xref: /linux/net/core/dev.c (revision 65aa371ea52a92dd10826a2ea74bd2c395ee90a8)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <trace/events/qdisc.h>
135 #include <linux/inetdevice.h>
136 #include <linux/cpu_rmap.h>
137 #include <linux/static_key.h>
138 #include <linux/hashtable.h>
139 #include <linux/vmalloc.h>
140 #include <linux/if_macvlan.h>
141 #include <linux/errqueue.h>
142 #include <linux/hrtimer.h>
143 #include <linux/netfilter_netdev.h>
144 #include <linux/crash_dump.h>
145 #include <linux/sctp.h>
146 #include <net/udp_tunnel.h>
147 #include <linux/net_namespace.h>
148 #include <linux/indirect_call_wrapper.h>
149 #include <net/devlink.h>
150 #include <linux/pm_runtime.h>
151 #include <linux/prandom.h>
152 #include <linux/once_lite.h>
153 
154 #include "net-sysfs.h"
155 
156 #define MAX_GRO_SKBS 8
157 
158 /* This should be increased if a protocol with a bigger head is added. */
159 #define GRO_MAX_HEAD (MAX_HEADER + 128)
160 
161 static DEFINE_SPINLOCK(ptype_lock);
162 static DEFINE_SPINLOCK(offload_lock);
163 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
164 struct list_head ptype_all __read_mostly;	/* Taps */
165 static struct list_head offload_base __read_mostly;
166 
167 static int netif_rx_internal(struct sk_buff *skb);
168 static int call_netdevice_notifiers_info(unsigned long val,
169 					 struct netdev_notifier_info *info);
170 static int call_netdevice_notifiers_extack(unsigned long val,
171 					   struct net_device *dev,
172 					   struct netlink_ext_ack *extack);
173 static struct napi_struct *napi_by_id(unsigned int napi_id);
174 
175 /*
176  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
177  * semaphore.
178  *
179  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
180  *
181  * Writers must hold the rtnl semaphore while they loop through the
182  * dev_base_head list, and hold dev_base_lock for writing when they do the
183  * actual updates.  This allows pure readers to access the list even
184  * while a writer is preparing to update it.
185  *
186  * To put it another way, dev_base_lock is held for writing only to
187  * protect against pure readers; the rtnl semaphore provides the
188  * protection against other writers.
189  *
190  * See, for example usages, register_netdevice() and
191  * unregister_netdevice(), which must be called with the rtnl
192  * semaphore held.
193  */
194 DEFINE_RWLOCK(dev_base_lock);
195 EXPORT_SYMBOL(dev_base_lock);
196 
197 static DEFINE_MUTEX(ifalias_mutex);
198 
199 /* protects napi_hash addition/deletion and napi_gen_id */
200 static DEFINE_SPINLOCK(napi_hash_lock);
201 
202 static unsigned int napi_gen_id = NR_CPUS;
203 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
204 
205 static DECLARE_RWSEM(devnet_rename_sem);
206 
207 static inline void dev_base_seq_inc(struct net *net)
208 {
209 	while (++net->dev_base_seq == 0)
210 		;
211 }
212 
213 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
214 {
215 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
216 
217 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
218 }
219 
220 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
221 {
222 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
223 }
224 
225 static inline void rps_lock(struct softnet_data *sd)
226 {
227 #ifdef CONFIG_RPS
228 	spin_lock(&sd->input_pkt_queue.lock);
229 #endif
230 }
231 
232 static inline void rps_unlock(struct softnet_data *sd)
233 {
234 #ifdef CONFIG_RPS
235 	spin_unlock(&sd->input_pkt_queue.lock);
236 #endif
237 }
238 
239 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
240 						       const char *name)
241 {
242 	struct netdev_name_node *name_node;
243 
244 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
245 	if (!name_node)
246 		return NULL;
247 	INIT_HLIST_NODE(&name_node->hlist);
248 	name_node->dev = dev;
249 	name_node->name = name;
250 	return name_node;
251 }
252 
253 static struct netdev_name_node *
254 netdev_name_node_head_alloc(struct net_device *dev)
255 {
256 	struct netdev_name_node *name_node;
257 
258 	name_node = netdev_name_node_alloc(dev, dev->name);
259 	if (!name_node)
260 		return NULL;
261 	INIT_LIST_HEAD(&name_node->list);
262 	return name_node;
263 }
264 
265 static void netdev_name_node_free(struct netdev_name_node *name_node)
266 {
267 	kfree(name_node);
268 }
269 
270 static void netdev_name_node_add(struct net *net,
271 				 struct netdev_name_node *name_node)
272 {
273 	hlist_add_head_rcu(&name_node->hlist,
274 			   dev_name_hash(net, name_node->name));
275 }
276 
277 static void netdev_name_node_del(struct netdev_name_node *name_node)
278 {
279 	hlist_del_rcu(&name_node->hlist);
280 }
281 
282 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
283 							const char *name)
284 {
285 	struct hlist_head *head = dev_name_hash(net, name);
286 	struct netdev_name_node *name_node;
287 
288 	hlist_for_each_entry(name_node, head, hlist)
289 		if (!strcmp(name_node->name, name))
290 			return name_node;
291 	return NULL;
292 }
293 
294 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
295 							    const char *name)
296 {
297 	struct hlist_head *head = dev_name_hash(net, name);
298 	struct netdev_name_node *name_node;
299 
300 	hlist_for_each_entry_rcu(name_node, head, hlist)
301 		if (!strcmp(name_node->name, name))
302 			return name_node;
303 	return NULL;
304 }
305 
306 bool netdev_name_in_use(struct net *net, const char *name)
307 {
308 	return netdev_name_node_lookup(net, name);
309 }
310 EXPORT_SYMBOL(netdev_name_in_use);
311 
312 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
313 {
314 	struct netdev_name_node *name_node;
315 	struct net *net = dev_net(dev);
316 
317 	name_node = netdev_name_node_lookup(net, name);
318 	if (name_node)
319 		return -EEXIST;
320 	name_node = netdev_name_node_alloc(dev, name);
321 	if (!name_node)
322 		return -ENOMEM;
323 	netdev_name_node_add(net, name_node);
324 	/* The node that holds dev->name acts as a head of per-device list. */
325 	list_add_tail(&name_node->list, &dev->name_node->list);
326 
327 	return 0;
328 }
329 EXPORT_SYMBOL(netdev_name_node_alt_create);
330 
331 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
332 {
333 	list_del(&name_node->list);
334 	netdev_name_node_del(name_node);
335 	kfree(name_node->name);
336 	netdev_name_node_free(name_node);
337 }
338 
339 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
340 {
341 	struct netdev_name_node *name_node;
342 	struct net *net = dev_net(dev);
343 
344 	name_node = netdev_name_node_lookup(net, name);
345 	if (!name_node)
346 		return -ENOENT;
347 	/* lookup might have found our primary name or a name belonging
348 	 * to another device.
349 	 */
350 	if (name_node == dev->name_node || name_node->dev != dev)
351 		return -EINVAL;
352 
353 	__netdev_name_node_alt_destroy(name_node);
354 
355 	return 0;
356 }
357 EXPORT_SYMBOL(netdev_name_node_alt_destroy);
358 
359 static void netdev_name_node_alt_flush(struct net_device *dev)
360 {
361 	struct netdev_name_node *name_node, *tmp;
362 
363 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
364 		__netdev_name_node_alt_destroy(name_node);
365 }
366 
367 /* Device list insertion */
368 static void list_netdevice(struct net_device *dev)
369 {
370 	struct net *net = dev_net(dev);
371 
372 	ASSERT_RTNL();
373 
374 	write_lock_bh(&dev_base_lock);
375 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
376 	netdev_name_node_add(net, dev->name_node);
377 	hlist_add_head_rcu(&dev->index_hlist,
378 			   dev_index_hash(net, dev->ifindex));
379 	write_unlock_bh(&dev_base_lock);
380 
381 	dev_base_seq_inc(net);
382 }
383 
384 /* Device list removal
385  * caller must respect a RCU grace period before freeing/reusing dev
386  */
387 static void unlist_netdevice(struct net_device *dev)
388 {
389 	ASSERT_RTNL();
390 
391 	/* Unlink dev from the device chain */
392 	write_lock_bh(&dev_base_lock);
393 	list_del_rcu(&dev->dev_list);
394 	netdev_name_node_del(dev->name_node);
395 	hlist_del_rcu(&dev->index_hlist);
396 	write_unlock_bh(&dev_base_lock);
397 
398 	dev_base_seq_inc(dev_net(dev));
399 }
400 
401 /*
402  *	Our notifier list
403  */
404 
405 static RAW_NOTIFIER_HEAD(netdev_chain);
406 
407 /*
408  *	Device drivers call our routines to queue packets here. We empty the
409  *	queue in the local softnet handler.
410  */
411 
412 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
413 EXPORT_PER_CPU_SYMBOL(softnet_data);
414 
415 #ifdef CONFIG_LOCKDEP
416 /*
417  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
418  * according to dev->type
419  */
420 static const unsigned short netdev_lock_type[] = {
421 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
422 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
423 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
424 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
425 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
426 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
427 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
428 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
429 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
430 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
431 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
432 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
433 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
434 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
435 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
436 
437 static const char *const netdev_lock_name[] = {
438 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
439 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
440 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
441 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
442 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
443 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
444 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
445 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
446 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
447 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
448 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
449 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
450 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
451 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
452 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
453 
454 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
455 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
456 
457 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
458 {
459 	int i;
460 
461 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
462 		if (netdev_lock_type[i] == dev_type)
463 			return i;
464 	/* the last key is used by default */
465 	return ARRAY_SIZE(netdev_lock_type) - 1;
466 }
467 
468 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
469 						 unsigned short dev_type)
470 {
471 	int i;
472 
473 	i = netdev_lock_pos(dev_type);
474 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
475 				   netdev_lock_name[i]);
476 }
477 
478 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
479 {
480 	int i;
481 
482 	i = netdev_lock_pos(dev->type);
483 	lockdep_set_class_and_name(&dev->addr_list_lock,
484 				   &netdev_addr_lock_key[i],
485 				   netdev_lock_name[i]);
486 }
487 #else
488 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
489 						 unsigned short dev_type)
490 {
491 }
492 
493 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
494 {
495 }
496 #endif
497 
498 /*******************************************************************************
499  *
500  *		Protocol management and registration routines
501  *
502  *******************************************************************************/
503 
504 
505 /*
506  *	Add a protocol ID to the list. Now that the input handler is
507  *	smarter we can dispense with all the messy stuff that used to be
508  *	here.
509  *
510  *	BEWARE!!! Protocol handlers, mangling input packets,
511  *	MUST BE last in hash buckets and checking protocol handlers
512  *	MUST start from promiscuous ptype_all chain in net_bh.
513  *	It is true now, do not change it.
514  *	Explanation follows: if protocol handler, mangling packet, will
515  *	be the first on list, it is not able to sense, that packet
516  *	is cloned and should be copied-on-write, so that it will
517  *	change it and subsequent readers will get broken packet.
518  *							--ANK (980803)
519  */
520 
521 static inline struct list_head *ptype_head(const struct packet_type *pt)
522 {
523 	if (pt->type == htons(ETH_P_ALL))
524 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
525 	else
526 		return pt->dev ? &pt->dev->ptype_specific :
527 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
528 }
529 
530 /**
531  *	dev_add_pack - add packet handler
532  *	@pt: packet type declaration
533  *
534  *	Add a protocol handler to the networking stack. The passed &packet_type
535  *	is linked into kernel lists and may not be freed until it has been
536  *	removed from the kernel lists.
537  *
538  *	This call does not sleep therefore it can not
539  *	guarantee all CPU's that are in middle of receiving packets
540  *	will see the new packet type (until the next received packet).
541  */
542 
543 void dev_add_pack(struct packet_type *pt)
544 {
545 	struct list_head *head = ptype_head(pt);
546 
547 	spin_lock(&ptype_lock);
548 	list_add_rcu(&pt->list, head);
549 	spin_unlock(&ptype_lock);
550 }
551 EXPORT_SYMBOL(dev_add_pack);
552 
553 /**
554  *	__dev_remove_pack	 - remove packet handler
555  *	@pt: packet type declaration
556  *
557  *	Remove a protocol handler that was previously added to the kernel
558  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
559  *	from the kernel lists and can be freed or reused once this function
560  *	returns.
561  *
562  *      The packet type might still be in use by receivers
563  *	and must not be freed until after all the CPU's have gone
564  *	through a quiescent state.
565  */
566 void __dev_remove_pack(struct packet_type *pt)
567 {
568 	struct list_head *head = ptype_head(pt);
569 	struct packet_type *pt1;
570 
571 	spin_lock(&ptype_lock);
572 
573 	list_for_each_entry(pt1, head, list) {
574 		if (pt == pt1) {
575 			list_del_rcu(&pt->list);
576 			goto out;
577 		}
578 	}
579 
580 	pr_warn("dev_remove_pack: %p not found\n", pt);
581 out:
582 	spin_unlock(&ptype_lock);
583 }
584 EXPORT_SYMBOL(__dev_remove_pack);
585 
586 /**
587  *	dev_remove_pack	 - remove packet handler
588  *	@pt: packet type declaration
589  *
590  *	Remove a protocol handler that was previously added to the kernel
591  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
592  *	from the kernel lists and can be freed or reused once this function
593  *	returns.
594  *
595  *	This call sleeps to guarantee that no CPU is looking at the packet
596  *	type after return.
597  */
598 void dev_remove_pack(struct packet_type *pt)
599 {
600 	__dev_remove_pack(pt);
601 
602 	synchronize_net();
603 }
604 EXPORT_SYMBOL(dev_remove_pack);
605 
606 
607 /**
608  *	dev_add_offload - register offload handlers
609  *	@po: protocol offload declaration
610  *
611  *	Add protocol offload handlers to the networking stack. The passed
612  *	&proto_offload is linked into kernel lists and may not be freed until
613  *	it has been removed from the kernel lists.
614  *
615  *	This call does not sleep therefore it can not
616  *	guarantee all CPU's that are in middle of receiving packets
617  *	will see the new offload handlers (until the next received packet).
618  */
619 void dev_add_offload(struct packet_offload *po)
620 {
621 	struct packet_offload *elem;
622 
623 	spin_lock(&offload_lock);
624 	list_for_each_entry(elem, &offload_base, list) {
625 		if (po->priority < elem->priority)
626 			break;
627 	}
628 	list_add_rcu(&po->list, elem->list.prev);
629 	spin_unlock(&offload_lock);
630 }
631 EXPORT_SYMBOL(dev_add_offload);
632 
633 /**
634  *	__dev_remove_offload	 - remove offload handler
635  *	@po: packet offload declaration
636  *
637  *	Remove a protocol offload handler that was previously added to the
638  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
639  *	is removed from the kernel lists and can be freed or reused once this
640  *	function returns.
641  *
642  *      The packet type might still be in use by receivers
643  *	and must not be freed until after all the CPU's have gone
644  *	through a quiescent state.
645  */
646 static void __dev_remove_offload(struct packet_offload *po)
647 {
648 	struct list_head *head = &offload_base;
649 	struct packet_offload *po1;
650 
651 	spin_lock(&offload_lock);
652 
653 	list_for_each_entry(po1, head, list) {
654 		if (po == po1) {
655 			list_del_rcu(&po->list);
656 			goto out;
657 		}
658 	}
659 
660 	pr_warn("dev_remove_offload: %p not found\n", po);
661 out:
662 	spin_unlock(&offload_lock);
663 }
664 
665 /**
666  *	dev_remove_offload	 - remove packet offload handler
667  *	@po: packet offload declaration
668  *
669  *	Remove a packet offload handler that was previously added to the kernel
670  *	offload handlers by dev_add_offload(). The passed &offload_type is
671  *	removed from the kernel lists and can be freed or reused once this
672  *	function returns.
673  *
674  *	This call sleeps to guarantee that no CPU is looking at the packet
675  *	type after return.
676  */
677 void dev_remove_offload(struct packet_offload *po)
678 {
679 	__dev_remove_offload(po);
680 
681 	synchronize_net();
682 }
683 EXPORT_SYMBOL(dev_remove_offload);
684 
685 /*******************************************************************************
686  *
687  *			    Device Interface Subroutines
688  *
689  *******************************************************************************/
690 
691 /**
692  *	dev_get_iflink	- get 'iflink' value of a interface
693  *	@dev: targeted interface
694  *
695  *	Indicates the ifindex the interface is linked to.
696  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
697  */
698 
699 int dev_get_iflink(const struct net_device *dev)
700 {
701 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
702 		return dev->netdev_ops->ndo_get_iflink(dev);
703 
704 	return dev->ifindex;
705 }
706 EXPORT_SYMBOL(dev_get_iflink);
707 
708 /**
709  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
710  *	@dev: targeted interface
711  *	@skb: The packet.
712  *
713  *	For better visibility of tunnel traffic OVS needs to retrieve
714  *	egress tunnel information for a packet. Following API allows
715  *	user to get this info.
716  */
717 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
718 {
719 	struct ip_tunnel_info *info;
720 
721 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
722 		return -EINVAL;
723 
724 	info = skb_tunnel_info_unclone(skb);
725 	if (!info)
726 		return -ENOMEM;
727 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
728 		return -EINVAL;
729 
730 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
731 }
732 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
733 
734 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
735 {
736 	int k = stack->num_paths++;
737 
738 	if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
739 		return NULL;
740 
741 	return &stack->path[k];
742 }
743 
744 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
745 			  struct net_device_path_stack *stack)
746 {
747 	const struct net_device *last_dev;
748 	struct net_device_path_ctx ctx = {
749 		.dev	= dev,
750 		.daddr	= daddr,
751 	};
752 	struct net_device_path *path;
753 	int ret = 0;
754 
755 	stack->num_paths = 0;
756 	while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
757 		last_dev = ctx.dev;
758 		path = dev_fwd_path(stack);
759 		if (!path)
760 			return -1;
761 
762 		memset(path, 0, sizeof(struct net_device_path));
763 		ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
764 		if (ret < 0)
765 			return -1;
766 
767 		if (WARN_ON_ONCE(last_dev == ctx.dev))
768 			return -1;
769 	}
770 	path = dev_fwd_path(stack);
771 	if (!path)
772 		return -1;
773 	path->type = DEV_PATH_ETHERNET;
774 	path->dev = ctx.dev;
775 
776 	return ret;
777 }
778 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
779 
780 /**
781  *	__dev_get_by_name	- find a device by its name
782  *	@net: the applicable net namespace
783  *	@name: name to find
784  *
785  *	Find an interface by name. Must be called under RTNL semaphore
786  *	or @dev_base_lock. If the name is found a pointer to the device
787  *	is returned. If the name is not found then %NULL is returned. The
788  *	reference counters are not incremented so the caller must be
789  *	careful with locks.
790  */
791 
792 struct net_device *__dev_get_by_name(struct net *net, const char *name)
793 {
794 	struct netdev_name_node *node_name;
795 
796 	node_name = netdev_name_node_lookup(net, name);
797 	return node_name ? node_name->dev : NULL;
798 }
799 EXPORT_SYMBOL(__dev_get_by_name);
800 
801 /**
802  * dev_get_by_name_rcu	- find a device by its name
803  * @net: the applicable net namespace
804  * @name: name to find
805  *
806  * Find an interface by name.
807  * If the name is found a pointer to the device is returned.
808  * If the name is not found then %NULL is returned.
809  * The reference counters are not incremented so the caller must be
810  * careful with locks. The caller must hold RCU lock.
811  */
812 
813 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
814 {
815 	struct netdev_name_node *node_name;
816 
817 	node_name = netdev_name_node_lookup_rcu(net, name);
818 	return node_name ? node_name->dev : NULL;
819 }
820 EXPORT_SYMBOL(dev_get_by_name_rcu);
821 
822 /**
823  *	dev_get_by_name		- find a device by its name
824  *	@net: the applicable net namespace
825  *	@name: name to find
826  *
827  *	Find an interface by name. This can be called from any
828  *	context and does its own locking. The returned handle has
829  *	the usage count incremented and the caller must use dev_put() to
830  *	release it when it is no longer needed. %NULL is returned if no
831  *	matching device is found.
832  */
833 
834 struct net_device *dev_get_by_name(struct net *net, const char *name)
835 {
836 	struct net_device *dev;
837 
838 	rcu_read_lock();
839 	dev = dev_get_by_name_rcu(net, name);
840 	dev_hold(dev);
841 	rcu_read_unlock();
842 	return dev;
843 }
844 EXPORT_SYMBOL(dev_get_by_name);
845 
846 /**
847  *	__dev_get_by_index - find a device by its ifindex
848  *	@net: the applicable net namespace
849  *	@ifindex: index of device
850  *
851  *	Search for an interface by index. Returns %NULL if the device
852  *	is not found or a pointer to the device. The device has not
853  *	had its reference counter increased so the caller must be careful
854  *	about locking. The caller must hold either the RTNL semaphore
855  *	or @dev_base_lock.
856  */
857 
858 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
859 {
860 	struct net_device *dev;
861 	struct hlist_head *head = dev_index_hash(net, ifindex);
862 
863 	hlist_for_each_entry(dev, head, index_hlist)
864 		if (dev->ifindex == ifindex)
865 			return dev;
866 
867 	return NULL;
868 }
869 EXPORT_SYMBOL(__dev_get_by_index);
870 
871 /**
872  *	dev_get_by_index_rcu - find a device by its ifindex
873  *	@net: the applicable net namespace
874  *	@ifindex: index of device
875  *
876  *	Search for an interface by index. Returns %NULL if the device
877  *	is not found or a pointer to the device. The device has not
878  *	had its reference counter increased so the caller must be careful
879  *	about locking. The caller must hold RCU lock.
880  */
881 
882 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
883 {
884 	struct net_device *dev;
885 	struct hlist_head *head = dev_index_hash(net, ifindex);
886 
887 	hlist_for_each_entry_rcu(dev, head, index_hlist)
888 		if (dev->ifindex == ifindex)
889 			return dev;
890 
891 	return NULL;
892 }
893 EXPORT_SYMBOL(dev_get_by_index_rcu);
894 
895 
896 /**
897  *	dev_get_by_index - find a device by its ifindex
898  *	@net: the applicable net namespace
899  *	@ifindex: index of device
900  *
901  *	Search for an interface by index. Returns NULL if the device
902  *	is not found or a pointer to the device. The device returned has
903  *	had a reference added and the pointer is safe until the user calls
904  *	dev_put to indicate they have finished with it.
905  */
906 
907 struct net_device *dev_get_by_index(struct net *net, int ifindex)
908 {
909 	struct net_device *dev;
910 
911 	rcu_read_lock();
912 	dev = dev_get_by_index_rcu(net, ifindex);
913 	dev_hold(dev);
914 	rcu_read_unlock();
915 	return dev;
916 }
917 EXPORT_SYMBOL(dev_get_by_index);
918 
919 /**
920  *	dev_get_by_napi_id - find a device by napi_id
921  *	@napi_id: ID of the NAPI struct
922  *
923  *	Search for an interface by NAPI ID. Returns %NULL if the device
924  *	is not found or a pointer to the device. The device has not had
925  *	its reference counter increased so the caller must be careful
926  *	about locking. The caller must hold RCU lock.
927  */
928 
929 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
930 {
931 	struct napi_struct *napi;
932 
933 	WARN_ON_ONCE(!rcu_read_lock_held());
934 
935 	if (napi_id < MIN_NAPI_ID)
936 		return NULL;
937 
938 	napi = napi_by_id(napi_id);
939 
940 	return napi ? napi->dev : NULL;
941 }
942 EXPORT_SYMBOL(dev_get_by_napi_id);
943 
944 /**
945  *	netdev_get_name - get a netdevice name, knowing its ifindex.
946  *	@net: network namespace
947  *	@name: a pointer to the buffer where the name will be stored.
948  *	@ifindex: the ifindex of the interface to get the name from.
949  */
950 int netdev_get_name(struct net *net, char *name, int ifindex)
951 {
952 	struct net_device *dev;
953 	int ret;
954 
955 	down_read(&devnet_rename_sem);
956 	rcu_read_lock();
957 
958 	dev = dev_get_by_index_rcu(net, ifindex);
959 	if (!dev) {
960 		ret = -ENODEV;
961 		goto out;
962 	}
963 
964 	strcpy(name, dev->name);
965 
966 	ret = 0;
967 out:
968 	rcu_read_unlock();
969 	up_read(&devnet_rename_sem);
970 	return ret;
971 }
972 
973 /**
974  *	dev_getbyhwaddr_rcu - find a device by its hardware address
975  *	@net: the applicable net namespace
976  *	@type: media type of device
977  *	@ha: hardware address
978  *
979  *	Search for an interface by MAC address. Returns NULL if the device
980  *	is not found or a pointer to the device.
981  *	The caller must hold RCU or RTNL.
982  *	The returned device has not had its ref count increased
983  *	and the caller must therefore be careful about locking
984  *
985  */
986 
987 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
988 				       const char *ha)
989 {
990 	struct net_device *dev;
991 
992 	for_each_netdev_rcu(net, dev)
993 		if (dev->type == type &&
994 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
995 			return dev;
996 
997 	return NULL;
998 }
999 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1000 
1001 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1002 {
1003 	struct net_device *dev, *ret = NULL;
1004 
1005 	rcu_read_lock();
1006 	for_each_netdev_rcu(net, dev)
1007 		if (dev->type == type) {
1008 			dev_hold(dev);
1009 			ret = dev;
1010 			break;
1011 		}
1012 	rcu_read_unlock();
1013 	return ret;
1014 }
1015 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1016 
1017 /**
1018  *	__dev_get_by_flags - find any device with given flags
1019  *	@net: the applicable net namespace
1020  *	@if_flags: IFF_* values
1021  *	@mask: bitmask of bits in if_flags to check
1022  *
1023  *	Search for any interface with the given flags. Returns NULL if a device
1024  *	is not found or a pointer to the device. Must be called inside
1025  *	rtnl_lock(), and result refcount is unchanged.
1026  */
1027 
1028 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1029 				      unsigned short mask)
1030 {
1031 	struct net_device *dev, *ret;
1032 
1033 	ASSERT_RTNL();
1034 
1035 	ret = NULL;
1036 	for_each_netdev(net, dev) {
1037 		if (((dev->flags ^ if_flags) & mask) == 0) {
1038 			ret = dev;
1039 			break;
1040 		}
1041 	}
1042 	return ret;
1043 }
1044 EXPORT_SYMBOL(__dev_get_by_flags);
1045 
1046 /**
1047  *	dev_valid_name - check if name is okay for network device
1048  *	@name: name string
1049  *
1050  *	Network device names need to be valid file names to
1051  *	allow sysfs to work.  We also disallow any kind of
1052  *	whitespace.
1053  */
1054 bool dev_valid_name(const char *name)
1055 {
1056 	if (*name == '\0')
1057 		return false;
1058 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1059 		return false;
1060 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1061 		return false;
1062 
1063 	while (*name) {
1064 		if (*name == '/' || *name == ':' || isspace(*name))
1065 			return false;
1066 		name++;
1067 	}
1068 	return true;
1069 }
1070 EXPORT_SYMBOL(dev_valid_name);
1071 
1072 /**
1073  *	__dev_alloc_name - allocate a name for a device
1074  *	@net: network namespace to allocate the device name in
1075  *	@name: name format string
1076  *	@buf:  scratch buffer and result name string
1077  *
1078  *	Passed a format string - eg "lt%d" it will try and find a suitable
1079  *	id. It scans list of devices to build up a free map, then chooses
1080  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1081  *	while allocating the name and adding the device in order to avoid
1082  *	duplicates.
1083  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1084  *	Returns the number of the unit assigned or a negative errno code.
1085  */
1086 
1087 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1088 {
1089 	int i = 0;
1090 	const char *p;
1091 	const int max_netdevices = 8*PAGE_SIZE;
1092 	unsigned long *inuse;
1093 	struct net_device *d;
1094 
1095 	if (!dev_valid_name(name))
1096 		return -EINVAL;
1097 
1098 	p = strchr(name, '%');
1099 	if (p) {
1100 		/*
1101 		 * Verify the string as this thing may have come from
1102 		 * the user.  There must be either one "%d" and no other "%"
1103 		 * characters.
1104 		 */
1105 		if (p[1] != 'd' || strchr(p + 2, '%'))
1106 			return -EINVAL;
1107 
1108 		/* Use one page as a bit array of possible slots */
1109 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1110 		if (!inuse)
1111 			return -ENOMEM;
1112 
1113 		for_each_netdev(net, d) {
1114 			struct netdev_name_node *name_node;
1115 			list_for_each_entry(name_node, &d->name_node->list, list) {
1116 				if (!sscanf(name_node->name, name, &i))
1117 					continue;
1118 				if (i < 0 || i >= max_netdevices)
1119 					continue;
1120 
1121 				/*  avoid cases where sscanf is not exact inverse of printf */
1122 				snprintf(buf, IFNAMSIZ, name, i);
1123 				if (!strncmp(buf, name_node->name, IFNAMSIZ))
1124 					set_bit(i, inuse);
1125 			}
1126 			if (!sscanf(d->name, name, &i))
1127 				continue;
1128 			if (i < 0 || i >= max_netdevices)
1129 				continue;
1130 
1131 			/*  avoid cases where sscanf is not exact inverse of printf */
1132 			snprintf(buf, IFNAMSIZ, name, i);
1133 			if (!strncmp(buf, d->name, IFNAMSIZ))
1134 				set_bit(i, inuse);
1135 		}
1136 
1137 		i = find_first_zero_bit(inuse, max_netdevices);
1138 		free_page((unsigned long) inuse);
1139 	}
1140 
1141 	snprintf(buf, IFNAMSIZ, name, i);
1142 	if (!netdev_name_in_use(net, buf))
1143 		return i;
1144 
1145 	/* It is possible to run out of possible slots
1146 	 * when the name is long and there isn't enough space left
1147 	 * for the digits, or if all bits are used.
1148 	 */
1149 	return -ENFILE;
1150 }
1151 
1152 static int dev_alloc_name_ns(struct net *net,
1153 			     struct net_device *dev,
1154 			     const char *name)
1155 {
1156 	char buf[IFNAMSIZ];
1157 	int ret;
1158 
1159 	BUG_ON(!net);
1160 	ret = __dev_alloc_name(net, name, buf);
1161 	if (ret >= 0)
1162 		strlcpy(dev->name, buf, IFNAMSIZ);
1163 	return ret;
1164 }
1165 
1166 /**
1167  *	dev_alloc_name - allocate a name for a device
1168  *	@dev: device
1169  *	@name: name format string
1170  *
1171  *	Passed a format string - eg "lt%d" it will try and find a suitable
1172  *	id. It scans list of devices to build up a free map, then chooses
1173  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1174  *	while allocating the name and adding the device in order to avoid
1175  *	duplicates.
1176  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1177  *	Returns the number of the unit assigned or a negative errno code.
1178  */
1179 
1180 int dev_alloc_name(struct net_device *dev, const char *name)
1181 {
1182 	return dev_alloc_name_ns(dev_net(dev), dev, name);
1183 }
1184 EXPORT_SYMBOL(dev_alloc_name);
1185 
1186 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1187 			      const char *name)
1188 {
1189 	BUG_ON(!net);
1190 
1191 	if (!dev_valid_name(name))
1192 		return -EINVAL;
1193 
1194 	if (strchr(name, '%'))
1195 		return dev_alloc_name_ns(net, dev, name);
1196 	else if (netdev_name_in_use(net, name))
1197 		return -EEXIST;
1198 	else if (dev->name != name)
1199 		strlcpy(dev->name, name, IFNAMSIZ);
1200 
1201 	return 0;
1202 }
1203 
1204 /**
1205  *	dev_change_name - change name of a device
1206  *	@dev: device
1207  *	@newname: name (or format string) must be at least IFNAMSIZ
1208  *
1209  *	Change name of a device, can pass format strings "eth%d".
1210  *	for wildcarding.
1211  */
1212 int dev_change_name(struct net_device *dev, const char *newname)
1213 {
1214 	unsigned char old_assign_type;
1215 	char oldname[IFNAMSIZ];
1216 	int err = 0;
1217 	int ret;
1218 	struct net *net;
1219 
1220 	ASSERT_RTNL();
1221 	BUG_ON(!dev_net(dev));
1222 
1223 	net = dev_net(dev);
1224 
1225 	/* Some auto-enslaved devices e.g. failover slaves are
1226 	 * special, as userspace might rename the device after
1227 	 * the interface had been brought up and running since
1228 	 * the point kernel initiated auto-enslavement. Allow
1229 	 * live name change even when these slave devices are
1230 	 * up and running.
1231 	 *
1232 	 * Typically, users of these auto-enslaving devices
1233 	 * don't actually care about slave name change, as
1234 	 * they are supposed to operate on master interface
1235 	 * directly.
1236 	 */
1237 	if (dev->flags & IFF_UP &&
1238 	    likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1239 		return -EBUSY;
1240 
1241 	down_write(&devnet_rename_sem);
1242 
1243 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1244 		up_write(&devnet_rename_sem);
1245 		return 0;
1246 	}
1247 
1248 	memcpy(oldname, dev->name, IFNAMSIZ);
1249 
1250 	err = dev_get_valid_name(net, dev, newname);
1251 	if (err < 0) {
1252 		up_write(&devnet_rename_sem);
1253 		return err;
1254 	}
1255 
1256 	if (oldname[0] && !strchr(oldname, '%'))
1257 		netdev_info(dev, "renamed from %s\n", oldname);
1258 
1259 	old_assign_type = dev->name_assign_type;
1260 	dev->name_assign_type = NET_NAME_RENAMED;
1261 
1262 rollback:
1263 	ret = device_rename(&dev->dev, dev->name);
1264 	if (ret) {
1265 		memcpy(dev->name, oldname, IFNAMSIZ);
1266 		dev->name_assign_type = old_assign_type;
1267 		up_write(&devnet_rename_sem);
1268 		return ret;
1269 	}
1270 
1271 	up_write(&devnet_rename_sem);
1272 
1273 	netdev_adjacent_rename_links(dev, oldname);
1274 
1275 	write_lock_bh(&dev_base_lock);
1276 	netdev_name_node_del(dev->name_node);
1277 	write_unlock_bh(&dev_base_lock);
1278 
1279 	synchronize_rcu();
1280 
1281 	write_lock_bh(&dev_base_lock);
1282 	netdev_name_node_add(net, dev->name_node);
1283 	write_unlock_bh(&dev_base_lock);
1284 
1285 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1286 	ret = notifier_to_errno(ret);
1287 
1288 	if (ret) {
1289 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1290 		if (err >= 0) {
1291 			err = ret;
1292 			down_write(&devnet_rename_sem);
1293 			memcpy(dev->name, oldname, IFNAMSIZ);
1294 			memcpy(oldname, newname, IFNAMSIZ);
1295 			dev->name_assign_type = old_assign_type;
1296 			old_assign_type = NET_NAME_RENAMED;
1297 			goto rollback;
1298 		} else {
1299 			netdev_err(dev, "name change rollback failed: %d\n",
1300 				   ret);
1301 		}
1302 	}
1303 
1304 	return err;
1305 }
1306 
1307 /**
1308  *	dev_set_alias - change ifalias of a device
1309  *	@dev: device
1310  *	@alias: name up to IFALIASZ
1311  *	@len: limit of bytes to copy from info
1312  *
1313  *	Set ifalias for a device,
1314  */
1315 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1316 {
1317 	struct dev_ifalias *new_alias = NULL;
1318 
1319 	if (len >= IFALIASZ)
1320 		return -EINVAL;
1321 
1322 	if (len) {
1323 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1324 		if (!new_alias)
1325 			return -ENOMEM;
1326 
1327 		memcpy(new_alias->ifalias, alias, len);
1328 		new_alias->ifalias[len] = 0;
1329 	}
1330 
1331 	mutex_lock(&ifalias_mutex);
1332 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1333 					mutex_is_locked(&ifalias_mutex));
1334 	mutex_unlock(&ifalias_mutex);
1335 
1336 	if (new_alias)
1337 		kfree_rcu(new_alias, rcuhead);
1338 
1339 	return len;
1340 }
1341 EXPORT_SYMBOL(dev_set_alias);
1342 
1343 /**
1344  *	dev_get_alias - get ifalias of a device
1345  *	@dev: device
1346  *	@name: buffer to store name of ifalias
1347  *	@len: size of buffer
1348  *
1349  *	get ifalias for a device.  Caller must make sure dev cannot go
1350  *	away,  e.g. rcu read lock or own a reference count to device.
1351  */
1352 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1353 {
1354 	const struct dev_ifalias *alias;
1355 	int ret = 0;
1356 
1357 	rcu_read_lock();
1358 	alias = rcu_dereference(dev->ifalias);
1359 	if (alias)
1360 		ret = snprintf(name, len, "%s", alias->ifalias);
1361 	rcu_read_unlock();
1362 
1363 	return ret;
1364 }
1365 
1366 /**
1367  *	netdev_features_change - device changes features
1368  *	@dev: device to cause notification
1369  *
1370  *	Called to indicate a device has changed features.
1371  */
1372 void netdev_features_change(struct net_device *dev)
1373 {
1374 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1375 }
1376 EXPORT_SYMBOL(netdev_features_change);
1377 
1378 /**
1379  *	netdev_state_change - device changes state
1380  *	@dev: device to cause notification
1381  *
1382  *	Called to indicate a device has changed state. This function calls
1383  *	the notifier chains for netdev_chain and sends a NEWLINK message
1384  *	to the routing socket.
1385  */
1386 void netdev_state_change(struct net_device *dev)
1387 {
1388 	if (dev->flags & IFF_UP) {
1389 		struct netdev_notifier_change_info change_info = {
1390 			.info.dev = dev,
1391 		};
1392 
1393 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1394 					      &change_info.info);
1395 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1396 	}
1397 }
1398 EXPORT_SYMBOL(netdev_state_change);
1399 
1400 /**
1401  * __netdev_notify_peers - notify network peers about existence of @dev,
1402  * to be called when rtnl lock is already held.
1403  * @dev: network device
1404  *
1405  * Generate traffic such that interested network peers are aware of
1406  * @dev, such as by generating a gratuitous ARP. This may be used when
1407  * a device wants to inform the rest of the network about some sort of
1408  * reconfiguration such as a failover event or virtual machine
1409  * migration.
1410  */
1411 void __netdev_notify_peers(struct net_device *dev)
1412 {
1413 	ASSERT_RTNL();
1414 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1415 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1416 }
1417 EXPORT_SYMBOL(__netdev_notify_peers);
1418 
1419 /**
1420  * netdev_notify_peers - notify network peers about existence of @dev
1421  * @dev: network device
1422  *
1423  * Generate traffic such that interested network peers are aware of
1424  * @dev, such as by generating a gratuitous ARP. This may be used when
1425  * a device wants to inform the rest of the network about some sort of
1426  * reconfiguration such as a failover event or virtual machine
1427  * migration.
1428  */
1429 void netdev_notify_peers(struct net_device *dev)
1430 {
1431 	rtnl_lock();
1432 	__netdev_notify_peers(dev);
1433 	rtnl_unlock();
1434 }
1435 EXPORT_SYMBOL(netdev_notify_peers);
1436 
1437 static int napi_threaded_poll(void *data);
1438 
1439 static int napi_kthread_create(struct napi_struct *n)
1440 {
1441 	int err = 0;
1442 
1443 	/* Create and wake up the kthread once to put it in
1444 	 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1445 	 * warning and work with loadavg.
1446 	 */
1447 	n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1448 				n->dev->name, n->napi_id);
1449 	if (IS_ERR(n->thread)) {
1450 		err = PTR_ERR(n->thread);
1451 		pr_err("kthread_run failed with err %d\n", err);
1452 		n->thread = NULL;
1453 	}
1454 
1455 	return err;
1456 }
1457 
1458 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1459 {
1460 	const struct net_device_ops *ops = dev->netdev_ops;
1461 	int ret;
1462 
1463 	ASSERT_RTNL();
1464 
1465 	if (!netif_device_present(dev)) {
1466 		/* may be detached because parent is runtime-suspended */
1467 		if (dev->dev.parent)
1468 			pm_runtime_resume(dev->dev.parent);
1469 		if (!netif_device_present(dev))
1470 			return -ENODEV;
1471 	}
1472 
1473 	/* Block netpoll from trying to do any rx path servicing.
1474 	 * If we don't do this there is a chance ndo_poll_controller
1475 	 * or ndo_poll may be running while we open the device
1476 	 */
1477 	netpoll_poll_disable(dev);
1478 
1479 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1480 	ret = notifier_to_errno(ret);
1481 	if (ret)
1482 		return ret;
1483 
1484 	set_bit(__LINK_STATE_START, &dev->state);
1485 
1486 	if (ops->ndo_validate_addr)
1487 		ret = ops->ndo_validate_addr(dev);
1488 
1489 	if (!ret && ops->ndo_open)
1490 		ret = ops->ndo_open(dev);
1491 
1492 	netpoll_poll_enable(dev);
1493 
1494 	if (ret)
1495 		clear_bit(__LINK_STATE_START, &dev->state);
1496 	else {
1497 		dev->flags |= IFF_UP;
1498 		dev_set_rx_mode(dev);
1499 		dev_activate(dev);
1500 		add_device_randomness(dev->dev_addr, dev->addr_len);
1501 	}
1502 
1503 	return ret;
1504 }
1505 
1506 /**
1507  *	dev_open	- prepare an interface for use.
1508  *	@dev: device to open
1509  *	@extack: netlink extended ack
1510  *
1511  *	Takes a device from down to up state. The device's private open
1512  *	function is invoked and then the multicast lists are loaded. Finally
1513  *	the device is moved into the up state and a %NETDEV_UP message is
1514  *	sent to the netdev notifier chain.
1515  *
1516  *	Calling this function on an active interface is a nop. On a failure
1517  *	a negative errno code is returned.
1518  */
1519 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1520 {
1521 	int ret;
1522 
1523 	if (dev->flags & IFF_UP)
1524 		return 0;
1525 
1526 	ret = __dev_open(dev, extack);
1527 	if (ret < 0)
1528 		return ret;
1529 
1530 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1531 	call_netdevice_notifiers(NETDEV_UP, dev);
1532 
1533 	return ret;
1534 }
1535 EXPORT_SYMBOL(dev_open);
1536 
1537 static void __dev_close_many(struct list_head *head)
1538 {
1539 	struct net_device *dev;
1540 
1541 	ASSERT_RTNL();
1542 	might_sleep();
1543 
1544 	list_for_each_entry(dev, head, close_list) {
1545 		/* Temporarily disable netpoll until the interface is down */
1546 		netpoll_poll_disable(dev);
1547 
1548 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1549 
1550 		clear_bit(__LINK_STATE_START, &dev->state);
1551 
1552 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1553 		 * can be even on different cpu. So just clear netif_running().
1554 		 *
1555 		 * dev->stop() will invoke napi_disable() on all of it's
1556 		 * napi_struct instances on this device.
1557 		 */
1558 		smp_mb__after_atomic(); /* Commit netif_running(). */
1559 	}
1560 
1561 	dev_deactivate_many(head);
1562 
1563 	list_for_each_entry(dev, head, close_list) {
1564 		const struct net_device_ops *ops = dev->netdev_ops;
1565 
1566 		/*
1567 		 *	Call the device specific close. This cannot fail.
1568 		 *	Only if device is UP
1569 		 *
1570 		 *	We allow it to be called even after a DETACH hot-plug
1571 		 *	event.
1572 		 */
1573 		if (ops->ndo_stop)
1574 			ops->ndo_stop(dev);
1575 
1576 		dev->flags &= ~IFF_UP;
1577 		netpoll_poll_enable(dev);
1578 	}
1579 }
1580 
1581 static void __dev_close(struct net_device *dev)
1582 {
1583 	LIST_HEAD(single);
1584 
1585 	list_add(&dev->close_list, &single);
1586 	__dev_close_many(&single);
1587 	list_del(&single);
1588 }
1589 
1590 void dev_close_many(struct list_head *head, bool unlink)
1591 {
1592 	struct net_device *dev, *tmp;
1593 
1594 	/* Remove the devices that don't need to be closed */
1595 	list_for_each_entry_safe(dev, tmp, head, close_list)
1596 		if (!(dev->flags & IFF_UP))
1597 			list_del_init(&dev->close_list);
1598 
1599 	__dev_close_many(head);
1600 
1601 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1602 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1603 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1604 		if (unlink)
1605 			list_del_init(&dev->close_list);
1606 	}
1607 }
1608 EXPORT_SYMBOL(dev_close_many);
1609 
1610 /**
1611  *	dev_close - shutdown an interface.
