1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <asm/uaccess.h> 76 #include <asm/system.h> 77 #include <linux/bitops.h> 78 #include <linux/capability.h> 79 #include <linux/config.h> 80 #include <linux/cpu.h> 81 #include <linux/types.h> 82 #include <linux/kernel.h> 83 #include <linux/sched.h> 84 #include <linux/mutex.h> 85 #include <linux/string.h> 86 #include <linux/mm.h> 87 #include <linux/socket.h> 88 #include <linux/sockios.h> 89 #include <linux/errno.h> 90 #include <linux/interrupt.h> 91 #include <linux/if_ether.h> 92 #include <linux/netdevice.h> 93 #include <linux/etherdevice.h> 94 #include <linux/notifier.h> 95 #include <linux/skbuff.h> 96 #include <net/sock.h> 97 #include <linux/rtnetlink.h> 98 #include <linux/proc_fs.h> 99 #include <linux/seq_file.h> 100 #include <linux/stat.h> 101 #include <linux/if_bridge.h> 102 #include <linux/divert.h> 103 #include <net/dst.h> 104 #include <net/pkt_sched.h> 105 #include <net/checksum.h> 106 #include <linux/highmem.h> 107 #include <linux/init.h> 108 #include <linux/kmod.h> 109 #include <linux/module.h> 110 #include <linux/kallsyms.h> 111 #include <linux/netpoll.h> 112 #include <linux/rcupdate.h> 113 #include <linux/delay.h> 114 #include <linux/wireless.h> 115 #include <net/iw_handler.h> 116 #include <asm/current.h> 117 #include <linux/audit.h> 118 #include <linux/dmaengine.h> 119 #include <linux/err.h> 120 121 /* 122 * The list of packet types we will receive (as opposed to discard) 123 * and the routines to invoke. 124 * 125 * Why 16. Because with 16 the only overlap we get on a hash of the 126 * low nibble of the protocol value is RARP/SNAP/X.25. 127 * 128 * NOTE: That is no longer true with the addition of VLAN tags. Not 129 * sure which should go first, but I bet it won't make much 130 * difference if we are running VLANs. The good news is that 131 * this protocol won't be in the list unless compiled in, so 132 * the average user (w/out VLANs) will not be adversely affected. 133 * --BLG 134 * 135 * 0800 IP 136 * 8100 802.1Q VLAN 137 * 0001 802.3 138 * 0002 AX.25 139 * 0004 802.2 140 * 8035 RARP 141 * 0005 SNAP 142 * 0805 X.25 143 * 0806 ARP 144 * 8137 IPX 145 * 0009 Localtalk 146 * 86DD IPv6 147 */ 148 149 static DEFINE_SPINLOCK(ptype_lock); 150 static struct list_head ptype_base[16]; /* 16 way hashed list */ 151 static struct list_head ptype_all; /* Taps */ 152 153 #ifdef CONFIG_NET_DMA 154 static struct dma_client *net_dma_client; 155 static unsigned int net_dma_count; 156 static spinlock_t net_dma_event_lock; 157 #endif 158 159 /* 160 * The @dev_base list is protected by @dev_base_lock and the rtnl 161 * semaphore. 162 * 163 * Pure readers hold dev_base_lock for reading. 164 * 165 * Writers must hold the rtnl semaphore while they loop through the 166 * dev_base list, and hold dev_base_lock for writing when they do the 167 * actual updates. This allows pure readers to access the list even 168 * while a writer is preparing to update it. 169 * 170 * To put it another way, dev_base_lock is held for writing only to 171 * protect against pure readers; the rtnl semaphore provides the 172 * protection against other writers. 173 * 174 * See, for example usages, register_netdevice() and 175 * unregister_netdevice(), which must be called with the rtnl 176 * semaphore held. 177 */ 178 struct net_device *dev_base; 179 static struct net_device **dev_tail = &dev_base; 180 DEFINE_RWLOCK(dev_base_lock); 181 182 EXPORT_SYMBOL(dev_base); 183 EXPORT_SYMBOL(dev_base_lock); 184 185 #define NETDEV_HASHBITS 8 186 static struct hlist_head dev_name_head[1<<NETDEV_HASHBITS]; 187 static struct hlist_head dev_index_head[1<<NETDEV_HASHBITS]; 188 189 static inline struct hlist_head *dev_name_hash(const char *name) 190 { 191 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 192 return &dev_name_head[hash & ((1<<NETDEV_HASHBITS)-1)]; 193 } 194 195 static inline struct hlist_head *dev_index_hash(int ifindex) 196 { 197 return &dev_index_head[ifindex & ((1<<NETDEV_HASHBITS)-1)]; 198 } 199 200 /* 201 * Our notifier list 202 */ 203 204 static RAW_NOTIFIER_HEAD(netdev_chain); 205 206 /* 207 * Device drivers call our routines to queue packets here. We empty the 208 * queue in the local softnet handler. 209 */ 210 DEFINE_PER_CPU(struct softnet_data, softnet_data) = { NULL }; 211 212 #ifdef CONFIG_SYSFS 213 extern int netdev_sysfs_init(void); 214 extern int netdev_register_sysfs(struct net_device *); 215 extern void netdev_unregister_sysfs(struct net_device *); 216 #else 217 #define netdev_sysfs_init() (0) 218 #define netdev_register_sysfs(dev) (0) 219 #define netdev_unregister_sysfs(dev) do { } while(0) 220 #endif 221 222 223 /******************************************************************************* 224 225 Protocol management and registration routines 226 227 *******************************************************************************/ 228 229 /* 230 * For efficiency 231 */ 232 233 static int netdev_nit; 234 235 /* 236 * Add a protocol ID to the list. Now that the input handler is 237 * smarter we can dispense with all the messy stuff that used to be 238 * here. 239 * 240 * BEWARE!!! Protocol handlers, mangling input packets, 241 * MUST BE last in hash buckets and checking protocol handlers 242 * MUST start from promiscuous ptype_all chain in net_bh. 243 * It is true now, do not change it. 244 * Explanation follows: if protocol handler, mangling packet, will 245 * be the first on list, it is not able to sense, that packet 246 * is cloned and should be copied-on-write, so that it will 247 * change it and subsequent readers will get broken packet. 248 * --ANK (980803) 249 */ 250 251 /** 252 * dev_add_pack - add packet handler 253 * @pt: packet type declaration 254 * 255 * Add a protocol handler to the networking stack. The passed &packet_type 256 * is linked into kernel lists and may not be freed until it has been 257 * removed from the kernel lists. 258 * 259 * This call does not sleep therefore it can not 260 * guarantee all CPU's that are in middle of receiving packets 261 * will see the new packet type (until the next received packet). 262 */ 263 264 void dev_add_pack(struct packet_type *pt) 265 { 266 int hash; 267 268 spin_lock_bh(&ptype_lock); 269 if (pt->type == htons(ETH_P_ALL)) { 270 netdev_nit++; 271 list_add_rcu(&pt->list, &ptype_all); 272 } else { 273 hash = ntohs(pt->type) & 15; 274 list_add_rcu(&pt->list, &ptype_base[hash]); 275 } 276 spin_unlock_bh(&ptype_lock); 277 } 278 279 /** 280 * __dev_remove_pack - remove packet handler 281 * @pt: packet type declaration 282 * 283 * Remove a protocol handler that was previously added to the kernel 284 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 285 * from the kernel lists and can be freed or reused once this function 286 * returns. 287 * 288 * The packet type might still be in use by receivers 289 * and must not be freed until after all the CPU's have gone 290 * through a quiescent state. 291 */ 292 void __dev_remove_pack(struct packet_type *pt) 293 { 294 struct list_head *head; 295 struct packet_type *pt1; 296 297 spin_lock_bh(&ptype_lock); 298 299 if (pt->type == htons(ETH_P_ALL)) { 300 netdev_nit--; 301 head = &ptype_all; 302 } else 303 head = &ptype_base[ntohs(pt->type) & 15]; 304 305 list_for_each_entry(pt1, head, list) { 306 if (pt == pt1) { 307 list_del_rcu(&pt->list); 308 goto out; 309 } 310 } 311 312 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt); 313 out: 314 spin_unlock_bh(&ptype_lock); 315 } 316 /** 317 * dev_remove_pack - remove packet handler 318 * @pt: packet type declaration 319 * 320 * Remove a protocol handler that was previously added to the kernel 321 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 322 * from the kernel lists and can be freed or reused once this function 323 * returns. 324 * 325 * This call sleeps to guarantee that no CPU is looking at the packet 326 * type after return. 327 */ 328 void dev_remove_pack(struct packet_type *pt) 329 { 330 __dev_remove_pack(pt); 331 332 synchronize_net(); 333 } 334 335 /****************************************************************************** 336 337 Device Boot-time Settings Routines 338 339 *******************************************************************************/ 340 341 /* Boot time configuration table */ 342 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 343 344 /** 345 * netdev_boot_setup_add - add new setup entry 346 * @name: name of the device 347 * @map: configured settings for the device 348 * 349 * Adds new setup entry to the dev_boot_setup list. The function 350 * returns 0 on error and 1 on success. This is a generic routine to 351 * all netdevices. 352 */ 353 static int netdev_boot_setup_add(char *name, struct ifmap *map) 354 { 355 struct netdev_boot_setup *s; 356 int i; 357 358 s = dev_boot_setup; 359 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 360 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 361 memset(s[i].name, 0, sizeof(s[i].name)); 362 strcpy(s[i].name, name); 363 memcpy(&s[i].map, map, sizeof(s[i].map)); 364 break; 365 } 366 } 367 368 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 369 } 370 371 /** 372 * netdev_boot_setup_check - check boot time settings 373 * @dev: the netdevice 374 * 375 * Check boot time settings for the device. 376 * The found settings are set for the device to be used 377 * later in the device probing. 378 * Returns 0 if no settings found, 1 if they are. 379 */ 380 int netdev_boot_setup_check(struct net_device *dev) 381 { 382 struct netdev_boot_setup *s = dev_boot_setup; 383 int i; 384 385 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 386 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 387 !strncmp(dev->name, s[i].name, strlen(s[i].name))) { 388 dev->irq = s[i].map.irq; 389 dev->base_addr = s[i].map.base_addr; 390 dev->mem_start = s[i].map.mem_start; 391 dev->mem_end = s[i].map.mem_end; 392 return 1; 393 } 394 } 395 return 0; 396 } 397 398 399 /** 400 * netdev_boot_base - get address from boot time settings 401 * @prefix: prefix for network device 402 * @unit: id for network device 403 * 404 * Check boot time settings for the base address of device. 405 * The found settings are set for the device to be used 406 * later in the device probing. 407 * Returns 0 if no settings found. 408 */ 409 unsigned long netdev_boot_base(const char *prefix, int unit) 410 { 411 const struct netdev_boot_setup *s = dev_boot_setup; 412 char name[IFNAMSIZ]; 413 int i; 414 415 sprintf(name, "%s%d", prefix, unit); 416 417 /* 418 * If device already registered then return base of 1 419 * to indicate not to probe for this interface 420 */ 421 if (__dev_get_by_name(name)) 422 return 1; 423 424 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 425 if (!strcmp(name, s[i].name)) 426 return s[i].map.base_addr; 427 return 0; 428 } 429 430 /* 431 * Saves at boot time configured settings for any netdevice. 432 */ 433 int __init netdev_boot_setup(char *str) 434 { 435 int ints[5]; 436 struct ifmap map; 437 438 str = get_options(str, ARRAY_SIZE(ints), ints); 439 if (!str || !*str) 440 return 0; 441 442 /* Save settings */ 443 memset(&map, 0, sizeof(map)); 444 if (ints[0] > 0) 445 map.irq = ints[1]; 446 if (ints[0] > 1) 447 map.base_addr = ints[2]; 448 if (ints[0] > 2) 449 map.mem_start = ints[3]; 450 if (ints[0] > 3) 451 map.mem_end = ints[4]; 452 453 /* Add new entry to the list */ 454 return netdev_boot_setup_add(str, &map); 455 } 456 457 __setup("netdev=", netdev_boot_setup); 458 459 /******************************************************************************* 460 461 Device Interface Subroutines 462 463 *******************************************************************************/ 464 465 /** 466 * __dev_get_by_name - find a device by its name 467 * @name: name to find 468 * 469 * Find an interface by name. Must be called under RTNL semaphore 470 * or @dev_base_lock. If the name is found a pointer to the device 471 * is returned. If the name is not found then %NULL is returned. The 472 * reference counters are not incremented so the caller must be 473 * careful with locks. 