1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <asm/uaccess.h> 76 #include <asm/system.h> 77 #include <linux/bitops.h> 78 #include <linux/capability.h> 79 #include <linux/cpu.h> 80 #include <linux/types.h> 81 #include <linux/kernel.h> 82 #include <linux/hash.h> 83 #include <linux/slab.h> 84 #include <linux/sched.h> 85 #include <linux/mutex.h> 86 #include <linux/string.h> 87 #include <linux/mm.h> 88 #include <linux/socket.h> 89 #include <linux/sockios.h> 90 #include <linux/errno.h> 91 #include <linux/interrupt.h> 92 #include <linux/if_ether.h> 93 #include <linux/netdevice.h> 94 #include <linux/etherdevice.h> 95 #include <linux/ethtool.h> 96 #include <linux/notifier.h> 97 #include <linux/skbuff.h> 98 #include <net/net_namespace.h> 99 #include <net/sock.h> 100 #include <linux/rtnetlink.h> 101 #include <linux/proc_fs.h> 102 #include <linux/seq_file.h> 103 #include <linux/stat.h> 104 #include <linux/if_bridge.h> 105 #include <linux/if_macvlan.h> 106 #include <net/dst.h> 107 #include <net/pkt_sched.h> 108 #include <net/checksum.h> 109 #include <net/xfrm.h> 110 #include <linux/highmem.h> 111 #include <linux/init.h> 112 #include <linux/kmod.h> 113 #include <linux/module.h> 114 #include <linux/netpoll.h> 115 #include <linux/rcupdate.h> 116 #include <linux/delay.h> 117 #include <net/wext.h> 118 #include <net/iw_handler.h> 119 #include <asm/current.h> 120 #include <linux/audit.h> 121 #include <linux/dmaengine.h> 122 #include <linux/err.h> 123 #include <linux/ctype.h> 124 #include <linux/if_arp.h> 125 #include <linux/if_vlan.h> 126 #include <linux/ip.h> 127 #include <net/ip.h> 128 #include <linux/ipv6.h> 129 #include <linux/in.h> 130 #include <linux/jhash.h> 131 #include <linux/random.h> 132 #include <trace/events/napi.h> 133 134 #include "net-sysfs.h" 135 136 /* Instead of increasing this, you should create a hash table. */ 137 #define MAX_GRO_SKBS 8 138 139 /* This should be increased if a protocol with a bigger head is added. */ 140 #define GRO_MAX_HEAD (MAX_HEADER + 128) 141 142 /* 143 * The list of packet types we will receive (as opposed to discard) 144 * and the routines to invoke. 145 * 146 * Why 16. Because with 16 the only overlap we get on a hash of the 147 * low nibble of the protocol value is RARP/SNAP/X.25. 148 * 149 * NOTE: That is no longer true with the addition of VLAN tags. Not 150 * sure which should go first, but I bet it won't make much 151 * difference if we are running VLANs. The good news is that 152 * this protocol won't be in the list unless compiled in, so 153 * the average user (w/out VLANs) will not be adversely affected. 154 * --BLG 155 * 156 * 0800 IP 157 * 8100 802.1Q VLAN 158 * 0001 802.3 159 * 0002 AX.25 160 * 0004 802.2 161 * 8035 RARP 162 * 0005 SNAP 163 * 0805 X.25 164 * 0806 ARP 165 * 8137 IPX 166 * 0009 Localtalk 167 * 86DD IPv6 168 */ 169 170 #define PTYPE_HASH_SIZE (16) 171 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 172 173 static DEFINE_SPINLOCK(ptype_lock); 174 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 175 static struct list_head ptype_all __read_mostly; /* Taps */ 176 177 /* 178 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 179 * semaphore. 180 * 181 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 182 * 183 * Writers must hold the rtnl semaphore while they loop through the 184 * dev_base_head list, and hold dev_base_lock for writing when they do the 185 * actual updates. This allows pure readers to access the list even 186 * while a writer is preparing to update it. 187 * 188 * To put it another way, dev_base_lock is held for writing only to 189 * protect against pure readers; the rtnl semaphore provides the 190 * protection against other writers. 191 * 192 * See, for example usages, register_netdevice() and 193 * unregister_netdevice(), which must be called with the rtnl 194 * semaphore held. 195 */ 196 DEFINE_RWLOCK(dev_base_lock); 197 EXPORT_SYMBOL(dev_base_lock); 198 199 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 200 { 201 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 202 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 203 } 204 205 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 206 { 207 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 208 } 209 210 /* Device list insertion */ 211 static int list_netdevice(struct net_device *dev) 212 { 213 struct net *net = dev_net(dev); 214 215 ASSERT_RTNL(); 216 217 write_lock_bh(&dev_base_lock); 218 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 219 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 220 hlist_add_head_rcu(&dev->index_hlist, 221 dev_index_hash(net, dev->ifindex)); 222 write_unlock_bh(&dev_base_lock); 223 return 0; 224 } 225 226 /* Device list removal 227 * caller must respect a RCU grace period before freeing/reusing dev 228 */ 229 static void unlist_netdevice(struct net_device *dev) 230 { 231 ASSERT_RTNL(); 232 233 /* Unlink dev from the device chain */ 234 write_lock_bh(&dev_base_lock); 235 list_del_rcu(&dev->dev_list); 236 hlist_del_rcu(&dev->name_hlist); 237 hlist_del_rcu(&dev->index_hlist); 238 write_unlock_bh(&dev_base_lock); 239 } 240 241 /* 242 * Our notifier list 243 */ 244 245 static RAW_NOTIFIER_HEAD(netdev_chain); 246 247 /* 248 * Device drivers call our routines to queue packets here. We empty the 249 * queue in the local softnet handler. 250 */ 251 252 DEFINE_PER_CPU(struct softnet_data, softnet_data); 253 EXPORT_PER_CPU_SYMBOL(softnet_data); 254 255 #ifdef CONFIG_LOCKDEP 256 /* 257 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 258 * according to dev->type 259 */ 260 static const unsigned short netdev_lock_type[] = 261 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 262 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 263 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 264 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 265 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 266 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 267 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 268 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 269 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 270 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 271 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 272 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 273 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211, 274 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, 275 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154, 276 ARPHRD_VOID, ARPHRD_NONE}; 277 278 static const char *const netdev_lock_name[] = 279 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 280 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 281 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 282 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 283 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 284 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 285 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 286 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 287 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 288 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 289 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 290 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 291 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211", 292 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", 293 "_xmit_PHONET_PIPE", "_xmit_IEEE802154", 294 "_xmit_VOID", "_xmit_NONE"}; 295 296 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 297 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 298 299 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 300 { 301 int i; 302 303 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 304 if (netdev_lock_type[i] == dev_type) 305 return i; 306 /* the last key is used by default */ 307 return ARRAY_SIZE(netdev_lock_type) - 1; 308 } 309 310 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 311 unsigned short dev_type) 312 { 313 int i; 314 315 i = netdev_lock_pos(dev_type); 316 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 317 netdev_lock_name[i]); 318 } 319 320 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 321 { 322 int i; 323 324 i = netdev_lock_pos(dev->type); 325 lockdep_set_class_and_name(&dev->addr_list_lock, 326 &netdev_addr_lock_key[i], 327 netdev_lock_name[i]); 328 } 329 #else 330 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 331 unsigned short dev_type) 332 { 333 } 334 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 335 { 336 } 337 #endif 338 339 /******************************************************************************* 340 341 Protocol management and registration routines 342 343 *******************************************************************************/ 344 345 /* 346 * Add a protocol ID to the list. Now that the input handler is 347 * smarter we can dispense with all the messy stuff that used to be 348 * here. 349 * 350 * BEWARE!!! Protocol handlers, mangling input packets, 351 * MUST BE last in hash buckets and checking protocol handlers 352 * MUST start from promiscuous ptype_all chain in net_bh. 353 * It is true now, do not change it. 354 * Explanation follows: if protocol handler, mangling packet, will 355 * be the first on list, it is not able to sense, that packet 356 * is cloned and should be copied-on-write, so that it will 357 * change it and subsequent readers will get broken packet. 358 * --ANK (980803) 359 */ 360 361 /** 362 * dev_add_pack - add packet handler 363 * @pt: packet type declaration 364 * 365 * Add a protocol handler to the networking stack. The passed &packet_type 366 * is linked into kernel lists and may not be freed until it has been 367 * removed from the kernel lists. 368 * 369 * This call does not sleep therefore it can not 370 * guarantee all CPU's that are in middle of receiving packets 371 * will see the new packet type (until the next received packet). 372 */ 373 374 void dev_add_pack(struct packet_type *pt) 375 { 376 int hash; 377 378 spin_lock_bh(&ptype_lock); 379 if (pt->type == htons(ETH_P_ALL)) 380 list_add_rcu(&pt->list, &ptype_all); 381 else { 382 hash = ntohs(pt->type) & PTYPE_HASH_MASK; 383 list_add_rcu(&pt->list, &ptype_base[hash]); 384 } 385 spin_unlock_bh(&ptype_lock); 386 } 387 EXPORT_SYMBOL(dev_add_pack); 388 389 /** 390 * __dev_remove_pack - remove packet handler 391 * @pt: packet type declaration 392 * 393 * Remove a protocol handler that was previously added to the kernel 394 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 395 * from the kernel lists and can be freed or reused once this function 396 * returns. 397 * 398 * The packet type might still be in use by receivers 399 * and must not be freed until after all the CPU's have gone 400 * through a quiescent state. 401 */ 402 void __dev_remove_pack(struct packet_type *pt) 403 { 404 struct list_head *head; 405 struct packet_type *pt1; 406 407 spin_lock_bh(&ptype_lock); 408 409 if (pt->type == htons(ETH_P_ALL)) 410 head = &ptype_all; 411 else 412 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 413 414 list_for_each_entry(pt1, head, list) { 415 if (pt == pt1) { 416 list_del_rcu(&pt->list); 417 goto out; 418 } 419 } 420 421 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt); 422 out: 423 spin_unlock_bh(&ptype_lock); 424 } 425 EXPORT_SYMBOL(__dev_remove_pack); 426 427 /** 428 * dev_remove_pack - remove packet handler 429 * @pt: packet type declaration 430 * 431 * Remove a protocol handler that was previously added to the kernel 432 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 433 * from the kernel lists and can be freed or reused once this function 434 * returns. 435 * 436 * This call sleeps to guarantee that no CPU is looking at the packet 437 * type after return. 438 */ 439 void dev_remove_pack(struct packet_type *pt) 440 { 441 __dev_remove_pack(pt); 442 443 synchronize_net(); 444 } 445 EXPORT_SYMBOL(dev_remove_pack); 446 447 /****************************************************************************** 448 449 Device Boot-time Settings Routines 450 451 *******************************************************************************/ 452 453 /* Boot time configuration table */ 454 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 455 456 /** 457 * netdev_boot_setup_add - add new setup entry 458 * @name: name of the device 459 * @map: configured settings for the device 460 * 461 * Adds new setup entry to the dev_boot_setup list. The function 462 * returns 0 on error and 1 on success. This is a generic routine to 463 * all netdevices. 464 */ 465 static int netdev_boot_setup_add(char *name, struct ifmap *map) 466 { 467 struct netdev_boot_setup *s; 468 int i; 469 470 s = dev_boot_setup; 471 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 472 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 473 memset(s[i].name, 0, sizeof(s[i].name)); 474 strlcpy(s[i].name, name, IFNAMSIZ); 475 memcpy(&s[i].map, map, sizeof(s[i].map)); 476 break; 477 } 478 } 479 480 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 481 } 482 483 /** 484 * netdev_boot_setup_check - check boot time settings 485 * @dev: the netdevice 486 * 487 * Check boot time settings for the device. 488 * The found settings are set for the device to be used 489 * later in the device probing. 490 * Returns 0 if no settings found, 1 if they are. 491 */ 492 int netdev_boot_setup_check(struct net_device *dev) 493 { 494 struct netdev_boot_setup *s = dev_boot_setup; 495 int i; 496 497 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 498 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 499 !strcmp(dev->name, s[i].name)) { 500 dev->irq = s[i].map.irq; 501 dev->base_addr = s[i].map.base_addr; 502 dev->mem_start = s[i].map.mem_start; 503 dev->mem_end = s[i].map.mem_end; 504 return 1; 505 } 506 } 507 return 0; 508 } 509 EXPORT_SYMBOL(netdev_boot_setup_check); 510 511 512 /** 513 * netdev_boot_base - get address from boot time settings 514 * @prefix: prefix for network device 515 * @unit: id for network device 516 * 517 * Check boot time settings for the base address of device. 518 * The found settings are set for the device to be used 519 * later in the device probing. 520 * Returns 0 if no settings found. 521 */ 522 unsigned long netdev_boot_base(const char *prefix, int unit) 523 { 524 const struct netdev_boot_setup *s = dev_boot_setup; 525 char name[IFNAMSIZ]; 526 int i; 527 528 sprintf(name, "%s%d", prefix, unit); 529 530 /* 531 * If device already registered then return base of 1 532 * to indicate not to probe for this interface 533 */ 534 if (__dev_get_by_name(&init_net, name)) 535 return 1; 536 537 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 538 if (!strcmp(name, s[i].name)) 539 return s[i].map.base_addr; 540 return 0; 541 } 542 543 /* 544 * Saves at boot time configured settings for any netdevice. 545 */ 546 int __init netdev_boot_setup(char *str) 547 { 548 int ints[5]; 549 struct ifmap map; 550 551 str = get_options(str, ARRAY_SIZE(ints), ints); 552 if (!str || !*str) 553 return 0; 554 555 /* Save settings */ 556 memset(&map, 0, sizeof(map)); 557 if (ints[0] > 0) 558 map.irq = ints[1]; 559 if (ints[0] > 1) 560 map.base_addr = ints[2]; 561 if (ints[0] > 2) 562 map.mem_start = ints[3]; 563 if (ints[0] > 3) 564 map.mem_end = ints[4]; 565 566 /* Add new entry to the list */ 567 return netdev_boot_setup_add(str, &map); 568 } 569 570 __setup("netdev=", netdev_boot_setup); 571 572 /******************************************************************************* 573 574 Device Interface Subroutines 575 576 *******************************************************************************/ 577 578 /** 579 * __dev_get_by_name - find a device by its name 580 * @net: the applicable net namespace 581 * @name: name to find 582 * 583 * Find an interface by name. Must be called under RTNL semaphore 584 * or @dev_base_lock. If the name is found a pointer to the device 585 * is returned. If the name is not found then %NULL is returned. The 586 * reference counters are not incremented so the caller must be 587 * careful with locks. 588 */ 589 590 struct net_device *__dev_get_by_name(struct net *net, const char *name) 591 { 592 struct hlist_node *p; 593 struct net_device *dev; 594 struct hlist_head *head = dev_name_hash(net, name); 595 596 hlist_for_each_entry(dev, p, head, name_hlist) 597 if (!strncmp(dev->name, name, IFNAMSIZ)) 598 return dev; 599 600 return NULL; 601 } 602 EXPORT_SYMBOL(__dev_get_by_name); 603 604 /** 605 * dev_get_by_name_rcu - find a device by its name 606 * @net: the applicable net namespace 607 * @name: name to find 608 * 609 * Find an interface by name. 610 * If the name is found a pointer to the device is returned. 611 * If the name is not found then %NULL is returned. 612 * The reference counters are not incremented so the caller must be 613 * careful with locks. The caller must hold RCU lock. 614 */ 615 616 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 617 { 618 struct hlist_node *p; 619 struct net_device *dev; 620 struct hlist_head *head = dev_name_hash(net, name); 621 622 hlist_for_each_entry_rcu(dev, p, head, name_hlist) 623 if (!strncmp(dev->name, name, IFNAMSIZ)) 624 return dev; 625 626 return NULL; 627 } 628 EXPORT_SYMBOL(dev_get_by_name_rcu); 629 630 /** 631 * dev_get_by_name - find a device by its name 632 * @net: the applicable net namespace 633 * @name: name to find 634 * 635 * Find an interface by name. This can be called from any 636 * context and does its own locking. The returned handle has 637 * the usage count incremented and the caller must use dev_put() to 638 * release it when it is no longer needed. %NULL is returned if no 639 * matching device is found. 640 */ 641 642 struct net_device *dev_get_by_name(struct net *net, const char *name) 643 { 644 struct net_device *dev; 645 646 rcu_read_lock(); 647 dev = dev_get_by_name_rcu(net, name); 648 if (dev) 649 dev_hold(dev); 650 rcu_read_unlock(); 651 return dev; 652 } 653 EXPORT_SYMBOL(dev_get_by_name); 654 655 /** 656 * __dev_get_by_index - find a device by its ifindex 657 * @net: the applicable net namespace 658 * @ifindex: index of device 659 * 660 * Search for an interface by index. Returns %NULL if the device 661 * is not found or a pointer to the device. The device has not 662 * had its reference counter increased so the caller must be careful 663 * about locking. The caller must hold either the RTNL semaphore 664 * or @dev_base_lock. 665 */ 666 667 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 668 { 669 struct hlist_node *p; 670 struct net_device *dev; 671 struct hlist_head *head = dev_index_hash(net, ifindex); 672 673 hlist_for_each_entry(dev, p, head, index_hlist) 674 if (dev->ifindex == ifindex) 675 return dev; 676 677 return NULL; 678 } 679 EXPORT_SYMBOL(__dev_get_by_index); 680 681 /** 682 * dev_get_by_index_rcu - find a device by its ifindex 683 * @net: the applicable net namespace 684 * @ifindex: index of device 685 * 686 * Search for an interface by index. Returns %NULL if the device 687 * is not found or a pointer to the device. The device has not 688 * had its reference counter increased so the caller must be careful 689 * about locking. The caller must hold RCU lock. 690 */ 691 692 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 693 { 694 struct hlist_node *p; 695 struct net_device *dev; 696 struct hlist_head *head = dev_index_hash(net, ifindex); 697 698 hlist_for_each_entry_rcu(dev, p, head, index_hlist) 699 if (dev->ifindex == ifindex) 700 return dev; 701 702 return NULL; 703 } 704 EXPORT_SYMBOL(dev_get_by_index_rcu); 705 706 707 /** 708 * dev_get_by_index - find a device by its ifindex 709 * @net: the applicable net namespace 710 * @ifindex: index of device 711 * 712 * Search for an interface by index. Returns NULL if the device 713 * is not found or a pointer to the device. The device returned has 714 * had a reference added and the pointer is safe until the user calls 715 * dev_put to indicate they have finished with it. 716 */ 717 718 struct net_device *dev_get_by_index(struct net *net, int ifindex) 719 { 720 struct net_device *dev; 721 722 rcu_read_lock(); 723 dev = dev_get_by_index_rcu(net, ifindex); 724 if (dev) 725 dev_hold(dev); 726 rcu_read_unlock(); 727 return dev; 728 } 729 EXPORT_SYMBOL(dev_get_by_index); 730 731 /** 732 * dev_getbyhwaddr - find a device by its hardware address 733 * @net: the applicable net namespace 734 * @type: media type of device 735 * @ha: hardware address 736 * 737 * Search for an interface by MAC address. Returns NULL if the device 738 * is not found or a pointer to the device. The caller must hold the 739 * rtnl semaphore. The returned device has not had its ref count increased 740 * and the caller must therefore be careful about locking 741 * 742 * BUGS: 743 * If the API was consistent this would be __dev_get_by_hwaddr 744 */ 745 746 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha) 747 { 748 struct net_device *dev; 749 750 ASSERT_RTNL(); 751 752 for_each_netdev(net, dev) 753 if (dev->type == type && 754 !memcmp(dev->dev_addr, ha, dev->addr_len)) 755 return dev; 756 757 return NULL; 758 } 759 EXPORT_SYMBOL(dev_getbyhwaddr); 760 761 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 762 { 763 struct net_device *dev; 764 765 ASSERT_RTNL(); 766 for_each_netdev(net, dev) 767 if (dev->type == type) 768 return dev; 769 770 return NULL; 771 } 772 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 773 774 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 775 { 776 struct net_device *dev; 777 778 rtnl_lock(); 779 dev = __dev_getfirstbyhwtype(net, type); 780 if (dev) 781 dev_hold(dev); 782 rtnl_unlock(); 783 return dev; 784 } 785 EXPORT_SYMBOL(dev_getfirstbyhwtype); 786 787 /** 788 * dev_get_by_flags - find any device with given flags 789 * @net: the applicable net namespace 790 * @if_flags: IFF_* values 791 * @mask: bitmask of bits in if_flags to check 792 * 793 * Search for any interface with the given flags. Returns NULL if a device 794 * is not found or a pointer to the device. The device returned has 795 * had a reference added and the pointer is safe until the user calls 796 * dev_put to indicate they have finished with it. 797 */ 798 799 struct net_device *dev_get_by_flags(struct net *net, unsigned short if_flags, 800 unsigned short mask) 801 { 802 struct net_device *dev, *ret; 803 804 ret = NULL; 805 rcu_read_lock(); 806 for_each_netdev_rcu(net, dev) { 807 if (((dev->flags ^ if_flags) & mask) == 0) { 808 dev_hold(dev); 809 ret = dev; 810 break; 811 } 812 } 813 rcu_read_unlock(); 814 return ret; 815 } 816 EXPORT_SYMBOL(dev_get_by_flags); 817 818 /** 819 * dev_valid_name - check if name is okay for network device 820 * @name: name string 821 * 822 * Network device names need to be valid file names to 823 * to allow sysfs to work. We also disallow any kind of 824 * whitespace. 