xref: /linux/net/core/dev.c (revision 65d2dbb300197839eafc4171cfeb57a14c452724)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <linux/inetdevice.h>
135 #include <linux/cpu_rmap.h>
136 #include <linux/static_key.h>
137 #include <linux/hashtable.h>
138 #include <linux/vmalloc.h>
139 #include <linux/if_macvlan.h>
140 #include <linux/errqueue.h>
141 #include <linux/hrtimer.h>
142 #include <linux/netfilter_ingress.h>
143 #include <linux/crash_dump.h>
144 #include <linux/sctp.h>
145 #include <net/udp_tunnel.h>
146 #include <linux/net_namespace.h>
147 #include <linux/indirect_call_wrapper.h>
148 #include <net/devlink.h>
149 #include <linux/pm_runtime.h>
150 #include <linux/prandom.h>
151 
152 #include "net-sysfs.h"
153 
154 #define MAX_GRO_SKBS 8
155 
156 /* This should be increased if a protocol with a bigger head is added. */
157 #define GRO_MAX_HEAD (MAX_HEADER + 128)
158 
159 static DEFINE_SPINLOCK(ptype_lock);
160 static DEFINE_SPINLOCK(offload_lock);
161 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
162 struct list_head ptype_all __read_mostly;	/* Taps */
163 static struct list_head offload_base __read_mostly;
164 
165 static int netif_rx_internal(struct sk_buff *skb);
166 static int call_netdevice_notifiers_info(unsigned long val,
167 					 struct netdev_notifier_info *info);
168 static int call_netdevice_notifiers_extack(unsigned long val,
169 					   struct net_device *dev,
170 					   struct netlink_ext_ack *extack);
171 static struct napi_struct *napi_by_id(unsigned int napi_id);
172 
173 /*
174  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
175  * semaphore.
176  *
177  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
178  *
179  * Writers must hold the rtnl semaphore while they loop through the
180  * dev_base_head list, and hold dev_base_lock for writing when they do the
181  * actual updates.  This allows pure readers to access the list even
182  * while a writer is preparing to update it.
183  *
184  * To put it another way, dev_base_lock is held for writing only to
185  * protect against pure readers; the rtnl semaphore provides the
186  * protection against other writers.
187  *
188  * See, for example usages, register_netdevice() and
189  * unregister_netdevice(), which must be called with the rtnl
190  * semaphore held.
191  */
192 DEFINE_RWLOCK(dev_base_lock);
193 EXPORT_SYMBOL(dev_base_lock);
194 
195 static DEFINE_MUTEX(ifalias_mutex);
196 
197 /* protects napi_hash addition/deletion and napi_gen_id */
198 static DEFINE_SPINLOCK(napi_hash_lock);
199 
200 static unsigned int napi_gen_id = NR_CPUS;
201 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
202 
203 static DECLARE_RWSEM(devnet_rename_sem);
204 
205 static inline void dev_base_seq_inc(struct net *net)
206 {
207 	while (++net->dev_base_seq == 0)
208 		;
209 }
210 
211 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
212 {
213 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
214 
215 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
216 }
217 
218 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
219 {
220 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
221 }
222 
223 static inline void rps_lock(struct softnet_data *sd)
224 {
225 #ifdef CONFIG_RPS
226 	spin_lock(&sd->input_pkt_queue.lock);
227 #endif
228 }
229 
230 static inline void rps_unlock(struct softnet_data *sd)
231 {
232 #ifdef CONFIG_RPS
233 	spin_unlock(&sd->input_pkt_queue.lock);
234 #endif
235 }
236 
237 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
238 						       const char *name)
239 {
240 	struct netdev_name_node *name_node;
241 
242 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
243 	if (!name_node)
244 		return NULL;
245 	INIT_HLIST_NODE(&name_node->hlist);
246 	name_node->dev = dev;
247 	name_node->name = name;
248 	return name_node;
249 }
250 
251 static struct netdev_name_node *
252 netdev_name_node_head_alloc(struct net_device *dev)
253 {
254 	struct netdev_name_node *name_node;
255 
256 	name_node = netdev_name_node_alloc(dev, dev->name);
257 	if (!name_node)
258 		return NULL;
259 	INIT_LIST_HEAD(&name_node->list);
260 	return name_node;
261 }
262 
263 static void netdev_name_node_free(struct netdev_name_node *name_node)
264 {
265 	kfree(name_node);
266 }
267 
268 static void netdev_name_node_add(struct net *net,
269 				 struct netdev_name_node *name_node)
270 {
271 	hlist_add_head_rcu(&name_node->hlist,
272 			   dev_name_hash(net, name_node->name));
273 }
274 
275 static void netdev_name_node_del(struct netdev_name_node *name_node)
276 {
277 	hlist_del_rcu(&name_node->hlist);
278 }
279 
280 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
281 							const char *name)
282 {
283 	struct hlist_head *head = dev_name_hash(net, name);
284 	struct netdev_name_node *name_node;
285 
286 	hlist_for_each_entry(name_node, head, hlist)
287 		if (!strcmp(name_node->name, name))
288 			return name_node;
289 	return NULL;
290 }
291 
292 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
293 							    const char *name)
294 {
295 	struct hlist_head *head = dev_name_hash(net, name);
296 	struct netdev_name_node *name_node;
297 
298 	hlist_for_each_entry_rcu(name_node, head, hlist)
299 		if (!strcmp(name_node->name, name))
300 			return name_node;
301 	return NULL;
302 }
303 
304 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
305 {
306 	struct netdev_name_node *name_node;
307 	struct net *net = dev_net(dev);
308 
309 	name_node = netdev_name_node_lookup(net, name);
310 	if (name_node)
311 		return -EEXIST;
312 	name_node = netdev_name_node_alloc(dev, name);
313 	if (!name_node)
314 		return -ENOMEM;
315 	netdev_name_node_add(net, name_node);
316 	/* The node that holds dev->name acts as a head of per-device list. */
317 	list_add_tail(&name_node->list, &dev->name_node->list);
318 
319 	return 0;
320 }
321 EXPORT_SYMBOL(netdev_name_node_alt_create);
322 
323 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
324 {
325 	list_del(&name_node->list);
326 	netdev_name_node_del(name_node);
327 	kfree(name_node->name);
328 	netdev_name_node_free(name_node);
329 }
330 
331 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
332 {
333 	struct netdev_name_node *name_node;
334 	struct net *net = dev_net(dev);
335 
336 	name_node = netdev_name_node_lookup(net, name);
337 	if (!name_node)
338 		return -ENOENT;
339 	/* lookup might have found our primary name or a name belonging
340 	 * to another device.
341 	 */
342 	if (name_node == dev->name_node || name_node->dev != dev)
343 		return -EINVAL;
344 
345 	__netdev_name_node_alt_destroy(name_node);
346 
347 	return 0;
348 }
349 EXPORT_SYMBOL(netdev_name_node_alt_destroy);
350 
351 static void netdev_name_node_alt_flush(struct net_device *dev)
352 {
353 	struct netdev_name_node *name_node, *tmp;
354 
355 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
356 		__netdev_name_node_alt_destroy(name_node);
357 }
358 
359 /* Device list insertion */
360 static void list_netdevice(struct net_device *dev)
361 {
362 	struct net *net = dev_net(dev);
363 
364 	ASSERT_RTNL();
365 
366 	write_lock_bh(&dev_base_lock);
367 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
368 	netdev_name_node_add(net, dev->name_node);
369 	hlist_add_head_rcu(&dev->index_hlist,
370 			   dev_index_hash(net, dev->ifindex));
371 	write_unlock_bh(&dev_base_lock);
372 
373 	dev_base_seq_inc(net);
374 }
375 
376 /* Device list removal
377  * caller must respect a RCU grace period before freeing/reusing dev
378  */
379 static void unlist_netdevice(struct net_device *dev)
380 {
381 	ASSERT_RTNL();
382 
383 	/* Unlink dev from the device chain */
384 	write_lock_bh(&dev_base_lock);
385 	list_del_rcu(&dev->dev_list);
386 	netdev_name_node_del(dev->name_node);
387 	hlist_del_rcu(&dev->index_hlist);
388 	write_unlock_bh(&dev_base_lock);
389 
390 	dev_base_seq_inc(dev_net(dev));
391 }
392 
393 /*
394  *	Our notifier list
395  */
396 
397 static RAW_NOTIFIER_HEAD(netdev_chain);
398 
399 /*
400  *	Device drivers call our routines to queue packets here. We empty the
401  *	queue in the local softnet handler.
402  */
403 
404 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
405 EXPORT_PER_CPU_SYMBOL(softnet_data);
406 
407 #ifdef CONFIG_LOCKDEP
408 /*
409  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
410  * according to dev->type
411  */
412 static const unsigned short netdev_lock_type[] = {
413 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
414 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
415 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
416 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
417 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
418 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
419 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
420 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
421 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
422 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
423 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
424 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
425 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
426 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
427 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
428 
429 static const char *const netdev_lock_name[] = {
430 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
431 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
432 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
433 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
434 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
435 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
436 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
437 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
438 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
439 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
440 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
441 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
442 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
443 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
444 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
445 
446 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
447 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
448 
449 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
450 {
451 	int i;
452 
453 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
454 		if (netdev_lock_type[i] == dev_type)
455 			return i;
456 	/* the last key is used by default */
457 	return ARRAY_SIZE(netdev_lock_type) - 1;
458 }
459 
460 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
461 						 unsigned short dev_type)
462 {
463 	int i;
464 
465 	i = netdev_lock_pos(dev_type);
466 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
467 				   netdev_lock_name[i]);
468 }
469 
470 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
471 {
472 	int i;
473 
474 	i = netdev_lock_pos(dev->type);
475 	lockdep_set_class_and_name(&dev->addr_list_lock,
476 				   &netdev_addr_lock_key[i],
477 				   netdev_lock_name[i]);
478 }
479 #else
480 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
481 						 unsigned short dev_type)
482 {
483 }
484 
485 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
486 {
487 }
488 #endif
489 
490 /*******************************************************************************
491  *
492  *		Protocol management and registration routines
493  *
494  *******************************************************************************/
495 
496 
497 /*
498  *	Add a protocol ID to the list. Now that the input handler is
499  *	smarter we can dispense with all the messy stuff that used to be
500  *	here.
501  *
502  *	BEWARE!!! Protocol handlers, mangling input packets,
503  *	MUST BE last in hash buckets and checking protocol handlers
504  *	MUST start from promiscuous ptype_all chain in net_bh.
505  *	It is true now, do not change it.
506  *	Explanation follows: if protocol handler, mangling packet, will
507  *	be the first on list, it is not able to sense, that packet
508  *	is cloned and should be copied-on-write, so that it will
509  *	change it and subsequent readers will get broken packet.
510  *							--ANK (980803)
511  */
512 
513 static inline struct list_head *ptype_head(const struct packet_type *pt)
514 {
515 	if (pt->type == htons(ETH_P_ALL))
516 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
517 	else
518 		return pt->dev ? &pt->dev->ptype_specific :
519 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
520 }
521 
522 /**
523  *	dev_add_pack - add packet handler
524  *	@pt: packet type declaration
525  *
526  *	Add a protocol handler to the networking stack. The passed &packet_type
527  *	is linked into kernel lists and may not be freed until it has been
528  *	removed from the kernel lists.
529  *
530  *	This call does not sleep therefore it can not
531  *	guarantee all CPU's that are in middle of receiving packets
532  *	will see the new packet type (until the next received packet).
533  */
534 
535 void dev_add_pack(struct packet_type *pt)
536 {
537 	struct list_head *head = ptype_head(pt);
538 
539 	spin_lock(&ptype_lock);
540 	list_add_rcu(&pt->list, head);
541 	spin_unlock(&ptype_lock);
542 }
543 EXPORT_SYMBOL(dev_add_pack);
544 
545 /**
546  *	__dev_remove_pack	 - remove packet handler
547  *	@pt: packet type declaration
548  *
549  *	Remove a protocol handler that was previously added to the kernel
550  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
551  *	from the kernel lists and can be freed or reused once this function
552  *	returns.
553  *
554  *      The packet type might still be in use by receivers
555  *	and must not be freed until after all the CPU's have gone
556  *	through a quiescent state.
557  */
558 void __dev_remove_pack(struct packet_type *pt)
559 {
560 	struct list_head *head = ptype_head(pt);
561 	struct packet_type *pt1;
562 
563 	spin_lock(&ptype_lock);
564 
565 	list_for_each_entry(pt1, head, list) {
566 		if (pt == pt1) {
567 			list_del_rcu(&pt->list);
568 			goto out;
569 		}
570 	}
571 
572 	pr_warn("dev_remove_pack: %p not found\n", pt);
573 out:
574 	spin_unlock(&ptype_lock);
575 }
576 EXPORT_SYMBOL(__dev_remove_pack);
577 
578 /**
579  *	dev_remove_pack	 - remove packet handler
580  *	@pt: packet type declaration
581  *
582  *	Remove a protocol handler that was previously added to the kernel
583  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
584  *	from the kernel lists and can be freed or reused once this function
585  *	returns.
586  *
587  *	This call sleeps to guarantee that no CPU is looking at the packet
588  *	type after return.
589  */
590 void dev_remove_pack(struct packet_type *pt)
591 {
592 	__dev_remove_pack(pt);
593 
594 	synchronize_net();
595 }
596 EXPORT_SYMBOL(dev_remove_pack);
597 
598 
599 /**
600  *	dev_add_offload - register offload handlers
601  *	@po: protocol offload declaration
602  *
603  *	Add protocol offload handlers to the networking stack. The passed
604  *	&proto_offload is linked into kernel lists and may not be freed until
605  *	it has been removed from the kernel lists.
606  *
607  *	This call does not sleep therefore it can not
608  *	guarantee all CPU's that are in middle of receiving packets
609  *	will see the new offload handlers (until the next received packet).
610  */
611 void dev_add_offload(struct packet_offload *po)
612 {
613 	struct packet_offload *elem;
614 
615 	spin_lock(&offload_lock);
616 	list_for_each_entry(elem, &offload_base, list) {
617 		if (po->priority < elem->priority)
618 			break;
619 	}
620 	list_add_rcu(&po->list, elem->list.prev);
621 	spin_unlock(&offload_lock);
622 }
623 EXPORT_SYMBOL(dev_add_offload);
624 
625 /**
626  *	__dev_remove_offload	 - remove offload handler
627  *	@po: packet offload declaration
628  *
629  *	Remove a protocol offload handler that was previously added to the
630  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
631  *	is removed from the kernel lists and can be freed or reused once this
632  *	function returns.
633  *
634  *      The packet type might still be in use by receivers
635  *	and must not be freed until after all the CPU's have gone
636  *	through a quiescent state.
637  */
638 static void __dev_remove_offload(struct packet_offload *po)
639 {
640 	struct list_head *head = &offload_base;
641 	struct packet_offload *po1;
642 
643 	spin_lock(&offload_lock);
644 
645 	list_for_each_entry(po1, head, list) {
646 		if (po == po1) {
647 			list_del_rcu(&po->list);
648 			goto out;
649 		}
650 	}
651 
652 	pr_warn("dev_remove_offload: %p not found\n", po);
653 out:
654 	spin_unlock(&offload_lock);
655 }
656 
657 /**
658  *	dev_remove_offload	 - remove packet offload handler
659  *	@po: packet offload declaration
660  *
661  *	Remove a packet offload handler that was previously added to the kernel
662  *	offload handlers by dev_add_offload(). The passed &offload_type is
663  *	removed from the kernel lists and can be freed or reused once this
664  *	function returns.
665  *
666  *	This call sleeps to guarantee that no CPU is looking at the packet
667  *	type after return.
668  */
669 void dev_remove_offload(struct packet_offload *po)
670 {
671 	__dev_remove_offload(po);
672 
673 	synchronize_net();
674 }
675 EXPORT_SYMBOL(dev_remove_offload);
676 
677 /******************************************************************************
678  *
679  *		      Device Boot-time Settings Routines
680  *
681  ******************************************************************************/
682 
683 /* Boot time configuration table */
684 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
685 
686 /**
687  *	netdev_boot_setup_add	- add new setup entry
688  *	@name: name of the device
689  *	@map: configured settings for the device
690  *
691  *	Adds new setup entry to the dev_boot_setup list.  The function
692  *	returns 0 on error and 1 on success.  This is a generic routine to
693  *	all netdevices.
694  */
695 static int netdev_boot_setup_add(char *name, struct ifmap *map)
696 {
697 	struct netdev_boot_setup *s;
698 	int i;
699 
700 	s = dev_boot_setup;
701 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
702 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
703 			memset(s[i].name, 0, sizeof(s[i].name));
704 			strlcpy(s[i].name, name, IFNAMSIZ);
705 			memcpy(&s[i].map, map, sizeof(s[i].map));
706 			break;
707 		}
708 	}
709 
710 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
711 }
712 
713 /**
714  * netdev_boot_setup_check	- check boot time settings
715  * @dev: the netdevice
716  *
717  * Check boot time settings for the device.
718  * The found settings are set for the device to be used
719  * later in the device probing.
720  * Returns 0 if no settings found, 1 if they are.
721  */
722 int netdev_boot_setup_check(struct net_device *dev)
723 {
724 	struct netdev_boot_setup *s = dev_boot_setup;
725 	int i;
726 
727 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
728 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
729 		    !strcmp(dev->name, s[i].name)) {
730 			dev->irq = s[i].map.irq;
731 			dev->base_addr = s[i].map.base_addr;
732 			dev->mem_start = s[i].map.mem_start;
733 			dev->mem_end = s[i].map.mem_end;
734 			return 1;
735 		}
736 	}
737 	return 0;
738 }
739 EXPORT_SYMBOL(netdev_boot_setup_check);
740 
741 
742 /**
743  * netdev_boot_base	- get address from boot time settings
744  * @prefix: prefix for network device
745  * @unit: id for network device
746  *
747  * Check boot time settings for the base address of device.
748  * The found settings are set for the device to be used
749  * later in the device probing.
750  * Returns 0 if no settings found.
751  */
752 unsigned long netdev_boot_base(const char *prefix, int unit)
753 {
754 	const struct netdev_boot_setup *s = dev_boot_setup;
755 	char name[IFNAMSIZ];
756 	int i;
757 
758 	sprintf(name, "%s%d", prefix, unit);
759 
760 	/*
761 	 * If device already registered then return base of 1
762 	 * to indicate not to probe for this interface
763 	 */
764 	if (__dev_get_by_name(&init_net, name))
765 		return 1;
766 
767 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
768 		if (!strcmp(name, s[i].name))
769 			return s[i].map.base_addr;
770 	return 0;
771 }
772 
773 /*
774  * Saves at boot time configured settings for any netdevice.
775  */
776 int __init netdev_boot_setup(char *str)
777 {
778 	int ints[5];
779 	struct ifmap map;
780 
781 	str = get_options(str, ARRAY_SIZE(ints), ints);
782 	if (!str || !*str)
783 		return 0;
784 
785 	/* Save settings */
786 	memset(&map, 0, sizeof(map));
787 	if (ints[0] > 0)
788 		map.irq = ints[1];
789 	if (ints[0] > 1)
790 		map.base_addr = ints[2];
791 	if (ints[0] > 2)
792 		map.mem_start = ints[3];
793 	if (ints[0] > 3)
794 		map.mem_end = ints[4];
795 
796 	/* Add new entry to the list */
797 	return netdev_boot_setup_add(str, &map);
798 }
799 
800 __setup("netdev=", netdev_boot_setup);
801 
802 /*******************************************************************************
803  *
804  *			    Device Interface Subroutines
805  *
806  *******************************************************************************/
807 
808 /**
809  *	dev_get_iflink	- get 'iflink' value of a interface
810  *	@dev: targeted interface
811  *
812  *	Indicates the ifindex the interface is linked to.
813  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
814  */
815 
816 int dev_get_iflink(const struct net_device *dev)
817 {
818 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
819 		return dev->netdev_ops->ndo_get_iflink(dev);
820 
821 	return dev->ifindex;
822 }
823 EXPORT_SYMBOL(dev_get_iflink);
824 
825 /**
826  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
827  *	@dev: targeted interface
828  *	@skb: The packet.
829  *
830  *	For better visibility of tunnel traffic OVS needs to retrieve
831  *	egress tunnel information for a packet. Following API allows
832  *	user to get this info.
833  */
834 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
835 {
836 	struct ip_tunnel_info *info;
837 
838 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
839 		return -EINVAL;
840 
841 	info = skb_tunnel_info_unclone(skb);
842 	if (!info)
843 		return -ENOMEM;
844 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
845 		return -EINVAL;
846 
847 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
848 }
849 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
850 
851 /**
852  *	__dev_get_by_name	- find a device by its name
853  *	@net: the applicable net namespace
854  *	@name: name to find
855  *
856  *	Find an interface by name. Must be called under RTNL semaphore
857  *	or @dev_base_lock. If the name is found a pointer to the device
858  *	is returned. If the name is not found then %NULL is returned. The
859  *	reference counters are not incremented so the caller must be
860  *	careful with locks.
861  */
862 
863 struct net_device *__dev_get_by_name(struct net *net, const char *name)
864 {
865 	struct netdev_name_node *node_name;
866 
867 	node_name = netdev_name_node_lookup(net, name);
868 	return node_name ? node_name->dev : NULL;
869 }
870 EXPORT_SYMBOL(__dev_get_by_name);
871 
872 /**
873  * dev_get_by_name_rcu	- find a device by its name
874  * @net: the applicable net namespace
875  * @name: name to find
876  *
877  * Find an interface by name.
878  * If the name is found a pointer to the device is returned.
879  * If the name is not found then %NULL is returned.
880  * The reference counters are not incremented so the caller must be
881  * careful with locks. The caller must hold RCU lock.
882  */
883 
884 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
885 {
886 	struct netdev_name_node *node_name;
887 
888 	node_name = netdev_name_node_lookup_rcu(net, name);
889 	return node_name ? node_name->dev : NULL;
890 }
891 EXPORT_SYMBOL(dev_get_by_name_rcu);
892 
893 /**
894  *	dev_get_by_name		- find a device by its name
895  *	@net: the applicable net namespace
896  *	@name: name to find
897  *
898  *	Find an interface by name. This can be called from any
899  *	context and does its own locking. The returned handle has
900  *	the usage count incremented and the caller must use dev_put() to
901  *	release it when it is no longer needed. %NULL is returned if no
902  *	matching device is found.
903  */
904 
905 struct net_device *dev_get_by_name(struct net *net, const char *name)
906 {
907 	struct net_device *dev;
908 
909 	rcu_read_lock();
910 	dev = dev_get_by_name_rcu(net, name);
911 	if (dev)
912 		dev_hold(dev);
913 	rcu_read_unlock();
914 	return dev;
915 }
916 EXPORT_SYMBOL(dev_get_by_name);
917 
918 /**
919  *	__dev_get_by_index - find a device by its ifindex
920  *	@net: the applicable net namespace
921  *	@ifindex: index of device
922  *
923  *	Search for an interface by index. Returns %NULL if the device
924  *	is not found or a pointer to the device. The device has not
925  *	had its reference counter increased so the caller must be careful
926  *	about locking. The caller must hold either the RTNL semaphore
927  *	or @dev_base_lock.
928  */
929 
930 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
931 {
932 	struct net_device *dev;
933 	struct hlist_head *head = dev_index_hash(net, ifindex);
934 
935 	hlist_for_each_entry(dev, head, index_hlist)
936 		if (dev->ifindex == ifindex)
937 			return dev;
938 
939 	return NULL;
940 }
941 EXPORT_SYMBOL(__dev_get_by_index);
942 
943 /**
944  *	dev_get_by_index_rcu - find a device by its ifindex
945  *	@net: the applicable net namespace
946  *	@ifindex: index of device
947  *
948  *	Search for an interface by index. Returns %NULL if the device
949  *	is not found or a pointer to the device. The device has not
950  *	had its reference counter increased so the caller must be careful
951  *	about locking. The caller must hold RCU lock.
952  */
953 
954 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
955 {
956 	struct net_device *dev;
957 	struct hlist_head *head = dev_index_hash(net, ifindex);
958 
959 	hlist_for_each_entry_rcu(dev, head, index_hlist)
960 		if (dev->ifindex == ifindex)
961 			return dev;
962 
963 	return NULL;
964 }
965 EXPORT_SYMBOL(dev_get_by_index_rcu);
966 
967 
968 /**
969  *	dev_get_by_index - find a device by its ifindex
970  *	@net: the applicable net namespace
971  *	@ifindex: index of device
972  *
973  *	Search for an interface by index. Returns NULL if the device
974  *	is not found or a pointer to the device. The device returned has
975  *	had a reference added and the pointer is safe until the user calls
976  *	dev_put to indicate they have finished with it.
977  */
978 
979 struct net_device *dev_get_by_index(struct net *net, int ifindex)
980 {
981 	struct net_device *dev;
982 
983 	rcu_read_lock();
984 	dev = dev_get_by_index_rcu(net, ifindex);
985 	if (dev)
986 		dev_hold(dev);
987 	rcu_read_unlock();
988 	return dev;
989 }
990 EXPORT_SYMBOL(dev_get_by_index);
991 
992 /**
993  *	dev_get_by_napi_id - find a device by napi_id
994  *	@napi_id: ID of the NAPI struct
995  *
996  *	Search for an interface by NAPI ID. Returns %NULL if the device
997  *	is not found or a pointer to the device. The device has not had
998  *	its reference counter increased so the caller must be careful
999  *	about locking. The caller must hold RCU lock.
1000  */
1001 
1002 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
1003 {
1004 	struct napi_struct *napi;
1005 
1006 	WARN_ON_ONCE(!rcu_read_lock_held());
1007 
1008 	if (napi_id < MIN_NAPI_ID)
1009 		return NULL;
1010 
1011 	napi = napi_by_id(napi_id);
1012 
1013 	return napi ? napi->dev : NULL;
1014 }
1015 EXPORT_SYMBOL(dev_get_by_napi_id);
1016 
1017 /**
1018  *	netdev_get_name - get a netdevice name, knowing its ifindex.
1019  *	@net: network namespace
1020  *	@name: a pointer to the buffer where the name will be stored.
1021  *	@ifindex: the ifindex of the interface to get the name from.
1022  */
1023 int netdev_get_name(struct net *net, char *name, int ifindex)
1024 {
1025 	struct net_device *dev;
1026 	int ret;
1027 
1028 	down_read(&devnet_rename_sem);
1029 	rcu_read_lock();
1030 
1031 	dev = dev_get_by_index_rcu(net, ifindex);
1032 	if (!dev) {
1033 		ret = -ENODEV;
1034 		goto out;
1035 	}
1036 
1037 	strcpy(name, dev->name);
1038 
1039 	ret = 0;
1040 out:
1041 	rcu_read_unlock();
1042 	up_read(&devnet_rename_sem);
1043 	return ret;
1044 }
1045 
1046 /**
1047  *	dev_getbyhwaddr_rcu - find a device by its hardware address
1048  *	@net: the applicable net namespace
1049  *	@type: media type of device
1050  *	@ha: hardware address
1051  *
1052  *	Search for an interface by MAC address. Returns NULL if the device
1053  *	is not found or a pointer to the device.
1054  *	The caller must hold RCU or RTNL.
1055  *	The returned device has not had its ref count increased
1056  *	and the caller must therefore be careful about locking
1057  *
1058  */
1059 
1060 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1061 				       const char *ha)
1062 {
1063 	struct net_device *dev;
1064 
1065 	for_each_netdev_rcu(net, dev)
1066 		if (dev->type == type &&
1067 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
1068 			return dev;
1069 
1070 	return NULL;
1071 }
1072 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1073 
1074 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1075 {
1076 	struct net_device *dev, *ret = NULL;
1077 
1078 	rcu_read_lock();
1079 	for_each_netdev_rcu(net, dev)
1080 		if (dev->type == type) {
1081 			dev_hold(dev);
1082 			ret = dev;
1083 			break;
1084 		}
1085 	rcu_read_unlock();
1086 	return ret;
1087 }
1088 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1089 
1090 /**
1091  *	__dev_get_by_flags - find any device with given flags
1092  *	@net: the applicable net namespace
1093  *	@if_flags: IFF_* values
1094  *	@mask: bitmask of bits in if_flags to check
1095  *
1096  *	Search for any interface with the given flags. Returns NULL if a device
1097  *	is not found or a pointer to the device. Must be called inside
1098  *	rtnl_lock(), and result refcount is unchanged.
1099  */
1100 
1101 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1102 				      unsigned short mask)
1103 {
1104 	struct net_device *dev, *ret;
1105 
1106 	ASSERT_RTNL();
1107 
1108 	ret = NULL;
1109 	for_each_netdev(net, dev) {
1110 		if (((dev->flags ^ if_flags) & mask) == 0) {
1111 			ret = dev;
1112 			break;
1113 		}
1114 	}
1115 	return ret;
1116 }
1117 EXPORT_SYMBOL(__dev_get_by_flags);
1118 
1119 /**
1120  *	dev_valid_name - check if name is okay for network device
1121  *	@name: name string
1122  *
1123  *	Network device names need to be valid file names to
1124  *	allow sysfs to work.  We also disallow any kind of
1125  *	whitespace.
1126  */
1127 bool dev_valid_name(const char *name)
1128 {
1129 	if (*name == '\0')
1130 		return false;
1131 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1132 		return false;
1133 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1134 		return false;
1135 
1136 	while (*name) {
1137 		if (*name == '/' || *name == ':' || isspace(*name))
1138 			return false;
1139 		name++;
1140 	}
1141 	return true;
1142 }
1143 EXPORT_SYMBOL(dev_valid_name);
1144 
1145 /**
1146  *	__dev_alloc_name - allocate a name for a device
1147  *	@net: network namespace to allocate the device name in
1148  *	@name: name format string
1149  *	@buf:  scratch buffer and result name string
1150  *
1151  *	Passed a format string - eg "lt%d" it will try and find a suitable
1152  *	id. It scans list of devices to build up a free map, then chooses
1153  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1154  *	while allocating the name and adding the device in order to avoid
1155  *	duplicates.
1156  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1157  *	Returns the number of the unit assigned or a negative errno code.
1158  */
1159 
1160 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1161 {
1162 	int i = 0;
1163 	const char *p;
1164 	const int max_netdevices = 8*PAGE_SIZE;
1165 	unsigned long *inuse;
1166 	struct net_device *d;
1167 
1168 	if (!dev_valid_name(name))
1169 		return -EINVAL;
1170 
1171 	p = strchr(name, '%');
1172 	if (p) {
1173 		/*
1174 		 * Verify the string as this thing may have come from
1175 		 * the user.  There must be either one "%d" and no other "%"
1176 		 * characters.
1177 		 */
1178 		if (p[1] != 'd' || strchr(p + 2, '%'))
1179 			return -EINVAL;
1180 
1181 		/* Use one page as a bit array of possible slots */
1182 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1183 		if (!inuse)
1184 			return -ENOMEM;
1185 
1186 		for_each_netdev(net, d) {
1187 			if (!sscanf(d->name, name, &i))
1188 				continue;
1189 			if (i < 0 || i >= max_netdevices)
1190 				continue;
1191 
1192 			/*  avoid cases where sscanf is not exact inverse of printf */
1193 			snprintf(buf, IFNAMSIZ, name, i);
1194 			if (!strncmp(buf, d->name, IFNAMSIZ))
1195 				set_bit(i, inuse);
1196 		}
1197 
1198 		i = find_first_zero_bit(inuse, max_netdevices);
1199 		free_page((unsigned long) inuse);
1200 	}
1201 
1202 	snprintf(buf, IFNAMSIZ, name, i);
1203 	if (!__dev_get_by_name(net, buf))
1204 		return i;
1205 
1206 	/* It is possible to run out of possible slots
1207 	 * when the name is long and there isn't enough space left
1208 	 * for the digits, or if all bits are used.
1209 	 */
1210 	return -ENFILE;
1211 }
1212 
1213 static int dev_alloc_name_ns(struct net *net,
1214 			     struct net_device *dev,
1215 			     const char *name)
1216 {
1217 	char buf[IFNAMSIZ];
1218 	int ret;
1219 
1220 	BUG_ON(!net);
1221 	ret = __dev_alloc_name(net, name, buf);
1222 	if (ret >= 0)
1223 		strlcpy(dev->name, buf, IFNAMSIZ);
1224 	return ret;
1225 }
1226 
1227 /**
1228  *	dev_alloc_name - allocate a name for a device
1229  *	@dev: device
1230  *	@name: name format string
1231  *
1232  *	Passed a format string - eg "lt%d" it will try and find a suitable
1233  *	id. It scans list of devices to build up a free map, then chooses
1234  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1235  *	while allocating the name and adding the device in order to avoid
1236  *	duplicates.
1237  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1238  *	Returns the number of the unit assigned or a negative errno code.
1239  */
1240 
1241 int dev_alloc_name(struct net_device *dev, const char *name)
1242 {
1243 	return dev_alloc_name_ns(dev_net(dev), dev, name);
1244 }
1245 EXPORT_SYMBOL(dev_alloc_name);
1246 
1247 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1248 			      const char *name)
1249 {
1250 	BUG_ON(!net);
1251 
1252 	if (!dev_valid_name(name))
1253 		return -EINVAL;
1254 
1255 	if (strchr(name, '%'))
1256 		return dev_alloc_name_ns(net, dev, name);
1257 	else if (__dev_get_by_name(net, name))
1258 		return -EEXIST;
1259 	else if (dev->name != name)
1260 		strlcpy(dev->name, name, IFNAMSIZ);
1261 
1262 	return 0;
1263 }
1264 
1265 /**
1266  *	dev_change_name - change name of a device
1267  *	@dev: device
1268  *	@newname: name (or format string) must be at least IFNAMSIZ
1269  *
1270  *	Change name of a device, can pass format strings "eth%d".
1271  *	for wildcarding.
1272  */
1273 int dev_change_name(struct net_device *dev, const char *newname)
1274 {
1275 	unsigned char old_assign_type;
1276 	char oldname[IFNAMSIZ];
1277 	int err = 0;
1278 	int ret;
1279 	struct net *net;
1280 
1281 	ASSERT_RTNL();
1282 	BUG_ON(!dev_net(dev));
1283 
1284 	net = dev_net(dev);
1285 
1286 	/* Some auto-enslaved devices e.g. failover slaves are
1287 	 * special, as userspace might rename the device after
1288 	 * the interface had been brought up and running since
1289 	 * the point kernel initiated auto-enslavement. Allow
1290 	 * live name change even when these slave devices are
1291 	 * up and running.
1292 	 *
1293 	 * Typically, users of these auto-enslaving devices
1294 	 * don't actually care about slave name change, as
1295 	 * they are supposed to operate on master interface
1296 	 * directly.
1297 	 */
1298 	if (dev->flags & IFF_UP &&
1299 	    likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1300 		return -EBUSY;
1301 
1302 	down_write(&devnet_rename_sem);
1303 
1304 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1305 		up_write(&devnet_rename_sem);
1306 		return 0;
1307 	}
1308 
1309 	memcpy(oldname, dev->name, IFNAMSIZ);
1310 
1311 	err = dev_get_valid_name(net, dev, newname);
1312 	if (err < 0) {
1313 		up_write(&devnet_rename_sem);
1314 		return err;
1315 	}
1316 
1317 	if (oldname[0] && !strchr(oldname, '%'))
1318 		netdev_info(dev, "renamed from %s\n", oldname);
1319 
1320 	old_assign_type = dev->name_assign_type;
1321 	dev->name_assign_type = NET_NAME_RENAMED;
1322 
1323 rollback:
1324 	ret = device_rename(&dev->dev, dev->name);
1325 	if (ret) {
1326 		memcpy(dev->name, oldname, IFNAMSIZ);
1327 		dev->name_assign_type = old_assign_type;
1328 		up_write(&devnet_rename_sem);
1329 		return ret;
1330 	}
1331 
1332 	up_write(&devnet_rename_sem);
1333 
1334 	netdev_adjacent_rename_links(dev, oldname);
1335 
1336 	write_lock_bh(&dev_base_lock);
1337 	netdev_name_node_del(dev->name_node);
1338 	write_unlock_bh(&dev_base_lock);
1339 
1340 	synchronize_rcu();
1341 
1342 	write_lock_bh(&dev_base_lock);
1343 	netdev_name_node_add(net, dev->name_node);
1344 	write_unlock_bh(&dev_base_lock);
1345 
1346 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1347 	ret = notifier_to_errno(ret);
1348 
1349 	if (ret) {
1350 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1351 		if (err >= 0) {
1352 			err = ret;
1353 			down_write(&devnet_rename_sem);
1354 			memcpy(dev->name, oldname, IFNAMSIZ);
1355 			memcpy(oldname, newname, IFNAMSIZ);
1356 			dev->name_assign_type = old_assign_type;
1357 			old_assign_type = NET_NAME_RENAMED;
1358 			goto rollback;
1359 		} else {
1360 			pr_err("%s: name change rollback failed: %d\n",
1361 			       dev->name, ret);
1362 		}
1363 	}
1364 
1365 	return err;
1366 }
1367 
1368 /**
1369  *	dev_set_alias - change ifalias of a device
1370  *	@dev: device
1371  *	@alias: name up to IFALIASZ
1372  *	@len: limit of bytes to copy from info
1373  *
1374  *	Set ifalias for a device,
1375  */
1376 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1377 {
1378 	struct dev_ifalias *new_alias = NULL;
1379 
1380 	if (len >= IFALIASZ)
1381 		return -EINVAL;
1382 
1383 	if (len) {
1384 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1385 		if (!new_alias)
1386 			return -ENOMEM;
1387 
1388 		memcpy(new_alias->ifalias, alias, len);
1389 		new_alias->ifalias[len] = 0;
1390 	}
1391 
1392 	mutex_lock(&ifalias_mutex);
1393 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1394 					mutex_is_locked(&ifalias_mutex));
1395 	mutex_unlock(&ifalias_mutex);
1396 
1397 	if (new_alias)
1398 		kfree_rcu(new_alias, rcuhead);
1399 
1400 	return len;
1401 }
1402 EXPORT_SYMBOL(dev_set_alias);
1403 
1404 /**
1405  *	dev_get_alias - get ifalias of a device
1406  *	@dev: device
1407  *	@name: buffer to store name of ifalias
1408  *	@len: size of buffer
1409  *
1410  *	get ifalias for a device.  Caller must make sure dev cannot go
1411  *	away,  e.g. rcu read lock or own a reference count to device.
1412  */
1413 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1414 {
1415 	const struct dev_ifalias *alias;
1416 	int ret = 0;
1417 
1418 	rcu_read_lock();
1419 	alias = rcu_dereference(dev->ifalias);
1420 	if (alias)
1421 		ret = snprintf(name, len, "%s", alias->ifalias);
1422 	rcu_read_unlock();
1423 
1424 	return ret;
1425 }
1426 
1427 /**
1428  *	netdev_features_change - device changes features
1429  *	@dev: device to cause notification
1430  *
1431  *	Called to indicate a device has changed features.
1432  */
1433 void netdev_features_change(struct net_device *dev)
1434 {
1435 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1436 }
1437 EXPORT_SYMBOL(netdev_features_change);
1438 
1439 /**
1440  *	netdev_state_change - device changes state
1441  *	@dev: device to cause notification
1442  *
1443  *	Called to indicate a device has changed state. This function calls
1444  *	the notifier chains for netdev_chain and sends a NEWLINK message
1445  *	to the routing socket.
1446  */
1447 void netdev_state_change(struct net_device *dev)
1448 {
1449 	if (dev->flags & IFF_UP) {
1450 		struct netdev_notifier_change_info change_info = {
1451 			.info.dev = dev,
1452 		};
1453 
1454 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1455 					      &change_info.info);
1456 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1457 	}
1458 }
1459 EXPORT_SYMBOL(netdev_state_change);
1460 
1461 /**
1462  * __netdev_notify_peers - notify network peers about existence of @dev,
1463  * to be called when rtnl lock is already held.
1464  * @dev: network device
1465  *
1466  * Generate traffic such that interested network peers are aware of
1467  * @dev, such as by generating a gratuitous ARP. This may be used when
1468  * a device wants to inform the rest of the network about some sort of
1469  * reconfiguration such as a failover event or virtual machine
1470  * migration.
1471  */
1472 void __netdev_notify_peers(struct net_device *dev)
1473 {
1474 	ASSERT_RTNL();
1475 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1476 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1477 }
1478 EXPORT_SYMBOL(__netdev_notify_peers);
1479 
1480 /**
1481  * netdev_notify_peers - notify network peers about existence of @dev
1482  * @dev: network device
1483  *
1484  * Generate traffic such that interested network peers are aware of
1485  * @dev, such as by generating a gratuitous ARP. This may be used when
1486  * a device wants to inform the rest of the network about some sort of
1487  * reconfiguration such as a failover event or virtual machine
1488  * migration.
1489  */
1490 void netdev_notify_peers(struct net_device *dev)
1491 {
1492 	rtnl_lock();
1493 	__netdev_notify_peers(dev);
1494 	rtnl_unlock();
1495 }
1496 EXPORT_SYMBOL(netdev_notify_peers);
1497 
1498 static int napi_threaded_poll(void *data);
1499 
1500 static int napi_kthread_create(struct napi_struct *n)
1501 {
1502 	int err = 0;
1503 
1504 	/* Create and wake up the kthread once to put it in
1505 	 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1506 	 * warning and work with loadavg.
1507 	 */
1508 	n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1509 				n->dev->name, n->napi_id);
1510 	if (IS_ERR(n->thread)) {
1511 		err = PTR_ERR(n->thread);
1512 		pr_err("kthread_run failed with err %d\n", err);
1513 		n->thread = NULL;
1514 	}
1515 
1516 	return err;
1517 }
1518 
1519 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1520 {
1521 	const struct net_device_ops *ops = dev->netdev_ops;
1522 	int ret;
1523 
1524 	ASSERT_RTNL();
1525 
1526 	if (!netif_device_present(dev)) {
1527 		/* may be detached because parent is runtime-suspended */
1528 		if (dev->dev.parent)
1529 			pm_runtime_resume(dev->dev.parent);
1530 		if (!netif_device_present(dev))
1531 			return -ENODEV;
1532 	}
1533 
1534 	/* Block netpoll from trying to do any rx path servicing.
1535 	 * If we don't do this there is a chance ndo_poll_controller
1536 	 * or ndo_poll may be running while we open the device
1537 	 */
1538 	netpoll_poll_disable(dev);
1539 
1540 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1541 	ret = notifier_to_errno(ret);
1542 	if (ret)
1543 		return ret;
1544 
1545 	set_bit(__LINK_STATE_START, &dev->state);
1546 
1547 	if (ops->ndo_validate_addr)
1548 		ret = ops->ndo_validate_addr(dev);
1549 
1550 	if (!ret && ops->ndo_open)
1551 		ret = ops->ndo_open(dev);
1552 
1553 	netpoll_poll_enable(dev);
1554 
1555 	if (ret)
1556 		clear_bit(__LINK_STATE_START, &dev->state);
1557 	else {
1558 		dev->flags |= IFF_UP;
1559 		dev_set_rx_mode(dev);
1560 		dev_activate(dev);
1561 		add_device_randomness(dev->dev_addr, dev->addr_len);
1562 	}
1563 
1564 	return ret;
1565 }
1566 
1567 /**
1568  *	dev_open	- prepare an interface for use.
1569  *	@dev: device to open
1570  *	@extack: netlink extended ack
1571  *
1572  *	Takes a device from down to up state. The device's private open
1573  *	function is invoked and then the multicast lists are loaded. Finally
1574  *	the device is moved into the up state and a %NETDEV_UP message is
1575  *	sent to the netdev notifier chain.
1576  *
1577  *	Calling this function on an active interface is a nop. On a failure
1578  *	a negative errno code is returned.
