xref: /linux/net/core/dev.c (revision 564f7dfde24a405d877168f150ae5d29d3ad99c7)
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <linux/bpf.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <net/busy_poll.h>
101 #include <linux/rtnetlink.h>
102 #include <linux/stat.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/iw_handler.h>
115 #include <asm/current.h>
116 #include <linux/audit.h>
117 #include <linux/dmaengine.h>
118 #include <linux/err.h>
119 #include <linux/ctype.h>
120 #include <linux/if_arp.h>
121 #include <linux/if_vlan.h>
122 #include <linux/ip.h>
123 #include <net/ip.h>
124 #include <net/mpls.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 #include <trace/events/napi.h>
130 #include <trace/events/net.h>
131 #include <trace/events/skb.h>
132 #include <linux/pci.h>
133 #include <linux/inetdevice.h>
134 #include <linux/cpu_rmap.h>
135 #include <linux/static_key.h>
136 #include <linux/hashtable.h>
137 #include <linux/vmalloc.h>
138 #include <linux/if_macvlan.h>
139 #include <linux/errqueue.h>
140 #include <linux/hrtimer.h>
141 #include <linux/netfilter_ingress.h>
142 #include <linux/crash_dump.h>
143 
144 #include "net-sysfs.h"
145 
146 /* Instead of increasing this, you should create a hash table. */
147 #define MAX_GRO_SKBS 8
148 
149 /* This should be increased if a protocol with a bigger head is added. */
150 #define GRO_MAX_HEAD (MAX_HEADER + 128)
151 
152 static DEFINE_SPINLOCK(ptype_lock);
153 static DEFINE_SPINLOCK(offload_lock);
154 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
155 struct list_head ptype_all __read_mostly;	/* Taps */
156 static struct list_head offload_base __read_mostly;
157 
158 static int netif_rx_internal(struct sk_buff *skb);
159 static int call_netdevice_notifiers_info(unsigned long val,
160 					 struct net_device *dev,
161 					 struct netdev_notifier_info *info);
162 
163 /*
164  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
165  * semaphore.
166  *
167  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
168  *
169  * Writers must hold the rtnl semaphore while they loop through the
170  * dev_base_head list, and hold dev_base_lock for writing when they do the
171  * actual updates.  This allows pure readers to access the list even
172  * while a writer is preparing to update it.
173  *
174  * To put it another way, dev_base_lock is held for writing only to
175  * protect against pure readers; the rtnl semaphore provides the
176  * protection against other writers.
177  *
178  * See, for example usages, register_netdevice() and
179  * unregister_netdevice(), which must be called with the rtnl
180  * semaphore held.
181  */
182 DEFINE_RWLOCK(dev_base_lock);
183 EXPORT_SYMBOL(dev_base_lock);
184 
185 /* protects napi_hash addition/deletion and napi_gen_id */
186 static DEFINE_SPINLOCK(napi_hash_lock);
187 
188 static unsigned int napi_gen_id = NR_CPUS;
189 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
190 
191 static seqcount_t devnet_rename_seq;
192 
193 static inline void dev_base_seq_inc(struct net *net)
194 {
195 	while (++net->dev_base_seq == 0)
196 		;
197 }
198 
199 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
200 {
201 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
202 
203 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
204 }
205 
206 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
207 {
208 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
209 }
210 
211 static inline void rps_lock(struct softnet_data *sd)
212 {
213 #ifdef CONFIG_RPS
214 	spin_lock(&sd->input_pkt_queue.lock);
215 #endif
216 }
217 
218 static inline void rps_unlock(struct softnet_data *sd)
219 {
220 #ifdef CONFIG_RPS
221 	spin_unlock(&sd->input_pkt_queue.lock);
222 #endif
223 }
224 
225 /* Device list insertion */
226 static void list_netdevice(struct net_device *dev)
227 {
228 	struct net *net = dev_net(dev);
229 
230 	ASSERT_RTNL();
231 
232 	write_lock_bh(&dev_base_lock);
233 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
234 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
235 	hlist_add_head_rcu(&dev->index_hlist,
236 			   dev_index_hash(net, dev->ifindex));
237 	write_unlock_bh(&dev_base_lock);
238 
239 	dev_base_seq_inc(net);
240 }
241 
242 /* Device list removal
243  * caller must respect a RCU grace period before freeing/reusing dev
244  */
245 static void unlist_netdevice(struct net_device *dev)
246 {
247 	ASSERT_RTNL();
248 
249 	/* Unlink dev from the device chain */
250 	write_lock_bh(&dev_base_lock);
251 	list_del_rcu(&dev->dev_list);
252 	hlist_del_rcu(&dev->name_hlist);
253 	hlist_del_rcu(&dev->index_hlist);
254 	write_unlock_bh(&dev_base_lock);
255 
256 	dev_base_seq_inc(dev_net(dev));
257 }
258 
259 /*
260  *	Our notifier list
261  */
262 
263 static RAW_NOTIFIER_HEAD(netdev_chain);
264 
265 /*
266  *	Device drivers call our routines to queue packets here. We empty the
267  *	queue in the local softnet handler.
268  */
269 
270 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
271 EXPORT_PER_CPU_SYMBOL(softnet_data);
272 
273 #ifdef CONFIG_LOCKDEP
274 /*
275  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
276  * according to dev->type
277  */
278 static const unsigned short netdev_lock_type[] = {
279 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
280 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
281 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
282 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
283 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
284 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
285 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
286 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
287 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
288 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
289 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
290 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
291 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
292 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
293 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
294 
295 static const char *const netdev_lock_name[] = {
296 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
297 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
298 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
299 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
300 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
301 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
302 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
303 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
304 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
305 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
306 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
307 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
308 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
309 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
310 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
311 
312 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
313 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
314 
315 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
316 {
317 	int i;
318 
319 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
320 		if (netdev_lock_type[i] == dev_type)
321 			return i;
322 	/* the last key is used by default */
323 	return ARRAY_SIZE(netdev_lock_type) - 1;
324 }
325 
326 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
327 						 unsigned short dev_type)
328 {
329 	int i;
330 
331 	i = netdev_lock_pos(dev_type);
332 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
333 				   netdev_lock_name[i]);
334 }
335 
336 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
337 {
338 	int i;
339 
340 	i = netdev_lock_pos(dev->type);
341 	lockdep_set_class_and_name(&dev->addr_list_lock,
342 				   &netdev_addr_lock_key[i],
343 				   netdev_lock_name[i]);
344 }
345 #else
346 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
347 						 unsigned short dev_type)
348 {
349 }
350 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
351 {
352 }
353 #endif
354 
355 /*******************************************************************************
356  *
357  *		Protocol management and registration routines
358  *
359  *******************************************************************************/
360 
361 
362 /*
363  *	Add a protocol ID to the list. Now that the input handler is
364  *	smarter we can dispense with all the messy stuff that used to be
365  *	here.
366  *
367  *	BEWARE!!! Protocol handlers, mangling input packets,
368  *	MUST BE last in hash buckets and checking protocol handlers
369  *	MUST start from promiscuous ptype_all chain in net_bh.
370  *	It is true now, do not change it.
371  *	Explanation follows: if protocol handler, mangling packet, will
372  *	be the first on list, it is not able to sense, that packet
373  *	is cloned and should be copied-on-write, so that it will
374  *	change it and subsequent readers will get broken packet.
375  *							--ANK (980803)
376  */
377 
378 static inline struct list_head *ptype_head(const struct packet_type *pt)
379 {
380 	if (pt->type == htons(ETH_P_ALL))
381 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
382 	else
383 		return pt->dev ? &pt->dev->ptype_specific :
384 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
385 }
386 
387 /**
388  *	dev_add_pack - add packet handler
389  *	@pt: packet type declaration
390  *
391  *	Add a protocol handler to the networking stack. The passed &packet_type
392  *	is linked into kernel lists and may not be freed until it has been
393  *	removed from the kernel lists.
394  *
395  *	This call does not sleep therefore it can not
396  *	guarantee all CPU's that are in middle of receiving packets
397  *	will see the new packet type (until the next received packet).
398  */
399 
400 void dev_add_pack(struct packet_type *pt)
401 {
402 	struct list_head *head = ptype_head(pt);
403 
404 	spin_lock(&ptype_lock);
405 	list_add_rcu(&pt->list, head);
406 	spin_unlock(&ptype_lock);
407 }
408 EXPORT_SYMBOL(dev_add_pack);
409 
410 /**
411  *	__dev_remove_pack	 - remove packet handler
412  *	@pt: packet type declaration
413  *
414  *	Remove a protocol handler that was previously added to the kernel
415  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
416  *	from the kernel lists and can be freed or reused once this function
417  *	returns.
418  *
419  *      The packet type might still be in use by receivers
420  *	and must not be freed until after all the CPU's have gone
421  *	through a quiescent state.
422  */
423 void __dev_remove_pack(struct packet_type *pt)
424 {
425 	struct list_head *head = ptype_head(pt);
426 	struct packet_type *pt1;
427 
428 	spin_lock(&ptype_lock);
429 
430 	list_for_each_entry(pt1, head, list) {
431 		if (pt == pt1) {
432 			list_del_rcu(&pt->list);
433 			goto out;
434 		}
435 	}
436 
437 	pr_warn("dev_remove_pack: %p not found\n", pt);
438 out:
439 	spin_unlock(&ptype_lock);
440 }
441 EXPORT_SYMBOL(__dev_remove_pack);
442 
443 /**
444  *	dev_remove_pack	 - remove packet handler
445  *	@pt: packet type declaration
446  *
447  *	Remove a protocol handler that was previously added to the kernel
448  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
449  *	from the kernel lists and can be freed or reused once this function
450  *	returns.
451  *
452  *	This call sleeps to guarantee that no CPU is looking at the packet
453  *	type after return.
454  */
455 void dev_remove_pack(struct packet_type *pt)
456 {
457 	__dev_remove_pack(pt);
458 
459 	synchronize_net();
460 }
461 EXPORT_SYMBOL(dev_remove_pack);
462 
463 
464 /**
465  *	dev_add_offload - register offload handlers
466  *	@po: protocol offload declaration
467  *
468  *	Add protocol offload handlers to the networking stack. The passed
469  *	&proto_offload is linked into kernel lists and may not be freed until
470  *	it has been removed from the kernel lists.
471  *
472  *	This call does not sleep therefore it can not
473  *	guarantee all CPU's that are in middle of receiving packets
474  *	will see the new offload handlers (until the next received packet).
475  */
476 void dev_add_offload(struct packet_offload *po)
477 {
478 	struct packet_offload *elem;
479 
480 	spin_lock(&offload_lock);
481 	list_for_each_entry(elem, &offload_base, list) {
482 		if (po->priority < elem->priority)
483 			break;
484 	}
485 	list_add_rcu(&po->list, elem->list.prev);
486 	spin_unlock(&offload_lock);
487 }
488 EXPORT_SYMBOL(dev_add_offload);
489 
490 /**
491  *	__dev_remove_offload	 - remove offload handler
492  *	@po: packet offload declaration
493  *
494  *	Remove a protocol offload handler that was previously added to the
495  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
496  *	is removed from the kernel lists and can be freed or reused once this
497  *	function returns.
498  *
499  *      The packet type might still be in use by receivers
500  *	and must not be freed until after all the CPU's have gone
501  *	through a quiescent state.
502  */
503 static void __dev_remove_offload(struct packet_offload *po)
504 {
505 	struct list_head *head = &offload_base;
506 	struct packet_offload *po1;
507 
508 	spin_lock(&offload_lock);
509 
510 	list_for_each_entry(po1, head, list) {
511 		if (po == po1) {
512 			list_del_rcu(&po->list);
513 			goto out;
514 		}
515 	}
516 
517 	pr_warn("dev_remove_offload: %p not found\n", po);
518 out:
519 	spin_unlock(&offload_lock);
520 }
521 
522 /**
523  *	dev_remove_offload	 - remove packet offload handler
524  *	@po: packet offload declaration
525  *
526  *	Remove a packet offload handler that was previously added to the kernel
527  *	offload handlers by dev_add_offload(). The passed &offload_type is
528  *	removed from the kernel lists and can be freed or reused once this
529  *	function returns.
530  *
531  *	This call sleeps to guarantee that no CPU is looking at the packet
532  *	type after return.
533  */
534 void dev_remove_offload(struct packet_offload *po)
535 {
536 	__dev_remove_offload(po);
537 
538 	synchronize_net();
539 }
540 EXPORT_SYMBOL(dev_remove_offload);
541 
542 /******************************************************************************
543  *
544  *		      Device Boot-time Settings Routines
545  *
546  ******************************************************************************/
547 
548 /* Boot time configuration table */
549 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
550 
551 /**
552  *	netdev_boot_setup_add	- add new setup entry
553  *	@name: name of the device
554  *	@map: configured settings for the device
555  *
556  *	Adds new setup entry to the dev_boot_setup list.  The function
557  *	returns 0 on error and 1 on success.  This is a generic routine to
558  *	all netdevices.
559  */
560 static int netdev_boot_setup_add(char *name, struct ifmap *map)
561 {
562 	struct netdev_boot_setup *s;
563 	int i;
564 
565 	s = dev_boot_setup;
566 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
567 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
568 			memset(s[i].name, 0, sizeof(s[i].name));
569 			strlcpy(s[i].name, name, IFNAMSIZ);
570 			memcpy(&s[i].map, map, sizeof(s[i].map));
571 			break;
572 		}
573 	}
574 
575 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
576 }
577 
578 /**
579  * netdev_boot_setup_check	- check boot time settings
580  * @dev: the netdevice
581  *
582  * Check boot time settings for the device.
583  * The found settings are set for the device to be used
584  * later in the device probing.
585  * Returns 0 if no settings found, 1 if they are.
586  */
587 int netdev_boot_setup_check(struct net_device *dev)
588 {
589 	struct netdev_boot_setup *s = dev_boot_setup;
590 	int i;
591 
592 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
593 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
594 		    !strcmp(dev->name, s[i].name)) {
595 			dev->irq = s[i].map.irq;
596 			dev->base_addr = s[i].map.base_addr;
597 			dev->mem_start = s[i].map.mem_start;
598 			dev->mem_end = s[i].map.mem_end;
599 			return 1;
600 		}
601 	}
602 	return 0;
603 }
604 EXPORT_SYMBOL(netdev_boot_setup_check);
605 
606 
607 /**
608  * netdev_boot_base	- get address from boot time settings
609  * @prefix: prefix for network device
610  * @unit: id for network device
611  *
612  * Check boot time settings for the base address of device.
613  * The found settings are set for the device to be used
614  * later in the device probing.
615  * Returns 0 if no settings found.
616  */
617 unsigned long netdev_boot_base(const char *prefix, int unit)
618 {
619 	const struct netdev_boot_setup *s = dev_boot_setup;
620 	char name[IFNAMSIZ];
621 	int i;
622 
623 	sprintf(name, "%s%d", prefix, unit);
624 
625 	/*
626 	 * If device already registered then return base of 1
627 	 * to indicate not to probe for this interface
628 	 */
629 	if (__dev_get_by_name(&init_net, name))
630 		return 1;
631 
632 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
633 		if (!strcmp(name, s[i].name))
634 			return s[i].map.base_addr;
635 	return 0;
636 }
637 
638 /*
639  * Saves at boot time configured settings for any netdevice.
640  */
641 int __init netdev_boot_setup(char *str)
642 {
643 	int ints[5];
644 	struct ifmap map;
645 
646 	str = get_options(str, ARRAY_SIZE(ints), ints);
647 	if (!str || !*str)
648 		return 0;
649 
650 	/* Save settings */
651 	memset(&map, 0, sizeof(map));
652 	if (ints[0] > 0)
653 		map.irq = ints[1];
654 	if (ints[0] > 1)
655 		map.base_addr = ints[2];
656 	if (ints[0] > 2)
657 		map.mem_start = ints[3];
658 	if (ints[0] > 3)
659 		map.mem_end = ints[4];
660 
661 	/* Add new entry to the list */
662 	return netdev_boot_setup_add(str, &map);
663 }
664 
665 __setup("netdev=", netdev_boot_setup);
666 
667 /*******************************************************************************
668  *
669  *			    Device Interface Subroutines
670  *
671  *******************************************************************************/
672 
673 /**
674  *	dev_get_iflink	- get 'iflink' value of a interface
675  *	@dev: targeted interface
676  *
677  *	Indicates the ifindex the interface is linked to.
678  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
679  */
680 
681 int dev_get_iflink(const struct net_device *dev)
682 {
683 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
684 		return dev->netdev_ops->ndo_get_iflink(dev);
685 
686 	return dev->ifindex;
687 }
688 EXPORT_SYMBOL(dev_get_iflink);
689 
690 /**
691  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
692  *	@dev: targeted interface
693  *	@skb: The packet.
694  *
695  *	For better visibility of tunnel traffic OVS needs to retrieve
696  *	egress tunnel information for a packet. Following API allows
697  *	user to get this info.
698  */
699 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
700 {
701 	struct ip_tunnel_info *info;
702 
703 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
704 		return -EINVAL;
705 
706 	info = skb_tunnel_info_unclone(skb);
707 	if (!info)
708 		return -ENOMEM;
709 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
710 		return -EINVAL;
711 
712 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
713 }
714 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
715 
716 /**
717  *	__dev_get_by_name	- find a device by its name
718  *	@net: the applicable net namespace
719  *	@name: name to find
720  *
721  *	Find an interface by name. Must be called under RTNL semaphore
722  *	or @dev_base_lock. If the name is found a pointer to the device
723  *	is returned. If the name is not found then %NULL is returned. The
724  *	reference counters are not incremented so the caller must be
725  *	careful with locks.
726  */
727 
728 struct net_device *__dev_get_by_name(struct net *net, const char *name)
729 {
730 	struct net_device *dev;
731 	struct hlist_head *head = dev_name_hash(net, name);
732 
733 	hlist_for_each_entry(dev, head, name_hlist)
734 		if (!strncmp(dev->name, name, IFNAMSIZ))
735 			return dev;
736 
737 	return NULL;
738 }
739 EXPORT_SYMBOL(__dev_get_by_name);
740 
741 /**
742  * dev_get_by_name_rcu	- find a device by its name
743  * @net: the applicable net namespace
744  * @name: name to find
745  *
746  * Find an interface by name.
747  * If the name is found a pointer to the device is returned.
748  * If the name is not found then %NULL is returned.
749  * The reference counters are not incremented so the caller must be
750  * careful with locks. The caller must hold RCU lock.
751  */
752 
753 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
754 {
755 	struct net_device *dev;
756 	struct hlist_head *head = dev_name_hash(net, name);
757 
758 	hlist_for_each_entry_rcu(dev, head, name_hlist)
759 		if (!strncmp(dev->name, name, IFNAMSIZ))
760 			return dev;
761 
762 	return NULL;
763 }
764 EXPORT_SYMBOL(dev_get_by_name_rcu);
765 
766 /**
767  *	dev_get_by_name		- find a device by its name
768  *	@net: the applicable net namespace
769  *	@name: name to find
770  *
771  *	Find an interface by name. This can be called from any
772  *	context and does its own locking. The returned handle has
773  *	the usage count incremented and the caller must use dev_put() to
774  *	release it when it is no longer needed. %NULL is returned if no
775  *	matching device is found.
776  */
777 
778 struct net_device *dev_get_by_name(struct net *net, const char *name)
779 {
780 	struct net_device *dev;
781 
782 	rcu_read_lock();
783 	dev = dev_get_by_name_rcu(net, name);
784 	if (dev)
785 		dev_hold(dev);
786 	rcu_read_unlock();
787 	return dev;
788 }
789 EXPORT_SYMBOL(dev_get_by_name);
790 
791 /**
792  *	__dev_get_by_index - find a device by its ifindex
793  *	@net: the applicable net namespace
794  *	@ifindex: index of device
795  *
796  *	Search for an interface by index. Returns %NULL if the device
797  *	is not found or a pointer to the device. The device has not
798  *	had its reference counter increased so the caller must be careful
799  *	about locking. The caller must hold either the RTNL semaphore
800  *	or @dev_base_lock.
801  */
802 
803 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
804 {
805 	struct net_device *dev;
806 	struct hlist_head *head = dev_index_hash(net, ifindex);
807 
808 	hlist_for_each_entry(dev, head, index_hlist)
809 		if (dev->ifindex == ifindex)
810 			return dev;
811 
812 	return NULL;
813 }
814 EXPORT_SYMBOL(__dev_get_by_index);
815 
816 /**
817  *	dev_get_by_index_rcu - find a device by its ifindex
818  *	@net: the applicable net namespace
819  *	@ifindex: index of device
820  *
821  *	Search for an interface by index. Returns %NULL if the device
822  *	is not found or a pointer to the device. The device has not
823  *	had its reference counter increased so the caller must be careful
824  *	about locking. The caller must hold RCU lock.
825  */
826 
827 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
828 {
829 	struct net_device *dev;
830 	struct hlist_head *head = dev_index_hash(net, ifindex);
831 
832 	hlist_for_each_entry_rcu(dev, head, index_hlist)
833 		if (dev->ifindex == ifindex)
834 			return dev;
835 
836 	return NULL;
837 }
838 EXPORT_SYMBOL(dev_get_by_index_rcu);
839 
840 
841 /**
842  *	dev_get_by_index - find a device by its ifindex
843  *	@net: the applicable net namespace
844  *	@ifindex: index of device
845  *
846  *	Search for an interface by index. Returns NULL if the device
847  *	is not found or a pointer to the device. The device returned has
848  *	had a reference added and the pointer is safe until the user calls
849  *	dev_put to indicate they have finished with it.
850  */
851 
852 struct net_device *dev_get_by_index(struct net *net, int ifindex)
853 {
854 	struct net_device *dev;
855 
856 	rcu_read_lock();
857 	dev = dev_get_by_index_rcu(net, ifindex);
858 	if (dev)
859 		dev_hold(dev);
860 	rcu_read_unlock();
861 	return dev;
862 }
863 EXPORT_SYMBOL(dev_get_by_index);
864 
865 /**
866  *	netdev_get_name - get a netdevice name, knowing its ifindex.
867  *	@net: network namespace
868  *	@name: a pointer to the buffer where the name will be stored.
869  *	@ifindex: the ifindex of the interface to get the name from.
870  *
871  *	The use of raw_seqcount_begin() and cond_resched() before
872  *	retrying is required as we want to give the writers a chance
873  *	to complete when CONFIG_PREEMPT is not set.
874  */
875 int netdev_get_name(struct net *net, char *name, int ifindex)
876 {
877 	struct net_device *dev;
878 	unsigned int seq;
879 
880 retry:
881 	seq = raw_seqcount_begin(&devnet_rename_seq);
882 	rcu_read_lock();
883 	dev = dev_get_by_index_rcu(net, ifindex);
884 	if (!dev) {
885 		rcu_read_unlock();
886 		return -ENODEV;
887 	}
888 
889 	strcpy(name, dev->name);
890 	rcu_read_unlock();
891 	if (read_seqcount_retry(&devnet_rename_seq, seq)) {
892 		cond_resched();
893 		goto retry;
894 	}
895 
896 	return 0;
897 }
898 
899 /**
900  *	dev_getbyhwaddr_rcu - find a device by its hardware address
901  *	@net: the applicable net namespace
902  *	@type: media type of device
903  *	@ha: hardware address
904  *
905  *	Search for an interface by MAC address. Returns NULL if the device
906  *	is not found or a pointer to the device.
907  *	The caller must hold RCU or RTNL.
