xref: /linux/net/core/dev.c (revision 6015fb905d89063231ed33bc15be19ef0fc339b8)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <trace/events/qdisc.h>
135 #include <linux/inetdevice.h>
136 #include <linux/cpu_rmap.h>
137 #include <linux/static_key.h>
138 #include <linux/hashtable.h>
139 #include <linux/vmalloc.h>
140 #include <linux/if_macvlan.h>
141 #include <linux/errqueue.h>
142 #include <linux/hrtimer.h>
143 #include <linux/netfilter_netdev.h>
144 #include <linux/crash_dump.h>
145 #include <linux/sctp.h>
146 #include <net/udp_tunnel.h>
147 #include <linux/net_namespace.h>
148 #include <linux/indirect_call_wrapper.h>
149 #include <net/devlink.h>
150 #include <linux/pm_runtime.h>
151 #include <linux/prandom.h>
152 #include <linux/once_lite.h>
153 
154 #include "net-sysfs.h"
155 
156 
157 static DEFINE_SPINLOCK(ptype_lock);
158 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
159 struct list_head ptype_all __read_mostly;	/* Taps */
160 
161 static int netif_rx_internal(struct sk_buff *skb);
162 static int call_netdevice_notifiers_info(unsigned long val,
163 					 struct netdev_notifier_info *info);
164 static int call_netdevice_notifiers_extack(unsigned long val,
165 					   struct net_device *dev,
166 					   struct netlink_ext_ack *extack);
167 static struct napi_struct *napi_by_id(unsigned int napi_id);
168 
169 /*
170  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
171  * semaphore.
172  *
173  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
174  *
175  * Writers must hold the rtnl semaphore while they loop through the
176  * dev_base_head list, and hold dev_base_lock for writing when they do the
177  * actual updates.  This allows pure readers to access the list even
178  * while a writer is preparing to update it.
179  *
180  * To put it another way, dev_base_lock is held for writing only to
181  * protect against pure readers; the rtnl semaphore provides the
182  * protection against other writers.
183  *
184  * See, for example usages, register_netdevice() and
185  * unregister_netdevice(), which must be called with the rtnl
186  * semaphore held.
187  */
188 DEFINE_RWLOCK(dev_base_lock);
189 EXPORT_SYMBOL(dev_base_lock);
190 
191 static DEFINE_MUTEX(ifalias_mutex);
192 
193 /* protects napi_hash addition/deletion and napi_gen_id */
194 static DEFINE_SPINLOCK(napi_hash_lock);
195 
196 static unsigned int napi_gen_id = NR_CPUS;
197 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
198 
199 static DECLARE_RWSEM(devnet_rename_sem);
200 
201 static inline void dev_base_seq_inc(struct net *net)
202 {
203 	while (++net->dev_base_seq == 0)
204 		;
205 }
206 
207 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
208 {
209 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
210 
211 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
212 }
213 
214 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
215 {
216 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
217 }
218 
219 static inline void rps_lock_irqsave(struct softnet_data *sd,
220 				    unsigned long *flags)
221 {
222 	if (IS_ENABLED(CONFIG_RPS))
223 		spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
224 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
225 		local_irq_save(*flags);
226 }
227 
228 static inline void rps_lock_irq_disable(struct softnet_data *sd)
229 {
230 	if (IS_ENABLED(CONFIG_RPS))
231 		spin_lock_irq(&sd->input_pkt_queue.lock);
232 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
233 		local_irq_disable();
234 }
235 
236 static inline void rps_unlock_irq_restore(struct softnet_data *sd,
237 					  unsigned long *flags)
238 {
239 	if (IS_ENABLED(CONFIG_RPS))
240 		spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
241 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
242 		local_irq_restore(*flags);
243 }
244 
245 static inline void rps_unlock_irq_enable(struct softnet_data *sd)
246 {
247 	if (IS_ENABLED(CONFIG_RPS))
248 		spin_unlock_irq(&sd->input_pkt_queue.lock);
249 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
250 		local_irq_enable();
251 }
252 
253 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
254 						       const char *name)
255 {
256 	struct netdev_name_node *name_node;
257 
258 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
259 	if (!name_node)
260 		return NULL;
261 	INIT_HLIST_NODE(&name_node->hlist);
262 	name_node->dev = dev;
263 	name_node->name = name;
264 	return name_node;
265 }
266 
267 static struct netdev_name_node *
268 netdev_name_node_head_alloc(struct net_device *dev)
269 {
270 	struct netdev_name_node *name_node;
271 
272 	name_node = netdev_name_node_alloc(dev, dev->name);
273 	if (!name_node)
274 		return NULL;
275 	INIT_LIST_HEAD(&name_node->list);
276 	return name_node;
277 }
278 
279 static void netdev_name_node_free(struct netdev_name_node *name_node)
280 {
281 	kfree(name_node);
282 }
283 
284 static void netdev_name_node_add(struct net *net,
285 				 struct netdev_name_node *name_node)
286 {
287 	hlist_add_head_rcu(&name_node->hlist,
288 			   dev_name_hash(net, name_node->name));
289 }
290 
291 static void netdev_name_node_del(struct netdev_name_node *name_node)
292 {
293 	hlist_del_rcu(&name_node->hlist);
294 }
295 
296 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
297 							const char *name)
298 {
299 	struct hlist_head *head = dev_name_hash(net, name);
300 	struct netdev_name_node *name_node;
301 
302 	hlist_for_each_entry(name_node, head, hlist)
303 		if (!strcmp(name_node->name, name))
304 			return name_node;
305 	return NULL;
306 }
307 
308 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
309 							    const char *name)
310 {
311 	struct hlist_head *head = dev_name_hash(net, name);
312 	struct netdev_name_node *name_node;
313 
314 	hlist_for_each_entry_rcu(name_node, head, hlist)
315 		if (!strcmp(name_node->name, name))
316 			return name_node;
317 	return NULL;
318 }
319 
320 bool netdev_name_in_use(struct net *net, const char *name)
321 {
322 	return netdev_name_node_lookup(net, name);
323 }
324 EXPORT_SYMBOL(netdev_name_in_use);
325 
326 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
327 {
328 	struct netdev_name_node *name_node;
329 	struct net *net = dev_net(dev);
330 
331 	name_node = netdev_name_node_lookup(net, name);
332 	if (name_node)
333 		return -EEXIST;
334 	name_node = netdev_name_node_alloc(dev, name);
335 	if (!name_node)
336 		return -ENOMEM;
337 	netdev_name_node_add(net, name_node);
338 	/* The node that holds dev->name acts as a head of per-device list. */
339 	list_add_tail(&name_node->list, &dev->name_node->list);
340 
341 	return 0;
342 }
343 EXPORT_SYMBOL(netdev_name_node_alt_create);
344 
345 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
346 {
347 	list_del(&name_node->list);
348 	netdev_name_node_del(name_node);
349 	kfree(name_node->name);
350 	netdev_name_node_free(name_node);
351 }
352 
353 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
354 {
355 	struct netdev_name_node *name_node;
356 	struct net *net = dev_net(dev);
357 
358 	name_node = netdev_name_node_lookup(net, name);
359 	if (!name_node)
360 		return -ENOENT;
361 	/* lookup might have found our primary name or a name belonging
362 	 * to another device.
363 	 */
364 	if (name_node == dev->name_node || name_node->dev != dev)
365 		return -EINVAL;
366 
367 	__netdev_name_node_alt_destroy(name_node);
368 
369 	return 0;
370 }
371 EXPORT_SYMBOL(netdev_name_node_alt_destroy);
372 
373 static void netdev_name_node_alt_flush(struct net_device *dev)
374 {
375 	struct netdev_name_node *name_node, *tmp;
376 
377 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
378 		__netdev_name_node_alt_destroy(name_node);
379 }
380 
381 /* Device list insertion */
382 static void list_netdevice(struct net_device *dev)
383 {
384 	struct net *net = dev_net(dev);
385 
386 	ASSERT_RTNL();
387 
388 	write_lock(&dev_base_lock);
389 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
390 	netdev_name_node_add(net, dev->name_node);
391 	hlist_add_head_rcu(&dev->index_hlist,
392 			   dev_index_hash(net, dev->ifindex));
393 	write_unlock(&dev_base_lock);
394 
395 	dev_base_seq_inc(net);
396 }
397 
398 /* Device list removal
399  * caller must respect a RCU grace period before freeing/reusing dev
400  */
401 static void unlist_netdevice(struct net_device *dev)
402 {
403 	ASSERT_RTNL();
404 
405 	/* Unlink dev from the device chain */
406 	write_lock(&dev_base_lock);
407 	list_del_rcu(&dev->dev_list);
408 	netdev_name_node_del(dev->name_node);
409 	hlist_del_rcu(&dev->index_hlist);
410 	write_unlock(&dev_base_lock);
411 
412 	dev_base_seq_inc(dev_net(dev));
413 }
414 
415 /*
416  *	Our notifier list
417  */
418 
419 static RAW_NOTIFIER_HEAD(netdev_chain);
420 
421 /*
422  *	Device drivers call our routines to queue packets here. We empty the
423  *	queue in the local softnet handler.
424  */
425 
426 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
427 EXPORT_PER_CPU_SYMBOL(softnet_data);
428 
429 #ifdef CONFIG_LOCKDEP
430 /*
431  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
432  * according to dev->type
433  */
434 static const unsigned short netdev_lock_type[] = {
435 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
436 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
437 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
438 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
439 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
440 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
441 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
442 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
443 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
444 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
445 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
446 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
447 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
448 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
449 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
450 
451 static const char *const netdev_lock_name[] = {
452 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
453 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
454 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
455 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
456 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
457 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
458 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
459 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
460 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
461 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
462 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
463 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
464 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
465 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
466 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
467 
468 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
469 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
470 
471 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
472 {
473 	int i;
474 
475 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
476 		if (netdev_lock_type[i] == dev_type)
477 			return i;
478 	/* the last key is used by default */
479 	return ARRAY_SIZE(netdev_lock_type) - 1;
480 }
481 
482 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
483 						 unsigned short dev_type)
484 {
485 	int i;
486 
487 	i = netdev_lock_pos(dev_type);
488 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
489 				   netdev_lock_name[i]);
490 }
491 
492 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
493 {
494 	int i;
495 
496 	i = netdev_lock_pos(dev->type);
497 	lockdep_set_class_and_name(&dev->addr_list_lock,
498 				   &netdev_addr_lock_key[i],
499 				   netdev_lock_name[i]);
500 }
501 #else
502 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
503 						 unsigned short dev_type)
504 {
505 }
506 
507 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
508 {
509 }
510 #endif
511 
512 /*******************************************************************************
513  *
514  *		Protocol management and registration routines
515  *
516  *******************************************************************************/
517 
518 
519 /*
520  *	Add a protocol ID to the list. Now that the input handler is
521  *	smarter we can dispense with all the messy stuff that used to be
522  *	here.
523  *
524  *	BEWARE!!! Protocol handlers, mangling input packets,
525  *	MUST BE last in hash buckets and checking protocol handlers
526  *	MUST start from promiscuous ptype_all chain in net_bh.
527  *	It is true now, do not change it.
528  *	Explanation follows: if protocol handler, mangling packet, will
529  *	be the first on list, it is not able to sense, that packet
530  *	is cloned and should be copied-on-write, so that it will
531  *	change it and subsequent readers will get broken packet.
532  *							--ANK (980803)
533  */
534 
535 static inline struct list_head *ptype_head(const struct packet_type *pt)
536 {
537 	if (pt->type == htons(ETH_P_ALL))
538 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
539 	else
540 		return pt->dev ? &pt->dev->ptype_specific :
541 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
542 }
543 
544 /**
545  *	dev_add_pack - add packet handler
546  *	@pt: packet type declaration
547  *
548  *	Add a protocol handler to the networking stack. The passed &packet_type
549  *	is linked into kernel lists and may not be freed until it has been
550  *	removed from the kernel lists.
551  *
552  *	This call does not sleep therefore it can not
553  *	guarantee all CPU's that are in middle of receiving packets
554  *	will see the new packet type (until the next received packet).
555  */
556 
557 void dev_add_pack(struct packet_type *pt)
558 {
559 	struct list_head *head = ptype_head(pt);
560 
561 	spin_lock(&ptype_lock);
562 	list_add_rcu(&pt->list, head);
563 	spin_unlock(&ptype_lock);
564 }
565 EXPORT_SYMBOL(dev_add_pack);
566 
567 /**
568  *	__dev_remove_pack	 - remove packet handler
569  *	@pt: packet type declaration
570  *
571  *	Remove a protocol handler that was previously added to the kernel
572  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
573  *	from the kernel lists and can be freed or reused once this function
574  *	returns.
575  *
576  *      The packet type might still be in use by receivers
577  *	and must not be freed until after all the CPU's have gone
578  *	through a quiescent state.
579  */
580 void __dev_remove_pack(struct packet_type *pt)
581 {
582 	struct list_head *head = ptype_head(pt);
583 	struct packet_type *pt1;
584 
585 	spin_lock(&ptype_lock);
586 
587 	list_for_each_entry(pt1, head, list) {
588 		if (pt == pt1) {
589 			list_del_rcu(&pt->list);
590 			goto out;
591 		}
592 	}
593 
594 	pr_warn("dev_remove_pack: %p not found\n", pt);
595 out:
596 	spin_unlock(&ptype_lock);
597 }
598 EXPORT_SYMBOL(__dev_remove_pack);
599 
600 /**
601  *	dev_remove_pack	 - remove packet handler
602  *	@pt: packet type declaration
603  *
604  *	Remove a protocol handler that was previously added to the kernel
605  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
606  *	from the kernel lists and can be freed or reused once this function
607  *	returns.
608  *
609  *	This call sleeps to guarantee that no CPU is looking at the packet
610  *	type after return.
611  */
612 void dev_remove_pack(struct packet_type *pt)
613 {
614 	__dev_remove_pack(pt);
615 
616 	synchronize_net();
617 }
618 EXPORT_SYMBOL(dev_remove_pack);
619 
620 
621 /*******************************************************************************
622  *
623  *			    Device Interface Subroutines
624  *
625  *******************************************************************************/
626 
627 /**
628  *	dev_get_iflink	- get 'iflink' value of a interface
629  *	@dev: targeted interface
630  *
631  *	Indicates the ifindex the interface is linked to.
632  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
633  */
634 
635 int dev_get_iflink(const struct net_device *dev)
636 {
637 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
638 		return dev->netdev_ops->ndo_get_iflink(dev);
639 
640 	return dev->ifindex;
641 }
642 EXPORT_SYMBOL(dev_get_iflink);
643 
644 /**
645  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
646  *	@dev: targeted interface
647  *	@skb: The packet.
648  *
649  *	For better visibility of tunnel traffic OVS needs to retrieve
650  *	egress tunnel information for a packet. Following API allows
651  *	user to get this info.
652  */
653 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
654 {
655 	struct ip_tunnel_info *info;
656 
657 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
658 		return -EINVAL;
659 
660 	info = skb_tunnel_info_unclone(skb);
661 	if (!info)
662 		return -ENOMEM;
663 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
664 		return -EINVAL;
665 
666 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
667 }
668 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
669 
670 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
671 {
672 	int k = stack->num_paths++;
673 
674 	if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
675 		return NULL;
676 
677 	return &stack->path[k];
678 }
679 
680 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
681 			  struct net_device_path_stack *stack)
682 {
683 	const struct net_device *last_dev;
684 	struct net_device_path_ctx ctx = {
685 		.dev	= dev,
686 		.daddr	= daddr,
687 	};
688 	struct net_device_path *path;
689 	int ret = 0;
690 
691 	stack->num_paths = 0;
692 	while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
693 		last_dev = ctx.dev;
694 		path = dev_fwd_path(stack);
695 		if (!path)
696 			return -1;
697 
698 		memset(path, 0, sizeof(struct net_device_path));
699 		ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
700 		if (ret < 0)
701 			return -1;
702 
703 		if (WARN_ON_ONCE(last_dev == ctx.dev))
704 			return -1;
705 	}
706 	path = dev_fwd_path(stack);
707 	if (!path)
708 		return -1;
709 	path->type = DEV_PATH_ETHERNET;
710 	path->dev = ctx.dev;
711 
712 	return ret;
713 }
714 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
715 
716 /**
717  *	__dev_get_by_name	- find a device by its name
718  *	@net: the applicable net namespace
719  *	@name: name to find
720  *
721  *	Find an interface by name. Must be called under RTNL semaphore
722  *	or @dev_base_lock. If the name is found a pointer to the device
723  *	is returned. If the name is not found then %NULL is returned. The
724  *	reference counters are not incremented so the caller must be
725  *	careful with locks.
726  */
727 
728 struct net_device *__dev_get_by_name(struct net *net, const char *name)
729 {
730 	struct netdev_name_node *node_name;
731 
732 	node_name = netdev_name_node_lookup(net, name);
733 	return node_name ? node_name->dev : NULL;
734 }
735 EXPORT_SYMBOL(__dev_get_by_name);
736 
737 /**
738  * dev_get_by_name_rcu	- find a device by its name
739  * @net: the applicable net namespace
740  * @name: name to find
741  *
742  * Find an interface by name.
743  * If the name is found a pointer to the device is returned.
744  * If the name is not found then %NULL is returned.
745  * The reference counters are not incremented so the caller must be
746  * careful with locks. The caller must hold RCU lock.
747  */
748 
749 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
750 {
751 	struct netdev_name_node *node_name;
752 
753 	node_name = netdev_name_node_lookup_rcu(net, name);
754 	return node_name ? node_name->dev : NULL;
755 }
756 EXPORT_SYMBOL(dev_get_by_name_rcu);
757 
758 /**
759  *	dev_get_by_name		- find a device by its name
760  *	@net: the applicable net namespace
761  *	@name: name to find
762  *
763  *	Find an interface by name. This can be called from any
764  *	context and does its own locking. The returned handle has
765  *	the usage count incremented and the caller must use dev_put() to
766  *	release it when it is no longer needed. %NULL is returned if no
767  *	matching device is found.
768  */
769 
770 struct net_device *dev_get_by_name(struct net *net, const char *name)
771 {
772 	struct net_device *dev;
773 
774 	rcu_read_lock();
775 	dev = dev_get_by_name_rcu(net, name);
776 	dev_hold(dev);
777 	rcu_read_unlock();
778 	return dev;
779 }
780 EXPORT_SYMBOL(dev_get_by_name);
781 
782 /**
783  *	__dev_get_by_index - find a device by its ifindex
784  *	@net: the applicable net namespace
785  *	@ifindex: index of device
786  *
787  *	Search for an interface by index. Returns %NULL if the device
788  *	is not found or a pointer to the device. The device has not
789  *	had its reference counter increased so the caller must be careful
790  *	about locking. The caller must hold either the RTNL semaphore
791  *	or @dev_base_lock.
792  */
793 
794 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
795 {
796 	struct net_device *dev;
797 	struct hlist_head *head = dev_index_hash(net, ifindex);
798 
799 	hlist_for_each_entry(dev, head, index_hlist)
800 		if (dev->ifindex == ifindex)
801 			return dev;
802 
803 	return NULL;
804 }
805 EXPORT_SYMBOL(__dev_get_by_index);
806 
807 /**
808  *	dev_get_by_index_rcu - find a device by its ifindex
809  *	@net: the applicable net namespace
810  *	@ifindex: index of device
811  *
812  *	Search for an interface by index. Returns %NULL if the device
813  *	is not found or a pointer to the device. The device has not
814  *	had its reference counter increased so the caller must be careful
815  *	about locking. The caller must hold RCU lock.
816  */
817 
818 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
819 {
820 	struct net_device *dev;
821 	struct hlist_head *head = dev_index_hash(net, ifindex);
822 
823 	hlist_for_each_entry_rcu(dev, head, index_hlist)
824 		if (dev->ifindex == ifindex)
825 			return dev;
826 
827 	return NULL;
828 }
829 EXPORT_SYMBOL(dev_get_by_index_rcu);
830 
831 
832 /**
833  *	dev_get_by_index - find a device by its ifindex
834  *	@net: the applicable net namespace
835  *	@ifindex: index of device
836  *
837  *	Search for an interface by index. Returns NULL if the device
838  *	is not found or a pointer to the device. The device returned has
839  *	had a reference added and the pointer is safe until the user calls
840  *	dev_put to indicate they have finished with it.
841  */
842 
843 struct net_device *dev_get_by_index(struct net *net, int ifindex)
844 {
845 	struct net_device *dev;
846 
847 	rcu_read_lock();
848 	dev = dev_get_by_index_rcu(net, ifindex);
849 	dev_hold(dev);
850 	rcu_read_unlock();
851 	return dev;
852 }
853 EXPORT_SYMBOL(dev_get_by_index);
854 
855 /**
856  *	dev_get_by_napi_id - find a device by napi_id
857  *	@napi_id: ID of the NAPI struct
858  *
859  *	Search for an interface by NAPI ID. Returns %NULL if the device
860  *	is not found or a pointer to the device. The device has not had
861  *	its reference counter increased so the caller must be careful
862  *	about locking. The caller must hold RCU lock.
863  */
864 
865 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
866 {
867 	struct napi_struct *napi;
868 
869 	WARN_ON_ONCE(!rcu_read_lock_held());
870 
871 	if (napi_id < MIN_NAPI_ID)
872 		return NULL;
873 
874 	napi = napi_by_id(napi_id);
875 
876 	return napi ? napi->dev : NULL;
877 }
878 EXPORT_SYMBOL(dev_get_by_napi_id);
879 
880 /**
881  *	netdev_get_name - get a netdevice name, knowing its ifindex.
882  *	@net: network namespace
883  *	@name: a pointer to the buffer where the name will be stored.
884  *	@ifindex: the ifindex of the interface to get the name from.
885  */
886 int netdev_get_name(struct net *net, char *name, int ifindex)
887 {
888 	struct net_device *dev;
889 	int ret;
890 
891 	down_read(&devnet_rename_sem);
892 	rcu_read_lock();
893 
894 	dev = dev_get_by_index_rcu(net, ifindex);
895 	if (!dev) {
896 		ret = -ENODEV;
897 		goto out;
898 	}
899 
900 	strcpy(name, dev->name);
901 
902 	ret = 0;
903 out:
904 	rcu_read_unlock();
905 	up_read(&devnet_rename_sem);
906 	return ret;
907 }
908 
909 /**
910  *	dev_getbyhwaddr_rcu - find a device by its hardware address
911  *	@net: the applicable net namespace
912  *	@type: media type of device
913  *	@ha: hardware address
914  *
915  *	Search for an interface by MAC address. Returns NULL if the device
916  *	is not found or a pointer to the device.
917  *	The caller must hold RCU or RTNL.
918  *	The returned device has not had its ref count increased
919  *	and the caller must therefore be careful about locking
920  *
921  */
922 
923 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
924 				       const char *ha)
925 {
926 	struct net_device *dev;
927 
928 	for_each_netdev_rcu(net, dev)
929 		if (dev->type == type &&
930 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
931 			return dev;
932 
933 	return NULL;
934 }
935 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
936 
937 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
938 {
939 	struct net_device *dev, *ret = NULL;
940 
941 	rcu_read_lock();
942 	for_each_netdev_rcu(net, dev)
943 		if (dev->type == type) {
944 			dev_hold(dev);
945 			ret = dev;
946 			break;
947 		}
948 	rcu_read_unlock();
949 	return ret;
950 }
951 EXPORT_SYMBOL(dev_getfirstbyhwtype);
952 
953 /**
954  *	__dev_get_by_flags - find any device with given flags
955  *	@net: the applicable net namespace
956  *	@if_flags: IFF_* values
957  *	@mask: bitmask of bits in if_flags to check
958  *
959  *	Search for any interface with the given flags. Returns NULL if a device
960  *	is not found or a pointer to the device. Must be called inside
961  *	rtnl_lock(), and result refcount is unchanged.
962  */
963 
964 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
965 				      unsigned short mask)
966 {
967 	struct net_device *dev, *ret;
968 
969 	ASSERT_RTNL();
970 
971 	ret = NULL;
972 	for_each_netdev(net, dev) {
973 		if (((dev->flags ^ if_flags) & mask) == 0) {
974 			ret = dev;
975 			break;
976 		}
977 	}
978 	return ret;
979 }
980 EXPORT_SYMBOL(__dev_get_by_flags);
981 
982 /**
983  *	dev_valid_name - check if name is okay for network device
984  *	@name: name string
985  *
986  *	Network device names need to be valid file names to
987  *	allow sysfs to work.  We also disallow any kind of
988  *	whitespace.
989  */
990 bool dev_valid_name(const char *name)
991 {
992 	if (*name == '\0')
993 		return false;
994 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
995 		return false;
996 	if (!strcmp(name, ".") || !strcmp(name, ".."))
997 		return false;
998 
999 	while (*name) {
1000 		if (*name == '/' || *name == ':' || isspace(*name))
1001 			return false;
1002 		name++;
1003 	}
1004 	return true;
1005 }
1006 EXPORT_SYMBOL(dev_valid_name);
1007 
1008 /**
1009  *	__dev_alloc_name - allocate a name for a device
1010  *	@net: network namespace to allocate the device name in
1011  *	@name: name format string
1012  *	@buf:  scratch buffer and result name string
1013  *
1014  *	Passed a format string - eg "lt%d" it will try and find a suitable
1015  *	id. It scans list of devices to build up a free map, then chooses
1016  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1017  *	while allocating the name and adding the device in order to avoid
1018  *	duplicates.
1019  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1020  *	Returns the number of the unit assigned or a negative errno code.
1021  */
1022 
1023 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1024 {
1025 	int i = 0;
1026 	const char *p;
1027 	const int max_netdevices = 8*PAGE_SIZE;
1028 	unsigned long *inuse;
1029 	struct net_device *d;
1030 
1031 	if (!dev_valid_name(name))
1032 		return -EINVAL;
1033 
1034 	p = strchr(name, '%');
1035 	if (p) {
1036 		/*
1037 		 * Verify the string as this thing may have come from
1038 		 * the user.  There must be either one "%d" and no other "%"
1039 		 * characters.
1040 		 */
1041 		if (p[1] != 'd' || strchr(p + 2, '%'))
1042 			return -EINVAL;
1043 
1044 		/* Use one page as a bit array of possible slots */
1045 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1046 		if (!inuse)
1047 			return -ENOMEM;
1048 
1049 		for_each_netdev(net, d) {
1050 			struct netdev_name_node *name_node;
1051 			list_for_each_entry(name_node, &d->name_node->list, list) {
1052 				if (!sscanf(name_node->name, name, &i))
1053 					continue;
1054 				if (i < 0 || i >= max_netdevices)
1055 					continue;
1056 
1057 				/*  avoid cases where sscanf is not exact inverse of printf */
1058 				snprintf(buf, IFNAMSIZ, name, i);
1059 				if (!strncmp(buf, name_node->name, IFNAMSIZ))
1060 					__set_bit(i, inuse);
1061 			}
1062 			if (!sscanf(d->name, name, &i))
1063 				continue;
1064 			if (i < 0 || i >= max_netdevices)
1065 				continue;
1066 
1067 			/*  avoid cases where sscanf is not exact inverse of printf */
1068 			snprintf(buf, IFNAMSIZ, name, i);
1069 			if (!strncmp(buf, d->name, IFNAMSIZ))
1070 				__set_bit(i, inuse);
1071 		}
1072 
1073 		i = find_first_zero_bit(inuse, max_netdevices);
1074 		free_page((unsigned long) inuse);
1075 	}
1076 
1077 	snprintf(buf, IFNAMSIZ, name, i);
1078 	if (!netdev_name_in_use(net, buf))
1079 		return i;
1080 
1081 	/* It is possible to run out of possible slots
1082 	 * when the name is long and there isn't enough space left
1083 	 * for the digits, or if all bits are used.
1084 	 */
1085 	return -ENFILE;
1086 }
1087 
1088 static int dev_alloc_name_ns(struct net *net,
1089 			     struct net_device *dev,
1090 			     const char *name)
1091 {
1092 	char buf[IFNAMSIZ];
1093 	int ret;
1094 
1095 	BUG_ON(!net);
1096 	ret = __dev_alloc_name(net, name, buf);
1097 	if (ret >= 0)
1098 		strlcpy(dev->name, buf, IFNAMSIZ);
1099 	return ret;
1100 }
1101 
1102 /**
1103  *	dev_alloc_name - allocate a name for a device
1104  *	@dev: device
1105  *	@name: name format string
1106  *
1107  *	Passed a format string - eg "lt%d" it will try and find a suitable
1108  *	id. It scans list of devices to build up a free map, then chooses
1109  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1110  *	while allocating the name and adding the device in order to avoid
1111  *	duplicates.
1112  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1113  *	Returns the number of the unit assigned or a negative errno code.
1114  */
1115 
1116 int dev_alloc_name(struct net_device *dev, const char *name)
1117 {
1118 	return dev_alloc_name_ns(dev_net(dev), dev, name);
1119 }
1120 EXPORT_SYMBOL(dev_alloc_name);
1121 
1122 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1123 			      const char *name)
1124 {
1125 	BUG_ON(!net);
1126 
1127 	if (!dev_valid_name(name))
1128 		return -EINVAL;
1129 
1130 	if (strchr(name, '%'))
1131 		return dev_alloc_name_ns(net, dev, name);
1132 	else if (netdev_name_in_use(net, name))
1133 		return -EEXIST;
1134 	else if (dev->name != name)
1135 		strlcpy(dev->name, name, IFNAMSIZ);
1136 
1137 	return 0;
1138 }
1139 
1140 /**
1141  *	dev_change_name - change name of a device
1142  *	@dev: device
1143  *	@newname: name (or format string) must be at least IFNAMSIZ
1144  *
1145  *	Change name of a device, can pass format strings "eth%d".
1146  *	for wildcarding.
1147  */
1148 int dev_change_name(struct net_device *dev, const char *newname)
1149 {
1150 	unsigned char old_assign_type;
1151 	char oldname[IFNAMSIZ];
1152 	int err = 0;
1153 	int ret;
1154 	struct net *net;
1155 
1156 	ASSERT_RTNL();
1157 	BUG_ON(!dev_net(dev));
1158 
1159 	net = dev_net(dev);
1160 
1161 	/* Some auto-enslaved devices e.g. failover slaves are
1162 	 * special, as userspace might rename the device after
1163 	 * the interface had been brought up and running since
1164 	 * the point kernel initiated auto-enslavement. Allow
1165 	 * live name change even when these slave devices are
1166 	 * up and running.
1167 	 *
1168 	 * Typically, users of these auto-enslaving devices
1169 	 * don't actually care about slave name change, as
1170 	 * they are supposed to operate on master interface
1171 	 * directly.
1172 	 */
1173 	if (dev->flags & IFF_UP &&
1174 	    likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1175 		return -EBUSY;
1176 
1177 	down_write(&devnet_rename_sem);
1178 
1179 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1180 		up_write(&devnet_rename_sem);
1181 		return 0;
1182 	}
1183 
1184 	memcpy(oldname, dev->name, IFNAMSIZ);
1185 
1186 	err = dev_get_valid_name(net, dev, newname);
1187 	if (err < 0) {
1188 		up_write(&devnet_rename_sem);
1189 		return err;
1190 	}
1191 
1192 	if (oldname[0] && !strchr(oldname, '%'))
1193 		netdev_info(dev, "renamed from %s\n", oldname);
1194 
1195 	old_assign_type = dev->name_assign_type;
1196 	dev->name_assign_type = NET_NAME_RENAMED;
1197 
1198 rollback:
1199 	ret = device_rename(&dev->dev, dev->name);
1200 	if (ret) {
1201 		memcpy(dev->name, oldname, IFNAMSIZ);
1202 		dev->name_assign_type = old_assign_type;
1203 		up_write(&devnet_rename_sem);
1204 		return ret;
1205 	}
1206 
1207 	up_write(&devnet_rename_sem);
1208 
1209 	netdev_adjacent_rename_links(dev, oldname);
1210 
1211 	write_lock(&dev_base_lock);
1212 	netdev_name_node_del(dev->name_node);
1213 	write_unlock(&dev_base_lock);
1214 
1215 	synchronize_rcu();
1216 
1217 	write_lock(&dev_base_lock);
1218 	netdev_name_node_add(net, dev->name_node);
1219 	write_unlock(&dev_base_lock);
1220 
1221 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1222 	ret = notifier_to_errno(ret);
1223 
1224 	if (ret) {
1225 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1226 		if (err >= 0) {
1227 			err = ret;
1228 			down_write(&devnet_rename_sem);
1229 			memcpy(dev->name, oldname, IFNAMSIZ);
1230 			memcpy(oldname, newname, IFNAMSIZ);
1231 			dev->name_assign_type = old_assign_type;
1232 			old_assign_type = NET_NAME_RENAMED;
1233 			goto rollback;
1234 		} else {
1235 			netdev_err(dev, "name change rollback failed: %d\n",
1236 				   ret);
1237 		}
1238 	}
1239 
1240 	return err;
1241 }
1242 
1243 /**
1244  *	dev_set_alias - change ifalias of a device
1245  *	@dev: device
1246  *	@alias: name up to IFALIASZ
1247  *	@len: limit of bytes to copy from info
1248  *
1249  *	Set ifalias for a device,
1250  */
1251 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1252 {
1253 	struct dev_ifalias *new_alias = NULL;
1254 
1255 	if (len >= IFALIASZ)
1256 		return -EINVAL;
1257 
1258 	if (len) {
1259 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1260 		if (!new_alias)
1261 			return -ENOMEM;
1262 
1263 		memcpy(new_alias->ifalias, alias, len);
1264 		new_alias->ifalias[len] = 0;
1265 	}
1266 
1267 	mutex_lock(&ifalias_mutex);
1268 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1269 					mutex_is_locked(&ifalias_mutex));
1270 	mutex_unlock(&ifalias_mutex);
1271 
1272 	if (new_alias)
1273 		kfree_rcu(new_alias, rcuhead);
1274 
1275 	return len;
1276 }
1277 EXPORT_SYMBOL(dev_set_alias);
1278 
1279 /**
1280  *	dev_get_alias - get ifalias of a device
1281  *	@dev: device
1282  *	@name: buffer to store name of ifalias
1283  *	@len: size of buffer
1284  *
1285  *	get ifalias for a device.  Caller must make sure dev cannot go
1286  *	away,  e.g. rcu read lock or own a reference count to device.
1287  */
1288 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1289 {
1290 	const struct dev_ifalias *alias;
1291 	int ret = 0;
1292 
1293 	rcu_read_lock();
1294 	alias = rcu_dereference(dev->ifalias);
1295 	if (alias)
1296 		ret = snprintf(name, len, "%s", alias->ifalias);
1297 	rcu_read_unlock();
1298 
1299 	return ret;
1300 }
1301 
1302 /**
1303  *	netdev_features_change - device changes features
1304  *	@dev: device to cause notification
1305  *
1306  *	Called to indicate a device has changed features.
1307  */
1308 void netdev_features_change(struct net_device *dev)
1309 {
1310 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1311 }
1312 EXPORT_SYMBOL(netdev_features_change);
1313 
1314 /**
1315  *	netdev_state_change - device changes state
1316  *	@dev: device to cause notification
1317  *
1318  *	Called to indicate a device has changed state. This function calls
1319  *	the notifier chains for netdev_chain and sends a NEWLINK message
1320  *	to the routing socket.
1321  */
1322 void netdev_state_change(struct net_device *dev)
1323 {
1324 	if (dev->flags & IFF_UP) {
1325 		struct netdev_notifier_change_info change_info = {
1326 			.info.dev = dev,
1327 		};
1328 
1329 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1330 					      &change_info.info);
1331 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1332 	}
1333 }
1334 EXPORT_SYMBOL(netdev_state_change);
1335 
1336 /**
1337  * __netdev_notify_peers - notify network peers about existence of @dev,
1338  * to be called when rtnl lock is already held.
1339  * @dev: network device
1340  *
1341  * Generate traffic such that interested network peers are aware of
1342  * @dev, such as by generating a gratuitous ARP. This may be used when
1343  * a device wants to inform the rest of the network about some sort of
1344  * reconfiguration such as a failover event or virtual machine
1345  * migration.
1346  */
1347 void __netdev_notify_peers(struct net_device *dev)
1348 {
1349 	ASSERT_RTNL();
1350 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1351 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1352 }
1353 EXPORT_SYMBOL(__netdev_notify_peers);
1354 
1355 /**
1356  * netdev_notify_peers - notify network peers about existence of @dev
1357  * @dev: network device
1358  *
1359  * Generate traffic such that interested network peers are aware of
1360  * @dev, such as by generating a gratuitous ARP. This may be used when
1361  * a device wants to inform the rest of the network about some sort of
1362  * reconfiguration such as a failover event or virtual machine
1363  * migration.
1364  */
1365 void netdev_notify_peers(struct net_device *dev)
1366 {
1367 	rtnl_lock();
1368 	__netdev_notify_peers(dev);
1369 	rtnl_unlock();
1370 }
1371 EXPORT_SYMBOL(netdev_notify_peers);
1372 
1373 static int napi_threaded_poll(void *data);
1374 
1375 static int napi_kthread_create(struct napi_struct *n)
1376 {
1377 	int err = 0;
1378 
1379 	/* Create and wake up the kthread once to put it in
1380 	 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1381 	 * warning and work with loadavg.
1382 	 */
1383 	n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1384 				n->dev->name, n->napi_id);
1385 	if (IS_ERR(n->thread)) {
1386 		err = PTR_ERR(n->thread);
1387 		pr_err("kthread_run failed with err %d\n", err);
1388 		n->thread = NULL;
1389 	}
1390 
1391 	return err;
1392 }
1393 
1394 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1395 {
1396 	const struct net_device_ops *ops = dev->netdev_ops;
1397 	int ret;
1398 
1399 	ASSERT_RTNL();
1400 	dev_addr_check(dev);
1401 
1402 	if (!netif_device_present(dev)) {
1403 		/* may be detached because parent is runtime-suspended */
1404 		if (dev->dev.parent)
1405 			pm_runtime_resume(dev->dev.parent);
1406 		if (!netif_device_present(dev))
1407 			return -ENODEV;
1408 	}
1409 
1410 	/* Block netpoll from trying to do any rx path servicing.
1411 	 * If we don't do this there is a chance ndo_poll_controller
1412 	 * or ndo_poll may be running while we open the device
1413 	 */
1414 	netpoll_poll_disable(dev);
1415 
1416 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1417 	ret = notifier_to_errno(ret);
1418 	if (ret)
1419 		return ret;
1420 
1421 	set_bit(__LINK_STATE_START, &dev->state);
1422 
1423 	if (ops->ndo_validate_addr)
1424 		ret = ops->ndo_validate_addr(dev);
1425 
1426 	if (!ret && ops->ndo_open)
1427 		ret = ops->ndo_open(dev);
1428 
1429 	netpoll_poll_enable(dev);
1430 
1431 	if (ret)
1432 		clear_bit(__LINK_STATE_START, &dev->state);
1433 	else {
1434 		dev->flags |= IFF_UP;
1435 		dev_set_rx_mode(dev);
1436 		dev_activate(dev);
1437 		add_device_randomness(dev->dev_addr, dev->addr_len);
1438 	}
1439 
1440 	return ret;
1441 }
1442 
1443 /**
1444  *	dev_open	- prepare an interface for use.
1445  *	@dev: device to open
1446  *	@extack: netlink extended ack
1447  *
1448  *	Takes a device from down to up state. The device's private open
1449  *	function is invoked and then the multicast lists are loaded. Finally
1450  *	the device is moved into the up state and a %NETDEV_UP message is
1451  *	sent to the netdev notifier chain.
1452  *
1453  *	Calling this function on an active interface is a nop. On a failure
1454  *	a negative errno code is returned.
1455  */
1456 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1457 {
1458 	int ret;
1459 
1460 	if (dev->flags & IFF_UP)
1461 		return 0;
1462 
1463 	ret = __dev_open(dev, extack);
1464 	if (ret < 0)
1465 		return ret;
1466 
1467 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1468 	call_netdevice_notifiers(NETDEV_UP, dev);
1469 
1470 	return ret;
1471 }
1472 EXPORT_SYMBOL(dev_open);
1473 
1474 static void __dev_close_many(struct list_head *head)
1475 {
1476 	struct net_device *dev;
1477 
1478 	ASSERT_RTNL();
1479 	might_sleep();
1480 
1481 	list_for_each_entry(dev, head, close_list) {
1482 		/* Temporarily disable netpoll until the interface is down */
1483 		netpoll_poll_disable(dev);
1484 
1485 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1486 
1487 		clear_bit(__LINK_STATE_START, &dev->state);
1488 
1489 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1490 		 * can be even on different cpu. So just clear netif_running().
1491 		 *
1492 		 * dev->stop() will invoke napi_disable() on all of it's
1493 		 * napi_struct instances on this device.
1494 		 */
1495 		smp_mb__after_atomic(); /* Commit netif_running(). */
1496 	}
1497 
1498 	dev_deactivate_many(head);
1499 
1500 	list_for_each_entry(dev, head, close_list) {
1501 		const struct net_device_ops *ops = dev->netdev_ops;
1502 
1503 		/*
1504 		 *	Call the device specific close. This cannot fail.
1505 		 *	Only if device is UP
1506 		 *
1507 		 *	We allow it to be called even after a DETACH hot-plug
1508 		 *	event.
1509 		 */
1510 		if (ops->ndo_stop)
1511 			ops->ndo_stop(dev);
1512 
1513 		dev->flags &= ~IFF_UP;
1514 		netpoll_poll_enable(dev);
1515 	}
1516 }
1517 
1518 static void __dev_close(struct net_device *dev)
1519 {
1520 	LIST_HEAD(single);
1521 
1522 	list_add(&dev->close_list, &single);
1523 	__dev_close_many(&single);
1524 	list_del(&single);
1525 }
1526 
1527 void dev_close_many(struct list_head *head, bool unlink)
1528 {
1529 	struct net_device *dev, *tmp;
1530 
1531 	/* Remove the devices that don't need to be closed */
1532 	list_for_each_entry_safe(dev, tmp, head, close_list)
1533 		if (!(dev->flags & IFF_UP))
1534 			list_del_init(&dev->close_list);
1535 
1536 	__dev_close_many(head);
1537 
1538 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1539 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1540 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1541 		if (unlink)
1542 			list_del_init(&dev->close_list);
1543 	}
1544 }
1545 EXPORT_SYMBOL(dev_close_many);
1546 
1547 /**
1548  *	dev_close - shutdown an interface.
1549  *	@dev: device to shutdown
1550  *
1551  *	This function moves an active device into down state. A
1552  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1553  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1554  *	chain.
1555  */
1556 void dev_close(struct net_device *dev)
1557 {
1558 	if (dev->flags & IFF_UP) {
1559 		LIST_HEAD(single);
1560 
1561 		list_add(&dev->close_list, &single);
1562 		dev_close_many(&single, true);
1563 		list_del(&single);
1564 	}
1565 }
1566 EXPORT_SYMBOL(dev_close);
1567 
1568 
1569 /**
1570  *	dev_disable_lro - disable Large Receive Offload on a device
1571  *	@dev: device
1572  *
1573  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1574  *	called under RTNL.  This is needed if received packets may be
1575  *	forwarded to another interface.