1579  */
1580 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1581 {
1582 	int ret;
1583 
1584 	if (dev->flags & IFF_UP)
1585 		return 0;
1586 
1587 	ret = __dev_open(dev, extack);
1588 	if (ret < 0)
1589 		return ret;
1590 
1591 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1592 	call_netdevice_notifiers(NETDEV_UP, dev);
1593 
1594 	return ret;
1595 }
1596 EXPORT_SYMBOL(dev_open);
1597 
1598 static void __dev_close_many(struct list_head *head)
1599 {
1600 	struct net_device *dev;
1601 
1602 	ASSERT_RTNL();
1603 	might_sleep();
1604 
1605 	list_for_each_entry(dev, head, close_list) {
1606 		/* Temporarily disable netpoll until the interface is down */
1607 		netpoll_poll_disable(dev);
1608 
1609 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1610 
1611 		clear_bit(__LINK_STATE_START, &dev->state);
1612 
1613 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1614 		 * can be even on different cpu. So just clear netif_running().
1615 		 *
1616 		 * dev->stop() will invoke napi_disable() on all of it's
1617 		 * napi_struct instances on this device.
1618 		 */
1619 		smp_mb__after_atomic(); /* Commit netif_running(). */
1620 	}
1621 
1622 	dev_deactivate_many(head);
1623 
1624 	list_for_each_entry(dev, head, close_list) {
1625 		const struct net_device_ops *ops = dev->netdev_ops;
1626 
1627 		/*
1628 		 *	Call the device specific close. This cannot fail.
1629 		 *	Only if device is UP
1630 		 *
1631 		 *	We allow it to be called even after a DETACH hot-plug
1632 		 *	event.
1633 		 */
1634 		if (ops->ndo_stop)
1635 			ops->ndo_stop(dev);
1636 
1637 		dev->flags &= ~IFF_UP;
1638 		netpoll_poll_enable(dev);
1639 	}
1640 }
1641 
1642 static void __dev_close(struct net_device *dev)
1643 {
1644 	LIST_HEAD(single);
1645 
1646 	list_add(&dev->close_list, &single);
1647 	__dev_close_many(&single);
1648 	list_del(&single);
1649 }
1650 
1651 void dev_close_many(struct list_head *head, bool unlink)
1652 {
1653 	struct net_device *dev, *tmp;
1654 
1655 	/* Remove the devices that don't need to be closed */
1656 	list_for_each_entry_safe(dev, tmp, head, close_list)
1657 		if (!(dev->flags & IFF_UP))
1658 			list_del_init(&dev->close_list);
1659 
1660 	__dev_close_many(head);
1661 
1662 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1663 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1664 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1665 		if (unlink)
1666 			list_del_init(&dev->close_list);
1667 	}
1668 }
1669 EXPORT_SYMBOL(dev_close_many);
1670 
1671 /**
1672  *	dev_close - shutdown an interface.
1673  *	@dev: device to shutdown
1674  *
1675  *	This function moves an active device into down state. A
1676  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1677  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1678  *	chain.
1679  */
1680 void dev_close(struct net_device *dev)
1681 {
1682 	if (dev->flags & IFF_UP) {
1683 		LIST_HEAD(single);
1684 
1685 		list_add(&dev->close_list, &single);
1686 		dev_close_many(&single, true);
1687 		list_del(&single);
1688 	}
1689 }
1690 EXPORT_SYMBOL(dev_close);
1691 
1692 
1693 /**
1694  *	dev_disable_lro - disable Large Receive Offload on a device
1695  *	@dev: device
1696  *
1697  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1698  *	called under RTNL.  This is needed if received packets may be
1699  *	forwarded to another interface.
1700  */
1701 void dev_disable_lro(struct net_device *dev)
1702 {
1703 	struct net_device *lower_dev;
1704 	struct list_head *iter;
1705 
1706 	dev->wanted_features &= ~NETIF_F_LRO;
1707 	netdev_update_features(dev);
1708 
1709 	if (unlikely(dev->features & NETIF_F_LRO))
1710 		netdev_WARN(dev, "failed to disable LRO!\n");
1711 
1712 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1713 		dev_disable_lro(lower_dev);
1714 }
1715 EXPORT_SYMBOL(dev_disable_lro);
1716 
1717 /**
1718  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1719  *	@dev: device
1720  *
1721  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1722  *	called under RTNL.  This is needed if Generic XDP is installed on
1723  *	the device.
1724  */
1725 static void dev_disable_gro_hw(struct net_device *dev)
1726 {
1727 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1728 	netdev_update_features(dev);
1729 
1730 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1731 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1732 }
1733 
1734 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1735 {
1736 #define N(val) 						\
1737 	case NETDEV_##val:				\
1738 		return "NETDEV_" __stringify(val);
1739 	switch (cmd) {
1740 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1741 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1742 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1743 	N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1744 	N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1745 	N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1746 	N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1747 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1748 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1749 	N(PRE_CHANGEADDR)
1750 	}
1751 #undef N
1752 	return "UNKNOWN_NETDEV_EVENT";
1753 }
1754 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1755 
1756 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1757 				   struct net_device *dev)
1758 {
1759 	struct netdev_notifier_info info = {
1760 		.dev = dev,
1761 	};
1762 
1763 	return nb->notifier_call(nb, val, &info);
1764 }
1765 
1766 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1767 					     struct net_device *dev)
1768 {
1769 	int err;
1770 
1771 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1772 	err = notifier_to_errno(err);
1773 	if (err)
1774 		return err;
1775 
1776 	if (!(dev->flags & IFF_UP))
1777 		return 0;
1778 
1779 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1780 	return 0;
1781 }
1782 
1783 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1784 						struct net_device *dev)
1785 {
1786 	if (dev->flags & IFF_UP) {
1787 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1788 					dev);
1789 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1790 	}
1791 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1792 }
1793 
1794 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1795 						 struct net *net)
1796 {
1797 	struct net_device *dev;
1798 	int err;
1799 
1800 	for_each_netdev(net, dev) {
1801 		err = call_netdevice_register_notifiers(nb, dev);
1802 		if (err)
1803 			goto rollback;
1804 	}
1805 	return 0;
1806 
1807 rollback:
1808 	for_each_netdev_continue_reverse(net, dev)
1809 		call_netdevice_unregister_notifiers(nb, dev);
1810 	return err;
1811 }
1812 
1813 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1814 						    struct net *net)
1815 {
1816 	struct net_device *dev;
1817 
1818 	for_each_netdev(net, dev)
1819 		call_netdevice_unregister_notifiers(nb, dev);
1820 }
1821 
1822 static int dev_boot_phase = 1;
1823 
1824 /**
1825  * register_netdevice_notifier - register a network notifier block
1826  * @nb: notifier
1827  *
1828  * Register a notifier to be called when network device events occur.
1829  * The notifier passed is linked into the kernel structures and must
1830  * not be reused until it has been unregistered. A negative errno code
1831  * is returned on a failure.
1832  *
1833  * When registered all registration and up events are replayed
1834  * to the new notifier to allow device to have a race free
1835  * view of the network device list.
1836  */
1837 
1838 int register_netdevice_notifier(struct notifier_block *nb)
1839 {
1840 	struct net *net;
1841 	int err;
1842 
1843 	/* Close race with setup_net() and cleanup_net() */
1844 	down_write(&pernet_ops_rwsem);
1845 	rtnl_lock();
1846 	err = raw_notifier_chain_register(&netdev_chain, nb);
1847 	if (err)
1848 		goto unlock;
1849 	if (dev_boot_phase)
1850 		goto unlock;
1851 	for_each_net(net) {
1852 		err = call_netdevice_register_net_notifiers(nb, net);
1853 		if (err)
1854 			goto rollback;
1855 	}
1856 
1857 unlock:
1858 	rtnl_unlock();
1859 	up_write(&pernet_ops_rwsem);
1860 	return err;
1861 
1862 rollback:
1863 	for_each_net_continue_reverse(net)
1864 		call_netdevice_unregister_net_notifiers(nb, net);
1865 
1866 	raw_notifier_chain_unregister(&netdev_chain, nb);
1867 	goto unlock;
1868 }
1869 EXPORT_SYMBOL(register_netdevice_notifier);
1870 
1871 /**
1872  * unregister_netdevice_notifier - unregister a network notifier block
1873  * @nb: notifier
1874  *
1875  * Unregister a notifier previously registered by
1876  * register_netdevice_notifier(). The notifier is unlinked into the
1877  * kernel structures and may then be reused. A negative errno code
1878  * is returned on a failure.
1879  *
1880  * After unregistering unregister and down device events are synthesized
1881  * for all devices on the device list to the removed notifier to remove
1882  * the need for special case cleanup code.
1883  */
1884 
1885 int unregister_netdevice_notifier(struct notifier_block *nb)
1886 {
1887 	struct net *net;
1888 	int err;
1889 
1890 	/* Close race with setup_net() and cleanup_net() */
1891 	down_write(&pernet_ops_rwsem);
1892 	rtnl_lock();
1893 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1894 	if (err)
1895 		goto unlock;
1896 
1897 	for_each_net(net)
1898 		call_netdevice_unregister_net_notifiers(nb, net);
1899 
1900 unlock:
1901 	rtnl_unlock();
1902 	up_write(&pernet_ops_rwsem);
1903 	return err;
1904 }
1905 EXPORT_SYMBOL(unregister_netdevice_notifier);
1906 
1907 static int __register_netdevice_notifier_net(struct net *net,
1908 					     struct notifier_block *nb,
1909 					     bool ignore_call_fail)
1910 {
1911 	int err;
1912 
1913 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
1914 	if (err)
1915 		return err;
1916 	if (dev_boot_phase)
1917 		return 0;
1918 
1919 	err = call_netdevice_register_net_notifiers(nb, net);
1920 	if (err && !ignore_call_fail)
1921 		goto chain_unregister;
1922 
1923 	return 0;
1924 
1925 chain_unregister:
1926 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
1927 	return err;
1928 }
1929 
1930 static int __unregister_netdevice_notifier_net(struct net *net,
1931 					       struct notifier_block *nb)
1932 {
1933 	int err;
1934 
1935 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1936 	if (err)
1937 		return err;
1938 
1939 	call_netdevice_unregister_net_notifiers(nb, net);
1940 	return 0;
1941 }
1942 
1943 /**
1944  * register_netdevice_notifier_net - register a per-netns network notifier block
1945  * @net: network namespace
1946  * @nb: notifier
1947  *
1948  * Register a notifier to be called when network device events occur.
1949  * The notifier passed is linked into the kernel structures and must
1950  * not be reused until it has been unregistered. A negative errno code
1951  * is returned on a failure.
1952  *
1953  * When registered all registration and up events are replayed
1954  * to the new notifier to allow device to have a race free
1955  * view of the network device list.
1956  */
1957 
1958 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1959 {
1960 	int err;
1961 
1962 	rtnl_lock();
1963 	err = __register_netdevice_notifier_net(net, nb, false);
1964 	rtnl_unlock();
1965 	return err;
1966 }
1967 EXPORT_SYMBOL(register_netdevice_notifier_net);
1968 
1969 /**
1970  * unregister_netdevice_notifier_net - unregister a per-netns
1971  *                                     network notifier block
1972  * @net: network namespace
1973  * @nb: notifier
1974  *
1975  * Unregister a notifier previously registered by
1976  * register_netdevice_notifier(). The notifier is unlinked into the
1977  * kernel structures and may then be reused. A negative errno code
1978  * is returned on a failure.
1979  *
1980  * After unregistering unregister and down device events are synthesized
1981  * for all devices on the device list to the removed notifier to remove
1982  * the need for special case cleanup code.
1983  */
1984 
1985 int unregister_netdevice_notifier_net(struct net *net,
1986 				      struct notifier_block *nb)
1987 {
1988 	int err;
1989 
1990 	rtnl_lock();
1991 	err = __unregister_netdevice_notifier_net(net, nb);
1992 	rtnl_unlock();
1993 	return err;
1994 }
1995 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1996 
1997 int register_netdevice_notifier_dev_net(struct net_device *dev,
1998 					struct notifier_block *nb,
1999 					struct netdev_net_notifier *nn)
2000 {
2001 	int err;
2002 
2003 	rtnl_lock();
2004 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
2005 	if (!err) {
2006 		nn->nb = nb;
2007 		list_add(&nn->list, &dev->net_notifier_list);
2008 	}
2009 	rtnl_unlock();
2010 	return err;
2011 }
2012 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
2013 
2014 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2015 					  struct notifier_block *nb,
2016 					  struct netdev_net_notifier *nn)
2017 {
2018 	int err;
2019 
2020 	rtnl_lock();
2021 	list_del(&nn->list);
2022 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
2023 	rtnl_unlock();
2024 	return err;
2025 }
2026 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
2027 
2028 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
2029 					     struct net *net)
2030 {
2031 	struct netdev_net_notifier *nn;
2032 
2033 	list_for_each_entry(nn, &dev->net_notifier_list, list) {
2034 		__unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
2035 		__register_netdevice_notifier_net(net, nn->nb, true);
2036 	}
2037 }
2038 
2039 /**
2040  *	call_netdevice_notifiers_info - call all network notifier blocks
2041  *	@val: value passed unmodified to notifier function
2042  *	@info: notifier information data
2043  *
2044  *	Call all network notifier blocks.  Parameters and return value
2045  *	are as for raw_notifier_call_chain().
2046  */
2047 
2048 static int call_netdevice_notifiers_info(unsigned long val,
2049 					 struct netdev_notifier_info *info)
2050 {
2051 	struct net *net = dev_net(info->dev);
2052 	int ret;
2053 
2054 	ASSERT_RTNL();
2055 
2056 	/* Run per-netns notifier block chain first, then run the global one.
2057 	 * Hopefully, one day, the global one is going to be removed after
2058 	 * all notifier block registrators get converted to be per-netns.
2059 	 */
2060 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2061 	if (ret & NOTIFY_STOP_MASK)
2062 		return ret;
2063 	return raw_notifier_call_chain(&netdev_chain, val, info);
2064 }
2065 
2066 static int call_netdevice_notifiers_extack(unsigned long val,
2067 					   struct net_device *dev,
2068 					   struct netlink_ext_ack *extack)
2069 {
2070 	struct netdev_notifier_info info = {
2071 		.dev = dev,
2072 		.extack = extack,
2073 	};
2074 
2075 	return call_netdevice_notifiers_info(val, &info);
2076 }
2077 
2078 /**
2079  *	call_netdevice_notifiers - call all network notifier blocks
2080  *      @val: value passed unmodified to notifier function
2081  *      @dev: net_device pointer passed unmodified to notifier function
2082  *
2083  *	Call all network notifier blocks.  Parameters and return value
2084  *	are as for raw_notifier_call_chain().
2085  */
2086 
2087 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2088 {
2089 	return call_netdevice_notifiers_extack(val, dev, NULL);
2090 }
2091 EXPORT_SYMBOL(call_netdevice_notifiers);
2092 
2093 /**
2094  *	call_netdevice_notifiers_mtu - call all network notifier blocks
2095  *	@val: value passed unmodified to notifier function
2096  *	@dev: net_device pointer passed unmodified to notifier function
2097  *	@arg: additional u32 argument passed to the notifier function
2098  *
2099  *	Call all network notifier blocks.  Parameters and return value
2100  *	are as for raw_notifier_call_chain().
2101  */
2102 static int call_netdevice_notifiers_mtu(unsigned long val,
2103 					struct net_device *dev, u32 arg)
2104 {
2105 	struct netdev_notifier_info_ext info = {
2106 		.info.dev = dev,
2107 		.ext.mtu = arg,
2108 	};
2109 
2110 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2111 
2112 	return call_netdevice_notifiers_info(val, &info.info);
2113 }
2114 
2115 #ifdef CONFIG_NET_INGRESS
2116 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2117 
2118 void net_inc_ingress_queue(void)
2119 {
2120 	static_branch_inc(&ingress_needed_key);
2121 }
2122 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2123 
2124 void net_dec_ingress_queue(void)
2125 {
2126 	static_branch_dec(&ingress_needed_key);
2127 }
2128 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2129 #endif
2130 
2131 #ifdef CONFIG_NET_EGRESS
2132 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2133 
2134 void net_inc_egress_queue(void)
2135 {
2136 	static_branch_inc(&egress_needed_key);
2137 }
2138 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2139 
2140 void net_dec_egress_queue(void)
2141 {
2142 	static_branch_dec(&egress_needed_key);
2143 }
2144 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2145 #endif
2146 
2147 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2148 #ifdef CONFIG_JUMP_LABEL
2149 static atomic_t netstamp_needed_deferred;
2150 static atomic_t netstamp_wanted;
2151 static void netstamp_clear(struct work_struct *work)
2152 {
2153 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2154 	int wanted;
2155 
2156 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2157 	if (wanted > 0)
2158 		static_branch_enable(&netstamp_needed_key);
2159 	else
2160 		static_branch_disable(&netstamp_needed_key);
2161 }
2162 static DECLARE_WORK(netstamp_work, netstamp_clear);
2163 #endif
2164 
2165 void net_enable_timestamp(void)
2166 {
2167 #ifdef CONFIG_JUMP_LABEL
2168 	int wanted;
2169 
2170 	while (1) {
2171 		wanted = atomic_read(&netstamp_wanted);
2172 		if (wanted <= 0)
2173 			break;
2174 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2175 			return;
2176 	}
2177 	atomic_inc(&netstamp_needed_deferred);
2178 	schedule_work(&netstamp_work);
2179 #else
2180 	static_branch_inc(&netstamp_needed_key);
2181 #endif
2182 }
2183 EXPORT_SYMBOL(net_enable_timestamp);
2184 
2185 void net_disable_timestamp(void)
2186 {
2187 #ifdef CONFIG_JUMP_LABEL
2188 	int wanted;
2189 
2190 	while (1) {
2191 		wanted = atomic_read(&netstamp_wanted);
2192 		if (wanted <= 1)
2193 			break;
2194 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2195 			return;
2196 	}
2197 	atomic_dec(&netstamp_needed_deferred);
2198 	schedule_work(&netstamp_work);
2199 #else
2200 	static_branch_dec(&netstamp_needed_key);
2201 #endif
2202 }
2203 EXPORT_SYMBOL(net_disable_timestamp);
2204 
2205 static inline void net_timestamp_set(struct sk_buff *skb)
2206 {
2207 	skb->tstamp = 0;
2208 	if (static_branch_unlikely(&netstamp_needed_key))
2209 		__net_timestamp(skb);
2210 }
2211 
2212 #define net_timestamp_check(COND, SKB)				\
2213 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2214 		if ((COND) && !(SKB)->tstamp)			\
2215 			__net_timestamp(SKB);			\
2216 	}							\
2217 
2218 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2219 {
2220 	return __is_skb_forwardable(dev, skb, true);
2221 }
2222 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2223 
2224 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2225 			      bool check_mtu)
2226 {
2227 	int ret = ____dev_forward_skb(dev, skb, check_mtu);
2228 
2229 	if (likely(!ret)) {
2230 		skb->protocol = eth_type_trans(skb, dev);
2231 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2232 	}
2233 
2234 	return ret;
2235 }
2236 
2237 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2238 {
2239 	return __dev_forward_skb2(dev, skb, true);
2240 }
2241 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2242 
2243 /**
2244  * dev_forward_skb - loopback an skb to another netif
2245  *
2246  * @dev: destination network device
2247  * @skb: buffer to forward
2248  *
2249  * return values:
2250  *	NET_RX_SUCCESS	(no congestion)
2251  *	NET_RX_DROP     (packet was dropped, but freed)
2252  *
2253  * dev_forward_skb can be used for injecting an skb from the
2254  * start_xmit function of one device into the receive queue
2255  * of another device.
2256  *
2257  * The receiving device may be in another namespace, so
2258  * we have to clear all information in the skb that could
2259  * impact namespace isolation.
2260  */
2261 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2262 {
2263 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2264 }
2265 EXPORT_SYMBOL_GPL(dev_forward_skb);
2266 
2267 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2268 {
2269 	return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2270 }
2271 
2272 static inline int deliver_skb(struct sk_buff *skb,
2273 			      struct packet_type *pt_prev,
2274 			      struct net_device *orig_dev)
2275 {
2276 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2277 		return -ENOMEM;
2278 	refcount_inc(&skb->users);
2279 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2280 }
2281 
2282 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2283 					  struct packet_type **pt,
2284 					  struct net_device *orig_dev,
2285 					  __be16 type,
2286 					  struct list_head *ptype_list)
2287 {
2288 	struct packet_type *ptype, *pt_prev = *pt;
2289 
2290 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2291 		if (ptype->type != type)
2292 			continue;
2293 		if (pt_prev)
2294 			deliver_skb(skb, pt_prev, orig_dev);
2295 		pt_prev = ptype;
2296 	}
2297 	*pt = pt_prev;
2298 }
2299 
2300 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2301 {
2302 	if (!ptype->af_packet_priv || !skb->sk)
2303 		return false;
2304 
2305 	if (ptype->id_match)
2306 		return ptype->id_match(ptype, skb->sk);
2307 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2308 		return true;
2309 
2310 	return false;
2311 }
2312 
2313 /**
2314  * dev_nit_active - return true if any network interface taps are in use
2315  *
2316  * @dev: network device to check for the presence of taps
2317  */
2318 bool dev_nit_active(struct net_device *dev)
2319 {
2320 	return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2321 }
2322 EXPORT_SYMBOL_GPL(dev_nit_active);
2323 
2324 /*
2325  *	Support routine. Sends outgoing frames to any network
2326  *	taps currently in use.
2327  */
2328 
2329 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2330 {
2331 	struct packet_type *ptype;
2332 	struct sk_buff *skb2 = NULL;
2333 	struct packet_type *pt_prev = NULL;
2334 	struct list_head *ptype_list = &ptype_all;
2335 
2336 	rcu_read_lock();
2337 again:
2338 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2339 		if (ptype->ignore_outgoing)
2340 			continue;
2341 
2342 		/* Never send packets back to the socket
2343 		 * they originated from - MvS (miquels@drinkel.ow.org)
2344 		 */
2345 		if (skb_loop_sk(ptype, skb))
2346 			continue;
2347 
2348 		if (pt_prev) {
2349 			deliver_skb(skb2, pt_prev, skb->dev);
2350 			pt_prev = ptype;
2351 			continue;
2352 		}
2353 
2354 		/* need to clone skb, done only once */
2355 		skb2 = skb_clone(skb, GFP_ATOMIC);
2356 		if (!skb2)
2357 			goto out_unlock;
2358 
2359 		net_timestamp_set(skb2);
2360 
2361 		/* skb->nh should be correctly
2362 		 * set by sender, so that the second statement is
2363 		 * just protection against buggy protocols.
2364 		 */
2365 		skb_reset_mac_header(skb2);
2366 
2367 		if (skb_network_header(skb2) < skb2->data ||
2368 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2369 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2370 					     ntohs(skb2->protocol),
2371 					     dev->name);
2372 			skb_reset_network_header(skb2);
2373 		}
2374 
2375 		skb2->transport_header = skb2->network_header;
2376 		skb2->pkt_type = PACKET_OUTGOING;
2377 		pt_prev = ptype;
2378 	}
2379 
2380 	if (ptype_list == &ptype_all) {
2381 		ptype_list = &dev->ptype_all;
2382 		goto again;
2383 	}
2384 out_unlock:
2385 	if (pt_prev) {
2386 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2387 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2388 		else
2389 			kfree_skb(skb2);
2390 	}
2391 	rcu_read_unlock();
2392 }
2393 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2394 
2395 /**
2396  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2397  * @dev: Network device
2398  * @txq: number of queues available
2399  *
2400  * If real_num_tx_queues is changed the tc mappings may no longer be
2401  * valid. To resolve this verify the tc mapping remains valid and if
2402  * not NULL the mapping. With no priorities mapping to this
2403  * offset/count pair it will no longer be used. In the worst case TC0
2404  * is invalid nothing can be done so disable priority mappings. If is
2405  * expected that drivers will fix this mapping if they can before
2406  * calling netif_set_real_num_tx_queues.
2407  */
2408 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2409 {
2410 	int i;
2411 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2412 
2413 	/* If TC0 is invalidated disable TC mapping */
2414 	if (tc->offset + tc->count > txq) {
2415 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2416 		dev->num_tc = 0;
2417 		return;
2418 	}
2419 
2420 	/* Invalidated prio to tc mappings set to TC0 */
2421 	for (i = 1; i < TC_BITMASK + 1; i++) {
2422 		int q = netdev_get_prio_tc_map(dev, i);
2423 
2424 		tc = &dev->tc_to_txq[q];
2425 		if (tc->offset + tc->count > txq) {
2426 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2427 				i, q);
2428 			netdev_set_prio_tc_map(dev, i, 0);
2429 		}
2430 	}
2431 }
2432 
2433 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2434 {
2435 	if (dev->num_tc) {
2436 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2437 		int i;
2438 
2439 		/* walk through the TCs and see if it falls into any of them */
2440 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2441 			if ((txq - tc->offset) < tc->count)
2442 				return i;
2443 		}
2444 
2445 		/* didn't find it, just return -1 to indicate no match */
2446 		return -1;
2447 	}
2448 
2449 	return 0;
2450 }
2451 EXPORT_SYMBOL(netdev_txq_to_tc);
2452 
2453 #ifdef CONFIG_XPS
2454 static struct static_key xps_needed __read_mostly;
2455 static struct static_key xps_rxqs_needed __read_mostly;
2456 static DEFINE_MUTEX(xps_map_mutex);
2457 #define xmap_dereference(P)		\
2458 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2459 
2460 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2461 			     struct xps_dev_maps *old_maps, int tci, u16 index)
2462 {
2463 	struct xps_map *map = NULL;
2464 	int pos;
2465 
2466 	if (dev_maps)
2467 		map = xmap_dereference(dev_maps->attr_map[tci]);
2468 	if (!map)
2469 		return false;
2470 
2471 	for (pos = map->len; pos--;) {
2472 		if (map->queues[pos] != index)
2473 			continue;
2474 
2475 		if (map->len > 1) {
2476 			map->queues[pos] = map->queues[--map->len];
2477 			break;
2478 		}
2479 
2480 		if (old_maps)
2481 			RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2482 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2483 		kfree_rcu(map, rcu);
2484 		return false;
2485 	}
2486 
2487 	return true;
2488 }
2489 
2490 static bool remove_xps_queue_cpu(struct net_device *dev,
2491 				 struct xps_dev_maps *dev_maps,
2492 				 int cpu, u16 offset, u16 count)
2493 {
2494 	int num_tc = dev_maps->num_tc;
2495 	bool active = false;
2496 	int tci;
2497 
2498 	for (tci = cpu * num_tc; num_tc--; tci++) {
2499 		int i, j;
2500 
2501 		for (i = count, j = offset; i--; j++) {
2502 			if (!remove_xps_queue(dev_maps, NULL, tci, j))
2503 				break;
2504 		}
2505 
2506 		active |= i < 0;
2507 	}
2508 
2509 	return active;
2510 }
2511 
2512 static void reset_xps_maps(struct net_device *dev,
2513 			   struct xps_dev_maps *dev_maps,
2514 			   enum xps_map_type type)
2515 {
2516 	static_key_slow_dec_cpuslocked(&xps_needed);
2517 	if (type == XPS_RXQS)
2518 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2519 
2520 	RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2521 
2522 	kfree_rcu(dev_maps, rcu);
2523 }
2524 
2525 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2526 			   u16 offset, u16 count)
2527 {
2528 	struct xps_dev_maps *dev_maps;
2529 	bool active = false;
2530 	int i, j;
2531 
2532 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2533 	if (!dev_maps)
2534 		return;
2535 
2536 	for (j = 0; j < dev_maps->nr_ids; j++)
2537 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2538 	if (!active)
2539 		reset_xps_maps(dev, dev_maps, type);
2540 
2541 	if (type == XPS_CPUS) {
2542 		for (i = offset + (count - 1); count--; i--)
2543 			netdev_queue_numa_node_write(
2544 				netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2545 	}
2546 }
2547 
2548 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2549 				   u16 count)
2550 {
2551 	if (!static_key_false(&xps_needed))
2552 		return;
2553 
2554 	cpus_read_lock();
2555 	mutex_lock(&xps_map_mutex);
2556 
2557 	if (static_key_false(&xps_rxqs_needed))
2558 		clean_xps_maps(dev, XPS_RXQS, offset, count);
2559 
2560 	clean_xps_maps(dev, XPS_CPUS, offset, count);
2561 
2562 	mutex_unlock(&xps_map_mutex);
2563 	cpus_read_unlock();
2564 }
2565 
2566 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2567 {
2568 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2569 }
2570 
2571 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2572 				      u16 index, bool is_rxqs_map)
2573 {
2574 	struct xps_map *new_map;
2575 	int alloc_len = XPS_MIN_MAP_ALLOC;
2576 	int i, pos;
2577 
2578 	for (pos = 0; map && pos < map->len; pos++) {
2579 		if (map->queues[pos] != index)
2580 			continue;
2581 		return map;
2582 	}
2583 
2584 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2585 	if (map) {
2586 		if (pos < map->alloc_len)
2587 			return map;
2588 
2589 		alloc_len = map->alloc_len * 2;
2590 	}
2591 
2592 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2593 	 *  map
2594 	 */
2595 	if (is_rxqs_map)
2596 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2597 	else
2598 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2599 				       cpu_to_node(attr_index));
2600 	if (!new_map)
2601 		return NULL;
2602 
2603 	for (i = 0; i < pos; i++)
2604 		new_map->queues[i] = map->queues[i];
2605 	new_map->alloc_len = alloc_len;
2606 	new_map->len = pos;
2607 
2608 	return new_map;
2609 }
2610 
2611 /* Copy xps maps at a given index */
2612 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2613 			      struct xps_dev_maps *new_dev_maps, int index,
2614 			      int tc, bool skip_tc)
2615 {
2616 	int i, tci = index * dev_maps->num_tc;
2617 	struct xps_map *map;
2618 
2619 	/* copy maps belonging to foreign traffic classes */
2620 	for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2621 		if (i == tc && skip_tc)
2622 			continue;
2623 
2624 		/* fill in the new device map from the old device map */
2625 		map = xmap_dereference(dev_maps->attr_map[tci]);
2626 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2627 	}
2628 }
2629 
2630 /* Must be called under cpus_read_lock */
2631 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2632 			  u16 index, enum xps_map_type type)
2633 {
2634 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2635 	const unsigned long *online_mask = NULL;
2636 	bool active = false, copy = false;
2637 	int i, j, tci, numa_node_id = -2;
2638 	int maps_sz, num_tc = 1, tc = 0;
2639 	struct xps_map *map, *new_map;
2640 	unsigned int nr_ids;
2641 
2642 	if (dev->num_tc) {
2643 		/* Do not allow XPS on subordinate device directly */
2644 		num_tc = dev->num_tc;
2645 		if (num_tc < 0)
2646 			return -EINVAL;
2647 
2648 		/* If queue belongs to subordinate dev use its map */
2649 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2650 
2651 		tc = netdev_txq_to_tc(dev, index);
2652 		if (tc < 0)
2653 			return -EINVAL;
2654 	}
2655 
2656 	mutex_lock(&xps_map_mutex);
2657 
2658 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2659 	if (type == XPS_RXQS) {
2660 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2661 		nr_ids = dev->num_rx_queues;
2662 	} else {
2663 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2664 		if (num_possible_cpus() > 1)
2665 			online_mask = cpumask_bits(cpu_online_mask);
2666 		nr_ids = nr_cpu_ids;
2667 	}
2668 
2669 	if (maps_sz < L1_CACHE_BYTES)
2670 		maps_sz = L1_CACHE_BYTES;
2671 
2672 	/* The old dev_maps could be larger or smaller than the one we're
2673 	 * setting up now, as dev->num_tc or nr_ids could have been updated in
2674 	 * between. We could try to be smart, but let's be safe instead and only
2675 	 * copy foreign traffic classes if the two map sizes match.
2676 	 */
2677 	if (dev_maps &&
2678 	    dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2679 		copy = true;
2680 
2681 	/* allocate memory for queue storage */
2682 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2683 	     j < nr_ids;) {
2684 		if (!new_dev_maps) {
2685 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2686 			if (!new_dev_maps) {
2687 				mutex_unlock(&xps_map_mutex);
2688 				return -ENOMEM;
2689 			}
2690 
2691 			new_dev_maps->nr_ids = nr_ids;
2692 			new_dev_maps->num_tc = num_tc;
2693 		}
2694 
2695 		tci = j * num_tc + tc;
2696 		map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2697 
2698 		map = expand_xps_map(map, j, index, type == XPS_RXQS);
2699 		if (!map)
2700 			goto error;
2701 
2702 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2703 	}
2704 
2705 	if (!new_dev_maps)
2706 		goto out_no_new_maps;
2707 
2708 	if (!dev_maps) {
2709 		/* Increment static keys at most once per type */
2710 		static_key_slow_inc_cpuslocked(&xps_needed);
2711 		if (type == XPS_RXQS)
2712 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2713 	}
2714 
2715 	for (j = 0; j < nr_ids; j++) {
2716 		bool skip_tc = false;
2717 
2718 		tci = j * num_tc + tc;
2719 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2720 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2721 			/* add tx-queue to CPU/rx-queue maps */
2722 			int pos = 0;
2723 
2724 			skip_tc = true;
2725 
2726 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2727 			while ((pos < map->len) && (map->queues[pos] != index))
2728 				pos++;
2729 
2730 			if (pos == map->len)
2731 				map->queues[map->len++] = index;
2732 #ifdef CONFIG_NUMA
2733 			if (type == XPS_CPUS) {
2734 				if (numa_node_id == -2)
2735 					numa_node_id = cpu_to_node(j);
2736 				else if (numa_node_id != cpu_to_node(j))
2737 					numa_node_id = -1;
2738 			}
2739 #endif
2740 		}
2741 
2742 		if (copy)
2743 			xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2744 					  skip_tc);
2745 	}
2746 
2747 	rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2748 
2749 	/* Cleanup old maps */
2750 	if (!dev_maps)
2751 		goto out_no_old_maps;
2752 
2753 	for (j = 0; j < dev_maps->nr_ids; j++) {
2754 		for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2755 			map = xmap_dereference(dev_maps->attr_map[tci]);
2756 			if (!map)
2757 				continue;
2758 
2759 			if (copy) {
2760 				new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2761 				if (map == new_map)
2762 					continue;
2763 			}
2764 
2765 			RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2766 			kfree_rcu(map, rcu);
2767 		}
2768 	}
2769 
2770 	old_dev_maps = dev_maps;
2771 
2772 out_no_old_maps:
2773 	dev_maps = new_dev_maps;
2774 	active = true;
2775 
2776 out_no_new_maps:
2777 	if (type == XPS_CPUS)
2778 		/* update Tx queue numa node */
2779 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2780 					     (numa_node_id >= 0) ?
2781 					     numa_node_id : NUMA_NO_NODE);
2782 
2783 	if (!dev_maps)
2784 		goto out_no_maps;
2785 
2786 	/* removes tx-queue from unused CPUs/rx-queues */
2787 	for (j = 0; j < dev_maps->nr_ids; j++) {
2788 		tci = j * dev_maps->num_tc;
2789 
2790 		for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2791 			if (i == tc &&
2792 			    netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2793 			    netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2794 				continue;
2795 
2796 			active |= remove_xps_queue(dev_maps,
2797 						   copy ? old_dev_maps : NULL,
2798 						   tci, index);
2799 		}
2800 	}
2801 
2802 	if (old_dev_maps)
2803 		kfree_rcu(old_dev_maps, rcu);
2804 
2805 	/* free map if not active */
2806 	if (!active)
2807 		reset_xps_maps(dev, dev_maps, type);
2808 
2809 out_no_maps:
2810 	mutex_unlock(&xps_map_mutex);
2811 
2812 	return 0;
2813 error:
2814 	/* remove any maps that we added */
2815 	for (j = 0; j < nr_ids; j++) {
2816 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2817 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2818 			map = copy ?
2819 			      xmap_dereference(dev_maps->attr_map[tci]) :
2820 			      NULL;
2821 			if (new_map && new_map != map)
2822 				kfree(new_map);
2823 		}
2824 	}
2825 
2826 	mutex_unlock(&xps_map_mutex);
2827 
2828 	kfree(new_dev_maps);
2829 	return -ENOMEM;
2830 }
2831 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2832 
2833 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2834 			u16 index)
2835 {
2836 	int ret;
2837 
2838 	cpus_read_lock();
2839 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2840 	cpus_read_unlock();
2841 
2842 	return ret;
2843 }
2844 EXPORT_SYMBOL(netif_set_xps_queue);
2845 
2846 #endif
2847 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2848 {
2849 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2850 
2851 	/* Unbind any subordinate channels */
2852 	while (txq-- != &dev->_tx[0]) {
2853 		if (txq->sb_dev)
2854 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2855 	}
2856 }
2857 
2858 void netdev_reset_tc(struct net_device *dev)
2859 {
2860 #ifdef CONFIG_XPS
2861 	netif_reset_xps_queues_gt(dev, 0);
2862 #endif
2863 	netdev_unbind_all_sb_channels(dev);
2864 
2865 	/* Reset TC configuration of device */
2866 	dev->num_tc = 0;
2867 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2868 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2869 }
2870 EXPORT_SYMBOL(netdev_reset_tc);
2871 
2872 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2873 {
2874 	if (tc >= dev->num_tc)
2875 		return -EINVAL;
2876 
2877 #ifdef CONFIG_XPS
2878 	netif_reset_xps_queues(dev, offset, count);
2879 #endif
2880 	dev->tc_to_txq[tc].count = count;
2881 	dev->tc_to_txq[tc].offset = offset;
2882 	return 0;
2883 }
2884 EXPORT_SYMBOL(netdev_set_tc_queue);
2885 
2886 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2887 {
2888 	if (num_tc > TC_MAX_QUEUE)
2889 		return -EINVAL;
2890 
2891 #ifdef CONFIG_XPS
2892 	netif_reset_xps_queues_gt(dev, 0);
2893 #endif
2894 	netdev_unbind_all_sb_channels(dev);
2895 
2896 	dev->num_tc = num_tc;
2897 	return 0;
2898 }
2899 EXPORT_SYMBOL(netdev_set_num_tc);
2900 
2901 void netdev_unbind_sb_channel(struct net_device *dev,
2902 			      struct net_device *sb_dev)
2903 {
2904 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2905 
2906 #ifdef CONFIG_XPS
2907 	netif_reset_xps_queues_gt(sb_dev, 0);
2908 #endif
2909 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2910 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2911 
2912 	while (txq-- != &dev->_tx[0]) {
2913 		if (txq->sb_dev == sb_dev)
2914 			txq->sb_dev = NULL;
2915 	}
2916 }
2917 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2918 
2919 int netdev_bind_sb_channel_queue(struct net_device *dev,
2920 				 struct net_device *sb_dev,
2921 				 u8 tc, u16 count, u16 offset)
2922 {
2923 	/* Make certain the sb_dev and dev are already configured */
2924 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2925 		return -EINVAL;
2926 
2927 	/* We cannot hand out queues we don't have */
2928 	if ((offset + count) > dev->real_num_tx_queues)
2929 		return -EINVAL;
2930 
2931 	/* Record the mapping */
2932 	sb_dev->tc_to_txq[tc].count = count;
2933 	sb_dev->tc_to_txq[tc].offset = offset;
2934 
2935 	/* Provide a way for Tx queue to find the tc_to_txq map or
2936 	 * XPS map for itself.
2937 	 */
2938 	while (count--)
2939 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2940 
2941 	return 0;
2942 }
2943 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2944 
2945 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2946 {
2947 	/* Do not use a multiqueue device to represent a subordinate channel */
2948 	if (netif_is_multiqueue(dev))
2949 		return -ENODEV;
2950 
2951 	/* We allow channels 1 - 32767 to be used for subordinate channels.
2952 	 * Channel 0 is meant to be "native" mode and used only to represent
2953 	 * the main root device. We allow writing 0 to reset the device back
2954 	 * to normal mode after being used as a subordinate channel.
2955 	 */
2956 	if (channel > S16_MAX)
2957 		return -EINVAL;
2958 
2959 	dev->num_tc = -channel;
2960 
2961 	return 0;
2962 }
2963 EXPORT_SYMBOL(netdev_set_sb_channel);
2964 
2965 /*
2966  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2967  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2968  */
2969 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2970 {
2971 	bool disabling;
2972 	int rc;
2973 
2974 	disabling = txq < dev->real_num_tx_queues;
2975 
2976 	if (txq < 1 || txq > dev->num_tx_queues)
2977 		return -EINVAL;
2978 
2979 	if (dev->reg_state == NETREG_REGISTERED ||
2980 	    dev->reg_state == NETREG_UNREGISTERING) {
2981 		ASSERT_RTNL();
2982 
2983 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2984 						  txq);
2985 		if (rc)
2986 			return rc;
2987 
2988 		if (dev->num_tc)
2989 			netif_setup_tc(dev, txq);
2990 
2991 		dev->real_num_tx_queues = txq;
2992 
2993 		if (disabling) {
2994 			synchronize_net();
2995 			qdisc_reset_all_tx_gt(dev, txq);
2996 #ifdef CONFIG_XPS
2997 			netif_reset_xps_queues_gt(dev, txq);
2998 #endif
2999 		}
3000 	} else {
3001 		dev->real_num_tx_queues = txq;
3002 	}
3003 
3004 	return 0;
3005 }
3006 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
3007 
3008 #ifdef CONFIG_SYSFS
3009 /**
3010  *	netif_set_real_num_rx_queues - set actual number of RX queues used
3011  *	@dev: Network device
3012  *	@rxq: Actual number of RX queues
3013  *
3014  *	This must be called either with the rtnl_lock held or before
3015  *	registration of the net device.  Returns 0 on success, or a
3016  *	negative error code.  If called before registration, it always
3017  *	succeeds.
3018  */
3019 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
3020 {
3021 	int rc;
3022 
3023 	if (rxq < 1 || rxq > dev->num_rx_queues)
3024 		return -EINVAL;
3025 
3026 	if (dev->reg_state == NETREG_REGISTERED) {
3027 		ASSERT_RTNL();
3028 
3029 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3030 						  rxq);
3031 		if (rc)
3032 			return rc;
3033 	}
3034 
3035 	dev->real_num_rx_queues = rxq;
3036 	return 0;
3037 }
3038 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3039 #endif
3040 
3041 /**
3042  * netif_get_num_default_rss_queues - default number of RSS queues
3043  *
3044  * This routine should set an upper limit on the number of RSS queues
3045  * used by default by multiqueue devices.
3046  */
3047 int netif_get_num_default_rss_queues(void)
3048 {
3049 	return is_kdump_kernel() ?
