xref: /linux/net/core/dev.c (revision 566ab427f827b0256d3e8ce0235d088e6a9c28bd)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitmap.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/isolation.h>
81 #include <linux/sched/mm.h>
82 #include <linux/smpboot.h>
83 #include <linux/mutex.h>
84 #include <linux/rwsem.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/skbuff.h>
96 #include <linux/kthread.h>
97 #include <linux/bpf.h>
98 #include <linux/bpf_trace.h>
99 #include <net/net_namespace.h>
100 #include <net/sock.h>
101 #include <net/busy_poll.h>
102 #include <linux/rtnetlink.h>
103 #include <linux/stat.h>
104 #include <net/dsa.h>
105 #include <net/dst.h>
106 #include <net/dst_metadata.h>
107 #include <net/gro.h>
108 #include <net/pkt_sched.h>
109 #include <net/pkt_cls.h>
110 #include <net/checksum.h>
111 #include <net/xfrm.h>
112 #include <net/tcx.h>
113 #include <linux/highmem.h>
114 #include <linux/init.h>
115 #include <linux/module.h>
116 #include <linux/netpoll.h>
117 #include <linux/rcupdate.h>
118 #include <linux/delay.h>
119 #include <net/iw_handler.h>
120 #include <asm/current.h>
121 #include <linux/audit.h>
122 #include <linux/dmaengine.h>
123 #include <linux/err.h>
124 #include <linux/ctype.h>
125 #include <linux/if_arp.h>
126 #include <linux/if_vlan.h>
127 #include <linux/ip.h>
128 #include <net/ip.h>
129 #include <net/mpls.h>
130 #include <linux/ipv6.h>
131 #include <linux/in.h>
132 #include <linux/jhash.h>
133 #include <linux/random.h>
134 #include <trace/events/napi.h>
135 #include <trace/events/net.h>
136 #include <trace/events/skb.h>
137 #include <trace/events/qdisc.h>
138 #include <trace/events/xdp.h>
139 #include <linux/inetdevice.h>
140 #include <linux/cpu_rmap.h>
141 #include <linux/static_key.h>
142 #include <linux/hashtable.h>
143 #include <linux/vmalloc.h>
144 #include <linux/if_macvlan.h>
145 #include <linux/errqueue.h>
146 #include <linux/hrtimer.h>
147 #include <linux/netfilter_netdev.h>
148 #include <linux/crash_dump.h>
149 #include <linux/sctp.h>
150 #include <net/udp_tunnel.h>
151 #include <linux/net_namespace.h>
152 #include <linux/indirect_call_wrapper.h>
153 #include <net/devlink.h>
154 #include <linux/pm_runtime.h>
155 #include <linux/prandom.h>
156 #include <linux/once_lite.h>
157 #include <net/netdev_rx_queue.h>
158 #include <net/page_pool/types.h>
159 #include <net/page_pool/helpers.h>
160 #include <net/rps.h>
161 #include <linux/phy_link_topology.h>
162 
163 #include "dev.h"
164 #include "devmem.h"
165 #include "net-sysfs.h"
166 
167 static DEFINE_SPINLOCK(ptype_lock);
168 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
169 
170 static int netif_rx_internal(struct sk_buff *skb);
171 static int call_netdevice_notifiers_extack(unsigned long val,
172 					   struct net_device *dev,
173 					   struct netlink_ext_ack *extack);
174 
175 static DEFINE_MUTEX(ifalias_mutex);
176 
177 /* protects napi_hash addition/deletion and napi_gen_id */
178 static DEFINE_SPINLOCK(napi_hash_lock);
179 
180 static unsigned int napi_gen_id = NR_CPUS;
181 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
182 
183 static DECLARE_RWSEM(devnet_rename_sem);
184 
185 static inline void dev_base_seq_inc(struct net *net)
186 {
187 	unsigned int val = net->dev_base_seq + 1;
188 
189 	WRITE_ONCE(net->dev_base_seq, val ?: 1);
190 }
191 
192 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
193 {
194 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
195 
196 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
197 }
198 
199 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
200 {
201 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
202 }
203 
204 #ifndef CONFIG_PREEMPT_RT
205 
206 static DEFINE_STATIC_KEY_FALSE(use_backlog_threads_key);
207 
208 static int __init setup_backlog_napi_threads(char *arg)
209 {
210 	static_branch_enable(&use_backlog_threads_key);
211 	return 0;
212 }
213 early_param("thread_backlog_napi", setup_backlog_napi_threads);
214 
215 static bool use_backlog_threads(void)
216 {
217 	return static_branch_unlikely(&use_backlog_threads_key);
218 }
219 
220 #else
221 
222 static bool use_backlog_threads(void)
223 {
224 	return true;
225 }
226 
227 #endif
228 
229 static inline void backlog_lock_irq_save(struct softnet_data *sd,
230 					 unsigned long *flags)
231 {
232 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
233 		spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
234 	else
235 		local_irq_save(*flags);
236 }
237 
238 static inline void backlog_lock_irq_disable(struct softnet_data *sd)
239 {
240 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
241 		spin_lock_irq(&sd->input_pkt_queue.lock);
242 	else
243 		local_irq_disable();
244 }
245 
246 static inline void backlog_unlock_irq_restore(struct softnet_data *sd,
247 					      unsigned long *flags)
248 {
249 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
250 		spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
251 	else
252 		local_irq_restore(*flags);
253 }
254 
255 static inline void backlog_unlock_irq_enable(struct softnet_data *sd)
256 {
257 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
258 		spin_unlock_irq(&sd->input_pkt_queue.lock);
259 	else
260 		local_irq_enable();
261 }
262 
263 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
264 						       const char *name)
265 {
266 	struct netdev_name_node *name_node;
267 
268 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
269 	if (!name_node)
270 		return NULL;
271 	INIT_HLIST_NODE(&name_node->hlist);
272 	name_node->dev = dev;
273 	name_node->name = name;
274 	return name_node;
275 }
276 
277 static struct netdev_name_node *
278 netdev_name_node_head_alloc(struct net_device *dev)
279 {
280 	struct netdev_name_node *name_node;
281 
282 	name_node = netdev_name_node_alloc(dev, dev->name);
283 	if (!name_node)
284 		return NULL;
285 	INIT_LIST_HEAD(&name_node->list);
286 	return name_node;
287 }
288 
289 static void netdev_name_node_free(struct netdev_name_node *name_node)
290 {
291 	kfree(name_node);
292 }
293 
294 static void netdev_name_node_add(struct net *net,
295 				 struct netdev_name_node *name_node)
296 {
297 	hlist_add_head_rcu(&name_node->hlist,
298 			   dev_name_hash(net, name_node->name));
299 }
300 
301 static void netdev_name_node_del(struct netdev_name_node *name_node)
302 {
303 	hlist_del_rcu(&name_node->hlist);
304 }
305 
306 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
307 							const char *name)
308 {
309 	struct hlist_head *head = dev_name_hash(net, name);
310 	struct netdev_name_node *name_node;
311 
312 	hlist_for_each_entry(name_node, head, hlist)
313 		if (!strcmp(name_node->name, name))
314 			return name_node;
315 	return NULL;
316 }
317 
318 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
319 							    const char *name)
320 {
321 	struct hlist_head *head = dev_name_hash(net, name);
322 	struct netdev_name_node *name_node;
323 
324 	hlist_for_each_entry_rcu(name_node, head, hlist)
325 		if (!strcmp(name_node->name, name))
326 			return name_node;
327 	return NULL;
328 }
329 
330 bool netdev_name_in_use(struct net *net, const char *name)
331 {
332 	return netdev_name_node_lookup(net, name);
333 }
334 EXPORT_SYMBOL(netdev_name_in_use);
335 
336 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
337 {
338 	struct netdev_name_node *name_node;
339 	struct net *net = dev_net(dev);
340 
341 	name_node = netdev_name_node_lookup(net, name);
342 	if (name_node)
343 		return -EEXIST;
344 	name_node = netdev_name_node_alloc(dev, name);
345 	if (!name_node)
346 		return -ENOMEM;
347 	netdev_name_node_add(net, name_node);
348 	/* The node that holds dev->name acts as a head of per-device list. */
349 	list_add_tail_rcu(&name_node->list, &dev->name_node->list);
350 
351 	return 0;
352 }
353 
354 static void netdev_name_node_alt_free(struct rcu_head *head)
355 {
356 	struct netdev_name_node *name_node =
357 		container_of(head, struct netdev_name_node, rcu);
358 
359 	kfree(name_node->name);
360 	netdev_name_node_free(name_node);
361 }
362 
363 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
364 {
365 	netdev_name_node_del(name_node);
366 	list_del(&name_node->list);
367 	call_rcu(&name_node->rcu, netdev_name_node_alt_free);
368 }
369 
370 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
371 {
372 	struct netdev_name_node *name_node;
373 	struct net *net = dev_net(dev);
374 
375 	name_node = netdev_name_node_lookup(net, name);
376 	if (!name_node)
377 		return -ENOENT;
378 	/* lookup might have found our primary name or a name belonging
379 	 * to another device.
380 	 */
381 	if (name_node == dev->name_node || name_node->dev != dev)
382 		return -EINVAL;
383 
384 	__netdev_name_node_alt_destroy(name_node);
385 	return 0;
386 }
387 
388 static void netdev_name_node_alt_flush(struct net_device *dev)
389 {
390 	struct netdev_name_node *name_node, *tmp;
391 
392 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) {
393 		list_del(&name_node->list);
394 		netdev_name_node_alt_free(&name_node->rcu);
395 	}
396 }
397 
398 /* Device list insertion */
399 static void list_netdevice(struct net_device *dev)
400 {
401 	struct netdev_name_node *name_node;
402 	struct net *net = dev_net(dev);
403 
404 	ASSERT_RTNL();
405 
406 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
407 	netdev_name_node_add(net, dev->name_node);
408 	hlist_add_head_rcu(&dev->index_hlist,
409 			   dev_index_hash(net, dev->ifindex));
410 
411 	netdev_for_each_altname(dev, name_node)
412 		netdev_name_node_add(net, name_node);
413 
414 	/* We reserved the ifindex, this can't fail */
415 	WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL));
416 
417 	dev_base_seq_inc(net);
418 }
419 
420 /* Device list removal
421  * caller must respect a RCU grace period before freeing/reusing dev
422  */
423 static void unlist_netdevice(struct net_device *dev)
424 {
425 	struct netdev_name_node *name_node;
426 	struct net *net = dev_net(dev);
427 
428 	ASSERT_RTNL();
429 
430 	xa_erase(&net->dev_by_index, dev->ifindex);
431 
432 	netdev_for_each_altname(dev, name_node)
433 		netdev_name_node_del(name_node);
434 
435 	/* Unlink dev from the device chain */
436 	list_del_rcu(&dev->dev_list);
437 	netdev_name_node_del(dev->name_node);
438 	hlist_del_rcu(&dev->index_hlist);
439 
440 	dev_base_seq_inc(dev_net(dev));
441 }
442 
443 /*
444  *	Our notifier list
445  */
446 
447 static RAW_NOTIFIER_HEAD(netdev_chain);
448 
449 /*
450  *	Device drivers call our routines to queue packets here. We empty the
451  *	queue in the local softnet handler.
452  */
453 
454 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data) = {
455 	.process_queue_bh_lock = INIT_LOCAL_LOCK(process_queue_bh_lock),
456 };
457 EXPORT_PER_CPU_SYMBOL(softnet_data);
458 
459 /* Page_pool has a lockless array/stack to alloc/recycle pages.
460  * PP consumers must pay attention to run APIs in the appropriate context
461  * (e.g. NAPI context).
462  */
463 static DEFINE_PER_CPU(struct page_pool *, system_page_pool);
464 
465 #ifdef CONFIG_LOCKDEP
466 /*
467  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
468  * according to dev->type
469  */
470 static const unsigned short netdev_lock_type[] = {
471 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
472 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
473 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
474 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
475 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
476 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
477 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
478 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
479 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
480 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
481 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
482 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
483 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
484 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
485 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
486 
487 static const char *const netdev_lock_name[] = {
488 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
489 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
490 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
491 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
492 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
493 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
494 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
495 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
496 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
497 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
498 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
499 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
500 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
501 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
502 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
503 
504 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
505 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
506 
507 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
508 {
509 	int i;
510 
511 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
512 		if (netdev_lock_type[i] == dev_type)
513 			return i;
514 	/* the last key is used by default */
515 	return ARRAY_SIZE(netdev_lock_type) - 1;
516 }
517 
518 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
519 						 unsigned short dev_type)
520 {
521 	int i;
522 
523 	i = netdev_lock_pos(dev_type);
524 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
525 				   netdev_lock_name[i]);
526 }
527 
528 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
529 {
530 	int i;
531 
532 	i = netdev_lock_pos(dev->type);
533 	lockdep_set_class_and_name(&dev->addr_list_lock,
534 				   &netdev_addr_lock_key[i],
535 				   netdev_lock_name[i]);
536 }
537 #else
538 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
539 						 unsigned short dev_type)
540 {
541 }
542 
543 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
544 {
545 }
546 #endif
547 
548 /*******************************************************************************
549  *
550  *		Protocol management and registration routines
551  *
552  *******************************************************************************/
553 
554 
555 /*
556  *	Add a protocol ID to the list. Now that the input handler is
557  *	smarter we can dispense with all the messy stuff that used to be
558  *	here.
559  *
560  *	BEWARE!!! Protocol handlers, mangling input packets,
561  *	MUST BE last in hash buckets and checking protocol handlers
562  *	MUST start from promiscuous ptype_all chain in net_bh.
563  *	It is true now, do not change it.
564  *	Explanation follows: if protocol handler, mangling packet, will
565  *	be the first on list, it is not able to sense, that packet
566  *	is cloned and should be copied-on-write, so that it will
567  *	change it and subsequent readers will get broken packet.
568  *							--ANK (980803)
569  */
570 
571 static inline struct list_head *ptype_head(const struct packet_type *pt)
572 {
573 	if (pt->type == htons(ETH_P_ALL))
574 		return pt->dev ? &pt->dev->ptype_all : &net_hotdata.ptype_all;
575 	else
576 		return pt->dev ? &pt->dev->ptype_specific :
577 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
578 }
579 
580 /**
581  *	dev_add_pack - add packet handler
582  *	@pt: packet type declaration
583  *
584  *	Add a protocol handler to the networking stack. The passed &packet_type
585  *	is linked into kernel lists and may not be freed until it has been
586  *	removed from the kernel lists.
587  *
588  *	This call does not sleep therefore it can not
589  *	guarantee all CPU's that are in middle of receiving packets
590  *	will see the new packet type (until the next received packet).
591  */
592 
593 void dev_add_pack(struct packet_type *pt)
594 {
595 	struct list_head *head = ptype_head(pt);
596 
597 	spin_lock(&ptype_lock);
598 	list_add_rcu(&pt->list, head);
599 	spin_unlock(&ptype_lock);
600 }
601 EXPORT_SYMBOL(dev_add_pack);
602 
603 /**
604  *	__dev_remove_pack	 - remove packet handler
605  *	@pt: packet type declaration
606  *
607  *	Remove a protocol handler that was previously added to the kernel
608  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
609  *	from the kernel lists and can be freed or reused once this function
610  *	returns.
611  *
612  *      The packet type might still be in use by receivers
613  *	and must not be freed until after all the CPU's have gone
614  *	through a quiescent state.
615  */
616 void __dev_remove_pack(struct packet_type *pt)
617 {
618 	struct list_head *head = ptype_head(pt);
619 	struct packet_type *pt1;
620 
621 	spin_lock(&ptype_lock);
622 
623 	list_for_each_entry(pt1, head, list) {
624 		if (pt == pt1) {
625 			list_del_rcu(&pt->list);
626 			goto out;
627 		}
628 	}
629 
630 	pr_warn("dev_remove_pack: %p not found\n", pt);
631 out:
632 	spin_unlock(&ptype_lock);
633 }
634 EXPORT_SYMBOL(__dev_remove_pack);
635 
636 /**
637  *	dev_remove_pack	 - remove packet handler
638  *	@pt: packet type declaration
639  *
640  *	Remove a protocol handler that was previously added to the kernel
641  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
642  *	from the kernel lists and can be freed or reused once this function
643  *	returns.
644  *
645  *	This call sleeps to guarantee that no CPU is looking at the packet
646  *	type after return.
647  */
648 void dev_remove_pack(struct packet_type *pt)
649 {
650 	__dev_remove_pack(pt);
651 
652 	synchronize_net();
653 }
654 EXPORT_SYMBOL(dev_remove_pack);
655 
656 
657 /*******************************************************************************
658  *
659  *			    Device Interface Subroutines
660  *
661  *******************************************************************************/
662 
663 /**
664  *	dev_get_iflink	- get 'iflink' value of a interface
665  *	@dev: targeted interface
666  *
667  *	Indicates the ifindex the interface is linked to.
668  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
669  */
670 
671 int dev_get_iflink(const struct net_device *dev)
672 {
673 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
674 		return dev->netdev_ops->ndo_get_iflink(dev);
675 
676 	return READ_ONCE(dev->ifindex);
677 }
678 EXPORT_SYMBOL(dev_get_iflink);
679 
680 /**
681  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
682  *	@dev: targeted interface
683  *	@skb: The packet.
684  *
685  *	For better visibility of tunnel traffic OVS needs to retrieve
686  *	egress tunnel information for a packet. Following API allows
687  *	user to get this info.
688  */
689 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
690 {
691 	struct ip_tunnel_info *info;
692 
693 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
694 		return -EINVAL;
695 
696 	info = skb_tunnel_info_unclone(skb);
697 	if (!info)
698 		return -ENOMEM;
699 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
700 		return -EINVAL;
701 
702 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
703 }
704 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
705 
706 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
707 {
708 	int k = stack->num_paths++;
709 
710 	if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
711 		return NULL;
712 
713 	return &stack->path[k];
714 }
715 
716 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
717 			  struct net_device_path_stack *stack)
718 {
719 	const struct net_device *last_dev;
720 	struct net_device_path_ctx ctx = {
721 		.dev	= dev,
722 	};
723 	struct net_device_path *path;
724 	int ret = 0;
725 
726 	memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
727 	stack->num_paths = 0;
728 	while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
729 		last_dev = ctx.dev;
730 		path = dev_fwd_path(stack);
731 		if (!path)
732 			return -1;
733 
734 		memset(path, 0, sizeof(struct net_device_path));
735 		ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
736 		if (ret < 0)
737 			return -1;
738 
739 		if (WARN_ON_ONCE(last_dev == ctx.dev))
740 			return -1;
741 	}
742 
743 	if (!ctx.dev)
744 		return ret;
745 
746 	path = dev_fwd_path(stack);
747 	if (!path)
748 		return -1;
749 	path->type = DEV_PATH_ETHERNET;
750 	path->dev = ctx.dev;
751 
752 	return ret;
753 }
754 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
755 
756 /**
757  *	__dev_get_by_name	- find a device by its name
758  *	@net: the applicable net namespace
759  *	@name: name to find
760  *
761  *	Find an interface by name. Must be called under RTNL semaphore.
762  *	If the name is found a pointer to the device is returned.
763  *	If the name is not found then %NULL is returned. The
764  *	reference counters are not incremented so the caller must be
765  *	careful with locks.
766  */
767 
768 struct net_device *__dev_get_by_name(struct net *net, const char *name)
769 {
770 	struct netdev_name_node *node_name;
771 
772 	node_name = netdev_name_node_lookup(net, name);
773 	return node_name ? node_name->dev : NULL;
774 }
775 EXPORT_SYMBOL(__dev_get_by_name);
776 
777 /**
778  * dev_get_by_name_rcu	- find a device by its name
779  * @net: the applicable net namespace
780  * @name: name to find
781  *
782  * Find an interface by name.
783  * If the name is found a pointer to the device is returned.
784  * If the name is not found then %NULL is returned.
785  * The reference counters are not incremented so the caller must be
786  * careful with locks. The caller must hold RCU lock.
787  */
788 
789 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
790 {
791 	struct netdev_name_node *node_name;
792 
793 	node_name = netdev_name_node_lookup_rcu(net, name);
794 	return node_name ? node_name->dev : NULL;
795 }
796 EXPORT_SYMBOL(dev_get_by_name_rcu);
797 
798 /* Deprecated for new users, call netdev_get_by_name() instead */
799 struct net_device *dev_get_by_name(struct net *net, const char *name)
800 {
801 	struct net_device *dev;
802 
803 	rcu_read_lock();
804 	dev = dev_get_by_name_rcu(net, name);
805 	dev_hold(dev);
806 	rcu_read_unlock();
807 	return dev;
808 }
809 EXPORT_SYMBOL(dev_get_by_name);
810 
811 /**
812  *	netdev_get_by_name() - find a device by its name
813  *	@net: the applicable net namespace
814  *	@name: name to find
815  *	@tracker: tracking object for the acquired reference
816  *	@gfp: allocation flags for the tracker
817  *
818  *	Find an interface by name. This can be called from any
819  *	context and does its own locking. The returned handle has
820  *	the usage count incremented and the caller must use netdev_put() to
821  *	release it when it is no longer needed. %NULL is returned if no
822  *	matching device is found.
823  */
824 struct net_device *netdev_get_by_name(struct net *net, const char *name,
825 				      netdevice_tracker *tracker, gfp_t gfp)
826 {
827 	struct net_device *dev;
828 
829 	dev = dev_get_by_name(net, name);
830 	if (dev)
831 		netdev_tracker_alloc(dev, tracker, gfp);
832 	return dev;
833 }
834 EXPORT_SYMBOL(netdev_get_by_name);
835 
836 /**
837  *	__dev_get_by_index - find a device by its ifindex
838  *	@net: the applicable net namespace
839  *	@ifindex: index of device
840  *
841  *	Search for an interface by index. Returns %NULL if the device
842  *	is not found or a pointer to the device. The device has not
843  *	had its reference counter increased so the caller must be careful
844  *	about locking. The caller must hold the RTNL semaphore.
845  */
846 
847 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
848 {
849 	struct net_device *dev;
850 	struct hlist_head *head = dev_index_hash(net, ifindex);
851 
852 	hlist_for_each_entry(dev, head, index_hlist)
853 		if (dev->ifindex == ifindex)
854 			return dev;
855 
856 	return NULL;
857 }
858 EXPORT_SYMBOL(__dev_get_by_index);
859 
860 /**
861  *	dev_get_by_index_rcu - find a device by its ifindex
862  *	@net: the applicable net namespace
863  *	@ifindex: index of device
864  *
865  *	Search for an interface by index. Returns %NULL if the device
866  *	is not found or a pointer to the device. The device has not
867  *	had its reference counter increased so the caller must be careful
868  *	about locking. The caller must hold RCU lock.
869  */
870 
871 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
872 {
873 	struct net_device *dev;
874 	struct hlist_head *head = dev_index_hash(net, ifindex);
875 
876 	hlist_for_each_entry_rcu(dev, head, index_hlist)
877 		if (dev->ifindex == ifindex)
878 			return dev;
879 
880 	return NULL;
881 }
882 EXPORT_SYMBOL(dev_get_by_index_rcu);
883 
884 /* Deprecated for new users, call netdev_get_by_index() instead */
885 struct net_device *dev_get_by_index(struct net *net, int ifindex)
886 {
887 	struct net_device *dev;
888 
889 	rcu_read_lock();
890 	dev = dev_get_by_index_rcu(net, ifindex);
891 	dev_hold(dev);
892 	rcu_read_unlock();
893 	return dev;
894 }
895 EXPORT_SYMBOL(dev_get_by_index);
896 
897 /**
898  *	netdev_get_by_index() - find a device by its ifindex
899  *	@net: the applicable net namespace
900  *	@ifindex: index of device
901  *	@tracker: tracking object for the acquired reference
902  *	@gfp: allocation flags for the tracker
903  *
904  *	Search for an interface by index. Returns NULL if the device
905  *	is not found or a pointer to the device. The device returned has
906  *	had a reference added and the pointer is safe until the user calls
907  *	netdev_put() to indicate they have finished with it.
908  */
909 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
910 				       netdevice_tracker *tracker, gfp_t gfp)
911 {
912 	struct net_device *dev;
913 
914 	dev = dev_get_by_index(net, ifindex);
915 	if (dev)
916 		netdev_tracker_alloc(dev, tracker, gfp);
917 	return dev;
918 }
919 EXPORT_SYMBOL(netdev_get_by_index);
920 
921 /**
922  *	dev_get_by_napi_id - find a device by napi_id
923  *	@napi_id: ID of the NAPI struct
924  *
925  *	Search for an interface by NAPI ID. Returns %NULL if the device
926  *	is not found or a pointer to the device. The device has not had
927  *	its reference counter increased so the caller must be careful
928  *	about locking. The caller must hold RCU lock.
929  */
930 
931 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
932 {
933 	struct napi_struct *napi;
934 
935 	WARN_ON_ONCE(!rcu_read_lock_held());
936 
937 	if (napi_id < MIN_NAPI_ID)
938 		return NULL;
939 
940 	napi = napi_by_id(napi_id);
941 
942 	return napi ? napi->dev : NULL;
943 }
944 EXPORT_SYMBOL(dev_get_by_napi_id);
945 
946 static DEFINE_SEQLOCK(netdev_rename_lock);
947 
948 void netdev_copy_name(struct net_device *dev, char *name)
949 {
950 	unsigned int seq;
951 
952 	do {
953 		seq = read_seqbegin(&netdev_rename_lock);
954 		strscpy(name, dev->name, IFNAMSIZ);
955 	} while (read_seqretry(&netdev_rename_lock, seq));
956 }
957 
958 /**
959  *	netdev_get_name - get a netdevice name, knowing its ifindex.
960  *	@net: network namespace
961  *	@name: a pointer to the buffer where the name will be stored.
962  *	@ifindex: the ifindex of the interface to get the name from.
963  */
964 int netdev_get_name(struct net *net, char *name, int ifindex)
965 {
966 	struct net_device *dev;
967 	int ret;
968 
969 	rcu_read_lock();
970 
971 	dev = dev_get_by_index_rcu(net, ifindex);
972 	if (!dev) {
973 		ret = -ENODEV;
974 		goto out;
975 	}
976 
977 	netdev_copy_name(dev, name);
978 
979 	ret = 0;
980 out:
981 	rcu_read_unlock();
982 	return ret;
983 }
984 
985 /**
986  *	dev_getbyhwaddr_rcu - find a device by its hardware address
987  *	@net: the applicable net namespace
988  *	@type: media type of device
989  *	@ha: hardware address
990  *
991  *	Search for an interface by MAC address. Returns NULL if the device
992  *	is not found or a pointer to the device.
993  *	The caller must hold RCU or RTNL.
994  *	The returned device has not had its ref count increased
995  *	and the caller must therefore be careful about locking
996  *
997  */
998 
999 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1000 				       const char *ha)
1001 {
1002 	struct net_device *dev;
1003 
1004 	for_each_netdev_rcu(net, dev)
1005 		if (dev->type == type &&
1006 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
1007 			return dev;
1008 
1009 	return NULL;
1010 }
1011 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1012 
1013 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1014 {
1015 	struct net_device *dev, *ret = NULL;
1016 
1017 	rcu_read_lock();
1018 	for_each_netdev_rcu(net, dev)
1019 		if (dev->type == type) {
1020 			dev_hold(dev);
1021 			ret = dev;
1022 			break;
1023 		}
1024 	rcu_read_unlock();
1025 	return ret;
1026 }
1027 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1028 
1029 /**
1030  *	__dev_get_by_flags - find any device with given flags
1031  *	@net: the applicable net namespace
1032  *	@if_flags: IFF_* values
1033  *	@mask: bitmask of bits in if_flags to check
1034  *
1035  *	Search for any interface with the given flags. Returns NULL if a device
1036  *	is not found or a pointer to the device. Must be called inside
1037  *	rtnl_lock(), and result refcount is unchanged.
1038  */
1039 
1040 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1041 				      unsigned short mask)
1042 {
1043 	struct net_device *dev, *ret;
1044 
1045 	ASSERT_RTNL();
1046 
1047 	ret = NULL;
1048 	for_each_netdev(net, dev) {
1049 		if (((dev->flags ^ if_flags) & mask) == 0) {
1050 			ret = dev;
1051 			break;
1052 		}
1053 	}
1054 	return ret;
1055 }
1056 EXPORT_SYMBOL(__dev_get_by_flags);
1057 
1058 /**
1059  *	dev_valid_name - check if name is okay for network device
1060  *	@name: name string
1061  *
1062  *	Network device names need to be valid file names to
1063  *	allow sysfs to work.  We also disallow any kind of
1064  *	whitespace.
1065  */
1066 bool dev_valid_name(const char *name)
1067 {
1068 	if (*name == '\0')
1069 		return false;
1070 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1071 		return false;
1072 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1073 		return false;
1074 
1075 	while (*name) {
1076 		if (*name == '/' || *name == ':' || isspace(*name))
1077 			return false;
1078 		name++;
1079 	}
1080 	return true;
1081 }
1082 EXPORT_SYMBOL(dev_valid_name);
1083 
1084 /**
1085  *	__dev_alloc_name - allocate a name for a device
1086  *	@net: network namespace to allocate the device name in
1087  *	@name: name format string
1088  *	@res: result name string
1089  *
1090  *	Passed a format string - eg "lt%d" it will try and find a suitable
1091  *	id. It scans list of devices to build up a free map, then chooses
1092  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1093  *	while allocating the name and adding the device in order to avoid
1094  *	duplicates.
1095  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1096  *	Returns the number of the unit assigned or a negative errno code.
1097  */
1098 
1099 static int __dev_alloc_name(struct net *net, const char *name, char *res)
1100 {
1101 	int i = 0;
1102 	const char *p;
1103 	const int max_netdevices = 8*PAGE_SIZE;
1104 	unsigned long *inuse;
1105 	struct net_device *d;
1106 	char buf[IFNAMSIZ];
1107 
1108 	/* Verify the string as this thing may have come from the user.
1109 	 * There must be one "%d" and no other "%" characters.
1110 	 */
1111 	p = strchr(name, '%');
1112 	if (!p || p[1] != 'd' || strchr(p + 2, '%'))
1113 		return -EINVAL;
1114 
1115 	/* Use one page as a bit array of possible slots */
1116 	inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC);
1117 	if (!inuse)
1118 		return -ENOMEM;
1119 
1120 	for_each_netdev(net, d) {
1121 		struct netdev_name_node *name_node;
1122 
1123 		netdev_for_each_altname(d, name_node) {
1124 			if (!sscanf(name_node->name, name, &i))
1125 				continue;
1126 			if (i < 0 || i >= max_netdevices)
1127 				continue;
1128 
1129 			/* avoid cases where sscanf is not exact inverse of printf */
1130 			snprintf(buf, IFNAMSIZ, name, i);
1131 			if (!strncmp(buf, name_node->name, IFNAMSIZ))
1132 				__set_bit(i, inuse);
1133 		}
1134 		if (!sscanf(d->name, name, &i))
1135 			continue;
1136 		if (i < 0 || i >= max_netdevices)
1137 			continue;
1138 
1139 		/* avoid cases where sscanf is not exact inverse of printf */
1140 		snprintf(buf, IFNAMSIZ, name, i);
1141 		if (!strncmp(buf, d->name, IFNAMSIZ))
1142 			__set_bit(i, inuse);
1143 	}
1144 
1145 	i = find_first_zero_bit(inuse, max_netdevices);
1146 	bitmap_free(inuse);
1147 	if (i == max_netdevices)
1148 		return -ENFILE;
1149 
1150 	/* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */
1151 	strscpy(buf, name, IFNAMSIZ);
1152 	snprintf(res, IFNAMSIZ, buf, i);
1153 	return i;
1154 }
1155 
1156 /* Returns negative errno or allocated unit id (see __dev_alloc_name()) */
1157 static int dev_prep_valid_name(struct net *net, struct net_device *dev,
1158 			       const char *want_name, char *out_name,
1159 			       int dup_errno)
1160 {
1161 	if (!dev_valid_name(want_name))
1162 		return -EINVAL;
1163 
1164 	if (strchr(want_name, '%'))
1165 		return __dev_alloc_name(net, want_name, out_name);
1166 
1167 	if (netdev_name_in_use(net, want_name))
1168 		return -dup_errno;
1169 	if (out_name != want_name)
1170 		strscpy(out_name, want_name, IFNAMSIZ);
1171 	return 0;
1172 }
1173 
1174 /**
1175  *	dev_alloc_name - allocate a name for a device
1176  *	@dev: device
1177  *	@name: name format string
1178  *
1179  *	Passed a format string - eg "lt%d" it will try and find a suitable
1180  *	id. It scans list of devices to build up a free map, then chooses
1181  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1182  *	while allocating the name and adding the device in order to avoid
1183  *	duplicates.
1184  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1185  *	Returns the number of the unit assigned or a negative errno code.
1186  */
1187 
1188 int dev_alloc_name(struct net_device *dev, const char *name)
1189 {
1190 	return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE);
1191 }
1192 EXPORT_SYMBOL(dev_alloc_name);
1193 
1194 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1195 			      const char *name)
1196 {
1197 	int ret;
1198 
1199 	ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST);
1200 	return ret < 0 ? ret : 0;
1201 }
1202 
1203 /**
1204  *	dev_change_name - change name of a device
1205  *	@dev: device
1206  *	@newname: name (or format string) must be at least IFNAMSIZ
1207  *
1208  *	Change name of a device, can pass format strings "eth%d".
1209  *	for wildcarding.
1210  */
1211 int dev_change_name(struct net_device *dev, const char *newname)
1212 {
1213 	unsigned char old_assign_type;
1214 	char oldname[IFNAMSIZ];
1215 	int err = 0;
1216 	int ret;
1217 	struct net *net;
1218 
1219 	ASSERT_RTNL();
1220 	BUG_ON(!dev_net(dev));
1221 
1222 	net = dev_net(dev);
1223 
1224 	down_write(&devnet_rename_sem);
1225 
1226 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1227 		up_write(&devnet_rename_sem);
1228 		return 0;
1229 	}
1230 
1231 	memcpy(oldname, dev->name, IFNAMSIZ);
1232 
1233 	write_seqlock_bh(&netdev_rename_lock);
1234 	err = dev_get_valid_name(net, dev, newname);
1235 	write_sequnlock_bh(&netdev_rename_lock);
1236 
1237 	if (err < 0) {
1238 		up_write(&devnet_rename_sem);
1239 		return err;
1240 	}
1241 
1242 	if (oldname[0] && !strchr(oldname, '%'))
1243 		netdev_info(dev, "renamed from %s%s\n", oldname,
1244 			    dev->flags & IFF_UP ? " (while UP)" : "");
1245 
1246 	old_assign_type = dev->name_assign_type;
1247 	WRITE_ONCE(dev->name_assign_type, NET_NAME_RENAMED);
1248 
1249 rollback:
1250 	ret = device_rename(&dev->dev, dev->name);
1251 	if (ret) {
1252 		memcpy(dev->name, oldname, IFNAMSIZ);
1253 		WRITE_ONCE(dev->name_assign_type, old_assign_type);
1254 		up_write(&devnet_rename_sem);
1255 		return ret;
1256 	}
1257 
1258 	up_write(&devnet_rename_sem);
1259 
1260 	netdev_adjacent_rename_links(dev, oldname);
1261 
1262 	netdev_name_node_del(dev->name_node);
1263 
1264 	synchronize_net();
1265 
1266 	netdev_name_node_add(net, dev->name_node);
1267 
1268 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1269 	ret = notifier_to_errno(ret);
1270 
1271 	if (ret) {
1272 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1273 		if (err >= 0) {
1274 			err = ret;
1275 			down_write(&devnet_rename_sem);
1276 			write_seqlock_bh(&netdev_rename_lock);
1277 			memcpy(dev->name, oldname, IFNAMSIZ);
1278 			write_sequnlock_bh(&netdev_rename_lock);
1279 			memcpy(oldname, newname, IFNAMSIZ);
1280 			WRITE_ONCE(dev->name_assign_type, old_assign_type);
1281 			old_assign_type = NET_NAME_RENAMED;
1282 			goto rollback;
1283 		} else {
1284 			netdev_err(dev, "name change rollback failed: %d\n",
1285 				   ret);
1286 		}
1287 	}
1288 
1289 	return err;
1290 }
1291 
1292 /**
1293  *	dev_set_alias - change ifalias of a device
1294  *	@dev: device
1295  *	@alias: name up to IFALIASZ
1296  *	@len: limit of bytes to copy from info
1297  *
1298  *	Set ifalias for a device,
1299  */
1300 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1301 {
1302 	struct dev_ifalias *new_alias = NULL;
1303 
1304 	if (len >= IFALIASZ)
1305 		return -EINVAL;
1306 
1307 	if (len) {
1308 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1309 		if (!new_alias)
1310 			return -ENOMEM;
1311 
1312 		memcpy(new_alias->ifalias, alias, len);
1313 		new_alias->ifalias[len] = 0;
1314 	}
1315 
1316 	mutex_lock(&ifalias_mutex);
1317 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1318 					mutex_is_locked(&ifalias_mutex));
1319 	mutex_unlock(&ifalias_mutex);
1320 
1321 	if (new_alias)
1322 		kfree_rcu(new_alias, rcuhead);
1323 
1324 	return len;
1325 }
1326 EXPORT_SYMBOL(dev_set_alias);
1327 
1328 /**
1329  *	dev_get_alias - get ifalias of a device
1330  *	@dev: device
1331  *	@name: buffer to store name of ifalias
1332  *	@len: size of buffer
1333  *
1334  *	get ifalias for a device.  Caller must make sure dev cannot go
1335  *	away,  e.g. rcu read lock or own a reference count to device.
1336  */
1337 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1338 {
1339 	const struct dev_ifalias *alias;
1340 	int ret = 0;
1341 
1342 	rcu_read_lock();
1343 	alias = rcu_dereference(dev->ifalias);
1344 	if (alias)
1345 		ret = snprintf(name, len, "%s", alias->ifalias);
1346 	rcu_read_unlock();
1347 
1348 	return ret;
1349 }
1350 
1351 /**
1352  *	netdev_features_change - device changes features
1353  *	@dev: device to cause notification
1354  *
1355  *	Called to indicate a device has changed features.
1356  */
1357 void netdev_features_change(struct net_device *dev)
1358 {
1359 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1360 }
1361 EXPORT_SYMBOL(netdev_features_change);
1362 
1363 /**
1364  *	netdev_state_change - device changes state
1365  *	@dev: device to cause notification
1366  *
1367  *	Called to indicate a device has changed state. This function calls
1368  *	the notifier chains for netdev_chain and sends a NEWLINK message
1369  *	to the routing socket.
1370  */
1371 void netdev_state_change(struct net_device *dev)
1372 {
1373 	if (dev->flags & IFF_UP) {
1374 		struct netdev_notifier_change_info change_info = {
1375 			.info.dev = dev,
1376 		};
1377 
1378 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1379 					      &change_info.info);
1380 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1381 	}
1382 }
1383 EXPORT_SYMBOL(netdev_state_change);
1384 
1385 /**
1386  * __netdev_notify_peers - notify network peers about existence of @dev,
1387  * to be called when rtnl lock is already held.
1388  * @dev: network device
1389  *
1390  * Generate traffic such that interested network peers are aware of
1391  * @dev, such as by generating a gratuitous ARP. This may be used when
1392  * a device wants to inform the rest of the network about some sort of
1393  * reconfiguration such as a failover event or virtual machine
1394  * migration.
1395  */
1396 void __netdev_notify_peers(struct net_device *dev)
1397 {
1398 	ASSERT_RTNL();
1399 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1400 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1401 }
1402 EXPORT_SYMBOL(__netdev_notify_peers);
1403 
1404 /**
1405  * netdev_notify_peers - notify network peers about existence of @dev
1406  * @dev: network device
1407  *
1408  * Generate traffic such that interested network peers are aware of
1409  * @dev, such as by generating a gratuitous ARP. This may be used when
1410  * a device wants to inform the rest of the network about some sort of
1411  * reconfiguration such as a failover event or virtual machine
1412  * migration.
1413  */
1414 void netdev_notify_peers(struct net_device *dev)
1415 {
1416 	rtnl_lock();
1417 	__netdev_notify_peers(dev);
1418 	rtnl_unlock();
1419 }
1420 EXPORT_SYMBOL(netdev_notify_peers);
1421 
1422 static int napi_threaded_poll(void *data);
1423 
1424 static int napi_kthread_create(struct napi_struct *n)
1425 {
1426 	int err = 0;
1427 
1428 	/* Create and wake up the kthread once to put it in
1429 	 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1430 	 * warning and work with loadavg.
1431 	 */
1432 	n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1433 				n->dev->name, n->napi_id);
1434 	if (IS_ERR(n->thread)) {
1435 		err = PTR_ERR(n->thread);
1436 		pr_err("kthread_run failed with err %d\n", err);
1437 		n->thread = NULL;
1438 	}
1439 
1440 	return err;
1441 }
1442 
1443 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1444 {
1445 	const struct net_device_ops *ops = dev->netdev_ops;
1446 	int ret;
1447 
1448 	ASSERT_RTNL();
1449 	dev_addr_check(dev);
1450 
1451 	if (!netif_device_present(dev)) {
1452 		/* may be detached because parent is runtime-suspended */
1453 		if (dev->dev.parent)
1454 			pm_runtime_resume(dev->dev.parent);
1455 		if (!netif_device_present(dev))
1456 			return -ENODEV;
1457 	}
1458 
1459 	/* Block netpoll from trying to do any rx path servicing.
1460 	 * If we don't do this there is a chance ndo_poll_controller
1461 	 * or ndo_poll may be running while we open the device
1462 	 */
1463 	netpoll_poll_disable(dev);
1464 
1465 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1466 	ret = notifier_to_errno(ret);
1467 	if (ret)
1468 		return ret;
1469 
1470 	set_bit(__LINK_STATE_START, &dev->state);
1471 
1472 	if (ops->ndo_validate_addr)
1473 		ret = ops->ndo_validate_addr(dev);
1474 
1475 	if (!ret && ops->ndo_open)
1476 		ret = ops->ndo_open(dev);
1477 
1478 	netpoll_poll_enable(dev);
1479 
1480 	if (ret)
1481 		clear_bit(__LINK_STATE_START, &dev->state);
1482 	else {
1483 		dev->flags |= IFF_UP;
1484 		dev_set_rx_mode(dev);
1485 		dev_activate(dev);
1486 		add_device_randomness(dev->dev_addr, dev->addr_len);
1487 	}
1488 
1489 	return ret;
1490 }
1491 
1492 /**
1493  *	dev_open	- prepare an interface for use.
1494  *	@dev: device to open
1495  *	@extack: netlink extended ack
1496  *
1497  *	Takes a device from down to up state. The device's private open
1498  *	function is invoked and then the multicast lists are loaded. Finally
1499  *	the device is moved into the up state and a %NETDEV_UP message is
1500  *	sent to the netdev notifier chain.
1501  *
1502  *	Calling this function on an active interface is a nop. On a failure
1503  *	a negative errno code is returned.
1504  */
1505 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1506 {
1507 	int ret;
1508 
1509 	if (dev->flags & IFF_UP)
1510 		return 0;
1511 
1512 	ret = __dev_open(dev, extack);
1513 	if (ret < 0)
1514 		return ret;
1515 
1516 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1517 	call_netdevice_notifiers(NETDEV_UP, dev);
1518 
1519 	return ret;
1520 }
1521 EXPORT_SYMBOL(dev_open);
1522 
1523 static void __dev_close_many(struct list_head *head)
1524 {
1525 	struct net_device *dev;
1526 
1527 	ASSERT_RTNL();
1528 	might_sleep();
1529 
1530 	list_for_each_entry(dev, head, close_list) {
1531 		/* Temporarily disable netpoll until the interface is down */
1532 		netpoll_poll_disable(dev);
1533 
1534 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1535 
1536 		clear_bit(__LINK_STATE_START, &dev->state);
1537 
1538 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1539 		 * can be even on different cpu. So just clear netif_running().
1540 		 *
1541 		 * dev->stop() will invoke napi_disable() on all of it's
1542 		 * napi_struct instances on this device.
1543 		 */
1544 		smp_mb__after_atomic(); /* Commit netif_running(). */
1545 	}
1546 
1547 	dev_deactivate_many(head);
1548 
1549 	list_for_each_entry(dev, head, close_list) {
1550 		const struct net_device_ops *ops = dev->netdev_ops;
1551 
1552 		/*
1553 		 *	Call the device specific close. This cannot fail.
1554 		 *	Only if device is UP
1555 		 *
1556 		 *	We allow it to be called even after a DETACH hot-plug
1557 		 *	event.
1558 		 */
1559 		if (ops->ndo_stop)
1560 			ops->ndo_stop(dev);
1561 
1562 		dev->flags &= ~IFF_UP;
1563 		netpoll_poll_enable(dev);
1564 	}
1565 }
1566 
1567 static void __dev_close(struct net_device *dev)
1568 {
1569 	LIST_HEAD(single);
1570 
1571 	list_add(&dev->close_list, &single);
1572 	__dev_close_many(&single);
1573 	list_del(&single);
1574 }
1575 
1576 void dev_close_many(struct list_head *head, bool unlink)
1577 {
1578 	struct net_device *dev, *tmp;
1579 
1580 	/* Remove the devices that don't need to be closed */
1581 	list_for_each_entry_safe(dev, tmp, head, close_list)
1582 		if (!(dev->flags & IFF_UP))
1583 			list_del_init(&dev->close_list);
1584 
1585 	__dev_close_many(head);
1586 
1587 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1588 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1589 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1590 		if (unlink)
1591 			list_del_init(&dev->close_list);
1592 	}
1593 }
1594 EXPORT_SYMBOL(dev_close_many);
1595 
1596 /**
1597  *	dev_close - shutdown an interface.
1598  *	@dev: device to shutdown
1599  *
1600  *	This function moves an active device into down state. A
1601  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1602  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1603  *	chain.
1604  */
1605 void dev_close(struct net_device *dev)
1606 {
1607 	if (dev->flags & IFF_UP) {
1608 		LIST_HEAD(single);
1609 
1610 		list_add(&dev->close_list, &single);
1611 		dev_close_many(&single, true);
1612 		list_del(&single);
1613 	}
1614 }
1615 EXPORT_SYMBOL(dev_close);
1616 
1617 
1618 /**
1619  *	dev_disable_lro - disable Large Receive Offload on a device
1620  *	@dev: device
1621  *
1622  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1623  *	called under RTNL.  This is needed if received packets may be
1624  *	forwarded to another interface.
1625  */
1626 void dev_disable_lro(struct net_device *dev)
1627 {
1628 	struct net_device *lower_dev;
1629 	struct list_head *iter;
1630 
1631 	dev->wanted_features &= ~NETIF_F_LRO;
1632 	netdev_update_features(dev);
1633 
1634 	if (unlikely(dev->features & NETIF_F_LRO))
1635 		netdev_WARN(dev, "failed to disable LRO!\n");
1636 
1637 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1638 		dev_disable_lro(lower_dev);
1639 }
1640 EXPORT_SYMBOL(dev_disable_lro);
1641 
1642 /**
1643  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1644  *	@dev: device
1645  *
1646  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1647  *	called under RTNL.  This is needed if Generic XDP is installed on
1648  *	the device.
