xref: /linux/net/core/dev.c (revision 5a48b7433a5aee719ab242d2feadaf4c9e065989)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <trace/events/qdisc.h>
135 #include <linux/inetdevice.h>
136 #include <linux/cpu_rmap.h>
137 #include <linux/static_key.h>
138 #include <linux/hashtable.h>
139 #include <linux/vmalloc.h>
140 #include <linux/if_macvlan.h>
141 #include <linux/errqueue.h>
142 #include <linux/hrtimer.h>
143 #include <linux/netfilter_netdev.h>
144 #include <linux/crash_dump.h>
145 #include <linux/sctp.h>
146 #include <net/udp_tunnel.h>
147 #include <linux/net_namespace.h>
148 #include <linux/indirect_call_wrapper.h>
149 #include <net/devlink.h>
150 #include <linux/pm_runtime.h>
151 #include <linux/prandom.h>
152 #include <linux/once_lite.h>
153 
154 #include "net-sysfs.h"
155 
156 
157 static DEFINE_SPINLOCK(ptype_lock);
158 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
159 struct list_head ptype_all __read_mostly;	/* Taps */
160 
161 static int netif_rx_internal(struct sk_buff *skb);
162 static int call_netdevice_notifiers_info(unsigned long val,
163 					 struct netdev_notifier_info *info);
164 static int call_netdevice_notifiers_extack(unsigned long val,
165 					   struct net_device *dev,
166 					   struct netlink_ext_ack *extack);
167 static struct napi_struct *napi_by_id(unsigned int napi_id);
168 
169 /*
170  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
171  * semaphore.
172  *
173  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
174  *
175  * Writers must hold the rtnl semaphore while they loop through the
176  * dev_base_head list, and hold dev_base_lock for writing when they do the
177  * actual updates.  This allows pure readers to access the list even
178  * while a writer is preparing to update it.
179  *
180  * To put it another way, dev_base_lock is held for writing only to
181  * protect against pure readers; the rtnl semaphore provides the
182  * protection against other writers.
183  *
184  * See, for example usages, register_netdevice() and
185  * unregister_netdevice(), which must be called with the rtnl
186  * semaphore held.
187  */
188 DEFINE_RWLOCK(dev_base_lock);
189 EXPORT_SYMBOL(dev_base_lock);
190 
191 static DEFINE_MUTEX(ifalias_mutex);
192 
193 /* protects napi_hash addition/deletion and napi_gen_id */
194 static DEFINE_SPINLOCK(napi_hash_lock);
195 
196 static unsigned int napi_gen_id = NR_CPUS;
197 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
198 
199 static DECLARE_RWSEM(devnet_rename_sem);
200 
201 static inline void dev_base_seq_inc(struct net *net)
202 {
203 	while (++net->dev_base_seq == 0)
204 		;
205 }
206 
207 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
208 {
209 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
210 
211 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
212 }
213 
214 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
215 {
216 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
217 }
218 
219 static inline void rps_lock_irqsave(struct softnet_data *sd,
220 				    unsigned long *flags)
221 {
222 	if (IS_ENABLED(CONFIG_RPS))
223 		spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
224 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
225 		local_irq_save(*flags);
226 }
227 
228 static inline void rps_lock_irq_disable(struct softnet_data *sd)
229 {
230 	if (IS_ENABLED(CONFIG_RPS))
231 		spin_lock_irq(&sd->input_pkt_queue.lock);
232 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
233 		local_irq_disable();
234 }
235 
236 static inline void rps_unlock_irq_restore(struct softnet_data *sd,
237 					  unsigned long *flags)
238 {
239 	if (IS_ENABLED(CONFIG_RPS))
240 		spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
241 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
242 		local_irq_restore(*flags);
243 }
244 
245 static inline void rps_unlock_irq_enable(struct softnet_data *sd)
246 {
247 	if (IS_ENABLED(CONFIG_RPS))
248 		spin_unlock_irq(&sd->input_pkt_queue.lock);
249 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
250 		local_irq_enable();
251 }
252 
253 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
254 						       const char *name)
255 {
256 	struct netdev_name_node *name_node;
257 
258 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
259 	if (!name_node)
260 		return NULL;
261 	INIT_HLIST_NODE(&name_node->hlist);
262 	name_node->dev = dev;
263 	name_node->name = name;
264 	return name_node;
265 }
266 
267 static struct netdev_name_node *
268 netdev_name_node_head_alloc(struct net_device *dev)
269 {
270 	struct netdev_name_node *name_node;
271 
272 	name_node = netdev_name_node_alloc(dev, dev->name);
273 	if (!name_node)
274 		return NULL;
275 	INIT_LIST_HEAD(&name_node->list);
276 	return name_node;
277 }
278 
279 static void netdev_name_node_free(struct netdev_name_node *name_node)
280 {
281 	kfree(name_node);
282 }
283 
284 static void netdev_name_node_add(struct net *net,
285 				 struct netdev_name_node *name_node)
286 {
287 	hlist_add_head_rcu(&name_node->hlist,
288 			   dev_name_hash(net, name_node->name));
289 }
290 
291 static void netdev_name_node_del(struct netdev_name_node *name_node)
292 {
293 	hlist_del_rcu(&name_node->hlist);
294 }
295 
296 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
297 							const char *name)
298 {
299 	struct hlist_head *head = dev_name_hash(net, name);
300 	struct netdev_name_node *name_node;
301 
302 	hlist_for_each_entry(name_node, head, hlist)
303 		if (!strcmp(name_node->name, name))
304 			return name_node;
305 	return NULL;
306 }
307 
308 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
309 							    const char *name)
310 {
311 	struct hlist_head *head = dev_name_hash(net, name);
312 	struct netdev_name_node *name_node;
313 
314 	hlist_for_each_entry_rcu(name_node, head, hlist)
315 		if (!strcmp(name_node->name, name))
316 			return name_node;
317 	return NULL;
318 }
319 
320 bool netdev_name_in_use(struct net *net, const char *name)
321 {
322 	return netdev_name_node_lookup(net, name);
323 }
324 EXPORT_SYMBOL(netdev_name_in_use);
325 
326 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
327 {
328 	struct netdev_name_node *name_node;
329 	struct net *net = dev_net(dev);
330 
331 	name_node = netdev_name_node_lookup(net, name);
332 	if (name_node)
333 		return -EEXIST;
334 	name_node = netdev_name_node_alloc(dev, name);
335 	if (!name_node)
336 		return -ENOMEM;
337 	netdev_name_node_add(net, name_node);
338 	/* The node that holds dev->name acts as a head of per-device list. */
339 	list_add_tail(&name_node->list, &dev->name_node->list);
340 
341 	return 0;
342 }
343 
344 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
345 {
346 	list_del(&name_node->list);
347 	netdev_name_node_del(name_node);
348 	kfree(name_node->name);
349 	netdev_name_node_free(name_node);
350 }
351 
352 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
353 {
354 	struct netdev_name_node *name_node;
355 	struct net *net = dev_net(dev);
356 
357 	name_node = netdev_name_node_lookup(net, name);
358 	if (!name_node)
359 		return -ENOENT;
360 	/* lookup might have found our primary name or a name belonging
361 	 * to another device.
362 	 */
363 	if (name_node == dev->name_node || name_node->dev != dev)
364 		return -EINVAL;
365 
366 	__netdev_name_node_alt_destroy(name_node);
367 
368 	return 0;
369 }
370 
371 static void netdev_name_node_alt_flush(struct net_device *dev)
372 {
373 	struct netdev_name_node *name_node, *tmp;
374 
375 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
376 		__netdev_name_node_alt_destroy(name_node);
377 }
378 
379 /* Device list insertion */
380 static void list_netdevice(struct net_device *dev)
381 {
382 	struct net *net = dev_net(dev);
383 
384 	ASSERT_RTNL();
385 
386 	write_lock(&dev_base_lock);
387 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
388 	netdev_name_node_add(net, dev->name_node);
389 	hlist_add_head_rcu(&dev->index_hlist,
390 			   dev_index_hash(net, dev->ifindex));
391 	write_unlock(&dev_base_lock);
392 
393 	dev_base_seq_inc(net);
394 }
395 
396 /* Device list removal
397  * caller must respect a RCU grace period before freeing/reusing dev
398  */
399 static void unlist_netdevice(struct net_device *dev)
400 {
401 	ASSERT_RTNL();
402 
403 	/* Unlink dev from the device chain */
404 	write_lock(&dev_base_lock);
405 	list_del_rcu(&dev->dev_list);
406 	netdev_name_node_del(dev->name_node);
407 	hlist_del_rcu(&dev->index_hlist);
408 	write_unlock(&dev_base_lock);
409 
410 	dev_base_seq_inc(dev_net(dev));
411 }
412 
413 /*
414  *	Our notifier list
415  */
416 
417 static RAW_NOTIFIER_HEAD(netdev_chain);
418 
419 /*
420  *	Device drivers call our routines to queue packets here. We empty the
421  *	queue in the local softnet handler.
422  */
423 
424 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
425 EXPORT_PER_CPU_SYMBOL(softnet_data);
426 
427 #ifdef CONFIG_LOCKDEP
428 /*
429  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
430  * according to dev->type
431  */
432 static const unsigned short netdev_lock_type[] = {
433 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
434 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
435 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
436 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
437 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
438 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
439 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
440 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
441 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
442 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
443 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
444 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
445 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
446 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
447 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
448 
449 static const char *const netdev_lock_name[] = {
450 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
451 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
452 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
453 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
454 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
455 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
456 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
457 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
458 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
459 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
460 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
461 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
462 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
463 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
464 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
465 
466 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
467 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
468 
469 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
470 {
471 	int i;
472 
473 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
474 		if (netdev_lock_type[i] == dev_type)
475 			return i;
476 	/* the last key is used by default */
477 	return ARRAY_SIZE(netdev_lock_type) - 1;
478 }
479 
480 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
481 						 unsigned short dev_type)
482 {
483 	int i;
484 
485 	i = netdev_lock_pos(dev_type);
486 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
487 				   netdev_lock_name[i]);
488 }
489 
490 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
491 {
492 	int i;
493 
494 	i = netdev_lock_pos(dev->type);
495 	lockdep_set_class_and_name(&dev->addr_list_lock,
496 				   &netdev_addr_lock_key[i],
497 				   netdev_lock_name[i]);
498 }
499 #else
500 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
501 						 unsigned short dev_type)
502 {
503 }
504 
505 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
506 {
507 }
508 #endif
509 
510 /*******************************************************************************
511  *
512  *		Protocol management and registration routines
513  *
514  *******************************************************************************/
515 
516 
517 /*
518  *	Add a protocol ID to the list. Now that the input handler is
519  *	smarter we can dispense with all the messy stuff that used to be
520  *	here.
521  *
522  *	BEWARE!!! Protocol handlers, mangling input packets,
523  *	MUST BE last in hash buckets and checking protocol handlers
524  *	MUST start from promiscuous ptype_all chain in net_bh.
525  *	It is true now, do not change it.
526  *	Explanation follows: if protocol handler, mangling packet, will
527  *	be the first on list, it is not able to sense, that packet
528  *	is cloned and should be copied-on-write, so that it will
529  *	change it and subsequent readers will get broken packet.
530  *							--ANK (980803)
531  */
532 
533 static inline struct list_head *ptype_head(const struct packet_type *pt)
534 {
535 	if (pt->type == htons(ETH_P_ALL))
536 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
537 	else
538 		return pt->dev ? &pt->dev->ptype_specific :
539 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
540 }
541 
542 /**
543  *	dev_add_pack - add packet handler
544  *	@pt: packet type declaration
545  *
546  *	Add a protocol handler to the networking stack. The passed &packet_type
547  *	is linked into kernel lists and may not be freed until it has been
548  *	removed from the kernel lists.
549  *
550  *	This call does not sleep therefore it can not
551  *	guarantee all CPU's that are in middle of receiving packets
552  *	will see the new packet type (until the next received packet).
553  */
554 
555 void dev_add_pack(struct packet_type *pt)
556 {
557 	struct list_head *head = ptype_head(pt);
558 
559 	spin_lock(&ptype_lock);
560 	list_add_rcu(&pt->list, head);
561 	spin_unlock(&ptype_lock);
562 }
563 EXPORT_SYMBOL(dev_add_pack);
564 
565 /**
566  *	__dev_remove_pack	 - remove packet handler
567  *	@pt: packet type declaration
568  *
569  *	Remove a protocol handler that was previously added to the kernel
570  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
571  *	from the kernel lists and can be freed or reused once this function
572  *	returns.
573  *
574  *      The packet type might still be in use by receivers
575  *	and must not be freed until after all the CPU's have gone
576  *	through a quiescent state.
577  */
578 void __dev_remove_pack(struct packet_type *pt)
579 {
580 	struct list_head *head = ptype_head(pt);
581 	struct packet_type *pt1;
582 
583 	spin_lock(&ptype_lock);
584 
585 	list_for_each_entry(pt1, head, list) {
586 		if (pt == pt1) {
587 			list_del_rcu(&pt->list);
588 			goto out;
589 		}
590 	}
591 
592 	pr_warn("dev_remove_pack: %p not found\n", pt);
593 out:
594 	spin_unlock(&ptype_lock);
595 }
596 EXPORT_SYMBOL(__dev_remove_pack);
597 
598 /**
599  *	dev_remove_pack	 - remove packet handler
600  *	@pt: packet type declaration
601  *
602  *	Remove a protocol handler that was previously added to the kernel
603  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
604  *	from the kernel lists and can be freed or reused once this function
605  *	returns.
606  *
607  *	This call sleeps to guarantee that no CPU is looking at the packet
608  *	type after return.
609  */
610 void dev_remove_pack(struct packet_type *pt)
611 {
612 	__dev_remove_pack(pt);
613 
614 	synchronize_net();
615 }
616 EXPORT_SYMBOL(dev_remove_pack);
617 
618 
619 /*******************************************************************************
620  *
621  *			    Device Interface Subroutines
622  *
623  *******************************************************************************/
624 
625 /**
626  *	dev_get_iflink	- get 'iflink' value of a interface
627  *	@dev: targeted interface
628  *
629  *	Indicates the ifindex the interface is linked to.
630  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
631  */
632 
633 int dev_get_iflink(const struct net_device *dev)
634 {
635 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
636 		return dev->netdev_ops->ndo_get_iflink(dev);
637 
638 	return dev->ifindex;
639 }
640 EXPORT_SYMBOL(dev_get_iflink);
641 
642 /**
643  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
644  *	@dev: targeted interface
645  *	@skb: The packet.
646  *
647  *	For better visibility of tunnel traffic OVS needs to retrieve
648  *	egress tunnel information for a packet. Following API allows
649  *	user to get this info.
650  */
651 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
652 {
653 	struct ip_tunnel_info *info;
654 
655 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
656 		return -EINVAL;
657 
658 	info = skb_tunnel_info_unclone(skb);
659 	if (!info)
660 		return -ENOMEM;
661 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
662 		return -EINVAL;
663 
664 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
665 }
666 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
667 
668 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
669 {
670 	int k = stack->num_paths++;
671 
672 	if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
673 		return NULL;
674 
675 	return &stack->path[k];
676 }
677 
678 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
679 			  struct net_device_path_stack *stack)
680 {
681 	const struct net_device *last_dev;
682 	struct net_device_path_ctx ctx = {
683 		.dev	= dev,
684 		.daddr	= daddr,
685 	};
686 	struct net_device_path *path;
687 	int ret = 0;
688 
689 	stack->num_paths = 0;
690 	while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
691 		last_dev = ctx.dev;
692 		path = dev_fwd_path(stack);
693 		if (!path)
694 			return -1;
695 
696 		memset(path, 0, sizeof(struct net_device_path));
697 		ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
698 		if (ret < 0)
699 			return -1;
700 
701 		if (WARN_ON_ONCE(last_dev == ctx.dev))
702 			return -1;
703 	}
704 	path = dev_fwd_path(stack);
705 	if (!path)
706 		return -1;
707 	path->type = DEV_PATH_ETHERNET;
708 	path->dev = ctx.dev;
709 
710 	return ret;
711 }
712 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
713 
714 /**
715  *	__dev_get_by_name	- find a device by its name
716  *	@net: the applicable net namespace
717  *	@name: name to find
718  *
719  *	Find an interface by name. Must be called under RTNL semaphore
720  *	or @dev_base_lock. If the name is found a pointer to the device
721  *	is returned. If the name is not found then %NULL is returned. The
722  *	reference counters are not incremented so the caller must be
723  *	careful with locks.
724  */
725 
726 struct net_device *__dev_get_by_name(struct net *net, const char *name)
727 {
728 	struct netdev_name_node *node_name;
729 
730 	node_name = netdev_name_node_lookup(net, name);
731 	return node_name ? node_name->dev : NULL;
732 }
733 EXPORT_SYMBOL(__dev_get_by_name);
734 
735 /**
736  * dev_get_by_name_rcu	- find a device by its name
737  * @net: the applicable net namespace
738  * @name: name to find
739  *
740  * Find an interface by name.
741  * If the name is found a pointer to the device is returned.
742  * If the name is not found then %NULL is returned.
743  * The reference counters are not incremented so the caller must be
744  * careful with locks. The caller must hold RCU lock.
745  */
746 
747 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
748 {
749 	struct netdev_name_node *node_name;
750 
751 	node_name = netdev_name_node_lookup_rcu(net, name);
752 	return node_name ? node_name->dev : NULL;
753 }
754 EXPORT_SYMBOL(dev_get_by_name_rcu);
755 
756 /**
757  *	dev_get_by_name		- find a device by its name
758  *	@net: the applicable net namespace
759  *	@name: name to find
760  *
761  *	Find an interface by name. This can be called from any
762  *	context and does its own locking. The returned handle has
763  *	the usage count incremented and the caller must use dev_put() to
764  *	release it when it is no longer needed. %NULL is returned if no
765  *	matching device is found.
766  */
767 
768 struct net_device *dev_get_by_name(struct net *net, const char *name)
769 {
770 	struct net_device *dev;
771 
772 	rcu_read_lock();
773 	dev = dev_get_by_name_rcu(net, name);
774 	dev_hold(dev);
775 	rcu_read_unlock();
776 	return dev;
777 }
778 EXPORT_SYMBOL(dev_get_by_name);
779 
780 /**
781  *	__dev_get_by_index - find a device by its ifindex
782  *	@net: the applicable net namespace
783  *	@ifindex: index of device
784  *
785  *	Search for an interface by index. Returns %NULL if the device
786  *	is not found or a pointer to the device. The device has not
787  *	had its reference counter increased so the caller must be careful
788  *	about locking. The caller must hold either the RTNL semaphore
789  *	or @dev_base_lock.
790  */
791 
792 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
793 {
794 	struct net_device *dev;
795 	struct hlist_head *head = dev_index_hash(net, ifindex);
796 
797 	hlist_for_each_entry(dev, head, index_hlist)
798 		if (dev->ifindex == ifindex)
799 			return dev;
800 
801 	return NULL;
802 }
803 EXPORT_SYMBOL(__dev_get_by_index);
804 
805 /**
806  *	dev_get_by_index_rcu - find a device by its ifindex
807  *	@net: the applicable net namespace
808  *	@ifindex: index of device
809  *
810  *	Search for an interface by index. Returns %NULL if the device
811  *	is not found or a pointer to the device. The device has not
812  *	had its reference counter increased so the caller must be careful
813  *	about locking. The caller must hold RCU lock.
814  */
815 
816 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
817 {
818 	struct net_device *dev;
819 	struct hlist_head *head = dev_index_hash(net, ifindex);
820 
821 	hlist_for_each_entry_rcu(dev, head, index_hlist)
822 		if (dev->ifindex == ifindex)
823 			return dev;
824 
825 	return NULL;
826 }
827 EXPORT_SYMBOL(dev_get_by_index_rcu);
828 
829 
830 /**
831  *	dev_get_by_index - find a device by its ifindex
832  *	@net: the applicable net namespace
833  *	@ifindex: index of device
834  *
835  *	Search for an interface by index. Returns NULL if the device
836  *	is not found or a pointer to the device. The device returned has
837  *	had a reference added and the pointer is safe until the user calls
838  *	dev_put to indicate they have finished with it.
839  */
840 
841 struct net_device *dev_get_by_index(struct net *net, int ifindex)
842 {
843 	struct net_device *dev;
844 
845 	rcu_read_lock();
846 	dev = dev_get_by_index_rcu(net, ifindex);
847 	dev_hold(dev);
848 	rcu_read_unlock();
849 	return dev;
850 }
851 EXPORT_SYMBOL(dev_get_by_index);
852 
853 /**
854  *	dev_get_by_napi_id - find a device by napi_id
855  *	@napi_id: ID of the NAPI struct
856  *
857  *	Search for an interface by NAPI ID. Returns %NULL if the device
858  *	is not found or a pointer to the device. The device has not had
859  *	its reference counter increased so the caller must be careful
860  *	about locking. The caller must hold RCU lock.
861  */
862 
863 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
864 {
865 	struct napi_struct *napi;
866 
867 	WARN_ON_ONCE(!rcu_read_lock_held());
868 
869 	if (napi_id < MIN_NAPI_ID)
870 		return NULL;
871 
872 	napi = napi_by_id(napi_id);
873 
874 	return napi ? napi->dev : NULL;
875 }
876 EXPORT_SYMBOL(dev_get_by_napi_id);
877 
878 /**
879  *	netdev_get_name - get a netdevice name, knowing its ifindex.
880  *	@net: network namespace
881  *	@name: a pointer to the buffer where the name will be stored.
882  *	@ifindex: the ifindex of the interface to get the name from.
883  */
884 int netdev_get_name(struct net *net, char *name, int ifindex)
885 {
886 	struct net_device *dev;
887 	int ret;
888 
889 	down_read(&devnet_rename_sem);
890 	rcu_read_lock();
891 
892 	dev = dev_get_by_index_rcu(net, ifindex);
893 	if (!dev) {
894 		ret = -ENODEV;
895 		goto out;
896 	}
897 
898 	strcpy(name, dev->name);
899 
900 	ret = 0;
901 out:
902 	rcu_read_unlock();
903 	up_read(&devnet_rename_sem);
904 	return ret;
905 }
906 
907 /**
908  *	dev_getbyhwaddr_rcu - find a device by its hardware address
909  *	@net: the applicable net namespace
910  *	@type: media type of device
911  *	@ha: hardware address
912  *
913  *	Search for an interface by MAC address. Returns NULL if the device
914  *	is not found or a pointer to the device.
915  *	The caller must hold RCU or RTNL.
916  *	The returned device has not had its ref count increased
917  *	and the caller must therefore be careful about locking
918  *
919  */
920 
921 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
922 				       const char *ha)
923 {
924 	struct net_device *dev;
925 
926 	for_each_netdev_rcu(net, dev)
927 		if (dev->type == type &&
928 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
929 			return dev;
930 
931 	return NULL;
932 }
933 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
934 
935 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
936 {
937 	struct net_device *dev, *ret = NULL;
938 
939 	rcu_read_lock();
940 	for_each_netdev_rcu(net, dev)
941 		if (dev->type == type) {
942 			dev_hold(dev);
943 			ret = dev;
944 			break;
945 		}
946 	rcu_read_unlock();
947 	return ret;
948 }
949 EXPORT_SYMBOL(dev_getfirstbyhwtype);
950 
951 /**
952  *	__dev_get_by_flags - find any device with given flags
953  *	@net: the applicable net namespace
954  *	@if_flags: IFF_* values
955  *	@mask: bitmask of bits in if_flags to check
956  *
957  *	Search for any interface with the given flags. Returns NULL if a device
958  *	is not found or a pointer to the device. Must be called inside
959  *	rtnl_lock(), and result refcount is unchanged.
960  */
961 
962 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
963 				      unsigned short mask)
964 {
965 	struct net_device *dev, *ret;
966 
967 	ASSERT_RTNL();
968 
969 	ret = NULL;
970 	for_each_netdev(net, dev) {
971 		if (((dev->flags ^ if_flags) & mask) == 0) {
972 			ret = dev;
973 			break;
974 		}
975 	}
976 	return ret;
977 }
978 EXPORT_SYMBOL(__dev_get_by_flags);
979 
980 /**
981  *	dev_valid_name - check if name is okay for network device
982  *	@name: name string
983  *
984  *	Network device names need to be valid file names to
985  *	allow sysfs to work.  We also disallow any kind of
986  *	whitespace.
987  */
988 bool dev_valid_name(const char *name)
989 {
990 	if (*name == '\0')
991 		return false;
992 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
993 		return false;
994 	if (!strcmp(name, ".") || !strcmp(name, ".."))
995 		return false;
996 
997 	while (*name) {
998 		if (*name == '/' || *name == ':' || isspace(*name))
999 			return false;
1000 		name++;
1001 	}
1002 	return true;
1003 }
1004 EXPORT_SYMBOL(dev_valid_name);
1005 
1006 /**
1007  *	__dev_alloc_name - allocate a name for a device
1008  *	@net: network namespace to allocate the device name in
1009  *	@name: name format string
1010  *	@buf:  scratch buffer and result name string
1011  *
1012  *	Passed a format string - eg "lt%d" it will try and find a suitable
1013  *	id. It scans list of devices to build up a free map, then chooses
1014  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1015  *	while allocating the name and adding the device in order to avoid
1016  *	duplicates.
1017  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1018  *	Returns the number of the unit assigned or a negative errno code.
1019  */
1020 
1021 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1022 {
1023 	int i = 0;
1024 	const char *p;
1025 	const int max_netdevices = 8*PAGE_SIZE;
1026 	unsigned long *inuse;
1027 	struct net_device *d;
1028 
1029 	if (!dev_valid_name(name))
1030 		return -EINVAL;
1031 
1032 	p = strchr(name, '%');
1033 	if (p) {
1034 		/*
1035 		 * Verify the string as this thing may have come from
1036 		 * the user.  There must be either one "%d" and no other "%"
1037 		 * characters.
1038 		 */
1039 		if (p[1] != 'd' || strchr(p + 2, '%'))
1040 			return -EINVAL;
1041 
1042 		/* Use one page as a bit array of possible slots */
1043 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1044 		if (!inuse)
1045 			return -ENOMEM;
1046 
1047 		for_each_netdev(net, d) {
1048 			struct netdev_name_node *name_node;
1049 			list_for_each_entry(name_node, &d->name_node->list, list) {
1050 				if (!sscanf(name_node->name, name, &i))
1051 					continue;
1052 				if (i < 0 || i >= max_netdevices)
1053 					continue;
1054 
1055 				/*  avoid cases where sscanf is not exact inverse of printf */
1056 				snprintf(buf, IFNAMSIZ, name, i);
1057 				if (!strncmp(buf, name_node->name, IFNAMSIZ))
1058 					__set_bit(i, inuse);
1059 			}
1060 			if (!sscanf(d->name, name, &i))
1061 				continue;
1062 			if (i < 0 || i >= max_netdevices)
1063 				continue;
1064 
1065 			/*  avoid cases where sscanf is not exact inverse of printf */
1066 			snprintf(buf, IFNAMSIZ, name, i);
1067 			if (!strncmp(buf, d->name, IFNAMSIZ))
1068 				__set_bit(i, inuse);
1069 		}
1070 
1071 		i = find_first_zero_bit(inuse, max_netdevices);
1072 		free_page((unsigned long) inuse);
1073 	}
1074 
1075 	snprintf(buf, IFNAMSIZ, name, i);
1076 	if (!netdev_name_in_use(net, buf))
1077 		return i;
1078 
1079 	/* It is possible to run out of possible slots
1080 	 * when the name is long and there isn't enough space left
1081 	 * for the digits, or if all bits are used.
1082 	 */
1083 	return -ENFILE;
1084 }
1085 
1086 static int dev_alloc_name_ns(struct net *net,
1087 			     struct net_device *dev,
1088 			     const char *name)
1089 {
1090 	char buf[IFNAMSIZ];
1091 	int ret;
1092 
1093 	BUG_ON(!net);
1094 	ret = __dev_alloc_name(net, name, buf);
1095 	if (ret >= 0)
1096 		strlcpy(dev->name, buf, IFNAMSIZ);
1097 	return ret;
1098 }
1099 
1100 /**
1101  *	dev_alloc_name - allocate a name for a device
1102  *	@dev: device
1103  *	@name: name format string
1104  *
1105  *	Passed a format string - eg "lt%d" it will try and find a suitable
1106  *	id. It scans list of devices to build up a free map, then chooses
1107  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1108  *	while allocating the name and adding the device in order to avoid
1109  *	duplicates.
1110  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1111  *	Returns the number of the unit assigned or a negative errno code.
1112  */
1113 
1114 int dev_alloc_name(struct net_device *dev, const char *name)
1115 {
1116 	return dev_alloc_name_ns(dev_net(dev), dev, name);
1117 }
1118 EXPORT_SYMBOL(dev_alloc_name);
1119 
1120 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1121 			      const char *name)
1122 {
1123 	BUG_ON(!net);
1124 
1125 	if (!dev_valid_name(name))
1126 		return -EINVAL;
1127 
1128 	if (strchr(name, '%'))
1129 		return dev_alloc_name_ns(net, dev, name);
1130 	else if (netdev_name_in_use(net, name))
1131 		return -EEXIST;
1132 	else if (dev->name != name)
1133 		strlcpy(dev->name, name, IFNAMSIZ);
1134 
1135 	return 0;
1136 }
1137 
1138 /**
1139  *	dev_change_name - change name of a device
1140  *	@dev: device
1141  *	@newname: name (or format string) must be at least IFNAMSIZ
1142  *
1143  *	Change name of a device, can pass format strings "eth%d".
1144  *	for wildcarding.
1145  */
1146 int dev_change_name(struct net_device *dev, const char *newname)
1147 {
1148 	unsigned char old_assign_type;
1149 	char oldname[IFNAMSIZ];
1150 	int err = 0;
1151 	int ret;
1152 	struct net *net;
1153 
1154 	ASSERT_RTNL();
1155 	BUG_ON(!dev_net(dev));
1156 
1157 	net = dev_net(dev);
1158 
1159 	/* Some auto-enslaved devices e.g. failover slaves are
1160 	 * special, as userspace might rename the device after
1161 	 * the interface had been brought up and running since
1162 	 * the point kernel initiated auto-enslavement. Allow
1163 	 * live name change even when these slave devices are
1164 	 * up and running.
1165 	 *
1166 	 * Typically, users of these auto-enslaving devices
1167 	 * don't actually care about slave name change, as
1168 	 * they are supposed to operate on master interface
1169 	 * directly.
1170 	 */
1171 	if (dev->flags & IFF_UP &&
1172 	    likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1173 		return -EBUSY;
1174 
1175 	down_write(&devnet_rename_sem);
1176 
1177 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1178 		up_write(&devnet_rename_sem);
1179 		return 0;
1180 	}
1181 
1182 	memcpy(oldname, dev->name, IFNAMSIZ);
1183 
1184 	err = dev_get_valid_name(net, dev, newname);
1185 	if (err < 0) {
1186 		up_write(&devnet_rename_sem);
1187 		return err;
1188 	}
1189 
1190 	if (oldname[0] && !strchr(oldname, '%'))
1191 		netdev_info(dev, "renamed from %s\n", oldname);
1192 
1193 	old_assign_type = dev->name_assign_type;
1194 	dev->name_assign_type = NET_NAME_RENAMED;
1195 
1196 rollback:
1197 	ret = device_rename(&dev->dev, dev->name);
1198 	if (ret) {
1199 		memcpy(dev->name, oldname, IFNAMSIZ);
1200 		dev->name_assign_type = old_assign_type;
1201 		up_write(&devnet_rename_sem);
1202 		return ret;
1203 	}
1204 
1205 	up_write(&devnet_rename_sem);
1206 
1207 	netdev_adjacent_rename_links(dev, oldname);
1208 
1209 	write_lock(&dev_base_lock);
1210 	netdev_name_node_del(dev->name_node);
1211 	write_unlock(&dev_base_lock);
1212 
1213 	synchronize_rcu();
1214 
1215 	write_lock(&dev_base_lock);
1216 	netdev_name_node_add(net, dev->name_node);
1217 	write_unlock(&dev_base_lock);
1218 
1219 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1220 	ret = notifier_to_errno(ret);
1221 
1222 	if (ret) {
1223 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1224 		if (err >= 0) {
1225 			err = ret;
1226 			down_write(&devnet_rename_sem);
1227 			memcpy(dev->name, oldname, IFNAMSIZ);
1228 			memcpy(oldname, newname, IFNAMSIZ);
1229 			dev->name_assign_type = old_assign_type;
1230 			old_assign_type = NET_NAME_RENAMED;
1231 			goto rollback;
1232 		} else {
1233 			netdev_err(dev, "name change rollback failed: %d\n",
1234 				   ret);
1235 		}
1236 	}
1237 
1238 	return err;
1239 }
1240 
1241 /**
1242  *	dev_set_alias - change ifalias of a device
1243  *	@dev: device
1244  *	@alias: name up to IFALIASZ
1245  *	@len: limit of bytes to copy from info
1246  *
1247  *	Set ifalias for a device,
1248  */
1249 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1250 {
1251 	struct dev_ifalias *new_alias = NULL;
1252 
1253 	if (len >= IFALIASZ)
1254 		return -EINVAL;
1255 
1256 	if (len) {
1257 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1258 		if (!new_alias)
1259 			return -ENOMEM;
1260 
1261 		memcpy(new_alias->ifalias, alias, len);
1262 		new_alias->ifalias[len] = 0;
1263 	}
1264 
1265 	mutex_lock(&ifalias_mutex);
1266 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1267 					mutex_is_locked(&ifalias_mutex));
1268 	mutex_unlock(&ifalias_mutex);
1269 
1270 	if (new_alias)
1271 		kfree_rcu(new_alias, rcuhead);
1272 
1273 	return len;
1274 }
1275 EXPORT_SYMBOL(dev_set_alias);
1276 
1277 /**
1278  *	dev_get_alias - get ifalias of a device
1279  *	@dev: device
1280  *	@name: buffer to store name of ifalias
1281  *	@len: size of buffer
1282  *
1283  *	get ifalias for a device.  Caller must make sure dev cannot go
1284  *	away,  e.g. rcu read lock or own a reference count to device.
1285  */
1286 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1287 {
1288 	const struct dev_ifalias *alias;
1289 	int ret = 0;
1290 
1291 	rcu_read_lock();
1292 	alias = rcu_dereference(dev->ifalias);
1293 	if (alias)
1294 		ret = snprintf(name, len, "%s", alias->ifalias);
1295 	rcu_read_unlock();
1296 
1297 	return ret;
1298 }
1299 
1300 /**
1301  *	netdev_features_change - device changes features
1302  *	@dev: device to cause notification
1303  *
1304  *	Called to indicate a device has changed features.
1305  */
1306 void netdev_features_change(struct net_device *dev)
1307 {
1308 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1309 }
1310 EXPORT_SYMBOL(netdev_features_change);
1311 
1312 /**
1313  *	netdev_state_change - device changes state
1314  *	@dev: device to cause notification
1315  *
1316  *	Called to indicate a device has changed state. This function calls
1317  *	the notifier chains for netdev_chain and sends a NEWLINK message
1318  *	to the routing socket.
1319  */
1320 void netdev_state_change(struct net_device *dev)
1321 {
1322 	if (dev->flags & IFF_UP) {
1323 		struct netdev_notifier_change_info change_info = {
1324 			.info.dev = dev,
1325 		};
1326 
1327 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1328 					      &change_info.info);
1329 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1330 	}
1331 }
1332 EXPORT_SYMBOL(netdev_state_change);
1333 
1334 /**
1335  * __netdev_notify_peers - notify network peers about existence of @dev,
1336  * to be called when rtnl lock is already held.
1337  * @dev: network device
1338  *
1339  * Generate traffic such that interested network peers are aware of
1340  * @dev, such as by generating a gratuitous ARP. This may be used when
1341  * a device wants to inform the rest of the network about some sort of
1342  * reconfiguration such as a failover event or virtual machine
1343  * migration.
1344  */
1345 void __netdev_notify_peers(struct net_device *dev)
1346 {
1347 	ASSERT_RTNL();
1348 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1349 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1350 }
1351 EXPORT_SYMBOL(__netdev_notify_peers);
1352 
1353 /**
1354  * netdev_notify_peers - notify network peers about existence of @dev
1355  * @dev: network device
1356  *
1357  * Generate traffic such that interested network peers are aware of
1358  * @dev, such as by generating a gratuitous ARP. This may be used when
1359  * a device wants to inform the rest of the network about some sort of
1360  * reconfiguration such as a failover event or virtual machine
1361  * migration.
1362  */
1363 void netdev_notify_peers(struct net_device *dev)
1364 {
1365 	rtnl_lock();
1366 	__netdev_notify_peers(dev);
1367 	rtnl_unlock();
1368 }
1369 EXPORT_SYMBOL(netdev_notify_peers);
1370 
1371 static int napi_threaded_poll(void *data);
1372 
1373 static int napi_kthread_create(struct napi_struct *n)
1374 {
1375 	int err = 0;
1376 
1377 	/* Create and wake up the kthread once to put it in
1378 	 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1379 	 * warning and work with loadavg.
1380 	 */
1381 	n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1382 				n->dev->name, n->napi_id);
1383 	if (IS_ERR(n->thread)) {
1384 		err = PTR_ERR(n->thread);
1385 		pr_err("kthread_run failed with err %d\n", err);
1386 		n->thread = NULL;
1387 	}
1388 
1389 	return err;
1390 }
1391 
1392 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1393 {
1394 	const struct net_device_ops *ops = dev->netdev_ops;
1395 	int ret;
1396 
1397 	ASSERT_RTNL();
1398 	dev_addr_check(dev);
1399 
1400 	if (!netif_device_present(dev)) {
1401 		/* may be detached because parent is runtime-suspended */
1402 		if (dev->dev.parent)
1403 			pm_runtime_resume(dev->dev.parent);
1404 		if (!netif_device_present(dev))
1405 			return -ENODEV;
1406 	}
1407 
1408 	/* Block netpoll from trying to do any rx path servicing.
1409 	 * If we don't do this there is a chance ndo_poll_controller
1410 	 * or ndo_poll may be running while we open the device
1411 	 */
1412 	netpoll_poll_disable(dev);
1413 
1414 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1415 	ret = notifier_to_errno(ret);
1416 	if (ret)
1417 		return ret;
1418 
1419 	set_bit(__LINK_STATE_START, &dev->state);
1420 
1421 	if (ops->ndo_validate_addr)
1422 		ret = ops->ndo_validate_addr(dev);
1423 
1424 	if (!ret && ops->ndo_open)
1425 		ret = ops->ndo_open(dev);
1426 
1427 	netpoll_poll_enable(dev);
1428 
1429 	if (ret)
1430 		clear_bit(__LINK_STATE_START, &dev->state);
1431 	else {
1432 		dev->flags |= IFF_UP;
1433 		dev_set_rx_mode(dev);
1434 		dev_activate(dev);
1435 		add_device_randomness(dev->dev_addr, dev->addr_len);
1436 	}
1437 
1438 	return ret;
1439 }
1440 
1441 /**
1442  *	dev_open	- prepare an interface for use.
1443  *	@dev: device to open
1444  *	@extack: netlink extended ack
1445  *
1446  *	Takes a device from down to up state. The device's private open
1447  *	function is invoked and then the multicast lists are loaded. Finally
1448  *	the device is moved into the up state and a %NETDEV_UP message is
1449  *	sent to the netdev notifier chain.
1450  *
1451  *	Calling this function on an active interface is a nop. On a failure
1452  *	a negative errno code is returned.
1453  */
1454 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1455 {
1456 	int ret;
1457 
1458 	if (dev->flags & IFF_UP)
1459 		return 0;
1460 
1461 	ret = __dev_open(dev, extack);
1462 	if (ret < 0)
1463 		return ret;
1464 
1465 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1466 	call_netdevice_notifiers(NETDEV_UP, dev);
1467 
1468 	return ret;
1469 }
1470 EXPORT_SYMBOL(dev_open);
1471 
1472 static void __dev_close_many(struct list_head *head)
1473 {
1474 	struct net_device *dev;
1475 
1476 	ASSERT_RTNL();
1477 	might_sleep();
1478 
1479 	list_for_each_entry(dev, head, close_list) {
1480 		/* Temporarily disable netpoll until the interface is down */
1481 		netpoll_poll_disable(dev);
1482 
1483 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1484 
1485 		clear_bit(__LINK_STATE_START, &dev->state);
1486 
1487 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1488 		 * can be even on different cpu. So just clear netif_running().
1489 		 *
1490 		 * dev->stop() will invoke napi_disable() on all of it's
1491 		 * napi_struct instances on this device.
1492 		 */
1493 		smp_mb__after_atomic(); /* Commit netif_running(). */
1494 	}
1495 
1496 	dev_deactivate_many(head);
1497 
1498 	list_for_each_entry(dev, head, close_list) {
1499 		const struct net_device_ops *ops = dev->netdev_ops;
1500 
1501 		/*
1502 		 *	Call the device specific close. This cannot fail.
1503 		 *	Only if device is UP
1504 		 *
1505 		 *	We allow it to be called even after a DETACH hot-plug
1506 		 *	event.
1507 		 */
1508 		if (ops->ndo_stop)
1509 			ops->ndo_stop(dev);
1510 
1511 		dev->flags &= ~IFF_UP;
1512 		netpoll_poll_enable(dev);
1513 	}
1514 }
1515 
1516 static void __dev_close(struct net_device *dev)
1517 {
1518 	LIST_HEAD(single);
1519 
1520 	list_add(&dev->close_list, &single);
1521 	__dev_close_many(&single);
1522 	list_del(&single);
1523 }
1524 
1525 void dev_close_many(struct list_head *head, bool unlink)
1526 {
1527 	struct net_device *dev, *tmp;
1528 
1529 	/* Remove the devices that don't need to be closed */
1530 	list_for_each_entry_safe(dev, tmp, head, close_list)
1531 		if (!(dev->flags & IFF_UP))
1532 			list_del_init(&dev->close_list);
1533 
1534 	__dev_close_many(head);
1535 
1536 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1537 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1538 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1539 		if (unlink)
1540 			list_del_init(&dev->close_list);
1541 	}
1542 }
1543 EXPORT_SYMBOL(dev_close_many);
1544 
1545 /**
1546  *	dev_close - shutdown an interface.
1547  *	@dev: device to shutdown
1548  *
1549  *	This function moves an active device into down state. A
1550  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1551  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1552  *	chain.
1553  */
1554 void dev_close(struct net_device *dev)
1555 {
1556 	if (dev->flags & IFF_UP) {
1557 		LIST_HEAD(single);
1558 
1559 		list_add(&dev->close_list, &single);
1560 		dev_close_many(&single, true);
1561 		list_del(&single);
1562 	}
1563 }
1564 EXPORT_SYMBOL(dev_close);
1565 
1566 
1567 /**
1568  *	dev_disable_lro - disable Large Receive Offload on a device
1569  *	@dev: device
1570  *
1571  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1572  *	called under RTNL.  This is needed if received packets may be
1573  *	forwarded to another interface.
