xref: /linux/net/core/dev.c (revision 5a0e3ad6af8660be21ca98a971cd00f331318c05)
1 /*
2  * 	NET3	Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  * 		Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *              			to 2 if register_netdev gets called
25  *              			before net_dev_init & also removed a
26  *              			few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *		Alan Cox	: 	Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *		Alan Cox	: 	Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *              			indefinitely on dev->refcnt
71  * 		J Hadi Salim	:	- Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/hash.h>
83 #include <linux/slab.h>
84 #include <linux/sched.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/stat.h>
104 #include <linux/if_bridge.h>
105 #include <linux/if_macvlan.h>
106 #include <net/dst.h>
107 #include <net/pkt_sched.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/kmod.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/wext.h>
118 #include <net/iw_handler.h>
119 #include <asm/current.h>
120 #include <linux/audit.h>
121 #include <linux/dmaengine.h>
122 #include <linux/err.h>
123 #include <linux/ctype.h>
124 #include <linux/if_arp.h>
125 #include <linux/if_vlan.h>
126 #include <linux/ip.h>
127 #include <net/ip.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 
134 #include "net-sysfs.h"
135 
136 /* Instead of increasing this, you should create a hash table. */
137 #define MAX_GRO_SKBS 8
138 
139 /* This should be increased if a protocol with a bigger head is added. */
140 #define GRO_MAX_HEAD (MAX_HEADER + 128)
141 
142 /*
143  *	The list of packet types we will receive (as opposed to discard)
144  *	and the routines to invoke.
145  *
146  *	Why 16. Because with 16 the only overlap we get on a hash of the
147  *	low nibble of the protocol value is RARP/SNAP/X.25.
148  *
149  *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
150  *             sure which should go first, but I bet it won't make much
151  *             difference if we are running VLANs.  The good news is that
152  *             this protocol won't be in the list unless compiled in, so
153  *             the average user (w/out VLANs) will not be adversely affected.
154  *             --BLG
155  *
156  *		0800	IP
157  *		8100    802.1Q VLAN
158  *		0001	802.3
159  *		0002	AX.25
160  *		0004	802.2
161  *		8035	RARP
162  *		0005	SNAP
163  *		0805	X.25
164  *		0806	ARP
165  *		8137	IPX
166  *		0009	Localtalk
167  *		86DD	IPv6
168  */
169 
170 #define PTYPE_HASH_SIZE	(16)
171 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
172 
173 static DEFINE_SPINLOCK(ptype_lock);
174 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
175 static struct list_head ptype_all __read_mostly;	/* Taps */
176 
177 /*
178  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
179  * semaphore.
180  *
181  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
182  *
183  * Writers must hold the rtnl semaphore while they loop through the
184  * dev_base_head list, and hold dev_base_lock for writing when they do the
185  * actual updates.  This allows pure readers to access the list even
186  * while a writer is preparing to update it.
187  *
188  * To put it another way, dev_base_lock is held for writing only to
189  * protect against pure readers; the rtnl semaphore provides the
190  * protection against other writers.
191  *
192  * See, for example usages, register_netdevice() and
193  * unregister_netdevice(), which must be called with the rtnl
194  * semaphore held.
195  */
196 DEFINE_RWLOCK(dev_base_lock);
197 EXPORT_SYMBOL(dev_base_lock);
198 
199 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
200 {
201 	unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
202 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
203 }
204 
205 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
206 {
207 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
208 }
209 
210 /* Device list insertion */
211 static int list_netdevice(struct net_device *dev)
212 {
213 	struct net *net = dev_net(dev);
214 
215 	ASSERT_RTNL();
216 
217 	write_lock_bh(&dev_base_lock);
218 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
219 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
220 	hlist_add_head_rcu(&dev->index_hlist,
221 			   dev_index_hash(net, dev->ifindex));
222 	write_unlock_bh(&dev_base_lock);
223 	return 0;
224 }
225 
226 /* Device list removal
227  * caller must respect a RCU grace period before freeing/reusing dev
228  */
229 static void unlist_netdevice(struct net_device *dev)
230 {
231 	ASSERT_RTNL();
232 
233 	/* Unlink dev from the device chain */
234 	write_lock_bh(&dev_base_lock);
235 	list_del_rcu(&dev->dev_list);
236 	hlist_del_rcu(&dev->name_hlist);
237 	hlist_del_rcu(&dev->index_hlist);
238 	write_unlock_bh(&dev_base_lock);
239 }
240 
241 /*
242  *	Our notifier list
243  */
244 
245 static RAW_NOTIFIER_HEAD(netdev_chain);
246 
247 /*
248  *	Device drivers call our routines to queue packets here. We empty the
249  *	queue in the local softnet handler.
250  */
251 
252 DEFINE_PER_CPU(struct softnet_data, softnet_data);
253 EXPORT_PER_CPU_SYMBOL(softnet_data);
254 
255 #ifdef CONFIG_LOCKDEP
256 /*
257  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
258  * according to dev->type
259  */
260 static const unsigned short netdev_lock_type[] =
261 	{ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
262 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
263 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
264 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
265 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
266 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
267 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
268 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
269 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
270 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
271 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
272 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
273 	 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
274 	 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
275 	 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
276 	 ARPHRD_VOID, ARPHRD_NONE};
277 
278 static const char *const netdev_lock_name[] =
279 	{"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
280 	 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
281 	 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
282 	 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
283 	 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
284 	 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
285 	 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
286 	 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
287 	 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
288 	 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
289 	 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
290 	 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
291 	 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
292 	 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
293 	 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
294 	 "_xmit_VOID", "_xmit_NONE"};
295 
296 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
297 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
298 
299 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
300 {
301 	int i;
302 
303 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
304 		if (netdev_lock_type[i] == dev_type)
305 			return i;
306 	/* the last key is used by default */
307 	return ARRAY_SIZE(netdev_lock_type) - 1;
308 }
309 
310 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
311 						 unsigned short dev_type)
312 {
313 	int i;
314 
315 	i = netdev_lock_pos(dev_type);
316 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
317 				   netdev_lock_name[i]);
318 }
319 
320 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
321 {
322 	int i;
323 
324 	i = netdev_lock_pos(dev->type);
325 	lockdep_set_class_and_name(&dev->addr_list_lock,
326 				   &netdev_addr_lock_key[i],
327 				   netdev_lock_name[i]);
328 }
329 #else
330 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
331 						 unsigned short dev_type)
332 {
333 }
334 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
335 {
336 }
337 #endif
338 
339 /*******************************************************************************
340 
341 		Protocol management and registration routines
342 
343 *******************************************************************************/
344 
345 /*
346  *	Add a protocol ID to the list. Now that the input handler is
347  *	smarter we can dispense with all the messy stuff that used to be
348  *	here.
349  *
350  *	BEWARE!!! Protocol handlers, mangling input packets,
351  *	MUST BE last in hash buckets and checking protocol handlers
352  *	MUST start from promiscuous ptype_all chain in net_bh.
353  *	It is true now, do not change it.
354  *	Explanation follows: if protocol handler, mangling packet, will
355  *	be the first on list, it is not able to sense, that packet
356  *	is cloned and should be copied-on-write, so that it will
357  *	change it and subsequent readers will get broken packet.
358  *							--ANK (980803)
359  */
360 
361 /**
362  *	dev_add_pack - add packet handler
363  *	@pt: packet type declaration
364  *
365  *	Add a protocol handler to the networking stack. The passed &packet_type
366  *	is linked into kernel lists and may not be freed until it has been
367  *	removed from the kernel lists.
368  *
369  *	This call does not sleep therefore it can not
370  *	guarantee all CPU's that are in middle of receiving packets
371  *	will see the new packet type (until the next received packet).
372  */
373 
374 void dev_add_pack(struct packet_type *pt)
375 {
376 	int hash;
377 
378 	spin_lock_bh(&ptype_lock);
379 	if (pt->type == htons(ETH_P_ALL))
380 		list_add_rcu(&pt->list, &ptype_all);
381 	else {
382 		hash = ntohs(pt->type) & PTYPE_HASH_MASK;
383 		list_add_rcu(&pt->list, &ptype_base[hash]);
384 	}
385 	spin_unlock_bh(&ptype_lock);
386 }
387 EXPORT_SYMBOL(dev_add_pack);
388 
389 /**
390  *	__dev_remove_pack	 - remove packet handler
391  *	@pt: packet type declaration
392  *
393  *	Remove a protocol handler that was previously added to the kernel
394  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
395  *	from the kernel lists and can be freed or reused once this function
396  *	returns.
397  *
398  *      The packet type might still be in use by receivers
399  *	and must not be freed until after all the CPU's have gone
400  *	through a quiescent state.
401  */
402 void __dev_remove_pack(struct packet_type *pt)
403 {
404 	struct list_head *head;
405 	struct packet_type *pt1;
406 
407 	spin_lock_bh(&ptype_lock);
408 
409 	if (pt->type == htons(ETH_P_ALL))
410 		head = &ptype_all;
411 	else
412 		head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
413 
414 	list_for_each_entry(pt1, head, list) {
415 		if (pt == pt1) {
416 			list_del_rcu(&pt->list);
417 			goto out;
418 		}
419 	}
420 
421 	printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
422 out:
423 	spin_unlock_bh(&ptype_lock);
424 }
425 EXPORT_SYMBOL(__dev_remove_pack);
426 
427 /**
428  *	dev_remove_pack	 - remove packet handler
429  *	@pt: packet type declaration
430  *
431  *	Remove a protocol handler that was previously added to the kernel
432  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
433  *	from the kernel lists and can be freed or reused once this function
434  *	returns.
435  *
436  *	This call sleeps to guarantee that no CPU is looking at the packet
437  *	type after return.
438  */
439 void dev_remove_pack(struct packet_type *pt)
440 {
441 	__dev_remove_pack(pt);
442 
443 	synchronize_net();
444 }
445 EXPORT_SYMBOL(dev_remove_pack);
446 
447 /******************************************************************************
448 
449 		      Device Boot-time Settings Routines
450 
451 *******************************************************************************/
452 
453 /* Boot time configuration table */
454 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
455 
456 /**
457  *	netdev_boot_setup_add	- add new setup entry
458  *	@name: name of the device
459  *	@map: configured settings for the device
460  *
461  *	Adds new setup entry to the dev_boot_setup list.  The function
462  *	returns 0 on error and 1 on success.  This is a generic routine to
463  *	all netdevices.
464  */
465 static int netdev_boot_setup_add(char *name, struct ifmap *map)
466 {
467 	struct netdev_boot_setup *s;
468 	int i;
469 
470 	s = dev_boot_setup;
471 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
472 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
473 			memset(s[i].name, 0, sizeof(s[i].name));
474 			strlcpy(s[i].name, name, IFNAMSIZ);
475 			memcpy(&s[i].map, map, sizeof(s[i].map));
476 			break;
477 		}
478 	}
479 
480 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
481 }
482 
483 /**
484  *	netdev_boot_setup_check	- check boot time settings
485  *	@dev: the netdevice
486  *
487  * 	Check boot time settings for the device.
488  *	The found settings are set for the device to be used
489  *	later in the device probing.
490  *	Returns 0 if no settings found, 1 if they are.
491  */
492 int netdev_boot_setup_check(struct net_device *dev)
493 {
494 	struct netdev_boot_setup *s = dev_boot_setup;
495 	int i;
496 
497 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
498 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
499 		    !strcmp(dev->name, s[i].name)) {
500 			dev->irq 	= s[i].map.irq;
501 			dev->base_addr 	= s[i].map.base_addr;
502 			dev->mem_start 	= s[i].map.mem_start;
503 			dev->mem_end 	= s[i].map.mem_end;
504 			return 1;
505 		}
506 	}
507 	return 0;
508 }
509 EXPORT_SYMBOL(netdev_boot_setup_check);
510 
511 
512 /**
513  *	netdev_boot_base	- get address from boot time settings
514  *	@prefix: prefix for network device
515  *	@unit: id for network device
516  *
517  * 	Check boot time settings for the base address of device.
518  *	The found settings are set for the device to be used
519  *	later in the device probing.
520  *	Returns 0 if no settings found.
521  */
522 unsigned long netdev_boot_base(const char *prefix, int unit)
523 {
524 	const struct netdev_boot_setup *s = dev_boot_setup;
525 	char name[IFNAMSIZ];
526 	int i;
527 
528 	sprintf(name, "%s%d", prefix, unit);
529 
530 	/*
531 	 * If device already registered then return base of 1
532 	 * to indicate not to probe for this interface
533 	 */
534 	if (__dev_get_by_name(&init_net, name))
535 		return 1;
536 
537 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
538 		if (!strcmp(name, s[i].name))
539 			return s[i].map.base_addr;
540 	return 0;
541 }
542 
543 /*
544  * Saves at boot time configured settings for any netdevice.
545  */
546 int __init netdev_boot_setup(char *str)
547 {
548 	int ints[5];
549 	struct ifmap map;
550 
551 	str = get_options(str, ARRAY_SIZE(ints), ints);
552 	if (!str || !*str)
553 		return 0;
554 
555 	/* Save settings */
556 	memset(&map, 0, sizeof(map));
557 	if (ints[0] > 0)
558 		map.irq = ints[1];
559 	if (ints[0] > 1)
560 		map.base_addr = ints[2];
561 	if (ints[0] > 2)
562 		map.mem_start = ints[3];
563 	if (ints[0] > 3)
564 		map.mem_end = ints[4];
565 
566 	/* Add new entry to the list */
567 	return netdev_boot_setup_add(str, &map);
568 }
569 
570 __setup("netdev=", netdev_boot_setup);
571 
572 /*******************************************************************************
573 
574 			    Device Interface Subroutines
575 
576 *******************************************************************************/
577 
578 /**
579  *	__dev_get_by_name	- find a device by its name
580  *	@net: the applicable net namespace
581  *	@name: name to find
582  *
583  *	Find an interface by name. Must be called under RTNL semaphore
584  *	or @dev_base_lock. If the name is found a pointer to the device
585  *	is returned. If the name is not found then %NULL is returned. The
586  *	reference counters are not incremented so the caller must be
587  *	careful with locks.
588  */
589 
590 struct net_device *__dev_get_by_name(struct net *net, const char *name)
591 {
592 	struct hlist_node *p;
593 	struct net_device *dev;
594 	struct hlist_head *head = dev_name_hash(net, name);
595 
596 	hlist_for_each_entry(dev, p, head, name_hlist)
597 		if (!strncmp(dev->name, name, IFNAMSIZ))
598 			return dev;
599 
600 	return NULL;
601 }
602 EXPORT_SYMBOL(__dev_get_by_name);
603 
604 /**
605  *	dev_get_by_name_rcu	- find a device by its name
606  *	@net: the applicable net namespace
607  *	@name: name to find
608  *
609  *	Find an interface by name.
610  *	If the name is found a pointer to the device is returned.
611  * 	If the name is not found then %NULL is returned.
612  *	The reference counters are not incremented so the caller must be
613  *	careful with locks. The caller must hold RCU lock.
614  */
615 
616 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
617 {
618 	struct hlist_node *p;
619 	struct net_device *dev;
620 	struct hlist_head *head = dev_name_hash(net, name);
621 
622 	hlist_for_each_entry_rcu(dev, p, head, name_hlist)
623 		if (!strncmp(dev->name, name, IFNAMSIZ))
624 			return dev;
625 
626 	return NULL;
627 }
628 EXPORT_SYMBOL(dev_get_by_name_rcu);
629 
630 /**
631  *	dev_get_by_name		- find a device by its name
632  *	@net: the applicable net namespace
633  *	@name: name to find
634  *
635  *	Find an interface by name. This can be called from any
636  *	context and does its own locking. The returned handle has
637  *	the usage count incremented and the caller must use dev_put() to
638  *	release it when it is no longer needed. %NULL is returned if no
639  *	matching device is found.
640  */
641 
642 struct net_device *dev_get_by_name(struct net *net, const char *name)
643 {
644 	struct net_device *dev;
645 
646 	rcu_read_lock();
647 	dev = dev_get_by_name_rcu(net, name);
648 	if (dev)
649 		dev_hold(dev);
650 	rcu_read_unlock();
651 	return dev;
652 }
653 EXPORT_SYMBOL(dev_get_by_name);
654 
655 /**
656  *	__dev_get_by_index - find a device by its ifindex
657  *	@net: the applicable net namespace
658  *	@ifindex: index of device
659  *
660  *	Search for an interface by index. Returns %NULL if the device
661  *	is not found or a pointer to the device. The device has not
662  *	had its reference counter increased so the caller must be careful
663  *	about locking. The caller must hold either the RTNL semaphore
664  *	or @dev_base_lock.
665  */
666 
667 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
668 {
669 	struct hlist_node *p;
670 	struct net_device *dev;
671 	struct hlist_head *head = dev_index_hash(net, ifindex);
672 
673 	hlist_for_each_entry(dev, p, head, index_hlist)
674 		if (dev->ifindex == ifindex)
675 			return dev;
676 
677 	return NULL;
678 }
679 EXPORT_SYMBOL(__dev_get_by_index);
680 
681 /**
682  *	dev_get_by_index_rcu - find a device by its ifindex
683  *	@net: the applicable net namespace
684  *	@ifindex: index of device
685  *
686  *	Search for an interface by index. Returns %NULL if the device
687  *	is not found or a pointer to the device. The device has not
688  *	had its reference counter increased so the caller must be careful
689  *	about locking. The caller must hold RCU lock.
690  */
691 
692 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
693 {
694 	struct hlist_node *p;
695 	struct net_device *dev;
696 	struct hlist_head *head = dev_index_hash(net, ifindex);
697 
698 	hlist_for_each_entry_rcu(dev, p, head, index_hlist)
699 		if (dev->ifindex == ifindex)
700 			return dev;
701 
702 	return NULL;
703 }
704 EXPORT_SYMBOL(dev_get_by_index_rcu);
705 
706 
707 /**
708  *	dev_get_by_index - find a device by its ifindex
709  *	@net: the applicable net namespace
710  *	@ifindex: index of device
711  *
712  *	Search for an interface by index. Returns NULL if the device
713  *	is not found or a pointer to the device. The device returned has
714  *	had a reference added and the pointer is safe until the user calls
715  *	dev_put to indicate they have finished with it.
716  */
717 
718 struct net_device *dev_get_by_index(struct net *net, int ifindex)
719 {
720 	struct net_device *dev;
721 
722 	rcu_read_lock();
723 	dev = dev_get_by_index_rcu(net, ifindex);
724 	if (dev)
725 		dev_hold(dev);
726 	rcu_read_unlock();
727 	return dev;
728 }
729 EXPORT_SYMBOL(dev_get_by_index);
730 
731 /**
732  *	dev_getbyhwaddr - find a device by its hardware address
733  *	@net: the applicable net namespace
734  *	@type: media type of device
735  *	@ha: hardware address
736  *
737  *	Search for an interface by MAC address. Returns NULL if the device
738  *	is not found or a pointer to the device. The caller must hold the
739  *	rtnl semaphore. The returned device has not had its ref count increased
740  *	and the caller must therefore be careful about locking
741  *
742  *	BUGS:
743  *	If the API was consistent this would be __dev_get_by_hwaddr
744  */
745 
746 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
747 {
748 	struct net_device *dev;
749 
750 	ASSERT_RTNL();
751 
752 	for_each_netdev(net, dev)
753 		if (dev->type == type &&
754 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
755 			return dev;
756 
757 	return NULL;
758 }
759 EXPORT_SYMBOL(dev_getbyhwaddr);
760 
761 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
762 {
763 	struct net_device *dev;
764 
765 	ASSERT_RTNL();
766 	for_each_netdev(net, dev)
767 		if (dev->type == type)
768 			return dev;
769 
770 	return NULL;
771 }
772 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
773 
774 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
775 {
776 	struct net_device *dev;
777 
778 	rtnl_lock();
779 	dev = __dev_getfirstbyhwtype(net, type);
780 	if (dev)
781 		dev_hold(dev);
782 	rtnl_unlock();
783 	return dev;
784 }
785 EXPORT_SYMBOL(dev_getfirstbyhwtype);
786 
787 /**
788  *	dev_get_by_flags - find any device with given flags
789  *	@net: the applicable net namespace
790  *	@if_flags: IFF_* values
791  *	@mask: bitmask of bits in if_flags to check
792  *
793  *	Search for any interface with the given flags. Returns NULL if a device
794  *	is not found or a pointer to the device. The device returned has
795  *	had a reference added and the pointer is safe until the user calls
796  *	dev_put to indicate they have finished with it.
797  */
798 
799 struct net_device *dev_get_by_flags(struct net *net, unsigned short if_flags,
800 				    unsigned short mask)
801 {
802 	struct net_device *dev, *ret;
803 
804 	ret = NULL;
805 	rcu_read_lock();
806 	for_each_netdev_rcu(net, dev) {
807 		if (((dev->flags ^ if_flags) & mask) == 0) {
808 			dev_hold(dev);
809 			ret = dev;
810 			break;
811 		}
812 	}
813 	rcu_read_unlock();
814 	return ret;
815 }
816 EXPORT_SYMBOL(dev_get_by_flags);
817 
818 /**
819  *	dev_valid_name - check if name is okay for network device
820  *	@name: name string
821  *
822  *	Network device names need to be valid file names to
823  *	to allow sysfs to work.  We also disallow any kind of
824  *	whitespace.
825  */
826 int dev_valid_name(const char *name)
827 {
828 	if (*name == '\0')
829 		return 0;
830 	if (strlen(name) >= IFNAMSIZ)
831 		return 0;
832 	if (!strcmp(name, ".") || !strcmp(name, ".."))
833 		return 0;
834 
835 	while (*name) {
836 		if (*name == '/' || isspace(*name))
837 			return 0;
838 		name++;
839 	}
840 	return 1;
841 }
842 EXPORT_SYMBOL(dev_valid_name);
843 
844 /**
845  *	__dev_alloc_name - allocate a name for a device
846  *	@net: network namespace to allocate the device name in
847  *	@name: name format string
848  *	@buf:  scratch buffer and result name string
849  *
850  *	Passed a format string - eg "lt%d" it will try and find a suitable
851  *	id. It scans list of devices to build up a free map, then chooses
852  *	the first empty slot. The caller must hold the dev_base or rtnl lock
853  *	while allocating the name and adding the device in order to avoid
854  *	duplicates.
855  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
856  *	Returns the number of the unit assigned or a negative errno code.
857  */
858 
859 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
860 {
861 	int i = 0;
862 	const char *p;
863 	const int max_netdevices = 8*PAGE_SIZE;
864 	unsigned long *inuse;
865 	struct net_device *d;
866 
867 	p = strnchr(name, IFNAMSIZ-1, '%');
868 	if (p) {
869 		/*
870 		 * Verify the string as this thing may have come from
871 		 * the user.  There must be either one "%d" and no other "%"
872 		 * characters.
873 		 */
874 		if (p[1] != 'd' || strchr(p + 2, '%'))
875 			return -EINVAL;
876 
877 		/* Use one page as a bit array of possible slots */
878 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
879 		if (!inuse)
880 			return -ENOMEM;
881 
882 		for_each_netdev(net, d) {
883 			if (!sscanf(d->name, name, &i))
884 				continue;
885 			if (i < 0 || i >= max_netdevices)
886 				continue;
887 
888 			/*  avoid cases where sscanf is not exact inverse of printf */
889 			snprintf(buf, IFNAMSIZ, name, i);
890 			if (!strncmp(buf, d->name, IFNAMSIZ))
891 				set_bit(i, inuse);
892 		}
893 
894 		i = find_first_zero_bit(inuse, max_netdevices);
895 		free_page((unsigned long) inuse);
896 	}
897 
898 	if (buf != name)
899 		snprintf(buf, IFNAMSIZ, name, i);
900 	if (!__dev_get_by_name(net, buf))
901 		return i;
902 
903 	/* It is possible to run out of possible slots
904 	 * when the name is long and there isn't enough space left
905 	 * for the digits, or if all bits are used.
