1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET3 Protocol independent device support routines. 4 * 5 * Derived from the non IP parts of dev.c 1.0.19 6 * Authors: Ross Biro 7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 8 * Mark Evans, <evansmp@uhura.aston.ac.uk> 9 * 10 * Additional Authors: 11 * Florian la Roche <rzsfl@rz.uni-sb.de> 12 * Alan Cox <gw4pts@gw4pts.ampr.org> 13 * David Hinds <dahinds@users.sourceforge.net> 14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 15 * Adam Sulmicki <adam@cfar.umd.edu> 16 * Pekka Riikonen <priikone@poesidon.pspt.fi> 17 * 18 * Changes: 19 * D.J. Barrow : Fixed bug where dev->refcnt gets set 20 * to 2 if register_netdev gets called 21 * before net_dev_init & also removed a 22 * few lines of code in the process. 23 * Alan Cox : device private ioctl copies fields back. 24 * Alan Cox : Transmit queue code does relevant 25 * stunts to keep the queue safe. 26 * Alan Cox : Fixed double lock. 27 * Alan Cox : Fixed promisc NULL pointer trap 28 * ???????? : Support the full private ioctl range 29 * Alan Cox : Moved ioctl permission check into 30 * drivers 31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 32 * Alan Cox : 100 backlog just doesn't cut it when 33 * you start doing multicast video 8) 34 * Alan Cox : Rewrote net_bh and list manager. 35 * Alan Cox : Fix ETH_P_ALL echoback lengths. 36 * Alan Cox : Took out transmit every packet pass 37 * Saved a few bytes in the ioctl handler 38 * Alan Cox : Network driver sets packet type before 39 * calling netif_rx. Saves a function 40 * call a packet. 41 * Alan Cox : Hashed net_bh() 42 * Richard Kooijman: Timestamp fixes. 43 * Alan Cox : Wrong field in SIOCGIFDSTADDR 44 * Alan Cox : Device lock protection. 45 * Alan Cox : Fixed nasty side effect of device close 46 * changes. 47 * Rudi Cilibrasi : Pass the right thing to 48 * set_mac_address() 49 * Dave Miller : 32bit quantity for the device lock to 50 * make it work out on a Sparc. 51 * Bjorn Ekwall : Added KERNELD hack. 52 * Alan Cox : Cleaned up the backlog initialise. 53 * Craig Metz : SIOCGIFCONF fix if space for under 54 * 1 device. 55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 56 * is no device open function. 57 * Andi Kleen : Fix error reporting for SIOCGIFCONF 58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 59 * Cyrus Durgin : Cleaned for KMOD 60 * Adam Sulmicki : Bug Fix : Network Device Unload 61 * A network device unload needs to purge 62 * the backlog queue. 63 * Paul Rusty Russell : SIOCSIFNAME 64 * Pekka Riikonen : Netdev boot-time settings code 65 * Andrew Morton : Make unregister_netdevice wait 66 * indefinitely on dev->refcnt 67 * J Hadi Salim : - Backlog queue sampling 68 * - netif_rx() feedback 69 */ 70 71 #include <linux/uaccess.h> 72 #include <linux/bitmap.h> 73 #include <linux/capability.h> 74 #include <linux/cpu.h> 75 #include <linux/types.h> 76 #include <linux/kernel.h> 77 #include <linux/hash.h> 78 #include <linux/slab.h> 79 #include <linux/sched.h> 80 #include <linux/sched/isolation.h> 81 #include <linux/sched/mm.h> 82 #include <linux/smpboot.h> 83 #include <linux/mutex.h> 84 #include <linux/rwsem.h> 85 #include <linux/string.h> 86 #include <linux/mm.h> 87 #include <linux/socket.h> 88 #include <linux/sockios.h> 89 #include <linux/errno.h> 90 #include <linux/interrupt.h> 91 #include <linux/if_ether.h> 92 #include <linux/netdevice.h> 93 #include <linux/etherdevice.h> 94 #include <linux/ethtool.h> 95 #include <linux/skbuff.h> 96 #include <linux/kthread.h> 97 #include <linux/bpf.h> 98 #include <linux/bpf_trace.h> 99 #include <net/net_namespace.h> 100 #include <net/sock.h> 101 #include <net/busy_poll.h> 102 #include <linux/rtnetlink.h> 103 #include <linux/stat.h> 104 #include <net/dsa.h> 105 #include <net/dst.h> 106 #include <net/dst_metadata.h> 107 #include <net/gro.h> 108 #include <net/pkt_sched.h> 109 #include <net/pkt_cls.h> 110 #include <net/checksum.h> 111 #include <net/xfrm.h> 112 #include <net/tcx.h> 113 #include <linux/highmem.h> 114 #include <linux/init.h> 115 #include <linux/module.h> 116 #include <linux/netpoll.h> 117 #include <linux/rcupdate.h> 118 #include <linux/delay.h> 119 #include <net/iw_handler.h> 120 #include <asm/current.h> 121 #include <linux/audit.h> 122 #include <linux/dmaengine.h> 123 #include <linux/err.h> 124 #include <linux/ctype.h> 125 #include <linux/if_arp.h> 126 #include <linux/if_vlan.h> 127 #include <linux/ip.h> 128 #include <net/ip.h> 129 #include <net/mpls.h> 130 #include <linux/ipv6.h> 131 #include <linux/in.h> 132 #include <linux/jhash.h> 133 #include <linux/random.h> 134 #include <trace/events/napi.h> 135 #include <trace/events/net.h> 136 #include <trace/events/skb.h> 137 #include <trace/events/qdisc.h> 138 #include <trace/events/xdp.h> 139 #include <linux/inetdevice.h> 140 #include <linux/cpu_rmap.h> 141 #include <linux/static_key.h> 142 #include <linux/hashtable.h> 143 #include <linux/vmalloc.h> 144 #include <linux/if_macvlan.h> 145 #include <linux/errqueue.h> 146 #include <linux/hrtimer.h> 147 #include <linux/netfilter_netdev.h> 148 #include <linux/crash_dump.h> 149 #include <linux/sctp.h> 150 #include <net/udp_tunnel.h> 151 #include <linux/net_namespace.h> 152 #include <linux/indirect_call_wrapper.h> 153 #include <net/devlink.h> 154 #include <linux/pm_runtime.h> 155 #include <linux/prandom.h> 156 #include <linux/once_lite.h> 157 #include <net/netdev_rx_queue.h> 158 #include <net/page_pool/types.h> 159 #include <net/page_pool/helpers.h> 160 #include <net/rps.h> 161 #include <linux/phy_link_topology.h> 162 163 #include "dev.h" 164 #include "devmem.h" 165 #include "net-sysfs.h" 166 167 static DEFINE_SPINLOCK(ptype_lock); 168 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 169 170 static int netif_rx_internal(struct sk_buff *skb); 171 static int call_netdevice_notifiers_extack(unsigned long val, 172 struct net_device *dev, 173 struct netlink_ext_ack *extack); 174 175 static DEFINE_MUTEX(ifalias_mutex); 176 177 /* protects napi_hash addition/deletion and napi_gen_id */ 178 static DEFINE_SPINLOCK(napi_hash_lock); 179 180 static unsigned int napi_gen_id = NR_CPUS; 181 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8); 182 183 static DECLARE_RWSEM(devnet_rename_sem); 184 185 static inline void dev_base_seq_inc(struct net *net) 186 { 187 unsigned int val = net->dev_base_seq + 1; 188 189 WRITE_ONCE(net->dev_base_seq, val ?: 1); 190 } 191 192 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 193 { 194 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ)); 195 196 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 197 } 198 199 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 200 { 201 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 202 } 203 204 #ifndef CONFIG_PREEMPT_RT 205 206 static DEFINE_STATIC_KEY_FALSE(use_backlog_threads_key); 207 208 static int __init setup_backlog_napi_threads(char *arg) 209 { 210 static_branch_enable(&use_backlog_threads_key); 211 return 0; 212 } 213 early_param("thread_backlog_napi", setup_backlog_napi_threads); 214 215 static bool use_backlog_threads(void) 216 { 217 return static_branch_unlikely(&use_backlog_threads_key); 218 } 219 220 #else 221 222 static bool use_backlog_threads(void) 223 { 224 return true; 225 } 226 227 #endif 228 229 static inline void backlog_lock_irq_save(struct softnet_data *sd, 230 unsigned long *flags) 231 { 232 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads()) 233 spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags); 234 else 235 local_irq_save(*flags); 236 } 237 238 static inline void backlog_lock_irq_disable(struct softnet_data *sd) 239 { 240 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads()) 241 spin_lock_irq(&sd->input_pkt_queue.lock); 242 else 243 local_irq_disable(); 244 } 245 246 static inline void backlog_unlock_irq_restore(struct softnet_data *sd, 247 unsigned long *flags) 248 { 249 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads()) 250 spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags); 251 else 252 local_irq_restore(*flags); 253 } 254 255 static inline void backlog_unlock_irq_enable(struct softnet_data *sd) 256 { 257 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads()) 258 spin_unlock_irq(&sd->input_pkt_queue.lock); 259 else 260 local_irq_enable(); 261 } 262 263 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev, 264 const char *name) 265 { 266 struct netdev_name_node *name_node; 267 268 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL); 269 if (!name_node) 270 return NULL; 271 INIT_HLIST_NODE(&name_node->hlist); 272 name_node->dev = dev; 273 name_node->name = name; 274 return name_node; 275 } 276 277 static struct netdev_name_node * 278 netdev_name_node_head_alloc(struct net_device *dev) 279 { 280 struct netdev_name_node *name_node; 281 282 name_node = netdev_name_node_alloc(dev, dev->name); 283 if (!name_node) 284 return NULL; 285 INIT_LIST_HEAD(&name_node->list); 286 return name_node; 287 } 288 289 static void netdev_name_node_free(struct netdev_name_node *name_node) 290 { 291 kfree(name_node); 292 } 293 294 static void netdev_name_node_add(struct net *net, 295 struct netdev_name_node *name_node) 296 { 297 hlist_add_head_rcu(&name_node->hlist, 298 dev_name_hash(net, name_node->name)); 299 } 300 301 static void netdev_name_node_del(struct netdev_name_node *name_node) 302 { 303 hlist_del_rcu(&name_node->hlist); 304 } 305 306 static struct netdev_name_node *netdev_name_node_lookup(struct net *net, 307 const char *name) 308 { 309 struct hlist_head *head = dev_name_hash(net, name); 310 struct netdev_name_node *name_node; 311 312 hlist_for_each_entry(name_node, head, hlist) 313 if (!strcmp(name_node->name, name)) 314 return name_node; 315 return NULL; 316 } 317 318 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net, 319 const char *name) 320 { 321 struct hlist_head *head = dev_name_hash(net, name); 322 struct netdev_name_node *name_node; 323 324 hlist_for_each_entry_rcu(name_node, head, hlist) 325 if (!strcmp(name_node->name, name)) 326 return name_node; 327 return NULL; 328 } 329 330 bool netdev_name_in_use(struct net *net, const char *name) 331 { 332 return netdev_name_node_lookup(net, name); 333 } 334 EXPORT_SYMBOL(netdev_name_in_use); 335 336 int netdev_name_node_alt_create(struct net_device *dev, const char *name) 337 { 338 struct netdev_name_node *name_node; 339 struct net *net = dev_net(dev); 340 341 name_node = netdev_name_node_lookup(net, name); 342 if (name_node) 343 return -EEXIST; 344 name_node = netdev_name_node_alloc(dev, name); 345 if (!name_node) 346 return -ENOMEM; 347 netdev_name_node_add(net, name_node); 348 /* The node that holds dev->name acts as a head of per-device list. */ 349 list_add_tail_rcu(&name_node->list, &dev->name_node->list); 350 351 return 0; 352 } 353 354 static void netdev_name_node_alt_free(struct rcu_head *head) 355 { 356 struct netdev_name_node *name_node = 357 container_of(head, struct netdev_name_node, rcu); 358 359 kfree(name_node->name); 360 netdev_name_node_free(name_node); 361 } 362 363 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node) 364 { 365 netdev_name_node_del(name_node); 366 list_del(&name_node->list); 367 call_rcu(&name_node->rcu, netdev_name_node_alt_free); 368 } 369 370 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name) 371 { 372 struct netdev_name_node *name_node; 373 struct net *net = dev_net(dev); 374 375 name_node = netdev_name_node_lookup(net, name); 376 if (!name_node) 377 return -ENOENT; 378 /* lookup might have found our primary name or a name belonging 379 * to another device. 380 */ 381 if (name_node == dev->name_node || name_node->dev != dev) 382 return -EINVAL; 383 384 __netdev_name_node_alt_destroy(name_node); 385 return 0; 386 } 387 388 static void netdev_name_node_alt_flush(struct net_device *dev) 389 { 390 struct netdev_name_node *name_node, *tmp; 391 392 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) { 393 list_del(&name_node->list); 394 netdev_name_node_alt_free(&name_node->rcu); 395 } 396 } 397 398 /* Device list insertion */ 399 static void list_netdevice(struct net_device *dev) 400 { 401 struct netdev_name_node *name_node; 402 struct net *net = dev_net(dev); 403 404 ASSERT_RTNL(); 405 406 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 407 netdev_name_node_add(net, dev->name_node); 408 hlist_add_head_rcu(&dev->index_hlist, 409 dev_index_hash(net, dev->ifindex)); 410 411 netdev_for_each_altname(dev, name_node) 412 netdev_name_node_add(net, name_node); 413 414 /* We reserved the ifindex, this can't fail */ 415 WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL)); 416 417 dev_base_seq_inc(net); 418 } 419 420 /* Device list removal 421 * caller must respect a RCU grace period before freeing/reusing dev 422 */ 423 static void unlist_netdevice(struct net_device *dev) 424 { 425 struct netdev_name_node *name_node; 426 struct net *net = dev_net(dev); 427 428 ASSERT_RTNL(); 429 430 xa_erase(&net->dev_by_index, dev->ifindex); 431 432 netdev_for_each_altname(dev, name_node) 433 netdev_name_node_del(name_node); 434 435 /* Unlink dev from the device chain */ 436 list_del_rcu(&dev->dev_list); 437 netdev_name_node_del(dev->name_node); 438 hlist_del_rcu(&dev->index_hlist); 439 440 dev_base_seq_inc(dev_net(dev)); 441 } 442 443 /* 444 * Our notifier list 445 */ 446 447 static RAW_NOTIFIER_HEAD(netdev_chain); 448 449 /* 450 * Device drivers call our routines to queue packets here. We empty the 451 * queue in the local softnet handler. 452 */ 453 454 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data) = { 455 .process_queue_bh_lock = INIT_LOCAL_LOCK(process_queue_bh_lock), 456 }; 457 EXPORT_PER_CPU_SYMBOL(softnet_data); 458 459 /* Page_pool has a lockless array/stack to alloc/recycle pages. 460 * PP consumers must pay attention to run APIs in the appropriate context 461 * (e.g. NAPI context). 462 */ 463 static DEFINE_PER_CPU(struct page_pool *, system_page_pool); 464 465 #ifdef CONFIG_LOCKDEP 466 /* 467 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 468 * according to dev->type 469 */ 470 static const unsigned short netdev_lock_type[] = { 471 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 472 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 473 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 474 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 475 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 476 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 477 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 478 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 479 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 480 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 481 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 482 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 483 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 484 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 485 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 486 487 static const char *const netdev_lock_name[] = { 488 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 489 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 490 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 491 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 492 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 493 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 494 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 495 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 496 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 497 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 498 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 499 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 500 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 501 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 502 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 503 504 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 505 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 506 507 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 508 { 509 int i; 510 511 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 512 if (netdev_lock_type[i] == dev_type) 513 return i; 514 /* the last key is used by default */ 515 return ARRAY_SIZE(netdev_lock_type) - 1; 516 } 517 518 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 519 unsigned short dev_type) 520 { 521 int i; 522 523 i = netdev_lock_pos(dev_type); 524 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 525 netdev_lock_name[i]); 526 } 527 528 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 529 { 530 int i; 531 532 i = netdev_lock_pos(dev->type); 533 lockdep_set_class_and_name(&dev->addr_list_lock, 534 &netdev_addr_lock_key[i], 535 netdev_lock_name[i]); 536 } 537 #else 538 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 539 unsigned short dev_type) 540 { 541 } 542 543 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 544 { 545 } 546 #endif 547 548 /******************************************************************************* 549 * 550 * Protocol management and registration routines 551 * 552 *******************************************************************************/ 553 554 555 /* 556 * Add a protocol ID to the list. Now that the input handler is 557 * smarter we can dispense with all the messy stuff that used to be 558 * here. 559 * 560 * BEWARE!!! Protocol handlers, mangling input packets, 561 * MUST BE last in hash buckets and checking protocol handlers 562 * MUST start from promiscuous ptype_all chain in net_bh. 563 * It is true now, do not change it. 564 * Explanation follows: if protocol handler, mangling packet, will 565 * be the first on list, it is not able to sense, that packet 566 * is cloned and should be copied-on-write, so that it will 567 * change it and subsequent readers will get broken packet. 568 * --ANK (980803) 569 */ 570 571 static inline struct list_head *ptype_head(const struct packet_type *pt) 572 { 573 if (pt->type == htons(ETH_P_ALL)) 574 return pt->dev ? &pt->dev->ptype_all : &net_hotdata.ptype_all; 575 else 576 return pt->dev ? &pt->dev->ptype_specific : 577 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 578 } 579 580 /** 581 * dev_add_pack - add packet handler 582 * @pt: packet type declaration 583 * 584 * Add a protocol handler to the networking stack. The passed &packet_type 585 * is linked into kernel lists and may not be freed until it has been 586 * removed from the kernel lists. 587 * 588 * This call does not sleep therefore it can not 589 * guarantee all CPU's that are in middle of receiving packets 590 * will see the new packet type (until the next received packet). 591 */ 592 593 void dev_add_pack(struct packet_type *pt) 594 { 595 struct list_head *head = ptype_head(pt); 596 597 spin_lock(&ptype_lock); 598 list_add_rcu(&pt->list, head); 599 spin_unlock(&ptype_lock); 600 } 601 EXPORT_SYMBOL(dev_add_pack); 602 603 /** 604 * __dev_remove_pack - remove packet handler 605 * @pt: packet type declaration 606 * 607 * Remove a protocol handler that was previously added to the kernel 608 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 609 * from the kernel lists and can be freed or reused once this function 610 * returns. 611 * 612 * The packet type might still be in use by receivers 613 * and must not be freed until after all the CPU's have gone 614 * through a quiescent state. 615 */ 616 void __dev_remove_pack(struct packet_type *pt) 617 { 618 struct list_head *head = ptype_head(pt); 619 struct packet_type *pt1; 620 621 spin_lock(&ptype_lock); 622 623 list_for_each_entry(pt1, head, list) { 624 if (pt == pt1) { 625 list_del_rcu(&pt->list); 626 goto out; 627 } 628 } 629 630 pr_warn("dev_remove_pack: %p not found\n", pt); 631 out: 632 spin_unlock(&ptype_lock); 633 } 634 EXPORT_SYMBOL(__dev_remove_pack); 635 636 /** 637 * dev_remove_pack - remove packet handler 638 * @pt: packet type declaration 639 * 640 * Remove a protocol handler that was previously added to the kernel 641 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 642 * from the kernel lists and can be freed or reused once this function 643 * returns. 644 * 645 * This call sleeps to guarantee that no CPU is looking at the packet 646 * type after return. 647 */ 648 void dev_remove_pack(struct packet_type *pt) 649 { 650 __dev_remove_pack(pt); 651 652 synchronize_net(); 653 } 654 EXPORT_SYMBOL(dev_remove_pack); 655 656 657 /******************************************************************************* 658 * 659 * Device Interface Subroutines 660 * 661 *******************************************************************************/ 662 663 /** 664 * dev_get_iflink - get 'iflink' value of a interface 665 * @dev: targeted interface 666 * 667 * Indicates the ifindex the interface is linked to. 668 * Physical interfaces have the same 'ifindex' and 'iflink' values. 669 */ 670 671 int dev_get_iflink(const struct net_device *dev) 672 { 673 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 674 return dev->netdev_ops->ndo_get_iflink(dev); 675 676 return READ_ONCE(dev->ifindex); 677 } 678 EXPORT_SYMBOL(dev_get_iflink); 679 680 /** 681 * dev_fill_metadata_dst - Retrieve tunnel egress information. 682 * @dev: targeted interface 683 * @skb: The packet. 684 * 685 * For better visibility of tunnel traffic OVS needs to retrieve 686 * egress tunnel information for a packet. Following API allows 687 * user to get this info. 688 */ 689 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) 690 { 691 struct ip_tunnel_info *info; 692 693 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) 694 return -EINVAL; 695 696 info = skb_tunnel_info_unclone(skb); 697 if (!info) 698 return -ENOMEM; 699 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) 700 return -EINVAL; 701 702 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); 703 } 704 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); 705 706 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack) 707 { 708 int k = stack->num_paths++; 709 710 if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX)) 711 return NULL; 712 713 return &stack->path[k]; 714 } 715 716 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr, 717 struct net_device_path_stack *stack) 718 { 719 const struct net_device *last_dev; 720 struct net_device_path_ctx ctx = { 721 .dev = dev, 722 }; 723 struct net_device_path *path; 724 int ret = 0; 725 726 memcpy(ctx.daddr, daddr, sizeof(ctx.daddr)); 727 stack->num_paths = 0; 728 while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) { 729 last_dev = ctx.dev; 730 path = dev_fwd_path(stack); 731 if (!path) 732 return -1; 733 734 memset(path, 0, sizeof(struct net_device_path)); 735 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path); 736 if (ret < 0) 737 return -1; 738 739 if (WARN_ON_ONCE(last_dev == ctx.dev)) 740 return -1; 741 } 742 743 if (!ctx.dev) 744 return ret; 745 746 path = dev_fwd_path(stack); 747 if (!path) 748 return -1; 749 path->type = DEV_PATH_ETHERNET; 750 path->dev = ctx.dev; 751 752 return ret; 753 } 754 EXPORT_SYMBOL_GPL(dev_fill_forward_path); 755 756 /** 757 * __dev_get_by_name - find a device by its name 758 * @net: the applicable net namespace 759 * @name: name to find 760 * 761 * Find an interface by name. Must be called under RTNL semaphore. 762 * If the name is found a pointer to the device is returned. 763 * If the name is not found then %NULL is returned. The 764 * reference counters are not incremented so the caller must be 765 * careful with locks. 766 */ 767 768 struct net_device *__dev_get_by_name(struct net *net, const char *name) 769 { 770 struct netdev_name_node *node_name; 771 772 node_name = netdev_name_node_lookup(net, name); 773 return node_name ? node_name->dev : NULL; 774 } 775 EXPORT_SYMBOL(__dev_get_by_name); 776 777 /** 778 * dev_get_by_name_rcu - find a device by its name 779 * @net: the applicable net namespace 780 * @name: name to find 781 * 782 * Find an interface by name. 783 * If the name is found a pointer to the device is returned. 784 * If the name is not found then %NULL is returned. 785 * The reference counters are not incremented so the caller must be 786 * careful with locks. The caller must hold RCU lock. 787 */ 788 789 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 790 { 791 struct netdev_name_node *node_name; 792 793 node_name = netdev_name_node_lookup_rcu(net, name); 794 return node_name ? node_name->dev : NULL; 795 } 796 EXPORT_SYMBOL(dev_get_by_name_rcu); 797 798 /* Deprecated for new users, call netdev_get_by_name() instead */ 799 struct net_device *dev_get_by_name(struct net *net, const char *name) 800 { 801 struct net_device *dev; 802 803 rcu_read_lock(); 804 dev = dev_get_by_name_rcu(net, name); 805 dev_hold(dev); 806 rcu_read_unlock(); 807 return dev; 808 } 809 EXPORT_SYMBOL(dev_get_by_name); 810 811 /** 812 * netdev_get_by_name() - find a device by its name 813 * @net: the applicable net namespace 814 * @name: name to find 815 * @tracker: tracking object for the acquired reference 816 * @gfp: allocation flags for the tracker 817 * 818 * Find an interface by name. This can be called from any 819 * context and does its own locking. The returned handle has 820 * the usage count incremented and the caller must use netdev_put() to 821 * release it when it is no longer needed. %NULL is returned if no 822 * matching device is found. 823 */ 824 struct net_device *netdev_get_by_name(struct net *net, const char *name, 825 netdevice_tracker *tracker, gfp_t gfp) 826 { 827 struct net_device *dev; 828 829 dev = dev_get_by_name(net, name); 830 if (dev) 831 netdev_tracker_alloc(dev, tracker, gfp); 832 return dev; 833 } 834 EXPORT_SYMBOL(netdev_get_by_name); 835 836 /** 837 * __dev_get_by_index - find a device by its ifindex 838 * @net: the applicable net namespace 839 * @ifindex: index of device 840 * 841 * Search for an interface by index. Returns %NULL if the device 842 * is not found or a pointer to the device. The device has not 843 * had its reference counter increased so the caller must be careful 844 * about locking. The caller must hold the RTNL semaphore. 845 */ 846 847 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 848 { 849 struct net_device *dev; 850 struct hlist_head *head = dev_index_hash(net, ifindex); 851 852 hlist_for_each_entry(dev, head, index_hlist) 853 if (dev->ifindex == ifindex) 854 return dev; 855 856 return NULL; 857 } 858 EXPORT_SYMBOL(__dev_get_by_index); 859 860 /** 861 * dev_get_by_index_rcu - find a device by its ifindex 862 * @net: the applicable net namespace 863 * @ifindex: index of device 864 * 865 * Search for an interface by index. Returns %NULL if the device 866 * is not found or a pointer to the device. The device has not 867 * had its reference counter increased so the caller must be careful 868 * about locking. The caller must hold RCU lock. 869 */ 870 871 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 872 { 873 struct net_device *dev; 874 struct hlist_head *head = dev_index_hash(net, ifindex); 875 876 hlist_for_each_entry_rcu(dev, head, index_hlist) 877 if (dev->ifindex == ifindex) 878 return dev; 879 880 return NULL; 881 } 882 EXPORT_SYMBOL(dev_get_by_index_rcu); 883 884 /* Deprecated for new users, call netdev_get_by_index() instead */ 885 struct net_device *dev_get_by_index(struct net *net, int ifindex) 886 { 887 struct net_device *dev; 888 889 rcu_read_lock(); 890 dev = dev_get_by_index_rcu(net, ifindex); 891 dev_hold(dev); 892 rcu_read_unlock(); 893 return dev; 894 } 895 EXPORT_SYMBOL(dev_get_by_index); 896 897 /** 898 * netdev_get_by_index() - find a device by its ifindex 899 * @net: the applicable net namespace 900 * @ifindex: index of device 901 * @tracker: tracking object for the acquired reference 902 * @gfp: allocation flags for the tracker 903 * 904 * Search for an interface by index. Returns NULL if the device 905 * is not found or a pointer to the device. The device returned has 906 * had a reference added and the pointer is safe until the user calls 907 * netdev_put() to indicate they have finished with it. 908 */ 909 struct net_device *netdev_get_by_index(struct net *net, int ifindex, 910 netdevice_tracker *tracker, gfp_t gfp) 911 { 912 struct net_device *dev; 913 914 dev = dev_get_by_index(net, ifindex); 915 if (dev) 916 netdev_tracker_alloc(dev, tracker, gfp); 917 return dev; 918 } 919 EXPORT_SYMBOL(netdev_get_by_index); 920 921 /** 922 * dev_get_by_napi_id - find a device by napi_id 923 * @napi_id: ID of the NAPI struct 924 * 925 * Search for an interface by NAPI ID. Returns %NULL if the device 926 * is not found or a pointer to the device. The device has not had 927 * its reference counter increased so the caller must be careful 928 * about locking. The caller must hold RCU lock. 929 */ 930 931 struct net_device *dev_get_by_napi_id(unsigned int napi_id) 932 { 933 struct napi_struct *napi; 934 935 WARN_ON_ONCE(!rcu_read_lock_held()); 936 937 if (napi_id < MIN_NAPI_ID) 938 return NULL; 939 940 napi = napi_by_id(napi_id); 941 942 return napi ? napi->dev : NULL; 943 } 944 EXPORT_SYMBOL(dev_get_by_napi_id); 945 946 static DEFINE_SEQLOCK(netdev_rename_lock); 947 948 void netdev_copy_name(struct net_device *dev, char *name) 949 { 950 unsigned int seq; 951 952 do { 953 seq = read_seqbegin(&netdev_rename_lock); 954 strscpy(name, dev->name, IFNAMSIZ); 955 } while (read_seqretry(&netdev_rename_lock, seq)); 956 } 957 958 /** 959 * netdev_get_name - get a netdevice name, knowing its ifindex. 960 * @net: network namespace 961 * @name: a pointer to the buffer where the name will be stored. 962 * @ifindex: the ifindex of the interface to get the name from. 963 */ 964 int netdev_get_name(struct net *net, char *name, int ifindex) 965 { 966 struct net_device *dev; 967 int ret; 968 969 rcu_read_lock(); 970 971 dev = dev_get_by_index_rcu(net, ifindex); 972 if (!dev) { 973 ret = -ENODEV; 974 goto out; 975 } 976 977 netdev_copy_name(dev, name); 978 979 ret = 0; 980 out: 981 rcu_read_unlock(); 982 return ret; 983 } 984 985 /** 986 * dev_getbyhwaddr_rcu - find a device by its hardware address 987 * @net: the applicable net namespace 988 * @type: media type of device 989 * @ha: hardware address 990 * 991 * Search for an interface by MAC address. Returns NULL if the device 992 * is not found or a pointer to the device. 993 * The caller must hold RCU or RTNL. 994 * The returned device has not had its ref count increased 995 * and the caller must therefore be careful about locking 996 * 997 */ 998 999 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 1000 const char *ha) 1001 { 1002 struct net_device *dev; 1003 1004 for_each_netdev_rcu(net, dev) 1005 if (dev->type == type && 1006 !memcmp(dev->dev_addr, ha, dev->addr_len)) 1007 return dev; 1008 1009 return NULL; 1010 } 1011 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 1012 1013 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 1014 { 1015 struct net_device *dev, *ret = NULL; 1016 1017 rcu_read_lock(); 1018 for_each_netdev_rcu(net, dev) 1019 if (dev->type == type) { 1020 dev_hold(dev); 1021 ret = dev; 1022 break; 1023 } 1024 rcu_read_unlock(); 1025 return ret; 1026 } 1027 EXPORT_SYMBOL(dev_getfirstbyhwtype); 1028 1029 /** 1030 * __dev_get_by_flags - find any device with given flags 1031 * @net: the applicable net namespace 1032 * @if_flags: IFF_* values 1033 * @mask: bitmask of bits in if_flags to check 1034 * 1035 * Search for any interface with the given flags. Returns NULL if a device 1036 * is not found or a pointer to the device. Must be called inside 1037 * rtnl_lock(), and result refcount is unchanged. 1038 */ 1039 1040 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags, 1041 unsigned short mask) 1042 { 1043 struct net_device *dev, *ret; 1044 1045 ASSERT_RTNL(); 1046 1047 ret = NULL; 1048 for_each_netdev(net, dev) { 1049 if (((dev->flags ^ if_flags) & mask) == 0) { 1050 ret = dev; 1051 break; 1052 } 1053 } 1054 return ret; 1055 } 1056 EXPORT_SYMBOL(__dev_get_by_flags); 1057 1058 /** 1059 * dev_valid_name - check if name is okay for network device 1060 * @name: name string 1061 * 1062 * Network device names need to be valid file names to 1063 * allow sysfs to work. We also disallow any kind of 1064 * whitespace. 1065 */ 1066 bool dev_valid_name(const char *name) 1067 { 1068 if (*name == '\0') 1069 return false; 1070 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ) 1071 return false; 1072 if (!strcmp(name, ".") || !strcmp(name, "..")) 1073 return false; 1074 1075 while (*name) { 1076 if (*name == '/' || *name == ':' || isspace(*name)) 1077 return false; 1078 name++; 1079 } 1080 return true; 1081 } 1082 EXPORT_SYMBOL(dev_valid_name); 1083 1084 /** 1085 * __dev_alloc_name - allocate a name for a device 1086 * @net: network namespace to allocate the device name in 1087 * @name: name format string 1088 * @res: result name string 1089 * 1090 * Passed a format string - eg "lt%d" it will try and find a suitable 1091 * id. It scans list of devices to build up a free map, then chooses 1092 * the first empty slot. The caller must hold the dev_base or rtnl lock 1093 * while allocating the name and adding the device in order to avoid 1094 * duplicates. 1095 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1096 * Returns the number of the unit assigned or a negative errno code. 1097 */ 1098 1099 static int __dev_alloc_name(struct net *net, const char *name, char *res) 1100 { 1101 int i = 0; 1102 const char *p; 1103 const int max_netdevices = 8*PAGE_SIZE; 1104 unsigned long *inuse; 1105 struct net_device *d; 1106 char buf[IFNAMSIZ]; 1107 1108 /* Verify the string as this thing may have come from the user. 1109 * There must be one "%d" and no other "%" characters. 1110 */ 1111 p = strchr(name, '%'); 1112 if (!p || p[1] != 'd' || strchr(p + 2, '%')) 1113 return -EINVAL; 1114 1115 /* Use one page as a bit array of possible slots */ 1116 inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC); 1117 if (!inuse) 1118 return -ENOMEM; 1119 1120 for_each_netdev(net, d) { 1121 struct netdev_name_node *name_node; 1122 1123 netdev_for_each_altname(d, name_node) { 1124 if (!sscanf(name_node->name, name, &i)) 1125 continue; 1126 if (i < 0 || i >= max_netdevices) 1127 continue; 1128 1129 /* avoid cases where sscanf is not exact inverse of printf */ 1130 snprintf(buf, IFNAMSIZ, name, i); 1131 if (!strncmp(buf, name_node->name, IFNAMSIZ)) 1132 __set_bit(i, inuse); 1133 } 1134 if (!sscanf(d->name, name, &i)) 1135 continue; 1136 if (i < 0 || i >= max_netdevices) 1137 continue; 1138 1139 /* avoid cases where sscanf is not exact inverse of printf */ 1140 snprintf(buf, IFNAMSIZ, name, i); 1141 if (!strncmp(buf, d->name, IFNAMSIZ)) 1142 __set_bit(i, inuse); 1143 } 1144 1145 i = find_first_zero_bit(inuse, max_netdevices); 1146 bitmap_free(inuse); 1147 if (i == max_netdevices) 1148 return -ENFILE; 1149 1150 /* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */ 1151 strscpy(buf, name, IFNAMSIZ); 1152 snprintf(res, IFNAMSIZ, buf, i); 1153 return i; 1154 } 1155 1156 /* Returns negative errno or allocated unit id (see __dev_alloc_name()) */ 1157 static int dev_prep_valid_name(struct net *net, struct net_device *dev, 1158 const char *want_name, char *out_name, 1159 int dup_errno) 1160 { 1161 if (!dev_valid_name(want_name)) 1162 return -EINVAL; 1163 1164 if (strchr(want_name, '%')) 1165 return __dev_alloc_name(net, want_name, out_name); 1166 1167 if (netdev_name_in_use(net, want_name)) 1168 return -dup_errno; 1169 if (out_name != want_name) 1170 strscpy(out_name, want_name, IFNAMSIZ); 1171 return 0; 1172 } 1173 1174 /** 1175 * dev_alloc_name - allocate a name for a device 1176 * @dev: device 1177 * @name: name format string 1178 * 1179 * Passed a format string - eg "lt%d" it will try and find a suitable 1180 * id. It scans list of devices to build up a free map, then chooses 1181 * the first empty slot. The caller must hold the dev_base or rtnl lock 1182 * while allocating the name and adding the device in order to avoid 1183 * duplicates. 1184 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1185 * Returns the number of the unit assigned or a negative errno code. 1186 */ 1187 1188 int dev_alloc_name(struct net_device *dev, const char *name) 1189 { 1190 return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE); 1191 } 1192 EXPORT_SYMBOL(dev_alloc_name); 1193 1194 static int dev_get_valid_name(struct net *net, struct net_device *dev, 1195 const char *name) 1196 { 1197 int ret; 1198 1199 ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST); 1200 return ret < 0 ? ret : 0; 1201 } 1202 1203 /** 1204 * dev_change_name - change name of a device 1205 * @dev: device 1206 * @newname: name (or format string) must be at least IFNAMSIZ 1207 * 1208 * Change name of a device, can pass format strings "eth%d". 1209 * for wildcarding. 1210 */ 1211 int dev_change_name(struct net_device *dev, const char *newname) 1212 { 1213 unsigned char old_assign_type; 1214 char oldname[IFNAMSIZ]; 1215 int err = 0; 1216 int ret; 1217 struct net *net; 1218 1219 ASSERT_RTNL(); 1220 BUG_ON(!dev_net(dev)); 1221 1222 net = dev_net(dev); 1223 1224 down_write(&devnet_rename_sem); 1225 1226 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1227 up_write(&devnet_rename_sem); 1228 return 0; 1229 } 1230 1231 memcpy(oldname, dev->name, IFNAMSIZ); 1232 1233 write_seqlock_bh(&netdev_rename_lock); 1234 err = dev_get_valid_name(net, dev, newname); 1235 write_sequnlock_bh(&netdev_rename_lock); 1236 1237 if (err < 0) { 1238 up_write(&devnet_rename_sem); 1239 return err; 1240 } 1241 1242 if (oldname[0] && !strchr(oldname, '%')) 1243 netdev_info(dev, "renamed from %s%s\n", oldname, 1244 dev->flags & IFF_UP ? " (while UP)" : ""); 1245 1246 old_assign_type = dev->name_assign_type; 1247 WRITE_ONCE(dev->name_assign_type, NET_NAME_RENAMED); 1248 1249 rollback: 1250 ret = device_rename(&dev->dev, dev->name); 1251 if (ret) { 1252 memcpy(dev->name, oldname, IFNAMSIZ); 1253 WRITE_ONCE(dev->name_assign_type, old_assign_type); 1254 up_write(&devnet_rename_sem); 1255 return ret; 1256 } 1257 1258 up_write(&devnet_rename_sem); 1259 1260 netdev_adjacent_rename_links(dev, oldname); 1261 1262 netdev_name_node_del(dev->name_node); 1263 1264 synchronize_net(); 1265 1266 netdev_name_node_add(net, dev->name_node); 1267 1268 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1269 ret = notifier_to_errno(ret); 1270 1271 if (ret) { 1272 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1273 if (err >= 0) { 1274 err = ret; 1275 down_write(&devnet_rename_sem); 1276 write_seqlock_bh(&netdev_rename_lock); 1277 memcpy(dev->name, oldname, IFNAMSIZ); 1278 write_sequnlock_bh(&netdev_rename_lock); 1279 memcpy(oldname, newname, IFNAMSIZ); 1280 WRITE_ONCE(dev->name_assign_type, old_assign_type); 1281 old_assign_type = NET_NAME_RENAMED; 1282 goto rollback; 1283 } else { 1284 netdev_err(dev, "name change rollback failed: %d\n", 1285 ret); 1286 } 1287 } 1288 1289 return err; 1290 } 1291 1292 /** 1293 * dev_set_alias - change ifalias of a device 1294 * @dev: device 1295 * @alias: name up to IFALIASZ 1296 * @len: limit of bytes to copy from info 1297 * 1298 * Set ifalias for a device, 1299 */ 1300 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1301 { 1302 struct dev_ifalias *new_alias = NULL; 1303 1304 if (len >= IFALIASZ) 1305 return -EINVAL; 1306 1307 if (len) { 1308 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL); 1309 if (!new_alias) 1310 return -ENOMEM; 1311 1312 memcpy(new_alias->ifalias, alias, len); 1313 new_alias->ifalias[len] = 0; 1314 } 1315 1316 mutex_lock(&ifalias_mutex); 1317 new_alias = rcu_replace_pointer(dev->ifalias, new_alias, 1318 mutex_is_locked(&ifalias_mutex)); 1319 mutex_unlock(&ifalias_mutex); 1320 1321 if (new_alias) 1322 kfree_rcu(new_alias, rcuhead); 1323 1324 return len; 1325 } 1326 EXPORT_SYMBOL(dev_set_alias); 1327 1328 /** 1329 * dev_get_alias - get ifalias of a device 1330 * @dev: device 1331 * @name: buffer to store name of ifalias 1332 * @len: size of buffer 1333 * 1334 * get ifalias for a device. Caller must make sure dev cannot go 1335 * away, e.g. rcu read lock or own a reference count to device. 1336 */ 1337 int dev_get_alias(const struct net_device *dev, char *name, size_t len) 1338 { 1339 const struct dev_ifalias *alias; 1340 int ret = 0; 1341 1342 rcu_read_lock(); 1343 alias = rcu_dereference(dev->ifalias); 1344 if (alias) 1345 ret = snprintf(name, len, "%s", alias->ifalias); 1346 rcu_read_unlock(); 1347 1348 return ret; 1349 } 1350 1351 /** 1352 * netdev_features_change - device changes features 1353 * @dev: device to cause notification 1354 * 1355 * Called to indicate a device has changed features. 1356 */ 1357 void netdev_features_change(struct net_device *dev) 1358 { 1359 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1360 } 1361 EXPORT_SYMBOL(netdev_features_change); 1362 1363 /** 1364 * netdev_state_change - device changes state 1365 * @dev: device to cause notification 1366 * 1367 * Called to indicate a device has changed state. This function calls 1368 * the notifier chains for netdev_chain and sends a NEWLINK message 1369 * to the routing socket. 1370 */ 1371 void netdev_state_change(struct net_device *dev) 1372 { 1373 if (dev->flags & IFF_UP) { 1374 struct netdev_notifier_change_info change_info = { 1375 .info.dev = dev, 1376 }; 1377 1378 call_netdevice_notifiers_info(NETDEV_CHANGE, 1379 &change_info.info); 1380 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL); 1381 } 1382 } 1383 EXPORT_SYMBOL(netdev_state_change); 1384 1385 /** 1386 * __netdev_notify_peers - notify network peers about existence of @dev, 1387 * to be called when rtnl lock is already held. 1388 * @dev: network device 1389 * 1390 * Generate traffic such that interested network peers are aware of 1391 * @dev, such as by generating a gratuitous ARP. This may be used when 1392 * a device wants to inform the rest of the network about some sort of 1393 * reconfiguration such as a failover event or virtual machine 1394 * migration. 1395 */ 1396 void __netdev_notify_peers(struct net_device *dev) 1397 { 1398 ASSERT_RTNL(); 1399 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1400 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev); 1401 } 1402 EXPORT_SYMBOL(__netdev_notify_peers); 1403 1404 /** 1405 * netdev_notify_peers - notify network peers about existence of @dev 1406 * @dev: network device 1407 * 1408 * Generate traffic such that interested network peers are aware of 1409 * @dev, such as by generating a gratuitous ARP. This may be used when 1410 * a device wants to inform the rest of the network about some sort of 1411 * reconfiguration such as a failover event or virtual machine 1412 * migration. 1413 */ 1414 void netdev_notify_peers(struct net_device *dev) 1415 { 1416 rtnl_lock(); 1417 __netdev_notify_peers(dev); 1418 rtnl_unlock(); 1419 } 1420 EXPORT_SYMBOL(netdev_notify_peers); 1421 1422 static int napi_threaded_poll(void *data); 1423 1424 static int napi_kthread_create(struct napi_struct *n) 1425 { 1426 int err = 0; 1427 1428 /* Create and wake up the kthread once to put it in 1429 * TASK_INTERRUPTIBLE mode to avoid the blocked task 1430 * warning and work with loadavg. 1431 */ 1432 n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d", 1433 n->dev->name, n->napi_id); 1434 if (IS_ERR(n->thread)) { 1435 err = PTR_ERR(n->thread); 1436 pr_err("kthread_run failed with err %d\n", err); 1437 n->thread = NULL; 1438 } 1439 1440 return err; 1441 } 1442 1443 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack) 1444 { 1445 const struct net_device_ops *ops = dev->netdev_ops; 1446 int ret; 1447 1448 ASSERT_RTNL(); 1449 dev_addr_check(dev); 1450 1451 if (!netif_device_present(dev)) { 1452 /* may be detached because parent is runtime-suspended */ 1453 if (dev->dev.parent) 1454 pm_runtime_resume(dev->dev.parent); 1455 if (!netif_device_present(dev)) 1456 return -ENODEV; 1457 } 1458 1459 /* Block netpoll from trying to do any rx path servicing. 1460 * If we don't do this there is a chance ndo_poll_controller 1461 * or ndo_poll may be running while we open the device 1462 */ 1463 netpoll_poll_disable(dev); 1464 1465 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack); 1466 ret = notifier_to_errno(ret); 1467 if (ret) 1468 return ret; 1469 1470 set_bit(__LINK_STATE_START, &dev->state); 1471 1472 if (ops->ndo_validate_addr) 1473 ret = ops->ndo_validate_addr(dev); 1474 1475 if (!ret && ops->ndo_open) 1476 ret = ops->ndo_open(dev); 1477 1478 netpoll_poll_enable(dev); 1479 1480 if (ret) 1481 clear_bit(__LINK_STATE_START, &dev->state); 1482 else { 1483 dev->flags |= IFF_UP; 1484 dev_set_rx_mode(dev); 1485 dev_activate(dev); 1486 add_device_randomness(dev->dev_addr, dev->addr_len); 1487 } 1488 1489 return ret; 1490 } 1491 1492 /** 1493 * dev_open - prepare an interface for use. 1494 * @dev: device to open 1495 * @extack: netlink extended ack 1496 * 1497 * Takes a device from down to up state. The device's private open 1498 * function is invoked and then the multicast lists are loaded. Finally 1499 * the device is moved into the up state and a %NETDEV_UP message is 1500 * sent to the netdev notifier chain. 