825 */ 826 int dev_valid_name(const char *name) 827 { 828 if (*name == '\0') 829 return 0; 830 if (strlen(name) >= IFNAMSIZ) 831 return 0; 832 if (!strcmp(name, ".") || !strcmp(name, "..")) 833 return 0; 834 835 while (*name) { 836 if (*name == '/' || isspace(*name)) 837 return 0; 838 name++; 839 } 840 return 1; 841 } 842 EXPORT_SYMBOL(dev_valid_name); 843 844 /** 845 * __dev_alloc_name - allocate a name for a device 846 * @net: network namespace to allocate the device name in 847 * @name: name format string 848 * @buf: scratch buffer and result name string 849 * 850 * Passed a format string - eg "lt%d" it will try and find a suitable 851 * id. It scans list of devices to build up a free map, then chooses 852 * the first empty slot. The caller must hold the dev_base or rtnl lock 853 * while allocating the name and adding the device in order to avoid 854 * duplicates. 855 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 856 * Returns the number of the unit assigned or a negative errno code. 857 */ 858 859 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 860 { 861 int i = 0; 862 const char *p; 863 const int max_netdevices = 8*PAGE_SIZE; 864 unsigned long *inuse; 865 struct net_device *d; 866 867 p = strnchr(name, IFNAMSIZ-1, '%'); 868 if (p) { 869 /* 870 * Verify the string as this thing may have come from 871 * the user. There must be either one "%d" and no other "%" 872 * characters. 873 */ 874 if (p[1] != 'd' || strchr(p + 2, '%')) 875 return -EINVAL; 876 877 /* Use one page as a bit array of possible slots */ 878 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 879 if (!inuse) 880 return -ENOMEM; 881 882 for_each_netdev(net, d) { 883 if (!sscanf(d->name, name, &i)) 884 continue; 885 if (i < 0 || i >= max_netdevices) 886 continue; 887 888 /* avoid cases where sscanf is not exact inverse of printf */ 889 snprintf(buf, IFNAMSIZ, name, i); 890 if (!strncmp(buf, d->name, IFNAMSIZ)) 891 set_bit(i, inuse); 892 } 893 894 i = find_first_zero_bit(inuse, max_netdevices); 895 free_page((unsigned long) inuse); 896 } 897 898 if (buf != name) 899 snprintf(buf, IFNAMSIZ, name, i); 900 if (!__dev_get_by_name(net, buf)) 901 return i; 902 903 /* It is possible to run out of possible slots 904 * when the name is long and there isn't enough space left 905 * for the digits, or if all bits are used. 906 */ 907 return -ENFILE; 908 } 909 910 /** 911 * dev_alloc_name - allocate a name for a device 912 * @dev: device 913 * @name: name format string 914 * 915 * Passed a format string - eg "lt%d" it will try and find a suitable 916 * id. It scans list of devices to build up a free map, then chooses 917 * the first empty slot. The caller must hold the dev_base or rtnl lock 918 * while allocating the name and adding the device in order to avoid 919 * duplicates. 920 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 921 * Returns the number of the unit assigned or a negative errno code. 922 */ 923 924 int dev_alloc_name(struct net_device *dev, const char *name) 925 { 926 char buf[IFNAMSIZ]; 927 struct net *net; 928 int ret; 929 930 BUG_ON(!dev_net(dev)); 931 net = dev_net(dev); 932 ret = __dev_alloc_name(net, name, buf); 933 if (ret >= 0) 934 strlcpy(dev->name, buf, IFNAMSIZ); 935 return ret; 936 } 937 EXPORT_SYMBOL(dev_alloc_name); 938 939 static int dev_get_valid_name(struct net *net, const char *name, char *buf, 940 bool fmt) 941 { 942 if (!dev_valid_name(name)) 943 return -EINVAL; 944 945 if (fmt && strchr(name, '%')) 946 return __dev_alloc_name(net, name, buf); 947 else if (__dev_get_by_name(net, name)) 948 return -EEXIST; 949 else if (buf != name) 950 strlcpy(buf, name, IFNAMSIZ); 951 952 return 0; 953 } 954 955 /** 956 * dev_change_name - change name of a device 957 * @dev: device 958 * @newname: name (or format string) must be at least IFNAMSIZ 959 * 960 * Change name of a device, can pass format strings "eth%d". 961 * for wildcarding. 962 */ 963 int dev_change_name(struct net_device *dev, const char *newname) 964 { 965 char oldname[IFNAMSIZ]; 966 int err = 0; 967 int ret; 968 struct net *net; 969 970 ASSERT_RTNL(); 971 BUG_ON(!dev_net(dev)); 972 973 net = dev_net(dev); 974 if (dev->flags & IFF_UP) 975 return -EBUSY; 976 977 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) 978 return 0; 979 980 memcpy(oldname, dev->name, IFNAMSIZ); 981 982 err = dev_get_valid_name(net, newname, dev->name, 1); 983 if (err < 0) 984 return err; 985 986 rollback: 987 /* For now only devices in the initial network namespace 988 * are in sysfs. 989 */ 990 if (net_eq(net, &init_net)) { 991 ret = device_rename(&dev->dev, dev->name); 992 if (ret) { 993 memcpy(dev->name, oldname, IFNAMSIZ); 994 return ret; 995 } 996 } 997 998 write_lock_bh(&dev_base_lock); 999 hlist_del(&dev->name_hlist); 1000 write_unlock_bh(&dev_base_lock); 1001 1002 synchronize_rcu(); 1003 1004 write_lock_bh(&dev_base_lock); 1005 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1006 write_unlock_bh(&dev_base_lock); 1007 1008 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1009 ret = notifier_to_errno(ret); 1010 1011 if (ret) { 1012 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1013 if (err >= 0) { 1014 err = ret; 1015 memcpy(dev->name, oldname, IFNAMSIZ); 1016 goto rollback; 1017 } else { 1018 printk(KERN_ERR 1019 "%s: name change rollback failed: %d.\n", 1020 dev->name, ret); 1021 } 1022 } 1023 1024 return err; 1025 } 1026 1027 /** 1028 * dev_set_alias - change ifalias of a device 1029 * @dev: device 1030 * @alias: name up to IFALIASZ 1031 * @len: limit of bytes to copy from info 1032 * 1033 * Set ifalias for a device, 1034 */ 1035 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1036 { 1037 ASSERT_RTNL(); 1038 1039 if (len >= IFALIASZ) 1040 return -EINVAL; 1041 1042 if (!len) { 1043 if (dev->ifalias) { 1044 kfree(dev->ifalias); 1045 dev->ifalias = NULL; 1046 } 1047 return 0; 1048 } 1049 1050 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL); 1051 if (!dev->ifalias) 1052 return -ENOMEM; 1053 1054 strlcpy(dev->ifalias, alias, len+1); 1055 return len; 1056 } 1057 1058 1059 /** 1060 * netdev_features_change - device changes features 1061 * @dev: device to cause notification 1062 * 1063 * Called to indicate a device has changed features. 1064 */ 1065 void netdev_features_change(struct net_device *dev) 1066 { 1067 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1068 } 1069 EXPORT_SYMBOL(netdev_features_change); 1070 1071 /** 1072 * netdev_state_change - device changes state 1073 * @dev: device to cause notification 1074 * 1075 * Called to indicate a device has changed state. This function calls 1076 * the notifier chains for netdev_chain and sends a NEWLINK message 1077 * to the routing socket. 1078 */ 1079 void netdev_state_change(struct net_device *dev) 1080 { 1081 if (dev->flags & IFF_UP) { 1082 call_netdevice_notifiers(NETDEV_CHANGE, dev); 1083 rtmsg_ifinfo(RTM_NEWLINK, dev, 0); 1084 } 1085 } 1086 EXPORT_SYMBOL(netdev_state_change); 1087 1088 void netdev_bonding_change(struct net_device *dev, unsigned long event) 1089 { 1090 call_netdevice_notifiers(event, dev); 1091 } 1092 EXPORT_SYMBOL(netdev_bonding_change); 1093 1094 /** 1095 * dev_load - load a network module 1096 * @net: the applicable net namespace 1097 * @name: name of interface 1098 * 1099 * If a network interface is not present and the process has suitable 1100 * privileges this function loads the module. If module loading is not 1101 * available in this kernel then it becomes a nop. 1102 */ 1103 1104 void dev_load(struct net *net, const char *name) 1105 { 1106 struct net_device *dev; 1107 1108 rcu_read_lock(); 1109 dev = dev_get_by_name_rcu(net, name); 1110 rcu_read_unlock(); 1111 1112 if (!dev && capable(CAP_NET_ADMIN)) 1113 request_module("%s", name); 1114 } 1115 EXPORT_SYMBOL(dev_load); 1116 1117 static int __dev_open(struct net_device *dev) 1118 { 1119 const struct net_device_ops *ops = dev->netdev_ops; 1120 int ret; 1121 1122 ASSERT_RTNL(); 1123 1124 /* 1125 * Is it even present? 1126 */ 1127 if (!netif_device_present(dev)) 1128 return -ENODEV; 1129 1130 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1131 ret = notifier_to_errno(ret); 1132 if (ret) 1133 return ret; 1134 1135 /* 1136 * Call device private open method 1137 */ 1138 set_bit(__LINK_STATE_START, &dev->state); 1139 1140 if (ops->ndo_validate_addr) 1141 ret = ops->ndo_validate_addr(dev); 1142 1143 if (!ret && ops->ndo_open) 1144 ret = ops->ndo_open(dev); 1145 1146 /* 1147 * If it went open OK then: 1148 */ 1149 1150 if (ret) 1151 clear_bit(__LINK_STATE_START, &dev->state); 1152 else { 1153 /* 1154 * Set the flags. 1155 */ 1156 dev->flags |= IFF_UP; 1157 1158 /* 1159 * Enable NET_DMA 1160 */ 1161 net_dmaengine_get(); 1162 1163 /* 1164 * Initialize multicasting status 1165 */ 1166 dev_set_rx_mode(dev); 1167 1168 /* 1169 * Wakeup transmit queue engine 1170 */ 1171 dev_activate(dev); 1172 } 1173 1174 return ret; 1175 } 1176 1177 /** 1178 * dev_open - prepare an interface for use. 1179 * @dev: device to open 1180 * 1181 * Takes a device from down to up state. The device's private open 1182 * function is invoked and then the multicast lists are loaded. Finally 1183 * the device is moved into the up state and a %NETDEV_UP message is 1184 * sent to the netdev notifier chain. 1185 * 1186 * Calling this function on an active interface is a nop. On a failure 1187 * a negative errno code is returned. 1188 */ 1189 int dev_open(struct net_device *dev) 1190 { 1191 int ret; 1192 1193 /* 1194 * Is it already up? 1195 */ 1196 if (dev->flags & IFF_UP) 1197 return 0; 1198 1199 /* 1200 * Open device 1201 */ 1202 ret = __dev_open(dev); 1203 if (ret < 0) 1204 return ret; 1205 1206 /* 1207 * ... and announce new interface. 1208 */ 1209 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING); 1210 call_netdevice_notifiers(NETDEV_UP, dev); 1211 1212 return ret; 1213 } 1214 EXPORT_SYMBOL(dev_open); 1215 1216 static int __dev_close(struct net_device *dev) 1217 { 1218 const struct net_device_ops *ops = dev->netdev_ops; 1219 1220 ASSERT_RTNL(); 1221 might_sleep(); 1222 1223 /* 1224 * Tell people we are going down, so that they can 1225 * prepare to death, when device is still operating. 1226 */ 1227 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1228 1229 clear_bit(__LINK_STATE_START, &dev->state); 1230 1231 /* Synchronize to scheduled poll. We cannot touch poll list, 1232 * it can be even on different cpu. So just clear netif_running(). 1233 * 1234 * dev->stop() will invoke napi_disable() on all of it's 1235 * napi_struct instances on this device. 1236 */ 1237 smp_mb__after_clear_bit(); /* Commit netif_running(). */ 1238 1239 dev_deactivate(dev); 1240 1241 /* 1242 * Call the device specific close. This cannot fail. 1243 * Only if device is UP 1244 * 1245 * We allow it to be called even after a DETACH hot-plug 1246 * event. 1247 */ 1248 if (ops->ndo_stop) 1249 ops->ndo_stop(dev); 1250 1251 /* 1252 * Device is now down. 1253 */ 1254 1255 dev->flags &= ~IFF_UP; 1256 1257 /* 1258 * Shutdown NET_DMA 1259 */ 1260 net_dmaengine_put(); 1261 1262 return 0; 1263 } 1264 1265 /** 1266 * dev_close - shutdown an interface. 1267 * @dev: device to shutdown 1268 * 1269 * This function moves an active device into down state. A 1270 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1271 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1272 * chain. 1273 */ 1274 int dev_close(struct net_device *dev) 1275 { 1276 if (!(dev->flags & IFF_UP)) 1277 return 0; 1278 1279 __dev_close(dev); 1280 1281 /* 1282 * Tell people we are down 1283 */ 1284 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING); 1285 call_netdevice_notifiers(NETDEV_DOWN, dev); 1286 1287 return 0; 1288 } 1289 EXPORT_SYMBOL(dev_close); 1290 1291 1292 /** 1293 * dev_disable_lro - disable Large Receive Offload on a device 1294 * @dev: device 1295 * 1296 * Disable Large Receive Offload (LRO) on a net device. Must be 1297 * called under RTNL. This is needed if received packets may be 1298 * forwarded to another interface. 1299 */ 1300 void dev_disable_lro(struct net_device *dev) 1301 { 1302 if (dev->ethtool_ops && dev->ethtool_ops->get_flags && 1303 dev->ethtool_ops->set_flags) { 1304 u32 flags = dev->ethtool_ops->get_flags(dev); 1305 if (flags & ETH_FLAG_LRO) { 1306 flags &= ~ETH_FLAG_LRO; 1307 dev->ethtool_ops->set_flags(dev, flags); 1308 } 1309 } 1310 WARN_ON(dev->features & NETIF_F_LRO); 1311 } 1312 EXPORT_SYMBOL(dev_disable_lro); 1313 1314 1315 static int dev_boot_phase = 1; 1316 1317 /* 1318 * Device change register/unregister. These are not inline or static 1319 * as we export them to the world. 1320 */ 1321 1322 /** 1323 * register_netdevice_notifier - register a network notifier block 1324 * @nb: notifier 1325 * 1326 * Register a notifier to be called when network device events occur. 1327 * The notifier passed is linked into the kernel structures and must 1328 * not be reused until it has been unregistered. A negative errno code 1329 * is returned on a failure. 1330 * 1331 * When registered all registration and up events are replayed 1332 * to the new notifier to allow device to have a race free 1333 * view of the network device list. 1334 */ 1335 1336 int register_netdevice_notifier(struct notifier_block *nb) 1337 { 1338 struct net_device *dev; 1339 struct net_device *last; 1340 struct net *net; 1341 int err; 1342 1343 rtnl_lock(); 1344 err = raw_notifier_chain_register(&netdev_chain, nb); 1345 if (err) 1346 goto unlock; 1347 if (dev_boot_phase) 1348 goto unlock; 1349 for_each_net(net) { 1350 for_each_netdev(net, dev) { 1351 err = nb->notifier_call(nb, NETDEV_REGISTER, dev); 1352 err = notifier_to_errno(err); 1353 if (err) 1354 goto rollback; 1355 1356 if (!(dev->flags & IFF_UP)) 1357 continue; 1358 1359 nb->notifier_call(nb, NETDEV_UP, dev); 1360 } 1361 } 1362 1363 unlock: 1364 rtnl_unlock(); 1365 return err; 1366 1367 rollback: 1368 last = dev; 1369 for_each_net(net) { 1370 for_each_netdev(net, dev) { 1371 if (dev == last) 1372 break; 1373 1374 if (dev->flags & IFF_UP) { 1375 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev); 1376 nb->notifier_call(nb, NETDEV_DOWN, dev); 1377 } 1378 nb->notifier_call(nb, NETDEV_UNREGISTER, dev); 1379 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev); 1380 } 1381 } 1382 1383 raw_notifier_chain_unregister(&netdev_chain, nb); 1384 goto unlock; 1385 } 1386 EXPORT_SYMBOL(register_netdevice_notifier); 1387 1388 /** 1389 * unregister_netdevice_notifier - unregister a network notifier block 1390 * @nb: notifier 1391 * 1392 * Unregister a notifier previously registered by 1393 * register_netdevice_notifier(). The notifier is unlinked into the 1394 * kernel structures and may then be reused. A negative errno code 1395 * is returned on a failure. 1396 */ 1397 1398 int unregister_netdevice_notifier(struct notifier_block *nb) 1399 { 1400 int err; 1401 1402 rtnl_lock(); 1403 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1404 rtnl_unlock(); 1405 return err; 1406 } 1407 EXPORT_SYMBOL(unregister_netdevice_notifier); 1408 1409 /** 1410 * call_netdevice_notifiers - call all network notifier blocks 1411 * @val: value passed unmodified to notifier function 1412 * @dev: net_device pointer passed unmodified to notifier function 1413 * 1414 * Call all network notifier blocks. Parameters and return value 1415 * are as for raw_notifier_call_chain(). 1416 */ 1417 1418 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1419 { 1420 return raw_notifier_call_chain(&netdev_chain, val, dev); 1421 } 1422 1423 /* When > 0 there are consumers of rx skb time stamps */ 1424 static atomic_t netstamp_needed = ATOMIC_INIT(0); 1425 1426 void net_enable_timestamp(void) 1427 { 1428 atomic_inc(&netstamp_needed); 1429 } 1430 EXPORT_SYMBOL(net_enable_timestamp); 1431 1432 void net_disable_timestamp(void) 1433 { 1434 atomic_dec(&netstamp_needed); 1435 } 1436 EXPORT_SYMBOL(net_disable_timestamp); 1437 1438 static inline void net_timestamp(struct sk_buff *skb) 1439 { 1440 if (atomic_read(&netstamp_needed)) 1441 __net_timestamp(skb); 1442 else 1443 skb->tstamp.tv64 = 0; 1444 } 1445 1446 /** 1447 * dev_forward_skb - loopback an skb to another netif 1448 * 1449 * @dev: destination network device 1450 * @skb: buffer to forward 1451 * 1452 * return values: 1453 * NET_RX_SUCCESS (no congestion) 1454 * NET_RX_DROP (packet was dropped) 1455 * 1456 * dev_forward_skb can be used for injecting an skb from the 1457 * start_xmit function of one device into the receive queue 1458 * of another device. 1459 * 1460 * The receiving device may be in another namespace, so 1461 * we have to clear all information in the skb that could 1462 * impact namespace isolation. 1463 */ 1464 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1465 { 1466 skb_orphan(skb); 1467 1468 if (!(dev->flags & IFF_UP)) 1469 return NET_RX_DROP; 1470 1471 if (skb->len > (dev->mtu + dev->hard_header_len)) 1472 return NET_RX_DROP; 1473 1474 skb_set_dev(skb, dev); 1475 skb->tstamp.tv64 = 0; 1476 skb->pkt_type = PACKET_HOST; 1477 skb->protocol = eth_type_trans(skb, dev); 1478 return netif_rx(skb); 1479 } 1480 EXPORT_SYMBOL_GPL(dev_forward_skb); 1481 1482 /* 1483 * Support routine. Sends outgoing frames to any network 1484 * taps currently in use. 1485 */ 1486 1487 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1488 { 1489 struct packet_type *ptype; 1490 1491 #ifdef CONFIG_NET_CLS_ACT 1492 if (!(skb->tstamp.tv64 && (G_TC_FROM(skb->tc_verd) & AT_INGRESS))) 1493 net_timestamp(skb); 1494 #else 1495 net_timestamp(skb); 1496 #endif 1497 1498 rcu_read_lock(); 1499 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1500 /* Never send packets back to the socket 1501 * they originated from - MvS (miquels@drinkel.ow.org) 1502 */ 1503 if ((ptype->dev == dev || !ptype->dev) && 1504 (ptype->af_packet_priv == NULL || 1505 (struct sock *)ptype->af_packet_priv != skb->sk)) { 1506 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); 1507 if (!skb2) 1508 break; 1509 1510 /* skb->nh should be correctly 1511 set by sender, so that the second statement is 1512 just protection against buggy protocols. 