1649  */
1650 static void dev_disable_gro_hw(struct net_device *dev)
1651 {
1652 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1653 	netdev_update_features(dev);
1654 
1655 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1656 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1657 }
1658 
1659 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1660 {
1661 #define N(val) 						\
1662 	case NETDEV_##val:				\
1663 		return "NETDEV_" __stringify(val);
1664 	switch (cmd) {
1665 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1666 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1667 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1668 	N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1669 	N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1670 	N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1671 	N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1672 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1673 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1674 	N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1675 	N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1676 	N(XDP_FEAT_CHANGE)
1677 	}
1678 #undef N
1679 	return "UNKNOWN_NETDEV_EVENT";
1680 }
1681 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1682 
1683 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1684 				   struct net_device *dev)
1685 {
1686 	struct netdev_notifier_info info = {
1687 		.dev = dev,
1688 	};
1689 
1690 	return nb->notifier_call(nb, val, &info);
1691 }
1692 
1693 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1694 					     struct net_device *dev)
1695 {
1696 	int err;
1697 
1698 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1699 	err = notifier_to_errno(err);
1700 	if (err)
1701 		return err;
1702 
1703 	if (!(dev->flags & IFF_UP))
1704 		return 0;
1705 
1706 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1707 	return 0;
1708 }
1709 
1710 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1711 						struct net_device *dev)
1712 {
1713 	if (dev->flags & IFF_UP) {
1714 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1715 					dev);
1716 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1717 	}
1718 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1719 }
1720 
1721 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1722 						 struct net *net)
1723 {
1724 	struct net_device *dev;
1725 	int err;
1726 
1727 	for_each_netdev(net, dev) {
1728 		err = call_netdevice_register_notifiers(nb, dev);
1729 		if (err)
1730 			goto rollback;
1731 	}
1732 	return 0;
1733 
1734 rollback:
1735 	for_each_netdev_continue_reverse(net, dev)
1736 		call_netdevice_unregister_notifiers(nb, dev);
1737 	return err;
1738 }
1739 
1740 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1741 						    struct net *net)
1742 {
1743 	struct net_device *dev;
1744 
1745 	for_each_netdev(net, dev)
1746 		call_netdevice_unregister_notifiers(nb, dev);
1747 }
1748 
1749 static int dev_boot_phase = 1;
1750 
1751 /**
1752  * register_netdevice_notifier - register a network notifier block
1753  * @nb: notifier
1754  *
1755  * Register a notifier to be called when network device events occur.
1756  * The notifier passed is linked into the kernel structures and must
1757  * not be reused until it has been unregistered. A negative errno code
1758  * is returned on a failure.
1759  *
1760  * When registered all registration and up events are replayed
1761  * to the new notifier to allow device to have a race free
1762  * view of the network device list.
1763  */
1764 
1765 int register_netdevice_notifier(struct notifier_block *nb)
1766 {
1767 	struct net *net;
1768 	int err;
1769 
1770 	/* Close race with setup_net() and cleanup_net() */
1771 	down_write(&pernet_ops_rwsem);
1772 	rtnl_lock();
1773 	err = raw_notifier_chain_register(&netdev_chain, nb);
1774 	if (err)
1775 		goto unlock;
1776 	if (dev_boot_phase)
1777 		goto unlock;
1778 	for_each_net(net) {
1779 		err = call_netdevice_register_net_notifiers(nb, net);
1780 		if (err)
1781 			goto rollback;
1782 	}
1783 
1784 unlock:
1785 	rtnl_unlock();
1786 	up_write(&pernet_ops_rwsem);
1787 	return err;
1788 
1789 rollback:
1790 	for_each_net_continue_reverse(net)
1791 		call_netdevice_unregister_net_notifiers(nb, net);
1792 
1793 	raw_notifier_chain_unregister(&netdev_chain, nb);
1794 	goto unlock;
1795 }
1796 EXPORT_SYMBOL(register_netdevice_notifier);
1797 
1798 /**
1799  * unregister_netdevice_notifier - unregister a network notifier block
1800  * @nb: notifier
1801  *
1802  * Unregister a notifier previously registered by
1803  * register_netdevice_notifier(). The notifier is unlinked into the
1804  * kernel structures and may then be reused. A negative errno code
1805  * is returned on a failure.
1806  *
1807  * After unregistering unregister and down device events are synthesized
1808  * for all devices on the device list to the removed notifier to remove
1809  * the need for special case cleanup code.
1810  */
1811 
1812 int unregister_netdevice_notifier(struct notifier_block *nb)
1813 {
1814 	struct net *net;
1815 	int err;
1816 
1817 	/* Close race with setup_net() and cleanup_net() */
1818 	down_write(&pernet_ops_rwsem);
1819 	rtnl_lock();
1820 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1821 	if (err)
1822 		goto unlock;
1823 
1824 	for_each_net(net)
1825 		call_netdevice_unregister_net_notifiers(nb, net);
1826 
1827 unlock:
1828 	rtnl_unlock();
1829 	up_write(&pernet_ops_rwsem);
1830 	return err;
1831 }
1832 EXPORT_SYMBOL(unregister_netdevice_notifier);
1833 
1834 static int __register_netdevice_notifier_net(struct net *net,
1835 					     struct notifier_block *nb,
1836 					     bool ignore_call_fail)
1837 {
1838 	int err;
1839 
1840 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
1841 	if (err)
1842 		return err;
1843 	if (dev_boot_phase)
1844 		return 0;
1845 
1846 	err = call_netdevice_register_net_notifiers(nb, net);
1847 	if (err && !ignore_call_fail)
1848 		goto chain_unregister;
1849 
1850 	return 0;
1851 
1852 chain_unregister:
1853 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
1854 	return err;
1855 }
1856 
1857 static int __unregister_netdevice_notifier_net(struct net *net,
1858 					       struct notifier_block *nb)
1859 {
1860 	int err;
1861 
1862 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1863 	if (err)
1864 		return err;
1865 
1866 	call_netdevice_unregister_net_notifiers(nb, net);
1867 	return 0;
1868 }
1869 
1870 /**
1871  * register_netdevice_notifier_net - register a per-netns network notifier block
1872  * @net: network namespace
1873  * @nb: notifier
1874  *
1875  * Register a notifier to be called when network device events occur.
1876  * The notifier passed is linked into the kernel structures and must
1877  * not be reused until it has been unregistered. A negative errno code
1878  * is returned on a failure.
1879  *
1880  * When registered all registration and up events are replayed
1881  * to the new notifier to allow device to have a race free
1882  * view of the network device list.
1883  */
1884 
1885 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1886 {
1887 	int err;
1888 
1889 	rtnl_lock();
1890 	err = __register_netdevice_notifier_net(net, nb, false);
1891 	rtnl_unlock();
1892 	return err;
1893 }
1894 EXPORT_SYMBOL(register_netdevice_notifier_net);
1895 
1896 /**
1897  * unregister_netdevice_notifier_net - unregister a per-netns
1898  *                                     network notifier block
1899  * @net: network namespace
1900  * @nb: notifier
1901  *
1902  * Unregister a notifier previously registered by
1903  * register_netdevice_notifier_net(). The notifier is unlinked from the
1904  * kernel structures and may then be reused. A negative errno code
1905  * is returned on a failure.
1906  *
1907  * After unregistering unregister and down device events are synthesized
1908  * for all devices on the device list to the removed notifier to remove
1909  * the need for special case cleanup code.
1910  */
1911 
1912 int unregister_netdevice_notifier_net(struct net *net,
1913 				      struct notifier_block *nb)
1914 {
1915 	int err;
1916 
1917 	rtnl_lock();
1918 	err = __unregister_netdevice_notifier_net(net, nb);
1919 	rtnl_unlock();
1920 	return err;
1921 }
1922 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1923 
1924 static void __move_netdevice_notifier_net(struct net *src_net,
1925 					  struct net *dst_net,
1926 					  struct notifier_block *nb)
1927 {
1928 	__unregister_netdevice_notifier_net(src_net, nb);
1929 	__register_netdevice_notifier_net(dst_net, nb, true);
1930 }
1931 
1932 int register_netdevice_notifier_dev_net(struct net_device *dev,
1933 					struct notifier_block *nb,
1934 					struct netdev_net_notifier *nn)
1935 {
1936 	int err;
1937 
1938 	rtnl_lock();
1939 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1940 	if (!err) {
1941 		nn->nb = nb;
1942 		list_add(&nn->list, &dev->net_notifier_list);
1943 	}
1944 	rtnl_unlock();
1945 	return err;
1946 }
1947 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1948 
1949 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1950 					  struct notifier_block *nb,
1951 					  struct netdev_net_notifier *nn)
1952 {
1953 	int err;
1954 
1955 	rtnl_lock();
1956 	list_del(&nn->list);
1957 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1958 	rtnl_unlock();
1959 	return err;
1960 }
1961 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1962 
1963 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1964 					     struct net *net)
1965 {
1966 	struct netdev_net_notifier *nn;
1967 
1968 	list_for_each_entry(nn, &dev->net_notifier_list, list)
1969 		__move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
1970 }
1971 
1972 /**
1973  *	call_netdevice_notifiers_info - call all network notifier blocks
1974  *	@val: value passed unmodified to notifier function
1975  *	@info: notifier information data
1976  *
1977  *	Call all network notifier blocks.  Parameters and return value
1978  *	are as for raw_notifier_call_chain().
1979  */
1980 
1981 int call_netdevice_notifiers_info(unsigned long val,
1982 				  struct netdev_notifier_info *info)
1983 {
1984 	struct net *net = dev_net(info->dev);
1985 	int ret;
1986 
1987 	ASSERT_RTNL();
1988 
1989 	/* Run per-netns notifier block chain first, then run the global one.
1990 	 * Hopefully, one day, the global one is going to be removed after
1991 	 * all notifier block registrators get converted to be per-netns.
1992 	 */
1993 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1994 	if (ret & NOTIFY_STOP_MASK)
1995 		return ret;
1996 	return raw_notifier_call_chain(&netdev_chain, val, info);
1997 }
1998 
1999 /**
2000  *	call_netdevice_notifiers_info_robust - call per-netns notifier blocks
2001  *	                                       for and rollback on error
2002  *	@val_up: value passed unmodified to notifier function
2003  *	@val_down: value passed unmodified to the notifier function when
2004  *	           recovering from an error on @val_up
2005  *	@info: notifier information data
2006  *
2007  *	Call all per-netns network notifier blocks, but not notifier blocks on
2008  *	the global notifier chain. Parameters and return value are as for
2009  *	raw_notifier_call_chain_robust().
2010  */
2011 
2012 static int
2013 call_netdevice_notifiers_info_robust(unsigned long val_up,
2014 				     unsigned long val_down,
2015 				     struct netdev_notifier_info *info)
2016 {
2017 	struct net *net = dev_net(info->dev);
2018 
2019 	ASSERT_RTNL();
2020 
2021 	return raw_notifier_call_chain_robust(&net->netdev_chain,
2022 					      val_up, val_down, info);
2023 }
2024 
2025 static int call_netdevice_notifiers_extack(unsigned long val,
2026 					   struct net_device *dev,
2027 					   struct netlink_ext_ack *extack)
2028 {
2029 	struct netdev_notifier_info info = {
2030 		.dev = dev,
2031 		.extack = extack,
2032 	};
2033 
2034 	return call_netdevice_notifiers_info(val, &info);
2035 }
2036 
2037 /**
2038  *	call_netdevice_notifiers - call all network notifier blocks
2039  *      @val: value passed unmodified to notifier function
2040  *      @dev: net_device pointer passed unmodified to notifier function
2041  *
2042  *	Call all network notifier blocks.  Parameters and return value
2043  *	are as for raw_notifier_call_chain().
2044  */
2045 
2046 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2047 {
2048 	return call_netdevice_notifiers_extack(val, dev, NULL);
2049 }
2050 EXPORT_SYMBOL(call_netdevice_notifiers);
2051 
2052 /**
2053  *	call_netdevice_notifiers_mtu - call all network notifier blocks
2054  *	@val: value passed unmodified to notifier function
2055  *	@dev: net_device pointer passed unmodified to notifier function
2056  *	@arg: additional u32 argument passed to the notifier function
2057  *
2058  *	Call all network notifier blocks.  Parameters and return value
2059  *	are as for raw_notifier_call_chain().
2060  */
2061 static int call_netdevice_notifiers_mtu(unsigned long val,
2062 					struct net_device *dev, u32 arg)
2063 {
2064 	struct netdev_notifier_info_ext info = {
2065 		.info.dev = dev,
2066 		.ext.mtu = arg,
2067 	};
2068 
2069 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2070 
2071 	return call_netdevice_notifiers_info(val, &info.info);
2072 }
2073 
2074 #ifdef CONFIG_NET_INGRESS
2075 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2076 
2077 void net_inc_ingress_queue(void)
2078 {
2079 	static_branch_inc(&ingress_needed_key);
2080 }
2081 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2082 
2083 void net_dec_ingress_queue(void)
2084 {
2085 	static_branch_dec(&ingress_needed_key);
2086 }
2087 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2088 #endif
2089 
2090 #ifdef CONFIG_NET_EGRESS
2091 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2092 
2093 void net_inc_egress_queue(void)
2094 {
2095 	static_branch_inc(&egress_needed_key);
2096 }
2097 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2098 
2099 void net_dec_egress_queue(void)
2100 {
2101 	static_branch_dec(&egress_needed_key);
2102 }
2103 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2104 #endif
2105 
2106 #ifdef CONFIG_NET_CLS_ACT
2107 DEFINE_STATIC_KEY_FALSE(tcf_bypass_check_needed_key);
2108 EXPORT_SYMBOL(tcf_bypass_check_needed_key);
2109 #endif
2110 
2111 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2112 EXPORT_SYMBOL(netstamp_needed_key);
2113 #ifdef CONFIG_JUMP_LABEL
2114 static atomic_t netstamp_needed_deferred;
2115 static atomic_t netstamp_wanted;
2116 static void netstamp_clear(struct work_struct *work)
2117 {
2118 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2119 	int wanted;
2120 
2121 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2122 	if (wanted > 0)
2123 		static_branch_enable(&netstamp_needed_key);
2124 	else
2125 		static_branch_disable(&netstamp_needed_key);
2126 }
2127 static DECLARE_WORK(netstamp_work, netstamp_clear);
2128 #endif
2129 
2130 void net_enable_timestamp(void)
2131 {
2132 #ifdef CONFIG_JUMP_LABEL
2133 	int wanted = atomic_read(&netstamp_wanted);
2134 
2135 	while (wanted > 0) {
2136 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2137 			return;
2138 	}
2139 	atomic_inc(&netstamp_needed_deferred);
2140 	schedule_work(&netstamp_work);
2141 #else
2142 	static_branch_inc(&netstamp_needed_key);
2143 #endif
2144 }
2145 EXPORT_SYMBOL(net_enable_timestamp);
2146 
2147 void net_disable_timestamp(void)
2148 {
2149 #ifdef CONFIG_JUMP_LABEL
2150 	int wanted = atomic_read(&netstamp_wanted);
2151 
2152 	while (wanted > 1) {
2153 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2154 			return;
2155 	}
2156 	atomic_dec(&netstamp_needed_deferred);
2157 	schedule_work(&netstamp_work);
2158 #else
2159 	static_branch_dec(&netstamp_needed_key);
2160 #endif
2161 }
2162 EXPORT_SYMBOL(net_disable_timestamp);
2163 
2164 static inline void net_timestamp_set(struct sk_buff *skb)
2165 {
2166 	skb->tstamp = 0;
2167 	skb->tstamp_type = SKB_CLOCK_REALTIME;
2168 	if (static_branch_unlikely(&netstamp_needed_key))
2169 		skb->tstamp = ktime_get_real();
2170 }
2171 
2172 #define net_timestamp_check(COND, SKB)				\
2173 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2174 		if ((COND) && !(SKB)->tstamp)			\
2175 			(SKB)->tstamp = ktime_get_real();	\
2176 	}							\
2177 
2178 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2179 {
2180 	return __is_skb_forwardable(dev, skb, true);
2181 }
2182 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2183 
2184 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2185 			      bool check_mtu)
2186 {
2187 	int ret = ____dev_forward_skb(dev, skb, check_mtu);
2188 
2189 	if (likely(!ret)) {
2190 		skb->protocol = eth_type_trans(skb, dev);
2191 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2192 	}
2193 
2194 	return ret;
2195 }
2196 
2197 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2198 {
2199 	return __dev_forward_skb2(dev, skb, true);
2200 }
2201 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2202 
2203 /**
2204  * dev_forward_skb - loopback an skb to another netif
2205  *
2206  * @dev: destination network device
2207  * @skb: buffer to forward
2208  *
2209  * return values:
2210  *	NET_RX_SUCCESS	(no congestion)
2211  *	NET_RX_DROP     (packet was dropped, but freed)
2212  *
2213  * dev_forward_skb can be used for injecting an skb from the
2214  * start_xmit function of one device into the receive queue
2215  * of another device.
2216  *
2217  * The receiving device may be in another namespace, so
2218  * we have to clear all information in the skb that could
2219  * impact namespace isolation.
2220  */
2221 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2222 {
2223 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2224 }
2225 EXPORT_SYMBOL_GPL(dev_forward_skb);
2226 
2227 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2228 {
2229 	return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2230 }
2231 
2232 static inline int deliver_skb(struct sk_buff *skb,
2233 			      struct packet_type *pt_prev,
2234 			      struct net_device *orig_dev)
2235 {
2236 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2237 		return -ENOMEM;
2238 	refcount_inc(&skb->users);
2239 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2240 }
2241 
2242 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2243 					  struct packet_type **pt,
2244 					  struct net_device *orig_dev,
2245 					  __be16 type,
2246 					  struct list_head *ptype_list)
2247 {
2248 	struct packet_type *ptype, *pt_prev = *pt;
2249 
2250 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2251 		if (ptype->type != type)
2252 			continue;
2253 		if (pt_prev)
2254 			deliver_skb(skb, pt_prev, orig_dev);
2255 		pt_prev = ptype;
2256 	}
2257 	*pt = pt_prev;
2258 }
2259 
2260 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2261 {
2262 	if (!ptype->af_packet_priv || !skb->sk)
2263 		return false;
2264 
2265 	if (ptype->id_match)
2266 		return ptype->id_match(ptype, skb->sk);
2267 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2268 		return true;
2269 
2270 	return false;
2271 }
2272 
2273 /**
2274  * dev_nit_active - return true if any network interface taps are in use
2275  *
2276  * @dev: network device to check for the presence of taps
2277  */
2278 bool dev_nit_active(struct net_device *dev)
2279 {
2280 	return !list_empty(&net_hotdata.ptype_all) ||
2281 	       !list_empty(&dev->ptype_all);
2282 }
2283 EXPORT_SYMBOL_GPL(dev_nit_active);
2284 
2285 /*
2286  *	Support routine. Sends outgoing frames to any network
2287  *	taps currently in use.
2288  */
2289 
2290 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2291 {
2292 	struct list_head *ptype_list = &net_hotdata.ptype_all;
2293 	struct packet_type *ptype, *pt_prev = NULL;
2294 	struct sk_buff *skb2 = NULL;
2295 
2296 	rcu_read_lock();
2297 again:
2298 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2299 		if (READ_ONCE(ptype->ignore_outgoing))
2300 			continue;
2301 
2302 		/* Never send packets back to the socket
2303 		 * they originated from - MvS (miquels@drinkel.ow.org)
2304 		 */
2305 		if (skb_loop_sk(ptype, skb))
2306 			continue;
2307 
2308 		if (pt_prev) {
2309 			deliver_skb(skb2, pt_prev, skb->dev);
2310 			pt_prev = ptype;
2311 			continue;
2312 		}
2313 
2314 		/* need to clone skb, done only once */
2315 		skb2 = skb_clone(skb, GFP_ATOMIC);
2316 		if (!skb2)
2317 			goto out_unlock;
2318 
2319 		net_timestamp_set(skb2);
2320 
2321 		/* skb->nh should be correctly
2322 		 * set by sender, so that the second statement is
2323 		 * just protection against buggy protocols.
2324 		 */
2325 		skb_reset_mac_header(skb2);
2326 
2327 		if (skb_network_header(skb2) < skb2->data ||
2328 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2329 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2330 					     ntohs(skb2->protocol),
2331 					     dev->name);
2332 			skb_reset_network_header(skb2);
2333 		}
2334 
2335 		skb2->transport_header = skb2->network_header;
2336 		skb2->pkt_type = PACKET_OUTGOING;
2337 		pt_prev = ptype;
2338 	}
2339 
2340 	if (ptype_list == &net_hotdata.ptype_all) {
2341 		ptype_list = &dev->ptype_all;
2342 		goto again;
2343 	}
2344 out_unlock:
2345 	if (pt_prev) {
2346 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2347 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2348 		else
2349 			kfree_skb(skb2);
2350 	}
2351 	rcu_read_unlock();
2352 }
2353 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2354 
2355 /**
2356  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2357  * @dev: Network device
2358  * @txq: number of queues available
2359  *
2360  * If real_num_tx_queues is changed the tc mappings may no longer be
2361  * valid. To resolve this verify the tc mapping remains valid and if
2362  * not NULL the mapping. With no priorities mapping to this
2363  * offset/count pair it will no longer be used. In the worst case TC0
2364  * is invalid nothing can be done so disable priority mappings. If is
2365  * expected that drivers will fix this mapping if they can before
2366  * calling netif_set_real_num_tx_queues.
2367  */
2368 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2369 {
2370 	int i;
2371 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2372 
2373 	/* If TC0 is invalidated disable TC mapping */
2374 	if (tc->offset + tc->count > txq) {
2375 		netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2376 		dev->num_tc = 0;
2377 		return;
2378 	}
2379 
2380 	/* Invalidated prio to tc mappings set to TC0 */
2381 	for (i = 1; i < TC_BITMASK + 1; i++) {
2382 		int q = netdev_get_prio_tc_map(dev, i);
2383 
2384 		tc = &dev->tc_to_txq[q];
2385 		if (tc->offset + tc->count > txq) {
2386 			netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2387 				    i, q);
2388 			netdev_set_prio_tc_map(dev, i, 0);
2389 		}
2390 	}
2391 }
2392 
2393 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2394 {
2395 	if (dev->num_tc) {
2396 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2397 		int i;
2398 
2399 		/* walk through the TCs and see if it falls into any of them */
2400 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2401 			if ((txq - tc->offset) < tc->count)
2402 				return i;
2403 		}
2404 
2405 		/* didn't find it, just return -1 to indicate no match */
2406 		return -1;
2407 	}
2408 
2409 	return 0;
2410 }
2411 EXPORT_SYMBOL(netdev_txq_to_tc);
2412 
2413 #ifdef CONFIG_XPS
2414 static struct static_key xps_needed __read_mostly;
2415 static struct static_key xps_rxqs_needed __read_mostly;
2416 static DEFINE_MUTEX(xps_map_mutex);
2417 #define xmap_dereference(P)		\
2418 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2419 
2420 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2421 			     struct xps_dev_maps *old_maps, int tci, u16 index)
2422 {
2423 	struct xps_map *map = NULL;
2424 	int pos;
2425 
2426 	map = xmap_dereference(dev_maps->attr_map[tci]);
2427 	if (!map)
2428 		return false;
2429 
2430 	for (pos = map->len; pos--;) {
2431 		if (map->queues[pos] != index)
2432 			continue;
2433 
2434 		if (map->len > 1) {
2435 			map->queues[pos] = map->queues[--map->len];
2436 			break;
2437 		}
2438 
2439 		if (old_maps)
2440 			RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2441 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2442 		kfree_rcu(map, rcu);
2443 		return false;
2444 	}
2445 
2446 	return true;
2447 }
2448 
2449 static bool remove_xps_queue_cpu(struct net_device *dev,
2450 				 struct xps_dev_maps *dev_maps,
2451 				 int cpu, u16 offset, u16 count)
2452 {
2453 	int num_tc = dev_maps->num_tc;
2454 	bool active = false;
2455 	int tci;
2456 
2457 	for (tci = cpu * num_tc; num_tc--; tci++) {
2458 		int i, j;
2459 
2460 		for (i = count, j = offset; i--; j++) {
2461 			if (!remove_xps_queue(dev_maps, NULL, tci, j))
2462 				break;
2463 		}
2464 
2465 		active |= i < 0;
2466 	}
2467 
2468 	return active;
2469 }
2470 
2471 static void reset_xps_maps(struct net_device *dev,
2472 			   struct xps_dev_maps *dev_maps,
2473 			   enum xps_map_type type)
2474 {
2475 	static_key_slow_dec_cpuslocked(&xps_needed);
2476 	if (type == XPS_RXQS)
2477 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2478 
2479 	RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2480 
2481 	kfree_rcu(dev_maps, rcu);
2482 }
2483 
2484 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2485 			   u16 offset, u16 count)
2486 {
2487 	struct xps_dev_maps *dev_maps;
2488 	bool active = false;
2489 	int i, j;
2490 
2491 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2492 	if (!dev_maps)
2493 		return;
2494 
2495 	for (j = 0; j < dev_maps->nr_ids; j++)
2496 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2497 	if (!active)
2498 		reset_xps_maps(dev, dev_maps, type);
2499 
2500 	if (type == XPS_CPUS) {
2501 		for (i = offset + (count - 1); count--; i--)
2502 			netdev_queue_numa_node_write(
2503 				netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2504 	}
2505 }
2506 
2507 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2508 				   u16 count)
2509 {
2510 	if (!static_key_false(&xps_needed))
2511 		return;
2512 
2513 	cpus_read_lock();
2514 	mutex_lock(&xps_map_mutex);
2515 
2516 	if (static_key_false(&xps_rxqs_needed))
2517 		clean_xps_maps(dev, XPS_RXQS, offset, count);
2518 
2519 	clean_xps_maps(dev, XPS_CPUS, offset, count);
2520 
2521 	mutex_unlock(&xps_map_mutex);
2522 	cpus_read_unlock();
2523 }
2524 
2525 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2526 {
2527 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2528 }
2529 
2530 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2531 				      u16 index, bool is_rxqs_map)
2532 {
2533 	struct xps_map *new_map;
2534 	int alloc_len = XPS_MIN_MAP_ALLOC;
2535 	int i, pos;
2536 
2537 	for (pos = 0; map && pos < map->len; pos++) {
2538 		if (map->queues[pos] != index)
2539 			continue;
2540 		return map;
2541 	}
2542 
2543 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2544 	if (map) {
2545 		if (pos < map->alloc_len)
2546 			return map;
2547 
2548 		alloc_len = map->alloc_len * 2;
2549 	}
2550 
2551 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2552 	 *  map
2553 	 */
2554 	if (is_rxqs_map)
2555 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2556 	else
2557 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2558 				       cpu_to_node(attr_index));
2559 	if (!new_map)
2560 		return NULL;
2561 
2562 	for (i = 0; i < pos; i++)
2563 		new_map->queues[i] = map->queues[i];
2564 	new_map->alloc_len = alloc_len;
2565 	new_map->len = pos;
2566 
2567 	return new_map;
2568 }
2569 
2570 /* Copy xps maps at a given index */
2571 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2572 			      struct xps_dev_maps *new_dev_maps, int index,
2573 			      int tc, bool skip_tc)
2574 {
2575 	int i, tci = index * dev_maps->num_tc;
2576 	struct xps_map *map;
2577 
2578 	/* copy maps belonging to foreign traffic classes */
2579 	for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2580 		if (i == tc && skip_tc)
2581 			continue;
2582 
2583 		/* fill in the new device map from the old device map */
2584 		map = xmap_dereference(dev_maps->attr_map[tci]);
2585 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2586 	}
2587 }
2588 
2589 /* Must be called under cpus_read_lock */
2590 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2591 			  u16 index, enum xps_map_type type)
2592 {
2593 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2594 	const unsigned long *online_mask = NULL;
2595 	bool active = false, copy = false;
2596 	int i, j, tci, numa_node_id = -2;
2597 	int maps_sz, num_tc = 1, tc = 0;
2598 	struct xps_map *map, *new_map;
2599 	unsigned int nr_ids;
2600 
2601 	WARN_ON_ONCE(index >= dev->num_tx_queues);
2602 
2603 	if (dev->num_tc) {
2604 		/* Do not allow XPS on subordinate device directly */
2605 		num_tc = dev->num_tc;
2606 		if (num_tc < 0)
2607 			return -EINVAL;
2608 
2609 		/* If queue belongs to subordinate dev use its map */
2610 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2611 
2612 		tc = netdev_txq_to_tc(dev, index);
2613 		if (tc < 0)
2614 			return -EINVAL;
2615 	}
2616 
2617 	mutex_lock(&xps_map_mutex);
2618 
2619 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2620 	if (type == XPS_RXQS) {
2621 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2622 		nr_ids = dev->num_rx_queues;
2623 	} else {
2624 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2625 		if (num_possible_cpus() > 1)
2626 			online_mask = cpumask_bits(cpu_online_mask);
2627 		nr_ids = nr_cpu_ids;
2628 	}
2629 
2630 	if (maps_sz < L1_CACHE_BYTES)
2631 		maps_sz = L1_CACHE_BYTES;
2632 
2633 	/* The old dev_maps could be larger or smaller than the one we're
2634 	 * setting up now, as dev->num_tc or nr_ids could have been updated in
2635 	 * between. We could try to be smart, but let's be safe instead and only
2636 	 * copy foreign traffic classes if the two map sizes match.
2637 	 */
2638 	if (dev_maps &&
2639 	    dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2640 		copy = true;
2641 
2642 	/* allocate memory for queue storage */
2643 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2644 	     j < nr_ids;) {
2645 		if (!new_dev_maps) {
2646 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2647 			if (!new_dev_maps) {
2648 				mutex_unlock(&xps_map_mutex);
2649 				return -ENOMEM;
2650 			}
2651 
2652 			new_dev_maps->nr_ids = nr_ids;
2653 			new_dev_maps->num_tc = num_tc;
2654 		}
2655 
2656 		tci = j * num_tc + tc;
2657 		map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2658 
2659 		map = expand_xps_map(map, j, index, type == XPS_RXQS);
2660 		if (!map)
2661 			goto error;
2662 
2663 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2664 	}
2665 
2666 	if (!new_dev_maps)
2667 		goto out_no_new_maps;
2668 
2669 	if (!dev_maps) {
2670 		/* Increment static keys at most once per type */
2671 		static_key_slow_inc_cpuslocked(&xps_needed);
2672 		if (type == XPS_RXQS)
2673 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2674 	}
2675 
2676 	for (j = 0; j < nr_ids; j++) {
2677 		bool skip_tc = false;
2678 
2679 		tci = j * num_tc + tc;
2680 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2681 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2682 			/* add tx-queue to CPU/rx-queue maps */
2683 			int pos = 0;
2684 
2685 			skip_tc = true;
2686 
2687 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2688 			while ((pos < map->len) && (map->queues[pos] != index))
2689 				pos++;
2690 
2691 			if (pos == map->len)
2692 				map->queues[map->len++] = index;
2693 #ifdef CONFIG_NUMA
2694 			if (type == XPS_CPUS) {
2695 				if (numa_node_id == -2)
2696 					numa_node_id = cpu_to_node(j);
2697 				else if (numa_node_id != cpu_to_node(j))
2698 					numa_node_id = -1;
2699 			}
2700 #endif
2701 		}
2702 
2703 		if (copy)
2704 			xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2705 					  skip_tc);
2706 	}
2707 
2708 	rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2709 
2710 	/* Cleanup old maps */
2711 	if (!dev_maps)
2712 		goto out_no_old_maps;
2713 
2714 	for (j = 0; j < dev_maps->nr_ids; j++) {
2715 		for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2716 			map = xmap_dereference(dev_maps->attr_map[tci]);
2717 			if (!map)
2718 				continue;
2719 
2720 			if (copy) {
2721 				new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2722 				if (map == new_map)
2723 					continue;
2724 			}
2725 
2726 			RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2727 			kfree_rcu(map, rcu);
2728 		}
2729 	}
2730 
2731 	old_dev_maps = dev_maps;
2732 
2733 out_no_old_maps:
2734 	dev_maps = new_dev_maps;
2735 	active = true;
2736 
2737 out_no_new_maps:
2738 	if (type == XPS_CPUS)
2739 		/* update Tx queue numa node */
2740 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2741 					     (numa_node_id >= 0) ?
2742 					     numa_node_id : NUMA_NO_NODE);
2743 
2744 	if (!dev_maps)
2745 		goto out_no_maps;
2746 
2747 	/* removes tx-queue from unused CPUs/rx-queues */
2748 	for (j = 0; j < dev_maps->nr_ids; j++) {
2749 		tci = j * dev_maps->num_tc;
2750 
2751 		for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2752 			if (i == tc &&
2753 			    netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2754 			    netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2755 				continue;
2756 
2757 			active |= remove_xps_queue(dev_maps,
2758 						   copy ? old_dev_maps : NULL,
2759 						   tci, index);
2760 		}
2761 	}
2762 
2763 	if (old_dev_maps)
2764 		kfree_rcu(old_dev_maps, rcu);
2765 
2766 	/* free map if not active */
2767 	if (!active)
2768 		reset_xps_maps(dev, dev_maps, type);
2769 
2770 out_no_maps:
2771 	mutex_unlock(&xps_map_mutex);
2772 
2773 	return 0;
2774 error:
2775 	/* remove any maps that we added */
2776 	for (j = 0; j < nr_ids; j++) {
2777 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2778 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2779 			map = copy ?
2780 			      xmap_dereference(dev_maps->attr_map[tci]) :
2781 			      NULL;
2782 			if (new_map && new_map != map)
2783 				kfree(new_map);
2784 		}
2785 	}
2786 
2787 	mutex_unlock(&xps_map_mutex);
2788 
2789 	kfree(new_dev_maps);
2790 	return -ENOMEM;
2791 }
2792 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2793 
2794 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2795 			u16 index)
2796 {
2797 	int ret;
2798 
2799 	cpus_read_lock();
2800 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2801 	cpus_read_unlock();
2802 
2803 	return ret;
2804 }
2805 EXPORT_SYMBOL(netif_set_xps_queue);
2806 
2807 #endif
2808 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2809 {
2810 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2811 
2812 	/* Unbind any subordinate channels */
2813 	while (txq-- != &dev->_tx[0]) {
2814 		if (txq->sb_dev)
2815 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2816 	}
2817 }
2818 
2819 void netdev_reset_tc(struct net_device *dev)
2820 {
2821 #ifdef CONFIG_XPS
2822 	netif_reset_xps_queues_gt(dev, 0);
2823 #endif
2824 	netdev_unbind_all_sb_channels(dev);
2825 
2826 	/* Reset TC configuration of device */
2827 	dev->num_tc = 0;
2828 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2829 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2830 }
2831 EXPORT_SYMBOL(netdev_reset_tc);
2832 
2833 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2834 {
2835 	if (tc >= dev->num_tc)
2836 		return -EINVAL;
2837 
2838 #ifdef CONFIG_XPS
2839 	netif_reset_xps_queues(dev, offset, count);
2840 #endif
2841 	dev->tc_to_txq[tc].count = count;
2842 	dev->tc_to_txq[tc].offset = offset;
2843 	return 0;
2844 }
2845 EXPORT_SYMBOL(netdev_set_tc_queue);
2846 
2847 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2848 {
2849 	if (num_tc > TC_MAX_QUEUE)
2850 		return -EINVAL;
2851 
2852 #ifdef CONFIG_XPS
2853 	netif_reset_xps_queues_gt(dev, 0);
2854 #endif
2855 	netdev_unbind_all_sb_channels(dev);
2856 
2857 	dev->num_tc = num_tc;
2858 	return 0;
2859 }
2860 EXPORT_SYMBOL(netdev_set_num_tc);
2861 
2862 void netdev_unbind_sb_channel(struct net_device *dev,
2863 			      struct net_device *sb_dev)
2864 {
2865 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2866 
2867 #ifdef CONFIG_XPS
2868 	netif_reset_xps_queues_gt(sb_dev, 0);
2869 #endif
2870 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2871 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2872 
2873 	while (txq-- != &dev->_tx[0]) {
2874 		if (txq->sb_dev == sb_dev)
2875 			txq->sb_dev = NULL;
2876 	}
2877 }
2878 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2879 
2880 int netdev_bind_sb_channel_queue(struct net_device *dev,
2881 				 struct net_device *sb_dev,
2882 				 u8 tc, u16 count, u16 offset)
2883 {
2884 	/* Make certain the sb_dev and dev are already configured */
2885 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2886 		return -EINVAL;
2887 
2888 	/* We cannot hand out queues we don't have */
2889 	if ((offset + count) > dev->real_num_tx_queues)
2890 		return -EINVAL;
2891 
2892 	/* Record the mapping */
2893 	sb_dev->tc_to_txq[tc].count = count;
2894 	sb_dev->tc_to_txq[tc].offset = offset;
2895 
2896 	/* Provide a way for Tx queue to find the tc_to_txq map or
2897 	 * XPS map for itself.
2898 	 */
2899 	while (count--)
2900 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2901 
2902 	return 0;
2903 }
2904 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2905 
2906 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2907 {
2908 	/* Do not use a multiqueue device to represent a subordinate channel */
2909 	if (netif_is_multiqueue(dev))
2910 		return -ENODEV;
2911 
2912 	/* We allow channels 1 - 32767 to be used for subordinate channels.
2913 	 * Channel 0 is meant to be "native" mode and used only to represent
2914 	 * the main root device. We allow writing 0 to reset the device back
2915 	 * to normal mode after being used as a subordinate channel.
2916 	 */
2917 	if (channel > S16_MAX)
2918 		return -EINVAL;
2919 
2920 	dev->num_tc = -channel;
2921 
2922 	return 0;
2923 }
2924 EXPORT_SYMBOL(netdev_set_sb_channel);
2925 
2926 /*
2927  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2928  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2929  */
2930 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2931 {
2932 	bool disabling;
2933 	int rc;
2934 
2935 	disabling = txq < dev->real_num_tx_queues;
2936 
2937 	if (txq < 1 || txq > dev->num_tx_queues)
2938 		return -EINVAL;
2939 
2940 	if (dev->reg_state == NETREG_REGISTERED ||
2941 	    dev->reg_state == NETREG_UNREGISTERING) {
2942 		ASSERT_RTNL();
2943 
2944 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2945 						  txq);
2946 		if (rc)
2947 			return rc;
2948 
2949 		if (dev->num_tc)
2950 			netif_setup_tc(dev, txq);
2951 
2952 		dev_qdisc_change_real_num_tx(dev, txq);
2953 
2954 		dev->real_num_tx_queues = txq;
2955 
2956 		if (disabling) {
2957 			synchronize_net();
2958 			qdisc_reset_all_tx_gt(dev, txq);
2959 #ifdef CONFIG_XPS
2960 			netif_reset_xps_queues_gt(dev, txq);
2961 #endif
2962 		}
2963 	} else {
2964 		dev->real_num_tx_queues = txq;
2965 	}
2966 
2967 	return 0;
2968 }
2969 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2970 
2971 #ifdef CONFIG_SYSFS
2972 /**
2973  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2974  *	@dev: Network device
2975  *	@rxq: Actual number of RX queues
2976  *
2977  *	This must be called either with the rtnl_lock held or before
2978  *	registration of the net device.  Returns 0 on success, or a
2979  *	negative error code.  If called before registration, it always
2980  *	succeeds.
2981  */
2982 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2983 {
2984 	int rc;
2985 
2986 	if (rxq < 1 || rxq > dev->num_rx_queues)
2987 		return -EINVAL;
2988 
2989 	if (dev->reg_state == NETREG_REGISTERED) {
2990 		ASSERT_RTNL();
2991 
2992 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2993 						  rxq);
2994 		if (rc)
2995 			return rc;
2996 	}
2997 
2998 	dev->real_num_rx_queues = rxq;
2999 	return 0;
3000 }
3001 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3002 #endif
3003 
3004 /**
3005  *	netif_set_real_num_queues - set actual number of RX and TX queues used
3006  *	@dev: Network device
3007  *	@txq: Actual number of TX queues
3008  *	@rxq: Actual number of RX queues
3009  *
3010  *	Set the real number of both TX and RX queues.
3011  *	Does nothing if the number of queues is already correct.
3012  */
3013 int netif_set_real_num_queues(struct net_device *dev,
3014 			      unsigned int txq, unsigned int rxq)
3015 {
3016 	unsigned int old_rxq = dev->real_num_rx_queues;
3017 	int err;
3018 
3019 	if (txq < 1 || txq > dev->num_tx_queues ||
3020 	    rxq < 1 || rxq > dev->num_rx_queues)
3021 		return -EINVAL;
3022 
3023 	/* Start from increases, so the error path only does decreases -
3024 	 * decreases can't fail.
3025 	 */
3026 	if (rxq > dev->real_num_rx_queues) {
3027 		err = netif_set_real_num_rx_queues(dev, rxq);
3028 		if (err)
3029 			return err;
3030 	}
3031 	if (txq > dev->real_num_tx_queues) {
3032 		err = netif_set_real_num_tx_queues(dev, txq);
3033 		if (err)
3034 			goto undo_rx;
3035 	}
3036 	if (rxq < dev->real_num_rx_queues)
3037 		WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3038 	if (txq < dev->real_num_tx_queues)
3039 		WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3040 
3041 	return 0;
3042 undo_rx:
3043 	WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3044 	return err;
3045 }
3046 EXPORT_SYMBOL(netif_set_real_num_queues);
3047 
3048 /**
3049  * netif_set_tso_max_size() - set the max size of TSO frames supported
3050  * @dev:	netdev to update
3051  * @size:	max skb->len of a TSO frame
3052  *
3053  * Set the limit on the size of TSO super-frames the device can handle.
3054  * Unless explicitly set the stack will assume the value of
3055  * %GSO_LEGACY_MAX_SIZE.
3056  */
3057 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3058 {
3059 	dev->tso_max_size = min(GSO_MAX_SIZE, size);
3060 	if (size < READ_ONCE(dev->gso_max_size))
3061 		netif_set_gso_max_size(dev, size);
3062 	if (size < READ_ONCE(dev->gso_ipv4_max_size))
3063 		netif_set_gso_ipv4_max_size(dev, size);
3064 }
3065 EXPORT_SYMBOL(netif_set_tso_max_size);
3066 
3067 /**
3068  * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3069  * @dev:	netdev to update
3070  * @segs:	max number of TCP segments
3071  *
3072  * Set the limit on the number of TCP segments the device can generate from
3073  * a single TSO super-frame.
3074  * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3075  */
3076 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3077 {
3078 	dev->tso_max_segs = segs;
3079 	if (segs < READ_ONCE(dev->gso_max_segs))
3080 		netif_set_gso_max_segs(dev, segs);
3081 }
3082 EXPORT_SYMBOL(netif_set_tso_max_segs);
3083 
3084 /**
3085  * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3086  * @to:		netdev to update
3087  * @from:	netdev from which to copy the limits
3088  */
3089 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3090 {
3091 	netif_set_tso_max_size(to, from->tso_max_size);
3092 	netif_set_tso_max_segs(to, from->tso_max_segs);
3093 }
3094 EXPORT_SYMBOL(netif_inherit_tso_max);
3095 
3096 /**
3097  * netif_get_num_default_rss_queues - default number of RSS queues
3098  *
3099  * Default value is the number of physical cores if there are only 1 or 2, or
3100  * divided by 2 if there are more.
3101  */
3102 int netif_get_num_default_rss_queues(void)
3103 {
3104 	cpumask_var_t cpus;
3105 	int cpu, count = 0;
3106 
3107 	if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3108 		return 1;
3109 
3110 	cpumask_copy(cpus, cpu_online_mask);
3111 	for_each_cpu(cpu, cpus) {
3112 		++count;
3113 		cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3114 	}
3115 	free_cpumask_var(cpus);
3116 
3117 	return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3118 }
3119 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3120 
3121 static void __netif_reschedule(struct Qdisc *q)
3122 {
3123 	struct softnet_data *sd;
3124 	unsigned long flags;
3125 
3126 	local_irq_save(flags);
3127 	sd = this_cpu_ptr(&softnet_data);
3128 	q->next_sched = NULL;
3129 	*sd->output_queue_tailp = q;
3130 	sd->output_queue_tailp = &q->next_sched;
3131 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3132 	local_irq_restore(flags);
3133 }
3134 
3135 void __netif_schedule(struct Qdisc *q)
3136 {
3137 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3138 		__netif_reschedule(q);
3139 }
3140 EXPORT_SYMBOL(__netif_schedule);
3141 
3142 struct dev_kfree_skb_cb {
3143 	enum skb_drop_reason reason;
3144 };
3145 
3146 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3147 {
3148 	return (struct dev_kfree_skb_cb *)skb->cb;
3149 }
3150 
3151 void netif_schedule_queue(struct netdev_queue *txq)
3152 {
3153 	rcu_read_lock();
3154 	if (!netif_xmit_stopped(txq)) {
3155 		struct Qdisc *q = rcu_dereference(txq->qdisc);
3156 
3157 		__netif_schedule(q);
3158 	}
3159 	rcu_read_unlock();
3160 }
3161 EXPORT_SYMBOL(netif_schedule_queue);
3162 
3163 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3164 {
3165 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3166 		struct Qdisc *q;
3167 
3168 		rcu_read_lock();
3169 		q = rcu_dereference(dev_queue->qdisc);
3170 		__netif_schedule(q);
3171 		rcu_read_unlock();
3172 	}
3173 }
3174 EXPORT_SYMBOL(netif_tx_wake_queue);
3175 
3176 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3177 {
3178 	unsigned long flags;
3179 
3180 	if (unlikely(!skb))
3181 		return;
3182 
3183 	if (likely(refcount_read(&skb->users) == 1)) {
3184 		smp_rmb();
3185 		refcount_set(&skb->users, 0);
3186 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3187 		return;
3188 	}
3189 	get_kfree_skb_cb(skb)->reason = reason;
3190 	local_irq_save(flags);
3191 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3192 	__this_cpu_write(softnet_data.completion_queue, skb);
3193 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3194 	local_irq_restore(flags);
3195 }
3196 EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
3197 
3198 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3199 {
3200 	if (in_hardirq() || irqs_disabled())
3201 		dev_kfree_skb_irq_reason(skb, reason);
3202 	else
3203 		kfree_skb_reason(skb, reason);
3204 }
3205 EXPORT_SYMBOL(dev_kfree_skb_any_reason);
3206 
3207 
3208 /**
3209  * netif_device_detach - mark device as removed
3210  * @dev: network device
3211  *
3212  * Mark device as removed from system and therefore no longer available.
3213  */
3214 void netif_device_detach(struct net_device *dev)
3215 {
3216 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3217 	    netif_running(dev)) {
3218 		netif_tx_stop_all_queues(dev);
3219 	}
3220 }
3221 EXPORT_SYMBOL(netif_device_detach);
3222 
3223 /**
3224  * netif_device_attach - mark device as attached
3225  * @dev: network device
3226  *
3227  * Mark device as attached from system and restart if needed.
3228  */
3229 void netif_device_attach(struct net_device *dev)
3230 {
3231 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3232 	    netif_running(dev)) {
3233 		netif_tx_wake_all_queues(dev);
3234 		__netdev_watchdog_up(dev);
3235 	}
3236 }
3237 EXPORT_SYMBOL(netif_device_attach);
3238 
3239 /*
3240  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3241  * to be used as a distribution range.