1574  */
1575 void dev_disable_lro(struct net_device *dev)
1576 {
1577 	struct net_device *lower_dev;
1578 	struct list_head *iter;
1579 
1580 	dev->wanted_features &= ~NETIF_F_LRO;
1581 	netdev_update_features(dev);
1582 
1583 	if (unlikely(dev->features & NETIF_F_LRO))
1584 		netdev_WARN(dev, "failed to disable LRO!\n");
1585 
1586 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1587 		dev_disable_lro(lower_dev);
1588 }
1589 EXPORT_SYMBOL(dev_disable_lro);
1590 
1591 /**
1592  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1593  *	@dev: device
1594  *
1595  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1596  *	called under RTNL.  This is needed if Generic XDP is installed on
1597  *	the device.
1598  */
1599 static void dev_disable_gro_hw(struct net_device *dev)
1600 {
1601 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1602 	netdev_update_features(dev);
1603 
1604 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1605 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1606 }
1607 
1608 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1609 {
1610 #define N(val) 						\
1611 	case NETDEV_##val:				\
1612 		return "NETDEV_" __stringify(val);
1613 	switch (cmd) {
1614 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1615 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1616 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1617 	N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1618 	N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1619 	N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1620 	N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1621 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1622 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1623 	N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1624 	N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1625 	}
1626 #undef N
1627 	return "UNKNOWN_NETDEV_EVENT";
1628 }
1629 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1630 
1631 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1632 				   struct net_device *dev)
1633 {
1634 	struct netdev_notifier_info info = {
1635 		.dev = dev,
1636 	};
1637 
1638 	return nb->notifier_call(nb, val, &info);
1639 }
1640 
1641 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1642 					     struct net_device *dev)
1643 {
1644 	int err;
1645 
1646 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1647 	err = notifier_to_errno(err);
1648 	if (err)
1649 		return err;
1650 
1651 	if (!(dev->flags & IFF_UP))
1652 		return 0;
1653 
1654 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1655 	return 0;
1656 }
1657 
1658 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1659 						struct net_device *dev)
1660 {
1661 	if (dev->flags & IFF_UP) {
1662 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1663 					dev);
1664 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1665 	}
1666 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1667 }
1668 
1669 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1670 						 struct net *net)
1671 {
1672 	struct net_device *dev;
1673 	int err;
1674 
1675 	for_each_netdev(net, dev) {
1676 		err = call_netdevice_register_notifiers(nb, dev);
1677 		if (err)
1678 			goto rollback;
1679 	}
1680 	return 0;
1681 
1682 rollback:
1683 	for_each_netdev_continue_reverse(net, dev)
1684 		call_netdevice_unregister_notifiers(nb, dev);
1685 	return err;
1686 }
1687 
1688 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1689 						    struct net *net)
1690 {
1691 	struct net_device *dev;
1692 
1693 	for_each_netdev(net, dev)
1694 		call_netdevice_unregister_notifiers(nb, dev);
1695 }
1696 
1697 static int dev_boot_phase = 1;
1698 
1699 /**
1700  * register_netdevice_notifier - register a network notifier block
1701  * @nb: notifier
1702  *
1703  * Register a notifier to be called when network device events occur.
1704  * The notifier passed is linked into the kernel structures and must
1705  * not be reused until it has been unregistered. A negative errno code
1706  * is returned on a failure.
1707  *
1708  * When registered all registration and up events are replayed
1709  * to the new notifier to allow device to have a race free
1710  * view of the network device list.
1711  */
1712 
1713 int register_netdevice_notifier(struct notifier_block *nb)
1714 {
1715 	struct net *net;
1716 	int err;
1717 
1718 	/* Close race with setup_net() and cleanup_net() */
1719 	down_write(&pernet_ops_rwsem);
1720 	rtnl_lock();
1721 	err = raw_notifier_chain_register(&netdev_chain, nb);
1722 	if (err)
1723 		goto unlock;
1724 	if (dev_boot_phase)
1725 		goto unlock;
1726 	for_each_net(net) {
1727 		err = call_netdevice_register_net_notifiers(nb, net);
1728 		if (err)
1729 			goto rollback;
1730 	}
1731 
1732 unlock:
1733 	rtnl_unlock();
1734 	up_write(&pernet_ops_rwsem);
1735 	return err;
1736 
1737 rollback:
1738 	for_each_net_continue_reverse(net)
1739 		call_netdevice_unregister_net_notifiers(nb, net);
1740 
1741 	raw_notifier_chain_unregister(&netdev_chain, nb);
1742 	goto unlock;
1743 }
1744 EXPORT_SYMBOL(register_netdevice_notifier);
1745 
1746 /**
1747  * unregister_netdevice_notifier - unregister a network notifier block
1748  * @nb: notifier
1749  *
1750  * Unregister a notifier previously registered by
1751  * register_netdevice_notifier(). The notifier is unlinked into the
1752  * kernel structures and may then be reused. A negative errno code
1753  * is returned on a failure.
1754  *
1755  * After unregistering unregister and down device events are synthesized
1756  * for all devices on the device list to the removed notifier to remove
1757  * the need for special case cleanup code.
1758  */
1759 
1760 int unregister_netdevice_notifier(struct notifier_block *nb)
1761 {
1762 	struct net *net;
1763 	int err;
1764 
1765 	/* Close race with setup_net() and cleanup_net() */
1766 	down_write(&pernet_ops_rwsem);
1767 	rtnl_lock();
1768 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1769 	if (err)
1770 		goto unlock;
1771 
1772 	for_each_net(net)
1773 		call_netdevice_unregister_net_notifiers(nb, net);
1774 
1775 unlock:
1776 	rtnl_unlock();
1777 	up_write(&pernet_ops_rwsem);
1778 	return err;
1779 }
1780 EXPORT_SYMBOL(unregister_netdevice_notifier);
1781 
1782 static int __register_netdevice_notifier_net(struct net *net,
1783 					     struct notifier_block *nb,
1784 					     bool ignore_call_fail)
1785 {
1786 	int err;
1787 
1788 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
1789 	if (err)
1790 		return err;
1791 	if (dev_boot_phase)
1792 		return 0;
1793 
1794 	err = call_netdevice_register_net_notifiers(nb, net);
1795 	if (err && !ignore_call_fail)
1796 		goto chain_unregister;
1797 
1798 	return 0;
1799 
1800 chain_unregister:
1801 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
1802 	return err;
1803 }
1804 
1805 static int __unregister_netdevice_notifier_net(struct net *net,
1806 					       struct notifier_block *nb)
1807 {
1808 	int err;
1809 
1810 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1811 	if (err)
1812 		return err;
1813 
1814 	call_netdevice_unregister_net_notifiers(nb, net);
1815 	return 0;
1816 }
1817 
1818 /**
1819  * register_netdevice_notifier_net - register a per-netns network notifier block
1820  * @net: network namespace
1821  * @nb: notifier
1822  *
1823  * Register a notifier to be called when network device events occur.
1824  * The notifier passed is linked into the kernel structures and must
1825  * not be reused until it has been unregistered. A negative errno code
1826  * is returned on a failure.
1827  *
1828  * When registered all registration and up events are replayed
1829  * to the new notifier to allow device to have a race free
1830  * view of the network device list.
1831  */
1832 
1833 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1834 {
1835 	int err;
1836 
1837 	rtnl_lock();
1838 	err = __register_netdevice_notifier_net(net, nb, false);
1839 	rtnl_unlock();
1840 	return err;
1841 }
1842 EXPORT_SYMBOL(register_netdevice_notifier_net);
1843 
1844 /**
1845  * unregister_netdevice_notifier_net - unregister a per-netns
1846  *                                     network notifier block
1847  * @net: network namespace
1848  * @nb: notifier
1849  *
1850  * Unregister a notifier previously registered by
1851  * register_netdevice_notifier(). The notifier is unlinked into the
1852  * kernel structures and may then be reused. A negative errno code
1853  * is returned on a failure.
1854  *
1855  * After unregistering unregister and down device events are synthesized
1856  * for all devices on the device list to the removed notifier to remove
1857  * the need for special case cleanup code.
1858  */
1859 
1860 int unregister_netdevice_notifier_net(struct net *net,
1861 				      struct notifier_block *nb)
1862 {
1863 	int err;
1864 
1865 	rtnl_lock();
1866 	err = __unregister_netdevice_notifier_net(net, nb);
1867 	rtnl_unlock();
1868 	return err;
1869 }
1870 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1871 
1872 int register_netdevice_notifier_dev_net(struct net_device *dev,
1873 					struct notifier_block *nb,
1874 					struct netdev_net_notifier *nn)
1875 {
1876 	int err;
1877 
1878 	rtnl_lock();
1879 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1880 	if (!err) {
1881 		nn->nb = nb;
1882 		list_add(&nn->list, &dev->net_notifier_list);
1883 	}
1884 	rtnl_unlock();
1885 	return err;
1886 }
1887 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1888 
1889 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1890 					  struct notifier_block *nb,
1891 					  struct netdev_net_notifier *nn)
1892 {
1893 	int err;
1894 
1895 	rtnl_lock();
1896 	list_del(&nn->list);
1897 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1898 	rtnl_unlock();
1899 	return err;
1900 }
1901 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1902 
1903 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1904 					     struct net *net)
1905 {
1906 	struct netdev_net_notifier *nn;
1907 
1908 	list_for_each_entry(nn, &dev->net_notifier_list, list) {
1909 		__unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
1910 		__register_netdevice_notifier_net(net, nn->nb, true);
1911 	}
1912 }
1913 
1914 /**
1915  *	call_netdevice_notifiers_info - call all network notifier blocks
1916  *	@val: value passed unmodified to notifier function
1917  *	@info: notifier information data
1918  *
1919  *	Call all network notifier blocks.  Parameters and return value
1920  *	are as for raw_notifier_call_chain().
1921  */
1922 
1923 static int call_netdevice_notifiers_info(unsigned long val,
1924 					 struct netdev_notifier_info *info)
1925 {
1926 	struct net *net = dev_net(info->dev);
1927 	int ret;
1928 
1929 	ASSERT_RTNL();
1930 
1931 	/* Run per-netns notifier block chain first, then run the global one.
1932 	 * Hopefully, one day, the global one is going to be removed after
1933 	 * all notifier block registrators get converted to be per-netns.
1934 	 */
1935 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1936 	if (ret & NOTIFY_STOP_MASK)
1937 		return ret;
1938 	return raw_notifier_call_chain(&netdev_chain, val, info);
1939 }
1940 
1941 /**
1942  *	call_netdevice_notifiers_info_robust - call per-netns notifier blocks
1943  *	                                       for and rollback on error
1944  *	@val_up: value passed unmodified to notifier function
1945  *	@val_down: value passed unmodified to the notifier function when
1946  *	           recovering from an error on @val_up
1947  *	@info: notifier information data
1948  *
1949  *	Call all per-netns network notifier blocks, but not notifier blocks on
1950  *	the global notifier chain. Parameters and return value are as for
1951  *	raw_notifier_call_chain_robust().
1952  */
1953 
1954 static int
1955 call_netdevice_notifiers_info_robust(unsigned long val_up,
1956 				     unsigned long val_down,
1957 				     struct netdev_notifier_info *info)
1958 {
1959 	struct net *net = dev_net(info->dev);
1960 
1961 	ASSERT_RTNL();
1962 
1963 	return raw_notifier_call_chain_robust(&net->netdev_chain,
1964 					      val_up, val_down, info);
1965 }
1966 
1967 static int call_netdevice_notifiers_extack(unsigned long val,
1968 					   struct net_device *dev,
1969 					   struct netlink_ext_ack *extack)
1970 {
1971 	struct netdev_notifier_info info = {
1972 		.dev = dev,
1973 		.extack = extack,
1974 	};
1975 
1976 	return call_netdevice_notifiers_info(val, &info);
1977 }
1978 
1979 /**
1980  *	call_netdevice_notifiers - call all network notifier blocks
1981  *      @val: value passed unmodified to notifier function
1982  *      @dev: net_device pointer passed unmodified to notifier function
1983  *
1984  *	Call all network notifier blocks.  Parameters and return value
1985  *	are as for raw_notifier_call_chain().
1986  */
1987 
1988 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1989 {
1990 	return call_netdevice_notifiers_extack(val, dev, NULL);
1991 }
1992 EXPORT_SYMBOL(call_netdevice_notifiers);
1993 
1994 /**
1995  *	call_netdevice_notifiers_mtu - call all network notifier blocks
1996  *	@val: value passed unmodified to notifier function
1997  *	@dev: net_device pointer passed unmodified to notifier function
1998  *	@arg: additional u32 argument passed to the notifier function
1999  *
2000  *	Call all network notifier blocks.  Parameters and return value
2001  *	are as for raw_notifier_call_chain().
2002  */
2003 static int call_netdevice_notifiers_mtu(unsigned long val,
2004 					struct net_device *dev, u32 arg)
2005 {
2006 	struct netdev_notifier_info_ext info = {
2007 		.info.dev = dev,
2008 		.ext.mtu = arg,
2009 	};
2010 
2011 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2012 
2013 	return call_netdevice_notifiers_info(val, &info.info);
2014 }
2015 
2016 #ifdef CONFIG_NET_INGRESS
2017 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2018 
2019 void net_inc_ingress_queue(void)
2020 {
2021 	static_branch_inc(&ingress_needed_key);
2022 }
2023 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2024 
2025 void net_dec_ingress_queue(void)
2026 {
2027 	static_branch_dec(&ingress_needed_key);
2028 }
2029 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2030 #endif
2031 
2032 #ifdef CONFIG_NET_EGRESS
2033 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2034 
2035 void net_inc_egress_queue(void)
2036 {
2037 	static_branch_inc(&egress_needed_key);
2038 }
2039 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2040 
2041 void net_dec_egress_queue(void)
2042 {
2043 	static_branch_dec(&egress_needed_key);
2044 }
2045 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2046 #endif
2047 
2048 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2049 EXPORT_SYMBOL(netstamp_needed_key);
2050 #ifdef CONFIG_JUMP_LABEL
2051 static atomic_t netstamp_needed_deferred;
2052 static atomic_t netstamp_wanted;
2053 static void netstamp_clear(struct work_struct *work)
2054 {
2055 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2056 	int wanted;
2057 
2058 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2059 	if (wanted > 0)
2060 		static_branch_enable(&netstamp_needed_key);
2061 	else
2062 		static_branch_disable(&netstamp_needed_key);
2063 }
2064 static DECLARE_WORK(netstamp_work, netstamp_clear);
2065 #endif
2066 
2067 void net_enable_timestamp(void)
2068 {
2069 #ifdef CONFIG_JUMP_LABEL
2070 	int wanted;
2071 
2072 	while (1) {
2073 		wanted = atomic_read(&netstamp_wanted);
2074 		if (wanted <= 0)
2075 			break;
2076 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2077 			return;
2078 	}
2079 	atomic_inc(&netstamp_needed_deferred);
2080 	schedule_work(&netstamp_work);
2081 #else
2082 	static_branch_inc(&netstamp_needed_key);
2083 #endif
2084 }
2085 EXPORT_SYMBOL(net_enable_timestamp);
2086 
2087 void net_disable_timestamp(void)
2088 {
2089 #ifdef CONFIG_JUMP_LABEL
2090 	int wanted;
2091 
2092 	while (1) {
2093 		wanted = atomic_read(&netstamp_wanted);
2094 		if (wanted <= 1)
2095 			break;
2096 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2097 			return;
2098 	}
2099 	atomic_dec(&netstamp_needed_deferred);
2100 	schedule_work(&netstamp_work);
2101 #else
2102 	static_branch_dec(&netstamp_needed_key);
2103 #endif
2104 }
2105 EXPORT_SYMBOL(net_disable_timestamp);
2106 
2107 static inline void net_timestamp_set(struct sk_buff *skb)
2108 {
2109 	skb->tstamp = 0;
2110 	skb->mono_delivery_time = 0;
2111 	if (static_branch_unlikely(&netstamp_needed_key))
2112 		skb->tstamp = ktime_get_real();
2113 }
2114 
2115 #define net_timestamp_check(COND, SKB)				\
2116 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2117 		if ((COND) && !(SKB)->tstamp)			\
2118 			(SKB)->tstamp = ktime_get_real();	\
2119 	}							\
2120 
2121 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2122 {
2123 	return __is_skb_forwardable(dev, skb, true);
2124 }
2125 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2126 
2127 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2128 			      bool check_mtu)
2129 {
2130 	int ret = ____dev_forward_skb(dev, skb, check_mtu);
2131 
2132 	if (likely(!ret)) {
2133 		skb->protocol = eth_type_trans(skb, dev);
2134 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2135 	}
2136 
2137 	return ret;
2138 }
2139 
2140 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2141 {
2142 	return __dev_forward_skb2(dev, skb, true);
2143 }
2144 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2145 
2146 /**
2147  * dev_forward_skb - loopback an skb to another netif
2148  *
2149  * @dev: destination network device
2150  * @skb: buffer to forward
2151  *
2152  * return values:
2153  *	NET_RX_SUCCESS	(no congestion)
2154  *	NET_RX_DROP     (packet was dropped, but freed)
2155  *
2156  * dev_forward_skb can be used for injecting an skb from the
2157  * start_xmit function of one device into the receive queue
2158  * of another device.
2159  *
2160  * The receiving device may be in another namespace, so
2161  * we have to clear all information in the skb that could
2162  * impact namespace isolation.
2163  */
2164 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2165 {
2166 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2167 }
2168 EXPORT_SYMBOL_GPL(dev_forward_skb);
2169 
2170 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2171 {
2172 	return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2173 }
2174 
2175 static inline int deliver_skb(struct sk_buff *skb,
2176 			      struct packet_type *pt_prev,
2177 			      struct net_device *orig_dev)
2178 {
2179 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2180 		return -ENOMEM;
2181 	refcount_inc(&skb->users);
2182 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2183 }
2184 
2185 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2186 					  struct packet_type **pt,
2187 					  struct net_device *orig_dev,
2188 					  __be16 type,
2189 					  struct list_head *ptype_list)
2190 {
2191 	struct packet_type *ptype, *pt_prev = *pt;
2192 
2193 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2194 		if (ptype->type != type)
2195 			continue;
2196 		if (pt_prev)
2197 			deliver_skb(skb, pt_prev, orig_dev);
2198 		pt_prev = ptype;
2199 	}
2200 	*pt = pt_prev;
2201 }
2202 
2203 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2204 {
2205 	if (!ptype->af_packet_priv || !skb->sk)
2206 		return false;
2207 
2208 	if (ptype->id_match)
2209 		return ptype->id_match(ptype, skb->sk);
2210 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2211 		return true;
2212 
2213 	return false;
2214 }
2215 
2216 /**
2217  * dev_nit_active - return true if any network interface taps are in use
2218  *
2219  * @dev: network device to check for the presence of taps
2220  */
2221 bool dev_nit_active(struct net_device *dev)
2222 {
2223 	return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2224 }
2225 EXPORT_SYMBOL_GPL(dev_nit_active);
2226 
2227 /*
2228  *	Support routine. Sends outgoing frames to any network
2229  *	taps currently in use.
2230  */
2231 
2232 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2233 {
2234 	struct packet_type *ptype;
2235 	struct sk_buff *skb2 = NULL;
2236 	struct packet_type *pt_prev = NULL;
2237 	struct list_head *ptype_list = &ptype_all;
2238 
2239 	rcu_read_lock();
2240 again:
2241 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2242 		if (ptype->ignore_outgoing)
2243 			continue;
2244 
2245 		/* Never send packets back to the socket
2246 		 * they originated from - MvS (miquels@drinkel.ow.org)
2247 		 */
2248 		if (skb_loop_sk(ptype, skb))
2249 			continue;
2250 
2251 		if (pt_prev) {
2252 			deliver_skb(skb2, pt_prev, skb->dev);
2253 			pt_prev = ptype;
2254 			continue;
2255 		}
2256 
2257 		/* need to clone skb, done only once */
2258 		skb2 = skb_clone(skb, GFP_ATOMIC);
2259 		if (!skb2)
2260 			goto out_unlock;
2261 
2262 		net_timestamp_set(skb2);
2263 
2264 		/* skb->nh should be correctly
2265 		 * set by sender, so that the second statement is
2266 		 * just protection against buggy protocols.
2267 		 */
2268 		skb_reset_mac_header(skb2);
2269 
2270 		if (skb_network_header(skb2) < skb2->data ||
2271 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2272 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2273 					     ntohs(skb2->protocol),
2274 					     dev->name);
2275 			skb_reset_network_header(skb2);
2276 		}
2277 
2278 		skb2->transport_header = skb2->network_header;
2279 		skb2->pkt_type = PACKET_OUTGOING;
2280 		pt_prev = ptype;
2281 	}
2282 
2283 	if (ptype_list == &ptype_all) {
2284 		ptype_list = &dev->ptype_all;
2285 		goto again;
2286 	}
2287 out_unlock:
2288 	if (pt_prev) {
2289 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2290 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2291 		else
2292 			kfree_skb(skb2);
2293 	}
2294 	rcu_read_unlock();
2295 }
2296 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2297 
2298 /**
2299  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2300  * @dev: Network device
2301  * @txq: number of queues available
2302  *
2303  * If real_num_tx_queues is changed the tc mappings may no longer be
2304  * valid. To resolve this verify the tc mapping remains valid and if
2305  * not NULL the mapping. With no priorities mapping to this
2306  * offset/count pair it will no longer be used. In the worst case TC0
2307  * is invalid nothing can be done so disable priority mappings. If is
2308  * expected that drivers will fix this mapping if they can before
2309  * calling netif_set_real_num_tx_queues.
2310  */
2311 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2312 {
2313 	int i;
2314 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2315 
2316 	/* If TC0 is invalidated disable TC mapping */
2317 	if (tc->offset + tc->count > txq) {
2318 		netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2319 		dev->num_tc = 0;
2320 		return;
2321 	}
2322 
2323 	/* Invalidated prio to tc mappings set to TC0 */
2324 	for (i = 1; i < TC_BITMASK + 1; i++) {
2325 		int q = netdev_get_prio_tc_map(dev, i);
2326 
2327 		tc = &dev->tc_to_txq[q];
2328 		if (tc->offset + tc->count > txq) {
2329 			netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2330 				    i, q);
2331 			netdev_set_prio_tc_map(dev, i, 0);
2332 		}
2333 	}
2334 }
2335 
2336 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2337 {
2338 	if (dev->num_tc) {
2339 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2340 		int i;
2341 
2342 		/* walk through the TCs and see if it falls into any of them */
2343 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2344 			if ((txq - tc->offset) < tc->count)
2345 				return i;
2346 		}
2347 
2348 		/* didn't find it, just return -1 to indicate no match */
2349 		return -1;
2350 	}
2351 
2352 	return 0;
2353 }
2354 EXPORT_SYMBOL(netdev_txq_to_tc);
2355 
2356 #ifdef CONFIG_XPS
2357 static struct static_key xps_needed __read_mostly;
2358 static struct static_key xps_rxqs_needed __read_mostly;
2359 static DEFINE_MUTEX(xps_map_mutex);
2360 #define xmap_dereference(P)		\
2361 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2362 
2363 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2364 			     struct xps_dev_maps *old_maps, int tci, u16 index)
2365 {
2366 	struct xps_map *map = NULL;
2367 	int pos;
2368 
2369 	if (dev_maps)
2370 		map = xmap_dereference(dev_maps->attr_map[tci]);
2371 	if (!map)
2372 		return false;
2373 
2374 	for (pos = map->len; pos--;) {
2375 		if (map->queues[pos] != index)
2376 			continue;
2377 
2378 		if (map->len > 1) {
2379 			map->queues[pos] = map->queues[--map->len];
2380 			break;
2381 		}
2382 
2383 		if (old_maps)
2384 			RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2385 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2386 		kfree_rcu(map, rcu);
2387 		return false;
2388 	}
2389 
2390 	return true;
2391 }
2392 
2393 static bool remove_xps_queue_cpu(struct net_device *dev,
2394 				 struct xps_dev_maps *dev_maps,
2395 				 int cpu, u16 offset, u16 count)
2396 {
2397 	int num_tc = dev_maps->num_tc;
2398 	bool active = false;
2399 	int tci;
2400 
2401 	for (tci = cpu * num_tc; num_tc--; tci++) {
2402 		int i, j;
2403 
2404 		for (i = count, j = offset; i--; j++) {
2405 			if (!remove_xps_queue(dev_maps, NULL, tci, j))
2406 				break;
2407 		}
2408 
2409 		active |= i < 0;
2410 	}
2411 
2412 	return active;
2413 }
2414 
2415 static void reset_xps_maps(struct net_device *dev,
2416 			   struct xps_dev_maps *dev_maps,
2417 			   enum xps_map_type type)
2418 {
2419 	static_key_slow_dec_cpuslocked(&xps_needed);
2420 	if (type == XPS_RXQS)
2421 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2422 
2423 	RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2424 
2425 	kfree_rcu(dev_maps, rcu);
2426 }
2427 
2428 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2429 			   u16 offset, u16 count)
2430 {
2431 	struct xps_dev_maps *dev_maps;
2432 	bool active = false;
2433 	int i, j;
2434 
2435 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2436 	if (!dev_maps)
2437 		return;
2438 
2439 	for (j = 0; j < dev_maps->nr_ids; j++)
2440 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2441 	if (!active)
2442 		reset_xps_maps(dev, dev_maps, type);
2443 
2444 	if (type == XPS_CPUS) {
2445 		for (i = offset + (count - 1); count--; i--)
2446 			netdev_queue_numa_node_write(
2447 				netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2448 	}
2449 }
2450 
2451 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2452 				   u16 count)
2453 {
2454 	if (!static_key_false(&xps_needed))
2455 		return;
2456 
2457 	cpus_read_lock();
2458 	mutex_lock(&xps_map_mutex);
2459 
2460 	if (static_key_false(&xps_rxqs_needed))
2461 		clean_xps_maps(dev, XPS_RXQS, offset, count);
2462 
2463 	clean_xps_maps(dev, XPS_CPUS, offset, count);
2464 
2465 	mutex_unlock(&xps_map_mutex);
2466 	cpus_read_unlock();
2467 }
2468 
2469 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2470 {
2471 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2472 }
2473 
2474 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2475 				      u16 index, bool is_rxqs_map)
2476 {
2477 	struct xps_map *new_map;
2478 	int alloc_len = XPS_MIN_MAP_ALLOC;
2479 	int i, pos;
2480 
2481 	for (pos = 0; map && pos < map->len; pos++) {
2482 		if (map->queues[pos] != index)
2483 			continue;
2484 		return map;
2485 	}
2486 
2487 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2488 	if (map) {
2489 		if (pos < map->alloc_len)
2490 			return map;
2491 
2492 		alloc_len = map->alloc_len * 2;
2493 	}
2494 
2495 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2496 	 *  map
2497 	 */
2498 	if (is_rxqs_map)
2499 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2500 	else
2501 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2502 				       cpu_to_node(attr_index));
2503 	if (!new_map)
2504 		return NULL;
2505 
2506 	for (i = 0; i < pos; i++)
2507 		new_map->queues[i] = map->queues[i];
2508 	new_map->alloc_len = alloc_len;
2509 	new_map->len = pos;
2510 
2511 	return new_map;
2512 }
2513 
2514 /* Copy xps maps at a given index */
2515 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2516 			      struct xps_dev_maps *new_dev_maps, int index,
2517 			      int tc, bool skip_tc)
2518 {
2519 	int i, tci = index * dev_maps->num_tc;
2520 	struct xps_map *map;
2521 
2522 	/* copy maps belonging to foreign traffic classes */
2523 	for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2524 		if (i == tc && skip_tc)
2525 			continue;
2526 
2527 		/* fill in the new device map from the old device map */
2528 		map = xmap_dereference(dev_maps->attr_map[tci]);
2529 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2530 	}
2531 }
2532 
2533 /* Must be called under cpus_read_lock */
2534 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2535 			  u16 index, enum xps_map_type type)
2536 {
2537 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2538 	const unsigned long *online_mask = NULL;
2539 	bool active = false, copy = false;
2540 	int i, j, tci, numa_node_id = -2;
2541 	int maps_sz, num_tc = 1, tc = 0;
2542 	struct xps_map *map, *new_map;
2543 	unsigned int nr_ids;
2544 
2545 	if (dev->num_tc) {
2546 		/* Do not allow XPS on subordinate device directly */
2547 		num_tc = dev->num_tc;
2548 		if (num_tc < 0)
2549 			return -EINVAL;
2550 
2551 		/* If queue belongs to subordinate dev use its map */
2552 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2553 
2554 		tc = netdev_txq_to_tc(dev, index);
2555 		if (tc < 0)
2556 			return -EINVAL;
2557 	}
2558 
2559 	mutex_lock(&xps_map_mutex);
2560 
2561 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2562 	if (type == XPS_RXQS) {
2563 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2564 		nr_ids = dev->num_rx_queues;
2565 	} else {
2566 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2567 		if (num_possible_cpus() > 1)
2568 			online_mask = cpumask_bits(cpu_online_mask);
2569 		nr_ids = nr_cpu_ids;
2570 	}
2571 
2572 	if (maps_sz < L1_CACHE_BYTES)
2573 		maps_sz = L1_CACHE_BYTES;
2574 
2575 	/* The old dev_maps could be larger or smaller than the one we're
2576 	 * setting up now, as dev->num_tc or nr_ids could have been updated in
2577 	 * between. We could try to be smart, but let's be safe instead and only
2578 	 * copy foreign traffic classes if the two map sizes match.
2579 	 */
2580 	if (dev_maps &&
2581 	    dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2582 		copy = true;
2583 
2584 	/* allocate memory for queue storage */
2585 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2586 	     j < nr_ids;) {
2587 		if (!new_dev_maps) {
2588 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2589 			if (!new_dev_maps) {
2590 				mutex_unlock(&xps_map_mutex);
2591 				return -ENOMEM;
2592 			}
2593 
2594 			new_dev_maps->nr_ids = nr_ids;
2595 			new_dev_maps->num_tc = num_tc;
2596 		}
2597 
2598 		tci = j * num_tc + tc;
2599 		map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2600 
2601 		map = expand_xps_map(map, j, index, type == XPS_RXQS);
2602 		if (!map)
2603 			goto error;
2604 
2605 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2606 	}
2607 
2608 	if (!new_dev_maps)
2609 		goto out_no_new_maps;
2610 
2611 	if (!dev_maps) {
2612 		/* Increment static keys at most once per type */
2613 		static_key_slow_inc_cpuslocked(&xps_needed);
2614 		if (type == XPS_RXQS)
2615 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2616 	}
2617 
2618 	for (j = 0; j < nr_ids; j++) {
2619 		bool skip_tc = false;
2620 
2621 		tci = j * num_tc + tc;
2622 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2623 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2624 			/* add tx-queue to CPU/rx-queue maps */
2625 			int pos = 0;
2626 
2627 			skip_tc = true;
2628 
2629 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2630 			while ((pos < map->len) && (map->queues[pos] != index))
2631 				pos++;
2632 
2633 			if (pos == map->len)
2634 				map->queues[map->len++] = index;
2635 #ifdef CONFIG_NUMA
2636 			if (type == XPS_CPUS) {
2637 				if (numa_node_id == -2)
2638 					numa_node_id = cpu_to_node(j);
2639 				else if (numa_node_id != cpu_to_node(j))
2640 					numa_node_id = -1;
2641 			}
2642 #endif
2643 		}
2644 
2645 		if (copy)
2646 			xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2647 					  skip_tc);
2648 	}
2649 
2650 	rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2651 
2652 	/* Cleanup old maps */
2653 	if (!dev_maps)
2654 		goto out_no_old_maps;
2655 
2656 	for (j = 0; j < dev_maps->nr_ids; j++) {
2657 		for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2658 			map = xmap_dereference(dev_maps->attr_map[tci]);
2659 			if (!map)
2660 				continue;
2661 
2662 			if (copy) {
2663 				new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2664 				if (map == new_map)
2665 					continue;
2666 			}
2667 
2668 			RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2669 			kfree_rcu(map, rcu);
2670 		}
2671 	}
2672 
2673 	old_dev_maps = dev_maps;
2674 
2675 out_no_old_maps:
2676 	dev_maps = new_dev_maps;
2677 	active = true;
2678 
2679 out_no_new_maps:
2680 	if (type == XPS_CPUS)
2681 		/* update Tx queue numa node */
2682 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2683 					     (numa_node_id >= 0) ?
2684 					     numa_node_id : NUMA_NO_NODE);
2685 
2686 	if (!dev_maps)
2687 		goto out_no_maps;
2688 
2689 	/* removes tx-queue from unused CPUs/rx-queues */
2690 	for (j = 0; j < dev_maps->nr_ids; j++) {
2691 		tci = j * dev_maps->num_tc;
2692 
2693 		for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2694 			if (i == tc &&
2695 			    netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2696 			    netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2697 				continue;
2698 
2699 			active |= remove_xps_queue(dev_maps,
2700 						   copy ? old_dev_maps : NULL,
2701 						   tci, index);
2702 		}
2703 	}
2704 
2705 	if (old_dev_maps)
2706 		kfree_rcu(old_dev_maps, rcu);
2707 
2708 	/* free map if not active */
2709 	if (!active)
2710 		reset_xps_maps(dev, dev_maps, type);
2711 
2712 out_no_maps:
2713 	mutex_unlock(&xps_map_mutex);
2714 
2715 	return 0;
2716 error:
2717 	/* remove any maps that we added */
2718 	for (j = 0; j < nr_ids; j++) {
2719 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2720 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2721 			map = copy ?
2722 			      xmap_dereference(dev_maps->attr_map[tci]) :
2723 			      NULL;
2724 			if (new_map && new_map != map)
2725 				kfree(new_map);
2726 		}
2727 	}
2728 
2729 	mutex_unlock(&xps_map_mutex);
2730 
2731 	kfree(new_dev_maps);
2732 	return -ENOMEM;
2733 }
2734 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2735 
2736 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2737 			u16 index)
2738 {
2739 	int ret;
2740 
2741 	cpus_read_lock();
2742 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2743 	cpus_read_unlock();
2744 
2745 	return ret;
2746 }
2747 EXPORT_SYMBOL(netif_set_xps_queue);
2748 
2749 #endif
2750 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2751 {
2752 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2753 
2754 	/* Unbind any subordinate channels */
2755 	while (txq-- != &dev->_tx[0]) {
2756 		if (txq->sb_dev)
2757 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2758 	}
2759 }
2760 
2761 void netdev_reset_tc(struct net_device *dev)
2762 {
2763 #ifdef CONFIG_XPS
2764 	netif_reset_xps_queues_gt(dev, 0);
2765 #endif
2766 	netdev_unbind_all_sb_channels(dev);
2767 
2768 	/* Reset TC configuration of device */
2769 	dev->num_tc = 0;
2770 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2771 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2772 }
2773 EXPORT_SYMBOL(netdev_reset_tc);
2774 
2775 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2776 {
2777 	if (tc >= dev->num_tc)
2778 		return -EINVAL;
2779 
2780 #ifdef CONFIG_XPS
2781 	netif_reset_xps_queues(dev, offset, count);
2782 #endif
2783 	dev->tc_to_txq[tc].count = count;
2784 	dev->tc_to_txq[tc].offset = offset;
2785 	return 0;
2786 }
2787 EXPORT_SYMBOL(netdev_set_tc_queue);
2788 
2789 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2790 {
2791 	if (num_tc > TC_MAX_QUEUE)
2792 		return -EINVAL;
2793 
2794 #ifdef CONFIG_XPS
2795 	netif_reset_xps_queues_gt(dev, 0);
2796 #endif
2797 	netdev_unbind_all_sb_channels(dev);
2798 
2799 	dev->num_tc = num_tc;
2800 	return 0;
2801 }
2802 EXPORT_SYMBOL(netdev_set_num_tc);
2803 
2804 void netdev_unbind_sb_channel(struct net_device *dev,
2805 			      struct net_device *sb_dev)
2806 {
2807 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2808 
2809 #ifdef CONFIG_XPS
2810 	netif_reset_xps_queues_gt(sb_dev, 0);
2811 #endif
2812 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2813 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2814 
2815 	while (txq-- != &dev->_tx[0]) {
2816 		if (txq->sb_dev == sb_dev)
2817 			txq->sb_dev = NULL;
2818 	}
2819 }
2820 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2821 
2822 int netdev_bind_sb_channel_queue(struct net_device *dev,
2823 				 struct net_device *sb_dev,
2824 				 u8 tc, u16 count, u16 offset)
2825 {
2826 	/* Make certain the sb_dev and dev are already configured */
2827 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2828 		return -EINVAL;
2829 
2830 	/* We cannot hand out queues we don't have */
2831 	if ((offset + count) > dev->real_num_tx_queues)
2832 		return -EINVAL;
2833 
2834 	/* Record the mapping */
2835 	sb_dev->tc_to_txq[tc].count = count;
2836 	sb_dev->tc_to_txq[tc].offset = offset;
2837 
2838 	/* Provide a way for Tx queue to find the tc_to_txq map or
2839 	 * XPS map for itself.
2840 	 */
2841 	while (count--)
2842 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2843 
2844 	return 0;
2845 }
2846 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2847 
2848 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2849 {
2850 	/* Do not use a multiqueue device to represent a subordinate channel */
2851 	if (netif_is_multiqueue(dev))
2852 		return -ENODEV;
2853 
2854 	/* We allow channels 1 - 32767 to be used for subordinate channels.
2855 	 * Channel 0 is meant to be "native" mode and used only to represent
2856 	 * the main root device. We allow writing 0 to reset the device back
2857 	 * to normal mode after being used as a subordinate channel.
2858 	 */
2859 	if (channel > S16_MAX)
2860 		return -EINVAL;
2861 
2862 	dev->num_tc = -channel;
2863 
2864 	return 0;
2865 }
2866 EXPORT_SYMBOL(netdev_set_sb_channel);
2867 
2868 /*
2869  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2870  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2871  */
2872 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2873 {
2874 	bool disabling;
2875 	int rc;
2876 
2877 	disabling = txq < dev->real_num_tx_queues;
2878 
2879 	if (txq < 1 || txq > dev->num_tx_queues)
2880 		return -EINVAL;
2881 
2882 	if (dev->reg_state == NETREG_REGISTERED ||
2883 	    dev->reg_state == NETREG_UNREGISTERING) {
2884 		ASSERT_RTNL();
2885 
2886 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2887 						  txq);
2888 		if (rc)
2889 			return rc;
2890 
2891 		if (dev->num_tc)
2892 			netif_setup_tc(dev, txq);
2893 
2894 		dev_qdisc_change_real_num_tx(dev, txq);
2895 
2896 		dev->real_num_tx_queues = txq;
2897 
2898 		if (disabling) {
2899 			synchronize_net();
2900 			qdisc_reset_all_tx_gt(dev, txq);
2901 #ifdef CONFIG_XPS
2902 			netif_reset_xps_queues_gt(dev, txq);
2903 #endif
2904 		}
2905 	} else {
2906 		dev->real_num_tx_queues = txq;
2907 	}
2908 
2909 	return 0;
2910 }
2911 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2912 
2913 #ifdef CONFIG_SYSFS
2914 /**
2915  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2916  *	@dev: Network device
2917  *	@rxq: Actual number of RX queues
2918  *
2919  *	This must be called either with the rtnl_lock held or before
2920  *	registration of the net device.  Returns 0 on success, or a
2921  *	negative error code.  If called before registration, it always
2922  *	succeeds.
2923  */
2924 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2925 {
2926 	int rc;
2927 
2928 	if (rxq < 1 || rxq > dev->num_rx_queues)
2929 		return -EINVAL;
2930 
2931 	if (dev->reg_state == NETREG_REGISTERED) {
2932 		ASSERT_RTNL();
2933 
2934 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2935 						  rxq);
2936 		if (rc)
2937 			return rc;
2938 	}
2939 
2940 	dev->real_num_rx_queues = rxq;
2941 	return 0;
2942 }
2943 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2944 #endif
2945 
2946 /**
2947  *	netif_set_real_num_queues - set actual number of RX and TX queues used
2948  *	@dev: Network device
2949  *	@txq: Actual number of TX queues
2950  *	@rxq: Actual number of RX queues
2951  *
2952  *	Set the real number of both TX and RX queues.
2953  *	Does nothing if the number of queues is already correct.
2954  */
2955 int netif_set_real_num_queues(struct net_device *dev,
2956 			      unsigned int txq, unsigned int rxq)
2957 {
2958 	unsigned int old_rxq = dev->real_num_rx_queues;
2959 	int err;
2960 
2961 	if (txq < 1 || txq > dev->num_tx_queues ||
2962 	    rxq < 1 || rxq > dev->num_rx_queues)
2963 		return -EINVAL;
2964 
2965 	/* Start from increases, so the error path only does decreases -
2966 	 * decreases can't fail.
2967 	 */
2968 	if (rxq > dev->real_num_rx_queues) {
2969 		err = netif_set_real_num_rx_queues(dev, rxq);
2970 		if (err)
2971 			return err;
2972 	}
2973 	if (txq > dev->real_num_tx_queues) {
2974 		err = netif_set_real_num_tx_queues(dev, txq);
2975 		if (err)
2976 			goto undo_rx;
2977 	}
2978 	if (rxq < dev->real_num_rx_queues)
2979 		WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
2980 	if (txq < dev->real_num_tx_queues)
2981 		WARN_ON(netif_set_real_num_tx_queues(dev, txq));
2982 
2983 	return 0;
2984 undo_rx:
2985 	WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
2986 	return err;
2987 }
2988 EXPORT_SYMBOL(netif_set_real_num_queues);
2989 
2990 /**
2991  * netif_get_num_default_rss_queues - default number of RSS queues
2992  *
2993  * Default value is the number of physical cores if there are only 1 or 2, or
2994  * divided by 2 if there are more.