1513 */ 1514 skb_reset_mac_header(skb2); 1515 1516 if (skb_network_header(skb2) < skb2->data || 1517 skb2->network_header > skb2->tail) { 1518 if (net_ratelimit()) 1519 printk(KERN_CRIT "protocol %04x is " 1520 "buggy, dev %s\n", 1521 skb2->protocol, dev->name); 1522 skb_reset_network_header(skb2); 1523 } 1524 1525 skb2->transport_header = skb2->network_header; 1526 skb2->pkt_type = PACKET_OUTGOING; 1527 ptype->func(skb2, skb->dev, ptype, skb->dev); 1528 } 1529 } 1530 rcu_read_unlock(); 1531 } 1532 1533 1534 static inline void __netif_reschedule(struct Qdisc *q) 1535 { 1536 struct softnet_data *sd; 1537 unsigned long flags; 1538 1539 local_irq_save(flags); 1540 sd = &__get_cpu_var(softnet_data); 1541 q->next_sched = sd->output_queue; 1542 sd->output_queue = q; 1543 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1544 local_irq_restore(flags); 1545 } 1546 1547 void __netif_schedule(struct Qdisc *q) 1548 { 1549 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 1550 __netif_reschedule(q); 1551 } 1552 EXPORT_SYMBOL(__netif_schedule); 1553 1554 void dev_kfree_skb_irq(struct sk_buff *skb) 1555 { 1556 if (atomic_dec_and_test(&skb->users)) { 1557 struct softnet_data *sd; 1558 unsigned long flags; 1559 1560 local_irq_save(flags); 1561 sd = &__get_cpu_var(softnet_data); 1562 skb->next = sd->completion_queue; 1563 sd->completion_queue = skb; 1564 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1565 local_irq_restore(flags); 1566 } 1567 } 1568 EXPORT_SYMBOL(dev_kfree_skb_irq); 1569 1570 void dev_kfree_skb_any(struct sk_buff *skb) 1571 { 1572 if (in_irq() || irqs_disabled()) 1573 dev_kfree_skb_irq(skb); 1574 else 1575 dev_kfree_skb(skb); 1576 } 1577 EXPORT_SYMBOL(dev_kfree_skb_any); 1578 1579 1580 /** 1581 * netif_device_detach - mark device as removed 1582 * @dev: network device 1583 * 1584 * Mark device as removed from system and therefore no longer available. 1585 */ 1586 void netif_device_detach(struct net_device *dev) 1587 { 1588 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 1589 netif_running(dev)) { 1590 netif_tx_stop_all_queues(dev); 1591 } 1592 } 1593 EXPORT_SYMBOL(netif_device_detach); 1594 1595 /** 1596 * netif_device_attach - mark device as attached 1597 * @dev: network device 1598 * 1599 * Mark device as attached from system and restart if needed. 1600 */ 1601 void netif_device_attach(struct net_device *dev) 1602 { 1603 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 1604 netif_running(dev)) { 1605 netif_tx_wake_all_queues(dev); 1606 __netdev_watchdog_up(dev); 1607 } 1608 } 1609 EXPORT_SYMBOL(netif_device_attach); 1610 1611 static bool can_checksum_protocol(unsigned long features, __be16 protocol) 1612 { 1613 return ((features & NETIF_F_GEN_CSUM) || 1614 ((features & NETIF_F_IP_CSUM) && 1615 protocol == htons(ETH_P_IP)) || 1616 ((features & NETIF_F_IPV6_CSUM) && 1617 protocol == htons(ETH_P_IPV6)) || 1618 ((features & NETIF_F_FCOE_CRC) && 1619 protocol == htons(ETH_P_FCOE))); 1620 } 1621 1622 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb) 1623 { 1624 if (can_checksum_protocol(dev->features, skb->protocol)) 1625 return true; 1626 1627 if (skb->protocol == htons(ETH_P_8021Q)) { 1628 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data; 1629 if (can_checksum_protocol(dev->features & dev->vlan_features, 1630 veh->h_vlan_encapsulated_proto)) 1631 return true; 1632 } 1633 1634 return false; 1635 } 1636 1637 /** 1638 * skb_dev_set -- assign a new device to a buffer 1639 * @skb: buffer for the new device 1640 * @dev: network device 1641 * 1642 * If an skb is owned by a device already, we have to reset 1643 * all data private to the namespace a device belongs to 1644 * before assigning it a new device. 1645 */ 1646 #ifdef CONFIG_NET_NS 1647 void skb_set_dev(struct sk_buff *skb, struct net_device *dev) 1648 { 1649 skb_dst_drop(skb); 1650 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) { 1651 secpath_reset(skb); 1652 nf_reset(skb); 1653 skb_init_secmark(skb); 1654 skb->mark = 0; 1655 skb->priority = 0; 1656 skb->nf_trace = 0; 1657 skb->ipvs_property = 0; 1658 #ifdef CONFIG_NET_SCHED 1659 skb->tc_index = 0; 1660 #endif 1661 } 1662 skb->dev = dev; 1663 } 1664 EXPORT_SYMBOL(skb_set_dev); 1665 #endif /* CONFIG_NET_NS */ 1666 1667 /* 1668 * Invalidate hardware checksum when packet is to be mangled, and 1669 * complete checksum manually on outgoing path. 1670 */ 1671 int skb_checksum_help(struct sk_buff *skb) 1672 { 1673 __wsum csum; 1674 int ret = 0, offset; 1675 1676 if (skb->ip_summed == CHECKSUM_COMPLETE) 1677 goto out_set_summed; 1678 1679 if (unlikely(skb_shinfo(skb)->gso_size)) { 1680 /* Let GSO fix up the checksum. */ 1681 goto out_set_summed; 1682 } 1683 1684 offset = skb->csum_start - skb_headroom(skb); 1685 BUG_ON(offset >= skb_headlen(skb)); 1686 csum = skb_checksum(skb, offset, skb->len - offset, 0); 1687 1688 offset += skb->csum_offset; 1689 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 1690 1691 if (skb_cloned(skb) && 1692 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 1693 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 1694 if (ret) 1695 goto out; 1696 } 1697 1698 *(__sum16 *)(skb->data + offset) = csum_fold(csum); 1699 out_set_summed: 1700 skb->ip_summed = CHECKSUM_NONE; 1701 out: 1702 return ret; 1703 } 1704 EXPORT_SYMBOL(skb_checksum_help); 1705 1706 /** 1707 * skb_gso_segment - Perform segmentation on skb. 1708 * @skb: buffer to segment 1709 * @features: features for the output path (see dev->features) 1710 * 1711 * This function segments the given skb and returns a list of segments. 1712 * 1713 * It may return NULL if the skb requires no segmentation. This is 1714 * only possible when GSO is used for verifying header integrity. 1715 */ 1716 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features) 1717 { 1718 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 1719 struct packet_type *ptype; 1720 __be16 type = skb->protocol; 1721 int err; 1722 1723 skb_reset_mac_header(skb); 1724 skb->mac_len = skb->network_header - skb->mac_header; 1725 __skb_pull(skb, skb->mac_len); 1726 1727 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1728 struct net_device *dev = skb->dev; 1729 struct ethtool_drvinfo info = {}; 1730 1731 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo) 1732 dev->ethtool_ops->get_drvinfo(dev, &info); 1733 1734 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d " 1735 "ip_summed=%d", 1736 info.driver, dev ? dev->features : 0L, 1737 skb->sk ? skb->sk->sk_route_caps : 0L, 1738 skb->len, skb->data_len, skb->ip_summed); 1739 1740 if (skb_header_cloned(skb) && 1741 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))) 1742 return ERR_PTR(err); 1743 } 1744 1745 rcu_read_lock(); 1746 list_for_each_entry_rcu(ptype, 1747 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 1748 if (ptype->type == type && !ptype->dev && ptype->gso_segment) { 1749 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1750 err = ptype->gso_send_check(skb); 1751 segs = ERR_PTR(err); 1752 if (err || skb_gso_ok(skb, features)) 1753 break; 1754 __skb_push(skb, (skb->data - 1755 skb_network_header(skb))); 1756 } 1757 segs = ptype->gso_segment(skb, features); 1758 break; 1759 } 1760 } 1761 rcu_read_unlock(); 1762 1763 __skb_push(skb, skb->data - skb_mac_header(skb)); 1764 1765 return segs; 1766 } 1767 EXPORT_SYMBOL(skb_gso_segment); 1768 1769 /* Take action when hardware reception checksum errors are detected. */ 1770 #ifdef CONFIG_BUG 1771 void netdev_rx_csum_fault(struct net_device *dev) 1772 { 1773 if (net_ratelimit()) { 1774 printk(KERN_ERR "%s: hw csum failure.\n", 1775 dev ? dev->name : "<unknown>"); 1776 dump_stack(); 1777 } 1778 } 1779 EXPORT_SYMBOL(netdev_rx_csum_fault); 1780 #endif 1781 1782 /* Actually, we should eliminate this check as soon as we know, that: 1783 * 1. IOMMU is present and allows to map all the memory. 1784 * 2. No high memory really exists on this machine. 1785 */ 1786 1787 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 1788 { 1789 #ifdef CONFIG_HIGHMEM 1790 int i; 1791 1792 if (dev->features & NETIF_F_HIGHDMA) 1793 return 0; 1794 1795 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1796 if (PageHighMem(skb_shinfo(skb)->frags[i].page)) 1797 return 1; 1798 1799 #endif 1800 return 0; 1801 } 1802 1803 struct dev_gso_cb { 1804 void (*destructor)(struct sk_buff *skb); 1805 }; 1806 1807 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb) 1808 1809 static void dev_gso_skb_destructor(struct sk_buff *skb) 1810 { 1811 struct dev_gso_cb *cb; 1812 1813 do { 1814 struct sk_buff *nskb = skb->next; 1815 1816 skb->next = nskb->next; 1817 nskb->next = NULL; 1818 kfree_skb(nskb); 1819 } while (skb->next); 1820 1821 cb = DEV_GSO_CB(skb); 1822 if (cb->destructor) 1823 cb->destructor(skb); 1824 } 1825 1826 /** 1827 * dev_gso_segment - Perform emulated hardware segmentation on skb. 1828 * @skb: buffer to segment 1829 * 1830 * This function segments the given skb and stores the list of segments 1831 * in skb->next. 1832 */ 1833 static int dev_gso_segment(struct sk_buff *skb) 1834 { 1835 struct net_device *dev = skb->dev; 1836 struct sk_buff *segs; 1837 int features = dev->features & ~(illegal_highdma(dev, skb) ? 1838 NETIF_F_SG : 0); 1839 1840 segs = skb_gso_segment(skb, features); 1841 1842 /* Verifying header integrity only. */ 1843 if (!segs) 1844 return 0; 1845 1846 if (IS_ERR(segs)) 1847 return PTR_ERR(segs); 1848 1849 skb->next = segs; 1850 DEV_GSO_CB(skb)->destructor = skb->destructor; 1851 skb->destructor = dev_gso_skb_destructor; 1852 1853 return 0; 1854 } 1855 1856 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 1857 struct netdev_queue *txq) 1858 { 1859 const struct net_device_ops *ops = dev->netdev_ops; 1860 int rc = NETDEV_TX_OK; 1861 1862 if (likely(!skb->next)) { 1863 if (!list_empty(&ptype_all)) 1864 dev_queue_xmit_nit(skb, dev); 1865 1866 if (netif_needs_gso(dev, skb)) { 1867 if (unlikely(dev_gso_segment(skb))) 1868 goto out_kfree_skb; 1869 if (skb->next) 1870 goto gso; 1871 } 1872 1873 /* 1874 * If device doesnt need skb->dst, release it right now while 1875 * its hot in this cpu cache 1876 */ 1877 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 1878 skb_dst_drop(skb); 1879 1880 rc = ops->ndo_start_xmit(skb, dev); 1881 if (rc == NETDEV_TX_OK) 1882 txq_trans_update(txq); 1883 /* 1884 * TODO: if skb_orphan() was called by 1885 * dev->hard_start_xmit() (for example, the unmodified 1886 * igb driver does that; bnx2 doesn't), then 1887 * skb_tx_software_timestamp() will be unable to send 1888 * back the time stamp. 1889 * 1890 * How can this be prevented? Always create another 1891 * reference to the socket before calling 1892 * dev->hard_start_xmit()? Prevent that skb_orphan() 1893 * does anything in dev->hard_start_xmit() by clearing 1894 * the skb destructor before the call and restoring it 1895 * afterwards, then doing the skb_orphan() ourselves? 1896 */ 1897 return rc; 1898 } 1899 1900 gso: 1901 do { 1902 struct sk_buff *nskb = skb->next; 1903 1904 skb->next = nskb->next; 1905 nskb->next = NULL; 1906 1907 /* 1908 * If device doesnt need nskb->dst, release it right now while 1909 * its hot in this cpu cache 1910 */ 1911 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 1912 skb_dst_drop(nskb); 1913 1914 rc = ops->ndo_start_xmit(nskb, dev); 1915 if (unlikely(rc != NETDEV_TX_OK)) { 1916 if (rc & ~NETDEV_TX_MASK) 1917 goto out_kfree_gso_skb; 1918 nskb->next = skb->next; 1919 skb->next = nskb; 1920 return rc; 1921 } 1922 txq_trans_update(txq); 1923 if (unlikely(netif_tx_queue_stopped(txq) && skb->next)) 1924 return NETDEV_TX_BUSY; 1925 } while (skb->next); 1926 1927 out_kfree_gso_skb: 1928 if (likely(skb->next == NULL)) 1929 skb->destructor = DEV_GSO_CB(skb)->destructor; 1930 out_kfree_skb: 1931 kfree_skb(skb); 1932 return rc; 1933 } 1934 1935 static u32 skb_tx_hashrnd; 1936 1937 u16 skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb) 1938 { 1939 u32 hash; 1940 1941 if (skb_rx_queue_recorded(skb)) { 1942 hash = skb_get_rx_queue(skb); 1943 while (unlikely(hash >= dev->real_num_tx_queues)) 1944 hash -= dev->real_num_tx_queues; 1945 return hash; 1946 } 1947 1948 if (skb->sk && skb->sk->sk_hash) 1949 hash = skb->sk->sk_hash; 1950 else 1951 hash = skb->protocol; 1952 1953 hash = jhash_1word(hash, skb_tx_hashrnd); 1954 1955 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32); 1956 } 1957 EXPORT_SYMBOL(skb_tx_hash); 1958 1959 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index) 1960 { 1961 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 1962 if (net_ratelimit()) { 1963 WARN(1, "%s selects TX queue %d, but " 1964 "real number of TX queues is %d\n", 1965 dev->name, queue_index, 1966 dev->real_num_tx_queues); 1967 } 1968 return 0; 1969 } 1970 return queue_index; 1971 } 1972 1973 static struct netdev_queue *dev_pick_tx(struct net_device *dev, 1974 struct sk_buff *skb) 1975 { 1976 u16 queue_index; 1977 struct sock *sk = skb->sk; 1978 1979 if (sk_tx_queue_recorded(sk)) { 1980 queue_index = sk_tx_queue_get(sk); 1981 } else { 1982 const struct net_device_ops *ops = dev->netdev_ops; 1983 1984 if (ops->ndo_select_queue) { 1985 queue_index = ops->ndo_select_queue(dev, skb); 1986 queue_index = dev_cap_txqueue(dev, queue_index); 1987 } else { 1988 queue_index = 0; 1989 if (dev->real_num_tx_queues > 1) 1990 queue_index = skb_tx_hash(dev, skb); 1991 1992 if (sk && sk->sk_dst_cache) 1993 sk_tx_queue_set(sk, queue_index); 1994 } 1995 } 1996 1997 skb_set_queue_mapping(skb, queue_index); 1998 return netdev_get_tx_queue(dev, queue_index); 1999 } 2000 2001 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 2002 struct net_device *dev, 2003 struct netdev_queue *txq) 2004 { 2005 spinlock_t *root_lock = qdisc_lock(q); 2006 int rc; 2007 2008 spin_lock(root_lock); 2009 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 2010 kfree_skb(skb); 2011 rc = NET_XMIT_DROP; 2012 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 2013 !test_and_set_bit(__QDISC_STATE_RUNNING, &q->state)) { 2014 /* 2015 * This is a work-conserving queue; there are no old skbs 2016 * waiting to be sent out; and the qdisc is not running - 2017 * xmit the skb directly. 2018 */ 2019 __qdisc_update_bstats(q, skb->len); 2020 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) 2021 __qdisc_run(q); 2022 else 2023 clear_bit(__QDISC_STATE_RUNNING, &q->state); 2024 2025 rc = NET_XMIT_SUCCESS; 2026 } else { 2027 rc = qdisc_enqueue_root(skb, q); 2028 qdisc_run(q); 2029 } 2030 spin_unlock(root_lock); 2031 2032 return rc; 2033 } 2034 2035 /* 2036 * Returns true if either: 2037 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 2038 * 2. skb is fragmented and the device does not support SG, or if 2039 * at least one of fragments is in highmem and device does not 2040 * support DMA from it. 2041 */ 2042 static inline int skb_needs_linearize(struct sk_buff *skb, 2043 struct net_device *dev) 2044 { 2045 return (skb_has_frags(skb) && !(dev->features & NETIF_F_FRAGLIST)) || 2046 (skb_shinfo(skb)->nr_frags && (!(dev->features & NETIF_F_SG) || 2047 illegal_highdma(dev, skb))); 2048 } 2049 2050 /** 2051 * dev_queue_xmit - transmit a buffer 2052 * @skb: buffer to transmit 2053 * 2054 * Queue a buffer for transmission to a network device. The caller must 2055 * have set the device and priority and built the buffer before calling 2056 * this function. The function can be called from an interrupt. 2057 * 2058 * A negative errno code is returned on a failure. A success does not 2059 * guarantee the frame will be transmitted as it may be dropped due 2060 * to congestion or traffic shaping. 2061 * 2062 * ----------------------------------------------------------------------------------- 2063 * I notice this method can also return errors from the queue disciplines, 2064 * including NET_XMIT_DROP, which is a positive value. So, errors can also 2065 * be positive. 2066 * 2067 * Regardless of the return value, the skb is consumed, so it is currently 2068 * difficult to retry a send to this method. (You can bump the ref count 2069 * before sending to hold a reference for retry if you are careful.) 2070 * 2071 * When calling this method, interrupts MUST be enabled. This is because 2072 * the BH enable code must have IRQs enabled so that it will not deadlock. 2073 * --BLG 2074 */ 2075 int dev_queue_xmit(struct sk_buff *skb) 2076 { 2077 struct net_device *dev = skb->dev; 2078 struct netdev_queue *txq; 2079 struct Qdisc *q; 2080 int rc = -ENOMEM; 2081 2082 /* GSO will handle the following emulations directly. */ 2083 if (netif_needs_gso(dev, skb)) 2084 goto gso; 2085 2086 /* Convert a paged skb to linear, if required */ 2087 if (skb_needs_linearize(skb, dev) && __skb_linearize(skb)) 2088 goto out_kfree_skb; 2089 2090 /* If packet is not checksummed and device does not support 2091 * checksumming for this protocol, complete checksumming here. 2092 */ 2093 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2094 skb_set_transport_header(skb, skb->csum_start - 2095 skb_headroom(skb)); 2096 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb)) 2097 goto out_kfree_skb; 2098 } 2099 2100 gso: 2101 /* Disable soft irqs for various locks below. Also 2102 * stops preemption for RCU. 2103 */ 2104 rcu_read_lock_bh(); 2105 2106 txq = dev_pick_tx(dev, skb); 2107 q = rcu_dereference_bh(txq->qdisc); 2108 2109 #ifdef CONFIG_NET_CLS_ACT 2110 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS); 2111 #endif 2112 if (q->enqueue) { 2113 rc = __dev_xmit_skb(skb, q, dev, txq); 2114 goto out; 2115 } 2116 2117 /* The device has no queue. Common case for software devices: 2118 loopback, all the sorts of tunnels... 2119 2120 Really, it is unlikely that netif_tx_lock protection is necessary 2121 here. (f.e. loopback and IP tunnels are clean ignoring statistics 2122 counters.) 2123 However, it is possible, that they rely on protection 2124 made by us here. 2125 2126 Check this and shot the lock. It is not prone from deadlocks. 2127 Either shot noqueue qdisc, it is even simpler 8) 2128 */ 2129 if (dev->flags & IFF_UP) { 2130 int cpu = smp_processor_id(); /* ok because BHs are off */ 2131 2132 if (txq->xmit_lock_owner != cpu) { 2133 2134 HARD_TX_LOCK(dev, txq, cpu); 2135 2136 if (!netif_tx_queue_stopped(txq)) { 2137 rc = dev_hard_start_xmit(skb, dev, txq); 2138 if (dev_xmit_complete(rc)) { 2139 HARD_TX_UNLOCK(dev, txq); 2140 goto out; 2141 } 2142 } 2143 HARD_TX_UNLOCK(dev, txq); 2144 if (net_ratelimit()) 2145 printk(KERN_CRIT "Virtual device %s asks to " 2146 "queue packet!\n", dev->name); 2147 } else { 2148 /* Recursion is detected! It is possible, 2149 * unfortunately */ 2150 if (net_ratelimit()) 2151 printk(KERN_CRIT "Dead loop on virtual device " 2152 "%s, fix it urgently!\n", dev->name); 2153 } 2154 } 2155 2156 rc = -ENETDOWN; 2157 rcu_read_unlock_bh(); 2158 2159 out_kfree_skb: 2160 kfree_skb(skb); 2161 return rc; 2162 out: 2163 rcu_read_unlock_bh(); 2164 return rc; 2165 } 2166 EXPORT_SYMBOL(dev_queue_xmit); 2167 2168 2169 /*======================================================================= 2170 Receiver routines 2171 =======================================================================*/ 2172 2173 int netdev_max_backlog __read_mostly = 1000; 2174 int netdev_budget __read_mostly = 300; 2175 int weight_p __read_mostly = 64; /* old backlog weight */ 2176 2177 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, }; 2178 2179 2180 /** 2181 * netif_rx - post buffer to the network code 2182 * @skb: buffer to post 2183 * 2184 * This function receives a packet from a device driver and queues it for 2185 * the upper (protocol) levels to process. It always succeeds. The buffer 2186 * may be dropped during processing for congestion control or by the 2187 * protocol layers. 2188 * 2189 * return values: 2190 * NET_RX_SUCCESS (no congestion) 2191 * NET_RX_DROP (packet was dropped) 2192 * 2193 */ 2194 2195 int netif_rx(struct sk_buff *skb) 2196 { 2197 struct softnet_data *queue; 2198 unsigned long flags; 2199 2200 /* if netpoll wants it, pretend we never saw it */ 2201 if (netpoll_rx(skb)) 2202 return NET_RX_DROP; 2203 2204 if (!skb->tstamp.tv64) 2205 net_timestamp(skb); 2206 2207 /* 2208 * The code is rearranged so that the path is the most 2209 * short when CPU is congested, but is still operating. 