1612  *	@dev: device to shutdown
1613  *
1614  *	This function moves an active device into down state. A
1615  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1616  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1617  *	chain.
1618  */
1619 void dev_close(struct net_device *dev)
1620 {
1621 	if (dev->flags & IFF_UP) {
1622 		LIST_HEAD(single);
1623 
1624 		list_add(&dev->close_list, &single);
1625 		dev_close_many(&single, true);
1626 		list_del(&single);
1627 	}
1628 }
1629 EXPORT_SYMBOL(dev_close);
1630 
1631 
1632 /**
1633  *	dev_disable_lro - disable Large Receive Offload on a device
1634  *	@dev: device
1635  *
1636  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1637  *	called under RTNL.  This is needed if received packets may be
1638  *	forwarded to another interface.
1639  */
1640 void dev_disable_lro(struct net_device *dev)
1641 {
1642 	struct net_device *lower_dev;
1643 	struct list_head *iter;
1644 
1645 	dev->wanted_features &= ~NETIF_F_LRO;
1646 	netdev_update_features(dev);
1647 
1648 	if (unlikely(dev->features & NETIF_F_LRO))
1649 		netdev_WARN(dev, "failed to disable LRO!\n");
1650 
1651 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1652 		dev_disable_lro(lower_dev);
1653 }
1654 EXPORT_SYMBOL(dev_disable_lro);
1655 
1656 /**
1657  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1658  *	@dev: device
1659  *
1660  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1661  *	called under RTNL.  This is needed if Generic XDP is installed on
1662  *	the device.
1663  */
1664 static void dev_disable_gro_hw(struct net_device *dev)
1665 {
1666 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1667 	netdev_update_features(dev);
1668 
1669 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1670 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1671 }
1672 
1673 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1674 {
1675 #define N(val) 						\
1676 	case NETDEV_##val:				\
1677 		return "NETDEV_" __stringify(val);
1678 	switch (cmd) {
1679 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1680 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1681 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1682 	N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1683 	N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1684 	N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1685 	N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1686 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1687 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1688 	N(PRE_CHANGEADDR)
1689 	}
1690 #undef N
1691 	return "UNKNOWN_NETDEV_EVENT";
1692 }
1693 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1694 
1695 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1696 				   struct net_device *dev)
1697 {
1698 	struct netdev_notifier_info info = {
1699 		.dev = dev,
1700 	};
1701 
1702 	return nb->notifier_call(nb, val, &info);
1703 }
1704 
1705 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1706 					     struct net_device *dev)
1707 {
1708 	int err;
1709 
1710 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1711 	err = notifier_to_errno(err);
1712 	if (err)
1713 		return err;
1714 
1715 	if (!(dev->flags & IFF_UP))
1716 		return 0;
1717 
1718 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1719 	return 0;
1720 }
1721 
1722 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1723 						struct net_device *dev)
1724 {
1725 	if (dev->flags & IFF_UP) {
1726 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1727 					dev);
1728 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1729 	}
1730 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1731 }
1732 
1733 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1734 						 struct net *net)
1735 {
1736 	struct net_device *dev;
1737 	int err;
1738 
1739 	for_each_netdev(net, dev) {
1740 		err = call_netdevice_register_notifiers(nb, dev);
1741 		if (err)
1742 			goto rollback;
1743 	}
1744 	return 0;
1745 
1746 rollback:
1747 	for_each_netdev_continue_reverse(net, dev)
1748 		call_netdevice_unregister_notifiers(nb, dev);
1749 	return err;
1750 }
1751 
1752 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1753 						    struct net *net)
1754 {
1755 	struct net_device *dev;
1756 
1757 	for_each_netdev(net, dev)
1758 		call_netdevice_unregister_notifiers(nb, dev);
1759 }
1760 
1761 static int dev_boot_phase = 1;
1762 
1763 /**
1764  * register_netdevice_notifier - register a network notifier block
1765  * @nb: notifier
1766  *
1767  * Register a notifier to be called when network device events occur.
1768  * The notifier passed is linked into the kernel structures and must
1769  * not be reused until it has been unregistered. A negative errno code
1770  * is returned on a failure.
1771  *
1772  * When registered all registration and up events are replayed
1773  * to the new notifier to allow device to have a race free
1774  * view of the network device list.
1775  */
1776 
1777 int register_netdevice_notifier(struct notifier_block *nb)
1778 {
1779 	struct net *net;
1780 	int err;
1781 
1782 	/* Close race with setup_net() and cleanup_net() */
1783 	down_write(&pernet_ops_rwsem);
1784 	rtnl_lock();
1785 	err = raw_notifier_chain_register(&netdev_chain, nb);
1786 	if (err)
1787 		goto unlock;
1788 	if (dev_boot_phase)
1789 		goto unlock;
1790 	for_each_net(net) {
1791 		err = call_netdevice_register_net_notifiers(nb, net);
1792 		if (err)
1793 			goto rollback;
1794 	}
1795 
1796 unlock:
1797 	rtnl_unlock();
1798 	up_write(&pernet_ops_rwsem);
1799 	return err;
1800 
1801 rollback:
1802 	for_each_net_continue_reverse(net)
1803 		call_netdevice_unregister_net_notifiers(nb, net);
1804 
1805 	raw_notifier_chain_unregister(&netdev_chain, nb);
1806 	goto unlock;
1807 }
1808 EXPORT_SYMBOL(register_netdevice_notifier);
1809 
1810 /**
1811  * unregister_netdevice_notifier - unregister a network notifier block
1812  * @nb: notifier
1813  *
1814  * Unregister a notifier previously registered by
1815  * register_netdevice_notifier(). The notifier is unlinked into the
1816  * kernel structures and may then be reused. A negative errno code
1817  * is returned on a failure.
1818  *
1819  * After unregistering unregister and down device events are synthesized
1820  * for all devices on the device list to the removed notifier to remove
1821  * the need for special case cleanup code.
1822  */
1823 
1824 int unregister_netdevice_notifier(struct notifier_block *nb)
1825 {
1826 	struct net *net;
1827 	int err;
1828 
1829 	/* Close race with setup_net() and cleanup_net() */
1830 	down_write(&pernet_ops_rwsem);
1831 	rtnl_lock();
1832 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1833 	if (err)
1834 		goto unlock;
1835 
1836 	for_each_net(net)
1837 		call_netdevice_unregister_net_notifiers(nb, net);
1838 
1839 unlock:
1840 	rtnl_unlock();
1841 	up_write(&pernet_ops_rwsem);
1842 	return err;
1843 }
1844 EXPORT_SYMBOL(unregister_netdevice_notifier);
1845 
1846 static int __register_netdevice_notifier_net(struct net *net,
1847 					     struct notifier_block *nb,
1848 					     bool ignore_call_fail)
1849 {
1850 	int err;
1851 
1852 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
1853 	if (err)
1854 		return err;
1855 	if (dev_boot_phase)
1856 		return 0;
1857 
1858 	err = call_netdevice_register_net_notifiers(nb, net);
1859 	if (err && !ignore_call_fail)
1860 		goto chain_unregister;
1861 
1862 	return 0;
1863 
1864 chain_unregister:
1865 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
1866 	return err;
1867 }
1868 
1869 static int __unregister_netdevice_notifier_net(struct net *net,
1870 					       struct notifier_block *nb)
1871 {
1872 	int err;
1873 
1874 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1875 	if (err)
1876 		return err;
1877 
1878 	call_netdevice_unregister_net_notifiers(nb, net);
1879 	return 0;
1880 }
1881 
1882 /**
1883  * register_netdevice_notifier_net - register a per-netns network notifier block
1884  * @net: network namespace
1885  * @nb: notifier
1886  *
1887  * Register a notifier to be called when network device events occur.
1888  * The notifier passed is linked into the kernel structures and must
1889  * not be reused until it has been unregistered. A negative errno code
1890  * is returned on a failure.
1891  *
1892  * When registered all registration and up events are replayed
1893  * to the new notifier to allow device to have a race free
1894  * view of the network device list.
1895  */
1896 
1897 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1898 {
1899 	int err;
1900 
1901 	rtnl_lock();
1902 	err = __register_netdevice_notifier_net(net, nb, false);
1903 	rtnl_unlock();
1904 	return err;
1905 }
1906 EXPORT_SYMBOL(register_netdevice_notifier_net);
1907 
1908 /**
1909  * unregister_netdevice_notifier_net - unregister a per-netns
1910  *                                     network notifier block
1911  * @net: network namespace
1912  * @nb: notifier
1913  *
1914  * Unregister a notifier previously registered by
1915  * register_netdevice_notifier(). The notifier is unlinked into the
1916  * kernel structures and may then be reused. A negative errno code
1917  * is returned on a failure.
1918  *
1919  * After unregistering unregister and down device events are synthesized
1920  * for all devices on the device list to the removed notifier to remove
1921  * the need for special case cleanup code.
1922  */
1923 
1924 int unregister_netdevice_notifier_net(struct net *net,
1925 				      struct notifier_block *nb)
1926 {
1927 	int err;
1928 
1929 	rtnl_lock();
1930 	err = __unregister_netdevice_notifier_net(net, nb);
1931 	rtnl_unlock();
1932 	return err;
1933 }
1934 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1935 
1936 int register_netdevice_notifier_dev_net(struct net_device *dev,
1937 					struct notifier_block *nb,
1938 					struct netdev_net_notifier *nn)
1939 {
1940 	int err;
1941 
1942 	rtnl_lock();
1943 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1944 	if (!err) {
1945 		nn->nb = nb;
1946 		list_add(&nn->list, &dev->net_notifier_list);
1947 	}
1948 	rtnl_unlock();
1949 	return err;
1950 }
1951 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1952 
1953 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1954 					  struct notifier_block *nb,
1955 					  struct netdev_net_notifier *nn)
1956 {
1957 	int err;
1958 
1959 	rtnl_lock();
1960 	list_del(&nn->list);
1961 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1962 	rtnl_unlock();
1963 	return err;
1964 }
1965 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1966 
1967 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1968 					     struct net *net)
1969 {
1970 	struct netdev_net_notifier *nn;
1971 
1972 	list_for_each_entry(nn, &dev->net_notifier_list, list) {
1973 		__unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
1974 		__register_netdevice_notifier_net(net, nn->nb, true);
1975 	}
1976 }
1977 
1978 /**
1979  *	call_netdevice_notifiers_info - call all network notifier blocks
1980  *	@val: value passed unmodified to notifier function
1981  *	@info: notifier information data
1982  *
1983  *	Call all network notifier blocks.  Parameters and return value
1984  *	are as for raw_notifier_call_chain().
1985  */
1986 
1987 static int call_netdevice_notifiers_info(unsigned long val,
1988 					 struct netdev_notifier_info *info)
1989 {
1990 	struct net *net = dev_net(info->dev);
1991 	int ret;
1992 
1993 	ASSERT_RTNL();
1994 
1995 	/* Run per-netns notifier block chain first, then run the global one.
1996 	 * Hopefully, one day, the global one is going to be removed after
1997 	 * all notifier block registrators get converted to be per-netns.
1998 	 */
1999 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2000 	if (ret & NOTIFY_STOP_MASK)
2001 		return ret;
2002 	return raw_notifier_call_chain(&netdev_chain, val, info);
2003 }
2004 
2005 static int call_netdevice_notifiers_extack(unsigned long val,
2006 					   struct net_device *dev,
2007 					   struct netlink_ext_ack *extack)
2008 {
2009 	struct netdev_notifier_info info = {
2010 		.dev = dev,
2011 		.extack = extack,
2012 	};
2013 
2014 	return call_netdevice_notifiers_info(val, &info);
2015 }
2016 
2017 /**
2018  *	call_netdevice_notifiers - call all network notifier blocks
2019  *      @val: value passed unmodified to notifier function
2020  *      @dev: net_device pointer passed unmodified to notifier function
2021  *
2022  *	Call all network notifier blocks.  Parameters and return value
2023  *	are as for raw_notifier_call_chain().
2024  */
2025 
2026 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2027 {
2028 	return call_netdevice_notifiers_extack(val, dev, NULL);
2029 }
2030 EXPORT_SYMBOL(call_netdevice_notifiers);
2031 
2032 /**
2033  *	call_netdevice_notifiers_mtu - call all network notifier blocks
2034  *	@val: value passed unmodified to notifier function
2035  *	@dev: net_device pointer passed unmodified to notifier function
2036  *	@arg: additional u32 argument passed to the notifier function
2037  *
2038  *	Call all network notifier blocks.  Parameters and return value
2039  *	are as for raw_notifier_call_chain().
2040  */
2041 static int call_netdevice_notifiers_mtu(unsigned long val,
2042 					struct net_device *dev, u32 arg)
2043 {
2044 	struct netdev_notifier_info_ext info = {
2045 		.info.dev = dev,
2046 		.ext.mtu = arg,
2047 	};
2048 
2049 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2050 
2051 	return call_netdevice_notifiers_info(val, &info.info);
2052 }
2053 
2054 #ifdef CONFIG_NET_INGRESS
2055 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2056 
2057 void net_inc_ingress_queue(void)
2058 {
2059 	static_branch_inc(&ingress_needed_key);
2060 }
2061 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2062 
2063 void net_dec_ingress_queue(void)
2064 {
2065 	static_branch_dec(&ingress_needed_key);
2066 }
2067 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2068 #endif
2069 
2070 #ifdef CONFIG_NET_EGRESS
2071 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2072 
2073 void net_inc_egress_queue(void)
2074 {
2075 	static_branch_inc(&egress_needed_key);
2076 }
2077 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2078 
2079 void net_dec_egress_queue(void)
2080 {
2081 	static_branch_dec(&egress_needed_key);
2082 }
2083 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2084 #endif
2085 
2086 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2087 #ifdef CONFIG_JUMP_LABEL
2088 static atomic_t netstamp_needed_deferred;
2089 static atomic_t netstamp_wanted;
2090 static void netstamp_clear(struct work_struct *work)
2091 {
2092 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2093 	int wanted;
2094 
2095 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2096 	if (wanted > 0)
2097 		static_branch_enable(&netstamp_needed_key);
2098 	else
2099 		static_branch_disable(&netstamp_needed_key);
2100 }
2101 static DECLARE_WORK(netstamp_work, netstamp_clear);
2102 #endif
2103 
2104 void net_enable_timestamp(void)
2105 {
2106 #ifdef CONFIG_JUMP_LABEL
2107 	int wanted;
2108 
2109 	while (1) {
2110 		wanted = atomic_read(&netstamp_wanted);
2111 		if (wanted <= 0)
2112 			break;
2113 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2114 			return;
2115 	}
2116 	atomic_inc(&netstamp_needed_deferred);
2117 	schedule_work(&netstamp_work);
2118 #else
2119 	static_branch_inc(&netstamp_needed_key);
2120 #endif
2121 }
2122 EXPORT_SYMBOL(net_enable_timestamp);
2123 
2124 void net_disable_timestamp(void)
2125 {
2126 #ifdef CONFIG_JUMP_LABEL
2127 	int wanted;
2128 
2129 	while (1) {
2130 		wanted = atomic_read(&netstamp_wanted);
2131 		if (wanted <= 1)
2132 			break;
2133 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2134 			return;
2135 	}
2136 	atomic_dec(&netstamp_needed_deferred);
2137 	schedule_work(&netstamp_work);
2138 #else
2139 	static_branch_dec(&netstamp_needed_key);
2140 #endif
2141 }
2142 EXPORT_SYMBOL(net_disable_timestamp);
2143 
2144 static inline void net_timestamp_set(struct sk_buff *skb)
2145 {
2146 	skb->tstamp = 0;
2147 	if (static_branch_unlikely(&netstamp_needed_key))
2148 		__net_timestamp(skb);
2149 }
2150 
2151 #define net_timestamp_check(COND, SKB)				\
2152 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2153 		if ((COND) && !(SKB)->tstamp)			\
2154 			__net_timestamp(SKB);			\
2155 	}							\
2156 
2157 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2158 {
2159 	return __is_skb_forwardable(dev, skb, true);
2160 }
2161 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2162 
2163 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2164 			      bool check_mtu)
2165 {
2166 	int ret = ____dev_forward_skb(dev, skb, check_mtu);
2167 
2168 	if (likely(!ret)) {
2169 		skb->protocol = eth_type_trans(skb, dev);
2170 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2171 	}
2172 
2173 	return ret;
2174 }
2175 
2176 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2177 {
2178 	return __dev_forward_skb2(dev, skb, true);
2179 }
2180 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2181 
2182 /**
2183  * dev_forward_skb - loopback an skb to another netif
2184  *
2185  * @dev: destination network device
2186  * @skb: buffer to forward
2187  *
2188  * return values:
2189  *	NET_RX_SUCCESS	(no congestion)
2190  *	NET_RX_DROP     (packet was dropped, but freed)
2191  *
2192  * dev_forward_skb can be used for injecting an skb from the
2193  * start_xmit function of one device into the receive queue
2194  * of another device.
2195  *
2196  * The receiving device may be in another namespace, so
2197  * we have to clear all information in the skb that could
2198  * impact namespace isolation.
2199  */
2200 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2201 {
2202 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2203 }
2204 EXPORT_SYMBOL_GPL(dev_forward_skb);
2205 
2206 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2207 {
2208 	return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2209 }
2210 
2211 static inline int deliver_skb(struct sk_buff *skb,
2212 			      struct packet_type *pt_prev,
2213 			      struct net_device *orig_dev)
2214 {
2215 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2216 		return -ENOMEM;
2217 	refcount_inc(&skb->users);
2218 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2219 }
2220 
2221 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2222 					  struct packet_type **pt,
2223 					  struct net_device *orig_dev,
2224 					  __be16 type,
2225 					  struct list_head *ptype_list)
2226 {
2227 	struct packet_type *ptype, *pt_prev = *pt;
2228 
2229 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2230 		if (ptype->type != type)
2231 			continue;
2232 		if (pt_prev)
2233 			deliver_skb(skb, pt_prev, orig_dev);
2234 		pt_prev = ptype;
2235 	}
2236 	*pt = pt_prev;
2237 }
2238 
2239 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2240 {
2241 	if (!ptype->af_packet_priv || !skb->sk)
2242 		return false;
2243 
2244 	if (ptype->id_match)
2245 		return ptype->id_match(ptype, skb->sk);
2246 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2247 		return true;
2248 
2249 	return false;
2250 }
2251 
2252 /**
2253  * dev_nit_active - return true if any network interface taps are in use
2254  *
2255  * @dev: network device to check for the presence of taps
2256  */
2257 bool dev_nit_active(struct net_device *dev)
2258 {
2259 	return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2260 }
2261 EXPORT_SYMBOL_GPL(dev_nit_active);
2262 
2263 /*
2264  *	Support routine. Sends outgoing frames to any network
2265  *	taps currently in use.
2266  */
2267 
2268 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2269 {
2270 	struct packet_type *ptype;
2271 	struct sk_buff *skb2 = NULL;
2272 	struct packet_type *pt_prev = NULL;
2273 	struct list_head *ptype_list = &ptype_all;
2274 
2275 	rcu_read_lock();
2276 again:
2277 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2278 		if (ptype->ignore_outgoing)
2279 			continue;
2280 
2281 		/* Never send packets back to the socket
2282 		 * they originated from - MvS (miquels@drinkel.ow.org)
2283 		 */
2284 		if (skb_loop_sk(ptype, skb))
2285 			continue;
2286 
2287 		if (pt_prev) {
2288 			deliver_skb(skb2, pt_prev, skb->dev);
2289 			pt_prev = ptype;
2290 			continue;
2291 		}
2292 
2293 		/* need to clone skb, done only once */
2294 		skb2 = skb_clone(skb, GFP_ATOMIC);
2295 		if (!skb2)
2296 			goto out_unlock;
2297 
2298 		net_timestamp_set(skb2);
2299 
2300 		/* skb->nh should be correctly
2301 		 * set by sender, so that the second statement is
2302 		 * just protection against buggy protocols.
2303 		 */
2304 		skb_reset_mac_header(skb2);
2305 
2306 		if (skb_network_header(skb2) < skb2->data ||
2307 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2308 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2309 					     ntohs(skb2->protocol),
2310 					     dev->name);
2311 			skb_reset_network_header(skb2);
2312 		}
2313 
2314 		skb2->transport_header = skb2->network_header;
2315 		skb2->pkt_type = PACKET_OUTGOING;
2316 		pt_prev = ptype;
2317 	}
2318 
2319 	if (ptype_list == &ptype_all) {
2320 		ptype_list = &dev->ptype_all;
2321 		goto again;
2322 	}
2323 out_unlock:
2324 	if (pt_prev) {
2325 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2326 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2327 		else
2328 			kfree_skb(skb2);
2329 	}
2330 	rcu_read_unlock();
2331 }
2332 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2333 
2334 /**
2335  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2336  * @dev: Network device
2337  * @txq: number of queues available
2338  *
2339  * If real_num_tx_queues is changed the tc mappings may no longer be
2340  * valid. To resolve this verify the tc mapping remains valid and if
2341  * not NULL the mapping. With no priorities mapping to this
2342  * offset/count pair it will no longer be used. In the worst case TC0
2343  * is invalid nothing can be done so disable priority mappings. If is
2344  * expected that drivers will fix this mapping if they can before
2345  * calling netif_set_real_num_tx_queues.
2346  */
2347 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2348 {
2349 	int i;
2350 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2351 
2352 	/* If TC0 is invalidated disable TC mapping */
2353 	if (tc->offset + tc->count > txq) {
2354 		netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2355 		dev->num_tc = 0;
2356 		return;
2357 	}
2358 
2359 	/* Invalidated prio to tc mappings set to TC0 */
2360 	for (i = 1; i < TC_BITMASK + 1; i++) {
2361 		int q = netdev_get_prio_tc_map(dev, i);
2362 
2363 		tc = &dev->tc_to_txq[q];
2364 		if (tc->offset + tc->count > txq) {
2365 			netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2366 				    i, q);
2367 			netdev_set_prio_tc_map(dev, i, 0);
2368 		}
2369 	}
2370 }
2371 
2372 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2373 {
2374 	if (dev->num_tc) {
2375 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2376 		int i;
2377 
2378 		/* walk through the TCs and see if it falls into any of them */
2379 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2380 			if ((txq - tc->offset) < tc->count)
2381 				return i;
2382 		}
2383 
2384 		/* didn't find it, just return -1 to indicate no match */
2385 		return -1;
2386 	}
2387 
2388 	return 0;
2389 }
2390 EXPORT_SYMBOL(netdev_txq_to_tc);
2391 
2392 #ifdef CONFIG_XPS
2393 static struct static_key xps_needed __read_mostly;
2394 static struct static_key xps_rxqs_needed __read_mostly;
2395 static DEFINE_MUTEX(xps_map_mutex);
2396 #define xmap_dereference(P)		\
2397 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2398 
2399 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2400 			     struct xps_dev_maps *old_maps, int tci, u16 index)
2401 {
2402 	struct xps_map *map = NULL;
2403 	int pos;
2404 
2405 	if (dev_maps)
2406 		map = xmap_dereference(dev_maps->attr_map[tci]);
2407 	if (!map)
2408 		return false;
2409 
2410 	for (pos = map->len; pos--;) {
2411 		if (map->queues[pos] != index)
2412 			continue;
2413 
2414 		if (map->len > 1) {
2415 			map->queues[pos] = map->queues[--map->len];
2416 			break;
2417 		}
2418 
2419 		if (old_maps)
2420 			RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2421 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2422 		kfree_rcu(map, rcu);
2423 		return false;
2424 	}
2425 
2426 	return true;
2427 }
2428 
2429 static bool remove_xps_queue_cpu(struct net_device *dev,
2430 				 struct xps_dev_maps *dev_maps,
2431 				 int cpu, u16 offset, u16 count)
2432 {
2433 	int num_tc = dev_maps->num_tc;
2434 	bool active = false;
2435 	int tci;
2436 
2437 	for (tci = cpu * num_tc; num_tc--; tci++) {
2438 		int i, j;
2439 
2440 		for (i = count, j = offset; i--; j++) {
2441 			if (!remove_xps_queue(dev_maps, NULL, tci, j))
2442 				break;
2443 		}
2444 
2445 		active |= i < 0;
2446 	}
2447 
2448 	return active;
2449 }
2450 
2451 static void reset_xps_maps(struct net_device *dev,
2452 			   struct xps_dev_maps *dev_maps,
2453 			   enum xps_map_type type)
2454 {
2455 	static_key_slow_dec_cpuslocked(&xps_needed);
2456 	if (type == XPS_RXQS)
2457 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2458 
2459 	RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2460 
2461 	kfree_rcu(dev_maps, rcu);
2462 }
2463 
2464 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2465 			   u16 offset, u16 count)
2466 {
2467 	struct xps_dev_maps *dev_maps;
2468 	bool active = false;
2469 	int i, j;
2470 
2471 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2472 	if (!dev_maps)
2473 		return;
2474 
2475 	for (j = 0; j < dev_maps->nr_ids; j++)
2476 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2477 	if (!active)
2478 		reset_xps_maps(dev, dev_maps, type);
2479 
2480 	if (type == XPS_CPUS) {
2481 		for (i = offset + (count - 1); count--; i--)
2482 			netdev_queue_numa_node_write(
2483 				netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2484 	}
2485 }
2486 
2487 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2488 				   u16 count)
2489 {
2490 	if (!static_key_false(&xps_needed))
2491 		return;
2492 
2493 	cpus_read_lock();
2494 	mutex_lock(&xps_map_mutex);
2495 
2496 	if (static_key_false(&xps_rxqs_needed))
2497 		clean_xps_maps(dev, XPS_RXQS, offset, count);
2498 
2499 	clean_xps_maps(dev, XPS_CPUS, offset, count);
2500 
2501 	mutex_unlock(&xps_map_mutex);
2502 	cpus_read_unlock();
2503 }
2504 
2505 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2506 {
2507 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2508 }
2509 
2510 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2511 				      u16 index, bool is_rxqs_map)
2512 {
2513 	struct xps_map *new_map;
2514 	int alloc_len = XPS_MIN_MAP_ALLOC;
2515 	int i, pos;
2516 
2517 	for (pos = 0; map && pos < map->len; pos++) {
2518 		if (map->queues[pos] != index)
2519 			continue;
2520 		return map;
2521 	}
2522 
2523 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2524 	if (map) {
2525 		if (pos < map->alloc_len)
2526 			return map;
2527 
2528 		alloc_len = map->alloc_len * 2;
2529 	}
2530 
2531 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2532 	 *  map
2533 	 */
2534 	if (is_rxqs_map)
2535 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2536 	else
2537 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2538 				       cpu_to_node(attr_index));
2539 	if (!new_map)
2540 		return NULL;
2541 
2542 	for (i = 0; i < pos; i++)
2543 		new_map->queues[i] = map->queues[i];
2544 	new_map->alloc_len = alloc_len;
2545 	new_map->len = pos;
2546 
2547 	return new_map;
2548 }
2549 
2550 /* Copy xps maps at a given index */
2551 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2552 			      struct xps_dev_maps *new_dev_maps, int index,
2553 			      int tc, bool skip_tc)
2554 {
2555 	int i, tci = index * dev_maps->num_tc;
2556 	struct xps_map *map;
2557 
2558 	/* copy maps belonging to foreign traffic classes */
2559 	for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2560 		if (i == tc && skip_tc)
2561 			continue;
2562 
2563 		/* fill in the new device map from the old device map */
2564 		map = xmap_dereference(dev_maps->attr_map[tci]);
2565 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2566 	}
2567 }
2568 
2569 /* Must be called under cpus_read_lock */
2570 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2571 			  u16 index, enum xps_map_type type)
2572 {
2573 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2574 	const unsigned long *online_mask = NULL;
2575 	bool active = false, copy = false;
2576 	int i, j, tci, numa_node_id = -2;
2577 	int maps_sz, num_tc = 1, tc = 0;
2578 	struct xps_map *map, *new_map;
2579 	unsigned int nr_ids;
2580 
2581 	if (dev->num_tc) {
2582 		/* Do not allow XPS on subordinate device directly */
2583 		num_tc = dev->num_tc;
2584 		if (num_tc < 0)
2585 			return -EINVAL;
2586 
2587 		/* If queue belongs to subordinate dev use its map */
2588 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2589 
2590 		tc = netdev_txq_to_tc(dev, index);
2591 		if (tc < 0)
2592 			return -EINVAL;
2593 	}
2594 
2595 	mutex_lock(&xps_map_mutex);
2596 
2597 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2598 	if (type == XPS_RXQS) {
2599 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2600 		nr_ids = dev->num_rx_queues;
2601 	} else {
2602 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2603 		if (num_possible_cpus() > 1)
2604 			online_mask = cpumask_bits(cpu_online_mask);
2605 		nr_ids = nr_cpu_ids;
2606 	}
2607 
2608 	if (maps_sz < L1_CACHE_BYTES)
2609 		maps_sz = L1_CACHE_BYTES;
2610 
2611 	/* The old dev_maps could be larger or smaller than the one we're
2612 	 * setting up now, as dev->num_tc or nr_ids could have been updated in
2613 	 * between. We could try to be smart, but let's be safe instead and only
2614 	 * copy foreign traffic classes if the two map sizes match.
2615 	 */
2616 	if (dev_maps &&
2617 	    dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2618 		copy = true;
2619 
2620 	/* allocate memory for queue storage */
2621 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2622 	     j < nr_ids;) {
2623 		if (!new_dev_maps) {
2624 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2625 			if (!new_dev_maps) {
2626 				mutex_unlock(&xps_map_mutex);
2627 				return -ENOMEM;
2628 			}
2629 
2630 			new_dev_maps->nr_ids = nr_ids;
2631 			new_dev_maps->num_tc = num_tc;
2632 		}
2633 
2634 		tci = j * num_tc + tc;
2635 		map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2636 
2637 		map = expand_xps_map(map, j, index, type == XPS_RXQS);
2638 		if (!map)
2639 			goto error;
2640 
2641 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2642 	}
2643 
2644 	if (!new_dev_maps)
2645 		goto out_no_new_maps;
2646 
2647 	if (!dev_maps) {
2648 		/* Increment static keys at most once per type */
2649 		static_key_slow_inc_cpuslocked(&xps_needed);
2650 		if (type == XPS_RXQS)
2651 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2652 	}
2653 
2654 	for (j = 0; j < nr_ids; j++) {
2655 		bool skip_tc = false;
2656 
2657 		tci = j * num_tc + tc;
2658 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2659 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2660 			/* add tx-queue to CPU/rx-queue maps */
2661 			int pos = 0;
2662 
2663 			skip_tc = true;
2664 
2665 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2666 			while ((pos < map->len) && (map->queues[pos] != index))
2667 				pos++;
2668 
2669 			if (pos == map->len)
2670 				map->queues[map->len++] = index;
2671 #ifdef CONFIG_NUMA
2672 			if (type == XPS_CPUS) {
2673 				if (numa_node_id == -2)
2674 					numa_node_id = cpu_to_node(j);
2675 				else if (numa_node_id != cpu_to_node(j))
2676 					numa_node_id = -1;
2677 			}
2678 #endif
2679 		}
2680 
2681 		if (copy)
2682 			xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2683 					  skip_tc);
2684 	}
2685 
2686 	rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2687 
2688 	/* Cleanup old maps */
2689 	if (!dev_maps)
2690 		goto out_no_old_maps;
2691 
2692 	for (j = 0; j < dev_maps->nr_ids; j++) {
2693 		for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2694 			map = xmap_dereference(dev_maps->attr_map[tci]);
2695 			if (!map)
2696 				continue;
2697 
2698 			if (copy) {
2699 				new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2700 				if (map == new_map)
2701 					continue;
2702 			}
2703 
2704 			RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2705 			kfree_rcu(map, rcu);
2706 		}
2707 	}
2708 
2709 	old_dev_maps = dev_maps;
2710 
2711 out_no_old_maps:
2712 	dev_maps = new_dev_maps;
2713 	active = true;
2714 
2715 out_no_new_maps:
2716 	if (type == XPS_CPUS)
2717 		/* update Tx queue numa node */
2718 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2719 					     (numa_node_id >= 0) ?
2720 					     numa_node_id : NUMA_NO_NODE);
2721 
2722 	if (!dev_maps)
2723 		goto out_no_maps;
2724 
2725 	/* removes tx-queue from unused CPUs/rx-queues */
2726 	for (j = 0; j < dev_maps->nr_ids; j++) {
2727 		tci = j * dev_maps->num_tc;
2728 
2729 		for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2730 			if (i == tc &&
2731 			    netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2732 			    netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2733 				continue;
2734 
2735 			active |= remove_xps_queue(dev_maps,
2736 						   copy ? old_dev_maps : NULL,
2737 						   tci, index);
2738 		}
2739 	}
2740 
2741 	if (old_dev_maps)
2742 		kfree_rcu(old_dev_maps, rcu);
2743 
2744 	/* free map if not active */
2745 	if (!active)
2746 		reset_xps_maps(dev, dev_maps, type);
2747 
2748 out_no_maps:
2749 	mutex_unlock(&xps_map_mutex);
2750 
2751 	return 0;
2752 error:
2753 	/* remove any maps that we added */
2754 	for (j = 0; j < nr_ids; j++) {
2755 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2756 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2757 			map = copy ?
2758 			      xmap_dereference(dev_maps->attr_map[tci]) :
2759 			      NULL;
2760 			if (new_map && new_map != map)
2761 				kfree(new_map);
2762 		}
2763 	}
2764 
2765 	mutex_unlock(&xps_map_mutex);
2766 
2767 	kfree(new_dev_maps);
2768 	return -ENOMEM;
2769 }
2770 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2771 
2772 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2773 			u16 index)
2774 {
2775 	int ret;
2776 
2777 	cpus_read_lock();
2778 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2779 	cpus_read_unlock();
2780 
2781 	return ret;
2782 }
2783 EXPORT_SYMBOL(netif_set_xps_queue);
2784 
2785 #endif
2786 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2787 {
2788 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2789 
2790 	/* Unbind any subordinate channels */
2791 	while (txq-- != &dev->_tx[0]) {
2792 		if (txq->sb_dev)
2793 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2794 	}
2795 }
2796 
2797 void netdev_reset_tc(struct net_device *dev)
2798 {
2799 #ifdef CONFIG_XPS
2800 	netif_reset_xps_queues_gt(dev, 0);
2801 #endif
2802 	netdev_unbind_all_sb_channels(dev);
2803 
2804 	/* Reset TC configuration of device */
2805 	dev->num_tc = 0;
2806 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2807 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2808 }
2809 EXPORT_SYMBOL(netdev_reset_tc);
2810 
2811 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2812 {
2813 	if (tc >= dev->num_tc)
2814 		return -EINVAL;
2815 
2816 #ifdef CONFIG_XPS
2817 	netif_reset_xps_queues(dev, offset, count);
2818 #endif
2819 	dev->tc_to_txq[tc].count = count;
2820 	dev->tc_to_txq[tc].offset = offset;
2821 	return 0;
2822 }
2823 EXPORT_SYMBOL(netdev_set_tc_queue);
2824 
2825 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2826 {
2827 	if (num_tc > TC_MAX_QUEUE)
2828 		return -EINVAL;
2829 
2830 #ifdef CONFIG_XPS
2831 	netif_reset_xps_queues_gt(dev, 0);
2832 #endif
2833 	netdev_unbind_all_sb_channels(dev);
2834 
2835 	dev->num_tc = num_tc;
2836 	return 0;
2837 }
2838 EXPORT_SYMBOL(netdev_set_num_tc);
2839 
2840 void netdev_unbind_sb_channel(struct net_device *dev,
2841 			      struct net_device *sb_dev)
2842 {
2843 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2844 
2845 #ifdef CONFIG_XPS
2846 	netif_reset_xps_queues_gt(sb_dev, 0);
2847 #endif
2848 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2849 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2850 
2851 	while (txq-- != &dev->_tx[0]) {
2852 		if (txq->sb_dev == sb_dev)
2853 			txq->sb_dev = NULL;
2854 	}
2855 }
2856 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2857 
2858 int netdev_bind_sb_channel_queue(struct net_device *dev,
2859 				 struct net_device *sb_dev,
2860 				 u8 tc, u16 count, u16 offset)
2861 {
2862 	/* Make certain the sb_dev and dev are already configured */
2863 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2864 		return -EINVAL;
2865 
2866 	/* We cannot hand out queues we don't have */
2867 	if ((offset + count) > dev->real_num_tx_queues)
2868 		return -EINVAL;
2869 
2870 	/* Record the mapping */
2871 	sb_dev->tc_to_txq[tc].count = count;
2872 	sb_dev->tc_to_txq[tc].offset = offset;
2873 
2874 	/* Provide a way for Tx queue to find the tc_to_txq map or
2875 	 * XPS map for itself.
2876 	 */
2877 	while (count--)
2878 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2879 
2880 	return 0;
2881 }
2882 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2883 
2884 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2885 {
2886 	/* Do not use a multiqueue device to represent a subordinate channel */
2887 	if (netif_is_multiqueue(dev))
2888 		return -ENODEV;
2889 
2890 	/* We allow channels 1 - 32767 to be used for subordinate channels.
2891 	 * Channel 0 is meant to be "native" mode and used only to represent
2892 	 * the main root device. We allow writing 0 to reset the device back
2893 	 * to normal mode after being used as a subordinate channel.
2894 	 */
2895 	if (channel > S16_MAX)
2896 		return -EINVAL;
2897 
2898 	dev->num_tc = -channel;
2899 
2900 	return 0;
2901 }
2902 EXPORT_SYMBOL(netdev_set_sb_channel);
2903 
2904 /*
2905  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2906  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2907  */
2908 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2909 {
2910 	bool disabling;
2911 	int rc;
2912 
2913 	disabling = txq < dev->real_num_tx_queues;
2914 
2915 	if (txq < 1 || txq > dev->num_tx_queues)
2916 		return -EINVAL;
2917 
2918 	if (dev->reg_state == NETREG_REGISTERED ||
2919 	    dev->reg_state == NETREG_UNREGISTERING) {
2920 		ASSERT_RTNL();
2921 
2922 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2923 						  txq);
2924 		if (rc)
2925 			return rc;
2926 
2927 		if (dev->num_tc)
2928 			netif_setup_tc(dev, txq);
2929 
2930 		dev_qdisc_change_real_num_tx(dev, txq);
2931 
2932 		dev->real_num_tx_queues = txq;
2933 
2934 		if (disabling) {
2935 			synchronize_net();
2936 			qdisc_reset_all_tx_gt(dev, txq);
2937 #ifdef CONFIG_XPS
2938 			netif_reset_xps_queues_gt(dev, txq);
2939 #endif
2940 		}
2941 	} else {
2942 		dev->real_num_tx_queues = txq;
2943 	}
2944 
2945 	return 0;
2946 }
2947 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2948 
2949 #ifdef CONFIG_SYSFS
2950 /**
2951  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2952  *	@dev: Network device
2953  *	@rxq: Actual number of RX queues
2954  *
2955  *	This must be called either with the rtnl_lock held or before
2956  *	registration of the net device.  Returns 0 on success, or a
2957  *	negative error code.  If called before registration, it always
2958  *	succeeds.
2959  */
2960 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2961 {
2962 	int rc;
2963 
2964 	if (rxq < 1 || rxq > dev->num_rx_queues)
2965 		return -EINVAL;
2966 
2967 	if (dev->reg_state == NETREG_REGISTERED) {
2968 		ASSERT_RTNL();
2969 
2970 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2971 						  rxq);
2972 		if (rc)
2973 			return rc;
2974 	}
2975 
2976 	dev->real_num_rx_queues = rxq;
2977 	return 0;
2978 }
2979 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2980 #endif
2981 
2982 /**
2983  *	netif_set_real_num_queues - set actual number of RX and TX queues used
2984  *	@dev: Network device
2985  *	@txq: Actual number of TX queues
2986  *	@rxq: Actual number of RX queues
2987  *
2988  *	Set the real number of both TX and RX queues.
2989  *	Does nothing if the number of queues is already correct.
2990  */
2991 int netif_set_real_num_queues(struct net_device *dev,
2992 			      unsigned int txq, unsigned int rxq)
2993 {
2994 	unsigned int old_rxq = dev->real_num_rx_queues;
2995 	int err;
2996 
2997 	if (txq < 1 || txq > dev->num_tx_queues ||
2998 	    rxq < 1 || rxq > dev->num_rx_queues)
2999 		return -EINVAL;
3000 
3001 	/* Start from increases, so the error path only does decreases -
3002 	 * decreases can't fail.
3003 	 */
3004 	if (rxq > dev->real_num_rx_queues) {
3005 		err = netif_set_real_num_rx_queues(dev, rxq);
3006 		if (err)
3007 			return err;
3008 	}
3009 	if (txq > dev->real_num_tx_queues) {
3010 		err = netif_set_real_num_tx_queues(dev, txq);
3011 		if (err)
3012 			goto undo_rx;
3013 	}
3014 	if (rxq < dev->real_num_rx_queues)
3015 		WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3016 	if (txq < dev->real_num_tx_queues)
3017 		WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3018 
3019 	return 0;
3020 undo_rx:
3021 	WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3022 	return err;
3023 }
3024 EXPORT_SYMBOL(netif_set_real_num_queues);
3025 
3026 /**
3027  * netif_get_num_default_rss_queues - default number of RSS queues
3028  *
3029  * This routine should set an upper limit on the number of RSS queues
3030  * used by default by multiqueue devices.
3031  */
3032 int netif_get_num_default_rss_queues(void)
3033 {
3034 	return is_kdump_kernel() ?
3035 		1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
3036 }
3037 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3038 
3039 static void __netif_reschedule(struct Qdisc *q)
3040 {
3041 	struct softnet_data *sd;
3042 	unsigned long flags;
3043 
3044 	local_irq_save(flags);
3045 	sd = this_cpu_ptr(&softnet_data);
3046 	q->next_sched = NULL;
3047 	*sd->output_queue_tailp = q;
3048 	sd->output_queue_tailp = &q->next_sched;
3049 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3050 	local_irq_restore(flags);
3051 }
3052 
3053 void __netif_schedule(struct Qdisc *q)
3054 {
3055 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3056 		__netif_reschedule(q);
3057 }
3058 EXPORT_SYMBOL(__netif_schedule);
3059 
3060 struct dev_kfree_skb_cb {
3061 	enum skb_free_reason reason;
3062 };
3063 
3064 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3065 {
3066 	return (struct dev_kfree_skb_cb *)skb->cb;
3067 }
3068 
3069 void netif_schedule_queue(struct netdev_queue *txq)
3070 {
3071 	rcu_read_lock();
3072 	if (!netif_xmit_stopped(txq)) {
3073 		struct Qdisc *q = rcu_dereference(txq->qdisc);
3074 
3075 		__netif_schedule(q);
3076 	}
3077 	rcu_read_unlock();
3078 }
3079 EXPORT_SYMBOL(netif_schedule_queue);
3080 
3081 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3082 {
3083 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3084 		struct Qdisc *q;
3085 
3086 		rcu_read_lock();
3087 		q = rcu_dereference(dev_queue->qdisc);
3088 		__netif_schedule(q);
3089 		rcu_read_unlock();
3090 	}
3091 }
3092 EXPORT_SYMBOL(netif_tx_wake_queue);
3093 
3094 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3095 {
3096 	unsigned long flags;
3097 
3098 	if (unlikely(!skb))
3099 		return;
3100 
3101 	if (likely(refcount_read(&skb->users) == 1)) {
3102 		smp_rmb();
3103 		refcount_set(&skb->users, 0);
3104 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3105 		return;
3106 	}
3107 	get_kfree_skb_cb(skb)->reason = reason;
3108 	local_irq_save(flags);
3109 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3110 	__this_cpu_write(softnet_data.completion_queue, skb);
3111 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3112 	local_irq_restore(flags);
3113 }
3114 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3115 
3116 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3117 {
3118 	if (in_hardirq() || irqs_disabled())
3119 		__dev_kfree_skb_irq(skb, reason);
3120 	else
3121 		dev_kfree_skb(skb);
3122 }
3123 EXPORT_SYMBOL(__dev_kfree_skb_any);
3124 
3125 
3126 /**
3127  * netif_device_detach - mark device as removed
3128  * @dev: network device
3129  *
3130  * Mark device as removed from system and therefore no longer available.