3050 		1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
3051 }
3052 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3053 
3054 static void __netif_reschedule(struct Qdisc *q)
3055 {
3056 	struct softnet_data *sd;
3057 	unsigned long flags;
3058 
3059 	local_irq_save(flags);
3060 	sd = this_cpu_ptr(&softnet_data);
3061 	q->next_sched = NULL;
3062 	*sd->output_queue_tailp = q;
3063 	sd->output_queue_tailp = &q->next_sched;
3064 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3065 	local_irq_restore(flags);
3066 }
3067 
3068 void __netif_schedule(struct Qdisc *q)
3069 {
3070 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3071 		__netif_reschedule(q);
3072 }
3073 EXPORT_SYMBOL(__netif_schedule);
3074 
3075 struct dev_kfree_skb_cb {
3076 	enum skb_free_reason reason;
3077 };
3078 
3079 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3080 {
3081 	return (struct dev_kfree_skb_cb *)skb->cb;
3082 }
3083 
3084 void netif_schedule_queue(struct netdev_queue *txq)
3085 {
3086 	rcu_read_lock();
3087 	if (!netif_xmit_stopped(txq)) {
3088 		struct Qdisc *q = rcu_dereference(txq->qdisc);
3089 
3090 		__netif_schedule(q);
3091 	}
3092 	rcu_read_unlock();
3093 }
3094 EXPORT_SYMBOL(netif_schedule_queue);
3095 
3096 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3097 {
3098 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3099 		struct Qdisc *q;
3100 
3101 		rcu_read_lock();
3102 		q = rcu_dereference(dev_queue->qdisc);
3103 		__netif_schedule(q);
3104 		rcu_read_unlock();
3105 	}
3106 }
3107 EXPORT_SYMBOL(netif_tx_wake_queue);
3108 
3109 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3110 {
3111 	unsigned long flags;
3112 
3113 	if (unlikely(!skb))
3114 		return;
3115 
3116 	if (likely(refcount_read(&skb->users) == 1)) {
3117 		smp_rmb();
3118 		refcount_set(&skb->users, 0);
3119 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3120 		return;
3121 	}
3122 	get_kfree_skb_cb(skb)->reason = reason;
3123 	local_irq_save(flags);
3124 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3125 	__this_cpu_write(softnet_data.completion_queue, skb);
3126 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3127 	local_irq_restore(flags);
3128 }
3129 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3130 
3131 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3132 {
3133 	if (in_irq() || irqs_disabled())
3134 		__dev_kfree_skb_irq(skb, reason);
3135 	else
3136 		dev_kfree_skb(skb);
3137 }
3138 EXPORT_SYMBOL(__dev_kfree_skb_any);
3139 
3140 
3141 /**
3142  * netif_device_detach - mark device as removed
3143  * @dev: network device
3144  *
3145  * Mark device as removed from system and therefore no longer available.
3146  */
3147 void netif_device_detach(struct net_device *dev)
3148 {
3149 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3150 	    netif_running(dev)) {
3151 		netif_tx_stop_all_queues(dev);
3152 	}
3153 }
3154 EXPORT_SYMBOL(netif_device_detach);
3155 
3156 /**
3157  * netif_device_attach - mark device as attached
3158  * @dev: network device
3159  *
3160  * Mark device as attached from system and restart if needed.
3161  */
3162 void netif_device_attach(struct net_device *dev)
3163 {
3164 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3165 	    netif_running(dev)) {
3166 		netif_tx_wake_all_queues(dev);
3167 		__netdev_watchdog_up(dev);
3168 	}
3169 }
3170 EXPORT_SYMBOL(netif_device_attach);
3171 
3172 /*
3173  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3174  * to be used as a distribution range.
3175  */
3176 static u16 skb_tx_hash(const struct net_device *dev,
3177 		       const struct net_device *sb_dev,
3178 		       struct sk_buff *skb)
3179 {
3180 	u32 hash;
3181 	u16 qoffset = 0;
3182 	u16 qcount = dev->real_num_tx_queues;
3183 
3184 	if (dev->num_tc) {
3185 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3186 
3187 		qoffset = sb_dev->tc_to_txq[tc].offset;
3188 		qcount = sb_dev->tc_to_txq[tc].count;
3189 	}
3190 
3191 	if (skb_rx_queue_recorded(skb)) {
3192 		hash = skb_get_rx_queue(skb);
3193 		if (hash >= qoffset)
3194 			hash -= qoffset;
3195 		while (unlikely(hash >= qcount))
3196 			hash -= qcount;
3197 		return hash + qoffset;
3198 	}
3199 
3200 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3201 }
3202 
3203 static void skb_warn_bad_offload(const struct sk_buff *skb)
3204 {
3205 	static const netdev_features_t null_features;
3206 	struct net_device *dev = skb->dev;
3207 	const char *name = "";
3208 
3209 	if (!net_ratelimit())
3210 		return;
3211 
3212 	if (dev) {
3213 		if (dev->dev.parent)
3214 			name = dev_driver_string(dev->dev.parent);
3215 		else
3216 			name = netdev_name(dev);
3217 	}
3218 	skb_dump(KERN_WARNING, skb, false);
3219 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3220 	     name, dev ? &dev->features : &null_features,
3221 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3222 }
3223 
3224 /*
3225  * Invalidate hardware checksum when packet is to be mangled, and
3226  * complete checksum manually on outgoing path.
3227  */
3228 int skb_checksum_help(struct sk_buff *skb)
3229 {
3230 	__wsum csum;
3231 	int ret = 0, offset;
3232 
3233 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3234 		goto out_set_summed;
3235 
3236 	if (unlikely(skb_is_gso(skb))) {
3237 		skb_warn_bad_offload(skb);
3238 		return -EINVAL;
3239 	}
3240 
3241 	/* Before computing a checksum, we should make sure no frag could
3242 	 * be modified by an external entity : checksum could be wrong.
3243 	 */
3244 	if (skb_has_shared_frag(skb)) {
3245 		ret = __skb_linearize(skb);
3246 		if (ret)
3247 			goto out;
3248 	}
3249 
3250 	offset = skb_checksum_start_offset(skb);
3251 	BUG_ON(offset >= skb_headlen(skb));
3252 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3253 
3254 	offset += skb->csum_offset;
3255 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3256 
3257 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3258 	if (ret)
3259 		goto out;
3260 
3261 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3262 out_set_summed:
3263 	skb->ip_summed = CHECKSUM_NONE;
3264 out:
3265 	return ret;
3266 }
3267 EXPORT_SYMBOL(skb_checksum_help);
3268 
3269 int skb_crc32c_csum_help(struct sk_buff *skb)
3270 {
3271 	__le32 crc32c_csum;
3272 	int ret = 0, offset, start;
3273 
3274 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3275 		goto out;
3276 
3277 	if (unlikely(skb_is_gso(skb)))
3278 		goto out;
3279 
3280 	/* Before computing a checksum, we should make sure no frag could
3281 	 * be modified by an external entity : checksum could be wrong.
3282 	 */
3283 	if (unlikely(skb_has_shared_frag(skb))) {
3284 		ret = __skb_linearize(skb);
3285 		if (ret)
3286 			goto out;
3287 	}
3288 	start = skb_checksum_start_offset(skb);
3289 	offset = start + offsetof(struct sctphdr, checksum);
3290 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3291 		ret = -EINVAL;
3292 		goto out;
3293 	}
3294 
3295 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3296 	if (ret)
3297 		goto out;
3298 
3299 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3300 						  skb->len - start, ~(__u32)0,
3301 						  crc32c_csum_stub));
3302 	*(__le32 *)(skb->data + offset) = crc32c_csum;
3303 	skb->ip_summed = CHECKSUM_NONE;
3304 	skb->csum_not_inet = 0;
3305 out:
3306 	return ret;
3307 }
3308 
3309 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3310 {
3311 	__be16 type = skb->protocol;
3312 
3313 	/* Tunnel gso handlers can set protocol to ethernet. */
3314 	if (type == htons(ETH_P_TEB)) {
3315 		struct ethhdr *eth;
3316 
3317 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3318 			return 0;
3319 
3320 		eth = (struct ethhdr *)skb->data;
3321 		type = eth->h_proto;
3322 	}
3323 
3324 	return __vlan_get_protocol(skb, type, depth);
3325 }
3326 
3327 /**
3328  *	skb_mac_gso_segment - mac layer segmentation handler.
3329  *	@skb: buffer to segment
3330  *	@features: features for the output path (see dev->features)
3331  */
3332 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3333 				    netdev_features_t features)
3334 {
3335 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3336 	struct packet_offload *ptype;
3337 	int vlan_depth = skb->mac_len;
3338 	__be16 type = skb_network_protocol(skb, &vlan_depth);
3339 
3340 	if (unlikely(!type))
3341 		return ERR_PTR(-EINVAL);
3342 
3343 	__skb_pull(skb, vlan_depth);
3344 
3345 	rcu_read_lock();
3346 	list_for_each_entry_rcu(ptype, &offload_base, list) {
3347 		if (ptype->type == type && ptype->callbacks.gso_segment) {
3348 			segs = ptype->callbacks.gso_segment(skb, features);
3349 			break;
3350 		}
3351 	}
3352 	rcu_read_unlock();
3353 
3354 	__skb_push(skb, skb->data - skb_mac_header(skb));
3355 
3356 	return segs;
3357 }
3358 EXPORT_SYMBOL(skb_mac_gso_segment);
3359 
3360 
3361 /* openvswitch calls this on rx path, so we need a different check.
3362  */
3363 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3364 {
3365 	if (tx_path)
3366 		return skb->ip_summed != CHECKSUM_PARTIAL &&
3367 		       skb->ip_summed != CHECKSUM_UNNECESSARY;
3368 
3369 	return skb->ip_summed == CHECKSUM_NONE;
3370 }
3371 
3372 /**
3373  *	__skb_gso_segment - Perform segmentation on skb.
3374  *	@skb: buffer to segment
3375  *	@features: features for the output path (see dev->features)
3376  *	@tx_path: whether it is called in TX path
3377  *
3378  *	This function segments the given skb and returns a list of segments.
3379  *
3380  *	It may return NULL if the skb requires no segmentation.  This is
3381  *	only possible when GSO is used for verifying header integrity.
3382  *
3383  *	Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3384  */
3385 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3386 				  netdev_features_t features, bool tx_path)
3387 {
3388 	struct sk_buff *segs;
3389 
3390 	if (unlikely(skb_needs_check(skb, tx_path))) {
3391 		int err;
3392 
3393 		/* We're going to init ->check field in TCP or UDP header */
3394 		err = skb_cow_head(skb, 0);
3395 		if (err < 0)
3396 			return ERR_PTR(err);
3397 	}
3398 
3399 	/* Only report GSO partial support if it will enable us to
3400 	 * support segmentation on this frame without needing additional
3401 	 * work.
3402 	 */
3403 	if (features & NETIF_F_GSO_PARTIAL) {
3404 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3405 		struct net_device *dev = skb->dev;
3406 
3407 		partial_features |= dev->features & dev->gso_partial_features;
3408 		if (!skb_gso_ok(skb, features | partial_features))
3409 			features &= ~NETIF_F_GSO_PARTIAL;
3410 	}
3411 
3412 	BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3413 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3414 
3415 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3416 	SKB_GSO_CB(skb)->encap_level = 0;
3417 
3418 	skb_reset_mac_header(skb);
3419 	skb_reset_mac_len(skb);
3420 
3421 	segs = skb_mac_gso_segment(skb, features);
3422 
3423 	if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3424 		skb_warn_bad_offload(skb);
3425 
3426 	return segs;
3427 }
3428 EXPORT_SYMBOL(__skb_gso_segment);
3429 
3430 /* Take action when hardware reception checksum errors are detected. */
3431 #ifdef CONFIG_BUG
3432 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3433 {
3434 	if (net_ratelimit()) {
3435 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3436 		skb_dump(KERN_ERR, skb, true);
3437 		dump_stack();
3438 	}
3439 }
3440 EXPORT_SYMBOL(netdev_rx_csum_fault);
3441 #endif
3442 
3443 /* XXX: check that highmem exists at all on the given machine. */
3444 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3445 {
3446 #ifdef CONFIG_HIGHMEM
3447 	int i;
3448 
3449 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3450 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3451 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3452 
3453 			if (PageHighMem(skb_frag_page(frag)))
3454 				return 1;
3455 		}
3456 	}
3457 #endif
3458 	return 0;
3459 }
3460 
3461 /* If MPLS offload request, verify we are testing hardware MPLS features
3462  * instead of standard features for the netdev.
3463  */
3464 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3465 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3466 					   netdev_features_t features,
3467 					   __be16 type)
3468 {
3469 	if (eth_p_mpls(type))
3470 		features &= skb->dev->mpls_features;
3471 
3472 	return features;
3473 }
3474 #else
3475 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3476 					   netdev_features_t features,
3477 					   __be16 type)
3478 {
3479 	return features;
3480 }
3481 #endif
3482 
3483 static netdev_features_t harmonize_features(struct sk_buff *skb,
3484 	netdev_features_t features)
3485 {
3486 	__be16 type;
3487 
3488 	type = skb_network_protocol(skb, NULL);
3489 	features = net_mpls_features(skb, features, type);
3490 
3491 	if (skb->ip_summed != CHECKSUM_NONE &&
3492 	    !can_checksum_protocol(features, type)) {
3493 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3494 	}
3495 	if (illegal_highdma(skb->dev, skb))
3496 		features &= ~NETIF_F_SG;
3497 
3498 	return features;
3499 }
3500 
3501 netdev_features_t passthru_features_check(struct sk_buff *skb,
3502 					  struct net_device *dev,
3503 					  netdev_features_t features)
3504 {
3505 	return features;
3506 }
3507 EXPORT_SYMBOL(passthru_features_check);
3508 
3509 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3510 					     struct net_device *dev,
3511 					     netdev_features_t features)
3512 {
3513 	return vlan_features_check(skb, features);
3514 }
3515 
3516 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3517 					    struct net_device *dev,
3518 					    netdev_features_t features)
3519 {
3520 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3521 
3522 	if (gso_segs > dev->gso_max_segs)
3523 		return features & ~NETIF_F_GSO_MASK;
3524 
3525 	if (!skb_shinfo(skb)->gso_type) {
3526 		skb_warn_bad_offload(skb);
3527 		return features & ~NETIF_F_GSO_MASK;
3528 	}
3529 
3530 	/* Support for GSO partial features requires software
3531 	 * intervention before we can actually process the packets
3532 	 * so we need to strip support for any partial features now
3533 	 * and we can pull them back in after we have partially
3534 	 * segmented the frame.
3535 	 */
3536 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3537 		features &= ~dev->gso_partial_features;
3538 
3539 	/* Make sure to clear the IPv4 ID mangling feature if the
3540 	 * IPv4 header has the potential to be fragmented.
3541 	 */
3542 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3543 		struct iphdr *iph = skb->encapsulation ?
3544 				    inner_ip_hdr(skb) : ip_hdr(skb);
3545 
3546 		if (!(iph->frag_off & htons(IP_DF)))
3547 			features &= ~NETIF_F_TSO_MANGLEID;
3548 	}
3549 
3550 	return features;
3551 }
3552 
3553 netdev_features_t netif_skb_features(struct sk_buff *skb)
3554 {
3555 	struct net_device *dev = skb->dev;
3556 	netdev_features_t features = dev->features;
3557 
3558 	if (skb_is_gso(skb))
3559 		features = gso_features_check(skb, dev, features);
3560 
3561 	/* If encapsulation offload request, verify we are testing
3562 	 * hardware encapsulation features instead of standard
3563 	 * features for the netdev
3564 	 */
3565 	if (skb->encapsulation)
3566 		features &= dev->hw_enc_features;
3567 
3568 	if (skb_vlan_tagged(skb))
3569 		features = netdev_intersect_features(features,
3570 						     dev->vlan_features |
3571 						     NETIF_F_HW_VLAN_CTAG_TX |
3572 						     NETIF_F_HW_VLAN_STAG_TX);
3573 
3574 	if (dev->netdev_ops->ndo_features_check)
3575 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3576 								features);
3577 	else
3578 		features &= dflt_features_check(skb, dev, features);
3579 
3580 	return harmonize_features(skb, features);
3581 }
3582 EXPORT_SYMBOL(netif_skb_features);
3583 
3584 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3585 		    struct netdev_queue *txq, bool more)
3586 {
3587 	unsigned int len;
3588 	int rc;
3589 
3590 	if (dev_nit_active(dev))
3591 		dev_queue_xmit_nit(skb, dev);
3592 
3593 	len = skb->len;
3594 	PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies);
3595 	trace_net_dev_start_xmit(skb, dev);
3596 	rc = netdev_start_xmit(skb, dev, txq, more);
3597 	trace_net_dev_xmit(skb, rc, dev, len);
3598 
3599 	return rc;
3600 }
3601 
3602 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3603 				    struct netdev_queue *txq, int *ret)
3604 {
3605 	struct sk_buff *skb = first;
3606 	int rc = NETDEV_TX_OK;
3607 
3608 	while (skb) {
3609 		struct sk_buff *next = skb->next;
3610 
3611 		skb_mark_not_on_list(skb);
3612 		rc = xmit_one(skb, dev, txq, next != NULL);
3613 		if (unlikely(!dev_xmit_complete(rc))) {
3614 			skb->next = next;
3615 			goto out;
3616 		}
3617 
3618 		skb = next;
3619 		if (netif_tx_queue_stopped(txq) && skb) {
3620 			rc = NETDEV_TX_BUSY;
3621 			break;
3622 		}
3623 	}
3624 
3625 out:
3626 	*ret = rc;
3627 	return skb;
3628 }
3629 
3630 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3631 					  netdev_features_t features)
3632 {
3633 	if (skb_vlan_tag_present(skb) &&
3634 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3635 		skb = __vlan_hwaccel_push_inside(skb);
3636 	return skb;
3637 }
3638 
3639 int skb_csum_hwoffload_help(struct sk_buff *skb,
3640 			    const netdev_features_t features)
3641 {
3642 	if (unlikely(skb_csum_is_sctp(skb)))
3643 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3644 			skb_crc32c_csum_help(skb);
3645 
3646 	if (features & NETIF_F_HW_CSUM)
3647 		return 0;
3648 
3649 	if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3650 		switch (skb->csum_offset) {
3651 		case offsetof(struct tcphdr, check):
3652 		case offsetof(struct udphdr, check):
3653 			return 0;
3654 		}
3655 	}
3656 
3657 	return skb_checksum_help(skb);
3658 }
3659 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3660 
3661 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3662 {
3663 	netdev_features_t features;
3664 
3665 	features = netif_skb_features(skb);
3666 	skb = validate_xmit_vlan(skb, features);
3667 	if (unlikely(!skb))
3668 		goto out_null;
3669 
3670 	skb = sk_validate_xmit_skb(skb, dev);
3671 	if (unlikely(!skb))
3672 		goto out_null;
3673 
3674 	if (netif_needs_gso(skb, features)) {
3675 		struct sk_buff *segs;
3676 
3677 		segs = skb_gso_segment(skb, features);
3678 		if (IS_ERR(segs)) {
3679 			goto out_kfree_skb;
3680 		} else if (segs) {
3681 			consume_skb(skb);
3682 			skb = segs;
3683 		}
3684 	} else {
3685 		if (skb_needs_linearize(skb, features) &&
3686 		    __skb_linearize(skb))
3687 			goto out_kfree_skb;
3688 
3689 		/* If packet is not checksummed and device does not
3690 		 * support checksumming for this protocol, complete
3691 		 * checksumming here.
3692 		 */
3693 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3694 			if (skb->encapsulation)
3695 				skb_set_inner_transport_header(skb,
3696 							       skb_checksum_start_offset(skb));
3697 			else
3698 				skb_set_transport_header(skb,
3699 							 skb_checksum_start_offset(skb));
3700 			if (skb_csum_hwoffload_help(skb, features))
3701 				goto out_kfree_skb;
3702 		}
3703 	}
3704 
3705 	skb = validate_xmit_xfrm(skb, features, again);
3706 
3707 	return skb;
3708 
3709 out_kfree_skb:
3710 	kfree_skb(skb);
3711 out_null:
3712 	atomic_long_inc(&dev->tx_dropped);
3713 	return NULL;
3714 }
3715 
3716 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3717 {
3718 	struct sk_buff *next, *head = NULL, *tail;
3719 
3720 	for (; skb != NULL; skb = next) {
3721 		next = skb->next;
3722 		skb_mark_not_on_list(skb);
3723 
3724 		/* in case skb wont be segmented, point to itself */
3725 		skb->prev = skb;
3726 
3727 		skb = validate_xmit_skb(skb, dev, again);
3728 		if (!skb)
3729 			continue;
3730 
3731 		if (!head)
3732 			head = skb;
3733 		else
3734 			tail->next = skb;
3735 		/* If skb was segmented, skb->prev points to
3736 		 * the last segment. If not, it still contains skb.
3737 		 */
3738 		tail = skb->prev;
3739 	}
3740 	return head;
3741 }
3742 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3743 
3744 static void qdisc_pkt_len_init(struct sk_buff *skb)
3745 {
3746 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3747 
3748 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3749 
3750 	/* To get more precise estimation of bytes sent on wire,
3751 	 * we add to pkt_len the headers size of all segments
3752 	 */
3753 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3754 		unsigned int hdr_len;
3755 		u16 gso_segs = shinfo->gso_segs;
3756 
3757 		/* mac layer + network layer */
3758 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3759 
3760 		/* + transport layer */
3761 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3762 			const struct tcphdr *th;
3763 			struct tcphdr _tcphdr;
3764 
3765 			th = skb_header_pointer(skb, skb_transport_offset(skb),
3766 						sizeof(_tcphdr), &_tcphdr);
3767 			if (likely(th))
3768 				hdr_len += __tcp_hdrlen(th);
3769 		} else {
3770 			struct udphdr _udphdr;
3771 
3772 			if (skb_header_pointer(skb, skb_transport_offset(skb),
3773 					       sizeof(_udphdr), &_udphdr))
3774 				hdr_len += sizeof(struct udphdr);
3775 		}
3776 
3777 		if (shinfo->gso_type & SKB_GSO_DODGY)
3778 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3779 						shinfo->gso_size);
3780 
3781 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3782 	}
3783 }
3784 
3785 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3786 				 struct net_device *dev,
3787 				 struct netdev_queue *txq)
3788 {
3789 	spinlock_t *root_lock = qdisc_lock(q);
3790 	struct sk_buff *to_free = NULL;
3791 	bool contended;
3792 	int rc;
3793 
3794 	qdisc_calculate_pkt_len(skb, q);
3795 
3796 	if (q->flags & TCQ_F_NOLOCK) {
3797 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3798 		qdisc_run(q);
3799 
3800 		if (unlikely(to_free))
3801 			kfree_skb_list(to_free);
3802 		return rc;
3803 	}
3804 
3805 	/*
3806 	 * Heuristic to force contended enqueues to serialize on a
3807 	 * separate lock before trying to get qdisc main lock.
3808 	 * This permits qdisc->running owner to get the lock more
3809 	 * often and dequeue packets faster.
3810 	 */
3811 	contended = qdisc_is_running(q);
3812 	if (unlikely(contended))
3813 		spin_lock(&q->busylock);
3814 
3815 	spin_lock(root_lock);
3816 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3817 		__qdisc_drop(skb, &to_free);
3818 		rc = NET_XMIT_DROP;
3819 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3820 		   qdisc_run_begin(q)) {
3821 		/*
3822 		 * This is a work-conserving queue; there are no old skbs
3823 		 * waiting to be sent out; and the qdisc is not running -
3824 		 * xmit the skb directly.
3825 		 */
3826 
3827 		qdisc_bstats_update(q, skb);
3828 
3829 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3830 			if (unlikely(contended)) {
3831 				spin_unlock(&q->busylock);
3832 				contended = false;
3833 			}
3834 			__qdisc_run(q);
3835 		}
3836 
3837 		qdisc_run_end(q);
3838 		rc = NET_XMIT_SUCCESS;
3839 	} else {
3840 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3841 		if (qdisc_run_begin(q)) {
3842 			if (unlikely(contended)) {
3843 				spin_unlock(&q->busylock);
3844 				contended = false;
3845 			}
3846 			__qdisc_run(q);
3847 			qdisc_run_end(q);
3848 		}
3849 	}
3850 	spin_unlock(root_lock);
3851 	if (unlikely(to_free))
3852 		kfree_skb_list(to_free);
3853 	if (unlikely(contended))
3854 		spin_unlock(&q->busylock);
3855 	return rc;
3856 }
3857 
3858 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3859 static void skb_update_prio(struct sk_buff *skb)
3860 {
3861 	const struct netprio_map *map;
3862 	const struct sock *sk;
3863 	unsigned int prioidx;
3864 
3865 	if (skb->priority)
3866 		return;
3867 	map = rcu_dereference_bh(skb->dev->priomap);
3868 	if (!map)
3869 		return;
3870 	sk = skb_to_full_sk(skb);
3871 	if (!sk)
3872 		return;
3873 
3874 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3875 
3876 	if (prioidx < map->priomap_len)
3877 		skb->priority = map->priomap[prioidx];
3878 }
3879 #else
3880 #define skb_update_prio(skb)
3881 #endif
3882 
3883 /**
3884  *	dev_loopback_xmit - loop back @skb
3885  *	@net: network namespace this loopback is happening in
3886  *	@sk:  sk needed to be a netfilter okfn
3887  *	@skb: buffer to transmit
3888  */
3889 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3890 {
3891 	skb_reset_mac_header(skb);
3892 	__skb_pull(skb, skb_network_offset(skb));
3893 	skb->pkt_type = PACKET_LOOPBACK;
3894 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3895 	WARN_ON(!skb_dst(skb));
3896 	skb_dst_force(skb);
3897 	netif_rx_ni(skb);
3898 	return 0;
3899 }
3900 EXPORT_SYMBOL(dev_loopback_xmit);
3901 
3902 #ifdef CONFIG_NET_EGRESS
3903 static struct sk_buff *
3904 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3905 {
3906 	struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3907 	struct tcf_result cl_res;
3908 
3909 	if (!miniq)
3910 		return skb;
3911 
3912 	/* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3913 	qdisc_skb_cb(skb)->mru = 0;
3914 	qdisc_skb_cb(skb)->post_ct = false;
3915 	mini_qdisc_bstats_cpu_update(miniq, skb);
3916 
3917 	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3918 	case TC_ACT_OK:
3919 	case TC_ACT_RECLASSIFY:
3920 		skb->tc_index = TC_H_MIN(cl_res.classid);
3921 		break;
3922 	case TC_ACT_SHOT:
3923 		mini_qdisc_qstats_cpu_drop(miniq);
3924 		*ret = NET_XMIT_DROP;
3925 		kfree_skb(skb);
3926 		return NULL;
3927 	case TC_ACT_STOLEN:
3928 	case TC_ACT_QUEUED:
3929 	case TC_ACT_TRAP:
3930 		*ret = NET_XMIT_SUCCESS;
3931 		consume_skb(skb);
3932 		return NULL;
3933 	case TC_ACT_REDIRECT:
3934 		/* No need to push/pop skb's mac_header here on egress! */
3935 		skb_do_redirect(skb);
3936 		*ret = NET_XMIT_SUCCESS;
3937 		return NULL;
3938 	default:
3939 		break;
3940 	}
3941 
3942 	return skb;
3943 }
3944 #endif /* CONFIG_NET_EGRESS */
3945 
3946 #ifdef CONFIG_XPS
3947 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3948 			       struct xps_dev_maps *dev_maps, unsigned int tci)
3949 {
3950 	int tc = netdev_get_prio_tc_map(dev, skb->priority);
3951 	struct xps_map *map;
3952 	int queue_index = -1;
3953 
3954 	if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
3955 		return queue_index;
3956 
3957 	tci *= dev_maps->num_tc;
3958 	tci += tc;
3959 
3960 	map = rcu_dereference(dev_maps->attr_map[tci]);
3961 	if (map) {
3962 		if (map->len == 1)
3963 			queue_index = map->queues[0];
3964 		else
3965 			queue_index = map->queues[reciprocal_scale(
3966 						skb_get_hash(skb), map->len)];
3967 		if (unlikely(queue_index >= dev->real_num_tx_queues))
3968 			queue_index = -1;
3969 	}
3970 	return queue_index;
3971 }
3972 #endif
3973 
3974 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3975 			 struct sk_buff *skb)
3976 {
3977 #ifdef CONFIG_XPS
3978 	struct xps_dev_maps *dev_maps;
3979 	struct sock *sk = skb->sk;
3980 	int queue_index = -1;
3981 
3982 	if (!static_key_false(&xps_needed))
3983 		return -1;
3984 
3985 	rcu_read_lock();
3986 	if (!static_key_false(&xps_rxqs_needed))
3987 		goto get_cpus_map;
3988 
3989 	dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
3990 	if (dev_maps) {
3991 		int tci = sk_rx_queue_get(sk);
3992 
3993 		if (tci >= 0)
3994 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3995 							  tci);
3996 	}
3997 
3998 get_cpus_map:
3999 	if (queue_index < 0) {
4000 		dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4001 		if (dev_maps) {
4002 			unsigned int tci = skb->sender_cpu - 1;
4003 
4004 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4005 							  tci);
4006 		}
4007 	}
4008 	rcu_read_unlock();
4009 
4010 	return queue_index;
4011 #else
4012 	return -1;
4013 #endif
4014 }
4015 
4016 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4017 		     struct net_device *sb_dev)
4018 {
4019 	return 0;
4020 }
4021 EXPORT_SYMBOL(dev_pick_tx_zero);
4022 
4023 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4024 		       struct net_device *sb_dev)
4025 {
4026 	return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4027 }
4028 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4029 
4030 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4031 		     struct net_device *sb_dev)
4032 {
4033 	struct sock *sk = skb->sk;
4034 	int queue_index = sk_tx_queue_get(sk);
4035 
4036 	sb_dev = sb_dev ? : dev;
4037 
4038 	if (queue_index < 0 || skb->ooo_okay ||
4039 	    queue_index >= dev->real_num_tx_queues) {
4040 		int new_index = get_xps_queue(dev, sb_dev, skb);
4041 
4042 		if (new_index < 0)
4043 			new_index = skb_tx_hash(dev, sb_dev, skb);
4044 
4045 		if (queue_index != new_index && sk &&
4046 		    sk_fullsock(sk) &&
4047 		    rcu_access_pointer(sk->sk_dst_cache))
4048 			sk_tx_queue_set(sk, new_index);
4049 
4050 		queue_index = new_index;
4051 	}
4052 
4053 	return queue_index;
4054 }
4055 EXPORT_SYMBOL(netdev_pick_tx);
4056 
4057 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4058 					 struct sk_buff *skb,
4059 					 struct net_device *sb_dev)
4060 {
4061 	int queue_index = 0;
4062 
4063 #ifdef CONFIG_XPS
4064 	u32 sender_cpu = skb->sender_cpu - 1;
4065 
4066 	if (sender_cpu >= (u32)NR_CPUS)
4067 		skb->sender_cpu = raw_smp_processor_id() + 1;
4068 #endif
4069 
4070 	if (dev->real_num_tx_queues != 1) {
4071 		const struct net_device_ops *ops = dev->netdev_ops;
4072 
4073 		if (ops->ndo_select_queue)
4074 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4075 		else
4076 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4077 
4078 		queue_index = netdev_cap_txqueue(dev, queue_index);
4079 	}
4080 
4081 	skb_set_queue_mapping(skb, queue_index);
4082 	return netdev_get_tx_queue(dev, queue_index);
4083 }
4084 
4085 /**
4086  *	__dev_queue_xmit - transmit a buffer
4087  *	@skb: buffer to transmit
4088  *	@sb_dev: suboordinate device used for L2 forwarding offload
4089  *
4090  *	Queue a buffer for transmission to a network device. The caller must
4091  *	have set the device and priority and built the buffer before calling
4092  *	this function. The function can be called from an interrupt.
4093  *
4094  *	A negative errno code is returned on a failure. A success does not
4095  *	guarantee the frame will be transmitted as it may be dropped due
4096  *	to congestion or traffic shaping.
4097  *
4098  * -----------------------------------------------------------------------------------
4099  *      I notice this method can also return errors from the queue disciplines,
4100  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
4101  *      be positive.
4102  *
4103  *      Regardless of the return value, the skb is consumed, so it is currently
4104  *      difficult to retry a send to this method.  (You can bump the ref count
4105  *      before sending to hold a reference for retry if you are careful.)
4106  *
4107  *      When calling this method, interrupts MUST be enabled.  This is because
4108  *      the BH enable code must have IRQs enabled so that it will not deadlock.
4109  *          --BLG
4110  */
4111 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4112 {
4113 	struct net_device *dev = skb->dev;
4114 	struct netdev_queue *txq;
4115 	struct Qdisc *q;
4116 	int rc = -ENOMEM;
4117 	bool again = false;
4118 
4119 	skb_reset_mac_header(skb);
4120 
4121 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4122 		__skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4123 
4124 	/* Disable soft irqs for various locks below. Also
4125 	 * stops preemption for RCU.
4126 	 */
4127 	rcu_read_lock_bh();
4128 
4129 	skb_update_prio(skb);
4130 
4131 	qdisc_pkt_len_init(skb);
4132 #ifdef CONFIG_NET_CLS_ACT
4133 	skb->tc_at_ingress = 0;
4134 # ifdef CONFIG_NET_EGRESS
4135 	if (static_branch_unlikely(&egress_needed_key)) {
4136 		skb = sch_handle_egress(skb, &rc, dev);
4137 		if (!skb)
4138 			goto out;
4139 	}
4140 # endif
4141 #endif
4142 	/* If device/qdisc don't need skb->dst, release it right now while
4143 	 * its hot in this cpu cache.
4144 	 */
4145 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4146 		skb_dst_drop(skb);
4147 	else
4148 		skb_dst_force(skb);
4149 
4150 	txq = netdev_core_pick_tx(dev, skb, sb_dev);
4151 	q = rcu_dereference_bh(txq->qdisc);
4152 
4153 	trace_net_dev_queue(skb);
4154 	if (q->enqueue) {
4155 		rc = __dev_xmit_skb(skb, q, dev, txq);
4156 		goto out;
4157 	}
4158 
4159 	/* The device has no queue. Common case for software devices:
4160 	 * loopback, all the sorts of tunnels...
4161 
4162 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4163 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4164 	 * counters.)
4165 	 * However, it is possible, that they rely on protection
4166 	 * made by us here.
4167 
4168 	 * Check this and shot the lock. It is not prone from deadlocks.
4169 	 *Either shot noqueue qdisc, it is even simpler 8)
4170 	 */
4171 	if (dev->flags & IFF_UP) {
4172 		int cpu = smp_processor_id(); /* ok because BHs are off */
4173 
4174 		if (txq->xmit_lock_owner != cpu) {
4175 			if (dev_xmit_recursion())
4176 				goto recursion_alert;
4177 
4178 			skb = validate_xmit_skb(skb, dev, &again);
4179 			if (!skb)
4180 				goto out;
4181 
4182 			PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4183 			HARD_TX_LOCK(dev, txq, cpu);
4184 
4185 			if (!netif_xmit_stopped(txq)) {
4186 				dev_xmit_recursion_inc();
4187 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4188 				dev_xmit_recursion_dec();
4189 				if (dev_xmit_complete(rc)) {
4190 					HARD_TX_UNLOCK(dev, txq);
4191 					goto out;
4192 				}
4193 			}
4194 			HARD_TX_UNLOCK(dev, txq);
4195 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4196 					     dev->name);
4197 		} else {
4198 			/* Recursion is detected! It is possible,
4199 			 * unfortunately
4200 			 */
4201 recursion_alert:
4202 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4203 					     dev->name);
4204 		}
4205 	}
4206 
4207 	rc = -ENETDOWN;
4208 	rcu_read_unlock_bh();
4209 
4210 	atomic_long_inc(&dev->tx_dropped);
4211 	kfree_skb_list(skb);
4212 	return rc;
4213 out:
4214 	rcu_read_unlock_bh();
4215 	return rc;
4216 }
4217 
4218 int dev_queue_xmit(struct sk_buff *skb)
4219 {
4220 	return __dev_queue_xmit(skb, NULL);
4221 }
4222 EXPORT_SYMBOL(dev_queue_xmit);
4223 
4224 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4225 {
4226 	return __dev_queue_xmit(skb, sb_dev);
4227 }
4228 EXPORT_SYMBOL(dev_queue_xmit_accel);
4229 
4230 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4231 {
4232 	struct net_device *dev = skb->dev;
4233 	struct sk_buff *orig_skb = skb;
4234 	struct netdev_queue *txq;
4235 	int ret = NETDEV_TX_BUSY;
4236 	bool again = false;
4237 
4238 	if (unlikely(!netif_running(dev) ||
4239 		     !netif_carrier_ok(dev)))
4240 		goto drop;
4241 
4242 	skb = validate_xmit_skb_list(skb, dev, &again);
4243 	if (skb != orig_skb)
4244 		goto drop;
4245 
4246 	skb_set_queue_mapping(skb, queue_id);
4247 	txq = skb_get_tx_queue(dev, skb);
4248 	PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4249 
4250 	local_bh_disable();
4251 
4252 	dev_xmit_recursion_inc();
4253 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4254 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4255 		ret = netdev_start_xmit(skb, dev, txq, false);
4256 	HARD_TX_UNLOCK(dev, txq);
4257 	dev_xmit_recursion_dec();
4258 
4259 	local_bh_enable();
4260 	return ret;
4261 drop:
4262 	atomic_long_inc(&dev->tx_dropped);
4263 	kfree_skb_list(skb);
4264 	return NET_XMIT_DROP;
4265 }
4266 EXPORT_SYMBOL(__dev_direct_xmit);
4267 
4268 /*************************************************************************
4269  *			Receiver routines
4270  *************************************************************************/
4271 
4272 int netdev_max_backlog __read_mostly = 1000;
4273 EXPORT_SYMBOL(netdev_max_backlog);
4274 
4275 int netdev_tstamp_prequeue __read_mostly = 1;
4276 int netdev_budget __read_mostly = 300;
4277 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4278 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4279 int weight_p __read_mostly = 64;           /* old backlog weight */
4280 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4281 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4282 int dev_rx_weight __read_mostly = 64;
4283 int dev_tx_weight __read_mostly = 64;
4284 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4285 int gro_normal_batch __read_mostly = 8;
4286 
4287 /* Called with irq disabled */
4288 static inline void ____napi_schedule(struct softnet_data *sd,
4289 				     struct napi_struct *napi)
4290 {
4291 	struct task_struct *thread;
4292 
4293 	if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4294 		/* Paired with smp_mb__before_atomic() in
4295 		 * napi_enable()/dev_set_threaded().
4296 		 * Use READ_ONCE() to guarantee a complete
4297 		 * read on napi->thread. Only call
4298 		 * wake_up_process() when it's not NULL.
4299 		 */
4300 		thread = READ_ONCE(napi->thread);
4301 		if (thread) {
4302 			wake_up_process(thread);
4303 			return;
4304 		}
4305 	}
4306 
4307 	list_add_tail(&napi->poll_list, &sd->poll_list);
4308 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4309 }
4310 
4311 #ifdef CONFIG_RPS
4312 
4313 /* One global table that all flow-based protocols share. */
4314 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4315 EXPORT_SYMBOL(rps_sock_flow_table);
4316 u32 rps_cpu_mask __read_mostly;
4317 EXPORT_SYMBOL(rps_cpu_mask);
4318 
4319 struct static_key_false rps_needed __read_mostly;
4320 EXPORT_SYMBOL(rps_needed);
4321 struct static_key_false rfs_needed __read_mostly;
4322 EXPORT_SYMBOL(rfs_needed);
4323 
4324 static struct rps_dev_flow *
4325 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4326 	    struct rps_dev_flow *rflow, u16 next_cpu)
4327 {
4328 	if (next_cpu < nr_cpu_ids) {
4329 #ifdef CONFIG_RFS_ACCEL
4330 		struct netdev_rx_queue *rxqueue;
4331 		struct rps_dev_flow_table *flow_table;
4332 		struct rps_dev_flow *old_rflow;
4333 		u32 flow_id;
4334 		u16 rxq_index;
4335 		int rc;
4336 
4337 		/* Should we steer this flow to a different hardware queue? */
4338 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4339 		    !(dev->features & NETIF_F_NTUPLE))
4340 			goto out;
4341 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4342 		if (rxq_index == skb_get_rx_queue(skb))
4343 			goto out;
4344 
4345 		rxqueue = dev->_rx + rxq_index;
4346 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4347 		if (!flow_table)
4348 			goto out;
4349 		flow_id = skb_get_hash(skb) & flow_table->mask;
4350 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4351 							rxq_index, flow_id);
4352 		if (rc < 0)
4353 			goto out;
4354 		old_rflow = rflow;
4355 		rflow = &flow_table->flows[flow_id];
4356 		rflow->filter = rc;
4357 		if (old_rflow->filter == rflow->filter)
4358 			old_rflow->filter = RPS_NO_FILTER;
4359 	out:
4360 #endif
4361 		rflow->last_qtail =
4362 			per_cpu(softnet_data, next_cpu).input_queue_head;
4363 	}
4364 
4365 	rflow->cpu = next_cpu;
4366 	return rflow;
4367 }
4368 
4369 /*
4370  * get_rps_cpu is called from netif_receive_skb and returns the target
4371  * CPU from the RPS map of the receiving queue for a given skb.
4372  * rcu_read_lock must be held on entry.
4373  */
4374 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4375 		       struct rps_dev_flow **rflowp)
4376 {
4377 	const struct rps_sock_flow_table *sock_flow_table;
4378 	struct netdev_rx_queue *rxqueue = dev->_rx;
4379 	struct rps_dev_flow_table *flow_table;
4380 	struct rps_map *map;
4381 	int cpu = -1;
4382 	u32 tcpu;
4383 	u32 hash;
4384 
4385 	if (skb_rx_queue_recorded(skb)) {
4386 		u16 index = skb_get_rx_queue(skb);
4387 
4388 		if (unlikely(index >= dev->real_num_rx_queues)) {
4389 			WARN_ONCE(dev->real_num_rx_queues > 1,
4390 				  "%s received packet on queue %u, but number "
4391 				  "of RX queues is %u\n",
4392 				  dev->name, index, dev->real_num_rx_queues);
4393 			goto done;
4394 		}
4395 		rxqueue += index;
4396 	}
4397 
4398 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4399 
4400 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4401 	map = rcu_dereference(rxqueue->rps_map);
4402 	if (!flow_table && !map)
4403 		goto done;
4404 
4405 	skb_reset_network_header(skb);
4406 	hash = skb_get_hash(skb);
4407 	if (!hash)
4408 		goto done;
4409 
4410 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
4411 	if (flow_table && sock_flow_table) {
4412 		struct rps_dev_flow *rflow;
4413 		u32 next_cpu;
4414 		u32 ident;
4415 
4416 		/* First check into global flow table if there is a match */
4417 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4418 		if ((ident ^ hash) & ~rps_cpu_mask)
4419 			goto try_rps;
4420 
4421 		next_cpu = ident & rps_cpu_mask;
4422 
4423 		/* OK, now we know there is a match,
4424 		 * we can look at the local (per receive queue) flow table
4425 		 */
4426 		rflow = &flow_table->flows[hash & flow_table->mask];
4427 		tcpu = rflow->cpu;
4428 
4429 		/*
4430 		 * If the desired CPU (where last recvmsg was done) is
4431 		 * different from current CPU (one in the rx-queue flow
4432 		 * table entry), switch if one of the following holds:
4433 		 *   - Current CPU is unset (>= nr_cpu_ids).
4434 		 *   - Current CPU is offline.
4435 		 *   - The current CPU's queue tail has advanced beyond the
4436 		 *     last packet that was enqueued using this table entry.
4437 		 *     This guarantees that all previous packets for the flow
4438 		 *     have been dequeued, thus preserving in order delivery.
4439 		 */
4440 		if (unlikely(tcpu != next_cpu) &&
4441 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4442 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4443 		      rflow->last_qtail)) >= 0)) {
4444 			tcpu = next_cpu;
4445 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4446 		}
4447 
4448 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4449 			*rflowp = rflow;
4450 			cpu = tcpu;
4451 			goto done;
4452 		}
4453 	}
4454 
4455 try_rps:
4456 
4457 	if (map) {
4458 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4459 		if (cpu_online(tcpu)) {
4460 			cpu = tcpu;
4461 			goto done;
4462 		}
4463 	}
4464 
4465 done:
4466 	return cpu;
4467 }
4468 
4469 #ifdef CONFIG_RFS_ACCEL
4470 
4471 /**
4472  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4473  * @dev: Device on which the filter was set
4474  * @rxq_index: RX queue index
4475  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4476  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4477  *
4478  * Drivers that implement ndo_rx_flow_steer() should periodically call
4479  * this function for each installed filter and remove the filters for
4480  * which it returns %true.