1576  */
1577 void dev_disable_lro(struct net_device *dev)
1578 {
1579 	struct net_device *lower_dev;
1580 	struct list_head *iter;
1581 
1582 	dev->wanted_features &= ~NETIF_F_LRO;
1583 	netdev_update_features(dev);
1584 
1585 	if (unlikely(dev->features & NETIF_F_LRO))
1586 		netdev_WARN(dev, "failed to disable LRO!\n");
1587 
1588 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1589 		dev_disable_lro(lower_dev);
1590 }
1591 EXPORT_SYMBOL(dev_disable_lro);
1592 
1593 /**
1594  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1595  *	@dev: device
1596  *
1597  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1598  *	called under RTNL.  This is needed if Generic XDP is installed on
1599  *	the device.
1600  */
1601 static void dev_disable_gro_hw(struct net_device *dev)
1602 {
1603 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1604 	netdev_update_features(dev);
1605 
1606 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1607 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1608 }
1609 
1610 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1611 {
1612 #define N(val) 						\
1613 	case NETDEV_##val:				\
1614 		return "NETDEV_" __stringify(val);
1615 	switch (cmd) {
1616 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1617 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1618 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1619 	N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1620 	N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1621 	N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1622 	N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1623 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1624 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1625 	N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1626 	N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1627 	}
1628 #undef N
1629 	return "UNKNOWN_NETDEV_EVENT";
1630 }
1631 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1632 
1633 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1634 				   struct net_device *dev)
1635 {
1636 	struct netdev_notifier_info info = {
1637 		.dev = dev,
1638 	};
1639 
1640 	return nb->notifier_call(nb, val, &info);
1641 }
1642 
1643 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1644 					     struct net_device *dev)
1645 {
1646 	int err;
1647 
1648 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1649 	err = notifier_to_errno(err);
1650 	if (err)
1651 		return err;
1652 
1653 	if (!(dev->flags & IFF_UP))
1654 		return 0;
1655 
1656 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1657 	return 0;
1658 }
1659 
1660 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1661 						struct net_device *dev)
1662 {
1663 	if (dev->flags & IFF_UP) {
1664 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1665 					dev);
1666 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1667 	}
1668 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1669 }
1670 
1671 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1672 						 struct net *net)
1673 {
1674 	struct net_device *dev;
1675 	int err;
1676 
1677 	for_each_netdev(net, dev) {
1678 		err = call_netdevice_register_notifiers(nb, dev);
1679 		if (err)
1680 			goto rollback;
1681 	}
1682 	return 0;
1683 
1684 rollback:
1685 	for_each_netdev_continue_reverse(net, dev)
1686 		call_netdevice_unregister_notifiers(nb, dev);
1687 	return err;
1688 }
1689 
1690 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1691 						    struct net *net)
1692 {
1693 	struct net_device *dev;
1694 
1695 	for_each_netdev(net, dev)
1696 		call_netdevice_unregister_notifiers(nb, dev);
1697 }
1698 
1699 static int dev_boot_phase = 1;
1700 
1701 /**
1702  * register_netdevice_notifier - register a network notifier block
1703  * @nb: notifier
1704  *
1705  * Register a notifier to be called when network device events occur.
1706  * The notifier passed is linked into the kernel structures and must
1707  * not be reused until it has been unregistered. A negative errno code
1708  * is returned on a failure.
1709  *
1710  * When registered all registration and up events are replayed
1711  * to the new notifier to allow device to have a race free
1712  * view of the network device list.
1713  */
1714 
1715 int register_netdevice_notifier(struct notifier_block *nb)
1716 {
1717 	struct net *net;
1718 	int err;
1719 
1720 	/* Close race with setup_net() and cleanup_net() */
1721 	down_write(&pernet_ops_rwsem);
1722 	rtnl_lock();
1723 	err = raw_notifier_chain_register(&netdev_chain, nb);
1724 	if (err)
1725 		goto unlock;
1726 	if (dev_boot_phase)
1727 		goto unlock;
1728 	for_each_net(net) {
1729 		err = call_netdevice_register_net_notifiers(nb, net);
1730 		if (err)
1731 			goto rollback;
1732 	}
1733 
1734 unlock:
1735 	rtnl_unlock();
1736 	up_write(&pernet_ops_rwsem);
1737 	return err;
1738 
1739 rollback:
1740 	for_each_net_continue_reverse(net)
1741 		call_netdevice_unregister_net_notifiers(nb, net);
1742 
1743 	raw_notifier_chain_unregister(&netdev_chain, nb);
1744 	goto unlock;
1745 }
1746 EXPORT_SYMBOL(register_netdevice_notifier);
1747 
1748 /**
1749  * unregister_netdevice_notifier - unregister a network notifier block
1750  * @nb: notifier
1751  *
1752  * Unregister a notifier previously registered by
1753  * register_netdevice_notifier(). The notifier is unlinked into the
1754  * kernel structures and may then be reused. A negative errno code
1755  * is returned on a failure.
1756  *
1757  * After unregistering unregister and down device events are synthesized
1758  * for all devices on the device list to the removed notifier to remove
1759  * the need for special case cleanup code.
1760  */
1761 
1762 int unregister_netdevice_notifier(struct notifier_block *nb)
1763 {
1764 	struct net *net;
1765 	int err;
1766 
1767 	/* Close race with setup_net() and cleanup_net() */
1768 	down_write(&pernet_ops_rwsem);
1769 	rtnl_lock();
1770 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1771 	if (err)
1772 		goto unlock;
1773 
1774 	for_each_net(net)
1775 		call_netdevice_unregister_net_notifiers(nb, net);
1776 
1777 unlock:
1778 	rtnl_unlock();
1779 	up_write(&pernet_ops_rwsem);
1780 	return err;
1781 }
1782 EXPORT_SYMBOL(unregister_netdevice_notifier);
1783 
1784 static int __register_netdevice_notifier_net(struct net *net,
1785 					     struct notifier_block *nb,
1786 					     bool ignore_call_fail)
1787 {
1788 	int err;
1789 
1790 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
1791 	if (err)
1792 		return err;
1793 	if (dev_boot_phase)
1794 		return 0;
1795 
1796 	err = call_netdevice_register_net_notifiers(nb, net);
1797 	if (err && !ignore_call_fail)
1798 		goto chain_unregister;
1799 
1800 	return 0;
1801 
1802 chain_unregister:
1803 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
1804 	return err;
1805 }
1806 
1807 static int __unregister_netdevice_notifier_net(struct net *net,
1808 					       struct notifier_block *nb)
1809 {
1810 	int err;
1811 
1812 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1813 	if (err)
1814 		return err;
1815 
1816 	call_netdevice_unregister_net_notifiers(nb, net);
1817 	return 0;
1818 }
1819 
1820 /**
1821  * register_netdevice_notifier_net - register a per-netns network notifier block
1822  * @net: network namespace
1823  * @nb: notifier
1824  *
1825  * Register a notifier to be called when network device events occur.
1826  * The notifier passed is linked into the kernel structures and must
1827  * not be reused until it has been unregistered. A negative errno code
1828  * is returned on a failure.
1829  *
1830  * When registered all registration and up events are replayed
1831  * to the new notifier to allow device to have a race free
1832  * view of the network device list.
1833  */
1834 
1835 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1836 {
1837 	int err;
1838 
1839 	rtnl_lock();
1840 	err = __register_netdevice_notifier_net(net, nb, false);
1841 	rtnl_unlock();
1842 	return err;
1843 }
1844 EXPORT_SYMBOL(register_netdevice_notifier_net);
1845 
1846 /**
1847  * unregister_netdevice_notifier_net - unregister a per-netns
1848  *                                     network notifier block
1849  * @net: network namespace
1850  * @nb: notifier
1851  *
1852  * Unregister a notifier previously registered by
1853  * register_netdevice_notifier(). The notifier is unlinked into the
1854  * kernel structures and may then be reused. A negative errno code
1855  * is returned on a failure.
1856  *
1857  * After unregistering unregister and down device events are synthesized
1858  * for all devices on the device list to the removed notifier to remove
1859  * the need for special case cleanup code.
1860  */
1861 
1862 int unregister_netdevice_notifier_net(struct net *net,
1863 				      struct notifier_block *nb)
1864 {
1865 	int err;
1866 
1867 	rtnl_lock();
1868 	err = __unregister_netdevice_notifier_net(net, nb);
1869 	rtnl_unlock();
1870 	return err;
1871 }
1872 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1873 
1874 int register_netdevice_notifier_dev_net(struct net_device *dev,
1875 					struct notifier_block *nb,
1876 					struct netdev_net_notifier *nn)
1877 {
1878 	int err;
1879 
1880 	rtnl_lock();
1881 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1882 	if (!err) {
1883 		nn->nb = nb;
1884 		list_add(&nn->list, &dev->net_notifier_list);
1885 	}
1886 	rtnl_unlock();
1887 	return err;
1888 }
1889 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1890 
1891 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1892 					  struct notifier_block *nb,
1893 					  struct netdev_net_notifier *nn)
1894 {
1895 	int err;
1896 
1897 	rtnl_lock();
1898 	list_del(&nn->list);
1899 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1900 	rtnl_unlock();
1901 	return err;
1902 }
1903 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1904 
1905 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1906 					     struct net *net)
1907 {
1908 	struct netdev_net_notifier *nn;
1909 
1910 	list_for_each_entry(nn, &dev->net_notifier_list, list) {
1911 		__unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
1912 		__register_netdevice_notifier_net(net, nn->nb, true);
1913 	}
1914 }
1915 
1916 /**
1917  *	call_netdevice_notifiers_info - call all network notifier blocks
1918  *	@val: value passed unmodified to notifier function
1919  *	@info: notifier information data
1920  *
1921  *	Call all network notifier blocks.  Parameters and return value
1922  *	are as for raw_notifier_call_chain().
1923  */
1924 
1925 static int call_netdevice_notifiers_info(unsigned long val,
1926 					 struct netdev_notifier_info *info)
1927 {
1928 	struct net *net = dev_net(info->dev);
1929 	int ret;
1930 
1931 	ASSERT_RTNL();
1932 
1933 	/* Run per-netns notifier block chain first, then run the global one.
1934 	 * Hopefully, one day, the global one is going to be removed after
1935 	 * all notifier block registrators get converted to be per-netns.
1936 	 */
1937 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1938 	if (ret & NOTIFY_STOP_MASK)
1939 		return ret;
1940 	return raw_notifier_call_chain(&netdev_chain, val, info);
1941 }
1942 
1943 /**
1944  *	call_netdevice_notifiers_info_robust - call per-netns notifier blocks
1945  *	                                       for and rollback on error
1946  *	@val_up: value passed unmodified to notifier function
1947  *	@val_down: value passed unmodified to the notifier function when
1948  *	           recovering from an error on @val_up
1949  *	@info: notifier information data
1950  *
1951  *	Call all per-netns network notifier blocks, but not notifier blocks on
1952  *	the global notifier chain. Parameters and return value are as for
1953  *	raw_notifier_call_chain_robust().
1954  */
1955 
1956 static int
1957 call_netdevice_notifiers_info_robust(unsigned long val_up,
1958 				     unsigned long val_down,
1959 				     struct netdev_notifier_info *info)
1960 {
1961 	struct net *net = dev_net(info->dev);
1962 
1963 	ASSERT_RTNL();
1964 
1965 	return raw_notifier_call_chain_robust(&net->netdev_chain,
1966 					      val_up, val_down, info);
1967 }
1968 
1969 static int call_netdevice_notifiers_extack(unsigned long val,
1970 					   struct net_device *dev,
1971 					   struct netlink_ext_ack *extack)
1972 {
1973 	struct netdev_notifier_info info = {
1974 		.dev = dev,
1975 		.extack = extack,
1976 	};
1977 
1978 	return call_netdevice_notifiers_info(val, &info);
1979 }
1980 
1981 /**
1982  *	call_netdevice_notifiers - call all network notifier blocks
1983  *      @val: value passed unmodified to notifier function
1984  *      @dev: net_device pointer passed unmodified to notifier function
1985  *
1986  *	Call all network notifier blocks.  Parameters and return value
1987  *	are as for raw_notifier_call_chain().
1988  */
1989 
1990 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1991 {
1992 	return call_netdevice_notifiers_extack(val, dev, NULL);
1993 }
1994 EXPORT_SYMBOL(call_netdevice_notifiers);
1995 
1996 /**
1997  *	call_netdevice_notifiers_mtu - call all network notifier blocks
1998  *	@val: value passed unmodified to notifier function
1999  *	@dev: net_device pointer passed unmodified to notifier function
2000  *	@arg: additional u32 argument passed to the notifier function
2001  *
2002  *	Call all network notifier blocks.  Parameters and return value
2003  *	are as for raw_notifier_call_chain().
2004  */
2005 static int call_netdevice_notifiers_mtu(unsigned long val,
2006 					struct net_device *dev, u32 arg)
2007 {
2008 	struct netdev_notifier_info_ext info = {
2009 		.info.dev = dev,
2010 		.ext.mtu = arg,
2011 	};
2012 
2013 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2014 
2015 	return call_netdevice_notifiers_info(val, &info.info);
2016 }
2017 
2018 #ifdef CONFIG_NET_INGRESS
2019 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2020 
2021 void net_inc_ingress_queue(void)
2022 {
2023 	static_branch_inc(&ingress_needed_key);
2024 }
2025 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2026 
2027 void net_dec_ingress_queue(void)
2028 {
2029 	static_branch_dec(&ingress_needed_key);
2030 }
2031 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2032 #endif
2033 
2034 #ifdef CONFIG_NET_EGRESS
2035 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2036 
2037 void net_inc_egress_queue(void)
2038 {
2039 	static_branch_inc(&egress_needed_key);
2040 }
2041 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2042 
2043 void net_dec_egress_queue(void)
2044 {
2045 	static_branch_dec(&egress_needed_key);
2046 }
2047 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2048 #endif
2049 
2050 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2051 EXPORT_SYMBOL(netstamp_needed_key);
2052 #ifdef CONFIG_JUMP_LABEL
2053 static atomic_t netstamp_needed_deferred;
2054 static atomic_t netstamp_wanted;
2055 static void netstamp_clear(struct work_struct *work)
2056 {
2057 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2058 	int wanted;
2059 
2060 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2061 	if (wanted > 0)
2062 		static_branch_enable(&netstamp_needed_key);
2063 	else
2064 		static_branch_disable(&netstamp_needed_key);
2065 }
2066 static DECLARE_WORK(netstamp_work, netstamp_clear);
2067 #endif
2068 
2069 void net_enable_timestamp(void)
2070 {
2071 #ifdef CONFIG_JUMP_LABEL
2072 	int wanted;
2073 
2074 	while (1) {
2075 		wanted = atomic_read(&netstamp_wanted);
2076 		if (wanted <= 0)
2077 			break;
2078 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2079 			return;
2080 	}
2081 	atomic_inc(&netstamp_needed_deferred);
2082 	schedule_work(&netstamp_work);
2083 #else
2084 	static_branch_inc(&netstamp_needed_key);
2085 #endif
2086 }
2087 EXPORT_SYMBOL(net_enable_timestamp);
2088 
2089 void net_disable_timestamp(void)
2090 {
2091 #ifdef CONFIG_JUMP_LABEL
2092 	int wanted;
2093 
2094 	while (1) {
2095 		wanted = atomic_read(&netstamp_wanted);
2096 		if (wanted <= 1)
2097 			break;
2098 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2099 			return;
2100 	}
2101 	atomic_dec(&netstamp_needed_deferred);
2102 	schedule_work(&netstamp_work);
2103 #else
2104 	static_branch_dec(&netstamp_needed_key);
2105 #endif
2106 }
2107 EXPORT_SYMBOL(net_disable_timestamp);
2108 
2109 static inline void net_timestamp_set(struct sk_buff *skb)
2110 {
2111 	skb->tstamp = 0;
2112 	skb->mono_delivery_time = 0;
2113 	if (static_branch_unlikely(&netstamp_needed_key))
2114 		skb->tstamp = ktime_get_real();
2115 }
2116 
2117 #define net_timestamp_check(COND, SKB)				\
2118 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2119 		if ((COND) && !(SKB)->tstamp)			\
2120 			(SKB)->tstamp = ktime_get_real();	\
2121 	}							\
2122 
2123 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2124 {
2125 	return __is_skb_forwardable(dev, skb, true);
2126 }
2127 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2128 
2129 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2130 			      bool check_mtu)
2131 {
2132 	int ret = ____dev_forward_skb(dev, skb, check_mtu);
2133 
2134 	if (likely(!ret)) {
2135 		skb->protocol = eth_type_trans(skb, dev);
2136 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2137 	}
2138 
2139 	return ret;
2140 }
2141 
2142 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2143 {
2144 	return __dev_forward_skb2(dev, skb, true);
2145 }
2146 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2147 
2148 /**
2149  * dev_forward_skb - loopback an skb to another netif
2150  *
2151  * @dev: destination network device
2152  * @skb: buffer to forward
2153  *
2154  * return values:
2155  *	NET_RX_SUCCESS	(no congestion)
2156  *	NET_RX_DROP     (packet was dropped, but freed)
2157  *
2158  * dev_forward_skb can be used for injecting an skb from the
2159  * start_xmit function of one device into the receive queue
2160  * of another device.
2161  *
2162  * The receiving device may be in another namespace, so
2163  * we have to clear all information in the skb that could
2164  * impact namespace isolation.
2165  */
2166 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2167 {
2168 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2169 }
2170 EXPORT_SYMBOL_GPL(dev_forward_skb);
2171 
2172 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2173 {
2174 	return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2175 }
2176 
2177 static inline int deliver_skb(struct sk_buff *skb,
2178 			      struct packet_type *pt_prev,
2179 			      struct net_device *orig_dev)
2180 {
2181 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2182 		return -ENOMEM;
2183 	refcount_inc(&skb->users);
2184 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2185 }
2186 
2187 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2188 					  struct packet_type **pt,
2189 					  struct net_device *orig_dev,
2190 					  __be16 type,
2191 					  struct list_head *ptype_list)
2192 {
2193 	struct packet_type *ptype, *pt_prev = *pt;
2194 
2195 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2196 		if (ptype->type != type)
2197 			continue;
2198 		if (pt_prev)
2199 			deliver_skb(skb, pt_prev, orig_dev);
2200 		pt_prev = ptype;
2201 	}
2202 	*pt = pt_prev;
2203 }
2204 
2205 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2206 {
2207 	if (!ptype->af_packet_priv || !skb->sk)
2208 		return false;
2209 
2210 	if (ptype->id_match)
2211 		return ptype->id_match(ptype, skb->sk);
2212 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2213 		return true;
2214 
2215 	return false;
2216 }
2217 
2218 /**
2219  * dev_nit_active - return true if any network interface taps are in use
2220  *
2221  * @dev: network device to check for the presence of taps
2222  */
2223 bool dev_nit_active(struct net_device *dev)
2224 {
2225 	return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2226 }
2227 EXPORT_SYMBOL_GPL(dev_nit_active);
2228 
2229 /*
2230  *	Support routine. Sends outgoing frames to any network
2231  *	taps currently in use.
2232  */
2233 
2234 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2235 {
2236 	struct packet_type *ptype;
2237 	struct sk_buff *skb2 = NULL;
2238 	struct packet_type *pt_prev = NULL;
2239 	struct list_head *ptype_list = &ptype_all;
2240 
2241 	rcu_read_lock();
2242 again:
2243 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2244 		if (ptype->ignore_outgoing)
2245 			continue;
2246 
2247 		/* Never send packets back to the socket
2248 		 * they originated from - MvS (miquels@drinkel.ow.org)
2249 		 */
2250 		if (skb_loop_sk(ptype, skb))
2251 			continue;
2252 
2253 		if (pt_prev) {
2254 			deliver_skb(skb2, pt_prev, skb->dev);
2255 			pt_prev = ptype;
2256 			continue;
2257 		}
2258 
2259 		/* need to clone skb, done only once */
2260 		skb2 = skb_clone(skb, GFP_ATOMIC);
2261 		if (!skb2)
2262 			goto out_unlock;
2263 
2264 		net_timestamp_set(skb2);
2265 
2266 		/* skb->nh should be correctly
2267 		 * set by sender, so that the second statement is
2268 		 * just protection against buggy protocols.
2269 		 */
2270 		skb_reset_mac_header(skb2);
2271 
2272 		if (skb_network_header(skb2) < skb2->data ||
2273 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2274 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2275 					     ntohs(skb2->protocol),
2276 					     dev->name);
2277 			skb_reset_network_header(skb2);
2278 		}
2279 
2280 		skb2->transport_header = skb2->network_header;
2281 		skb2->pkt_type = PACKET_OUTGOING;
2282 		pt_prev = ptype;
2283 	}
2284 
2285 	if (ptype_list == &ptype_all) {
2286 		ptype_list = &dev->ptype_all;
2287 		goto again;
2288 	}
2289 out_unlock:
2290 	if (pt_prev) {
2291 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2292 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2293 		else
2294 			kfree_skb(skb2);
2295 	}
2296 	rcu_read_unlock();
2297 }
2298 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2299 
2300 /**
2301  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2302  * @dev: Network device
2303  * @txq: number of queues available
2304  *
2305  * If real_num_tx_queues is changed the tc mappings may no longer be
2306  * valid. To resolve this verify the tc mapping remains valid and if
2307  * not NULL the mapping. With no priorities mapping to this
2308  * offset/count pair it will no longer be used. In the worst case TC0
2309  * is invalid nothing can be done so disable priority mappings. If is
2310  * expected that drivers will fix this mapping if they can before
2311  * calling netif_set_real_num_tx_queues.
2312  */
2313 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2314 {
2315 	int i;
2316 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2317 
2318 	/* If TC0 is invalidated disable TC mapping */
2319 	if (tc->offset + tc->count > txq) {
2320 		netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2321 		dev->num_tc = 0;
2322 		return;
2323 	}
2324 
2325 	/* Invalidated prio to tc mappings set to TC0 */
2326 	for (i = 1; i < TC_BITMASK + 1; i++) {
2327 		int q = netdev_get_prio_tc_map(dev, i);
2328 
2329 		tc = &dev->tc_to_txq[q];
2330 		if (tc->offset + tc->count > txq) {
2331 			netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2332 				    i, q);
2333 			netdev_set_prio_tc_map(dev, i, 0);
2334 		}
2335 	}
2336 }
2337 
2338 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2339 {
2340 	if (dev->num_tc) {
2341 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2342 		int i;
2343 
2344 		/* walk through the TCs and see if it falls into any of them */
2345 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2346 			if ((txq - tc->offset) < tc->count)
2347 				return i;
2348 		}
2349 
2350 		/* didn't find it, just return -1 to indicate no match */
2351 		return -1;
2352 	}
2353 
2354 	return 0;
2355 }
2356 EXPORT_SYMBOL(netdev_txq_to_tc);
2357 
2358 #ifdef CONFIG_XPS
2359 static struct static_key xps_needed __read_mostly;
2360 static struct static_key xps_rxqs_needed __read_mostly;
2361 static DEFINE_MUTEX(xps_map_mutex);
2362 #define xmap_dereference(P)		\
2363 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2364 
2365 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2366 			     struct xps_dev_maps *old_maps, int tci, u16 index)
2367 {
2368 	struct xps_map *map = NULL;
2369 	int pos;
2370 
2371 	if (dev_maps)
2372 		map = xmap_dereference(dev_maps->attr_map[tci]);
2373 	if (!map)
2374 		return false;
2375 
2376 	for (pos = map->len; pos--;) {
2377 		if (map->queues[pos] != index)
2378 			continue;
2379 
2380 		if (map->len > 1) {
2381 			map->queues[pos] = map->queues[--map->len];
2382 			break;
2383 		}
2384 
2385 		if (old_maps)
2386 			RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2387 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2388 		kfree_rcu(map, rcu);
2389 		return false;
2390 	}
2391 
2392 	return true;
2393 }
2394 
2395 static bool remove_xps_queue_cpu(struct net_device *dev,
2396 				 struct xps_dev_maps *dev_maps,
2397 				 int cpu, u16 offset, u16 count)
2398 {
2399 	int num_tc = dev_maps->num_tc;
2400 	bool active = false;
2401 	int tci;
2402 
2403 	for (tci = cpu * num_tc; num_tc--; tci++) {
2404 		int i, j;
2405 
2406 		for (i = count, j = offset; i--; j++) {
2407 			if (!remove_xps_queue(dev_maps, NULL, tci, j))
2408 				break;
2409 		}
2410 
2411 		active |= i < 0;
2412 	}
2413 
2414 	return active;
2415 }
2416 
2417 static void reset_xps_maps(struct net_device *dev,
2418 			   struct xps_dev_maps *dev_maps,
2419 			   enum xps_map_type type)
2420 {
2421 	static_key_slow_dec_cpuslocked(&xps_needed);
2422 	if (type == XPS_RXQS)
2423 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2424 
2425 	RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2426 
2427 	kfree_rcu(dev_maps, rcu);
2428 }
2429 
2430 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2431 			   u16 offset, u16 count)
2432 {
2433 	struct xps_dev_maps *dev_maps;
2434 	bool active = false;
2435 	int i, j;
2436 
2437 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2438 	if (!dev_maps)
2439 		return;
2440 
2441 	for (j = 0; j < dev_maps->nr_ids; j++)
2442 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2443 	if (!active)
2444 		reset_xps_maps(dev, dev_maps, type);
2445 
2446 	if (type == XPS_CPUS) {
2447 		for (i = offset + (count - 1); count--; i--)
2448 			netdev_queue_numa_node_write(
2449 				netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2450 	}
2451 }
2452 
2453 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2454 				   u16 count)
2455 {
2456 	if (!static_key_false(&xps_needed))
2457 		return;
2458 
2459 	cpus_read_lock();
2460 	mutex_lock(&xps_map_mutex);
2461 
2462 	if (static_key_false(&xps_rxqs_needed))
2463 		clean_xps_maps(dev, XPS_RXQS, offset, count);
2464 
2465 	clean_xps_maps(dev, XPS_CPUS, offset, count);
2466 
2467 	mutex_unlock(&xps_map_mutex);
2468 	cpus_read_unlock();
2469 }
2470 
2471 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2472 {
2473 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2474 }
2475 
2476 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2477 				      u16 index, bool is_rxqs_map)
2478 {
2479 	struct xps_map *new_map;
2480 	int alloc_len = XPS_MIN_MAP_ALLOC;
2481 	int i, pos;
2482 
2483 	for (pos = 0; map && pos < map->len; pos++) {
2484 		if (map->queues[pos] != index)
2485 			continue;
2486 		return map;
2487 	}
2488 
2489 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2490 	if (map) {
2491 		if (pos < map->alloc_len)
2492 			return map;
2493 
2494 		alloc_len = map->alloc_len * 2;
2495 	}
2496 
2497 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2498 	 *  map
2499 	 */
2500 	if (is_rxqs_map)
2501 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2502 	else
2503 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2504 				       cpu_to_node(attr_index));
2505 	if (!new_map)
2506 		return NULL;
2507 
2508 	for (i = 0; i < pos; i++)
2509 		new_map->queues[i] = map->queues[i];
2510 	new_map->alloc_len = alloc_len;
2511 	new_map->len = pos;
2512 
2513 	return new_map;
2514 }
2515 
2516 /* Copy xps maps at a given index */
2517 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2518 			      struct xps_dev_maps *new_dev_maps, int index,
2519 			      int tc, bool skip_tc)
2520 {
2521 	int i, tci = index * dev_maps->num_tc;
2522 	struct xps_map *map;
2523 
2524 	/* copy maps belonging to foreign traffic classes */
2525 	for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2526 		if (i == tc && skip_tc)
2527 			continue;
2528 
2529 		/* fill in the new device map from the old device map */
2530 		map = xmap_dereference(dev_maps->attr_map[tci]);
2531 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2532 	}
2533 }
2534 
2535 /* Must be called under cpus_read_lock */
2536 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2537 			  u16 index, enum xps_map_type type)
2538 {
2539 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2540 	const unsigned long *online_mask = NULL;
2541 	bool active = false, copy = false;
2542 	int i, j, tci, numa_node_id = -2;
2543 	int maps_sz, num_tc = 1, tc = 0;
2544 	struct xps_map *map, *new_map;
2545 	unsigned int nr_ids;
2546 
2547 	if (dev->num_tc) {
2548 		/* Do not allow XPS on subordinate device directly */
2549 		num_tc = dev->num_tc;
2550 		if (num_tc < 0)
2551 			return -EINVAL;
2552 
2553 		/* If queue belongs to subordinate dev use its map */
2554 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2555 
2556 		tc = netdev_txq_to_tc(dev, index);
2557 		if (tc < 0)
2558 			return -EINVAL;
2559 	}
2560 
2561 	mutex_lock(&xps_map_mutex);
2562 
2563 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2564 	if (type == XPS_RXQS) {
2565 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2566 		nr_ids = dev->num_rx_queues;
2567 	} else {
2568 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2569 		if (num_possible_cpus() > 1)
2570 			online_mask = cpumask_bits(cpu_online_mask);
2571 		nr_ids = nr_cpu_ids;
2572 	}
2573 
2574 	if (maps_sz < L1_CACHE_BYTES)
2575 		maps_sz = L1_CACHE_BYTES;
2576 
2577 	/* The old dev_maps could be larger or smaller than the one we're
2578 	 * setting up now, as dev->num_tc or nr_ids could have been updated in
2579 	 * between. We could try to be smart, but let's be safe instead and only
2580 	 * copy foreign traffic classes if the two map sizes match.
2581 	 */
2582 	if (dev_maps &&
2583 	    dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2584 		copy = true;
2585 
2586 	/* allocate memory for queue storage */
2587 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2588 	     j < nr_ids;) {
2589 		if (!new_dev_maps) {
2590 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2591 			if (!new_dev_maps) {
2592 				mutex_unlock(&xps_map_mutex);
2593 				return -ENOMEM;
2594 			}
2595 
2596 			new_dev_maps->nr_ids = nr_ids;
2597 			new_dev_maps->num_tc = num_tc;
2598 		}
2599 
2600 		tci = j * num_tc + tc;
2601 		map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2602 
2603 		map = expand_xps_map(map, j, index, type == XPS_RXQS);
2604 		if (!map)
2605 			goto error;
2606 
2607 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2608 	}
2609 
2610 	if (!new_dev_maps)
2611 		goto out_no_new_maps;
2612 
2613 	if (!dev_maps) {
2614 		/* Increment static keys at most once per type */
2615 		static_key_slow_inc_cpuslocked(&xps_needed);
2616 		if (type == XPS_RXQS)
2617 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2618 	}
2619 
2620 	for (j = 0; j < nr_ids; j++) {
2621 		bool skip_tc = false;
2622 
2623 		tci = j * num_tc + tc;
2624 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2625 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2626 			/* add tx-queue to CPU/rx-queue maps */
2627 			int pos = 0;
2628 
2629 			skip_tc = true;
2630 
2631 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2632 			while ((pos < map->len) && (map->queues[pos] != index))
2633 				pos++;
2634 
2635 			if (pos == map->len)
2636 				map->queues[map->len++] = index;
2637 #ifdef CONFIG_NUMA
2638 			if (type == XPS_CPUS) {
2639 				if (numa_node_id == -2)
2640 					numa_node_id = cpu_to_node(j);
2641 				else if (numa_node_id != cpu_to_node(j))
2642 					numa_node_id = -1;
2643 			}
2644 #endif
2645 		}
2646 
2647 		if (copy)
2648 			xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2649 					  skip_tc);
2650 	}
2651 
2652 	rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2653 
2654 	/* Cleanup old maps */
2655 	if (!dev_maps)
2656 		goto out_no_old_maps;
2657 
2658 	for (j = 0; j < dev_maps->nr_ids; j++) {
2659 		for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2660 			map = xmap_dereference(dev_maps->attr_map[tci]);
2661 			if (!map)
2662 				continue;
2663 
2664 			if (copy) {
2665 				new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2666 				if (map == new_map)
2667 					continue;
2668 			}
2669 
2670 			RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2671 			kfree_rcu(map, rcu);
2672 		}
2673 	}
2674 
2675 	old_dev_maps = dev_maps;
2676 
2677 out_no_old_maps:
2678 	dev_maps = new_dev_maps;
2679 	active = true;
2680 
2681 out_no_new_maps:
2682 	if (type == XPS_CPUS)
2683 		/* update Tx queue numa node */
2684 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2685 					     (numa_node_id >= 0) ?
2686 					     numa_node_id : NUMA_NO_NODE);
2687 
2688 	if (!dev_maps)
2689 		goto out_no_maps;
2690 
2691 	/* removes tx-queue from unused CPUs/rx-queues */
2692 	for (j = 0; j < dev_maps->nr_ids; j++) {
2693 		tci = j * dev_maps->num_tc;
2694 
2695 		for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2696 			if (i == tc &&
2697 			    netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2698 			    netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2699 				continue;
2700 
2701 			active |= remove_xps_queue(dev_maps,
2702 						   copy ? old_dev_maps : NULL,
2703 						   tci, index);
2704 		}
2705 	}
2706 
2707 	if (old_dev_maps)
2708 		kfree_rcu(old_dev_maps, rcu);
2709 
2710 	/* free map if not active */
2711 	if (!active)
2712 		reset_xps_maps(dev, dev_maps, type);
2713 
2714 out_no_maps:
2715 	mutex_unlock(&xps_map_mutex);
2716 
2717 	return 0;
2718 error:
2719 	/* remove any maps that we added */
2720 	for (j = 0; j < nr_ids; j++) {
2721 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2722 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2723 			map = copy ?
2724 			      xmap_dereference(dev_maps->attr_map[tci]) :
2725 			      NULL;
2726 			if (new_map && new_map != map)
2727 				kfree(new_map);
2728 		}
2729 	}
2730 
2731 	mutex_unlock(&xps_map_mutex);
2732 
2733 	kfree(new_dev_maps);
2734 	return -ENOMEM;
2735 }
2736 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2737 
2738 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2739 			u16 index)
2740 {
2741 	int ret;
2742 
2743 	cpus_read_lock();
2744 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2745 	cpus_read_unlock();
2746 
2747 	return ret;
2748 }
2749 EXPORT_SYMBOL(netif_set_xps_queue);
2750 
2751 #endif
2752 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2753 {
2754 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2755 
2756 	/* Unbind any subordinate channels */
2757 	while (txq-- != &dev->_tx[0]) {
2758 		if (txq->sb_dev)
2759 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2760 	}
2761 }
2762 
2763 void netdev_reset_tc(struct net_device *dev)
2764 {
2765 #ifdef CONFIG_XPS
2766 	netif_reset_xps_queues_gt(dev, 0);
2767 #endif
2768 	netdev_unbind_all_sb_channels(dev);
2769 
2770 	/* Reset TC configuration of device */
2771 	dev->num_tc = 0;
2772 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2773 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2774 }
2775 EXPORT_SYMBOL(netdev_reset_tc);
2776 
2777 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2778 {
2779 	if (tc >= dev->num_tc)
2780 		return -EINVAL;
2781 
2782 #ifdef CONFIG_XPS
2783 	netif_reset_xps_queues(dev, offset, count);
2784 #endif
2785 	dev->tc_to_txq[tc].count = count;
2786 	dev->tc_to_txq[tc].offset = offset;
2787 	return 0;
2788 }
2789 EXPORT_SYMBOL(netdev_set_tc_queue);
2790 
2791 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2792 {
2793 	if (num_tc > TC_MAX_QUEUE)
2794 		return -EINVAL;
2795 
2796 #ifdef CONFIG_XPS
2797 	netif_reset_xps_queues_gt(dev, 0);
2798 #endif
2799 	netdev_unbind_all_sb_channels(dev);
2800 
2801 	dev->num_tc = num_tc;
2802 	return 0;
2803 }
2804 EXPORT_SYMBOL(netdev_set_num_tc);
2805 
2806 void netdev_unbind_sb_channel(struct net_device *dev,
2807 			      struct net_device *sb_dev)
2808 {
2809 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2810 
2811 #ifdef CONFIG_XPS
2812 	netif_reset_xps_queues_gt(sb_dev, 0);
2813 #endif
2814 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2815 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2816 
2817 	while (txq-- != &dev->_tx[0]) {
2818 		if (txq->sb_dev == sb_dev)
2819 			txq->sb_dev = NULL;
2820 	}
2821 }
2822 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2823 
2824 int netdev_bind_sb_channel_queue(struct net_device *dev,
2825 				 struct net_device *sb_dev,
2826 				 u8 tc, u16 count, u16 offset)
2827 {
2828 	/* Make certain the sb_dev and dev are already configured */
2829 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2830 		return -EINVAL;
2831 
2832 	/* We cannot hand out queues we don't have */
2833 	if ((offset + count) > dev->real_num_tx_queues)
2834 		return -EINVAL;
2835 
2836 	/* Record the mapping */
2837 	sb_dev->tc_to_txq[tc].count = count;
2838 	sb_dev->tc_to_txq[tc].offset = offset;
2839 
2840 	/* Provide a way for Tx queue to find the tc_to_txq map or
2841 	 * XPS map for itself.
2842 	 */
2843 	while (count--)
2844 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2845 
2846 	return 0;
2847 }
2848 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2849 
2850 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2851 {
2852 	/* Do not use a multiqueue device to represent a subordinate channel */
2853 	if (netif_is_multiqueue(dev))
2854 		return -ENODEV;
2855 
2856 	/* We allow channels 1 - 32767 to be used for subordinate channels.
2857 	 * Channel 0 is meant to be "native" mode and used only to represent
2858 	 * the main root device. We allow writing 0 to reset the device back
2859 	 * to normal mode after being used as a subordinate channel.
2860 	 */
2861 	if (channel > S16_MAX)
2862 		return -EINVAL;
2863 
2864 	dev->num_tc = -channel;
2865 
2866 	return 0;
2867 }
2868 EXPORT_SYMBOL(netdev_set_sb_channel);
2869 
2870 /*
2871  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2872  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2873  */
2874 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2875 {
2876 	bool disabling;
2877 	int rc;
2878 
2879 	disabling = txq < dev->real_num_tx_queues;
2880 
2881 	if (txq < 1 || txq > dev->num_tx_queues)
2882 		return -EINVAL;
2883 
2884 	if (dev->reg_state == NETREG_REGISTERED ||
2885 	    dev->reg_state == NETREG_UNREGISTERING) {
2886 		ASSERT_RTNL();
2887 
2888 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2889 						  txq);
2890 		if (rc)
2891 			return rc;
2892 
2893 		if (dev->num_tc)
2894 			netif_setup_tc(dev, txq);
2895 
2896 		dev_qdisc_change_real_num_tx(dev, txq);
2897 
2898 		dev->real_num_tx_queues = txq;
2899 
2900 		if (disabling) {
2901 			synchronize_net();
2902 			qdisc_reset_all_tx_gt(dev, txq);
2903 #ifdef CONFIG_XPS
2904 			netif_reset_xps_queues_gt(dev, txq);
2905 #endif
2906 		}
2907 	} else {
2908 		dev->real_num_tx_queues = txq;
2909 	}
2910 
2911 	return 0;
2912 }
2913 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2914 
2915 #ifdef CONFIG_SYSFS
2916 /**
2917  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2918  *	@dev: Network device
2919  *	@rxq: Actual number of RX queues
2920  *
2921  *	This must be called either with the rtnl_lock held or before
2922  *	registration of the net device.  Returns 0 on success, or a
2923  *	negative error code.  If called before registration, it always
2924  *	succeeds.
2925  */
2926 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2927 {
2928 	int rc;
2929 
2930 	if (rxq < 1 || rxq > dev->num_rx_queues)
2931 		return -EINVAL;
2932 
2933 	if (dev->reg_state == NETREG_REGISTERED) {
2934 		ASSERT_RTNL();
2935 
2936 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2937 						  rxq);
2938 		if (rc)
2939 			return rc;
2940 	}
2941 
2942 	dev->real_num_rx_queues = rxq;
2943 	return 0;
2944 }
2945 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2946 #endif
2947 
2948 /**
2949  *	netif_set_real_num_queues - set actual number of RX and TX queues used
2950  *	@dev: Network device
2951  *	@txq: Actual number of TX queues
2952  *	@rxq: Actual number of RX queues
2953  *
2954  *	Set the real number of both TX and RX queues.
2955  *	Does nothing if the number of queues is already correct.
2956  */
2957 int netif_set_real_num_queues(struct net_device *dev,
2958 			      unsigned int txq, unsigned int rxq)
2959 {
2960 	unsigned int old_rxq = dev->real_num_rx_queues;
2961 	int err;
2962 
2963 	if (txq < 1 || txq > dev->num_tx_queues ||
2964 	    rxq < 1 || rxq > dev->num_rx_queues)
2965 		return -EINVAL;
2966 
2967 	/* Start from increases, so the error path only does decreases -
2968 	 * decreases can't fail.
2969 	 */
2970 	if (rxq > dev->real_num_rx_queues) {
2971 		err = netif_set_real_num_rx_queues(dev, rxq);
2972 		if (err)
2973 			return err;
2974 	}
2975 	if (txq > dev->real_num_tx_queues) {
2976 		err = netif_set_real_num_tx_queues(dev, txq);
2977 		if (err)
2978 			goto undo_rx;
2979 	}
2980 	if (rxq < dev->real_num_rx_queues)
2981 		WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
2982 	if (txq < dev->real_num_tx_queues)
2983 		WARN_ON(netif_set_real_num_tx_queues(dev, txq));
2984 
2985 	return 0;
2986 undo_rx:
2987 	WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
2988 	return err;
2989 }
2990 EXPORT_SYMBOL(netif_set_real_num_queues);
2991 
2992 /**
2993  * netif_get_num_default_rss_queues - default number of RSS queues
2994  *
2995  * This routine should set an upper limit on the number of RSS queues
2996  * used by default by multiqueue devices.
2997  */
2998 int netif_get_num_default_rss_queues(void)
2999 {
3000 	return is_kdump_kernel() ?