3131  */
3132 void netif_device_detach(struct net_device *dev)
3133 {
3134 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3135 	    netif_running(dev)) {
3136 		netif_tx_stop_all_queues(dev);
3137 	}
3138 }
3139 EXPORT_SYMBOL(netif_device_detach);
3140 
3141 /**
3142  * netif_device_attach - mark device as attached
3143  * @dev: network device
3144  *
3145  * Mark device as attached from system and restart if needed.
3146  */
3147 void netif_device_attach(struct net_device *dev)
3148 {
3149 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3150 	    netif_running(dev)) {
3151 		netif_tx_wake_all_queues(dev);
3152 		__netdev_watchdog_up(dev);
3153 	}
3154 }
3155 EXPORT_SYMBOL(netif_device_attach);
3156 
3157 /*
3158  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3159  * to be used as a distribution range.
3160  */
3161 static u16 skb_tx_hash(const struct net_device *dev,
3162 		       const struct net_device *sb_dev,
3163 		       struct sk_buff *skb)
3164 {
3165 	u32 hash;
3166 	u16 qoffset = 0;
3167 	u16 qcount = dev->real_num_tx_queues;
3168 
3169 	if (dev->num_tc) {
3170 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3171 
3172 		qoffset = sb_dev->tc_to_txq[tc].offset;
3173 		qcount = sb_dev->tc_to_txq[tc].count;
3174 	}
3175 
3176 	if (skb_rx_queue_recorded(skb)) {
3177 		hash = skb_get_rx_queue(skb);
3178 		if (hash >= qoffset)
3179 			hash -= qoffset;
3180 		while (unlikely(hash >= qcount))
3181 			hash -= qcount;
3182 		return hash + qoffset;
3183 	}
3184 
3185 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3186 }
3187 
3188 static void skb_warn_bad_offload(const struct sk_buff *skb)
3189 {
3190 	static const netdev_features_t null_features;
3191 	struct net_device *dev = skb->dev;
3192 	const char *name = "";
3193 
3194 	if (!net_ratelimit())
3195 		return;
3196 
3197 	if (dev) {
3198 		if (dev->dev.parent)
3199 			name = dev_driver_string(dev->dev.parent);
3200 		else
3201 			name = netdev_name(dev);
3202 	}
3203 	skb_dump(KERN_WARNING, skb, false);
3204 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3205 	     name, dev ? &dev->features : &null_features,
3206 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3207 }
3208 
3209 /*
3210  * Invalidate hardware checksum when packet is to be mangled, and
3211  * complete checksum manually on outgoing path.
3212  */
3213 int skb_checksum_help(struct sk_buff *skb)
3214 {
3215 	__wsum csum;
3216 	int ret = 0, offset;
3217 
3218 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3219 		goto out_set_summed;
3220 
3221 	if (unlikely(skb_is_gso(skb))) {
3222 		skb_warn_bad_offload(skb);
3223 		return -EINVAL;
3224 	}
3225 
3226 	/* Before computing a checksum, we should make sure no frag could
3227 	 * be modified by an external entity : checksum could be wrong.
3228 	 */
3229 	if (skb_has_shared_frag(skb)) {
3230 		ret = __skb_linearize(skb);
3231 		if (ret)
3232 			goto out;
3233 	}
3234 
3235 	offset = skb_checksum_start_offset(skb);
3236 	BUG_ON(offset >= skb_headlen(skb));
3237 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3238 
3239 	offset += skb->csum_offset;
3240 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3241 
3242 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3243 	if (ret)
3244 		goto out;
3245 
3246 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3247 out_set_summed:
3248 	skb->ip_summed = CHECKSUM_NONE;
3249 out:
3250 	return ret;
3251 }
3252 EXPORT_SYMBOL(skb_checksum_help);
3253 
3254 int skb_crc32c_csum_help(struct sk_buff *skb)
3255 {
3256 	__le32 crc32c_csum;
3257 	int ret = 0, offset, start;
3258 
3259 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3260 		goto out;
3261 
3262 	if (unlikely(skb_is_gso(skb)))
3263 		goto out;
3264 
3265 	/* Before computing a checksum, we should make sure no frag could
3266 	 * be modified by an external entity : checksum could be wrong.
3267 	 */
3268 	if (unlikely(skb_has_shared_frag(skb))) {
3269 		ret = __skb_linearize(skb);
3270 		if (ret)
3271 			goto out;
3272 	}
3273 	start = skb_checksum_start_offset(skb);
3274 	offset = start + offsetof(struct sctphdr, checksum);
3275 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3276 		ret = -EINVAL;
3277 		goto out;
3278 	}
3279 
3280 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3281 	if (ret)
3282 		goto out;
3283 
3284 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3285 						  skb->len - start, ~(__u32)0,
3286 						  crc32c_csum_stub));
3287 	*(__le32 *)(skb->data + offset) = crc32c_csum;
3288 	skb->ip_summed = CHECKSUM_NONE;
3289 	skb->csum_not_inet = 0;
3290 out:
3291 	return ret;
3292 }
3293 
3294 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3295 {
3296 	__be16 type = skb->protocol;
3297 
3298 	/* Tunnel gso handlers can set protocol to ethernet. */
3299 	if (type == htons(ETH_P_TEB)) {
3300 		struct ethhdr *eth;
3301 
3302 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3303 			return 0;
3304 
3305 		eth = (struct ethhdr *)skb->data;
3306 		type = eth->h_proto;
3307 	}
3308 
3309 	return __vlan_get_protocol(skb, type, depth);
3310 }
3311 
3312 /**
3313  *	skb_mac_gso_segment - mac layer segmentation handler.
3314  *	@skb: buffer to segment
3315  *	@features: features for the output path (see dev->features)
3316  */
3317 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3318 				    netdev_features_t features)
3319 {
3320 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3321 	struct packet_offload *ptype;
3322 	int vlan_depth = skb->mac_len;
3323 	__be16 type = skb_network_protocol(skb, &vlan_depth);
3324 
3325 	if (unlikely(!type))
3326 		return ERR_PTR(-EINVAL);
3327 
3328 	__skb_pull(skb, vlan_depth);
3329 
3330 	rcu_read_lock();
3331 	list_for_each_entry_rcu(ptype, &offload_base, list) {
3332 		if (ptype->type == type && ptype->callbacks.gso_segment) {
3333 			segs = ptype->callbacks.gso_segment(skb, features);
3334 			break;
3335 		}
3336 	}
3337 	rcu_read_unlock();
3338 
3339 	__skb_push(skb, skb->data - skb_mac_header(skb));
3340 
3341 	return segs;
3342 }
3343 EXPORT_SYMBOL(skb_mac_gso_segment);
3344 
3345 
3346 /* openvswitch calls this on rx path, so we need a different check.
3347  */
3348 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3349 {
3350 	if (tx_path)
3351 		return skb->ip_summed != CHECKSUM_PARTIAL &&
3352 		       skb->ip_summed != CHECKSUM_UNNECESSARY;
3353 
3354 	return skb->ip_summed == CHECKSUM_NONE;
3355 }
3356 
3357 /**
3358  *	__skb_gso_segment - Perform segmentation on skb.
3359  *	@skb: buffer to segment
3360  *	@features: features for the output path (see dev->features)
3361  *	@tx_path: whether it is called in TX path
3362  *
3363  *	This function segments the given skb and returns a list of segments.
3364  *
3365  *	It may return NULL if the skb requires no segmentation.  This is
3366  *	only possible when GSO is used for verifying header integrity.
3367  *
3368  *	Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3369  */
3370 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3371 				  netdev_features_t features, bool tx_path)
3372 {
3373 	struct sk_buff *segs;
3374 
3375 	if (unlikely(skb_needs_check(skb, tx_path))) {
3376 		int err;
3377 
3378 		/* We're going to init ->check field in TCP or UDP header */
3379 		err = skb_cow_head(skb, 0);
3380 		if (err < 0)
3381 			return ERR_PTR(err);
3382 	}
3383 
3384 	/* Only report GSO partial support if it will enable us to
3385 	 * support segmentation on this frame without needing additional
3386 	 * work.
3387 	 */
3388 	if (features & NETIF_F_GSO_PARTIAL) {
3389 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3390 		struct net_device *dev = skb->dev;
3391 
3392 		partial_features |= dev->features & dev->gso_partial_features;
3393 		if (!skb_gso_ok(skb, features | partial_features))
3394 			features &= ~NETIF_F_GSO_PARTIAL;
3395 	}
3396 
3397 	BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3398 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3399 
3400 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3401 	SKB_GSO_CB(skb)->encap_level = 0;
3402 
3403 	skb_reset_mac_header(skb);
3404 	skb_reset_mac_len(skb);
3405 
3406 	segs = skb_mac_gso_segment(skb, features);
3407 
3408 	if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3409 		skb_warn_bad_offload(skb);
3410 
3411 	return segs;
3412 }
3413 EXPORT_SYMBOL(__skb_gso_segment);
3414 
3415 /* Take action when hardware reception checksum errors are detected. */
3416 #ifdef CONFIG_BUG
3417 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3418 {
3419 	netdev_err(dev, "hw csum failure\n");
3420 	skb_dump(KERN_ERR, skb, true);
3421 	dump_stack();
3422 }
3423 
3424 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3425 {
3426 	DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3427 }
3428 EXPORT_SYMBOL(netdev_rx_csum_fault);
3429 #endif
3430 
3431 /* XXX: check that highmem exists at all on the given machine. */
3432 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3433 {
3434 #ifdef CONFIG_HIGHMEM
3435 	int i;
3436 
3437 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3438 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3439 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3440 
3441 			if (PageHighMem(skb_frag_page(frag)))
3442 				return 1;
3443 		}
3444 	}
3445 #endif
3446 	return 0;
3447 }
3448 
3449 /* If MPLS offload request, verify we are testing hardware MPLS features
3450  * instead of standard features for the netdev.
3451  */
3452 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3453 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3454 					   netdev_features_t features,
3455 					   __be16 type)
3456 {
3457 	if (eth_p_mpls(type))
3458 		features &= skb->dev->mpls_features;
3459 
3460 	return features;
3461 }
3462 #else
3463 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3464 					   netdev_features_t features,
3465 					   __be16 type)
3466 {
3467 	return features;
3468 }
3469 #endif
3470 
3471 static netdev_features_t harmonize_features(struct sk_buff *skb,
3472 	netdev_features_t features)
3473 {
3474 	__be16 type;
3475 
3476 	type = skb_network_protocol(skb, NULL);
3477 	features = net_mpls_features(skb, features, type);
3478 
3479 	if (skb->ip_summed != CHECKSUM_NONE &&
3480 	    !can_checksum_protocol(features, type)) {
3481 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3482 	}
3483 	if (illegal_highdma(skb->dev, skb))
3484 		features &= ~NETIF_F_SG;
3485 
3486 	return features;
3487 }
3488 
3489 netdev_features_t passthru_features_check(struct sk_buff *skb,
3490 					  struct net_device *dev,
3491 					  netdev_features_t features)
3492 {
3493 	return features;
3494 }
3495 EXPORT_SYMBOL(passthru_features_check);
3496 
3497 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3498 					     struct net_device *dev,
3499 					     netdev_features_t features)
3500 {
3501 	return vlan_features_check(skb, features);
3502 }
3503 
3504 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3505 					    struct net_device *dev,
3506 					    netdev_features_t features)
3507 {
3508 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3509 
3510 	if (gso_segs > dev->gso_max_segs)
3511 		return features & ~NETIF_F_GSO_MASK;
3512 
3513 	if (!skb_shinfo(skb)->gso_type) {
3514 		skb_warn_bad_offload(skb);
3515 		return features & ~NETIF_F_GSO_MASK;
3516 	}
3517 
3518 	/* Support for GSO partial features requires software
3519 	 * intervention before we can actually process the packets
3520 	 * so we need to strip support for any partial features now
3521 	 * and we can pull them back in after we have partially
3522 	 * segmented the frame.
3523 	 */
3524 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3525 		features &= ~dev->gso_partial_features;
3526 
3527 	/* Make sure to clear the IPv4 ID mangling feature if the
3528 	 * IPv4 header has the potential to be fragmented.
3529 	 */
3530 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3531 		struct iphdr *iph = skb->encapsulation ?
3532 				    inner_ip_hdr(skb) : ip_hdr(skb);
3533 
3534 		if (!(iph->frag_off & htons(IP_DF)))
3535 			features &= ~NETIF_F_TSO_MANGLEID;
3536 	}
3537 
3538 	return features;
3539 }
3540 
3541 netdev_features_t netif_skb_features(struct sk_buff *skb)
3542 {
3543 	struct net_device *dev = skb->dev;
3544 	netdev_features_t features = dev->features;
3545 
3546 	if (skb_is_gso(skb))
3547 		features = gso_features_check(skb, dev, features);
3548 
3549 	/* If encapsulation offload request, verify we are testing
3550 	 * hardware encapsulation features instead of standard
3551 	 * features for the netdev
3552 	 */
3553 	if (skb->encapsulation)
3554 		features &= dev->hw_enc_features;
3555 
3556 	if (skb_vlan_tagged(skb))
3557 		features = netdev_intersect_features(features,
3558 						     dev->vlan_features |
3559 						     NETIF_F_HW_VLAN_CTAG_TX |
3560 						     NETIF_F_HW_VLAN_STAG_TX);
3561 
3562 	if (dev->netdev_ops->ndo_features_check)
3563 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3564 								features);
3565 	else
3566 		features &= dflt_features_check(skb, dev, features);
3567 
3568 	return harmonize_features(skb, features);
3569 }
3570 EXPORT_SYMBOL(netif_skb_features);
3571 
3572 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3573 		    struct netdev_queue *txq, bool more)
3574 {
3575 	unsigned int len;
3576 	int rc;
3577 
3578 	if (dev_nit_active(dev))
3579 		dev_queue_xmit_nit(skb, dev);
3580 
3581 	len = skb->len;
3582 	PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies);
3583 	trace_net_dev_start_xmit(skb, dev);
3584 	rc = netdev_start_xmit(skb, dev, txq, more);
3585 	trace_net_dev_xmit(skb, rc, dev, len);
3586 
3587 	return rc;
3588 }
3589 
3590 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3591 				    struct netdev_queue *txq, int *ret)
3592 {
3593 	struct sk_buff *skb = first;
3594 	int rc = NETDEV_TX_OK;
3595 
3596 	while (skb) {
3597 		struct sk_buff *next = skb->next;
3598 
3599 		skb_mark_not_on_list(skb);
3600 		rc = xmit_one(skb, dev, txq, next != NULL);
3601 		if (unlikely(!dev_xmit_complete(rc))) {
3602 			skb->next = next;
3603 			goto out;
3604 		}
3605 
3606 		skb = next;
3607 		if (netif_tx_queue_stopped(txq) && skb) {
3608 			rc = NETDEV_TX_BUSY;
3609 			break;
3610 		}
3611 	}
3612 
3613 out:
3614 	*ret = rc;
3615 	return skb;
3616 }
3617 
3618 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3619 					  netdev_features_t features)
3620 {
3621 	if (skb_vlan_tag_present(skb) &&
3622 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3623 		skb = __vlan_hwaccel_push_inside(skb);
3624 	return skb;
3625 }
3626 
3627 int skb_csum_hwoffload_help(struct sk_buff *skb,
3628 			    const netdev_features_t features)
3629 {
3630 	if (unlikely(skb_csum_is_sctp(skb)))
3631 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3632 			skb_crc32c_csum_help(skb);
3633 
3634 	if (features & NETIF_F_HW_CSUM)
3635 		return 0;
3636 
3637 	if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3638 		switch (skb->csum_offset) {
3639 		case offsetof(struct tcphdr, check):
3640 		case offsetof(struct udphdr, check):
3641 			return 0;
3642 		}
3643 	}
3644 
3645 	return skb_checksum_help(skb);
3646 }
3647 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3648 
3649 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3650 {
3651 	netdev_features_t features;
3652 
3653 	features = netif_skb_features(skb);
3654 	skb = validate_xmit_vlan(skb, features);
3655 	if (unlikely(!skb))
3656 		goto out_null;
3657 
3658 	skb = sk_validate_xmit_skb(skb, dev);
3659 	if (unlikely(!skb))
3660 		goto out_null;
3661 
3662 	if (netif_needs_gso(skb, features)) {
3663 		struct sk_buff *segs;
3664 
3665 		segs = skb_gso_segment(skb, features);
3666 		if (IS_ERR(segs)) {
3667 			goto out_kfree_skb;
3668 		} else if (segs) {
3669 			consume_skb(skb);
3670 			skb = segs;
3671 		}
3672 	} else {
3673 		if (skb_needs_linearize(skb, features) &&
3674 		    __skb_linearize(skb))
3675 			goto out_kfree_skb;
3676 
3677 		/* If packet is not checksummed and device does not
3678 		 * support checksumming for this protocol, complete
3679 		 * checksumming here.
3680 		 */
3681 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3682 			if (skb->encapsulation)
3683 				skb_set_inner_transport_header(skb,
3684 							       skb_checksum_start_offset(skb));
3685 			else
3686 				skb_set_transport_header(skb,
3687 							 skb_checksum_start_offset(skb));
3688 			if (skb_csum_hwoffload_help(skb, features))
3689 				goto out_kfree_skb;
3690 		}
3691 	}
3692 
3693 	skb = validate_xmit_xfrm(skb, features, again);
3694 
3695 	return skb;
3696 
3697 out_kfree_skb:
3698 	kfree_skb(skb);
3699 out_null:
3700 	atomic_long_inc(&dev->tx_dropped);
3701 	return NULL;
3702 }
3703 
3704 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3705 {
3706 	struct sk_buff *next, *head = NULL, *tail;
3707 
3708 	for (; skb != NULL; skb = next) {
3709 		next = skb->next;
3710 		skb_mark_not_on_list(skb);
3711 
3712 		/* in case skb wont be segmented, point to itself */
3713 		skb->prev = skb;
3714 
3715 		skb = validate_xmit_skb(skb, dev, again);
3716 		if (!skb)
3717 			continue;
3718 
3719 		if (!head)
3720 			head = skb;
3721 		else
3722 			tail->next = skb;
3723 		/* If skb was segmented, skb->prev points to
3724 		 * the last segment. If not, it still contains skb.
3725 		 */
3726 		tail = skb->prev;
3727 	}
3728 	return head;
3729 }
3730 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3731 
3732 static void qdisc_pkt_len_init(struct sk_buff *skb)
3733 {
3734 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3735 
3736 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3737 
3738 	/* To get more precise estimation of bytes sent on wire,
3739 	 * we add to pkt_len the headers size of all segments
3740 	 */
3741 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3742 		unsigned int hdr_len;
3743 		u16 gso_segs = shinfo->gso_segs;
3744 
3745 		/* mac layer + network layer */
3746 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3747 
3748 		/* + transport layer */
3749 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3750 			const struct tcphdr *th;
3751 			struct tcphdr _tcphdr;
3752 
3753 			th = skb_header_pointer(skb, skb_transport_offset(skb),
3754 						sizeof(_tcphdr), &_tcphdr);
3755 			if (likely(th))
3756 				hdr_len += __tcp_hdrlen(th);
3757 		} else {
3758 			struct udphdr _udphdr;
3759 
3760 			if (skb_header_pointer(skb, skb_transport_offset(skb),
3761 					       sizeof(_udphdr), &_udphdr))
3762 				hdr_len += sizeof(struct udphdr);
3763 		}
3764 
3765 		if (shinfo->gso_type & SKB_GSO_DODGY)
3766 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3767 						shinfo->gso_size);
3768 
3769 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3770 	}
3771 }
3772 
3773 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3774 			     struct sk_buff **to_free,
3775 			     struct netdev_queue *txq)
3776 {
3777 	int rc;
3778 
3779 	rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3780 	if (rc == NET_XMIT_SUCCESS)
3781 		trace_qdisc_enqueue(q, txq, skb);
3782 	return rc;
3783 }
3784 
3785 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3786 				 struct net_device *dev,
3787 				 struct netdev_queue *txq)
3788 {
3789 	spinlock_t *root_lock = qdisc_lock(q);
3790 	struct sk_buff *to_free = NULL;
3791 	bool contended;
3792 	int rc;
3793 
3794 	qdisc_calculate_pkt_len(skb, q);
3795 
3796 	if (q->flags & TCQ_F_NOLOCK) {
3797 		if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3798 		    qdisc_run_begin(q)) {
3799 			/* Retest nolock_qdisc_is_empty() within the protection
3800 			 * of q->seqlock to protect from racing with requeuing.
3801 			 */
3802 			if (unlikely(!nolock_qdisc_is_empty(q))) {
3803 				rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3804 				__qdisc_run(q);
3805 				qdisc_run_end(q);
3806 
3807 				goto no_lock_out;
3808 			}
3809 
3810 			qdisc_bstats_cpu_update(q, skb);
3811 			if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3812 			    !nolock_qdisc_is_empty(q))
3813 				__qdisc_run(q);
3814 
3815 			qdisc_run_end(q);
3816 			return NET_XMIT_SUCCESS;
3817 		}
3818 
3819 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3820 		qdisc_run(q);
3821 
3822 no_lock_out:
3823 		if (unlikely(to_free))
3824 			kfree_skb_list(to_free);
3825 		return rc;
3826 	}
3827 
3828 	/*
3829 	 * Heuristic to force contended enqueues to serialize on a
3830 	 * separate lock before trying to get qdisc main lock.
3831 	 * This permits qdisc->running owner to get the lock more
3832 	 * often and dequeue packets faster.
3833 	 */
3834 	contended = qdisc_is_running(q);
3835 	if (unlikely(contended))
3836 		spin_lock(&q->busylock);
3837 
3838 	spin_lock(root_lock);
3839 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3840 		__qdisc_drop(skb, &to_free);
3841 		rc = NET_XMIT_DROP;
3842 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3843 		   qdisc_run_begin(q)) {
3844 		/*
3845 		 * This is a work-conserving queue; there are no old skbs
3846 		 * waiting to be sent out; and the qdisc is not running -
3847 		 * xmit the skb directly.
3848 		 */
3849 
3850 		qdisc_bstats_update(q, skb);
3851 
3852 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3853 			if (unlikely(contended)) {
3854 				spin_unlock(&q->busylock);
3855 				contended = false;
3856 			}
3857 			__qdisc_run(q);
3858 		}
3859 
3860 		qdisc_run_end(q);
3861 		rc = NET_XMIT_SUCCESS;
3862 	} else {
3863 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3864 		if (qdisc_run_begin(q)) {
3865 			if (unlikely(contended)) {
3866 				spin_unlock(&q->busylock);
3867 				contended = false;
3868 			}
3869 			__qdisc_run(q);
3870 			qdisc_run_end(q);
3871 		}
3872 	}
3873 	spin_unlock(root_lock);
3874 	if (unlikely(to_free))
3875 		kfree_skb_list(to_free);
3876 	if (unlikely(contended))
3877 		spin_unlock(&q->busylock);
3878 	return rc;
3879 }
3880 
3881 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3882 static void skb_update_prio(struct sk_buff *skb)
3883 {
3884 	const struct netprio_map *map;
3885 	const struct sock *sk;
3886 	unsigned int prioidx;
3887 
3888 	if (skb->priority)
3889 		return;
3890 	map = rcu_dereference_bh(skb->dev->priomap);
3891 	if (!map)
3892 		return;
3893 	sk = skb_to_full_sk(skb);
3894 	if (!sk)
3895 		return;
3896 
3897 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3898 
3899 	if (prioidx < map->priomap_len)
3900 		skb->priority = map->priomap[prioidx];
3901 }
3902 #else
3903 #define skb_update_prio(skb)
3904 #endif
3905 
3906 /**
3907  *	dev_loopback_xmit - loop back @skb
3908  *	@net: network namespace this loopback is happening in
3909  *	@sk:  sk needed to be a netfilter okfn
3910  *	@skb: buffer to transmit
3911  */
3912 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3913 {
3914 	skb_reset_mac_header(skb);
3915 	__skb_pull(skb, skb_network_offset(skb));
3916 	skb->pkt_type = PACKET_LOOPBACK;
3917 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3918 	WARN_ON(!skb_dst(skb));
3919 	skb_dst_force(skb);
3920 	netif_rx_ni(skb);
3921 	return 0;
3922 }
3923 EXPORT_SYMBOL(dev_loopback_xmit);
3924 
3925 #ifdef CONFIG_NET_EGRESS
3926 static struct sk_buff *
3927 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3928 {
3929 #ifdef CONFIG_NET_CLS_ACT
3930 	struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3931 	struct tcf_result cl_res;
3932 
3933 	if (!miniq)
3934 		return skb;
3935 
3936 	/* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3937 	qdisc_skb_cb(skb)->mru = 0;
3938 	qdisc_skb_cb(skb)->post_ct = false;
3939 	mini_qdisc_bstats_cpu_update(miniq, skb);
3940 
3941 	switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
3942 	case TC_ACT_OK:
3943 	case TC_ACT_RECLASSIFY:
3944 		skb->tc_index = TC_H_MIN(cl_res.classid);
3945 		break;
3946 	case TC_ACT_SHOT:
3947 		mini_qdisc_qstats_cpu_drop(miniq);
3948 		*ret = NET_XMIT_DROP;
3949 		kfree_skb(skb);
3950 		return NULL;
3951 	case TC_ACT_STOLEN:
3952 	case TC_ACT_QUEUED:
3953 	case TC_ACT_TRAP:
3954 		*ret = NET_XMIT_SUCCESS;
3955 		consume_skb(skb);
3956 		return NULL;
3957 	case TC_ACT_REDIRECT:
3958 		/* No need to push/pop skb's mac_header here on egress! */
3959 		skb_do_redirect(skb);
3960 		*ret = NET_XMIT_SUCCESS;
3961 		return NULL;
3962 	default:
3963 		break;
3964 	}
3965 #endif /* CONFIG_NET_CLS_ACT */
3966 
3967 	return skb;
3968 }
3969 #endif /* CONFIG_NET_EGRESS */
3970 
3971 #ifdef CONFIG_XPS
3972 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3973 			       struct xps_dev_maps *dev_maps, unsigned int tci)
3974 {
3975 	int tc = netdev_get_prio_tc_map(dev, skb->priority);
3976 	struct xps_map *map;
3977 	int queue_index = -1;
3978 
3979 	if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
3980 		return queue_index;
3981 
3982 	tci *= dev_maps->num_tc;
3983 	tci += tc;
3984 
3985 	map = rcu_dereference(dev_maps->attr_map[tci]);
3986 	if (map) {
3987 		if (map->len == 1)
3988 			queue_index = map->queues[0];
3989 		else
3990 			queue_index = map->queues[reciprocal_scale(
3991 						skb_get_hash(skb), map->len)];
3992 		if (unlikely(queue_index >= dev->real_num_tx_queues))
3993 			queue_index = -1;
3994 	}
3995 	return queue_index;
3996 }
3997 #endif
3998 
3999 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4000 			 struct sk_buff *skb)
4001 {
4002 #ifdef CONFIG_XPS
4003 	struct xps_dev_maps *dev_maps;
4004 	struct sock *sk = skb->sk;
4005 	int queue_index = -1;
4006 
4007 	if (!static_key_false(&xps_needed))
4008 		return -1;
4009 
4010 	rcu_read_lock();
4011 	if (!static_key_false(&xps_rxqs_needed))
4012 		goto get_cpus_map;
4013 
4014 	dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4015 	if (dev_maps) {
4016 		int tci = sk_rx_queue_get(sk);
4017 
4018 		if (tci >= 0)
4019 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4020 							  tci);
4021 	}
4022 
4023 get_cpus_map:
4024 	if (queue_index < 0) {
4025 		dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4026 		if (dev_maps) {
4027 			unsigned int tci = skb->sender_cpu - 1;
4028 
4029 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4030 							  tci);
4031 		}
4032 	}
4033 	rcu_read_unlock();
4034 
4035 	return queue_index;
4036 #else
4037 	return -1;
4038 #endif
4039 }
4040 
4041 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4042 		     struct net_device *sb_dev)
4043 {
4044 	return 0;
4045 }
4046 EXPORT_SYMBOL(dev_pick_tx_zero);
4047 
4048 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4049 		       struct net_device *sb_dev)
4050 {
4051 	return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4052 }
4053 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4054 
4055 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4056 		     struct net_device *sb_dev)
4057 {
4058 	struct sock *sk = skb->sk;
4059 	int queue_index = sk_tx_queue_get(sk);
4060 
4061 	sb_dev = sb_dev ? : dev;
4062 
4063 	if (queue_index < 0 || skb->ooo_okay ||
4064 	    queue_index >= dev->real_num_tx_queues) {
4065 		int new_index = get_xps_queue(dev, sb_dev, skb);
4066 
4067 		if (new_index < 0)
4068 			new_index = skb_tx_hash(dev, sb_dev, skb);
4069 
4070 		if (queue_index != new_index && sk &&
4071 		    sk_fullsock(sk) &&
4072 		    rcu_access_pointer(sk->sk_dst_cache))
4073 			sk_tx_queue_set(sk, new_index);
4074 
4075 		queue_index = new_index;
4076 	}
4077 
4078 	return queue_index;
4079 }
4080 EXPORT_SYMBOL(netdev_pick_tx);
4081 
4082 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4083 					 struct sk_buff *skb,
4084 					 struct net_device *sb_dev)
4085 {
4086 	int queue_index = 0;
4087 
4088 #ifdef CONFIG_XPS
4089 	u32 sender_cpu = skb->sender_cpu - 1;
4090 
4091 	if (sender_cpu >= (u32)NR_CPUS)
4092 		skb->sender_cpu = raw_smp_processor_id() + 1;
4093 #endif
4094 
4095 	if (dev->real_num_tx_queues != 1) {
4096 		const struct net_device_ops *ops = dev->netdev_ops;
4097 
4098 		if (ops->ndo_select_queue)
4099 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4100 		else
4101 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4102 
4103 		queue_index = netdev_cap_txqueue(dev, queue_index);
4104 	}
4105 
4106 	skb_set_queue_mapping(skb, queue_index);
4107 	return netdev_get_tx_queue(dev, queue_index);
4108 }
4109 
4110 /**
4111  *	__dev_queue_xmit - transmit a buffer
4112  *	@skb: buffer to transmit
4113  *	@sb_dev: suboordinate device used for L2 forwarding offload
4114  *
4115  *	Queue a buffer for transmission to a network device. The caller must
4116  *	have set the device and priority and built the buffer before calling
4117  *	this function. The function can be called from an interrupt.
4118  *
4119  *	A negative errno code is returned on a failure. A success does not
4120  *	guarantee the frame will be transmitted as it may be dropped due
4121  *	to congestion or traffic shaping.
4122  *
4123  * -----------------------------------------------------------------------------------
4124  *      I notice this method can also return errors from the queue disciplines,
4125  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
4126  *      be positive.
4127  *
4128  *      Regardless of the return value, the skb is consumed, so it is currently
4129  *      difficult to retry a send to this method.  (You can bump the ref count
4130  *      before sending to hold a reference for retry if you are careful.)
4131  *
4132  *      When calling this method, interrupts MUST be enabled.  This is because
4133  *      the BH enable code must have IRQs enabled so that it will not deadlock.
4134  *          --BLG
4135  */
4136 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4137 {
4138 	struct net_device *dev = skb->dev;
4139 	struct netdev_queue *txq;
4140 	struct Qdisc *q;
4141 	int rc = -ENOMEM;
4142 	bool again = false;
4143 
4144 	skb_reset_mac_header(skb);
4145 
4146 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4147 		__skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4148 
4149 	/* Disable soft irqs for various locks below. Also
4150 	 * stops preemption for RCU.
4151 	 */
4152 	rcu_read_lock_bh();
4153 
4154 	skb_update_prio(skb);
4155 
4156 	qdisc_pkt_len_init(skb);
4157 #ifdef CONFIG_NET_CLS_ACT
4158 	skb->tc_at_ingress = 0;
4159 #endif
4160 #ifdef CONFIG_NET_EGRESS
4161 	if (static_branch_unlikely(&egress_needed_key)) {
4162 		if (nf_hook_egress_active()) {
4163 			skb = nf_hook_egress(skb, &rc, dev);
4164 			if (!skb)
4165 				goto out;
4166 		}
4167 		nf_skip_egress(skb, true);
4168 		skb = sch_handle_egress(skb, &rc, dev);
4169 		if (!skb)
4170 			goto out;
4171 		nf_skip_egress(skb, false);
4172 	}
4173 #endif
4174 	/* If device/qdisc don't need skb->dst, release it right now while
4175 	 * its hot in this cpu cache.
4176 	 */
4177 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4178 		skb_dst_drop(skb);
4179 	else
4180 		skb_dst_force(skb);
4181 
4182 	txq = netdev_core_pick_tx(dev, skb, sb_dev);
4183 	q = rcu_dereference_bh(txq->qdisc);
4184 
4185 	trace_net_dev_queue(skb);
4186 	if (q->enqueue) {
4187 		rc = __dev_xmit_skb(skb, q, dev, txq);
4188 		goto out;
4189 	}
4190 
4191 	/* The device has no queue. Common case for software devices:
4192 	 * loopback, all the sorts of tunnels...
4193 
4194 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4195 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4196 	 * counters.)
4197 	 * However, it is possible, that they rely on protection
4198 	 * made by us here.
4199 
4200 	 * Check this and shot the lock. It is not prone from deadlocks.
4201 	 *Either shot noqueue qdisc, it is even simpler 8)
4202 	 */
4203 	if (dev->flags & IFF_UP) {
4204 		int cpu = smp_processor_id(); /* ok because BHs are off */
4205 
4206 		if (txq->xmit_lock_owner != cpu) {
4207 			if (dev_xmit_recursion())
4208 				goto recursion_alert;
4209 
4210 			skb = validate_xmit_skb(skb, dev, &again);
4211 			if (!skb)
4212 				goto out;
4213 
4214 			PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4215 			HARD_TX_LOCK(dev, txq, cpu);
4216 
4217 			if (!netif_xmit_stopped(txq)) {
4218 				dev_xmit_recursion_inc();
4219 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4220 				dev_xmit_recursion_dec();
4221 				if (dev_xmit_complete(rc)) {
4222 					HARD_TX_UNLOCK(dev, txq);
4223 					goto out;
4224 				}
4225 			}
4226 			HARD_TX_UNLOCK(dev, txq);
4227 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4228 					     dev->name);
4229 		} else {
4230 			/* Recursion is detected! It is possible,
4231 			 * unfortunately
4232 			 */
4233 recursion_alert:
4234 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4235 					     dev->name);
4236 		}
4237 	}
4238 
4239 	rc = -ENETDOWN;
4240 	rcu_read_unlock_bh();
4241 
4242 	atomic_long_inc(&dev->tx_dropped);
4243 	kfree_skb_list(skb);
4244 	return rc;
4245 out:
4246 	rcu_read_unlock_bh();
4247 	return rc;
4248 }
4249 
4250 int dev_queue_xmit(struct sk_buff *skb)
4251 {
4252 	return __dev_queue_xmit(skb, NULL);
4253 }
4254 EXPORT_SYMBOL(dev_queue_xmit);
4255 
4256 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4257 {
4258 	return __dev_queue_xmit(skb, sb_dev);
4259 }
4260 EXPORT_SYMBOL(dev_queue_xmit_accel);
4261 
4262 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4263 {
4264 	struct net_device *dev = skb->dev;
4265 	struct sk_buff *orig_skb = skb;
4266 	struct netdev_queue *txq;
4267 	int ret = NETDEV_TX_BUSY;
4268 	bool again = false;
4269 
4270 	if (unlikely(!netif_running(dev) ||
4271 		     !netif_carrier_ok(dev)))
4272 		goto drop;
4273 
4274 	skb = validate_xmit_skb_list(skb, dev, &again);
4275 	if (skb != orig_skb)
4276 		goto drop;
4277 
4278 	skb_set_queue_mapping(skb, queue_id);
4279 	txq = skb_get_tx_queue(dev, skb);
4280 	PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4281 
4282 	local_bh_disable();
4283 
4284 	dev_xmit_recursion_inc();
4285 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4286 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4287 		ret = netdev_start_xmit(skb, dev, txq, false);
4288 	HARD_TX_UNLOCK(dev, txq);
4289 	dev_xmit_recursion_dec();
4290 
4291 	local_bh_enable();
4292 	return ret;
4293 drop:
4294 	atomic_long_inc(&dev->tx_dropped);
4295 	kfree_skb_list(skb);
4296 	return NET_XMIT_DROP;
4297 }
4298 EXPORT_SYMBOL(__dev_direct_xmit);
4299 
4300 /*************************************************************************
4301  *			Receiver routines
4302  *************************************************************************/
4303 
4304 int netdev_max_backlog __read_mostly = 1000;
4305 EXPORT_SYMBOL(netdev_max_backlog);
4306 
4307 int netdev_tstamp_prequeue __read_mostly = 1;
4308 int netdev_budget __read_mostly = 300;
4309 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4310 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4311 int weight_p __read_mostly = 64;           /* old backlog weight */
4312 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4313 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4314 int dev_rx_weight __read_mostly = 64;
4315 int dev_tx_weight __read_mostly = 64;
4316 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4317 int gro_normal_batch __read_mostly = 8;
4318 
4319 /* Called with irq disabled */
4320 static inline void ____napi_schedule(struct softnet_data *sd,
4321 				     struct napi_struct *napi)
4322 {
4323 	struct task_struct *thread;
4324 
4325 	if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4326 		/* Paired with smp_mb__before_atomic() in
4327 		 * napi_enable()/dev_set_threaded().
4328 		 * Use READ_ONCE() to guarantee a complete
4329 		 * read on napi->thread. Only call
4330 		 * wake_up_process() when it's not NULL.
4331 		 */
4332 		thread = READ_ONCE(napi->thread);
4333 		if (thread) {
4334 			/* Avoid doing set_bit() if the thread is in
4335 			 * INTERRUPTIBLE state, cause napi_thread_wait()
4336 			 * makes sure to proceed with napi polling
4337 			 * if the thread is explicitly woken from here.
4338 			 */
4339 			if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4340 				set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4341 			wake_up_process(thread);
4342 			return;
4343 		}
4344 	}
4345 
4346 	list_add_tail(&napi->poll_list, &sd->poll_list);
4347 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4348 }
4349 
4350 #ifdef CONFIG_RPS
4351 
4352 /* One global table that all flow-based protocols share. */
4353 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4354 EXPORT_SYMBOL(rps_sock_flow_table);
4355 u32 rps_cpu_mask __read_mostly;
4356 EXPORT_SYMBOL(rps_cpu_mask);
4357 
4358 struct static_key_false rps_needed __read_mostly;
4359 EXPORT_SYMBOL(rps_needed);
4360 struct static_key_false rfs_needed __read_mostly;
4361 EXPORT_SYMBOL(rfs_needed);
4362 
4363 static struct rps_dev_flow *
4364 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4365 	    struct rps_dev_flow *rflow, u16 next_cpu)
4366 {
4367 	if (next_cpu < nr_cpu_ids) {
4368 #ifdef CONFIG_RFS_ACCEL
4369 		struct netdev_rx_queue *rxqueue;
4370 		struct rps_dev_flow_table *flow_table;
4371 		struct rps_dev_flow *old_rflow;
4372 		u32 flow_id;
4373 		u16 rxq_index;
4374 		int rc;
4375 
4376 		/* Should we steer this flow to a different hardware queue? */
4377 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4378 		    !(dev->features & NETIF_F_NTUPLE))
4379 			goto out;
4380 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4381 		if (rxq_index == skb_get_rx_queue(skb))
4382 			goto out;
4383 
4384 		rxqueue = dev->_rx + rxq_index;
4385 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4386 		if (!flow_table)
4387 			goto out;
4388 		flow_id = skb_get_hash(skb) & flow_table->mask;
4389 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4390 							rxq_index, flow_id);
4391 		if (rc < 0)
4392 			goto out;
4393 		old_rflow = rflow;
4394 		rflow = &flow_table->flows[flow_id];
4395 		rflow->filter = rc;
4396 		if (old_rflow->filter == rflow->filter)
4397 			old_rflow->filter = RPS_NO_FILTER;
4398 	out:
4399 #endif
4400 		rflow->last_qtail =
4401 			per_cpu(softnet_data, next_cpu).input_queue_head;
4402 	}
4403 
4404 	rflow->cpu = next_cpu;
4405 	return rflow;
4406 }
4407 
4408 /*
4409  * get_rps_cpu is called from netif_receive_skb and returns the target
4410  * CPU from the RPS map of the receiving queue for a given skb.
4411  * rcu_read_lock must be held on entry.
4412  */
4413 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4414 		       struct rps_dev_flow **rflowp)
4415 {
4416 	const struct rps_sock_flow_table *sock_flow_table;
4417 	struct netdev_rx_queue *rxqueue = dev->_rx;
4418 	struct rps_dev_flow_table *flow_table;
4419 	struct rps_map *map;
4420 	int cpu = -1;
4421 	u32 tcpu;
4422 	u32 hash;
4423 
4424 	if (skb_rx_queue_recorded(skb)) {
4425 		u16 index = skb_get_rx_queue(skb);
4426 
4427 		if (unlikely(index >= dev->real_num_rx_queues)) {
4428 			WARN_ONCE(dev->real_num_rx_queues > 1,
4429 				  "%s received packet on queue %u, but number "
4430 				  "of RX queues is %u\n",
4431 				  dev->name, index, dev->real_num_rx_queues);
4432 			goto done;
4433 		}
4434 		rxqueue += index;
4435 	}
4436 
4437 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4438 
4439 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4440 	map = rcu_dereference(rxqueue->rps_map);
4441 	if (!flow_table && !map)
4442 		goto done;
4443 
4444 	skb_reset_network_header(skb);
4445 	hash = skb_get_hash(skb);
4446 	if (!hash)
4447 		goto done;
4448 
4449 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
4450 	if (flow_table && sock_flow_table) {
4451 		struct rps_dev_flow *rflow;
4452 		u32 next_cpu;
4453 		u32 ident;
4454 
4455 		/* First check into global flow table if there is a match */
4456 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4457 		if ((ident ^ hash) & ~rps_cpu_mask)
4458 			goto try_rps;
4459 
4460 		next_cpu = ident & rps_cpu_mask;
4461 
4462 		/* OK, now we know there is a match,
4463 		 * we can look at the local (per receive queue) flow table
4464 		 */
4465 		rflow = &flow_table->flows[hash & flow_table->mask];
4466 		tcpu = rflow->cpu;
4467 
4468 		/*
4469 		 * If the desired CPU (where last recvmsg was done) is
4470 		 * different from current CPU (one in the rx-queue flow
4471 		 * table entry), switch if one of the following holds:
4472 		 *   - Current CPU is unset (>= nr_cpu_ids).
4473 		 *   - Current CPU is offline.
4474 		 *   - The current CPU's queue tail has advanced beyond the
4475 		 *     last packet that was enqueued using this table entry.
4476 		 *     This guarantees that all previous packets for the flow
4477 		 *     have been dequeued, thus preserving in order delivery.
4478 		 */
4479 		if (unlikely(tcpu != next_cpu) &&
4480 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4481 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4482 		      rflow->last_qtail)) >= 0)) {
4483 			tcpu = next_cpu;
4484 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4485 		}
4486 
4487 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4488 			*rflowp = rflow;
4489 			cpu = tcpu;
4490 			goto done;
4491 		}
4492 	}
4493 
4494 try_rps:
4495 
4496 	if (map) {
4497 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4498 		if (cpu_online(tcpu)) {
4499 			cpu = tcpu;
4500 			goto done;
4501 		}
4502 	}
4503 
4504 done:
4505 	return cpu;
4506 }
4507 
4508 #ifdef CONFIG_RFS_ACCEL
4509 
4510 /**
4511  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4512  * @dev: Device on which the filter was set
4513  * @rxq_index: RX queue index
4514  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4515  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4516  *
4517  * Drivers that implement ndo_rx_flow_steer() should periodically call
4518  * this function for each installed filter and remove the filters for
4519  * which it returns %true.