1501 * 1502 * Calling this function on an active interface is a nop. On a failure 1503 * a negative errno code is returned. 1504 */ 1505 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack) 1506 { 1507 int ret; 1508 1509 if (dev->flags & IFF_UP) 1510 return 0; 1511 1512 ret = __dev_open(dev, extack); 1513 if (ret < 0) 1514 return ret; 1515 1516 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL); 1517 call_netdevice_notifiers(NETDEV_UP, dev); 1518 1519 return ret; 1520 } 1521 EXPORT_SYMBOL(dev_open); 1522 1523 static void __dev_close_many(struct list_head *head) 1524 { 1525 struct net_device *dev; 1526 1527 ASSERT_RTNL(); 1528 might_sleep(); 1529 1530 list_for_each_entry(dev, head, close_list) { 1531 /* Temporarily disable netpoll until the interface is down */ 1532 netpoll_poll_disable(dev); 1533 1534 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1535 1536 clear_bit(__LINK_STATE_START, &dev->state); 1537 1538 /* Synchronize to scheduled poll. We cannot touch poll list, it 1539 * can be even on different cpu. So just clear netif_running(). 1540 * 1541 * dev->stop() will invoke napi_disable() on all of it's 1542 * napi_struct instances on this device. 1543 */ 1544 smp_mb__after_atomic(); /* Commit netif_running(). */ 1545 } 1546 1547 dev_deactivate_many(head); 1548 1549 list_for_each_entry(dev, head, close_list) { 1550 const struct net_device_ops *ops = dev->netdev_ops; 1551 1552 /* 1553 * Call the device specific close. This cannot fail. 1554 * Only if device is UP 1555 * 1556 * We allow it to be called even after a DETACH hot-plug 1557 * event. 1558 */ 1559 if (ops->ndo_stop) 1560 ops->ndo_stop(dev); 1561 1562 dev->flags &= ~IFF_UP; 1563 netpoll_poll_enable(dev); 1564 } 1565 } 1566 1567 static void __dev_close(struct net_device *dev) 1568 { 1569 LIST_HEAD(single); 1570 1571 list_add(&dev->close_list, &single); 1572 __dev_close_many(&single); 1573 list_del(&single); 1574 } 1575 1576 void dev_close_many(struct list_head *head, bool unlink) 1577 { 1578 struct net_device *dev, *tmp; 1579 1580 /* Remove the devices that don't need to be closed */ 1581 list_for_each_entry_safe(dev, tmp, head, close_list) 1582 if (!(dev->flags & IFF_UP)) 1583 list_del_init(&dev->close_list); 1584 1585 __dev_close_many(head); 1586 1587 list_for_each_entry_safe(dev, tmp, head, close_list) { 1588 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL); 1589 call_netdevice_notifiers(NETDEV_DOWN, dev); 1590 if (unlink) 1591 list_del_init(&dev->close_list); 1592 } 1593 } 1594 EXPORT_SYMBOL(dev_close_many); 1595 1596 /** 1597 * dev_close - shutdown an interface. 1598 * @dev: device to shutdown 1599 * 1600 * This function moves an active device into down state. A 1601 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1602 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1603 * chain. 1604 */ 1605 void dev_close(struct net_device *dev) 1606 { 1607 if (dev->flags & IFF_UP) { 1608 LIST_HEAD(single); 1609 1610 list_add(&dev->close_list, &single); 1611 dev_close_many(&single, true); 1612 list_del(&single); 1613 } 1614 } 1615 EXPORT_SYMBOL(dev_close); 1616 1617 1618 /** 1619 * dev_disable_lro - disable Large Receive Offload on a device 1620 * @dev: device 1621 * 1622 * Disable Large Receive Offload (LRO) on a net device. Must be 1623 * called under RTNL. This is needed if received packets may be 1624 * forwarded to another interface. 1625 */ 1626 void dev_disable_lro(struct net_device *dev) 1627 { 1628 struct net_device *lower_dev; 1629 struct list_head *iter; 1630 1631 dev->wanted_features &= ~NETIF_F_LRO; 1632 netdev_update_features(dev); 1633 1634 if (unlikely(dev->features & NETIF_F_LRO)) 1635 netdev_WARN(dev, "failed to disable LRO!\n"); 1636 1637 netdev_for_each_lower_dev(dev, lower_dev, iter) 1638 dev_disable_lro(lower_dev); 1639 } 1640 EXPORT_SYMBOL(dev_disable_lro); 1641 1642 /** 1643 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device 1644 * @dev: device 1645 * 1646 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be 1647 * called under RTNL. This is needed if Generic XDP is installed on 1648 * the device. 1649 */ 1650 static void dev_disable_gro_hw(struct net_device *dev) 1651 { 1652 dev->wanted_features &= ~NETIF_F_GRO_HW; 1653 netdev_update_features(dev); 1654 1655 if (unlikely(dev->features & NETIF_F_GRO_HW)) 1656 netdev_WARN(dev, "failed to disable GRO_HW!\n"); 1657 } 1658 1659 const char *netdev_cmd_to_name(enum netdev_cmd cmd) 1660 { 1661 #define N(val) \ 1662 case NETDEV_##val: \ 1663 return "NETDEV_" __stringify(val); 1664 switch (cmd) { 1665 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER) 1666 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE) 1667 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE) 1668 N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) 1669 N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) 1670 N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE) 1671 N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN) 1672 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO) 1673 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO) 1674 N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE) 1675 N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA) 1676 N(XDP_FEAT_CHANGE) 1677 } 1678 #undef N 1679 return "UNKNOWN_NETDEV_EVENT"; 1680 } 1681 EXPORT_SYMBOL_GPL(netdev_cmd_to_name); 1682 1683 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1684 struct net_device *dev) 1685 { 1686 struct netdev_notifier_info info = { 1687 .dev = dev, 1688 }; 1689 1690 return nb->notifier_call(nb, val, &info); 1691 } 1692 1693 static int call_netdevice_register_notifiers(struct notifier_block *nb, 1694 struct net_device *dev) 1695 { 1696 int err; 1697 1698 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1699 err = notifier_to_errno(err); 1700 if (err) 1701 return err; 1702 1703 if (!(dev->flags & IFF_UP)) 1704 return 0; 1705 1706 call_netdevice_notifier(nb, NETDEV_UP, dev); 1707 return 0; 1708 } 1709 1710 static void call_netdevice_unregister_notifiers(struct notifier_block *nb, 1711 struct net_device *dev) 1712 { 1713 if (dev->flags & IFF_UP) { 1714 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1715 dev); 1716 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1717 } 1718 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1719 } 1720 1721 static int call_netdevice_register_net_notifiers(struct notifier_block *nb, 1722 struct net *net) 1723 { 1724 struct net_device *dev; 1725 int err; 1726 1727 for_each_netdev(net, dev) { 1728 err = call_netdevice_register_notifiers(nb, dev); 1729 if (err) 1730 goto rollback; 1731 } 1732 return 0; 1733 1734 rollback: 1735 for_each_netdev_continue_reverse(net, dev) 1736 call_netdevice_unregister_notifiers(nb, dev); 1737 return err; 1738 } 1739 1740 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb, 1741 struct net *net) 1742 { 1743 struct net_device *dev; 1744 1745 for_each_netdev(net, dev) 1746 call_netdevice_unregister_notifiers(nb, dev); 1747 } 1748 1749 static int dev_boot_phase = 1; 1750 1751 /** 1752 * register_netdevice_notifier - register a network notifier block 1753 * @nb: notifier 1754 * 1755 * Register a notifier to be called when network device events occur. 1756 * The notifier passed is linked into the kernel structures and must 1757 * not be reused until it has been unregistered. A negative errno code 1758 * is returned on a failure. 1759 * 1760 * When registered all registration and up events are replayed 1761 * to the new notifier to allow device to have a race free 1762 * view of the network device list. 1763 */ 1764 1765 int register_netdevice_notifier(struct notifier_block *nb) 1766 { 1767 struct net *net; 1768 int err; 1769 1770 /* Close race with setup_net() and cleanup_net() */ 1771 down_write(&pernet_ops_rwsem); 1772 rtnl_lock(); 1773 err = raw_notifier_chain_register(&netdev_chain, nb); 1774 if (err) 1775 goto unlock; 1776 if (dev_boot_phase) 1777 goto unlock; 1778 for_each_net(net) { 1779 err = call_netdevice_register_net_notifiers(nb, net); 1780 if (err) 1781 goto rollback; 1782 } 1783 1784 unlock: 1785 rtnl_unlock(); 1786 up_write(&pernet_ops_rwsem); 1787 return err; 1788 1789 rollback: 1790 for_each_net_continue_reverse(net) 1791 call_netdevice_unregister_net_notifiers(nb, net); 1792 1793 raw_notifier_chain_unregister(&netdev_chain, nb); 1794 goto unlock; 1795 } 1796 EXPORT_SYMBOL(register_netdevice_notifier); 1797 1798 /** 1799 * unregister_netdevice_notifier - unregister a network notifier block 1800 * @nb: notifier 1801 * 1802 * Unregister a notifier previously registered by 1803 * register_netdevice_notifier(). The notifier is unlinked into the 1804 * kernel structures and may then be reused. A negative errno code 1805 * is returned on a failure. 1806 * 1807 * After unregistering unregister and down device events are synthesized 1808 * for all devices on the device list to the removed notifier to remove 1809 * the need for special case cleanup code. 1810 */ 1811 1812 int unregister_netdevice_notifier(struct notifier_block *nb) 1813 { 1814 struct net *net; 1815 int err; 1816 1817 /* Close race with setup_net() and cleanup_net() */ 1818 down_write(&pernet_ops_rwsem); 1819 rtnl_lock(); 1820 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1821 if (err) 1822 goto unlock; 1823 1824 for_each_net(net) 1825 call_netdevice_unregister_net_notifiers(nb, net); 1826 1827 unlock: 1828 rtnl_unlock(); 1829 up_write(&pernet_ops_rwsem); 1830 return err; 1831 } 1832 EXPORT_SYMBOL(unregister_netdevice_notifier); 1833 1834 static int __register_netdevice_notifier_net(struct net *net, 1835 struct notifier_block *nb, 1836 bool ignore_call_fail) 1837 { 1838 int err; 1839 1840 err = raw_notifier_chain_register(&net->netdev_chain, nb); 1841 if (err) 1842 return err; 1843 if (dev_boot_phase) 1844 return 0; 1845 1846 err = call_netdevice_register_net_notifiers(nb, net); 1847 if (err && !ignore_call_fail) 1848 goto chain_unregister; 1849 1850 return 0; 1851 1852 chain_unregister: 1853 raw_notifier_chain_unregister(&net->netdev_chain, nb); 1854 return err; 1855 } 1856 1857 static int __unregister_netdevice_notifier_net(struct net *net, 1858 struct notifier_block *nb) 1859 { 1860 int err; 1861 1862 err = raw_notifier_chain_unregister(&net->netdev_chain, nb); 1863 if (err) 1864 return err; 1865 1866 call_netdevice_unregister_net_notifiers(nb, net); 1867 return 0; 1868 } 1869 1870 /** 1871 * register_netdevice_notifier_net - register a per-netns network notifier block 1872 * @net: network namespace 1873 * @nb: notifier 1874 * 1875 * Register a notifier to be called when network device events occur. 1876 * The notifier passed is linked into the kernel structures and must 1877 * not be reused until it has been unregistered. A negative errno code 1878 * is returned on a failure. 1879 * 1880 * When registered all registration and up events are replayed 1881 * to the new notifier to allow device to have a race free 1882 * view of the network device list. 1883 */ 1884 1885 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb) 1886 { 1887 int err; 1888 1889 rtnl_lock(); 1890 err = __register_netdevice_notifier_net(net, nb, false); 1891 rtnl_unlock(); 1892 return err; 1893 } 1894 EXPORT_SYMBOL(register_netdevice_notifier_net); 1895 1896 /** 1897 * unregister_netdevice_notifier_net - unregister a per-netns 1898 * network notifier block 1899 * @net: network namespace 1900 * @nb: notifier 1901 * 1902 * Unregister a notifier previously registered by 1903 * register_netdevice_notifier_net(). The notifier is unlinked from the 1904 * kernel structures and may then be reused. A negative errno code 1905 * is returned on a failure. 1906 * 1907 * After unregistering unregister and down device events are synthesized 1908 * for all devices on the device list to the removed notifier to remove 1909 * the need for special case cleanup code. 1910 */ 1911 1912 int unregister_netdevice_notifier_net(struct net *net, 1913 struct notifier_block *nb) 1914 { 1915 int err; 1916 1917 rtnl_lock(); 1918 err = __unregister_netdevice_notifier_net(net, nb); 1919 rtnl_unlock(); 1920 return err; 1921 } 1922 EXPORT_SYMBOL(unregister_netdevice_notifier_net); 1923 1924 static void __move_netdevice_notifier_net(struct net *src_net, 1925 struct net *dst_net, 1926 struct notifier_block *nb) 1927 { 1928 __unregister_netdevice_notifier_net(src_net, nb); 1929 __register_netdevice_notifier_net(dst_net, nb, true); 1930 } 1931 1932 int register_netdevice_notifier_dev_net(struct net_device *dev, 1933 struct notifier_block *nb, 1934 struct netdev_net_notifier *nn) 1935 { 1936 int err; 1937 1938 rtnl_lock(); 1939 err = __register_netdevice_notifier_net(dev_net(dev), nb, false); 1940 if (!err) { 1941 nn->nb = nb; 1942 list_add(&nn->list, &dev->net_notifier_list); 1943 } 1944 rtnl_unlock(); 1945 return err; 1946 } 1947 EXPORT_SYMBOL(register_netdevice_notifier_dev_net); 1948 1949 int unregister_netdevice_notifier_dev_net(struct net_device *dev, 1950 struct notifier_block *nb, 1951 struct netdev_net_notifier *nn) 1952 { 1953 int err; 1954 1955 rtnl_lock(); 1956 list_del(&nn->list); 1957 err = __unregister_netdevice_notifier_net(dev_net(dev), nb); 1958 rtnl_unlock(); 1959 return err; 1960 } 1961 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net); 1962 1963 static void move_netdevice_notifiers_dev_net(struct net_device *dev, 1964 struct net *net) 1965 { 1966 struct netdev_net_notifier *nn; 1967 1968 list_for_each_entry(nn, &dev->net_notifier_list, list) 1969 __move_netdevice_notifier_net(dev_net(dev), net, nn->nb); 1970 } 1971 1972 /** 1973 * call_netdevice_notifiers_info - call all network notifier blocks 1974 * @val: value passed unmodified to notifier function 1975 * @info: notifier information data 1976 * 1977 * Call all network notifier blocks. Parameters and return value 1978 * are as for raw_notifier_call_chain(). 1979 */ 1980 1981 int call_netdevice_notifiers_info(unsigned long val, 1982 struct netdev_notifier_info *info) 1983 { 1984 struct net *net = dev_net(info->dev); 1985 int ret; 1986 1987 ASSERT_RTNL(); 1988 1989 /* Run per-netns notifier block chain first, then run the global one. 1990 * Hopefully, one day, the global one is going to be removed after 1991 * all notifier block registrators get converted to be per-netns. 1992 */ 1993 ret = raw_notifier_call_chain(&net->netdev_chain, val, info); 1994 if (ret & NOTIFY_STOP_MASK) 1995 return ret; 1996 return raw_notifier_call_chain(&netdev_chain, val, info); 1997 } 1998 1999 /** 2000 * call_netdevice_notifiers_info_robust - call per-netns notifier blocks 2001 * for and rollback on error 2002 * @val_up: value passed unmodified to notifier function 2003 * @val_down: value passed unmodified to the notifier function when 2004 * recovering from an error on @val_up 2005 * @info: notifier information data 2006 * 2007 * Call all per-netns network notifier blocks, but not notifier blocks on 2008 * the global notifier chain. Parameters and return value are as for 2009 * raw_notifier_call_chain_robust(). 2010 */ 2011 2012 static int 2013 call_netdevice_notifiers_info_robust(unsigned long val_up, 2014 unsigned long val_down, 2015 struct netdev_notifier_info *info) 2016 { 2017 struct net *net = dev_net(info->dev); 2018 2019 ASSERT_RTNL(); 2020 2021 return raw_notifier_call_chain_robust(&net->netdev_chain, 2022 val_up, val_down, info); 2023 } 2024 2025 static int call_netdevice_notifiers_extack(unsigned long val, 2026 struct net_device *dev, 2027 struct netlink_ext_ack *extack) 2028 { 2029 struct netdev_notifier_info info = { 2030 .dev = dev, 2031 .extack = extack, 2032 }; 2033 2034 return call_netdevice_notifiers_info(val, &info); 2035 } 2036 2037 /** 2038 * call_netdevice_notifiers - call all network notifier blocks 2039 * @val: value passed unmodified to notifier function 2040 * @dev: net_device pointer passed unmodified to notifier function 2041 * 2042 * Call all network notifier blocks. Parameters and return value 2043 * are as for raw_notifier_call_chain(). 2044 */ 2045 2046 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 2047 { 2048 return call_netdevice_notifiers_extack(val, dev, NULL); 2049 } 2050 EXPORT_SYMBOL(call_netdevice_notifiers); 2051 2052 /** 2053 * call_netdevice_notifiers_mtu - call all network notifier blocks 2054 * @val: value passed unmodified to notifier function 2055 * @dev: net_device pointer passed unmodified to notifier function 2056 * @arg: additional u32 argument passed to the notifier function 2057 * 2058 * Call all network notifier blocks. Parameters and return value 2059 * are as for raw_notifier_call_chain(). 2060 */ 2061 static int call_netdevice_notifiers_mtu(unsigned long val, 2062 struct net_device *dev, u32 arg) 2063 { 2064 struct netdev_notifier_info_ext info = { 2065 .info.dev = dev, 2066 .ext.mtu = arg, 2067 }; 2068 2069 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0); 2070 2071 return call_netdevice_notifiers_info(val, &info.info); 2072 } 2073 2074 #ifdef CONFIG_NET_INGRESS 2075 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key); 2076 2077 void net_inc_ingress_queue(void) 2078 { 2079 static_branch_inc(&ingress_needed_key); 2080 } 2081 EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 2082 2083 void net_dec_ingress_queue(void) 2084 { 2085 static_branch_dec(&ingress_needed_key); 2086 } 2087 EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 2088 #endif 2089 2090 #ifdef CONFIG_NET_EGRESS 2091 static DEFINE_STATIC_KEY_FALSE(egress_needed_key); 2092 2093 void net_inc_egress_queue(void) 2094 { 2095 static_branch_inc(&egress_needed_key); 2096 } 2097 EXPORT_SYMBOL_GPL(net_inc_egress_queue); 2098 2099 void net_dec_egress_queue(void) 2100 { 2101 static_branch_dec(&egress_needed_key); 2102 } 2103 EXPORT_SYMBOL_GPL(net_dec_egress_queue); 2104 #endif 2105 2106 #ifdef CONFIG_NET_CLS_ACT 2107 DEFINE_STATIC_KEY_FALSE(tcf_bypass_check_needed_key); 2108 EXPORT_SYMBOL(tcf_bypass_check_needed_key); 2109 #endif 2110 2111 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key); 2112 EXPORT_SYMBOL(netstamp_needed_key); 2113 #ifdef CONFIG_JUMP_LABEL 2114 static atomic_t netstamp_needed_deferred; 2115 static atomic_t netstamp_wanted; 2116 static void netstamp_clear(struct work_struct *work) 2117 { 2118 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 2119 int wanted; 2120 2121 wanted = atomic_add_return(deferred, &netstamp_wanted); 2122 if (wanted > 0) 2123 static_branch_enable(&netstamp_needed_key); 2124 else 2125 static_branch_disable(&netstamp_needed_key); 2126 } 2127 static DECLARE_WORK(netstamp_work, netstamp_clear); 2128 #endif 2129 2130 void net_enable_timestamp(void) 2131 { 2132 #ifdef CONFIG_JUMP_LABEL 2133 int wanted = atomic_read(&netstamp_wanted); 2134 2135 while (wanted > 0) { 2136 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1)) 2137 return; 2138 } 2139 atomic_inc(&netstamp_needed_deferred); 2140 schedule_work(&netstamp_work); 2141 #else 2142 static_branch_inc(&netstamp_needed_key); 2143 #endif 2144 } 2145 EXPORT_SYMBOL(net_enable_timestamp); 2146 2147 void net_disable_timestamp(void) 2148 { 2149 #ifdef CONFIG_JUMP_LABEL 2150 int wanted = atomic_read(&netstamp_wanted); 2151 2152 while (wanted > 1) { 2153 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1)) 2154 return; 2155 } 2156 atomic_dec(&netstamp_needed_deferred); 2157 schedule_work(&netstamp_work); 2158 #else 2159 static_branch_dec(&netstamp_needed_key); 2160 #endif 2161 } 2162 EXPORT_SYMBOL(net_disable_timestamp); 2163 2164 static inline void net_timestamp_set(struct sk_buff *skb) 2165 { 2166 skb->tstamp = 0; 2167 skb->tstamp_type = SKB_CLOCK_REALTIME; 2168 if (static_branch_unlikely(&netstamp_needed_key)) 2169 skb->tstamp = ktime_get_real(); 2170 } 2171 2172 #define net_timestamp_check(COND, SKB) \ 2173 if (static_branch_unlikely(&netstamp_needed_key)) { \ 2174 if ((COND) && !(SKB)->tstamp) \ 2175 (SKB)->tstamp = ktime_get_real(); \ 2176 } \ 2177 2178 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb) 2179 { 2180 return __is_skb_forwardable(dev, skb, true); 2181 } 2182 EXPORT_SYMBOL_GPL(is_skb_forwardable); 2183 2184 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb, 2185 bool check_mtu) 2186 { 2187 int ret = ____dev_forward_skb(dev, skb, check_mtu); 2188 2189 if (likely(!ret)) { 2190 skb->protocol = eth_type_trans(skb, dev); 2191 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 2192 } 2193 2194 return ret; 2195 } 2196 2197 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 2198 { 2199 return __dev_forward_skb2(dev, skb, true); 2200 } 2201 EXPORT_SYMBOL_GPL(__dev_forward_skb); 2202 2203 /** 2204 * dev_forward_skb - loopback an skb to another netif 2205 * 2206 * @dev: destination network device 2207 * @skb: buffer to forward 2208 * 2209 * return values: 2210 * NET_RX_SUCCESS (no congestion) 2211 * NET_RX_DROP (packet was dropped, but freed) 2212 * 2213 * dev_forward_skb can be used for injecting an skb from the 2214 * start_xmit function of one device into the receive queue 2215 * of another device. 2216 * 2217 * The receiving device may be in another namespace, so 2218 * we have to clear all information in the skb that could 2219 * impact namespace isolation. 2220 */ 2221 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 2222 { 2223 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 2224 } 2225 EXPORT_SYMBOL_GPL(dev_forward_skb); 2226 2227 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb) 2228 { 2229 return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb); 2230 } 2231 2232 static inline int deliver_skb(struct sk_buff *skb, 2233 struct packet_type *pt_prev, 2234 struct net_device *orig_dev) 2235 { 2236 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 2237 return -ENOMEM; 2238 refcount_inc(&skb->users); 2239 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2240 } 2241 2242 static inline void deliver_ptype_list_skb(struct sk_buff *skb, 2243 struct packet_type **pt, 2244 struct net_device *orig_dev, 2245 __be16 type, 2246 struct list_head *ptype_list) 2247 { 2248 struct packet_type *ptype, *pt_prev = *pt; 2249 2250 list_for_each_entry_rcu(ptype, ptype_list, list) { 2251 if (ptype->type != type) 2252 continue; 2253 if (pt_prev) 2254 deliver_skb(skb, pt_prev, orig_dev); 2255 pt_prev = ptype; 2256 } 2257 *pt = pt_prev; 2258 } 2259 2260 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 2261 { 2262 if (!ptype->af_packet_priv || !skb->sk) 2263 return false; 2264 2265 if (ptype->id_match) 2266 return ptype->id_match(ptype, skb->sk); 2267 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 2268 return true; 2269 2270 return false; 2271 } 2272 2273 /** 2274 * dev_nit_active - return true if any network interface taps are in use 2275 * 2276 * @dev: network device to check for the presence of taps 2277 */ 2278 bool dev_nit_active(struct net_device *dev) 2279 { 2280 return !list_empty(&net_hotdata.ptype_all) || 2281 !list_empty(&dev->ptype_all); 2282 } 2283 EXPORT_SYMBOL_GPL(dev_nit_active); 2284 2285 /* 2286 * Support routine. Sends outgoing frames to any network 2287 * taps currently in use. 2288 */ 2289 2290 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 2291 { 2292 struct list_head *ptype_list = &net_hotdata.ptype_all; 2293 struct packet_type *ptype, *pt_prev = NULL; 2294 struct sk_buff *skb2 = NULL; 2295 2296 rcu_read_lock(); 2297 again: 2298 list_for_each_entry_rcu(ptype, ptype_list, list) { 2299 if (READ_ONCE(ptype->ignore_outgoing)) 2300 continue; 2301 2302 /* Never send packets back to the socket 2303 * they originated from - MvS (miquels@drinkel.ow.org) 2304 */ 2305 if (skb_loop_sk(ptype, skb)) 2306 continue; 2307 2308 if (pt_prev) { 2309 deliver_skb(skb2, pt_prev, skb->dev); 2310 pt_prev = ptype; 2311 continue; 2312 } 2313 2314 /* need to clone skb, done only once */ 2315 skb2 = skb_clone(skb, GFP_ATOMIC); 2316 if (!skb2) 2317 goto out_unlock; 2318 2319 net_timestamp_set(skb2); 2320 2321 /* skb->nh should be correctly 2322 * set by sender, so that the second statement is 2323 * just protection against buggy protocols. 2324 */ 2325 skb_reset_mac_header(skb2); 2326 2327 if (skb_network_header(skb2) < skb2->data || 2328 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 2329 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 2330 ntohs(skb2->protocol), 2331 dev->name); 2332 skb_reset_network_header(skb2); 2333 } 2334 2335 skb2->transport_header = skb2->network_header; 2336 skb2->pkt_type = PACKET_OUTGOING; 2337 pt_prev = ptype; 2338 } 2339 2340 if (ptype_list == &net_hotdata.ptype_all) { 2341 ptype_list = &dev->ptype_all; 2342 goto again; 2343 } 2344 out_unlock: 2345 if (pt_prev) { 2346 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC)) 2347 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 2348 else 2349 kfree_skb(skb2); 2350 } 2351 rcu_read_unlock(); 2352 } 2353 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit); 2354 2355 /** 2356 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 2357 * @dev: Network device 2358 * @txq: number of queues available 2359 * 2360 * If real_num_tx_queues is changed the tc mappings may no longer be 2361 * valid. To resolve this verify the tc mapping remains valid and if 2362 * not NULL the mapping. With no priorities mapping to this 2363 * offset/count pair it will no longer be used. In the worst case TC0 2364 * is invalid nothing can be done so disable priority mappings. If is 2365 * expected that drivers will fix this mapping if they can before 2366 * calling netif_set_real_num_tx_queues. 2367 */ 2368 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 2369 { 2370 int i; 2371 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2372 2373 /* If TC0 is invalidated disable TC mapping */ 2374 if (tc->offset + tc->count > txq) { 2375 netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 2376 dev->num_tc = 0; 2377 return; 2378 } 2379 2380 /* Invalidated prio to tc mappings set to TC0 */ 2381 for (i = 1; i < TC_BITMASK + 1; i++) { 2382 int q = netdev_get_prio_tc_map(dev, i); 2383 2384 tc = &dev->tc_to_txq[q]; 2385 if (tc->offset + tc->count > txq) { 2386 netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 2387 i, q); 2388 netdev_set_prio_tc_map(dev, i, 0); 2389 } 2390 } 2391 } 2392 2393 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq) 2394 { 2395 if (dev->num_tc) { 2396 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2397 int i; 2398 2399 /* walk through the TCs and see if it falls into any of them */ 2400 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) { 2401 if ((txq - tc->offset) < tc->count) 2402 return i; 2403 } 2404 2405 /* didn't find it, just return -1 to indicate no match */ 2406 return -1; 2407 } 2408 2409 return 0; 2410 } 2411 EXPORT_SYMBOL(netdev_txq_to_tc); 2412 2413 #ifdef CONFIG_XPS 2414 static struct static_key xps_needed __read_mostly; 2415 static struct static_key xps_rxqs_needed __read_mostly; 2416 static DEFINE_MUTEX(xps_map_mutex); 2417 #define xmap_dereference(P) \ 2418 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 2419 2420 static bool remove_xps_queue(struct xps_dev_maps *dev_maps, 2421 struct xps_dev_maps *old_maps, int tci, u16 index) 2422 { 2423 struct xps_map *map = NULL; 2424 int pos; 2425 2426 map = xmap_dereference(dev_maps->attr_map[tci]); 2427 if (!map) 2428 return false; 2429 2430 for (pos = map->len; pos--;) { 2431 if (map->queues[pos] != index) 2432 continue; 2433 2434 if (map->len > 1) { 2435 map->queues[pos] = map->queues[--map->len]; 2436 break; 2437 } 2438 2439 if (old_maps) 2440 RCU_INIT_POINTER(old_maps->attr_map[tci], NULL); 2441 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); 2442 kfree_rcu(map, rcu); 2443 return false; 2444 } 2445 2446 return true; 2447 } 2448 2449 static bool remove_xps_queue_cpu(struct net_device *dev, 2450 struct xps_dev_maps *dev_maps, 2451 int cpu, u16 offset, u16 count) 2452 { 2453 int num_tc = dev_maps->num_tc; 2454 bool active = false; 2455 int tci; 2456 2457 for (tci = cpu * num_tc; num_tc--; tci++) { 2458 int i, j; 2459 2460 for (i = count, j = offset; i--; j++) { 2461 if (!remove_xps_queue(dev_maps, NULL, tci, j)) 2462 break; 2463 } 2464 2465 active |= i < 0; 2466 } 2467 2468 return active; 2469 } 2470 2471 static void reset_xps_maps(struct net_device *dev, 2472 struct xps_dev_maps *dev_maps, 2473 enum xps_map_type type) 2474 { 2475 static_key_slow_dec_cpuslocked(&xps_needed); 2476 if (type == XPS_RXQS) 2477 static_key_slow_dec_cpuslocked(&xps_rxqs_needed); 2478 2479 RCU_INIT_POINTER(dev->xps_maps[type], NULL); 2480 2481 kfree_rcu(dev_maps, rcu); 2482 } 2483 2484 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type, 2485 u16 offset, u16 count) 2486 { 2487 struct xps_dev_maps *dev_maps; 2488 bool active = false; 2489 int i, j; 2490 2491 dev_maps = xmap_dereference(dev->xps_maps[type]); 2492 if (!dev_maps) 2493 return; 2494 2495 for (j = 0; j < dev_maps->nr_ids; j++) 2496 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count); 2497 if (!active) 2498 reset_xps_maps(dev, dev_maps, type); 2499 2500 if (type == XPS_CPUS) { 2501 for (i = offset + (count - 1); count--; i--) 2502 netdev_queue_numa_node_write( 2503 netdev_get_tx_queue(dev, i), NUMA_NO_NODE); 2504 } 2505 } 2506 2507 static void netif_reset_xps_queues(struct net_device *dev, u16 offset, 2508 u16 count) 2509 { 2510 if (!static_key_false(&xps_needed)) 2511 return; 2512 2513 cpus_read_lock(); 2514 mutex_lock(&xps_map_mutex); 2515 2516 if (static_key_false(&xps_rxqs_needed)) 2517 clean_xps_maps(dev, XPS_RXQS, offset, count); 2518 2519 clean_xps_maps(dev, XPS_CPUS, offset, count); 2520 2521 mutex_unlock(&xps_map_mutex); 2522 cpus_read_unlock(); 2523 } 2524 2525 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 2526 { 2527 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index); 2528 } 2529 2530 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index, 2531 u16 index, bool is_rxqs_map) 2532 { 2533 struct xps_map *new_map; 2534 int alloc_len = XPS_MIN_MAP_ALLOC; 2535 int i, pos; 2536 2537 for (pos = 0; map && pos < map->len; pos++) { 2538 if (map->queues[pos] != index) 2539 continue; 2540 return map; 2541 } 2542 2543 /* Need to add tx-queue to this CPU's/rx-queue's existing map */ 2544 if (map) { 2545 if (pos < map->alloc_len) 2546 return map; 2547 2548 alloc_len = map->alloc_len * 2; 2549 } 2550 2551 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's 2552 * map 2553 */ 2554 if (is_rxqs_map) 2555 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL); 2556 else 2557 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 2558 cpu_to_node(attr_index)); 2559 if (!new_map) 2560 return NULL; 2561 2562 for (i = 0; i < pos; i++) 2563 new_map->queues[i] = map->queues[i]; 2564 new_map->alloc_len = alloc_len; 2565 new_map->len = pos; 2566 2567 return new_map; 2568 } 2569 2570 /* Copy xps maps at a given index */ 2571 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps, 2572 struct xps_dev_maps *new_dev_maps, int index, 2573 int tc, bool skip_tc) 2574 { 2575 int i, tci = index * dev_maps->num_tc; 2576 struct xps_map *map; 2577 2578 /* copy maps belonging to foreign traffic classes */ 2579 for (i = 0; i < dev_maps->num_tc; i++, tci++) { 2580 if (i == tc && skip_tc) 2581 continue; 2582 2583 /* fill in the new device map from the old device map */ 2584 map = xmap_dereference(dev_maps->attr_map[tci]); 2585 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2586 } 2587 } 2588 2589 /* Must be called under cpus_read_lock */ 2590 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 2591 u16 index, enum xps_map_type type) 2592 { 2593 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL; 2594 const unsigned long *online_mask = NULL; 2595 bool active = false, copy = false; 2596 int i, j, tci, numa_node_id = -2; 2597 int maps_sz, num_tc = 1, tc = 0; 2598 struct xps_map *map, *new_map; 2599 unsigned int nr_ids; 2600 2601 WARN_ON_ONCE(index >= dev->num_tx_queues); 2602 2603 if (dev->num_tc) { 2604 /* Do not allow XPS on subordinate device directly */ 2605 num_tc = dev->num_tc; 2606 if (num_tc < 0) 2607 return -EINVAL; 2608 2609 /* If queue belongs to subordinate dev use its map */ 2610 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev; 2611 2612 tc = netdev_txq_to_tc(dev, index); 2613 if (tc < 0) 2614 return -EINVAL; 2615 } 2616 2617 mutex_lock(&xps_map_mutex); 2618 2619 dev_maps = xmap_dereference(dev->xps_maps[type]); 2620 if (type == XPS_RXQS) { 2621 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues); 2622 nr_ids = dev->num_rx_queues; 2623 } else { 2624 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc); 2625 if (num_possible_cpus() > 1) 2626 online_mask = cpumask_bits(cpu_online_mask); 2627 nr_ids = nr_cpu_ids; 2628 } 2629 2630 if (maps_sz < L1_CACHE_BYTES) 2631 maps_sz = L1_CACHE_BYTES; 2632 2633 /* The old dev_maps could be larger or smaller than the one we're 2634 * setting up now, as dev->num_tc or nr_ids could have been updated in 2635 * between. We could try to be smart, but let's be safe instead and only 2636 * copy foreign traffic classes if the two map sizes match. 2637 */ 2638 if (dev_maps && 2639 dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids) 2640 copy = true; 2641 2642 /* allocate memory for queue storage */ 2643 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids), 2644 j < nr_ids;) { 2645 if (!new_dev_maps) { 2646 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2647 if (!new_dev_maps) { 2648 mutex_unlock(&xps_map_mutex); 2649 return -ENOMEM; 2650 } 2651 2652 new_dev_maps->nr_ids = nr_ids; 2653 new_dev_maps->num_tc = num_tc; 2654 } 2655 2656 tci = j * num_tc + tc; 2657 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL; 2658 2659 map = expand_xps_map(map, j, index, type == XPS_RXQS); 2660 if (!map) 2661 goto error; 2662 2663 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2664 } 2665 2666 if (!new_dev_maps) 2667 goto out_no_new_maps; 2668 2669 if (!dev_maps) { 2670 /* Increment static keys at most once per type */ 2671 static_key_slow_inc_cpuslocked(&xps_needed); 2672 if (type == XPS_RXQS) 2673 static_key_slow_inc_cpuslocked(&xps_rxqs_needed); 2674 } 2675 2676 for (j = 0; j < nr_ids; j++) { 2677 bool skip_tc = false; 2678 2679 tci = j * num_tc + tc; 2680 if (netif_attr_test_mask(j, mask, nr_ids) && 2681 netif_attr_test_online(j, online_mask, nr_ids)) { 2682 /* add tx-queue to CPU/rx-queue maps */ 2683 int pos = 0; 2684 2685 skip_tc = true; 2686 2687 map = xmap_dereference(new_dev_maps->attr_map[tci]); 2688 while ((pos < map->len) && (map->queues[pos] != index)) 2689 pos++; 2690 2691 if (pos == map->len) 2692 map->queues[map->len++] = index; 2693 #ifdef CONFIG_NUMA 2694 if (type == XPS_CPUS) { 2695 if (numa_node_id == -2) 2696 numa_node_id = cpu_to_node(j); 2697 else if (numa_node_id != cpu_to_node(j)) 2698 numa_node_id = -1; 2699 } 2700 #endif 2701 } 2702 2703 if (copy) 2704 xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc, 2705 skip_tc); 2706 } 2707 2708 rcu_assign_pointer(dev->xps_maps[type], new_dev_maps); 2709 2710 /* Cleanup old maps */ 2711 if (!dev_maps) 2712 goto out_no_old_maps; 2713 2714 for (j = 0; j < dev_maps->nr_ids; j++) { 2715 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) { 2716 map = xmap_dereference(dev_maps->attr_map[tci]); 2717 if (!map) 2718 continue; 2719 2720 if (copy) { 2721 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2722 if (map == new_map) 2723 continue; 2724 } 2725 2726 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); 2727 kfree_rcu(map, rcu); 2728 } 2729 } 2730 2731 old_dev_maps = dev_maps; 2732 2733 out_no_old_maps: 2734 dev_maps = new_dev_maps; 2735 active = true; 2736 2737 out_no_new_maps: 2738 if (type == XPS_CPUS) 2739 /* update Tx queue numa node */ 2740 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2741 (numa_node_id >= 0) ? 2742 numa_node_id : NUMA_NO_NODE); 2743 2744 if (!dev_maps) 2745 goto out_no_maps; 2746 2747 /* removes tx-queue from unused CPUs/rx-queues */ 2748 for (j = 0; j < dev_maps->nr_ids; j++) { 2749 tci = j * dev_maps->num_tc; 2750 2751 for (i = 0; i < dev_maps->num_tc; i++, tci++) { 2752 if (i == tc && 2753 netif_attr_test_mask(j, mask, dev_maps->nr_ids) && 2754 netif_attr_test_online(j, online_mask, dev_maps->nr_ids)) 2755 continue; 2756 2757 active |= remove_xps_queue(dev_maps, 2758 copy ? old_dev_maps : NULL, 2759 tci, index); 2760 } 2761 } 2762 2763 if (old_dev_maps) 2764 kfree_rcu(old_dev_maps, rcu); 2765 2766 /* free map if not active */ 2767 if (!active) 2768 reset_xps_maps(dev, dev_maps, type); 2769 2770 out_no_maps: 2771 mutex_unlock(&xps_map_mutex); 2772 2773 return 0; 2774 error: 2775 /* remove any maps that we added */ 2776 for (j = 0; j < nr_ids; j++) { 2777 for (i = num_tc, tci = j * num_tc; i--; tci++) { 2778 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2779 map = copy ? 2780 xmap_dereference(dev_maps->attr_map[tci]) : 2781 NULL; 2782 if (new_map && new_map != map) 2783 kfree(new_map); 2784 } 2785 } 2786 2787 mutex_unlock(&xps_map_mutex); 2788 2789 kfree(new_dev_maps); 2790 return -ENOMEM; 2791 } 2792 EXPORT_SYMBOL_GPL(__netif_set_xps_queue); 2793 2794 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 2795 u16 index) 2796 { 2797 int ret; 2798 2799 cpus_read_lock(); 2800 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS); 2801 cpus_read_unlock(); 2802 2803 return ret; 2804 } 2805 EXPORT_SYMBOL(netif_set_xps_queue); 2806 2807 #endif 2808 static void netdev_unbind_all_sb_channels(struct net_device *dev) 2809 { 2810 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 2811 2812 /* Unbind any subordinate channels */ 2813 while (txq-- != &dev->_tx[0]) { 2814 if (txq->sb_dev) 2815 netdev_unbind_sb_channel(dev, txq->sb_dev); 2816 } 2817 } 2818 2819 void netdev_reset_tc(struct net_device *dev) 2820 { 2821 #ifdef CONFIG_XPS 2822 netif_reset_xps_queues_gt(dev, 0); 2823 #endif 2824 netdev_unbind_all_sb_channels(dev); 2825 2826 /* Reset TC configuration of device */ 2827 dev->num_tc = 0; 2828 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 2829 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 2830 } 2831 EXPORT_SYMBOL(netdev_reset_tc); 2832 2833 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 2834 { 2835 if (tc >= dev->num_tc) 2836 return -EINVAL; 2837 2838 #ifdef CONFIG_XPS 2839 netif_reset_xps_queues(dev, offset, count); 2840 #endif 2841 dev->tc_to_txq[tc].count = count; 2842 dev->tc_to_txq[tc].offset = offset; 2843 return 0; 2844 } 2845 EXPORT_SYMBOL(netdev_set_tc_queue); 2846 2847 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 2848 { 2849 if (num_tc > TC_MAX_QUEUE) 2850 return -EINVAL; 2851 2852 #ifdef CONFIG_XPS 2853 netif_reset_xps_queues_gt(dev, 0); 2854 #endif 2855 netdev_unbind_all_sb_channels(dev); 2856 2857 dev->num_tc = num_tc; 2858 return 0; 2859 } 2860 EXPORT_SYMBOL(netdev_set_num_tc); 2861 2862 void netdev_unbind_sb_channel(struct net_device *dev, 2863 struct net_device *sb_dev) 2864 { 2865 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 2866 2867 #ifdef CONFIG_XPS 2868 netif_reset_xps_queues_gt(sb_dev, 0); 2869 #endif 2870 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq)); 2871 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map)); 2872 2873 while (txq-- != &dev->_tx[0]) { 2874 if (txq->sb_dev == sb_dev) 2875 txq->sb_dev = NULL; 2876 } 2877 } 2878 EXPORT_SYMBOL(netdev_unbind_sb_channel); 2879 2880 int netdev_bind_sb_channel_queue(struct net_device *dev, 2881 struct net_device *sb_dev, 2882 u8 tc, u16 count, u16 offset) 2883 { 2884 /* Make certain the sb_dev and dev are already configured */ 2885 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc) 2886 return -EINVAL; 2887 2888 /* We cannot hand out queues we don't have */ 2889 if ((offset + count) > dev->real_num_tx_queues) 2890 return -EINVAL; 2891 2892 /* Record the mapping */ 2893 sb_dev->tc_to_txq[tc].count = count; 2894 sb_dev->tc_to_txq[tc].offset = offset; 2895 2896 /* Provide a way for Tx queue to find the tc_to_txq map or 2897 * XPS map for itself. 2898 */ 2899 while (count--) 2900 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev; 2901 2902 return 0; 2903 } 2904 EXPORT_SYMBOL(netdev_bind_sb_channel_queue); 2905 2906 int netdev_set_sb_channel(struct net_device *dev, u16 channel) 2907 { 2908 /* Do not use a multiqueue device to represent a subordinate channel */ 2909 if (netif_is_multiqueue(dev)) 2910 return -ENODEV; 2911 2912 /* We allow channels 1 - 32767 to be used for subordinate channels. 2913 * Channel 0 is meant to be "native" mode and used only to represent 2914 * the main root device. We allow writing 0 to reset the device back 2915 * to normal mode after being used as a subordinate channel. 2916 */ 2917 if (channel > S16_MAX) 2918 return -EINVAL; 2919 2920 dev->num_tc = -channel; 2921 2922 return 0; 2923 } 2924 EXPORT_SYMBOL(netdev_set_sb_channel); 2925 2926 /* 2927 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2928 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed. 2929 */ 2930 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2931 { 2932 bool disabling; 2933 int rc; 2934 2935 disabling = txq < dev->real_num_tx_queues; 2936 2937 if (txq < 1 || txq > dev->num_tx_queues) 2938 return -EINVAL; 2939 2940 if (dev->reg_state == NETREG_REGISTERED || 2941 dev->reg_state == NETREG_UNREGISTERING) { 2942 ASSERT_RTNL(); 2943 2944 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2945 txq); 2946 if (rc) 2947 return rc; 2948 2949 if (dev->num_tc) 2950 netif_setup_tc(dev, txq); 2951 2952 net_shaper_set_real_num_tx_queues(dev, txq); 2953 2954 dev_qdisc_change_real_num_tx(dev, txq); 2955 2956 dev->real_num_tx_queues = txq; 2957 2958 if (disabling) { 2959 synchronize_net(); 2960 qdisc_reset_all_tx_gt(dev, txq); 2961 #ifdef CONFIG_XPS 2962 netif_reset_xps_queues_gt(dev, txq); 2963 #endif 2964 } 2965 } else { 2966 dev->real_num_tx_queues = txq; 2967 } 2968 2969 return 0; 2970 } 2971 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2972 2973 #ifdef CONFIG_SYSFS 2974 /** 2975 * netif_set_real_num_rx_queues - set actual number of RX queues used 2976 * @dev: Network device 2977 * @rxq: Actual number of RX queues 2978 * 2979 * This must be called either with the rtnl_lock held or before 2980 * registration of the net device. Returns 0 on success, or a 2981 * negative error code. If called before registration, it always 2982 * succeeds. 2983 */ 2984 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2985 { 2986 int rc; 2987 2988 if (rxq < 1 || rxq > dev->num_rx_queues) 2989 return -EINVAL; 2990 2991 if (dev->reg_state == NETREG_REGISTERED) { 2992 ASSERT_RTNL(); 2993 2994 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 2995 rxq); 2996 if (rc) 2997 return rc; 2998 } 2999 3000 dev->real_num_rx_queues = rxq; 3001 return 0; 3002 } 3003 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 3004 #endif 3005 3006 /** 3007 * netif_set_real_num_queues - set actual number of RX and TX queues used 3008 * @dev: Network device 3009 * @txq: Actual number of TX queues 3010 * @rxq: Actual number of RX queues 3011 * 3012 * Set the real number of both TX and RX queues. 3013 * Does nothing if the number of queues is already correct. 3014 */ 3015 int netif_set_real_num_queues(struct net_device *dev, 3016 unsigned int txq, unsigned int rxq) 3017 { 3018 unsigned int old_rxq = dev->real_num_rx_queues; 3019 int err; 3020 3021 if (txq < 1 || txq > dev->num_tx_queues || 3022 rxq < 1 || rxq > dev->num_rx_queues) 3023 return -EINVAL; 3024 3025 /* Start from increases, so the error path only does decreases - 3026 * decreases can't fail. 3027 */ 3028 if (rxq > dev->real_num_rx_queues) { 3029 err = netif_set_real_num_rx_queues(dev, rxq); 3030 if (err) 3031 return err; 3032 } 3033 if (txq > dev->real_num_tx_queues) { 3034 err = netif_set_real_num_tx_queues(dev, txq); 3035 if (err) 3036 goto undo_rx; 3037 } 3038 if (rxq < dev->real_num_rx_queues) 3039 WARN_ON(netif_set_real_num_rx_queues(dev, rxq)); 3040 if (txq < dev->real_num_tx_queues) 3041 WARN_ON(netif_set_real_num_tx_queues(dev, txq)); 3042 3043 return 0; 3044 undo_rx: 3045 WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq)); 3046 return err; 3047 } 3048 EXPORT_SYMBOL(netif_set_real_num_queues); 3049 3050 /** 3051 * netif_set_tso_max_size() - set the max size of TSO frames supported 3052 * @dev: netdev to update 3053 * @size: max skb->len of a TSO frame 3054 * 3055 * Set the limit on the size of TSO super-frames the device can handle. 