3001 		1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
3002 }
3003 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3004 
3005 static void __netif_reschedule(struct Qdisc *q)
3006 {
3007 	struct softnet_data *sd;
3008 	unsigned long flags;
3009 
3010 	local_irq_save(flags);
3011 	sd = this_cpu_ptr(&softnet_data);
3012 	q->next_sched = NULL;
3013 	*sd->output_queue_tailp = q;
3014 	sd->output_queue_tailp = &q->next_sched;
3015 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3016 	local_irq_restore(flags);
3017 }
3018 
3019 void __netif_schedule(struct Qdisc *q)
3020 {
3021 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3022 		__netif_reschedule(q);
3023 }
3024 EXPORT_SYMBOL(__netif_schedule);
3025 
3026 struct dev_kfree_skb_cb {
3027 	enum skb_free_reason reason;
3028 };
3029 
3030 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3031 {
3032 	return (struct dev_kfree_skb_cb *)skb->cb;
3033 }
3034 
3035 void netif_schedule_queue(struct netdev_queue *txq)
3036 {
3037 	rcu_read_lock();
3038 	if (!netif_xmit_stopped(txq)) {
3039 		struct Qdisc *q = rcu_dereference(txq->qdisc);
3040 
3041 		__netif_schedule(q);
3042 	}
3043 	rcu_read_unlock();
3044 }
3045 EXPORT_SYMBOL(netif_schedule_queue);
3046 
3047 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3048 {
3049 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3050 		struct Qdisc *q;
3051 
3052 		rcu_read_lock();
3053 		q = rcu_dereference(dev_queue->qdisc);
3054 		__netif_schedule(q);
3055 		rcu_read_unlock();
3056 	}
3057 }
3058 EXPORT_SYMBOL(netif_tx_wake_queue);
3059 
3060 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3061 {
3062 	unsigned long flags;
3063 
3064 	if (unlikely(!skb))
3065 		return;
3066 
3067 	if (likely(refcount_read(&skb->users) == 1)) {
3068 		smp_rmb();
3069 		refcount_set(&skb->users, 0);
3070 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3071 		return;
3072 	}
3073 	get_kfree_skb_cb(skb)->reason = reason;
3074 	local_irq_save(flags);
3075 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3076 	__this_cpu_write(softnet_data.completion_queue, skb);
3077 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3078 	local_irq_restore(flags);
3079 }
3080 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3081 
3082 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3083 {
3084 	if (in_hardirq() || irqs_disabled())
3085 		__dev_kfree_skb_irq(skb, reason);
3086 	else
3087 		dev_kfree_skb(skb);
3088 }
3089 EXPORT_SYMBOL(__dev_kfree_skb_any);
3090 
3091 
3092 /**
3093  * netif_device_detach - mark device as removed
3094  * @dev: network device
3095  *
3096  * Mark device as removed from system and therefore no longer available.
3097  */
3098 void netif_device_detach(struct net_device *dev)
3099 {
3100 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3101 	    netif_running(dev)) {
3102 		netif_tx_stop_all_queues(dev);
3103 	}
3104 }
3105 EXPORT_SYMBOL(netif_device_detach);
3106 
3107 /**
3108  * netif_device_attach - mark device as attached
3109  * @dev: network device
3110  *
3111  * Mark device as attached from system and restart if needed.
3112  */
3113 void netif_device_attach(struct net_device *dev)
3114 {
3115 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3116 	    netif_running(dev)) {
3117 		netif_tx_wake_all_queues(dev);
3118 		__netdev_watchdog_up(dev);
3119 	}
3120 }
3121 EXPORT_SYMBOL(netif_device_attach);
3122 
3123 /*
3124  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3125  * to be used as a distribution range.
3126  */
3127 static u16 skb_tx_hash(const struct net_device *dev,
3128 		       const struct net_device *sb_dev,
3129 		       struct sk_buff *skb)
3130 {
3131 	u32 hash;
3132 	u16 qoffset = 0;
3133 	u16 qcount = dev->real_num_tx_queues;
3134 
3135 	if (dev->num_tc) {
3136 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3137 
3138 		qoffset = sb_dev->tc_to_txq[tc].offset;
3139 		qcount = sb_dev->tc_to_txq[tc].count;
3140 		if (unlikely(!qcount)) {
3141 			net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3142 					     sb_dev->name, qoffset, tc);
3143 			qoffset = 0;
3144 			qcount = dev->real_num_tx_queues;
3145 		}
3146 	}
3147 
3148 	if (skb_rx_queue_recorded(skb)) {
3149 		hash = skb_get_rx_queue(skb);
3150 		if (hash >= qoffset)
3151 			hash -= qoffset;
3152 		while (unlikely(hash >= qcount))
3153 			hash -= qcount;
3154 		return hash + qoffset;
3155 	}
3156 
3157 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3158 }
3159 
3160 static void skb_warn_bad_offload(const struct sk_buff *skb)
3161 {
3162 	static const netdev_features_t null_features;
3163 	struct net_device *dev = skb->dev;
3164 	const char *name = "";
3165 
3166 	if (!net_ratelimit())
3167 		return;
3168 
3169 	if (dev) {
3170 		if (dev->dev.parent)
3171 			name = dev_driver_string(dev->dev.parent);
3172 		else
3173 			name = netdev_name(dev);
3174 	}
3175 	skb_dump(KERN_WARNING, skb, false);
3176 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3177 	     name, dev ? &dev->features : &null_features,
3178 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3179 }
3180 
3181 /*
3182  * Invalidate hardware checksum when packet is to be mangled, and
3183  * complete checksum manually on outgoing path.
3184  */
3185 int skb_checksum_help(struct sk_buff *skb)
3186 {
3187 	__wsum csum;
3188 	int ret = 0, offset;
3189 
3190 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3191 		goto out_set_summed;
3192 
3193 	if (unlikely(skb_is_gso(skb))) {
3194 		skb_warn_bad_offload(skb);
3195 		return -EINVAL;
3196 	}
3197 
3198 	/* Before computing a checksum, we should make sure no frag could
3199 	 * be modified by an external entity : checksum could be wrong.
3200 	 */
3201 	if (skb_has_shared_frag(skb)) {
3202 		ret = __skb_linearize(skb);
3203 		if (ret)
3204 			goto out;
3205 	}
3206 
3207 	offset = skb_checksum_start_offset(skb);
3208 	BUG_ON(offset >= skb_headlen(skb));
3209 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3210 
3211 	offset += skb->csum_offset;
3212 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3213 
3214 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3215 	if (ret)
3216 		goto out;
3217 
3218 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3219 out_set_summed:
3220 	skb->ip_summed = CHECKSUM_NONE;
3221 out:
3222 	return ret;
3223 }
3224 EXPORT_SYMBOL(skb_checksum_help);
3225 
3226 int skb_crc32c_csum_help(struct sk_buff *skb)
3227 {
3228 	__le32 crc32c_csum;
3229 	int ret = 0, offset, start;
3230 
3231 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3232 		goto out;
3233 
3234 	if (unlikely(skb_is_gso(skb)))
3235 		goto out;
3236 
3237 	/* Before computing a checksum, we should make sure no frag could
3238 	 * be modified by an external entity : checksum could be wrong.
3239 	 */
3240 	if (unlikely(skb_has_shared_frag(skb))) {
3241 		ret = __skb_linearize(skb);
3242 		if (ret)
3243 			goto out;
3244 	}
3245 	start = skb_checksum_start_offset(skb);
3246 	offset = start + offsetof(struct sctphdr, checksum);
3247 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3248 		ret = -EINVAL;
3249 		goto out;
3250 	}
3251 
3252 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3253 	if (ret)
3254 		goto out;
3255 
3256 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3257 						  skb->len - start, ~(__u32)0,
3258 						  crc32c_csum_stub));
3259 	*(__le32 *)(skb->data + offset) = crc32c_csum;
3260 	skb->ip_summed = CHECKSUM_NONE;
3261 	skb->csum_not_inet = 0;
3262 out:
3263 	return ret;
3264 }
3265 
3266 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3267 {
3268 	__be16 type = skb->protocol;
3269 
3270 	/* Tunnel gso handlers can set protocol to ethernet. */
3271 	if (type == htons(ETH_P_TEB)) {
3272 		struct ethhdr *eth;
3273 
3274 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3275 			return 0;
3276 
3277 		eth = (struct ethhdr *)skb->data;
3278 		type = eth->h_proto;
3279 	}
3280 
3281 	return __vlan_get_protocol(skb, type, depth);
3282 }
3283 
3284 /* openvswitch calls this on rx path, so we need a different check.
3285  */
3286 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3287 {
3288 	if (tx_path)
3289 		return skb->ip_summed != CHECKSUM_PARTIAL &&
3290 		       skb->ip_summed != CHECKSUM_UNNECESSARY;
3291 
3292 	return skb->ip_summed == CHECKSUM_NONE;
3293 }
3294 
3295 /**
3296  *	__skb_gso_segment - Perform segmentation on skb.
3297  *	@skb: buffer to segment
3298  *	@features: features for the output path (see dev->features)
3299  *	@tx_path: whether it is called in TX path
3300  *
3301  *	This function segments the given skb and returns a list of segments.
3302  *
3303  *	It may return NULL if the skb requires no segmentation.  This is
3304  *	only possible when GSO is used for verifying header integrity.
3305  *
3306  *	Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3307  */
3308 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3309 				  netdev_features_t features, bool tx_path)
3310 {
3311 	struct sk_buff *segs;
3312 
3313 	if (unlikely(skb_needs_check(skb, tx_path))) {
3314 		int err;
3315 
3316 		/* We're going to init ->check field in TCP or UDP header */
3317 		err = skb_cow_head(skb, 0);
3318 		if (err < 0)
3319 			return ERR_PTR(err);
3320 	}
3321 
3322 	/* Only report GSO partial support if it will enable us to
3323 	 * support segmentation on this frame without needing additional
3324 	 * work.
3325 	 */
3326 	if (features & NETIF_F_GSO_PARTIAL) {
3327 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3328 		struct net_device *dev = skb->dev;
3329 
3330 		partial_features |= dev->features & dev->gso_partial_features;
3331 		if (!skb_gso_ok(skb, features | partial_features))
3332 			features &= ~NETIF_F_GSO_PARTIAL;
3333 	}
3334 
3335 	BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3336 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3337 
3338 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3339 	SKB_GSO_CB(skb)->encap_level = 0;
3340 
3341 	skb_reset_mac_header(skb);
3342 	skb_reset_mac_len(skb);
3343 
3344 	segs = skb_mac_gso_segment(skb, features);
3345 
3346 	if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3347 		skb_warn_bad_offload(skb);
3348 
3349 	return segs;
3350 }
3351 EXPORT_SYMBOL(__skb_gso_segment);
3352 
3353 /* Take action when hardware reception checksum errors are detected. */
3354 #ifdef CONFIG_BUG
3355 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3356 {
3357 	netdev_err(dev, "hw csum failure\n");
3358 	skb_dump(KERN_ERR, skb, true);
3359 	dump_stack();
3360 }
3361 
3362 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3363 {
3364 	DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3365 }
3366 EXPORT_SYMBOL(netdev_rx_csum_fault);
3367 #endif
3368 
3369 /* XXX: check that highmem exists at all on the given machine. */
3370 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3371 {
3372 #ifdef CONFIG_HIGHMEM
3373 	int i;
3374 
3375 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3376 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3377 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3378 
3379 			if (PageHighMem(skb_frag_page(frag)))
3380 				return 1;
3381 		}
3382 	}
3383 #endif
3384 	return 0;
3385 }
3386 
3387 /* If MPLS offload request, verify we are testing hardware MPLS features
3388  * instead of standard features for the netdev.
3389  */
3390 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3391 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3392 					   netdev_features_t features,
3393 					   __be16 type)
3394 {
3395 	if (eth_p_mpls(type))
3396 		features &= skb->dev->mpls_features;
3397 
3398 	return features;
3399 }
3400 #else
3401 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3402 					   netdev_features_t features,
3403 					   __be16 type)
3404 {
3405 	return features;
3406 }
3407 #endif
3408 
3409 static netdev_features_t harmonize_features(struct sk_buff *skb,
3410 	netdev_features_t features)
3411 {
3412 	__be16 type;
3413 
3414 	type = skb_network_protocol(skb, NULL);
3415 	features = net_mpls_features(skb, features, type);
3416 
3417 	if (skb->ip_summed != CHECKSUM_NONE &&
3418 	    !can_checksum_protocol(features, type)) {
3419 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3420 	}
3421 	if (illegal_highdma(skb->dev, skb))
3422 		features &= ~NETIF_F_SG;
3423 
3424 	return features;
3425 }
3426 
3427 netdev_features_t passthru_features_check(struct sk_buff *skb,
3428 					  struct net_device *dev,
3429 					  netdev_features_t features)
3430 {
3431 	return features;
3432 }
3433 EXPORT_SYMBOL(passthru_features_check);
3434 
3435 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3436 					     struct net_device *dev,
3437 					     netdev_features_t features)
3438 {
3439 	return vlan_features_check(skb, features);
3440 }
3441 
3442 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3443 					    struct net_device *dev,
3444 					    netdev_features_t features)
3445 {
3446 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3447 
3448 	if (gso_segs > READ_ONCE(dev->gso_max_segs))
3449 		return features & ~NETIF_F_GSO_MASK;
3450 
3451 	if (!skb_shinfo(skb)->gso_type) {
3452 		skb_warn_bad_offload(skb);
3453 		return features & ~NETIF_F_GSO_MASK;
3454 	}
3455 
3456 	/* Support for GSO partial features requires software
3457 	 * intervention before we can actually process the packets
3458 	 * so we need to strip support for any partial features now
3459 	 * and we can pull them back in after we have partially
3460 	 * segmented the frame.
3461 	 */
3462 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3463 		features &= ~dev->gso_partial_features;
3464 
3465 	/* Make sure to clear the IPv4 ID mangling feature if the
3466 	 * IPv4 header has the potential to be fragmented.
3467 	 */
3468 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3469 		struct iphdr *iph = skb->encapsulation ?
3470 				    inner_ip_hdr(skb) : ip_hdr(skb);
3471 
3472 		if (!(iph->frag_off & htons(IP_DF)))
3473 			features &= ~NETIF_F_TSO_MANGLEID;
3474 	}
3475 
3476 	return features;
3477 }
3478 
3479 netdev_features_t netif_skb_features(struct sk_buff *skb)
3480 {
3481 	struct net_device *dev = skb->dev;
3482 	netdev_features_t features = dev->features;
3483 
3484 	if (skb_is_gso(skb))
3485 		features = gso_features_check(skb, dev, features);
3486 
3487 	/* If encapsulation offload request, verify we are testing
3488 	 * hardware encapsulation features instead of standard
3489 	 * features for the netdev
3490 	 */
3491 	if (skb->encapsulation)
3492 		features &= dev->hw_enc_features;
3493 
3494 	if (skb_vlan_tagged(skb))
3495 		features = netdev_intersect_features(features,
3496 						     dev->vlan_features |
3497 						     NETIF_F_HW_VLAN_CTAG_TX |
3498 						     NETIF_F_HW_VLAN_STAG_TX);
3499 
3500 	if (dev->netdev_ops->ndo_features_check)
3501 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3502 								features);
3503 	else
3504 		features &= dflt_features_check(skb, dev, features);
3505 
3506 	return harmonize_features(skb, features);
3507 }
3508 EXPORT_SYMBOL(netif_skb_features);
3509 
3510 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3511 		    struct netdev_queue *txq, bool more)
3512 {
3513 	unsigned int len;
3514 	int rc;
3515 
3516 	if (dev_nit_active(dev))
3517 		dev_queue_xmit_nit(skb, dev);
3518 
3519 	len = skb->len;
3520 	PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies);
3521 	trace_net_dev_start_xmit(skb, dev);
3522 	rc = netdev_start_xmit(skb, dev, txq, more);
3523 	trace_net_dev_xmit(skb, rc, dev, len);
3524 
3525 	return rc;
3526 }
3527 
3528 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3529 				    struct netdev_queue *txq, int *ret)
3530 {
3531 	struct sk_buff *skb = first;
3532 	int rc = NETDEV_TX_OK;
3533 
3534 	while (skb) {
3535 		struct sk_buff *next = skb->next;
3536 
3537 		skb_mark_not_on_list(skb);
3538 		rc = xmit_one(skb, dev, txq, next != NULL);
3539 		if (unlikely(!dev_xmit_complete(rc))) {
3540 			skb->next = next;
3541 			goto out;
3542 		}
3543 
3544 		skb = next;
3545 		if (netif_tx_queue_stopped(txq) && skb) {
3546 			rc = NETDEV_TX_BUSY;
3547 			break;
3548 		}
3549 	}
3550 
3551 out:
3552 	*ret = rc;
3553 	return skb;
3554 }
3555 
3556 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3557 					  netdev_features_t features)
3558 {
3559 	if (skb_vlan_tag_present(skb) &&
3560 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3561 		skb = __vlan_hwaccel_push_inside(skb);
3562 	return skb;
3563 }
3564 
3565 int skb_csum_hwoffload_help(struct sk_buff *skb,
3566 			    const netdev_features_t features)
3567 {
3568 	if (unlikely(skb_csum_is_sctp(skb)))
3569 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3570 			skb_crc32c_csum_help(skb);
3571 
3572 	if (features & NETIF_F_HW_CSUM)
3573 		return 0;
3574 
3575 	if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3576 		switch (skb->csum_offset) {
3577 		case offsetof(struct tcphdr, check):
3578 		case offsetof(struct udphdr, check):
3579 			return 0;
3580 		}
3581 	}
3582 
3583 	return skb_checksum_help(skb);
3584 }
3585 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3586 
3587 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3588 {
3589 	netdev_features_t features;
3590 
3591 	features = netif_skb_features(skb);
3592 	skb = validate_xmit_vlan(skb, features);
3593 	if (unlikely(!skb))
3594 		goto out_null;
3595 
3596 	skb = sk_validate_xmit_skb(skb, dev);
3597 	if (unlikely(!skb))
3598 		goto out_null;
3599 
3600 	if (netif_needs_gso(skb, features)) {
3601 		struct sk_buff *segs;
3602 
3603 		segs = skb_gso_segment(skb, features);
3604 		if (IS_ERR(segs)) {
3605 			goto out_kfree_skb;
3606 		} else if (segs) {
3607 			consume_skb(skb);
3608 			skb = segs;
3609 		}
3610 	} else {
3611 		if (skb_needs_linearize(skb, features) &&
3612 		    __skb_linearize(skb))
3613 			goto out_kfree_skb;
3614 
3615 		/* If packet is not checksummed and device does not
3616 		 * support checksumming for this protocol, complete
3617 		 * checksumming here.
3618 		 */
3619 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3620 			if (skb->encapsulation)
3621 				skb_set_inner_transport_header(skb,
3622 							       skb_checksum_start_offset(skb));
3623 			else
3624 				skb_set_transport_header(skb,
3625 							 skb_checksum_start_offset(skb));
3626 			if (skb_csum_hwoffload_help(skb, features))
3627 				goto out_kfree_skb;
3628 		}
3629 	}
3630 
3631 	skb = validate_xmit_xfrm(skb, features, again);
3632 
3633 	return skb;
3634 
3635 out_kfree_skb:
3636 	kfree_skb(skb);
3637 out_null:
3638 	atomic_long_inc(&dev->tx_dropped);
3639 	return NULL;
3640 }
3641 
3642 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3643 {
3644 	struct sk_buff *next, *head = NULL, *tail;
3645 
3646 	for (; skb != NULL; skb = next) {
3647 		next = skb->next;
3648 		skb_mark_not_on_list(skb);
3649 
3650 		/* in case skb wont be segmented, point to itself */
3651 		skb->prev = skb;
3652 
3653 		skb = validate_xmit_skb(skb, dev, again);
3654 		if (!skb)
3655 			continue;
3656 
3657 		if (!head)
3658 			head = skb;
3659 		else
3660 			tail->next = skb;
3661 		/* If skb was segmented, skb->prev points to
3662 		 * the last segment. If not, it still contains skb.
3663 		 */
3664 		tail = skb->prev;
3665 	}
3666 	return head;
3667 }
3668 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3669 
3670 static void qdisc_pkt_len_init(struct sk_buff *skb)
3671 {
3672 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3673 
3674 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3675 
3676 	/* To get more precise estimation of bytes sent on wire,
3677 	 * we add to pkt_len the headers size of all segments
3678 	 */
3679 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3680 		unsigned int hdr_len;
3681 		u16 gso_segs = shinfo->gso_segs;
3682 
3683 		/* mac layer + network layer */
3684 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3685 
3686 		/* + transport layer */
3687 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3688 			const struct tcphdr *th;
3689 			struct tcphdr _tcphdr;
3690 
3691 			th = skb_header_pointer(skb, skb_transport_offset(skb),
3692 						sizeof(_tcphdr), &_tcphdr);
3693 			if (likely(th))
3694 				hdr_len += __tcp_hdrlen(th);
3695 		} else {
3696 			struct udphdr _udphdr;
3697 
3698 			if (skb_header_pointer(skb, skb_transport_offset(skb),
3699 					       sizeof(_udphdr), &_udphdr))
3700 				hdr_len += sizeof(struct udphdr);
3701 		}
3702 
3703 		if (shinfo->gso_type & SKB_GSO_DODGY)
3704 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3705 						shinfo->gso_size);
3706 
3707 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3708 	}
3709 }
3710 
3711 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3712 			     struct sk_buff **to_free,
3713 			     struct netdev_queue *txq)
3714 {
3715 	int rc;
3716 
3717 	rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3718 	if (rc == NET_XMIT_SUCCESS)
3719 		trace_qdisc_enqueue(q, txq, skb);
3720 	return rc;
3721 }
3722 
3723 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3724 				 struct net_device *dev,
3725 				 struct netdev_queue *txq)
3726 {
3727 	spinlock_t *root_lock = qdisc_lock(q);
3728 	struct sk_buff *to_free = NULL;
3729 	bool contended;
3730 	int rc;
3731 
3732 	qdisc_calculate_pkt_len(skb, q);
3733 
3734 	if (q->flags & TCQ_F_NOLOCK) {
3735 		if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3736 		    qdisc_run_begin(q)) {
3737 			/* Retest nolock_qdisc_is_empty() within the protection
3738 			 * of q->seqlock to protect from racing with requeuing.
3739 			 */
3740 			if (unlikely(!nolock_qdisc_is_empty(q))) {
3741 				rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3742 				__qdisc_run(q);
3743 				qdisc_run_end(q);
3744 
3745 				goto no_lock_out;
3746 			}
3747 
3748 			qdisc_bstats_cpu_update(q, skb);
3749 			if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3750 			    !nolock_qdisc_is_empty(q))
3751 				__qdisc_run(q);
3752 
3753 			qdisc_run_end(q);
3754 			return NET_XMIT_SUCCESS;
3755 		}
3756 
3757 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3758 		qdisc_run(q);
3759 
3760 no_lock_out:
3761 		if (unlikely(to_free))
3762 			kfree_skb_list_reason(to_free,
3763 					      SKB_DROP_REASON_QDISC_DROP);
3764 		return rc;
3765 	}
3766 
3767 	/*
3768 	 * Heuristic to force contended enqueues to serialize on a
3769 	 * separate lock before trying to get qdisc main lock.
3770 	 * This permits qdisc->running owner to get the lock more
3771 	 * often and dequeue packets faster.
3772 	 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3773 	 * and then other tasks will only enqueue packets. The packets will be
3774 	 * sent after the qdisc owner is scheduled again. To prevent this
3775 	 * scenario the task always serialize on the lock.
3776 	 */
3777 	contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
3778 	if (unlikely(contended))
3779 		spin_lock(&q->busylock);
3780 
3781 	spin_lock(root_lock);
3782 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3783 		__qdisc_drop(skb, &to_free);
3784 		rc = NET_XMIT_DROP;
3785 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3786 		   qdisc_run_begin(q)) {
3787 		/*
3788 		 * This is a work-conserving queue; there are no old skbs
3789 		 * waiting to be sent out; and the qdisc is not running -
3790 		 * xmit the skb directly.
3791 		 */
3792 
3793 		qdisc_bstats_update(q, skb);
3794 
3795 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3796 			if (unlikely(contended)) {
3797 				spin_unlock(&q->busylock);
3798 				contended = false;
3799 			}
3800 			__qdisc_run(q);
3801 		}
3802 
3803 		qdisc_run_end(q);
3804 		rc = NET_XMIT_SUCCESS;
3805 	} else {
3806 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3807 		if (qdisc_run_begin(q)) {
3808 			if (unlikely(contended)) {
3809 				spin_unlock(&q->busylock);
3810 				contended = false;
3811 			}
3812 			__qdisc_run(q);
3813 			qdisc_run_end(q);
3814 		}
3815 	}
3816 	spin_unlock(root_lock);
3817 	if (unlikely(to_free))
3818 		kfree_skb_list_reason(to_free, SKB_DROP_REASON_QDISC_DROP);
3819 	if (unlikely(contended))
3820 		spin_unlock(&q->busylock);
3821 	return rc;
3822 }
3823 
3824 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3825 static void skb_update_prio(struct sk_buff *skb)
3826 {
3827 	const struct netprio_map *map;
3828 	const struct sock *sk;
3829 	unsigned int prioidx;
3830 
3831 	if (skb->priority)
3832 		return;
3833 	map = rcu_dereference_bh(skb->dev->priomap);
3834 	if (!map)
3835 		return;
3836 	sk = skb_to_full_sk(skb);
3837 	if (!sk)
3838 		return;
3839 
3840 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3841 
3842 	if (prioidx < map->priomap_len)
3843 		skb->priority = map->priomap[prioidx];
3844 }
3845 #else
3846 #define skb_update_prio(skb)
3847 #endif
3848 
3849 /**
3850  *	dev_loopback_xmit - loop back @skb
3851  *	@net: network namespace this loopback is happening in
3852  *	@sk:  sk needed to be a netfilter okfn
3853  *	@skb: buffer to transmit
3854  */
3855 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3856 {
3857 	skb_reset_mac_header(skb);
3858 	__skb_pull(skb, skb_network_offset(skb));
3859 	skb->pkt_type = PACKET_LOOPBACK;
3860 	if (skb->ip_summed == CHECKSUM_NONE)
3861 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3862 	WARN_ON(!skb_dst(skb));
3863 	skb_dst_force(skb);
3864 	netif_rx(skb);
3865 	return 0;
3866 }
3867 EXPORT_SYMBOL(dev_loopback_xmit);
3868 
3869 #ifdef CONFIG_NET_EGRESS
3870 static struct sk_buff *
3871 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3872 {
3873 #ifdef CONFIG_NET_CLS_ACT
3874 	struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3875 	struct tcf_result cl_res;
3876 
3877 	if (!miniq)
3878 		return skb;
3879 
3880 	/* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3881 	tc_skb_cb(skb)->mru = 0;
3882 	tc_skb_cb(skb)->post_ct = false;
3883 	mini_qdisc_bstats_cpu_update(miniq, skb);
3884 
3885 	switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
3886 	case TC_ACT_OK:
3887 	case TC_ACT_RECLASSIFY:
3888 		skb->tc_index = TC_H_MIN(cl_res.classid);
3889 		break;
3890 	case TC_ACT_SHOT:
3891 		mini_qdisc_qstats_cpu_drop(miniq);
3892 		*ret = NET_XMIT_DROP;
3893 		kfree_skb_reason(skb, SKB_DROP_REASON_TC_EGRESS);
3894 		return NULL;
3895 	case TC_ACT_STOLEN:
3896 	case TC_ACT_QUEUED:
3897 	case TC_ACT_TRAP:
3898 		*ret = NET_XMIT_SUCCESS;
3899 		consume_skb(skb);
3900 		return NULL;
3901 	case TC_ACT_REDIRECT:
3902 		/* No need to push/pop skb's mac_header here on egress! */
3903 		skb_do_redirect(skb);
3904 		*ret = NET_XMIT_SUCCESS;
3905 		return NULL;
3906 	default:
3907 		break;
3908 	}
3909 #endif /* CONFIG_NET_CLS_ACT */
3910 
3911 	return skb;
3912 }
3913 #endif /* CONFIG_NET_EGRESS */
3914 
3915 #ifdef CONFIG_XPS
3916 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3917 			       struct xps_dev_maps *dev_maps, unsigned int tci)
3918 {
3919 	int tc = netdev_get_prio_tc_map(dev, skb->priority);
3920 	struct xps_map *map;
3921 	int queue_index = -1;
3922 
3923 	if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
3924 		return queue_index;
3925 
3926 	tci *= dev_maps->num_tc;
3927 	tci += tc;
3928 
3929 	map = rcu_dereference(dev_maps->attr_map[tci]);
3930 	if (map) {
3931 		if (map->len == 1)
3932 			queue_index = map->queues[0];
3933 		else
3934 			queue_index = map->queues[reciprocal_scale(
3935 						skb_get_hash(skb), map->len)];
3936 		if (unlikely(queue_index >= dev->real_num_tx_queues))
3937 			queue_index = -1;
3938 	}
3939 	return queue_index;
3940 }
3941 #endif
3942 
3943 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3944 			 struct sk_buff *skb)
3945 {
3946 #ifdef CONFIG_XPS
3947 	struct xps_dev_maps *dev_maps;
3948 	struct sock *sk = skb->sk;
3949 	int queue_index = -1;
3950 
3951 	if (!static_key_false(&xps_needed))
3952 		return -1;
3953 
3954 	rcu_read_lock();
3955 	if (!static_key_false(&xps_rxqs_needed))
3956 		goto get_cpus_map;
3957 
3958 	dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
3959 	if (dev_maps) {
3960 		int tci = sk_rx_queue_get(sk);
3961 
3962 		if (tci >= 0)
3963 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3964 							  tci);
3965 	}
3966 
3967 get_cpus_map:
3968 	if (queue_index < 0) {
3969 		dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
3970 		if (dev_maps) {
3971 			unsigned int tci = skb->sender_cpu - 1;
3972 
3973 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3974 							  tci);
3975 		}
3976 	}
3977 	rcu_read_unlock();
3978 
3979 	return queue_index;
3980 #else
3981 	return -1;
3982 #endif
3983 }
3984 
3985 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3986 		     struct net_device *sb_dev)
3987 {
3988 	return 0;
3989 }
3990 EXPORT_SYMBOL(dev_pick_tx_zero);
3991 
3992 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3993 		       struct net_device *sb_dev)
3994 {
3995 	return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3996 }
3997 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3998 
3999 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4000 		     struct net_device *sb_dev)
4001 {
4002 	struct sock *sk = skb->sk;
4003 	int queue_index = sk_tx_queue_get(sk);
4004 
4005 	sb_dev = sb_dev ? : dev;
4006 
4007 	if (queue_index < 0 || skb->ooo_okay ||
4008 	    queue_index >= dev->real_num_tx_queues) {
4009 		int new_index = get_xps_queue(dev, sb_dev, skb);
4010 
4011 		if (new_index < 0)
4012 			new_index = skb_tx_hash(dev, sb_dev, skb);
4013 
4014 		if (queue_index != new_index && sk &&
4015 		    sk_fullsock(sk) &&
4016 		    rcu_access_pointer(sk->sk_dst_cache))
4017 			sk_tx_queue_set(sk, new_index);
4018 
4019 		queue_index = new_index;
4020 	}
4021 
4022 	return queue_index;
4023 }
4024 EXPORT_SYMBOL(netdev_pick_tx);
4025 
4026 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4027 					 struct sk_buff *skb,
4028 					 struct net_device *sb_dev)
4029 {
4030 	int queue_index = 0;
4031 
4032 #ifdef CONFIG_XPS
4033 	u32 sender_cpu = skb->sender_cpu - 1;
4034 
4035 	if (sender_cpu >= (u32)NR_CPUS)
4036 		skb->sender_cpu = raw_smp_processor_id() + 1;
4037 #endif
4038 
4039 	if (dev->real_num_tx_queues != 1) {
4040 		const struct net_device_ops *ops = dev->netdev_ops;
4041 
4042 		if (ops->ndo_select_queue)
4043 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4044 		else
4045 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4046 
4047 		queue_index = netdev_cap_txqueue(dev, queue_index);
4048 	}
4049 
4050 	skb_set_queue_mapping(skb, queue_index);
4051 	return netdev_get_tx_queue(dev, queue_index);
4052 }
4053 
4054 /**
4055  *	__dev_queue_xmit - transmit a buffer
4056  *	@skb: buffer to transmit
4057  *	@sb_dev: suboordinate device used for L2 forwarding offload
4058  *
4059  *	Queue a buffer for transmission to a network device. The caller must
4060  *	have set the device and priority and built the buffer before calling
4061  *	this function. The function can be called from an interrupt.
4062  *
4063  *	A negative errno code is returned on a failure. A success does not
4064  *	guarantee the frame will be transmitted as it may be dropped due
4065  *	to congestion or traffic shaping.
4066  *
4067  * -----------------------------------------------------------------------------------
4068  *      I notice this method can also return errors from the queue disciplines,
4069  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
4070  *      be positive.
4071  *
4072  *      Regardless of the return value, the skb is consumed, so it is currently
4073  *      difficult to retry a send to this method.  (You can bump the ref count
4074  *      before sending to hold a reference for retry if you are careful.)
4075  *
4076  *      When calling this method, interrupts MUST be enabled.  This is because
4077  *      the BH enable code must have IRQs enabled so that it will not deadlock.
4078  *          --BLG
4079  */
4080 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4081 {
4082 	struct net_device *dev = skb->dev;
4083 	struct netdev_queue *txq;
4084 	struct Qdisc *q;
4085 	int rc = -ENOMEM;
4086 	bool again = false;
4087 
4088 	skb_reset_mac_header(skb);
4089 
4090 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4091 		__skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4092 
4093 	/* Disable soft irqs for various locks below. Also
4094 	 * stops preemption for RCU.
4095 	 */
4096 	rcu_read_lock_bh();
4097 
4098 	skb_update_prio(skb);
4099 
4100 	qdisc_pkt_len_init(skb);
4101 #ifdef CONFIG_NET_CLS_ACT
4102 	skb->tc_at_ingress = 0;
4103 #endif
4104 #ifdef CONFIG_NET_EGRESS
4105 	if (static_branch_unlikely(&egress_needed_key)) {
4106 		if (nf_hook_egress_active()) {
4107 			skb = nf_hook_egress(skb, &rc, dev);
4108 			if (!skb)
4109 				goto out;
4110 		}
4111 		nf_skip_egress(skb, true);
4112 		skb = sch_handle_egress(skb, &rc, dev);
4113 		if (!skb)
4114 			goto out;
4115 		nf_skip_egress(skb, false);
4116 	}
4117 #endif
4118 	/* If device/qdisc don't need skb->dst, release it right now while
4119 	 * its hot in this cpu cache.
4120 	 */
4121 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4122 		skb_dst_drop(skb);
4123 	else
4124 		skb_dst_force(skb);
4125 
4126 	txq = netdev_core_pick_tx(dev, skb, sb_dev);
4127 	q = rcu_dereference_bh(txq->qdisc);
4128 
4129 	trace_net_dev_queue(skb);
4130 	if (q->enqueue) {
4131 		rc = __dev_xmit_skb(skb, q, dev, txq);
4132 		goto out;
4133 	}
4134 
4135 	/* The device has no queue. Common case for software devices:
4136 	 * loopback, all the sorts of tunnels...
4137 
4138 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4139 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4140 	 * counters.)
4141 	 * However, it is possible, that they rely on protection
4142 	 * made by us here.
4143 
4144 	 * Check this and shot the lock. It is not prone from deadlocks.
4145 	 *Either shot noqueue qdisc, it is even simpler 8)
4146 	 */
4147 	if (dev->flags & IFF_UP) {
4148 		int cpu = smp_processor_id(); /* ok because BHs are off */
4149 
4150 		/* Other cpus might concurrently change txq->xmit_lock_owner
4151 		 * to -1 or to their cpu id, but not to our id.
4152 		 */
4153 		if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4154 			if (dev_xmit_recursion())
4155 				goto recursion_alert;
4156 
4157 			skb = validate_xmit_skb(skb, dev, &again);
4158 			if (!skb)
4159 				goto out;
4160 
4161 			PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4162 			HARD_TX_LOCK(dev, txq, cpu);
4163 
4164 			if (!netif_xmit_stopped(txq)) {
4165 				dev_xmit_recursion_inc();
4166 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4167 				dev_xmit_recursion_dec();
4168 				if (dev_xmit_complete(rc)) {
4169 					HARD_TX_UNLOCK(dev, txq);
4170 					goto out;
4171 				}
4172 			}
4173 			HARD_TX_UNLOCK(dev, txq);
4174 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4175 					     dev->name);
4176 		} else {
4177 			/* Recursion is detected! It is possible,
4178 			 * unfortunately
4179 			 */
4180 recursion_alert:
4181 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4182 					     dev->name);
4183 		}
4184 	}
4185 
4186 	rc = -ENETDOWN;
4187 	rcu_read_unlock_bh();
4188 
4189 	atomic_long_inc(&dev->tx_dropped);
4190 	kfree_skb_list(skb);
4191 	return rc;
4192 out:
4193 	rcu_read_unlock_bh();
4194 	return rc;
4195 }
4196 
4197 int dev_queue_xmit(struct sk_buff *skb)
4198 {
4199 	return __dev_queue_xmit(skb, NULL);
4200 }
4201 EXPORT_SYMBOL(dev_queue_xmit);
4202 
4203 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4204 {
4205 	return __dev_queue_xmit(skb, sb_dev);
4206 }
4207 EXPORT_SYMBOL(dev_queue_xmit_accel);
4208 
4209 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4210 {
4211 	struct net_device *dev = skb->dev;
4212 	struct sk_buff *orig_skb = skb;
4213 	struct netdev_queue *txq;
4214 	int ret = NETDEV_TX_BUSY;
4215 	bool again = false;
4216 
4217 	if (unlikely(!netif_running(dev) ||
4218 		     !netif_carrier_ok(dev)))
4219 		goto drop;
4220 
4221 	skb = validate_xmit_skb_list(skb, dev, &again);
4222 	if (skb != orig_skb)
4223 		goto drop;
4224 
4225 	skb_set_queue_mapping(skb, queue_id);
4226 	txq = skb_get_tx_queue(dev, skb);
4227 	PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4228 
4229 	local_bh_disable();
4230 
4231 	dev_xmit_recursion_inc();
4232 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4233 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4234 		ret = netdev_start_xmit(skb, dev, txq, false);
4235 	HARD_TX_UNLOCK(dev, txq);
4236 	dev_xmit_recursion_dec();
4237 
4238 	local_bh_enable();
4239 	return ret;
4240 drop:
4241 	atomic_long_inc(&dev->tx_dropped);
4242 	kfree_skb_list(skb);
4243 	return NET_XMIT_DROP;
4244 }
4245 EXPORT_SYMBOL(__dev_direct_xmit);
4246 
4247 /*************************************************************************
4248  *			Receiver routines
4249  *************************************************************************/
4250 
4251 int netdev_max_backlog __read_mostly = 1000;
4252 EXPORT_SYMBOL(netdev_max_backlog);
4253 
4254 int netdev_tstamp_prequeue __read_mostly = 1;
4255 int netdev_budget __read_mostly = 300;
4256 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4257 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4258 int weight_p __read_mostly = 64;           /* old backlog weight */
4259 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4260 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4261 int dev_rx_weight __read_mostly = 64;
4262 int dev_tx_weight __read_mostly = 64;
4263 
4264 /* Called with irq disabled */
4265 static inline void ____napi_schedule(struct softnet_data *sd,
4266 				     struct napi_struct *napi)
4267 {
4268 	struct task_struct *thread;
4269 
4270 	if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4271 		/* Paired with smp_mb__before_atomic() in
4272 		 * napi_enable()/dev_set_threaded().
4273 		 * Use READ_ONCE() to guarantee a complete
4274 		 * read on napi->thread. Only call
4275 		 * wake_up_process() when it's not NULL.
4276 		 */
4277 		thread = READ_ONCE(napi->thread);
4278 		if (thread) {
4279 			/* Avoid doing set_bit() if the thread is in
4280 			 * INTERRUPTIBLE state, cause napi_thread_wait()
4281 			 * makes sure to proceed with napi polling
4282 			 * if the thread is explicitly woken from here.
4283 			 */
4284 			if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4285 				set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4286 			wake_up_process(thread);
4287 			return;
4288 		}
4289 	}
4290 
4291 	list_add_tail(&napi->poll_list, &sd->poll_list);
4292 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4293 }
4294 
4295 #ifdef CONFIG_RPS
4296 
4297 /* One global table that all flow-based protocols share. */
4298 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4299 EXPORT_SYMBOL(rps_sock_flow_table);
4300 u32 rps_cpu_mask __read_mostly;
4301 EXPORT_SYMBOL(rps_cpu_mask);
4302 
4303 struct static_key_false rps_needed __read_mostly;
4304 EXPORT_SYMBOL(rps_needed);
4305 struct static_key_false rfs_needed __read_mostly;
4306 EXPORT_SYMBOL(rfs_needed);
4307 
4308 static struct rps_dev_flow *
4309 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4310 	    struct rps_dev_flow *rflow, u16 next_cpu)
4311 {
4312 	if (next_cpu < nr_cpu_ids) {
4313 #ifdef CONFIG_RFS_ACCEL
4314 		struct netdev_rx_queue *rxqueue;
4315 		struct rps_dev_flow_table *flow_table;
4316 		struct rps_dev_flow *old_rflow;
4317 		u32 flow_id;
4318 		u16 rxq_index;
4319 		int rc;
4320 
4321 		/* Should we steer this flow to a different hardware queue? */
4322 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4323 		    !(dev->features & NETIF_F_NTUPLE))
4324 			goto out;
4325 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4326 		if (rxq_index == skb_get_rx_queue(skb))
4327 			goto out;
4328 
4329 		rxqueue = dev->_rx + rxq_index;
4330 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4331 		if (!flow_table)
4332 			goto out;
4333 		flow_id = skb_get_hash(skb) & flow_table->mask;
4334 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4335 							rxq_index, flow_id);
4336 		if (rc < 0)
4337 			goto out;
4338 		old_rflow = rflow;
4339 		rflow = &flow_table->flows[flow_id];
4340 		rflow->filter = rc;
4341 		if (old_rflow->filter == rflow->filter)
4342 			old_rflow->filter = RPS_NO_FILTER;
4343 	out:
4344 #endif
4345 		rflow->last_qtail =
4346 			per_cpu(softnet_data, next_cpu).input_queue_head;
4347 	}
4348 
4349 	rflow->cpu = next_cpu;
4350 	return rflow;
4351 }
4352 
4353 /*
4354  * get_rps_cpu is called from netif_receive_skb and returns the target
4355  * CPU from the RPS map of the receiving queue for a given skb.
4356  * rcu_read_lock must be held on entry.