4481  */
4482 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4483 			 u32 flow_id, u16 filter_id)
4484 {
4485 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4486 	struct rps_dev_flow_table *flow_table;
4487 	struct rps_dev_flow *rflow;
4488 	bool expire = true;
4489 	unsigned int cpu;
4490 
4491 	rcu_read_lock();
4492 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4493 	if (flow_table && flow_id <= flow_table->mask) {
4494 		rflow = &flow_table->flows[flow_id];
4495 		cpu = READ_ONCE(rflow->cpu);
4496 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4497 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4498 			   rflow->last_qtail) <
4499 		     (int)(10 * flow_table->mask)))
4500 			expire = false;
4501 	}
4502 	rcu_read_unlock();
4503 	return expire;
4504 }
4505 EXPORT_SYMBOL(rps_may_expire_flow);
4506 
4507 #endif /* CONFIG_RFS_ACCEL */
4508 
4509 /* Called from hardirq (IPI) context */
4510 static void rps_trigger_softirq(void *data)
4511 {
4512 	struct softnet_data *sd = data;
4513 
4514 	____napi_schedule(sd, &sd->backlog);
4515 	sd->received_rps++;
4516 }
4517 
4518 #endif /* CONFIG_RPS */
4519 
4520 /*
4521  * Check if this softnet_data structure is another cpu one
4522  * If yes, queue it to our IPI list and return 1
4523  * If no, return 0
4524  */
4525 static int rps_ipi_queued(struct softnet_data *sd)
4526 {
4527 #ifdef CONFIG_RPS
4528 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4529 
4530 	if (sd != mysd) {
4531 		sd->rps_ipi_next = mysd->rps_ipi_list;
4532 		mysd->rps_ipi_list = sd;
4533 
4534 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4535 		return 1;
4536 	}
4537 #endif /* CONFIG_RPS */
4538 	return 0;
4539 }
4540 
4541 #ifdef CONFIG_NET_FLOW_LIMIT
4542 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4543 #endif
4544 
4545 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4546 {
4547 #ifdef CONFIG_NET_FLOW_LIMIT
4548 	struct sd_flow_limit *fl;
4549 	struct softnet_data *sd;
4550 	unsigned int old_flow, new_flow;
4551 
4552 	if (qlen < (netdev_max_backlog >> 1))
4553 		return false;
4554 
4555 	sd = this_cpu_ptr(&softnet_data);
4556 
4557 	rcu_read_lock();
4558 	fl = rcu_dereference(sd->flow_limit);
4559 	if (fl) {
4560 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4561 		old_flow = fl->history[fl->history_head];
4562 		fl->history[fl->history_head] = new_flow;
4563 
4564 		fl->history_head++;
4565 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4566 
4567 		if (likely(fl->buckets[old_flow]))
4568 			fl->buckets[old_flow]--;
4569 
4570 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4571 			fl->count++;
4572 			rcu_read_unlock();
4573 			return true;
4574 		}
4575 	}
4576 	rcu_read_unlock();
4577 #endif
4578 	return false;
4579 }
4580 
4581 /*
4582  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4583  * queue (may be a remote CPU queue).
4584  */
4585 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4586 			      unsigned int *qtail)
4587 {
4588 	struct softnet_data *sd;
4589 	unsigned long flags;
4590 	unsigned int qlen;
4591 
4592 	sd = &per_cpu(softnet_data, cpu);
4593 
4594 	local_irq_save(flags);
4595 
4596 	rps_lock(sd);
4597 	if (!netif_running(skb->dev))
4598 		goto drop;
4599 	qlen = skb_queue_len(&sd->input_pkt_queue);
4600 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4601 		if (qlen) {
4602 enqueue:
4603 			__skb_queue_tail(&sd->input_pkt_queue, skb);
4604 			input_queue_tail_incr_save(sd, qtail);
4605 			rps_unlock(sd);
4606 			local_irq_restore(flags);
4607 			return NET_RX_SUCCESS;
4608 		}
4609 
4610 		/* Schedule NAPI for backlog device
4611 		 * We can use non atomic operation since we own the queue lock
4612 		 */
4613 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4614 			if (!rps_ipi_queued(sd))
4615 				____napi_schedule(sd, &sd->backlog);
4616 		}
4617 		goto enqueue;
4618 	}
4619 
4620 drop:
4621 	sd->dropped++;
4622 	rps_unlock(sd);
4623 
4624 	local_irq_restore(flags);
4625 
4626 	atomic_long_inc(&skb->dev->rx_dropped);
4627 	kfree_skb(skb);
4628 	return NET_RX_DROP;
4629 }
4630 
4631 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4632 {
4633 	struct net_device *dev = skb->dev;
4634 	struct netdev_rx_queue *rxqueue;
4635 
4636 	rxqueue = dev->_rx;
4637 
4638 	if (skb_rx_queue_recorded(skb)) {
4639 		u16 index = skb_get_rx_queue(skb);
4640 
4641 		if (unlikely(index >= dev->real_num_rx_queues)) {
4642 			WARN_ONCE(dev->real_num_rx_queues > 1,
4643 				  "%s received packet on queue %u, but number "
4644 				  "of RX queues is %u\n",
4645 				  dev->name, index, dev->real_num_rx_queues);
4646 
4647 			return rxqueue; /* Return first rxqueue */
4648 		}
4649 		rxqueue += index;
4650 	}
4651 	return rxqueue;
4652 }
4653 
4654 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4655 				     struct xdp_buff *xdp,
4656 				     struct bpf_prog *xdp_prog)
4657 {
4658 	void *orig_data, *orig_data_end, *hard_start;
4659 	struct netdev_rx_queue *rxqueue;
4660 	u32 metalen, act = XDP_DROP;
4661 	u32 mac_len, frame_sz;
4662 	__be16 orig_eth_type;
4663 	struct ethhdr *eth;
4664 	bool orig_bcast;
4665 	int off;
4666 
4667 	/* Reinjected packets coming from act_mirred or similar should
4668 	 * not get XDP generic processing.
4669 	 */
4670 	if (skb_is_redirected(skb))
4671 		return XDP_PASS;
4672 
4673 	/* XDP packets must be linear and must have sufficient headroom
4674 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4675 	 * native XDP provides, thus we need to do it here as well.
4676 	 */
4677 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4678 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4679 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4680 		int troom = skb->tail + skb->data_len - skb->end;
4681 
4682 		/* In case we have to go down the path and also linearize,
4683 		 * then lets do the pskb_expand_head() work just once here.
4684 		 */
4685 		if (pskb_expand_head(skb,
4686 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4687 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4688 			goto do_drop;
4689 		if (skb_linearize(skb))
4690 			goto do_drop;
4691 	}
4692 
4693 	/* The XDP program wants to see the packet starting at the MAC
4694 	 * header.
4695 	 */
4696 	mac_len = skb->data - skb_mac_header(skb);
4697 	hard_start = skb->data - skb_headroom(skb);
4698 
4699 	/* SKB "head" area always have tailroom for skb_shared_info */
4700 	frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4701 	frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4702 
4703 	rxqueue = netif_get_rxqueue(skb);
4704 	xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4705 	xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4706 			 skb_headlen(skb) + mac_len, true);
4707 
4708 	orig_data_end = xdp->data_end;
4709 	orig_data = xdp->data;
4710 	eth = (struct ethhdr *)xdp->data;
4711 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4712 	orig_eth_type = eth->h_proto;
4713 
4714 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4715 
4716 	/* check if bpf_xdp_adjust_head was used */
4717 	off = xdp->data - orig_data;
4718 	if (off) {
4719 		if (off > 0)
4720 			__skb_pull(skb, off);
4721 		else if (off < 0)
4722 			__skb_push(skb, -off);
4723 
4724 		skb->mac_header += off;
4725 		skb_reset_network_header(skb);
4726 	}
4727 
4728 	/* check if bpf_xdp_adjust_tail was used */
4729 	off = xdp->data_end - orig_data_end;
4730 	if (off != 0) {
4731 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4732 		skb->len += off; /* positive on grow, negative on shrink */
4733 	}
4734 
4735 	/* check if XDP changed eth hdr such SKB needs update */
4736 	eth = (struct ethhdr *)xdp->data;
4737 	if ((orig_eth_type != eth->h_proto) ||
4738 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4739 		__skb_push(skb, ETH_HLEN);
4740 		skb->protocol = eth_type_trans(skb, skb->dev);
4741 	}
4742 
4743 	switch (act) {
4744 	case XDP_REDIRECT:
4745 	case XDP_TX:
4746 		__skb_push(skb, mac_len);
4747 		break;
4748 	case XDP_PASS:
4749 		metalen = xdp->data - xdp->data_meta;
4750 		if (metalen)
4751 			skb_metadata_set(skb, metalen);
4752 		break;
4753 	default:
4754 		bpf_warn_invalid_xdp_action(act);
4755 		fallthrough;
4756 	case XDP_ABORTED:
4757 		trace_xdp_exception(skb->dev, xdp_prog, act);
4758 		fallthrough;
4759 	case XDP_DROP:
4760 	do_drop:
4761 		kfree_skb(skb);
4762 		break;
4763 	}
4764 
4765 	return act;
4766 }
4767 
4768 /* When doing generic XDP we have to bypass the qdisc layer and the
4769  * network taps in order to match in-driver-XDP behavior.
4770  */
4771 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4772 {
4773 	struct net_device *dev = skb->dev;
4774 	struct netdev_queue *txq;
4775 	bool free_skb = true;
4776 	int cpu, rc;
4777 
4778 	txq = netdev_core_pick_tx(dev, skb, NULL);
4779 	cpu = smp_processor_id();
4780 	HARD_TX_LOCK(dev, txq, cpu);
4781 	if (!netif_xmit_stopped(txq)) {
4782 		rc = netdev_start_xmit(skb, dev, txq, 0);
4783 		if (dev_xmit_complete(rc))
4784 			free_skb = false;
4785 	}
4786 	HARD_TX_UNLOCK(dev, txq);
4787 	if (free_skb) {
4788 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
4789 		kfree_skb(skb);
4790 	}
4791 }
4792 
4793 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4794 
4795 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4796 {
4797 	if (xdp_prog) {
4798 		struct xdp_buff xdp;
4799 		u32 act;
4800 		int err;
4801 
4802 		act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4803 		if (act != XDP_PASS) {
4804 			switch (act) {
4805 			case XDP_REDIRECT:
4806 				err = xdp_do_generic_redirect(skb->dev, skb,
4807 							      &xdp, xdp_prog);
4808 				if (err)
4809 					goto out_redir;
4810 				break;
4811 			case XDP_TX:
4812 				generic_xdp_tx(skb, xdp_prog);
4813 				break;
4814 			}
4815 			return XDP_DROP;
4816 		}
4817 	}
4818 	return XDP_PASS;
4819 out_redir:
4820 	kfree_skb(skb);
4821 	return XDP_DROP;
4822 }
4823 EXPORT_SYMBOL_GPL(do_xdp_generic);
4824 
4825 static int netif_rx_internal(struct sk_buff *skb)
4826 {
4827 	int ret;
4828 
4829 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4830 
4831 	trace_netif_rx(skb);
4832 
4833 #ifdef CONFIG_RPS
4834 	if (static_branch_unlikely(&rps_needed)) {
4835 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4836 		int cpu;
4837 
4838 		preempt_disable();
4839 		rcu_read_lock();
4840 
4841 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
4842 		if (cpu < 0)
4843 			cpu = smp_processor_id();
4844 
4845 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4846 
4847 		rcu_read_unlock();
4848 		preempt_enable();
4849 	} else
4850 #endif
4851 	{
4852 		unsigned int qtail;
4853 
4854 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4855 		put_cpu();
4856 	}
4857 	return ret;
4858 }
4859 
4860 /**
4861  *	netif_rx	-	post buffer to the network code
4862  *	@skb: buffer to post
4863  *
4864  *	This function receives a packet from a device driver and queues it for
4865  *	the upper (protocol) levels to process.  It always succeeds. The buffer
4866  *	may be dropped during processing for congestion control or by the
4867  *	protocol layers.
4868  *
4869  *	return values:
4870  *	NET_RX_SUCCESS	(no congestion)
4871  *	NET_RX_DROP     (packet was dropped)
4872  *
4873  */
4874 
4875 int netif_rx(struct sk_buff *skb)
4876 {
4877 	int ret;
4878 
4879 	trace_netif_rx_entry(skb);
4880 
4881 	ret = netif_rx_internal(skb);
4882 	trace_netif_rx_exit(ret);
4883 
4884 	return ret;
4885 }
4886 EXPORT_SYMBOL(netif_rx);
4887 
4888 int netif_rx_ni(struct sk_buff *skb)
4889 {
4890 	int err;
4891 
4892 	trace_netif_rx_ni_entry(skb);
4893 
4894 	preempt_disable();
4895 	err = netif_rx_internal(skb);
4896 	if (local_softirq_pending())
4897 		do_softirq();
4898 	preempt_enable();
4899 	trace_netif_rx_ni_exit(err);
4900 
4901 	return err;
4902 }
4903 EXPORT_SYMBOL(netif_rx_ni);
4904 
4905 int netif_rx_any_context(struct sk_buff *skb)
4906 {
4907 	/*
4908 	 * If invoked from contexts which do not invoke bottom half
4909 	 * processing either at return from interrupt or when softrqs are
4910 	 * reenabled, use netif_rx_ni() which invokes bottomhalf processing
4911 	 * directly.
4912 	 */
4913 	if (in_interrupt())
4914 		return netif_rx(skb);
4915 	else
4916 		return netif_rx_ni(skb);
4917 }
4918 EXPORT_SYMBOL(netif_rx_any_context);
4919 
4920 static __latent_entropy void net_tx_action(struct softirq_action *h)
4921 {
4922 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4923 
4924 	if (sd->completion_queue) {
4925 		struct sk_buff *clist;
4926 
4927 		local_irq_disable();
4928 		clist = sd->completion_queue;
4929 		sd->completion_queue = NULL;
4930 		local_irq_enable();
4931 
4932 		while (clist) {
4933 			struct sk_buff *skb = clist;
4934 
4935 			clist = clist->next;
4936 
4937 			WARN_ON(refcount_read(&skb->users));
4938 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4939 				trace_consume_skb(skb);
4940 			else
4941 				trace_kfree_skb(skb, net_tx_action);
4942 
4943 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4944 				__kfree_skb(skb);
4945 			else
4946 				__kfree_skb_defer(skb);
4947 		}
4948 	}
4949 
4950 	if (sd->output_queue) {
4951 		struct Qdisc *head;
4952 
4953 		local_irq_disable();
4954 		head = sd->output_queue;
4955 		sd->output_queue = NULL;
4956 		sd->output_queue_tailp = &sd->output_queue;
4957 		local_irq_enable();
4958 
4959 		while (head) {
4960 			struct Qdisc *q = head;
4961 			spinlock_t *root_lock = NULL;
4962 
4963 			head = head->next_sched;
4964 
4965 			if (!(q->flags & TCQ_F_NOLOCK)) {
4966 				root_lock = qdisc_lock(q);
4967 				spin_lock(root_lock);
4968 			}
4969 			/* We need to make sure head->next_sched is read
4970 			 * before clearing __QDISC_STATE_SCHED
4971 			 */
4972 			smp_mb__before_atomic();
4973 			clear_bit(__QDISC_STATE_SCHED, &q->state);
4974 			qdisc_run(q);
4975 			if (root_lock)
4976 				spin_unlock(root_lock);
4977 		}
4978 	}
4979 
4980 	xfrm_dev_backlog(sd);
4981 }
4982 
4983 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4984 /* This hook is defined here for ATM LANE */
4985 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4986 			     unsigned char *addr) __read_mostly;
4987 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4988 #endif
4989 
4990 static inline struct sk_buff *
4991 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4992 		   struct net_device *orig_dev, bool *another)
4993 {
4994 #ifdef CONFIG_NET_CLS_ACT
4995 	struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4996 	struct tcf_result cl_res;
4997 
4998 	/* If there's at least one ingress present somewhere (so
4999 	 * we get here via enabled static key), remaining devices
5000 	 * that are not configured with an ingress qdisc will bail
5001 	 * out here.
5002 	 */
5003 	if (!miniq)
5004 		return skb;
5005 
5006 	if (*pt_prev) {
5007 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
5008 		*pt_prev = NULL;
5009 	}
5010 
5011 	qdisc_skb_cb(skb)->pkt_len = skb->len;
5012 	qdisc_skb_cb(skb)->mru = 0;
5013 	qdisc_skb_cb(skb)->post_ct = false;
5014 	skb->tc_at_ingress = 1;
5015 	mini_qdisc_bstats_cpu_update(miniq, skb);
5016 
5017 	switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list,
5018 				     &cl_res, false)) {
5019 	case TC_ACT_OK:
5020 	case TC_ACT_RECLASSIFY:
5021 		skb->tc_index = TC_H_MIN(cl_res.classid);
5022 		break;
5023 	case TC_ACT_SHOT:
5024 		mini_qdisc_qstats_cpu_drop(miniq);
5025 		kfree_skb(skb);
5026 		return NULL;
5027 	case TC_ACT_STOLEN:
5028 	case TC_ACT_QUEUED:
5029 	case TC_ACT_TRAP:
5030 		consume_skb(skb);
5031 		return NULL;
5032 	case TC_ACT_REDIRECT:
5033 		/* skb_mac_header check was done by cls/act_bpf, so
5034 		 * we can safely push the L2 header back before
5035 		 * redirecting to another netdev
5036 		 */
5037 		__skb_push(skb, skb->mac_len);
5038 		if (skb_do_redirect(skb) == -EAGAIN) {
5039 			__skb_pull(skb, skb->mac_len);
5040 			*another = true;
5041 			break;
5042 		}
5043 		return NULL;
5044 	case TC_ACT_CONSUMED:
5045 		return NULL;
5046 	default:
5047 		break;
5048 	}
5049 #endif /* CONFIG_NET_CLS_ACT */
5050 	return skb;
5051 }
5052 
5053 /**
5054  *	netdev_is_rx_handler_busy - check if receive handler is registered
5055  *	@dev: device to check
5056  *
5057  *	Check if a receive handler is already registered for a given device.
5058  *	Return true if there one.
5059  *
5060  *	The caller must hold the rtnl_mutex.
5061  */
5062 bool netdev_is_rx_handler_busy(struct net_device *dev)
5063 {
5064 	ASSERT_RTNL();
5065 	return dev && rtnl_dereference(dev->rx_handler);
5066 }
5067 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5068 
5069 /**
5070  *	netdev_rx_handler_register - register receive handler
5071  *	@dev: device to register a handler for
5072  *	@rx_handler: receive handler to register
5073  *	@rx_handler_data: data pointer that is used by rx handler
5074  *
5075  *	Register a receive handler for a device. This handler will then be
5076  *	called from __netif_receive_skb. A negative errno code is returned
5077  *	on a failure.
5078  *
5079  *	The caller must hold the rtnl_mutex.
5080  *
5081  *	For a general description of rx_handler, see enum rx_handler_result.
5082  */
5083 int netdev_rx_handler_register(struct net_device *dev,
5084 			       rx_handler_func_t *rx_handler,
5085 			       void *rx_handler_data)
5086 {
5087 	if (netdev_is_rx_handler_busy(dev))
5088 		return -EBUSY;
5089 
5090 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
5091 		return -EINVAL;
5092 
5093 	/* Note: rx_handler_data must be set before rx_handler */
5094 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5095 	rcu_assign_pointer(dev->rx_handler, rx_handler);
5096 
5097 	return 0;
5098 }
5099 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5100 
5101 /**
5102  *	netdev_rx_handler_unregister - unregister receive handler
5103  *	@dev: device to unregister a handler from
5104  *
5105  *	Unregister a receive handler from a device.
5106  *
5107  *	The caller must hold the rtnl_mutex.
5108  */
5109 void netdev_rx_handler_unregister(struct net_device *dev)
5110 {
5111 
5112 	ASSERT_RTNL();
5113 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5114 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5115 	 * section has a guarantee to see a non NULL rx_handler_data
5116 	 * as well.
5117 	 */
5118 	synchronize_net();
5119 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5120 }
5121 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5122 
5123 /*
5124  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5125  * the special handling of PFMEMALLOC skbs.
5126  */
5127 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5128 {
5129 	switch (skb->protocol) {
5130 	case htons(ETH_P_ARP):
5131 	case htons(ETH_P_IP):
5132 	case htons(ETH_P_IPV6):
5133 	case htons(ETH_P_8021Q):
5134 	case htons(ETH_P_8021AD):
5135 		return true;
5136 	default:
5137 		return false;
5138 	}
5139 }
5140 
5141 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5142 			     int *ret, struct net_device *orig_dev)
5143 {
5144 	if (nf_hook_ingress_active(skb)) {
5145 		int ingress_retval;
5146 
5147 		if (*pt_prev) {
5148 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5149 			*pt_prev = NULL;
5150 		}
5151 
5152 		rcu_read_lock();
5153 		ingress_retval = nf_hook_ingress(skb);
5154 		rcu_read_unlock();
5155 		return ingress_retval;
5156 	}
5157 	return 0;
5158 }
5159 
5160 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5161 				    struct packet_type **ppt_prev)
5162 {
5163 	struct packet_type *ptype, *pt_prev;
5164 	rx_handler_func_t *rx_handler;
5165 	struct sk_buff *skb = *pskb;
5166 	struct net_device *orig_dev;
5167 	bool deliver_exact = false;
5168 	int ret = NET_RX_DROP;
5169 	__be16 type;
5170 
5171 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
5172 
5173 	trace_netif_receive_skb(skb);
5174 
5175 	orig_dev = skb->dev;
5176 
5177 	skb_reset_network_header(skb);
5178 	if (!skb_transport_header_was_set(skb))
5179 		skb_reset_transport_header(skb);
5180 	skb_reset_mac_len(skb);
5181 
5182 	pt_prev = NULL;
5183 
5184 another_round:
5185 	skb->skb_iif = skb->dev->ifindex;
5186 
5187 	__this_cpu_inc(softnet_data.processed);
5188 
5189 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5190 		int ret2;
5191 
5192 		preempt_disable();
5193 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5194 		preempt_enable();
5195 
5196 		if (ret2 != XDP_PASS) {
5197 			ret = NET_RX_DROP;
5198 			goto out;
5199 		}
5200 		skb_reset_mac_len(skb);
5201 	}
5202 
5203 	if (eth_type_vlan(skb->protocol)) {
5204 		skb = skb_vlan_untag(skb);
5205 		if (unlikely(!skb))
5206 			goto out;
5207 	}
5208 
5209 	if (skb_skip_tc_classify(skb))
5210 		goto skip_classify;
5211 
5212 	if (pfmemalloc)
5213 		goto skip_taps;
5214 
5215 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
5216 		if (pt_prev)
5217 			ret = deliver_skb(skb, pt_prev, orig_dev);
5218 		pt_prev = ptype;
5219 	}
5220 
5221 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5222 		if (pt_prev)
5223 			ret = deliver_skb(skb, pt_prev, orig_dev);
5224 		pt_prev = ptype;
5225 	}
5226 
5227 skip_taps:
5228 #ifdef CONFIG_NET_INGRESS
5229 	if (static_branch_unlikely(&ingress_needed_key)) {
5230 		bool another = false;
5231 
5232 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5233 					 &another);
5234 		if (another)
5235 			goto another_round;
5236 		if (!skb)
5237 			goto out;
5238 
5239 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5240 			goto out;
5241 	}
5242 #endif
5243 	skb_reset_redirect(skb);
5244 skip_classify:
5245 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5246 		goto drop;
5247 
5248 	if (skb_vlan_tag_present(skb)) {
5249 		if (pt_prev) {
5250 			ret = deliver_skb(skb, pt_prev, orig_dev);
5251 			pt_prev = NULL;
5252 		}
5253 		if (vlan_do_receive(&skb))
5254 			goto another_round;
5255 		else if (unlikely(!skb))
5256 			goto out;
5257 	}
5258 
5259 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5260 	if (rx_handler) {
5261 		if (pt_prev) {
5262 			ret = deliver_skb(skb, pt_prev, orig_dev);
5263 			pt_prev = NULL;
5264 		}
5265 		switch (rx_handler(&skb)) {
5266 		case RX_HANDLER_CONSUMED:
5267 			ret = NET_RX_SUCCESS;
5268 			goto out;
5269 		case RX_HANDLER_ANOTHER:
5270 			goto another_round;
5271 		case RX_HANDLER_EXACT:
5272 			deliver_exact = true;
5273 			break;
5274 		case RX_HANDLER_PASS:
5275 			break;
5276 		default:
5277 			BUG();
5278 		}
5279 	}
5280 
5281 	if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5282 check_vlan_id:
5283 		if (skb_vlan_tag_get_id(skb)) {
5284 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5285 			 * find vlan device.
5286 			 */
5287 			skb->pkt_type = PACKET_OTHERHOST;
5288 		} else if (eth_type_vlan(skb->protocol)) {
5289 			/* Outer header is 802.1P with vlan 0, inner header is
5290 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5291 			 * not find vlan dev for vlan id 0.
5292 			 */
5293 			__vlan_hwaccel_clear_tag(skb);
5294 			skb = skb_vlan_untag(skb);
5295 			if (unlikely(!skb))
5296 				goto out;
5297 			if (vlan_do_receive(&skb))
5298 				/* After stripping off 802.1P header with vlan 0
5299 				 * vlan dev is found for inner header.
5300 				 */
5301 				goto another_round;
5302 			else if (unlikely(!skb))
5303 				goto out;
5304 			else
5305 				/* We have stripped outer 802.1P vlan 0 header.
5306 				 * But could not find vlan dev.
5307 				 * check again for vlan id to set OTHERHOST.
5308 				 */
5309 				goto check_vlan_id;
5310 		}
5311 		/* Note: we might in the future use prio bits
5312 		 * and set skb->priority like in vlan_do_receive()
5313 		 * For the time being, just ignore Priority Code Point
5314 		 */
5315 		__vlan_hwaccel_clear_tag(skb);
5316 	}
5317 
5318 	type = skb->protocol;
5319 
5320 	/* deliver only exact match when indicated */
5321 	if (likely(!deliver_exact)) {
5322 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5323 				       &ptype_base[ntohs(type) &
5324 						   PTYPE_HASH_MASK]);
5325 	}
5326 
5327 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5328 			       &orig_dev->ptype_specific);
5329 
5330 	if (unlikely(skb->dev != orig_dev)) {
5331 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5332 				       &skb->dev->ptype_specific);
5333 	}
5334 
5335 	if (pt_prev) {
5336 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5337 			goto drop;
5338 		*ppt_prev = pt_prev;
5339 	} else {
5340 drop:
5341 		if (!deliver_exact)
5342 			atomic_long_inc(&skb->dev->rx_dropped);
5343 		else
5344 			atomic_long_inc(&skb->dev->rx_nohandler);
5345 		kfree_skb(skb);
5346 		/* Jamal, now you will not able to escape explaining
5347 		 * me how you were going to use this. :-)
5348 		 */
5349 		ret = NET_RX_DROP;
5350 	}
5351 
5352 out:
5353 	/* The invariant here is that if *ppt_prev is not NULL
5354 	 * then skb should also be non-NULL.
5355 	 *
5356 	 * Apparently *ppt_prev assignment above holds this invariant due to
5357 	 * skb dereferencing near it.
5358 	 */
5359 	*pskb = skb;
5360 	return ret;
5361 }
5362 
5363 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5364 {
5365 	struct net_device *orig_dev = skb->dev;
5366 	struct packet_type *pt_prev = NULL;
5367 	int ret;
5368 
5369 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5370 	if (pt_prev)
5371 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5372 					 skb->dev, pt_prev, orig_dev);
5373 	return ret;
5374 }
5375 
5376 /**
5377  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5378  *	@skb: buffer to process
5379  *
5380  *	More direct receive version of netif_receive_skb().  It should
5381  *	only be used by callers that have a need to skip RPS and Generic XDP.
5382  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5383  *
5384  *	This function may only be called from softirq context and interrupts
5385  *	should be enabled.
5386  *
5387  *	Return values (usually ignored):
5388  *	NET_RX_SUCCESS: no congestion
5389  *	NET_RX_DROP: packet was dropped
5390  */
5391 int netif_receive_skb_core(struct sk_buff *skb)
5392 {
5393 	int ret;
5394 
5395 	rcu_read_lock();
5396 	ret = __netif_receive_skb_one_core(skb, false);
5397 	rcu_read_unlock();
5398 
5399 	return ret;
5400 }
5401 EXPORT_SYMBOL(netif_receive_skb_core);
5402 
5403 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5404 						  struct packet_type *pt_prev,
5405 						  struct net_device *orig_dev)
5406 {
5407 	struct sk_buff *skb, *next;
5408 
5409 	if (!pt_prev)
5410 		return;
5411 	if (list_empty(head))
5412 		return;
5413 	if (pt_prev->list_func != NULL)
5414 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5415 				   ip_list_rcv, head, pt_prev, orig_dev);
5416 	else
5417 		list_for_each_entry_safe(skb, next, head, list) {
5418 			skb_list_del_init(skb);
5419 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5420 		}
5421 }
5422 
5423 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5424 {
5425 	/* Fast-path assumptions:
5426 	 * - There is no RX handler.
5427 	 * - Only one packet_type matches.
5428 	 * If either of these fails, we will end up doing some per-packet
5429 	 * processing in-line, then handling the 'last ptype' for the whole
5430 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5431 	 * because the 'last ptype' must be constant across the sublist, and all
5432 	 * other ptypes are handled per-packet.
5433 	 */
5434 	/* Current (common) ptype of sublist */
5435 	struct packet_type *pt_curr = NULL;
5436 	/* Current (common) orig_dev of sublist */
5437 	struct net_device *od_curr = NULL;
5438 	struct list_head sublist;
5439 	struct sk_buff *skb, *next;
5440 
5441 	INIT_LIST_HEAD(&sublist);
5442 	list_for_each_entry_safe(skb, next, head, list) {
5443 		struct net_device *orig_dev = skb->dev;
5444 		struct packet_type *pt_prev = NULL;
5445 
5446 		skb_list_del_init(skb);
5447 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5448 		if (!pt_prev)
5449 			continue;
5450 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5451 			/* dispatch old sublist */
5452 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5453 			/* start new sublist */
5454 			INIT_LIST_HEAD(&sublist);
5455 			pt_curr = pt_prev;
5456 			od_curr = orig_dev;
5457 		}
5458 		list_add_tail(&skb->list, &sublist);
5459 	}
5460 
5461 	/* dispatch final sublist */
5462 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5463 }
5464 
5465 static int __netif_receive_skb(struct sk_buff *skb)
5466 {
5467 	int ret;
5468 
5469 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5470 		unsigned int noreclaim_flag;
5471 
5472 		/*
5473 		 * PFMEMALLOC skbs are special, they should
5474 		 * - be delivered to SOCK_MEMALLOC sockets only
5475 		 * - stay away from userspace
5476 		 * - have bounded memory usage
5477 		 *
5478 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5479 		 * context down to all allocation sites.
5480 		 */
5481 		noreclaim_flag = memalloc_noreclaim_save();
5482 		ret = __netif_receive_skb_one_core(skb, true);
5483 		memalloc_noreclaim_restore(noreclaim_flag);
5484 	} else
5485 		ret = __netif_receive_skb_one_core(skb, false);
5486 
5487 	return ret;
5488 }
5489 
5490 static void __netif_receive_skb_list(struct list_head *head)
5491 {
5492 	unsigned long noreclaim_flag = 0;
5493 	struct sk_buff *skb, *next;
5494 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5495 
5496 	list_for_each_entry_safe(skb, next, head, list) {
5497 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5498 			struct list_head sublist;
5499 
5500 			/* Handle the previous sublist */
5501 			list_cut_before(&sublist, head, &skb->list);
5502 			if (!list_empty(&sublist))
5503 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5504 			pfmemalloc = !pfmemalloc;
5505 			/* See comments in __netif_receive_skb */
5506 			if (pfmemalloc)
5507 				noreclaim_flag = memalloc_noreclaim_save();
5508 			else
5509 				memalloc_noreclaim_restore(noreclaim_flag);
5510 		}
5511 	}
5512 	/* Handle the remaining sublist */
5513 	if (!list_empty(head))
5514 		__netif_receive_skb_list_core(head, pfmemalloc);
5515 	/* Restore pflags */
5516 	if (pfmemalloc)
5517 		memalloc_noreclaim_restore(noreclaim_flag);
5518 }
5519 
5520 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5521 {
5522 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5523 	struct bpf_prog *new = xdp->prog;
5524 	int ret = 0;
5525 
5526 	if (new) {
5527 		u32 i;
5528 
5529 		mutex_lock(&new->aux->used_maps_mutex);
5530 
5531 		/* generic XDP does not work with DEVMAPs that can
5532 		 * have a bpf_prog installed on an entry
5533 		 */
5534 		for (i = 0; i < new->aux->used_map_cnt; i++) {
5535 			if (dev_map_can_have_prog(new->aux->used_maps[i]) ||
5536 			    cpu_map_prog_allowed(new->aux->used_maps[i])) {
5537 				mutex_unlock(&new->aux->used_maps_mutex);
5538 				return -EINVAL;
5539 			}
5540 		}
5541 
5542 		mutex_unlock(&new->aux->used_maps_mutex);
5543 	}
5544 
5545 	switch (xdp->command) {
5546 	case XDP_SETUP_PROG:
5547 		rcu_assign_pointer(dev->xdp_prog, new);
5548 		if (old)
5549 			bpf_prog_put(old);
5550 
5551 		if (old && !new) {
5552 			static_branch_dec(&generic_xdp_needed_key);
5553 		} else if (new && !old) {
5554 			static_branch_inc(&generic_xdp_needed_key);
5555 			dev_disable_lro(dev);
5556 			dev_disable_gro_hw(dev);
5557 		}
5558 		break;
5559 
5560 	default:
5561 		ret = -EINVAL;
5562 		break;
5563 	}
5564 
5565 	return ret;
5566 }
5567 
5568 static int netif_receive_skb_internal(struct sk_buff *skb)
5569 {
5570 	int ret;
5571 
5572 	net_timestamp_check(netdev_tstamp_prequeue, skb);
5573 
5574 	if (skb_defer_rx_timestamp(skb))
5575 		return NET_RX_SUCCESS;
5576 
5577 	rcu_read_lock();
5578 #ifdef CONFIG_RPS
5579 	if (static_branch_unlikely(&rps_needed)) {
5580 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5581 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5582 
5583 		if (cpu >= 0) {
5584 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5585 			rcu_read_unlock();
5586 			return ret;
5587 		}
5588 	}
5589 #endif
5590 	ret = __netif_receive_skb(skb);
5591 	rcu_read_unlock();
5592 	return ret;
5593 }
5594 
5595 static void netif_receive_skb_list_internal(struct list_head *head)
5596 {
5597 	struct sk_buff *skb, *next;
5598 	struct list_head sublist;
5599 
5600 	INIT_LIST_HEAD(&sublist);
5601 	list_for_each_entry_safe(skb, next, head, list) {
5602 		net_timestamp_check(netdev_tstamp_prequeue, skb);
5603 		skb_list_del_init(skb);
5604 		if (!skb_defer_rx_timestamp(skb))
5605 			list_add_tail(&skb->list, &sublist);
5606 	}
5607 	list_splice_init(&sublist, head);
5608 
5609 	rcu_read_lock();
5610 #ifdef CONFIG_RPS
5611 	if (static_branch_unlikely(&rps_needed)) {
5612 		list_for_each_entry_safe(skb, next, head, list) {
5613 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5614 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5615 
5616 			if (cpu >= 0) {
5617 				/* Will be handled, remove from list */
5618 				skb_list_del_init(skb);
5619 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5620 			}
5621 		}
5622 	}
5623 #endif
5624 	__netif_receive_skb_list(head);
5625 	rcu_read_unlock();
5626 }
5627 
5628 /**
5629  *	netif_receive_skb - process receive buffer from network
5630  *	@skb: buffer to process
5631  *
5632  *	netif_receive_skb() is the main receive data processing function.
5633  *	It always succeeds. The buffer may be dropped during processing
5634  *	for congestion control or by the protocol layers.
5635  *
5636  *	This function may only be called from softirq context and interrupts
5637  *	should be enabled.
5638  *
5639  *	Return values (usually ignored):
5640  *	NET_RX_SUCCESS: no congestion
5641  *	NET_RX_DROP: packet was dropped
5642  */
5643 int netif_receive_skb(struct sk_buff *skb)
5644 {
5645 	int ret;
5646 
5647 	trace_netif_receive_skb_entry(skb);
5648 
5649 	ret = netif_receive_skb_internal(skb);
5650 	trace_netif_receive_skb_exit(ret);
5651 
5652 	return ret;
5653 }
5654 EXPORT_SYMBOL(netif_receive_skb);
5655 
5656 /**
5657  *	netif_receive_skb_list - process many receive buffers from network
5658  *	@head: list of skbs to process.
5659  *
5660  *	Since return value of netif_receive_skb() is normally ignored, and
5661  *	wouldn't be meaningful for a list, this function returns void.
5662  *
5663  *	This function may only be called from softirq context and interrupts
5664  *	should be enabled.
5665  */
5666 void netif_receive_skb_list(struct list_head *head)
5667 {
5668 	struct sk_buff *skb;
5669 
5670 	if (list_empty(head))
5671 		return;
5672 	if (trace_netif_receive_skb_list_entry_enabled()) {
5673 		list_for_each_entry(skb, head, list)
5674 			trace_netif_receive_skb_list_entry(skb);
5675 	}
5676 	netif_receive_skb_list_internal(head);
5677 	trace_netif_receive_skb_list_exit(0);
5678 }
5679 EXPORT_SYMBOL(netif_receive_skb_list);
5680 
5681 static DEFINE_PER_CPU(struct work_struct, flush_works);
5682 
5683 /* Network device is going away, flush any packets still pending */
5684 static void flush_backlog(struct work_struct *work)
5685 {
5686 	struct sk_buff *skb, *tmp;
5687 	struct softnet_data *sd;
5688 
5689 	local_bh_disable();
5690 	sd = this_cpu_ptr(&softnet_data);
5691 
5692 	local_irq_disable();
5693 	rps_lock(sd);
5694 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5695 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5696 			__skb_unlink(skb, &sd->input_pkt_queue);
5697 			dev_kfree_skb_irq(skb);
5698 			input_queue_head_incr(sd);
5699 		}
5700 	}
5701 	rps_unlock(sd);
5702 	local_irq_enable();
5703 
5704 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5705 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5706 			__skb_unlink(skb, &sd->process_queue);
5707 			kfree_skb(skb);
5708 			input_queue_head_incr(sd);
5709 		}
5710 	}
5711 	local_bh_enable();
5712 }
5713 
5714 static bool flush_required(int cpu)
5715 {
5716 #if IS_ENABLED(CONFIG_RPS)
5717 	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5718 	bool do_flush;
5719 
5720 	local_irq_disable();
5721 	rps_lock(sd);
5722 
5723 	/* as insertion into process_queue happens with the rps lock held,
5724 	 * process_queue access may race only with dequeue
5725 	 */
5726 	do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5727 		   !skb_queue_empty_lockless(&sd->process_queue);
5728 	rps_unlock(sd);
5729 	local_irq_enable();
5730 
5731 	return do_flush;
5732 #endif
5733 	/* without RPS we can't safely check input_pkt_queue: during a
5734 	 * concurrent remote skb_queue_splice() we can detect as empty both
5735 	 * input_pkt_queue and process_queue even if the latter could end-up
5736 	 * containing a lot of packets.
5737 	 */
5738 	return true;
5739 }
5740 
5741 static void flush_all_backlogs(void)
5742 {
5743 	static cpumask_t flush_cpus;
5744 	unsigned int cpu;
5745 
5746 	/* since we are under rtnl lock protection we can use static data
5747 	 * for the cpumask and avoid allocating on stack the possibly
5748 	 * large mask
5749 	 */
5750 	ASSERT_RTNL();
5751 
5752 	get_online_cpus();
5753 
5754 	cpumask_clear(&flush_cpus);
5755 	for_each_online_cpu(cpu) {
5756 		if (flush_required(cpu)) {
5757 			queue_work_on(cpu, system_highpri_wq,
5758 				      per_cpu_ptr(&flush_works, cpu));
5759 			cpumask_set_cpu(cpu, &flush_cpus);
5760 		}
5761 	}
5762 
5763 	/* we can have in flight packet[s] on the cpus we are not flushing,
5764 	 * synchronize_net() in unregister_netdevice_many() will take care of
5765 	 * them
5766 	 */
5767 	for_each_cpu(cpu, &flush_cpus)
5768 		flush_work(per_cpu_ptr(&flush_works, cpu));
5769 
5770 	put_online_cpus();
5771 }
5772 
5773 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5774 static void gro_normal_list(struct napi_struct *napi)
5775 {
5776 	if (!napi->rx_count)
5777 		return;
5778 	netif_receive_skb_list_internal(&napi->rx_list);
5779 	INIT_LIST_HEAD(&napi->rx_list);
5780 	napi->rx_count = 0;
5781 }
5782 
5783 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5784  * pass the whole batch up to the stack.
5785  */
5786 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb, int segs)
5787 {
5788 	list_add_tail(&skb->list, &napi->rx_list);
5789 	napi->rx_count += segs;
5790 	if (napi->rx_count >= gro_normal_batch)
5791 		gro_normal_list(napi);
5792 }
5793 
5794 static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5795 {
5796 	struct packet_offload *ptype;
5797 	__be16 type = skb->protocol;
5798 	struct list_head *head = &offload_base;
5799 	int err = -ENOENT;
5800 
5801 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5802 
5803 	if (NAPI_GRO_CB(skb)->count == 1) {
5804 		skb_shinfo(skb)->gso_size = 0;
5805 		goto out;
5806 	}
5807 
5808 	rcu_read_lock();
5809 	list_for_each_entry_rcu(ptype, head, list) {
5810 		if (ptype->type != type || !ptype->callbacks.gro_complete)
5811 			continue;
5812 
5813 		err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5814 					 ipv6_gro_complete, inet_gro_complete,
5815 					 skb, 0);
5816 		break;
5817 	}
5818 	rcu_read_unlock();
5819 
5820 	if (err) {
5821 		WARN_ON(&ptype->list == head);
5822 		kfree_skb(skb);
5823 		return NET_RX_SUCCESS;
5824 	}
5825 
5826 out:
5827 	gro_normal_one(napi, skb, NAPI_GRO_CB(skb)->count);
5828 	return NET_RX_SUCCESS;
5829 }
5830 
5831 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5832 				   bool flush_old)
5833 {
5834 	struct list_head *head = &napi->gro_hash[index].list;
5835 	struct sk_buff *skb, *p;
5836 
5837 	list_for_each_entry_safe_reverse(skb, p, head, list) {
5838 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5839 			return;
5840 		skb_list_del_init(skb);
5841 		napi_gro_complete(napi, skb);
5842 		napi->gro_hash[index].count--;
5843 	}
5844 
5845 	if (!napi->gro_hash[index].count)
5846 		__clear_bit(index, &napi->gro_bitmask);
5847 }
5848 
5849 /* napi->gro_hash[].list contains packets ordered by age.
5850  * youngest packets at the head of it.
5851  * Complete skbs in reverse order to reduce latencies.