2995  */
2996 int netif_get_num_default_rss_queues(void)
2997 {
2998 	cpumask_var_t cpus;
2999 	int cpu, count = 0;
3000 
3001 	if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3002 		return 1;
3003 
3004 	cpumask_copy(cpus, cpu_online_mask);
3005 	for_each_cpu(cpu, cpus) {
3006 		++count;
3007 		cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3008 	}
3009 	free_cpumask_var(cpus);
3010 
3011 	return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3012 }
3013 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3014 
3015 static void __netif_reschedule(struct Qdisc *q)
3016 {
3017 	struct softnet_data *sd;
3018 	unsigned long flags;
3019 
3020 	local_irq_save(flags);
3021 	sd = this_cpu_ptr(&softnet_data);
3022 	q->next_sched = NULL;
3023 	*sd->output_queue_tailp = q;
3024 	sd->output_queue_tailp = &q->next_sched;
3025 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3026 	local_irq_restore(flags);
3027 }
3028 
3029 void __netif_schedule(struct Qdisc *q)
3030 {
3031 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3032 		__netif_reschedule(q);
3033 }
3034 EXPORT_SYMBOL(__netif_schedule);
3035 
3036 struct dev_kfree_skb_cb {
3037 	enum skb_free_reason reason;
3038 };
3039 
3040 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3041 {
3042 	return (struct dev_kfree_skb_cb *)skb->cb;
3043 }
3044 
3045 void netif_schedule_queue(struct netdev_queue *txq)
3046 {
3047 	rcu_read_lock();
3048 	if (!netif_xmit_stopped(txq)) {
3049 		struct Qdisc *q = rcu_dereference(txq->qdisc);
3050 
3051 		__netif_schedule(q);
3052 	}
3053 	rcu_read_unlock();
3054 }
3055 EXPORT_SYMBOL(netif_schedule_queue);
3056 
3057 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3058 {
3059 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3060 		struct Qdisc *q;
3061 
3062 		rcu_read_lock();
3063 		q = rcu_dereference(dev_queue->qdisc);
3064 		__netif_schedule(q);
3065 		rcu_read_unlock();
3066 	}
3067 }
3068 EXPORT_SYMBOL(netif_tx_wake_queue);
3069 
3070 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3071 {
3072 	unsigned long flags;
3073 
3074 	if (unlikely(!skb))
3075 		return;
3076 
3077 	if (likely(refcount_read(&skb->users) == 1)) {
3078 		smp_rmb();
3079 		refcount_set(&skb->users, 0);
3080 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3081 		return;
3082 	}
3083 	get_kfree_skb_cb(skb)->reason = reason;
3084 	local_irq_save(flags);
3085 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3086 	__this_cpu_write(softnet_data.completion_queue, skb);
3087 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3088 	local_irq_restore(flags);
3089 }
3090 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3091 
3092 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3093 {
3094 	if (in_hardirq() || irqs_disabled())
3095 		__dev_kfree_skb_irq(skb, reason);
3096 	else
3097 		dev_kfree_skb(skb);
3098 }
3099 EXPORT_SYMBOL(__dev_kfree_skb_any);
3100 
3101 
3102 /**
3103  * netif_device_detach - mark device as removed
3104  * @dev: network device
3105  *
3106  * Mark device as removed from system and therefore no longer available.
3107  */
3108 void netif_device_detach(struct net_device *dev)
3109 {
3110 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3111 	    netif_running(dev)) {
3112 		netif_tx_stop_all_queues(dev);
3113 	}
3114 }
3115 EXPORT_SYMBOL(netif_device_detach);
3116 
3117 /**
3118  * netif_device_attach - mark device as attached
3119  * @dev: network device
3120  *
3121  * Mark device as attached from system and restart if needed.
3122  */
3123 void netif_device_attach(struct net_device *dev)
3124 {
3125 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3126 	    netif_running(dev)) {
3127 		netif_tx_wake_all_queues(dev);
3128 		__netdev_watchdog_up(dev);
3129 	}
3130 }
3131 EXPORT_SYMBOL(netif_device_attach);
3132 
3133 /*
3134  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3135  * to be used as a distribution range.
3136  */
3137 static u16 skb_tx_hash(const struct net_device *dev,
3138 		       const struct net_device *sb_dev,
3139 		       struct sk_buff *skb)
3140 {
3141 	u32 hash;
3142 	u16 qoffset = 0;
3143 	u16 qcount = dev->real_num_tx_queues;
3144 
3145 	if (dev->num_tc) {
3146 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3147 
3148 		qoffset = sb_dev->tc_to_txq[tc].offset;
3149 		qcount = sb_dev->tc_to_txq[tc].count;
3150 		if (unlikely(!qcount)) {
3151 			net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3152 					     sb_dev->name, qoffset, tc);
3153 			qoffset = 0;
3154 			qcount = dev->real_num_tx_queues;
3155 		}
3156 	}
3157 
3158 	if (skb_rx_queue_recorded(skb)) {
3159 		hash = skb_get_rx_queue(skb);
3160 		if (hash >= qoffset)
3161 			hash -= qoffset;
3162 		while (unlikely(hash >= qcount))
3163 			hash -= qcount;
3164 		return hash + qoffset;
3165 	}
3166 
3167 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3168 }
3169 
3170 static void skb_warn_bad_offload(const struct sk_buff *skb)
3171 {
3172 	static const netdev_features_t null_features;
3173 	struct net_device *dev = skb->dev;
3174 	const char *name = "";
3175 
3176 	if (!net_ratelimit())
3177 		return;
3178 
3179 	if (dev) {
3180 		if (dev->dev.parent)
3181 			name = dev_driver_string(dev->dev.parent);
3182 		else
3183 			name = netdev_name(dev);
3184 	}
3185 	skb_dump(KERN_WARNING, skb, false);
3186 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3187 	     name, dev ? &dev->features : &null_features,
3188 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3189 }
3190 
3191 /*
3192  * Invalidate hardware checksum when packet is to be mangled, and
3193  * complete checksum manually on outgoing path.
3194  */
3195 int skb_checksum_help(struct sk_buff *skb)
3196 {
3197 	__wsum csum;
3198 	int ret = 0, offset;
3199 
3200 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3201 		goto out_set_summed;
3202 
3203 	if (unlikely(skb_is_gso(skb))) {
3204 		skb_warn_bad_offload(skb);
3205 		return -EINVAL;
3206 	}
3207 
3208 	/* Before computing a checksum, we should make sure no frag could
3209 	 * be modified by an external entity : checksum could be wrong.
3210 	 */
3211 	if (skb_has_shared_frag(skb)) {
3212 		ret = __skb_linearize(skb);
3213 		if (ret)
3214 			goto out;
3215 	}
3216 
3217 	offset = skb_checksum_start_offset(skb);
3218 	BUG_ON(offset >= skb_headlen(skb));
3219 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3220 
3221 	offset += skb->csum_offset;
3222 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3223 
3224 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3225 	if (ret)
3226 		goto out;
3227 
3228 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3229 out_set_summed:
3230 	skb->ip_summed = CHECKSUM_NONE;
3231 out:
3232 	return ret;
3233 }
3234 EXPORT_SYMBOL(skb_checksum_help);
3235 
3236 int skb_crc32c_csum_help(struct sk_buff *skb)
3237 {
3238 	__le32 crc32c_csum;
3239 	int ret = 0, offset, start;
3240 
3241 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3242 		goto out;
3243 
3244 	if (unlikely(skb_is_gso(skb)))
3245 		goto out;
3246 
3247 	/* Before computing a checksum, we should make sure no frag could
3248 	 * be modified by an external entity : checksum could be wrong.
3249 	 */
3250 	if (unlikely(skb_has_shared_frag(skb))) {
3251 		ret = __skb_linearize(skb);
3252 		if (ret)
3253 			goto out;
3254 	}
3255 	start = skb_checksum_start_offset(skb);
3256 	offset = start + offsetof(struct sctphdr, checksum);
3257 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3258 		ret = -EINVAL;
3259 		goto out;
3260 	}
3261 
3262 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3263 	if (ret)
3264 		goto out;
3265 
3266 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3267 						  skb->len - start, ~(__u32)0,
3268 						  crc32c_csum_stub));
3269 	*(__le32 *)(skb->data + offset) = crc32c_csum;
3270 	skb->ip_summed = CHECKSUM_NONE;
3271 	skb->csum_not_inet = 0;
3272 out:
3273 	return ret;
3274 }
3275 
3276 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3277 {
3278 	__be16 type = skb->protocol;
3279 
3280 	/* Tunnel gso handlers can set protocol to ethernet. */
3281 	if (type == htons(ETH_P_TEB)) {
3282 		struct ethhdr *eth;
3283 
3284 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3285 			return 0;
3286 
3287 		eth = (struct ethhdr *)skb->data;
3288 		type = eth->h_proto;
3289 	}
3290 
3291 	return __vlan_get_protocol(skb, type, depth);
3292 }
3293 
3294 /* openvswitch calls this on rx path, so we need a different check.
3295  */
3296 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3297 {
3298 	if (tx_path)
3299 		return skb->ip_summed != CHECKSUM_PARTIAL &&
3300 		       skb->ip_summed != CHECKSUM_UNNECESSARY;
3301 
3302 	return skb->ip_summed == CHECKSUM_NONE;
3303 }
3304 
3305 /**
3306  *	__skb_gso_segment - Perform segmentation on skb.
3307  *	@skb: buffer to segment
3308  *	@features: features for the output path (see dev->features)
3309  *	@tx_path: whether it is called in TX path
3310  *
3311  *	This function segments the given skb and returns a list of segments.
3312  *
3313  *	It may return NULL if the skb requires no segmentation.  This is
3314  *	only possible when GSO is used for verifying header integrity.
3315  *
3316  *	Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3317  */
3318 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3319 				  netdev_features_t features, bool tx_path)
3320 {
3321 	struct sk_buff *segs;
3322 
3323 	if (unlikely(skb_needs_check(skb, tx_path))) {
3324 		int err;
3325 
3326 		/* We're going to init ->check field in TCP or UDP header */
3327 		err = skb_cow_head(skb, 0);
3328 		if (err < 0)
3329 			return ERR_PTR(err);
3330 	}
3331 
3332 	/* Only report GSO partial support if it will enable us to
3333 	 * support segmentation on this frame without needing additional
3334 	 * work.
3335 	 */
3336 	if (features & NETIF_F_GSO_PARTIAL) {
3337 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3338 		struct net_device *dev = skb->dev;
3339 
3340 		partial_features |= dev->features & dev->gso_partial_features;
3341 		if (!skb_gso_ok(skb, features | partial_features))
3342 			features &= ~NETIF_F_GSO_PARTIAL;
3343 	}
3344 
3345 	BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3346 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3347 
3348 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3349 	SKB_GSO_CB(skb)->encap_level = 0;
3350 
3351 	skb_reset_mac_header(skb);
3352 	skb_reset_mac_len(skb);
3353 
3354 	segs = skb_mac_gso_segment(skb, features);
3355 
3356 	if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3357 		skb_warn_bad_offload(skb);
3358 
3359 	return segs;
3360 }
3361 EXPORT_SYMBOL(__skb_gso_segment);
3362 
3363 /* Take action when hardware reception checksum errors are detected. */
3364 #ifdef CONFIG_BUG
3365 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3366 {
3367 	netdev_err(dev, "hw csum failure\n");
3368 	skb_dump(KERN_ERR, skb, true);
3369 	dump_stack();
3370 }
3371 
3372 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3373 {
3374 	DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3375 }
3376 EXPORT_SYMBOL(netdev_rx_csum_fault);
3377 #endif
3378 
3379 /* XXX: check that highmem exists at all on the given machine. */
3380 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3381 {
3382 #ifdef CONFIG_HIGHMEM
3383 	int i;
3384 
3385 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3386 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3387 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3388 
3389 			if (PageHighMem(skb_frag_page(frag)))
3390 				return 1;
3391 		}
3392 	}
3393 #endif
3394 	return 0;
3395 }
3396 
3397 /* If MPLS offload request, verify we are testing hardware MPLS features
3398  * instead of standard features for the netdev.
3399  */
3400 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3401 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3402 					   netdev_features_t features,
3403 					   __be16 type)
3404 {
3405 	if (eth_p_mpls(type))
3406 		features &= skb->dev->mpls_features;
3407 
3408 	return features;
3409 }
3410 #else
3411 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3412 					   netdev_features_t features,
3413 					   __be16 type)
3414 {
3415 	return features;
3416 }
3417 #endif
3418 
3419 static netdev_features_t harmonize_features(struct sk_buff *skb,
3420 	netdev_features_t features)
3421 {
3422 	__be16 type;
3423 
3424 	type = skb_network_protocol(skb, NULL);
3425 	features = net_mpls_features(skb, features, type);
3426 
3427 	if (skb->ip_summed != CHECKSUM_NONE &&
3428 	    !can_checksum_protocol(features, type)) {
3429 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3430 	}
3431 	if (illegal_highdma(skb->dev, skb))
3432 		features &= ~NETIF_F_SG;
3433 
3434 	return features;
3435 }
3436 
3437 netdev_features_t passthru_features_check(struct sk_buff *skb,
3438 					  struct net_device *dev,
3439 					  netdev_features_t features)
3440 {
3441 	return features;
3442 }
3443 EXPORT_SYMBOL(passthru_features_check);
3444 
3445 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3446 					     struct net_device *dev,
3447 					     netdev_features_t features)
3448 {
3449 	return vlan_features_check(skb, features);
3450 }
3451 
3452 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3453 					    struct net_device *dev,
3454 					    netdev_features_t features)
3455 {
3456 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3457 
3458 	if (gso_segs > READ_ONCE(dev->gso_max_segs))
3459 		return features & ~NETIF_F_GSO_MASK;
3460 
3461 	if (!skb_shinfo(skb)->gso_type) {
3462 		skb_warn_bad_offload(skb);
3463 		return features & ~NETIF_F_GSO_MASK;
3464 	}
3465 
3466 	/* Support for GSO partial features requires software
3467 	 * intervention before we can actually process the packets
3468 	 * so we need to strip support for any partial features now
3469 	 * and we can pull them back in after we have partially
3470 	 * segmented the frame.
3471 	 */
3472 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3473 		features &= ~dev->gso_partial_features;
3474 
3475 	/* Make sure to clear the IPv4 ID mangling feature if the
3476 	 * IPv4 header has the potential to be fragmented.
3477 	 */
3478 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3479 		struct iphdr *iph = skb->encapsulation ?
3480 				    inner_ip_hdr(skb) : ip_hdr(skb);
3481 
3482 		if (!(iph->frag_off & htons(IP_DF)))
3483 			features &= ~NETIF_F_TSO_MANGLEID;
3484 	}
3485 
3486 	return features;
3487 }
3488 
3489 netdev_features_t netif_skb_features(struct sk_buff *skb)
3490 {
3491 	struct net_device *dev = skb->dev;
3492 	netdev_features_t features = dev->features;
3493 
3494 	if (skb_is_gso(skb))
3495 		features = gso_features_check(skb, dev, features);
3496 
3497 	/* If encapsulation offload request, verify we are testing
3498 	 * hardware encapsulation features instead of standard
3499 	 * features for the netdev
3500 	 */
3501 	if (skb->encapsulation)
3502 		features &= dev->hw_enc_features;
3503 
3504 	if (skb_vlan_tagged(skb))
3505 		features = netdev_intersect_features(features,
3506 						     dev->vlan_features |
3507 						     NETIF_F_HW_VLAN_CTAG_TX |
3508 						     NETIF_F_HW_VLAN_STAG_TX);
3509 
3510 	if (dev->netdev_ops->ndo_features_check)
3511 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3512 								features);
3513 	else
3514 		features &= dflt_features_check(skb, dev, features);
3515 
3516 	return harmonize_features(skb, features);
3517 }
3518 EXPORT_SYMBOL(netif_skb_features);
3519 
3520 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3521 		    struct netdev_queue *txq, bool more)
3522 {
3523 	unsigned int len;
3524 	int rc;
3525 
3526 	if (dev_nit_active(dev))
3527 		dev_queue_xmit_nit(skb, dev);
3528 
3529 	len = skb->len;
3530 	PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies);
3531 	trace_net_dev_start_xmit(skb, dev);
3532 	rc = netdev_start_xmit(skb, dev, txq, more);
3533 	trace_net_dev_xmit(skb, rc, dev, len);
3534 
3535 	return rc;
3536 }
3537 
3538 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3539 				    struct netdev_queue *txq, int *ret)
3540 {
3541 	struct sk_buff *skb = first;
3542 	int rc = NETDEV_TX_OK;
3543 
3544 	while (skb) {
3545 		struct sk_buff *next = skb->next;
3546 
3547 		skb_mark_not_on_list(skb);
3548 		rc = xmit_one(skb, dev, txq, next != NULL);
3549 		if (unlikely(!dev_xmit_complete(rc))) {
3550 			skb->next = next;
3551 			goto out;
3552 		}
3553 
3554 		skb = next;
3555 		if (netif_tx_queue_stopped(txq) && skb) {
3556 			rc = NETDEV_TX_BUSY;
3557 			break;
3558 		}
3559 	}
3560 
3561 out:
3562 	*ret = rc;
3563 	return skb;
3564 }
3565 
3566 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3567 					  netdev_features_t features)
3568 {
3569 	if (skb_vlan_tag_present(skb) &&
3570 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3571 		skb = __vlan_hwaccel_push_inside(skb);
3572 	return skb;
3573 }
3574 
3575 int skb_csum_hwoffload_help(struct sk_buff *skb,
3576 			    const netdev_features_t features)
3577 {
3578 	if (unlikely(skb_csum_is_sctp(skb)))
3579 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3580 			skb_crc32c_csum_help(skb);
3581 
3582 	if (features & NETIF_F_HW_CSUM)
3583 		return 0;
3584 
3585 	if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3586 		switch (skb->csum_offset) {
3587 		case offsetof(struct tcphdr, check):
3588 		case offsetof(struct udphdr, check):
3589 			return 0;
3590 		}
3591 	}
3592 
3593 	return skb_checksum_help(skb);
3594 }
3595 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3596 
3597 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3598 {
3599 	netdev_features_t features;
3600 
3601 	features = netif_skb_features(skb);
3602 	skb = validate_xmit_vlan(skb, features);
3603 	if (unlikely(!skb))
3604 		goto out_null;
3605 
3606 	skb = sk_validate_xmit_skb(skb, dev);
3607 	if (unlikely(!skb))
3608 		goto out_null;
3609 
3610 	if (netif_needs_gso(skb, features)) {
3611 		struct sk_buff *segs;
3612 
3613 		segs = skb_gso_segment(skb, features);
3614 		if (IS_ERR(segs)) {
3615 			goto out_kfree_skb;
3616 		} else if (segs) {
3617 			consume_skb(skb);
3618 			skb = segs;
3619 		}
3620 	} else {
3621 		if (skb_needs_linearize(skb, features) &&
3622 		    __skb_linearize(skb))
3623 			goto out_kfree_skb;
3624 
3625 		/* If packet is not checksummed and device does not
3626 		 * support checksumming for this protocol, complete
3627 		 * checksumming here.
3628 		 */
3629 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3630 			if (skb->encapsulation)
3631 				skb_set_inner_transport_header(skb,
3632 							       skb_checksum_start_offset(skb));
3633 			else
3634 				skb_set_transport_header(skb,
3635 							 skb_checksum_start_offset(skb));
3636 			if (skb_csum_hwoffload_help(skb, features))
3637 				goto out_kfree_skb;
3638 		}
3639 	}
3640 
3641 	skb = validate_xmit_xfrm(skb, features, again);
3642 
3643 	return skb;
3644 
3645 out_kfree_skb:
3646 	kfree_skb(skb);
3647 out_null:
3648 	dev_core_stats_tx_dropped_inc(dev);
3649 	return NULL;
3650 }
3651 
3652 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3653 {
3654 	struct sk_buff *next, *head = NULL, *tail;
3655 
3656 	for (; skb != NULL; skb = next) {
3657 		next = skb->next;
3658 		skb_mark_not_on_list(skb);
3659 
3660 		/* in case skb wont be segmented, point to itself */
3661 		skb->prev = skb;
3662 
3663 		skb = validate_xmit_skb(skb, dev, again);
3664 		if (!skb)
3665 			continue;
3666 
3667 		if (!head)
3668 			head = skb;
3669 		else
3670 			tail->next = skb;
3671 		/* If skb was segmented, skb->prev points to
3672 		 * the last segment. If not, it still contains skb.
3673 		 */
3674 		tail = skb->prev;
3675 	}
3676 	return head;
3677 }
3678 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3679 
3680 static void qdisc_pkt_len_init(struct sk_buff *skb)
3681 {
3682 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3683 
3684 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3685 
3686 	/* To get more precise estimation of bytes sent on wire,
3687 	 * we add to pkt_len the headers size of all segments
3688 	 */
3689 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3690 		unsigned int hdr_len;
3691 		u16 gso_segs = shinfo->gso_segs;
3692 
3693 		/* mac layer + network layer */
3694 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3695 
3696 		/* + transport layer */
3697 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3698 			const struct tcphdr *th;
3699 			struct tcphdr _tcphdr;
3700 
3701 			th = skb_header_pointer(skb, skb_transport_offset(skb),
3702 						sizeof(_tcphdr), &_tcphdr);
3703 			if (likely(th))
3704 				hdr_len += __tcp_hdrlen(th);
3705 		} else {
3706 			struct udphdr _udphdr;
3707 
3708 			if (skb_header_pointer(skb, skb_transport_offset(skb),
3709 					       sizeof(_udphdr), &_udphdr))
3710 				hdr_len += sizeof(struct udphdr);
3711 		}
3712 
3713 		if (shinfo->gso_type & SKB_GSO_DODGY)
3714 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3715 						shinfo->gso_size);
3716 
3717 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3718 	}
3719 }
3720 
3721 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3722 			     struct sk_buff **to_free,
3723 			     struct netdev_queue *txq)
3724 {
3725 	int rc;
3726 
3727 	rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3728 	if (rc == NET_XMIT_SUCCESS)
3729 		trace_qdisc_enqueue(q, txq, skb);
3730 	return rc;
3731 }
3732 
3733 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3734 				 struct net_device *dev,
3735 				 struct netdev_queue *txq)
3736 {
3737 	spinlock_t *root_lock = qdisc_lock(q);
3738 	struct sk_buff *to_free = NULL;
3739 	bool contended;
3740 	int rc;
3741 
3742 	qdisc_calculate_pkt_len(skb, q);
3743 
3744 	if (q->flags & TCQ_F_NOLOCK) {
3745 		if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3746 		    qdisc_run_begin(q)) {
3747 			/* Retest nolock_qdisc_is_empty() within the protection
3748 			 * of q->seqlock to protect from racing with requeuing.
3749 			 */
3750 			if (unlikely(!nolock_qdisc_is_empty(q))) {
3751 				rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3752 				__qdisc_run(q);
3753 				qdisc_run_end(q);
3754 
3755 				goto no_lock_out;
3756 			}
3757 
3758 			qdisc_bstats_cpu_update(q, skb);
3759 			if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3760 			    !nolock_qdisc_is_empty(q))
3761 				__qdisc_run(q);
3762 
3763 			qdisc_run_end(q);
3764 			return NET_XMIT_SUCCESS;
3765 		}
3766 
3767 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3768 		qdisc_run(q);
3769 
3770 no_lock_out:
3771 		if (unlikely(to_free))
3772 			kfree_skb_list_reason(to_free,
3773 					      SKB_DROP_REASON_QDISC_DROP);
3774 		return rc;
3775 	}
3776 
3777 	/*
3778 	 * Heuristic to force contended enqueues to serialize on a
3779 	 * separate lock before trying to get qdisc main lock.
3780 	 * This permits qdisc->running owner to get the lock more
3781 	 * often and dequeue packets faster.
3782 	 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3783 	 * and then other tasks will only enqueue packets. The packets will be
3784 	 * sent after the qdisc owner is scheduled again. To prevent this
3785 	 * scenario the task always serialize on the lock.
3786 	 */
3787 	contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
3788 	if (unlikely(contended))
3789 		spin_lock(&q->busylock);
3790 
3791 	spin_lock(root_lock);
3792 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3793 		__qdisc_drop(skb, &to_free);
3794 		rc = NET_XMIT_DROP;
3795 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3796 		   qdisc_run_begin(q)) {
3797 		/*
3798 		 * This is a work-conserving queue; there are no old skbs
3799 		 * waiting to be sent out; and the qdisc is not running -
3800 		 * xmit the skb directly.
3801 		 */
3802 
3803 		qdisc_bstats_update(q, skb);
3804 
3805 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3806 			if (unlikely(contended)) {
3807 				spin_unlock(&q->busylock);
3808 				contended = false;
3809 			}
3810 			__qdisc_run(q);
3811 		}
3812 
3813 		qdisc_run_end(q);
3814 		rc = NET_XMIT_SUCCESS;
3815 	} else {
3816 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3817 		if (qdisc_run_begin(q)) {
3818 			if (unlikely(contended)) {
3819 				spin_unlock(&q->busylock);
3820 				contended = false;
3821 			}
3822 			__qdisc_run(q);
3823 			qdisc_run_end(q);
3824 		}
3825 	}
3826 	spin_unlock(root_lock);
3827 	if (unlikely(to_free))
3828 		kfree_skb_list_reason(to_free, SKB_DROP_REASON_QDISC_DROP);
3829 	if (unlikely(contended))
3830 		spin_unlock(&q->busylock);
3831 	return rc;
3832 }
3833 
3834 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3835 static void skb_update_prio(struct sk_buff *skb)
3836 {
3837 	const struct netprio_map *map;
3838 	const struct sock *sk;
3839 	unsigned int prioidx;
3840 
3841 	if (skb->priority)
3842 		return;
3843 	map = rcu_dereference_bh(skb->dev->priomap);
3844 	if (!map)
3845 		return;
3846 	sk = skb_to_full_sk(skb);
3847 	if (!sk)
3848 		return;
3849 
3850 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3851 
3852 	if (prioidx < map->priomap_len)
3853 		skb->priority = map->priomap[prioidx];
3854 }
3855 #else
3856 #define skb_update_prio(skb)
3857 #endif
3858 
3859 /**
3860  *	dev_loopback_xmit - loop back @skb
3861  *	@net: network namespace this loopback is happening in
3862  *	@sk:  sk needed to be a netfilter okfn
3863  *	@skb: buffer to transmit
3864  */
3865 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3866 {
3867 	skb_reset_mac_header(skb);
3868 	__skb_pull(skb, skb_network_offset(skb));
3869 	skb->pkt_type = PACKET_LOOPBACK;
3870 	if (skb->ip_summed == CHECKSUM_NONE)
3871 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3872 	WARN_ON(!skb_dst(skb));
3873 	skb_dst_force(skb);
3874 	netif_rx(skb);
3875 	return 0;
3876 }
3877 EXPORT_SYMBOL(dev_loopback_xmit);
3878 
3879 #ifdef CONFIG_NET_EGRESS
3880 static struct sk_buff *
3881 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3882 {
3883 #ifdef CONFIG_NET_CLS_ACT
3884 	struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3885 	struct tcf_result cl_res;
3886 
3887 	if (!miniq)
3888 		return skb;
3889 
3890 	/* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3891 	tc_skb_cb(skb)->mru = 0;
3892 	tc_skb_cb(skb)->post_ct = false;
3893 	mini_qdisc_bstats_cpu_update(miniq, skb);
3894 
3895 	switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
3896 	case TC_ACT_OK:
3897 	case TC_ACT_RECLASSIFY:
3898 		skb->tc_index = TC_H_MIN(cl_res.classid);
3899 		break;
3900 	case TC_ACT_SHOT:
3901 		mini_qdisc_qstats_cpu_drop(miniq);
3902 		*ret = NET_XMIT_DROP;
3903 		kfree_skb_reason(skb, SKB_DROP_REASON_TC_EGRESS);
3904 		return NULL;
3905 	case TC_ACT_STOLEN:
3906 	case TC_ACT_QUEUED:
3907 	case TC_ACT_TRAP:
3908 		*ret = NET_XMIT_SUCCESS;
3909 		consume_skb(skb);
3910 		return NULL;
3911 	case TC_ACT_REDIRECT:
3912 		/* No need to push/pop skb's mac_header here on egress! */
3913 		skb_do_redirect(skb);
3914 		*ret = NET_XMIT_SUCCESS;
3915 		return NULL;
3916 	default:
3917 		break;
3918 	}
3919 #endif /* CONFIG_NET_CLS_ACT */
3920 
3921 	return skb;
3922 }
3923 #endif /* CONFIG_NET_EGRESS */
3924 
3925 #ifdef CONFIG_XPS
3926 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3927 			       struct xps_dev_maps *dev_maps, unsigned int tci)
3928 {
3929 	int tc = netdev_get_prio_tc_map(dev, skb->priority);
3930 	struct xps_map *map;
3931 	int queue_index = -1;
3932 
3933 	if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
3934 		return queue_index;
3935 
3936 	tci *= dev_maps->num_tc;
3937 	tci += tc;
3938 
3939 	map = rcu_dereference(dev_maps->attr_map[tci]);
3940 	if (map) {
3941 		if (map->len == 1)
3942 			queue_index = map->queues[0];
3943 		else
3944 			queue_index = map->queues[reciprocal_scale(
3945 						skb_get_hash(skb), map->len)];
3946 		if (unlikely(queue_index >= dev->real_num_tx_queues))
3947 			queue_index = -1;
3948 	}
3949 	return queue_index;
3950 }
3951 #endif
3952 
3953 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3954 			 struct sk_buff *skb)
3955 {
3956 #ifdef CONFIG_XPS
3957 	struct xps_dev_maps *dev_maps;
3958 	struct sock *sk = skb->sk;
3959 	int queue_index = -1;
3960 
3961 	if (!static_key_false(&xps_needed))
3962 		return -1;
3963 
3964 	rcu_read_lock();
3965 	if (!static_key_false(&xps_rxqs_needed))
3966 		goto get_cpus_map;
3967 
3968 	dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
3969 	if (dev_maps) {
3970 		int tci = sk_rx_queue_get(sk);
3971 
3972 		if (tci >= 0)
3973 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3974 							  tci);
3975 	}
3976 
3977 get_cpus_map:
3978 	if (queue_index < 0) {
3979 		dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
3980 		if (dev_maps) {
3981 			unsigned int tci = skb->sender_cpu - 1;
3982 
3983 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3984 							  tci);
3985 		}
3986 	}
3987 	rcu_read_unlock();
3988 
3989 	return queue_index;
3990 #else
3991 	return -1;
3992 #endif
3993 }
3994 
3995 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3996 		     struct net_device *sb_dev)
3997 {
3998 	return 0;
3999 }
4000 EXPORT_SYMBOL(dev_pick_tx_zero);
4001 
4002 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4003 		       struct net_device *sb_dev)
4004 {
4005 	return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4006 }
4007 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4008 
4009 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4010 		     struct net_device *sb_dev)
4011 {
4012 	struct sock *sk = skb->sk;
4013 	int queue_index = sk_tx_queue_get(sk);
4014 
4015 	sb_dev = sb_dev ? : dev;
4016 
4017 	if (queue_index < 0 || skb->ooo_okay ||
4018 	    queue_index >= dev->real_num_tx_queues) {
4019 		int new_index = get_xps_queue(dev, sb_dev, skb);
4020 
4021 		if (new_index < 0)
4022 			new_index = skb_tx_hash(dev, sb_dev, skb);
4023 
4024 		if (queue_index != new_index && sk &&
4025 		    sk_fullsock(sk) &&
4026 		    rcu_access_pointer(sk->sk_dst_cache))
4027 			sk_tx_queue_set(sk, new_index);
4028 
4029 		queue_index = new_index;
4030 	}
4031 
4032 	return queue_index;
4033 }
4034 EXPORT_SYMBOL(netdev_pick_tx);
4035 
4036 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4037 					 struct sk_buff *skb,
4038 					 struct net_device *sb_dev)
4039 {
4040 	int queue_index = 0;
4041 
4042 #ifdef CONFIG_XPS
4043 	u32 sender_cpu = skb->sender_cpu - 1;
4044 
4045 	if (sender_cpu >= (u32)NR_CPUS)
4046 		skb->sender_cpu = raw_smp_processor_id() + 1;
4047 #endif
4048 
4049 	if (dev->real_num_tx_queues != 1) {
4050 		const struct net_device_ops *ops = dev->netdev_ops;
4051 
4052 		if (ops->ndo_select_queue)
4053 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4054 		else
4055 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4056 
4057 		queue_index = netdev_cap_txqueue(dev, queue_index);
4058 	}
4059 
4060 	skb_set_queue_mapping(skb, queue_index);
4061 	return netdev_get_tx_queue(dev, queue_index);
4062 }
4063 
4064 /**
4065  *	__dev_queue_xmit - transmit a buffer
4066  *	@skb: buffer to transmit
4067  *	@sb_dev: suboordinate device used for L2 forwarding offload
4068  *
4069  *	Queue a buffer for transmission to a network device. The caller must
4070  *	have set the device and priority and built the buffer before calling
4071  *	this function. The function can be called from an interrupt.
4072  *
4073  *	A negative errno code is returned on a failure. A success does not
4074  *	guarantee the frame will be transmitted as it may be dropped due
4075  *	to congestion or traffic shaping.
4076  *
4077  * -----------------------------------------------------------------------------------
4078  *      I notice this method can also return errors from the queue disciplines,
4079  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
4080  *      be positive.
4081  *
4082  *      Regardless of the return value, the skb is consumed, so it is currently
4083  *      difficult to retry a send to this method.  (You can bump the ref count
4084  *      before sending to hold a reference for retry if you are careful.)
4085  *
4086  *      When calling this method, interrupts MUST be enabled.  This is because
4087  *      the BH enable code must have IRQs enabled so that it will not deadlock.
4088  *          --BLG
4089  */
4090 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4091 {
4092 	struct net_device *dev = skb->dev;
4093 	struct netdev_queue *txq;
4094 	struct Qdisc *q;
4095 	int rc = -ENOMEM;
4096 	bool again = false;
4097 
4098 	skb_reset_mac_header(skb);
4099 
4100 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4101 		__skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4102 
4103 	/* Disable soft irqs for various locks below. Also
4104 	 * stops preemption for RCU.
4105 	 */
4106 	rcu_read_lock_bh();
4107 
4108 	skb_update_prio(skb);
4109 
4110 	qdisc_pkt_len_init(skb);
4111 #ifdef CONFIG_NET_CLS_ACT
4112 	skb->tc_at_ingress = 0;
4113 #endif
4114 #ifdef CONFIG_NET_EGRESS
4115 	if (static_branch_unlikely(&egress_needed_key)) {
4116 		if (nf_hook_egress_active()) {
4117 			skb = nf_hook_egress(skb, &rc, dev);
4118 			if (!skb)
4119 				goto out;
4120 		}
4121 		nf_skip_egress(skb, true);
4122 		skb = sch_handle_egress(skb, &rc, dev);
4123 		if (!skb)
4124 			goto out;
4125 		nf_skip_egress(skb, false);
4126 	}
4127 #endif
4128 	/* If device/qdisc don't need skb->dst, release it right now while
4129 	 * its hot in this cpu cache.
4130 	 */
4131 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4132 		skb_dst_drop(skb);
4133 	else
4134 		skb_dst_force(skb);
4135 
4136 	txq = netdev_core_pick_tx(dev, skb, sb_dev);
4137 	q = rcu_dereference_bh(txq->qdisc);
4138 
4139 	trace_net_dev_queue(skb);
4140 	if (q->enqueue) {
4141 		rc = __dev_xmit_skb(skb, q, dev, txq);
4142 		goto out;
4143 	}
4144 
4145 	/* The device has no queue. Common case for software devices:
4146 	 * loopback, all the sorts of tunnels...
4147 
4148 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4149 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4150 	 * counters.)
4151 	 * However, it is possible, that they rely on protection
4152 	 * made by us here.
4153 
4154 	 * Check this and shot the lock. It is not prone from deadlocks.
4155 	 *Either shot noqueue qdisc, it is even simpler 8)
4156 	 */
4157 	if (dev->flags & IFF_UP) {
4158 		int cpu = smp_processor_id(); /* ok because BHs are off */
4159 
4160 		/* Other cpus might concurrently change txq->xmit_lock_owner
4161 		 * to -1 or to their cpu id, but not to our id.
4162 		 */
4163 		if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4164 			if (dev_xmit_recursion())
4165 				goto recursion_alert;
4166 
4167 			skb = validate_xmit_skb(skb, dev, &again);
4168 			if (!skb)
4169 				goto out;
4170 
4171 			PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4172 			HARD_TX_LOCK(dev, txq, cpu);
4173 
4174 			if (!netif_xmit_stopped(txq)) {
4175 				dev_xmit_recursion_inc();
4176 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4177 				dev_xmit_recursion_dec();
4178 				if (dev_xmit_complete(rc)) {
4179 					HARD_TX_UNLOCK(dev, txq);
4180 					goto out;
4181 				}
4182 			}
4183 			HARD_TX_UNLOCK(dev, txq);
4184 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4185 					     dev->name);
4186 		} else {
4187 			/* Recursion is detected! It is possible,
4188 			 * unfortunately
4189 			 */
4190 recursion_alert:
4191 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4192 					     dev->name);
4193 		}
4194 	}
4195 
4196 	rc = -ENETDOWN;
4197 	rcu_read_unlock_bh();
4198 
4199 	dev_core_stats_tx_dropped_inc(dev);
4200 	kfree_skb_list(skb);
4201 	return rc;
4202 out:
4203 	rcu_read_unlock_bh();
4204 	return rc;
4205 }
4206 
4207 int dev_queue_xmit(struct sk_buff *skb)
4208 {
4209 	return __dev_queue_xmit(skb, NULL);
4210 }
4211 EXPORT_SYMBOL(dev_queue_xmit);
4212 
4213 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4214 {
4215 	return __dev_queue_xmit(skb, sb_dev);
4216 }
4217 EXPORT_SYMBOL(dev_queue_xmit_accel);
4218 
4219 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4220 {
4221 	struct net_device *dev = skb->dev;
4222 	struct sk_buff *orig_skb = skb;
4223 	struct netdev_queue *txq;
4224 	int ret = NETDEV_TX_BUSY;
4225 	bool again = false;
4226 
4227 	if (unlikely(!netif_running(dev) ||
4228 		     !netif_carrier_ok(dev)))
4229 		goto drop;
4230 
4231 	skb = validate_xmit_skb_list(skb, dev, &again);
4232 	if (skb != orig_skb)
4233 		goto drop;
4234 
4235 	skb_set_queue_mapping(skb, queue_id);
4236 	txq = skb_get_tx_queue(dev, skb);
4237 	PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4238 
4239 	local_bh_disable();
4240 
4241 	dev_xmit_recursion_inc();
4242 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4243 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4244 		ret = netdev_start_xmit(skb, dev, txq, false);
4245 	HARD_TX_UNLOCK(dev, txq);
4246 	dev_xmit_recursion_dec();
4247 
4248 	local_bh_enable();
4249 	return ret;
4250 drop:
4251 	dev_core_stats_tx_dropped_inc(dev);
4252 	kfree_skb_list(skb);
4253 	return NET_XMIT_DROP;
4254 }
4255 EXPORT_SYMBOL(__dev_direct_xmit);
4256 
4257 /*************************************************************************
4258  *			Receiver routines
4259  *************************************************************************/
4260 
4261 int netdev_max_backlog __read_mostly = 1000;
4262 EXPORT_SYMBOL(netdev_max_backlog);
4263 
4264 int netdev_tstamp_prequeue __read_mostly = 1;
4265 int netdev_budget __read_mostly = 300;
4266 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4267 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4268 int weight_p __read_mostly = 64;           /* old backlog weight */
4269 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4270 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4271 int dev_rx_weight __read_mostly = 64;
4272 int dev_tx_weight __read_mostly = 64;
4273 
4274 /* Called with irq disabled */
4275 static inline void ____napi_schedule(struct softnet_data *sd,
4276 				     struct napi_struct *napi)
4277 {
4278 	struct task_struct *thread;
4279 
4280 	lockdep_assert_irqs_disabled();
4281 
4282 	if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4283 		/* Paired with smp_mb__before_atomic() in
4284 		 * napi_enable()/dev_set_threaded().
4285 		 * Use READ_ONCE() to guarantee a complete
4286 		 * read on napi->thread. Only call
4287 		 * wake_up_process() when it's not NULL.
4288 		 */
4289 		thread = READ_ONCE(napi->thread);
4290 		if (thread) {
4291 			/* Avoid doing set_bit() if the thread is in
4292 			 * INTERRUPTIBLE state, cause napi_thread_wait()
4293 			 * makes sure to proceed with napi polling
4294 			 * if the thread is explicitly woken from here.
4295 			 */
4296 			if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4297 				set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4298 			wake_up_process(thread);
4299 			return;
4300 		}
4301 	}
4302 
4303 	list_add_tail(&napi->poll_list, &sd->poll_list);
4304 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4305 }
4306 
4307 #ifdef CONFIG_RPS
4308 
4309 /* One global table that all flow-based protocols share. */
4310 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4311 EXPORT_SYMBOL(rps_sock_flow_table);
4312 u32 rps_cpu_mask __read_mostly;
4313 EXPORT_SYMBOL(rps_cpu_mask);
4314 
4315 struct static_key_false rps_needed __read_mostly;
4316 EXPORT_SYMBOL(rps_needed);
4317 struct static_key_false rfs_needed __read_mostly;
4318 EXPORT_SYMBOL(rfs_needed);
4319 
4320 static struct rps_dev_flow *
4321 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4322 	    struct rps_dev_flow *rflow, u16 next_cpu)
4323 {
4324 	if (next_cpu < nr_cpu_ids) {
4325 #ifdef CONFIG_RFS_ACCEL
4326 		struct netdev_rx_queue *rxqueue;
4327 		struct rps_dev_flow_table *flow_table;
4328 		struct rps_dev_flow *old_rflow;
4329 		u32 flow_id;
4330 		u16 rxq_index;
4331 		int rc;
4332 
4333 		/* Should we steer this flow to a different hardware queue? */
4334 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4335 		    !(dev->features & NETIF_F_NTUPLE))
4336 			goto out;
4337 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4338 		if (rxq_index == skb_get_rx_queue(skb))
4339 			goto out;
4340 
4341 		rxqueue = dev->_rx + rxq_index;
4342 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4343 		if (!flow_table)
4344 			goto out;
4345 		flow_id = skb_get_hash(skb) & flow_table->mask;
4346 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4347 							rxq_index, flow_id);
4348 		if (rc < 0)
4349 			goto out;
4350 		old_rflow = rflow;
4351 		rflow = &flow_table->flows[flow_id];
4352 		rflow->filter = rc;
4353 		if (old_rflow->filter == rflow->filter)
4354 			old_rflow->filter = RPS_NO_FILTER;
4355 	out:
4356 #endif
4357 		rflow->last_qtail =
4358 			per_cpu(softnet_data, next_cpu).input_queue_head;
4359 	}
4360 
4361 	rflow->cpu = next_cpu;
4362 	return rflow;
4363 }
4364 
4365 /*
4366  * get_rps_cpu is called from netif_receive_skb and returns the target
4367  * CPU from the RPS map of the receiving queue for a given skb.
4368  * rcu_read_lock must be held on entry.
4369  */
4370 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4371 		       struct rps_dev_flow **rflowp)
4372 {
4373 	const struct rps_sock_flow_table *sock_flow_table;
4374 	struct netdev_rx_queue *rxqueue = dev->_rx;
4375 	struct rps_dev_flow_table *flow_table;
4376 	struct rps_map *map;
4377 	int cpu = -1;
4378 	u32 tcpu;
4379 	u32 hash;
4380 
4381 	if (skb_rx_queue_recorded(skb)) {
4382 		u16 index = skb_get_rx_queue(skb);
4383 
4384 		if (unlikely(index >= dev->real_num_rx_queues)) {
4385 			WARN_ONCE(dev->real_num_rx_queues > 1,
4386 				  "%s received packet on queue %u, but number "
4387 				  "of RX queues is %u\n",
4388 				  dev->name, index, dev->real_num_rx_queues);
4389 			goto done;
4390 		}
4391 		rxqueue += index;
4392 	}
4393 
4394 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4395 
4396 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4397 	map = rcu_dereference(rxqueue->rps_map);
4398 	if (!flow_table && !map)
4399 		goto done;
4400 
4401 	skb_reset_network_header(skb);
4402 	hash = skb_get_hash(skb);
4403 	if (!hash)
4404 		goto done;
4405 
4406 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
4407 	if (flow_table && sock_flow_table) {
4408 		struct rps_dev_flow *rflow;
4409 		u32 next_cpu;
4410 		u32 ident;
4411 
4412 		/* First check into global flow table if there is a match */
4413 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4414 		if ((ident ^ hash) & ~rps_cpu_mask)
4415 			goto try_rps;
4416 
4417 		next_cpu = ident & rps_cpu_mask;
4418 
4419 		/* OK, now we know there is a match,
4420 		 * we can look at the local (per receive queue) flow table
4421 		 */
4422 		rflow = &flow_table->flows[hash & flow_table->mask];
4423 		tcpu = rflow->cpu;
4424 
4425 		/*
4426 		 * If the desired CPU (where last recvmsg was done) is
4427 		 * different from current CPU (one in the rx-queue flow
4428 		 * table entry), switch if one of the following holds:
4429 		 *   - Current CPU is unset (>= nr_cpu_ids).