3056 * Unless explicitly set the stack will assume the value of 3057 * %GSO_LEGACY_MAX_SIZE. 3058 */ 3059 void netif_set_tso_max_size(struct net_device *dev, unsigned int size) 3060 { 3061 dev->tso_max_size = min(GSO_MAX_SIZE, size); 3062 if (size < READ_ONCE(dev->gso_max_size)) 3063 netif_set_gso_max_size(dev, size); 3064 if (size < READ_ONCE(dev->gso_ipv4_max_size)) 3065 netif_set_gso_ipv4_max_size(dev, size); 3066 } 3067 EXPORT_SYMBOL(netif_set_tso_max_size); 3068 3069 /** 3070 * netif_set_tso_max_segs() - set the max number of segs supported for TSO 3071 * @dev: netdev to update 3072 * @segs: max number of TCP segments 3073 * 3074 * Set the limit on the number of TCP segments the device can generate from 3075 * a single TSO super-frame. 3076 * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS. 3077 */ 3078 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs) 3079 { 3080 dev->tso_max_segs = segs; 3081 if (segs < READ_ONCE(dev->gso_max_segs)) 3082 netif_set_gso_max_segs(dev, segs); 3083 } 3084 EXPORT_SYMBOL(netif_set_tso_max_segs); 3085 3086 /** 3087 * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper 3088 * @to: netdev to update 3089 * @from: netdev from which to copy the limits 3090 */ 3091 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from) 3092 { 3093 netif_set_tso_max_size(to, from->tso_max_size); 3094 netif_set_tso_max_segs(to, from->tso_max_segs); 3095 } 3096 EXPORT_SYMBOL(netif_inherit_tso_max); 3097 3098 /** 3099 * netif_get_num_default_rss_queues - default number of RSS queues 3100 * 3101 * Default value is the number of physical cores if there are only 1 or 2, or 3102 * divided by 2 if there are more. 3103 */ 3104 int netif_get_num_default_rss_queues(void) 3105 { 3106 cpumask_var_t cpus; 3107 int cpu, count = 0; 3108 3109 if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL))) 3110 return 1; 3111 3112 cpumask_copy(cpus, cpu_online_mask); 3113 for_each_cpu(cpu, cpus) { 3114 ++count; 3115 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu)); 3116 } 3117 free_cpumask_var(cpus); 3118 3119 return count > 2 ? DIV_ROUND_UP(count, 2) : count; 3120 } 3121 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 3122 3123 static void __netif_reschedule(struct Qdisc *q) 3124 { 3125 struct softnet_data *sd; 3126 unsigned long flags; 3127 3128 local_irq_save(flags); 3129 sd = this_cpu_ptr(&softnet_data); 3130 q->next_sched = NULL; 3131 *sd->output_queue_tailp = q; 3132 sd->output_queue_tailp = &q->next_sched; 3133 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3134 local_irq_restore(flags); 3135 } 3136 3137 void __netif_schedule(struct Qdisc *q) 3138 { 3139 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 3140 __netif_reschedule(q); 3141 } 3142 EXPORT_SYMBOL(__netif_schedule); 3143 3144 struct dev_kfree_skb_cb { 3145 enum skb_drop_reason reason; 3146 }; 3147 3148 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 3149 { 3150 return (struct dev_kfree_skb_cb *)skb->cb; 3151 } 3152 3153 void netif_schedule_queue(struct netdev_queue *txq) 3154 { 3155 rcu_read_lock(); 3156 if (!netif_xmit_stopped(txq)) { 3157 struct Qdisc *q = rcu_dereference(txq->qdisc); 3158 3159 __netif_schedule(q); 3160 } 3161 rcu_read_unlock(); 3162 } 3163 EXPORT_SYMBOL(netif_schedule_queue); 3164 3165 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 3166 { 3167 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 3168 struct Qdisc *q; 3169 3170 rcu_read_lock(); 3171 q = rcu_dereference(dev_queue->qdisc); 3172 __netif_schedule(q); 3173 rcu_read_unlock(); 3174 } 3175 } 3176 EXPORT_SYMBOL(netif_tx_wake_queue); 3177 3178 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason) 3179 { 3180 unsigned long flags; 3181 3182 if (unlikely(!skb)) 3183 return; 3184 3185 if (likely(refcount_read(&skb->users) == 1)) { 3186 smp_rmb(); 3187 refcount_set(&skb->users, 0); 3188 } else if (likely(!refcount_dec_and_test(&skb->users))) { 3189 return; 3190 } 3191 get_kfree_skb_cb(skb)->reason = reason; 3192 local_irq_save(flags); 3193 skb->next = __this_cpu_read(softnet_data.completion_queue); 3194 __this_cpu_write(softnet_data.completion_queue, skb); 3195 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3196 local_irq_restore(flags); 3197 } 3198 EXPORT_SYMBOL(dev_kfree_skb_irq_reason); 3199 3200 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason) 3201 { 3202 if (in_hardirq() || irqs_disabled()) 3203 dev_kfree_skb_irq_reason(skb, reason); 3204 else 3205 kfree_skb_reason(skb, reason); 3206 } 3207 EXPORT_SYMBOL(dev_kfree_skb_any_reason); 3208 3209 3210 /** 3211 * netif_device_detach - mark device as removed 3212 * @dev: network device 3213 * 3214 * Mark device as removed from system and therefore no longer available. 3215 */ 3216 void netif_device_detach(struct net_device *dev) 3217 { 3218 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 3219 netif_running(dev)) { 3220 netif_tx_stop_all_queues(dev); 3221 } 3222 } 3223 EXPORT_SYMBOL(netif_device_detach); 3224 3225 /** 3226 * netif_device_attach - mark device as attached 3227 * @dev: network device 3228 * 3229 * Mark device as attached from system and restart if needed. 3230 */ 3231 void netif_device_attach(struct net_device *dev) 3232 { 3233 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 3234 netif_running(dev)) { 3235 netif_tx_wake_all_queues(dev); 3236 __netdev_watchdog_up(dev); 3237 } 3238 } 3239 EXPORT_SYMBOL(netif_device_attach); 3240 3241 /* 3242 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 3243 * to be used as a distribution range. 3244 */ 3245 static u16 skb_tx_hash(const struct net_device *dev, 3246 const struct net_device *sb_dev, 3247 struct sk_buff *skb) 3248 { 3249 u32 hash; 3250 u16 qoffset = 0; 3251 u16 qcount = dev->real_num_tx_queues; 3252 3253 if (dev->num_tc) { 3254 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 3255 3256 qoffset = sb_dev->tc_to_txq[tc].offset; 3257 qcount = sb_dev->tc_to_txq[tc].count; 3258 if (unlikely(!qcount)) { 3259 net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n", 3260 sb_dev->name, qoffset, tc); 3261 qoffset = 0; 3262 qcount = dev->real_num_tx_queues; 3263 } 3264 } 3265 3266 if (skb_rx_queue_recorded(skb)) { 3267 DEBUG_NET_WARN_ON_ONCE(qcount == 0); 3268 hash = skb_get_rx_queue(skb); 3269 if (hash >= qoffset) 3270 hash -= qoffset; 3271 while (unlikely(hash >= qcount)) 3272 hash -= qcount; 3273 return hash + qoffset; 3274 } 3275 3276 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; 3277 } 3278 3279 void skb_warn_bad_offload(const struct sk_buff *skb) 3280 { 3281 static const netdev_features_t null_features; 3282 struct net_device *dev = skb->dev; 3283 const char *name = ""; 3284 3285 if (!net_ratelimit()) 3286 return; 3287 3288 if (dev) { 3289 if (dev->dev.parent) 3290 name = dev_driver_string(dev->dev.parent); 3291 else 3292 name = netdev_name(dev); 3293 } 3294 skb_dump(KERN_WARNING, skb, false); 3295 WARN(1, "%s: caps=(%pNF, %pNF)\n", 3296 name, dev ? &dev->features : &null_features, 3297 skb->sk ? &skb->sk->sk_route_caps : &null_features); 3298 } 3299 3300 /* 3301 * Invalidate hardware checksum when packet is to be mangled, and 3302 * complete checksum manually on outgoing path. 3303 */ 3304 int skb_checksum_help(struct sk_buff *skb) 3305 { 3306 __wsum csum; 3307 int ret = 0, offset; 3308 3309 if (skb->ip_summed == CHECKSUM_COMPLETE) 3310 goto out_set_summed; 3311 3312 if (unlikely(skb_is_gso(skb))) { 3313 skb_warn_bad_offload(skb); 3314 return -EINVAL; 3315 } 3316 3317 if (!skb_frags_readable(skb)) { 3318 return -EFAULT; 3319 } 3320 3321 /* Before computing a checksum, we should make sure no frag could 3322 * be modified by an external entity : checksum could be wrong. 3323 */ 3324 if (skb_has_shared_frag(skb)) { 3325 ret = __skb_linearize(skb); 3326 if (ret) 3327 goto out; 3328 } 3329 3330 offset = skb_checksum_start_offset(skb); 3331 ret = -EINVAL; 3332 if (unlikely(offset >= skb_headlen(skb))) { 3333 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false); 3334 WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n", 3335 offset, skb_headlen(skb)); 3336 goto out; 3337 } 3338 csum = skb_checksum(skb, offset, skb->len - offset, 0); 3339 3340 offset += skb->csum_offset; 3341 if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) { 3342 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false); 3343 WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n", 3344 offset + sizeof(__sum16), skb_headlen(skb)); 3345 goto out; 3346 } 3347 ret = skb_ensure_writable(skb, offset + sizeof(__sum16)); 3348 if (ret) 3349 goto out; 3350 3351 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0; 3352 out_set_summed: 3353 skb->ip_summed = CHECKSUM_NONE; 3354 out: 3355 return ret; 3356 } 3357 EXPORT_SYMBOL(skb_checksum_help); 3358 3359 int skb_crc32c_csum_help(struct sk_buff *skb) 3360 { 3361 __le32 crc32c_csum; 3362 int ret = 0, offset, start; 3363 3364 if (skb->ip_summed != CHECKSUM_PARTIAL) 3365 goto out; 3366 3367 if (unlikely(skb_is_gso(skb))) 3368 goto out; 3369 3370 /* Before computing a checksum, we should make sure no frag could 3371 * be modified by an external entity : checksum could be wrong. 3372 */ 3373 if (unlikely(skb_has_shared_frag(skb))) { 3374 ret = __skb_linearize(skb); 3375 if (ret) 3376 goto out; 3377 } 3378 start = skb_checksum_start_offset(skb); 3379 offset = start + offsetof(struct sctphdr, checksum); 3380 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) { 3381 ret = -EINVAL; 3382 goto out; 3383 } 3384 3385 ret = skb_ensure_writable(skb, offset + sizeof(__le32)); 3386 if (ret) 3387 goto out; 3388 3389 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start, 3390 skb->len - start, ~(__u32)0, 3391 crc32c_csum_stub)); 3392 *(__le32 *)(skb->data + offset) = crc32c_csum; 3393 skb_reset_csum_not_inet(skb); 3394 out: 3395 return ret; 3396 } 3397 EXPORT_SYMBOL(skb_crc32c_csum_help); 3398 3399 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 3400 { 3401 __be16 type = skb->protocol; 3402 3403 /* Tunnel gso handlers can set protocol to ethernet. */ 3404 if (type == htons(ETH_P_TEB)) { 3405 struct ethhdr *eth; 3406 3407 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 3408 return 0; 3409 3410 eth = (struct ethhdr *)skb->data; 3411 type = eth->h_proto; 3412 } 3413 3414 return vlan_get_protocol_and_depth(skb, type, depth); 3415 } 3416 3417 3418 /* Take action when hardware reception checksum errors are detected. */ 3419 #ifdef CONFIG_BUG 3420 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb) 3421 { 3422 netdev_err(dev, "hw csum failure\n"); 3423 skb_dump(KERN_ERR, skb, true); 3424 dump_stack(); 3425 } 3426 3427 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb) 3428 { 3429 DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb); 3430 } 3431 EXPORT_SYMBOL(netdev_rx_csum_fault); 3432 #endif 3433 3434 /* XXX: check that highmem exists at all on the given machine. */ 3435 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 3436 { 3437 #ifdef CONFIG_HIGHMEM 3438 int i; 3439 3440 if (!(dev->features & NETIF_F_HIGHDMA)) { 3441 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3442 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3443 struct page *page = skb_frag_page(frag); 3444 3445 if (page && PageHighMem(page)) 3446 return 1; 3447 } 3448 } 3449 #endif 3450 return 0; 3451 } 3452 3453 /* If MPLS offload request, verify we are testing hardware MPLS features 3454 * instead of standard features for the netdev. 3455 */ 3456 #if IS_ENABLED(CONFIG_NET_MPLS_GSO) 3457 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3458 netdev_features_t features, 3459 __be16 type) 3460 { 3461 if (eth_p_mpls(type)) 3462 features &= skb->dev->mpls_features; 3463 3464 return features; 3465 } 3466 #else 3467 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3468 netdev_features_t features, 3469 __be16 type) 3470 { 3471 return features; 3472 } 3473 #endif 3474 3475 static netdev_features_t harmonize_features(struct sk_buff *skb, 3476 netdev_features_t features) 3477 { 3478 __be16 type; 3479 3480 type = skb_network_protocol(skb, NULL); 3481 features = net_mpls_features(skb, features, type); 3482 3483 if (skb->ip_summed != CHECKSUM_NONE && 3484 !can_checksum_protocol(features, type)) { 3485 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3486 } 3487 if (illegal_highdma(skb->dev, skb)) 3488 features &= ~NETIF_F_SG; 3489 3490 return features; 3491 } 3492 3493 netdev_features_t passthru_features_check(struct sk_buff *skb, 3494 struct net_device *dev, 3495 netdev_features_t features) 3496 { 3497 return features; 3498 } 3499 EXPORT_SYMBOL(passthru_features_check); 3500 3501 static netdev_features_t dflt_features_check(struct sk_buff *skb, 3502 struct net_device *dev, 3503 netdev_features_t features) 3504 { 3505 return vlan_features_check(skb, features); 3506 } 3507 3508 static netdev_features_t gso_features_check(const struct sk_buff *skb, 3509 struct net_device *dev, 3510 netdev_features_t features) 3511 { 3512 u16 gso_segs = skb_shinfo(skb)->gso_segs; 3513 3514 if (gso_segs > READ_ONCE(dev->gso_max_segs)) 3515 return features & ~NETIF_F_GSO_MASK; 3516 3517 if (unlikely(skb->len >= netif_get_gso_max_size(dev, skb))) 3518 return features & ~NETIF_F_GSO_MASK; 3519 3520 if (!skb_shinfo(skb)->gso_type) { 3521 skb_warn_bad_offload(skb); 3522 return features & ~NETIF_F_GSO_MASK; 3523 } 3524 3525 /* Support for GSO partial features requires software 3526 * intervention before we can actually process the packets 3527 * so we need to strip support for any partial features now 3528 * and we can pull them back in after we have partially 3529 * segmented the frame. 3530 */ 3531 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL)) 3532 features &= ~dev->gso_partial_features; 3533 3534 /* Make sure to clear the IPv4 ID mangling feature if the 3535 * IPv4 header has the potential to be fragmented. 3536 */ 3537 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { 3538 struct iphdr *iph = skb->encapsulation ? 3539 inner_ip_hdr(skb) : ip_hdr(skb); 3540 3541 if (!(iph->frag_off & htons(IP_DF))) 3542 features &= ~NETIF_F_TSO_MANGLEID; 3543 } 3544 3545 return features; 3546 } 3547 3548 netdev_features_t netif_skb_features(struct sk_buff *skb) 3549 { 3550 struct net_device *dev = skb->dev; 3551 netdev_features_t features = dev->features; 3552 3553 if (skb_is_gso(skb)) 3554 features = gso_features_check(skb, dev, features); 3555 3556 /* If encapsulation offload request, verify we are testing 3557 * hardware encapsulation features instead of standard 3558 * features for the netdev 3559 */ 3560 if (skb->encapsulation) 3561 features &= dev->hw_enc_features; 3562 3563 if (skb_vlan_tagged(skb)) 3564 features = netdev_intersect_features(features, 3565 dev->vlan_features | 3566 NETIF_F_HW_VLAN_CTAG_TX | 3567 NETIF_F_HW_VLAN_STAG_TX); 3568 3569 if (dev->netdev_ops->ndo_features_check) 3570 features &= dev->netdev_ops->ndo_features_check(skb, dev, 3571 features); 3572 else 3573 features &= dflt_features_check(skb, dev, features); 3574 3575 return harmonize_features(skb, features); 3576 } 3577 EXPORT_SYMBOL(netif_skb_features); 3578 3579 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 3580 struct netdev_queue *txq, bool more) 3581 { 3582 unsigned int len; 3583 int rc; 3584 3585 if (dev_nit_active(dev)) 3586 dev_queue_xmit_nit(skb, dev); 3587 3588 len = skb->len; 3589 trace_net_dev_start_xmit(skb, dev); 3590 rc = netdev_start_xmit(skb, dev, txq, more); 3591 trace_net_dev_xmit(skb, rc, dev, len); 3592 3593 return rc; 3594 } 3595 3596 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 3597 struct netdev_queue *txq, int *ret) 3598 { 3599 struct sk_buff *skb = first; 3600 int rc = NETDEV_TX_OK; 3601 3602 while (skb) { 3603 struct sk_buff *next = skb->next; 3604 3605 skb_mark_not_on_list(skb); 3606 rc = xmit_one(skb, dev, txq, next != NULL); 3607 if (unlikely(!dev_xmit_complete(rc))) { 3608 skb->next = next; 3609 goto out; 3610 } 3611 3612 skb = next; 3613 if (netif_tx_queue_stopped(txq) && skb) { 3614 rc = NETDEV_TX_BUSY; 3615 break; 3616 } 3617 } 3618 3619 out: 3620 *ret = rc; 3621 return skb; 3622 } 3623 3624 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 3625 netdev_features_t features) 3626 { 3627 if (skb_vlan_tag_present(skb) && 3628 !vlan_hw_offload_capable(features, skb->vlan_proto)) 3629 skb = __vlan_hwaccel_push_inside(skb); 3630 return skb; 3631 } 3632 3633 int skb_csum_hwoffload_help(struct sk_buff *skb, 3634 const netdev_features_t features) 3635 { 3636 if (unlikely(skb_csum_is_sctp(skb))) 3637 return !!(features & NETIF_F_SCTP_CRC) ? 0 : 3638 skb_crc32c_csum_help(skb); 3639 3640 if (features & NETIF_F_HW_CSUM) 3641 return 0; 3642 3643 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) { 3644 if (vlan_get_protocol(skb) == htons(ETH_P_IPV6) && 3645 skb_network_header_len(skb) != sizeof(struct ipv6hdr) && 3646 !ipv6_has_hopopt_jumbo(skb)) 3647 goto sw_checksum; 3648 3649 switch (skb->csum_offset) { 3650 case offsetof(struct tcphdr, check): 3651 case offsetof(struct udphdr, check): 3652 return 0; 3653 } 3654 } 3655 3656 sw_checksum: 3657 return skb_checksum_help(skb); 3658 } 3659 EXPORT_SYMBOL(skb_csum_hwoffload_help); 3660 3661 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again) 3662 { 3663 netdev_features_t features; 3664 3665 features = netif_skb_features(skb); 3666 skb = validate_xmit_vlan(skb, features); 3667 if (unlikely(!skb)) 3668 goto out_null; 3669 3670 skb = sk_validate_xmit_skb(skb, dev); 3671 if (unlikely(!skb)) 3672 goto out_null; 3673 3674 if (netif_needs_gso(skb, features)) { 3675 struct sk_buff *segs; 3676 3677 segs = skb_gso_segment(skb, features); 3678 if (IS_ERR(segs)) { 3679 goto out_kfree_skb; 3680 } else if (segs) { 3681 consume_skb(skb); 3682 skb = segs; 3683 } 3684 } else { 3685 if (skb_needs_linearize(skb, features) && 3686 __skb_linearize(skb)) 3687 goto out_kfree_skb; 3688 3689 /* If packet is not checksummed and device does not 3690 * support checksumming for this protocol, complete 3691 * checksumming here. 3692 */ 3693 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3694 if (skb->encapsulation) 3695 skb_set_inner_transport_header(skb, 3696 skb_checksum_start_offset(skb)); 3697 else 3698 skb_set_transport_header(skb, 3699 skb_checksum_start_offset(skb)); 3700 if (skb_csum_hwoffload_help(skb, features)) 3701 goto out_kfree_skb; 3702 } 3703 } 3704 3705 skb = validate_xmit_xfrm(skb, features, again); 3706 3707 return skb; 3708 3709 out_kfree_skb: 3710 kfree_skb(skb); 3711 out_null: 3712 dev_core_stats_tx_dropped_inc(dev); 3713 return NULL; 3714 } 3715 3716 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again) 3717 { 3718 struct sk_buff *next, *head = NULL, *tail; 3719 3720 for (; skb != NULL; skb = next) { 3721 next = skb->next; 3722 skb_mark_not_on_list(skb); 3723 3724 /* in case skb won't be segmented, point to itself */ 3725 skb->prev = skb; 3726 3727 skb = validate_xmit_skb(skb, dev, again); 3728 if (!skb) 3729 continue; 3730 3731 if (!head) 3732 head = skb; 3733 else 3734 tail->next = skb; 3735 /* If skb was segmented, skb->prev points to 3736 * the last segment. If not, it still contains skb. 3737 */ 3738 tail = skb->prev; 3739 } 3740 return head; 3741 } 3742 EXPORT_SYMBOL_GPL(validate_xmit_skb_list); 3743 3744 static void qdisc_pkt_len_init(struct sk_buff *skb) 3745 { 3746 const struct skb_shared_info *shinfo = skb_shinfo(skb); 3747 3748 qdisc_skb_cb(skb)->pkt_len = skb->len; 3749 3750 /* To get more precise estimation of bytes sent on wire, 3751 * we add to pkt_len the headers size of all segments 3752 */ 3753 if (shinfo->gso_size && skb_transport_header_was_set(skb)) { 3754 u16 gso_segs = shinfo->gso_segs; 3755 unsigned int hdr_len; 3756 3757 /* mac layer + network layer */ 3758 hdr_len = skb_transport_offset(skb); 3759 3760 /* + transport layer */ 3761 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 3762 const struct tcphdr *th; 3763 struct tcphdr _tcphdr; 3764 3765 th = skb_header_pointer(skb, hdr_len, 3766 sizeof(_tcphdr), &_tcphdr); 3767 if (likely(th)) 3768 hdr_len += __tcp_hdrlen(th); 3769 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) { 3770 struct udphdr _udphdr; 3771 3772 if (skb_header_pointer(skb, hdr_len, 3773 sizeof(_udphdr), &_udphdr)) 3774 hdr_len += sizeof(struct udphdr); 3775 } 3776 3777 if (unlikely(shinfo->gso_type & SKB_GSO_DODGY)) { 3778 int payload = skb->len - hdr_len; 3779 3780 /* Malicious packet. */ 3781 if (payload <= 0) 3782 return; 3783 gso_segs = DIV_ROUND_UP(payload, shinfo->gso_size); 3784 } 3785 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 3786 } 3787 } 3788 3789 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q, 3790 struct sk_buff **to_free, 3791 struct netdev_queue *txq) 3792 { 3793 int rc; 3794 3795 rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK; 3796 if (rc == NET_XMIT_SUCCESS) 3797 trace_qdisc_enqueue(q, txq, skb); 3798 return rc; 3799 } 3800 3801 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 3802 struct net_device *dev, 3803 struct netdev_queue *txq) 3804 { 3805 spinlock_t *root_lock = qdisc_lock(q); 3806 struct sk_buff *to_free = NULL; 3807 bool contended; 3808 int rc; 3809 3810 qdisc_calculate_pkt_len(skb, q); 3811 3812 tcf_set_drop_reason(skb, SKB_DROP_REASON_QDISC_DROP); 3813 3814 if (q->flags & TCQ_F_NOLOCK) { 3815 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) && 3816 qdisc_run_begin(q)) { 3817 /* Retest nolock_qdisc_is_empty() within the protection 3818 * of q->seqlock to protect from racing with requeuing. 3819 */ 3820 if (unlikely(!nolock_qdisc_is_empty(q))) { 3821 rc = dev_qdisc_enqueue(skb, q, &to_free, txq); 3822 __qdisc_run(q); 3823 qdisc_run_end(q); 3824 3825 goto no_lock_out; 3826 } 3827 3828 qdisc_bstats_cpu_update(q, skb); 3829 if (sch_direct_xmit(skb, q, dev, txq, NULL, true) && 3830 !nolock_qdisc_is_empty(q)) 3831 __qdisc_run(q); 3832 3833 qdisc_run_end(q); 3834 return NET_XMIT_SUCCESS; 3835 } 3836 3837 rc = dev_qdisc_enqueue(skb, q, &to_free, txq); 3838 qdisc_run(q); 3839 3840 no_lock_out: 3841 if (unlikely(to_free)) 3842 kfree_skb_list_reason(to_free, 3843 tcf_get_drop_reason(to_free)); 3844 return rc; 3845 } 3846 3847 if (unlikely(READ_ONCE(q->owner) == smp_processor_id())) { 3848 kfree_skb_reason(skb, SKB_DROP_REASON_TC_RECLASSIFY_LOOP); 3849 return NET_XMIT_DROP; 3850 } 3851 /* 3852 * Heuristic to force contended enqueues to serialize on a 3853 * separate lock before trying to get qdisc main lock. 3854 * This permits qdisc->running owner to get the lock more 3855 * often and dequeue packets faster. 3856 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit 3857 * and then other tasks will only enqueue packets. The packets will be 3858 * sent after the qdisc owner is scheduled again. To prevent this 3859 * scenario the task always serialize on the lock. 3860 */ 3861 contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT); 3862 if (unlikely(contended)) 3863 spin_lock(&q->busylock); 3864 3865 spin_lock(root_lock); 3866 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 3867 __qdisc_drop(skb, &to_free); 3868 rc = NET_XMIT_DROP; 3869 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 3870 qdisc_run_begin(q)) { 3871 /* 3872 * This is a work-conserving queue; there are no old skbs 3873 * waiting to be sent out; and the qdisc is not running - 3874 * xmit the skb directly. 3875 */ 3876 3877 qdisc_bstats_update(q, skb); 3878 3879 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 3880 if (unlikely(contended)) { 3881 spin_unlock(&q->busylock); 3882 contended = false; 3883 } 3884 __qdisc_run(q); 3885 } 3886 3887 qdisc_run_end(q); 3888 rc = NET_XMIT_SUCCESS; 3889 } else { 3890 WRITE_ONCE(q->owner, smp_processor_id()); 3891 rc = dev_qdisc_enqueue(skb, q, &to_free, txq); 3892 WRITE_ONCE(q->owner, -1); 3893 if (qdisc_run_begin(q)) { 3894 if (unlikely(contended)) { 3895 spin_unlock(&q->busylock); 3896 contended = false; 3897 } 3898 __qdisc_run(q); 3899 qdisc_run_end(q); 3900 } 3901 } 3902 spin_unlock(root_lock); 3903 if (unlikely(to_free)) 3904 kfree_skb_list_reason(to_free, 3905 tcf_get_drop_reason(to_free)); 3906 if (unlikely(contended)) 3907 spin_unlock(&q->busylock); 3908 return rc; 3909 } 3910 3911 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 3912 static void skb_update_prio(struct sk_buff *skb) 3913 { 3914 const struct netprio_map *map; 3915 const struct sock *sk; 3916 unsigned int prioidx; 3917 3918 if (skb->priority) 3919 return; 3920 map = rcu_dereference_bh(skb->dev->priomap); 3921 if (!map) 3922 return; 3923 sk = skb_to_full_sk(skb); 3924 if (!sk) 3925 return; 3926 3927 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data); 3928 3929 if (prioidx < map->priomap_len) 3930 skb->priority = map->priomap[prioidx]; 3931 } 3932 #else 3933 #define skb_update_prio(skb) 3934 #endif 3935 3936 /** 3937 * dev_loopback_xmit - loop back @skb 3938 * @net: network namespace this loopback is happening in 3939 * @sk: sk needed to be a netfilter okfn 3940 * @skb: buffer to transmit 3941 */ 3942 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) 3943 { 3944 skb_reset_mac_header(skb); 3945 __skb_pull(skb, skb_network_offset(skb)); 3946 skb->pkt_type = PACKET_LOOPBACK; 3947 if (skb->ip_summed == CHECKSUM_NONE) 3948 skb->ip_summed = CHECKSUM_UNNECESSARY; 3949 DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb)); 3950 skb_dst_force(skb); 3951 netif_rx(skb); 3952 return 0; 3953 } 3954 EXPORT_SYMBOL(dev_loopback_xmit); 3955 3956 #ifdef CONFIG_NET_EGRESS 3957 static struct netdev_queue * 3958 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb) 3959 { 3960 int qm = skb_get_queue_mapping(skb); 3961 3962 return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm)); 3963 } 3964 3965 #ifndef CONFIG_PREEMPT_RT 3966 static bool netdev_xmit_txqueue_skipped(void) 3967 { 3968 return __this_cpu_read(softnet_data.xmit.skip_txqueue); 3969 } 3970 3971 void netdev_xmit_skip_txqueue(bool skip) 3972 { 3973 __this_cpu_write(softnet_data.xmit.skip_txqueue, skip); 3974 } 3975 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue); 3976 3977 #else 3978 static bool netdev_xmit_txqueue_skipped(void) 3979 { 3980 return current->net_xmit.skip_txqueue; 3981 } 3982 3983 void netdev_xmit_skip_txqueue(bool skip) 3984 { 3985 current->net_xmit.skip_txqueue = skip; 3986 } 3987 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue); 3988 #endif 3989 #endif /* CONFIG_NET_EGRESS */ 3990 3991 #ifdef CONFIG_NET_XGRESS 3992 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb, 3993 enum skb_drop_reason *drop_reason) 3994 { 3995 int ret = TC_ACT_UNSPEC; 3996 #ifdef CONFIG_NET_CLS_ACT 3997 struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq); 3998 struct tcf_result res; 3999 4000 if (!miniq) 4001 return ret; 4002 4003 if (static_branch_unlikely(&tcf_bypass_check_needed_key)) { 4004 if (tcf_block_bypass_sw(miniq->block)) 4005 return ret; 4006 } 4007 4008 tc_skb_cb(skb)->mru = 0; 4009 tc_skb_cb(skb)->post_ct = false; 4010 tcf_set_drop_reason(skb, *drop_reason); 4011 4012 mini_qdisc_bstats_cpu_update(miniq, skb); 4013 ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false); 4014 /* Only tcf related quirks below. */ 4015 switch (ret) { 4016 case TC_ACT_SHOT: 4017 *drop_reason = tcf_get_drop_reason(skb); 4018 mini_qdisc_qstats_cpu_drop(miniq); 4019 break; 4020 case TC_ACT_OK: 4021 case TC_ACT_RECLASSIFY: 4022 skb->tc_index = TC_H_MIN(res.classid); 4023 break; 4024 } 4025 #endif /* CONFIG_NET_CLS_ACT */ 4026 return ret; 4027 } 4028 4029 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key); 4030 4031 void tcx_inc(void) 4032 { 4033 static_branch_inc(&tcx_needed_key); 4034 } 4035 4036 void tcx_dec(void) 4037 { 4038 static_branch_dec(&tcx_needed_key); 4039 } 4040 4041 static __always_inline enum tcx_action_base 4042 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb, 4043 const bool needs_mac) 4044 { 4045 const struct bpf_mprog_fp *fp; 4046 const struct bpf_prog *prog; 4047 int ret = TCX_NEXT; 4048 4049 if (needs_mac) 4050 __skb_push(skb, skb->mac_len); 4051 bpf_mprog_foreach_prog(entry, fp, prog) { 4052 bpf_compute_data_pointers(skb); 4053 ret = bpf_prog_run(prog, skb); 4054 if (ret != TCX_NEXT) 4055 break; 4056 } 4057 if (needs_mac) 4058 __skb_pull(skb, skb->mac_len); 4059 return tcx_action_code(skb, ret); 4060 } 4061 4062 static __always_inline struct sk_buff * 4063 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 4064 struct net_device *orig_dev, bool *another) 4065 { 4066 struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress); 4067 enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS; 4068 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 4069 int sch_ret; 4070 4071 if (!entry) 4072 return skb; 4073 4074 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 4075 if (*pt_prev) { 4076 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4077 *pt_prev = NULL; 4078 } 4079 4080 qdisc_skb_cb(skb)->pkt_len = skb->len; 4081 tcx_set_ingress(skb, true); 4082 4083 if (static_branch_unlikely(&tcx_needed_key)) { 4084 sch_ret = tcx_run(entry, skb, true); 4085 if (sch_ret != TC_ACT_UNSPEC) 4086 goto ingress_verdict; 4087 } 4088 sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason); 4089 ingress_verdict: 4090 switch (sch_ret) { 4091 case TC_ACT_REDIRECT: 4092 /* skb_mac_header check was done by BPF, so we can safely 4093 * push the L2 header back before redirecting to another 4094 * netdev. 4095 */ 4096 __skb_push(skb, skb->mac_len); 4097 if (skb_do_redirect(skb) == -EAGAIN) { 4098 __skb_pull(skb, skb->mac_len); 4099 *another = true; 4100 break; 4101 } 4102 *ret = NET_RX_SUCCESS; 4103 bpf_net_ctx_clear(bpf_net_ctx); 4104 return NULL; 4105 case TC_ACT_SHOT: 4106 kfree_skb_reason(skb, drop_reason); 4107 *ret = NET_RX_DROP; 4108 bpf_net_ctx_clear(bpf_net_ctx); 4109 return NULL; 4110 /* used by tc_run */ 4111 case TC_ACT_STOLEN: 4112 case TC_ACT_QUEUED: 4113 case TC_ACT_TRAP: 4114 consume_skb(skb); 4115 fallthrough; 4116 case TC_ACT_CONSUMED: 4117 *ret = NET_RX_SUCCESS; 4118 bpf_net_ctx_clear(bpf_net_ctx); 4119 return NULL; 4120 } 4121 bpf_net_ctx_clear(bpf_net_ctx); 4122 4123 return skb; 4124 } 4125 4126 static __always_inline struct sk_buff * 4127 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 4128 { 4129 struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress); 4130 enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS; 4131 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 4132 int sch_ret; 4133 4134 if (!entry) 4135 return skb; 4136 4137 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 4138 4139 /* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was 4140 * already set by the caller. 4141 */ 4142 if (static_branch_unlikely(&tcx_needed_key)) { 4143 sch_ret = tcx_run(entry, skb, false); 4144 if (sch_ret != TC_ACT_UNSPEC) 4145 goto egress_verdict; 4146 } 4147 sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason); 4148 egress_verdict: 4149 switch (sch_ret) { 4150 case TC_ACT_REDIRECT: 4151 /* No need to push/pop skb's mac_header here on egress! */ 4152 skb_do_redirect(skb); 4153 *ret = NET_XMIT_SUCCESS; 4154 bpf_net_ctx_clear(bpf_net_ctx); 4155 return NULL; 4156 case TC_ACT_SHOT: 4157 kfree_skb_reason(skb, drop_reason); 4158 *ret = NET_XMIT_DROP; 4159 bpf_net_ctx_clear(bpf_net_ctx); 4160 return NULL; 4161 /* used by tc_run */ 4162 case TC_ACT_STOLEN: 4163 case TC_ACT_QUEUED: 4164 case TC_ACT_TRAP: 4165 consume_skb(skb); 4166 fallthrough; 4167 case TC_ACT_CONSUMED: 4168 *ret = NET_XMIT_SUCCESS; 4169 bpf_net_ctx_clear(bpf_net_ctx); 4170 return NULL; 4171 } 4172 bpf_net_ctx_clear(bpf_net_ctx); 4173 4174 return skb; 4175 } 4176 #else 4177 static __always_inline struct sk_buff * 4178 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 4179 struct net_device *orig_dev, bool *another) 4180 { 4181 return skb; 4182 } 4183 4184 static __always_inline struct sk_buff * 4185 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 4186 { 4187 return skb; 4188 } 4189 #endif /* CONFIG_NET_XGRESS */ 4190 4191 #ifdef CONFIG_XPS 4192 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb, 4193 struct xps_dev_maps *dev_maps, unsigned int tci) 4194 { 4195 int tc = netdev_get_prio_tc_map(dev, skb->priority); 4196 struct xps_map *map; 4197 int queue_index = -1; 4198 4199 if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids) 4200 return queue_index; 4201 4202 tci *= dev_maps->num_tc; 4203 tci += tc; 4204 4205 map = rcu_dereference(dev_maps->attr_map[tci]); 4206 if (map) { 4207 if (map->len == 1) 4208 queue_index = map->queues[0]; 4209 else 4210 queue_index = map->queues[reciprocal_scale( 4211 skb_get_hash(skb), map->len)]; 4212 if (unlikely(queue_index >= dev->real_num_tx_queues)) 4213 queue_index = -1; 4214 } 4215 return queue_index; 4216 } 4217 #endif 4218 4219 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev, 4220 struct sk_buff *skb) 4221 { 4222 #ifdef CONFIG_XPS 4223 struct xps_dev_maps *dev_maps; 4224 struct sock *sk = skb->sk; 4225 int queue_index = -1; 4226 4227 if (!static_key_false(&xps_needed)) 4228 return -1; 4229 4230 rcu_read_lock(); 4231 if (!static_key_false(&xps_rxqs_needed)) 4232 goto get_cpus_map; 4233 4234 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]); 4235 if (dev_maps) { 4236 int tci = sk_rx_queue_get(sk); 4237 4238 if (tci >= 0) 4239 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 4240 tci); 4241 } 4242 4243 get_cpus_map: 4244 if (queue_index < 0) { 4245 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]); 4246 if (dev_maps) { 4247 unsigned int tci = skb->sender_cpu - 1; 4248 4249 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 4250 tci); 4251 } 4252 } 4253 rcu_read_unlock(); 4254 4255 return queue_index; 4256 #else 4257 return -1; 4258 #endif 4259 } 4260 4261 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 4262 struct net_device *sb_dev) 4263 { 4264 return 0; 4265 } 4266 EXPORT_SYMBOL(dev_pick_tx_zero); 4267 4268 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 4269 struct net_device *sb_dev) 4270 { 4271 struct sock *sk = skb->sk; 4272 int queue_index = sk_tx_queue_get(sk); 4273 4274 sb_dev = sb_dev ? : dev; 4275 4276 if (queue_index < 0 || skb->ooo_okay || 4277 queue_index >= dev->real_num_tx_queues) { 4278 int new_index = get_xps_queue(dev, sb_dev, skb); 4279 4280 if (new_index < 0) 4281 new_index = skb_tx_hash(dev, sb_dev, skb); 4282 4283 if (queue_index != new_index && sk && 4284 sk_fullsock(sk) && 4285 rcu_access_pointer(sk->sk_dst_cache)) 4286 sk_tx_queue_set(sk, new_index); 4287 4288 queue_index = new_index; 4289 } 4290 4291 return queue_index; 4292 } 4293 EXPORT_SYMBOL(netdev_pick_tx); 4294 4295 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, 4296 struct sk_buff *skb, 4297 struct net_device *sb_dev) 4298 { 4299 int queue_index = 0; 4300 4301 #ifdef CONFIG_XPS 4302 u32 sender_cpu = skb->sender_cpu - 1; 4303 4304 if (sender_cpu >= (u32)NR_CPUS) 4305 skb->sender_cpu = raw_smp_processor_id() + 1; 4306 #endif 4307 4308 if (dev->real_num_tx_queues != 1) { 4309 const struct net_device_ops *ops = dev->netdev_ops; 4310 4311 if (ops->ndo_select_queue) 4312 queue_index = ops->ndo_select_queue(dev, skb, sb_dev); 4313 else 4314 queue_index = netdev_pick_tx(dev, skb, sb_dev); 4315 4316 queue_index = netdev_cap_txqueue(dev, queue_index); 4317 } 4318 4319 skb_set_queue_mapping(skb, queue_index); 4320 return netdev_get_tx_queue(dev, queue_index); 4321 } 4322 4323 /** 4324 * __dev_queue_xmit() - transmit a buffer 4325 * @skb: buffer to transmit 4326 * @sb_dev: suboordinate device used for L2 forwarding offload 4327 * 4328 * Queue a buffer for transmission to a network device. The caller must 4329 * have set the device and priority and built the buffer before calling 4330 * this function. The function can be called from an interrupt. 4331 * 4332 * When calling this method, interrupts MUST be enabled. This is because 4333 * the BH enable code must have IRQs enabled so that it will not deadlock. 4334 * 4335 * Regardless of the return value, the skb is consumed, so it is currently 4336 * difficult to retry a send to this method. (You can bump the ref count 4337 * before sending to hold a reference for retry if you are careful.) 4338 * 4339 * Return: 4340 * * 0 - buffer successfully transmitted 4341 * * positive qdisc return code - NET_XMIT_DROP etc. 4342 * * negative errno - other errors 4343 */ 4344 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev) 4345 { 4346 struct net_device *dev = skb->dev; 4347 struct netdev_queue *txq = NULL; 4348 struct Qdisc *q; 4349 int rc = -ENOMEM; 4350 bool again = false; 4351 4352 skb_reset_mac_header(skb); 4353 skb_assert_len(skb); 4354 4355 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP)) 4356 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED); 4357 4358 /* Disable soft irqs for various locks below. Also 4359 * stops preemption for RCU. 4360 */ 4361 rcu_read_lock_bh(); 4362 4363 skb_update_prio(skb); 4364 4365 qdisc_pkt_len_init(skb); 4366 tcx_set_ingress(skb, false); 4367 #ifdef CONFIG_NET_EGRESS 4368 if (static_branch_unlikely(&egress_needed_key)) { 4369 if (nf_hook_egress_active()) { 4370 skb = nf_hook_egress(skb, &rc, dev); 4371 if (!skb) 4372 goto out; 4373 } 4374 4375 netdev_xmit_skip_txqueue(false); 4376 4377 nf_skip_egress(skb, true); 4378 skb = sch_handle_egress(skb, &rc, dev); 4379 if (!skb) 4380 goto out; 4381 nf_skip_egress(skb, false); 4382 4383 if (netdev_xmit_txqueue_skipped()) 4384 txq = netdev_tx_queue_mapping(dev, skb); 4385 } 4386 #endif 4387 /* If device/qdisc don't need skb->dst, release it right now while 4388 * its hot in this cpu cache. 4389 */ 4390 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 4391 skb_dst_drop(skb); 4392 else 4393 skb_dst_force(skb); 4394 4395 if (!txq) 4396 txq = netdev_core_pick_tx(dev, skb, sb_dev); 4397 4398 q = rcu_dereference_bh(txq->qdisc); 4399 4400 trace_net_dev_queue(skb); 4401 if (q->enqueue) { 4402 rc = __dev_xmit_skb(skb, q, dev, txq); 4403 goto out; 4404 } 4405 4406 /* The device has no queue. Common case for software devices: 4407 * loopback, all the sorts of tunnels... 4408 4409 * Really, it is unlikely that netif_tx_lock protection is necessary 4410 * here. (f.e. loopback and IP tunnels are clean ignoring statistics 4411 * counters.) 4412 * However, it is possible, that they rely on protection 4413 * made by us here. 4414 4415 * Check this and shot the lock. It is not prone from deadlocks. 4416 *Either shot noqueue qdisc, it is even simpler 8) 4417 */ 4418 if (dev->flags & IFF_UP) { 4419 int cpu = smp_processor_id(); /* ok because BHs are off */ 4420 4421 /* Other cpus might concurrently change txq->xmit_lock_owner 4422 * to -1 or to their cpu id, but not to our id. 4423 */ 4424 if (READ_ONCE(txq->xmit_lock_owner) != cpu) { 4425 if (dev_xmit_recursion()) 4426 goto recursion_alert; 4427 4428 skb = validate_xmit_skb(skb, dev, &again); 4429 if (!skb) 4430 goto out; 4431 4432 HARD_TX_LOCK(dev, txq, cpu); 4433 4434 if (!netif_xmit_stopped(txq)) { 4435 dev_xmit_recursion_inc(); 4436 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 4437 dev_xmit_recursion_dec(); 4438 if (dev_xmit_complete(rc)) { 4439 HARD_TX_UNLOCK(dev, txq); 4440 goto out; 4441 } 4442 } 4443 HARD_TX_UNLOCK(dev, txq); 4444 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 4445 dev->name); 4446 } else { 4447 /* Recursion is detected! It is possible, 4448 * unfortunately 4449 */ 4450 recursion_alert: 4451 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 4452 dev->name); 4453 } 4454 } 4455 4456 rc = -ENETDOWN; 4457 rcu_read_unlock_bh(); 4458 4459 dev_core_stats_tx_dropped_inc(dev); 4460 kfree_skb_list(skb); 4461 return rc; 4462 out: 4463 rcu_read_unlock_bh(); 4464 return rc; 4465 } 4466 EXPORT_SYMBOL(__dev_queue_xmit); 4467 4468 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id) 4469 { 4470 struct net_device *dev = skb->dev; 4471 struct sk_buff *orig_skb = skb; 4472 struct netdev_queue *txq; 4473 int ret = NETDEV_TX_BUSY; 4474 bool again = false; 4475 4476 if (unlikely(!netif_running(dev) || 4477 !netif_carrier_ok(dev))) 4478 goto drop; 4479 4480 skb = validate_xmit_skb_list(skb, dev, &again); 4481 if (skb != orig_skb) 4482 goto drop; 4483 4484 skb_set_queue_mapping(skb, queue_id); 4485 txq = skb_get_tx_queue(dev, skb); 4486 4487 local_bh_disable(); 4488 4489 dev_xmit_recursion_inc(); 4490 HARD_TX_LOCK(dev, txq, smp_processor_id()); 4491 if (!netif_xmit_frozen_or_drv_stopped(txq)) 4492 ret = netdev_start_xmit(skb, dev, txq, false); 4493 HARD_TX_UNLOCK(dev, txq); 4494 dev_xmit_recursion_dec(); 4495 4496 local_bh_enable(); 4497 return ret; 4498 drop: 4499 dev_core_stats_tx_dropped_inc(dev); 4500 kfree_skb_list(skb); 4501 return NET_XMIT_DROP; 4502 } 4503 EXPORT_SYMBOL(__dev_direct_xmit); 4504 4505 /************************************************************************* 4506 * Receiver routines 4507 *************************************************************************/ 4508 static DEFINE_PER_CPU(struct task_struct *, backlog_napi); 4509 4510 int weight_p __read_mostly = 64; /* old backlog weight */ 4511 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */ 4512 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */ 4513 4514 /* Called with irq disabled */ 4515 static inline void ____napi_schedule(struct softnet_data *sd, 4516 struct napi_struct *napi) 4517 { 4518 struct task_struct *thread; 4519 4520 lockdep_assert_irqs_disabled(); 4521 4522 if (test_bit(NAPI_STATE_THREADED, &napi->state)) { 4523 /* Paired with smp_mb__before_atomic() in 4524 * napi_enable()/dev_set_threaded(). 4525 * Use READ_ONCE() to guarantee a complete 4526 * read on napi->thread. Only call 4527 * wake_up_process() when it's not NULL. 4528 */ 4529 thread = READ_ONCE(napi->thread); 4530 if (thread) { 4531 if (use_backlog_threads() && thread == raw_cpu_read(backlog_napi)) 4532 goto use_local_napi; 4533 4534 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state); 4535 wake_up_process(thread); 4536 return; 4537 } 4538 } 4539 4540 use_local_napi: 4541 list_add_tail(&napi->poll_list, &sd->poll_list); 4542 WRITE_ONCE(napi->list_owner, smp_processor_id()); 4543 /* If not called from net_rx_action() 4544 * we have to raise NET_RX_SOFTIRQ. 4545 */ 4546 if (!sd->in_net_rx_action) 4547 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4548 } 4549 4550 #ifdef CONFIG_RPS 4551 4552 struct static_key_false rps_needed __read_mostly; 4553 EXPORT_SYMBOL(rps_needed); 4554 struct static_key_false rfs_needed __read_mostly; 4555 EXPORT_SYMBOL(rfs_needed); 4556 4557 static struct rps_dev_flow * 4558 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4559 struct rps_dev_flow *rflow, u16 next_cpu) 4560 { 4561 if (next_cpu < nr_cpu_ids) { 4562 u32 head; 4563 #ifdef CONFIG_RFS_ACCEL 4564 struct netdev_rx_queue *rxqueue; 4565 struct rps_dev_flow_table *flow_table; 4566 struct rps_dev_flow *old_rflow; 4567 u16 rxq_index; 4568 u32 flow_id; 4569 int rc; 4570 4571 /* Should we steer this flow to a different hardware queue? */ 4572 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 4573 !(dev->features & NETIF_F_NTUPLE)) 4574 goto out; 4575 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 4576 if (rxq_index == skb_get_rx_queue(skb)) 4577 goto out; 4578 4579 rxqueue = dev->_rx + rxq_index; 4580 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4581 if (!flow_table) 4582 goto out; 4583 flow_id = skb_get_hash(skb) & flow_table->mask; 4584 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 4585 rxq_index, flow_id); 4586 if (rc < 0) 4587 goto out; 4588 old_rflow = rflow; 4589 rflow = &flow_table->flows[flow_id]; 4590 WRITE_ONCE(rflow->filter, rc); 4591 if (old_rflow->filter == rc) 4592 WRITE_ONCE(old_rflow->filter, RPS_NO_FILTER); 4593 out: 4594 #endif 4595 head = READ_ONCE(per_cpu(softnet_data, next_cpu).input_queue_head); 4596 rps_input_queue_tail_save(&rflow->last_qtail, head); 4597 } 4598 4599 WRITE_ONCE(rflow->cpu, next_cpu); 4600 return rflow; 4601 } 4602 4603 /* 4604 * get_rps_cpu is called from netif_receive_skb and returns the target 4605 * CPU from the RPS map of the receiving queue for a given skb. 4606 * rcu_read_lock must be held on entry. 4607 */ 4608 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4609 struct rps_dev_flow **rflowp) 4610 { 4611 const struct rps_sock_flow_table *sock_flow_table; 4612 struct netdev_rx_queue *rxqueue = dev->_rx; 4613 struct rps_dev_flow_table *flow_table; 4614 struct rps_map *map; 4615 int cpu = -1; 4616 u32 tcpu; 4617 u32 hash; 4618 4619 if (skb_rx_queue_recorded(skb)) { 4620 u16 index = skb_get_rx_queue(skb); 4621 4622 if (unlikely(index >= dev->real_num_rx_queues)) { 4623 WARN_ONCE(dev->real_num_rx_queues > 1, 4624 "%s received packet on queue %u, but number " 4625 "of RX queues is %u\n", 4626 dev->name, index, dev->real_num_rx_queues); 4627 goto done; 4628 } 4629 rxqueue += index; 4630 } 4631 4632 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 4633 4634 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4635 map = rcu_dereference(rxqueue->rps_map); 4636 if (!flow_table && !map) 4637 goto done; 4638 4639 skb_reset_network_header(skb); 4640 hash = skb_get_hash(skb); 4641 if (!hash) 4642 goto done; 4643 4644 sock_flow_table = rcu_dereference(net_hotdata.rps_sock_flow_table); 4645 if (flow_table && sock_flow_table) { 4646 struct rps_dev_flow *rflow; 4647 u32 next_cpu; 4648 u32 ident; 4649 4650 /* First check into global flow table if there is a match. 