4520  */
4521 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4522 			 u32 flow_id, u16 filter_id)
4523 {
4524 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4525 	struct rps_dev_flow_table *flow_table;
4526 	struct rps_dev_flow *rflow;
4527 	bool expire = true;
4528 	unsigned int cpu;
4529 
4530 	rcu_read_lock();
4531 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4532 	if (flow_table && flow_id <= flow_table->mask) {
4533 		rflow = &flow_table->flows[flow_id];
4534 		cpu = READ_ONCE(rflow->cpu);
4535 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4536 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4537 			   rflow->last_qtail) <
4538 		     (int)(10 * flow_table->mask)))
4539 			expire = false;
4540 	}
4541 	rcu_read_unlock();
4542 	return expire;
4543 }
4544 EXPORT_SYMBOL(rps_may_expire_flow);
4545 
4546 #endif /* CONFIG_RFS_ACCEL */
4547 
4548 /* Called from hardirq (IPI) context */
4549 static void rps_trigger_softirq(void *data)
4550 {
4551 	struct softnet_data *sd = data;
4552 
4553 	____napi_schedule(sd, &sd->backlog);
4554 	sd->received_rps++;
4555 }
4556 
4557 #endif /* CONFIG_RPS */
4558 
4559 /*
4560  * Check if this softnet_data structure is another cpu one
4561  * If yes, queue it to our IPI list and return 1
4562  * If no, return 0
4563  */
4564 static int rps_ipi_queued(struct softnet_data *sd)
4565 {
4566 #ifdef CONFIG_RPS
4567 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4568 
4569 	if (sd != mysd) {
4570 		sd->rps_ipi_next = mysd->rps_ipi_list;
4571 		mysd->rps_ipi_list = sd;
4572 
4573 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4574 		return 1;
4575 	}
4576 #endif /* CONFIG_RPS */
4577 	return 0;
4578 }
4579 
4580 #ifdef CONFIG_NET_FLOW_LIMIT
4581 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4582 #endif
4583 
4584 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4585 {
4586 #ifdef CONFIG_NET_FLOW_LIMIT
4587 	struct sd_flow_limit *fl;
4588 	struct softnet_data *sd;
4589 	unsigned int old_flow, new_flow;
4590 
4591 	if (qlen < (netdev_max_backlog >> 1))
4592 		return false;
4593 
4594 	sd = this_cpu_ptr(&softnet_data);
4595 
4596 	rcu_read_lock();
4597 	fl = rcu_dereference(sd->flow_limit);
4598 	if (fl) {
4599 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4600 		old_flow = fl->history[fl->history_head];
4601 		fl->history[fl->history_head] = new_flow;
4602 
4603 		fl->history_head++;
4604 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4605 
4606 		if (likely(fl->buckets[old_flow]))
4607 			fl->buckets[old_flow]--;
4608 
4609 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4610 			fl->count++;
4611 			rcu_read_unlock();
4612 			return true;
4613 		}
4614 	}
4615 	rcu_read_unlock();
4616 #endif
4617 	return false;
4618 }
4619 
4620 /*
4621  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4622  * queue (may be a remote CPU queue).
4623  */
4624 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4625 			      unsigned int *qtail)
4626 {
4627 	struct softnet_data *sd;
4628 	unsigned long flags;
4629 	unsigned int qlen;
4630 
4631 	sd = &per_cpu(softnet_data, cpu);
4632 
4633 	local_irq_save(flags);
4634 
4635 	rps_lock(sd);
4636 	if (!netif_running(skb->dev))
4637 		goto drop;
4638 	qlen = skb_queue_len(&sd->input_pkt_queue);
4639 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4640 		if (qlen) {
4641 enqueue:
4642 			__skb_queue_tail(&sd->input_pkt_queue, skb);
4643 			input_queue_tail_incr_save(sd, qtail);
4644 			rps_unlock(sd);
4645 			local_irq_restore(flags);
4646 			return NET_RX_SUCCESS;
4647 		}
4648 
4649 		/* Schedule NAPI for backlog device
4650 		 * We can use non atomic operation since we own the queue lock
4651 		 */
4652 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4653 			if (!rps_ipi_queued(sd))
4654 				____napi_schedule(sd, &sd->backlog);
4655 		}
4656 		goto enqueue;
4657 	}
4658 
4659 drop:
4660 	sd->dropped++;
4661 	rps_unlock(sd);
4662 
4663 	local_irq_restore(flags);
4664 
4665 	atomic_long_inc(&skb->dev->rx_dropped);
4666 	kfree_skb(skb);
4667 	return NET_RX_DROP;
4668 }
4669 
4670 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4671 {
4672 	struct net_device *dev = skb->dev;
4673 	struct netdev_rx_queue *rxqueue;
4674 
4675 	rxqueue = dev->_rx;
4676 
4677 	if (skb_rx_queue_recorded(skb)) {
4678 		u16 index = skb_get_rx_queue(skb);
4679 
4680 		if (unlikely(index >= dev->real_num_rx_queues)) {
4681 			WARN_ONCE(dev->real_num_rx_queues > 1,
4682 				  "%s received packet on queue %u, but number "
4683 				  "of RX queues is %u\n",
4684 				  dev->name, index, dev->real_num_rx_queues);
4685 
4686 			return rxqueue; /* Return first rxqueue */
4687 		}
4688 		rxqueue += index;
4689 	}
4690 	return rxqueue;
4691 }
4692 
4693 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4694 			     struct bpf_prog *xdp_prog)
4695 {
4696 	void *orig_data, *orig_data_end, *hard_start;
4697 	struct netdev_rx_queue *rxqueue;
4698 	bool orig_bcast, orig_host;
4699 	u32 mac_len, frame_sz;
4700 	__be16 orig_eth_type;
4701 	struct ethhdr *eth;
4702 	u32 metalen, act;
4703 	int off;
4704 
4705 	/* The XDP program wants to see the packet starting at the MAC
4706 	 * header.
4707 	 */
4708 	mac_len = skb->data - skb_mac_header(skb);
4709 	hard_start = skb->data - skb_headroom(skb);
4710 
4711 	/* SKB "head" area always have tailroom for skb_shared_info */
4712 	frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4713 	frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4714 
4715 	rxqueue = netif_get_rxqueue(skb);
4716 	xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4717 	xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4718 			 skb_headlen(skb) + mac_len, true);
4719 
4720 	orig_data_end = xdp->data_end;
4721 	orig_data = xdp->data;
4722 	eth = (struct ethhdr *)xdp->data;
4723 	orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4724 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4725 	orig_eth_type = eth->h_proto;
4726 
4727 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4728 
4729 	/* check if bpf_xdp_adjust_head was used */
4730 	off = xdp->data - orig_data;
4731 	if (off) {
4732 		if (off > 0)
4733 			__skb_pull(skb, off);
4734 		else if (off < 0)
4735 			__skb_push(skb, -off);
4736 
4737 		skb->mac_header += off;
4738 		skb_reset_network_header(skb);
4739 	}
4740 
4741 	/* check if bpf_xdp_adjust_tail was used */
4742 	off = xdp->data_end - orig_data_end;
4743 	if (off != 0) {
4744 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4745 		skb->len += off; /* positive on grow, negative on shrink */
4746 	}
4747 
4748 	/* check if XDP changed eth hdr such SKB needs update */
4749 	eth = (struct ethhdr *)xdp->data;
4750 	if ((orig_eth_type != eth->h_proto) ||
4751 	    (orig_host != ether_addr_equal_64bits(eth->h_dest,
4752 						  skb->dev->dev_addr)) ||
4753 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4754 		__skb_push(skb, ETH_HLEN);
4755 		skb->pkt_type = PACKET_HOST;
4756 		skb->protocol = eth_type_trans(skb, skb->dev);
4757 	}
4758 
4759 	/* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4760 	 * before calling us again on redirect path. We do not call do_redirect
4761 	 * as we leave that up to the caller.
4762 	 *
4763 	 * Caller is responsible for managing lifetime of skb (i.e. calling
4764 	 * kfree_skb in response to actions it cannot handle/XDP_DROP).
4765 	 */
4766 	switch (act) {
4767 	case XDP_REDIRECT:
4768 	case XDP_TX:
4769 		__skb_push(skb, mac_len);
4770 		break;
4771 	case XDP_PASS:
4772 		metalen = xdp->data - xdp->data_meta;
4773 		if (metalen)
4774 			skb_metadata_set(skb, metalen);
4775 		break;
4776 	}
4777 
4778 	return act;
4779 }
4780 
4781 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4782 				     struct xdp_buff *xdp,
4783 				     struct bpf_prog *xdp_prog)
4784 {
4785 	u32 act = XDP_DROP;
4786 
4787 	/* Reinjected packets coming from act_mirred or similar should
4788 	 * not get XDP generic processing.
4789 	 */
4790 	if (skb_is_redirected(skb))
4791 		return XDP_PASS;
4792 
4793 	/* XDP packets must be linear and must have sufficient headroom
4794 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4795 	 * native XDP provides, thus we need to do it here as well.
4796 	 */
4797 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4798 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4799 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4800 		int troom = skb->tail + skb->data_len - skb->end;
4801 
4802 		/* In case we have to go down the path and also linearize,
4803 		 * then lets do the pskb_expand_head() work just once here.
4804 		 */
4805 		if (pskb_expand_head(skb,
4806 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4807 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4808 			goto do_drop;
4809 		if (skb_linearize(skb))
4810 			goto do_drop;
4811 	}
4812 
4813 	act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4814 	switch (act) {
4815 	case XDP_REDIRECT:
4816 	case XDP_TX:
4817 	case XDP_PASS:
4818 		break;
4819 	default:
4820 		bpf_warn_invalid_xdp_action(act);
4821 		fallthrough;
4822 	case XDP_ABORTED:
4823 		trace_xdp_exception(skb->dev, xdp_prog, act);
4824 		fallthrough;
4825 	case XDP_DROP:
4826 	do_drop:
4827 		kfree_skb(skb);
4828 		break;
4829 	}
4830 
4831 	return act;
4832 }
4833 
4834 /* When doing generic XDP we have to bypass the qdisc layer and the
4835  * network taps in order to match in-driver-XDP behavior.
4836  */
4837 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4838 {
4839 	struct net_device *dev = skb->dev;
4840 	struct netdev_queue *txq;
4841 	bool free_skb = true;
4842 	int cpu, rc;
4843 
4844 	txq = netdev_core_pick_tx(dev, skb, NULL);
4845 	cpu = smp_processor_id();
4846 	HARD_TX_LOCK(dev, txq, cpu);
4847 	if (!netif_xmit_stopped(txq)) {
4848 		rc = netdev_start_xmit(skb, dev, txq, 0);
4849 		if (dev_xmit_complete(rc))
4850 			free_skb = false;
4851 	}
4852 	HARD_TX_UNLOCK(dev, txq);
4853 	if (free_skb) {
4854 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
4855 		kfree_skb(skb);
4856 	}
4857 }
4858 
4859 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4860 
4861 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4862 {
4863 	if (xdp_prog) {
4864 		struct xdp_buff xdp;
4865 		u32 act;
4866 		int err;
4867 
4868 		act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4869 		if (act != XDP_PASS) {
4870 			switch (act) {
4871 			case XDP_REDIRECT:
4872 				err = xdp_do_generic_redirect(skb->dev, skb,
4873 							      &xdp, xdp_prog);
4874 				if (err)
4875 					goto out_redir;
4876 				break;
4877 			case XDP_TX:
4878 				generic_xdp_tx(skb, xdp_prog);
4879 				break;
4880 			}
4881 			return XDP_DROP;
4882 		}
4883 	}
4884 	return XDP_PASS;
4885 out_redir:
4886 	kfree_skb(skb);
4887 	return XDP_DROP;
4888 }
4889 EXPORT_SYMBOL_GPL(do_xdp_generic);
4890 
4891 static int netif_rx_internal(struct sk_buff *skb)
4892 {
4893 	int ret;
4894 
4895 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4896 
4897 	trace_netif_rx(skb);
4898 
4899 #ifdef CONFIG_RPS
4900 	if (static_branch_unlikely(&rps_needed)) {
4901 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4902 		int cpu;
4903 
4904 		preempt_disable();
4905 		rcu_read_lock();
4906 
4907 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
4908 		if (cpu < 0)
4909 			cpu = smp_processor_id();
4910 
4911 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4912 
4913 		rcu_read_unlock();
4914 		preempt_enable();
4915 	} else
4916 #endif
4917 	{
4918 		unsigned int qtail;
4919 
4920 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4921 		put_cpu();
4922 	}
4923 	return ret;
4924 }
4925 
4926 /**
4927  *	netif_rx	-	post buffer to the network code
4928  *	@skb: buffer to post
4929  *
4930  *	This function receives a packet from a device driver and queues it for
4931  *	the upper (protocol) levels to process.  It always succeeds. The buffer
4932  *	may be dropped during processing for congestion control or by the
4933  *	protocol layers.
4934  *
4935  *	return values:
4936  *	NET_RX_SUCCESS	(no congestion)
4937  *	NET_RX_DROP     (packet was dropped)
4938  *
4939  */
4940 
4941 int netif_rx(struct sk_buff *skb)
4942 {
4943 	int ret;
4944 
4945 	trace_netif_rx_entry(skb);
4946 
4947 	ret = netif_rx_internal(skb);
4948 	trace_netif_rx_exit(ret);
4949 
4950 	return ret;
4951 }
4952 EXPORT_SYMBOL(netif_rx);
4953 
4954 int netif_rx_ni(struct sk_buff *skb)
4955 {
4956 	int err;
4957 
4958 	trace_netif_rx_ni_entry(skb);
4959 
4960 	preempt_disable();
4961 	err = netif_rx_internal(skb);
4962 	if (local_softirq_pending())
4963 		do_softirq();
4964 	preempt_enable();
4965 	trace_netif_rx_ni_exit(err);
4966 
4967 	return err;
4968 }
4969 EXPORT_SYMBOL(netif_rx_ni);
4970 
4971 int netif_rx_any_context(struct sk_buff *skb)
4972 {
4973 	/*
4974 	 * If invoked from contexts which do not invoke bottom half
4975 	 * processing either at return from interrupt or when softrqs are
4976 	 * reenabled, use netif_rx_ni() which invokes bottomhalf processing
4977 	 * directly.
4978 	 */
4979 	if (in_interrupt())
4980 		return netif_rx(skb);
4981 	else
4982 		return netif_rx_ni(skb);
4983 }
4984 EXPORT_SYMBOL(netif_rx_any_context);
4985 
4986 static __latent_entropy void net_tx_action(struct softirq_action *h)
4987 {
4988 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4989 
4990 	if (sd->completion_queue) {
4991 		struct sk_buff *clist;
4992 
4993 		local_irq_disable();
4994 		clist = sd->completion_queue;
4995 		sd->completion_queue = NULL;
4996 		local_irq_enable();
4997 
4998 		while (clist) {
4999 			struct sk_buff *skb = clist;
5000 
5001 			clist = clist->next;
5002 
5003 			WARN_ON(refcount_read(&skb->users));
5004 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
5005 				trace_consume_skb(skb);
5006 			else
5007 				trace_kfree_skb(skb, net_tx_action);
5008 
5009 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5010 				__kfree_skb(skb);
5011 			else
5012 				__kfree_skb_defer(skb);
5013 		}
5014 	}
5015 
5016 	if (sd->output_queue) {
5017 		struct Qdisc *head;
5018 
5019 		local_irq_disable();
5020 		head = sd->output_queue;
5021 		sd->output_queue = NULL;
5022 		sd->output_queue_tailp = &sd->output_queue;
5023 		local_irq_enable();
5024 
5025 		rcu_read_lock();
5026 
5027 		while (head) {
5028 			struct Qdisc *q = head;
5029 			spinlock_t *root_lock = NULL;
5030 
5031 			head = head->next_sched;
5032 
5033 			/* We need to make sure head->next_sched is read
5034 			 * before clearing __QDISC_STATE_SCHED
5035 			 */
5036 			smp_mb__before_atomic();
5037 
5038 			if (!(q->flags & TCQ_F_NOLOCK)) {
5039 				root_lock = qdisc_lock(q);
5040 				spin_lock(root_lock);
5041 			} else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5042 						     &q->state))) {
5043 				/* There is a synchronize_net() between
5044 				 * STATE_DEACTIVATED flag being set and
5045 				 * qdisc_reset()/some_qdisc_is_busy() in
5046 				 * dev_deactivate(), so we can safely bail out
5047 				 * early here to avoid data race between
5048 				 * qdisc_deactivate() and some_qdisc_is_busy()
5049 				 * for lockless qdisc.
5050 				 */
5051 				clear_bit(__QDISC_STATE_SCHED, &q->state);
5052 				continue;
5053 			}
5054 
5055 			clear_bit(__QDISC_STATE_SCHED, &q->state);
5056 			qdisc_run(q);
5057 			if (root_lock)
5058 				spin_unlock(root_lock);
5059 		}
5060 
5061 		rcu_read_unlock();
5062 	}
5063 
5064 	xfrm_dev_backlog(sd);
5065 }
5066 
5067 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5068 /* This hook is defined here for ATM LANE */
5069 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5070 			     unsigned char *addr) __read_mostly;
5071 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5072 #endif
5073 
5074 static inline struct sk_buff *
5075 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
5076 		   struct net_device *orig_dev, bool *another)
5077 {
5078 #ifdef CONFIG_NET_CLS_ACT
5079 	struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
5080 	struct tcf_result cl_res;
5081 
5082 	/* If there's at least one ingress present somewhere (so
5083 	 * we get here via enabled static key), remaining devices
5084 	 * that are not configured with an ingress qdisc will bail
5085 	 * out here.
5086 	 */
5087 	if (!miniq)
5088 		return skb;
5089 
5090 	if (*pt_prev) {
5091 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
5092 		*pt_prev = NULL;
5093 	}
5094 
5095 	qdisc_skb_cb(skb)->pkt_len = skb->len;
5096 	qdisc_skb_cb(skb)->mru = 0;
5097 	qdisc_skb_cb(skb)->post_ct = false;
5098 	skb->tc_at_ingress = 1;
5099 	mini_qdisc_bstats_cpu_update(miniq, skb);
5100 
5101 	switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
5102 	case TC_ACT_OK:
5103 	case TC_ACT_RECLASSIFY:
5104 		skb->tc_index = TC_H_MIN(cl_res.classid);
5105 		break;
5106 	case TC_ACT_SHOT:
5107 		mini_qdisc_qstats_cpu_drop(miniq);
5108 		kfree_skb(skb);
5109 		return NULL;
5110 	case TC_ACT_STOLEN:
5111 	case TC_ACT_QUEUED:
5112 	case TC_ACT_TRAP:
5113 		consume_skb(skb);
5114 		return NULL;
5115 	case TC_ACT_REDIRECT:
5116 		/* skb_mac_header check was done by cls/act_bpf, so
5117 		 * we can safely push the L2 header back before
5118 		 * redirecting to another netdev
5119 		 */
5120 		__skb_push(skb, skb->mac_len);
5121 		if (skb_do_redirect(skb) == -EAGAIN) {
5122 			__skb_pull(skb, skb->mac_len);
5123 			*another = true;
5124 			break;
5125 		}
5126 		return NULL;
5127 	case TC_ACT_CONSUMED:
5128 		return NULL;
5129 	default:
5130 		break;
5131 	}
5132 #endif /* CONFIG_NET_CLS_ACT */
5133 	return skb;
5134 }
5135 
5136 /**
5137  *	netdev_is_rx_handler_busy - check if receive handler is registered
5138  *	@dev: device to check
5139  *
5140  *	Check if a receive handler is already registered for a given device.
5141  *	Return true if there one.
5142  *
5143  *	The caller must hold the rtnl_mutex.
5144  */
5145 bool netdev_is_rx_handler_busy(struct net_device *dev)
5146 {
5147 	ASSERT_RTNL();
5148 	return dev && rtnl_dereference(dev->rx_handler);
5149 }
5150 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5151 
5152 /**
5153  *	netdev_rx_handler_register - register receive handler
5154  *	@dev: device to register a handler for
5155  *	@rx_handler: receive handler to register
5156  *	@rx_handler_data: data pointer that is used by rx handler
5157  *
5158  *	Register a receive handler for a device. This handler will then be
5159  *	called from __netif_receive_skb. A negative errno code is returned
5160  *	on a failure.
5161  *
5162  *	The caller must hold the rtnl_mutex.
5163  *
5164  *	For a general description of rx_handler, see enum rx_handler_result.
5165  */
5166 int netdev_rx_handler_register(struct net_device *dev,
5167 			       rx_handler_func_t *rx_handler,
5168 			       void *rx_handler_data)
5169 {
5170 	if (netdev_is_rx_handler_busy(dev))
5171 		return -EBUSY;
5172 
5173 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
5174 		return -EINVAL;
5175 
5176 	/* Note: rx_handler_data must be set before rx_handler */
5177 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5178 	rcu_assign_pointer(dev->rx_handler, rx_handler);
5179 
5180 	return 0;
5181 }
5182 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5183 
5184 /**
5185  *	netdev_rx_handler_unregister - unregister receive handler
5186  *	@dev: device to unregister a handler from
5187  *
5188  *	Unregister a receive handler from a device.
5189  *
5190  *	The caller must hold the rtnl_mutex.
5191  */
5192 void netdev_rx_handler_unregister(struct net_device *dev)
5193 {
5194 
5195 	ASSERT_RTNL();
5196 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5197 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5198 	 * section has a guarantee to see a non NULL rx_handler_data
5199 	 * as well.
5200 	 */
5201 	synchronize_net();
5202 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5203 }
5204 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5205 
5206 /*
5207  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5208  * the special handling of PFMEMALLOC skbs.
5209  */
5210 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5211 {
5212 	switch (skb->protocol) {
5213 	case htons(ETH_P_ARP):
5214 	case htons(ETH_P_IP):
5215 	case htons(ETH_P_IPV6):
5216 	case htons(ETH_P_8021Q):
5217 	case htons(ETH_P_8021AD):
5218 		return true;
5219 	default:
5220 		return false;
5221 	}
5222 }
5223 
5224 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5225 			     int *ret, struct net_device *orig_dev)
5226 {
5227 	if (nf_hook_ingress_active(skb)) {
5228 		int ingress_retval;
5229 
5230 		if (*pt_prev) {
5231 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5232 			*pt_prev = NULL;
5233 		}
5234 
5235 		rcu_read_lock();
5236 		ingress_retval = nf_hook_ingress(skb);
5237 		rcu_read_unlock();
5238 		return ingress_retval;
5239 	}
5240 	return 0;
5241 }
5242 
5243 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5244 				    struct packet_type **ppt_prev)
5245 {
5246 	struct packet_type *ptype, *pt_prev;
5247 	rx_handler_func_t *rx_handler;
5248 	struct sk_buff *skb = *pskb;
5249 	struct net_device *orig_dev;
5250 	bool deliver_exact = false;
5251 	int ret = NET_RX_DROP;
5252 	__be16 type;
5253 
5254 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
5255 
5256 	trace_netif_receive_skb(skb);
5257 
5258 	orig_dev = skb->dev;
5259 
5260 	skb_reset_network_header(skb);
5261 	if (!skb_transport_header_was_set(skb))
5262 		skb_reset_transport_header(skb);
5263 	skb_reset_mac_len(skb);
5264 
5265 	pt_prev = NULL;
5266 
5267 another_round:
5268 	skb->skb_iif = skb->dev->ifindex;
5269 
5270 	__this_cpu_inc(softnet_data.processed);
5271 
5272 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5273 		int ret2;
5274 
5275 		migrate_disable();
5276 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5277 		migrate_enable();
5278 
5279 		if (ret2 != XDP_PASS) {
5280 			ret = NET_RX_DROP;
5281 			goto out;
5282 		}
5283 	}
5284 
5285 	if (eth_type_vlan(skb->protocol)) {
5286 		skb = skb_vlan_untag(skb);
5287 		if (unlikely(!skb))
5288 			goto out;
5289 	}
5290 
5291 	if (skb_skip_tc_classify(skb))
5292 		goto skip_classify;
5293 
5294 	if (pfmemalloc)
5295 		goto skip_taps;
5296 
5297 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
5298 		if (pt_prev)
5299 			ret = deliver_skb(skb, pt_prev, orig_dev);
5300 		pt_prev = ptype;
5301 	}
5302 
5303 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5304 		if (pt_prev)
5305 			ret = deliver_skb(skb, pt_prev, orig_dev);
5306 		pt_prev = ptype;
5307 	}
5308 
5309 skip_taps:
5310 #ifdef CONFIG_NET_INGRESS
5311 	if (static_branch_unlikely(&ingress_needed_key)) {
5312 		bool another = false;
5313 
5314 		nf_skip_egress(skb, true);
5315 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5316 					 &another);
5317 		if (another)
5318 			goto another_round;
5319 		if (!skb)
5320 			goto out;
5321 
5322 		nf_skip_egress(skb, false);
5323 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5324 			goto out;
5325 	}
5326 #endif
5327 	skb_reset_redirect(skb);
5328 skip_classify:
5329 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5330 		goto drop;
5331 
5332 	if (skb_vlan_tag_present(skb)) {
5333 		if (pt_prev) {
5334 			ret = deliver_skb(skb, pt_prev, orig_dev);
5335 			pt_prev = NULL;
5336 		}
5337 		if (vlan_do_receive(&skb))
5338 			goto another_round;
5339 		else if (unlikely(!skb))
5340 			goto out;
5341 	}
5342 
5343 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5344 	if (rx_handler) {
5345 		if (pt_prev) {
5346 			ret = deliver_skb(skb, pt_prev, orig_dev);
5347 			pt_prev = NULL;
5348 		}
5349 		switch (rx_handler(&skb)) {
5350 		case RX_HANDLER_CONSUMED:
5351 			ret = NET_RX_SUCCESS;
5352 			goto out;
5353 		case RX_HANDLER_ANOTHER:
5354 			goto another_round;
5355 		case RX_HANDLER_EXACT:
5356 			deliver_exact = true;
5357 			break;
5358 		case RX_HANDLER_PASS:
5359 			break;
5360 		default:
5361 			BUG();
5362 		}
5363 	}
5364 
5365 	if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5366 check_vlan_id:
5367 		if (skb_vlan_tag_get_id(skb)) {
5368 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5369 			 * find vlan device.
5370 			 */
5371 			skb->pkt_type = PACKET_OTHERHOST;
5372 		} else if (eth_type_vlan(skb->protocol)) {
5373 			/* Outer header is 802.1P with vlan 0, inner header is
5374 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5375 			 * not find vlan dev for vlan id 0.
5376 			 */
5377 			__vlan_hwaccel_clear_tag(skb);
5378 			skb = skb_vlan_untag(skb);
5379 			if (unlikely(!skb))
5380 				goto out;
5381 			if (vlan_do_receive(&skb))
5382 				/* After stripping off 802.1P header with vlan 0
5383 				 * vlan dev is found for inner header.
5384 				 */
5385 				goto another_round;
5386 			else if (unlikely(!skb))
5387 				goto out;
5388 			else
5389 				/* We have stripped outer 802.1P vlan 0 header.
5390 				 * But could not find vlan dev.
5391 				 * check again for vlan id to set OTHERHOST.
5392 				 */
5393 				goto check_vlan_id;
5394 		}
5395 		/* Note: we might in the future use prio bits
5396 		 * and set skb->priority like in vlan_do_receive()
5397 		 * For the time being, just ignore Priority Code Point
5398 		 */
5399 		__vlan_hwaccel_clear_tag(skb);
5400 	}
5401 
5402 	type = skb->protocol;
5403 
5404 	/* deliver only exact match when indicated */
5405 	if (likely(!deliver_exact)) {
5406 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5407 				       &ptype_base[ntohs(type) &
5408 						   PTYPE_HASH_MASK]);
5409 	}
5410 
5411 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5412 			       &orig_dev->ptype_specific);
5413 
5414 	if (unlikely(skb->dev != orig_dev)) {
5415 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5416 				       &skb->dev->ptype_specific);
5417 	}
5418 
5419 	if (pt_prev) {
5420 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5421 			goto drop;
5422 		*ppt_prev = pt_prev;
5423 	} else {
5424 drop:
5425 		if (!deliver_exact)
5426 			atomic_long_inc(&skb->dev->rx_dropped);
5427 		else
5428 			atomic_long_inc(&skb->dev->rx_nohandler);
5429 		kfree_skb(skb);
5430 		/* Jamal, now you will not able to escape explaining
5431 		 * me how you were going to use this. :-)
5432 		 */
5433 		ret = NET_RX_DROP;
5434 	}
5435 
5436 out:
5437 	/* The invariant here is that if *ppt_prev is not NULL
5438 	 * then skb should also be non-NULL.
5439 	 *
5440 	 * Apparently *ppt_prev assignment above holds this invariant due to
5441 	 * skb dereferencing near it.
5442 	 */
5443 	*pskb = skb;
5444 	return ret;
5445 }
5446 
5447 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5448 {
5449 	struct net_device *orig_dev = skb->dev;
5450 	struct packet_type *pt_prev = NULL;
5451 	int ret;
5452 
5453 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5454 	if (pt_prev)
5455 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5456 					 skb->dev, pt_prev, orig_dev);
5457 	return ret;
5458 }
5459 
5460 /**
5461  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5462  *	@skb: buffer to process
5463  *
5464  *	More direct receive version of netif_receive_skb().  It should
5465  *	only be used by callers that have a need to skip RPS and Generic XDP.
5466  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5467  *
5468  *	This function may only be called from softirq context and interrupts
5469  *	should be enabled.
5470  *
5471  *	Return values (usually ignored):
5472  *	NET_RX_SUCCESS: no congestion
5473  *	NET_RX_DROP: packet was dropped
5474  */
5475 int netif_receive_skb_core(struct sk_buff *skb)
5476 {
5477 	int ret;
5478 
5479 	rcu_read_lock();
5480 	ret = __netif_receive_skb_one_core(skb, false);
5481 	rcu_read_unlock();
5482 
5483 	return ret;
5484 }
5485 EXPORT_SYMBOL(netif_receive_skb_core);
5486 
5487 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5488 						  struct packet_type *pt_prev,
5489 						  struct net_device *orig_dev)
5490 {
5491 	struct sk_buff *skb, *next;
5492 
5493 	if (!pt_prev)
5494 		return;
5495 	if (list_empty(head))
5496 		return;
5497 	if (pt_prev->list_func != NULL)
5498 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5499 				   ip_list_rcv, head, pt_prev, orig_dev);
5500 	else
5501 		list_for_each_entry_safe(skb, next, head, list) {
5502 			skb_list_del_init(skb);
5503 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5504 		}
5505 }
5506 
5507 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5508 {
5509 	/* Fast-path assumptions:
5510 	 * - There is no RX handler.
5511 	 * - Only one packet_type matches.
5512 	 * If either of these fails, we will end up doing some per-packet
5513 	 * processing in-line, then handling the 'last ptype' for the whole
5514 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5515 	 * because the 'last ptype' must be constant across the sublist, and all
5516 	 * other ptypes are handled per-packet.
5517 	 */
5518 	/* Current (common) ptype of sublist */
5519 	struct packet_type *pt_curr = NULL;
5520 	/* Current (common) orig_dev of sublist */
5521 	struct net_device *od_curr = NULL;
5522 	struct list_head sublist;
5523 	struct sk_buff *skb, *next;
5524 
5525 	INIT_LIST_HEAD(&sublist);
5526 	list_for_each_entry_safe(skb, next, head, list) {
5527 		struct net_device *orig_dev = skb->dev;
5528 		struct packet_type *pt_prev = NULL;
5529 
5530 		skb_list_del_init(skb);
5531 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5532 		if (!pt_prev)
5533 			continue;
5534 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5535 			/* dispatch old sublist */
5536 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5537 			/* start new sublist */
5538 			INIT_LIST_HEAD(&sublist);
5539 			pt_curr = pt_prev;
5540 			od_curr = orig_dev;
5541 		}
5542 		list_add_tail(&skb->list, &sublist);
5543 	}
5544 
5545 	/* dispatch final sublist */
5546 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5547 }
5548 
5549 static int __netif_receive_skb(struct sk_buff *skb)
5550 {
5551 	int ret;
5552 
5553 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5554 		unsigned int noreclaim_flag;
5555 
5556 		/*
5557 		 * PFMEMALLOC skbs are special, they should
5558 		 * - be delivered to SOCK_MEMALLOC sockets only
5559 		 * - stay away from userspace
5560 		 * - have bounded memory usage
5561 		 *
5562 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5563 		 * context down to all allocation sites.
5564 		 */
5565 		noreclaim_flag = memalloc_noreclaim_save();
5566 		ret = __netif_receive_skb_one_core(skb, true);
5567 		memalloc_noreclaim_restore(noreclaim_flag);
5568 	} else
5569 		ret = __netif_receive_skb_one_core(skb, false);
5570 
5571 	return ret;
5572 }
5573 
5574 static void __netif_receive_skb_list(struct list_head *head)
5575 {
5576 	unsigned long noreclaim_flag = 0;
5577 	struct sk_buff *skb, *next;
5578 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5579 
5580 	list_for_each_entry_safe(skb, next, head, list) {
5581 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5582 			struct list_head sublist;
5583 
5584 			/* Handle the previous sublist */
5585 			list_cut_before(&sublist, head, &skb->list);
5586 			if (!list_empty(&sublist))
5587 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5588 			pfmemalloc = !pfmemalloc;
5589 			/* See comments in __netif_receive_skb */
5590 			if (pfmemalloc)
5591 				noreclaim_flag = memalloc_noreclaim_save();
5592 			else
5593 				memalloc_noreclaim_restore(noreclaim_flag);
5594 		}
5595 	}
5596 	/* Handle the remaining sublist */
5597 	if (!list_empty(head))
5598 		__netif_receive_skb_list_core(head, pfmemalloc);
5599 	/* Restore pflags */
5600 	if (pfmemalloc)
5601 		memalloc_noreclaim_restore(noreclaim_flag);
5602 }
5603 
5604 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5605 {
5606 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5607 	struct bpf_prog *new = xdp->prog;
5608 	int ret = 0;
5609 
5610 	switch (xdp->command) {
5611 	case XDP_SETUP_PROG:
5612 		rcu_assign_pointer(dev->xdp_prog, new);
5613 		if (old)
5614 			bpf_prog_put(old);
5615 
5616 		if (old && !new) {
5617 			static_branch_dec(&generic_xdp_needed_key);
5618 		} else if (new && !old) {
5619 			static_branch_inc(&generic_xdp_needed_key);
5620 			dev_disable_lro(dev);
5621 			dev_disable_gro_hw(dev);
5622 		}
5623 		break;
5624 
5625 	default:
5626 		ret = -EINVAL;
5627 		break;
5628 	}
5629 
5630 	return ret;
5631 }
5632 
5633 static int netif_receive_skb_internal(struct sk_buff *skb)
5634 {
5635 	int ret;
5636 
5637 	net_timestamp_check(netdev_tstamp_prequeue, skb);
5638 
5639 	if (skb_defer_rx_timestamp(skb))
5640 		return NET_RX_SUCCESS;
5641 
5642 	rcu_read_lock();
5643 #ifdef CONFIG_RPS
5644 	if (static_branch_unlikely(&rps_needed)) {
5645 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5646 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5647 
5648 		if (cpu >= 0) {
5649 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5650 			rcu_read_unlock();
5651 			return ret;
5652 		}
5653 	}
5654 #endif
5655 	ret = __netif_receive_skb(skb);
5656 	rcu_read_unlock();
5657 	return ret;
5658 }
5659 
5660 static void netif_receive_skb_list_internal(struct list_head *head)
5661 {
5662 	struct sk_buff *skb, *next;
5663 	struct list_head sublist;
5664 
5665 	INIT_LIST_HEAD(&sublist);
5666 	list_for_each_entry_safe(skb, next, head, list) {
5667 		net_timestamp_check(netdev_tstamp_prequeue, skb);
5668 		skb_list_del_init(skb);
5669 		if (!skb_defer_rx_timestamp(skb))
5670 			list_add_tail(&skb->list, &sublist);
5671 	}
5672 	list_splice_init(&sublist, head);
5673 
5674 	rcu_read_lock();
5675 #ifdef CONFIG_RPS
5676 	if (static_branch_unlikely(&rps_needed)) {
5677 		list_for_each_entry_safe(skb, next, head, list) {
5678 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5679 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5680 
5681 			if (cpu >= 0) {
5682 				/* Will be handled, remove from list */
5683 				skb_list_del_init(skb);
5684 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5685 			}
5686 		}
5687 	}
5688 #endif
5689 	__netif_receive_skb_list(head);
5690 	rcu_read_unlock();
5691 }
5692 
5693 /**
5694  *	netif_receive_skb - process receive buffer from network
5695  *	@skb: buffer to process
5696  *
5697  *	netif_receive_skb() is the main receive data processing function.
5698  *	It always succeeds. The buffer may be dropped during processing
5699  *	for congestion control or by the protocol layers.
5700  *
5701  *	This function may only be called from softirq context and interrupts
5702  *	should be enabled.
5703  *
5704  *	Return values (usually ignored):
5705  *	NET_RX_SUCCESS: no congestion
5706  *	NET_RX_DROP: packet was dropped
5707  */
5708 int netif_receive_skb(struct sk_buff *skb)
5709 {
5710 	int ret;
5711 
5712 	trace_netif_receive_skb_entry(skb);
5713 
5714 	ret = netif_receive_skb_internal(skb);
5715 	trace_netif_receive_skb_exit(ret);
5716 
5717 	return ret;
5718 }
5719 EXPORT_SYMBOL(netif_receive_skb);
5720 
5721 /**
5722  *	netif_receive_skb_list - process many receive buffers from network
5723  *	@head: list of skbs to process.
5724  *
5725  *	Since return value of netif_receive_skb() is normally ignored, and
5726  *	wouldn't be meaningful for a list, this function returns void.
5727  *
5728  *	This function may only be called from softirq context and interrupts
5729  *	should be enabled.
5730  */
5731 void netif_receive_skb_list(struct list_head *head)
5732 {
5733 	struct sk_buff *skb;
5734 
5735 	if (list_empty(head))
5736 		return;
5737 	if (trace_netif_receive_skb_list_entry_enabled()) {
5738 		list_for_each_entry(skb, head, list)
5739 			trace_netif_receive_skb_list_entry(skb);
5740 	}
5741 	netif_receive_skb_list_internal(head);
5742 	trace_netif_receive_skb_list_exit(0);
5743 }
5744 EXPORT_SYMBOL(netif_receive_skb_list);
5745 
5746 static DEFINE_PER_CPU(struct work_struct, flush_works);
5747 
5748 /* Network device is going away, flush any packets still pending */
5749 static void flush_backlog(struct work_struct *work)
5750 {
5751 	struct sk_buff *skb, *tmp;
5752 	struct softnet_data *sd;
5753 
5754 	local_bh_disable();
5755 	sd = this_cpu_ptr(&softnet_data);
5756 
5757 	local_irq_disable();
5758 	rps_lock(sd);
5759 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5760 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5761 			__skb_unlink(skb, &sd->input_pkt_queue);
5762 			dev_kfree_skb_irq(skb);
5763 			input_queue_head_incr(sd);
5764 		}
5765 	}
5766 	rps_unlock(sd);
5767 	local_irq_enable();
5768 
5769 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5770 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5771 			__skb_unlink(skb, &sd->process_queue);
5772 			kfree_skb(skb);
5773 			input_queue_head_incr(sd);
5774 		}
5775 	}
5776 	local_bh_enable();
5777 }
5778 
5779 static bool flush_required(int cpu)
5780 {
5781 #if IS_ENABLED(CONFIG_RPS)
5782 	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5783 	bool do_flush;
5784 
5785 	local_irq_disable();
5786 	rps_lock(sd);
5787 
5788 	/* as insertion into process_queue happens with the rps lock held,
5789 	 * process_queue access may race only with dequeue
5790 	 */
5791 	do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5792 		   !skb_queue_empty_lockless(&sd->process_queue);
5793 	rps_unlock(sd);
5794 	local_irq_enable();
5795 
5796 	return do_flush;
5797 #endif
5798 	/* without RPS we can't safely check input_pkt_queue: during a
5799 	 * concurrent remote skb_queue_splice() we can detect as empty both
5800 	 * input_pkt_queue and process_queue even if the latter could end-up
5801 	 * containing a lot of packets.
5802 	 */
5803 	return true;
5804 }
5805 
5806 static void flush_all_backlogs(void)
5807 {
5808 	static cpumask_t flush_cpus;
5809 	unsigned int cpu;
5810 
5811 	/* since we are under rtnl lock protection we can use static data
5812 	 * for the cpumask and avoid allocating on stack the possibly
5813 	 * large mask
5814 	 */
5815 	ASSERT_RTNL();
5816 
5817 	cpus_read_lock();
5818 
5819 	cpumask_clear(&flush_cpus);
5820 	for_each_online_cpu(cpu) {
5821 		if (flush_required(cpu)) {
5822 			queue_work_on(cpu, system_highpri_wq,
5823 				      per_cpu_ptr(&flush_works, cpu));
5824 			cpumask_set_cpu(cpu, &flush_cpus);
5825 		}
5826 	}
5827 
5828 	/* we can have in flight packet[s] on the cpus we are not flushing,
5829 	 * synchronize_net() in unregister_netdevice_many() will take care of
5830 	 * them
5831 	 */
5832 	for_each_cpu(cpu, &flush_cpus)
5833 		flush_work(per_cpu_ptr(&flush_works, cpu));
5834 
5835 	cpus_read_unlock();
5836 }
5837 
5838 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5839 static void gro_normal_list(struct napi_struct *napi)
5840 {
5841 	if (!napi->rx_count)
5842 		return;
5843 	netif_receive_skb_list_internal(&napi->rx_list);
5844 	INIT_LIST_HEAD(&napi->rx_list);
5845 	napi->rx_count = 0;
5846 }
5847 
5848 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5849  * pass the whole batch up to the stack.
5850  */
5851 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb, int segs)
5852 {
5853 	list_add_tail(&skb->list, &napi->rx_list);
5854 	napi->rx_count += segs;
5855 	if (napi->rx_count >= gro_normal_batch)
5856 		gro_normal_list(napi);
5857 }
5858 
5859 static void napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5860 {
5861 	struct packet_offload *ptype;
5862 	__be16 type = skb->protocol;
5863 	struct list_head *head = &offload_base;
5864 	int err = -ENOENT;
5865 
5866 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5867 
5868 	if (NAPI_GRO_CB(skb)->count == 1) {
5869 		skb_shinfo(skb)->gso_size = 0;
5870 		goto out;
5871 	}
5872 
5873 	rcu_read_lock();
5874 	list_for_each_entry_rcu(ptype, head, list) {
5875 		if (ptype->type != type || !ptype->callbacks.gro_complete)
5876 			continue;
5877 
5878 		err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5879 					 ipv6_gro_complete, inet_gro_complete,
5880 					 skb, 0);
5881 		break;
5882 	}
5883 	rcu_read_unlock();
5884 
5885 	if (err) {
5886 		WARN_ON(&ptype->list == head);
5887 		kfree_skb(skb);
5888 		return;
5889 	}
5890 
5891 out:
5892 	gro_normal_one(napi, skb, NAPI_GRO_CB(skb)->count);
5893 }
5894 
5895 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5896 				   bool flush_old)
5897 {
5898 	struct list_head *head = &napi->gro_hash[index].list;
5899 	struct sk_buff *skb, *p;
5900 
5901 	list_for_each_entry_safe_reverse(skb, p, head, list) {
5902 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5903 			return;
5904 		skb_list_del_init(skb);
5905 		napi_gro_complete(napi, skb);
5906 		napi->gro_hash[index].count--;
5907 	}
5908 
5909 	if (!napi->gro_hash[index].count)
5910 		__clear_bit(index, &napi->gro_bitmask);
5911 }
5912 
5913 /* napi->gro_hash[].list contains packets ordered by age.
5914  * youngest packets at the head of it.
5915  * Complete skbs in reverse order to reduce latencies.