474 */ 475 476 struct net_device *__dev_get_by_name(const char *name) 477 { 478 struct hlist_node *p; 479 480 hlist_for_each(p, dev_name_hash(name)) { 481 struct net_device *dev 482 = hlist_entry(p, struct net_device, name_hlist); 483 if (!strncmp(dev->name, name, IFNAMSIZ)) 484 return dev; 485 } 486 return NULL; 487 } 488 489 /** 490 * dev_get_by_name - find a device by its name 491 * @name: name to find 492 * 493 * Find an interface by name. This can be called from any 494 * context and does its own locking. The returned handle has 495 * the usage count incremented and the caller must use dev_put() to 496 * release it when it is no longer needed. %NULL is returned if no 497 * matching device is found. 498 */ 499 500 struct net_device *dev_get_by_name(const char *name) 501 { 502 struct net_device *dev; 503 504 read_lock(&dev_base_lock); 505 dev = __dev_get_by_name(name); 506 if (dev) 507 dev_hold(dev); 508 read_unlock(&dev_base_lock); 509 return dev; 510 } 511 512 /** 513 * __dev_get_by_index - find a device by its ifindex 514 * @ifindex: index of device 515 * 516 * Search for an interface by index. Returns %NULL if the device 517 * is not found or a pointer to the device. The device has not 518 * had its reference counter increased so the caller must be careful 519 * about locking. The caller must hold either the RTNL semaphore 520 * or @dev_base_lock. 521 */ 522 523 struct net_device *__dev_get_by_index(int ifindex) 524 { 525 struct hlist_node *p; 526 527 hlist_for_each(p, dev_index_hash(ifindex)) { 528 struct net_device *dev 529 = hlist_entry(p, struct net_device, index_hlist); 530 if (dev->ifindex == ifindex) 531 return dev; 532 } 533 return NULL; 534 } 535 536 537 /** 538 * dev_get_by_index - find a device by its ifindex 539 * @ifindex: index of device 540 * 541 * Search for an interface by index. Returns NULL if the device 542 * is not found or a pointer to the device. The device returned has 543 * had a reference added and the pointer is safe until the user calls 544 * dev_put to indicate they have finished with it. 545 */ 546 547 struct net_device *dev_get_by_index(int ifindex) 548 { 549 struct net_device *dev; 550 551 read_lock(&dev_base_lock); 552 dev = __dev_get_by_index(ifindex); 553 if (dev) 554 dev_hold(dev); 555 read_unlock(&dev_base_lock); 556 return dev; 557 } 558 559 /** 560 * dev_getbyhwaddr - find a device by its hardware address 561 * @type: media type of device 562 * @ha: hardware address 563 * 564 * Search for an interface by MAC address. Returns NULL if the device 565 * is not found or a pointer to the device. The caller must hold the 566 * rtnl semaphore. The returned device has not had its ref count increased 567 * and the caller must therefore be careful about locking 568 * 569 * BUGS: 570 * If the API was consistent this would be __dev_get_by_hwaddr 571 */ 572 573 struct net_device *dev_getbyhwaddr(unsigned short type, char *ha) 574 { 575 struct net_device *dev; 576 577 ASSERT_RTNL(); 578 579 for (dev = dev_base; dev; dev = dev->next) 580 if (dev->type == type && 581 !memcmp(dev->dev_addr, ha, dev->addr_len)) 582 break; 583 return dev; 584 } 585 586 EXPORT_SYMBOL(dev_getbyhwaddr); 587 588 struct net_device *dev_getfirstbyhwtype(unsigned short type) 589 { 590 struct net_device *dev; 591 592 rtnl_lock(); 593 for (dev = dev_base; dev; dev = dev->next) { 594 if (dev->type == type) { 595 dev_hold(dev); 596 break; 597 } 598 } 599 rtnl_unlock(); 600 return dev; 601 } 602 603 EXPORT_SYMBOL(dev_getfirstbyhwtype); 604 605 /** 606 * dev_get_by_flags - find any device with given flags 607 * @if_flags: IFF_* values 608 * @mask: bitmask of bits in if_flags to check 609 * 610 * Search for any interface with the given flags. Returns NULL if a device 611 * is not found or a pointer to the device. The device returned has 612 * had a reference added and the pointer is safe until the user calls 613 * dev_put to indicate they have finished with it. 614 */ 615 616 struct net_device * dev_get_by_flags(unsigned short if_flags, unsigned short mask) 617 { 618 struct net_device *dev; 619 620 read_lock(&dev_base_lock); 621 for (dev = dev_base; dev != NULL; dev = dev->next) { 622 if (((dev->flags ^ if_flags) & mask) == 0) { 623 dev_hold(dev); 624 break; 625 } 626 } 627 read_unlock(&dev_base_lock); 628 return dev; 629 } 630 631 /** 632 * dev_valid_name - check if name is okay for network device 633 * @name: name string 634 * 635 * Network device names need to be valid file names to 636 * to allow sysfs to work 637 */ 638 int dev_valid_name(const char *name) 639 { 640 return !(*name == '\0' 641 || !strcmp(name, ".") 642 || !strcmp(name, "..") 643 || strchr(name, '/')); 644 } 645 646 /** 647 * dev_alloc_name - allocate a name for a device 648 * @dev: device 649 * @name: name format string 650 * 651 * Passed a format string - eg "lt%d" it will try and find a suitable 652 * id. It scans list of devices to build up a free map, then chooses 653 * the first empty slot. The caller must hold the dev_base or rtnl lock 654 * while allocating the name and adding the device in order to avoid 655 * duplicates. 656 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 657 * Returns the number of the unit assigned or a negative errno code. 658 */ 659 660 int dev_alloc_name(struct net_device *dev, const char *name) 661 { 662 int i = 0; 663 char buf[IFNAMSIZ]; 664 const char *p; 665 const int max_netdevices = 8*PAGE_SIZE; 666 long *inuse; 667 struct net_device *d; 668 669 p = strnchr(name, IFNAMSIZ-1, '%'); 670 if (p) { 671 /* 672 * Verify the string as this thing may have come from 673 * the user. There must be either one "%d" and no other "%" 674 * characters. 675 */ 676 if (p[1] != 'd' || strchr(p + 2, '%')) 677 return -EINVAL; 678 679 /* Use one page as a bit array of possible slots */ 680 inuse = (long *) get_zeroed_page(GFP_ATOMIC); 681 if (!inuse) 682 return -ENOMEM; 683 684 for (d = dev_base; d; d = d->next) { 685 if (!sscanf(d->name, name, &i)) 686 continue; 687 if (i < 0 || i >= max_netdevices) 688 continue; 689 690 /* avoid cases where sscanf is not exact inverse of printf */ 691 snprintf(buf, sizeof(buf), name, i); 692 if (!strncmp(buf, d->name, IFNAMSIZ)) 693 set_bit(i, inuse); 694 } 695 696 i = find_first_zero_bit(inuse, max_netdevices); 697 free_page((unsigned long) inuse); 698 } 699 700 snprintf(buf, sizeof(buf), name, i); 701 if (!__dev_get_by_name(buf)) { 702 strlcpy(dev->name, buf, IFNAMSIZ); 703 return i; 704 } 705 706 /* It is possible to run out of possible slots 707 * when the name is long and there isn't enough space left 708 * for the digits, or if all bits are used. 709 */ 710 return -ENFILE; 711 } 712 713 714 /** 715 * dev_change_name - change name of a device 716 * @dev: device 717 * @newname: name (or format string) must be at least IFNAMSIZ 718 * 719 * Change name of a device, can pass format strings "eth%d". 720 * for wildcarding. 721 */ 722 int dev_change_name(struct net_device *dev, char *newname) 723 { 724 int err = 0; 725 726 ASSERT_RTNL(); 727 728 if (dev->flags & IFF_UP) 729 return -EBUSY; 730 731 if (!dev_valid_name(newname)) 732 return -EINVAL; 733 734 if (strchr(newname, '%')) { 735 err = dev_alloc_name(dev, newname); 736 if (err < 0) 737 return err; 738 strcpy(newname, dev->name); 739 } 740 else if (__dev_get_by_name(newname)) 741 return -EEXIST; 742 else 743 strlcpy(dev->name, newname, IFNAMSIZ); 744 745 err = class_device_rename(&dev->class_dev, dev->name); 746 if (!err) { 747 hlist_del(&dev->name_hlist); 748 hlist_add_head(&dev->name_hlist, dev_name_hash(dev->name)); 749 raw_notifier_call_chain(&netdev_chain, 750 NETDEV_CHANGENAME, dev); 751 } 752 753 return err; 754 } 755 756 /** 757 * netdev_features_change - device changes features 758 * @dev: device to cause notification 759 * 760 * Called to indicate a device has changed features. 761 */ 762 void netdev_features_change(struct net_device *dev) 763 { 764 raw_notifier_call_chain(&netdev_chain, NETDEV_FEAT_CHANGE, dev); 765 } 766 EXPORT_SYMBOL(netdev_features_change); 767 768 /** 769 * netdev_state_change - device changes state 770 * @dev: device to cause notification 771 * 772 * Called to indicate a device has changed state. This function calls 773 * the notifier chains for netdev_chain and sends a NEWLINK message 774 * to the routing socket. 775 */ 776 void netdev_state_change(struct net_device *dev) 777 { 778 if (dev->flags & IFF_UP) { 779 raw_notifier_call_chain(&netdev_chain, 780 NETDEV_CHANGE, dev); 781 rtmsg_ifinfo(RTM_NEWLINK, dev, 0); 782 } 783 } 784 785 /** 786 * dev_load - load a network module 787 * @name: name of interface 788 * 789 * If a network interface is not present and the process has suitable 790 * privileges this function loads the module. If module loading is not 791 * available in this kernel then it becomes a nop. 792 */ 793 794 void dev_load(const char *name) 795 { 796 struct net_device *dev; 797 798 read_lock(&dev_base_lock); 799 dev = __dev_get_by_name(name); 800 read_unlock(&dev_base_lock); 801 802 if (!dev && capable(CAP_SYS_MODULE)) 803 request_module("%s", name); 804 } 805 806 static int default_rebuild_header(struct sk_buff *skb) 807 { 808 printk(KERN_DEBUG "%s: default_rebuild_header called -- BUG!\n", 809 skb->dev ? skb->dev->name : "NULL!!!"); 810 kfree_skb(skb); 811 return 1; 812 } 813 814 815 /** 816 * dev_open - prepare an interface for use. 817 * @dev: device to open 818 * 819 * Takes a device from down to up state. The device's private open 820 * function is invoked and then the multicast lists are loaded. Finally 821 * the device is moved into the up state and a %NETDEV_UP message is 822 * sent to the netdev notifier chain. 823 * 824 * Calling this function on an active interface is a nop. On a failure 825 * a negative errno code is returned. 826 */ 827 int dev_open(struct net_device *dev) 828 { 829 int ret = 0; 830 831 /* 832 * Is it already up? 833 */ 834 835 if (dev->flags & IFF_UP) 836 return 0; 837 838 /* 839 * Is it even present? 840 */ 841 if (!netif_device_present(dev)) 842 return -ENODEV; 843 844 /* 845 * Call device private open method 846 */ 847 set_bit(__LINK_STATE_START, &dev->state); 848 if (dev->open) { 849 ret = dev->open(dev); 850 if (ret) 851 clear_bit(__LINK_STATE_START, &dev->state); 852 } 853 854 /* 855 * If it went open OK then: 856 */ 857 858 if (!ret) { 859 /* 860 * Set the flags. 861 */ 862 dev->flags |= IFF_UP; 863 864 /* 865 * Initialize multicasting status 866 */ 867 dev_mc_upload(dev); 868 869 /* 870 * Wakeup transmit queue engine 871 */ 872 dev_activate(dev); 873 874 /* 875 * ... and announce new interface. 876 */ 877 raw_notifier_call_chain(&netdev_chain, NETDEV_UP, dev); 878 } 879 return ret; 880 } 881 882 /** 883 * dev_close - shutdown an interface. 884 * @dev: device to shutdown 885 * 886 * This function moves an active device into down state. A 887 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 888 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 889 * chain. 890 */ 891 int dev_close(struct net_device *dev) 892 { 893 if (!(dev->flags & IFF_UP)) 894 return 0; 895 896 /* 897 * Tell people we are going down, so that they can 898 * prepare to death, when device is still operating. 899 */ 900 raw_notifier_call_chain(&netdev_chain, NETDEV_GOING_DOWN, dev); 901 902 dev_deactivate(dev); 903 904 clear_bit(__LINK_STATE_START, &dev->state); 905 906 /* Synchronize to scheduled poll. We cannot touch poll list, 907 * it can be even on different cpu. So just clear netif_running(), 908 * and wait when poll really will happen. Actually, the best place 909 * for this is inside dev->stop() after device stopped its irq 910 * engine, but this requires more changes in devices. */ 911 912 smp_mb__after_clear_bit(); /* Commit netif_running(). */ 913 while (test_bit(__LINK_STATE_RX_SCHED, &dev->state)) { 914 /* No hurry. */ 915 msleep(1); 916 } 917 918 /* 919 * Call the device specific close. This cannot fail. 920 * Only if device is UP 921 * 922 * We allow it to be called even after a DETACH hot-plug 923 * event. 