906 	 */
907 	return -ENFILE;
908 }
909 
910 /**
911  *	dev_alloc_name - allocate a name for a device
912  *	@dev: device
913  *	@name: name format string
914  *
915  *	Passed a format string - eg "lt%d" it will try and find a suitable
916  *	id. It scans list of devices to build up a free map, then chooses
917  *	the first empty slot. The caller must hold the dev_base or rtnl lock
918  *	while allocating the name and adding the device in order to avoid
919  *	duplicates.
920  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
921  *	Returns the number of the unit assigned or a negative errno code.
922  */
923 
924 int dev_alloc_name(struct net_device *dev, const char *name)
925 {
926 	char buf[IFNAMSIZ];
927 	struct net *net;
928 	int ret;
929 
930 	BUG_ON(!dev_net(dev));
931 	net = dev_net(dev);
932 	ret = __dev_alloc_name(net, name, buf);
933 	if (ret >= 0)
934 		strlcpy(dev->name, buf, IFNAMSIZ);
935 	return ret;
936 }
937 EXPORT_SYMBOL(dev_alloc_name);
938 
939 static int dev_get_valid_name(struct net *net, const char *name, char *buf,
940 			      bool fmt)
941 {
942 	if (!dev_valid_name(name))
943 		return -EINVAL;
944 
945 	if (fmt && strchr(name, '%'))
946 		return __dev_alloc_name(net, name, buf);
947 	else if (__dev_get_by_name(net, name))
948 		return -EEXIST;
949 	else if (buf != name)
950 		strlcpy(buf, name, IFNAMSIZ);
951 
952 	return 0;
953 }
954 
955 /**
956  *	dev_change_name - change name of a device
957  *	@dev: device
958  *	@newname: name (or format string) must be at least IFNAMSIZ
959  *
960  *	Change name of a device, can pass format strings "eth%d".
961  *	for wildcarding.
962  */
963 int dev_change_name(struct net_device *dev, const char *newname)
964 {
965 	char oldname[IFNAMSIZ];
966 	int err = 0;
967 	int ret;
968 	struct net *net;
969 
970 	ASSERT_RTNL();
971 	BUG_ON(!dev_net(dev));
972 
973 	net = dev_net(dev);
974 	if (dev->flags & IFF_UP)
975 		return -EBUSY;
976 
977 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
978 		return 0;
979 
980 	memcpy(oldname, dev->name, IFNAMSIZ);
981 
982 	err = dev_get_valid_name(net, newname, dev->name, 1);
983 	if (err < 0)
984 		return err;
985 
986 rollback:
987 	/* For now only devices in the initial network namespace
988 	 * are in sysfs.
989 	 */
990 	if (net_eq(net, &init_net)) {
991 		ret = device_rename(&dev->dev, dev->name);
992 		if (ret) {
993 			memcpy(dev->name, oldname, IFNAMSIZ);
994 			return ret;
995 		}
996 	}
997 
998 	write_lock_bh(&dev_base_lock);
999 	hlist_del(&dev->name_hlist);
1000 	write_unlock_bh(&dev_base_lock);
1001 
1002 	synchronize_rcu();
1003 
1004 	write_lock_bh(&dev_base_lock);
1005 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1006 	write_unlock_bh(&dev_base_lock);
1007 
1008 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1009 	ret = notifier_to_errno(ret);
1010 
1011 	if (ret) {
1012 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1013 		if (err >= 0) {
1014 			err = ret;
1015 			memcpy(dev->name, oldname, IFNAMSIZ);
1016 			goto rollback;
1017 		} else {
1018 			printk(KERN_ERR
1019 			       "%s: name change rollback failed: %d.\n",
1020 			       dev->name, ret);
1021 		}
1022 	}
1023 
1024 	return err;
1025 }
1026 
1027 /**
1028  *	dev_set_alias - change ifalias of a device
1029  *	@dev: device
1030  *	@alias: name up to IFALIASZ
1031  *	@len: limit of bytes to copy from info
1032  *
1033  *	Set ifalias for a device,
1034  */
1035 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1036 {
1037 	ASSERT_RTNL();
1038 
1039 	if (len >= IFALIASZ)
1040 		return -EINVAL;
1041 
1042 	if (!len) {
1043 		if (dev->ifalias) {
1044 			kfree(dev->ifalias);
1045 			dev->ifalias = NULL;
1046 		}
1047 		return 0;
1048 	}
1049 
1050 	dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1051 	if (!dev->ifalias)
1052 		return -ENOMEM;
1053 
1054 	strlcpy(dev->ifalias, alias, len+1);
1055 	return len;
1056 }
1057 
1058 
1059 /**
1060  *	netdev_features_change - device changes features
1061  *	@dev: device to cause notification
1062  *
1063  *	Called to indicate a device has changed features.
1064  */
1065 void netdev_features_change(struct net_device *dev)
1066 {
1067 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1068 }
1069 EXPORT_SYMBOL(netdev_features_change);
1070 
1071 /**
1072  *	netdev_state_change - device changes state
1073  *	@dev: device to cause notification
1074  *
1075  *	Called to indicate a device has changed state. This function calls
1076  *	the notifier chains for netdev_chain and sends a NEWLINK message
1077  *	to the routing socket.
1078  */
1079 void netdev_state_change(struct net_device *dev)
1080 {
1081 	if (dev->flags & IFF_UP) {
1082 		call_netdevice_notifiers(NETDEV_CHANGE, dev);
1083 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1084 	}
1085 }
1086 EXPORT_SYMBOL(netdev_state_change);
1087 
1088 void netdev_bonding_change(struct net_device *dev, unsigned long event)
1089 {
1090 	call_netdevice_notifiers(event, dev);
1091 }
1092 EXPORT_SYMBOL(netdev_bonding_change);
1093 
1094 /**
1095  *	dev_load 	- load a network module
1096  *	@net: the applicable net namespace
1097  *	@name: name of interface
1098  *
1099  *	If a network interface is not present and the process has suitable
1100  *	privileges this function loads the module. If module loading is not
1101  *	available in this kernel then it becomes a nop.
1102  */
1103 
1104 void dev_load(struct net *net, const char *name)
1105 {
1106 	struct net_device *dev;
1107 
1108 	rcu_read_lock();
1109 	dev = dev_get_by_name_rcu(net, name);
1110 	rcu_read_unlock();
1111 
1112 	if (!dev && capable(CAP_NET_ADMIN))
1113 		request_module("%s", name);
1114 }
1115 EXPORT_SYMBOL(dev_load);
1116 
1117 static int __dev_open(struct net_device *dev)
1118 {
1119 	const struct net_device_ops *ops = dev->netdev_ops;
1120 	int ret;
1121 
1122 	ASSERT_RTNL();
1123 
1124 	/*
1125 	 *	Is it even present?
1126 	 */
1127 	if (!netif_device_present(dev))
1128 		return -ENODEV;
1129 
1130 	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1131 	ret = notifier_to_errno(ret);
1132 	if (ret)
1133 		return ret;
1134 
1135 	/*
1136 	 *	Call device private open method
1137 	 */
1138 	set_bit(__LINK_STATE_START, &dev->state);
1139 
1140 	if (ops->ndo_validate_addr)
1141 		ret = ops->ndo_validate_addr(dev);
1142 
1143 	if (!ret && ops->ndo_open)
1144 		ret = ops->ndo_open(dev);
1145 
1146 	/*
1147 	 *	If it went open OK then:
1148 	 */
1149 
1150 	if (ret)
1151 		clear_bit(__LINK_STATE_START, &dev->state);
1152 	else {
1153 		/*
1154 		 *	Set the flags.
1155 		 */
1156 		dev->flags |= IFF_UP;
1157 
1158 		/*
1159 		 *	Enable NET_DMA
1160 		 */
1161 		net_dmaengine_get();
1162 
1163 		/*
1164 		 *	Initialize multicasting status
1165 		 */
1166 		dev_set_rx_mode(dev);
1167 
1168 		/*
1169 		 *	Wakeup transmit queue engine
1170 		 */
1171 		dev_activate(dev);
1172 	}
1173 
1174 	return ret;
1175 }
1176 
1177 /**
1178  *	dev_open	- prepare an interface for use.
1179  *	@dev:	device to open
1180  *
1181  *	Takes a device from down to up state. The device's private open
1182  *	function is invoked and then the multicast lists are loaded. Finally
1183  *	the device is moved into the up state and a %NETDEV_UP message is
1184  *	sent to the netdev notifier chain.
1185  *
1186  *	Calling this function on an active interface is a nop. On a failure
1187  *	a negative errno code is returned.
1188  */
1189 int dev_open(struct net_device *dev)
1190 {
1191 	int ret;
1192 
1193 	/*
1194 	 *	Is it already up?
1195 	 */
1196 	if (dev->flags & IFF_UP)
1197 		return 0;
1198 
1199 	/*
1200 	 *	Open device
1201 	 */
1202 	ret = __dev_open(dev);
1203 	if (ret < 0)
1204 		return ret;
1205 
1206 	/*
1207 	 *	... and announce new interface.
1208 	 */
1209 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1210 	call_netdevice_notifiers(NETDEV_UP, dev);
1211 
1212 	return ret;
1213 }
1214 EXPORT_SYMBOL(dev_open);
1215 
1216 static int __dev_close(struct net_device *dev)
1217 {
1218 	const struct net_device_ops *ops = dev->netdev_ops;
1219 
1220 	ASSERT_RTNL();
1221 	might_sleep();
1222 
1223 	/*
1224 	 *	Tell people we are going down, so that they can
1225 	 *	prepare to death, when device is still operating.
1226 	 */
1227 	call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1228 
1229 	clear_bit(__LINK_STATE_START, &dev->state);
1230 
1231 	/* Synchronize to scheduled poll. We cannot touch poll list,
1232 	 * it can be even on different cpu. So just clear netif_running().
1233 	 *
1234 	 * dev->stop() will invoke napi_disable() on all of it's
1235 	 * napi_struct instances on this device.
1236 	 */
1237 	smp_mb__after_clear_bit(); /* Commit netif_running(). */
1238 
1239 	dev_deactivate(dev);
1240 
1241 	/*
1242 	 *	Call the device specific close. This cannot fail.
1243 	 *	Only if device is UP
1244 	 *
1245 	 *	We allow it to be called even after a DETACH hot-plug
1246 	 *	event.
1247 	 */
1248 	if (ops->ndo_stop)
1249 		ops->ndo_stop(dev);
1250 
1251 	/*
1252 	 *	Device is now down.
1253 	 */
1254 
1255 	dev->flags &= ~IFF_UP;
1256 
1257 	/*
1258 	 *	Shutdown NET_DMA
1259 	 */
1260 	net_dmaengine_put();
1261 
1262 	return 0;
1263 }
1264 
1265 /**
1266  *	dev_close - shutdown an interface.
1267  *	@dev: device to shutdown
1268  *
1269  *	This function moves an active device into down state. A
1270  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1271  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1272  *	chain.
1273  */
1274 int dev_close(struct net_device *dev)
1275 {
1276 	if (!(dev->flags & IFF_UP))
1277 		return 0;
1278 
1279 	__dev_close(dev);
1280 
1281 	/*
1282 	 * Tell people we are down
1283 	 */
1284 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1285 	call_netdevice_notifiers(NETDEV_DOWN, dev);
1286 
1287 	return 0;
1288 }
1289 EXPORT_SYMBOL(dev_close);
1290 
1291 
1292 /**
1293  *	dev_disable_lro - disable Large Receive Offload on a device
1294  *	@dev: device
1295  *
1296  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1297  *	called under RTNL.  This is needed if received packets may be
1298  *	forwarded to another interface.
1299  */
1300 void dev_disable_lro(struct net_device *dev)
1301 {
1302 	if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1303 	    dev->ethtool_ops->set_flags) {
1304 		u32 flags = dev->ethtool_ops->get_flags(dev);
1305 		if (flags & ETH_FLAG_LRO) {
1306 			flags &= ~ETH_FLAG_LRO;
1307 			dev->ethtool_ops->set_flags(dev, flags);
1308 		}
1309 	}
1310 	WARN_ON(dev->features & NETIF_F_LRO);
1311 }
1312 EXPORT_SYMBOL(dev_disable_lro);
1313 
1314 
1315 static int dev_boot_phase = 1;
1316 
1317 /*
1318  *	Device change register/unregister. These are not inline or static
1319  *	as we export them to the world.
1320  */
1321 
1322 /**
1323  *	register_netdevice_notifier - register a network notifier block
1324  *	@nb: notifier
1325  *
1326  *	Register a notifier to be called when network device events occur.
1327  *	The notifier passed is linked into the kernel structures and must
1328  *	not be reused until it has been unregistered. A negative errno code
1329  *	is returned on a failure.
1330  *
1331  * 	When registered all registration and up events are replayed
1332  *	to the new notifier to allow device to have a race free
1333  *	view of the network device list.
1334  */
1335 
1336 int register_netdevice_notifier(struct notifier_block *nb)
1337 {
1338 	struct net_device *dev;
1339 	struct net_device *last;
1340 	struct net *net;
1341 	int err;
1342 
1343 	rtnl_lock();
1344 	err = raw_notifier_chain_register(&netdev_chain, nb);
1345 	if (err)
1346 		goto unlock;
1347 	if (dev_boot_phase)
1348 		goto unlock;
1349 	for_each_net(net) {
1350 		for_each_netdev(net, dev) {
1351 			err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1352 			err = notifier_to_errno(err);
1353 			if (err)
1354 				goto rollback;
1355 
1356 			if (!(dev->flags & IFF_UP))
1357 				continue;
1358 
1359 			nb->notifier_call(nb, NETDEV_UP, dev);
1360 		}
1361 	}
1362 
1363 unlock:
1364 	rtnl_unlock();
1365 	return err;
1366 
1367 rollback:
1368 	last = dev;
1369 	for_each_net(net) {
1370 		for_each_netdev(net, dev) {
1371 			if (dev == last)
1372 				break;
1373 
1374 			if (dev->flags & IFF_UP) {
1375 				nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1376 				nb->notifier_call(nb, NETDEV_DOWN, dev);
1377 			}
1378 			nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1379 			nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1380 		}
1381 	}
1382 
1383 	raw_notifier_chain_unregister(&netdev_chain, nb);
1384 	goto unlock;
1385 }
1386 EXPORT_SYMBOL(register_netdevice_notifier);
1387 
1388 /**
1389  *	unregister_netdevice_notifier - unregister a network notifier block
1390  *	@nb: notifier
1391  *
1392  *	Unregister a notifier previously registered by
1393  *	register_netdevice_notifier(). The notifier is unlinked into the
1394  *	kernel structures and may then be reused. A negative errno code
1395  *	is returned on a failure.
1396  */
1397 
1398 int unregister_netdevice_notifier(struct notifier_block *nb)
1399 {
1400 	int err;
1401 
1402 	rtnl_lock();
1403 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1404 	rtnl_unlock();
1405 	return err;
1406 }
1407 EXPORT_SYMBOL(unregister_netdevice_notifier);
1408 
1409 /**
1410  *	call_netdevice_notifiers - call all network notifier blocks
1411  *      @val: value passed unmodified to notifier function
1412  *      @dev: net_device pointer passed unmodified to notifier function
1413  *
1414  *	Call all network notifier blocks.  Parameters and return value
1415  *	are as for raw_notifier_call_chain().
1416  */
1417 
1418 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1419 {
1420 	return raw_notifier_call_chain(&netdev_chain, val, dev);
1421 }
1422 
1423 /* When > 0 there are consumers of rx skb time stamps */
1424 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1425 
1426 void net_enable_timestamp(void)
1427 {
1428 	atomic_inc(&netstamp_needed);
1429 }
1430 EXPORT_SYMBOL(net_enable_timestamp);
1431 
1432 void net_disable_timestamp(void)
1433 {
1434 	atomic_dec(&netstamp_needed);
1435 }
1436 EXPORT_SYMBOL(net_disable_timestamp);
1437 
1438 static inline void net_timestamp(struct sk_buff *skb)
1439 {
1440 	if (atomic_read(&netstamp_needed))
1441 		__net_timestamp(skb);
1442 	else
1443 		skb->tstamp.tv64 = 0;
1444 }
1445 
1446 /**
1447  * dev_forward_skb - loopback an skb to another netif
1448  *
1449  * @dev: destination network device
1450  * @skb: buffer to forward
1451  *
1452  * return values:
1453  *	NET_RX_SUCCESS	(no congestion)
1454  *	NET_RX_DROP     (packet was dropped)
1455  *
1456  * dev_forward_skb can be used for injecting an skb from the
1457  * start_xmit function of one device into the receive queue
1458  * of another device.
1459  *
1460  * The receiving device may be in another namespace, so
1461  * we have to clear all information in the skb that could
1462  * impact namespace isolation.
1463  */
1464 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1465 {
1466 	skb_orphan(skb);
1467 
1468 	if (!(dev->flags & IFF_UP))
1469 		return NET_RX_DROP;
1470 
1471 	if (skb->len > (dev->mtu + dev->hard_header_len))
1472 		return NET_RX_DROP;
1473 
1474 	skb_set_dev(skb, dev);
1475 	skb->tstamp.tv64 = 0;
1476 	skb->pkt_type = PACKET_HOST;
1477 	skb->protocol = eth_type_trans(skb, dev);
1478 	return netif_rx(skb);
1479 }
1480 EXPORT_SYMBOL_GPL(dev_forward_skb);
1481 
1482 /*
1483  *	Support routine. Sends outgoing frames to any network
1484  *	taps currently in use.
1485  */
1486 
1487 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1488 {
1489 	struct packet_type *ptype;
1490 
1491 #ifdef CONFIG_NET_CLS_ACT
1492 	if (!(skb->tstamp.tv64 && (G_TC_FROM(skb->tc_verd) & AT_INGRESS)))
1493 		net_timestamp(skb);
1494 #else
1495 	net_timestamp(skb);
1496 #endif
1497 
1498 	rcu_read_lock();
1499 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
1500 		/* Never send packets back to the socket
1501 		 * they originated from - MvS (miquels@drinkel.ow.org)
1502 		 */
1503 		if ((ptype->dev == dev || !ptype->dev) &&
1504 		    (ptype->af_packet_priv == NULL ||
1505 		     (struct sock *)ptype->af_packet_priv != skb->sk)) {
1506 			struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1507 			if (!skb2)
1508 				break;
1509 
1510 			/* skb->nh should be correctly
1511 			   set by sender, so that the second statement is
1512 			   just protection against buggy protocols.
1513 			 */
1514 			skb_reset_mac_header(skb2);
1515 
1516 			if (skb_network_header(skb2) < skb2->data ||
1517 			    skb2->network_header > skb2->tail) {
1518 				if (net_ratelimit())
1519 					printk(KERN_CRIT "protocol %04x is "
1520 					       "buggy, dev %s\n",
1521 					       skb2->protocol, dev->name);
1522 				skb_reset_network_header(skb2);
1523 			}
1524 
1525 			skb2->transport_header = skb2->network_header;
1526 			skb2->pkt_type = PACKET_OUTGOING;
1527 			ptype->func(skb2, skb->dev, ptype, skb->dev);
1528 		}
1529 	}
1530 	rcu_read_unlock();
1531 }
1532 
1533 
1534 static inline void __netif_reschedule(struct Qdisc *q)
1535 {
1536 	struct softnet_data *sd;
1537 	unsigned long flags;
1538 
1539 	local_irq_save(flags);
1540 	sd = &__get_cpu_var(softnet_data);
1541 	q->next_sched = sd->output_queue;
1542 	sd->output_queue = q;
1543 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
1544 	local_irq_restore(flags);
1545 }
1546 
1547 void __netif_schedule(struct Qdisc *q)
1548 {
1549 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1550 		__netif_reschedule(q);
1551 }
1552 EXPORT_SYMBOL(__netif_schedule);
1553 
1554 void dev_kfree_skb_irq(struct sk_buff *skb)
1555 {
1556 	if (atomic_dec_and_test(&skb->users)) {
1557 		struct softnet_data *sd;
1558 		unsigned long flags;
1559 
1560 		local_irq_save(flags);
1561 		sd = &__get_cpu_var(softnet_data);
1562 		skb->next = sd->completion_queue;
1563 		sd->completion_queue = skb;
1564 		raise_softirq_irqoff(NET_TX_SOFTIRQ);
1565 		local_irq_restore(flags);
1566 	}
1567 }
1568 EXPORT_SYMBOL(dev_kfree_skb_irq);
1569 
1570 void dev_kfree_skb_any(struct sk_buff *skb)
1571 {
1572 	if (in_irq() || irqs_disabled())
1573 		dev_kfree_skb_irq(skb);
1574 	else
1575 		dev_kfree_skb(skb);
1576 }
1577 EXPORT_SYMBOL(dev_kfree_skb_any);
1578 
1579 
1580 /**
1581  * netif_device_detach - mark device as removed
1582  * @dev: network device
1583  *
1584  * Mark device as removed from system and therefore no longer available.
1585  */
1586 void netif_device_detach(struct net_device *dev)
1587 {
1588 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1589 	    netif_running(dev)) {
1590 		netif_tx_stop_all_queues(dev);
1591 	}
1592 }
1593 EXPORT_SYMBOL(netif_device_detach);
1594 
1595 /**
1596  * netif_device_attach - mark device as attached
1597  * @dev: network device
1598  *
1599  * Mark device as attached from system and restart if needed.
1600  */
1601 void netif_device_attach(struct net_device *dev)
1602 {
1603 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1604 	    netif_running(dev)) {
1605 		netif_tx_wake_all_queues(dev);
1606 		__netdev_watchdog_up(dev);
1607 	}
1608 }
1609 EXPORT_SYMBOL(netif_device_attach);
1610 
1611 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1612 {
1613 	return ((features & NETIF_F_GEN_CSUM) ||
1614 		((features & NETIF_F_IP_CSUM) &&
1615 		 protocol == htons(ETH_P_IP)) ||
1616 		((features & NETIF_F_IPV6_CSUM) &&
1617 		 protocol == htons(ETH_P_IPV6)) ||
1618 		((features & NETIF_F_FCOE_CRC) &&
1619 		 protocol == htons(ETH_P_FCOE)));
1620 }
1621 
1622 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1623 {
1624 	if (can_checksum_protocol(dev->features, skb->protocol))
1625 		return true;
1626 
1627 	if (skb->protocol == htons(ETH_P_8021Q)) {
1628 		struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1629 		if (can_checksum_protocol(dev->features & dev->vlan_features,
1630 					  veh->h_vlan_encapsulated_proto))
1631 			return true;
1632 	}
1633 
1634 	return false;
1635 }
1636 
1637 /**
1638  * skb_dev_set -- assign a new device to a buffer
1639  * @skb: buffer for the new device
1640  * @dev: network device
1641  *
1642  * If an skb is owned by a device already, we have to reset
1643  * all data private to the namespace a device belongs to
1644  * before assigning it a new device.
1645  */
1646 #ifdef CONFIG_NET_NS
1647 void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1648 {
1649 	skb_dst_drop(skb);
1650 	if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) {
1651 		secpath_reset(skb);
1652 		nf_reset(skb);
1653 		skb_init_secmark(skb);
1654 		skb->mark = 0;
1655 		skb->priority = 0;
1656 		skb->nf_trace = 0;
1657 		skb->ipvs_property = 0;
1658 #ifdef CONFIG_NET_SCHED
1659 		skb->tc_index = 0;
1660 #endif
1661 	}
1662 	skb->dev = dev;
1663 }
1664 EXPORT_SYMBOL(skb_set_dev);
1665 #endif /* CONFIG_NET_NS */
1666 
1667 /*
1668  * Invalidate hardware checksum when packet is to be mangled, and
1669  * complete checksum manually on outgoing path.
1670  */
1671 int skb_checksum_help(struct sk_buff *skb)
1672 {
1673 	__wsum csum;
1674 	int ret = 0, offset;
1675 
1676 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1677 		goto out_set_summed;
1678 
1679 	if (unlikely(skb_shinfo(skb)->gso_size)) {
1680 		/* Let GSO fix up the checksum. */
1681 		goto out_set_summed;
1682 	}
1683 
1684 	offset = skb->csum_start - skb_headroom(skb);
1685 	BUG_ON(offset >= skb_headlen(skb));
1686 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
1687 
1688 	offset += skb->csum_offset;
1689 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1690 
1691 	if (skb_cloned(skb) &&
1692 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1693 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1694 		if (ret)
1695 			goto out;
1696 	}
1697 
1698 	*(__sum16 *)(skb->data + offset) = csum_fold(csum);
1699 out_set_summed:
1700 	skb->ip_summed = CHECKSUM_NONE;
1701 out:
1702 	return ret;
1703 }
1704 EXPORT_SYMBOL(skb_checksum_help);
1705 
1706 /**
1707  *	skb_gso_segment - Perform segmentation on skb.
