driver;
8147 	if (driver && driver->name)
8148 		return driver->name;
8149 	return empty;
8150 }
8151 
8152 static void __netdev_printk(const char *level, const struct net_device *dev,
8153 			    struct va_format *vaf)
8154 {
8155 	if (dev && dev->dev.parent) {
8156 		dev_printk_emit(level[1] - '0',
8157 				dev->dev.parent,
8158 				"%s %s %s%s: %pV",
8159 				dev_driver_string(dev->dev.parent),
8160 				dev_name(dev->dev.parent),
8161 				netdev_name(dev), netdev_reg_state(dev),
8162 				vaf);
8163 	} else if (dev) {
8164 		printk("%s%s%s: %pV",
8165 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
8166 	} else {
8167 		printk("%s(NULL net_device): %pV", level, vaf);
8168 	}
8169 }
8170 
8171 void netdev_printk(const char *level, const struct net_device *dev,
8172 		   const char *format, ...)
8173 {
8174 	struct va_format vaf;
8175 	va_list args;
8176 
8177 	va_start(args, format);
8178 
8179 	vaf.fmt = format;
8180 	vaf.va = &args;
8181 
8182 	__netdev_printk(level, dev, &vaf);
8183 
8184 	va_end(args);
8185 }
8186 EXPORT_SYMBOL(netdev_printk);
8187 
8188 #define define_netdev_printk_level(func, level)			\
8189 void func(const struct net_device *dev, const char *fmt, ...)	\
8190 {								\
8191 	struct va_format vaf;					\
8192 	va_list args;						\
8193 								\
8194 	va_start(args, fmt);					\
8195 								\
8196 	vaf.fmt = fmt;						\
8197 	vaf.va = &args;						\
8198 								\
8199 	__netdev_printk(level, dev, &vaf);			\
8200 								\
8201 	va_end(args);						\
8202 }								\
8203 EXPORT_SYMBOL(func);
8204 
8205 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8206 define_netdev_printk_level(netdev_alert, KERN_ALERT);
8207 define_netdev_printk_level(netdev_crit, KERN_CRIT);
8208 define_netdev_printk_level(netdev_err, KERN_ERR);
8209 define_netdev_printk_level(netdev_warn, KERN_WARNING);
8210 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8211 define_netdev_printk_level(netdev_info, KERN_INFO);
8212 
8213 static void __net_exit netdev_exit(struct net *net)
8214 {
8215 	kfree(net->dev_name_head);
8216 	kfree(net->dev_index_head);
8217 }
8218 
8219 static struct pernet_operations __net_initdata netdev_net_ops = {
8220 	.init = netdev_init,
8221 	.exit = netdev_exit,
8222 };
8223 
8224 static void __net_exit default_device_exit(struct net *net)
8225 {
8226 	struct net_device *dev, *aux;
8227 	/*
8228 	 * Push all migratable network devices back to the
8229 	 * initial network namespace
8230 	 */
8231 	rtnl_lock();
8232 	for_each_netdev_safe(net, dev, aux) {
8233 		int err;
8234 		char fb_name[IFNAMSIZ];
8235 
8236 		/* Ignore unmoveable devices (i.e. loopback) */
8237 		if (dev->features & NETIF_F_NETNS_LOCAL)
8238 			continue;
8239 
8240 		/* Leave virtual devices for the generic cleanup */
8241 		if (dev->rtnl_link_ops)
8242 			continue;
8243 
8244 		/* Push remaining network devices to init_net */
8245 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8246 		err = dev_change_net_namespace(dev, &init_net, fb_name);
8247 		if (err) {
8248 			pr_emerg("%s: failed to move %s to init_net: %d\n",
8249 				 __func__, dev->name, err);
8250 			BUG();
8251 		}
8252 	}
8253 	rtnl_unlock();
8254 }
8255 
8256 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8257 {
8258 	/* Return with the rtnl_lock held when there are no network
8259 	 * devices unregistering in any network namespace in net_list.
8260 	 */
8261 	struct net *net;
8262 	bool unregistering;
8263 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
8264 
8265 	add_wait_queue(&netdev_unregistering_wq, &wait);
8266 	for (;;) {
8267 		unregistering = false;
8268 		rtnl_lock();
8269 		list_for_each_entry(net, net_list, exit_list) {
8270 			if (net->dev_unreg_count > 0) {
8271 				unregistering = true;
8272 				break;
8273 			}
8274 		}
8275 		if (!unregistering)
8276 			break;
8277 		__rtnl_unlock();
8278 
8279 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8280 	}
8281 	remove_wait_queue(&netdev_unregistering_wq, &wait);
8282 }
8283 
8284 static void __net_exit default_device_exit_batch(struct list_head *net_list)
8285 {
8286 	/* At exit all network devices most be removed from a network
8287 	 * namespace.  Do this in the reverse order of registration.