5916  */
5917 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5918 {
5919 	unsigned long bitmask = napi->gro_bitmask;
5920 	unsigned int i, base = ~0U;
5921 
5922 	while ((i = ffs(bitmask)) != 0) {
5923 		bitmask >>= i;
5924 		base += i;
5925 		__napi_gro_flush_chain(napi, base, flush_old);
5926 	}
5927 }
5928 EXPORT_SYMBOL(napi_gro_flush);
5929 
5930 static void gro_list_prepare(const struct list_head *head,
5931 			     const struct sk_buff *skb)
5932 {
5933 	unsigned int maclen = skb->dev->hard_header_len;
5934 	u32 hash = skb_get_hash_raw(skb);
5935 	struct sk_buff *p;
5936 
5937 	list_for_each_entry(p, head, list) {
5938 		unsigned long diffs;
5939 
5940 		NAPI_GRO_CB(p)->flush = 0;
5941 
5942 		if (hash != skb_get_hash_raw(p)) {
5943 			NAPI_GRO_CB(p)->same_flow = 0;
5944 			continue;
5945 		}
5946 
5947 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5948 		diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5949 		if (skb_vlan_tag_present(p))
5950 			diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
5951 		diffs |= skb_metadata_differs(p, skb);
5952 		if (maclen == ETH_HLEN)
5953 			diffs |= compare_ether_header(skb_mac_header(p),
5954 						      skb_mac_header(skb));
5955 		else if (!diffs)
5956 			diffs = memcmp(skb_mac_header(p),
5957 				       skb_mac_header(skb),
5958 				       maclen);
5959 
5960 		/* in most common scenarions 'slow_gro' is 0
5961 		 * otherwise we are already on some slower paths
5962 		 * either skip all the infrequent tests altogether or
5963 		 * avoid trying too hard to skip each of them individually
5964 		 */
5965 		if (!diffs && unlikely(skb->slow_gro | p->slow_gro)) {
5966 #if IS_ENABLED(CONFIG_SKB_EXTENSIONS) && IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
5967 			struct tc_skb_ext *skb_ext;
5968 			struct tc_skb_ext *p_ext;
5969 #endif
5970 
5971 			diffs |= p->sk != skb->sk;
5972 			diffs |= skb_metadata_dst_cmp(p, skb);
5973 			diffs |= skb_get_nfct(p) ^ skb_get_nfct(skb);
5974 
5975 #if IS_ENABLED(CONFIG_SKB_EXTENSIONS) && IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
5976 			skb_ext = skb_ext_find(skb, TC_SKB_EXT);
5977 			p_ext = skb_ext_find(p, TC_SKB_EXT);
5978 
5979 			diffs |= (!!p_ext) ^ (!!skb_ext);
5980 			if (!diffs && unlikely(skb_ext))
5981 				diffs |= p_ext->chain ^ skb_ext->chain;
5982 #endif
5983 		}
5984 
5985 		NAPI_GRO_CB(p)->same_flow = !diffs;
5986 	}
5987 }
5988 
5989 static inline void skb_gro_reset_offset(struct sk_buff *skb, u32 nhoff)
5990 {
5991 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
5992 	const skb_frag_t *frag0 = &pinfo->frags[0];
5993 
5994 	NAPI_GRO_CB(skb)->data_offset = 0;
5995 	NAPI_GRO_CB(skb)->frag0 = NULL;
5996 	NAPI_GRO_CB(skb)->frag0_len = 0;
5997 
5998 	if (!skb_headlen(skb) && pinfo->nr_frags &&
5999 	    !PageHighMem(skb_frag_page(frag0)) &&
6000 	    (!NET_IP_ALIGN || !((skb_frag_off(frag0) + nhoff) & 3))) {
6001 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
6002 		NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
6003 						    skb_frag_size(frag0),
6004 						    skb->end - skb->tail);
6005 	}
6006 }
6007 
6008 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
6009 {
6010 	struct skb_shared_info *pinfo = skb_shinfo(skb);
6011 
6012 	BUG_ON(skb->end - skb->tail < grow);
6013 
6014 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
6015 
6016 	skb->data_len -= grow;
6017 	skb->tail += grow;
6018 
6019 	skb_frag_off_add(&pinfo->frags[0], grow);
6020 	skb_frag_size_sub(&pinfo->frags[0], grow);
6021 
6022 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
6023 		skb_frag_unref(skb, 0);
6024 		memmove(pinfo->frags, pinfo->frags + 1,
6025 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
6026 	}
6027 }
6028 
6029 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
6030 {
6031 	struct sk_buff *oldest;
6032 
6033 	oldest = list_last_entry(head, struct sk_buff, list);
6034 
6035 	/* We are called with head length >= MAX_GRO_SKBS, so this is
6036 	 * impossible.
6037 	 */
6038 	if (WARN_ON_ONCE(!oldest))
6039 		return;
6040 
6041 	/* Do not adjust napi->gro_hash[].count, caller is adding a new
6042 	 * SKB to the chain.
6043 	 */
6044 	skb_list_del_init(oldest);
6045 	napi_gro_complete(napi, oldest);
6046 }
6047 
6048 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6049 {
6050 	u32 bucket = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
6051 	struct gro_list *gro_list = &napi->gro_hash[bucket];
6052 	struct list_head *head = &offload_base;
6053 	struct packet_offload *ptype;
6054 	__be16 type = skb->protocol;
6055 	struct sk_buff *pp = NULL;
6056 	enum gro_result ret;
6057 	int same_flow;
6058 	int grow;
6059 
6060 	if (netif_elide_gro(skb->dev))
6061 		goto normal;
6062 
6063 	gro_list_prepare(&gro_list->list, skb);
6064 
6065 	rcu_read_lock();
6066 	list_for_each_entry_rcu(ptype, head, list) {
6067 		if (ptype->type != type || !ptype->callbacks.gro_receive)
6068 			continue;
6069 
6070 		skb_set_network_header(skb, skb_gro_offset(skb));
6071 		skb_reset_mac_len(skb);
6072 		NAPI_GRO_CB(skb)->same_flow = 0;
6073 		NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
6074 		NAPI_GRO_CB(skb)->free = 0;
6075 		NAPI_GRO_CB(skb)->encap_mark = 0;
6076 		NAPI_GRO_CB(skb)->recursion_counter = 0;
6077 		NAPI_GRO_CB(skb)->is_fou = 0;
6078 		NAPI_GRO_CB(skb)->is_atomic = 1;
6079 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
6080 
6081 		/* Setup for GRO checksum validation */
6082 		switch (skb->ip_summed) {
6083 		case CHECKSUM_COMPLETE:
6084 			NAPI_GRO_CB(skb)->csum = skb->csum;
6085 			NAPI_GRO_CB(skb)->csum_valid = 1;
6086 			NAPI_GRO_CB(skb)->csum_cnt = 0;
6087 			break;
6088 		case CHECKSUM_UNNECESSARY:
6089 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
6090 			NAPI_GRO_CB(skb)->csum_valid = 0;
6091 			break;
6092 		default:
6093 			NAPI_GRO_CB(skb)->csum_cnt = 0;
6094 			NAPI_GRO_CB(skb)->csum_valid = 0;
6095 		}
6096 
6097 		pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
6098 					ipv6_gro_receive, inet_gro_receive,
6099 					&gro_list->list, skb);
6100 		break;
6101 	}
6102 	rcu_read_unlock();
6103 
6104 	if (&ptype->list == head)
6105 		goto normal;
6106 
6107 	if (PTR_ERR(pp) == -EINPROGRESS) {
6108 		ret = GRO_CONSUMED;
6109 		goto ok;
6110 	}
6111 
6112 	same_flow = NAPI_GRO_CB(skb)->same_flow;
6113 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
6114 
6115 	if (pp) {
6116 		skb_list_del_init(pp);
6117 		napi_gro_complete(napi, pp);
6118 		gro_list->count--;
6119 	}
6120 
6121 	if (same_flow)
6122 		goto ok;
6123 
6124 	if (NAPI_GRO_CB(skb)->flush)
6125 		goto normal;
6126 
6127 	if (unlikely(gro_list->count >= MAX_GRO_SKBS))
6128 		gro_flush_oldest(napi, &gro_list->list);
6129 	else
6130 		gro_list->count++;
6131 
6132 	NAPI_GRO_CB(skb)->count = 1;
6133 	NAPI_GRO_CB(skb)->age = jiffies;
6134 	NAPI_GRO_CB(skb)->last = skb;
6135 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
6136 	list_add(&skb->list, &gro_list->list);
6137 	ret = GRO_HELD;
6138 
6139 pull:
6140 	grow = skb_gro_offset(skb) - skb_headlen(skb);
6141 	if (grow > 0)
6142 		gro_pull_from_frag0(skb, grow);
6143 ok:
6144 	if (gro_list->count) {
6145 		if (!test_bit(bucket, &napi->gro_bitmask))
6146 			__set_bit(bucket, &napi->gro_bitmask);
6147 	} else if (test_bit(bucket, &napi->gro_bitmask)) {
6148 		__clear_bit(bucket, &napi->gro_bitmask);
6149 	}
6150 
6151 	return ret;
6152 
6153 normal:
6154 	ret = GRO_NORMAL;
6155 	goto pull;
6156 }
6157 
6158 struct packet_offload *gro_find_receive_by_type(__be16 type)
6159 {
6160 	struct list_head *offload_head = &offload_base;
6161 	struct packet_offload *ptype;
6162 
6163 	list_for_each_entry_rcu(ptype, offload_head, list) {
6164 		if (ptype->type != type || !ptype->callbacks.gro_receive)
6165 			continue;
6166 		return ptype;
6167 	}
6168 	return NULL;
6169 }
6170 EXPORT_SYMBOL(gro_find_receive_by_type);
6171 
6172 struct packet_offload *gro_find_complete_by_type(__be16 type)
6173 {
6174 	struct list_head *offload_head = &offload_base;
6175 	struct packet_offload *ptype;
6176 
6177 	list_for_each_entry_rcu(ptype, offload_head, list) {
6178 		if (ptype->type != type || !ptype->callbacks.gro_complete)
6179 			continue;
6180 		return ptype;
6181 	}
6182 	return NULL;
6183 }
6184 EXPORT_SYMBOL(gro_find_complete_by_type);
6185 
6186 static gro_result_t napi_skb_finish(struct napi_struct *napi,
6187 				    struct sk_buff *skb,
6188 				    gro_result_t ret)
6189 {
6190 	switch (ret) {
6191 	case GRO_NORMAL:
6192 		gro_normal_one(napi, skb, 1);
6193 		break;
6194 
6195 	case GRO_MERGED_FREE:
6196 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6197 			napi_skb_free_stolen_head(skb);
6198 		else if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
6199 			__kfree_skb(skb);
6200 		else
6201 			__kfree_skb_defer(skb);
6202 		break;
6203 
6204 	case GRO_HELD:
6205 	case GRO_MERGED:
6206 	case GRO_CONSUMED:
6207 		break;
6208 	}
6209 
6210 	return ret;
6211 }
6212 
6213 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6214 {
6215 	gro_result_t ret;
6216 
6217 	skb_mark_napi_id(skb, napi);
6218 	trace_napi_gro_receive_entry(skb);
6219 
6220 	skb_gro_reset_offset(skb, 0);
6221 
6222 	ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
6223 	trace_napi_gro_receive_exit(ret);
6224 
6225 	return ret;
6226 }
6227 EXPORT_SYMBOL(napi_gro_receive);
6228 
6229 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
6230 {
6231 	if (unlikely(skb->pfmemalloc)) {
6232 		consume_skb(skb);
6233 		return;
6234 	}
6235 	__skb_pull(skb, skb_headlen(skb));
6236 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
6237 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
6238 	__vlan_hwaccel_clear_tag(skb);
6239 	skb->dev = napi->dev;
6240 	skb->skb_iif = 0;
6241 
6242 	/* eth_type_trans() assumes pkt_type is PACKET_HOST */
6243 	skb->pkt_type = PACKET_HOST;
6244 
6245 	skb->encapsulation = 0;
6246 	skb_shinfo(skb)->gso_type = 0;
6247 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6248 	if (unlikely(skb->slow_gro)) {
6249 		skb_orphan(skb);
6250 		skb_ext_reset(skb);
6251 		nf_reset_ct(skb);
6252 		skb->slow_gro = 0;
6253 	}
6254 
6255 	napi->skb = skb;
6256 }
6257 
6258 struct sk_buff *napi_get_frags(struct napi_struct *napi)
6259 {
6260 	struct sk_buff *skb = napi->skb;
6261 
6262 	if (!skb) {
6263 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
6264 		if (skb) {
6265 			napi->skb = skb;
6266 			skb_mark_napi_id(skb, napi);
6267 		}
6268 	}
6269 	return skb;
6270 }
6271 EXPORT_SYMBOL(napi_get_frags);
6272 
6273 static gro_result_t napi_frags_finish(struct napi_struct *napi,
6274 				      struct sk_buff *skb,
6275 				      gro_result_t ret)
6276 {
6277 	switch (ret) {
6278 	case GRO_NORMAL:
6279 	case GRO_HELD:
6280 		__skb_push(skb, ETH_HLEN);
6281 		skb->protocol = eth_type_trans(skb, skb->dev);
6282 		if (ret == GRO_NORMAL)
6283 			gro_normal_one(napi, skb, 1);
6284 		break;
6285 
6286 	case GRO_MERGED_FREE:
6287 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6288 			napi_skb_free_stolen_head(skb);
6289 		else
6290 			napi_reuse_skb(napi, skb);
6291 		break;
6292 
6293 	case GRO_MERGED:
6294 	case GRO_CONSUMED:
6295 		break;
6296 	}
6297 
6298 	return ret;
6299 }
6300 
6301 /* Upper GRO stack assumes network header starts at gro_offset=0
6302  * Drivers could call both napi_gro_frags() and napi_gro_receive()
6303  * We copy ethernet header into skb->data to have a common layout.
6304  */
6305 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
6306 {
6307 	struct sk_buff *skb = napi->skb;
6308 	const struct ethhdr *eth;
6309 	unsigned int hlen = sizeof(*eth);
6310 
6311 	napi->skb = NULL;
6312 
6313 	skb_reset_mac_header(skb);
6314 	skb_gro_reset_offset(skb, hlen);
6315 
6316 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
6317 		eth = skb_gro_header_slow(skb, hlen, 0);
6318 		if (unlikely(!eth)) {
6319 			net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6320 					     __func__, napi->dev->name);
6321 			napi_reuse_skb(napi, skb);
6322 			return NULL;
6323 		}
6324 	} else {
6325 		eth = (const struct ethhdr *)skb->data;
6326 		gro_pull_from_frag0(skb, hlen);
6327 		NAPI_GRO_CB(skb)->frag0 += hlen;
6328 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
6329 	}
6330 	__skb_pull(skb, hlen);
6331 
6332 	/*
6333 	 * This works because the only protocols we care about don't require
6334 	 * special handling.
6335 	 * We'll fix it up properly in napi_frags_finish()
6336 	 */
6337 	skb->protocol = eth->h_proto;
6338 
6339 	return skb;
6340 }
6341 
6342 gro_result_t napi_gro_frags(struct napi_struct *napi)
6343 {
6344 	gro_result_t ret;
6345 	struct sk_buff *skb = napi_frags_skb(napi);
6346 
6347 	trace_napi_gro_frags_entry(skb);
6348 
6349 	ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6350 	trace_napi_gro_frags_exit(ret);
6351 
6352 	return ret;
6353 }
6354 EXPORT_SYMBOL(napi_gro_frags);
6355 
6356 /* Compute the checksum from gro_offset and return the folded value
6357  * after adding in any pseudo checksum.
6358  */
6359 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6360 {
6361 	__wsum wsum;
6362 	__sum16 sum;
6363 
6364 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6365 
6366 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6367 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6368 	/* See comments in __skb_checksum_complete(). */
6369 	if (likely(!sum)) {
6370 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6371 		    !skb->csum_complete_sw)
6372 			netdev_rx_csum_fault(skb->dev, skb);
6373 	}
6374 
6375 	NAPI_GRO_CB(skb)->csum = wsum;
6376 	NAPI_GRO_CB(skb)->csum_valid = 1;
6377 
6378 	return sum;
6379 }
6380 EXPORT_SYMBOL(__skb_gro_checksum_complete);
6381 
6382 static void net_rps_send_ipi(struct softnet_data *remsd)
6383 {
6384 #ifdef CONFIG_RPS
6385 	while (remsd) {
6386 		struct softnet_data *next = remsd->rps_ipi_next;
6387 
6388 		if (cpu_online(remsd->cpu))
6389 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
6390 		remsd = next;
6391 	}
6392 #endif
6393 }
6394 
6395 /*
6396  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6397  * Note: called with local irq disabled, but exits with local irq enabled.
6398  */
6399 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6400 {
6401 #ifdef CONFIG_RPS
6402 	struct softnet_data *remsd = sd->rps_ipi_list;
6403 
6404 	if (remsd) {
6405 		sd->rps_ipi_list = NULL;
6406 
6407 		local_irq_enable();
6408 
6409 		/* Send pending IPI's to kick RPS processing on remote cpus. */
6410 		net_rps_send_ipi(remsd);
6411 	} else
6412 #endif
6413 		local_irq_enable();
6414 }
6415 
6416 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6417 {
6418 #ifdef CONFIG_RPS
6419 	return sd->rps_ipi_list != NULL;
6420 #else
6421 	return false;
6422 #endif
6423 }
6424 
6425 static int process_backlog(struct napi_struct *napi, int quota)
6426 {
6427 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6428 	bool again = true;
6429 	int work = 0;
6430 
6431 	/* Check if we have pending ipi, its better to send them now,
6432 	 * not waiting net_rx_action() end.
6433 	 */
6434 	if (sd_has_rps_ipi_waiting(sd)) {
6435 		local_irq_disable();
6436 		net_rps_action_and_irq_enable(sd);
6437 	}
6438 
6439 	napi->weight = dev_rx_weight;
6440 	while (again) {
6441 		struct sk_buff *skb;
6442 
6443 		while ((skb = __skb_dequeue(&sd->process_queue))) {
6444 			rcu_read_lock();
6445 			__netif_receive_skb(skb);
6446 			rcu_read_unlock();
6447 			input_queue_head_incr(sd);
6448 			if (++work >= quota)
6449 				return work;
6450 
6451 		}
6452 
6453 		local_irq_disable();
6454 		rps_lock(sd);
6455 		if (skb_queue_empty(&sd->input_pkt_queue)) {
6456 			/*
6457 			 * Inline a custom version of __napi_complete().
6458 			 * only current cpu owns and manipulates this napi,
6459 			 * and NAPI_STATE_SCHED is the only possible flag set
6460 			 * on backlog.
6461 			 * We can use a plain write instead of clear_bit(),
6462 			 * and we dont need an smp_mb() memory barrier.
6463 			 */
6464 			napi->state = 0;
6465 			again = false;
6466 		} else {
6467 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
6468 						   &sd->process_queue);
6469 		}
6470 		rps_unlock(sd);
6471 		local_irq_enable();
6472 	}
6473 
6474 	return work;
6475 }
6476 
6477 /**
6478  * __napi_schedule - schedule for receive
6479  * @n: entry to schedule
6480  *
6481  * The entry's receive function will be scheduled to run.
6482  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6483  */
6484 void __napi_schedule(struct napi_struct *n)
6485 {
6486 	unsigned long flags;
6487 
6488 	local_irq_save(flags);
6489 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6490 	local_irq_restore(flags);
6491 }
6492 EXPORT_SYMBOL(__napi_schedule);
6493 
6494 /**
6495  *	napi_schedule_prep - check if napi can be scheduled
6496  *	@n: napi context
6497  *
6498  * Test if NAPI routine is already running, and if not mark
6499  * it as running.  This is used as a condition variable to
6500  * insure only one NAPI poll instance runs.  We also make
6501  * sure there is no pending NAPI disable.
6502  */
6503 bool napi_schedule_prep(struct napi_struct *n)
6504 {
6505 	unsigned long val, new;
6506 
6507 	do {
6508 		val = READ_ONCE(n->state);
6509 		if (unlikely(val & NAPIF_STATE_DISABLE))
6510 			return false;
6511 		new = val | NAPIF_STATE_SCHED;
6512 
6513 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
6514 		 * This was suggested by Alexander Duyck, as compiler
6515 		 * emits better code than :
6516 		 * if (val & NAPIF_STATE_SCHED)
6517 		 *     new |= NAPIF_STATE_MISSED;
6518 		 */
6519 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6520 						   NAPIF_STATE_MISSED;
6521 	} while (cmpxchg(&n->state, val, new) != val);
6522 
6523 	return !(val & NAPIF_STATE_SCHED);
6524 }
6525 EXPORT_SYMBOL(napi_schedule_prep);
6526 
6527 /**
6528  * __napi_schedule_irqoff - schedule for receive
6529  * @n: entry to schedule
6530  *
6531  * Variant of __napi_schedule() assuming hard irqs are masked.
6532  *
6533  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6534  * because the interrupt disabled assumption might not be true
6535  * due to force-threaded interrupts and spinlock substitution.
6536  */
6537 void __napi_schedule_irqoff(struct napi_struct *n)
6538 {
6539 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6540 		____napi_schedule(this_cpu_ptr(&softnet_data), n);
6541 	else
6542 		__napi_schedule(n);
6543 }
6544 EXPORT_SYMBOL(__napi_schedule_irqoff);
6545 
6546 bool napi_complete_done(struct napi_struct *n, int work_done)
6547 {
6548 	unsigned long flags, val, new, timeout = 0;
6549 	bool ret = true;
6550 
6551 	/*
6552 	 * 1) Don't let napi dequeue from the cpu poll list
6553 	 *    just in case its running on a different cpu.
6554 	 * 2) If we are busy polling, do nothing here, we have
6555 	 *    the guarantee we will be called later.
6556 	 */
6557 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6558 				 NAPIF_STATE_IN_BUSY_POLL)))
6559 		return false;
6560 
6561 	if (work_done) {
6562 		if (n->gro_bitmask)
6563 			timeout = READ_ONCE(n->dev->gro_flush_timeout);
6564 		n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6565 	}
6566 	if (n->defer_hard_irqs_count > 0) {
6567 		n->defer_hard_irqs_count--;
6568 		timeout = READ_ONCE(n->dev->gro_flush_timeout);
6569 		if (timeout)
6570 			ret = false;
6571 	}
6572 	if (n->gro_bitmask) {
6573 		/* When the NAPI instance uses a timeout and keeps postponing
6574 		 * it, we need to bound somehow the time packets are kept in
6575 		 * the GRO layer
6576 		 */
6577 		napi_gro_flush(n, !!timeout);
6578 	}
6579 
6580 	gro_normal_list(n);
6581 
6582 	if (unlikely(!list_empty(&n->poll_list))) {
6583 		/* If n->poll_list is not empty, we need to mask irqs */
6584 		local_irq_save(flags);
6585 		list_del_init(&n->poll_list);
6586 		local_irq_restore(flags);
6587 	}
6588 
6589 	do {
6590 		val = READ_ONCE(n->state);
6591 
6592 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6593 
6594 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6595 			      NAPIF_STATE_SCHED_THREADED |
6596 			      NAPIF_STATE_PREFER_BUSY_POLL);
6597 
6598 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6599 		 * because we will call napi->poll() one more time.
6600 		 * This C code was suggested by Alexander Duyck to help gcc.
6601 		 */
6602 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6603 						    NAPIF_STATE_SCHED;
6604 	} while (cmpxchg(&n->state, val, new) != val);
6605 
6606 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6607 		__napi_schedule(n);
6608 		return false;
6609 	}
6610 
6611 	if (timeout)
6612 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
6613 			      HRTIMER_MODE_REL_PINNED);
6614 	return ret;
6615 }
6616 EXPORT_SYMBOL(napi_complete_done);
6617 
6618 /* must be called under rcu_read_lock(), as we dont take a reference */
6619 static struct napi_struct *napi_by_id(unsigned int napi_id)
6620 {
6621 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6622 	struct napi_struct *napi;
6623 
6624 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6625 		if (napi->napi_id == napi_id)
6626 			return napi;
6627 
6628 	return NULL;
6629 }
6630 
6631 #if defined(CONFIG_NET_RX_BUSY_POLL)
6632 
6633 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6634 {
6635 	if (!skip_schedule) {
6636 		gro_normal_list(napi);
6637 		__napi_schedule(napi);
6638 		return;
6639 	}
6640 
6641 	if (napi->gro_bitmask) {
6642 		/* flush too old packets
6643 		 * If HZ < 1000, flush all packets.
6644 		 */
6645 		napi_gro_flush(napi, HZ >= 1000);
6646 	}
6647 
6648 	gro_normal_list(napi);
6649 	clear_bit(NAPI_STATE_SCHED, &napi->state);
6650 }
6651 
6652 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6653 			   u16 budget)
6654 {
6655 	bool skip_schedule = false;
6656 	unsigned long timeout;
6657 	int rc;
6658 
6659 	/* Busy polling means there is a high chance device driver hard irq
6660 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6661 	 * set in napi_schedule_prep().
6662 	 * Since we are about to call napi->poll() once more, we can safely
6663 	 * clear NAPI_STATE_MISSED.
6664 	 *
6665 	 * Note: x86 could use a single "lock and ..." instruction
6666 	 * to perform these two clear_bit()
6667 	 */
6668 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6669 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6670 
6671 	local_bh_disable();
6672 
6673 	if (prefer_busy_poll) {
6674 		napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6675 		timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6676 		if (napi->defer_hard_irqs_count && timeout) {
6677 			hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6678 			skip_schedule = true;
6679 		}
6680 	}
6681 
6682 	/* All we really want here is to re-enable device interrupts.
6683 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6684 	 */
6685 	rc = napi->poll(napi, budget);
6686 	/* We can't gro_normal_list() here, because napi->poll() might have
6687 	 * rearmed the napi (napi_complete_done()) in which case it could
6688 	 * already be running on another CPU.
6689 	 */
6690 	trace_napi_poll(napi, rc, budget);
6691 	netpoll_poll_unlock(have_poll_lock);
6692 	if (rc == budget)
6693 		__busy_poll_stop(napi, skip_schedule);
6694 	local_bh_enable();
6695 }
6696 
6697 void napi_busy_loop(unsigned int napi_id,
6698 		    bool (*loop_end)(void *, unsigned long),
6699 		    void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6700 {
6701 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6702 	int (*napi_poll)(struct napi_struct *napi, int budget);
6703 	void *have_poll_lock = NULL;
6704 	struct napi_struct *napi;
6705 
6706 restart:
6707 	napi_poll = NULL;
6708 
6709 	rcu_read_lock();
6710 
6711 	napi = napi_by_id(napi_id);
6712 	if (!napi)
6713 		goto out;
6714 
6715 	preempt_disable();
6716 	for (;;) {
6717 		int work = 0;
6718 
6719 		local_bh_disable();
6720 		if (!napi_poll) {
6721 			unsigned long val = READ_ONCE(napi->state);
6722 
6723 			/* If multiple threads are competing for this napi,
6724 			 * we avoid dirtying napi->state as much as we can.
6725 			 */
6726 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6727 				   NAPIF_STATE_IN_BUSY_POLL)) {
6728 				if (prefer_busy_poll)
6729 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6730 				goto count;
6731 			}
6732 			if (cmpxchg(&napi->state, val,
6733 				    val | NAPIF_STATE_IN_BUSY_POLL |
6734 					  NAPIF_STATE_SCHED) != val) {
6735 				if (prefer_busy_poll)
6736 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6737 				goto count;
6738 			}
6739 			have_poll_lock = netpoll_poll_lock(napi);
6740 			napi_poll = napi->poll;
6741 		}
6742 		work = napi_poll(napi, budget);
6743 		trace_napi_poll(napi, work, budget);
6744 		gro_normal_list(napi);
6745 count:
6746 		if (work > 0)
6747 			__NET_ADD_STATS(dev_net(napi->dev),
6748 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6749 		local_bh_enable();
6750 
6751 		if (!loop_end || loop_end(loop_end_arg, start_time))
6752 			break;
6753 
6754 		if (unlikely(need_resched())) {
6755 			if (napi_poll)
6756 				busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6757 			preempt_enable();
6758 			rcu_read_unlock();
6759 			cond_resched();
6760 			if (loop_end(loop_end_arg, start_time))
6761 				return;
6762 			goto restart;
6763 		}
6764 		cpu_relax();
6765 	}
6766 	if (napi_poll)
6767 		busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6768 	preempt_enable();
6769 out:
6770 	rcu_read_unlock();
6771 }
6772 EXPORT_SYMBOL(napi_busy_loop);
6773 
6774 #endif /* CONFIG_NET_RX_BUSY_POLL */
6775 
6776 static void napi_hash_add(struct napi_struct *napi)
6777 {
6778 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6779 		return;
6780 
6781 	spin_lock(&napi_hash_lock);
6782 
6783 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6784 	do {
6785 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6786 			napi_gen_id = MIN_NAPI_ID;
6787 	} while (napi_by_id(napi_gen_id));
6788 	napi->napi_id = napi_gen_id;
6789 
6790 	hlist_add_head_rcu(&napi->napi_hash_node,
6791 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6792 
6793 	spin_unlock(&napi_hash_lock);
6794 }
6795 
6796 /* Warning : caller is responsible to make sure rcu grace period
6797  * is respected before freeing memory containing @napi
6798  */
6799 static void napi_hash_del(struct napi_struct *napi)
6800 {
6801 	spin_lock(&napi_hash_lock);
6802 
6803 	hlist_del_init_rcu(&napi->napi_hash_node);
6804 
6805 	spin_unlock(&napi_hash_lock);
6806 }
6807 
6808 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6809 {
6810 	struct napi_struct *napi;
6811 
6812 	napi = container_of(timer, struct napi_struct, timer);
6813 
6814 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6815 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6816 	 */
6817 	if (!napi_disable_pending(napi) &&
6818 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6819 		clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6820 		__napi_schedule_irqoff(napi);
6821 	}
6822 
6823 	return HRTIMER_NORESTART;
6824 }
6825 
6826 static void init_gro_hash(struct napi_struct *napi)
6827 {
6828 	int i;
6829 
6830 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6831 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6832 		napi->gro_hash[i].count = 0;
6833 	}
6834 	napi->gro_bitmask = 0;
6835 }
6836 
6837 int dev_set_threaded(struct net_device *dev, bool threaded)
6838 {
6839 	struct napi_struct *napi;
6840 	int err = 0;
6841 
6842 	if (dev->threaded == threaded)
6843 		return 0;
6844 
6845 	if (threaded) {
6846 		list_for_each_entry(napi, &dev->napi_list, dev_list) {
6847 			if (!napi->thread) {
6848 				err = napi_kthread_create(napi);
6849 				if (err) {
6850 					threaded = false;
6851 					break;
6852 				}
6853 			}
6854 		}
6855 	}
6856 
6857 	dev->threaded = threaded;
6858 
6859 	/* Make sure kthread is created before THREADED bit
6860 	 * is set.
6861 	 */
6862 	smp_mb__before_atomic();
6863 
6864 	/* Setting/unsetting threaded mode on a napi might not immediately
6865 	 * take effect, if the current napi instance is actively being
6866 	 * polled. In this case, the switch between threaded mode and
6867 	 * softirq mode will happen in the next round of napi_schedule().
6868 	 * This should not cause hiccups/stalls to the live traffic.
6869 	 */
6870 	list_for_each_entry(napi, &dev->napi_list, dev_list) {
6871 		if (threaded)
6872 			set_bit(NAPI_STATE_THREADED, &napi->state);
6873 		else
6874 			clear_bit(NAPI_STATE_THREADED, &napi->state);
6875 	}
6876 
6877 	return err;
6878 }
6879 EXPORT_SYMBOL(dev_set_threaded);
6880 
6881 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6882 		    int (*poll)(struct napi_struct *, int), int weight)
6883 {
6884 	if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6885 		return;
6886 
6887 	INIT_LIST_HEAD(&napi->poll_list);
6888 	INIT_HLIST_NODE(&napi->napi_hash_node);
6889 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6890 	napi->timer.function = napi_watchdog;
6891 	init_gro_hash(napi);
6892 	napi->skb = NULL;
6893 	INIT_LIST_HEAD(&napi->rx_list);
6894 	napi->rx_count = 0;
6895 	napi->poll = poll;
6896 	if (weight > NAPI_POLL_WEIGHT)
6897 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6898 				weight);
6899 	napi->weight = weight;
6900 	napi->dev = dev;
6901 #ifdef CONFIG_NETPOLL
6902 	napi->poll_owner = -1;
6903 #endif
6904 	set_bit(NAPI_STATE_SCHED, &napi->state);
6905 	set_bit(NAPI_STATE_NPSVC, &napi->state);
6906 	list_add_rcu(&napi->dev_list, &dev->napi_list);
6907 	napi_hash_add(napi);
6908 	/* Create kthread for this napi if dev->threaded is set.
6909 	 * Clear dev->threaded if kthread creation failed so that
6910 	 * threaded mode will not be enabled in napi_enable().
6911 	 */
6912 	if (dev->threaded && napi_kthread_create(napi))
6913 		dev->threaded = 0;
6914 }
6915 EXPORT_SYMBOL(netif_napi_add);
6916 
6917 void napi_disable(struct napi_struct *n)
6918 {
6919 	unsigned long val, new;
6920 
6921 	might_sleep();
6922 	set_bit(NAPI_STATE_DISABLE, &n->state);
6923 
6924 	do {
6925 		val = READ_ONCE(n->state);
6926 		if (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6927 			usleep_range(20, 200);
6928 			continue;
6929 		}
6930 
6931 		new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6932 		new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6933 	} while (cmpxchg(&n->state, val, new) != val);
6934 
6935 	hrtimer_cancel(&n->timer);
6936 
6937 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6938 }
6939 EXPORT_SYMBOL(napi_disable);
6940 
6941 /**
6942  *	napi_enable - enable NAPI scheduling
6943  *	@n: NAPI context
6944  *
6945  * Resume NAPI from being scheduled on this context.
6946  * Must be paired with napi_disable.
6947  */
6948 void napi_enable(struct napi_struct *n)
6949 {
6950 	unsigned long val, new;
6951 
6952 	do {
6953 		val = READ_ONCE(n->state);
6954 		BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6955 
6956 		new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6957 		if (n->dev->threaded && n->thread)
6958 			new |= NAPIF_STATE_THREADED;
6959 	} while (cmpxchg(&n->state, val, new) != val);
6960 }
6961 EXPORT_SYMBOL(napi_enable);
6962 
6963 static void flush_gro_hash(struct napi_struct *napi)
6964 {
6965 	int i;
6966 
6967 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6968 		struct sk_buff *skb, *n;
6969 
6970 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6971 			kfree_skb(skb);
6972 		napi->gro_hash[i].count = 0;
6973 	}
6974 }
6975 
6976 /* Must be called in process context */
6977 void __netif_napi_del(struct napi_struct *napi)
6978 {
6979 	if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6980 		return;
6981 
6982 	napi_hash_del(napi);
6983 	list_del_rcu(&napi->dev_list);
6984 	napi_free_frags(napi);
6985 
6986 	flush_gro_hash(napi);
6987 	napi->gro_bitmask = 0;
6988 
6989 	if (napi->thread) {
6990 		kthread_stop(napi->thread);
6991 		napi->thread = NULL;
6992 	}
6993 }
6994 EXPORT_SYMBOL(__netif_napi_del);
6995 
6996 static int __napi_poll(struct napi_struct *n, bool *repoll)
6997 {
6998 	int work, weight;
6999 
7000 	weight = n->weight;
7001 
7002 	/* This NAPI_STATE_SCHED test is for avoiding a race
7003 	 * with netpoll's poll_napi().  Only the entity which
7004 	 * obtains the lock and sees NAPI_STATE_SCHED set will
7005 	 * actually make the ->poll() call.  Therefore we avoid
7006 	 * accidentally calling ->poll() when NAPI is not scheduled.
7007 	 */
7008 	work = 0;
7009 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
7010 		work = n->poll(n, weight);
7011 		trace_napi_poll(n, work, weight);
7012 	}
7013 
7014 	if (unlikely(work > weight))
7015 		netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
7016 				n->poll, work, weight);
7017 
7018 	if (likely(work < weight))
7019 		return work;
7020 
7021 	/* Drivers must not modify the NAPI state if they
7022 	 * consume the entire weight.  In such cases this code
7023 	 * still "owns" the NAPI instance and therefore can
7024 	 * move the instance around on the list at-will.
7025 	 */
7026 	if (unlikely(napi_disable_pending(n))) {
7027 		napi_complete(n);
7028 		return work;
7029 	}
7030 
7031 	/* The NAPI context has more processing work, but busy-polling
7032 	 * is preferred. Exit early.
7033 	 */
7034 	if (napi_prefer_busy_poll(n)) {
7035 		if (napi_complete_done(n, work)) {
7036 			/* If timeout is not set, we need to make sure
7037 			 * that the NAPI is re-scheduled.
7038 			 */
7039 			napi_schedule(n);
7040 		}
7041 		return work;
7042 	}
7043 
7044 	if (n->gro_bitmask) {
7045 		/* flush too old packets
7046 		 * If HZ < 1000, flush all packets.
7047 		 */
7048 		napi_gro_flush(n, HZ >= 1000);
7049 	}
7050 
7051 	gro_normal_list(n);
7052 
7053 	/* Some drivers may have called napi_schedule
7054 	 * prior to exhausting their budget.
7055 	 */
7056 	if (unlikely(!list_empty(&n->poll_list))) {
7057 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
7058 			     n->dev ? n->dev->name : "backlog");
7059 		return work;
7060 	}
7061 
7062 	*repoll = true;
7063 
7064 	return work;
7065 }
7066 
7067 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
7068 {
7069 	bool do_repoll = false;
7070 	void *have;
7071 	int work;
7072 
7073 	list_del_init(&n->poll_list);
7074 
7075 	have = netpoll_poll_lock(n);
7076 
7077 	work = __napi_poll(n, &do_repoll);
7078 
7079 	if (do_repoll)
7080 		list_add_tail(&n->poll_list, repoll);
7081 
7082 	netpoll_poll_unlock(have);
7083 
7084 	return work;
7085 }
7086 
7087 static int napi_thread_wait(struct napi_struct *napi)
7088 {
7089 	bool woken = false;
7090 
7091 	set_current_state(TASK_INTERRUPTIBLE);
7092 
7093 	while (!kthread_should_stop()) {
7094 		/* Testing SCHED_THREADED bit here to make sure the current
7095 		 * kthread owns this napi and could poll on this napi.
7096 		 * Testing SCHED bit is not enough because SCHED bit might be
7097 		 * set by some other busy poll thread or by napi_disable().
7098 		 */
7099 		if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
7100 			WARN_ON(!list_empty(&napi->poll_list));
7101 			__set_current_state(TASK_RUNNING);
7102 			return 0;
7103 		}
7104 
7105 		schedule();
7106 		/* woken being true indicates this thread owns this napi. */
7107 		woken = true;
7108 		set_current_state(TASK_INTERRUPTIBLE);
7109 	}
7110 	__set_current_state(TASK_RUNNING);
7111 
7112 	return -1;
7113 }
7114 
7115 static int napi_threaded_poll(void *data)
7116 {
7117 	struct napi_struct *napi = data;
7118 	void *have;
7119 
7120 	while (!napi_thread_wait(napi)) {
7121 		for (;;) {
7122 			bool repoll = false;
7123 
7124 			local_bh_disable();
7125 
7126 			have = netpoll_poll_lock(napi);
7127 			__napi_poll(napi, &repoll);
7128 			netpoll_poll_unlock(have);
7129 
7130 			local_bh_enable();
7131 
7132 			if (!repoll)
7133 				break;
7134 
7135 			cond_resched();
7136 		}
7137 	}
7138 	return 0;
7139 }
7140 
7141 static __latent_entropy void net_rx_action(struct softirq_action *h)
7142 {
7143 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7144 	unsigned long time_limit = jiffies +
7145 		usecs_to_jiffies(netdev_budget_usecs);
7146 	int budget = netdev_budget;
7147 	LIST_HEAD(list);
7148 	LIST_HEAD(repoll);
7149 
7150 	local_irq_disable();
7151 	list_splice_init(&sd->poll_list, &list);
7152 	local_irq_enable();
7153 
7154 	for (;;) {
7155 		struct napi_struct *n;
7156 
7157 		if (list_empty(&list)) {
7158 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
7159 				return;
7160 			break;
7161 		}
7162 
7163 		n = list_first_entry(&list, struct napi_struct, poll_list);
7164 		budget -= napi_poll(n, &repoll);
7165 
7166 		/* If softirq window is exhausted then punt.
7167 		 * Allow this to run for 2 jiffies since which will allow
7168 		 * an average latency of 1.5/HZ.
7169 		 */
7170 		if (unlikely(budget <= 0 ||
7171 			     time_after_eq(jiffies, time_limit))) {
7172 			sd->time_squeeze++;
7173 			break;
7174 		}
7175 	}
7176 
7177 	local_irq_disable();
7178 
7179 	list_splice_tail_init(&sd->poll_list, &list);
7180 	list_splice_tail(&repoll, &list);
7181 	list_splice(&list, &sd->poll_list);
7182 	if (!list_empty(&sd->poll_list))
7183 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
7184 
7185 	net_rps_action_and_irq_enable(sd);
7186 }
7187 
7188 struct netdev_adjacent {
7189 	struct net_device *dev;
7190 
7191 	/* upper master flag, there can only be one master device per list */
7192 	bool master;
7193 
7194 	/* lookup ignore flag */
7195 	bool ignore;
7196 
7197 	/* counter for the number of times this device was added to us */
7198 	u16 ref_nr;
7199 
7200 	/* private field for the users */
7201 	void *private;
7202 
7203 	struct list_head list;
7204 	struct rcu_head rcu;
7205 };
7206 
7207 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7208 						 struct list_head *adj_list)
7209 {
7210 	struct netdev_adjacent *adj;
7211 
7212 	list_for_each_entry(adj, adj_list, list) {
7213 		if (adj->dev == adj_dev)
7214 			return adj;
7215 	}
7216 	return NULL;
7217 }
7218 
7219 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7220 				    struct netdev_nested_priv *priv)
7221 {
7222 	struct net_device *dev = (struct net_device *)priv->data;
7223 
7224 	return upper_dev == dev;
7225 }
7226 
7227 /**
7228  * netdev_has_upper_dev - Check if device is linked to an upper device
7229  * @dev: device
7230  * @upper_dev: upper device to check
7231  *
7232  * Find out if a device is linked to specified upper device and return true
7233  * in case it is. Note that this checks only immediate upper device,
7234  * not through a complete stack of devices. The caller must hold the RTNL lock.
7235  */
7236 bool netdev_has_upper_dev(struct net_device *dev,
7237 			  struct net_device *upper_dev)
7238 {
7239 	struct netdev_nested_priv priv = {
7240 		.data = (void *)upper_dev,
7241 	};
7242 
7243 	ASSERT_RTNL();
7244 
7245 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7246 					     &priv);
7247 }
7248 EXPORT_SYMBOL(netdev_has_upper_dev);
7249 
7250 /**
7251  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7252  * @dev: device
7253  * @upper_dev: upper device to check
7254  *
7255  * Find out if a device is linked to specified upper device and return true
7256  * in case it is. Note that this checks the entire upper device chain.
7257  * The caller must hold rcu lock.
7258  */
7259 
7260 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7261 				  struct net_device *upper_dev)
7262 {
7263 	struct netdev_nested_priv priv = {
7264 		.data = (void *)upper_dev,
7265 	};
7266 
7267 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7268 					       &priv);
7269 }
7270 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7271 
7272 /**
7273  * netdev_has_any_upper_dev - Check if device is linked to some device
7274  * @dev: device
7275  *
7276  * Find out if a device is linked to an upper device and return true in case
7277  * it is. The caller must hold the RTNL lock.
7278  */
7279 bool netdev_has_any_upper_dev(struct net_device *dev)
7280 {
7281 	ASSERT_RTNL();
7282 
7283 	return !list_empty(&dev->adj_list.upper);
7284 }
7285 EXPORT_SYMBOL(netdev_has_any_upper_dev);
7286 
7287 /**
7288  * netdev_master_upper_dev_get - Get master upper device
7289  * @dev: device
7290  *
7291  * Find a master upper device and return pointer to it or NULL in case
7292  * it's not there. The caller must hold the RTNL lock.
7293  */
7294 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7295 {
7296 	struct netdev_adjacent *upper;
7297 
7298 	ASSERT_RTNL();
7299 
7300 	if (list_empty(&dev->adj_list.upper))
7301 		return NULL;
7302 
7303 	upper = list_first_entry(&dev->adj_list.upper,
7304 				 struct netdev_adjacent, list);
7305 	if (likely(upper->master))
7306 		return upper->dev;
7307 	return NULL;
7308 }
7309 EXPORT_SYMBOL(netdev_master_upper_dev_get);
7310 
7311 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7312 {
7313 	struct netdev_adjacent *upper;
7314 
7315 	ASSERT_RTNL();
7316 
7317 	if (list_empty(&dev->adj_list.upper))
7318 		return NULL;
7319 
7320 	upper = list_first_entry(&dev->adj_list.upper,
7321 				 struct netdev_adjacent, list);
7322 	if (likely(upper->master) && !upper->ignore)
7323 		return upper->dev;
7324 	return NULL;
7325 }
7326 
7327 /**
7328  * netdev_has_any_lower_dev - Check if device is linked to some device
7329  * @dev: device
7330  *
7331  * Find out if a device is linked to a lower device and return true in case
7332  * it is. The caller must hold the RTNL lock.