3242  */
3243 static u16 skb_tx_hash(const struct net_device *dev,
3244 		       const struct net_device *sb_dev,
3245 		       struct sk_buff *skb)
3246 {
3247 	u32 hash;
3248 	u16 qoffset = 0;
3249 	u16 qcount = dev->real_num_tx_queues;
3250 
3251 	if (dev->num_tc) {
3252 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3253 
3254 		qoffset = sb_dev->tc_to_txq[tc].offset;
3255 		qcount = sb_dev->tc_to_txq[tc].count;
3256 		if (unlikely(!qcount)) {
3257 			net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3258 					     sb_dev->name, qoffset, tc);
3259 			qoffset = 0;
3260 			qcount = dev->real_num_tx_queues;
3261 		}
3262 	}
3263 
3264 	if (skb_rx_queue_recorded(skb)) {
3265 		DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3266 		hash = skb_get_rx_queue(skb);
3267 		if (hash >= qoffset)
3268 			hash -= qoffset;
3269 		while (unlikely(hash >= qcount))
3270 			hash -= qcount;
3271 		return hash + qoffset;
3272 	}
3273 
3274 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3275 }
3276 
3277 void skb_warn_bad_offload(const struct sk_buff *skb)
3278 {
3279 	static const netdev_features_t null_features;
3280 	struct net_device *dev = skb->dev;
3281 	const char *name = "";
3282 
3283 	if (!net_ratelimit())
3284 		return;
3285 
3286 	if (dev) {
3287 		if (dev->dev.parent)
3288 			name = dev_driver_string(dev->dev.parent);
3289 		else
3290 			name = netdev_name(dev);
3291 	}
3292 	skb_dump(KERN_WARNING, skb, false);
3293 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3294 	     name, dev ? &dev->features : &null_features,
3295 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3296 }
3297 
3298 /*
3299  * Invalidate hardware checksum when packet is to be mangled, and
3300  * complete checksum manually on outgoing path.
3301  */
3302 int skb_checksum_help(struct sk_buff *skb)
3303 {
3304 	__wsum csum;
3305 	int ret = 0, offset;
3306 
3307 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3308 		goto out_set_summed;
3309 
3310 	if (unlikely(skb_is_gso(skb))) {
3311 		skb_warn_bad_offload(skb);
3312 		return -EINVAL;
3313 	}
3314 
3315 	if (!skb_frags_readable(skb)) {
3316 		return -EFAULT;
3317 	}
3318 
3319 	/* Before computing a checksum, we should make sure no frag could
3320 	 * be modified by an external entity : checksum could be wrong.
3321 	 */
3322 	if (skb_has_shared_frag(skb)) {
3323 		ret = __skb_linearize(skb);
3324 		if (ret)
3325 			goto out;
3326 	}
3327 
3328 	offset = skb_checksum_start_offset(skb);
3329 	ret = -EINVAL;
3330 	if (unlikely(offset >= skb_headlen(skb))) {
3331 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3332 		WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n",
3333 			  offset, skb_headlen(skb));
3334 		goto out;
3335 	}
3336 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3337 
3338 	offset += skb->csum_offset;
3339 	if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) {
3340 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3341 		WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n",
3342 			  offset + sizeof(__sum16), skb_headlen(skb));
3343 		goto out;
3344 	}
3345 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3346 	if (ret)
3347 		goto out;
3348 
3349 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3350 out_set_summed:
3351 	skb->ip_summed = CHECKSUM_NONE;
3352 out:
3353 	return ret;
3354 }
3355 EXPORT_SYMBOL(skb_checksum_help);
3356 
3357 int skb_crc32c_csum_help(struct sk_buff *skb)
3358 {
3359 	__le32 crc32c_csum;
3360 	int ret = 0, offset, start;
3361 
3362 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3363 		goto out;
3364 
3365 	if (unlikely(skb_is_gso(skb)))
3366 		goto out;
3367 
3368 	/* Before computing a checksum, we should make sure no frag could
3369 	 * be modified by an external entity : checksum could be wrong.
3370 	 */
3371 	if (unlikely(skb_has_shared_frag(skb))) {
3372 		ret = __skb_linearize(skb);
3373 		if (ret)
3374 			goto out;
3375 	}
3376 	start = skb_checksum_start_offset(skb);
3377 	offset = start + offsetof(struct sctphdr, checksum);
3378 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3379 		ret = -EINVAL;
3380 		goto out;
3381 	}
3382 
3383 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3384 	if (ret)
3385 		goto out;
3386 
3387 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3388 						  skb->len - start, ~(__u32)0,
3389 						  crc32c_csum_stub));
3390 	*(__le32 *)(skb->data + offset) = crc32c_csum;
3391 	skb_reset_csum_not_inet(skb);
3392 out:
3393 	return ret;
3394 }
3395 EXPORT_SYMBOL(skb_crc32c_csum_help);
3396 
3397 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3398 {
3399 	__be16 type = skb->protocol;
3400 
3401 	/* Tunnel gso handlers can set protocol to ethernet. */
3402 	if (type == htons(ETH_P_TEB)) {
3403 		struct ethhdr *eth;
3404 
3405 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3406 			return 0;
3407 
3408 		eth = (struct ethhdr *)skb->data;
3409 		type = eth->h_proto;
3410 	}
3411 
3412 	return vlan_get_protocol_and_depth(skb, type, depth);
3413 }
3414 
3415 
3416 /* Take action when hardware reception checksum errors are detected. */
3417 #ifdef CONFIG_BUG
3418 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3419 {
3420 	netdev_err(dev, "hw csum failure\n");
3421 	skb_dump(KERN_ERR, skb, true);
3422 	dump_stack();
3423 }
3424 
3425 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3426 {
3427 	DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3428 }
3429 EXPORT_SYMBOL(netdev_rx_csum_fault);
3430 #endif
3431 
3432 /* XXX: check that highmem exists at all on the given machine. */
3433 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3434 {
3435 #ifdef CONFIG_HIGHMEM
3436 	int i;
3437 
3438 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3439 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3440 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3441 			struct page *page = skb_frag_page(frag);
3442 
3443 			if (page && PageHighMem(page))
3444 				return 1;
3445 		}
3446 	}
3447 #endif
3448 	return 0;
3449 }
3450 
3451 /* If MPLS offload request, verify we are testing hardware MPLS features
3452  * instead of standard features for the netdev.
3453  */
3454 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3455 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3456 					   netdev_features_t features,
3457 					   __be16 type)
3458 {
3459 	if (eth_p_mpls(type))
3460 		features &= skb->dev->mpls_features;
3461 
3462 	return features;
3463 }
3464 #else
3465 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3466 					   netdev_features_t features,
3467 					   __be16 type)
3468 {
3469 	return features;
3470 }
3471 #endif
3472 
3473 static netdev_features_t harmonize_features(struct sk_buff *skb,
3474 	netdev_features_t features)
3475 {
3476 	__be16 type;
3477 
3478 	type = skb_network_protocol(skb, NULL);
3479 	features = net_mpls_features(skb, features, type);
3480 
3481 	if (skb->ip_summed != CHECKSUM_NONE &&
3482 	    !can_checksum_protocol(features, type)) {
3483 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3484 	}
3485 	if (illegal_highdma(skb->dev, skb))
3486 		features &= ~NETIF_F_SG;
3487 
3488 	return features;
3489 }
3490 
3491 netdev_features_t passthru_features_check(struct sk_buff *skb,
3492 					  struct net_device *dev,
3493 					  netdev_features_t features)
3494 {
3495 	return features;
3496 }
3497 EXPORT_SYMBOL(passthru_features_check);
3498 
3499 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3500 					     struct net_device *dev,
3501 					     netdev_features_t features)
3502 {
3503 	return vlan_features_check(skb, features);
3504 }
3505 
3506 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3507 					    struct net_device *dev,
3508 					    netdev_features_t features)
3509 {
3510 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3511 
3512 	if (gso_segs > READ_ONCE(dev->gso_max_segs))
3513 		return features & ~NETIF_F_GSO_MASK;
3514 
3515 	if (unlikely(skb->len >= netif_get_gso_max_size(dev, skb)))
3516 		return features & ~NETIF_F_GSO_MASK;
3517 
3518 	if (!skb_shinfo(skb)->gso_type) {
3519 		skb_warn_bad_offload(skb);
3520 		return features & ~NETIF_F_GSO_MASK;
3521 	}
3522 
3523 	/* Support for GSO partial features requires software
3524 	 * intervention before we can actually process the packets
3525 	 * so we need to strip support for any partial features now
3526 	 * and we can pull them back in after we have partially
3527 	 * segmented the frame.
3528 	 */
3529 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3530 		features &= ~dev->gso_partial_features;
3531 
3532 	/* Make sure to clear the IPv4 ID mangling feature if the
3533 	 * IPv4 header has the potential to be fragmented.
3534 	 */
3535 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3536 		struct iphdr *iph = skb->encapsulation ?
3537 				    inner_ip_hdr(skb) : ip_hdr(skb);
3538 
3539 		if (!(iph->frag_off & htons(IP_DF)))
3540 			features &= ~NETIF_F_TSO_MANGLEID;
3541 	}
3542 
3543 	return features;
3544 }
3545 
3546 netdev_features_t netif_skb_features(struct sk_buff *skb)
3547 {
3548 	struct net_device *dev = skb->dev;
3549 	netdev_features_t features = dev->features;
3550 
3551 	if (skb_is_gso(skb))
3552 		features = gso_features_check(skb, dev, features);
3553 
3554 	/* If encapsulation offload request, verify we are testing
3555 	 * hardware encapsulation features instead of standard
3556 	 * features for the netdev
3557 	 */
3558 	if (skb->encapsulation)
3559 		features &= dev->hw_enc_features;
3560 
3561 	if (skb_vlan_tagged(skb))
3562 		features = netdev_intersect_features(features,
3563 						     dev->vlan_features |
3564 						     NETIF_F_HW_VLAN_CTAG_TX |
3565 						     NETIF_F_HW_VLAN_STAG_TX);
3566 
3567 	if (dev->netdev_ops->ndo_features_check)
3568 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3569 								features);
3570 	else
3571 		features &= dflt_features_check(skb, dev, features);
3572 
3573 	return harmonize_features(skb, features);
3574 }
3575 EXPORT_SYMBOL(netif_skb_features);
3576 
3577 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3578 		    struct netdev_queue *txq, bool more)
3579 {
3580 	unsigned int len;
3581 	int rc;
3582 
3583 	if (dev_nit_active(dev))
3584 		dev_queue_xmit_nit(skb, dev);
3585 
3586 	len = skb->len;
3587 	trace_net_dev_start_xmit(skb, dev);
3588 	rc = netdev_start_xmit(skb, dev, txq, more);
3589 	trace_net_dev_xmit(skb, rc, dev, len);
3590 
3591 	return rc;
3592 }
3593 
3594 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3595 				    struct netdev_queue *txq, int *ret)
3596 {
3597 	struct sk_buff *skb = first;
3598 	int rc = NETDEV_TX_OK;
3599 
3600 	while (skb) {
3601 		struct sk_buff *next = skb->next;
3602 
3603 		skb_mark_not_on_list(skb);
3604 		rc = xmit_one(skb, dev, txq, next != NULL);
3605 		if (unlikely(!dev_xmit_complete(rc))) {
3606 			skb->next = next;
3607 			goto out;
3608 		}
3609 
3610 		skb = next;
3611 		if (netif_tx_queue_stopped(txq) && skb) {
3612 			rc = NETDEV_TX_BUSY;
3613 			break;
3614 		}
3615 	}
3616 
3617 out:
3618 	*ret = rc;
3619 	return skb;
3620 }
3621 
3622 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3623 					  netdev_features_t features)
3624 {
3625 	if (skb_vlan_tag_present(skb) &&
3626 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3627 		skb = __vlan_hwaccel_push_inside(skb);
3628 	return skb;
3629 }
3630 
3631 int skb_csum_hwoffload_help(struct sk_buff *skb,
3632 			    const netdev_features_t features)
3633 {
3634 	if (unlikely(skb_csum_is_sctp(skb)))
3635 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3636 			skb_crc32c_csum_help(skb);
3637 
3638 	if (features & NETIF_F_HW_CSUM)
3639 		return 0;
3640 
3641 	if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3642 		switch (skb->csum_offset) {
3643 		case offsetof(struct tcphdr, check):
3644 		case offsetof(struct udphdr, check):
3645 			return 0;
3646 		}
3647 	}
3648 
3649 	return skb_checksum_help(skb);
3650 }
3651 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3652 
3653 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3654 {
3655 	netdev_features_t features;
3656 
3657 	features = netif_skb_features(skb);
3658 	skb = validate_xmit_vlan(skb, features);
3659 	if (unlikely(!skb))
3660 		goto out_null;
3661 
3662 	skb = sk_validate_xmit_skb(skb, dev);
3663 	if (unlikely(!skb))
3664 		goto out_null;
3665 
3666 	if (netif_needs_gso(skb, features)) {
3667 		struct sk_buff *segs;
3668 
3669 		segs = skb_gso_segment(skb, features);
3670 		if (IS_ERR(segs)) {
3671 			goto out_kfree_skb;
3672 		} else if (segs) {
3673 			consume_skb(skb);
3674 			skb = segs;
3675 		}
3676 	} else {
3677 		if (skb_needs_linearize(skb, features) &&
3678 		    __skb_linearize(skb))
3679 			goto out_kfree_skb;
3680 
3681 		/* If packet is not checksummed and device does not
3682 		 * support checksumming for this protocol, complete
3683 		 * checksumming here.
3684 		 */
3685 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3686 			if (skb->encapsulation)
3687 				skb_set_inner_transport_header(skb,
3688 							       skb_checksum_start_offset(skb));
3689 			else
3690 				skb_set_transport_header(skb,
3691 							 skb_checksum_start_offset(skb));
3692 			if (skb_csum_hwoffload_help(skb, features))
3693 				goto out_kfree_skb;
3694 		}
3695 	}
3696 
3697 	skb = validate_xmit_xfrm(skb, features, again);
3698 
3699 	return skb;
3700 
3701 out_kfree_skb:
3702 	kfree_skb(skb);
3703 out_null:
3704 	dev_core_stats_tx_dropped_inc(dev);
3705 	return NULL;
3706 }
3707 
3708 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3709 {
3710 	struct sk_buff *next, *head = NULL, *tail;
3711 
3712 	for (; skb != NULL; skb = next) {
3713 		next = skb->next;
3714 		skb_mark_not_on_list(skb);
3715 
3716 		/* in case skb won't be segmented, point to itself */
3717 		skb->prev = skb;
3718 
3719 		skb = validate_xmit_skb(skb, dev, again);
3720 		if (!skb)
3721 			continue;
3722 
3723 		if (!head)
3724 			head = skb;
3725 		else
3726 			tail->next = skb;
3727 		/* If skb was segmented, skb->prev points to
3728 		 * the last segment. If not, it still contains skb.
3729 		 */
3730 		tail = skb->prev;
3731 	}
3732 	return head;
3733 }
3734 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3735 
3736 static void qdisc_pkt_len_init(struct sk_buff *skb)
3737 {
3738 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3739 
3740 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3741 
3742 	/* To get more precise estimation of bytes sent on wire,
3743 	 * we add to pkt_len the headers size of all segments
3744 	 */
3745 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3746 		u16 gso_segs = shinfo->gso_segs;
3747 		unsigned int hdr_len;
3748 
3749 		/* mac layer + network layer */
3750 		hdr_len = skb_transport_offset(skb);
3751 
3752 		/* + transport layer */
3753 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3754 			const struct tcphdr *th;
3755 			struct tcphdr _tcphdr;
3756 
3757 			th = skb_header_pointer(skb, hdr_len,
3758 						sizeof(_tcphdr), &_tcphdr);
3759 			if (likely(th))
3760 				hdr_len += __tcp_hdrlen(th);
3761 		} else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
3762 			struct udphdr _udphdr;
3763 
3764 			if (skb_header_pointer(skb, hdr_len,
3765 					       sizeof(_udphdr), &_udphdr))
3766 				hdr_len += sizeof(struct udphdr);
3767 		}
3768 
3769 		if (unlikely(shinfo->gso_type & SKB_GSO_DODGY)) {
3770 			int payload = skb->len - hdr_len;
3771 
3772 			/* Malicious packet. */
3773 			if (payload <= 0)
3774 				return;
3775 			gso_segs = DIV_ROUND_UP(payload, shinfo->gso_size);
3776 		}
3777 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3778 	}
3779 }
3780 
3781 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3782 			     struct sk_buff **to_free,
3783 			     struct netdev_queue *txq)
3784 {
3785 	int rc;
3786 
3787 	rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3788 	if (rc == NET_XMIT_SUCCESS)
3789 		trace_qdisc_enqueue(q, txq, skb);
3790 	return rc;
3791 }
3792 
3793 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3794 				 struct net_device *dev,
3795 				 struct netdev_queue *txq)
3796 {
3797 	spinlock_t *root_lock = qdisc_lock(q);
3798 	struct sk_buff *to_free = NULL;
3799 	bool contended;
3800 	int rc;
3801 
3802 	qdisc_calculate_pkt_len(skb, q);
3803 
3804 	tcf_set_drop_reason(skb, SKB_DROP_REASON_QDISC_DROP);
3805 
3806 	if (q->flags & TCQ_F_NOLOCK) {
3807 		if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3808 		    qdisc_run_begin(q)) {
3809 			/* Retest nolock_qdisc_is_empty() within the protection
3810 			 * of q->seqlock to protect from racing with requeuing.
3811 			 */
3812 			if (unlikely(!nolock_qdisc_is_empty(q))) {
3813 				rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3814 				__qdisc_run(q);
3815 				qdisc_run_end(q);
3816 
3817 				goto no_lock_out;
3818 			}
3819 
3820 			qdisc_bstats_cpu_update(q, skb);
3821 			if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3822 			    !nolock_qdisc_is_empty(q))
3823 				__qdisc_run(q);
3824 
3825 			qdisc_run_end(q);
3826 			return NET_XMIT_SUCCESS;
3827 		}
3828 
3829 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3830 		qdisc_run(q);
3831 
3832 no_lock_out:
3833 		if (unlikely(to_free))
3834 			kfree_skb_list_reason(to_free,
3835 					      tcf_get_drop_reason(to_free));
3836 		return rc;
3837 	}
3838 
3839 	if (unlikely(READ_ONCE(q->owner) == smp_processor_id())) {
3840 		kfree_skb_reason(skb, SKB_DROP_REASON_TC_RECLASSIFY_LOOP);
3841 		return NET_XMIT_DROP;
3842 	}
3843 	/*
3844 	 * Heuristic to force contended enqueues to serialize on a
3845 	 * separate lock before trying to get qdisc main lock.
3846 	 * This permits qdisc->running owner to get the lock more
3847 	 * often and dequeue packets faster.
3848 	 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3849 	 * and then other tasks will only enqueue packets. The packets will be
3850 	 * sent after the qdisc owner is scheduled again. To prevent this
3851 	 * scenario the task always serialize on the lock.
3852 	 */
3853 	contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
3854 	if (unlikely(contended))
3855 		spin_lock(&q->busylock);
3856 
3857 	spin_lock(root_lock);
3858 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3859 		__qdisc_drop(skb, &to_free);
3860 		rc = NET_XMIT_DROP;
3861 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3862 		   qdisc_run_begin(q)) {
3863 		/*
3864 		 * This is a work-conserving queue; there are no old skbs
3865 		 * waiting to be sent out; and the qdisc is not running -
3866 		 * xmit the skb directly.
3867 		 */
3868 
3869 		qdisc_bstats_update(q, skb);
3870 
3871 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3872 			if (unlikely(contended)) {
3873 				spin_unlock(&q->busylock);
3874 				contended = false;
3875 			}
3876 			__qdisc_run(q);
3877 		}
3878 
3879 		qdisc_run_end(q);
3880 		rc = NET_XMIT_SUCCESS;
3881 	} else {
3882 		WRITE_ONCE(q->owner, smp_processor_id());
3883 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3884 		WRITE_ONCE(q->owner, -1);
3885 		if (qdisc_run_begin(q)) {
3886 			if (unlikely(contended)) {
3887 				spin_unlock(&q->busylock);
3888 				contended = false;
3889 			}
3890 			__qdisc_run(q);
3891 			qdisc_run_end(q);
3892 		}
3893 	}
3894 	spin_unlock(root_lock);
3895 	if (unlikely(to_free))
3896 		kfree_skb_list_reason(to_free,
3897 				      tcf_get_drop_reason(to_free));
3898 	if (unlikely(contended))
3899 		spin_unlock(&q->busylock);
3900 	return rc;
3901 }
3902 
3903 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3904 static void skb_update_prio(struct sk_buff *skb)
3905 {
3906 	const struct netprio_map *map;
3907 	const struct sock *sk;
3908 	unsigned int prioidx;
3909 
3910 	if (skb->priority)
3911 		return;
3912 	map = rcu_dereference_bh(skb->dev->priomap);
3913 	if (!map)
3914 		return;
3915 	sk = skb_to_full_sk(skb);
3916 	if (!sk)
3917 		return;
3918 
3919 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3920 
3921 	if (prioidx < map->priomap_len)
3922 		skb->priority = map->priomap[prioidx];
3923 }
3924 #else
3925 #define skb_update_prio(skb)
3926 #endif
3927 
3928 /**
3929  *	dev_loopback_xmit - loop back @skb
3930  *	@net: network namespace this loopback is happening in
3931  *	@sk:  sk needed to be a netfilter okfn
3932  *	@skb: buffer to transmit
3933  */
3934 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3935 {
3936 	skb_reset_mac_header(skb);
3937 	__skb_pull(skb, skb_network_offset(skb));
3938 	skb->pkt_type = PACKET_LOOPBACK;
3939 	if (skb->ip_summed == CHECKSUM_NONE)
3940 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3941 	DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
3942 	skb_dst_force(skb);
3943 	netif_rx(skb);
3944 	return 0;
3945 }
3946 EXPORT_SYMBOL(dev_loopback_xmit);
3947 
3948 #ifdef CONFIG_NET_EGRESS
3949 static struct netdev_queue *
3950 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
3951 {
3952 	int qm = skb_get_queue_mapping(skb);
3953 
3954 	return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
3955 }
3956 
3957 #ifndef CONFIG_PREEMPT_RT
3958 static bool netdev_xmit_txqueue_skipped(void)
3959 {
3960 	return __this_cpu_read(softnet_data.xmit.skip_txqueue);
3961 }
3962 
3963 void netdev_xmit_skip_txqueue(bool skip)
3964 {
3965 	__this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
3966 }
3967 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
3968 
3969 #else
3970 static bool netdev_xmit_txqueue_skipped(void)
3971 {
3972 	return current->net_xmit.skip_txqueue;
3973 }
3974 
3975 void netdev_xmit_skip_txqueue(bool skip)
3976 {
3977 	current->net_xmit.skip_txqueue = skip;
3978 }
3979 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
3980 #endif
3981 #endif /* CONFIG_NET_EGRESS */
3982 
3983 #ifdef CONFIG_NET_XGRESS
3984 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb,
3985 		  enum skb_drop_reason *drop_reason)
3986 {
3987 	int ret = TC_ACT_UNSPEC;
3988 #ifdef CONFIG_NET_CLS_ACT
3989 	struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq);
3990 	struct tcf_result res;
3991 
3992 	if (!miniq)
3993 		return ret;
3994 
3995 	if (static_branch_unlikely(&tcf_bypass_check_needed_key)) {
3996 		if (tcf_block_bypass_sw(miniq->block))
3997 			return ret;
3998 	}
3999 
4000 	tc_skb_cb(skb)->mru = 0;
4001 	tc_skb_cb(skb)->post_ct = false;
4002 	tcf_set_drop_reason(skb, *drop_reason);
4003 
4004 	mini_qdisc_bstats_cpu_update(miniq, skb);
4005 	ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false);
4006 	/* Only tcf related quirks below. */
4007 	switch (ret) {
4008 	case TC_ACT_SHOT:
4009 		*drop_reason = tcf_get_drop_reason(skb);
4010 		mini_qdisc_qstats_cpu_drop(miniq);
4011 		break;
4012 	case TC_ACT_OK:
4013 	case TC_ACT_RECLASSIFY:
4014 		skb->tc_index = TC_H_MIN(res.classid);
4015 		break;
4016 	}
4017 #endif /* CONFIG_NET_CLS_ACT */
4018 	return ret;
4019 }
4020 
4021 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key);
4022 
4023 void tcx_inc(void)
4024 {
4025 	static_branch_inc(&tcx_needed_key);
4026 }
4027 
4028 void tcx_dec(void)
4029 {
4030 	static_branch_dec(&tcx_needed_key);
4031 }
4032 
4033 static __always_inline enum tcx_action_base
4034 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb,
4035 	const bool needs_mac)
4036 {
4037 	const struct bpf_mprog_fp *fp;
4038 	const struct bpf_prog *prog;
4039 	int ret = TCX_NEXT;
4040 
4041 	if (needs_mac)
4042 		__skb_push(skb, skb->mac_len);
4043 	bpf_mprog_foreach_prog(entry, fp, prog) {
4044 		bpf_compute_data_pointers(skb);
4045 		ret = bpf_prog_run(prog, skb);
4046 		if (ret != TCX_NEXT)
4047 			break;
4048 	}
4049 	if (needs_mac)
4050 		__skb_pull(skb, skb->mac_len);
4051 	return tcx_action_code(skb, ret);
4052 }
4053 
4054 static __always_inline struct sk_buff *
4055 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4056 		   struct net_device *orig_dev, bool *another)
4057 {
4058 	struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress);
4059 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS;
4060 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4061 	int sch_ret;
4062 
4063 	if (!entry)
4064 		return skb;
4065 
4066 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4067 	if (*pt_prev) {
4068 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4069 		*pt_prev = NULL;
4070 	}
4071 
4072 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4073 	tcx_set_ingress(skb, true);
4074 
4075 	if (static_branch_unlikely(&tcx_needed_key)) {
4076 		sch_ret = tcx_run(entry, skb, true);
4077 		if (sch_ret != TC_ACT_UNSPEC)
4078 			goto ingress_verdict;
4079 	}
4080 	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4081 ingress_verdict:
4082 	switch (sch_ret) {
4083 	case TC_ACT_REDIRECT:
4084 		/* skb_mac_header check was done by BPF, so we can safely
4085 		 * push the L2 header back before redirecting to another
4086 		 * netdev.
4087 		 */
4088 		__skb_push(skb, skb->mac_len);
4089 		if (skb_do_redirect(skb) == -EAGAIN) {
4090 			__skb_pull(skb, skb->mac_len);
4091 			*another = true;
4092 			break;
4093 		}
4094 		*ret = NET_RX_SUCCESS;
4095 		bpf_net_ctx_clear(bpf_net_ctx);
4096 		return NULL;
4097 	case TC_ACT_SHOT:
4098 		kfree_skb_reason(skb, drop_reason);
4099 		*ret = NET_RX_DROP;
4100 		bpf_net_ctx_clear(bpf_net_ctx);
4101 		return NULL;
4102 	/* used by tc_run */
4103 	case TC_ACT_STOLEN:
4104 	case TC_ACT_QUEUED:
4105 	case TC_ACT_TRAP:
4106 		consume_skb(skb);
4107 		fallthrough;
4108 	case TC_ACT_CONSUMED:
4109 		*ret = NET_RX_SUCCESS;
4110 		bpf_net_ctx_clear(bpf_net_ctx);
4111 		return NULL;
4112 	}
4113 	bpf_net_ctx_clear(bpf_net_ctx);
4114 
4115 	return skb;
4116 }
4117 
4118 static __always_inline struct sk_buff *
4119 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4120 {
4121 	struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress);
4122 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS;
4123 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4124 	int sch_ret;
4125 
4126 	if (!entry)
4127 		return skb;
4128 
4129 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4130 
4131 	/* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
4132 	 * already set by the caller.
4133 	 */
4134 	if (static_branch_unlikely(&tcx_needed_key)) {
4135 		sch_ret = tcx_run(entry, skb, false);
4136 		if (sch_ret != TC_ACT_UNSPEC)
4137 			goto egress_verdict;
4138 	}
4139 	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4140 egress_verdict:
4141 	switch (sch_ret) {
4142 	case TC_ACT_REDIRECT:
4143 		/* No need to push/pop skb's mac_header here on egress! */
4144 		skb_do_redirect(skb);
4145 		*ret = NET_XMIT_SUCCESS;
4146 		bpf_net_ctx_clear(bpf_net_ctx);
4147 		return NULL;
4148 	case TC_ACT_SHOT:
4149 		kfree_skb_reason(skb, drop_reason);
4150 		*ret = NET_XMIT_DROP;
4151 		bpf_net_ctx_clear(bpf_net_ctx);
4152 		return NULL;
4153 	/* used by tc_run */
4154 	case TC_ACT_STOLEN:
4155 	case TC_ACT_QUEUED:
4156 	case TC_ACT_TRAP:
4157 		consume_skb(skb);
4158 		fallthrough;
4159 	case TC_ACT_CONSUMED:
4160 		*ret = NET_XMIT_SUCCESS;
4161 		bpf_net_ctx_clear(bpf_net_ctx);
4162 		return NULL;
4163 	}
4164 	bpf_net_ctx_clear(bpf_net_ctx);
4165 
4166 	return skb;
4167 }
4168 #else
4169 static __always_inline struct sk_buff *
4170 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4171 		   struct net_device *orig_dev, bool *another)
4172 {
4173 	return skb;
4174 }
4175 
4176 static __always_inline struct sk_buff *
4177 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4178 {
4179 	return skb;
4180 }
4181 #endif /* CONFIG_NET_XGRESS */
4182 
4183 #ifdef CONFIG_XPS
4184 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4185 			       struct xps_dev_maps *dev_maps, unsigned int tci)
4186 {
4187 	int tc = netdev_get_prio_tc_map(dev, skb->priority);
4188 	struct xps_map *map;
4189 	int queue_index = -1;
4190 
4191 	if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4192 		return queue_index;
4193 
4194 	tci *= dev_maps->num_tc;
4195 	tci += tc;
4196 
4197 	map = rcu_dereference(dev_maps->attr_map[tci]);
4198 	if (map) {
4199 		if (map->len == 1)
4200 			queue_index = map->queues[0];
4201 		else
4202 			queue_index = map->queues[reciprocal_scale(
4203 						skb_get_hash(skb), map->len)];
4204 		if (unlikely(queue_index >= dev->real_num_tx_queues))
4205 			queue_index = -1;
4206 	}
4207 	return queue_index;
4208 }
4209 #endif
4210 
4211 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4212 			 struct sk_buff *skb)
4213 {
4214 #ifdef CONFIG_XPS
4215 	struct xps_dev_maps *dev_maps;
4216 	struct sock *sk = skb->sk;
4217 	int queue_index = -1;
4218 
4219 	if (!static_key_false(&xps_needed))
4220 		return -1;
4221 
4222 	rcu_read_lock();
4223 	if (!static_key_false(&xps_rxqs_needed))
4224 		goto get_cpus_map;
4225 
4226 	dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4227 	if (dev_maps) {
4228 		int tci = sk_rx_queue_get(sk);
4229 
4230 		if (tci >= 0)
4231 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4232 							  tci);
4233 	}
4234 
4235 get_cpus_map:
4236 	if (queue_index < 0) {
4237 		dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4238 		if (dev_maps) {
4239 			unsigned int tci = skb->sender_cpu - 1;
4240 
4241 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4242 							  tci);
4243 		}
4244 	}
4245 	rcu_read_unlock();
4246 
4247 	return queue_index;
4248 #else
4249 	return -1;
4250 #endif
4251 }
4252 
4253 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4254 		     struct net_device *sb_dev)
4255 {
4256 	return 0;
4257 }
4258 EXPORT_SYMBOL(dev_pick_tx_zero);
4259 
4260 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4261 		     struct net_device *sb_dev)
4262 {
4263 	struct sock *sk = skb->sk;
4264 	int queue_index = sk_tx_queue_get(sk);
4265 
4266 	sb_dev = sb_dev ? : dev;
4267 
4268 	if (queue_index < 0 || skb->ooo_okay ||
4269 	    queue_index >= dev->real_num_tx_queues) {
4270 		int new_index = get_xps_queue(dev, sb_dev, skb);
4271 
4272 		if (new_index < 0)
4273 			new_index = skb_tx_hash(dev, sb_dev, skb);
4274 
4275 		if (queue_index != new_index && sk &&
4276 		    sk_fullsock(sk) &&
4277 		    rcu_access_pointer(sk->sk_dst_cache))
4278 			sk_tx_queue_set(sk, new_index);
4279 
4280 		queue_index = new_index;
4281 	}
4282 
4283 	return queue_index;
4284 }
4285 EXPORT_SYMBOL(netdev_pick_tx);
4286 
4287 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4288 					 struct sk_buff *skb,
4289 					 struct net_device *sb_dev)
4290 {
4291 	int queue_index = 0;
4292 
4293 #ifdef CONFIG_XPS
4294 	u32 sender_cpu = skb->sender_cpu - 1;
4295 
4296 	if (sender_cpu >= (u32)NR_CPUS)
4297 		skb->sender_cpu = raw_smp_processor_id() + 1;
4298 #endif
4299 
4300 	if (dev->real_num_tx_queues != 1) {
4301 		const struct net_device_ops *ops = dev->netdev_ops;
4302 
4303 		if (ops->ndo_select_queue)
4304 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4305 		else
4306 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4307 
4308 		queue_index = netdev_cap_txqueue(dev, queue_index);
4309 	}
4310 
4311 	skb_set_queue_mapping(skb, queue_index);
4312 	return netdev_get_tx_queue(dev, queue_index);
4313 }
4314 
4315 /**
4316  * __dev_queue_xmit() - transmit a buffer
4317  * @skb:	buffer to transmit
4318  * @sb_dev:	suboordinate device used for L2 forwarding offload
4319  *
4320  * Queue a buffer for transmission to a network device. The caller must
4321  * have set the device and priority and built the buffer before calling
4322  * this function. The function can be called from an interrupt.
4323  *
4324  * When calling this method, interrupts MUST be enabled. This is because
4325  * the BH enable code must have IRQs enabled so that it will not deadlock.
4326  *
4327  * Regardless of the return value, the skb is consumed, so it is currently
4328  * difficult to retry a send to this method. (You can bump the ref count
4329  * before sending to hold a reference for retry if you are careful.)
4330  *
4331  * Return:
4332  * * 0				- buffer successfully transmitted
4333  * * positive qdisc return code	- NET_XMIT_DROP etc.
4334  * * negative errno		- other errors
4335  */
4336 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4337 {
4338 	struct net_device *dev = skb->dev;
4339 	struct netdev_queue *txq = NULL;
4340 	struct Qdisc *q;
4341 	int rc = -ENOMEM;
4342 	bool again = false;
4343 
4344 	skb_reset_mac_header(skb);
4345 	skb_assert_len(skb);
4346 
4347 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4348 		__skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4349 
4350 	/* Disable soft irqs for various locks below. Also
4351 	 * stops preemption for RCU.
4352 	 */
4353 	rcu_read_lock_bh();
4354 
4355 	skb_update_prio(skb);
4356 
4357 	qdisc_pkt_len_init(skb);
4358 	tcx_set_ingress(skb, false);
4359 #ifdef CONFIG_NET_EGRESS
4360 	if (static_branch_unlikely(&egress_needed_key)) {
4361 		if (nf_hook_egress_active()) {
4362 			skb = nf_hook_egress(skb, &rc, dev);
4363 			if (!skb)
4364 				goto out;
4365 		}
4366 
4367 		netdev_xmit_skip_txqueue(false);
4368 
4369 		nf_skip_egress(skb, true);
4370 		skb = sch_handle_egress(skb, &rc, dev);
4371 		if (!skb)
4372 			goto out;
4373 		nf_skip_egress(skb, false);
4374 
4375 		if (netdev_xmit_txqueue_skipped())
4376 			txq = netdev_tx_queue_mapping(dev, skb);
4377 	}
4378 #endif
4379 	/* If device/qdisc don't need skb->dst, release it right now while
4380 	 * its hot in this cpu cache.
4381 	 */
4382 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4383 		skb_dst_drop(skb);
4384 	else
4385 		skb_dst_force(skb);
4386 
4387 	if (!txq)
4388 		txq = netdev_core_pick_tx(dev, skb, sb_dev);
4389 
4390 	q = rcu_dereference_bh(txq->qdisc);
4391 
4392 	trace_net_dev_queue(skb);
4393 	if (q->enqueue) {
4394 		rc = __dev_xmit_skb(skb, q, dev, txq);
4395 		goto out;
4396 	}
4397 
4398 	/* The device has no queue. Common case for software devices:
4399 	 * loopback, all the sorts of tunnels...
4400 
4401 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4402 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4403 	 * counters.)
4404 	 * However, it is possible, that they rely on protection
4405 	 * made by us here.
4406 
4407 	 * Check this and shot the lock. It is not prone from deadlocks.
4408 	 *Either shot noqueue qdisc, it is even simpler 8)
4409 	 */
4410 	if (dev->flags & IFF_UP) {
4411 		int cpu = smp_processor_id(); /* ok because BHs are off */
4412 
4413 		/* Other cpus might concurrently change txq->xmit_lock_owner
4414 		 * to -1 or to their cpu id, but not to our id.
4415 		 */
4416 		if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4417 			if (dev_xmit_recursion())
4418 				goto recursion_alert;
4419 
4420 			skb = validate_xmit_skb(skb, dev, &again);
4421 			if (!skb)
4422 				goto out;
4423 
4424 			HARD_TX_LOCK(dev, txq, cpu);
4425 
4426 			if (!netif_xmit_stopped(txq)) {
4427 				dev_xmit_recursion_inc();
4428 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4429 				dev_xmit_recursion_dec();
4430 				if (dev_xmit_complete(rc)) {
4431 					HARD_TX_UNLOCK(dev, txq);
4432 					goto out;
4433 				}
4434 			}
4435 			HARD_TX_UNLOCK(dev, txq);
4436 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4437 					     dev->name);
4438 		} else {
4439 			/* Recursion is detected! It is possible,
4440 			 * unfortunately
4441 			 */
4442 recursion_alert:
4443 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4444 					     dev->name);
4445 		}
4446 	}
4447 
4448 	rc = -ENETDOWN;
4449 	rcu_read_unlock_bh();
4450 
4451 	dev_core_stats_tx_dropped_inc(dev);
4452 	kfree_skb_list(skb);
4453 	return rc;
4454 out:
4455 	rcu_read_unlock_bh();
4456 	return rc;
4457 }
4458 EXPORT_SYMBOL(__dev_queue_xmit);
4459 
4460 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4461 {
4462 	struct net_device *dev = skb->dev;
4463 	struct sk_buff *orig_skb = skb;
4464 	struct netdev_queue *txq;
4465 	int ret = NETDEV_TX_BUSY;
4466 	bool again = false;
4467 
4468 	if (unlikely(!netif_running(dev) ||
4469 		     !netif_carrier_ok(dev)))
4470 		goto drop;
4471 
4472 	skb = validate_xmit_skb_list(skb, dev, &again);
4473 	if (skb != orig_skb)
4474 		goto drop;
4475 
4476 	skb_set_queue_mapping(skb, queue_id);
4477 	txq = skb_get_tx_queue(dev, skb);
4478 
4479 	local_bh_disable();
4480 
4481 	dev_xmit_recursion_inc();
4482 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4483 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4484 		ret = netdev_start_xmit(skb, dev, txq, false);
4485 	HARD_TX_UNLOCK(dev, txq);
4486 	dev_xmit_recursion_dec();
4487 
4488 	local_bh_enable();
4489 	return ret;
4490 drop:
4491 	dev_core_stats_tx_dropped_inc(dev);
4492 	kfree_skb_list(skb);
4493 	return NET_XMIT_DROP;
4494 }
4495 EXPORT_SYMBOL(__dev_direct_xmit);
4496 
4497 /*************************************************************************
4498  *			Receiver routines
4499  *************************************************************************/
4500 static DEFINE_PER_CPU(struct task_struct *, backlog_napi);
4501 
4502 int weight_p __read_mostly = 64;           /* old backlog weight */
4503 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4504 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4505 
4506 /* Called with irq disabled */
4507 static inline void ____napi_schedule(struct softnet_data *sd,
4508 				     struct napi_struct *napi)
4509 {
4510 	struct task_struct *thread;
4511 
4512 	lockdep_assert_irqs_disabled();
4513 
4514 	if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4515 		/* Paired with smp_mb__before_atomic() in
4516 		 * napi_enable()/dev_set_threaded().
4517 		 * Use READ_ONCE() to guarantee a complete
4518 		 * read on napi->thread. Only call
4519 		 * wake_up_process() when it's not NULL.
4520 		 */
4521 		thread = READ_ONCE(napi->thread);
4522 		if (thread) {
4523 			if (use_backlog_threads() && thread == raw_cpu_read(backlog_napi))
4524 				goto use_local_napi;
4525 
4526 			set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4527 			wake_up_process(thread);
4528 			return;
4529 		}
4530 	}
4531 
4532 use_local_napi:
4533 	list_add_tail(&napi->poll_list, &sd->poll_list);
4534 	WRITE_ONCE(napi->list_owner, smp_processor_id());
4535 	/* If not called from net_rx_action()
4536 	 * we have to raise NET_RX_SOFTIRQ.
4537 	 */
4538 	if (!sd->in_net_rx_action)
4539 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4540 }
4541 
4542 #ifdef CONFIG_RPS
4543 
4544 struct static_key_false rps_needed __read_mostly;
4545 EXPORT_SYMBOL(rps_needed);
4546 struct static_key_false rfs_needed __read_mostly;
4547 EXPORT_SYMBOL(rfs_needed);
4548 
4549 static struct rps_dev_flow *
4550 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4551 	    struct rps_dev_flow *rflow, u16 next_cpu)
4552 {
4553 	if (next_cpu < nr_cpu_ids) {
4554 		u32 head;
4555 #ifdef CONFIG_RFS_ACCEL
4556 		struct netdev_rx_queue *rxqueue;
4557 		struct rps_dev_flow_table *flow_table;
4558 		struct rps_dev_flow *old_rflow;
4559 		u16 rxq_index;
4560 		u32 flow_id;
4561 		int rc;
4562 
4563 		/* Should we steer this flow to a different hardware queue? */
4564 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4565 		    !(dev->features & NETIF_F_NTUPLE))
4566 			goto out;
4567 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4568 		if (rxq_index == skb_get_rx_queue(skb))
4569 			goto out;
4570 
4571 		rxqueue = dev->_rx + rxq_index;
4572 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4573 		if (!flow_table)
4574 			goto out;
4575 		flow_id = skb_get_hash(skb) & flow_table->mask;
4576 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4577 							rxq_index, flow_id);
4578 		if (rc < 0)
4579 			goto out;
4580 		old_rflow = rflow;
4581 		rflow = &flow_table->flows[flow_id];
4582 		WRITE_ONCE(rflow->filter, rc);
4583 		if (old_rflow->filter == rc)
4584 			WRITE_ONCE(old_rflow->filter, RPS_NO_FILTER);
4585 	out:
4586 #endif
4587 		head = READ_ONCE(per_cpu(softnet_data, next_cpu).input_queue_head);
4588 		rps_input_queue_tail_save(&rflow->last_qtail, head);
4589 	}
4590 
4591 	WRITE_ONCE(rflow->cpu, next_cpu);
4592 	return rflow;
4593 }
4594 
4595 /*
4596  * get_rps_cpu is called from netif_receive_skb and returns the target
4597  * CPU from the RPS map of the receiving queue for a given skb.
4598  * rcu_read_lock must be held on entry.
4599  */
4600 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4601 		       struct rps_dev_flow **rflowp)
4602 {
4603 	const struct rps_sock_flow_table *sock_flow_table;
4604 	struct netdev_rx_queue *rxqueue = dev->_rx;
4605 	struct rps_dev_flow_table *flow_table;
4606 	struct rps_map *map;
4607 	int cpu = -1;
4608 	u32 tcpu;
4609 	u32 hash;
4610 
4611 	if (skb_rx_queue_recorded(skb)) {
4612 		u16 index = skb_get_rx_queue(skb);
4613 
4614 		if (unlikely(index >= dev->real_num_rx_queues)) {
4615 			WARN_ONCE(dev->real_num_rx_queues > 1,
4616 				  "%s received packet on queue %u, but number "
4617 				  "of RX queues is %u\n",
4618 				  dev->name, index, dev->real_num_rx_queues);
4619 			goto done;
4620 		}
4621 		rxqueue += index;
4622 	}
4623 
4624 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4625 
4626 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4627 	map = rcu_dereference(rxqueue->rps_map);
4628 	if (!flow_table && !map)
4629 		goto done;
4630 
4631 	skb_reset_network_header(skb);
4632 	hash = skb_get_hash(skb);
4633 	if (!hash)
4634 		goto done;
4635 
4636 	sock_flow_table = rcu_dereference(net_hotdata.rps_sock_flow_table);
4637 	if (flow_table && sock_flow_table) {
4638 		struct rps_dev_flow *rflow;
4639 		u32 next_cpu;
4640 		u32 ident;
4641 
4642 		/* First check into global flow table if there is a match.
4643 		 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
4644 		 */
4645 		ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
4646 		if ((ident ^ hash) & ~net_hotdata.rps_cpu_mask)
4647 			goto try_rps;
4648 
4649 		next_cpu = ident & net_hotdata.rps_cpu_mask;
4650 
4651 		/* OK, now we know there is a match,
4652 		 * we can look at the local (per receive queue) flow table
4653 		 */
4654 		rflow = &flow_table->flows[hash & flow_table->mask];
4655 		tcpu = rflow->cpu;
4656 
4657 		/*
4658 		 * If the desired CPU (where last recvmsg was done) is
4659 		 * different from current CPU (one in the rx-queue flow
4660 		 * table entry), switch if one of the following holds:
4661 		 *   - Current CPU is unset (>= nr_cpu_ids).
4662 		 *   - Current CPU is offline.
4663 		 *   - The current CPU's queue tail has advanced beyond the
4664 		 *     last packet that was enqueued using this table entry.
4665 		 *     This guarantees that all previous packets for the flow
4666 		 *     have been dequeued, thus preserving in order delivery.
4667 		 */
4668 		if (unlikely(tcpu != next_cpu) &&
4669 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4670 		     ((int)(READ_ONCE(per_cpu(softnet_data, tcpu).input_queue_head) -
4671 		      rflow->last_qtail)) >= 0)) {
4672 			tcpu = next_cpu;
4673 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4674 		}
4675 
4676 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4677 			*rflowp = rflow;
4678 			cpu = tcpu;
4679 			goto done;
4680 		}
4681 	}
4682 
4683 try_rps:
4684 
4685 	if (map) {
4686 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4687 		if (cpu_online(tcpu)) {
4688 			cpu = tcpu;
4689 			goto done;
4690 		}
4691 	}
4692 
4693 done:
4694 	return cpu;
4695 }
4696 
4697 #ifdef CONFIG_RFS_ACCEL
4698 
4699 /**
4700  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4701  * @dev: Device on which the filter was set
4702  * @rxq_index: RX queue index
4703  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4704  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4705  *
4706  * Drivers that implement ndo_rx_flow_steer() should periodically call
4707  * this function for each installed filter and remove the filters for
4708  * which it returns %true.