1708  *	@skb: buffer to segment
1709  *	@features: features for the output path (see dev->features)
1710  *
1711  *	This function segments the given skb and returns a list of segments.
1712  *
1713  *	It may return NULL if the skb requires no segmentation.  This is
1714  *	only possible when GSO is used for verifying header integrity.
1715  */
1716 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1717 {
1718 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1719 	struct packet_type *ptype;
1720 	__be16 type = skb->protocol;
1721 	int err;
1722 
1723 	skb_reset_mac_header(skb);
1724 	skb->mac_len = skb->network_header - skb->mac_header;
1725 	__skb_pull(skb, skb->mac_len);
1726 
1727 	if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1728 		struct net_device *dev = skb->dev;
1729 		struct ethtool_drvinfo info = {};
1730 
1731 		if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1732 			dev->ethtool_ops->get_drvinfo(dev, &info);
1733 
1734 		WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d "
1735 			"ip_summed=%d",
1736 		     info.driver, dev ? dev->features : 0L,
1737 		     skb->sk ? skb->sk->sk_route_caps : 0L,
1738 		     skb->len, skb->data_len, skb->ip_summed);
1739 
1740 		if (skb_header_cloned(skb) &&
1741 		    (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1742 			return ERR_PTR(err);
1743 	}
1744 
1745 	rcu_read_lock();
1746 	list_for_each_entry_rcu(ptype,
1747 			&ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1748 		if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1749 			if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1750 				err = ptype->gso_send_check(skb);
1751 				segs = ERR_PTR(err);
1752 				if (err || skb_gso_ok(skb, features))
1753 					break;
1754 				__skb_push(skb, (skb->data -
1755 						 skb_network_header(skb)));
1756 			}
1757 			segs = ptype->gso_segment(skb, features);
1758 			break;
1759 		}
1760 	}
1761 	rcu_read_unlock();
1762 
1763 	__skb_push(skb, skb->data - skb_mac_header(skb));
1764 
1765 	return segs;
1766 }
1767 EXPORT_SYMBOL(skb_gso_segment);
1768 
1769 /* Take action when hardware reception checksum errors are detected. */
1770 #ifdef CONFIG_BUG
1771 void netdev_rx_csum_fault(struct net_device *dev)
1772 {
1773 	if (net_ratelimit()) {
1774 		printk(KERN_ERR "%s: hw csum failure.\n",
1775 			dev ? dev->name : "<unknown>");
1776 		dump_stack();
1777 	}
1778 }
1779 EXPORT_SYMBOL(netdev_rx_csum_fault);
1780 #endif
1781 
1782 /* Actually, we should eliminate this check as soon as we know, that:
1783  * 1. IOMMU is present and allows to map all the memory.
1784  * 2. No high memory really exists on this machine.
1785  */
1786 
1787 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1788 {
1789 #ifdef CONFIG_HIGHMEM
1790 	int i;
1791 
1792 	if (dev->features & NETIF_F_HIGHDMA)
1793 		return 0;
1794 
1795 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1796 		if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1797 			return 1;
1798 
1799 #endif
1800 	return 0;
1801 }
1802 
1803 struct dev_gso_cb {
1804 	void (*destructor)(struct sk_buff *skb);
1805 };
1806 
1807 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1808 
1809 static void dev_gso_skb_destructor(struct sk_buff *skb)
1810 {
1811 	struct dev_gso_cb *cb;
1812 
1813 	do {
1814 		struct sk_buff *nskb = skb->next;
1815 
1816 		skb->next = nskb->next;
1817 		nskb->next = NULL;
1818 		kfree_skb(nskb);
1819 	} while (skb->next);
1820 
1821 	cb = DEV_GSO_CB(skb);
1822 	if (cb->destructor)
1823 		cb->destructor(skb);
1824 }
1825 
1826 /**
1827  *	dev_gso_segment - Perform emulated hardware segmentation on skb.
1828  *	@skb: buffer to segment
1829  *
1830  *	This function segments the given skb and stores the list of segments
1831  *	in skb->next.
1832  */
1833 static int dev_gso_segment(struct sk_buff *skb)
1834 {
1835 	struct net_device *dev = skb->dev;
1836 	struct sk_buff *segs;
1837 	int features = dev->features & ~(illegal_highdma(dev, skb) ?
1838 					 NETIF_F_SG : 0);
1839 
1840 	segs = skb_gso_segment(skb, features);
1841 
1842 	/* Verifying header integrity only. */
1843 	if (!segs)
1844 		return 0;
1845 
1846 	if (IS_ERR(segs))
1847 		return PTR_ERR(segs);
1848 
1849 	skb->next = segs;
1850 	DEV_GSO_CB(skb)->destructor = skb->destructor;
1851 	skb->destructor = dev_gso_skb_destructor;
1852 
1853 	return 0;
1854 }
1855 
1856 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1857 			struct netdev_queue *txq)
1858 {
1859 	const struct net_device_ops *ops = dev->netdev_ops;
1860 	int rc = NETDEV_TX_OK;
1861 
1862 	if (likely(!skb->next)) {
1863 		if (!list_empty(&ptype_all))
1864 			dev_queue_xmit_nit(skb, dev);
1865 
1866 		if (netif_needs_gso(dev, skb)) {
1867 			if (unlikely(dev_gso_segment(skb)))
1868 				goto out_kfree_skb;
1869 			if (skb->next)
1870 				goto gso;
1871 		}
1872 
1873 		/*
1874 		 * If device doesnt need skb->dst, release it right now while
1875 		 * its hot in this cpu cache
1876 		 */
1877 		if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1878 			skb_dst_drop(skb);
1879 
1880 		rc = ops->ndo_start_xmit(skb, dev);
1881 		if (rc == NETDEV_TX_OK)
1882 			txq_trans_update(txq);
1883 		/*
1884 		 * TODO: if skb_orphan() was called by
1885 		 * dev->hard_start_xmit() (for example, the unmodified
1886 		 * igb driver does that; bnx2 doesn't), then
1887 		 * skb_tx_software_timestamp() will be unable to send
1888 		 * back the time stamp.
1889 		 *
1890 		 * How can this be prevented? Always create another
1891 		 * reference to the socket before calling
1892 		 * dev->hard_start_xmit()? Prevent that skb_orphan()
1893 		 * does anything in dev->hard_start_xmit() by clearing
1894 		 * the skb destructor before the call and restoring it
1895 		 * afterwards, then doing the skb_orphan() ourselves?
1896 		 */
1897 		return rc;
1898 	}
1899 
1900 gso:
1901 	do {
1902 		struct sk_buff *nskb = skb->next;
1903 
1904 		skb->next = nskb->next;
1905 		nskb->next = NULL;
1906 
1907 		/*
1908 		 * If device doesnt need nskb->dst, release it right now while
1909 		 * its hot in this cpu cache
1910 		 */
1911 		if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1912 			skb_dst_drop(nskb);
1913 
1914 		rc = ops->ndo_start_xmit(nskb, dev);
1915 		if (unlikely(rc != NETDEV_TX_OK)) {
1916 			if (rc & ~NETDEV_TX_MASK)
1917 				goto out_kfree_gso_skb;
1918 			nskb->next = skb->next;
1919 			skb->next = nskb;
1920 			return rc;
1921 		}
1922 		txq_trans_update(txq);
1923 		if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
1924 			return NETDEV_TX_BUSY;
1925 	} while (skb->next);
1926 
1927 out_kfree_gso_skb:
1928 	if (likely(skb->next == NULL))
1929 		skb->destructor = DEV_GSO_CB(skb)->destructor;
1930 out_kfree_skb:
1931 	kfree_skb(skb);
1932 	return rc;
1933 }
1934 
1935 static u32 skb_tx_hashrnd;
1936 
1937 u16 skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb)
1938 {
1939 	u32 hash;
1940 
1941 	if (skb_rx_queue_recorded(skb)) {
1942 		hash = skb_get_rx_queue(skb);
1943 		while (unlikely(hash >= dev->real_num_tx_queues))
1944 			hash -= dev->real_num_tx_queues;
1945 		return hash;
1946 	}
1947 
1948 	if (skb->sk && skb->sk->sk_hash)
1949 		hash = skb->sk->sk_hash;
1950 	else
1951 		hash = skb->protocol;
1952 
1953 	hash = jhash_1word(hash, skb_tx_hashrnd);
1954 
1955 	return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
1956 }
1957 EXPORT_SYMBOL(skb_tx_hash);
1958 
1959 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
1960 {
1961 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
1962 		if (net_ratelimit()) {
1963 			WARN(1, "%s selects TX queue %d, but "
1964 			     "real number of TX queues is %d\n",
1965 			     dev->name, queue_index,
1966 			     dev->real_num_tx_queues);
1967 		}
1968 		return 0;
1969 	}
1970 	return queue_index;
1971 }
1972 
1973 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
1974 					struct sk_buff *skb)
1975 {
1976 	u16 queue_index;
1977 	struct sock *sk = skb->sk;
1978 
1979 	if (sk_tx_queue_recorded(sk)) {
1980 		queue_index = sk_tx_queue_get(sk);
1981 	} else {
1982 		const struct net_device_ops *ops = dev->netdev_ops;
1983 
1984 		if (ops->ndo_select_queue) {
1985 			queue_index = ops->ndo_select_queue(dev, skb);
1986 			queue_index = dev_cap_txqueue(dev, queue_index);
1987 		} else {
1988 			queue_index = 0;
1989 			if (dev->real_num_tx_queues > 1)
1990 				queue_index = skb_tx_hash(dev, skb);
1991 
1992 			if (sk && sk->sk_dst_cache)
1993 				sk_tx_queue_set(sk, queue_index);
1994 		}
1995 	}
1996 
1997 	skb_set_queue_mapping(skb, queue_index);
1998 	return netdev_get_tx_queue(dev, queue_index);
1999 }
2000 
2001 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2002 				 struct net_device *dev,
2003 				 struct netdev_queue *txq)
2004 {
2005 	spinlock_t *root_lock = qdisc_lock(q);
2006 	int rc;
2007 
2008 	spin_lock(root_lock);
2009 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2010 		kfree_skb(skb);
2011 		rc = NET_XMIT_DROP;
2012 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2013 		   !test_and_set_bit(__QDISC_STATE_RUNNING, &q->state)) {
2014 		/*
2015 		 * This is a work-conserving queue; there are no old skbs
2016 		 * waiting to be sent out; and the qdisc is not running -
2017 		 * xmit the skb directly.
2018 		 */
2019 		__qdisc_update_bstats(q, skb->len);
2020 		if (sch_direct_xmit(skb, q, dev, txq, root_lock))
2021 			__qdisc_run(q);
2022 		else
2023 			clear_bit(__QDISC_STATE_RUNNING, &q->state);
2024 
2025 		rc = NET_XMIT_SUCCESS;
2026 	} else {
2027 		rc = qdisc_enqueue_root(skb, q);
2028 		qdisc_run(q);
2029 	}
2030 	spin_unlock(root_lock);
2031 
2032 	return rc;
2033 }
2034 
2035 /*
2036  * Returns true if either:
2037  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
2038  *	2. skb is fragmented and the device does not support SG, or if
2039  *	   at least one of fragments is in highmem and device does not
2040  *	   support DMA from it.
2041  */
2042 static inline int skb_needs_linearize(struct sk_buff *skb,
2043 				      struct net_device *dev)
2044 {
2045 	return (skb_has_frags(skb) && !(dev->features & NETIF_F_FRAGLIST)) ||
2046 	       (skb_shinfo(skb)->nr_frags && (!(dev->features & NETIF_F_SG) ||
2047 					      illegal_highdma(dev, skb)));
2048 }
2049 
2050 /**
2051  *	dev_queue_xmit - transmit a buffer
2052  *	@skb: buffer to transmit
2053  *
2054  *	Queue a buffer for transmission to a network device. The caller must
2055  *	have set the device and priority and built the buffer before calling
2056  *	this function. The function can be called from an interrupt.
2057  *
2058  *	A negative errno code is returned on a failure. A success does not
2059  *	guarantee the frame will be transmitted as it may be dropped due
2060  *	to congestion or traffic shaping.
2061  *
2062  * -----------------------------------------------------------------------------------
2063  *      I notice this method can also return errors from the queue disciplines,
2064  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
2065  *      be positive.
2066  *
2067  *      Regardless of the return value, the skb is consumed, so it is currently
2068  *      difficult to retry a send to this method.  (You can bump the ref count
2069  *      before sending to hold a reference for retry if you are careful.)
2070  *
2071  *      When calling this method, interrupts MUST be enabled.  This is because
2072  *      the BH enable code must have IRQs enabled so that it will not deadlock.
2073  *          --BLG
2074  */
2075 int dev_queue_xmit(struct sk_buff *skb)
2076 {
2077 	struct net_device *dev = skb->dev;
2078 	struct netdev_queue *txq;
2079 	struct Qdisc *q;
2080 	int rc = -ENOMEM;
2081 
2082 	/* GSO will handle the following emulations directly. */
2083 	if (netif_needs_gso(dev, skb))
2084 		goto gso;
2085 
2086 	/* Convert a paged skb to linear, if required */
2087 	if (skb_needs_linearize(skb, dev) && __skb_linearize(skb))
2088 		goto out_kfree_skb;
2089 
2090 	/* If packet is not checksummed and device does not support
2091 	 * checksumming for this protocol, complete checksumming here.
2092 	 */
2093 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2094 		skb_set_transport_header(skb, skb->csum_start -
2095 					      skb_headroom(skb));
2096 		if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb))
2097 			goto out_kfree_skb;
2098 	}
2099 
2100 gso:
2101 	/* Disable soft irqs for various locks below. Also
2102 	 * stops preemption for RCU.
2103 	 */
2104 	rcu_read_lock_bh();
2105 
2106 	txq = dev_pick_tx(dev, skb);
2107 	q = rcu_dereference_bh(txq->qdisc);
2108 
2109 #ifdef CONFIG_NET_CLS_ACT
2110 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2111 #endif
2112 	if (q->enqueue) {
2113 		rc = __dev_xmit_skb(skb, q, dev, txq);
2114 		goto out;
2115 	}
2116 
2117 	/* The device has no queue. Common case for software devices:
2118 	   loopback, all the sorts of tunnels...
2119 
2120 	   Really, it is unlikely that netif_tx_lock protection is necessary
2121 	   here.  (f.e. loopback and IP tunnels are clean ignoring statistics
2122 	   counters.)
2123 	   However, it is possible, that they rely on protection
2124 	   made by us here.
2125 
2126 	   Check this and shot the lock. It is not prone from deadlocks.
2127 	   Either shot noqueue qdisc, it is even simpler 8)
2128 	 */
2129 	if (dev->flags & IFF_UP) {
2130 		int cpu = smp_processor_id(); /* ok because BHs are off */
2131 
2132 		if (txq->xmit_lock_owner != cpu) {
2133 
2134 			HARD_TX_LOCK(dev, txq, cpu);
2135 
2136 			if (!netif_tx_queue_stopped(txq)) {
2137 				rc = dev_hard_start_xmit(skb, dev, txq);
2138 				if (dev_xmit_complete(rc)) {
2139 					HARD_TX_UNLOCK(dev, txq);
2140 					goto out;
2141 				}
2142 			}
2143 			HARD_TX_UNLOCK(dev, txq);
2144 			if (net_ratelimit())
2145 				printk(KERN_CRIT "Virtual device %s asks to "
2146 				       "queue packet!\n", dev->name);
2147 		} else {
2148 			/* Recursion is detected! It is possible,
2149 			 * unfortunately */
2150 			if (net_ratelimit())
2151 				printk(KERN_CRIT "Dead loop on virtual device "
2152 				       "%s, fix it urgently!\n", dev->name);
2153 		}
2154 	}
2155 
2156 	rc = -ENETDOWN;
2157 	rcu_read_unlock_bh();
2158 
2159 out_kfree_skb:
2160 	kfree_skb(skb);
2161 	return rc;
2162 out:
2163 	rcu_read_unlock_bh();
2164 	return rc;
2165 }
2166 EXPORT_SYMBOL(dev_queue_xmit);
2167 
2168 
2169 /*=======================================================================
2170 			Receiver routines
2171   =======================================================================*/
2172 
2173 int netdev_max_backlog __read_mostly = 1000;
2174 int netdev_budget __read_mostly = 300;
2175 int weight_p __read_mostly = 64;            /* old backlog weight */
2176 
2177 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
2178 
2179 
2180 /**
2181  *	netif_rx	-	post buffer to the network code
2182  *	@skb: buffer to post
2183  *
2184  *	This function receives a packet from a device driver and queues it for
2185  *	the upper (protocol) levels to process.  It always succeeds. The buffer
2186  *	may be dropped during processing for congestion control or by the
2187  *	protocol layers.
2188  *
2189  *	return values:
2190  *	NET_RX_SUCCESS	(no congestion)
2191  *	NET_RX_DROP     (packet was dropped)
2192  *
2193  */
2194 
2195 int netif_rx(struct sk_buff *skb)
2196 {
2197 	struct softnet_data *queue;
2198 	unsigned long flags;
2199 
2200 	/* if netpoll wants it, pretend we never saw it */
2201 	if (netpoll_rx(skb))
2202 		return NET_RX_DROP;
2203 
2204 	if (!skb->tstamp.tv64)
2205 		net_timestamp(skb);
2206 
2207 	/*
2208 	 * The code is rearranged so that the path is the most
2209 	 * short when CPU is congested, but is still operating.
2210 	 */
2211 	local_irq_save(flags);
2212 	queue = &__get_cpu_var(softnet_data);
2213 
2214 	__get_cpu_var(netdev_rx_stat).total++;
2215 	if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
2216 		if (queue->input_pkt_queue.qlen) {
2217 enqueue:
2218 			__skb_queue_tail(&queue->input_pkt_queue, skb);
2219 			local_irq_restore(flags);
2220 			return NET_RX_SUCCESS;
2221 		}
2222 
2223 		napi_schedule(&queue->backlog);
2224 		goto enqueue;
2225 	}
2226 
2227 	__get_cpu_var(netdev_rx_stat).dropped++;
2228 	local_irq_restore(flags);
2229 
2230 	kfree_skb(skb);
2231 	return NET_RX_DROP;
2232 }
2233 EXPORT_SYMBOL(netif_rx);
2234 
2235 int netif_rx_ni(struct sk_buff *skb)
2236 {
2237 	int err;
2238 
2239 	preempt_disable();
2240 	err = netif_rx(skb);
2241 	if (local_softirq_pending())
2242 		do_softirq();
2243 	preempt_enable();
2244 
2245 	return err;
2246 }
2247 EXPORT_SYMBOL(netif_rx_ni);
2248 
2249 static void net_tx_action(struct softirq_action *h)
2250 {
2251 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
2252 
2253 	if (sd->completion_queue) {
2254 		struct sk_buff *clist;
2255 
2256 		local_irq_disable();
2257 		clist = sd->completion_queue;
2258 		sd->completion_queue = NULL;
2259 		local_irq_enable();
2260 
2261 		while (clist) {
2262 			struct sk_buff *skb = clist;
2263 			clist = clist->next;
2264 
2265 			WARN_ON(atomic_read(&skb->users));
2266 			__kfree_skb(skb);
2267 		}
2268 	}
2269 
2270 	if (sd->output_queue) {
2271 		struct Qdisc *head;
2272 
2273 		local_irq_disable();
2274 		head = sd->output_queue;
2275 		sd->output_queue = NULL;
2276 		local_irq_enable();
2277 
2278 		while (head) {
2279 			struct Qdisc *q = head;
2280 			spinlock_t *root_lock;
2281 
2282 			head = head->next_sched;
2283 
2284 			root_lock = qdisc_lock(q);
2285 			if (spin_trylock(root_lock)) {
2286 				smp_mb__before_clear_bit();
2287 				clear_bit(__QDISC_STATE_SCHED,
2288 					  &q->state);
2289 				qdisc_run(q);
2290 				spin_unlock(root_lock);
2291 			} else {
2292 				if (!test_bit(__QDISC_STATE_DEACTIVATED,
2293 					      &q->state)) {
2294 					__netif_reschedule(q);
2295 				} else {
2296 					smp_mb__before_clear_bit();
2297 					clear_bit(__QDISC_STATE_SCHED,
2298 						  &q->state);
2299 				}
2300 			}
2301 		}
2302 	}
2303 }
2304 
2305 static inline int deliver_skb(struct sk_buff *skb,
2306 			      struct packet_type *pt_prev,
2307 			      struct net_device *orig_dev)
2308 {
2309 	atomic_inc(&skb->users);
2310 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2311 }
2312 
2313 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
2314 
2315 #if defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)
2316 /* This hook is defined here for ATM LANE */
2317 int (*br_fdb_test_addr_hook)(struct net_device *dev,
2318 			     unsigned char *addr) __read_mostly;
2319 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
2320 #endif
2321 
2322 /*
2323  * If bridge module is loaded call bridging hook.
2324  *  returns NULL if packet was consumed.
2325  */
2326 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
2327 					struct sk_buff *skb) __read_mostly;
2328 EXPORT_SYMBOL_GPL(br_handle_frame_hook);
2329 
2330 static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
2331 					    struct packet_type **pt_prev, int *ret,
2332 					    struct net_device *orig_dev)
2333 {
2334 	struct net_bridge_port *port;
2335 
2336 	if (skb->pkt_type == PACKET_LOOPBACK ||
2337 	    (port = rcu_dereference(skb->dev->br_port)) == NULL)
2338 		return skb;
2339 
2340 	if (*pt_prev) {
2341 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
2342 		*pt_prev = NULL;
2343 	}
2344 
2345 	return br_handle_frame_hook(port, skb);
2346 }
2347 #else
2348 #define handle_bridge(skb, pt_prev, ret, orig_dev)	(skb)
2349 #endif
2350 
2351 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
2352 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
2353 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
2354 
2355 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
2356 					     struct packet_type **pt_prev,
2357 					     int *ret,
2358 					     struct net_device *orig_dev)
2359 {
2360 	if (skb->dev->macvlan_port == NULL)
2361 		return skb;
2362 
2363 	if (*pt_prev) {
2364 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
2365 		*pt_prev = NULL;
2366 	}
2367 	return macvlan_handle_frame_hook(skb);
2368 }
2369 #else
2370 #define handle_macvlan(skb, pt_prev, ret, orig_dev)	(skb)
2371 #endif
2372 
2373 #ifdef CONFIG_NET_CLS_ACT
2374 /* TODO: Maybe we should just force sch_ingress to be compiled in
2375  * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2376  * a compare and 2 stores extra right now if we dont have it on
2377  * but have CONFIG_NET_CLS_ACT
2378  * NOTE: This doesnt stop any functionality; if you dont have
2379  * the ingress scheduler, you just cant add policies on ingress.