2210 */ 2211 local_irq_save(flags); 2212 queue = &__get_cpu_var(softnet_data); 2213 2214 __get_cpu_var(netdev_rx_stat).total++; 2215 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) { 2216 if (queue->input_pkt_queue.qlen) { 2217 enqueue: 2218 __skb_queue_tail(&queue->input_pkt_queue, skb); 2219 local_irq_restore(flags); 2220 return NET_RX_SUCCESS; 2221 } 2222 2223 napi_schedule(&queue->backlog); 2224 goto enqueue; 2225 } 2226 2227 __get_cpu_var(netdev_rx_stat).dropped++; 2228 local_irq_restore(flags); 2229 2230 kfree_skb(skb); 2231 return NET_RX_DROP; 2232 } 2233 EXPORT_SYMBOL(netif_rx); 2234 2235 int netif_rx_ni(struct sk_buff *skb) 2236 { 2237 int err; 2238 2239 preempt_disable(); 2240 err = netif_rx(skb); 2241 if (local_softirq_pending()) 2242 do_softirq(); 2243 preempt_enable(); 2244 2245 return err; 2246 } 2247 EXPORT_SYMBOL(netif_rx_ni); 2248 2249 static void net_tx_action(struct softirq_action *h) 2250 { 2251 struct softnet_data *sd = &__get_cpu_var(softnet_data); 2252 2253 if (sd->completion_queue) { 2254 struct sk_buff *clist; 2255 2256 local_irq_disable(); 2257 clist = sd->completion_queue; 2258 sd->completion_queue = NULL; 2259 local_irq_enable(); 2260 2261 while (clist) { 2262 struct sk_buff *skb = clist; 2263 clist = clist->next; 2264 2265 WARN_ON(atomic_read(&skb->users)); 2266 __kfree_skb(skb); 2267 } 2268 } 2269 2270 if (sd->output_queue) { 2271 struct Qdisc *head; 2272 2273 local_irq_disable(); 2274 head = sd->output_queue; 2275 sd->output_queue = NULL; 2276 local_irq_enable(); 2277 2278 while (head) { 2279 struct Qdisc *q = head; 2280 spinlock_t *root_lock; 2281 2282 head = head->next_sched; 2283 2284 root_lock = qdisc_lock(q); 2285 if (spin_trylock(root_lock)) { 2286 smp_mb__before_clear_bit(); 2287 clear_bit(__QDISC_STATE_SCHED, 2288 &q->state); 2289 qdisc_run(q); 2290 spin_unlock(root_lock); 2291 } else { 2292 if (!test_bit(__QDISC_STATE_DEACTIVATED, 2293 &q->state)) { 2294 __netif_reschedule(q); 2295 } else { 2296 smp_mb__before_clear_bit(); 2297 clear_bit(__QDISC_STATE_SCHED, 2298 &q->state); 2299 } 2300 } 2301 } 2302 } 2303 } 2304 2305 static inline int deliver_skb(struct sk_buff *skb, 2306 struct packet_type *pt_prev, 2307 struct net_device *orig_dev) 2308 { 2309 atomic_inc(&skb->users); 2310 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2311 } 2312 2313 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE) 2314 2315 #if defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE) 2316 /* This hook is defined here for ATM LANE */ 2317 int (*br_fdb_test_addr_hook)(struct net_device *dev, 2318 unsigned char *addr) __read_mostly; 2319 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 2320 #endif 2321 2322 /* 2323 * If bridge module is loaded call bridging hook. 2324 * returns NULL if packet was consumed. 2325 */ 2326 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p, 2327 struct sk_buff *skb) __read_mostly; 2328 EXPORT_SYMBOL_GPL(br_handle_frame_hook); 2329 2330 static inline struct sk_buff *handle_bridge(struct sk_buff *skb, 2331 struct packet_type **pt_prev, int *ret, 2332 struct net_device *orig_dev) 2333 { 2334 struct net_bridge_port *port; 2335 2336 if (skb->pkt_type == PACKET_LOOPBACK || 2337 (port = rcu_dereference(skb->dev->br_port)) == NULL) 2338 return skb; 2339 2340 if (*pt_prev) { 2341 *ret = deliver_skb(skb, *pt_prev, orig_dev); 2342 *pt_prev = NULL; 2343 } 2344 2345 return br_handle_frame_hook(port, skb); 2346 } 2347 #else 2348 #define handle_bridge(skb, pt_prev, ret, orig_dev) (skb) 2349 #endif 2350 2351 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE) 2352 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly; 2353 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook); 2354 2355 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb, 2356 struct packet_type **pt_prev, 2357 int *ret, 2358 struct net_device *orig_dev) 2359 { 2360 if (skb->dev->macvlan_port == NULL) 2361 return skb; 2362 2363 if (*pt_prev) { 2364 *ret = deliver_skb(skb, *pt_prev, orig_dev); 2365 *pt_prev = NULL; 2366 } 2367 return macvlan_handle_frame_hook(skb); 2368 } 2369 #else 2370 #define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb) 2371 #endif 2372 2373 #ifdef CONFIG_NET_CLS_ACT 2374 /* TODO: Maybe we should just force sch_ingress to be compiled in 2375 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions 2376 * a compare and 2 stores extra right now if we dont have it on 2377 * but have CONFIG_NET_CLS_ACT 2378 * NOTE: This doesnt stop any functionality; if you dont have 2379 * the ingress scheduler, you just cant add policies on ingress. 2380 * 2381 */ 2382 static int ing_filter(struct sk_buff *skb) 2383 { 2384 struct net_device *dev = skb->dev; 2385 u32 ttl = G_TC_RTTL(skb->tc_verd); 2386 struct netdev_queue *rxq; 2387 int result = TC_ACT_OK; 2388 struct Qdisc *q; 2389 2390 if (MAX_RED_LOOP < ttl++) { 2391 printk(KERN_WARNING 2392 "Redir loop detected Dropping packet (%d->%d)\n", 2393 skb->skb_iif, dev->ifindex); 2394 return TC_ACT_SHOT; 2395 } 2396 2397 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl); 2398 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS); 2399 2400 rxq = &dev->rx_queue; 2401 2402 q = rxq->qdisc; 2403 if (q != &noop_qdisc) { 2404 spin_lock(qdisc_lock(q)); 2405 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) 2406 result = qdisc_enqueue_root(skb, q); 2407 spin_unlock(qdisc_lock(q)); 2408 } 2409 2410 return result; 2411 } 2412 2413 static inline struct sk_buff *handle_ing(struct sk_buff *skb, 2414 struct packet_type **pt_prev, 2415 int *ret, struct net_device *orig_dev) 2416 { 2417 if (skb->dev->rx_queue.qdisc == &noop_qdisc) 2418 goto out; 2419 2420 if (*pt_prev) { 2421 *ret = deliver_skb(skb, *pt_prev, orig_dev); 2422 *pt_prev = NULL; 2423 } else { 2424 /* Huh? Why does turning on AF_PACKET affect this? */ 2425 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd); 2426 } 2427 2428 switch (ing_filter(skb)) { 2429 case TC_ACT_SHOT: 2430 case TC_ACT_STOLEN: 2431 kfree_skb(skb); 2432 return NULL; 2433 } 2434 2435 out: 2436 skb->tc_verd = 0; 2437 return skb; 2438 } 2439 #endif 2440 2441 /* 2442 * netif_nit_deliver - deliver received packets to network taps 2443 * @skb: buffer 2444 * 2445 * This function is used to deliver incoming packets to network 2446 * taps. It should be used when the normal netif_receive_skb path 2447 * is bypassed, for example because of VLAN acceleration. 2448 */ 2449 void netif_nit_deliver(struct sk_buff *skb) 2450 { 2451 struct packet_type *ptype; 2452 2453 if (list_empty(&ptype_all)) 2454 return; 2455 2456 skb_reset_network_header(skb); 2457 skb_reset_transport_header(skb); 2458 skb->mac_len = skb->network_header - skb->mac_header; 2459 2460 rcu_read_lock(); 2461 list_for_each_entry_rcu(ptype, &ptype_all, list) { 2462 if (!ptype->dev || ptype->dev == skb->dev) 2463 deliver_skb(skb, ptype, skb->dev); 2464 } 2465 rcu_read_unlock(); 2466 } 2467 2468 /** 2469 * netif_receive_skb - process receive buffer from network 2470 * @skb: buffer to process 2471 * 2472 * netif_receive_skb() is the main receive data processing function. 2473 * It always succeeds. The buffer may be dropped during processing 2474 * for congestion control or by the protocol layers. 2475 * 2476 * This function may only be called from softirq context and interrupts 2477 * should be enabled. 2478 * 2479 * Return values (usually ignored): 2480 * NET_RX_SUCCESS: no congestion 2481 * NET_RX_DROP: packet was dropped 2482 */ 2483 int netif_receive_skb(struct sk_buff *skb) 2484 { 2485 struct packet_type *ptype, *pt_prev; 2486 struct net_device *orig_dev; 2487 struct net_device *master; 2488 struct net_device *null_or_orig; 2489 struct net_device *null_or_bond; 2490 int ret = NET_RX_DROP; 2491 __be16 type; 2492 2493 if (!skb->tstamp.tv64) 2494 net_timestamp(skb); 2495 2496 if (vlan_tx_tag_present(skb) && vlan_hwaccel_do_receive(skb)) 2497 return NET_RX_SUCCESS; 2498 2499 /* if we've gotten here through NAPI, check netpoll */ 2500 if (netpoll_receive_skb(skb)) 2501 return NET_RX_DROP; 2502 2503 if (!skb->skb_iif) 2504 skb->skb_iif = skb->dev->ifindex; 2505 2506 null_or_orig = NULL; 2507 orig_dev = skb->dev; 2508 master = ACCESS_ONCE(orig_dev->master); 2509 if (master) { 2510 if (skb_bond_should_drop(skb, master)) 2511 null_or_orig = orig_dev; /* deliver only exact match */ 2512 else 2513 skb->dev = master; 2514 } 2515 2516 __get_cpu_var(netdev_rx_stat).total++; 2517 2518 skb_reset_network_header(skb); 2519 skb_reset_transport_header(skb); 2520 skb->mac_len = skb->network_header - skb->mac_header; 2521 2522 pt_prev = NULL; 2523 2524 rcu_read_lock(); 2525 2526 #ifdef CONFIG_NET_CLS_ACT 2527 if (skb->tc_verd & TC_NCLS) { 2528 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 2529 goto ncls; 2530 } 2531 #endif 2532 2533 list_for_each_entry_rcu(ptype, &ptype_all, list) { 2534 if (ptype->dev == null_or_orig || ptype->dev == skb->dev || 2535 ptype->dev == orig_dev) { 2536 if (pt_prev) 2537 ret = deliver_skb(skb, pt_prev, orig_dev); 2538 pt_prev = ptype; 2539 } 2540 } 2541 2542 #ifdef CONFIG_NET_CLS_ACT 2543 skb = handle_ing(skb, &pt_prev, &ret, orig_dev); 2544 if (!skb) 2545 goto out; 2546 ncls: 2547 #endif 2548 2549 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev); 2550 if (!skb) 2551 goto out; 2552 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev); 2553 if (!skb) 2554 goto out; 2555 2556 /* 2557 * Make sure frames received on VLAN interfaces stacked on 2558 * bonding interfaces still make their way to any base bonding 2559 * device that may have registered for a specific ptype. The 2560 * handler may have to adjust skb->dev and orig_dev. 2561 */ 2562 null_or_bond = NULL; 2563 if ((skb->dev->priv_flags & IFF_802_1Q_VLAN) && 2564 (vlan_dev_real_dev(skb->dev)->priv_flags & IFF_BONDING)) { 2565 null_or_bond = vlan_dev_real_dev(skb->dev); 2566 } 2567 2568 type = skb->protocol; 2569 list_for_each_entry_rcu(ptype, 2570 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 2571 if (ptype->type == type && (ptype->dev == null_or_orig || 2572 ptype->dev == skb->dev || ptype->dev == orig_dev || 2573 ptype->dev == null_or_bond)) { 2574 if (pt_prev) 2575 ret = deliver_skb(skb, pt_prev, orig_dev); 2576 pt_prev = ptype; 2577 } 2578 } 2579 2580 if (pt_prev) { 2581 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2582 } else { 2583 kfree_skb(skb); 2584 /* Jamal, now you will not able to escape explaining 2585 * me how you were going to use this. :-) 2586 */ 2587 ret = NET_RX_DROP; 2588 } 2589 2590 out: 2591 rcu_read_unlock(); 2592 return ret; 2593 } 2594 EXPORT_SYMBOL(netif_receive_skb); 2595 2596 /* Network device is going away, flush any packets still pending */ 2597 static void flush_backlog(void *arg) 2598 { 2599 struct net_device *dev = arg; 2600 struct softnet_data *queue = &__get_cpu_var(softnet_data); 2601 struct sk_buff *skb, *tmp; 2602 2603 skb_queue_walk_safe(&queue->input_pkt_queue, skb, tmp) 2604 if (skb->dev == dev) { 2605 __skb_unlink(skb, &queue->input_pkt_queue); 2606 kfree_skb(skb); 2607 } 2608 } 2609 2610 static int napi_gro_complete(struct sk_buff *skb) 2611 { 2612 struct packet_type *ptype; 2613 __be16 type = skb->protocol; 2614 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK]; 2615 int err = -ENOENT; 2616 2617 if (NAPI_GRO_CB(skb)->count == 1) { 2618 skb_shinfo(skb)->gso_size = 0; 2619 goto out; 2620 } 2621 2622 rcu_read_lock(); 2623 list_for_each_entry_rcu(ptype, head, list) { 2624 if (ptype->type != type || ptype->dev || !ptype->gro_complete) 2625 continue; 2626 2627 err = ptype->gro_complete(skb); 2628 break; 2629 } 2630 rcu_read_unlock(); 2631 2632 if (err) { 2633 WARN_ON(&ptype->list == head); 2634 kfree_skb(skb); 2635 return NET_RX_SUCCESS; 2636 } 2637 2638 out: 2639 return netif_receive_skb(skb); 2640 } 2641 2642 static void napi_gro_flush(struct napi_struct *napi) 2643 { 2644 struct sk_buff *skb, *next; 2645 2646 for (skb = napi->gro_list; skb; skb = next) { 2647 next = skb->next; 2648 skb->next = NULL; 2649 napi_gro_complete(skb); 2650 } 2651 2652 napi->gro_count = 0; 2653 napi->gro_list = NULL; 2654 } 2655 2656 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 2657 { 2658 struct sk_buff **pp = NULL; 2659 struct packet_type *ptype; 2660 __be16 type = skb->protocol; 2661 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK]; 2662 int same_flow; 2663 int mac_len; 2664 enum gro_result ret; 2665 2666 if (!(skb->dev->features & NETIF_F_GRO)) 2667 goto normal; 2668 2669 if (skb_is_gso(skb) || skb_has_frags(skb)) 2670 goto normal; 2671 2672 rcu_read_lock(); 2673 list_for_each_entry_rcu(ptype, head, list) { 2674 if (ptype->type != type || ptype->dev || !ptype->gro_receive) 2675 continue; 2676 2677 skb_set_network_header(skb, skb_gro_offset(skb)); 2678 mac_len = skb->network_header - skb->mac_header; 2679 skb->mac_len = mac_len; 2680 NAPI_GRO_CB(skb)->same_flow = 0; 2681 NAPI_GRO_CB(skb)->flush = 0; 2682 NAPI_GRO_CB(skb)->free = 0; 2683 2684 pp = ptype->gro_receive(&napi->gro_list, skb); 2685 break; 2686 } 2687 rcu_read_unlock(); 2688 2689 if (&ptype->list == head) 2690 goto normal; 2691 2692 same_flow = NAPI_GRO_CB(skb)->same_flow; 2693 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 2694 2695 if (pp) { 2696 struct sk_buff *nskb = *pp; 2697 2698 *pp = nskb->next; 2699 nskb->next = NULL; 2700 napi_gro_complete(nskb); 2701 napi->gro_count--; 2702 } 2703 2704 if (same_flow) 2705 goto ok; 2706 2707 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS) 2708 goto normal; 2709 2710 napi->gro_count++; 2711 NAPI_GRO_CB(skb)->count = 1; 2712 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 2713 skb->next = napi->gro_list; 2714 napi->gro_list = skb; 2715 ret = GRO_HELD; 2716 2717 pull: 2718 if (skb_headlen(skb) < skb_gro_offset(skb)) { 2719 int grow = skb_gro_offset(skb) - skb_headlen(skb); 2720 2721 BUG_ON(skb->end - skb->tail < grow); 2722 2723 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 2724 2725 skb->tail += grow; 2726 skb->data_len -= grow; 2727 2728 skb_shinfo(skb)->frags[0].page_offset += grow; 2729 skb_shinfo(skb)->frags[0].size -= grow; 2730 2731 if (unlikely(!skb_shinfo(skb)->frags[0].size)) { 2732 put_page(skb_shinfo(skb)->frags[0].page); 2733 memmove(skb_shinfo(skb)->frags, 2734 skb_shinfo(skb)->frags + 1, 2735 --skb_shinfo(skb)->nr_frags); 2736 } 2737 } 2738 2739 ok: 2740 return ret; 2741 2742 normal: 2743 ret = GRO_NORMAL; 2744 goto pull; 2745 } 2746 EXPORT_SYMBOL(dev_gro_receive); 2747 2748 static gro_result_t 2749 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 2750 { 2751 struct sk_buff *p; 2752 2753 if (netpoll_rx_on(skb)) 2754 return GRO_NORMAL; 2755 2756 for (p = napi->gro_list; p; p = p->next) { 2757 NAPI_GRO_CB(p)->same_flow = 2758 (p->dev == skb->dev) && 2759 !compare_ether_header(skb_mac_header(p), 2760 skb_gro_mac_header(skb)); 2761 NAPI_GRO_CB(p)->flush = 0; 2762 } 2763 2764 return dev_gro_receive(napi, skb); 2765 } 2766 2767 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 2768 { 2769 switch (ret) { 2770 case GRO_NORMAL: 2771 if (netif_receive_skb(skb)) 2772 ret = GRO_DROP; 2773 break; 2774 2775 case GRO_DROP: 2776 case GRO_MERGED_FREE: 2777 kfree_skb(skb); 2778 break; 2779 2780 case GRO_HELD: 2781 case GRO_MERGED: 2782 break; 2783 } 2784 2785 return ret; 2786 } 2787 EXPORT_SYMBOL(napi_skb_finish); 2788 2789 void skb_gro_reset_offset(struct sk_buff *skb) 2790 { 2791 NAPI_GRO_CB(skb)->data_offset = 0; 2792 NAPI_GRO_CB(skb)->frag0 = NULL; 2793 NAPI_GRO_CB(skb)->frag0_len = 0; 2794 2795 if (skb->mac_header == skb->tail && 2796 !PageHighMem(skb_shinfo(skb)->frags[0].page)) { 2797 NAPI_GRO_CB(skb)->frag0 = 2798 page_address(skb_shinfo(skb)->frags[0].page) + 2799 skb_shinfo(skb)->frags[0].page_offset; 2800 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size; 2801 } 2802 } 2803 EXPORT_SYMBOL(skb_gro_reset_offset); 2804 2805 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 2806 { 2807 skb_gro_reset_offset(skb); 2808 2809 return napi_skb_finish(__napi_gro_receive(napi, skb), skb); 2810 } 2811 EXPORT_SYMBOL(napi_gro_receive); 2812 2813 void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 2814 { 2815 __skb_pull(skb, skb_headlen(skb)); 2816 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb)); 2817 2818 napi->skb = skb; 2819 } 2820 EXPORT_SYMBOL(napi_reuse_skb); 2821 2822 struct sk_buff *napi_get_frags(struct napi_struct *napi) 2823 { 2824 struct sk_buff *skb = napi->skb; 2825 2826 if (!skb) { 2827 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD); 2828 if (skb) 2829 napi->skb = skb; 2830 } 2831 return skb; 2832 } 2833 EXPORT_SYMBOL(napi_get_frags); 2834 2835 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb, 2836 gro_result_t ret) 2837 { 2838 switch (ret) { 2839 case GRO_NORMAL: 2840 case GRO_HELD: 2841 skb->protocol = eth_type_trans(skb, skb->dev); 2842 2843 if (ret == GRO_HELD) 2844 skb_gro_pull(skb, -ETH_HLEN); 2845 else if (netif_receive_skb(skb)) 2846 ret = GRO_DROP; 2847 break; 2848 2849 case GRO_DROP: 2850 case GRO_MERGED_FREE: 2851 napi_reuse_skb(napi, skb); 2852 break; 2853 2854 case GRO_MERGED: 2855 break; 2856 } 2857 2858 return ret; 2859 } 2860 EXPORT_SYMBOL(napi_frags_finish); 2861 2862 struct sk_buff *napi_frags_skb(struct napi_struct *napi) 2863 { 2864 struct sk_buff *skb = napi->skb; 2865 struct ethhdr *eth; 2866 unsigned int hlen; 2867 unsigned int off; 2868 2869 napi->skb = NULL; 2870 2871 skb_reset_mac_header(skb); 2872 skb_gro_reset_offset(skb); 2873 2874 off = skb_gro_offset(skb); 2875 hlen = off + sizeof(*eth); 2876 eth = skb_gro_header_fast(skb, off); 2877 if (skb_gro_header_hard(skb, hlen)) { 2878 eth = skb_gro_header_slow(skb, hlen, off); 2879 if (unlikely(!eth)) { 2880 napi_reuse_skb(napi, skb); 2881 skb = NULL; 2882 goto out; 2883 } 2884 } 2885 2886 skb_gro_pull(skb, sizeof(*eth)); 2887 2888 /* 2889 * This works because the only protocols we care about don't require 2890 * special handling. We'll fix it up properly at the end. 2891 */ 2892 skb->protocol = eth->h_proto; 2893 2894 out: 2895 return skb; 2896 } 2897 EXPORT_SYMBOL(napi_frags_skb); 2898 2899 gro_result_t napi_gro_frags(struct napi_struct *napi) 2900 { 2901 struct sk_buff *skb = napi_frags_skb(napi); 2902 2903 if (!skb) 2904 return GRO_DROP; 2905 2906 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb)); 2907 } 2908 EXPORT_SYMBOL(napi_gro_frags); 2909 2910 static int process_backlog(struct napi_struct *napi, int quota) 2911 { 2912 int work = 0; 2913 struct softnet_data *queue = &__get_cpu_var(softnet_data); 2914 unsigned long start_time = jiffies; 2915 2916 napi->weight = weight_p; 2917 do { 2918 struct sk_buff *skb; 2919 2920 local_irq_disable(); 2921 skb = __skb_dequeue(&queue->input_pkt_queue); 2922 if (!skb) { 2923 __napi_complete(napi); 2924 local_irq_enable(); 2925 break; 2926 } 2927 local_irq_enable(); 2928 2929 netif_receive_skb(skb); 2930 } while (++work < quota && jiffies == start_time); 2931 2932 return work; 2933 } 2934 2935 /** 2936 * __napi_schedule - schedule for receive 2937 * @n: entry to schedule 2938 * 2939 * The entry's receive function will be scheduled to run 2940 */ 2941 void __napi_schedule(struct napi_struct *n) 2942 { 2943 unsigned long flags; 2944 2945 local_irq_save(flags); 2946 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list); 2947 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2948 local_irq_restore(flags); 2949 } 2950 EXPORT_SYMBOL(__napi_schedule); 2951 2952 void __napi_complete(struct napi_struct *n) 2953 { 2954 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 2955 BUG_ON(n->gro_list); 2956 2957 list_del(&n->poll_list); 2958 smp_mb__before_clear_bit(); 2959 clear_bit(NAPI_STATE_SCHED, &n->state); 2960 } 2961 EXPORT_SYMBOL(__napi_complete); 2962 2963 void napi_complete(struct napi_struct *n) 2964 { 2965 unsigned long flags; 2966 2967 /* 2968 * don't let napi dequeue from the cpu poll list 2969 * just in case its running on a different cpu 2970 */ 2971 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state))) 2972 return; 2973 2974 napi_gro_flush(n); 2975 local_irq_save(flags); 2976 __napi_complete(n); 2977 local_irq_restore(flags); 2978 } 2979 EXPORT_SYMBOL(napi_complete); 2980 2981 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 2982 int (*poll)(struct napi_struct *, int), int weight) 2983 { 2984 INIT_LIST_HEAD(&napi->poll_list); 2985 napi->gro_count = 0; 2986 napi->gro_list = NULL; 2987 napi->skb = NULL; 2988 napi->poll = poll; 2989 napi->weight = weight; 2990 list_add(&napi->dev_list, &dev->napi_list); 2991 napi->dev = dev; 2992 #ifdef CONFIG_NETPOLL 2993 spin_lock_init(&napi->poll_lock); 2994 napi->poll_owner = -1; 2995 #endif 2996 set_bit(NAPI_STATE_SCHED, &napi->state); 2997 } 2998 EXPORT_SYMBOL(netif_napi_add); 2999 3000 void netif_napi_del(struct napi_struct *napi) 3001 { 3002 struct sk_buff *skb, *next; 3003 3004 list_del_init(&napi->dev_list); 3005 napi_free_frags(napi); 3006 3007 for (skb = napi->gro_list; skb; skb = next) { 3008 next = skb->next; 3009 skb->next = NULL; 3010 kfree_skb(skb); 3011 } 3012 3013 napi->gro_list = NULL; 3014 napi->gro_count = 0; 3015 } 3016 EXPORT_SYMBOL(netif_napi_del); 3017 3018 3019 static void net_rx_action(struct softirq_action *h) 3020 { 3021 struct list_head *list = &__get_cpu_var(softnet_data).poll_list; 3022 unsigned long time_limit = jiffies + 2; 3023 int budget = netdev_budget; 3024 void *have; 3025 3026 local_irq_disable(); 3027 3028 while (!list_empty(list)) { 3029 struct napi_struct *n; 3030 int work, weight; 3031 3032 /* If softirq window is exhuasted then punt. 3033 * Allow this to run for 2 jiffies since which will allow 3034 * an average latency of 1.5/HZ. 3035 */ 3036 if (unlikely(budget <= 0 || time_after(jiffies, time_limit))) 3037 goto softnet_break; 3038 3039 local_irq_enable(); 3040 3041 /* Even though interrupts have been re-enabled, this 3042 * access is safe because interrupts can only add new 3043 * entries to the tail of this list, and only ->poll() 3044 * calls can remove this head entry from the list. 3045 */ 3046 n = list_first_entry(list, struct napi_struct, poll_list); 3047 3048 have = netpoll_poll_lock(n); 3049 3050 weight = n->weight; 3051 3052 /* This NAPI_STATE_SCHED test is for avoiding a race 3053 * with netpoll's poll_napi(). Only the entity which 3054 * obtains the lock and sees NAPI_STATE_SCHED set will 3055 * actually make the ->poll() call. Therefore we avoid 3056 * accidently calling ->poll() when NAPI is not scheduled. 