4651 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow(). 4652 */ 4653 ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]); 4654 if ((ident ^ hash) & ~net_hotdata.rps_cpu_mask) 4655 goto try_rps; 4656 4657 next_cpu = ident & net_hotdata.rps_cpu_mask; 4658 4659 /* OK, now we know there is a match, 4660 * we can look at the local (per receive queue) flow table 4661 */ 4662 rflow = &flow_table->flows[hash & flow_table->mask]; 4663 tcpu = rflow->cpu; 4664 4665 /* 4666 * If the desired CPU (where last recvmsg was done) is 4667 * different from current CPU (one in the rx-queue flow 4668 * table entry), switch if one of the following holds: 4669 * - Current CPU is unset (>= nr_cpu_ids). 4670 * - Current CPU is offline. 4671 * - The current CPU's queue tail has advanced beyond the 4672 * last packet that was enqueued using this table entry. 4673 * This guarantees that all previous packets for the flow 4674 * have been dequeued, thus preserving in order delivery. 4675 */ 4676 if (unlikely(tcpu != next_cpu) && 4677 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 4678 ((int)(READ_ONCE(per_cpu(softnet_data, tcpu).input_queue_head) - 4679 rflow->last_qtail)) >= 0)) { 4680 tcpu = next_cpu; 4681 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 4682 } 4683 4684 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 4685 *rflowp = rflow; 4686 cpu = tcpu; 4687 goto done; 4688 } 4689 } 4690 4691 try_rps: 4692 4693 if (map) { 4694 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 4695 if (cpu_online(tcpu)) { 4696 cpu = tcpu; 4697 goto done; 4698 } 4699 } 4700 4701 done: 4702 return cpu; 4703 } 4704 4705 #ifdef CONFIG_RFS_ACCEL 4706 4707 /** 4708 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 4709 * @dev: Device on which the filter was set 4710 * @rxq_index: RX queue index 4711 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 4712 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 4713 * 4714 * Drivers that implement ndo_rx_flow_steer() should periodically call 4715 * this function for each installed filter and remove the filters for 4716 * which it returns %true. 4717 */ 4718 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 4719 u32 flow_id, u16 filter_id) 4720 { 4721 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 4722 struct rps_dev_flow_table *flow_table; 4723 struct rps_dev_flow *rflow; 4724 bool expire = true; 4725 unsigned int cpu; 4726 4727 rcu_read_lock(); 4728 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4729 if (flow_table && flow_id <= flow_table->mask) { 4730 rflow = &flow_table->flows[flow_id]; 4731 cpu = READ_ONCE(rflow->cpu); 4732 if (READ_ONCE(rflow->filter) == filter_id && cpu < nr_cpu_ids && 4733 ((int)(READ_ONCE(per_cpu(softnet_data, cpu).input_queue_head) - 4734 READ_ONCE(rflow->last_qtail)) < 4735 (int)(10 * flow_table->mask))) 4736 expire = false; 4737 } 4738 rcu_read_unlock(); 4739 return expire; 4740 } 4741 EXPORT_SYMBOL(rps_may_expire_flow); 4742 4743 #endif /* CONFIG_RFS_ACCEL */ 4744 4745 /* Called from hardirq (IPI) context */ 4746 static void rps_trigger_softirq(void *data) 4747 { 4748 struct softnet_data *sd = data; 4749 4750 ____napi_schedule(sd, &sd->backlog); 4751 sd->received_rps++; 4752 } 4753 4754 #endif /* CONFIG_RPS */ 4755 4756 /* Called from hardirq (IPI) context */ 4757 static void trigger_rx_softirq(void *data) 4758 { 4759 struct softnet_data *sd = data; 4760 4761 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4762 smp_store_release(&sd->defer_ipi_scheduled, 0); 4763 } 4764 4765 /* 4766 * After we queued a packet into sd->input_pkt_queue, 4767 * we need to make sure this queue is serviced soon. 4768 * 4769 * - If this is another cpu queue, link it to our rps_ipi_list, 4770 * and make sure we will process rps_ipi_list from net_rx_action(). 4771 * 4772 * - If this is our own queue, NAPI schedule our backlog. 4773 * Note that this also raises NET_RX_SOFTIRQ. 4774 */ 4775 static void napi_schedule_rps(struct softnet_data *sd) 4776 { 4777 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 4778 4779 #ifdef CONFIG_RPS 4780 if (sd != mysd) { 4781 if (use_backlog_threads()) { 4782 __napi_schedule_irqoff(&sd->backlog); 4783 return; 4784 } 4785 4786 sd->rps_ipi_next = mysd->rps_ipi_list; 4787 mysd->rps_ipi_list = sd; 4788 4789 /* If not called from net_rx_action() or napi_threaded_poll() 4790 * we have to raise NET_RX_SOFTIRQ. 4791 */ 4792 if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll) 4793 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4794 return; 4795 } 4796 #endif /* CONFIG_RPS */ 4797 __napi_schedule_irqoff(&mysd->backlog); 4798 } 4799 4800 void kick_defer_list_purge(struct softnet_data *sd, unsigned int cpu) 4801 { 4802 unsigned long flags; 4803 4804 if (use_backlog_threads()) { 4805 backlog_lock_irq_save(sd, &flags); 4806 4807 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) 4808 __napi_schedule_irqoff(&sd->backlog); 4809 4810 backlog_unlock_irq_restore(sd, &flags); 4811 4812 } else if (!cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) { 4813 smp_call_function_single_async(cpu, &sd->defer_csd); 4814 } 4815 } 4816 4817 #ifdef CONFIG_NET_FLOW_LIMIT 4818 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 4819 #endif 4820 4821 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 4822 { 4823 #ifdef CONFIG_NET_FLOW_LIMIT 4824 struct sd_flow_limit *fl; 4825 struct softnet_data *sd; 4826 unsigned int old_flow, new_flow; 4827 4828 if (qlen < (READ_ONCE(net_hotdata.max_backlog) >> 1)) 4829 return false; 4830 4831 sd = this_cpu_ptr(&softnet_data); 4832 4833 rcu_read_lock(); 4834 fl = rcu_dereference(sd->flow_limit); 4835 if (fl) { 4836 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); 4837 old_flow = fl->history[fl->history_head]; 4838 fl->history[fl->history_head] = new_flow; 4839 4840 fl->history_head++; 4841 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 4842 4843 if (likely(fl->buckets[old_flow])) 4844 fl->buckets[old_flow]--; 4845 4846 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 4847 fl->count++; 4848 rcu_read_unlock(); 4849 return true; 4850 } 4851 } 4852 rcu_read_unlock(); 4853 #endif 4854 return false; 4855 } 4856 4857 /* 4858 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 4859 * queue (may be a remote CPU queue). 4860 */ 4861 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 4862 unsigned int *qtail) 4863 { 4864 enum skb_drop_reason reason; 4865 struct softnet_data *sd; 4866 unsigned long flags; 4867 unsigned int qlen; 4868 int max_backlog; 4869 u32 tail; 4870 4871 reason = SKB_DROP_REASON_DEV_READY; 4872 if (!netif_running(skb->dev)) 4873 goto bad_dev; 4874 4875 reason = SKB_DROP_REASON_CPU_BACKLOG; 4876 sd = &per_cpu(softnet_data, cpu); 4877 4878 qlen = skb_queue_len_lockless(&sd->input_pkt_queue); 4879 max_backlog = READ_ONCE(net_hotdata.max_backlog); 4880 if (unlikely(qlen > max_backlog)) 4881 goto cpu_backlog_drop; 4882 backlog_lock_irq_save(sd, &flags); 4883 qlen = skb_queue_len(&sd->input_pkt_queue); 4884 if (qlen <= max_backlog && !skb_flow_limit(skb, qlen)) { 4885 if (!qlen) { 4886 /* Schedule NAPI for backlog device. We can use 4887 * non atomic operation as we own the queue lock. 4888 */ 4889 if (!__test_and_set_bit(NAPI_STATE_SCHED, 4890 &sd->backlog.state)) 4891 napi_schedule_rps(sd); 4892 } 4893 __skb_queue_tail(&sd->input_pkt_queue, skb); 4894 tail = rps_input_queue_tail_incr(sd); 4895 backlog_unlock_irq_restore(sd, &flags); 4896 4897 /* save the tail outside of the critical section */ 4898 rps_input_queue_tail_save(qtail, tail); 4899 return NET_RX_SUCCESS; 4900 } 4901 4902 backlog_unlock_irq_restore(sd, &flags); 4903 4904 cpu_backlog_drop: 4905 atomic_inc(&sd->dropped); 4906 bad_dev: 4907 dev_core_stats_rx_dropped_inc(skb->dev); 4908 kfree_skb_reason(skb, reason); 4909 return NET_RX_DROP; 4910 } 4911 4912 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb) 4913 { 4914 struct net_device *dev = skb->dev; 4915 struct netdev_rx_queue *rxqueue; 4916 4917 rxqueue = dev->_rx; 4918 4919 if (skb_rx_queue_recorded(skb)) { 4920 u16 index = skb_get_rx_queue(skb); 4921 4922 if (unlikely(index >= dev->real_num_rx_queues)) { 4923 WARN_ONCE(dev->real_num_rx_queues > 1, 4924 "%s received packet on queue %u, but number " 4925 "of RX queues is %u\n", 4926 dev->name, index, dev->real_num_rx_queues); 4927 4928 return rxqueue; /* Return first rxqueue */ 4929 } 4930 rxqueue += index; 4931 } 4932 return rxqueue; 4933 } 4934 4935 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp, 4936 struct bpf_prog *xdp_prog) 4937 { 4938 void *orig_data, *orig_data_end, *hard_start; 4939 struct netdev_rx_queue *rxqueue; 4940 bool orig_bcast, orig_host; 4941 u32 mac_len, frame_sz; 4942 __be16 orig_eth_type; 4943 struct ethhdr *eth; 4944 u32 metalen, act; 4945 int off; 4946 4947 /* The XDP program wants to see the packet starting at the MAC 4948 * header. 4949 */ 4950 mac_len = skb->data - skb_mac_header(skb); 4951 hard_start = skb->data - skb_headroom(skb); 4952 4953 /* SKB "head" area always have tailroom for skb_shared_info */ 4954 frame_sz = (void *)skb_end_pointer(skb) - hard_start; 4955 frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 4956 4957 rxqueue = netif_get_rxqueue(skb); 4958 xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq); 4959 xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len, 4960 skb_headlen(skb) + mac_len, true); 4961 if (skb_is_nonlinear(skb)) { 4962 skb_shinfo(skb)->xdp_frags_size = skb->data_len; 4963 xdp_buff_set_frags_flag(xdp); 4964 } else { 4965 xdp_buff_clear_frags_flag(xdp); 4966 } 4967 4968 orig_data_end = xdp->data_end; 4969 orig_data = xdp->data; 4970 eth = (struct ethhdr *)xdp->data; 4971 orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr); 4972 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest); 4973 orig_eth_type = eth->h_proto; 4974 4975 act = bpf_prog_run_xdp(xdp_prog, xdp); 4976 4977 /* check if bpf_xdp_adjust_head was used */ 4978 off = xdp->data - orig_data; 4979 if (off) { 4980 if (off > 0) 4981 __skb_pull(skb, off); 4982 else if (off < 0) 4983 __skb_push(skb, -off); 4984 4985 skb->mac_header += off; 4986 skb_reset_network_header(skb); 4987 } 4988 4989 /* check if bpf_xdp_adjust_tail was used */ 4990 off = xdp->data_end - orig_data_end; 4991 if (off != 0) { 4992 skb_set_tail_pointer(skb, xdp->data_end - xdp->data); 4993 skb->len += off; /* positive on grow, negative on shrink */ 4994 } 4995 4996 /* XDP frag metadata (e.g. nr_frags) are updated in eBPF helpers 4997 * (e.g. bpf_xdp_adjust_tail), we need to update data_len here. 4998 */ 4999 if (xdp_buff_has_frags(xdp)) 5000 skb->data_len = skb_shinfo(skb)->xdp_frags_size; 5001 else 5002 skb->data_len = 0; 5003 5004 /* check if XDP changed eth hdr such SKB needs update */ 5005 eth = (struct ethhdr *)xdp->data; 5006 if ((orig_eth_type != eth->h_proto) || 5007 (orig_host != ether_addr_equal_64bits(eth->h_dest, 5008 skb->dev->dev_addr)) || 5009 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) { 5010 __skb_push(skb, ETH_HLEN); 5011 skb->pkt_type = PACKET_HOST; 5012 skb->protocol = eth_type_trans(skb, skb->dev); 5013 } 5014 5015 /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull 5016 * before calling us again on redirect path. We do not call do_redirect 5017 * as we leave that up to the caller. 5018 * 5019 * Caller is responsible for managing lifetime of skb (i.e. calling 5020 * kfree_skb in response to actions it cannot handle/XDP_DROP). 5021 */ 5022 switch (act) { 5023 case XDP_REDIRECT: 5024 case XDP_TX: 5025 __skb_push(skb, mac_len); 5026 break; 5027 case XDP_PASS: 5028 metalen = xdp->data - xdp->data_meta; 5029 if (metalen) 5030 skb_metadata_set(skb, metalen); 5031 break; 5032 } 5033 5034 return act; 5035 } 5036 5037 static int 5038 netif_skb_check_for_xdp(struct sk_buff **pskb, struct bpf_prog *prog) 5039 { 5040 struct sk_buff *skb = *pskb; 5041 int err, hroom, troom; 5042 5043 if (!skb_cow_data_for_xdp(this_cpu_read(system_page_pool), pskb, prog)) 5044 return 0; 5045 5046 /* In case we have to go down the path and also linearize, 5047 * then lets do the pskb_expand_head() work just once here. 5048 */ 5049 hroom = XDP_PACKET_HEADROOM - skb_headroom(skb); 5050 troom = skb->tail + skb->data_len - skb->end; 5051 err = pskb_expand_head(skb, 5052 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0, 5053 troom > 0 ? troom + 128 : 0, GFP_ATOMIC); 5054 if (err) 5055 return err; 5056 5057 return skb_linearize(skb); 5058 } 5059 5060 static u32 netif_receive_generic_xdp(struct sk_buff **pskb, 5061 struct xdp_buff *xdp, 5062 struct bpf_prog *xdp_prog) 5063 { 5064 struct sk_buff *skb = *pskb; 5065 u32 mac_len, act = XDP_DROP; 5066 5067 /* Reinjected packets coming from act_mirred or similar should 5068 * not get XDP generic processing. 5069 */ 5070 if (skb_is_redirected(skb)) 5071 return XDP_PASS; 5072 5073 /* XDP packets must have sufficient headroom of XDP_PACKET_HEADROOM 5074 * bytes. This is the guarantee that also native XDP provides, 5075 * thus we need to do it here as well. 5076 */ 5077 mac_len = skb->data - skb_mac_header(skb); 5078 __skb_push(skb, mac_len); 5079 5080 if (skb_cloned(skb) || skb_is_nonlinear(skb) || 5081 skb_headroom(skb) < XDP_PACKET_HEADROOM) { 5082 if (netif_skb_check_for_xdp(pskb, xdp_prog)) 5083 goto do_drop; 5084 } 5085 5086 __skb_pull(*pskb, mac_len); 5087 5088 act = bpf_prog_run_generic_xdp(*pskb, xdp, xdp_prog); 5089 switch (act) { 5090 case XDP_REDIRECT: 5091 case XDP_TX: 5092 case XDP_PASS: 5093 break; 5094 default: 5095 bpf_warn_invalid_xdp_action((*pskb)->dev, xdp_prog, act); 5096 fallthrough; 5097 case XDP_ABORTED: 5098 trace_xdp_exception((*pskb)->dev, xdp_prog, act); 5099 fallthrough; 5100 case XDP_DROP: 5101 do_drop: 5102 kfree_skb(*pskb); 5103 break; 5104 } 5105 5106 return act; 5107 } 5108 5109 /* When doing generic XDP we have to bypass the qdisc layer and the 5110 * network taps in order to match in-driver-XDP behavior. This also means 5111 * that XDP packets are able to starve other packets going through a qdisc, 5112 * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX 5113 * queues, so they do not have this starvation issue. 5114 */ 5115 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog) 5116 { 5117 struct net_device *dev = skb->dev; 5118 struct netdev_queue *txq; 5119 bool free_skb = true; 5120 int cpu, rc; 5121 5122 txq = netdev_core_pick_tx(dev, skb, NULL); 5123 cpu = smp_processor_id(); 5124 HARD_TX_LOCK(dev, txq, cpu); 5125 if (!netif_xmit_frozen_or_drv_stopped(txq)) { 5126 rc = netdev_start_xmit(skb, dev, txq, 0); 5127 if (dev_xmit_complete(rc)) 5128 free_skb = false; 5129 } 5130 HARD_TX_UNLOCK(dev, txq); 5131 if (free_skb) { 5132 trace_xdp_exception(dev, xdp_prog, XDP_TX); 5133 dev_core_stats_tx_dropped_inc(dev); 5134 kfree_skb(skb); 5135 } 5136 } 5137 5138 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key); 5139 5140 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff **pskb) 5141 { 5142 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 5143 5144 if (xdp_prog) { 5145 struct xdp_buff xdp; 5146 u32 act; 5147 int err; 5148 5149 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 5150 act = netif_receive_generic_xdp(pskb, &xdp, xdp_prog); 5151 if (act != XDP_PASS) { 5152 switch (act) { 5153 case XDP_REDIRECT: 5154 err = xdp_do_generic_redirect((*pskb)->dev, *pskb, 5155 &xdp, xdp_prog); 5156 if (err) 5157 goto out_redir; 5158 break; 5159 case XDP_TX: 5160 generic_xdp_tx(*pskb, xdp_prog); 5161 break; 5162 } 5163 bpf_net_ctx_clear(bpf_net_ctx); 5164 return XDP_DROP; 5165 } 5166 bpf_net_ctx_clear(bpf_net_ctx); 5167 } 5168 return XDP_PASS; 5169 out_redir: 5170 bpf_net_ctx_clear(bpf_net_ctx); 5171 kfree_skb_reason(*pskb, SKB_DROP_REASON_XDP); 5172 return XDP_DROP; 5173 } 5174 EXPORT_SYMBOL_GPL(do_xdp_generic); 5175 5176 static int netif_rx_internal(struct sk_buff *skb) 5177 { 5178 int ret; 5179 5180 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb); 5181 5182 trace_netif_rx(skb); 5183 5184 #ifdef CONFIG_RPS 5185 if (static_branch_unlikely(&rps_needed)) { 5186 struct rps_dev_flow voidflow, *rflow = &voidflow; 5187 int cpu; 5188 5189 rcu_read_lock(); 5190 5191 cpu = get_rps_cpu(skb->dev, skb, &rflow); 5192 if (cpu < 0) 5193 cpu = smp_processor_id(); 5194 5195 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5196 5197 rcu_read_unlock(); 5198 } else 5199 #endif 5200 { 5201 unsigned int qtail; 5202 5203 ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail); 5204 } 5205 return ret; 5206 } 5207 5208 /** 5209 * __netif_rx - Slightly optimized version of netif_rx 5210 * @skb: buffer to post 5211 * 5212 * This behaves as netif_rx except that it does not disable bottom halves. 5213 * As a result this function may only be invoked from the interrupt context 5214 * (either hard or soft interrupt). 5215 */ 5216 int __netif_rx(struct sk_buff *skb) 5217 { 5218 int ret; 5219 5220 lockdep_assert_once(hardirq_count() | softirq_count()); 5221 5222 trace_netif_rx_entry(skb); 5223 ret = netif_rx_internal(skb); 5224 trace_netif_rx_exit(ret); 5225 return ret; 5226 } 5227 EXPORT_SYMBOL(__netif_rx); 5228 5229 /** 5230 * netif_rx - post buffer to the network code 5231 * @skb: buffer to post 5232 * 5233 * This function receives a packet from a device driver and queues it for 5234 * the upper (protocol) levels to process via the backlog NAPI device. It 5235 * always succeeds. The buffer may be dropped during processing for 5236 * congestion control or by the protocol layers. 5237 * The network buffer is passed via the backlog NAPI device. Modern NIC 5238 * driver should use NAPI and GRO. 5239 * This function can used from interrupt and from process context. The 5240 * caller from process context must not disable interrupts before invoking 5241 * this function. 5242 * 5243 * return values: 5244 * NET_RX_SUCCESS (no congestion) 5245 * NET_RX_DROP (packet was dropped) 5246 * 5247 */ 5248 int netif_rx(struct sk_buff *skb) 5249 { 5250 bool need_bh_off = !(hardirq_count() | softirq_count()); 5251 int ret; 5252 5253 if (need_bh_off) 5254 local_bh_disable(); 5255 trace_netif_rx_entry(skb); 5256 ret = netif_rx_internal(skb); 5257 trace_netif_rx_exit(ret); 5258 if (need_bh_off) 5259 local_bh_enable(); 5260 return ret; 5261 } 5262 EXPORT_SYMBOL(netif_rx); 5263 5264 static __latent_entropy void net_tx_action(void) 5265 { 5266 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 5267 5268 if (sd->completion_queue) { 5269 struct sk_buff *clist; 5270 5271 local_irq_disable(); 5272 clist = sd->completion_queue; 5273 sd->completion_queue = NULL; 5274 local_irq_enable(); 5275 5276 while (clist) { 5277 struct sk_buff *skb = clist; 5278 5279 clist = clist->next; 5280 5281 WARN_ON(refcount_read(&skb->users)); 5282 if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED)) 5283 trace_consume_skb(skb, net_tx_action); 5284 else 5285 trace_kfree_skb(skb, net_tx_action, 5286 get_kfree_skb_cb(skb)->reason, NULL); 5287 5288 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) 5289 __kfree_skb(skb); 5290 else 5291 __napi_kfree_skb(skb, 5292 get_kfree_skb_cb(skb)->reason); 5293 } 5294 } 5295 5296 if (sd->output_queue) { 5297 struct Qdisc *head; 5298 5299 local_irq_disable(); 5300 head = sd->output_queue; 5301 sd->output_queue = NULL; 5302 sd->output_queue_tailp = &sd->output_queue; 5303 local_irq_enable(); 5304 5305 rcu_read_lock(); 5306 5307 while (head) { 5308 struct Qdisc *q = head; 5309 spinlock_t *root_lock = NULL; 5310 5311 head = head->next_sched; 5312 5313 /* We need to make sure head->next_sched is read 5314 * before clearing __QDISC_STATE_SCHED 5315 */ 5316 smp_mb__before_atomic(); 5317 5318 if (!(q->flags & TCQ_F_NOLOCK)) { 5319 root_lock = qdisc_lock(q); 5320 spin_lock(root_lock); 5321 } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, 5322 &q->state))) { 5323 /* There is a synchronize_net() between 5324 * STATE_DEACTIVATED flag being set and 5325 * qdisc_reset()/some_qdisc_is_busy() in 5326 * dev_deactivate(), so we can safely bail out 5327 * early here to avoid data race between 5328 * qdisc_deactivate() and some_qdisc_is_busy() 5329 * for lockless qdisc. 5330 */ 5331 clear_bit(__QDISC_STATE_SCHED, &q->state); 5332 continue; 5333 } 5334 5335 clear_bit(__QDISC_STATE_SCHED, &q->state); 5336 qdisc_run(q); 5337 if (root_lock) 5338 spin_unlock(root_lock); 5339 } 5340 5341 rcu_read_unlock(); 5342 } 5343 5344 xfrm_dev_backlog(sd); 5345 } 5346 5347 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE) 5348 /* This hook is defined here for ATM LANE */ 5349 int (*br_fdb_test_addr_hook)(struct net_device *dev, 5350 unsigned char *addr) __read_mostly; 5351 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 5352 #endif 5353 5354 /** 5355 * netdev_is_rx_handler_busy - check if receive handler is registered 5356 * @dev: device to check 5357 * 5358 * Check if a receive handler is already registered for a given device. 5359 * Return true if there one. 5360 * 5361 * The caller must hold the rtnl_mutex. 5362 */ 5363 bool netdev_is_rx_handler_busy(struct net_device *dev) 5364 { 5365 ASSERT_RTNL(); 5366 return dev && rtnl_dereference(dev->rx_handler); 5367 } 5368 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy); 5369 5370 /** 5371 * netdev_rx_handler_register - register receive handler 5372 * @dev: device to register a handler for 5373 * @rx_handler: receive handler to register 5374 * @rx_handler_data: data pointer that is used by rx handler 5375 * 5376 * Register a receive handler for a device. This handler will then be 5377 * called from __netif_receive_skb. A negative errno code is returned 5378 * on a failure. 5379 * 5380 * The caller must hold the rtnl_mutex. 5381 * 5382 * For a general description of rx_handler, see enum rx_handler_result. 5383 */ 5384 int netdev_rx_handler_register(struct net_device *dev, 5385 rx_handler_func_t *rx_handler, 5386 void *rx_handler_data) 5387 { 5388 if (netdev_is_rx_handler_busy(dev)) 5389 return -EBUSY; 5390 5391 if (dev->priv_flags & IFF_NO_RX_HANDLER) 5392 return -EINVAL; 5393 5394 /* Note: rx_handler_data must be set before rx_handler */ 5395 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 5396 rcu_assign_pointer(dev->rx_handler, rx_handler); 5397 5398 return 0; 5399 } 5400 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 5401 5402 /** 5403 * netdev_rx_handler_unregister - unregister receive handler 5404 * @dev: device to unregister a handler from 5405 * 5406 * Unregister a receive handler from a device. 5407 * 5408 * The caller must hold the rtnl_mutex. 5409 */ 5410 void netdev_rx_handler_unregister(struct net_device *dev) 5411 { 5412 5413 ASSERT_RTNL(); 5414 RCU_INIT_POINTER(dev->rx_handler, NULL); 5415 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 5416 * section has a guarantee to see a non NULL rx_handler_data 5417 * as well. 5418 */ 5419 synchronize_net(); 5420 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 5421 } 5422 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 5423 5424 /* 5425 * Limit the use of PFMEMALLOC reserves to those protocols that implement 5426 * the special handling of PFMEMALLOC skbs. 5427 */ 5428 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 5429 { 5430 switch (skb->protocol) { 5431 case htons(ETH_P_ARP): 5432 case htons(ETH_P_IP): 5433 case htons(ETH_P_IPV6): 5434 case htons(ETH_P_8021Q): 5435 case htons(ETH_P_8021AD): 5436 return true; 5437 default: 5438 return false; 5439 } 5440 } 5441 5442 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, 5443 int *ret, struct net_device *orig_dev) 5444 { 5445 if (nf_hook_ingress_active(skb)) { 5446 int ingress_retval; 5447 5448 if (*pt_prev) { 5449 *ret = deliver_skb(skb, *pt_prev, orig_dev); 5450 *pt_prev = NULL; 5451 } 5452 5453 rcu_read_lock(); 5454 ingress_retval = nf_hook_ingress(skb); 5455 rcu_read_unlock(); 5456 return ingress_retval; 5457 } 5458 return 0; 5459 } 5460 5461 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc, 5462 struct packet_type **ppt_prev) 5463 { 5464 struct packet_type *ptype, *pt_prev; 5465 rx_handler_func_t *rx_handler; 5466 struct sk_buff *skb = *pskb; 5467 struct net_device *orig_dev; 5468 bool deliver_exact = false; 5469 int ret = NET_RX_DROP; 5470 __be16 type; 5471 5472 net_timestamp_check(!READ_ONCE(net_hotdata.tstamp_prequeue), skb); 5473 5474 trace_netif_receive_skb(skb); 5475 5476 orig_dev = skb->dev; 5477 5478 skb_reset_network_header(skb); 5479 if (!skb_transport_header_was_set(skb)) 5480 skb_reset_transport_header(skb); 5481 skb_reset_mac_len(skb); 5482 5483 pt_prev = NULL; 5484 5485 another_round: 5486 skb->skb_iif = skb->dev->ifindex; 5487 5488 __this_cpu_inc(softnet_data.processed); 5489 5490 if (static_branch_unlikely(&generic_xdp_needed_key)) { 5491 int ret2; 5492 5493 migrate_disable(); 5494 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), 5495 &skb); 5496 migrate_enable(); 5497 5498 if (ret2 != XDP_PASS) { 5499 ret = NET_RX_DROP; 5500 goto out; 5501 } 5502 } 5503 5504 if (eth_type_vlan(skb->protocol)) { 5505 skb = skb_vlan_untag(skb); 5506 if (unlikely(!skb)) 5507 goto out; 5508 } 5509 5510 if (skb_skip_tc_classify(skb)) 5511 goto skip_classify; 5512 5513 if (pfmemalloc) 5514 goto skip_taps; 5515 5516 list_for_each_entry_rcu(ptype, &net_hotdata.ptype_all, list) { 5517 if (pt_prev) 5518 ret = deliver_skb(skb, pt_prev, orig_dev); 5519 pt_prev = ptype; 5520 } 5521 5522 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 5523 if (pt_prev) 5524 ret = deliver_skb(skb, pt_prev, orig_dev); 5525 pt_prev = ptype; 5526 } 5527 5528 skip_taps: 5529 #ifdef CONFIG_NET_INGRESS 5530 if (static_branch_unlikely(&ingress_needed_key)) { 5531 bool another = false; 5532 5533 nf_skip_egress(skb, true); 5534 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev, 5535 &another); 5536 if (another) 5537 goto another_round; 5538 if (!skb) 5539 goto out; 5540 5541 nf_skip_egress(skb, false); 5542 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) 5543 goto out; 5544 } 5545 #endif 5546 skb_reset_redirect(skb); 5547 skip_classify: 5548 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 5549 goto drop; 5550 5551 if (skb_vlan_tag_present(skb)) { 5552 if (pt_prev) { 5553 ret = deliver_skb(skb, pt_prev, orig_dev); 5554 pt_prev = NULL; 5555 } 5556 if (vlan_do_receive(&skb)) 5557 goto another_round; 5558 else if (unlikely(!skb)) 5559 goto out; 5560 } 5561 5562 rx_handler = rcu_dereference(skb->dev->rx_handler); 5563 if (rx_handler) { 5564 if (pt_prev) { 5565 ret = deliver_skb(skb, pt_prev, orig_dev); 5566 pt_prev = NULL; 5567 } 5568 switch (rx_handler(&skb)) { 5569 case RX_HANDLER_CONSUMED: 5570 ret = NET_RX_SUCCESS; 5571 goto out; 5572 case RX_HANDLER_ANOTHER: 5573 goto another_round; 5574 case RX_HANDLER_EXACT: 5575 deliver_exact = true; 5576 break; 5577 case RX_HANDLER_PASS: 5578 break; 5579 default: 5580 BUG(); 5581 } 5582 } 5583 5584 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) { 5585 check_vlan_id: 5586 if (skb_vlan_tag_get_id(skb)) { 5587 /* Vlan id is non 0 and vlan_do_receive() above couldn't 5588 * find vlan device. 5589 */ 5590 skb->pkt_type = PACKET_OTHERHOST; 5591 } else if (eth_type_vlan(skb->protocol)) { 5592 /* Outer header is 802.1P with vlan 0, inner header is 5593 * 802.1Q or 802.1AD and vlan_do_receive() above could 5594 * not find vlan dev for vlan id 0. 5595 */ 5596 __vlan_hwaccel_clear_tag(skb); 5597 skb = skb_vlan_untag(skb); 5598 if (unlikely(!skb)) 5599 goto out; 5600 if (vlan_do_receive(&skb)) 5601 /* After stripping off 802.1P header with vlan 0 5602 * vlan dev is found for inner header. 5603 */ 5604 goto another_round; 5605 else if (unlikely(!skb)) 5606 goto out; 5607 else 5608 /* We have stripped outer 802.1P vlan 0 header. 5609 * But could not find vlan dev. 5610 * check again for vlan id to set OTHERHOST. 5611 */ 5612 goto check_vlan_id; 5613 } 5614 /* Note: we might in the future use prio bits 5615 * and set skb->priority like in vlan_do_receive() 5616 * For the time being, just ignore Priority Code Point 5617 */ 5618 __vlan_hwaccel_clear_tag(skb); 5619 } 5620 5621 type = skb->protocol; 5622 5623 /* deliver only exact match when indicated */ 5624 if (likely(!deliver_exact)) { 5625 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5626 &ptype_base[ntohs(type) & 5627 PTYPE_HASH_MASK]); 5628 } 5629 5630 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5631 &orig_dev->ptype_specific); 5632 5633 if (unlikely(skb->dev != orig_dev)) { 5634 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5635 &skb->dev->ptype_specific); 5636 } 5637 5638 if (pt_prev) { 5639 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 5640 goto drop; 5641 *ppt_prev = pt_prev; 5642 } else { 5643 drop: 5644 if (!deliver_exact) 5645 dev_core_stats_rx_dropped_inc(skb->dev); 5646 else 5647 dev_core_stats_rx_nohandler_inc(skb->dev); 5648 kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO); 5649 /* Jamal, now you will not able to escape explaining 5650 * me how you were going to use this. :-) 5651 */ 5652 ret = NET_RX_DROP; 5653 } 5654 5655 out: 5656 /* The invariant here is that if *ppt_prev is not NULL 5657 * then skb should also be non-NULL. 5658 * 5659 * Apparently *ppt_prev assignment above holds this invariant due to 5660 * skb dereferencing near it. 5661 */ 5662 *pskb = skb; 5663 return ret; 5664 } 5665 5666 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc) 5667 { 5668 struct net_device *orig_dev = skb->dev; 5669 struct packet_type *pt_prev = NULL; 5670 int ret; 5671 5672 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev); 5673 if (pt_prev) 5674 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb, 5675 skb->dev, pt_prev, orig_dev); 5676 return ret; 5677 } 5678 5679 /** 5680 * netif_receive_skb_core - special purpose version of netif_receive_skb 5681 * @skb: buffer to process 5682 * 5683 * More direct receive version of netif_receive_skb(). It should 5684 * only be used by callers that have a need to skip RPS and Generic XDP. 5685 * Caller must also take care of handling if ``(page_is_)pfmemalloc``. 5686 * 5687 * This function may only be called from softirq context and interrupts 5688 * should be enabled. 5689 * 5690 * Return values (usually ignored): 5691 * NET_RX_SUCCESS: no congestion 5692 * NET_RX_DROP: packet was dropped 5693 */ 5694 int netif_receive_skb_core(struct sk_buff *skb) 5695 { 5696 int ret; 5697 5698 rcu_read_lock(); 5699 ret = __netif_receive_skb_one_core(skb, false); 5700 rcu_read_unlock(); 5701 5702 return ret; 5703 } 5704 EXPORT_SYMBOL(netif_receive_skb_core); 5705 5706 static inline void __netif_receive_skb_list_ptype(struct list_head *head, 5707 struct packet_type *pt_prev, 5708 struct net_device *orig_dev) 5709 { 5710 struct sk_buff *skb, *next; 5711 5712 if (!pt_prev) 5713 return; 5714 if (list_empty(head)) 5715 return; 5716 if (pt_prev->list_func != NULL) 5717 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv, 5718 ip_list_rcv, head, pt_prev, orig_dev); 5719 else 5720 list_for_each_entry_safe(skb, next, head, list) { 5721 skb_list_del_init(skb); 5722 pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 5723 } 5724 } 5725 5726 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc) 5727 { 5728 /* Fast-path assumptions: 5729 * - There is no RX handler. 5730 * - Only one packet_type matches. 5731 * If either of these fails, we will end up doing some per-packet 5732 * processing in-line, then handling the 'last ptype' for the whole 5733 * sublist. This can't cause out-of-order delivery to any single ptype, 5734 * because the 'last ptype' must be constant across the sublist, and all 5735 * other ptypes are handled per-packet. 5736 */ 5737 /* Current (common) ptype of sublist */ 5738 struct packet_type *pt_curr = NULL; 5739 /* Current (common) orig_dev of sublist */ 5740 struct net_device *od_curr = NULL; 5741 struct sk_buff *skb, *next; 5742 LIST_HEAD(sublist); 5743 5744 list_for_each_entry_safe(skb, next, head, list) { 5745 struct net_device *orig_dev = skb->dev; 5746 struct packet_type *pt_prev = NULL; 5747 5748 skb_list_del_init(skb); 5749 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev); 5750 if (!pt_prev) 5751 continue; 5752 if (pt_curr != pt_prev || od_curr != orig_dev) { 5753 /* dispatch old sublist */ 5754 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 5755 /* start new sublist */ 5756 INIT_LIST_HEAD(&sublist); 5757 pt_curr = pt_prev; 5758 od_curr = orig_dev; 5759 } 5760 list_add_tail(&skb->list, &sublist); 5761 } 5762 5763 /* dispatch final sublist */ 5764 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 5765 } 5766 5767 static int __netif_receive_skb(struct sk_buff *skb) 5768 { 5769 int ret; 5770 5771 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 5772 unsigned int noreclaim_flag; 5773 5774 /* 5775 * PFMEMALLOC skbs are special, they should 5776 * - be delivered to SOCK_MEMALLOC sockets only 5777 * - stay away from userspace 5778 * - have bounded memory usage 5779 * 5780 * Use PF_MEMALLOC as this saves us from propagating the allocation 5781 * context down to all allocation sites. 5782 */ 5783 noreclaim_flag = memalloc_noreclaim_save(); 5784 ret = __netif_receive_skb_one_core(skb, true); 5785 memalloc_noreclaim_restore(noreclaim_flag); 5786 } else 5787 ret = __netif_receive_skb_one_core(skb, false); 5788 5789 return ret; 5790 } 5791 5792 static void __netif_receive_skb_list(struct list_head *head) 5793 { 5794 unsigned long noreclaim_flag = 0; 5795 struct sk_buff *skb, *next; 5796 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */ 5797 5798 list_for_each_entry_safe(skb, next, head, list) { 5799 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) { 5800 struct list_head sublist; 5801 5802 /* Handle the previous sublist */ 5803 list_cut_before(&sublist, head, &skb->list); 5804 if (!list_empty(&sublist)) 5805 __netif_receive_skb_list_core(&sublist, pfmemalloc); 5806 pfmemalloc = !pfmemalloc; 5807 /* See comments in __netif_receive_skb */ 5808 if (pfmemalloc) 5809 noreclaim_flag = memalloc_noreclaim_save(); 5810 else 5811 memalloc_noreclaim_restore(noreclaim_flag); 5812 } 5813 } 5814 /* Handle the remaining sublist */ 5815 if (!list_empty(head)) 5816 __netif_receive_skb_list_core(head, pfmemalloc); 5817 /* Restore pflags */ 5818 if (pfmemalloc) 5819 memalloc_noreclaim_restore(noreclaim_flag); 5820 } 5821 5822 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp) 5823 { 5824 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog); 5825 struct bpf_prog *new = xdp->prog; 5826 int ret = 0; 5827 5828 switch (xdp->command) { 5829 case XDP_SETUP_PROG: 5830 rcu_assign_pointer(dev->xdp_prog, new); 5831 if (old) 5832 bpf_prog_put(old); 5833 5834 if (old && !new) { 5835 static_branch_dec(&generic_xdp_needed_key); 5836 } else if (new && !old) { 5837 static_branch_inc(&generic_xdp_needed_key); 5838 dev_disable_lro(dev); 5839 dev_disable_gro_hw(dev); 5840 } 5841 break; 5842 5843 default: 5844 ret = -EINVAL; 5845 break; 5846 } 5847 5848 return ret; 5849 } 5850 5851 static int netif_receive_skb_internal(struct sk_buff *skb) 5852 { 5853 int ret; 5854 5855 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb); 5856 5857 if (skb_defer_rx_timestamp(skb)) 5858 return NET_RX_SUCCESS; 5859 5860 rcu_read_lock(); 5861 #ifdef CONFIG_RPS 5862 if (static_branch_unlikely(&rps_needed)) { 5863 struct rps_dev_flow voidflow, *rflow = &voidflow; 5864 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 5865 5866 if (cpu >= 0) { 5867 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5868 rcu_read_unlock(); 5869 return ret; 5870 } 5871 } 5872 #endif 5873 ret = __netif_receive_skb(skb); 5874 rcu_read_unlock(); 5875 return ret; 5876 } 5877 5878 void netif_receive_skb_list_internal(struct list_head *head) 5879 { 5880 struct sk_buff *skb, *next; 5881 LIST_HEAD(sublist); 5882 5883 list_for_each_entry_safe(skb, next, head, list) { 5884 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), 5885 skb); 5886 skb_list_del_init(skb); 5887 if (!skb_defer_rx_timestamp(skb)) 5888 list_add_tail(&skb->list, &sublist); 5889 } 5890 list_splice_init(&sublist, head); 5891 5892 rcu_read_lock(); 5893 #ifdef CONFIG_RPS 5894 if (static_branch_unlikely(&rps_needed)) { 5895 list_for_each_entry_safe(skb, next, head, list) { 5896 struct rps_dev_flow voidflow, *rflow = &voidflow; 5897 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 5898 5899 if (cpu >= 0) { 5900 /* Will be handled, remove from list */ 5901 skb_list_del_init(skb); 5902 enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5903 } 5904 } 5905 } 5906 #endif 5907 __netif_receive_skb_list(head); 5908 rcu_read_unlock(); 5909 } 5910 5911 /** 5912 * netif_receive_skb - process receive buffer from network 5913 * @skb: buffer to process 5914 * 5915 * netif_receive_skb() is the main receive data processing function. 5916 * It always succeeds. The buffer may be dropped during processing 5917 * for congestion control or by the protocol layers. 5918 * 5919 * This function may only be called from softirq context and interrupts 5920 * should be enabled. 5921 * 5922 * Return values (usually ignored): 5923 * NET_RX_SUCCESS: no congestion 5924 * NET_RX_DROP: packet was dropped 5925 */ 5926 int netif_receive_skb(struct sk_buff *skb) 5927 { 5928 int ret; 5929 5930 trace_netif_receive_skb_entry(skb); 5931 5932 ret = netif_receive_skb_internal(skb); 5933 trace_netif_receive_skb_exit(ret); 5934 5935 return ret; 5936 } 5937 EXPORT_SYMBOL(netif_receive_skb); 5938 5939 /** 5940 * netif_receive_skb_list - process many receive buffers from network 5941 * @head: list of skbs to process. 5942 * 5943 * Since return value of netif_receive_skb() is normally ignored, and 5944 * wouldn't be meaningful for a list, this function returns void. 5945 * 5946 * This function may only be called from softirq context and interrupts 5947 * should be enabled. 5948 */ 5949 void netif_receive_skb_list(struct list_head *head) 5950 { 5951 struct sk_buff *skb; 5952 5953 if (list_empty(head)) 5954 return; 5955 if (trace_netif_receive_skb_list_entry_enabled()) { 5956 list_for_each_entry(skb, head, list) 5957 trace_netif_receive_skb_list_entry(skb); 5958 } 5959 netif_receive_skb_list_internal(head); 5960 trace_netif_receive_skb_list_exit(0); 5961 } 5962 EXPORT_SYMBOL(netif_receive_skb_list); 5963 5964 static DEFINE_PER_CPU(struct work_struct, flush_works); 5965 5966 /* Network device is going away, flush any packets still pending */ 5967 static void flush_backlog(struct work_struct *work) 5968 { 5969 struct sk_buff *skb, *tmp; 5970 struct softnet_data *sd; 5971 5972 local_bh_disable(); 5973 sd = this_cpu_ptr(&softnet_data); 5974 5975 backlog_lock_irq_disable(sd); 5976 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 5977 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 5978 __skb_unlink(skb, &sd->input_pkt_queue); 5979 dev_kfree_skb_irq(skb); 5980 rps_input_queue_head_incr(sd); 5981 } 5982 } 5983 backlog_unlock_irq_enable(sd); 5984 5985 local_lock_nested_bh(&softnet_data.process_queue_bh_lock); 5986 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 5987 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 5988 __skb_unlink(skb, &sd->process_queue); 5989 kfree_skb(skb); 5990 rps_input_queue_head_incr(sd); 5991 } 5992 } 5993 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock); 5994 local_bh_enable(); 5995 } 5996 5997 static bool flush_required(int cpu) 5998 { 5999 #if IS_ENABLED(CONFIG_RPS) 6000 struct softnet_data *sd = &per_cpu(softnet_data, cpu); 6001 bool do_flush; 6002 6003 backlog_lock_irq_disable(sd); 6004 6005 /* as insertion into process_queue happens with the rps lock held, 6006 * process_queue access may race only with dequeue 6007 */ 6008 do_flush = !skb_queue_empty(&sd->input_pkt_queue) || 6009 !skb_queue_empty_lockless(&sd->process_queue); 6010 backlog_unlock_irq_enable(sd); 6011 6012 return do_flush; 6013 #endif 6014 /* without RPS we can't safely check input_pkt_queue: during a 6015 * concurrent remote skb_queue_splice() we can detect as empty both 6016 * input_pkt_queue and process_queue even if the latter could end-up 6017 * containing a lot of packets. 6018 */ 6019 return true; 6020 } 6021 6022 static void flush_all_backlogs(void) 6023 { 6024 static cpumask_t flush_cpus; 6025 unsigned int cpu; 6026 6027 /* since we are under rtnl lock protection we can use static data 6028 * for the cpumask and avoid allocating on stack the possibly 6029 * large mask 6030 */ 6031 ASSERT_RTNL(); 6032 6033 cpus_read_lock(); 6034 6035 cpumask_clear(&flush_cpus); 6036 for_each_online_cpu(cpu) { 6037 if (flush_required(cpu)) { 6038 queue_work_on(cpu, system_highpri_wq, 6039 per_cpu_ptr(&flush_works, cpu)); 6040 cpumask_set_cpu(cpu, &flush_cpus); 6041 } 6042 } 6043 6044 /* we can have in flight packet[s] on the cpus we are not flushing, 6045 * synchronize_net() in unregister_netdevice_many() will take care of 6046 * them 6047 */ 6048 for_each_cpu(cpu, &flush_cpus) 6049 flush_work(per_cpu_ptr(&flush_works, cpu)); 6050 6051 cpus_read_unlock(); 6052 } 6053 6054 static void net_rps_send_ipi(struct softnet_data *remsd) 6055 { 6056 #ifdef CONFIG_RPS 6057 while (remsd) { 6058 struct softnet_data *next = remsd->rps_ipi_next; 6059 6060 if (cpu_online(remsd->cpu)) 6061 smp_call_function_single_async(remsd->cpu, &remsd->csd); 6062 remsd = next; 6063 } 6064 #endif 6065 } 6066 6067 /* 6068 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 6069 * Note: called with local irq disabled, but exits with local irq enabled. 6070 */ 6071 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 6072 { 6073 #ifdef CONFIG_RPS 6074 struct softnet_data *remsd = sd->rps_ipi_list; 6075 6076 if (!use_backlog_threads() && remsd) { 6077 sd->rps_ipi_list = NULL; 6078 6079 local_irq_enable(); 6080 6081 /* Send pending IPI's to kick RPS processing on remote cpus. */ 6082 net_rps_send_ipi(remsd); 6083 } else 6084 #endif 6085 local_irq_enable(); 6086 } 6087 6088 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 6089 { 6090 #ifdef CONFIG_RPS 6091 return !use_backlog_threads() && sd->rps_ipi_list; 6092 #else 6093 return false; 6094 #endif 6095 } 6096 6097 static int process_backlog(struct napi_struct *napi, int quota) 6098 { 6099 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 6100 bool again = true; 6101 int work = 0; 6102 6103 /* Check if we have pending ipi, its better to send them now, 6104 * not waiting net_rx_action() end. 6105 */ 6106 if (sd_has_rps_ipi_waiting(sd)) { 6107 local_irq_disable(); 6108 net_rps_action_and_irq_enable(sd); 6109 } 6110 6111 napi->weight = READ_ONCE(net_hotdata.dev_rx_weight); 6112 while (again) { 6113 struct sk_buff *skb; 6114 6115 local_lock_nested_bh(&softnet_data.process_queue_bh_lock); 6116 while ((skb = __skb_dequeue(&sd->process_queue))) { 6117 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock); 6118 rcu_read_lock(); 6119 __netif_receive_skb(skb); 6120 rcu_read_unlock(); 6121 if (++work >= quota) { 6122 rps_input_queue_head_add(sd, work); 6123 return work; 6124 } 6125 6126 local_lock_nested_bh(&softnet_data.process_queue_bh_lock); 6127 } 6128 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock); 6129 6130 backlog_lock_irq_disable(sd); 6131 if (skb_queue_empty(&sd->input_pkt_queue)) { 6132 /* 6133 * Inline a custom version of __napi_complete(). 6134 * only current cpu owns and manipulates this napi, 6135 * and NAPI_STATE_SCHED is the only possible flag set 6136 * on backlog. 6137 * We can use a plain write instead of clear_bit(), 6138 * and we dont need an smp_mb() memory barrier. 6139 */ 6140 napi->state &= NAPIF_STATE_THREADED; 6141 again = false; 6142 } else { 6143 local_lock_nested_bh(&softnet_data.process_queue_bh_lock); 6144 skb_queue_splice_tail_init(&sd->input_pkt_queue, 6145 &sd->process_queue); 6146 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock); 6147 } 6148 backlog_unlock_irq_enable(sd); 6149 } 6150 6151 if (work) 6152 rps_input_queue_head_add(sd, work); 6153 return work; 6154 } 6155 6156 /** 6157 * __napi_schedule - schedule for receive 6158 * @n: entry to schedule 6159 * 6160 * The entry's receive function will be scheduled to run. 6161 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 6162 */ 6163 void __napi_schedule(struct napi_struct *n) 6164 { 6165 unsigned long flags; 6166 6167 local_irq_save(flags); 6168 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 6169 local_irq_restore(flags); 6170 } 6171 EXPORT_SYMBOL(__napi_schedule); 6172 6173 /** 6174 * napi_schedule_prep - check if napi can be scheduled 6175 * @n: napi context 6176 * 6177 * Test if NAPI routine is already running, and if not mark 6178 * it as running. This is used as a condition variable to 6179 * insure only one NAPI poll instance runs. We also make 6180 * sure there is no pending NAPI disable. 