4357  */
4358 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4359 		       struct rps_dev_flow **rflowp)
4360 {
4361 	const struct rps_sock_flow_table *sock_flow_table;
4362 	struct netdev_rx_queue *rxqueue = dev->_rx;
4363 	struct rps_dev_flow_table *flow_table;
4364 	struct rps_map *map;
4365 	int cpu = -1;
4366 	u32 tcpu;
4367 	u32 hash;
4368 
4369 	if (skb_rx_queue_recorded(skb)) {
4370 		u16 index = skb_get_rx_queue(skb);
4371 
4372 		if (unlikely(index >= dev->real_num_rx_queues)) {
4373 			WARN_ONCE(dev->real_num_rx_queues > 1,
4374 				  "%s received packet on queue %u, but number "
4375 				  "of RX queues is %u\n",
4376 				  dev->name, index, dev->real_num_rx_queues);
4377 			goto done;
4378 		}
4379 		rxqueue += index;
4380 	}
4381 
4382 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4383 
4384 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4385 	map = rcu_dereference(rxqueue->rps_map);
4386 	if (!flow_table && !map)
4387 		goto done;
4388 
4389 	skb_reset_network_header(skb);
4390 	hash = skb_get_hash(skb);
4391 	if (!hash)
4392 		goto done;
4393 
4394 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
4395 	if (flow_table && sock_flow_table) {
4396 		struct rps_dev_flow *rflow;
4397 		u32 next_cpu;
4398 		u32 ident;
4399 
4400 		/* First check into global flow table if there is a match */
4401 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4402 		if ((ident ^ hash) & ~rps_cpu_mask)
4403 			goto try_rps;
4404 
4405 		next_cpu = ident & rps_cpu_mask;
4406 
4407 		/* OK, now we know there is a match,
4408 		 * we can look at the local (per receive queue) flow table
4409 		 */
4410 		rflow = &flow_table->flows[hash & flow_table->mask];
4411 		tcpu = rflow->cpu;
4412 
4413 		/*
4414 		 * If the desired CPU (where last recvmsg was done) is
4415 		 * different from current CPU (one in the rx-queue flow
4416 		 * table entry), switch if one of the following holds:
4417 		 *   - Current CPU is unset (>= nr_cpu_ids).
4418 		 *   - Current CPU is offline.
4419 		 *   - The current CPU's queue tail has advanced beyond the
4420 		 *     last packet that was enqueued using this table entry.
4421 		 *     This guarantees that all previous packets for the flow
4422 		 *     have been dequeued, thus preserving in order delivery.
4423 		 */
4424 		if (unlikely(tcpu != next_cpu) &&
4425 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4426 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4427 		      rflow->last_qtail)) >= 0)) {
4428 			tcpu = next_cpu;
4429 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4430 		}
4431 
4432 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4433 			*rflowp = rflow;
4434 			cpu = tcpu;
4435 			goto done;
4436 		}
4437 	}
4438 
4439 try_rps:
4440 
4441 	if (map) {
4442 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4443 		if (cpu_online(tcpu)) {
4444 			cpu = tcpu;
4445 			goto done;
4446 		}
4447 	}
4448 
4449 done:
4450 	return cpu;
4451 }
4452 
4453 #ifdef CONFIG_RFS_ACCEL
4454 
4455 /**
4456  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4457  * @dev: Device on which the filter was set
4458  * @rxq_index: RX queue index
4459  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4460  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4461  *
4462  * Drivers that implement ndo_rx_flow_steer() should periodically call
4463  * this function for each installed filter and remove the filters for
4464  * which it returns %true.
4465  */
4466 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4467 			 u32 flow_id, u16 filter_id)
4468 {
4469 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4470 	struct rps_dev_flow_table *flow_table;
4471 	struct rps_dev_flow *rflow;
4472 	bool expire = true;
4473 	unsigned int cpu;
4474 
4475 	rcu_read_lock();
4476 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4477 	if (flow_table && flow_id <= flow_table->mask) {
4478 		rflow = &flow_table->flows[flow_id];
4479 		cpu = READ_ONCE(rflow->cpu);
4480 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4481 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4482 			   rflow->last_qtail) <
4483 		     (int)(10 * flow_table->mask)))
4484 			expire = false;
4485 	}
4486 	rcu_read_unlock();
4487 	return expire;
4488 }
4489 EXPORT_SYMBOL(rps_may_expire_flow);
4490 
4491 #endif /* CONFIG_RFS_ACCEL */
4492 
4493 /* Called from hardirq (IPI) context */
4494 static void rps_trigger_softirq(void *data)
4495 {
4496 	struct softnet_data *sd = data;
4497 
4498 	____napi_schedule(sd, &sd->backlog);
4499 	sd->received_rps++;
4500 }
4501 
4502 #endif /* CONFIG_RPS */
4503 
4504 /*
4505  * Check if this softnet_data structure is another cpu one
4506  * If yes, queue it to our IPI list and return 1
4507  * If no, return 0
4508  */
4509 static int napi_schedule_rps(struct softnet_data *sd)
4510 {
4511 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4512 
4513 #ifdef CONFIG_RPS
4514 	if (sd != mysd) {
4515 		sd->rps_ipi_next = mysd->rps_ipi_list;
4516 		mysd->rps_ipi_list = sd;
4517 
4518 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4519 		return 1;
4520 	}
4521 #endif /* CONFIG_RPS */
4522 	__napi_schedule_irqoff(&mysd->backlog);
4523 	return 0;
4524 }
4525 
4526 #ifdef CONFIG_NET_FLOW_LIMIT
4527 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4528 #endif
4529 
4530 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4531 {
4532 #ifdef CONFIG_NET_FLOW_LIMIT
4533 	struct sd_flow_limit *fl;
4534 	struct softnet_data *sd;
4535 	unsigned int old_flow, new_flow;
4536 
4537 	if (qlen < (netdev_max_backlog >> 1))
4538 		return false;
4539 
4540 	sd = this_cpu_ptr(&softnet_data);
4541 
4542 	rcu_read_lock();
4543 	fl = rcu_dereference(sd->flow_limit);
4544 	if (fl) {
4545 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4546 		old_flow = fl->history[fl->history_head];
4547 		fl->history[fl->history_head] = new_flow;
4548 
4549 		fl->history_head++;
4550 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4551 
4552 		if (likely(fl->buckets[old_flow]))
4553 			fl->buckets[old_flow]--;
4554 
4555 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4556 			fl->count++;
4557 			rcu_read_unlock();
4558 			return true;
4559 		}
4560 	}
4561 	rcu_read_unlock();
4562 #endif
4563 	return false;
4564 }
4565 
4566 /*
4567  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4568  * queue (may be a remote CPU queue).
4569  */
4570 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4571 			      unsigned int *qtail)
4572 {
4573 	enum skb_drop_reason reason;
4574 	struct softnet_data *sd;
4575 	unsigned long flags;
4576 	unsigned int qlen;
4577 
4578 	reason = SKB_DROP_REASON_NOT_SPECIFIED;
4579 	sd = &per_cpu(softnet_data, cpu);
4580 
4581 	rps_lock_irqsave(sd, &flags);
4582 	if (!netif_running(skb->dev))
4583 		goto drop;
4584 	qlen = skb_queue_len(&sd->input_pkt_queue);
4585 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4586 		if (qlen) {
4587 enqueue:
4588 			__skb_queue_tail(&sd->input_pkt_queue, skb);
4589 			input_queue_tail_incr_save(sd, qtail);
4590 			rps_unlock_irq_restore(sd, &flags);
4591 			return NET_RX_SUCCESS;
4592 		}
4593 
4594 		/* Schedule NAPI for backlog device
4595 		 * We can use non atomic operation since we own the queue lock
4596 		 */
4597 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4598 			napi_schedule_rps(sd);
4599 		goto enqueue;
4600 	}
4601 	reason = SKB_DROP_REASON_CPU_BACKLOG;
4602 
4603 drop:
4604 	sd->dropped++;
4605 	rps_unlock_irq_restore(sd, &flags);
4606 
4607 	atomic_long_inc(&skb->dev->rx_dropped);
4608 	kfree_skb_reason(skb, reason);
4609 	return NET_RX_DROP;
4610 }
4611 
4612 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4613 {
4614 	struct net_device *dev = skb->dev;
4615 	struct netdev_rx_queue *rxqueue;
4616 
4617 	rxqueue = dev->_rx;
4618 
4619 	if (skb_rx_queue_recorded(skb)) {
4620 		u16 index = skb_get_rx_queue(skb);
4621 
4622 		if (unlikely(index >= dev->real_num_rx_queues)) {
4623 			WARN_ONCE(dev->real_num_rx_queues > 1,
4624 				  "%s received packet on queue %u, but number "
4625 				  "of RX queues is %u\n",
4626 				  dev->name, index, dev->real_num_rx_queues);
4627 
4628 			return rxqueue; /* Return first rxqueue */
4629 		}
4630 		rxqueue += index;
4631 	}
4632 	return rxqueue;
4633 }
4634 
4635 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4636 			     struct bpf_prog *xdp_prog)
4637 {
4638 	void *orig_data, *orig_data_end, *hard_start;
4639 	struct netdev_rx_queue *rxqueue;
4640 	bool orig_bcast, orig_host;
4641 	u32 mac_len, frame_sz;
4642 	__be16 orig_eth_type;
4643 	struct ethhdr *eth;
4644 	u32 metalen, act;
4645 	int off;
4646 
4647 	/* The XDP program wants to see the packet starting at the MAC
4648 	 * header.
4649 	 */
4650 	mac_len = skb->data - skb_mac_header(skb);
4651 	hard_start = skb->data - skb_headroom(skb);
4652 
4653 	/* SKB "head" area always have tailroom for skb_shared_info */
4654 	frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4655 	frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4656 
4657 	rxqueue = netif_get_rxqueue(skb);
4658 	xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4659 	xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4660 			 skb_headlen(skb) + mac_len, true);
4661 
4662 	orig_data_end = xdp->data_end;
4663 	orig_data = xdp->data;
4664 	eth = (struct ethhdr *)xdp->data;
4665 	orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4666 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4667 	orig_eth_type = eth->h_proto;
4668 
4669 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4670 
4671 	/* check if bpf_xdp_adjust_head was used */
4672 	off = xdp->data - orig_data;
4673 	if (off) {
4674 		if (off > 0)
4675 			__skb_pull(skb, off);
4676 		else if (off < 0)
4677 			__skb_push(skb, -off);
4678 
4679 		skb->mac_header += off;
4680 		skb_reset_network_header(skb);
4681 	}
4682 
4683 	/* check if bpf_xdp_adjust_tail was used */
4684 	off = xdp->data_end - orig_data_end;
4685 	if (off != 0) {
4686 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4687 		skb->len += off; /* positive on grow, negative on shrink */
4688 	}
4689 
4690 	/* check if XDP changed eth hdr such SKB needs update */
4691 	eth = (struct ethhdr *)xdp->data;
4692 	if ((orig_eth_type != eth->h_proto) ||
4693 	    (orig_host != ether_addr_equal_64bits(eth->h_dest,
4694 						  skb->dev->dev_addr)) ||
4695 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4696 		__skb_push(skb, ETH_HLEN);
4697 		skb->pkt_type = PACKET_HOST;
4698 		skb->protocol = eth_type_trans(skb, skb->dev);
4699 	}
4700 
4701 	/* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4702 	 * before calling us again on redirect path. We do not call do_redirect
4703 	 * as we leave that up to the caller.
4704 	 *
4705 	 * Caller is responsible for managing lifetime of skb (i.e. calling
4706 	 * kfree_skb in response to actions it cannot handle/XDP_DROP).
4707 	 */
4708 	switch (act) {
4709 	case XDP_REDIRECT:
4710 	case XDP_TX:
4711 		__skb_push(skb, mac_len);
4712 		break;
4713 	case XDP_PASS:
4714 		metalen = xdp->data - xdp->data_meta;
4715 		if (metalen)
4716 			skb_metadata_set(skb, metalen);
4717 		break;
4718 	}
4719 
4720 	return act;
4721 }
4722 
4723 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4724 				     struct xdp_buff *xdp,
4725 				     struct bpf_prog *xdp_prog)
4726 {
4727 	u32 act = XDP_DROP;
4728 
4729 	/* Reinjected packets coming from act_mirred or similar should
4730 	 * not get XDP generic processing.
4731 	 */
4732 	if (skb_is_redirected(skb))
4733 		return XDP_PASS;
4734 
4735 	/* XDP packets must be linear and must have sufficient headroom
4736 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4737 	 * native XDP provides, thus we need to do it here as well.
4738 	 */
4739 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4740 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4741 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4742 		int troom = skb->tail + skb->data_len - skb->end;
4743 
4744 		/* In case we have to go down the path and also linearize,
4745 		 * then lets do the pskb_expand_head() work just once here.
4746 		 */
4747 		if (pskb_expand_head(skb,
4748 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4749 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4750 			goto do_drop;
4751 		if (skb_linearize(skb))
4752 			goto do_drop;
4753 	}
4754 
4755 	act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4756 	switch (act) {
4757 	case XDP_REDIRECT:
4758 	case XDP_TX:
4759 	case XDP_PASS:
4760 		break;
4761 	default:
4762 		bpf_warn_invalid_xdp_action(skb->dev, xdp_prog, act);
4763 		fallthrough;
4764 	case XDP_ABORTED:
4765 		trace_xdp_exception(skb->dev, xdp_prog, act);
4766 		fallthrough;
4767 	case XDP_DROP:
4768 	do_drop:
4769 		kfree_skb(skb);
4770 		break;
4771 	}
4772 
4773 	return act;
4774 }
4775 
4776 /* When doing generic XDP we have to bypass the qdisc layer and the
4777  * network taps in order to match in-driver-XDP behavior.
4778  */
4779 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4780 {
4781 	struct net_device *dev = skb->dev;
4782 	struct netdev_queue *txq;
4783 	bool free_skb = true;
4784 	int cpu, rc;
4785 
4786 	txq = netdev_core_pick_tx(dev, skb, NULL);
4787 	cpu = smp_processor_id();
4788 	HARD_TX_LOCK(dev, txq, cpu);
4789 	if (!netif_xmit_stopped(txq)) {
4790 		rc = netdev_start_xmit(skb, dev, txq, 0);
4791 		if (dev_xmit_complete(rc))
4792 			free_skb = false;
4793 	}
4794 	HARD_TX_UNLOCK(dev, txq);
4795 	if (free_skb) {
4796 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
4797 		kfree_skb(skb);
4798 	}
4799 }
4800 
4801 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4802 
4803 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4804 {
4805 	if (xdp_prog) {
4806 		struct xdp_buff xdp;
4807 		u32 act;
4808 		int err;
4809 
4810 		act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4811 		if (act != XDP_PASS) {
4812 			switch (act) {
4813 			case XDP_REDIRECT:
4814 				err = xdp_do_generic_redirect(skb->dev, skb,
4815 							      &xdp, xdp_prog);
4816 				if (err)
4817 					goto out_redir;
4818 				break;
4819 			case XDP_TX:
4820 				generic_xdp_tx(skb, xdp_prog);
4821 				break;
4822 			}
4823 			return XDP_DROP;
4824 		}
4825 	}
4826 	return XDP_PASS;
4827 out_redir:
4828 	kfree_skb_reason(skb, SKB_DROP_REASON_XDP);
4829 	return XDP_DROP;
4830 }
4831 EXPORT_SYMBOL_GPL(do_xdp_generic);
4832 
4833 static int netif_rx_internal(struct sk_buff *skb)
4834 {
4835 	int ret;
4836 
4837 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4838 
4839 	trace_netif_rx(skb);
4840 
4841 #ifdef CONFIG_RPS
4842 	if (static_branch_unlikely(&rps_needed)) {
4843 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4844 		int cpu;
4845 
4846 		rcu_read_lock();
4847 
4848 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
4849 		if (cpu < 0)
4850 			cpu = smp_processor_id();
4851 
4852 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4853 
4854 		rcu_read_unlock();
4855 	} else
4856 #endif
4857 	{
4858 		unsigned int qtail;
4859 
4860 		ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
4861 	}
4862 	return ret;
4863 }
4864 
4865 /**
4866  *	__netif_rx	-	Slightly optimized version of netif_rx
4867  *	@skb: buffer to post
4868  *
4869  *	This behaves as netif_rx except that it does not disable bottom halves.
4870  *	As a result this function may only be invoked from the interrupt context
4871  *	(either hard or soft interrupt).
4872  */
4873 int __netif_rx(struct sk_buff *skb)
4874 {
4875 	int ret;
4876 
4877 	lockdep_assert_once(hardirq_count() | softirq_count());
4878 
4879 	trace_netif_rx_entry(skb);
4880 	ret = netif_rx_internal(skb);
4881 	trace_netif_rx_exit(ret);
4882 	return ret;
4883 }
4884 EXPORT_SYMBOL(__netif_rx);
4885 
4886 /**
4887  *	netif_rx	-	post buffer to the network code
4888  *	@skb: buffer to post
4889  *
4890  *	This function receives a packet from a device driver and queues it for
4891  *	the upper (protocol) levels to process via the backlog NAPI device. It
4892  *	always succeeds. The buffer may be dropped during processing for
4893  *	congestion control or by the protocol layers.
4894  *	The network buffer is passed via the backlog NAPI device. Modern NIC
4895  *	driver should use NAPI and GRO.
4896  *	This function can used from interrupt and from process context. The
4897  *	caller from process context must not disable interrupts before invoking
4898  *	this function.
4899  *
4900  *	return values:
4901  *	NET_RX_SUCCESS	(no congestion)
4902  *	NET_RX_DROP     (packet was dropped)
4903  *
4904  */
4905 int netif_rx(struct sk_buff *skb)
4906 {
4907 	bool need_bh_off = !(hardirq_count() | softirq_count());
4908 	int ret;
4909 
4910 	if (need_bh_off)
4911 		local_bh_disable();
4912 	trace_netif_rx_entry(skb);
4913 	ret = netif_rx_internal(skb);
4914 	trace_netif_rx_exit(ret);
4915 	if (need_bh_off)
4916 		local_bh_enable();
4917 	return ret;
4918 }
4919 EXPORT_SYMBOL(netif_rx);
4920 
4921 static __latent_entropy void net_tx_action(struct softirq_action *h)
4922 {
4923 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4924 
4925 	if (sd->completion_queue) {
4926 		struct sk_buff *clist;
4927 
4928 		local_irq_disable();
4929 		clist = sd->completion_queue;
4930 		sd->completion_queue = NULL;
4931 		local_irq_enable();
4932 
4933 		while (clist) {
4934 			struct sk_buff *skb = clist;
4935 
4936 			clist = clist->next;
4937 
4938 			WARN_ON(refcount_read(&skb->users));
4939 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4940 				trace_consume_skb(skb);
4941 			else
4942 				trace_kfree_skb(skb, net_tx_action,
4943 						SKB_DROP_REASON_NOT_SPECIFIED);
4944 
4945 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4946 				__kfree_skb(skb);
4947 			else
4948 				__kfree_skb_defer(skb);
4949 		}
4950 	}
4951 
4952 	if (sd->output_queue) {
4953 		struct Qdisc *head;
4954 
4955 		local_irq_disable();
4956 		head = sd->output_queue;
4957 		sd->output_queue = NULL;
4958 		sd->output_queue_tailp = &sd->output_queue;
4959 		local_irq_enable();
4960 
4961 		rcu_read_lock();
4962 
4963 		while (head) {
4964 			struct Qdisc *q = head;
4965 			spinlock_t *root_lock = NULL;
4966 
4967 			head = head->next_sched;
4968 
4969 			/* We need to make sure head->next_sched is read
4970 			 * before clearing __QDISC_STATE_SCHED
4971 			 */
4972 			smp_mb__before_atomic();
4973 
4974 			if (!(q->flags & TCQ_F_NOLOCK)) {
4975 				root_lock = qdisc_lock(q);
4976 				spin_lock(root_lock);
4977 			} else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
4978 						     &q->state))) {
4979 				/* There is a synchronize_net() between
4980 				 * STATE_DEACTIVATED flag being set and
4981 				 * qdisc_reset()/some_qdisc_is_busy() in
4982 				 * dev_deactivate(), so we can safely bail out
4983 				 * early here to avoid data race between
4984 				 * qdisc_deactivate() and some_qdisc_is_busy()
4985 				 * for lockless qdisc.
4986 				 */
4987 				clear_bit(__QDISC_STATE_SCHED, &q->state);
4988 				continue;
4989 			}
4990 
4991 			clear_bit(__QDISC_STATE_SCHED, &q->state);
4992 			qdisc_run(q);
4993 			if (root_lock)
4994 				spin_unlock(root_lock);
4995 		}
4996 
4997 		rcu_read_unlock();
4998 	}
4999 
5000 	xfrm_dev_backlog(sd);
5001 }
5002 
5003 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5004 /* This hook is defined here for ATM LANE */
5005 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5006 			     unsigned char *addr) __read_mostly;
5007 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5008 #endif
5009 
5010 static inline struct sk_buff *
5011 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
5012 		   struct net_device *orig_dev, bool *another)
5013 {
5014 #ifdef CONFIG_NET_CLS_ACT
5015 	struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
5016 	struct tcf_result cl_res;
5017 
5018 	/* If there's at least one ingress present somewhere (so
5019 	 * we get here via enabled static key), remaining devices
5020 	 * that are not configured with an ingress qdisc will bail
5021 	 * out here.
5022 	 */
5023 	if (!miniq)
5024 		return skb;
5025 
5026 	if (*pt_prev) {
5027 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
5028 		*pt_prev = NULL;
5029 	}
5030 
5031 	qdisc_skb_cb(skb)->pkt_len = skb->len;
5032 	tc_skb_cb(skb)->mru = 0;
5033 	tc_skb_cb(skb)->post_ct = false;
5034 	skb->tc_at_ingress = 1;
5035 	mini_qdisc_bstats_cpu_update(miniq, skb);
5036 
5037 	switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
5038 	case TC_ACT_OK:
5039 	case TC_ACT_RECLASSIFY:
5040 		skb->tc_index = TC_H_MIN(cl_res.classid);
5041 		break;
5042 	case TC_ACT_SHOT:
5043 		mini_qdisc_qstats_cpu_drop(miniq);
5044 		kfree_skb_reason(skb, SKB_DROP_REASON_TC_INGRESS);
5045 		return NULL;
5046 	case TC_ACT_STOLEN:
5047 	case TC_ACT_QUEUED:
5048 	case TC_ACT_TRAP:
5049 		consume_skb(skb);
5050 		return NULL;
5051 	case TC_ACT_REDIRECT:
5052 		/* skb_mac_header check was done by cls/act_bpf, so
5053 		 * we can safely push the L2 header back before
5054 		 * redirecting to another netdev
5055 		 */
5056 		__skb_push(skb, skb->mac_len);
5057 		if (skb_do_redirect(skb) == -EAGAIN) {
5058 			__skb_pull(skb, skb->mac_len);
5059 			*another = true;
5060 			break;
5061 		}
5062 		return NULL;
5063 	case TC_ACT_CONSUMED:
5064 		return NULL;
5065 	default:
5066 		break;
5067 	}
5068 #endif /* CONFIG_NET_CLS_ACT */
5069 	return skb;
5070 }
5071 
5072 /**
5073  *	netdev_is_rx_handler_busy - check if receive handler is registered
5074  *	@dev: device to check
5075  *
5076  *	Check if a receive handler is already registered for a given device.
5077  *	Return true if there one.
5078  *
5079  *	The caller must hold the rtnl_mutex.
5080  */
5081 bool netdev_is_rx_handler_busy(struct net_device *dev)
5082 {
5083 	ASSERT_RTNL();
5084 	return dev && rtnl_dereference(dev->rx_handler);
5085 }
5086 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5087 
5088 /**
5089  *	netdev_rx_handler_register - register receive handler
5090  *	@dev: device to register a handler for
5091  *	@rx_handler: receive handler to register
5092  *	@rx_handler_data: data pointer that is used by rx handler
5093  *
5094  *	Register a receive handler for a device. This handler will then be
5095  *	called from __netif_receive_skb. A negative errno code is returned
5096  *	on a failure.
5097  *
5098  *	The caller must hold the rtnl_mutex.
5099  *
5100  *	For a general description of rx_handler, see enum rx_handler_result.
5101  */
5102 int netdev_rx_handler_register(struct net_device *dev,
5103 			       rx_handler_func_t *rx_handler,
5104 			       void *rx_handler_data)
5105 {
5106 	if (netdev_is_rx_handler_busy(dev))
5107 		return -EBUSY;
5108 
5109 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
5110 		return -EINVAL;
5111 
5112 	/* Note: rx_handler_data must be set before rx_handler */
5113 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5114 	rcu_assign_pointer(dev->rx_handler, rx_handler);
5115 
5116 	return 0;
5117 }
5118 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5119 
5120 /**
5121  *	netdev_rx_handler_unregister - unregister receive handler
5122  *	@dev: device to unregister a handler from
5123  *
5124  *	Unregister a receive handler from a device.
5125  *
5126  *	The caller must hold the rtnl_mutex.
5127  */
5128 void netdev_rx_handler_unregister(struct net_device *dev)
5129 {
5130 
5131 	ASSERT_RTNL();
5132 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5133 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5134 	 * section has a guarantee to see a non NULL rx_handler_data
5135 	 * as well.
5136 	 */
5137 	synchronize_net();
5138 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5139 }
5140 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5141 
5142 /*
5143  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5144  * the special handling of PFMEMALLOC skbs.
5145  */
5146 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5147 {
5148 	switch (skb->protocol) {
5149 	case htons(ETH_P_ARP):
5150 	case htons(ETH_P_IP):
5151 	case htons(ETH_P_IPV6):
5152 	case htons(ETH_P_8021Q):
5153 	case htons(ETH_P_8021AD):
5154 		return true;
5155 	default:
5156 		return false;
5157 	}
5158 }
5159 
5160 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5161 			     int *ret, struct net_device *orig_dev)
5162 {
5163 	if (nf_hook_ingress_active(skb)) {
5164 		int ingress_retval;
5165 
5166 		if (*pt_prev) {
5167 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5168 			*pt_prev = NULL;
5169 		}
5170 
5171 		rcu_read_lock();
5172 		ingress_retval = nf_hook_ingress(skb);
5173 		rcu_read_unlock();
5174 		return ingress_retval;
5175 	}
5176 	return 0;
5177 }
5178 
5179 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5180 				    struct packet_type **ppt_prev)
5181 {
5182 	struct packet_type *ptype, *pt_prev;
5183 	rx_handler_func_t *rx_handler;
5184 	struct sk_buff *skb = *pskb;
5185 	struct net_device *orig_dev;
5186 	bool deliver_exact = false;
5187 	int ret = NET_RX_DROP;
5188 	__be16 type;
5189 
5190 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
5191 
5192 	trace_netif_receive_skb(skb);
5193 
5194 	orig_dev = skb->dev;
5195 
5196 	skb_reset_network_header(skb);
5197 	if (!skb_transport_header_was_set(skb))
5198 		skb_reset_transport_header(skb);
5199 	skb_reset_mac_len(skb);
5200 
5201 	pt_prev = NULL;
5202 
5203 another_round:
5204 	skb->skb_iif = skb->dev->ifindex;
5205 
5206 	__this_cpu_inc(softnet_data.processed);
5207 
5208 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5209 		int ret2;
5210 
5211 		migrate_disable();
5212 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5213 		migrate_enable();
5214 
5215 		if (ret2 != XDP_PASS) {
5216 			ret = NET_RX_DROP;
5217 			goto out;
5218 		}
5219 	}
5220 
5221 	if (eth_type_vlan(skb->protocol)) {
5222 		skb = skb_vlan_untag(skb);
5223 		if (unlikely(!skb))
5224 			goto out;
5225 	}
5226 
5227 	if (skb_skip_tc_classify(skb))
5228 		goto skip_classify;
5229 
5230 	if (pfmemalloc)
5231 		goto skip_taps;
5232 
5233 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
5234 		if (pt_prev)
5235 			ret = deliver_skb(skb, pt_prev, orig_dev);
5236 		pt_prev = ptype;
5237 	}
5238 
5239 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5240 		if (pt_prev)
5241 			ret = deliver_skb(skb, pt_prev, orig_dev);
5242 		pt_prev = ptype;
5243 	}
5244 
5245 skip_taps:
5246 #ifdef CONFIG_NET_INGRESS
5247 	if (static_branch_unlikely(&ingress_needed_key)) {
5248 		bool another = false;
5249 
5250 		nf_skip_egress(skb, true);
5251 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5252 					 &another);
5253 		if (another)
5254 			goto another_round;
5255 		if (!skb)
5256 			goto out;
5257 
5258 		nf_skip_egress(skb, false);
5259 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5260 			goto out;
5261 	}
5262 #endif
5263 	skb_reset_redirect(skb);
5264 skip_classify:
5265 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5266 		goto drop;
5267 
5268 	if (skb_vlan_tag_present(skb)) {
5269 		if (pt_prev) {
5270 			ret = deliver_skb(skb, pt_prev, orig_dev);
5271 			pt_prev = NULL;
5272 		}
5273 		if (vlan_do_receive(&skb))
5274 			goto another_round;
5275 		else if (unlikely(!skb))
5276 			goto out;
5277 	}
5278 
5279 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5280 	if (rx_handler) {
5281 		if (pt_prev) {
5282 			ret = deliver_skb(skb, pt_prev, orig_dev);
5283 			pt_prev = NULL;
5284 		}
5285 		switch (rx_handler(&skb)) {
5286 		case RX_HANDLER_CONSUMED:
5287 			ret = NET_RX_SUCCESS;
5288 			goto out;
5289 		case RX_HANDLER_ANOTHER:
5290 			goto another_round;
5291 		case RX_HANDLER_EXACT:
5292 			deliver_exact = true;
5293 			break;
5294 		case RX_HANDLER_PASS:
5295 			break;
5296 		default:
5297 			BUG();
5298 		}
5299 	}
5300 
5301 	if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5302 check_vlan_id:
5303 		if (skb_vlan_tag_get_id(skb)) {
5304 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5305 			 * find vlan device.
5306 			 */
5307 			skb->pkt_type = PACKET_OTHERHOST;
5308 		} else if (eth_type_vlan(skb->protocol)) {
5309 			/* Outer header is 802.1P with vlan 0, inner header is
5310 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5311 			 * not find vlan dev for vlan id 0.
5312 			 */
5313 			__vlan_hwaccel_clear_tag(skb);
5314 			skb = skb_vlan_untag(skb);
5315 			if (unlikely(!skb))
5316 				goto out;
5317 			if (vlan_do_receive(&skb))
5318 				/* After stripping off 802.1P header with vlan 0
5319 				 * vlan dev is found for inner header.
5320 				 */
5321 				goto another_round;
5322 			else if (unlikely(!skb))
5323 				goto out;
5324 			else
5325 				/* We have stripped outer 802.1P vlan 0 header.
5326 				 * But could not find vlan dev.
5327 				 * check again for vlan id to set OTHERHOST.
5328 				 */
5329 				goto check_vlan_id;
5330 		}
5331 		/* Note: we might in the future use prio bits
5332 		 * and set skb->priority like in vlan_do_receive()
5333 		 * For the time being, just ignore Priority Code Point
5334 		 */
5335 		__vlan_hwaccel_clear_tag(skb);
5336 	}
5337 
5338 	type = skb->protocol;
5339 
5340 	/* deliver only exact match when indicated */
5341 	if (likely(!deliver_exact)) {
5342 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5343 				       &ptype_base[ntohs(type) &
5344 						   PTYPE_HASH_MASK]);
5345 	}
5346 
5347 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5348 			       &orig_dev->ptype_specific);
5349 
5350 	if (unlikely(skb->dev != orig_dev)) {
5351 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5352 				       &skb->dev->ptype_specific);
5353 	}
5354 
5355 	if (pt_prev) {
5356 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5357 			goto drop;
5358 		*ppt_prev = pt_prev;
5359 	} else {
5360 drop:
5361 		if (!deliver_exact) {
5362 			atomic_long_inc(&skb->dev->rx_dropped);
5363 			kfree_skb_reason(skb, SKB_DROP_REASON_PTYPE_ABSENT);
5364 		} else {
5365 			atomic_long_inc(&skb->dev->rx_nohandler);
5366 			kfree_skb(skb);
5367 		}
5368 		/* Jamal, now you will not able to escape explaining
5369 		 * me how you were going to use this. :-)
5370 		 */
5371 		ret = NET_RX_DROP;
5372 	}
5373 
5374 out:
5375 	/* The invariant here is that if *ppt_prev is not NULL
5376 	 * then skb should also be non-NULL.
5377 	 *
5378 	 * Apparently *ppt_prev assignment above holds this invariant due to
5379 	 * skb dereferencing near it.
5380 	 */
5381 	*pskb = skb;
5382 	return ret;
5383 }
5384 
5385 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5386 {
5387 	struct net_device *orig_dev = skb->dev;
5388 	struct packet_type *pt_prev = NULL;
5389 	int ret;
5390 
5391 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5392 	if (pt_prev)
5393 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5394 					 skb->dev, pt_prev, orig_dev);
5395 	return ret;
5396 }
5397 
5398 /**
5399  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5400  *	@skb: buffer to process
5401  *
5402  *	More direct receive version of netif_receive_skb().  It should
5403  *	only be used by callers that have a need to skip RPS and Generic XDP.
5404  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5405  *
5406  *	This function may only be called from softirq context and interrupts
5407  *	should be enabled.
5408  *
5409  *	Return values (usually ignored):
5410  *	NET_RX_SUCCESS: no congestion
5411  *	NET_RX_DROP: packet was dropped
5412  */
5413 int netif_receive_skb_core(struct sk_buff *skb)
5414 {
5415 	int ret;
5416 
5417 	rcu_read_lock();
5418 	ret = __netif_receive_skb_one_core(skb, false);
5419 	rcu_read_unlock();
5420 
5421 	return ret;
5422 }
5423 EXPORT_SYMBOL(netif_receive_skb_core);
5424 
5425 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5426 						  struct packet_type *pt_prev,
5427 						  struct net_device *orig_dev)
5428 {
5429 	struct sk_buff *skb, *next;
5430 
5431 	if (!pt_prev)
5432 		return;
5433 	if (list_empty(head))
5434 		return;
5435 	if (pt_prev->list_func != NULL)
5436 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5437 				   ip_list_rcv, head, pt_prev, orig_dev);
5438 	else
5439 		list_for_each_entry_safe(skb, next, head, list) {
5440 			skb_list_del_init(skb);
5441 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5442 		}
5443 }
5444 
5445 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5446 {
5447 	/* Fast-path assumptions:
5448 	 * - There is no RX handler.
5449 	 * - Only one packet_type matches.
5450 	 * If either of these fails, we will end up doing some per-packet
5451 	 * processing in-line, then handling the 'last ptype' for the whole
5452 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5453 	 * because the 'last ptype' must be constant across the sublist, and all
5454 	 * other ptypes are handled per-packet.
5455 	 */
5456 	/* Current (common) ptype of sublist */
5457 	struct packet_type *pt_curr = NULL;
5458 	/* Current (common) orig_dev of sublist */
5459 	struct net_device *od_curr = NULL;
5460 	struct list_head sublist;
5461 	struct sk_buff *skb, *next;
5462 
5463 	INIT_LIST_HEAD(&sublist);
5464 	list_for_each_entry_safe(skb, next, head, list) {
5465 		struct net_device *orig_dev = skb->dev;
5466 		struct packet_type *pt_prev = NULL;
5467 
5468 		skb_list_del_init(skb);
5469 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5470 		if (!pt_prev)
5471 			continue;
5472 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5473 			/* dispatch old sublist */
5474 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5475 			/* start new sublist */
5476 			INIT_LIST_HEAD(&sublist);
5477 			pt_curr = pt_prev;
5478 			od_curr = orig_dev;
5479 		}
5480 		list_add_tail(&skb->list, &sublist);
5481 	}
5482 
5483 	/* dispatch final sublist */
5484 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5485 }
5486 
5487 static int __netif_receive_skb(struct sk_buff *skb)
5488 {
5489 	int ret;
5490 
5491 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5492 		unsigned int noreclaim_flag;
5493 
5494 		/*
5495 		 * PFMEMALLOC skbs are special, they should
5496 		 * - be delivered to SOCK_MEMALLOC sockets only
5497 		 * - stay away from userspace
5498 		 * - have bounded memory usage
5499 		 *
5500 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5501 		 * context down to all allocation sites.
5502 		 */
5503 		noreclaim_flag = memalloc_noreclaim_save();
5504 		ret = __netif_receive_skb_one_core(skb, true);
5505 		memalloc_noreclaim_restore(noreclaim_flag);
5506 	} else
5507 		ret = __netif_receive_skb_one_core(skb, false);
5508 
5509 	return ret;
5510 }
5511 
5512 static void __netif_receive_skb_list(struct list_head *head)
5513 {
5514 	unsigned long noreclaim_flag = 0;
5515 	struct sk_buff *skb, *next;
5516 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5517 
5518 	list_for_each_entry_safe(skb, next, head, list) {
5519 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5520 			struct list_head sublist;
5521 
5522 			/* Handle the previous sublist */
5523 			list_cut_before(&sublist, head, &skb->list);
5524 			if (!list_empty(&sublist))
5525 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5526 			pfmemalloc = !pfmemalloc;
5527 			/* See comments in __netif_receive_skb */
5528 			if (pfmemalloc)
5529 				noreclaim_flag = memalloc_noreclaim_save();
5530 			else
5531 				memalloc_noreclaim_restore(noreclaim_flag);
5532 		}
5533 	}
5534 	/* Handle the remaining sublist */
5535 	if (!list_empty(head))
5536 		__netif_receive_skb_list_core(head, pfmemalloc);
5537 	/* Restore pflags */
5538 	if (pfmemalloc)
5539 		memalloc_noreclaim_restore(noreclaim_flag);
5540 }
5541 
5542 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5543 {
5544 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5545 	struct bpf_prog *new = xdp->prog;
5546 	int ret = 0;
5547 
5548 	switch (xdp->command) {
5549 	case XDP_SETUP_PROG:
5550 		rcu_assign_pointer(dev->xdp_prog, new);
5551 		if (old)
5552 			bpf_prog_put(old);
5553 
5554 		if (old && !new) {
5555 			static_branch_dec(&generic_xdp_needed_key);
5556 		} else if (new && !old) {
5557 			static_branch_inc(&generic_xdp_needed_key);
5558 			dev_disable_lro(dev);
5559 			dev_disable_gro_hw(dev);
5560 		}
5561 		break;
5562 
5563 	default:
5564 		ret = -EINVAL;
5565 		break;
5566 	}
5567 
5568 	return ret;
5569 }
5570 
5571 static int netif_receive_skb_internal(struct sk_buff *skb)
5572 {
5573 	int ret;
5574 
5575 	net_timestamp_check(netdev_tstamp_prequeue, skb);
5576 
5577 	if (skb_defer_rx_timestamp(skb))
5578 		return NET_RX_SUCCESS;
5579 
5580 	rcu_read_lock();
5581 #ifdef CONFIG_RPS
5582 	if (static_branch_unlikely(&rps_needed)) {
5583 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5584 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5585 
5586 		if (cpu >= 0) {
5587 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5588 			rcu_read_unlock();
5589 			return ret;
5590 		}
5591 	}
5592 #endif
5593 	ret = __netif_receive_skb(skb);
5594 	rcu_read_unlock();
5595 	return ret;
5596 }
5597 
5598 void netif_receive_skb_list_internal(struct list_head *head)
5599 {
5600 	struct sk_buff *skb, *next;
5601 	struct list_head sublist;
5602 
5603 	INIT_LIST_HEAD(&sublist);
5604 	list_for_each_entry_safe(skb, next, head, list) {
5605 		net_timestamp_check(netdev_tstamp_prequeue, skb);
5606 		skb_list_del_init(skb);
5607 		if (!skb_defer_rx_timestamp(skb))
5608 			list_add_tail(&skb->list, &sublist);
5609 	}
5610 	list_splice_init(&sublist, head);
5611 
5612 	rcu_read_lock();
5613 #ifdef CONFIG_RPS
5614 	if (static_branch_unlikely(&rps_needed)) {
5615 		list_for_each_entry_safe(skb, next, head, list) {
5616 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5617 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5618 
5619 			if (cpu >= 0) {
5620 				/* Will be handled, remove from list */
5621 				skb_list_del_init(skb);
5622 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5623 			}
5624 		}
5625 	}
5626 #endif
5627 	__netif_receive_skb_list(head);
5628 	rcu_read_unlock();
5629 }
5630 
5631 /**
5632  *	netif_receive_skb - process receive buffer from network
5633  *	@skb: buffer to process
5634  *
5635  *	netif_receive_skb() is the main receive data processing function.
5636  *	It always succeeds. The buffer may be dropped during processing
5637  *	for congestion control or by the protocol layers.
5638  *
5639  *	This function may only be called from softirq context and interrupts
5640  *	should be enabled.
5641  *
5642  *	Return values (usually ignored):
5643  *	NET_RX_SUCCESS: no congestion
5644  *	NET_RX_DROP: packet was dropped
5645  */
5646 int netif_receive_skb(struct sk_buff *skb)
5647 {
5648 	int ret;
5649 
5650 	trace_netif_receive_skb_entry(skb);
5651 
5652 	ret = netif_receive_skb_internal(skb);
5653 	trace_netif_receive_skb_exit(ret);
5654 
5655 	return ret;
5656 }
5657 EXPORT_SYMBOL(netif_receive_skb);
5658 
5659 /**
5660  *	netif_receive_skb_list - process many receive buffers from network
5661  *	@head: list of skbs to process.
5662  *
5663  *	Since return value of netif_receive_skb() is normally ignored, and
5664  *	wouldn't be meaningful for a list, this function returns void.
5665  *
5666  *	This function may only be called from softirq context and interrupts
5667  *	should be enabled.
5668  */
5669 void netif_receive_skb_list(struct list_head *head)
5670 {
5671 	struct sk_buff *skb;
5672 
5673 	if (list_empty(head))
5674 		return;
5675 	if (trace_netif_receive_skb_list_entry_enabled()) {
5676 		list_for_each_entry(skb, head, list)
5677 			trace_netif_receive_skb_list_entry(skb);
5678 	}
5679 	netif_receive_skb_list_internal(head);
5680 	trace_netif_receive_skb_list_exit(0);
5681 }
5682 EXPORT_SYMBOL(netif_receive_skb_list);
5683 
5684 static DEFINE_PER_CPU(struct work_struct, flush_works);
5685 
5686 /* Network device is going away, flush any packets still pending */
5687 static void flush_backlog(struct work_struct *work)
5688 {
5689 	struct sk_buff *skb, *tmp;
5690 	struct softnet_data *sd;
5691 
5692 	local_bh_disable();
5693 	sd = this_cpu_ptr(&softnet_data);
5694 
5695 	rps_lock_irq_disable(sd);
5696 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5697 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5698 			__skb_unlink(skb, &sd->input_pkt_queue);
5699 			dev_kfree_skb_irq(skb);
5700 			input_queue_head_incr(sd);
5701 		}
5702 	}
5703 	rps_unlock_irq_enable(sd);
5704 
5705 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5706 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5707 			__skb_unlink(skb, &sd->process_queue);
5708 			kfree_skb(skb);
5709 			input_queue_head_incr(sd);
5710 		}
5711 	}
5712 	local_bh_enable();
5713 }
5714 
5715 static bool flush_required(int cpu)
5716 {
5717 #if IS_ENABLED(CONFIG_RPS)
5718 	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5719 	bool do_flush;
5720 
5721 	rps_lock_irq_disable(sd);
5722 
5723 	/* as insertion into process_queue happens with the rps lock held,
5724 	 * process_queue access may race only with dequeue
5725 	 */
5726 	do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5727 		   !skb_queue_empty_lockless(&sd->process_queue);
5728 	rps_unlock_irq_enable(sd);
5729 
5730 	return do_flush;
5731 #endif
5732 	/* without RPS we can't safely check input_pkt_queue: during a
5733 	 * concurrent remote skb_queue_splice() we can detect as empty both
5734 	 * input_pkt_queue and process_queue even if the latter could end-up
5735 	 * containing a lot of packets.