924 */ 925 if (dev->stop) 926 dev->stop(dev); 927 928 /* 929 * Device is now down. 930 */ 931 932 dev->flags &= ~IFF_UP; 933 934 /* 935 * Tell people we are down 936 */ 937 raw_notifier_call_chain(&netdev_chain, NETDEV_DOWN, dev); 938 939 return 0; 940 } 941 942 943 /* 944 * Device change register/unregister. These are not inline or static 945 * as we export them to the world. 946 */ 947 948 /** 949 * register_netdevice_notifier - register a network notifier block 950 * @nb: notifier 951 * 952 * Register a notifier to be called when network device events occur. 953 * The notifier passed is linked into the kernel structures and must 954 * not be reused until it has been unregistered. A negative errno code 955 * is returned on a failure. 956 * 957 * When registered all registration and up events are replayed 958 * to the new notifier to allow device to have a race free 959 * view of the network device list. 960 */ 961 962 int register_netdevice_notifier(struct notifier_block *nb) 963 { 964 struct net_device *dev; 965 int err; 966 967 rtnl_lock(); 968 err = raw_notifier_chain_register(&netdev_chain, nb); 969 if (!err) { 970 for (dev = dev_base; dev; dev = dev->next) { 971 nb->notifier_call(nb, NETDEV_REGISTER, dev); 972 973 if (dev->flags & IFF_UP) 974 nb->notifier_call(nb, NETDEV_UP, dev); 975 } 976 } 977 rtnl_unlock(); 978 return err; 979 } 980 981 /** 982 * unregister_netdevice_notifier - unregister a network notifier block 983 * @nb: notifier 984 * 985 * Unregister a notifier previously registered by 986 * register_netdevice_notifier(). The notifier is unlinked into the 987 * kernel structures and may then be reused. A negative errno code 988 * is returned on a failure. 989 */ 990 991 int unregister_netdevice_notifier(struct notifier_block *nb) 992 { 993 int err; 994 995 rtnl_lock(); 996 err = raw_notifier_chain_unregister(&netdev_chain, nb); 997 rtnl_unlock(); 998 return err; 999 } 1000 1001 /** 1002 * call_netdevice_notifiers - call all network notifier blocks 1003 * @val: value passed unmodified to notifier function 1004 * @v: pointer passed unmodified to notifier function 1005 * 1006 * Call all network notifier blocks. Parameters and return value 1007 * are as for raw_notifier_call_chain(). 1008 */ 1009 1010 int call_netdevice_notifiers(unsigned long val, void *v) 1011 { 1012 return raw_notifier_call_chain(&netdev_chain, val, v); 1013 } 1014 1015 /* When > 0 there are consumers of rx skb time stamps */ 1016 static atomic_t netstamp_needed = ATOMIC_INIT(0); 1017 1018 void net_enable_timestamp(void) 1019 { 1020 atomic_inc(&netstamp_needed); 1021 } 1022 1023 void net_disable_timestamp(void) 1024 { 1025 atomic_dec(&netstamp_needed); 1026 } 1027 1028 void __net_timestamp(struct sk_buff *skb) 1029 { 1030 struct timeval tv; 1031 1032 do_gettimeofday(&tv); 1033 skb_set_timestamp(skb, &tv); 1034 } 1035 EXPORT_SYMBOL(__net_timestamp); 1036 1037 static inline void net_timestamp(struct sk_buff *skb) 1038 { 1039 if (atomic_read(&netstamp_needed)) 1040 __net_timestamp(skb); 1041 else { 1042 skb->tstamp.off_sec = 0; 1043 skb->tstamp.off_usec = 0; 1044 } 1045 } 1046 1047 /* 1048 * Support routine. Sends outgoing frames to any network 1049 * taps currently in use. 1050 */ 1051 1052 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1053 { 1054 struct packet_type *ptype; 1055 1056 net_timestamp(skb); 1057 1058 rcu_read_lock(); 1059 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1060 /* Never send packets back to the socket 1061 * they originated from - MvS (miquels@drinkel.ow.org) 1062 */ 1063 if ((ptype->dev == dev || !ptype->dev) && 1064 (ptype->af_packet_priv == NULL || 1065 (struct sock *)ptype->af_packet_priv != skb->sk)) { 1066 struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC); 1067 if (!skb2) 1068 break; 1069 1070 /* skb->nh should be correctly 1071 set by sender, so that the second statement is 1072 just protection against buggy protocols. 1073 */ 1074 skb2->mac.raw = skb2->data; 1075 1076 if (skb2->nh.raw < skb2->data || 1077 skb2->nh.raw > skb2->tail) { 1078 if (net_ratelimit()) 1079 printk(KERN_CRIT "protocol %04x is " 1080 "buggy, dev %s\n", 1081 skb2->protocol, dev->name); 1082 skb2->nh.raw = skb2->data; 1083 } 1084 1085 skb2->h.raw = skb2->nh.raw; 1086 skb2->pkt_type = PACKET_OUTGOING; 1087 ptype->func(skb2, skb->dev, ptype, skb->dev); 1088 } 1089 } 1090 rcu_read_unlock(); 1091 } 1092 1093 1094 void __netif_schedule(struct net_device *dev) 1095 { 1096 if (!test_and_set_bit(__LINK_STATE_SCHED, &dev->state)) { 1097 unsigned long flags; 1098 struct softnet_data *sd; 1099 1100 local_irq_save(flags); 1101 sd = &__get_cpu_var(softnet_data); 1102 dev->next_sched = sd->output_queue; 1103 sd->output_queue = dev; 1104 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1105 local_irq_restore(flags); 1106 } 1107 } 1108 EXPORT_SYMBOL(__netif_schedule); 1109 1110 void __netif_rx_schedule(struct net_device *dev) 1111 { 1112 unsigned long flags; 1113 1114 local_irq_save(flags); 1115 dev_hold(dev); 1116 list_add_tail(&dev->poll_list, &__get_cpu_var(softnet_data).poll_list); 1117 if (dev->quota < 0) 1118 dev->quota += dev->weight; 1119 else 1120 dev->quota = dev->weight; 1121 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 1122 local_irq_restore(flags); 1123 } 1124 EXPORT_SYMBOL(__netif_rx_schedule); 1125 1126 void dev_kfree_skb_any(struct sk_buff *skb) 1127 { 1128 if (in_irq() || irqs_disabled()) 1129 dev_kfree_skb_irq(skb); 1130 else 1131 dev_kfree_skb(skb); 1132 } 1133 EXPORT_SYMBOL(dev_kfree_skb_any); 1134 1135 1136 /* Hot-plugging. */ 1137 void netif_device_detach(struct net_device *dev) 1138 { 1139 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 1140 netif_running(dev)) { 1141 netif_stop_queue(dev); 1142 } 1143 } 1144 EXPORT_SYMBOL(netif_device_detach); 1145 1146 void netif_device_attach(struct net_device *dev) 1147 { 1148 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 1149 netif_running(dev)) { 1150 netif_wake_queue(dev); 1151 __netdev_watchdog_up(dev); 1152 } 1153 } 1154 EXPORT_SYMBOL(netif_device_attach); 1155 1156 1157 /* 1158 * Invalidate hardware checksum when packet is to be mangled, and 1159 * complete checksum manually on outgoing path. 1160 */ 1161 int skb_checksum_help(struct sk_buff *skb, int inward) 1162 { 1163 unsigned int csum; 1164 int ret = 0, offset = skb->h.raw - skb->data; 1165 1166 if (inward) { 1167 skb->ip_summed = CHECKSUM_NONE; 1168 goto out; 1169 } 1170 1171 if (skb_cloned(skb)) { 1172 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 1173 if (ret) 1174 goto out; 1175 } 1176 1177 BUG_ON(offset > (int)skb->len); 1178 csum = skb_checksum(skb, offset, skb->len-offset, 0); 1179 1180 offset = skb->tail - skb->h.raw; 1181 BUG_ON(offset <= 0); 1182 BUG_ON(skb->csum + 2 > offset); 1183 1184 *(u16*)(skb->h.raw + skb->csum) = csum_fold(csum); 1185 skb->ip_summed = CHECKSUM_NONE; 1186 out: 1187 return ret; 1188 } 1189 1190 /** 1191 * skb_gso_segment - Perform segmentation on skb. 1192 * @skb: buffer to segment 1193 * @features: features for the output path (see dev->features) 1194 * 1195 * This function segments the given skb and returns a list of segments. 1196 * 1197 * It may return NULL if the skb requires no segmentation. This is 1198 * only possible when GSO is used for verifying header integrity. 1199 */ 1200 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features) 1201 { 1202 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 1203 struct packet_type *ptype; 1204 int type = skb->protocol; 1205 1206 BUG_ON(skb_shinfo(skb)->frag_list); 1207 BUG_ON(skb->ip_summed != CHECKSUM_HW); 1208 1209 skb->mac.raw = skb->data; 1210 skb->mac_len = skb->nh.raw - skb->data; 1211 __skb_pull(skb, skb->mac_len); 1212 1213 rcu_read_lock(); 1214 list_for_each_entry_rcu(ptype, &ptype_base[ntohs(type) & 15], list) { 1215 if (ptype->type == type && !ptype->dev && ptype->gso_segment) { 1216 segs = ptype->gso_segment(skb, features); 1217 break; 1218 } 1219 } 1220 rcu_read_unlock(); 1221 1222 __skb_push(skb, skb->data - skb->mac.raw); 1223 1224 return segs; 1225 } 1226 1227 EXPORT_SYMBOL(skb_gso_segment); 1228 1229 /* Take action when hardware reception checksum errors are detected. */ 1230 #ifdef CONFIG_BUG 1231 void netdev_rx_csum_fault(struct net_device *dev) 1232 { 1233 if (net_ratelimit()) { 1234 printk(KERN_ERR "%s: hw csum failure.\n", 1235 dev ? dev->name : "<unknown>"); 1236 dump_stack(); 1237 } 1238 } 1239 EXPORT_SYMBOL(netdev_rx_csum_fault); 1240 #endif 1241 1242 /* Actually, we should eliminate this check as soon as we know, that: 1243 * 1. IOMMU is present and allows to map all the memory. 1244 * 2. No high memory really exists on this machine. 1245 */ 1246 1247 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 1248 { 1249 #ifdef CONFIG_HIGHMEM 1250 int i; 1251 1252 if (dev->features & NETIF_F_HIGHDMA) 1253 return 0; 1254 1255 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1256 if (PageHighMem(skb_shinfo(skb)->frags[i].page)) 1257 return 1; 1258 1259 #endif 1260 return 0; 1261 } 1262 1263 struct dev_gso_cb { 1264 void (*destructor)(struct sk_buff *skb); 1265 }; 1266 1267 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb) 1268 1269 static void dev_gso_skb_destructor(struct sk_buff *skb) 1270 { 1271 struct dev_gso_cb *cb; 1272 1273 do { 1274 struct sk_buff *nskb = skb->next; 1275 1276 skb->next = nskb->next; 1277 nskb->next = NULL; 1278 kfree_skb(nskb); 1279 } while (skb->next); 1280 1281 cb = DEV_GSO_CB(skb); 1282 if (cb->destructor) 1283 cb->destructor(skb); 1284 } 1285 1286 /** 1287 * dev_gso_segment - Perform emulated hardware segmentation on skb. 1288 * @skb: buffer to segment 1289 * 1290 * This function segments the given skb and stores the list of segments 1291 * in skb->next. 1292 */ 1293 static int dev_gso_segment(struct sk_buff *skb) 1294 { 1295 struct net_device *dev = skb->dev; 1296 struct sk_buff *segs; 1297 int features = dev->features & ~(illegal_highdma(dev, skb) ? 1298 NETIF_F_SG : 0); 1299 1300 segs = skb_gso_segment(skb, features); 1301 1302 /* Verifying header integrity only. */ 1303 if (!segs) 1304 return 0; 1305 1306 if (unlikely(IS_ERR(segs))) 1307 return PTR_ERR(segs); 1308 1309 skb->next = segs; 1310 DEV_GSO_CB(skb)->destructor = skb->destructor; 1311 skb->destructor = dev_gso_skb_destructor; 1312 1313 return 0; 1314 } 1315 1316 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev) 1317 { 1318 if (likely(!skb->next)) { 1319 if (netdev_nit) 1320 dev_queue_xmit_nit(skb, dev); 1321 1322 if (netif_needs_gso(dev, skb)) { 1323 if (unlikely(dev_gso_segment(skb))) 1324 goto out_kfree_skb; 1325 if (skb->next) 1326 goto gso; 1327 } 1328 1329 return dev->hard_start_xmit(skb, dev); 1330 } 1331 1332 gso: 1333 do { 1334 struct sk_buff *nskb = skb->next; 1335 int rc; 1336 1337 skb->next = nskb->next; 1338 nskb->next = NULL; 1339 rc = dev->hard_start_xmit(nskb, dev); 1340 if (unlikely(rc)) { 1341 nskb->next = skb->next; 1342 skb->next = nskb; 1343 return rc; 1344 } 1345 if (unlikely(netif_queue_stopped(dev) && skb->next)) 1346 return NETDEV_TX_BUSY; 1347 } while (skb->next); 1348 1349 skb->destructor = DEV_GSO_CB(skb)->destructor; 1350 1351 out_kfree_skb: 1352 kfree_skb(skb); 1353 return 0; 1354 } 1355 1356 #define HARD_TX_LOCK(dev, cpu) { \ 1357 if ((dev->features & NETIF_F_LLTX) == 0) { \ 1358 netif_tx_lock(dev); \ 1359 } \ 1360 } 1361 1362 #define HARD_TX_UNLOCK(dev) { \ 1363 if ((dev->features & NETIF_F_LLTX) == 0) { \ 1364 netif_tx_unlock(dev); \ 1365 } \ 1366 } 1367 1368 /** 1369 * dev_queue_xmit - transmit a buffer 1370 * @skb: buffer to transmit 1371 * 1372 * Queue a buffer for transmission to a network device. The caller must 1373 * have set the device and priority and built the buffer before calling 1374 * this function. The function can be called from an interrupt. 1375 * 1376 * A negative errno code is returned on a failure. A success does not 1377 * guarantee the frame will be transmitted as it may be dropped due 1378 * to congestion or traffic shaping. 