908  *	The returned device has not had its ref count increased
909  *	and the caller must therefore be careful about locking
910  *
911  */
912 
913 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
914 				       const char *ha)
915 {
916 	struct net_device *dev;
917 
918 	for_each_netdev_rcu(net, dev)
919 		if (dev->type == type &&
920 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
921 			return dev;
922 
923 	return NULL;
924 }
925 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
926 
927 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
928 {
929 	struct net_device *dev;
930 
931 	ASSERT_RTNL();
932 	for_each_netdev(net, dev)
933 		if (dev->type == type)
934 			return dev;
935 
936 	return NULL;
937 }
938 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
939 
940 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
941 {
942 	struct net_device *dev, *ret = NULL;
943 
944 	rcu_read_lock();
945 	for_each_netdev_rcu(net, dev)
946 		if (dev->type == type) {
947 			dev_hold(dev);
948 			ret = dev;
949 			break;
950 		}
951 	rcu_read_unlock();
952 	return ret;
953 }
954 EXPORT_SYMBOL(dev_getfirstbyhwtype);
955 
956 /**
957  *	__dev_get_by_flags - find any device with given flags
958  *	@net: the applicable net namespace
959  *	@if_flags: IFF_* values
960  *	@mask: bitmask of bits in if_flags to check
961  *
962  *	Search for any interface with the given flags. Returns NULL if a device
963  *	is not found or a pointer to the device. Must be called inside
964  *	rtnl_lock(), and result refcount is unchanged.
965  */
966 
967 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
968 				      unsigned short mask)
969 {
970 	struct net_device *dev, *ret;
971 
972 	ASSERT_RTNL();
973 
974 	ret = NULL;
975 	for_each_netdev(net, dev) {
976 		if (((dev->flags ^ if_flags) & mask) == 0) {
977 			ret = dev;
978 			break;
979 		}
980 	}
981 	return ret;
982 }
983 EXPORT_SYMBOL(__dev_get_by_flags);
984 
985 /**
986  *	dev_valid_name - check if name is okay for network device
987  *	@name: name string
988  *
989  *	Network device names need to be valid file names to
990  *	to allow sysfs to work.  We also disallow any kind of
991  *	whitespace.
992  */
993 bool dev_valid_name(const char *name)
994 {
995 	if (*name == '\0')
996 		return false;
997 	if (strlen(name) >= IFNAMSIZ)
998 		return false;
999 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1000 		return false;
1001 
1002 	while (*name) {
1003 		if (*name == '/' || *name == ':' || isspace(*name))
1004 			return false;
1005 		name++;
1006 	}
1007 	return true;
1008 }
1009 EXPORT_SYMBOL(dev_valid_name);
1010 
1011 /**
1012  *	__dev_alloc_name - allocate a name for a device
1013  *	@net: network namespace to allocate the device name in
1014  *	@name: name format string
1015  *	@buf:  scratch buffer and result name string
1016  *
1017  *	Passed a format string - eg "lt%d" it will try and find a suitable
1018  *	id. It scans list of devices to build up a free map, then chooses
1019  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1020  *	while allocating the name and adding the device in order to avoid
1021  *	duplicates.
1022  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1023  *	Returns the number of the unit assigned or a negative errno code.
1024  */
1025 
1026 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1027 {
1028 	int i = 0;
1029 	const char *p;
1030 	const int max_netdevices = 8*PAGE_SIZE;
1031 	unsigned long *inuse;
1032 	struct net_device *d;
1033 
1034 	p = strnchr(name, IFNAMSIZ-1, '%');
1035 	if (p) {
1036 		/*
1037 		 * Verify the string as this thing may have come from
1038 		 * the user.  There must be either one "%d" and no other "%"
1039 		 * characters.
1040 		 */
1041 		if (p[1] != 'd' || strchr(p + 2, '%'))
1042 			return -EINVAL;
1043 
1044 		/* Use one page as a bit array of possible slots */
1045 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1046 		if (!inuse)
1047 			return -ENOMEM;
1048 
1049 		for_each_netdev(net, d) {
1050 			if (!sscanf(d->name, name, &i))
1051 				continue;
1052 			if (i < 0 || i >= max_netdevices)
1053 				continue;
1054 
1055 			/*  avoid cases where sscanf is not exact inverse of printf */
1056 			snprintf(buf, IFNAMSIZ, name, i);
1057 			if (!strncmp(buf, d->name, IFNAMSIZ))
1058 				set_bit(i, inuse);
1059 		}
1060 
1061 		i = find_first_zero_bit(inuse, max_netdevices);
1062 		free_page((unsigned long) inuse);
1063 	}
1064 
1065 	if (buf != name)
1066 		snprintf(buf, IFNAMSIZ, name, i);
1067 	if (!__dev_get_by_name(net, buf))
1068 		return i;
1069 
1070 	/* It is possible to run out of possible slots
1071 	 * when the name is long and there isn't enough space left
1072 	 * for the digits, or if all bits are used.
1073 	 */
1074 	return -ENFILE;
1075 }
1076 
1077 /**
1078  *	dev_alloc_name - allocate a name for a device
1079  *	@dev: device
1080  *	@name: name format string
1081  *
1082  *	Passed a format string - eg "lt%d" it will try and find a suitable
1083  *	id. It scans list of devices to build up a free map, then chooses
1084  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1085  *	while allocating the name and adding the device in order to avoid
1086  *	duplicates.
1087  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1088  *	Returns the number of the unit assigned or a negative errno code.
1089  */
1090 
1091 int dev_alloc_name(struct net_device *dev, const char *name)
1092 {
1093 	char buf[IFNAMSIZ];
1094 	struct net *net;
1095 	int ret;
1096 
1097 	BUG_ON(!dev_net(dev));
1098 	net = dev_net(dev);
1099 	ret = __dev_alloc_name(net, name, buf);
1100 	if (ret >= 0)
1101 		strlcpy(dev->name, buf, IFNAMSIZ);
1102 	return ret;
1103 }
1104 EXPORT_SYMBOL(dev_alloc_name);
1105 
1106 static int dev_alloc_name_ns(struct net *net,
1107 			     struct net_device *dev,
1108 			     const char *name)
1109 {
1110 	char buf[IFNAMSIZ];
1111 	int ret;
1112 
1113 	ret = __dev_alloc_name(net, name, buf);
1114 	if (ret >= 0)
1115 		strlcpy(dev->name, buf, IFNAMSIZ);
1116 	return ret;
1117 }
1118 
1119 static int dev_get_valid_name(struct net *net,
1120 			      struct net_device *dev,
1121 			      const char *name)
1122 {
1123 	BUG_ON(!net);
1124 
1125 	if (!dev_valid_name(name))
1126 		return -EINVAL;
1127 
1128 	if (strchr(name, '%'))
1129 		return dev_alloc_name_ns(net, dev, name);
1130 	else if (__dev_get_by_name(net, name))
1131 		return -EEXIST;
1132 	else if (dev->name != name)
1133 		strlcpy(dev->name, name, IFNAMSIZ);
1134 
1135 	return 0;
1136 }
1137 
1138 /**
1139  *	dev_change_name - change name of a device
1140  *	@dev: device
1141  *	@newname: name (or format string) must be at least IFNAMSIZ
1142  *
1143  *	Change name of a device, can pass format strings "eth%d".
1144  *	for wildcarding.
1145  */
1146 int dev_change_name(struct net_device *dev, const char *newname)
1147 {
1148 	unsigned char old_assign_type;
1149 	char oldname[IFNAMSIZ];
1150 	int err = 0;
1151 	int ret;
1152 	struct net *net;
1153 
1154 	ASSERT_RTNL();
1155 	BUG_ON(!dev_net(dev));
1156 
1157 	net = dev_net(dev);
1158 	if (dev->flags & IFF_UP)
1159 		return -EBUSY;
1160 
1161 	write_seqcount_begin(&devnet_rename_seq);
1162 
1163 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1164 		write_seqcount_end(&devnet_rename_seq);
1165 		return 0;
1166 	}
1167 
1168 	memcpy(oldname, dev->name, IFNAMSIZ);
1169 
1170 	err = dev_get_valid_name(net, dev, newname);
1171 	if (err < 0) {
1172 		write_seqcount_end(&devnet_rename_seq);
1173 		return err;
1174 	}
1175 
1176 	if (oldname[0] && !strchr(oldname, '%'))
1177 		netdev_info(dev, "renamed from %s\n", oldname);
1178 
1179 	old_assign_type = dev->name_assign_type;
1180 	dev->name_assign_type = NET_NAME_RENAMED;
1181 
1182 rollback:
1183 	ret = device_rename(&dev->dev, dev->name);
1184 	if (ret) {
1185 		memcpy(dev->name, oldname, IFNAMSIZ);
1186 		dev->name_assign_type = old_assign_type;
1187 		write_seqcount_end(&devnet_rename_seq);
1188 		return ret;
1189 	}
1190 
1191 	write_seqcount_end(&devnet_rename_seq);
1192 
1193 	netdev_adjacent_rename_links(dev, oldname);
1194 
1195 	write_lock_bh(&dev_base_lock);
1196 	hlist_del_rcu(&dev->name_hlist);
1197 	write_unlock_bh(&dev_base_lock);
1198 
1199 	synchronize_rcu();
1200 
1201 	write_lock_bh(&dev_base_lock);
1202 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1203 	write_unlock_bh(&dev_base_lock);
1204 
1205 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1206 	ret = notifier_to_errno(ret);
1207 
1208 	if (ret) {
1209 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1210 		if (err >= 0) {
1211 			err = ret;
1212 			write_seqcount_begin(&devnet_rename_seq);
1213 			memcpy(dev->name, oldname, IFNAMSIZ);
1214 			memcpy(oldname, newname, IFNAMSIZ);
1215 			dev->name_assign_type = old_assign_type;
1216 			old_assign_type = NET_NAME_RENAMED;
1217 			goto rollback;
1218 		} else {
1219 			pr_err("%s: name change rollback failed: %d\n",
1220 			       dev->name, ret);
1221 		}
1222 	}
1223 
1224 	return err;
1225 }
1226 
1227 /**
1228  *	dev_set_alias - change ifalias of a device
1229  *	@dev: device
1230  *	@alias: name up to IFALIASZ
1231  *	@len: limit of bytes to copy from info
1232  *
1233  *	Set ifalias for a device,
1234  */
1235 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1236 {
1237 	char *new_ifalias;
1238 
1239 	ASSERT_RTNL();
1240 
1241 	if (len >= IFALIASZ)
1242 		return -EINVAL;
1243 
1244 	if (!len) {
1245 		kfree(dev->ifalias);
1246 		dev->ifalias = NULL;
1247 		return 0;
1248 	}
1249 
1250 	new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1251 	if (!new_ifalias)
1252 		return -ENOMEM;
1253 	dev->ifalias = new_ifalias;
1254 
1255 	strlcpy(dev->ifalias, alias, len+1);
1256 	return len;
1257 }
1258 
1259 
1260 /**
1261  *	netdev_features_change - device changes features
1262  *	@dev: device to cause notification
1263  *
1264  *	Called to indicate a device has changed features.
1265  */
1266 void netdev_features_change(struct net_device *dev)
1267 {
1268 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1269 }
1270 EXPORT_SYMBOL(netdev_features_change);
1271 
1272 /**
1273  *	netdev_state_change - device changes state
1274  *	@dev: device to cause notification
1275  *
1276  *	Called to indicate a device has changed state. This function calls
1277  *	the notifier chains for netdev_chain and sends a NEWLINK message
1278  *	to the routing socket.
1279  */
1280 void netdev_state_change(struct net_device *dev)
1281 {
1282 	if (dev->flags & IFF_UP) {
1283 		struct netdev_notifier_change_info change_info;
1284 
1285 		change_info.flags_changed = 0;
1286 		call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1287 					      &change_info.info);
1288 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1289 	}
1290 }
1291 EXPORT_SYMBOL(netdev_state_change);
1292 
1293 /**
1294  * netdev_notify_peers - notify network peers about existence of @dev
1295  * @dev: network device
1296  *
1297  * Generate traffic such that interested network peers are aware of
1298  * @dev, such as by generating a gratuitous ARP. This may be used when
1299  * a device wants to inform the rest of the network about some sort of
1300  * reconfiguration such as a failover event or virtual machine
1301  * migration.
1302  */
1303 void netdev_notify_peers(struct net_device *dev)
1304 {
1305 	rtnl_lock();
1306 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1307 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1308 	rtnl_unlock();
1309 }
1310 EXPORT_SYMBOL(netdev_notify_peers);
1311 
1312 static int __dev_open(struct net_device *dev)
1313 {
1314 	const struct net_device_ops *ops = dev->netdev_ops;
1315 	int ret;
1316 
1317 	ASSERT_RTNL();
1318 
1319 	if (!netif_device_present(dev))
1320 		return -ENODEV;
1321 
1322 	/* Block netpoll from trying to do any rx path servicing.
1323 	 * If we don't do this there is a chance ndo_poll_controller
1324 	 * or ndo_poll may be running while we open the device
1325 	 */
1326 	netpoll_poll_disable(dev);
1327 
1328 	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1329 	ret = notifier_to_errno(ret);
1330 	if (ret)
1331 		return ret;
1332 
1333 	set_bit(__LINK_STATE_START, &dev->state);
1334 
1335 	if (ops->ndo_validate_addr)
1336 		ret = ops->ndo_validate_addr(dev);
1337 
1338 	if (!ret && ops->ndo_open)
1339 		ret = ops->ndo_open(dev);
1340 
1341 	netpoll_poll_enable(dev);
1342 
1343 	if (ret)
1344 		clear_bit(__LINK_STATE_START, &dev->state);
1345 	else {
1346 		dev->flags |= IFF_UP;
1347 		dev_set_rx_mode(dev);
1348 		dev_activate(dev);
1349 		add_device_randomness(dev->dev_addr, dev->addr_len);
1350 	}
1351 
1352 	return ret;
1353 }
1354 
1355 /**
1356  *	dev_open	- prepare an interface for use.
1357  *	@dev:	device to open
1358  *
1359  *	Takes a device from down to up state. The device's private open
1360  *	function is invoked and then the multicast lists are loaded. Finally
1361  *	the device is moved into the up state and a %NETDEV_UP message is
1362  *	sent to the netdev notifier chain.
1363  *
1364  *	Calling this function on an active interface is a nop. On a failure
1365  *	a negative errno code is returned.
1366  */
1367 int dev_open(struct net_device *dev)
1368 {
1369 	int ret;
1370 
1371 	if (dev->flags & IFF_UP)
1372 		return 0;
1373 
1374 	ret = __dev_open(dev);
1375 	if (ret < 0)
1376 		return ret;
1377 
1378 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1379 	call_netdevice_notifiers(NETDEV_UP, dev);
1380 
1381 	return ret;
1382 }
1383 EXPORT_SYMBOL(dev_open);
1384 
1385 static int __dev_close_many(struct list_head *head)
1386 {
1387 	struct net_device *dev;
1388 
1389 	ASSERT_RTNL();
1390 	might_sleep();
1391 
1392 	list_for_each_entry(dev, head, close_list) {
1393 		/* Temporarily disable netpoll until the interface is down */
1394 		netpoll_poll_disable(dev);
1395 
1396 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1397 
1398 		clear_bit(__LINK_STATE_START, &dev->state);
1399 
1400 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1401 		 * can be even on different cpu. So just clear netif_running().
1402 		 *
1403 		 * dev->stop() will invoke napi_disable() on all of it's
1404 		 * napi_struct instances on this device.
1405 		 */
1406 		smp_mb__after_atomic(); /* Commit netif_running(). */
1407 	}
1408 
1409 	dev_deactivate_many(head);
1410 
1411 	list_for_each_entry(dev, head, close_list) {
1412 		const struct net_device_ops *ops = dev->netdev_ops;
1413 
1414 		/*
1415 		 *	Call the device specific close. This cannot fail.
1416 		 *	Only if device is UP
1417 		 *
1418 		 *	We allow it to be called even after a DETACH hot-plug
1419 		 *	event.
1420 		 */
1421 		if (ops->ndo_stop)
1422 			ops->ndo_stop(dev);
1423 
1424 		dev->flags &= ~IFF_UP;
1425 		netpoll_poll_enable(dev);
1426 	}
1427 
1428 	return 0;
1429 }
1430 
1431 static int __dev_close(struct net_device *dev)
1432 {
1433 	int retval;
1434 	LIST_HEAD(single);
1435 
1436 	list_add(&dev->close_list, &single);
1437 	retval = __dev_close_many(&single);
1438 	list_del(&single);
1439 
1440 	return retval;
1441 }
1442 
1443 int dev_close_many(struct list_head *head, bool unlink)
1444 {
1445 	struct net_device *dev, *tmp;
1446 
1447 	/* Remove the devices that don't need to be closed */
1448 	list_for_each_entry_safe(dev, tmp, head, close_list)
1449 		if (!(dev->flags & IFF_UP))
1450 			list_del_init(&dev->close_list);
1451 
1452 	__dev_close_many(head);
1453 
1454 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1455 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1456 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1457 		if (unlink)
1458 			list_del_init(&dev->close_list);
1459 	}
1460 
1461 	return 0;
1462 }
1463 EXPORT_SYMBOL(dev_close_many);
1464 
1465 /**
1466  *	dev_close - shutdown an interface.
1467  *	@dev: device to shutdown
1468  *
1469  *	This function moves an active device into down state. A
1470  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1471  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1472  *	chain.
1473  */
1474 int dev_close(struct net_device *dev)
1475 {
1476 	if (dev->flags & IFF_UP) {
1477 		LIST_HEAD(single);
1478 
1479 		list_add(&dev->close_list, &single);
1480 		dev_close_many(&single, true);
1481 		list_del(&single);
1482 	}
1483 	return 0;
1484 }
1485 EXPORT_SYMBOL(dev_close);
1486 
1487 
1488 /**
1489  *	dev_disable_lro - disable Large Receive Offload on a device
1490  *	@dev: device
1491  *
1492  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1493  *	called under RTNL.  This is needed if received packets may be
1494  *	forwarded to another interface.
1495  */
1496 void dev_disable_lro(struct net_device *dev)
1497 {
1498 	struct net_device *lower_dev;
1499 	struct list_head *iter;
1500 
1501 	dev->wanted_features &= ~NETIF_F_LRO;
1502 	netdev_update_features(dev);
1503 
1504 	if (unlikely(dev->features & NETIF_F_LRO))
1505 		netdev_WARN(dev, "failed to disable LRO!\n");
1506 
1507 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1508 		dev_disable_lro(lower_dev);
1509 }
1510 EXPORT_SYMBOL(dev_disable_lro);
1511 
1512 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1513 				   struct net_device *dev)
1514 {
1515 	struct netdev_notifier_info info;
1516 
1517 	netdev_notifier_info_init(&info, dev);
1518 	return nb->notifier_call(nb, val, &info);
1519 }
1520 
1521 static int dev_boot_phase = 1;
1522 
1523 /**
1524  * register_netdevice_notifier - register a network notifier block
1525  * @nb: notifier
1526  *
1527  * Register a notifier to be called when network device events occur.
1528  * The notifier passed is linked into the kernel structures and must
1529  * not be reused until it has been unregistered. A negative errno code
1530  * is returned on a failure.
1531  *
1532  * When registered all registration and up events are replayed
1533  * to the new notifier to allow device to have a race free
1534  * view of the network device list.
1535  */
1536 
1537 int register_netdevice_notifier(struct notifier_block *nb)
1538 {
1539 	struct net_device *dev;
1540 	struct net_device *last;
1541 	struct net *net;
1542 	int err;
1543 
1544 	rtnl_lock();
1545 	err = raw_notifier_chain_register(&netdev_chain, nb);
1546 	if (err)
1547 		goto unlock;
1548 	if (dev_boot_phase)
1549 		goto unlock;
1550 	for_each_net(net) {
1551 		for_each_netdev(net, dev) {
1552 			err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1553 			err = notifier_to_errno(err);
1554 			if (err)
1555 				goto rollback;
1556 
1557 			if (!(dev->flags & IFF_UP))
1558 				continue;
1559 
1560 			call_netdevice_notifier(nb, NETDEV_UP, dev);
1561 		}
1562 	}
1563 
1564 unlock:
1565 	rtnl_unlock();
1566 	return err;
1567 
1568 rollback:
1569 	last = dev;
1570 	for_each_net(net) {
1571 		for_each_netdev(net, dev) {
1572 			if (dev == last)
1573 				goto outroll;
1574 
1575 			if (dev->flags & IFF_UP) {
1576 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1577 							dev);
1578 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1579 			}
1580 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1581 		}
1582 	}
1583 
1584 outroll:
1585 	raw_notifier_chain_unregister(&netdev_chain, nb);
1586 	goto unlock;
1587 }
1588 EXPORT_SYMBOL(register_netdevice_notifier);
1589 
1590 /**
1591  * unregister_netdevice_notifier - unregister a network notifier block
1592  * @nb: notifier
1593  *
1594  * Unregister a notifier previously registered by
1595  * register_netdevice_notifier(). The notifier is unlinked into the
1596  * kernel structures and may then be reused. A negative errno code
1597  * is returned on a failure.
1598  *
1599  * After unregistering unregister and down device events are synthesized
1600  * for all devices on the device list to the removed notifier to remove
1601  * the need for special case cleanup code.
1602  */
1603 
1604 int unregister_netdevice_notifier(struct notifier_block *nb)
1605 {
1606 	struct net_device *dev;
1607 	struct net *net;
1608 	int err;
1609 
1610 	rtnl_lock();
1611 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1612 	if (err)
1613 		goto unlock;
1614 
1615 	for_each_net(net) {
1616 		for_each_netdev(net, dev) {
1617 			if (dev->flags & IFF_UP) {
1618 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1619 							dev);
1620 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1621 			}
1622 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1623 		}
1624 	}
1625 unlock:
1626 	rtnl_unlock();
1627 	return err;
1628 }
1629 EXPORT_SYMBOL(unregister_netdevice_notifier);
1630 
1631 /**
1632  *	call_netdevice_notifiers_info - call all network notifier blocks
1633  *	@val: value passed unmodified to notifier function
1634  *	@dev: net_device pointer passed unmodified to notifier function
1635  *	@info: notifier information data
1636  *
1637  *	Call all network notifier blocks.  Parameters and return value
1638  *	are as for raw_notifier_call_chain().
1639  */
1640 
1641 static int call_netdevice_notifiers_info(unsigned long val,
1642 					 struct net_device *dev,
1643 					 struct netdev_notifier_info *info)
1644 {
1645 	ASSERT_RTNL();
1646 	netdev_notifier_info_init(info, dev);
1647 	return raw_notifier_call_chain(&netdev_chain, val, info);
1648 }
1649 
1650 /**
1651  *	call_netdevice_notifiers - call all network notifier blocks
1652  *      @val: value passed unmodified to notifier function
1653  *      @dev: net_device pointer passed unmodified to notifier function
1654  *
1655  *	Call all network notifier blocks.  Parameters and return value
1656  *	are as for raw_notifier_call_chain().