4430 		 *   - Current CPU is offline.
4431 		 *   - The current CPU's queue tail has advanced beyond the
4432 		 *     last packet that was enqueued using this table entry.
4433 		 *     This guarantees that all previous packets for the flow
4434 		 *     have been dequeued, thus preserving in order delivery.
4435 		 */
4436 		if (unlikely(tcpu != next_cpu) &&
4437 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4438 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4439 		      rflow->last_qtail)) >= 0)) {
4440 			tcpu = next_cpu;
4441 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4442 		}
4443 
4444 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4445 			*rflowp = rflow;
4446 			cpu = tcpu;
4447 			goto done;
4448 		}
4449 	}
4450 
4451 try_rps:
4452 
4453 	if (map) {
4454 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4455 		if (cpu_online(tcpu)) {
4456 			cpu = tcpu;
4457 			goto done;
4458 		}
4459 	}
4460 
4461 done:
4462 	return cpu;
4463 }
4464 
4465 #ifdef CONFIG_RFS_ACCEL
4466 
4467 /**
4468  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4469  * @dev: Device on which the filter was set
4470  * @rxq_index: RX queue index
4471  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4472  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4473  *
4474  * Drivers that implement ndo_rx_flow_steer() should periodically call
4475  * this function for each installed filter and remove the filters for
4476  * which it returns %true.
4477  */
4478 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4479 			 u32 flow_id, u16 filter_id)
4480 {
4481 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4482 	struct rps_dev_flow_table *flow_table;
4483 	struct rps_dev_flow *rflow;
4484 	bool expire = true;
4485 	unsigned int cpu;
4486 
4487 	rcu_read_lock();
4488 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4489 	if (flow_table && flow_id <= flow_table->mask) {
4490 		rflow = &flow_table->flows[flow_id];
4491 		cpu = READ_ONCE(rflow->cpu);
4492 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4493 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4494 			   rflow->last_qtail) <
4495 		     (int)(10 * flow_table->mask)))
4496 			expire = false;
4497 	}
4498 	rcu_read_unlock();
4499 	return expire;
4500 }
4501 EXPORT_SYMBOL(rps_may_expire_flow);
4502 
4503 #endif /* CONFIG_RFS_ACCEL */
4504 
4505 /* Called from hardirq (IPI) context */
4506 static void rps_trigger_softirq(void *data)
4507 {
4508 	struct softnet_data *sd = data;
4509 
4510 	____napi_schedule(sd, &sd->backlog);
4511 	sd->received_rps++;
4512 }
4513 
4514 #endif /* CONFIG_RPS */
4515 
4516 /*
4517  * Check if this softnet_data structure is another cpu one
4518  * If yes, queue it to our IPI list and return 1
4519  * If no, return 0
4520  */
4521 static int napi_schedule_rps(struct softnet_data *sd)
4522 {
4523 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4524 
4525 #ifdef CONFIG_RPS
4526 	if (sd != mysd) {
4527 		sd->rps_ipi_next = mysd->rps_ipi_list;
4528 		mysd->rps_ipi_list = sd;
4529 
4530 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4531 		return 1;
4532 	}
4533 #endif /* CONFIG_RPS */
4534 	__napi_schedule_irqoff(&mysd->backlog);
4535 	return 0;
4536 }
4537 
4538 #ifdef CONFIG_NET_FLOW_LIMIT
4539 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4540 #endif
4541 
4542 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4543 {
4544 #ifdef CONFIG_NET_FLOW_LIMIT
4545 	struct sd_flow_limit *fl;
4546 	struct softnet_data *sd;
4547 	unsigned int old_flow, new_flow;
4548 
4549 	if (qlen < (netdev_max_backlog >> 1))
4550 		return false;
4551 
4552 	sd = this_cpu_ptr(&softnet_data);
4553 
4554 	rcu_read_lock();
4555 	fl = rcu_dereference(sd->flow_limit);
4556 	if (fl) {
4557 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4558 		old_flow = fl->history[fl->history_head];
4559 		fl->history[fl->history_head] = new_flow;
4560 
4561 		fl->history_head++;
4562 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4563 
4564 		if (likely(fl->buckets[old_flow]))
4565 			fl->buckets[old_flow]--;
4566 
4567 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4568 			fl->count++;
4569 			rcu_read_unlock();
4570 			return true;
4571 		}
4572 	}
4573 	rcu_read_unlock();
4574 #endif
4575 	return false;
4576 }
4577 
4578 /*
4579  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4580  * queue (may be a remote CPU queue).
4581  */
4582 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4583 			      unsigned int *qtail)
4584 {
4585 	enum skb_drop_reason reason;
4586 	struct softnet_data *sd;
4587 	unsigned long flags;
4588 	unsigned int qlen;
4589 
4590 	reason = SKB_DROP_REASON_NOT_SPECIFIED;
4591 	sd = &per_cpu(softnet_data, cpu);
4592 
4593 	rps_lock_irqsave(sd, &flags);
4594 	if (!netif_running(skb->dev))
4595 		goto drop;
4596 	qlen = skb_queue_len(&sd->input_pkt_queue);
4597 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4598 		if (qlen) {
4599 enqueue:
4600 			__skb_queue_tail(&sd->input_pkt_queue, skb);
4601 			input_queue_tail_incr_save(sd, qtail);
4602 			rps_unlock_irq_restore(sd, &flags);
4603 			return NET_RX_SUCCESS;
4604 		}
4605 
4606 		/* Schedule NAPI for backlog device
4607 		 * We can use non atomic operation since we own the queue lock
4608 		 */
4609 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4610 			napi_schedule_rps(sd);
4611 		goto enqueue;
4612 	}
4613 	reason = SKB_DROP_REASON_CPU_BACKLOG;
4614 
4615 drop:
4616 	sd->dropped++;
4617 	rps_unlock_irq_restore(sd, &flags);
4618 
4619 	dev_core_stats_rx_dropped_inc(skb->dev);
4620 	kfree_skb_reason(skb, reason);
4621 	return NET_RX_DROP;
4622 }
4623 
4624 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4625 {
4626 	struct net_device *dev = skb->dev;
4627 	struct netdev_rx_queue *rxqueue;
4628 
4629 	rxqueue = dev->_rx;
4630 
4631 	if (skb_rx_queue_recorded(skb)) {
4632 		u16 index = skb_get_rx_queue(skb);
4633 
4634 		if (unlikely(index >= dev->real_num_rx_queues)) {
4635 			WARN_ONCE(dev->real_num_rx_queues > 1,
4636 				  "%s received packet on queue %u, but number "
4637 				  "of RX queues is %u\n",
4638 				  dev->name, index, dev->real_num_rx_queues);
4639 
4640 			return rxqueue; /* Return first rxqueue */
4641 		}
4642 		rxqueue += index;
4643 	}
4644 	return rxqueue;
4645 }
4646 
4647 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4648 			     struct bpf_prog *xdp_prog)
4649 {
4650 	void *orig_data, *orig_data_end, *hard_start;
4651 	struct netdev_rx_queue *rxqueue;
4652 	bool orig_bcast, orig_host;
4653 	u32 mac_len, frame_sz;
4654 	__be16 orig_eth_type;
4655 	struct ethhdr *eth;
4656 	u32 metalen, act;
4657 	int off;
4658 
4659 	/* The XDP program wants to see the packet starting at the MAC
4660 	 * header.
4661 	 */
4662 	mac_len = skb->data - skb_mac_header(skb);
4663 	hard_start = skb->data - skb_headroom(skb);
4664 
4665 	/* SKB "head" area always have tailroom for skb_shared_info */
4666 	frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4667 	frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4668 
4669 	rxqueue = netif_get_rxqueue(skb);
4670 	xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4671 	xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4672 			 skb_headlen(skb) + mac_len, true);
4673 
4674 	orig_data_end = xdp->data_end;
4675 	orig_data = xdp->data;
4676 	eth = (struct ethhdr *)xdp->data;
4677 	orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4678 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4679 	orig_eth_type = eth->h_proto;
4680 
4681 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4682 
4683 	/* check if bpf_xdp_adjust_head was used */
4684 	off = xdp->data - orig_data;
4685 	if (off) {
4686 		if (off > 0)
4687 			__skb_pull(skb, off);
4688 		else if (off < 0)
4689 			__skb_push(skb, -off);
4690 
4691 		skb->mac_header += off;
4692 		skb_reset_network_header(skb);
4693 	}
4694 
4695 	/* check if bpf_xdp_adjust_tail was used */
4696 	off = xdp->data_end - orig_data_end;
4697 	if (off != 0) {
4698 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4699 		skb->len += off; /* positive on grow, negative on shrink */
4700 	}
4701 
4702 	/* check if XDP changed eth hdr such SKB needs update */
4703 	eth = (struct ethhdr *)xdp->data;
4704 	if ((orig_eth_type != eth->h_proto) ||
4705 	    (orig_host != ether_addr_equal_64bits(eth->h_dest,
4706 						  skb->dev->dev_addr)) ||
4707 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4708 		__skb_push(skb, ETH_HLEN);
4709 		skb->pkt_type = PACKET_HOST;
4710 		skb->protocol = eth_type_trans(skb, skb->dev);
4711 	}
4712 
4713 	/* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4714 	 * before calling us again on redirect path. We do not call do_redirect
4715 	 * as we leave that up to the caller.
4716 	 *
4717 	 * Caller is responsible for managing lifetime of skb (i.e. calling
4718 	 * kfree_skb in response to actions it cannot handle/XDP_DROP).
4719 	 */
4720 	switch (act) {
4721 	case XDP_REDIRECT:
4722 	case XDP_TX:
4723 		__skb_push(skb, mac_len);
4724 		break;
4725 	case XDP_PASS:
4726 		metalen = xdp->data - xdp->data_meta;
4727 		if (metalen)
4728 			skb_metadata_set(skb, metalen);
4729 		break;
4730 	}
4731 
4732 	return act;
4733 }
4734 
4735 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4736 				     struct xdp_buff *xdp,
4737 				     struct bpf_prog *xdp_prog)
4738 {
4739 	u32 act = XDP_DROP;
4740 
4741 	/* Reinjected packets coming from act_mirred or similar should
4742 	 * not get XDP generic processing.
4743 	 */
4744 	if (skb_is_redirected(skb))
4745 		return XDP_PASS;
4746 
4747 	/* XDP packets must be linear and must have sufficient headroom
4748 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4749 	 * native XDP provides, thus we need to do it here as well.
4750 	 */
4751 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4752 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4753 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4754 		int troom = skb->tail + skb->data_len - skb->end;
4755 
4756 		/* In case we have to go down the path and also linearize,
4757 		 * then lets do the pskb_expand_head() work just once here.
4758 		 */
4759 		if (pskb_expand_head(skb,
4760 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4761 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4762 			goto do_drop;
4763 		if (skb_linearize(skb))
4764 			goto do_drop;
4765 	}
4766 
4767 	act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4768 	switch (act) {
4769 	case XDP_REDIRECT:
4770 	case XDP_TX:
4771 	case XDP_PASS:
4772 		break;
4773 	default:
4774 		bpf_warn_invalid_xdp_action(skb->dev, xdp_prog, act);
4775 		fallthrough;
4776 	case XDP_ABORTED:
4777 		trace_xdp_exception(skb->dev, xdp_prog, act);
4778 		fallthrough;
4779 	case XDP_DROP:
4780 	do_drop:
4781 		kfree_skb(skb);
4782 		break;
4783 	}
4784 
4785 	return act;
4786 }
4787 
4788 /* When doing generic XDP we have to bypass the qdisc layer and the
4789  * network taps in order to match in-driver-XDP behavior.
4790  */
4791 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4792 {
4793 	struct net_device *dev = skb->dev;
4794 	struct netdev_queue *txq;
4795 	bool free_skb = true;
4796 	int cpu, rc;
4797 
4798 	txq = netdev_core_pick_tx(dev, skb, NULL);
4799 	cpu = smp_processor_id();
4800 	HARD_TX_LOCK(dev, txq, cpu);
4801 	if (!netif_xmit_stopped(txq)) {
4802 		rc = netdev_start_xmit(skb, dev, txq, 0);
4803 		if (dev_xmit_complete(rc))
4804 			free_skb = false;
4805 	}
4806 	HARD_TX_UNLOCK(dev, txq);
4807 	if (free_skb) {
4808 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
4809 		kfree_skb(skb);
4810 	}
4811 }
4812 
4813 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4814 
4815 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4816 {
4817 	if (xdp_prog) {
4818 		struct xdp_buff xdp;
4819 		u32 act;
4820 		int err;
4821 
4822 		act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4823 		if (act != XDP_PASS) {
4824 			switch (act) {
4825 			case XDP_REDIRECT:
4826 				err = xdp_do_generic_redirect(skb->dev, skb,
4827 							      &xdp, xdp_prog);
4828 				if (err)
4829 					goto out_redir;
4830 				break;
4831 			case XDP_TX:
4832 				generic_xdp_tx(skb, xdp_prog);
4833 				break;
4834 			}
4835 			return XDP_DROP;
4836 		}
4837 	}
4838 	return XDP_PASS;
4839 out_redir:
4840 	kfree_skb_reason(skb, SKB_DROP_REASON_XDP);
4841 	return XDP_DROP;
4842 }
4843 EXPORT_SYMBOL_GPL(do_xdp_generic);
4844 
4845 static int netif_rx_internal(struct sk_buff *skb)
4846 {
4847 	int ret;
4848 
4849 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4850 
4851 	trace_netif_rx(skb);
4852 
4853 #ifdef CONFIG_RPS
4854 	if (static_branch_unlikely(&rps_needed)) {
4855 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4856 		int cpu;
4857 
4858 		rcu_read_lock();
4859 
4860 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
4861 		if (cpu < 0)
4862 			cpu = smp_processor_id();
4863 
4864 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4865 
4866 		rcu_read_unlock();
4867 	} else
4868 #endif
4869 	{
4870 		unsigned int qtail;
4871 
4872 		ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
4873 	}
4874 	return ret;
4875 }
4876 
4877 /**
4878  *	__netif_rx	-	Slightly optimized version of netif_rx
4879  *	@skb: buffer to post
4880  *
4881  *	This behaves as netif_rx except that it does not disable bottom halves.
4882  *	As a result this function may only be invoked from the interrupt context
4883  *	(either hard or soft interrupt).
4884  */
4885 int __netif_rx(struct sk_buff *skb)
4886 {
4887 	int ret;
4888 
4889 	lockdep_assert_once(hardirq_count() | softirq_count());
4890 
4891 	trace_netif_rx_entry(skb);
4892 	ret = netif_rx_internal(skb);
4893 	trace_netif_rx_exit(ret);
4894 	return ret;
4895 }
4896 EXPORT_SYMBOL(__netif_rx);
4897 
4898 /**
4899  *	netif_rx	-	post buffer to the network code
4900  *	@skb: buffer to post
4901  *
4902  *	This function receives a packet from a device driver and queues it for
4903  *	the upper (protocol) levels to process via the backlog NAPI device. It
4904  *	always succeeds. The buffer may be dropped during processing for
4905  *	congestion control or by the protocol layers.
4906  *	The network buffer is passed via the backlog NAPI device. Modern NIC
4907  *	driver should use NAPI and GRO.
4908  *	This function can used from interrupt and from process context. The
4909  *	caller from process context must not disable interrupts before invoking
4910  *	this function.
4911  *
4912  *	return values:
4913  *	NET_RX_SUCCESS	(no congestion)
4914  *	NET_RX_DROP     (packet was dropped)
4915  *
4916  */
4917 int netif_rx(struct sk_buff *skb)
4918 {
4919 	bool need_bh_off = !(hardirq_count() | softirq_count());
4920 	int ret;
4921 
4922 	if (need_bh_off)
4923 		local_bh_disable();
4924 	trace_netif_rx_entry(skb);
4925 	ret = netif_rx_internal(skb);
4926 	trace_netif_rx_exit(ret);
4927 	if (need_bh_off)
4928 		local_bh_enable();
4929 	return ret;
4930 }
4931 EXPORT_SYMBOL(netif_rx);
4932 
4933 static __latent_entropy void net_tx_action(struct softirq_action *h)
4934 {
4935 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4936 
4937 	if (sd->completion_queue) {
4938 		struct sk_buff *clist;
4939 
4940 		local_irq_disable();
4941 		clist = sd->completion_queue;
4942 		sd->completion_queue = NULL;
4943 		local_irq_enable();
4944 
4945 		while (clist) {
4946 			struct sk_buff *skb = clist;
4947 
4948 			clist = clist->next;
4949 
4950 			WARN_ON(refcount_read(&skb->users));
4951 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4952 				trace_consume_skb(skb);
4953 			else
4954 				trace_kfree_skb(skb, net_tx_action,
4955 						SKB_DROP_REASON_NOT_SPECIFIED);
4956 
4957 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4958 				__kfree_skb(skb);
4959 			else
4960 				__kfree_skb_defer(skb);
4961 		}
4962 	}
4963 
4964 	if (sd->output_queue) {
4965 		struct Qdisc *head;
4966 
4967 		local_irq_disable();
4968 		head = sd->output_queue;
4969 		sd->output_queue = NULL;
4970 		sd->output_queue_tailp = &sd->output_queue;
4971 		local_irq_enable();
4972 
4973 		rcu_read_lock();
4974 
4975 		while (head) {
4976 			struct Qdisc *q = head;
4977 			spinlock_t *root_lock = NULL;
4978 
4979 			head = head->next_sched;
4980 
4981 			/* We need to make sure head->next_sched is read
4982 			 * before clearing __QDISC_STATE_SCHED
4983 			 */
4984 			smp_mb__before_atomic();
4985 
4986 			if (!(q->flags & TCQ_F_NOLOCK)) {
4987 				root_lock = qdisc_lock(q);
4988 				spin_lock(root_lock);
4989 			} else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
4990 						     &q->state))) {
4991 				/* There is a synchronize_net() between
4992 				 * STATE_DEACTIVATED flag being set and
4993 				 * qdisc_reset()/some_qdisc_is_busy() in
4994 				 * dev_deactivate(), so we can safely bail out
4995 				 * early here to avoid data race between
4996 				 * qdisc_deactivate() and some_qdisc_is_busy()
4997 				 * for lockless qdisc.
4998 				 */
4999 				clear_bit(__QDISC_STATE_SCHED, &q->state);
5000 				continue;
5001 			}
5002 
5003 			clear_bit(__QDISC_STATE_SCHED, &q->state);
5004 			qdisc_run(q);
5005 			if (root_lock)
5006 				spin_unlock(root_lock);
5007 		}
5008 
5009 		rcu_read_unlock();
5010 	}
5011 
5012 	xfrm_dev_backlog(sd);
5013 }
5014 
5015 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5016 /* This hook is defined here for ATM LANE */
5017 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5018 			     unsigned char *addr) __read_mostly;
5019 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5020 #endif
5021 
5022 static inline struct sk_buff *
5023 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
5024 		   struct net_device *orig_dev, bool *another)
5025 {
5026 #ifdef CONFIG_NET_CLS_ACT
5027 	struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
5028 	struct tcf_result cl_res;
5029 
5030 	/* If there's at least one ingress present somewhere (so
5031 	 * we get here via enabled static key), remaining devices
5032 	 * that are not configured with an ingress qdisc will bail
5033 	 * out here.
5034 	 */
5035 	if (!miniq)
5036 		return skb;
5037 
5038 	if (*pt_prev) {
5039 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
5040 		*pt_prev = NULL;
5041 	}
5042 
5043 	qdisc_skb_cb(skb)->pkt_len = skb->len;
5044 	tc_skb_cb(skb)->mru = 0;
5045 	tc_skb_cb(skb)->post_ct = false;
5046 	skb->tc_at_ingress = 1;
5047 	mini_qdisc_bstats_cpu_update(miniq, skb);
5048 
5049 	switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
5050 	case TC_ACT_OK:
5051 	case TC_ACT_RECLASSIFY:
5052 		skb->tc_index = TC_H_MIN(cl_res.classid);
5053 		break;
5054 	case TC_ACT_SHOT:
5055 		mini_qdisc_qstats_cpu_drop(miniq);
5056 		kfree_skb_reason(skb, SKB_DROP_REASON_TC_INGRESS);
5057 		return NULL;
5058 	case TC_ACT_STOLEN:
5059 	case TC_ACT_QUEUED:
5060 	case TC_ACT_TRAP:
5061 		consume_skb(skb);
5062 		return NULL;
5063 	case TC_ACT_REDIRECT:
5064 		/* skb_mac_header check was done by cls/act_bpf, so
5065 		 * we can safely push the L2 header back before
5066 		 * redirecting to another netdev
5067 		 */
5068 		__skb_push(skb, skb->mac_len);
5069 		if (skb_do_redirect(skb) == -EAGAIN) {
5070 			__skb_pull(skb, skb->mac_len);
5071 			*another = true;
5072 			break;
5073 		}
5074 		return NULL;
5075 	case TC_ACT_CONSUMED:
5076 		return NULL;
5077 	default:
5078 		break;
5079 	}
5080 #endif /* CONFIG_NET_CLS_ACT */
5081 	return skb;
5082 }
5083 
5084 /**
5085  *	netdev_is_rx_handler_busy - check if receive handler is registered
5086  *	@dev: device to check
5087  *
5088  *	Check if a receive handler is already registered for a given device.
5089  *	Return true if there one.
5090  *
5091  *	The caller must hold the rtnl_mutex.
5092  */
5093 bool netdev_is_rx_handler_busy(struct net_device *dev)
5094 {
5095 	ASSERT_RTNL();
5096 	return dev && rtnl_dereference(dev->rx_handler);
5097 }
5098 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5099 
5100 /**
5101  *	netdev_rx_handler_register - register receive handler
5102  *	@dev: device to register a handler for
5103  *	@rx_handler: receive handler to register
5104  *	@rx_handler_data: data pointer that is used by rx handler
5105  *
5106  *	Register a receive handler for a device. This handler will then be
5107  *	called from __netif_receive_skb. A negative errno code is returned
5108  *	on a failure.
5109  *
5110  *	The caller must hold the rtnl_mutex.
5111  *
5112  *	For a general description of rx_handler, see enum rx_handler_result.
5113  */
5114 int netdev_rx_handler_register(struct net_device *dev,
5115 			       rx_handler_func_t *rx_handler,
5116 			       void *rx_handler_data)
5117 {
5118 	if (netdev_is_rx_handler_busy(dev))
5119 		return -EBUSY;
5120 
5121 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
5122 		return -EINVAL;
5123 
5124 	/* Note: rx_handler_data must be set before rx_handler */
5125 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5126 	rcu_assign_pointer(dev->rx_handler, rx_handler);
5127 
5128 	return 0;
5129 }
5130 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5131 
5132 /**
5133  *	netdev_rx_handler_unregister - unregister receive handler
5134  *	@dev: device to unregister a handler from
5135  *
5136  *	Unregister a receive handler from a device.
5137  *
5138  *	The caller must hold the rtnl_mutex.
5139  */
5140 void netdev_rx_handler_unregister(struct net_device *dev)
5141 {
5142 
5143 	ASSERT_RTNL();
5144 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5145 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5146 	 * section has a guarantee to see a non NULL rx_handler_data
5147 	 * as well.
5148 	 */
5149 	synchronize_net();
5150 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5151 }
5152 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5153 
5154 /*
5155  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5156  * the special handling of PFMEMALLOC skbs.
5157  */
5158 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5159 {
5160 	switch (skb->protocol) {
5161 	case htons(ETH_P_ARP):
5162 	case htons(ETH_P_IP):
5163 	case htons(ETH_P_IPV6):
5164 	case htons(ETH_P_8021Q):
5165 	case htons(ETH_P_8021AD):
5166 		return true;
5167 	default:
5168 		return false;
5169 	}
5170 }
5171 
5172 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5173 			     int *ret, struct net_device *orig_dev)
5174 {
5175 	if (nf_hook_ingress_active(skb)) {
5176 		int ingress_retval;
5177 
5178 		if (*pt_prev) {
5179 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5180 			*pt_prev = NULL;
5181 		}
5182 
5183 		rcu_read_lock();
5184 		ingress_retval = nf_hook_ingress(skb);
5185 		rcu_read_unlock();
5186 		return ingress_retval;
5187 	}
5188 	return 0;
5189 }
5190 
5191 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5192 				    struct packet_type **ppt_prev)
5193 {
5194 	struct packet_type *ptype, *pt_prev;
5195 	rx_handler_func_t *rx_handler;
5196 	struct sk_buff *skb = *pskb;
5197 	struct net_device *orig_dev;
5198 	bool deliver_exact = false;
5199 	int ret = NET_RX_DROP;
5200 	__be16 type;
5201 
5202 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
5203 
5204 	trace_netif_receive_skb(skb);
5205 
5206 	orig_dev = skb->dev;
5207 
5208 	skb_reset_network_header(skb);
5209 	if (!skb_transport_header_was_set(skb))
5210 		skb_reset_transport_header(skb);
5211 	skb_reset_mac_len(skb);
5212 
5213 	pt_prev = NULL;
5214 
5215 another_round:
5216 	skb->skb_iif = skb->dev->ifindex;
5217 
5218 	__this_cpu_inc(softnet_data.processed);
5219 
5220 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5221 		int ret2;
5222 
5223 		migrate_disable();
5224 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5225 		migrate_enable();
5226 
5227 		if (ret2 != XDP_PASS) {
5228 			ret = NET_RX_DROP;
5229 			goto out;
5230 		}
5231 	}
5232 
5233 	if (eth_type_vlan(skb->protocol)) {
5234 		skb = skb_vlan_untag(skb);
5235 		if (unlikely(!skb))
5236 			goto out;
5237 	}
5238 
5239 	if (skb_skip_tc_classify(skb))
5240 		goto skip_classify;
5241 
5242 	if (pfmemalloc)
5243 		goto skip_taps;
5244 
5245 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
5246 		if (pt_prev)
5247 			ret = deliver_skb(skb, pt_prev, orig_dev);
5248 		pt_prev = ptype;
5249 	}
5250 
5251 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5252 		if (pt_prev)
5253 			ret = deliver_skb(skb, pt_prev, orig_dev);
5254 		pt_prev = ptype;
5255 	}
5256 
5257 skip_taps:
5258 #ifdef CONFIG_NET_INGRESS
5259 	if (static_branch_unlikely(&ingress_needed_key)) {
5260 		bool another = false;
5261 
5262 		nf_skip_egress(skb, true);
5263 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5264 					 &another);
5265 		if (another)
5266 			goto another_round;
5267 		if (!skb)
5268 			goto out;
5269 
5270 		nf_skip_egress(skb, false);
5271 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5272 			goto out;
5273 	}
5274 #endif
5275 	skb_reset_redirect(skb);
5276 skip_classify:
5277 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5278 		goto drop;
5279 
5280 	if (skb_vlan_tag_present(skb)) {
5281 		if (pt_prev) {
5282 			ret = deliver_skb(skb, pt_prev, orig_dev);
5283 			pt_prev = NULL;
5284 		}
5285 		if (vlan_do_receive(&skb))
5286 			goto another_round;
5287 		else if (unlikely(!skb))
5288 			goto out;
5289 	}
5290 
5291 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5292 	if (rx_handler) {
5293 		if (pt_prev) {
5294 			ret = deliver_skb(skb, pt_prev, orig_dev);
5295 			pt_prev = NULL;
5296 		}
5297 		switch (rx_handler(&skb)) {
5298 		case RX_HANDLER_CONSUMED:
5299 			ret = NET_RX_SUCCESS;
5300 			goto out;
5301 		case RX_HANDLER_ANOTHER:
5302 			goto another_round;
5303 		case RX_HANDLER_EXACT:
5304 			deliver_exact = true;
5305 			break;
5306 		case RX_HANDLER_PASS:
5307 			break;
5308 		default:
5309 			BUG();
5310 		}
5311 	}
5312 
5313 	if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5314 check_vlan_id:
5315 		if (skb_vlan_tag_get_id(skb)) {
5316 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5317 			 * find vlan device.
5318 			 */
5319 			skb->pkt_type = PACKET_OTHERHOST;
5320 		} else if (eth_type_vlan(skb->protocol)) {
5321 			/* Outer header is 802.1P with vlan 0, inner header is
5322 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5323 			 * not find vlan dev for vlan id 0.
5324 			 */
5325 			__vlan_hwaccel_clear_tag(skb);
5326 			skb = skb_vlan_untag(skb);
5327 			if (unlikely(!skb))
5328 				goto out;
5329 			if (vlan_do_receive(&skb))
5330 				/* After stripping off 802.1P header with vlan 0
5331 				 * vlan dev is found for inner header.
5332 				 */
5333 				goto another_round;
5334 			else if (unlikely(!skb))
5335 				goto out;
5336 			else
5337 				/* We have stripped outer 802.1P vlan 0 header.
5338 				 * But could not find vlan dev.
5339 				 * check again for vlan id to set OTHERHOST.
5340 				 */
5341 				goto check_vlan_id;
5342 		}
5343 		/* Note: we might in the future use prio bits
5344 		 * and set skb->priority like in vlan_do_receive()
5345 		 * For the time being, just ignore Priority Code Point
5346 		 */
5347 		__vlan_hwaccel_clear_tag(skb);
5348 	}
5349 
5350 	type = skb->protocol;
5351 
5352 	/* deliver only exact match when indicated */
5353 	if (likely(!deliver_exact)) {
5354 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5355 				       &ptype_base[ntohs(type) &
5356 						   PTYPE_HASH_MASK]);
5357 	}
5358 
5359 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5360 			       &orig_dev->ptype_specific);
5361 
5362 	if (unlikely(skb->dev != orig_dev)) {
5363 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5364 				       &skb->dev->ptype_specific);
5365 	}
5366 
5367 	if (pt_prev) {
5368 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5369 			goto drop;
5370 		*ppt_prev = pt_prev;
5371 	} else {
5372 drop:
5373 		if (!deliver_exact) {
5374 			dev_core_stats_rx_dropped_inc(skb->dev);
5375 			kfree_skb_reason(skb, SKB_DROP_REASON_PTYPE_ABSENT);
5376 		} else {
5377 			dev_core_stats_rx_nohandler_inc(skb->dev);
5378 			kfree_skb(skb);
5379 		}
5380 		/* Jamal, now you will not able to escape explaining
5381 		 * me how you were going to use this. :-)
5382 		 */
5383 		ret = NET_RX_DROP;
5384 	}
5385 
5386 out:
5387 	/* The invariant here is that if *ppt_prev is not NULL
5388 	 * then skb should also be non-NULL.
5389 	 *
5390 	 * Apparently *ppt_prev assignment above holds this invariant due to
5391 	 * skb dereferencing near it.
5392 	 */
5393 	*pskb = skb;
5394 	return ret;
5395 }
5396 
5397 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5398 {
5399 	struct net_device *orig_dev = skb->dev;
5400 	struct packet_type *pt_prev = NULL;
5401 	int ret;
5402 
5403 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5404 	if (pt_prev)
5405 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5406 					 skb->dev, pt_prev, orig_dev);
5407 	return ret;
5408 }
5409 
5410 /**
5411  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5412  *	@skb: buffer to process
5413  *
5414  *	More direct receive version of netif_receive_skb().  It should
5415  *	only be used by callers that have a need to skip RPS and Generic XDP.
5416  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5417  *
5418  *	This function may only be called from softirq context and interrupts
5419  *	should be enabled.
5420  *
5421  *	Return values (usually ignored):
5422  *	NET_RX_SUCCESS: no congestion
5423  *	NET_RX_DROP: packet was dropped
5424  */
5425 int netif_receive_skb_core(struct sk_buff *skb)
5426 {
5427 	int ret;
5428 
5429 	rcu_read_lock();
5430 	ret = __netif_receive_skb_one_core(skb, false);
5431 	rcu_read_unlock();
5432 
5433 	return ret;
5434 }
5435 EXPORT_SYMBOL(netif_receive_skb_core);
5436 
5437 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5438 						  struct packet_type *pt_prev,
5439 						  struct net_device *orig_dev)
5440 {
5441 	struct sk_buff *skb, *next;
5442 
5443 	if (!pt_prev)
5444 		return;
5445 	if (list_empty(head))
5446 		return;
5447 	if (pt_prev->list_func != NULL)
5448 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5449 				   ip_list_rcv, head, pt_prev, orig_dev);
5450 	else
5451 		list_for_each_entry_safe(skb, next, head, list) {
5452 			skb_list_del_init(skb);
5453 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5454 		}
5455 }
5456 
5457 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5458 {
5459 	/* Fast-path assumptions:
5460 	 * - There is no RX handler.
5461 	 * - Only one packet_type matches.
5462 	 * If either of these fails, we will end up doing some per-packet
5463 	 * processing in-line, then handling the 'last ptype' for the whole
5464 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5465 	 * because the 'last ptype' must be constant across the sublist, and all
5466 	 * other ptypes are handled per-packet.
5467 	 */
5468 	/* Current (common) ptype of sublist */
5469 	struct packet_type *pt_curr = NULL;
5470 	/* Current (common) orig_dev of sublist */
5471 	struct net_device *od_curr = NULL;
5472 	struct list_head sublist;
5473 	struct sk_buff *skb, *next;
5474 
5475 	INIT_LIST_HEAD(&sublist);
5476 	list_for_each_entry_safe(skb, next, head, list) {
5477 		struct net_device *orig_dev = skb->dev;
5478 		struct packet_type *pt_prev = NULL;
5479 
5480 		skb_list_del_init(skb);
5481 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5482 		if (!pt_prev)
5483 			continue;
5484 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5485 			/* dispatch old sublist */
5486 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5487 			/* start new sublist */
5488 			INIT_LIST_HEAD(&sublist);
5489 			pt_curr = pt_prev;
5490 			od_curr = orig_dev;
5491 		}
5492 		list_add_tail(&skb->list, &sublist);
5493 	}
5494 
5495 	/* dispatch final sublist */
5496 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5497 }
5498 
5499 static int __netif_receive_skb(struct sk_buff *skb)
5500 {
5501 	int ret;
5502 
5503 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5504 		unsigned int noreclaim_flag;
5505 
5506 		/*
5507 		 * PFMEMALLOC skbs are special, they should
5508 		 * - be delivered to SOCK_MEMALLOC sockets only
5509 		 * - stay away from userspace
5510 		 * - have bounded memory usage
5511 		 *
5512 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5513 		 * context down to all allocation sites.
5514 		 */
5515 		noreclaim_flag = memalloc_noreclaim_save();
5516 		ret = __netif_receive_skb_one_core(skb, true);
5517 		memalloc_noreclaim_restore(noreclaim_flag);
5518 	} else
5519 		ret = __netif_receive_skb_one_core(skb, false);
5520 
5521 	return ret;
5522 }
5523 
5524 static void __netif_receive_skb_list(struct list_head *head)
5525 {
5526 	unsigned long noreclaim_flag = 0;
5527 	struct sk_buff *skb, *next;
5528 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5529 
5530 	list_for_each_entry_safe(skb, next, head, list) {
5531 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5532 			struct list_head sublist;
5533 
5534 			/* Handle the previous sublist */
5535 			list_cut_before(&sublist, head, &skb->list);
5536 			if (!list_empty(&sublist))
5537 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5538 			pfmemalloc = !pfmemalloc;
5539 			/* See comments in __netif_receive_skb */
5540 			if (pfmemalloc)
5541 				noreclaim_flag = memalloc_noreclaim_save();
5542 			else
5543 				memalloc_noreclaim_restore(noreclaim_flag);
5544 		}
5545 	}
5546 	/* Handle the remaining sublist */
5547 	if (!list_empty(head))
5548 		__netif_receive_skb_list_core(head, pfmemalloc);
5549 	/* Restore pflags */
5550 	if (pfmemalloc)
5551 		memalloc_noreclaim_restore(noreclaim_flag);
5552 }
5553 
5554 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5555 {
5556 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5557 	struct bpf_prog *new = xdp->prog;
5558 	int ret = 0;
5559 
5560 	switch (xdp->command) {
5561 	case XDP_SETUP_PROG:
5562 		rcu_assign_pointer(dev->xdp_prog, new);
5563 		if (old)
5564 			bpf_prog_put(old);
5565 
5566 		if (old && !new) {
5567 			static_branch_dec(&generic_xdp_needed_key);
5568 		} else if (new && !old) {
5569 			static_branch_inc(&generic_xdp_needed_key);
5570 			dev_disable_lro(dev);
5571 			dev_disable_gro_hw(dev);
5572 		}
5573 		break;
5574 
5575 	default:
5576 		ret = -EINVAL;
5577 		break;
5578 	}
5579 
5580 	return ret;
5581 }
5582 
5583 static int netif_receive_skb_internal(struct sk_buff *skb)
5584 {
5585 	int ret;
5586 
5587 	net_timestamp_check(netdev_tstamp_prequeue, skb);
5588 
5589 	if (skb_defer_rx_timestamp(skb))
5590 		return NET_RX_SUCCESS;
5591 
5592 	rcu_read_lock();
5593 #ifdef CONFIG_RPS
5594 	if (static_branch_unlikely(&rps_needed)) {
5595 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5596 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5597 
5598 		if (cpu >= 0) {
5599 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5600 			rcu_read_unlock();
5601 			return ret;
5602 		}
5603 	}
5604 #endif
5605 	ret = __netif_receive_skb(skb);
5606 	rcu_read_unlock();
5607 	return ret;
5608 }
5609 
5610 void netif_receive_skb_list_internal(struct list_head *head)
5611 {
5612 	struct sk_buff *skb, *next;
5613 	struct list_head sublist;
5614 
5615 	INIT_LIST_HEAD(&sublist);
5616 	list_for_each_entry_safe(skb, next, head, list) {
5617 		net_timestamp_check(netdev_tstamp_prequeue, skb);
5618 		skb_list_del_init(skb);
5619 		if (!skb_defer_rx_timestamp(skb))
5620 			list_add_tail(&skb->list, &sublist);
5621 	}
5622 	list_splice_init(&sublist, head);
5623 
5624 	rcu_read_lock();
5625 #ifdef CONFIG_RPS
5626 	if (static_branch_unlikely(&rps_needed)) {
5627 		list_for_each_entry_safe(skb, next, head, list) {
5628 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5629 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5630 
5631 			if (cpu >= 0) {
5632 				/* Will be handled, remove from list */
5633 				skb_list_del_init(skb);
5634 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5635 			}
5636 		}
5637 	}
5638 #endif
5639 	__netif_receive_skb_list(head);
5640 	rcu_read_unlock();
5641 }
5642 
5643 /**
5644  *	netif_receive_skb - process receive buffer from network
5645  *	@skb: buffer to process
5646  *
5647  *	netif_receive_skb() is the main receive data processing function.
5648  *	It always succeeds. The buffer may be dropped during processing
5649  *	for congestion control or by the protocol layers.
5650  *
5651  *	This function may only be called from softirq context and interrupts
5652  *	should be enabled.
5653  *
5654  *	Return values (usually ignored):
5655  *	NET_RX_SUCCESS: no congestion
5656  *	NET_RX_DROP: packet was dropped
5657  */
5658 int netif_receive_skb(struct sk_buff *skb)
5659 {
5660 	int ret;
5661 
5662 	trace_netif_receive_skb_entry(skb);
5663 
5664 	ret = netif_receive_skb_internal(skb);
5665 	trace_netif_receive_skb_exit(ret);
5666 
5667 	return ret;
5668 }
5669 EXPORT_SYMBOL(netif_receive_skb);
5670 
5671 /**
5672  *	netif_receive_skb_list - process many receive buffers from network
5673  *	@head: list of skbs to process.
5674  *
5675  *	Since return value of netif_receive_skb() is normally ignored, and
5676  *	wouldn't be meaningful for a list, this function returns void.
5677  *
5678  *	This function may only be called from softirq context and interrupts
5679  *	should be enabled.
5680  */
5681 void netif_receive_skb_list(struct list_head *head)
5682 {
5683 	struct sk_buff *skb;
5684 
5685 	if (list_empty(head))
5686 		return;
5687 	if (trace_netif_receive_skb_list_entry_enabled()) {
5688 		list_for_each_entry(skb, head, list)
5689 			trace_netif_receive_skb_list_entry(skb);
5690 	}
5691 	netif_receive_skb_list_internal(head);
5692 	trace_netif_receive_skb_list_exit(0);
5693 }
5694 EXPORT_SYMBOL(netif_receive_skb_list);
5695 
5696 static DEFINE_PER_CPU(struct work_struct, flush_works);
5697 
5698 /* Network device is going away, flush any packets still pending */
5699 static void flush_backlog(struct work_struct *work)
5700 {
5701 	struct sk_buff *skb, *tmp;
5702 	struct softnet_data *sd;
5703 
5704 	local_bh_disable();
5705 	sd = this_cpu_ptr(&softnet_data);
5706 
5707 	rps_lock_irq_disable(sd);
5708 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5709 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5710 			__skb_unlink(skb, &sd->input_pkt_queue);
5711 			dev_kfree_skb_irq(skb);
5712 			input_queue_head_incr(sd);
5713 		}
5714 	}
5715 	rps_unlock_irq_enable(sd);
5716 
5717 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5718 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5719 			__skb_unlink(skb, &sd->process_queue);
5720 			kfree_skb(skb);
5721 			input_queue_head_incr(sd);
5722 		}
5723 	}
5724 	local_bh_enable();
5725 }
5726 
5727 static bool flush_required(int cpu)
5728 {
5729 #if IS_ENABLED(CONFIG_RPS)
5730 	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5731 	bool do_flush;
5732 
5733 	rps_lock_irq_disable(sd);
5734 
5735 	/* as insertion into process_queue happens with the rps lock held,
5736 	 * process_queue access may race only with dequeue
5737 	 */
5738 	do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5739 		   !skb_queue_empty_lockless(&sd->process_queue);
5740 	rps_unlock_irq_enable(sd);
5741 
5742 	return do_flush;
5743 #endif
5744 	/* without RPS we can't safely check input_pkt_queue: during a
5745 	 * concurrent remote skb_queue_splice() we can detect as empty both
5746 	 * input_pkt_queue and process_queue even if the latter could end-up
5747 	 * containing a lot of packets.