1379 * 1380 * ----------------------------------------------------------------------------------- 1381 * I notice this method can also return errors from the queue disciplines, 1382 * including NET_XMIT_DROP, which is a positive value. So, errors can also 1383 * be positive. 1384 * 1385 * Regardless of the return value, the skb is consumed, so it is currently 1386 * difficult to retry a send to this method. (You can bump the ref count 1387 * before sending to hold a reference for retry if you are careful.) 1388 * 1389 * When calling this method, interrupts MUST be enabled. This is because 1390 * the BH enable code must have IRQs enabled so that it will not deadlock. 1391 * --BLG 1392 */ 1393 1394 int dev_queue_xmit(struct sk_buff *skb) 1395 { 1396 struct net_device *dev = skb->dev; 1397 struct Qdisc *q; 1398 int rc = -ENOMEM; 1399 1400 /* GSO will handle the following emulations directly. */ 1401 if (netif_needs_gso(dev, skb)) 1402 goto gso; 1403 1404 if (skb_shinfo(skb)->frag_list && 1405 !(dev->features & NETIF_F_FRAGLIST) && 1406 __skb_linearize(skb)) 1407 goto out_kfree_skb; 1408 1409 /* Fragmented skb is linearized if device does not support SG, 1410 * or if at least one of fragments is in highmem and device 1411 * does not support DMA from it. 1412 */ 1413 if (skb_shinfo(skb)->nr_frags && 1414 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) && 1415 __skb_linearize(skb)) 1416 goto out_kfree_skb; 1417 1418 /* If packet is not checksummed and device does not support 1419 * checksumming for this protocol, complete checksumming here. 1420 */ 1421 if (skb->ip_summed == CHECKSUM_HW && 1422 (!(dev->features & NETIF_F_GEN_CSUM) && 1423 (!(dev->features & NETIF_F_IP_CSUM) || 1424 skb->protocol != htons(ETH_P_IP)))) 1425 if (skb_checksum_help(skb, 0)) 1426 goto out_kfree_skb; 1427 1428 gso: 1429 spin_lock_prefetch(&dev->queue_lock); 1430 1431 /* Disable soft irqs for various locks below. Also 1432 * stops preemption for RCU. 1433 */ 1434 rcu_read_lock_bh(); 1435 1436 /* Updates of qdisc are serialized by queue_lock. 1437 * The struct Qdisc which is pointed to by qdisc is now a 1438 * rcu structure - it may be accessed without acquiring 1439 * a lock (but the structure may be stale.) The freeing of the 1440 * qdisc will be deferred until it's known that there are no 1441 * more references to it. 1442 * 1443 * If the qdisc has an enqueue function, we still need to 1444 * hold the queue_lock before calling it, since queue_lock 1445 * also serializes access to the device queue. 1446 */ 1447 1448 q = rcu_dereference(dev->qdisc); 1449 #ifdef CONFIG_NET_CLS_ACT 1450 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS); 1451 #endif 1452 if (q->enqueue) { 1453 /* Grab device queue */ 1454 spin_lock(&dev->queue_lock); 1455 1456 rc = q->enqueue(skb, q); 1457 1458 qdisc_run(dev); 1459 1460 spin_unlock(&dev->queue_lock); 1461 rc = rc == NET_XMIT_BYPASS ? NET_XMIT_SUCCESS : rc; 1462 goto out; 1463 } 1464 1465 /* The device has no queue. Common case for software devices: 1466 loopback, all the sorts of tunnels... 1467 1468 Really, it is unlikely that netif_tx_lock protection is necessary 1469 here. (f.e. loopback and IP tunnels are clean ignoring statistics 1470 counters.) 1471 However, it is possible, that they rely on protection 1472 made by us here. 1473 1474 Check this and shot the lock. It is not prone from deadlocks. 1475 Either shot noqueue qdisc, it is even simpler 8) 1476 */ 1477 if (dev->flags & IFF_UP) { 1478 int cpu = smp_processor_id(); /* ok because BHs are off */ 1479 1480 if (dev->xmit_lock_owner != cpu) { 1481 1482 HARD_TX_LOCK(dev, cpu); 1483 1484 if (!netif_queue_stopped(dev)) { 1485 rc = 0; 1486 if (!dev_hard_start_xmit(skb, dev)) { 1487 HARD_TX_UNLOCK(dev); 1488 goto out; 1489 } 1490 } 1491 HARD_TX_UNLOCK(dev); 1492 if (net_ratelimit()) 1493 printk(KERN_CRIT "Virtual device %s asks to " 1494 "queue packet!\n", dev->name); 1495 } else { 1496 /* Recursion is detected! It is possible, 1497 * unfortunately */ 1498 if (net_ratelimit()) 1499 printk(KERN_CRIT "Dead loop on virtual device " 1500 "%s, fix it urgently!\n", dev->name); 1501 } 1502 } 1503 1504 rc = -ENETDOWN; 1505 rcu_read_unlock_bh(); 1506 1507 out_kfree_skb: 1508 kfree_skb(skb); 1509 return rc; 1510 out: 1511 rcu_read_unlock_bh(); 1512 return rc; 1513 } 1514 1515 1516 /*======================================================================= 1517 Receiver routines 1518 =======================================================================*/ 1519 1520 int netdev_max_backlog = 1000; 1521 int netdev_budget = 300; 1522 int weight_p = 64; /* old backlog weight */ 1523 1524 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, }; 1525 1526 1527 /** 1528 * netif_rx - post buffer to the network code 1529 * @skb: buffer to post 1530 * 1531 * This function receives a packet from a device driver and queues it for 1532 * the upper (protocol) levels to process. It always succeeds. The buffer 1533 * may be dropped during processing for congestion control or by the 1534 * protocol layers. 1535 * 1536 * return values: 1537 * NET_RX_SUCCESS (no congestion) 1538 * NET_RX_CN_LOW (low congestion) 1539 * NET_RX_CN_MOD (moderate congestion) 1540 * NET_RX_CN_HIGH (high congestion) 1541 * NET_RX_DROP (packet was dropped) 1542 * 1543 */ 1544 1545 int netif_rx(struct sk_buff *skb) 1546 { 1547 struct softnet_data *queue; 1548 unsigned long flags; 1549 1550 /* if netpoll wants it, pretend we never saw it */ 1551 if (netpoll_rx(skb)) 1552 return NET_RX_DROP; 1553 1554 if (!skb->tstamp.off_sec) 1555 net_timestamp(skb); 1556 1557 /* 1558 * The code is rearranged so that the path is the most 1559 * short when CPU is congested, but is still operating. 1560 */ 1561 local_irq_save(flags); 1562 queue = &__get_cpu_var(softnet_data); 1563 1564 __get_cpu_var(netdev_rx_stat).total++; 1565 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) { 1566 if (queue->input_pkt_queue.qlen) { 1567 enqueue: 1568 dev_hold(skb->dev); 1569 __skb_queue_tail(&queue->input_pkt_queue, skb); 1570 local_irq_restore(flags); 1571 return NET_RX_SUCCESS; 1572 } 1573 1574 netif_rx_schedule(&queue->backlog_dev); 1575 goto enqueue; 1576 } 1577 1578 __get_cpu_var(netdev_rx_stat).dropped++; 1579 local_irq_restore(flags); 1580 1581 kfree_skb(skb); 1582 return NET_RX_DROP; 1583 } 1584 1585 int netif_rx_ni(struct sk_buff *skb) 1586 { 1587 int err; 1588 1589 preempt_disable(); 1590 err = netif_rx(skb); 1591 if (local_softirq_pending()) 1592 do_softirq(); 1593 preempt_enable(); 1594 1595 return err; 1596 } 1597 1598 EXPORT_SYMBOL(netif_rx_ni); 1599 1600 static inline struct net_device *skb_bond(struct sk_buff *skb) 1601 { 1602 struct net_device *dev = skb->dev; 1603 1604 if (dev->master) { 1605 /* 1606 * On bonding slaves other than the currently active 1607 * slave, suppress duplicates except for 802.3ad 1608 * ETH_P_SLOW and alb non-mcast/bcast. 1609 */ 1610 if (dev->priv_flags & IFF_SLAVE_INACTIVE) { 1611 if (dev->master->priv_flags & IFF_MASTER_ALB) { 1612 if (skb->pkt_type != PACKET_BROADCAST && 1613 skb->pkt_type != PACKET_MULTICAST) 1614 goto keep; 1615 } 1616 1617 if (dev->master->priv_flags & IFF_MASTER_8023AD && 1618 skb->protocol == __constant_htons(ETH_P_SLOW)) 1619 goto keep; 1620 1621 kfree_skb(skb); 1622 return NULL; 1623 } 1624 keep: 1625 skb->dev = dev->master; 1626 } 1627 1628 return dev; 1629 } 1630 1631 static void net_tx_action(struct softirq_action *h) 1632 { 1633 struct softnet_data *sd = &__get_cpu_var(softnet_data); 1634 1635 if (sd->completion_queue) { 1636 struct sk_buff *clist; 1637 1638 local_irq_disable(); 1639 clist = sd->completion_queue; 1640 sd->completion_queue = NULL; 1641 local_irq_enable(); 1642 1643 while (clist) { 1644 struct sk_buff *skb = clist; 1645 clist = clist->next; 1646 1647 BUG_TRAP(!atomic_read(&skb->users)); 1648 __kfree_skb(skb); 1649 } 1650 } 1651 1652 if (sd->output_queue) { 1653 struct net_device *head; 1654 1655 local_irq_disable(); 1656 head = sd->output_queue; 1657 sd->output_queue = NULL; 1658 local_irq_enable(); 1659 1660 while (head) { 1661 struct net_device *dev = head; 1662 head = head->next_sched; 1663 1664 smp_mb__before_clear_bit(); 1665 clear_bit(__LINK_STATE_SCHED, &dev->state); 1666 1667 if (spin_trylock(&dev->queue_lock)) { 1668 qdisc_run(dev); 1669 spin_unlock(&dev->queue_lock); 1670 } else { 1671 netif_schedule(dev); 1672 } 1673 } 1674 } 1675 } 1676 1677 static __inline__ int deliver_skb(struct sk_buff *skb, 1678 struct packet_type *pt_prev, 1679 struct net_device *orig_dev) 1680 { 1681 atomic_inc(&skb->users); 1682 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1683 } 1684 1685 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE) 1686 int (*br_handle_frame_hook)(struct net_bridge_port *p, struct sk_buff **pskb); 1687 struct net_bridge; 1688 struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br, 1689 unsigned char *addr); 1690 void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent); 1691 1692 static __inline__ int handle_bridge(struct sk_buff **pskb, 1693 struct packet_type **pt_prev, int *ret, 1694 struct net_device *orig_dev) 1695 { 1696 struct net_bridge_port *port; 1697 1698 if ((*pskb)->pkt_type == PACKET_LOOPBACK || 1699 (port = rcu_dereference((*pskb)->dev->br_port)) == NULL) 1700 return 0; 1701 1702 if (*pt_prev) { 1703 *ret = deliver_skb(*pskb, *pt_prev, orig_dev); 1704 *pt_prev = NULL; 1705 } 1706 1707 return br_handle_frame_hook(port, pskb); 1708 } 1709 #else 1710 #define handle_bridge(skb, pt_prev, ret, orig_dev) (0) 1711 #endif 1712 1713 #ifdef CONFIG_NET_CLS_ACT 1714 /* TODO: Maybe we should just force sch_ingress to be compiled in 1715 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions 1716 * a compare and 2 stores extra right now if we dont have it on 1717 * but have CONFIG_NET_CLS_ACT 1718 * NOTE: This doesnt stop any functionality; if you dont have 1719 * the ingress scheduler, you just cant add policies on ingress. 1720 * 1721 */ 1722 static int ing_filter(struct sk_buff *skb) 1723 { 1724 struct Qdisc *q; 1725 struct net_device *dev = skb->dev; 1726 int result = TC_ACT_OK; 1727 1728 if (dev->qdisc_ingress) { 1729 __u32 ttl = (__u32) G_TC_RTTL(skb->tc_verd); 1730 if (MAX_RED_LOOP < ttl++) { 1731 printk("Redir loop detected Dropping packet (%s->%s)\n", 1732 skb->input_dev->name, skb->dev->name); 1733 return TC_ACT_SHOT; 1734 } 1735 1736 skb->tc_verd = SET_TC_RTTL(skb->tc_verd,ttl); 1737 1738 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_INGRESS); 1739 1740 spin_lock(&dev->ingress_lock); 1741 if ((q = dev->qdisc_ingress) != NULL) 1742 result = q->enqueue(skb, q); 1743 spin_unlock(&dev->ingress_lock); 1744 1745 } 1746 1747 return result; 1748 } 1749 #endif 1750 1751 int netif_receive_skb(struct sk_buff *skb) 1752 { 1753 struct packet_type *ptype, *pt_prev; 1754 struct net_device *orig_dev; 1755 int ret = NET_RX_DROP; 1756 unsigned short type; 1757 1758 /* if we've gotten here through NAPI, check netpoll */ 1759 if (skb->dev->poll && netpoll_rx(skb)) 1760 return NET_RX_DROP; 1761 1762 if (!skb->tstamp.off_sec) 1763 net_timestamp(skb); 1764 1765 if (!skb->input_dev) 1766 skb->input_dev = skb->dev; 1767 1768 orig_dev = skb_bond(skb); 1769 1770 if (!orig_dev) 1771 return NET_RX_DROP; 1772 1773 __get_cpu_var(netdev_rx_stat).total++; 1774 1775 skb->h.raw = skb->nh.raw = skb->data; 1776 skb->mac_len = skb->nh.raw - skb->mac.raw; 1777 1778 pt_prev = NULL; 1779 1780 rcu_read_lock(); 1781 1782 #ifdef CONFIG_NET_CLS_ACT 1783 if (skb->tc_verd & TC_NCLS) { 1784 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 1785 goto ncls; 1786 } 1787 #endif 1788 1789 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1790 if (!ptype->dev || ptype->dev == skb->dev) { 1791 if (pt_prev) 1792 ret = deliver_skb(skb, pt_prev, orig_dev); 1793 pt_prev = ptype; 1794 } 1795 } 1796 1797 #ifdef CONFIG_NET_CLS_ACT 1798 if (pt_prev) { 1799 ret = deliver_skb(skb, pt_prev, orig_dev); 1800 pt_prev = NULL; /* noone else should process this after*/ 1801 } else { 1802 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd); 1803 } 1804 1805 