6181 */ 6182 bool napi_schedule_prep(struct napi_struct *n) 6183 { 6184 unsigned long new, val = READ_ONCE(n->state); 6185 6186 do { 6187 if (unlikely(val & NAPIF_STATE_DISABLE)) 6188 return false; 6189 new = val | NAPIF_STATE_SCHED; 6190 6191 /* Sets STATE_MISSED bit if STATE_SCHED was already set 6192 * This was suggested by Alexander Duyck, as compiler 6193 * emits better code than : 6194 * if (val & NAPIF_STATE_SCHED) 6195 * new |= NAPIF_STATE_MISSED; 6196 */ 6197 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED * 6198 NAPIF_STATE_MISSED; 6199 } while (!try_cmpxchg(&n->state, &val, new)); 6200 6201 return !(val & NAPIF_STATE_SCHED); 6202 } 6203 EXPORT_SYMBOL(napi_schedule_prep); 6204 6205 /** 6206 * __napi_schedule_irqoff - schedule for receive 6207 * @n: entry to schedule 6208 * 6209 * Variant of __napi_schedule() assuming hard irqs are masked. 6210 * 6211 * On PREEMPT_RT enabled kernels this maps to __napi_schedule() 6212 * because the interrupt disabled assumption might not be true 6213 * due to force-threaded interrupts and spinlock substitution. 6214 */ 6215 void __napi_schedule_irqoff(struct napi_struct *n) 6216 { 6217 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6218 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 6219 else 6220 __napi_schedule(n); 6221 } 6222 EXPORT_SYMBOL(__napi_schedule_irqoff); 6223 6224 bool napi_complete_done(struct napi_struct *n, int work_done) 6225 { 6226 unsigned long flags, val, new, timeout = 0; 6227 bool ret = true; 6228 6229 /* 6230 * 1) Don't let napi dequeue from the cpu poll list 6231 * just in case its running on a different cpu. 6232 * 2) If we are busy polling, do nothing here, we have 6233 * the guarantee we will be called later. 6234 */ 6235 if (unlikely(n->state & (NAPIF_STATE_NPSVC | 6236 NAPIF_STATE_IN_BUSY_POLL))) 6237 return false; 6238 6239 if (work_done) { 6240 if (n->gro_bitmask) 6241 timeout = napi_get_gro_flush_timeout(n); 6242 n->defer_hard_irqs_count = napi_get_defer_hard_irqs(n); 6243 } 6244 if (n->defer_hard_irqs_count > 0) { 6245 n->defer_hard_irqs_count--; 6246 timeout = napi_get_gro_flush_timeout(n); 6247 if (timeout) 6248 ret = false; 6249 } 6250 if (n->gro_bitmask) { 6251 /* When the NAPI instance uses a timeout and keeps postponing 6252 * it, we need to bound somehow the time packets are kept in 6253 * the GRO layer 6254 */ 6255 napi_gro_flush(n, !!timeout); 6256 } 6257 6258 gro_normal_list(n); 6259 6260 if (unlikely(!list_empty(&n->poll_list))) { 6261 /* If n->poll_list is not empty, we need to mask irqs */ 6262 local_irq_save(flags); 6263 list_del_init(&n->poll_list); 6264 local_irq_restore(flags); 6265 } 6266 WRITE_ONCE(n->list_owner, -1); 6267 6268 val = READ_ONCE(n->state); 6269 do { 6270 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED)); 6271 6272 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED | 6273 NAPIF_STATE_SCHED_THREADED | 6274 NAPIF_STATE_PREFER_BUSY_POLL); 6275 6276 /* If STATE_MISSED was set, leave STATE_SCHED set, 6277 * because we will call napi->poll() one more time. 6278 * This C code was suggested by Alexander Duyck to help gcc. 6279 */ 6280 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED * 6281 NAPIF_STATE_SCHED; 6282 } while (!try_cmpxchg(&n->state, &val, new)); 6283 6284 if (unlikely(val & NAPIF_STATE_MISSED)) { 6285 __napi_schedule(n); 6286 return false; 6287 } 6288 6289 if (timeout) 6290 hrtimer_start(&n->timer, ns_to_ktime(timeout), 6291 HRTIMER_MODE_REL_PINNED); 6292 return ret; 6293 } 6294 EXPORT_SYMBOL(napi_complete_done); 6295 6296 /* must be called under rcu_read_lock(), as we dont take a reference */ 6297 struct napi_struct *napi_by_id(unsigned int napi_id) 6298 { 6299 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 6300 struct napi_struct *napi; 6301 6302 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 6303 if (napi->napi_id == napi_id) 6304 return napi; 6305 6306 return NULL; 6307 } 6308 6309 static void skb_defer_free_flush(struct softnet_data *sd) 6310 { 6311 struct sk_buff *skb, *next; 6312 6313 /* Paired with WRITE_ONCE() in skb_attempt_defer_free() */ 6314 if (!READ_ONCE(sd->defer_list)) 6315 return; 6316 6317 spin_lock(&sd->defer_lock); 6318 skb = sd->defer_list; 6319 sd->defer_list = NULL; 6320 sd->defer_count = 0; 6321 spin_unlock(&sd->defer_lock); 6322 6323 while (skb != NULL) { 6324 next = skb->next; 6325 napi_consume_skb(skb, 1); 6326 skb = next; 6327 } 6328 } 6329 6330 #if defined(CONFIG_NET_RX_BUSY_POLL) 6331 6332 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule) 6333 { 6334 if (!skip_schedule) { 6335 gro_normal_list(napi); 6336 __napi_schedule(napi); 6337 return; 6338 } 6339 6340 if (napi->gro_bitmask) { 6341 /* flush too old packets 6342 * If HZ < 1000, flush all packets. 6343 */ 6344 napi_gro_flush(napi, HZ >= 1000); 6345 } 6346 6347 gro_normal_list(napi); 6348 clear_bit(NAPI_STATE_SCHED, &napi->state); 6349 } 6350 6351 enum { 6352 NAPI_F_PREFER_BUSY_POLL = 1, 6353 NAPI_F_END_ON_RESCHED = 2, 6354 }; 6355 6356 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, 6357 unsigned flags, u16 budget) 6358 { 6359 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 6360 bool skip_schedule = false; 6361 unsigned long timeout; 6362 int rc; 6363 6364 /* Busy polling means there is a high chance device driver hard irq 6365 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was 6366 * set in napi_schedule_prep(). 6367 * Since we are about to call napi->poll() once more, we can safely 6368 * clear NAPI_STATE_MISSED. 6369 * 6370 * Note: x86 could use a single "lock and ..." instruction 6371 * to perform these two clear_bit() 6372 */ 6373 clear_bit(NAPI_STATE_MISSED, &napi->state); 6374 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state); 6375 6376 local_bh_disable(); 6377 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 6378 6379 if (flags & NAPI_F_PREFER_BUSY_POLL) { 6380 napi->defer_hard_irqs_count = napi_get_defer_hard_irqs(napi); 6381 timeout = napi_get_gro_flush_timeout(napi); 6382 if (napi->defer_hard_irqs_count && timeout) { 6383 hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED); 6384 skip_schedule = true; 6385 } 6386 } 6387 6388 /* All we really want here is to re-enable device interrupts. 6389 * Ideally, a new ndo_busy_poll_stop() could avoid another round. 6390 */ 6391 rc = napi->poll(napi, budget); 6392 /* We can't gro_normal_list() here, because napi->poll() might have 6393 * rearmed the napi (napi_complete_done()) in which case it could 6394 * already be running on another CPU. 6395 */ 6396 trace_napi_poll(napi, rc, budget); 6397 netpoll_poll_unlock(have_poll_lock); 6398 if (rc == budget) 6399 __busy_poll_stop(napi, skip_schedule); 6400 bpf_net_ctx_clear(bpf_net_ctx); 6401 local_bh_enable(); 6402 } 6403 6404 static void __napi_busy_loop(unsigned int napi_id, 6405 bool (*loop_end)(void *, unsigned long), 6406 void *loop_end_arg, unsigned flags, u16 budget) 6407 { 6408 unsigned long start_time = loop_end ? busy_loop_current_time() : 0; 6409 int (*napi_poll)(struct napi_struct *napi, int budget); 6410 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 6411 void *have_poll_lock = NULL; 6412 struct napi_struct *napi; 6413 6414 WARN_ON_ONCE(!rcu_read_lock_held()); 6415 6416 restart: 6417 napi_poll = NULL; 6418 6419 napi = napi_by_id(napi_id); 6420 if (!napi) 6421 return; 6422 6423 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6424 preempt_disable(); 6425 for (;;) { 6426 int work = 0; 6427 6428 local_bh_disable(); 6429 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 6430 if (!napi_poll) { 6431 unsigned long val = READ_ONCE(napi->state); 6432 6433 /* If multiple threads are competing for this napi, 6434 * we avoid dirtying napi->state as much as we can. 6435 */ 6436 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED | 6437 NAPIF_STATE_IN_BUSY_POLL)) { 6438 if (flags & NAPI_F_PREFER_BUSY_POLL) 6439 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6440 goto count; 6441 } 6442 if (cmpxchg(&napi->state, val, 6443 val | NAPIF_STATE_IN_BUSY_POLL | 6444 NAPIF_STATE_SCHED) != val) { 6445 if (flags & NAPI_F_PREFER_BUSY_POLL) 6446 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6447 goto count; 6448 } 6449 have_poll_lock = netpoll_poll_lock(napi); 6450 napi_poll = napi->poll; 6451 } 6452 work = napi_poll(napi, budget); 6453 trace_napi_poll(napi, work, budget); 6454 gro_normal_list(napi); 6455 count: 6456 if (work > 0) 6457 __NET_ADD_STATS(dev_net(napi->dev), 6458 LINUX_MIB_BUSYPOLLRXPACKETS, work); 6459 skb_defer_free_flush(this_cpu_ptr(&softnet_data)); 6460 bpf_net_ctx_clear(bpf_net_ctx); 6461 local_bh_enable(); 6462 6463 if (!loop_end || loop_end(loop_end_arg, start_time)) 6464 break; 6465 6466 if (unlikely(need_resched())) { 6467 if (flags & NAPI_F_END_ON_RESCHED) 6468 break; 6469 if (napi_poll) 6470 busy_poll_stop(napi, have_poll_lock, flags, budget); 6471 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6472 preempt_enable(); 6473 rcu_read_unlock(); 6474 cond_resched(); 6475 rcu_read_lock(); 6476 if (loop_end(loop_end_arg, start_time)) 6477 return; 6478 goto restart; 6479 } 6480 cpu_relax(); 6481 } 6482 if (napi_poll) 6483 busy_poll_stop(napi, have_poll_lock, flags, budget); 6484 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6485 preempt_enable(); 6486 } 6487 6488 void napi_busy_loop_rcu(unsigned int napi_id, 6489 bool (*loop_end)(void *, unsigned long), 6490 void *loop_end_arg, bool prefer_busy_poll, u16 budget) 6491 { 6492 unsigned flags = NAPI_F_END_ON_RESCHED; 6493 6494 if (prefer_busy_poll) 6495 flags |= NAPI_F_PREFER_BUSY_POLL; 6496 6497 __napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget); 6498 } 6499 6500 void napi_busy_loop(unsigned int napi_id, 6501 bool (*loop_end)(void *, unsigned long), 6502 void *loop_end_arg, bool prefer_busy_poll, u16 budget) 6503 { 6504 unsigned flags = prefer_busy_poll ? NAPI_F_PREFER_BUSY_POLL : 0; 6505 6506 rcu_read_lock(); 6507 __napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget); 6508 rcu_read_unlock(); 6509 } 6510 EXPORT_SYMBOL(napi_busy_loop); 6511 6512 void napi_suspend_irqs(unsigned int napi_id) 6513 { 6514 struct napi_struct *napi; 6515 6516 rcu_read_lock(); 6517 napi = napi_by_id(napi_id); 6518 if (napi) { 6519 unsigned long timeout = napi_get_irq_suspend_timeout(napi); 6520 6521 if (timeout) 6522 hrtimer_start(&napi->timer, ns_to_ktime(timeout), 6523 HRTIMER_MODE_REL_PINNED); 6524 } 6525 rcu_read_unlock(); 6526 } 6527 6528 void napi_resume_irqs(unsigned int napi_id) 6529 { 6530 struct napi_struct *napi; 6531 6532 rcu_read_lock(); 6533 napi = napi_by_id(napi_id); 6534 if (napi) { 6535 /* If irq_suspend_timeout is set to 0 between the call to 6536 * napi_suspend_irqs and now, the original value still 6537 * determines the safety timeout as intended and napi_watchdog 6538 * will resume irq processing. 6539 */ 6540 if (napi_get_irq_suspend_timeout(napi)) { 6541 local_bh_disable(); 6542 napi_schedule(napi); 6543 local_bh_enable(); 6544 } 6545 } 6546 rcu_read_unlock(); 6547 } 6548 6549 #endif /* CONFIG_NET_RX_BUSY_POLL */ 6550 6551 static void __napi_hash_add_with_id(struct napi_struct *napi, 6552 unsigned int napi_id) 6553 { 6554 napi->napi_id = napi_id; 6555 hlist_add_head_rcu(&napi->napi_hash_node, 6556 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 6557 } 6558 6559 static void napi_hash_add_with_id(struct napi_struct *napi, 6560 unsigned int napi_id) 6561 { 6562 unsigned long flags; 6563 6564 spin_lock_irqsave(&napi_hash_lock, flags); 6565 WARN_ON_ONCE(napi_by_id(napi_id)); 6566 __napi_hash_add_with_id(napi, napi_id); 6567 spin_unlock_irqrestore(&napi_hash_lock, flags); 6568 } 6569 6570 static void napi_hash_add(struct napi_struct *napi) 6571 { 6572 unsigned long flags; 6573 6574 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state)) 6575 return; 6576 6577 spin_lock_irqsave(&napi_hash_lock, flags); 6578 6579 /* 0..NR_CPUS range is reserved for sender_cpu use */ 6580 do { 6581 if (unlikely(++napi_gen_id < MIN_NAPI_ID)) 6582 napi_gen_id = MIN_NAPI_ID; 6583 } while (napi_by_id(napi_gen_id)); 6584 6585 __napi_hash_add_with_id(napi, napi_gen_id); 6586 6587 spin_unlock_irqrestore(&napi_hash_lock, flags); 6588 } 6589 6590 /* Warning : caller is responsible to make sure rcu grace period 6591 * is respected before freeing memory containing @napi 6592 */ 6593 static void napi_hash_del(struct napi_struct *napi) 6594 { 6595 unsigned long flags; 6596 6597 spin_lock_irqsave(&napi_hash_lock, flags); 6598 6599 hlist_del_init_rcu(&napi->napi_hash_node); 6600 6601 spin_unlock_irqrestore(&napi_hash_lock, flags); 6602 } 6603 6604 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 6605 { 6606 struct napi_struct *napi; 6607 6608 napi = container_of(timer, struct napi_struct, timer); 6609 6610 /* Note : we use a relaxed variant of napi_schedule_prep() not setting 6611 * NAPI_STATE_MISSED, since we do not react to a device IRQ. 6612 */ 6613 if (!napi_disable_pending(napi) && 6614 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) { 6615 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6616 __napi_schedule_irqoff(napi); 6617 } 6618 6619 return HRTIMER_NORESTART; 6620 } 6621 6622 static void init_gro_hash(struct napi_struct *napi) 6623 { 6624 int i; 6625 6626 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 6627 INIT_LIST_HEAD(&napi->gro_hash[i].list); 6628 napi->gro_hash[i].count = 0; 6629 } 6630 napi->gro_bitmask = 0; 6631 } 6632 6633 int dev_set_threaded(struct net_device *dev, bool threaded) 6634 { 6635 struct napi_struct *napi; 6636 int err = 0; 6637 6638 if (dev->threaded == threaded) 6639 return 0; 6640 6641 if (threaded) { 6642 list_for_each_entry(napi, &dev->napi_list, dev_list) { 6643 if (!napi->thread) { 6644 err = napi_kthread_create(napi); 6645 if (err) { 6646 threaded = false; 6647 break; 6648 } 6649 } 6650 } 6651 } 6652 6653 WRITE_ONCE(dev->threaded, threaded); 6654 6655 /* Make sure kthread is created before THREADED bit 6656 * is set. 6657 */ 6658 smp_mb__before_atomic(); 6659 6660 /* Setting/unsetting threaded mode on a napi might not immediately 6661 * take effect, if the current napi instance is actively being 6662 * polled. In this case, the switch between threaded mode and 6663 * softirq mode will happen in the next round of napi_schedule(). 6664 * This should not cause hiccups/stalls to the live traffic. 6665 */ 6666 list_for_each_entry(napi, &dev->napi_list, dev_list) 6667 assign_bit(NAPI_STATE_THREADED, &napi->state, threaded); 6668 6669 return err; 6670 } 6671 EXPORT_SYMBOL(dev_set_threaded); 6672 6673 /** 6674 * netif_queue_set_napi - Associate queue with the napi 6675 * @dev: device to which NAPI and queue belong 6676 * @queue_index: Index of queue 6677 * @type: queue type as RX or TX 6678 * @napi: NAPI context, pass NULL to clear previously set NAPI 6679 * 6680 * Set queue with its corresponding napi context. This should be done after 6681 * registering the NAPI handler for the queue-vector and the queues have been 6682 * mapped to the corresponding interrupt vector. 6683 */ 6684 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index, 6685 enum netdev_queue_type type, struct napi_struct *napi) 6686 { 6687 struct netdev_rx_queue *rxq; 6688 struct netdev_queue *txq; 6689 6690 if (WARN_ON_ONCE(napi && !napi->dev)) 6691 return; 6692 if (dev->reg_state >= NETREG_REGISTERED) 6693 ASSERT_RTNL(); 6694 6695 switch (type) { 6696 case NETDEV_QUEUE_TYPE_RX: 6697 rxq = __netif_get_rx_queue(dev, queue_index); 6698 rxq->napi = napi; 6699 return; 6700 case NETDEV_QUEUE_TYPE_TX: 6701 txq = netdev_get_tx_queue(dev, queue_index); 6702 txq->napi = napi; 6703 return; 6704 default: 6705 return; 6706 } 6707 } 6708 EXPORT_SYMBOL(netif_queue_set_napi); 6709 6710 static void napi_restore_config(struct napi_struct *n) 6711 { 6712 n->defer_hard_irqs = n->config->defer_hard_irqs; 6713 n->gro_flush_timeout = n->config->gro_flush_timeout; 6714 n->irq_suspend_timeout = n->config->irq_suspend_timeout; 6715 /* a NAPI ID might be stored in the config, if so use it. if not, use 6716 * napi_hash_add to generate one for us. It will be saved to the config 6717 * in napi_disable. 6718 */ 6719 if (n->config->napi_id) 6720 napi_hash_add_with_id(n, n->config->napi_id); 6721 else 6722 napi_hash_add(n); 6723 } 6724 6725 static void napi_save_config(struct napi_struct *n) 6726 { 6727 n->config->defer_hard_irqs = n->defer_hard_irqs; 6728 n->config->gro_flush_timeout = n->gro_flush_timeout; 6729 n->config->irq_suspend_timeout = n->irq_suspend_timeout; 6730 n->config->napi_id = n->napi_id; 6731 napi_hash_del(n); 6732 } 6733 6734 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi, 6735 int (*poll)(struct napi_struct *, int), int weight) 6736 { 6737 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state))) 6738 return; 6739 6740 INIT_LIST_HEAD(&napi->poll_list); 6741 INIT_HLIST_NODE(&napi->napi_hash_node); 6742 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 6743 napi->timer.function = napi_watchdog; 6744 init_gro_hash(napi); 6745 napi->skb = NULL; 6746 INIT_LIST_HEAD(&napi->rx_list); 6747 napi->rx_count = 0; 6748 napi->poll = poll; 6749 if (weight > NAPI_POLL_WEIGHT) 6750 netdev_err_once(dev, "%s() called with weight %d\n", __func__, 6751 weight); 6752 napi->weight = weight; 6753 napi->dev = dev; 6754 #ifdef CONFIG_NETPOLL 6755 napi->poll_owner = -1; 6756 #endif 6757 napi->list_owner = -1; 6758 set_bit(NAPI_STATE_SCHED, &napi->state); 6759 set_bit(NAPI_STATE_NPSVC, &napi->state); 6760 list_add_rcu(&napi->dev_list, &dev->napi_list); 6761 6762 /* default settings from sysfs are applied to all NAPIs. any per-NAPI 6763 * configuration will be loaded in napi_enable 6764 */ 6765 napi_set_defer_hard_irqs(napi, READ_ONCE(dev->napi_defer_hard_irqs)); 6766 napi_set_gro_flush_timeout(napi, READ_ONCE(dev->gro_flush_timeout)); 6767 6768 napi_get_frags_check(napi); 6769 /* Create kthread for this napi if dev->threaded is set. 6770 * Clear dev->threaded if kthread creation failed so that 6771 * threaded mode will not be enabled in napi_enable(). 6772 */ 6773 if (dev->threaded && napi_kthread_create(napi)) 6774 dev->threaded = false; 6775 netif_napi_set_irq(napi, -1); 6776 } 6777 EXPORT_SYMBOL(netif_napi_add_weight); 6778 6779 void napi_disable(struct napi_struct *n) 6780 { 6781 unsigned long val, new; 6782 6783 might_sleep(); 6784 set_bit(NAPI_STATE_DISABLE, &n->state); 6785 6786 val = READ_ONCE(n->state); 6787 do { 6788 while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) { 6789 usleep_range(20, 200); 6790 val = READ_ONCE(n->state); 6791 } 6792 6793 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC; 6794 new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL); 6795 } while (!try_cmpxchg(&n->state, &val, new)); 6796 6797 hrtimer_cancel(&n->timer); 6798 6799 if (n->config) 6800 napi_save_config(n); 6801 else 6802 napi_hash_del(n); 6803 6804 clear_bit(NAPI_STATE_DISABLE, &n->state); 6805 } 6806 EXPORT_SYMBOL(napi_disable); 6807 6808 /** 6809 * napi_enable - enable NAPI scheduling 6810 * @n: NAPI context 6811 * 6812 * Resume NAPI from being scheduled on this context. 6813 * Must be paired with napi_disable. 6814 */ 6815 void napi_enable(struct napi_struct *n) 6816 { 6817 unsigned long new, val = READ_ONCE(n->state); 6818 6819 if (n->config) 6820 napi_restore_config(n); 6821 else 6822 napi_hash_add(n); 6823 6824 do { 6825 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val)); 6826 6827 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC); 6828 if (n->dev->threaded && n->thread) 6829 new |= NAPIF_STATE_THREADED; 6830 } while (!try_cmpxchg(&n->state, &val, new)); 6831 } 6832 EXPORT_SYMBOL(napi_enable); 6833 6834 static void flush_gro_hash(struct napi_struct *napi) 6835 { 6836 int i; 6837 6838 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 6839 struct sk_buff *skb, *n; 6840 6841 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list) 6842 kfree_skb(skb); 6843 napi->gro_hash[i].count = 0; 6844 } 6845 } 6846 6847 /* Must be called in process context */ 6848 void __netif_napi_del(struct napi_struct *napi) 6849 { 6850 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state)) 6851 return; 6852 6853 if (napi->config) { 6854 napi->index = -1; 6855 napi->config = NULL; 6856 } 6857 6858 list_del_rcu(&napi->dev_list); 6859 napi_free_frags(napi); 6860 6861 flush_gro_hash(napi); 6862 napi->gro_bitmask = 0; 6863 6864 if (napi->thread) { 6865 kthread_stop(napi->thread); 6866 napi->thread = NULL; 6867 } 6868 } 6869 EXPORT_SYMBOL(__netif_napi_del); 6870 6871 static int __napi_poll(struct napi_struct *n, bool *repoll) 6872 { 6873 int work, weight; 6874 6875 weight = n->weight; 6876 6877 /* This NAPI_STATE_SCHED test is for avoiding a race 6878 * with netpoll's poll_napi(). Only the entity which 6879 * obtains the lock and sees NAPI_STATE_SCHED set will 6880 * actually make the ->poll() call. Therefore we avoid 6881 * accidentally calling ->poll() when NAPI is not scheduled. 6882 */ 6883 work = 0; 6884 if (napi_is_scheduled(n)) { 6885 work = n->poll(n, weight); 6886 trace_napi_poll(n, work, weight); 6887 6888 xdp_do_check_flushed(n); 6889 } 6890 6891 if (unlikely(work > weight)) 6892 netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n", 6893 n->poll, work, weight); 6894 6895 if (likely(work < weight)) 6896 return work; 6897 6898 /* Drivers must not modify the NAPI state if they 6899 * consume the entire weight. In such cases this code 6900 * still "owns" the NAPI instance and therefore can 6901 * move the instance around on the list at-will. 6902 */ 6903 if (unlikely(napi_disable_pending(n))) { 6904 napi_complete(n); 6905 return work; 6906 } 6907 6908 /* The NAPI context has more processing work, but busy-polling 6909 * is preferred. Exit early. 6910 */ 6911 if (napi_prefer_busy_poll(n)) { 6912 if (napi_complete_done(n, work)) { 6913 /* If timeout is not set, we need to make sure 6914 * that the NAPI is re-scheduled. 6915 */ 6916 napi_schedule(n); 6917 } 6918 return work; 6919 } 6920 6921 if (n->gro_bitmask) { 6922 /* flush too old packets 6923 * If HZ < 1000, flush all packets. 6924 */ 6925 napi_gro_flush(n, HZ >= 1000); 6926 } 6927 6928 gro_normal_list(n); 6929 6930 /* Some drivers may have called napi_schedule 6931 * prior to exhausting their budget. 6932 */ 6933 if (unlikely(!list_empty(&n->poll_list))) { 6934 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 6935 n->dev ? n->dev->name : "backlog"); 6936 return work; 6937 } 6938 6939 *repoll = true; 6940 6941 return work; 6942 } 6943 6944 static int napi_poll(struct napi_struct *n, struct list_head *repoll) 6945 { 6946 bool do_repoll = false; 6947 void *have; 6948 int work; 6949 6950 list_del_init(&n->poll_list); 6951 6952 have = netpoll_poll_lock(n); 6953 6954 work = __napi_poll(n, &do_repoll); 6955 6956 if (do_repoll) 6957 list_add_tail(&n->poll_list, repoll); 6958 6959 netpoll_poll_unlock(have); 6960 6961 return work; 6962 } 6963 6964 static int napi_thread_wait(struct napi_struct *napi) 6965 { 6966 set_current_state(TASK_INTERRUPTIBLE); 6967 6968 while (!kthread_should_stop()) { 6969 /* Testing SCHED_THREADED bit here to make sure the current 6970 * kthread owns this napi and could poll on this napi. 6971 * Testing SCHED bit is not enough because SCHED bit might be 6972 * set by some other busy poll thread or by napi_disable(). 6973 */ 6974 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state)) { 6975 WARN_ON(!list_empty(&napi->poll_list)); 6976 __set_current_state(TASK_RUNNING); 6977 return 0; 6978 } 6979 6980 schedule(); 6981 set_current_state(TASK_INTERRUPTIBLE); 6982 } 6983 __set_current_state(TASK_RUNNING); 6984 6985 return -1; 6986 } 6987 6988 static void napi_threaded_poll_loop(struct napi_struct *napi) 6989 { 6990 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 6991 struct softnet_data *sd; 6992 unsigned long last_qs = jiffies; 6993 6994 for (;;) { 6995 bool repoll = false; 6996 void *have; 6997 6998 local_bh_disable(); 6999 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 7000 7001 sd = this_cpu_ptr(&softnet_data); 7002 sd->in_napi_threaded_poll = true; 7003 7004 have = netpoll_poll_lock(napi); 7005 __napi_poll(napi, &repoll); 7006 netpoll_poll_unlock(have); 7007 7008 sd->in_napi_threaded_poll = false; 7009 barrier(); 7010 7011 if (sd_has_rps_ipi_waiting(sd)) { 7012 local_irq_disable(); 7013 net_rps_action_and_irq_enable(sd); 7014 } 7015 skb_defer_free_flush(sd); 7016 bpf_net_ctx_clear(bpf_net_ctx); 7017 local_bh_enable(); 7018 7019 if (!repoll) 7020 break; 7021 7022 rcu_softirq_qs_periodic(last_qs); 7023 cond_resched(); 7024 } 7025 } 7026 7027 static int napi_threaded_poll(void *data) 7028 { 7029 struct napi_struct *napi = data; 7030 7031 while (!napi_thread_wait(napi)) 7032 napi_threaded_poll_loop(napi); 7033 7034 return 0; 7035 } 7036 7037 static __latent_entropy void net_rx_action(void) 7038 { 7039 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 7040 unsigned long time_limit = jiffies + 7041 usecs_to_jiffies(READ_ONCE(net_hotdata.netdev_budget_usecs)); 7042 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 7043 int budget = READ_ONCE(net_hotdata.netdev_budget); 7044 LIST_HEAD(list); 7045 LIST_HEAD(repoll); 7046 7047 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 7048 start: 7049 sd->in_net_rx_action = true; 7050 local_irq_disable(); 7051 list_splice_init(&sd->poll_list, &list); 7052 local_irq_enable(); 7053 7054 for (;;) { 7055 struct napi_struct *n; 7056 7057 skb_defer_free_flush(sd); 7058 7059 if (list_empty(&list)) { 7060 if (list_empty(&repoll)) { 7061 sd->in_net_rx_action = false; 7062 barrier(); 7063 /* We need to check if ____napi_schedule() 7064 * had refilled poll_list while 7065 * sd->in_net_rx_action was true. 7066 */ 7067 if (!list_empty(&sd->poll_list)) 7068 goto start; 7069 if (!sd_has_rps_ipi_waiting(sd)) 7070 goto end; 7071 } 7072 break; 7073 } 7074 7075 n = list_first_entry(&list, struct napi_struct, poll_list); 7076 budget -= napi_poll(n, &repoll); 7077 7078 /* If softirq window is exhausted then punt. 7079 * Allow this to run for 2 jiffies since which will allow 7080 * an average latency of 1.5/HZ. 7081 */ 7082 if (unlikely(budget <= 0 || 7083 time_after_eq(jiffies, time_limit))) { 7084 sd->time_squeeze++; 7085 break; 7086 } 7087 } 7088 7089 local_irq_disable(); 7090 7091 list_splice_tail_init(&sd->poll_list, &list); 7092 list_splice_tail(&repoll, &list); 7093 list_splice(&list, &sd->poll_list); 7094 if (!list_empty(&sd->poll_list)) 7095 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 7096 else 7097 sd->in_net_rx_action = false; 7098 7099 net_rps_action_and_irq_enable(sd); 7100 end: 7101 bpf_net_ctx_clear(bpf_net_ctx); 7102 } 7103 7104 struct netdev_adjacent { 7105 struct net_device *dev; 7106 netdevice_tracker dev_tracker; 7107 7108 /* upper master flag, there can only be one master device per list */ 7109 bool master; 7110 7111 /* lookup ignore flag */ 7112 bool ignore; 7113 7114 /* counter for the number of times this device was added to us */ 7115 u16 ref_nr; 7116 7117 /* private field for the users */ 7118 void *private; 7119 7120 struct list_head list; 7121 struct rcu_head rcu; 7122 }; 7123 7124 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, 7125 struct list_head *adj_list) 7126 { 7127 struct netdev_adjacent *adj; 7128 7129 list_for_each_entry(adj, adj_list, list) { 7130 if (adj->dev == adj_dev) 7131 return adj; 7132 } 7133 return NULL; 7134 } 7135 7136 static int ____netdev_has_upper_dev(struct net_device *upper_dev, 7137 struct netdev_nested_priv *priv) 7138 { 7139 struct net_device *dev = (struct net_device *)priv->data; 7140 7141 return upper_dev == dev; 7142 } 7143 7144 /** 7145 * netdev_has_upper_dev - Check if device is linked to an upper device 7146 * @dev: device 7147 * @upper_dev: upper device to check 7148 * 7149 * Find out if a device is linked to specified upper device and return true 7150 * in case it is. Note that this checks only immediate upper device, 7151 * not through a complete stack of devices. The caller must hold the RTNL lock. 7152 */ 7153 bool netdev_has_upper_dev(struct net_device *dev, 7154 struct net_device *upper_dev) 7155 { 7156 struct netdev_nested_priv priv = { 7157 .data = (void *)upper_dev, 7158 }; 7159 7160 ASSERT_RTNL(); 7161 7162 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev, 7163 &priv); 7164 } 7165 EXPORT_SYMBOL(netdev_has_upper_dev); 7166 7167 /** 7168 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device 7169 * @dev: device 7170 * @upper_dev: upper device to check 7171 * 7172 * Find out if a device is linked to specified upper device and return true 7173 * in case it is. Note that this checks the entire upper device chain. 7174 * The caller must hold rcu lock. 7175 */ 7176 7177 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 7178 struct net_device *upper_dev) 7179 { 7180 struct netdev_nested_priv priv = { 7181 .data = (void *)upper_dev, 7182 }; 7183 7184 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev, 7185 &priv); 7186 } 7187 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu); 7188 7189 /** 7190 * netdev_has_any_upper_dev - Check if device is linked to some device 7191 * @dev: device 7192 * 7193 * Find out if a device is linked to an upper device and return true in case 7194 * it is. The caller must hold the RTNL lock. 7195 */ 7196 bool netdev_has_any_upper_dev(struct net_device *dev) 7197 { 7198 ASSERT_RTNL(); 7199 7200 return !list_empty(&dev->adj_list.upper); 7201 } 7202 EXPORT_SYMBOL(netdev_has_any_upper_dev); 7203 7204 /** 7205 * netdev_master_upper_dev_get - Get master upper device 7206 * @dev: device 7207 * 7208 * Find a master upper device and return pointer to it or NULL in case 7209 * it's not there. The caller must hold the RTNL lock. 7210 */ 7211 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 7212 { 7213 struct netdev_adjacent *upper; 7214 7215 ASSERT_RTNL(); 7216 7217 if (list_empty(&dev->adj_list.upper)) 7218 return NULL; 7219 7220 upper = list_first_entry(&dev->adj_list.upper, 7221 struct netdev_adjacent, list); 7222 if (likely(upper->master)) 7223 return upper->dev; 7224 return NULL; 7225 } 7226 EXPORT_SYMBOL(netdev_master_upper_dev_get); 7227 7228 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev) 7229 { 7230 struct netdev_adjacent *upper; 7231 7232 ASSERT_RTNL(); 7233 7234 if (list_empty(&dev->adj_list.upper)) 7235 return NULL; 7236 7237 upper = list_first_entry(&dev->adj_list.upper, 7238 struct netdev_adjacent, list); 7239 if (likely(upper->master) && !upper->ignore) 7240 return upper->dev; 7241 return NULL; 7242 } 7243 7244 /** 7245 * netdev_has_any_lower_dev - Check if device is linked to some device 7246 * @dev: device 7247 * 7248 * Find out if a device is linked to a lower device and return true in case 7249 * it is. The caller must hold the RTNL lock. 7250 */ 7251 static bool netdev_has_any_lower_dev(struct net_device *dev) 7252 { 7253 ASSERT_RTNL(); 7254 7255 return !list_empty(&dev->adj_list.lower); 7256 } 7257 7258 void *netdev_adjacent_get_private(struct list_head *adj_list) 7259 { 7260 struct netdev_adjacent *adj; 7261 7262 adj = list_entry(adj_list, struct netdev_adjacent, list); 7263 7264 return adj->private; 7265 } 7266 EXPORT_SYMBOL(netdev_adjacent_get_private); 7267 7268 /** 7269 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 7270 * @dev: device 7271 * @iter: list_head ** of the current position 7272 * 7273 * Gets the next device from the dev's upper list, starting from iter 7274 * position. The caller must hold RCU read lock. 7275 */ 7276 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 7277 struct list_head **iter) 7278 { 7279 struct netdev_adjacent *upper; 7280 7281 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 7282 7283 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7284 7285 if (&upper->list == &dev->adj_list.upper) 7286 return NULL; 7287 7288 *iter = &upper->list; 7289 7290 return upper->dev; 7291 } 7292 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 7293 7294 static struct net_device *__netdev_next_upper_dev(struct net_device *dev, 7295 struct list_head **iter, 7296 bool *ignore) 7297 { 7298 struct netdev_adjacent *upper; 7299 7300 upper = list_entry((*iter)->next, struct netdev_adjacent, list); 7301 7302 if (&upper->list == &dev->adj_list.upper) 7303 return NULL; 7304 7305 *iter = &upper->list; 7306 *ignore = upper->ignore; 7307 7308 return upper->dev; 7309 } 7310 7311 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev, 7312 struct list_head **iter) 7313 { 7314 struct netdev_adjacent *upper; 7315 7316 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 7317 7318 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7319 7320 if (&upper->list == &dev->adj_list.upper) 7321 return NULL; 7322 7323 *iter = &upper->list; 7324 7325 return upper->dev; 7326 } 7327 7328 static int __netdev_walk_all_upper_dev(struct net_device *dev, 7329 int (*fn)(struct net_device *dev, 7330 struct netdev_nested_priv *priv), 7331 struct netdev_nested_priv *priv) 7332 { 7333 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7334 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7335 int ret, cur = 0; 7336 bool ignore; 7337 7338 now = dev; 7339 iter = &dev->adj_list.upper; 7340 7341 while (1) { 7342 if (now != dev) { 7343 ret = fn(now, priv); 7344 if (ret) 7345 return ret; 7346 } 7347 7348 next = NULL; 7349 while (1) { 7350 udev = __netdev_next_upper_dev(now, &iter, &ignore); 7351 if (!udev) 7352 break; 7353 if (ignore) 7354 continue; 7355 7356 next = udev; 7357 niter = &udev->adj_list.upper; 7358 dev_stack[cur] = now; 7359 iter_stack[cur++] = iter; 7360 break; 7361 } 7362 7363 if (!next) { 7364 if (!cur) 7365 return 0; 7366 next = dev_stack[--cur]; 7367 niter = iter_stack[cur]; 7368 } 7369 7370 now = next; 7371 iter = niter; 7372 } 7373 7374 return 0; 7375 } 7376 7377 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 7378 int (*fn)(struct net_device *dev, 7379 struct netdev_nested_priv *priv), 7380 struct netdev_nested_priv *priv) 7381 { 7382 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7383 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7384 int ret, cur = 0; 7385 7386 now = dev; 7387 iter = &dev->adj_list.upper; 7388 7389 while (1) { 7390 if (now != dev) { 7391 ret = fn(now, priv); 7392 if (ret) 7393 return ret; 7394 } 7395 7396 next = NULL; 7397 while (1) { 7398 udev = netdev_next_upper_dev_rcu(now, &iter); 7399 if (!udev) 7400 break; 7401 7402 next = udev; 7403 niter = &udev->adj_list.upper; 7404 dev_stack[cur] = now; 7405 iter_stack[cur++] = iter; 7406 break; 7407 } 7408 7409 if (!next) { 7410 if (!cur) 7411 return 0; 7412 next = dev_stack[--cur]; 7413 niter = iter_stack[cur]; 7414 } 7415 7416 now = next; 7417 iter = niter; 7418 } 7419 7420 return 0; 7421 } 7422 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu); 7423 7424 static bool __netdev_has_upper_dev(struct net_device *dev, 7425 struct net_device *upper_dev) 7426 { 7427 struct netdev_nested_priv priv = { 7428 .flags = 0, 7429 .data = (void *)upper_dev, 7430 }; 7431 7432 ASSERT_RTNL(); 7433 7434 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev, 7435 &priv); 7436 } 7437 7438 /** 7439 * netdev_lower_get_next_private - Get the next ->private from the 7440 * lower neighbour list 7441 * @dev: device 7442 * @iter: list_head ** of the current position 7443 * 7444 * Gets the next netdev_adjacent->private from the dev's lower neighbour 7445 * list, starting from iter position. The caller must hold either hold the 7446 * RTNL lock or its own locking that guarantees that the neighbour lower 7447 * list will remain unchanged. 7448 */ 7449 void *netdev_lower_get_next_private(struct net_device *dev, 7450 struct list_head **iter) 7451 { 7452 struct netdev_adjacent *lower; 7453 7454 lower = list_entry(*iter, struct netdev_adjacent, list); 7455 7456 if (&lower->list == &dev->adj_list.lower) 7457 return NULL; 7458 7459 *iter = lower->list.next; 7460 7461 return lower->private; 7462 } 7463 EXPORT_SYMBOL(netdev_lower_get_next_private); 7464 7465 /** 7466 * netdev_lower_get_next_private_rcu - Get the next ->private from the 7467 * lower neighbour list, RCU 7468 * variant 7469 * @dev: device 7470 * @iter: list_head ** of the current position 7471 * 7472 * Gets the next netdev_adjacent->private from the dev's lower neighbour 7473 * list, starting from iter position. The caller must hold RCU read lock. 7474 */ 7475 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 7476 struct list_head **iter) 7477 { 7478 struct netdev_adjacent *lower; 7479 7480 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 7481 7482 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7483 7484 if (&lower->list == &dev->adj_list.lower) 7485 return NULL; 7486 7487 *iter = &lower->list; 7488 7489 return lower->private; 7490 } 7491 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 7492 7493 /** 7494 * netdev_lower_get_next - Get the next device from the lower neighbour 7495 * list 7496 * @dev: device 7497 * @iter: list_head ** of the current position 7498 * 7499 * Gets the next netdev_adjacent from the dev's lower neighbour 7500 * list, starting from iter position. The caller must hold RTNL lock or 7501 * its own locking that guarantees that the neighbour lower 7502 * list will remain unchanged. 7503 */ 7504 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 7505 { 7506 struct netdev_adjacent *lower; 7507 7508 lower = list_entry(*iter, struct netdev_adjacent, list); 7509 7510 if (&lower->list == &dev->adj_list.lower) 7511 return NULL; 7512 7513 *iter = lower->list.next; 7514 7515 return lower->dev; 7516 } 7517 EXPORT_SYMBOL(netdev_lower_get_next); 7518 7519 static struct net_device *netdev_next_lower_dev(struct net_device *dev, 7520 struct list_head **iter) 7521 { 7522 struct netdev_adjacent *lower; 7523 7524 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 7525 7526 if (&lower->list == &dev->adj_list.lower) 7527 return NULL; 7528 7529 *iter = &lower->list; 7530 7531 return lower->dev; 7532 } 7533 7534 static struct net_device *__netdev_next_lower_dev(struct net_device *dev, 7535 struct list_head **iter, 7536 bool *ignore) 7537 { 7538 struct netdev_adjacent *lower; 7539 7540 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 7541 7542 if (&lower->list == &dev->adj_list.lower) 7543 return NULL; 7544 7545 *iter = &lower->list; 7546 *ignore = lower->ignore; 7547 7548 return lower->dev; 7549 } 7550 7551 int netdev_walk_all_lower_dev(struct net_device *dev, 7552 int (*fn)(struct net_device *dev, 7553 struct netdev_nested_priv *priv), 7554 struct netdev_nested_priv *priv) 7555 { 7556 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7557 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7558 int ret, cur = 0; 7559 7560 now = dev; 7561 iter = &dev->adj_list.lower; 7562 7563 while (1) { 7564 if (now != dev) { 7565 ret = fn(now, priv); 7566 if (ret) 7567 return ret; 7568 } 7569 7570 next = NULL; 7571 while (1) { 7572 ldev = netdev_next_lower_dev(now, &iter); 7573 if (!ldev) 7574 break; 7575 7576 next = ldev; 7577 niter = &ldev->adj_list.lower; 7578 dev_stack[cur] = now; 7579 iter_stack[cur++] = iter; 7580 break; 7581 } 7582 7583 if (!next) { 7584 if (!cur) 7585 return 0; 7586 next = dev_stack[--cur]; 7587 niter = iter_stack[cur]; 7588 } 7589 7590 now = next; 7591 iter = niter; 7592 } 7593 7594 return 0; 7595 } 7596 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev); 7597 7598 static int __netdev_walk_all_lower_dev(struct net_device *dev, 7599 int (*fn)(struct net_device *dev, 7600 struct netdev_nested_priv *priv), 7601 struct netdev_nested_priv *priv) 7602 { 7603 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7604 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7605 int ret, cur = 0; 7606 bool ignore; 7607 7608 now = dev; 7609 iter = &dev->adj_list.lower; 7610 7611 while (1) { 7612 if (now != dev) { 7613 ret = fn(now, priv); 7614 if (ret) 7615 return ret; 7616 } 7617 7618 next = NULL; 7619 while (1) { 7620 ldev = __netdev_next_lower_dev(now, &iter, &ignore); 7621 if (!ldev) 7622 break; 7623 if (ignore) 7624 continue; 7625 7626 next = ldev; 7627 niter = &ldev->adj_list.lower; 7628 dev_stack[cur] = now; 7629 iter_stack[cur++] = iter; 7630 break; 7631 } 7632 7633 if (!next) { 7634 if (!cur) 7635 return 0; 7636 next = dev_stack[--cur]; 7637 niter = iter_stack[cur]; 7638 } 7639 7640 now = next; 7641 iter = niter; 7642 } 7643 7644 return 0; 7645 } 7646 7647 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 7648 struct list_head **iter) 7649 { 7650 struct netdev_adjacent *lower; 7651 7652 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7653 if (&lower->list == &dev->adj_list.lower) 7654 return NULL; 7655 7656 *iter = &lower->list; 7657 7658 return lower->dev; 7659 } 7660 EXPORT_SYMBOL(netdev_next_lower_dev_rcu); 7661 7662 static u8 __netdev_upper_depth(struct net_device *dev) 7663 { 7664 struct net_device *udev; 7665 struct list_head *iter; 7666 u8 max_depth = 0; 7667 bool ignore; 7668 7669 for (iter = &dev->adj_list.upper, 7670 udev = __netdev_next_upper_dev(dev, &iter, &ignore); 7671 udev; 7672 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) { 7673 if (ignore) 7674 continue; 7675 if (max_depth < udev->upper_level) 7676 max_depth = udev->upper_level; 7677 } 7678 7679 return max_depth; 7680 } 7681 7682 static u8 __netdev_lower_depth(struct net_device *dev) 7683 { 7684 struct net_device *ldev; 7685 struct list_head *iter; 7686 u8 max_depth = 0; 7687 bool ignore; 7688 7689 for (iter = &dev->adj_list.lower, 7690 ldev = __netdev_next_lower_dev(dev, &iter, &ignore); 7691 ldev; 7692 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) { 7693 if (ignore) 7694 continue; 7695 if (max_depth < ldev->lower_level) 7696 max_depth = ldev->lower_level; 7697 } 7698 7699 return max_depth; 7700 } 7701 7702 static int __netdev_update_upper_level(struct net_device *dev, 7703 struct netdev_nested_priv *__unused) 7704 { 7705 dev->upper_level = __netdev_upper_depth(dev) + 1; 7706 return 0; 7707 } 7708 7709 #ifdef CONFIG_LOCKDEP 7710 static LIST_HEAD(net_unlink_list); 7711 7712 static void net_unlink_todo(struct net_device *dev) 7713 { 7714 if (list_empty(&dev->unlink_list)) 7715 list_add_tail(&dev->unlink_list, &net_unlink_list); 7716 } 7717 #endif 7718 7719 static int __netdev_update_lower_level(struct net_device *dev, 7720 struct netdev_nested_priv *priv) 7721 { 7722 dev->lower_level = __netdev_lower_depth(dev) + 1; 7723 7724 #ifdef CONFIG_LOCKDEP 7725 if (!priv) 7726 return 0; 7727 7728 if (priv->flags & NESTED_SYNC_IMM) 7729 dev->nested_level = dev->lower_level - 1; 7730 if (priv->flags & NESTED_SYNC_TODO) 7731 net_unlink_todo(dev); 7732 #endif 7733 return 0; 7734 } 7735 7736 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 7737 int (*fn)(struct net_device *dev, 7738 struct netdev_nested_priv *priv), 7739 struct netdev_nested_priv *priv) 7740 { 7741 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7742 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7743 int ret, cur = 0; 7744 7745 now = dev; 7746 iter = &dev->adj_list.lower; 7747 7748 while (1) { 7749 if (now != dev) { 7750 ret = fn(now, priv); 7751 if (ret) 7752 return ret; 7753 } 7754 7755 next = NULL; 7756 while (1) { 7757 ldev = netdev_next_lower_dev_rcu(now, &iter); 7758 if (!ldev) 7759 break; 7760 7761 next = ldev; 7762 niter = &ldev->adj_list.lower; 7763 dev_stack[cur] = now; 7764 iter_stack[cur++] = iter; 7765 break; 7766 } 7767 7768 if (!next) { 7769 if (!cur) 7770 return 0; 7771 next = dev_stack[--cur]; 7772 niter = iter_stack[cur]; 7773 } 7774 7775 now = next; 7776 iter = niter; 7777 } 7778 7779 return 0; 7780 } 7781 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu); 7782 7783 /** 7784 * netdev_lower_get_first_private_rcu - Get the first ->private from the 7785 * lower neighbour list, RCU 7786 * variant 7787 * @dev: device 7788 * 7789 * Gets the first netdev_adjacent->private from the dev's lower neighbour 7790 * list. The caller must hold RCU read lock. 7791 */ 7792 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 7793 { 7794 struct netdev_adjacent *lower; 7795 7796 lower = list_first_or_null_rcu(&dev->adj_list.lower, 7797 struct netdev_adjacent, list); 7798 if (lower) 7799 return lower->private; 7800 return NULL; 7801 } 7802 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 7803 7804 /** 7805 * netdev_master_upper_dev_get_rcu - Get master upper device 7806 * @dev: device 7807 * 7808 * Find a master upper device and return pointer to it or NULL in case 7809 * it's not there. The caller must hold the RCU read lock. 7810 */ 7811 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 7812 { 7813 struct netdev_adjacent *upper; 7814 7815 upper = list_first_or_null_rcu(&dev->adj_list.upper, 7816 struct netdev_adjacent, list); 7817 if (upper && likely(upper->master)) 7818 return upper->dev; 7819 return NULL; 7820 } 7821 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 7822 7823 static int netdev_adjacent_sysfs_add(struct net_device *dev, 7824 struct net_device *adj_dev, 7825 struct list_head *dev_list) 7826 { 7827 char linkname[IFNAMSIZ+7]; 7828 7829 sprintf(linkname, dev_list == &dev->adj_list.upper ? 