3057 */ 3058 work = 0; 3059 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 3060 work = n->poll(n, weight); 3061 trace_napi_poll(n); 3062 } 3063 3064 WARN_ON_ONCE(work > weight); 3065 3066 budget -= work; 3067 3068 local_irq_disable(); 3069 3070 /* Drivers must not modify the NAPI state if they 3071 * consume the entire weight. In such cases this code 3072 * still "owns" the NAPI instance and therefore can 3073 * move the instance around on the list at-will. 3074 */ 3075 if (unlikely(work == weight)) { 3076 if (unlikely(napi_disable_pending(n))) { 3077 local_irq_enable(); 3078 napi_complete(n); 3079 local_irq_disable(); 3080 } else 3081 list_move_tail(&n->poll_list, list); 3082 } 3083 3084 netpoll_poll_unlock(have); 3085 } 3086 out: 3087 local_irq_enable(); 3088 3089 #ifdef CONFIG_NET_DMA 3090 /* 3091 * There may not be any more sk_buffs coming right now, so push 3092 * any pending DMA copies to hardware 3093 */ 3094 dma_issue_pending_all(); 3095 #endif 3096 3097 return; 3098 3099 softnet_break: 3100 __get_cpu_var(netdev_rx_stat).time_squeeze++; 3101 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3102 goto out; 3103 } 3104 3105 static gifconf_func_t *gifconf_list[NPROTO]; 3106 3107 /** 3108 * register_gifconf - register a SIOCGIF handler 3109 * @family: Address family 3110 * @gifconf: Function handler 3111 * 3112 * Register protocol dependent address dumping routines. The handler 3113 * that is passed must not be freed or reused until it has been replaced 3114 * by another handler. 3115 */ 3116 int register_gifconf(unsigned int family, gifconf_func_t *gifconf) 3117 { 3118 if (family >= NPROTO) 3119 return -EINVAL; 3120 gifconf_list[family] = gifconf; 3121 return 0; 3122 } 3123 EXPORT_SYMBOL(register_gifconf); 3124 3125 3126 /* 3127 * Map an interface index to its name (SIOCGIFNAME) 3128 */ 3129 3130 /* 3131 * We need this ioctl for efficient implementation of the 3132 * if_indextoname() function required by the IPv6 API. Without 3133 * it, we would have to search all the interfaces to find a 3134 * match. --pb 3135 */ 3136 3137 static int dev_ifname(struct net *net, struct ifreq __user *arg) 3138 { 3139 struct net_device *dev; 3140 struct ifreq ifr; 3141 3142 /* 3143 * Fetch the caller's info block. 3144 */ 3145 3146 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 3147 return -EFAULT; 3148 3149 rcu_read_lock(); 3150 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex); 3151 if (!dev) { 3152 rcu_read_unlock(); 3153 return -ENODEV; 3154 } 3155 3156 strcpy(ifr.ifr_name, dev->name); 3157 rcu_read_unlock(); 3158 3159 if (copy_to_user(arg, &ifr, sizeof(struct ifreq))) 3160 return -EFAULT; 3161 return 0; 3162 } 3163 3164 /* 3165 * Perform a SIOCGIFCONF call. This structure will change 3166 * size eventually, and there is nothing I can do about it. 3167 * Thus we will need a 'compatibility mode'. 3168 */ 3169 3170 static int dev_ifconf(struct net *net, char __user *arg) 3171 { 3172 struct ifconf ifc; 3173 struct net_device *dev; 3174 char __user *pos; 3175 int len; 3176 int total; 3177 int i; 3178 3179 /* 3180 * Fetch the caller's info block. 3181 */ 3182 3183 if (copy_from_user(&ifc, arg, sizeof(struct ifconf))) 3184 return -EFAULT; 3185 3186 pos = ifc.ifc_buf; 3187 len = ifc.ifc_len; 3188 3189 /* 3190 * Loop over the interfaces, and write an info block for each. 3191 */ 3192 3193 total = 0; 3194 for_each_netdev(net, dev) { 3195 for (i = 0; i < NPROTO; i++) { 3196 if (gifconf_list[i]) { 3197 int done; 3198 if (!pos) 3199 done = gifconf_list[i](dev, NULL, 0); 3200 else 3201 done = gifconf_list[i](dev, pos + total, 3202 len - total); 3203 if (done < 0) 3204 return -EFAULT; 3205 total += done; 3206 } 3207 } 3208 } 3209 3210 /* 3211 * All done. Write the updated control block back to the caller. 3212 */ 3213 ifc.ifc_len = total; 3214 3215 /* 3216 * Both BSD and Solaris return 0 here, so we do too. 3217 */ 3218 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0; 3219 } 3220 3221 #ifdef CONFIG_PROC_FS 3222 /* 3223 * This is invoked by the /proc filesystem handler to display a device 3224 * in detail. 3225 */ 3226 void *dev_seq_start(struct seq_file *seq, loff_t *pos) 3227 __acquires(RCU) 3228 { 3229 struct net *net = seq_file_net(seq); 3230 loff_t off; 3231 struct net_device *dev; 3232 3233 rcu_read_lock(); 3234 if (!*pos) 3235 return SEQ_START_TOKEN; 3236 3237 off = 1; 3238 for_each_netdev_rcu(net, dev) 3239 if (off++ == *pos) 3240 return dev; 3241 3242 return NULL; 3243 } 3244 3245 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3246 { 3247 struct net_device *dev = (v == SEQ_START_TOKEN) ? 3248 first_net_device(seq_file_net(seq)) : 3249 next_net_device((struct net_device *)v); 3250 3251 ++*pos; 3252 return rcu_dereference(dev); 3253 } 3254 3255 void dev_seq_stop(struct seq_file *seq, void *v) 3256 __releases(RCU) 3257 { 3258 rcu_read_unlock(); 3259 } 3260 3261 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev) 3262 { 3263 const struct net_device_stats *stats = dev_get_stats(dev); 3264 3265 seq_printf(seq, "%6s: %7lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu " 3266 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n", 3267 dev->name, stats->rx_bytes, stats->rx_packets, 3268 stats->rx_errors, 3269 stats->rx_dropped + stats->rx_missed_errors, 3270 stats->rx_fifo_errors, 3271 stats->rx_length_errors + stats->rx_over_errors + 3272 stats->rx_crc_errors + stats->rx_frame_errors, 3273 stats->rx_compressed, stats->multicast, 3274 stats->tx_bytes, stats->tx_packets, 3275 stats->tx_errors, stats->tx_dropped, 3276 stats->tx_fifo_errors, stats->collisions, 3277 stats->tx_carrier_errors + 3278 stats->tx_aborted_errors + 3279 stats->tx_window_errors + 3280 stats->tx_heartbeat_errors, 3281 stats->tx_compressed); 3282 } 3283 3284 /* 3285 * Called from the PROCfs module. This now uses the new arbitrary sized 3286 * /proc/net interface to create /proc/net/dev 3287 */ 3288 static int dev_seq_show(struct seq_file *seq, void *v) 3289 { 3290 if (v == SEQ_START_TOKEN) 3291 seq_puts(seq, "Inter-| Receive " 3292 " | Transmit\n" 3293 " face |bytes packets errs drop fifo frame " 3294 "compressed multicast|bytes packets errs " 3295 "drop fifo colls carrier compressed\n"); 3296 else 3297 dev_seq_printf_stats(seq, v); 3298 return 0; 3299 } 3300 3301 static struct netif_rx_stats *softnet_get_online(loff_t *pos) 3302 { 3303 struct netif_rx_stats *rc = NULL; 3304 3305 while (*pos < nr_cpu_ids) 3306 if (cpu_online(*pos)) { 3307 rc = &per_cpu(netdev_rx_stat, *pos); 3308 break; 3309 } else 3310 ++*pos; 3311 return rc; 3312 } 3313 3314 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos) 3315 { 3316 return softnet_get_online(pos); 3317 } 3318 3319 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3320 { 3321 ++*pos; 3322 return softnet_get_online(pos); 3323 } 3324 3325 static void softnet_seq_stop(struct seq_file *seq, void *v) 3326 { 3327 } 3328 3329 static int softnet_seq_show(struct seq_file *seq, void *v) 3330 { 3331 struct netif_rx_stats *s = v; 3332 3333 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n", 3334 s->total, s->dropped, s->time_squeeze, 0, 3335 0, 0, 0, 0, /* was fastroute */ 3336 s->cpu_collision); 3337 return 0; 3338 } 3339 3340 static const struct seq_operations dev_seq_ops = { 3341 .start = dev_seq_start, 3342 .next = dev_seq_next, 3343 .stop = dev_seq_stop, 3344 .show = dev_seq_show, 3345 }; 3346 3347 static int dev_seq_open(struct inode *inode, struct file *file) 3348 { 3349 return seq_open_net(inode, file, &dev_seq_ops, 3350 sizeof(struct seq_net_private)); 3351 } 3352 3353 static const struct file_operations dev_seq_fops = { 3354 .owner = THIS_MODULE, 3355 .open = dev_seq_open, 3356 .read = seq_read, 3357 .llseek = seq_lseek, 3358 .release = seq_release_net, 3359 }; 3360 3361 static const struct seq_operations softnet_seq_ops = { 3362 .start = softnet_seq_start, 3363 .next = softnet_seq_next, 3364 .stop = softnet_seq_stop, 3365 .show = softnet_seq_show, 3366 }; 3367 3368 static int softnet_seq_open(struct inode *inode, struct file *file) 3369 { 3370 return seq_open(file, &softnet_seq_ops); 3371 } 3372 3373 static const struct file_operations softnet_seq_fops = { 3374 .owner = THIS_MODULE, 3375 .open = softnet_seq_open, 3376 .read = seq_read, 3377 .llseek = seq_lseek, 3378 .release = seq_release, 3379 }; 3380 3381 static void *ptype_get_idx(loff_t pos) 3382 { 3383 struct packet_type *pt = NULL; 3384 loff_t i = 0; 3385 int t; 3386 3387 list_for_each_entry_rcu(pt, &ptype_all, list) { 3388 if (i == pos) 3389 return pt; 3390 ++i; 3391 } 3392 3393 for (t = 0; t < PTYPE_HASH_SIZE; t++) { 3394 list_for_each_entry_rcu(pt, &ptype_base[t], list) { 3395 if (i == pos) 3396 return pt; 3397 ++i; 3398 } 3399 } 3400 return NULL; 3401 } 3402 3403 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos) 3404 __acquires(RCU) 3405 { 3406 rcu_read_lock(); 3407 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN; 3408 } 3409 3410 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3411 { 3412 struct packet_type *pt; 3413 struct list_head *nxt; 3414 int hash; 3415 3416 ++*pos; 3417 if (v == SEQ_START_TOKEN) 3418 return ptype_get_idx(0); 3419 3420 pt = v; 3421 nxt = pt->list.next; 3422 if (pt->type == htons(ETH_P_ALL)) { 3423 if (nxt != &ptype_all) 3424 goto found; 3425 hash = 0; 3426 nxt = ptype_base[0].next; 3427 } else 3428 hash = ntohs(pt->type) & PTYPE_HASH_MASK; 3429 3430 while (nxt == &ptype_base[hash]) { 3431 if (++hash >= PTYPE_HASH_SIZE) 3432 return NULL; 3433 nxt = ptype_base[hash].next; 3434 } 3435 found: 3436 return list_entry(nxt, struct packet_type, list); 3437 } 3438 3439 static void ptype_seq_stop(struct seq_file *seq, void *v) 3440 __releases(RCU) 3441 { 3442 rcu_read_unlock(); 3443 } 3444 3445 static int ptype_seq_show(struct seq_file *seq, void *v) 3446 { 3447 struct packet_type *pt = v; 3448 3449 if (v == SEQ_START_TOKEN) 3450 seq_puts(seq, "Type Device Function\n"); 3451 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) { 3452 if (pt->type == htons(ETH_P_ALL)) 3453 seq_puts(seq, "ALL "); 3454 else 3455 seq_printf(seq, "%04x", ntohs(pt->type)); 3456 3457 seq_printf(seq, " %-8s %pF\n", 3458 pt->dev ? pt->dev->name : "", pt->func); 3459 } 3460 3461 return 0; 3462 } 3463 3464 static const struct seq_operations ptype_seq_ops = { 3465 .start = ptype_seq_start, 3466 .next = ptype_seq_next, 3467 .stop = ptype_seq_stop, 3468 .show = ptype_seq_show, 3469 }; 3470 3471 static int ptype_seq_open(struct inode *inode, struct file *file) 3472 { 3473 return seq_open_net(inode, file, &ptype_seq_ops, 3474 sizeof(struct seq_net_private)); 3475 } 3476 3477 static const struct file_operations ptype_seq_fops = { 3478 .owner = THIS_MODULE, 3479 .open = ptype_seq_open, 3480 .read = seq_read, 3481 .llseek = seq_lseek, 3482 .release = seq_release_net, 3483 }; 3484 3485 3486 static int __net_init dev_proc_net_init(struct net *net) 3487 { 3488 int rc = -ENOMEM; 3489 3490 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops)) 3491 goto out; 3492 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops)) 3493 goto out_dev; 3494 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops)) 3495 goto out_softnet; 3496 3497 if (wext_proc_init(net)) 3498 goto out_ptype; 3499 rc = 0; 3500 out: 3501 return rc; 3502 out_ptype: 3503 proc_net_remove(net, "ptype"); 3504 out_softnet: 3505 proc_net_remove(net, "softnet_stat"); 3506 out_dev: 3507 proc_net_remove(net, "dev"); 3508 goto out; 3509 } 3510 3511 static void __net_exit dev_proc_net_exit(struct net *net) 3512 { 3513 wext_proc_exit(net); 3514 3515 proc_net_remove(net, "ptype"); 3516 proc_net_remove(net, "softnet_stat"); 3517 proc_net_remove(net, "dev"); 3518 } 3519 3520 static struct pernet_operations __net_initdata dev_proc_ops = { 3521 .init = dev_proc_net_init, 3522 .exit = dev_proc_net_exit, 3523 }; 3524 3525 static int __init dev_proc_init(void) 3526 { 3527 return register_pernet_subsys(&dev_proc_ops); 3528 } 3529 #else 3530 #define dev_proc_init() 0 3531 #endif /* CONFIG_PROC_FS */ 3532 3533 3534 /** 3535 * netdev_set_master - set up master/slave pair 3536 * @slave: slave device 3537 * @master: new master device 3538 * 3539 * Changes the master device of the slave. Pass %NULL to break the 3540 * bonding. The caller must hold the RTNL semaphore. On a failure 3541 * a negative errno code is returned. On success the reference counts 3542 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the 3543 * function returns zero. 3544 */ 3545 int netdev_set_master(struct net_device *slave, struct net_device *master) 3546 { 3547 struct net_device *old = slave->master; 3548 3549 ASSERT_RTNL(); 3550 3551 if (master) { 3552 if (old) 3553 return -EBUSY; 3554 dev_hold(master); 3555 } 3556 3557 slave->master = master; 3558 3559 synchronize_net(); 3560 3561 if (old) 3562 dev_put(old); 3563 3564 if (master) 3565 slave->flags |= IFF_SLAVE; 3566 else 3567 slave->flags &= ~IFF_SLAVE; 3568 3569 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE); 3570 return 0; 3571 } 3572 EXPORT_SYMBOL(netdev_set_master); 3573 3574 static void dev_change_rx_flags(struct net_device *dev, int flags) 3575 { 3576 const struct net_device_ops *ops = dev->netdev_ops; 3577 3578 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags) 3579 ops->ndo_change_rx_flags(dev, flags); 3580 } 3581 3582 static int __dev_set_promiscuity(struct net_device *dev, int inc) 3583 { 3584 unsigned short old_flags = dev->flags; 3585 uid_t uid; 3586 gid_t gid; 3587 3588 ASSERT_RTNL(); 3589 3590 dev->flags |= IFF_PROMISC; 3591 dev->promiscuity += inc; 3592 if (dev->promiscuity == 0) { 3593 /* 3594 * Avoid overflow. 3595 * If inc causes overflow, untouch promisc and return error. 3596 */ 3597 if (inc < 0) 3598 dev->flags &= ~IFF_PROMISC; 3599 else { 3600 dev->promiscuity -= inc; 3601 printk(KERN_WARNING "%s: promiscuity touches roof, " 3602 "set promiscuity failed, promiscuity feature " 3603 "of device might be broken.\n", dev->name); 3604 return -EOVERFLOW; 3605 } 3606 } 3607 if (dev->flags != old_flags) { 3608 printk(KERN_INFO "device %s %s promiscuous mode\n", 3609 dev->name, (dev->flags & IFF_PROMISC) ? "entered" : 3610 "left"); 3611 if (audit_enabled) { 3612 current_uid_gid(&uid, &gid); 3613 audit_log(current->audit_context, GFP_ATOMIC, 3614 AUDIT_ANOM_PROMISCUOUS, 3615 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 3616 dev->name, (dev->flags & IFF_PROMISC), 3617 (old_flags & IFF_PROMISC), 3618 audit_get_loginuid(current), 3619 uid, gid, 3620 audit_get_sessionid(current)); 3621 } 3622 3623 dev_change_rx_flags(dev, IFF_PROMISC); 3624 } 3625 return 0; 3626 } 3627 3628 /** 3629 * dev_set_promiscuity - update promiscuity count on a device 3630 * @dev: device 3631 * @inc: modifier 3632 * 3633 * Add or remove promiscuity from a device. While the count in the device 3634 * remains above zero the interface remains promiscuous. Once it hits zero 3635 * the device reverts back to normal filtering operation. A negative inc 3636 * value is used to drop promiscuity on the device. 3637 * Return 0 if successful or a negative errno code on error. 3638 */ 3639 int dev_set_promiscuity(struct net_device *dev, int inc) 3640 { 3641 unsigned short old_flags = dev->flags; 3642 int err; 3643 3644 err = __dev_set_promiscuity(dev, inc); 3645 if (err < 0) 3646 return err; 3647 if (dev->flags != old_flags) 3648 dev_set_rx_mode(dev); 3649 return err; 3650 } 3651 EXPORT_SYMBOL(dev_set_promiscuity); 3652 3653 /** 3654 * dev_set_allmulti - update allmulti count on a device 3655 * @dev: device 3656 * @inc: modifier 3657 * 3658 * Add or remove reception of all multicast frames to a device. While the 3659 * count in the device remains above zero the interface remains listening 3660 * to all interfaces. Once it hits zero the device reverts back to normal 3661 * filtering operation. A negative @inc value is used to drop the counter 3662 * when releasing a resource needing all multicasts. 3663 * Return 0 if successful or a negative errno code on error. 3664 */ 3665 3666 int dev_set_allmulti(struct net_device *dev, int inc) 3667 { 3668 unsigned short old_flags = dev->flags; 3669 3670 ASSERT_RTNL(); 3671 3672 dev->flags |= IFF_ALLMULTI; 3673 dev->allmulti += inc; 3674 if (dev->allmulti == 0) { 3675 /* 3676 * Avoid overflow. 3677 * If inc causes overflow, untouch allmulti and return error. 3678 */ 3679 if (inc < 0) 3680 dev->flags &= ~IFF_ALLMULTI; 3681 else { 3682 dev->allmulti -= inc; 3683 printk(KERN_WARNING "%s: allmulti touches roof, " 3684 "set allmulti failed, allmulti feature of " 3685 "device might be broken.\n", dev->name); 3686 return -EOVERFLOW; 3687 } 3688 } 3689 if (dev->flags ^ old_flags) { 3690 dev_change_rx_flags(dev, IFF_ALLMULTI); 3691 dev_set_rx_mode(dev); 3692 } 3693 return 0; 3694 } 3695 EXPORT_SYMBOL(dev_set_allmulti); 3696 3697 /* 3698 * Upload unicast and multicast address lists to device and 3699 * configure RX filtering. When the device doesn't support unicast 3700 * filtering it is put in promiscuous mode while unicast addresses 3701 * are present. 3702 */ 3703 void __dev_set_rx_mode(struct net_device *dev) 3704 { 3705 const struct net_device_ops *ops = dev->netdev_ops; 3706 3707 /* dev_open will call this function so the list will stay sane. */ 3708 if (!