1657  */
1658 
1659 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1660 {
1661 	struct netdev_notifier_info info;
1662 
1663 	return call_netdevice_notifiers_info(val, dev, &info);
1664 }
1665 EXPORT_SYMBOL(call_netdevice_notifiers);
1666 
1667 #ifdef CONFIG_NET_INGRESS
1668 static struct static_key ingress_needed __read_mostly;
1669 
1670 void net_inc_ingress_queue(void)
1671 {
1672 	static_key_slow_inc(&ingress_needed);
1673 }
1674 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1675 
1676 void net_dec_ingress_queue(void)
1677 {
1678 	static_key_slow_dec(&ingress_needed);
1679 }
1680 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1681 #endif
1682 
1683 #ifdef CONFIG_NET_EGRESS
1684 static struct static_key egress_needed __read_mostly;
1685 
1686 void net_inc_egress_queue(void)
1687 {
1688 	static_key_slow_inc(&egress_needed);
1689 }
1690 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1691 
1692 void net_dec_egress_queue(void)
1693 {
1694 	static_key_slow_dec(&egress_needed);
1695 }
1696 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1697 #endif
1698 
1699 static struct static_key netstamp_needed __read_mostly;
1700 #ifdef HAVE_JUMP_LABEL
1701 static atomic_t netstamp_needed_deferred;
1702 static atomic_t netstamp_wanted;
1703 static void netstamp_clear(struct work_struct *work)
1704 {
1705 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1706 	int wanted;
1707 
1708 	wanted = atomic_add_return(deferred, &netstamp_wanted);
1709 	if (wanted > 0)
1710 		static_key_enable(&netstamp_needed);
1711 	else
1712 		static_key_disable(&netstamp_needed);
1713 }
1714 static DECLARE_WORK(netstamp_work, netstamp_clear);
1715 #endif
1716 
1717 void net_enable_timestamp(void)
1718 {
1719 #ifdef HAVE_JUMP_LABEL
1720 	int wanted;
1721 
1722 	while (1) {
1723 		wanted = atomic_read(&netstamp_wanted);
1724 		if (wanted <= 0)
1725 			break;
1726 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1727 			return;
1728 	}
1729 	atomic_inc(&netstamp_needed_deferred);
1730 	schedule_work(&netstamp_work);
1731 #else
1732 	static_key_slow_inc(&netstamp_needed);
1733 #endif
1734 }
1735 EXPORT_SYMBOL(net_enable_timestamp);
1736 
1737 void net_disable_timestamp(void)
1738 {
1739 #ifdef HAVE_JUMP_LABEL
1740 	int wanted;
1741 
1742 	while (1) {
1743 		wanted = atomic_read(&netstamp_wanted);
1744 		if (wanted <= 1)
1745 			break;
1746 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1747 			return;
1748 	}
1749 	atomic_dec(&netstamp_needed_deferred);
1750 	schedule_work(&netstamp_work);
1751 #else
1752 	static_key_slow_dec(&netstamp_needed);
1753 #endif
1754 }
1755 EXPORT_SYMBOL(net_disable_timestamp);
1756 
1757 static inline void net_timestamp_set(struct sk_buff *skb)
1758 {
1759 	skb->tstamp = 0;
1760 	if (static_key_false(&netstamp_needed))
1761 		__net_timestamp(skb);
1762 }
1763 
1764 #define net_timestamp_check(COND, SKB)			\
1765 	if (static_key_false(&netstamp_needed)) {		\
1766 		if ((COND) && !(SKB)->tstamp)	\
1767 			__net_timestamp(SKB);		\
1768 	}						\
1769 
1770 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1771 {
1772 	unsigned int len;
1773 
1774 	if (!(dev->flags & IFF_UP))
1775 		return false;
1776 
1777 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1778 	if (skb->len <= len)
1779 		return true;
1780 
1781 	/* if TSO is enabled, we don't care about the length as the packet
1782 	 * could be forwarded without being segmented before
1783 	 */
1784 	if (skb_is_gso(skb))
1785 		return true;
1786 
1787 	return false;
1788 }
1789 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1790 
1791 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1792 {
1793 	int ret = ____dev_forward_skb(dev, skb);
1794 
1795 	if (likely(!ret)) {
1796 		skb->protocol = eth_type_trans(skb, dev);
1797 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1798 	}
1799 
1800 	return ret;
1801 }
1802 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1803 
1804 /**
1805  * dev_forward_skb - loopback an skb to another netif
1806  *
1807  * @dev: destination network device
1808  * @skb: buffer to forward
1809  *
1810  * return values:
1811  *	NET_RX_SUCCESS	(no congestion)
1812  *	NET_RX_DROP     (packet was dropped, but freed)
1813  *
1814  * dev_forward_skb can be used for injecting an skb from the
1815  * start_xmit function of one device into the receive queue
1816  * of another device.
1817  *
1818  * The receiving device may be in another namespace, so
1819  * we have to clear all information in the skb that could
1820  * impact namespace isolation.
1821  */
1822 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1823 {
1824 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1825 }
1826 EXPORT_SYMBOL_GPL(dev_forward_skb);
1827 
1828 static inline int deliver_skb(struct sk_buff *skb,
1829 			      struct packet_type *pt_prev,
1830 			      struct net_device *orig_dev)
1831 {
1832 	if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1833 		return -ENOMEM;
1834 	atomic_inc(&skb->users);
1835 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1836 }
1837 
1838 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1839 					  struct packet_type **pt,
1840 					  struct net_device *orig_dev,
1841 					  __be16 type,
1842 					  struct list_head *ptype_list)
1843 {
1844 	struct packet_type *ptype, *pt_prev = *pt;
1845 
1846 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1847 		if (ptype->type != type)
1848 			continue;
1849 		if (pt_prev)
1850 			deliver_skb(skb, pt_prev, orig_dev);
1851 		pt_prev = ptype;
1852 	}
1853 	*pt = pt_prev;
1854 }
1855 
1856 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1857 {
1858 	if (!ptype->af_packet_priv || !skb->sk)
1859 		return false;
1860 
1861 	if (ptype->id_match)
1862 		return ptype->id_match(ptype, skb->sk);
1863 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1864 		return true;
1865 
1866 	return false;
1867 }
1868 
1869 /*
1870  *	Support routine. Sends outgoing frames to any network
1871  *	taps currently in use.
1872  */
1873 
1874 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1875 {
1876 	struct packet_type *ptype;
1877 	struct sk_buff *skb2 = NULL;
1878 	struct packet_type *pt_prev = NULL;
1879 	struct list_head *ptype_list = &ptype_all;
1880 
1881 	rcu_read_lock();
1882 again:
1883 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1884 		/* Never send packets back to the socket
1885 		 * they originated from - MvS (miquels@drinkel.ow.org)
1886 		 */
1887 		if (skb_loop_sk(ptype, skb))
1888 			continue;
1889 
1890 		if (pt_prev) {
1891 			deliver_skb(skb2, pt_prev, skb->dev);
1892 			pt_prev = ptype;
1893 			continue;
1894 		}
1895 
1896 		/* need to clone skb, done only once */
1897 		skb2 = skb_clone(skb, GFP_ATOMIC);
1898 		if (!skb2)
1899 			goto out_unlock;
1900 
1901 		net_timestamp_set(skb2);
1902 
1903 		/* skb->nh should be correctly
1904 		 * set by sender, so that the second statement is
1905 		 * just protection against buggy protocols.
1906 		 */
1907 		skb_reset_mac_header(skb2);
1908 
1909 		if (skb_network_header(skb2) < skb2->data ||
1910 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1911 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1912 					     ntohs(skb2->protocol),
1913 					     dev->name);
1914 			skb_reset_network_header(skb2);
1915 		}
1916 
1917 		skb2->transport_header = skb2->network_header;
1918 		skb2->pkt_type = PACKET_OUTGOING;
1919 		pt_prev = ptype;
1920 	}
1921 
1922 	if (ptype_list == &ptype_all) {
1923 		ptype_list = &dev->ptype_all;
1924 		goto again;
1925 	}
1926 out_unlock:
1927 	if (pt_prev)
1928 		pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1929 	rcu_read_unlock();
1930 }
1931 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1932 
1933 /**
1934  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1935  * @dev: Network device
1936  * @txq: number of queues available
1937  *
1938  * If real_num_tx_queues is changed the tc mappings may no longer be
1939  * valid. To resolve this verify the tc mapping remains valid and if
1940  * not NULL the mapping. With no priorities mapping to this
1941  * offset/count pair it will no longer be used. In the worst case TC0
1942  * is invalid nothing can be done so disable priority mappings. If is
1943  * expected that drivers will fix this mapping if they can before
1944  * calling netif_set_real_num_tx_queues.
1945  */
1946 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1947 {
1948 	int i;
1949 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1950 
1951 	/* If TC0 is invalidated disable TC mapping */
1952 	if (tc->offset + tc->count > txq) {
1953 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1954 		dev->num_tc = 0;
1955 		return;
1956 	}
1957 
1958 	/* Invalidated prio to tc mappings set to TC0 */
1959 	for (i = 1; i < TC_BITMASK + 1; i++) {
1960 		int q = netdev_get_prio_tc_map(dev, i);
1961 
1962 		tc = &dev->tc_to_txq[q];
1963 		if (tc->offset + tc->count > txq) {
1964 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1965 				i, q);
1966 			netdev_set_prio_tc_map(dev, i, 0);
1967 		}
1968 	}
1969 }
1970 
1971 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
1972 {
1973 	if (dev->num_tc) {
1974 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1975 		int i;
1976 
1977 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
1978 			if ((txq - tc->offset) < tc->count)
1979 				return i;
1980 		}
1981 
1982 		return -1;
1983 	}
1984 
1985 	return 0;
1986 }
1987 
1988 #ifdef CONFIG_XPS
1989 static DEFINE_MUTEX(xps_map_mutex);
1990 #define xmap_dereference(P)		\
1991 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1992 
1993 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
1994 			     int tci, u16 index)
1995 {
1996 	struct xps_map *map = NULL;
1997 	int pos;
1998 
1999 	if (dev_maps)
2000 		map = xmap_dereference(dev_maps->cpu_map[tci]);
2001 	if (!map)
2002 		return false;
2003 
2004 	for (pos = map->len; pos--;) {
2005 		if (map->queues[pos] != index)
2006 			continue;
2007 
2008 		if (map->len > 1) {
2009 			map->queues[pos] = map->queues[--map->len];
2010 			break;
2011 		}
2012 
2013 		RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL);
2014 		kfree_rcu(map, rcu);
2015 		return false;
2016 	}
2017 
2018 	return true;
2019 }
2020 
2021 static bool remove_xps_queue_cpu(struct net_device *dev,
2022 				 struct xps_dev_maps *dev_maps,
2023 				 int cpu, u16 offset, u16 count)
2024 {
2025 	int num_tc = dev->num_tc ? : 1;
2026 	bool active = false;
2027 	int tci;
2028 
2029 	for (tci = cpu * num_tc; num_tc--; tci++) {
2030 		int i, j;
2031 
2032 		for (i = count, j = offset; i--; j++) {
2033 			if (!remove_xps_queue(dev_maps, cpu, j))
2034 				break;
2035 		}
2036 
2037 		active |= i < 0;
2038 	}
2039 
2040 	return active;
2041 }
2042 
2043 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2044 				   u16 count)
2045 {
2046 	struct xps_dev_maps *dev_maps;
2047 	int cpu, i;
2048 	bool active = false;
2049 
2050 	mutex_lock(&xps_map_mutex);
2051 	dev_maps = xmap_dereference(dev->xps_maps);
2052 
2053 	if (!dev_maps)
2054 		goto out_no_maps;
2055 
2056 	for_each_possible_cpu(cpu)
2057 		active |= remove_xps_queue_cpu(dev, dev_maps, cpu,
2058 					       offset, count);
2059 
2060 	if (!active) {
2061 		RCU_INIT_POINTER(dev->xps_maps, NULL);
2062 		kfree_rcu(dev_maps, rcu);
2063 	}
2064 
2065 	for (i = offset + (count - 1); count--; i--)
2066 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2067 					     NUMA_NO_NODE);
2068 
2069 out_no_maps:
2070 	mutex_unlock(&xps_map_mutex);
2071 }
2072 
2073 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2074 {
2075 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2076 }
2077 
2078 static struct xps_map *expand_xps_map(struct xps_map *map,
2079 				      int cpu, u16 index)
2080 {
2081 	struct xps_map *new_map;
2082 	int alloc_len = XPS_MIN_MAP_ALLOC;
2083 	int i, pos;
2084 
2085 	for (pos = 0; map && pos < map->len; pos++) {
2086 		if (map->queues[pos] != index)
2087 			continue;
2088 		return map;
2089 	}
2090 
2091 	/* Need to add queue to this CPU's existing map */
2092 	if (map) {
2093 		if (pos < map->alloc_len)
2094 			return map;
2095 
2096 		alloc_len = map->alloc_len * 2;
2097 	}
2098 
2099 	/* Need to allocate new map to store queue on this CPU's map */
2100 	new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2101 			       cpu_to_node(cpu));
2102 	if (!new_map)
2103 		return NULL;
2104 
2105 	for (i = 0; i < pos; i++)
2106 		new_map->queues[i] = map->queues[i];
2107 	new_map->alloc_len = alloc_len;
2108 	new_map->len = pos;
2109 
2110 	return new_map;
2111 }
2112 
2113 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2114 			u16 index)
2115 {
2116 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2117 	int i, cpu, tci, numa_node_id = -2;
2118 	int maps_sz, num_tc = 1, tc = 0;
2119 	struct xps_map *map, *new_map;
2120 	bool active = false;
2121 
2122 	if (dev->num_tc) {
2123 		num_tc = dev->num_tc;
2124 		tc = netdev_txq_to_tc(dev, index);
2125 		if (tc < 0)
2126 			return -EINVAL;
2127 	}
2128 
2129 	maps_sz = XPS_DEV_MAPS_SIZE(num_tc);
2130 	if (maps_sz < L1_CACHE_BYTES)
2131 		maps_sz = L1_CACHE_BYTES;
2132 
2133 	mutex_lock(&xps_map_mutex);
2134 
2135 	dev_maps = xmap_dereference(dev->xps_maps);
2136 
2137 	/* allocate memory for queue storage */
2138 	for_each_cpu_and(cpu, cpu_online_mask, mask) {
2139 		if (!new_dev_maps)
2140 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2141 		if (!new_dev_maps) {
2142 			mutex_unlock(&xps_map_mutex);
2143 			return -ENOMEM;
2144 		}
2145 
2146 		tci = cpu * num_tc + tc;
2147 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) :
2148 				 NULL;
2149 
2150 		map = expand_xps_map(map, cpu, index);
2151 		if (!map)
2152 			goto error;
2153 
2154 		RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2155 	}
2156 
2157 	if (!new_dev_maps)
2158 		goto out_no_new_maps;
2159 
2160 	for_each_possible_cpu(cpu) {
2161 		/* copy maps belonging to foreign traffic classes */
2162 		for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) {
2163 			/* fill in the new device map from the old device map */
2164 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2165 			RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2166 		}
2167 
2168 		/* We need to explicitly update tci as prevous loop
2169 		 * could break out early if dev_maps is NULL.
2170 		 */
2171 		tci = cpu * num_tc + tc;
2172 
2173 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2174 			/* add queue to CPU maps */
2175 			int pos = 0;
2176 
2177 			map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2178 			while ((pos < map->len) && (map->queues[pos] != index))
2179 				pos++;
2180 
2181 			if (pos == map->len)
2182 				map->queues[map->len++] = index;
2183 #ifdef CONFIG_NUMA
2184 			if (numa_node_id == -2)
2185 				numa_node_id = cpu_to_node(cpu);
2186 			else if (numa_node_id != cpu_to_node(cpu))
2187 				numa_node_id = -1;
2188 #endif
2189 		} else if (dev_maps) {
2190 			/* fill in the new device map from the old device map */
2191 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2192 			RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2193 		}
2194 
2195 		/* copy maps belonging to foreign traffic classes */
2196 		for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2197 			/* fill in the new device map from the old device map */
2198 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2199 			RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2200 		}
2201 	}
2202 
2203 	rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2204 
2205 	/* Cleanup old maps */
2206 	if (!dev_maps)
2207 		goto out_no_old_maps;
2208 
2209 	for_each_possible_cpu(cpu) {
2210 		for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2211 			new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2212 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2213 			if (map && map != new_map)
2214 				kfree_rcu(map, rcu);
2215 		}
2216 	}
2217 
2218 	kfree_rcu(dev_maps, rcu);
2219 
2220 out_no_old_maps:
2221 	dev_maps = new_dev_maps;
2222 	active = true;
2223 
2224 out_no_new_maps:
2225 	/* update Tx queue numa node */
2226 	netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2227 				     (numa_node_id >= 0) ? numa_node_id :
2228 				     NUMA_NO_NODE);
2229 
2230 	if (!dev_maps)
2231 		goto out_no_maps;
2232 
2233 	/* removes queue from unused CPUs */
2234 	for_each_possible_cpu(cpu) {
2235 		for (i = tc, tci = cpu * num_tc; i--; tci++)
2236 			active |= remove_xps_queue(dev_maps, tci, index);
2237 		if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu))
2238 			active |= remove_xps_queue(dev_maps, tci, index);
2239 		for (i = num_tc - tc, tci++; --i; tci++)
2240 			active |= remove_xps_queue(dev_maps, tci, index);
2241 	}
2242 
2243 	/* free map if not active */
2244 	if (!active) {
2245 		RCU_INIT_POINTER(dev->xps_maps, NULL);
2246 		kfree_rcu(dev_maps, rcu);
2247 	}
2248 
2249 out_no_maps:
2250 	mutex_unlock(&xps_map_mutex);
2251 
2252 	return 0;
2253 error:
2254 	/* remove any maps that we added */
2255 	for_each_possible_cpu(cpu) {
2256 		for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2257 			new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2258 			map = dev_maps ?
2259 			      xmap_dereference(dev_maps->cpu_map[tci]) :
2260 			      NULL;
2261 			if (new_map && new_map != map)
2262 				kfree(new_map);
2263 		}
2264 	}
2265 
2266 	mutex_unlock(&xps_map_mutex);
2267 
2268 	kfree(new_dev_maps);
2269 	return -ENOMEM;
2270 }
2271 EXPORT_SYMBOL(netif_set_xps_queue);
2272 
2273 #endif
2274 void netdev_reset_tc(struct net_device *dev)
2275 {
2276 #ifdef CONFIG_XPS
2277 	netif_reset_xps_queues_gt(dev, 0);
2278 #endif
2279 	dev->num_tc = 0;
2280 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2281 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2282 }
2283 EXPORT_SYMBOL(netdev_reset_tc);
2284 
2285 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2286 {
2287 	if (tc >= dev->num_tc)
2288 		return -EINVAL;
2289 
2290 #ifdef CONFIG_XPS
2291 	netif_reset_xps_queues(dev, offset, count);
2292 #endif
2293 	dev->tc_to_txq[tc].count = count;
2294 	dev->tc_to_txq[tc].offset = offset;
2295 	return 0;
2296 }
2297 EXPORT_SYMBOL(netdev_set_tc_queue);
2298 
2299 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2300 {
2301 	if (num_tc > TC_MAX_QUEUE)
2302 		return -EINVAL;
2303 
2304 #ifdef CONFIG_XPS
2305 	netif_reset_xps_queues_gt(dev, 0);
2306 #endif
2307 	dev->num_tc = num_tc;
2308 	return 0;
2309 }
2310 EXPORT_SYMBOL(netdev_set_num_tc);
2311 
2312 /*
2313  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2314  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2315  */
2316 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2317 {
2318 	int rc;
2319 
2320 	if (txq < 1 || txq > dev->num_tx_queues)
2321 		return -EINVAL;
2322 
2323 	if (dev->reg_state == NETREG_REGISTERED ||
2324 	    dev->reg_state == NETREG_UNREGISTERING) {
2325 		ASSERT_RTNL();
2326 
2327 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2328 						  txq);
2329 		if (rc)
2330 			return rc;
2331 
2332 		if (dev->num_tc)
2333 			netif_setup_tc(dev, txq);
2334 
2335 		if (txq < dev->real_num_tx_queues) {
2336 			qdisc_reset_all_tx_gt(dev, txq);
2337 #ifdef CONFIG_XPS
2338 			netif_reset_xps_queues_gt(dev, txq);
2339 #endif
2340 		}
2341 	}
2342 
2343 	dev->real_num_tx_queues = txq;
2344 	return 0;
2345 }
2346 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2347 
2348 #ifdef CONFIG_SYSFS
2349 /**
2350  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2351  *	@dev: Network device
2352  *	@rxq: Actual number of RX queues
2353  *
2354  *	This must be called either with the rtnl_lock held or before
2355  *	registration of the net device.  Returns 0 on success, or a
2356  *	negative error code.  If called before registration, it always
2357  *	succeeds.
2358  */
2359 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2360 {
2361 	int rc;
2362 
2363 	if (rxq < 1 || rxq > dev->num_rx_queues)
2364 		return -EINVAL;
2365 
2366 	if (dev->reg_state == NETREG_REGISTERED) {
2367 		ASSERT_RTNL();
2368 
2369 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2370 						  rxq);
2371 		if (rc)
2372 			return rc;
2373 	}
2374 
2375 	dev->real_num_rx_queues = rxq;
2376 	return 0;
2377 }
2378 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2379 #endif
2380 
2381 /**
2382  * netif_get_num_default_rss_queues - default number of RSS queues
2383  *
2384  * This routine should set an upper limit on the number of RSS queues
2385  * used by default by multiqueue devices.
2386  */
2387 int netif_get_num_default_rss_queues(void)
2388 {
2389 	return is_kdump_kernel() ?
2390 		1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2391 }
2392 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2393 
2394 static void __netif_reschedule(struct Qdisc *q)
2395 {
2396 	struct softnet_data *sd;
2397 	unsigned long flags;
2398 
2399 	local_irq_save(flags);
2400 	sd = this_cpu_ptr(&softnet_data);
2401 	q->next_sched = NULL;
2402 	*sd->output_queue_tailp = q;
2403 	sd->output_queue_tailp = &q->next_sched;
2404 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2405 	local_irq_restore(flags);
2406 }
2407 
2408 void __netif_schedule(struct Qdisc *q)
2409 {
2410 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2411 		__netif_reschedule(q);
2412 }
2413 EXPORT_SYMBOL(__netif_schedule);
2414 
2415 struct dev_kfree_skb_cb {
2416 	enum skb_free_reason reason;
2417 };
2418 
2419 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2420 {
2421 	return (struct dev_kfree_skb_cb *)skb->cb;
2422 }
2423 
2424 void netif_schedule_queue(struct netdev_queue *txq)
2425 {
2426 	rcu_read_lock();
2427 	if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2428 		struct Qdisc *q = rcu_dereference(txq->qdisc);
2429 
2430 		__netif_schedule(q);
2431 	}
2432 	rcu_read_unlock();
2433 }
2434 EXPORT_SYMBOL(netif_schedule_queue);
2435 
2436 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2437 {
2438 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2439 		struct Qdisc *q;
2440 
2441 		rcu_read_lock();
2442 		q = rcu_dereference(dev_queue->qdisc);
2443 		__netif_schedule(q);
2444 		rcu_read_unlock();
2445 	}
2446 }
2447 EXPORT_SYMBOL(netif_tx_wake_queue);
2448 
2449 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2450 {
2451 	unsigned long flags;
2452 
2453 	if (unlikely(!skb))
2454 		return;
2455 
2456 	if (likely(atomic_read(&skb->users) == 1)) {
2457 		smp_rmb();
2458 		atomic_set(&skb->users, 0);
2459 	} else if (likely(!atomic_dec_and_test(&skb->users))) {
2460 		return;
2461 	}
2462 	get_kfree_skb_cb(skb)->reason = reason;
2463 	local_irq_save(flags);
2464 	skb->next = __this_cpu_read(softnet_data.completion_queue);
2465 	__this_cpu_write(softnet_data.completion_queue, skb);
2466 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2467 	local_irq_restore(flags);
2468 }
2469 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2470 
2471 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2472 {
2473 	if (in_irq() || irqs_disabled())
2474 		__dev_kfree_skb_irq(skb, reason);
2475 	else
2476 		dev_kfree_skb(skb);
2477 }
2478 EXPORT_SYMBOL(__dev_kfree_skb_any);
2479 
2480 
2481 /**
2482  * netif_device_detach - mark device as removed
2483  * @dev: network device
2484  *
2485  * Mark device as removed from system and therefore no longer available.
2486  */
2487 void netif_device_detach(struct net_device *dev)
2488 {
2489 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2490 	    netif_running(dev)) {
2491 		netif_tx_stop_all_queues(dev);
2492 	}
2493 }
2494 EXPORT_SYMBOL(netif_device_detach);
2495 
2496 /**
2497  * netif_device_attach - mark device as attached
2498  * @dev: network device
2499  *
2500  * Mark device as attached from system and restart if needed.
2501  */
2502 void netif_device_attach(struct net_device *dev)
2503 {
2504 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2505 	    netif_running(dev)) {
2506 		netif_tx_wake_all_queues(dev);
2507 		__netdev_watchdog_up(dev);
2508 	}
2509 }
2510 EXPORT_SYMBOL(netif_device_attach);
2511 
2512 /*
2513  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2514  * to be used as a distribution range.