8288 	 * Do this across as many network namespaces as possible to
8289 	 * improve batching efficiency.
8290 	 */
8291 	struct net_device *dev;
8292 	struct net *net;
8293 	LIST_HEAD(dev_kill_list);
8294 
8295 	/* To prevent network device cleanup code from dereferencing
8296 	 * loopback devices or network devices that have been freed
8297 	 * wait here for all pending unregistrations to complete,
8298 	 * before unregistring the loopback device and allowing the
8299 	 * network namespace be freed.
8300 	 *
8301 	 * The netdev todo list containing all network devices
8302 	 * unregistrations that happen in default_device_exit_batch
8303 	 * will run in the rtnl_unlock() at the end of
8304 	 * default_device_exit_batch.
8305 	 */
8306 	rtnl_lock_unregistering(net_list);
8307 	list_for_each_entry(net, net_list, exit_list) {
8308 		for_each_netdev_reverse(net, dev) {
8309 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8310 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8311 			else
8312 				unregister_netdevice_queue(dev, &dev_kill_list);
8313 		}
8314 	}
8315 	unregister_netdevice_many(&dev_kill_list);
8316 	rtnl_unlock();
8317 }
8318 
8319 static struct pernet_operations __net_initdata default_device_ops = {
8320 	.exit = default_device_exit,
8321 	.exit_batch = default_device_exit_batch,
8322 };
8323 
8324 /*
8325  *	Initialize the DEV module. At boot time this walks the device list and
8326  *	unhooks any devices that fail to initialise (normally hardware not
8327  *	present) and leaves us with a valid list of present and active devices.
8328  *
8329  */
8330 
8331 /*
8332  *       This is called single threaded during boot, so no need
8333  *       to take the rtnl semaphore.
8334  */
8335 static int __init net_dev_init(void)
8336 {
8337 	int i, rc = -ENOMEM;
8338 
8339 	BUG_ON(!dev_boot_phase);
8340 
8341 	if (dev_proc_init())
8342 		goto out;
8343 
8344 	if (netdev_kobject_init())
8345 		goto out;
8346 
8347 	INIT_LIST_HEAD(&ptype_all);
8348 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
8349 		INIT_LIST_HEAD(&ptype_base[i]);
8350 
8351 	INIT_LIST_HEAD(&offload_base);
8352 
8353 	if (register_pernet_subsys(&netdev_net_ops))
8354 		goto out;
8355 
8356 	/*
8357 	 *	Initialise the packet receive queues.
8358 	 */
8359 
8360 	for_each_possible_cpu(i) {
8361 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
8362 		struct softnet_data *sd = &per_cpu(softnet_data, i);
8363 
8364 		INIT_WORK(flush, flush_backlog);
8365 
8366 		skb_queue_head_init(&sd->input_pkt_queue);
8367 		skb_queue_head_init(&sd->process_queue);
8368 		INIT_LIST_HEAD(&sd->poll_list);
8369 		sd->output_queue_tailp = &sd->output_queue;
8370 #ifdef CONFIG_RPS
8371 		sd->csd.func = rps_trigger_softirq;
8372 		sd->csd.info = sd;
8373 		sd->cpu = i;
8374 #endif
8375 
8376 		sd->backlog.poll = process_backlog;
8377 		sd->backlog.weight = weight_p;
8378 	}
8379 
8380 	dev_boot_phase = 0;
8381 
8382 	/* The loopback device is special if any other network devices
8383 	 * is present in a network namespace the loopback device must
8384 	 * be present. Since we now dynamically allocate and free the
8385 	 * loopback device ensure this invariant is maintained by
8386 	 * keeping the loopback device as the first device on the
8387 	 * list of network devices.  Ensuring the loopback devices
8388 	 * is the first device that appears and the last network device
8389 	 * that disappears.
8390 	 */
8391 	if (register_pernet_device(&loopback_net_ops))
8392 		goto out;
8393 
8394 	if (register_pernet_device(&default_device_ops))
8395 		goto out;
8396 
8397 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8398 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
8399 
8400 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
8401 				       NULL, dev_cpu_dead);
8402 	WARN_ON(rc < 0);
8403 	dst_subsys_init();
8404 	rc = 0;
8405 out:
8406 	return rc;
8407 }
8408 
8409 subsys_initcall(net_dev_init);
8410