7333  */
7334 static bool netdev_has_any_lower_dev(struct net_device *dev)
7335 {
7336 	ASSERT_RTNL();
7337 
7338 	return !list_empty(&dev->adj_list.lower);
7339 }
7340 
7341 void *netdev_adjacent_get_private(struct list_head *adj_list)
7342 {
7343 	struct netdev_adjacent *adj;
7344 
7345 	adj = list_entry(adj_list, struct netdev_adjacent, list);
7346 
7347 	return adj->private;
7348 }
7349 EXPORT_SYMBOL(netdev_adjacent_get_private);
7350 
7351 /**
7352  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7353  * @dev: device
7354  * @iter: list_head ** of the current position
7355  *
7356  * Gets the next device from the dev's upper list, starting from iter
7357  * position. The caller must hold RCU read lock.
7358  */
7359 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7360 						 struct list_head **iter)
7361 {
7362 	struct netdev_adjacent *upper;
7363 
7364 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7365 
7366 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7367 
7368 	if (&upper->list == &dev->adj_list.upper)
7369 		return NULL;
7370 
7371 	*iter = &upper->list;
7372 
7373 	return upper->dev;
7374 }
7375 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7376 
7377 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7378 						  struct list_head **iter,
7379 						  bool *ignore)
7380 {
7381 	struct netdev_adjacent *upper;
7382 
7383 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7384 
7385 	if (&upper->list == &dev->adj_list.upper)
7386 		return NULL;
7387 
7388 	*iter = &upper->list;
7389 	*ignore = upper->ignore;
7390 
7391 	return upper->dev;
7392 }
7393 
7394 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7395 						    struct list_head **iter)
7396 {
7397 	struct netdev_adjacent *upper;
7398 
7399 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7400 
7401 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7402 
7403 	if (&upper->list == &dev->adj_list.upper)
7404 		return NULL;
7405 
7406 	*iter = &upper->list;
7407 
7408 	return upper->dev;
7409 }
7410 
7411 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7412 				       int (*fn)(struct net_device *dev,
7413 					 struct netdev_nested_priv *priv),
7414 				       struct netdev_nested_priv *priv)
7415 {
7416 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7417 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7418 	int ret, cur = 0;
7419 	bool ignore;
7420 
7421 	now = dev;
7422 	iter = &dev->adj_list.upper;
7423 
7424 	while (1) {
7425 		if (now != dev) {
7426 			ret = fn(now, priv);
7427 			if (ret)
7428 				return ret;
7429 		}
7430 
7431 		next = NULL;
7432 		while (1) {
7433 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
7434 			if (!udev)
7435 				break;
7436 			if (ignore)
7437 				continue;
7438 
7439 			next = udev;
7440 			niter = &udev->adj_list.upper;
7441 			dev_stack[cur] = now;
7442 			iter_stack[cur++] = iter;
7443 			break;
7444 		}
7445 
7446 		if (!next) {
7447 			if (!cur)
7448 				return 0;
7449 			next = dev_stack[--cur];
7450 			niter = iter_stack[cur];
7451 		}
7452 
7453 		now = next;
7454 		iter = niter;
7455 	}
7456 
7457 	return 0;
7458 }
7459 
7460 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7461 				  int (*fn)(struct net_device *dev,
7462 					    struct netdev_nested_priv *priv),
7463 				  struct netdev_nested_priv *priv)
7464 {
7465 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7466 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7467 	int ret, cur = 0;
7468 
7469 	now = dev;
7470 	iter = &dev->adj_list.upper;
7471 
7472 	while (1) {
7473 		if (now != dev) {
7474 			ret = fn(now, priv);
7475 			if (ret)
7476 				return ret;
7477 		}
7478 
7479 		next = NULL;
7480 		while (1) {
7481 			udev = netdev_next_upper_dev_rcu(now, &iter);
7482 			if (!udev)
7483 				break;
7484 
7485 			next = udev;
7486 			niter = &udev->adj_list.upper;
7487 			dev_stack[cur] = now;
7488 			iter_stack[cur++] = iter;
7489 			break;
7490 		}
7491 
7492 		if (!next) {
7493 			if (!cur)
7494 				return 0;
7495 			next = dev_stack[--cur];
7496 			niter = iter_stack[cur];
7497 		}
7498 
7499 		now = next;
7500 		iter = niter;
7501 	}
7502 
7503 	return 0;
7504 }
7505 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7506 
7507 static bool __netdev_has_upper_dev(struct net_device *dev,
7508 				   struct net_device *upper_dev)
7509 {
7510 	struct netdev_nested_priv priv = {
7511 		.flags = 0,
7512 		.data = (void *)upper_dev,
7513 	};
7514 
7515 	ASSERT_RTNL();
7516 
7517 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7518 					   &priv);
7519 }
7520 
7521 /**
7522  * netdev_lower_get_next_private - Get the next ->private from the
7523  *				   lower neighbour list
7524  * @dev: device
7525  * @iter: list_head ** of the current position
7526  *
7527  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7528  * list, starting from iter position. The caller must hold either hold the
7529  * RTNL lock or its own locking that guarantees that the neighbour lower
7530  * list will remain unchanged.
7531  */
7532 void *netdev_lower_get_next_private(struct net_device *dev,
7533 				    struct list_head **iter)
7534 {
7535 	struct netdev_adjacent *lower;
7536 
7537 	lower = list_entry(*iter, struct netdev_adjacent, list);
7538 
7539 	if (&lower->list == &dev->adj_list.lower)
7540 		return NULL;
7541 
7542 	*iter = lower->list.next;
7543 
7544 	return lower->private;
7545 }
7546 EXPORT_SYMBOL(netdev_lower_get_next_private);
7547 
7548 /**
7549  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7550  *				       lower neighbour list, RCU
7551  *				       variant
7552  * @dev: device
7553  * @iter: list_head ** of the current position
7554  *
7555  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7556  * list, starting from iter position. The caller must hold RCU read lock.
7557  */
7558 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7559 					struct list_head **iter)
7560 {
7561 	struct netdev_adjacent *lower;
7562 
7563 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7564 
7565 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7566 
7567 	if (&lower->list == &dev->adj_list.lower)
7568 		return NULL;
7569 
7570 	*iter = &lower->list;
7571 
7572 	return lower->private;
7573 }
7574 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7575 
7576 /**
7577  * netdev_lower_get_next - Get the next device from the lower neighbour
7578  *                         list
7579  * @dev: device
7580  * @iter: list_head ** of the current position
7581  *
7582  * Gets the next netdev_adjacent from the dev's lower neighbour
7583  * list, starting from iter position. The caller must hold RTNL lock or
7584  * its own locking that guarantees that the neighbour lower
7585  * list will remain unchanged.
7586  */
7587 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7588 {
7589 	struct netdev_adjacent *lower;
7590 
7591 	lower = list_entry(*iter, struct netdev_adjacent, list);
7592 
7593 	if (&lower->list == &dev->adj_list.lower)
7594 		return NULL;
7595 
7596 	*iter = lower->list.next;
7597 
7598 	return lower->dev;
7599 }
7600 EXPORT_SYMBOL(netdev_lower_get_next);
7601 
7602 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7603 						struct list_head **iter)
7604 {
7605 	struct netdev_adjacent *lower;
7606 
7607 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7608 
7609 	if (&lower->list == &dev->adj_list.lower)
7610 		return NULL;
7611 
7612 	*iter = &lower->list;
7613 
7614 	return lower->dev;
7615 }
7616 
7617 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7618 						  struct list_head **iter,
7619 						  bool *ignore)
7620 {
7621 	struct netdev_adjacent *lower;
7622 
7623 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7624 
7625 	if (&lower->list == &dev->adj_list.lower)
7626 		return NULL;
7627 
7628 	*iter = &lower->list;
7629 	*ignore = lower->ignore;
7630 
7631 	return lower->dev;
7632 }
7633 
7634 int netdev_walk_all_lower_dev(struct net_device *dev,
7635 			      int (*fn)(struct net_device *dev,
7636 					struct netdev_nested_priv *priv),
7637 			      struct netdev_nested_priv *priv)
7638 {
7639 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7640 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7641 	int ret, cur = 0;
7642 
7643 	now = dev;
7644 	iter = &dev->adj_list.lower;
7645 
7646 	while (1) {
7647 		if (now != dev) {
7648 			ret = fn(now, priv);
7649 			if (ret)
7650 				return ret;
7651 		}
7652 
7653 		next = NULL;
7654 		while (1) {
7655 			ldev = netdev_next_lower_dev(now, &iter);
7656 			if (!ldev)
7657 				break;
7658 
7659 			next = ldev;
7660 			niter = &ldev->adj_list.lower;
7661 			dev_stack[cur] = now;
7662 			iter_stack[cur++] = iter;
7663 			break;
7664 		}
7665 
7666 		if (!next) {
7667 			if (!cur)
7668 				return 0;
7669 			next = dev_stack[--cur];
7670 			niter = iter_stack[cur];
7671 		}
7672 
7673 		now = next;
7674 		iter = niter;
7675 	}
7676 
7677 	return 0;
7678 }
7679 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7680 
7681 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7682 				       int (*fn)(struct net_device *dev,
7683 					 struct netdev_nested_priv *priv),
7684 				       struct netdev_nested_priv *priv)
7685 {
7686 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7687 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7688 	int ret, cur = 0;
7689 	bool ignore;
7690 
7691 	now = dev;
7692 	iter = &dev->adj_list.lower;
7693 
7694 	while (1) {
7695 		if (now != dev) {
7696 			ret = fn(now, priv);
7697 			if (ret)
7698 				return ret;
7699 		}
7700 
7701 		next = NULL;
7702 		while (1) {
7703 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7704 			if (!ldev)
7705 				break;
7706 			if (ignore)
7707 				continue;
7708 
7709 			next = ldev;
7710 			niter = &ldev->adj_list.lower;
7711 			dev_stack[cur] = now;
7712 			iter_stack[cur++] = iter;
7713 			break;
7714 		}
7715 
7716 		if (!next) {
7717 			if (!cur)
7718 				return 0;
7719 			next = dev_stack[--cur];
7720 			niter = iter_stack[cur];
7721 		}
7722 
7723 		now = next;
7724 		iter = niter;
7725 	}
7726 
7727 	return 0;
7728 }
7729 
7730 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7731 					     struct list_head **iter)
7732 {
7733 	struct netdev_adjacent *lower;
7734 
7735 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7736 	if (&lower->list == &dev->adj_list.lower)
7737 		return NULL;
7738 
7739 	*iter = &lower->list;
7740 
7741 	return lower->dev;
7742 }
7743 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7744 
7745 static u8 __netdev_upper_depth(struct net_device *dev)
7746 {
7747 	struct net_device *udev;
7748 	struct list_head *iter;
7749 	u8 max_depth = 0;
7750 	bool ignore;
7751 
7752 	for (iter = &dev->adj_list.upper,
7753 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7754 	     udev;
7755 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7756 		if (ignore)
7757 			continue;
7758 		if (max_depth < udev->upper_level)
7759 			max_depth = udev->upper_level;
7760 	}
7761 
7762 	return max_depth;
7763 }
7764 
7765 static u8 __netdev_lower_depth(struct net_device *dev)
7766 {
7767 	struct net_device *ldev;
7768 	struct list_head *iter;
7769 	u8 max_depth = 0;
7770 	bool ignore;
7771 
7772 	for (iter = &dev->adj_list.lower,
7773 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7774 	     ldev;
7775 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7776 		if (ignore)
7777 			continue;
7778 		if (max_depth < ldev->lower_level)
7779 			max_depth = ldev->lower_level;
7780 	}
7781 
7782 	return max_depth;
7783 }
7784 
7785 static int __netdev_update_upper_level(struct net_device *dev,
7786 				       struct netdev_nested_priv *__unused)
7787 {
7788 	dev->upper_level = __netdev_upper_depth(dev) + 1;
7789 	return 0;
7790 }
7791 
7792 static int __netdev_update_lower_level(struct net_device *dev,
7793 				       struct netdev_nested_priv *priv)
7794 {
7795 	dev->lower_level = __netdev_lower_depth(dev) + 1;
7796 
7797 #ifdef CONFIG_LOCKDEP
7798 	if (!priv)
7799 		return 0;
7800 
7801 	if (priv->flags & NESTED_SYNC_IMM)
7802 		dev->nested_level = dev->lower_level - 1;
7803 	if (priv->flags & NESTED_SYNC_TODO)
7804 		net_unlink_todo(dev);
7805 #endif
7806 	return 0;
7807 }
7808 
7809 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7810 				  int (*fn)(struct net_device *dev,
7811 					    struct netdev_nested_priv *priv),
7812 				  struct netdev_nested_priv *priv)
7813 {
7814 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7815 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7816 	int ret, cur = 0;
7817 
7818 	now = dev;
7819 	iter = &dev->adj_list.lower;
7820 
7821 	while (1) {
7822 		if (now != dev) {
7823 			ret = fn(now, priv);
7824 			if (ret)
7825 				return ret;
7826 		}
7827 
7828 		next = NULL;
7829 		while (1) {
7830 			ldev = netdev_next_lower_dev_rcu(now, &iter);
7831 			if (!ldev)
7832 				break;
7833 
7834 			next = ldev;
7835 			niter = &ldev->adj_list.lower;
7836 			dev_stack[cur] = now;
7837 			iter_stack[cur++] = iter;
7838 			break;
7839 		}
7840 
7841 		if (!next) {
7842 			if (!cur)
7843 				return 0;
7844 			next = dev_stack[--cur];
7845 			niter = iter_stack[cur];
7846 		}
7847 
7848 		now = next;
7849 		iter = niter;
7850 	}
7851 
7852 	return 0;
7853 }
7854 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7855 
7856 /**
7857  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7858  *				       lower neighbour list, RCU
7859  *				       variant
7860  * @dev: device
7861  *
7862  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7863  * list. The caller must hold RCU read lock.
7864  */
7865 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7866 {
7867 	struct netdev_adjacent *lower;
7868 
7869 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
7870 			struct netdev_adjacent, list);
7871 	if (lower)
7872 		return lower->private;
7873 	return NULL;
7874 }
7875 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7876 
7877 /**
7878  * netdev_master_upper_dev_get_rcu - Get master upper device
7879  * @dev: device
7880  *
7881  * Find a master upper device and return pointer to it or NULL in case
7882  * it's not there. The caller must hold the RCU read lock.
7883  */
7884 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7885 {
7886 	struct netdev_adjacent *upper;
7887 
7888 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
7889 				       struct netdev_adjacent, list);
7890 	if (upper && likely(upper->master))
7891 		return upper->dev;
7892 	return NULL;
7893 }
7894 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7895 
7896 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7897 			      struct net_device *adj_dev,
7898 			      struct list_head *dev_list)
7899 {
7900 	char linkname[IFNAMSIZ+7];
7901 
7902 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7903 		"upper_%s" : "lower_%s", adj_dev->name);
7904 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7905 				 linkname);
7906 }
7907 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7908 			       char *name,
7909 			       struct list_head *dev_list)
7910 {
7911 	char linkname[IFNAMSIZ+7];
7912 
7913 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7914 		"upper_%s" : "lower_%s", name);
7915 	sysfs_remove_link(&(dev->dev.kobj), linkname);
7916 }
7917 
7918 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7919 						 struct net_device *adj_dev,
7920 						 struct list_head *dev_list)
7921 {
7922 	return (dev_list == &dev->adj_list.upper ||
7923 		dev_list == &dev->adj_list.lower) &&
7924 		net_eq(dev_net(dev), dev_net(adj_dev));
7925 }
7926 
7927 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7928 					struct net_device *adj_dev,
7929 					struct list_head *dev_list,
7930 					void *private, bool master)
7931 {
7932 	struct netdev_adjacent *adj;
7933 	int ret;
7934 
7935 	adj = __netdev_find_adj(adj_dev, dev_list);
7936 
7937 	if (adj) {
7938 		adj->ref_nr += 1;
7939 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7940 			 dev->name, adj_dev->name, adj->ref_nr);
7941 
7942 		return 0;
7943 	}
7944 
7945 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7946 	if (!adj)
7947 		return -ENOMEM;
7948 
7949 	adj->dev = adj_dev;
7950 	adj->master = master;
7951 	adj->ref_nr = 1;
7952 	adj->private = private;
7953 	adj->ignore = false;
7954 	dev_hold(adj_dev);
7955 
7956 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7957 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7958 
7959 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7960 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7961 		if (ret)
7962 			goto free_adj;
7963 	}
7964 
7965 	/* Ensure that master link is always the first item in list. */
7966 	if (master) {
7967 		ret = sysfs_create_link(&(dev->dev.kobj),
7968 					&(adj_dev->dev.kobj), "master");
7969 		if (ret)
7970 			goto remove_symlinks;
7971 
7972 		list_add_rcu(&adj->list, dev_list);
7973 	} else {
7974 		list_add_tail_rcu(&adj->list, dev_list);
7975 	}
7976 
7977 	return 0;
7978 
7979 remove_symlinks:
7980 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7981 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7982 free_adj:
7983 	kfree(adj);
7984 	dev_put(adj_dev);
7985 
7986 	return ret;
7987 }
7988 
7989 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7990 					 struct net_device *adj_dev,
7991 					 u16 ref_nr,
7992 					 struct list_head *dev_list)
7993 {
7994 	struct netdev_adjacent *adj;
7995 
7996 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7997 		 dev->name, adj_dev->name, ref_nr);
7998 
7999 	adj = __netdev_find_adj(adj_dev, dev_list);
8000 
8001 	if (!adj) {
8002 		pr_err("Adjacency does not exist for device %s from %s\n",
8003 		       dev->name, adj_dev->name);
8004 		WARN_ON(1);
8005 		return;
8006 	}
8007 
8008 	if (adj->ref_nr > ref_nr) {
8009 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
8010 			 dev->name, adj_dev->name, ref_nr,
8011 			 adj->ref_nr - ref_nr);
8012 		adj->ref_nr -= ref_nr;
8013 		return;
8014 	}
8015 
8016 	if (adj->master)
8017 		sysfs_remove_link(&(dev->dev.kobj), "master");
8018 
8019 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8020 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8021 
8022 	list_del_rcu(&adj->list);
8023 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
8024 		 adj_dev->name, dev->name, adj_dev->name);
8025 	dev_put(adj_dev);
8026 	kfree_rcu(adj, rcu);
8027 }
8028 
8029 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
8030 					    struct net_device *upper_dev,
8031 					    struct list_head *up_list,
8032 					    struct list_head *down_list,
8033 					    void *private, bool master)
8034 {
8035 	int ret;
8036 
8037 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
8038 					   private, master);
8039 	if (ret)
8040 		return ret;
8041 
8042 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
8043 					   private, false);
8044 	if (ret) {
8045 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
8046 		return ret;
8047 	}
8048 
8049 	return 0;
8050 }
8051 
8052 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
8053 					       struct net_device *upper_dev,
8054 					       u16 ref_nr,
8055 					       struct list_head *up_list,
8056 					       struct list_head *down_list)
8057 {
8058 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
8059 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
8060 }
8061 
8062 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
8063 						struct net_device *upper_dev,
8064 						void *private, bool master)
8065 {
8066 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
8067 						&dev->adj_list.upper,
8068 						&upper_dev->adj_list.lower,
8069 						private, master);
8070 }
8071 
8072 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
8073 						   struct net_device *upper_dev)
8074 {
8075 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
8076 					   &dev->adj_list.upper,
8077 					   &upper_dev->adj_list.lower);
8078 }
8079 
8080 static int __netdev_upper_dev_link(struct net_device *dev,
8081 				   struct net_device *upper_dev, bool master,
8082 				   void *upper_priv, void *upper_info,
8083 				   struct netdev_nested_priv *priv,
8084 				   struct netlink_ext_ack *extack)
8085 {
8086 	struct netdev_notifier_changeupper_info changeupper_info = {
8087 		.info = {
8088 			.dev = dev,
8089 			.extack = extack,
8090 		},
8091 		.upper_dev = upper_dev,
8092 		.master = master,
8093 		.linking = true,
8094 		.upper_info = upper_info,
8095 	};
8096 	struct net_device *master_dev;
8097 	int ret = 0;
8098 
8099 	ASSERT_RTNL();
8100 
8101 	if (dev == upper_dev)
8102 		return -EBUSY;
8103 
8104 	/* To prevent loops, check if dev is not upper device to upper_dev. */
8105 	if (__netdev_has_upper_dev(upper_dev, dev))
8106 		return -EBUSY;
8107 
8108 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
8109 		return -EMLINK;
8110 
8111 	if (!master) {
8112 		if (__netdev_has_upper_dev(dev, upper_dev))
8113 			return -EEXIST;
8114 	} else {
8115 		master_dev = __netdev_master_upper_dev_get(dev);
8116 		if (master_dev)
8117 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
8118 	}
8119 
8120 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8121 					    &changeupper_info.info);
8122 	ret = notifier_to_errno(ret);
8123 	if (ret)
8124 		return ret;
8125 
8126 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
8127 						   master);
8128 	if (ret)
8129 		return ret;
8130 
8131 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8132 					    &changeupper_info.info);
8133 	ret = notifier_to_errno(ret);
8134 	if (ret)
8135 		goto rollback;
8136 
8137 	__netdev_update_upper_level(dev, NULL);
8138 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8139 
8140 	__netdev_update_lower_level(upper_dev, priv);
8141 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8142 				    priv);
8143 
8144 	return 0;
8145 
8146 rollback:
8147 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8148 
8149 	return ret;
8150 }
8151 
8152 /**
8153  * netdev_upper_dev_link - Add a link to the upper device
8154  * @dev: device
8155  * @upper_dev: new upper device
8156  * @extack: netlink extended ack
8157  *
8158  * Adds a link to device which is upper to this one. The caller must hold
8159  * the RTNL lock. On a failure a negative errno code is returned.
8160  * On success the reference counts are adjusted and the function
8161  * returns zero.
8162  */
8163 int netdev_upper_dev_link(struct net_device *dev,
8164 			  struct net_device *upper_dev,
8165 			  struct netlink_ext_ack *extack)
8166 {
8167 	struct netdev_nested_priv priv = {
8168 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8169 		.data = NULL,
8170 	};
8171 
8172 	return __netdev_upper_dev_link(dev, upper_dev, false,
8173 				       NULL, NULL, &priv, extack);
8174 }
8175 EXPORT_SYMBOL(netdev_upper_dev_link);
8176 
8177 /**
8178  * netdev_master_upper_dev_link - Add a master link to the upper device
8179  * @dev: device
8180  * @upper_dev: new upper device
8181  * @upper_priv: upper device private
8182  * @upper_info: upper info to be passed down via notifier
8183  * @extack: netlink extended ack
8184  *
8185  * Adds a link to device which is upper to this one. In this case, only
8186  * one master upper device can be linked, although other non-master devices
8187  * might be linked as well. The caller must hold the RTNL lock.
8188  * On a failure a negative errno code is returned. On success the reference
8189  * counts are adjusted and the function returns zero.
8190  */
8191 int netdev_master_upper_dev_link(struct net_device *dev,
8192 				 struct net_device *upper_dev,
8193 				 void *upper_priv, void *upper_info,
8194 				 struct netlink_ext_ack *extack)
8195 {
8196 	struct netdev_nested_priv priv = {
8197 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8198 		.data = NULL,
8199 	};
8200 
8201 	return __netdev_upper_dev_link(dev, upper_dev, true,
8202 				       upper_priv, upper_info, &priv, extack);
8203 }
8204 EXPORT_SYMBOL(netdev_master_upper_dev_link);
8205 
8206 static void __netdev_upper_dev_unlink(struct net_device *dev,
8207 				      struct net_device *upper_dev,
8208 				      struct netdev_nested_priv *priv)
8209 {
8210 	struct netdev_notifier_changeupper_info changeupper_info = {
8211 		.info = {
8212 			.dev = dev,
8213 		},
8214 		.upper_dev = upper_dev,
8215 		.linking = false,
8216 	};
8217 
8218 	ASSERT_RTNL();
8219 
8220 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8221 
8222 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8223 				      &changeupper_info.info);
8224 
8225 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8226 
8227 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8228 				      &changeupper_info.info);
8229 
8230 	__netdev_update_upper_level(dev, NULL);
8231 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8232 
8233 	__netdev_update_lower_level(upper_dev, priv);
8234 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8235 				    priv);
8236 }
8237 
8238 /**
8239  * netdev_upper_dev_unlink - Removes a link to upper device
8240  * @dev: device
8241  * @upper_dev: new upper device
8242  *
8243  * Removes a link to device which is upper to this one. The caller must hold
8244  * the RTNL lock.
8245  */
8246 void netdev_upper_dev_unlink(struct net_device *dev,
8247 			     struct net_device *upper_dev)
8248 {
8249 	struct netdev_nested_priv priv = {
8250 		.flags = NESTED_SYNC_TODO,
8251 		.data = NULL,
8252 	};
8253 
8254 	__netdev_upper_dev_unlink(dev, upper_dev, &priv);
8255 }
8256 EXPORT_SYMBOL(netdev_upper_dev_unlink);
8257 
8258 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8259 				      struct net_device *lower_dev,
8260 				      bool val)
8261 {
8262 	struct netdev_adjacent *adj;
8263 
8264 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8265 	if (adj)
8266 		adj->ignore = val;
8267 
8268 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8269 	if (adj)
8270 		adj->ignore = val;
8271 }
8272 
8273 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8274 					struct net_device *lower_dev)
8275 {
8276 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8277 }
8278 
8279 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8280 				       struct net_device *lower_dev)
8281 {
8282 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8283 }
8284 
8285 int netdev_adjacent_change_prepare(struct net_device *old_dev,
8286 				   struct net_device *new_dev,
8287 				   struct net_device *dev,
8288 				   struct netlink_ext_ack *extack)
8289 {
8290 	struct netdev_nested_priv priv = {
8291 		.flags = 0,
8292 		.data = NULL,
8293 	};
8294 	int err;
8295 
8296 	if (!new_dev)
8297 		return 0;
8298 
8299 	if (old_dev && new_dev != old_dev)
8300 		netdev_adjacent_dev_disable(dev, old_dev);
8301 	err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8302 				      extack);
8303 	if (err) {
8304 		if (old_dev && new_dev != old_dev)
8305 			netdev_adjacent_dev_enable(dev, old_dev);
8306 		return err;
8307 	}
8308 
8309 	return 0;
8310 }
8311 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8312 
8313 void netdev_adjacent_change_commit(struct net_device *old_dev,
8314 				   struct net_device *new_dev,
8315 				   struct net_device *dev)
8316 {
8317 	struct netdev_nested_priv priv = {
8318 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8319 		.data = NULL,
8320 	};
8321 
8322 	if (!new_dev || !old_dev)
8323 		return;
8324 
8325 	if (new_dev == old_dev)
8326 		return;
8327 
8328 	netdev_adjacent_dev_enable(dev, old_dev);
8329 	__netdev_upper_dev_unlink(old_dev, dev, &priv);
8330 }
8331 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8332 
8333 void netdev_adjacent_change_abort(struct net_device *old_dev,
8334 				  struct net_device *new_dev,
8335 				  struct net_device *dev)
8336 {
8337 	struct netdev_nested_priv priv = {
8338 		.flags = 0,
8339 		.data = NULL,
8340 	};
8341 
8342 	if (!new_dev)
8343 		return;
8344 
8345 	if (old_dev && new_dev != old_dev)
8346 		netdev_adjacent_dev_enable(dev, old_dev);
8347 
8348 	__netdev_upper_dev_unlink(new_dev, dev, &priv);
8349 }
8350 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8351 
8352 /**
8353  * netdev_bonding_info_change - Dispatch event about slave change
8354  * @dev: device
8355  * @bonding_info: info to dispatch
8356  *
8357  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8358  * The caller must hold the RTNL lock.
8359  */
8360 void netdev_bonding_info_change(struct net_device *dev,
8361 				struct netdev_bonding_info *bonding_info)
8362 {
8363 	struct netdev_notifier_bonding_info info = {
8364 		.info.dev = dev,
8365 	};
8366 
8367 	memcpy(&info.bonding_info, bonding_info,
8368 	       sizeof(struct netdev_bonding_info));
8369 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8370 				      &info.info);
8371 }
8372 EXPORT_SYMBOL(netdev_bonding_info_change);
8373 
8374 /**
8375  * netdev_get_xmit_slave - Get the xmit slave of master device
8376  * @dev: device
8377  * @skb: The packet
8378  * @all_slaves: assume all the slaves are active
8379  *
8380  * The reference counters are not incremented so the caller must be
8381  * careful with locks. The caller must hold RCU lock.
8382  * %NULL is returned if no slave is found.
8383  */
8384 
8385 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8386 					 struct sk_buff *skb,
8387 					 bool all_slaves)
8388 {
8389 	const struct net_device_ops *ops = dev->netdev_ops;
8390 
8391 	if (!ops->ndo_get_xmit_slave)
8392 		return NULL;
8393 	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8394 }
8395 EXPORT_SYMBOL(netdev_get_xmit_slave);
8396 
8397 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8398 						  struct sock *sk)
8399 {
8400 	const struct net_device_ops *ops = dev->netdev_ops;
8401 
8402 	if (!ops->ndo_sk_get_lower_dev)
8403 		return NULL;
8404 	return ops->ndo_sk_get_lower_dev(dev, sk);
8405 }
8406 
8407 /**
8408  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8409  * @dev: device
8410  * @sk: the socket
8411  *
8412  * %NULL is returned if no lower device is found.
8413  */
8414 
8415 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8416 					    struct sock *sk)
8417 {
8418 	struct net_device *lower;
8419 
8420 	lower = netdev_sk_get_lower_dev(dev, sk);
8421 	while (lower) {
8422 		dev = lower;
8423 		lower = netdev_sk_get_lower_dev(dev, sk);
8424 	}
8425 
8426 	return dev;
8427 }
8428 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8429 
8430 static void netdev_adjacent_add_links(struct net_device *dev)
8431 {
8432 	struct netdev_adjacent *iter;
8433 
8434 	struct net *net = dev_net(dev);
8435 
8436 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8437 		if (!net_eq(net, dev_net(iter->dev)))
8438 			continue;
8439 		netdev_adjacent_sysfs_add(iter->dev, dev,
8440 					  &iter->dev->adj_list.lower);
8441 		netdev_adjacent_sysfs_add(dev, iter->dev,
8442 					  &dev->adj_list.upper);
8443 	}
8444 
8445 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8446 		if (!net_eq(net, dev_net(iter->dev)))
8447 			continue;
8448 		netdev_adjacent_sysfs_add(iter->dev, dev,
8449 					  &iter->dev->adj_list.upper);
8450 		netdev_adjacent_sysfs_add(dev, iter->dev,
8451 					  &dev->adj_list.lower);
8452 	}
8453 }
8454 
8455 static void netdev_adjacent_del_links(struct net_device *dev)
8456 {
8457 	struct netdev_adjacent *iter;
8458 
8459 	struct net *net = dev_net(dev);
8460 
8461 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8462 		if (!net_eq(net, dev_net(iter->dev)))
8463 			continue;
8464 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8465 					  &iter->dev->adj_list.lower);
8466 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8467 					  &dev->adj_list.upper);
8468 	}
8469 
8470 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8471 		if (!net_eq(net, dev_net(iter->dev)))
8472 			continue;
8473 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8474 					  &iter->dev->adj_list.upper);
8475 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8476 					  &dev->adj_list.lower);
8477 	}
8478 }
8479 
8480 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8481 {
8482 	struct netdev_adjacent *iter;
8483 
8484 	struct net *net = dev_net(dev);
8485 
8486 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8487 		if (!net_eq(net, dev_net(iter->dev)))
8488 			continue;
8489 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8490 					  &iter->dev->adj_list.lower);
8491 		netdev_adjacent_sysfs_add(iter->dev, dev,
8492 					  &iter->dev->adj_list.lower);
8493 	}
8494 
8495 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8496 		if (!net_eq(net, dev_net(iter->dev)))
8497 			continue;
8498 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8499 					  &iter->dev->adj_list.upper);
8500 		netdev_adjacent_sysfs_add(iter->dev, dev,
8501 					  &iter->dev->adj_list.upper);
8502 	}
8503 }
8504 
8505 void *netdev_lower_dev_get_private(struct net_device *dev,
8506 				   struct net_device *lower_dev)
8507 {
8508 	struct netdev_adjacent *lower;
8509 
8510 	if (!lower_dev)
8511 		return NULL;
8512 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8513 	if (!lower)
8514 		return NULL;
8515 
8516 	return lower->private;
8517 }
8518 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8519 
8520 
8521 /**
8522  * netdev_lower_state_changed - Dispatch event about lower device state change
8523  * @lower_dev: device
8524  * @lower_state_info: state to dispatch
8525  *
8526  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8527  * The caller must hold the RTNL lock.
8528  */
8529 void netdev_lower_state_changed(struct net_device *lower_dev,
8530 				void *lower_state_info)
8531 {
8532 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8533 		.info.dev = lower_dev,
8534 	};
8535 
8536 	ASSERT_RTNL();
8537 	changelowerstate_info.lower_state_info = lower_state_info;
8538 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8539 				      &changelowerstate_info.info);
8540 }
8541 EXPORT_SYMBOL(netdev_lower_state_changed);
8542 
8543 static void dev_change_rx_flags(struct net_device *dev, int flags)
8544 {
8545 	const struct net_device_ops *ops = dev->netdev_ops;
8546 
8547 	if (ops->ndo_change_rx_flags)
8548 		ops->ndo_change_rx_flags(dev, flags);
8549 }
8550 
8551 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8552 {
8553 	unsigned int old_flags = dev->flags;
8554 	kuid_t uid;
8555 	kgid_t gid;
8556 
8557 	ASSERT_RTNL();
8558 
8559 	dev->flags |= IFF_PROMISC;
8560 	dev->promiscuity += inc;
8561 	if (dev->promiscuity == 0) {
8562 		/*
8563 		 * Avoid overflow.
8564 		 * If inc causes overflow, untouch promisc and return error.
8565 		 */
8566 		if (inc < 0)
8567 			dev->flags &= ~IFF_PROMISC;
8568 		else {
8569 			dev->promiscuity -= inc;
8570 			netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8571 			return -EOVERFLOW;
8572 		}
8573 	}
8574 	if (dev->flags != old_flags) {
8575 		pr_info("device %s %s promiscuous mode\n",
8576 			dev->name,
8577 			dev->flags & IFF_PROMISC ? "entered" : "left");
8578 		if (audit_enabled) {
8579 			current_uid_gid(&uid, &gid);
8580 			audit_log(audit_context(), GFP_ATOMIC,
8581 				  AUDIT_ANOM_PROMISCUOUS,
8582 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8583 				  dev->name, (dev->flags & IFF_PROMISC),
8584 				  (old_flags & IFF_PROMISC),
8585 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
8586 				  from_kuid(&init_user_ns, uid),
8587 				  from_kgid(&init_user_ns, gid),
8588 				  audit_get_sessionid(current));
8589 		}
8590 
8591 		dev_change_rx_flags(dev, IFF_PROMISC);
8592 	}
8593 	if (notify)
8594 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
8595 	return 0;
8596 }
8597 
8598 /**
8599  *	dev_set_promiscuity	- update promiscuity count on a device
8600  *	@dev: device
8601  *	@inc: modifier
8602  *
8603  *	Add or remove promiscuity from a device. While the count in the device
8604  *	remains above zero the interface remains promiscuous. Once it hits zero
8605  *	the device reverts back to normal filtering operation. A negative inc
8606  *	value is used to drop promiscuity on the device.
8607  *	Return 0 if successful or a negative errno code on error.
8608  */
8609 int dev_set_promiscuity(struct net_device *dev, int inc)
8610 {
8611 	unsigned int old_flags = dev->flags;
8612 	int err;
8613 
8614 	err = __dev_set_promiscuity(dev, inc, true);
8615 	if (err < 0)
8616 		return err;
8617 	if (dev->flags != old_flags)
8618 		dev_set_rx_mode(dev);
8619 	return err;
8620 }
8621 EXPORT_SYMBOL(dev_set_promiscuity);
8622 
8623 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8624 {
8625 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8626 
8627 	ASSERT_RTNL();
8628 
8629 	dev->flags |= IFF_ALLMULTI;
8630 	dev->allmulti += inc;
8631 	if (dev->allmulti == 0) {
8632 		/*
8633 		 * Avoid overflow.
8634 		 * If inc causes overflow, untouch allmulti and return error.
8635 		 */
8636 		if (inc < 0)
8637 			dev->flags &= ~IFF_ALLMULTI;
8638 		else {
8639 			dev->allmulti -= inc;
8640 			netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8641 			return -EOVERFLOW;
8642 		}
8643 	}
8644 	if (dev->flags ^ old_flags) {
8645 		dev_change_rx_flags(dev, IFF_ALLMULTI);
8646 		dev_set_rx_mode(dev);
8647 		if (notify)
8648 			__dev_notify_flags(dev, old_flags,
8649 					   dev->gflags ^ old_gflags);
8650 	}
8651 	return 0;
8652 }
8653 
8654 /**
8655  *	dev_set_allmulti	- update allmulti count on a device
8656  *	@dev: device
8657  *	@inc: modifier
8658  *
8659  *	Add or remove reception of all multicast frames to a device. While the
8660  *	count in the device remains above zero the interface remains listening
8661  *	to all interfaces. Once it hits zero the device reverts back to normal
8662  *	filtering operation. A negative @inc value is used to drop the counter
8663  *	when releasing a resource needing all multicasts.
8664  *	Return 0 if successful or a negative errno code on error.
8665  */
8666 
8667 int dev_set_allmulti(struct net_device *dev, int inc)
8668 {
8669 	return __dev_set_allmulti(dev, inc, true);
8670 }
8671 EXPORT_SYMBOL(dev_set_allmulti);
8672 
8673 /*
8674  *	Upload unicast and multicast address lists to device and
8675  *	configure RX filtering. When the device doesn't support unicast
8676  *	filtering it is put in promiscuous mode while unicast addresses
8677  *	are present.
8678  */
8679 void __dev_set_rx_mode(struct net_device *dev)
8680 {
8681 	const struct net_device_ops *ops = dev->netdev_ops;
8682 
8683 	/* dev_open will call this function so the list will stay sane. */
8684 	if (!(dev->flags&IFF_UP))
8685 		return;
8686 
8687 	if (!netif_device_present(dev))
8688 		return;
8689 
8690 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8691 		/* Unicast addresses changes may only happen under the rtnl,
8692 		 * therefore calling __dev_set_promiscuity here is safe.
8693 		 */
8694 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8695 			__dev_set_promiscuity(dev, 1, false);
8696 			dev->uc_promisc = true;
8697 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8698 			__dev_set_promiscuity(dev, -1, false);
8699 			dev->uc_promisc = false;
8700 		}
8701 	}
8702 
8703 	if (ops->ndo_set_rx_mode)
8704 		ops->ndo_set_rx_mode(dev);
8705 }
8706 
8707 void dev_set_rx_mode(struct net_device *dev)
8708 {
8709 	netif_addr_lock_bh(dev);
8710 	__dev_set_rx_mode(dev);
8711 	netif_addr_unlock_bh(dev);
8712 }
8713 
8714 /**
8715  *	dev_get_flags - get flags reported to userspace
8716  *	@dev: device
8717  *
8718  *	Get the combination of flag bits exported through APIs to userspace.
8719  */
8720 unsigned int dev_get_flags(const struct net_device *dev)
8721 {
8722 	unsigned int flags;
8723 
8724 	flags = (dev->flags & ~(IFF_PROMISC |
8725 				IFF_ALLMULTI |
8726 				IFF_RUNNING |
8727 				IFF_LOWER_UP |
8728 				IFF_DORMANT)) |
8729 		(dev->gflags & (IFF_PROMISC |
8730 				IFF_ALLMULTI));
8731 
8732 	if (netif_running(dev)) {
8733 		if (netif_oper_up(dev))
8734 			flags |= IFF_RUNNING;
8735 		if (netif_carrier_ok(dev))
8736 			flags |= IFF_LOWER_UP;
8737 		if (netif_dormant(dev))
8738 			flags |= IFF_DORMANT;
8739 	}
8740 
8741 	return flags;
8742 }
8743 EXPORT_SYMBOL(dev_get_flags);
8744 
8745 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8746 		       struct netlink_ext_ack *extack)
8747 {
8748 	unsigned int old_flags = dev->flags;
8749 	int ret;
8750 
8751 	ASSERT_RTNL();
8752 
8753 	/*
8754 	 *	Set the flags on our device.
8755 	 */
8756 
8757 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8758 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8759 			       IFF_AUTOMEDIA)) |
8760 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8761 				    IFF_ALLMULTI));
8762 
8763 	/*
8764 	 *	Load in the correct multicast list now the flags have changed.
8765 	 */
8766 
8767 	if ((old_flags ^ flags) & IFF_MULTICAST)
8768 		dev_change_rx_flags(dev, IFF_MULTICAST);
8769 
8770 	dev_set_rx_mode(dev);
8771 
8772 	/*
8773 	 *	Have we downed the interface. We handle IFF_UP ourselves
8774 	 *	according to user attempts to set it, rather than blindly
8775 	 *	setting it.
8776 	 */
8777 
8778 	ret = 0;
8779 	if ((old_flags ^ flags) & IFF_UP) {
8780 		if (old_flags & IFF_UP)
8781 			__dev_close(dev);
8782 		else
8783 			ret = __dev_open(dev, extack);
8784 	}
8785 
8786 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
8787 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
8788 		unsigned int old_flags = dev->flags;
8789 
8790 		dev->gflags ^= IFF_PROMISC;
8791 
8792 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
8793 			if (dev->flags != old_flags)
8794 				dev_set_rx_mode(dev);
8795 	}
8796 
8797 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8798 	 * is important. Some (broken) drivers set IFF_PROMISC, when
8799 	 * IFF_ALLMULTI is requested not asking us and not reporting.
8800 	 */
8801 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8802 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8803 
8804 		dev->gflags ^= IFF_ALLMULTI;
8805 		__dev_set_allmulti(dev, inc, false);
8806 	}
8807 
8808 	return ret;
8809 }
8810 
8811 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8812 			unsigned int gchanges)
8813 {
8814 	unsigned int changes = dev->flags ^ old_flags;
8815 
8816 	if (gchanges)
8817 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8818 
8819 	if (changes & IFF_UP) {
8820 		if (dev->flags & IFF_UP)
8821 			call_netdevice_notifiers(NETDEV_UP, dev);
8822 		else
8823 			call_netdevice_notifiers(NETDEV_DOWN, dev);
8824 	}
8825 
8826 	if (dev->flags & IFF_UP &&
8827 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8828 		struct netdev_notifier_change_info change_info = {
8829 			.info = {
8830 				.dev = dev,
8831 			},
8832 			.flags_changed = changes,
8833 		};
8834 
8835 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8836 	}
8837 }
8838 
8839 /**
8840  *	dev_change_flags - change device settings
8841  *	@dev: device
8842  *	@flags: device state flags
8843  *	@extack: netlink extended ack
8844  *
8845  *	Change settings on device based state flags. The flags are
8846  *	in the userspace exported format.
8847  */
8848 int dev_change_flags(struct net_device *dev, unsigned int flags,
8849 		     struct netlink_ext_ack *extack)
8850 {
8851 	int ret;
8852 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8853 
8854 	ret = __dev_change_flags(dev, flags, extack);
8855 	if (ret < 0)
8856 		return ret;
8857 
8858 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8859 	__dev_notify_flags(dev, old_flags, changes);
8860 	return ret;
8861 }
8862 EXPORT_SYMBOL(dev_change_flags);
8863 
8864 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8865 {
8866 	const struct net_device_ops *ops = dev->netdev_ops;
8867 
8868 	if (ops->ndo_change_mtu)
8869 		return ops->ndo_change_mtu(dev, new_mtu);
8870 
8871 	/* Pairs with all the lockless reads of dev->mtu in the stack */
8872 	WRITE_ONCE(dev->mtu, new_mtu);
8873 	return 0;
8874 }
8875 EXPORT_SYMBOL(__dev_set_mtu);
8876 
8877 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8878 		     struct netlink_ext_ack *extack)
8879 {
8880 	/* MTU must be positive, and in range */
8881 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8882 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8883 		return -EINVAL;
8884 	}
8885 
8886 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8887 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8888 		return -EINVAL;
8889 	}
8890 	return 0;
8891 }
8892 
8893 /**
8894  *	dev_set_mtu_ext - Change maximum transfer unit
8895  *	@dev: device
8896  *	@new_mtu: new transfer unit
8897  *	@extack: netlink extended ack
8898  *
8899  *	Change the maximum transfer size of the network device.