2515  */
2516 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2517 		  unsigned int num_tx_queues)
2518 {
2519 	u32 hash;
2520 	u16 qoffset = 0;
2521 	u16 qcount = num_tx_queues;
2522 
2523 	if (skb_rx_queue_recorded(skb)) {
2524 		hash = skb_get_rx_queue(skb);
2525 		while (unlikely(hash >= num_tx_queues))
2526 			hash -= num_tx_queues;
2527 		return hash;
2528 	}
2529 
2530 	if (dev->num_tc) {
2531 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2532 
2533 		qoffset = dev->tc_to_txq[tc].offset;
2534 		qcount = dev->tc_to_txq[tc].count;
2535 	}
2536 
2537 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2538 }
2539 EXPORT_SYMBOL(__skb_tx_hash);
2540 
2541 static void skb_warn_bad_offload(const struct sk_buff *skb)
2542 {
2543 	static const netdev_features_t null_features;
2544 	struct net_device *dev = skb->dev;
2545 	const char *name = "";
2546 
2547 	if (!net_ratelimit())
2548 		return;
2549 
2550 	if (dev) {
2551 		if (dev->dev.parent)
2552 			name = dev_driver_string(dev->dev.parent);
2553 		else
2554 			name = netdev_name(dev);
2555 	}
2556 	WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2557 	     "gso_type=%d ip_summed=%d\n",
2558 	     name, dev ? &dev->features : &null_features,
2559 	     skb->sk ? &skb->sk->sk_route_caps : &null_features,
2560 	     skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2561 	     skb_shinfo(skb)->gso_type, skb->ip_summed);
2562 }
2563 
2564 /*
2565  * Invalidate hardware checksum when packet is to be mangled, and
2566  * complete checksum manually on outgoing path.
2567  */
2568 int skb_checksum_help(struct sk_buff *skb)
2569 {
2570 	__wsum csum;
2571 	int ret = 0, offset;
2572 
2573 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2574 		goto out_set_summed;
2575 
2576 	if (unlikely(skb_shinfo(skb)->gso_size)) {
2577 		skb_warn_bad_offload(skb);
2578 		return -EINVAL;
2579 	}
2580 
2581 	/* Before computing a checksum, we should make sure no frag could
2582 	 * be modified by an external entity : checksum could be wrong.
2583 	 */
2584 	if (skb_has_shared_frag(skb)) {
2585 		ret = __skb_linearize(skb);
2586 		if (ret)
2587 			goto out;
2588 	}
2589 
2590 	offset = skb_checksum_start_offset(skb);
2591 	BUG_ON(offset >= skb_headlen(skb));
2592 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
2593 
2594 	offset += skb->csum_offset;
2595 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2596 
2597 	if (skb_cloned(skb) &&
2598 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2599 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2600 		if (ret)
2601 			goto out;
2602 	}
2603 
2604 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2605 out_set_summed:
2606 	skb->ip_summed = CHECKSUM_NONE;
2607 out:
2608 	return ret;
2609 }
2610 EXPORT_SYMBOL(skb_checksum_help);
2611 
2612 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2613 {
2614 	__be16 type = skb->protocol;
2615 
2616 	/* Tunnel gso handlers can set protocol to ethernet. */
2617 	if (type == htons(ETH_P_TEB)) {
2618 		struct ethhdr *eth;
2619 
2620 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2621 			return 0;
2622 
2623 		eth = (struct ethhdr *)skb_mac_header(skb);
2624 		type = eth->h_proto;
2625 	}
2626 
2627 	return __vlan_get_protocol(skb, type, depth);
2628 }
2629 
2630 /**
2631  *	skb_mac_gso_segment - mac layer segmentation handler.
2632  *	@skb: buffer to segment
2633  *	@features: features for the output path (see dev->features)
2634  */
2635 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2636 				    netdev_features_t features)
2637 {
2638 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2639 	struct packet_offload *ptype;
2640 	int vlan_depth = skb->mac_len;
2641 	__be16 type = skb_network_protocol(skb, &vlan_depth);
2642 
2643 	if (unlikely(!type))
2644 		return ERR_PTR(-EINVAL);
2645 
2646 	__skb_pull(skb, vlan_depth);
2647 
2648 	rcu_read_lock();
2649 	list_for_each_entry_rcu(ptype, &offload_base, list) {
2650 		if (ptype->type == type && ptype->callbacks.gso_segment) {
2651 			segs = ptype->callbacks.gso_segment(skb, features);
2652 			break;
2653 		}
2654 	}
2655 	rcu_read_unlock();
2656 
2657 	__skb_push(skb, skb->data - skb_mac_header(skb));
2658 
2659 	return segs;
2660 }
2661 EXPORT_SYMBOL(skb_mac_gso_segment);
2662 
2663 
2664 /* openvswitch calls this on rx path, so we need a different check.
2665  */
2666 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2667 {
2668 	if (tx_path)
2669 		return skb->ip_summed != CHECKSUM_PARTIAL &&
2670 		       skb->ip_summed != CHECKSUM_NONE;
2671 
2672 	return skb->ip_summed == CHECKSUM_NONE;
2673 }
2674 
2675 /**
2676  *	__skb_gso_segment - Perform segmentation on skb.
2677  *	@skb: buffer to segment
2678  *	@features: features for the output path (see dev->features)
2679  *	@tx_path: whether it is called in TX path
2680  *
2681  *	This function segments the given skb and returns a list of segments.
2682  *
2683  *	It may return NULL if the skb requires no segmentation.  This is
2684  *	only possible when GSO is used for verifying header integrity.
2685  *
2686  *	Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2687  */
2688 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2689 				  netdev_features_t features, bool tx_path)
2690 {
2691 	struct sk_buff *segs;
2692 
2693 	if (unlikely(skb_needs_check(skb, tx_path))) {
2694 		int err;
2695 
2696 		/* We're going to init ->check field in TCP or UDP header */
2697 		err = skb_cow_head(skb, 0);
2698 		if (err < 0)
2699 			return ERR_PTR(err);
2700 	}
2701 
2702 	/* Only report GSO partial support if it will enable us to
2703 	 * support segmentation on this frame without needing additional
2704 	 * work.
2705 	 */
2706 	if (features & NETIF_F_GSO_PARTIAL) {
2707 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2708 		struct net_device *dev = skb->dev;
2709 
2710 		partial_features |= dev->features & dev->gso_partial_features;
2711 		if (!skb_gso_ok(skb, features | partial_features))
2712 			features &= ~NETIF_F_GSO_PARTIAL;
2713 	}
2714 
2715 	BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2716 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2717 
2718 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2719 	SKB_GSO_CB(skb)->encap_level = 0;
2720 
2721 	skb_reset_mac_header(skb);
2722 	skb_reset_mac_len(skb);
2723 
2724 	segs = skb_mac_gso_segment(skb, features);
2725 
2726 	if (unlikely(skb_needs_check(skb, tx_path)))
2727 		skb_warn_bad_offload(skb);
2728 
2729 	return segs;
2730 }
2731 EXPORT_SYMBOL(__skb_gso_segment);
2732 
2733 /* Take action when hardware reception checksum errors are detected. */
2734 #ifdef CONFIG_BUG
2735 void netdev_rx_csum_fault(struct net_device *dev)
2736 {
2737 	if (net_ratelimit()) {
2738 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2739 		dump_stack();
2740 	}
2741 }
2742 EXPORT_SYMBOL(netdev_rx_csum_fault);
2743 #endif
2744 
2745 /* Actually, we should eliminate this check as soon as we know, that:
2746  * 1. IOMMU is present and allows to map all the memory.
2747  * 2. No high memory really exists on this machine.
2748  */
2749 
2750 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2751 {
2752 #ifdef CONFIG_HIGHMEM
2753 	int i;
2754 
2755 	if (!(dev->features & NETIF_F_HIGHDMA)) {
2756 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2757 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2758 
2759 			if (PageHighMem(skb_frag_page(frag)))
2760 				return 1;
2761 		}
2762 	}
2763 
2764 	if (PCI_DMA_BUS_IS_PHYS) {
2765 		struct device *pdev = dev->dev.parent;
2766 
2767 		if (!pdev)
2768 			return 0;
2769 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2770 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2771 			dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2772 
2773 			if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2774 				return 1;
2775 		}
2776 	}
2777 #endif
2778 	return 0;
2779 }
2780 
2781 /* If MPLS offload request, verify we are testing hardware MPLS features
2782  * instead of standard features for the netdev.
2783  */
2784 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2785 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2786 					   netdev_features_t features,
2787 					   __be16 type)
2788 {
2789 	if (eth_p_mpls(type))
2790 		features &= skb->dev->mpls_features;
2791 
2792 	return features;
2793 }
2794 #else
2795 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2796 					   netdev_features_t features,
2797 					   __be16 type)
2798 {
2799 	return features;
2800 }
2801 #endif
2802 
2803 static netdev_features_t harmonize_features(struct sk_buff *skb,
2804 	netdev_features_t features)
2805 {
2806 	int tmp;
2807 	__be16 type;
2808 
2809 	type = skb_network_protocol(skb, &tmp);
2810 	features = net_mpls_features(skb, features, type);
2811 
2812 	if (skb->ip_summed != CHECKSUM_NONE &&
2813 	    !can_checksum_protocol(features, type)) {
2814 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2815 	}
2816 	if (illegal_highdma(skb->dev, skb))
2817 		features &= ~NETIF_F_SG;
2818 
2819 	return features;
2820 }
2821 
2822 netdev_features_t passthru_features_check(struct sk_buff *skb,
2823 					  struct net_device *dev,
2824 					  netdev_features_t features)
2825 {
2826 	return features;
2827 }
2828 EXPORT_SYMBOL(passthru_features_check);
2829 
2830 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2831 					     struct net_device *dev,
2832 					     netdev_features_t features)
2833 {
2834 	return vlan_features_check(skb, features);
2835 }
2836 
2837 static netdev_features_t gso_features_check(const struct sk_buff *skb,
2838 					    struct net_device *dev,
2839 					    netdev_features_t features)
2840 {
2841 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
2842 
2843 	if (gso_segs > dev->gso_max_segs)
2844 		return features & ~NETIF_F_GSO_MASK;
2845 
2846 	/* Support for GSO partial features requires software
2847 	 * intervention before we can actually process the packets
2848 	 * so we need to strip support for any partial features now
2849 	 * and we can pull them back in after we have partially
2850 	 * segmented the frame.
2851 	 */
2852 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2853 		features &= ~dev->gso_partial_features;
2854 
2855 	/* Make sure to clear the IPv4 ID mangling feature if the
2856 	 * IPv4 header has the potential to be fragmented.
2857 	 */
2858 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2859 		struct iphdr *iph = skb->encapsulation ?
2860 				    inner_ip_hdr(skb) : ip_hdr(skb);
2861 
2862 		if (!(iph->frag_off & htons(IP_DF)))
2863 			features &= ~NETIF_F_TSO_MANGLEID;
2864 	}
2865 
2866 	return features;
2867 }
2868 
2869 netdev_features_t netif_skb_features(struct sk_buff *skb)
2870 {
2871 	struct net_device *dev = skb->dev;
2872 	netdev_features_t features = dev->features;
2873 
2874 	if (skb_is_gso(skb))
2875 		features = gso_features_check(skb, dev, features);
2876 
2877 	/* If encapsulation offload request, verify we are testing
2878 	 * hardware encapsulation features instead of standard
2879 	 * features for the netdev
2880 	 */
2881 	if (skb->encapsulation)
2882 		features &= dev->hw_enc_features;
2883 
2884 	if (skb_vlan_tagged(skb))
2885 		features = netdev_intersect_features(features,
2886 						     dev->vlan_features |
2887 						     NETIF_F_HW_VLAN_CTAG_TX |
2888 						     NETIF_F_HW_VLAN_STAG_TX);
2889 
2890 	if (dev->netdev_ops->ndo_features_check)
2891 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
2892 								features);
2893 	else
2894 		features &= dflt_features_check(skb, dev, features);
2895 
2896 	return harmonize_features(skb, features);
2897 }
2898 EXPORT_SYMBOL(netif_skb_features);
2899 
2900 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2901 		    struct netdev_queue *txq, bool more)
2902 {
2903 	unsigned int len;
2904 	int rc;
2905 
2906 	if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2907 		dev_queue_xmit_nit(skb, dev);
2908 
2909 	len = skb->len;
2910 	trace_net_dev_start_xmit(skb, dev);
2911 	rc = netdev_start_xmit(skb, dev, txq, more);
2912 	trace_net_dev_xmit(skb, rc, dev, len);
2913 
2914 	return rc;
2915 }
2916 
2917 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2918 				    struct netdev_queue *txq, int *ret)
2919 {
2920 	struct sk_buff *skb = first;
2921 	int rc = NETDEV_TX_OK;
2922 
2923 	while (skb) {
2924 		struct sk_buff *next = skb->next;
2925 
2926 		skb->next = NULL;
2927 		rc = xmit_one(skb, dev, txq, next != NULL);
2928 		if (unlikely(!dev_xmit_complete(rc))) {
2929 			skb->next = next;
2930 			goto out;
2931 		}
2932 
2933 		skb = next;
2934 		if (netif_xmit_stopped(txq) && skb) {
2935 			rc = NETDEV_TX_BUSY;
2936 			break;
2937 		}
2938 	}
2939 
2940 out:
2941 	*ret = rc;
2942 	return skb;
2943 }
2944 
2945 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2946 					  netdev_features_t features)
2947 {
2948 	if (skb_vlan_tag_present(skb) &&
2949 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
2950 		skb = __vlan_hwaccel_push_inside(skb);
2951 	return skb;
2952 }
2953 
2954 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2955 {
2956 	netdev_features_t features;
2957 
2958 	features = netif_skb_features(skb);
2959 	skb = validate_xmit_vlan(skb, features);
2960 	if (unlikely(!skb))
2961 		goto out_null;
2962 
2963 	if (netif_needs_gso(skb, features)) {
2964 		struct sk_buff *segs;
2965 
2966 		segs = skb_gso_segment(skb, features);
2967 		if (IS_ERR(segs)) {
2968 			goto out_kfree_skb;
2969 		} else if (segs) {
2970 			consume_skb(skb);
2971 			skb = segs;
2972 		}
2973 	} else {
2974 		if (skb_needs_linearize(skb, features) &&
2975 		    __skb_linearize(skb))
2976 			goto out_kfree_skb;
2977 
2978 		/* If packet is not checksummed and device does not
2979 		 * support checksumming for this protocol, complete
2980 		 * checksumming here.
2981 		 */
2982 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
2983 			if (skb->encapsulation)
2984 				skb_set_inner_transport_header(skb,
2985 							       skb_checksum_start_offset(skb));
2986 			else
2987 				skb_set_transport_header(skb,
2988 							 skb_checksum_start_offset(skb));
2989 			if (!(features & NETIF_F_CSUM_MASK) &&
2990 			    skb_checksum_help(skb))
2991 				goto out_kfree_skb;
2992 		}
2993 	}
2994 
2995 	return skb;
2996 
2997 out_kfree_skb:
2998 	kfree_skb(skb);
2999 out_null:
3000 	atomic_long_inc(&dev->tx_dropped);
3001 	return NULL;
3002 }
3003 
3004 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
3005 {
3006 	struct sk_buff *next, *head = NULL, *tail;
3007 
3008 	for (; skb != NULL; skb = next) {
3009 		next = skb->next;
3010 		skb->next = NULL;
3011 
3012 		/* in case skb wont be segmented, point to itself */
3013 		skb->prev = skb;
3014 
3015 		skb = validate_xmit_skb(skb, dev);
3016 		if (!skb)
3017 			continue;
3018 
3019 		if (!head)
3020 			head = skb;
3021 		else
3022 			tail->next = skb;
3023 		/* If skb was segmented, skb->prev points to
3024 		 * the last segment. If not, it still contains skb.
3025 		 */
3026 		tail = skb->prev;
3027 	}
3028 	return head;
3029 }
3030 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3031 
3032 static void qdisc_pkt_len_init(struct sk_buff *skb)
3033 {
3034 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3035 
3036 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3037 
3038 	/* To get more precise estimation of bytes sent on wire,
3039 	 * we add to pkt_len the headers size of all segments
3040 	 */
3041 	if (shinfo->gso_size)  {
3042 		unsigned int hdr_len;
3043 		u16 gso_segs = shinfo->gso_segs;
3044 
3045 		/* mac layer + network layer */
3046 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3047 
3048 		/* + transport layer */
3049 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3050 			hdr_len += tcp_hdrlen(skb);
3051 		else
3052 			hdr_len += sizeof(struct udphdr);
3053 
3054 		if (shinfo->gso_type & SKB_GSO_DODGY)
3055 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3056 						shinfo->gso_size);
3057 
3058 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3059 	}
3060 }
3061 
3062 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3063 				 struct net_device *dev,
3064 				 struct netdev_queue *txq)
3065 {
3066 	spinlock_t *root_lock = qdisc_lock(q);
3067 	struct sk_buff *to_free = NULL;
3068 	bool contended;
3069 	int rc;
3070 
3071 	qdisc_calculate_pkt_len(skb, q);
3072 	/*
3073 	 * Heuristic to force contended enqueues to serialize on a
3074 	 * separate lock before trying to get qdisc main lock.
3075 	 * This permits qdisc->running owner to get the lock more
3076 	 * often and dequeue packets faster.
3077 	 */
3078 	contended = qdisc_is_running(q);
3079 	if (unlikely(contended))
3080 		spin_lock(&q->busylock);
3081 
3082 	spin_lock(root_lock);
3083 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3084 		__qdisc_drop(skb, &to_free);
3085 		rc = NET_XMIT_DROP;
3086 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3087 		   qdisc_run_begin(q)) {
3088 		/*
3089 		 * This is a work-conserving queue; there are no old skbs
3090 		 * waiting to be sent out; and the qdisc is not running -
3091 		 * xmit the skb directly.
3092 		 */
3093 
3094 		qdisc_bstats_update(q, skb);
3095 
3096 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3097 			if (unlikely(contended)) {
3098 				spin_unlock(&q->busylock);
3099 				contended = false;
3100 			}
3101 			__qdisc_run(q);
3102 		} else
3103 			qdisc_run_end(q);
3104 
3105 		rc = NET_XMIT_SUCCESS;
3106 	} else {
3107 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3108 		if (qdisc_run_begin(q)) {
3109 			if (unlikely(contended)) {
3110 				spin_unlock(&q->busylock);
3111 				contended = false;
3112 			}
3113 			__qdisc_run(q);
3114 		}
3115 	}
3116 	spin_unlock(root_lock);
3117 	if (unlikely(to_free))
3118 		kfree_skb_list(to_free);
3119 	if (unlikely(contended))
3120 		spin_unlock(&q->busylock);
3121 	return rc;
3122 }
3123 
3124 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3125 static void skb_update_prio(struct sk_buff *skb)
3126 {
3127 	struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
3128 
3129 	if (!skb->priority && skb->sk && map) {
3130 		unsigned int prioidx =
3131 			sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
3132 
3133 		if (prioidx < map->priomap_len)
3134 			skb->priority = map->priomap[prioidx];
3135 	}
3136 }
3137 #else
3138 #define skb_update_prio(skb)
3139 #endif
3140 
3141 DEFINE_PER_CPU(int, xmit_recursion);
3142 EXPORT_SYMBOL(xmit_recursion);
3143 
3144 /**
3145  *	dev_loopback_xmit - loop back @skb
3146  *	@net: network namespace this loopback is happening in
3147  *	@sk:  sk needed to be a netfilter okfn
3148  *	@skb: buffer to transmit
3149  */
3150 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3151 {
3152 	skb_reset_mac_header(skb);
3153 	__skb_pull(skb, skb_network_offset(skb));
3154 	skb->pkt_type = PACKET_LOOPBACK;
3155 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3156 	WARN_ON(!skb_dst(skb));
3157 	skb_dst_force(skb);
3158 	netif_rx_ni(skb);
3159 	return 0;
3160 }
3161 EXPORT_SYMBOL(dev_loopback_xmit);
3162 
3163 #ifdef CONFIG_NET_EGRESS
3164 static struct sk_buff *
3165 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3166 {
3167 	struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3168 	struct tcf_result cl_res;
3169 
3170 	if (!cl)
3171 		return skb;
3172 
3173 	/* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3174 	qdisc_bstats_cpu_update(cl->q, skb);
3175 
3176 	switch (tc_classify(skb, cl, &cl_res, false)) {
3177 	case TC_ACT_OK:
3178 	case TC_ACT_RECLASSIFY:
3179 		skb->tc_index = TC_H_MIN(cl_res.classid);
3180 		break;
3181 	case TC_ACT_SHOT:
3182 		qdisc_qstats_cpu_drop(cl->q);
3183 		*ret = NET_XMIT_DROP;
3184 		kfree_skb(skb);
3185 		return NULL;
3186 	case TC_ACT_STOLEN:
3187 	case TC_ACT_QUEUED:
3188 		*ret = NET_XMIT_SUCCESS;
3189 		consume_skb(skb);
3190 		return NULL;
3191 	case TC_ACT_REDIRECT:
3192 		/* No need to push/pop skb's mac_header here on egress! */
3193 		skb_do_redirect(skb);
3194 		*ret = NET_XMIT_SUCCESS;
3195 		return NULL;
3196 	default:
3197 		break;
3198 	}
3199 
3200 	return skb;
3201 }
3202 #endif /* CONFIG_NET_EGRESS */
3203 
3204 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3205 {
3206 #ifdef CONFIG_XPS
3207 	struct xps_dev_maps *dev_maps;
3208 	struct xps_map *map;
3209 	int queue_index = -1;
3210 
3211 	rcu_read_lock();
3212 	dev_maps = rcu_dereference(dev->xps_maps);
3213 	if (dev_maps) {
3214 		unsigned int tci = skb->sender_cpu - 1;
3215 
3216 		if (dev->num_tc) {
3217 			tci *= dev->num_tc;
3218 			tci += netdev_get_prio_tc_map(dev, skb->priority);
3219 		}
3220 
3221 		map = rcu_dereference(dev_maps->cpu_map[tci]);
3222 		if (map) {
3223 			if (map->len == 1)
3224 				queue_index = map->queues[0];
3225 			else
3226 				queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3227 									   map->len)];
3228 			if (unlikely(queue_index >= dev->real_num_tx_queues))
3229 				queue_index = -1;
3230 		}
3231 	}
3232 	rcu_read_unlock();
3233 
3234 	return queue_index;
3235 #else
3236 	return -1;
3237 #endif
3238 }
3239 
3240 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3241 {
3242 	struct sock *sk = skb->sk;
3243 	int queue_index = sk_tx_queue_get(sk);
3244 
3245 	if (queue_index < 0 || skb->ooo_okay ||
3246 	    queue_index >= dev->real_num_tx_queues) {
3247 		int new_index = get_xps_queue(dev, skb);
3248 
3249 		if (new_index < 0)
3250 			new_index = skb_tx_hash(dev, skb);
3251 
3252 		if (queue_index != new_index && sk &&
3253 		    sk_fullsock(sk) &&
3254 		    rcu_access_pointer(sk->sk_dst_cache))
3255 			sk_tx_queue_set(sk, new_index);
3256 
3257 		queue_index = new_index;
3258 	}
3259 
3260 	return queue_index;
3261 }
3262 
3263 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3264 				    struct sk_buff *skb,
3265 				    void *accel_priv)
3266 {
3267 	int queue_index = 0;
3268 
3269 #ifdef CONFIG_XPS
3270 	u32 sender_cpu = skb->sender_cpu - 1;
3271 
3272 	if (sender_cpu >= (u32)NR_CPUS)
3273 		skb->sender_cpu = raw_smp_processor_id() + 1;
3274 #endif
3275 
3276 	if (dev->real_num_tx_queues != 1) {
3277 		const struct net_device_ops *ops = dev->netdev_ops;
3278 
3279 		if (ops->ndo_select_queue)
3280 			queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3281 							    __netdev_pick_tx);
3282 		else
3283 			queue_index = __netdev_pick_tx(dev, skb);
3284 
3285 		if (!accel_priv)
3286 			queue_index = netdev_cap_txqueue(dev, queue_index);
3287 	}
3288 
3289 	skb_set_queue_mapping(skb, queue_index);
3290 	return netdev_get_tx_queue(dev, queue_index);
3291 }
3292 
3293 /**
3294  *	__dev_queue_xmit - transmit a buffer
3295  *	@skb: buffer to transmit
3296  *	@accel_priv: private data used for L2 forwarding offload
3297  *
3298  *	Queue a buffer for transmission to a network device. The caller must
3299  *	have set the device and priority and built the buffer before calling
3300  *	this function. The function can be called from an interrupt.
3301  *
3302  *	A negative errno code is returned on a failure. A success does not
3303  *	guarantee the frame will be transmitted as it may be dropped due
3304  *	to congestion or traffic shaping.