4709  */
4710 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4711 			 u32 flow_id, u16 filter_id)
4712 {
4713 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4714 	struct rps_dev_flow_table *flow_table;
4715 	struct rps_dev_flow *rflow;
4716 	bool expire = true;
4717 	unsigned int cpu;
4718 
4719 	rcu_read_lock();
4720 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4721 	if (flow_table && flow_id <= flow_table->mask) {
4722 		rflow = &flow_table->flows[flow_id];
4723 		cpu = READ_ONCE(rflow->cpu);
4724 		if (READ_ONCE(rflow->filter) == filter_id && cpu < nr_cpu_ids &&
4725 		    ((int)(READ_ONCE(per_cpu(softnet_data, cpu).input_queue_head) -
4726 			   READ_ONCE(rflow->last_qtail)) <
4727 		     (int)(10 * flow_table->mask)))
4728 			expire = false;
4729 	}
4730 	rcu_read_unlock();
4731 	return expire;
4732 }
4733 EXPORT_SYMBOL(rps_may_expire_flow);
4734 
4735 #endif /* CONFIG_RFS_ACCEL */
4736 
4737 /* Called from hardirq (IPI) context */
4738 static void rps_trigger_softirq(void *data)
4739 {
4740 	struct softnet_data *sd = data;
4741 
4742 	____napi_schedule(sd, &sd->backlog);
4743 	sd->received_rps++;
4744 }
4745 
4746 #endif /* CONFIG_RPS */
4747 
4748 /* Called from hardirq (IPI) context */
4749 static void trigger_rx_softirq(void *data)
4750 {
4751 	struct softnet_data *sd = data;
4752 
4753 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4754 	smp_store_release(&sd->defer_ipi_scheduled, 0);
4755 }
4756 
4757 /*
4758  * After we queued a packet into sd->input_pkt_queue,
4759  * we need to make sure this queue is serviced soon.
4760  *
4761  * - If this is another cpu queue, link it to our rps_ipi_list,
4762  *   and make sure we will process rps_ipi_list from net_rx_action().
4763  *
4764  * - If this is our own queue, NAPI schedule our backlog.
4765  *   Note that this also raises NET_RX_SOFTIRQ.
4766  */
4767 static void napi_schedule_rps(struct softnet_data *sd)
4768 {
4769 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4770 
4771 #ifdef CONFIG_RPS
4772 	if (sd != mysd) {
4773 		if (use_backlog_threads()) {
4774 			__napi_schedule_irqoff(&sd->backlog);
4775 			return;
4776 		}
4777 
4778 		sd->rps_ipi_next = mysd->rps_ipi_list;
4779 		mysd->rps_ipi_list = sd;
4780 
4781 		/* If not called from net_rx_action() or napi_threaded_poll()
4782 		 * we have to raise NET_RX_SOFTIRQ.
4783 		 */
4784 		if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
4785 			__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4786 		return;
4787 	}
4788 #endif /* CONFIG_RPS */
4789 	__napi_schedule_irqoff(&mysd->backlog);
4790 }
4791 
4792 void kick_defer_list_purge(struct softnet_data *sd, unsigned int cpu)
4793 {
4794 	unsigned long flags;
4795 
4796 	if (use_backlog_threads()) {
4797 		backlog_lock_irq_save(sd, &flags);
4798 
4799 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4800 			__napi_schedule_irqoff(&sd->backlog);
4801 
4802 		backlog_unlock_irq_restore(sd, &flags);
4803 
4804 	} else if (!cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) {
4805 		smp_call_function_single_async(cpu, &sd->defer_csd);
4806 	}
4807 }
4808 
4809 #ifdef CONFIG_NET_FLOW_LIMIT
4810 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4811 #endif
4812 
4813 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4814 {
4815 #ifdef CONFIG_NET_FLOW_LIMIT
4816 	struct sd_flow_limit *fl;
4817 	struct softnet_data *sd;
4818 	unsigned int old_flow, new_flow;
4819 
4820 	if (qlen < (READ_ONCE(net_hotdata.max_backlog) >> 1))
4821 		return false;
4822 
4823 	sd = this_cpu_ptr(&softnet_data);
4824 
4825 	rcu_read_lock();
4826 	fl = rcu_dereference(sd->flow_limit);
4827 	if (fl) {
4828 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4829 		old_flow = fl->history[fl->history_head];
4830 		fl->history[fl->history_head] = new_flow;
4831 
4832 		fl->history_head++;
4833 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4834 
4835 		if (likely(fl->buckets[old_flow]))
4836 			fl->buckets[old_flow]--;
4837 
4838 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4839 			fl->count++;
4840 			rcu_read_unlock();
4841 			return true;
4842 		}
4843 	}
4844 	rcu_read_unlock();
4845 #endif
4846 	return false;
4847 }
4848 
4849 /*
4850  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4851  * queue (may be a remote CPU queue).
4852  */
4853 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4854 			      unsigned int *qtail)
4855 {
4856 	enum skb_drop_reason reason;
4857 	struct softnet_data *sd;
4858 	unsigned long flags;
4859 	unsigned int qlen;
4860 	int max_backlog;
4861 	u32 tail;
4862 
4863 	reason = SKB_DROP_REASON_DEV_READY;
4864 	if (!netif_running(skb->dev))
4865 		goto bad_dev;
4866 
4867 	reason = SKB_DROP_REASON_CPU_BACKLOG;
4868 	sd = &per_cpu(softnet_data, cpu);
4869 
4870 	qlen = skb_queue_len_lockless(&sd->input_pkt_queue);
4871 	max_backlog = READ_ONCE(net_hotdata.max_backlog);
4872 	if (unlikely(qlen > max_backlog))
4873 		goto cpu_backlog_drop;
4874 	backlog_lock_irq_save(sd, &flags);
4875 	qlen = skb_queue_len(&sd->input_pkt_queue);
4876 	if (qlen <= max_backlog && !skb_flow_limit(skb, qlen)) {
4877 		if (!qlen) {
4878 			/* Schedule NAPI for backlog device. We can use
4879 			 * non atomic operation as we own the queue lock.
4880 			 */
4881 			if (!__test_and_set_bit(NAPI_STATE_SCHED,
4882 						&sd->backlog.state))
4883 				napi_schedule_rps(sd);
4884 		}
4885 		__skb_queue_tail(&sd->input_pkt_queue, skb);
4886 		tail = rps_input_queue_tail_incr(sd);
4887 		backlog_unlock_irq_restore(sd, &flags);
4888 
4889 		/* save the tail outside of the critical section */
4890 		rps_input_queue_tail_save(qtail, tail);
4891 		return NET_RX_SUCCESS;
4892 	}
4893 
4894 	backlog_unlock_irq_restore(sd, &flags);
4895 
4896 cpu_backlog_drop:
4897 	atomic_inc(&sd->dropped);
4898 bad_dev:
4899 	dev_core_stats_rx_dropped_inc(skb->dev);
4900 	kfree_skb_reason(skb, reason);
4901 	return NET_RX_DROP;
4902 }
4903 
4904 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4905 {
4906 	struct net_device *dev = skb->dev;
4907 	struct netdev_rx_queue *rxqueue;
4908 
4909 	rxqueue = dev->_rx;
4910 
4911 	if (skb_rx_queue_recorded(skb)) {
4912 		u16 index = skb_get_rx_queue(skb);
4913 
4914 		if (unlikely(index >= dev->real_num_rx_queues)) {
4915 			WARN_ONCE(dev->real_num_rx_queues > 1,
4916 				  "%s received packet on queue %u, but number "
4917 				  "of RX queues is %u\n",
4918 				  dev->name, index, dev->real_num_rx_queues);
4919 
4920 			return rxqueue; /* Return first rxqueue */
4921 		}
4922 		rxqueue += index;
4923 	}
4924 	return rxqueue;
4925 }
4926 
4927 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4928 			     struct bpf_prog *xdp_prog)
4929 {
4930 	void *orig_data, *orig_data_end, *hard_start;
4931 	struct netdev_rx_queue *rxqueue;
4932 	bool orig_bcast, orig_host;
4933 	u32 mac_len, frame_sz;
4934 	__be16 orig_eth_type;
4935 	struct ethhdr *eth;
4936 	u32 metalen, act;
4937 	int off;
4938 
4939 	/* The XDP program wants to see the packet starting at the MAC
4940 	 * header.
4941 	 */
4942 	mac_len = skb->data - skb_mac_header(skb);
4943 	hard_start = skb->data - skb_headroom(skb);
4944 
4945 	/* SKB "head" area always have tailroom for skb_shared_info */
4946 	frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4947 	frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4948 
4949 	rxqueue = netif_get_rxqueue(skb);
4950 	xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4951 	xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4952 			 skb_headlen(skb) + mac_len, true);
4953 	if (skb_is_nonlinear(skb)) {
4954 		skb_shinfo(skb)->xdp_frags_size = skb->data_len;
4955 		xdp_buff_set_frags_flag(xdp);
4956 	} else {
4957 		xdp_buff_clear_frags_flag(xdp);
4958 	}
4959 
4960 	orig_data_end = xdp->data_end;
4961 	orig_data = xdp->data;
4962 	eth = (struct ethhdr *)xdp->data;
4963 	orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4964 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4965 	orig_eth_type = eth->h_proto;
4966 
4967 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4968 
4969 	/* check if bpf_xdp_adjust_head was used */
4970 	off = xdp->data - orig_data;
4971 	if (off) {
4972 		if (off > 0)
4973 			__skb_pull(skb, off);
4974 		else if (off < 0)
4975 			__skb_push(skb, -off);
4976 
4977 		skb->mac_header += off;
4978 		skb_reset_network_header(skb);
4979 	}
4980 
4981 	/* check if bpf_xdp_adjust_tail was used */
4982 	off = xdp->data_end - orig_data_end;
4983 	if (off != 0) {
4984 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4985 		skb->len += off; /* positive on grow, negative on shrink */
4986 	}
4987 
4988 	/* XDP frag metadata (e.g. nr_frags) are updated in eBPF helpers
4989 	 * (e.g. bpf_xdp_adjust_tail), we need to update data_len here.
4990 	 */
4991 	if (xdp_buff_has_frags(xdp))
4992 		skb->data_len = skb_shinfo(skb)->xdp_frags_size;
4993 	else
4994 		skb->data_len = 0;
4995 
4996 	/* check if XDP changed eth hdr such SKB needs update */
4997 	eth = (struct ethhdr *)xdp->data;
4998 	if ((orig_eth_type != eth->h_proto) ||
4999 	    (orig_host != ether_addr_equal_64bits(eth->h_dest,
5000 						  skb->dev->dev_addr)) ||
5001 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
5002 		__skb_push(skb, ETH_HLEN);
5003 		skb->pkt_type = PACKET_HOST;
5004 		skb->protocol = eth_type_trans(skb, skb->dev);
5005 	}
5006 
5007 	/* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
5008 	 * before calling us again on redirect path. We do not call do_redirect
5009 	 * as we leave that up to the caller.
5010 	 *
5011 	 * Caller is responsible for managing lifetime of skb (i.e. calling
5012 	 * kfree_skb in response to actions it cannot handle/XDP_DROP).
5013 	 */
5014 	switch (act) {
5015 	case XDP_REDIRECT:
5016 	case XDP_TX:
5017 		__skb_push(skb, mac_len);
5018 		break;
5019 	case XDP_PASS:
5020 		metalen = xdp->data - xdp->data_meta;
5021 		if (metalen)
5022 			skb_metadata_set(skb, metalen);
5023 		break;
5024 	}
5025 
5026 	return act;
5027 }
5028 
5029 static int
5030 netif_skb_check_for_xdp(struct sk_buff **pskb, struct bpf_prog *prog)
5031 {
5032 	struct sk_buff *skb = *pskb;
5033 	int err, hroom, troom;
5034 
5035 	if (!skb_cow_data_for_xdp(this_cpu_read(system_page_pool), pskb, prog))
5036 		return 0;
5037 
5038 	/* In case we have to go down the path and also linearize,
5039 	 * then lets do the pskb_expand_head() work just once here.
5040 	 */
5041 	hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
5042 	troom = skb->tail + skb->data_len - skb->end;
5043 	err = pskb_expand_head(skb,
5044 			       hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
5045 			       troom > 0 ? troom + 128 : 0, GFP_ATOMIC);
5046 	if (err)
5047 		return err;
5048 
5049 	return skb_linearize(skb);
5050 }
5051 
5052 static u32 netif_receive_generic_xdp(struct sk_buff **pskb,
5053 				     struct xdp_buff *xdp,
5054 				     struct bpf_prog *xdp_prog)
5055 {
5056 	struct sk_buff *skb = *pskb;
5057 	u32 mac_len, act = XDP_DROP;
5058 
5059 	/* Reinjected packets coming from act_mirred or similar should
5060 	 * not get XDP generic processing.
5061 	 */
5062 	if (skb_is_redirected(skb))
5063 		return XDP_PASS;
5064 
5065 	/* XDP packets must have sufficient headroom of XDP_PACKET_HEADROOM
5066 	 * bytes. This is the guarantee that also native XDP provides,
5067 	 * thus we need to do it here as well.
5068 	 */
5069 	mac_len = skb->data - skb_mac_header(skb);
5070 	__skb_push(skb, mac_len);
5071 
5072 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
5073 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
5074 		if (netif_skb_check_for_xdp(pskb, xdp_prog))
5075 			goto do_drop;
5076 	}
5077 
5078 	__skb_pull(*pskb, mac_len);
5079 
5080 	act = bpf_prog_run_generic_xdp(*pskb, xdp, xdp_prog);
5081 	switch (act) {
5082 	case XDP_REDIRECT:
5083 	case XDP_TX:
5084 	case XDP_PASS:
5085 		break;
5086 	default:
5087 		bpf_warn_invalid_xdp_action((*pskb)->dev, xdp_prog, act);
5088 		fallthrough;
5089 	case XDP_ABORTED:
5090 		trace_xdp_exception((*pskb)->dev, xdp_prog, act);
5091 		fallthrough;
5092 	case XDP_DROP:
5093 	do_drop:
5094 		kfree_skb(*pskb);
5095 		break;
5096 	}
5097 
5098 	return act;
5099 }
5100 
5101 /* When doing generic XDP we have to bypass the qdisc layer and the
5102  * network taps in order to match in-driver-XDP behavior. This also means
5103  * that XDP packets are able to starve other packets going through a qdisc,
5104  * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
5105  * queues, so they do not have this starvation issue.
5106  */
5107 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
5108 {
5109 	struct net_device *dev = skb->dev;
5110 	struct netdev_queue *txq;
5111 	bool free_skb = true;
5112 	int cpu, rc;
5113 
5114 	txq = netdev_core_pick_tx(dev, skb, NULL);
5115 	cpu = smp_processor_id();
5116 	HARD_TX_LOCK(dev, txq, cpu);
5117 	if (!netif_xmit_frozen_or_drv_stopped(txq)) {
5118 		rc = netdev_start_xmit(skb, dev, txq, 0);
5119 		if (dev_xmit_complete(rc))
5120 			free_skb = false;
5121 	}
5122 	HARD_TX_UNLOCK(dev, txq);
5123 	if (free_skb) {
5124 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
5125 		dev_core_stats_tx_dropped_inc(dev);
5126 		kfree_skb(skb);
5127 	}
5128 }
5129 
5130 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
5131 
5132 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff **pskb)
5133 {
5134 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
5135 
5136 	if (xdp_prog) {
5137 		struct xdp_buff xdp;
5138 		u32 act;
5139 		int err;
5140 
5141 		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
5142 		act = netif_receive_generic_xdp(pskb, &xdp, xdp_prog);
5143 		if (act != XDP_PASS) {
5144 			switch (act) {
5145 			case XDP_REDIRECT:
5146 				err = xdp_do_generic_redirect((*pskb)->dev, *pskb,
5147 							      &xdp, xdp_prog);
5148 				if (err)
5149 					goto out_redir;
5150 				break;
5151 			case XDP_TX:
5152 				generic_xdp_tx(*pskb, xdp_prog);
5153 				break;
5154 			}
5155 			bpf_net_ctx_clear(bpf_net_ctx);
5156 			return XDP_DROP;
5157 		}
5158 		bpf_net_ctx_clear(bpf_net_ctx);
5159 	}
5160 	return XDP_PASS;
5161 out_redir:
5162 	bpf_net_ctx_clear(bpf_net_ctx);
5163 	kfree_skb_reason(*pskb, SKB_DROP_REASON_XDP);
5164 	return XDP_DROP;
5165 }
5166 EXPORT_SYMBOL_GPL(do_xdp_generic);
5167 
5168 static int netif_rx_internal(struct sk_buff *skb)
5169 {
5170 	int ret;
5171 
5172 	net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5173 
5174 	trace_netif_rx(skb);
5175 
5176 #ifdef CONFIG_RPS
5177 	if (static_branch_unlikely(&rps_needed)) {
5178 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5179 		int cpu;
5180 
5181 		rcu_read_lock();
5182 
5183 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
5184 		if (cpu < 0)
5185 			cpu = smp_processor_id();
5186 
5187 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5188 
5189 		rcu_read_unlock();
5190 	} else
5191 #endif
5192 	{
5193 		unsigned int qtail;
5194 
5195 		ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
5196 	}
5197 	return ret;
5198 }
5199 
5200 /**
5201  *	__netif_rx	-	Slightly optimized version of netif_rx
5202  *	@skb: buffer to post
5203  *
5204  *	This behaves as netif_rx except that it does not disable bottom halves.
5205  *	As a result this function may only be invoked from the interrupt context
5206  *	(either hard or soft interrupt).
5207  */
5208 int __netif_rx(struct sk_buff *skb)
5209 {
5210 	int ret;
5211 
5212 	lockdep_assert_once(hardirq_count() | softirq_count());
5213 
5214 	trace_netif_rx_entry(skb);
5215 	ret = netif_rx_internal(skb);
5216 	trace_netif_rx_exit(ret);
5217 	return ret;
5218 }
5219 EXPORT_SYMBOL(__netif_rx);
5220 
5221 /**
5222  *	netif_rx	-	post buffer to the network code
5223  *	@skb: buffer to post
5224  *
5225  *	This function receives a packet from a device driver and queues it for
5226  *	the upper (protocol) levels to process via the backlog NAPI device. It
5227  *	always succeeds. The buffer may be dropped during processing for
5228  *	congestion control or by the protocol layers.
5229  *	The network buffer is passed via the backlog NAPI device. Modern NIC
5230  *	driver should use NAPI and GRO.
5231  *	This function can used from interrupt and from process context. The
5232  *	caller from process context must not disable interrupts before invoking
5233  *	this function.
5234  *
5235  *	return values:
5236  *	NET_RX_SUCCESS	(no congestion)
5237  *	NET_RX_DROP     (packet was dropped)
5238  *
5239  */
5240 int netif_rx(struct sk_buff *skb)
5241 {
5242 	bool need_bh_off = !(hardirq_count() | softirq_count());
5243 	int ret;
5244 
5245 	if (need_bh_off)
5246 		local_bh_disable();
5247 	trace_netif_rx_entry(skb);
5248 	ret = netif_rx_internal(skb);
5249 	trace_netif_rx_exit(ret);
5250 	if (need_bh_off)
5251 		local_bh_enable();
5252 	return ret;
5253 }
5254 EXPORT_SYMBOL(netif_rx);
5255 
5256 static __latent_entropy void net_tx_action(void)
5257 {
5258 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5259 
5260 	if (sd->completion_queue) {
5261 		struct sk_buff *clist;
5262 
5263 		local_irq_disable();
5264 		clist = sd->completion_queue;
5265 		sd->completion_queue = NULL;
5266 		local_irq_enable();
5267 
5268 		while (clist) {
5269 			struct sk_buff *skb = clist;
5270 
5271 			clist = clist->next;
5272 
5273 			WARN_ON(refcount_read(&skb->users));
5274 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
5275 				trace_consume_skb(skb, net_tx_action);
5276 			else
5277 				trace_kfree_skb(skb, net_tx_action,
5278 						get_kfree_skb_cb(skb)->reason, NULL);
5279 
5280 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5281 				__kfree_skb(skb);
5282 			else
5283 				__napi_kfree_skb(skb,
5284 						 get_kfree_skb_cb(skb)->reason);
5285 		}
5286 	}
5287 
5288 	if (sd->output_queue) {
5289 		struct Qdisc *head;
5290 
5291 		local_irq_disable();
5292 		head = sd->output_queue;
5293 		sd->output_queue = NULL;
5294 		sd->output_queue_tailp = &sd->output_queue;
5295 		local_irq_enable();
5296 
5297 		rcu_read_lock();
5298 
5299 		while (head) {
5300 			struct Qdisc *q = head;
5301 			spinlock_t *root_lock = NULL;
5302 
5303 			head = head->next_sched;
5304 
5305 			/* We need to make sure head->next_sched is read
5306 			 * before clearing __QDISC_STATE_SCHED
5307 			 */
5308 			smp_mb__before_atomic();
5309 
5310 			if (!(q->flags & TCQ_F_NOLOCK)) {
5311 				root_lock = qdisc_lock(q);
5312 				spin_lock(root_lock);
5313 			} else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5314 						     &q->state))) {
5315 				/* There is a synchronize_net() between
5316 				 * STATE_DEACTIVATED flag being set and
5317 				 * qdisc_reset()/some_qdisc_is_busy() in
5318 				 * dev_deactivate(), so we can safely bail out
5319 				 * early here to avoid data race between
5320 				 * qdisc_deactivate() and some_qdisc_is_busy()
5321 				 * for lockless qdisc.
5322 				 */
5323 				clear_bit(__QDISC_STATE_SCHED, &q->state);
5324 				continue;
5325 			}
5326 
5327 			clear_bit(__QDISC_STATE_SCHED, &q->state);
5328 			qdisc_run(q);
5329 			if (root_lock)
5330 				spin_unlock(root_lock);
5331 		}
5332 
5333 		rcu_read_unlock();
5334 	}
5335 
5336 	xfrm_dev_backlog(sd);
5337 }
5338 
5339 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5340 /* This hook is defined here for ATM LANE */
5341 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5342 			     unsigned char *addr) __read_mostly;
5343 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5344 #endif
5345 
5346 /**
5347  *	netdev_is_rx_handler_busy - check if receive handler is registered
5348  *	@dev: device to check
5349  *
5350  *	Check if a receive handler is already registered for a given device.
5351  *	Return true if there one.
5352  *
5353  *	The caller must hold the rtnl_mutex.
5354  */
5355 bool netdev_is_rx_handler_busy(struct net_device *dev)
5356 {
5357 	ASSERT_RTNL();
5358 	return dev && rtnl_dereference(dev->rx_handler);
5359 }
5360 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5361 
5362 /**
5363  *	netdev_rx_handler_register - register receive handler
5364  *	@dev: device to register a handler for
5365  *	@rx_handler: receive handler to register
5366  *	@rx_handler_data: data pointer that is used by rx handler
5367  *
5368  *	Register a receive handler for a device. This handler will then be
5369  *	called from __netif_receive_skb. A negative errno code is returned
5370  *	on a failure.
5371  *
5372  *	The caller must hold the rtnl_mutex.
5373  *
5374  *	For a general description of rx_handler, see enum rx_handler_result.
5375  */
5376 int netdev_rx_handler_register(struct net_device *dev,
5377 			       rx_handler_func_t *rx_handler,
5378 			       void *rx_handler_data)
5379 {
5380 	if (netdev_is_rx_handler_busy(dev))
5381 		return -EBUSY;
5382 
5383 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
5384 		return -EINVAL;
5385 
5386 	/* Note: rx_handler_data must be set before rx_handler */
5387 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5388 	rcu_assign_pointer(dev->rx_handler, rx_handler);
5389 
5390 	return 0;
5391 }
5392 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5393 
5394 /**
5395  *	netdev_rx_handler_unregister - unregister receive handler
5396  *	@dev: device to unregister a handler from
5397  *
5398  *	Unregister a receive handler from a device.
5399  *
5400  *	The caller must hold the rtnl_mutex.
5401  */
5402 void netdev_rx_handler_unregister(struct net_device *dev)
5403 {
5404 
5405 	ASSERT_RTNL();
5406 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5407 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5408 	 * section has a guarantee to see a non NULL rx_handler_data
5409 	 * as well.
5410 	 */
5411 	synchronize_net();
5412 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5413 }
5414 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5415 
5416 /*
5417  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5418  * the special handling of PFMEMALLOC skbs.
5419  */
5420 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5421 {
5422 	switch (skb->protocol) {
5423 	case htons(ETH_P_ARP):
5424 	case htons(ETH_P_IP):
5425 	case htons(ETH_P_IPV6):
5426 	case htons(ETH_P_8021Q):
5427 	case htons(ETH_P_8021AD):
5428 		return true;
5429 	default:
5430 		return false;
5431 	}
5432 }
5433 
5434 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5435 			     int *ret, struct net_device *orig_dev)
5436 {
5437 	if (nf_hook_ingress_active(skb)) {
5438 		int ingress_retval;
5439 
5440 		if (*pt_prev) {
5441 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5442 			*pt_prev = NULL;
5443 		}
5444 
5445 		rcu_read_lock();
5446 		ingress_retval = nf_hook_ingress(skb);
5447 		rcu_read_unlock();
5448 		return ingress_retval;
5449 	}
5450 	return 0;
5451 }
5452 
5453 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5454 				    struct packet_type **ppt_prev)
5455 {
5456 	struct packet_type *ptype, *pt_prev;
5457 	rx_handler_func_t *rx_handler;
5458 	struct sk_buff *skb = *pskb;
5459 	struct net_device *orig_dev;
5460 	bool deliver_exact = false;
5461 	int ret = NET_RX_DROP;
5462 	__be16 type;
5463 
5464 	net_timestamp_check(!READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5465 
5466 	trace_netif_receive_skb(skb);
5467 
5468 	orig_dev = skb->dev;
5469 
5470 	skb_reset_network_header(skb);
5471 	if (!skb_transport_header_was_set(skb))
5472 		skb_reset_transport_header(skb);
5473 	skb_reset_mac_len(skb);
5474 
5475 	pt_prev = NULL;
5476 
5477 another_round:
5478 	skb->skb_iif = skb->dev->ifindex;
5479 
5480 	__this_cpu_inc(softnet_data.processed);
5481 
5482 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5483 		int ret2;
5484 
5485 		migrate_disable();
5486 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog),
5487 				      &skb);
5488 		migrate_enable();
5489 
5490 		if (ret2 != XDP_PASS) {
5491 			ret = NET_RX_DROP;
5492 			goto out;
5493 		}
5494 	}
5495 
5496 	if (eth_type_vlan(skb->protocol)) {
5497 		skb = skb_vlan_untag(skb);
5498 		if (unlikely(!skb))
5499 			goto out;
5500 	}
5501 
5502 	if (skb_skip_tc_classify(skb))
5503 		goto skip_classify;
5504 
5505 	if (pfmemalloc)
5506 		goto skip_taps;
5507 
5508 	list_for_each_entry_rcu(ptype, &net_hotdata.ptype_all, list) {
5509 		if (pt_prev)
5510 			ret = deliver_skb(skb, pt_prev, orig_dev);
5511 		pt_prev = ptype;
5512 	}
5513 
5514 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5515 		if (pt_prev)
5516 			ret = deliver_skb(skb, pt_prev, orig_dev);
5517 		pt_prev = ptype;
5518 	}
5519 
5520 skip_taps:
5521 #ifdef CONFIG_NET_INGRESS
5522 	if (static_branch_unlikely(&ingress_needed_key)) {
5523 		bool another = false;
5524 
5525 		nf_skip_egress(skb, true);
5526 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5527 					 &another);
5528 		if (another)
5529 			goto another_round;
5530 		if (!skb)
5531 			goto out;
5532 
5533 		nf_skip_egress(skb, false);
5534 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5535 			goto out;
5536 	}
5537 #endif
5538 	skb_reset_redirect(skb);
5539 skip_classify:
5540 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5541 		goto drop;
5542 
5543 	if (skb_vlan_tag_present(skb)) {
5544 		if (pt_prev) {
5545 			ret = deliver_skb(skb, pt_prev, orig_dev);
5546 			pt_prev = NULL;
5547 		}
5548 		if (vlan_do_receive(&skb))
5549 			goto another_round;
5550 		else if (unlikely(!skb))
5551 			goto out;
5552 	}
5553 
5554 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5555 	if (rx_handler) {
5556 		if (pt_prev) {
5557 			ret = deliver_skb(skb, pt_prev, orig_dev);
5558 			pt_prev = NULL;
5559 		}
5560 		switch (rx_handler(&skb)) {
5561 		case RX_HANDLER_CONSUMED:
5562 			ret = NET_RX_SUCCESS;
5563 			goto out;
5564 		case RX_HANDLER_ANOTHER:
5565 			goto another_round;
5566 		case RX_HANDLER_EXACT:
5567 			deliver_exact = true;
5568 			break;
5569 		case RX_HANDLER_PASS:
5570 			break;
5571 		default:
5572 			BUG();
5573 		}
5574 	}
5575 
5576 	if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5577 check_vlan_id:
5578 		if (skb_vlan_tag_get_id(skb)) {
5579 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5580 			 * find vlan device.
5581 			 */
5582 			skb->pkt_type = PACKET_OTHERHOST;
5583 		} else if (eth_type_vlan(skb->protocol)) {
5584 			/* Outer header is 802.1P with vlan 0, inner header is
5585 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5586 			 * not find vlan dev for vlan id 0.
5587 			 */
5588 			__vlan_hwaccel_clear_tag(skb);
5589 			skb = skb_vlan_untag(skb);
5590 			if (unlikely(!skb))
5591 				goto out;
5592 			if (vlan_do_receive(&skb))
5593 				/* After stripping off 802.1P header with vlan 0
5594 				 * vlan dev is found for inner header.
5595 				 */
5596 				goto another_round;
5597 			else if (unlikely(!skb))
5598 				goto out;
5599 			else
5600 				/* We have stripped outer 802.1P vlan 0 header.
5601 				 * But could not find vlan dev.
5602 				 * check again for vlan id to set OTHERHOST.
5603 				 */
5604 				goto check_vlan_id;
5605 		}
5606 		/* Note: we might in the future use prio bits
5607 		 * and set skb->priority like in vlan_do_receive()
5608 		 * For the time being, just ignore Priority Code Point
5609 		 */
5610 		__vlan_hwaccel_clear_tag(skb);
5611 	}
5612 
5613 	type = skb->protocol;
5614 
5615 	/* deliver only exact match when indicated */
5616 	if (likely(!deliver_exact)) {
5617 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5618 				       &ptype_base[ntohs(type) &
5619 						   PTYPE_HASH_MASK]);
5620 	}
5621 
5622 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5623 			       &orig_dev->ptype_specific);
5624 
5625 	if (unlikely(skb->dev != orig_dev)) {
5626 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5627 				       &skb->dev->ptype_specific);
5628 	}
5629 
5630 	if (pt_prev) {
5631 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5632 			goto drop;
5633 		*ppt_prev = pt_prev;
5634 	} else {
5635 drop:
5636 		if (!deliver_exact)
5637 			dev_core_stats_rx_dropped_inc(skb->dev);
5638 		else
5639 			dev_core_stats_rx_nohandler_inc(skb->dev);
5640 		kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5641 		/* Jamal, now you will not able to escape explaining
5642 		 * me how you were going to use this. :-)
5643 		 */
5644 		ret = NET_RX_DROP;
5645 	}
5646 
5647 out:
5648 	/* The invariant here is that if *ppt_prev is not NULL
5649 	 * then skb should also be non-NULL.
5650 	 *
5651 	 * Apparently *ppt_prev assignment above holds this invariant due to
5652 	 * skb dereferencing near it.
5653 	 */
5654 	*pskb = skb;
5655 	return ret;
5656 }
5657 
5658 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5659 {
5660 	struct net_device *orig_dev = skb->dev;
5661 	struct packet_type *pt_prev = NULL;
5662 	int ret;
5663 
5664 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5665 	if (pt_prev)
5666 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5667 					 skb->dev, pt_prev, orig_dev);
5668 	return ret;
5669 }
5670 
5671 /**
5672  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5673  *	@skb: buffer to process
5674  *
5675  *	More direct receive version of netif_receive_skb().  It should
5676  *	only be used by callers that have a need to skip RPS and Generic XDP.
5677  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5678  *
5679  *	This function may only be called from softirq context and interrupts
5680  *	should be enabled.
5681  *
5682  *	Return values (usually ignored):
5683  *	NET_RX_SUCCESS: no congestion
5684  *	NET_RX_DROP: packet was dropped
5685  */
5686 int netif_receive_skb_core(struct sk_buff *skb)
5687 {
5688 	int ret;
5689 
5690 	rcu_read_lock();
5691 	ret = __netif_receive_skb_one_core(skb, false);
5692 	rcu_read_unlock();
5693 
5694 	return ret;
5695 }
5696 EXPORT_SYMBOL(netif_receive_skb_core);
5697 
5698 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5699 						  struct packet_type *pt_prev,
5700 						  struct net_device *orig_dev)
5701 {
5702 	struct sk_buff *skb, *next;
5703 
5704 	if (!pt_prev)
5705 		return;
5706 	if (list_empty(head))
5707 		return;
5708 	if (pt_prev->list_func != NULL)
5709 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5710 				   ip_list_rcv, head, pt_prev, orig_dev);
5711 	else
5712 		list_for_each_entry_safe(skb, next, head, list) {
5713 			skb_list_del_init(skb);
5714 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5715 		}
5716 }
5717 
5718 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5719 {
5720 	/* Fast-path assumptions:
5721 	 * - There is no RX handler.
5722 	 * - Only one packet_type matches.
5723 	 * If either of these fails, we will end up doing some per-packet
5724 	 * processing in-line, then handling the 'last ptype' for the whole
5725 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5726 	 * because the 'last ptype' must be constant across the sublist, and all
5727 	 * other ptypes are handled per-packet.
5728 	 */
5729 	/* Current (common) ptype of sublist */
5730 	struct packet_type *pt_curr = NULL;
5731 	/* Current (common) orig_dev of sublist */
5732 	struct net_device *od_curr = NULL;
5733 	struct sk_buff *skb, *next;
5734 	LIST_HEAD(sublist);
5735 
5736 	list_for_each_entry_safe(skb, next, head, list) {
5737 		struct net_device *orig_dev = skb->dev;
5738 		struct packet_type *pt_prev = NULL;
5739 
5740 		skb_list_del_init(skb);
5741 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5742 		if (!pt_prev)
5743 			continue;
5744 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5745 			/* dispatch old sublist */
5746 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5747 			/* start new sublist */
5748 			INIT_LIST_HEAD(&sublist);
5749 			pt_curr = pt_prev;
5750 			od_curr = orig_dev;
5751 		}
5752 		list_add_tail(&skb->list, &sublist);
5753 	}
5754 
5755 	/* dispatch final sublist */
5756 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5757 }
5758 
5759 static int __netif_receive_skb(struct sk_buff *skb)
5760 {
5761 	int ret;
5762 
5763 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5764 		unsigned int noreclaim_flag;
5765 
5766 		/*
5767 		 * PFMEMALLOC skbs are special, they should
5768 		 * - be delivered to SOCK_MEMALLOC sockets only
5769 		 * - stay away from userspace
5770 		 * - have bounded memory usage
5771 		 *
5772 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5773 		 * context down to all allocation sites.
5774 		 */
5775 		noreclaim_flag = memalloc_noreclaim_save();
5776 		ret = __netif_receive_skb_one_core(skb, true);
5777 		memalloc_noreclaim_restore(noreclaim_flag);
5778 	} else
5779 		ret = __netif_receive_skb_one_core(skb, false);
5780 
5781 	return ret;
5782 }
5783 
5784 static void __netif_receive_skb_list(struct list_head *head)
5785 {
5786 	unsigned long noreclaim_flag = 0;
5787 	struct sk_buff *skb, *next;
5788 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5789 
5790 	list_for_each_entry_safe(skb, next, head, list) {
5791 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5792 			struct list_head sublist;
5793 
5794 			/* Handle the previous sublist */
5795 			list_cut_before(&sublist, head, &skb->list);
5796 			if (!list_empty(&sublist))
5797 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5798 			pfmemalloc = !pfmemalloc;
5799 			/* See comments in __netif_receive_skb */
5800 			if (pfmemalloc)
5801 				noreclaim_flag = memalloc_noreclaim_save();
5802 			else
5803 				memalloc_noreclaim_restore(noreclaim_flag);
5804 		}
5805 	}
5806 	/* Handle the remaining sublist */
5807 	if (!list_empty(head))
5808 		__netif_receive_skb_list_core(head, pfmemalloc);
5809 	/* Restore pflags */
5810 	if (pfmemalloc)
5811 		memalloc_noreclaim_restore(noreclaim_flag);
5812 }
5813 
5814 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5815 {
5816 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5817 	struct bpf_prog *new = xdp->prog;
5818 	int ret = 0;
5819 
5820 	switch (xdp->command) {
5821 	case XDP_SETUP_PROG:
5822 		rcu_assign_pointer(dev->xdp_prog, new);
5823 		if (old)
5824 			bpf_prog_put(old);
5825 
5826 		if (old && !new) {
5827 			static_branch_dec(&generic_xdp_needed_key);
5828 		} else if (new && !old) {
5829 			static_branch_inc(&generic_xdp_needed_key);
5830 			dev_disable_lro(dev);
5831 			dev_disable_gro_hw(dev);
5832 		}
5833 		break;
5834 
5835 	default:
5836 		ret = -EINVAL;
5837 		break;
5838 	}
5839 
5840 	return ret;
5841 }
5842 
5843 static int netif_receive_skb_internal(struct sk_buff *skb)
5844 {
5845 	int ret;
5846 
5847 	net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5848 
5849 	if (skb_defer_rx_timestamp(skb))
5850 		return NET_RX_SUCCESS;
5851 
5852 	rcu_read_lock();
5853 #ifdef CONFIG_RPS
5854 	if (static_branch_unlikely(&rps_needed)) {
5855 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5856 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5857 
5858 		if (cpu >= 0) {
5859 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5860 			rcu_read_unlock();
5861 			return ret;
5862 		}
5863 	}
5864 #endif
5865 	ret = __netif_receive_skb(skb);
5866 	rcu_read_unlock();
5867 	return ret;
5868 }
5869 
5870 void netif_receive_skb_list_internal(struct list_head *head)
5871 {
5872 	struct sk_buff *skb, *next;
5873 	LIST_HEAD(sublist);
5874 
5875 	list_for_each_entry_safe(skb, next, head, list) {
5876 		net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue),
5877 				    skb);
5878 		skb_list_del_init(skb);
5879 		if (!skb_defer_rx_timestamp(skb))
5880 			list_add_tail(&skb->list, &sublist);
5881 	}
5882 	list_splice_init(&sublist, head);
5883 
5884 	rcu_read_lock();
5885 #ifdef CONFIG_RPS
5886 	if (static_branch_unlikely(&rps_needed)) {
5887 		list_for_each_entry_safe(skb, next, head, list) {
5888 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5889 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5890 
5891 			if (cpu >= 0) {
5892 				/* Will be handled, remove from list */
5893 				skb_list_del_init(skb);
5894 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5895 			}
5896 		}
5897 	}
5898 #endif
5899 	__netif_receive_skb_list(head);
5900 	rcu_read_unlock();
5901 }
5902 
5903 /**
5904  *	netif_receive_skb - process receive buffer from network
5905  *	@skb: buffer to process
5906  *
5907  *	netif_receive_skb() is the main receive data processing function.
5908  *	It always succeeds. The buffer may be dropped during processing
5909  *	for congestion control or by the protocol layers.
5910  *
5911  *	This function may only be called from softirq context and interrupts
5912  *	should be enabled.
5913  *
5914  *	Return values (usually ignored):
5915  *	NET_RX_SUCCESS: no congestion
5916  *	NET_RX_DROP: packet was dropped
5917  */
5918 int netif_receive_skb(struct sk_buff *skb)
5919 {
5920 	int ret;
5921 
5922 	trace_netif_receive_skb_entry(skb);
5923 
5924 	ret = netif_receive_skb_internal(skb);
5925 	trace_netif_receive_skb_exit(ret);
5926 
5927 	return ret;
5928 }
5929 EXPORT_SYMBOL(netif_receive_skb);
5930 
5931 /**
5932  *	netif_receive_skb_list - process many receive buffers from network
5933  *	@head: list of skbs to process.
5934  *
5935  *	Since return value of netif_receive_skb() is normally ignored, and
5936  *	wouldn't be meaningful for a list, this function returns void.
5937  *
5938  *	This function may only be called from softirq context and interrupts
5939  *	should be enabled.
5940  */
5941 void netif_receive_skb_list(struct list_head *head)
5942 {
5943 	struct sk_buff *skb;
5944 
5945 	if (list_empty(head))
5946 		return;
5947 	if (trace_netif_receive_skb_list_entry_enabled()) {
5948 		list_for_each_entry(skb, head, list)
5949 			trace_netif_receive_skb_list_entry(skb);
5950 	}
5951 	netif_receive_skb_list_internal(head);
5952 	trace_netif_receive_skb_list_exit(0);
5953 }
5954 EXPORT_SYMBOL(netif_receive_skb_list);
5955 
5956 static DEFINE_PER_CPU(struct work_struct, flush_works);
5957 
5958 /* Network device is going away, flush any packets still pending */
5959 static void flush_backlog(struct work_struct *work)
5960 {
5961 	struct sk_buff *skb, *tmp;
5962 	struct softnet_data *sd;
5963 
5964 	local_bh_disable();
5965 	sd = this_cpu_ptr(&softnet_data);
5966 
5967 	backlog_lock_irq_disable(sd);
5968 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5969 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5970 			__skb_unlink(skb, &sd->input_pkt_queue);
5971 			dev_kfree_skb_irq(skb);
5972 			rps_input_queue_head_incr(sd);
5973 		}
5974 	}
5975 	backlog_unlock_irq_enable(sd);
5976 
5977 	local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
5978 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5979 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5980 			__skb_unlink(skb, &sd->process_queue);
5981 			kfree_skb(skb);
5982 			rps_input_queue_head_incr(sd);
5983 		}
5984 	}
5985 	local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
5986 	local_bh_enable();
5987 }
5988 
5989 static bool flush_required(int cpu)
5990 {
5991 #if IS_ENABLED(CONFIG_RPS)
5992 	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5993 	bool do_flush;
5994 
5995 	backlog_lock_irq_disable(sd);
5996 
5997 	/* as insertion into process_queue happens with the rps lock held,
5998 	 * process_queue access may race only with dequeue
5999 	 */
6000 	do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
6001 		   !skb_queue_empty_lockless(&sd->process_queue);
6002 	backlog_unlock_irq_enable(sd);
6003 
6004 	return do_flush;
6005 #endif
6006 	/* without RPS we can't safely check input_pkt_queue: during a
6007 	 * concurrent remote skb_queue_splice() we can detect as empty both
6008 	 * input_pkt_queue and process_queue even if the latter could end-up
6009 	 * containing a lot of packets.
6010 	 */
6011 	return true;
6012 }
6013 
6014 static void flush_all_backlogs(void)
6015 {
6016 	static cpumask_t flush_cpus;
6017 	unsigned int cpu;
6018 
6019 	/* since we are under rtnl lock protection we can use static data
6020 	 * for the cpumask and avoid allocating on stack the possibly
6021 	 * large mask
6022 	 */
6023 	ASSERT_RTNL();
6024 
6025 	cpus_read_lock();
6026 
6027 	cpumask_clear(&flush_cpus);
6028 	for_each_online_cpu(cpu) {
6029 		if (flush_required(cpu)) {
6030 			queue_work_on(cpu, system_highpri_wq,
6031 				      per_cpu_ptr(&flush_works, cpu));
6032 			cpumask_set_cpu(cpu, &flush_cpus);
6033 		}
6034 	}
6035 
6036 	/* we can have in flight packet[s] on the cpus we are not flushing,
6037 	 * synchronize_net() in unregister_netdevice_many() will take care of
6038 	 * them
6039 	 */
6040 	for_each_cpu(cpu, &flush_cpus)
6041 		flush_work(per_cpu_ptr(&flush_works, cpu));
6042 
6043 	cpus_read_unlock();
6044 }
6045 
6046 static void net_rps_send_ipi(struct softnet_data *remsd)
6047 {
6048 #ifdef CONFIG_RPS
6049 	while (remsd) {
6050 		struct softnet_data *next = remsd->rps_ipi_next;
6051 
6052 		if (cpu_online(remsd->cpu))
6053 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
6054 		remsd = next;
6055 	}
6056 #endif
6057 }
6058 
6059 /*
6060  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6061  * Note: called with local irq disabled, but exits with local irq enabled.
6062  */
6063 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6064 {
6065 #ifdef CONFIG_RPS
6066 	struct softnet_data *remsd = sd->rps_ipi_list;
6067 
6068 	if (!use_backlog_threads() && remsd) {
6069 		sd->rps_ipi_list = NULL;
6070 
6071 		local_irq_enable();
6072 
6073 		/* Send pending IPI's to kick RPS processing on remote cpus. */
6074 		net_rps_send_ipi(remsd);
6075 	} else
6076 #endif
6077 		local_irq_enable();
6078 }
6079 
6080 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6081 {
6082 #ifdef CONFIG_RPS
6083 	return !use_backlog_threads() && sd->rps_ipi_list;
6084 #else
6085 	return false;
6086 #endif
6087 }
6088 
6089 static int process_backlog(struct napi_struct *napi, int quota)
6090 {
6091 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6092 	bool again = true;
6093 	int work = 0;
6094 
6095 	/* Check if we have pending ipi, its better to send them now,
6096 	 * not waiting net_rx_action() end.
6097 	 */
6098 	if (sd_has_rps_ipi_waiting(sd)) {
6099 		local_irq_disable();
6100 		net_rps_action_and_irq_enable(sd);
6101 	}
6102 
6103 	napi->weight = READ_ONCE(net_hotdata.dev_rx_weight);
6104 	while (again) {
6105 		struct sk_buff *skb;
6106 
6107 		local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6108 		while ((skb = __skb_dequeue(&sd->process_queue))) {
6109 			local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6110 			rcu_read_lock();
6111 			__netif_receive_skb(skb);
6112 			rcu_read_unlock();
6113 			if (++work >= quota) {
6114 				rps_input_queue_head_add(sd, work);
6115 				return work;
6116 			}
6117 
6118 			local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6119 		}
6120 		local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6121 
6122 		backlog_lock_irq_disable(sd);
6123 		if (skb_queue_empty(&sd->input_pkt_queue)) {
6124 			/*
6125 			 * Inline a custom version of __napi_complete().
6126 			 * only current cpu owns and manipulates this napi,
6127 			 * and NAPI_STATE_SCHED is the only possible flag set
6128 			 * on backlog.
6129 			 * We can use a plain write instead of clear_bit(),
6130 			 * and we dont need an smp_mb() memory barrier.
6131 			 */
6132 			napi->state &= NAPIF_STATE_THREADED;
6133 			again = false;
6134 		} else {
6135 			local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6136 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
6137 						   &sd->process_queue);
6138 			local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6139 		}
6140 		backlog_unlock_irq_enable(sd);
6141 	}
6142 
6143 	if (work)
6144 		rps_input_queue_head_add(sd, work);
6145 	return work;
6146 }
6147 
6148 /**
6149  * __napi_schedule - schedule for receive
6150  * @n: entry to schedule
6151  *
6152  * The entry's receive function will be scheduled to run.
6153  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6154  */
6155 void __napi_schedule(struct napi_struct *n)
6156 {
6157 	unsigned long flags;
6158 
6159 	local_irq_save(flags);
6160 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6161 	local_irq_restore(flags);
6162 }
6163 EXPORT_SYMBOL(__napi_schedule);
6164 
6165 /**
6166  *	napi_schedule_prep - check if napi can be scheduled
6167  *	@n: napi context
6168  *
6169  * Test if NAPI routine is already running, and if not mark
6170  * it as running.  This is used as a condition variable to
6171  * insure only one NAPI poll instance runs.  We also make
6172  * sure there is no pending NAPI disable.