ret = ing_filter(skb); 1806 1807 if (ret == TC_ACT_SHOT || (ret == TC_ACT_STOLEN)) { 1808 kfree_skb(skb); 1809 goto out; 1810 } 1811 1812 skb->tc_verd = 0; 1813 ncls: 1814 #endif 1815 1816 handle_diverter(skb); 1817 1818 if (handle_bridge(&skb, &pt_prev, &ret, orig_dev)) 1819 goto out; 1820 1821 type = skb->protocol; 1822 list_for_each_entry_rcu(ptype, &ptype_base[ntohs(type)&15], list) { 1823 if (ptype->type == type && 1824 (!ptype->dev || ptype->dev == skb->dev)) { 1825 if (pt_prev) 1826 ret = deliver_skb(skb, pt_prev, orig_dev); 1827 pt_prev = ptype; 1828 } 1829 } 1830 1831 if (pt_prev) { 1832 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1833 } else { 1834 kfree_skb(skb); 1835 /* Jamal, now you will not able to escape explaining 1836 * me how you were going to use this. :-) 1837 */ 1838 ret = NET_RX_DROP; 1839 } 1840 1841 out: 1842 rcu_read_unlock(); 1843 return ret; 1844 } 1845 1846 static int process_backlog(struct net_device *backlog_dev, int *budget) 1847 { 1848 int work = 0; 1849 int quota = min(backlog_dev->quota, *budget); 1850 struct softnet_data *queue = &__get_cpu_var(softnet_data); 1851 unsigned long start_time = jiffies; 1852 1853 backlog_dev->weight = weight_p; 1854 for (;;) { 1855 struct sk_buff *skb; 1856 struct net_device *dev; 1857 1858 local_irq_disable(); 1859 skb = __skb_dequeue(&queue->input_pkt_queue); 1860 if (!skb) 1861 goto job_done; 1862 local_irq_enable(); 1863 1864 dev = skb->dev; 1865 1866 netif_receive_skb(skb); 1867 1868 dev_put(dev); 1869 1870 work++; 1871 1872 if (work >= quota || jiffies - start_time > 1) 1873 break; 1874 1875 } 1876 1877 backlog_dev->quota -= work; 1878 *budget -= work; 1879 return -1; 1880 1881 job_done: 1882 backlog_dev->quota -= work; 1883 *budget -= work; 1884 1885 list_del(&backlog_dev->poll_list); 1886 smp_mb__before_clear_bit(); 1887 netif_poll_enable(backlog_dev); 1888 1889 local_irq_enable(); 1890 return 0; 1891 } 1892 1893 static void net_rx_action(struct softirq_action *h) 1894 { 1895 struct softnet_data *queue = &__get_cpu_var(softnet_data); 1896 unsigned long start_time = jiffies; 1897 int budget = netdev_budget; 1898 void *have; 1899 1900 local_irq_disable(); 1901 1902 while (!list_empty(&queue->poll_list)) { 1903 struct net_device *dev; 1904 1905 if (budget <= 0 || jiffies - start_time > 1) 1906 goto softnet_break; 1907 1908 local_irq_enable(); 1909 1910 dev = list_entry(queue->poll_list.next, 1911 struct net_device, poll_list); 1912 have = netpoll_poll_lock(dev); 1913 1914 if (dev->quota <= 0 || dev->poll(dev, &budget)) { 1915 netpoll_poll_unlock(have); 1916 local_irq_disable(); 1917 list_move_tail(&dev->poll_list, &queue->poll_list); 1918 if (dev->quota < 0) 1919 dev->quota += dev->weight; 1920 else 1921 dev->quota = dev->weight; 1922 } else { 1923 netpoll_poll_unlock(have); 1924 dev_put(dev); 1925 local_irq_disable(); 1926 } 1927 } 1928 out: 1929 #ifdef CONFIG_NET_DMA 1930 /* 1931 * There may not be any more sk_buffs coming right now, so push 1932 * any pending DMA copies to hardware 1933 */ 1934 if (net_dma_client) { 1935 struct dma_chan *chan; 1936 rcu_read_lock(); 1937 list_for_each_entry_rcu(chan, &net_dma_client->channels, client_node) 1938 dma_async_memcpy_issue_pending(chan); 1939 rcu_read_unlock(); 1940 } 1941 #endif 1942 local_irq_enable(); 1943 return; 1944 1945 softnet_break: 1946 __get_cpu_var(netdev_rx_stat).time_squeeze++; 1947 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 1948 goto out; 1949 } 1950 1951 static gifconf_func_t * gifconf_list [NPROTO]; 1952 1953 /** 1954 * register_gifconf - register a SIOCGIF handler 1955 * @family: Address family 1956 * @gifconf: Function handler 1957 * 1958 * Register protocol dependent address dumping routines. The handler 1959 * that is passed must not be freed or reused until it has been replaced 1960 * by another handler. 1961 */ 1962 int register_gifconf(unsigned int family, gifconf_func_t * gifconf) 1963 { 1964 if (family >= NPROTO) 1965 return -EINVAL; 1966 gifconf_list[family] = gifconf; 1967 return 0; 1968 } 1969 1970 1971 /* 1972 * Map an interface index to its name (SIOCGIFNAME) 1973 */ 1974 1975 /* 1976 * We need this ioctl for efficient implementation of the 1977 * if_indextoname() function required by the IPv6 API. Without 1978 * it, we would have to search all the interfaces to find a 1979 * match. --pb 1980 */ 1981 1982 static int dev_ifname(struct ifreq __user *arg) 1983 { 1984 struct net_device *dev; 1985 struct ifreq ifr; 1986 1987 /* 1988 * Fetch the caller's info block. 1989 */ 1990 1991 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 1992 return -EFAULT; 1993 1994 read_lock(&dev_base_lock); 1995 dev = __dev_get_by_index(ifr.ifr_ifindex); 1996 if (!dev) { 1997 read_unlock(&dev_base_lock); 1998 return -ENODEV; 1999 } 2000 2001 strcpy(ifr.ifr_name, dev->name); 2002 read_unlock(&dev_base_lock); 2003 2004 if (copy_to_user(arg, &ifr, sizeof(struct ifreq))) 2005 return -EFAULT; 2006 return 0; 2007 } 2008 2009 /* 2010 * Perform a SIOCGIFCONF call. This structure will change 2011 * size eventually, and there is nothing I can do about it. 2012 * Thus we will need a 'compatibility mode'. 2013 */ 2014 2015 static int dev_ifconf(char __user *arg) 2016 { 2017 struct ifconf ifc; 2018 struct net_device *dev; 2019 char __user *pos; 2020 int len; 2021 int total; 2022 int i; 2023 2024 /* 2025 * Fetch the caller's info block. 2026 */ 2027 2028 if (copy_from_user(&ifc, arg, sizeof(struct ifconf))) 2029 return -EFAULT; 2030 2031 pos = ifc.ifc_buf; 2032 len = ifc.ifc_len; 2033 2034 /* 2035 * Loop over the interfaces, and write an info block for each. 2036 */ 2037 2038 total = 0; 2039 for (dev = dev_base; dev; dev = dev->next) { 2040 for (i = 0; i < NPROTO; i++) { 2041 if (gifconf_list[i]) { 2042 int done; 2043 if (!pos) 2044 done = gifconf_list[i](dev, NULL, 0); 2045 else 2046 done = gifconf_list[i](dev, pos + total, 2047 len - total); 2048 if (done < 0) 2049 return -EFAULT; 2050 total += done; 2051 } 2052 } 2053 } 2054 2055 /* 2056 * All done. Write the updated control block back to the caller. 2057 */ 2058 ifc.ifc_len = total; 2059 2060 /* 2061 * Both BSD and Solaris return 0 here, so we do too. 2062 */ 2063 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0; 2064 } 2065 2066 #ifdef CONFIG_PROC_FS 2067 /* 2068 * This is invoked by the /proc filesystem handler to display a device 2069 * in detail. 2070 */ 2071 static __inline__ struct net_device *dev_get_idx(loff_t pos) 2072 { 2073 struct net_device *dev; 2074 loff_t i; 2075 2076 for (i = 0, dev = dev_base; dev && i < pos; ++i, dev = dev->next); 2077 2078 return i == pos ? dev : NULL; 2079 } 2080 2081 void *dev_seq_start(struct seq_file *seq, loff_t *pos) 2082 { 2083 read_lock(&dev_base_lock); 2084 return *pos ? dev_get_idx(*pos - 1) : SEQ_START_TOKEN; 2085 } 2086 2087 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2088 { 2089 ++*pos; 2090 return v == SEQ_START_TOKEN ? dev_base : ((struct net_device *)v)->next; 2091 } 2092 2093 void dev_seq_stop(struct seq_file *seq, void *v) 2094 { 2095 read_unlock(&dev_base_lock); 2096 } 2097 2098 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev) 2099 { 2100 if (dev->get_stats) { 2101 struct net_device_stats *stats = dev->get_stats(dev); 2102 2103 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu " 2104 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n", 2105 dev->name, stats->rx_bytes, stats->rx_packets, 2106 stats->rx_errors, 2107 stats->rx_dropped + stats->rx_missed_errors, 2108 stats->rx_fifo_errors, 2109 stats->rx_length_errors + stats->rx_over_errors + 2110 stats->rx_crc_errors + stats->rx_frame_errors, 2111 stats->rx_compressed, stats->multicast, 2112 stats->tx_bytes, stats->tx_packets, 2113 stats->tx_errors, stats->tx_dropped, 2114 stats->tx_fifo_errors, stats->collisions, 2115 stats->tx_carrier_errors + 2116 stats->tx_aborted_errors + 2117 stats->tx_window_errors + 2118 stats->tx_heartbeat_errors, 2119 stats->tx_compressed); 2120 } else 2121 seq_printf(seq, "%6s: No statistics available.\n", dev->name); 2122 } 2123 2124 /* 2125 * Called from the PROCfs module. This now uses the new arbitrary sized 2126 * /proc/net interface to create /proc/net/dev 2127 */ 2128 static int dev_seq_show(struct seq_file *seq, void *v) 2129 { 2130 if (v == SEQ_START_TOKEN) 2131 seq_puts(seq, "Inter-| Receive " 2132 " | Transmit\n" 2133 " face |bytes packets errs drop fifo frame " 2134 "compressed multicast|bytes packets errs " 2135 "drop fifo colls carrier compressed\n"); 2136 else 2137 dev_seq_printf_stats(seq, v); 2138 return 0; 2139 } 2140 2141 static struct netif_rx_stats *softnet_get_online(loff_t *pos) 2142 { 2143 struct netif_rx_stats *rc = NULL; 2144 2145 while (*pos < NR_CPUS) 2146 if (cpu_online(*pos)) { 2147 rc = &per_cpu(netdev_rx_stat, *pos); 2148 break; 2149 } else 2150 ++*pos; 2151 return rc; 2152 } 2153 2154 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos) 2155 { 2156 return softnet_get_online(pos); 2157 } 2158 2159 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2160 { 2161 ++*pos; 2162 return softnet_get_online(pos); 2163 } 2164 2165 static void softnet_seq_stop(struct seq_file *seq, void *v) 2166 { 2167 } 2168 2169 static int softnet_seq_show(struct seq_file *seq, void *v) 2170 { 2171 struct netif_rx_stats *s = v; 2172 2173 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n", 2174 s->total, s->dropped, s->time_squeeze, 0, 2175 0, 0, 0, 0, /* was fastroute */ 2176 s->cpu_collision ); 2177 return 0; 2178 } 2179 2180 static struct seq_operations dev_seq_ops = { 2181 .start = dev_seq_start, 2182 .next = dev_seq_next, 2183 .stop = dev_seq_stop, 2184 .show = dev_seq_show, 2185 }; 2186 2187 static int dev_seq_open(struct inode *inode, struct file *file) 2188 { 2189 return seq_open(file, &dev_seq_ops); 2190 } 2191 2192 static struct file_operations dev_seq_fops = { 2193 .owner = THIS_MODULE, 2194 .open = dev_seq_open, 2195 .read = seq_read, 2196 .llseek = seq_lseek, 2197 .release = seq_release, 2198 }; 2199 2200 static struct seq_operations softnet_seq_ops = { 2201 .start = softnet_seq_start, 2202 .next = softnet_seq_next, 2203 .stop = softnet_seq_stop, 2204 .show = softnet_seq_show, 2205 }; 2206 2207 static int softnet_seq_open(struct inode *inode, struct file *file) 2208 { 2209 return seq_open(file, &softnet_seq_ops); 2210 } 2211 2212 static struct file_operations softnet_seq_fops = { 2213 .owner = THIS_MODULE, 2214 .open = softnet_seq_open, 2215 .read = seq_read, 2216 .llseek = seq_lseek, 2217 .release = seq_release, 2218 }; 2219 2220 #ifdef CONFIG_WIRELESS_EXT 2221 extern int wireless_proc_init(void); 2222 #else 2223 #define wireless_proc_init() 0 2224 #endif 2225 2226 static int __init dev_proc_init(void) 2227 { 2228 int rc = -ENOMEM; 2229 2230 if (!proc_net_fops_create("dev", S_IRUGO, &dev_seq_fops)) 2231 goto out; 2232 if (!proc_net_fops_create("softnet_stat", S_IRUGO, &softnet_seq_fops)) 2233 goto out_dev; 2234 if (wireless_proc_init()) 2235 goto out_softnet; 2236 rc = 0; 2237 out: 2238 return rc; 2239 out_softnet: 2240 proc_net_remove("softnet_stat"); 2241 out_dev: 2242 proc_net_remove("dev"); 2243 goto out; 2244 } 2245 #else 2246 #define dev_proc_init() 0 2247 #endif /* CONFIG_PROC_FS */ 2248 2249 2250 /** 2251 * netdev_set_master - set up master/slave pair 2252 * @slave: slave device 2253 * @master: new master device 2254 * 2255 * Changes the master device of the slave. Pass %NULL to break the 2256 * bonding. The caller must hold the RTNL semaphore. On a failure 2257 * a negative errno code is returned. On success the reference counts 2258 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the 2259 * function returns zero. 2260 */ 2261 int netdev_set_master(struct net_device *slave, struct net_device *master) 2262 { 2263 struct net_device *old = slave->master; 2264 2265 ASSERT_RTNL(); 2266 2267 if (master) { 2268 if (old) 2269 return -EBUSY; 2270 dev_hold(master); 2271 } 2272 2273 slave->master = master; 2274 2275 synchronize_net(); 2276 2277 if (old) 2278 dev_put(old); 2279 2280 if (master) 2281 slave->flags |= IFF_SLAVE; 2282 else 2283 slave->flags &= ~IFF_SLAVE; 2284 2285 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE); 2286 return 0; 2287 } 2288 2289 /** 2290 * dev_set_promiscuity - update promiscuity count on a device 2291 * @dev: device 2292 * @inc: modifier 2293 * 2294 * Add or remove promiscuity from a device. While the count in the device 2295 * remains above zero the interface remains promiscuous. Once it hits zero 2296 * the device reverts back to normal filtering operation. A negative inc 2297 * value is used to drop promiscuity on the device. 