3305  *
3306  * -----------------------------------------------------------------------------------
3307  *      I notice this method can also return errors from the queue disciplines,
3308  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3309  *      be positive.
3310  *
3311  *      Regardless of the return value, the skb is consumed, so it is currently
3312  *      difficult to retry a send to this method.  (You can bump the ref count
3313  *      before sending to hold a reference for retry if you are careful.)
3314  *
3315  *      When calling this method, interrupts MUST be enabled.  This is because
3316  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3317  *          --BLG
3318  */
3319 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3320 {
3321 	struct net_device *dev = skb->dev;
3322 	struct netdev_queue *txq;
3323 	struct Qdisc *q;
3324 	int rc = -ENOMEM;
3325 
3326 	skb_reset_mac_header(skb);
3327 
3328 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3329 		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3330 
3331 	/* Disable soft irqs for various locks below. Also
3332 	 * stops preemption for RCU.
3333 	 */
3334 	rcu_read_lock_bh();
3335 
3336 	skb_update_prio(skb);
3337 
3338 	qdisc_pkt_len_init(skb);
3339 #ifdef CONFIG_NET_CLS_ACT
3340 	skb->tc_at_ingress = 0;
3341 # ifdef CONFIG_NET_EGRESS
3342 	if (static_key_false(&egress_needed)) {
3343 		skb = sch_handle_egress(skb, &rc, dev);
3344 		if (!skb)
3345 			goto out;
3346 	}
3347 # endif
3348 #endif
3349 	/* If device/qdisc don't need skb->dst, release it right now while
3350 	 * its hot in this cpu cache.
3351 	 */
3352 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3353 		skb_dst_drop(skb);
3354 	else
3355 		skb_dst_force(skb);
3356 
3357 	txq = netdev_pick_tx(dev, skb, accel_priv);
3358 	q = rcu_dereference_bh(txq->qdisc);
3359 
3360 	trace_net_dev_queue(skb);
3361 	if (q->enqueue) {
3362 		rc = __dev_xmit_skb(skb, q, dev, txq);
3363 		goto out;
3364 	}
3365 
3366 	/* The device has no queue. Common case for software devices:
3367 	 * loopback, all the sorts of tunnels...
3368 
3369 	 * Really, it is unlikely that netif_tx_lock protection is necessary
3370 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3371 	 * counters.)
3372 	 * However, it is possible, that they rely on protection
3373 	 * made by us here.
3374 
3375 	 * Check this and shot the lock. It is not prone from deadlocks.
3376 	 *Either shot noqueue qdisc, it is even simpler 8)
3377 	 */
3378 	if (dev->flags & IFF_UP) {
3379 		int cpu = smp_processor_id(); /* ok because BHs are off */
3380 
3381 		if (txq->xmit_lock_owner != cpu) {
3382 			if (unlikely(__this_cpu_read(xmit_recursion) >
3383 				     XMIT_RECURSION_LIMIT))
3384 				goto recursion_alert;
3385 
3386 			skb = validate_xmit_skb(skb, dev);
3387 			if (!skb)
3388 				goto out;
3389 
3390 			HARD_TX_LOCK(dev, txq, cpu);
3391 
3392 			if (!netif_xmit_stopped(txq)) {
3393 				__this_cpu_inc(xmit_recursion);
3394 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3395 				__this_cpu_dec(xmit_recursion);
3396 				if (dev_xmit_complete(rc)) {
3397 					HARD_TX_UNLOCK(dev, txq);
3398 					goto out;
3399 				}
3400 			}
3401 			HARD_TX_UNLOCK(dev, txq);
3402 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3403 					     dev->name);
3404 		} else {
3405 			/* Recursion is detected! It is possible,
3406 			 * unfortunately
3407 			 */
3408 recursion_alert:
3409 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3410 					     dev->name);
3411 		}
3412 	}
3413 
3414 	rc = -ENETDOWN;
3415 	rcu_read_unlock_bh();
3416 
3417 	atomic_long_inc(&dev->tx_dropped);
3418 	kfree_skb_list(skb);
3419 	return rc;
3420 out:
3421 	rcu_read_unlock_bh();
3422 	return rc;
3423 }
3424 
3425 int dev_queue_xmit(struct sk_buff *skb)
3426 {
3427 	return __dev_queue_xmit(skb, NULL);
3428 }
3429 EXPORT_SYMBOL(dev_queue_xmit);
3430 
3431 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3432 {
3433 	return __dev_queue_xmit(skb, accel_priv);
3434 }
3435 EXPORT_SYMBOL(dev_queue_xmit_accel);
3436 
3437 
3438 /*************************************************************************
3439  *			Receiver routines
3440  *************************************************************************/
3441 
3442 int netdev_max_backlog __read_mostly = 1000;
3443 EXPORT_SYMBOL(netdev_max_backlog);
3444 
3445 int netdev_tstamp_prequeue __read_mostly = 1;
3446 int netdev_budget __read_mostly = 300;
3447 int weight_p __read_mostly = 64;           /* old backlog weight */
3448 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
3449 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
3450 int dev_rx_weight __read_mostly = 64;
3451 int dev_tx_weight __read_mostly = 64;
3452 
3453 /* Called with irq disabled */
3454 static inline void ____napi_schedule(struct softnet_data *sd,
3455 				     struct napi_struct *napi)
3456 {
3457 	list_add_tail(&napi->poll_list, &sd->poll_list);
3458 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3459 }
3460 
3461 #ifdef CONFIG_RPS
3462 
3463 /* One global table that all flow-based protocols share. */
3464 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3465 EXPORT_SYMBOL(rps_sock_flow_table);
3466 u32 rps_cpu_mask __read_mostly;
3467 EXPORT_SYMBOL(rps_cpu_mask);
3468 
3469 struct static_key rps_needed __read_mostly;
3470 EXPORT_SYMBOL(rps_needed);
3471 struct static_key rfs_needed __read_mostly;
3472 EXPORT_SYMBOL(rfs_needed);
3473 
3474 static struct rps_dev_flow *
3475 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3476 	    struct rps_dev_flow *rflow, u16 next_cpu)
3477 {
3478 	if (next_cpu < nr_cpu_ids) {
3479 #ifdef CONFIG_RFS_ACCEL
3480 		struct netdev_rx_queue *rxqueue;
3481 		struct rps_dev_flow_table *flow_table;
3482 		struct rps_dev_flow *old_rflow;
3483 		u32 flow_id;
3484 		u16 rxq_index;
3485 		int rc;
3486 
3487 		/* Should we steer this flow to a different hardware queue? */
3488 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3489 		    !(dev->features & NETIF_F_NTUPLE))
3490 			goto out;
3491 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3492 		if (rxq_index == skb_get_rx_queue(skb))
3493 			goto out;
3494 
3495 		rxqueue = dev->_rx + rxq_index;
3496 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
3497 		if (!flow_table)
3498 			goto out;
3499 		flow_id = skb_get_hash(skb) & flow_table->mask;
3500 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3501 							rxq_index, flow_id);
3502 		if (rc < 0)
3503 			goto out;
3504 		old_rflow = rflow;
3505 		rflow = &flow_table->flows[flow_id];
3506 		rflow->filter = rc;
3507 		if (old_rflow->filter == rflow->filter)
3508 			old_rflow->filter = RPS_NO_FILTER;
3509 	out:
3510 #endif
3511 		rflow->last_qtail =
3512 			per_cpu(softnet_data, next_cpu).input_queue_head;
3513 	}
3514 
3515 	rflow->cpu = next_cpu;
3516 	return rflow;
3517 }
3518 
3519 /*
3520  * get_rps_cpu is called from netif_receive_skb and returns the target
3521  * CPU from the RPS map of the receiving queue for a given skb.
3522  * rcu_read_lock must be held on entry.
3523  */
3524 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3525 		       struct rps_dev_flow **rflowp)
3526 {
3527 	const struct rps_sock_flow_table *sock_flow_table;
3528 	struct netdev_rx_queue *rxqueue = dev->_rx;
3529 	struct rps_dev_flow_table *flow_table;
3530 	struct rps_map *map;
3531 	int cpu = -1;
3532 	u32 tcpu;
3533 	u32 hash;
3534 
3535 	if (skb_rx_queue_recorded(skb)) {
3536 		u16 index = skb_get_rx_queue(skb);
3537 
3538 		if (unlikely(index >= dev->real_num_rx_queues)) {
3539 			WARN_ONCE(dev->real_num_rx_queues > 1,
3540 				  "%s received packet on queue %u, but number "
3541 				  "of RX queues is %u\n",
3542 				  dev->name, index, dev->real_num_rx_queues);
3543 			goto done;
3544 		}
3545 		rxqueue += index;
3546 	}
3547 
3548 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3549 
3550 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3551 	map = rcu_dereference(rxqueue->rps_map);
3552 	if (!flow_table && !map)
3553 		goto done;
3554 
3555 	skb_reset_network_header(skb);
3556 	hash = skb_get_hash(skb);
3557 	if (!hash)
3558 		goto done;
3559 
3560 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
3561 	if (flow_table && sock_flow_table) {
3562 		struct rps_dev_flow *rflow;
3563 		u32 next_cpu;
3564 		u32 ident;
3565 
3566 		/* First check into global flow table if there is a match */
3567 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3568 		if ((ident ^ hash) & ~rps_cpu_mask)
3569 			goto try_rps;
3570 
3571 		next_cpu = ident & rps_cpu_mask;
3572 
3573 		/* OK, now we know there is a match,
3574 		 * we can look at the local (per receive queue) flow table
3575 		 */
3576 		rflow = &flow_table->flows[hash & flow_table->mask];
3577 		tcpu = rflow->cpu;
3578 
3579 		/*
3580 		 * If the desired CPU (where last recvmsg was done) is
3581 		 * different from current CPU (one in the rx-queue flow
3582 		 * table entry), switch if one of the following holds:
3583 		 *   - Current CPU is unset (>= nr_cpu_ids).
3584 		 *   - Current CPU is offline.
3585 		 *   - The current CPU's queue tail has advanced beyond the
3586 		 *     last packet that was enqueued using this table entry.
3587 		 *     This guarantees that all previous packets for the flow
3588 		 *     have been dequeued, thus preserving in order delivery.
3589 		 */
3590 		if (unlikely(tcpu != next_cpu) &&
3591 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3592 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3593 		      rflow->last_qtail)) >= 0)) {
3594 			tcpu = next_cpu;
3595 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3596 		}
3597 
3598 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3599 			*rflowp = rflow;
3600 			cpu = tcpu;
3601 			goto done;
3602 		}
3603 	}
3604 
3605 try_rps:
3606 
3607 	if (map) {
3608 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3609 		if (cpu_online(tcpu)) {
3610 			cpu = tcpu;
3611 			goto done;
3612 		}
3613 	}
3614 
3615 done:
3616 	return cpu;
3617 }
3618 
3619 #ifdef CONFIG_RFS_ACCEL
3620 
3621 /**
3622  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3623  * @dev: Device on which the filter was set
3624  * @rxq_index: RX queue index
3625  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3626  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3627  *
3628  * Drivers that implement ndo_rx_flow_steer() should periodically call
3629  * this function for each installed filter and remove the filters for
3630  * which it returns %true.
3631  */
3632 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3633 			 u32 flow_id, u16 filter_id)
3634 {
3635 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3636 	struct rps_dev_flow_table *flow_table;
3637 	struct rps_dev_flow *rflow;
3638 	bool expire = true;
3639 	unsigned int cpu;
3640 
3641 	rcu_read_lock();
3642 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3643 	if (flow_table && flow_id <= flow_table->mask) {
3644 		rflow = &flow_table->flows[flow_id];
3645 		cpu = ACCESS_ONCE(rflow->cpu);
3646 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3647 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3648 			   rflow->last_qtail) <
3649 		     (int)(10 * flow_table->mask)))
3650 			expire = false;
3651 	}
3652 	rcu_read_unlock();
3653 	return expire;
3654 }
3655 EXPORT_SYMBOL(rps_may_expire_flow);
3656 
3657 #endif /* CONFIG_RFS_ACCEL */
3658 
3659 /* Called from hardirq (IPI) context */
3660 static void rps_trigger_softirq(void *data)
3661 {
3662 	struct softnet_data *sd = data;
3663 
3664 	____napi_schedule(sd, &sd->backlog);
3665 	sd->received_rps++;
3666 }
3667 
3668 #endif /* CONFIG_RPS */
3669 
3670 /*
3671  * Check if this softnet_data structure is another cpu one
3672  * If yes, queue it to our IPI list and return 1
3673  * If no, return 0
3674  */
3675 static int rps_ipi_queued(struct softnet_data *sd)
3676 {
3677 #ifdef CONFIG_RPS
3678 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3679 
3680 	if (sd != mysd) {
3681 		sd->rps_ipi_next = mysd->rps_ipi_list;
3682 		mysd->rps_ipi_list = sd;
3683 
3684 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3685 		return 1;
3686 	}
3687 #endif /* CONFIG_RPS */
3688 	return 0;
3689 }
3690 
3691 #ifdef CONFIG_NET_FLOW_LIMIT
3692 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3693 #endif
3694 
3695 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3696 {
3697 #ifdef CONFIG_NET_FLOW_LIMIT
3698 	struct sd_flow_limit *fl;
3699 	struct softnet_data *sd;
3700 	unsigned int old_flow, new_flow;
3701 
3702 	if (qlen < (netdev_max_backlog >> 1))
3703 		return false;
3704 
3705 	sd = this_cpu_ptr(&softnet_data);
3706 
3707 	rcu_read_lock();
3708 	fl = rcu_dereference(sd->flow_limit);
3709 	if (fl) {
3710 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3711 		old_flow = fl->history[fl->history_head];
3712 		fl->history[fl->history_head] = new_flow;
3713 
3714 		fl->history_head++;
3715 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3716 
3717 		if (likely(fl->buckets[old_flow]))
3718 			fl->buckets[old_flow]--;
3719 
3720 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3721 			fl->count++;
3722 			rcu_read_unlock();
3723 			return true;
3724 		}
3725 	}
3726 	rcu_read_unlock();
3727 #endif
3728 	return false;
3729 }
3730 
3731 /*
3732  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3733  * queue (may be a remote CPU queue).
3734  */
3735 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3736 			      unsigned int *qtail)
3737 {
3738 	struct softnet_data *sd;
3739 	unsigned long flags;
3740 	unsigned int qlen;
3741 
3742 	sd = &per_cpu(softnet_data, cpu);
3743 
3744 	local_irq_save(flags);
3745 
3746 	rps_lock(sd);
3747 	if (!netif_running(skb->dev))
3748 		goto drop;
3749 	qlen = skb_queue_len(&sd->input_pkt_queue);
3750 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3751 		if (qlen) {
3752 enqueue:
3753 			__skb_queue_tail(&sd->input_pkt_queue, skb);
3754 			input_queue_tail_incr_save(sd, qtail);
3755 			rps_unlock(sd);
3756 			local_irq_restore(flags);
3757 			return NET_RX_SUCCESS;
3758 		}
3759 
3760 		/* Schedule NAPI for backlog device
3761 		 * We can use non atomic operation since we own the queue lock
3762 		 */
3763 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3764 			if (!rps_ipi_queued(sd))
3765 				____napi_schedule(sd, &sd->backlog);
3766 		}
3767 		goto enqueue;
3768 	}
3769 
3770 drop:
3771 	sd->dropped++;
3772 	rps_unlock(sd);
3773 
3774 	local_irq_restore(flags);
3775 
3776 	atomic_long_inc(&skb->dev->rx_dropped);
3777 	kfree_skb(skb);
3778 	return NET_RX_DROP;
3779 }
3780 
3781 static int netif_rx_internal(struct sk_buff *skb)
3782 {
3783 	int ret;
3784 
3785 	net_timestamp_check(netdev_tstamp_prequeue, skb);
3786 
3787 	trace_netif_rx(skb);
3788 #ifdef CONFIG_RPS
3789 	if (static_key_false(&rps_needed)) {
3790 		struct rps_dev_flow voidflow, *rflow = &voidflow;
3791 		int cpu;
3792 
3793 		preempt_disable();
3794 		rcu_read_lock();
3795 
3796 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
3797 		if (cpu < 0)
3798 			cpu = smp_processor_id();
3799 
3800 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3801 
3802 		rcu_read_unlock();
3803 		preempt_enable();
3804 	} else
3805 #endif
3806 	{
3807 		unsigned int qtail;
3808 
3809 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3810 		put_cpu();
3811 	}
3812 	return ret;
3813 }
3814 
3815 /**
3816  *	netif_rx	-	post buffer to the network code
3817  *	@skb: buffer to post
3818  *
3819  *	This function receives a packet from a device driver and queues it for
3820  *	the upper (protocol) levels to process.  It always succeeds. The buffer
3821  *	may be dropped during processing for congestion control or by the
3822  *	protocol layers.
3823  *
3824  *	return values:
3825  *	NET_RX_SUCCESS	(no congestion)
3826  *	NET_RX_DROP     (packet was dropped)
3827  *
3828  */
3829 
3830 int netif_rx(struct sk_buff *skb)
3831 {
3832 	trace_netif_rx_entry(skb);
3833 
3834 	return netif_rx_internal(skb);
3835 }
3836 EXPORT_SYMBOL(netif_rx);
3837 
3838 int netif_rx_ni(struct sk_buff *skb)
3839 {
3840 	int err;
3841 
3842 	trace_netif_rx_ni_entry(skb);
3843 
3844 	preempt_disable();
3845 	err = netif_rx_internal(skb);
3846 	if (local_softirq_pending())
3847 		do_softirq();
3848 	preempt_enable();
3849 
3850 	return err;
3851 }
3852 EXPORT_SYMBOL(netif_rx_ni);
3853 
3854 static __latent_entropy void net_tx_action(struct softirq_action *h)
3855 {
3856 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3857 
3858 	if (sd->completion_queue) {
3859 		struct sk_buff *clist;
3860 
3861 		local_irq_disable();
3862 		clist = sd->completion_queue;
3863 		sd->completion_queue = NULL;
3864 		local_irq_enable();
3865 
3866 		while (clist) {
3867 			struct sk_buff *skb = clist;
3868 
3869 			clist = clist->next;
3870 
3871 			WARN_ON(atomic_read(&skb->users));
3872 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3873 				trace_consume_skb(skb);
3874 			else
3875 				trace_kfree_skb(skb, net_tx_action);
3876 
3877 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
3878 				__kfree_skb(skb);
3879 			else
3880 				__kfree_skb_defer(skb);
3881 		}
3882 
3883 		__kfree_skb_flush();
3884 	}
3885 
3886 	if (sd->output_queue) {
3887 		struct Qdisc *head;
3888 
3889 		local_irq_disable();
3890 		head = sd->output_queue;
3891 		sd->output_queue = NULL;
3892 		sd->output_queue_tailp = &sd->output_queue;
3893 		local_irq_enable();
3894 
3895 		while (head) {
3896 			struct Qdisc *q = head;
3897 			spinlock_t *root_lock;
3898 
3899 			head = head->next_sched;
3900 
3901 			root_lock = qdisc_lock(q);
3902 			spin_lock(root_lock);
3903 			/* We need to make sure head->next_sched is read
3904 			 * before clearing __QDISC_STATE_SCHED
3905 			 */
3906 			smp_mb__before_atomic();
3907 			clear_bit(__QDISC_STATE_SCHED, &q->state);
3908 			qdisc_run(q);
3909 			spin_unlock(root_lock);
3910 		}
3911 	}
3912 }
3913 
3914 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
3915 /* This hook is defined here for ATM LANE */
3916 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3917 			     unsigned char *addr) __read_mostly;
3918 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3919 #endif
3920 
3921 static inline struct sk_buff *
3922 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3923 		   struct net_device *orig_dev)
3924 {
3925 #ifdef CONFIG_NET_CLS_ACT
3926 	struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3927 	struct tcf_result cl_res;
3928 
3929 	/* If there's at least one ingress present somewhere (so
3930 	 * we get here via enabled static key), remaining devices
3931 	 * that are not configured with an ingress qdisc will bail
3932 	 * out here.
3933 	 */
3934 	if (!cl)
3935 		return skb;
3936 	if (*pt_prev) {
3937 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
3938 		*pt_prev = NULL;
3939 	}
3940 
3941 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3942 	skb->tc_at_ingress = 1;
3943 	qdisc_bstats_cpu_update(cl->q, skb);
3944 
3945 	switch (tc_classify(skb, cl, &cl_res, false)) {
3946 	case TC_ACT_OK:
3947 	case TC_ACT_RECLASSIFY:
3948 		skb->tc_index = TC_H_MIN(cl_res.classid);
3949 		break;
3950 	case TC_ACT_SHOT:
3951 		qdisc_qstats_cpu_drop(cl->q);
3952 		kfree_skb(skb);
3953 		return NULL;
3954 	case TC_ACT_STOLEN:
3955 	case TC_ACT_QUEUED:
3956 		consume_skb(skb);
3957 		return NULL;
3958 	case TC_ACT_REDIRECT:
3959 		/* skb_mac_header check was done by cls/act_bpf, so
3960 		 * we can safely push the L2 header back before
3961 		 * redirecting to another netdev
3962 		 */
3963 		__skb_push(skb, skb->mac_len);
3964 		skb_do_redirect(skb);
3965 		return NULL;
3966 	default:
3967 		break;
3968 	}
3969 #endif /* CONFIG_NET_CLS_ACT */
3970 	return skb;
3971 }
3972 
3973 /**
3974  *	netdev_is_rx_handler_busy - check if receive handler is registered
3975  *	@dev: device to check
3976  *
3977  *	Check if a receive handler is already registered for a given device.
3978  *	Return true if there one.
3979  *
3980  *	The caller must hold the rtnl_mutex.
3981  */
3982 bool netdev_is_rx_handler_busy(struct net_device *dev)
3983 {
3984 	ASSERT_RTNL();
3985 	return dev && rtnl_dereference(dev->rx_handler);
3986 }
3987 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
3988 
3989 /**
3990  *	netdev_rx_handler_register - register receive handler
3991  *	@dev: device to register a handler for
3992  *	@rx_handler: receive handler to register
3993  *	@rx_handler_data: data pointer that is used by rx handler
3994  *
3995  *	Register a receive handler for a device. This handler will then be
3996  *	called from __netif_receive_skb. A negative errno code is returned
3997  *	on a failure.
3998  *
3999  *	The caller must hold the rtnl_mutex.
4000  *
4001  *	For a general description of rx_handler, see enum rx_handler_result.
4002  */
4003 int netdev_rx_handler_register(struct net_device *dev,
4004 			       rx_handler_func_t *rx_handler,
4005 			       void *rx_handler_data)
4006 {
4007 	if (netdev_is_rx_handler_busy(dev))
4008 		return -EBUSY;
4009 
4010 	/* Note: rx_handler_data must be set before rx_handler */
4011 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4012 	rcu_assign_pointer(dev->rx_handler, rx_handler);
4013 
4014 	return 0;
4015 }
4016 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4017 
4018 /**
4019  *	netdev_rx_handler_unregister - unregister receive handler
4020  *	@dev: device to unregister a handler from
4021  *
4022  *	Unregister a receive handler from a device.
4023  *
4024  *	The caller must hold the rtnl_mutex.
4025  */
4026 void netdev_rx_handler_unregister(struct net_device *dev)
4027 {
4028 
4029 	ASSERT_RTNL();
4030 	RCU_INIT_POINTER(dev->rx_handler, NULL);
4031 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4032 	 * section has a guarantee to see a non NULL rx_handler_data
4033 	 * as well.
4034 	 */
4035 	synchronize_net();
4036 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4037 }
4038 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4039 
4040 /*
4041  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4042  * the special handling of PFMEMALLOC skbs.