(dev->flags&IFF_UP)) 3709 return; 3710 3711 if (!netif_device_present(dev)) 3712 return; 3713 3714 if (ops->ndo_set_rx_mode) 3715 ops->ndo_set_rx_mode(dev); 3716 else { 3717 /* Unicast addresses changes may only happen under the rtnl, 3718 * therefore calling __dev_set_promiscuity here is safe. 3719 */ 3720 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 3721 __dev_set_promiscuity(dev, 1); 3722 dev->uc_promisc = 1; 3723 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 3724 __dev_set_promiscuity(dev, -1); 3725 dev->uc_promisc = 0; 3726 } 3727 3728 if (ops->ndo_set_multicast_list) 3729 ops->ndo_set_multicast_list(dev); 3730 } 3731 } 3732 3733 void dev_set_rx_mode(struct net_device *dev) 3734 { 3735 netif_addr_lock_bh(dev); 3736 __dev_set_rx_mode(dev); 3737 netif_addr_unlock_bh(dev); 3738 } 3739 3740 /* hw addresses list handling functions */ 3741 3742 static int __hw_addr_add(struct netdev_hw_addr_list *list, unsigned char *addr, 3743 int addr_len, unsigned char addr_type) 3744 { 3745 struct netdev_hw_addr *ha; 3746 int alloc_size; 3747 3748 if (addr_len > MAX_ADDR_LEN) 3749 return -EINVAL; 3750 3751 list_for_each_entry(ha, &list->list, list) { 3752 if (!memcmp(ha->addr, addr, addr_len) && 3753 ha->type == addr_type) { 3754 ha->refcount++; 3755 return 0; 3756 } 3757 } 3758 3759 3760 alloc_size = sizeof(*ha); 3761 if (alloc_size < L1_CACHE_BYTES) 3762 alloc_size = L1_CACHE_BYTES; 3763 ha = kmalloc(alloc_size, GFP_ATOMIC); 3764 if (!ha) 3765 return -ENOMEM; 3766 memcpy(ha->addr, addr, addr_len); 3767 ha->type = addr_type; 3768 ha->refcount = 1; 3769 ha->synced = false; 3770 list_add_tail_rcu(&ha->list, &list->list); 3771 list->count++; 3772 return 0; 3773 } 3774 3775 static void ha_rcu_free(struct rcu_head *head) 3776 { 3777 struct netdev_hw_addr *ha; 3778 3779 ha = container_of(head, struct netdev_hw_addr, rcu_head); 3780 kfree(ha); 3781 } 3782 3783 static int __hw_addr_del(struct netdev_hw_addr_list *list, unsigned char *addr, 3784 int addr_len, unsigned char addr_type) 3785 { 3786 struct netdev_hw_addr *ha; 3787 3788 list_for_each_entry(ha, &list->list, list) { 3789 if (!memcmp(ha->addr, addr, addr_len) && 3790 (ha->type == addr_type || !addr_type)) { 3791 if (--ha->refcount) 3792 return 0; 3793 list_del_rcu(&ha->list); 3794 call_rcu(&ha->rcu_head, ha_rcu_free); 3795 list->count--; 3796 return 0; 3797 } 3798 } 3799 return -ENOENT; 3800 } 3801 3802 static int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list, 3803 struct netdev_hw_addr_list *from_list, 3804 int addr_len, 3805 unsigned char addr_type) 3806 { 3807 int err; 3808 struct netdev_hw_addr *ha, *ha2; 3809 unsigned char type; 3810 3811 list_for_each_entry(ha, &from_list->list, list) { 3812 type = addr_type ? addr_type : ha->type; 3813 err = __hw_addr_add(to_list, ha->addr, addr_len, type); 3814 if (err) 3815 goto unroll; 3816 } 3817 return 0; 3818 3819 unroll: 3820 list_for_each_entry(ha2, &from_list->list, list) { 3821 if (ha2 == ha) 3822 break; 3823 type = addr_type ? addr_type : ha2->type; 3824 __hw_addr_del(to_list, ha2->addr, addr_len, type); 3825 } 3826 return err; 3827 } 3828 3829 static void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list, 3830 struct netdev_hw_addr_list *from_list, 3831 int addr_len, 3832 unsigned char addr_type) 3833 { 3834 struct netdev_hw_addr *ha; 3835 unsigned char type; 3836 3837 list_for_each_entry(ha, &from_list->list, list) { 3838 type = addr_type ? addr_type : ha->type; 3839 __hw_addr_del(to_list, ha->addr, addr_len, addr_type); 3840 } 3841 } 3842 3843 static int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 3844 struct netdev_hw_addr_list *from_list, 3845 int addr_len) 3846 { 3847 int err = 0; 3848 struct netdev_hw_addr *ha, *tmp; 3849 3850 list_for_each_entry_safe(ha, tmp, &from_list->list, list) { 3851 if (!ha->synced) { 3852 err = __hw_addr_add(to_list, ha->addr, 3853 addr_len, ha->type); 3854 if (err) 3855 break; 3856 ha->synced = true; 3857 ha->refcount++; 3858 } else if (ha->refcount == 1) { 3859 __hw_addr_del(to_list, ha->addr, addr_len, ha->type); 3860 __hw_addr_del(from_list, ha->addr, addr_len, ha->type); 3861 } 3862 } 3863 return err; 3864 } 3865 3866 static void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 3867 struct netdev_hw_addr_list *from_list, 3868 int addr_len) 3869 { 3870 struct netdev_hw_addr *ha, *tmp; 3871 3872 list_for_each_entry_safe(ha, tmp, &from_list->list, list) { 3873 if (ha->synced) { 3874 __hw_addr_del(to_list, ha->addr, 3875 addr_len, ha->type); 3876 ha->synced = false; 3877 __hw_addr_del(from_list, ha->addr, 3878 addr_len, ha->type); 3879 } 3880 } 3881 } 3882 3883 static void __hw_addr_flush(struct netdev_hw_addr_list *list) 3884 { 3885 struct netdev_hw_addr *ha, *tmp; 3886 3887 list_for_each_entry_safe(ha, tmp, &list->list, list) { 3888 list_del_rcu(&ha->list); 3889 call_rcu(&ha->rcu_head, ha_rcu_free); 3890 } 3891 list->count = 0; 3892 } 3893 3894 static void __hw_addr_init(struct netdev_hw_addr_list *list) 3895 { 3896 INIT_LIST_HEAD(&list->list); 3897 list->count = 0; 3898 } 3899 3900 /* Device addresses handling functions */ 3901 3902 static void dev_addr_flush(struct net_device *dev) 3903 { 3904 /* rtnl_mutex must be held here */ 3905 3906 __hw_addr_flush(&dev->dev_addrs); 3907 dev->dev_addr = NULL; 3908 } 3909 3910 static int dev_addr_init(struct net_device *dev) 3911 { 3912 unsigned char addr[MAX_ADDR_LEN]; 3913 struct netdev_hw_addr *ha; 3914 int err; 3915 3916 /* rtnl_mutex must be held here */ 3917 3918 __hw_addr_init(&dev->dev_addrs); 3919 memset(addr, 0, sizeof(addr)); 3920 err = __hw_addr_add(&dev->dev_addrs, addr, sizeof(addr), 3921 NETDEV_HW_ADDR_T_LAN); 3922 if (!err) { 3923 /* 3924 * Get the first (previously created) address from the list 3925 * and set dev_addr pointer to this location. 3926 */ 3927 ha = list_first_entry(&dev->dev_addrs.list, 3928 struct netdev_hw_addr, list); 3929 dev->dev_addr = ha->addr; 3930 } 3931 return err; 3932 } 3933 3934 /** 3935 * dev_addr_add - Add a device address 3936 * @dev: device 3937 * @addr: address to add 3938 * @addr_type: address type 3939 * 3940 * Add a device address to the device or increase the reference count if 3941 * it already exists. 3942 * 3943 * The caller must hold the rtnl_mutex. 3944 */ 3945 int dev_addr_add(struct net_device *dev, unsigned char *addr, 3946 unsigned char addr_type) 3947 { 3948 int err; 3949 3950 ASSERT_RTNL(); 3951 3952 err = __hw_addr_add(&dev->dev_addrs, addr, dev->addr_len, addr_type); 3953 if (!err) 3954 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 3955 return err; 3956 } 3957 EXPORT_SYMBOL(dev_addr_add); 3958 3959 /** 3960 * dev_addr_del - Release a device address. 3961 * @dev: device 3962 * @addr: address to delete 3963 * @addr_type: address type 3964 * 3965 * Release reference to a device address and remove it from the device 3966 * if the reference count drops to zero. 3967 * 3968 * The caller must hold the rtnl_mutex. 3969 */ 3970 int dev_addr_del(struct net_device *dev, unsigned char *addr, 3971 unsigned char addr_type) 3972 { 3973 int err; 3974 struct netdev_hw_addr *ha; 3975 3976 ASSERT_RTNL(); 3977 3978 /* 3979 * We can not remove the first address from the list because 3980 * dev->dev_addr points to that. 3981 */ 3982 ha = list_first_entry(&dev->dev_addrs.list, 3983 struct netdev_hw_addr, list); 3984 if (ha->addr == dev->dev_addr && ha->refcount == 1) 3985 return -ENOENT; 3986 3987 err = __hw_addr_del(&dev->dev_addrs, addr, dev->addr_len, 3988 addr_type); 3989 if (!err) 3990 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 3991 return err; 3992 } 3993 EXPORT_SYMBOL(dev_addr_del); 3994 3995 /** 3996 * dev_addr_add_multiple - Add device addresses from another device 3997 * @to_dev: device to which addresses will be added 3998 * @from_dev: device from which addresses will be added 3999 * @addr_type: address type - 0 means type will be used from from_dev 4000 * 4001 * Add device addresses of the one device to another. 4002 ** 4003 * The caller must hold the rtnl_mutex. 4004 */ 4005 int dev_addr_add_multiple(struct net_device *to_dev, 4006 struct net_device *from_dev, 4007 unsigned char addr_type) 4008 { 4009 int err; 4010 4011 ASSERT_RTNL(); 4012 4013 if (from_dev->addr_len != to_dev->addr_len) 4014 return -EINVAL; 4015 err = __hw_addr_add_multiple(&to_dev->dev_addrs, &from_dev->dev_addrs, 4016 to_dev->addr_len, addr_type); 4017 if (!err) 4018 call_netdevice_notifiers(NETDEV_CHANGEADDR, to_dev); 4019 return err; 4020 } 4021 EXPORT_SYMBOL(dev_addr_add_multiple); 4022 4023 /** 4024 * dev_addr_del_multiple - Delete device addresses by another device 4025 * @to_dev: device where the addresses will be deleted 4026 * @from_dev: device by which addresses the addresses will be deleted 4027 * @addr_type: address type - 0 means type will used from from_dev 4028 * 4029 * Deletes addresses in to device by the list of addresses in from device. 4030 * 4031 * The caller must hold the rtnl_mutex. 4032 */ 4033 int dev_addr_del_multiple(struct net_device *to_dev, 4034 struct net_device *from_dev, 4035 unsigned char addr_type) 4036 { 4037 ASSERT_RTNL(); 4038 4039 if (from_dev->addr_len != to_dev->addr_len) 4040 return -EINVAL; 4041 __hw_addr_del_multiple(&to_dev->dev_addrs, &from_dev->dev_addrs, 4042 to_dev->addr_len, addr_type); 4043 call_netdevice_notifiers(NETDEV_CHANGEADDR, to_dev); 4044 return 0; 4045 } 4046 EXPORT_SYMBOL(dev_addr_del_multiple); 4047 4048 /* multicast addresses handling functions */ 4049 4050 int __dev_addr_delete(struct dev_addr_list **list, int *count, 4051 void *addr, int alen, int glbl) 4052 { 4053 struct dev_addr_list *da; 4054 4055 for (; (da = *list) != NULL; list = &da->next) { 4056 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 && 4057 alen == da->da_addrlen) { 4058 if (glbl) { 4059 int old_glbl = da->da_gusers; 4060 da->da_gusers = 0; 4061 if (old_glbl == 0) 4062 break; 4063 } 4064 if (--da->da_users) 4065 return 0; 4066 4067 *list = da->next; 4068 kfree(da); 4069 (*count)--; 4070 return 0; 4071 } 4072 } 4073 return -ENOENT; 4074 } 4075 4076 int __dev_addr_add(struct dev_addr_list **list, int *count, 4077 void *addr, int alen, int glbl) 4078 { 4079 struct dev_addr_list *da; 4080 4081 for (da = *list; da != NULL; da = da->next) { 4082 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 && 4083 da->da_addrlen == alen) { 4084 if (glbl) { 4085 int old_glbl = da->da_gusers; 4086 da->da_gusers = 1; 4087 if (old_glbl) 4088 return 0; 4089 } 4090 da->da_users++; 4091 return 0; 4092 } 4093 } 4094 4095 da = kzalloc(sizeof(*da), GFP_ATOMIC); 4096 if (da == NULL) 4097 return -ENOMEM; 4098 memcpy(da->da_addr, addr, alen); 4099 da->da_addrlen = alen; 4100 da->da_users = 1; 4101 da->da_gusers = glbl ? 1 : 0; 4102 da->next = *list; 4103 *list = da; 4104 (*count)++; 4105 return 0; 4106 } 4107 4108 /** 4109 * dev_unicast_delete - Release secondary unicast address. 4110 * @dev: device 4111 * @addr: address to delete 4112 * 4113 * Release reference to a secondary unicast address and remove it 4114 * from the device if the reference count drops to zero. 4115 * 4116 * The caller must hold the rtnl_mutex. 4117 */ 4118 int dev_unicast_delete(struct net_device *dev, void *addr) 4119 { 4120 int err; 4121 4122 ASSERT_RTNL(); 4123 4124 netif_addr_lock_bh(dev); 4125 err = __hw_addr_del(&dev->uc, addr, dev->addr_len, 4126 NETDEV_HW_ADDR_T_UNICAST); 4127 if (!err) 4128 __dev_set_rx_mode(dev); 4129 netif_addr_unlock_bh(dev); 4130 return err; 4131 } 4132 EXPORT_SYMBOL(dev_unicast_delete); 4133 4134 /** 4135 * dev_unicast_add - add a secondary unicast address 4136 * @dev: device 4137 * @addr: address to add 4138 * 4139 * Add a secondary unicast address to the device or increase 4140 * the reference count if it already exists. 4141 * 4142 * The caller must hold the rtnl_mutex. 4143 */ 4144 int dev_unicast_add(struct net_device *dev, void *addr) 4145 { 4146 int err; 4147 4148 ASSERT_RTNL(); 4149 4150 netif_addr_lock_bh(dev); 4151 err = __hw_addr_add(&dev->uc, addr, dev->addr_len, 4152 NETDEV_HW_ADDR_T_UNICAST); 4153 if (!err) 4154 __dev_set_rx_mode(dev); 4155 netif_addr_unlock_bh(dev); 4156 return err; 4157 } 4158 EXPORT_SYMBOL(dev_unicast_add); 4159 4160 int __dev_addr_sync(struct dev_addr_list **to, int *to_count, 4161 struct dev_addr_list **from, int *from_count) 4162 { 4163 struct dev_addr_list *da, *next; 4164 int err = 0; 4165 4166 da = *from; 4167 while (da != NULL) { 4168 next = da->next; 4169 if (!da->da_synced) { 4170 err = __dev_addr_add(to, to_count, 4171 da->da_addr, da->da_addrlen, 0); 4172 if (err < 0) 4173 break; 4174 da->da_synced = 1; 4175 da->da_users++; 4176 } else if (da->da_users == 1) { 4177 __dev_addr_delete(to, to_count, 4178 da->da_addr, da->da_addrlen, 0); 4179 __dev_addr_delete(from, from_count, 4180 da->da_addr, da->da_addrlen, 0); 4181 } 4182 da = next; 4183 } 4184 return err; 4185 } 4186 EXPORT_SYMBOL_GPL(__dev_addr_sync); 4187 4188 void __dev_addr_unsync(struct dev_addr_list **to, int *to_count, 4189 struct dev_addr_list **from, int *from_count) 4190 { 4191 struct dev_addr_list *da, *next; 4192 4193 da = *from; 4194 while (da != NULL) { 4195 next = da->next; 4196 if (da->da_synced) { 4197 __dev_addr_delete(to, to_count, 4198 da->da_addr, da->da_addrlen, 0); 4199 da->da_synced = 0; 4200 __dev_addr_delete(from, from_count, 4201 da->da_addr, da->da_addrlen, 0); 4202 } 4203 da = next; 4204 } 4205 } 4206 EXPORT_SYMBOL_GPL(__dev_addr_unsync); 4207 4208 /** 4209 * dev_unicast_sync - Synchronize device's unicast list to another device 4210 * @to: destination device 4211 * @from: source device 4212 * 4213 * Add newly added addresses to the destination device and release 4214 * addresses that have no users left. The source device must be 4215 * locked by netif_tx_lock_bh. 4216 * 4217 * This function is intended to be called from the dev->set_rx_mode 4218 * function of layered software devices. 4219 */ 4220 int dev_unicast_sync(struct net_device *to, struct net_device *from) 4221 { 4222 int err = 0; 4223 4224 if (to->addr_len != from->addr_len) 4225 return -EINVAL; 4226 4227 netif_addr_lock_bh(to); 4228 err = __hw_addr_sync(&to->uc, &from->uc, to->addr_len); 4229 if (!err) 4230 __dev_set_rx_mode(to); 4231 netif_addr_unlock_bh(to); 4232 return err; 4233 } 4234 EXPORT_SYMBOL(dev_unicast_sync); 4235 4236 /** 4237 * dev_unicast_unsync - Remove synchronized addresses from the destination device 4238 * @to: destination device 4239 * @from: source device 4240 * 4241 * Remove all addresses that were added to the destination device by 4242 * dev_unicast_sync(). This function is intended to be called from the 4243 * dev->stop function of layered software devices. 4244 */ 4245 void dev_unicast_unsync(struct net_device *to, struct net_device *from) 4246 { 4247 if (to->addr_len != from->addr_len) 4248 return; 4249 4250 netif_addr_lock_bh(from); 4251 netif_addr_lock(to); 4252 __hw_addr_unsync(&to->uc, &from->uc, to->addr_len); 4253 __dev_set_rx_mode(to); 4254 netif_addr_unlock(to); 4255 netif_addr_unlock_bh(from); 4256 } 4257 EXPORT_SYMBOL(dev_unicast_unsync); 4258 4259 static void dev_unicast_flush(struct net_device *dev) 4260 { 4261 netif_addr_lock_bh(dev); 4262 __hw_addr_flush(&dev->uc); 4263 netif_addr_unlock_bh(dev); 4264 } 4265 4266 static void dev_unicast_init(struct net_device *dev) 4267 { 4268 __hw_addr_init(&dev->uc); 4269 } 4270 4271 4272 static void __dev_addr_discard(struct dev_addr_list **list) 4273 { 4274 struct dev_addr_list *tmp; 4275 4276 while (*list != NULL) { 4277 tmp = *list; 4278 *list = tmp->next; 4279 if (tmp->da_users > tmp->da_gusers) 4280 printk("__dev_addr_discard: address leakage! " 4281 "da_users=%d\n", tmp->da_users); 4282 kfree(tmp); 4283 } 4284 } 4285 4286 static void dev_addr_discard(struct net_device *dev) 4287 { 4288 netif_addr_lock_bh(dev); 4289 4290 __dev_addr_discard(&dev->mc_list); 4291 netdev_mc_count(dev) = 0; 4292 4293 netif_addr_unlock_bh(dev); 4294 } 4295 4296 /** 4297 * dev_get_flags - get flags reported to userspace 4298 * @dev: device 4299 * 4300 * Get the combination of flag bits exported through APIs to userspace. 4301 */ 4302 unsigned dev_get_flags(const struct net_device *dev) 4303 { 4304 unsigned flags; 4305 4306 flags = (dev->flags & ~(IFF_PROMISC | 4307 IFF_ALLMULTI | 4308 IFF_RUNNING | 4309 IFF_LOWER_UP | 4310 IFF_DORMANT)) | 4311 (dev->gflags & (IFF_PROMISC | 4312 IFF_ALLMULTI)); 4313 4314 if (netif_running(dev)) { 4315 if (netif_oper_up(dev)) 4316 flags |= IFF_RUNNING; 4317 if (netif_carrier_ok(dev)) 4318 flags |= IFF_LOWER_UP; 4319 if (netif_dormant(dev)) 4320 flags |= IFF_DORMANT; 4321 } 4322 4323 return flags; 4324 } 4325 EXPORT_SYMBOL(dev_get_flags); 4326 4327 int __dev_change_flags(struct net_device *dev, unsigned int flags) 4328 { 4329 int old_flags = dev->flags; 4330 int ret; 4331 4332 ASSERT_RTNL(); 4333 4334 /* 4335 * Set the flags on our device. 4336 */ 4337 4338 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 4339 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 4340 IFF_AUTOMEDIA)) | 4341 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 4342 IFF_ALLMULTI)); 4343 4344 /* 4345 * Load in the correct multicast list now the flags have changed. 4346 */ 4347 4348 if ((old_flags ^ flags) & IFF_MULTICAST) 4349 dev_change_rx_flags(dev, IFF_MULTICAST); 4350 4351 dev_set_rx_mode(dev); 4352 4353 /* 4354 * Have we downed the interface. We handle IFF_UP ourselves 4355 * according to user attempts to set it, rather than blindly 4356 * setting it. 4357 */ 4358 4359 ret = 0; 4360 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */ 4361 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev); 4362 4363 if (!ret) 4364 dev_set_rx_mode(dev); 4365 } 4366 4367 if ((flags ^ dev->gflags) & IFF_PROMISC) { 4368 int inc = (flags & IFF_PROMISC) ? 1 : -1; 4369 4370 dev->gflags ^= IFF_PROMISC; 4371 dev_set_promiscuity(dev, inc); 4372 } 4373 4374 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 4375 is important. Some (broken) drivers set IFF_PROMISC, when 4376 IFF_ALLMULTI is requested not asking us and not reporting. 4377 */ 4378 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 4379 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 4380 4381 dev->gflags ^= IFF_ALLMULTI; 4382 dev_set_allmulti(dev, inc); 4383 } 4384 4385 return ret; 4386 } 4387 4388 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags) 4389 { 4390 unsigned int changes = dev->flags ^ old_flags; 4391 4392 if (changes & IFF_UP) { 4393 if (dev->flags & IFF_UP) 4394 call_netdevice_notifiers(NETDEV_UP, dev); 4395 else 4396 call_netdevice_notifiers(NETDEV_DOWN, dev); 4397 } 4398 4399 if (dev->flags & IFF_UP && 4400 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) 4401 call_netdevice_notifiers(NETDEV_CHANGE, dev); 4402 } 4403 4404 /** 4405 * dev_change_flags - change device settings 4406 * @dev: device 4407 * @flags: device state flags 4408 * 4409 * Change settings on device based state flags. The flags are 4410 * in the userspace exported format. 4411 */ 4412 int dev_change_flags(struct net_device *dev, unsigned flags) 4413 { 4414 int ret, changes; 4415 int old_flags = dev->flags; 4416 4417 ret = __dev_change_flags(dev, flags); 4418 if (ret < 0) 4419 return ret; 4420 4421 changes = old_flags ^ dev->flags; 4422 if (changes) 4423 rtmsg_ifinfo(RTM_NEWLINK, dev, changes); 4424 4425 __dev_notify_flags(dev, old_flags); 4426 return ret; 4427 } 4428 EXPORT_SYMBOL(dev_change_flags); 4429 4430 /** 4431 * dev_set_mtu - Change maximum transfer unit 4432 * @dev: device 4433 * @new_mtu: new transfer unit 4434 * 4435 * Change the maximum transfer size of the network device. 4436 */ 4437 int dev_set_mtu(struct net_device *dev, int new_mtu) 4438 { 4439 const struct net_device_ops *ops = dev->netdev_ops; 4440 int err; 4441 4442 if (new_mtu == dev->mtu) 4443 return 0; 4444 4445 /* MTU must be positive. */ 4446 if (new_mtu < 0) 4447 return -EINVAL; 4448 4449 if (!netif_device_present(dev)) 4450 return -ENODEV; 4451 4452 err = 0; 4453 if (ops->ndo_change_mtu) 4454 err = ops->ndo_change_mtu(dev, new_mtu); 4455 else 4456 dev->mtu = new_mtu; 4457 4458 if (!err && dev->flags & IFF_UP) 4459 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 4460 return err; 4461 } 4462 EXPORT_SYMBOL(dev_set_mtu); 4463 4464 /** 4465 * dev_set_mac_address - Change Media Access Control Address 4466 * @dev: device 4467 * @sa: new address 4468 * 4469 * Change the hardware (MAC) address of the device 4470 */ 4471 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 4472 { 4473 const struct net_device_ops *ops = dev->netdev_ops; 4474 int err; 4475 4476 if (!ops->ndo_set_mac_address) 4477 return -EOPNOTSUPP; 4478 if (sa->sa_family != dev->type) 4479 return -EINVAL; 4480 if (!netif_device_present(dev)) 4481 return -ENODEV; 4482 err = ops->ndo_set_mac_address(dev, sa); 4483 if (!err) 4484 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 4485 return err; 4486 } 4487 EXPORT_SYMBOL(dev_set_mac_address); 4488 4489 /* 4490 * Perform the SIOCxIFxxx calls, inside rcu_read_lock() 4491 */ 4492 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd) 4493 { 4494 int err; 4495 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name); 4496 4497 if (!dev) 4498 return -ENODEV; 4499 4500 switch (cmd) { 4501 case SIOCGIFFLAGS: /* Get interface flags */ 4502 ifr->ifr_flags = (short) dev_get_flags(dev); 4503 return 0; 4504 4505 case SIOCGIFMETRIC: /* Get the metric on the interface 4506 (currently unused) */ 4507 ifr->ifr_metric = 0; 4508 return 0; 4509 4510 case SIOCGIFMTU: /* Get the MTU of a device */ 4511 ifr->ifr_mtu = dev->mtu; 4512 return 0; 4513 4514 case SIOCGIFHWADDR: 4515 if (!dev->addr_len) 4516 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data); 4517 else 4518 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr, 4519 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 4520 ifr->ifr_hwaddr.sa_family = dev->type; 4521 return 0; 4522 4523 case SIOCGIFSLAVE: 4524 err = -EINVAL; 4525 break; 4526 4527 case SIOCGIFMAP: 4528 ifr->ifr_map.mem_start = dev->mem_start; 4529 ifr->ifr_map.mem_end = dev->mem_end; 4530 ifr->ifr_map.base_addr = dev->base_addr; 4531 ifr->ifr_map.irq = dev->irq; 4532 ifr->ifr_map.dma = dev->dma; 4533 ifr->ifr_map.port = dev->if_port; 4534 return 0; 4535 4536 case SIOCGIFINDEX: 4537 ifr->ifr_ifindex = dev->ifindex; 4538 return 0; 4539 4540 case SIOCGIFTXQLEN: 4541 ifr->ifr_qlen = dev->tx_queue_len; 4542 return 0; 4543 4544 default: 4545 /* dev_ioctl() should ensure this case 4546 * is never reached 4547 */ 4548 WARN_ON(1); 4549 err = -EINVAL; 4550 break; 4551 4552 } 4553 return err; 4554 } 4555 4556 /* 4557 * Perform the SIOCxIFxxx calls, inside rtnl_lock() 4558 */ 4559 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd) 4560 { 4561 int err; 4562 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name); 4563 const struct net_device_ops *ops; 4564 4565 if (!dev) 4566 return -ENODEV; 4567 4568 ops = dev->netdev_ops; 4569 4570 switch (cmd) { 4571 case SIOCSIFFLAGS: /* Set interface flags */ 4572 return dev_change_flags(dev, ifr->ifr_flags); 4573 4574 case SIOCSIFMETRIC: /* Set the metric on the interface 4575 (currently unused) */ 4576 return -EOPNOTSUPP; 4577 4578 case SIOCSIFMTU: /* Set the MTU of a device */ 4579 return dev_set_mtu(dev, ifr->ifr_mtu); 4580 4581 case SIOCSIFHWADDR: 4582 return dev_set_mac_address(dev, &ifr->ifr_hwaddr); 4583 4584 case SIOCSIFHWBROADCAST: 4585 if (ifr->ifr_hwaddr.sa_family != dev->type) 4586 return -EINVAL; 4587 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data, 4588 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 4589 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 4590 return 0; 4591 4592 case SIOCSIFMAP: 4593 if (ops->ndo_set_config) { 4594 if (!netif_device_present(dev)) 4595 return -ENODEV; 4596 return ops->ndo_set_config(dev, &ifr->ifr_map); 4597 } 4598 return -EOPNOTSUPP; 4599 4600 case SIOCADDMULTI: 4601 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) || 4602 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 4603 return -EINVAL; 4604 if (!netif_device_present(dev)) 4605 return -ENODEV; 4606 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data, 4607 dev->addr_len, 1); 4608 4609 case SIOCDELMULTI: 4610 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) || 4611 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 4612 return -EINVAL; 4613 if (!netif_device_present(dev)) 4614 return -ENODEV; 4615 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data, 4616 dev->addr_len, 1); 4617 4618 case SIOCSIFTXQLEN: 4619 if (ifr->ifr_qlen < 0) 4620 return -EINVAL; 4621 dev->tx_queue_len = ifr->ifr_qlen; 4622 return 0; 4623 4624 case SIOCSIFNAME: 4625 ifr->ifr_newname[IFNAMSIZ-1] = '\0'; 4626 return dev_change_name(dev, ifr->ifr_newname); 4627 4628 /* 4629 * Unknown or private ioctl 4630 */ 4631 default: 4632 if ((cmd >= SIOCDEVPRIVATE && 4633 cmd <= SIOCDEVPRIVATE + 15) || 4634 cmd == SIOCBONDENSLAVE || 4635 cmd == SIOCBONDRELEASE || 4636 cmd == SIOCBONDSETHWADDR || 4637 cmd == SIOCBONDSLAVEINFOQUERY || 4638 cmd == SIOCBONDINFOQUERY || 4639 cmd == SIOCBONDCHANGEACTIVE || 4640 cmd == SIOCGMIIPHY || 4641 cmd == SIOCGMIIREG || 4642 cmd == SIOCSMIIREG || 4643 cmd == SIOCBRADDIF || 4644 cmd == SIOCBRDELIF || 4645 cmd == SIOCSHWTSTAMP || 4646 cmd == SIOCWANDEV) { 4647 err = -EOPNOTSUPP; 4648 if (ops->ndo_do_ioctl) { 4649 if (netif_device_present(dev)) 4650 err = ops->ndo_do_ioctl(dev, ifr, cmd); 4651 else 4652 err = -ENODEV; 4653 } 4654 } else 4655 err = -EINVAL; 4656 4657 } 4658 return err; 4659 } 4660 4661 /* 4662 * This function handles all "interface"-type I/O control requests. The actual 4663 * 'doing' part of this is dev_ifsioc above. 