5852  */
5853 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5854 {
5855 	unsigned long bitmask = napi->gro_bitmask;
5856 	unsigned int i, base = ~0U;
5857 
5858 	while ((i = ffs(bitmask)) != 0) {
5859 		bitmask >>= i;
5860 		base += i;
5861 		__napi_gro_flush_chain(napi, base, flush_old);
5862 	}
5863 }
5864 EXPORT_SYMBOL(napi_gro_flush);
5865 
5866 static void gro_list_prepare(const struct list_head *head,
5867 			     const struct sk_buff *skb)
5868 {
5869 	unsigned int maclen = skb->dev->hard_header_len;
5870 	u32 hash = skb_get_hash_raw(skb);
5871 	struct sk_buff *p;
5872 
5873 	list_for_each_entry(p, head, list) {
5874 		unsigned long diffs;
5875 
5876 		NAPI_GRO_CB(p)->flush = 0;
5877 
5878 		if (hash != skb_get_hash_raw(p)) {
5879 			NAPI_GRO_CB(p)->same_flow = 0;
5880 			continue;
5881 		}
5882 
5883 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5884 		diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5885 		if (skb_vlan_tag_present(p))
5886 			diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
5887 		diffs |= skb_metadata_dst_cmp(p, skb);
5888 		diffs |= skb_metadata_differs(p, skb);
5889 		if (maclen == ETH_HLEN)
5890 			diffs |= compare_ether_header(skb_mac_header(p),
5891 						      skb_mac_header(skb));
5892 		else if (!diffs)
5893 			diffs = memcmp(skb_mac_header(p),
5894 				       skb_mac_header(skb),
5895 				       maclen);
5896 		NAPI_GRO_CB(p)->same_flow = !diffs;
5897 	}
5898 }
5899 
5900 static void skb_gro_reset_offset(struct sk_buff *skb)
5901 {
5902 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
5903 	const skb_frag_t *frag0 = &pinfo->frags[0];
5904 
5905 	NAPI_GRO_CB(skb)->data_offset = 0;
5906 	NAPI_GRO_CB(skb)->frag0 = NULL;
5907 	NAPI_GRO_CB(skb)->frag0_len = 0;
5908 
5909 	if (!skb_headlen(skb) && pinfo->nr_frags &&
5910 	    !PageHighMem(skb_frag_page(frag0))) {
5911 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5912 		NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5913 						    skb_frag_size(frag0),
5914 						    skb->end - skb->tail);
5915 	}
5916 }
5917 
5918 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5919 {
5920 	struct skb_shared_info *pinfo = skb_shinfo(skb);
5921 
5922 	BUG_ON(skb->end - skb->tail < grow);
5923 
5924 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5925 
5926 	skb->data_len -= grow;
5927 	skb->tail += grow;
5928 
5929 	skb_frag_off_add(&pinfo->frags[0], grow);
5930 	skb_frag_size_sub(&pinfo->frags[0], grow);
5931 
5932 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5933 		skb_frag_unref(skb, 0);
5934 		memmove(pinfo->frags, pinfo->frags + 1,
5935 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
5936 	}
5937 }
5938 
5939 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
5940 {
5941 	struct sk_buff *oldest;
5942 
5943 	oldest = list_last_entry(head, struct sk_buff, list);
5944 
5945 	/* We are called with head length >= MAX_GRO_SKBS, so this is
5946 	 * impossible.
5947 	 */
5948 	if (WARN_ON_ONCE(!oldest))
5949 		return;
5950 
5951 	/* Do not adjust napi->gro_hash[].count, caller is adding a new
5952 	 * SKB to the chain.
5953 	 */
5954 	skb_list_del_init(oldest);
5955 	napi_gro_complete(napi, oldest);
5956 }
5957 
5958 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5959 {
5960 	u32 bucket = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5961 	struct gro_list *gro_list = &napi->gro_hash[bucket];
5962 	struct list_head *head = &offload_base;
5963 	struct packet_offload *ptype;
5964 	__be16 type = skb->protocol;
5965 	struct sk_buff *pp = NULL;
5966 	enum gro_result ret;
5967 	int same_flow;
5968 	int grow;
5969 
5970 	if (netif_elide_gro(skb->dev))
5971 		goto normal;
5972 
5973 	gro_list_prepare(&gro_list->list, skb);
5974 
5975 	rcu_read_lock();
5976 	list_for_each_entry_rcu(ptype, head, list) {
5977 		if (ptype->type != type || !ptype->callbacks.gro_receive)
5978 			continue;
5979 
5980 		skb_set_network_header(skb, skb_gro_offset(skb));
5981 		skb_reset_mac_len(skb);
5982 		NAPI_GRO_CB(skb)->same_flow = 0;
5983 		NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5984 		NAPI_GRO_CB(skb)->free = 0;
5985 		NAPI_GRO_CB(skb)->encap_mark = 0;
5986 		NAPI_GRO_CB(skb)->recursion_counter = 0;
5987 		NAPI_GRO_CB(skb)->is_fou = 0;
5988 		NAPI_GRO_CB(skb)->is_atomic = 1;
5989 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5990 
5991 		/* Setup for GRO checksum validation */
5992 		switch (skb->ip_summed) {
5993 		case CHECKSUM_COMPLETE:
5994 			NAPI_GRO_CB(skb)->csum = skb->csum;
5995 			NAPI_GRO_CB(skb)->csum_valid = 1;
5996 			NAPI_GRO_CB(skb)->csum_cnt = 0;
5997 			break;
5998 		case CHECKSUM_UNNECESSARY:
5999 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
6000 			NAPI_GRO_CB(skb)->csum_valid = 0;
6001 			break;
6002 		default:
6003 			NAPI_GRO_CB(skb)->csum_cnt = 0;
6004 			NAPI_GRO_CB(skb)->csum_valid = 0;
6005 		}
6006 
6007 		pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
6008 					ipv6_gro_receive, inet_gro_receive,
6009 					&gro_list->list, skb);
6010 		break;
6011 	}
6012 	rcu_read_unlock();
6013 
6014 	if (&ptype->list == head)
6015 		goto normal;
6016 
6017 	if (PTR_ERR(pp) == -EINPROGRESS) {
6018 		ret = GRO_CONSUMED;
6019 		goto ok;
6020 	}
6021 
6022 	same_flow = NAPI_GRO_CB(skb)->same_flow;
6023 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
6024 
6025 	if (pp) {
6026 		skb_list_del_init(pp);
6027 		napi_gro_complete(napi, pp);
6028 		gro_list->count--;
6029 	}
6030 
6031 	if (same_flow)
6032 		goto ok;
6033 
6034 	if (NAPI_GRO_CB(skb)->flush)
6035 		goto normal;
6036 
6037 	if (unlikely(gro_list->count >= MAX_GRO_SKBS))
6038 		gro_flush_oldest(napi, &gro_list->list);
6039 	else
6040 		gro_list->count++;
6041 
6042 	NAPI_GRO_CB(skb)->count = 1;
6043 	NAPI_GRO_CB(skb)->age = jiffies;
6044 	NAPI_GRO_CB(skb)->last = skb;
6045 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
6046 	list_add(&skb->list, &gro_list->list);
6047 	ret = GRO_HELD;
6048 
6049 pull:
6050 	grow = skb_gro_offset(skb) - skb_headlen(skb);
6051 	if (grow > 0)
6052 		gro_pull_from_frag0(skb, grow);
6053 ok:
6054 	if (gro_list->count) {
6055 		if (!test_bit(bucket, &napi->gro_bitmask))
6056 			__set_bit(bucket, &napi->gro_bitmask);
6057 	} else if (test_bit(bucket, &napi->gro_bitmask)) {
6058 		__clear_bit(bucket, &napi->gro_bitmask);
6059 	}
6060 
6061 	return ret;
6062 
6063 normal:
6064 	ret = GRO_NORMAL;
6065 	goto pull;
6066 }
6067 
6068 struct packet_offload *gro_find_receive_by_type(__be16 type)
6069 {
6070 	struct list_head *offload_head = &offload_base;
6071 	struct packet_offload *ptype;
6072 
6073 	list_for_each_entry_rcu(ptype, offload_head, list) {
6074 		if (ptype->type != type || !ptype->callbacks.gro_receive)
6075 			continue;
6076 		return ptype;
6077 	}
6078 	return NULL;
6079 }
6080 EXPORT_SYMBOL(gro_find_receive_by_type);
6081 
6082 struct packet_offload *gro_find_complete_by_type(__be16 type)
6083 {
6084 	struct list_head *offload_head = &offload_base;
6085 	struct packet_offload *ptype;
6086 
6087 	list_for_each_entry_rcu(ptype, offload_head, list) {
6088 		if (ptype->type != type || !ptype->callbacks.gro_complete)
6089 			continue;
6090 		return ptype;
6091 	}
6092 	return NULL;
6093 }
6094 EXPORT_SYMBOL(gro_find_complete_by_type);
6095 
6096 static gro_result_t napi_skb_finish(struct napi_struct *napi,
6097 				    struct sk_buff *skb,
6098 				    gro_result_t ret)
6099 {
6100 	switch (ret) {
6101 	case GRO_NORMAL:
6102 		gro_normal_one(napi, skb, 1);
6103 		break;
6104 
6105 	case GRO_MERGED_FREE:
6106 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6107 			napi_skb_free_stolen_head(skb);
6108 		else
6109 			__kfree_skb_defer(skb);
6110 		break;
6111 
6112 	case GRO_HELD:
6113 	case GRO_MERGED:
6114 	case GRO_CONSUMED:
6115 		break;
6116 	}
6117 
6118 	return ret;
6119 }
6120 
6121 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6122 {
6123 	gro_result_t ret;
6124 
6125 	skb_mark_napi_id(skb, napi);
6126 	trace_napi_gro_receive_entry(skb);
6127 
6128 	skb_gro_reset_offset(skb);
6129 
6130 	ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
6131 	trace_napi_gro_receive_exit(ret);
6132 
6133 	return ret;
6134 }
6135 EXPORT_SYMBOL(napi_gro_receive);
6136 
6137 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
6138 {
6139 	if (unlikely(skb->pfmemalloc)) {
6140 		consume_skb(skb);
6141 		return;
6142 	}
6143 	__skb_pull(skb, skb_headlen(skb));
6144 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
6145 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
6146 	__vlan_hwaccel_clear_tag(skb);
6147 	skb->dev = napi->dev;
6148 	skb->skb_iif = 0;
6149 
6150 	/* eth_type_trans() assumes pkt_type is PACKET_HOST */
6151 	skb->pkt_type = PACKET_HOST;
6152 
6153 	skb->encapsulation = 0;
6154 	skb_shinfo(skb)->gso_type = 0;
6155 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6156 	skb_ext_reset(skb);
6157 
6158 	napi->skb = skb;
6159 }
6160 
6161 struct sk_buff *napi_get_frags(struct napi_struct *napi)
6162 {
6163 	struct sk_buff *skb = napi->skb;
6164 
6165 	if (!skb) {
6166 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
6167 		if (skb) {
6168 			napi->skb = skb;
6169 			skb_mark_napi_id(skb, napi);
6170 		}
6171 	}
6172 	return skb;
6173 }
6174 EXPORT_SYMBOL(napi_get_frags);
6175 
6176 static gro_result_t napi_frags_finish(struct napi_struct *napi,
6177 				      struct sk_buff *skb,
6178 				      gro_result_t ret)
6179 {
6180 	switch (ret) {
6181 	case GRO_NORMAL:
6182 	case GRO_HELD:
6183 		__skb_push(skb, ETH_HLEN);
6184 		skb->protocol = eth_type_trans(skb, skb->dev);
6185 		if (ret == GRO_NORMAL)
6186 			gro_normal_one(napi, skb, 1);
6187 		break;
6188 
6189 	case GRO_MERGED_FREE:
6190 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6191 			napi_skb_free_stolen_head(skb);
6192 		else
6193 			napi_reuse_skb(napi, skb);
6194 		break;
6195 
6196 	case GRO_MERGED:
6197 	case GRO_CONSUMED:
6198 		break;
6199 	}
6200 
6201 	return ret;
6202 }
6203 
6204 /* Upper GRO stack assumes network header starts at gro_offset=0
6205  * Drivers could call both napi_gro_frags() and napi_gro_receive()
6206  * We copy ethernet header into skb->data to have a common layout.
6207  */
6208 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
6209 {
6210 	struct sk_buff *skb = napi->skb;
6211 	const struct ethhdr *eth;
6212 	unsigned int hlen = sizeof(*eth);
6213 
6214 	napi->skb = NULL;
6215 
6216 	skb_reset_mac_header(skb);
6217 	skb_gro_reset_offset(skb);
6218 
6219 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
6220 		eth = skb_gro_header_slow(skb, hlen, 0);
6221 		if (unlikely(!eth)) {
6222 			net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6223 					     __func__, napi->dev->name);
6224 			napi_reuse_skb(napi, skb);
6225 			return NULL;
6226 		}
6227 	} else {
6228 		eth = (const struct ethhdr *)skb->data;
6229 		gro_pull_from_frag0(skb, hlen);
6230 		NAPI_GRO_CB(skb)->frag0 += hlen;
6231 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
6232 	}
6233 	__skb_pull(skb, hlen);
6234 
6235 	/*
6236 	 * This works because the only protocols we care about don't require
6237 	 * special handling.
6238 	 * We'll fix it up properly in napi_frags_finish()
6239 	 */
6240 	skb->protocol = eth->h_proto;
6241 
6242 	return skb;
6243 }
6244 
6245 gro_result_t napi_gro_frags(struct napi_struct *napi)
6246 {
6247 	gro_result_t ret;
6248 	struct sk_buff *skb = napi_frags_skb(napi);
6249 
6250 	trace_napi_gro_frags_entry(skb);
6251 
6252 	ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6253 	trace_napi_gro_frags_exit(ret);
6254 
6255 	return ret;
6256 }
6257 EXPORT_SYMBOL(napi_gro_frags);
6258 
6259 /* Compute the checksum from gro_offset and return the folded value
6260  * after adding in any pseudo checksum.
6261  */
6262 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6263 {
6264 	__wsum wsum;
6265 	__sum16 sum;
6266 
6267 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6268 
6269 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6270 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6271 	/* See comments in __skb_checksum_complete(). */
6272 	if (likely(!sum)) {
6273 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6274 		    !skb->csum_complete_sw)
6275 			netdev_rx_csum_fault(skb->dev, skb);
6276 	}
6277 
6278 	NAPI_GRO_CB(skb)->csum = wsum;
6279 	NAPI_GRO_CB(skb)->csum_valid = 1;
6280 
6281 	return sum;
6282 }
6283 EXPORT_SYMBOL(__skb_gro_checksum_complete);
6284 
6285 static void net_rps_send_ipi(struct softnet_data *remsd)
6286 {
6287 #ifdef CONFIG_RPS
6288 	while (remsd) {
6289 		struct softnet_data *next = remsd->rps_ipi_next;
6290 
6291 		if (cpu_online(remsd->cpu))
6292 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
6293 		remsd = next;
6294 	}
6295 #endif
6296 }
6297 
6298 /*
6299  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6300  * Note: called with local irq disabled, but exits with local irq enabled.
6301  */
6302 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6303 {
6304 #ifdef CONFIG_RPS
6305 	struct softnet_data *remsd = sd->rps_ipi_list;
6306 
6307 	if (remsd) {
6308 		sd->rps_ipi_list = NULL;
6309 
6310 		local_irq_enable();
6311 
6312 		/* Send pending IPI's to kick RPS processing on remote cpus. */
6313 		net_rps_send_ipi(remsd);
6314 	} else
6315 #endif
6316 		local_irq_enable();
6317 }
6318 
6319 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6320 {
6321 #ifdef CONFIG_RPS
6322 	return sd->rps_ipi_list != NULL;
6323 #else
6324 	return false;
6325 #endif
6326 }
6327 
6328 static int process_backlog(struct napi_struct *napi, int quota)
6329 {
6330 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6331 	bool again = true;
6332 	int work = 0;
6333 
6334 	/* Check if we have pending ipi, its better to send them now,
6335 	 * not waiting net_rx_action() end.
6336 	 */
6337 	if (sd_has_rps_ipi_waiting(sd)) {
6338 		local_irq_disable();
6339 		net_rps_action_and_irq_enable(sd);
6340 	}
6341 
6342 	napi->weight = dev_rx_weight;
6343 	while (again) {
6344 		struct sk_buff *skb;
6345 
6346 		while ((skb = __skb_dequeue(&sd->process_queue))) {
6347 			rcu_read_lock();
6348 			__netif_receive_skb(skb);
6349 			rcu_read_unlock();
6350 			input_queue_head_incr(sd);
6351 			if (++work >= quota)
6352 				return work;
6353 
6354 		}
6355 
6356 		local_irq_disable();
6357 		rps_lock(sd);
6358 		if (skb_queue_empty(&sd->input_pkt_queue)) {
6359 			/*
6360 			 * Inline a custom version of __napi_complete().
6361 			 * only current cpu owns and manipulates this napi,
6362 			 * and NAPI_STATE_SCHED is the only possible flag set
6363 			 * on backlog.
6364 			 * We can use a plain write instead of clear_bit(),
6365 			 * and we dont need an smp_mb() memory barrier.
6366 			 */
6367 			napi->state = 0;
6368 			again = false;
6369 		} else {
6370 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
6371 						   &sd->process_queue);
6372 		}
6373 		rps_unlock(sd);
6374 		local_irq_enable();
6375 	}
6376 
6377 	return work;
6378 }
6379 
6380 /**
6381  * __napi_schedule - schedule for receive
6382  * @n: entry to schedule
6383  *
6384  * The entry's receive function will be scheduled to run.
6385  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6386  */
6387 void __napi_schedule(struct napi_struct *n)
6388 {
6389 	unsigned long flags;
6390 
6391 	local_irq_save(flags);
6392 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6393 	local_irq_restore(flags);
6394 }
6395 EXPORT_SYMBOL(__napi_schedule);
6396 
6397 /**
6398  *	napi_schedule_prep - check if napi can be scheduled
6399  *	@n: napi context
6400  *
6401  * Test if NAPI routine is already running, and if not mark
6402  * it as running.  This is used as a condition variable to
6403  * insure only one NAPI poll instance runs.  We also make
6404  * sure there is no pending NAPI disable.
6405  */
6406 bool napi_schedule_prep(struct napi_struct *n)
6407 {
6408 	unsigned long val, new;
6409 
6410 	do {
6411 		val = READ_ONCE(n->state);
6412 		if (unlikely(val & NAPIF_STATE_DISABLE))
6413 			return false;
6414 		new = val | NAPIF_STATE_SCHED;
6415 
6416 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
6417 		 * This was suggested by Alexander Duyck, as compiler
6418 		 * emits better code than :
6419 		 * if (val & NAPIF_STATE_SCHED)
6420 		 *     new |= NAPIF_STATE_MISSED;
6421 		 */
6422 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6423 						   NAPIF_STATE_MISSED;
6424 	} while (cmpxchg(&n->state, val, new) != val);
6425 
6426 	return !(val & NAPIF_STATE_SCHED);
6427 }
6428 EXPORT_SYMBOL(napi_schedule_prep);
6429 
6430 /**
6431  * __napi_schedule_irqoff - schedule for receive
6432  * @n: entry to schedule
6433  *
6434  * Variant of __napi_schedule() assuming hard irqs are masked
6435  */
6436 void __napi_schedule_irqoff(struct napi_struct *n)
6437 {
6438 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6439 }
6440 EXPORT_SYMBOL(__napi_schedule_irqoff);
6441 
6442 bool napi_complete_done(struct napi_struct *n, int work_done)
6443 {
6444 	unsigned long flags, val, new, timeout = 0;
6445 	bool ret = true;
6446 
6447 	/*
6448 	 * 1) Don't let napi dequeue from the cpu poll list
6449 	 *    just in case its running on a different cpu.
6450 	 * 2) If we are busy polling, do nothing here, we have
6451 	 *    the guarantee we will be called later.
6452 	 */
6453 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6454 				 NAPIF_STATE_IN_BUSY_POLL)))
6455 		return false;
6456 
6457 	if (work_done) {
6458 		if (n->gro_bitmask)
6459 			timeout = READ_ONCE(n->dev->gro_flush_timeout);
6460 		n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6461 	}
6462 	if (n->defer_hard_irqs_count > 0) {
6463 		n->defer_hard_irqs_count--;
6464 		timeout = READ_ONCE(n->dev->gro_flush_timeout);
6465 		if (timeout)
6466 			ret = false;
6467 	}
6468 	if (n->gro_bitmask) {
6469 		/* When the NAPI instance uses a timeout and keeps postponing
6470 		 * it, we need to bound somehow the time packets are kept in
6471 		 * the GRO layer
6472 		 */
6473 		napi_gro_flush(n, !!timeout);
6474 	}
6475 
6476 	gro_normal_list(n);
6477 
6478 	if (unlikely(!list_empty(&n->poll_list))) {
6479 		/* If n->poll_list is not empty, we need to mask irqs */
6480 		local_irq_save(flags);
6481 		list_del_init(&n->poll_list);
6482 		local_irq_restore(flags);
6483 	}
6484 
6485 	do {
6486 		val = READ_ONCE(n->state);
6487 
6488 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6489 
6490 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6491 			      NAPIF_STATE_PREFER_BUSY_POLL);
6492 
6493 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6494 		 * because we will call napi->poll() one more time.
6495 		 * This C code was suggested by Alexander Duyck to help gcc.
6496 		 */
6497 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6498 						    NAPIF_STATE_SCHED;
6499 	} while (cmpxchg(&n->state, val, new) != val);
6500 
6501 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6502 		__napi_schedule(n);
6503 		return false;
6504 	}
6505 
6506 	if (timeout)
6507 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
6508 			      HRTIMER_MODE_REL_PINNED);
6509 	return ret;
6510 }
6511 EXPORT_SYMBOL(napi_complete_done);
6512 
6513 /* must be called under rcu_read_lock(), as we dont take a reference */
6514 static struct napi_struct *napi_by_id(unsigned int napi_id)
6515 {
6516 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6517 	struct napi_struct *napi;
6518 
6519 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6520 		if (napi->napi_id == napi_id)
6521 			return napi;
6522 
6523 	return NULL;
6524 }
6525 
6526 #if defined(CONFIG_NET_RX_BUSY_POLL)
6527 
6528 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6529 {
6530 	if (!skip_schedule) {
6531 		gro_normal_list(napi);
6532 		__napi_schedule(napi);
6533 		return;
6534 	}
6535 
6536 	if (napi->gro_bitmask) {
6537 		/* flush too old packets
6538 		 * If HZ < 1000, flush all packets.
6539 		 */
6540 		napi_gro_flush(napi, HZ >= 1000);
6541 	}
6542 
6543 	gro_normal_list(napi);
6544 	clear_bit(NAPI_STATE_SCHED, &napi->state);
6545 }
6546 
6547 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6548 			   u16 budget)
6549 {
6550 	bool skip_schedule = false;
6551 	unsigned long timeout;
6552 	int rc;
6553 
6554 	/* Busy polling means there is a high chance device driver hard irq
6555 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6556 	 * set in napi_schedule_prep().
6557 	 * Since we are about to call napi->poll() once more, we can safely
6558 	 * clear NAPI_STATE_MISSED.
6559 	 *
6560 	 * Note: x86 could use a single "lock and ..." instruction
6561 	 * to perform these two clear_bit()
6562 	 */
6563 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6564 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6565 
6566 	local_bh_disable();
6567 
6568 	if (prefer_busy_poll) {
6569 		napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6570 		timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6571 		if (napi->defer_hard_irqs_count && timeout) {
6572 			hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6573 			skip_schedule = true;
6574 		}
6575 	}
6576 
6577 	/* All we really want here is to re-enable device interrupts.
6578 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6579 	 */
6580 	rc = napi->poll(napi, budget);
6581 	/* We can't gro_normal_list() here, because napi->poll() might have
6582 	 * rearmed the napi (napi_complete_done()) in which case it could
6583 	 * already be running on another CPU.
6584 	 */
6585 	trace_napi_poll(napi, rc, budget);
6586 	netpoll_poll_unlock(have_poll_lock);
6587 	if (rc == budget)
6588 		__busy_poll_stop(napi, skip_schedule);
6589 	local_bh_enable();
6590 }
6591 
6592 void napi_busy_loop(unsigned int napi_id,
6593 		    bool (*loop_end)(void *, unsigned long),
6594 		    void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6595 {
6596 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6597 	int (*napi_poll)(struct napi_struct *napi, int budget);
6598 	void *have_poll_lock = NULL;
6599 	struct napi_struct *napi;
6600 
6601 restart:
6602 	napi_poll = NULL;
6603 
6604 	rcu_read_lock();
6605 
6606 	napi = napi_by_id(napi_id);
6607 	if (!napi)
6608 		goto out;
6609 
6610 	preempt_disable();
6611 	for (;;) {
6612 		int work = 0;
6613 
6614 		local_bh_disable();
6615 		if (!napi_poll) {
6616 			unsigned long val = READ_ONCE(napi->state);
6617 
6618 			/* If multiple threads are competing for this napi,
6619 			 * we avoid dirtying napi->state as much as we can.
6620 			 */
6621 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6622 				   NAPIF_STATE_IN_BUSY_POLL)) {
6623 				if (prefer_busy_poll)
6624 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6625 				goto count;
6626 			}
6627 			if (cmpxchg(&napi->state, val,
6628 				    val | NAPIF_STATE_IN_BUSY_POLL |
6629 					  NAPIF_STATE_SCHED) != val) {
6630 				if (prefer_busy_poll)
6631 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6632 				goto count;
6633 			}
6634 			have_poll_lock = netpoll_poll_lock(napi);
6635 			napi_poll = napi->poll;
6636 		}
6637 		work = napi_poll(napi, budget);
6638 		trace_napi_poll(napi, work, budget);
6639 		gro_normal_list(napi);
6640 count:
6641 		if (work > 0)
6642 			__NET_ADD_STATS(dev_net(napi->dev),
6643 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6644 		local_bh_enable();
6645 
6646 		if (!loop_end || loop_end(loop_end_arg, start_time))
6647 			break;
6648 
6649 		if (unlikely(need_resched())) {
6650 			if (napi_poll)
6651 				busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6652 			preempt_enable();
6653 			rcu_read_unlock();
6654 			cond_resched();
6655 			if (loop_end(loop_end_arg, start_time))
6656 				return;
6657 			goto restart;
6658 		}
6659 		cpu_relax();
6660 	}
6661 	if (napi_poll)
6662 		busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6663 	preempt_enable();
6664 out:
6665 	rcu_read_unlock();
6666 }
6667 EXPORT_SYMBOL(napi_busy_loop);
6668 
6669 #endif /* CONFIG_NET_RX_BUSY_POLL */
6670 
6671 static void napi_hash_add(struct napi_struct *napi)
6672 {
6673 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6674 		return;
6675 
6676 	spin_lock(&napi_hash_lock);
6677 
6678 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6679 	do {
6680 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6681 			napi_gen_id = MIN_NAPI_ID;
6682 	} while (napi_by_id(napi_gen_id));
6683 	napi->napi_id = napi_gen_id;
6684 
6685 	hlist_add_head_rcu(&napi->napi_hash_node,
6686 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6687 
6688 	spin_unlock(&napi_hash_lock);
6689 }
6690 
6691 /* Warning : caller is responsible to make sure rcu grace period
6692  * is respected before freeing memory containing @napi
6693  */
6694 static void napi_hash_del(struct napi_struct *napi)
6695 {
6696 	spin_lock(&napi_hash_lock);
6697 
6698 	hlist_del_init_rcu(&napi->napi_hash_node);
6699 
6700 	spin_unlock(&napi_hash_lock);
6701 }
6702 
6703 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6704 {
6705 	struct napi_struct *napi;
6706 
6707 	napi = container_of(timer, struct napi_struct, timer);
6708 
6709 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6710 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6711 	 */
6712 	if (!napi_disable_pending(napi) &&
6713 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6714 		clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6715 		__napi_schedule_irqoff(napi);
6716 	}
6717 
6718 	return HRTIMER_NORESTART;
6719 }
6720 
6721 static void init_gro_hash(struct napi_struct *napi)
6722 {
6723 	int i;
6724 
6725 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6726 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6727 		napi->gro_hash[i].count = 0;
6728 	}
6729 	napi->gro_bitmask = 0;
6730 }
6731 
6732 int dev_set_threaded(struct net_device *dev, bool threaded)
6733 {
6734 	struct napi_struct *napi;
6735 	int err = 0;
6736 
6737 	if (dev->threaded == threaded)
6738 		return 0;
6739 
6740 	if (threaded) {
6741 		list_for_each_entry(napi, &dev->napi_list, dev_list) {
6742 			if (!napi->thread) {
6743 				err = napi_kthread_create(napi);
6744 				if (err) {
6745 					threaded = false;
6746 					break;
6747 				}
6748 			}
6749 		}
6750 	}
6751 
6752 	dev->threaded = threaded;
6753 
6754 	/* Make sure kthread is created before THREADED bit
6755 	 * is set.
6756 	 */
6757 	smp_mb__before_atomic();
6758 
6759 	/* Setting/unsetting threaded mode on a napi might not immediately
6760 	 * take effect, if the current napi instance is actively being
6761 	 * polled. In this case, the switch between threaded mode and
6762 	 * softirq mode will happen in the next round of napi_schedule().
6763 	 * This should not cause hiccups/stalls to the live traffic.
6764 	 */
6765 	list_for_each_entry(napi, &dev->napi_list, dev_list) {
6766 		if (threaded)
6767 			set_bit(NAPI_STATE_THREADED, &napi->state);
6768 		else
6769 			clear_bit(NAPI_STATE_THREADED, &napi->state);
6770 	}
6771 
6772 	return err;
6773 }
6774 EXPORT_SYMBOL(dev_set_threaded);
6775 
6776 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6777 		    int (*poll)(struct napi_struct *, int), int weight)
6778 {
6779 	if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6780 		return;
6781 
6782 	INIT_LIST_HEAD(&napi->poll_list);
6783 	INIT_HLIST_NODE(&napi->napi_hash_node);
6784 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6785 	napi->timer.function = napi_watchdog;
6786 	init_gro_hash(napi);
6787 	napi->skb = NULL;
6788 	INIT_LIST_HEAD(&napi->rx_list);
6789 	napi->rx_count = 0;
6790 	napi->poll = poll;
6791 	if (weight > NAPI_POLL_WEIGHT)
6792 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6793 				weight);
6794 	napi->weight = weight;
6795 	napi->dev = dev;
6796 #ifdef CONFIG_NETPOLL
6797 	napi->poll_owner = -1;
6798 #endif
6799 	set_bit(NAPI_STATE_SCHED, &napi->state);
6800 	set_bit(NAPI_STATE_NPSVC, &napi->state);
6801 	list_add_rcu(&napi->dev_list, &dev->napi_list);
6802 	napi_hash_add(napi);
6803 	/* Create kthread for this napi if dev->threaded is set.
6804 	 * Clear dev->threaded if kthread creation failed so that
6805 	 * threaded mode will not be enabled in napi_enable().
6806 	 */
6807 	if (dev->threaded && napi_kthread_create(napi))
6808 		dev->threaded = 0;
6809 }
6810 EXPORT_SYMBOL(netif_napi_add);
6811 
6812 void napi_disable(struct napi_struct *n)
6813 {
6814 	might_sleep();
6815 	set_bit(NAPI_STATE_DISABLE, &n->state);
6816 
6817 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6818 		msleep(1);
6819 	while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6820 		msleep(1);
6821 
6822 	hrtimer_cancel(&n->timer);
6823 
6824 	clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
6825 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6826 	clear_bit(NAPI_STATE_THREADED, &n->state);
6827 }
6828 EXPORT_SYMBOL(napi_disable);
6829 
6830 /**
6831  *	napi_enable - enable NAPI scheduling
6832  *	@n: NAPI context
6833  *
6834  * Resume NAPI from being scheduled on this context.
6835  * Must be paired with napi_disable.
6836  */
6837 void napi_enable(struct napi_struct *n)
6838 {
6839 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
6840 	smp_mb__before_atomic();
6841 	clear_bit(NAPI_STATE_SCHED, &n->state);
6842 	clear_bit(NAPI_STATE_NPSVC, &n->state);
6843 	if (n->dev->threaded && n->thread)
6844 		set_bit(NAPI_STATE_THREADED, &n->state);
6845 }
6846 EXPORT_SYMBOL(napi_enable);
6847 
6848 static void flush_gro_hash(struct napi_struct *napi)
6849 {
6850 	int i;
6851 
6852 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6853 		struct sk_buff *skb, *n;
6854 
6855 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6856 			kfree_skb(skb);
6857 		napi->gro_hash[i].count = 0;
6858 	}
6859 }
6860 
6861 /* Must be called in process context */
6862 void __netif_napi_del(struct napi_struct *napi)
6863 {
6864 	if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6865 		return;
6866 
6867 	napi_hash_del(napi);
6868 	list_del_rcu(&napi->dev_list);
6869 	napi_free_frags(napi);
6870 
6871 	flush_gro_hash(napi);
6872 	napi->gro_bitmask = 0;
6873 
6874 	if (napi->thread) {
6875 		kthread_stop(napi->thread);
6876 		napi->thread = NULL;
6877 	}
6878 }
6879 EXPORT_SYMBOL(__netif_napi_del);
6880 
6881 static int __napi_poll(struct napi_struct *n, bool *repoll)
6882 {
6883 	int work, weight;
6884 
6885 	weight = n->weight;
6886 
6887 	/* This NAPI_STATE_SCHED test is for avoiding a race
6888 	 * with netpoll's poll_napi().  Only the entity which
6889 	 * obtains the lock and sees NAPI_STATE_SCHED set will
6890 	 * actually make the ->poll() call.  Therefore we avoid
6891 	 * accidentally calling ->poll() when NAPI is not scheduled.
6892 	 */
6893 	work = 0;
6894 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6895 		work = n->poll(n, weight);
6896 		trace_napi_poll(n, work, weight);
6897 	}
6898 
6899 	if (unlikely(work > weight))
6900 		pr_err_once("NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6901 			    n->poll, work, weight);
6902 
6903 	if (likely(work < weight))
6904 		return work;
6905 
6906 	/* Drivers must not modify the NAPI state if they
6907 	 * consume the entire weight.  In such cases this code
6908 	 * still "owns" the NAPI instance and therefore can
6909 	 * move the instance around on the list at-will.
6910 	 */
6911 	if (unlikely(napi_disable_pending(n))) {
6912 		napi_complete(n);
6913 		return work;
6914 	}
6915 
6916 	/* The NAPI context has more processing work, but busy-polling
6917 	 * is preferred. Exit early.
6918 	 */
6919 	if (napi_prefer_busy_poll(n)) {
6920 		if (napi_complete_done(n, work)) {
6921 			/* If timeout is not set, we need to make sure
6922 			 * that the NAPI is re-scheduled.
6923 			 */
6924 			napi_schedule(n);
6925 		}
6926 		return work;
6927 	}
6928 
6929 	if (n->gro_bitmask) {
6930 		/* flush too old packets
6931 		 * If HZ < 1000, flush all packets.
6932 		 */
6933 		napi_gro_flush(n, HZ >= 1000);
6934 	}
6935 
6936 	gro_normal_list(n);
6937 
6938 	/* Some drivers may have called napi_schedule
6939 	 * prior to exhausting their budget.
6940 	 */
6941 	if (unlikely(!list_empty(&n->poll_list))) {
6942 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6943 			     n->dev ? n->dev->name : "backlog");
6944 		return work;
6945 	}
6946 
6947 	*repoll = true;
6948 
6949 	return work;
6950 }
6951 
6952 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6953 {
6954 	bool do_repoll = false;
6955 	void *have;
6956 	int work;
6957 
6958 	list_del_init(&n->poll_list);
6959 
6960 	have = netpoll_poll_lock(n);
6961 
6962 	work = __napi_poll(n, &do_repoll);
6963 
6964 	if (do_repoll)
6965 		list_add_tail(&n->poll_list, repoll);
6966 
6967 	netpoll_poll_unlock(have);
6968 
6969 	return work;
6970 }
6971 
6972 static int napi_thread_wait(struct napi_struct *napi)
6973 {
6974 	set_current_state(TASK_INTERRUPTIBLE);
6975 
6976 	while (!kthread_should_stop() && !napi_disable_pending(napi)) {
6977 		if (test_bit(NAPI_STATE_SCHED, &napi->state)) {
6978 			WARN_ON(!list_empty(&napi->poll_list));
6979 			__set_current_state(TASK_RUNNING);
6980 			return 0;
6981 		}
6982 
6983 		schedule();
6984 		set_current_state(TASK_INTERRUPTIBLE);
6985 	}
6986 	__set_current_state(TASK_RUNNING);
6987 	return -1;
6988 }
6989 
6990 static int napi_threaded_poll(void *data)
6991 {
6992 	struct napi_struct *napi = data;
6993 	void *have;
6994 
6995 	while (!napi_thread_wait(napi)) {
6996 		for (;;) {
6997 			bool repoll = false;
6998 
6999 			local_bh_disable();
7000 
7001 			have = netpoll_poll_lock(napi);
7002 			__napi_poll(napi, &repoll);
7003 			netpoll_poll_unlock(have);
7004 
7005 			local_bh_enable();
7006 
7007 			if (!repoll)
7008 				break;
7009 
7010 			cond_resched();
7011 		}
7012 	}
7013 	return 0;
7014 }
7015 
7016 static __latent_entropy void net_rx_action(struct softirq_action *h)
7017 {
7018 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7019 	unsigned long time_limit = jiffies +
7020 		usecs_to_jiffies(netdev_budget_usecs);
7021 	int budget = netdev_budget;
7022 	LIST_HEAD(list);
7023 	LIST_HEAD(repoll);
7024 
7025 	local_irq_disable();
7026 	list_splice_init(&sd->poll_list, &list);
7027 	local_irq_enable();
7028 
7029 	for (;;) {
7030 		struct napi_struct *n;
7031 
7032 		if (list_empty(&list)) {
7033 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
7034 				return;
7035 			break;
7036 		}
7037 
7038 		n = list_first_entry(&list, struct napi_struct, poll_list);
7039 		budget -= napi_poll(n, &repoll);
7040 
7041 		/* If softirq window is exhausted then punt.
7042 		 * Allow this to run for 2 jiffies since which will allow
7043 		 * an average latency of 1.5/HZ.
7044 		 */
7045 		if (unlikely(budget <= 0 ||
7046 			     time_after_eq(jiffies, time_limit))) {
7047 			sd->time_squeeze++;
7048 			break;
7049 		}
7050 	}
7051 
7052 	local_irq_disable();
7053 
7054 	list_splice_tail_init(&sd->poll_list, &list);
7055 	list_splice_tail(&repoll, &list);
7056 	list_splice(&list, &sd->poll_list);
7057 	if (!list_empty(&sd->poll_list))
7058 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
7059 
7060 	net_rps_action_and_irq_enable(sd);
7061 }
7062 
7063 struct netdev_adjacent {
7064 	struct net_device *dev;
7065 
7066 	/* upper master flag, there can only be one master device per list */
7067 	bool master;
7068 
7069 	/* lookup ignore flag */
7070 	bool ignore;
7071 
7072 	/* counter for the number of times this device was added to us */
7073 	u16 ref_nr;
7074 
7075 	/* private field for the users */
7076 	void *private;
7077 
7078 	struct list_head list;
7079 	struct rcu_head rcu;
7080 };
7081 
7082 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7083 						 struct list_head *adj_list)
7084 {
7085 	struct netdev_adjacent *adj;
7086 
7087 	list_for_each_entry(adj, adj_list, list) {
7088 		if (adj->dev == adj_dev)
7089 			return adj;
7090 	}
7091 	return NULL;
7092 }
7093 
7094 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7095 				    struct netdev_nested_priv *priv)
7096 {
7097 	struct net_device *dev = (struct net_device *)priv->data;
7098 
7099 	return upper_dev == dev;
7100 }
7101 
7102 /**
7103  * netdev_has_upper_dev - Check if device is linked to an upper device
7104  * @dev: device
7105  * @upper_dev: upper device to check
7106  *
7107  * Find out if a device is linked to specified upper device and return true
7108  * in case it is. Note that this checks only immediate upper device,
7109  * not through a complete stack of devices. The caller must hold the RTNL lock.
7110  */
7111 bool netdev_has_upper_dev(struct net_device *dev,
7112 			  struct net_device *upper_dev)
7113 {
7114 	struct netdev_nested_priv priv = {
7115 		.data = (void *)upper_dev,
7116 	};
7117 
7118 	ASSERT_RTNL();
7119 
7120 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7121 					     &priv);
7122 }
7123 EXPORT_SYMBOL(netdev_has_upper_dev);
7124 
7125 /**
7126  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7127  * @dev: device
7128  * @upper_dev: upper device to check
7129  *
7130  * Find out if a device is linked to specified upper device and return true
7131  * in case it is. Note that this checks the entire upper device chain.
7132  * The caller must hold rcu lock.
7133  */
7134 
7135 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7136 				  struct net_device *upper_dev)
7137 {
7138 	struct netdev_nested_priv priv = {
7139 		.data = (void *)upper_dev,
7140 	};
7141 
7142 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7143 					       &priv);
7144 }
7145 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7146 
7147 /**
7148  * netdev_has_any_upper_dev - Check if device is linked to some device
7149  * @dev: device
7150  *
7151  * Find out if a device is linked to an upper device and return true in case
7152  * it is. The caller must hold the RTNL lock.
7153  */
7154 bool netdev_has_any_upper_dev(struct net_device *dev)
7155 {
7156 	ASSERT_RTNL();
7157 
7158 	return !list_empty(&dev->adj_list.upper);
7159 }
7160 EXPORT_SYMBOL(netdev_has_any_upper_dev);
7161 
7162 /**
7163  * netdev_master_upper_dev_get - Get master upper device
7164  * @dev: device
7165  *
7166  * Find a master upper device and return pointer to it or NULL in case
7167  * it's not there. The caller must hold the RTNL lock.
7168  */
7169 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7170 {
7171 	struct netdev_adjacent *upper;
7172 
7173 	ASSERT_RTNL();
7174 
7175 	if (list_empty(&dev->adj_list.upper))
7176 		return NULL;
7177 
7178 	upper = list_first_entry(&dev->adj_list.upper,
7179 				 struct netdev_adjacent, list);
7180 	if (likely(upper->master))
7181 		return upper->dev;
7182 	return NULL;
7183 }
7184 EXPORT_SYMBOL(netdev_master_upper_dev_get);
7185 
7186 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7187 {
7188 	struct netdev_adjacent *upper;
7189 
7190 	ASSERT_RTNL();
7191 
7192 	if (list_empty(&dev->adj_list.upper))
7193 		return NULL;
7194 
7195 	upper = list_first_entry(&dev->adj_list.upper,
7196 				 struct netdev_adjacent, list);
7197 	if (likely(upper->master) && !upper->ignore)
7198 		return upper->dev;
7199 	return NULL;
7200 }
7201 
7202 /**
7203  * netdev_has_any_lower_dev - Check if device is linked to some device
7204  * @dev: device
7205  *
7206  * Find out if a device is linked to a lower device and return true in case
7207  * it is. The caller must hold the RTNL lock.
7208  */
7209 static bool netdev_has_any_lower_dev(struct net_device *dev)
7210 {
7211 	ASSERT_RTNL();
7212 
7213 	return !list_empty(&dev->adj_list.lower);
7214 }
7215 
7216 void *netdev_adjacent_get_private(struct list_head *adj_list)
7217 {
7218 	struct netdev_adjacent *adj;
7219 
7220 	adj = list_entry(adj_list, struct netdev_adjacent, list);
7221 
7222 	return adj->private;
7223 }
7224 EXPORT_SYMBOL(netdev_adjacent_get_private);
7225 
7226 /**
7227  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7228  * @dev: device
7229  * @iter: list_head ** of the current position
7230  *
7231  * Gets the next device from the dev's upper list, starting from iter
7232  * position. The caller must hold RCU read lock.