4043  */
4044 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4045 {
4046 	switch (skb->protocol) {
4047 	case htons(ETH_P_ARP):
4048 	case htons(ETH_P_IP):
4049 	case htons(ETH_P_IPV6):
4050 	case htons(ETH_P_8021Q):
4051 	case htons(ETH_P_8021AD):
4052 		return true;
4053 	default:
4054 		return false;
4055 	}
4056 }
4057 
4058 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4059 			     int *ret, struct net_device *orig_dev)
4060 {
4061 #ifdef CONFIG_NETFILTER_INGRESS
4062 	if (nf_hook_ingress_active(skb)) {
4063 		int ingress_retval;
4064 
4065 		if (*pt_prev) {
4066 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
4067 			*pt_prev = NULL;
4068 		}
4069 
4070 		rcu_read_lock();
4071 		ingress_retval = nf_hook_ingress(skb);
4072 		rcu_read_unlock();
4073 		return ingress_retval;
4074 	}
4075 #endif /* CONFIG_NETFILTER_INGRESS */
4076 	return 0;
4077 }
4078 
4079 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4080 {
4081 	struct packet_type *ptype, *pt_prev;
4082 	rx_handler_func_t *rx_handler;
4083 	struct net_device *orig_dev;
4084 	bool deliver_exact = false;
4085 	int ret = NET_RX_DROP;
4086 	__be16 type;
4087 
4088 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
4089 
4090 	trace_netif_receive_skb(skb);
4091 
4092 	orig_dev = skb->dev;
4093 
4094 	skb_reset_network_header(skb);
4095 	if (!skb_transport_header_was_set(skb))
4096 		skb_reset_transport_header(skb);
4097 	skb_reset_mac_len(skb);
4098 
4099 	pt_prev = NULL;
4100 
4101 another_round:
4102 	skb->skb_iif = skb->dev->ifindex;
4103 
4104 	__this_cpu_inc(softnet_data.processed);
4105 
4106 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4107 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4108 		skb = skb_vlan_untag(skb);
4109 		if (unlikely(!skb))
4110 			goto out;
4111 	}
4112 
4113 	if (skb_skip_tc_classify(skb))
4114 		goto skip_classify;
4115 
4116 	if (pfmemalloc)
4117 		goto skip_taps;
4118 
4119 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
4120 		if (pt_prev)
4121 			ret = deliver_skb(skb, pt_prev, orig_dev);
4122 		pt_prev = ptype;
4123 	}
4124 
4125 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4126 		if (pt_prev)
4127 			ret = deliver_skb(skb, pt_prev, orig_dev);
4128 		pt_prev = ptype;
4129 	}
4130 
4131 skip_taps:
4132 #ifdef CONFIG_NET_INGRESS
4133 	if (static_key_false(&ingress_needed)) {
4134 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4135 		if (!skb)
4136 			goto out;
4137 
4138 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4139 			goto out;
4140 	}
4141 #endif
4142 	skb_reset_tc(skb);
4143 skip_classify:
4144 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4145 		goto drop;
4146 
4147 	if (skb_vlan_tag_present(skb)) {
4148 		if (pt_prev) {
4149 			ret = deliver_skb(skb, pt_prev, orig_dev);
4150 			pt_prev = NULL;
4151 		}
4152 		if (vlan_do_receive(&skb))
4153 			goto another_round;
4154 		else if (unlikely(!skb))
4155 			goto out;
4156 	}
4157 
4158 	rx_handler = rcu_dereference(skb->dev->rx_handler);
4159 	if (rx_handler) {
4160 		if (pt_prev) {
4161 			ret = deliver_skb(skb, pt_prev, orig_dev);
4162 			pt_prev = NULL;
4163 		}
4164 		switch (rx_handler(&skb)) {
4165 		case RX_HANDLER_CONSUMED:
4166 			ret = NET_RX_SUCCESS;
4167 			goto out;
4168 		case RX_HANDLER_ANOTHER:
4169 			goto another_round;
4170 		case RX_HANDLER_EXACT:
4171 			deliver_exact = true;
4172 		case RX_HANDLER_PASS:
4173 			break;
4174 		default:
4175 			BUG();
4176 		}
4177 	}
4178 
4179 	if (unlikely(skb_vlan_tag_present(skb))) {
4180 		if (skb_vlan_tag_get_id(skb))
4181 			skb->pkt_type = PACKET_OTHERHOST;
4182 		/* Note: we might in the future use prio bits
4183 		 * and set skb->priority like in vlan_do_receive()
4184 		 * For the time being, just ignore Priority Code Point
4185 		 */
4186 		skb->vlan_tci = 0;
4187 	}
4188 
4189 	type = skb->protocol;
4190 
4191 	/* deliver only exact match when indicated */
4192 	if (likely(!deliver_exact)) {
4193 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4194 				       &ptype_base[ntohs(type) &
4195 						   PTYPE_HASH_MASK]);
4196 	}
4197 
4198 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4199 			       &orig_dev->ptype_specific);
4200 
4201 	if (unlikely(skb->dev != orig_dev)) {
4202 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4203 				       &skb->dev->ptype_specific);
4204 	}
4205 
4206 	if (pt_prev) {
4207 		if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
4208 			goto drop;
4209 		else
4210 			ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4211 	} else {
4212 drop:
4213 		if (!deliver_exact)
4214 			atomic_long_inc(&skb->dev->rx_dropped);
4215 		else
4216 			atomic_long_inc(&skb->dev->rx_nohandler);
4217 		kfree_skb(skb);
4218 		/* Jamal, now you will not able to escape explaining
4219 		 * me how you were going to use this. :-)
4220 		 */
4221 		ret = NET_RX_DROP;
4222 	}
4223 
4224 out:
4225 	return ret;
4226 }
4227 
4228 static int __netif_receive_skb(struct sk_buff *skb)
4229 {
4230 	int ret;
4231 
4232 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4233 		unsigned long pflags = current->flags;
4234 
4235 		/*
4236 		 * PFMEMALLOC skbs are special, they should
4237 		 * - be delivered to SOCK_MEMALLOC sockets only
4238 		 * - stay away from userspace
4239 		 * - have bounded memory usage
4240 		 *
4241 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
4242 		 * context down to all allocation sites.
4243 		 */
4244 		current->flags |= PF_MEMALLOC;
4245 		ret = __netif_receive_skb_core(skb, true);
4246 		current_restore_flags(pflags, PF_MEMALLOC);
4247 	} else
4248 		ret = __netif_receive_skb_core(skb, false);
4249 
4250 	return ret;
4251 }
4252 
4253 static int netif_receive_skb_internal(struct sk_buff *skb)
4254 {
4255 	int ret;
4256 
4257 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4258 
4259 	if (skb_defer_rx_timestamp(skb))
4260 		return NET_RX_SUCCESS;
4261 
4262 	rcu_read_lock();
4263 
4264 #ifdef CONFIG_RPS
4265 	if (static_key_false(&rps_needed)) {
4266 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4267 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4268 
4269 		if (cpu >= 0) {
4270 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4271 			rcu_read_unlock();
4272 			return ret;
4273 		}
4274 	}
4275 #endif
4276 	ret = __netif_receive_skb(skb);
4277 	rcu_read_unlock();
4278 	return ret;
4279 }
4280 
4281 /**
4282  *	netif_receive_skb - process receive buffer from network
4283  *	@skb: buffer to process
4284  *
4285  *	netif_receive_skb() is the main receive data processing function.
4286  *	It always succeeds. The buffer may be dropped during processing
4287  *	for congestion control or by the protocol layers.
4288  *
4289  *	This function may only be called from softirq context and interrupts
4290  *	should be enabled.
4291  *
4292  *	Return values (usually ignored):
4293  *	NET_RX_SUCCESS: no congestion
4294  *	NET_RX_DROP: packet was dropped
4295  */
4296 int netif_receive_skb(struct sk_buff *skb)
4297 {
4298 	trace_netif_receive_skb_entry(skb);
4299 
4300 	return netif_receive_skb_internal(skb);
4301 }
4302 EXPORT_SYMBOL(netif_receive_skb);
4303 
4304 DEFINE_PER_CPU(struct work_struct, flush_works);
4305 
4306 /* Network device is going away, flush any packets still pending */
4307 static void flush_backlog(struct work_struct *work)
4308 {
4309 	struct sk_buff *skb, *tmp;
4310 	struct softnet_data *sd;
4311 
4312 	local_bh_disable();
4313 	sd = this_cpu_ptr(&softnet_data);
4314 
4315 	local_irq_disable();
4316 	rps_lock(sd);
4317 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4318 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4319 			__skb_unlink(skb, &sd->input_pkt_queue);
4320 			kfree_skb(skb);
4321 			input_queue_head_incr(sd);
4322 		}
4323 	}
4324 	rps_unlock(sd);
4325 	local_irq_enable();
4326 
4327 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4328 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4329 			__skb_unlink(skb, &sd->process_queue);
4330 			kfree_skb(skb);
4331 			input_queue_head_incr(sd);
4332 		}
4333 	}
4334 	local_bh_enable();
4335 }
4336 
4337 static void flush_all_backlogs(void)
4338 {
4339 	unsigned int cpu;
4340 
4341 	get_online_cpus();
4342 
4343 	for_each_online_cpu(cpu)
4344 		queue_work_on(cpu, system_highpri_wq,
4345 			      per_cpu_ptr(&flush_works, cpu));
4346 
4347 	for_each_online_cpu(cpu)
4348 		flush_work(per_cpu_ptr(&flush_works, cpu));
4349 
4350 	put_online_cpus();
4351 }
4352 
4353 static int napi_gro_complete(struct sk_buff *skb)
4354 {
4355 	struct packet_offload *ptype;
4356 	__be16 type = skb->protocol;
4357 	struct list_head *head = &offload_base;
4358 	int err = -ENOENT;
4359 
4360 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4361 
4362 	if (NAPI_GRO_CB(skb)->count == 1) {
4363 		skb_shinfo(skb)->gso_size = 0;
4364 		goto out;
4365 	}
4366 
4367 	rcu_read_lock();
4368 	list_for_each_entry_rcu(ptype, head, list) {
4369 		if (ptype->type != type || !ptype->callbacks.gro_complete)
4370 			continue;
4371 
4372 		err = ptype->callbacks.gro_complete(skb, 0);
4373 		break;
4374 	}
4375 	rcu_read_unlock();
4376 
4377 	if (err) {
4378 		WARN_ON(&ptype->list == head);
4379 		kfree_skb(skb);
4380 		return NET_RX_SUCCESS;
4381 	}
4382 
4383 out:
4384 	return netif_receive_skb_internal(skb);
4385 }
4386 
4387 /* napi->gro_list contains packets ordered by age.
4388  * youngest packets at the head of it.
4389  * Complete skbs in reverse order to reduce latencies.
4390  */
4391 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4392 {
4393 	struct sk_buff *skb, *prev = NULL;
4394 
4395 	/* scan list and build reverse chain */
4396 	for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4397 		skb->prev = prev;
4398 		prev = skb;
4399 	}
4400 
4401 	for (skb = prev; skb; skb = prev) {
4402 		skb->next = NULL;
4403 
4404 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4405 			return;
4406 
4407 		prev = skb->prev;
4408 		napi_gro_complete(skb);
4409 		napi->gro_count--;
4410 	}
4411 
4412 	napi->gro_list = NULL;
4413 }
4414 EXPORT_SYMBOL(napi_gro_flush);
4415 
4416 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4417 {
4418 	struct sk_buff *p;
4419 	unsigned int maclen = skb->dev->hard_header_len;
4420 	u32 hash = skb_get_hash_raw(skb);
4421 
4422 	for (p = napi->gro_list; p; p = p->next) {
4423 		unsigned long diffs;
4424 
4425 		NAPI_GRO_CB(p)->flush = 0;
4426 
4427 		if (hash != skb_get_hash_raw(p)) {
4428 			NAPI_GRO_CB(p)->same_flow = 0;
4429 			continue;
4430 		}
4431 
4432 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4433 		diffs |= p->vlan_tci ^ skb->vlan_tci;
4434 		diffs |= skb_metadata_dst_cmp(p, skb);
4435 		if (maclen == ETH_HLEN)
4436 			diffs |= compare_ether_header(skb_mac_header(p),
4437 						      skb_mac_header(skb));
4438 		else if (!diffs)
4439 			diffs = memcmp(skb_mac_header(p),
4440 				       skb_mac_header(skb),
4441 				       maclen);
4442 		NAPI_GRO_CB(p)->same_flow = !diffs;
4443 	}
4444 }
4445 
4446 static void skb_gro_reset_offset(struct sk_buff *skb)
4447 {
4448 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
4449 	const skb_frag_t *frag0 = &pinfo->frags[0];
4450 
4451 	NAPI_GRO_CB(skb)->data_offset = 0;
4452 	NAPI_GRO_CB(skb)->frag0 = NULL;
4453 	NAPI_GRO_CB(skb)->frag0_len = 0;
4454 
4455 	if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4456 	    pinfo->nr_frags &&
4457 	    !PageHighMem(skb_frag_page(frag0))) {
4458 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4459 		NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
4460 						    skb_frag_size(frag0),
4461 						    skb->end - skb->tail);
4462 	}
4463 }
4464 
4465 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4466 {
4467 	struct skb_shared_info *pinfo = skb_shinfo(skb);
4468 
4469 	BUG_ON(skb->end - skb->tail < grow);
4470 
4471 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4472 
4473 	skb->data_len -= grow;
4474 	skb->tail += grow;
4475 
4476 	pinfo->frags[0].page_offset += grow;
4477 	skb_frag_size_sub(&pinfo->frags[0], grow);
4478 
4479 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4480 		skb_frag_unref(skb, 0);
4481 		memmove(pinfo->frags, pinfo->frags + 1,
4482 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
4483 	}
4484 }
4485 
4486 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4487 {
4488 	struct sk_buff **pp = NULL;
4489 	struct packet_offload *ptype;
4490 	__be16 type = skb->protocol;
4491 	struct list_head *head = &offload_base;
4492 	int same_flow;
4493 	enum gro_result ret;
4494 	int grow;
4495 
4496 	if (!(skb->dev->features & NETIF_F_GRO))
4497 		goto normal;
4498 
4499 	if (skb->csum_bad)
4500 		goto normal;
4501 
4502 	gro_list_prepare(napi, skb);
4503 
4504 	rcu_read_lock();
4505 	list_for_each_entry_rcu(ptype, head, list) {
4506 		if (ptype->type != type || !ptype->callbacks.gro_receive)
4507 			continue;
4508 
4509 		skb_set_network_header(skb, skb_gro_offset(skb));
4510 		skb_reset_mac_len(skb);
4511 		NAPI_GRO_CB(skb)->same_flow = 0;
4512 		NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
4513 		NAPI_GRO_CB(skb)->free = 0;
4514 		NAPI_GRO_CB(skb)->encap_mark = 0;
4515 		NAPI_GRO_CB(skb)->recursion_counter = 0;
4516 		NAPI_GRO_CB(skb)->is_fou = 0;
4517 		NAPI_GRO_CB(skb)->is_atomic = 1;
4518 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4519 
4520 		/* Setup for GRO checksum validation */
4521 		switch (skb->ip_summed) {
4522 		case CHECKSUM_COMPLETE:
4523 			NAPI_GRO_CB(skb)->csum = skb->csum;
4524 			NAPI_GRO_CB(skb)->csum_valid = 1;
4525 			NAPI_GRO_CB(skb)->csum_cnt = 0;
4526 			break;
4527 		case CHECKSUM_UNNECESSARY:
4528 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4529 			NAPI_GRO_CB(skb)->csum_valid = 0;
4530 			break;
4531 		default:
4532 			NAPI_GRO_CB(skb)->csum_cnt = 0;
4533 			NAPI_GRO_CB(skb)->csum_valid = 0;
4534 		}
4535 
4536 		pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4537 		break;
4538 	}
4539 	rcu_read_unlock();
4540 
4541 	if (&ptype->list == head)
4542 		goto normal;
4543 
4544 	if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
4545 		ret = GRO_CONSUMED;
4546 		goto ok;
4547 	}
4548 
4549 	same_flow = NAPI_GRO_CB(skb)->same_flow;
4550 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4551 
4552 	if (pp) {
4553 		struct sk_buff *nskb = *pp;
4554 
4555 		*pp = nskb->next;
4556 		nskb->next = NULL;
4557 		napi_gro_complete(nskb);
4558 		napi->gro_count--;
4559 	}
4560 
4561 	if (same_flow)
4562 		goto ok;
4563 
4564 	if (NAPI_GRO_CB(skb)->flush)
4565 		goto normal;
4566 
4567 	if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4568 		struct sk_buff *nskb = napi->gro_list;
4569 
4570 		/* locate the end of the list to select the 'oldest' flow */
4571 		while (nskb->next) {
4572 			pp = &nskb->next;
4573 			nskb = *pp;
4574 		}
4575 		*pp = NULL;
4576 		nskb->next = NULL;
4577 		napi_gro_complete(nskb);
4578 	} else {
4579 		napi->gro_count++;
4580 	}
4581 	NAPI_GRO_CB(skb)->count = 1;
4582 	NAPI_GRO_CB(skb)->age = jiffies;
4583 	NAPI_GRO_CB(skb)->last = skb;
4584 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4585 	skb->next = napi->gro_list;
4586 	napi->gro_list = skb;
4587 	ret = GRO_HELD;
4588 
4589 pull:
4590 	grow = skb_gro_offset(skb) - skb_headlen(skb);
4591 	if (grow > 0)
4592 		gro_pull_from_frag0(skb, grow);
4593 ok:
4594 	return ret;
4595 
4596 normal:
4597 	ret = GRO_NORMAL;
4598 	goto pull;
4599 }
4600 
4601 struct packet_offload *gro_find_receive_by_type(__be16 type)
4602 {
4603 	struct list_head *offload_head = &offload_base;
4604 	struct packet_offload *ptype;
4605 
4606 	list_for_each_entry_rcu(ptype, offload_head, list) {
4607 		if (ptype->type != type || !ptype->callbacks.gro_receive)
4608 			continue;
4609 		return ptype;
4610 	}
4611 	return NULL;
4612 }
4613 EXPORT_SYMBOL(gro_find_receive_by_type);
4614 
4615 struct packet_offload *gro_find_complete_by_type(__be16 type)
4616 {
4617 	struct list_head *offload_head = &offload_base;
4618 	struct packet_offload *ptype;
4619 
4620 	list_for_each_entry_rcu(ptype, offload_head, list) {
4621 		if (ptype->type != type || !ptype->callbacks.gro_complete)
4622 			continue;
4623 		return ptype;
4624 	}
4625 	return NULL;
4626 }
4627 EXPORT_SYMBOL(gro_find_complete_by_type);
4628 
4629 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4630 {
4631 	switch (ret) {
4632 	case GRO_NORMAL:
4633 		if (netif_receive_skb_internal(skb))
4634 			ret = GRO_DROP;
4635 		break;
4636 
4637 	case GRO_DROP:
4638 		kfree_skb(skb);
4639 		break;
4640 
4641 	case GRO_MERGED_FREE:
4642 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) {
4643 			skb_dst_drop(skb);
4644 			secpath_reset(skb);
4645 			kmem_cache_free(skbuff_head_cache, skb);
4646 		} else {
4647 			__kfree_skb(skb);
4648 		}
4649 		break;
4650 
4651 	case GRO_HELD:
4652 	case GRO_MERGED:
4653 	case GRO_CONSUMED:
4654 		break;
4655 	}
4656 
4657 	return ret;
4658 }
4659 
4660 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4661 {
4662 	skb_mark_napi_id(skb, napi);
4663 	trace_napi_gro_receive_entry(skb);
4664 
4665 	skb_gro_reset_offset(skb);
4666 
4667 	return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4668 }
4669 EXPORT_SYMBOL(napi_gro_receive);
4670 
4671 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4672 {
4673 	if (unlikely(skb->pfmemalloc)) {
4674 		consume_skb(skb);
4675 		return;
4676 	}
4677 	__skb_pull(skb, skb_headlen(skb));
4678 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
4679 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4680 	skb->vlan_tci = 0;
4681 	skb->dev = napi->dev;
4682 	skb->skb_iif = 0;
4683 	skb->encapsulation = 0;
4684 	skb_shinfo(skb)->gso_type = 0;
4685 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4686 	secpath_reset(skb);
4687 
4688 	napi->skb = skb;
4689 }
4690 
4691 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4692 {
4693 	struct sk_buff *skb = napi->skb;
4694 
4695 	if (!skb) {
4696 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4697 		if (skb) {
4698 			napi->skb = skb;
4699 			skb_mark_napi_id(skb, napi);
4700 		}
4701 	}
4702 	return skb;
4703 }
4704 EXPORT_SYMBOL(napi_get_frags);
4705 
4706 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4707 				      struct sk_buff *skb,
4708 				      gro_result_t ret)
4709 {
4710 	switch (ret) {
4711 	case GRO_NORMAL:
4712 	case GRO_HELD:
4713 		__skb_push(skb, ETH_HLEN);
4714 		skb->protocol = eth_type_trans(skb, skb->dev);
4715 		if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4716 			ret = GRO_DROP;
4717 		break;
4718 
4719 	case GRO_DROP:
4720 	case GRO_MERGED_FREE:
4721 		napi_reuse_skb(napi, skb);
4722 		break;
4723 
4724 	case GRO_MERGED:
4725 	case GRO_CONSUMED:
4726 		break;
4727 	}
4728 
4729 	return ret;
4730 }
4731 
4732 /* Upper GRO stack assumes network header starts at gro_offset=0
4733  * Drivers could call both napi_gro_frags() and napi_gro_receive()
4734  * We copy ethernet header into skb->data to have a common layout.
4735  */
4736 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4737 {
4738 	struct sk_buff *skb = napi->skb;
4739 	const struct ethhdr *eth;
4740 	unsigned int hlen = sizeof(*eth);
4741 
4742 	napi->skb = NULL;
4743 
4744 	skb_reset_mac_header(skb);
4745 	skb_gro_reset_offset(skb);
4746 
4747 	eth = skb_gro_header_fast(skb, 0);
4748 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
4749 		eth = skb_gro_header_slow(skb, hlen, 0);
4750 		if (unlikely(!eth)) {
4751 			net_warn_ratelimited("%s: dropping impossible skb from %s\n",
4752 					     __func__, napi->dev->name);
4753 			napi_reuse_skb(napi, skb);
4754 			return NULL;
4755 		}
4756 	} else {
4757 		gro_pull_from_frag0(skb, hlen);
4758 		NAPI_GRO_CB(skb)->frag0 += hlen;
4759 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
4760 	}
4761 	__skb_pull(skb, hlen);
4762 
4763 	/*
4764 	 * This works because the only protocols we care about don't require
4765 	 * special handling.
4766 	 * We'll fix it up properly in napi_frags_finish()
4767 	 */
4768 	skb->protocol = eth->h_proto;
4769 
4770 	return skb;
4771 }
4772 
4773 gro_result_t napi_gro_frags(struct napi_struct *napi)
4774 {
4775 	struct sk_buff *skb = napi_frags_skb(napi);
4776 
4777 	if (!skb)
4778 		return GRO_DROP;
4779 
4780 	trace_napi_gro_frags_entry(skb);
4781 
4782 	return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4783 }
4784 EXPORT_SYMBOL(napi_gro_frags);
4785 
4786 /* Compute the checksum from gro_offset and return the folded value
4787  * after adding in any pseudo checksum.
4788  */
4789 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4790 {
4791 	__wsum wsum;
4792 	__sum16 sum;
4793 
4794 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4795 
4796 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4797 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4798 	if (likely(!sum)) {
4799 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4800 		    !skb->csum_complete_sw)
4801 			netdev_rx_csum_fault(skb->dev);
4802 	}
4803 
4804 	NAPI_GRO_CB(skb)->csum = wsum;
4805 	NAPI_GRO_CB(skb)->csum_valid = 1;
4806 
4807 	return sum;
4808 }
4809 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4810 
4811 /*
4812  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4813  * Note: called with local irq disabled, but exits with local irq enabled.