5736 	 */
5737 	return true;
5738 }
5739 
5740 static void flush_all_backlogs(void)
5741 {
5742 	static cpumask_t flush_cpus;
5743 	unsigned int cpu;
5744 
5745 	/* since we are under rtnl lock protection we can use static data
5746 	 * for the cpumask and avoid allocating on stack the possibly
5747 	 * large mask
5748 	 */
5749 	ASSERT_RTNL();
5750 
5751 	cpus_read_lock();
5752 
5753 	cpumask_clear(&flush_cpus);
5754 	for_each_online_cpu(cpu) {
5755 		if (flush_required(cpu)) {
5756 			queue_work_on(cpu, system_highpri_wq,
5757 				      per_cpu_ptr(&flush_works, cpu));
5758 			cpumask_set_cpu(cpu, &flush_cpus);
5759 		}
5760 	}
5761 
5762 	/* we can have in flight packet[s] on the cpus we are not flushing,
5763 	 * synchronize_net() in unregister_netdevice_many() will take care of
5764 	 * them
5765 	 */
5766 	for_each_cpu(cpu, &flush_cpus)
5767 		flush_work(per_cpu_ptr(&flush_works, cpu));
5768 
5769 	cpus_read_unlock();
5770 }
5771 
5772 static void net_rps_send_ipi(struct softnet_data *remsd)
5773 {
5774 #ifdef CONFIG_RPS
5775 	while (remsd) {
5776 		struct softnet_data *next = remsd->rps_ipi_next;
5777 
5778 		if (cpu_online(remsd->cpu))
5779 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
5780 		remsd = next;
5781 	}
5782 #endif
5783 }
5784 
5785 /*
5786  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5787  * Note: called with local irq disabled, but exits with local irq enabled.
5788  */
5789 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5790 {
5791 #ifdef CONFIG_RPS
5792 	struct softnet_data *remsd = sd->rps_ipi_list;
5793 
5794 	if (remsd) {
5795 		sd->rps_ipi_list = NULL;
5796 
5797 		local_irq_enable();
5798 
5799 		/* Send pending IPI's to kick RPS processing on remote cpus. */
5800 		net_rps_send_ipi(remsd);
5801 	} else
5802 #endif
5803 		local_irq_enable();
5804 }
5805 
5806 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5807 {
5808 #ifdef CONFIG_RPS
5809 	return sd->rps_ipi_list != NULL;
5810 #else
5811 	return false;
5812 #endif
5813 }
5814 
5815 static int process_backlog(struct napi_struct *napi, int quota)
5816 {
5817 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5818 	bool again = true;
5819 	int work = 0;
5820 
5821 	/* Check if we have pending ipi, its better to send them now,
5822 	 * not waiting net_rx_action() end.
5823 	 */
5824 	if (sd_has_rps_ipi_waiting(sd)) {
5825 		local_irq_disable();
5826 		net_rps_action_and_irq_enable(sd);
5827 	}
5828 
5829 	napi->weight = dev_rx_weight;
5830 	while (again) {
5831 		struct sk_buff *skb;
5832 
5833 		while ((skb = __skb_dequeue(&sd->process_queue))) {
5834 			rcu_read_lock();
5835 			__netif_receive_skb(skb);
5836 			rcu_read_unlock();
5837 			input_queue_head_incr(sd);
5838 			if (++work >= quota)
5839 				return work;
5840 
5841 		}
5842 
5843 		rps_lock_irq_disable(sd);
5844 		if (skb_queue_empty(&sd->input_pkt_queue)) {
5845 			/*
5846 			 * Inline a custom version of __napi_complete().
5847 			 * only current cpu owns and manipulates this napi,
5848 			 * and NAPI_STATE_SCHED is the only possible flag set
5849 			 * on backlog.
5850 			 * We can use a plain write instead of clear_bit(),
5851 			 * and we dont need an smp_mb() memory barrier.
5852 			 */
5853 			napi->state = 0;
5854 			again = false;
5855 		} else {
5856 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
5857 						   &sd->process_queue);
5858 		}
5859 		rps_unlock_irq_enable(sd);
5860 	}
5861 
5862 	return work;
5863 }
5864 
5865 /**
5866  * __napi_schedule - schedule for receive
5867  * @n: entry to schedule
5868  *
5869  * The entry's receive function will be scheduled to run.
5870  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5871  */
5872 void __napi_schedule(struct napi_struct *n)
5873 {
5874 	unsigned long flags;
5875 
5876 	local_irq_save(flags);
5877 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
5878 	local_irq_restore(flags);
5879 }
5880 EXPORT_SYMBOL(__napi_schedule);
5881 
5882 /**
5883  *	napi_schedule_prep - check if napi can be scheduled
5884  *	@n: napi context
5885  *
5886  * Test if NAPI routine is already running, and if not mark
5887  * it as running.  This is used as a condition variable to
5888  * insure only one NAPI poll instance runs.  We also make
5889  * sure there is no pending NAPI disable.
5890  */
5891 bool napi_schedule_prep(struct napi_struct *n)
5892 {
5893 	unsigned long val, new;
5894 
5895 	do {
5896 		val = READ_ONCE(n->state);
5897 		if (unlikely(val & NAPIF_STATE_DISABLE))
5898 			return false;
5899 		new = val | NAPIF_STATE_SCHED;
5900 
5901 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
5902 		 * This was suggested by Alexander Duyck, as compiler
5903 		 * emits better code than :
5904 		 * if (val & NAPIF_STATE_SCHED)
5905 		 *     new |= NAPIF_STATE_MISSED;
5906 		 */
5907 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5908 						   NAPIF_STATE_MISSED;
5909 	} while (cmpxchg(&n->state, val, new) != val);
5910 
5911 	return !(val & NAPIF_STATE_SCHED);
5912 }
5913 EXPORT_SYMBOL(napi_schedule_prep);
5914 
5915 /**
5916  * __napi_schedule_irqoff - schedule for receive
5917  * @n: entry to schedule
5918  *
5919  * Variant of __napi_schedule() assuming hard irqs are masked.
5920  *
5921  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
5922  * because the interrupt disabled assumption might not be true
5923  * due to force-threaded interrupts and spinlock substitution.
5924  */
5925 void __napi_schedule_irqoff(struct napi_struct *n)
5926 {
5927 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
5928 		____napi_schedule(this_cpu_ptr(&softnet_data), n);
5929 	else
5930 		__napi_schedule(n);
5931 }
5932 EXPORT_SYMBOL(__napi_schedule_irqoff);
5933 
5934 bool napi_complete_done(struct napi_struct *n, int work_done)
5935 {
5936 	unsigned long flags, val, new, timeout = 0;
5937 	bool ret = true;
5938 
5939 	/*
5940 	 * 1) Don't let napi dequeue from the cpu poll list
5941 	 *    just in case its running on a different cpu.
5942 	 * 2) If we are busy polling, do nothing here, we have
5943 	 *    the guarantee we will be called later.
5944 	 */
5945 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5946 				 NAPIF_STATE_IN_BUSY_POLL)))
5947 		return false;
5948 
5949 	if (work_done) {
5950 		if (n->gro_bitmask)
5951 			timeout = READ_ONCE(n->dev->gro_flush_timeout);
5952 		n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
5953 	}
5954 	if (n->defer_hard_irqs_count > 0) {
5955 		n->defer_hard_irqs_count--;
5956 		timeout = READ_ONCE(n->dev->gro_flush_timeout);
5957 		if (timeout)
5958 			ret = false;
5959 	}
5960 	if (n->gro_bitmask) {
5961 		/* When the NAPI instance uses a timeout and keeps postponing
5962 		 * it, we need to bound somehow the time packets are kept in
5963 		 * the GRO layer
5964 		 */
5965 		napi_gro_flush(n, !!timeout);
5966 	}
5967 
5968 	gro_normal_list(n);
5969 
5970 	if (unlikely(!list_empty(&n->poll_list))) {
5971 		/* If n->poll_list is not empty, we need to mask irqs */
5972 		local_irq_save(flags);
5973 		list_del_init(&n->poll_list);
5974 		local_irq_restore(flags);
5975 	}
5976 
5977 	do {
5978 		val = READ_ONCE(n->state);
5979 
5980 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5981 
5982 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
5983 			      NAPIF_STATE_SCHED_THREADED |
5984 			      NAPIF_STATE_PREFER_BUSY_POLL);
5985 
5986 		/* If STATE_MISSED was set, leave STATE_SCHED set,
5987 		 * because we will call napi->poll() one more time.
5988 		 * This C code was suggested by Alexander Duyck to help gcc.
5989 		 */
5990 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5991 						    NAPIF_STATE_SCHED;
5992 	} while (cmpxchg(&n->state, val, new) != val);
5993 
5994 	if (unlikely(val & NAPIF_STATE_MISSED)) {
5995 		__napi_schedule(n);
5996 		return false;
5997 	}
5998 
5999 	if (timeout)
6000 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
6001 			      HRTIMER_MODE_REL_PINNED);
6002 	return ret;
6003 }
6004 EXPORT_SYMBOL(napi_complete_done);
6005 
6006 /* must be called under rcu_read_lock(), as we dont take a reference */
6007 static struct napi_struct *napi_by_id(unsigned int napi_id)
6008 {
6009 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6010 	struct napi_struct *napi;
6011 
6012 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6013 		if (napi->napi_id == napi_id)
6014 			return napi;
6015 
6016 	return NULL;
6017 }
6018 
6019 #if defined(CONFIG_NET_RX_BUSY_POLL)
6020 
6021 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6022 {
6023 	if (!skip_schedule) {
6024 		gro_normal_list(napi);
6025 		__napi_schedule(napi);
6026 		return;
6027 	}
6028 
6029 	if (napi->gro_bitmask) {
6030 		/* flush too old packets
6031 		 * If HZ < 1000, flush all packets.
6032 		 */
6033 		napi_gro_flush(napi, HZ >= 1000);
6034 	}
6035 
6036 	gro_normal_list(napi);
6037 	clear_bit(NAPI_STATE_SCHED, &napi->state);
6038 }
6039 
6040 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6041 			   u16 budget)
6042 {
6043 	bool skip_schedule = false;
6044 	unsigned long timeout;
6045 	int rc;
6046 
6047 	/* Busy polling means there is a high chance device driver hard irq
6048 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6049 	 * set in napi_schedule_prep().
6050 	 * Since we are about to call napi->poll() once more, we can safely
6051 	 * clear NAPI_STATE_MISSED.
6052 	 *
6053 	 * Note: x86 could use a single "lock and ..." instruction
6054 	 * to perform these two clear_bit()
6055 	 */
6056 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6057 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6058 
6059 	local_bh_disable();
6060 
6061 	if (prefer_busy_poll) {
6062 		napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6063 		timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6064 		if (napi->defer_hard_irqs_count && timeout) {
6065 			hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6066 			skip_schedule = true;
6067 		}
6068 	}
6069 
6070 	/* All we really want here is to re-enable device interrupts.
6071 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6072 	 */
6073 	rc = napi->poll(napi, budget);
6074 	/* We can't gro_normal_list() here, because napi->poll() might have
6075 	 * rearmed the napi (napi_complete_done()) in which case it could
6076 	 * already be running on another CPU.
6077 	 */
6078 	trace_napi_poll(napi, rc, budget);
6079 	netpoll_poll_unlock(have_poll_lock);
6080 	if (rc == budget)
6081 		__busy_poll_stop(napi, skip_schedule);
6082 	local_bh_enable();
6083 }
6084 
6085 void napi_busy_loop(unsigned int napi_id,
6086 		    bool (*loop_end)(void *, unsigned long),
6087 		    void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6088 {
6089 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6090 	int (*napi_poll)(struct napi_struct *napi, int budget);
6091 	void *have_poll_lock = NULL;
6092 	struct napi_struct *napi;
6093 
6094 restart:
6095 	napi_poll = NULL;
6096 
6097 	rcu_read_lock();
6098 
6099 	napi = napi_by_id(napi_id);
6100 	if (!napi)
6101 		goto out;
6102 
6103 	preempt_disable();
6104 	for (;;) {
6105 		int work = 0;
6106 
6107 		local_bh_disable();
6108 		if (!napi_poll) {
6109 			unsigned long val = READ_ONCE(napi->state);
6110 
6111 			/* If multiple threads are competing for this napi,
6112 			 * we avoid dirtying napi->state as much as we can.
6113 			 */
6114 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6115 				   NAPIF_STATE_IN_BUSY_POLL)) {
6116 				if (prefer_busy_poll)
6117 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6118 				goto count;
6119 			}
6120 			if (cmpxchg(&napi->state, val,
6121 				    val | NAPIF_STATE_IN_BUSY_POLL |
6122 					  NAPIF_STATE_SCHED) != val) {
6123 				if (prefer_busy_poll)
6124 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6125 				goto count;
6126 			}
6127 			have_poll_lock = netpoll_poll_lock(napi);
6128 			napi_poll = napi->poll;
6129 		}
6130 		work = napi_poll(napi, budget);
6131 		trace_napi_poll(napi, work, budget);
6132 		gro_normal_list(napi);
6133 count:
6134 		if (work > 0)
6135 			__NET_ADD_STATS(dev_net(napi->dev),
6136 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6137 		local_bh_enable();
6138 
6139 		if (!loop_end || loop_end(loop_end_arg, start_time))
6140 			break;
6141 
6142 		if (unlikely(need_resched())) {
6143 			if (napi_poll)
6144 				busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6145 			preempt_enable();
6146 			rcu_read_unlock();
6147 			cond_resched();
6148 			if (loop_end(loop_end_arg, start_time))
6149 				return;
6150 			goto restart;
6151 		}
6152 		cpu_relax();
6153 	}
6154 	if (napi_poll)
6155 		busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6156 	preempt_enable();
6157 out:
6158 	rcu_read_unlock();
6159 }
6160 EXPORT_SYMBOL(napi_busy_loop);
6161 
6162 #endif /* CONFIG_NET_RX_BUSY_POLL */
6163 
6164 static void napi_hash_add(struct napi_struct *napi)
6165 {
6166 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6167 		return;
6168 
6169 	spin_lock(&napi_hash_lock);
6170 
6171 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6172 	do {
6173 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6174 			napi_gen_id = MIN_NAPI_ID;
6175 	} while (napi_by_id(napi_gen_id));
6176 	napi->napi_id = napi_gen_id;
6177 
6178 	hlist_add_head_rcu(&napi->napi_hash_node,
6179 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6180 
6181 	spin_unlock(&napi_hash_lock);
6182 }
6183 
6184 /* Warning : caller is responsible to make sure rcu grace period
6185  * is respected before freeing memory containing @napi
6186  */
6187 static void napi_hash_del(struct napi_struct *napi)
6188 {
6189 	spin_lock(&napi_hash_lock);
6190 
6191 	hlist_del_init_rcu(&napi->napi_hash_node);
6192 
6193 	spin_unlock(&napi_hash_lock);
6194 }
6195 
6196 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6197 {
6198 	struct napi_struct *napi;
6199 
6200 	napi = container_of(timer, struct napi_struct, timer);
6201 
6202 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6203 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6204 	 */
6205 	if (!napi_disable_pending(napi) &&
6206 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6207 		clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6208 		__napi_schedule_irqoff(napi);
6209 	}
6210 
6211 	return HRTIMER_NORESTART;
6212 }
6213 
6214 static void init_gro_hash(struct napi_struct *napi)
6215 {
6216 	int i;
6217 
6218 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6219 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6220 		napi->gro_hash[i].count = 0;
6221 	}
6222 	napi->gro_bitmask = 0;
6223 }
6224 
6225 int dev_set_threaded(struct net_device *dev, bool threaded)
6226 {
6227 	struct napi_struct *napi;
6228 	int err = 0;
6229 
6230 	if (dev->threaded == threaded)
6231 		return 0;
6232 
6233 	if (threaded) {
6234 		list_for_each_entry(napi, &dev->napi_list, dev_list) {
6235 			if (!napi->thread) {
6236 				err = napi_kthread_create(napi);
6237 				if (err) {
6238 					threaded = false;
6239 					break;
6240 				}
6241 			}
6242 		}
6243 	}
6244 
6245 	dev->threaded = threaded;
6246 
6247 	/* Make sure kthread is created before THREADED bit
6248 	 * is set.
6249 	 */
6250 	smp_mb__before_atomic();
6251 
6252 	/* Setting/unsetting threaded mode on a napi might not immediately
6253 	 * take effect, if the current napi instance is actively being
6254 	 * polled. In this case, the switch between threaded mode and
6255 	 * softirq mode will happen in the next round of napi_schedule().
6256 	 * This should not cause hiccups/stalls to the live traffic.
6257 	 */
6258 	list_for_each_entry(napi, &dev->napi_list, dev_list) {
6259 		if (threaded)
6260 			set_bit(NAPI_STATE_THREADED, &napi->state);
6261 		else
6262 			clear_bit(NAPI_STATE_THREADED, &napi->state);
6263 	}
6264 
6265 	return err;
6266 }
6267 EXPORT_SYMBOL(dev_set_threaded);
6268 
6269 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6270 		    int (*poll)(struct napi_struct *, int), int weight)
6271 {
6272 	if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6273 		return;
6274 
6275 	INIT_LIST_HEAD(&napi->poll_list);
6276 	INIT_HLIST_NODE(&napi->napi_hash_node);
6277 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6278 	napi->timer.function = napi_watchdog;
6279 	init_gro_hash(napi);
6280 	napi->skb = NULL;
6281 	INIT_LIST_HEAD(&napi->rx_list);
6282 	napi->rx_count = 0;
6283 	napi->poll = poll;
6284 	if (weight > NAPI_POLL_WEIGHT)
6285 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6286 				weight);
6287 	napi->weight = weight;
6288 	napi->dev = dev;
6289 #ifdef CONFIG_NETPOLL
6290 	napi->poll_owner = -1;
6291 #endif
6292 	set_bit(NAPI_STATE_SCHED, &napi->state);
6293 	set_bit(NAPI_STATE_NPSVC, &napi->state);
6294 	list_add_rcu(&napi->dev_list, &dev->napi_list);
6295 	napi_hash_add(napi);
6296 	/* Create kthread for this napi if dev->threaded is set.
6297 	 * Clear dev->threaded if kthread creation failed so that
6298 	 * threaded mode will not be enabled in napi_enable().
6299 	 */
6300 	if (dev->threaded && napi_kthread_create(napi))
6301 		dev->threaded = 0;
6302 }
6303 EXPORT_SYMBOL(netif_napi_add);
6304 
6305 void napi_disable(struct napi_struct *n)
6306 {
6307 	unsigned long val, new;
6308 
6309 	might_sleep();
6310 	set_bit(NAPI_STATE_DISABLE, &n->state);
6311 
6312 	for ( ; ; ) {
6313 		val = READ_ONCE(n->state);
6314 		if (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6315 			usleep_range(20, 200);
6316 			continue;
6317 		}
6318 
6319 		new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6320 		new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6321 
6322 		if (cmpxchg(&n->state, val, new) == val)
6323 			break;
6324 	}
6325 
6326 	hrtimer_cancel(&n->timer);
6327 
6328 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6329 }
6330 EXPORT_SYMBOL(napi_disable);
6331 
6332 /**
6333  *	napi_enable - enable NAPI scheduling
6334  *	@n: NAPI context
6335  *
6336  * Resume NAPI from being scheduled on this context.
6337  * Must be paired with napi_disable.
6338  */
6339 void napi_enable(struct napi_struct *n)
6340 {
6341 	unsigned long val, new;
6342 
6343 	do {
6344 		val = READ_ONCE(n->state);
6345 		BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6346 
6347 		new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6348 		if (n->dev->threaded && n->thread)
6349 			new |= NAPIF_STATE_THREADED;
6350 	} while (cmpxchg(&n->state, val, new) != val);
6351 }
6352 EXPORT_SYMBOL(napi_enable);
6353 
6354 static void flush_gro_hash(struct napi_struct *napi)
6355 {
6356 	int i;
6357 
6358 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6359 		struct sk_buff *skb, *n;
6360 
6361 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6362 			kfree_skb(skb);
6363 		napi->gro_hash[i].count = 0;
6364 	}
6365 }
6366 
6367 /* Must be called in process context */
6368 void __netif_napi_del(struct napi_struct *napi)
6369 {
6370 	if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6371 		return;
6372 
6373 	napi_hash_del(napi);
6374 	list_del_rcu(&napi->dev_list);
6375 	napi_free_frags(napi);
6376 
6377 	flush_gro_hash(napi);
6378 	napi->gro_bitmask = 0;
6379 
6380 	if (napi->thread) {
6381 		kthread_stop(napi->thread);
6382 		napi->thread = NULL;
6383 	}
6384 }
6385 EXPORT_SYMBOL(__netif_napi_del);
6386 
6387 static int __napi_poll(struct napi_struct *n, bool *repoll)
6388 {
6389 	int work, weight;
6390 
6391 	weight = n->weight;
6392 
6393 	/* This NAPI_STATE_SCHED test is for avoiding a race
6394 	 * with netpoll's poll_napi().  Only the entity which
6395 	 * obtains the lock and sees NAPI_STATE_SCHED set will
6396 	 * actually make the ->poll() call.  Therefore we avoid
6397 	 * accidentally calling ->poll() when NAPI is not scheduled.
6398 	 */
6399 	work = 0;
6400 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6401 		work = n->poll(n, weight);
6402 		trace_napi_poll(n, work, weight);
6403 	}
6404 
6405 	if (unlikely(work > weight))
6406 		netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6407 				n->poll, work, weight);
6408 
6409 	if (likely(work < weight))
6410 		return work;
6411 
6412 	/* Drivers must not modify the NAPI state if they
6413 	 * consume the entire weight.  In such cases this code
6414 	 * still "owns" the NAPI instance and therefore can
6415 	 * move the instance around on the list at-will.
6416 	 */
6417 	if (unlikely(napi_disable_pending(n))) {
6418 		napi_complete(n);
6419 		return work;
6420 	}
6421 
6422 	/* The NAPI context has more processing work, but busy-polling
6423 	 * is preferred. Exit early.
6424 	 */
6425 	if (napi_prefer_busy_poll(n)) {
6426 		if (napi_complete_done(n, work)) {
6427 			/* If timeout is not set, we need to make sure
6428 			 * that the NAPI is re-scheduled.
6429 			 */
6430 			napi_schedule(n);
6431 		}
6432 		return work;
6433 	}
6434 
6435 	if (n->gro_bitmask) {
6436 		/* flush too old packets
6437 		 * If HZ < 1000, flush all packets.
6438 		 */
6439 		napi_gro_flush(n, HZ >= 1000);
6440 	}
6441 
6442 	gro_normal_list(n);
6443 
6444 	/* Some drivers may have called napi_schedule
6445 	 * prior to exhausting their budget.
6446 	 */
6447 	if (unlikely(!list_empty(&n->poll_list))) {
6448 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6449 			     n->dev ? n->dev->name : "backlog");
6450 		return work;
6451 	}
6452 
6453 	*repoll = true;
6454 
6455 	return work;
6456 }
6457 
6458 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6459 {
6460 	bool do_repoll = false;
6461 	void *have;
6462 	int work;
6463 
6464 	list_del_init(&n->poll_list);
6465 
6466 	have = netpoll_poll_lock(n);
6467 
6468 	work = __napi_poll(n, &do_repoll);
6469 
6470 	if (do_repoll)
6471 		list_add_tail(&n->poll_list, repoll);
6472 
6473 	netpoll_poll_unlock(have);
6474 
6475 	return work;
6476 }
6477 
6478 static int napi_thread_wait(struct napi_struct *napi)
6479 {
6480 	bool woken = false;
6481 
6482 	set_current_state(TASK_INTERRUPTIBLE);
6483 
6484 	while (!kthread_should_stop()) {
6485 		/* Testing SCHED_THREADED bit here to make sure the current
6486 		 * kthread owns this napi and could poll on this napi.
6487 		 * Testing SCHED bit is not enough because SCHED bit might be
6488 		 * set by some other busy poll thread or by napi_disable().
6489 		 */
6490 		if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
6491 			WARN_ON(!list_empty(&napi->poll_list));
6492 			__set_current_state(TASK_RUNNING);
6493 			return 0;
6494 		}
6495 
6496 		schedule();
6497 		/* woken being true indicates this thread owns this napi. */
6498 		woken = true;
6499 		set_current_state(TASK_INTERRUPTIBLE);
6500 	}
6501 	__set_current_state(TASK_RUNNING);
6502 
6503 	return -1;
6504 }
6505 
6506 static int napi_threaded_poll(void *data)
6507 {
6508 	struct napi_struct *napi = data;
6509 	void *have;
6510 
6511 	while (!napi_thread_wait(napi)) {
6512 		for (;;) {
6513 			bool repoll = false;
6514 
6515 			local_bh_disable();
6516 
6517 			have = netpoll_poll_lock(napi);
6518 			__napi_poll(napi, &repoll);
6519 			netpoll_poll_unlock(have);
6520 
6521 			local_bh_enable();
6522 
6523 			if (!repoll)
6524 				break;
6525 
6526 			cond_resched();
6527 		}
6528 	}
6529 	return 0;
6530 }
6531 
6532 static __latent_entropy void net_rx_action(struct softirq_action *h)
6533 {
6534 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6535 	unsigned long time_limit = jiffies +
6536 		usecs_to_jiffies(netdev_budget_usecs);
6537 	int budget = netdev_budget;
6538 	LIST_HEAD(list);
6539 	LIST_HEAD(repoll);
6540 
6541 	local_irq_disable();
6542 	list_splice_init(&sd->poll_list, &list);
6543 	local_irq_enable();
6544 
6545 	for (;;) {
6546 		struct napi_struct *n;
6547 
6548 		if (list_empty(&list)) {
6549 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6550 				return;
6551 			break;
6552 		}
6553 
6554 		n = list_first_entry(&list, struct napi_struct, poll_list);
6555 		budget -= napi_poll(n, &repoll);
6556 
6557 		/* If softirq window is exhausted then punt.
6558 		 * Allow this to run for 2 jiffies since which will allow
6559 		 * an average latency of 1.5/HZ.
6560 		 */
6561 		if (unlikely(budget <= 0 ||
6562 			     time_after_eq(jiffies, time_limit))) {
6563 			sd->time_squeeze++;
6564 			break;
6565 		}
6566 	}
6567 
6568 	local_irq_disable();
6569 
6570 	list_splice_tail_init(&sd->poll_list, &list);
6571 	list_splice_tail(&repoll, &list);
6572 	list_splice(&list, &sd->poll_list);
6573 	if (!list_empty(&sd->poll_list))
6574 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
6575 
6576 	net_rps_action_and_irq_enable(sd);
6577 }
6578 
6579 struct netdev_adjacent {
6580 	struct net_device *dev;
6581 	netdevice_tracker dev_tracker;
6582 
6583 	/* upper master flag, there can only be one master device per list */
6584 	bool master;
6585 
6586 	/* lookup ignore flag */
6587 	bool ignore;
6588 
6589 	/* counter for the number of times this device was added to us */
6590 	u16 ref_nr;
6591 
6592 	/* private field for the users */
6593 	void *private;
6594 
6595 	struct list_head list;
6596 	struct rcu_head rcu;
6597 };
6598 
6599 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6600 						 struct list_head *adj_list)
6601 {
6602 	struct netdev_adjacent *adj;
6603 
6604 	list_for_each_entry(adj, adj_list, list) {
6605 		if (adj->dev == adj_dev)
6606 			return adj;
6607 	}
6608 	return NULL;
6609 }
6610 
6611 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6612 				    struct netdev_nested_priv *priv)
6613 {
6614 	struct net_device *dev = (struct net_device *)priv->data;
6615 
6616 	return upper_dev == dev;
6617 }
6618 
6619 /**
6620  * netdev_has_upper_dev - Check if device is linked to an upper device
6621  * @dev: device
6622  * @upper_dev: upper device to check
6623  *
6624  * Find out if a device is linked to specified upper device and return true
6625  * in case it is. Note that this checks only immediate upper device,
6626  * not through a complete stack of devices. The caller must hold the RTNL lock.
6627  */
6628 bool netdev_has_upper_dev(struct net_device *dev,
6629 			  struct net_device *upper_dev)
6630 {
6631 	struct netdev_nested_priv priv = {
6632 		.data = (void *)upper_dev,
6633 	};
6634 
6635 	ASSERT_RTNL();
6636 
6637 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6638 					     &priv);
6639 }
6640 EXPORT_SYMBOL(netdev_has_upper_dev);
6641 
6642 /**
6643  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
6644  * @dev: device
6645  * @upper_dev: upper device to check
6646  *
6647  * Find out if a device is linked to specified upper device and return true
6648  * in case it is. Note that this checks the entire upper device chain.
6649  * The caller must hold rcu lock.
6650  */
6651 
6652 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6653 				  struct net_device *upper_dev)
6654 {
6655 	struct netdev_nested_priv priv = {
6656 		.data = (void *)upper_dev,
6657 	};
6658 
6659 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6660 					       &priv);
6661 }
6662 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6663 
6664 /**
6665  * netdev_has_any_upper_dev - Check if device is linked to some device
6666  * @dev: device
6667  *
6668  * Find out if a device is linked to an upper device and return true in case
6669  * it is. The caller must hold the RTNL lock.
6670  */
6671 bool netdev_has_any_upper_dev(struct net_device *dev)
6672 {
6673 	ASSERT_RTNL();
6674 
6675 	return !list_empty(&dev->adj_list.upper);
6676 }
6677 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6678 
6679 /**
6680  * netdev_master_upper_dev_get - Get master upper device
6681  * @dev: device
6682  *
6683  * Find a master upper device and return pointer to it or NULL in case
6684  * it's not there. The caller must hold the RTNL lock.
6685  */
6686 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6687 {
6688 	struct netdev_adjacent *upper;
6689 
6690 	ASSERT_RTNL();
6691 
6692 	if (list_empty(&dev->adj_list.upper))
6693 		return NULL;
6694 
6695 	upper = list_first_entry(&dev->adj_list.upper,
6696 				 struct netdev_adjacent, list);
6697 	if (likely(upper->master))
6698 		return upper->dev;
6699 	return NULL;
6700 }
6701 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6702 
6703 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6704 {
6705 	struct netdev_adjacent *upper;
6706 
6707 	ASSERT_RTNL();
6708 
6709 	if (list_empty(&dev->adj_list.upper))
6710 		return NULL;
6711 
6712 	upper = list_first_entry(&dev->adj_list.upper,
6713 				 struct netdev_adjacent, list);
6714 	if (likely(upper->master) && !upper->ignore)
6715 		return upper->dev;
6716 	return NULL;
6717 }
6718 
6719 /**
6720  * netdev_has_any_lower_dev - Check if device is linked to some device
6721  * @dev: device
6722  *
6723  * Find out if a device is linked to a lower device and return true in case
6724  * it is. The caller must hold the RTNL lock.
6725  */
6726 static bool netdev_has_any_lower_dev(struct net_device *dev)
6727 {
6728 	ASSERT_RTNL();
6729 
6730 	return !list_empty(&dev->adj_list.lower);
6731 }
6732 
6733 void *netdev_adjacent_get_private(struct list_head *adj_list)
6734 {
6735 	struct netdev_adjacent *adj;
6736 
6737 	adj = list_entry(adj_list, struct netdev_adjacent, list);
6738 
6739 	return adj->private;
6740 }
6741 EXPORT_SYMBOL(netdev_adjacent_get_private);
6742 
6743 /**
6744  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6745  * @dev: device
6746  * @iter: list_head ** of the current position
6747  *
6748  * Gets the next device from the dev's upper list, starting from iter
6749  * position. The caller must hold RCU read lock.
6750  */
6751 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6752 						 struct list_head **iter)
6753 {
6754 	struct netdev_adjacent *upper;
6755 
6756 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6757 
6758 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6759 
6760 	if (&upper->list == &dev->adj_list.upper)
6761 		return NULL;
6762 
6763 	*iter = &upper->list;
6764 
6765 	return upper->dev;
6766 }
6767 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6768 
6769 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6770 						  struct list_head **iter,
6771 						  bool *ignore)
6772 {
6773 	struct netdev_adjacent *upper;
6774 
6775 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6776 
6777 	if (&upper->list == &dev->adj_list.upper)
6778 		return NULL;
6779 
6780 	*iter = &upper->list;
6781 	*ignore = upper->ignore;
6782 
6783 	return upper->dev;
6784 }
6785 
6786 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6787 						    struct list_head **iter)
6788 {
6789 	struct netdev_adjacent *upper;
6790 
6791 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6792 
6793 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6794 
6795 	if (&upper->list == &dev->adj_list.upper)
6796 		return NULL;
6797 
6798 	*iter = &upper->list;
6799 
6800 	return upper->dev;
6801 }
6802 
6803 static int __netdev_walk_all_upper_dev(struct net_device *dev,
6804 				       int (*fn)(struct net_device *dev,
6805 					 struct netdev_nested_priv *priv),
6806 				       struct netdev_nested_priv *priv)
6807 {
6808 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6809 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6810 	int ret, cur = 0;
6811 	bool ignore;
6812 
6813 	now = dev;
6814 	iter = &dev->adj_list.upper;
6815 
6816 	while (1) {
6817 		if (now != dev) {
6818 			ret = fn(now, priv);
6819 			if (ret)
6820 				return ret;
6821 		}
6822 
6823 		next = NULL;
6824 		while (1) {
6825 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
6826 			if (!udev)
6827 				break;
6828 			if (ignore)
6829 				continue;
6830 
6831 			next = udev;
6832 			niter = &udev->adj_list.upper;
6833 			dev_stack[cur] = now;
6834 			iter_stack[cur++] = iter;
6835 			break;
6836 		}
6837 
6838 		if (!next) {
6839 			if (!cur)
6840 				return 0;
6841 			next = dev_stack[--cur];
6842 			niter = iter_stack[cur];
6843 		}
6844 
6845 		now = next;
6846 		iter = niter;
6847 	}
6848 
6849 	return 0;
6850 }
6851 
6852 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6853 				  int (*fn)(struct net_device *dev,
6854 					    struct netdev_nested_priv *priv),
6855 				  struct netdev_nested_priv *priv)
6856 {
6857 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6858 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6859 	int ret, cur = 0;
6860 
6861 	now = dev;
6862 	iter = &dev->adj_list.upper;
6863 
6864 	while (1) {
6865 		if (now != dev) {
6866 			ret = fn(now, priv);
6867 			if (ret)
6868 				return ret;
6869 		}
6870 
6871 		next = NULL;
6872 		while (1) {
6873 			udev = netdev_next_upper_dev_rcu(now, &iter);
6874 			if (!udev)
6875 				break;
6876 
6877 			next = udev;
6878 			niter = &udev->adj_list.upper;
6879 			dev_stack[cur] = now;
6880 			iter_stack[cur++] = iter;
6881 			break;
6882 		}
6883 
6884 		if (!next) {
6885 			if (!cur)
6886 				return 0;
6887 			next = dev_stack[--cur];
6888 			niter = iter_stack[cur];
6889 		}
6890 
6891 		now = next;
6892 		iter = niter;
6893 	}
6894 
6895 	return 0;
6896 }
6897 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6898 
6899 static bool __netdev_has_upper_dev(struct net_device *dev,
6900 				   struct net_device *upper_dev)
6901 {
6902 	struct netdev_nested_priv priv = {
6903 		.flags = 0,
6904 		.data = (void *)upper_dev,
6905 	};
6906 
6907 	ASSERT_RTNL();
6908 
6909 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
6910 					   &priv);
6911 }
6912 
6913 /**
6914  * netdev_lower_get_next_private - Get the next ->private from the
6915  *				   lower neighbour list
6916  * @dev: device
6917  * @iter: list_head ** of the current position
6918  *
6919  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6920  * list, starting from iter position. The caller must hold either hold the
6921  * RTNL lock or its own locking that guarantees that the neighbour lower
6922  * list will remain unchanged.
6923  */
6924 void *netdev_lower_get_next_private(struct net_device *dev,
6925 				    struct list_head **iter)
6926 {
6927 	struct netdev_adjacent *lower;
6928 
6929 	lower = list_entry(*iter, struct netdev_adjacent, list);
6930 
6931 	if (&lower->list == &dev->adj_list.lower)
6932 		return NULL;
6933 
6934 	*iter = lower->list.next;
6935 
6936 	return lower->private;
6937 }
6938 EXPORT_SYMBOL(netdev_lower_get_next_private);
6939 
6940 /**
6941  * netdev_lower_get_next_private_rcu - Get the next ->private from the
6942  *				       lower neighbour list, RCU
6943  *				       variant
6944  * @dev: device
6945  * @iter: list_head ** of the current position
6946  *
6947  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6948  * list, starting from iter position. The caller must hold RCU read lock.
6949  */
6950 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6951 					struct list_head **iter)
6952 {
6953 	struct netdev_adjacent *lower;
6954 
6955 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
6956 
6957 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6958 
6959 	if (&lower->list == &dev->adj_list.lower)
6960 		return NULL;
6961 
6962 	*iter = &lower->list;
6963 
6964 	return lower->private;
6965 }
6966 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6967 
6968 /**
6969  * netdev_lower_get_next - Get the next device from the lower neighbour
6970  *                         list
6971  * @dev: device
6972  * @iter: list_head ** of the current position
6973  *
6974  * Gets the next netdev_adjacent from the dev's lower neighbour
6975  * list, starting from iter position. The caller must hold RTNL lock or
6976  * its own locking that guarantees that the neighbour lower
6977  * list will remain unchanged.
6978  */
6979 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6980 {
6981 	struct netdev_adjacent *lower;
6982 
6983 	lower = list_entry(*iter, struct netdev_adjacent, list);
6984 
6985 	if (&lower->list == &dev->adj_list.lower)
6986 		return NULL;
6987 
6988 	*iter = lower->list.next;
6989 
6990 	return lower->dev;
6991 }
6992 EXPORT_SYMBOL(netdev_lower_get_next);
6993 
6994 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6995 						struct list_head **iter)
6996 {
6997 	struct netdev_adjacent *lower;
6998 
6999 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7000 
7001 	if (&lower->list == &dev->adj_list.lower)
7002 		return NULL;
7003 
7004 	*iter = &lower->list;
7005 
7006 	return lower->dev;
7007 }
7008 
7009 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7010 						  struct list_head **iter,
7011 						  bool *ignore)
7012 {
7013 	struct netdev_adjacent *lower;
7014 
7015 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7016 
7017 	if (&lower->list == &dev->adj_list.lower)
7018 		return NULL;
7019 
7020 	*iter = &lower->list;
7021 	*ignore = lower->ignore;
7022 
7023 	return lower->dev;
7024 }
7025 
7026 int netdev_walk_all_lower_dev(struct net_device *dev,
7027 			      int (*fn)(struct net_device *dev,
7028 					struct netdev_nested_priv *priv),
7029 			      struct netdev_nested_priv *priv)
7030 {
7031 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7032 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7033 	int ret, cur = 0;
7034 
7035 	now = dev;
7036 	iter = &dev->adj_list.lower;
7037 
7038 	while (1) {
7039 		if (now != dev) {
7040 			ret = fn(now, priv);
7041 			if (ret)
7042 				return ret;
7043 		}
7044 
7045 		next = NULL;
7046 		while (1) {
7047 			ldev = netdev_next_lower_dev(now, &iter);
7048 			if (!ldev)
7049 				break;
7050 
7051 			next = ldev;
7052 			niter = &ldev->adj_list.lower;
7053 			dev_stack[cur] = now;
7054 			iter_stack[cur++] = iter;
7055 			break;
7056 		}
7057 
7058 		if (!next) {
7059 			if (!cur)
7060 				return 0;
7061 			next = dev_stack[--cur];
7062 			niter = iter_stack[cur];
7063 		}
7064 
7065 		now = next;
7066 		iter = niter;
7067 	}
7068 
7069 	return 0;
7070 }
7071 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7072 
7073 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7074 				       int (*fn)(struct net_device *dev,
7075 					 struct netdev_nested_priv *priv),
7076 				       struct netdev_nested_priv *priv)
7077 {
7078 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7079 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7080 	int ret, cur = 0;
7081 	bool ignore;
7082 
7083 	now = dev;
7084 	iter = &dev->adj_list.lower;
7085 
7086 	while (1) {
7087 		if (now != dev) {
7088 			ret = fn(now, priv);
7089 			if (ret)
7090 				return ret;
7091 		}
7092 
7093 		next = NULL;
7094 		while (1) {
7095 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7096 			if (!ldev)
7097 				break;
7098 			if (ignore)
7099 				continue;
7100 
7101 			next = ldev;
7102 			niter = &ldev->adj_list.lower;
7103 			dev_stack[cur] = now;
7104 			iter_stack[cur++] = iter;
7105 			break;
7106 		}
7107 
7108 		if (!next) {
7109 			if (!cur)
7110 				return 0;
7111 			next = dev_stack[--cur];
7112 			niter = iter_stack[cur];
7113 		}
7114 
7115 		now = next;
7116 		iter = niter;
7117 	}
7118 
7119 	return 0;
7120 }
7121 
7122 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7123 					     struct list_head **iter)
7124 {
7125 	struct netdev_adjacent *lower;
7126 
7127 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7128 	if (&lower->list == &dev->adj_list.lower)
7129 		return NULL;
7130 
7131 	*iter = &lower->list;
7132 
7133 	return lower->dev;
7134 }
7135 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7136 
7137 static u8 __netdev_upper_depth(struct net_device *dev)
7138 {
7139 	struct net_device *udev;
7140 	struct list_head *iter;
7141 	u8 max_depth = 0;
7142 	bool ignore;
7143 
7144 	for (iter = &dev->adj_list.upper,
7145 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7146 	     udev;
7147 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7148 		if (ignore)
7149 			continue;
7150 		if (max_depth < udev->upper_level)
7151 			max_depth = udev->upper_level;
7152 	}
7153 
7154 	return max_depth;
7155 }
7156 
7157 static u8 __netdev_lower_depth(struct net_device *dev)
7158 {
7159 	struct net_device *ldev;
7160 	struct list_head *iter;
7161 	u8 max_depth = 0;
7162 	bool ignore;
7163 
7164 	for (iter = &dev->adj_list.lower,
7165 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7166 	     ldev;
7167 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7168 		if (ignore)
7169 			continue;
7170 		if (max_depth < ldev->lower_level)
7171 			max_depth = ldev->lower_level;
7172 	}
7173 
7174 	return max_depth;
7175 }
7176 
7177 static int __netdev_update_upper_level(struct net_device *dev,
7178 				       struct netdev_nested_priv *__unused)
7179 {
7180 	dev->upper_level = __netdev_upper_depth(dev) + 1;
7181 	return 0;
7182 }
7183 
7184 static int __netdev_update_lower_level(struct net_device *dev,
7185 				       struct netdev_nested_priv *priv)
7186 {
7187 	dev->lower_level = __netdev_lower_depth(dev) + 1;
7188 
7189 #ifdef CONFIG_LOCKDEP
7190 	if (!priv)
7191 		return 0;
7192 
7193 	if (priv->flags & NESTED_SYNC_IMM)
7194 		dev->nested_level = dev->lower_level - 1;
7195 	if (priv->flags & NESTED_SYNC_TODO)
7196 		net_unlink_todo(dev);
7197 #endif
7198 	return 0;
7199 }
7200 
7201 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7202 				  int (*fn)(struct net_device *dev,
7203 					    struct netdev_nested_priv *priv),
7204 				  struct netdev_nested_priv *priv)
7205 {
7206 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7207 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7208 	int ret, cur = 0;
7209 
7210 	now = dev;
7211 	iter = &dev->adj_list.lower;
7212 
7213 	while (1) {
7214 		if (now != dev) {
7215 			ret = fn(now, priv);
7216 			if (ret)
7217 				return ret;
7218 		}
7219 
7220 		next = NULL;
7221 		while (1) {
7222 			ldev = netdev_next_lower_dev_rcu(now, &iter);
7223 			if (!ldev)
7224 				break;
7225 
7226 			next = ldev;
7227 			niter = &ldev->adj_list.lower;
7228 			dev_stack[cur] = now;
7229 			iter_stack[cur++] = iter;
7230 			break;
7231 		}
7232 
7233 		if (!next) {
7234 			if (!cur)
7235 				return 0;
7236 			next = dev_stack[--cur];
7237 			niter = iter_stack[cur];
7238 		}
7239 
7240 		now = next;
7241 		iter = niter;
7242 	}
7243 
7244 	return 0;
7245 }
7246 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7247 
7248 /**
7249  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7250  *				       lower neighbour list, RCU
7251  *				       variant
7252  * @dev: device
7253  *
7254  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7255  * list. The caller must hold RCU read lock.