2298 */ 2299 void dev_set_promiscuity(struct net_device *dev, int inc) 2300 { 2301 unsigned short old_flags = dev->flags; 2302 2303 if ((dev->promiscuity += inc) == 0) 2304 dev->flags &= ~IFF_PROMISC; 2305 else 2306 dev->flags |= IFF_PROMISC; 2307 if (dev->flags != old_flags) { 2308 dev_mc_upload(dev); 2309 printk(KERN_INFO "device %s %s promiscuous mode\n", 2310 dev->name, (dev->flags & IFF_PROMISC) ? "entered" : 2311 "left"); 2312 audit_log(current->audit_context, GFP_ATOMIC, 2313 AUDIT_ANOM_PROMISCUOUS, 2314 "dev=%s prom=%d old_prom=%d auid=%u", 2315 dev->name, (dev->flags & IFF_PROMISC), 2316 (old_flags & IFF_PROMISC), 2317 audit_get_loginuid(current->audit_context)); 2318 } 2319 } 2320 2321 /** 2322 * dev_set_allmulti - update allmulti count on a device 2323 * @dev: device 2324 * @inc: modifier 2325 * 2326 * Add or remove reception of all multicast frames to a device. While the 2327 * count in the device remains above zero the interface remains listening 2328 * to all interfaces. Once it hits zero the device reverts back to normal 2329 * filtering operation. A negative @inc value is used to drop the counter 2330 * when releasing a resource needing all multicasts. 2331 */ 2332 2333 void dev_set_allmulti(struct net_device *dev, int inc) 2334 { 2335 unsigned short old_flags = dev->flags; 2336 2337 dev->flags |= IFF_ALLMULTI; 2338 if ((dev->allmulti += inc) == 0) 2339 dev->flags &= ~IFF_ALLMULTI; 2340 if (dev->flags ^ old_flags) 2341 dev_mc_upload(dev); 2342 } 2343 2344 unsigned dev_get_flags(const struct net_device *dev) 2345 { 2346 unsigned flags; 2347 2348 flags = (dev->flags & ~(IFF_PROMISC | 2349 IFF_ALLMULTI | 2350 IFF_RUNNING | 2351 IFF_LOWER_UP | 2352 IFF_DORMANT)) | 2353 (dev->gflags & (IFF_PROMISC | 2354 IFF_ALLMULTI)); 2355 2356 if (netif_running(dev)) { 2357 if (netif_oper_up(dev)) 2358 flags |= IFF_RUNNING; 2359 if (netif_carrier_ok(dev)) 2360 flags |= IFF_LOWER_UP; 2361 if (netif_dormant(dev)) 2362 flags |= IFF_DORMANT; 2363 } 2364 2365 return flags; 2366 } 2367 2368 int dev_change_flags(struct net_device *dev, unsigned flags) 2369 { 2370 int ret; 2371 int old_flags = dev->flags; 2372 2373 /* 2374 * Set the flags on our device. 2375 */ 2376 2377 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 2378 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 2379 IFF_AUTOMEDIA)) | 2380 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 2381 IFF_ALLMULTI)); 2382 2383 /* 2384 * Load in the correct multicast list now the flags have changed. 2385 */ 2386 2387 dev_mc_upload(dev); 2388 2389 /* 2390 * Have we downed the interface. We handle IFF_UP ourselves 2391 * according to user attempts to set it, rather than blindly 2392 * setting it. 2393 */ 2394 2395 ret = 0; 2396 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */ 2397 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev); 2398 2399 if (!ret) 2400 dev_mc_upload(dev); 2401 } 2402 2403 if (dev->flags & IFF_UP && 2404 ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI | 2405 IFF_VOLATILE))) 2406 raw_notifier_call_chain(&netdev_chain, 2407 NETDEV_CHANGE, dev); 2408 2409 if ((flags ^ dev->gflags) & IFF_PROMISC) { 2410 int inc = (flags & IFF_PROMISC) ? +1 : -1; 2411 dev->gflags ^= IFF_PROMISC; 2412 dev_set_promiscuity(dev, inc); 2413 } 2414 2415 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 2416 is important. Some (broken) drivers set IFF_PROMISC, when 2417 IFF_ALLMULTI is requested not asking us and not reporting. 2418 */ 2419 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 2420 int inc = (flags & IFF_ALLMULTI) ? +1 : -1; 2421 dev->gflags ^= IFF_ALLMULTI; 2422 dev_set_allmulti(dev, inc); 2423 } 2424 2425 if (old_flags ^ dev->flags) 2426 rtmsg_ifinfo(RTM_NEWLINK, dev, old_flags ^ dev->flags); 2427 2428 return ret; 2429 } 2430 2431 int dev_set_mtu(struct net_device *dev, int new_mtu) 2432 { 2433 int err; 2434 2435 if (new_mtu == dev->mtu) 2436 return 0; 2437 2438 /* MTU must be positive. */ 2439 if (new_mtu < 0) 2440 return -EINVAL; 2441 2442 if (!netif_device_present(dev)) 2443 return -ENODEV; 2444 2445 err = 0; 2446 if (dev->change_mtu) 2447 err = dev->change_mtu(dev, new_mtu); 2448 else 2449 dev->mtu = new_mtu; 2450 if (!err && dev->flags & IFF_UP) 2451 raw_notifier_call_chain(&netdev_chain, 2452 NETDEV_CHANGEMTU, dev); 2453 return err; 2454 } 2455 2456 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 2457 { 2458 int err; 2459 2460 if (!dev->set_mac_address) 2461 return -EOPNOTSUPP; 2462 if (sa->sa_family != dev->type) 2463 return -EINVAL; 2464 if (!netif_device_present(dev)) 2465 return -ENODEV; 2466 err = dev->set_mac_address(dev, sa); 2467 if (!err) 2468 raw_notifier_call_chain(&netdev_chain, 2469 NETDEV_CHANGEADDR, dev); 2470 return err; 2471 } 2472 2473 /* 2474 * Perform the SIOCxIFxxx calls. 2475 */ 2476 static int dev_ifsioc(struct ifreq *ifr, unsigned int cmd) 2477 { 2478 int err; 2479 struct net_device *dev = __dev_get_by_name(ifr->ifr_name); 2480 2481 if (!dev) 2482 return -ENODEV; 2483 2484 switch (cmd) { 2485 case SIOCGIFFLAGS: /* Get interface flags */ 2486 ifr->ifr_flags = dev_get_flags(dev); 2487 return 0; 2488 2489 case SIOCSIFFLAGS: /* Set interface flags */ 2490 return dev_change_flags(dev, ifr->ifr_flags); 2491 2492 case SIOCGIFMETRIC: /* Get the metric on the interface 2493 (currently unused) */ 2494 ifr->ifr_metric = 0; 2495 return 0; 2496 2497 case SIOCSIFMETRIC: /* Set the metric on the interface 2498 (currently unused) */ 2499 return -EOPNOTSUPP; 2500 2501 case SIOCGIFMTU: /* Get the MTU of a device */ 2502 ifr->ifr_mtu = dev->mtu; 2503 return 0; 2504 2505 case SIOCSIFMTU: /* Set the MTU of a device */ 2506 return dev_set_mtu(dev, ifr->ifr_mtu); 2507 2508 case SIOCGIFHWADDR: 2509 if (!dev->addr_len) 2510 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data); 2511 else 2512 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr, 2513 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 2514 ifr->ifr_hwaddr.sa_family = dev->type; 2515 return 0; 2516 2517 case SIOCSIFHWADDR: 2518 return dev_set_mac_address(dev, &ifr->ifr_hwaddr); 2519 2520 case SIOCSIFHWBROADCAST: 2521 if (ifr->ifr_hwaddr.sa_family != dev->type) 2522 return -EINVAL; 2523 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data, 2524 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 2525 raw_notifier_call_chain(&netdev_chain, 2526 NETDEV_CHANGEADDR, dev); 2527 return 0; 2528 2529 case SIOCGIFMAP: 2530 ifr->ifr_map.mem_start = dev->mem_start; 2531 ifr->ifr_map.mem_end = dev->mem_end; 2532 ifr->ifr_map.base_addr = dev->base_addr; 2533 ifr->ifr_map.irq = dev->irq; 2534 ifr->ifr_map.dma = dev->dma; 2535 ifr->ifr_map.port = dev->if_port; 2536 return 0; 2537 2538 case SIOCSIFMAP: 2539 if (dev->set_config) { 2540 if (!netif_device_present(dev)) 2541 return -ENODEV; 2542 return dev->set_config(dev, &ifr->ifr_map); 2543 } 2544 return -EOPNOTSUPP; 2545 2546 case SIOCADDMULTI: 2547 if (!dev->set_multicast_list || 2548 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 2549 return -EINVAL; 2550 if (!netif_device_present(dev)) 2551 return -ENODEV; 2552 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data, 2553 dev->addr_len, 1); 2554 2555 case SIOCDELMULTI: 2556 if (!dev->set_multicast_list || 2557 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 2558 return -EINVAL; 2559 if (!netif_device_present(dev)) 2560 return -ENODEV; 2561 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data, 2562 dev->addr_len, 1); 2563 2564 case SIOCGIFINDEX: 2565 ifr->ifr_ifindex = dev->ifindex; 2566 return 0; 2567 2568 case SIOCGIFTXQLEN: 2569 ifr->ifr_qlen = dev->tx_queue_len; 2570 return 0; 2571 2572 case SIOCSIFTXQLEN: 2573 if (ifr->ifr_qlen < 0) 2574 return -EINVAL; 2575 dev->tx_queue_len = ifr->ifr_qlen; 2576 return 0; 2577 2578 case SIOCSIFNAME: 2579 ifr->ifr_newname[IFNAMSIZ-1] = '\0'; 2580 return dev_change_name(dev, ifr->ifr_newname); 2581 2582 /* 2583 * Unknown or private ioctl 2584 */ 2585 2586 default: 2587 if ((cmd >= SIOCDEVPRIVATE && 2588 cmd <= SIOCDEVPRIVATE + 15) || 2589 cmd == SIOCBONDENSLAVE || 2590 cmd == SIOCBONDRELEASE || 2591 cmd == SIOCBONDSETHWADDR || 2592 cmd == SIOCBONDSLAVEINFOQUERY || 2593 cmd == SIOCBONDINFOQUERY || 2594 cmd == SIOCBONDCHANGEACTIVE || 2595 cmd == SIOCGMIIPHY || 2596 cmd == SIOCGMIIREG || 2597 cmd == SIOCSMIIREG || 2598 cmd == SIOCBRADDIF || 2599 cmd == SIOCBRDELIF || 2600 cmd == SIOCWANDEV) { 2601 err = -EOPNOTSUPP; 2602 if (dev->do_ioctl) { 2603 if (netif_device_present(dev)) 2604 err = dev->do_ioctl(dev, ifr, 2605 cmd); 2606 else 2607 err = -ENODEV; 2608 } 2609 } else 2610 err = -EINVAL; 2611 2612 } 2613 return err; 2614 } 2615 2616 /* 2617 * This function handles all "interface"-type I/O control requests. The actual 2618 * 'doing' part of this is dev_ifsioc above. 2619 */ 2620 2621 /** 2622 * dev_ioctl - network device ioctl 2623 * @cmd: command to issue 2624 * @arg: pointer to a struct ifreq in user space 2625 * 2626 * Issue ioctl functions to devices. This is normally called by the 2627 * user space syscall interfaces but can sometimes be useful for 2628 * other purposes. The return value is the return from the syscall if 2629 * positive or a negative errno code on error. 2630 */ 2631 2632 int dev_ioctl(unsigned int cmd, void __user *arg) 2633 { 2634 struct ifreq ifr; 2635 int ret; 2636 char *colon; 2637 2638 /* One special case: SIOCGIFCONF takes ifconf argument 2639 and requires shared lock, because it sleeps writing 2640 to user space. 2641 */ 2642 2643 if (cmd == SIOCGIFCONF) { 2644 rtnl_lock(); 2645 ret = dev_ifconf((char __user *) arg); 2646 rtnl_unlock(); 2647 return ret; 2648 } 2649 if (cmd == SIOCGIFNAME) 2650 return dev_ifname((struct ifreq __user *)arg); 2651 2652 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 2653 return -EFAULT; 2654 2655 ifr.ifr_name[IFNAMSIZ-1] = 0; 2656 2657 colon = strchr(ifr.ifr_name, ':'); 2658 if (colon) 2659 *colon = 0; 2660 2661 /* 2662 * See which interface the caller is talking about. 2663 */ 2664 2665 switch (cmd) { 2666 /* 2667 * These ioctl calls: 2668 * - can be done by all. 2669 * - atomic and do not require locking. 2670 * - return a value 2671 */ 2672 case SIOCGIFFLAGS: 2673 case SIOCGIFMETRIC: 2674 case SIOCGIFMTU: 2675 case SIOCGIFHWADDR: 2676 case SIOCGIFSLAVE: 2677 case SIOCGIFMAP: 2678 case SIOCGIFINDEX: 2679 case SIOCGIFTXQLEN: 2680 dev_load(ifr.ifr_name); 2681 read_lock(&dev_base_lock); 2682 ret = dev_ifsioc(&ifr, cmd); 2683 read_unlock(&dev_base_lock); 2684 if (!ret) { 2685 if (colon) 2686 *colon = ':'; 2687 if (copy_to_user(arg, &ifr, 2688 sizeof(struct ifreq))) 2689 ret = -EFAULT; 2690 } 2691 return ret; 2692 2693 case SIOCETHTOOL: 2694 dev_load(ifr.ifr_name); 2695 rtnl_lock(); 2696 ret = dev_ethtool(&ifr); 2697 rtnl_unlock(); 2698 if (!ret) { 2699 if (colon) 2700 *colon = ':'; 2701 if (copy_to_user(arg, &ifr, 2702 sizeof(struct ifreq))) 2703 ret = -EFAULT; 2704 } 2705 return ret; 2706 2707 /* 2708 * These ioctl calls: 2709 * - require superuser power. 2710 * - require strict serialization. 2711 * - return a value 2712 */ 2713 case SIOCGMIIPHY: 2714 case SIOCGMIIREG: 2715 case SIOCSIFNAME: 2716 if (!capable(CAP_NET_ADMIN)) 2717 return -EPERM; 2718 dev_load(ifr.ifr_name); 2719 rtnl_lock(); 2720 ret = dev_ifsioc(&ifr, cmd); 2721 rtnl_unlock(); 2722 if (!ret) { 2723 if (colon) 2724 *colon = ':'; 2725 if (copy_to_user(arg, &ifr, 2726 sizeof(struct ifreq))) 2727 ret = -EFAULT; 2728 } 2729 return ret; 2730 2731 /* 2732 * These ioctl calls: 2733 * - require superuser power. 