2380  *
2381  */
2382 static int ing_filter(struct sk_buff *skb)
2383 {
2384 	struct net_device *dev = skb->dev;
2385 	u32 ttl = G_TC_RTTL(skb->tc_verd);
2386 	struct netdev_queue *rxq;
2387 	int result = TC_ACT_OK;
2388 	struct Qdisc *q;
2389 
2390 	if (MAX_RED_LOOP < ttl++) {
2391 		printk(KERN_WARNING
2392 		       "Redir loop detected Dropping packet (%d->%d)\n",
2393 		       skb->skb_iif, dev->ifindex);
2394 		return TC_ACT_SHOT;
2395 	}
2396 
2397 	skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2398 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2399 
2400 	rxq = &dev->rx_queue;
2401 
2402 	q = rxq->qdisc;
2403 	if (q != &noop_qdisc) {
2404 		spin_lock(qdisc_lock(q));
2405 		if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2406 			result = qdisc_enqueue_root(skb, q);
2407 		spin_unlock(qdisc_lock(q));
2408 	}
2409 
2410 	return result;
2411 }
2412 
2413 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2414 					 struct packet_type **pt_prev,
2415 					 int *ret, struct net_device *orig_dev)
2416 {
2417 	if (skb->dev->rx_queue.qdisc == &noop_qdisc)
2418 		goto out;
2419 
2420 	if (*pt_prev) {
2421 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
2422 		*pt_prev = NULL;
2423 	} else {
2424 		/* Huh? Why does turning on AF_PACKET affect this? */
2425 		skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
2426 	}
2427 
2428 	switch (ing_filter(skb)) {
2429 	case TC_ACT_SHOT:
2430 	case TC_ACT_STOLEN:
2431 		kfree_skb(skb);
2432 		return NULL;
2433 	}
2434 
2435 out:
2436 	skb->tc_verd = 0;
2437 	return skb;
2438 }
2439 #endif
2440 
2441 /*
2442  * 	netif_nit_deliver - deliver received packets to network taps
2443  * 	@skb: buffer
2444  *
2445  * 	This function is used to deliver incoming packets to network
2446  * 	taps. It should be used when the normal netif_receive_skb path
2447  * 	is bypassed, for example because of VLAN acceleration.
2448  */
2449 void netif_nit_deliver(struct sk_buff *skb)
2450 {
2451 	struct packet_type *ptype;
2452 
2453 	if (list_empty(&ptype_all))
2454 		return;
2455 
2456 	skb_reset_network_header(skb);
2457 	skb_reset_transport_header(skb);
2458 	skb->mac_len = skb->network_header - skb->mac_header;
2459 
2460 	rcu_read_lock();
2461 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
2462 		if (!ptype->dev || ptype->dev == skb->dev)
2463 			deliver_skb(skb, ptype, skb->dev);
2464 	}
2465 	rcu_read_unlock();
2466 }
2467 
2468 /**
2469  *	netif_receive_skb - process receive buffer from network
2470  *	@skb: buffer to process
2471  *
2472  *	netif_receive_skb() is the main receive data processing function.
2473  *	It always succeeds. The buffer may be dropped during processing
2474  *	for congestion control or by the protocol layers.
2475  *
2476  *	This function may only be called from softirq context and interrupts
2477  *	should be enabled.
2478  *
2479  *	Return values (usually ignored):
2480  *	NET_RX_SUCCESS: no congestion
2481  *	NET_RX_DROP: packet was dropped
2482  */
2483 int netif_receive_skb(struct sk_buff *skb)
2484 {
2485 	struct packet_type *ptype, *pt_prev;
2486 	struct net_device *orig_dev;
2487 	struct net_device *master;
2488 	struct net_device *null_or_orig;
2489 	struct net_device *null_or_bond;
2490 	int ret = NET_RX_DROP;
2491 	__be16 type;
2492 
2493 	if (!skb->tstamp.tv64)
2494 		net_timestamp(skb);
2495 
2496 	if (vlan_tx_tag_present(skb) && vlan_hwaccel_do_receive(skb))
2497 		return NET_RX_SUCCESS;
2498 
2499 	/* if we've gotten here through NAPI, check netpoll */
2500 	if (netpoll_receive_skb(skb))
2501 		return NET_RX_DROP;
2502 
2503 	if (!skb->skb_iif)
2504 		skb->skb_iif = skb->dev->ifindex;
2505 
2506 	null_or_orig = NULL;
2507 	orig_dev = skb->dev;
2508 	master = ACCESS_ONCE(orig_dev->master);
2509 	if (master) {
2510 		if (skb_bond_should_drop(skb, master))
2511 			null_or_orig = orig_dev; /* deliver only exact match */
2512 		else
2513 			skb->dev = master;
2514 	}
2515 
2516 	__get_cpu_var(netdev_rx_stat).total++;
2517 
2518 	skb_reset_network_header(skb);
2519 	skb_reset_transport_header(skb);
2520 	skb->mac_len = skb->network_header - skb->mac_header;
2521 
2522 	pt_prev = NULL;
2523 
2524 	rcu_read_lock();
2525 
2526 #ifdef CONFIG_NET_CLS_ACT
2527 	if (skb->tc_verd & TC_NCLS) {
2528 		skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2529 		goto ncls;
2530 	}
2531 #endif
2532 
2533 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
2534 		if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2535 		    ptype->dev == orig_dev) {
2536 			if (pt_prev)
2537 				ret = deliver_skb(skb, pt_prev, orig_dev);
2538 			pt_prev = ptype;
2539 		}
2540 	}
2541 
2542 #ifdef CONFIG_NET_CLS_ACT
2543 	skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2544 	if (!skb)
2545 		goto out;
2546 ncls:
2547 #endif
2548 
2549 	skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2550 	if (!skb)
2551 		goto out;
2552 	skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2553 	if (!skb)
2554 		goto out;
2555 
2556 	/*
2557 	 * Make sure frames received on VLAN interfaces stacked on
2558 	 * bonding interfaces still make their way to any base bonding
2559 	 * device that may have registered for a specific ptype.  The
2560 	 * handler may have to adjust skb->dev and orig_dev.
2561 	 */
2562 	null_or_bond = NULL;
2563 	if ((skb->dev->priv_flags & IFF_802_1Q_VLAN) &&
2564 	    (vlan_dev_real_dev(skb->dev)->priv_flags & IFF_BONDING)) {
2565 		null_or_bond = vlan_dev_real_dev(skb->dev);
2566 	}
2567 
2568 	type = skb->protocol;
2569 	list_for_each_entry_rcu(ptype,
2570 			&ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2571 		if (ptype->type == type && (ptype->dev == null_or_orig ||
2572 		     ptype->dev == skb->dev || ptype->dev == orig_dev ||
2573 		     ptype->dev == null_or_bond)) {
2574 			if (pt_prev)
2575 				ret = deliver_skb(skb, pt_prev, orig_dev);
2576 			pt_prev = ptype;
2577 		}
2578 	}
2579 
2580 	if (pt_prev) {
2581 		ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2582 	} else {
2583 		kfree_skb(skb);
2584 		/* Jamal, now you will not able to escape explaining
2585 		 * me how you were going to use this. :-)
2586 		 */
2587 		ret = NET_RX_DROP;
2588 	}
2589 
2590 out:
2591 	rcu_read_unlock();
2592 	return ret;
2593 }
2594 EXPORT_SYMBOL(netif_receive_skb);
2595 
2596 /* Network device is going away, flush any packets still pending  */
2597 static void flush_backlog(void *arg)
2598 {
2599 	struct net_device *dev = arg;
2600 	struct softnet_data *queue = &__get_cpu_var(softnet_data);
2601 	struct sk_buff *skb, *tmp;
2602 
2603 	skb_queue_walk_safe(&queue->input_pkt_queue, skb, tmp)
2604 		if (skb->dev == dev) {
2605 			__skb_unlink(skb, &queue->input_pkt_queue);
2606 			kfree_skb(skb);
2607 		}
2608 }
2609 
2610 static int napi_gro_complete(struct sk_buff *skb)
2611 {
2612 	struct packet_type *ptype;
2613 	__be16 type = skb->protocol;
2614 	struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2615 	int err = -ENOENT;
2616 
2617 	if (NAPI_GRO_CB(skb)->count == 1) {
2618 		skb_shinfo(skb)->gso_size = 0;
2619 		goto out;
2620 	}
2621 
2622 	rcu_read_lock();
2623 	list_for_each_entry_rcu(ptype, head, list) {
2624 		if (ptype->type != type || ptype->dev || !ptype->gro_complete)
2625 			continue;
2626 
2627 		err = ptype->gro_complete(skb);
2628 		break;
2629 	}
2630 	rcu_read_unlock();
2631 
2632 	if (err) {
2633 		WARN_ON(&ptype->list == head);
2634 		kfree_skb(skb);
2635 		return NET_RX_SUCCESS;
2636 	}
2637 
2638 out:
2639 	return netif_receive_skb(skb);
2640 }
2641 
2642 static void napi_gro_flush(struct napi_struct *napi)
2643 {
2644 	struct sk_buff *skb, *next;
2645 
2646 	for (skb = napi->gro_list; skb; skb = next) {
2647 		next = skb->next;
2648 		skb->next = NULL;
2649 		napi_gro_complete(skb);
2650 	}
2651 
2652 	napi->gro_count = 0;
2653 	napi->gro_list = NULL;
2654 }
2655 
2656 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2657 {
2658 	struct sk_buff **pp = NULL;
2659 	struct packet_type *ptype;
2660 	__be16 type = skb->protocol;
2661 	struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2662 	int same_flow;
2663 	int mac_len;
2664 	enum gro_result ret;
2665 
2666 	if (!(skb->dev->features & NETIF_F_GRO))
2667 		goto normal;
2668 
2669 	if (skb_is_gso(skb) || skb_has_frags(skb))
2670 		goto normal;
2671 
2672 	rcu_read_lock();
2673 	list_for_each_entry_rcu(ptype, head, list) {
2674 		if (ptype->type != type || ptype->dev || !ptype->gro_receive)
2675 			continue;
2676 
2677 		skb_set_network_header(skb, skb_gro_offset(skb));
2678 		mac_len = skb->network_header - skb->mac_header;
2679 		skb->mac_len = mac_len;
2680 		NAPI_GRO_CB(skb)->same_flow = 0;
2681 		NAPI_GRO_CB(skb)->flush = 0;
2682 		NAPI_GRO_CB(skb)->free = 0;
2683 
2684 		pp = ptype->gro_receive(&napi->gro_list, skb);
2685 		break;
2686 	}
2687 	rcu_read_unlock();
2688 
2689 	if (&ptype->list == head)
2690 		goto normal;
2691 
2692 	same_flow = NAPI_GRO_CB(skb)->same_flow;
2693 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
2694 
2695 	if (pp) {
2696 		struct sk_buff *nskb = *pp;
2697 
2698 		*pp = nskb->next;
2699 		nskb->next = NULL;
2700 		napi_gro_complete(nskb);
2701 		napi->gro_count--;
2702 	}
2703 
2704 	if (same_flow)
2705 		goto ok;
2706 
2707 	if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
2708 		goto normal;
2709 
2710 	napi->gro_count++;
2711 	NAPI_GRO_CB(skb)->count = 1;
2712 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
2713 	skb->next = napi->gro_list;
2714 	napi->gro_list = skb;
2715 	ret = GRO_HELD;
2716 
2717 pull:
2718 	if (skb_headlen(skb) < skb_gro_offset(skb)) {
2719 		int grow = skb_gro_offset(skb) - skb_headlen(skb);
2720 
2721 		BUG_ON(skb->end - skb->tail < grow);
2722 
2723 		memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
2724 
2725 		skb->tail += grow;
2726 		skb->data_len -= grow;
2727 
2728 		skb_shinfo(skb)->frags[0].page_offset += grow;
2729 		skb_shinfo(skb)->frags[0].size -= grow;
2730 
2731 		if (unlikely(!skb_shinfo(skb)->frags[0].size)) {
2732 			put_page(skb_shinfo(skb)->frags[0].page);
2733 			memmove(skb_shinfo(skb)->frags,
2734 				skb_shinfo(skb)->frags + 1,
2735 				--skb_shinfo(skb)->nr_frags);
2736 		}
2737 	}
2738 
2739 ok:
2740 	return ret;
2741 
2742 normal:
2743 	ret = GRO_NORMAL;
2744 	goto pull;
2745 }
2746 EXPORT_SYMBOL(dev_gro_receive);
2747 
2748 static gro_result_t
2749 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2750 {
2751 	struct sk_buff *p;
2752 
2753 	if (netpoll_rx_on(skb))
2754 		return GRO_NORMAL;
2755 
2756 	for (p = napi->gro_list; p; p = p->next) {
2757 		NAPI_GRO_CB(p)->same_flow =
2758 			(p->dev == skb->dev) &&
2759 			!compare_ether_header(skb_mac_header(p),
2760 					      skb_gro_mac_header(skb));
2761 		NAPI_GRO_CB(p)->flush = 0;
2762 	}
2763 
2764 	return dev_gro_receive(napi, skb);
2765 }
2766 
2767 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
2768 {
2769 	switch (ret) {
2770 	case GRO_NORMAL:
2771 		if (netif_receive_skb(skb))
2772 			ret = GRO_DROP;
2773 		break;
2774 
2775 	case GRO_DROP:
2776 	case GRO_MERGED_FREE:
2777 		kfree_skb(skb);
2778 		break;
2779 
2780 	case GRO_HELD:
2781 	case GRO_MERGED:
2782 		break;
2783 	}
2784 
2785 	return ret;
2786 }
2787 EXPORT_SYMBOL(napi_skb_finish);
2788 
2789 void skb_gro_reset_offset(struct sk_buff *skb)
2790 {
2791 	NAPI_GRO_CB(skb)->data_offset = 0;
2792 	NAPI_GRO_CB(skb)->frag0 = NULL;
2793 	NAPI_GRO_CB(skb)->frag0_len = 0;
2794 
2795 	if (skb->mac_header == skb->tail &&
2796 	    !PageHighMem(skb_shinfo(skb)->frags[0].page)) {
2797 		NAPI_GRO_CB(skb)->frag0 =
2798 			page_address(skb_shinfo(skb)->frags[0].page) +
2799 			skb_shinfo(skb)->frags[0].page_offset;
2800 		NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size;
2801 	}
2802 }
2803 EXPORT_SYMBOL(skb_gro_reset_offset);
2804 
2805 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2806 {
2807 	skb_gro_reset_offset(skb);
2808 
2809 	return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
2810 }
2811 EXPORT_SYMBOL(napi_gro_receive);
2812 
2813 void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
2814 {
2815 	__skb_pull(skb, skb_headlen(skb));
2816 	skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
2817 
2818 	napi->skb = skb;
2819 }
2820 EXPORT_SYMBOL(napi_reuse_skb);
2821 
2822 struct sk_buff *napi_get_frags(struct napi_struct *napi)
2823 {
2824 	struct sk_buff *skb = napi->skb;
2825 
2826 	if (!skb) {
2827 		skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
2828 		if (skb)
2829 			napi->skb = skb;
2830 	}
2831 	return skb;
2832 }
2833 EXPORT_SYMBOL(napi_get_frags);
2834 
2835 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
2836 			       gro_result_t ret)
2837 {
2838 	switch (ret) {
2839 	case GRO_NORMAL:
2840 	case GRO_HELD:
2841 		skb->protocol = eth_type_trans(skb, skb->dev);
2842 
2843 		if (ret == GRO_HELD)
2844 			skb_gro_pull(skb, -ETH_HLEN);
2845 		else if (netif_receive_skb(skb))
2846 			ret = GRO_DROP;
2847 		break;
2848 
2849 	case GRO_DROP:
2850 	case GRO_MERGED_FREE:
2851 		napi_reuse_skb(napi, skb);
2852 		break;
2853 
2854 	case GRO_MERGED:
2855 		break;
2856 	}
2857 
2858 	return ret;
2859 }
2860 EXPORT_SYMBOL(napi_frags_finish);
2861 
2862 struct sk_buff *napi_frags_skb(struct napi_struct *napi)
2863 {
2864 	struct sk_buff *skb = napi->skb;
2865 	struct ethhdr *eth;
2866 	unsigned int hlen;
2867 	unsigned int off;
2868 
2869 	napi->skb = NULL;
2870 
2871 	skb_reset_mac_header(skb);
2872 	skb_gro_reset_offset(skb);
2873 
2874 	off = skb_gro_offset(skb);
2875 	hlen = off + sizeof(*eth);
2876 	eth = skb_gro_header_fast(skb, off);
2877 	if (skb_gro_header_hard(skb, hlen)) {
2878 		eth = skb_gro_header_slow(skb, hlen, off);
2879 		if (unlikely(!eth)) {
2880 			napi_reuse_skb(napi, skb);
2881 			skb = NULL;
2882 			goto out;
2883 		}
2884 	}
2885 
2886 	skb_gro_pull(skb, sizeof(*eth));
2887 
2888 	/*
2889 	 * This works because the only protocols we care about don't require
2890 	 * special handling.  We'll fix it up properly at the end.
2891 	 */
2892 	skb->protocol = eth->h_proto;
2893 
2894 out:
2895 	return skb;
2896 }
2897 EXPORT_SYMBOL(napi_frags_skb);
2898 
2899 gro_result_t napi_gro_frags(struct napi_struct *napi)
2900 {
2901 	struct sk_buff *skb = napi_frags_skb(napi);
2902 
2903 	if (!skb)
2904 		return GRO_DROP;
2905 
2906 	return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
2907 }
2908 EXPORT_SYMBOL(napi_gro_frags);
2909 
2910 static int process_backlog(struct napi_struct *napi, int quota)
2911 {
2912 	int work = 0;
2913 	struct softnet_data *queue = &__get_cpu_var(softnet_data);
2914 	unsigned long start_time = jiffies;
2915 
2916 	napi->weight = weight_p;
2917 	do {
2918 		struct sk_buff *skb;
2919 
2920 		local_irq_disable();
2921 		skb = __skb_dequeue(&queue->input_pkt_queue);
2922 		if (!skb) {
2923 			__napi_complete(napi);
2924 			local_irq_enable();
2925 			break;
2926 		}
2927 		local_irq_enable();
2928 
2929 		netif_receive_skb(skb);
2930 	} while (++work < quota && jiffies == start_time);
2931 
2932 	return work;
2933 }
2934 
2935 /**
2936  * __napi_schedule - schedule for receive
2937  * @n: entry to schedule
2938  *
2939  * The entry's receive function will be scheduled to run
2940  */
2941 void __napi_schedule(struct napi_struct *n)
2942 {
2943 	unsigned long flags;
2944 
2945 	local_irq_save(flags);
2946 	list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
2947 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
2948 	local_irq_restore(flags);
2949 }
2950 EXPORT_SYMBOL(__napi_schedule);
2951 
2952 void __napi_complete(struct napi_struct *n)
2953 {
2954 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
2955 	BUG_ON(n->gro_list);
2956 
2957 	list_del(&n->poll_list);
2958 	smp_mb__before_clear_bit();
2959 	clear_bit(NAPI_STATE_SCHED, &n->state);
2960 }
2961 EXPORT_SYMBOL(__napi_complete);
2962 
2963 void napi_complete(struct napi_struct *n)
2964 {
2965 	unsigned long flags;
2966 
2967 	/*
2968 	 * don't let napi dequeue from the cpu poll list
2969 	 * just in case its running on a different cpu
2970 	 */
2971 	if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
2972 		return;
2973 
2974 	napi_gro_flush(n);
2975 	local_irq_save(flags);
2976 	__napi_complete(n);
2977 	local_irq_restore(flags);
2978 }
2979 EXPORT_SYMBOL(napi_complete);
2980 
2981 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2982 		    int (*poll)(struct napi_struct *, int), int weight)
2983 {
2984 	INIT_LIST_HEAD(&napi->poll_list);
2985 	napi->gro_count = 0;
2986 	napi->gro_list = NULL;
2987 	napi->skb = NULL;
2988 	napi->poll = poll;
2989 	napi->weight = weight;
2990 	list_add(&napi->dev_list, &dev->napi_list);
2991 	napi->dev = dev;
2992 #ifdef CONFIG_NETPOLL
2993 	spin_lock_init(&napi->poll_lock);
2994 	napi->poll_owner = -1;
2995 #endif
2996 	set_bit(NAPI_STATE_SCHED, &napi->state);
2997 }
2998 EXPORT_SYMBOL(netif_napi_add);
2999 
3000 void netif_napi_del(struct napi_struct *napi)
3001 {
3002 	struct sk_buff *skb, *next;
3003 
3004 	list_del_init(&napi->dev_list);
3005 	napi_free_frags(napi);
3006 
3007 	for (skb = napi->gro_list; skb; skb = next) {
3008 		next = skb->next;
3009 		skb->next = NULL;
3010 		kfree_skb(skb);
3011 	}
3012 
3013 	napi->gro_list = NULL;
3014 	napi->gro_count = 0;
3015 }
3016 EXPORT_SYMBOL(netif_napi_del);
3017 
3018 
3019 static void net_rx_action(struct softirq_action *h)
3020 {
3021 	struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
3022 	unsigned long time_limit = jiffies + 2;
3023 	int budget = netdev_budget;
3024 	void *have;
3025 
3026 	local_irq_disable();
3027 
3028 	while (!list_empty(list)) {
3029 		struct napi_struct *n;
3030 		int work, weight;
3031 
3032 		/* If softirq window is exhuasted then punt.
3033 		 * Allow this to run for 2 jiffies since which will allow
3034 		 * an average latency of 1.5/HZ.
3035 		 */
3036 		if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3037 			goto softnet_break;
3038 
3039 		local_irq_enable();
3040 
3041 		/* Even though interrupts have been re-enabled, this
3042 		 * access is safe because interrupts can only add new
3043 		 * entries to the tail of this list, and only ->poll()
3044 		 * calls can remove this head entry from the list.
3045 		 */
3046 		n = list_first_entry(list, struct napi_struct, poll_list);
3047 
3048 		have = netpoll_poll_lock(n);
3049 
3050 		weight = n->weight;
3051 
3052 		/* This NAPI_STATE_SCHED test is for avoiding a race
3053 		 * with netpoll's poll_napi().  Only the entity which
3054 		 * obtains the lock and sees NAPI_STATE_SCHED set will
3055 		 * actually make the ->poll() call.  Therefore we avoid
3056 		 * accidently calling ->poll() when NAPI is not scheduled.
3057 		 */
3058 		work = 0;
3059 		if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3060 			work = n->poll(n, weight);
3061 			trace_napi_poll(n);
3062 		}
3063 
3064 		WARN_ON_ONCE(work > weight);
3065 
3066 		budget -= work;
3067 
3068 		local_irq_disable();
3069 
3070 		/* Drivers must not modify the NAPI state if they
3071 		 * consume the entire weight.  In such cases this code
3072 		 * still "owns" the NAPI instance and therefore can
3073 		 * move the instance around on the list at-will.
3074 		 */
3075 		if (unlikely(work == weight)) {
3076 			if (unlikely(napi_disable_pending(n))) {
3077 				local_irq_enable();
3078 				napi_complete(n);
3079 				local_irq_disable();
3080 			} else
3081 				list_move_tail(&n->poll_list, list);
3082 		}
3083 
3084 		netpoll_poll_unlock(have);
3085 	}
3086 out:
3087 	local_irq_enable();
3088 
3089 #ifdef CONFIG_NET_DMA
3090 	/*
3091 	 * There may not be any more sk_buffs coming right now, so push
3092 	 * any pending DMA copies to hardware
3093 	 */
3094 	dma_issue_pending_all();
3095 #endif
3096 
3097 	return;
3098 
3099 softnet_break:
3100 	__get_cpu_var(netdev_rx_stat).time_squeeze++;
3101 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3102 	goto out;
3103 }
3104 
3105 static gifconf_func_t *gifconf_list[NPROTO];
3106 
3107 /**
3108  *	register_gifconf	-	register a SIOCGIF handler
3109  *	@family: Address family
3110  *	@gifconf: Function handler
3111  *
3112  *	Register protocol dependent address dumping routines. The handler
3113  *	that is passed must not be freed or reused until it has been replaced
3114  *	by another handler.
3115  */
3116 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3117 {
3118 	if (family >= NPROTO)
3119 		return -EINVAL;
3120 	gifconf_list[family] = gifconf;
3121 	return 0;
3122 }
3123 EXPORT_SYMBOL(register_gifconf);
3124 
3125 
3126 /*
3127  *	Map an interface index to its name (SIOCGIFNAME)
3128  */
3129 
3130 /*
3131  *	We need this ioctl for efficient implementation of the
3132  *	if_indextoname() function required by the IPv6 API.  Without
3133  *	it, we would have to search all the interfaces to find a
3134  *	match.  --pb
3135  */
3136 
3137 static int dev_ifname(struct net *net, struct ifreq __user *arg)
3138 {
3139 	struct net_device *dev;
3140 	struct ifreq ifr;
3141 
3142 	/*
3143 	 *	Fetch the caller's info block.