5748 	 */
5749 	return true;
5750 }
5751 
5752 static void flush_all_backlogs(void)
5753 {
5754 	static cpumask_t flush_cpus;
5755 	unsigned int cpu;
5756 
5757 	/* since we are under rtnl lock protection we can use static data
5758 	 * for the cpumask and avoid allocating on stack the possibly
5759 	 * large mask
5760 	 */
5761 	ASSERT_RTNL();
5762 
5763 	cpus_read_lock();
5764 
5765 	cpumask_clear(&flush_cpus);
5766 	for_each_online_cpu(cpu) {
5767 		if (flush_required(cpu)) {
5768 			queue_work_on(cpu, system_highpri_wq,
5769 				      per_cpu_ptr(&flush_works, cpu));
5770 			cpumask_set_cpu(cpu, &flush_cpus);
5771 		}
5772 	}
5773 
5774 	/* we can have in flight packet[s] on the cpus we are not flushing,
5775 	 * synchronize_net() in unregister_netdevice_many() will take care of
5776 	 * them
5777 	 */
5778 	for_each_cpu(cpu, &flush_cpus)
5779 		flush_work(per_cpu_ptr(&flush_works, cpu));
5780 
5781 	cpus_read_unlock();
5782 }
5783 
5784 static void net_rps_send_ipi(struct softnet_data *remsd)
5785 {
5786 #ifdef CONFIG_RPS
5787 	while (remsd) {
5788 		struct softnet_data *next = remsd->rps_ipi_next;
5789 
5790 		if (cpu_online(remsd->cpu))
5791 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
5792 		remsd = next;
5793 	}
5794 #endif
5795 }
5796 
5797 /*
5798  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5799  * Note: called with local irq disabled, but exits with local irq enabled.
5800  */
5801 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5802 {
5803 #ifdef CONFIG_RPS
5804 	struct softnet_data *remsd = sd->rps_ipi_list;
5805 
5806 	if (remsd) {
5807 		sd->rps_ipi_list = NULL;
5808 
5809 		local_irq_enable();
5810 
5811 		/* Send pending IPI's to kick RPS processing on remote cpus. */
5812 		net_rps_send_ipi(remsd);
5813 	} else
5814 #endif
5815 		local_irq_enable();
5816 }
5817 
5818 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5819 {
5820 #ifdef CONFIG_RPS
5821 	return sd->rps_ipi_list != NULL;
5822 #else
5823 	return false;
5824 #endif
5825 }
5826 
5827 static int process_backlog(struct napi_struct *napi, int quota)
5828 {
5829 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5830 	bool again = true;
5831 	int work = 0;
5832 
5833 	/* Check if we have pending ipi, its better to send them now,
5834 	 * not waiting net_rx_action() end.
5835 	 */
5836 	if (sd_has_rps_ipi_waiting(sd)) {
5837 		local_irq_disable();
5838 		net_rps_action_and_irq_enable(sd);
5839 	}
5840 
5841 	napi->weight = dev_rx_weight;
5842 	while (again) {
5843 		struct sk_buff *skb;
5844 
5845 		while ((skb = __skb_dequeue(&sd->process_queue))) {
5846 			rcu_read_lock();
5847 			__netif_receive_skb(skb);
5848 			rcu_read_unlock();
5849 			input_queue_head_incr(sd);
5850 			if (++work >= quota)
5851 				return work;
5852 
5853 		}
5854 
5855 		rps_lock_irq_disable(sd);
5856 		if (skb_queue_empty(&sd->input_pkt_queue)) {
5857 			/*
5858 			 * Inline a custom version of __napi_complete().
5859 			 * only current cpu owns and manipulates this napi,
5860 			 * and NAPI_STATE_SCHED is the only possible flag set
5861 			 * on backlog.
5862 			 * We can use a plain write instead of clear_bit(),
5863 			 * and we dont need an smp_mb() memory barrier.
5864 			 */
5865 			napi->state = 0;
5866 			again = false;
5867 		} else {
5868 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
5869 						   &sd->process_queue);
5870 		}
5871 		rps_unlock_irq_enable(sd);
5872 	}
5873 
5874 	return work;
5875 }
5876 
5877 /**
5878  * __napi_schedule - schedule for receive
5879  * @n: entry to schedule
5880  *
5881  * The entry's receive function will be scheduled to run.
5882  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5883  */
5884 void __napi_schedule(struct napi_struct *n)
5885 {
5886 	unsigned long flags;
5887 
5888 	local_irq_save(flags);
5889 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
5890 	local_irq_restore(flags);
5891 }
5892 EXPORT_SYMBOL(__napi_schedule);
5893 
5894 /**
5895  *	napi_schedule_prep - check if napi can be scheduled
5896  *	@n: napi context
5897  *
5898  * Test if NAPI routine is already running, and if not mark
5899  * it as running.  This is used as a condition variable to
5900  * insure only one NAPI poll instance runs.  We also make
5901  * sure there is no pending NAPI disable.
5902  */
5903 bool napi_schedule_prep(struct napi_struct *n)
5904 {
5905 	unsigned long val, new;
5906 
5907 	do {
5908 		val = READ_ONCE(n->state);
5909 		if (unlikely(val & NAPIF_STATE_DISABLE))
5910 			return false;
5911 		new = val | NAPIF_STATE_SCHED;
5912 
5913 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
5914 		 * This was suggested by Alexander Duyck, as compiler
5915 		 * emits better code than :
5916 		 * if (val & NAPIF_STATE_SCHED)
5917 		 *     new |= NAPIF_STATE_MISSED;
5918 		 */
5919 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5920 						   NAPIF_STATE_MISSED;
5921 	} while (cmpxchg(&n->state, val, new) != val);
5922 
5923 	return !(val & NAPIF_STATE_SCHED);
5924 }
5925 EXPORT_SYMBOL(napi_schedule_prep);
5926 
5927 /**
5928  * __napi_schedule_irqoff - schedule for receive
5929  * @n: entry to schedule
5930  *
5931  * Variant of __napi_schedule() assuming hard irqs are masked.
5932  *
5933  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
5934  * because the interrupt disabled assumption might not be true
5935  * due to force-threaded interrupts and spinlock substitution.
5936  */
5937 void __napi_schedule_irqoff(struct napi_struct *n)
5938 {
5939 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
5940 		____napi_schedule(this_cpu_ptr(&softnet_data), n);
5941 	else
5942 		__napi_schedule(n);
5943 }
5944 EXPORT_SYMBOL(__napi_schedule_irqoff);
5945 
5946 bool napi_complete_done(struct napi_struct *n, int work_done)
5947 {
5948 	unsigned long flags, val, new, timeout = 0;
5949 	bool ret = true;
5950 
5951 	/*
5952 	 * 1) Don't let napi dequeue from the cpu poll list
5953 	 *    just in case its running on a different cpu.
5954 	 * 2) If we are busy polling, do nothing here, we have
5955 	 *    the guarantee we will be called later.
5956 	 */
5957 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5958 				 NAPIF_STATE_IN_BUSY_POLL)))
5959 		return false;
5960 
5961 	if (work_done) {
5962 		if (n->gro_bitmask)
5963 			timeout = READ_ONCE(n->dev->gro_flush_timeout);
5964 		n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
5965 	}
5966 	if (n->defer_hard_irqs_count > 0) {
5967 		n->defer_hard_irqs_count--;
5968 		timeout = READ_ONCE(n->dev->gro_flush_timeout);
5969 		if (timeout)
5970 			ret = false;
5971 	}
5972 	if (n->gro_bitmask) {
5973 		/* When the NAPI instance uses a timeout and keeps postponing
5974 		 * it, we need to bound somehow the time packets are kept in
5975 		 * the GRO layer
5976 		 */
5977 		napi_gro_flush(n, !!timeout);
5978 	}
5979 
5980 	gro_normal_list(n);
5981 
5982 	if (unlikely(!list_empty(&n->poll_list))) {
5983 		/* If n->poll_list is not empty, we need to mask irqs */
5984 		local_irq_save(flags);
5985 		list_del_init(&n->poll_list);
5986 		local_irq_restore(flags);
5987 	}
5988 
5989 	do {
5990 		val = READ_ONCE(n->state);
5991 
5992 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5993 
5994 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
5995 			      NAPIF_STATE_SCHED_THREADED |
5996 			      NAPIF_STATE_PREFER_BUSY_POLL);
5997 
5998 		/* If STATE_MISSED was set, leave STATE_SCHED set,
5999 		 * because we will call napi->poll() one more time.
6000 		 * This C code was suggested by Alexander Duyck to help gcc.
6001 		 */
6002 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6003 						    NAPIF_STATE_SCHED;
6004 	} while (cmpxchg(&n->state, val, new) != val);
6005 
6006 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6007 		__napi_schedule(n);
6008 		return false;
6009 	}
6010 
6011 	if (timeout)
6012 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
6013 			      HRTIMER_MODE_REL_PINNED);
6014 	return ret;
6015 }
6016 EXPORT_SYMBOL(napi_complete_done);
6017 
6018 /* must be called under rcu_read_lock(), as we dont take a reference */
6019 static struct napi_struct *napi_by_id(unsigned int napi_id)
6020 {
6021 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6022 	struct napi_struct *napi;
6023 
6024 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6025 		if (napi->napi_id == napi_id)
6026 			return napi;
6027 
6028 	return NULL;
6029 }
6030 
6031 #if defined(CONFIG_NET_RX_BUSY_POLL)
6032 
6033 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6034 {
6035 	if (!skip_schedule) {
6036 		gro_normal_list(napi);
6037 		__napi_schedule(napi);
6038 		return;
6039 	}
6040 
6041 	if (napi->gro_bitmask) {
6042 		/* flush too old packets
6043 		 * If HZ < 1000, flush all packets.
6044 		 */
6045 		napi_gro_flush(napi, HZ >= 1000);
6046 	}
6047 
6048 	gro_normal_list(napi);
6049 	clear_bit(NAPI_STATE_SCHED, &napi->state);
6050 }
6051 
6052 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6053 			   u16 budget)
6054 {
6055 	bool skip_schedule = false;
6056 	unsigned long timeout;
6057 	int rc;
6058 
6059 	/* Busy polling means there is a high chance device driver hard irq
6060 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6061 	 * set in napi_schedule_prep().
6062 	 * Since we are about to call napi->poll() once more, we can safely
6063 	 * clear NAPI_STATE_MISSED.
6064 	 *
6065 	 * Note: x86 could use a single "lock and ..." instruction
6066 	 * to perform these two clear_bit()
6067 	 */
6068 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6069 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6070 
6071 	local_bh_disable();
6072 
6073 	if (prefer_busy_poll) {
6074 		napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6075 		timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6076 		if (napi->defer_hard_irqs_count && timeout) {
6077 			hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6078 			skip_schedule = true;
6079 		}
6080 	}
6081 
6082 	/* All we really want here is to re-enable device interrupts.
6083 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6084 	 */
6085 	rc = napi->poll(napi, budget);
6086 	/* We can't gro_normal_list() here, because napi->poll() might have
6087 	 * rearmed the napi (napi_complete_done()) in which case it could
6088 	 * already be running on another CPU.
6089 	 */
6090 	trace_napi_poll(napi, rc, budget);
6091 	netpoll_poll_unlock(have_poll_lock);
6092 	if (rc == budget)
6093 		__busy_poll_stop(napi, skip_schedule);
6094 	local_bh_enable();
6095 }
6096 
6097 void napi_busy_loop(unsigned int napi_id,
6098 		    bool (*loop_end)(void *, unsigned long),
6099 		    void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6100 {
6101 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6102 	int (*napi_poll)(struct napi_struct *napi, int budget);
6103 	void *have_poll_lock = NULL;
6104 	struct napi_struct *napi;
6105 
6106 restart:
6107 	napi_poll = NULL;
6108 
6109 	rcu_read_lock();
6110 
6111 	napi = napi_by_id(napi_id);
6112 	if (!napi)
6113 		goto out;
6114 
6115 	preempt_disable();
6116 	for (;;) {
6117 		int work = 0;
6118 
6119 		local_bh_disable();
6120 		if (!napi_poll) {
6121 			unsigned long val = READ_ONCE(napi->state);
6122 
6123 			/* If multiple threads are competing for this napi,
6124 			 * we avoid dirtying napi->state as much as we can.
6125 			 */
6126 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6127 				   NAPIF_STATE_IN_BUSY_POLL)) {
6128 				if (prefer_busy_poll)
6129 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6130 				goto count;
6131 			}
6132 			if (cmpxchg(&napi->state, val,
6133 				    val | NAPIF_STATE_IN_BUSY_POLL |
6134 					  NAPIF_STATE_SCHED) != val) {
6135 				if (prefer_busy_poll)
6136 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6137 				goto count;
6138 			}
6139 			have_poll_lock = netpoll_poll_lock(napi);
6140 			napi_poll = napi->poll;
6141 		}
6142 		work = napi_poll(napi, budget);
6143 		trace_napi_poll(napi, work, budget);
6144 		gro_normal_list(napi);
6145 count:
6146 		if (work > 0)
6147 			__NET_ADD_STATS(dev_net(napi->dev),
6148 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6149 		local_bh_enable();
6150 
6151 		if (!loop_end || loop_end(loop_end_arg, start_time))
6152 			break;
6153 
6154 		if (unlikely(need_resched())) {
6155 			if (napi_poll)
6156 				busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6157 			preempt_enable();
6158 			rcu_read_unlock();
6159 			cond_resched();
6160 			if (loop_end(loop_end_arg, start_time))
6161 				return;
6162 			goto restart;
6163 		}
6164 		cpu_relax();
6165 	}
6166 	if (napi_poll)
6167 		busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6168 	preempt_enable();
6169 out:
6170 	rcu_read_unlock();
6171 }
6172 EXPORT_SYMBOL(napi_busy_loop);
6173 
6174 #endif /* CONFIG_NET_RX_BUSY_POLL */
6175 
6176 static void napi_hash_add(struct napi_struct *napi)
6177 {
6178 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6179 		return;
6180 
6181 	spin_lock(&napi_hash_lock);
6182 
6183 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6184 	do {
6185 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6186 			napi_gen_id = MIN_NAPI_ID;
6187 	} while (napi_by_id(napi_gen_id));
6188 	napi->napi_id = napi_gen_id;
6189 
6190 	hlist_add_head_rcu(&napi->napi_hash_node,
6191 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6192 
6193 	spin_unlock(&napi_hash_lock);
6194 }
6195 
6196 /* Warning : caller is responsible to make sure rcu grace period
6197  * is respected before freeing memory containing @napi
6198  */
6199 static void napi_hash_del(struct napi_struct *napi)
6200 {
6201 	spin_lock(&napi_hash_lock);
6202 
6203 	hlist_del_init_rcu(&napi->napi_hash_node);
6204 
6205 	spin_unlock(&napi_hash_lock);
6206 }
6207 
6208 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6209 {
6210 	struct napi_struct *napi;
6211 
6212 	napi = container_of(timer, struct napi_struct, timer);
6213 
6214 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6215 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6216 	 */
6217 	if (!napi_disable_pending(napi) &&
6218 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6219 		clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6220 		__napi_schedule_irqoff(napi);
6221 	}
6222 
6223 	return HRTIMER_NORESTART;
6224 }
6225 
6226 static void init_gro_hash(struct napi_struct *napi)
6227 {
6228 	int i;
6229 
6230 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6231 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6232 		napi->gro_hash[i].count = 0;
6233 	}
6234 	napi->gro_bitmask = 0;
6235 }
6236 
6237 int dev_set_threaded(struct net_device *dev, bool threaded)
6238 {
6239 	struct napi_struct *napi;
6240 	int err = 0;
6241 
6242 	if (dev->threaded == threaded)
6243 		return 0;
6244 
6245 	if (threaded) {
6246 		list_for_each_entry(napi, &dev->napi_list, dev_list) {
6247 			if (!napi->thread) {
6248 				err = napi_kthread_create(napi);
6249 				if (err) {
6250 					threaded = false;
6251 					break;
6252 				}
6253 			}
6254 		}
6255 	}
6256 
6257 	dev->threaded = threaded;
6258 
6259 	/* Make sure kthread is created before THREADED bit
6260 	 * is set.
6261 	 */
6262 	smp_mb__before_atomic();
6263 
6264 	/* Setting/unsetting threaded mode on a napi might not immediately
6265 	 * take effect, if the current napi instance is actively being
6266 	 * polled. In this case, the switch between threaded mode and
6267 	 * softirq mode will happen in the next round of napi_schedule().
6268 	 * This should not cause hiccups/stalls to the live traffic.
6269 	 */
6270 	list_for_each_entry(napi, &dev->napi_list, dev_list) {
6271 		if (threaded)
6272 			set_bit(NAPI_STATE_THREADED, &napi->state);
6273 		else
6274 			clear_bit(NAPI_STATE_THREADED, &napi->state);
6275 	}
6276 
6277 	return err;
6278 }
6279 EXPORT_SYMBOL(dev_set_threaded);
6280 
6281 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6282 		    int (*poll)(struct napi_struct *, int), int weight)
6283 {
6284 	if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6285 		return;
6286 
6287 	INIT_LIST_HEAD(&napi->poll_list);
6288 	INIT_HLIST_NODE(&napi->napi_hash_node);
6289 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6290 	napi->timer.function = napi_watchdog;
6291 	init_gro_hash(napi);
6292 	napi->skb = NULL;
6293 	INIT_LIST_HEAD(&napi->rx_list);
6294 	napi->rx_count = 0;
6295 	napi->poll = poll;
6296 	if (weight > NAPI_POLL_WEIGHT)
6297 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6298 				weight);
6299 	napi->weight = weight;
6300 	napi->dev = dev;
6301 #ifdef CONFIG_NETPOLL
6302 	napi->poll_owner = -1;
6303 #endif
6304 	set_bit(NAPI_STATE_SCHED, &napi->state);
6305 	set_bit(NAPI_STATE_NPSVC, &napi->state);
6306 	list_add_rcu(&napi->dev_list, &dev->napi_list);
6307 	napi_hash_add(napi);
6308 	/* Create kthread for this napi if dev->threaded is set.
6309 	 * Clear dev->threaded if kthread creation failed so that
6310 	 * threaded mode will not be enabled in napi_enable().
6311 	 */
6312 	if (dev->threaded && napi_kthread_create(napi))
6313 		dev->threaded = 0;
6314 }
6315 EXPORT_SYMBOL(netif_napi_add);
6316 
6317 void napi_disable(struct napi_struct *n)
6318 {
6319 	unsigned long val, new;
6320 
6321 	might_sleep();
6322 	set_bit(NAPI_STATE_DISABLE, &n->state);
6323 
6324 	for ( ; ; ) {
6325 		val = READ_ONCE(n->state);
6326 		if (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6327 			usleep_range(20, 200);
6328 			continue;
6329 		}
6330 
6331 		new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6332 		new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6333 
6334 		if (cmpxchg(&n->state, val, new) == val)
6335 			break;
6336 	}
6337 
6338 	hrtimer_cancel(&n->timer);
6339 
6340 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6341 }
6342 EXPORT_SYMBOL(napi_disable);
6343 
6344 /**
6345  *	napi_enable - enable NAPI scheduling
6346  *	@n: NAPI context
6347  *
6348  * Resume NAPI from being scheduled on this context.
6349  * Must be paired with napi_disable.
6350  */
6351 void napi_enable(struct napi_struct *n)
6352 {
6353 	unsigned long val, new;
6354 
6355 	do {
6356 		val = READ_ONCE(n->state);
6357 		BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6358 
6359 		new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6360 		if (n->dev->threaded && n->thread)
6361 			new |= NAPIF_STATE_THREADED;
6362 	} while (cmpxchg(&n->state, val, new) != val);
6363 }
6364 EXPORT_SYMBOL(napi_enable);
6365 
6366 static void flush_gro_hash(struct napi_struct *napi)
6367 {
6368 	int i;
6369 
6370 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6371 		struct sk_buff *skb, *n;
6372 
6373 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6374 			kfree_skb(skb);
6375 		napi->gro_hash[i].count = 0;
6376 	}
6377 }
6378 
6379 /* Must be called in process context */
6380 void __netif_napi_del(struct napi_struct *napi)
6381 {
6382 	if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6383 		return;
6384 
6385 	napi_hash_del(napi);
6386 	list_del_rcu(&napi->dev_list);
6387 	napi_free_frags(napi);
6388 
6389 	flush_gro_hash(napi);
6390 	napi->gro_bitmask = 0;
6391 
6392 	if (napi->thread) {
6393 		kthread_stop(napi->thread);
6394 		napi->thread = NULL;
6395 	}
6396 }
6397 EXPORT_SYMBOL(__netif_napi_del);
6398 
6399 static int __napi_poll(struct napi_struct *n, bool *repoll)
6400 {
6401 	int work, weight;
6402 
6403 	weight = n->weight;
6404 
6405 	/* This NAPI_STATE_SCHED test is for avoiding a race
6406 	 * with netpoll's poll_napi().  Only the entity which
6407 	 * obtains the lock and sees NAPI_STATE_SCHED set will
6408 	 * actually make the ->poll() call.  Therefore we avoid
6409 	 * accidentally calling ->poll() when NAPI is not scheduled.
6410 	 */
6411 	work = 0;
6412 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6413 		work = n->poll(n, weight);
6414 		trace_napi_poll(n, work, weight);
6415 	}
6416 
6417 	if (unlikely(work > weight))
6418 		netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6419 				n->poll, work, weight);
6420 
6421 	if (likely(work < weight))
6422 		return work;
6423 
6424 	/* Drivers must not modify the NAPI state if they
6425 	 * consume the entire weight.  In such cases this code
6426 	 * still "owns" the NAPI instance and therefore can
6427 	 * move the instance around on the list at-will.
6428 	 */
6429 	if (unlikely(napi_disable_pending(n))) {
6430 		napi_complete(n);
6431 		return work;
6432 	}
6433 
6434 	/* The NAPI context has more processing work, but busy-polling
6435 	 * is preferred. Exit early.
6436 	 */
6437 	if (napi_prefer_busy_poll(n)) {
6438 		if (napi_complete_done(n, work)) {
6439 			/* If timeout is not set, we need to make sure
6440 			 * that the NAPI is re-scheduled.
6441 			 */
6442 			napi_schedule(n);
6443 		}
6444 		return work;
6445 	}
6446 
6447 	if (n->gro_bitmask) {
6448 		/* flush too old packets
6449 		 * If HZ < 1000, flush all packets.
6450 		 */
6451 		napi_gro_flush(n, HZ >= 1000);
6452 	}
6453 
6454 	gro_normal_list(n);
6455 
6456 	/* Some drivers may have called napi_schedule
6457 	 * prior to exhausting their budget.
6458 	 */
6459 	if (unlikely(!list_empty(&n->poll_list))) {
6460 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6461 			     n->dev ? n->dev->name : "backlog");
6462 		return work;
6463 	}
6464 
6465 	*repoll = true;
6466 
6467 	return work;
6468 }
6469 
6470 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6471 {
6472 	bool do_repoll = false;
6473 	void *have;
6474 	int work;
6475 
6476 	list_del_init(&n->poll_list);
6477 
6478 	have = netpoll_poll_lock(n);
6479 
6480 	work = __napi_poll(n, &do_repoll);
6481 
6482 	if (do_repoll)
6483 		list_add_tail(&n->poll_list, repoll);
6484 
6485 	netpoll_poll_unlock(have);
6486 
6487 	return work;
6488 }
6489 
6490 static int napi_thread_wait(struct napi_struct *napi)
6491 {
6492 	bool woken = false;
6493 
6494 	set_current_state(TASK_INTERRUPTIBLE);
6495 
6496 	while (!kthread_should_stop()) {
6497 		/* Testing SCHED_THREADED bit here to make sure the current
6498 		 * kthread owns this napi and could poll on this napi.
6499 		 * Testing SCHED bit is not enough because SCHED bit might be
6500 		 * set by some other busy poll thread or by napi_disable().
6501 		 */
6502 		if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
6503 			WARN_ON(!list_empty(&napi->poll_list));
6504 			__set_current_state(TASK_RUNNING);
6505 			return 0;
6506 		}
6507 
6508 		schedule();
6509 		/* woken being true indicates this thread owns this napi. */
6510 		woken = true;
6511 		set_current_state(TASK_INTERRUPTIBLE);
6512 	}
6513 	__set_current_state(TASK_RUNNING);
6514 
6515 	return -1;
6516 }
6517 
6518 static int napi_threaded_poll(void *data)
6519 {
6520 	struct napi_struct *napi = data;
6521 	void *have;
6522 
6523 	while (!napi_thread_wait(napi)) {
6524 		for (;;) {
6525 			bool repoll = false;
6526 
6527 			local_bh_disable();
6528 
6529 			have = netpoll_poll_lock(napi);
6530 			__napi_poll(napi, &repoll);
6531 			netpoll_poll_unlock(have);
6532 
6533 			local_bh_enable();
6534 
6535 			if (!repoll)
6536 				break;
6537 
6538 			cond_resched();
6539 		}
6540 	}
6541 	return 0;
6542 }
6543 
6544 static __latent_entropy void net_rx_action(struct softirq_action *h)
6545 {
6546 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6547 	unsigned long time_limit = jiffies +
6548 		usecs_to_jiffies(netdev_budget_usecs);
6549 	int budget = netdev_budget;
6550 	LIST_HEAD(list);
6551 	LIST_HEAD(repoll);
6552 
6553 	local_irq_disable();
6554 	list_splice_init(&sd->poll_list, &list);
6555 	local_irq_enable();
6556 
6557 	for (;;) {
6558 		struct napi_struct *n;
6559 
6560 		if (list_empty(&list)) {
6561 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6562 				return;
6563 			break;
6564 		}
6565 
6566 		n = list_first_entry(&list, struct napi_struct, poll_list);
6567 		budget -= napi_poll(n, &repoll);
6568 
6569 		/* If softirq window is exhausted then punt.
6570 		 * Allow this to run for 2 jiffies since which will allow
6571 		 * an average latency of 1.5/HZ.
6572 		 */
6573 		if (unlikely(budget <= 0 ||
6574 			     time_after_eq(jiffies, time_limit))) {
6575 			sd->time_squeeze++;
6576 			break;
6577 		}
6578 	}
6579 
6580 	local_irq_disable();
6581 
6582 	list_splice_tail_init(&sd->poll_list, &list);
6583 	list_splice_tail(&repoll, &list);
6584 	list_splice(&list, &sd->poll_list);
6585 	if (!list_empty(&sd->poll_list))
6586 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
6587 
6588 	net_rps_action_and_irq_enable(sd);
6589 }
6590 
6591 struct netdev_adjacent {
6592 	struct net_device *dev;
6593 	netdevice_tracker dev_tracker;
6594 
6595 	/* upper master flag, there can only be one master device per list */
6596 	bool master;
6597 
6598 	/* lookup ignore flag */
6599 	bool ignore;
6600 
6601 	/* counter for the number of times this device was added to us */
6602 	u16 ref_nr;
6603 
6604 	/* private field for the users */
6605 	void *private;
6606 
6607 	struct list_head list;
6608 	struct rcu_head rcu;
6609 };
6610 
6611 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6612 						 struct list_head *adj_list)
6613 {
6614 	struct netdev_adjacent *adj;
6615 
6616 	list_for_each_entry(adj, adj_list, list) {
6617 		if (adj->dev == adj_dev)
6618 			return adj;
6619 	}
6620 	return NULL;
6621 }
6622 
6623 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6624 				    struct netdev_nested_priv *priv)
6625 {
6626 	struct net_device *dev = (struct net_device *)priv->data;
6627 
6628 	return upper_dev == dev;
6629 }
6630 
6631 /**
6632  * netdev_has_upper_dev - Check if device is linked to an upper device
6633  * @dev: device
6634  * @upper_dev: upper device to check
6635  *
6636  * Find out if a device is linked to specified upper device and return true
6637  * in case it is. Note that this checks only immediate upper device,
6638  * not through a complete stack of devices. The caller must hold the RTNL lock.
6639  */
6640 bool netdev_has_upper_dev(struct net_device *dev,
6641 			  struct net_device *upper_dev)
6642 {
6643 	struct netdev_nested_priv priv = {
6644 		.data = (void *)upper_dev,
6645 	};
6646 
6647 	ASSERT_RTNL();
6648 
6649 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6650 					     &priv);
6651 }
6652 EXPORT_SYMBOL(netdev_has_upper_dev);
6653 
6654 /**
6655  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
6656  * @dev: device
6657  * @upper_dev: upper device to check
6658  *
6659  * Find out if a device is linked to specified upper device and return true
6660  * in case it is. Note that this checks the entire upper device chain.
6661  * The caller must hold rcu lock.
6662  */
6663 
6664 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6665 				  struct net_device *upper_dev)
6666 {
6667 	struct netdev_nested_priv priv = {
6668 		.data = (void *)upper_dev,
6669 	};
6670 
6671 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6672 					       &priv);
6673 }
6674 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6675 
6676 /**
6677  * netdev_has_any_upper_dev - Check if device is linked to some device
6678  * @dev: device
6679  *
6680  * Find out if a device is linked to an upper device and return true in case
6681  * it is. The caller must hold the RTNL lock.
6682  */
6683 bool netdev_has_any_upper_dev(struct net_device *dev)
6684 {
6685 	ASSERT_RTNL();
6686 
6687 	return !list_empty(&dev->adj_list.upper);
6688 }
6689 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6690 
6691 /**
6692  * netdev_master_upper_dev_get - Get master upper device
6693  * @dev: device
6694  *
6695  * Find a master upper device and return pointer to it or NULL in case
6696  * it's not there. The caller must hold the RTNL lock.
6697  */
6698 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6699 {
6700 	struct netdev_adjacent *upper;
6701 
6702 	ASSERT_RTNL();
6703 
6704 	if (list_empty(&dev->adj_list.upper))
6705 		return NULL;
6706 
6707 	upper = list_first_entry(&dev->adj_list.upper,
6708 				 struct netdev_adjacent, list);
6709 	if (likely(upper->master))
6710 		return upper->dev;
6711 	return NULL;
6712 }
6713 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6714 
6715 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6716 {
6717 	struct netdev_adjacent *upper;
6718 
6719 	ASSERT_RTNL();
6720 
6721 	if (list_empty(&dev->adj_list.upper))
6722 		return NULL;
6723 
6724 	upper = list_first_entry(&dev->adj_list.upper,
6725 				 struct netdev_adjacent, list);
6726 	if (likely(upper->master) && !upper->ignore)
6727 		return upper->dev;
6728 	return NULL;
6729 }
6730 
6731 /**
6732  * netdev_has_any_lower_dev - Check if device is linked to some device
6733  * @dev: device
6734  *
6735  * Find out if a device is linked to a lower device and return true in case
6736  * it is. The caller must hold the RTNL lock.
6737  */
6738 static bool netdev_has_any_lower_dev(struct net_device *dev)
6739 {
6740 	ASSERT_RTNL();
6741 
6742 	return !list_empty(&dev->adj_list.lower);
6743 }
6744 
6745 void *netdev_adjacent_get_private(struct list_head *adj_list)
6746 {
6747 	struct netdev_adjacent *adj;
6748 
6749 	adj = list_entry(adj_list, struct netdev_adjacent, list);
6750 
6751 	return adj->private;
6752 }
6753 EXPORT_SYMBOL(netdev_adjacent_get_private);
6754 
6755 /**
6756  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6757  * @dev: device
6758  * @iter: list_head ** of the current position
6759  *
6760  * Gets the next device from the dev's upper list, starting from iter
6761  * position. The caller must hold RCU read lock.
6762  */
6763 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6764 						 struct list_head **iter)
6765 {
6766 	struct netdev_adjacent *upper;
6767 
6768 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6769 
6770 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6771 
6772 	if (&upper->list == &dev->adj_list.upper)
6773 		return NULL;
6774 
6775 	*iter = &upper->list;
6776 
6777 	return upper->dev;
6778 }
6779 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6780 
6781 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6782 						  struct list_head **iter,
6783 						  bool *ignore)
6784 {
6785 	struct netdev_adjacent *upper;
6786 
6787 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6788 
6789 	if (&upper->list == &dev->adj_list.upper)
6790 		return NULL;
6791 
6792 	*iter = &upper->list;
6793 	*ignore = upper->ignore;
6794 
6795 	return upper->dev;
6796 }
6797 
6798 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6799 						    struct list_head **iter)
6800 {
6801 	struct netdev_adjacent *upper;
6802 
6803 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6804 
6805 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6806 
6807 	if (&upper->list == &dev->adj_list.upper)
6808 		return NULL;
6809 
6810 	*iter = &upper->list;
6811 
6812 	return upper->dev;
6813 }
6814 
6815 static int __netdev_walk_all_upper_dev(struct net_device *dev,
6816 				       int (*fn)(struct net_device *dev,
6817 					 struct netdev_nested_priv *priv),
6818 				       struct netdev_nested_priv *priv)
6819 {
6820 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6821 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6822 	int ret, cur = 0;
6823 	bool ignore;
6824 
6825 	now = dev;
6826 	iter = &dev->adj_list.upper;
6827 
6828 	while (1) {
6829 		if (now != dev) {
6830 			ret = fn(now, priv);
6831 			if (ret)
6832 				return ret;
6833 		}
6834 
6835 		next = NULL;
6836 		while (1) {
6837 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
6838 			if (!udev)
6839 				break;
6840 			if (ignore)
6841 				continue;
6842 
6843 			next = udev;
6844 			niter = &udev->adj_list.upper;
6845 			dev_stack[cur] = now;
6846 			iter_stack[cur++] = iter;
6847 			break;
6848 		}
6849 
6850 		if (!next) {
6851 			if (!cur)
6852 				return 0;
6853 			next = dev_stack[--cur];
6854 			niter = iter_stack[cur];
6855 		}
6856 
6857 		now = next;
6858 		iter = niter;
6859 	}
6860 
6861 	return 0;
6862 }
6863 
6864 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6865 				  int (*fn)(struct net_device *dev,
6866 					    struct netdev_nested_priv *priv),
6867 				  struct netdev_nested_priv *priv)
6868 {
6869 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6870 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6871 	int ret, cur = 0;
6872 
6873 	now = dev;
6874 	iter = &dev->adj_list.upper;
6875 
6876 	while (1) {
6877 		if (now != dev) {
6878 			ret = fn(now, priv);
6879 			if (ret)
6880 				return ret;
6881 		}
6882 
6883 		next = NULL;
6884 		while (1) {
6885 			udev = netdev_next_upper_dev_rcu(now, &iter);
6886 			if (!udev)
6887 				break;
6888 
6889 			next = udev;
6890 			niter = &udev->adj_list.upper;
6891 			dev_stack[cur] = now;
6892 			iter_stack[cur++] = iter;
6893 			break;
6894 		}
6895 
6896 		if (!next) {
6897 			if (!cur)
6898 				return 0;
6899 			next = dev_stack[--cur];
6900 			niter = iter_stack[cur];
6901 		}
6902 
6903 		now = next;
6904 		iter = niter;
6905 	}
6906 
6907 	return 0;
6908 }
6909 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6910 
6911 static bool __netdev_has_upper_dev(struct net_device *dev,
6912 				   struct net_device *upper_dev)
6913 {
6914 	struct netdev_nested_priv priv = {
6915 		.flags = 0,
6916 		.data = (void *)upper_dev,
6917 	};
6918 
6919 	ASSERT_RTNL();
6920 
6921 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
6922 					   &priv);
6923 }
6924 
6925 /**
6926  * netdev_lower_get_next_private - Get the next ->private from the
6927  *				   lower neighbour list
6928  * @dev: device
6929  * @iter: list_head ** of the current position
6930  *
6931  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6932  * list, starting from iter position. The caller must hold either hold the
6933  * RTNL lock or its own locking that guarantees that the neighbour lower
6934  * list will remain unchanged.
6935  */
6936 void *netdev_lower_get_next_private(struct net_device *dev,
6937 				    struct list_head **iter)
6938 {
6939 	struct netdev_adjacent *lower;
6940 
6941 	lower = list_entry(*iter, struct netdev_adjacent, list);
6942 
6943 	if (&lower->list == &dev->adj_list.lower)
6944 		return NULL;
6945 
6946 	*iter = lower->list.next;
6947 
6948 	return lower->private;
6949 }
6950 EXPORT_SYMBOL(netdev_lower_get_next_private);
6951 
6952 /**
6953  * netdev_lower_get_next_private_rcu - Get the next ->private from the
6954  *				       lower neighbour list, RCU
6955  *				       variant
6956  * @dev: device
6957  * @iter: list_head ** of the current position
6958  *
6959  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6960  * list, starting from iter position. The caller must hold RCU read lock.
6961  */
6962 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6963 					struct list_head **iter)
6964 {
6965 	struct netdev_adjacent *lower;
6966 
6967 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
6968 
6969 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6970 
6971 	if (&lower->list == &dev->adj_list.lower)
6972 		return NULL;
6973 
6974 	*iter = &lower->list;
6975 
6976 	return lower->private;
6977 }
6978 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6979 
6980 /**
6981  * netdev_lower_get_next - Get the next device from the lower neighbour
6982  *                         list
6983  * @dev: device
6984  * @iter: list_head ** of the current position
6985  *
6986  * Gets the next netdev_adjacent from the dev's lower neighbour
6987  * list, starting from iter position. The caller must hold RTNL lock or
6988  * its own locking that guarantees that the neighbour lower
6989  * list will remain unchanged.
6990  */
6991 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6992 {
6993 	struct netdev_adjacent *lower;
6994 
6995 	lower = list_entry(*iter, struct netdev_adjacent, list);
6996 
6997 	if (&lower->list == &dev->adj_list.lower)
6998 		return NULL;
6999 
7000 	*iter = lower->list.next;
7001 
7002 	return lower->dev;
7003 }
7004 EXPORT_SYMBOL(netdev_lower_get_next);
7005 
7006 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7007 						struct list_head **iter)
7008 {
7009 	struct netdev_adjacent *lower;
7010 
7011 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7012 
7013 	if (&lower->list == &dev->adj_list.lower)
7014 		return NULL;
7015 
7016 	*iter = &lower->list;
7017 
7018 	return lower->dev;
7019 }
7020 
7021 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7022 						  struct list_head **iter,
7023 						  bool *ignore)
7024 {
7025 	struct netdev_adjacent *lower;
7026 
7027 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7028 
7029 	if (&lower->list == &dev->adj_list.lower)
7030 		return NULL;
7031 
7032 	*iter = &lower->list;
7033 	*ignore = lower->ignore;
7034 
7035 	return lower->dev;
7036 }
7037 
7038 int netdev_walk_all_lower_dev(struct net_device *dev,
7039 			      int (*fn)(struct net_device *dev,
7040 					struct netdev_nested_priv *priv),
7041 			      struct netdev_nested_priv *priv)
7042 {
7043 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7044 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7045 	int ret, cur = 0;
7046 
7047 	now = dev;
7048 	iter = &dev->adj_list.lower;
7049 
7050 	while (1) {
7051 		if (now != dev) {
7052 			ret = fn(now, priv);
7053 			if (ret)
7054 				return ret;
7055 		}
7056 
7057 		next = NULL;
7058 		while (1) {
7059 			ldev = netdev_next_lower_dev(now, &iter);
7060 			if (!ldev)
7061 				break;
7062 
7063 			next = ldev;
7064 			niter = &ldev->adj_list.lower;
7065 			dev_stack[cur] = now;
7066 			iter_stack[cur++] = iter;
7067 			break;
7068 		}
7069 
7070 		if (!next) {
7071 			if (!cur)
7072 				return 0;
7073 			next = dev_stack[--cur];
7074 			niter = iter_stack[cur];
7075 		}
7076 
7077 		now = next;
7078 		iter = niter;
7079 	}
7080 
7081 	return 0;
7082 }
7083 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7084 
7085 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7086 				       int (*fn)(struct net_device *dev,
7087 					 struct netdev_nested_priv *priv),
7088 				       struct netdev_nested_priv *priv)
7089 {
7090 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7091 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7092 	int ret, cur = 0;
7093 	bool ignore;
7094 
7095 	now = dev;
7096 	iter = &dev->adj_list.lower;
7097 
7098 	while (1) {
7099 		if (now != dev) {
7100 			ret = fn(now, priv);
7101 			if (ret)
7102 				return ret;
7103 		}
7104 
7105 		next = NULL;
7106 		while (1) {
7107 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7108 			if (!ldev)
7109 				break;
7110 			if (ignore)
7111 				continue;
7112 
7113 			next = ldev;
7114 			niter = &ldev->adj_list.lower;
7115 			dev_stack[cur] = now;
7116 			iter_stack[cur++] = iter;
7117 			break;
7118 		}
7119 
7120 		if (!next) {
7121 			if (!cur)
7122 				return 0;
7123 			next = dev_stack[--cur];
7124 			niter = iter_stack[cur];
7125 		}
7126 
7127 		now = next;
7128 		iter = niter;
7129 	}
7130 
7131 	return 0;
7132 }
7133 
7134 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7135 					     struct list_head **iter)
7136 {
7137 	struct netdev_adjacent *lower;
7138 
7139 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7140 	if (&lower->list == &dev->adj_list.lower)
7141 		return NULL;
7142 
7143 	*iter = &lower->list;
7144 
7145 	return lower->dev;
7146 }
7147 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7148 
7149 static u8 __netdev_upper_depth(struct net_device *dev)
7150 {
7151 	struct net_device *udev;
7152 	struct list_head *iter;
7153 	u8 max_depth = 0;
7154 	bool ignore;
7155 
7156 	for (iter = &dev->adj_list.upper,
7157 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7158 	     udev;
7159 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7160 		if (ignore)
7161 			continue;
7162 		if (max_depth < udev->upper_level)
7163 			max_depth = udev->upper_level;
7164 	}
7165 
7166 	return max_depth;
7167 }
7168 
7169 static u8 __netdev_lower_depth(struct net_device *dev)
7170 {
7171 	struct net_device *ldev;
7172 	struct list_head *iter;
7173 	u8 max_depth = 0;
7174 	bool ignore;
7175 
7176 	for (iter = &dev->adj_list.lower,
7177 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7178 	     ldev;
7179 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7180 		if (ignore)
7181 			continue;
7182 		if (max_depth < ldev->lower_level)
7183 			max_depth = ldev->lower_level;
7184 	}
7185 
7186 	return max_depth;
7187 }
7188 
7189 static int __netdev_update_upper_level(struct net_device *dev,
7190 				       struct netdev_nested_priv *__unused)
7191 {
7192 	dev->upper_level = __netdev_upper_depth(dev) + 1;
7193 	return 0;
7194 }
7195 
7196 #ifdef CONFIG_LOCKDEP
7197 static LIST_HEAD(net_unlink_list);
7198 
7199 static void net_unlink_todo(struct net_device *dev)
7200 {
7201 	if (list_empty(&dev->unlink_list))
7202 		list_add_tail(&dev->unlink_list, &net_unlink_list);
7203 }
7204 #endif
7205 
7206 static int __netdev_update_lower_level(struct net_device *dev,
7207 				       struct netdev_nested_priv *priv)
7208 {
7209 	dev->lower_level = __netdev_lower_depth(dev) + 1;
7210 
7211 #ifdef CONFIG_LOCKDEP
7212 	if (!priv)
7213 		return 0;
7214 
7215 	if (priv->flags & NESTED_SYNC_IMM)
7216 		dev->nested_level = dev->lower_level - 1;
7217 	if (priv->flags & NESTED_SYNC_TODO)
7218 		net_unlink_todo(dev);
7219 #endif
7220 	return 0;
7221 }
7222 
7223 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7224 				  int (*fn)(struct net_device *dev,
7225 					    struct netdev_nested_priv *priv),
7226 				  struct netdev_nested_priv *priv)
7227 {
7228 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7229 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7230 	int ret, cur = 0;
7231 
7232 	now = dev;
7233 	iter = &dev->adj_list.lower;
7234 
7235 	while (1) {
7236 		if (now != dev) {
7237 			ret = fn(now, priv);
7238 			if (ret)
7239 				return ret;
7240 		}
7241 
7242 		next = NULL;
7243 		while (1) {
7244 			ldev = netdev_next_lower_dev_rcu(now, &iter);
7245 			if (!ldev)
7246 				break;
7247 
7248 			next = ldev;
7249 			niter = &ldev->adj_list.lower;
7250 			dev_stack[cur] = now;
7251 			iter_stack[cur++] = iter;
7252 			break;
7253 		}
7254 
7255 		if (!next) {
7256 			if (!cur)
7257 				return 0;
7258 			next = dev_stack[--cur];
7259 			niter = iter_stack[cur];
7260 		}
7261 
7262 		now = next;
7263 		iter = niter;
7264 	}
7265 
7266 	return 0;
7267 }
7268 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7269 
7270 /**
7271  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7272  *				       lower neighbour list, RCU
7273  *				       variant
7274  * @dev: device
7275  *
7276  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7277  * list. The caller must hold RCU read lock.