4664 */ 4665 4666 /** 4667 * dev_ioctl - network device ioctl 4668 * @net: the applicable net namespace 4669 * @cmd: command to issue 4670 * @arg: pointer to a struct ifreq in user space 4671 * 4672 * Issue ioctl functions to devices. This is normally called by the 4673 * user space syscall interfaces but can sometimes be useful for 4674 * other purposes. The return value is the return from the syscall if 4675 * positive or a negative errno code on error. 4676 */ 4677 4678 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg) 4679 { 4680 struct ifreq ifr; 4681 int ret; 4682 char *colon; 4683 4684 /* One special case: SIOCGIFCONF takes ifconf argument 4685 and requires shared lock, because it sleeps writing 4686 to user space. 4687 */ 4688 4689 if (cmd == SIOCGIFCONF) { 4690 rtnl_lock(); 4691 ret = dev_ifconf(net, (char __user *) arg); 4692 rtnl_unlock(); 4693 return ret; 4694 } 4695 if (cmd == SIOCGIFNAME) 4696 return dev_ifname(net, (struct ifreq __user *)arg); 4697 4698 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 4699 return -EFAULT; 4700 4701 ifr.ifr_name[IFNAMSIZ-1] = 0; 4702 4703 colon = strchr(ifr.ifr_name, ':'); 4704 if (colon) 4705 *colon = 0; 4706 4707 /* 4708 * See which interface the caller is talking about. 4709 */ 4710 4711 switch (cmd) { 4712 /* 4713 * These ioctl calls: 4714 * - can be done by all. 4715 * - atomic and do not require locking. 4716 * - return a value 4717 */ 4718 case SIOCGIFFLAGS: 4719 case SIOCGIFMETRIC: 4720 case SIOCGIFMTU: 4721 case SIOCGIFHWADDR: 4722 case SIOCGIFSLAVE: 4723 case SIOCGIFMAP: 4724 case SIOCGIFINDEX: 4725 case SIOCGIFTXQLEN: 4726 dev_load(net, ifr.ifr_name); 4727 rcu_read_lock(); 4728 ret = dev_ifsioc_locked(net, &ifr, cmd); 4729 rcu_read_unlock(); 4730 if (!ret) { 4731 if (colon) 4732 *colon = ':'; 4733 if (copy_to_user(arg, &ifr, 4734 sizeof(struct ifreq))) 4735 ret = -EFAULT; 4736 } 4737 return ret; 4738 4739 case SIOCETHTOOL: 4740 dev_load(net, ifr.ifr_name); 4741 rtnl_lock(); 4742 ret = dev_ethtool(net, &ifr); 4743 rtnl_unlock(); 4744 if (!ret) { 4745 if (colon) 4746 *colon = ':'; 4747 if (copy_to_user(arg, &ifr, 4748 sizeof(struct ifreq))) 4749 ret = -EFAULT; 4750 } 4751 return ret; 4752 4753 /* 4754 * These ioctl calls: 4755 * - require superuser power. 4756 * - require strict serialization. 4757 * - return a value 4758 */ 4759 case SIOCGMIIPHY: 4760 case SIOCGMIIREG: 4761 case SIOCSIFNAME: 4762 if (!capable(CAP_NET_ADMIN)) 4763 return -EPERM; 4764 dev_load(net, ifr.ifr_name); 4765 rtnl_lock(); 4766 ret = dev_ifsioc(net, &ifr, cmd); 4767 rtnl_unlock(); 4768 if (!ret) { 4769 if (colon) 4770 *colon = ':'; 4771 if (copy_to_user(arg, &ifr, 4772 sizeof(struct ifreq))) 4773 ret = -EFAULT; 4774 } 4775 return ret; 4776 4777 /* 4778 * These ioctl calls: 4779 * - require superuser power. 4780 * - require strict serialization. 4781 * - do not return a value 4782 */ 4783 case SIOCSIFFLAGS: 4784 case SIOCSIFMETRIC: 4785 case SIOCSIFMTU: 4786 case SIOCSIFMAP: 4787 case SIOCSIFHWADDR: 4788 case SIOCSIFSLAVE: 4789 case SIOCADDMULTI: 4790 case SIOCDELMULTI: 4791 case SIOCSIFHWBROADCAST: 4792 case SIOCSIFTXQLEN: 4793 case SIOCSMIIREG: 4794 case SIOCBONDENSLAVE: 4795 case SIOCBONDRELEASE: 4796 case SIOCBONDSETHWADDR: 4797 case SIOCBONDCHANGEACTIVE: 4798 case SIOCBRADDIF: 4799 case SIOCBRDELIF: 4800 case SIOCSHWTSTAMP: 4801 if (!capable(CAP_NET_ADMIN)) 4802 return -EPERM; 4803 /* fall through */ 4804 case SIOCBONDSLAVEINFOQUERY: 4805 case SIOCBONDINFOQUERY: 4806 dev_load(net, ifr.ifr_name); 4807 rtnl_lock(); 4808 ret = dev_ifsioc(net, &ifr, cmd); 4809 rtnl_unlock(); 4810 return ret; 4811 4812 case SIOCGIFMEM: 4813 /* Get the per device memory space. We can add this but 4814 * currently do not support it */ 4815 case SIOCSIFMEM: 4816 /* Set the per device memory buffer space. 4817 * Not applicable in our case */ 4818 case SIOCSIFLINK: 4819 return -EINVAL; 4820 4821 /* 4822 * Unknown or private ioctl. 4823 */ 4824 default: 4825 if (cmd == SIOCWANDEV || 4826 (cmd >= SIOCDEVPRIVATE && 4827 cmd <= SIOCDEVPRIVATE + 15)) { 4828 dev_load(net, ifr.ifr_name); 4829 rtnl_lock(); 4830 ret = dev_ifsioc(net, &ifr, cmd); 4831 rtnl_unlock(); 4832 if (!ret && copy_to_user(arg, &ifr, 4833 sizeof(struct ifreq))) 4834 ret = -EFAULT; 4835 return ret; 4836 } 4837 /* Take care of Wireless Extensions */ 4838 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) 4839 return wext_handle_ioctl(net, &ifr, cmd, arg); 4840 return -EINVAL; 4841 } 4842 } 4843 4844 4845 /** 4846 * dev_new_index - allocate an ifindex 4847 * @net: the applicable net namespace 4848 * 4849 * Returns a suitable unique value for a new device interface 4850 * number. The caller must hold the rtnl semaphore or the 4851 * dev_base_lock to be sure it remains unique. 4852 */ 4853 static int dev_new_index(struct net *net) 4854 { 4855 static int ifindex; 4856 for (;;) { 4857 if (++ifindex <= 0) 4858 ifindex = 1; 4859 if (!__dev_get_by_index(net, ifindex)) 4860 return ifindex; 4861 } 4862 } 4863 4864 /* Delayed registration/unregisteration */ 4865 static LIST_HEAD(net_todo_list); 4866 4867 static void net_set_todo(struct net_device *dev) 4868 { 4869 list_add_tail(&dev->todo_list, &net_todo_list); 4870 } 4871 4872 static void rollback_registered_many(struct list_head *head) 4873 { 4874 struct net_device *dev, *tmp; 4875 4876 BUG_ON(dev_boot_phase); 4877 ASSERT_RTNL(); 4878 4879 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 4880 /* Some devices call without registering 4881 * for initialization unwind. Remove those 4882 * devices and proceed with the remaining. 4883 */ 4884 if (dev->reg_state == NETREG_UNINITIALIZED) { 4885 pr_debug("unregister_netdevice: device %s/%p never " 4886 "was registered\n", dev->name, dev); 4887 4888 WARN_ON(1); 4889 list_del(&dev->unreg_list); 4890 continue; 4891 } 4892 4893 BUG_ON(dev->reg_state != NETREG_REGISTERED); 4894 4895 /* If device is running, close it first. */ 4896 dev_close(dev); 4897 4898 /* And unlink it from device chain. */ 4899 unlist_netdevice(dev); 4900 4901 dev->reg_state = NETREG_UNREGISTERING; 4902 } 4903 4904 synchronize_net(); 4905 4906 list_for_each_entry(dev, head, unreg_list) { 4907 /* Shutdown queueing discipline. */ 4908 dev_shutdown(dev); 4909 4910 4911 /* Notify protocols, that we are about to destroy 4912 this device. They should clean all the things. 4913 */ 4914 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 4915 4916 if (!dev->rtnl_link_ops || 4917 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 4918 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U); 4919 4920 /* 4921 * Flush the unicast and multicast chains 4922 */ 4923 dev_unicast_flush(dev); 4924 dev_addr_discard(dev); 4925 4926 if (dev->netdev_ops->ndo_uninit) 4927 dev->netdev_ops->ndo_uninit(dev); 4928 4929 /* Notifier chain MUST detach us from master device. */ 4930 WARN_ON(dev->master); 4931 4932 /* Remove entries from kobject tree */ 4933 netdev_unregister_kobject(dev); 4934 } 4935 4936 /* Process any work delayed until the end of the batch */ 4937 dev = list_first_entry(head, struct net_device, unreg_list); 4938 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev); 4939 4940 synchronize_net(); 4941 4942 list_for_each_entry(dev, head, unreg_list) 4943 dev_put(dev); 4944 } 4945 4946 static void rollback_registered(struct net_device *dev) 4947 { 4948 LIST_HEAD(single); 4949 4950 list_add(&dev->unreg_list, &single); 4951 rollback_registered_many(&single); 4952 } 4953 4954 static void __netdev_init_queue_locks_one(struct net_device *dev, 4955 struct netdev_queue *dev_queue, 4956 void *_unused) 4957 { 4958 spin_lock_init(&dev_queue->_xmit_lock); 4959 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type); 4960 dev_queue->xmit_lock_owner = -1; 4961 } 4962 4963 static void netdev_init_queue_locks(struct net_device *dev) 4964 { 4965 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL); 4966 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL); 4967 } 4968 4969 unsigned long netdev_fix_features(unsigned long features, const char *name) 4970 { 4971 /* Fix illegal SG+CSUM combinations. */ 4972 if ((features & NETIF_F_SG) && 4973 !(features & NETIF_F_ALL_CSUM)) { 4974 if (name) 4975 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no " 4976 "checksum feature.\n", name); 4977 features &= ~NETIF_F_SG; 4978 } 4979 4980 /* TSO requires that SG is present as well. */ 4981 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) { 4982 if (name) 4983 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no " 4984 "SG feature.\n", name); 4985 features &= ~NETIF_F_TSO; 4986 } 4987 4988 if (features & NETIF_F_UFO) { 4989 if (!(features & NETIF_F_GEN_CSUM)) { 4990 if (name) 4991 printk(KERN_ERR "%s: Dropping NETIF_F_UFO " 4992 "since no NETIF_F_HW_CSUM feature.\n", 4993 name); 4994 features &= ~NETIF_F_UFO; 4995 } 4996 4997 if (!(features & NETIF_F_SG)) { 4998 if (name) 4999 printk(KERN_ERR "%s: Dropping NETIF_F_UFO " 5000 "since no NETIF_F_SG feature.\n", name); 5001 features &= ~NETIF_F_UFO; 5002 } 5003 } 5004 5005 return features; 5006 } 5007 EXPORT_SYMBOL(netdev_fix_features); 5008 5009 /** 5010 * netif_stacked_transfer_operstate - transfer operstate 5011 * @rootdev: the root or lower level device to transfer state from 5012 * @dev: the device to transfer operstate to 5013 * 5014 * Transfer operational state from root to device. This is normally 5015 * called when a stacking relationship exists between the root 5016 * device and the device(a leaf device). 5017 */ 5018 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 5019 struct net_device *dev) 5020 { 5021 if (rootdev->operstate == IF_OPER_DORMANT) 5022 netif_dormant_on(dev); 5023 else 5024 netif_dormant_off(dev); 5025 5026 if (netif_carrier_ok(rootdev)) { 5027 if (!netif_carrier_ok(dev)) 5028 netif_carrier_on(dev); 5029 } else { 5030 if (netif_carrier_ok(dev)) 5031 netif_carrier_off(dev); 5032 } 5033 } 5034 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 5035 5036 /** 5037 * register_netdevice - register a network device 5038 * @dev: device to register 5039 * 5040 * Take a completed network device structure and add it to the kernel 5041 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 5042 * chain. 0 is returned on success. A negative errno code is returned 5043 * on a failure to set up the device, or if the name is a duplicate. 5044 * 5045 * Callers must hold the rtnl semaphore. You may want 5046 * register_netdev() instead of this. 5047 * 5048 * BUGS: 5049 * The locking appears insufficient to guarantee two parallel registers 5050 * will not get the same name. 5051 */ 5052 5053 int register_netdevice(struct net_device *dev) 5054 { 5055 int ret; 5056 struct net *net = dev_net(dev); 5057 5058 BUG_ON(dev_boot_phase); 5059 ASSERT_RTNL(); 5060 5061 might_sleep(); 5062 5063 /* When net_device's are persistent, this will be fatal. */ 5064 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 5065 BUG_ON(!net); 5066 5067 spin_lock_init(&dev->addr_list_lock); 5068 netdev_set_addr_lockdep_class(dev); 5069 netdev_init_queue_locks(dev); 5070 5071 dev->iflink = -1; 5072 5073 /* Init, if this function is available */ 5074 if (dev->netdev_ops->ndo_init) { 5075 ret = dev->netdev_ops->ndo_init(dev); 5076 if (ret) { 5077 if (ret > 0) 5078 ret = -EIO; 5079 goto out; 5080 } 5081 } 5082 5083 ret = dev_get_valid_name(net, dev->name, dev->name, 0); 5084 if (ret) 5085 goto err_uninit; 5086 5087 dev->ifindex = dev_new_index(net); 5088 if (dev->iflink == -1) 5089 dev->iflink = dev->ifindex; 5090 5091 /* Fix illegal checksum combinations */ 5092 if ((dev->features & NETIF_F_HW_CSUM) && 5093 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5094 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n", 5095 dev->name); 5096 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 5097 } 5098 5099 if ((dev->features & NETIF_F_NO_CSUM) && 5100 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5101 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n", 5102 dev->name); 5103 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM); 5104 } 5105 5106 dev->features = netdev_fix_features(dev->features, dev->name); 5107 5108 /* Enable software GSO if SG is supported. */ 5109 if (dev->features & NETIF_F_SG) 5110 dev->features |= NETIF_F_GSO; 5111 5112 netdev_initialize_kobject(dev); 5113 5114 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 5115 ret = notifier_to_errno(ret); 5116 if (ret) 5117 goto err_uninit; 5118 5119 ret = netdev_register_kobject(dev); 5120 if (ret) 5121 goto err_uninit; 5122 dev->reg_state = NETREG_REGISTERED; 5123 5124 /* 5125 * Default initial state at registry is that the 5126 * device is present. 5127 */ 5128 5129 set_bit(__LINK_STATE_PRESENT, &dev->state); 5130 5131 dev_init_scheduler(dev); 5132 dev_hold(dev); 5133 list_netdevice(dev); 5134 5135 /* Notify protocols, that a new device appeared. */ 5136 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 5137 ret = notifier_to_errno(ret); 5138 if (ret) { 5139 rollback_registered(dev); 5140 dev->reg_state = NETREG_UNREGISTERED; 5141 } 5142 /* 5143 * Prevent userspace races by waiting until the network 5144 * device is fully setup before sending notifications. 5145 */ 5146 if (!dev->rtnl_link_ops || 5147 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 5148 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U); 5149 5150 out: 5151 return ret; 5152 5153 err_uninit: 5154 if (dev->netdev_ops->ndo_uninit) 5155 dev->netdev_ops->ndo_uninit(dev); 5156 goto out; 5157 } 5158 EXPORT_SYMBOL(register_netdevice); 5159 5160 /** 5161 * init_dummy_netdev - init a dummy network device for NAPI 5162 * @dev: device to init 5163 * 5164 * This takes a network device structure and initialize the minimum 5165 * amount of fields so it can be used to schedule NAPI polls without 5166 * registering a full blown interface. This is to be used by drivers 5167 * that need to tie several hardware interfaces to a single NAPI 5168 * poll scheduler due to HW limitations. 5169 */ 5170 int init_dummy_netdev(struct net_device *dev) 5171 { 5172 /* Clear everything. Note we don't initialize spinlocks 5173 * are they aren't supposed to be taken by any of the 5174 * NAPI code and this dummy netdev is supposed to be 5175 * only ever used for NAPI polls 5176 */ 5177 memset(dev, 0, sizeof(struct net_device)); 5178 5179 /* make sure we BUG if trying to hit standard 5180 * register/unregister code path 5181 */ 5182 dev->reg_state = NETREG_DUMMY; 5183 5184 /* initialize the ref count */ 5185 atomic_set(&dev->refcnt, 1); 5186 5187 /* NAPI wants this */ 5188 INIT_LIST_HEAD(&dev->napi_list); 5189 5190 /* a dummy interface is started by default */ 5191 set_bit(__LINK_STATE_PRESENT, &dev->state); 5192 set_bit(__LINK_STATE_START, &dev->state); 5193 5194 return 0; 5195 } 5196 EXPORT_SYMBOL_GPL(init_dummy_netdev); 5197 5198 5199 /** 5200 * register_netdev - register a network device 5201 * @dev: device to register 5202 * 5203 * Take a completed network device structure and add it to the kernel 5204 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 5205 * chain. 0 is returned on success. A negative errno code is returned 5206 * on a failure to set up the device, or if the name is a duplicate. 5207 * 5208 * This is a wrapper around register_netdevice that takes the rtnl semaphore 5209 * and expands the device name if you passed a format string to 5210 * alloc_netdev. 5211 */ 5212 int register_netdev(struct net_device *dev) 5213 { 5214 int err; 5215 5216 rtnl_lock(); 5217 5218 /* 5219 * If the name is a format string the caller wants us to do a 5220 * name allocation. 5221 */ 5222 if (strchr(dev->name, '%')) { 5223 err = dev_alloc_name(dev, dev->name); 5224 if (err < 0) 5225 goto out; 5226 } 5227 5228 err = register_netdevice(dev); 5229 out: 5230 rtnl_unlock(); 5231 return err; 5232 } 5233 EXPORT_SYMBOL(register_netdev); 5234 5235 /* 5236 * netdev_wait_allrefs - wait until all references are gone. 5237 * 5238 * This is called when unregistering network devices. 5239 * 5240 * Any protocol or device that holds a reference should register 5241 * for netdevice notification, and cleanup and put back the 5242 * reference if they receive an UNREGISTER event. 5243 * We can get stuck here if buggy protocols don't correctly 5244 * call dev_put. 5245 */ 5246 static void netdev_wait_allrefs(struct net_device *dev) 5247 { 5248 unsigned long rebroadcast_time, warning_time; 5249 5250 linkwatch_forget_dev(dev); 5251 5252 rebroadcast_time = warning_time = jiffies; 5253 while (atomic_read(&dev->refcnt) != 0) { 5254 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 5255 rtnl_lock(); 5256 5257 /* Rebroadcast unregister notification */ 5258 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5259 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users 5260 * should have already handle it the first time */ 5261 5262 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 5263 &dev->state)) { 5264 /* We must not have linkwatch events 5265 * pending on unregister. If this 5266 * happens, we simply run the queue 5267 * unscheduled, resulting in a noop 5268 * for this device. 5269 */ 5270 linkwatch_run_queue(); 5271 } 5272 5273 __rtnl_unlock(); 5274 5275 rebroadcast_time = jiffies; 5276 } 5277 5278 msleep(250); 5279 5280 if (time_after(jiffies, warning_time + 10 * HZ)) { 5281 printk(KERN_EMERG "unregister_netdevice: " 5282 "waiting for %s to become free. Usage " 5283 "count = %d\n", 5284 dev->name, atomic_read(&dev->refcnt)); 5285 warning_time = jiffies; 5286 } 5287 } 5288 } 5289 5290 /* The sequence is: 5291 * 5292 * rtnl_lock(); 5293 * ... 5294 * register_netdevice(x1); 5295 * register_netdevice(x2); 5296 * ... 5297 * unregister_netdevice(y1); 5298 * unregister_netdevice(y2); 5299 * ... 5300 * rtnl_unlock(); 5301 * free_netdev(y1); 5302 * free_netdev(y2); 5303 * 5304 * We are invoked by rtnl_unlock(). 5305 * This allows us to deal with problems: 5306 * 1) We can delete sysfs objects which invoke hotplug 5307 * without deadlocking with linkwatch via keventd. 