8900  */
8901 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8902 		    struct netlink_ext_ack *extack)
8903 {
8904 	int err, orig_mtu;
8905 
8906 	if (new_mtu == dev->mtu)
8907 		return 0;
8908 
8909 	err = dev_validate_mtu(dev, new_mtu, extack);
8910 	if (err)
8911 		return err;
8912 
8913 	if (!netif_device_present(dev))
8914 		return -ENODEV;
8915 
8916 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8917 	err = notifier_to_errno(err);
8918 	if (err)
8919 		return err;
8920 
8921 	orig_mtu = dev->mtu;
8922 	err = __dev_set_mtu(dev, new_mtu);
8923 
8924 	if (!err) {
8925 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8926 						   orig_mtu);
8927 		err = notifier_to_errno(err);
8928 		if (err) {
8929 			/* setting mtu back and notifying everyone again,
8930 			 * so that they have a chance to revert changes.
8931 			 */
8932 			__dev_set_mtu(dev, orig_mtu);
8933 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8934 						     new_mtu);
8935 		}
8936 	}
8937 	return err;
8938 }
8939 
8940 int dev_set_mtu(struct net_device *dev, int new_mtu)
8941 {
8942 	struct netlink_ext_ack extack;
8943 	int err;
8944 
8945 	memset(&extack, 0, sizeof(extack));
8946 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
8947 	if (err && extack._msg)
8948 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8949 	return err;
8950 }
8951 EXPORT_SYMBOL(dev_set_mtu);
8952 
8953 /**
8954  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
8955  *	@dev: device
8956  *	@new_len: new tx queue length
8957  */
8958 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8959 {
8960 	unsigned int orig_len = dev->tx_queue_len;
8961 	int res;
8962 
8963 	if (new_len != (unsigned int)new_len)
8964 		return -ERANGE;
8965 
8966 	if (new_len != orig_len) {
8967 		dev->tx_queue_len = new_len;
8968 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8969 		res = notifier_to_errno(res);
8970 		if (res)
8971 			goto err_rollback;
8972 		res = dev_qdisc_change_tx_queue_len(dev);
8973 		if (res)
8974 			goto err_rollback;
8975 	}
8976 
8977 	return 0;
8978 
8979 err_rollback:
8980 	netdev_err(dev, "refused to change device tx_queue_len\n");
8981 	dev->tx_queue_len = orig_len;
8982 	return res;
8983 }
8984 
8985 /**
8986  *	dev_set_group - Change group this device belongs to
8987  *	@dev: device
8988  *	@new_group: group this device should belong to
8989  */
8990 void dev_set_group(struct net_device *dev, int new_group)
8991 {
8992 	dev->group = new_group;
8993 }
8994 EXPORT_SYMBOL(dev_set_group);
8995 
8996 /**
8997  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8998  *	@dev: device
8999  *	@addr: new address
9000  *	@extack: netlink extended ack
9001  */
9002 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
9003 			      struct netlink_ext_ack *extack)
9004 {
9005 	struct netdev_notifier_pre_changeaddr_info info = {
9006 		.info.dev = dev,
9007 		.info.extack = extack,
9008 		.dev_addr = addr,
9009 	};
9010 	int rc;
9011 
9012 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
9013 	return notifier_to_errno(rc);
9014 }
9015 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
9016 
9017 /**
9018  *	dev_set_mac_address - Change Media Access Control Address
9019  *	@dev: device
9020  *	@sa: new address
9021  *	@extack: netlink extended ack
9022  *
9023  *	Change the hardware (MAC) address of the device
9024  */
9025 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
9026 			struct netlink_ext_ack *extack)
9027 {
9028 	const struct net_device_ops *ops = dev->netdev_ops;
9029 	int err;
9030 
9031 	if (!ops->ndo_set_mac_address)
9032 		return -EOPNOTSUPP;
9033 	if (sa->sa_family != dev->type)
9034 		return -EINVAL;
9035 	if (!netif_device_present(dev))
9036 		return -ENODEV;
9037 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
9038 	if (err)
9039 		return err;
9040 	err = ops->ndo_set_mac_address(dev, sa);
9041 	if (err)
9042 		return err;
9043 	dev->addr_assign_type = NET_ADDR_SET;
9044 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
9045 	add_device_randomness(dev->dev_addr, dev->addr_len);
9046 	return 0;
9047 }
9048 EXPORT_SYMBOL(dev_set_mac_address);
9049 
9050 static DECLARE_RWSEM(dev_addr_sem);
9051 
9052 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
9053 			     struct netlink_ext_ack *extack)
9054 {
9055 	int ret;
9056 
9057 	down_write(&dev_addr_sem);
9058 	ret = dev_set_mac_address(dev, sa, extack);
9059 	up_write(&dev_addr_sem);
9060 	return ret;
9061 }
9062 EXPORT_SYMBOL(dev_set_mac_address_user);
9063 
9064 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
9065 {
9066 	size_t size = sizeof(sa->sa_data);
9067 	struct net_device *dev;
9068 	int ret = 0;
9069 
9070 	down_read(&dev_addr_sem);
9071 	rcu_read_lock();
9072 
9073 	dev = dev_get_by_name_rcu(net, dev_name);
9074 	if (!dev) {
9075 		ret = -ENODEV;
9076 		goto unlock;
9077 	}
9078 	if (!dev->addr_len)
9079 		memset(sa->sa_data, 0, size);
9080 	else
9081 		memcpy(sa->sa_data, dev->dev_addr,
9082 		       min_t(size_t, size, dev->addr_len));
9083 	sa->sa_family = dev->type;
9084 
9085 unlock:
9086 	rcu_read_unlock();
9087 	up_read(&dev_addr_sem);
9088 	return ret;
9089 }
9090 EXPORT_SYMBOL(dev_get_mac_address);
9091 
9092 /**
9093  *	dev_change_carrier - Change device carrier
9094  *	@dev: device
9095  *	@new_carrier: new value
9096  *
9097  *	Change device carrier
9098  */
9099 int dev_change_carrier(struct net_device *dev, bool new_carrier)
9100 {
9101 	const struct net_device_ops *ops = dev->netdev_ops;
9102 
9103 	if (!ops->ndo_change_carrier)
9104 		return -EOPNOTSUPP;
9105 	if (!netif_device_present(dev))
9106 		return -ENODEV;
9107 	return ops->ndo_change_carrier(dev, new_carrier);
9108 }
9109 EXPORT_SYMBOL(dev_change_carrier);
9110 
9111 /**
9112  *	dev_get_phys_port_id - Get device physical port ID
9113  *	@dev: device
9114  *	@ppid: port ID
9115  *
9116  *	Get device physical port ID
9117  */
9118 int dev_get_phys_port_id(struct net_device *dev,
9119 			 struct netdev_phys_item_id *ppid)
9120 {
9121 	const struct net_device_ops *ops = dev->netdev_ops;
9122 
9123 	if (!ops->ndo_get_phys_port_id)
9124 		return -EOPNOTSUPP;
9125 	return ops->ndo_get_phys_port_id(dev, ppid);
9126 }
9127 EXPORT_SYMBOL(dev_get_phys_port_id);
9128 
9129 /**
9130  *	dev_get_phys_port_name - Get device physical port name
9131  *	@dev: device
9132  *	@name: port name
9133  *	@len: limit of bytes to copy to name
9134  *
9135  *	Get device physical port name
9136  */
9137 int dev_get_phys_port_name(struct net_device *dev,
9138 			   char *name, size_t len)
9139 {
9140 	const struct net_device_ops *ops = dev->netdev_ops;
9141 	int err;
9142 
9143 	if (ops->ndo_get_phys_port_name) {
9144 		err = ops->ndo_get_phys_port_name(dev, name, len);
9145 		if (err != -EOPNOTSUPP)
9146 			return err;
9147 	}
9148 	return devlink_compat_phys_port_name_get(dev, name, len);
9149 }
9150 EXPORT_SYMBOL(dev_get_phys_port_name);
9151 
9152 /**
9153  *	dev_get_port_parent_id - Get the device's port parent identifier
9154  *	@dev: network device
9155  *	@ppid: pointer to a storage for the port's parent identifier
9156  *	@recurse: allow/disallow recursion to lower devices
9157  *
9158  *	Get the devices's port parent identifier
9159  */
9160 int dev_get_port_parent_id(struct net_device *dev,
9161 			   struct netdev_phys_item_id *ppid,
9162 			   bool recurse)
9163 {
9164 	const struct net_device_ops *ops = dev->netdev_ops;
9165 	struct netdev_phys_item_id first = { };
9166 	struct net_device *lower_dev;
9167 	struct list_head *iter;
9168 	int err;
9169 
9170 	if (ops->ndo_get_port_parent_id) {
9171 		err = ops->ndo_get_port_parent_id(dev, ppid);
9172 		if (err != -EOPNOTSUPP)
9173 			return err;
9174 	}
9175 
9176 	err = devlink_compat_switch_id_get(dev, ppid);
9177 	if (!recurse || err != -EOPNOTSUPP)
9178 		return err;
9179 
9180 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
9181 		err = dev_get_port_parent_id(lower_dev, ppid, true);
9182 		if (err)
9183 			break;
9184 		if (!first.id_len)
9185 			first = *ppid;
9186 		else if (memcmp(&first, ppid, sizeof(*ppid)))
9187 			return -EOPNOTSUPP;
9188 	}
9189 
9190 	return err;
9191 }
9192 EXPORT_SYMBOL(dev_get_port_parent_id);
9193 
9194 /**
9195  *	netdev_port_same_parent_id - Indicate if two network devices have
9196  *	the same port parent identifier
9197  *	@a: first network device
9198  *	@b: second network device
9199  */
9200 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9201 {
9202 	struct netdev_phys_item_id a_id = { };
9203 	struct netdev_phys_item_id b_id = { };
9204 
9205 	if (dev_get_port_parent_id(a, &a_id, true) ||
9206 	    dev_get_port_parent_id(b, &b_id, true))
9207 		return false;
9208 
9209 	return netdev_phys_item_id_same(&a_id, &b_id);
9210 }
9211 EXPORT_SYMBOL(netdev_port_same_parent_id);
9212 
9213 /**
9214  *	dev_change_proto_down - update protocol port state information
9215  *	@dev: device
9216  *	@proto_down: new value
9217  *
9218  *	This info can be used by switch drivers to set the phys state of the
9219  *	port.
9220  */
9221 int dev_change_proto_down(struct net_device *dev, bool proto_down)
9222 {
9223 	const struct net_device_ops *ops = dev->netdev_ops;
9224 
9225 	if (!ops->ndo_change_proto_down)
9226 		return -EOPNOTSUPP;
9227 	if (!netif_device_present(dev))
9228 		return -ENODEV;
9229 	return ops->ndo_change_proto_down(dev, proto_down);
9230 }
9231 EXPORT_SYMBOL(dev_change_proto_down);
9232 
9233 /**
9234  *	dev_change_proto_down_generic - generic implementation for
9235  * 	ndo_change_proto_down that sets carrier according to
9236  * 	proto_down.
9237  *
9238  *	@dev: device
9239  *	@proto_down: new value
9240  */
9241 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
9242 {
9243 	if (proto_down)
9244 		netif_carrier_off(dev);
9245 	else
9246 		netif_carrier_on(dev);
9247 	dev->proto_down = proto_down;
9248 	return 0;
9249 }
9250 EXPORT_SYMBOL(dev_change_proto_down_generic);
9251 
9252 /**
9253  *	dev_change_proto_down_reason - proto down reason
9254  *
9255  *	@dev: device
9256  *	@mask: proto down mask
9257  *	@value: proto down value
9258  */
9259 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9260 				  u32 value)
9261 {
9262 	int b;
9263 
9264 	if (!mask) {
9265 		dev->proto_down_reason = value;
9266 	} else {
9267 		for_each_set_bit(b, &mask, 32) {
9268 			if (value & (1 << b))
9269 				dev->proto_down_reason |= BIT(b);
9270 			else
9271 				dev->proto_down_reason &= ~BIT(b);
9272 		}
9273 	}
9274 }
9275 EXPORT_SYMBOL(dev_change_proto_down_reason);
9276 
9277 struct bpf_xdp_link {
9278 	struct bpf_link link;
9279 	struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9280 	int flags;
9281 };
9282 
9283 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9284 {
9285 	if (flags & XDP_FLAGS_HW_MODE)
9286 		return XDP_MODE_HW;
9287 	if (flags & XDP_FLAGS_DRV_MODE)
9288 		return XDP_MODE_DRV;
9289 	if (flags & XDP_FLAGS_SKB_MODE)
9290 		return XDP_MODE_SKB;
9291 	return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9292 }
9293 
9294 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9295 {
9296 	switch (mode) {
9297 	case XDP_MODE_SKB:
9298 		return generic_xdp_install;
9299 	case XDP_MODE_DRV:
9300 	case XDP_MODE_HW:
9301 		return dev->netdev_ops->ndo_bpf;
9302 	default:
9303 		return NULL;
9304 	}
9305 }
9306 
9307 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9308 					 enum bpf_xdp_mode mode)
9309 {
9310 	return dev->xdp_state[mode].link;
9311 }
9312 
9313 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9314 				     enum bpf_xdp_mode mode)
9315 {
9316 	struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9317 
9318 	if (link)
9319 		return link->link.prog;
9320 	return dev->xdp_state[mode].prog;
9321 }
9322 
9323 u8 dev_xdp_prog_count(struct net_device *dev)
9324 {
9325 	u8 count = 0;
9326 	int i;
9327 
9328 	for (i = 0; i < __MAX_XDP_MODE; i++)
9329 		if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9330 			count++;
9331 	return count;
9332 }
9333 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9334 
9335 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9336 {
9337 	struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9338 
9339 	return prog ? prog->aux->id : 0;
9340 }
9341 
9342 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9343 			     struct bpf_xdp_link *link)
9344 {
9345 	dev->xdp_state[mode].link = link;
9346 	dev->xdp_state[mode].prog = NULL;
9347 }
9348 
9349 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9350 			     struct bpf_prog *prog)
9351 {
9352 	dev->xdp_state[mode].link = NULL;
9353 	dev->xdp_state[mode].prog = prog;
9354 }
9355 
9356 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9357 			   bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9358 			   u32 flags, struct bpf_prog *prog)
9359 {
9360 	struct netdev_bpf xdp;
9361 	int err;
9362 
9363 	memset(&xdp, 0, sizeof(xdp));
9364 	xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9365 	xdp.extack = extack;
9366 	xdp.flags = flags;
9367 	xdp.prog = prog;
9368 
9369 	/* Drivers assume refcnt is already incremented (i.e, prog pointer is
9370 	 * "moved" into driver), so they don't increment it on their own, but
9371 	 * they do decrement refcnt when program is detached or replaced.
9372 	 * Given net_device also owns link/prog, we need to bump refcnt here
9373 	 * to prevent drivers from underflowing it.
9374 	 */
9375 	if (prog)
9376 		bpf_prog_inc(prog);
9377 	err = bpf_op(dev, &xdp);
9378 	if (err) {
9379 		if (prog)
9380 			bpf_prog_put(prog);
9381 		return err;
9382 	}
9383 
9384 	if (mode != XDP_MODE_HW)
9385 		bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9386 
9387 	return 0;
9388 }
9389 
9390 static void dev_xdp_uninstall(struct net_device *dev)
9391 {
9392 	struct bpf_xdp_link *link;
9393 	struct bpf_prog *prog;
9394 	enum bpf_xdp_mode mode;
9395 	bpf_op_t bpf_op;
9396 
9397 	ASSERT_RTNL();
9398 
9399 	for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9400 		prog = dev_xdp_prog(dev, mode);
9401 		if (!prog)
9402 			continue;
9403 
9404 		bpf_op = dev_xdp_bpf_op(dev, mode);
9405 		if (!bpf_op)
9406 			continue;
9407 
9408 		WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9409 
9410 		/* auto-detach link from net device */
9411 		link = dev_xdp_link(dev, mode);
9412 		if (link)
9413 			link->dev = NULL;
9414 		else
9415 			bpf_prog_put(prog);
9416 
9417 		dev_xdp_set_link(dev, mode, NULL);
9418 	}
9419 }
9420 
9421 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9422 			  struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9423 			  struct bpf_prog *old_prog, u32 flags)
9424 {
9425 	unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9426 	struct bpf_prog *cur_prog;
9427 	struct net_device *upper;
9428 	struct list_head *iter;
9429 	enum bpf_xdp_mode mode;
9430 	bpf_op_t bpf_op;
9431 	int err;
9432 
9433 	ASSERT_RTNL();
9434 
9435 	/* either link or prog attachment, never both */
9436 	if (link && (new_prog || old_prog))
9437 		return -EINVAL;
9438 	/* link supports only XDP mode flags */
9439 	if (link && (flags & ~XDP_FLAGS_MODES)) {
9440 		NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9441 		return -EINVAL;
9442 	}
9443 	/* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9444 	if (num_modes > 1) {
9445 		NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9446 		return -EINVAL;
9447 	}
9448 	/* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9449 	if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9450 		NL_SET_ERR_MSG(extack,
9451 			       "More than one program loaded, unset mode is ambiguous");
9452 		return -EINVAL;
9453 	}
9454 	/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9455 	if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9456 		NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9457 		return -EINVAL;
9458 	}
9459 
9460 	mode = dev_xdp_mode(dev, flags);
9461 	/* can't replace attached link */
9462 	if (dev_xdp_link(dev, mode)) {
9463 		NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9464 		return -EBUSY;
9465 	}
9466 
9467 	/* don't allow if an upper device already has a program */
9468 	netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9469 		if (dev_xdp_prog_count(upper) > 0) {
9470 			NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9471 			return -EEXIST;
9472 		}
9473 	}
9474 
9475 	cur_prog = dev_xdp_prog(dev, mode);
9476 	/* can't replace attached prog with link */
9477 	if (link && cur_prog) {
9478 		NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9479 		return -EBUSY;
9480 	}
9481 	if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9482 		NL_SET_ERR_MSG(extack, "Active program does not match expected");
9483 		return -EEXIST;
9484 	}
9485 
9486 	/* put effective new program into new_prog */
9487 	if (link)
9488 		new_prog = link->link.prog;
9489 
9490 	if (new_prog) {
9491 		bool offload = mode == XDP_MODE_HW;
9492 		enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9493 					       ? XDP_MODE_DRV : XDP_MODE_SKB;
9494 
9495 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9496 			NL_SET_ERR_MSG(extack, "XDP program already attached");
9497 			return -EBUSY;
9498 		}
9499 		if (!offload && dev_xdp_prog(dev, other_mode)) {
9500 			NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9501 			return -EEXIST;
9502 		}
9503 		if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9504 			NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9505 			return -EINVAL;
9506 		}
9507 		if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9508 			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9509 			return -EINVAL;
9510 		}
9511 		if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9512 			NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9513 			return -EINVAL;
9514 		}
9515 	}
9516 
9517 	/* don't call drivers if the effective program didn't change */
9518 	if (new_prog != cur_prog) {
9519 		bpf_op = dev_xdp_bpf_op(dev, mode);
9520 		if (!bpf_op) {
9521 			NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9522 			return -EOPNOTSUPP;
9523 		}
9524 
9525 		err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9526 		if (err)
9527 			return err;
9528 	}
9529 
9530 	if (link)
9531 		dev_xdp_set_link(dev, mode, link);
9532 	else
9533 		dev_xdp_set_prog(dev, mode, new_prog);
9534 	if (cur_prog)
9535 		bpf_prog_put(cur_prog);
9536 
9537 	return 0;
9538 }
9539 
9540 static int dev_xdp_attach_link(struct net_device *dev,
9541 			       struct netlink_ext_ack *extack,
9542 			       struct bpf_xdp_link *link)
9543 {
9544 	return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9545 }
9546 
9547 static int dev_xdp_detach_link(struct net_device *dev,
9548 			       struct netlink_ext_ack *extack,
9549 			       struct bpf_xdp_link *link)
9550 {
9551 	enum bpf_xdp_mode mode;
9552 	bpf_op_t bpf_op;
9553 
9554 	ASSERT_RTNL();
9555 
9556 	mode = dev_xdp_mode(dev, link->flags);
9557 	if (dev_xdp_link(dev, mode) != link)
9558 		return -EINVAL;
9559 
9560 	bpf_op = dev_xdp_bpf_op(dev, mode);
9561 	WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9562 	dev_xdp_set_link(dev, mode, NULL);
9563 	return 0;
9564 }
9565 
9566 static void bpf_xdp_link_release(struct bpf_link *link)
9567 {
9568 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9569 
9570 	rtnl_lock();
9571 
9572 	/* if racing with net_device's tear down, xdp_link->dev might be
9573 	 * already NULL, in which case link was already auto-detached
9574 	 */
9575 	if (xdp_link->dev) {
9576 		WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9577 		xdp_link->dev = NULL;
9578 	}
9579 
9580 	rtnl_unlock();
9581 }
9582 
9583 static int bpf_xdp_link_detach(struct bpf_link *link)
9584 {
9585 	bpf_xdp_link_release(link);
9586 	return 0;
9587 }
9588 
9589 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9590 {
9591 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9592 
9593 	kfree(xdp_link);
9594 }
9595 
9596 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9597 				     struct seq_file *seq)
9598 {
9599 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9600 	u32 ifindex = 0;
9601 
9602 	rtnl_lock();
9603 	if (xdp_link->dev)
9604 		ifindex = xdp_link->dev->ifindex;
9605 	rtnl_unlock();
9606 
9607 	seq_printf(seq, "ifindex:\t%u\n", ifindex);
9608 }
9609 
9610 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9611 				       struct bpf_link_info *info)
9612 {
9613 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9614 	u32 ifindex = 0;
9615 
9616 	rtnl_lock();
9617 	if (xdp_link->dev)
9618 		ifindex = xdp_link->dev->ifindex;
9619 	rtnl_unlock();
9620 
9621 	info->xdp.ifindex = ifindex;
9622 	return 0;
9623 }
9624 
9625 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9626 			       struct bpf_prog *old_prog)
9627 {
9628 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9629 	enum bpf_xdp_mode mode;
9630 	bpf_op_t bpf_op;
9631 	int err = 0;
9632 
9633 	rtnl_lock();
9634 
9635 	/* link might have been auto-released already, so fail */
9636 	if (!xdp_link->dev) {
9637 		err = -ENOLINK;
9638 		goto out_unlock;
9639 	}
9640 
9641 	if (old_prog && link->prog != old_prog) {
9642 		err = -EPERM;
9643 		goto out_unlock;
9644 	}
9645 	old_prog = link->prog;
9646 	if (old_prog == new_prog) {
9647 		/* no-op, don't disturb drivers */
9648 		bpf_prog_put(new_prog);
9649 		goto out_unlock;
9650 	}
9651 
9652 	mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9653 	bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9654 	err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9655 			      xdp_link->flags, new_prog);
9656 	if (err)
9657 		goto out_unlock;
9658 
9659 	old_prog = xchg(&link->prog, new_prog);
9660 	bpf_prog_put(old_prog);
9661 
9662 out_unlock:
9663 	rtnl_unlock();
9664 	return err;
9665 }
9666 
9667 static const struct bpf_link_ops bpf_xdp_link_lops = {
9668 	.release = bpf_xdp_link_release,
9669 	.dealloc = bpf_xdp_link_dealloc,
9670 	.detach = bpf_xdp_link_detach,
9671 	.show_fdinfo = bpf_xdp_link_show_fdinfo,
9672 	.fill_link_info = bpf_xdp_link_fill_link_info,
9673 	.update_prog = bpf_xdp_link_update,
9674 };
9675 
9676 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9677 {
9678 	struct net *net = current->nsproxy->net_ns;
9679 	struct bpf_link_primer link_primer;
9680 	struct bpf_xdp_link *link;
9681 	struct net_device *dev;
9682 	int err, fd;
9683 
9684 	rtnl_lock();
9685 	dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9686 	if (!dev) {
9687 		rtnl_unlock();
9688 		return -EINVAL;
9689 	}
9690 
9691 	link = kzalloc(sizeof(*link), GFP_USER);
9692 	if (!link) {
9693 		err = -ENOMEM;
9694 		goto unlock;
9695 	}
9696 
9697 	bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9698 	link->dev = dev;
9699 	link->flags = attr->link_create.flags;
9700 
9701 	err = bpf_link_prime(&link->link, &link_primer);
9702 	if (err) {
9703 		kfree(link);
9704 		goto unlock;
9705 	}
9706 
9707 	err = dev_xdp_attach_link(dev, NULL, link);
9708 	rtnl_unlock();
9709 
9710 	if (err) {
9711 		link->dev = NULL;
9712 		bpf_link_cleanup(&link_primer);
9713 		goto out_put_dev;
9714 	}
9715 
9716 	fd = bpf_link_settle(&link_primer);
9717 	/* link itself doesn't hold dev's refcnt to not complicate shutdown */
9718 	dev_put(dev);
9719 	return fd;
9720 
9721 unlock:
9722 	rtnl_unlock();
9723 
9724 out_put_dev:
9725 	dev_put(dev);
9726 	return err;
9727 }
9728 
9729 /**
9730  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
9731  *	@dev: device
9732  *	@extack: netlink extended ack
9733  *	@fd: new program fd or negative value to clear
9734  *	@expected_fd: old program fd that userspace expects to replace or clear
9735  *	@flags: xdp-related flags
9736  *
9737  *	Set or clear a bpf program for a device
9738  */
9739 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9740 		      int fd, int expected_fd, u32 flags)
9741 {
9742 	enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9743 	struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9744 	int err;
9745 
9746 	ASSERT_RTNL();
9747 
9748 	if (fd >= 0) {
9749 		new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9750 						 mode != XDP_MODE_SKB);
9751 		if (IS_ERR(new_prog))
9752 			return PTR_ERR(new_prog);
9753 	}
9754 
9755 	if (expected_fd >= 0) {
9756 		old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9757 						 mode != XDP_MODE_SKB);
9758 		if (IS_ERR(old_prog)) {
9759 			err = PTR_ERR(old_prog);
9760 			old_prog = NULL;
9761 			goto err_out;
9762 		}
9763 	}
9764 
9765 	err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9766 
9767 err_out:
9768 	if (err && new_prog)
9769 		bpf_prog_put(new_prog);
9770 	if (old_prog)
9771 		bpf_prog_put(old_prog);
9772 	return err;
9773 }
9774 
9775 /**
9776  *	dev_new_index	-	allocate an ifindex
9777  *	@net: the applicable net namespace
9778  *
9779  *	Returns a suitable unique value for a new device interface
9780  *	number.  The caller must hold the rtnl semaphore or the
9781  *	dev_base_lock to be sure it remains unique.
9782  */
9783 static int dev_new_index(struct net *net)
9784 {
9785 	int ifindex = net->ifindex;
9786 
9787 	for (;;) {
9788 		if (++ifindex <= 0)
9789 			ifindex = 1;
9790 		if (!__dev_get_by_index(net, ifindex))
9791 			return net->ifindex = ifindex;
9792 	}
9793 }
9794 
9795 /* Delayed registration/unregisteration */
9796 static LIST_HEAD(net_todo_list);
9797 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9798 
9799 static void net_set_todo(struct net_device *dev)
9800 {
9801 	list_add_tail(&dev->todo_list, &net_todo_list);
9802 	dev_net(dev)->dev_unreg_count++;
9803 }
9804 
9805 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9806 	struct net_device *upper, netdev_features_t features)
9807 {
9808 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9809 	netdev_features_t feature;
9810 	int feature_bit;
9811 
9812 	for_each_netdev_feature(upper_disables, feature_bit) {
9813 		feature = __NETIF_F_BIT(feature_bit);
9814 		if (!(upper->wanted_features & feature)
9815 		    && (features & feature)) {
9816 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9817 				   &feature, upper->name);
9818 			features &= ~feature;
9819 		}
9820 	}
9821 
9822 	return features;
9823 }
9824 
9825 static void netdev_sync_lower_features(struct net_device *upper,
9826 	struct net_device *lower, netdev_features_t features)
9827 {
9828 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9829 	netdev_features_t feature;
9830 	int feature_bit;
9831 
9832 	for_each_netdev_feature(upper_disables, feature_bit) {
9833 		feature = __NETIF_F_BIT(feature_bit);
9834 		if (!(features & feature) && (lower->features & feature)) {
9835 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9836 				   &feature, lower->name);
9837 			lower->wanted_features &= ~feature;
9838 			__netdev_update_features(lower);
9839 
9840 			if (unlikely(lower->features & feature))
9841 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9842 					    &feature, lower->name);
9843 			else
9844 				netdev_features_change(lower);
9845 		}
9846 	}
9847 }
9848 
9849 static netdev_features_t netdev_fix_features(struct net_device *dev,
9850 	netdev_features_t features)
9851 {
9852 	/* Fix illegal checksum combinations */
9853 	if ((features & NETIF_F_HW_CSUM) &&
9854 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9855 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9856 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9857 	}
9858 
9859 	/* TSO requires that SG is present as well. */
9860 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9861 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9862 		features &= ~NETIF_F_ALL_TSO;
9863 	}
9864 
9865 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9866 					!(features & NETIF_F_IP_CSUM)) {
9867 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9868 		features &= ~NETIF_F_TSO;
9869 		features &= ~NETIF_F_TSO_ECN;
9870 	}
9871 
9872 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9873 					 !(features & NETIF_F_IPV6_CSUM)) {
9874 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9875 		features &= ~NETIF_F_TSO6;
9876 	}
9877 
9878 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9879 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9880 		features &= ~NETIF_F_TSO_MANGLEID;
9881 
9882 	/* TSO ECN requires that TSO is present as well. */
9883 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9884 		features &= ~NETIF_F_TSO_ECN;
9885 
9886 	/* Software GSO depends on SG. */
9887 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9888 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9889 		features &= ~NETIF_F_GSO;
9890 	}
9891 
9892 	/* GSO partial features require GSO partial be set */
9893 	if ((features & dev->gso_partial_features) &&
9894 	    !(features & NETIF_F_GSO_PARTIAL)) {
9895 		netdev_dbg(dev,
9896 			   "Dropping partially supported GSO features since no GSO partial.\n");
9897 		features &= ~dev->gso_partial_features;
9898 	}
9899 
9900 	if (!(features & NETIF_F_RXCSUM)) {
9901 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9902 		 * successfully merged by hardware must also have the
9903 		 * checksum verified by hardware.  If the user does not
9904 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
9905 		 */
9906 		if (features & NETIF_F_GRO_HW) {
9907 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9908 			features &= ~NETIF_F_GRO_HW;
9909 		}
9910 	}
9911 
9912 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
9913 	if (features & NETIF_F_RXFCS) {
9914 		if (features & NETIF_F_LRO) {
9915 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9916 			features &= ~NETIF_F_LRO;
9917 		}
9918 
9919 		if (features & NETIF_F_GRO_HW) {
9920 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9921 			features &= ~NETIF_F_GRO_HW;
9922 		}
9923 	}
9924 
9925 	if (features & NETIF_F_HW_TLS_TX) {
9926 		bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9927 			(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9928 		bool hw_csum = features & NETIF_F_HW_CSUM;
9929 
9930 		if (!ip_csum && !hw_csum) {
9931 			netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9932 			features &= ~NETIF_F_HW_TLS_TX;
9933 		}
9934 	}
9935 
9936 	if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9937 		netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9938 		features &= ~NETIF_F_HW_TLS_RX;
9939 	}
9940 
9941 	return features;
9942 }
9943 
9944 int __netdev_update_features(struct net_device *dev)
9945 {
9946 	struct net_device *upper, *lower;
9947 	netdev_features_t features;
9948 	struct list_head *iter;
9949 	int err = -1;
9950 
9951 	ASSERT_RTNL();
9952 
9953 	features = netdev_get_wanted_features(dev);
9954 
9955 	if (dev->netdev_ops->ndo_fix_features)
9956 		features = dev->netdev_ops->ndo_fix_features(dev, features);
9957 
9958 	/* driver might be less strict about feature dependencies */
9959 	features = netdev_fix_features(dev, features);
9960 
9961 	/* some features can't be enabled if they're off on an upper device */
9962 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
9963 		features = netdev_sync_upper_features(dev, upper, features);
9964 
9965 	if (dev->features == features)
9966 		goto sync_lower;
9967 
9968 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9969 		&dev->features, &features);
9970 
9971 	if (dev->netdev_ops->ndo_set_features)
9972 		err = dev->netdev_ops->ndo_set_features(dev, features);
9973 	else
9974 		err = 0;
9975 
9976 	if (unlikely(err < 0)) {
9977 		netdev_err(dev,
9978 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
9979 			err, &features, &dev->features);
9980 		/* return non-0 since some features might have changed and
9981 		 * it's better to fire a spurious notification than miss it
9982 		 */
9983 		return -1;
9984 	}
9985 
9986 sync_lower:
9987 	/* some features must be disabled on lower devices when disabled
9988 	 * on an upper device (think: bonding master or bridge)
9989 	 */
9990 	netdev_for_each_lower_dev(dev, lower, iter)
9991 		netdev_sync_lower_features(dev, lower, features);
9992 
9993 	if (!err) {
9994 		netdev_features_t diff = features ^ dev->features;
9995 
9996 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9997 			/* udp_tunnel_{get,drop}_rx_info both need
9998 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9999 			 * device, or they won't do anything.
10000 			 * Thus we need to update dev->features
10001 			 * *before* calling udp_tunnel_get_rx_info,
10002 			 * but *after* calling udp_tunnel_drop_rx_info.
10003 			 */
10004 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
10005 				dev->features = features;
10006 				udp_tunnel_get_rx_info(dev);
10007 			} else {
10008 				udp_tunnel_drop_rx_info(dev);
10009 			}
10010 		}
10011 
10012 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
10013 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
10014 				dev->features = features;
10015 				err |= vlan_get_rx_ctag_filter_info(dev);
10016 			} else {
10017 				vlan_drop_rx_ctag_filter_info(dev);
10018 			}
10019 		}
10020 
10021 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
10022 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
10023 				dev->features = features;
10024 				err |= vlan_get_rx_stag_filter_info(dev);
10025 			} else {
10026 				vlan_drop_rx_stag_filter_info(dev);
10027 			}
10028 		}
10029 
10030 		dev->features = features;
10031 	}
10032 
10033 	return err < 0 ? 0 : 1;
10034 }
10035 
10036 /**
10037  *	netdev_update_features - recalculate device features
10038  *	@dev: the device to check
10039  *
10040  *	Recalculate dev->features set and send notifications if it
10041  *	has changed. Should be called after driver or hardware dependent
10042  *	conditions might have changed that influence the features.
10043  */
10044 void netdev_update_features(struct net_device *dev)
10045 {
10046 	if (__netdev_update_features(dev))
10047 		netdev_features_change(dev);
10048 }
10049 EXPORT_SYMBOL(netdev_update_features);
10050 
10051 /**
10052  *	netdev_change_features - recalculate device features
10053  *	@dev: the device to check
10054  *
10055  *	Recalculate dev->features set and send notifications even
10056  *	if they have not changed. Should be called instead of
10057  *	netdev_update_features() if also dev->vlan_features might
10058  *	have changed to allow the changes to be propagated to stacked
10059  *	VLAN devices.
10060  */
10061 void netdev_change_features(struct net_device *dev)
10062 {
10063 	__netdev_update_features(dev);
10064 	netdev_features_change(dev);
10065 }
10066 EXPORT_SYMBOL(netdev_change_features);
10067 
10068 /**
10069  *	netif_stacked_transfer_operstate -	transfer operstate
10070  *	@rootdev: the root or lower level device to transfer state from
10071  *	@dev: the device to transfer operstate to
10072  *
10073  *	Transfer operational state from root to device. This is normally
10074  *	called when a stacking relationship exists between the root
10075  *	device and the device(a leaf device).
10076  */
10077 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
10078 					struct net_device *dev)
10079 {
10080 	if (rootdev->operstate == IF_OPER_DORMANT)
10081 		netif_dormant_on(dev);
10082 	else
10083 		netif_dormant_off(dev);
10084 
10085 	if (rootdev->operstate == IF_OPER_TESTING)
10086 		netif_testing_on(dev);
10087 	else
10088 		netif_testing_off(dev);
10089 
10090 	if (netif_carrier_ok(rootdev))
10091 		netif_carrier_on(dev);
10092 	else
10093 		netif_carrier_off(dev);
10094 }
10095 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
10096 
10097 static int netif_alloc_rx_queues(struct net_device *dev)
10098 {
10099 	unsigned int i, count = dev->num_rx_queues;
10100 	struct netdev_rx_queue *rx;
10101 	size_t sz = count * sizeof(*rx);
10102 	int err = 0;
10103 
10104 	BUG_ON(count < 1);
10105 
10106 	rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10107 	if (!rx)
10108 		return -ENOMEM;
10109 
10110 	dev->_rx = rx;
10111 
10112 	for (i = 0; i < count; i++) {
10113 		rx[i].dev = dev;
10114 
10115 		/* XDP RX-queue setup */
10116 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10117 		if (err < 0)
10118 			goto err_rxq_info;
10119 	}
10120 	return 0;
10121 
10122 err_rxq_info:
10123 	/* Rollback successful reg's and free other resources */
10124 	while (i--)
10125 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10126 	kvfree(dev->_rx);
10127 	dev->_rx = NULL;
10128 	return err;
10129 }
10130 
10131 static void netif_free_rx_queues(struct net_device *dev)
10132 {
10133 	unsigned int i, count = dev->num_rx_queues;
10134 
10135 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10136 	if (!dev->_rx)
10137 		return;
10138 
10139 	for (i = 0; i < count; i++)
10140 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10141 
10142 	kvfree(dev->_rx);
10143 }
10144 
10145 static void netdev_init_one_queue(struct net_device *dev,
10146 				  struct netdev_queue *queue, void *_unused)
10147 {
10148 	/* Initialize queue lock */
10149 	spin_lock_init(&queue->_xmit_lock);
10150 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10151 	queue->xmit_lock_owner = -1;
10152 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10153 	queue->dev = dev;
10154 #ifdef CONFIG_BQL
10155 	dql_init(&queue->dql, HZ);
10156 #endif
10157 }
10158 
10159 static void netif_free_tx_queues(struct net_device *dev)
10160 {
10161 	kvfree(dev->_tx);
10162 }
10163 
10164 static int netif_alloc_netdev_queues(struct net_device *dev)
10165 {
10166 	unsigned int count = dev->num_tx_queues;
10167 	struct netdev_queue *tx;
10168 	size_t sz = count * sizeof(*tx);
10169 
10170 	if (count < 1 || count > 0xffff)
10171 		return -EINVAL;
10172 
10173 	tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10174 	if (!tx)
10175 		return -ENOMEM;
10176 
10177 	dev->_tx = tx;
10178 
10179 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10180 	spin_lock_init(&dev->tx_global_lock);
10181 
10182 	return 0;
10183 }
10184 
10185 void netif_tx_stop_all_queues(struct net_device *dev)
10186 {
10187 	unsigned int i;
10188 
10189 	for (i = 0; i < dev->num_tx_queues; i++) {
10190 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10191 
10192 		netif_tx_stop_queue(txq);
10193 	}
10194 }
10195 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10196 
10197 /**
10198  *	register_netdevice	- register a network device
10199  *	@dev: device to register
10200  *
10201  *	Take a completed network device structure and add it to the kernel
10202  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10203  *	chain. 0 is returned on success. A negative errno code is returned
10204  *	on a failure to set up the device, or if the name is a duplicate.
10205  *
10206  *	Callers must hold the rtnl semaphore. You may want
10207  *	register_netdev() instead of this.
10208  *
10209  *	BUGS:
10210  *	The locking appears insufficient to guarantee two parallel registers
10211  *	will not get the same name.
10212  */
10213 
10214 int register_netdevice(struct net_device *dev)
10215 {
10216 	int ret;
10217 	struct net *net = dev_net(dev);
10218 
10219 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10220 		     NETDEV_FEATURE_COUNT);
10221 	BUG_ON(dev_boot_phase);
10222 	ASSERT_RTNL();
10223 
10224 	might_sleep();
10225 
10226 	/* When net_device's are persistent, this will be fatal. */
10227 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10228 	BUG_ON(!net);
10229 
10230 	ret = ethtool_check_ops(dev->ethtool_ops);
10231 	if (ret)
10232 		return ret;
10233 
10234 	spin_lock_init(&dev->addr_list_lock);
10235 	netdev_set_addr_lockdep_class(dev);
10236 
10237 	ret = dev_get_valid_name(net, dev, dev->name);
10238 	if (ret < 0)
10239 		goto out;
10240 
10241 	ret = -ENOMEM;
10242 	dev->name_node = netdev_name_node_head_alloc(dev);
10243 	if (!dev->name_node)
10244 		goto out;
10245 
10246 	/* Init, if this function is available */
10247 	if (dev->netdev_ops->ndo_init) {
10248 		ret = dev->netdev_ops->ndo_init(dev);
10249 		if (ret) {
10250 			if (ret > 0)
10251 				ret = -EIO;
10252 			goto err_free_name;
10253 		}
10254 	}
10255 
10256 	if (((dev->hw_features | dev->features) &
10257 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
10258 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10259 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10260 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10261 		ret = -EINVAL;
10262 		goto err_uninit;
10263 	}
10264 
10265 	ret = -EBUSY;
10266 	if (!dev->ifindex)
10267 		dev->ifindex = dev_new_index(net);
10268 	else if (__dev_get_by_index(net, dev->ifindex))
10269 		goto err_uninit;
10270 
10271 	/* Transfer changeable features to wanted_features and enable
10272 	 * software offloads (GSO and GRO).
10273 	 */
10274 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10275 	dev->features |= NETIF_F_SOFT_FEATURES;
10276 
10277 	if (dev->udp_tunnel_nic_info) {
10278 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10279 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10280 	}
10281 
10282 	dev->wanted_features = dev->features & dev->hw_features;
10283 
10284 	if (!(dev->flags & IFF_LOOPBACK))
10285 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
10286 
10287 	/* If IPv4 TCP segmentation offload is supported we should also
10288 	 * allow the device to enable segmenting the frame with the option
10289 	 * of ignoring a static IP ID value.  This doesn't enable the
10290 	 * feature itself but allows the user to enable it later.
10291 	 */
10292 	if (dev->hw_features & NETIF_F_TSO)
10293 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
10294 	if (dev->vlan_features & NETIF_F_TSO)
10295 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10296 	if (dev->mpls_features & NETIF_F_TSO)
10297 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10298 	if (dev->hw_enc_features & NETIF_F_TSO)
10299 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10300 
10301 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10302 	 */
10303 	dev->vlan_features |= NETIF_F_HIGHDMA;
10304 
10305 	/* Make NETIF_F_SG inheritable to tunnel devices.
10306 	 */
10307 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10308 
10309 	/* Make NETIF_F_SG inheritable to MPLS.
10310 	 */
10311 	dev->mpls_features |= NETIF_F_SG;
10312 
10313 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10314 	ret = notifier_to_errno(ret);
10315 	if (ret)
10316 		goto err_uninit;
10317 
10318 	ret = netdev_register_kobject(dev);
10319 	if (ret) {
10320 		dev->reg_state = NETREG_UNREGISTERED;
10321 		goto err_uninit;
10322 	}
10323 	dev->reg_state = NETREG_REGISTERED;
10324 
10325 	__netdev_update_features(dev);
10326 
10327 	/*
10328 	 *	Default initial state at registry is that the
10329 	 *	device is present.
10330 	 */
10331 
10332 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10333 
10334 	linkwatch_init_dev(dev);
10335 
10336 	dev_init_scheduler(dev);
10337 	dev_hold(dev);
10338 	list_netdevice(dev);
10339 	add_device_randomness(dev->dev_addr, dev->addr_len);
10340 
10341 	/* If the device has permanent device address, driver should
10342 	 * set dev_addr and also addr_assign_type should be set to
10343 	 * NET_ADDR_PERM (default value).