7256  */
7257 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7258 {
7259 	struct netdev_adjacent *lower;
7260 
7261 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
7262 			struct netdev_adjacent, list);
7263 	if (lower)
7264 		return lower->private;
7265 	return NULL;
7266 }
7267 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7268 
7269 /**
7270  * netdev_master_upper_dev_get_rcu - Get master upper device
7271  * @dev: device
7272  *
7273  * Find a master upper device and return pointer to it or NULL in case
7274  * it's not there. The caller must hold the RCU read lock.
7275  */
7276 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7277 {
7278 	struct netdev_adjacent *upper;
7279 
7280 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
7281 				       struct netdev_adjacent, list);
7282 	if (upper && likely(upper->master))
7283 		return upper->dev;
7284 	return NULL;
7285 }
7286 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7287 
7288 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7289 			      struct net_device *adj_dev,
7290 			      struct list_head *dev_list)
7291 {
7292 	char linkname[IFNAMSIZ+7];
7293 
7294 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7295 		"upper_%s" : "lower_%s", adj_dev->name);
7296 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7297 				 linkname);
7298 }
7299 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7300 			       char *name,
7301 			       struct list_head *dev_list)
7302 {
7303 	char linkname[IFNAMSIZ+7];
7304 
7305 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7306 		"upper_%s" : "lower_%s", name);
7307 	sysfs_remove_link(&(dev->dev.kobj), linkname);
7308 }
7309 
7310 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7311 						 struct net_device *adj_dev,
7312 						 struct list_head *dev_list)
7313 {
7314 	return (dev_list == &dev->adj_list.upper ||
7315 		dev_list == &dev->adj_list.lower) &&
7316 		net_eq(dev_net(dev), dev_net(adj_dev));
7317 }
7318 
7319 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7320 					struct net_device *adj_dev,
7321 					struct list_head *dev_list,
7322 					void *private, bool master)
7323 {
7324 	struct netdev_adjacent *adj;
7325 	int ret;
7326 
7327 	adj = __netdev_find_adj(adj_dev, dev_list);
7328 
7329 	if (adj) {
7330 		adj->ref_nr += 1;
7331 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7332 			 dev->name, adj_dev->name, adj->ref_nr);
7333 
7334 		return 0;
7335 	}
7336 
7337 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7338 	if (!adj)
7339 		return -ENOMEM;
7340 
7341 	adj->dev = adj_dev;
7342 	adj->master = master;
7343 	adj->ref_nr = 1;
7344 	adj->private = private;
7345 	adj->ignore = false;
7346 	dev_hold_track(adj_dev, &adj->dev_tracker, GFP_KERNEL);
7347 
7348 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7349 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7350 
7351 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7352 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7353 		if (ret)
7354 			goto free_adj;
7355 	}
7356 
7357 	/* Ensure that master link is always the first item in list. */
7358 	if (master) {
7359 		ret = sysfs_create_link(&(dev->dev.kobj),
7360 					&(adj_dev->dev.kobj), "master");
7361 		if (ret)
7362 			goto remove_symlinks;
7363 
7364 		list_add_rcu(&adj->list, dev_list);
7365 	} else {
7366 		list_add_tail_rcu(&adj->list, dev_list);
7367 	}
7368 
7369 	return 0;
7370 
7371 remove_symlinks:
7372 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7373 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7374 free_adj:
7375 	dev_put_track(adj_dev, &adj->dev_tracker);
7376 	kfree(adj);
7377 
7378 	return ret;
7379 }
7380 
7381 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7382 					 struct net_device *adj_dev,
7383 					 u16 ref_nr,
7384 					 struct list_head *dev_list)
7385 {
7386 	struct netdev_adjacent *adj;
7387 
7388 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7389 		 dev->name, adj_dev->name, ref_nr);
7390 
7391 	adj = __netdev_find_adj(adj_dev, dev_list);
7392 
7393 	if (!adj) {
7394 		pr_err("Adjacency does not exist for device %s from %s\n",
7395 		       dev->name, adj_dev->name);
7396 		WARN_ON(1);
7397 		return;
7398 	}
7399 
7400 	if (adj->ref_nr > ref_nr) {
7401 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7402 			 dev->name, adj_dev->name, ref_nr,
7403 			 adj->ref_nr - ref_nr);
7404 		adj->ref_nr -= ref_nr;
7405 		return;
7406 	}
7407 
7408 	if (adj->master)
7409 		sysfs_remove_link(&(dev->dev.kobj), "master");
7410 
7411 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7412 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7413 
7414 	list_del_rcu(&adj->list);
7415 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7416 		 adj_dev->name, dev->name, adj_dev->name);
7417 	dev_put_track(adj_dev, &adj->dev_tracker);
7418 	kfree_rcu(adj, rcu);
7419 }
7420 
7421 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7422 					    struct net_device *upper_dev,
7423 					    struct list_head *up_list,
7424 					    struct list_head *down_list,
7425 					    void *private, bool master)
7426 {
7427 	int ret;
7428 
7429 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7430 					   private, master);
7431 	if (ret)
7432 		return ret;
7433 
7434 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7435 					   private, false);
7436 	if (ret) {
7437 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7438 		return ret;
7439 	}
7440 
7441 	return 0;
7442 }
7443 
7444 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7445 					       struct net_device *upper_dev,
7446 					       u16 ref_nr,
7447 					       struct list_head *up_list,
7448 					       struct list_head *down_list)
7449 {
7450 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7451 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7452 }
7453 
7454 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7455 						struct net_device *upper_dev,
7456 						void *private, bool master)
7457 {
7458 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7459 						&dev->adj_list.upper,
7460 						&upper_dev->adj_list.lower,
7461 						private, master);
7462 }
7463 
7464 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7465 						   struct net_device *upper_dev)
7466 {
7467 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7468 					   &dev->adj_list.upper,
7469 					   &upper_dev->adj_list.lower);
7470 }
7471 
7472 static int __netdev_upper_dev_link(struct net_device *dev,
7473 				   struct net_device *upper_dev, bool master,
7474 				   void *upper_priv, void *upper_info,
7475 				   struct netdev_nested_priv *priv,
7476 				   struct netlink_ext_ack *extack)
7477 {
7478 	struct netdev_notifier_changeupper_info changeupper_info = {
7479 		.info = {
7480 			.dev = dev,
7481 			.extack = extack,
7482 		},
7483 		.upper_dev = upper_dev,
7484 		.master = master,
7485 		.linking = true,
7486 		.upper_info = upper_info,
7487 	};
7488 	struct net_device *master_dev;
7489 	int ret = 0;
7490 
7491 	ASSERT_RTNL();
7492 
7493 	if (dev == upper_dev)
7494 		return -EBUSY;
7495 
7496 	/* To prevent loops, check if dev is not upper device to upper_dev. */
7497 	if (__netdev_has_upper_dev(upper_dev, dev))
7498 		return -EBUSY;
7499 
7500 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7501 		return -EMLINK;
7502 
7503 	if (!master) {
7504 		if (__netdev_has_upper_dev(dev, upper_dev))
7505 			return -EEXIST;
7506 	} else {
7507 		master_dev = __netdev_master_upper_dev_get(dev);
7508 		if (master_dev)
7509 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
7510 	}
7511 
7512 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7513 					    &changeupper_info.info);
7514 	ret = notifier_to_errno(ret);
7515 	if (ret)
7516 		return ret;
7517 
7518 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7519 						   master);
7520 	if (ret)
7521 		return ret;
7522 
7523 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7524 					    &changeupper_info.info);
7525 	ret = notifier_to_errno(ret);
7526 	if (ret)
7527 		goto rollback;
7528 
7529 	__netdev_update_upper_level(dev, NULL);
7530 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7531 
7532 	__netdev_update_lower_level(upper_dev, priv);
7533 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7534 				    priv);
7535 
7536 	return 0;
7537 
7538 rollback:
7539 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7540 
7541 	return ret;
7542 }
7543 
7544 /**
7545  * netdev_upper_dev_link - Add a link to the upper device
7546  * @dev: device
7547  * @upper_dev: new upper device
7548  * @extack: netlink extended ack
7549  *
7550  * Adds a link to device which is upper to this one. The caller must hold
7551  * the RTNL lock. On a failure a negative errno code is returned.
7552  * On success the reference counts are adjusted and the function
7553  * returns zero.
7554  */
7555 int netdev_upper_dev_link(struct net_device *dev,
7556 			  struct net_device *upper_dev,
7557 			  struct netlink_ext_ack *extack)
7558 {
7559 	struct netdev_nested_priv priv = {
7560 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7561 		.data = NULL,
7562 	};
7563 
7564 	return __netdev_upper_dev_link(dev, upper_dev, false,
7565 				       NULL, NULL, &priv, extack);
7566 }
7567 EXPORT_SYMBOL(netdev_upper_dev_link);
7568 
7569 /**
7570  * netdev_master_upper_dev_link - Add a master link to the upper device
7571  * @dev: device
7572  * @upper_dev: new upper device
7573  * @upper_priv: upper device private
7574  * @upper_info: upper info to be passed down via notifier
7575  * @extack: netlink extended ack
7576  *
7577  * Adds a link to device which is upper to this one. In this case, only
7578  * one master upper device can be linked, although other non-master devices
7579  * might be linked as well. The caller must hold the RTNL lock.
7580  * On a failure a negative errno code is returned. On success the reference
7581  * counts are adjusted and the function returns zero.
7582  */
7583 int netdev_master_upper_dev_link(struct net_device *dev,
7584 				 struct net_device *upper_dev,
7585 				 void *upper_priv, void *upper_info,
7586 				 struct netlink_ext_ack *extack)
7587 {
7588 	struct netdev_nested_priv priv = {
7589 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7590 		.data = NULL,
7591 	};
7592 
7593 	return __netdev_upper_dev_link(dev, upper_dev, true,
7594 				       upper_priv, upper_info, &priv, extack);
7595 }
7596 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7597 
7598 static void __netdev_upper_dev_unlink(struct net_device *dev,
7599 				      struct net_device *upper_dev,
7600 				      struct netdev_nested_priv *priv)
7601 {
7602 	struct netdev_notifier_changeupper_info changeupper_info = {
7603 		.info = {
7604 			.dev = dev,
7605 		},
7606 		.upper_dev = upper_dev,
7607 		.linking = false,
7608 	};
7609 
7610 	ASSERT_RTNL();
7611 
7612 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7613 
7614 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7615 				      &changeupper_info.info);
7616 
7617 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7618 
7619 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7620 				      &changeupper_info.info);
7621 
7622 	__netdev_update_upper_level(dev, NULL);
7623 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7624 
7625 	__netdev_update_lower_level(upper_dev, priv);
7626 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7627 				    priv);
7628 }
7629 
7630 /**
7631  * netdev_upper_dev_unlink - Removes a link to upper device
7632  * @dev: device
7633  * @upper_dev: new upper device
7634  *
7635  * Removes a link to device which is upper to this one. The caller must hold
7636  * the RTNL lock.
7637  */
7638 void netdev_upper_dev_unlink(struct net_device *dev,
7639 			     struct net_device *upper_dev)
7640 {
7641 	struct netdev_nested_priv priv = {
7642 		.flags = NESTED_SYNC_TODO,
7643 		.data = NULL,
7644 	};
7645 
7646 	__netdev_upper_dev_unlink(dev, upper_dev, &priv);
7647 }
7648 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7649 
7650 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7651 				      struct net_device *lower_dev,
7652 				      bool val)
7653 {
7654 	struct netdev_adjacent *adj;
7655 
7656 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7657 	if (adj)
7658 		adj->ignore = val;
7659 
7660 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7661 	if (adj)
7662 		adj->ignore = val;
7663 }
7664 
7665 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7666 					struct net_device *lower_dev)
7667 {
7668 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7669 }
7670 
7671 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7672 				       struct net_device *lower_dev)
7673 {
7674 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7675 }
7676 
7677 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7678 				   struct net_device *new_dev,
7679 				   struct net_device *dev,
7680 				   struct netlink_ext_ack *extack)
7681 {
7682 	struct netdev_nested_priv priv = {
7683 		.flags = 0,
7684 		.data = NULL,
7685 	};
7686 	int err;
7687 
7688 	if (!new_dev)
7689 		return 0;
7690 
7691 	if (old_dev && new_dev != old_dev)
7692 		netdev_adjacent_dev_disable(dev, old_dev);
7693 	err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
7694 				      extack);
7695 	if (err) {
7696 		if (old_dev && new_dev != old_dev)
7697 			netdev_adjacent_dev_enable(dev, old_dev);
7698 		return err;
7699 	}
7700 
7701 	return 0;
7702 }
7703 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7704 
7705 void netdev_adjacent_change_commit(struct net_device *old_dev,
7706 				   struct net_device *new_dev,
7707 				   struct net_device *dev)
7708 {
7709 	struct netdev_nested_priv priv = {
7710 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7711 		.data = NULL,
7712 	};
7713 
7714 	if (!new_dev || !old_dev)
7715 		return;
7716 
7717 	if (new_dev == old_dev)
7718 		return;
7719 
7720 	netdev_adjacent_dev_enable(dev, old_dev);
7721 	__netdev_upper_dev_unlink(old_dev, dev, &priv);
7722 }
7723 EXPORT_SYMBOL(netdev_adjacent_change_commit);
7724 
7725 void netdev_adjacent_change_abort(struct net_device *old_dev,
7726 				  struct net_device *new_dev,
7727 				  struct net_device *dev)
7728 {
7729 	struct netdev_nested_priv priv = {
7730 		.flags = 0,
7731 		.data = NULL,
7732 	};
7733 
7734 	if (!new_dev)
7735 		return;
7736 
7737 	if (old_dev && new_dev != old_dev)
7738 		netdev_adjacent_dev_enable(dev, old_dev);
7739 
7740 	__netdev_upper_dev_unlink(new_dev, dev, &priv);
7741 }
7742 EXPORT_SYMBOL(netdev_adjacent_change_abort);
7743 
7744 /**
7745  * netdev_bonding_info_change - Dispatch event about slave change
7746  * @dev: device
7747  * @bonding_info: info to dispatch
7748  *
7749  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7750  * The caller must hold the RTNL lock.
7751  */
7752 void netdev_bonding_info_change(struct net_device *dev,
7753 				struct netdev_bonding_info *bonding_info)
7754 {
7755 	struct netdev_notifier_bonding_info info = {
7756 		.info.dev = dev,
7757 	};
7758 
7759 	memcpy(&info.bonding_info, bonding_info,
7760 	       sizeof(struct netdev_bonding_info));
7761 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7762 				      &info.info);
7763 }
7764 EXPORT_SYMBOL(netdev_bonding_info_change);
7765 
7766 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
7767 					   struct netlink_ext_ack *extack)
7768 {
7769 	struct netdev_notifier_offload_xstats_info info = {
7770 		.info.dev = dev,
7771 		.info.extack = extack,
7772 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
7773 	};
7774 	int err;
7775 	int rc;
7776 
7777 	dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
7778 					 GFP_KERNEL);
7779 	if (!dev->offload_xstats_l3)
7780 		return -ENOMEM;
7781 
7782 	rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
7783 						  NETDEV_OFFLOAD_XSTATS_DISABLE,
7784 						  &info.info);
7785 	err = notifier_to_errno(rc);
7786 	if (err)
7787 		goto free_stats;
7788 
7789 	return 0;
7790 
7791 free_stats:
7792 	kfree(dev->offload_xstats_l3);
7793 	dev->offload_xstats_l3 = NULL;
7794 	return err;
7795 }
7796 
7797 int netdev_offload_xstats_enable(struct net_device *dev,
7798 				 enum netdev_offload_xstats_type type,
7799 				 struct netlink_ext_ack *extack)
7800 {
7801 	ASSERT_RTNL();
7802 
7803 	if (netdev_offload_xstats_enabled(dev, type))
7804 		return -EALREADY;
7805 
7806 	switch (type) {
7807 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7808 		return netdev_offload_xstats_enable_l3(dev, extack);
7809 	}
7810 
7811 	WARN_ON(1);
7812 	return -EINVAL;
7813 }
7814 EXPORT_SYMBOL(netdev_offload_xstats_enable);
7815 
7816 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
7817 {
7818 	struct netdev_notifier_offload_xstats_info info = {
7819 		.info.dev = dev,
7820 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
7821 	};
7822 
7823 	call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
7824 				      &info.info);
7825 	kfree(dev->offload_xstats_l3);
7826 	dev->offload_xstats_l3 = NULL;
7827 }
7828 
7829 int netdev_offload_xstats_disable(struct net_device *dev,
7830 				  enum netdev_offload_xstats_type type)
7831 {
7832 	ASSERT_RTNL();
7833 
7834 	if (!netdev_offload_xstats_enabled(dev, type))
7835 		return -EALREADY;
7836 
7837 	switch (type) {
7838 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7839 		netdev_offload_xstats_disable_l3(dev);
7840 		return 0;
7841 	}
7842 
7843 	WARN_ON(1);
7844 	return -EINVAL;
7845 }
7846 EXPORT_SYMBOL(netdev_offload_xstats_disable);
7847 
7848 static void netdev_offload_xstats_disable_all(struct net_device *dev)
7849 {
7850 	netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
7851 }
7852 
7853 static struct rtnl_hw_stats64 *
7854 netdev_offload_xstats_get_ptr(const struct net_device *dev,
7855 			      enum netdev_offload_xstats_type type)
7856 {
7857 	switch (type) {
7858 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7859 		return dev->offload_xstats_l3;
7860 	}
7861 
7862 	WARN_ON(1);
7863 	return NULL;
7864 }
7865 
7866 bool netdev_offload_xstats_enabled(const struct net_device *dev,
7867 				   enum netdev_offload_xstats_type type)
7868 {
7869 	ASSERT_RTNL();
7870 
7871 	return netdev_offload_xstats_get_ptr(dev, type);
7872 }
7873 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
7874 
7875 struct netdev_notifier_offload_xstats_ru {
7876 	bool used;
7877 };
7878 
7879 struct netdev_notifier_offload_xstats_rd {
7880 	struct rtnl_hw_stats64 stats;
7881 	bool used;
7882 };
7883 
7884 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
7885 				  const struct rtnl_hw_stats64 *src)
7886 {
7887 	dest->rx_packets	  += src->rx_packets;
7888 	dest->tx_packets	  += src->tx_packets;
7889 	dest->rx_bytes		  += src->rx_bytes;
7890 	dest->tx_bytes		  += src->tx_bytes;
7891 	dest->rx_errors		  += src->rx_errors;
7892 	dest->tx_errors		  += src->tx_errors;
7893 	dest->rx_dropped	  += src->rx_dropped;
7894 	dest->tx_dropped	  += src->tx_dropped;
7895 	dest->multicast		  += src->multicast;
7896 }
7897 
7898 static int netdev_offload_xstats_get_used(struct net_device *dev,
7899 					  enum netdev_offload_xstats_type type,
7900 					  bool *p_used,
7901 					  struct netlink_ext_ack *extack)
7902 {
7903 	struct netdev_notifier_offload_xstats_ru report_used = {};
7904 	struct netdev_notifier_offload_xstats_info info = {
7905 		.info.dev = dev,
7906 		.info.extack = extack,
7907 		.type = type,
7908 		.report_used = &report_used,
7909 	};
7910 	int rc;
7911 
7912 	WARN_ON(!netdev_offload_xstats_enabled(dev, type));
7913 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
7914 					   &info.info);
7915 	*p_used = report_used.used;
7916 	return notifier_to_errno(rc);
7917 }
7918 
7919 static int netdev_offload_xstats_get_stats(struct net_device *dev,
7920 					   enum netdev_offload_xstats_type type,
7921 					   struct rtnl_hw_stats64 *p_stats,
7922 					   bool *p_used,
7923 					   struct netlink_ext_ack *extack)
7924 {
7925 	struct netdev_notifier_offload_xstats_rd report_delta = {};
7926 	struct netdev_notifier_offload_xstats_info info = {
7927 		.info.dev = dev,
7928 		.info.extack = extack,
7929 		.type = type,
7930 		.report_delta = &report_delta,
7931 	};
7932 	struct rtnl_hw_stats64 *stats;
7933 	int rc;
7934 
7935 	stats = netdev_offload_xstats_get_ptr(dev, type);
7936 	if (WARN_ON(!stats))
7937 		return -EINVAL;
7938 
7939 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
7940 					   &info.info);
7941 
7942 	/* Cache whatever we got, even if there was an error, otherwise the
7943 	 * successful stats retrievals would get lost.
7944 	 */
7945 	netdev_hw_stats64_add(stats, &report_delta.stats);
7946 
7947 	if (p_stats)
7948 		*p_stats = *stats;
7949 	*p_used = report_delta.used;
7950 
7951 	return notifier_to_errno(rc);
7952 }
7953 
7954 int netdev_offload_xstats_get(struct net_device *dev,
7955 			      enum netdev_offload_xstats_type type,
7956 			      struct rtnl_hw_stats64 *p_stats, bool *p_used,
7957 			      struct netlink_ext_ack *extack)
7958 {
7959 	ASSERT_RTNL();
7960 
7961 	if (p_stats)
7962 		return netdev_offload_xstats_get_stats(dev, type, p_stats,
7963 						       p_used, extack);
7964 	else
7965 		return netdev_offload_xstats_get_used(dev, type, p_used,
7966 						      extack);
7967 }
7968 EXPORT_SYMBOL(netdev_offload_xstats_get);
7969 
7970 void
7971 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
7972 				   const struct rtnl_hw_stats64 *stats)
7973 {
7974 	report_delta->used = true;
7975 	netdev_hw_stats64_add(&report_delta->stats, stats);
7976 }
7977 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
7978 
7979 void
7980 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
7981 {
7982 	report_used->used = true;
7983 }
7984 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
7985 
7986 void netdev_offload_xstats_push_delta(struct net_device *dev,
7987 				      enum netdev_offload_xstats_type type,
7988 				      const struct rtnl_hw_stats64 *p_stats)
7989 {
7990 	struct rtnl_hw_stats64 *stats;
7991 
7992 	ASSERT_RTNL();
7993 
7994 	stats = netdev_offload_xstats_get_ptr(dev, type);
7995 	if (WARN_ON(!stats))
7996 		return;
7997 
7998 	netdev_hw_stats64_add(stats, p_stats);
7999 }
8000 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8001 
8002 /**
8003  * netdev_get_xmit_slave - Get the xmit slave of master device
8004  * @dev: device
8005  * @skb: The packet
8006  * @all_slaves: assume all the slaves are active
8007  *
8008  * The reference counters are not incremented so the caller must be
8009  * careful with locks. The caller must hold RCU lock.
8010  * %NULL is returned if no slave is found.
8011  */
8012 
8013 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8014 					 struct sk_buff *skb,
8015 					 bool all_slaves)
8016 {
8017 	const struct net_device_ops *ops = dev->netdev_ops;
8018 
8019 	if (!ops->ndo_get_xmit_slave)
8020 		return NULL;
8021 	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8022 }
8023 EXPORT_SYMBOL(netdev_get_xmit_slave);
8024 
8025 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8026 						  struct sock *sk)
8027 {
8028 	const struct net_device_ops *ops = dev->netdev_ops;
8029 
8030 	if (!ops->ndo_sk_get_lower_dev)
8031 		return NULL;
8032 	return ops->ndo_sk_get_lower_dev(dev, sk);
8033 }
8034 
8035 /**
8036  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8037  * @dev: device
8038  * @sk: the socket
8039  *
8040  * %NULL is returned if no lower device is found.
8041  */
8042 
8043 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8044 					    struct sock *sk)
8045 {
8046 	struct net_device *lower;
8047 
8048 	lower = netdev_sk_get_lower_dev(dev, sk);
8049 	while (lower) {
8050 		dev = lower;
8051 		lower = netdev_sk_get_lower_dev(dev, sk);
8052 	}
8053 
8054 	return dev;
8055 }
8056 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8057 
8058 static void netdev_adjacent_add_links(struct net_device *dev)
8059 {
8060 	struct netdev_adjacent *iter;
8061 
8062 	struct net *net = dev_net(dev);
8063 
8064 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8065 		if (!net_eq(net, dev_net(iter->dev)))
8066 			continue;
8067 		netdev_adjacent_sysfs_add(iter->dev, dev,
8068 					  &iter->dev->adj_list.lower);
8069 		netdev_adjacent_sysfs_add(dev, iter->dev,
8070 					  &dev->adj_list.upper);
8071 	}
8072 
8073 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8074 		if (!net_eq(net, dev_net(iter->dev)))
8075 			continue;
8076 		netdev_adjacent_sysfs_add(iter->dev, dev,
8077 					  &iter->dev->adj_list.upper);
8078 		netdev_adjacent_sysfs_add(dev, iter->dev,
8079 					  &dev->adj_list.lower);
8080 	}
8081 }
8082 
8083 static void netdev_adjacent_del_links(struct net_device *dev)
8084 {
8085 	struct netdev_adjacent *iter;
8086 
8087 	struct net *net = dev_net(dev);
8088 
8089 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8090 		if (!net_eq(net, dev_net(iter->dev)))
8091 			continue;
8092 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8093 					  &iter->dev->adj_list.lower);
8094 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8095 					  &dev->adj_list.upper);
8096 	}
8097 
8098 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8099 		if (!net_eq(net, dev_net(iter->dev)))
8100 			continue;
8101 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8102 					  &iter->dev->adj_list.upper);
8103 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8104 					  &dev->adj_list.lower);
8105 	}
8106 }
8107 
8108 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8109 {
8110 	struct netdev_adjacent *iter;
8111 
8112 	struct net *net = dev_net(dev);
8113 
8114 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8115 		if (!net_eq(net, dev_net(iter->dev)))
8116 			continue;
8117 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8118 					  &iter->dev->adj_list.lower);
8119 		netdev_adjacent_sysfs_add(iter->dev, dev,
8120 					  &iter->dev->adj_list.lower);
8121 	}
8122 
8123 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8124 		if (!net_eq(net, dev_net(iter->dev)))
8125 			continue;
8126 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8127 					  &iter->dev->adj_list.upper);
8128 		netdev_adjacent_sysfs_add(iter->dev, dev,
8129 					  &iter->dev->adj_list.upper);
8130 	}
8131 }
8132 
8133 void *netdev_lower_dev_get_private(struct net_device *dev,
8134 				   struct net_device *lower_dev)
8135 {
8136 	struct netdev_adjacent *lower;
8137 
8138 	if (!lower_dev)
8139 		return NULL;
8140 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8141 	if (!lower)
8142 		return NULL;
8143 
8144 	return lower->private;
8145 }
8146 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8147 
8148 
8149 /**
8150  * netdev_lower_state_changed - Dispatch event about lower device state change
8151  * @lower_dev: device
8152  * @lower_state_info: state to dispatch
8153  *
8154  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8155  * The caller must hold the RTNL lock.
8156  */
8157 void netdev_lower_state_changed(struct net_device *lower_dev,
8158 				void *lower_state_info)
8159 {
8160 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8161 		.info.dev = lower_dev,
8162 	};
8163 
8164 	ASSERT_RTNL();
8165 	changelowerstate_info.lower_state_info = lower_state_info;
8166 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8167 				      &changelowerstate_info.info);
8168 }
8169 EXPORT_SYMBOL(netdev_lower_state_changed);
8170 
8171 static void dev_change_rx_flags(struct net_device *dev, int flags)
8172 {
8173 	const struct net_device_ops *ops = dev->netdev_ops;
8174 
8175 	if (ops->ndo_change_rx_flags)
8176 		ops->ndo_change_rx_flags(dev, flags);
8177 }
8178 
8179 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8180 {
8181 	unsigned int old_flags = dev->flags;
8182 	kuid_t uid;
8183 	kgid_t gid;
8184 
8185 	ASSERT_RTNL();
8186 
8187 	dev->flags |= IFF_PROMISC;
8188 	dev->promiscuity += inc;
8189 	if (dev->promiscuity == 0) {
8190 		/*
8191 		 * Avoid overflow.
8192 		 * If inc causes overflow, untouch promisc and return error.
8193 		 */
8194 		if (inc < 0)
8195 			dev->flags &= ~IFF_PROMISC;
8196 		else {
8197 			dev->promiscuity -= inc;
8198 			netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8199 			return -EOVERFLOW;
8200 		}
8201 	}
8202 	if (dev->flags != old_flags) {
8203 		pr_info("device %s %s promiscuous mode\n",
8204 			dev->name,
8205 			dev->flags & IFF_PROMISC ? "entered" : "left");
8206 		if (audit_enabled) {
8207 			current_uid_gid(&uid, &gid);
8208 			audit_log(audit_context(), GFP_ATOMIC,
8209 				  AUDIT_ANOM_PROMISCUOUS,
8210 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8211 				  dev->name, (dev->flags & IFF_PROMISC),
8212 				  (old_flags & IFF_PROMISC),
8213 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
8214 				  from_kuid(&init_user_ns, uid),
8215 				  from_kgid(&init_user_ns, gid),
8216 				  audit_get_sessionid(current));
8217 		}
8218 
8219 		dev_change_rx_flags(dev, IFF_PROMISC);
8220 	}
8221 	if (notify)
8222 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
8223 	return 0;
8224 }
8225 
8226 /**
8227  *	dev_set_promiscuity	- update promiscuity count on a device
8228  *	@dev: device
8229  *	@inc: modifier
8230  *
8231  *	Add or remove promiscuity from a device. While the count in the device
8232  *	remains above zero the interface remains promiscuous. Once it hits zero
8233  *	the device reverts back to normal filtering operation. A negative inc
8234  *	value is used to drop promiscuity on the device.
8235  *	Return 0 if successful or a negative errno code on error.
8236  */
8237 int dev_set_promiscuity(struct net_device *dev, int inc)
8238 {
8239 	unsigned int old_flags = dev->flags;
8240 	int err;
8241 
8242 	err = __dev_set_promiscuity(dev, inc, true);
8243 	if (err < 0)
8244 		return err;
8245 	if (dev->flags != old_flags)
8246 		dev_set_rx_mode(dev);
8247 	return err;
8248 }
8249 EXPORT_SYMBOL(dev_set_promiscuity);
8250 
8251 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8252 {
8253 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8254 
8255 	ASSERT_RTNL();
8256 
8257 	dev->flags |= IFF_ALLMULTI;
8258 	dev->allmulti += inc;
8259 	if (dev->allmulti == 0) {
8260 		/*
8261 		 * Avoid overflow.
8262 		 * If inc causes overflow, untouch allmulti and return error.
8263 		 */
8264 		if (inc < 0)
8265 			dev->flags &= ~IFF_ALLMULTI;
8266 		else {
8267 			dev->allmulti -= inc;
8268 			netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8269 			return -EOVERFLOW;
8270 		}
8271 	}
8272 	if (dev->flags ^ old_flags) {
8273 		dev_change_rx_flags(dev, IFF_ALLMULTI);
8274 		dev_set_rx_mode(dev);
8275 		if (notify)
8276 			__dev_notify_flags(dev, old_flags,
8277 					   dev->gflags ^ old_gflags);
8278 	}
8279 	return 0;
8280 }
8281 
8282 /**
8283  *	dev_set_allmulti	- update allmulti count on a device
8284  *	@dev: device
8285  *	@inc: modifier
8286  *
8287  *	Add or remove reception of all multicast frames to a device. While the
8288  *	count in the device remains above zero the interface remains listening
8289  *	to all interfaces. Once it hits zero the device reverts back to normal
8290  *	filtering operation. A negative @inc value is used to drop the counter
8291  *	when releasing a resource needing all multicasts.
8292  *	Return 0 if successful or a negative errno code on error.
8293  */
8294 
8295 int dev_set_allmulti(struct net_device *dev, int inc)
8296 {
8297 	return __dev_set_allmulti(dev, inc, true);
8298 }
8299 EXPORT_SYMBOL(dev_set_allmulti);
8300 
8301 /*
8302  *	Upload unicast and multicast address lists to device and
8303  *	configure RX filtering. When the device doesn't support unicast
8304  *	filtering it is put in promiscuous mode while unicast addresses
8305  *	are present.
8306  */
8307 void __dev_set_rx_mode(struct net_device *dev)
8308 {
8309 	const struct net_device_ops *ops = dev->netdev_ops;
8310 
8311 	/* dev_open will call this function so the list will stay sane. */
8312 	if (!(dev->flags&IFF_UP))
8313 		return;
8314 
8315 	if (!netif_device_present(dev))
8316 		return;
8317 
8318 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8319 		/* Unicast addresses changes may only happen under the rtnl,
8320 		 * therefore calling __dev_set_promiscuity here is safe.
8321 		 */
8322 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8323 			__dev_set_promiscuity(dev, 1, false);
8324 			dev->uc_promisc = true;
8325 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8326 			__dev_set_promiscuity(dev, -1, false);
8327 			dev->uc_promisc = false;
8328 		}
8329 	}
8330 
8331 	if (ops->ndo_set_rx_mode)
8332 		ops->ndo_set_rx_mode(dev);
8333 }
8334 
8335 void dev_set_rx_mode(struct net_device *dev)
8336 {
8337 	netif_addr_lock_bh(dev);
8338 	__dev_set_rx_mode(dev);
8339 	netif_addr_unlock_bh(dev);
8340 }
8341 
8342 /**
8343  *	dev_get_flags - get flags reported to userspace
8344  *	@dev: device
8345  *
8346  *	Get the combination of flag bits exported through APIs to userspace.
8347  */
8348 unsigned int dev_get_flags(const struct net_device *dev)
8349 {
8350 	unsigned int flags;
8351 
8352 	flags = (dev->flags & ~(IFF_PROMISC |
8353 				IFF_ALLMULTI |
8354 				IFF_RUNNING |
8355 				IFF_LOWER_UP |
8356 				IFF_DORMANT)) |
8357 		(dev->gflags & (IFF_PROMISC |
8358 				IFF_ALLMULTI));
8359 
8360 	if (netif_running(dev)) {
8361 		if (netif_oper_up(dev))
8362 			flags |= IFF_RUNNING;
8363 		if (netif_carrier_ok(dev))
8364 			flags |= IFF_LOWER_UP;
8365 		if (netif_dormant(dev))
8366 			flags |= IFF_DORMANT;
8367 	}
8368 
8369 	return flags;
8370 }
8371 EXPORT_SYMBOL(dev_get_flags);
8372 
8373 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8374 		       struct netlink_ext_ack *extack)
8375 {
8376 	unsigned int old_flags = dev->flags;
8377 	int ret;
8378 
8379 	ASSERT_RTNL();
8380 
8381 	/*
8382 	 *	Set the flags on our device.
8383 	 */
8384 
8385 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8386 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8387 			       IFF_AUTOMEDIA)) |
8388 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8389 				    IFF_ALLMULTI));
8390 
8391 	/*
8392 	 *	Load in the correct multicast list now the flags have changed.
8393 	 */
8394 
8395 	if ((old_flags ^ flags) & IFF_MULTICAST)
8396 		dev_change_rx_flags(dev, IFF_MULTICAST);
8397 
8398 	dev_set_rx_mode(dev);
8399 
8400 	/*
8401 	 *	Have we downed the interface. We handle IFF_UP ourselves
8402 	 *	according to user attempts to set it, rather than blindly
8403 	 *	setting it.
8404 	 */
8405 
8406 	ret = 0;
8407 	if ((old_flags ^ flags) & IFF_UP) {
8408 		if (old_flags & IFF_UP)
8409 			__dev_close(dev);
8410 		else
8411 			ret = __dev_open(dev, extack);
8412 	}
8413 
8414 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
8415 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
8416 		unsigned int old_flags = dev->flags;
8417 
8418 		dev->gflags ^= IFF_PROMISC;
8419 
8420 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
8421 			if (dev->flags != old_flags)
8422 				dev_set_rx_mode(dev);
8423 	}
8424 
8425 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8426 	 * is important. Some (broken) drivers set IFF_PROMISC, when
8427 	 * IFF_ALLMULTI is requested not asking us and not reporting.
8428 	 */
8429 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8430 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8431 
8432 		dev->gflags ^= IFF_ALLMULTI;
8433 		__dev_set_allmulti(dev, inc, false);
8434 	}
8435 
8436 	return ret;
8437 }
8438 
8439 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8440 			unsigned int gchanges)
8441 {
8442 	unsigned int changes = dev->flags ^ old_flags;
8443 
8444 	if (gchanges)
8445 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8446 
8447 	if (changes & IFF_UP) {
8448 		if (dev->flags & IFF_UP)
8449 			call_netdevice_notifiers(NETDEV_UP, dev);
8450 		else
8451 			call_netdevice_notifiers(NETDEV_DOWN, dev);
8452 	}
8453 
8454 	if (dev->flags & IFF_UP &&
8455 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8456 		struct netdev_notifier_change_info change_info = {
8457 			.info = {
8458 				.dev = dev,
8459 			},
8460 			.flags_changed = changes,
8461 		};
8462 
8463 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8464 	}
8465 }
8466 
8467 /**
8468  *	dev_change_flags - change device settings
8469  *	@dev: device
8470  *	@flags: device state flags
8471  *	@extack: netlink extended ack
8472  *
8473  *	Change settings on device based state flags. The flags are
8474  *	in the userspace exported format.
8475  */
8476 int dev_change_flags(struct net_device *dev, unsigned int flags,
8477 		     struct netlink_ext_ack *extack)
8478 {
8479 	int ret;
8480 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8481 
8482 	ret = __dev_change_flags(dev, flags, extack);
8483 	if (ret < 0)
8484 		return ret;
8485 
8486 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8487 	__dev_notify_flags(dev, old_flags, changes);
8488 	return ret;
8489 }
8490 EXPORT_SYMBOL(dev_change_flags);
8491 
8492 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8493 {
8494 	const struct net_device_ops *ops = dev->netdev_ops;
8495 
8496 	if (ops->ndo_change_mtu)
8497 		return ops->ndo_change_mtu(dev, new_mtu);
8498 
8499 	/* Pairs with all the lockless reads of dev->mtu in the stack */
8500 	WRITE_ONCE(dev->mtu, new_mtu);
8501 	return 0;
8502 }
8503 EXPORT_SYMBOL(__dev_set_mtu);
8504 
8505 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8506 		     struct netlink_ext_ack *extack)
8507 {
8508 	/* MTU must be positive, and in range */
8509 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8510 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8511 		return -EINVAL;
8512 	}
8513 
8514 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8515 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8516 		return -EINVAL;
8517 	}
8518 	return 0;
8519 }
8520 
8521 /**
8522  *	dev_set_mtu_ext - Change maximum transfer unit
8523  *	@dev: device
8524  *	@new_mtu: new transfer unit
8525  *	@extack: netlink extended ack
8526  *
8527  *	Change the maximum transfer size of the network device.
8528  */
8529 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8530 		    struct netlink_ext_ack *extack)
8531 {
8532 	int err, orig_mtu;
8533 
8534 	if (new_mtu == dev->mtu)
8535 		return 0;
8536 
8537 	err = dev_validate_mtu(dev, new_mtu, extack);
8538 	if (err)
8539 		return err;
8540 
8541 	if (!netif_device_present(dev))
8542 		return -ENODEV;
8543 
8544 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8545 	err = notifier_to_errno(err);
8546 	if (err)
8547 		return err;
8548 
8549 	orig_mtu = dev->mtu;
8550 	err = __dev_set_mtu(dev, new_mtu);
8551 
8552 	if (!err) {
8553 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8554 						   orig_mtu);
8555 		err = notifier_to_errno(err);
8556 		if (err) {
8557 			/* setting mtu back and notifying everyone again,
8558 			 * so that they have a chance to revert changes.