4814  */
4815 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4816 {
4817 #ifdef CONFIG_RPS
4818 	struct softnet_data *remsd = sd->rps_ipi_list;
4819 
4820 	if (remsd) {
4821 		sd->rps_ipi_list = NULL;
4822 
4823 		local_irq_enable();
4824 
4825 		/* Send pending IPI's to kick RPS processing on remote cpus. */
4826 		while (remsd) {
4827 			struct softnet_data *next = remsd->rps_ipi_next;
4828 
4829 			if (cpu_online(remsd->cpu))
4830 				smp_call_function_single_async(remsd->cpu,
4831 							   &remsd->csd);
4832 			remsd = next;
4833 		}
4834 	} else
4835 #endif
4836 		local_irq_enable();
4837 }
4838 
4839 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4840 {
4841 #ifdef CONFIG_RPS
4842 	return sd->rps_ipi_list != NULL;
4843 #else
4844 	return false;
4845 #endif
4846 }
4847 
4848 static int process_backlog(struct napi_struct *napi, int quota)
4849 {
4850 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4851 	bool again = true;
4852 	int work = 0;
4853 
4854 	/* Check if we have pending ipi, its better to send them now,
4855 	 * not waiting net_rx_action() end.
4856 	 */
4857 	if (sd_has_rps_ipi_waiting(sd)) {
4858 		local_irq_disable();
4859 		net_rps_action_and_irq_enable(sd);
4860 	}
4861 
4862 	napi->weight = dev_rx_weight;
4863 	while (again) {
4864 		struct sk_buff *skb;
4865 
4866 		while ((skb = __skb_dequeue(&sd->process_queue))) {
4867 			rcu_read_lock();
4868 			__netif_receive_skb(skb);
4869 			rcu_read_unlock();
4870 			input_queue_head_incr(sd);
4871 			if (++work >= quota)
4872 				return work;
4873 
4874 		}
4875 
4876 		local_irq_disable();
4877 		rps_lock(sd);
4878 		if (skb_queue_empty(&sd->input_pkt_queue)) {
4879 			/*
4880 			 * Inline a custom version of __napi_complete().
4881 			 * only current cpu owns and manipulates this napi,
4882 			 * and NAPI_STATE_SCHED is the only possible flag set
4883 			 * on backlog.
4884 			 * We can use a plain write instead of clear_bit(),
4885 			 * and we dont need an smp_mb() memory barrier.
4886 			 */
4887 			napi->state = 0;
4888 			again = false;
4889 		} else {
4890 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
4891 						   &sd->process_queue);
4892 		}
4893 		rps_unlock(sd);
4894 		local_irq_enable();
4895 	}
4896 
4897 	return work;
4898 }
4899 
4900 /**
4901  * __napi_schedule - schedule for receive
4902  * @n: entry to schedule
4903  *
4904  * The entry's receive function will be scheduled to run.
4905  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4906  */
4907 void __napi_schedule(struct napi_struct *n)
4908 {
4909 	unsigned long flags;
4910 
4911 	local_irq_save(flags);
4912 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
4913 	local_irq_restore(flags);
4914 }
4915 EXPORT_SYMBOL(__napi_schedule);
4916 
4917 /**
4918  *	napi_schedule_prep - check if napi can be scheduled
4919  *	@n: napi context
4920  *
4921  * Test if NAPI routine is already running, and if not mark
4922  * it as running.  This is used as a condition variable
4923  * insure only one NAPI poll instance runs.  We also make
4924  * sure there is no pending NAPI disable.
4925  */
4926 bool napi_schedule_prep(struct napi_struct *n)
4927 {
4928 	unsigned long val, new;
4929 
4930 	do {
4931 		val = READ_ONCE(n->state);
4932 		if (unlikely(val & NAPIF_STATE_DISABLE))
4933 			return false;
4934 		new = val | NAPIF_STATE_SCHED;
4935 
4936 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
4937 		 * This was suggested by Alexander Duyck, as compiler
4938 		 * emits better code than :
4939 		 * if (val & NAPIF_STATE_SCHED)
4940 		 *     new |= NAPIF_STATE_MISSED;
4941 		 */
4942 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
4943 						   NAPIF_STATE_MISSED;
4944 	} while (cmpxchg(&n->state, val, new) != val);
4945 
4946 	return !(val & NAPIF_STATE_SCHED);
4947 }
4948 EXPORT_SYMBOL(napi_schedule_prep);
4949 
4950 /**
4951  * __napi_schedule_irqoff - schedule for receive
4952  * @n: entry to schedule
4953  *
4954  * Variant of __napi_schedule() assuming hard irqs are masked
4955  */
4956 void __napi_schedule_irqoff(struct napi_struct *n)
4957 {
4958 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
4959 }
4960 EXPORT_SYMBOL(__napi_schedule_irqoff);
4961 
4962 bool napi_complete_done(struct napi_struct *n, int work_done)
4963 {
4964 	unsigned long flags, val, new;
4965 
4966 	/*
4967 	 * 1) Don't let napi dequeue from the cpu poll list
4968 	 *    just in case its running on a different cpu.
4969 	 * 2) If we are busy polling, do nothing here, we have
4970 	 *    the guarantee we will be called later.
4971 	 */
4972 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
4973 				 NAPIF_STATE_IN_BUSY_POLL)))
4974 		return false;
4975 
4976 	if (n->gro_list) {
4977 		unsigned long timeout = 0;
4978 
4979 		if (work_done)
4980 			timeout = n->dev->gro_flush_timeout;
4981 
4982 		if (timeout)
4983 			hrtimer_start(&n->timer, ns_to_ktime(timeout),
4984 				      HRTIMER_MODE_REL_PINNED);
4985 		else
4986 			napi_gro_flush(n, false);
4987 	}
4988 	if (unlikely(!list_empty(&n->poll_list))) {
4989 		/* If n->poll_list is not empty, we need to mask irqs */
4990 		local_irq_save(flags);
4991 		list_del_init(&n->poll_list);
4992 		local_irq_restore(flags);
4993 	}
4994 
4995 	do {
4996 		val = READ_ONCE(n->state);
4997 
4998 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
4999 
5000 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
5001 
5002 		/* If STATE_MISSED was set, leave STATE_SCHED set,
5003 		 * because we will call napi->poll() one more time.
5004 		 * This C code was suggested by Alexander Duyck to help gcc.
5005 		 */
5006 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5007 						    NAPIF_STATE_SCHED;
5008 	} while (cmpxchg(&n->state, val, new) != val);
5009 
5010 	if (unlikely(val & NAPIF_STATE_MISSED)) {
5011 		__napi_schedule(n);
5012 		return false;
5013 	}
5014 
5015 	return true;
5016 }
5017 EXPORT_SYMBOL(napi_complete_done);
5018 
5019 /* must be called under rcu_read_lock(), as we dont take a reference */
5020 static struct napi_struct *napi_by_id(unsigned int napi_id)
5021 {
5022 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
5023 	struct napi_struct *napi;
5024 
5025 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
5026 		if (napi->napi_id == napi_id)
5027 			return napi;
5028 
5029 	return NULL;
5030 }
5031 
5032 #if defined(CONFIG_NET_RX_BUSY_POLL)
5033 
5034 #define BUSY_POLL_BUDGET 8
5035 
5036 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
5037 {
5038 	int rc;
5039 
5040 	/* Busy polling means there is a high chance device driver hard irq
5041 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
5042 	 * set in napi_schedule_prep().
5043 	 * Since we are about to call napi->poll() once more, we can safely
5044 	 * clear NAPI_STATE_MISSED.
5045 	 *
5046 	 * Note: x86 could use a single "lock and ..." instruction
5047 	 * to perform these two clear_bit()
5048 	 */
5049 	clear_bit(NAPI_STATE_MISSED, &napi->state);
5050 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
5051 
5052 	local_bh_disable();
5053 
5054 	/* All we really want here is to re-enable device interrupts.
5055 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
5056 	 */
5057 	rc = napi->poll(napi, BUSY_POLL_BUDGET);
5058 	netpoll_poll_unlock(have_poll_lock);
5059 	if (rc == BUSY_POLL_BUDGET)
5060 		__napi_schedule(napi);
5061 	local_bh_enable();
5062 	if (local_softirq_pending())
5063 		do_softirq();
5064 }
5065 
5066 bool sk_busy_loop(struct sock *sk, int nonblock)
5067 {
5068 	unsigned long end_time = !nonblock ? sk_busy_loop_end_time(sk) : 0;
5069 	int (*napi_poll)(struct napi_struct *napi, int budget);
5070 	void *have_poll_lock = NULL;
5071 	struct napi_struct *napi;
5072 	int rc;
5073 
5074 restart:
5075 	rc = false;
5076 	napi_poll = NULL;
5077 
5078 	rcu_read_lock();
5079 
5080 	napi = napi_by_id(sk->sk_napi_id);
5081 	if (!napi)
5082 		goto out;
5083 
5084 	preempt_disable();
5085 	for (;;) {
5086 		rc = 0;
5087 		local_bh_disable();
5088 		if (!napi_poll) {
5089 			unsigned long val = READ_ONCE(napi->state);
5090 
5091 			/* If multiple threads are competing for this napi,
5092 			 * we avoid dirtying napi->state as much as we can.
5093 			 */
5094 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
5095 				   NAPIF_STATE_IN_BUSY_POLL))
5096 				goto count;
5097 			if (cmpxchg(&napi->state, val,
5098 				    val | NAPIF_STATE_IN_BUSY_POLL |
5099 					  NAPIF_STATE_SCHED) != val)
5100 				goto count;
5101 			have_poll_lock = netpoll_poll_lock(napi);
5102 			napi_poll = napi->poll;
5103 		}
5104 		rc = napi_poll(napi, BUSY_POLL_BUDGET);
5105 		trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
5106 count:
5107 		if (rc > 0)
5108 			__NET_ADD_STATS(sock_net(sk),
5109 					LINUX_MIB_BUSYPOLLRXPACKETS, rc);
5110 		local_bh_enable();
5111 
5112 		if (nonblock || !skb_queue_empty(&sk->sk_receive_queue) ||
5113 		    busy_loop_timeout(end_time))
5114 			break;
5115 
5116 		if (unlikely(need_resched())) {
5117 			if (napi_poll)
5118 				busy_poll_stop(napi, have_poll_lock);
5119 			preempt_enable();
5120 			rcu_read_unlock();
5121 			cond_resched();
5122 			rc = !skb_queue_empty(&sk->sk_receive_queue);
5123 			if (rc || busy_loop_timeout(end_time))
5124 				return rc;
5125 			goto restart;
5126 		}
5127 		cpu_relax();
5128 	}
5129 	if (napi_poll)
5130 		busy_poll_stop(napi, have_poll_lock);
5131 	preempt_enable();
5132 	rc = !skb_queue_empty(&sk->sk_receive_queue);
5133 out:
5134 	rcu_read_unlock();
5135 	return rc;
5136 }
5137 EXPORT_SYMBOL(sk_busy_loop);
5138 
5139 #endif /* CONFIG_NET_RX_BUSY_POLL */
5140 
5141 static void napi_hash_add(struct napi_struct *napi)
5142 {
5143 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5144 	    test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5145 		return;
5146 
5147 	spin_lock(&napi_hash_lock);
5148 
5149 	/* 0..NR_CPUS+1 range is reserved for sender_cpu use */
5150 	do {
5151 		if (unlikely(++napi_gen_id < NR_CPUS + 1))
5152 			napi_gen_id = NR_CPUS + 1;
5153 	} while (napi_by_id(napi_gen_id));
5154 	napi->napi_id = napi_gen_id;
5155 
5156 	hlist_add_head_rcu(&napi->napi_hash_node,
5157 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5158 
5159 	spin_unlock(&napi_hash_lock);
5160 }
5161 
5162 /* Warning : caller is responsible to make sure rcu grace period
5163  * is respected before freeing memory containing @napi
5164  */
5165 bool napi_hash_del(struct napi_struct *napi)
5166 {
5167 	bool rcu_sync_needed = false;
5168 
5169 	spin_lock(&napi_hash_lock);
5170 
5171 	if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5172 		rcu_sync_needed = true;
5173 		hlist_del_rcu(&napi->napi_hash_node);
5174 	}
5175 	spin_unlock(&napi_hash_lock);
5176 	return rcu_sync_needed;
5177 }
5178 EXPORT_SYMBOL_GPL(napi_hash_del);
5179 
5180 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5181 {
5182 	struct napi_struct *napi;
5183 
5184 	napi = container_of(timer, struct napi_struct, timer);
5185 
5186 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
5187 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
5188 	 */
5189 	if (napi->gro_list && !napi_disable_pending(napi) &&
5190 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
5191 		__napi_schedule_irqoff(napi);
5192 
5193 	return HRTIMER_NORESTART;
5194 }
5195 
5196 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5197 		    int (*poll)(struct napi_struct *, int), int weight)
5198 {
5199 	INIT_LIST_HEAD(&napi->poll_list);
5200 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5201 	napi->timer.function = napi_watchdog;
5202 	napi->gro_count = 0;
5203 	napi->gro_list = NULL;
5204 	napi->skb = NULL;
5205 	napi->poll = poll;
5206 	if (weight > NAPI_POLL_WEIGHT)
5207 		pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5208 			    weight, dev->name);
5209 	napi->weight = weight;
5210 	list_add(&napi->dev_list, &dev->napi_list);
5211 	napi->dev = dev;
5212 #ifdef CONFIG_NETPOLL
5213 	napi->poll_owner = -1;
5214 #endif
5215 	set_bit(NAPI_STATE_SCHED, &napi->state);
5216 	napi_hash_add(napi);
5217 }
5218 EXPORT_SYMBOL(netif_napi_add);
5219 
5220 void napi_disable(struct napi_struct *n)
5221 {
5222 	might_sleep();
5223 	set_bit(NAPI_STATE_DISABLE, &n->state);
5224 
5225 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5226 		msleep(1);
5227 	while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5228 		msleep(1);
5229 
5230 	hrtimer_cancel(&n->timer);
5231 
5232 	clear_bit(NAPI_STATE_DISABLE, &n->state);
5233 }
5234 EXPORT_SYMBOL(napi_disable);
5235 
5236 /* Must be called in process context */
5237 void netif_napi_del(struct napi_struct *napi)
5238 {
5239 	might_sleep();
5240 	if (napi_hash_del(napi))
5241 		synchronize_net();
5242 	list_del_init(&napi->dev_list);
5243 	napi_free_frags(napi);
5244 
5245 	kfree_skb_list(napi->gro_list);
5246 	napi->gro_list = NULL;
5247 	napi->gro_count = 0;
5248 }
5249 EXPORT_SYMBOL(netif_napi_del);
5250 
5251 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5252 {
5253 	void *have;
5254 	int work, weight;
5255 
5256 	list_del_init(&n->poll_list);
5257 
5258 	have = netpoll_poll_lock(n);
5259 
5260 	weight = n->weight;
5261 
5262 	/* This NAPI_STATE_SCHED test is for avoiding a race
5263 	 * with netpoll's poll_napi().  Only the entity which
5264 	 * obtains the lock and sees NAPI_STATE_SCHED set will
5265 	 * actually make the ->poll() call.  Therefore we avoid
5266 	 * accidentally calling ->poll() when NAPI is not scheduled.
5267 	 */
5268 	work = 0;
5269 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5270 		work = n->poll(n, weight);
5271 		trace_napi_poll(n, work, weight);
5272 	}
5273 
5274 	WARN_ON_ONCE(work > weight);
5275 
5276 	if (likely(work < weight))
5277 		goto out_unlock;
5278 
5279 	/* Drivers must not modify the NAPI state if they
5280 	 * consume the entire weight.  In such cases this code
5281 	 * still "owns" the NAPI instance and therefore can
5282 	 * move the instance around on the list at-will.
5283 	 */
5284 	if (unlikely(napi_disable_pending(n))) {
5285 		napi_complete(n);
5286 		goto out_unlock;
5287 	}
5288 
5289 	if (n->gro_list) {
5290 		/* flush too old packets
5291 		 * If HZ < 1000, flush all packets.
5292 		 */
5293 		napi_gro_flush(n, HZ >= 1000);
5294 	}
5295 
5296 	/* Some drivers may have called napi_schedule
5297 	 * prior to exhausting their budget.
5298 	 */
5299 	if (unlikely(!list_empty(&n->poll_list))) {
5300 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5301 			     n->dev ? n->dev->name : "backlog");
5302 		goto out_unlock;
5303 	}
5304 
5305 	list_add_tail(&n->poll_list, repoll);
5306 
5307 out_unlock:
5308 	netpoll_poll_unlock(have);
5309 
5310 	return work;
5311 }
5312 
5313 static __latent_entropy void net_rx_action(struct softirq_action *h)
5314 {
5315 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5316 	unsigned long time_limit = jiffies + 2;
5317 	int budget = netdev_budget;
5318 	LIST_HEAD(list);
5319 	LIST_HEAD(repoll);
5320 
5321 	local_irq_disable();
5322 	list_splice_init(&sd->poll_list, &list);
5323 	local_irq_enable();
5324 
5325 	for (;;) {
5326 		struct napi_struct *n;
5327 
5328 		if (list_empty(&list)) {
5329 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5330 				goto out;
5331 			break;
5332 		}
5333 
5334 		n = list_first_entry(&list, struct napi_struct, poll_list);
5335 		budget -= napi_poll(n, &repoll);
5336 
5337 		/* If softirq window is exhausted then punt.
5338 		 * Allow this to run for 2 jiffies since which will allow
5339 		 * an average latency of 1.5/HZ.
5340 		 */
5341 		if (unlikely(budget <= 0 ||
5342 			     time_after_eq(jiffies, time_limit))) {
5343 			sd->time_squeeze++;
5344 			break;
5345 		}
5346 	}
5347 
5348 	local_irq_disable();
5349 
5350 	list_splice_tail_init(&sd->poll_list, &list);
5351 	list_splice_tail(&repoll, &list);
5352 	list_splice(&list, &sd->poll_list);
5353 	if (!list_empty(&sd->poll_list))
5354 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
5355 
5356 	net_rps_action_and_irq_enable(sd);
5357 out:
5358 	__kfree_skb_flush();
5359 }
5360 
5361 struct netdev_adjacent {
5362 	struct net_device *dev;
5363 
5364 	/* upper master flag, there can only be one master device per list */
5365 	bool master;
5366 
5367 	/* counter for the number of times this device was added to us */
5368 	u16 ref_nr;
5369 
5370 	/* private field for the users */
5371 	void *private;
5372 
5373 	struct list_head list;
5374 	struct rcu_head rcu;
5375 };
5376 
5377 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5378 						 struct list_head *adj_list)
5379 {
5380 	struct netdev_adjacent *adj;
5381 
5382 	list_for_each_entry(adj, adj_list, list) {
5383 		if (adj->dev == adj_dev)
5384 			return adj;
5385 	}
5386 	return NULL;
5387 }
5388 
5389 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5390 {
5391 	struct net_device *dev = data;
5392 
5393 	return upper_dev == dev;
5394 }
5395 
5396 /**
5397  * netdev_has_upper_dev - Check if device is linked to an upper device
5398  * @dev: device
5399  * @upper_dev: upper device to check
5400  *
5401  * Find out if a device is linked to specified upper device and return true
5402  * in case it is. Note that this checks only immediate upper device,
5403  * not through a complete stack of devices. The caller must hold the RTNL lock.
5404  */
5405 bool netdev_has_upper_dev(struct net_device *dev,
5406 			  struct net_device *upper_dev)
5407 {
5408 	ASSERT_RTNL();
5409 
5410 	return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5411 					     upper_dev);
5412 }
5413 EXPORT_SYMBOL(netdev_has_upper_dev);
5414 
5415 /**
5416  * netdev_has_upper_dev_all - Check if device is linked to an upper device
5417  * @dev: device
5418  * @upper_dev: upper device to check
5419  *
5420  * Find out if a device is linked to specified upper device and return true
5421  * in case it is. Note that this checks the entire upper device chain.
5422  * The caller must hold rcu lock.
5423  */
5424 
5425 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5426 				  struct net_device *upper_dev)
5427 {
5428 	return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5429 					       upper_dev);
5430 }
5431 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5432 
5433 /**
5434  * netdev_has_any_upper_dev - Check if device is linked to some device
5435  * @dev: device
5436  *
5437  * Find out if a device is linked to an upper device and return true in case
5438  * it is. The caller must hold the RTNL lock.
5439  */
5440 static bool netdev_has_any_upper_dev(struct net_device *dev)
5441 {
5442 	ASSERT_RTNL();
5443 
5444 	return !list_empty(&dev->adj_list.upper);
5445 }
5446 
5447 /**
5448  * netdev_master_upper_dev_get - Get master upper device
5449  * @dev: device
5450  *
5451  * Find a master upper device and return pointer to it or NULL in case
5452  * it's not there. The caller must hold the RTNL lock.
5453  */
5454 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5455 {
5456 	struct netdev_adjacent *upper;
5457 
5458 	ASSERT_RTNL();
5459 
5460 	if (list_empty(&dev->adj_list.upper))
5461 		return NULL;
5462 
5463 	upper = list_first_entry(&dev->adj_list.upper,
5464 				 struct netdev_adjacent, list);
5465 	if (likely(upper->master))
5466 		return upper->dev;
5467 	return NULL;
5468 }
5469 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5470 
5471 /**
5472  * netdev_has_any_lower_dev - Check if device is linked to some device
5473  * @dev: device
5474  *
5475  * Find out if a device is linked to a lower device and return true in case
5476  * it is. The caller must hold the RTNL lock.
5477  */
5478 static bool netdev_has_any_lower_dev(struct net_device *dev)
5479 {
5480 	ASSERT_RTNL();
5481 
5482 	return !list_empty(&dev->adj_list.lower);
5483 }
5484 
5485 void *netdev_adjacent_get_private(struct list_head *adj_list)
5486 {
5487 	struct netdev_adjacent *adj;
5488 
5489 	adj = list_entry(adj_list, struct netdev_adjacent, list);
5490 
5491 	return adj->private;
5492 }
5493 EXPORT_SYMBOL(netdev_adjacent_get_private);
5494 
5495 /**
5496  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5497  * @dev: device
5498  * @iter: list_head ** of the current position
5499  *
5500  * Gets the next device from the dev's upper list, starting from iter
5501  * position. The caller must hold RCU read lock.
5502  */
5503 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5504 						 struct list_head **iter)
5505 {
5506 	struct netdev_adjacent *upper;
5507 
5508 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5509 
5510 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5511 
5512 	if (&upper->list == &dev->adj_list.upper)
5513 		return NULL;
5514 
5515 	*iter = &upper->list;
5516 
5517 	return upper->dev;
5518 }
5519 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5520 
5521 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
5522 						    struct list_head **iter)
5523 {
5524 	struct netdev_adjacent *upper;
5525 
5526 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5527 
5528 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5529 
5530 	if (&upper->list == &dev->adj_list.upper)
5531 		return NULL;
5532 
5533 	*iter = &upper->list;
5534 
5535 	return upper->dev;
5536 }
5537 
5538 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
5539 				  int (*fn)(struct net_device *dev,
5540 					    void *data),
5541 				  void *data)
5542 {
5543 	struct net_device *udev;
5544 	struct list_head *iter;
5545 	int ret;
5546 
5547 	for (iter = &dev->adj_list.upper,
5548 	     udev = netdev_next_upper_dev_rcu(dev, &iter);
5549 	     udev;
5550 	     udev = netdev_next_upper_dev_rcu(dev, &iter)) {
5551 		/* first is the upper device itself */
5552 		ret = fn(udev, data);
5553 		if (ret)
5554 			return ret;
5555 
5556 		/* then look at all of its upper devices */
5557 		ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
5558 		if (ret)
5559 			return ret;
5560 	}
5561 
5562 	return 0;
5563 }
5564 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
5565 
5566 /**
5567  * netdev_lower_get_next_private - Get the next ->private from the
5568  *				   lower neighbour list
5569  * @dev: device
5570  * @iter: list_head ** of the current position
5571  *
5572  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5573  * list, starting from iter position. The caller must hold either hold the
5574  * RTNL lock or its own locking that guarantees that the neighbour lower
5575  * list will remain unchanged.
5576  */
5577 void *netdev_lower_get_next_private(struct net_device *dev,
5578 				    struct list_head **iter)
5579 {
5580 	struct netdev_adjacent *lower;
5581 
5582 	lower = list_entry(*iter, struct netdev_adjacent, list);
5583 
5584 	if (&lower->list == &dev->adj_list.lower)
5585 		return NULL;
5586 
5587 	*iter = lower->list.next;
5588 
5589 	return lower->private;
5590 }
5591 EXPORT_SYMBOL(netdev_lower_get_next_private);
5592 
5593 /**
5594  * netdev_lower_get_next_private_rcu - Get the next ->private from the
5595  *				       lower neighbour list, RCU
5596  *				       variant
5597  * @dev: device
5598  * @iter: list_head ** of the current position
5599  *
5600  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5601  * list, starting from iter position. The caller must hold RCU read lock.