7830 "upper_%s" : "lower_%s", adj_dev->name); 7831 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 7832 linkname); 7833 } 7834 static void netdev_adjacent_sysfs_del(struct net_device *dev, 7835 char *name, 7836 struct list_head *dev_list) 7837 { 7838 char linkname[IFNAMSIZ+7]; 7839 7840 sprintf(linkname, dev_list == &dev->adj_list.upper ? 7841 "upper_%s" : "lower_%s", name); 7842 sysfs_remove_link(&(dev->dev.kobj), linkname); 7843 } 7844 7845 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 7846 struct net_device *adj_dev, 7847 struct list_head *dev_list) 7848 { 7849 return (dev_list == &dev->adj_list.upper || 7850 dev_list == &dev->adj_list.lower) && 7851 net_eq(dev_net(dev), dev_net(adj_dev)); 7852 } 7853 7854 static int __netdev_adjacent_dev_insert(struct net_device *dev, 7855 struct net_device *adj_dev, 7856 struct list_head *dev_list, 7857 void *private, bool master) 7858 { 7859 struct netdev_adjacent *adj; 7860 int ret; 7861 7862 adj = __netdev_find_adj(adj_dev, dev_list); 7863 7864 if (adj) { 7865 adj->ref_nr += 1; 7866 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n", 7867 dev->name, adj_dev->name, adj->ref_nr); 7868 7869 return 0; 7870 } 7871 7872 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 7873 if (!adj) 7874 return -ENOMEM; 7875 7876 adj->dev = adj_dev; 7877 adj->master = master; 7878 adj->ref_nr = 1; 7879 adj->private = private; 7880 adj->ignore = false; 7881 netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL); 7882 7883 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n", 7884 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name); 7885 7886 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 7887 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 7888 if (ret) 7889 goto free_adj; 7890 } 7891 7892 /* Ensure that master link is always the first item in list. */ 7893 if (master) { 7894 ret = sysfs_create_link(&(dev->dev.kobj), 7895 &(adj_dev->dev.kobj), "master"); 7896 if (ret) 7897 goto remove_symlinks; 7898 7899 list_add_rcu(&adj->list, dev_list); 7900 } else { 7901 list_add_tail_rcu(&adj->list, dev_list); 7902 } 7903 7904 return 0; 7905 7906 remove_symlinks: 7907 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 7908 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 7909 free_adj: 7910 netdev_put(adj_dev, &adj->dev_tracker); 7911 kfree(adj); 7912 7913 return ret; 7914 } 7915 7916 static void __netdev_adjacent_dev_remove(struct net_device *dev, 7917 struct net_device *adj_dev, 7918 u16 ref_nr, 7919 struct list_head *dev_list) 7920 { 7921 struct netdev_adjacent *adj; 7922 7923 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n", 7924 dev->name, adj_dev->name, ref_nr); 7925 7926 adj = __netdev_find_adj(adj_dev, dev_list); 7927 7928 if (!adj) { 7929 pr_err("Adjacency does not exist for device %s from %s\n", 7930 dev->name, adj_dev->name); 7931 WARN_ON(1); 7932 return; 7933 } 7934 7935 if (adj->ref_nr > ref_nr) { 7936 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n", 7937 dev->name, adj_dev->name, ref_nr, 7938 adj->ref_nr - ref_nr); 7939 adj->ref_nr -= ref_nr; 7940 return; 7941 } 7942 7943 if (adj->master) 7944 sysfs_remove_link(&(dev->dev.kobj), "master"); 7945 7946 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 7947 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 7948 7949 list_del_rcu(&adj->list); 7950 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n", 7951 adj_dev->name, dev->name, adj_dev->name); 7952 netdev_put(adj_dev, &adj->dev_tracker); 7953 kfree_rcu(adj, rcu); 7954 } 7955 7956 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 7957 struct net_device *upper_dev, 7958 struct list_head *up_list, 7959 struct list_head *down_list, 7960 void *private, bool master) 7961 { 7962 int ret; 7963 7964 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, 7965 private, master); 7966 if (ret) 7967 return ret; 7968 7969 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, 7970 private, false); 7971 if (ret) { 7972 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list); 7973 return ret; 7974 } 7975 7976 return 0; 7977 } 7978 7979 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 7980 struct net_device *upper_dev, 7981 u16 ref_nr, 7982 struct list_head *up_list, 7983 struct list_head *down_list) 7984 { 7985 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list); 7986 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list); 7987 } 7988 7989 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 7990 struct net_device *upper_dev, 7991 void *private, bool master) 7992 { 7993 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 7994 &dev->adj_list.upper, 7995 &upper_dev->adj_list.lower, 7996 private, master); 7997 } 7998 7999 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 8000 struct net_device *upper_dev) 8001 { 8002 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1, 8003 &dev->adj_list.upper, 8004 &upper_dev->adj_list.lower); 8005 } 8006 8007 static int __netdev_upper_dev_link(struct net_device *dev, 8008 struct net_device *upper_dev, bool master, 8009 void *upper_priv, void *upper_info, 8010 struct netdev_nested_priv *priv, 8011 struct netlink_ext_ack *extack) 8012 { 8013 struct netdev_notifier_changeupper_info changeupper_info = { 8014 .info = { 8015 .dev = dev, 8016 .extack = extack, 8017 }, 8018 .upper_dev = upper_dev, 8019 .master = master, 8020 .linking = true, 8021 .upper_info = upper_info, 8022 }; 8023 struct net_device *master_dev; 8024 int ret = 0; 8025 8026 ASSERT_RTNL(); 8027 8028 if (dev == upper_dev) 8029 return -EBUSY; 8030 8031 /* To prevent loops, check if dev is not upper device to upper_dev. */ 8032 if (__netdev_has_upper_dev(upper_dev, dev)) 8033 return -EBUSY; 8034 8035 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV) 8036 return -EMLINK; 8037 8038 if (!master) { 8039 if (__netdev_has_upper_dev(dev, upper_dev)) 8040 return -EEXIST; 8041 } else { 8042 master_dev = __netdev_master_upper_dev_get(dev); 8043 if (master_dev) 8044 return master_dev == upper_dev ? -EEXIST : -EBUSY; 8045 } 8046 8047 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 8048 &changeupper_info.info); 8049 ret = notifier_to_errno(ret); 8050 if (ret) 8051 return ret; 8052 8053 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv, 8054 master); 8055 if (ret) 8056 return ret; 8057 8058 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 8059 &changeupper_info.info); 8060 ret = notifier_to_errno(ret); 8061 if (ret) 8062 goto rollback; 8063 8064 __netdev_update_upper_level(dev, NULL); 8065 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 8066 8067 __netdev_update_lower_level(upper_dev, priv); 8068 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, 8069 priv); 8070 8071 return 0; 8072 8073 rollback: 8074 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 8075 8076 return ret; 8077 } 8078 8079 /** 8080 * netdev_upper_dev_link - Add a link to the upper device 8081 * @dev: device 8082 * @upper_dev: new upper device 8083 * @extack: netlink extended ack 8084 * 8085 * Adds a link to device which is upper to this one. The caller must hold 8086 * the RTNL lock. On a failure a negative errno code is returned. 8087 * On success the reference counts are adjusted and the function 8088 * returns zero. 8089 */ 8090 int netdev_upper_dev_link(struct net_device *dev, 8091 struct net_device *upper_dev, 8092 struct netlink_ext_ack *extack) 8093 { 8094 struct netdev_nested_priv priv = { 8095 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 8096 .data = NULL, 8097 }; 8098 8099 return __netdev_upper_dev_link(dev, upper_dev, false, 8100 NULL, NULL, &priv, extack); 8101 } 8102 EXPORT_SYMBOL(netdev_upper_dev_link); 8103 8104 /** 8105 * netdev_master_upper_dev_link - Add a master link to the upper device 8106 * @dev: device 8107 * @upper_dev: new upper device 8108 * @upper_priv: upper device private 8109 * @upper_info: upper info to be passed down via notifier 8110 * @extack: netlink extended ack 8111 * 8112 * Adds a link to device which is upper to this one. In this case, only 8113 * one master upper device can be linked, although other non-master devices 8114 * might be linked as well. The caller must hold the RTNL lock. 8115 * On a failure a negative errno code is returned. On success the reference 8116 * counts are adjusted and the function returns zero. 8117 */ 8118 int netdev_master_upper_dev_link(struct net_device *dev, 8119 struct net_device *upper_dev, 8120 void *upper_priv, void *upper_info, 8121 struct netlink_ext_ack *extack) 8122 { 8123 struct netdev_nested_priv priv = { 8124 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 8125 .data = NULL, 8126 }; 8127 8128 return __netdev_upper_dev_link(dev, upper_dev, true, 8129 upper_priv, upper_info, &priv, extack); 8130 } 8131 EXPORT_SYMBOL(netdev_master_upper_dev_link); 8132 8133 static void __netdev_upper_dev_unlink(struct net_device *dev, 8134 struct net_device *upper_dev, 8135 struct netdev_nested_priv *priv) 8136 { 8137 struct netdev_notifier_changeupper_info changeupper_info = { 8138 .info = { 8139 .dev = dev, 8140 }, 8141 .upper_dev = upper_dev, 8142 .linking = false, 8143 }; 8144 8145 ASSERT_RTNL(); 8146 8147 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; 8148 8149 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 8150 &changeupper_info.info); 8151 8152 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 8153 8154 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 8155 &changeupper_info.info); 8156 8157 __netdev_update_upper_level(dev, NULL); 8158 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 8159 8160 __netdev_update_lower_level(upper_dev, priv); 8161 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, 8162 priv); 8163 } 8164 8165 /** 8166 * netdev_upper_dev_unlink - Removes a link to upper device 8167 * @dev: device 8168 * @upper_dev: new upper device 8169 * 8170 * Removes a link to device which is upper to this one. The caller must hold 8171 * the RTNL lock. 8172 */ 8173 void netdev_upper_dev_unlink(struct net_device *dev, 8174 struct net_device *upper_dev) 8175 { 8176 struct netdev_nested_priv priv = { 8177 .flags = NESTED_SYNC_TODO, 8178 .data = NULL, 8179 }; 8180 8181 __netdev_upper_dev_unlink(dev, upper_dev, &priv); 8182 } 8183 EXPORT_SYMBOL(netdev_upper_dev_unlink); 8184 8185 static void __netdev_adjacent_dev_set(struct net_device *upper_dev, 8186 struct net_device *lower_dev, 8187 bool val) 8188 { 8189 struct netdev_adjacent *adj; 8190 8191 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower); 8192 if (adj) 8193 adj->ignore = val; 8194 8195 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper); 8196 if (adj) 8197 adj->ignore = val; 8198 } 8199 8200 static void netdev_adjacent_dev_disable(struct net_device *upper_dev, 8201 struct net_device *lower_dev) 8202 { 8203 __netdev_adjacent_dev_set(upper_dev, lower_dev, true); 8204 } 8205 8206 static void netdev_adjacent_dev_enable(struct net_device *upper_dev, 8207 struct net_device *lower_dev) 8208 { 8209 __netdev_adjacent_dev_set(upper_dev, lower_dev, false); 8210 } 8211 8212 int netdev_adjacent_change_prepare(struct net_device *old_dev, 8213 struct net_device *new_dev, 8214 struct net_device *dev, 8215 struct netlink_ext_ack *extack) 8216 { 8217 struct netdev_nested_priv priv = { 8218 .flags = 0, 8219 .data = NULL, 8220 }; 8221 int err; 8222 8223 if (!new_dev) 8224 return 0; 8225 8226 if (old_dev && new_dev != old_dev) 8227 netdev_adjacent_dev_disable(dev, old_dev); 8228 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv, 8229 extack); 8230 if (err) { 8231 if (old_dev && new_dev != old_dev) 8232 netdev_adjacent_dev_enable(dev, old_dev); 8233 return err; 8234 } 8235 8236 return 0; 8237 } 8238 EXPORT_SYMBOL(netdev_adjacent_change_prepare); 8239 8240 void netdev_adjacent_change_commit(struct net_device *old_dev, 8241 struct net_device *new_dev, 8242 struct net_device *dev) 8243 { 8244 struct netdev_nested_priv priv = { 8245 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 8246 .data = NULL, 8247 }; 8248 8249 if (!new_dev || !old_dev) 8250 return; 8251 8252 if (new_dev == old_dev) 8253 return; 8254 8255 netdev_adjacent_dev_enable(dev, old_dev); 8256 __netdev_upper_dev_unlink(old_dev, dev, &priv); 8257 } 8258 EXPORT_SYMBOL(netdev_adjacent_change_commit); 8259 8260 void netdev_adjacent_change_abort(struct net_device *old_dev, 8261 struct net_device *new_dev, 8262 struct net_device *dev) 8263 { 8264 struct netdev_nested_priv priv = { 8265 .flags = 0, 8266 .data = NULL, 8267 }; 8268 8269 if (!new_dev) 8270 return; 8271 8272 if (old_dev && new_dev != old_dev) 8273 netdev_adjacent_dev_enable(dev, old_dev); 8274 8275 __netdev_upper_dev_unlink(new_dev, dev, &priv); 8276 } 8277 EXPORT_SYMBOL(netdev_adjacent_change_abort); 8278 8279 /** 8280 * netdev_bonding_info_change - Dispatch event about slave change 8281 * @dev: device 8282 * @bonding_info: info to dispatch 8283 * 8284 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 8285 * The caller must hold the RTNL lock. 8286 */ 8287 void netdev_bonding_info_change(struct net_device *dev, 8288 struct netdev_bonding_info *bonding_info) 8289 { 8290 struct netdev_notifier_bonding_info info = { 8291 .info.dev = dev, 8292 }; 8293 8294 memcpy(&info.bonding_info, bonding_info, 8295 sizeof(struct netdev_bonding_info)); 8296 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, 8297 &info.info); 8298 } 8299 EXPORT_SYMBOL(netdev_bonding_info_change); 8300 8301 static int netdev_offload_xstats_enable_l3(struct net_device *dev, 8302 struct netlink_ext_ack *extack) 8303 { 8304 struct netdev_notifier_offload_xstats_info info = { 8305 .info.dev = dev, 8306 .info.extack = extack, 8307 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3, 8308 }; 8309 int err; 8310 int rc; 8311 8312 dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3), 8313 GFP_KERNEL); 8314 if (!dev->offload_xstats_l3) 8315 return -ENOMEM; 8316 8317 rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE, 8318 NETDEV_OFFLOAD_XSTATS_DISABLE, 8319 &info.info); 8320 err = notifier_to_errno(rc); 8321 if (err) 8322 goto free_stats; 8323 8324 return 0; 8325 8326 free_stats: 8327 kfree(dev->offload_xstats_l3); 8328 dev->offload_xstats_l3 = NULL; 8329 return err; 8330 } 8331 8332 int netdev_offload_xstats_enable(struct net_device *dev, 8333 enum netdev_offload_xstats_type type, 8334 struct netlink_ext_ack *extack) 8335 { 8336 ASSERT_RTNL(); 8337 8338 if (netdev_offload_xstats_enabled(dev, type)) 8339 return -EALREADY; 8340 8341 switch (type) { 8342 case NETDEV_OFFLOAD_XSTATS_TYPE_L3: 8343 return netdev_offload_xstats_enable_l3(dev, extack); 8344 } 8345 8346 WARN_ON(1); 8347 return -EINVAL; 8348 } 8349 EXPORT_SYMBOL(netdev_offload_xstats_enable); 8350 8351 static void netdev_offload_xstats_disable_l3(struct net_device *dev) 8352 { 8353 struct netdev_notifier_offload_xstats_info info = { 8354 .info.dev = dev, 8355 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3, 8356 }; 8357 8358 call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE, 8359 &info.info); 8360 kfree(dev->offload_xstats_l3); 8361 dev->offload_xstats_l3 = NULL; 8362 } 8363 8364 int netdev_offload_xstats_disable(struct net_device *dev, 8365 enum netdev_offload_xstats_type type) 8366 { 8367 ASSERT_RTNL(); 8368 8369 if (!netdev_offload_xstats_enabled(dev, type)) 8370 return -EALREADY; 8371 8372 switch (type) { 8373 case NETDEV_OFFLOAD_XSTATS_TYPE_L3: 8374 netdev_offload_xstats_disable_l3(dev); 8375 return 0; 8376 } 8377 8378 WARN_ON(1); 8379 return -EINVAL; 8380 } 8381 EXPORT_SYMBOL(netdev_offload_xstats_disable); 8382 8383 static void netdev_offload_xstats_disable_all(struct net_device *dev) 8384 { 8385 netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3); 8386 } 8387 8388 static struct rtnl_hw_stats64 * 8389 netdev_offload_xstats_get_ptr(const struct net_device *dev, 8390 enum netdev_offload_xstats_type type) 8391 { 8392 switch (type) { 8393 case NETDEV_OFFLOAD_XSTATS_TYPE_L3: 8394 return dev->offload_xstats_l3; 8395 } 8396 8397 WARN_ON(1); 8398 return NULL; 8399 } 8400 8401 bool netdev_offload_xstats_enabled(const struct net_device *dev, 8402 enum netdev_offload_xstats_type type) 8403 { 8404 ASSERT_RTNL(); 8405 8406 return netdev_offload_xstats_get_ptr(dev, type); 8407 } 8408 EXPORT_SYMBOL(netdev_offload_xstats_enabled); 8409 8410 struct netdev_notifier_offload_xstats_ru { 8411 bool used; 8412 }; 8413 8414 struct netdev_notifier_offload_xstats_rd { 8415 struct rtnl_hw_stats64 stats; 8416 bool used; 8417 }; 8418 8419 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest, 8420 const struct rtnl_hw_stats64 *src) 8421 { 8422 dest->rx_packets += src->rx_packets; 8423 dest->tx_packets += src->tx_packets; 8424 dest->rx_bytes += src->rx_bytes; 8425 dest->tx_bytes += src->tx_bytes; 8426 dest->rx_errors += src->rx_errors; 8427 dest->tx_errors += src->tx_errors; 8428 dest->rx_dropped += src->rx_dropped; 8429 dest->tx_dropped += src->tx_dropped; 8430 dest->multicast += src->multicast; 8431 } 8432 8433 static int netdev_offload_xstats_get_used(struct net_device *dev, 8434 enum netdev_offload_xstats_type type, 8435 bool *p_used, 8436 struct netlink_ext_ack *extack) 8437 { 8438 struct netdev_notifier_offload_xstats_ru report_used = {}; 8439 struct netdev_notifier_offload_xstats_info info = { 8440 .info.dev = dev, 8441 .info.extack = extack, 8442 .type = type, 8443 .report_used = &report_used, 8444 }; 8445 int rc; 8446 8447 WARN_ON(!netdev_offload_xstats_enabled(dev, type)); 8448 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED, 8449 &info.info); 8450 *p_used = report_used.used; 8451 return notifier_to_errno(rc); 8452 } 8453 8454 static int netdev_offload_xstats_get_stats(struct net_device *dev, 8455 enum netdev_offload_xstats_type type, 8456 struct rtnl_hw_stats64 *p_stats, 8457 bool *p_used, 8458 struct netlink_ext_ack *extack) 8459 { 8460 struct netdev_notifier_offload_xstats_rd report_delta = {}; 8461 struct netdev_notifier_offload_xstats_info info = { 8462 .info.dev = dev, 8463 .info.extack = extack, 8464 .type = type, 8465 .report_delta = &report_delta, 8466 }; 8467 struct rtnl_hw_stats64 *stats; 8468 int rc; 8469 8470 stats = netdev_offload_xstats_get_ptr(dev, type); 8471 if (WARN_ON(!stats)) 8472 return -EINVAL; 8473 8474 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA, 8475 &info.info); 8476 8477 /* Cache whatever we got, even if there was an error, otherwise the 8478 * successful stats retrievals would get lost. 8479 */ 8480 netdev_hw_stats64_add(stats, &report_delta.stats); 8481 8482 if (p_stats) 8483 *p_stats = *stats; 8484 *p_used = report_delta.used; 8485 8486 return notifier_to_errno(rc); 8487 } 8488 8489 int netdev_offload_xstats_get(struct net_device *dev, 8490 enum netdev_offload_xstats_type type, 8491 struct rtnl_hw_stats64 *p_stats, bool *p_used, 8492 struct netlink_ext_ack *extack) 8493 { 8494 ASSERT_RTNL(); 8495 8496 if (p_stats) 8497 return netdev_offload_xstats_get_stats(dev, type, p_stats, 8498 p_used, extack); 8499 else 8500 return netdev_offload_xstats_get_used(dev, type, p_used, 8501 extack); 8502 } 8503 EXPORT_SYMBOL(netdev_offload_xstats_get); 8504 8505 void 8506 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta, 8507 const struct rtnl_hw_stats64 *stats) 8508 { 8509 report_delta->used = true; 8510 netdev_hw_stats64_add(&report_delta->stats, stats); 8511 } 8512 EXPORT_SYMBOL(netdev_offload_xstats_report_delta); 8513 8514 void 8515 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used) 8516 { 8517 report_used->used = true; 8518 } 8519 EXPORT_SYMBOL(netdev_offload_xstats_report_used); 8520 8521 void netdev_offload_xstats_push_delta(struct net_device *dev, 8522 enum netdev_offload_xstats_type type, 8523 const struct rtnl_hw_stats64 *p_stats) 8524 { 8525 struct rtnl_hw_stats64 *stats; 8526 8527 ASSERT_RTNL(); 8528 8529 stats = netdev_offload_xstats_get_ptr(dev, type); 8530 if (WARN_ON(!stats)) 8531 return; 8532 8533 netdev_hw_stats64_add(stats, p_stats); 8534 } 8535 EXPORT_SYMBOL(netdev_offload_xstats_push_delta); 8536 8537 /** 8538 * netdev_get_xmit_slave - Get the xmit slave of master device 8539 * @dev: device 8540 * @skb: The packet 8541 * @all_slaves: assume all the slaves are active 8542 * 8543 * The reference counters are not incremented so the caller must be 8544 * careful with locks. The caller must hold RCU lock. 8545 * %NULL is returned if no slave is found. 8546 */ 8547 8548 struct net_device *netdev_get_xmit_slave(struct net_device *dev, 8549 struct sk_buff *skb, 8550 bool all_slaves) 8551 { 8552 const struct net_device_ops *ops = dev->netdev_ops; 8553 8554 if (!ops->ndo_get_xmit_slave) 8555 return NULL; 8556 return ops->ndo_get_xmit_slave(dev, skb, all_slaves); 8557 } 8558 EXPORT_SYMBOL(netdev_get_xmit_slave); 8559 8560 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev, 8561 struct sock *sk) 8562 { 8563 const struct net_device_ops *ops = dev->netdev_ops; 8564 8565 if (!ops->ndo_sk_get_lower_dev) 8566 return NULL; 8567 return ops->ndo_sk_get_lower_dev(dev, sk); 8568 } 8569 8570 /** 8571 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket 8572 * @dev: device 8573 * @sk: the socket 8574 * 8575 * %NULL is returned if no lower device is found. 8576 */ 8577 8578 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev, 8579 struct sock *sk) 8580 { 8581 struct net_device *lower; 8582 8583 lower = netdev_sk_get_lower_dev(dev, sk); 8584 while (lower) { 8585 dev = lower; 8586 lower = netdev_sk_get_lower_dev(dev, sk); 8587 } 8588 8589 return dev; 8590 } 8591 EXPORT_SYMBOL(netdev_sk_get_lowest_dev); 8592 8593 static void netdev_adjacent_add_links(struct net_device *dev) 8594 { 8595 struct netdev_adjacent *iter; 8596 8597 struct net *net = dev_net(dev); 8598 8599 list_for_each_entry(iter, &dev->adj_list.upper, list) { 8600 if (!net_eq(net, dev_net(iter->dev))) 8601 continue; 8602 netdev_adjacent_sysfs_add(iter->dev, dev, 8603 &iter->dev->adj_list.lower); 8604 netdev_adjacent_sysfs_add(dev, iter->dev, 8605 &dev->adj_list.upper); 8606 } 8607 8608 list_for_each_entry(iter, &dev->adj_list.lower, list) { 8609 if (!net_eq(net, dev_net(iter->dev))) 8610 continue; 8611 netdev_adjacent_sysfs_add(iter->dev, dev, 8612 &iter->dev->adj_list.upper); 8613 netdev_adjacent_sysfs_add(dev, iter->dev, 8614 &dev->adj_list.lower); 8615 } 8616 } 8617 8618 static void netdev_adjacent_del_links(struct net_device *dev) 8619 { 8620 struct netdev_adjacent *iter; 8621 8622 struct net *net = dev_net(dev); 8623 8624 list_for_each_entry(iter, &dev->adj_list.upper, list) { 8625 if (!net_eq(net, dev_net(iter->dev))) 8626 continue; 8627 netdev_adjacent_sysfs_del(iter->dev, dev->name, 8628 &iter->dev->adj_list.lower); 8629 netdev_adjacent_sysfs_del(dev, iter->dev->name, 8630 &dev->adj_list.upper); 8631 } 8632 8633 list_for_each_entry(iter, &dev->adj_list.lower, list) { 8634 if (!net_eq(net, dev_net(iter->dev))) 8635 continue; 8636 netdev_adjacent_sysfs_del(iter->dev, dev->name, 8637 &iter->dev->adj_list.upper); 8638 netdev_adjacent_sysfs_del(dev, iter->dev->name, 8639 &dev->adj_list.lower); 8640 } 8641 } 8642 8643 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 8644 { 8645 struct netdev_adjacent *iter; 8646 8647 struct net *net = dev_net(dev); 8648 8649 list_for_each_entry(iter, &dev->adj_list.upper, list) { 8650 if (!net_eq(net, dev_net(iter->dev))) 8651 continue; 8652 netdev_adjacent_sysfs_del(iter->dev, oldname, 8653 &iter->dev->adj_list.lower); 8654 netdev_adjacent_sysfs_add(iter->dev, dev, 8655 &iter->dev->adj_list.lower); 8656 } 8657 8658 list_for_each_entry(iter, &dev->adj_list.lower, list) { 8659 if (!net_eq(net, dev_net(iter->dev))) 8660 continue; 8661 netdev_adjacent_sysfs_del(iter->dev, oldname, 8662 &iter->dev->adj_list.upper); 8663 netdev_adjacent_sysfs_add(iter->dev, dev, 8664 &iter->dev->adj_list.upper); 8665 } 8666 } 8667 8668 void *netdev_lower_dev_get_private(struct net_device *dev, 8669 struct net_device *lower_dev) 8670 { 8671 struct netdev_adjacent *lower; 8672 8673 if (!lower_dev) 8674 return NULL; 8675 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower); 8676 if (!lower) 8677 return NULL; 8678 8679 return lower->private; 8680 } 8681 EXPORT_SYMBOL(netdev_lower_dev_get_private); 8682 8683 8684 /** 8685 * netdev_lower_state_changed - Dispatch event about lower device state change 8686 * @lower_dev: device 8687 * @lower_state_info: state to dispatch 8688 * 8689 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info. 8690 * The caller must hold the RTNL lock. 8691 */ 8692 void netdev_lower_state_changed(struct net_device *lower_dev, 8693 void *lower_state_info) 8694 { 8695 struct netdev_notifier_changelowerstate_info changelowerstate_info = { 8696 .info.dev = lower_dev, 8697 }; 8698 8699 ASSERT_RTNL(); 8700 changelowerstate_info.lower_state_info = lower_state_info; 8701 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, 8702 &changelowerstate_info.info); 8703 } 8704 EXPORT_SYMBOL(netdev_lower_state_changed); 8705 8706 static void dev_change_rx_flags(struct net_device *dev, int flags) 8707 { 8708 const struct net_device_ops *ops = dev->netdev_ops; 8709 8710 if (ops->ndo_change_rx_flags) 8711 ops->ndo_change_rx_flags(dev, flags); 8712 } 8713 8714 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 8715 { 8716 unsigned int old_flags = dev->flags; 8717 unsigned int promiscuity, flags; 8718 kuid_t uid; 8719 kgid_t gid; 8720 8721 ASSERT_RTNL(); 8722 8723 promiscuity = dev->promiscuity + inc; 8724 if (promiscuity == 0) { 8725 /* 8726 * Avoid overflow. 8727 * If inc causes overflow, untouch promisc and return error. 8728 */ 8729 if (unlikely(inc > 0)) { 8730 netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n"); 8731 return -EOVERFLOW; 8732 } 8733 flags = old_flags & ~IFF_PROMISC; 8734 } else { 8735 flags = old_flags | IFF_PROMISC; 8736 } 8737 WRITE_ONCE(dev->promiscuity, promiscuity); 8738 if (flags != old_flags) { 8739 WRITE_ONCE(dev->flags, flags); 8740 netdev_info(dev, "%s promiscuous mode\n", 8741 dev->flags & IFF_PROMISC ? "entered" : "left"); 8742 if (audit_enabled) { 8743 current_uid_gid(&uid, &gid); 8744 audit_log(audit_context(), GFP_ATOMIC, 8745 AUDIT_ANOM_PROMISCUOUS, 8746 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 8747 dev->name, (dev->flags & IFF_PROMISC), 8748 (old_flags & IFF_PROMISC), 8749 from_kuid(&init_user_ns, audit_get_loginuid(current)), 8750 from_kuid(&init_user_ns, uid), 8751 from_kgid(&init_user_ns, gid), 8752 audit_get_sessionid(current)); 8753 } 8754 8755 dev_change_rx_flags(dev, IFF_PROMISC); 8756 } 8757 if (notify) 8758 __dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL); 8759 return 0; 8760 } 8761 8762 /** 8763 * dev_set_promiscuity - update promiscuity count on a device 8764 * @dev: device 8765 * @inc: modifier 8766 * 8767 * Add or remove promiscuity from a device. While the count in the device 8768 * remains above zero the interface remains promiscuous. Once it hits zero 8769 * the device reverts back to normal filtering operation. A negative inc 8770 * value is used to drop promiscuity on the device. 8771 * Return 0 if successful or a negative errno code on error. 8772 */ 8773 int dev_set_promiscuity(struct net_device *dev, int inc) 8774 { 8775 unsigned int old_flags = dev->flags; 8776 int err; 8777 8778 err = __dev_set_promiscuity(dev, inc, true); 8779 if (err < 0) 8780 return err; 8781 if (dev->flags != old_flags) 8782 dev_set_rx_mode(dev); 8783 return err; 8784 } 8785 EXPORT_SYMBOL(dev_set_promiscuity); 8786 8787 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 8788 { 8789 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 8790 unsigned int allmulti, flags; 8791 8792 ASSERT_RTNL(); 8793 8794 allmulti = dev->allmulti + inc; 8795 if (allmulti == 0) { 8796 /* 8797 * Avoid overflow. 8798 * If inc causes overflow, untouch allmulti and return error. 8799 */ 8800 if (unlikely(inc > 0)) { 8801 netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n"); 8802 return -EOVERFLOW; 8803 } 8804 flags = old_flags & ~IFF_ALLMULTI; 8805 } else { 8806 flags = old_flags | IFF_ALLMULTI; 8807 } 8808 WRITE_ONCE(dev->allmulti, allmulti); 8809 if (flags != old_flags) { 8810 WRITE_ONCE(dev->flags, flags); 8811 netdev_info(dev, "%s allmulticast mode\n", 8812 dev->flags & IFF_ALLMULTI ? "entered" : "left"); 8813 dev_change_rx_flags(dev, IFF_ALLMULTI); 8814 dev_set_rx_mode(dev); 8815 if (notify) 8816 __dev_notify_flags(dev, old_flags, 8817 dev->gflags ^ old_gflags, 0, NULL); 8818 } 8819 return 0; 8820 } 8821 8822 /** 8823 * dev_set_allmulti - update allmulti count on a device 8824 * @dev: device 8825 * @inc: modifier 8826 * 8827 * Add or remove reception of all multicast frames to a device. While the 8828 * count in the device remains above zero the interface remains listening 8829 * to all interfaces. Once it hits zero the device reverts back to normal 8830 * filtering operation. A negative @inc value is used to drop the counter 8831 * when releasing a resource needing all multicasts. 8832 * Return 0 if successful or a negative errno code on error. 8833 */ 8834 8835 int dev_set_allmulti(struct net_device *dev, int inc) 8836 { 8837 return __dev_set_allmulti(dev, inc, true); 8838 } 8839 EXPORT_SYMBOL(dev_set_allmulti); 8840 8841 /* 8842 * Upload unicast and multicast address lists to device and 8843 * configure RX filtering. When the device doesn't support unicast 8844 * filtering it is put in promiscuous mode while unicast addresses 8845 * are present. 8846 */ 8847 void __dev_set_rx_mode(struct net_device *dev) 8848 { 8849 const struct net_device_ops *ops = dev->netdev_ops; 8850 8851 /* dev_open will call this function so the list will stay sane. */ 8852 if (!(dev->flags&IFF_UP)) 8853 return; 8854 8855 if (!netif_device_present(dev)) 8856 return; 8857 8858 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 8859 /* Unicast addresses changes may only happen under the rtnl, 8860 * therefore calling __dev_set_promiscuity here is safe. 8861 */ 8862 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 8863 __dev_set_promiscuity(dev, 1, false); 8864 dev->uc_promisc = true; 8865 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 8866 __dev_set_promiscuity(dev, -1, false); 8867 dev->uc_promisc = false; 8868 } 8869 } 8870 8871 if (ops->ndo_set_rx_mode) 8872 ops->ndo_set_rx_mode(dev); 8873 } 8874 8875 void dev_set_rx_mode(struct net_device *dev) 8876 { 8877 netif_addr_lock_bh(dev); 8878 __dev_set_rx_mode(dev); 8879 netif_addr_unlock_bh(dev); 8880 } 8881 8882 /** 8883 * dev_get_flags - get flags reported to userspace 8884 * @dev: device 8885 * 8886 * Get the combination of flag bits exported through APIs to userspace. 8887 */ 8888 unsigned int dev_get_flags(const struct net_device *dev) 8889 { 8890 unsigned int flags; 8891 8892 flags = (READ_ONCE(dev->flags) & ~(IFF_PROMISC | 8893 IFF_ALLMULTI | 8894 IFF_RUNNING | 8895 IFF_LOWER_UP | 8896 IFF_DORMANT)) | 8897 (READ_ONCE(dev->gflags) & (IFF_PROMISC | 8898 IFF_ALLMULTI)); 8899 8900 if (netif_running(dev)) { 8901 if (netif_oper_up(dev)) 8902 flags |= IFF_RUNNING; 8903 if (netif_carrier_ok(dev)) 8904 flags |= IFF_LOWER_UP; 8905 if (netif_dormant(dev)) 8906 flags |= IFF_DORMANT; 8907 } 8908 8909 return flags; 8910 } 8911 EXPORT_SYMBOL(dev_get_flags); 8912 8913 int __dev_change_flags(struct net_device *dev, unsigned int flags, 8914 struct netlink_ext_ack *extack) 8915 { 8916 unsigned int old_flags = dev->flags; 8917 int ret; 8918 8919 ASSERT_RTNL(); 8920 8921 /* 8922 * Set the flags on our device. 8923 */ 8924 8925 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 8926 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 8927 IFF_AUTOMEDIA)) | 8928 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 8929 IFF_ALLMULTI)); 8930 8931 /* 8932 * Load in the correct multicast list now the flags have changed. 8933 */ 8934 8935 if ((old_flags ^ flags) & IFF_MULTICAST) 8936 dev_change_rx_flags(dev, IFF_MULTICAST); 8937 8938 dev_set_rx_mode(dev); 8939 8940 /* 8941 * Have we downed the interface. We handle IFF_UP ourselves 8942 * according to user attempts to set it, rather than blindly 8943 * setting it. 8944 */ 8945 8946 ret = 0; 8947 if ((old_flags ^ flags) & IFF_UP) { 8948 if (old_flags & IFF_UP) 8949 __dev_close(dev); 8950 else 8951 ret = __dev_open(dev, extack); 8952 } 8953 8954 if ((flags ^ dev->gflags) & IFF_PROMISC) { 8955 int inc = (flags & IFF_PROMISC) ? 1 : -1; 8956 unsigned int old_flags = dev->flags; 8957 8958 dev->gflags ^= IFF_PROMISC; 8959 8960 if (__dev_set_promiscuity(dev, inc, false) >= 0) 8961 if (dev->flags != old_flags) 8962 dev_set_rx_mode(dev); 8963 } 8964 8965 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 8966 * is important. Some (broken) drivers set IFF_PROMISC, when 8967 * IFF_ALLMULTI is requested not asking us and not reporting. 8968 */ 8969 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 8970 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 8971 8972 dev->gflags ^= IFF_ALLMULTI; 8973 __dev_set_allmulti(dev, inc, false); 8974 } 8975 8976 return ret; 8977 } 8978 8979 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 8980 unsigned int gchanges, u32 portid, 8981 const struct nlmsghdr *nlh) 8982 { 8983 unsigned int changes = dev->flags ^ old_flags; 8984 8985 if (gchanges) 8986 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh); 8987 8988 if (changes & IFF_UP) { 8989 if (dev->flags & IFF_UP) 8990 call_netdevice_notifiers(NETDEV_UP, dev); 8991 else 8992 call_netdevice_notifiers(NETDEV_DOWN, dev); 8993 } 8994 8995 if (dev->flags & IFF_UP && 8996 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 8997 struct netdev_notifier_change_info change_info = { 8998 .info = { 8999 .dev = dev, 9000 }, 9001 .flags_changed = changes, 9002 }; 9003 9004 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info); 9005 } 9006 } 9007 9008 /** 9009 * dev_change_flags - change device settings 9010 * @dev: device 9011 * @flags: device state flags 9012 * @extack: netlink extended ack 9013 * 9014 * Change settings on device based state flags. The flags are 9015 * in the userspace exported format. 9016 */ 9017 int dev_change_flags(struct net_device *dev, unsigned int flags, 9018 struct netlink_ext_ack *extack) 9019 { 9020 int ret; 9021 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 9022 9023 ret = __dev_change_flags(dev, flags, extack); 9024 if (ret < 0) 9025 return ret; 9026 9027 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 9028 __dev_notify_flags(dev, old_flags, changes, 0, NULL); 9029 return ret; 9030 } 9031 EXPORT_SYMBOL(dev_change_flags); 9032 9033 int __dev_set_mtu(struct net_device *dev, int new_mtu) 9034 { 9035 const struct net_device_ops *ops = dev->netdev_ops; 9036 9037 if (ops->ndo_change_mtu) 9038 return ops->ndo_change_mtu(dev, new_mtu); 9039 9040 /* Pairs with all the lockless reads of dev->mtu in the stack */ 9041 WRITE_ONCE(dev->mtu, new_mtu); 9042 return 0; 9043 } 9044 EXPORT_SYMBOL(__dev_set_mtu); 9045 9046 int dev_validate_mtu(struct net_device *dev, int new_mtu, 9047 struct netlink_ext_ack *extack) 9048 { 9049 /* MTU must be positive, and in range */ 9050 if (new_mtu < 0 || new_mtu < dev->min_mtu) { 9051 NL_SET_ERR_MSG(extack, "mtu less than device minimum"); 9052 return -EINVAL; 9053 } 9054 9055 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) { 9056 NL_SET_ERR_MSG(extack, "mtu greater than device maximum"); 9057 return -EINVAL; 9058 } 9059 return 0; 9060 } 9061 9062 /** 9063 * dev_set_mtu_ext - Change maximum transfer unit 9064 * @dev: device 9065 * @new_mtu: new transfer unit 9066 * @extack: netlink extended ack 9067 * 9068 * Change the maximum transfer size of the network device. 9069 */ 9070 int dev_set_mtu_ext(struct net_device *dev, int new_mtu, 9071 struct netlink_ext_ack *extack) 9072 { 9073 int err, orig_mtu; 9074 9075 if (new_mtu == dev->mtu) 9076 return 0; 9077 9078 err = dev_validate_mtu(dev, new_mtu, extack); 9079 if (err) 9080 return err; 9081 9082 if (!netif_device_present(dev)) 9083 return -ENODEV; 9084 9085 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 9086 err = notifier_to_errno(err); 9087 if (err) 9088 return err; 9089 9090 orig_mtu = dev->mtu; 9091 err = __dev_set_mtu(dev, new_mtu); 9092 9093 if (!err) { 9094 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 9095 orig_mtu); 9096 err = notifier_to_errno(err); 9097 if (err) { 9098 /* setting mtu back and notifying everyone again, 9099 * so that they have a chance to revert changes. 9100 */ 9101 __dev_set_mtu(dev, orig_mtu); 9102 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 9103 new_mtu); 9104 } 9105 } 9106 return err; 9107 } 9108 9109 int dev_set_mtu(struct net_device *dev, int new_mtu) 9110 { 9111 struct netlink_ext_ack extack; 9112 int err; 9113 9114 memset(&extack, 0, sizeof(extack)); 9115 err = dev_set_mtu_ext(dev, new_mtu, &extack); 9116 if (err && extack._msg) 9117 net_err_ratelimited("%s: %s\n", dev->name, extack._msg); 9118 return err; 9119 } 9120 EXPORT_SYMBOL(dev_set_mtu); 9121 9122 /** 9123 * dev_change_tx_queue_len - Change TX queue length of a netdevice 9124 * @dev: device 9125 * @new_len: new tx queue length 9126 */ 9127 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len) 9128 { 9129 unsigned int orig_len = dev->tx_queue_len; 9130 int res; 9131 9132 if (new_len != (unsigned int)new_len) 9133 return -ERANGE; 9134 9135 if (new_len != orig_len) { 9136 WRITE_ONCE(dev->tx_queue_len, new_len); 9137 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev); 9138 res = notifier_to_errno(res); 9139 if (res) 9140 goto err_rollback; 9141 res = dev_qdisc_change_tx_queue_len(dev); 9142 if (res) 9143 goto err_rollback; 9144 } 9145 9146 return 0; 9147 9148 err_rollback: 9149 netdev_err(dev, "refused to change device tx_queue_len\n"); 9150 WRITE_ONCE(dev->tx_queue_len, orig_len); 9151 return res; 9152 } 9153 9154 /** 9155 * dev_set_group - Change group this device belongs to 9156 * @dev: device 9157 * @new_group: group this device should belong to 9158 */ 9159 void dev_set_group(struct net_device *dev, int new_group) 9160 { 9161 dev->group = new_group; 9162 } 9163 9164 /** 9165 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR. 9166 * @dev: device 9167 * @addr: new address 9168 * @extack: netlink extended ack 9169 */ 9170 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr, 9171 struct netlink_ext_ack *extack) 9172 { 9173 struct netdev_notifier_pre_changeaddr_info info = { 9174 .info.dev = dev, 9175 .info.extack = extack, 9176 .dev_addr = addr, 9177 }; 9178 int rc; 9179 9180 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info); 9181 return notifier_to_errno(rc); 9182 } 9183 EXPORT_SYMBOL(dev_pre_changeaddr_notify); 9184 9185 /** 9186 * dev_set_mac_address - Change Media Access Control Address 9187 * @dev: device 9188 * @sa: new address 9189 * @extack: netlink extended ack 9190 * 9191 * Change the hardware (MAC) address of the device 9192 */ 9193 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa, 9194 struct netlink_ext_ack *extack) 9195 { 9196 const struct net_device_ops *ops = dev->netdev_ops; 9197 int err; 9198 9199 if (!ops->ndo_set_mac_address) 9200 return -EOPNOTSUPP; 9201 if (sa->sa_family != dev->type) 9202 return -EINVAL; 9203 if (!netif_device_present(dev)) 9204 return -ENODEV; 9205 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack); 9206 if (err) 9207 return err; 9208 if (memcmp(dev->dev_addr, sa->sa_data, dev->addr_len)) { 9209 err = ops->ndo_set_mac_address(dev, sa); 9210 if (err) 9211 return err; 9212 } 9213 dev->addr_assign_type = NET_ADDR_SET; 9214 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 9215 add_device_randomness(dev->dev_addr, dev->addr_len); 9216 return 0; 9217 } 9218 EXPORT_SYMBOL(dev_set_mac_address); 9219 9220 DECLARE_RWSEM(dev_addr_sem); 9221 9222 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa, 9223 struct netlink_ext_ack *extack) 9224 { 9225 int ret; 9226 9227 down_write(&dev_addr_sem); 9228 ret = dev_set_mac_address(dev, sa, extack); 9229 up_write(&dev_addr_sem); 9230 return ret; 9231 } 9232 EXPORT_SYMBOL(dev_set_mac_address_user); 9233 9234 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name) 9235 { 9236 size_t size = sizeof(sa->sa_data_min); 9237 struct net_device *dev; 9238 int ret = 0; 9239 9240 down_read(&dev_addr_sem); 9241 rcu_read_lock(); 9242 9243 dev = dev_get_by_name_rcu(net, dev_name); 9244 if (!dev) { 9245 ret = -ENODEV; 9246 goto unlock; 9247 } 9248 if (!dev->addr_len) 9249 memset(sa->sa_data, 0, size); 9250 else 9251 memcpy(sa->sa_data, dev->dev_addr, 9252 min_t(size_t, size, dev->addr_len)); 9253 sa->sa_family = dev->type; 9254 9255 unlock: 9256 rcu_read_unlock(); 9257 up_read(&dev_addr_sem); 9258 return ret; 9259 } 9260 EXPORT_SYMBOL(dev_get_mac_address); 9261 9262 /** 9263 * dev_change_carrier - Change device carrier 9264 * @dev: device 9265 * @new_carrier: new value 9266 * 9267 * Change device carrier 9268 */ 9269 int dev_change_carrier(struct net_device *dev, bool new_carrier) 9270 { 9271 const struct net_device_ops *ops = dev->netdev_ops; 9272 9273 if (!ops->ndo_change_carrier) 9274 return -EOPNOTSUPP; 9275 if (!netif_device_present(dev)) 9276 return -ENODEV; 9277 return ops->ndo_change_carrier(dev, new_carrier); 9278 } 9279 9280 /** 9281 * dev_get_phys_port_id - Get device physical port ID 9282 * @dev: device 9283 * @ppid: port ID 9284 * 9285 * Get device physical port ID 9286 */ 9287 int dev_get_phys_port_id(struct net_device *dev, 9288 struct netdev_phys_item_id *ppid) 9289 { 9290 const struct net_device_ops *ops = dev->netdev_ops; 9291 9292 if (!ops->ndo_get_phys_port_id) 9293 return -EOPNOTSUPP; 9294 return ops->ndo_get_phys_port_id(dev, ppid); 9295 } 9296 9297 /** 9298 * dev_get_phys_port_name - Get device physical port name 9299 * @dev: device 9300 * @name: port name 9301 * @len: limit of bytes to copy to name 9302 * 9303 * Get device physical port name 9304 */ 9305 int dev_get_phys_port_name(struct net_device *dev, 9306 char *name, size_t len) 9307 { 9308 const struct net_device_ops *ops = dev->netdev_ops; 9309 int err; 9310 9311 if (ops->ndo_get_phys_port_name) { 9312 err = ops->ndo_get_phys_port_name(dev, name, len); 9313 if (err != -EOPNOTSUPP) 9314 return err; 9315 } 9316 return devlink_compat_phys_port_name_get(dev, name, len); 9317 } 9318 9319 /** 9320 * dev_get_port_parent_id - Get the device's port parent identifier 9321 * @dev: network device 9322 * @ppid: pointer to a storage for the port's parent identifier 9323 * @recurse: allow/disallow recursion to lower devices 9324 * 9325 * Get the devices's port parent identifier 9326 */ 9327 int dev_get_port_parent_id(struct net_device *dev, 9328 struct netdev_phys_item_id *ppid, 9329 bool recurse) 9330 { 9331 const struct net_device_ops *ops = dev->netdev_ops; 9332 struct netdev_phys_item_id first = { }; 9333 struct net_device *lower_dev; 9334 struct list_head *iter; 9335 int err; 9336 9337 if (ops->ndo_get_port_parent_id) { 9338 err = ops->ndo_get_port_parent_id(dev, ppid); 9339 if (err != -EOPNOTSUPP) 9340 return err; 9341 } 9342 9343 err = devlink_compat_switch_id_get(dev, ppid); 9344 if (!recurse || err != -EOPNOTSUPP) 9345 return err; 9346 9347 netdev_for_each_lower_dev(dev, lower_dev, iter) { 9348 err = dev_get_port_parent_id(lower_dev, ppid, true); 9349 if (err) 9350 break; 9351 if (!first.id_len) 9352 first = *ppid; 9353 else if (memcmp(&first, ppid, sizeof(*ppid))) 9354 return -EOPNOTSUPP; 9355 } 9356 9357 return err; 9358 } 9359 EXPORT_SYMBOL(dev_get_port_parent_id); 9360 9361 /** 9362 * netdev_port_same_parent_id - Indicate if two network devices have 9363 * the same port parent identifier 9364 * @a: first network device 9365 * @b: second network device 9366 */ 9367 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b) 9368 { 9369 struct netdev_phys_item_id a_id = { }; 9370 struct netdev_phys_item_id b_id = { }; 9371 9372 if (dev_get_port_parent_id(a, &a_id, true) || 9373 dev_get_port_parent_id(b, &b_id, true)) 9374 return false; 9375 9376 return netdev_phys_item_id_same(&a_id, &b_id); 9377 } 9378 EXPORT_SYMBOL(netdev_port_same_parent_id); 9379 9380 /** 9381 * dev_change_proto_down - set carrier according to proto_down. 9382 * 9383 * @dev: device 9384 * @proto_down: new value 9385 */ 9386 int dev_change_proto_down(struct net_device *dev, bool proto_down) 9387 { 9388 if (!dev->change_proto_down) 9389 return -EOPNOTSUPP; 9390 if (!netif_device_present(dev)) 9391 return -ENODEV; 9392 if (proto_down) 9393 netif_carrier_off(dev); 9394 else 9395 netif_carrier_on(dev); 9396 WRITE_ONCE(dev->proto_down, proto_down); 9397 return 0; 9398 } 9399 9400 /** 9401 * dev_change_proto_down_reason - proto down reason 9402 * 9403 * @dev: device 9404 * @mask: proto down mask 9405 * @value: proto down value 9406 */ 9407 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask, 9408 u32 value) 9409 { 9410 u32 proto_down_reason; 9411 int b; 9412 9413 if (!mask) { 9414 proto_down_reason = value; 9415 } else { 9416 proto_down_reason = dev->proto_down_reason; 9417 for_each_set_bit(b, &mask, 32) { 9418 if (value & (1 << b)) 9419 proto_down_reason |= BIT(b); 9420 else 9421 proto_down_reason &= ~BIT(b); 9422 } 9423 } 9424 WRITE_ONCE(dev->proto_down_reason, proto_down_reason); 9425 } 9426 9427 struct bpf_xdp_link { 9428 struct bpf_link link; 9429 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */ 9430 int flags; 9431 }; 9432 9433 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags) 9434 { 9435 if (flags & XDP_FLAGS_HW_MODE) 9436 return XDP_MODE_HW; 9437 if (flags & XDP_FLAGS_DRV_MODE) 9438 return XDP_MODE_DRV; 9439 if (flags & XDP_FLAGS_SKB_MODE) 9440 return XDP_MODE_SKB; 9441 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB; 9442 } 9443 9444 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode) 9445 { 9446 switch (mode) { 9447 case XDP_MODE_SKB: 9448 return generic_xdp_install; 9449 case XDP_MODE_DRV: 9450 case XDP_MODE_HW: 9451 return dev->netdev_ops->ndo_bpf; 9452 default: 9453 return NULL; 9454 } 9455 } 9456 9457 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev, 9458 enum bpf_xdp_mode mode) 9459 { 9460 return dev->xdp_state[mode].link; 9461 } 9462 9463 static struct bpf_prog *dev_xdp_prog(struct net_device *dev, 9464 enum bpf_xdp_mode mode) 9465 { 9466 struct bpf_xdp_link *link = dev_xdp_link(dev, mode); 9467 9468 if (link) 9469 return link->link.prog; 9470 return dev->xdp_state[mode].prog; 9471 } 9472 9473 u8 dev_xdp_prog_count(struct net_device *dev) 9474 { 9475 u8 count = 0; 9476 int i; 9477 9478 for (i = 0; i < __MAX_XDP_MODE; i++) 9479 if (dev->xdp_state[i].prog || dev->xdp_state[i].link) 9480 count++; 9481 return count; 9482 } 9483 EXPORT_SYMBOL_GPL(dev_xdp_prog_count); 9484 9485 int dev_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf) 9486 { 9487 if (!dev->netdev_ops->ndo_bpf) 9488 return -EOPNOTSUPP; 9489 9490 if (dev_get_min_mp_channel_count(dev)) { 9491 NL_SET_ERR_MSG(bpf->extack, "unable to propagate XDP to device using memory provider"); 9492 return -EBUSY; 9493 } 9494 9495 return dev->netdev_ops->ndo_bpf(dev, bpf); 9496 } 9497 EXPORT_SYMBOL_GPL(dev_xdp_propagate); 9498 9499 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode) 9500 { 9501 struct bpf_prog *prog = dev_xdp_prog(dev, mode); 9502 9503 return prog ? prog->aux->id : 0; 9504 } 9505 9506 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode, 9507 struct bpf_xdp_link *link) 9508 { 9509 dev->xdp_state[mode].link = link; 9510 dev->xdp_state[mode].prog = NULL; 9511 } 9512 9513 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode, 9514 struct bpf_prog *prog) 9515 { 9516 dev->xdp_state[mode].link = NULL; 9517 dev->xdp_state[mode].prog = prog; 9518 } 9519 9520 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode, 9521 bpf_op_t bpf_op, struct netlink_ext_ack *extack, 9522 u32 flags, struct bpf_prog *prog) 9523 { 9524 struct netdev_bpf xdp; 9525 int err; 9526 9527 if (dev_get_min_mp_channel_count(dev)) { 9528 NL_SET_ERR_MSG(extack, "unable to install XDP to device using memory provider"); 9529 return -EBUSY; 9530 } 9531 9532 memset(&xdp, 0, sizeof(xdp)); 9533 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG; 9534 xdp.extack = extack; 9535 xdp.flags = flags; 9536 xdp.prog = prog; 9537 9538 /* Drivers assume refcnt is already incremented (i.e, prog pointer is 9539 * "moved" into driver), so they don't increment it on their own, but 9540 * they do decrement refcnt when program is detached or replaced. 