2734 * - require strict serialization. 2735 * - do not return a value 2736 */ 2737 case SIOCSIFFLAGS: 2738 case SIOCSIFMETRIC: 2739 case SIOCSIFMTU: 2740 case SIOCSIFMAP: 2741 case SIOCSIFHWADDR: 2742 case SIOCSIFSLAVE: 2743 case SIOCADDMULTI: 2744 case SIOCDELMULTI: 2745 case SIOCSIFHWBROADCAST: 2746 case SIOCSIFTXQLEN: 2747 case SIOCSMIIREG: 2748 case SIOCBONDENSLAVE: 2749 case SIOCBONDRELEASE: 2750 case SIOCBONDSETHWADDR: 2751 case SIOCBONDCHANGEACTIVE: 2752 case SIOCBRADDIF: 2753 case SIOCBRDELIF: 2754 if (!capable(CAP_NET_ADMIN)) 2755 return -EPERM; 2756 /* fall through */ 2757 case SIOCBONDSLAVEINFOQUERY: 2758 case SIOCBONDINFOQUERY: 2759 dev_load(ifr.ifr_name); 2760 rtnl_lock(); 2761 ret = dev_ifsioc(&ifr, cmd); 2762 rtnl_unlock(); 2763 return ret; 2764 2765 case SIOCGIFMEM: 2766 /* Get the per device memory space. We can add this but 2767 * currently do not support it */ 2768 case SIOCSIFMEM: 2769 /* Set the per device memory buffer space. 2770 * Not applicable in our case */ 2771 case SIOCSIFLINK: 2772 return -EINVAL; 2773 2774 /* 2775 * Unknown or private ioctl. 2776 */ 2777 default: 2778 if (cmd == SIOCWANDEV || 2779 (cmd >= SIOCDEVPRIVATE && 2780 cmd <= SIOCDEVPRIVATE + 15)) { 2781 dev_load(ifr.ifr_name); 2782 rtnl_lock(); 2783 ret = dev_ifsioc(&ifr, cmd); 2784 rtnl_unlock(); 2785 if (!ret && copy_to_user(arg, &ifr, 2786 sizeof(struct ifreq))) 2787 ret = -EFAULT; 2788 return ret; 2789 } 2790 #ifdef CONFIG_WIRELESS_EXT 2791 /* Take care of Wireless Extensions */ 2792 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 2793 /* If command is `set a parameter', or 2794 * `get the encoding parameters', check if 2795 * the user has the right to do it */ 2796 if (IW_IS_SET(cmd) || cmd == SIOCGIWENCODE 2797 || cmd == SIOCGIWENCODEEXT) { 2798 if (!capable(CAP_NET_ADMIN)) 2799 return -EPERM; 2800 } 2801 dev_load(ifr.ifr_name); 2802 rtnl_lock(); 2803 /* Follow me in net/core/wireless.c */ 2804 ret = wireless_process_ioctl(&ifr, cmd); 2805 rtnl_unlock(); 2806 if (IW_IS_GET(cmd) && 2807 copy_to_user(arg, &ifr, 2808 sizeof(struct ifreq))) 2809 ret = -EFAULT; 2810 return ret; 2811 } 2812 #endif /* CONFIG_WIRELESS_EXT */ 2813 return -EINVAL; 2814 } 2815 } 2816 2817 2818 /** 2819 * dev_new_index - allocate an ifindex 2820 * 2821 * Returns a suitable unique value for a new device interface 2822 * number. The caller must hold the rtnl semaphore or the 2823 * dev_base_lock to be sure it remains unique. 2824 */ 2825 static int dev_new_index(void) 2826 { 2827 static int ifindex; 2828 for (;;) { 2829 if (++ifindex <= 0) 2830 ifindex = 1; 2831 if (!__dev_get_by_index(ifindex)) 2832 return ifindex; 2833 } 2834 } 2835 2836 static int dev_boot_phase = 1; 2837 2838 /* Delayed registration/unregisteration */ 2839 static DEFINE_SPINLOCK(net_todo_list_lock); 2840 static struct list_head net_todo_list = LIST_HEAD_INIT(net_todo_list); 2841 2842 static inline void net_set_todo(struct net_device *dev) 2843 { 2844 spin_lock(&net_todo_list_lock); 2845 list_add_tail(&dev->todo_list, &net_todo_list); 2846 spin_unlock(&net_todo_list_lock); 2847 } 2848 2849 /** 2850 * register_netdevice - register a network device 2851 * @dev: device to register 2852 * 2853 * Take a completed network device structure and add it to the kernel 2854 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 2855 * chain. 0 is returned on success. A negative errno code is returned 2856 * on a failure to set up the device, or if the name is a duplicate. 2857 * 2858 * Callers must hold the rtnl semaphore. You may want 2859 * register_netdev() instead of this. 2860 * 2861 * BUGS: 2862 * The locking appears insufficient to guarantee two parallel registers 2863 * will not get the same name. 2864 */ 2865 2866 int register_netdevice(struct net_device *dev) 2867 { 2868 struct hlist_head *head; 2869 struct hlist_node *p; 2870 int ret; 2871 2872 BUG_ON(dev_boot_phase); 2873 ASSERT_RTNL(); 2874 2875 might_sleep(); 2876 2877 /* When net_device's are persistent, this will be fatal. */ 2878 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 2879 2880 spin_lock_init(&dev->queue_lock); 2881 spin_lock_init(&dev->_xmit_lock); 2882 dev->xmit_lock_owner = -1; 2883 #ifdef CONFIG_NET_CLS_ACT 2884 spin_lock_init(&dev->ingress_lock); 2885 #endif 2886 2887 ret = alloc_divert_blk(dev); 2888 if (ret) 2889 goto out; 2890 2891 dev->iflink = -1; 2892 2893 /* Init, if this function is available */ 2894 if (dev->init) { 2895 ret = dev->init(dev); 2896 if (ret) { 2897 if (ret > 0) 2898 ret = -EIO; 2899 goto out_err; 2900 } 2901 } 2902 2903 if (!dev_valid_name(dev->name)) { 2904 ret = -EINVAL; 2905 goto out_err; 2906 } 2907 2908 dev->ifindex = dev_new_index(); 2909 if (dev->iflink == -1) 2910 dev->iflink = dev->ifindex; 2911 2912 /* Check for existence of name */ 2913 head = dev_name_hash(dev->name); 2914 hlist_for_each(p, head) { 2915 struct net_device *d 2916 = hlist_entry(p, struct net_device, name_hlist); 2917 if (!strncmp(d->name, dev->name, IFNAMSIZ)) { 2918 ret = -EEXIST; 2919 goto out_err; 2920 } 2921 } 2922 2923 /* Fix illegal SG+CSUM combinations. */ 2924 if ((dev->features & NETIF_F_SG) && 2925 !(dev->features & NETIF_F_ALL_CSUM)) { 2926 printk("%s: Dropping NETIF_F_SG since no checksum feature.\n", 2927 dev->name); 2928 dev->features &= ~NETIF_F_SG; 2929 } 2930 2931 /* TSO requires that SG is present as well. */ 2932 if ((dev->features & NETIF_F_TSO) && 2933 !(dev->features & NETIF_F_SG)) { 2934 printk("%s: Dropping NETIF_F_TSO since no SG feature.\n", 2935 dev->name); 2936 dev->features &= ~NETIF_F_TSO; 2937 } 2938 if (dev->features & NETIF_F_UFO) { 2939 if (!(dev->features & NETIF_F_HW_CSUM)) { 2940 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no " 2941 "NETIF_F_HW_CSUM feature.\n", 2942 dev->name); 2943 dev->features &= ~NETIF_F_UFO; 2944 } 2945 if (!(dev->features & NETIF_F_SG)) { 2946 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no " 2947 "NETIF_F_SG feature.\n", 2948 dev->name); 2949 dev->features &= ~NETIF_F_UFO; 2950 } 2951 } 2952 2953 /* 2954 * nil rebuild_header routine, 2955 * that should be never called and used as just bug trap. 2956 */ 2957 2958 if (!dev->rebuild_header) 2959 dev->rebuild_header = default_rebuild_header; 2960 2961 ret = netdev_register_sysfs(dev); 2962 if (ret) 2963 goto out_err; 2964 dev->reg_state = NETREG_REGISTERED; 2965 2966 /* 2967 * Default initial state at registry is that the 2968 * device is present. 2969 */ 2970 2971 set_bit(__LINK_STATE_PRESENT, &dev->state); 2972 2973 dev->next = NULL; 2974 dev_init_scheduler(dev); 2975 write_lock_bh(&dev_base_lock); 2976 *dev_tail = dev; 2977 dev_tail = &dev->next; 2978 hlist_add_head(&dev->name_hlist, head); 2979 hlist_add_head(&dev->index_hlist, dev_index_hash(dev->ifindex)); 2980 dev_hold(dev); 2981 write_unlock_bh(&dev_base_lock); 2982 2983 /* Notify protocols, that a new device appeared. */ 2984 raw_notifier_call_chain(&netdev_chain, NETDEV_REGISTER, dev); 2985 2986 ret = 0; 2987 2988 out: 2989 return ret; 2990 out_err: 2991 free_divert_blk(dev); 2992 goto out; 2993 } 2994 2995 /** 2996 * register_netdev - register a network device 2997 * @dev: device to register 2998 * 2999 * Take a completed network device structure and add it to the kernel 3000 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 3001 * chain. 0 is returned on success. A negative errno code is returned 3002 * on a failure to set up the device, or if the name is a duplicate. 3003 * 3004 * This is a wrapper around register_netdev that takes the rtnl semaphore 3005 * and expands the device name if you passed a format string to 3006 * alloc_netdev. 3007 */ 3008 int register_netdev(struct net_device *dev) 3009 { 3010 int err; 3011 3012 rtnl_lock(); 3013 3014 /* 3015 * If the name is a format string the caller wants us to do a 3016 * name allocation. 3017 */ 3018 if (strchr(dev->name, '%')) { 3019 err = dev_alloc_name(dev, dev->name); 3020 if (err < 0) 3021 goto out; 3022 } 3023 3024 /* 3025 * Back compatibility hook. Kill this one in 2.5 3026 */ 3027 if (dev->name[0] == 0 || dev->name[0] == ' ') { 3028 err = dev_alloc_name(dev, "eth%d"); 3029 if (err < 0) 3030 goto out; 3031 } 3032 3033 err = register_netdevice(dev); 3034 out: 3035 rtnl_unlock(); 3036 return err; 3037 } 3038 EXPORT_SYMBOL(register_netdev); 3039 3040 /* 3041 * netdev_wait_allrefs - wait until all references are gone. 3042 * 3043 * This is called when unregistering network devices. 3044 * 3045 * Any protocol or device that holds a reference should register 3046 * for netdevice notification, and cleanup and put back the 3047 * reference if they receive an UNREGISTER event. 3048 * We can get stuck here if buggy protocols don't correctly 3049 * call dev_put. 3050 */ 3051 static void netdev_wait_allrefs(struct net_device *dev) 3052 { 3053 unsigned long rebroadcast_time, warning_time; 3054 3055 rebroadcast_time = warning_time = jiffies; 3056 while (atomic_read(&dev->refcnt) != 0) { 3057 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 3058 rtnl_lock(); 3059 3060 /* Rebroadcast unregister notification */ 3061 raw_notifier_call_chain(&netdev_chain, 3062 NETDEV_UNREGISTER, dev); 3063 3064 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 3065 &dev->state)) { 3066 /* We must not have linkwatch events 3067 * pending on unregister. If this 3068 * happens, we simply run the queue 3069 * unscheduled, resulting in a noop 3070 * for this device. 3071 */ 3072 linkwatch_run_queue(); 3073 } 3074 3075 __rtnl_unlock(); 3076 3077 rebroadcast_time = jiffies; 3078 } 3079 3080 msleep(250); 3081 3082 if (time_after(jiffies, warning_time + 10 * HZ)) { 3083 printk(KERN_EMERG "unregister_netdevice: " 3084 "waiting for %s to become free. Usage " 3085 "count = %d\n", 3086 dev->name, atomic_read(&dev->refcnt)); 3087 warning_time = jiffies; 3088 } 3089 } 3090 } 3091 3092 /* The sequence is: 3093 * 3094 * rtnl_lock(); 3095 * ... 3096 * register_netdevice(x1); 3097 * register_netdevice(x2); 3098 * ... 3099 * unregister_netdevice(y1); 3100 * unregister_netdevice(y2); 3101 * ... 3102 * rtnl_unlock(); 3103 * free_netdev(y1); 3104 * free_netdev(y2); 3105 * 3106 * We are invoked by rtnl_unlock() after it drops the semaphore. 3107 * This allows us to deal with problems: 3108 * 1) We can delete sysfs objects which invoke hotplug 3109 * without deadlocking with linkwatch via keventd. 3110 * 2) Since we run with the RTNL semaphore not held, we can sleep 3111 * safely in order to wait for the netdev refcnt to drop to zero. 3112 */ 3113 static DEFINE_MUTEX(net_todo_run_mutex); 3114 void netdev_run_todo(void) 3115 { 3116 struct list_head list; 3117 3118 /* Need to guard against multiple cpu's getting out of order. */ 3119 mutex_lock(&net_todo_run_mutex); 3120 3121 /* Not safe to do outside the semaphore. We must not return 3122 * until all unregister events invoked by the local processor 3123 * have been completed (either by this todo run, or one on 3124 * another cpu). 3125 */ 3126 if (list_empty(&net_todo_list)) 3127 goto out; 3128 3129 /* Snapshot list, allow later requests */ 3130 spin_lock(&net_todo_list_lock); 3131 list_replace_init(&net_todo_list, &list); 3132 spin_unlock(&net_todo_list_lock); 3133 3134 while (!list_empty(&list)) { 3135 struct net_device *dev 3136 = list_entry(list.next, struct net_device, todo_list); 3137 list_del(&dev->todo_list); 3138 3139 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 3140 printk(KERN_ERR "network todo '%s' but state %d\n", 3141 dev->name, dev->reg_state); 3142 dump_stack(); 3143 continue; 3144 } 3145 3146 netdev_unregister_sysfs(dev); 3147 dev->reg_state = NETREG_UNREGISTERED; 3148 3149 netdev_wait_allrefs(dev); 3150 3151 /* paranoia */ 3152 BUG_ON(atomic_read(&dev->refcnt)); 3153 BUG_TRAP(!dev->ip_ptr); 3154 BUG_TRAP(!dev->ip6_ptr); 3155 BUG_TRAP(!dev->dn_ptr); 3156 3157 /* It must be the very last action, 3158 * after this 'dev' may point to freed up memory. 