8559 			 */
8560 			__dev_set_mtu(dev, orig_mtu);
8561 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8562 						     new_mtu);
8563 		}
8564 	}
8565 	return err;
8566 }
8567 
8568 int dev_set_mtu(struct net_device *dev, int new_mtu)
8569 {
8570 	struct netlink_ext_ack extack;
8571 	int err;
8572 
8573 	memset(&extack, 0, sizeof(extack));
8574 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
8575 	if (err && extack._msg)
8576 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8577 	return err;
8578 }
8579 EXPORT_SYMBOL(dev_set_mtu);
8580 
8581 /**
8582  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
8583  *	@dev: device
8584  *	@new_len: new tx queue length
8585  */
8586 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8587 {
8588 	unsigned int orig_len = dev->tx_queue_len;
8589 	int res;
8590 
8591 	if (new_len != (unsigned int)new_len)
8592 		return -ERANGE;
8593 
8594 	if (new_len != orig_len) {
8595 		dev->tx_queue_len = new_len;
8596 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8597 		res = notifier_to_errno(res);
8598 		if (res)
8599 			goto err_rollback;
8600 		res = dev_qdisc_change_tx_queue_len(dev);
8601 		if (res)
8602 			goto err_rollback;
8603 	}
8604 
8605 	return 0;
8606 
8607 err_rollback:
8608 	netdev_err(dev, "refused to change device tx_queue_len\n");
8609 	dev->tx_queue_len = orig_len;
8610 	return res;
8611 }
8612 
8613 /**
8614  *	dev_set_group - Change group this device belongs to
8615  *	@dev: device
8616  *	@new_group: group this device should belong to
8617  */
8618 void dev_set_group(struct net_device *dev, int new_group)
8619 {
8620 	dev->group = new_group;
8621 }
8622 EXPORT_SYMBOL(dev_set_group);
8623 
8624 /**
8625  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8626  *	@dev: device
8627  *	@addr: new address
8628  *	@extack: netlink extended ack
8629  */
8630 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8631 			      struct netlink_ext_ack *extack)
8632 {
8633 	struct netdev_notifier_pre_changeaddr_info info = {
8634 		.info.dev = dev,
8635 		.info.extack = extack,
8636 		.dev_addr = addr,
8637 	};
8638 	int rc;
8639 
8640 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8641 	return notifier_to_errno(rc);
8642 }
8643 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8644 
8645 /**
8646  *	dev_set_mac_address - Change Media Access Control Address
8647  *	@dev: device
8648  *	@sa: new address
8649  *	@extack: netlink extended ack
8650  *
8651  *	Change the hardware (MAC) address of the device
8652  */
8653 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8654 			struct netlink_ext_ack *extack)
8655 {
8656 	const struct net_device_ops *ops = dev->netdev_ops;
8657 	int err;
8658 
8659 	if (!ops->ndo_set_mac_address)
8660 		return -EOPNOTSUPP;
8661 	if (sa->sa_family != dev->type)
8662 		return -EINVAL;
8663 	if (!netif_device_present(dev))
8664 		return -ENODEV;
8665 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8666 	if (err)
8667 		return err;
8668 	err = ops->ndo_set_mac_address(dev, sa);
8669 	if (err)
8670 		return err;
8671 	dev->addr_assign_type = NET_ADDR_SET;
8672 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8673 	add_device_randomness(dev->dev_addr, dev->addr_len);
8674 	return 0;
8675 }
8676 EXPORT_SYMBOL(dev_set_mac_address);
8677 
8678 static DECLARE_RWSEM(dev_addr_sem);
8679 
8680 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8681 			     struct netlink_ext_ack *extack)
8682 {
8683 	int ret;
8684 
8685 	down_write(&dev_addr_sem);
8686 	ret = dev_set_mac_address(dev, sa, extack);
8687 	up_write(&dev_addr_sem);
8688 	return ret;
8689 }
8690 EXPORT_SYMBOL(dev_set_mac_address_user);
8691 
8692 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8693 {
8694 	size_t size = sizeof(sa->sa_data);
8695 	struct net_device *dev;
8696 	int ret = 0;
8697 
8698 	down_read(&dev_addr_sem);
8699 	rcu_read_lock();
8700 
8701 	dev = dev_get_by_name_rcu(net, dev_name);
8702 	if (!dev) {
8703 		ret = -ENODEV;
8704 		goto unlock;
8705 	}
8706 	if (!dev->addr_len)
8707 		memset(sa->sa_data, 0, size);
8708 	else
8709 		memcpy(sa->sa_data, dev->dev_addr,
8710 		       min_t(size_t, size, dev->addr_len));
8711 	sa->sa_family = dev->type;
8712 
8713 unlock:
8714 	rcu_read_unlock();
8715 	up_read(&dev_addr_sem);
8716 	return ret;
8717 }
8718 EXPORT_SYMBOL(dev_get_mac_address);
8719 
8720 /**
8721  *	dev_change_carrier - Change device carrier
8722  *	@dev: device
8723  *	@new_carrier: new value
8724  *
8725  *	Change device carrier
8726  */
8727 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8728 {
8729 	const struct net_device_ops *ops = dev->netdev_ops;
8730 
8731 	if (!ops->ndo_change_carrier)
8732 		return -EOPNOTSUPP;
8733 	if (!netif_device_present(dev))
8734 		return -ENODEV;
8735 	return ops->ndo_change_carrier(dev, new_carrier);
8736 }
8737 EXPORT_SYMBOL(dev_change_carrier);
8738 
8739 /**
8740  *	dev_get_phys_port_id - Get device physical port ID
8741  *	@dev: device
8742  *	@ppid: port ID
8743  *
8744  *	Get device physical port ID
8745  */
8746 int dev_get_phys_port_id(struct net_device *dev,
8747 			 struct netdev_phys_item_id *ppid)
8748 {
8749 	const struct net_device_ops *ops = dev->netdev_ops;
8750 
8751 	if (!ops->ndo_get_phys_port_id)
8752 		return -EOPNOTSUPP;
8753 	return ops->ndo_get_phys_port_id(dev, ppid);
8754 }
8755 EXPORT_SYMBOL(dev_get_phys_port_id);
8756 
8757 /**
8758  *	dev_get_phys_port_name - Get device physical port name
8759  *	@dev: device
8760  *	@name: port name
8761  *	@len: limit of bytes to copy to name
8762  *
8763  *	Get device physical port name
8764  */
8765 int dev_get_phys_port_name(struct net_device *dev,
8766 			   char *name, size_t len)
8767 {
8768 	const struct net_device_ops *ops = dev->netdev_ops;
8769 	int err;
8770 
8771 	if (ops->ndo_get_phys_port_name) {
8772 		err = ops->ndo_get_phys_port_name(dev, name, len);
8773 		if (err != -EOPNOTSUPP)
8774 			return err;
8775 	}
8776 	return devlink_compat_phys_port_name_get(dev, name, len);
8777 }
8778 EXPORT_SYMBOL(dev_get_phys_port_name);
8779 
8780 /**
8781  *	dev_get_port_parent_id - Get the device's port parent identifier
8782  *	@dev: network device
8783  *	@ppid: pointer to a storage for the port's parent identifier
8784  *	@recurse: allow/disallow recursion to lower devices
8785  *
8786  *	Get the devices's port parent identifier
8787  */
8788 int dev_get_port_parent_id(struct net_device *dev,
8789 			   struct netdev_phys_item_id *ppid,
8790 			   bool recurse)
8791 {
8792 	const struct net_device_ops *ops = dev->netdev_ops;
8793 	struct netdev_phys_item_id first = { };
8794 	struct net_device *lower_dev;
8795 	struct list_head *iter;
8796 	int err;
8797 
8798 	if (ops->ndo_get_port_parent_id) {
8799 		err = ops->ndo_get_port_parent_id(dev, ppid);
8800 		if (err != -EOPNOTSUPP)
8801 			return err;
8802 	}
8803 
8804 	err = devlink_compat_switch_id_get(dev, ppid);
8805 	if (!recurse || err != -EOPNOTSUPP)
8806 		return err;
8807 
8808 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
8809 		err = dev_get_port_parent_id(lower_dev, ppid, true);
8810 		if (err)
8811 			break;
8812 		if (!first.id_len)
8813 			first = *ppid;
8814 		else if (memcmp(&first, ppid, sizeof(*ppid)))
8815 			return -EOPNOTSUPP;
8816 	}
8817 
8818 	return err;
8819 }
8820 EXPORT_SYMBOL(dev_get_port_parent_id);
8821 
8822 /**
8823  *	netdev_port_same_parent_id - Indicate if two network devices have
8824  *	the same port parent identifier
8825  *	@a: first network device
8826  *	@b: second network device
8827  */
8828 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8829 {
8830 	struct netdev_phys_item_id a_id = { };
8831 	struct netdev_phys_item_id b_id = { };
8832 
8833 	if (dev_get_port_parent_id(a, &a_id, true) ||
8834 	    dev_get_port_parent_id(b, &b_id, true))
8835 		return false;
8836 
8837 	return netdev_phys_item_id_same(&a_id, &b_id);
8838 }
8839 EXPORT_SYMBOL(netdev_port_same_parent_id);
8840 
8841 /**
8842  *	dev_change_proto_down - set carrier according to proto_down.
8843  *
8844  *	@dev: device
8845  *	@proto_down: new value
8846  */
8847 int dev_change_proto_down(struct net_device *dev, bool proto_down)
8848 {
8849 	if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN))
8850 		return -EOPNOTSUPP;
8851 	if (!netif_device_present(dev))
8852 		return -ENODEV;
8853 	if (proto_down)
8854 		netif_carrier_off(dev);
8855 	else
8856 		netif_carrier_on(dev);
8857 	dev->proto_down = proto_down;
8858 	return 0;
8859 }
8860 EXPORT_SYMBOL(dev_change_proto_down);
8861 
8862 /**
8863  *	dev_change_proto_down_reason - proto down reason
8864  *
8865  *	@dev: device
8866  *	@mask: proto down mask
8867  *	@value: proto down value
8868  */
8869 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
8870 				  u32 value)
8871 {
8872 	int b;
8873 
8874 	if (!mask) {
8875 		dev->proto_down_reason = value;
8876 	} else {
8877 		for_each_set_bit(b, &mask, 32) {
8878 			if (value & (1 << b))
8879 				dev->proto_down_reason |= BIT(b);
8880 			else
8881 				dev->proto_down_reason &= ~BIT(b);
8882 		}
8883 	}
8884 }
8885 EXPORT_SYMBOL(dev_change_proto_down_reason);
8886 
8887 struct bpf_xdp_link {
8888 	struct bpf_link link;
8889 	struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
8890 	int flags;
8891 };
8892 
8893 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
8894 {
8895 	if (flags & XDP_FLAGS_HW_MODE)
8896 		return XDP_MODE_HW;
8897 	if (flags & XDP_FLAGS_DRV_MODE)
8898 		return XDP_MODE_DRV;
8899 	if (flags & XDP_FLAGS_SKB_MODE)
8900 		return XDP_MODE_SKB;
8901 	return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
8902 }
8903 
8904 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
8905 {
8906 	switch (mode) {
8907 	case XDP_MODE_SKB:
8908 		return generic_xdp_install;
8909 	case XDP_MODE_DRV:
8910 	case XDP_MODE_HW:
8911 		return dev->netdev_ops->ndo_bpf;
8912 	default:
8913 		return NULL;
8914 	}
8915 }
8916 
8917 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
8918 					 enum bpf_xdp_mode mode)
8919 {
8920 	return dev->xdp_state[mode].link;
8921 }
8922 
8923 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
8924 				     enum bpf_xdp_mode mode)
8925 {
8926 	struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
8927 
8928 	if (link)
8929 		return link->link.prog;
8930 	return dev->xdp_state[mode].prog;
8931 }
8932 
8933 u8 dev_xdp_prog_count(struct net_device *dev)
8934 {
8935 	u8 count = 0;
8936 	int i;
8937 
8938 	for (i = 0; i < __MAX_XDP_MODE; i++)
8939 		if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
8940 			count++;
8941 	return count;
8942 }
8943 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
8944 
8945 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
8946 {
8947 	struct bpf_prog *prog = dev_xdp_prog(dev, mode);
8948 
8949 	return prog ? prog->aux->id : 0;
8950 }
8951 
8952 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
8953 			     struct bpf_xdp_link *link)
8954 {
8955 	dev->xdp_state[mode].link = link;
8956 	dev->xdp_state[mode].prog = NULL;
8957 }
8958 
8959 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
8960 			     struct bpf_prog *prog)
8961 {
8962 	dev->xdp_state[mode].link = NULL;
8963 	dev->xdp_state[mode].prog = prog;
8964 }
8965 
8966 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
8967 			   bpf_op_t bpf_op, struct netlink_ext_ack *extack,
8968 			   u32 flags, struct bpf_prog *prog)
8969 {
8970 	struct netdev_bpf xdp;
8971 	int err;
8972 
8973 	memset(&xdp, 0, sizeof(xdp));
8974 	xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
8975 	xdp.extack = extack;
8976 	xdp.flags = flags;
8977 	xdp.prog = prog;
8978 
8979 	/* Drivers assume refcnt is already incremented (i.e, prog pointer is
8980 	 * "moved" into driver), so they don't increment it on their own, but
8981 	 * they do decrement refcnt when program is detached or replaced.
8982 	 * Given net_device also owns link/prog, we need to bump refcnt here
8983 	 * to prevent drivers from underflowing it.
8984 	 */
8985 	if (prog)
8986 		bpf_prog_inc(prog);
8987 	err = bpf_op(dev, &xdp);
8988 	if (err) {
8989 		if (prog)
8990 			bpf_prog_put(prog);
8991 		return err;
8992 	}
8993 
8994 	if (mode != XDP_MODE_HW)
8995 		bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
8996 
8997 	return 0;
8998 }
8999 
9000 static void dev_xdp_uninstall(struct net_device *dev)
9001 {
9002 	struct bpf_xdp_link *link;
9003 	struct bpf_prog *prog;
9004 	enum bpf_xdp_mode mode;
9005 	bpf_op_t bpf_op;
9006 
9007 	ASSERT_RTNL();
9008 
9009 	for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9010 		prog = dev_xdp_prog(dev, mode);
9011 		if (!prog)
9012 			continue;
9013 
9014 		bpf_op = dev_xdp_bpf_op(dev, mode);
9015 		if (!bpf_op)
9016 			continue;
9017 
9018 		WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9019 
9020 		/* auto-detach link from net device */
9021 		link = dev_xdp_link(dev, mode);
9022 		if (link)
9023 			link->dev = NULL;
9024 		else
9025 			bpf_prog_put(prog);
9026 
9027 		dev_xdp_set_link(dev, mode, NULL);
9028 	}
9029 }
9030 
9031 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9032 			  struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9033 			  struct bpf_prog *old_prog, u32 flags)
9034 {
9035 	unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9036 	struct bpf_prog *cur_prog;
9037 	struct net_device *upper;
9038 	struct list_head *iter;
9039 	enum bpf_xdp_mode mode;
9040 	bpf_op_t bpf_op;
9041 	int err;
9042 
9043 	ASSERT_RTNL();
9044 
9045 	/* either link or prog attachment, never both */
9046 	if (link && (new_prog || old_prog))
9047 		return -EINVAL;
9048 	/* link supports only XDP mode flags */
9049 	if (link && (flags & ~XDP_FLAGS_MODES)) {
9050 		NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9051 		return -EINVAL;
9052 	}
9053 	/* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9054 	if (num_modes > 1) {
9055 		NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9056 		return -EINVAL;
9057 	}
9058 	/* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9059 	if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9060 		NL_SET_ERR_MSG(extack,
9061 			       "More than one program loaded, unset mode is ambiguous");
9062 		return -EINVAL;
9063 	}
9064 	/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9065 	if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9066 		NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9067 		return -EINVAL;
9068 	}
9069 
9070 	mode = dev_xdp_mode(dev, flags);
9071 	/* can't replace attached link */
9072 	if (dev_xdp_link(dev, mode)) {
9073 		NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9074 		return -EBUSY;
9075 	}
9076 
9077 	/* don't allow if an upper device already has a program */
9078 	netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9079 		if (dev_xdp_prog_count(upper) > 0) {
9080 			NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9081 			return -EEXIST;
9082 		}
9083 	}
9084 
9085 	cur_prog = dev_xdp_prog(dev, mode);
9086 	/* can't replace attached prog with link */
9087 	if (link && cur_prog) {
9088 		NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9089 		return -EBUSY;
9090 	}
9091 	if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9092 		NL_SET_ERR_MSG(extack, "Active program does not match expected");
9093 		return -EEXIST;
9094 	}
9095 
9096 	/* put effective new program into new_prog */
9097 	if (link)
9098 		new_prog = link->link.prog;
9099 
9100 	if (new_prog) {
9101 		bool offload = mode == XDP_MODE_HW;
9102 		enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9103 					       ? XDP_MODE_DRV : XDP_MODE_SKB;
9104 
9105 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9106 			NL_SET_ERR_MSG(extack, "XDP program already attached");
9107 			return -EBUSY;
9108 		}
9109 		if (!offload && dev_xdp_prog(dev, other_mode)) {
9110 			NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9111 			return -EEXIST;
9112 		}
9113 		if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9114 			NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9115 			return -EINVAL;
9116 		}
9117 		if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9118 			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9119 			return -EINVAL;
9120 		}
9121 		if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9122 			NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9123 			return -EINVAL;
9124 		}
9125 	}
9126 
9127 	/* don't call drivers if the effective program didn't change */
9128 	if (new_prog != cur_prog) {
9129 		bpf_op = dev_xdp_bpf_op(dev, mode);
9130 		if (!bpf_op) {
9131 			NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9132 			return -EOPNOTSUPP;
9133 		}
9134 
9135 		err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9136 		if (err)
9137 			return err;
9138 	}
9139 
9140 	if (link)
9141 		dev_xdp_set_link(dev, mode, link);
9142 	else
9143 		dev_xdp_set_prog(dev, mode, new_prog);
9144 	if (cur_prog)
9145 		bpf_prog_put(cur_prog);
9146 
9147 	return 0;
9148 }
9149 
9150 static int dev_xdp_attach_link(struct net_device *dev,
9151 			       struct netlink_ext_ack *extack,
9152 			       struct bpf_xdp_link *link)
9153 {
9154 	return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9155 }
9156 
9157 static int dev_xdp_detach_link(struct net_device *dev,
9158 			       struct netlink_ext_ack *extack,
9159 			       struct bpf_xdp_link *link)
9160 {
9161 	enum bpf_xdp_mode mode;
9162 	bpf_op_t bpf_op;
9163 
9164 	ASSERT_RTNL();
9165 
9166 	mode = dev_xdp_mode(dev, link->flags);
9167 	if (dev_xdp_link(dev, mode) != link)
9168 		return -EINVAL;
9169 
9170 	bpf_op = dev_xdp_bpf_op(dev, mode);
9171 	WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9172 	dev_xdp_set_link(dev, mode, NULL);
9173 	return 0;
9174 }
9175 
9176 static void bpf_xdp_link_release(struct bpf_link *link)
9177 {
9178 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9179 
9180 	rtnl_lock();
9181 
9182 	/* if racing with net_device's tear down, xdp_link->dev might be
9183 	 * already NULL, in which case link was already auto-detached
9184 	 */
9185 	if (xdp_link->dev) {
9186 		WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9187 		xdp_link->dev = NULL;
9188 	}
9189 
9190 	rtnl_unlock();
9191 }
9192 
9193 static int bpf_xdp_link_detach(struct bpf_link *link)
9194 {
9195 	bpf_xdp_link_release(link);
9196 	return 0;
9197 }
9198 
9199 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9200 {
9201 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9202 
9203 	kfree(xdp_link);
9204 }
9205 
9206 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9207 				     struct seq_file *seq)
9208 {
9209 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9210 	u32 ifindex = 0;
9211 
9212 	rtnl_lock();
9213 	if (xdp_link->dev)
9214 		ifindex = xdp_link->dev->ifindex;
9215 	rtnl_unlock();
9216 
9217 	seq_printf(seq, "ifindex:\t%u\n", ifindex);
9218 }
9219 
9220 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9221 				       struct bpf_link_info *info)
9222 {
9223 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9224 	u32 ifindex = 0;
9225 
9226 	rtnl_lock();
9227 	if (xdp_link->dev)
9228 		ifindex = xdp_link->dev->ifindex;
9229 	rtnl_unlock();
9230 
9231 	info->xdp.ifindex = ifindex;
9232 	return 0;
9233 }
9234 
9235 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9236 			       struct bpf_prog *old_prog)
9237 {
9238 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9239 	enum bpf_xdp_mode mode;
9240 	bpf_op_t bpf_op;
9241 	int err = 0;
9242 
9243 	rtnl_lock();
9244 
9245 	/* link might have been auto-released already, so fail */
9246 	if (!xdp_link->dev) {
9247 		err = -ENOLINK;
9248 		goto out_unlock;
9249 	}
9250 
9251 	if (old_prog && link->prog != old_prog) {
9252 		err = -EPERM;
9253 		goto out_unlock;
9254 	}
9255 	old_prog = link->prog;
9256 	if (old_prog->type != new_prog->type ||
9257 	    old_prog->expected_attach_type != new_prog->expected_attach_type) {
9258 		err = -EINVAL;
9259 		goto out_unlock;
9260 	}
9261 
9262 	if (old_prog == new_prog) {
9263 		/* no-op, don't disturb drivers */
9264 		bpf_prog_put(new_prog);
9265 		goto out_unlock;
9266 	}
9267 
9268 	mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9269 	bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9270 	err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9271 			      xdp_link->flags, new_prog);
9272 	if (err)
9273 		goto out_unlock;
9274 
9275 	old_prog = xchg(&link->prog, new_prog);
9276 	bpf_prog_put(old_prog);
9277 
9278 out_unlock:
9279 	rtnl_unlock();
9280 	return err;
9281 }
9282 
9283 static const struct bpf_link_ops bpf_xdp_link_lops = {
9284 	.release = bpf_xdp_link_release,
9285 	.dealloc = bpf_xdp_link_dealloc,
9286 	.detach = bpf_xdp_link_detach,
9287 	.show_fdinfo = bpf_xdp_link_show_fdinfo,
9288 	.fill_link_info = bpf_xdp_link_fill_link_info,
9289 	.update_prog = bpf_xdp_link_update,
9290 };
9291 
9292 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9293 {
9294 	struct net *net = current->nsproxy->net_ns;
9295 	struct bpf_link_primer link_primer;
9296 	struct bpf_xdp_link *link;
9297 	struct net_device *dev;
9298 	int err, fd;
9299 
9300 	rtnl_lock();
9301 	dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9302 	if (!dev) {
9303 		rtnl_unlock();
9304 		return -EINVAL;
9305 	}
9306 
9307 	link = kzalloc(sizeof(*link), GFP_USER);
9308 	if (!link) {
9309 		err = -ENOMEM;
9310 		goto unlock;
9311 	}
9312 
9313 	bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9314 	link->dev = dev;
9315 	link->flags = attr->link_create.flags;
9316 
9317 	err = bpf_link_prime(&link->link, &link_primer);
9318 	if (err) {
9319 		kfree(link);
9320 		goto unlock;
9321 	}
9322 
9323 	err = dev_xdp_attach_link(dev, NULL, link);
9324 	rtnl_unlock();
9325 
9326 	if (err) {
9327 		link->dev = NULL;
9328 		bpf_link_cleanup(&link_primer);
9329 		goto out_put_dev;
9330 	}
9331 
9332 	fd = bpf_link_settle(&link_primer);
9333 	/* link itself doesn't hold dev's refcnt to not complicate shutdown */
9334 	dev_put(dev);
9335 	return fd;
9336 
9337 unlock:
9338 	rtnl_unlock();
9339 
9340 out_put_dev:
9341 	dev_put(dev);
9342 	return err;
9343 }
9344 
9345 /**
9346  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
9347  *	@dev: device
9348  *	@extack: netlink extended ack
9349  *	@fd: new program fd or negative value to clear
9350  *	@expected_fd: old program fd that userspace expects to replace or clear
9351  *	@flags: xdp-related flags
9352  *
9353  *	Set or clear a bpf program for a device
9354  */
9355 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9356 		      int fd, int expected_fd, u32 flags)
9357 {
9358 	enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9359 	struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9360 	int err;
9361 
9362 	ASSERT_RTNL();
9363 
9364 	if (fd >= 0) {
9365 		new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9366 						 mode != XDP_MODE_SKB);
9367 		if (IS_ERR(new_prog))
9368 			return PTR_ERR(new_prog);
9369 	}
9370 
9371 	if (expected_fd >= 0) {
9372 		old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9373 						 mode != XDP_MODE_SKB);
9374 		if (IS_ERR(old_prog)) {
9375 			err = PTR_ERR(old_prog);
9376 			old_prog = NULL;
9377 			goto err_out;
9378 		}
9379 	}
9380 
9381 	err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9382 
9383 err_out:
9384 	if (err && new_prog)
9385 		bpf_prog_put(new_prog);
9386 	if (old_prog)
9387 		bpf_prog_put(old_prog);
9388 	return err;
9389 }
9390 
9391 /**
9392  *	dev_new_index	-	allocate an ifindex
9393  *	@net: the applicable net namespace
9394  *
9395  *	Returns a suitable unique value for a new device interface
9396  *	number.  The caller must hold the rtnl semaphore or the
9397  *	dev_base_lock to be sure it remains unique.
9398  */
9399 static int dev_new_index(struct net *net)
9400 {
9401 	int ifindex = net->ifindex;
9402 
9403 	for (;;) {
9404 		if (++ifindex <= 0)
9405 			ifindex = 1;
9406 		if (!__dev_get_by_index(net, ifindex))
9407 			return net->ifindex = ifindex;
9408 	}
9409 }
9410 
9411 /* Delayed registration/unregisteration */
9412 static LIST_HEAD(net_todo_list);
9413 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9414 
9415 static void net_set_todo(struct net_device *dev)
9416 {
9417 	list_add_tail(&dev->todo_list, &net_todo_list);
9418 	atomic_inc(&dev_net(dev)->dev_unreg_count);
9419 }
9420 
9421 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9422 	struct net_device *upper, netdev_features_t features)
9423 {
9424 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9425 	netdev_features_t feature;
9426 	int feature_bit;
9427 
9428 	for_each_netdev_feature(upper_disables, feature_bit) {
9429 		feature = __NETIF_F_BIT(feature_bit);
9430 		if (!(upper->wanted_features & feature)
9431 		    && (features & feature)) {
9432 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9433 				   &feature, upper->name);
9434 			features &= ~feature;
9435 		}
9436 	}
9437 
9438 	return features;
9439 }
9440 
9441 static void netdev_sync_lower_features(struct net_device *upper,
9442 	struct net_device *lower, netdev_features_t features)
9443 {
9444 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9445 	netdev_features_t feature;
9446 	int feature_bit;
9447 
9448 	for_each_netdev_feature(upper_disables, feature_bit) {
9449 		feature = __NETIF_F_BIT(feature_bit);
9450 		if (!(features & feature) && (lower->features & feature)) {
9451 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9452 				   &feature, lower->name);
9453 			lower->wanted_features &= ~feature;
9454 			__netdev_update_features(lower);
9455 
9456 			if (unlikely(lower->features & feature))
9457 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9458 					    &feature, lower->name);
9459 			else
9460 				netdev_features_change(lower);
9461 		}
9462 	}
9463 }
9464 
9465 static netdev_features_t netdev_fix_features(struct net_device *dev,
9466 	netdev_features_t features)
9467 {
9468 	/* Fix illegal checksum combinations */
9469 	if ((features & NETIF_F_HW_CSUM) &&
9470 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9471 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9472 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9473 	}
9474 
9475 	/* TSO requires that SG is present as well. */
9476 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9477 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9478 		features &= ~NETIF_F_ALL_TSO;
9479 	}
9480 
9481 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9482 					!(features & NETIF_F_IP_CSUM)) {
9483 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9484 		features &= ~NETIF_F_TSO;
9485 		features &= ~NETIF_F_TSO_ECN;
9486 	}
9487 
9488 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9489 					 !(features & NETIF_F_IPV6_CSUM)) {
9490 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9491 		features &= ~NETIF_F_TSO6;
9492 	}
9493 
9494 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9495 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9496 		features &= ~NETIF_F_TSO_MANGLEID;
9497 
9498 	/* TSO ECN requires that TSO is present as well. */
9499 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9500 		features &= ~NETIF_F_TSO_ECN;
9501 
9502 	/* Software GSO depends on SG. */
9503 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9504 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9505 		features &= ~NETIF_F_GSO;
9506 	}
9507 
9508 	/* GSO partial features require GSO partial be set */
9509 	if ((features & dev->gso_partial_features) &&
9510 	    !(features & NETIF_F_GSO_PARTIAL)) {
9511 		netdev_dbg(dev,
9512 			   "Dropping partially supported GSO features since no GSO partial.\n");
9513 		features &= ~dev->gso_partial_features;
9514 	}
9515 
9516 	if (!(features & NETIF_F_RXCSUM)) {
9517 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9518 		 * successfully merged by hardware must also have the
9519 		 * checksum verified by hardware.  If the user does not
9520 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
9521 		 */
9522 		if (features & NETIF_F_GRO_HW) {
9523 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9524 			features &= ~NETIF_F_GRO_HW;
9525 		}
9526 	}
9527 
9528 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
9529 	if (features & NETIF_F_RXFCS) {
9530 		if (features & NETIF_F_LRO) {
9531 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9532 			features &= ~NETIF_F_LRO;
9533 		}
9534 
9535 		if (features & NETIF_F_GRO_HW) {
9536 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9537 			features &= ~NETIF_F_GRO_HW;
9538 		}
9539 	}
9540 
9541 	if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
9542 		netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
9543 		features &= ~NETIF_F_LRO;
9544 	}
9545 
9546 	if (features & NETIF_F_HW_TLS_TX) {
9547 		bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9548 			(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9549 		bool hw_csum = features & NETIF_F_HW_CSUM;
9550 
9551 		if (!ip_csum && !hw_csum) {
9552 			netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9553 			features &= ~NETIF_F_HW_TLS_TX;
9554 		}
9555 	}
9556 
9557 	if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9558 		netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9559 		features &= ~NETIF_F_HW_TLS_RX;
9560 	}
9561 
9562 	return features;
9563 }
9564 
9565 int __netdev_update_features(struct net_device *dev)
9566 {
9567 	struct net_device *upper, *lower;
9568 	netdev_features_t features;
9569 	struct list_head *iter;
9570 	int err = -1;
9571 
9572 	ASSERT_RTNL();
9573 
9574 	features = netdev_get_wanted_features(dev);
9575 
9576 	if (dev->netdev_ops->ndo_fix_features)
9577 		features = dev->netdev_ops->ndo_fix_features(dev, features);
9578 
9579 	/* driver might be less strict about feature dependencies */
9580 	features = netdev_fix_features(dev, features);
9581 
9582 	/* some features can't be enabled if they're off on an upper device */
9583 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
9584 		features = netdev_sync_upper_features(dev, upper, features);
9585 
9586 	if (dev->features == features)
9587 		goto sync_lower;
9588 
9589 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9590 		&dev->features, &features);
9591 
9592 	if (dev->netdev_ops->ndo_set_features)
9593 		err = dev->netdev_ops->ndo_set_features(dev, features);
9594 	else
9595 		err = 0;
9596 
9597 	if (unlikely(err < 0)) {
9598 		netdev_err(dev,
9599 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
9600 			err, &features, &dev->features);
9601 		/* return non-0 since some features might have changed and
9602 		 * it's better to fire a spurious notification than miss it
9603 		 */
9604 		return -1;
9605 	}
9606 
9607 sync_lower:
9608 	/* some features must be disabled on lower devices when disabled
9609 	 * on an upper device (think: bonding master or bridge)
9610 	 */
9611 	netdev_for_each_lower_dev(dev, lower, iter)
9612 		netdev_sync_lower_features(dev, lower, features);
9613 
9614 	if (!err) {
9615 		netdev_features_t diff = features ^ dev->features;
9616 
9617 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9618 			/* udp_tunnel_{get,drop}_rx_info both need
9619 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9620 			 * device, or they won't do anything.
9621 			 * Thus we need to update dev->features
9622 			 * *before* calling udp_tunnel_get_rx_info,
9623 			 * but *after* calling udp_tunnel_drop_rx_info.
9624 			 */
9625 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9626 				dev->features = features;
9627 				udp_tunnel_get_rx_info(dev);
9628 			} else {
9629 				udp_tunnel_drop_rx_info(dev);
9630 			}
9631 		}
9632 
9633 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9634 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9635 				dev->features = features;
9636 				err |= vlan_get_rx_ctag_filter_info(dev);
9637 			} else {
9638 				vlan_drop_rx_ctag_filter_info(dev);
9639 			}
9640 		}
9641 
9642 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9643 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9644 				dev->features = features;
9645 				err |= vlan_get_rx_stag_filter_info(dev);
9646 			} else {
9647 				vlan_drop_rx_stag_filter_info(dev);
9648 			}
9649 		}
9650 
9651 		dev->features = features;
9652 	}
9653 
9654 	return err < 0 ? 0 : 1;
9655 }
9656 
9657 /**
9658  *	netdev_update_features - recalculate device features
9659  *	@dev: the device to check
9660  *
9661  *	Recalculate dev->features set and send notifications if it
9662  *	has changed. Should be called after driver or hardware dependent
9663  *	conditions might have changed that influence the features.
9664  */
9665 void netdev_update_features(struct net_device *dev)
9666 {
9667 	if (__netdev_update_features(dev))
9668 		netdev_features_change(dev);
9669 }
9670 EXPORT_SYMBOL(netdev_update_features);
9671 
9672 /**
9673  *	netdev_change_features - recalculate device features
9674  *	@dev: the device to check
9675  *
9676  *	Recalculate dev->features set and send notifications even
9677  *	if they have not changed. Should be called instead of
9678  *	netdev_update_features() if also dev->vlan_features might
9679  *	have changed to allow the changes to be propagated to stacked
9680  *	VLAN devices.
9681  */
9682 void netdev_change_features(struct net_device *dev)
9683 {
9684 	__netdev_update_features(dev);
9685 	netdev_features_change(dev);
9686 }
9687 EXPORT_SYMBOL(netdev_change_features);
9688 
9689 /**
9690  *	netif_stacked_transfer_operstate -	transfer operstate
9691  *	@rootdev: the root or lower level device to transfer state from
9692  *	@dev: the device to transfer operstate to
9693  *
9694  *	Transfer operational state from root to device. This is normally
9695  *	called when a stacking relationship exists between the root
9696  *	device and the device(a leaf device).
9697  */
9698 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9699 					struct net_device *dev)
9700 {
9701 	if (rootdev->operstate == IF_OPER_DORMANT)
9702 		netif_dormant_on(dev);
9703 	else
9704 		netif_dormant_off(dev);
9705 
9706 	if (rootdev->operstate == IF_OPER_TESTING)
9707 		netif_testing_on(dev);
9708 	else
9709 		netif_testing_off(dev);
9710 
9711 	if (netif_carrier_ok(rootdev))
9712 		netif_carrier_on(dev);
9713 	else
9714 		netif_carrier_off(dev);
9715 }
9716 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9717 
9718 static int netif_alloc_rx_queues(struct net_device *dev)
9719 {
9720 	unsigned int i, count = dev->num_rx_queues;
9721 	struct netdev_rx_queue *rx;
9722 	size_t sz = count * sizeof(*rx);
9723 	int err = 0;
9724 
9725 	BUG_ON(count < 1);
9726 
9727 	rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9728 	if (!rx)
9729 		return -ENOMEM;
9730 
9731 	dev->_rx = rx;
9732 
9733 	for (i = 0; i < count; i++) {
9734 		rx[i].dev = dev;
9735 
9736 		/* XDP RX-queue setup */
9737 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
9738 		if (err < 0)
9739 			goto err_rxq_info;
9740 	}
9741 	return 0;
9742 
9743 err_rxq_info:
9744 	/* Rollback successful reg's and free other resources */
9745 	while (i--)
9746 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9747 	kvfree(dev->_rx);
9748 	dev->_rx = NULL;
9749 	return err;
9750 }
9751 
9752 static void netif_free_rx_queues(struct net_device *dev)
9753 {
9754 	unsigned int i, count = dev->num_rx_queues;
9755 
9756 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9757 	if (!dev->_rx)
9758 		return;
9759 
9760 	for (i = 0; i < count; i++)
9761 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9762 
9763 	kvfree(dev->_rx);
9764 }
9765 
9766 static void netdev_init_one_queue(struct net_device *dev,
9767 				  struct netdev_queue *queue, void *_unused)
9768 {
9769 	/* Initialize queue lock */
9770 	spin_lock_init(&queue->_xmit_lock);
9771 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
9772 	queue->xmit_lock_owner = -1;
9773 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9774 	queue->dev = dev;
9775 #ifdef CONFIG_BQL
9776 	dql_init(&queue->dql, HZ);
9777 #endif
9778 }
9779 
9780 static void netif_free_tx_queues(struct net_device *dev)
9781 {
9782 	kvfree(dev->_tx);
9783 }
9784 
9785 static int netif_alloc_netdev_queues(struct net_device *dev)
9786 {
9787 	unsigned int count = dev->num_tx_queues;
9788 	struct netdev_queue *tx;
9789 	size_t sz = count * sizeof(*tx);
9790 
9791 	if (count < 1 || count > 0xffff)
9792 		return -EINVAL;
9793 
9794 	tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9795 	if (!tx)
9796 		return -ENOMEM;
9797 
9798 	dev->_tx = tx;
9799 
9800 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9801 	spin_lock_init(&dev->tx_global_lock);
9802 
9803 	return 0;
9804 }
9805 
9806 void netif_tx_stop_all_queues(struct net_device *dev)
9807 {
9808 	unsigned int i;
9809 
9810 	for (i = 0; i < dev->num_tx_queues; i++) {
9811 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9812 
9813 		netif_tx_stop_queue(txq);
9814 	}
9815 }
9816 EXPORT_SYMBOL(netif_tx_stop_all_queues);
9817 
9818 /**
9819  *	register_netdevice	- register a network device
9820  *	@dev: device to register
9821  *
9822  *	Take a completed network device structure and add it to the kernel
9823  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9824  *	chain. 0 is returned on success. A negative errno code is returned
9825  *	on a failure to set up the device, or if the name is a duplicate.
9826  *
9827  *	Callers must hold the rtnl semaphore. You may want
9828  *	register_netdev() instead of this.
9829  *
9830  *	BUGS:
9831  *	The locking appears insufficient to guarantee two parallel registers
9832  *	will not get the same name.
9833  */
9834 
9835 int register_netdevice(struct net_device *dev)
9836 {
9837 	int ret;
9838 	struct net *net = dev_net(dev);
9839 
9840 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9841 		     NETDEV_FEATURE_COUNT);
9842 	BUG_ON(dev_boot_phase);
9843 	ASSERT_RTNL();
9844 
9845 	might_sleep();
9846 
9847 	/* When net_device's are persistent, this will be fatal. */
9848 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
9849 	BUG_ON(!net);
9850 
9851 	ret = ethtool_check_ops(dev->ethtool_ops);
9852 	if (ret)
9853 		return ret;
9854 
9855 	spin_lock_init(&dev->addr_list_lock);
9856 	netdev_set_addr_lockdep_class(dev);
9857 
9858 	ret = dev_get_valid_name(net, dev, dev->name);
9859 	if (ret < 0)
9860 		goto out;
9861 
9862 	ret = -ENOMEM;
9863 	dev->name_node = netdev_name_node_head_alloc(dev);
9864 	if (!dev->name_node)
9865 		goto out;
9866 
9867 	/* Init, if this function is available */
9868 	if (dev->netdev_ops->ndo_init) {
9869 		ret = dev->netdev_ops->ndo_init(dev);
9870 		if (ret) {
9871 			if (ret > 0)
9872 				ret = -EIO;
9873 			goto err_free_name;
9874 		}
9875 	}
9876 
9877 	if (((dev->hw_features | dev->features) &
9878 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
9879 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9880 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
9881 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
9882 		ret = -EINVAL;
9883 		goto err_uninit;
9884 	}
9885 
9886 	ret = -EBUSY;
9887 	if (!dev->ifindex)
9888 		dev->ifindex = dev_new_index(net);
9889 	else if (__dev_get_by_index(net, dev->ifindex))
9890 		goto err_uninit;
9891 
9892 	/* Transfer changeable features to wanted_features and enable
9893 	 * software offloads (GSO and GRO).
9894 	 */
9895 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
9896 	dev->features |= NETIF_F_SOFT_FEATURES;
9897 
9898 	if (dev->udp_tunnel_nic_info) {
9899 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9900 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9901 	}
9902 
9903 	dev->wanted_features = dev->features & dev->hw_features;
9904 
9905 	if (!(dev->flags & IFF_LOOPBACK))
9906 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
9907 
9908 	/* If IPv4 TCP segmentation offload is supported we should also
9909 	 * allow the device to enable segmenting the frame with the option
9910 	 * of ignoring a static IP ID value.  This doesn't enable the
9911 	 * feature itself but allows the user to enable it later.
9912 	 */
9913 	if (dev->hw_features & NETIF_F_TSO)
9914 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
9915 	if (dev->vlan_features & NETIF_F_TSO)
9916 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
9917 	if (dev->mpls_features & NETIF_F_TSO)
9918 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
9919 	if (dev->hw_enc_features & NETIF_F_TSO)
9920 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
9921 
9922 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
9923 	 */
9924 	dev->vlan_features |= NETIF_F_HIGHDMA;
9925 
9926 	/* Make NETIF_F_SG inheritable to tunnel devices.
9927 	 */
9928 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
9929 
9930 	/* Make NETIF_F_SG inheritable to MPLS.
9931 	 */
9932 	dev->mpls_features |= NETIF_F_SG;
9933 
9934 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
9935 	ret = notifier_to_errno(ret);
9936 	if (ret)
9937 		goto err_uninit;
9938 
9939 	ret = netdev_register_kobject(dev);
9940 	if (ret) {
9941 		dev->reg_state = NETREG_UNREGISTERED;
9942 		goto err_uninit;
9943 	}
9944 	dev->reg_state = NETREG_REGISTERED;
9945 
9946 	__netdev_update_features(dev);
9947 
9948 	/*
9949 	 *	Default initial state at registry is that the
9950 	 *	device is present.
9951 	 */
9952 
9953 	set_bit(__LINK_STATE_PRESENT, &dev->state);
9954 
9955 	linkwatch_init_dev(dev);
9956 
9957 	dev_init_scheduler(dev);
9958 
9959 	dev_hold_track(dev, &dev->dev_registered_tracker, GFP_KERNEL);
9960 	list_netdevice(dev);
9961 
9962 	add_device_randomness(dev->dev_addr, dev->addr_len);
9963 
9964 	/* If the device has permanent device address, driver should
9965 	 * set dev_addr and also addr_assign_type should be set to
9966 	 * NET_ADDR_PERM (default value).
9967 	 */
9968 	if (dev->addr_assign_type == NET_ADDR_PERM)
9969 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
9970 
9971 	/* Notify protocols, that a new device appeared. */
9972 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
9973 	ret = notifier_to_errno(ret);
9974 	if (ret) {
9975 		/* Expect explicit free_netdev() on failure */
9976 		dev->needs_free_netdev = false;
9977 		unregister_netdevice_queue(dev, NULL);
9978 		goto out;
9979 	}
9980 	/*
9981 	 *	Prevent userspace races by waiting until the network
9982 	 *	device is fully setup before sending notifications.