6173  */
6174 bool napi_schedule_prep(struct napi_struct *n)
6175 {
6176 	unsigned long new, val = READ_ONCE(n->state);
6177 
6178 	do {
6179 		if (unlikely(val & NAPIF_STATE_DISABLE))
6180 			return false;
6181 		new = val | NAPIF_STATE_SCHED;
6182 
6183 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
6184 		 * This was suggested by Alexander Duyck, as compiler
6185 		 * emits better code than :
6186 		 * if (val & NAPIF_STATE_SCHED)
6187 		 *     new |= NAPIF_STATE_MISSED;
6188 		 */
6189 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6190 						   NAPIF_STATE_MISSED;
6191 	} while (!try_cmpxchg(&n->state, &val, new));
6192 
6193 	return !(val & NAPIF_STATE_SCHED);
6194 }
6195 EXPORT_SYMBOL(napi_schedule_prep);
6196 
6197 /**
6198  * __napi_schedule_irqoff - schedule for receive
6199  * @n: entry to schedule
6200  *
6201  * Variant of __napi_schedule() assuming hard irqs are masked.
6202  *
6203  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6204  * because the interrupt disabled assumption might not be true
6205  * due to force-threaded interrupts and spinlock substitution.
6206  */
6207 void __napi_schedule_irqoff(struct napi_struct *n)
6208 {
6209 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6210 		____napi_schedule(this_cpu_ptr(&softnet_data), n);
6211 	else
6212 		__napi_schedule(n);
6213 }
6214 EXPORT_SYMBOL(__napi_schedule_irqoff);
6215 
6216 bool napi_complete_done(struct napi_struct *n, int work_done)
6217 {
6218 	unsigned long flags, val, new, timeout = 0;
6219 	bool ret = true;
6220 
6221 	/*
6222 	 * 1) Don't let napi dequeue from the cpu poll list
6223 	 *    just in case its running on a different cpu.
6224 	 * 2) If we are busy polling, do nothing here, we have
6225 	 *    the guarantee we will be called later.
6226 	 */
6227 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6228 				 NAPIF_STATE_IN_BUSY_POLL)))
6229 		return false;
6230 
6231 	if (work_done) {
6232 		if (n->gro_bitmask)
6233 			timeout = READ_ONCE(n->dev->gro_flush_timeout);
6234 		n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6235 	}
6236 	if (n->defer_hard_irqs_count > 0) {
6237 		n->defer_hard_irqs_count--;
6238 		timeout = READ_ONCE(n->dev->gro_flush_timeout);
6239 		if (timeout)
6240 			ret = false;
6241 	}
6242 	if (n->gro_bitmask) {
6243 		/* When the NAPI instance uses a timeout and keeps postponing
6244 		 * it, we need to bound somehow the time packets are kept in
6245 		 * the GRO layer
6246 		 */
6247 		napi_gro_flush(n, !!timeout);
6248 	}
6249 
6250 	gro_normal_list(n);
6251 
6252 	if (unlikely(!list_empty(&n->poll_list))) {
6253 		/* If n->poll_list is not empty, we need to mask irqs */
6254 		local_irq_save(flags);
6255 		list_del_init(&n->poll_list);
6256 		local_irq_restore(flags);
6257 	}
6258 	WRITE_ONCE(n->list_owner, -1);
6259 
6260 	val = READ_ONCE(n->state);
6261 	do {
6262 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6263 
6264 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6265 			      NAPIF_STATE_SCHED_THREADED |
6266 			      NAPIF_STATE_PREFER_BUSY_POLL);
6267 
6268 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6269 		 * because we will call napi->poll() one more time.
6270 		 * This C code was suggested by Alexander Duyck to help gcc.
6271 		 */
6272 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6273 						    NAPIF_STATE_SCHED;
6274 	} while (!try_cmpxchg(&n->state, &val, new));
6275 
6276 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6277 		__napi_schedule(n);
6278 		return false;
6279 	}
6280 
6281 	if (timeout)
6282 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
6283 			      HRTIMER_MODE_REL_PINNED);
6284 	return ret;
6285 }
6286 EXPORT_SYMBOL(napi_complete_done);
6287 
6288 /* must be called under rcu_read_lock(), as we dont take a reference */
6289 struct napi_struct *napi_by_id(unsigned int napi_id)
6290 {
6291 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6292 	struct napi_struct *napi;
6293 
6294 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6295 		if (napi->napi_id == napi_id)
6296 			return napi;
6297 
6298 	return NULL;
6299 }
6300 
6301 static void skb_defer_free_flush(struct softnet_data *sd)
6302 {
6303 	struct sk_buff *skb, *next;
6304 
6305 	/* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6306 	if (!READ_ONCE(sd->defer_list))
6307 		return;
6308 
6309 	spin_lock(&sd->defer_lock);
6310 	skb = sd->defer_list;
6311 	sd->defer_list = NULL;
6312 	sd->defer_count = 0;
6313 	spin_unlock(&sd->defer_lock);
6314 
6315 	while (skb != NULL) {
6316 		next = skb->next;
6317 		napi_consume_skb(skb, 1);
6318 		skb = next;
6319 	}
6320 }
6321 
6322 #if defined(CONFIG_NET_RX_BUSY_POLL)
6323 
6324 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6325 {
6326 	if (!skip_schedule) {
6327 		gro_normal_list(napi);
6328 		__napi_schedule(napi);
6329 		return;
6330 	}
6331 
6332 	if (napi->gro_bitmask) {
6333 		/* flush too old packets
6334 		 * If HZ < 1000, flush all packets.
6335 		 */
6336 		napi_gro_flush(napi, HZ >= 1000);
6337 	}
6338 
6339 	gro_normal_list(napi);
6340 	clear_bit(NAPI_STATE_SCHED, &napi->state);
6341 }
6342 
6343 enum {
6344 	NAPI_F_PREFER_BUSY_POLL	= 1,
6345 	NAPI_F_END_ON_RESCHED	= 2,
6346 };
6347 
6348 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock,
6349 			   unsigned flags, u16 budget)
6350 {
6351 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6352 	bool skip_schedule = false;
6353 	unsigned long timeout;
6354 	int rc;
6355 
6356 	/* Busy polling means there is a high chance device driver hard irq
6357 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6358 	 * set in napi_schedule_prep().
6359 	 * Since we are about to call napi->poll() once more, we can safely
6360 	 * clear NAPI_STATE_MISSED.
6361 	 *
6362 	 * Note: x86 could use a single "lock and ..." instruction
6363 	 * to perform these two clear_bit()
6364 	 */
6365 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6366 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6367 
6368 	local_bh_disable();
6369 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6370 
6371 	if (flags & NAPI_F_PREFER_BUSY_POLL) {
6372 		napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6373 		timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6374 		if (napi->defer_hard_irqs_count && timeout) {
6375 			hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6376 			skip_schedule = true;
6377 		}
6378 	}
6379 
6380 	/* All we really want here is to re-enable device interrupts.
6381 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6382 	 */
6383 	rc = napi->poll(napi, budget);
6384 	/* We can't gro_normal_list() here, because napi->poll() might have
6385 	 * rearmed the napi (napi_complete_done()) in which case it could
6386 	 * already be running on another CPU.
6387 	 */
6388 	trace_napi_poll(napi, rc, budget);
6389 	netpoll_poll_unlock(have_poll_lock);
6390 	if (rc == budget)
6391 		__busy_poll_stop(napi, skip_schedule);
6392 	bpf_net_ctx_clear(bpf_net_ctx);
6393 	local_bh_enable();
6394 }
6395 
6396 static void __napi_busy_loop(unsigned int napi_id,
6397 		      bool (*loop_end)(void *, unsigned long),
6398 		      void *loop_end_arg, unsigned flags, u16 budget)
6399 {
6400 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6401 	int (*napi_poll)(struct napi_struct *napi, int budget);
6402 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6403 	void *have_poll_lock = NULL;
6404 	struct napi_struct *napi;
6405 
6406 	WARN_ON_ONCE(!rcu_read_lock_held());
6407 
6408 restart:
6409 	napi_poll = NULL;
6410 
6411 	napi = napi_by_id(napi_id);
6412 	if (!napi)
6413 		return;
6414 
6415 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6416 		preempt_disable();
6417 	for (;;) {
6418 		int work = 0;
6419 
6420 		local_bh_disable();
6421 		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6422 		if (!napi_poll) {
6423 			unsigned long val = READ_ONCE(napi->state);
6424 
6425 			/* If multiple threads are competing for this napi,
6426 			 * we avoid dirtying napi->state as much as we can.
6427 			 */
6428 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6429 				   NAPIF_STATE_IN_BUSY_POLL)) {
6430 				if (flags & NAPI_F_PREFER_BUSY_POLL)
6431 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6432 				goto count;
6433 			}
6434 			if (cmpxchg(&napi->state, val,
6435 				    val | NAPIF_STATE_IN_BUSY_POLL |
6436 					  NAPIF_STATE_SCHED) != val) {
6437 				if (flags & NAPI_F_PREFER_BUSY_POLL)
6438 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6439 				goto count;
6440 			}
6441 			have_poll_lock = netpoll_poll_lock(napi);
6442 			napi_poll = napi->poll;
6443 		}
6444 		work = napi_poll(napi, budget);
6445 		trace_napi_poll(napi, work, budget);
6446 		gro_normal_list(napi);
6447 count:
6448 		if (work > 0)
6449 			__NET_ADD_STATS(dev_net(napi->dev),
6450 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6451 		skb_defer_free_flush(this_cpu_ptr(&softnet_data));
6452 		bpf_net_ctx_clear(bpf_net_ctx);
6453 		local_bh_enable();
6454 
6455 		if (!loop_end || loop_end(loop_end_arg, start_time))
6456 			break;
6457 
6458 		if (unlikely(need_resched())) {
6459 			if (flags & NAPI_F_END_ON_RESCHED)
6460 				break;
6461 			if (napi_poll)
6462 				busy_poll_stop(napi, have_poll_lock, flags, budget);
6463 			if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6464 				preempt_enable();
6465 			rcu_read_unlock();
6466 			cond_resched();
6467 			rcu_read_lock();
6468 			if (loop_end(loop_end_arg, start_time))
6469 				return;
6470 			goto restart;
6471 		}
6472 		cpu_relax();
6473 	}
6474 	if (napi_poll)
6475 		busy_poll_stop(napi, have_poll_lock, flags, budget);
6476 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6477 		preempt_enable();
6478 }
6479 
6480 void napi_busy_loop_rcu(unsigned int napi_id,
6481 			bool (*loop_end)(void *, unsigned long),
6482 			void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6483 {
6484 	unsigned flags = NAPI_F_END_ON_RESCHED;
6485 
6486 	if (prefer_busy_poll)
6487 		flags |= NAPI_F_PREFER_BUSY_POLL;
6488 
6489 	__napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6490 }
6491 
6492 void napi_busy_loop(unsigned int napi_id,
6493 		    bool (*loop_end)(void *, unsigned long),
6494 		    void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6495 {
6496 	unsigned flags = prefer_busy_poll ? NAPI_F_PREFER_BUSY_POLL : 0;
6497 
6498 	rcu_read_lock();
6499 	__napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6500 	rcu_read_unlock();
6501 }
6502 EXPORT_SYMBOL(napi_busy_loop);
6503 
6504 #endif /* CONFIG_NET_RX_BUSY_POLL */
6505 
6506 static void napi_hash_add(struct napi_struct *napi)
6507 {
6508 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6509 		return;
6510 
6511 	spin_lock(&napi_hash_lock);
6512 
6513 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6514 	do {
6515 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6516 			napi_gen_id = MIN_NAPI_ID;
6517 	} while (napi_by_id(napi_gen_id));
6518 	napi->napi_id = napi_gen_id;
6519 
6520 	hlist_add_head_rcu(&napi->napi_hash_node,
6521 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6522 
6523 	spin_unlock(&napi_hash_lock);
6524 }
6525 
6526 /* Warning : caller is responsible to make sure rcu grace period
6527  * is respected before freeing memory containing @napi
6528  */
6529 static void napi_hash_del(struct napi_struct *napi)
6530 {
6531 	spin_lock(&napi_hash_lock);
6532 
6533 	hlist_del_init_rcu(&napi->napi_hash_node);
6534 
6535 	spin_unlock(&napi_hash_lock);
6536 }
6537 
6538 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6539 {
6540 	struct napi_struct *napi;
6541 
6542 	napi = container_of(timer, struct napi_struct, timer);
6543 
6544 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6545 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6546 	 */
6547 	if (!napi_disable_pending(napi) &&
6548 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6549 		clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6550 		__napi_schedule_irqoff(napi);
6551 	}
6552 
6553 	return HRTIMER_NORESTART;
6554 }
6555 
6556 static void init_gro_hash(struct napi_struct *napi)
6557 {
6558 	int i;
6559 
6560 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6561 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6562 		napi->gro_hash[i].count = 0;
6563 	}
6564 	napi->gro_bitmask = 0;
6565 }
6566 
6567 int dev_set_threaded(struct net_device *dev, bool threaded)
6568 {
6569 	struct napi_struct *napi;
6570 	int err = 0;
6571 
6572 	if (dev->threaded == threaded)
6573 		return 0;
6574 
6575 	if (threaded) {
6576 		list_for_each_entry(napi, &dev->napi_list, dev_list) {
6577 			if (!napi->thread) {
6578 				err = napi_kthread_create(napi);
6579 				if (err) {
6580 					threaded = false;
6581 					break;
6582 				}
6583 			}
6584 		}
6585 	}
6586 
6587 	WRITE_ONCE(dev->threaded, threaded);
6588 
6589 	/* Make sure kthread is created before THREADED bit
6590 	 * is set.
6591 	 */
6592 	smp_mb__before_atomic();
6593 
6594 	/* Setting/unsetting threaded mode on a napi might not immediately
6595 	 * take effect, if the current napi instance is actively being
6596 	 * polled. In this case, the switch between threaded mode and
6597 	 * softirq mode will happen in the next round of napi_schedule().
6598 	 * This should not cause hiccups/stalls to the live traffic.
6599 	 */
6600 	list_for_each_entry(napi, &dev->napi_list, dev_list)
6601 		assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
6602 
6603 	return err;
6604 }
6605 EXPORT_SYMBOL(dev_set_threaded);
6606 
6607 /**
6608  * netif_queue_set_napi - Associate queue with the napi
6609  * @dev: device to which NAPI and queue belong
6610  * @queue_index: Index of queue
6611  * @type: queue type as RX or TX
6612  * @napi: NAPI context, pass NULL to clear previously set NAPI
6613  *
6614  * Set queue with its corresponding napi context. This should be done after
6615  * registering the NAPI handler for the queue-vector and the queues have been
6616  * mapped to the corresponding interrupt vector.
6617  */
6618 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index,
6619 			  enum netdev_queue_type type, struct napi_struct *napi)
6620 {
6621 	struct netdev_rx_queue *rxq;
6622 	struct netdev_queue *txq;
6623 
6624 	if (WARN_ON_ONCE(napi && !napi->dev))
6625 		return;
6626 	if (dev->reg_state >= NETREG_REGISTERED)
6627 		ASSERT_RTNL();
6628 
6629 	switch (type) {
6630 	case NETDEV_QUEUE_TYPE_RX:
6631 		rxq = __netif_get_rx_queue(dev, queue_index);
6632 		rxq->napi = napi;
6633 		return;
6634 	case NETDEV_QUEUE_TYPE_TX:
6635 		txq = netdev_get_tx_queue(dev, queue_index);
6636 		txq->napi = napi;
6637 		return;
6638 	default:
6639 		return;
6640 	}
6641 }
6642 EXPORT_SYMBOL(netif_queue_set_napi);
6643 
6644 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
6645 			   int (*poll)(struct napi_struct *, int), int weight)
6646 {
6647 	if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6648 		return;
6649 
6650 	INIT_LIST_HEAD(&napi->poll_list);
6651 	INIT_HLIST_NODE(&napi->napi_hash_node);
6652 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6653 	napi->timer.function = napi_watchdog;
6654 	init_gro_hash(napi);
6655 	napi->skb = NULL;
6656 	INIT_LIST_HEAD(&napi->rx_list);
6657 	napi->rx_count = 0;
6658 	napi->poll = poll;
6659 	if (weight > NAPI_POLL_WEIGHT)
6660 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6661 				weight);
6662 	napi->weight = weight;
6663 	napi->dev = dev;
6664 #ifdef CONFIG_NETPOLL
6665 	napi->poll_owner = -1;
6666 #endif
6667 	napi->list_owner = -1;
6668 	set_bit(NAPI_STATE_SCHED, &napi->state);
6669 	set_bit(NAPI_STATE_NPSVC, &napi->state);
6670 	list_add_rcu(&napi->dev_list, &dev->napi_list);
6671 	napi_hash_add(napi);
6672 	napi_get_frags_check(napi);
6673 	/* Create kthread for this napi if dev->threaded is set.
6674 	 * Clear dev->threaded if kthread creation failed so that
6675 	 * threaded mode will not be enabled in napi_enable().
6676 	 */
6677 	if (dev->threaded && napi_kthread_create(napi))
6678 		dev->threaded = false;
6679 	netif_napi_set_irq(napi, -1);
6680 }
6681 EXPORT_SYMBOL(netif_napi_add_weight);
6682 
6683 void napi_disable(struct napi_struct *n)
6684 {
6685 	unsigned long val, new;
6686 
6687 	might_sleep();
6688 	set_bit(NAPI_STATE_DISABLE, &n->state);
6689 
6690 	val = READ_ONCE(n->state);
6691 	do {
6692 		while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6693 			usleep_range(20, 200);
6694 			val = READ_ONCE(n->state);
6695 		}
6696 
6697 		new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6698 		new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6699 	} while (!try_cmpxchg(&n->state, &val, new));
6700 
6701 	hrtimer_cancel(&n->timer);
6702 
6703 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6704 }
6705 EXPORT_SYMBOL(napi_disable);
6706 
6707 /**
6708  *	napi_enable - enable NAPI scheduling
6709  *	@n: NAPI context
6710  *
6711  * Resume NAPI from being scheduled on this context.
6712  * Must be paired with napi_disable.
6713  */
6714 void napi_enable(struct napi_struct *n)
6715 {
6716 	unsigned long new, val = READ_ONCE(n->state);
6717 
6718 	do {
6719 		BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6720 
6721 		new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6722 		if (n->dev->threaded && n->thread)
6723 			new |= NAPIF_STATE_THREADED;
6724 	} while (!try_cmpxchg(&n->state, &val, new));
6725 }
6726 EXPORT_SYMBOL(napi_enable);
6727 
6728 static void flush_gro_hash(struct napi_struct *napi)
6729 {
6730 	int i;
6731 
6732 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6733 		struct sk_buff *skb, *n;
6734 
6735 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6736 			kfree_skb(skb);
6737 		napi->gro_hash[i].count = 0;
6738 	}
6739 }
6740 
6741 /* Must be called in process context */
6742 void __netif_napi_del(struct napi_struct *napi)
6743 {
6744 	if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6745 		return;
6746 
6747 	napi_hash_del(napi);
6748 	list_del_rcu(&napi->dev_list);
6749 	napi_free_frags(napi);
6750 
6751 	flush_gro_hash(napi);
6752 	napi->gro_bitmask = 0;
6753 
6754 	if (napi->thread) {
6755 		kthread_stop(napi->thread);
6756 		napi->thread = NULL;
6757 	}
6758 }
6759 EXPORT_SYMBOL(__netif_napi_del);
6760 
6761 static int __napi_poll(struct napi_struct *n, bool *repoll)
6762 {
6763 	int work, weight;
6764 
6765 	weight = n->weight;
6766 
6767 	/* This NAPI_STATE_SCHED test is for avoiding a race
6768 	 * with netpoll's poll_napi().  Only the entity which
6769 	 * obtains the lock and sees NAPI_STATE_SCHED set will
6770 	 * actually make the ->poll() call.  Therefore we avoid
6771 	 * accidentally calling ->poll() when NAPI is not scheduled.
6772 	 */
6773 	work = 0;
6774 	if (napi_is_scheduled(n)) {
6775 		work = n->poll(n, weight);
6776 		trace_napi_poll(n, work, weight);
6777 
6778 		xdp_do_check_flushed(n);
6779 	}
6780 
6781 	if (unlikely(work > weight))
6782 		netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6783 				n->poll, work, weight);
6784 
6785 	if (likely(work < weight))
6786 		return work;
6787 
6788 	/* Drivers must not modify the NAPI state if they
6789 	 * consume the entire weight.  In such cases this code
6790 	 * still "owns" the NAPI instance and therefore can
6791 	 * move the instance around on the list at-will.
6792 	 */
6793 	if (unlikely(napi_disable_pending(n))) {
6794 		napi_complete(n);
6795 		return work;
6796 	}
6797 
6798 	/* The NAPI context has more processing work, but busy-polling
6799 	 * is preferred. Exit early.
6800 	 */
6801 	if (napi_prefer_busy_poll(n)) {
6802 		if (napi_complete_done(n, work)) {
6803 			/* If timeout is not set, we need to make sure
6804 			 * that the NAPI is re-scheduled.
6805 			 */
6806 			napi_schedule(n);
6807 		}
6808 		return work;
6809 	}
6810 
6811 	if (n->gro_bitmask) {
6812 		/* flush too old packets
6813 		 * If HZ < 1000, flush all packets.
6814 		 */
6815 		napi_gro_flush(n, HZ >= 1000);
6816 	}
6817 
6818 	gro_normal_list(n);
6819 
6820 	/* Some drivers may have called napi_schedule
6821 	 * prior to exhausting their budget.
6822 	 */
6823 	if (unlikely(!list_empty(&n->poll_list))) {
6824 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6825 			     n->dev ? n->dev->name : "backlog");
6826 		return work;
6827 	}
6828 
6829 	*repoll = true;
6830 
6831 	return work;
6832 }
6833 
6834 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6835 {
6836 	bool do_repoll = false;
6837 	void *have;
6838 	int work;
6839 
6840 	list_del_init(&n->poll_list);
6841 
6842 	have = netpoll_poll_lock(n);
6843 
6844 	work = __napi_poll(n, &do_repoll);
6845 
6846 	if (do_repoll)
6847 		list_add_tail(&n->poll_list, repoll);
6848 
6849 	netpoll_poll_unlock(have);
6850 
6851 	return work;
6852 }
6853 
6854 static int napi_thread_wait(struct napi_struct *napi)
6855 {
6856 	set_current_state(TASK_INTERRUPTIBLE);
6857 
6858 	while (!kthread_should_stop()) {
6859 		/* Testing SCHED_THREADED bit here to make sure the current
6860 		 * kthread owns this napi and could poll on this napi.
6861 		 * Testing SCHED bit is not enough because SCHED bit might be
6862 		 * set by some other busy poll thread or by napi_disable().
6863 		 */
6864 		if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state)) {
6865 			WARN_ON(!list_empty(&napi->poll_list));
6866 			__set_current_state(TASK_RUNNING);
6867 			return 0;
6868 		}
6869 
6870 		schedule();
6871 		set_current_state(TASK_INTERRUPTIBLE);
6872 	}
6873 	__set_current_state(TASK_RUNNING);
6874 
6875 	return -1;
6876 }
6877 
6878 static void napi_threaded_poll_loop(struct napi_struct *napi)
6879 {
6880 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6881 	struct softnet_data *sd;
6882 	unsigned long last_qs = jiffies;
6883 
6884 	for (;;) {
6885 		bool repoll = false;
6886 		void *have;
6887 
6888 		local_bh_disable();
6889 		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6890 
6891 		sd = this_cpu_ptr(&softnet_data);
6892 		sd->in_napi_threaded_poll = true;
6893 
6894 		have = netpoll_poll_lock(napi);
6895 		__napi_poll(napi, &repoll);
6896 		netpoll_poll_unlock(have);
6897 
6898 		sd->in_napi_threaded_poll = false;
6899 		barrier();
6900 
6901 		if (sd_has_rps_ipi_waiting(sd)) {
6902 			local_irq_disable();
6903 			net_rps_action_and_irq_enable(sd);
6904 		}
6905 		skb_defer_free_flush(sd);
6906 		bpf_net_ctx_clear(bpf_net_ctx);
6907 		local_bh_enable();
6908 
6909 		if (!repoll)
6910 			break;
6911 
6912 		rcu_softirq_qs_periodic(last_qs);
6913 		cond_resched();
6914 	}
6915 }
6916 
6917 static int napi_threaded_poll(void *data)
6918 {
6919 	struct napi_struct *napi = data;
6920 
6921 	while (!napi_thread_wait(napi))
6922 		napi_threaded_poll_loop(napi);
6923 
6924 	return 0;
6925 }
6926 
6927 static __latent_entropy void net_rx_action(void)
6928 {
6929 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6930 	unsigned long time_limit = jiffies +
6931 		usecs_to_jiffies(READ_ONCE(net_hotdata.netdev_budget_usecs));
6932 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6933 	int budget = READ_ONCE(net_hotdata.netdev_budget);
6934 	LIST_HEAD(list);
6935 	LIST_HEAD(repoll);
6936 
6937 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6938 start:
6939 	sd->in_net_rx_action = true;
6940 	local_irq_disable();
6941 	list_splice_init(&sd->poll_list, &list);
6942 	local_irq_enable();
6943 
6944 	for (;;) {
6945 		struct napi_struct *n;
6946 
6947 		skb_defer_free_flush(sd);
6948 
6949 		if (list_empty(&list)) {
6950 			if (list_empty(&repoll)) {
6951 				sd->in_net_rx_action = false;
6952 				barrier();
6953 				/* We need to check if ____napi_schedule()
6954 				 * had refilled poll_list while
6955 				 * sd->in_net_rx_action was true.
6956 				 */
6957 				if (!list_empty(&sd->poll_list))
6958 					goto start;
6959 				if (!sd_has_rps_ipi_waiting(sd))
6960 					goto end;
6961 			}
6962 			break;
6963 		}
6964 
6965 		n = list_first_entry(&list, struct napi_struct, poll_list);
6966 		budget -= napi_poll(n, &repoll);
6967 
6968 		/* If softirq window is exhausted then punt.
6969 		 * Allow this to run for 2 jiffies since which will allow
6970 		 * an average latency of 1.5/HZ.
6971 		 */
6972 		if (unlikely(budget <= 0 ||
6973 			     time_after_eq(jiffies, time_limit))) {
6974 			sd->time_squeeze++;
6975 			break;
6976 		}
6977 	}
6978 
6979 	local_irq_disable();
6980 
6981 	list_splice_tail_init(&sd->poll_list, &list);
6982 	list_splice_tail(&repoll, &list);
6983 	list_splice(&list, &sd->poll_list);
6984 	if (!list_empty(&sd->poll_list))
6985 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
6986 	else
6987 		sd->in_net_rx_action = false;
6988 
6989 	net_rps_action_and_irq_enable(sd);
6990 end:
6991 	bpf_net_ctx_clear(bpf_net_ctx);
6992 }
6993 
6994 struct netdev_adjacent {
6995 	struct net_device *dev;
6996 	netdevice_tracker dev_tracker;
6997 
6998 	/* upper master flag, there can only be one master device per list */
6999 	bool master;
7000 
7001 	/* lookup ignore flag */
7002 	bool ignore;
7003 
7004 	/* counter for the number of times this device was added to us */
7005 	u16 ref_nr;
7006 
7007 	/* private field for the users */
7008 	void *private;
7009 
7010 	struct list_head list;
7011 	struct rcu_head rcu;
7012 };
7013 
7014 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7015 						 struct list_head *adj_list)
7016 {
7017 	struct netdev_adjacent *adj;
7018 
7019 	list_for_each_entry(adj, adj_list, list) {
7020 		if (adj->dev == adj_dev)
7021 			return adj;
7022 	}
7023 	return NULL;
7024 }
7025 
7026 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7027 				    struct netdev_nested_priv *priv)
7028 {
7029 	struct net_device *dev = (struct net_device *)priv->data;
7030 
7031 	return upper_dev == dev;
7032 }
7033 
7034 /**
7035  * netdev_has_upper_dev - Check if device is linked to an upper device
7036  * @dev: device
7037  * @upper_dev: upper device to check
7038  *
7039  * Find out if a device is linked to specified upper device and return true
7040  * in case it is. Note that this checks only immediate upper device,
7041  * not through a complete stack of devices. The caller must hold the RTNL lock.
7042  */
7043 bool netdev_has_upper_dev(struct net_device *dev,
7044 			  struct net_device *upper_dev)
7045 {
7046 	struct netdev_nested_priv priv = {
7047 		.data = (void *)upper_dev,
7048 	};
7049 
7050 	ASSERT_RTNL();
7051 
7052 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7053 					     &priv);
7054 }
7055 EXPORT_SYMBOL(netdev_has_upper_dev);
7056 
7057 /**
7058  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7059  * @dev: device
7060  * @upper_dev: upper device to check
7061  *
7062  * Find out if a device is linked to specified upper device and return true
7063  * in case it is. Note that this checks the entire upper device chain.
7064  * The caller must hold rcu lock.
7065  */
7066 
7067 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7068 				  struct net_device *upper_dev)
7069 {
7070 	struct netdev_nested_priv priv = {
7071 		.data = (void *)upper_dev,
7072 	};
7073 
7074 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7075 					       &priv);
7076 }
7077 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7078 
7079 /**
7080  * netdev_has_any_upper_dev - Check if device is linked to some device
7081  * @dev: device
7082  *
7083  * Find out if a device is linked to an upper device and return true in case
7084  * it is. The caller must hold the RTNL lock.
7085  */
7086 bool netdev_has_any_upper_dev(struct net_device *dev)
7087 {
7088 	ASSERT_RTNL();
7089 
7090 	return !list_empty(&dev->adj_list.upper);
7091 }
7092 EXPORT_SYMBOL(netdev_has_any_upper_dev);
7093 
7094 /**
7095  * netdev_master_upper_dev_get - Get master upper device
7096  * @dev: device
7097  *
7098  * Find a master upper device and return pointer to it or NULL in case
7099  * it's not there. The caller must hold the RTNL lock.
7100  */
7101 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7102 {
7103 	struct netdev_adjacent *upper;
7104 
7105 	ASSERT_RTNL();
7106 
7107 	if (list_empty(&dev->adj_list.upper))
7108 		return NULL;
7109 
7110 	upper = list_first_entry(&dev->adj_list.upper,
7111 				 struct netdev_adjacent, list);
7112 	if (likely(upper->master))
7113 		return upper->dev;
7114 	return NULL;
7115 }
7116 EXPORT_SYMBOL(netdev_master_upper_dev_get);
7117 
7118 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7119 {
7120 	struct netdev_adjacent *upper;
7121 
7122 	ASSERT_RTNL();
7123 
7124 	if (list_empty(&dev->adj_list.upper))
7125 		return NULL;
7126 
7127 	upper = list_first_entry(&dev->adj_list.upper,
7128 				 struct netdev_adjacent, list);
7129 	if (likely(upper->master) && !upper->ignore)
7130 		return upper->dev;
7131 	return NULL;
7132 }
7133 
7134 /**
7135  * netdev_has_any_lower_dev - Check if device is linked to some device
7136  * @dev: device
7137  *
7138  * Find out if a device is linked to a lower device and return true in case
7139  * it is. The caller must hold the RTNL lock.
7140  */
7141 static bool netdev_has_any_lower_dev(struct net_device *dev)
7142 {
7143 	ASSERT_RTNL();
7144 
7145 	return !list_empty(&dev->adj_list.lower);
7146 }
7147 
7148 void *netdev_adjacent_get_private(struct list_head *adj_list)
7149 {
7150 	struct netdev_adjacent *adj;
7151 
7152 	adj = list_entry(adj_list, struct netdev_adjacent, list);
7153 
7154 	return adj->private;
7155 }
7156 EXPORT_SYMBOL(netdev_adjacent_get_private);
7157 
7158 /**
7159  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7160  * @dev: device
7161  * @iter: list_head ** of the current position
7162  *
7163  * Gets the next device from the dev's upper list, starting from iter
7164  * position. The caller must hold RCU read lock.
7165  */
7166 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7167 						 struct list_head **iter)
7168 {
7169 	struct netdev_adjacent *upper;
7170 
7171 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7172 
7173 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7174 
7175 	if (&upper->list == &dev->adj_list.upper)
7176 		return NULL;
7177 
7178 	*iter = &upper->list;
7179 
7180 	return upper->dev;
7181 }
7182 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7183 
7184 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7185 						  struct list_head **iter,
7186 						  bool *ignore)
7187 {
7188 	struct netdev_adjacent *upper;
7189 
7190 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7191 
7192 	if (&upper->list == &dev->adj_list.upper)
7193 		return NULL;
7194 
7195 	*iter = &upper->list;
7196 	*ignore = upper->ignore;
7197 
7198 	return upper->dev;
7199 }
7200 
7201 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7202 						    struct list_head **iter)
7203 {
7204 	struct netdev_adjacent *upper;
7205 
7206 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7207 
7208 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7209 
7210 	if (&upper->list == &dev->adj_list.upper)
7211 		return NULL;
7212 
7213 	*iter = &upper->list;
7214 
7215 	return upper->dev;
7216 }
7217 
7218 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7219 				       int (*fn)(struct net_device *dev,
7220 					 struct netdev_nested_priv *priv),
7221 				       struct netdev_nested_priv *priv)
7222 {
7223 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7224 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7225 	int ret, cur = 0;
7226 	bool ignore;
7227 
7228 	now = dev;
7229 	iter = &dev->adj_list.upper;
7230 
7231 	while (1) {
7232 		if (now != dev) {
7233 			ret = fn(now, priv);
7234 			if (ret)
7235 				return ret;
7236 		}
7237 
7238 		next = NULL;
7239 		while (1) {
7240 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
7241 			if (!udev)
7242 				break;
7243 			if (ignore)
7244 				continue;
7245 
7246 			next = udev;
7247 			niter = &udev->adj_list.upper;
7248 			dev_stack[cur] = now;
7249 			iter_stack[cur++] = iter;
7250 			break;
7251 		}
7252 
7253 		if (!next) {
7254 			if (!cur)
7255 				return 0;
7256 			next = dev_stack[--cur];
7257 			niter = iter_stack[cur];
7258 		}
7259 
7260 		now = next;
7261 		iter = niter;
7262 	}
7263 
7264 	return 0;
7265 }
7266 
7267 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7268 				  int (*fn)(struct net_device *dev,
7269 					    struct netdev_nested_priv *priv),
7270 				  struct netdev_nested_priv *priv)
7271 {
7272 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7273 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7274 	int ret, cur = 0;
7275 
7276 	now = dev;
7277 	iter = &dev->adj_list.upper;
7278 
7279 	while (1) {
7280 		if (now != dev) {
7281 			ret = fn(now, priv);
7282 			if (ret)
7283 				return ret;
7284 		}
7285 
7286 		next = NULL;
7287 		while (1) {
7288 			udev = netdev_next_upper_dev_rcu(now, &iter);
7289 			if (!udev)
7290 				break;
7291 
7292 			next = udev;
7293 			niter = &udev->adj_list.upper;
7294 			dev_stack[cur] = now;
7295 			iter_stack[cur++] = iter;
7296 			break;
7297 		}
7298 
7299 		if (!next) {
7300 			if (!cur)
7301 				return 0;
7302 			next = dev_stack[--cur];
7303 			niter = iter_stack[cur];
7304 		}
7305 
7306 		now = next;
7307 		iter = niter;
7308 	}
7309 
7310 	return 0;
7311 }
7312 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7313 
7314 static bool __netdev_has_upper_dev(struct net_device *dev,
7315 				   struct net_device *upper_dev)
7316 {
7317 	struct netdev_nested_priv priv = {
7318 		.flags = 0,
7319 		.data = (void *)upper_dev,
7320 	};
7321 
7322 	ASSERT_RTNL();
7323 
7324 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7325 					   &priv);
7326 }
7327 
7328 /**
7329  * netdev_lower_get_next_private - Get the next ->private from the
7330  *				   lower neighbour list
7331  * @dev: device
7332  * @iter: list_head ** of the current position
7333  *
7334  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7335  * list, starting from iter position. The caller must hold either hold the
7336  * RTNL lock or its own locking that guarantees that the neighbour lower
7337  * list will remain unchanged.
7338  */
7339 void *netdev_lower_get_next_private(struct net_device *dev,
7340 				    struct list_head **iter)
7341 {
7342 	struct netdev_adjacent *lower;
7343 
7344 	lower = list_entry(*iter, struct netdev_adjacent, list);
7345 
7346 	if (&lower->list == &dev->adj_list.lower)
7347 		return NULL;
7348 
7349 	*iter = lower->list.next;
7350 
7351 	return lower->private;
7352 }
7353 EXPORT_SYMBOL(netdev_lower_get_next_private);
7354 
7355 /**
7356  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7357  *				       lower neighbour list, RCU
7358  *				       variant
7359  * @dev: device
7360  * @iter: list_head ** of the current position
7361  *
7362  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7363  * list, starting from iter position. The caller must hold RCU read lock.
7364  */
7365 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7366 					struct list_head **iter)
7367 {
7368 	struct netdev_adjacent *lower;
7369 
7370 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7371 
7372 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7373 
7374 	if (&lower->list == &dev->adj_list.lower)
7375 		return NULL;
7376 
7377 	*iter = &lower->list;
7378 
7379 	return lower->private;
7380 }
7381 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7382 
7383 /**
7384  * netdev_lower_get_next - Get the next device from the lower neighbour
7385  *                         list
7386  * @dev: device
7387  * @iter: list_head ** of the current position
7388  *
7389  * Gets the next netdev_adjacent from the dev's lower neighbour
7390  * list, starting from iter position. The caller must hold RTNL lock or
7391  * its own locking that guarantees that the neighbour lower
7392  * list will remain unchanged.
7393  */
7394 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7395 {
7396 	struct netdev_adjacent *lower;
7397 
7398 	lower = list_entry(*iter, struct netdev_adjacent, list);
7399 
7400 	if (&lower->list == &dev->adj_list.lower)
7401 		return NULL;
7402 
7403 	*iter = lower->list.next;
7404 
7405 	return lower->dev;
7406 }
7407 EXPORT_SYMBOL(netdev_lower_get_next);
7408 
7409 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7410 						struct list_head **iter)
7411 {
7412 	struct netdev_adjacent *lower;
7413 
7414 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7415 
7416 	if (&lower->list == &dev->adj_list.lower)
7417 		return NULL;
7418 
7419 	*iter = &lower->list;
7420 
7421 	return lower->dev;
7422 }
7423 
7424 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7425 						  struct list_head **iter,
7426 						  bool *ignore)
7427 {
7428 	struct netdev_adjacent *lower;
7429 
7430 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7431 
7432 	if (&lower->list == &dev->adj_list.lower)
7433 		return NULL;
7434 
7435 	*iter = &lower->list;
7436 	*ignore = lower->ignore;
7437 
7438 	return lower->dev;
7439 }
7440 
7441 int netdev_walk_all_lower_dev(struct net_device *dev,
7442 			      int (*fn)(struct net_device *dev,
7443 					struct netdev_nested_priv *priv),
7444 			      struct netdev_nested_priv *priv)
7445 {
7446 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7447 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7448 	int ret, cur = 0;
7449 
7450 	now = dev;
7451 	iter = &dev->adj_list.lower;
7452 
7453 	while (1) {
7454 		if (now != dev) {
7455 			ret = fn(now, priv);
7456 			if (ret)
7457 				return ret;
7458 		}
7459 
7460 		next = NULL;
7461 		while (1) {
7462 			ldev = netdev_next_lower_dev(now, &iter);
7463 			if (!ldev)
7464 				break;
7465 
7466 			next = ldev;
7467 			niter = &ldev->adj_list.lower;
7468 			dev_stack[cur] = now;
7469 			iter_stack[cur++] = iter;
7470 			break;
7471 		}
7472 
7473 		if (!next) {
7474 			if (!cur)
7475 				return 0;
7476 			next = dev_stack[--cur];
7477 			niter = iter_stack[cur];
7478 		}
7479 
7480 		now = next;
7481 		iter = niter;
7482 	}
7483 
7484 	return 0;
7485 }
7486 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7487 
7488 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7489 				       int (*fn)(struct net_device *dev,
7490 					 struct netdev_nested_priv *priv),
7491 				       struct netdev_nested_priv *priv)
7492 {
7493 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7494 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7495 	int ret, cur = 0;
7496 	bool ignore;
7497 
7498 	now = dev;
7499 	iter = &dev->adj_list.lower;
7500 
7501 	while (1) {
7502 		if (now != dev) {
7503 			ret = fn(now, priv);
7504 			if (ret)
7505 				return ret;
7506 		}
7507 
7508 		next = NULL;
7509 		while (1) {
7510 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7511 			if (!ldev)
7512 				break;
7513 			if (ignore)
7514 				continue;
7515 
7516 			next = ldev;
7517 			niter = &ldev->adj_list.lower;
7518 			dev_stack[cur] = now;
7519 			iter_stack[cur++] = iter;
7520 			break;
7521 		}
7522 
7523 		if (!next) {
7524 			if (!cur)
7525 				return 0;
7526 			next = dev_stack[--cur];
7527 			niter = iter_stack[cur];
7528 		}
7529 
7530 		now = next;
7531 		iter = niter;
7532 	}
7533 
7534 	return 0;
7535 }
7536 
7537 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7538 					     struct list_head **iter)
7539 {
7540 	struct netdev_adjacent *lower;
7541 
7542 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7543 	if (&lower->list == &dev->adj_list.lower)
7544 		return NULL;
7545 
7546 	*iter = &lower->list;
7547 
7548 	return lower->dev;
7549 }
7550 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7551 
7552 static u8 __netdev_upper_depth(struct net_device *dev)
7553 {
7554 	struct net_device *udev;
7555 	struct list_head *iter;
7556 	u8 max_depth = 0;
7557 	bool ignore;
7558 
7559 	for (iter = &dev->adj_list.upper,
7560 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7561 	     udev;
7562 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7563 		if (ignore)
7564 			continue;
7565 		if (max_depth < udev->upper_level)
7566 			max_depth = udev->upper_level;
7567 	}
7568 
7569 	return max_depth;
7570 }
7571 
7572 static u8 __netdev_lower_depth(struct net_device *dev)
7573 {
7574 	struct net_device *ldev;
7575 	struct list_head *iter;
7576 	u8 max_depth = 0;
7577 	bool ignore;
7578 
7579 	for (iter = &dev->adj_list.lower,
7580 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7581 	     ldev;
7582 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7583 		if (ignore)
7584 			continue;
7585 		if (max_depth < ldev->lower_level)
7586 			max_depth = ldev->lower_level;
7587 	}
7588 
7589 	return max_depth;
7590 }
7591 
7592 static int __netdev_update_upper_level(struct net_device *dev,
7593 				       struct netdev_nested_priv *__unused)
7594 {
7595 	dev->upper_level = __netdev_upper_depth(dev) + 1;
7596 	return 0;
7597 }
7598 
7599 #ifdef CONFIG_LOCKDEP
7600 static LIST_HEAD(net_unlink_list);
7601 
7602 static void net_unlink_todo(struct net_device *dev)
7603 {
7604 	if (list_empty(&dev->unlink_list))
7605 		list_add_tail(&dev->unlink_list, &net_unlink_list);
7606 }
7607 #endif
7608 
7609 static int __netdev_update_lower_level(struct net_device *dev,
7610 				       struct netdev_nested_priv *priv)
7611 {
7612 	dev->lower_level = __netdev_lower_depth(dev) + 1;
7613 
7614 #ifdef CONFIG_LOCKDEP
7615 	if (!priv)
7616 		return 0;
7617 
7618 	if (priv->flags & NESTED_SYNC_IMM)
7619 		dev->nested_level = dev->lower_level - 1;
7620 	if (priv->flags & NESTED_SYNC_TODO)
7621 		net_unlink_todo(dev);
7622 #endif
7623 	return 0;
7624 }
7625 
7626 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7627 				  int (*fn)(struct net_device *dev,
7628 					    struct netdev_nested_priv *priv),
7629 				  struct netdev_nested_priv *priv)
7630 {
7631 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7632 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7633 	int ret, cur = 0;
7634 
7635 	now = dev;
7636 	iter = &dev->adj_list.lower;
7637 
7638 	while (1) {
7639 		if (now != dev) {
7640 			ret = fn(now, priv);
7641 			if (ret)
7642 				return ret;
7643 		}
7644 
7645 		next = NULL;
7646 		while (1) {
7647 			ldev = netdev_next_lower_dev_rcu(now, &iter);
7648 			if (!ldev)
7649 				break;
7650 
7651 			next = ldev;
7652 			niter = &ldev->adj_list.lower;
7653 			dev_stack[cur] = now;
7654 			iter_stack[cur++] = iter;
7655 			break;
7656 		}
7657 
7658 		if (!next) {
7659 			if (!cur)
7660 				return 0;
7661 			next = dev_stack[--cur];
7662 			niter = iter_stack[cur];
7663 		}
7664 
7665 		now = next;
7666 		iter = niter;
7667 	}
7668 
7669 	return 0;
7670 }
7671 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7672 
7673 /**
7674  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7675  *				       lower neighbour list, RCU
7676  *				       variant
7677  * @dev: device
7678  *
7679  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7680  * list. The caller must hold RCU read lock.
7681  */
7682 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7683 {
7684 	struct netdev_adjacent *lower;
7685 
7686 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
7687 			struct netdev_adjacent, list);
7688 	if (lower)
7689 		return lower->private;
7690 	return NULL;
7691 }
7692 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7693 
7694 /**
7695  * netdev_master_upper_dev_get_rcu - Get master upper device
7696  * @dev: device
7697  *
7698  * Find a master upper device and return pointer to it or NULL in case
7699  * it's not there. The caller must hold the RCU read lock.