7278  */
7279 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7280 {
7281 	struct netdev_adjacent *lower;
7282 
7283 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
7284 			struct netdev_adjacent, list);
7285 	if (lower)
7286 		return lower->private;
7287 	return NULL;
7288 }
7289 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7290 
7291 /**
7292  * netdev_master_upper_dev_get_rcu - Get master upper device
7293  * @dev: device
7294  *
7295  * Find a master upper device and return pointer to it or NULL in case
7296  * it's not there. The caller must hold the RCU read lock.
7297  */
7298 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7299 {
7300 	struct netdev_adjacent *upper;
7301 
7302 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
7303 				       struct netdev_adjacent, list);
7304 	if (upper && likely(upper->master))
7305 		return upper->dev;
7306 	return NULL;
7307 }
7308 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7309 
7310 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7311 			      struct net_device *adj_dev,
7312 			      struct list_head *dev_list)
7313 {
7314 	char linkname[IFNAMSIZ+7];
7315 
7316 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7317 		"upper_%s" : "lower_%s", adj_dev->name);
7318 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7319 				 linkname);
7320 }
7321 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7322 			       char *name,
7323 			       struct list_head *dev_list)
7324 {
7325 	char linkname[IFNAMSIZ+7];
7326 
7327 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7328 		"upper_%s" : "lower_%s", name);
7329 	sysfs_remove_link(&(dev->dev.kobj), linkname);
7330 }
7331 
7332 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7333 						 struct net_device *adj_dev,
7334 						 struct list_head *dev_list)
7335 {
7336 	return (dev_list == &dev->adj_list.upper ||
7337 		dev_list == &dev->adj_list.lower) &&
7338 		net_eq(dev_net(dev), dev_net(adj_dev));
7339 }
7340 
7341 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7342 					struct net_device *adj_dev,
7343 					struct list_head *dev_list,
7344 					void *private, bool master)
7345 {
7346 	struct netdev_adjacent *adj;
7347 	int ret;
7348 
7349 	adj = __netdev_find_adj(adj_dev, dev_list);
7350 
7351 	if (adj) {
7352 		adj->ref_nr += 1;
7353 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7354 			 dev->name, adj_dev->name, adj->ref_nr);
7355 
7356 		return 0;
7357 	}
7358 
7359 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7360 	if (!adj)
7361 		return -ENOMEM;
7362 
7363 	adj->dev = adj_dev;
7364 	adj->master = master;
7365 	adj->ref_nr = 1;
7366 	adj->private = private;
7367 	adj->ignore = false;
7368 	dev_hold_track(adj_dev, &adj->dev_tracker, GFP_KERNEL);
7369 
7370 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7371 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7372 
7373 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7374 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7375 		if (ret)
7376 			goto free_adj;
7377 	}
7378 
7379 	/* Ensure that master link is always the first item in list. */
7380 	if (master) {
7381 		ret = sysfs_create_link(&(dev->dev.kobj),
7382 					&(adj_dev->dev.kobj), "master");
7383 		if (ret)
7384 			goto remove_symlinks;
7385 
7386 		list_add_rcu(&adj->list, dev_list);
7387 	} else {
7388 		list_add_tail_rcu(&adj->list, dev_list);
7389 	}
7390 
7391 	return 0;
7392 
7393 remove_symlinks:
7394 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7395 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7396 free_adj:
7397 	dev_put_track(adj_dev, &adj->dev_tracker);
7398 	kfree(adj);
7399 
7400 	return ret;
7401 }
7402 
7403 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7404 					 struct net_device *adj_dev,
7405 					 u16 ref_nr,
7406 					 struct list_head *dev_list)
7407 {
7408 	struct netdev_adjacent *adj;
7409 
7410 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7411 		 dev->name, adj_dev->name, ref_nr);
7412 
7413 	adj = __netdev_find_adj(adj_dev, dev_list);
7414 
7415 	if (!adj) {
7416 		pr_err("Adjacency does not exist for device %s from %s\n",
7417 		       dev->name, adj_dev->name);
7418 		WARN_ON(1);
7419 		return;
7420 	}
7421 
7422 	if (adj->ref_nr > ref_nr) {
7423 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7424 			 dev->name, adj_dev->name, ref_nr,
7425 			 adj->ref_nr - ref_nr);
7426 		adj->ref_nr -= ref_nr;
7427 		return;
7428 	}
7429 
7430 	if (adj->master)
7431 		sysfs_remove_link(&(dev->dev.kobj), "master");
7432 
7433 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7434 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7435 
7436 	list_del_rcu(&adj->list);
7437 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7438 		 adj_dev->name, dev->name, adj_dev->name);
7439 	dev_put_track(adj_dev, &adj->dev_tracker);
7440 	kfree_rcu(adj, rcu);
7441 }
7442 
7443 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7444 					    struct net_device *upper_dev,
7445 					    struct list_head *up_list,
7446 					    struct list_head *down_list,
7447 					    void *private, bool master)
7448 {
7449 	int ret;
7450 
7451 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7452 					   private, master);
7453 	if (ret)
7454 		return ret;
7455 
7456 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7457 					   private, false);
7458 	if (ret) {
7459 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7460 		return ret;
7461 	}
7462 
7463 	return 0;
7464 }
7465 
7466 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7467 					       struct net_device *upper_dev,
7468 					       u16 ref_nr,
7469 					       struct list_head *up_list,
7470 					       struct list_head *down_list)
7471 {
7472 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7473 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7474 }
7475 
7476 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7477 						struct net_device *upper_dev,
7478 						void *private, bool master)
7479 {
7480 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7481 						&dev->adj_list.upper,
7482 						&upper_dev->adj_list.lower,
7483 						private, master);
7484 }
7485 
7486 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7487 						   struct net_device *upper_dev)
7488 {
7489 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7490 					   &dev->adj_list.upper,
7491 					   &upper_dev->adj_list.lower);
7492 }
7493 
7494 static int __netdev_upper_dev_link(struct net_device *dev,
7495 				   struct net_device *upper_dev, bool master,
7496 				   void *upper_priv, void *upper_info,
7497 				   struct netdev_nested_priv *priv,
7498 				   struct netlink_ext_ack *extack)
7499 {
7500 	struct netdev_notifier_changeupper_info changeupper_info = {
7501 		.info = {
7502 			.dev = dev,
7503 			.extack = extack,
7504 		},
7505 		.upper_dev = upper_dev,
7506 		.master = master,
7507 		.linking = true,
7508 		.upper_info = upper_info,
7509 	};
7510 	struct net_device *master_dev;
7511 	int ret = 0;
7512 
7513 	ASSERT_RTNL();
7514 
7515 	if (dev == upper_dev)
7516 		return -EBUSY;
7517 
7518 	/* To prevent loops, check if dev is not upper device to upper_dev. */
7519 	if (__netdev_has_upper_dev(upper_dev, dev))
7520 		return -EBUSY;
7521 
7522 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7523 		return -EMLINK;
7524 
7525 	if (!master) {
7526 		if (__netdev_has_upper_dev(dev, upper_dev))
7527 			return -EEXIST;
7528 	} else {
7529 		master_dev = __netdev_master_upper_dev_get(dev);
7530 		if (master_dev)
7531 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
7532 	}
7533 
7534 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7535 					    &changeupper_info.info);
7536 	ret = notifier_to_errno(ret);
7537 	if (ret)
7538 		return ret;
7539 
7540 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7541 						   master);
7542 	if (ret)
7543 		return ret;
7544 
7545 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7546 					    &changeupper_info.info);
7547 	ret = notifier_to_errno(ret);
7548 	if (ret)
7549 		goto rollback;
7550 
7551 	__netdev_update_upper_level(dev, NULL);
7552 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7553 
7554 	__netdev_update_lower_level(upper_dev, priv);
7555 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7556 				    priv);
7557 
7558 	return 0;
7559 
7560 rollback:
7561 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7562 
7563 	return ret;
7564 }
7565 
7566 /**
7567  * netdev_upper_dev_link - Add a link to the upper device
7568  * @dev: device
7569  * @upper_dev: new upper device
7570  * @extack: netlink extended ack
7571  *
7572  * Adds a link to device which is upper to this one. The caller must hold
7573  * the RTNL lock. On a failure a negative errno code is returned.
7574  * On success the reference counts are adjusted and the function
7575  * returns zero.
7576  */
7577 int netdev_upper_dev_link(struct net_device *dev,
7578 			  struct net_device *upper_dev,
7579 			  struct netlink_ext_ack *extack)
7580 {
7581 	struct netdev_nested_priv priv = {
7582 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7583 		.data = NULL,
7584 	};
7585 
7586 	return __netdev_upper_dev_link(dev, upper_dev, false,
7587 				       NULL, NULL, &priv, extack);
7588 }
7589 EXPORT_SYMBOL(netdev_upper_dev_link);
7590 
7591 /**
7592  * netdev_master_upper_dev_link - Add a master link to the upper device
7593  * @dev: device
7594  * @upper_dev: new upper device
7595  * @upper_priv: upper device private
7596  * @upper_info: upper info to be passed down via notifier
7597  * @extack: netlink extended ack
7598  *
7599  * Adds a link to device which is upper to this one. In this case, only
7600  * one master upper device can be linked, although other non-master devices
7601  * might be linked as well. The caller must hold the RTNL lock.
7602  * On a failure a negative errno code is returned. On success the reference
7603  * counts are adjusted and the function returns zero.
7604  */
7605 int netdev_master_upper_dev_link(struct net_device *dev,
7606 				 struct net_device *upper_dev,
7607 				 void *upper_priv, void *upper_info,
7608 				 struct netlink_ext_ack *extack)
7609 {
7610 	struct netdev_nested_priv priv = {
7611 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7612 		.data = NULL,
7613 	};
7614 
7615 	return __netdev_upper_dev_link(dev, upper_dev, true,
7616 				       upper_priv, upper_info, &priv, extack);
7617 }
7618 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7619 
7620 static void __netdev_upper_dev_unlink(struct net_device *dev,
7621 				      struct net_device *upper_dev,
7622 				      struct netdev_nested_priv *priv)
7623 {
7624 	struct netdev_notifier_changeupper_info changeupper_info = {
7625 		.info = {
7626 			.dev = dev,
7627 		},
7628 		.upper_dev = upper_dev,
7629 		.linking = false,
7630 	};
7631 
7632 	ASSERT_RTNL();
7633 
7634 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7635 
7636 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7637 				      &changeupper_info.info);
7638 
7639 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7640 
7641 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7642 				      &changeupper_info.info);
7643 
7644 	__netdev_update_upper_level(dev, NULL);
7645 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7646 
7647 	__netdev_update_lower_level(upper_dev, priv);
7648 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7649 				    priv);
7650 }
7651 
7652 /**
7653  * netdev_upper_dev_unlink - Removes a link to upper device
7654  * @dev: device
7655  * @upper_dev: new upper device
7656  *
7657  * Removes a link to device which is upper to this one. The caller must hold
7658  * the RTNL lock.
7659  */
7660 void netdev_upper_dev_unlink(struct net_device *dev,
7661 			     struct net_device *upper_dev)
7662 {
7663 	struct netdev_nested_priv priv = {
7664 		.flags = NESTED_SYNC_TODO,
7665 		.data = NULL,
7666 	};
7667 
7668 	__netdev_upper_dev_unlink(dev, upper_dev, &priv);
7669 }
7670 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7671 
7672 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7673 				      struct net_device *lower_dev,
7674 				      bool val)
7675 {
7676 	struct netdev_adjacent *adj;
7677 
7678 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7679 	if (adj)
7680 		adj->ignore = val;
7681 
7682 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7683 	if (adj)
7684 		adj->ignore = val;
7685 }
7686 
7687 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7688 					struct net_device *lower_dev)
7689 {
7690 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7691 }
7692 
7693 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7694 				       struct net_device *lower_dev)
7695 {
7696 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7697 }
7698 
7699 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7700 				   struct net_device *new_dev,
7701 				   struct net_device *dev,
7702 				   struct netlink_ext_ack *extack)
7703 {
7704 	struct netdev_nested_priv priv = {
7705 		.flags = 0,
7706 		.data = NULL,
7707 	};
7708 	int err;
7709 
7710 	if (!new_dev)
7711 		return 0;
7712 
7713 	if (old_dev && new_dev != old_dev)
7714 		netdev_adjacent_dev_disable(dev, old_dev);
7715 	err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
7716 				      extack);
7717 	if (err) {
7718 		if (old_dev && new_dev != old_dev)
7719 			netdev_adjacent_dev_enable(dev, old_dev);
7720 		return err;
7721 	}
7722 
7723 	return 0;
7724 }
7725 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7726 
7727 void netdev_adjacent_change_commit(struct net_device *old_dev,
7728 				   struct net_device *new_dev,
7729 				   struct net_device *dev)
7730 {
7731 	struct netdev_nested_priv priv = {
7732 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7733 		.data = NULL,
7734 	};
7735 
7736 	if (!new_dev || !old_dev)
7737 		return;
7738 
7739 	if (new_dev == old_dev)
7740 		return;
7741 
7742 	netdev_adjacent_dev_enable(dev, old_dev);
7743 	__netdev_upper_dev_unlink(old_dev, dev, &priv);
7744 }
7745 EXPORT_SYMBOL(netdev_adjacent_change_commit);
7746 
7747 void netdev_adjacent_change_abort(struct net_device *old_dev,
7748 				  struct net_device *new_dev,
7749 				  struct net_device *dev)
7750 {
7751 	struct netdev_nested_priv priv = {
7752 		.flags = 0,
7753 		.data = NULL,
7754 	};
7755 
7756 	if (!new_dev)
7757 		return;
7758 
7759 	if (old_dev && new_dev != old_dev)
7760 		netdev_adjacent_dev_enable(dev, old_dev);
7761 
7762 	__netdev_upper_dev_unlink(new_dev, dev, &priv);
7763 }
7764 EXPORT_SYMBOL(netdev_adjacent_change_abort);
7765 
7766 /**
7767  * netdev_bonding_info_change - Dispatch event about slave change
7768  * @dev: device
7769  * @bonding_info: info to dispatch
7770  *
7771  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7772  * The caller must hold the RTNL lock.
7773  */
7774 void netdev_bonding_info_change(struct net_device *dev,
7775 				struct netdev_bonding_info *bonding_info)
7776 {
7777 	struct netdev_notifier_bonding_info info = {
7778 		.info.dev = dev,
7779 	};
7780 
7781 	memcpy(&info.bonding_info, bonding_info,
7782 	       sizeof(struct netdev_bonding_info));
7783 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7784 				      &info.info);
7785 }
7786 EXPORT_SYMBOL(netdev_bonding_info_change);
7787 
7788 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
7789 					   struct netlink_ext_ack *extack)
7790 {
7791 	struct netdev_notifier_offload_xstats_info info = {
7792 		.info.dev = dev,
7793 		.info.extack = extack,
7794 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
7795 	};
7796 	int err;
7797 	int rc;
7798 
7799 	dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
7800 					 GFP_KERNEL);
7801 	if (!dev->offload_xstats_l3)
7802 		return -ENOMEM;
7803 
7804 	rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
7805 						  NETDEV_OFFLOAD_XSTATS_DISABLE,
7806 						  &info.info);
7807 	err = notifier_to_errno(rc);
7808 	if (err)
7809 		goto free_stats;
7810 
7811 	return 0;
7812 
7813 free_stats:
7814 	kfree(dev->offload_xstats_l3);
7815 	dev->offload_xstats_l3 = NULL;
7816 	return err;
7817 }
7818 
7819 int netdev_offload_xstats_enable(struct net_device *dev,
7820 				 enum netdev_offload_xstats_type type,
7821 				 struct netlink_ext_ack *extack)
7822 {
7823 	ASSERT_RTNL();
7824 
7825 	if (netdev_offload_xstats_enabled(dev, type))
7826 		return -EALREADY;
7827 
7828 	switch (type) {
7829 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7830 		return netdev_offload_xstats_enable_l3(dev, extack);
7831 	}
7832 
7833 	WARN_ON(1);
7834 	return -EINVAL;
7835 }
7836 EXPORT_SYMBOL(netdev_offload_xstats_enable);
7837 
7838 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
7839 {
7840 	struct netdev_notifier_offload_xstats_info info = {
7841 		.info.dev = dev,
7842 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
7843 	};
7844 
7845 	call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
7846 				      &info.info);
7847 	kfree(dev->offload_xstats_l3);
7848 	dev->offload_xstats_l3 = NULL;
7849 }
7850 
7851 int netdev_offload_xstats_disable(struct net_device *dev,
7852 				  enum netdev_offload_xstats_type type)
7853 {
7854 	ASSERT_RTNL();
7855 
7856 	if (!netdev_offload_xstats_enabled(dev, type))
7857 		return -EALREADY;
7858 
7859 	switch (type) {
7860 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7861 		netdev_offload_xstats_disable_l3(dev);
7862 		return 0;
7863 	}
7864 
7865 	WARN_ON(1);
7866 	return -EINVAL;
7867 }
7868 EXPORT_SYMBOL(netdev_offload_xstats_disable);
7869 
7870 static void netdev_offload_xstats_disable_all(struct net_device *dev)
7871 {
7872 	netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
7873 }
7874 
7875 static struct rtnl_hw_stats64 *
7876 netdev_offload_xstats_get_ptr(const struct net_device *dev,
7877 			      enum netdev_offload_xstats_type type)
7878 {
7879 	switch (type) {
7880 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7881 		return dev->offload_xstats_l3;
7882 	}
7883 
7884 	WARN_ON(1);
7885 	return NULL;
7886 }
7887 
7888 bool netdev_offload_xstats_enabled(const struct net_device *dev,
7889 				   enum netdev_offload_xstats_type type)
7890 {
7891 	ASSERT_RTNL();
7892 
7893 	return netdev_offload_xstats_get_ptr(dev, type);
7894 }
7895 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
7896 
7897 struct netdev_notifier_offload_xstats_ru {
7898 	bool used;
7899 };
7900 
7901 struct netdev_notifier_offload_xstats_rd {
7902 	struct rtnl_hw_stats64 stats;
7903 	bool used;
7904 };
7905 
7906 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
7907 				  const struct rtnl_hw_stats64 *src)
7908 {
7909 	dest->rx_packets	  += src->rx_packets;
7910 	dest->tx_packets	  += src->tx_packets;
7911 	dest->rx_bytes		  += src->rx_bytes;
7912 	dest->tx_bytes		  += src->tx_bytes;
7913 	dest->rx_errors		  += src->rx_errors;
7914 	dest->tx_errors		  += src->tx_errors;
7915 	dest->rx_dropped	  += src->rx_dropped;
7916 	dest->tx_dropped	  += src->tx_dropped;
7917 	dest->multicast		  += src->multicast;
7918 }
7919 
7920 static int netdev_offload_xstats_get_used(struct net_device *dev,
7921 					  enum netdev_offload_xstats_type type,
7922 					  bool *p_used,
7923 					  struct netlink_ext_ack *extack)
7924 {
7925 	struct netdev_notifier_offload_xstats_ru report_used = {};
7926 	struct netdev_notifier_offload_xstats_info info = {
7927 		.info.dev = dev,
7928 		.info.extack = extack,
7929 		.type = type,
7930 		.report_used = &report_used,
7931 	};
7932 	int rc;
7933 
7934 	WARN_ON(!netdev_offload_xstats_enabled(dev, type));
7935 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
7936 					   &info.info);
7937 	*p_used = report_used.used;
7938 	return notifier_to_errno(rc);
7939 }
7940 
7941 static int netdev_offload_xstats_get_stats(struct net_device *dev,
7942 					   enum netdev_offload_xstats_type type,
7943 					   struct rtnl_hw_stats64 *p_stats,
7944 					   bool *p_used,
7945 					   struct netlink_ext_ack *extack)
7946 {
7947 	struct netdev_notifier_offload_xstats_rd report_delta = {};
7948 	struct netdev_notifier_offload_xstats_info info = {
7949 		.info.dev = dev,
7950 		.info.extack = extack,
7951 		.type = type,
7952 		.report_delta = &report_delta,
7953 	};
7954 	struct rtnl_hw_stats64 *stats;
7955 	int rc;
7956 
7957 	stats = netdev_offload_xstats_get_ptr(dev, type);
7958 	if (WARN_ON(!stats))
7959 		return -EINVAL;
7960 
7961 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
7962 					   &info.info);
7963 
7964 	/* Cache whatever we got, even if there was an error, otherwise the
7965 	 * successful stats retrievals would get lost.
7966 	 */
7967 	netdev_hw_stats64_add(stats, &report_delta.stats);
7968 
7969 	if (p_stats)
7970 		*p_stats = *stats;
7971 	*p_used = report_delta.used;
7972 
7973 	return notifier_to_errno(rc);
7974 }
7975 
7976 int netdev_offload_xstats_get(struct net_device *dev,
7977 			      enum netdev_offload_xstats_type type,
7978 			      struct rtnl_hw_stats64 *p_stats, bool *p_used,
7979 			      struct netlink_ext_ack *extack)
7980 {
7981 	ASSERT_RTNL();
7982 
7983 	if (p_stats)
7984 		return netdev_offload_xstats_get_stats(dev, type, p_stats,
7985 						       p_used, extack);
7986 	else
7987 		return netdev_offload_xstats_get_used(dev, type, p_used,
7988 						      extack);
7989 }
7990 EXPORT_SYMBOL(netdev_offload_xstats_get);
7991 
7992 void
7993 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
7994 				   const struct rtnl_hw_stats64 *stats)
7995 {
7996 	report_delta->used = true;
7997 	netdev_hw_stats64_add(&report_delta->stats, stats);
7998 }
7999 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8000 
8001 void
8002 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8003 {
8004 	report_used->used = true;
8005 }
8006 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8007 
8008 void netdev_offload_xstats_push_delta(struct net_device *dev,
8009 				      enum netdev_offload_xstats_type type,
8010 				      const struct rtnl_hw_stats64 *p_stats)
8011 {
8012 	struct rtnl_hw_stats64 *stats;
8013 
8014 	ASSERT_RTNL();
8015 
8016 	stats = netdev_offload_xstats_get_ptr(dev, type);
8017 	if (WARN_ON(!stats))
8018 		return;
8019 
8020 	netdev_hw_stats64_add(stats, p_stats);
8021 }
8022 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8023 
8024 /**
8025  * netdev_get_xmit_slave - Get the xmit slave of master device
8026  * @dev: device
8027  * @skb: The packet
8028  * @all_slaves: assume all the slaves are active
8029  *
8030  * The reference counters are not incremented so the caller must be
8031  * careful with locks. The caller must hold RCU lock.
8032  * %NULL is returned if no slave is found.
8033  */
8034 
8035 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8036 					 struct sk_buff *skb,
8037 					 bool all_slaves)
8038 {
8039 	const struct net_device_ops *ops = dev->netdev_ops;
8040 
8041 	if (!ops->ndo_get_xmit_slave)
8042 		return NULL;
8043 	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8044 }
8045 EXPORT_SYMBOL(netdev_get_xmit_slave);
8046 
8047 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8048 						  struct sock *sk)
8049 {
8050 	const struct net_device_ops *ops = dev->netdev_ops;
8051 
8052 	if (!ops->ndo_sk_get_lower_dev)
8053 		return NULL;
8054 	return ops->ndo_sk_get_lower_dev(dev, sk);
8055 }
8056 
8057 /**
8058  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8059  * @dev: device
8060  * @sk: the socket
8061  *
8062  * %NULL is returned if no lower device is found.
8063  */
8064 
8065 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8066 					    struct sock *sk)
8067 {
8068 	struct net_device *lower;
8069 
8070 	lower = netdev_sk_get_lower_dev(dev, sk);
8071 	while (lower) {
8072 		dev = lower;
8073 		lower = netdev_sk_get_lower_dev(dev, sk);
8074 	}
8075 
8076 	return dev;
8077 }
8078 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8079 
8080 static void netdev_adjacent_add_links(struct net_device *dev)
8081 {
8082 	struct netdev_adjacent *iter;
8083 
8084 	struct net *net = dev_net(dev);
8085 
8086 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8087 		if (!net_eq(net, dev_net(iter->dev)))
8088 			continue;
8089 		netdev_adjacent_sysfs_add(iter->dev, dev,
8090 					  &iter->dev->adj_list.lower);
8091 		netdev_adjacent_sysfs_add(dev, iter->dev,
8092 					  &dev->adj_list.upper);
8093 	}
8094 
8095 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8096 		if (!net_eq(net, dev_net(iter->dev)))
8097 			continue;
8098 		netdev_adjacent_sysfs_add(iter->dev, dev,
8099 					  &iter->dev->adj_list.upper);
8100 		netdev_adjacent_sysfs_add(dev, iter->dev,
8101 					  &dev->adj_list.lower);
8102 	}
8103 }
8104 
8105 static void netdev_adjacent_del_links(struct net_device *dev)
8106 {
8107 	struct netdev_adjacent *iter;
8108 
8109 	struct net *net = dev_net(dev);
8110 
8111 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8112 		if (!net_eq(net, dev_net(iter->dev)))
8113 			continue;
8114 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8115 					  &iter->dev->adj_list.lower);
8116 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8117 					  &dev->adj_list.upper);
8118 	}
8119 
8120 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8121 		if (!net_eq(net, dev_net(iter->dev)))
8122 			continue;
8123 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8124 					  &iter->dev->adj_list.upper);
8125 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8126 					  &dev->adj_list.lower);
8127 	}
8128 }
8129 
8130 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8131 {
8132 	struct netdev_adjacent *iter;
8133 
8134 	struct net *net = dev_net(dev);
8135 
8136 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8137 		if (!net_eq(net, dev_net(iter->dev)))
8138 			continue;
8139 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8140 					  &iter->dev->adj_list.lower);
8141 		netdev_adjacent_sysfs_add(iter->dev, dev,
8142 					  &iter->dev->adj_list.lower);
8143 	}
8144 
8145 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8146 		if (!net_eq(net, dev_net(iter->dev)))
8147 			continue;
8148 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8149 					  &iter->dev->adj_list.upper);
8150 		netdev_adjacent_sysfs_add(iter->dev, dev,
8151 					  &iter->dev->adj_list.upper);
8152 	}
8153 }
8154 
8155 void *netdev_lower_dev_get_private(struct net_device *dev,
8156 				   struct net_device *lower_dev)
8157 {
8158 	struct netdev_adjacent *lower;
8159 
8160 	if (!lower_dev)
8161 		return NULL;
8162 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8163 	if (!lower)
8164 		return NULL;
8165 
8166 	return lower->private;
8167 }
8168 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8169 
8170 
8171 /**
8172  * netdev_lower_state_changed - Dispatch event about lower device state change
8173  * @lower_dev: device
8174  * @lower_state_info: state to dispatch
8175  *
8176  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8177  * The caller must hold the RTNL lock.
8178  */
8179 void netdev_lower_state_changed(struct net_device *lower_dev,
8180 				void *lower_state_info)
8181 {
8182 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8183 		.info.dev = lower_dev,
8184 	};
8185 
8186 	ASSERT_RTNL();
8187 	changelowerstate_info.lower_state_info = lower_state_info;
8188 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8189 				      &changelowerstate_info.info);
8190 }
8191 EXPORT_SYMBOL(netdev_lower_state_changed);
8192 
8193 static void dev_change_rx_flags(struct net_device *dev, int flags)
8194 {
8195 	const struct net_device_ops *ops = dev->netdev_ops;
8196 
8197 	if (ops->ndo_change_rx_flags)
8198 		ops->ndo_change_rx_flags(dev, flags);
8199 }
8200 
8201 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8202 {
8203 	unsigned int old_flags = dev->flags;
8204 	kuid_t uid;
8205 	kgid_t gid;
8206 
8207 	ASSERT_RTNL();
8208 
8209 	dev->flags |= IFF_PROMISC;
8210 	dev->promiscuity += inc;
8211 	if (dev->promiscuity == 0) {
8212 		/*
8213 		 * Avoid overflow.
8214 		 * If inc causes overflow, untouch promisc and return error.
8215 		 */
8216 		if (inc < 0)
8217 			dev->flags &= ~IFF_PROMISC;
8218 		else {
8219 			dev->promiscuity -= inc;
8220 			netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8221 			return -EOVERFLOW;
8222 		}
8223 	}
8224 	if (dev->flags != old_flags) {
8225 		pr_info("device %s %s promiscuous mode\n",
8226 			dev->name,
8227 			dev->flags & IFF_PROMISC ? "entered" : "left");
8228 		if (audit_enabled) {
8229 			current_uid_gid(&uid, &gid);
8230 			audit_log(audit_context(), GFP_ATOMIC,
8231 				  AUDIT_ANOM_PROMISCUOUS,
8232 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8233 				  dev->name, (dev->flags & IFF_PROMISC),
8234 				  (old_flags & IFF_PROMISC),
8235 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
8236 				  from_kuid(&init_user_ns, uid),
8237 				  from_kgid(&init_user_ns, gid),
8238 				  audit_get_sessionid(current));
8239 		}
8240 
8241 		dev_change_rx_flags(dev, IFF_PROMISC);
8242 	}
8243 	if (notify)
8244 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
8245 	return 0;
8246 }
8247 
8248 /**
8249  *	dev_set_promiscuity	- update promiscuity count on a device
8250  *	@dev: device
8251  *	@inc: modifier
8252  *
8253  *	Add or remove promiscuity from a device. While the count in the device
8254  *	remains above zero the interface remains promiscuous. Once it hits zero
8255  *	the device reverts back to normal filtering operation. A negative inc
8256  *	value is used to drop promiscuity on the device.
8257  *	Return 0 if successful or a negative errno code on error.
8258  */
8259 int dev_set_promiscuity(struct net_device *dev, int inc)
8260 {
8261 	unsigned int old_flags = dev->flags;
8262 	int err;
8263 
8264 	err = __dev_set_promiscuity(dev, inc, true);
8265 	if (err < 0)
8266 		return err;
8267 	if (dev->flags != old_flags)
8268 		dev_set_rx_mode(dev);
8269 	return err;
8270 }
8271 EXPORT_SYMBOL(dev_set_promiscuity);
8272 
8273 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8274 {
8275 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8276 
8277 	ASSERT_RTNL();
8278 
8279 	dev->flags |= IFF_ALLMULTI;
8280 	dev->allmulti += inc;
8281 	if (dev->allmulti == 0) {
8282 		/*
8283 		 * Avoid overflow.
8284 		 * If inc causes overflow, untouch allmulti and return error.
8285 		 */
8286 		if (inc < 0)
8287 			dev->flags &= ~IFF_ALLMULTI;
8288 		else {
8289 			dev->allmulti -= inc;
8290 			netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8291 			return -EOVERFLOW;
8292 		}
8293 	}
8294 	if (dev->flags ^ old_flags) {
8295 		dev_change_rx_flags(dev, IFF_ALLMULTI);
8296 		dev_set_rx_mode(dev);
8297 		if (notify)
8298 			__dev_notify_flags(dev, old_flags,
8299 					   dev->gflags ^ old_gflags);
8300 	}
8301 	return 0;
8302 }
8303 
8304 /**
8305  *	dev_set_allmulti	- update allmulti count on a device
8306  *	@dev: device
8307  *	@inc: modifier
8308  *
8309  *	Add or remove reception of all multicast frames to a device. While the
8310  *	count in the device remains above zero the interface remains listening
8311  *	to all interfaces. Once it hits zero the device reverts back to normal
8312  *	filtering operation. A negative @inc value is used to drop the counter
8313  *	when releasing a resource needing all multicasts.
8314  *	Return 0 if successful or a negative errno code on error.
8315  */
8316 
8317 int dev_set_allmulti(struct net_device *dev, int inc)
8318 {
8319 	return __dev_set_allmulti(dev, inc, true);
8320 }
8321 EXPORT_SYMBOL(dev_set_allmulti);
8322 
8323 /*
8324  *	Upload unicast and multicast address lists to device and
8325  *	configure RX filtering. When the device doesn't support unicast
8326  *	filtering it is put in promiscuous mode while unicast addresses
8327  *	are present.
8328  */
8329 void __dev_set_rx_mode(struct net_device *dev)
8330 {
8331 	const struct net_device_ops *ops = dev->netdev_ops;
8332 
8333 	/* dev_open will call this function so the list will stay sane. */
8334 	if (!(dev->flags&IFF_UP))
8335 		return;
8336 
8337 	if (!netif_device_present(dev))
8338 		return;
8339 
8340 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8341 		/* Unicast addresses changes may only happen under the rtnl,
8342 		 * therefore calling __dev_set_promiscuity here is safe.
8343 		 */
8344 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8345 			__dev_set_promiscuity(dev, 1, false);
8346 			dev->uc_promisc = true;
8347 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8348 			__dev_set_promiscuity(dev, -1, false);
8349 			dev->uc_promisc = false;
8350 		}
8351 	}
8352 
8353 	if (ops->ndo_set_rx_mode)
8354 		ops->ndo_set_rx_mode(dev);
8355 }
8356 
8357 void dev_set_rx_mode(struct net_device *dev)
8358 {
8359 	netif_addr_lock_bh(dev);
8360 	__dev_set_rx_mode(dev);
8361 	netif_addr_unlock_bh(dev);
8362 }
8363 
8364 /**
8365  *	dev_get_flags - get flags reported to userspace
8366  *	@dev: device
8367  *
8368  *	Get the combination of flag bits exported through APIs to userspace.
8369  */
8370 unsigned int dev_get_flags(const struct net_device *dev)
8371 {
8372 	unsigned int flags;
8373 
8374 	flags = (dev->flags & ~(IFF_PROMISC |
8375 				IFF_ALLMULTI |
8376 				IFF_RUNNING |
8377 				IFF_LOWER_UP |
8378 				IFF_DORMANT)) |
8379 		(dev->gflags & (IFF_PROMISC |
8380 				IFF_ALLMULTI));
8381 
8382 	if (netif_running(dev)) {
8383 		if (netif_oper_up(dev))
8384 			flags |= IFF_RUNNING;
8385 		if (netif_carrier_ok(dev))
8386 			flags |= IFF_LOWER_UP;
8387 		if (netif_dormant(dev))
8388 			flags |= IFF_DORMANT;
8389 	}
8390 
8391 	return flags;
8392 }
8393 EXPORT_SYMBOL(dev_get_flags);
8394 
8395 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8396 		       struct netlink_ext_ack *extack)
8397 {
8398 	unsigned int old_flags = dev->flags;
8399 	int ret;
8400 
8401 	ASSERT_RTNL();
8402 
8403 	/*
8404 	 *	Set the flags on our device.
8405 	 */
8406 
8407 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8408 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8409 			       IFF_AUTOMEDIA)) |
8410 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8411 				    IFF_ALLMULTI));
8412 
8413 	/*
8414 	 *	Load in the correct multicast list now the flags have changed.
8415 	 */
8416 
8417 	if ((old_flags ^ flags) & IFF_MULTICAST)
8418 		dev_change_rx_flags(dev, IFF_MULTICAST);
8419 
8420 	dev_set_rx_mode(dev);
8421 
8422 	/*
8423 	 *	Have we downed the interface. We handle IFF_UP ourselves
8424 	 *	according to user attempts to set it, rather than blindly
8425 	 *	setting it.
8426 	 */
8427 
8428 	ret = 0;
8429 	if ((old_flags ^ flags) & IFF_UP) {
8430 		if (old_flags & IFF_UP)
8431 			__dev_close(dev);
8432 		else
8433 			ret = __dev_open(dev, extack);
8434 	}
8435 
8436 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
8437 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
8438 		unsigned int old_flags = dev->flags;
8439 
8440 		dev->gflags ^= IFF_PROMISC;
8441 
8442 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
8443 			if (dev->flags != old_flags)
8444 				dev_set_rx_mode(dev);
8445 	}
8446 
8447 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8448 	 * is important. Some (broken) drivers set IFF_PROMISC, when
8449 	 * IFF_ALLMULTI is requested not asking us and not reporting.
8450 	 */
8451 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8452 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8453 
8454 		dev->gflags ^= IFF_ALLMULTI;
8455 		__dev_set_allmulti(dev, inc, false);
8456 	}
8457 
8458 	return ret;
8459 }
8460 
8461 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8462 			unsigned int gchanges)
8463 {
8464 	unsigned int changes = dev->flags ^ old_flags;
8465 
8466 	if (gchanges)
8467 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8468 
8469 	if (changes & IFF_UP) {
8470 		if (dev->flags & IFF_UP)
8471 			call_netdevice_notifiers(NETDEV_UP, dev);
8472 		else
8473 			call_netdevice_notifiers(NETDEV_DOWN, dev);
8474 	}
8475 
8476 	if (dev->flags & IFF_UP &&
8477 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8478 		struct netdev_notifier_change_info change_info = {
8479 			.info = {
8480 				.dev = dev,
8481 			},
8482 			.flags_changed = changes,
8483 		};
8484 
8485 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8486 	}
8487 }
8488 
8489 /**
8490  *	dev_change_flags - change device settings
8491  *	@dev: device
8492  *	@flags: device state flags
8493  *	@extack: netlink extended ack
8494  *
8495  *	Change settings on device based state flags. The flags are
8496  *	in the userspace exported format.
8497  */
8498 int dev_change_flags(struct net_device *dev, unsigned int flags,
8499 		     struct netlink_ext_ack *extack)
8500 {
8501 	int ret;
8502 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8503 
8504 	ret = __dev_change_flags(dev, flags, extack);
8505 	if (ret < 0)
8506 		return ret;
8507 
8508 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8509 	__dev_notify_flags(dev, old_flags, changes);
8510 	return ret;
8511 }
8512 EXPORT_SYMBOL(dev_change_flags);
8513 
8514 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8515 {
8516 	const struct net_device_ops *ops = dev->netdev_ops;
8517 
8518 	if (ops->ndo_change_mtu)
8519 		return ops->ndo_change_mtu(dev, new_mtu);
8520 
8521 	/* Pairs with all the lockless reads of dev->mtu in the stack */
8522 	WRITE_ONCE(dev->mtu, new_mtu);
8523 	return 0;
8524 }
8525 EXPORT_SYMBOL(__dev_set_mtu);
8526 
8527 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8528 		     struct netlink_ext_ack *extack)
8529 {
8530 	/* MTU must be positive, and in range */
8531 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8532 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8533 		return -EINVAL;
8534 	}
8535 
8536 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8537 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8538 		return -EINVAL;
8539 	}
8540 	return 0;
8541 }
8542 
8543 /**
8544  *	dev_set_mtu_ext - Change maximum transfer unit
8545  *	@dev: device
8546  *	@new_mtu: new transfer unit
8547  *	@extack: netlink extended ack
8548  *
8549  *	Change the maximum transfer size of the network device.
8550  */
8551 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8552 		    struct netlink_ext_ack *extack)
8553 {
8554 	int err, orig_mtu;
8555 
8556 	if (new_mtu == dev->mtu)
8557 		return 0;
8558 
8559 	err = dev_validate_mtu(dev, new_mtu, extack);
8560 	if (err)
8561 		return err;
8562 
8563 	if (!netif_device_present(dev))
8564 		return -ENODEV;
8565 
8566 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8567 	err = notifier_to_errno(err);
8568 	if (err)
8569 		return err;
8570 
8571 	orig_mtu = dev->mtu;
8572 	err = __dev_set_mtu(dev, new_mtu);
8573 
8574 	if (!err) {
8575 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8576 						   orig_mtu);
8577 		err = notifier_to_errno(err);
8578 		if (err) {
8579 			/* setting mtu back and notifying everyone again,
8580 			 * so that they have a chance to revert changes.