3159 */ 3160 if (dev->destructor) 3161 dev->destructor(dev); 3162 } 3163 3164 out: 3165 mutex_unlock(&net_todo_run_mutex); 3166 } 3167 3168 /** 3169 * alloc_netdev - allocate network device 3170 * @sizeof_priv: size of private data to allocate space for 3171 * @name: device name format string 3172 * @setup: callback to initialize device 3173 * 3174 * Allocates a struct net_device with private data area for driver use 3175 * and performs basic initialization. 3176 */ 3177 struct net_device *alloc_netdev(int sizeof_priv, const char *name, 3178 void (*setup)(struct net_device *)) 3179 { 3180 void *p; 3181 struct net_device *dev; 3182 int alloc_size; 3183 3184 /* ensure 32-byte alignment of both the device and private area */ 3185 alloc_size = (sizeof(*dev) + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST; 3186 alloc_size += sizeof_priv + NETDEV_ALIGN_CONST; 3187 3188 p = kzalloc(alloc_size, GFP_KERNEL); 3189 if (!p) { 3190 printk(KERN_ERR "alloc_dev: Unable to allocate device.\n"); 3191 return NULL; 3192 } 3193 3194 dev = (struct net_device *) 3195 (((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST); 3196 dev->padded = (char *)dev - (char *)p; 3197 3198 if (sizeof_priv) 3199 dev->priv = netdev_priv(dev); 3200 3201 setup(dev); 3202 strcpy(dev->name, name); 3203 return dev; 3204 } 3205 EXPORT_SYMBOL(alloc_netdev); 3206 3207 /** 3208 * free_netdev - free network device 3209 * @dev: device 3210 * 3211 * This function does the last stage of destroying an allocated device 3212 * interface. The reference to the device object is released. 3213 * If this is the last reference then it will be freed. 3214 */ 3215 void free_netdev(struct net_device *dev) 3216 { 3217 #ifdef CONFIG_SYSFS 3218 /* Compatibility with error handling in drivers */ 3219 if (dev->reg_state == NETREG_UNINITIALIZED) { 3220 kfree((char *)dev - dev->padded); 3221 return; 3222 } 3223 3224 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 3225 dev->reg_state = NETREG_RELEASED; 3226 3227 /* will free via class release */ 3228 class_device_put(&dev->class_dev); 3229 #else 3230 kfree((char *)dev - dev->padded); 3231 #endif 3232 } 3233 3234 /* Synchronize with packet receive processing. */ 3235 void synchronize_net(void) 3236 { 3237 might_sleep(); 3238 synchronize_rcu(); 3239 } 3240 3241 /** 3242 * unregister_netdevice - remove device from the kernel 3243 * @dev: device 3244 * 3245 * This function shuts down a device interface and removes it 3246 * from the kernel tables. On success 0 is returned, on a failure 3247 * a negative errno code is returned. 3248 * 3249 * Callers must hold the rtnl semaphore. You may want 3250 * unregister_netdev() instead of this. 3251 */ 3252 3253 int unregister_netdevice(struct net_device *dev) 3254 { 3255 struct net_device *d, **dp; 3256 3257 BUG_ON(dev_boot_phase); 3258 ASSERT_RTNL(); 3259 3260 /* Some devices call without registering for initialization unwind. */ 3261 if (dev->reg_state == NETREG_UNINITIALIZED) { 3262 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never " 3263 "was registered\n", dev->name, dev); 3264 return -ENODEV; 3265 } 3266 3267 BUG_ON(dev->reg_state != NETREG_REGISTERED); 3268 3269 /* If device is running, close it first. */ 3270 if (dev->flags & IFF_UP) 3271 dev_close(dev); 3272 3273 /* And unlink it from device chain. */ 3274 for (dp = &dev_base; (d = *dp) != NULL; dp = &d->next) { 3275 if (d == dev) { 3276 write_lock_bh(&dev_base_lock); 3277 hlist_del(&dev->name_hlist); 3278 hlist_del(&dev->index_hlist); 3279 if (dev_tail == &dev->next) 3280 dev_tail = dp; 3281 *dp = d->next; 3282 write_unlock_bh(&dev_base_lock); 3283 break; 3284 } 3285 } 3286 if (!d) { 3287 printk(KERN_ERR "unregister net_device: '%s' not found\n", 3288 dev->name); 3289 return -ENODEV; 3290 } 3291 3292 dev->reg_state = NETREG_UNREGISTERING; 3293 3294 synchronize_net(); 3295 3296 /* Shutdown queueing discipline. */ 3297 dev_shutdown(dev); 3298 3299 3300 /* Notify protocols, that we are about to destroy 3301 this device. They should clean all the things. 3302 */ 3303 raw_notifier_call_chain(&netdev_chain, NETDEV_UNREGISTER, dev); 3304 3305 /* 3306 * Flush the multicast chain 3307 */ 3308 dev_mc_discard(dev); 3309 3310 if (dev->uninit) 3311 dev->uninit(dev); 3312 3313 /* Notifier chain MUST detach us from master device. */ 3314 BUG_TRAP(!dev->master); 3315 3316 free_divert_blk(dev); 3317 3318 /* Finish processing unregister after unlock */ 3319 net_set_todo(dev); 3320 3321 synchronize_net(); 3322 3323 dev_put(dev); 3324 return 0; 3325 } 3326 3327 /** 3328 * unregister_netdev - remove device from the kernel 3329 * @dev: device 3330 * 3331 * This function shuts down a device interface and removes it 3332 * from the kernel tables. On success 0 is returned, on a failure 3333 * a negative errno code is returned. 3334 * 3335 * This is just a wrapper for unregister_netdevice that takes 3336 * the rtnl semaphore. In general you want to use this and not 3337 * unregister_netdevice. 3338 */ 3339 void unregister_netdev(struct net_device *dev) 3340 { 3341 rtnl_lock(); 3342 unregister_netdevice(dev); 3343 rtnl_unlock(); 3344 } 3345 3346 EXPORT_SYMBOL(unregister_netdev); 3347 3348 #ifdef CONFIG_HOTPLUG_CPU 3349 static int dev_cpu_callback(struct notifier_block *nfb, 3350 unsigned long action, 3351 void *ocpu) 3352 { 3353 struct sk_buff **list_skb; 3354 struct net_device **list_net; 3355 struct sk_buff *skb; 3356 unsigned int cpu, oldcpu = (unsigned long)ocpu; 3357 struct softnet_data *sd, *oldsd; 3358 3359 if (action != CPU_DEAD) 3360 return NOTIFY_OK; 3361 3362 local_irq_disable(); 3363 cpu = smp_processor_id(); 3364 sd = &per_cpu(softnet_data, cpu); 3365 oldsd = &per_cpu(softnet_data, oldcpu); 3366 3367 /* Find end of our completion_queue. */ 3368 list_skb = &sd->completion_queue; 3369 while (*list_skb) 3370 list_skb = &(*list_skb)->next; 3371 /* Append completion queue from offline CPU. */ 3372 *list_skb = oldsd->completion_queue; 3373 oldsd->completion_queue = NULL; 3374 3375 /* Find end of our output_queue. */ 3376 list_net = &sd->output_queue; 3377 while (*list_net) 3378 list_net = &(*list_net)->next_sched; 3379 /* Append output queue from offline CPU. */ 3380 *list_net = oldsd->output_queue; 3381 oldsd->output_queue = NULL; 3382 3383 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3384 local_irq_enable(); 3385 3386 /* Process offline CPU's input_pkt_queue */ 3387 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) 3388 netif_rx(skb); 3389 3390 return NOTIFY_OK; 3391 } 3392 #endif /* CONFIG_HOTPLUG_CPU */ 3393 3394 #ifdef CONFIG_NET_DMA 3395 /** 3396 * net_dma_rebalance - 3397 * This is called when the number of channels allocated to the net_dma_client 3398 * changes. The net_dma_client tries to have one DMA channel per CPU. 3399 */ 3400 static void net_dma_rebalance(void) 3401 { 3402 unsigned int cpu, i, n; 3403 struct dma_chan *chan; 3404 3405 lock_cpu_hotplug(); 3406 3407 if (net_dma_count == 0) { 3408 for_each_online_cpu(cpu) 3409 rcu_assign_pointer(per_cpu(softnet_data.net_dma, cpu), NULL); 3410 unlock_cpu_hotplug(); 3411 return; 3412 } 3413 3414 i = 0; 3415 cpu = first_cpu(cpu_online_map); 3416 3417 rcu_read_lock(); 3418 list_for_each_entry(chan, &net_dma_client->channels, client_node) { 3419 n = ((num_online_cpus() / net_dma_count) 3420 + (i < (num_online_cpus() % net_dma_count) ? 1 : 0)); 3421 3422 while(n) { 3423 per_cpu(softnet_data.net_dma, cpu) = chan; 3424 cpu = next_cpu(cpu, cpu_online_map); 3425 n--; 3426 } 3427 i++; 3428 } 3429 rcu_read_unlock(); 3430 3431 unlock_cpu_hotplug(); 3432 } 3433 3434 /** 3435 * netdev_dma_event - event callback for the net_dma_client 3436 * @client: should always be net_dma_client 3437 * @chan: DMA channel for the event 3438 * @event: event type 3439 */ 3440 static void netdev_dma_event(struct dma_client *client, struct dma_chan *chan, 3441 enum dma_event event) 3442 { 3443 spin_lock(&net_dma_event_lock); 3444 switch (event) { 3445 case DMA_RESOURCE_ADDED: 3446 net_dma_count++; 3447 net_dma_rebalance(); 3448 break; 3449 case DMA_RESOURCE_REMOVED: 3450 net_dma_count--; 3451 net_dma_rebalance(); 3452 break; 3453 default: 3454 break; 3455 } 3456 spin_unlock(&net_dma_event_lock); 3457 } 3458 3459 /** 3460 * netdev_dma_regiser - register the networking subsystem as a DMA client 3461 */ 3462 static int __init netdev_dma_register(void) 3463 { 3464 spin_lock_init(&net_dma_event_lock); 3465 net_dma_client = dma_async_client_register(netdev_dma_event); 3466 if (net_dma_client == NULL) 3467 return -ENOMEM; 3468 3469 dma_async_client_chan_request(net_dma_client, num_online_cpus()); 3470 return 0; 3471 } 3472 3473 #else 3474 static int __init netdev_dma_register(void) { return -ENODEV; } 3475 #endif /* CONFIG_NET_DMA */ 3476 3477 /* 3478 * Initialize the DEV module. At boot time this walks the device list and 3479 * unhooks any devices that fail to initialise (normally hardware not 3480 * present) and leaves us with a valid list of present and active devices. 3481 * 3482 */ 3483 3484 /* 3485 * This is called single threaded during boot, so no need 3486 * to take the rtnl semaphore. 3487 */ 3488 static int __init net_dev_init(void) 3489 { 3490 int i, rc = -ENOMEM; 3491 3492 BUG_ON(!dev_boot_phase); 3493 3494 net_random_init(); 3495 3496 if (dev_proc_init()) 3497 goto out; 3498 3499 if (netdev_sysfs_init()) 3500 goto out; 3501 3502 INIT_LIST_HEAD(&ptype_all); 3503 for (i = 0; i < 16; i++) 3504 INIT_LIST_HEAD(&ptype_base[i]); 3505 3506 for (i = 0; i < ARRAY_SIZE(dev_name_head); i++) 3507 INIT_HLIST_HEAD(&dev_name_head[i]); 3508 3509 for (i = 0; i < ARRAY_SIZE(dev_index_head); i++) 3510 INIT_HLIST_HEAD(&dev_index_head[i]); 3511 3512 /* 3513 * Initialise the packet receive queues. 3514 */ 3515 3516 for_each_possible_cpu(i) { 3517 struct softnet_data *queue; 3518 3519 queue = &per_cpu(softnet_data, i); 3520 skb_queue_head_init(&queue->input_pkt_queue); 3521 queue->completion_queue = NULL; 3522 INIT_LIST_HEAD(&queue->poll_list); 3523 set_bit(__LINK_STATE_START, &queue->backlog_dev.state); 3524 queue->backlog_dev.weight = weight_p; 3525 queue->backlog_dev.poll = process_backlog; 3526 atomic_set(&queue->backlog_dev.refcnt, 1); 3527 } 3528 3529 netdev_dma_register(); 3530 3531 dev_boot_phase = 0; 3532 3533 open_softirq(NET_TX_SOFTIRQ, net_tx_action, NULL); 3534 open_softirq(NET_RX_SOFTIRQ, net_rx_action, NULL); 3535 3536 hotcpu_notifier(dev_cpu_callback, 0); 3537 dst_init(); 3538 dev_mcast_init(); 3539 rc = 0; 3540 out: 3541 return rc; 3542 } 3543 3544 subsys_initcall(net_dev_init); 3545 3546 EXPORT_SYMBOL(__dev_get_by_index); 3547 EXPORT_SYMBOL(__dev_get_by_name); 3548 EXPORT_SYMBOL(__dev_remove_pack); 3549 EXPORT_SYMBOL(dev_valid_name); 3550 EXPORT_SYMBOL(dev_add_pack); 3551 EXPORT_SYMBOL(dev_alloc_name); 3552 EXPORT_SYMBOL(dev_close); 3553 EXPORT_SYMBOL(dev_get_by_flags); 3554 EXPORT_SYMBOL(dev_get_by_index); 3555 EXPORT_SYMBOL(dev_get_by_name); 3556 EXPORT_SYMBOL(dev_open); 3557 EXPORT_SYMBOL(dev_queue_xmit); 3558 EXPORT_SYMBOL(dev_remove_pack); 3559 EXPORT_SYMBOL(dev_set_allmulti); 3560 EXPORT_SYMBOL(dev_set_promiscuity); 3561 EXPORT_SYMBOL(dev_change_flags); 3562 EXPORT_SYMBOL(dev_set_mtu); 3563 EXPORT_SYMBOL(dev_set_mac_address); 3564 EXPORT_SYMBOL(free_netdev); 3565 EXPORT_SYMBOL(netdev_boot_setup_check); 3566 EXPORT_SYMBOL(netdev_set_master); 3567 EXPORT_SYMBOL(netdev_state_change); 3568 EXPORT_SYMBOL(netif_receive_skb); 3569 EXPORT_SYMBOL(netif_rx); 3570 EXPORT_SYMBOL(register_gifconf); 3571 EXPORT_SYMBOL(register_netdevice); 3572 EXPORT_SYMBOL(register_netdevice_notifier); 3573 EXPORT_SYMBOL(skb_checksum_help); 3574 EXPORT_SYMBOL(synchronize_net); 3575 EXPORT_SYMBOL(unregister_netdevice); 3576 EXPORT_SYMBOL(unregister_netdevice_notifier); 3577 EXPORT_SYMBOL(net_enable_timestamp); 3578 EXPORT_SYMBOL(net_disable_timestamp); 3579 EXPORT_SYMBOL(dev_get_flags); 3580 3581 #if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE) 3582 EXPORT_SYMBOL(br_handle_frame_hook); 3583 EXPORT_SYMBOL(br_fdb_get_hook); 3584 EXPORT_SYMBOL(br_fdb_put_hook); 3585 #endif 3586 3587 #ifdef CONFIG_KMOD 3588 EXPORT_SYMBOL(dev_load); 3589 #endif 3590 3591 EXPORT_PER_CPU_SYMBOL(softnet_data); 3592