7700  */
7701 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7702 {
7703 	struct netdev_adjacent *upper;
7704 
7705 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
7706 				       struct netdev_adjacent, list);
7707 	if (upper && likely(upper->master))
7708 		return upper->dev;
7709 	return NULL;
7710 }
7711 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7712 
7713 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7714 			      struct net_device *adj_dev,
7715 			      struct list_head *dev_list)
7716 {
7717 	char linkname[IFNAMSIZ+7];
7718 
7719 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7720 		"upper_%s" : "lower_%s", adj_dev->name);
7721 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7722 				 linkname);
7723 }
7724 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7725 			       char *name,
7726 			       struct list_head *dev_list)
7727 {
7728 	char linkname[IFNAMSIZ+7];
7729 
7730 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7731 		"upper_%s" : "lower_%s", name);
7732 	sysfs_remove_link(&(dev->dev.kobj), linkname);
7733 }
7734 
7735 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7736 						 struct net_device *adj_dev,
7737 						 struct list_head *dev_list)
7738 {
7739 	return (dev_list == &dev->adj_list.upper ||
7740 		dev_list == &dev->adj_list.lower) &&
7741 		net_eq(dev_net(dev), dev_net(adj_dev));
7742 }
7743 
7744 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7745 					struct net_device *adj_dev,
7746 					struct list_head *dev_list,
7747 					void *private, bool master)
7748 {
7749 	struct netdev_adjacent *adj;
7750 	int ret;
7751 
7752 	adj = __netdev_find_adj(adj_dev, dev_list);
7753 
7754 	if (adj) {
7755 		adj->ref_nr += 1;
7756 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7757 			 dev->name, adj_dev->name, adj->ref_nr);
7758 
7759 		return 0;
7760 	}
7761 
7762 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7763 	if (!adj)
7764 		return -ENOMEM;
7765 
7766 	adj->dev = adj_dev;
7767 	adj->master = master;
7768 	adj->ref_nr = 1;
7769 	adj->private = private;
7770 	adj->ignore = false;
7771 	netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
7772 
7773 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7774 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7775 
7776 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7777 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7778 		if (ret)
7779 			goto free_adj;
7780 	}
7781 
7782 	/* Ensure that master link is always the first item in list. */
7783 	if (master) {
7784 		ret = sysfs_create_link(&(dev->dev.kobj),
7785 					&(adj_dev->dev.kobj), "master");
7786 		if (ret)
7787 			goto remove_symlinks;
7788 
7789 		list_add_rcu(&adj->list, dev_list);
7790 	} else {
7791 		list_add_tail_rcu(&adj->list, dev_list);
7792 	}
7793 
7794 	return 0;
7795 
7796 remove_symlinks:
7797 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7798 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7799 free_adj:
7800 	netdev_put(adj_dev, &adj->dev_tracker);
7801 	kfree(adj);
7802 
7803 	return ret;
7804 }
7805 
7806 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7807 					 struct net_device *adj_dev,
7808 					 u16 ref_nr,
7809 					 struct list_head *dev_list)
7810 {
7811 	struct netdev_adjacent *adj;
7812 
7813 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7814 		 dev->name, adj_dev->name, ref_nr);
7815 
7816 	adj = __netdev_find_adj(adj_dev, dev_list);
7817 
7818 	if (!adj) {
7819 		pr_err("Adjacency does not exist for device %s from %s\n",
7820 		       dev->name, adj_dev->name);
7821 		WARN_ON(1);
7822 		return;
7823 	}
7824 
7825 	if (adj->ref_nr > ref_nr) {
7826 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7827 			 dev->name, adj_dev->name, ref_nr,
7828 			 adj->ref_nr - ref_nr);
7829 		adj->ref_nr -= ref_nr;
7830 		return;
7831 	}
7832 
7833 	if (adj->master)
7834 		sysfs_remove_link(&(dev->dev.kobj), "master");
7835 
7836 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7837 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7838 
7839 	list_del_rcu(&adj->list);
7840 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7841 		 adj_dev->name, dev->name, adj_dev->name);
7842 	netdev_put(adj_dev, &adj->dev_tracker);
7843 	kfree_rcu(adj, rcu);
7844 }
7845 
7846 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7847 					    struct net_device *upper_dev,
7848 					    struct list_head *up_list,
7849 					    struct list_head *down_list,
7850 					    void *private, bool master)
7851 {
7852 	int ret;
7853 
7854 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7855 					   private, master);
7856 	if (ret)
7857 		return ret;
7858 
7859 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7860 					   private, false);
7861 	if (ret) {
7862 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7863 		return ret;
7864 	}
7865 
7866 	return 0;
7867 }
7868 
7869 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7870 					       struct net_device *upper_dev,
7871 					       u16 ref_nr,
7872 					       struct list_head *up_list,
7873 					       struct list_head *down_list)
7874 {
7875 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7876 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7877 }
7878 
7879 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7880 						struct net_device *upper_dev,
7881 						void *private, bool master)
7882 {
7883 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7884 						&dev->adj_list.upper,
7885 						&upper_dev->adj_list.lower,
7886 						private, master);
7887 }
7888 
7889 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7890 						   struct net_device *upper_dev)
7891 {
7892 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7893 					   &dev->adj_list.upper,
7894 					   &upper_dev->adj_list.lower);
7895 }
7896 
7897 static int __netdev_upper_dev_link(struct net_device *dev,
7898 				   struct net_device *upper_dev, bool master,
7899 				   void *upper_priv, void *upper_info,
7900 				   struct netdev_nested_priv *priv,
7901 				   struct netlink_ext_ack *extack)
7902 {
7903 	struct netdev_notifier_changeupper_info changeupper_info = {
7904 		.info = {
7905 			.dev = dev,
7906 			.extack = extack,
7907 		},
7908 		.upper_dev = upper_dev,
7909 		.master = master,
7910 		.linking = true,
7911 		.upper_info = upper_info,
7912 	};
7913 	struct net_device *master_dev;
7914 	int ret = 0;
7915 
7916 	ASSERT_RTNL();
7917 
7918 	if (dev == upper_dev)
7919 		return -EBUSY;
7920 
7921 	/* To prevent loops, check if dev is not upper device to upper_dev. */
7922 	if (__netdev_has_upper_dev(upper_dev, dev))
7923 		return -EBUSY;
7924 
7925 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7926 		return -EMLINK;
7927 
7928 	if (!master) {
7929 		if (__netdev_has_upper_dev(dev, upper_dev))
7930 			return -EEXIST;
7931 	} else {
7932 		master_dev = __netdev_master_upper_dev_get(dev);
7933 		if (master_dev)
7934 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
7935 	}
7936 
7937 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7938 					    &changeupper_info.info);
7939 	ret = notifier_to_errno(ret);
7940 	if (ret)
7941 		return ret;
7942 
7943 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7944 						   master);
7945 	if (ret)
7946 		return ret;
7947 
7948 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7949 					    &changeupper_info.info);
7950 	ret = notifier_to_errno(ret);
7951 	if (ret)
7952 		goto rollback;
7953 
7954 	__netdev_update_upper_level(dev, NULL);
7955 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7956 
7957 	__netdev_update_lower_level(upper_dev, priv);
7958 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7959 				    priv);
7960 
7961 	return 0;
7962 
7963 rollback:
7964 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7965 
7966 	return ret;
7967 }
7968 
7969 /**
7970  * netdev_upper_dev_link - Add a link to the upper device
7971  * @dev: device
7972  * @upper_dev: new upper device
7973  * @extack: netlink extended ack
7974  *
7975  * Adds a link to device which is upper to this one. The caller must hold
7976  * the RTNL lock. On a failure a negative errno code is returned.
7977  * On success the reference counts are adjusted and the function
7978  * returns zero.
7979  */
7980 int netdev_upper_dev_link(struct net_device *dev,
7981 			  struct net_device *upper_dev,
7982 			  struct netlink_ext_ack *extack)
7983 {
7984 	struct netdev_nested_priv priv = {
7985 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7986 		.data = NULL,
7987 	};
7988 
7989 	return __netdev_upper_dev_link(dev, upper_dev, false,
7990 				       NULL, NULL, &priv, extack);
7991 }
7992 EXPORT_SYMBOL(netdev_upper_dev_link);
7993 
7994 /**
7995  * netdev_master_upper_dev_link - Add a master link to the upper device
7996  * @dev: device
7997  * @upper_dev: new upper device
7998  * @upper_priv: upper device private
7999  * @upper_info: upper info to be passed down via notifier
8000  * @extack: netlink extended ack
8001  *
8002  * Adds a link to device which is upper to this one. In this case, only
8003  * one master upper device can be linked, although other non-master devices
8004  * might be linked as well. The caller must hold the RTNL lock.
8005  * On a failure a negative errno code is returned. On success the reference
8006  * counts are adjusted and the function returns zero.
8007  */
8008 int netdev_master_upper_dev_link(struct net_device *dev,
8009 				 struct net_device *upper_dev,
8010 				 void *upper_priv, void *upper_info,
8011 				 struct netlink_ext_ack *extack)
8012 {
8013 	struct netdev_nested_priv priv = {
8014 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8015 		.data = NULL,
8016 	};
8017 
8018 	return __netdev_upper_dev_link(dev, upper_dev, true,
8019 				       upper_priv, upper_info, &priv, extack);
8020 }
8021 EXPORT_SYMBOL(netdev_master_upper_dev_link);
8022 
8023 static void __netdev_upper_dev_unlink(struct net_device *dev,
8024 				      struct net_device *upper_dev,
8025 				      struct netdev_nested_priv *priv)
8026 {
8027 	struct netdev_notifier_changeupper_info changeupper_info = {
8028 		.info = {
8029 			.dev = dev,
8030 		},
8031 		.upper_dev = upper_dev,
8032 		.linking = false,
8033 	};
8034 
8035 	ASSERT_RTNL();
8036 
8037 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8038 
8039 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8040 				      &changeupper_info.info);
8041 
8042 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8043 
8044 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8045 				      &changeupper_info.info);
8046 
8047 	__netdev_update_upper_level(dev, NULL);
8048 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8049 
8050 	__netdev_update_lower_level(upper_dev, priv);
8051 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8052 				    priv);
8053 }
8054 
8055 /**
8056  * netdev_upper_dev_unlink - Removes a link to upper device
8057  * @dev: device
8058  * @upper_dev: new upper device
8059  *
8060  * Removes a link to device which is upper to this one. The caller must hold
8061  * the RTNL lock.
8062  */
8063 void netdev_upper_dev_unlink(struct net_device *dev,
8064 			     struct net_device *upper_dev)
8065 {
8066 	struct netdev_nested_priv priv = {
8067 		.flags = NESTED_SYNC_TODO,
8068 		.data = NULL,
8069 	};
8070 
8071 	__netdev_upper_dev_unlink(dev, upper_dev, &priv);
8072 }
8073 EXPORT_SYMBOL(netdev_upper_dev_unlink);
8074 
8075 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8076 				      struct net_device *lower_dev,
8077 				      bool val)
8078 {
8079 	struct netdev_adjacent *adj;
8080 
8081 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8082 	if (adj)
8083 		adj->ignore = val;
8084 
8085 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8086 	if (adj)
8087 		adj->ignore = val;
8088 }
8089 
8090 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8091 					struct net_device *lower_dev)
8092 {
8093 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8094 }
8095 
8096 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8097 				       struct net_device *lower_dev)
8098 {
8099 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8100 }
8101 
8102 int netdev_adjacent_change_prepare(struct net_device *old_dev,
8103 				   struct net_device *new_dev,
8104 				   struct net_device *dev,
8105 				   struct netlink_ext_ack *extack)
8106 {
8107 	struct netdev_nested_priv priv = {
8108 		.flags = 0,
8109 		.data = NULL,
8110 	};
8111 	int err;
8112 
8113 	if (!new_dev)
8114 		return 0;
8115 
8116 	if (old_dev && new_dev != old_dev)
8117 		netdev_adjacent_dev_disable(dev, old_dev);
8118 	err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8119 				      extack);
8120 	if (err) {
8121 		if (old_dev && new_dev != old_dev)
8122 			netdev_adjacent_dev_enable(dev, old_dev);
8123 		return err;
8124 	}
8125 
8126 	return 0;
8127 }
8128 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8129 
8130 void netdev_adjacent_change_commit(struct net_device *old_dev,
8131 				   struct net_device *new_dev,
8132 				   struct net_device *dev)
8133 {
8134 	struct netdev_nested_priv priv = {
8135 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8136 		.data = NULL,
8137 	};
8138 
8139 	if (!new_dev || !old_dev)
8140 		return;
8141 
8142 	if (new_dev == old_dev)
8143 		return;
8144 
8145 	netdev_adjacent_dev_enable(dev, old_dev);
8146 	__netdev_upper_dev_unlink(old_dev, dev, &priv);
8147 }
8148 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8149 
8150 void netdev_adjacent_change_abort(struct net_device *old_dev,
8151 				  struct net_device *new_dev,
8152 				  struct net_device *dev)
8153 {
8154 	struct netdev_nested_priv priv = {
8155 		.flags = 0,
8156 		.data = NULL,
8157 	};
8158 
8159 	if (!new_dev)
8160 		return;
8161 
8162 	if (old_dev && new_dev != old_dev)
8163 		netdev_adjacent_dev_enable(dev, old_dev);
8164 
8165 	__netdev_upper_dev_unlink(new_dev, dev, &priv);
8166 }
8167 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8168 
8169 /**
8170  * netdev_bonding_info_change - Dispatch event about slave change
8171  * @dev: device
8172  * @bonding_info: info to dispatch
8173  *
8174  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8175  * The caller must hold the RTNL lock.
8176  */
8177 void netdev_bonding_info_change(struct net_device *dev,
8178 				struct netdev_bonding_info *bonding_info)
8179 {
8180 	struct netdev_notifier_bonding_info info = {
8181 		.info.dev = dev,
8182 	};
8183 
8184 	memcpy(&info.bonding_info, bonding_info,
8185 	       sizeof(struct netdev_bonding_info));
8186 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8187 				      &info.info);
8188 }
8189 EXPORT_SYMBOL(netdev_bonding_info_change);
8190 
8191 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
8192 					   struct netlink_ext_ack *extack)
8193 {
8194 	struct netdev_notifier_offload_xstats_info info = {
8195 		.info.dev = dev,
8196 		.info.extack = extack,
8197 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8198 	};
8199 	int err;
8200 	int rc;
8201 
8202 	dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
8203 					 GFP_KERNEL);
8204 	if (!dev->offload_xstats_l3)
8205 		return -ENOMEM;
8206 
8207 	rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
8208 						  NETDEV_OFFLOAD_XSTATS_DISABLE,
8209 						  &info.info);
8210 	err = notifier_to_errno(rc);
8211 	if (err)
8212 		goto free_stats;
8213 
8214 	return 0;
8215 
8216 free_stats:
8217 	kfree(dev->offload_xstats_l3);
8218 	dev->offload_xstats_l3 = NULL;
8219 	return err;
8220 }
8221 
8222 int netdev_offload_xstats_enable(struct net_device *dev,
8223 				 enum netdev_offload_xstats_type type,
8224 				 struct netlink_ext_ack *extack)
8225 {
8226 	ASSERT_RTNL();
8227 
8228 	if (netdev_offload_xstats_enabled(dev, type))
8229 		return -EALREADY;
8230 
8231 	switch (type) {
8232 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8233 		return netdev_offload_xstats_enable_l3(dev, extack);
8234 	}
8235 
8236 	WARN_ON(1);
8237 	return -EINVAL;
8238 }
8239 EXPORT_SYMBOL(netdev_offload_xstats_enable);
8240 
8241 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
8242 {
8243 	struct netdev_notifier_offload_xstats_info info = {
8244 		.info.dev = dev,
8245 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8246 	};
8247 
8248 	call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
8249 				      &info.info);
8250 	kfree(dev->offload_xstats_l3);
8251 	dev->offload_xstats_l3 = NULL;
8252 }
8253 
8254 int netdev_offload_xstats_disable(struct net_device *dev,
8255 				  enum netdev_offload_xstats_type type)
8256 {
8257 	ASSERT_RTNL();
8258 
8259 	if (!netdev_offload_xstats_enabled(dev, type))
8260 		return -EALREADY;
8261 
8262 	switch (type) {
8263 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8264 		netdev_offload_xstats_disable_l3(dev);
8265 		return 0;
8266 	}
8267 
8268 	WARN_ON(1);
8269 	return -EINVAL;
8270 }
8271 EXPORT_SYMBOL(netdev_offload_xstats_disable);
8272 
8273 static void netdev_offload_xstats_disable_all(struct net_device *dev)
8274 {
8275 	netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
8276 }
8277 
8278 static struct rtnl_hw_stats64 *
8279 netdev_offload_xstats_get_ptr(const struct net_device *dev,
8280 			      enum netdev_offload_xstats_type type)
8281 {
8282 	switch (type) {
8283 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8284 		return dev->offload_xstats_l3;
8285 	}
8286 
8287 	WARN_ON(1);
8288 	return NULL;
8289 }
8290 
8291 bool netdev_offload_xstats_enabled(const struct net_device *dev,
8292 				   enum netdev_offload_xstats_type type)
8293 {
8294 	ASSERT_RTNL();
8295 
8296 	return netdev_offload_xstats_get_ptr(dev, type);
8297 }
8298 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
8299 
8300 struct netdev_notifier_offload_xstats_ru {
8301 	bool used;
8302 };
8303 
8304 struct netdev_notifier_offload_xstats_rd {
8305 	struct rtnl_hw_stats64 stats;
8306 	bool used;
8307 };
8308 
8309 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8310 				  const struct rtnl_hw_stats64 *src)
8311 {
8312 	dest->rx_packets	  += src->rx_packets;
8313 	dest->tx_packets	  += src->tx_packets;
8314 	dest->rx_bytes		  += src->rx_bytes;
8315 	dest->tx_bytes		  += src->tx_bytes;
8316 	dest->rx_errors		  += src->rx_errors;
8317 	dest->tx_errors		  += src->tx_errors;
8318 	dest->rx_dropped	  += src->rx_dropped;
8319 	dest->tx_dropped	  += src->tx_dropped;
8320 	dest->multicast		  += src->multicast;
8321 }
8322 
8323 static int netdev_offload_xstats_get_used(struct net_device *dev,
8324 					  enum netdev_offload_xstats_type type,
8325 					  bool *p_used,
8326 					  struct netlink_ext_ack *extack)
8327 {
8328 	struct netdev_notifier_offload_xstats_ru report_used = {};
8329 	struct netdev_notifier_offload_xstats_info info = {
8330 		.info.dev = dev,
8331 		.info.extack = extack,
8332 		.type = type,
8333 		.report_used = &report_used,
8334 	};
8335 	int rc;
8336 
8337 	WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8338 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8339 					   &info.info);
8340 	*p_used = report_used.used;
8341 	return notifier_to_errno(rc);
8342 }
8343 
8344 static int netdev_offload_xstats_get_stats(struct net_device *dev,
8345 					   enum netdev_offload_xstats_type type,
8346 					   struct rtnl_hw_stats64 *p_stats,
8347 					   bool *p_used,
8348 					   struct netlink_ext_ack *extack)
8349 {
8350 	struct netdev_notifier_offload_xstats_rd report_delta = {};
8351 	struct netdev_notifier_offload_xstats_info info = {
8352 		.info.dev = dev,
8353 		.info.extack = extack,
8354 		.type = type,
8355 		.report_delta = &report_delta,
8356 	};
8357 	struct rtnl_hw_stats64 *stats;
8358 	int rc;
8359 
8360 	stats = netdev_offload_xstats_get_ptr(dev, type);
8361 	if (WARN_ON(!stats))
8362 		return -EINVAL;
8363 
8364 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8365 					   &info.info);
8366 
8367 	/* Cache whatever we got, even if there was an error, otherwise the
8368 	 * successful stats retrievals would get lost.
8369 	 */
8370 	netdev_hw_stats64_add(stats, &report_delta.stats);
8371 
8372 	if (p_stats)
8373 		*p_stats = *stats;
8374 	*p_used = report_delta.used;
8375 
8376 	return notifier_to_errno(rc);
8377 }
8378 
8379 int netdev_offload_xstats_get(struct net_device *dev,
8380 			      enum netdev_offload_xstats_type type,
8381 			      struct rtnl_hw_stats64 *p_stats, bool *p_used,
8382 			      struct netlink_ext_ack *extack)
8383 {
8384 	ASSERT_RTNL();
8385 
8386 	if (p_stats)
8387 		return netdev_offload_xstats_get_stats(dev, type, p_stats,
8388 						       p_used, extack);
8389 	else
8390 		return netdev_offload_xstats_get_used(dev, type, p_used,
8391 						      extack);
8392 }
8393 EXPORT_SYMBOL(netdev_offload_xstats_get);
8394 
8395 void
8396 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8397 				   const struct rtnl_hw_stats64 *stats)
8398 {
8399 	report_delta->used = true;
8400 	netdev_hw_stats64_add(&report_delta->stats, stats);
8401 }
8402 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8403 
8404 void
8405 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8406 {
8407 	report_used->used = true;
8408 }
8409 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8410 
8411 void netdev_offload_xstats_push_delta(struct net_device *dev,
8412 				      enum netdev_offload_xstats_type type,
8413 				      const struct rtnl_hw_stats64 *p_stats)
8414 {
8415 	struct rtnl_hw_stats64 *stats;
8416 
8417 	ASSERT_RTNL();
8418 
8419 	stats = netdev_offload_xstats_get_ptr(dev, type);
8420 	if (WARN_ON(!stats))
8421 		return;
8422 
8423 	netdev_hw_stats64_add(stats, p_stats);
8424 }
8425 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8426 
8427 /**
8428  * netdev_get_xmit_slave - Get the xmit slave of master device
8429  * @dev: device
8430  * @skb: The packet
8431  * @all_slaves: assume all the slaves are active
8432  *
8433  * The reference counters are not incremented so the caller must be
8434  * careful with locks. The caller must hold RCU lock.
8435  * %NULL is returned if no slave is found.
8436  */
8437 
8438 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8439 					 struct sk_buff *skb,
8440 					 bool all_slaves)
8441 {
8442 	const struct net_device_ops *ops = dev->netdev_ops;
8443 
8444 	if (!ops->ndo_get_xmit_slave)
8445 		return NULL;
8446 	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8447 }
8448 EXPORT_SYMBOL(netdev_get_xmit_slave);
8449 
8450 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8451 						  struct sock *sk)
8452 {
8453 	const struct net_device_ops *ops = dev->netdev_ops;
8454 
8455 	if (!ops->ndo_sk_get_lower_dev)
8456 		return NULL;
8457 	return ops->ndo_sk_get_lower_dev(dev, sk);
8458 }
8459 
8460 /**
8461  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8462  * @dev: device
8463  * @sk: the socket
8464  *
8465  * %NULL is returned if no lower device is found.
8466  */
8467 
8468 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8469 					    struct sock *sk)
8470 {
8471 	struct net_device *lower;
8472 
8473 	lower = netdev_sk_get_lower_dev(dev, sk);
8474 	while (lower) {
8475 		dev = lower;
8476 		lower = netdev_sk_get_lower_dev(dev, sk);
8477 	}
8478 
8479 	return dev;
8480 }
8481 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8482 
8483 static void netdev_adjacent_add_links(struct net_device *dev)
8484 {
8485 	struct netdev_adjacent *iter;
8486 
8487 	struct net *net = dev_net(dev);
8488 
8489 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8490 		if (!net_eq(net, dev_net(iter->dev)))
8491 			continue;
8492 		netdev_adjacent_sysfs_add(iter->dev, dev,
8493 					  &iter->dev->adj_list.lower);
8494 		netdev_adjacent_sysfs_add(dev, iter->dev,
8495 					  &dev->adj_list.upper);
8496 	}
8497 
8498 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8499 		if (!net_eq(net, dev_net(iter->dev)))
8500 			continue;
8501 		netdev_adjacent_sysfs_add(iter->dev, dev,
8502 					  &iter->dev->adj_list.upper);
8503 		netdev_adjacent_sysfs_add(dev, iter->dev,
8504 					  &dev->adj_list.lower);
8505 	}
8506 }
8507 
8508 static void netdev_adjacent_del_links(struct net_device *dev)
8509 {
8510 	struct netdev_adjacent *iter;
8511 
8512 	struct net *net = dev_net(dev);
8513 
8514 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8515 		if (!net_eq(net, dev_net(iter->dev)))
8516 			continue;
8517 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8518 					  &iter->dev->adj_list.lower);
8519 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8520 					  &dev->adj_list.upper);
8521 	}
8522 
8523 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8524 		if (!net_eq(net, dev_net(iter->dev)))
8525 			continue;
8526 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8527 					  &iter->dev->adj_list.upper);
8528 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8529 					  &dev->adj_list.lower);
8530 	}
8531 }
8532 
8533 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8534 {
8535 	struct netdev_adjacent *iter;
8536 
8537 	struct net *net = dev_net(dev);
8538 
8539 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8540 		if (!net_eq(net, dev_net(iter->dev)))
8541 			continue;
8542 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8543 					  &iter->dev->adj_list.lower);
8544 		netdev_adjacent_sysfs_add(iter->dev, dev,
8545 					  &iter->dev->adj_list.lower);
8546 	}
8547 
8548 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8549 		if (!net_eq(net, dev_net(iter->dev)))
8550 			continue;
8551 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8552 					  &iter->dev->adj_list.upper);
8553 		netdev_adjacent_sysfs_add(iter->dev, dev,
8554 					  &iter->dev->adj_list.upper);
8555 	}
8556 }
8557 
8558 void *netdev_lower_dev_get_private(struct net_device *dev,
8559 				   struct net_device *lower_dev)
8560 {
8561 	struct netdev_adjacent *lower;
8562 
8563 	if (!lower_dev)
8564 		return NULL;
8565 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8566 	if (!lower)
8567 		return NULL;
8568 
8569 	return lower->private;
8570 }
8571 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8572 
8573 
8574 /**
8575  * netdev_lower_state_changed - Dispatch event about lower device state change
8576  * @lower_dev: device
8577  * @lower_state_info: state to dispatch
8578  *
8579  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8580  * The caller must hold the RTNL lock.
8581  */
8582 void netdev_lower_state_changed(struct net_device *lower_dev,
8583 				void *lower_state_info)
8584 {
8585 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8586 		.info.dev = lower_dev,
8587 	};
8588 
8589 	ASSERT_RTNL();
8590 	changelowerstate_info.lower_state_info = lower_state_info;
8591 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8592 				      &changelowerstate_info.info);
8593 }
8594 EXPORT_SYMBOL(netdev_lower_state_changed);
8595 
8596 static void dev_change_rx_flags(struct net_device *dev, int flags)
8597 {
8598 	const struct net_device_ops *ops = dev->netdev_ops;
8599 
8600 	if (ops->ndo_change_rx_flags)
8601 		ops->ndo_change_rx_flags(dev, flags);
8602 }
8603 
8604 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8605 {
8606 	unsigned int old_flags = dev->flags;
8607 	unsigned int promiscuity, flags;
8608 	kuid_t uid;
8609 	kgid_t gid;
8610 
8611 	ASSERT_RTNL();
8612 
8613 	promiscuity = dev->promiscuity + inc;
8614 	if (promiscuity == 0) {
8615 		/*
8616 		 * Avoid overflow.
8617 		 * If inc causes overflow, untouch promisc and return error.
8618 		 */
8619 		if (unlikely(inc > 0)) {
8620 			netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8621 			return -EOVERFLOW;
8622 		}
8623 		flags = old_flags & ~IFF_PROMISC;
8624 	} else {
8625 		flags = old_flags | IFF_PROMISC;
8626 	}
8627 	WRITE_ONCE(dev->promiscuity, promiscuity);
8628 	if (flags != old_flags) {
8629 		WRITE_ONCE(dev->flags, flags);
8630 		netdev_info(dev, "%s promiscuous mode\n",
8631 			    dev->flags & IFF_PROMISC ? "entered" : "left");
8632 		if (audit_enabled) {
8633 			current_uid_gid(&uid, &gid);
8634 			audit_log(audit_context(), GFP_ATOMIC,
8635 				  AUDIT_ANOM_PROMISCUOUS,
8636 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8637 				  dev->name, (dev->flags & IFF_PROMISC),
8638 				  (old_flags & IFF_PROMISC),
8639 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
8640 				  from_kuid(&init_user_ns, uid),
8641 				  from_kgid(&init_user_ns, gid),
8642 				  audit_get_sessionid(current));
8643 		}
8644 
8645 		dev_change_rx_flags(dev, IFF_PROMISC);
8646 	}
8647 	if (notify)
8648 		__dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
8649 	return 0;
8650 }
8651 
8652 /**
8653  *	dev_set_promiscuity	- update promiscuity count on a device
8654  *	@dev: device
8655  *	@inc: modifier
8656  *
8657  *	Add or remove promiscuity from a device. While the count in the device
8658  *	remains above zero the interface remains promiscuous. Once it hits zero
8659  *	the device reverts back to normal filtering operation. A negative inc
8660  *	value is used to drop promiscuity on the device.
8661  *	Return 0 if successful or a negative errno code on error.
8662  */
8663 int dev_set_promiscuity(struct net_device *dev, int inc)
8664 {
8665 	unsigned int old_flags = dev->flags;
8666 	int err;
8667 
8668 	err = __dev_set_promiscuity(dev, inc, true);
8669 	if (err < 0)
8670 		return err;
8671 	if (dev->flags != old_flags)
8672 		dev_set_rx_mode(dev);
8673 	return err;
8674 }
8675 EXPORT_SYMBOL(dev_set_promiscuity);
8676 
8677 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8678 {
8679 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8680 	unsigned int allmulti, flags;
8681 
8682 	ASSERT_RTNL();
8683 
8684 	allmulti = dev->allmulti + inc;
8685 	if (allmulti == 0) {
8686 		/*
8687 		 * Avoid overflow.
8688 		 * If inc causes overflow, untouch allmulti and return error.
8689 		 */
8690 		if (unlikely(inc > 0)) {
8691 			netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8692 			return -EOVERFLOW;
8693 		}
8694 		flags = old_flags & ~IFF_ALLMULTI;
8695 	} else {
8696 		flags = old_flags | IFF_ALLMULTI;
8697 	}
8698 	WRITE_ONCE(dev->allmulti, allmulti);
8699 	if (flags != old_flags) {
8700 		WRITE_ONCE(dev->flags, flags);
8701 		netdev_info(dev, "%s allmulticast mode\n",
8702 			    dev->flags & IFF_ALLMULTI ? "entered" : "left");
8703 		dev_change_rx_flags(dev, IFF_ALLMULTI);
8704 		dev_set_rx_mode(dev);
8705 		if (notify)
8706 			__dev_notify_flags(dev, old_flags,
8707 					   dev->gflags ^ old_gflags, 0, NULL);
8708 	}
8709 	return 0;
8710 }
8711 
8712 /**
8713  *	dev_set_allmulti	- update allmulti count on a device
8714  *	@dev: device
8715  *	@inc: modifier
8716  *
8717  *	Add or remove reception of all multicast frames to a device. While the
8718  *	count in the device remains above zero the interface remains listening
8719  *	to all interfaces. Once it hits zero the device reverts back to normal
8720  *	filtering operation. A negative @inc value is used to drop the counter
8721  *	when releasing a resource needing all multicasts.
8722  *	Return 0 if successful or a negative errno code on error.
8723  */
8724 
8725 int dev_set_allmulti(struct net_device *dev, int inc)
8726 {
8727 	return __dev_set_allmulti(dev, inc, true);
8728 }
8729 EXPORT_SYMBOL(dev_set_allmulti);
8730 
8731 /*
8732  *	Upload unicast and multicast address lists to device and
8733  *	configure RX filtering. When the device doesn't support unicast
8734  *	filtering it is put in promiscuous mode while unicast addresses
8735  *	are present.
8736  */
8737 void __dev_set_rx_mode(struct net_device *dev)
8738 {
8739 	const struct net_device_ops *ops = dev->netdev_ops;
8740 
8741 	/* dev_open will call this function so the list will stay sane. */
8742 	if (!(dev->flags&IFF_UP))
8743 		return;
8744 
8745 	if (!netif_device_present(dev))
8746 		return;
8747 
8748 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8749 		/* Unicast addresses changes may only happen under the rtnl,
8750 		 * therefore calling __dev_set_promiscuity here is safe.
8751 		 */
8752 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8753 			__dev_set_promiscuity(dev, 1, false);
8754 			dev->uc_promisc = true;
8755 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8756 			__dev_set_promiscuity(dev, -1, false);
8757 			dev->uc_promisc = false;
8758 		}
8759 	}
8760 
8761 	if (ops->ndo_set_rx_mode)
8762 		ops->ndo_set_rx_mode(dev);
8763 }
8764 
8765 void dev_set_rx_mode(struct net_device *dev)
8766 {
8767 	netif_addr_lock_bh(dev);
8768 	__dev_set_rx_mode(dev);
8769 	netif_addr_unlock_bh(dev);
8770 }
8771 
8772 /**
8773  *	dev_get_flags - get flags reported to userspace
8774  *	@dev: device
8775  *
8776  *	Get the combination of flag bits exported through APIs to userspace.
8777  */
8778 unsigned int dev_get_flags(const struct net_device *dev)
8779 {
8780 	unsigned int flags;
8781 
8782 	flags = (READ_ONCE(dev->flags) & ~(IFF_PROMISC |
8783 				IFF_ALLMULTI |
8784 				IFF_RUNNING |
8785 				IFF_LOWER_UP |
8786 				IFF_DORMANT)) |
8787 		(READ_ONCE(dev->gflags) & (IFF_PROMISC |
8788 				IFF_ALLMULTI));
8789 
8790 	if (netif_running(dev)) {
8791 		if (netif_oper_up(dev))
8792 			flags |= IFF_RUNNING;
8793 		if (netif_carrier_ok(dev))
8794 			flags |= IFF_LOWER_UP;
8795 		if (netif_dormant(dev))
8796 			flags |= IFF_DORMANT;
8797 	}
8798 
8799 	return flags;
8800 }
8801 EXPORT_SYMBOL(dev_get_flags);
8802 
8803 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8804 		       struct netlink_ext_ack *extack)
8805 {
8806 	unsigned int old_flags = dev->flags;
8807 	int ret;
8808 
8809 	ASSERT_RTNL();
8810 
8811 	/*
8812 	 *	Set the flags on our device.
8813 	 */
8814 
8815 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8816 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8817 			       IFF_AUTOMEDIA)) |
8818 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8819 				    IFF_ALLMULTI));
8820 
8821 	/*
8822 	 *	Load in the correct multicast list now the flags have changed.
8823 	 */
8824 
8825 	if ((old_flags ^ flags) & IFF_MULTICAST)
8826 		dev_change_rx_flags(dev, IFF_MULTICAST);
8827 
8828 	dev_set_rx_mode(dev);
8829 
8830 	/*
8831 	 *	Have we downed the interface. We handle IFF_UP ourselves
8832 	 *	according to user attempts to set it, rather than blindly
8833 	 *	setting it.
8834 	 */
8835 
8836 	ret = 0;
8837 	if ((old_flags ^ flags) & IFF_UP) {
8838 		if (old_flags & IFF_UP)
8839 			__dev_close(dev);
8840 		else
8841 			ret = __dev_open(dev, extack);
8842 	}
8843 
8844 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
8845 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
8846 		unsigned int old_flags = dev->flags;
8847 
8848 		dev->gflags ^= IFF_PROMISC;
8849 
8850 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
8851 			if (dev->flags != old_flags)
8852 				dev_set_rx_mode(dev);
8853 	}
8854 
8855 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8856 	 * is important. Some (broken) drivers set IFF_PROMISC, when
8857 	 * IFF_ALLMULTI is requested not asking us and not reporting.
8858 	 */
8859 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8860 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8861 
8862 		dev->gflags ^= IFF_ALLMULTI;
8863 		__dev_set_allmulti(dev, inc, false);
8864 	}
8865 
8866 	return ret;
8867 }
8868 
8869 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8870 			unsigned int gchanges, u32 portid,
8871 			const struct nlmsghdr *nlh)
8872 {
8873 	unsigned int changes = dev->flags ^ old_flags;
8874 
8875 	if (gchanges)
8876 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
8877 
8878 	if (changes & IFF_UP) {
8879 		if (dev->flags & IFF_UP)
8880 			call_netdevice_notifiers(NETDEV_UP, dev);
8881 		else
8882 			call_netdevice_notifiers(NETDEV_DOWN, dev);
8883 	}
8884 
8885 	if (dev->flags & IFF_UP &&
8886 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8887 		struct netdev_notifier_change_info change_info = {
8888 			.info = {
8889 				.dev = dev,
8890 			},
8891 			.flags_changed = changes,
8892 		};
8893 
8894 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8895 	}
8896 }
8897 
8898 /**
8899  *	dev_change_flags - change device settings
8900  *	@dev: device
8901  *	@flags: device state flags
8902  *	@extack: netlink extended ack
8903  *
8904  *	Change settings on device based state flags. The flags are
8905  *	in the userspace exported format.
8906  */
8907 int dev_change_flags(struct net_device *dev, unsigned int flags,
8908 		     struct netlink_ext_ack *extack)
8909 {
8910 	int ret;
8911 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8912 
8913 	ret = __dev_change_flags(dev, flags, extack);
8914 	if (ret < 0)
8915 		return ret;
8916 
8917 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8918 	__dev_notify_flags(dev, old_flags, changes, 0, NULL);
8919 	return ret;
8920 }
8921 EXPORT_SYMBOL(dev_change_flags);
8922 
8923 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8924 {
8925 	const struct net_device_ops *ops = dev->netdev_ops;
8926 
8927 	if (ops->ndo_change_mtu)
8928 		return ops->ndo_change_mtu(dev, new_mtu);
8929 
8930 	/* Pairs with all the lockless reads of dev->mtu in the stack */
8931 	WRITE_ONCE(dev->mtu, new_mtu);
8932 	return 0;
8933 }
8934 EXPORT_SYMBOL(__dev_set_mtu);
8935 
8936 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8937 		     struct netlink_ext_ack *extack)
8938 {
8939 	/* MTU must be positive, and in range */
8940 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8941 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8942 		return -EINVAL;
8943 	}
8944 
8945 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8946 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8947 		return -EINVAL;
8948 	}
8949 	return 0;
8950 }
8951 
8952 /**
8953  *	dev_set_mtu_ext - Change maximum transfer unit
8954  *	@dev: device
8955  *	@new_mtu: new transfer unit
8956  *	@extack: netlink extended ack
8957  *
8958  *	Change the maximum transfer size of the network device.
8959  */
8960 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8961 		    struct netlink_ext_ack *extack)
8962 {
8963 	int err, orig_mtu;
8964 
8965 	if (new_mtu == dev->mtu)
8966 		return 0;
8967 
8968 	err = dev_validate_mtu(dev, new_mtu, extack);
8969 	if (err)
8970 		return err;
8971 
8972 	if (!netif_device_present(dev))
8973 		return -ENODEV;
8974 
8975 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8976 	err = notifier_to_errno(err);
8977 	if (err)
8978 		return err;
8979 
8980 	orig_mtu = dev->mtu;
8981 	err = __dev_set_mtu(dev, new_mtu);
8982 
8983 	if (!err) {
8984 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8985 						   orig_mtu);
8986 		err = notifier_to_errno(err);
8987 		if (err) {
8988 			/* setting mtu back and notifying everyone again,
8989 			 * so that they have a chance to revert changes.
8990 			 */
8991 			__dev_set_mtu(dev, orig_mtu);
8992 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8993 						     new_mtu);
8994 		}
8995 	}
8996 	return err;
8997 }
8998 
8999 int dev_set_mtu(struct net_device *dev, int new_mtu)
9000 {
9001 	struct netlink_ext_ack extack;
9002 	int err;
9003 
9004 	memset(&extack, 0, sizeof(extack));
9005 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
9006 	if (err && extack._msg)
9007 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
9008 	return err;
9009 }
9010 EXPORT_SYMBOL(dev_set_mtu);
9011 
9012 /**
9013  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
9014  *	@dev: device
9015  *	@new_len: new tx queue length
9016  */
9017 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
9018 {
9019 	unsigned int orig_len = dev->tx_queue_len;
9020 	int res;
9021 
9022 	if (new_len != (unsigned int)new_len)
9023 		return -ERANGE;
9024 
9025 	if (new_len != orig_len) {
9026 		WRITE_ONCE(dev->tx_queue_len, new_len);
9027 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
9028 		res = notifier_to_errno(res);
9029 		if (res)
9030 			goto err_rollback;
9031 		res = dev_qdisc_change_tx_queue_len(dev);
9032 		if (res)
9033 			goto err_rollback;
9034 	}
9035 
9036 	return 0;
9037 
9038 err_rollback:
9039 	netdev_err(dev, "refused to change device tx_queue_len\n");
9040 	WRITE_ONCE(dev->tx_queue_len, orig_len);
9041 	return res;
9042 }
9043 
9044 /**
9045  *	dev_set_group - Change group this device belongs to
9046  *	@dev: device
9047  *	@new_group: group this device should belong to
9048  */
9049 void dev_set_group(struct net_device *dev, int new_group)
9050 {
9051 	dev->group = new_group;
9052 }
9053 
9054 /**
9055  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
9056  *	@dev: device
9057  *	@addr: new address
9058  *	@extack: netlink extended ack
9059  */
9060 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
9061 			      struct netlink_ext_ack *extack)
9062 {
9063 	struct netdev_notifier_pre_changeaddr_info info = {
9064 		.info.dev = dev,
9065 		.info.extack = extack,
9066 		.dev_addr = addr,
9067 	};
9068 	int rc;
9069 
9070 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
9071 	return notifier_to_errno(rc);
9072 }
9073 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
9074 
9075 /**
9076  *	dev_set_mac_address - Change Media Access Control Address
9077  *	@dev: device
9078  *	@sa: new address
9079  *	@extack: netlink extended ack
9080  *
9081  *	Change the hardware (MAC) address of the device
9082  */
9083 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
9084 			struct netlink_ext_ack *extack)
9085 {
9086 	const struct net_device_ops *ops = dev->netdev_ops;
9087 	int err;
9088 
9089 	if (!ops->ndo_set_mac_address)
9090 		return -EOPNOTSUPP;
9091 	if (sa->sa_family != dev->type)
9092 		return -EINVAL;
9093 	if (!netif_device_present(dev))
9094 		return -ENODEV;
9095 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
9096 	if (err)
9097 		return err;
9098 	if (memcmp(dev->dev_addr, sa->sa_data, dev->addr_len)) {
9099 		err = ops->ndo_set_mac_address(dev, sa);
9100 		if (err)
9101 			return err;
9102 	}
9103 	dev->addr_assign_type = NET_ADDR_SET;
9104 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
9105 	add_device_randomness(dev->dev_addr, dev->addr_len);
9106 	return 0;
9107 }
9108 EXPORT_SYMBOL(dev_set_mac_address);
9109 
9110 DECLARE_RWSEM(dev_addr_sem);
9111 
9112 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
9113 			     struct netlink_ext_ack *extack)
9114 {
9115 	int ret;
9116 
9117 	down_write(&dev_addr_sem);
9118 	ret = dev_set_mac_address(dev, sa, extack);
9119 	up_write(&dev_addr_sem);
9120 	return ret;
9121 }
9122 EXPORT_SYMBOL(dev_set_mac_address_user);
9123 
9124 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
9125 {
9126 	size_t size = sizeof(sa->sa_data_min);
9127 	struct net_device *dev;
9128 	int ret = 0;
9129 
9130 	down_read(&dev_addr_sem);
9131 	rcu_read_lock();
9132 
9133 	dev = dev_get_by_name_rcu(net, dev_name);
9134 	if (!dev) {
9135 		ret = -ENODEV;
9136 		goto unlock;
9137 	}
9138 	if (!dev->addr_len)
9139 		memset(sa->sa_data, 0, size);
9140 	else
9141 		memcpy(sa->sa_data, dev->dev_addr,
9142 		       min_t(size_t, size, dev->addr_len));
9143 	sa->sa_family = dev->type;
9144 
9145 unlock:
9146 	rcu_read_unlock();
9147 	up_read(&dev_addr_sem);
9148 	return ret;
9149 }
9150 EXPORT_SYMBOL(dev_get_mac_address);
9151 
9152 /**
9153  *	dev_change_carrier - Change device carrier
9154  *	@dev: device
9155  *	@new_carrier: new value
9156  *
9157  *	Change device carrier
9158  */
9159 int dev_change_carrier(struct net_device *dev, bool new_carrier)
9160 {
9161 	const struct net_device_ops *ops = dev->netdev_ops;
9162 
9163 	if (!ops->ndo_change_carrier)
9164 		return -EOPNOTSUPP;
9165 	if (!netif_device_present(dev))
9166 		return -ENODEV;
9167 	return ops->ndo_change_carrier(dev, new_carrier);
9168 }
9169 
9170 /**
9171  *	dev_get_phys_port_id - Get device physical port ID
9172  *	@dev: device
9173  *	@ppid: port ID
9174  *
9175  *	Get device physical port ID
9176  */
9177 int dev_get_phys_port_id(struct net_device *dev,
9178 			 struct netdev_phys_item_id *ppid)
9179 {
9180 	const struct net_device_ops *ops = dev->netdev_ops;
9181 
9182 	if (!ops->ndo_get_phys_port_id)
9183 		return -EOPNOTSUPP;
9184 	return ops->ndo_get_phys_port_id(dev, ppid);
9185 }
9186 
9187 /**
9188  *	dev_get_phys_port_name - Get device physical port name
9189  *	@dev: device
9190  *	@name: port name
9191  *	@len: limit of bytes to copy to name
9192  *
9193  *	Get device physical port name
9194  */
9195 int dev_get_phys_port_name(struct net_device *dev,
9196 			   char *name, size_t len)
9197 {
9198 	const struct net_device_ops *ops = dev->netdev_ops;
9199 	int err;
9200 
9201 	if (ops->ndo_get_phys_port_name) {
9202 		err = ops->ndo_get_phys_port_name(dev, name, len);
9203 		if (err != -EOPNOTSUPP)
9204 			return err;
9205 	}
9206 	return devlink_compat_phys_port_name_get(dev, name, len);
9207 }
9208 
9209 /**
9210  *	dev_get_port_parent_id - Get the device's port parent identifier
9211  *	@dev: network device
9212  *	@ppid: pointer to a storage for the port's parent identifier
9213  *	@recurse: allow/disallow recursion to lower devices
9214  *
9215  *	Get the devices's port parent identifier
9216  */
9217 int dev_get_port_parent_id(struct net_device *dev,
9218 			   struct netdev_phys_item_id *ppid,
9219 			   bool recurse)
9220 {
9221 	const struct net_device_ops *ops = dev->netdev_ops;
9222 	struct netdev_phys_item_id first = { };
9223 	struct net_device *lower_dev;
9224 	struct list_head *iter;
9225 	int err;
9226 
9227 	if (ops->ndo_get_port_parent_id) {
9228 		err = ops->ndo_get_port_parent_id(dev, ppid);
9229 		if (err != -EOPNOTSUPP)
9230 			return err;
9231 	}
9232 
9233 	err = devlink_compat_switch_id_get(dev, ppid);
9234 	if (!recurse || err != -EOPNOTSUPP)
9235 		return err;
9236 
9237 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
9238 		err = dev_get_port_parent_id(lower_dev, ppid, true);
9239 		if (err)
9240 			break;
9241 		if (!first.id_len)
9242 			first = *ppid;
9243 		else if (memcmp(&first, ppid, sizeof(*ppid)))
9244 			return -EOPNOTSUPP;
9245 	}
9246 
9247 	return err;
9248 }
9249 EXPORT_SYMBOL(dev_get_port_parent_id);
9250 
9251 /**
9252  *	netdev_port_same_parent_id - Indicate if two network devices have
9253  *	the same port parent identifier
9254  *	@a: first network device
9255  *	@b: second network device
9256  */
9257 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9258 {
9259 	struct netdev_phys_item_id a_id = { };
9260 	struct netdev_phys_item_id b_id = { };
9261 
9262 	if (dev_get_port_parent_id(a, &a_id, true) ||
9263 	    dev_get_port_parent_id(b, &b_id, true))
9264 		return false;
9265 
9266 	return netdev_phys_item_id_same(&a_id, &b_id);
9267 }
9268 EXPORT_SYMBOL(netdev_port_same_parent_id);
9269 
9270 /**
9271  *	dev_change_proto_down - set carrier according to proto_down.