9541 * Given net_device also owns link/prog, we need to bump refcnt here 9542 * to prevent drivers from underflowing it. 9543 */ 9544 if (prog) 9545 bpf_prog_inc(prog); 9546 err = bpf_op(dev, &xdp); 9547 if (err) { 9548 if (prog) 9549 bpf_prog_put(prog); 9550 return err; 9551 } 9552 9553 if (mode != XDP_MODE_HW) 9554 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog); 9555 9556 return 0; 9557 } 9558 9559 static void dev_xdp_uninstall(struct net_device *dev) 9560 { 9561 struct bpf_xdp_link *link; 9562 struct bpf_prog *prog; 9563 enum bpf_xdp_mode mode; 9564 bpf_op_t bpf_op; 9565 9566 ASSERT_RTNL(); 9567 9568 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) { 9569 prog = dev_xdp_prog(dev, mode); 9570 if (!prog) 9571 continue; 9572 9573 bpf_op = dev_xdp_bpf_op(dev, mode); 9574 if (!bpf_op) 9575 continue; 9576 9577 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL)); 9578 9579 /* auto-detach link from net device */ 9580 link = dev_xdp_link(dev, mode); 9581 if (link) 9582 link->dev = NULL; 9583 else 9584 bpf_prog_put(prog); 9585 9586 dev_xdp_set_link(dev, mode, NULL); 9587 } 9588 } 9589 9590 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack, 9591 struct bpf_xdp_link *link, struct bpf_prog *new_prog, 9592 struct bpf_prog *old_prog, u32 flags) 9593 { 9594 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES); 9595 struct bpf_prog *cur_prog; 9596 struct net_device *upper; 9597 struct list_head *iter; 9598 enum bpf_xdp_mode mode; 9599 bpf_op_t bpf_op; 9600 int err; 9601 9602 ASSERT_RTNL(); 9603 9604 /* either link or prog attachment, never both */ 9605 if (link && (new_prog || old_prog)) 9606 return -EINVAL; 9607 /* link supports only XDP mode flags */ 9608 if (link && (flags & ~XDP_FLAGS_MODES)) { 9609 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment"); 9610 return -EINVAL; 9611 } 9612 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */ 9613 if (num_modes > 1) { 9614 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set"); 9615 return -EINVAL; 9616 } 9617 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */ 9618 if (!num_modes && dev_xdp_prog_count(dev) > 1) { 9619 NL_SET_ERR_MSG(extack, 9620 "More than one program loaded, unset mode is ambiguous"); 9621 return -EINVAL; 9622 } 9623 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */ 9624 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) { 9625 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified"); 9626 return -EINVAL; 9627 } 9628 9629 mode = dev_xdp_mode(dev, flags); 9630 /* can't replace attached link */ 9631 if (dev_xdp_link(dev, mode)) { 9632 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link"); 9633 return -EBUSY; 9634 } 9635 9636 /* don't allow if an upper device already has a program */ 9637 netdev_for_each_upper_dev_rcu(dev, upper, iter) { 9638 if (dev_xdp_prog_count(upper) > 0) { 9639 NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program"); 9640 return -EEXIST; 9641 } 9642 } 9643 9644 cur_prog = dev_xdp_prog(dev, mode); 9645 /* can't replace attached prog with link */ 9646 if (link && cur_prog) { 9647 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link"); 9648 return -EBUSY; 9649 } 9650 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) { 9651 NL_SET_ERR_MSG(extack, "Active program does not match expected"); 9652 return -EEXIST; 9653 } 9654 9655 /* put effective new program into new_prog */ 9656 if (link) 9657 new_prog = link->link.prog; 9658 9659 if (new_prog) { 9660 bool offload = mode == XDP_MODE_HW; 9661 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB 9662 ? XDP_MODE_DRV : XDP_MODE_SKB; 9663 9664 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) { 9665 NL_SET_ERR_MSG(extack, "XDP program already attached"); 9666 return -EBUSY; 9667 } 9668 if (!offload && dev_xdp_prog(dev, other_mode)) { 9669 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time"); 9670 return -EEXIST; 9671 } 9672 if (!offload && bpf_prog_is_offloaded(new_prog->aux)) { 9673 NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported"); 9674 return -EINVAL; 9675 } 9676 if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) { 9677 NL_SET_ERR_MSG(extack, "Program bound to different device"); 9678 return -EINVAL; 9679 } 9680 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) { 9681 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device"); 9682 return -EINVAL; 9683 } 9684 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) { 9685 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device"); 9686 return -EINVAL; 9687 } 9688 } 9689 9690 /* don't call drivers if the effective program didn't change */ 9691 if (new_prog != cur_prog) { 9692 bpf_op = dev_xdp_bpf_op(dev, mode); 9693 if (!bpf_op) { 9694 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode"); 9695 return -EOPNOTSUPP; 9696 } 9697 9698 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog); 9699 if (err) 9700 return err; 9701 } 9702 9703 if (link) 9704 dev_xdp_set_link(dev, mode, link); 9705 else 9706 dev_xdp_set_prog(dev, mode, new_prog); 9707 if (cur_prog) 9708 bpf_prog_put(cur_prog); 9709 9710 return 0; 9711 } 9712 9713 static int dev_xdp_attach_link(struct net_device *dev, 9714 struct netlink_ext_ack *extack, 9715 struct bpf_xdp_link *link) 9716 { 9717 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags); 9718 } 9719 9720 static int dev_xdp_detach_link(struct net_device *dev, 9721 struct netlink_ext_ack *extack, 9722 struct bpf_xdp_link *link) 9723 { 9724 enum bpf_xdp_mode mode; 9725 bpf_op_t bpf_op; 9726 9727 ASSERT_RTNL(); 9728 9729 mode = dev_xdp_mode(dev, link->flags); 9730 if (dev_xdp_link(dev, mode) != link) 9731 return -EINVAL; 9732 9733 bpf_op = dev_xdp_bpf_op(dev, mode); 9734 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL)); 9735 dev_xdp_set_link(dev, mode, NULL); 9736 return 0; 9737 } 9738 9739 static void bpf_xdp_link_release(struct bpf_link *link) 9740 { 9741 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9742 9743 rtnl_lock(); 9744 9745 /* if racing with net_device's tear down, xdp_link->dev might be 9746 * already NULL, in which case link was already auto-detached 9747 */ 9748 if (xdp_link->dev) { 9749 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link)); 9750 xdp_link->dev = NULL; 9751 } 9752 9753 rtnl_unlock(); 9754 } 9755 9756 static int bpf_xdp_link_detach(struct bpf_link *link) 9757 { 9758 bpf_xdp_link_release(link); 9759 return 0; 9760 } 9761 9762 static void bpf_xdp_link_dealloc(struct bpf_link *link) 9763 { 9764 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9765 9766 kfree(xdp_link); 9767 } 9768 9769 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link, 9770 struct seq_file *seq) 9771 { 9772 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9773 u32 ifindex = 0; 9774 9775 rtnl_lock(); 9776 if (xdp_link->dev) 9777 ifindex = xdp_link->dev->ifindex; 9778 rtnl_unlock(); 9779 9780 seq_printf(seq, "ifindex:\t%u\n", ifindex); 9781 } 9782 9783 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link, 9784 struct bpf_link_info *info) 9785 { 9786 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9787 u32 ifindex = 0; 9788 9789 rtnl_lock(); 9790 if (xdp_link->dev) 9791 ifindex = xdp_link->dev->ifindex; 9792 rtnl_unlock(); 9793 9794 info->xdp.ifindex = ifindex; 9795 return 0; 9796 } 9797 9798 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog, 9799 struct bpf_prog *old_prog) 9800 { 9801 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9802 enum bpf_xdp_mode mode; 9803 bpf_op_t bpf_op; 9804 int err = 0; 9805 9806 rtnl_lock(); 9807 9808 /* link might have been auto-released already, so fail */ 9809 if (!xdp_link->dev) { 9810 err = -ENOLINK; 9811 goto out_unlock; 9812 } 9813 9814 if (old_prog && link->prog != old_prog) { 9815 err = -EPERM; 9816 goto out_unlock; 9817 } 9818 old_prog = link->prog; 9819 if (old_prog->type != new_prog->type || 9820 old_prog->expected_attach_type != new_prog->expected_attach_type) { 9821 err = -EINVAL; 9822 goto out_unlock; 9823 } 9824 9825 if (old_prog == new_prog) { 9826 /* no-op, don't disturb drivers */ 9827 bpf_prog_put(new_prog); 9828 goto out_unlock; 9829 } 9830 9831 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags); 9832 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode); 9833 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL, 9834 xdp_link->flags, new_prog); 9835 if (err) 9836 goto out_unlock; 9837 9838 old_prog = xchg(&link->prog, new_prog); 9839 bpf_prog_put(old_prog); 9840 9841 out_unlock: 9842 rtnl_unlock(); 9843 return err; 9844 } 9845 9846 static const struct bpf_link_ops bpf_xdp_link_lops = { 9847 .release = bpf_xdp_link_release, 9848 .dealloc = bpf_xdp_link_dealloc, 9849 .detach = bpf_xdp_link_detach, 9850 .show_fdinfo = bpf_xdp_link_show_fdinfo, 9851 .fill_link_info = bpf_xdp_link_fill_link_info, 9852 .update_prog = bpf_xdp_link_update, 9853 }; 9854 9855 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog) 9856 { 9857 struct net *net = current->nsproxy->net_ns; 9858 struct bpf_link_primer link_primer; 9859 struct netlink_ext_ack extack = {}; 9860 struct bpf_xdp_link *link; 9861 struct net_device *dev; 9862 int err, fd; 9863 9864 rtnl_lock(); 9865 dev = dev_get_by_index(net, attr->link_create.target_ifindex); 9866 if (!dev) { 9867 rtnl_unlock(); 9868 return -EINVAL; 9869 } 9870 9871 link = kzalloc(sizeof(*link), GFP_USER); 9872 if (!link) { 9873 err = -ENOMEM; 9874 goto unlock; 9875 } 9876 9877 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog); 9878 link->dev = dev; 9879 link->flags = attr->link_create.flags; 9880 9881 err = bpf_link_prime(&link->link, &link_primer); 9882 if (err) { 9883 kfree(link); 9884 goto unlock; 9885 } 9886 9887 err = dev_xdp_attach_link(dev, &extack, link); 9888 rtnl_unlock(); 9889 9890 if (err) { 9891 link->dev = NULL; 9892 bpf_link_cleanup(&link_primer); 9893 trace_bpf_xdp_link_attach_failed(extack._msg); 9894 goto out_put_dev; 9895 } 9896 9897 fd = bpf_link_settle(&link_primer); 9898 /* link itself doesn't hold dev's refcnt to not complicate shutdown */ 9899 dev_put(dev); 9900 return fd; 9901 9902 unlock: 9903 rtnl_unlock(); 9904 9905 out_put_dev: 9906 dev_put(dev); 9907 return err; 9908 } 9909 9910 /** 9911 * dev_change_xdp_fd - set or clear a bpf program for a device rx path 9912 * @dev: device 9913 * @extack: netlink extended ack 9914 * @fd: new program fd or negative value to clear 9915 * @expected_fd: old program fd that userspace expects to replace or clear 9916 * @flags: xdp-related flags 9917 * 9918 * Set or clear a bpf program for a device 9919 */ 9920 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 9921 int fd, int expected_fd, u32 flags) 9922 { 9923 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags); 9924 struct bpf_prog *new_prog = NULL, *old_prog = NULL; 9925 int err; 9926 9927 ASSERT_RTNL(); 9928 9929 if (fd >= 0) { 9930 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP, 9931 mode != XDP_MODE_SKB); 9932 if (IS_ERR(new_prog)) 9933 return PTR_ERR(new_prog); 9934 } 9935 9936 if (expected_fd >= 0) { 9937 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP, 9938 mode != XDP_MODE_SKB); 9939 if (IS_ERR(old_prog)) { 9940 err = PTR_ERR(old_prog); 9941 old_prog = NULL; 9942 goto err_out; 9943 } 9944 } 9945 9946 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags); 9947 9948 err_out: 9949 if (err && new_prog) 9950 bpf_prog_put(new_prog); 9951 if (old_prog) 9952 bpf_prog_put(old_prog); 9953 return err; 9954 } 9955 9956 u32 dev_get_min_mp_channel_count(const struct net_device *dev) 9957 { 9958 int i; 9959 9960 ASSERT_RTNL(); 9961 9962 for (i = dev->real_num_rx_queues - 1; i >= 0; i--) 9963 if (dev->_rx[i].mp_params.mp_priv) 9964 /* The channel count is the idx plus 1. */ 9965 return i + 1; 9966 9967 return 0; 9968 } 9969 9970 /** 9971 * dev_index_reserve() - allocate an ifindex in a namespace 9972 * @net: the applicable net namespace 9973 * @ifindex: requested ifindex, pass %0 to get one allocated 9974 * 9975 * Allocate a ifindex for a new device. Caller must either use the ifindex 9976 * to store the device (via list_netdevice()) or call dev_index_release() 9977 * to give the index up. 9978 * 9979 * Return: a suitable unique value for a new device interface number or -errno. 9980 */ 9981 static int dev_index_reserve(struct net *net, u32 ifindex) 9982 { 9983 int err; 9984 9985 if (ifindex > INT_MAX) { 9986 DEBUG_NET_WARN_ON_ONCE(1); 9987 return -EINVAL; 9988 } 9989 9990 if (!ifindex) 9991 err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL, 9992 xa_limit_31b, &net->ifindex, GFP_KERNEL); 9993 else 9994 err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL); 9995 if (err < 0) 9996 return err; 9997 9998 return ifindex; 9999 } 10000 10001 static void dev_index_release(struct net *net, int ifindex) 10002 { 10003 /* Expect only unused indexes, unlist_netdevice() removes the used */ 10004 WARN_ON(xa_erase(&net->dev_by_index, ifindex)); 10005 } 10006 10007 /* Delayed registration/unregisteration */ 10008 LIST_HEAD(net_todo_list); 10009 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 10010 atomic_t dev_unreg_count = ATOMIC_INIT(0); 10011 10012 static void net_set_todo(struct net_device *dev) 10013 { 10014 list_add_tail(&dev->todo_list, &net_todo_list); 10015 } 10016 10017 static netdev_features_t netdev_sync_upper_features(struct net_device *lower, 10018 struct net_device *upper, netdev_features_t features) 10019 { 10020 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 10021 netdev_features_t feature; 10022 int feature_bit; 10023 10024 for_each_netdev_feature(upper_disables, feature_bit) { 10025 feature = __NETIF_F_BIT(feature_bit); 10026 if (!(upper->wanted_features & feature) 10027 && (features & feature)) { 10028 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n", 10029 &feature, upper->name); 10030 features &= ~feature; 10031 } 10032 } 10033 10034 return features; 10035 } 10036 10037 static void netdev_sync_lower_features(struct net_device *upper, 10038 struct net_device *lower, netdev_features_t features) 10039 { 10040 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 10041 netdev_features_t feature; 10042 int feature_bit; 10043 10044 for_each_netdev_feature(upper_disables, feature_bit) { 10045 feature = __NETIF_F_BIT(feature_bit); 10046 if (!(features & feature) && (lower->features & feature)) { 10047 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n", 10048 &feature, lower->name); 10049 lower->wanted_features &= ~feature; 10050 __netdev_update_features(lower); 10051 10052 if (unlikely(lower->features & feature)) 10053 netdev_WARN(upper, "failed to disable %pNF on %s!\n", 10054 &feature, lower->name); 10055 else 10056 netdev_features_change(lower); 10057 } 10058 } 10059 } 10060 10061 static bool netdev_has_ip_or_hw_csum(netdev_features_t features) 10062 { 10063 netdev_features_t ip_csum_mask = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM; 10064 bool ip_csum = (features & ip_csum_mask) == ip_csum_mask; 10065 bool hw_csum = features & NETIF_F_HW_CSUM; 10066 10067 return ip_csum || hw_csum; 10068 } 10069 10070 static netdev_features_t netdev_fix_features(struct net_device *dev, 10071 netdev_features_t features) 10072 { 10073 /* Fix illegal checksum combinations */ 10074 if ((features & NETIF_F_HW_CSUM) && 10075 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 10076 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 10077 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 10078 } 10079 10080 /* TSO requires that SG is present as well. */ 10081 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 10082 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 10083 features &= ~NETIF_F_ALL_TSO; 10084 } 10085 10086 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 10087 !(features & NETIF_F_IP_CSUM)) { 10088 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 10089 features &= ~NETIF_F_TSO; 10090 features &= ~NETIF_F_TSO_ECN; 10091 } 10092 10093 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 10094 !(features & NETIF_F_IPV6_CSUM)) { 10095 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 10096 features &= ~NETIF_F_TSO6; 10097 } 10098 10099 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */ 10100 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO)) 10101 features &= ~NETIF_F_TSO_MANGLEID; 10102 10103 /* TSO ECN requires that TSO is present as well. */ 10104 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 10105 features &= ~NETIF_F_TSO_ECN; 10106 10107 /* Software GSO depends on SG. */ 10108 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 10109 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 10110 features &= ~NETIF_F_GSO; 10111 } 10112 10113 /* GSO partial features require GSO partial be set */ 10114 if ((features & dev->gso_partial_features) && 10115 !(features & NETIF_F_GSO_PARTIAL)) { 10116 netdev_dbg(dev, 10117 "Dropping partially supported GSO features since no GSO partial.\n"); 10118 features &= ~dev->gso_partial_features; 10119 } 10120 10121 if (!(features & NETIF_F_RXCSUM)) { 10122 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet 10123 * successfully merged by hardware must also have the 10124 * checksum verified by hardware. If the user does not 10125 * want to enable RXCSUM, logically, we should disable GRO_HW. 10126 */ 10127 if (features & NETIF_F_GRO_HW) { 10128 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n"); 10129 features &= ~NETIF_F_GRO_HW; 10130 } 10131 } 10132 10133 /* LRO/HW-GRO features cannot be combined with RX-FCS */ 10134 if (features & NETIF_F_RXFCS) { 10135 if (features & NETIF_F_LRO) { 10136 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n"); 10137 features &= ~NETIF_F_LRO; 10138 } 10139 10140 if (features & NETIF_F_GRO_HW) { 10141 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n"); 10142 features &= ~NETIF_F_GRO_HW; 10143 } 10144 } 10145 10146 if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) { 10147 netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n"); 10148 features &= ~NETIF_F_LRO; 10149 } 10150 10151 if ((features & NETIF_F_HW_TLS_TX) && !netdev_has_ip_or_hw_csum(features)) { 10152 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n"); 10153 features &= ~NETIF_F_HW_TLS_TX; 10154 } 10155 10156 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) { 10157 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n"); 10158 features &= ~NETIF_F_HW_TLS_RX; 10159 } 10160 10161 if ((features & NETIF_F_GSO_UDP_L4) && !netdev_has_ip_or_hw_csum(features)) { 10162 netdev_dbg(dev, "Dropping USO feature since no CSUM feature.\n"); 10163 features &= ~NETIF_F_GSO_UDP_L4; 10164 } 10165 10166 return features; 10167 } 10168 10169 int __netdev_update_features(struct net_device *dev) 10170 { 10171 struct net_device *upper, *lower; 10172 netdev_features_t features; 10173 struct list_head *iter; 10174 int err = -1; 10175 10176 ASSERT_RTNL(); 10177 10178 features = netdev_get_wanted_features(dev); 10179 10180 if (dev->netdev_ops->ndo_fix_features) 10181 features = dev->netdev_ops->ndo_fix_features(dev, features); 10182 10183 /* driver might be less strict about feature dependencies */ 10184 features = netdev_fix_features(dev, features); 10185 10186 /* some features can't be enabled if they're off on an upper device */ 10187 netdev_for_each_upper_dev_rcu(dev, upper, iter) 10188 features = netdev_sync_upper_features(dev, upper, features); 10189 10190 if (dev->features == features) 10191 goto sync_lower; 10192 10193 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 10194 &dev->features, &features); 10195 10196 if (dev->netdev_ops->ndo_set_features) 10197 err = dev->netdev_ops->ndo_set_features(dev, features); 10198 else 10199 err = 0; 10200 10201 if (unlikely(err < 0)) { 10202 netdev_err(dev, 10203 "set_features() failed (%d); wanted %pNF, left %pNF\n", 10204 err, &features, &dev->features); 10205 /* return non-0 since some features might have changed and 10206 * it's better to fire a spurious notification than miss it 10207 */ 10208 return -1; 10209 } 10210 10211 sync_lower: 10212 /* some features must be disabled on lower devices when disabled 10213 * on an upper device (think: bonding master or bridge) 10214 */ 10215 netdev_for_each_lower_dev(dev, lower, iter) 10216 netdev_sync_lower_features(dev, lower, features); 10217 10218 if (!err) { 10219 netdev_features_t diff = features ^ dev->features; 10220 10221 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) { 10222 /* udp_tunnel_{get,drop}_rx_info both need 10223 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the 10224 * device, or they won't do anything. 10225 * Thus we need to update dev->features 10226 * *before* calling udp_tunnel_get_rx_info, 10227 * but *after* calling udp_tunnel_drop_rx_info. 10228 */ 10229 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) { 10230 dev->features = features; 10231 udp_tunnel_get_rx_info(dev); 10232 } else { 10233 udp_tunnel_drop_rx_info(dev); 10234 } 10235 } 10236 10237 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) { 10238 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) { 10239 dev->features = features; 10240 err |= vlan_get_rx_ctag_filter_info(dev); 10241 } else { 10242 vlan_drop_rx_ctag_filter_info(dev); 10243 } 10244 } 10245 10246 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) { 10247 if (features & NETIF_F_HW_VLAN_STAG_FILTER) { 10248 dev->features = features; 10249 err |= vlan_get_rx_stag_filter_info(dev); 10250 } else { 10251 vlan_drop_rx_stag_filter_info(dev); 10252 } 10253 } 10254 10255 dev->features = features; 10256 } 10257 10258 return err < 0 ? 0 : 1; 10259 } 10260 10261 /** 10262 * netdev_update_features - recalculate device features 10263 * @dev: the device to check 10264 * 10265 * Recalculate dev->features set and send notifications if it 10266 * has changed. Should be called after driver or hardware dependent 10267 * conditions might have changed that influence the features. 10268 */ 10269 void netdev_update_features(struct net_device *dev) 10270 { 10271 if (__netdev_update_features(dev)) 10272 netdev_features_change(dev); 10273 } 10274 EXPORT_SYMBOL(netdev_update_features); 10275 10276 /** 10277 * netdev_change_features - recalculate device features 10278 * @dev: the device to check 10279 * 10280 * Recalculate dev->features set and send notifications even 10281 * if they have not changed. Should be called instead of 10282 * netdev_update_features() if also dev->vlan_features might 10283 * have changed to allow the changes to be propagated to stacked 10284 * VLAN devices. 10285 */ 10286 void netdev_change_features(struct net_device *dev) 10287 { 10288 __netdev_update_features(dev); 10289 netdev_features_change(dev); 10290 } 10291 EXPORT_SYMBOL(netdev_change_features); 10292 10293 /** 10294 * netif_stacked_transfer_operstate - transfer operstate 10295 * @rootdev: the root or lower level device to transfer state from 10296 * @dev: the device to transfer operstate to 10297 * 10298 * Transfer operational state from root to device. This is normally 10299 * called when a stacking relationship exists between the root 10300 * device and the device(a leaf device). 10301 */ 10302 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 10303 struct net_device *dev) 10304 { 10305 if (rootdev->operstate == IF_OPER_DORMANT) 10306 netif_dormant_on(dev); 10307 else 10308 netif_dormant_off(dev); 10309 10310 if (rootdev->operstate == IF_OPER_TESTING) 10311 netif_testing_on(dev); 10312 else 10313 netif_testing_off(dev); 10314 10315 if (netif_carrier_ok(rootdev)) 10316 netif_carrier_on(dev); 10317 else 10318 netif_carrier_off(dev); 10319 } 10320 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 10321 10322 static int netif_alloc_rx_queues(struct net_device *dev) 10323 { 10324 unsigned int i, count = dev->num_rx_queues; 10325 struct netdev_rx_queue *rx; 10326 size_t sz = count * sizeof(*rx); 10327 int err = 0; 10328 10329 BUG_ON(count < 1); 10330 10331 rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); 10332 if (!rx) 10333 return -ENOMEM; 10334 10335 dev->_rx = rx; 10336 10337 for (i = 0; i < count; i++) { 10338 rx[i].dev = dev; 10339 10340 /* XDP RX-queue setup */ 10341 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0); 10342 if (err < 0) 10343 goto err_rxq_info; 10344 } 10345 return 0; 10346 10347 err_rxq_info: 10348 /* Rollback successful reg's and free other resources */ 10349 while (i--) 10350 xdp_rxq_info_unreg(&rx[i].xdp_rxq); 10351 kvfree(dev->_rx); 10352 dev->_rx = NULL; 10353 return err; 10354 } 10355 10356 static void netif_free_rx_queues(struct net_device *dev) 10357 { 10358 unsigned int i, count = dev->num_rx_queues; 10359 10360 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */ 10361 if (!dev->_rx) 10362 return; 10363 10364 for (i = 0; i < count; i++) 10365 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq); 10366 10367 kvfree(dev->_rx); 10368 } 10369 10370 static void netdev_init_one_queue(struct net_device *dev, 10371 struct netdev_queue *queue, void *_unused) 10372 { 10373 /* Initialize queue lock */ 10374 spin_lock_init(&queue->_xmit_lock); 10375 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 10376 queue->xmit_lock_owner = -1; 10377 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 10378 queue->dev = dev; 10379 #ifdef CONFIG_BQL 10380 dql_init(&queue->dql, HZ); 10381 #endif 10382 } 10383 10384 static void netif_free_tx_queues(struct net_device *dev) 10385 { 10386 kvfree(dev->_tx); 10387 } 10388 10389 static int netif_alloc_netdev_queues(struct net_device *dev) 10390 { 10391 unsigned int count = dev->num_tx_queues; 10392 struct netdev_queue *tx; 10393 size_t sz = count * sizeof(*tx); 10394 10395 if (count < 1 || count > 0xffff) 10396 return -EINVAL; 10397 10398 tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); 10399 if (!tx) 10400 return -ENOMEM; 10401 10402 dev->_tx = tx; 10403 10404 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 10405 spin_lock_init(&dev->tx_global_lock); 10406 10407 return 0; 10408 } 10409 10410 void netif_tx_stop_all_queues(struct net_device *dev) 10411 { 10412 unsigned int i; 10413 10414 for (i = 0; i < dev->num_tx_queues; i++) { 10415 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 10416 10417 netif_tx_stop_queue(txq); 10418 } 10419 } 10420 EXPORT_SYMBOL(netif_tx_stop_all_queues); 10421 10422 static int netdev_do_alloc_pcpu_stats(struct net_device *dev) 10423 { 10424 void __percpu *v; 10425 10426 /* Drivers implementing ndo_get_peer_dev must support tstat 10427 * accounting, so that skb_do_redirect() can bump the dev's 10428 * RX stats upon network namespace switch. 10429 */ 10430 if (dev->netdev_ops->ndo_get_peer_dev && 10431 dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS) 10432 return -EOPNOTSUPP; 10433 10434 switch (dev->pcpu_stat_type) { 10435 case NETDEV_PCPU_STAT_NONE: 10436 return 0; 10437 case NETDEV_PCPU_STAT_LSTATS: 10438 v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats); 10439 break; 10440 case NETDEV_PCPU_STAT_TSTATS: 10441 v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats); 10442 break; 10443 case NETDEV_PCPU_STAT_DSTATS: 10444 v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats); 10445 break; 10446 default: 10447 return -EINVAL; 10448 } 10449 10450 return v ? 0 : -ENOMEM; 10451 } 10452 10453 static void netdev_do_free_pcpu_stats(struct net_device *dev) 10454 { 10455 switch (dev->pcpu_stat_type) { 10456 case NETDEV_PCPU_STAT_NONE: 10457 return; 10458 case NETDEV_PCPU_STAT_LSTATS: 10459 free_percpu(dev->lstats); 10460 break; 10461 case NETDEV_PCPU_STAT_TSTATS: 10462 free_percpu(dev->tstats); 10463 break; 10464 case NETDEV_PCPU_STAT_DSTATS: 10465 free_percpu(dev->dstats); 10466 break; 10467 } 10468 } 10469 10470 static void netdev_free_phy_link_topology(struct net_device *dev) 10471 { 10472 struct phy_link_topology *topo = dev->link_topo; 10473 10474 if (IS_ENABLED(CONFIG_PHYLIB) && topo) { 10475 xa_destroy(&topo->phys); 10476 kfree(topo); 10477 dev->link_topo = NULL; 10478 } 10479 } 10480 10481 /** 10482 * register_netdevice() - register a network device 10483 * @dev: device to register 10484 * 10485 * Take a prepared network device structure and make it externally accessible. 10486 * A %NETDEV_REGISTER message is sent to the netdev notifier chain. 10487 * Callers must hold the rtnl lock - you may want register_netdev() 10488 * instead of this. 10489 */ 10490 int register_netdevice(struct net_device *dev) 10491 { 10492 int ret; 10493 struct net *net = dev_net(dev); 10494 10495 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE < 10496 NETDEV_FEATURE_COUNT); 10497 BUG_ON(dev_boot_phase); 10498 ASSERT_RTNL(); 10499 10500 might_sleep(); 10501 10502 /* When net_device's are persistent, this will be fatal. */ 10503 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 10504 BUG_ON(!net); 10505 10506 ret = ethtool_check_ops(dev->ethtool_ops); 10507 if (ret) 10508 return ret; 10509 10510 /* rss ctx ID 0 is reserved for the default context, start from 1 */ 10511 xa_init_flags(&dev->ethtool->rss_ctx, XA_FLAGS_ALLOC1); 10512 mutex_init(&dev->ethtool->rss_lock); 10513 10514 spin_lock_init(&dev->addr_list_lock); 10515 netdev_set_addr_lockdep_class(dev); 10516 10517 ret = dev_get_valid_name(net, dev, dev->name); 10518 if (ret < 0) 10519 goto out; 10520 10521 ret = -ENOMEM; 10522 dev->name_node = netdev_name_node_head_alloc(dev); 10523 if (!dev->name_node) 10524 goto out; 10525 10526 /* Init, if this function is available */ 10527 if (dev->netdev_ops->ndo_init) { 10528 ret = dev->netdev_ops->ndo_init(dev); 10529 if (ret) { 10530 if (ret > 0) 10531 ret = -EIO; 10532 goto err_free_name; 10533 } 10534 } 10535 10536 if (((dev->hw_features | dev->features) & 10537 NETIF_F_HW_VLAN_CTAG_FILTER) && 10538 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 10539 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 10540 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 10541 ret = -EINVAL; 10542 goto err_uninit; 10543 } 10544 10545 ret = netdev_do_alloc_pcpu_stats(dev); 10546 if (ret) 10547 goto err_uninit; 10548 10549 ret = dev_index_reserve(net, dev->ifindex); 10550 if (ret < 0) 10551 goto err_free_pcpu; 10552 dev->ifindex = ret; 10553 10554 /* Transfer changeable features to wanted_features and enable 10555 * software offloads (GSO and GRO). 10556 */ 10557 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF); 10558 dev->features |= NETIF_F_SOFT_FEATURES; 10559 10560 if (dev->udp_tunnel_nic_info) { 10561 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT; 10562 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT; 10563 } 10564 10565 dev->wanted_features = dev->features & dev->hw_features; 10566 10567 if (!(dev->flags & IFF_LOOPBACK)) 10568 dev->hw_features |= NETIF_F_NOCACHE_COPY; 10569 10570 /* If IPv4 TCP segmentation offload is supported we should also 10571 * allow the device to enable segmenting the frame with the option 10572 * of ignoring a static IP ID value. This doesn't enable the 10573 * feature itself but allows the user to enable it later. 10574 */ 10575 if (dev->hw_features & NETIF_F_TSO) 10576 dev->hw_features |= NETIF_F_TSO_MANGLEID; 10577 if (dev->vlan_features & NETIF_F_TSO) 10578 dev->vlan_features |= NETIF_F_TSO_MANGLEID; 10579 if (dev->mpls_features & NETIF_F_TSO) 10580 dev->mpls_features |= NETIF_F_TSO_MANGLEID; 10581 if (dev->hw_enc_features & NETIF_F_TSO) 10582 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 10583 10584 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 10585 */ 10586 dev->vlan_features |= NETIF_F_HIGHDMA; 10587 10588 /* Make NETIF_F_SG inheritable to tunnel devices. 10589 */ 10590 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL; 10591 10592 /* Make NETIF_F_SG inheritable to MPLS. 10593 */ 10594 dev->mpls_features |= NETIF_F_SG; 10595 10596 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 10597 ret = notifier_to_errno(ret); 10598 if (ret) 10599 goto err_ifindex_release; 10600 10601 ret = netdev_register_kobject(dev); 10602 10603 WRITE_ONCE(dev->reg_state, ret ? NETREG_UNREGISTERED : NETREG_REGISTERED); 10604 10605 if (ret) 10606 goto err_uninit_notify; 10607 10608 __netdev_update_features(dev); 10609 10610 /* 10611 * Default initial state at registry is that the 10612 * device is present. 10613 */ 10614 10615 set_bit(__LINK_STATE_PRESENT, &dev->state); 10616 10617 linkwatch_init_dev(dev); 10618 10619 dev_init_scheduler(dev); 10620 10621 netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL); 10622 list_netdevice(dev); 10623 10624 add_device_randomness(dev->dev_addr, dev->addr_len); 10625 10626 /* If the device has permanent device address, driver should 10627 * set dev_addr and also addr_assign_type should be set to 10628 * NET_ADDR_PERM (default value). 10629 */ 10630 if (dev->addr_assign_type == NET_ADDR_PERM) 10631 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 10632 10633 /* Notify protocols, that a new device appeared. */ 10634 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 10635 ret = notifier_to_errno(ret); 10636 if (ret) { 10637 /* Expect explicit free_netdev() on failure */ 10638 dev->needs_free_netdev = false; 10639 unregister_netdevice_queue(dev, NULL); 10640 goto out; 10641 } 10642 /* 10643 * Prevent userspace races by waiting until the network 10644 * device is fully setup before sending notifications. 10645 */ 10646 if (!dev->rtnl_link_ops || 10647 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 10648 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL); 10649 10650 out: 10651 return ret; 10652 10653 err_uninit_notify: 10654 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev); 10655 err_ifindex_release: 10656 dev_index_release(net, dev->ifindex); 10657 err_free_pcpu: 10658 netdev_do_free_pcpu_stats(dev); 10659 err_uninit: 10660 if (dev->netdev_ops->ndo_uninit) 10661 dev->netdev_ops->ndo_uninit(dev); 10662 if (dev->priv_destructor) 10663 dev->priv_destructor(dev); 10664 err_free_name: 10665 netdev_name_node_free(dev->name_node); 10666 goto out; 10667 } 10668 EXPORT_SYMBOL(register_netdevice); 10669 10670 /* Initialize the core of a dummy net device. 10671 * This is useful if you are calling this function after alloc_netdev(), 10672 * since it does not memset the net_device fields. 10673 */ 10674 static void init_dummy_netdev_core(struct net_device *dev) 10675 { 10676 /* make sure we BUG if trying to hit standard 10677 * register/unregister code path 10678 */ 10679 dev->reg_state = NETREG_DUMMY; 10680 10681 /* NAPI wants this */ 10682 INIT_LIST_HEAD(&dev->napi_list); 10683 10684 /* a dummy interface is started by default */ 10685 set_bit(__LINK_STATE_PRESENT, &dev->state); 10686 set_bit(__LINK_STATE_START, &dev->state); 10687 10688 /* napi_busy_loop stats accounting wants this */ 10689 dev_net_set(dev, &init_net); 10690 10691 /* Note : We dont allocate pcpu_refcnt for dummy devices, 10692 * because users of this 'device' dont need to change 10693 * its refcount. 10694 */ 10695 } 10696 10697 /** 10698 * init_dummy_netdev - init a dummy network device for NAPI 10699 * @dev: device to init 10700 * 10701 * This takes a network device structure and initializes the minimum 10702 * amount of fields so it can be used to schedule NAPI polls without 10703 * registering a full blown interface. This is to be used by drivers 10704 * that need to tie several hardware interfaces to a single NAPI 10705 * poll scheduler due to HW limitations. 10706 */ 10707 void init_dummy_netdev(struct net_device *dev) 10708 { 10709 /* Clear everything. Note we don't initialize spinlocks 10710 * as they aren't supposed to be taken by any of the 10711 * NAPI code and this dummy netdev is supposed to be 10712 * only ever used for NAPI polls 10713 */ 10714 memset(dev, 0, sizeof(struct net_device)); 10715 init_dummy_netdev_core(dev); 10716 } 10717 EXPORT_SYMBOL_GPL(init_dummy_netdev); 10718 10719 /** 10720 * register_netdev - register a network device 10721 * @dev: device to register 10722 * 10723 * Take a completed network device structure and add it to the kernel 10724 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 10725 * chain. 0 is returned on success. A negative errno code is returned 10726 * on a failure to set up the device, or if the name is a duplicate. 10727 * 10728 * This is a wrapper around register_netdevice that takes the rtnl semaphore 10729 * and expands the device name if you passed a format string to 10730 * alloc_netdev. 10731 */ 10732 int register_netdev(struct net_device *dev) 10733 { 10734 int err; 10735 10736 if (rtnl_lock_killable()) 10737 return -EINTR; 10738 err = register_netdevice(dev); 10739 rtnl_unlock(); 10740 return err; 10741 } 10742 EXPORT_SYMBOL(register_netdev); 10743 10744 int netdev_refcnt_read(const struct net_device *dev) 10745 { 10746 #ifdef CONFIG_PCPU_DEV_REFCNT 10747 int i, refcnt = 0; 10748 10749 for_each_possible_cpu(i) 10750 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 10751 return refcnt; 10752 #else 10753 return refcount_read(&dev->dev_refcnt); 10754 #endif 10755 } 10756 EXPORT_SYMBOL(netdev_refcnt_read); 10757 10758 int netdev_unregister_timeout_secs __read_mostly = 10; 10759 10760 #define WAIT_REFS_MIN_MSECS 1 10761 #define WAIT_REFS_MAX_MSECS 250 10762 /** 10763 * netdev_wait_allrefs_any - wait until all references are gone. 10764 * @list: list of net_devices to wait on 10765 * 10766 * This is called when unregistering network devices. 10767 * 10768 * Any protocol or device that holds a reference should register 10769 * for netdevice notification, and cleanup and put back the 10770 * reference if they receive an UNREGISTER event. 10771 * We can get stuck here if buggy protocols don't correctly 10772 * call dev_put. 10773 */ 10774 static struct net_device *netdev_wait_allrefs_any(struct list_head *list) 10775 { 10776 unsigned long rebroadcast_time, warning_time; 10777 struct net_device *dev; 10778 int wait = 0; 10779 10780 rebroadcast_time = warning_time = jiffies; 10781 10782 list_for_each_entry(dev, list, todo_list) 10783 if (netdev_refcnt_read(dev) == 1) 10784 return dev; 10785 10786 while (true) { 10787 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 10788 rtnl_lock(); 10789 10790 /* Rebroadcast unregister notification */ 10791 list_for_each_entry(dev, list, todo_list) 10792 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 10793 10794 __rtnl_unlock(); 10795 rcu_barrier(); 10796 rtnl_lock(); 10797 10798 list_for_each_entry(dev, list, todo_list) 10799 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 10800 &dev->state)) { 10801 /* We must not have linkwatch events 10802 * pending on unregister. If this 10803 * happens, we simply run the queue 10804 * unscheduled, resulting in a noop 10805 * for this device. 10806 */ 10807 linkwatch_run_queue(); 10808 break; 10809 } 10810 10811 __rtnl_unlock(); 10812 10813 rebroadcast_time = jiffies; 10814 } 10815 10816 rcu_barrier(); 10817 10818 if (!wait) { 10819 wait = WAIT_REFS_MIN_MSECS; 10820 } else { 10821 msleep(wait); 10822 wait = min(wait << 1, WAIT_REFS_MAX_MSECS); 10823 } 10824 10825 list_for_each_entry(dev, list, todo_list) 10826 if (netdev_refcnt_read(dev) == 1) 10827 return dev; 10828 10829 if (time_after(jiffies, warning_time + 10830 READ_ONCE(netdev_unregister_timeout_secs) * HZ)) { 10831 list_for_each_entry(dev, list, todo_list) { 10832 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 10833 dev->name, netdev_refcnt_read(dev)); 10834 ref_tracker_dir_print(&dev->refcnt_tracker, 10); 10835 } 10836 10837 warning_time = jiffies; 10838 } 10839 } 10840 } 10841 10842 /* The sequence is: 10843 * 10844 * rtnl_lock(); 10845 * ... 10846 * register_netdevice(x1); 10847 * register_netdevice(x2); 10848 * ... 10849 * unregister_netdevice(y1); 10850 * unregister_netdevice(y2); 10851 * ... 10852 * rtnl_unlock(); 10853 * free_netdev(y1); 10854 * free_netdev(y2); 10855 * 10856 * We are invoked by rtnl_unlock(). 10857 * This allows us to deal with problems: 10858 * 1) We can delete sysfs objects which invoke hotplug 10859 * without deadlocking with linkwatch via keventd. 10860 * 2) Since we run with the RTNL semaphore not held, we can sleep 10861 * safely in order to wait for the netdev refcnt to drop to zero. 10862 * 10863 * We must not return until all unregister events added during 10864 * the interval the lock was held have been completed. 