10344 	 */
10345 	if (dev->addr_assign_type == NET_ADDR_PERM)
10346 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10347 
10348 	/* Notify protocols, that a new device appeared. */
10349 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10350 	ret = notifier_to_errno(ret);
10351 	if (ret) {
10352 		/* Expect explicit free_netdev() on failure */
10353 		dev->needs_free_netdev = false;
10354 		unregister_netdevice_queue(dev, NULL);
10355 		goto out;
10356 	}
10357 	/*
10358 	 *	Prevent userspace races by waiting until the network
10359 	 *	device is fully setup before sending notifications.
10360 	 */
10361 	if (!dev->rtnl_link_ops ||
10362 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10363 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10364 
10365 out:
10366 	return ret;
10367 
10368 err_uninit:
10369 	if (dev->netdev_ops->ndo_uninit)
10370 		dev->netdev_ops->ndo_uninit(dev);
10371 	if (dev->priv_destructor)
10372 		dev->priv_destructor(dev);
10373 err_free_name:
10374 	netdev_name_node_free(dev->name_node);
10375 	goto out;
10376 }
10377 EXPORT_SYMBOL(register_netdevice);
10378 
10379 /**
10380  *	init_dummy_netdev	- init a dummy network device for NAPI
10381  *	@dev: device to init
10382  *
10383  *	This takes a network device structure and initialize the minimum
10384  *	amount of fields so it can be used to schedule NAPI polls without
10385  *	registering a full blown interface. This is to be used by drivers
10386  *	that need to tie several hardware interfaces to a single NAPI
10387  *	poll scheduler due to HW limitations.
10388  */
10389 int init_dummy_netdev(struct net_device *dev)
10390 {
10391 	/* Clear everything. Note we don't initialize spinlocks
10392 	 * are they aren't supposed to be taken by any of the
10393 	 * NAPI code and this dummy netdev is supposed to be
10394 	 * only ever used for NAPI polls
10395 	 */
10396 	memset(dev, 0, sizeof(struct net_device));
10397 
10398 	/* make sure we BUG if trying to hit standard
10399 	 * register/unregister code path
10400 	 */
10401 	dev->reg_state = NETREG_DUMMY;
10402 
10403 	/* NAPI wants this */
10404 	INIT_LIST_HEAD(&dev->napi_list);
10405 
10406 	/* a dummy interface is started by default */
10407 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10408 	set_bit(__LINK_STATE_START, &dev->state);
10409 
10410 	/* napi_busy_loop stats accounting wants this */
10411 	dev_net_set(dev, &init_net);
10412 
10413 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
10414 	 * because users of this 'device' dont need to change
10415 	 * its refcount.
10416 	 */
10417 
10418 	return 0;
10419 }
10420 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10421 
10422 
10423 /**
10424  *	register_netdev	- register a network device
10425  *	@dev: device to register
10426  *
10427  *	Take a completed network device structure and add it to the kernel
10428  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10429  *	chain. 0 is returned on success. A negative errno code is returned
10430  *	on a failure to set up the device, or if the name is a duplicate.
10431  *
10432  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
10433  *	and expands the device name if you passed a format string to
10434  *	alloc_netdev.
10435  */
10436 int register_netdev(struct net_device *dev)
10437 {
10438 	int err;
10439 
10440 	if (rtnl_lock_killable())
10441 		return -EINTR;
10442 	err = register_netdevice(dev);
10443 	rtnl_unlock();
10444 	return err;
10445 }
10446 EXPORT_SYMBOL(register_netdev);
10447 
10448 int netdev_refcnt_read(const struct net_device *dev)
10449 {
10450 #ifdef CONFIG_PCPU_DEV_REFCNT
10451 	int i, refcnt = 0;
10452 
10453 	for_each_possible_cpu(i)
10454 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10455 	return refcnt;
10456 #else
10457 	return refcount_read(&dev->dev_refcnt);
10458 #endif
10459 }
10460 EXPORT_SYMBOL(netdev_refcnt_read);
10461 
10462 int netdev_unregister_timeout_secs __read_mostly = 10;
10463 
10464 #define WAIT_REFS_MIN_MSECS 1
10465 #define WAIT_REFS_MAX_MSECS 250
10466 /**
10467  * netdev_wait_allrefs - wait until all references are gone.
10468  * @dev: target net_device
10469  *
10470  * This is called when unregistering network devices.
10471  *
10472  * Any protocol or device that holds a reference should register
10473  * for netdevice notification, and cleanup and put back the
10474  * reference if they receive an UNREGISTER event.
10475  * We can get stuck here if buggy protocols don't correctly
10476  * call dev_put.
10477  */
10478 static void netdev_wait_allrefs(struct net_device *dev)
10479 {
10480 	unsigned long rebroadcast_time, warning_time;
10481 	int wait = 0, refcnt;
10482 
10483 	linkwatch_forget_dev(dev);
10484 
10485 	rebroadcast_time = warning_time = jiffies;
10486 	refcnt = netdev_refcnt_read(dev);
10487 
10488 	while (refcnt != 1) {
10489 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10490 			rtnl_lock();
10491 
10492 			/* Rebroadcast unregister notification */
10493 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10494 
10495 			__rtnl_unlock();
10496 			rcu_barrier();
10497 			rtnl_lock();
10498 
10499 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10500 				     &dev->state)) {
10501 				/* We must not have linkwatch events
10502 				 * pending on unregister. If this
10503 				 * happens, we simply run the queue
10504 				 * unscheduled, resulting in a noop
10505 				 * for this device.
10506 				 */
10507 				linkwatch_run_queue();
10508 			}
10509 
10510 			__rtnl_unlock();
10511 
10512 			rebroadcast_time = jiffies;
10513 		}
10514 
10515 		if (!wait) {
10516 			rcu_barrier();
10517 			wait = WAIT_REFS_MIN_MSECS;
10518 		} else {
10519 			msleep(wait);
10520 			wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10521 		}
10522 
10523 		refcnt = netdev_refcnt_read(dev);
10524 
10525 		if (refcnt != 1 &&
10526 		    time_after(jiffies, warning_time +
10527 			       netdev_unregister_timeout_secs * HZ)) {
10528 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10529 				 dev->name, refcnt);
10530 			warning_time = jiffies;
10531 		}
10532 	}
10533 }
10534 
10535 /* The sequence is:
10536  *
10537  *	rtnl_lock();
10538  *	...
10539  *	register_netdevice(x1);
10540  *	register_netdevice(x2);
10541  *	...
10542  *	unregister_netdevice(y1);
10543  *	unregister_netdevice(y2);
10544  *      ...
10545  *	rtnl_unlock();
10546  *	free_netdev(y1);
10547  *	free_netdev(y2);
10548  *
10549  * We are invoked by rtnl_unlock().
10550  * This allows us to deal with problems:
10551  * 1) We can delete sysfs objects which invoke hotplug
10552  *    without deadlocking with linkwatch via keventd.
10553  * 2) Since we run with the RTNL semaphore not held, we can sleep
10554  *    safely in order to wait for the netdev refcnt to drop to zero.
10555  *
10556  * We must not return until all unregister events added during
10557  * the interval the lock was held have been completed.
10558  */
10559 void netdev_run_todo(void)
10560 {
10561 	struct list_head list;
10562 #ifdef CONFIG_LOCKDEP
10563 	struct list_head unlink_list;
10564 
10565 	list_replace_init(&net_unlink_list, &unlink_list);
10566 
10567 	while (!list_empty(&unlink_list)) {
10568 		struct net_device *dev = list_first_entry(&unlink_list,
10569 							  struct net_device,
10570 							  unlink_list);
10571 		list_del_init(&dev->unlink_list);
10572 		dev->nested_level = dev->lower_level - 1;
10573 	}
10574 #endif
10575 
10576 	/* Snapshot list, allow later requests */
10577 	list_replace_init(&net_todo_list, &list);
10578 
10579 	__rtnl_unlock();
10580 
10581 
10582 	/* Wait for rcu callbacks to finish before next phase */
10583 	if (!list_empty(&list))
10584 		rcu_barrier();
10585 
10586 	while (!list_empty(&list)) {
10587 		struct net_device *dev
10588 			= list_first_entry(&list, struct net_device, todo_list);
10589 		list_del(&dev->todo_list);
10590 
10591 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10592 			pr_err("network todo '%s' but state %d\n",
10593 			       dev->name, dev->reg_state);
10594 			dump_stack();
10595 			continue;
10596 		}
10597 
10598 		dev->reg_state = NETREG_UNREGISTERED;
10599 
10600 		netdev_wait_allrefs(dev);
10601 
10602 		/* paranoia */
10603 		BUG_ON(netdev_refcnt_read(dev) != 1);
10604 		BUG_ON(!list_empty(&dev->ptype_all));
10605 		BUG_ON(!list_empty(&dev->ptype_specific));
10606 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
10607 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10608 #if IS_ENABLED(CONFIG_DECNET)
10609 		WARN_ON(dev->dn_ptr);
10610 #endif
10611 		if (dev->priv_destructor)
10612 			dev->priv_destructor(dev);
10613 		if (dev->needs_free_netdev)
10614 			free_netdev(dev);
10615 
10616 		/* Report a network device has been unregistered */
10617 		rtnl_lock();
10618 		dev_net(dev)->dev_unreg_count--;
10619 		__rtnl_unlock();
10620 		wake_up(&netdev_unregistering_wq);
10621 
10622 		/* Free network device */
10623 		kobject_put(&dev->dev.kobj);
10624 	}
10625 }
10626 
10627 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10628  * all the same fields in the same order as net_device_stats, with only
10629  * the type differing, but rtnl_link_stats64 may have additional fields
10630  * at the end for newer counters.
10631  */
10632 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10633 			     const struct net_device_stats *netdev_stats)
10634 {
10635 #if BITS_PER_LONG == 64
10636 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
10637 	memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
10638 	/* zero out counters that only exist in rtnl_link_stats64 */
10639 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
10640 	       sizeof(*stats64) - sizeof(*netdev_stats));
10641 #else
10642 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
10643 	const unsigned long *src = (const unsigned long *)netdev_stats;
10644 	u64 *dst = (u64 *)stats64;
10645 
10646 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10647 	for (i = 0; i < n; i++)
10648 		dst[i] = src[i];
10649 	/* zero out counters that only exist in rtnl_link_stats64 */
10650 	memset((char *)stats64 + n * sizeof(u64), 0,
10651 	       sizeof(*stats64) - n * sizeof(u64));
10652 #endif
10653 }
10654 EXPORT_SYMBOL(netdev_stats_to_stats64);
10655 
10656 /**
10657  *	dev_get_stats	- get network device statistics
10658  *	@dev: device to get statistics from
10659  *	@storage: place to store stats
10660  *
10661  *	Get network statistics from device. Return @storage.
10662  *	The device driver may provide its own method by setting
10663  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10664  *	otherwise the internal statistics structure is used.
10665  */
10666 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10667 					struct rtnl_link_stats64 *storage)
10668 {
10669 	const struct net_device_ops *ops = dev->netdev_ops;
10670 
10671 	if (ops->ndo_get_stats64) {
10672 		memset(storage, 0, sizeof(*storage));
10673 		ops->ndo_get_stats64(dev, storage);
10674 	} else if (ops->ndo_get_stats) {
10675 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10676 	} else {
10677 		netdev_stats_to_stats64(storage, &dev->stats);
10678 	}
10679 	storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
10680 	storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
10681 	storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
10682 	return storage;
10683 }
10684 EXPORT_SYMBOL(dev_get_stats);
10685 
10686 /**
10687  *	dev_fetch_sw_netstats - get per-cpu network device statistics
10688  *	@s: place to store stats
10689  *	@netstats: per-cpu network stats to read from
10690  *
10691  *	Read per-cpu network statistics and populate the related fields in @s.
10692  */
10693 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10694 			   const struct pcpu_sw_netstats __percpu *netstats)
10695 {
10696 	int cpu;
10697 
10698 	for_each_possible_cpu(cpu) {
10699 		const struct pcpu_sw_netstats *stats;
10700 		struct pcpu_sw_netstats tmp;
10701 		unsigned int start;
10702 
10703 		stats = per_cpu_ptr(netstats, cpu);
10704 		do {
10705 			start = u64_stats_fetch_begin_irq(&stats->syncp);
10706 			tmp.rx_packets = stats->rx_packets;
10707 			tmp.rx_bytes   = stats->rx_bytes;
10708 			tmp.tx_packets = stats->tx_packets;
10709 			tmp.tx_bytes   = stats->tx_bytes;
10710 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10711 
10712 		s->rx_packets += tmp.rx_packets;
10713 		s->rx_bytes   += tmp.rx_bytes;
10714 		s->tx_packets += tmp.tx_packets;
10715 		s->tx_bytes   += tmp.tx_bytes;
10716 	}
10717 }
10718 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10719 
10720 /**
10721  *	dev_get_tstats64 - ndo_get_stats64 implementation
10722  *	@dev: device to get statistics from
10723  *	@s: place to store stats
10724  *
10725  *	Populate @s from dev->stats and dev->tstats. Can be used as
10726  *	ndo_get_stats64() callback.
10727  */
10728 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10729 {
10730 	netdev_stats_to_stats64(s, &dev->stats);
10731 	dev_fetch_sw_netstats(s, dev->tstats);
10732 }
10733 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10734 
10735 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10736 {
10737 	struct netdev_queue *queue = dev_ingress_queue(dev);
10738 
10739 #ifdef CONFIG_NET_CLS_ACT
10740 	if (queue)
10741 		return queue;
10742 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10743 	if (!queue)
10744 		return NULL;
10745 	netdev_init_one_queue(dev, queue, NULL);
10746 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10747 	queue->qdisc_sleeping = &noop_qdisc;
10748 	rcu_assign_pointer(dev->ingress_queue, queue);
10749 #endif
10750 	return queue;
10751 }
10752 
10753 static const struct ethtool_ops default_ethtool_ops;
10754 
10755 void netdev_set_default_ethtool_ops(struct net_device *dev,
10756 				    const struct ethtool_ops *ops)
10757 {
10758 	if (dev->ethtool_ops == &default_ethtool_ops)
10759 		dev->ethtool_ops = ops;
10760 }
10761 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10762 
10763 void netdev_freemem(struct net_device *dev)
10764 {
10765 	char *addr = (char *)dev - dev->padded;
10766 
10767 	kvfree(addr);
10768 }
10769 
10770 /**
10771  * alloc_netdev_mqs - allocate network device
10772  * @sizeof_priv: size of private data to allocate space for
10773  * @name: device name format string
10774  * @name_assign_type: origin of device name
10775  * @setup: callback to initialize device
10776  * @txqs: the number of TX subqueues to allocate
10777  * @rxqs: the number of RX subqueues to allocate
10778  *
10779  * Allocates a struct net_device with private data area for driver use
10780  * and performs basic initialization.  Also allocates subqueue structs
10781  * for each queue on the device.
10782  */
10783 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10784 		unsigned char name_assign_type,
10785 		void (*setup)(struct net_device *),
10786 		unsigned int txqs, unsigned int rxqs)
10787 {
10788 	struct net_device *dev;
10789 	unsigned int alloc_size;
10790 	struct net_device *p;
10791 
10792 	BUG_ON(strlen(name) >= sizeof(dev->name));
10793 
10794 	if (txqs < 1) {
10795 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10796 		return NULL;
10797 	}
10798 
10799 	if (rxqs < 1) {
10800 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10801 		return NULL;
10802 	}
10803 
10804 	alloc_size = sizeof(struct net_device);
10805 	if (sizeof_priv) {
10806 		/* ensure 32-byte alignment of private area */
10807 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10808 		alloc_size += sizeof_priv;
10809 	}
10810 	/* ensure 32-byte alignment of whole construct */
10811 	alloc_size += NETDEV_ALIGN - 1;
10812 
10813 	p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10814 	if (!p)
10815 		return NULL;
10816 
10817 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
10818 	dev->padded = (char *)dev - (char *)p;
10819 
10820 #ifdef CONFIG_PCPU_DEV_REFCNT
10821 	dev->pcpu_refcnt = alloc_percpu(int);
10822 	if (!dev->pcpu_refcnt)
10823 		goto free_dev;
10824 	dev_hold(dev);
10825 #else
10826 	refcount_set(&dev->dev_refcnt, 1);
10827 #endif
10828 
10829 	if (dev_addr_init(dev))
10830 		goto free_pcpu;
10831 
10832 	dev_mc_init(dev);
10833 	dev_uc_init(dev);
10834 
10835 	dev_net_set(dev, &init_net);
10836 
10837 	dev->gso_max_size = GSO_MAX_SIZE;
10838 	dev->gso_max_segs = GSO_MAX_SEGS;
10839 	dev->upper_level = 1;
10840 	dev->lower_level = 1;
10841 #ifdef CONFIG_LOCKDEP
10842 	dev->nested_level = 0;
10843 	INIT_LIST_HEAD(&dev->unlink_list);
10844 #endif
10845 
10846 	INIT_LIST_HEAD(&dev->napi_list);
10847 	INIT_LIST_HEAD(&dev->unreg_list);
10848 	INIT_LIST_HEAD(&dev->close_list);
10849 	INIT_LIST_HEAD(&dev->link_watch_list);
10850 	INIT_LIST_HEAD(&dev->adj_list.upper);
10851 	INIT_LIST_HEAD(&dev->adj_list.lower);
10852 	INIT_LIST_HEAD(&dev->ptype_all);
10853 	INIT_LIST_HEAD(&dev->ptype_specific);
10854 	INIT_LIST_HEAD(&dev->net_notifier_list);
10855 #ifdef CONFIG_NET_SCHED
10856 	hash_init(dev->qdisc_hash);
10857 #endif
10858 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10859 	setup(dev);
10860 
10861 	if (!dev->tx_queue_len) {
10862 		dev->priv_flags |= IFF_NO_QUEUE;
10863 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10864 	}
10865 
10866 	dev->num_tx_queues = txqs;
10867 	dev->real_num_tx_queues = txqs;
10868 	if (netif_alloc_netdev_queues(dev))
10869 		goto free_all;
10870 
10871 	dev->num_rx_queues = rxqs;
10872 	dev->real_num_rx_queues = rxqs;
10873 	if (netif_alloc_rx_queues(dev))
10874 		goto free_all;
10875 
10876 	strcpy(dev->name, name);
10877 	dev->name_assign_type = name_assign_type;
10878 	dev->group = INIT_NETDEV_GROUP;
10879 	if (!dev->ethtool_ops)
10880 		dev->ethtool_ops = &default_ethtool_ops;
10881 
10882 	nf_hook_netdev_init(dev);
10883 
10884 	return dev;
10885 
10886 free_all:
10887 	free_netdev(dev);
10888 	return NULL;
10889 
10890 free_pcpu:
10891 #ifdef CONFIG_PCPU_DEV_REFCNT
10892 	free_percpu(dev->pcpu_refcnt);
10893 free_dev:
10894 #endif
10895 	netdev_freemem(dev);
10896 	return NULL;
10897 }
10898 EXPORT_SYMBOL(alloc_netdev_mqs);
10899 
10900 /**
10901  * free_netdev - free network device
10902  * @dev: device
10903  *
10904  * This function does the last stage of destroying an allocated device
10905  * interface. The reference to the device object is released. If this
10906  * is the last reference then it will be freed.Must be called in process
10907  * context.
10908  */
10909 void free_netdev(struct net_device *dev)
10910 {
10911 	struct napi_struct *p, *n;
10912 
10913 	might_sleep();
10914 
10915 	/* When called immediately after register_netdevice() failed the unwind
10916 	 * handling may still be dismantling the device. Handle that case by
10917 	 * deferring the free.
10918 	 */
10919 	if (dev->reg_state == NETREG_UNREGISTERING) {
10920 		ASSERT_RTNL();
10921 		dev->needs_free_netdev = true;
10922 		return;
10923 	}
10924 
10925 	netif_free_tx_queues(dev);
10926 	netif_free_rx_queues(dev);
10927 
10928 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10929 
10930 	/* Flush device addresses */
10931 	dev_addr_flush(dev);
10932 
10933 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10934 		netif_napi_del(p);
10935 
10936 #ifdef CONFIG_PCPU_DEV_REFCNT
10937 	free_percpu(dev->pcpu_refcnt);
10938 	dev->pcpu_refcnt = NULL;
10939 #endif
10940 	free_percpu(dev->xdp_bulkq);
10941 	dev->xdp_bulkq = NULL;
10942 
10943 	/*  Compatibility with error handling in drivers */
10944 	if (dev->reg_state == NETREG_UNINITIALIZED) {
10945 		netdev_freemem(dev);
10946 		return;
10947 	}
10948 
10949 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10950 	dev->reg_state = NETREG_RELEASED;
10951 
10952 	/* will free via device release */
10953 	put_device(&dev->dev);
10954 }
10955 EXPORT_SYMBOL(free_netdev);
10956 
10957 /**
10958  *	synchronize_net -  Synchronize with packet receive processing
10959  *
10960  *	Wait for packets currently being received to be done.
10961  *	Does not block later packets from starting.
10962  */
10963 void synchronize_net(void)
10964 {
10965 	might_sleep();
10966 	if (rtnl_is_locked())
10967 		synchronize_rcu_expedited();
10968 	else
10969 		synchronize_rcu();
10970 }
10971 EXPORT_SYMBOL(synchronize_net);
10972 
10973 /**
10974  *	unregister_netdevice_queue - remove device from the kernel
10975  *	@dev: device
10976  *	@head: list
10977  *
10978  *	This function shuts down a device interface and removes it
10979  *	from the kernel tables.
10980  *	If head not NULL, device is queued to be unregistered later.
10981  *
10982  *	Callers must hold the rtnl semaphore.  You may want
10983  *	unregister_netdev() instead of this.
10984  */
10985 
10986 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10987 {
10988 	ASSERT_RTNL();
10989 
10990 	if (head) {
10991 		list_move_tail(&dev->unreg_list, head);
10992 	} else {
10993 		LIST_HEAD(single);
10994 
10995 		list_add(&dev->unreg_list, &single);
10996 		unregister_netdevice_many(&single);
10997 	}
10998 }
10999 EXPORT_SYMBOL(unregister_netdevice_queue);
11000 
11001 /**
11002  *	unregister_netdevice_many - unregister many devices
11003  *	@head: list of devices
11004  *
11005  *  Note: As most callers use a stack allocated list_head,
11006  *  we force a list_del() to make sure stack wont be corrupted later.
11007  */
11008 void unregister_netdevice_many(struct list_head *head)
11009 {
11010 	struct net_device *dev, *tmp;
11011 	LIST_HEAD(close_head);
11012 
11013 	BUG_ON(dev_boot_phase);
11014 	ASSERT_RTNL();
11015 
11016 	if (list_empty(head))
11017 		return;
11018 
11019 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
11020 		/* Some devices call without registering
11021 		 * for initialization unwind. Remove those
11022 		 * devices and proceed with the remaining.
11023 		 */
11024 		if (dev->reg_state == NETREG_UNINITIALIZED) {
11025 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
11026 				 dev->name, dev);
11027 
11028 			WARN_ON(1);
11029 			list_del(&dev->unreg_list);
11030 			continue;
11031 		}
11032 		dev->dismantle = true;
11033 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
11034 	}
11035 
11036 	/* If device is running, close it first. */
11037 	list_for_each_entry(dev, head, unreg_list)
11038 		list_add_tail(&dev->close_list, &close_head);
11039 	dev_close_many(&close_head, true);
11040 
11041 	list_for_each_entry(dev, head, unreg_list) {
11042 		/* And unlink it from device chain. */
11043 		unlist_netdevice(dev);
11044 
11045 		dev->reg_state = NETREG_UNREGISTERING;
11046 	}
11047 	flush_all_backlogs();
11048 
11049 	synchronize_net();
11050 
11051 	list_for_each_entry(dev, head, unreg_list) {
11052 		struct sk_buff *skb = NULL;
11053 
11054 		/* Shutdown queueing discipline. */
11055 		dev_shutdown(dev);
11056 
11057 		dev_xdp_uninstall(dev);
11058 
11059 		/* Notify protocols, that we are about to destroy
11060 		 * this device. They should clean all the things.
11061 		 */
11062 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11063 
11064 		if (!dev->rtnl_link_ops ||
11065 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11066 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11067 						     GFP_KERNEL, NULL, 0);
11068 
11069 		/*
11070 		 *	Flush the unicast and multicast chains
11071 		 */
11072 		dev_uc_flush(dev);
11073 		dev_mc_flush(dev);
11074 
11075 		netdev_name_node_alt_flush(dev);
11076 		netdev_name_node_free(dev->name_node);
11077 
11078 		if (dev->netdev_ops->ndo_uninit)
11079 			dev->netdev_ops->ndo_uninit(dev);
11080 
11081 		if (skb)
11082 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
11083 
11084 		/* Notifier chain MUST detach us all upper devices. */
11085 		WARN_ON(netdev_has_any_upper_dev(dev));
11086 		WARN_ON(netdev_has_any_lower_dev(dev));
11087 
11088 		/* Remove entries from kobject tree */
11089 		netdev_unregister_kobject(dev);
11090 #ifdef CONFIG_XPS
11091 		/* Remove XPS queueing entries */
11092 		netif_reset_xps_queues_gt(dev, 0);
11093 #endif
11094 	}
11095 
11096 	synchronize_net();
11097 
11098 	list_for_each_entry(dev, head, unreg_list) {
11099 		dev_put(dev);
11100 		net_set_todo(dev);
11101 	}
11102 
11103 	list_del(head);
11104 }
11105 EXPORT_SYMBOL(unregister_netdevice_many);
11106 
11107 /**
11108  *	unregister_netdev - remove device from the kernel
11109  *	@dev: device
11110  *
11111  *	This function shuts down a device interface and removes it
11112  *	from the kernel tables.
11113  *
11114  *	This is just a wrapper for unregister_netdevice that takes
11115  *	the rtnl semaphore.  In general you want to use this and not
11116  *	unregister_netdevice.
11117  */
11118 void unregister_netdev(struct net_device *dev)
11119 {
11120 	rtnl_lock();
11121 	unregister_netdevice(dev);
11122 	rtnl_unlock();
11123 }
11124 EXPORT_SYMBOL(unregister_netdev);
11125 
11126 /**
11127  *	__dev_change_net_namespace - move device to different nethost namespace
11128  *	@dev: device
11129  *	@net: network namespace
11130  *	@pat: If not NULL name pattern to try if the current device name
11131  *	      is already taken in the destination network namespace.
11132  *	@new_ifindex: If not zero, specifies device index in the target
11133  *	              namespace.
11134  *
11135  *	This function shuts down a device interface and moves it
11136  *	to a new network namespace. On success 0 is returned, on
11137  *	a failure a netagive errno code is returned.
11138  *
11139  *	Callers must hold the rtnl semaphore.
11140  */
11141 
11142 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11143 			       const char *pat, int new_ifindex)
11144 {
11145 	struct net *net_old = dev_net(dev);
11146 	int err, new_nsid;
11147 
11148 	ASSERT_RTNL();
11149 
11150 	/* Don't allow namespace local devices to be moved. */
11151 	err = -EINVAL;
11152 	if (dev->features & NETIF_F_NETNS_LOCAL)
11153 		goto out;
11154 
11155 	/* Ensure the device has been registrered */
11156 	if (dev->reg_state != NETREG_REGISTERED)
11157 		goto out;
11158 
11159 	/* Get out if there is nothing todo */
11160 	err = 0;
11161 	if (net_eq(net_old, net))
11162 		goto out;
11163 
11164 	/* Pick the destination device name, and ensure
11165 	 * we can use it in the destination network namespace.
11166 	 */
11167 	err = -EEXIST;
11168 	if (netdev_name_in_use(net, dev->name)) {
11169 		/* We get here if we can't use the current device name */
11170 		if (!pat)
11171 			goto out;
11172 		err = dev_get_valid_name(net, dev, pat);
11173 		if (err < 0)
11174 			goto out;
11175 	}
11176 
11177 	/* Check that new_ifindex isn't used yet. */
11178 	err = -EBUSY;
11179 	if (new_ifindex && __dev_get_by_index(net, new_ifindex))
11180 		goto out;
11181 
11182 	/*
11183 	 * And now a mini version of register_netdevice unregister_netdevice.
11184 	 */
11185 
11186 	/* If device is running close it first. */
11187 	dev_close(dev);
11188 
11189 	/* And unlink it from device chain */
11190 	unlist_netdevice(dev);
11191 
11192 	synchronize_net();
11193 
11194 	/* Shutdown queueing discipline. */
11195 	dev_shutdown(dev);
11196 
11197 	/* Notify protocols, that we are about to destroy
11198 	 * this device. They should clean all the things.
11199 	 *
11200 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
11201 	 * This is wanted because this way 8021q and macvlan know
11202 	 * the device is just moving and can keep their slaves up.
11203 	 */
11204 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11205 	rcu_barrier();
11206 
11207 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11208 	/* If there is an ifindex conflict assign a new one */
11209 	if (!new_ifindex) {
11210 		if (__dev_get_by_index(net, dev->ifindex))
11211 			new_ifindex = dev_new_index(net);
11212 		else
11213 			new_ifindex = dev->ifindex;
11214 	}
11215 
11216 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11217 			    new_ifindex);
11218 
11219 	/*
11220 	 *	Flush the unicast and multicast chains
11221 	 */
11222 	dev_uc_flush(dev);
11223 	dev_mc_flush(dev);
11224 
11225 	/* Send a netdev-removed uevent to the old namespace */
11226 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11227 	netdev_adjacent_del_links(dev);
11228 
11229 	/* Move per-net netdevice notifiers that are following the netdevice */
11230 	move_netdevice_notifiers_dev_net(dev, net);
11231 
11232 	/* Actually switch the network namespace */
11233 	dev_net_set(dev, net);
11234 	dev->ifindex = new_ifindex;
11235 
11236 	/* Send a netdev-add uevent to the new namespace */
11237 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11238 	netdev_adjacent_add_links(dev);
11239 
11240 	/* Fixup kobjects */
11241 	err = device_rename(&dev->dev, dev->name);
11242 	WARN_ON(err);
11243 
11244 	/* Adapt owner in case owning user namespace of target network
11245 	 * namespace is different from the original one.
11246 	 */
11247 	err = netdev_change_owner(dev, net_old, net);
11248 	WARN_ON(err);
11249 
11250 	/* Add the device back in the hashes */
11251 	list_netdevice(dev);
11252 
11253 	/* Notify protocols, that a new device appeared. */
11254 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
11255 
11256 	/*
11257 	 *	Prevent userspace races by waiting until the network
11258 	 *	device is fully setup before sending notifications.
11259 	 */
11260 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
11261 
11262 	synchronize_net();
11263 	err = 0;
11264 out:
11265 	return err;
11266 }
11267 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11268 
11269 static int dev_cpu_dead(unsigned int oldcpu)
11270 {
11271 	struct sk_buff **list_skb;
11272 	struct sk_buff *skb;
11273 	unsigned int cpu;
11274 	struct softnet_data *sd, *oldsd, *remsd = NULL;
11275 
11276 	local_irq_disable();
11277 	cpu = smp_processor_id();
11278 	sd = &per_cpu(softnet_data, cpu);
11279 	oldsd = &per_cpu(softnet_data, oldcpu);
11280 
11281 	/* Find end of our completion_queue. */
11282 	list_skb = &sd->completion_queue;
11283 	while (*list_skb)
11284 		list_skb = &(*list_skb)->next;
11285 	/* Append completion queue from offline CPU. */
11286 	*list_skb = oldsd->completion_queue;
11287 	oldsd->completion_queue = NULL;
11288 
11289 	/* Append output queue from offline CPU. */
11290 	if (oldsd->output_queue) {
11291 		*sd->output_queue_tailp = oldsd->output_queue;
11292 		sd->output_queue_tailp = oldsd->output_queue_tailp;
11293 		oldsd->output_queue = NULL;
11294 		oldsd->output_queue_tailp = &oldsd->output_queue;
11295 	}
11296 	/* Append NAPI poll list from offline CPU, with one exception :
11297 	 * process_backlog() must be called by cpu owning percpu backlog.
11298 	 * We properly handle process_queue & input_pkt_queue later.
11299 	 */
11300 	while (!list_empty(&oldsd->poll_list)) {
11301 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11302 							    struct napi_struct,
11303 							    poll_list);
11304 
11305 		list_del_init(&napi->poll_list);
11306 		if (napi->poll == process_backlog)
11307 			napi->state = 0;
11308 		else
11309 			____napi_schedule(sd, napi);
11310 	}
11311 
11312 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
11313 	local_irq_enable();
11314 
11315 #ifdef CONFIG_RPS
11316 	remsd = oldsd->rps_ipi_list;
11317 	oldsd->rps_ipi_list = NULL;
11318 #endif
11319 	/* send out pending IPI's on offline CPU */
11320 	net_rps_send_ipi(remsd);
11321 
11322 	/* Process offline CPU's input_pkt_queue */
11323 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11324 		netif_rx_ni(skb);
11325 		input_queue_head_incr(oldsd);
11326 	}
11327 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11328 		netif_rx_ni(skb);
11329 		input_queue_head_incr(oldsd);
11330 	}
11331 
11332 	return 0;
11333 }
11334 
11335 /**
11336  *	netdev_increment_features - increment feature set by one
11337  *	@all: current feature set
11338  *	@one: new feature set
11339  *	@mask: mask feature set
11340  *
11341  *	Computes a new feature set after adding a device with feature set
11342  *	@one to the master device with current feature set @all.  Will not
11343  *	enable anything that is off in @mask. Returns the new feature set.
11344  */
11345 netdev_features_t netdev_increment_features(netdev_features_t all,
11346 	netdev_features_t one, netdev_features_t mask)
11347 {
11348 	if (mask & NETIF_F_HW_CSUM)
11349 		mask |= NETIF_F_CSUM_MASK;
11350 	mask |= NETIF_F_VLAN_CHALLENGED;
11351 
11352 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11353 	all &= one | ~NETIF_F_ALL_FOR_ALL;
11354 
11355 	/* If one device supports hw checksumming, set for all. */
11356 	if (all & NETIF_F_HW_CSUM)
11357 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11358 
11359 	return all;
11360 }
11361 EXPORT_SYMBOL(netdev_increment_features);
11362 
11363 static struct hlist_head * __net_init netdev_create_hash(void)
11364 {
11365 	int i;
11366 	struct hlist_head *hash;
11367 
11368 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11369 	if (hash != NULL)
11370 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
11371 			INIT_HLIST_HEAD(&hash[i]);
11372 
11373 	return hash;
11374 }
11375 
11376 /* Initialize per network namespace state */
11377 static int __net_init netdev_init(struct net *net)
11378 {
11379 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
11380 		     8 * sizeof_field(struct napi_struct, gro_bitmask));
11381 
11382 	if (net != &init_net)
11383 		INIT_LIST_HEAD(&net->dev_base_head);
11384 
11385 	net->dev_name_head = netdev_create_hash();
11386 	if (net->dev_name_head == NULL)
11387 		goto err_name;
11388 
11389 	net->dev_index_head = netdev_create_hash();
11390 	if (net->dev_index_head == NULL)
11391 		goto err_idx;
11392 
11393 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11394 
11395 	return 0;
11396 
11397 err_idx:
11398 	kfree(net->dev_name_head);
11399 err_name:
11400 	return -ENOMEM;
11401 }
11402 
11403 /**
11404  *	netdev_drivername - network driver for the device
11405  *	@dev: network device
11406  *
11407  *	Determine network driver for device.
11408  */
11409 const char *netdev_drivername(const struct net_device *dev)
11410 {
11411 	const struct device_driver *driver;
11412 	const struct device *parent;
11413 	const char *empty = "";
11414 
11415 	parent = dev->dev.parent;
11416 	if (!parent)
11417 		return empty;
11418 
11419 	driver = parent->driver;
11420 	if (driver && driver->name)
11421 		return driver->name;
11422 	return empty;
11423 }
11424 
11425 static void __netdev_printk(const char *level, const struct net_device *dev,
11426 			    struct va_format *vaf)
11427 {
11428 	if (dev && dev->dev.parent) {
11429 		dev_printk_emit(level[1] - '0',
11430 				dev->dev.parent,
11431 				"%s %s %s%s: %pV",
11432 				dev_driver_string(dev->dev.parent),
11433 				dev_name(dev->dev.parent),
11434 				netdev_name(dev), netdev_reg_state(dev),
11435 				vaf);
11436 	} else if (dev) {
11437 		printk("%s%s%s: %pV",
11438 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
11439 	} else {
11440 		printk("%s(NULL net_device): %pV", level, vaf);
11441 	}
11442 }
11443 
11444 void netdev_printk(const char *level, const struct net_device *dev,
11445 		   const char *format, ...)
11446 {
11447 	struct va_format vaf;
11448 	va_list args;
11449 
11450 	va_start(args, format);
11451 
11452 	vaf.fmt = format;
11453 	vaf.va = &args;
11454 
11455 	__netdev_printk(level, dev, &vaf);
11456 
11457 	va_end(args);
11458 }
11459 EXPORT_SYMBOL(netdev_printk);
11460 
11461 #define define_netdev_printk_level(func, level)			\
11462 void func(const struct net_device *dev, const char *fmt, ...)	\
11463 {								\
11464 	struct va_format vaf;					\
11465 	va_list args;						\
11466 								\
11467 	va_start(args, fmt);					\
11468 								\
11469 	vaf.fmt = fmt;						\
11470 	vaf.va = &args;						\
11471 								\
11472 	__netdev_printk(level, dev, &vaf);			\
11473 								\
11474 	va_end(args);						\
11475 }								\
11476 EXPORT_SYMBOL(func);
11477 
11478 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11479 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11480 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11481 define_netdev_printk_level(netdev_err, KERN_ERR);
11482 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11483 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11484 define_netdev_printk_level(netdev_info, KERN_INFO);
11485 
11486 static void __net_exit netdev_exit(struct net *net)
11487 {
11488 	kfree(net->dev_name_head);
11489 	kfree(net->dev_index_head);
11490 	if (net != &init_net)
11491 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11492 }
11493 
11494 static struct pernet_operations __net_initdata netdev_net_ops = {
11495 	.init = netdev_init,
11496 	.exit = netdev_exit,
11497 };
11498 
11499 static void __net_exit default_device_exit(struct net *net)
11500 {
11501 	struct net_device *dev, *aux;
11502 	/*
11503 	 * Push all migratable network devices back to the
11504 	 * initial network namespace
11505 	 */
11506 	rtnl_lock();
11507 	for_each_netdev_safe(net, dev, aux) {
11508 		int err;
11509 		char fb_name[IFNAMSIZ];
11510 
11511 		/* Ignore unmoveable devices (i.e. loopback) */
11512 		if (dev->features & NETIF_F_NETNS_LOCAL)
11513 			continue;
11514 
11515 		/* Leave virtual devices for the generic cleanup */
11516 		if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11517 			continue;
11518 
11519 		/* Push remaining network devices to init_net */
11520 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11521 		if (netdev_name_in_use(&init_net, fb_name))
11522 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
11523 		err = dev_change_net_namespace(dev, &init_net, fb_name);
11524 		if (err) {
11525 			pr_emerg("%s: failed to move %s to init_net: %d\n",
11526 				 __func__, dev->name, err);
11527 			BUG();
11528 		}
11529 	}
11530 	rtnl_unlock();
11531 }
11532 
11533 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
11534 {
11535 	/* Return with the rtnl_lock held when there are no network
11536 	 * devices unregistering in any network namespace in net_list.
11537 	 */
11538 	struct net *net;
11539 	bool unregistering;
11540 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
11541 
11542 	add_wait_queue(&netdev_unregistering_wq, &wait);
11543 	for (;;) {
11544 		unregistering = false;
11545 		rtnl_lock();
11546 		list_for_each_entry(net, net_list, exit_list) {
11547 			if (net->dev_unreg_count > 0) {
11548 				unregistering = true;
11549 				break;
11550 			}
11551 		}
11552 		if (!unregistering)
11553 			break;
11554 		__rtnl_unlock();
11555 
11556 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
11557 	}
11558 	remove_wait_queue(&netdev_unregistering_wq, &wait);
11559 }
11560 
11561 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11562 {
11563 	/* At exit all network devices most be removed from a network
11564 	 * namespace.  Do this in the reverse order of registration.
11565 	 * Do this across as many network namespaces as possible to
11566 	 * improve batching efficiency.
11567 	 */
11568 	struct net_device *dev;
11569 	struct net *net;
11570 	LIST_HEAD(dev_kill_list);
11571 
11572 	/* To prevent network device cleanup code from dereferencing
11573 	 * loopback devices or network devices that have been freed
11574 	 * wait here for all pending unregistrations to complete,
11575 	 * before unregistring the loopback device and allowing the
11576 	 * network namespace be freed.
11577 	 *
11578 	 * The netdev todo list containing all network devices
11579 	 * unregistrations that happen in default_device_exit_batch
11580 	 * will run in the rtnl_unlock() at the end of
11581 	 * default_device_exit_batch.
11582 	 */
11583 	rtnl_lock_unregistering(net_list);
11584 	list_for_each_entry(net, net_list, exit_list) {
11585 		for_each_netdev_reverse(net, dev) {
11586 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11587 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11588 			else
11589 				unregister_netdevice_queue(dev, &dev_kill_list);
11590 		}
11591 	}
11592 	unregister_netdevice_many(&dev_kill_list);
11593 	rtnl_unlock();
11594 }
11595 
11596 static struct pernet_operations __net_initdata default_device_ops = {
11597 	.exit = default_device_exit,
11598 	.exit_batch = default_device_exit_batch,
11599 };
11600 
11601 /*
11602  *	Initialize the DEV module. At boot time this walks the device list and
11603  *	unhooks any devices that fail to initialise (normally hardware not
11604  *	present) and leaves us with a valid list of present and active devices.
11605  *
11606  */
11607 
11608 /*
11609  *       This is called single threaded during boot, so no need
11610  *       to take the rtnl semaphore.
11611  */
11612 static int __init net_dev_init(void)
11613 {
11614 	int i, rc = -ENOMEM;
11615 
11616 	BUG_ON(!dev_boot_phase);
11617 
11618 	if (dev_proc_init())
11619 		goto out;
11620 
11621 	if (netdev_kobject_init())
11622 		goto out;
11623 
11624 	INIT_LIST_HEAD(&ptype_all);
11625 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
11626 		INIT_LIST_HEAD(&ptype_base[i]);
11627 
11628 	INIT_LIST_HEAD(&offload_base);
11629 
11630 	if (register_pernet_subsys(&netdev_net_ops))
11631 		goto out;
11632 
11633 	/*
11634 	 *	Initialise the packet receive queues.
11635 	 */
11636 
11637 	for_each_possible_cpu(i) {
11638 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11639 		struct softnet_data *sd = &per_cpu(softnet_data, i);
11640 
11641 		INIT_WORK(flush, flush_backlog);
11642 
11643 		skb_queue_head_init(&sd->input_pkt_queue);
11644 		skb_queue_head_init(&sd->process_queue);
11645 #ifdef CONFIG_XFRM_OFFLOAD
11646 		skb_queue_head_init(&sd->xfrm_backlog);
11647 #endif
11648 		INIT_LIST_HEAD(&sd->poll_list);
11649 		sd->output_queue_tailp = &sd->output_queue;
11650 #ifdef CONFIG_RPS
11651 		INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11652 		sd->cpu = i;
11653 #endif
11654 
11655 		init_gro_hash(&sd->backlog);
11656 		sd->backlog.poll = process_backlog;
11657 		sd->backlog.weight = weight_p;
11658 	}
11659 
11660 	dev_boot_phase = 0;
11661 
11662 	/* The loopback device is special if any other network devices
11663 	 * is present in a network namespace the loopback device must
11664 	 * be present. Since we now dynamically allocate and free the
11665 	 * loopback device ensure this invariant is maintained by
11666 	 * keeping the loopback device as the first device on the
11667 	 * list of network devices.  Ensuring the loopback devices
11668 	 * is the first device that appears and the last network device
11669 	 * that disappears.
11670 	 */
11671 	if (register_pernet_device(&loopback_net_ops))
11672 		goto out;
11673 
11674 	if (register_pernet_device(&default_device_ops))
11675 		goto out;
11676 
11677 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11678 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11679 
11680 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11681 				       NULL, dev_cpu_dead);
11682 	WARN_ON(rc < 0);
11683 	rc = 0;
11684 out:
11685 	return rc;
11686 }
11687 
11688 subsys_initcall(net_dev_init);
11689