7233  */
7234 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7235 						 struct list_head **iter)
7236 {
7237 	struct netdev_adjacent *upper;
7238 
7239 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7240 
7241 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7242 
7243 	if (&upper->list == &dev->adj_list.upper)
7244 		return NULL;
7245 
7246 	*iter = &upper->list;
7247 
7248 	return upper->dev;
7249 }
7250 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7251 
7252 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7253 						  struct list_head **iter,
7254 						  bool *ignore)
7255 {
7256 	struct netdev_adjacent *upper;
7257 
7258 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7259 
7260 	if (&upper->list == &dev->adj_list.upper)
7261 		return NULL;
7262 
7263 	*iter = &upper->list;
7264 	*ignore = upper->ignore;
7265 
7266 	return upper->dev;
7267 }
7268 
7269 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7270 						    struct list_head **iter)
7271 {
7272 	struct netdev_adjacent *upper;
7273 
7274 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7275 
7276 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7277 
7278 	if (&upper->list == &dev->adj_list.upper)
7279 		return NULL;
7280 
7281 	*iter = &upper->list;
7282 
7283 	return upper->dev;
7284 }
7285 
7286 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7287 				       int (*fn)(struct net_device *dev,
7288 					 struct netdev_nested_priv *priv),
7289 				       struct netdev_nested_priv *priv)
7290 {
7291 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7292 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7293 	int ret, cur = 0;
7294 	bool ignore;
7295 
7296 	now = dev;
7297 	iter = &dev->adj_list.upper;
7298 
7299 	while (1) {
7300 		if (now != dev) {
7301 			ret = fn(now, priv);
7302 			if (ret)
7303 				return ret;
7304 		}
7305 
7306 		next = NULL;
7307 		while (1) {
7308 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
7309 			if (!udev)
7310 				break;
7311 			if (ignore)
7312 				continue;
7313 
7314 			next = udev;
7315 			niter = &udev->adj_list.upper;
7316 			dev_stack[cur] = now;
7317 			iter_stack[cur++] = iter;
7318 			break;
7319 		}
7320 
7321 		if (!next) {
7322 			if (!cur)
7323 				return 0;
7324 			next = dev_stack[--cur];
7325 			niter = iter_stack[cur];
7326 		}
7327 
7328 		now = next;
7329 		iter = niter;
7330 	}
7331 
7332 	return 0;
7333 }
7334 
7335 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7336 				  int (*fn)(struct net_device *dev,
7337 					    struct netdev_nested_priv *priv),
7338 				  struct netdev_nested_priv *priv)
7339 {
7340 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7341 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7342 	int ret, cur = 0;
7343 
7344 	now = dev;
7345 	iter = &dev->adj_list.upper;
7346 
7347 	while (1) {
7348 		if (now != dev) {
7349 			ret = fn(now, priv);
7350 			if (ret)
7351 				return ret;
7352 		}
7353 
7354 		next = NULL;
7355 		while (1) {
7356 			udev = netdev_next_upper_dev_rcu(now, &iter);
7357 			if (!udev)
7358 				break;
7359 
7360 			next = udev;
7361 			niter = &udev->adj_list.upper;
7362 			dev_stack[cur] = now;
7363 			iter_stack[cur++] = iter;
7364 			break;
7365 		}
7366 
7367 		if (!next) {
7368 			if (!cur)
7369 				return 0;
7370 			next = dev_stack[--cur];
7371 			niter = iter_stack[cur];
7372 		}
7373 
7374 		now = next;
7375 		iter = niter;
7376 	}
7377 
7378 	return 0;
7379 }
7380 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7381 
7382 static bool __netdev_has_upper_dev(struct net_device *dev,
7383 				   struct net_device *upper_dev)
7384 {
7385 	struct netdev_nested_priv priv = {
7386 		.flags = 0,
7387 		.data = (void *)upper_dev,
7388 	};
7389 
7390 	ASSERT_RTNL();
7391 
7392 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7393 					   &priv);
7394 }
7395 
7396 /**
7397  * netdev_lower_get_next_private - Get the next ->private from the
7398  *				   lower neighbour list
7399  * @dev: device
7400  * @iter: list_head ** of the current position
7401  *
7402  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7403  * list, starting from iter position. The caller must hold either hold the
7404  * RTNL lock or its own locking that guarantees that the neighbour lower
7405  * list will remain unchanged.
7406  */
7407 void *netdev_lower_get_next_private(struct net_device *dev,
7408 				    struct list_head **iter)
7409 {
7410 	struct netdev_adjacent *lower;
7411 
7412 	lower = list_entry(*iter, struct netdev_adjacent, list);
7413 
7414 	if (&lower->list == &dev->adj_list.lower)
7415 		return NULL;
7416 
7417 	*iter = lower->list.next;
7418 
7419 	return lower->private;
7420 }
7421 EXPORT_SYMBOL(netdev_lower_get_next_private);
7422 
7423 /**
7424  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7425  *				       lower neighbour list, RCU
7426  *				       variant
7427  * @dev: device
7428  * @iter: list_head ** of the current position
7429  *
7430  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7431  * list, starting from iter position. The caller must hold RCU read lock.
7432  */
7433 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7434 					struct list_head **iter)
7435 {
7436 	struct netdev_adjacent *lower;
7437 
7438 	WARN_ON_ONCE(!rcu_read_lock_held());
7439 
7440 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7441 
7442 	if (&lower->list == &dev->adj_list.lower)
7443 		return NULL;
7444 
7445 	*iter = &lower->list;
7446 
7447 	return lower->private;
7448 }
7449 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7450 
7451 /**
7452  * netdev_lower_get_next - Get the next device from the lower neighbour
7453  *                         list
7454  * @dev: device
7455  * @iter: list_head ** of the current position
7456  *
7457  * Gets the next netdev_adjacent from the dev's lower neighbour
7458  * list, starting from iter position. The caller must hold RTNL lock or
7459  * its own locking that guarantees that the neighbour lower
7460  * list will remain unchanged.
7461  */
7462 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7463 {
7464 	struct netdev_adjacent *lower;
7465 
7466 	lower = list_entry(*iter, struct netdev_adjacent, list);
7467 
7468 	if (&lower->list == &dev->adj_list.lower)
7469 		return NULL;
7470 
7471 	*iter = lower->list.next;
7472 
7473 	return lower->dev;
7474 }
7475 EXPORT_SYMBOL(netdev_lower_get_next);
7476 
7477 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7478 						struct list_head **iter)
7479 {
7480 	struct netdev_adjacent *lower;
7481 
7482 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7483 
7484 	if (&lower->list == &dev->adj_list.lower)
7485 		return NULL;
7486 
7487 	*iter = &lower->list;
7488 
7489 	return lower->dev;
7490 }
7491 
7492 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7493 						  struct list_head **iter,
7494 						  bool *ignore)
7495 {
7496 	struct netdev_adjacent *lower;
7497 
7498 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7499 
7500 	if (&lower->list == &dev->adj_list.lower)
7501 		return NULL;
7502 
7503 	*iter = &lower->list;
7504 	*ignore = lower->ignore;
7505 
7506 	return lower->dev;
7507 }
7508 
7509 int netdev_walk_all_lower_dev(struct net_device *dev,
7510 			      int (*fn)(struct net_device *dev,
7511 					struct netdev_nested_priv *priv),
7512 			      struct netdev_nested_priv *priv)
7513 {
7514 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7515 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7516 	int ret, cur = 0;
7517 
7518 	now = dev;
7519 	iter = &dev->adj_list.lower;
7520 
7521 	while (1) {
7522 		if (now != dev) {
7523 			ret = fn(now, priv);
7524 			if (ret)
7525 				return ret;
7526 		}
7527 
7528 		next = NULL;
7529 		while (1) {
7530 			ldev = netdev_next_lower_dev(now, &iter);
7531 			if (!ldev)
7532 				break;
7533 
7534 			next = ldev;
7535 			niter = &ldev->adj_list.lower;
7536 			dev_stack[cur] = now;
7537 			iter_stack[cur++] = iter;
7538 			break;
7539 		}
7540 
7541 		if (!next) {
7542 			if (!cur)
7543 				return 0;
7544 			next = dev_stack[--cur];
7545 			niter = iter_stack[cur];
7546 		}
7547 
7548 		now = next;
7549 		iter = niter;
7550 	}
7551 
7552 	return 0;
7553 }
7554 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7555 
7556 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7557 				       int (*fn)(struct net_device *dev,
7558 					 struct netdev_nested_priv *priv),
7559 				       struct netdev_nested_priv *priv)
7560 {
7561 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7562 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7563 	int ret, cur = 0;
7564 	bool ignore;
7565 
7566 	now = dev;
7567 	iter = &dev->adj_list.lower;
7568 
7569 	while (1) {
7570 		if (now != dev) {
7571 			ret = fn(now, priv);
7572 			if (ret)
7573 				return ret;
7574 		}
7575 
7576 		next = NULL;
7577 		while (1) {
7578 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7579 			if (!ldev)
7580 				break;
7581 			if (ignore)
7582 				continue;
7583 
7584 			next = ldev;
7585 			niter = &ldev->adj_list.lower;
7586 			dev_stack[cur] = now;
7587 			iter_stack[cur++] = iter;
7588 			break;
7589 		}
7590 
7591 		if (!next) {
7592 			if (!cur)
7593 				return 0;
7594 			next = dev_stack[--cur];
7595 			niter = iter_stack[cur];
7596 		}
7597 
7598 		now = next;
7599 		iter = niter;
7600 	}
7601 
7602 	return 0;
7603 }
7604 
7605 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7606 					     struct list_head **iter)
7607 {
7608 	struct netdev_adjacent *lower;
7609 
7610 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7611 	if (&lower->list == &dev->adj_list.lower)
7612 		return NULL;
7613 
7614 	*iter = &lower->list;
7615 
7616 	return lower->dev;
7617 }
7618 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7619 
7620 static u8 __netdev_upper_depth(struct net_device *dev)
7621 {
7622 	struct net_device *udev;
7623 	struct list_head *iter;
7624 	u8 max_depth = 0;
7625 	bool ignore;
7626 
7627 	for (iter = &dev->adj_list.upper,
7628 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7629 	     udev;
7630 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7631 		if (ignore)
7632 			continue;
7633 		if (max_depth < udev->upper_level)
7634 			max_depth = udev->upper_level;
7635 	}
7636 
7637 	return max_depth;
7638 }
7639 
7640 static u8 __netdev_lower_depth(struct net_device *dev)
7641 {
7642 	struct net_device *ldev;
7643 	struct list_head *iter;
7644 	u8 max_depth = 0;
7645 	bool ignore;
7646 
7647 	for (iter = &dev->adj_list.lower,
7648 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7649 	     ldev;
7650 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7651 		if (ignore)
7652 			continue;
7653 		if (max_depth < ldev->lower_level)
7654 			max_depth = ldev->lower_level;
7655 	}
7656 
7657 	return max_depth;
7658 }
7659 
7660 static int __netdev_update_upper_level(struct net_device *dev,
7661 				       struct netdev_nested_priv *__unused)
7662 {
7663 	dev->upper_level = __netdev_upper_depth(dev) + 1;
7664 	return 0;
7665 }
7666 
7667 static int __netdev_update_lower_level(struct net_device *dev,
7668 				       struct netdev_nested_priv *priv)
7669 {
7670 	dev->lower_level = __netdev_lower_depth(dev) + 1;
7671 
7672 #ifdef CONFIG_LOCKDEP
7673 	if (!priv)
7674 		return 0;
7675 
7676 	if (priv->flags & NESTED_SYNC_IMM)
7677 		dev->nested_level = dev->lower_level - 1;
7678 	if (priv->flags & NESTED_SYNC_TODO)
7679 		net_unlink_todo(dev);
7680 #endif
7681 	return 0;
7682 }
7683 
7684 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7685 				  int (*fn)(struct net_device *dev,
7686 					    struct netdev_nested_priv *priv),
7687 				  struct netdev_nested_priv *priv)
7688 {
7689 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7690 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7691 	int ret, cur = 0;
7692 
7693 	now = dev;
7694 	iter = &dev->adj_list.lower;
7695 
7696 	while (1) {
7697 		if (now != dev) {
7698 			ret = fn(now, priv);
7699 			if (ret)
7700 				return ret;
7701 		}
7702 
7703 		next = NULL;
7704 		while (1) {
7705 			ldev = netdev_next_lower_dev_rcu(now, &iter);
7706 			if (!ldev)
7707 				break;
7708 
7709 			next = ldev;
7710 			niter = &ldev->adj_list.lower;
7711 			dev_stack[cur] = now;
7712 			iter_stack[cur++] = iter;
7713 			break;
7714 		}
7715 
7716 		if (!next) {
7717 			if (!cur)
7718 				return 0;
7719 			next = dev_stack[--cur];
7720 			niter = iter_stack[cur];
7721 		}
7722 
7723 		now = next;
7724 		iter = niter;
7725 	}
7726 
7727 	return 0;
7728 }
7729 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7730 
7731 /**
7732  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7733  *				       lower neighbour list, RCU
7734  *				       variant
7735  * @dev: device
7736  *
7737  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7738  * list. The caller must hold RCU read lock.
7739  */
7740 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7741 {
7742 	struct netdev_adjacent *lower;
7743 
7744 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
7745 			struct netdev_adjacent, list);
7746 	if (lower)
7747 		return lower->private;
7748 	return NULL;
7749 }
7750 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7751 
7752 /**
7753  * netdev_master_upper_dev_get_rcu - Get master upper device
7754  * @dev: device
7755  *
7756  * Find a master upper device and return pointer to it or NULL in case
7757  * it's not there. The caller must hold the RCU read lock.
7758  */
7759 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7760 {
7761 	struct netdev_adjacent *upper;
7762 
7763 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
7764 				       struct netdev_adjacent, list);
7765 	if (upper && likely(upper->master))
7766 		return upper->dev;
7767 	return NULL;
7768 }
7769 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7770 
7771 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7772 			      struct net_device *adj_dev,
7773 			      struct list_head *dev_list)
7774 {
7775 	char linkname[IFNAMSIZ+7];
7776 
7777 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7778 		"upper_%s" : "lower_%s", adj_dev->name);
7779 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7780 				 linkname);
7781 }
7782 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7783 			       char *name,
7784 			       struct list_head *dev_list)
7785 {
7786 	char linkname[IFNAMSIZ+7];
7787 
7788 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7789 		"upper_%s" : "lower_%s", name);
7790 	sysfs_remove_link(&(dev->dev.kobj), linkname);
7791 }
7792 
7793 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7794 						 struct net_device *adj_dev,
7795 						 struct list_head *dev_list)
7796 {
7797 	return (dev_list == &dev->adj_list.upper ||
7798 		dev_list == &dev->adj_list.lower) &&
7799 		net_eq(dev_net(dev), dev_net(adj_dev));
7800 }
7801 
7802 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7803 					struct net_device *adj_dev,
7804 					struct list_head *dev_list,
7805 					void *private, bool master)
7806 {
7807 	struct netdev_adjacent *adj;
7808 	int ret;
7809 
7810 	adj = __netdev_find_adj(adj_dev, dev_list);
7811 
7812 	if (adj) {
7813 		adj->ref_nr += 1;
7814 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7815 			 dev->name, adj_dev->name, adj->ref_nr);
7816 
7817 		return 0;
7818 	}
7819 
7820 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7821 	if (!adj)
7822 		return -ENOMEM;
7823 
7824 	adj->dev = adj_dev;
7825 	adj->master = master;
7826 	adj->ref_nr = 1;
7827 	adj->private = private;
7828 	adj->ignore = false;
7829 	dev_hold(adj_dev);
7830 
7831 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7832 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7833 
7834 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7835 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7836 		if (ret)
7837 			goto free_adj;
7838 	}
7839 
7840 	/* Ensure that master link is always the first item in list. */
7841 	if (master) {
7842 		ret = sysfs_create_link(&(dev->dev.kobj),
7843 					&(adj_dev->dev.kobj), "master");
7844 		if (ret)
7845 			goto remove_symlinks;
7846 
7847 		list_add_rcu(&adj->list, dev_list);
7848 	} else {
7849 		list_add_tail_rcu(&adj->list, dev_list);
7850 	}
7851 
7852 	return 0;
7853 
7854 remove_symlinks:
7855 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7856 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7857 free_adj:
7858 	kfree(adj);
7859 	dev_put(adj_dev);
7860 
7861 	return ret;
7862 }
7863 
7864 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7865 					 struct net_device *adj_dev,
7866 					 u16 ref_nr,
7867 					 struct list_head *dev_list)
7868 {
7869 	struct netdev_adjacent *adj;
7870 
7871 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7872 		 dev->name, adj_dev->name, ref_nr);
7873 
7874 	adj = __netdev_find_adj(adj_dev, dev_list);
7875 
7876 	if (!adj) {
7877 		pr_err("Adjacency does not exist for device %s from %s\n",
7878 		       dev->name, adj_dev->name);
7879 		WARN_ON(1);
7880 		return;
7881 	}
7882 
7883 	if (adj->ref_nr > ref_nr) {
7884 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7885 			 dev->name, adj_dev->name, ref_nr,
7886 			 adj->ref_nr - ref_nr);
7887 		adj->ref_nr -= ref_nr;
7888 		return;
7889 	}
7890 
7891 	if (adj->master)
7892 		sysfs_remove_link(&(dev->dev.kobj), "master");
7893 
7894 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7895 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7896 
7897 	list_del_rcu(&adj->list);
7898 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7899 		 adj_dev->name, dev->name, adj_dev->name);
7900 	dev_put(adj_dev);
7901 	kfree_rcu(adj, rcu);
7902 }
7903 
7904 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7905 					    struct net_device *upper_dev,
7906 					    struct list_head *up_list,
7907 					    struct list_head *down_list,
7908 					    void *private, bool master)
7909 {
7910 	int ret;
7911 
7912 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7913 					   private, master);
7914 	if (ret)
7915 		return ret;
7916 
7917 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7918 					   private, false);
7919 	if (ret) {
7920 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7921 		return ret;
7922 	}
7923 
7924 	return 0;
7925 }
7926 
7927 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7928 					       struct net_device *upper_dev,
7929 					       u16 ref_nr,
7930 					       struct list_head *up_list,
7931 					       struct list_head *down_list)
7932 {
7933 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7934 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7935 }
7936 
7937 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7938 						struct net_device *upper_dev,
7939 						void *private, bool master)
7940 {
7941 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7942 						&dev->adj_list.upper,
7943 						&upper_dev->adj_list.lower,
7944 						private, master);
7945 }
7946 
7947 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7948 						   struct net_device *upper_dev)
7949 {
7950 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7951 					   &dev->adj_list.upper,
7952 					   &upper_dev->adj_list.lower);
7953 }
7954 
7955 static int __netdev_upper_dev_link(struct net_device *dev,
7956 				   struct net_device *upper_dev, bool master,
7957 				   void *upper_priv, void *upper_info,
7958 				   struct netdev_nested_priv *priv,
7959 				   struct netlink_ext_ack *extack)
7960 {
7961 	struct netdev_notifier_changeupper_info changeupper_info = {
7962 		.info = {
7963 			.dev = dev,
7964 			.extack = extack,
7965 		},
7966 		.upper_dev = upper_dev,
7967 		.master = master,
7968 		.linking = true,
7969 		.upper_info = upper_info,
7970 	};
7971 	struct net_device *master_dev;
7972 	int ret = 0;
7973 
7974 	ASSERT_RTNL();
7975 
7976 	if (dev == upper_dev)
7977 		return -EBUSY;
7978 
7979 	/* To prevent loops, check if dev is not upper device to upper_dev. */
7980 	if (__netdev_has_upper_dev(upper_dev, dev))
7981 		return -EBUSY;
7982 
7983 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7984 		return -EMLINK;
7985 
7986 	if (!master) {
7987 		if (__netdev_has_upper_dev(dev, upper_dev))
7988 			return -EEXIST;
7989 	} else {
7990 		master_dev = __netdev_master_upper_dev_get(dev);
7991 		if (master_dev)
7992 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
7993 	}
7994 
7995 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7996 					    &changeupper_info.info);
7997 	ret = notifier_to_errno(ret);
7998 	if (ret)
7999 		return ret;
8000 
8001 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
8002 						   master);
8003 	if (ret)
8004 		return ret;
8005 
8006 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8007 					    &changeupper_info.info);
8008 	ret = notifier_to_errno(ret);
8009 	if (ret)
8010 		goto rollback;
8011 
8012 	__netdev_update_upper_level(dev, NULL);
8013 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8014 
8015 	__netdev_update_lower_level(upper_dev, priv);
8016 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8017 				    priv);
8018 
8019 	return 0;
8020 
8021 rollback:
8022 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8023 
8024 	return ret;
8025 }
8026 
8027 /**
8028  * netdev_upper_dev_link - Add a link to the upper device
8029  * @dev: device
8030  * @upper_dev: new upper device
8031  * @extack: netlink extended ack
8032  *
8033  * Adds a link to device which is upper to this one. The caller must hold
8034  * the RTNL lock. On a failure a negative errno code is returned.
8035  * On success the reference counts are adjusted and the function
8036  * returns zero.
8037  */
8038 int netdev_upper_dev_link(struct net_device *dev,
8039 			  struct net_device *upper_dev,
8040 			  struct netlink_ext_ack *extack)
8041 {
8042 	struct netdev_nested_priv priv = {
8043 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8044 		.data = NULL,
8045 	};
8046 
8047 	return __netdev_upper_dev_link(dev, upper_dev, false,
8048 				       NULL, NULL, &priv, extack);
8049 }
8050 EXPORT_SYMBOL(netdev_upper_dev_link);
8051 
8052 /**
8053  * netdev_master_upper_dev_link - Add a master link to the upper device
8054  * @dev: device
8055  * @upper_dev: new upper device
8056  * @upper_priv: upper device private
8057  * @upper_info: upper info to be passed down via notifier
8058  * @extack: netlink extended ack
8059  *
8060  * Adds a link to device which is upper to this one. In this case, only
8061  * one master upper device can be linked, although other non-master devices
8062  * might be linked as well. The caller must hold the RTNL lock.
8063  * On a failure a negative errno code is returned. On success the reference
8064  * counts are adjusted and the function returns zero.
8065  */
8066 int netdev_master_upper_dev_link(struct net_device *dev,
8067 				 struct net_device *upper_dev,
8068 				 void *upper_priv, void *upper_info,
8069 				 struct netlink_ext_ack *extack)
8070 {
8071 	struct netdev_nested_priv priv = {
8072 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8073 		.data = NULL,
8074 	};
8075 
8076 	return __netdev_upper_dev_link(dev, upper_dev, true,
8077 				       upper_priv, upper_info, &priv, extack);
8078 }
8079 EXPORT_SYMBOL(netdev_master_upper_dev_link);
8080 
8081 static void __netdev_upper_dev_unlink(struct net_device *dev,
8082 				      struct net_device *upper_dev,
8083 				      struct netdev_nested_priv *priv)
8084 {
8085 	struct netdev_notifier_changeupper_info changeupper_info = {
8086 		.info = {
8087 			.dev = dev,
8088 		},
8089 		.upper_dev = upper_dev,
8090 		.linking = false,
8091 	};
8092 
8093 	ASSERT_RTNL();
8094 
8095 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8096 
8097 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8098 				      &changeupper_info.info);
8099 
8100 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8101 
8102 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8103 				      &changeupper_info.info);
8104 
8105 	__netdev_update_upper_level(dev, NULL);
8106 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8107 
8108 	__netdev_update_lower_level(upper_dev, priv);
8109 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8110 				    priv);
8111 }
8112 
8113 /**
8114  * netdev_upper_dev_unlink - Removes a link to upper device
8115  * @dev: device
8116  * @upper_dev: new upper device
8117  *
8118  * Removes a link to device which is upper to this one. The caller must hold
8119  * the RTNL lock.
8120  */
8121 void netdev_upper_dev_unlink(struct net_device *dev,
8122 			     struct net_device *upper_dev)
8123 {
8124 	struct netdev_nested_priv priv = {
8125 		.flags = NESTED_SYNC_TODO,
8126 		.data = NULL,
8127 	};
8128 
8129 	__netdev_upper_dev_unlink(dev, upper_dev, &priv);
8130 }
8131 EXPORT_SYMBOL(netdev_upper_dev_unlink);
8132 
8133 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8134 				      struct net_device *lower_dev,
8135 				      bool val)
8136 {
8137 	struct netdev_adjacent *adj;
8138 
8139 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8140 	if (adj)
8141 		adj->ignore = val;
8142 
8143 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8144 	if (adj)
8145 		adj->ignore = val;
8146 }
8147 
8148 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8149 					struct net_device *lower_dev)
8150 {
8151 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8152 }
8153 
8154 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8155 				       struct net_device *lower_dev)
8156 {
8157 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8158 }
8159 
8160 int netdev_adjacent_change_prepare(struct net_device *old_dev,
8161 				   struct net_device *new_dev,
8162 				   struct net_device *dev,
8163 				   struct netlink_ext_ack *extack)
8164 {
8165 	struct netdev_nested_priv priv = {
8166 		.flags = 0,
8167 		.data = NULL,
8168 	};
8169 	int err;
8170 
8171 	if (!new_dev)
8172 		return 0;
8173 
8174 	if (old_dev && new_dev != old_dev)
8175 		netdev_adjacent_dev_disable(dev, old_dev);
8176 	err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8177 				      extack);
8178 	if (err) {
8179 		if (old_dev && new_dev != old_dev)
8180 			netdev_adjacent_dev_enable(dev, old_dev);
8181 		return err;
8182 	}
8183 
8184 	return 0;
8185 }
8186 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8187 
8188 void netdev_adjacent_change_commit(struct net_device *old_dev,
8189 				   struct net_device *new_dev,
8190 				   struct net_device *dev)
8191 {
8192 	struct netdev_nested_priv priv = {
8193 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8194 		.data = NULL,
8195 	};
8196 
8197 	if (!new_dev || !old_dev)
8198 		return;
8199 
8200 	if (new_dev == old_dev)
8201 		return;
8202 
8203 	netdev_adjacent_dev_enable(dev, old_dev);
8204 	__netdev_upper_dev_unlink(old_dev, dev, &priv);
8205 }
8206 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8207 
8208 void netdev_adjacent_change_abort(struct net_device *old_dev,
8209 				  struct net_device *new_dev,
8210 				  struct net_device *dev)
8211 {
8212 	struct netdev_nested_priv priv = {
8213 		.flags = 0,
8214 		.data = NULL,
8215 	};
8216 
8217 	if (!new_dev)
8218 		return;
8219 
8220 	if (old_dev && new_dev != old_dev)
8221 		netdev_adjacent_dev_enable(dev, old_dev);
8222 
8223 	__netdev_upper_dev_unlink(new_dev, dev, &priv);
8224 }
8225 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8226 
8227 /**
8228  * netdev_bonding_info_change - Dispatch event about slave change
8229  * @dev: device
8230  * @bonding_info: info to dispatch
8231  *
8232  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8233  * The caller must hold the RTNL lock.
8234  */
8235 void netdev_bonding_info_change(struct net_device *dev,
8236 				struct netdev_bonding_info *bonding_info)
8237 {
8238 	struct netdev_notifier_bonding_info info = {
8239 		.info.dev = dev,
8240 	};
8241 
8242 	memcpy(&info.bonding_info, bonding_info,
8243 	       sizeof(struct netdev_bonding_info));
8244 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8245 				      &info.info);
8246 }
8247 EXPORT_SYMBOL(netdev_bonding_info_change);
8248 
8249 /**
8250  * netdev_get_xmit_slave - Get the xmit slave of master device
8251  * @dev: device
8252  * @skb: The packet
8253  * @all_slaves: assume all the slaves are active
8254  *
8255  * The reference counters are not incremented so the caller must be
8256  * careful with locks. The caller must hold RCU lock.
8257  * %NULL is returned if no slave is found.
8258  */
8259 
8260 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8261 					 struct sk_buff *skb,
8262 					 bool all_slaves)
8263 {
8264 	const struct net_device_ops *ops = dev->netdev_ops;
8265 
8266 	if (!ops->ndo_get_xmit_slave)
8267 		return NULL;
8268 	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8269 }
8270 EXPORT_SYMBOL(netdev_get_xmit_slave);
8271 
8272 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8273 						  struct sock *sk)
8274 {
8275 	const struct net_device_ops *ops = dev->netdev_ops;
8276 
8277 	if (!ops->ndo_sk_get_lower_dev)
8278 		return NULL;
8279 	return ops->ndo_sk_get_lower_dev(dev, sk);
8280 }
8281 
8282 /**
8283  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8284  * @dev: device
8285  * @sk: the socket
8286  *
8287  * %NULL is returned if no lower device is found.
8288  */
8289 
8290 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8291 					    struct sock *sk)
8292 {
8293 	struct net_device *lower;
8294 
8295 	lower = netdev_sk_get_lower_dev(dev, sk);
8296 	while (lower) {
8297 		dev = lower;
8298 		lower = netdev_sk_get_lower_dev(dev, sk);
8299 	}
8300 
8301 	return dev;
8302 }
8303 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8304 
8305 static void netdev_adjacent_add_links(struct net_device *dev)
8306 {
8307 	struct netdev_adjacent *iter;
8308 
8309 	struct net *net = dev_net(dev);
8310 
8311 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8312 		if (!net_eq(net, dev_net(iter->dev)))
8313 			continue;
8314 		netdev_adjacent_sysfs_add(iter->dev, dev,
8315 					  &iter->dev->adj_list.lower);
8316 		netdev_adjacent_sysfs_add(dev, iter->dev,
8317 					  &dev->adj_list.upper);
8318 	}
8319 
8320 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8321 		if (!net_eq(net, dev_net(iter->dev)))
8322 			continue;
8323 		netdev_adjacent_sysfs_add(iter->dev, dev,
8324 					  &iter->dev->adj_list.upper);
8325 		netdev_adjacent_sysfs_add(dev, iter->dev,
8326 					  &dev->adj_list.lower);
8327 	}
8328 }
8329 
8330 static void netdev_adjacent_del_links(struct net_device *dev)
8331 {
8332 	struct netdev_adjacent *iter;
8333 
8334 	struct net *net = dev_net(dev);
8335 
8336 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8337 		if (!net_eq(net, dev_net(iter->dev)))
8338 			continue;
8339 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8340 					  &iter->dev->adj_list.lower);
8341 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8342 					  &dev->adj_list.upper);
8343 	}
8344 
8345 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8346 		if (!net_eq(net, dev_net(iter->dev)))
8347 			continue;
8348 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8349 					  &iter->dev->adj_list.upper);
8350 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8351 					  &dev->adj_list.lower);
8352 	}
8353 }
8354 
8355 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8356 {
8357 	struct netdev_adjacent *iter;
8358 
8359 	struct net *net = dev_net(dev);
8360 
8361 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8362 		if (!net_eq(net, dev_net(iter->dev)))
8363 			continue;
8364 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8365 					  &iter->dev->adj_list.lower);
8366 		netdev_adjacent_sysfs_add(iter->dev, dev,
8367 					  &iter->dev->adj_list.lower);
8368 	}
8369 
8370 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8371 		if (!net_eq(net, dev_net(iter->dev)))
8372 			continue;
8373 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8374 					  &iter->dev->adj_list.upper);
8375 		netdev_adjacent_sysfs_add(iter->dev, dev,
8376 					  &iter->dev->adj_list.upper);
8377 	}
8378 }
8379 
8380 void *netdev_lower_dev_get_private(struct net_device *dev,
8381 				   struct net_device *lower_dev)
8382 {
8383 	struct netdev_adjacent *lower;
8384 
8385 	if (!lower_dev)
8386 		return NULL;
8387 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8388 	if (!lower)
8389 		return NULL;
8390 
8391 	return lower->private;
8392 }
8393 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8394 
8395 
8396 /**
8397  * netdev_lower_state_changed - Dispatch event about lower device state change
8398  * @lower_dev: device
8399  * @lower_state_info: state to dispatch
8400  *
8401  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8402  * The caller must hold the RTNL lock.
8403  */
8404 void netdev_lower_state_changed(struct net_device *lower_dev,
8405 				void *lower_state_info)
8406 {
8407 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8408 		.info.dev = lower_dev,
8409 	};
8410 
8411 	ASSERT_RTNL();
8412 	changelowerstate_info.lower_state_info = lower_state_info;
8413 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8414 				      &changelowerstate_info.info);
8415 }
8416 EXPORT_SYMBOL(netdev_lower_state_changed);
8417 
8418 static void dev_change_rx_flags(struct net_device *dev, int flags)
8419 {
8420 	const struct net_device_ops *ops = dev->netdev_ops;
8421 
8422 	if (ops->ndo_change_rx_flags)
8423 		ops->ndo_change_rx_flags(dev, flags);
8424 }
8425 
8426 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8427 {
8428 	unsigned int old_flags = dev->flags;
8429 	kuid_t uid;
8430 	kgid_t gid;
8431 
8432 	ASSERT_RTNL();
8433 
8434 	dev->flags |= IFF_PROMISC;
8435 	dev->promiscuity += inc;
8436 	if (dev->promiscuity == 0) {
8437 		/*
8438 		 * Avoid overflow.
8439 		 * If inc causes overflow, untouch promisc and return error.
8440 		 */
8441 		if (inc < 0)
8442 			dev->flags &= ~IFF_PROMISC;
8443 		else {
8444 			dev->promiscuity -= inc;
8445 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
8446 				dev->name);
8447 			return -EOVERFLOW;
8448 		}
8449 	}
8450 	if (dev->flags != old_flags) {
8451 		pr_info("device %s %s promiscuous mode\n",
8452 			dev->name,
8453 			dev->flags & IFF_PROMISC ? "entered" : "left");
8454 		if (audit_enabled) {
8455 			current_uid_gid(&uid, &gid);
8456 			audit_log(audit_context(), GFP_ATOMIC,
8457 				  AUDIT_ANOM_PROMISCUOUS,
8458 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8459 				  dev->name, (dev->flags & IFF_PROMISC),
8460 				  (old_flags & IFF_PROMISC),
8461 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
8462 				  from_kuid(&init_user_ns, uid),
8463 				  from_kgid(&init_user_ns, gid),
8464 				  audit_get_sessionid(current));
8465 		}
8466 
8467 		dev_change_rx_flags(dev, IFF_PROMISC);
8468 	}
8469 	if (notify)
8470 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
8471 	return 0;
8472 }
8473 
8474 /**
8475  *	dev_set_promiscuity	- update promiscuity count on a device
8476  *	@dev: device
8477  *	@inc: modifier
8478  *
8479  *	Add or remove promiscuity from a device. While the count in the device
8480  *	remains above zero the interface remains promiscuous. Once it hits zero
8481  *	the device reverts back to normal filtering operation. A negative inc
8482  *	value is used to drop promiscuity on the device.
8483  *	Return 0 if successful or a negative errno code on error.
8484  */
8485 int dev_set_promiscuity(struct net_device *dev, int inc)
8486 {
8487 	unsigned int old_flags = dev->flags;
8488 	int err;
8489 
8490 	err = __dev_set_promiscuity(dev, inc, true);
8491 	if (err < 0)
8492 		return err;
8493 	if (dev->flags != old_flags)
8494 		dev_set_rx_mode(dev);
8495 	return err;
8496 }
8497 EXPORT_SYMBOL(dev_set_promiscuity);
8498 
8499 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8500 {
8501 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8502 
8503 	ASSERT_RTNL();
8504 
8505 	dev->flags |= IFF_ALLMULTI;
8506 	dev->allmulti += inc;
8507 	if (dev->allmulti == 0) {
8508 		/*
8509 		 * Avoid overflow.
8510 		 * If inc causes overflow, untouch allmulti and return error.
8511 		 */
8512 		if (inc < 0)
8513 			dev->flags &= ~IFF_ALLMULTI;
8514 		else {
8515 			dev->allmulti -= inc;
8516 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8517 				dev->name);
8518 			return -EOVERFLOW;
8519 		}
8520 	}
8521 	if (dev->flags ^ old_flags) {
8522 		dev_change_rx_flags(dev, IFF_ALLMULTI);
8523 		dev_set_rx_mode(dev);
8524 		if (notify)
8525 			__dev_notify_flags(dev, old_flags,
8526 					   dev->gflags ^ old_gflags);
8527 	}
8528 	return 0;
8529 }
8530 
8531 /**
8532  *	dev_set_allmulti	- update allmulti count on a device
8533  *	@dev: device
8534  *	@inc: modifier
8535  *
8536  *	Add or remove reception of all multicast frames to a device. While the
8537  *	count in the device remains above zero the interface remains listening
8538  *	to all interfaces. Once it hits zero the device reverts back to normal
8539  *	filtering operation. A negative @inc value is used to drop the counter
8540  *	when releasing a resource needing all multicasts.
8541  *	Return 0 if successful or a negative errno code on error.
8542  */
8543 
8544 int dev_set_allmulti(struct net_device *dev, int inc)
8545 {
8546 	return __dev_set_allmulti(dev, inc, true);
8547 }
8548 EXPORT_SYMBOL(dev_set_allmulti);
8549 
8550 /*
8551  *	Upload unicast and multicast address lists to device and
8552  *	configure RX filtering. When the device doesn't support unicast
8553  *	filtering it is put in promiscuous mode while unicast addresses
8554  *	are present.
8555  */
8556 void __dev_set_rx_mode(struct net_device *dev)
8557 {
8558 	const struct net_device_ops *ops = dev->netdev_ops;
8559 
8560 	/* dev_open will call this function so the list will stay sane. */
8561 	if (!(dev->flags&IFF_UP))
8562 		return;
8563 
8564 	if (!netif_device_present(dev))
8565 		return;
8566 
8567 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8568 		/* Unicast addresses changes may only happen under the rtnl,
8569 		 * therefore calling __dev_set_promiscuity here is safe.
8570 		 */
8571 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8572 			__dev_set_promiscuity(dev, 1, false);
8573 			dev->uc_promisc = true;
8574 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8575 			__dev_set_promiscuity(dev, -1, false);
8576 			dev->uc_promisc = false;
8577 		}
8578 	}
8579 
8580 	if (ops->ndo_set_rx_mode)
8581 		ops->ndo_set_rx_mode(dev);
8582 }
8583 
8584 void dev_set_rx_mode(struct net_device *dev)
8585 {
8586 	netif_addr_lock_bh(dev);
8587 	__dev_set_rx_mode(dev);
8588 	netif_addr_unlock_bh(dev);
8589 }
8590 
8591 /**
8592  *	dev_get_flags - get flags reported to userspace
8593  *	@dev: device
8594  *
8595  *	Get the combination of flag bits exported through APIs to userspace.
8596  */
8597 unsigned int dev_get_flags(const struct net_device *dev)
8598 {
8599 	unsigned int flags;
8600 
8601 	flags = (dev->flags & ~(IFF_PROMISC |
8602 				IFF_ALLMULTI |
8603 				IFF_RUNNING |
8604 				IFF_LOWER_UP |
8605 				IFF_DORMANT)) |
8606 		(dev->gflags & (IFF_PROMISC |
8607 				IFF_ALLMULTI));
8608 
8609 	if (netif_running(dev)) {
8610 		if (netif_oper_up(dev))
8611 			flags |= IFF_RUNNING;
8612 		if (netif_carrier_ok(dev))
8613 			flags |= IFF_LOWER_UP;
8614 		if (netif_dormant(dev))
8615 			flags |= IFF_DORMANT;
8616 	}
8617 
8618 	return flags;
8619 }
8620 EXPORT_SYMBOL(dev_get_flags);
8621 
8622 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8623 		       struct netlink_ext_ack *extack)
8624 {
8625 	unsigned int old_flags = dev->flags;
8626 	int ret;
8627 
8628 	ASSERT_RTNL();
8629 
8630 	/*
8631 	 *	Set the flags on our device.
8632 	 */
8633 
8634 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8635 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8636 			       IFF_AUTOMEDIA)) |
8637 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8638 				    IFF_ALLMULTI));
8639 
8640 	/*
8641 	 *	Load in the correct multicast list now the flags have changed.
8642 	 */
8643 
8644 	if ((old_flags ^ flags) & IFF_MULTICAST)
8645 		dev_change_rx_flags(dev, IFF_MULTICAST);
8646 
8647 	dev_set_rx_mode(dev);
8648 
8649 	/*
8650 	 *	Have we downed the interface. We handle IFF_UP ourselves
8651 	 *	according to user attempts to set it, rather than blindly
8652 	 *	setting it.
8653 	 */
8654 
8655 	ret = 0;
8656 	if ((old_flags ^ flags) & IFF_UP) {
8657 		if (old_flags & IFF_UP)
8658 			__dev_close(dev);
8659 		else
8660 			ret = __dev_open(dev, extack);
8661 	}
8662 
8663 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
8664 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
8665 		unsigned int old_flags = dev->flags;
8666 
8667 		dev->gflags ^= IFF_PROMISC;
8668 
8669 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
8670 			if (dev->flags != old_flags)
8671 				dev_set_rx_mode(dev);
8672 	}
8673 
8674 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8675 	 * is important. Some (broken) drivers set IFF_PROMISC, when
8676 	 * IFF_ALLMULTI is requested not asking us and not reporting.
8677 	 */
8678 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8679 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8680 
8681 		dev->gflags ^= IFF_ALLMULTI;
8682 		__dev_set_allmulti(dev, inc, false);
8683 	}
8684 
8685 	return ret;
8686 }
8687 
8688 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8689 			unsigned int gchanges)
8690 {
8691 	unsigned int changes = dev->flags ^ old_flags;
8692 
8693 	if (gchanges)
8694 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8695 
8696 	if (changes & IFF_UP) {
8697 		if (dev->flags & IFF_UP)
8698 			call_netdevice_notifiers(NETDEV_UP, dev);
8699 		else
8700 			call_netdevice_notifiers(NETDEV_DOWN, dev);
8701 	}
8702 
8703 	if (dev->flags & IFF_UP &&
8704 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8705 		struct netdev_notifier_change_info change_info = {
8706 			.info = {
8707 				.dev = dev,
8708 			},
8709 			.flags_changed = changes,
8710 		};
8711 
8712 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8713 	}
8714 }
8715 
8716 /**
8717  *	dev_change_flags - change device settings
8718  *	@dev: device
8719  *	@flags: device state flags
8720  *	@extack: netlink extended ack
8721  *
8722  *	Change settings on device based state flags. The flags are
8723  *	in the userspace exported format.
8724  */
8725 int dev_change_flags(struct net_device *dev, unsigned int flags,
8726 		     struct netlink_ext_ack *extack)
8727 {
8728 	int ret;
8729 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8730 
8731 	ret = __dev_change_flags(dev, flags, extack);
8732 	if (ret < 0)
8733 		return ret;
8734 
8735 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8736 	__dev_notify_flags(dev, old_flags, changes);
8737 	return ret;
8738 }
8739 EXPORT_SYMBOL(dev_change_flags);
8740 
8741 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8742 {
8743 	const struct net_device_ops *ops = dev->netdev_ops;
8744 
8745 	if (ops->ndo_change_mtu)
8746 		return ops->ndo_change_mtu(dev, new_mtu);
8747 
8748 	/* Pairs with all the lockless reads of dev->mtu in the stack */
8749 	WRITE_ONCE(dev->mtu, new_mtu);
8750 	return 0;
8751 }
8752 EXPORT_SYMBOL(__dev_set_mtu);
8753 
8754 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8755 		     struct netlink_ext_ack *extack)
8756 {
8757 	/* MTU must be positive, and in range */
8758 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8759 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8760 		return -EINVAL;
8761 	}
8762 
8763 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8764 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8765 		return -EINVAL;
8766 	}
8767 	return 0;
8768 }
8769 
8770 /**
8771  *	dev_set_mtu_ext - Change maximum transfer unit
8772  *	@dev: device
8773  *	@new_mtu: new transfer unit
8774  *	@extack: netlink extended ack
8775  *
8776  *	Change the maximum transfer size of the network device.