3144 	 */
3145 
3146 	if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3147 		return -EFAULT;
3148 
3149 	rcu_read_lock();
3150 	dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3151 	if (!dev) {
3152 		rcu_read_unlock();
3153 		return -ENODEV;
3154 	}
3155 
3156 	strcpy(ifr.ifr_name, dev->name);
3157 	rcu_read_unlock();
3158 
3159 	if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3160 		return -EFAULT;
3161 	return 0;
3162 }
3163 
3164 /*
3165  *	Perform a SIOCGIFCONF call. This structure will change
3166  *	size eventually, and there is nothing I can do about it.
3167  *	Thus we will need a 'compatibility mode'.
3168  */
3169 
3170 static int dev_ifconf(struct net *net, char __user *arg)
3171 {
3172 	struct ifconf ifc;
3173 	struct net_device *dev;
3174 	char __user *pos;
3175 	int len;
3176 	int total;
3177 	int i;
3178 
3179 	/*
3180 	 *	Fetch the caller's info block.
3181 	 */
3182 
3183 	if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3184 		return -EFAULT;
3185 
3186 	pos = ifc.ifc_buf;
3187 	len = ifc.ifc_len;
3188 
3189 	/*
3190 	 *	Loop over the interfaces, and write an info block for each.
3191 	 */
3192 
3193 	total = 0;
3194 	for_each_netdev(net, dev) {
3195 		for (i = 0; i < NPROTO; i++) {
3196 			if (gifconf_list[i]) {
3197 				int done;
3198 				if (!pos)
3199 					done = gifconf_list[i](dev, NULL, 0);
3200 				else
3201 					done = gifconf_list[i](dev, pos + total,
3202 							       len - total);
3203 				if (done < 0)
3204 					return -EFAULT;
3205 				total += done;
3206 			}
3207 		}
3208 	}
3209 
3210 	/*
3211 	 *	All done.  Write the updated control block back to the caller.
3212 	 */
3213 	ifc.ifc_len = total;
3214 
3215 	/*
3216 	 * 	Both BSD and Solaris return 0 here, so we do too.
3217 	 */
3218 	return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
3219 }
3220 
3221 #ifdef CONFIG_PROC_FS
3222 /*
3223  *	This is invoked by the /proc filesystem handler to display a device
3224  *	in detail.
3225  */
3226 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
3227 	__acquires(RCU)
3228 {
3229 	struct net *net = seq_file_net(seq);
3230 	loff_t off;
3231 	struct net_device *dev;
3232 
3233 	rcu_read_lock();
3234 	if (!*pos)
3235 		return SEQ_START_TOKEN;
3236 
3237 	off = 1;
3238 	for_each_netdev_rcu(net, dev)
3239 		if (off++ == *pos)
3240 			return dev;
3241 
3242 	return NULL;
3243 }
3244 
3245 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3246 {
3247 	struct net_device *dev = (v == SEQ_START_TOKEN) ?
3248 				  first_net_device(seq_file_net(seq)) :
3249 				  next_net_device((struct net_device *)v);
3250 
3251 	++*pos;
3252 	return rcu_dereference(dev);
3253 }
3254 
3255 void dev_seq_stop(struct seq_file *seq, void *v)
3256 	__releases(RCU)
3257 {
3258 	rcu_read_unlock();
3259 }
3260 
3261 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
3262 {
3263 	const struct net_device_stats *stats = dev_get_stats(dev);
3264 
3265 	seq_printf(seq, "%6s: %7lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
3266 		   "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
3267 		   dev->name, stats->rx_bytes, stats->rx_packets,
3268 		   stats->rx_errors,
3269 		   stats->rx_dropped + stats->rx_missed_errors,
3270 		   stats->rx_fifo_errors,
3271 		   stats->rx_length_errors + stats->rx_over_errors +
3272 		    stats->rx_crc_errors + stats->rx_frame_errors,
3273 		   stats->rx_compressed, stats->multicast,
3274 		   stats->tx_bytes, stats->tx_packets,
3275 		   stats->tx_errors, stats->tx_dropped,
3276 		   stats->tx_fifo_errors, stats->collisions,
3277 		   stats->tx_carrier_errors +
3278 		    stats->tx_aborted_errors +
3279 		    stats->tx_window_errors +
3280 		    stats->tx_heartbeat_errors,
3281 		   stats->tx_compressed);
3282 }
3283 
3284 /*
3285  *	Called from the PROCfs module. This now uses the new arbitrary sized
3286  *	/proc/net interface to create /proc/net/dev
3287  */
3288 static int dev_seq_show(struct seq_file *seq, void *v)
3289 {
3290 	if (v == SEQ_START_TOKEN)
3291 		seq_puts(seq, "Inter-|   Receive                            "
3292 			      "                    |  Transmit\n"
3293 			      " face |bytes    packets errs drop fifo frame "
3294 			      "compressed multicast|bytes    packets errs "
3295 			      "drop fifo colls carrier compressed\n");
3296 	else
3297 		dev_seq_printf_stats(seq, v);
3298 	return 0;
3299 }
3300 
3301 static struct netif_rx_stats *softnet_get_online(loff_t *pos)
3302 {
3303 	struct netif_rx_stats *rc = NULL;
3304 
3305 	while (*pos < nr_cpu_ids)
3306 		if (cpu_online(*pos)) {
3307 			rc = &per_cpu(netdev_rx_stat, *pos);
3308 			break;
3309 		} else
3310 			++*pos;
3311 	return rc;
3312 }
3313 
3314 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
3315 {
3316 	return softnet_get_online(pos);
3317 }
3318 
3319 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3320 {
3321 	++*pos;
3322 	return softnet_get_online(pos);
3323 }
3324 
3325 static void softnet_seq_stop(struct seq_file *seq, void *v)
3326 {
3327 }
3328 
3329 static int softnet_seq_show(struct seq_file *seq, void *v)
3330 {
3331 	struct netif_rx_stats *s = v;
3332 
3333 	seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
3334 		   s->total, s->dropped, s->time_squeeze, 0,
3335 		   0, 0, 0, 0, /* was fastroute */
3336 		   s->cpu_collision);
3337 	return 0;
3338 }
3339 
3340 static const struct seq_operations dev_seq_ops = {
3341 	.start = dev_seq_start,
3342 	.next  = dev_seq_next,
3343 	.stop  = dev_seq_stop,
3344 	.show  = dev_seq_show,
3345 };
3346 
3347 static int dev_seq_open(struct inode *inode, struct file *file)
3348 {
3349 	return seq_open_net(inode, file, &dev_seq_ops,
3350 			    sizeof(struct seq_net_private));
3351 }
3352 
3353 static const struct file_operations dev_seq_fops = {
3354 	.owner	 = THIS_MODULE,
3355 	.open    = dev_seq_open,
3356 	.read    = seq_read,
3357 	.llseek  = seq_lseek,
3358 	.release = seq_release_net,
3359 };
3360 
3361 static const struct seq_operations softnet_seq_ops = {
3362 	.start = softnet_seq_start,
3363 	.next  = softnet_seq_next,
3364 	.stop  = softnet_seq_stop,
3365 	.show  = softnet_seq_show,
3366 };
3367 
3368 static int softnet_seq_open(struct inode *inode, struct file *file)
3369 {
3370 	return seq_open(file, &softnet_seq_ops);
3371 }
3372 
3373 static const struct file_operations softnet_seq_fops = {
3374 	.owner	 = THIS_MODULE,
3375 	.open    = softnet_seq_open,
3376 	.read    = seq_read,
3377 	.llseek  = seq_lseek,
3378 	.release = seq_release,
3379 };
3380 
3381 static void *ptype_get_idx(loff_t pos)
3382 {
3383 	struct packet_type *pt = NULL;
3384 	loff_t i = 0;
3385 	int t;
3386 
3387 	list_for_each_entry_rcu(pt, &ptype_all, list) {
3388 		if (i == pos)
3389 			return pt;
3390 		++i;
3391 	}
3392 
3393 	for (t = 0; t < PTYPE_HASH_SIZE; t++) {
3394 		list_for_each_entry_rcu(pt, &ptype_base[t], list) {
3395 			if (i == pos)
3396 				return pt;
3397 			++i;
3398 		}
3399 	}
3400 	return NULL;
3401 }
3402 
3403 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
3404 	__acquires(RCU)
3405 {
3406 	rcu_read_lock();
3407 	return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
3408 }
3409 
3410 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3411 {
3412 	struct packet_type *pt;
3413 	struct list_head *nxt;
3414 	int hash;
3415 
3416 	++*pos;
3417 	if (v == SEQ_START_TOKEN)
3418 		return ptype_get_idx(0);
3419 
3420 	pt = v;
3421 	nxt = pt->list.next;
3422 	if (pt->type == htons(ETH_P_ALL)) {
3423 		if (nxt != &ptype_all)
3424 			goto found;
3425 		hash = 0;
3426 		nxt = ptype_base[0].next;
3427 	} else
3428 		hash = ntohs(pt->type) & PTYPE_HASH_MASK;
3429 
3430 	while (nxt == &ptype_base[hash]) {
3431 		if (++hash >= PTYPE_HASH_SIZE)
3432 			return NULL;
3433 		nxt = ptype_base[hash].next;
3434 	}
3435 found:
3436 	return list_entry(nxt, struct packet_type, list);
3437 }
3438 
3439 static void ptype_seq_stop(struct seq_file *seq, void *v)
3440 	__releases(RCU)
3441 {
3442 	rcu_read_unlock();
3443 }
3444 
3445 static int ptype_seq_show(struct seq_file *seq, void *v)
3446 {
3447 	struct packet_type *pt = v;
3448 
3449 	if (v == SEQ_START_TOKEN)
3450 		seq_puts(seq, "Type Device      Function\n");
3451 	else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
3452 		if (pt->type == htons(ETH_P_ALL))
3453 			seq_puts(seq, "ALL ");
3454 		else
3455 			seq_printf(seq, "%04x", ntohs(pt->type));
3456 
3457 		seq_printf(seq, " %-8s %pF\n",
3458 			   pt->dev ? pt->dev->name : "", pt->func);
3459 	}
3460 
3461 	return 0;
3462 }
3463 
3464 static const struct seq_operations ptype_seq_ops = {
3465 	.start = ptype_seq_start,
3466 	.next  = ptype_seq_next,
3467 	.stop  = ptype_seq_stop,
3468 	.show  = ptype_seq_show,
3469 };
3470 
3471 static int ptype_seq_open(struct inode *inode, struct file *file)
3472 {
3473 	return seq_open_net(inode, file, &ptype_seq_ops,
3474 			sizeof(struct seq_net_private));
3475 }
3476 
3477 static const struct file_operations ptype_seq_fops = {
3478 	.owner	 = THIS_MODULE,
3479 	.open    = ptype_seq_open,
3480 	.read    = seq_read,
3481 	.llseek  = seq_lseek,
3482 	.release = seq_release_net,
3483 };
3484 
3485 
3486 static int __net_init dev_proc_net_init(struct net *net)
3487 {
3488 	int rc = -ENOMEM;
3489 
3490 	if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
3491 		goto out;
3492 	if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
3493 		goto out_dev;
3494 	if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
3495 		goto out_softnet;
3496 
3497 	if (wext_proc_init(net))
3498 		goto out_ptype;
3499 	rc = 0;
3500 out:
3501 	return rc;
3502 out_ptype:
3503 	proc_net_remove(net, "ptype");
3504 out_softnet:
3505 	proc_net_remove(net, "softnet_stat");
3506 out_dev:
3507 	proc_net_remove(net, "dev");
3508 	goto out;
3509 }
3510 
3511 static void __net_exit dev_proc_net_exit(struct net *net)
3512 {
3513 	wext_proc_exit(net);
3514 
3515 	proc_net_remove(net, "ptype");
3516 	proc_net_remove(net, "softnet_stat");
3517 	proc_net_remove(net, "dev");
3518 }
3519 
3520 static struct pernet_operations __net_initdata dev_proc_ops = {
3521 	.init = dev_proc_net_init,
3522 	.exit = dev_proc_net_exit,
3523 };
3524 
3525 static int __init dev_proc_init(void)
3526 {
3527 	return register_pernet_subsys(&dev_proc_ops);
3528 }
3529 #else
3530 #define dev_proc_init() 0
3531 #endif	/* CONFIG_PROC_FS */
3532 
3533 
3534 /**
3535  *	netdev_set_master	-	set up master/slave pair
3536  *	@slave: slave device
3537  *	@master: new master device
3538  *
3539  *	Changes the master device of the slave. Pass %NULL to break the
3540  *	bonding. The caller must hold the RTNL semaphore. On a failure
3541  *	a negative errno code is returned. On success the reference counts
3542  *	are adjusted, %RTM_NEWLINK is sent to the routing socket and the
3543  *	function returns zero.
3544  */
3545 int netdev_set_master(struct net_device *slave, struct net_device *master)
3546 {
3547 	struct net_device *old = slave->master;
3548 
3549 	ASSERT_RTNL();
3550 
3551 	if (master) {
3552 		if (old)
3553 			return -EBUSY;
3554 		dev_hold(master);
3555 	}
3556 
3557 	slave->master = master;
3558 
3559 	synchronize_net();
3560 
3561 	if (old)
3562 		dev_put(old);
3563 
3564 	if (master)
3565 		slave->flags |= IFF_SLAVE;
3566 	else
3567 		slave->flags &= ~IFF_SLAVE;
3568 
3569 	rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
3570 	return 0;
3571 }
3572 EXPORT_SYMBOL(netdev_set_master);
3573 
3574 static void dev_change_rx_flags(struct net_device *dev, int flags)
3575 {
3576 	const struct net_device_ops *ops = dev->netdev_ops;
3577 
3578 	if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
3579 		ops->ndo_change_rx_flags(dev, flags);
3580 }
3581 
3582 static int __dev_set_promiscuity(struct net_device *dev, int inc)
3583 {
3584 	unsigned short old_flags = dev->flags;
3585 	uid_t uid;
3586 	gid_t gid;
3587 
3588 	ASSERT_RTNL();
3589 
3590 	dev->flags |= IFF_PROMISC;
3591 	dev->promiscuity += inc;
3592 	if (dev->promiscuity == 0) {
3593 		/*
3594 		 * Avoid overflow.
3595 		 * If inc causes overflow, untouch promisc and return error.
3596 		 */
3597 		if (inc < 0)
3598 			dev->flags &= ~IFF_PROMISC;
3599 		else {
3600 			dev->promiscuity -= inc;
3601 			printk(KERN_WARNING "%s: promiscuity touches roof, "
3602 				"set promiscuity failed, promiscuity feature "
3603 				"of device might be broken.\n", dev->name);
3604 			return -EOVERFLOW;
3605 		}
3606 	}
3607 	if (dev->flags != old_flags) {
3608 		printk(KERN_INFO "device %s %s promiscuous mode\n",
3609 		       dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
3610 							       "left");
3611 		if (audit_enabled) {
3612 			current_uid_gid(&uid, &gid);
3613 			audit_log(current->audit_context, GFP_ATOMIC,
3614 				AUDIT_ANOM_PROMISCUOUS,
3615 				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
3616 				dev->name, (dev->flags & IFF_PROMISC),
3617 				(old_flags & IFF_PROMISC),
3618 				audit_get_loginuid(current),
3619 				uid, gid,
3620 				audit_get_sessionid(current));
3621 		}
3622 
3623 		dev_change_rx_flags(dev, IFF_PROMISC);
3624 	}
3625 	return 0;
3626 }
3627 
3628 /**
3629  *	dev_set_promiscuity	- update promiscuity count on a device
3630  *	@dev: device
3631  *	@inc: modifier
3632  *
3633  *	Add or remove promiscuity from a device. While the count in the device
3634  *	remains above zero the interface remains promiscuous. Once it hits zero
3635  *	the device reverts back to normal filtering operation. A negative inc
3636  *	value is used to drop promiscuity on the device.
3637  *	Return 0 if successful or a negative errno code on error.
3638  */
3639 int dev_set_promiscuity(struct net_device *dev, int inc)
3640 {
3641 	unsigned short old_flags = dev->flags;
3642 	int err;
3643 
3644 	err = __dev_set_promiscuity(dev, inc);
3645 	if (err < 0)
3646 		return err;
3647 	if (dev->flags != old_flags)
3648 		dev_set_rx_mode(dev);
3649 	return err;
3650 }
3651 EXPORT_SYMBOL(dev_set_promiscuity);
3652 
3653 /**
3654  *	dev_set_allmulti	- update allmulti count on a device
3655  *	@dev: device
3656  *	@inc: modifier
3657  *
3658  *	Add or remove reception of all multicast frames to a device. While the
3659  *	count in the device remains above zero the interface remains listening
3660  *	to all interfaces. Once it hits zero the device reverts back to normal
3661  *	filtering operation. A negative @inc value is used to drop the counter
3662  *	when releasing a resource needing all multicasts.
3663  *	Return 0 if successful or a negative errno code on error.
3664  */
3665 
3666 int dev_set_allmulti(struct net_device *dev, int inc)
3667 {
3668 	unsigned short old_flags = dev->flags;
3669 
3670 	ASSERT_RTNL();
3671 
3672 	dev->flags |= IFF_ALLMULTI;
3673 	dev->allmulti += inc;
3674 	if (dev->allmulti == 0) {
3675 		/*
3676 		 * Avoid overflow.
3677 		 * If inc causes overflow, untouch allmulti and return error.
3678 		 */
3679 		if (inc < 0)
3680 			dev->flags &= ~IFF_ALLMULTI;
3681 		else {
3682 			dev->allmulti -= inc;
3683 			printk(KERN_WARNING "%s: allmulti touches roof, "
3684 				"set allmulti failed, allmulti feature of "
3685 				"device might be broken.\n", dev->name);
3686 			return -EOVERFLOW;
3687 		}
3688 	}
3689 	if (dev->flags ^ old_flags) {
3690 		dev_change_rx_flags(dev, IFF_ALLMULTI);
3691 		dev_set_rx_mode(dev);
3692 	}
3693 	return 0;
3694 }
3695 EXPORT_SYMBOL(dev_set_allmulti);
3696 
3697 /*
3698  *	Upload unicast and multicast address lists to device and
3699  *	configure RX filtering. When the device doesn't support unicast
3700  *	filtering it is put in promiscuous mode while unicast addresses
3701  *	are present.
3702  */
3703 void __dev_set_rx_mode(struct net_device *dev)
3704 {
3705 	const struct net_device_ops *ops = dev->netdev_ops;
3706 
3707 	/* dev_open will call this function so the list will stay sane. */
3708 	if (!(dev->flags&IFF_UP))
3709 		return;
3710 
3711 	if (!netif_device_present(dev))
3712 		return;
3713 
3714 	if (ops->ndo_set_rx_mode)
3715 		ops->ndo_set_rx_mode(dev);
3716 	else {
3717 		/* Unicast addresses changes may only happen under the rtnl,
3718 		 * therefore calling __dev_set_promiscuity here is safe.
3719 		 */
3720 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
3721 			__dev_set_promiscuity(dev, 1);
3722 			dev->uc_promisc = 1;
3723 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
3724 			__dev_set_promiscuity(dev, -1);
3725 			dev->uc_promisc = 0;
3726 		}
3727 
3728 		if (ops->ndo_set_multicast_list)
3729 			ops->ndo_set_multicast_list(dev);
3730 	}
3731 }
3732 
3733 void dev_set_rx_mode(struct net_device *dev)
3734 {
3735 	netif_addr_lock_bh(dev);
3736 	__dev_set_rx_mode(dev);
3737 	netif_addr_unlock_bh(dev);
3738 }
3739 
3740 /* hw addresses list handling functions */
3741 
3742 static int __hw_addr_add(struct netdev_hw_addr_list *list, unsigned char *addr,
3743 			 int addr_len, unsigned char addr_type)
3744 {
3745 	struct netdev_hw_addr *ha;
3746 	int alloc_size;
3747 
3748 	if (addr_len > MAX_ADDR_LEN)
3749 		return -EINVAL;
3750 
3751 	list_for_each_entry(ha, &list->list, list) {
3752 		if (!memcmp(ha->addr, addr, addr_len) &&
3753 		    ha->type == addr_type) {
3754 			ha->refcount++;
3755 			return 0;
3756 		}
3757 	}
3758 
3759 
3760 	alloc_size = sizeof(*ha);
3761 	if (alloc_size < L1_CACHE_BYTES)
3762 		alloc_size = L1_CACHE_BYTES;
3763 	ha = kmalloc(alloc_size, GFP_ATOMIC);
3764 	if (!ha)
3765 		return -ENOMEM;
3766 	memcpy(ha->addr, addr, addr_len);
3767 	ha->type = addr_type;
3768 	ha->refcount = 1;
3769 	ha->synced = false;
3770 	list_add_tail_rcu(&ha->list, &list->list);
3771 	list->count++;
3772 	return 0;
3773 }
3774 
3775 static void ha_rcu_free(struct rcu_head *head)
3776 {
3777 	struct netdev_hw_addr *ha;
3778 
3779 	ha = container_of(head, struct netdev_hw_addr, rcu_head);
3780 	kfree(ha);
3781 }
3782 
3783 static int __hw_addr_del(struct netdev_hw_addr_list *list, unsigned char *addr,
3784 			 int addr_len, unsigned char addr_type)
3785 {
3786 	struct netdev_hw_addr *ha;
3787 
3788 	list_for_each_entry(ha, &list->list, list) {
3789 		if (!memcmp(ha->addr, addr, addr_len) &&
3790 		    (ha->type == addr_type || !addr_type)) {
3791 			if (--ha->refcount)
3792 				return 0;
3793 			list_del_rcu(&ha->list);
3794 			call_rcu(&ha->rcu_head, ha_rcu_free);
3795 			list->count--;
3796 			return 0;
3797 		}
3798 	}
3799 	return -ENOENT;
3800 }
3801 
3802 static int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list,
3803 				  struct netdev_hw_addr_list *from_list,
3804 				  int addr_len,
3805 				  unsigned char addr_type)
3806 {
3807 	int err;
3808 	struct netdev_hw_addr *ha, *ha2;
3809 	unsigned char type;
3810 
3811 	list_for_each_entry(ha, &from_list->list, list) {
3812 		type = addr_type ? addr_type : ha->type;
3813 		err = __hw_addr_add(to_list, ha->addr, addr_len, type);
3814 		if (err)
3815 			goto unroll;
3816 	}
3817 	return 0;
3818 
3819 unroll:
3820 	list_for_each_entry(ha2, &from_list->list, list) {
3821 		if (ha2 == ha)
3822 			break;
3823 		type = addr_type ? addr_type : ha2->type;
3824 		__hw_addr_del(to_list, ha2->addr, addr_len, type);
3825 	}
3826 	return err;
3827 }
3828 
3829 static void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list,
3830 				   struct netdev_hw_addr_list *from_list,
3831 				   int addr_len,
3832 				   unsigned char addr_type)
3833 {
3834 	struct netdev_hw_addr *ha;
3835 	unsigned char type;
3836 
3837 	list_for_each_entry(ha, &from_list->list, list) {
3838 		type = addr_type ? addr_type : ha->type;
3839 		__hw_addr_del(to_list, ha->addr, addr_len, addr_type);
3840 	}
3841 }
3842 
3843 static int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3844 			  struct netdev_hw_addr_list *from_list,
3845 			  int addr_len)
3846 {
3847 	int err = 0;
3848 	struct netdev_hw_addr *ha, *tmp;
3849 
3850 	list_for_each_entry_safe(ha, tmp, &from_list->list, list) {
3851 		if (!ha->synced) {
3852 			err = __hw_addr_add(to_list, ha->addr,
3853 					    addr_len, ha->type);
3854 			if (err)
3855 				break;
3856 			ha->synced = true;
3857 			ha->refcount++;
3858 		} else if (ha->refcount == 1) {
3859 			__hw_addr_del(to_list, ha->addr, addr_len, ha->type);
3860 			__hw_addr_del(from_list, ha->addr, addr_len, ha->type);
3861 		}
3862 	}
3863 	return err;
3864 }
3865 
3866 static void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3867 			     struct netdev_hw_addr_list *from_list,
3868 			     int addr_len)
3869 {
3870 	struct netdev_hw_addr *ha, *tmp;
3871 
3872 	list_for_each_entry_safe(ha, tmp, &from_list->list, list) {
3873 		if (ha->synced) {
3874 			__hw_addr_del(to_list, ha->addr,
3875 				      addr_len, ha->type);
3876 			ha->synced = false;
3877 			__hw_addr_del(from_list, ha->addr,
3878 				      addr_len, ha->type);
3879 		}
3880 	}
3881 }
3882 
3883 static void __hw_addr_flush(struct netdev_hw_addr_list *list)
3884 {
3885 	struct netdev_hw_addr *ha, *tmp;
3886 
3887 	list_for_each_entry_safe(ha, tmp, &list->list, list) {
3888 		list_del_rcu(&ha->list);
3889 		call_rcu(&ha->rcu_head, ha_rcu_free);
3890 	}
3891 	list->count = 0;
3892 }
3893 
3894 static void __hw_addr_init(struct netdev_hw_addr_list *list)
3895 {
3896 	INIT_LIST_HEAD(&list->list);
3897 	list->count = 0;
3898 }
3899 
3900 /* Device addresses handling functions */
3901 
3902 static void dev_addr_flush(struct net_device *dev)
3903 {
3904 	/* rtnl_mutex must be held here */
3905 
3906 	__hw_addr_flush(&dev->dev_addrs);
3907 	dev->dev_addr = NULL;
3908 }
3909 
3910 static int dev_addr_init(struct net_device *dev)
3911 {
3912 	unsigned char addr[MAX_ADDR_LEN];
3913 	struct netdev_hw_addr *ha;
3914 	int err;
3915 
3916 	/* rtnl_mutex must be held here */
3917 
3918 	__hw_addr_init(&dev->dev_addrs);
3919 	memset(addr, 0, sizeof(addr));
3920 	err = __hw_addr_add(&dev->dev_addrs, addr, sizeof(addr),
3921 			    NETDEV_HW_ADDR_T_LAN);
3922 	if (!err) {
3923 		/*
3924 		 * Get the first (previously created) address from the list
3925 		 * and set dev_addr pointer to this location.