10865 */ 10866 void netdev_run_todo(void) 10867 { 10868 struct net_device *dev, *tmp; 10869 struct list_head list; 10870 int cnt; 10871 #ifdef CONFIG_LOCKDEP 10872 struct list_head unlink_list; 10873 10874 list_replace_init(&net_unlink_list, &unlink_list); 10875 10876 while (!list_empty(&unlink_list)) { 10877 struct net_device *dev = list_first_entry(&unlink_list, 10878 struct net_device, 10879 unlink_list); 10880 list_del_init(&dev->unlink_list); 10881 dev->nested_level = dev->lower_level - 1; 10882 } 10883 #endif 10884 10885 /* Snapshot list, allow later requests */ 10886 list_replace_init(&net_todo_list, &list); 10887 10888 __rtnl_unlock(); 10889 10890 /* Wait for rcu callbacks to finish before next phase */ 10891 if (!list_empty(&list)) 10892 rcu_barrier(); 10893 10894 list_for_each_entry_safe(dev, tmp, &list, todo_list) { 10895 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 10896 netdev_WARN(dev, "run_todo but not unregistering\n"); 10897 list_del(&dev->todo_list); 10898 continue; 10899 } 10900 10901 WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERED); 10902 linkwatch_sync_dev(dev); 10903 } 10904 10905 cnt = 0; 10906 while (!list_empty(&list)) { 10907 dev = netdev_wait_allrefs_any(&list); 10908 list_del(&dev->todo_list); 10909 10910 /* paranoia */ 10911 BUG_ON(netdev_refcnt_read(dev) != 1); 10912 BUG_ON(!list_empty(&dev->ptype_all)); 10913 BUG_ON(!list_empty(&dev->ptype_specific)); 10914 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 10915 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 10916 10917 netdev_do_free_pcpu_stats(dev); 10918 if (dev->priv_destructor) 10919 dev->priv_destructor(dev); 10920 if (dev->needs_free_netdev) 10921 free_netdev(dev); 10922 10923 cnt++; 10924 10925 /* Free network device */ 10926 kobject_put(&dev->dev.kobj); 10927 } 10928 if (cnt && atomic_sub_and_test(cnt, &dev_unreg_count)) 10929 wake_up(&netdev_unregistering_wq); 10930 } 10931 10932 /* Collate per-cpu network dstats statistics 10933 * 10934 * Read per-cpu network statistics from dev->dstats and populate the related 10935 * fields in @s. 10936 */ 10937 static void dev_fetch_dstats(struct rtnl_link_stats64 *s, 10938 const struct pcpu_dstats __percpu *dstats) 10939 { 10940 int cpu; 10941 10942 for_each_possible_cpu(cpu) { 10943 u64 rx_packets, rx_bytes, rx_drops; 10944 u64 tx_packets, tx_bytes, tx_drops; 10945 const struct pcpu_dstats *stats; 10946 unsigned int start; 10947 10948 stats = per_cpu_ptr(dstats, cpu); 10949 do { 10950 start = u64_stats_fetch_begin(&stats->syncp); 10951 rx_packets = u64_stats_read(&stats->rx_packets); 10952 rx_bytes = u64_stats_read(&stats->rx_bytes); 10953 rx_drops = u64_stats_read(&stats->rx_drops); 10954 tx_packets = u64_stats_read(&stats->tx_packets); 10955 tx_bytes = u64_stats_read(&stats->tx_bytes); 10956 tx_drops = u64_stats_read(&stats->tx_drops); 10957 } while (u64_stats_fetch_retry(&stats->syncp, start)); 10958 10959 s->rx_packets += rx_packets; 10960 s->rx_bytes += rx_bytes; 10961 s->rx_dropped += rx_drops; 10962 s->tx_packets += tx_packets; 10963 s->tx_bytes += tx_bytes; 10964 s->tx_dropped += tx_drops; 10965 } 10966 } 10967 10968 /* ndo_get_stats64 implementation for dtstats-based accounting. 10969 * 10970 * Populate @s from dev->stats and dev->dstats. This is used internally by the 10971 * core for NETDEV_PCPU_STAT_DSTAT-type stats collection. 10972 */ 10973 static void dev_get_dstats64(const struct net_device *dev, 10974 struct rtnl_link_stats64 *s) 10975 { 10976 netdev_stats_to_stats64(s, &dev->stats); 10977 dev_fetch_dstats(s, dev->dstats); 10978 } 10979 10980 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has 10981 * all the same fields in the same order as net_device_stats, with only 10982 * the type differing, but rtnl_link_stats64 may have additional fields 10983 * at the end for newer counters. 10984 */ 10985 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 10986 const struct net_device_stats *netdev_stats) 10987 { 10988 size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t); 10989 const atomic_long_t *src = (atomic_long_t *)netdev_stats; 10990 u64 *dst = (u64 *)stats64; 10991 10992 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64)); 10993 for (i = 0; i < n; i++) 10994 dst[i] = (unsigned long)atomic_long_read(&src[i]); 10995 /* zero out counters that only exist in rtnl_link_stats64 */ 10996 memset((char *)stats64 + n * sizeof(u64), 0, 10997 sizeof(*stats64) - n * sizeof(u64)); 10998 } 10999 EXPORT_SYMBOL(netdev_stats_to_stats64); 11000 11001 static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc( 11002 struct net_device *dev) 11003 { 11004 struct net_device_core_stats __percpu *p; 11005 11006 p = alloc_percpu_gfp(struct net_device_core_stats, 11007 GFP_ATOMIC | __GFP_NOWARN); 11008 11009 if (p && cmpxchg(&dev->core_stats, NULL, p)) 11010 free_percpu(p); 11011 11012 /* This READ_ONCE() pairs with the cmpxchg() above */ 11013 return READ_ONCE(dev->core_stats); 11014 } 11015 11016 noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset) 11017 { 11018 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */ 11019 struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats); 11020 unsigned long __percpu *field; 11021 11022 if (unlikely(!p)) { 11023 p = netdev_core_stats_alloc(dev); 11024 if (!p) 11025 return; 11026 } 11027 11028 field = (unsigned long __percpu *)((void __percpu *)p + offset); 11029 this_cpu_inc(*field); 11030 } 11031 EXPORT_SYMBOL_GPL(netdev_core_stats_inc); 11032 11033 /** 11034 * dev_get_stats - get network device statistics 11035 * @dev: device to get statistics from 11036 * @storage: place to store stats 11037 * 11038 * Get network statistics from device. Return @storage. 11039 * The device driver may provide its own method by setting 11040 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 11041 * otherwise the internal statistics structure is used. 11042 */ 11043 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 11044 struct rtnl_link_stats64 *storage) 11045 { 11046 const struct net_device_ops *ops = dev->netdev_ops; 11047 const struct net_device_core_stats __percpu *p; 11048 11049 if (ops->ndo_get_stats64) { 11050 memset(storage, 0, sizeof(*storage)); 11051 ops->ndo_get_stats64(dev, storage); 11052 } else if (ops->ndo_get_stats) { 11053 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 11054 } else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_TSTATS) { 11055 dev_get_tstats64(dev, storage); 11056 } else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_DSTATS) { 11057 dev_get_dstats64(dev, storage); 11058 } else { 11059 netdev_stats_to_stats64(storage, &dev->stats); 11060 } 11061 11062 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */ 11063 p = READ_ONCE(dev->core_stats); 11064 if (p) { 11065 const struct net_device_core_stats *core_stats; 11066 int i; 11067 11068 for_each_possible_cpu(i) { 11069 core_stats = per_cpu_ptr(p, i); 11070 storage->rx_dropped += READ_ONCE(core_stats->rx_dropped); 11071 storage->tx_dropped += READ_ONCE(core_stats->tx_dropped); 11072 storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler); 11073 storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped); 11074 } 11075 } 11076 return storage; 11077 } 11078 EXPORT_SYMBOL(dev_get_stats); 11079 11080 /** 11081 * dev_fetch_sw_netstats - get per-cpu network device statistics 11082 * @s: place to store stats 11083 * @netstats: per-cpu network stats to read from 11084 * 11085 * Read per-cpu network statistics and populate the related fields in @s. 11086 */ 11087 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s, 11088 const struct pcpu_sw_netstats __percpu *netstats) 11089 { 11090 int cpu; 11091 11092 for_each_possible_cpu(cpu) { 11093 u64 rx_packets, rx_bytes, tx_packets, tx_bytes; 11094 const struct pcpu_sw_netstats *stats; 11095 unsigned int start; 11096 11097 stats = per_cpu_ptr(netstats, cpu); 11098 do { 11099 start = u64_stats_fetch_begin(&stats->syncp); 11100 rx_packets = u64_stats_read(&stats->rx_packets); 11101 rx_bytes = u64_stats_read(&stats->rx_bytes); 11102 tx_packets = u64_stats_read(&stats->tx_packets); 11103 tx_bytes = u64_stats_read(&stats->tx_bytes); 11104 } while (u64_stats_fetch_retry(&stats->syncp, start)); 11105 11106 s->rx_packets += rx_packets; 11107 s->rx_bytes += rx_bytes; 11108 s->tx_packets += tx_packets; 11109 s->tx_bytes += tx_bytes; 11110 } 11111 } 11112 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats); 11113 11114 /** 11115 * dev_get_tstats64 - ndo_get_stats64 implementation 11116 * @dev: device to get statistics from 11117 * @s: place to store stats 11118 * 11119 * Populate @s from dev->stats and dev->tstats. Can be used as 11120 * ndo_get_stats64() callback. 11121 */ 11122 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s) 11123 { 11124 netdev_stats_to_stats64(s, &dev->stats); 11125 dev_fetch_sw_netstats(s, dev->tstats); 11126 } 11127 EXPORT_SYMBOL_GPL(dev_get_tstats64); 11128 11129 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 11130 { 11131 struct netdev_queue *queue = dev_ingress_queue(dev); 11132 11133 #ifdef CONFIG_NET_CLS_ACT 11134 if (queue) 11135 return queue; 11136 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 11137 if (!queue) 11138 return NULL; 11139 netdev_init_one_queue(dev, queue, NULL); 11140 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 11141 RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc); 11142 rcu_assign_pointer(dev->ingress_queue, queue); 11143 #endif 11144 return queue; 11145 } 11146 11147 static const struct ethtool_ops default_ethtool_ops; 11148 11149 void netdev_set_default_ethtool_ops(struct net_device *dev, 11150 const struct ethtool_ops *ops) 11151 { 11152 if (dev->ethtool_ops == &default_ethtool_ops) 11153 dev->ethtool_ops = ops; 11154 } 11155 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 11156 11157 /** 11158 * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default 11159 * @dev: netdev to enable the IRQ coalescing on 11160 * 11161 * Sets a conservative default for SW IRQ coalescing. Users can use 11162 * sysfs attributes to override the default values. 11163 */ 11164 void netdev_sw_irq_coalesce_default_on(struct net_device *dev) 11165 { 11166 WARN_ON(dev->reg_state == NETREG_REGISTERED); 11167 11168 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) { 11169 netdev_set_gro_flush_timeout(dev, 20000); 11170 netdev_set_defer_hard_irqs(dev, 1); 11171 } 11172 } 11173 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on); 11174 11175 /** 11176 * alloc_netdev_mqs - allocate network device 11177 * @sizeof_priv: size of private data to allocate space for 11178 * @name: device name format string 11179 * @name_assign_type: origin of device name 11180 * @setup: callback to initialize device 11181 * @txqs: the number of TX subqueues to allocate 11182 * @rxqs: the number of RX subqueues to allocate 11183 * 11184 * Allocates a struct net_device with private data area for driver use 11185 * and performs basic initialization. Also allocates subqueue structs 11186 * for each queue on the device. 11187 */ 11188 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 11189 unsigned char name_assign_type, 11190 void (*setup)(struct net_device *), 11191 unsigned int txqs, unsigned int rxqs) 11192 { 11193 struct net_device *dev; 11194 size_t napi_config_sz; 11195 unsigned int maxqs; 11196 11197 BUG_ON(strlen(name) >= sizeof(dev->name)); 11198 11199 if (txqs < 1) { 11200 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 11201 return NULL; 11202 } 11203 11204 if (rxqs < 1) { 11205 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 11206 return NULL; 11207 } 11208 11209 maxqs = max(txqs, rxqs); 11210 11211 dev = kvzalloc(struct_size(dev, priv, sizeof_priv), 11212 GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); 11213 if (!dev) 11214 return NULL; 11215 11216 dev->priv_len = sizeof_priv; 11217 11218 ref_tracker_dir_init(&dev->refcnt_tracker, 128, name); 11219 #ifdef CONFIG_PCPU_DEV_REFCNT 11220 dev->pcpu_refcnt = alloc_percpu(int); 11221 if (!dev->pcpu_refcnt) 11222 goto free_dev; 11223 __dev_hold(dev); 11224 #else 11225 refcount_set(&dev->dev_refcnt, 1); 11226 #endif 11227 11228 if (dev_addr_init(dev)) 11229 goto free_pcpu; 11230 11231 dev_mc_init(dev); 11232 dev_uc_init(dev); 11233 11234 dev_net_set(dev, &init_net); 11235 11236 dev->gso_max_size = GSO_LEGACY_MAX_SIZE; 11237 dev->xdp_zc_max_segs = 1; 11238 dev->gso_max_segs = GSO_MAX_SEGS; 11239 dev->gro_max_size = GRO_LEGACY_MAX_SIZE; 11240 dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE; 11241 dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE; 11242 dev->tso_max_size = TSO_LEGACY_MAX_SIZE; 11243 dev->tso_max_segs = TSO_MAX_SEGS; 11244 dev->upper_level = 1; 11245 dev->lower_level = 1; 11246 #ifdef CONFIG_LOCKDEP 11247 dev->nested_level = 0; 11248 INIT_LIST_HEAD(&dev->unlink_list); 11249 #endif 11250 11251 INIT_LIST_HEAD(&dev->napi_list); 11252 INIT_LIST_HEAD(&dev->unreg_list); 11253 INIT_LIST_HEAD(&dev->close_list); 11254 INIT_LIST_HEAD(&dev->link_watch_list); 11255 INIT_LIST_HEAD(&dev->adj_list.upper); 11256 INIT_LIST_HEAD(&dev->adj_list.lower); 11257 INIT_LIST_HEAD(&dev->ptype_all); 11258 INIT_LIST_HEAD(&dev->ptype_specific); 11259 INIT_LIST_HEAD(&dev->net_notifier_list); 11260 #ifdef CONFIG_NET_SCHED 11261 hash_init(dev->qdisc_hash); 11262 #endif 11263 11264 mutex_init(&dev->lock); 11265 11266 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 11267 setup(dev); 11268 11269 if (!dev->tx_queue_len) { 11270 dev->priv_flags |= IFF_NO_QUEUE; 11271 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; 11272 } 11273 11274 dev->num_tx_queues = txqs; 11275 dev->real_num_tx_queues = txqs; 11276 if (netif_alloc_netdev_queues(dev)) 11277 goto free_all; 11278 11279 dev->num_rx_queues = rxqs; 11280 dev->real_num_rx_queues = rxqs; 11281 if (netif_alloc_rx_queues(dev)) 11282 goto free_all; 11283 dev->ethtool = kzalloc(sizeof(*dev->ethtool), GFP_KERNEL_ACCOUNT); 11284 if (!dev->ethtool) 11285 goto free_all; 11286 11287 napi_config_sz = array_size(maxqs, sizeof(*dev->napi_config)); 11288 dev->napi_config = kvzalloc(napi_config_sz, GFP_KERNEL_ACCOUNT); 11289 if (!dev->napi_config) 11290 goto free_all; 11291 11292 strscpy(dev->name, name); 11293 dev->name_assign_type = name_assign_type; 11294 dev->group = INIT_NETDEV_GROUP; 11295 if (!dev->ethtool_ops) 11296 dev->ethtool_ops = &default_ethtool_ops; 11297 11298 nf_hook_netdev_init(dev); 11299 11300 return dev; 11301 11302 free_all: 11303 free_netdev(dev); 11304 return NULL; 11305 11306 free_pcpu: 11307 #ifdef CONFIG_PCPU_DEV_REFCNT 11308 free_percpu(dev->pcpu_refcnt); 11309 free_dev: 11310 #endif 11311 kvfree(dev); 11312 return NULL; 11313 } 11314 EXPORT_SYMBOL(alloc_netdev_mqs); 11315 11316 /** 11317 * free_netdev - free network device 11318 * @dev: device 11319 * 11320 * This function does the last stage of destroying an allocated device 11321 * interface. The reference to the device object is released. If this 11322 * is the last reference then it will be freed.Must be called in process 11323 * context. 11324 */ 11325 void free_netdev(struct net_device *dev) 11326 { 11327 struct napi_struct *p, *n; 11328 11329 might_sleep(); 11330 11331 /* When called immediately after register_netdevice() failed the unwind 11332 * handling may still be dismantling the device. Handle that case by 11333 * deferring the free. 11334 */ 11335 if (dev->reg_state == NETREG_UNREGISTERING) { 11336 ASSERT_RTNL(); 11337 dev->needs_free_netdev = true; 11338 return; 11339 } 11340 11341 mutex_destroy(&dev->lock); 11342 11343 kfree(dev->ethtool); 11344 netif_free_tx_queues(dev); 11345 netif_free_rx_queues(dev); 11346 11347 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 11348 11349 /* Flush device addresses */ 11350 dev_addr_flush(dev); 11351 11352 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 11353 netif_napi_del(p); 11354 11355 kvfree(dev->napi_config); 11356 11357 ref_tracker_dir_exit(&dev->refcnt_tracker); 11358 #ifdef CONFIG_PCPU_DEV_REFCNT 11359 free_percpu(dev->pcpu_refcnt); 11360 dev->pcpu_refcnt = NULL; 11361 #endif 11362 free_percpu(dev->core_stats); 11363 dev->core_stats = NULL; 11364 free_percpu(dev->xdp_bulkq); 11365 dev->xdp_bulkq = NULL; 11366 11367 netdev_free_phy_link_topology(dev); 11368 11369 /* Compatibility with error handling in drivers */ 11370 if (dev->reg_state == NETREG_UNINITIALIZED || 11371 dev->reg_state == NETREG_DUMMY) { 11372 kvfree(dev); 11373 return; 11374 } 11375 11376 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 11377 WRITE_ONCE(dev->reg_state, NETREG_RELEASED); 11378 11379 /* will free via device release */ 11380 put_device(&dev->dev); 11381 } 11382 EXPORT_SYMBOL(free_netdev); 11383 11384 /** 11385 * alloc_netdev_dummy - Allocate and initialize a dummy net device. 11386 * @sizeof_priv: size of private data to allocate space for 11387 * 11388 * Return: the allocated net_device on success, NULL otherwise 11389 */ 11390 struct net_device *alloc_netdev_dummy(int sizeof_priv) 11391 { 11392 return alloc_netdev(sizeof_priv, "dummy#", NET_NAME_UNKNOWN, 11393 init_dummy_netdev_core); 11394 } 11395 EXPORT_SYMBOL_GPL(alloc_netdev_dummy); 11396 11397 /** 11398 * synchronize_net - Synchronize with packet receive processing 11399 * 11400 * Wait for packets currently being received to be done. 11401 * Does not block later packets from starting. 11402 */ 11403 void synchronize_net(void) 11404 { 11405 might_sleep(); 11406 if (rtnl_is_locked()) 11407 synchronize_rcu_expedited(); 11408 else 11409 synchronize_rcu(); 11410 } 11411 EXPORT_SYMBOL(synchronize_net); 11412 11413 static void netdev_rss_contexts_free(struct net_device *dev) 11414 { 11415 struct ethtool_rxfh_context *ctx; 11416 unsigned long context; 11417 11418 mutex_lock(&dev->ethtool->rss_lock); 11419 xa_for_each(&dev->ethtool->rss_ctx, context, ctx) { 11420 struct ethtool_rxfh_param rxfh; 11421 11422 rxfh.indir = ethtool_rxfh_context_indir(ctx); 11423 rxfh.key = ethtool_rxfh_context_key(ctx); 11424 rxfh.hfunc = ctx->hfunc; 11425 rxfh.input_xfrm = ctx->input_xfrm; 11426 rxfh.rss_context = context; 11427 rxfh.rss_delete = true; 11428 11429 xa_erase(&dev->ethtool->rss_ctx, context); 11430 if (dev->ethtool_ops->create_rxfh_context) 11431 dev->ethtool_ops->remove_rxfh_context(dev, ctx, 11432 context, NULL); 11433 else 11434 dev->ethtool_ops->set_rxfh(dev, &rxfh, NULL); 11435 kfree(ctx); 11436 } 11437 xa_destroy(&dev->ethtool->rss_ctx); 11438 mutex_unlock(&dev->ethtool->rss_lock); 11439 } 11440 11441 /** 11442 * unregister_netdevice_queue - remove device from the kernel 11443 * @dev: device 11444 * @head: list 11445 * 11446 * This function shuts down a device interface and removes it 11447 * from the kernel tables. 11448 * If head not NULL, device is queued to be unregistered later. 11449 * 11450 * Callers must hold the rtnl semaphore. You may want 11451 * unregister_netdev() instead of this. 11452 */ 11453 11454 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 11455 { 11456 ASSERT_RTNL(); 11457 11458 if (head) { 11459 list_move_tail(&dev->unreg_list, head); 11460 } else { 11461 LIST_HEAD(single); 11462 11463 list_add(&dev->unreg_list, &single); 11464 unregister_netdevice_many(&single); 11465 } 11466 } 11467 EXPORT_SYMBOL(unregister_netdevice_queue); 11468 11469 void unregister_netdevice_many_notify(struct list_head *head, 11470 u32 portid, const struct nlmsghdr *nlh) 11471 { 11472 struct net_device *dev, *tmp; 11473 LIST_HEAD(close_head); 11474 int cnt = 0; 11475 11476 BUG_ON(dev_boot_phase); 11477 ASSERT_RTNL(); 11478 11479 if (list_empty(head)) 11480 return; 11481 11482 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 11483 /* Some devices call without registering 11484 * for initialization unwind. Remove those 11485 * devices and proceed with the remaining. 11486 */ 11487 if (dev->reg_state == NETREG_UNINITIALIZED) { 11488 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 11489 dev->name, dev); 11490 11491 WARN_ON(1); 11492 list_del(&dev->unreg_list); 11493 continue; 11494 } 11495 dev->dismantle = true; 11496 BUG_ON(dev->reg_state != NETREG_REGISTERED); 11497 } 11498 11499 /* If device is running, close it first. */ 11500 list_for_each_entry(dev, head, unreg_list) 11501 list_add_tail(&dev->close_list, &close_head); 11502 dev_close_many(&close_head, true); 11503 11504 list_for_each_entry(dev, head, unreg_list) { 11505 /* And unlink it from device chain. */ 11506 unlist_netdevice(dev); 11507 WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERING); 11508 } 11509 flush_all_backlogs(); 11510 11511 synchronize_net(); 11512 11513 list_for_each_entry(dev, head, unreg_list) { 11514 struct sk_buff *skb = NULL; 11515 11516 /* Shutdown queueing discipline. */ 11517 dev_shutdown(dev); 11518 dev_tcx_uninstall(dev); 11519 dev_xdp_uninstall(dev); 11520 bpf_dev_bound_netdev_unregister(dev); 11521 dev_dmabuf_uninstall(dev); 11522 11523 netdev_offload_xstats_disable_all(dev); 11524 11525 /* Notify protocols, that we are about to destroy 11526 * this device. They should clean all the things. 11527 */ 11528 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 11529 11530 if (!dev->rtnl_link_ops || 11531 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 11532 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0, 11533 GFP_KERNEL, NULL, 0, 11534 portid, nlh); 11535 11536 /* 11537 * Flush the unicast and multicast chains 11538 */ 11539 dev_uc_flush(dev); 11540 dev_mc_flush(dev); 11541 11542 netdev_name_node_alt_flush(dev); 11543 netdev_name_node_free(dev->name_node); 11544 11545 netdev_rss_contexts_free(dev); 11546 11547 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev); 11548 11549 if (dev->netdev_ops->ndo_uninit) 11550 dev->netdev_ops->ndo_uninit(dev); 11551 11552 mutex_destroy(&dev->ethtool->rss_lock); 11553 11554 net_shaper_flush_netdev(dev); 11555 11556 if (skb) 11557 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh); 11558 11559 /* Notifier chain MUST detach us all upper devices. */ 11560 WARN_ON(netdev_has_any_upper_dev(dev)); 11561 WARN_ON(netdev_has_any_lower_dev(dev)); 11562 11563 /* Remove entries from kobject tree */ 11564 netdev_unregister_kobject(dev); 11565 #ifdef CONFIG_XPS 11566 /* Remove XPS queueing entries */ 11567 netif_reset_xps_queues_gt(dev, 0); 11568 #endif 11569 } 11570 11571 synchronize_net(); 11572 11573 list_for_each_entry(dev, head, unreg_list) { 11574 netdev_put(dev, &dev->dev_registered_tracker); 11575 net_set_todo(dev); 11576 cnt++; 11577 } 11578 atomic_add(cnt, &dev_unreg_count); 11579 11580 list_del(head); 11581 } 11582 11583 /** 11584 * unregister_netdevice_many - unregister many devices 11585 * @head: list of devices 11586 * 11587 * Note: As most callers use a stack allocated list_head, 11588 * we force a list_del() to make sure stack won't be corrupted later. 11589 */ 11590 void unregister_netdevice_many(struct list_head *head) 11591 { 11592 unregister_netdevice_many_notify(head, 0, NULL); 11593 } 11594 EXPORT_SYMBOL(unregister_netdevice_many); 11595 11596 /** 11597 * unregister_netdev - remove device from the kernel 11598 * @dev: device 11599 * 11600 * This function shuts down a device interface and removes it 11601 * from the kernel tables. 11602 * 11603 * This is just a wrapper for unregister_netdevice that takes 11604 * the rtnl semaphore. In general you want to use this and not 11605 * unregister_netdevice. 11606 */ 11607 void unregister_netdev(struct net_device *dev) 11608 { 11609 rtnl_lock(); 11610 unregister_netdevice(dev); 11611 rtnl_unlock(); 11612 } 11613 EXPORT_SYMBOL(unregister_netdev); 11614 11615 /** 11616 * __dev_change_net_namespace - move device to different nethost namespace 11617 * @dev: device 11618 * @net: network namespace 11619 * @pat: If not NULL name pattern to try if the current device name 11620 * is already taken in the destination network namespace. 11621 * @new_ifindex: If not zero, specifies device index in the target 11622 * namespace. 11623 * 11624 * This function shuts down a device interface and moves it 11625 * to a new network namespace. On success 0 is returned, on 11626 * a failure a netagive errno code is returned. 11627 * 11628 * Callers must hold the rtnl semaphore. 11629 */ 11630 11631 int __dev_change_net_namespace(struct net_device *dev, struct net *net, 11632 const char *pat, int new_ifindex) 11633 { 11634 struct netdev_name_node *name_node; 11635 struct net *net_old = dev_net(dev); 11636 char new_name[IFNAMSIZ] = {}; 11637 int err, new_nsid; 11638 11639 ASSERT_RTNL(); 11640 11641 /* Don't allow namespace local devices to be moved. */ 11642 err = -EINVAL; 11643 if (dev->netns_local) 11644 goto out; 11645 11646 /* Ensure the device has been registered */ 11647 if (dev->reg_state != NETREG_REGISTERED) 11648 goto out; 11649 11650 /* Get out if there is nothing todo */ 11651 err = 0; 11652 if (net_eq(net_old, net)) 11653 goto out; 11654 11655 /* Pick the destination device name, and ensure 11656 * we can use it in the destination network namespace. 11657 */ 11658 err = -EEXIST; 11659 if (netdev_name_in_use(net, dev->name)) { 11660 /* We get here if we can't use the current device name */ 11661 if (!pat) 11662 goto out; 11663 err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST); 11664 if (err < 0) 11665 goto out; 11666 } 11667 /* Check that none of the altnames conflicts. */ 11668 err = -EEXIST; 11669 netdev_for_each_altname(dev, name_node) 11670 if (netdev_name_in_use(net, name_node->name)) 11671 goto out; 11672 11673 /* Check that new_ifindex isn't used yet. */ 11674 if (new_ifindex) { 11675 err = dev_index_reserve(net, new_ifindex); 11676 if (err < 0) 11677 goto out; 11678 } else { 11679 /* If there is an ifindex conflict assign a new one */ 11680 err = dev_index_reserve(net, dev->ifindex); 11681 if (err == -EBUSY) 11682 err = dev_index_reserve(net, 0); 11683 if (err < 0) 11684 goto out; 11685 new_ifindex = err; 11686 } 11687 11688 /* 11689 * And now a mini version of register_netdevice unregister_netdevice. 11690 */ 11691 11692 /* If device is running close it first. */ 11693 dev_close(dev); 11694 11695 /* And unlink it from device chain */ 11696 unlist_netdevice(dev); 11697 11698 synchronize_net(); 11699 11700 /* Shutdown queueing discipline. */ 11701 dev_shutdown(dev); 11702 11703 /* Notify protocols, that we are about to destroy 11704 * this device. They should clean all the things. 11705 * 11706 * Note that dev->reg_state stays at NETREG_REGISTERED. 11707 * This is wanted because this way 8021q and macvlan know 11708 * the device is just moving and can keep their slaves up. 11709 */ 11710 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 11711 rcu_barrier(); 11712 11713 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL); 11714 11715 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid, 11716 new_ifindex); 11717 11718 /* 11719 * Flush the unicast and multicast chains 11720 */ 11721 dev_uc_flush(dev); 11722 dev_mc_flush(dev); 11723 11724 /* Send a netdev-removed uevent to the old namespace */ 11725 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 11726 netdev_adjacent_del_links(dev); 11727 11728 /* Move per-net netdevice notifiers that are following the netdevice */ 11729 move_netdevice_notifiers_dev_net(dev, net); 11730 11731 /* Actually switch the network namespace */ 11732 dev_net_set(dev, net); 11733 dev->ifindex = new_ifindex; 11734 11735 if (new_name[0]) { 11736 /* Rename the netdev to prepared name */ 11737 write_seqlock_bh(&netdev_rename_lock); 11738 strscpy(dev->name, new_name, IFNAMSIZ); 11739 write_sequnlock_bh(&netdev_rename_lock); 11740 } 11741 11742 /* Fixup kobjects */ 11743 dev_set_uevent_suppress(&dev->dev, 1); 11744 err = device_rename(&dev->dev, dev->name); 11745 dev_set_uevent_suppress(&dev->dev, 0); 11746 WARN_ON(err); 11747 11748 /* Send a netdev-add uevent to the new namespace */ 11749 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 11750 netdev_adjacent_add_links(dev); 11751 11752 /* Adapt owner in case owning user namespace of target network 11753 * namespace is different from the original one. 11754 */ 11755 err = netdev_change_owner(dev, net_old, net); 11756 WARN_ON(err); 11757 11758 /* Add the device back in the hashes */ 11759 list_netdevice(dev); 11760 11761 /* Notify protocols, that a new device appeared. */ 11762 call_netdevice_notifiers(NETDEV_REGISTER, dev); 11763 11764 /* 11765 * Prevent userspace races by waiting until the network 11766 * device is fully setup before sending notifications. 11767 */ 11768 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL); 11769 11770 synchronize_net(); 11771 err = 0; 11772 out: 11773 return err; 11774 } 11775 EXPORT_SYMBOL_GPL(__dev_change_net_namespace); 11776 11777 static int dev_cpu_dead(unsigned int oldcpu) 11778 { 11779 struct sk_buff **list_skb; 11780 struct sk_buff *skb; 11781 unsigned int cpu; 11782 struct softnet_data *sd, *oldsd, *remsd = NULL; 11783 11784 local_irq_disable(); 11785 cpu = smp_processor_id(); 11786 sd = &per_cpu(softnet_data, cpu); 11787 oldsd = &per_cpu(softnet_data, oldcpu); 11788 11789 /* Find end of our completion_queue. */ 11790 list_skb = &sd->completion_queue; 11791 while (*list_skb) 11792 list_skb = &(*list_skb)->next; 11793 /* Append completion queue from offline CPU. */ 11794 *list_skb = oldsd->completion_queue; 11795 oldsd->completion_queue = NULL; 11796 11797 /* Append output queue from offline CPU. */ 11798 if (oldsd->output_queue) { 11799 *sd->output_queue_tailp = oldsd->output_queue; 11800 sd->output_queue_tailp = oldsd->output_queue_tailp; 11801 oldsd->output_queue = NULL; 11802 oldsd->output_queue_tailp = &oldsd->output_queue; 11803 } 11804 /* Append NAPI poll list from offline CPU, with one exception : 11805 * process_backlog() must be called by cpu owning percpu backlog. 11806 * We properly handle process_queue & input_pkt_queue later. 11807 */ 11808 while (!list_empty(&oldsd->poll_list)) { 11809 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 11810 struct napi_struct, 11811 poll_list); 11812 11813 list_del_init(&napi->poll_list); 11814 if (napi->poll == process_backlog) 11815 napi->state &= NAPIF_STATE_THREADED; 11816 else 11817 ____napi_schedule(sd, napi); 11818 } 11819 11820 raise_softirq_irqoff(NET_TX_SOFTIRQ); 11821 local_irq_enable(); 11822 11823 if (!use_backlog_threads()) { 11824 #ifdef CONFIG_RPS 11825 remsd = oldsd->rps_ipi_list; 11826 oldsd->rps_ipi_list = NULL; 11827 #endif 11828 /* send out pending IPI's on offline CPU */ 11829 net_rps_send_ipi(remsd); 11830 } 11831 11832 /* Process offline CPU's input_pkt_queue */ 11833 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 11834 netif_rx(skb); 11835 rps_input_queue_head_incr(oldsd); 11836 } 11837 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 11838 netif_rx(skb); 11839 rps_input_queue_head_incr(oldsd); 11840 } 11841 11842 return 0; 11843 } 11844 11845 /** 11846 * netdev_increment_features - increment feature set by one 11847 * @all: current feature set 11848 * @one: new feature set 11849 * @mask: mask feature set 11850 * 11851 * Computes a new feature set after adding a device with feature set 11852 * @one to the master device with current feature set @all. Will not 11853 * enable anything that is off in @mask. Returns the new feature set. 11854 */ 11855 netdev_features_t netdev_increment_features(netdev_features_t all, 11856 netdev_features_t one, netdev_features_t mask) 11857 { 11858 if (mask & NETIF_F_HW_CSUM) 11859 mask |= NETIF_F_CSUM_MASK; 11860 mask |= NETIF_F_VLAN_CHALLENGED; 11861 11862 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask; 11863 all &= one | ~NETIF_F_ALL_FOR_ALL; 11864 11865 /* If one device supports hw checksumming, set for all. */ 11866 if (all & NETIF_F_HW_CSUM) 11867 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM); 11868 11869 return all; 11870 } 11871 EXPORT_SYMBOL(netdev_increment_features); 11872 11873 static struct hlist_head * __net_init netdev_create_hash(void) 11874 { 11875 int i; 11876 struct hlist_head *hash; 11877 11878 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL); 11879 if (hash != NULL) 11880 for (i = 0; i < NETDEV_HASHENTRIES; i++) 11881 INIT_HLIST_HEAD(&hash[i]); 11882 11883 return hash; 11884 } 11885 11886 /* Initialize per network namespace state */ 11887 static int __net_init netdev_init(struct net *net) 11888 { 11889 BUILD_BUG_ON(GRO_HASH_BUCKETS > 11890 8 * sizeof_field(struct napi_struct, gro_bitmask)); 11891 11892 INIT_LIST_HEAD(&net->dev_base_head); 11893 11894 net->dev_name_head = netdev_create_hash(); 11895 if (net->dev_name_head == NULL) 11896 goto err_name; 11897 11898 net->dev_index_head = netdev_create_hash(); 11899 if (net->dev_index_head == NULL) 11900 goto err_idx; 11901 11902 xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1); 11903 11904 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain); 11905 11906 return 0; 11907 11908 err_idx: 11909 kfree(net->dev_name_head); 11910 err_name: 11911 return -ENOMEM; 11912 } 11913 11914 /** 11915 * netdev_drivername - network driver for the device 11916 * @dev: network device 11917 * 11918 * Determine network driver for device. 11919 */ 11920 const char *netdev_drivername(const struct net_device *dev) 11921 { 11922 const struct device_driver *driver; 11923 const struct device *parent; 11924 const char *empty = ""; 11925 11926 parent = dev->dev.parent; 11927 if (!parent) 11928 return empty; 11929 11930 driver = parent->driver; 11931 if (driver && driver->name) 11932 return driver->name; 11933 return empty; 11934 } 11935 11936 static void __netdev_printk(const char *level, const struct net_device *dev, 11937 struct va_format *vaf) 11938 { 11939 if (dev && dev->dev.parent) { 11940 dev_printk_emit(level[1] - '0', 11941 dev->dev.parent, 11942 "%s %s %s%s: %pV", 11943 dev_driver_string(dev->dev.parent), 11944 dev_name(dev->dev.parent), 11945 netdev_name(dev), netdev_reg_state(dev), 11946 vaf); 11947 } else if (dev) { 11948 printk("%s%s%s: %pV", 11949 level, netdev_name(dev), netdev_reg_state(dev), vaf); 11950 } else { 11951 printk("%s(NULL net_device): %pV", level, vaf); 11952 } 11953 } 11954 11955 void netdev_printk(const char *level, const struct net_device *dev, 11956 const char *format, ...) 11957 { 11958 struct va_format vaf; 11959 va_list args; 11960 11961 va_start(args, format); 11962 11963 vaf.fmt = format; 11964 vaf.va = &args; 11965 11966 __netdev_printk(level, dev, &vaf); 11967 11968 va_end(args); 11969 } 11970 EXPORT_SYMBOL(netdev_printk); 11971 11972 #define define_netdev_printk_level(func, level) \ 11973 void func(const struct net_device *dev, const char *fmt, ...) \ 11974 { \ 11975 struct va_format vaf; \ 11976 va_list args; \ 11977 \ 11978 va_start(args, fmt); \ 11979 \ 11980 vaf.fmt = fmt; \ 11981 vaf.va = &args; \ 11982 \ 11983 __netdev_printk(level, dev, &vaf); \ 11984 \ 11985 va_end(args); \ 11986 } \ 11987 EXPORT_SYMBOL(func); 11988 11989 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 11990 define_netdev_printk_level(netdev_alert, KERN_ALERT); 11991 define_netdev_printk_level(netdev_crit, KERN_CRIT); 11992 define_netdev_printk_level(netdev_err, KERN_ERR); 11993 define_netdev_printk_level(netdev_warn, KERN_WARNING); 11994 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 11995 define_netdev_printk_level(netdev_info, KERN_INFO); 11996 11997 static void __net_exit netdev_exit(struct net *net) 11998 { 11999 kfree(net->dev_name_head); 12000 kfree(net->dev_index_head); 12001 xa_destroy(&net->dev_by_index); 12002 if (net != &init_net) 12003 WARN_ON_ONCE(!list_empty(&net->dev_base_head)); 12004 } 12005 12006 static struct pernet_operations __net_initdata netdev_net_ops = { 12007 .init = netdev_init, 12008 .exit = netdev_exit, 12009 }; 12010 12011 static void __net_exit default_device_exit_net(struct net *net) 12012 { 12013 struct netdev_name_node *name_node, *tmp; 12014 struct net_device *dev, *aux; 12015 /* 12016 * Push all migratable network devices back to the 12017 * initial network namespace 12018 */ 12019 ASSERT_RTNL(); 12020 for_each_netdev_safe(net, dev, aux) { 12021 int err; 12022 char fb_name[IFNAMSIZ]; 12023 12024 /* Ignore unmoveable devices (i.e. loopback) */ 12025 if (dev->netns_local) 12026 continue; 12027 12028 /* Leave virtual devices for the generic cleanup */ 12029 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund) 12030 continue; 12031 12032 /* Push remaining network devices to init_net */ 12033 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 12034 if (netdev_name_in_use(&init_net, fb_name)) 12035 snprintf(fb_name, IFNAMSIZ, "dev%%d"); 12036 12037 netdev_for_each_altname_safe(dev, name_node, tmp) 12038 if (netdev_name_in_use(&init_net, name_node->name)) 12039 __netdev_name_node_alt_destroy(name_node); 12040 12041 err = dev_change_net_namespace(dev, &init_net, fb_name); 12042 if (err) { 12043 pr_emerg("%s: failed to move %s to init_net: %d\n", 12044 __func__, dev->name, err); 12045 BUG(); 12046 } 12047 } 12048 } 12049 12050 static void __net_exit default_device_exit_batch(struct list_head *net_list) 12051 { 12052 /* At exit all network devices most be removed from a network 12053 * namespace. Do this in the reverse order of registration. 12054 * Do this across as many network namespaces as possible to 12055 * improve batching efficiency. 12056 */ 12057 struct net_device *dev; 12058 struct net *net; 12059 LIST_HEAD(dev_kill_list); 12060 12061 rtnl_lock(); 12062 list_for_each_entry(net, net_list, exit_list) { 12063 default_device_exit_net(net); 12064 cond_resched(); 12065 } 12066 12067 list_for_each_entry(net, net_list, exit_list) { 12068 for_each_netdev_reverse(net, dev) { 12069 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 12070 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 12071 else 12072 unregister_netdevice_queue(dev, &dev_kill_list); 12073 } 12074 } 12075 unregister_netdevice_many(&dev_kill_list); 12076 rtnl_unlock(); 12077 } 12078 12079 static struct pernet_operations __net_initdata default_device_ops = { 12080 .exit_batch = default_device_exit_batch, 12081 }; 12082 12083 static void __init net_dev_struct_check(void) 12084 { 12085 /* TX read-mostly hotpath */ 12086 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, priv_flags_fast); 12087 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, netdev_ops); 12088 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, header_ops); 12089 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, _tx); 12090 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, real_num_tx_queues); 12091 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_size); 12092 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_ipv4_max_size); 12093 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_segs); 12094 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_partial_features); 12095 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, num_tc); 12096 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, mtu); 12097 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, needed_headroom); 12098 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tc_to_txq); 12099 #ifdef CONFIG_XPS 12100 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, xps_maps); 12101 #endif 12102 #ifdef CONFIG_NETFILTER_EGRESS 12103 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, nf_hooks_egress); 12104 #endif 12105 #ifdef CONFIG_NET_XGRESS 12106 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tcx_egress); 12107 #endif 12108 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_tx, 160); 12109 12110 /* TXRX read-mostly hotpath */ 12111 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, lstats); 12112 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, state); 12113 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, flags); 12114 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, hard_header_len); 12115 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, features); 12116 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, ip6_ptr); 12117 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_txrx, 46); 12118 12119 /* RX read-mostly hotpath */ 12120 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ptype_specific); 12121 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ifindex); 12122 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, real_num_rx_queues); 12123 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, _rx); 12124 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_max_size); 12125 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_ipv4_max_size); 12126 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler); 12127 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler_data); 12128 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, nd_net); 12129 #ifdef CONFIG_NETPOLL 12130 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, npinfo); 12131 #endif 12132 #ifdef CONFIG_NET_XGRESS 12133 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, tcx_ingress); 12134 #endif 12135 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_rx, 92); 12136 } 12137 12138 /* 12139 * Initialize the DEV module. At boot time this walks the device list and 12140 * unhooks any devices that fail to initialise (normally hardware not 12141 * present) and leaves us with a valid list of present and active devices. 12142 * 12143 */ 12144 12145 /* We allocate 256 pages for each CPU if PAGE_SHIFT is 12 */ 12146 #define SYSTEM_PERCPU_PAGE_POOL_SIZE ((1 << 20) / PAGE_SIZE) 12147 12148 static int net_page_pool_create(int cpuid) 12149 { 12150 #if IS_ENABLED(CONFIG_PAGE_POOL) 12151 struct page_pool_params page_pool_params = { 12152 .pool_size = SYSTEM_PERCPU_PAGE_POOL_SIZE, 12153 .flags = PP_FLAG_SYSTEM_POOL, 12154 .nid = cpu_to_mem(cpuid), 12155 }; 12156 struct page_pool *pp_ptr; 12157 12158 pp_ptr = page_pool_create_percpu(&page_pool_params, cpuid); 12159 if (IS_ERR(pp_ptr)) 12160 return -ENOMEM; 12161 12162 per_cpu(system_page_pool, cpuid) = pp_ptr; 12163 #endif 12164 return 0; 12165 } 12166 12167 static int backlog_napi_should_run(unsigned int cpu) 12168 { 12169 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu); 12170 struct napi_struct *napi = &sd->backlog; 12171 12172 return test_bit(NAPI_STATE_SCHED_THREADED, &napi->state); 12173 } 12174 12175 static void run_backlog_napi(unsigned int cpu) 12176 { 12177 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu); 12178 12179 napi_threaded_poll_loop(&sd->backlog); 12180 } 12181 12182 static void backlog_napi_setup(unsigned int cpu) 12183 { 12184 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu); 12185 struct napi_struct *napi = &sd->backlog; 12186 12187 napi->thread = this_cpu_read(backlog_napi); 12188 set_bit(NAPI_STATE_THREADED, &napi->state); 12189 } 12190 12191 static struct smp_hotplug_thread backlog_threads = { 12192 .store = &backlog_napi, 12193 .thread_should_run = backlog_napi_should_run, 12194 .thread_fn = run_backlog_napi, 12195 .thread_comm = "backlog_napi/%u", 12196 .setup = backlog_napi_setup, 12197 }; 12198 12199 /* 12200 * This is called single threaded during boot, so no need 12201 * to take the rtnl semaphore. 12202 */ 12203 static int __init net_dev_init(void) 12204 { 12205 int i, rc = -ENOMEM; 12206 12207 BUG_ON(!dev_boot_phase); 12208 12209 net_dev_struct_check(); 12210 12211 if (dev_proc_init()) 12212 goto out; 12213 12214 if (netdev_kobject_init()) 12215 goto out; 12216 12217 for (i = 0; i < PTYPE_HASH_SIZE; i++) 12218 INIT_LIST_HEAD(&ptype_base[i]); 12219 12220 if (register_pernet_subsys(&netdev_net_ops)) 12221 goto out; 12222 12223 /* 12224 * Initialise the packet receive queues. 12225 */ 12226 12227 for_each_possible_cpu(i) { 12228 struct work_struct *flush = per_cpu_ptr(&flush_works, i); 12229 struct softnet_data *sd = &per_cpu(softnet_data, i); 12230 12231 INIT_WORK(flush, flush_backlog); 12232 12233 skb_queue_head_init(&sd->input_pkt_queue); 12234 skb_queue_head_init(&sd->process_queue); 12235 #ifdef CONFIG_XFRM_OFFLOAD 12236 skb_queue_head_init(&sd->xfrm_backlog); 12237 #endif 12238 INIT_LIST_HEAD(&sd->poll_list); 12239 sd->output_queue_tailp = &sd->output_queue; 12240 #ifdef CONFIG_RPS 12241 INIT_CSD(&sd->csd, rps_trigger_softirq, sd); 12242 sd->cpu = i; 12243 #endif 12244 INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd); 12245 spin_lock_init(&sd->defer_lock); 12246 12247 init_gro_hash(&sd->backlog); 12248 sd->backlog.poll = process_backlog; 12249 sd->backlog.weight = weight_p; 12250 INIT_LIST_HEAD(&sd->backlog.poll_list); 12251 12252 if (net_page_pool_create(i)) 12253 goto out; 12254 } 12255 if (use_backlog_threads()) 12256 smpboot_register_percpu_thread(&backlog_threads); 12257 12258 dev_boot_phase = 0; 12259 12260 /* The loopback device is special if any other network devices 12261 * is present in a network namespace the loopback device must 12262 * be present. Since we now dynamically allocate and free the 12263 * loopback device ensure this invariant is maintained by 12264 * keeping the loopback device as the first device on the 12265 * list of network devices. Ensuring the loopback devices 12266 * is the first device that appears and the last network device 12267 * that disappears. 12268 */ 12269 if (register_pernet_device(&loopback_net_ops)) 12270 goto out; 12271 12272 if (register_pernet_device(&default_device_ops)) 12273 goto out; 12274 12275 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 12276 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 12277 12278 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead", 12279 NULL, dev_cpu_dead); 12280 WARN_ON(rc < 0); 12281 rc = 0; 12282 12283 /* avoid static key IPIs to isolated CPUs */ 12284 if (housekeeping_enabled(HK_TYPE_MISC)) 12285 net_enable_timestamp(); 12286 out: 12287 if (rc < 0) { 12288 for_each_possible_cpu(i) { 12289 struct page_pool *pp_ptr; 12290 12291 pp_ptr = per_cpu(system_page_pool, i); 12292 if (!pp_ptr) 12293 continue; 12294 12295 page_pool_destroy(pp_ptr); 12296 per_cpu(system_page_pool, i) = NULL; 12297 } 12298 } 12299 12300 return rc; 12301 } 12302 12303 subsys_initcall(net_dev_init); 12304