8777  */
8778 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8779 		    struct netlink_ext_ack *extack)
8780 {
8781 	int err, orig_mtu;
8782 
8783 	if (new_mtu == dev->mtu)
8784 		return 0;
8785 
8786 	err = dev_validate_mtu(dev, new_mtu, extack);
8787 	if (err)
8788 		return err;
8789 
8790 	if (!netif_device_present(dev))
8791 		return -ENODEV;
8792 
8793 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8794 	err = notifier_to_errno(err);
8795 	if (err)
8796 		return err;
8797 
8798 	orig_mtu = dev->mtu;
8799 	err = __dev_set_mtu(dev, new_mtu);
8800 
8801 	if (!err) {
8802 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8803 						   orig_mtu);
8804 		err = notifier_to_errno(err);
8805 		if (err) {
8806 			/* setting mtu back and notifying everyone again,
8807 			 * so that they have a chance to revert changes.
8808 			 */
8809 			__dev_set_mtu(dev, orig_mtu);
8810 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8811 						     new_mtu);
8812 		}
8813 	}
8814 	return err;
8815 }
8816 
8817 int dev_set_mtu(struct net_device *dev, int new_mtu)
8818 {
8819 	struct netlink_ext_ack extack;
8820 	int err;
8821 
8822 	memset(&extack, 0, sizeof(extack));
8823 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
8824 	if (err && extack._msg)
8825 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8826 	return err;
8827 }
8828 EXPORT_SYMBOL(dev_set_mtu);
8829 
8830 /**
8831  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
8832  *	@dev: device
8833  *	@new_len: new tx queue length
8834  */
8835 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8836 {
8837 	unsigned int orig_len = dev->tx_queue_len;
8838 	int res;
8839 
8840 	if (new_len != (unsigned int)new_len)
8841 		return -ERANGE;
8842 
8843 	if (new_len != orig_len) {
8844 		dev->tx_queue_len = new_len;
8845 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8846 		res = notifier_to_errno(res);
8847 		if (res)
8848 			goto err_rollback;
8849 		res = dev_qdisc_change_tx_queue_len(dev);
8850 		if (res)
8851 			goto err_rollback;
8852 	}
8853 
8854 	return 0;
8855 
8856 err_rollback:
8857 	netdev_err(dev, "refused to change device tx_queue_len\n");
8858 	dev->tx_queue_len = orig_len;
8859 	return res;
8860 }
8861 
8862 /**
8863  *	dev_set_group - Change group this device belongs to
8864  *	@dev: device
8865  *	@new_group: group this device should belong to
8866  */
8867 void dev_set_group(struct net_device *dev, int new_group)
8868 {
8869 	dev->group = new_group;
8870 }
8871 EXPORT_SYMBOL(dev_set_group);
8872 
8873 /**
8874  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8875  *	@dev: device
8876  *	@addr: new address
8877  *	@extack: netlink extended ack
8878  */
8879 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8880 			      struct netlink_ext_ack *extack)
8881 {
8882 	struct netdev_notifier_pre_changeaddr_info info = {
8883 		.info.dev = dev,
8884 		.info.extack = extack,
8885 		.dev_addr = addr,
8886 	};
8887 	int rc;
8888 
8889 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8890 	return notifier_to_errno(rc);
8891 }
8892 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8893 
8894 /**
8895  *	dev_set_mac_address - Change Media Access Control Address
8896  *	@dev: device
8897  *	@sa: new address
8898  *	@extack: netlink extended ack
8899  *
8900  *	Change the hardware (MAC) address of the device
8901  */
8902 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8903 			struct netlink_ext_ack *extack)
8904 {
8905 	const struct net_device_ops *ops = dev->netdev_ops;
8906 	int err;
8907 
8908 	if (!ops->ndo_set_mac_address)
8909 		return -EOPNOTSUPP;
8910 	if (sa->sa_family != dev->type)
8911 		return -EINVAL;
8912 	if (!netif_device_present(dev))
8913 		return -ENODEV;
8914 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8915 	if (err)
8916 		return err;
8917 	err = ops->ndo_set_mac_address(dev, sa);
8918 	if (err)
8919 		return err;
8920 	dev->addr_assign_type = NET_ADDR_SET;
8921 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8922 	add_device_randomness(dev->dev_addr, dev->addr_len);
8923 	return 0;
8924 }
8925 EXPORT_SYMBOL(dev_set_mac_address);
8926 
8927 static DECLARE_RWSEM(dev_addr_sem);
8928 
8929 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8930 			     struct netlink_ext_ack *extack)
8931 {
8932 	int ret;
8933 
8934 	down_write(&dev_addr_sem);
8935 	ret = dev_set_mac_address(dev, sa, extack);
8936 	up_write(&dev_addr_sem);
8937 	return ret;
8938 }
8939 EXPORT_SYMBOL(dev_set_mac_address_user);
8940 
8941 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8942 {
8943 	size_t size = sizeof(sa->sa_data);
8944 	struct net_device *dev;
8945 	int ret = 0;
8946 
8947 	down_read(&dev_addr_sem);
8948 	rcu_read_lock();
8949 
8950 	dev = dev_get_by_name_rcu(net, dev_name);
8951 	if (!dev) {
8952 		ret = -ENODEV;
8953 		goto unlock;
8954 	}
8955 	if (!dev->addr_len)
8956 		memset(sa->sa_data, 0, size);
8957 	else
8958 		memcpy(sa->sa_data, dev->dev_addr,
8959 		       min_t(size_t, size, dev->addr_len));
8960 	sa->sa_family = dev->type;
8961 
8962 unlock:
8963 	rcu_read_unlock();
8964 	up_read(&dev_addr_sem);
8965 	return ret;
8966 }
8967 EXPORT_SYMBOL(dev_get_mac_address);
8968 
8969 /**
8970  *	dev_change_carrier - Change device carrier
8971  *	@dev: device
8972  *	@new_carrier: new value
8973  *
8974  *	Change device carrier
8975  */
8976 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8977 {
8978 	const struct net_device_ops *ops = dev->netdev_ops;
8979 
8980 	if (!ops->ndo_change_carrier)
8981 		return -EOPNOTSUPP;
8982 	if (!netif_device_present(dev))
8983 		return -ENODEV;
8984 	return ops->ndo_change_carrier(dev, new_carrier);
8985 }
8986 EXPORT_SYMBOL(dev_change_carrier);
8987 
8988 /**
8989  *	dev_get_phys_port_id - Get device physical port ID
8990  *	@dev: device
8991  *	@ppid: port ID
8992  *
8993  *	Get device physical port ID
8994  */
8995 int dev_get_phys_port_id(struct net_device *dev,
8996 			 struct netdev_phys_item_id *ppid)
8997 {
8998 	const struct net_device_ops *ops = dev->netdev_ops;
8999 
9000 	if (!ops->ndo_get_phys_port_id)
9001 		return -EOPNOTSUPP;
9002 	return ops->ndo_get_phys_port_id(dev, ppid);
9003 }
9004 EXPORT_SYMBOL(dev_get_phys_port_id);
9005 
9006 /**
9007  *	dev_get_phys_port_name - Get device physical port name
9008  *	@dev: device
9009  *	@name: port name
9010  *	@len: limit of bytes to copy to name
9011  *
9012  *	Get device physical port name
9013  */
9014 int dev_get_phys_port_name(struct net_device *dev,
9015 			   char *name, size_t len)
9016 {
9017 	const struct net_device_ops *ops = dev->netdev_ops;
9018 	int err;
9019 
9020 	if (ops->ndo_get_phys_port_name) {
9021 		err = ops->ndo_get_phys_port_name(dev, name, len);
9022 		if (err != -EOPNOTSUPP)
9023 			return err;
9024 	}
9025 	return devlink_compat_phys_port_name_get(dev, name, len);
9026 }
9027 EXPORT_SYMBOL(dev_get_phys_port_name);
9028 
9029 /**
9030  *	dev_get_port_parent_id - Get the device's port parent identifier
9031  *	@dev: network device
9032  *	@ppid: pointer to a storage for the port's parent identifier
9033  *	@recurse: allow/disallow recursion to lower devices
9034  *
9035  *	Get the devices's port parent identifier
9036  */
9037 int dev_get_port_parent_id(struct net_device *dev,
9038 			   struct netdev_phys_item_id *ppid,
9039 			   bool recurse)
9040 {
9041 	const struct net_device_ops *ops = dev->netdev_ops;
9042 	struct netdev_phys_item_id first = { };
9043 	struct net_device *lower_dev;
9044 	struct list_head *iter;
9045 	int err;
9046 
9047 	if (ops->ndo_get_port_parent_id) {
9048 		err = ops->ndo_get_port_parent_id(dev, ppid);
9049 		if (err != -EOPNOTSUPP)
9050 			return err;
9051 	}
9052 
9053 	err = devlink_compat_switch_id_get(dev, ppid);
9054 	if (!err || err != -EOPNOTSUPP)
9055 		return err;
9056 
9057 	if (!recurse)
9058 		return -EOPNOTSUPP;
9059 
9060 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
9061 		err = dev_get_port_parent_id(lower_dev, ppid, recurse);
9062 		if (err)
9063 			break;
9064 		if (!first.id_len)
9065 			first = *ppid;
9066 		else if (memcmp(&first, ppid, sizeof(*ppid)))
9067 			return -EOPNOTSUPP;
9068 	}
9069 
9070 	return err;
9071 }
9072 EXPORT_SYMBOL(dev_get_port_parent_id);
9073 
9074 /**
9075  *	netdev_port_same_parent_id - Indicate if two network devices have
9076  *	the same port parent identifier
9077  *	@a: first network device
9078  *	@b: second network device
9079  */
9080 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9081 {
9082 	struct netdev_phys_item_id a_id = { };
9083 	struct netdev_phys_item_id b_id = { };
9084 
9085 	if (dev_get_port_parent_id(a, &a_id, true) ||
9086 	    dev_get_port_parent_id(b, &b_id, true))
9087 		return false;
9088 
9089 	return netdev_phys_item_id_same(&a_id, &b_id);
9090 }
9091 EXPORT_SYMBOL(netdev_port_same_parent_id);
9092 
9093 /**
9094  *	dev_change_proto_down - update protocol port state information
9095  *	@dev: device
9096  *	@proto_down: new value
9097  *
9098  *	This info can be used by switch drivers to set the phys state of the
9099  *	port.
9100  */
9101 int dev_change_proto_down(struct net_device *dev, bool proto_down)
9102 {
9103 	const struct net_device_ops *ops = dev->netdev_ops;
9104 
9105 	if (!ops->ndo_change_proto_down)
9106 		return -EOPNOTSUPP;
9107 	if (!netif_device_present(dev))
9108 		return -ENODEV;
9109 	return ops->ndo_change_proto_down(dev, proto_down);
9110 }
9111 EXPORT_SYMBOL(dev_change_proto_down);
9112 
9113 /**
9114  *	dev_change_proto_down_generic - generic implementation for
9115  * 	ndo_change_proto_down that sets carrier according to
9116  * 	proto_down.
9117  *
9118  *	@dev: device
9119  *	@proto_down: new value
9120  */
9121 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
9122 {
9123 	if (proto_down)
9124 		netif_carrier_off(dev);
9125 	else
9126 		netif_carrier_on(dev);
9127 	dev->proto_down = proto_down;
9128 	return 0;
9129 }
9130 EXPORT_SYMBOL(dev_change_proto_down_generic);
9131 
9132 /**
9133  *	dev_change_proto_down_reason - proto down reason
9134  *
9135  *	@dev: device
9136  *	@mask: proto down mask
9137  *	@value: proto down value
9138  */
9139 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9140 				  u32 value)
9141 {
9142 	int b;
9143 
9144 	if (!mask) {
9145 		dev->proto_down_reason = value;
9146 	} else {
9147 		for_each_set_bit(b, &mask, 32) {
9148 			if (value & (1 << b))
9149 				dev->proto_down_reason |= BIT(b);
9150 			else
9151 				dev->proto_down_reason &= ~BIT(b);
9152 		}
9153 	}
9154 }
9155 EXPORT_SYMBOL(dev_change_proto_down_reason);
9156 
9157 struct bpf_xdp_link {
9158 	struct bpf_link link;
9159 	struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9160 	int flags;
9161 };
9162 
9163 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9164 {
9165 	if (flags & XDP_FLAGS_HW_MODE)
9166 		return XDP_MODE_HW;
9167 	if (flags & XDP_FLAGS_DRV_MODE)
9168 		return XDP_MODE_DRV;
9169 	if (flags & XDP_FLAGS_SKB_MODE)
9170 		return XDP_MODE_SKB;
9171 	return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9172 }
9173 
9174 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9175 {
9176 	switch (mode) {
9177 	case XDP_MODE_SKB:
9178 		return generic_xdp_install;
9179 	case XDP_MODE_DRV:
9180 	case XDP_MODE_HW:
9181 		return dev->netdev_ops->ndo_bpf;
9182 	default:
9183 		return NULL;
9184 	}
9185 }
9186 
9187 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9188 					 enum bpf_xdp_mode mode)
9189 {
9190 	return dev->xdp_state[mode].link;
9191 }
9192 
9193 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9194 				     enum bpf_xdp_mode mode)
9195 {
9196 	struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9197 
9198 	if (link)
9199 		return link->link.prog;
9200 	return dev->xdp_state[mode].prog;
9201 }
9202 
9203 static u8 dev_xdp_prog_count(struct net_device *dev)
9204 {
9205 	u8 count = 0;
9206 	int i;
9207 
9208 	for (i = 0; i < __MAX_XDP_MODE; i++)
9209 		if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9210 			count++;
9211 	return count;
9212 }
9213 
9214 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9215 {
9216 	struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9217 
9218 	return prog ? prog->aux->id : 0;
9219 }
9220 
9221 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9222 			     struct bpf_xdp_link *link)
9223 {
9224 	dev->xdp_state[mode].link = link;
9225 	dev->xdp_state[mode].prog = NULL;
9226 }
9227 
9228 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9229 			     struct bpf_prog *prog)
9230 {
9231 	dev->xdp_state[mode].link = NULL;
9232 	dev->xdp_state[mode].prog = prog;
9233 }
9234 
9235 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9236 			   bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9237 			   u32 flags, struct bpf_prog *prog)
9238 {
9239 	struct netdev_bpf xdp;
9240 	int err;
9241 
9242 	memset(&xdp, 0, sizeof(xdp));
9243 	xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9244 	xdp.extack = extack;
9245 	xdp.flags = flags;
9246 	xdp.prog = prog;
9247 
9248 	/* Drivers assume refcnt is already incremented (i.e, prog pointer is
9249 	 * "moved" into driver), so they don't increment it on their own, but
9250 	 * they do decrement refcnt when program is detached or replaced.
9251 	 * Given net_device also owns link/prog, we need to bump refcnt here
9252 	 * to prevent drivers from underflowing it.
9253 	 */
9254 	if (prog)
9255 		bpf_prog_inc(prog);
9256 	err = bpf_op(dev, &xdp);
9257 	if (err) {
9258 		if (prog)
9259 			bpf_prog_put(prog);
9260 		return err;
9261 	}
9262 
9263 	if (mode != XDP_MODE_HW)
9264 		bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9265 
9266 	return 0;
9267 }
9268 
9269 static void dev_xdp_uninstall(struct net_device *dev)
9270 {
9271 	struct bpf_xdp_link *link;
9272 	struct bpf_prog *prog;
9273 	enum bpf_xdp_mode mode;
9274 	bpf_op_t bpf_op;
9275 
9276 	ASSERT_RTNL();
9277 
9278 	for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9279 		prog = dev_xdp_prog(dev, mode);
9280 		if (!prog)
9281 			continue;
9282 
9283 		bpf_op = dev_xdp_bpf_op(dev, mode);
9284 		if (!bpf_op)
9285 			continue;
9286 
9287 		WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9288 
9289 		/* auto-detach link from net device */
9290 		link = dev_xdp_link(dev, mode);
9291 		if (link)
9292 			link->dev = NULL;
9293 		else
9294 			bpf_prog_put(prog);
9295 
9296 		dev_xdp_set_link(dev, mode, NULL);
9297 	}
9298 }
9299 
9300 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9301 			  struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9302 			  struct bpf_prog *old_prog, u32 flags)
9303 {
9304 	unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9305 	struct bpf_prog *cur_prog;
9306 	enum bpf_xdp_mode mode;
9307 	bpf_op_t bpf_op;
9308 	int err;
9309 
9310 	ASSERT_RTNL();
9311 
9312 	/* either link or prog attachment, never both */
9313 	if (link && (new_prog || old_prog))
9314 		return -EINVAL;
9315 	/* link supports only XDP mode flags */
9316 	if (link && (flags & ~XDP_FLAGS_MODES)) {
9317 		NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9318 		return -EINVAL;
9319 	}
9320 	/* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9321 	if (num_modes > 1) {
9322 		NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9323 		return -EINVAL;
9324 	}
9325 	/* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9326 	if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9327 		NL_SET_ERR_MSG(extack,
9328 			       "More than one program loaded, unset mode is ambiguous");
9329 		return -EINVAL;
9330 	}
9331 	/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9332 	if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9333 		NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9334 		return -EINVAL;
9335 	}
9336 
9337 	mode = dev_xdp_mode(dev, flags);
9338 	/* can't replace attached link */
9339 	if (dev_xdp_link(dev, mode)) {
9340 		NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9341 		return -EBUSY;
9342 	}
9343 
9344 	cur_prog = dev_xdp_prog(dev, mode);
9345 	/* can't replace attached prog with link */
9346 	if (link && cur_prog) {
9347 		NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9348 		return -EBUSY;
9349 	}
9350 	if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9351 		NL_SET_ERR_MSG(extack, "Active program does not match expected");
9352 		return -EEXIST;
9353 	}
9354 
9355 	/* put effective new program into new_prog */
9356 	if (link)
9357 		new_prog = link->link.prog;
9358 
9359 	if (new_prog) {
9360 		bool offload = mode == XDP_MODE_HW;
9361 		enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9362 					       ? XDP_MODE_DRV : XDP_MODE_SKB;
9363 
9364 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9365 			NL_SET_ERR_MSG(extack, "XDP program already attached");
9366 			return -EBUSY;
9367 		}
9368 		if (!offload && dev_xdp_prog(dev, other_mode)) {
9369 			NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9370 			return -EEXIST;
9371 		}
9372 		if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9373 			NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9374 			return -EINVAL;
9375 		}
9376 		if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9377 			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9378 			return -EINVAL;
9379 		}
9380 		if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9381 			NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9382 			return -EINVAL;
9383 		}
9384 	}
9385 
9386 	/* don't call drivers if the effective program didn't change */
9387 	if (new_prog != cur_prog) {
9388 		bpf_op = dev_xdp_bpf_op(dev, mode);
9389 		if (!bpf_op) {
9390 			NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9391 			return -EOPNOTSUPP;
9392 		}
9393 
9394 		err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9395 		if (err)
9396 			return err;
9397 	}
9398 
9399 	if (link)
9400 		dev_xdp_set_link(dev, mode, link);
9401 	else
9402 		dev_xdp_set_prog(dev, mode, new_prog);
9403 	if (cur_prog)
9404 		bpf_prog_put(cur_prog);
9405 
9406 	return 0;
9407 }
9408 
9409 static int dev_xdp_attach_link(struct net_device *dev,
9410 			       struct netlink_ext_ack *extack,
9411 			       struct bpf_xdp_link *link)
9412 {
9413 	return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9414 }
9415 
9416 static int dev_xdp_detach_link(struct net_device *dev,
9417 			       struct netlink_ext_ack *extack,
9418 			       struct bpf_xdp_link *link)
9419 {
9420 	enum bpf_xdp_mode mode;
9421 	bpf_op_t bpf_op;
9422 
9423 	ASSERT_RTNL();
9424 
9425 	mode = dev_xdp_mode(dev, link->flags);
9426 	if (dev_xdp_link(dev, mode) != link)
9427 		return -EINVAL;
9428 
9429 	bpf_op = dev_xdp_bpf_op(dev, mode);
9430 	WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9431 	dev_xdp_set_link(dev, mode, NULL);
9432 	return 0;
9433 }
9434 
9435 static void bpf_xdp_link_release(struct bpf_link *link)
9436 {
9437 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9438 
9439 	rtnl_lock();
9440 
9441 	/* if racing with net_device's tear down, xdp_link->dev might be
9442 	 * already NULL, in which case link was already auto-detached
9443 	 */
9444 	if (xdp_link->dev) {
9445 		WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9446 		xdp_link->dev = NULL;
9447 	}
9448 
9449 	rtnl_unlock();
9450 }
9451 
9452 static int bpf_xdp_link_detach(struct bpf_link *link)
9453 {
9454 	bpf_xdp_link_release(link);
9455 	return 0;
9456 }
9457 
9458 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9459 {
9460 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9461 
9462 	kfree(xdp_link);
9463 }
9464 
9465 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9466 				     struct seq_file *seq)
9467 {
9468 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9469 	u32 ifindex = 0;
9470 
9471 	rtnl_lock();
9472 	if (xdp_link->dev)
9473 		ifindex = xdp_link->dev->ifindex;
9474 	rtnl_unlock();
9475 
9476 	seq_printf(seq, "ifindex:\t%u\n", ifindex);
9477 }
9478 
9479 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9480 				       struct bpf_link_info *info)
9481 {
9482 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9483 	u32 ifindex = 0;
9484 
9485 	rtnl_lock();
9486 	if (xdp_link->dev)
9487 		ifindex = xdp_link->dev->ifindex;
9488 	rtnl_unlock();
9489 
9490 	info->xdp.ifindex = ifindex;
9491 	return 0;
9492 }
9493 
9494 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9495 			       struct bpf_prog *old_prog)
9496 {
9497 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9498 	enum bpf_xdp_mode mode;
9499 	bpf_op_t bpf_op;
9500 	int err = 0;
9501 
9502 	rtnl_lock();
9503 
9504 	/* link might have been auto-released already, so fail */
9505 	if (!xdp_link->dev) {
9506 		err = -ENOLINK;
9507 		goto out_unlock;
9508 	}
9509 
9510 	if (old_prog && link->prog != old_prog) {
9511 		err = -EPERM;
9512 		goto out_unlock;
9513 	}
9514 	old_prog = link->prog;
9515 	if (old_prog == new_prog) {
9516 		/* no-op, don't disturb drivers */
9517 		bpf_prog_put(new_prog);
9518 		goto out_unlock;
9519 	}
9520 
9521 	mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9522 	bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9523 	err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9524 			      xdp_link->flags, new_prog);
9525 	if (err)
9526 		goto out_unlock;
9527 
9528 	old_prog = xchg(&link->prog, new_prog);
9529 	bpf_prog_put(old_prog);
9530 
9531 out_unlock:
9532 	rtnl_unlock();
9533 	return err;
9534 }
9535 
9536 static const struct bpf_link_ops bpf_xdp_link_lops = {
9537 	.release = bpf_xdp_link_release,
9538 	.dealloc = bpf_xdp_link_dealloc,
9539 	.detach = bpf_xdp_link_detach,
9540 	.show_fdinfo = bpf_xdp_link_show_fdinfo,
9541 	.fill_link_info = bpf_xdp_link_fill_link_info,
9542 	.update_prog = bpf_xdp_link_update,
9543 };
9544 
9545 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9546 {
9547 	struct net *net = current->nsproxy->net_ns;
9548 	struct bpf_link_primer link_primer;
9549 	struct bpf_xdp_link *link;
9550 	struct net_device *dev;
9551 	int err, fd;
9552 
9553 	dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9554 	if (!dev)
9555 		return -EINVAL;
9556 
9557 	link = kzalloc(sizeof(*link), GFP_USER);
9558 	if (!link) {
9559 		err = -ENOMEM;
9560 		goto out_put_dev;
9561 	}
9562 
9563 	bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9564 	link->dev = dev;
9565 	link->flags = attr->link_create.flags;
9566 
9567 	err = bpf_link_prime(&link->link, &link_primer);
9568 	if (err) {
9569 		kfree(link);
9570 		goto out_put_dev;
9571 	}
9572 
9573 	rtnl_lock();
9574 	err = dev_xdp_attach_link(dev, NULL, link);
9575 	rtnl_unlock();
9576 
9577 	if (err) {
9578 		bpf_link_cleanup(&link_primer);
9579 		goto out_put_dev;
9580 	}
9581 
9582 	fd = bpf_link_settle(&link_primer);
9583 	/* link itself doesn't hold dev's refcnt to not complicate shutdown */
9584 	dev_put(dev);
9585 	return fd;
9586 
9587 out_put_dev:
9588 	dev_put(dev);
9589 	return err;
9590 }
9591 
9592 /**
9593  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
9594  *	@dev: device
9595  *	@extack: netlink extended ack
9596  *	@fd: new program fd or negative value to clear
9597  *	@expected_fd: old program fd that userspace expects to replace or clear
9598  *	@flags: xdp-related flags
9599  *
9600  *	Set or clear a bpf program for a device
9601  */
9602 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9603 		      int fd, int expected_fd, u32 flags)
9604 {
9605 	enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9606 	struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9607 	int err;
9608 
9609 	ASSERT_RTNL();
9610 
9611 	if (fd >= 0) {
9612 		new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9613 						 mode != XDP_MODE_SKB);
9614 		if (IS_ERR(new_prog))
9615 			return PTR_ERR(new_prog);
9616 	}
9617 
9618 	if (expected_fd >= 0) {
9619 		old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9620 						 mode != XDP_MODE_SKB);
9621 		if (IS_ERR(old_prog)) {
9622 			err = PTR_ERR(old_prog);
9623 			old_prog = NULL;
9624 			goto err_out;
9625 		}
9626 	}
9627 
9628 	err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9629 
9630 err_out:
9631 	if (err && new_prog)
9632 		bpf_prog_put(new_prog);
9633 	if (old_prog)
9634 		bpf_prog_put(old_prog);
9635 	return err;
9636 }
9637 
9638 /**
9639  *	dev_new_index	-	allocate an ifindex
9640  *	@net: the applicable net namespace
9641  *
9642  *	Returns a suitable unique value for a new device interface
9643  *	number.  The caller must hold the rtnl semaphore or the
9644  *	dev_base_lock to be sure it remains unique.
9645  */
9646 static int dev_new_index(struct net *net)
9647 {
9648 	int ifindex = net->ifindex;
9649 
9650 	for (;;) {
9651 		if (++ifindex <= 0)
9652 			ifindex = 1;
9653 		if (!__dev_get_by_index(net, ifindex))
9654 			return net->ifindex = ifindex;
9655 	}
9656 }
9657 
9658 /* Delayed registration/unregisteration */
9659 static LIST_HEAD(net_todo_list);
9660 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9661 
9662 static void net_set_todo(struct net_device *dev)
9663 {
9664 	list_add_tail(&dev->todo_list, &net_todo_list);
9665 	dev_net(dev)->dev_unreg_count++;
9666 }
9667 
9668 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9669 	struct net_device *upper, netdev_features_t features)
9670 {
9671 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9672 	netdev_features_t feature;
9673 	int feature_bit;
9674 
9675 	for_each_netdev_feature(upper_disables, feature_bit) {
9676 		feature = __NETIF_F_BIT(feature_bit);
9677 		if (!(upper->wanted_features & feature)
9678 		    && (features & feature)) {
9679 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9680 				   &feature, upper->name);
9681 			features &= ~feature;
9682 		}
9683 	}
9684 
9685 	return features;
9686 }
9687 
9688 static void netdev_sync_lower_features(struct net_device *upper,
9689 	struct net_device *lower, netdev_features_t features)
9690 {
9691 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9692 	netdev_features_t feature;
9693 	int feature_bit;
9694 
9695 	for_each_netdev_feature(upper_disables, feature_bit) {
9696 		feature = __NETIF_F_BIT(feature_bit);
9697 		if (!(features & feature) && (lower->features & feature)) {
9698 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9699 				   &feature, lower->name);
9700 			lower->wanted_features &= ~feature;
9701 			__netdev_update_features(lower);
9702 
9703 			if (unlikely(lower->features & feature))
9704 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9705 					    &feature, lower->name);
9706 			else
9707 				netdev_features_change(lower);
9708 		}
9709 	}
9710 }
9711 
9712 static netdev_features_t netdev_fix_features(struct net_device *dev,
9713 	netdev_features_t features)
9714 {
9715 	/* Fix illegal checksum combinations */
9716 	if ((features & NETIF_F_HW_CSUM) &&
9717 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9718 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9719 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9720 	}
9721 
9722 	/* TSO requires that SG is present as well. */
9723 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9724 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9725 		features &= ~NETIF_F_ALL_TSO;
9726 	}
9727 
9728 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9729 					!(features & NETIF_F_IP_CSUM)) {
9730 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9731 		features &= ~NETIF_F_TSO;
9732 		features &= ~NETIF_F_TSO_ECN;
9733 	}
9734 
9735 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9736 					 !(features & NETIF_F_IPV6_CSUM)) {
9737 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9738 		features &= ~NETIF_F_TSO6;
9739 	}
9740 
9741 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9742 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9743 		features &= ~NETIF_F_TSO_MANGLEID;
9744 
9745 	/* TSO ECN requires that TSO is present as well. */
9746 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9747 		features &= ~NETIF_F_TSO_ECN;
9748 
9749 	/* Software GSO depends on SG. */
9750 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9751 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9752 		features &= ~NETIF_F_GSO;
9753 	}
9754 
9755 	/* GSO partial features require GSO partial be set */
9756 	if ((features & dev->gso_partial_features) &&
9757 	    !(features & NETIF_F_GSO_PARTIAL)) {
9758 		netdev_dbg(dev,
9759 			   "Dropping partially supported GSO features since no GSO partial.\n");
9760 		features &= ~dev->gso_partial_features;
9761 	}
9762 
9763 	if (!(features & NETIF_F_RXCSUM)) {
9764 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9765 		 * successfully merged by hardware must also have the
9766 		 * checksum verified by hardware.  If the user does not
9767 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
9768 		 */
9769 		if (features & NETIF_F_GRO_HW) {
9770 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9771 			features &= ~NETIF_F_GRO_HW;
9772 		}
9773 	}
9774 
9775 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
9776 	if (features & NETIF_F_RXFCS) {
9777 		if (features & NETIF_F_LRO) {
9778 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9779 			features &= ~NETIF_F_LRO;
9780 		}
9781 
9782 		if (features & NETIF_F_GRO_HW) {
9783 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9784 			features &= ~NETIF_F_GRO_HW;
9785 		}
9786 	}
9787 
9788 	if (features & NETIF_F_HW_TLS_TX) {
9789 		bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9790 			(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9791 		bool hw_csum = features & NETIF_F_HW_CSUM;
9792 
9793 		if (!ip_csum && !hw_csum) {
9794 			netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9795 			features &= ~NETIF_F_HW_TLS_TX;
9796 		}
9797 	}
9798 
9799 	if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9800 		netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9801 		features &= ~NETIF_F_HW_TLS_RX;
9802 	}
9803 
9804 	return features;
9805 }
9806 
9807 int __netdev_update_features(struct net_device *dev)
9808 {
9809 	struct net_device *upper, *lower;
9810 	netdev_features_t features;
9811 	struct list_head *iter;
9812 	int err = -1;
9813 
9814 	ASSERT_RTNL();
9815 
9816 	features = netdev_get_wanted_features(dev);
9817 
9818 	if (dev->netdev_ops->ndo_fix_features)
9819 		features = dev->netdev_ops->ndo_fix_features(dev, features);
9820 
9821 	/* driver might be less strict about feature dependencies */
9822 	features = netdev_fix_features(dev, features);
9823 
9824 	/* some features can't be enabled if they're off on an upper device */
9825 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
9826 		features = netdev_sync_upper_features(dev, upper, features);
9827 
9828 	if (dev->features == features)
9829 		goto sync_lower;
9830 
9831 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9832 		&dev->features, &features);
9833 
9834 	if (dev->netdev_ops->ndo_set_features)
9835 		err = dev->netdev_ops->ndo_set_features(dev, features);
9836 	else
9837 		err = 0;
9838 
9839 	if (unlikely(err < 0)) {
9840 		netdev_err(dev,
9841 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
9842 			err, &features, &dev->features);
9843 		/* return non-0 since some features might have changed and
9844 		 * it's better to fire a spurious notification than miss it
9845 		 */
9846 		return -1;
9847 	}
9848 
9849 sync_lower:
9850 	/* some features must be disabled on lower devices when disabled
9851 	 * on an upper device (think: bonding master or bridge)
9852 	 */
9853 	netdev_for_each_lower_dev(dev, lower, iter)
9854 		netdev_sync_lower_features(dev, lower, features);
9855 
9856 	if (!err) {
9857 		netdev_features_t diff = features ^ dev->features;
9858 
9859 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9860 			/* udp_tunnel_{get,drop}_rx_info both need
9861 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9862 			 * device, or they won't do anything.
9863 			 * Thus we need to update dev->features
9864 			 * *before* calling udp_tunnel_get_rx_info,
9865 			 * but *after* calling udp_tunnel_drop_rx_info.
9866 			 */
9867 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9868 				dev->features = features;
9869 				udp_tunnel_get_rx_info(dev);
9870 			} else {
9871 				udp_tunnel_drop_rx_info(dev);
9872 			}
9873 		}
9874 
9875 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9876 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9877 				dev->features = features;
9878 				err |= vlan_get_rx_ctag_filter_info(dev);
9879 			} else {
9880 				vlan_drop_rx_ctag_filter_info(dev);
9881 			}
9882 		}
9883 
9884 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9885 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9886 				dev->features = features;
9887 				err |= vlan_get_rx_stag_filter_info(dev);
9888 			} else {
9889 				vlan_drop_rx_stag_filter_info(dev);
9890 			}
9891 		}
9892 
9893 		dev->features = features;
9894 	}
9895 
9896 	return err < 0 ? 0 : 1;
9897 }
9898 
9899 /**
9900  *	netdev_update_features - recalculate device features
9901  *	@dev: the device to check
9902  *
9903  *	Recalculate dev->features set and send notifications if it
9904  *	has changed. Should be called after driver or hardware dependent
9905  *	conditions might have changed that influence the features.
9906  */
9907 void netdev_update_features(struct net_device *dev)
9908 {
9909 	if (__netdev_update_features(dev))
9910 		netdev_features_change(dev);
9911 }
9912 EXPORT_SYMBOL(netdev_update_features);
9913 
9914 /**
9915  *	netdev_change_features - recalculate device features
9916  *	@dev: the device to check
9917  *
9918  *	Recalculate dev->features set and send notifications even
9919  *	if they have not changed. Should be called instead of
9920  *	netdev_update_features() if also dev->vlan_features might
9921  *	have changed to allow the changes to be propagated to stacked
9922  *	VLAN devices.
9923  */
9924 void netdev_change_features(struct net_device *dev)
9925 {
9926 	__netdev_update_features(dev);
9927 	netdev_features_change(dev);
9928 }
9929 EXPORT_SYMBOL(netdev_change_features);
9930 
9931 /**
9932  *	netif_stacked_transfer_operstate -	transfer operstate
9933  *	@rootdev: the root or lower level device to transfer state from
9934  *	@dev: the device to transfer operstate to
9935  *
9936  *	Transfer operational state from root to device. This is normally
9937  *	called when a stacking relationship exists between the root
9938  *	device and the device(a leaf device).
9939  */
9940 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9941 					struct net_device *dev)
9942 {
9943 	if (rootdev->operstate == IF_OPER_DORMANT)
9944 		netif_dormant_on(dev);
9945 	else
9946 		netif_dormant_off(dev);
9947 
9948 	if (rootdev->operstate == IF_OPER_TESTING)
9949 		netif_testing_on(dev);
9950 	else
9951 		netif_testing_off(dev);
9952 
9953 	if (netif_carrier_ok(rootdev))
9954 		netif_carrier_on(dev);
9955 	else
9956 		netif_carrier_off(dev);
9957 }
9958 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9959 
9960 static int netif_alloc_rx_queues(struct net_device *dev)
9961 {
9962 	unsigned int i, count = dev->num_rx_queues;
9963 	struct netdev_rx_queue *rx;
9964 	size_t sz = count * sizeof(*rx);
9965 	int err = 0;
9966 
9967 	BUG_ON(count < 1);
9968 
9969 	rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9970 	if (!rx)
9971 		return -ENOMEM;
9972 
9973 	dev->_rx = rx;
9974 
9975 	for (i = 0; i < count; i++) {
9976 		rx[i].dev = dev;
9977 
9978 		/* XDP RX-queue setup */
9979 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
9980 		if (err < 0)
9981 			goto err_rxq_info;
9982 	}
9983 	return 0;
9984 
9985 err_rxq_info:
9986 	/* Rollback successful reg's and free other resources */
9987 	while (i--)
9988 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9989 	kvfree(dev->_rx);
9990 	dev->_rx = NULL;
9991 	return err;
9992 }
9993 
9994 static void netif_free_rx_queues(struct net_device *dev)
9995 {
9996 	unsigned int i, count = dev->num_rx_queues;
9997 
9998 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9999 	if (!dev->_rx)
10000 		return;
10001 
10002 	for (i = 0; i < count; i++)
10003 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10004 
10005 	kvfree(dev->_rx);
10006 }
10007 
10008 static void netdev_init_one_queue(struct net_device *dev,
10009 				  struct netdev_queue *queue, void *_unused)
10010 {
10011 	/* Initialize queue lock */
10012 	spin_lock_init(&queue->_xmit_lock);
10013 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10014 	queue->xmit_lock_owner = -1;
10015 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10016 	queue->dev = dev;
10017 #ifdef CONFIG_BQL
10018 	dql_init(&queue->dql, HZ);
10019 #endif
10020 }
10021 
10022 static void netif_free_tx_queues(struct net_device *dev)
10023 {
10024 	kvfree(dev->_tx);
10025 }
10026 
10027 static int netif_alloc_netdev_queues(struct net_device *dev)
10028 {
10029 	unsigned int count = dev->num_tx_queues;
10030 	struct netdev_queue *tx;
10031 	size_t sz = count * sizeof(*tx);
10032 
10033 	if (count < 1 || count > 0xffff)
10034 		return -EINVAL;
10035 
10036 	tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10037 	if (!tx)
10038 		return -ENOMEM;
10039 
10040 	dev->_tx = tx;
10041 
10042 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10043 	spin_lock_init(&dev->tx_global_lock);
10044 
10045 	return 0;
10046 }
10047 
10048 void netif_tx_stop_all_queues(struct net_device *dev)
10049 {
10050 	unsigned int i;
10051 
10052 	for (i = 0; i < dev->num_tx_queues; i++) {
10053 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10054 
10055 		netif_tx_stop_queue(txq);
10056 	}
10057 }
10058 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10059 
10060 /**
10061  *	register_netdevice	- register a network device
10062  *	@dev: device to register
10063  *
10064  *	Take a completed network device structure and add it to the kernel
10065  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10066  *	chain. 0 is returned on success. A negative errno code is returned
10067  *	on a failure to set up the device, or if the name is a duplicate.
10068  *
10069  *	Callers must hold the rtnl semaphore. You may want
10070  *	register_netdev() instead of this.
10071  *
10072  *	BUGS:
10073  *	The locking appears insufficient to guarantee two parallel registers
10074  *	will not get the same name.
10075  */
10076 
10077 int register_netdevice(struct net_device *dev)
10078 {
10079 	int ret;
10080 	struct net *net = dev_net(dev);
10081 
10082 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10083 		     NETDEV_FEATURE_COUNT);
10084 	BUG_ON(dev_boot_phase);
10085 	ASSERT_RTNL();
10086 
10087 	might_sleep();
10088 
10089 	/* When net_device's are persistent, this will be fatal. */
10090 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10091 	BUG_ON(!net);
10092 
10093 	ret = ethtool_check_ops(dev->ethtool_ops);
10094 	if (ret)
10095 		return ret;
10096 
10097 	spin_lock_init(&dev->addr_list_lock);
10098 	netdev_set_addr_lockdep_class(dev);
10099 
10100 	ret = dev_get_valid_name(net, dev, dev->name);
10101 	if (ret < 0)
10102 		goto out;
10103 
10104 	ret = -ENOMEM;
10105 	dev->name_node = netdev_name_node_head_alloc(dev);
10106 	if (!dev->name_node)
10107 		goto out;
10108 
10109 	/* Init, if this function is available */
10110 	if (dev->netdev_ops->ndo_init) {
10111 		ret = dev->netdev_ops->ndo_init(dev);
10112 		if (ret) {
10113 			if (ret > 0)
10114 				ret = -EIO;
10115 			goto err_free_name;
10116 		}
10117 	}
10118 
10119 	if (((dev->hw_features | dev->features) &
10120 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
10121 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10122 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10123 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10124 		ret = -EINVAL;
10125 		goto err_uninit;
10126 	}
10127 
10128 	ret = -EBUSY;
10129 	if (!dev->ifindex)
10130 		dev->ifindex = dev_new_index(net);
10131 	else if (__dev_get_by_index(net, dev->ifindex))
10132 		goto err_uninit;
10133 
10134 	/* Transfer changeable features to wanted_features and enable
10135 	 * software offloads (GSO and GRO).
10136 	 */
10137 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10138 	dev->features |= NETIF_F_SOFT_FEATURES;
10139 
10140 	if (dev->udp_tunnel_nic_info) {
10141 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10142 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10143 	}
10144 
10145 	dev->wanted_features = dev->features & dev->hw_features;
10146 
10147 	if (!(dev->flags & IFF_LOOPBACK))
10148 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
10149 
10150 	/* If IPv4 TCP segmentation offload is supported we should also
10151 	 * allow the device to enable segmenting the frame with the option
10152 	 * of ignoring a static IP ID value.  This doesn't enable the
10153 	 * feature itself but allows the user to enable it later.
10154 	 */
10155 	if (dev->hw_features & NETIF_F_TSO)
10156 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
10157 	if (dev->vlan_features & NETIF_F_TSO)
10158 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10159 	if (dev->mpls_features & NETIF_F_TSO)
10160 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10161 	if (dev->hw_enc_features & NETIF_F_TSO)
10162 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10163 
10164 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10165 	 */
10166 	dev->vlan_features |= NETIF_F_HIGHDMA;
10167 
10168 	/* Make NETIF_F_SG inheritable to tunnel devices.
10169 	 */
10170 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10171 
10172 	/* Make NETIF_F_SG inheritable to MPLS.
10173 	 */
10174 	dev->mpls_features |= NETIF_F_SG;
10175 
10176 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10177 	ret = notifier_to_errno(ret);
10178 	if (ret)
10179 		goto err_uninit;
10180 
10181 	ret = netdev_register_kobject(dev);
10182 	if (ret) {
10183 		dev->reg_state = NETREG_UNREGISTERED;
10184 		goto err_uninit;
10185 	}
10186 	dev->reg_state = NETREG_REGISTERED;
10187 
10188 	__netdev_update_features(dev);
10189 
10190 	/*
10191 	 *	Default initial state at registry is that the
10192 	 *	device is present.
10193 	 */
10194 
10195 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10196 
10197 	linkwatch_init_dev(dev);
10198 
10199 	dev_init_scheduler(dev);
10200 	dev_hold(dev);
10201 	list_netdevice(dev);
10202 	add_device_randomness(dev->dev_addr, dev->addr_len);
10203 
10204 	/* If the device has permanent device address, driver should
10205 	 * set dev_addr and also addr_assign_type should be set to
10206 	 * NET_ADDR_PERM (default value).