3926 		 */
3927 		ha = list_first_entry(&dev->dev_addrs.list,
3928 				      struct netdev_hw_addr, list);
3929 		dev->dev_addr = ha->addr;
3930 	}
3931 	return err;
3932 }
3933 
3934 /**
3935  *	dev_addr_add	- Add a device address
3936  *	@dev: device
3937  *	@addr: address to add
3938  *	@addr_type: address type
3939  *
3940  *	Add a device address to the device or increase the reference count if
3941  *	it already exists.
3942  *
3943  *	The caller must hold the rtnl_mutex.
3944  */
3945 int dev_addr_add(struct net_device *dev, unsigned char *addr,
3946 		 unsigned char addr_type)
3947 {
3948 	int err;
3949 
3950 	ASSERT_RTNL();
3951 
3952 	err = __hw_addr_add(&dev->dev_addrs, addr, dev->addr_len, addr_type);
3953 	if (!err)
3954 		call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3955 	return err;
3956 }
3957 EXPORT_SYMBOL(dev_addr_add);
3958 
3959 /**
3960  *	dev_addr_del	- Release a device address.
3961  *	@dev: device
3962  *	@addr: address to delete
3963  *	@addr_type: address type
3964  *
3965  *	Release reference to a device address and remove it from the device
3966  *	if the reference count drops to zero.
3967  *
3968  *	The caller must hold the rtnl_mutex.
3969  */
3970 int dev_addr_del(struct net_device *dev, unsigned char *addr,
3971 		 unsigned char addr_type)
3972 {
3973 	int err;
3974 	struct netdev_hw_addr *ha;
3975 
3976 	ASSERT_RTNL();
3977 
3978 	/*
3979 	 * We can not remove the first address from the list because
3980 	 * dev->dev_addr points to that.
3981 	 */
3982 	ha = list_first_entry(&dev->dev_addrs.list,
3983 			      struct netdev_hw_addr, list);
3984 	if (ha->addr == dev->dev_addr && ha->refcount == 1)
3985 		return -ENOENT;
3986 
3987 	err = __hw_addr_del(&dev->dev_addrs, addr, dev->addr_len,
3988 			    addr_type);
3989 	if (!err)
3990 		call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3991 	return err;
3992 }
3993 EXPORT_SYMBOL(dev_addr_del);
3994 
3995 /**
3996  *	dev_addr_add_multiple	- Add device addresses from another device
3997  *	@to_dev: device to which addresses will be added
3998  *	@from_dev: device from which addresses will be added
3999  *	@addr_type: address type - 0 means type will be used from from_dev
4000  *
4001  *	Add device addresses of the one device to another.
4002  **
4003  *	The caller must hold the rtnl_mutex.
4004  */
4005 int dev_addr_add_multiple(struct net_device *to_dev,
4006 			  struct net_device *from_dev,
4007 			  unsigned char addr_type)
4008 {
4009 	int err;
4010 
4011 	ASSERT_RTNL();
4012 
4013 	if (from_dev->addr_len != to_dev->addr_len)
4014 		return -EINVAL;
4015 	err = __hw_addr_add_multiple(&to_dev->dev_addrs, &from_dev->dev_addrs,
4016 				     to_dev->addr_len, addr_type);
4017 	if (!err)
4018 		call_netdevice_notifiers(NETDEV_CHANGEADDR, to_dev);
4019 	return err;
4020 }
4021 EXPORT_SYMBOL(dev_addr_add_multiple);
4022 
4023 /**
4024  *	dev_addr_del_multiple	- Delete device addresses by another device
4025  *	@to_dev: device where the addresses will be deleted
4026  *	@from_dev: device by which addresses the addresses will be deleted
4027  *	@addr_type: address type - 0 means type will used from from_dev
4028  *
4029  *	Deletes addresses in to device by the list of addresses in from device.
4030  *
4031  *	The caller must hold the rtnl_mutex.
4032  */
4033 int dev_addr_del_multiple(struct net_device *to_dev,
4034 			  struct net_device *from_dev,
4035 			  unsigned char addr_type)
4036 {
4037 	ASSERT_RTNL();
4038 
4039 	if (from_dev->addr_len != to_dev->addr_len)
4040 		return -EINVAL;
4041 	__hw_addr_del_multiple(&to_dev->dev_addrs, &from_dev->dev_addrs,
4042 			       to_dev->addr_len, addr_type);
4043 	call_netdevice_notifiers(NETDEV_CHANGEADDR, to_dev);
4044 	return 0;
4045 }
4046 EXPORT_SYMBOL(dev_addr_del_multiple);
4047 
4048 /* multicast addresses handling functions */
4049 
4050 int __dev_addr_delete(struct dev_addr_list **list, int *count,
4051 		      void *addr, int alen, int glbl)
4052 {
4053 	struct dev_addr_list *da;
4054 
4055 	for (; (da = *list) != NULL; list = &da->next) {
4056 		if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
4057 		    alen == da->da_addrlen) {
4058 			if (glbl) {
4059 				int old_glbl = da->da_gusers;
4060 				da->da_gusers = 0;
4061 				if (old_glbl == 0)
4062 					break;
4063 			}
4064 			if (--da->da_users)
4065 				return 0;
4066 
4067 			*list = da->next;
4068 			kfree(da);
4069 			(*count)--;
4070 			return 0;
4071 		}
4072 	}
4073 	return -ENOENT;
4074 }
4075 
4076 int __dev_addr_add(struct dev_addr_list **list, int *count,
4077 		   void *addr, int alen, int glbl)
4078 {
4079 	struct dev_addr_list *da;
4080 
4081 	for (da = *list; da != NULL; da = da->next) {
4082 		if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
4083 		    da->da_addrlen == alen) {
4084 			if (glbl) {
4085 				int old_glbl = da->da_gusers;
4086 				da->da_gusers = 1;
4087 				if (old_glbl)
4088 					return 0;
4089 			}
4090 			da->da_users++;
4091 			return 0;
4092 		}
4093 	}
4094 
4095 	da = kzalloc(sizeof(*da), GFP_ATOMIC);
4096 	if (da == NULL)
4097 		return -ENOMEM;
4098 	memcpy(da->da_addr, addr, alen);
4099 	da->da_addrlen = alen;
4100 	da->da_users = 1;
4101 	da->da_gusers = glbl ? 1 : 0;
4102 	da->next = *list;
4103 	*list = da;
4104 	(*count)++;
4105 	return 0;
4106 }
4107 
4108 /**
4109  *	dev_unicast_delete	- Release secondary unicast address.
4110  *	@dev: device
4111  *	@addr: address to delete
4112  *
4113  *	Release reference to a secondary unicast address and remove it
4114  *	from the device if the reference count drops to zero.
4115  *
4116  * 	The caller must hold the rtnl_mutex.
4117  */
4118 int dev_unicast_delete(struct net_device *dev, void *addr)
4119 {
4120 	int err;
4121 
4122 	ASSERT_RTNL();
4123 
4124 	netif_addr_lock_bh(dev);
4125 	err = __hw_addr_del(&dev->uc, addr, dev->addr_len,
4126 			    NETDEV_HW_ADDR_T_UNICAST);
4127 	if (!err)
4128 		__dev_set_rx_mode(dev);
4129 	netif_addr_unlock_bh(dev);
4130 	return err;
4131 }
4132 EXPORT_SYMBOL(dev_unicast_delete);
4133 
4134 /**
4135  *	dev_unicast_add		- add a secondary unicast address
4136  *	@dev: device
4137  *	@addr: address to add
4138  *
4139  *	Add a secondary unicast address to the device or increase
4140  *	the reference count if it already exists.
4141  *
4142  *	The caller must hold the rtnl_mutex.
4143  */
4144 int dev_unicast_add(struct net_device *dev, void *addr)
4145 {
4146 	int err;
4147 
4148 	ASSERT_RTNL();
4149 
4150 	netif_addr_lock_bh(dev);
4151 	err = __hw_addr_add(&dev->uc, addr, dev->addr_len,
4152 			    NETDEV_HW_ADDR_T_UNICAST);
4153 	if (!err)
4154 		__dev_set_rx_mode(dev);
4155 	netif_addr_unlock_bh(dev);
4156 	return err;
4157 }
4158 EXPORT_SYMBOL(dev_unicast_add);
4159 
4160 int __dev_addr_sync(struct dev_addr_list **to, int *to_count,
4161 		    struct dev_addr_list **from, int *from_count)
4162 {
4163 	struct dev_addr_list *da, *next;
4164 	int err = 0;
4165 
4166 	da = *from;
4167 	while (da != NULL) {
4168 		next = da->next;
4169 		if (!da->da_synced) {
4170 			err = __dev_addr_add(to, to_count,
4171 					     da->da_addr, da->da_addrlen, 0);
4172 			if (err < 0)
4173 				break;
4174 			da->da_synced = 1;
4175 			da->da_users++;
4176 		} else if (da->da_users == 1) {
4177 			__dev_addr_delete(to, to_count,
4178 					  da->da_addr, da->da_addrlen, 0);
4179 			__dev_addr_delete(from, from_count,
4180 					  da->da_addr, da->da_addrlen, 0);
4181 		}
4182 		da = next;
4183 	}
4184 	return err;
4185 }
4186 EXPORT_SYMBOL_GPL(__dev_addr_sync);
4187 
4188 void __dev_addr_unsync(struct dev_addr_list **to, int *to_count,
4189 		       struct dev_addr_list **from, int *from_count)
4190 {
4191 	struct dev_addr_list *da, *next;
4192 
4193 	da = *from;
4194 	while (da != NULL) {
4195 		next = da->next;
4196 		if (da->da_synced) {
4197 			__dev_addr_delete(to, to_count,
4198 					  da->da_addr, da->da_addrlen, 0);
4199 			da->da_synced = 0;
4200 			__dev_addr_delete(from, from_count,
4201 					  da->da_addr, da->da_addrlen, 0);
4202 		}
4203 		da = next;
4204 	}
4205 }
4206 EXPORT_SYMBOL_GPL(__dev_addr_unsync);
4207 
4208 /**
4209  *	dev_unicast_sync - Synchronize device's unicast list to another device
4210  *	@to: destination device
4211  *	@from: source device
4212  *
4213  *	Add newly added addresses to the destination device and release
4214  *	addresses that have no users left. The source device must be
4215  *	locked by netif_tx_lock_bh.
4216  *
4217  *	This function is intended to be called from the dev->set_rx_mode
4218  *	function of layered software devices.
4219  */
4220 int dev_unicast_sync(struct net_device *to, struct net_device *from)
4221 {
4222 	int err = 0;
4223 
4224 	if (to->addr_len != from->addr_len)
4225 		return -EINVAL;
4226 
4227 	netif_addr_lock_bh(to);
4228 	err = __hw_addr_sync(&to->uc, &from->uc, to->addr_len);
4229 	if (!err)
4230 		__dev_set_rx_mode(to);
4231 	netif_addr_unlock_bh(to);
4232 	return err;
4233 }
4234 EXPORT_SYMBOL(dev_unicast_sync);
4235 
4236 /**
4237  *	dev_unicast_unsync - Remove synchronized addresses from the destination device
4238  *	@to: destination device
4239  *	@from: source device
4240  *
4241  *	Remove all addresses that were added to the destination device by
4242  *	dev_unicast_sync(). This function is intended to be called from the
4243  *	dev->stop function of layered software devices.
4244  */
4245 void dev_unicast_unsync(struct net_device *to, struct net_device *from)
4246 {
4247 	if (to->addr_len != from->addr_len)
4248 		return;
4249 
4250 	netif_addr_lock_bh(from);
4251 	netif_addr_lock(to);
4252 	__hw_addr_unsync(&to->uc, &from->uc, to->addr_len);
4253 	__dev_set_rx_mode(to);
4254 	netif_addr_unlock(to);
4255 	netif_addr_unlock_bh(from);
4256 }
4257 EXPORT_SYMBOL(dev_unicast_unsync);
4258 
4259 static void dev_unicast_flush(struct net_device *dev)
4260 {
4261 	netif_addr_lock_bh(dev);
4262 	__hw_addr_flush(&dev->uc);
4263 	netif_addr_unlock_bh(dev);
4264 }
4265 
4266 static void dev_unicast_init(struct net_device *dev)
4267 {
4268 	__hw_addr_init(&dev->uc);
4269 }
4270 
4271 
4272 static void __dev_addr_discard(struct dev_addr_list **list)
4273 {
4274 	struct dev_addr_list *tmp;
4275 
4276 	while (*list != NULL) {
4277 		tmp = *list;
4278 		*list = tmp->next;
4279 		if (tmp->da_users > tmp->da_gusers)
4280 			printk("__dev_addr_discard: address leakage! "
4281 			       "da_users=%d\n", tmp->da_users);
4282 		kfree(tmp);
4283 	}
4284 }
4285 
4286 static void dev_addr_discard(struct net_device *dev)
4287 {
4288 	netif_addr_lock_bh(dev);
4289 
4290 	__dev_addr_discard(&dev->mc_list);
4291 	netdev_mc_count(dev) = 0;
4292 
4293 	netif_addr_unlock_bh(dev);
4294 }
4295 
4296 /**
4297  *	dev_get_flags - get flags reported to userspace
4298  *	@dev: device
4299  *
4300  *	Get the combination of flag bits exported through APIs to userspace.
4301  */
4302 unsigned dev_get_flags(const struct net_device *dev)
4303 {
4304 	unsigned flags;
4305 
4306 	flags = (dev->flags & ~(IFF_PROMISC |
4307 				IFF_ALLMULTI |
4308 				IFF_RUNNING |
4309 				IFF_LOWER_UP |
4310 				IFF_DORMANT)) |
4311 		(dev->gflags & (IFF_PROMISC |
4312 				IFF_ALLMULTI));
4313 
4314 	if (netif_running(dev)) {
4315 		if (netif_oper_up(dev))
4316 			flags |= IFF_RUNNING;
4317 		if (netif_carrier_ok(dev))
4318 			flags |= IFF_LOWER_UP;
4319 		if (netif_dormant(dev))
4320 			flags |= IFF_DORMANT;
4321 	}
4322 
4323 	return flags;
4324 }
4325 EXPORT_SYMBOL(dev_get_flags);
4326 
4327 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4328 {
4329 	int old_flags = dev->flags;
4330 	int ret;
4331 
4332 	ASSERT_RTNL();
4333 
4334 	/*
4335 	 *	Set the flags on our device.
4336 	 */
4337 
4338 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4339 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4340 			       IFF_AUTOMEDIA)) |
4341 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4342 				    IFF_ALLMULTI));
4343 
4344 	/*
4345 	 *	Load in the correct multicast list now the flags have changed.
4346 	 */
4347 
4348 	if ((old_flags ^ flags) & IFF_MULTICAST)
4349 		dev_change_rx_flags(dev, IFF_MULTICAST);
4350 
4351 	dev_set_rx_mode(dev);
4352 
4353 	/*
4354 	 *	Have we downed the interface. We handle IFF_UP ourselves
4355 	 *	according to user attempts to set it, rather than blindly
4356 	 *	setting it.
4357 	 */
4358 
4359 	ret = 0;
4360 	if ((old_flags ^ flags) & IFF_UP) {	/* Bit is different  ? */
4361 		ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4362 
4363 		if (!ret)
4364 			dev_set_rx_mode(dev);
4365 	}
4366 
4367 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
4368 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
4369 
4370 		dev->gflags ^= IFF_PROMISC;
4371 		dev_set_promiscuity(dev, inc);
4372 	}
4373 
4374 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4375 	   is important. Some (broken) drivers set IFF_PROMISC, when
4376 	   IFF_ALLMULTI is requested not asking us and not reporting.
4377 	 */
4378 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4379 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4380 
4381 		dev->gflags ^= IFF_ALLMULTI;
4382 		dev_set_allmulti(dev, inc);
4383 	}
4384 
4385 	return ret;
4386 }
4387 
4388 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4389 {
4390 	unsigned int changes = dev->flags ^ old_flags;
4391 
4392 	if (changes & IFF_UP) {
4393 		if (dev->flags & IFF_UP)
4394 			call_netdevice_notifiers(NETDEV_UP, dev);
4395 		else
4396 			call_netdevice_notifiers(NETDEV_DOWN, dev);
4397 	}
4398 
4399 	if (dev->flags & IFF_UP &&
4400 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4401 		call_netdevice_notifiers(NETDEV_CHANGE, dev);
4402 }
4403 
4404 /**
4405  *	dev_change_flags - change device settings
4406  *	@dev: device
4407  *	@flags: device state flags
4408  *
4409  *	Change settings on device based state flags. The flags are
4410  *	in the userspace exported format.
4411  */
4412 int dev_change_flags(struct net_device *dev, unsigned flags)
4413 {
4414 	int ret, changes;
4415 	int old_flags = dev->flags;
4416 
4417 	ret = __dev_change_flags(dev, flags);
4418 	if (ret < 0)
4419 		return ret;
4420 
4421 	changes = old_flags ^ dev->flags;
4422 	if (changes)
4423 		rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4424 
4425 	__dev_notify_flags(dev, old_flags);
4426 	return ret;
4427 }
4428 EXPORT_SYMBOL(dev_change_flags);
4429 
4430 /**
4431  *	dev_set_mtu - Change maximum transfer unit
4432  *	@dev: device
4433  *	@new_mtu: new transfer unit
4434  *
4435  *	Change the maximum transfer size of the network device.
4436  */
4437 int dev_set_mtu(struct net_device *dev, int new_mtu)
4438 {
4439 	const struct net_device_ops *ops = dev->netdev_ops;
4440 	int err;
4441 
4442 	if (new_mtu == dev->mtu)
4443 		return 0;
4444 
4445 	/*	MTU must be positive.	 */
4446 	if (new_mtu < 0)
4447 		return -EINVAL;
4448 
4449 	if (!netif_device_present(dev))
4450 		return -ENODEV;
4451 
4452 	err = 0;
4453 	if (ops->ndo_change_mtu)
4454 		err = ops->ndo_change_mtu(dev, new_mtu);
4455 	else
4456 		dev->mtu = new_mtu;
4457 
4458 	if (!err && dev->flags & IFF_UP)
4459 		call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4460 	return err;
4461 }
4462 EXPORT_SYMBOL(dev_set_mtu);
4463 
4464 /**
4465  *	dev_set_mac_address - Change Media Access Control Address
4466  *	@dev: device
4467  *	@sa: new address
4468  *
4469  *	Change the hardware (MAC) address of the device
4470  */
4471 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4472 {
4473 	const struct net_device_ops *ops = dev->netdev_ops;
4474 	int err;
4475 
4476 	if (!ops->ndo_set_mac_address)
4477 		return -EOPNOTSUPP;
4478 	if (sa->sa_family != dev->type)
4479 		return -EINVAL;
4480 	if (!netif_device_present(dev))
4481 		return -ENODEV;
4482 	err = ops->ndo_set_mac_address(dev, sa);
4483 	if (!err)
4484 		call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4485 	return err;
4486 }
4487 EXPORT_SYMBOL(dev_set_mac_address);
4488 
4489 /*
4490  *	Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4491  */
4492 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4493 {
4494 	int err;
4495 	struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4496 
4497 	if (!dev)
4498 		return -ENODEV;
4499 
4500 	switch (cmd) {
4501 	case SIOCGIFFLAGS:	/* Get interface flags */
4502 		ifr->ifr_flags = (short) dev_get_flags(dev);
4503 		return 0;
4504 
4505 	case SIOCGIFMETRIC:	/* Get the metric on the interface
4506 				   (currently unused) */
4507 		ifr->ifr_metric = 0;
4508 		return 0;
4509 
4510 	case SIOCGIFMTU:	/* Get the MTU of a device */
4511 		ifr->ifr_mtu = dev->mtu;
4512 		return 0;
4513 
4514 	case SIOCGIFHWADDR:
4515 		if (!dev->addr_len)
4516 			memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4517 		else
4518 			memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4519 			       min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4520 		ifr->ifr_hwaddr.sa_family = dev->type;
4521 		return 0;
4522 
4523 	case SIOCGIFSLAVE:
4524 		err = -EINVAL;
4525 		break;
4526 
4527 	case SIOCGIFMAP:
4528 		ifr->ifr_map.mem_start = dev->mem_start;
4529 		ifr->ifr_map.mem_end   = dev->mem_end;
4530 		ifr->ifr_map.base_addr = dev->base_addr;
4531 		ifr->ifr_map.irq       = dev->irq;
4532 		ifr->ifr_map.dma       = dev->dma;
4533 		ifr->ifr_map.port      = dev->if_port;
4534 		return 0;
4535 
4536 	case SIOCGIFINDEX:
4537 		ifr->ifr_ifindex = dev->ifindex;
4538 		return 0;
4539 
4540 	case SIOCGIFTXQLEN:
4541 		ifr->ifr_qlen = dev->tx_queue_len;
4542 		return 0;
4543 
4544 	default:
4545 		/* dev_ioctl() should ensure this case
4546 		 * is never reached
4547 		 */
4548 		WARN_ON(1);
4549 		err = -EINVAL;
4550 		break;
4551 
4552 	}
4553 	return err;
4554 }
4555 
4556 /*
4557  *	Perform the SIOCxIFxxx calls, inside rtnl_lock()
4558  */
4559 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4560 {
4561 	int err;
4562 	struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4563 	const struct net_device_ops *ops;
4564 
4565 	if (!dev)
4566 		return -ENODEV;
4567 
4568 	ops = dev->netdev_ops;
4569 
4570 	switch (cmd) {
4571 	case SIOCSIFFLAGS:	/* Set interface flags */
4572 		return dev_change_flags(dev, ifr->ifr_flags);
4573 
4574 	case SIOCSIFMETRIC:	/* Set the metric on the interface
4575 				   (currently unused) */
4576 		return -EOPNOTSUPP;
4577 
4578 	case SIOCSIFMTU:	/* Set the MTU of a device */
4579 		return dev_set_mtu(dev, ifr->ifr_mtu);
4580 
4581 	case SIOCSIFHWADDR:
4582 		return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4583 
4584 	case SIOCSIFHWBROADCAST:
4585 		if (ifr->ifr_hwaddr.sa_family != dev->type)
4586 			return -EINVAL;
4587 		memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4588 		       min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4589 		call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4590 		return 0;
4591 
4592 	case SIOCSIFMAP:
4593 		if (ops->ndo_set_config) {
4594 			if (!netif_device_present(dev))
4595 				return -ENODEV;
4596 			return ops->ndo_set_config(dev, &ifr->ifr_map);
4597 		}
4598 		return -EOPNOTSUPP;
4599 
4600 	case SIOCADDMULTI:
4601 		if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4602 		    ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4603 			return -EINVAL;
4604 		if (!netif_device_present(dev))
4605 			return -ENODEV;
4606 		return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
4607 				  dev->addr_len, 1);
4608 
4609 	case SIOCDELMULTI:
4610 		if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4611 		    ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4612 			return -EINVAL;
4613 		if (!netif_device_present(dev))
4614 			return -ENODEV;
4615 		return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
4616 				     dev->addr_len, 1);
4617 
4618 	case SIOCSIFTXQLEN:
4619 		if (ifr->ifr_qlen < 0)
4620 			return -EINVAL;
4621 		dev->tx_queue_len = ifr->ifr_qlen;
4622 		return 0;
4623 
4624 	case SIOCSIFNAME:
4625 		ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4626 		return dev_change_name(dev, ifr->ifr_newname);
4627 
4628 	/*
4629 	 *	Unknown or private ioctl
4630 	 */
4631 	default:
4632 		if ((cmd >= SIOCDEVPRIVATE &&
4633 		    cmd <= SIOCDEVPRIVATE + 15) ||
4634 		    cmd == SIOCBONDENSLAVE ||
4635 		    cmd == SIOCBONDRELEASE ||
4636 		    cmd == SIOCBONDSETHWADDR ||
4637 		    cmd == SIOCBONDSLAVEINFOQUERY ||
4638 		    cmd == SIOCBONDINFOQUERY ||
4639 		    cmd == SIOCBONDCHANGEACTIVE ||
4640 		    cmd == SIOCGMIIPHY ||
4641 		    cmd == SIOCGMIIREG ||
4642 		    cmd == SIOCSMIIREG ||
4643 		    cmd == SIOCBRADDIF ||
4644 		    cmd == SIOCBRDELIF ||
4645 		    cmd == SIOCSHWTSTAMP ||
4646 		    cmd == SIOCWANDEV) {
4647 			err = -EOPNOTSUPP;
4648 			if (ops->ndo_do_ioctl) {
4649 				if (netif_device_present(dev))
4650 					err = ops->ndo_do_ioctl(dev, ifr, cmd);
4651 				else
4652 					err = -ENODEV;
4653 			}
4654 		} else
4655 			err = -EINVAL;
4656 
4657 	}
4658 	return err;
4659 }
4660 
4661 /*
4662  *	This function handles all "interface"-type I/O control requests. The actual
4663  *	'doing' part of this is dev_ifsioc above.