9272  *
9273  *	@dev: device
9274  *	@proto_down: new value
9275  */
9276 int dev_change_proto_down(struct net_device *dev, bool proto_down)
9277 {
9278 	if (!dev->change_proto_down)
9279 		return -EOPNOTSUPP;
9280 	if (!netif_device_present(dev))
9281 		return -ENODEV;
9282 	if (proto_down)
9283 		netif_carrier_off(dev);
9284 	else
9285 		netif_carrier_on(dev);
9286 	WRITE_ONCE(dev->proto_down, proto_down);
9287 	return 0;
9288 }
9289 
9290 /**
9291  *	dev_change_proto_down_reason - proto down reason
9292  *
9293  *	@dev: device
9294  *	@mask: proto down mask
9295  *	@value: proto down value
9296  */
9297 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9298 				  u32 value)
9299 {
9300 	u32 proto_down_reason;
9301 	int b;
9302 
9303 	if (!mask) {
9304 		proto_down_reason = value;
9305 	} else {
9306 		proto_down_reason = dev->proto_down_reason;
9307 		for_each_set_bit(b, &mask, 32) {
9308 			if (value & (1 << b))
9309 				proto_down_reason |= BIT(b);
9310 			else
9311 				proto_down_reason &= ~BIT(b);
9312 		}
9313 	}
9314 	WRITE_ONCE(dev->proto_down_reason, proto_down_reason);
9315 }
9316 
9317 struct bpf_xdp_link {
9318 	struct bpf_link link;
9319 	struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9320 	int flags;
9321 };
9322 
9323 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9324 {
9325 	if (flags & XDP_FLAGS_HW_MODE)
9326 		return XDP_MODE_HW;
9327 	if (flags & XDP_FLAGS_DRV_MODE)
9328 		return XDP_MODE_DRV;
9329 	if (flags & XDP_FLAGS_SKB_MODE)
9330 		return XDP_MODE_SKB;
9331 	return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9332 }
9333 
9334 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9335 {
9336 	switch (mode) {
9337 	case XDP_MODE_SKB:
9338 		return generic_xdp_install;
9339 	case XDP_MODE_DRV:
9340 	case XDP_MODE_HW:
9341 		return dev->netdev_ops->ndo_bpf;
9342 	default:
9343 		return NULL;
9344 	}
9345 }
9346 
9347 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9348 					 enum bpf_xdp_mode mode)
9349 {
9350 	return dev->xdp_state[mode].link;
9351 }
9352 
9353 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9354 				     enum bpf_xdp_mode mode)
9355 {
9356 	struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9357 
9358 	if (link)
9359 		return link->link.prog;
9360 	return dev->xdp_state[mode].prog;
9361 }
9362 
9363 u8 dev_xdp_prog_count(struct net_device *dev)
9364 {
9365 	u8 count = 0;
9366 	int i;
9367 
9368 	for (i = 0; i < __MAX_XDP_MODE; i++)
9369 		if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9370 			count++;
9371 	return count;
9372 }
9373 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9374 
9375 int dev_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf)
9376 {
9377 	if (!dev->netdev_ops->ndo_bpf)
9378 		return -EOPNOTSUPP;
9379 
9380 	if (dev_get_min_mp_channel_count(dev)) {
9381 		NL_SET_ERR_MSG(bpf->extack, "unable to propagate XDP to device using memory provider");
9382 		return -EBUSY;
9383 	}
9384 
9385 	return dev->netdev_ops->ndo_bpf(dev, bpf);
9386 }
9387 EXPORT_SYMBOL_GPL(dev_xdp_propagate);
9388 
9389 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9390 {
9391 	struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9392 
9393 	return prog ? prog->aux->id : 0;
9394 }
9395 
9396 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9397 			     struct bpf_xdp_link *link)
9398 {
9399 	dev->xdp_state[mode].link = link;
9400 	dev->xdp_state[mode].prog = NULL;
9401 }
9402 
9403 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9404 			     struct bpf_prog *prog)
9405 {
9406 	dev->xdp_state[mode].link = NULL;
9407 	dev->xdp_state[mode].prog = prog;
9408 }
9409 
9410 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9411 			   bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9412 			   u32 flags, struct bpf_prog *prog)
9413 {
9414 	struct netdev_bpf xdp;
9415 	int err;
9416 
9417 	if (dev_get_min_mp_channel_count(dev)) {
9418 		NL_SET_ERR_MSG(extack, "unable to install XDP to device using memory provider");
9419 		return -EBUSY;
9420 	}
9421 
9422 	memset(&xdp, 0, sizeof(xdp));
9423 	xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9424 	xdp.extack = extack;
9425 	xdp.flags = flags;
9426 	xdp.prog = prog;
9427 
9428 	/* Drivers assume refcnt is already incremented (i.e, prog pointer is
9429 	 * "moved" into driver), so they don't increment it on their own, but
9430 	 * they do decrement refcnt when program is detached or replaced.
9431 	 * Given net_device also owns link/prog, we need to bump refcnt here
9432 	 * to prevent drivers from underflowing it.
9433 	 */
9434 	if (prog)
9435 		bpf_prog_inc(prog);
9436 	err = bpf_op(dev, &xdp);
9437 	if (err) {
9438 		if (prog)
9439 			bpf_prog_put(prog);
9440 		return err;
9441 	}
9442 
9443 	if (mode != XDP_MODE_HW)
9444 		bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9445 
9446 	return 0;
9447 }
9448 
9449 static void dev_xdp_uninstall(struct net_device *dev)
9450 {
9451 	struct bpf_xdp_link *link;
9452 	struct bpf_prog *prog;
9453 	enum bpf_xdp_mode mode;
9454 	bpf_op_t bpf_op;
9455 
9456 	ASSERT_RTNL();
9457 
9458 	for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9459 		prog = dev_xdp_prog(dev, mode);
9460 		if (!prog)
9461 			continue;
9462 
9463 		bpf_op = dev_xdp_bpf_op(dev, mode);
9464 		if (!bpf_op)
9465 			continue;
9466 
9467 		WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9468 
9469 		/* auto-detach link from net device */
9470 		link = dev_xdp_link(dev, mode);
9471 		if (link)
9472 			link->dev = NULL;
9473 		else
9474 			bpf_prog_put(prog);
9475 
9476 		dev_xdp_set_link(dev, mode, NULL);
9477 	}
9478 }
9479 
9480 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9481 			  struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9482 			  struct bpf_prog *old_prog, u32 flags)
9483 {
9484 	unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9485 	struct bpf_prog *cur_prog;
9486 	struct net_device *upper;
9487 	struct list_head *iter;
9488 	enum bpf_xdp_mode mode;
9489 	bpf_op_t bpf_op;
9490 	int err;
9491 
9492 	ASSERT_RTNL();
9493 
9494 	/* either link or prog attachment, never both */
9495 	if (link && (new_prog || old_prog))
9496 		return -EINVAL;
9497 	/* link supports only XDP mode flags */
9498 	if (link && (flags & ~XDP_FLAGS_MODES)) {
9499 		NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9500 		return -EINVAL;
9501 	}
9502 	/* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9503 	if (num_modes > 1) {
9504 		NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9505 		return -EINVAL;
9506 	}
9507 	/* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9508 	if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9509 		NL_SET_ERR_MSG(extack,
9510 			       "More than one program loaded, unset mode is ambiguous");
9511 		return -EINVAL;
9512 	}
9513 	/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9514 	if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9515 		NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9516 		return -EINVAL;
9517 	}
9518 
9519 	mode = dev_xdp_mode(dev, flags);
9520 	/* can't replace attached link */
9521 	if (dev_xdp_link(dev, mode)) {
9522 		NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9523 		return -EBUSY;
9524 	}
9525 
9526 	/* don't allow if an upper device already has a program */
9527 	netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9528 		if (dev_xdp_prog_count(upper) > 0) {
9529 			NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9530 			return -EEXIST;
9531 		}
9532 	}
9533 
9534 	cur_prog = dev_xdp_prog(dev, mode);
9535 	/* can't replace attached prog with link */
9536 	if (link && cur_prog) {
9537 		NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9538 		return -EBUSY;
9539 	}
9540 	if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9541 		NL_SET_ERR_MSG(extack, "Active program does not match expected");
9542 		return -EEXIST;
9543 	}
9544 
9545 	/* put effective new program into new_prog */
9546 	if (link)
9547 		new_prog = link->link.prog;
9548 
9549 	if (new_prog) {
9550 		bool offload = mode == XDP_MODE_HW;
9551 		enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9552 					       ? XDP_MODE_DRV : XDP_MODE_SKB;
9553 
9554 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9555 			NL_SET_ERR_MSG(extack, "XDP program already attached");
9556 			return -EBUSY;
9557 		}
9558 		if (!offload && dev_xdp_prog(dev, other_mode)) {
9559 			NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9560 			return -EEXIST;
9561 		}
9562 		if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
9563 			NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
9564 			return -EINVAL;
9565 		}
9566 		if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
9567 			NL_SET_ERR_MSG(extack, "Program bound to different device");
9568 			return -EINVAL;
9569 		}
9570 		if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9571 			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9572 			return -EINVAL;
9573 		}
9574 		if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9575 			NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9576 			return -EINVAL;
9577 		}
9578 	}
9579 
9580 	/* don't call drivers if the effective program didn't change */
9581 	if (new_prog != cur_prog) {
9582 		bpf_op = dev_xdp_bpf_op(dev, mode);
9583 		if (!bpf_op) {
9584 			NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9585 			return -EOPNOTSUPP;
9586 		}
9587 
9588 		err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9589 		if (err)
9590 			return err;
9591 	}
9592 
9593 	if (link)
9594 		dev_xdp_set_link(dev, mode, link);
9595 	else
9596 		dev_xdp_set_prog(dev, mode, new_prog);
9597 	if (cur_prog)
9598 		bpf_prog_put(cur_prog);
9599 
9600 	return 0;
9601 }
9602 
9603 static int dev_xdp_attach_link(struct net_device *dev,
9604 			       struct netlink_ext_ack *extack,
9605 			       struct bpf_xdp_link *link)
9606 {
9607 	return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9608 }
9609 
9610 static int dev_xdp_detach_link(struct net_device *dev,
9611 			       struct netlink_ext_ack *extack,
9612 			       struct bpf_xdp_link *link)
9613 {
9614 	enum bpf_xdp_mode mode;
9615 	bpf_op_t bpf_op;
9616 
9617 	ASSERT_RTNL();
9618 
9619 	mode = dev_xdp_mode(dev, link->flags);
9620 	if (dev_xdp_link(dev, mode) != link)
9621 		return -EINVAL;
9622 
9623 	bpf_op = dev_xdp_bpf_op(dev, mode);
9624 	WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9625 	dev_xdp_set_link(dev, mode, NULL);
9626 	return 0;
9627 }
9628 
9629 static void bpf_xdp_link_release(struct bpf_link *link)
9630 {
9631 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9632 
9633 	rtnl_lock();
9634 
9635 	/* if racing with net_device's tear down, xdp_link->dev might be
9636 	 * already NULL, in which case link was already auto-detached
9637 	 */
9638 	if (xdp_link->dev) {
9639 		WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9640 		xdp_link->dev = NULL;
9641 	}
9642 
9643 	rtnl_unlock();
9644 }
9645 
9646 static int bpf_xdp_link_detach(struct bpf_link *link)
9647 {
9648 	bpf_xdp_link_release(link);
9649 	return 0;
9650 }
9651 
9652 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9653 {
9654 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9655 
9656 	kfree(xdp_link);
9657 }
9658 
9659 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9660 				     struct seq_file *seq)
9661 {
9662 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9663 	u32 ifindex = 0;
9664 
9665 	rtnl_lock();
9666 	if (xdp_link->dev)
9667 		ifindex = xdp_link->dev->ifindex;
9668 	rtnl_unlock();
9669 
9670 	seq_printf(seq, "ifindex:\t%u\n", ifindex);
9671 }
9672 
9673 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9674 				       struct bpf_link_info *info)
9675 {
9676 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9677 	u32 ifindex = 0;
9678 
9679 	rtnl_lock();
9680 	if (xdp_link->dev)
9681 		ifindex = xdp_link->dev->ifindex;
9682 	rtnl_unlock();
9683 
9684 	info->xdp.ifindex = ifindex;
9685 	return 0;
9686 }
9687 
9688 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9689 			       struct bpf_prog *old_prog)
9690 {
9691 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9692 	enum bpf_xdp_mode mode;
9693 	bpf_op_t bpf_op;
9694 	int err = 0;
9695 
9696 	rtnl_lock();
9697 
9698 	/* link might have been auto-released already, so fail */
9699 	if (!xdp_link->dev) {
9700 		err = -ENOLINK;
9701 		goto out_unlock;
9702 	}
9703 
9704 	if (old_prog && link->prog != old_prog) {
9705 		err = -EPERM;
9706 		goto out_unlock;
9707 	}
9708 	old_prog = link->prog;
9709 	if (old_prog->type != new_prog->type ||
9710 	    old_prog->expected_attach_type != new_prog->expected_attach_type) {
9711 		err = -EINVAL;
9712 		goto out_unlock;
9713 	}
9714 
9715 	if (old_prog == new_prog) {
9716 		/* no-op, don't disturb drivers */
9717 		bpf_prog_put(new_prog);
9718 		goto out_unlock;
9719 	}
9720 
9721 	mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9722 	bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9723 	err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9724 			      xdp_link->flags, new_prog);
9725 	if (err)
9726 		goto out_unlock;
9727 
9728 	old_prog = xchg(&link->prog, new_prog);
9729 	bpf_prog_put(old_prog);
9730 
9731 out_unlock:
9732 	rtnl_unlock();
9733 	return err;
9734 }
9735 
9736 static const struct bpf_link_ops bpf_xdp_link_lops = {
9737 	.release = bpf_xdp_link_release,
9738 	.dealloc = bpf_xdp_link_dealloc,
9739 	.detach = bpf_xdp_link_detach,
9740 	.show_fdinfo = bpf_xdp_link_show_fdinfo,
9741 	.fill_link_info = bpf_xdp_link_fill_link_info,
9742 	.update_prog = bpf_xdp_link_update,
9743 };
9744 
9745 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9746 {
9747 	struct net *net = current->nsproxy->net_ns;
9748 	struct bpf_link_primer link_primer;
9749 	struct netlink_ext_ack extack = {};
9750 	struct bpf_xdp_link *link;
9751 	struct net_device *dev;
9752 	int err, fd;
9753 
9754 	rtnl_lock();
9755 	dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9756 	if (!dev) {
9757 		rtnl_unlock();
9758 		return -EINVAL;
9759 	}
9760 
9761 	link = kzalloc(sizeof(*link), GFP_USER);
9762 	if (!link) {
9763 		err = -ENOMEM;
9764 		goto unlock;
9765 	}
9766 
9767 	bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9768 	link->dev = dev;
9769 	link->flags = attr->link_create.flags;
9770 
9771 	err = bpf_link_prime(&link->link, &link_primer);
9772 	if (err) {
9773 		kfree(link);
9774 		goto unlock;
9775 	}
9776 
9777 	err = dev_xdp_attach_link(dev, &extack, link);
9778 	rtnl_unlock();
9779 
9780 	if (err) {
9781 		link->dev = NULL;
9782 		bpf_link_cleanup(&link_primer);
9783 		trace_bpf_xdp_link_attach_failed(extack._msg);
9784 		goto out_put_dev;
9785 	}
9786 
9787 	fd = bpf_link_settle(&link_primer);
9788 	/* link itself doesn't hold dev's refcnt to not complicate shutdown */
9789 	dev_put(dev);
9790 	return fd;
9791 
9792 unlock:
9793 	rtnl_unlock();
9794 
9795 out_put_dev:
9796 	dev_put(dev);
9797 	return err;
9798 }
9799 
9800 /**
9801  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
9802  *	@dev: device
9803  *	@extack: netlink extended ack
9804  *	@fd: new program fd or negative value to clear
9805  *	@expected_fd: old program fd that userspace expects to replace or clear
9806  *	@flags: xdp-related flags
9807  *
9808  *	Set or clear a bpf program for a device
9809  */
9810 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9811 		      int fd, int expected_fd, u32 flags)
9812 {
9813 	enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9814 	struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9815 	int err;
9816 
9817 	ASSERT_RTNL();
9818 
9819 	if (fd >= 0) {
9820 		new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9821 						 mode != XDP_MODE_SKB);
9822 		if (IS_ERR(new_prog))
9823 			return PTR_ERR(new_prog);
9824 	}
9825 
9826 	if (expected_fd >= 0) {
9827 		old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9828 						 mode != XDP_MODE_SKB);
9829 		if (IS_ERR(old_prog)) {
9830 			err = PTR_ERR(old_prog);
9831 			old_prog = NULL;
9832 			goto err_out;
9833 		}
9834 	}
9835 
9836 	err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9837 
9838 err_out:
9839 	if (err && new_prog)
9840 		bpf_prog_put(new_prog);
9841 	if (old_prog)
9842 		bpf_prog_put(old_prog);
9843 	return err;
9844 }
9845 
9846 u32 dev_get_min_mp_channel_count(const struct net_device *dev)
9847 {
9848 	int i;
9849 
9850 	ASSERT_RTNL();
9851 
9852 	for (i = dev->real_num_rx_queues - 1; i >= 0; i--)
9853 		if (dev->_rx[i].mp_params.mp_priv)
9854 			/* The channel count is the idx plus 1. */
9855 			return i + 1;
9856 
9857 	return 0;
9858 }
9859 
9860 /**
9861  * dev_index_reserve() - allocate an ifindex in a namespace
9862  * @net: the applicable net namespace
9863  * @ifindex: requested ifindex, pass %0 to get one allocated
9864  *
9865  * Allocate a ifindex for a new device. Caller must either use the ifindex
9866  * to store the device (via list_netdevice()) or call dev_index_release()
9867  * to give the index up.
9868  *
9869  * Return: a suitable unique value for a new device interface number or -errno.
9870  */
9871 static int dev_index_reserve(struct net *net, u32 ifindex)
9872 {
9873 	int err;
9874 
9875 	if (ifindex > INT_MAX) {
9876 		DEBUG_NET_WARN_ON_ONCE(1);
9877 		return -EINVAL;
9878 	}
9879 
9880 	if (!ifindex)
9881 		err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL,
9882 				      xa_limit_31b, &net->ifindex, GFP_KERNEL);
9883 	else
9884 		err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL);
9885 	if (err < 0)
9886 		return err;
9887 
9888 	return ifindex;
9889 }
9890 
9891 static void dev_index_release(struct net *net, int ifindex)
9892 {
9893 	/* Expect only unused indexes, unlist_netdevice() removes the used */
9894 	WARN_ON(xa_erase(&net->dev_by_index, ifindex));
9895 }
9896 
9897 /* Delayed registration/unregisteration */
9898 LIST_HEAD(net_todo_list);
9899 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9900 atomic_t dev_unreg_count = ATOMIC_INIT(0);
9901 
9902 static void net_set_todo(struct net_device *dev)
9903 {
9904 	list_add_tail(&dev->todo_list, &net_todo_list);
9905 }
9906 
9907 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9908 	struct net_device *upper, netdev_features_t features)
9909 {
9910 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9911 	netdev_features_t feature;
9912 	int feature_bit;
9913 
9914 	for_each_netdev_feature(upper_disables, feature_bit) {
9915 		feature = __NETIF_F_BIT(feature_bit);
9916 		if (!(upper->wanted_features & feature)
9917 		    && (features & feature)) {
9918 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9919 				   &feature, upper->name);
9920 			features &= ~feature;
9921 		}
9922 	}
9923 
9924 	return features;
9925 }
9926 
9927 static void netdev_sync_lower_features(struct net_device *upper,
9928 	struct net_device *lower, netdev_features_t features)
9929 {
9930 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9931 	netdev_features_t feature;
9932 	int feature_bit;
9933 
9934 	for_each_netdev_feature(upper_disables, feature_bit) {
9935 		feature = __NETIF_F_BIT(feature_bit);
9936 		if (!(features & feature) && (lower->features & feature)) {
9937 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9938 				   &feature, lower->name);
9939 			lower->wanted_features &= ~feature;
9940 			__netdev_update_features(lower);
9941 
9942 			if (unlikely(lower->features & feature))
9943 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9944 					    &feature, lower->name);
9945 			else
9946 				netdev_features_change(lower);
9947 		}
9948 	}
9949 }
9950 
9951 static bool netdev_has_ip_or_hw_csum(netdev_features_t features)
9952 {
9953 	netdev_features_t ip_csum_mask = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
9954 	bool ip_csum = (features & ip_csum_mask) == ip_csum_mask;
9955 	bool hw_csum = features & NETIF_F_HW_CSUM;
9956 
9957 	return ip_csum || hw_csum;
9958 }
9959 
9960 static netdev_features_t netdev_fix_features(struct net_device *dev,
9961 	netdev_features_t features)
9962 {
9963 	/* Fix illegal checksum combinations */
9964 	if ((features & NETIF_F_HW_CSUM) &&
9965 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9966 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9967 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9968 	}
9969 
9970 	/* TSO requires that SG is present as well. */
9971 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9972 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9973 		features &= ~NETIF_F_ALL_TSO;
9974 	}
9975 
9976 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9977 					!(features & NETIF_F_IP_CSUM)) {
9978 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9979 		features &= ~NETIF_F_TSO;
9980 		features &= ~NETIF_F_TSO_ECN;
9981 	}
9982 
9983 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9984 					 !(features & NETIF_F_IPV6_CSUM)) {
9985 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9986 		features &= ~NETIF_F_TSO6;
9987 	}
9988 
9989 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9990 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9991 		features &= ~NETIF_F_TSO_MANGLEID;
9992 
9993 	/* TSO ECN requires that TSO is present as well. */
9994 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9995 		features &= ~NETIF_F_TSO_ECN;
9996 
9997 	/* Software GSO depends on SG. */
9998 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9999 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
10000 		features &= ~NETIF_F_GSO;
10001 	}
10002 
10003 	/* GSO partial features require GSO partial be set */
10004 	if ((features & dev->gso_partial_features) &&
10005 	    !(features & NETIF_F_GSO_PARTIAL)) {
10006 		netdev_dbg(dev,
10007 			   "Dropping partially supported GSO features since no GSO partial.\n");
10008 		features &= ~dev->gso_partial_features;
10009 	}
10010 
10011 	if (!(features & NETIF_F_RXCSUM)) {
10012 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
10013 		 * successfully merged by hardware must also have the
10014 		 * checksum verified by hardware.  If the user does not
10015 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
10016 		 */
10017 		if (features & NETIF_F_GRO_HW) {
10018 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
10019 			features &= ~NETIF_F_GRO_HW;
10020 		}
10021 	}
10022 
10023 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
10024 	if (features & NETIF_F_RXFCS) {
10025 		if (features & NETIF_F_LRO) {
10026 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
10027 			features &= ~NETIF_F_LRO;
10028 		}
10029 
10030 		if (features & NETIF_F_GRO_HW) {
10031 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
10032 			features &= ~NETIF_F_GRO_HW;
10033 		}
10034 	}
10035 
10036 	if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
10037 		netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
10038 		features &= ~NETIF_F_LRO;
10039 	}
10040 
10041 	if ((features & NETIF_F_HW_TLS_TX) && !netdev_has_ip_or_hw_csum(features)) {
10042 		netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
10043 		features &= ~NETIF_F_HW_TLS_TX;
10044 	}
10045 
10046 	if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
10047 		netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
10048 		features &= ~NETIF_F_HW_TLS_RX;
10049 	}
10050 
10051 	if ((features & NETIF_F_GSO_UDP_L4) && !netdev_has_ip_or_hw_csum(features)) {
10052 		netdev_dbg(dev, "Dropping USO feature since no CSUM feature.\n");
10053 		features &= ~NETIF_F_GSO_UDP_L4;
10054 	}
10055 
10056 	return features;
10057 }
10058 
10059 int __netdev_update_features(struct net_device *dev)
10060 {
10061 	struct net_device *upper, *lower;
10062 	netdev_features_t features;
10063 	struct list_head *iter;
10064 	int err = -1;
10065 
10066 	ASSERT_RTNL();
10067 
10068 	features = netdev_get_wanted_features(dev);
10069 
10070 	if (dev->netdev_ops->ndo_fix_features)
10071 		features = dev->netdev_ops->ndo_fix_features(dev, features);
10072 
10073 	/* driver might be less strict about feature dependencies */
10074 	features = netdev_fix_features(dev, features);
10075 
10076 	/* some features can't be enabled if they're off on an upper device */
10077 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
10078 		features = netdev_sync_upper_features(dev, upper, features);
10079 
10080 	if (dev->features == features)
10081 		goto sync_lower;
10082 
10083 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
10084 		&dev->features, &features);
10085 
10086 	if (dev->netdev_ops->ndo_set_features)
10087 		err = dev->netdev_ops->ndo_set_features(dev, features);
10088 	else
10089 		err = 0;
10090 
10091 	if (unlikely(err < 0)) {
10092 		netdev_err(dev,
10093 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
10094 			err, &features, &dev->features);
10095 		/* return non-0 since some features might have changed and
10096 		 * it's better to fire a spurious notification than miss it
10097 		 */
10098 		return -1;
10099 	}
10100 
10101 sync_lower:
10102 	/* some features must be disabled on lower devices when disabled
10103 	 * on an upper device (think: bonding master or bridge)
10104 	 */
10105 	netdev_for_each_lower_dev(dev, lower, iter)
10106 		netdev_sync_lower_features(dev, lower, features);
10107 
10108 	if (!err) {
10109 		netdev_features_t diff = features ^ dev->features;
10110 
10111 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
10112 			/* udp_tunnel_{get,drop}_rx_info both need
10113 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
10114 			 * device, or they won't do anything.
10115 			 * Thus we need to update dev->features
10116 			 * *before* calling udp_tunnel_get_rx_info,
10117 			 * but *after* calling udp_tunnel_drop_rx_info.
10118 			 */
10119 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
10120 				dev->features = features;
10121 				udp_tunnel_get_rx_info(dev);
10122 			} else {
10123 				udp_tunnel_drop_rx_info(dev);
10124 			}
10125 		}
10126 
10127 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
10128 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
10129 				dev->features = features;
10130 				err |= vlan_get_rx_ctag_filter_info(dev);
10131 			} else {
10132 				vlan_drop_rx_ctag_filter_info(dev);
10133 			}
10134 		}
10135 
10136 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
10137 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
10138 				dev->features = features;
10139 				err |= vlan_get_rx_stag_filter_info(dev);
10140 			} else {
10141 				vlan_drop_rx_stag_filter_info(dev);
10142 			}
10143 		}
10144 
10145 		dev->features = features;
10146 	}
10147 
10148 	return err < 0 ? 0 : 1;
10149 }
10150 
10151 /**
10152  *	netdev_update_features - recalculate device features
10153  *	@dev: the device to check
10154  *
10155  *	Recalculate dev->features set and send notifications if it
10156  *	has changed. Should be called after driver or hardware dependent
10157  *	conditions might have changed that influence the features.
10158  */
10159 void netdev_update_features(struct net_device *dev)
10160 {
10161 	if (__netdev_update_features(dev))
10162 		netdev_features_change(dev);
10163 }
10164 EXPORT_SYMBOL(netdev_update_features);
10165 
10166 /**
10167  *	netdev_change_features - recalculate device features
10168  *	@dev: the device to check
10169  *
10170  *	Recalculate dev->features set and send notifications even
10171  *	if they have not changed. Should be called instead of
10172  *	netdev_update_features() if also dev->vlan_features might
10173  *	have changed to allow the changes to be propagated to stacked
10174  *	VLAN devices.
10175  */
10176 void netdev_change_features(struct net_device *dev)
10177 {
10178 	__netdev_update_features(dev);
10179 	netdev_features_change(dev);
10180 }
10181 EXPORT_SYMBOL(netdev_change_features);
10182 
10183 /**
10184  *	netif_stacked_transfer_operstate -	transfer operstate
10185  *	@rootdev: the root or lower level device to transfer state from
10186  *	@dev: the device to transfer operstate to
10187  *
10188  *	Transfer operational state from root to device. This is normally
10189  *	called when a stacking relationship exists between the root
10190  *	device and the device(a leaf device).
10191  */
10192 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
10193 					struct net_device *dev)
10194 {
10195 	if (rootdev->operstate == IF_OPER_DORMANT)
10196 		netif_dormant_on(dev);
10197 	else
10198 		netif_dormant_off(dev);
10199 
10200 	if (rootdev->operstate == IF_OPER_TESTING)
10201 		netif_testing_on(dev);
10202 	else
10203 		netif_testing_off(dev);
10204 
10205 	if (netif_carrier_ok(rootdev))
10206 		netif_carrier_on(dev);
10207 	else
10208 		netif_carrier_off(dev);
10209 }
10210 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
10211 
10212 static int netif_alloc_rx_queues(struct net_device *dev)
10213 {
10214 	unsigned int i, count = dev->num_rx_queues;
10215 	struct netdev_rx_queue *rx;
10216 	size_t sz = count * sizeof(*rx);
10217 	int err = 0;
10218 
10219 	BUG_ON(count < 1);
10220 
10221 	rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10222 	if (!rx)
10223 		return -ENOMEM;
10224 
10225 	dev->_rx = rx;
10226 
10227 	for (i = 0; i < count; i++) {
10228 		rx[i].dev = dev;
10229 
10230 		/* XDP RX-queue setup */
10231 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10232 		if (err < 0)
10233 			goto err_rxq_info;
10234 	}
10235 	return 0;
10236 
10237 err_rxq_info:
10238 	/* Rollback successful reg's and free other resources */
10239 	while (i--)
10240 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10241 	kvfree(dev->_rx);
10242 	dev->_rx = NULL;
10243 	return err;
10244 }
10245 
10246 static void netif_free_rx_queues(struct net_device *dev)
10247 {
10248 	unsigned int i, count = dev->num_rx_queues;
10249 
10250 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10251 	if (!dev->_rx)
10252 		return;
10253 
10254 	for (i = 0; i < count; i++)
10255 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10256 
10257 	kvfree(dev->_rx);
10258 }
10259 
10260 static void netdev_init_one_queue(struct net_device *dev,
10261 				  struct netdev_queue *queue, void *_unused)
10262 {
10263 	/* Initialize queue lock */
10264 	spin_lock_init(&queue->_xmit_lock);
10265 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10266 	queue->xmit_lock_owner = -1;
10267 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10268 	queue->dev = dev;
10269 #ifdef CONFIG_BQL
10270 	dql_init(&queue->dql, HZ);
10271 #endif
10272 }
10273 
10274 static void netif_free_tx_queues(struct net_device *dev)
10275 {
10276 	kvfree(dev->_tx);
10277 }
10278 
10279 static int netif_alloc_netdev_queues(struct net_device *dev)
10280 {
10281 	unsigned int count = dev->num_tx_queues;
10282 	struct netdev_queue *tx;
10283 	size_t sz = count * sizeof(*tx);
10284 
10285 	if (count < 1 || count > 0xffff)
10286 		return -EINVAL;
10287 
10288 	tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10289 	if (!tx)
10290 		return -ENOMEM;
10291 
10292 	dev->_tx = tx;
10293 
10294 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10295 	spin_lock_init(&dev->tx_global_lock);
10296 
10297 	return 0;
10298 }
10299 
10300 void netif_tx_stop_all_queues(struct net_device *dev)
10301 {
10302 	unsigned int i;
10303 
10304 	for (i = 0; i < dev->num_tx_queues; i++) {
10305 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10306 
10307 		netif_tx_stop_queue(txq);
10308 	}
10309 }
10310 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10311 
10312 static int netdev_do_alloc_pcpu_stats(struct net_device *dev)
10313 {
10314 	void __percpu *v;
10315 
10316 	/* Drivers implementing ndo_get_peer_dev must support tstat
10317 	 * accounting, so that skb_do_redirect() can bump the dev's
10318 	 * RX stats upon network namespace switch.
10319 	 */
10320 	if (dev->netdev_ops->ndo_get_peer_dev &&
10321 	    dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS)
10322 		return -EOPNOTSUPP;
10323 
10324 	switch (dev->pcpu_stat_type) {
10325 	case NETDEV_PCPU_STAT_NONE:
10326 		return 0;
10327 	case NETDEV_PCPU_STAT_LSTATS:
10328 		v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats);
10329 		break;
10330 	case NETDEV_PCPU_STAT_TSTATS:
10331 		v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats);
10332 		break;
10333 	case NETDEV_PCPU_STAT_DSTATS:
10334 		v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
10335 		break;
10336 	default:
10337 		return -EINVAL;
10338 	}
10339 
10340 	return v ? 0 : -ENOMEM;
10341 }
10342 
10343 static void netdev_do_free_pcpu_stats(struct net_device *dev)
10344 {
10345 	switch (dev->pcpu_stat_type) {
10346 	case NETDEV_PCPU_STAT_NONE:
10347 		return;
10348 	case NETDEV_PCPU_STAT_LSTATS:
10349 		free_percpu(dev->lstats);
10350 		break;
10351 	case NETDEV_PCPU_STAT_TSTATS:
10352 		free_percpu(dev->tstats);
10353 		break;
10354 	case NETDEV_PCPU_STAT_DSTATS:
10355 		free_percpu(dev->dstats);
10356 		break;
10357 	}
10358 }
10359 
10360 static void netdev_free_phy_link_topology(struct net_device *dev)
10361 {
10362 	struct phy_link_topology *topo = dev->link_topo;
10363 
10364 	if (IS_ENABLED(CONFIG_PHYLIB) && topo) {
10365 		xa_destroy(&topo->phys);
10366 		kfree(topo);
10367 		dev->link_topo = NULL;
10368 	}
10369 }
10370 
10371 /**
10372  * register_netdevice() - register a network device
10373  * @dev: device to register
10374  *
10375  * Take a prepared network device structure and make it externally accessible.
10376  * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
10377  * Callers must hold the rtnl lock - you may want register_netdev()
10378  * instead of this.
10379  */
10380 int register_netdevice(struct net_device *dev)
10381 {
10382 	int ret;
10383 	struct net *net = dev_net(dev);
10384 
10385 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10386 		     NETDEV_FEATURE_COUNT);
10387 	BUG_ON(dev_boot_phase);
10388 	ASSERT_RTNL();
10389 
10390 	might_sleep();
10391 
10392 	/* When net_device's are persistent, this will be fatal. */
10393 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10394 	BUG_ON(!net);
10395 
10396 	ret = ethtool_check_ops(dev->ethtool_ops);
10397 	if (ret)
10398 		return ret;
10399 
10400 	/* rss ctx ID 0 is reserved for the default context, start from 1 */
10401 	xa_init_flags(&dev->ethtool->rss_ctx, XA_FLAGS_ALLOC1);
10402 	mutex_init(&dev->ethtool->rss_lock);
10403 
10404 	spin_lock_init(&dev->addr_list_lock);
10405 	netdev_set_addr_lockdep_class(dev);
10406 
10407 	ret = dev_get_valid_name(net, dev, dev->name);
10408 	if (ret < 0)
10409 		goto out;
10410 
10411 	ret = -ENOMEM;
10412 	dev->name_node = netdev_name_node_head_alloc(dev);
10413 	if (!dev->name_node)
10414 		goto out;
10415 
10416 	/* Init, if this function is available */
10417 	if (dev->netdev_ops->ndo_init) {
10418 		ret = dev->netdev_ops->ndo_init(dev);
10419 		if (ret) {
10420 			if (ret > 0)
10421 				ret = -EIO;
10422 			goto err_free_name;
10423 		}
10424 	}
10425 
10426 	if (((dev->hw_features | dev->features) &
10427 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
10428 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10429 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10430 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10431 		ret = -EINVAL;
10432 		goto err_uninit;
10433 	}
10434 
10435 	ret = netdev_do_alloc_pcpu_stats(dev);
10436 	if (ret)
10437 		goto err_uninit;
10438 
10439 	ret = dev_index_reserve(net, dev->ifindex);
10440 	if (ret < 0)
10441 		goto err_free_pcpu;
10442 	dev->ifindex = ret;
10443 
10444 	/* Transfer changeable features to wanted_features and enable
10445 	 * software offloads (GSO and GRO).
10446 	 */
10447 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10448 	dev->features |= NETIF_F_SOFT_FEATURES;
10449 
10450 	if (dev->udp_tunnel_nic_info) {
10451 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10452 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10453 	}
10454 
10455 	dev->wanted_features = dev->features & dev->hw_features;
10456 
10457 	if (!(dev->flags & IFF_LOOPBACK))
10458 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
10459 
10460 	/* If IPv4 TCP segmentation offload is supported we should also
10461 	 * allow the device to enable segmenting the frame with the option
10462 	 * of ignoring a static IP ID value.  This doesn't enable the
10463 	 * feature itself but allows the user to enable it later.
10464 	 */
10465 	if (dev->hw_features & NETIF_F_TSO)
10466 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
10467 	if (dev->vlan_features & NETIF_F_TSO)
10468 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10469 	if (dev->mpls_features & NETIF_F_TSO)
10470 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10471 	if (dev->hw_enc_features & NETIF_F_TSO)
10472 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10473 
10474 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10475 	 */
10476 	dev->vlan_features |= NETIF_F_HIGHDMA;
10477 
10478 	/* Make NETIF_F_SG inheritable to tunnel devices.
10479 	 */
10480 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10481 
10482 	/* Make NETIF_F_SG inheritable to MPLS.
10483 	 */
10484 	dev->mpls_features |= NETIF_F_SG;
10485 
10486 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10487 	ret = notifier_to_errno(ret);
10488 	if (ret)
10489 		goto err_ifindex_release;
10490 
10491 	ret = netdev_register_kobject(dev);
10492 
10493 	WRITE_ONCE(dev->reg_state, ret ? NETREG_UNREGISTERED : NETREG_REGISTERED);
10494 
10495 	if (ret)
10496 		goto err_uninit_notify;
10497 
10498 	__netdev_update_features(dev);
10499 
10500 	/*
10501 	 *	Default initial state at registry is that the
10502 	 *	device is present.
10503 	 */
10504 
10505 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10506 
10507 	linkwatch_init_dev(dev);
10508 
10509 	dev_init_scheduler(dev);
10510 
10511 	netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
10512 	list_netdevice(dev);
10513 
10514 	add_device_randomness(dev->dev_addr, dev->addr_len);
10515 
10516 	/* If the device has permanent device address, driver should
10517 	 * set dev_addr and also addr_assign_type should be set to
10518 	 * NET_ADDR_PERM (default value).
10519 	 */
10520 	if (dev->addr_assign_type == NET_ADDR_PERM)
10521 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10522 
10523 	/* Notify protocols, that a new device appeared. */
10524 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10525 	ret = notifier_to_errno(ret);
10526 	if (ret) {
10527 		/* Expect explicit free_netdev() on failure */
10528 		dev->needs_free_netdev = false;
10529 		unregister_netdevice_queue(dev, NULL);
10530 		goto out;
10531 	}
10532 	/*
10533 	 *	Prevent userspace races by waiting until the network
10534 	 *	device is fully setup before sending notifications.
10535 	 */
10536 	if (!dev->rtnl_link_ops ||
10537 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10538 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
10539 
10540 out:
10541 	return ret;
10542 
10543 err_uninit_notify:
10544 	call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10545 err_ifindex_release:
10546 	dev_index_release(net, dev->ifindex);
10547 err_free_pcpu:
10548 	netdev_do_free_pcpu_stats(dev);
10549 err_uninit:
10550 	if (dev->netdev_ops->ndo_uninit)
10551 		dev->netdev_ops->ndo_uninit(dev);
10552 	if (dev->priv_destructor)
10553 		dev->priv_destructor(dev);
10554 err_free_name:
10555 	netdev_name_node_free(dev->name_node);
10556 	goto out;
10557 }
10558 EXPORT_SYMBOL(register_netdevice);
10559 
10560 /* Initialize the core of a dummy net device.
10561  * This is useful if you are calling this function after alloc_netdev(),
10562  * since it does not memset the net_device fields.
10563  */
10564 static void init_dummy_netdev_core(struct net_device *dev)
10565 {
10566 	/* make sure we BUG if trying to hit standard
10567 	 * register/unregister code path
10568 	 */
10569 	dev->reg_state = NETREG_DUMMY;
10570 
10571 	/* NAPI wants this */
10572 	INIT_LIST_HEAD(&dev->napi_list);
10573 
10574 	/* a dummy interface is started by default */
10575 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10576 	set_bit(__LINK_STATE_START, &dev->state);
10577 
10578 	/* napi_busy_loop stats accounting wants this */
10579 	dev_net_set(dev, &init_net);
10580 
10581 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
10582 	 * because users of this 'device' dont need to change
10583 	 * its refcount.
10584 	 */
10585 }
10586 
10587 /**
10588  *	init_dummy_netdev	- init a dummy network device for NAPI
10589  *	@dev: device to init
10590  *
10591  *	This takes a network device structure and initializes the minimum
10592  *	amount of fields so it can be used to schedule NAPI polls without
10593  *	registering a full blown interface. This is to be used by drivers
10594  *	that need to tie several hardware interfaces to a single NAPI
10595  *	poll scheduler due to HW limitations.
10596  */
10597 void init_dummy_netdev(struct net_device *dev)
10598 {
10599 	/* Clear everything. Note we don't initialize spinlocks
10600 	 * as they aren't supposed to be taken by any of the
10601 	 * NAPI code and this dummy netdev is supposed to be
10602 	 * only ever used for NAPI polls
10603 	 */
10604 	memset(dev, 0, sizeof(struct net_device));
10605 	init_dummy_netdev_core(dev);
10606 }
10607 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10608 
10609 /**
10610  *	register_netdev	- register a network device
10611  *	@dev: device to register
10612  *
10613  *	Take a completed network device structure and add it to the kernel
10614  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10615  *	chain. 0 is returned on success. A negative errno code is returned
10616  *	on a failure to set up the device, or if the name is a duplicate.
10617  *
10618  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
10619  *	and expands the device name if you passed a format string to
10620  *	alloc_netdev.
10621  */
10622 int register_netdev(struct net_device *dev)
10623 {
10624 	int err;
10625 
10626 	if (rtnl_lock_killable())
10627 		return -EINTR;
10628 	err = register_netdevice(dev);
10629 	rtnl_unlock();
10630 	return err;
10631 }
10632 EXPORT_SYMBOL(register_netdev);
10633 
10634 int netdev_refcnt_read(const struct net_device *dev)
10635 {
10636 #ifdef CONFIG_PCPU_DEV_REFCNT
10637 	int i, refcnt = 0;
10638 
10639 	for_each_possible_cpu(i)
10640 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10641 	return refcnt;
10642 #else
10643 	return refcount_read(&dev->dev_refcnt);
10644 #endif
10645 }
10646 EXPORT_SYMBOL(netdev_refcnt_read);
10647 
10648 int netdev_unregister_timeout_secs __read_mostly = 10;
10649 
10650 #define WAIT_REFS_MIN_MSECS 1
10651 #define WAIT_REFS_MAX_MSECS 250
10652 /**
10653  * netdev_wait_allrefs_any - wait until all references are gone.
10654  * @list: list of net_devices to wait on
10655  *
10656  * This is called when unregistering network devices.
10657  *
10658  * Any protocol or device that holds a reference should register
10659  * for netdevice notification, and cleanup and put back the
10660  * reference if they receive an UNREGISTER event.
10661  * We can get stuck here if buggy protocols don't correctly
10662  * call dev_put.
10663  */
10664 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
10665 {
10666 	unsigned long rebroadcast_time, warning_time;
10667 	struct net_device *dev;
10668 	int wait = 0;
10669 
10670 	rebroadcast_time = warning_time = jiffies;
10671 
10672 	list_for_each_entry(dev, list, todo_list)
10673 		if (netdev_refcnt_read(dev) == 1)
10674 			return dev;
10675 
10676 	while (true) {
10677 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10678 			rtnl_lock();
10679 
10680 			/* Rebroadcast unregister notification */
10681 			list_for_each_entry(dev, list, todo_list)
10682 				call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10683 
10684 			__rtnl_unlock();
10685 			rcu_barrier();
10686 			rtnl_lock();
10687 
10688 			list_for_each_entry(dev, list, todo_list)
10689 				if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10690 					     &dev->state)) {
10691 					/* We must not have linkwatch events
10692 					 * pending on unregister. If this
10693 					 * happens, we simply run the queue
10694 					 * unscheduled, resulting in a noop
10695 					 * for this device.
10696 					 */
10697 					linkwatch_run_queue();
10698 					break;
10699 				}
10700 
10701 			__rtnl_unlock();
10702 
10703 			rebroadcast_time = jiffies;
10704 		}
10705 
10706 		rcu_barrier();
10707 
10708 		if (!wait) {
10709 			wait = WAIT_REFS_MIN_MSECS;
10710 		} else {
10711 			msleep(wait);
10712 			wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10713 		}
10714 
10715 		list_for_each_entry(dev, list, todo_list)
10716 			if (netdev_refcnt_read(dev) == 1)
10717 				return dev;
10718 
10719 		if (time_after(jiffies, warning_time +
10720 			       READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
10721 			list_for_each_entry(dev, list, todo_list) {
10722 				pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10723 					 dev->name, netdev_refcnt_read(dev));
10724 				ref_tracker_dir_print(&dev->refcnt_tracker, 10);
10725 			}
10726 
10727 			warning_time = jiffies;
10728 		}
10729 	}
10730 }
10731 
10732 /* The sequence is:
10733  *
10734  *	rtnl_lock();
10735  *	...
10736  *	register_netdevice(x1);
10737  *	register_netdevice(x2);
10738  *	...
10739  *	unregister_netdevice(y1);
10740  *	unregister_netdevice(y2);
10741  *      ...
10742  *	rtnl_unlock();
10743  *	free_netdev(y1);
10744  *	free_netdev(y2);
10745  *
10746  * We are invoked by rtnl_unlock().
10747  * This allows us to deal with problems:
10748  * 1) We can delete sysfs objects which invoke hotplug
10749  *    without deadlocking with linkwatch via keventd.
10750  * 2) Since we run with the RTNL semaphore not held, we can sleep
10751  *    safely in order to wait for the netdev refcnt to drop to zero.
10752  *
10753  * We must not return until all unregister events added during
10754  * the interval the lock was held have been completed.
10755  */
10756 void netdev_run_todo(void)
10757 {
10758 	struct net_device *dev, *tmp;
10759 	struct list_head list;
10760 	int cnt;
10761 #ifdef CONFIG_LOCKDEP
10762 	struct list_head unlink_list;
10763 
10764 	list_replace_init(&net_unlink_list, &unlink_list);
10765 
10766 	while (!list_empty(&unlink_list)) {
10767 		struct net_device *dev = list_first_entry(&unlink_list,
10768 							  struct net_device,
10769 							  unlink_list);
10770 		list_del_init(&dev->unlink_list);
10771 		dev->nested_level = dev->lower_level - 1;
10772 	}
10773 #endif
10774 
10775 	/* Snapshot list, allow later requests */
10776 	list_replace_init(&net_todo_list, &list);
10777 
10778 	__rtnl_unlock();
10779 
10780 	/* Wait for rcu callbacks to finish before next phase */
10781 	if (!list_empty(&list))
10782 		rcu_barrier();
10783 
10784 	list_for_each_entry_safe(dev, tmp, &list, todo_list) {
10785 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10786 			netdev_WARN(dev, "run_todo but not unregistering\n");
10787 			list_del(&dev->todo_list);
10788 			continue;
10789 		}
10790 
10791 		WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERED);
10792 		linkwatch_sync_dev(dev);
10793 	}
10794 
10795 	cnt = 0;
10796 	while (!list_empty(&list)) {
10797 		dev = netdev_wait_allrefs_any(&list);
10798 		list_del(&dev->todo_list);
10799 
10800 		/* paranoia */
10801 		BUG_ON(netdev_refcnt_read(dev) != 1);
10802 		BUG_ON(!list_empty(&dev->ptype_all));
10803 		BUG_ON(!list_empty(&dev->ptype_specific));
10804 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
10805 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10806 
10807 		netdev_do_free_pcpu_stats(dev);
10808 		if (dev->priv_destructor)
10809 			dev->priv_destructor(dev);
10810 		if (dev->needs_free_netdev)
10811 			free_netdev(dev);
10812 
10813 		cnt++;
10814 
10815 		/* Free network device */
10816 		kobject_put(&dev->dev.kobj);
10817 	}
10818 	if (cnt && atomic_sub_and_test(cnt, &dev_unreg_count))
10819 		wake_up(&netdev_unregistering_wq);
10820 }
10821 
10822 /* Collate per-cpu network dstats statistics
10823  *
10824  * Read per-cpu network statistics from dev->dstats and populate the related
10825  * fields in @s.