8581 			 */
8582 			__dev_set_mtu(dev, orig_mtu);
8583 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8584 						     new_mtu);
8585 		}
8586 	}
8587 	return err;
8588 }
8589 
8590 int dev_set_mtu(struct net_device *dev, int new_mtu)
8591 {
8592 	struct netlink_ext_ack extack;
8593 	int err;
8594 
8595 	memset(&extack, 0, sizeof(extack));
8596 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
8597 	if (err && extack._msg)
8598 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8599 	return err;
8600 }
8601 EXPORT_SYMBOL(dev_set_mtu);
8602 
8603 /**
8604  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
8605  *	@dev: device
8606  *	@new_len: new tx queue length
8607  */
8608 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8609 {
8610 	unsigned int orig_len = dev->tx_queue_len;
8611 	int res;
8612 
8613 	if (new_len != (unsigned int)new_len)
8614 		return -ERANGE;
8615 
8616 	if (new_len != orig_len) {
8617 		dev->tx_queue_len = new_len;
8618 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8619 		res = notifier_to_errno(res);
8620 		if (res)
8621 			goto err_rollback;
8622 		res = dev_qdisc_change_tx_queue_len(dev);
8623 		if (res)
8624 			goto err_rollback;
8625 	}
8626 
8627 	return 0;
8628 
8629 err_rollback:
8630 	netdev_err(dev, "refused to change device tx_queue_len\n");
8631 	dev->tx_queue_len = orig_len;
8632 	return res;
8633 }
8634 
8635 /**
8636  *	dev_set_group - Change group this device belongs to
8637  *	@dev: device
8638  *	@new_group: group this device should belong to
8639  */
8640 void dev_set_group(struct net_device *dev, int new_group)
8641 {
8642 	dev->group = new_group;
8643 }
8644 EXPORT_SYMBOL(dev_set_group);
8645 
8646 /**
8647  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8648  *	@dev: device
8649  *	@addr: new address
8650  *	@extack: netlink extended ack
8651  */
8652 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8653 			      struct netlink_ext_ack *extack)
8654 {
8655 	struct netdev_notifier_pre_changeaddr_info info = {
8656 		.info.dev = dev,
8657 		.info.extack = extack,
8658 		.dev_addr = addr,
8659 	};
8660 	int rc;
8661 
8662 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8663 	return notifier_to_errno(rc);
8664 }
8665 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8666 
8667 /**
8668  *	dev_set_mac_address - Change Media Access Control Address
8669  *	@dev: device
8670  *	@sa: new address
8671  *	@extack: netlink extended ack
8672  *
8673  *	Change the hardware (MAC) address of the device
8674  */
8675 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8676 			struct netlink_ext_ack *extack)
8677 {
8678 	const struct net_device_ops *ops = dev->netdev_ops;
8679 	int err;
8680 
8681 	if (!ops->ndo_set_mac_address)
8682 		return -EOPNOTSUPP;
8683 	if (sa->sa_family != dev->type)
8684 		return -EINVAL;
8685 	if (!netif_device_present(dev))
8686 		return -ENODEV;
8687 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8688 	if (err)
8689 		return err;
8690 	err = ops->ndo_set_mac_address(dev, sa);
8691 	if (err)
8692 		return err;
8693 	dev->addr_assign_type = NET_ADDR_SET;
8694 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8695 	add_device_randomness(dev->dev_addr, dev->addr_len);
8696 	return 0;
8697 }
8698 EXPORT_SYMBOL(dev_set_mac_address);
8699 
8700 static DECLARE_RWSEM(dev_addr_sem);
8701 
8702 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8703 			     struct netlink_ext_ack *extack)
8704 {
8705 	int ret;
8706 
8707 	down_write(&dev_addr_sem);
8708 	ret = dev_set_mac_address(dev, sa, extack);
8709 	up_write(&dev_addr_sem);
8710 	return ret;
8711 }
8712 EXPORT_SYMBOL(dev_set_mac_address_user);
8713 
8714 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8715 {
8716 	size_t size = sizeof(sa->sa_data);
8717 	struct net_device *dev;
8718 	int ret = 0;
8719 
8720 	down_read(&dev_addr_sem);
8721 	rcu_read_lock();
8722 
8723 	dev = dev_get_by_name_rcu(net, dev_name);
8724 	if (!dev) {
8725 		ret = -ENODEV;
8726 		goto unlock;
8727 	}
8728 	if (!dev->addr_len)
8729 		memset(sa->sa_data, 0, size);
8730 	else
8731 		memcpy(sa->sa_data, dev->dev_addr,
8732 		       min_t(size_t, size, dev->addr_len));
8733 	sa->sa_family = dev->type;
8734 
8735 unlock:
8736 	rcu_read_unlock();
8737 	up_read(&dev_addr_sem);
8738 	return ret;
8739 }
8740 EXPORT_SYMBOL(dev_get_mac_address);
8741 
8742 /**
8743  *	dev_change_carrier - Change device carrier
8744  *	@dev: device
8745  *	@new_carrier: new value
8746  *
8747  *	Change device carrier
8748  */
8749 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8750 {
8751 	const struct net_device_ops *ops = dev->netdev_ops;
8752 
8753 	if (!ops->ndo_change_carrier)
8754 		return -EOPNOTSUPP;
8755 	if (!netif_device_present(dev))
8756 		return -ENODEV;
8757 	return ops->ndo_change_carrier(dev, new_carrier);
8758 }
8759 EXPORT_SYMBOL(dev_change_carrier);
8760 
8761 /**
8762  *	dev_get_phys_port_id - Get device physical port ID
8763  *	@dev: device
8764  *	@ppid: port ID
8765  *
8766  *	Get device physical port ID
8767  */
8768 int dev_get_phys_port_id(struct net_device *dev,
8769 			 struct netdev_phys_item_id *ppid)
8770 {
8771 	const struct net_device_ops *ops = dev->netdev_ops;
8772 
8773 	if (!ops->ndo_get_phys_port_id)
8774 		return -EOPNOTSUPP;
8775 	return ops->ndo_get_phys_port_id(dev, ppid);
8776 }
8777 EXPORT_SYMBOL(dev_get_phys_port_id);
8778 
8779 /**
8780  *	dev_get_phys_port_name - Get device physical port name
8781  *	@dev: device
8782  *	@name: port name
8783  *	@len: limit of bytes to copy to name
8784  *
8785  *	Get device physical port name
8786  */
8787 int dev_get_phys_port_name(struct net_device *dev,
8788 			   char *name, size_t len)
8789 {
8790 	const struct net_device_ops *ops = dev->netdev_ops;
8791 	int err;
8792 
8793 	if (ops->ndo_get_phys_port_name) {
8794 		err = ops->ndo_get_phys_port_name(dev, name, len);
8795 		if (err != -EOPNOTSUPP)
8796 			return err;
8797 	}
8798 	return devlink_compat_phys_port_name_get(dev, name, len);
8799 }
8800 EXPORT_SYMBOL(dev_get_phys_port_name);
8801 
8802 /**
8803  *	dev_get_port_parent_id - Get the device's port parent identifier
8804  *	@dev: network device
8805  *	@ppid: pointer to a storage for the port's parent identifier
8806  *	@recurse: allow/disallow recursion to lower devices
8807  *
8808  *	Get the devices's port parent identifier
8809  */
8810 int dev_get_port_parent_id(struct net_device *dev,
8811 			   struct netdev_phys_item_id *ppid,
8812 			   bool recurse)
8813 {
8814 	const struct net_device_ops *ops = dev->netdev_ops;
8815 	struct netdev_phys_item_id first = { };
8816 	struct net_device *lower_dev;
8817 	struct list_head *iter;
8818 	int err;
8819 
8820 	if (ops->ndo_get_port_parent_id) {
8821 		err = ops->ndo_get_port_parent_id(dev, ppid);
8822 		if (err != -EOPNOTSUPP)
8823 			return err;
8824 	}
8825 
8826 	err = devlink_compat_switch_id_get(dev, ppid);
8827 	if (!recurse || err != -EOPNOTSUPP)
8828 		return err;
8829 
8830 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
8831 		err = dev_get_port_parent_id(lower_dev, ppid, true);
8832 		if (err)
8833 			break;
8834 		if (!first.id_len)
8835 			first = *ppid;
8836 		else if (memcmp(&first, ppid, sizeof(*ppid)))
8837 			return -EOPNOTSUPP;
8838 	}
8839 
8840 	return err;
8841 }
8842 EXPORT_SYMBOL(dev_get_port_parent_id);
8843 
8844 /**
8845  *	netdev_port_same_parent_id - Indicate if two network devices have
8846  *	the same port parent identifier
8847  *	@a: first network device
8848  *	@b: second network device
8849  */
8850 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8851 {
8852 	struct netdev_phys_item_id a_id = { };
8853 	struct netdev_phys_item_id b_id = { };
8854 
8855 	if (dev_get_port_parent_id(a, &a_id, true) ||
8856 	    dev_get_port_parent_id(b, &b_id, true))
8857 		return false;
8858 
8859 	return netdev_phys_item_id_same(&a_id, &b_id);
8860 }
8861 EXPORT_SYMBOL(netdev_port_same_parent_id);
8862 
8863 /**
8864  *	dev_change_proto_down - set carrier according to proto_down.
8865  *
8866  *	@dev: device
8867  *	@proto_down: new value
8868  */
8869 int dev_change_proto_down(struct net_device *dev, bool proto_down)
8870 {
8871 	if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN))
8872 		return -EOPNOTSUPP;
8873 	if (!netif_device_present(dev))
8874 		return -ENODEV;
8875 	if (proto_down)
8876 		netif_carrier_off(dev);
8877 	else
8878 		netif_carrier_on(dev);
8879 	dev->proto_down = proto_down;
8880 	return 0;
8881 }
8882 EXPORT_SYMBOL(dev_change_proto_down);
8883 
8884 /**
8885  *	dev_change_proto_down_reason - proto down reason
8886  *
8887  *	@dev: device
8888  *	@mask: proto down mask
8889  *	@value: proto down value
8890  */
8891 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
8892 				  u32 value)
8893 {
8894 	int b;
8895 
8896 	if (!mask) {
8897 		dev->proto_down_reason = value;
8898 	} else {
8899 		for_each_set_bit(b, &mask, 32) {
8900 			if (value & (1 << b))
8901 				dev->proto_down_reason |= BIT(b);
8902 			else
8903 				dev->proto_down_reason &= ~BIT(b);
8904 		}
8905 	}
8906 }
8907 EXPORT_SYMBOL(dev_change_proto_down_reason);
8908 
8909 struct bpf_xdp_link {
8910 	struct bpf_link link;
8911 	struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
8912 	int flags;
8913 };
8914 
8915 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
8916 {
8917 	if (flags & XDP_FLAGS_HW_MODE)
8918 		return XDP_MODE_HW;
8919 	if (flags & XDP_FLAGS_DRV_MODE)
8920 		return XDP_MODE_DRV;
8921 	if (flags & XDP_FLAGS_SKB_MODE)
8922 		return XDP_MODE_SKB;
8923 	return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
8924 }
8925 
8926 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
8927 {
8928 	switch (mode) {
8929 	case XDP_MODE_SKB:
8930 		return generic_xdp_install;
8931 	case XDP_MODE_DRV:
8932 	case XDP_MODE_HW:
8933 		return dev->netdev_ops->ndo_bpf;
8934 	default:
8935 		return NULL;
8936 	}
8937 }
8938 
8939 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
8940 					 enum bpf_xdp_mode mode)
8941 {
8942 	return dev->xdp_state[mode].link;
8943 }
8944 
8945 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
8946 				     enum bpf_xdp_mode mode)
8947 {
8948 	struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
8949 
8950 	if (link)
8951 		return link->link.prog;
8952 	return dev->xdp_state[mode].prog;
8953 }
8954 
8955 u8 dev_xdp_prog_count(struct net_device *dev)
8956 {
8957 	u8 count = 0;
8958 	int i;
8959 
8960 	for (i = 0; i < __MAX_XDP_MODE; i++)
8961 		if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
8962 			count++;
8963 	return count;
8964 }
8965 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
8966 
8967 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
8968 {
8969 	struct bpf_prog *prog = dev_xdp_prog(dev, mode);
8970 
8971 	return prog ? prog->aux->id : 0;
8972 }
8973 
8974 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
8975 			     struct bpf_xdp_link *link)
8976 {
8977 	dev->xdp_state[mode].link = link;
8978 	dev->xdp_state[mode].prog = NULL;
8979 }
8980 
8981 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
8982 			     struct bpf_prog *prog)
8983 {
8984 	dev->xdp_state[mode].link = NULL;
8985 	dev->xdp_state[mode].prog = prog;
8986 }
8987 
8988 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
8989 			   bpf_op_t bpf_op, struct netlink_ext_ack *extack,
8990 			   u32 flags, struct bpf_prog *prog)
8991 {
8992 	struct netdev_bpf xdp;
8993 	int err;
8994 
8995 	memset(&xdp, 0, sizeof(xdp));
8996 	xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
8997 	xdp.extack = extack;
8998 	xdp.flags = flags;
8999 	xdp.prog = prog;
9000 
9001 	/* Drivers assume refcnt is already incremented (i.e, prog pointer is
9002 	 * "moved" into driver), so they don't increment it on their own, but
9003 	 * they do decrement refcnt when program is detached or replaced.
9004 	 * Given net_device also owns link/prog, we need to bump refcnt here
9005 	 * to prevent drivers from underflowing it.
9006 	 */
9007 	if (prog)
9008 		bpf_prog_inc(prog);
9009 	err = bpf_op(dev, &xdp);
9010 	if (err) {
9011 		if (prog)
9012 			bpf_prog_put(prog);
9013 		return err;
9014 	}
9015 
9016 	if (mode != XDP_MODE_HW)
9017 		bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9018 
9019 	return 0;
9020 }
9021 
9022 static void dev_xdp_uninstall(struct net_device *dev)
9023 {
9024 	struct bpf_xdp_link *link;
9025 	struct bpf_prog *prog;
9026 	enum bpf_xdp_mode mode;
9027 	bpf_op_t bpf_op;
9028 
9029 	ASSERT_RTNL();
9030 
9031 	for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9032 		prog = dev_xdp_prog(dev, mode);
9033 		if (!prog)
9034 			continue;
9035 
9036 		bpf_op = dev_xdp_bpf_op(dev, mode);
9037 		if (!bpf_op)
9038 			continue;
9039 
9040 		WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9041 
9042 		/* auto-detach link from net device */
9043 		link = dev_xdp_link(dev, mode);
9044 		if (link)
9045 			link->dev = NULL;
9046 		else
9047 			bpf_prog_put(prog);
9048 
9049 		dev_xdp_set_link(dev, mode, NULL);
9050 	}
9051 }
9052 
9053 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9054 			  struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9055 			  struct bpf_prog *old_prog, u32 flags)
9056 {
9057 	unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9058 	struct bpf_prog *cur_prog;
9059 	struct net_device *upper;
9060 	struct list_head *iter;
9061 	enum bpf_xdp_mode mode;
9062 	bpf_op_t bpf_op;
9063 	int err;
9064 
9065 	ASSERT_RTNL();
9066 
9067 	/* either link or prog attachment, never both */
9068 	if (link && (new_prog || old_prog))
9069 		return -EINVAL;
9070 	/* link supports only XDP mode flags */
9071 	if (link && (flags & ~XDP_FLAGS_MODES)) {
9072 		NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9073 		return -EINVAL;
9074 	}
9075 	/* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9076 	if (num_modes > 1) {
9077 		NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9078 		return -EINVAL;
9079 	}
9080 	/* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9081 	if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9082 		NL_SET_ERR_MSG(extack,
9083 			       "More than one program loaded, unset mode is ambiguous");
9084 		return -EINVAL;
9085 	}
9086 	/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9087 	if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9088 		NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9089 		return -EINVAL;
9090 	}
9091 
9092 	mode = dev_xdp_mode(dev, flags);
9093 	/* can't replace attached link */
9094 	if (dev_xdp_link(dev, mode)) {
9095 		NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9096 		return -EBUSY;
9097 	}
9098 
9099 	/* don't allow if an upper device already has a program */
9100 	netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9101 		if (dev_xdp_prog_count(upper) > 0) {
9102 			NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9103 			return -EEXIST;
9104 		}
9105 	}
9106 
9107 	cur_prog = dev_xdp_prog(dev, mode);
9108 	/* can't replace attached prog with link */
9109 	if (link && cur_prog) {
9110 		NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9111 		return -EBUSY;
9112 	}
9113 	if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9114 		NL_SET_ERR_MSG(extack, "Active program does not match expected");
9115 		return -EEXIST;
9116 	}
9117 
9118 	/* put effective new program into new_prog */
9119 	if (link)
9120 		new_prog = link->link.prog;
9121 
9122 	if (new_prog) {
9123 		bool offload = mode == XDP_MODE_HW;
9124 		enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9125 					       ? XDP_MODE_DRV : XDP_MODE_SKB;
9126 
9127 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9128 			NL_SET_ERR_MSG(extack, "XDP program already attached");
9129 			return -EBUSY;
9130 		}
9131 		if (!offload && dev_xdp_prog(dev, other_mode)) {
9132 			NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9133 			return -EEXIST;
9134 		}
9135 		if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9136 			NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9137 			return -EINVAL;
9138 		}
9139 		if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9140 			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9141 			return -EINVAL;
9142 		}
9143 		if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9144 			NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9145 			return -EINVAL;
9146 		}
9147 	}
9148 
9149 	/* don't call drivers if the effective program didn't change */
9150 	if (new_prog != cur_prog) {
9151 		bpf_op = dev_xdp_bpf_op(dev, mode);
9152 		if (!bpf_op) {
9153 			NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9154 			return -EOPNOTSUPP;
9155 		}
9156 
9157 		err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9158 		if (err)
9159 			return err;
9160 	}
9161 
9162 	if (link)
9163 		dev_xdp_set_link(dev, mode, link);
9164 	else
9165 		dev_xdp_set_prog(dev, mode, new_prog);
9166 	if (cur_prog)
9167 		bpf_prog_put(cur_prog);
9168 
9169 	return 0;
9170 }
9171 
9172 static int dev_xdp_attach_link(struct net_device *dev,
9173 			       struct netlink_ext_ack *extack,
9174 			       struct bpf_xdp_link *link)
9175 {
9176 	return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9177 }
9178 
9179 static int dev_xdp_detach_link(struct net_device *dev,
9180 			       struct netlink_ext_ack *extack,
9181 			       struct bpf_xdp_link *link)
9182 {
9183 	enum bpf_xdp_mode mode;
9184 	bpf_op_t bpf_op;
9185 
9186 	ASSERT_RTNL();
9187 
9188 	mode = dev_xdp_mode(dev, link->flags);
9189 	if (dev_xdp_link(dev, mode) != link)
9190 		return -EINVAL;
9191 
9192 	bpf_op = dev_xdp_bpf_op(dev, mode);
9193 	WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9194 	dev_xdp_set_link(dev, mode, NULL);
9195 	return 0;
9196 }
9197 
9198 static void bpf_xdp_link_release(struct bpf_link *link)
9199 {
9200 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9201 
9202 	rtnl_lock();
9203 
9204 	/* if racing with net_device's tear down, xdp_link->dev might be
9205 	 * already NULL, in which case link was already auto-detached
9206 	 */
9207 	if (xdp_link->dev) {
9208 		WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9209 		xdp_link->dev = NULL;
9210 	}
9211 
9212 	rtnl_unlock();
9213 }
9214 
9215 static int bpf_xdp_link_detach(struct bpf_link *link)
9216 {
9217 	bpf_xdp_link_release(link);
9218 	return 0;
9219 }
9220 
9221 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9222 {
9223 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9224 
9225 	kfree(xdp_link);
9226 }
9227 
9228 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9229 				     struct seq_file *seq)
9230 {
9231 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9232 	u32 ifindex = 0;
9233 
9234 	rtnl_lock();
9235 	if (xdp_link->dev)
9236 		ifindex = xdp_link->dev->ifindex;
9237 	rtnl_unlock();
9238 
9239 	seq_printf(seq, "ifindex:\t%u\n", ifindex);
9240 }
9241 
9242 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9243 				       struct bpf_link_info *info)
9244 {
9245 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9246 	u32 ifindex = 0;
9247 
9248 	rtnl_lock();
9249 	if (xdp_link->dev)
9250 		ifindex = xdp_link->dev->ifindex;
9251 	rtnl_unlock();
9252 
9253 	info->xdp.ifindex = ifindex;
9254 	return 0;
9255 }
9256 
9257 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9258 			       struct bpf_prog *old_prog)
9259 {
9260 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9261 	enum bpf_xdp_mode mode;
9262 	bpf_op_t bpf_op;
9263 	int err = 0;
9264 
9265 	rtnl_lock();
9266 
9267 	/* link might have been auto-released already, so fail */
9268 	if (!xdp_link->dev) {
9269 		err = -ENOLINK;
9270 		goto out_unlock;
9271 	}
9272 
9273 	if (old_prog && link->prog != old_prog) {
9274 		err = -EPERM;
9275 		goto out_unlock;
9276 	}
9277 	old_prog = link->prog;
9278 	if (old_prog->type != new_prog->type ||
9279 	    old_prog->expected_attach_type != new_prog->expected_attach_type) {
9280 		err = -EINVAL;
9281 		goto out_unlock;
9282 	}
9283 
9284 	if (old_prog == new_prog) {
9285 		/* no-op, don't disturb drivers */
9286 		bpf_prog_put(new_prog);
9287 		goto out_unlock;
9288 	}
9289 
9290 	mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9291 	bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9292 	err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9293 			      xdp_link->flags, new_prog);
9294 	if (err)
9295 		goto out_unlock;
9296 
9297 	old_prog = xchg(&link->prog, new_prog);
9298 	bpf_prog_put(old_prog);
9299 
9300 out_unlock:
9301 	rtnl_unlock();
9302 	return err;
9303 }
9304 
9305 static const struct bpf_link_ops bpf_xdp_link_lops = {
9306 	.release = bpf_xdp_link_release,
9307 	.dealloc = bpf_xdp_link_dealloc,
9308 	.detach = bpf_xdp_link_detach,
9309 	.show_fdinfo = bpf_xdp_link_show_fdinfo,
9310 	.fill_link_info = bpf_xdp_link_fill_link_info,
9311 	.update_prog = bpf_xdp_link_update,
9312 };
9313 
9314 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9315 {
9316 	struct net *net = current->nsproxy->net_ns;
9317 	struct bpf_link_primer link_primer;
9318 	struct bpf_xdp_link *link;
9319 	struct net_device *dev;
9320 	int err, fd;
9321 
9322 	rtnl_lock();
9323 	dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9324 	if (!dev) {
9325 		rtnl_unlock();
9326 		return -EINVAL;
9327 	}
9328 
9329 	link = kzalloc(sizeof(*link), GFP_USER);
9330 	if (!link) {
9331 		err = -ENOMEM;
9332 		goto unlock;
9333 	}
9334 
9335 	bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9336 	link->dev = dev;
9337 	link->flags = attr->link_create.flags;
9338 
9339 	err = bpf_link_prime(&link->link, &link_primer);
9340 	if (err) {
9341 		kfree(link);
9342 		goto unlock;
9343 	}
9344 
9345 	err = dev_xdp_attach_link(dev, NULL, link);
9346 	rtnl_unlock();
9347 
9348 	if (err) {
9349 		link->dev = NULL;
9350 		bpf_link_cleanup(&link_primer);
9351 		goto out_put_dev;
9352 	}
9353 
9354 	fd = bpf_link_settle(&link_primer);
9355 	/* link itself doesn't hold dev's refcnt to not complicate shutdown */
9356 	dev_put(dev);
9357 	return fd;
9358 
9359 unlock:
9360 	rtnl_unlock();
9361 
9362 out_put_dev:
9363 	dev_put(dev);
9364 	return err;
9365 }
9366 
9367 /**
9368  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
9369  *	@dev: device
9370  *	@extack: netlink extended ack
9371  *	@fd: new program fd or negative value to clear
9372  *	@expected_fd: old program fd that userspace expects to replace or clear
9373  *	@flags: xdp-related flags
9374  *
9375  *	Set or clear a bpf program for a device
9376  */
9377 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9378 		      int fd, int expected_fd, u32 flags)
9379 {
9380 	enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9381 	struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9382 	int err;
9383 
9384 	ASSERT_RTNL();
9385 
9386 	if (fd >= 0) {
9387 		new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9388 						 mode != XDP_MODE_SKB);
9389 		if (IS_ERR(new_prog))
9390 			return PTR_ERR(new_prog);
9391 	}
9392 
9393 	if (expected_fd >= 0) {
9394 		old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9395 						 mode != XDP_MODE_SKB);
9396 		if (IS_ERR(old_prog)) {
9397 			err = PTR_ERR(old_prog);
9398 			old_prog = NULL;
9399 			goto err_out;
9400 		}
9401 	}
9402 
9403 	err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9404 
9405 err_out:
9406 	if (err && new_prog)
9407 		bpf_prog_put(new_prog);
9408 	if (old_prog)
9409 		bpf_prog_put(old_prog);
9410 	return err;
9411 }
9412 
9413 /**
9414  *	dev_new_index	-	allocate an ifindex
9415  *	@net: the applicable net namespace
9416  *
9417  *	Returns a suitable unique value for a new device interface
9418  *	number.  The caller must hold the rtnl semaphore or the
9419  *	dev_base_lock to be sure it remains unique.
9420  */
9421 static int dev_new_index(struct net *net)
9422 {
9423 	int ifindex = net->ifindex;
9424 
9425 	for (;;) {
9426 		if (++ifindex <= 0)
9427 			ifindex = 1;
9428 		if (!__dev_get_by_index(net, ifindex))
9429 			return net->ifindex = ifindex;
9430 	}
9431 }
9432 
9433 /* Delayed registration/unregisteration */
9434 static LIST_HEAD(net_todo_list);
9435 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9436 
9437 static void net_set_todo(struct net_device *dev)
9438 {
9439 	list_add_tail(&dev->todo_list, &net_todo_list);
9440 	atomic_inc(&dev_net(dev)->dev_unreg_count);
9441 }
9442 
9443 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9444 	struct net_device *upper, netdev_features_t features)
9445 {
9446 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9447 	netdev_features_t feature;
9448 	int feature_bit;
9449 
9450 	for_each_netdev_feature(upper_disables, feature_bit) {
9451 		feature = __NETIF_F_BIT(feature_bit);
9452 		if (!(upper->wanted_features & feature)
9453 		    && (features & feature)) {
9454 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9455 				   &feature, upper->name);
9456 			features &= ~feature;
9457 		}
9458 	}
9459 
9460 	return features;
9461 }
9462 
9463 static void netdev_sync_lower_features(struct net_device *upper,
9464 	struct net_device *lower, netdev_features_t features)
9465 {
9466 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9467 	netdev_features_t feature;
9468 	int feature_bit;
9469 
9470 	for_each_netdev_feature(upper_disables, feature_bit) {
9471 		feature = __NETIF_F_BIT(feature_bit);
9472 		if (!(features & feature) && (lower->features & feature)) {
9473 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9474 				   &feature, lower->name);
9475 			lower->wanted_features &= ~feature;
9476 			__netdev_update_features(lower);
9477 
9478 			if (unlikely(lower->features & feature))
9479 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9480 					    &feature, lower->name);
9481 			else
9482 				netdev_features_change(lower);
9483 		}
9484 	}
9485 }
9486 
9487 static netdev_features_t netdev_fix_features(struct net_device *dev,
9488 	netdev_features_t features)
9489 {
9490 	/* Fix illegal checksum combinations */
9491 	if ((features & NETIF_F_HW_CSUM) &&
9492 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9493 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9494 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9495 	}
9496 
9497 	/* TSO requires that SG is present as well. */
9498 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9499 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9500 		features &= ~NETIF_F_ALL_TSO;
9501 	}
9502 
9503 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9504 					!(features & NETIF_F_IP_CSUM)) {
9505 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9506 		features &= ~NETIF_F_TSO;
9507 		features &= ~NETIF_F_TSO_ECN;
9508 	}
9509 
9510 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9511 					 !(features & NETIF_F_IPV6_CSUM)) {
9512 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9513 		features &= ~NETIF_F_TSO6;
9514 	}
9515 
9516 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9517 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9518 		features &= ~NETIF_F_TSO_MANGLEID;
9519 
9520 	/* TSO ECN requires that TSO is present as well. */
9521 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9522 		features &= ~NETIF_F_TSO_ECN;
9523 
9524 	/* Software GSO depends on SG. */
9525 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9526 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9527 		features &= ~NETIF_F_GSO;
9528 	}
9529 
9530 	/* GSO partial features require GSO partial be set */
9531 	if ((features & dev->gso_partial_features) &&
9532 	    !(features & NETIF_F_GSO_PARTIAL)) {
9533 		netdev_dbg(dev,
9534 			   "Dropping partially supported GSO features since no GSO partial.\n");
9535 		features &= ~dev->gso_partial_features;
9536 	}
9537 
9538 	if (!(features & NETIF_F_RXCSUM)) {
9539 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9540 		 * successfully merged by hardware must also have the
9541 		 * checksum verified by hardware.  If the user does not
9542 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
9543 		 */
9544 		if (features & NETIF_F_GRO_HW) {
9545 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9546 			features &= ~NETIF_F_GRO_HW;
9547 		}
9548 	}
9549 
9550 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
9551 	if (features & NETIF_F_RXFCS) {
9552 		if (features & NETIF_F_LRO) {
9553 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9554 			features &= ~NETIF_F_LRO;
9555 		}
9556 
9557 		if (features & NETIF_F_GRO_HW) {
9558 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9559 			features &= ~NETIF_F_GRO_HW;
9560 		}
9561 	}
9562 
9563 	if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
9564 		netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
9565 		features &= ~NETIF_F_LRO;
9566 	}
9567 
9568 	if (features & NETIF_F_HW_TLS_TX) {
9569 		bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9570 			(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9571 		bool hw_csum = features & NETIF_F_HW_CSUM;
9572 
9573 		if (!ip_csum && !hw_csum) {
9574 			netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9575 			features &= ~NETIF_F_HW_TLS_TX;
9576 		}
9577 	}
9578 
9579 	if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9580 		netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9581 		features &= ~NETIF_F_HW_TLS_RX;
9582 	}
9583 
9584 	return features;
9585 }
9586 
9587 int __netdev_update_features(struct net_device *dev)
9588 {
9589 	struct net_device *upper, *lower;
9590 	netdev_features_t features;
9591 	struct list_head *iter;
9592 	int err = -1;
9593 
9594 	ASSERT_RTNL();
9595 
9596 	features = netdev_get_wanted_features(dev);
9597 
9598 	if (dev->netdev_ops->ndo_fix_features)
9599 		features = dev->netdev_ops->ndo_fix_features(dev, features);
9600 
9601 	/* driver might be less strict about feature dependencies */
9602 	features = netdev_fix_features(dev, features);
9603 
9604 	/* some features can't be enabled if they're off on an upper device */
9605 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
9606 		features = netdev_sync_upper_features(dev, upper, features);
9607 
9608 	if (dev->features == features)
9609 		goto sync_lower;
9610 
9611 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9612 		&dev->features, &features);
9613 
9614 	if (dev->netdev_ops->ndo_set_features)
9615 		err = dev->netdev_ops->ndo_set_features(dev, features);
9616 	else
9617 		err = 0;
9618 
9619 	if (unlikely(err < 0)) {
9620 		netdev_err(dev,
9621 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
9622 			err, &features, &dev->features);
9623 		/* return non-0 since some features might have changed and
9624 		 * it's better to fire a spurious notification than miss it
9625 		 */
9626 		return -1;
9627 	}
9628 
9629 sync_lower:
9630 	/* some features must be disabled on lower devices when disabled
9631 	 * on an upper device (think: bonding master or bridge)
9632 	 */
9633 	netdev_for_each_lower_dev(dev, lower, iter)
9634 		netdev_sync_lower_features(dev, lower, features);
9635 
9636 	if (!err) {
9637 		netdev_features_t diff = features ^ dev->features;
9638 
9639 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9640 			/* udp_tunnel_{get,drop}_rx_info both need
9641 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9642 			 * device, or they won't do anything.
9643 			 * Thus we need to update dev->features
9644 			 * *before* calling udp_tunnel_get_rx_info,
9645 			 * but *after* calling udp_tunnel_drop_rx_info.
9646 			 */
9647 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9648 				dev->features = features;
9649 				udp_tunnel_get_rx_info(dev);
9650 			} else {
9651 				udp_tunnel_drop_rx_info(dev);
9652 			}
9653 		}
9654 
9655 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9656 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9657 				dev->features = features;
9658 				err |= vlan_get_rx_ctag_filter_info(dev);
9659 			} else {
9660 				vlan_drop_rx_ctag_filter_info(dev);
9661 			}
9662 		}
9663 
9664 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9665 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9666 				dev->features = features;
9667 				err |= vlan_get_rx_stag_filter_info(dev);
9668 			} else {
9669 				vlan_drop_rx_stag_filter_info(dev);
9670 			}
9671 		}
9672 
9673 		dev->features = features;
9674 	}
9675 
9676 	return err < 0 ? 0 : 1;
9677 }
9678 
9679 /**
9680  *	netdev_update_features - recalculate device features
9681  *	@dev: the device to check
9682  *
9683  *	Recalculate dev->features set and send notifications if it
9684  *	has changed. Should be called after driver or hardware dependent
9685  *	conditions might have changed that influence the features.
9686  */
9687 void netdev_update_features(struct net_device *dev)
9688 {
9689 	if (__netdev_update_features(dev))
9690 		netdev_features_change(dev);
9691 }
9692 EXPORT_SYMBOL(netdev_update_features);
9693 
9694 /**
9695  *	netdev_change_features - recalculate device features
9696  *	@dev: the device to check
9697  *
9698  *	Recalculate dev->features set and send notifications even
9699  *	if they have not changed. Should be called instead of
9700  *	netdev_update_features() if also dev->vlan_features might
9701  *	have changed to allow the changes to be propagated to stacked
9702  *	VLAN devices.
9703  */
9704 void netdev_change_features(struct net_device *dev)
9705 {
9706 	__netdev_update_features(dev);
9707 	netdev_features_change(dev);
9708 }
9709 EXPORT_SYMBOL(netdev_change_features);
9710 
9711 /**
9712  *	netif_stacked_transfer_operstate -	transfer operstate
9713  *	@rootdev: the root or lower level device to transfer state from
9714  *	@dev: the device to transfer operstate to
9715  *
9716  *	Transfer operational state from root to device. This is normally
9717  *	called when a stacking relationship exists between the root
9718  *	device and the device(a leaf device).
9719  */
9720 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9721 					struct net_device *dev)
9722 {
9723 	if (rootdev->operstate == IF_OPER_DORMANT)
9724 		netif_dormant_on(dev);
9725 	else
9726 		netif_dormant_off(dev);
9727 
9728 	if (rootdev->operstate == IF_OPER_TESTING)
9729 		netif_testing_on(dev);
9730 	else
9731 		netif_testing_off(dev);
9732 
9733 	if (netif_carrier_ok(rootdev))
9734 		netif_carrier_on(dev);
9735 	else
9736 		netif_carrier_off(dev);
9737 }
9738 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9739 
9740 static int netif_alloc_rx_queues(struct net_device *dev)
9741 {
9742 	unsigned int i, count = dev->num_rx_queues;
9743 	struct netdev_rx_queue *rx;
9744 	size_t sz = count * sizeof(*rx);
9745 	int err = 0;
9746 
9747 	BUG_ON(count < 1);
9748 
9749 	rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9750 	if (!rx)
9751 		return -ENOMEM;
9752 
9753 	dev->_rx = rx;
9754 
9755 	for (i = 0; i < count; i++) {
9756 		rx[i].dev = dev;
9757 
9758 		/* XDP RX-queue setup */
9759 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
9760 		if (err < 0)
9761 			goto err_rxq_info;
9762 	}
9763 	return 0;
9764 
9765 err_rxq_info:
9766 	/* Rollback successful reg's and free other resources */
9767 	while (i--)
9768 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9769 	kvfree(dev->_rx);
9770 	dev->_rx = NULL;
9771 	return err;
9772 }
9773 
9774 static void netif_free_rx_queues(struct net_device *dev)
9775 {
9776 	unsigned int i, count = dev->num_rx_queues;
9777 
9778 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9779 	if (!dev->_rx)
9780 		return;
9781 
9782 	for (i = 0; i < count; i++)
9783 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9784 
9785 	kvfree(dev->_rx);
9786 }
9787 
9788 static void netdev_init_one_queue(struct net_device *dev,
9789 				  struct netdev_queue *queue, void *_unused)
9790 {
9791 	/* Initialize queue lock */
9792 	spin_lock_init(&queue->_xmit_lock);
9793 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
9794 	queue->xmit_lock_owner = -1;
9795 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9796 	queue->dev = dev;
9797 #ifdef CONFIG_BQL
9798 	dql_init(&queue->dql, HZ);
9799 #endif
9800 }
9801 
9802 static void netif_free_tx_queues(struct net_device *dev)
9803 {
9804 	kvfree(dev->_tx);
9805 }
9806 
9807 static int netif_alloc_netdev_queues(struct net_device *dev)
9808 {
9809 	unsigned int count = dev->num_tx_queues;
9810 	struct netdev_queue *tx;
9811 	size_t sz = count * sizeof(*tx);
9812 
9813 	if (count < 1 || count > 0xffff)
9814 		return -EINVAL;
9815 
9816 	tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9817 	if (!tx)
9818 		return -ENOMEM;
9819 
9820 	dev->_tx = tx;
9821 
9822 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9823 	spin_lock_init(&dev->tx_global_lock);
9824 
9825 	return 0;
9826 }
9827 
9828 void netif_tx_stop_all_queues(struct net_device *dev)
9829 {
9830 	unsigned int i;
9831 
9832 	for (i = 0; i < dev->num_tx_queues; i++) {
9833 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9834 
9835 		netif_tx_stop_queue(txq);
9836 	}
9837 }
9838 EXPORT_SYMBOL(netif_tx_stop_all_queues);
9839 
9840 /**
9841  *	register_netdevice	- register a network device
9842  *	@dev: device to register
9843  *
9844  *	Take a completed network device structure and add it to the kernel
9845  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9846  *	chain. 0 is returned on success. A negative errno code is returned
9847  *	on a failure to set up the device, or if the name is a duplicate.
9848  *
9849  *	Callers must hold the rtnl semaphore. You may want
9850  *	register_netdev() instead of this.
9851  *
9852  *	BUGS:
9853  *	The locking appears insufficient to guarantee two parallel registers
9854  *	will not get the same name.
9855  */
9856 
9857 int register_netdevice(struct net_device *dev)
9858 {
9859 	int ret;
9860 	struct net *net = dev_net(dev);
9861 
9862 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9863 		     NETDEV_FEATURE_COUNT);
9864 	BUG_ON(dev_boot_phase);
9865 	ASSERT_RTNL();
9866 
9867 	might_sleep();
9868 
9869 	/* When net_device's are persistent, this will be fatal. */
9870 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
9871 	BUG_ON(!net);
9872 
9873 	ret = ethtool_check_ops(dev->ethtool_ops);
9874 	if (ret)
9875 		return ret;
9876 
9877 	spin_lock_init(&dev->addr_list_lock);
9878 	netdev_set_addr_lockdep_class(dev);
9879 
9880 	ret = dev_get_valid_name(net, dev, dev->name);
9881 	if (ret < 0)
9882 		goto out;
9883 
9884 	ret = -ENOMEM;
9885 	dev->name_node = netdev_name_node_head_alloc(dev);
9886 	if (!dev->name_node)
9887 		goto out;
9888 
9889 	/* Init, if this function is available */
9890 	if (dev->netdev_ops->ndo_init) {
9891 		ret = dev->netdev_ops->ndo_init(dev);
9892 		if (ret) {
9893 			if (ret > 0)
9894 				ret = -EIO;
9895 			goto err_free_name;
9896 		}
9897 	}
9898 
9899 	if (((dev->hw_features | dev->features) &
9900 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
9901 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9902 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
9903 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
9904 		ret = -EINVAL;
9905 		goto err_uninit;
9906 	}
9907 
9908 	ret = -EBUSY;
9909 	if (!dev->ifindex)
9910 		dev->ifindex = dev_new_index(net);
9911 	else if (__dev_get_by_index(net, dev->ifindex))
9912 		goto err_uninit;
9913 
9914 	/* Transfer changeable features to wanted_features and enable
9915 	 * software offloads (GSO and GRO).
9916 	 */
9917 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
9918 	dev->features |= NETIF_F_SOFT_FEATURES;
9919 
9920 	if (dev->udp_tunnel_nic_info) {
9921 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9922 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9923 	}
9924 
9925 	dev->wanted_features = dev->features & dev->hw_features;
9926 
9927 	if (!(dev->flags & IFF_LOOPBACK))
9928 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
9929 
9930 	/* If IPv4 TCP segmentation offload is supported we should also
9931 	 * allow the device to enable segmenting the frame with the option
9932 	 * of ignoring a static IP ID value.  This doesn't enable the
9933 	 * feature itself but allows the user to enable it later.
9934 	 */
9935 	if (dev->hw_features & NETIF_F_TSO)
9936 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
9937 	if (dev->vlan_features & NETIF_F_TSO)
9938 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
9939 	if (dev->mpls_features & NETIF_F_TSO)
9940 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
9941 	if (dev->hw_enc_features & NETIF_F_TSO)
9942 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
9943 
9944 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
9945 	 */
9946 	dev->vlan_features |= NETIF_F_HIGHDMA;
9947 
9948 	/* Make NETIF_F_SG inheritable to tunnel devices.
9949 	 */
9950 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
9951 
9952 	/* Make NETIF_F_SG inheritable to MPLS.
9953 	 */
9954 	dev->mpls_features |= NETIF_F_SG;
9955 
9956 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
9957 	ret = notifier_to_errno(ret);
9958 	if (ret)
9959 		goto err_uninit;
9960 
9961 	ret = netdev_register_kobject(dev);
9962 	if (ret) {
9963 		dev->reg_state = NETREG_UNREGISTERED;
9964 		goto err_uninit;
9965 	}
9966 	dev->reg_state = NETREG_REGISTERED;
9967 
9968 	__netdev_update_features(dev);
9969 
9970 	/*
9971 	 *	Default initial state at registry is that the
9972 	 *	device is present.
9973 	 */
9974 
9975 	set_bit(__LINK_STATE_PRESENT, &dev->state);
9976 
9977 	linkwatch_init_dev(dev);
9978 
9979 	dev_init_scheduler(dev);
9980 
9981 	dev_hold_track(dev, &dev->dev_registered_tracker, GFP_KERNEL);
9982 	list_netdevice(dev);
9983 
9984 	add_device_randomness(dev->dev_addr, dev->addr_len);
9985 
9986 	/* If the device has permanent device address, driver should
9987 	 * set dev_addr and also addr_assign_type should be set to
9988 	 * NET_ADDR_PERM (default value).
9989 	 */
9990 	if (dev->addr_assign_type == NET_ADDR_PERM)
9991 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
9992 
9993 	/* Notify protocols, that a new device appeared. */
9994 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
9995 	ret = notifier_to_errno(ret);
9996 	if (ret) {
9997 		/* Expect explicit free_netdev() on failure */
9998 		dev->needs_free_netdev = false;
9999 		unregister_netdevice_queue(dev, NULL);
10000 		goto out;
10001 	}
10002 	/*
10003 	 *	Prevent userspace races by waiting until the network
10004 	 *	device is fully setup before sending notifications.
10005 	 */
10006 	if (!dev->rtnl_link_ops ||
10007 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10008 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10009 
10010 out:
10011 	return ret;
10012 
10013 err_uninit:
10014 	if (dev->netdev_ops->ndo_uninit)
10015 		dev->netdev_ops->ndo_uninit(dev);
10016 	if (dev->priv_destructor)
10017 		dev->priv_destructor(dev);
10018 err_free_name:
10019 	netdev_name_node_free(dev->name_node);
10020 	goto out;
10021 }
10022 EXPORT_SYMBOL(register_netdevice);
10023 
10024 /**
10025  *	init_dummy_netdev	- init a dummy network device for NAPI
10026  *	@dev: device to init
10027  *
10028  *	This takes a network device structure and initialize the minimum
10029  *	amount of fields so it can be used to schedule NAPI polls without
10030  *	registering a full blown interface. This is to be used by drivers
10031  *	that need to tie several hardware interfaces to a single NAPI
10032  *	poll scheduler due to HW limitations.
10033  */
10034 int init_dummy_netdev(struct net_device *dev)
10035 {
10036 	/* Clear everything. Note we don't initialize spinlocks
10037 	 * are they aren't supposed to be taken by any of the
10038 	 * NAPI code and this dummy netdev is supposed to be
10039 	 * only ever used for NAPI polls
10040 	 */
10041 	memset(dev, 0, sizeof(struct net_device));
10042 
10043 	/* make sure we BUG if trying to hit standard
10044 	 * register/unregister code path
10045 	 */
10046 	dev->reg_state = NETREG_DUMMY;
10047 
10048 	/* NAPI wants this */
10049 	INIT_LIST_HEAD(&dev->napi_list);
10050 
10051 	/* a dummy interface is started by default */
10052 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10053 	set_bit(__LINK_STATE_START, &dev->state);
10054 
10055 	/* napi_busy_loop stats accounting wants this */
10056 	dev_net_set(dev, &init_net);
10057 
10058 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
10059 	 * because users of this 'device' dont need to change
10060 	 * its refcount.