4664  */
4665 
4666 /**
4667  *	dev_ioctl	-	network device ioctl
4668  *	@net: the applicable net namespace
4669  *	@cmd: command to issue
4670  *	@arg: pointer to a struct ifreq in user space
4671  *
4672  *	Issue ioctl functions to devices. This is normally called by the
4673  *	user space syscall interfaces but can sometimes be useful for
4674  *	other purposes. The return value is the return from the syscall if
4675  *	positive or a negative errno code on error.
4676  */
4677 
4678 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4679 {
4680 	struct ifreq ifr;
4681 	int ret;
4682 	char *colon;
4683 
4684 	/* One special case: SIOCGIFCONF takes ifconf argument
4685 	   and requires shared lock, because it sleeps writing
4686 	   to user space.
4687 	 */
4688 
4689 	if (cmd == SIOCGIFCONF) {
4690 		rtnl_lock();
4691 		ret = dev_ifconf(net, (char __user *) arg);
4692 		rtnl_unlock();
4693 		return ret;
4694 	}
4695 	if (cmd == SIOCGIFNAME)
4696 		return dev_ifname(net, (struct ifreq __user *)arg);
4697 
4698 	if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4699 		return -EFAULT;
4700 
4701 	ifr.ifr_name[IFNAMSIZ-1] = 0;
4702 
4703 	colon = strchr(ifr.ifr_name, ':');
4704 	if (colon)
4705 		*colon = 0;
4706 
4707 	/*
4708 	 *	See which interface the caller is talking about.
4709 	 */
4710 
4711 	switch (cmd) {
4712 	/*
4713 	 *	These ioctl calls:
4714 	 *	- can be done by all.
4715 	 *	- atomic and do not require locking.
4716 	 *	- return a value
4717 	 */
4718 	case SIOCGIFFLAGS:
4719 	case SIOCGIFMETRIC:
4720 	case SIOCGIFMTU:
4721 	case SIOCGIFHWADDR:
4722 	case SIOCGIFSLAVE:
4723 	case SIOCGIFMAP:
4724 	case SIOCGIFINDEX:
4725 	case SIOCGIFTXQLEN:
4726 		dev_load(net, ifr.ifr_name);
4727 		rcu_read_lock();
4728 		ret = dev_ifsioc_locked(net, &ifr, cmd);
4729 		rcu_read_unlock();
4730 		if (!ret) {
4731 			if (colon)
4732 				*colon = ':';
4733 			if (copy_to_user(arg, &ifr,
4734 					 sizeof(struct ifreq)))
4735 				ret = -EFAULT;
4736 		}
4737 		return ret;
4738 
4739 	case SIOCETHTOOL:
4740 		dev_load(net, ifr.ifr_name);
4741 		rtnl_lock();
4742 		ret = dev_ethtool(net, &ifr);
4743 		rtnl_unlock();
4744 		if (!ret) {
4745 			if (colon)
4746 				*colon = ':';
4747 			if (copy_to_user(arg, &ifr,
4748 					 sizeof(struct ifreq)))
4749 				ret = -EFAULT;
4750 		}
4751 		return ret;
4752 
4753 	/*
4754 	 *	These ioctl calls:
4755 	 *	- require superuser power.
4756 	 *	- require strict serialization.
4757 	 *	- return a value
4758 	 */
4759 	case SIOCGMIIPHY:
4760 	case SIOCGMIIREG:
4761 	case SIOCSIFNAME:
4762 		if (!capable(CAP_NET_ADMIN))
4763 			return -EPERM;
4764 		dev_load(net, ifr.ifr_name);
4765 		rtnl_lock();
4766 		ret = dev_ifsioc(net, &ifr, cmd);
4767 		rtnl_unlock();
4768 		if (!ret) {
4769 			if (colon)
4770 				*colon = ':';
4771 			if (copy_to_user(arg, &ifr,
4772 					 sizeof(struct ifreq)))
4773 				ret = -EFAULT;
4774 		}
4775 		return ret;
4776 
4777 	/*
4778 	 *	These ioctl calls:
4779 	 *	- require superuser power.
4780 	 *	- require strict serialization.
4781 	 *	- do not return a value
4782 	 */
4783 	case SIOCSIFFLAGS:
4784 	case SIOCSIFMETRIC:
4785 	case SIOCSIFMTU:
4786 	case SIOCSIFMAP:
4787 	case SIOCSIFHWADDR:
4788 	case SIOCSIFSLAVE:
4789 	case SIOCADDMULTI:
4790 	case SIOCDELMULTI:
4791 	case SIOCSIFHWBROADCAST:
4792 	case SIOCSIFTXQLEN:
4793 	case SIOCSMIIREG:
4794 	case SIOCBONDENSLAVE:
4795 	case SIOCBONDRELEASE:
4796 	case SIOCBONDSETHWADDR:
4797 	case SIOCBONDCHANGEACTIVE:
4798 	case SIOCBRADDIF:
4799 	case SIOCBRDELIF:
4800 	case SIOCSHWTSTAMP:
4801 		if (!capable(CAP_NET_ADMIN))
4802 			return -EPERM;
4803 		/* fall through */
4804 	case SIOCBONDSLAVEINFOQUERY:
4805 	case SIOCBONDINFOQUERY:
4806 		dev_load(net, ifr.ifr_name);
4807 		rtnl_lock();
4808 		ret = dev_ifsioc(net, &ifr, cmd);
4809 		rtnl_unlock();
4810 		return ret;
4811 
4812 	case SIOCGIFMEM:
4813 		/* Get the per device memory space. We can add this but
4814 		 * currently do not support it */
4815 	case SIOCSIFMEM:
4816 		/* Set the per device memory buffer space.
4817 		 * Not applicable in our case */
4818 	case SIOCSIFLINK:
4819 		return -EINVAL;
4820 
4821 	/*
4822 	 *	Unknown or private ioctl.
4823 	 */
4824 	default:
4825 		if (cmd == SIOCWANDEV ||
4826 		    (cmd >= SIOCDEVPRIVATE &&
4827 		     cmd <= SIOCDEVPRIVATE + 15)) {
4828 			dev_load(net, ifr.ifr_name);
4829 			rtnl_lock();
4830 			ret = dev_ifsioc(net, &ifr, cmd);
4831 			rtnl_unlock();
4832 			if (!ret && copy_to_user(arg, &ifr,
4833 						 sizeof(struct ifreq)))
4834 				ret = -EFAULT;
4835 			return ret;
4836 		}
4837 		/* Take care of Wireless Extensions */
4838 		if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
4839 			return wext_handle_ioctl(net, &ifr, cmd, arg);
4840 		return -EINVAL;
4841 	}
4842 }
4843 
4844 
4845 /**
4846  *	dev_new_index	-	allocate an ifindex
4847  *	@net: the applicable net namespace
4848  *
4849  *	Returns a suitable unique value for a new device interface
4850  *	number.  The caller must hold the rtnl semaphore or the
4851  *	dev_base_lock to be sure it remains unique.
4852  */
4853 static int dev_new_index(struct net *net)
4854 {
4855 	static int ifindex;
4856 	for (;;) {
4857 		if (++ifindex <= 0)
4858 			ifindex = 1;
4859 		if (!__dev_get_by_index(net, ifindex))
4860 			return ifindex;
4861 	}
4862 }
4863 
4864 /* Delayed registration/unregisteration */
4865 static LIST_HEAD(net_todo_list);
4866 
4867 static void net_set_todo(struct net_device *dev)
4868 {
4869 	list_add_tail(&dev->todo_list, &net_todo_list);
4870 }
4871 
4872 static void rollback_registered_many(struct list_head *head)
4873 {
4874 	struct net_device *dev, *tmp;
4875 
4876 	BUG_ON(dev_boot_phase);
4877 	ASSERT_RTNL();
4878 
4879 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
4880 		/* Some devices call without registering
4881 		 * for initialization unwind. Remove those
4882 		 * devices and proceed with the remaining.
4883 		 */
4884 		if (dev->reg_state == NETREG_UNINITIALIZED) {
4885 			pr_debug("unregister_netdevice: device %s/%p never "
4886 				 "was registered\n", dev->name, dev);
4887 
4888 			WARN_ON(1);
4889 			list_del(&dev->unreg_list);
4890 			continue;
4891 		}
4892 
4893 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
4894 
4895 		/* If device is running, close it first. */
4896 		dev_close(dev);
4897 
4898 		/* And unlink it from device chain. */
4899 		unlist_netdevice(dev);
4900 
4901 		dev->reg_state = NETREG_UNREGISTERING;
4902 	}
4903 
4904 	synchronize_net();
4905 
4906 	list_for_each_entry(dev, head, unreg_list) {
4907 		/* Shutdown queueing discipline. */
4908 		dev_shutdown(dev);
4909 
4910 
4911 		/* Notify protocols, that we are about to destroy
4912 		   this device. They should clean all the things.
4913 		*/
4914 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4915 
4916 		if (!dev->rtnl_link_ops ||
4917 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
4918 			rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
4919 
4920 		/*
4921 		 *	Flush the unicast and multicast chains
4922 		 */
4923 		dev_unicast_flush(dev);
4924 		dev_addr_discard(dev);
4925 
4926 		if (dev->netdev_ops->ndo_uninit)
4927 			dev->netdev_ops->ndo_uninit(dev);
4928 
4929 		/* Notifier chain MUST detach us from master device. */
4930 		WARN_ON(dev->master);
4931 
4932 		/* Remove entries from kobject tree */
4933 		netdev_unregister_kobject(dev);
4934 	}
4935 
4936 	/* Process any work delayed until the end of the batch */
4937 	dev = list_first_entry(head, struct net_device, unreg_list);
4938 	call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
4939 
4940 	synchronize_net();
4941 
4942 	list_for_each_entry(dev, head, unreg_list)
4943 		dev_put(dev);
4944 }
4945 
4946 static void rollback_registered(struct net_device *dev)
4947 {
4948 	LIST_HEAD(single);
4949 
4950 	list_add(&dev->unreg_list, &single);
4951 	rollback_registered_many(&single);
4952 }
4953 
4954 static void __netdev_init_queue_locks_one(struct net_device *dev,
4955 					  struct netdev_queue *dev_queue,
4956 					  void *_unused)
4957 {
4958 	spin_lock_init(&dev_queue->_xmit_lock);
4959 	netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type);
4960 	dev_queue->xmit_lock_owner = -1;
4961 }
4962 
4963 static void netdev_init_queue_locks(struct net_device *dev)
4964 {
4965 	netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL);
4966 	__netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL);
4967 }
4968 
4969 unsigned long netdev_fix_features(unsigned long features, const char *name)
4970 {
4971 	/* Fix illegal SG+CSUM combinations. */
4972 	if ((features & NETIF_F_SG) &&
4973 	    !(features & NETIF_F_ALL_CSUM)) {
4974 		if (name)
4975 			printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
4976 			       "checksum feature.\n", name);
4977 		features &= ~NETIF_F_SG;
4978 	}
4979 
4980 	/* TSO requires that SG is present as well. */
4981 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
4982 		if (name)
4983 			printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
4984 			       "SG feature.\n", name);
4985 		features &= ~NETIF_F_TSO;
4986 	}
4987 
4988 	if (features & NETIF_F_UFO) {
4989 		if (!(features & NETIF_F_GEN_CSUM)) {
4990 			if (name)
4991 				printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4992 				       "since no NETIF_F_HW_CSUM feature.\n",
4993 				       name);
4994 			features &= ~NETIF_F_UFO;
4995 		}
4996 
4997 		if (!(features & NETIF_F_SG)) {
4998 			if (name)
4999 				printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
5000 				       "since no NETIF_F_SG feature.\n", name);
5001 			features &= ~NETIF_F_UFO;
5002 		}
5003 	}
5004 
5005 	return features;
5006 }
5007 EXPORT_SYMBOL(netdev_fix_features);
5008 
5009 /**
5010  *	netif_stacked_transfer_operstate -	transfer operstate
5011  *	@rootdev: the root or lower level device to transfer state from
5012  *	@dev: the device to transfer operstate to
5013  *
5014  *	Transfer operational state from root to device. This is normally
5015  *	called when a stacking relationship exists between the root
5016  *	device and the device(a leaf device).
5017  */
5018 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5019 					struct net_device *dev)
5020 {
5021 	if (rootdev->operstate == IF_OPER_DORMANT)
5022 		netif_dormant_on(dev);
5023 	else
5024 		netif_dormant_off(dev);
5025 
5026 	if (netif_carrier_ok(rootdev)) {
5027 		if (!netif_carrier_ok(dev))
5028 			netif_carrier_on(dev);
5029 	} else {
5030 		if (netif_carrier_ok(dev))
5031 			netif_carrier_off(dev);
5032 	}
5033 }
5034 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5035 
5036 /**
5037  *	register_netdevice	- register a network device
5038  *	@dev: device to register
5039  *
5040  *	Take a completed network device structure and add it to the kernel
5041  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5042  *	chain. 0 is returned on success. A negative errno code is returned
5043  *	on a failure to set up the device, or if the name is a duplicate.
5044  *
5045  *	Callers must hold the rtnl semaphore. You may want
5046  *	register_netdev() instead of this.
5047  *
5048  *	BUGS:
5049  *	The locking appears insufficient to guarantee two parallel registers
5050  *	will not get the same name.
5051  */
5052 
5053 int register_netdevice(struct net_device *dev)
5054 {
5055 	int ret;
5056 	struct net *net = dev_net(dev);
5057 
5058 	BUG_ON(dev_boot_phase);
5059 	ASSERT_RTNL();
5060 
5061 	might_sleep();
5062 
5063 	/* When net_device's are persistent, this will be fatal. */
5064 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5065 	BUG_ON(!net);
5066 
5067 	spin_lock_init(&dev->addr_list_lock);
5068 	netdev_set_addr_lockdep_class(dev);
5069 	netdev_init_queue_locks(dev);
5070 
5071 	dev->iflink = -1;
5072 
5073 	/* Init, if this function is available */
5074 	if (dev->netdev_ops->ndo_init) {
5075 		ret = dev->netdev_ops->ndo_init(dev);
5076 		if (ret) {
5077 			if (ret > 0)
5078 				ret = -EIO;
5079 			goto out;
5080 		}
5081 	}
5082 
5083 	ret = dev_get_valid_name(net, dev->name, dev->name, 0);
5084 	if (ret)
5085 		goto err_uninit;
5086 
5087 	dev->ifindex = dev_new_index(net);
5088 	if (dev->iflink == -1)
5089 		dev->iflink = dev->ifindex;
5090 
5091 	/* Fix illegal checksum combinations */
5092 	if ((dev->features & NETIF_F_HW_CSUM) &&
5093 	    (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5094 		printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
5095 		       dev->name);
5096 		dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5097 	}
5098 
5099 	if ((dev->features & NETIF_F_NO_CSUM) &&
5100 	    (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5101 		printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
5102 		       dev->name);
5103 		dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
5104 	}
5105 
5106 	dev->features = netdev_fix_features(dev->features, dev->name);
5107 
5108 	/* Enable software GSO if SG is supported. */
5109 	if (dev->features & NETIF_F_SG)
5110 		dev->features |= NETIF_F_GSO;
5111 
5112 	netdev_initialize_kobject(dev);
5113 
5114 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5115 	ret = notifier_to_errno(ret);
5116 	if (ret)
5117 		goto err_uninit;
5118 
5119 	ret = netdev_register_kobject(dev);
5120 	if (ret)
5121 		goto err_uninit;
5122 	dev->reg_state = NETREG_REGISTERED;
5123 
5124 	/*
5125 	 *	Default initial state at registry is that the
5126 	 *	device is present.
5127 	 */
5128 
5129 	set_bit(__LINK_STATE_PRESENT, &dev->state);
5130 
5131 	dev_init_scheduler(dev);
5132 	dev_hold(dev);
5133 	list_netdevice(dev);
5134 
5135 	/* Notify protocols, that a new device appeared. */
5136 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5137 	ret = notifier_to_errno(ret);
5138 	if (ret) {
5139 		rollback_registered(dev);
5140 		dev->reg_state = NETREG_UNREGISTERED;
5141 	}
5142 	/*
5143 	 *	Prevent userspace races by waiting until the network
5144 	 *	device is fully setup before sending notifications.
5145 	 */
5146 	if (!dev->rtnl_link_ops ||
5147 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5148 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5149 
5150 out:
5151 	return ret;
5152 
5153 err_uninit:
5154 	if (dev->netdev_ops->ndo_uninit)
5155 		dev->netdev_ops->ndo_uninit(dev);
5156 	goto out;
5157 }
5158 EXPORT_SYMBOL(register_netdevice);
5159 
5160 /**
5161  *	init_dummy_netdev	- init a dummy network device for NAPI
5162  *	@dev: device to init
5163  *
5164  *	This takes a network device structure and initialize the minimum
5165  *	amount of fields so it can be used to schedule NAPI polls without
5166  *	registering a full blown interface. This is to be used by drivers
5167  *	that need to tie several hardware interfaces to a single NAPI
5168  *	poll scheduler due to HW limitations.
5169  */
5170 int init_dummy_netdev(struct net_device *dev)
5171 {
5172 	/* Clear everything. Note we don't initialize spinlocks
5173 	 * are they aren't supposed to be taken by any of the
5174 	 * NAPI code and this dummy netdev is supposed to be
5175 	 * only ever used for NAPI polls
5176 	 */
5177 	memset(dev, 0, sizeof(struct net_device));
5178 
5179 	/* make sure we BUG if trying to hit standard
5180 	 * register/unregister code path
5181 	 */
5182 	dev->reg_state = NETREG_DUMMY;
5183 
5184 	/* initialize the ref count */
5185 	atomic_set(&dev->refcnt, 1);
5186 
5187 	/* NAPI wants this */
5188 	INIT_LIST_HEAD(&dev->napi_list);
5189 
5190 	/* a dummy interface is started by default */
5191 	set_bit(__LINK_STATE_PRESENT, &dev->state);
5192 	set_bit(__LINK_STATE_START, &dev->state);
5193 
5194 	return 0;
5195 }
5196 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5197 
5198 
5199 /**
5200  *	register_netdev	- register a network device
5201  *	@dev: device to register
5202  *
5203  *	Take a completed network device structure and add it to the kernel
5204  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5205  *	chain. 0 is returned on success. A negative errno code is returned
5206  *	on a failure to set up the device, or if the name is a duplicate.
5207  *
5208  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
5209  *	and expands the device name if you passed a format string to
5210  *	alloc_netdev.
5211  */
5212 int register_netdev(struct net_device *dev)
5213 {
5214 	int err;
5215 
5216 	rtnl_lock();
5217 
5218 	/*
5219 	 * If the name is a format string the caller wants us to do a
5220 	 * name allocation.
5221 	 */
5222 	if (strchr(dev->name, '%')) {
5223 		err = dev_alloc_name(dev, dev->name);
5224 		if (err < 0)
5225 			goto out;
5226 	}
5227 
5228 	err = register_netdevice(dev);
5229 out:
5230 	rtnl_unlock();
5231 	return err;
5232 }
5233 EXPORT_SYMBOL(register_netdev);
5234 
5235 /*
5236  * netdev_wait_allrefs - wait until all references are gone.
5237  *
5238  * This is called when unregistering network devices.
5239  *
5240  * Any protocol or device that holds a reference should register
5241  * for netdevice notification, and cleanup and put back the
5242  * reference if they receive an UNREGISTER event.
5243  * We can get stuck here if buggy protocols don't correctly
5244  * call dev_put.
5245  */
5246 static void netdev_wait_allrefs(struct net_device *dev)
5247 {
5248 	unsigned long rebroadcast_time, warning_time;
5249 
5250 	linkwatch_forget_dev(dev);
5251 
5252 	rebroadcast_time = warning_time = jiffies;
5253 	while (atomic_read(&dev->refcnt) != 0) {
5254 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5255 			rtnl_lock();
5256 
5257 			/* Rebroadcast unregister notification */
5258 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5259 			/* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5260 			 * should have already handle it the first time */
5261 
5262 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5263 				     &dev->state)) {
5264 				/* We must not have linkwatch events
5265 				 * pending on unregister. If this
5266 				 * happens, we simply run the queue
5267 				 * unscheduled, resulting in a noop
5268 				 * for this device.
5269 				 */
5270 				linkwatch_run_queue();
5271 			}
5272 
5273 			__rtnl_unlock();
5274 
5275 			rebroadcast_time = jiffies;
5276 		}
5277 
5278 		msleep(250);
5279 
5280 		if (time_after(jiffies, warning_time + 10 * HZ)) {
5281 			printk(KERN_EMERG "unregister_netdevice: "
5282 			       "waiting for %s to become free. Usage "
5283 			       "count = %d\n",
5284 			       dev->name, atomic_read(&dev->refcnt));
5285 			warning_time = jiffies;
5286 		}
5287 	}
5288 }
5289 
5290 /* The sequence is:
5291  *
5292  *	rtnl_lock();
5293  *	...
5294  *	register_netdevice(x1);
5295  *	register_netdevice(x2);
5296  *	...
5297  *	unregister_netdevice(y1);
5298  *	unregister_netdevice(y2);
5299  *      ...
5300  *	rtnl_unlock();
5301  *	free_netdev(y1);
5302  *	free_netdev(y2);
5303  *
5304  * We are invoked by rtnl_unlock().
5305  * This allows us to deal with problems:
5306  * 1) We can delete sysfs objects which invoke hotplug
5307  *    without deadlocking with linkwatch via keventd.