10207 	 */
10208 	if (dev->addr_assign_type == NET_ADDR_PERM)
10209 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10210 
10211 	/* Notify protocols, that a new device appeared. */
10212 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10213 	ret = notifier_to_errno(ret);
10214 	if (ret) {
10215 		/* Expect explicit free_netdev() on failure */
10216 		dev->needs_free_netdev = false;
10217 		unregister_netdevice_queue(dev, NULL);
10218 		goto out;
10219 	}
10220 	/*
10221 	 *	Prevent userspace races by waiting until the network
10222 	 *	device is fully setup before sending notifications.
10223 	 */
10224 	if (!dev->rtnl_link_ops ||
10225 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10226 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10227 
10228 out:
10229 	return ret;
10230 
10231 err_uninit:
10232 	if (dev->netdev_ops->ndo_uninit)
10233 		dev->netdev_ops->ndo_uninit(dev);
10234 	if (dev->priv_destructor)
10235 		dev->priv_destructor(dev);
10236 err_free_name:
10237 	netdev_name_node_free(dev->name_node);
10238 	goto out;
10239 }
10240 EXPORT_SYMBOL(register_netdevice);
10241 
10242 /**
10243  *	init_dummy_netdev	- init a dummy network device for NAPI
10244  *	@dev: device to init
10245  *
10246  *	This takes a network device structure and initialize the minimum
10247  *	amount of fields so it can be used to schedule NAPI polls without
10248  *	registering a full blown interface. This is to be used by drivers
10249  *	that need to tie several hardware interfaces to a single NAPI
10250  *	poll scheduler due to HW limitations.
10251  */
10252 int init_dummy_netdev(struct net_device *dev)
10253 {
10254 	/* Clear everything. Note we don't initialize spinlocks
10255 	 * are they aren't supposed to be taken by any of the
10256 	 * NAPI code and this dummy netdev is supposed to be
10257 	 * only ever used for NAPI polls
10258 	 */
10259 	memset(dev, 0, sizeof(struct net_device));
10260 
10261 	/* make sure we BUG if trying to hit standard
10262 	 * register/unregister code path
10263 	 */
10264 	dev->reg_state = NETREG_DUMMY;
10265 
10266 	/* NAPI wants this */
10267 	INIT_LIST_HEAD(&dev->napi_list);
10268 
10269 	/* a dummy interface is started by default */
10270 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10271 	set_bit(__LINK_STATE_START, &dev->state);
10272 
10273 	/* napi_busy_loop stats accounting wants this */
10274 	dev_net_set(dev, &init_net);
10275 
10276 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
10277 	 * because users of this 'device' dont need to change
10278 	 * its refcount.
10279 	 */
10280 
10281 	return 0;
10282 }
10283 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10284 
10285 
10286 /**
10287  *	register_netdev	- register a network device
10288  *	@dev: device to register
10289  *
10290  *	Take a completed network device structure and add it to the kernel
10291  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10292  *	chain. 0 is returned on success. A negative errno code is returned
10293  *	on a failure to set up the device, or if the name is a duplicate.
10294  *
10295  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
10296  *	and expands the device name if you passed a format string to
10297  *	alloc_netdev.
10298  */
10299 int register_netdev(struct net_device *dev)
10300 {
10301 	int err;
10302 
10303 	if (rtnl_lock_killable())
10304 		return -EINTR;
10305 	err = register_netdevice(dev);
10306 	rtnl_unlock();
10307 	return err;
10308 }
10309 EXPORT_SYMBOL(register_netdev);
10310 
10311 int netdev_refcnt_read(const struct net_device *dev)
10312 {
10313 #ifdef CONFIG_PCPU_DEV_REFCNT
10314 	int i, refcnt = 0;
10315 
10316 	for_each_possible_cpu(i)
10317 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10318 	return refcnt;
10319 #else
10320 	return refcount_read(&dev->dev_refcnt);
10321 #endif
10322 }
10323 EXPORT_SYMBOL(netdev_refcnt_read);
10324 
10325 #define WAIT_REFS_MIN_MSECS 1
10326 #define WAIT_REFS_MAX_MSECS 250
10327 /**
10328  * netdev_wait_allrefs - wait until all references are gone.
10329  * @dev: target net_device
10330  *
10331  * This is called when unregistering network devices.
10332  *
10333  * Any protocol or device that holds a reference should register
10334  * for netdevice notification, and cleanup and put back the
10335  * reference if they receive an UNREGISTER event.
10336  * We can get stuck here if buggy protocols don't correctly
10337  * call dev_put.
10338  */
10339 static void netdev_wait_allrefs(struct net_device *dev)
10340 {
10341 	unsigned long rebroadcast_time, warning_time;
10342 	int wait = 0, refcnt;
10343 
10344 	linkwatch_forget_dev(dev);
10345 
10346 	rebroadcast_time = warning_time = jiffies;
10347 	refcnt = netdev_refcnt_read(dev);
10348 
10349 	while (refcnt != 1) {
10350 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10351 			rtnl_lock();
10352 
10353 			/* Rebroadcast unregister notification */
10354 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10355 
10356 			__rtnl_unlock();
10357 			rcu_barrier();
10358 			rtnl_lock();
10359 
10360 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10361 				     &dev->state)) {
10362 				/* We must not have linkwatch events
10363 				 * pending on unregister. If this
10364 				 * happens, we simply run the queue
10365 				 * unscheduled, resulting in a noop
10366 				 * for this device.
10367 				 */
10368 				linkwatch_run_queue();
10369 			}
10370 
10371 			__rtnl_unlock();
10372 
10373 			rebroadcast_time = jiffies;
10374 		}
10375 
10376 		if (!wait) {
10377 			rcu_barrier();
10378 			wait = WAIT_REFS_MIN_MSECS;
10379 		} else {
10380 			msleep(wait);
10381 			wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10382 		}
10383 
10384 		refcnt = netdev_refcnt_read(dev);
10385 
10386 		if (refcnt != 1 && time_after(jiffies, warning_time + 10 * HZ)) {
10387 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10388 				 dev->name, refcnt);
10389 			warning_time = jiffies;
10390 		}
10391 	}
10392 }
10393 
10394 /* The sequence is:
10395  *
10396  *	rtnl_lock();
10397  *	...
10398  *	register_netdevice(x1);
10399  *	register_netdevice(x2);
10400  *	...
10401  *	unregister_netdevice(y1);
10402  *	unregister_netdevice(y2);
10403  *      ...
10404  *	rtnl_unlock();
10405  *	free_netdev(y1);
10406  *	free_netdev(y2);
10407  *
10408  * We are invoked by rtnl_unlock().
10409  * This allows us to deal with problems:
10410  * 1) We can delete sysfs objects which invoke hotplug
10411  *    without deadlocking with linkwatch via keventd.
10412  * 2) Since we run with the RTNL semaphore not held, we can sleep
10413  *    safely in order to wait for the netdev refcnt to drop to zero.
10414  *
10415  * We must not return until all unregister events added during
10416  * the interval the lock was held have been completed.
10417  */
10418 void netdev_run_todo(void)
10419 {
10420 	struct list_head list;
10421 #ifdef CONFIG_LOCKDEP
10422 	struct list_head unlink_list;
10423 
10424 	list_replace_init(&net_unlink_list, &unlink_list);
10425 
10426 	while (!list_empty(&unlink_list)) {
10427 		struct net_device *dev = list_first_entry(&unlink_list,
10428 							  struct net_device,
10429 							  unlink_list);
10430 		list_del_init(&dev->unlink_list);
10431 		dev->nested_level = dev->lower_level - 1;
10432 	}
10433 #endif
10434 
10435 	/* Snapshot list, allow later requests */
10436 	list_replace_init(&net_todo_list, &list);
10437 
10438 	__rtnl_unlock();
10439 
10440 
10441 	/* Wait for rcu callbacks to finish before next phase */
10442 	if (!list_empty(&list))
10443 		rcu_barrier();
10444 
10445 	while (!list_empty(&list)) {
10446 		struct net_device *dev
10447 			= list_first_entry(&list, struct net_device, todo_list);
10448 		list_del(&dev->todo_list);
10449 
10450 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10451 			pr_err("network todo '%s' but state %d\n",
10452 			       dev->name, dev->reg_state);
10453 			dump_stack();
10454 			continue;
10455 		}
10456 
10457 		dev->reg_state = NETREG_UNREGISTERED;
10458 
10459 		netdev_wait_allrefs(dev);
10460 
10461 		/* paranoia */
10462 		BUG_ON(netdev_refcnt_read(dev) != 1);
10463 		BUG_ON(!list_empty(&dev->ptype_all));
10464 		BUG_ON(!list_empty(&dev->ptype_specific));
10465 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
10466 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10467 #if IS_ENABLED(CONFIG_DECNET)
10468 		WARN_ON(dev->dn_ptr);
10469 #endif
10470 		if (dev->priv_destructor)
10471 			dev->priv_destructor(dev);
10472 		if (dev->needs_free_netdev)
10473 			free_netdev(dev);
10474 
10475 		/* Report a network device has been unregistered */
10476 		rtnl_lock();
10477 		dev_net(dev)->dev_unreg_count--;
10478 		__rtnl_unlock();
10479 		wake_up(&netdev_unregistering_wq);
10480 
10481 		/* Free network device */
10482 		kobject_put(&dev->dev.kobj);
10483 	}
10484 }
10485 
10486 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10487  * all the same fields in the same order as net_device_stats, with only
10488  * the type differing, but rtnl_link_stats64 may have additional fields
10489  * at the end for newer counters.
10490  */
10491 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10492 			     const struct net_device_stats *netdev_stats)
10493 {
10494 #if BITS_PER_LONG == 64
10495 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
10496 	memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
10497 	/* zero out counters that only exist in rtnl_link_stats64 */
10498 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
10499 	       sizeof(*stats64) - sizeof(*netdev_stats));
10500 #else
10501 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
10502 	const unsigned long *src = (const unsigned long *)netdev_stats;
10503 	u64 *dst = (u64 *)stats64;
10504 
10505 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10506 	for (i = 0; i < n; i++)
10507 		dst[i] = src[i];
10508 	/* zero out counters that only exist in rtnl_link_stats64 */
10509 	memset((char *)stats64 + n * sizeof(u64), 0,
10510 	       sizeof(*stats64) - n * sizeof(u64));
10511 #endif
10512 }
10513 EXPORT_SYMBOL(netdev_stats_to_stats64);
10514 
10515 /**
10516  *	dev_get_stats	- get network device statistics
10517  *	@dev: device to get statistics from
10518  *	@storage: place to store stats
10519  *
10520  *	Get network statistics from device. Return @storage.
10521  *	The device driver may provide its own method by setting
10522  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10523  *	otherwise the internal statistics structure is used.
10524  */
10525 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10526 					struct rtnl_link_stats64 *storage)
10527 {
10528 	const struct net_device_ops *ops = dev->netdev_ops;
10529 
10530 	if (ops->ndo_get_stats64) {
10531 		memset(storage, 0, sizeof(*storage));
10532 		ops->ndo_get_stats64(dev, storage);
10533 	} else if (ops->ndo_get_stats) {
10534 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10535 	} else {
10536 		netdev_stats_to_stats64(storage, &dev->stats);
10537 	}
10538 	storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
10539 	storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
10540 	storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
10541 	return storage;
10542 }
10543 EXPORT_SYMBOL(dev_get_stats);
10544 
10545 /**
10546  *	dev_fetch_sw_netstats - get per-cpu network device statistics
10547  *	@s: place to store stats
10548  *	@netstats: per-cpu network stats to read from
10549  *
10550  *	Read per-cpu network statistics and populate the related fields in @s.
10551  */
10552 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10553 			   const struct pcpu_sw_netstats __percpu *netstats)
10554 {
10555 	int cpu;
10556 
10557 	for_each_possible_cpu(cpu) {
10558 		const struct pcpu_sw_netstats *stats;
10559 		struct pcpu_sw_netstats tmp;
10560 		unsigned int start;
10561 
10562 		stats = per_cpu_ptr(netstats, cpu);
10563 		do {
10564 			start = u64_stats_fetch_begin_irq(&stats->syncp);
10565 			tmp.rx_packets = stats->rx_packets;
10566 			tmp.rx_bytes   = stats->rx_bytes;
10567 			tmp.tx_packets = stats->tx_packets;
10568 			tmp.tx_bytes   = stats->tx_bytes;
10569 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10570 
10571 		s->rx_packets += tmp.rx_packets;
10572 		s->rx_bytes   += tmp.rx_bytes;
10573 		s->tx_packets += tmp.tx_packets;
10574 		s->tx_bytes   += tmp.tx_bytes;
10575 	}
10576 }
10577 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10578 
10579 /**
10580  *	dev_get_tstats64 - ndo_get_stats64 implementation
10581  *	@dev: device to get statistics from
10582  *	@s: place to store stats
10583  *
10584  *	Populate @s from dev->stats and dev->tstats. Can be used as
10585  *	ndo_get_stats64() callback.
10586  */
10587 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10588 {
10589 	netdev_stats_to_stats64(s, &dev->stats);
10590 	dev_fetch_sw_netstats(s, dev->tstats);
10591 }
10592 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10593 
10594 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10595 {
10596 	struct netdev_queue *queue = dev_ingress_queue(dev);
10597 
10598 #ifdef CONFIG_NET_CLS_ACT
10599 	if (queue)
10600 		return queue;
10601 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10602 	if (!queue)
10603 		return NULL;
10604 	netdev_init_one_queue(dev, queue, NULL);
10605 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10606 	queue->qdisc_sleeping = &noop_qdisc;
10607 	rcu_assign_pointer(dev->ingress_queue, queue);
10608 #endif
10609 	return queue;
10610 }
10611 
10612 static const struct ethtool_ops default_ethtool_ops;
10613 
10614 void netdev_set_default_ethtool_ops(struct net_device *dev,
10615 				    const struct ethtool_ops *ops)
10616 {
10617 	if (dev->ethtool_ops == &default_ethtool_ops)
10618 		dev->ethtool_ops = ops;
10619 }
10620 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10621 
10622 void netdev_freemem(struct net_device *dev)
10623 {
10624 	char *addr = (char *)dev - dev->padded;
10625 
10626 	kvfree(addr);
10627 }
10628 
10629 /**
10630  * alloc_netdev_mqs - allocate network device
10631  * @sizeof_priv: size of private data to allocate space for
10632  * @name: device name format string
10633  * @name_assign_type: origin of device name
10634  * @setup: callback to initialize device
10635  * @txqs: the number of TX subqueues to allocate
10636  * @rxqs: the number of RX subqueues to allocate
10637  *
10638  * Allocates a struct net_device with private data area for driver use
10639  * and performs basic initialization.  Also allocates subqueue structs
10640  * for each queue on the device.
10641  */
10642 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10643 		unsigned char name_assign_type,
10644 		void (*setup)(struct net_device *),
10645 		unsigned int txqs, unsigned int rxqs)
10646 {
10647 	struct net_device *dev;
10648 	unsigned int alloc_size;
10649 	struct net_device *p;
10650 
10651 	BUG_ON(strlen(name) >= sizeof(dev->name));
10652 
10653 	if (txqs < 1) {
10654 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10655 		return NULL;
10656 	}
10657 
10658 	if (rxqs < 1) {
10659 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10660 		return NULL;
10661 	}
10662 
10663 	alloc_size = sizeof(struct net_device);
10664 	if (sizeof_priv) {
10665 		/* ensure 32-byte alignment of private area */
10666 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10667 		alloc_size += sizeof_priv;
10668 	}
10669 	/* ensure 32-byte alignment of whole construct */
10670 	alloc_size += NETDEV_ALIGN - 1;
10671 
10672 	p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10673 	if (!p)
10674 		return NULL;
10675 
10676 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
10677 	dev->padded = (char *)dev - (char *)p;
10678 
10679 #ifdef CONFIG_PCPU_DEV_REFCNT
10680 	dev->pcpu_refcnt = alloc_percpu(int);
10681 	if (!dev->pcpu_refcnt)
10682 		goto free_dev;
10683 	dev_hold(dev);
10684 #else
10685 	refcount_set(&dev->dev_refcnt, 1);
10686 #endif
10687 
10688 	if (dev_addr_init(dev))
10689 		goto free_pcpu;
10690 
10691 	dev_mc_init(dev);
10692 	dev_uc_init(dev);
10693 
10694 	dev_net_set(dev, &init_net);
10695 
10696 	dev->gso_max_size = GSO_MAX_SIZE;
10697 	dev->gso_max_segs = GSO_MAX_SEGS;
10698 	dev->upper_level = 1;
10699 	dev->lower_level = 1;
10700 #ifdef CONFIG_LOCKDEP
10701 	dev->nested_level = 0;
10702 	INIT_LIST_HEAD(&dev->unlink_list);
10703 #endif
10704 
10705 	INIT_LIST_HEAD(&dev->napi_list);
10706 	INIT_LIST_HEAD(&dev->unreg_list);
10707 	INIT_LIST_HEAD(&dev->close_list);
10708 	INIT_LIST_HEAD(&dev->link_watch_list);
10709 	INIT_LIST_HEAD(&dev->adj_list.upper);
10710 	INIT_LIST_HEAD(&dev->adj_list.lower);
10711 	INIT_LIST_HEAD(&dev->ptype_all);
10712 	INIT_LIST_HEAD(&dev->ptype_specific);
10713 	INIT_LIST_HEAD(&dev->net_notifier_list);
10714 #ifdef CONFIG_NET_SCHED
10715 	hash_init(dev->qdisc_hash);
10716 #endif
10717 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10718 	setup(dev);
10719 
10720 	if (!dev->tx_queue_len) {
10721 		dev->priv_flags |= IFF_NO_QUEUE;
10722 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10723 	}
10724 
10725 	dev->num_tx_queues = txqs;
10726 	dev->real_num_tx_queues = txqs;
10727 	if (netif_alloc_netdev_queues(dev))
10728 		goto free_all;
10729 
10730 	dev->num_rx_queues = rxqs;
10731 	dev->real_num_rx_queues = rxqs;
10732 	if (netif_alloc_rx_queues(dev))
10733 		goto free_all;
10734 
10735 	strcpy(dev->name, name);
10736 	dev->name_assign_type = name_assign_type;
10737 	dev->group = INIT_NETDEV_GROUP;
10738 	if (!dev->ethtool_ops)
10739 		dev->ethtool_ops = &default_ethtool_ops;
10740 
10741 	nf_hook_ingress_init(dev);
10742 
10743 	return dev;
10744 
10745 free_all:
10746 	free_netdev(dev);
10747 	return NULL;
10748 
10749 free_pcpu:
10750 #ifdef CONFIG_PCPU_DEV_REFCNT
10751 	free_percpu(dev->pcpu_refcnt);
10752 free_dev:
10753 #endif
10754 	netdev_freemem(dev);
10755 	return NULL;
10756 }
10757 EXPORT_SYMBOL(alloc_netdev_mqs);
10758 
10759 /**
10760  * free_netdev - free network device
10761  * @dev: device
10762  *
10763  * This function does the last stage of destroying an allocated device
10764  * interface. The reference to the device object is released. If this
10765  * is the last reference then it will be freed.Must be called in process
10766  * context.
10767  */
10768 void free_netdev(struct net_device *dev)
10769 {
10770 	struct napi_struct *p, *n;
10771 
10772 	might_sleep();
10773 
10774 	/* When called immediately after register_netdevice() failed the unwind
10775 	 * handling may still be dismantling the device. Handle that case by
10776 	 * deferring the free.
10777 	 */
10778 	if (dev->reg_state == NETREG_UNREGISTERING) {
10779 		ASSERT_RTNL();
10780 		dev->needs_free_netdev = true;
10781 		return;
10782 	}
10783 
10784 	netif_free_tx_queues(dev);
10785 	netif_free_rx_queues(dev);
10786 
10787 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10788 
10789 	/* Flush device addresses */
10790 	dev_addr_flush(dev);
10791 
10792 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10793 		netif_napi_del(p);
10794 
10795 #ifdef CONFIG_PCPU_DEV_REFCNT
10796 	free_percpu(dev->pcpu_refcnt);
10797 	dev->pcpu_refcnt = NULL;
10798 #endif
10799 	free_percpu(dev->xdp_bulkq);
10800 	dev->xdp_bulkq = NULL;
10801 
10802 	/*  Compatibility with error handling in drivers */
10803 	if (dev->reg_state == NETREG_UNINITIALIZED) {
10804 		netdev_freemem(dev);
10805 		return;
10806 	}
10807 
10808 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10809 	dev->reg_state = NETREG_RELEASED;
10810 
10811 	/* will free via device release */
10812 	put_device(&dev->dev);
10813 }
10814 EXPORT_SYMBOL(free_netdev);
10815 
10816 /**
10817  *	synchronize_net -  Synchronize with packet receive processing
10818  *
10819  *	Wait for packets currently being received to be done.
10820  *	Does not block later packets from starting.
10821  */
10822 void synchronize_net(void)
10823 {
10824 	might_sleep();
10825 	if (rtnl_is_locked())
10826 		synchronize_rcu_expedited();
10827 	else
10828 		synchronize_rcu();
10829 }
10830 EXPORT_SYMBOL(synchronize_net);
10831 
10832 /**
10833  *	unregister_netdevice_queue - remove device from the kernel
10834  *	@dev: device
10835  *	@head: list
10836  *
10837  *	This function shuts down a device interface and removes it
10838  *	from the kernel tables.
10839  *	If head not NULL, device is queued to be unregistered later.
10840  *
10841  *	Callers must hold the rtnl semaphore.  You may want
10842  *	unregister_netdev() instead of this.
10843  */
10844 
10845 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10846 {
10847 	ASSERT_RTNL();
10848 
10849 	if (head) {
10850 		list_move_tail(&dev->unreg_list, head);
10851 	} else {
10852 		LIST_HEAD(single);
10853 
10854 		list_add(&dev->unreg_list, &single);
10855 		unregister_netdevice_many(&single);
10856 	}
10857 }
10858 EXPORT_SYMBOL(unregister_netdevice_queue);
10859 
10860 /**
10861  *	unregister_netdevice_many - unregister many devices
10862  *	@head: list of devices
10863  *
10864  *  Note: As most callers use a stack allocated list_head,
10865  *  we force a list_del() to make sure stack wont be corrupted later.
10866  */
10867 void unregister_netdevice_many(struct list_head *head)
10868 {
10869 	struct net_device *dev, *tmp;
10870 	LIST_HEAD(close_head);
10871 
10872 	BUG_ON(dev_boot_phase);
10873 	ASSERT_RTNL();
10874 
10875 	if (list_empty(head))
10876 		return;
10877 
10878 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
10879 		/* Some devices call without registering
10880 		 * for initialization unwind. Remove those
10881 		 * devices and proceed with the remaining.
10882 		 */
10883 		if (dev->reg_state == NETREG_UNINITIALIZED) {
10884 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
10885 				 dev->name, dev);
10886 
10887 			WARN_ON(1);
10888 			list_del(&dev->unreg_list);
10889 			continue;
10890 		}
10891 		dev->dismantle = true;
10892 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
10893 	}
10894 
10895 	/* If device is running, close it first. */
10896 	list_for_each_entry(dev, head, unreg_list)
10897 		list_add_tail(&dev->close_list, &close_head);
10898 	dev_close_many(&close_head, true);
10899 
10900 	list_for_each_entry(dev, head, unreg_list) {
10901 		/* And unlink it from device chain. */
10902 		unlist_netdevice(dev);
10903 
10904 		dev->reg_state = NETREG_UNREGISTERING;
10905 	}
10906 	flush_all_backlogs();
10907 
10908 	synchronize_net();
10909 
10910 	list_for_each_entry(dev, head, unreg_list) {
10911 		struct sk_buff *skb = NULL;
10912 
10913 		/* Shutdown queueing discipline. */
10914 		dev_shutdown(dev);
10915 
10916 		dev_xdp_uninstall(dev);
10917 
10918 		/* Notify protocols, that we are about to destroy
10919 		 * this device. They should clean all the things.
10920 		 */
10921 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10922 
10923 		if (!dev->rtnl_link_ops ||
10924 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10925 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
10926 						     GFP_KERNEL, NULL, 0);
10927 
10928 		/*
10929 		 *	Flush the unicast and multicast chains
10930 		 */
10931 		dev_uc_flush(dev);
10932 		dev_mc_flush(dev);
10933 
10934 		netdev_name_node_alt_flush(dev);
10935 		netdev_name_node_free(dev->name_node);
10936 
10937 		if (dev->netdev_ops->ndo_uninit)
10938 			dev->netdev_ops->ndo_uninit(dev);
10939 
10940 		if (skb)
10941 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
10942 
10943 		/* Notifier chain MUST detach us all upper devices. */
10944 		WARN_ON(netdev_has_any_upper_dev(dev));
10945 		WARN_ON(netdev_has_any_lower_dev(dev));
10946 
10947 		/* Remove entries from kobject tree */
10948 		netdev_unregister_kobject(dev);
10949 #ifdef CONFIG_XPS
10950 		/* Remove XPS queueing entries */
10951 		netif_reset_xps_queues_gt(dev, 0);
10952 #endif
10953 	}
10954 
10955 	synchronize_net();
10956 
10957 	list_for_each_entry(dev, head, unreg_list) {
10958 		dev_put(dev);
10959 		net_set_todo(dev);
10960 	}
10961 
10962 	list_del(head);
10963 }
10964 EXPORT_SYMBOL(unregister_netdevice_many);
10965 
10966 /**
10967  *	unregister_netdev - remove device from the kernel
10968  *	@dev: device
10969  *
10970  *	This function shuts down a device interface and removes it
10971  *	from the kernel tables.
10972  *
10973  *	This is just a wrapper for unregister_netdevice that takes
10974  *	the rtnl semaphore.  In general you want to use this and not
10975  *	unregister_netdevice.
10976  */
10977 void unregister_netdev(struct net_device *dev)
10978 {
10979 	rtnl_lock();
10980 	unregister_netdevice(dev);
10981 	rtnl_unlock();
10982 }
10983 EXPORT_SYMBOL(unregister_netdev);
10984 
10985 /**
10986  *	dev_change_net_namespace - move device to different nethost namespace
10987  *	@dev: device
10988  *	@net: network namespace
10989  *	@pat: If not NULL name pattern to try if the current device name
10990  *	      is already taken in the destination network namespace.
10991  *
10992  *	This function shuts down a device interface and moves it
10993  *	to a new network namespace. On success 0 is returned, on
10994  *	a failure a netagive errno code is returned.
10995  *
10996  *	Callers must hold the rtnl semaphore.
10997  */
10998 
10999 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
11000 {
11001 	struct net *net_old = dev_net(dev);
11002 	int err, new_nsid, new_ifindex;
11003 
11004 	ASSERT_RTNL();
11005 
11006 	/* Don't allow namespace local devices to be moved. */
11007 	err = -EINVAL;
11008 	if (dev->features & NETIF_F_NETNS_LOCAL)
11009 		goto out;
11010 
11011 	/* Ensure the device has been registrered */
11012 	if (dev->reg_state != NETREG_REGISTERED)
11013 		goto out;
11014 
11015 	/* Get out if there is nothing todo */
11016 	err = 0;
11017 	if (net_eq(net_old, net))
11018 		goto out;
11019 
11020 	/* Pick the destination device name, and ensure
11021 	 * we can use it in the destination network namespace.
11022 	 */
11023 	err = -EEXIST;
11024 	if (__dev_get_by_name(net, dev->name)) {
11025 		/* We get here if we can't use the current device name */
11026 		if (!pat)
11027 			goto out;
11028 		err = dev_get_valid_name(net, dev, pat);
11029 		if (err < 0)
11030 			goto out;
11031 	}
11032 
11033 	/*
11034 	 * And now a mini version of register_netdevice unregister_netdevice.
11035 	 */
11036 
11037 	/* If device is running close it first. */
11038 	dev_close(dev);
11039 
11040 	/* And unlink it from device chain */
11041 	unlist_netdevice(dev);
11042 
11043 	synchronize_net();
11044 
11045 	/* Shutdown queueing discipline. */
11046 	dev_shutdown(dev);
11047 
11048 	/* Notify protocols, that we are about to destroy
11049 	 * this device. They should clean all the things.
11050 	 *
11051 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
11052 	 * This is wanted because this way 8021q and macvlan know
11053 	 * the device is just moving and can keep their slaves up.
11054 	 */
11055 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11056 	rcu_barrier();
11057 
11058 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11059 	/* If there is an ifindex conflict assign a new one */
11060 	if (__dev_get_by_index(net, dev->ifindex))
11061 		new_ifindex = dev_new_index(net);
11062 	else
11063 		new_ifindex = dev->ifindex;
11064 
11065 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11066 			    new_ifindex);
11067 
11068 	/*
11069 	 *	Flush the unicast and multicast chains
11070 	 */
11071 	dev_uc_flush(dev);
11072 	dev_mc_flush(dev);
11073 
11074 	/* Send a netdev-removed uevent to the old namespace */
11075 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11076 	netdev_adjacent_del_links(dev);
11077 
11078 	/* Move per-net netdevice notifiers that are following the netdevice */
11079 	move_netdevice_notifiers_dev_net(dev, net);
11080 
11081 	/* Actually switch the network namespace */
11082 	dev_net_set(dev, net);
11083 	dev->ifindex = new_ifindex;
11084 
11085 	/* Send a netdev-add uevent to the new namespace */
11086 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11087 	netdev_adjacent_add_links(dev);
11088 
11089 	/* Fixup kobjects */
11090 	err = device_rename(&dev->dev, dev->name);
11091 	WARN_ON(err);
11092 
11093 	/* Adapt owner in case owning user namespace of target network
11094 	 * namespace is different from the original one.
11095 	 */
11096 	err = netdev_change_owner(dev, net_old, net);
11097 	WARN_ON(err);
11098 
11099 	/* Add the device back in the hashes */
11100 	list_netdevice(dev);
11101 
11102 	/* Notify protocols, that a new device appeared. */
11103 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
11104 
11105 	/*
11106 	 *	Prevent userspace races by waiting until the network
11107 	 *	device is fully setup before sending notifications.
11108 	 */
11109 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
11110 
11111 	synchronize_net();
11112 	err = 0;
11113 out:
11114 	return err;
11115 }
11116 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
11117 
11118 static int dev_cpu_dead(unsigned int oldcpu)
11119 {
11120 	struct sk_buff **list_skb;
11121 	struct sk_buff *skb;
11122 	unsigned int cpu;
11123 	struct softnet_data *sd, *oldsd, *remsd = NULL;
11124 
11125 	local_irq_disable();
11126 	cpu = smp_processor_id();
11127 	sd = &per_cpu(softnet_data, cpu);
11128 	oldsd = &per_cpu(softnet_data, oldcpu);
11129 
11130 	/* Find end of our completion_queue. */
11131 	list_skb = &sd->completion_queue;
11132 	while (*list_skb)
11133 		list_skb = &(*list_skb)->next;
11134 	/* Append completion queue from offline CPU. */
11135 	*list_skb = oldsd->completion_queue;
11136 	oldsd->completion_queue = NULL;
11137 
11138 	/* Append output queue from offline CPU. */
11139 	if (oldsd->output_queue) {
11140 		*sd->output_queue_tailp = oldsd->output_queue;
11141 		sd->output_queue_tailp = oldsd->output_queue_tailp;
11142 		oldsd->output_queue = NULL;
11143 		oldsd->output_queue_tailp = &oldsd->output_queue;
11144 	}
11145 	/* Append NAPI poll list from offline CPU, with one exception :
11146 	 * process_backlog() must be called by cpu owning percpu backlog.
11147 	 * We properly handle process_queue & input_pkt_queue later.
11148 	 */
11149 	while (!list_empty(&oldsd->poll_list)) {
11150 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11151 							    struct napi_struct,
11152 							    poll_list);
11153 
11154 		list_del_init(&napi->poll_list);
11155 		if (napi->poll == process_backlog)
11156 			napi->state = 0;
11157 		else
11158 			____napi_schedule(sd, napi);
11159 	}
11160 
11161 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
11162 	local_irq_enable();
11163 
11164 #ifdef CONFIG_RPS
11165 	remsd = oldsd->rps_ipi_list;
11166 	oldsd->rps_ipi_list = NULL;
11167 #endif
11168 	/* send out pending IPI's on offline CPU */
11169 	net_rps_send_ipi(remsd);
11170 
11171 	/* Process offline CPU's input_pkt_queue */
11172 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11173 		netif_rx_ni(skb);
11174 		input_queue_head_incr(oldsd);
11175 	}
11176 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11177 		netif_rx_ni(skb);
11178 		input_queue_head_incr(oldsd);
11179 	}
11180 
11181 	return 0;
11182 }
11183 
11184 /**
11185  *	netdev_increment_features - increment feature set by one
11186  *	@all: current feature set
11187  *	@one: new feature set
11188  *	@mask: mask feature set
11189  *
11190  *	Computes a new feature set after adding a device with feature set
11191  *	@one to the master device with current feature set @all.  Will not
11192  *	enable anything that is off in @mask. Returns the new feature set.
11193  */
11194 netdev_features_t netdev_increment_features(netdev_features_t all,
11195 	netdev_features_t one, netdev_features_t mask)
11196 {
11197 	if (mask & NETIF_F_HW_CSUM)
11198 		mask |= NETIF_F_CSUM_MASK;
11199 	mask |= NETIF_F_VLAN_CHALLENGED;
11200 
11201 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11202 	all &= one | ~NETIF_F_ALL_FOR_ALL;
11203 
11204 	/* If one device supports hw checksumming, set for all. */
11205 	if (all & NETIF_F_HW_CSUM)
11206 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11207 
11208 	return all;
11209 }
11210 EXPORT_SYMBOL(netdev_increment_features);
11211 
11212 static struct hlist_head * __net_init netdev_create_hash(void)
11213 {
11214 	int i;
11215 	struct hlist_head *hash;
11216 
11217 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11218 	if (hash != NULL)
11219 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
11220 			INIT_HLIST_HEAD(&hash[i]);
11221 
11222 	return hash;
11223 }
11224 
11225 /* Initialize per network namespace state */
11226 static int __net_init netdev_init(struct net *net)
11227 {
11228 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
11229 		     8 * sizeof_field(struct napi_struct, gro_bitmask));
11230 
11231 	if (net != &init_net)
11232 		INIT_LIST_HEAD(&net->dev_base_head);
11233 
11234 	net->dev_name_head = netdev_create_hash();
11235 	if (net->dev_name_head == NULL)
11236 		goto err_name;
11237 
11238 	net->dev_index_head = netdev_create_hash();
11239 	if (net->dev_index_head == NULL)
11240 		goto err_idx;
11241 
11242 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11243 
11244 	return 0;
11245 
11246 err_idx:
11247 	kfree(net->dev_name_head);
11248 err_name:
11249 	return -ENOMEM;
11250 }
11251 
11252 /**
11253  *	netdev_drivername - network driver for the device
11254  *	@dev: network device
11255  *
11256  *	Determine network driver for device.
11257  */
11258 const char *netdev_drivername(const struct net_device *dev)
11259 {
11260 	const struct device_driver *driver;
11261 	const struct device *parent;
11262 	const char *empty = "";
11263 
11264 	parent = dev->dev.parent;
11265 	if (!parent)
11266 		return empty;
11267 
11268 	driver = parent->driver;
11269 	if (driver && driver->name)
11270 		return driver->name;
11271 	return empty;
11272 }
11273 
11274 static void __netdev_printk(const char *level, const struct net_device *dev,
11275 			    struct va_format *vaf)
11276 {
11277 	if (dev && dev->dev.parent) {
11278 		dev_printk_emit(level[1] - '0',
11279 				dev->dev.parent,
11280 				"%s %s %s%s: %pV",
11281 				dev_driver_string(dev->dev.parent),
11282 				dev_name(dev->dev.parent),
11283 				netdev_name(dev), netdev_reg_state(dev),
11284 				vaf);
11285 	} else if (dev) {
11286 		printk("%s%s%s: %pV",
11287 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
11288 	} else {
11289 		printk("%s(NULL net_device): %pV", level, vaf);
11290 	}
11291 }
11292 
11293 void netdev_printk(const char *level, const struct net_device *dev,
11294 		   const char *format, ...)
11295 {
11296 	struct va_format vaf;
11297 	va_list args;
11298 
11299 	va_start(args, format);
11300 
11301 	vaf.fmt = format;
11302 	vaf.va = &args;
11303 
11304 	__netdev_printk(level, dev, &vaf);
11305 
11306 	va_end(args);
11307 }
11308 EXPORT_SYMBOL(netdev_printk);
11309 
11310 #define define_netdev_printk_level(func, level)			\
11311 void func(const struct net_device *dev, const char *fmt, ...)	\
11312 {								\
11313 	struct va_format vaf;					\
11314 	va_list args;						\
11315 								\
11316 	va_start(args, fmt);					\
11317 								\
11318 	vaf.fmt = fmt;						\
11319 	vaf.va = &args;						\
11320 								\
11321 	__netdev_printk(level, dev, &vaf);			\
11322 								\
11323 	va_end(args);						\
11324 }								\
11325 EXPORT_SYMBOL(func);
11326 
11327 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11328 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11329 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11330 define_netdev_printk_level(netdev_err, KERN_ERR);
11331 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11332 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11333 define_netdev_printk_level(netdev_info, KERN_INFO);
11334 
11335 static void __net_exit netdev_exit(struct net *net)
11336 {
11337 	kfree(net->dev_name_head);
11338 	kfree(net->dev_index_head);
11339 	if (net != &init_net)
11340 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11341 }
11342 
11343 static struct pernet_operations __net_initdata netdev_net_ops = {
11344 	.init = netdev_init,
11345 	.exit = netdev_exit,
11346 };
11347 
11348 static void __net_exit default_device_exit(struct net *net)
11349 {
11350 	struct net_device *dev, *aux;
11351 	/*
11352 	 * Push all migratable network devices back to the
11353 	 * initial network namespace
11354 	 */
11355 	rtnl_lock();
11356 	for_each_netdev_safe(net, dev, aux) {
11357 		int err;
11358 		char fb_name[IFNAMSIZ];
11359 
11360 		/* Ignore unmoveable devices (i.e. loopback) */
11361 		if (dev->features & NETIF_F_NETNS_LOCAL)
11362 			continue;
11363 
11364 		/* Leave virtual devices for the generic cleanup */
11365 		if (dev->rtnl_link_ops)
11366 			continue;
11367 
11368 		/* Push remaining network devices to init_net */
11369 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11370 		if (__dev_get_by_name(&init_net, fb_name))
11371 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
11372 		err = dev_change_net_namespace(dev, &init_net, fb_name);
11373 		if (err) {
11374 			pr_emerg("%s: failed to move %s to init_net: %d\n",
11375 				 __func__, dev->name, err);
11376 			BUG();
11377 		}
11378 	}
11379 	rtnl_unlock();
11380 }
11381 
11382 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
11383 {
11384 	/* Return with the rtnl_lock held when there are no network
11385 	 * devices unregistering in any network namespace in net_list.
11386 	 */
11387 	struct net *net;
11388 	bool unregistering;
11389 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
11390 
11391 	add_wait_queue(&netdev_unregistering_wq, &wait);
11392 	for (;;) {
11393 		unregistering = false;
11394 		rtnl_lock();
11395 		list_for_each_entry(net, net_list, exit_list) {
11396 			if (net->dev_unreg_count > 0) {
11397 				unregistering = true;
11398 				break;
11399 			}
11400 		}
11401 		if (!unregistering)
11402 			break;
11403 		__rtnl_unlock();
11404 
11405 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
11406 	}
11407 	remove_wait_queue(&netdev_unregistering_wq, &wait);
11408 }
11409 
11410 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11411 {
11412 	/* At exit all network devices most be removed from a network
11413 	 * namespace.  Do this in the reverse order of registration.
11414 	 * Do this across as many network namespaces as possible to
11415 	 * improve batching efficiency.
11416 	 */
11417 	struct net_device *dev;
11418 	struct net *net;
11419 	LIST_HEAD(dev_kill_list);
11420 
11421 	/* To prevent network device cleanup code from dereferencing
11422 	 * loopback devices or network devices that have been freed
11423 	 * wait here for all pending unregistrations to complete,
11424 	 * before unregistring the loopback device and allowing the
11425 	 * network namespace be freed.
11426 	 *
11427 	 * The netdev todo list containing all network devices
11428 	 * unregistrations that happen in default_device_exit_batch
11429 	 * will run in the rtnl_unlock() at the end of
11430 	 * default_device_exit_batch.
11431 	 */
11432 	rtnl_lock_unregistering(net_list);
11433 	list_for_each_entry(net, net_list, exit_list) {
11434 		for_each_netdev_reverse(net, dev) {
11435 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11436 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11437 			else
11438 				unregister_netdevice_queue(dev, &dev_kill_list);
11439 		}
11440 	}
11441 	unregister_netdevice_many(&dev_kill_list);
11442 	rtnl_unlock();
11443 }
11444 
11445 static struct pernet_operations __net_initdata default_device_ops = {
11446 	.exit = default_device_exit,
11447 	.exit_batch = default_device_exit_batch,
11448 };
11449 
11450 /*
11451  *	Initialize the DEV module. At boot time this walks the device list and
11452  *	unhooks any devices that fail to initialise (normally hardware not
11453  *	present) and leaves us with a valid list of present and active devices.
11454  *
11455  */
11456 
11457 /*
11458  *       This is called single threaded during boot, so no need
11459  *       to take the rtnl semaphore.
11460  */
11461 static int __init net_dev_init(void)
11462 {
11463 	int i, rc = -ENOMEM;
11464 
11465 	BUG_ON(!dev_boot_phase);
11466 
11467 	if (dev_proc_init())
11468 		goto out;
11469 
11470 	if (netdev_kobject_init())
11471 		goto out;
11472 
11473 	INIT_LIST_HEAD(&ptype_all);
11474 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
11475 		INIT_LIST_HEAD(&ptype_base[i]);
11476 
11477 	INIT_LIST_HEAD(&offload_base);
11478 
11479 	if (register_pernet_subsys(&netdev_net_ops))
11480 		goto out;
11481 
11482 	/*
11483 	 *	Initialise the packet receive queues.
11484 	 */
11485 
11486 	for_each_possible_cpu(i) {
11487 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11488 		struct softnet_data *sd = &per_cpu(softnet_data, i);
11489 
11490 		INIT_WORK(flush, flush_backlog);
11491 
11492 		skb_queue_head_init(&sd->input_pkt_queue);
11493 		skb_queue_head_init(&sd->process_queue);
11494 #ifdef CONFIG_XFRM_OFFLOAD
11495 		skb_queue_head_init(&sd->xfrm_backlog);
11496 #endif
11497 		INIT_LIST_HEAD(&sd->poll_list);
11498 		sd->output_queue_tailp = &sd->output_queue;
11499 #ifdef CONFIG_RPS
11500 		INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11501 		sd->cpu = i;
11502 #endif
11503 
11504 		init_gro_hash(&sd->backlog);
11505 		sd->backlog.poll = process_backlog;
11506 		sd->backlog.weight = weight_p;
11507 	}
11508 
11509 	dev_boot_phase = 0;
11510 
11511 	/* The loopback device is special if any other network devices
11512 	 * is present in a network namespace the loopback device must
11513 	 * be present. Since we now dynamically allocate and free the
11514 	 * loopback device ensure this invariant is maintained by
11515 	 * keeping the loopback device as the first device on the
11516 	 * list of network devices.  Ensuring the loopback devices
11517 	 * is the first device that appears and the last network device
11518 	 * that disappears.
11519 	 */
11520 	if (register_pernet_device(&loopback_net_ops))
11521 		goto out;
11522 
11523 	if (register_pernet_device(&default_device_ops))
11524 		goto out;
11525 
11526 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11527 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11528 
11529 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11530 				       NULL, dev_cpu_dead);
11531 	WARN_ON(rc < 0);
11532 	rc = 0;
11533 out:
11534 	return rc;
11535 }
11536 
11537 subsys_initcall(net_dev_init);
11538