10061 	 */
10062 
10063 	return 0;
10064 }
10065 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10066 
10067 
10068 /**
10069  *	register_netdev	- register a network device
10070  *	@dev: device to register
10071  *
10072  *	Take a completed network device structure and add it to the kernel
10073  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10074  *	chain. 0 is returned on success. A negative errno code is returned
10075  *	on a failure to set up the device, or if the name is a duplicate.
10076  *
10077  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
10078  *	and expands the device name if you passed a format string to
10079  *	alloc_netdev.
10080  */
10081 int register_netdev(struct net_device *dev)
10082 {
10083 	int err;
10084 
10085 	if (rtnl_lock_killable())
10086 		return -EINTR;
10087 	err = register_netdevice(dev);
10088 	rtnl_unlock();
10089 	return err;
10090 }
10091 EXPORT_SYMBOL(register_netdev);
10092 
10093 int netdev_refcnt_read(const struct net_device *dev)
10094 {
10095 #ifdef CONFIG_PCPU_DEV_REFCNT
10096 	int i, refcnt = 0;
10097 
10098 	for_each_possible_cpu(i)
10099 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10100 	return refcnt;
10101 #else
10102 	return refcount_read(&dev->dev_refcnt);
10103 #endif
10104 }
10105 EXPORT_SYMBOL(netdev_refcnt_read);
10106 
10107 int netdev_unregister_timeout_secs __read_mostly = 10;
10108 
10109 #define WAIT_REFS_MIN_MSECS 1
10110 #define WAIT_REFS_MAX_MSECS 250
10111 /**
10112  * netdev_wait_allrefs_any - wait until all references are gone.
10113  * @list: list of net_devices to wait on
10114  *
10115  * This is called when unregistering network devices.
10116  *
10117  * Any protocol or device that holds a reference should register
10118  * for netdevice notification, and cleanup and put back the
10119  * reference if they receive an UNREGISTER event.
10120  * We can get stuck here if buggy protocols don't correctly
10121  * call dev_put.
10122  */
10123 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
10124 {
10125 	unsigned long rebroadcast_time, warning_time;
10126 	struct net_device *dev;
10127 	int wait = 0;
10128 
10129 	rebroadcast_time = warning_time = jiffies;
10130 
10131 	list_for_each_entry(dev, list, todo_list)
10132 		if (netdev_refcnt_read(dev) == 1)
10133 			return dev;
10134 
10135 	while (true) {
10136 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10137 			rtnl_lock();
10138 
10139 			/* Rebroadcast unregister notification */
10140 			list_for_each_entry(dev, list, todo_list)
10141 				call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10142 
10143 			__rtnl_unlock();
10144 			rcu_barrier();
10145 			rtnl_lock();
10146 
10147 			list_for_each_entry(dev, list, todo_list)
10148 				if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10149 					     &dev->state)) {
10150 					/* We must not have linkwatch events
10151 					 * pending on unregister. If this
10152 					 * happens, we simply run the queue
10153 					 * unscheduled, resulting in a noop
10154 					 * for this device.
10155 					 */
10156 					linkwatch_run_queue();
10157 					break;
10158 				}
10159 
10160 			__rtnl_unlock();
10161 
10162 			rebroadcast_time = jiffies;
10163 		}
10164 
10165 		if (!wait) {
10166 			rcu_barrier();
10167 			wait = WAIT_REFS_MIN_MSECS;
10168 		} else {
10169 			msleep(wait);
10170 			wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10171 		}
10172 
10173 		list_for_each_entry(dev, list, todo_list)
10174 			if (netdev_refcnt_read(dev) == 1)
10175 				return dev;
10176 
10177 		if (time_after(jiffies, warning_time +
10178 			       netdev_unregister_timeout_secs * HZ)) {
10179 			list_for_each_entry(dev, list, todo_list) {
10180 				pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10181 					 dev->name, netdev_refcnt_read(dev));
10182 				ref_tracker_dir_print(&dev->refcnt_tracker, 10);
10183 			}
10184 
10185 			warning_time = jiffies;
10186 		}
10187 	}
10188 }
10189 
10190 /* The sequence is:
10191  *
10192  *	rtnl_lock();
10193  *	...
10194  *	register_netdevice(x1);
10195  *	register_netdevice(x2);
10196  *	...
10197  *	unregister_netdevice(y1);
10198  *	unregister_netdevice(y2);
10199  *      ...
10200  *	rtnl_unlock();
10201  *	free_netdev(y1);
10202  *	free_netdev(y2);
10203  *
10204  * We are invoked by rtnl_unlock().
10205  * This allows us to deal with problems:
10206  * 1) We can delete sysfs objects which invoke hotplug
10207  *    without deadlocking with linkwatch via keventd.
10208  * 2) Since we run with the RTNL semaphore not held, we can sleep
10209  *    safely in order to wait for the netdev refcnt to drop to zero.
10210  *
10211  * We must not return until all unregister events added during
10212  * the interval the lock was held have been completed.
10213  */
10214 void netdev_run_todo(void)
10215 {
10216 	struct net_device *dev, *tmp;
10217 	struct list_head list;
10218 #ifdef CONFIG_LOCKDEP
10219 	struct list_head unlink_list;
10220 
10221 	list_replace_init(&net_unlink_list, &unlink_list);
10222 
10223 	while (!list_empty(&unlink_list)) {
10224 		struct net_device *dev = list_first_entry(&unlink_list,
10225 							  struct net_device,
10226 							  unlink_list);
10227 		list_del_init(&dev->unlink_list);
10228 		dev->nested_level = dev->lower_level - 1;
10229 	}
10230 #endif
10231 
10232 	/* Snapshot list, allow later requests */
10233 	list_replace_init(&net_todo_list, &list);
10234 
10235 	__rtnl_unlock();
10236 
10237 	/* Wait for rcu callbacks to finish before next phase */
10238 	if (!list_empty(&list))
10239 		rcu_barrier();
10240 
10241 	list_for_each_entry_safe(dev, tmp, &list, todo_list) {
10242 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10243 			netdev_WARN(dev, "run_todo but not unregistering\n");
10244 			list_del(&dev->todo_list);
10245 			continue;
10246 		}
10247 
10248 		dev->reg_state = NETREG_UNREGISTERED;
10249 		linkwatch_forget_dev(dev);
10250 	}
10251 
10252 	while (!list_empty(&list)) {
10253 		dev = netdev_wait_allrefs_any(&list);
10254 		list_del(&dev->todo_list);
10255 
10256 		/* paranoia */
10257 		BUG_ON(netdev_refcnt_read(dev) != 1);
10258 		BUG_ON(!list_empty(&dev->ptype_all));
10259 		BUG_ON(!list_empty(&dev->ptype_specific));
10260 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
10261 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10262 #if IS_ENABLED(CONFIG_DECNET)
10263 		WARN_ON(dev->dn_ptr);
10264 #endif
10265 		if (dev->priv_destructor)
10266 			dev->priv_destructor(dev);
10267 		if (dev->needs_free_netdev)
10268 			free_netdev(dev);
10269 
10270 		if (atomic_dec_and_test(&dev_net(dev)->dev_unreg_count))
10271 			wake_up(&netdev_unregistering_wq);
10272 
10273 		/* Free network device */
10274 		kobject_put(&dev->dev.kobj);
10275 	}
10276 }
10277 
10278 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10279  * all the same fields in the same order as net_device_stats, with only
10280  * the type differing, but rtnl_link_stats64 may have additional fields
10281  * at the end for newer counters.
10282  */
10283 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10284 			     const struct net_device_stats *netdev_stats)
10285 {
10286 #if BITS_PER_LONG == 64
10287 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
10288 	memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
10289 	/* zero out counters that only exist in rtnl_link_stats64 */
10290 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
10291 	       sizeof(*stats64) - sizeof(*netdev_stats));
10292 #else
10293 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
10294 	const unsigned long *src = (const unsigned long *)netdev_stats;
10295 	u64 *dst = (u64 *)stats64;
10296 
10297 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10298 	for (i = 0; i < n; i++)
10299 		dst[i] = src[i];
10300 	/* zero out counters that only exist in rtnl_link_stats64 */
10301 	memset((char *)stats64 + n * sizeof(u64), 0,
10302 	       sizeof(*stats64) - n * sizeof(u64));
10303 #endif
10304 }
10305 EXPORT_SYMBOL(netdev_stats_to_stats64);
10306 
10307 struct net_device_core_stats *netdev_core_stats_alloc(struct net_device *dev)
10308 {
10309 	struct net_device_core_stats __percpu *p;
10310 
10311 	p = alloc_percpu_gfp(struct net_device_core_stats,
10312 			     GFP_ATOMIC | __GFP_NOWARN);
10313 
10314 	if (p && cmpxchg(&dev->core_stats, NULL, p))
10315 		free_percpu(p);
10316 
10317 	/* This READ_ONCE() pairs with the cmpxchg() above */
10318 	p = READ_ONCE(dev->core_stats);
10319 	if (!p)
10320 		return NULL;
10321 
10322 	return this_cpu_ptr(p);
10323 }
10324 EXPORT_SYMBOL(netdev_core_stats_alloc);
10325 
10326 /**
10327  *	dev_get_stats	- get network device statistics
10328  *	@dev: device to get statistics from
10329  *	@storage: place to store stats
10330  *
10331  *	Get network statistics from device. Return @storage.
10332  *	The device driver may provide its own method by setting
10333  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10334  *	otherwise the internal statistics structure is used.
10335  */
10336 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10337 					struct rtnl_link_stats64 *storage)
10338 {
10339 	const struct net_device_ops *ops = dev->netdev_ops;
10340 	const struct net_device_core_stats __percpu *p;
10341 
10342 	if (ops->ndo_get_stats64) {
10343 		memset(storage, 0, sizeof(*storage));
10344 		ops->ndo_get_stats64(dev, storage);
10345 	} else if (ops->ndo_get_stats) {
10346 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10347 	} else {
10348 		netdev_stats_to_stats64(storage, &dev->stats);
10349 	}
10350 
10351 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10352 	p = READ_ONCE(dev->core_stats);
10353 	if (p) {
10354 		const struct net_device_core_stats *core_stats;
10355 		int i;
10356 
10357 		for_each_possible_cpu(i) {
10358 			core_stats = per_cpu_ptr(p, i);
10359 			storage->rx_dropped += local_read(&core_stats->rx_dropped);
10360 			storage->tx_dropped += local_read(&core_stats->tx_dropped);
10361 			storage->rx_nohandler += local_read(&core_stats->rx_nohandler);
10362 		}
10363 	}
10364 	return storage;
10365 }
10366 EXPORT_SYMBOL(dev_get_stats);
10367 
10368 /**
10369  *	dev_fetch_sw_netstats - get per-cpu network device statistics
10370  *	@s: place to store stats
10371  *	@netstats: per-cpu network stats to read from
10372  *
10373  *	Read per-cpu network statistics and populate the related fields in @s.
10374  */
10375 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10376 			   const struct pcpu_sw_netstats __percpu *netstats)
10377 {
10378 	int cpu;
10379 
10380 	for_each_possible_cpu(cpu) {
10381 		const struct pcpu_sw_netstats *stats;
10382 		struct pcpu_sw_netstats tmp;
10383 		unsigned int start;
10384 
10385 		stats = per_cpu_ptr(netstats, cpu);
10386 		do {
10387 			start = u64_stats_fetch_begin_irq(&stats->syncp);
10388 			tmp.rx_packets = stats->rx_packets;
10389 			tmp.rx_bytes   = stats->rx_bytes;
10390 			tmp.tx_packets = stats->tx_packets;
10391 			tmp.tx_bytes   = stats->tx_bytes;
10392 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10393 
10394 		s->rx_packets += tmp.rx_packets;
10395 		s->rx_bytes   += tmp.rx_bytes;
10396 		s->tx_packets += tmp.tx_packets;
10397 		s->tx_bytes   += tmp.tx_bytes;
10398 	}
10399 }
10400 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10401 
10402 /**
10403  *	dev_get_tstats64 - ndo_get_stats64 implementation
10404  *	@dev: device to get statistics from
10405  *	@s: place to store stats
10406  *
10407  *	Populate @s from dev->stats and dev->tstats. Can be used as
10408  *	ndo_get_stats64() callback.
10409  */
10410 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10411 {
10412 	netdev_stats_to_stats64(s, &dev->stats);
10413 	dev_fetch_sw_netstats(s, dev->tstats);
10414 }
10415 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10416 
10417 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10418 {
10419 	struct netdev_queue *queue = dev_ingress_queue(dev);
10420 
10421 #ifdef CONFIG_NET_CLS_ACT
10422 	if (queue)
10423 		return queue;
10424 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10425 	if (!queue)
10426 		return NULL;
10427 	netdev_init_one_queue(dev, queue, NULL);
10428 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10429 	queue->qdisc_sleeping = &noop_qdisc;
10430 	rcu_assign_pointer(dev->ingress_queue, queue);
10431 #endif
10432 	return queue;
10433 }
10434 
10435 static const struct ethtool_ops default_ethtool_ops;
10436 
10437 void netdev_set_default_ethtool_ops(struct net_device *dev,
10438 				    const struct ethtool_ops *ops)
10439 {
10440 	if (dev->ethtool_ops == &default_ethtool_ops)
10441 		dev->ethtool_ops = ops;
10442 }
10443 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10444 
10445 void netdev_freemem(struct net_device *dev)
10446 {
10447 	char *addr = (char *)dev - dev->padded;
10448 
10449 	kvfree(addr);
10450 }
10451 
10452 /**
10453  * alloc_netdev_mqs - allocate network device
10454  * @sizeof_priv: size of private data to allocate space for
10455  * @name: device name format string
10456  * @name_assign_type: origin of device name
10457  * @setup: callback to initialize device
10458  * @txqs: the number of TX subqueues to allocate
10459  * @rxqs: the number of RX subqueues to allocate
10460  *
10461  * Allocates a struct net_device with private data area for driver use
10462  * and performs basic initialization.  Also allocates subqueue structs
10463  * for each queue on the device.
10464  */
10465 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10466 		unsigned char name_assign_type,
10467 		void (*setup)(struct net_device *),
10468 		unsigned int txqs, unsigned int rxqs)
10469 {
10470 	struct net_device *dev;
10471 	unsigned int alloc_size;
10472 	struct net_device *p;
10473 
10474 	BUG_ON(strlen(name) >= sizeof(dev->name));
10475 
10476 	if (txqs < 1) {
10477 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10478 		return NULL;
10479 	}
10480 
10481 	if (rxqs < 1) {
10482 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10483 		return NULL;
10484 	}
10485 
10486 	alloc_size = sizeof(struct net_device);
10487 	if (sizeof_priv) {
10488 		/* ensure 32-byte alignment of private area */
10489 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10490 		alloc_size += sizeof_priv;
10491 	}
10492 	/* ensure 32-byte alignment of whole construct */
10493 	alloc_size += NETDEV_ALIGN - 1;
10494 
10495 	p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10496 	if (!p)
10497 		return NULL;
10498 
10499 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
10500 	dev->padded = (char *)dev - (char *)p;
10501 
10502 	ref_tracker_dir_init(&dev->refcnt_tracker, 128);
10503 #ifdef CONFIG_PCPU_DEV_REFCNT
10504 	dev->pcpu_refcnt = alloc_percpu(int);
10505 	if (!dev->pcpu_refcnt)
10506 		goto free_dev;
10507 	__dev_hold(dev);
10508 #else
10509 	refcount_set(&dev->dev_refcnt, 1);
10510 #endif
10511 
10512 	if (dev_addr_init(dev))
10513 		goto free_pcpu;
10514 
10515 	dev_mc_init(dev);
10516 	dev_uc_init(dev);
10517 
10518 	dev_net_set(dev, &init_net);
10519 
10520 	dev->gso_max_size = GSO_MAX_SIZE;
10521 	dev->gso_max_segs = GSO_MAX_SEGS;
10522 	dev->gro_max_size = GRO_MAX_SIZE;
10523 	dev->upper_level = 1;
10524 	dev->lower_level = 1;
10525 #ifdef CONFIG_LOCKDEP
10526 	dev->nested_level = 0;
10527 	INIT_LIST_HEAD(&dev->unlink_list);
10528 #endif
10529 
10530 	INIT_LIST_HEAD(&dev->napi_list);
10531 	INIT_LIST_HEAD(&dev->unreg_list);
10532 	INIT_LIST_HEAD(&dev->close_list);
10533 	INIT_LIST_HEAD(&dev->link_watch_list);
10534 	INIT_LIST_HEAD(&dev->adj_list.upper);
10535 	INIT_LIST_HEAD(&dev->adj_list.lower);
10536 	INIT_LIST_HEAD(&dev->ptype_all);
10537 	INIT_LIST_HEAD(&dev->ptype_specific);
10538 	INIT_LIST_HEAD(&dev->net_notifier_list);
10539 #ifdef CONFIG_NET_SCHED
10540 	hash_init(dev->qdisc_hash);
10541 #endif
10542 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10543 	setup(dev);
10544 
10545 	if (!dev->tx_queue_len) {
10546 		dev->priv_flags |= IFF_NO_QUEUE;
10547 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10548 	}
10549 
10550 	dev->num_tx_queues = txqs;
10551 	dev->real_num_tx_queues = txqs;
10552 	if (netif_alloc_netdev_queues(dev))
10553 		goto free_all;
10554 
10555 	dev->num_rx_queues = rxqs;
10556 	dev->real_num_rx_queues = rxqs;
10557 	if (netif_alloc_rx_queues(dev))
10558 		goto free_all;
10559 
10560 	strcpy(dev->name, name);
10561 	dev->name_assign_type = name_assign_type;
10562 	dev->group = INIT_NETDEV_GROUP;
10563 	if (!dev->ethtool_ops)
10564 		dev->ethtool_ops = &default_ethtool_ops;
10565 
10566 	nf_hook_netdev_init(dev);
10567 
10568 	return dev;
10569 
10570 free_all:
10571 	free_netdev(dev);
10572 	return NULL;
10573 
10574 free_pcpu:
10575 #ifdef CONFIG_PCPU_DEV_REFCNT
10576 	free_percpu(dev->pcpu_refcnt);
10577 free_dev:
10578 #endif
10579 	netdev_freemem(dev);
10580 	return NULL;
10581 }
10582 EXPORT_SYMBOL(alloc_netdev_mqs);
10583 
10584 /**
10585  * free_netdev - free network device
10586  * @dev: device
10587  *
10588  * This function does the last stage of destroying an allocated device
10589  * interface. The reference to the device object is released. If this
10590  * is the last reference then it will be freed.Must be called in process
10591  * context.
10592  */
10593 void free_netdev(struct net_device *dev)
10594 {
10595 	struct napi_struct *p, *n;
10596 
10597 	might_sleep();
10598 
10599 	/* When called immediately after register_netdevice() failed the unwind
10600 	 * handling may still be dismantling the device. Handle that case by
10601 	 * deferring the free.
10602 	 */
10603 	if (dev->reg_state == NETREG_UNREGISTERING) {
10604 		ASSERT_RTNL();
10605 		dev->needs_free_netdev = true;
10606 		return;
10607 	}
10608 
10609 	netif_free_tx_queues(dev);
10610 	netif_free_rx_queues(dev);
10611 
10612 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10613 
10614 	/* Flush device addresses */
10615 	dev_addr_flush(dev);
10616 
10617 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10618 		netif_napi_del(p);
10619 
10620 	ref_tracker_dir_exit(&dev->refcnt_tracker);
10621 #ifdef CONFIG_PCPU_DEV_REFCNT
10622 	free_percpu(dev->pcpu_refcnt);
10623 	dev->pcpu_refcnt = NULL;
10624 #endif
10625 	free_percpu(dev->core_stats);
10626 	dev->core_stats = NULL;
10627 	free_percpu(dev->xdp_bulkq);
10628 	dev->xdp_bulkq = NULL;
10629 
10630 	/*  Compatibility with error handling in drivers */
10631 	if (dev->reg_state == NETREG_UNINITIALIZED) {
10632 		netdev_freemem(dev);
10633 		return;
10634 	}
10635 
10636 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10637 	dev->reg_state = NETREG_RELEASED;
10638 
10639 	/* will free via device release */
10640 	put_device(&dev->dev);
10641 }
10642 EXPORT_SYMBOL(free_netdev);
10643 
10644 /**
10645  *	synchronize_net -  Synchronize with packet receive processing
10646  *
10647  *	Wait for packets currently being received to be done.
10648  *	Does not block later packets from starting.
10649  */
10650 void synchronize_net(void)
10651 {
10652 	might_sleep();
10653 	if (rtnl_is_locked())
10654 		synchronize_rcu_expedited();
10655 	else
10656 		synchronize_rcu();
10657 }
10658 EXPORT_SYMBOL(synchronize_net);
10659 
10660 /**
10661  *	unregister_netdevice_queue - remove device from the kernel
10662  *	@dev: device
10663  *	@head: list
10664  *
10665  *	This function shuts down a device interface and removes it
10666  *	from the kernel tables.
10667  *	If head not NULL, device is queued to be unregistered later.
10668  *
10669  *	Callers must hold the rtnl semaphore.  You may want
10670  *	unregister_netdev() instead of this.
10671  */
10672 
10673 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10674 {
10675 	ASSERT_RTNL();
10676 
10677 	if (head) {
10678 		list_move_tail(&dev->unreg_list, head);
10679 	} else {
10680 		LIST_HEAD(single);
10681 
10682 		list_add(&dev->unreg_list, &single);
10683 		unregister_netdevice_many(&single);
10684 	}
10685 }
10686 EXPORT_SYMBOL(unregister_netdevice_queue);
10687 
10688 /**
10689  *	unregister_netdevice_many - unregister many devices
10690  *	@head: list of devices
10691  *
10692  *  Note: As most callers use a stack allocated list_head,
10693  *  we force a list_del() to make sure stack wont be corrupted later.
10694  */
10695 void unregister_netdevice_many(struct list_head *head)
10696 {
10697 	struct net_device *dev, *tmp;
10698 	LIST_HEAD(close_head);
10699 
10700 	BUG_ON(dev_boot_phase);
10701 	ASSERT_RTNL();
10702 
10703 	if (list_empty(head))
10704 		return;
10705 
10706 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
10707 		/* Some devices call without registering
10708 		 * for initialization unwind. Remove those
10709 		 * devices and proceed with the remaining.
10710 		 */
10711 		if (dev->reg_state == NETREG_UNINITIALIZED) {
10712 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
10713 				 dev->name, dev);
10714 
10715 			WARN_ON(1);
10716 			list_del(&dev->unreg_list);
10717 			continue;
10718 		}
10719 		dev->dismantle = true;
10720 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
10721 	}
10722 
10723 	/* If device is running, close it first. */
10724 	list_for_each_entry(dev, head, unreg_list)
10725 		list_add_tail(&dev->close_list, &close_head);
10726 	dev_close_many(&close_head, true);
10727 
10728 	list_for_each_entry(dev, head, unreg_list) {
10729 		/* And unlink it from device chain. */
10730 		unlist_netdevice(dev);
10731 
10732 		dev->reg_state = NETREG_UNREGISTERING;
10733 	}
10734 	flush_all_backlogs();
10735 
10736 	synchronize_net();
10737 
10738 	list_for_each_entry(dev, head, unreg_list) {
10739 		struct sk_buff *skb = NULL;
10740 
10741 		/* Shutdown queueing discipline. */
10742 		dev_shutdown(dev);
10743 
10744 		dev_xdp_uninstall(dev);
10745 
10746 		netdev_offload_xstats_disable_all(dev);
10747 
10748 		/* Notify protocols, that we are about to destroy
10749 		 * this device. They should clean all the things.
10750 		 */
10751 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10752 
10753 		if (!dev->rtnl_link_ops ||
10754 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10755 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
10756 						     GFP_KERNEL, NULL, 0);
10757 
10758 		/*
10759 		 *	Flush the unicast and multicast chains
10760 		 */
10761 		dev_uc_flush(dev);
10762 		dev_mc_flush(dev);
10763 
10764 		netdev_name_node_alt_flush(dev);
10765 		netdev_name_node_free(dev->name_node);
10766 
10767 		if (dev->netdev_ops->ndo_uninit)
10768 			dev->netdev_ops->ndo_uninit(dev);
10769 
10770 		if (skb)
10771 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
10772 
10773 		/* Notifier chain MUST detach us all upper devices. */
10774 		WARN_ON(netdev_has_any_upper_dev(dev));
10775 		WARN_ON(netdev_has_any_lower_dev(dev));
10776 
10777 		/* Remove entries from kobject tree */
10778 		netdev_unregister_kobject(dev);
10779 #ifdef CONFIG_XPS
10780 		/* Remove XPS queueing entries */
10781 		netif_reset_xps_queues_gt(dev, 0);
10782 #endif
10783 	}
10784 
10785 	synchronize_net();
10786 
10787 	list_for_each_entry(dev, head, unreg_list) {
10788 		dev_put_track(dev, &dev->dev_registered_tracker);
10789 		net_set_todo(dev);
10790 	}
10791 
10792 	list_del(head);
10793 }
10794 EXPORT_SYMBOL(unregister_netdevice_many);
10795 
10796 /**
10797  *	unregister_netdev - remove device from the kernel
10798  *	@dev: device
10799  *
10800  *	This function shuts down a device interface and removes it
10801  *	from the kernel tables.
10802  *
10803  *	This is just a wrapper for unregister_netdevice that takes
10804  *	the rtnl semaphore.  In general you want to use this and not
10805  *	unregister_netdevice.
10806  */
10807 void unregister_netdev(struct net_device *dev)
10808 {
10809 	rtnl_lock();
10810 	unregister_netdevice(dev);
10811 	rtnl_unlock();
10812 }
10813 EXPORT_SYMBOL(unregister_netdev);
10814 
10815 /**
10816  *	__dev_change_net_namespace - move device to different nethost namespace
10817  *	@dev: device
10818  *	@net: network namespace
10819  *	@pat: If not NULL name pattern to try if the current device name
10820  *	      is already taken in the destination network namespace.
10821  *	@new_ifindex: If not zero, specifies device index in the target
10822  *	              namespace.
10823  *
10824  *	This function shuts down a device interface and moves it
10825  *	to a new network namespace. On success 0 is returned, on
10826  *	a failure a netagive errno code is returned.
10827  *
10828  *	Callers must hold the rtnl semaphore.
10829  */
10830 
10831 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
10832 			       const char *pat, int new_ifindex)
10833 {
10834 	struct net *net_old = dev_net(dev);
10835 	int err, new_nsid;
10836 
10837 	ASSERT_RTNL();
10838 
10839 	/* Don't allow namespace local devices to be moved. */
10840 	err = -EINVAL;
10841 	if (dev->features & NETIF_F_NETNS_LOCAL)
10842 		goto out;
10843 
10844 	/* Ensure the device has been registrered */
10845 	if (dev->reg_state != NETREG_REGISTERED)
10846 		goto out;
10847 
10848 	/* Get out if there is nothing todo */
10849 	err = 0;
10850 	if (net_eq(net_old, net))
10851 		goto out;
10852 
10853 	/* Pick the destination device name, and ensure
10854 	 * we can use it in the destination network namespace.
10855 	 */
10856 	err = -EEXIST;
10857 	if (netdev_name_in_use(net, dev->name)) {
10858 		/* We get here if we can't use the current device name */
10859 		if (!pat)
10860 			goto out;
10861 		err = dev_get_valid_name(net, dev, pat);
10862 		if (err < 0)
10863 			goto out;
10864 	}
10865 
10866 	/* Check that new_ifindex isn't used yet. */
10867 	err = -EBUSY;
10868 	if (new_ifindex && __dev_get_by_index(net, new_ifindex))
10869 		goto out;
10870 
10871 	/*
10872 	 * And now a mini version of register_netdevice unregister_netdevice.
10873 	 */
10874 
10875 	/* If device is running close it first. */
10876 	dev_close(dev);
10877 
10878 	/* And unlink it from device chain */
10879 	unlist_netdevice(dev);
10880 
10881 	synchronize_net();
10882 
10883 	/* Shutdown queueing discipline. */
10884 	dev_shutdown(dev);
10885 
10886 	/* Notify protocols, that we are about to destroy
10887 	 * this device. They should clean all the things.
10888 	 *
10889 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
10890 	 * This is wanted because this way 8021q and macvlan know
10891 	 * the device is just moving and can keep their slaves up.
10892 	 */
10893 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10894 	rcu_barrier();
10895 
10896 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
10897 	/* If there is an ifindex conflict assign a new one */
10898 	if (!new_ifindex) {
10899 		if (__dev_get_by_index(net, dev->ifindex))
10900 			new_ifindex = dev_new_index(net);
10901 		else
10902 			new_ifindex = dev->ifindex;
10903 	}
10904 
10905 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
10906 			    new_ifindex);
10907 
10908 	/*
10909 	 *	Flush the unicast and multicast chains
10910 	 */
10911 	dev_uc_flush(dev);
10912 	dev_mc_flush(dev);
10913 
10914 	/* Send a netdev-removed uevent to the old namespace */
10915 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
10916 	netdev_adjacent_del_links(dev);
10917 
10918 	/* Move per-net netdevice notifiers that are following the netdevice */
10919 	move_netdevice_notifiers_dev_net(dev, net);
10920 
10921 	/* Actually switch the network namespace */
10922 	dev_net_set(dev, net);
10923 	dev->ifindex = new_ifindex;
10924 
10925 	/* Send a netdev-add uevent to the new namespace */
10926 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
10927 	netdev_adjacent_add_links(dev);
10928 
10929 	/* Fixup kobjects */
10930 	err = device_rename(&dev->dev, dev->name);
10931 	WARN_ON(err);
10932 
10933 	/* Adapt owner in case owning user namespace of target network
10934 	 * namespace is different from the original one.
10935 	 */
10936 	err = netdev_change_owner(dev, net_old, net);
10937 	WARN_ON(err);
10938 
10939 	/* Add the device back in the hashes */
10940 	list_netdevice(dev);
10941 
10942 	/* Notify protocols, that a new device appeared. */
10943 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
10944 
10945 	/*
10946 	 *	Prevent userspace races by waiting until the network
10947 	 *	device is fully setup before sending notifications.
10948 	 */
10949 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10950 
10951 	synchronize_net();
10952 	err = 0;
10953 out:
10954 	return err;
10955 }
10956 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
10957 
10958 static int dev_cpu_dead(unsigned int oldcpu)
10959 {
10960 	struct sk_buff **list_skb;
10961 	struct sk_buff *skb;
10962 	unsigned int cpu;
10963 	struct softnet_data *sd, *oldsd, *remsd = NULL;
10964 
10965 	local_irq_disable();
10966 	cpu = smp_processor_id();
10967 	sd = &per_cpu(softnet_data, cpu);
10968 	oldsd = &per_cpu(softnet_data, oldcpu);
10969 
10970 	/* Find end of our completion_queue. */
10971 	list_skb = &sd->completion_queue;
10972 	while (*list_skb)
10973 		list_skb = &(*list_skb)->next;
10974 	/* Append completion queue from offline CPU. */
10975 	*list_skb = oldsd->completion_queue;
10976 	oldsd->completion_queue = NULL;
10977 
10978 	/* Append output queue from offline CPU. */
10979 	if (oldsd->output_queue) {
10980 		*sd->output_queue_tailp = oldsd->output_queue;
10981 		sd->output_queue_tailp = oldsd->output_queue_tailp;
10982 		oldsd->output_queue = NULL;
10983 		oldsd->output_queue_tailp = &oldsd->output_queue;
10984 	}
10985 	/* Append NAPI poll list from offline CPU, with one exception :
10986 	 * process_backlog() must be called by cpu owning percpu backlog.
10987 	 * We properly handle process_queue & input_pkt_queue later.
10988 	 */
10989 	while (!list_empty(&oldsd->poll_list)) {
10990 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
10991 							    struct napi_struct,
10992 							    poll_list);
10993 
10994 		list_del_init(&napi->poll_list);
10995 		if (napi->poll == process_backlog)
10996 			napi->state = 0;
10997 		else
10998 			____napi_schedule(sd, napi);
10999 	}
11000 
11001 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
11002 	local_irq_enable();
11003 
11004 #ifdef CONFIG_RPS
11005 	remsd = oldsd->rps_ipi_list;
11006 	oldsd->rps_ipi_list = NULL;
11007 #endif
11008 	/* send out pending IPI's on offline CPU */
11009 	net_rps_send_ipi(remsd);
11010 
11011 	/* Process offline CPU's input_pkt_queue */
11012 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11013 		netif_rx(skb);
11014 		input_queue_head_incr(oldsd);
11015 	}
11016 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11017 		netif_rx(skb);
11018 		input_queue_head_incr(oldsd);
11019 	}
11020 
11021 	return 0;
11022 }
11023 
11024 /**
11025  *	netdev_increment_features - increment feature set by one
11026  *	@all: current feature set
11027  *	@one: new feature set
11028  *	@mask: mask feature set
11029  *
11030  *	Computes a new feature set after adding a device with feature set
11031  *	@one to the master device with current feature set @all.  Will not
11032  *	enable anything that is off in @mask. Returns the new feature set.
11033  */
11034 netdev_features_t netdev_increment_features(netdev_features_t all,
11035 	netdev_features_t one, netdev_features_t mask)
11036 {
11037 	if (mask & NETIF_F_HW_CSUM)
11038 		mask |= NETIF_F_CSUM_MASK;
11039 	mask |= NETIF_F_VLAN_CHALLENGED;
11040 
11041 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11042 	all &= one | ~NETIF_F_ALL_FOR_ALL;
11043 
11044 	/* If one device supports hw checksumming, set for all. */
11045 	if (all & NETIF_F_HW_CSUM)
11046 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11047 
11048 	return all;
11049 }
11050 EXPORT_SYMBOL(netdev_increment_features);
11051 
11052 static struct hlist_head * __net_init netdev_create_hash(void)
11053 {
11054 	int i;
11055 	struct hlist_head *hash;
11056 
11057 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11058 	if (hash != NULL)
11059 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
11060 			INIT_HLIST_HEAD(&hash[i]);
11061 
11062 	return hash;
11063 }
11064 
11065 /* Initialize per network namespace state */
11066 static int __net_init netdev_init(struct net *net)
11067 {
11068 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
11069 		     8 * sizeof_field(struct napi_struct, gro_bitmask));
11070 
11071 	INIT_LIST_HEAD(&net->dev_base_head);
11072 
11073 	net->dev_name_head = netdev_create_hash();
11074 	if (net->dev_name_head == NULL)
11075 		goto err_name;
11076 
11077 	net->dev_index_head = netdev_create_hash();
11078 	if (net->dev_index_head == NULL)
11079 		goto err_idx;
11080 
11081 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11082 
11083 	return 0;
11084 
11085 err_idx:
11086 	kfree(net->dev_name_head);
11087 err_name:
11088 	return -ENOMEM;
11089 }
11090 
11091 /**
11092  *	netdev_drivername - network driver for the device
11093  *	@dev: network device
11094  *
11095  *	Determine network driver for device.
11096  */
11097 const char *netdev_drivername(const struct net_device *dev)
11098 {
11099 	const struct device_driver *driver;
11100 	const struct device *parent;
11101 	const char *empty = "";
11102 
11103 	parent = dev->dev.parent;
11104 	if (!parent)
11105 		return empty;
11106 
11107 	driver = parent->driver;
11108 	if (driver && driver->name)
11109 		return driver->name;
11110 	return empty;
11111 }
11112 
11113 static void __netdev_printk(const char *level, const struct net_device *dev,
11114 			    struct va_format *vaf)
11115 {
11116 	if (dev && dev->dev.parent) {
11117 		dev_printk_emit(level[1] - '0',
11118 				dev->dev.parent,
11119 				"%s %s %s%s: %pV",
11120 				dev_driver_string(dev->dev.parent),
11121 				dev_name(dev->dev.parent),
11122 				netdev_name(dev), netdev_reg_state(dev),
11123 				vaf);
11124 	} else if (dev) {
11125 		printk("%s%s%s: %pV",
11126 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
11127 	} else {
11128 		printk("%s(NULL net_device): %pV", level, vaf);
11129 	}
11130 }
11131 
11132 void netdev_printk(const char *level, const struct net_device *dev,
11133 		   const char *format, ...)
11134 {
11135 	struct va_format vaf;
11136 	va_list args;
11137 
11138 	va_start(args, format);
11139 
11140 	vaf.fmt = format;
11141 	vaf.va = &args;
11142 
11143 	__netdev_printk(level, dev, &vaf);
11144 
11145 	va_end(args);
11146 }
11147 EXPORT_SYMBOL(netdev_printk);
11148 
11149 #define define_netdev_printk_level(func, level)			\
11150 void func(const struct net_device *dev, const char *fmt, ...)	\
11151 {								\
11152 	struct va_format vaf;					\
11153 	va_list args;						\
11154 								\
11155 	va_start(args, fmt);					\
11156 								\
11157 	vaf.fmt = fmt;						\
11158 	vaf.va = &args;						\
11159 								\
11160 	__netdev_printk(level, dev, &vaf);			\
11161 								\
11162 	va_end(args);						\
11163 }								\
11164 EXPORT_SYMBOL(func);
11165 
11166 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11167 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11168 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11169 define_netdev_printk_level(netdev_err, KERN_ERR);
11170 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11171 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11172 define_netdev_printk_level(netdev_info, KERN_INFO);
11173 
11174 static void __net_exit netdev_exit(struct net *net)
11175 {
11176 	kfree(net->dev_name_head);
11177 	kfree(net->dev_index_head);
11178 	if (net != &init_net)
11179 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11180 }
11181 
11182 static struct pernet_operations __net_initdata netdev_net_ops = {
11183 	.init = netdev_init,
11184 	.exit = netdev_exit,
11185 };
11186 
11187 static void __net_exit default_device_exit_net(struct net *net)
11188 {
11189 	struct net_device *dev, *aux;
11190 	/*
11191 	 * Push all migratable network devices back to the
11192 	 * initial network namespace
11193 	 */
11194 	ASSERT_RTNL();
11195 	for_each_netdev_safe(net, dev, aux) {
11196 		int err;
11197 		char fb_name[IFNAMSIZ];
11198 
11199 		/* Ignore unmoveable devices (i.e. loopback) */
11200 		if (dev->features & NETIF_F_NETNS_LOCAL)
11201 			continue;
11202 
11203 		/* Leave virtual devices for the generic cleanup */
11204 		if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11205 			continue;
11206 
11207 		/* Push remaining network devices to init_net */
11208 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11209 		if (netdev_name_in_use(&init_net, fb_name))
11210 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
11211 		err = dev_change_net_namespace(dev, &init_net, fb_name);
11212 		if (err) {
11213 			pr_emerg("%s: failed to move %s to init_net: %d\n",
11214 				 __func__, dev->name, err);
11215 			BUG();
11216 		}
11217 	}
11218 }
11219 
11220 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11221 {
11222 	/* At exit all network devices most be removed from a network
11223 	 * namespace.  Do this in the reverse order of registration.
11224 	 * Do this across as many network namespaces as possible to
11225 	 * improve batching efficiency.
11226 	 */
11227 	struct net_device *dev;
11228 	struct net *net;
11229 	LIST_HEAD(dev_kill_list);
11230 
11231 	rtnl_lock();
11232 	list_for_each_entry(net, net_list, exit_list) {
11233 		default_device_exit_net(net);
11234 		cond_resched();
11235 	}
11236 
11237 	list_for_each_entry(net, net_list, exit_list) {
11238 		for_each_netdev_reverse(net, dev) {
11239 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11240 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11241 			else
11242 				unregister_netdevice_queue(dev, &dev_kill_list);
11243 		}
11244 	}
11245 	unregister_netdevice_many(&dev_kill_list);
11246 	rtnl_unlock();
11247 }
11248 
11249 static struct pernet_operations __net_initdata default_device_ops = {
11250 	.exit_batch = default_device_exit_batch,
11251 };
11252 
11253 /*
11254  *	Initialize the DEV module. At boot time this walks the device list and
11255  *	unhooks any devices that fail to initialise (normally hardware not
11256  *	present) and leaves us with a valid list of present and active devices.
11257  *
11258  */
11259 
11260 /*
11261  *       This is called single threaded during boot, so no need
11262  *       to take the rtnl semaphore.
11263  */
11264 static int __init net_dev_init(void)
11265 {
11266 	int i, rc = -ENOMEM;
11267 
11268 	BUG_ON(!dev_boot_phase);
11269 
11270 	if (dev_proc_init())
11271 		goto out;
11272 
11273 	if (netdev_kobject_init())
11274 		goto out;
11275 
11276 	INIT_LIST_HEAD(&ptype_all);
11277 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
11278 		INIT_LIST_HEAD(&ptype_base[i]);
11279 
11280 	if (register_pernet_subsys(&netdev_net_ops))
11281 		goto out;
11282 
11283 	/*
11284 	 *	Initialise the packet receive queues.
11285 	 */
11286 
11287 	for_each_possible_cpu(i) {
11288 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11289 		struct softnet_data *sd = &per_cpu(softnet_data, i);
11290 
11291 		INIT_WORK(flush, flush_backlog);
11292 
11293 		skb_queue_head_init(&sd->input_pkt_queue);
11294 		skb_queue_head_init(&sd->process_queue);
11295 #ifdef CONFIG_XFRM_OFFLOAD
11296 		skb_queue_head_init(&sd->xfrm_backlog);
11297 #endif
11298 		INIT_LIST_HEAD(&sd->poll_list);
11299 		sd->output_queue_tailp = &sd->output_queue;
11300 #ifdef CONFIG_RPS
11301 		INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11302 		sd->cpu = i;
11303 #endif
11304 
11305 		init_gro_hash(&sd->backlog);
11306 		sd->backlog.poll = process_backlog;
11307 		sd->backlog.weight = weight_p;
11308 	}
11309 
11310 	dev_boot_phase = 0;
11311 
11312 	/* The loopback device is special if any other network devices
11313 	 * is present in a network namespace the loopback device must
11314 	 * be present. Since we now dynamically allocate and free the
11315 	 * loopback device ensure this invariant is maintained by
11316 	 * keeping the loopback device as the first device on the
11317 	 * list of network devices.  Ensuring the loopback devices
11318 	 * is the first device that appears and the last network device
11319 	 * that disappears.
11320 	 */
11321 	if (register_pernet_device(&loopback_net_ops))
11322 		goto out;
11323 
11324 	if (register_pernet_device(&default_device_ops))
11325 		goto out;
11326 
11327 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11328 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11329 
11330 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11331 				       NULL, dev_cpu_dead);
11332 	WARN_ON(rc < 0);
11333 	rc = 0;
11334 out:
11335 	return rc;
11336 }
11337 
11338 subsys_initcall(net_dev_init);
11339