10826  */
10827 static void dev_fetch_dstats(struct rtnl_link_stats64 *s,
10828 			     const struct pcpu_dstats __percpu *dstats)
10829 {
10830 	int cpu;
10831 
10832 	for_each_possible_cpu(cpu) {
10833 		u64 rx_packets, rx_bytes, rx_drops;
10834 		u64 tx_packets, tx_bytes, tx_drops;
10835 		const struct pcpu_dstats *stats;
10836 		unsigned int start;
10837 
10838 		stats = per_cpu_ptr(dstats, cpu);
10839 		do {
10840 			start = u64_stats_fetch_begin(&stats->syncp);
10841 			rx_packets = u64_stats_read(&stats->rx_packets);
10842 			rx_bytes   = u64_stats_read(&stats->rx_bytes);
10843 			rx_drops   = u64_stats_read(&stats->rx_drops);
10844 			tx_packets = u64_stats_read(&stats->tx_packets);
10845 			tx_bytes   = u64_stats_read(&stats->tx_bytes);
10846 			tx_drops   = u64_stats_read(&stats->tx_drops);
10847 		} while (u64_stats_fetch_retry(&stats->syncp, start));
10848 
10849 		s->rx_packets += rx_packets;
10850 		s->rx_bytes   += rx_bytes;
10851 		s->rx_dropped += rx_drops;
10852 		s->tx_packets += tx_packets;
10853 		s->tx_bytes   += tx_bytes;
10854 		s->tx_dropped += tx_drops;
10855 	}
10856 }
10857 
10858 /* ndo_get_stats64 implementation for dtstats-based accounting.
10859  *
10860  * Populate @s from dev->stats and dev->dstats. This is used internally by the
10861  * core for NETDEV_PCPU_STAT_DSTAT-type stats collection.
10862  */
10863 static void dev_get_dstats64(const struct net_device *dev,
10864 			     struct rtnl_link_stats64 *s)
10865 {
10866 	netdev_stats_to_stats64(s, &dev->stats);
10867 	dev_fetch_dstats(s, dev->dstats);
10868 }
10869 
10870 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10871  * all the same fields in the same order as net_device_stats, with only
10872  * the type differing, but rtnl_link_stats64 may have additional fields
10873  * at the end for newer counters.
10874  */
10875 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10876 			     const struct net_device_stats *netdev_stats)
10877 {
10878 	size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
10879 	const atomic_long_t *src = (atomic_long_t *)netdev_stats;
10880 	u64 *dst = (u64 *)stats64;
10881 
10882 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10883 	for (i = 0; i < n; i++)
10884 		dst[i] = (unsigned long)atomic_long_read(&src[i]);
10885 	/* zero out counters that only exist in rtnl_link_stats64 */
10886 	memset((char *)stats64 + n * sizeof(u64), 0,
10887 	       sizeof(*stats64) - n * sizeof(u64));
10888 }
10889 EXPORT_SYMBOL(netdev_stats_to_stats64);
10890 
10891 static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc(
10892 		struct net_device *dev)
10893 {
10894 	struct net_device_core_stats __percpu *p;
10895 
10896 	p = alloc_percpu_gfp(struct net_device_core_stats,
10897 			     GFP_ATOMIC | __GFP_NOWARN);
10898 
10899 	if (p && cmpxchg(&dev->core_stats, NULL, p))
10900 		free_percpu(p);
10901 
10902 	/* This READ_ONCE() pairs with the cmpxchg() above */
10903 	return READ_ONCE(dev->core_stats);
10904 }
10905 
10906 noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset)
10907 {
10908 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10909 	struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
10910 	unsigned long __percpu *field;
10911 
10912 	if (unlikely(!p)) {
10913 		p = netdev_core_stats_alloc(dev);
10914 		if (!p)
10915 			return;
10916 	}
10917 
10918 	field = (unsigned long __percpu *)((void __percpu *)p + offset);
10919 	this_cpu_inc(*field);
10920 }
10921 EXPORT_SYMBOL_GPL(netdev_core_stats_inc);
10922 
10923 /**
10924  *	dev_get_stats	- get network device statistics
10925  *	@dev: device to get statistics from
10926  *	@storage: place to store stats
10927  *
10928  *	Get network statistics from device. Return @storage.
10929  *	The device driver may provide its own method by setting
10930  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10931  *	otherwise the internal statistics structure is used.
10932  */
10933 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10934 					struct rtnl_link_stats64 *storage)
10935 {
10936 	const struct net_device_ops *ops = dev->netdev_ops;
10937 	const struct net_device_core_stats __percpu *p;
10938 
10939 	if (ops->ndo_get_stats64) {
10940 		memset(storage, 0, sizeof(*storage));
10941 		ops->ndo_get_stats64(dev, storage);
10942 	} else if (ops->ndo_get_stats) {
10943 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10944 	} else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_TSTATS) {
10945 		dev_get_tstats64(dev, storage);
10946 	} else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_DSTATS) {
10947 		dev_get_dstats64(dev, storage);
10948 	} else {
10949 		netdev_stats_to_stats64(storage, &dev->stats);
10950 	}
10951 
10952 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10953 	p = READ_ONCE(dev->core_stats);
10954 	if (p) {
10955 		const struct net_device_core_stats *core_stats;
10956 		int i;
10957 
10958 		for_each_possible_cpu(i) {
10959 			core_stats = per_cpu_ptr(p, i);
10960 			storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
10961 			storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
10962 			storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
10963 			storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
10964 		}
10965 	}
10966 	return storage;
10967 }
10968 EXPORT_SYMBOL(dev_get_stats);
10969 
10970 /**
10971  *	dev_fetch_sw_netstats - get per-cpu network device statistics
10972  *	@s: place to store stats
10973  *	@netstats: per-cpu network stats to read from
10974  *
10975  *	Read per-cpu network statistics and populate the related fields in @s.
10976  */
10977 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10978 			   const struct pcpu_sw_netstats __percpu *netstats)
10979 {
10980 	int cpu;
10981 
10982 	for_each_possible_cpu(cpu) {
10983 		u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
10984 		const struct pcpu_sw_netstats *stats;
10985 		unsigned int start;
10986 
10987 		stats = per_cpu_ptr(netstats, cpu);
10988 		do {
10989 			start = u64_stats_fetch_begin(&stats->syncp);
10990 			rx_packets = u64_stats_read(&stats->rx_packets);
10991 			rx_bytes   = u64_stats_read(&stats->rx_bytes);
10992 			tx_packets = u64_stats_read(&stats->tx_packets);
10993 			tx_bytes   = u64_stats_read(&stats->tx_bytes);
10994 		} while (u64_stats_fetch_retry(&stats->syncp, start));
10995 
10996 		s->rx_packets += rx_packets;
10997 		s->rx_bytes   += rx_bytes;
10998 		s->tx_packets += tx_packets;
10999 		s->tx_bytes   += tx_bytes;
11000 	}
11001 }
11002 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
11003 
11004 /**
11005  *	dev_get_tstats64 - ndo_get_stats64 implementation
11006  *	@dev: device to get statistics from
11007  *	@s: place to store stats
11008  *
11009  *	Populate @s from dev->stats and dev->tstats. Can be used as
11010  *	ndo_get_stats64() callback.
11011  */
11012 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
11013 {
11014 	netdev_stats_to_stats64(s, &dev->stats);
11015 	dev_fetch_sw_netstats(s, dev->tstats);
11016 }
11017 EXPORT_SYMBOL_GPL(dev_get_tstats64);
11018 
11019 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
11020 {
11021 	struct netdev_queue *queue = dev_ingress_queue(dev);
11022 
11023 #ifdef CONFIG_NET_CLS_ACT
11024 	if (queue)
11025 		return queue;
11026 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
11027 	if (!queue)
11028 		return NULL;
11029 	netdev_init_one_queue(dev, queue, NULL);
11030 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
11031 	RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
11032 	rcu_assign_pointer(dev->ingress_queue, queue);
11033 #endif
11034 	return queue;
11035 }
11036 
11037 static const struct ethtool_ops default_ethtool_ops;
11038 
11039 void netdev_set_default_ethtool_ops(struct net_device *dev,
11040 				    const struct ethtool_ops *ops)
11041 {
11042 	if (dev->ethtool_ops == &default_ethtool_ops)
11043 		dev->ethtool_ops = ops;
11044 }
11045 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
11046 
11047 /**
11048  * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
11049  * @dev: netdev to enable the IRQ coalescing on
11050  *
11051  * Sets a conservative default for SW IRQ coalescing. Users can use
11052  * sysfs attributes to override the default values.
11053  */
11054 void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
11055 {
11056 	WARN_ON(dev->reg_state == NETREG_REGISTERED);
11057 
11058 	if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
11059 		dev->gro_flush_timeout = 20000;
11060 		dev->napi_defer_hard_irqs = 1;
11061 	}
11062 }
11063 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
11064 
11065 /**
11066  * alloc_netdev_mqs - allocate network device
11067  * @sizeof_priv: size of private data to allocate space for
11068  * @name: device name format string
11069  * @name_assign_type: origin of device name
11070  * @setup: callback to initialize device
11071  * @txqs: the number of TX subqueues to allocate
11072  * @rxqs: the number of RX subqueues to allocate
11073  *
11074  * Allocates a struct net_device with private data area for driver use
11075  * and performs basic initialization.  Also allocates subqueue structs
11076  * for each queue on the device.
11077  */
11078 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
11079 		unsigned char name_assign_type,
11080 		void (*setup)(struct net_device *),
11081 		unsigned int txqs, unsigned int rxqs)
11082 {
11083 	struct net_device *dev;
11084 
11085 	BUG_ON(strlen(name) >= sizeof(dev->name));
11086 
11087 	if (txqs < 1) {
11088 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
11089 		return NULL;
11090 	}
11091 
11092 	if (rxqs < 1) {
11093 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
11094 		return NULL;
11095 	}
11096 
11097 	dev = kvzalloc(struct_size(dev, priv, sizeof_priv),
11098 		       GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
11099 	if (!dev)
11100 		return NULL;
11101 
11102 	dev->priv_len = sizeof_priv;
11103 
11104 	ref_tracker_dir_init(&dev->refcnt_tracker, 128, name);
11105 #ifdef CONFIG_PCPU_DEV_REFCNT
11106 	dev->pcpu_refcnt = alloc_percpu(int);
11107 	if (!dev->pcpu_refcnt)
11108 		goto free_dev;
11109 	__dev_hold(dev);
11110 #else
11111 	refcount_set(&dev->dev_refcnt, 1);
11112 #endif
11113 
11114 	if (dev_addr_init(dev))
11115 		goto free_pcpu;
11116 
11117 	dev_mc_init(dev);
11118 	dev_uc_init(dev);
11119 
11120 	dev_net_set(dev, &init_net);
11121 
11122 	dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
11123 	dev->xdp_zc_max_segs = 1;
11124 	dev->gso_max_segs = GSO_MAX_SEGS;
11125 	dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
11126 	dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
11127 	dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
11128 	dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
11129 	dev->tso_max_segs = TSO_MAX_SEGS;
11130 	dev->upper_level = 1;
11131 	dev->lower_level = 1;
11132 #ifdef CONFIG_LOCKDEP
11133 	dev->nested_level = 0;
11134 	INIT_LIST_HEAD(&dev->unlink_list);
11135 #endif
11136 
11137 	INIT_LIST_HEAD(&dev->napi_list);
11138 	INIT_LIST_HEAD(&dev->unreg_list);
11139 	INIT_LIST_HEAD(&dev->close_list);
11140 	INIT_LIST_HEAD(&dev->link_watch_list);
11141 	INIT_LIST_HEAD(&dev->adj_list.upper);
11142 	INIT_LIST_HEAD(&dev->adj_list.lower);
11143 	INIT_LIST_HEAD(&dev->ptype_all);
11144 	INIT_LIST_HEAD(&dev->ptype_specific);
11145 	INIT_LIST_HEAD(&dev->net_notifier_list);
11146 #ifdef CONFIG_NET_SCHED
11147 	hash_init(dev->qdisc_hash);
11148 #endif
11149 
11150 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
11151 	setup(dev);
11152 
11153 	if (!dev->tx_queue_len) {
11154 		dev->priv_flags |= IFF_NO_QUEUE;
11155 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
11156 	}
11157 
11158 	dev->num_tx_queues = txqs;
11159 	dev->real_num_tx_queues = txqs;
11160 	if (netif_alloc_netdev_queues(dev))
11161 		goto free_all;
11162 
11163 	dev->num_rx_queues = rxqs;
11164 	dev->real_num_rx_queues = rxqs;
11165 	if (netif_alloc_rx_queues(dev))
11166 		goto free_all;
11167 	dev->ethtool = kzalloc(sizeof(*dev->ethtool), GFP_KERNEL_ACCOUNT);
11168 	if (!dev->ethtool)
11169 		goto free_all;
11170 
11171 	strscpy(dev->name, name);
11172 	dev->name_assign_type = name_assign_type;
11173 	dev->group = INIT_NETDEV_GROUP;
11174 	if (!dev->ethtool_ops)
11175 		dev->ethtool_ops = &default_ethtool_ops;
11176 
11177 	nf_hook_netdev_init(dev);
11178 
11179 	return dev;
11180 
11181 free_all:
11182 	free_netdev(dev);
11183 	return NULL;
11184 
11185 free_pcpu:
11186 #ifdef CONFIG_PCPU_DEV_REFCNT
11187 	free_percpu(dev->pcpu_refcnt);
11188 free_dev:
11189 #endif
11190 	kvfree(dev);
11191 	return NULL;
11192 }
11193 EXPORT_SYMBOL(alloc_netdev_mqs);
11194 
11195 /**
11196  * free_netdev - free network device
11197  * @dev: device
11198  *
11199  * This function does the last stage of destroying an allocated device
11200  * interface. The reference to the device object is released. If this
11201  * is the last reference then it will be freed.Must be called in process
11202  * context.
11203  */
11204 void free_netdev(struct net_device *dev)
11205 {
11206 	struct napi_struct *p, *n;
11207 
11208 	might_sleep();
11209 
11210 	/* When called immediately after register_netdevice() failed the unwind
11211 	 * handling may still be dismantling the device. Handle that case by
11212 	 * deferring the free.
11213 	 */
11214 	if (dev->reg_state == NETREG_UNREGISTERING) {
11215 		ASSERT_RTNL();
11216 		dev->needs_free_netdev = true;
11217 		return;
11218 	}
11219 
11220 	kfree(dev->ethtool);
11221 	netif_free_tx_queues(dev);
11222 	netif_free_rx_queues(dev);
11223 
11224 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
11225 
11226 	/* Flush device addresses */
11227 	dev_addr_flush(dev);
11228 
11229 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
11230 		netif_napi_del(p);
11231 
11232 	ref_tracker_dir_exit(&dev->refcnt_tracker);
11233 #ifdef CONFIG_PCPU_DEV_REFCNT
11234 	free_percpu(dev->pcpu_refcnt);
11235 	dev->pcpu_refcnt = NULL;
11236 #endif
11237 	free_percpu(dev->core_stats);
11238 	dev->core_stats = NULL;
11239 	free_percpu(dev->xdp_bulkq);
11240 	dev->xdp_bulkq = NULL;
11241 
11242 	netdev_free_phy_link_topology(dev);
11243 
11244 	/*  Compatibility with error handling in drivers */
11245 	if (dev->reg_state == NETREG_UNINITIALIZED ||
11246 	    dev->reg_state == NETREG_DUMMY) {
11247 		kvfree(dev);
11248 		return;
11249 	}
11250 
11251 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
11252 	WRITE_ONCE(dev->reg_state, NETREG_RELEASED);
11253 
11254 	/* will free via device release */
11255 	put_device(&dev->dev);
11256 }
11257 EXPORT_SYMBOL(free_netdev);
11258 
11259 /**
11260  * alloc_netdev_dummy - Allocate and initialize a dummy net device.
11261  * @sizeof_priv: size of private data to allocate space for
11262  *
11263  * Return: the allocated net_device on success, NULL otherwise
11264  */
11265 struct net_device *alloc_netdev_dummy(int sizeof_priv)
11266 {
11267 	return alloc_netdev(sizeof_priv, "dummy#", NET_NAME_UNKNOWN,
11268 			    init_dummy_netdev_core);
11269 }
11270 EXPORT_SYMBOL_GPL(alloc_netdev_dummy);
11271 
11272 /**
11273  *	synchronize_net -  Synchronize with packet receive processing
11274  *
11275  *	Wait for packets currently being received to be done.
11276  *	Does not block later packets from starting.
11277  */
11278 void synchronize_net(void)
11279 {
11280 	might_sleep();
11281 	if (rtnl_is_locked())
11282 		synchronize_rcu_expedited();
11283 	else
11284 		synchronize_rcu();
11285 }
11286 EXPORT_SYMBOL(synchronize_net);
11287 
11288 static void netdev_rss_contexts_free(struct net_device *dev)
11289 {
11290 	struct ethtool_rxfh_context *ctx;
11291 	unsigned long context;
11292 
11293 	mutex_lock(&dev->ethtool->rss_lock);
11294 	xa_for_each(&dev->ethtool->rss_ctx, context, ctx) {
11295 		struct ethtool_rxfh_param rxfh;
11296 
11297 		rxfh.indir = ethtool_rxfh_context_indir(ctx);
11298 		rxfh.key = ethtool_rxfh_context_key(ctx);
11299 		rxfh.hfunc = ctx->hfunc;
11300 		rxfh.input_xfrm = ctx->input_xfrm;
11301 		rxfh.rss_context = context;
11302 		rxfh.rss_delete = true;
11303 
11304 		xa_erase(&dev->ethtool->rss_ctx, context);
11305 		if (dev->ethtool_ops->create_rxfh_context)
11306 			dev->ethtool_ops->remove_rxfh_context(dev, ctx,
11307 							      context, NULL);
11308 		else
11309 			dev->ethtool_ops->set_rxfh(dev, &rxfh, NULL);
11310 		kfree(ctx);
11311 	}
11312 	xa_destroy(&dev->ethtool->rss_ctx);
11313 	mutex_unlock(&dev->ethtool->rss_lock);
11314 }
11315 
11316 /**
11317  *	unregister_netdevice_queue - remove device from the kernel
11318  *	@dev: device
11319  *	@head: list
11320  *
11321  *	This function shuts down a device interface and removes it
11322  *	from the kernel tables.
11323  *	If head not NULL, device is queued to be unregistered later.
11324  *
11325  *	Callers must hold the rtnl semaphore.  You may want
11326  *	unregister_netdev() instead of this.
11327  */
11328 
11329 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
11330 {
11331 	ASSERT_RTNL();
11332 
11333 	if (head) {
11334 		list_move_tail(&dev->unreg_list, head);
11335 	} else {
11336 		LIST_HEAD(single);
11337 
11338 		list_add(&dev->unreg_list, &single);
11339 		unregister_netdevice_many(&single);
11340 	}
11341 }
11342 EXPORT_SYMBOL(unregister_netdevice_queue);
11343 
11344 void unregister_netdevice_many_notify(struct list_head *head,
11345 				      u32 portid, const struct nlmsghdr *nlh)
11346 {
11347 	struct net_device *dev, *tmp;
11348 	LIST_HEAD(close_head);
11349 	int cnt = 0;
11350 
11351 	BUG_ON(dev_boot_phase);
11352 	ASSERT_RTNL();
11353 
11354 	if (list_empty(head))
11355 		return;
11356 
11357 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
11358 		/* Some devices call without registering
11359 		 * for initialization unwind. Remove those
11360 		 * devices and proceed with the remaining.
11361 		 */
11362 		if (dev->reg_state == NETREG_UNINITIALIZED) {
11363 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
11364 				 dev->name, dev);
11365 
11366 			WARN_ON(1);
11367 			list_del(&dev->unreg_list);
11368 			continue;
11369 		}
11370 		dev->dismantle = true;
11371 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
11372 	}
11373 
11374 	/* If device is running, close it first. */
11375 	list_for_each_entry(dev, head, unreg_list)
11376 		list_add_tail(&dev->close_list, &close_head);
11377 	dev_close_many(&close_head, true);
11378 
11379 	list_for_each_entry(dev, head, unreg_list) {
11380 		/* And unlink it from device chain. */
11381 		unlist_netdevice(dev);
11382 		WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERING);
11383 	}
11384 	flush_all_backlogs();
11385 
11386 	synchronize_net();
11387 
11388 	list_for_each_entry(dev, head, unreg_list) {
11389 		struct sk_buff *skb = NULL;
11390 
11391 		/* Shutdown queueing discipline. */
11392 		dev_shutdown(dev);
11393 		dev_tcx_uninstall(dev);
11394 		dev_xdp_uninstall(dev);
11395 		bpf_dev_bound_netdev_unregister(dev);
11396 		dev_dmabuf_uninstall(dev);
11397 
11398 		netdev_offload_xstats_disable_all(dev);
11399 
11400 		/* Notify protocols, that we are about to destroy
11401 		 * this device. They should clean all the things.
11402 		 */
11403 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11404 
11405 		if (!dev->rtnl_link_ops ||
11406 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11407 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11408 						     GFP_KERNEL, NULL, 0,
11409 						     portid, nlh);
11410 
11411 		/*
11412 		 *	Flush the unicast and multicast chains
11413 		 */
11414 		dev_uc_flush(dev);
11415 		dev_mc_flush(dev);
11416 
11417 		netdev_name_node_alt_flush(dev);
11418 		netdev_name_node_free(dev->name_node);
11419 
11420 		netdev_rss_contexts_free(dev);
11421 
11422 		call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
11423 
11424 		if (dev->netdev_ops->ndo_uninit)
11425 			dev->netdev_ops->ndo_uninit(dev);
11426 
11427 		mutex_destroy(&dev->ethtool->rss_lock);
11428 
11429 		if (skb)
11430 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
11431 
11432 		/* Notifier chain MUST detach us all upper devices. */
11433 		WARN_ON(netdev_has_any_upper_dev(dev));
11434 		WARN_ON(netdev_has_any_lower_dev(dev));
11435 
11436 		/* Remove entries from kobject tree */
11437 		netdev_unregister_kobject(dev);
11438 #ifdef CONFIG_XPS
11439 		/* Remove XPS queueing entries */
11440 		netif_reset_xps_queues_gt(dev, 0);
11441 #endif
11442 	}
11443 
11444 	synchronize_net();
11445 
11446 	list_for_each_entry(dev, head, unreg_list) {
11447 		netdev_put(dev, &dev->dev_registered_tracker);
11448 		net_set_todo(dev);
11449 		cnt++;
11450 	}
11451 	atomic_add(cnt, &dev_unreg_count);
11452 
11453 	list_del(head);
11454 }
11455 
11456 /**
11457  *	unregister_netdevice_many - unregister many devices
11458  *	@head: list of devices
11459  *
11460  *  Note: As most callers use a stack allocated list_head,
11461  *  we force a list_del() to make sure stack won't be corrupted later.
11462  */
11463 void unregister_netdevice_many(struct list_head *head)
11464 {
11465 	unregister_netdevice_many_notify(head, 0, NULL);
11466 }
11467 EXPORT_SYMBOL(unregister_netdevice_many);
11468 
11469 /**
11470  *	unregister_netdev - remove device from the kernel
11471  *	@dev: device
11472  *
11473  *	This function shuts down a device interface and removes it
11474  *	from the kernel tables.
11475  *
11476  *	This is just a wrapper for unregister_netdevice that takes
11477  *	the rtnl semaphore.  In general you want to use this and not
11478  *	unregister_netdevice.
11479  */
11480 void unregister_netdev(struct net_device *dev)
11481 {
11482 	rtnl_lock();
11483 	unregister_netdevice(dev);
11484 	rtnl_unlock();
11485 }
11486 EXPORT_SYMBOL(unregister_netdev);
11487 
11488 /**
11489  *	__dev_change_net_namespace - move device to different nethost namespace
11490  *	@dev: device
11491  *	@net: network namespace
11492  *	@pat: If not NULL name pattern to try if the current device name
11493  *	      is already taken in the destination network namespace.
11494  *	@new_ifindex: If not zero, specifies device index in the target
11495  *	              namespace.
11496  *
11497  *	This function shuts down a device interface and moves it
11498  *	to a new network namespace. On success 0 is returned, on
11499  *	a failure a netagive errno code is returned.
11500  *
11501  *	Callers must hold the rtnl semaphore.
11502  */
11503 
11504 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11505 			       const char *pat, int new_ifindex)
11506 {
11507 	struct netdev_name_node *name_node;
11508 	struct net *net_old = dev_net(dev);
11509 	char new_name[IFNAMSIZ] = {};
11510 	int err, new_nsid;
11511 
11512 	ASSERT_RTNL();
11513 
11514 	/* Don't allow namespace local devices to be moved. */
11515 	err = -EINVAL;
11516 	if (dev->netns_local)
11517 		goto out;
11518 
11519 	/* Ensure the device has been registered */
11520 	if (dev->reg_state != NETREG_REGISTERED)
11521 		goto out;
11522 
11523 	/* Get out if there is nothing todo */
11524 	err = 0;
11525 	if (net_eq(net_old, net))
11526 		goto out;
11527 
11528 	/* Pick the destination device name, and ensure
11529 	 * we can use it in the destination network namespace.
11530 	 */
11531 	err = -EEXIST;
11532 	if (netdev_name_in_use(net, dev->name)) {
11533 		/* We get here if we can't use the current device name */
11534 		if (!pat)
11535 			goto out;
11536 		err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST);
11537 		if (err < 0)
11538 			goto out;
11539 	}
11540 	/* Check that none of the altnames conflicts. */
11541 	err = -EEXIST;
11542 	netdev_for_each_altname(dev, name_node)
11543 		if (netdev_name_in_use(net, name_node->name))
11544 			goto out;
11545 
11546 	/* Check that new_ifindex isn't used yet. */
11547 	if (new_ifindex) {
11548 		err = dev_index_reserve(net, new_ifindex);
11549 		if (err < 0)
11550 			goto out;
11551 	} else {
11552 		/* If there is an ifindex conflict assign a new one */
11553 		err = dev_index_reserve(net, dev->ifindex);
11554 		if (err == -EBUSY)
11555 			err = dev_index_reserve(net, 0);
11556 		if (err < 0)
11557 			goto out;
11558 		new_ifindex = err;
11559 	}
11560 
11561 	/*
11562 	 * And now a mini version of register_netdevice unregister_netdevice.
11563 	 */
11564 
11565 	/* If device is running close it first. */
11566 	dev_close(dev);
11567 
11568 	/* And unlink it from device chain */
11569 	unlist_netdevice(dev);
11570 
11571 	synchronize_net();
11572 
11573 	/* Shutdown queueing discipline. */
11574 	dev_shutdown(dev);
11575 
11576 	/* Notify protocols, that we are about to destroy
11577 	 * this device. They should clean all the things.
11578 	 *
11579 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
11580 	 * This is wanted because this way 8021q and macvlan know
11581 	 * the device is just moving and can keep their slaves up.
11582 	 */
11583 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11584 	rcu_barrier();
11585 
11586 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11587 
11588 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11589 			    new_ifindex);
11590 
11591 	/*
11592 	 *	Flush the unicast and multicast chains
11593 	 */
11594 	dev_uc_flush(dev);
11595 	dev_mc_flush(dev);
11596 
11597 	/* Send a netdev-removed uevent to the old namespace */
11598 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11599 	netdev_adjacent_del_links(dev);
11600 
11601 	/* Move per-net netdevice notifiers that are following the netdevice */
11602 	move_netdevice_notifiers_dev_net(dev, net);
11603 
11604 	/* Actually switch the network namespace */
11605 	dev_net_set(dev, net);
11606 	dev->ifindex = new_ifindex;
11607 
11608 	if (new_name[0]) {
11609 		/* Rename the netdev to prepared name */
11610 		write_seqlock_bh(&netdev_rename_lock);
11611 		strscpy(dev->name, new_name, IFNAMSIZ);
11612 		write_sequnlock_bh(&netdev_rename_lock);
11613 	}
11614 
11615 	/* Fixup kobjects */
11616 	dev_set_uevent_suppress(&dev->dev, 1);
11617 	err = device_rename(&dev->dev, dev->name);
11618 	dev_set_uevent_suppress(&dev->dev, 0);
11619 	WARN_ON(err);
11620 
11621 	/* Send a netdev-add uevent to the new namespace */
11622 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11623 	netdev_adjacent_add_links(dev);
11624 
11625 	/* Adapt owner in case owning user namespace of target network
11626 	 * namespace is different from the original one.
11627 	 */
11628 	err = netdev_change_owner(dev, net_old, net);
11629 	WARN_ON(err);
11630 
11631 	/* Add the device back in the hashes */
11632 	list_netdevice(dev);
11633 
11634 	/* Notify protocols, that a new device appeared. */
11635 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
11636 
11637 	/*
11638 	 *	Prevent userspace races by waiting until the network
11639 	 *	device is fully setup before sending notifications.
11640 	 */
11641 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11642 
11643 	synchronize_net();
11644 	err = 0;
11645 out:
11646 	return err;
11647 }
11648 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11649 
11650 static int dev_cpu_dead(unsigned int oldcpu)
11651 {
11652 	struct sk_buff **list_skb;
11653 	struct sk_buff *skb;
11654 	unsigned int cpu;
11655 	struct softnet_data *sd, *oldsd, *remsd = NULL;
11656 
11657 	local_irq_disable();
11658 	cpu = smp_processor_id();
11659 	sd = &per_cpu(softnet_data, cpu);
11660 	oldsd = &per_cpu(softnet_data, oldcpu);
11661 
11662 	/* Find end of our completion_queue. */
11663 	list_skb = &sd->completion_queue;
11664 	while (*list_skb)
11665 		list_skb = &(*list_skb)->next;
11666 	/* Append completion queue from offline CPU. */
11667 	*list_skb = oldsd->completion_queue;
11668 	oldsd->completion_queue = NULL;
11669 
11670 	/* Append output queue from offline CPU. */
11671 	if (oldsd->output_queue) {
11672 		*sd->output_queue_tailp = oldsd->output_queue;
11673 		sd->output_queue_tailp = oldsd->output_queue_tailp;
11674 		oldsd->output_queue = NULL;
11675 		oldsd->output_queue_tailp = &oldsd->output_queue;
11676 	}
11677 	/* Append NAPI poll list from offline CPU, with one exception :
11678 	 * process_backlog() must be called by cpu owning percpu backlog.
11679 	 * We properly handle process_queue & input_pkt_queue later.
11680 	 */
11681 	while (!list_empty(&oldsd->poll_list)) {
11682 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11683 							    struct napi_struct,
11684 							    poll_list);
11685 
11686 		list_del_init(&napi->poll_list);
11687 		if (napi->poll == process_backlog)
11688 			napi->state &= NAPIF_STATE_THREADED;
11689 		else
11690 			____napi_schedule(sd, napi);
11691 	}
11692 
11693 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
11694 	local_irq_enable();
11695 
11696 	if (!use_backlog_threads()) {
11697 #ifdef CONFIG_RPS
11698 		remsd = oldsd->rps_ipi_list;
11699 		oldsd->rps_ipi_list = NULL;
11700 #endif
11701 		/* send out pending IPI's on offline CPU */
11702 		net_rps_send_ipi(remsd);
11703 	}
11704 
11705 	/* Process offline CPU's input_pkt_queue */
11706 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11707 		netif_rx(skb);
11708 		rps_input_queue_head_incr(oldsd);
11709 	}
11710 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11711 		netif_rx(skb);
11712 		rps_input_queue_head_incr(oldsd);
11713 	}
11714 
11715 	return 0;
11716 }
11717 
11718 /**
11719  *	netdev_increment_features - increment feature set by one
11720  *	@all: current feature set
11721  *	@one: new feature set
11722  *	@mask: mask feature set
11723  *
11724  *	Computes a new feature set after adding a device with feature set
11725  *	@one to the master device with current feature set @all.  Will not
11726  *	enable anything that is off in @mask. Returns the new feature set.
11727  */
11728 netdev_features_t netdev_increment_features(netdev_features_t all,
11729 	netdev_features_t one, netdev_features_t mask)
11730 {
11731 	if (mask & NETIF_F_HW_CSUM)
11732 		mask |= NETIF_F_CSUM_MASK;
11733 	mask |= NETIF_F_VLAN_CHALLENGED;
11734 
11735 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11736 	all &= one | ~NETIF_F_ALL_FOR_ALL;
11737 
11738 	/* If one device supports hw checksumming, set for all. */
11739 	if (all & NETIF_F_HW_CSUM)
11740 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11741 
11742 	return all;
11743 }
11744 EXPORT_SYMBOL(netdev_increment_features);
11745 
11746 static struct hlist_head * __net_init netdev_create_hash(void)
11747 {
11748 	int i;
11749 	struct hlist_head *hash;
11750 
11751 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11752 	if (hash != NULL)
11753 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
11754 			INIT_HLIST_HEAD(&hash[i]);
11755 
11756 	return hash;
11757 }
11758 
11759 /* Initialize per network namespace state */
11760 static int __net_init netdev_init(struct net *net)
11761 {
11762 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
11763 		     8 * sizeof_field(struct napi_struct, gro_bitmask));
11764 
11765 	INIT_LIST_HEAD(&net->dev_base_head);
11766 
11767 	net->dev_name_head = netdev_create_hash();
11768 	if (net->dev_name_head == NULL)
11769 		goto err_name;
11770 
11771 	net->dev_index_head = netdev_create_hash();
11772 	if (net->dev_index_head == NULL)
11773 		goto err_idx;
11774 
11775 	xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1);
11776 
11777 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11778 
11779 	return 0;
11780 
11781 err_idx:
11782 	kfree(net->dev_name_head);
11783 err_name:
11784 	return -ENOMEM;
11785 }
11786 
11787 /**
11788  *	netdev_drivername - network driver for the device
11789  *	@dev: network device
11790  *
11791  *	Determine network driver for device.
11792  */
11793 const char *netdev_drivername(const struct net_device *dev)
11794 {
11795 	const struct device_driver *driver;
11796 	const struct device *parent;
11797 	const char *empty = "";
11798 
11799 	parent = dev->dev.parent;
11800 	if (!parent)
11801 		return empty;
11802 
11803 	driver = parent->driver;
11804 	if (driver && driver->name)
11805 		return driver->name;
11806 	return empty;
11807 }
11808 
11809 static void __netdev_printk(const char *level, const struct net_device *dev,
11810 			    struct va_format *vaf)
11811 {
11812 	if (dev && dev->dev.parent) {
11813 		dev_printk_emit(level[1] - '0',
11814 				dev->dev.parent,
11815 				"%s %s %s%s: %pV",
11816 				dev_driver_string(dev->dev.parent),
11817 				dev_name(dev->dev.parent),
11818 				netdev_name(dev), netdev_reg_state(dev),
11819 				vaf);
11820 	} else if (dev) {
11821 		printk("%s%s%s: %pV",
11822 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
11823 	} else {
11824 		printk("%s(NULL net_device): %pV", level, vaf);
11825 	}
11826 }
11827 
11828 void netdev_printk(const char *level, const struct net_device *dev,
11829 		   const char *format, ...)
11830 {
11831 	struct va_format vaf;
11832 	va_list args;
11833 
11834 	va_start(args, format);
11835 
11836 	vaf.fmt = format;
11837 	vaf.va = &args;
11838 
11839 	__netdev_printk(level, dev, &vaf);
11840 
11841 	va_end(args);
11842 }
11843 EXPORT_SYMBOL(netdev_printk);
11844 
11845 #define define_netdev_printk_level(func, level)			\
11846 void func(const struct net_device *dev, const char *fmt, ...)	\
11847 {								\
11848 	struct va_format vaf;					\
11849 	va_list args;						\
11850 								\
11851 	va_start(args, fmt);					\
11852 								\
11853 	vaf.fmt = fmt;						\
11854 	vaf.va = &args;						\
11855 								\
11856 	__netdev_printk(level, dev, &vaf);			\
11857 								\
11858 	va_end(args);						\
11859 }								\
11860 EXPORT_SYMBOL(func);
11861 
11862 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11863 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11864 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11865 define_netdev_printk_level(netdev_err, KERN_ERR);
11866 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11867 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11868 define_netdev_printk_level(netdev_info, KERN_INFO);
11869 
11870 static void __net_exit netdev_exit(struct net *net)
11871 {
11872 	kfree(net->dev_name_head);
11873 	kfree(net->dev_index_head);
11874 	xa_destroy(&net->dev_by_index);
11875 	if (net != &init_net)
11876 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11877 }
11878 
11879 static struct pernet_operations __net_initdata netdev_net_ops = {
11880 	.init = netdev_init,
11881 	.exit = netdev_exit,
11882 };
11883 
11884 static void __net_exit default_device_exit_net(struct net *net)
11885 {
11886 	struct netdev_name_node *name_node, *tmp;
11887 	struct net_device *dev, *aux;
11888 	/*
11889 	 * Push all migratable network devices back to the
11890 	 * initial network namespace
11891 	 */
11892 	ASSERT_RTNL();
11893 	for_each_netdev_safe(net, dev, aux) {
11894 		int err;
11895 		char fb_name[IFNAMSIZ];
11896 
11897 		/* Ignore unmoveable devices (i.e. loopback) */
11898 		if (dev->netns_local)
11899 			continue;
11900 
11901 		/* Leave virtual devices for the generic cleanup */
11902 		if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11903 			continue;
11904 
11905 		/* Push remaining network devices to init_net */
11906 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11907 		if (netdev_name_in_use(&init_net, fb_name))
11908 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
11909 
11910 		netdev_for_each_altname_safe(dev, name_node, tmp)
11911 			if (netdev_name_in_use(&init_net, name_node->name))
11912 				__netdev_name_node_alt_destroy(name_node);
11913 
11914 		err = dev_change_net_namespace(dev, &init_net, fb_name);
11915 		if (err) {
11916 			pr_emerg("%s: failed to move %s to init_net: %d\n",
11917 				 __func__, dev->name, err);
11918 			BUG();
11919 		}
11920 	}
11921 }
11922 
11923 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11924 {
11925 	/* At exit all network devices most be removed from a network
11926 	 * namespace.  Do this in the reverse order of registration.
11927 	 * Do this across as many network namespaces as possible to
11928 	 * improve batching efficiency.
11929 	 */
11930 	struct net_device *dev;
11931 	struct net *net;
11932 	LIST_HEAD(dev_kill_list);
11933 
11934 	rtnl_lock();
11935 	list_for_each_entry(net, net_list, exit_list) {
11936 		default_device_exit_net(net);
11937 		cond_resched();
11938 	}
11939 
11940 	list_for_each_entry(net, net_list, exit_list) {
11941 		for_each_netdev_reverse(net, dev) {
11942 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11943 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11944 			else
11945 				unregister_netdevice_queue(dev, &dev_kill_list);
11946 		}
11947 	}
11948 	unregister_netdevice_many(&dev_kill_list);
11949 	rtnl_unlock();
11950 }
11951 
11952 static struct pernet_operations __net_initdata default_device_ops = {
11953 	.exit_batch = default_device_exit_batch,
11954 };
11955 
11956 static void __init net_dev_struct_check(void)
11957 {
11958 	/* TX read-mostly hotpath */
11959 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, priv_flags_fast);
11960 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, netdev_ops);
11961 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, header_ops);
11962 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, _tx);
11963 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, real_num_tx_queues);
11964 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_size);
11965 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_ipv4_max_size);
11966 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_segs);
11967 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_partial_features);
11968 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, num_tc);
11969 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, mtu);
11970 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, needed_headroom);
11971 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tc_to_txq);
11972 #ifdef CONFIG_XPS
11973 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, xps_maps);
11974 #endif
11975 #ifdef CONFIG_NETFILTER_EGRESS
11976 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, nf_hooks_egress);
11977 #endif
11978 #ifdef CONFIG_NET_XGRESS
11979 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tcx_egress);
11980 #endif
11981 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_tx, 160);
11982 
11983 	/* TXRX read-mostly hotpath */
11984 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, lstats);
11985 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, state);
11986 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, flags);
11987 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, hard_header_len);
11988 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, features);
11989 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, ip6_ptr);
11990 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_txrx, 46);
11991 
11992 	/* RX read-mostly hotpath */
11993 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ptype_specific);
11994 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ifindex);
11995 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, real_num_rx_queues);
11996 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, _rx);
11997 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_flush_timeout);
11998 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, napi_defer_hard_irqs);
11999 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_max_size);
12000 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_ipv4_max_size);
12001 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler);
12002 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler_data);
12003 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, nd_net);
12004 #ifdef CONFIG_NETPOLL
12005 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, npinfo);
12006 #endif
12007 #ifdef CONFIG_NET_XGRESS
12008 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, tcx_ingress);
12009 #endif
12010 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_rx, 104);
12011 }
12012 
12013 /*
12014  *	Initialize the DEV module. At boot time this walks the device list and
12015  *	unhooks any devices that fail to initialise (normally hardware not
12016  *	present) and leaves us with a valid list of present and active devices.
12017  *
12018  */
12019 
12020 /* We allocate 256 pages for each CPU if PAGE_SHIFT is 12 */
12021 #define SYSTEM_PERCPU_PAGE_POOL_SIZE	((1 << 20) / PAGE_SIZE)
12022 
12023 static int net_page_pool_create(int cpuid)
12024 {
12025 #if IS_ENABLED(CONFIG_PAGE_POOL)
12026 	struct page_pool_params page_pool_params = {
12027 		.pool_size = SYSTEM_PERCPU_PAGE_POOL_SIZE,
12028 		.flags = PP_FLAG_SYSTEM_POOL,
12029 		.nid = cpu_to_mem(cpuid),
12030 	};
12031 	struct page_pool *pp_ptr;
12032 
12033 	pp_ptr = page_pool_create_percpu(&page_pool_params, cpuid);
12034 	if (IS_ERR(pp_ptr))
12035 		return -ENOMEM;
12036 
12037 	per_cpu(system_page_pool, cpuid) = pp_ptr;
12038 #endif
12039 	return 0;
12040 }
12041 
12042 static int backlog_napi_should_run(unsigned int cpu)
12043 {
12044 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12045 	struct napi_struct *napi = &sd->backlog;
12046 
12047 	return test_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
12048 }
12049 
12050 static void run_backlog_napi(unsigned int cpu)
12051 {
12052 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12053 
12054 	napi_threaded_poll_loop(&sd->backlog);
12055 }
12056 
12057 static void backlog_napi_setup(unsigned int cpu)
12058 {
12059 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12060 	struct napi_struct *napi = &sd->backlog;
12061 
12062 	napi->thread = this_cpu_read(backlog_napi);
12063 	set_bit(NAPI_STATE_THREADED, &napi->state);
12064 }
12065 
12066 static struct smp_hotplug_thread backlog_threads = {
12067 	.store			= &backlog_napi,
12068 	.thread_should_run	= backlog_napi_should_run,
12069 	.thread_fn		= run_backlog_napi,
12070 	.thread_comm		= "backlog_napi/%u",
12071 	.setup			= backlog_napi_setup,
12072 };
12073 
12074 /*
12075  *       This is called single threaded during boot, so no need
12076  *       to take the rtnl semaphore.
12077  */
12078 static int __init net_dev_init(void)
12079 {
12080 	int i, rc = -ENOMEM;
12081 
12082 	BUG_ON(!dev_boot_phase);
12083 
12084 	net_dev_struct_check();
12085 
12086 	if (dev_proc_init())
12087 		goto out;
12088 
12089 	if (netdev_kobject_init())
12090 		goto out;
12091 
12092 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
12093 		INIT_LIST_HEAD(&ptype_base[i]);
12094 
12095 	if (register_pernet_subsys(&netdev_net_ops))
12096 		goto out;
12097 
12098 	/*
12099 	 *	Initialise the packet receive queues.
12100 	 */
12101 
12102 	for_each_possible_cpu(i) {
12103 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
12104 		struct softnet_data *sd = &per_cpu(softnet_data, i);
12105 
12106 		INIT_WORK(flush, flush_backlog);
12107 
12108 		skb_queue_head_init(&sd->input_pkt_queue);
12109 		skb_queue_head_init(&sd->process_queue);
12110 #ifdef CONFIG_XFRM_OFFLOAD
12111 		skb_queue_head_init(&sd->xfrm_backlog);
12112 #endif
12113 		INIT_LIST_HEAD(&sd->poll_list);
12114 		sd->output_queue_tailp = &sd->output_queue;
12115 #ifdef CONFIG_RPS
12116 		INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
12117 		sd->cpu = i;
12118 #endif
12119 		INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
12120 		spin_lock_init(&sd->defer_lock);
12121 
12122 		init_gro_hash(&sd->backlog);
12123 		sd->backlog.poll = process_backlog;
12124 		sd->backlog.weight = weight_p;
12125 		INIT_LIST_HEAD(&sd->backlog.poll_list);
12126 
12127 		if (net_page_pool_create(i))
12128 			goto out;
12129 	}
12130 	if (use_backlog_threads())
12131 		smpboot_register_percpu_thread(&backlog_threads);
12132 
12133 	dev_boot_phase = 0;
12134 
12135 	/* The loopback device is special if any other network devices
12136 	 * is present in a network namespace the loopback device must
12137 	 * be present. Since we now dynamically allocate and free the
12138 	 * loopback device ensure this invariant is maintained by
12139 	 * keeping the loopback device as the first device on the
12140 	 * list of network devices.  Ensuring the loopback devices
12141 	 * is the first device that appears and the last network device
12142 	 * that disappears.
12143 	 */
12144 	if (register_pernet_device(&loopback_net_ops))
12145 		goto out;
12146 
12147 	if (register_pernet_device(&default_device_ops))
12148 		goto out;
12149 
12150 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
12151 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
12152 
12153 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
12154 				       NULL, dev_cpu_dead);
12155 	WARN_ON(rc < 0);
12156 	rc = 0;
12157 
12158 	/* avoid static key IPIs to isolated CPUs */
12159 	if (housekeeping_enabled(HK_TYPE_MISC))
12160 		net_enable_timestamp();
12161 out:
12162 	if (rc < 0) {
12163 		for_each_possible_cpu(i) {
12164 			struct page_pool *pp_ptr;
12165 
12166 			pp_ptr = per_cpu(system_page_pool, i);
12167 			if (!pp_ptr)
12168 				continue;
12169 
12170 			page_pool_destroy(pp_ptr);
12171 			per_cpu(system_page_pool, i) = NULL;
12172 		}
12173 	}
12174 
12175 	return rc;
12176 }
12177 
12178 subsys_initcall(net_dev_init);
12179