9983 	 */
9984 	if (!dev->rtnl_link_ops ||
9985 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
9986 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9987 
9988 out:
9989 	return ret;
9990 
9991 err_uninit:
9992 	if (dev->netdev_ops->ndo_uninit)
9993 		dev->netdev_ops->ndo_uninit(dev);
9994 	if (dev->priv_destructor)
9995 		dev->priv_destructor(dev);
9996 err_free_name:
9997 	netdev_name_node_free(dev->name_node);
9998 	goto out;
9999 }
10000 EXPORT_SYMBOL(register_netdevice);
10001 
10002 /**
10003  *	init_dummy_netdev	- init a dummy network device for NAPI
10004  *	@dev: device to init
10005  *
10006  *	This takes a network device structure and initialize the minimum
10007  *	amount of fields so it can be used to schedule NAPI polls without
10008  *	registering a full blown interface. This is to be used by drivers
10009  *	that need to tie several hardware interfaces to a single NAPI
10010  *	poll scheduler due to HW limitations.
10011  */
10012 int init_dummy_netdev(struct net_device *dev)
10013 {
10014 	/* Clear everything. Note we don't initialize spinlocks
10015 	 * are they aren't supposed to be taken by any of the
10016 	 * NAPI code and this dummy netdev is supposed to be
10017 	 * only ever used for NAPI polls
10018 	 */
10019 	memset(dev, 0, sizeof(struct net_device));
10020 
10021 	/* make sure we BUG if trying to hit standard
10022 	 * register/unregister code path
10023 	 */
10024 	dev->reg_state = NETREG_DUMMY;
10025 
10026 	/* NAPI wants this */
10027 	INIT_LIST_HEAD(&dev->napi_list);
10028 
10029 	/* a dummy interface is started by default */
10030 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10031 	set_bit(__LINK_STATE_START, &dev->state);
10032 
10033 	/* napi_busy_loop stats accounting wants this */
10034 	dev_net_set(dev, &init_net);
10035 
10036 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
10037 	 * because users of this 'device' dont need to change
10038 	 * its refcount.
10039 	 */
10040 
10041 	return 0;
10042 }
10043 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10044 
10045 
10046 /**
10047  *	register_netdev	- register a network device
10048  *	@dev: device to register
10049  *
10050  *	Take a completed network device structure and add it to the kernel
10051  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10052  *	chain. 0 is returned on success. A negative errno code is returned
10053  *	on a failure to set up the device, or if the name is a duplicate.
10054  *
10055  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
10056  *	and expands the device name if you passed a format string to
10057  *	alloc_netdev.
10058  */
10059 int register_netdev(struct net_device *dev)
10060 {
10061 	int err;
10062 
10063 	if (rtnl_lock_killable())
10064 		return -EINTR;
10065 	err = register_netdevice(dev);
10066 	rtnl_unlock();
10067 	return err;
10068 }
10069 EXPORT_SYMBOL(register_netdev);
10070 
10071 int netdev_refcnt_read(const struct net_device *dev)
10072 {
10073 #ifdef CONFIG_PCPU_DEV_REFCNT
10074 	int i, refcnt = 0;
10075 
10076 	for_each_possible_cpu(i)
10077 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10078 	return refcnt;
10079 #else
10080 	return refcount_read(&dev->dev_refcnt);
10081 #endif
10082 }
10083 EXPORT_SYMBOL(netdev_refcnt_read);
10084 
10085 int netdev_unregister_timeout_secs __read_mostly = 10;
10086 
10087 #define WAIT_REFS_MIN_MSECS 1
10088 #define WAIT_REFS_MAX_MSECS 250
10089 /**
10090  * netdev_wait_allrefs_any - wait until all references are gone.
10091  * @list: list of net_devices to wait on
10092  *
10093  * This is called when unregistering network devices.
10094  *
10095  * Any protocol or device that holds a reference should register
10096  * for netdevice notification, and cleanup and put back the
10097  * reference if they receive an UNREGISTER event.
10098  * We can get stuck here if buggy protocols don't correctly
10099  * call dev_put.
10100  */
10101 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
10102 {
10103 	unsigned long rebroadcast_time, warning_time;
10104 	struct net_device *dev;
10105 	int wait = 0;
10106 
10107 	rebroadcast_time = warning_time = jiffies;
10108 
10109 	list_for_each_entry(dev, list, todo_list)
10110 		if (netdev_refcnt_read(dev) == 1)
10111 			return dev;
10112 
10113 	while (true) {
10114 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10115 			rtnl_lock();
10116 
10117 			/* Rebroadcast unregister notification */
10118 			list_for_each_entry(dev, list, todo_list)
10119 				call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10120 
10121 			__rtnl_unlock();
10122 			rcu_barrier();
10123 			rtnl_lock();
10124 
10125 			list_for_each_entry(dev, list, todo_list)
10126 				if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10127 					     &dev->state)) {
10128 					/* We must not have linkwatch events
10129 					 * pending on unregister. If this
10130 					 * happens, we simply run the queue
10131 					 * unscheduled, resulting in a noop
10132 					 * for this device.
10133 					 */
10134 					linkwatch_run_queue();
10135 					break;
10136 				}
10137 
10138 			__rtnl_unlock();
10139 
10140 			rebroadcast_time = jiffies;
10141 		}
10142 
10143 		if (!wait) {
10144 			rcu_barrier();
10145 			wait = WAIT_REFS_MIN_MSECS;
10146 		} else {
10147 			msleep(wait);
10148 			wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10149 		}
10150 
10151 		list_for_each_entry(dev, list, todo_list)
10152 			if (netdev_refcnt_read(dev) == 1)
10153 				return dev;
10154 
10155 		if (time_after(jiffies, warning_time +
10156 			       netdev_unregister_timeout_secs * HZ)) {
10157 			list_for_each_entry(dev, list, todo_list) {
10158 				pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10159 					 dev->name, netdev_refcnt_read(dev));
10160 				ref_tracker_dir_print(&dev->refcnt_tracker, 10);
10161 			}
10162 
10163 			warning_time = jiffies;
10164 		}
10165 	}
10166 }
10167 
10168 /* The sequence is:
10169  *
10170  *	rtnl_lock();
10171  *	...
10172  *	register_netdevice(x1);
10173  *	register_netdevice(x2);
10174  *	...
10175  *	unregister_netdevice(y1);
10176  *	unregister_netdevice(y2);
10177  *      ...
10178  *	rtnl_unlock();
10179  *	free_netdev(y1);
10180  *	free_netdev(y2);
10181  *
10182  * We are invoked by rtnl_unlock().
10183  * This allows us to deal with problems:
10184  * 1) We can delete sysfs objects which invoke hotplug
10185  *    without deadlocking with linkwatch via keventd.
10186  * 2) Since we run with the RTNL semaphore not held, we can sleep
10187  *    safely in order to wait for the netdev refcnt to drop to zero.
10188  *
10189  * We must not return until all unregister events added during
10190  * the interval the lock was held have been completed.
10191  */
10192 void netdev_run_todo(void)
10193 {
10194 	struct net_device *dev, *tmp;
10195 	struct list_head list;
10196 #ifdef CONFIG_LOCKDEP
10197 	struct list_head unlink_list;
10198 
10199 	list_replace_init(&net_unlink_list, &unlink_list);
10200 
10201 	while (!list_empty(&unlink_list)) {
10202 		struct net_device *dev = list_first_entry(&unlink_list,
10203 							  struct net_device,
10204 							  unlink_list);
10205 		list_del_init(&dev->unlink_list);
10206 		dev->nested_level = dev->lower_level - 1;
10207 	}
10208 #endif
10209 
10210 	/* Snapshot list, allow later requests */
10211 	list_replace_init(&net_todo_list, &list);
10212 
10213 	__rtnl_unlock();
10214 
10215 	/* Wait for rcu callbacks to finish before next phase */
10216 	if (!list_empty(&list))
10217 		rcu_barrier();
10218 
10219 	list_for_each_entry_safe(dev, tmp, &list, todo_list) {
10220 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10221 			netdev_WARN(dev, "run_todo but not unregistering\n");
10222 			list_del(&dev->todo_list);
10223 			continue;
10224 		}
10225 
10226 		dev->reg_state = NETREG_UNREGISTERED;
10227 		linkwatch_forget_dev(dev);
10228 	}
10229 
10230 	while (!list_empty(&list)) {
10231 		dev = netdev_wait_allrefs_any(&list);
10232 		list_del(&dev->todo_list);
10233 
10234 		/* paranoia */
10235 		BUG_ON(netdev_refcnt_read(dev) != 1);
10236 		BUG_ON(!list_empty(&dev->ptype_all));
10237 		BUG_ON(!list_empty(&dev->ptype_specific));
10238 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
10239 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10240 #if IS_ENABLED(CONFIG_DECNET)
10241 		WARN_ON(dev->dn_ptr);
10242 #endif
10243 		if (dev->priv_destructor)
10244 			dev->priv_destructor(dev);
10245 		if (dev->needs_free_netdev)
10246 			free_netdev(dev);
10247 
10248 		if (atomic_dec_and_test(&dev_net(dev)->dev_unreg_count))
10249 			wake_up(&netdev_unregistering_wq);
10250 
10251 		/* Free network device */
10252 		kobject_put(&dev->dev.kobj);
10253 	}
10254 }
10255 
10256 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10257  * all the same fields in the same order as net_device_stats, with only
10258  * the type differing, but rtnl_link_stats64 may have additional fields
10259  * at the end for newer counters.
10260  */
10261 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10262 			     const struct net_device_stats *netdev_stats)
10263 {
10264 #if BITS_PER_LONG == 64
10265 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
10266 	memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
10267 	/* zero out counters that only exist in rtnl_link_stats64 */
10268 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
10269 	       sizeof(*stats64) - sizeof(*netdev_stats));
10270 #else
10271 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
10272 	const unsigned long *src = (const unsigned long *)netdev_stats;
10273 	u64 *dst = (u64 *)stats64;
10274 
10275 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10276 	for (i = 0; i < n; i++)
10277 		dst[i] = src[i];
10278 	/* zero out counters that only exist in rtnl_link_stats64 */
10279 	memset((char *)stats64 + n * sizeof(u64), 0,
10280 	       sizeof(*stats64) - n * sizeof(u64));
10281 #endif
10282 }
10283 EXPORT_SYMBOL(netdev_stats_to_stats64);
10284 
10285 /**
10286  *	dev_get_stats	- get network device statistics
10287  *	@dev: device to get statistics from
10288  *	@storage: place to store stats
10289  *
10290  *	Get network statistics from device. Return @storage.
10291  *	The device driver may provide its own method by setting
10292  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10293  *	otherwise the internal statistics structure is used.
10294  */
10295 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10296 					struct rtnl_link_stats64 *storage)
10297 {
10298 	const struct net_device_ops *ops = dev->netdev_ops;
10299 
10300 	if (ops->ndo_get_stats64) {
10301 		memset(storage, 0, sizeof(*storage));
10302 		ops->ndo_get_stats64(dev, storage);
10303 	} else if (ops->ndo_get_stats) {
10304 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10305 	} else {
10306 		netdev_stats_to_stats64(storage, &dev->stats);
10307 	}
10308 	storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
10309 	storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
10310 	storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
10311 	return storage;
10312 }
10313 EXPORT_SYMBOL(dev_get_stats);
10314 
10315 /**
10316  *	dev_fetch_sw_netstats - get per-cpu network device statistics
10317  *	@s: place to store stats
10318  *	@netstats: per-cpu network stats to read from
10319  *
10320  *	Read per-cpu network statistics and populate the related fields in @s.
10321  */
10322 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10323 			   const struct pcpu_sw_netstats __percpu *netstats)
10324 {
10325 	int cpu;
10326 
10327 	for_each_possible_cpu(cpu) {
10328 		const struct pcpu_sw_netstats *stats;
10329 		struct pcpu_sw_netstats tmp;
10330 		unsigned int start;
10331 
10332 		stats = per_cpu_ptr(netstats, cpu);
10333 		do {
10334 			start = u64_stats_fetch_begin_irq(&stats->syncp);
10335 			tmp.rx_packets = stats->rx_packets;
10336 			tmp.rx_bytes   = stats->rx_bytes;
10337 			tmp.tx_packets = stats->tx_packets;
10338 			tmp.tx_bytes   = stats->tx_bytes;
10339 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10340 
10341 		s->rx_packets += tmp.rx_packets;
10342 		s->rx_bytes   += tmp.rx_bytes;
10343 		s->tx_packets += tmp.tx_packets;
10344 		s->tx_bytes   += tmp.tx_bytes;
10345 	}
10346 }
10347 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10348 
10349 /**
10350  *	dev_get_tstats64 - ndo_get_stats64 implementation
10351  *	@dev: device to get statistics from
10352  *	@s: place to store stats
10353  *
10354  *	Populate @s from dev->stats and dev->tstats. Can be used as
10355  *	ndo_get_stats64() callback.
10356  */
10357 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10358 {
10359 	netdev_stats_to_stats64(s, &dev->stats);
10360 	dev_fetch_sw_netstats(s, dev->tstats);
10361 }
10362 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10363 
10364 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10365 {
10366 	struct netdev_queue *queue = dev_ingress_queue(dev);
10367 
10368 #ifdef CONFIG_NET_CLS_ACT
10369 	if (queue)
10370 		return queue;
10371 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10372 	if (!queue)
10373 		return NULL;
10374 	netdev_init_one_queue(dev, queue, NULL);
10375 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10376 	queue->qdisc_sleeping = &noop_qdisc;
10377 	rcu_assign_pointer(dev->ingress_queue, queue);
10378 #endif
10379 	return queue;
10380 }
10381 
10382 static const struct ethtool_ops default_ethtool_ops;
10383 
10384 void netdev_set_default_ethtool_ops(struct net_device *dev,
10385 				    const struct ethtool_ops *ops)
10386 {
10387 	if (dev->ethtool_ops == &default_ethtool_ops)
10388 		dev->ethtool_ops = ops;
10389 }
10390 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10391 
10392 void netdev_freemem(struct net_device *dev)
10393 {
10394 	char *addr = (char *)dev - dev->padded;
10395 
10396 	kvfree(addr);
10397 }
10398 
10399 /**
10400  * alloc_netdev_mqs - allocate network device
10401  * @sizeof_priv: size of private data to allocate space for
10402  * @name: device name format string
10403  * @name_assign_type: origin of device name
10404  * @setup: callback to initialize device
10405  * @txqs: the number of TX subqueues to allocate
10406  * @rxqs: the number of RX subqueues to allocate
10407  *
10408  * Allocates a struct net_device with private data area for driver use
10409  * and performs basic initialization.  Also allocates subqueue structs
10410  * for each queue on the device.
10411  */
10412 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10413 		unsigned char name_assign_type,
10414 		void (*setup)(struct net_device *),
10415 		unsigned int txqs, unsigned int rxqs)
10416 {
10417 	struct net_device *dev;
10418 	unsigned int alloc_size;
10419 	struct net_device *p;
10420 
10421 	BUG_ON(strlen(name) >= sizeof(dev->name));
10422 
10423 	if (txqs < 1) {
10424 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10425 		return NULL;
10426 	}
10427 
10428 	if (rxqs < 1) {
10429 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10430 		return NULL;
10431 	}
10432 
10433 	alloc_size = sizeof(struct net_device);
10434 	if (sizeof_priv) {
10435 		/* ensure 32-byte alignment of private area */
10436 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10437 		alloc_size += sizeof_priv;
10438 	}
10439 	/* ensure 32-byte alignment of whole construct */
10440 	alloc_size += NETDEV_ALIGN - 1;
10441 
10442 	p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10443 	if (!p)
10444 		return NULL;
10445 
10446 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
10447 	dev->padded = (char *)dev - (char *)p;
10448 
10449 	ref_tracker_dir_init(&dev->refcnt_tracker, 128);
10450 #ifdef CONFIG_PCPU_DEV_REFCNT
10451 	dev->pcpu_refcnt = alloc_percpu(int);
10452 	if (!dev->pcpu_refcnt)
10453 		goto free_dev;
10454 	__dev_hold(dev);
10455 #else
10456 	refcount_set(&dev->dev_refcnt, 1);
10457 #endif
10458 
10459 	if (dev_addr_init(dev))
10460 		goto free_pcpu;
10461 
10462 	dev_mc_init(dev);
10463 	dev_uc_init(dev);
10464 
10465 	dev_net_set(dev, &init_net);
10466 
10467 	dev->gso_max_size = GSO_MAX_SIZE;
10468 	dev->gso_max_segs = GSO_MAX_SEGS;
10469 	dev->gro_max_size = GRO_MAX_SIZE;
10470 	dev->upper_level = 1;
10471 	dev->lower_level = 1;
10472 #ifdef CONFIG_LOCKDEP
10473 	dev->nested_level = 0;
10474 	INIT_LIST_HEAD(&dev->unlink_list);
10475 #endif
10476 
10477 	INIT_LIST_HEAD(&dev->napi_list);
10478 	INIT_LIST_HEAD(&dev->unreg_list);
10479 	INIT_LIST_HEAD(&dev->close_list);
10480 	INIT_LIST_HEAD(&dev->link_watch_list);
10481 	INIT_LIST_HEAD(&dev->adj_list.upper);
10482 	INIT_LIST_HEAD(&dev->adj_list.lower);
10483 	INIT_LIST_HEAD(&dev->ptype_all);
10484 	INIT_LIST_HEAD(&dev->ptype_specific);
10485 	INIT_LIST_HEAD(&dev->net_notifier_list);
10486 #ifdef CONFIG_NET_SCHED
10487 	hash_init(dev->qdisc_hash);
10488 #endif
10489 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10490 	setup(dev);
10491 
10492 	if (!dev->tx_queue_len) {
10493 		dev->priv_flags |= IFF_NO_QUEUE;
10494 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10495 	}
10496 
10497 	dev->num_tx_queues = txqs;
10498 	dev->real_num_tx_queues = txqs;
10499 	if (netif_alloc_netdev_queues(dev))
10500 		goto free_all;
10501 
10502 	dev->num_rx_queues = rxqs;
10503 	dev->real_num_rx_queues = rxqs;
10504 	if (netif_alloc_rx_queues(dev))
10505 		goto free_all;
10506 
10507 	strcpy(dev->name, name);
10508 	dev->name_assign_type = name_assign_type;
10509 	dev->group = INIT_NETDEV_GROUP;
10510 	if (!dev->ethtool_ops)
10511 		dev->ethtool_ops = &default_ethtool_ops;
10512 
10513 	nf_hook_netdev_init(dev);
10514 
10515 	return dev;
10516 
10517 free_all:
10518 	free_netdev(dev);
10519 	return NULL;
10520 
10521 free_pcpu:
10522 #ifdef CONFIG_PCPU_DEV_REFCNT
10523 	free_percpu(dev->pcpu_refcnt);
10524 free_dev:
10525 #endif
10526 	netdev_freemem(dev);
10527 	return NULL;
10528 }
10529 EXPORT_SYMBOL(alloc_netdev_mqs);
10530 
10531 /**
10532  * free_netdev - free network device
10533  * @dev: device
10534  *
10535  * This function does the last stage of destroying an allocated device
10536  * interface. The reference to the device object is released. If this
10537  * is the last reference then it will be freed.Must be called in process
10538  * context.
10539  */
10540 void free_netdev(struct net_device *dev)
10541 {
10542 	struct napi_struct *p, *n;
10543 
10544 	might_sleep();
10545 
10546 	/* When called immediately after register_netdevice() failed the unwind
10547 	 * handling may still be dismantling the device. Handle that case by
10548 	 * deferring the free.
10549 	 */
10550 	if (dev->reg_state == NETREG_UNREGISTERING) {
10551 		ASSERT_RTNL();
10552 		dev->needs_free_netdev = true;
10553 		return;
10554 	}
10555 
10556 	netif_free_tx_queues(dev);
10557 	netif_free_rx_queues(dev);
10558 
10559 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10560 
10561 	/* Flush device addresses */
10562 	dev_addr_flush(dev);
10563 
10564 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10565 		netif_napi_del(p);
10566 
10567 	ref_tracker_dir_exit(&dev->refcnt_tracker);
10568 #ifdef CONFIG_PCPU_DEV_REFCNT
10569 	free_percpu(dev->pcpu_refcnt);
10570 	dev->pcpu_refcnt = NULL;
10571 #endif
10572 	free_percpu(dev->xdp_bulkq);
10573 	dev->xdp_bulkq = NULL;
10574 
10575 	/*  Compatibility with error handling in drivers */
10576 	if (dev->reg_state == NETREG_UNINITIALIZED) {
10577 		netdev_freemem(dev);
10578 		return;
10579 	}
10580 
10581 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10582 	dev->reg_state = NETREG_RELEASED;
10583 
10584 	/* will free via device release */
10585 	put_device(&dev->dev);
10586 }
10587 EXPORT_SYMBOL(free_netdev);
10588 
10589 /**
10590  *	synchronize_net -  Synchronize with packet receive processing
10591  *
10592  *	Wait for packets currently being received to be done.
10593  *	Does not block later packets from starting.
10594  */
10595 void synchronize_net(void)
10596 {
10597 	might_sleep();
10598 	if (rtnl_is_locked())
10599 		synchronize_rcu_expedited();
10600 	else
10601 		synchronize_rcu();
10602 }
10603 EXPORT_SYMBOL(synchronize_net);
10604 
10605 /**
10606  *	unregister_netdevice_queue - remove device from the kernel
10607  *	@dev: device
10608  *	@head: list
10609  *
10610  *	This function shuts down a device interface and removes it
10611  *	from the kernel tables.
10612  *	If head not NULL, device is queued to be unregistered later.
10613  *
10614  *	Callers must hold the rtnl semaphore.  You may want
10615  *	unregister_netdev() instead of this.
10616  */
10617 
10618 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10619 {
10620 	ASSERT_RTNL();
10621 
10622 	if (head) {
10623 		list_move_tail(&dev->unreg_list, head);
10624 	} else {
10625 		LIST_HEAD(single);
10626 
10627 		list_add(&dev->unreg_list, &single);
10628 		unregister_netdevice_many(&single);
10629 	}
10630 }
10631 EXPORT_SYMBOL(unregister_netdevice_queue);
10632 
10633 /**
10634  *	unregister_netdevice_many - unregister many devices
10635  *	@head: list of devices
10636  *
10637  *  Note: As most callers use a stack allocated list_head,
10638  *  we force a list_del() to make sure stack wont be corrupted later.
10639  */
10640 void unregister_netdevice_many(struct list_head *head)
10641 {
10642 	struct net_device *dev, *tmp;
10643 	LIST_HEAD(close_head);
10644 
10645 	BUG_ON(dev_boot_phase);
10646 	ASSERT_RTNL();
10647 
10648 	if (list_empty(head))
10649 		return;
10650 
10651 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
10652 		/* Some devices call without registering
10653 		 * for initialization unwind. Remove those
10654 		 * devices and proceed with the remaining.
10655 		 */
10656 		if (dev->reg_state == NETREG_UNINITIALIZED) {
10657 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
10658 				 dev->name, dev);
10659 
10660 			WARN_ON(1);
10661 			list_del(&dev->unreg_list);
10662 			continue;
10663 		}
10664 		dev->dismantle = true;
10665 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
10666 	}
10667 
10668 	/* If device is running, close it first. */
10669 	list_for_each_entry(dev, head, unreg_list)
10670 		list_add_tail(&dev->close_list, &close_head);
10671 	dev_close_many(&close_head, true);
10672 
10673 	list_for_each_entry(dev, head, unreg_list) {
10674 		/* And unlink it from device chain. */
10675 		unlist_netdevice(dev);
10676 
10677 		dev->reg_state = NETREG_UNREGISTERING;
10678 	}
10679 	flush_all_backlogs();
10680 
10681 	synchronize_net();
10682 
10683 	list_for_each_entry(dev, head, unreg_list) {
10684 		struct sk_buff *skb = NULL;
10685 
10686 		/* Shutdown queueing discipline. */
10687 		dev_shutdown(dev);
10688 
10689 		dev_xdp_uninstall(dev);
10690 
10691 		netdev_offload_xstats_disable_all(dev);
10692 
10693 		/* Notify protocols, that we are about to destroy
10694 		 * this device. They should clean all the things.
10695 		 */
10696 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10697 
10698 		if (!dev->rtnl_link_ops ||
10699 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10700 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
10701 						     GFP_KERNEL, NULL, 0);
10702 
10703 		/*
10704 		 *	Flush the unicast and multicast chains
10705 		 */
10706 		dev_uc_flush(dev);
10707 		dev_mc_flush(dev);
10708 
10709 		netdev_name_node_alt_flush(dev);
10710 		netdev_name_node_free(dev->name_node);
10711 
10712 		if (dev->netdev_ops->ndo_uninit)
10713 			dev->netdev_ops->ndo_uninit(dev);
10714 
10715 		if (skb)
10716 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
10717 
10718 		/* Notifier chain MUST detach us all upper devices. */
10719 		WARN_ON(netdev_has_any_upper_dev(dev));
10720 		WARN_ON(netdev_has_any_lower_dev(dev));
10721 
10722 		/* Remove entries from kobject tree */
10723 		netdev_unregister_kobject(dev);
10724 #ifdef CONFIG_XPS
10725 		/* Remove XPS queueing entries */
10726 		netif_reset_xps_queues_gt(dev, 0);
10727 #endif
10728 	}
10729 
10730 	synchronize_net();
10731 
10732 	list_for_each_entry(dev, head, unreg_list) {
10733 		dev_put_track(dev, &dev->dev_registered_tracker);
10734 		net_set_todo(dev);
10735 	}
10736 
10737 	list_del(head);
10738 }
10739 EXPORT_SYMBOL(unregister_netdevice_many);
10740 
10741 /**
10742  *	unregister_netdev - remove device from the kernel
10743  *	@dev: device
10744  *
10745  *	This function shuts down a device interface and removes it
10746  *	from the kernel tables.
10747  *
10748  *	This is just a wrapper for unregister_netdevice that takes
10749  *	the rtnl semaphore.  In general you want to use this and not
10750  *	unregister_netdevice.
10751  */
10752 void unregister_netdev(struct net_device *dev)
10753 {
10754 	rtnl_lock();
10755 	unregister_netdevice(dev);
10756 	rtnl_unlock();
10757 }
10758 EXPORT_SYMBOL(unregister_netdev);
10759 
10760 /**
10761  *	__dev_change_net_namespace - move device to different nethost namespace
10762  *	@dev: device
10763  *	@net: network namespace
10764  *	@pat: If not NULL name pattern to try if the current device name
10765  *	      is already taken in the destination network namespace.
10766  *	@new_ifindex: If not zero, specifies device index in the target
10767  *	              namespace.
10768  *
10769  *	This function shuts down a device interface and moves it
10770  *	to a new network namespace. On success 0 is returned, on
10771  *	a failure a netagive errno code is returned.
10772  *
10773  *	Callers must hold the rtnl semaphore.
10774  */
10775 
10776 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
10777 			       const char *pat, int new_ifindex)
10778 {
10779 	struct net *net_old = dev_net(dev);
10780 	int err, new_nsid;
10781 
10782 	ASSERT_RTNL();
10783 
10784 	/* Don't allow namespace local devices to be moved. */
10785 	err = -EINVAL;
10786 	if (dev->features & NETIF_F_NETNS_LOCAL)
10787 		goto out;
10788 
10789 	/* Ensure the device has been registrered */
10790 	if (dev->reg_state != NETREG_REGISTERED)
10791 		goto out;
10792 
10793 	/* Get out if there is nothing todo */
10794 	err = 0;
10795 	if (net_eq(net_old, net))
10796 		goto out;
10797 
10798 	/* Pick the destination device name, and ensure
10799 	 * we can use it in the destination network namespace.
10800 	 */
10801 	err = -EEXIST;
10802 	if (netdev_name_in_use(net, dev->name)) {
10803 		/* We get here if we can't use the current device name */
10804 		if (!pat)
10805 			goto out;
10806 		err = dev_get_valid_name(net, dev, pat);
10807 		if (err < 0)
10808 			goto out;
10809 	}
10810 
10811 	/* Check that new_ifindex isn't used yet. */
10812 	err = -EBUSY;
10813 	if (new_ifindex && __dev_get_by_index(net, new_ifindex))
10814 		goto out;
10815 
10816 	/*
10817 	 * And now a mini version of register_netdevice unregister_netdevice.
10818 	 */
10819 
10820 	/* If device is running close it first. */
10821 	dev_close(dev);
10822 
10823 	/* And unlink it from device chain */
10824 	unlist_netdevice(dev);
10825 
10826 	synchronize_net();
10827 
10828 	/* Shutdown queueing discipline. */
10829 	dev_shutdown(dev);
10830 
10831 	/* Notify protocols, that we are about to destroy
10832 	 * this device. They should clean all the things.
10833 	 *
10834 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
10835 	 * This is wanted because this way 8021q and macvlan know
10836 	 * the device is just moving and can keep their slaves up.
10837 	 */
10838 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10839 	rcu_barrier();
10840 
10841 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
10842 	/* If there is an ifindex conflict assign a new one */
10843 	if (!new_ifindex) {
10844 		if (__dev_get_by_index(net, dev->ifindex))
10845 			new_ifindex = dev_new_index(net);
10846 		else
10847 			new_ifindex = dev->ifindex;
10848 	}
10849 
10850 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
10851 			    new_ifindex);
10852 
10853 	/*
10854 	 *	Flush the unicast and multicast chains
10855 	 */
10856 	dev_uc_flush(dev);
10857 	dev_mc_flush(dev);
10858 
10859 	/* Send a netdev-removed uevent to the old namespace */
10860 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
10861 	netdev_adjacent_del_links(dev);
10862 
10863 	/* Move per-net netdevice notifiers that are following the netdevice */
10864 	move_netdevice_notifiers_dev_net(dev, net);
10865 
10866 	/* Actually switch the network namespace */
10867 	dev_net_set(dev, net);
10868 	dev->ifindex = new_ifindex;
10869 
10870 	/* Send a netdev-add uevent to the new namespace */
10871 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
10872 	netdev_adjacent_add_links(dev);
10873 
10874 	/* Fixup kobjects */
10875 	err = device_rename(&dev->dev, dev->name);
10876 	WARN_ON(err);
10877 
10878 	/* Adapt owner in case owning user namespace of target network
10879 	 * namespace is different from the original one.
10880 	 */
10881 	err = netdev_change_owner(dev, net_old, net);
10882 	WARN_ON(err);
10883 
10884 	/* Add the device back in the hashes */
10885 	list_netdevice(dev);
10886 
10887 	/* Notify protocols, that a new device appeared. */
10888 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
10889 
10890 	/*
10891 	 *	Prevent userspace races by waiting until the network
10892 	 *	device is fully setup before sending notifications.
10893 	 */
10894 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10895 
10896 	synchronize_net();
10897 	err = 0;
10898 out:
10899 	return err;
10900 }
10901 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
10902 
10903 static int dev_cpu_dead(unsigned int oldcpu)
10904 {
10905 	struct sk_buff **list_skb;
10906 	struct sk_buff *skb;
10907 	unsigned int cpu;
10908 	struct softnet_data *sd, *oldsd, *remsd = NULL;
10909 
10910 	local_irq_disable();
10911 	cpu = smp_processor_id();
10912 	sd = &per_cpu(softnet_data, cpu);
10913 	oldsd = &per_cpu(softnet_data, oldcpu);
10914 
10915 	/* Find end of our completion_queue. */
10916 	list_skb = &sd->completion_queue;
10917 	while (*list_skb)
10918 		list_skb = &(*list_skb)->next;
10919 	/* Append completion queue from offline CPU. */
10920 	*list_skb = oldsd->completion_queue;
10921 	oldsd->completion_queue = NULL;
10922 
10923 	/* Append output queue from offline CPU. */
10924 	if (oldsd->output_queue) {
10925 		*sd->output_queue_tailp = oldsd->output_queue;
10926 		sd->output_queue_tailp = oldsd->output_queue_tailp;
10927 		oldsd->output_queue = NULL;
10928 		oldsd->output_queue_tailp = &oldsd->output_queue;
10929 	}
10930 	/* Append NAPI poll list from offline CPU, with one exception :
10931 	 * process_backlog() must be called by cpu owning percpu backlog.
10932 	 * We properly handle process_queue & input_pkt_queue later.
10933 	 */
10934 	while (!list_empty(&oldsd->poll_list)) {
10935 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
10936 							    struct napi_struct,
10937 							    poll_list);
10938 
10939 		list_del_init(&napi->poll_list);
10940 		if (napi->poll == process_backlog)
10941 			napi->state = 0;
10942 		else
10943 			____napi_schedule(sd, napi);
10944 	}
10945 
10946 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
10947 	local_irq_enable();
10948 
10949 #ifdef CONFIG_RPS
10950 	remsd = oldsd->rps_ipi_list;
10951 	oldsd->rps_ipi_list = NULL;
10952 #endif
10953 	/* send out pending IPI's on offline CPU */
10954 	net_rps_send_ipi(remsd);
10955 
10956 	/* Process offline CPU's input_pkt_queue */
10957 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
10958 		netif_rx(skb);
10959 		input_queue_head_incr(oldsd);
10960 	}
10961 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
10962 		netif_rx(skb);
10963 		input_queue_head_incr(oldsd);
10964 	}
10965 
10966 	return 0;
10967 }
10968 
10969 /**
10970  *	netdev_increment_features - increment feature set by one
10971  *	@all: current feature set
10972  *	@one: new feature set
10973  *	@mask: mask feature set
10974  *
10975  *	Computes a new feature set after adding a device with feature set
10976  *	@one to the master device with current feature set @all.  Will not
10977  *	enable anything that is off in @mask. Returns the new feature set.
10978  */
10979 netdev_features_t netdev_increment_features(netdev_features_t all,
10980 	netdev_features_t one, netdev_features_t mask)
10981 {
10982 	if (mask & NETIF_F_HW_CSUM)
10983 		mask |= NETIF_F_CSUM_MASK;
10984 	mask |= NETIF_F_VLAN_CHALLENGED;
10985 
10986 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
10987 	all &= one | ~NETIF_F_ALL_FOR_ALL;
10988 
10989 	/* If one device supports hw checksumming, set for all. */
10990 	if (all & NETIF_F_HW_CSUM)
10991 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
10992 
10993 	return all;
10994 }
10995 EXPORT_SYMBOL(netdev_increment_features);
10996 
10997 static struct hlist_head * __net_init netdev_create_hash(void)
10998 {
10999 	int i;
11000 	struct hlist_head *hash;
11001 
11002 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11003 	if (hash != NULL)
11004 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
11005 			INIT_HLIST_HEAD(&hash[i]);
11006 
11007 	return hash;
11008 }
11009 
11010 /* Initialize per network namespace state */
11011 static int __net_init netdev_init(struct net *net)
11012 {
11013 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
11014 		     8 * sizeof_field(struct napi_struct, gro_bitmask));
11015 
11016 	INIT_LIST_HEAD(&net->dev_base_head);
11017 
11018 	net->dev_name_head = netdev_create_hash();
11019 	if (net->dev_name_head == NULL)
11020 		goto err_name;
11021 
11022 	net->dev_index_head = netdev_create_hash();
11023 	if (net->dev_index_head == NULL)
11024 		goto err_idx;
11025 
11026 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11027 
11028 	return 0;
11029 
11030 err_idx:
11031 	kfree(net->dev_name_head);
11032 err_name:
11033 	return -ENOMEM;
11034 }
11035 
11036 /**
11037  *	netdev_drivername - network driver for the device
11038  *	@dev: network device
11039  *
11040  *	Determine network driver for device.
11041  */
11042 const char *netdev_drivername(const struct net_device *dev)
11043 {
11044 	const struct device_driver *driver;
11045 	const struct device *parent;
11046 	const char *empty = "";
11047 
11048 	parent = dev->dev.parent;
11049 	if (!parent)
11050 		return empty;
11051 
11052 	driver = parent->driver;
11053 	if (driver && driver->name)
11054 		return driver->name;
11055 	return empty;
11056 }
11057 
11058 static void __netdev_printk(const char *level, const struct net_device *dev,
11059 			    struct va_format *vaf)
11060 {
11061 	if (dev && dev->dev.parent) {
11062 		dev_printk_emit(level[1] - '0',
11063 				dev->dev.parent,
11064 				"%s %s %s%s: %pV",
11065 				dev_driver_string(dev->dev.parent),
11066 				dev_name(dev->dev.parent),
11067 				netdev_name(dev), netdev_reg_state(dev),
11068 				vaf);
11069 	} else if (dev) {
11070 		printk("%s%s%s: %pV",
11071 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
11072 	} else {
11073 		printk("%s(NULL net_device): %pV", level, vaf);
11074 	}
11075 }
11076 
11077 void netdev_printk(const char *level, const struct net_device *dev,
11078 		   const char *format, ...)
11079 {
11080 	struct va_format vaf;
11081 	va_list args;
11082 
11083 	va_start(args, format);
11084 
11085 	vaf.fmt = format;
11086 	vaf.va = &args;
11087 
11088 	__netdev_printk(level, dev, &vaf);
11089 
11090 	va_end(args);
11091 }
11092 EXPORT_SYMBOL(netdev_printk);
11093 
11094 #define define_netdev_printk_level(func, level)			\
11095 void func(const struct net_device *dev, const char *fmt, ...)	\
11096 {								\
11097 	struct va_format vaf;					\
11098 	va_list args;						\
11099 								\
11100 	va_start(args, fmt);					\
11101 								\
11102 	vaf.fmt = fmt;						\
11103 	vaf.va = &args;						\
11104 								\
11105 	__netdev_printk(level, dev, &vaf);			\
11106 								\
11107 	va_end(args);						\
11108 }								\
11109 EXPORT_SYMBOL(func);
11110 
11111 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11112 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11113 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11114 define_netdev_printk_level(netdev_err, KERN_ERR);
11115 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11116 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11117 define_netdev_printk_level(netdev_info, KERN_INFO);
11118 
11119 static void __net_exit netdev_exit(struct net *net)
11120 {
11121 	kfree(net->dev_name_head);
11122 	kfree(net->dev_index_head);
11123 	if (net != &init_net)
11124 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11125 }
11126 
11127 static struct pernet_operations __net_initdata netdev_net_ops = {
11128 	.init = netdev_init,
11129 	.exit = netdev_exit,
11130 };
11131 
11132 static void __net_exit default_device_exit_net(struct net *net)
11133 {
11134 	struct net_device *dev, *aux;
11135 	/*
11136 	 * Push all migratable network devices back to the
11137 	 * initial network namespace
11138 	 */
11139 	ASSERT_RTNL();
11140 	for_each_netdev_safe(net, dev, aux) {
11141 		int err;
11142 		char fb_name[IFNAMSIZ];
11143 
11144 		/* Ignore unmoveable devices (i.e. loopback) */
11145 		if (dev->features & NETIF_F_NETNS_LOCAL)
11146 			continue;
11147 
11148 		/* Leave virtual devices for the generic cleanup */
11149 		if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11150 			continue;
11151 
11152 		/* Push remaining network devices to init_net */
11153 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11154 		if (netdev_name_in_use(&init_net, fb_name))
11155 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
11156 		err = dev_change_net_namespace(dev, &init_net, fb_name);
11157 		if (err) {
11158 			pr_emerg("%s: failed to move %s to init_net: %d\n",
11159 				 __func__, dev->name, err);
11160 			BUG();
11161 		}
11162 	}
11163 }
11164 
11165 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11166 {
11167 	/* At exit all network devices most be removed from a network
11168 	 * namespace.  Do this in the reverse order of registration.
11169 	 * Do this across as many network namespaces as possible to
11170 	 * improve batching efficiency.
11171 	 */
11172 	struct net_device *dev;
11173 	struct net *net;
11174 	LIST_HEAD(dev_kill_list);
11175 
11176 	rtnl_lock();
11177 	list_for_each_entry(net, net_list, exit_list) {
11178 		default_device_exit_net(net);
11179 		cond_resched();
11180 	}
11181 
11182 	list_for_each_entry(net, net_list, exit_list) {
11183 		for_each_netdev_reverse(net, dev) {
11184 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11185 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11186 			else
11187 				unregister_netdevice_queue(dev, &dev_kill_list);
11188 		}
11189 	}
11190 	unregister_netdevice_many(&dev_kill_list);
11191 	rtnl_unlock();
11192 }
11193 
11194 static struct pernet_operations __net_initdata default_device_ops = {
11195 	.exit_batch = default_device_exit_batch,
11196 };
11197 
11198 /*
11199  *	Initialize the DEV module. At boot time this walks the device list and
11200  *	unhooks any devices that fail to initialise (normally hardware not
11201  *	present) and leaves us with a valid list of present and active devices.
11202  *
11203  */
11204 
11205 /*
11206  *       This is called single threaded during boot, so no need
11207  *       to take the rtnl semaphore.
11208  */
11209 static int __init net_dev_init(void)
11210 {
11211 	int i, rc = -ENOMEM;
11212 
11213 	BUG_ON(!dev_boot_phase);
11214 
11215 	if (dev_proc_init())
11216 		goto out;
11217 
11218 	if (netdev_kobject_init())
11219 		goto out;
11220 
11221 	INIT_LIST_HEAD(&ptype_all);
11222 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
11223 		INIT_LIST_HEAD(&ptype_base[i]);
11224 
11225 	if (register_pernet_subsys(&netdev_net_ops))
11226 		goto out;
11227 
11228 	/*
11229 	 *	Initialise the packet receive queues.
11230 	 */
11231 
11232 	for_each_possible_cpu(i) {
11233 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11234 		struct softnet_data *sd = &per_cpu(softnet_data, i);
11235 
11236 		INIT_WORK(flush, flush_backlog);
11237 
11238 		skb_queue_head_init(&sd->input_pkt_queue);
11239 		skb_queue_head_init(&sd->process_queue);
11240 #ifdef CONFIG_XFRM_OFFLOAD
11241 		skb_queue_head_init(&sd->xfrm_backlog);
11242 #endif
11243 		INIT_LIST_HEAD(&sd->poll_list);
11244 		sd->output_queue_tailp = &sd->output_queue;
11245 #ifdef CONFIG_RPS
11246 		INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11247 		sd->cpu = i;
11248 #endif
11249 
11250 		init_gro_hash(&sd->backlog);
11251 		sd->backlog.poll = process_backlog;
11252 		sd->backlog.weight = weight_p;
11253 	}
11254 
11255 	dev_boot_phase = 0;
11256 
11257 	/* The loopback device is special if any other network devices
11258 	 * is present in a network namespace the loopback device must
11259 	 * be present. Since we now dynamically allocate and free the
11260 	 * loopback device ensure this invariant is maintained by
11261 	 * keeping the loopback device as the first device on the
11262 	 * list of network devices.  Ensuring the loopback devices
11263 	 * is the first device that appears and the last network device
11264 	 * that disappears.
11265 	 */
11266 	if (register_pernet_device(&loopback_net_ops))
11267 		goto out;
11268 
11269 	if (register_pernet_device(&default_device_ops))
11270 		goto out;
11271 
11272 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11273 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11274 
11275 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11276 				       NULL, dev_cpu_dead);
11277 	WARN_ON(rc < 0);
11278 	rc = 0;
11279 out:
11280 	return rc;
11281 }
11282 
11283 subsys_initcall(net_dev_init);
11284