5308 * 2) Since we run with the RTNL semaphore not held, we can sleep 5309 * safely in order to wait for the netdev refcnt to drop to zero. 5310 * 5311 * We must not return until all unregister events added during 5312 * the interval the lock was held have been completed. 5313 */ 5314 void netdev_run_todo(void) 5315 { 5316 struct list_head list; 5317 5318 /* Snapshot list, allow later requests */ 5319 list_replace_init(&net_todo_list, &list); 5320 5321 __rtnl_unlock(); 5322 5323 while (!list_empty(&list)) { 5324 struct net_device *dev 5325 = list_first_entry(&list, struct net_device, todo_list); 5326 list_del(&dev->todo_list); 5327 5328 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 5329 printk(KERN_ERR "network todo '%s' but state %d\n", 5330 dev->name, dev->reg_state); 5331 dump_stack(); 5332 continue; 5333 } 5334 5335 dev->reg_state = NETREG_UNREGISTERED; 5336 5337 on_each_cpu(flush_backlog, dev, 1); 5338 5339 netdev_wait_allrefs(dev); 5340 5341 /* paranoia */ 5342 BUG_ON(atomic_read(&dev->refcnt)); 5343 WARN_ON(dev->ip_ptr); 5344 WARN_ON(dev->ip6_ptr); 5345 WARN_ON(dev->dn_ptr); 5346 5347 if (dev->destructor) 5348 dev->destructor(dev); 5349 5350 /* Free network device */ 5351 kobject_put(&dev->dev.kobj); 5352 } 5353 } 5354 5355 /** 5356 * dev_txq_stats_fold - fold tx_queues stats 5357 * @dev: device to get statistics from 5358 * @stats: struct net_device_stats to hold results 5359 */ 5360 void dev_txq_stats_fold(const struct net_device *dev, 5361 struct net_device_stats *stats) 5362 { 5363 unsigned long tx_bytes = 0, tx_packets = 0, tx_dropped = 0; 5364 unsigned int i; 5365 struct netdev_queue *txq; 5366 5367 for (i = 0; i < dev->num_tx_queues; i++) { 5368 txq = netdev_get_tx_queue(dev, i); 5369 tx_bytes += txq->tx_bytes; 5370 tx_packets += txq->tx_packets; 5371 tx_dropped += txq->tx_dropped; 5372 } 5373 if (tx_bytes || tx_packets || tx_dropped) { 5374 stats->tx_bytes = tx_bytes; 5375 stats->tx_packets = tx_packets; 5376 stats->tx_dropped = tx_dropped; 5377 } 5378 } 5379 EXPORT_SYMBOL(dev_txq_stats_fold); 5380 5381 /** 5382 * dev_get_stats - get network device statistics 5383 * @dev: device to get statistics from 5384 * 5385 * Get network statistics from device. The device driver may provide 5386 * its own method by setting dev->netdev_ops->get_stats; otherwise 5387 * the internal statistics structure is used. 5388 */ 5389 const struct net_device_stats *dev_get_stats(struct net_device *dev) 5390 { 5391 const struct net_device_ops *ops = dev->netdev_ops; 5392 5393 if (ops->ndo_get_stats) 5394 return ops->ndo_get_stats(dev); 5395 5396 dev_txq_stats_fold(dev, &dev->stats); 5397 return &dev->stats; 5398 } 5399 EXPORT_SYMBOL(dev_get_stats); 5400 5401 static void netdev_init_one_queue(struct net_device *dev, 5402 struct netdev_queue *queue, 5403 void *_unused) 5404 { 5405 queue->dev = dev; 5406 } 5407 5408 static void netdev_init_queues(struct net_device *dev) 5409 { 5410 netdev_init_one_queue(dev, &dev->rx_queue, NULL); 5411 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 5412 spin_lock_init(&dev->tx_global_lock); 5413 } 5414 5415 /** 5416 * alloc_netdev_mq - allocate network device 5417 * @sizeof_priv: size of private data to allocate space for 5418 * @name: device name format string 5419 * @setup: callback to initialize device 5420 * @queue_count: the number of subqueues to allocate 5421 * 5422 * Allocates a struct net_device with private data area for driver use 5423 * and performs basic initialization. Also allocates subquue structs 5424 * for each queue on the device at the end of the netdevice. 5425 */ 5426 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name, 5427 void (*setup)(struct net_device *), unsigned int queue_count) 5428 { 5429 struct netdev_queue *tx; 5430 struct net_device *dev; 5431 size_t alloc_size; 5432 struct net_device *p; 5433 5434 BUG_ON(strlen(name) >= sizeof(dev->name)); 5435 5436 alloc_size = sizeof(struct net_device); 5437 if (sizeof_priv) { 5438 /* ensure 32-byte alignment of private area */ 5439 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 5440 alloc_size += sizeof_priv; 5441 } 5442 /* ensure 32-byte alignment of whole construct */ 5443 alloc_size += NETDEV_ALIGN - 1; 5444 5445 p = kzalloc(alloc_size, GFP_KERNEL); 5446 if (!p) { 5447 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n"); 5448 return NULL; 5449 } 5450 5451 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL); 5452 if (!tx) { 5453 printk(KERN_ERR "alloc_netdev: Unable to allocate " 5454 "tx qdiscs.\n"); 5455 goto free_p; 5456 } 5457 5458 dev = PTR_ALIGN(p, NETDEV_ALIGN); 5459 dev->padded = (char *)dev - (char *)p; 5460 5461 if (dev_addr_init(dev)) 5462 goto free_tx; 5463 5464 dev_unicast_init(dev); 5465 5466 dev_net_set(dev, &init_net); 5467 5468 dev->_tx = tx; 5469 dev->num_tx_queues = queue_count; 5470 dev->real_num_tx_queues = queue_count; 5471 5472 dev->gso_max_size = GSO_MAX_SIZE; 5473 5474 netdev_init_queues(dev); 5475 5476 INIT_LIST_HEAD(&dev->ethtool_ntuple_list.list); 5477 dev->ethtool_ntuple_list.count = 0; 5478 INIT_LIST_HEAD(&dev->napi_list); 5479 INIT_LIST_HEAD(&dev->unreg_list); 5480 INIT_LIST_HEAD(&dev->link_watch_list); 5481 dev->priv_flags = IFF_XMIT_DST_RELEASE; 5482 setup(dev); 5483 strcpy(dev->name, name); 5484 return dev; 5485 5486 free_tx: 5487 kfree(tx); 5488 5489 free_p: 5490 kfree(p); 5491 return NULL; 5492 } 5493 EXPORT_SYMBOL(alloc_netdev_mq); 5494 5495 /** 5496 * free_netdev - free network device 5497 * @dev: device 5498 * 5499 * This function does the last stage of destroying an allocated device 5500 * interface. The reference to the device object is released. 5501 * If this is the last reference then it will be freed. 5502 */ 5503 void free_netdev(struct net_device *dev) 5504 { 5505 struct napi_struct *p, *n; 5506 5507 release_net(dev_net(dev)); 5508 5509 kfree(dev->_tx); 5510 5511 /* Flush device addresses */ 5512 dev_addr_flush(dev); 5513 5514 /* Clear ethtool n-tuple list */ 5515 ethtool_ntuple_flush(dev); 5516 5517 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 5518 netif_napi_del(p); 5519 5520 /* Compatibility with error handling in drivers */ 5521 if (dev->reg_state == NETREG_UNINITIALIZED) { 5522 kfree((char *)dev - dev->padded); 5523 return; 5524 } 5525 5526 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 5527 dev->reg_state = NETREG_RELEASED; 5528 5529 /* will free via device release */ 5530 put_device(&dev->dev); 5531 } 5532 EXPORT_SYMBOL(free_netdev); 5533 5534 /** 5535 * synchronize_net - Synchronize with packet receive processing 5536 * 5537 * Wait for packets currently being received to be done. 5538 * Does not block later packets from starting. 5539 */ 5540 void synchronize_net(void) 5541 { 5542 might_sleep(); 5543 synchronize_rcu(); 5544 } 5545 EXPORT_SYMBOL(synchronize_net); 5546 5547 /** 5548 * unregister_netdevice_queue - remove device from the kernel 5549 * @dev: device 5550 * @head: list 5551 * 5552 * This function shuts down a device interface and removes it 5553 * from the kernel tables. 5554 * If head not NULL, device is queued to be unregistered later. 5555 * 5556 * Callers must hold the rtnl semaphore. You may want 5557 * unregister_netdev() instead of this. 5558 */ 5559 5560 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 5561 { 5562 ASSERT_RTNL(); 5563 5564 if (head) { 5565 list_move_tail(&dev->unreg_list, head); 5566 } else { 5567 rollback_registered(dev); 5568 /* Finish processing unregister after unlock */ 5569 net_set_todo(dev); 5570 } 5571 } 5572 EXPORT_SYMBOL(unregister_netdevice_queue); 5573 5574 /** 5575 * unregister_netdevice_many - unregister many devices 5576 * @head: list of devices 5577 */ 5578 void unregister_netdevice_many(struct list_head *head) 5579 { 5580 struct net_device *dev; 5581 5582 if (!list_empty(head)) { 5583 rollback_registered_many(head); 5584 list_for_each_entry(dev, head, unreg_list) 5585 net_set_todo(dev); 5586 } 5587 } 5588 EXPORT_SYMBOL(unregister_netdevice_many); 5589 5590 /** 5591 * unregister_netdev - remove device from the kernel 5592 * @dev: device 5593 * 5594 * This function shuts down a device interface and removes it 5595 * from the kernel tables. 5596 * 5597 * This is just a wrapper for unregister_netdevice that takes 5598 * the rtnl semaphore. In general you want to use this and not 5599 * unregister_netdevice. 5600 */ 5601 void unregister_netdev(struct net_device *dev) 5602 { 5603 rtnl_lock(); 5604 unregister_netdevice(dev); 5605 rtnl_unlock(); 5606 } 5607 EXPORT_SYMBOL(unregister_netdev); 5608 5609 /** 5610 * dev_change_net_namespace - move device to different nethost namespace 5611 * @dev: device 5612 * @net: network namespace 5613 * @pat: If not NULL name pattern to try if the current device name 5614 * is already taken in the destination network namespace. 5615 * 5616 * This function shuts down a device interface and moves it 5617 * to a new network namespace. On success 0 is returned, on 5618 * a failure a netagive errno code is returned. 5619 * 5620 * Callers must hold the rtnl semaphore. 5621 */ 5622 5623 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 5624 { 5625 int err; 5626 5627 ASSERT_RTNL(); 5628 5629 /* Don't allow namespace local devices to be moved. */ 5630 err = -EINVAL; 5631 if (dev->features & NETIF_F_NETNS_LOCAL) 5632 goto out; 5633 5634 #ifdef CONFIG_SYSFS 5635 /* Don't allow real devices to be moved when sysfs 5636 * is enabled. 5637 */ 5638 err = -EINVAL; 5639 if (dev->dev.parent) 5640 goto out; 5641 #endif 5642 5643 /* Ensure the device has been registrered */ 5644 err = -EINVAL; 5645 if (dev->reg_state != NETREG_REGISTERED) 5646 goto out; 5647 5648 /* Get out if there is nothing todo */ 5649 err = 0; 5650 if (net_eq(dev_net(dev), net)) 5651 goto out; 5652 5653 /* Pick the destination device name, and ensure 5654 * we can use it in the destination network namespace. 5655 */ 5656 err = -EEXIST; 5657 if (__dev_get_by_name(net, dev->name)) { 5658 /* We get here if we can't use the current device name */ 5659 if (!pat) 5660 goto out; 5661 if (dev_get_valid_name(net, pat, dev->name, 1)) 5662 goto out; 5663 } 5664 5665 /* 5666 * And now a mini version of register_netdevice unregister_netdevice. 5667 */ 5668 5669 /* If device is running close it first. */ 5670 dev_close(dev); 5671 5672 /* And unlink it from device chain */ 5673 err = -ENODEV; 5674 unlist_netdevice(dev); 5675 5676 synchronize_net(); 5677 5678 /* Shutdown queueing discipline. */ 5679 dev_shutdown(dev); 5680 5681 /* Notify protocols, that we are about to destroy 5682 this device. They should clean all the things. 5683 */ 5684 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5685 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev); 5686 5687 /* 5688 * Flush the unicast and multicast chains 5689 */ 5690 dev_unicast_flush(dev); 5691 dev_addr_discard(dev); 5692 5693 netdev_unregister_kobject(dev); 5694 5695 /* Actually switch the network namespace */ 5696 dev_net_set(dev, net); 5697 5698 /* If there is an ifindex conflict assign a new one */ 5699 if (__dev_get_by_index(net, dev->ifindex)) { 5700 int iflink = (dev->iflink == dev->ifindex); 5701 dev->ifindex = dev_new_index(net); 5702 if (iflink) 5703 dev->iflink = dev->ifindex; 5704 } 5705 5706 /* Fixup kobjects */ 5707 err = netdev_register_kobject(dev); 5708 WARN_ON(err); 5709 5710 /* Add the device back in the hashes */ 5711 list_netdevice(dev); 5712 5713 /* Notify protocols, that a new device appeared. */ 5714 call_netdevice_notifiers(NETDEV_REGISTER, dev); 5715 5716 /* 5717 * Prevent userspace races by waiting until the network 5718 * device is fully setup before sending notifications. 5719 */ 5720 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U); 5721 5722 synchronize_net(); 5723 err = 0; 5724 out: 5725 return err; 5726 } 5727 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 5728 5729 static int dev_cpu_callback(struct notifier_block *nfb, 5730 unsigned long action, 5731 void *ocpu) 5732 { 5733 struct sk_buff **list_skb; 5734 struct Qdisc **list_net; 5735 struct sk_buff *skb; 5736 unsigned int cpu, oldcpu = (unsigned long)ocpu; 5737 struct softnet_data *sd, *oldsd; 5738 5739 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 5740 return NOTIFY_OK; 5741 5742 local_irq_disable(); 5743 cpu = smp_processor_id(); 5744 sd = &per_cpu(softnet_data, cpu); 5745 oldsd = &per_cpu(softnet_data, oldcpu); 5746 5747 /* Find end of our completion_queue. */ 5748 list_skb = &sd->completion_queue; 5749 while (*list_skb) 5750 list_skb = &(*list_skb)->next; 5751 /* Append completion queue from offline CPU. */ 5752 *list_skb = oldsd->completion_queue; 5753 oldsd->completion_queue = NULL; 5754 5755 /* Find end of our output_queue. */ 5756 list_net = &sd->output_queue; 5757 while (*list_net) 5758 list_net = &(*list_net)->next_sched; 5759 /* Append output queue from offline CPU. */ 5760 *list_net = oldsd->output_queue; 5761 oldsd->output_queue = NULL; 5762 5763 raise_softirq_irqoff(NET_TX_SOFTIRQ); 5764 local_irq_enable(); 5765 5766 /* Process offline CPU's input_pkt_queue */ 5767 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) 5768 netif_rx(skb); 5769 5770 return NOTIFY_OK; 5771 } 5772 5773 5774 /** 5775 * netdev_increment_features - increment feature set by one 5776 * @all: current feature set 5777 * @one: new feature set 5778 * @mask: mask feature set 5779 * 5780 * Computes a new feature set after adding a device with feature set 5781 * @one to the master device with current feature set @all. Will not 5782 * enable anything that is off in @mask. Returns the new feature set. 5783 */ 5784 unsigned long netdev_increment_features(unsigned long all, unsigned long one, 5785 unsigned long mask) 5786 { 5787 /* If device needs checksumming, downgrade to it. */ 5788 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM)) 5789 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM); 5790 else if (mask & NETIF_F_ALL_CSUM) { 5791 /* If one device supports v4/v6 checksumming, set for all. */ 5792 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) && 5793 !(all & NETIF_F_GEN_CSUM)) { 5794 all &= ~NETIF_F_ALL_CSUM; 5795 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM); 5796 } 5797 5798 /* If one device supports hw checksumming, set for all. */ 5799 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) { 5800 all &= ~NETIF_F_ALL_CSUM; 5801 all |= NETIF_F_HW_CSUM; 5802 } 5803 } 5804 5805 one |= NETIF_F_ALL_CSUM; 5806 5807 one |= all & NETIF_F_ONE_FOR_ALL; 5808 all &= one | NETIF_F_LLTX | NETIF_F_GSO | NETIF_F_UFO; 5809 all |= one & mask & NETIF_F_ONE_FOR_ALL; 5810 5811 return all; 5812 } 5813 EXPORT_SYMBOL(netdev_increment_features); 5814 5815 static struct hlist_head *netdev_create_hash(void) 5816 { 5817 int i; 5818 struct hlist_head *hash; 5819 5820 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 5821 if (hash != NULL) 5822 for (i = 0; i < NETDEV_HASHENTRIES; i++) 5823 INIT_HLIST_HEAD(&hash[i]); 5824 5825 return hash; 5826 } 5827 5828 /* Initialize per network namespace state */ 5829 static int __net_init netdev_init(struct net *net) 5830 { 5831 INIT_LIST_HEAD(&net->dev_base_head); 5832 5833 net->dev_name_head = netdev_create_hash(); 5834 if (net->dev_name_head == NULL) 5835 goto err_name; 5836 5837 net->dev_index_head = netdev_create_hash(); 5838 if (net->dev_index_head == NULL) 5839 goto err_idx; 5840 5841 return 0; 5842 5843 err_idx: 5844 kfree(net->dev_name_head); 5845 err_name: 5846 return -ENOMEM; 5847 } 5848 5849 /** 5850 * netdev_drivername - network driver for the device 5851 * @dev: network device 5852 * @buffer: buffer for resulting name 5853 * @len: size of buffer 5854 * 5855 * Determine network driver for device. 5856 */ 5857 char *netdev_drivername(const struct net_device *dev, char *buffer, int len) 5858 { 5859 const struct device_driver *driver; 5860 const struct device *parent; 5861 5862 if (len <= 0 || !buffer) 5863 return buffer; 5864 buffer[0] = 0; 5865 5866 parent = dev->dev.parent; 5867 5868 if (!parent) 5869 return buffer; 5870 5871 driver = parent->driver; 5872 if (driver && driver->name) 5873 strlcpy(buffer, driver->name, len); 5874 return buffer; 5875 } 5876 5877 static void __net_exit netdev_exit(struct net *net) 5878 { 5879 kfree(net->dev_name_head); 5880 kfree(net->dev_index_head); 5881 } 5882 5883 static struct pernet_operations __net_initdata netdev_net_ops = { 5884 .init = netdev_init, 5885 .exit = netdev_exit, 5886 }; 5887 5888 static void __net_exit default_device_exit(struct net *net) 5889 { 5890 struct net_device *dev, *aux; 5891 /* 5892 * Push all migratable network devices back to the 5893 * initial network namespace 5894 */ 5895 rtnl_lock(); 5896 for_each_netdev_safe(net, dev, aux) { 5897 int err; 5898 char fb_name[IFNAMSIZ]; 5899 5900 /* Ignore unmoveable devices (i.e. loopback) */ 5901 if (dev->features & NETIF_F_NETNS_LOCAL) 5902 continue; 5903 5904 /* Leave virtual devices for the generic cleanup */ 5905 if (dev->rtnl_link_ops) 5906 continue; 5907 5908 /* Push remaing network devices to init_net */ 5909 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 5910 err = dev_change_net_namespace(dev, &init_net, fb_name); 5911 if (err) { 5912 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n", 5913 __func__, dev->name, err); 5914 BUG(); 5915 } 5916 } 5917 rtnl_unlock(); 5918 } 5919 5920 static void __net_exit default_device_exit_batch(struct list_head *net_list) 5921 { 5922 /* At exit all network devices most be removed from a network 5923 * namespace. Do this in the reverse order of registeration. 5924 * Do this across as many network namespaces as possible to 5925 * improve batching efficiency. 5926 */ 5927 struct net_device *dev; 5928 struct net *net; 5929 LIST_HEAD(dev_kill_list); 5930 5931 rtnl_lock(); 5932 list_for_each_entry(net, net_list, exit_list) { 5933 for_each_netdev_reverse(net, dev) { 5934 if (dev->rtnl_link_ops) 5935 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 5936 else 5937 unregister_netdevice_queue(dev, &dev_kill_list); 5938 } 5939 } 5940 unregister_netdevice_many(&dev_kill_list); 5941 rtnl_unlock(); 5942 } 5943 5944 static struct pernet_operations __net_initdata default_device_ops = { 5945 .exit = default_device_exit, 5946 .exit_batch = default_device_exit_batch, 5947 }; 5948 5949 /* 5950 * Initialize the DEV module. At boot time this walks the device list and 5951 * unhooks any devices that fail to initialise (normally hardware not 5952 * present) and leaves us with a valid list of present and active devices. 5953 * 5954 */ 5955 5956 /* 5957 * This is called single threaded during boot, so no need 5958 * to take the rtnl semaphore. 5959 */ 5960 static int __init net_dev_init(void) 5961 { 5962 int i, rc = -ENOMEM; 5963 5964 BUG_ON(!dev_boot_phase); 5965 5966 if (dev_proc_init()) 5967 goto out; 5968 5969 if (netdev_kobject_init()) 5970 goto out; 5971 5972 INIT_LIST_HEAD(&ptype_all); 5973 for (i = 0; i < PTYPE_HASH_SIZE; i++) 5974 INIT_LIST_HEAD(&ptype_base[i]); 5975 5976 if (register_pernet_subsys(&netdev_net_ops)) 5977 goto out; 5978 5979 /* 5980 * Initialise the packet receive queues. 5981 */ 5982 5983 for_each_possible_cpu(i) { 5984 struct softnet_data *queue; 5985 5986 queue = &per_cpu(softnet_data, i); 5987 skb_queue_head_init(&queue->input_pkt_queue); 5988 queue->completion_queue = NULL; 5989 INIT_LIST_HEAD(&queue->poll_list); 5990 5991 queue->backlog.poll = process_backlog; 5992 queue->backlog.weight = weight_p; 5993 queue->backlog.gro_list = NULL; 5994 queue->backlog.gro_count = 0; 5995 } 5996 5997 dev_boot_phase = 0; 5998 5999 /* The loopback device is special if any other network devices 6000 * is present in a network namespace the loopback device must 6001 * be present. Since we now dynamically allocate and free the 6002 * loopback device ensure this invariant is maintained by 6003 * keeping the loopback device as the first device on the 6004 * list of network devices. Ensuring the loopback devices 6005 * is the first device that appears and the last network device 6006 * that disappears. 6007 */ 6008 if (register_pernet_device(&loopback_net_ops)) 6009 goto out; 6010 6011 if (register_pernet_device(&default_device_ops)) 6012 goto out; 6013 6014 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 6015 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 6016 6017 hotcpu_notifier(dev_cpu_callback, 0); 6018 dst_init(); 6019 dev_mcast_init(); 6020 rc = 0; 6021 out: 6022 return rc; 6023 } 6024 6025 subsys_initcall(net_dev_init); 6026 6027 static int __init initialize_hashrnd(void) 6028 { 6029 get_random_bytes(&skb_tx_hashrnd, sizeof(skb_tx_hashrnd)); 6030 return 0; 6031 } 6032 6033 late_initcall_sync(initialize_hashrnd); 6034 6035