5308  * 2) Since we run with the RTNL semaphore not held, we can sleep
5309  *    safely in order to wait for the netdev refcnt to drop to zero.
5310  *
5311  * We must not return until all unregister events added during
5312  * the interval the lock was held have been completed.
5313  */
5314 void netdev_run_todo(void)
5315 {
5316 	struct list_head list;
5317 
5318 	/* Snapshot list, allow later requests */
5319 	list_replace_init(&net_todo_list, &list);
5320 
5321 	__rtnl_unlock();
5322 
5323 	while (!list_empty(&list)) {
5324 		struct net_device *dev
5325 			= list_first_entry(&list, struct net_device, todo_list);
5326 		list_del(&dev->todo_list);
5327 
5328 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5329 			printk(KERN_ERR "network todo '%s' but state %d\n",
5330 			       dev->name, dev->reg_state);
5331 			dump_stack();
5332 			continue;
5333 		}
5334 
5335 		dev->reg_state = NETREG_UNREGISTERED;
5336 
5337 		on_each_cpu(flush_backlog, dev, 1);
5338 
5339 		netdev_wait_allrefs(dev);
5340 
5341 		/* paranoia */
5342 		BUG_ON(atomic_read(&dev->refcnt));
5343 		WARN_ON(dev->ip_ptr);
5344 		WARN_ON(dev->ip6_ptr);
5345 		WARN_ON(dev->dn_ptr);
5346 
5347 		if (dev->destructor)
5348 			dev->destructor(dev);
5349 
5350 		/* Free network device */
5351 		kobject_put(&dev->dev.kobj);
5352 	}
5353 }
5354 
5355 /**
5356  *	dev_txq_stats_fold - fold tx_queues stats
5357  *	@dev: device to get statistics from
5358  *	@stats: struct net_device_stats to hold results
5359  */
5360 void dev_txq_stats_fold(const struct net_device *dev,
5361 			struct net_device_stats *stats)
5362 {
5363 	unsigned long tx_bytes = 0, tx_packets = 0, tx_dropped = 0;
5364 	unsigned int i;
5365 	struct netdev_queue *txq;
5366 
5367 	for (i = 0; i < dev->num_tx_queues; i++) {
5368 		txq = netdev_get_tx_queue(dev, i);
5369 		tx_bytes   += txq->tx_bytes;
5370 		tx_packets += txq->tx_packets;
5371 		tx_dropped += txq->tx_dropped;
5372 	}
5373 	if (tx_bytes || tx_packets || tx_dropped) {
5374 		stats->tx_bytes   = tx_bytes;
5375 		stats->tx_packets = tx_packets;
5376 		stats->tx_dropped = tx_dropped;
5377 	}
5378 }
5379 EXPORT_SYMBOL(dev_txq_stats_fold);
5380 
5381 /**
5382  *	dev_get_stats	- get network device statistics
5383  *	@dev: device to get statistics from
5384  *
5385  *	Get network statistics from device. The device driver may provide
5386  *	its own method by setting dev->netdev_ops->get_stats; otherwise
5387  *	the internal statistics structure is used.
5388  */
5389 const struct net_device_stats *dev_get_stats(struct net_device *dev)
5390 {
5391 	const struct net_device_ops *ops = dev->netdev_ops;
5392 
5393 	if (ops->ndo_get_stats)
5394 		return ops->ndo_get_stats(dev);
5395 
5396 	dev_txq_stats_fold(dev, &dev->stats);
5397 	return &dev->stats;
5398 }
5399 EXPORT_SYMBOL(dev_get_stats);
5400 
5401 static void netdev_init_one_queue(struct net_device *dev,
5402 				  struct netdev_queue *queue,
5403 				  void *_unused)
5404 {
5405 	queue->dev = dev;
5406 }
5407 
5408 static void netdev_init_queues(struct net_device *dev)
5409 {
5410 	netdev_init_one_queue(dev, &dev->rx_queue, NULL);
5411 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5412 	spin_lock_init(&dev->tx_global_lock);
5413 }
5414 
5415 /**
5416  *	alloc_netdev_mq - allocate network device
5417  *	@sizeof_priv:	size of private data to allocate space for
5418  *	@name:		device name format string
5419  *	@setup:		callback to initialize device
5420  *	@queue_count:	the number of subqueues to allocate
5421  *
5422  *	Allocates a struct net_device with private data area for driver use
5423  *	and performs basic initialization.  Also allocates subquue structs
5424  *	for each queue on the device at the end of the netdevice.
5425  */
5426 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
5427 		void (*setup)(struct net_device *), unsigned int queue_count)
5428 {
5429 	struct netdev_queue *tx;
5430 	struct net_device *dev;
5431 	size_t alloc_size;
5432 	struct net_device *p;
5433 
5434 	BUG_ON(strlen(name) >= sizeof(dev->name));
5435 
5436 	alloc_size = sizeof(struct net_device);
5437 	if (sizeof_priv) {
5438 		/* ensure 32-byte alignment of private area */
5439 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5440 		alloc_size += sizeof_priv;
5441 	}
5442 	/* ensure 32-byte alignment of whole construct */
5443 	alloc_size += NETDEV_ALIGN - 1;
5444 
5445 	p = kzalloc(alloc_size, GFP_KERNEL);
5446 	if (!p) {
5447 		printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
5448 		return NULL;
5449 	}
5450 
5451 	tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL);
5452 	if (!tx) {
5453 		printk(KERN_ERR "alloc_netdev: Unable to allocate "
5454 		       "tx qdiscs.\n");
5455 		goto free_p;
5456 	}
5457 
5458 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
5459 	dev->padded = (char *)dev - (char *)p;
5460 
5461 	if (dev_addr_init(dev))
5462 		goto free_tx;
5463 
5464 	dev_unicast_init(dev);
5465 
5466 	dev_net_set(dev, &init_net);
5467 
5468 	dev->_tx = tx;
5469 	dev->num_tx_queues = queue_count;
5470 	dev->real_num_tx_queues = queue_count;
5471 
5472 	dev->gso_max_size = GSO_MAX_SIZE;
5473 
5474 	netdev_init_queues(dev);
5475 
5476 	INIT_LIST_HEAD(&dev->ethtool_ntuple_list.list);
5477 	dev->ethtool_ntuple_list.count = 0;
5478 	INIT_LIST_HEAD(&dev->napi_list);
5479 	INIT_LIST_HEAD(&dev->unreg_list);
5480 	INIT_LIST_HEAD(&dev->link_watch_list);
5481 	dev->priv_flags = IFF_XMIT_DST_RELEASE;
5482 	setup(dev);
5483 	strcpy(dev->name, name);
5484 	return dev;
5485 
5486 free_tx:
5487 	kfree(tx);
5488 
5489 free_p:
5490 	kfree(p);
5491 	return NULL;
5492 }
5493 EXPORT_SYMBOL(alloc_netdev_mq);
5494 
5495 /**
5496  *	free_netdev - free network device
5497  *	@dev: device
5498  *
5499  *	This function does the last stage of destroying an allocated device
5500  * 	interface. The reference to the device object is released.
5501  *	If this is the last reference then it will be freed.
5502  */
5503 void free_netdev(struct net_device *dev)
5504 {
5505 	struct napi_struct *p, *n;
5506 
5507 	release_net(dev_net(dev));
5508 
5509 	kfree(dev->_tx);
5510 
5511 	/* Flush device addresses */
5512 	dev_addr_flush(dev);
5513 
5514 	/* Clear ethtool n-tuple list */
5515 	ethtool_ntuple_flush(dev);
5516 
5517 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5518 		netif_napi_del(p);
5519 
5520 	/*  Compatibility with error handling in drivers */
5521 	if (dev->reg_state == NETREG_UNINITIALIZED) {
5522 		kfree((char *)dev - dev->padded);
5523 		return;
5524 	}
5525 
5526 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5527 	dev->reg_state = NETREG_RELEASED;
5528 
5529 	/* will free via device release */
5530 	put_device(&dev->dev);
5531 }
5532 EXPORT_SYMBOL(free_netdev);
5533 
5534 /**
5535  *	synchronize_net -  Synchronize with packet receive processing
5536  *
5537  *	Wait for packets currently being received to be done.
5538  *	Does not block later packets from starting.
5539  */
5540 void synchronize_net(void)
5541 {
5542 	might_sleep();
5543 	synchronize_rcu();
5544 }
5545 EXPORT_SYMBOL(synchronize_net);
5546 
5547 /**
5548  *	unregister_netdevice_queue - remove device from the kernel
5549  *	@dev: device
5550  *	@head: list
5551  *
5552  *	This function shuts down a device interface and removes it
5553  *	from the kernel tables.
5554  *	If head not NULL, device is queued to be unregistered later.
5555  *
5556  *	Callers must hold the rtnl semaphore.  You may want
5557  *	unregister_netdev() instead of this.
5558  */
5559 
5560 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
5561 {
5562 	ASSERT_RTNL();
5563 
5564 	if (head) {
5565 		list_move_tail(&dev->unreg_list, head);
5566 	} else {
5567 		rollback_registered(dev);
5568 		/* Finish processing unregister after unlock */
5569 		net_set_todo(dev);
5570 	}
5571 }
5572 EXPORT_SYMBOL(unregister_netdevice_queue);
5573 
5574 /**
5575  *	unregister_netdevice_many - unregister many devices
5576  *	@head: list of devices
5577  */
5578 void unregister_netdevice_many(struct list_head *head)
5579 {
5580 	struct net_device *dev;
5581 
5582 	if (!list_empty(head)) {
5583 		rollback_registered_many(head);
5584 		list_for_each_entry(dev, head, unreg_list)
5585 			net_set_todo(dev);
5586 	}
5587 }
5588 EXPORT_SYMBOL(unregister_netdevice_many);
5589 
5590 /**
5591  *	unregister_netdev - remove device from the kernel
5592  *	@dev: device
5593  *
5594  *	This function shuts down a device interface and removes it
5595  *	from the kernel tables.
5596  *
5597  *	This is just a wrapper for unregister_netdevice that takes
5598  *	the rtnl semaphore.  In general you want to use this and not
5599  *	unregister_netdevice.
5600  */
5601 void unregister_netdev(struct net_device *dev)
5602 {
5603 	rtnl_lock();
5604 	unregister_netdevice(dev);
5605 	rtnl_unlock();
5606 }
5607 EXPORT_SYMBOL(unregister_netdev);
5608 
5609 /**
5610  *	dev_change_net_namespace - move device to different nethost namespace
5611  *	@dev: device
5612  *	@net: network namespace
5613  *	@pat: If not NULL name pattern to try if the current device name
5614  *	      is already taken in the destination network namespace.
5615  *
5616  *	This function shuts down a device interface and moves it
5617  *	to a new network namespace. On success 0 is returned, on
5618  *	a failure a netagive errno code is returned.
5619  *
5620  *	Callers must hold the rtnl semaphore.
5621  */
5622 
5623 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5624 {
5625 	int err;
5626 
5627 	ASSERT_RTNL();
5628 
5629 	/* Don't allow namespace local devices to be moved. */
5630 	err = -EINVAL;
5631 	if (dev->features & NETIF_F_NETNS_LOCAL)
5632 		goto out;
5633 
5634 #ifdef CONFIG_SYSFS
5635 	/* Don't allow real devices to be moved when sysfs
5636 	 * is enabled.
5637 	 */
5638 	err = -EINVAL;
5639 	if (dev->dev.parent)
5640 		goto out;
5641 #endif
5642 
5643 	/* Ensure the device has been registrered */
5644 	err = -EINVAL;
5645 	if (dev->reg_state != NETREG_REGISTERED)
5646 		goto out;
5647 
5648 	/* Get out if there is nothing todo */
5649 	err = 0;
5650 	if (net_eq(dev_net(dev), net))
5651 		goto out;
5652 
5653 	/* Pick the destination device name, and ensure
5654 	 * we can use it in the destination network namespace.
5655 	 */
5656 	err = -EEXIST;
5657 	if (__dev_get_by_name(net, dev->name)) {
5658 		/* We get here if we can't use the current device name */
5659 		if (!pat)
5660 			goto out;
5661 		if (dev_get_valid_name(net, pat, dev->name, 1))
5662 			goto out;
5663 	}
5664 
5665 	/*
5666 	 * And now a mini version of register_netdevice unregister_netdevice.
5667 	 */
5668 
5669 	/* If device is running close it first. */
5670 	dev_close(dev);
5671 
5672 	/* And unlink it from device chain */
5673 	err = -ENODEV;
5674 	unlist_netdevice(dev);
5675 
5676 	synchronize_net();
5677 
5678 	/* Shutdown queueing discipline. */
5679 	dev_shutdown(dev);
5680 
5681 	/* Notify protocols, that we are about to destroy
5682 	   this device. They should clean all the things.
5683 	*/
5684 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5685 	call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5686 
5687 	/*
5688 	 *	Flush the unicast and multicast chains
5689 	 */
5690 	dev_unicast_flush(dev);
5691 	dev_addr_discard(dev);
5692 
5693 	netdev_unregister_kobject(dev);
5694 
5695 	/* Actually switch the network namespace */
5696 	dev_net_set(dev, net);
5697 
5698 	/* If there is an ifindex conflict assign a new one */
5699 	if (__dev_get_by_index(net, dev->ifindex)) {
5700 		int iflink = (dev->iflink == dev->ifindex);
5701 		dev->ifindex = dev_new_index(net);
5702 		if (iflink)
5703 			dev->iflink = dev->ifindex;
5704 	}
5705 
5706 	/* Fixup kobjects */
5707 	err = netdev_register_kobject(dev);
5708 	WARN_ON(err);
5709 
5710 	/* Add the device back in the hashes */
5711 	list_netdevice(dev);
5712 
5713 	/* Notify protocols, that a new device appeared. */
5714 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
5715 
5716 	/*
5717 	 *	Prevent userspace races by waiting until the network
5718 	 *	device is fully setup before sending notifications.
5719 	 */
5720 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5721 
5722 	synchronize_net();
5723 	err = 0;
5724 out:
5725 	return err;
5726 }
5727 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
5728 
5729 static int dev_cpu_callback(struct notifier_block *nfb,
5730 			    unsigned long action,
5731 			    void *ocpu)
5732 {
5733 	struct sk_buff **list_skb;
5734 	struct Qdisc **list_net;
5735 	struct sk_buff *skb;
5736 	unsigned int cpu, oldcpu = (unsigned long)ocpu;
5737 	struct softnet_data *sd, *oldsd;
5738 
5739 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5740 		return NOTIFY_OK;
5741 
5742 	local_irq_disable();
5743 	cpu = smp_processor_id();
5744 	sd = &per_cpu(softnet_data, cpu);
5745 	oldsd = &per_cpu(softnet_data, oldcpu);
5746 
5747 	/* Find end of our completion_queue. */
5748 	list_skb = &sd->completion_queue;
5749 	while (*list_skb)
5750 		list_skb = &(*list_skb)->next;
5751 	/* Append completion queue from offline CPU. */
5752 	*list_skb = oldsd->completion_queue;
5753 	oldsd->completion_queue = NULL;
5754 
5755 	/* Find end of our output_queue. */
5756 	list_net = &sd->output_queue;
5757 	while (*list_net)
5758 		list_net = &(*list_net)->next_sched;
5759 	/* Append output queue from offline CPU. */
5760 	*list_net = oldsd->output_queue;
5761 	oldsd->output_queue = NULL;
5762 
5763 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
5764 	local_irq_enable();
5765 
5766 	/* Process offline CPU's input_pkt_queue */
5767 	while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
5768 		netif_rx(skb);
5769 
5770 	return NOTIFY_OK;
5771 }
5772 
5773 
5774 /**
5775  *	netdev_increment_features - increment feature set by one
5776  *	@all: current feature set
5777  *	@one: new feature set
5778  *	@mask: mask feature set
5779  *
5780  *	Computes a new feature set after adding a device with feature set
5781  *	@one to the master device with current feature set @all.  Will not
5782  *	enable anything that is off in @mask. Returns the new feature set.
5783  */
5784 unsigned long netdev_increment_features(unsigned long all, unsigned long one,
5785 					unsigned long mask)
5786 {
5787 	/* If device needs checksumming, downgrade to it. */
5788 	if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
5789 		all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
5790 	else if (mask & NETIF_F_ALL_CSUM) {
5791 		/* If one device supports v4/v6 checksumming, set for all. */
5792 		if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
5793 		    !(all & NETIF_F_GEN_CSUM)) {
5794 			all &= ~NETIF_F_ALL_CSUM;
5795 			all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
5796 		}
5797 
5798 		/* If one device supports hw checksumming, set for all. */
5799 		if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
5800 			all &= ~NETIF_F_ALL_CSUM;
5801 			all |= NETIF_F_HW_CSUM;
5802 		}
5803 	}
5804 
5805 	one |= NETIF_F_ALL_CSUM;
5806 
5807 	one |= all & NETIF_F_ONE_FOR_ALL;
5808 	all &= one | NETIF_F_LLTX | NETIF_F_GSO | NETIF_F_UFO;
5809 	all |= one & mask & NETIF_F_ONE_FOR_ALL;
5810 
5811 	return all;
5812 }
5813 EXPORT_SYMBOL(netdev_increment_features);
5814 
5815 static struct hlist_head *netdev_create_hash(void)
5816 {
5817 	int i;
5818 	struct hlist_head *hash;
5819 
5820 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
5821 	if (hash != NULL)
5822 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
5823 			INIT_HLIST_HEAD(&hash[i]);
5824 
5825 	return hash;
5826 }
5827 
5828 /* Initialize per network namespace state */
5829 static int __net_init netdev_init(struct net *net)
5830 {
5831 	INIT_LIST_HEAD(&net->dev_base_head);
5832 
5833 	net->dev_name_head = netdev_create_hash();
5834 	if (net->dev_name_head == NULL)
5835 		goto err_name;
5836 
5837 	net->dev_index_head = netdev_create_hash();
5838 	if (net->dev_index_head == NULL)
5839 		goto err_idx;
5840 
5841 	return 0;
5842 
5843 err_idx:
5844 	kfree(net->dev_name_head);
5845 err_name:
5846 	return -ENOMEM;
5847 }
5848 
5849 /**
5850  *	netdev_drivername - network driver for the device
5851  *	@dev: network device
5852  *	@buffer: buffer for resulting name
5853  *	@len: size of buffer
5854  *
5855  *	Determine network driver for device.
5856  */
5857 char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
5858 {
5859 	const struct device_driver *driver;
5860 	const struct device *parent;
5861 
5862 	if (len <= 0 || !buffer)
5863 		return buffer;
5864 	buffer[0] = 0;
5865 
5866 	parent = dev->dev.parent;
5867 
5868 	if (!parent)
5869 		return buffer;
5870 
5871 	driver = parent->driver;
5872 	if (driver && driver->name)
5873 		strlcpy(buffer, driver->name, len);
5874 	return buffer;
5875 }
5876 
5877 static void __net_exit netdev_exit(struct net *net)
5878 {
5879 	kfree(net->dev_name_head);
5880 	kfree(net->dev_index_head);
5881 }
5882 
5883 static struct pernet_operations __net_initdata netdev_net_ops = {
5884 	.init = netdev_init,
5885 	.exit = netdev_exit,
5886 };
5887 
5888 static void __net_exit default_device_exit(struct net *net)
5889 {
5890 	struct net_device *dev, *aux;
5891 	/*
5892 	 * Push all migratable network devices back to the
5893 	 * initial network namespace
5894 	 */
5895 	rtnl_lock();
5896 	for_each_netdev_safe(net, dev, aux) {
5897 		int err;
5898 		char fb_name[IFNAMSIZ];
5899 
5900 		/* Ignore unmoveable devices (i.e. loopback) */
5901 		if (dev->features & NETIF_F_NETNS_LOCAL)
5902 			continue;
5903 
5904 		/* Leave virtual devices for the generic cleanup */
5905 		if (dev->rtnl_link_ops)
5906 			continue;
5907 
5908 		/* Push remaing network devices to init_net */
5909 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
5910 		err = dev_change_net_namespace(dev, &init_net, fb_name);
5911 		if (err) {
5912 			printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
5913 				__func__, dev->name, err);
5914 			BUG();
5915 		}
5916 	}
5917 	rtnl_unlock();
5918 }
5919 
5920 static void __net_exit default_device_exit_batch(struct list_head *net_list)
5921 {
5922 	/* At exit all network devices most be removed from a network
5923 	 * namespace.  Do this in the reverse order of registeration.
5924 	 * Do this across as many network namespaces as possible to
5925 	 * improve batching efficiency.
5926 	 */
5927 	struct net_device *dev;
5928 	struct net *net;
5929 	LIST_HEAD(dev_kill_list);
5930 
5931 	rtnl_lock();
5932 	list_for_each_entry(net, net_list, exit_list) {
5933 		for_each_netdev_reverse(net, dev) {
5934 			if (dev->rtnl_link_ops)
5935 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
5936 			else
5937 				unregister_netdevice_queue(dev, &dev_kill_list);
5938 		}
5939 	}
5940 	unregister_netdevice_many(&dev_kill_list);
5941 	rtnl_unlock();
5942 }
5943 
5944 static struct pernet_operations __net_initdata default_device_ops = {
5945 	.exit = default_device_exit,
5946 	.exit_batch = default_device_exit_batch,
5947 };
5948 
5949 /*
5950  *	Initialize the DEV module. At boot time this walks the device list and
5951  *	unhooks any devices that fail to initialise (normally hardware not
5952  *	present) and leaves us with a valid list of present and active devices.
5953  *
5954  */
5955 
5956 /*
5957  *       This is called single threaded during boot, so no need
5958  *       to take the rtnl semaphore.
5959  */
5960 static int __init net_dev_init(void)
5961 {
5962 	int i, rc = -ENOMEM;
5963 
5964 	BUG_ON(!dev_boot_phase);
5965 
5966 	if (dev_proc_init())
5967 		goto out;
5968 
5969 	if (netdev_kobject_init())
5970 		goto out;
5971 
5972 	INIT_LIST_HEAD(&ptype_all);
5973 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
5974 		INIT_LIST_HEAD(&ptype_base[i]);
5975 
5976 	if (register_pernet_subsys(&netdev_net_ops))
5977 		goto out;
5978 
5979 	/*
5980 	 *	Initialise the packet receive queues.
5981 	 */
5982 
5983 	for_each_possible_cpu(i) {
5984 		struct softnet_data *queue;
5985 
5986 		queue = &per_cpu(softnet_data, i);
5987 		skb_queue_head_init(&queue->input_pkt_queue);
5988 		queue->completion_queue = NULL;
5989 		INIT_LIST_HEAD(&queue->poll_list);
5990 
5991 		queue->backlog.poll = process_backlog;
5992 		queue->backlog.weight = weight_p;
5993 		queue->backlog.gro_list = NULL;
5994 		queue->backlog.gro_count = 0;
5995 	}
5996 
5997 	dev_boot_phase = 0;
5998 
5999 	/* The loopback device is special if any other network devices
6000 	 * is present in a network namespace the loopback device must
6001 	 * be present. Since we now dynamically allocate and free the
6002 	 * loopback device ensure this invariant is maintained by
6003 	 * keeping the loopback device as the first device on the
6004 	 * list of network devices.  Ensuring the loopback devices
6005 	 * is the first device that appears and the last network device
6006 	 * that disappears.
6007 	 */
6008 	if (register_pernet_device(&loopback_net_ops))
6009 		goto out;
6010 
6011 	if (register_pernet_device(&default_device_ops))
6012 		goto out;
6013 
6014 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6015 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6016 
6017 	hotcpu_notifier(dev_cpu_callback, 0);
6018 	dst_init();
6019 	dev_mcast_init();
6020 	rc = 0;
6021 out:
6022 	return rc;
6023 }
6024 
6025 subsys_initcall(net_dev_init);
6026 
6027 static int __init initialize_hashrnd(void)
6028 {
6029 	get_random_bytes(&skb_tx_hashrnd, sizeof(skb_tx_hashrnd));
6030 	return 0;
6031 }
6032 
6033 late_initcall_sync(initialize_hashrnd);
6034 
6035