5602  */
5603 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5604 					struct list_head **iter)
5605 {
5606 	struct netdev_adjacent *lower;
5607 
5608 	WARN_ON_ONCE(!rcu_read_lock_held());
5609 
5610 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5611 
5612 	if (&lower->list == &dev->adj_list.lower)
5613 		return NULL;
5614 
5615 	*iter = &lower->list;
5616 
5617 	return lower->private;
5618 }
5619 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5620 
5621 /**
5622  * netdev_lower_get_next - Get the next device from the lower neighbour
5623  *                         list
5624  * @dev: device
5625  * @iter: list_head ** of the current position
5626  *
5627  * Gets the next netdev_adjacent from the dev's lower neighbour
5628  * list, starting from iter position. The caller must hold RTNL lock or
5629  * its own locking that guarantees that the neighbour lower
5630  * list will remain unchanged.
5631  */
5632 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5633 {
5634 	struct netdev_adjacent *lower;
5635 
5636 	lower = list_entry(*iter, struct netdev_adjacent, list);
5637 
5638 	if (&lower->list == &dev->adj_list.lower)
5639 		return NULL;
5640 
5641 	*iter = lower->list.next;
5642 
5643 	return lower->dev;
5644 }
5645 EXPORT_SYMBOL(netdev_lower_get_next);
5646 
5647 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
5648 						struct list_head **iter)
5649 {
5650 	struct netdev_adjacent *lower;
5651 
5652 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
5653 
5654 	if (&lower->list == &dev->adj_list.lower)
5655 		return NULL;
5656 
5657 	*iter = &lower->list;
5658 
5659 	return lower->dev;
5660 }
5661 
5662 int netdev_walk_all_lower_dev(struct net_device *dev,
5663 			      int (*fn)(struct net_device *dev,
5664 					void *data),
5665 			      void *data)
5666 {
5667 	struct net_device *ldev;
5668 	struct list_head *iter;
5669 	int ret;
5670 
5671 	for (iter = &dev->adj_list.lower,
5672 	     ldev = netdev_next_lower_dev(dev, &iter);
5673 	     ldev;
5674 	     ldev = netdev_next_lower_dev(dev, &iter)) {
5675 		/* first is the lower device itself */
5676 		ret = fn(ldev, data);
5677 		if (ret)
5678 			return ret;
5679 
5680 		/* then look at all of its lower devices */
5681 		ret = netdev_walk_all_lower_dev(ldev, fn, data);
5682 		if (ret)
5683 			return ret;
5684 	}
5685 
5686 	return 0;
5687 }
5688 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
5689 
5690 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
5691 						    struct list_head **iter)
5692 {
5693 	struct netdev_adjacent *lower;
5694 
5695 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5696 	if (&lower->list == &dev->adj_list.lower)
5697 		return NULL;
5698 
5699 	*iter = &lower->list;
5700 
5701 	return lower->dev;
5702 }
5703 
5704 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
5705 				  int (*fn)(struct net_device *dev,
5706 					    void *data),
5707 				  void *data)
5708 {
5709 	struct net_device *ldev;
5710 	struct list_head *iter;
5711 	int ret;
5712 
5713 	for (iter = &dev->adj_list.lower,
5714 	     ldev = netdev_next_lower_dev_rcu(dev, &iter);
5715 	     ldev;
5716 	     ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
5717 		/* first is the lower device itself */
5718 		ret = fn(ldev, data);
5719 		if (ret)
5720 			return ret;
5721 
5722 		/* then look at all of its lower devices */
5723 		ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
5724 		if (ret)
5725 			return ret;
5726 	}
5727 
5728 	return 0;
5729 }
5730 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
5731 
5732 /**
5733  * netdev_lower_get_first_private_rcu - Get the first ->private from the
5734  *				       lower neighbour list, RCU
5735  *				       variant
5736  * @dev: device
5737  *
5738  * Gets the first netdev_adjacent->private from the dev's lower neighbour
5739  * list. The caller must hold RCU read lock.
5740  */
5741 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5742 {
5743 	struct netdev_adjacent *lower;
5744 
5745 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
5746 			struct netdev_adjacent, list);
5747 	if (lower)
5748 		return lower->private;
5749 	return NULL;
5750 }
5751 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5752 
5753 /**
5754  * netdev_master_upper_dev_get_rcu - Get master upper device
5755  * @dev: device
5756  *
5757  * Find a master upper device and return pointer to it or NULL in case
5758  * it's not there. The caller must hold the RCU read lock.
5759  */
5760 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5761 {
5762 	struct netdev_adjacent *upper;
5763 
5764 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
5765 				       struct netdev_adjacent, list);
5766 	if (upper && likely(upper->master))
5767 		return upper->dev;
5768 	return NULL;
5769 }
5770 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5771 
5772 static int netdev_adjacent_sysfs_add(struct net_device *dev,
5773 			      struct net_device *adj_dev,
5774 			      struct list_head *dev_list)
5775 {
5776 	char linkname[IFNAMSIZ+7];
5777 
5778 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
5779 		"upper_%s" : "lower_%s", adj_dev->name);
5780 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5781 				 linkname);
5782 }
5783 static void netdev_adjacent_sysfs_del(struct net_device *dev,
5784 			       char *name,
5785 			       struct list_head *dev_list)
5786 {
5787 	char linkname[IFNAMSIZ+7];
5788 
5789 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
5790 		"upper_%s" : "lower_%s", name);
5791 	sysfs_remove_link(&(dev->dev.kobj), linkname);
5792 }
5793 
5794 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5795 						 struct net_device *adj_dev,
5796 						 struct list_head *dev_list)
5797 {
5798 	return (dev_list == &dev->adj_list.upper ||
5799 		dev_list == &dev->adj_list.lower) &&
5800 		net_eq(dev_net(dev), dev_net(adj_dev));
5801 }
5802 
5803 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5804 					struct net_device *adj_dev,
5805 					struct list_head *dev_list,
5806 					void *private, bool master)
5807 {
5808 	struct netdev_adjacent *adj;
5809 	int ret;
5810 
5811 	adj = __netdev_find_adj(adj_dev, dev_list);
5812 
5813 	if (adj) {
5814 		adj->ref_nr += 1;
5815 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
5816 			 dev->name, adj_dev->name, adj->ref_nr);
5817 
5818 		return 0;
5819 	}
5820 
5821 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5822 	if (!adj)
5823 		return -ENOMEM;
5824 
5825 	adj->dev = adj_dev;
5826 	adj->master = master;
5827 	adj->ref_nr = 1;
5828 	adj->private = private;
5829 	dev_hold(adj_dev);
5830 
5831 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
5832 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
5833 
5834 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5835 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5836 		if (ret)
5837 			goto free_adj;
5838 	}
5839 
5840 	/* Ensure that master link is always the first item in list. */
5841 	if (master) {
5842 		ret = sysfs_create_link(&(dev->dev.kobj),
5843 					&(adj_dev->dev.kobj), "master");
5844 		if (ret)
5845 			goto remove_symlinks;
5846 
5847 		list_add_rcu(&adj->list, dev_list);
5848 	} else {
5849 		list_add_tail_rcu(&adj->list, dev_list);
5850 	}
5851 
5852 	return 0;
5853 
5854 remove_symlinks:
5855 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5856 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5857 free_adj:
5858 	kfree(adj);
5859 	dev_put(adj_dev);
5860 
5861 	return ret;
5862 }
5863 
5864 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5865 					 struct net_device *adj_dev,
5866 					 u16 ref_nr,
5867 					 struct list_head *dev_list)
5868 {
5869 	struct netdev_adjacent *adj;
5870 
5871 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
5872 		 dev->name, adj_dev->name, ref_nr);
5873 
5874 	adj = __netdev_find_adj(adj_dev, dev_list);
5875 
5876 	if (!adj) {
5877 		pr_err("Adjacency does not exist for device %s from %s\n",
5878 		       dev->name, adj_dev->name);
5879 		WARN_ON(1);
5880 		return;
5881 	}
5882 
5883 	if (adj->ref_nr > ref_nr) {
5884 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
5885 			 dev->name, adj_dev->name, ref_nr,
5886 			 adj->ref_nr - ref_nr);
5887 		adj->ref_nr -= ref_nr;
5888 		return;
5889 	}
5890 
5891 	if (adj->master)
5892 		sysfs_remove_link(&(dev->dev.kobj), "master");
5893 
5894 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5895 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5896 
5897 	list_del_rcu(&adj->list);
5898 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
5899 		 adj_dev->name, dev->name, adj_dev->name);
5900 	dev_put(adj_dev);
5901 	kfree_rcu(adj, rcu);
5902 }
5903 
5904 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5905 					    struct net_device *upper_dev,
5906 					    struct list_head *up_list,
5907 					    struct list_head *down_list,
5908 					    void *private, bool master)
5909 {
5910 	int ret;
5911 
5912 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
5913 					   private, master);
5914 	if (ret)
5915 		return ret;
5916 
5917 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
5918 					   private, false);
5919 	if (ret) {
5920 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
5921 		return ret;
5922 	}
5923 
5924 	return 0;
5925 }
5926 
5927 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5928 					       struct net_device *upper_dev,
5929 					       u16 ref_nr,
5930 					       struct list_head *up_list,
5931 					       struct list_head *down_list)
5932 {
5933 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
5934 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
5935 }
5936 
5937 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5938 						struct net_device *upper_dev,
5939 						void *private, bool master)
5940 {
5941 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5942 						&dev->adj_list.upper,
5943 						&upper_dev->adj_list.lower,
5944 						private, master);
5945 }
5946 
5947 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5948 						   struct net_device *upper_dev)
5949 {
5950 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
5951 					   &dev->adj_list.upper,
5952 					   &upper_dev->adj_list.lower);
5953 }
5954 
5955 static int __netdev_upper_dev_link(struct net_device *dev,
5956 				   struct net_device *upper_dev, bool master,
5957 				   void *upper_priv, void *upper_info)
5958 {
5959 	struct netdev_notifier_changeupper_info changeupper_info;
5960 	int ret = 0;
5961 
5962 	ASSERT_RTNL();
5963 
5964 	if (dev == upper_dev)
5965 		return -EBUSY;
5966 
5967 	/* To prevent loops, check if dev is not upper device to upper_dev. */
5968 	if (netdev_has_upper_dev(upper_dev, dev))
5969 		return -EBUSY;
5970 
5971 	if (netdev_has_upper_dev(dev, upper_dev))
5972 		return -EEXIST;
5973 
5974 	if (master && netdev_master_upper_dev_get(dev))
5975 		return -EBUSY;
5976 
5977 	changeupper_info.upper_dev = upper_dev;
5978 	changeupper_info.master = master;
5979 	changeupper_info.linking = true;
5980 	changeupper_info.upper_info = upper_info;
5981 
5982 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5983 					    &changeupper_info.info);
5984 	ret = notifier_to_errno(ret);
5985 	if (ret)
5986 		return ret;
5987 
5988 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
5989 						   master);
5990 	if (ret)
5991 		return ret;
5992 
5993 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5994 					    &changeupper_info.info);
5995 	ret = notifier_to_errno(ret);
5996 	if (ret)
5997 		goto rollback;
5998 
5999 	return 0;
6000 
6001 rollback:
6002 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6003 
6004 	return ret;
6005 }
6006 
6007 /**
6008  * netdev_upper_dev_link - Add a link to the upper device
6009  * @dev: device
6010  * @upper_dev: new upper device
6011  *
6012  * Adds a link to device which is upper to this one. The caller must hold
6013  * the RTNL lock. On a failure a negative errno code is returned.
6014  * On success the reference counts are adjusted and the function
6015  * returns zero.
6016  */
6017 int netdev_upper_dev_link(struct net_device *dev,
6018 			  struct net_device *upper_dev)
6019 {
6020 	return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
6021 }
6022 EXPORT_SYMBOL(netdev_upper_dev_link);
6023 
6024 /**
6025  * netdev_master_upper_dev_link - Add a master link to the upper device
6026  * @dev: device
6027  * @upper_dev: new upper device
6028  * @upper_priv: upper device private
6029  * @upper_info: upper info to be passed down via notifier
6030  *
6031  * Adds a link to device which is upper to this one. In this case, only
6032  * one master upper device can be linked, although other non-master devices
6033  * might be linked as well. The caller must hold the RTNL lock.
6034  * On a failure a negative errno code is returned. On success the reference
6035  * counts are adjusted and the function returns zero.
6036  */
6037 int netdev_master_upper_dev_link(struct net_device *dev,
6038 				 struct net_device *upper_dev,
6039 				 void *upper_priv, void *upper_info)
6040 {
6041 	return __netdev_upper_dev_link(dev, upper_dev, true,
6042 				       upper_priv, upper_info);
6043 }
6044 EXPORT_SYMBOL(netdev_master_upper_dev_link);
6045 
6046 /**
6047  * netdev_upper_dev_unlink - Removes a link to upper device
6048  * @dev: device
6049  * @upper_dev: new upper device
6050  *
6051  * Removes a link to device which is upper to this one. The caller must hold
6052  * the RTNL lock.
6053  */
6054 void netdev_upper_dev_unlink(struct net_device *dev,
6055 			     struct net_device *upper_dev)
6056 {
6057 	struct netdev_notifier_changeupper_info changeupper_info;
6058 
6059 	ASSERT_RTNL();
6060 
6061 	changeupper_info.upper_dev = upper_dev;
6062 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
6063 	changeupper_info.linking = false;
6064 
6065 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
6066 				      &changeupper_info.info);
6067 
6068 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6069 
6070 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
6071 				      &changeupper_info.info);
6072 }
6073 EXPORT_SYMBOL(netdev_upper_dev_unlink);
6074 
6075 /**
6076  * netdev_bonding_info_change - Dispatch event about slave change
6077  * @dev: device
6078  * @bonding_info: info to dispatch
6079  *
6080  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
6081  * The caller must hold the RTNL lock.
6082  */
6083 void netdev_bonding_info_change(struct net_device *dev,
6084 				struct netdev_bonding_info *bonding_info)
6085 {
6086 	struct netdev_notifier_bonding_info	info;
6087 
6088 	memcpy(&info.bonding_info, bonding_info,
6089 	       sizeof(struct netdev_bonding_info));
6090 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
6091 				      &info.info);
6092 }
6093 EXPORT_SYMBOL(netdev_bonding_info_change);
6094 
6095 static void netdev_adjacent_add_links(struct net_device *dev)
6096 {
6097 	struct netdev_adjacent *iter;
6098 
6099 	struct net *net = dev_net(dev);
6100 
6101 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
6102 		if (!net_eq(net, dev_net(iter->dev)))
6103 			continue;
6104 		netdev_adjacent_sysfs_add(iter->dev, dev,
6105 					  &iter->dev->adj_list.lower);
6106 		netdev_adjacent_sysfs_add(dev, iter->dev,
6107 					  &dev->adj_list.upper);
6108 	}
6109 
6110 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
6111 		if (!net_eq(net, dev_net(iter->dev)))
6112 			continue;
6113 		netdev_adjacent_sysfs_add(iter->dev, dev,
6114 					  &iter->dev->adj_list.upper);
6115 		netdev_adjacent_sysfs_add(dev, iter->dev,
6116 					  &dev->adj_list.lower);
6117 	}
6118 }
6119 
6120 static void netdev_adjacent_del_links(struct net_device *dev)
6121 {
6122 	struct netdev_adjacent *iter;
6123 
6124 	struct net *net = dev_net(dev);
6125 
6126 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
6127 		if (!net_eq(net, dev_net(iter->dev)))
6128 			continue;
6129 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
6130 					  &iter->dev->adj_list.lower);
6131 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
6132 					  &dev->adj_list.upper);
6133 	}
6134 
6135 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
6136 		if (!net_eq(net, dev_net(iter->dev)))
6137 			continue;
6138 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
6139 					  &iter->dev->adj_list.upper);
6140 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
6141 					  &dev->adj_list.lower);
6142 	}
6143 }
6144 
6145 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6146 {
6147 	struct netdev_adjacent *iter;
6148 
6149 	struct net *net = dev_net(dev);
6150 
6151 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
6152 		if (!net_eq(net, dev_net(iter->dev)))
6153 			continue;
6154 		netdev_adjacent_sysfs_del(iter->dev, oldname,
6155 					  &iter->dev->adj_list.lower);
6156 		netdev_adjacent_sysfs_add(iter->dev, dev,
6157 					  &iter->dev->adj_list.lower);
6158 	}
6159 
6160 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
6161 		if (!net_eq(net, dev_net(iter->dev)))
6162 			continue;
6163 		netdev_adjacent_sysfs_del(iter->dev, oldname,
6164 					  &iter->dev->adj_list.upper);
6165 		netdev_adjacent_sysfs_add(iter->dev, dev,
6166 					  &iter->dev->adj_list.upper);
6167 	}
6168 }
6169 
6170 void *netdev_lower_dev_get_private(struct net_device *dev,
6171 				   struct net_device *lower_dev)
6172 {
6173 	struct netdev_adjacent *lower;
6174 
6175 	if (!lower_dev)
6176 		return NULL;
6177 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
6178 	if (!lower)
6179 		return NULL;
6180 
6181 	return lower->private;
6182 }
6183 EXPORT_SYMBOL(netdev_lower_dev_get_private);
6184 
6185 
6186 int dev_get_nest_level(struct net_device *dev)
6187 {
6188 	struct net_device *lower = NULL;
6189 	struct list_head *iter;
6190 	int max_nest = -1;
6191 	int nest;
6192 
6193 	ASSERT_RTNL();
6194 
6195 	netdev_for_each_lower_dev(dev, lower, iter) {
6196 		nest = dev_get_nest_level(lower);
6197 		if (max_nest < nest)
6198 			max_nest = nest;
6199 	}
6200 
6201 	return max_nest + 1;
6202 }
6203 EXPORT_SYMBOL(dev_get_nest_level);
6204 
6205 /**
6206  * netdev_lower_change - Dispatch event about lower device state change
6207  * @lower_dev: device
6208  * @lower_state_info: state to dispatch
6209  *
6210  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6211  * The caller must hold the RTNL lock.
6212  */
6213 void netdev_lower_state_changed(struct net_device *lower_dev,
6214 				void *lower_state_info)
6215 {
6216 	struct netdev_notifier_changelowerstate_info changelowerstate_info;
6217 
6218 	ASSERT_RTNL();
6219 	changelowerstate_info.lower_state_info = lower_state_info;
6220 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
6221 				      &changelowerstate_info.info);
6222 }
6223 EXPORT_SYMBOL(netdev_lower_state_changed);
6224 
6225 static void dev_change_rx_flags(struct net_device *dev, int flags)
6226 {
6227 	const struct net_device_ops *ops = dev->netdev_ops;
6228 
6229 	if (ops->ndo_change_rx_flags)
6230 		ops->ndo_change_rx_flags(dev, flags);
6231 }
6232 
6233 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6234 {
6235 	unsigned int old_flags = dev->flags;
6236 	kuid_t uid;
6237 	kgid_t gid;
6238 
6239 	ASSERT_RTNL();
6240 
6241 	dev->flags |= IFF_PROMISC;
6242 	dev->promiscuity += inc;
6243 	if (dev->promiscuity == 0) {
6244 		/*
6245 		 * Avoid overflow.
6246 		 * If inc causes overflow, untouch promisc and return error.
6247 		 */
6248 		if (inc < 0)
6249 			dev->flags &= ~IFF_PROMISC;
6250 		else {
6251 			dev->promiscuity -= inc;
6252 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6253 				dev->name);
6254 			return -EOVERFLOW;
6255 		}
6256 	}
6257 	if (dev->flags != old_flags) {
6258 		pr_info("device %s %s promiscuous mode\n",
6259 			dev->name,
6260 			dev->flags & IFF_PROMISC ? "entered" : "left");
6261 		if (audit_enabled) {
6262 			current_uid_gid(&uid, &gid);
6263 			audit_log(current->audit_context, GFP_ATOMIC,
6264 				AUDIT_ANOM_PROMISCUOUS,
6265 				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6266 				dev->name, (dev->flags & IFF_PROMISC),
6267 				(old_flags & IFF_PROMISC),
6268 				from_kuid(&init_user_ns, audit_get_loginuid(current)),
6269 				from_kuid(&init_user_ns, uid),
6270 				from_kgid(&init_user_ns, gid),
6271 				audit_get_sessionid(current));
6272 		}
6273 
6274 		dev_change_rx_flags(dev, IFF_PROMISC);
6275 	}
6276 	if (notify)
6277 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
6278 	return 0;
6279 }
6280 
6281 /**
6282  *	dev_set_promiscuity	- update promiscuity count on a device
6283  *	@dev: device
6284  *	@inc: modifier
6285  *
6286  *	Add or remove promiscuity from a device. While the count in the device
6287  *	remains above zero the interface remains promiscuous. Once it hits zero
6288  *	the device reverts back to normal filtering operation. A negative inc
6289  *	value is used to drop promiscuity on the device.
6290  *	Return 0 if successful or a negative errno code on error.
6291  */
6292 int dev_set_promiscuity(struct net_device *dev, int inc)
6293 {
6294 	unsigned int old_flags = dev->flags;
6295 	int err;
6296 
6297 	err = __dev_set_promiscuity(dev, inc, true);
6298 	if (err < 0)
6299 		return err;
6300 	if (dev->flags != old_flags)
6301 		dev_set_rx_mode(dev);
6302 	return err;
6303 }
6304 EXPORT_SYMBOL(dev_set_promiscuity);
6305 
6306 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6307 {
6308 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6309 
6310 	ASSERT_RTNL();
6311 
6312 	dev->flags |= IFF_ALLMULTI;
6313 	dev->allmulti += inc;
6314 	if (dev->allmulti == 0) {
6315 		/*
6316 		 * Avoid overflow.
6317 		 * If inc causes overflow, untouch allmulti and return error.
6318 		 */
6319 		if (inc < 0)
6320 			dev->flags &= ~IFF_ALLMULTI;
6321 		else {
6322 			dev->allmulti -= inc;
6323 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6324 				dev->name);
6325 			return -EOVERFLOW;
6326 		}
6327 	}
6328 	if (dev->flags ^ old_flags) {
6329 		dev_change_rx_flags(dev, IFF_ALLMULTI);
6330 		dev_set_rx_mode(dev);
6331 		if (notify)
6332 			__dev_notify_flags(dev, old_flags,
6333 					   dev->gflags ^ old_gflags);
6334 	}
6335 	return 0;
6336 }
6337 
6338 /**
6339  *	dev_set_allmulti	- update allmulti count on a device
6340  *	@dev: device
6341  *	@inc: modifier
6342  *
6343  *	Add or remove reception of all multicast frames to a device. While the
6344  *	count in the device remains above zero the interface remains listening
6345  *	to all interfaces. Once it hits zero the device reverts back to normal
6346  *	filtering operation. A negative @inc value is used to drop the counter
6347  *	when releasing a resource needing all multicasts.
6348  *	Return 0 if successful or a negative errno code on error.
6349  */
6350 
6351 int dev_set_allmulti(struct net_device *dev, int inc)
6352 {
6353 	return __dev_set_allmulti(dev, inc, true);
6354 }
6355 EXPORT_SYMBOL(dev_set_allmulti);
6356 
6357 /*
6358  *	Upload unicast and multicast address lists to device and
6359  *	configure RX filtering. When the device doesn't support unicast
6360  *	filtering it is put in promiscuous mode while unicast addresses
6361  *	are present.
6362  */
6363 void __dev_set_rx_mode(struct net_device *dev)
6364 {
6365 	const struct net_device_ops *ops = dev->netdev_ops;
6366 
6367 	/* dev_open will call this function so the list will stay sane. */
6368 	if (!(dev->flags&IFF_UP))
6369 		return;
6370 
6371 	if (!netif_device_present(dev))
6372 		return;
6373 
6374 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6375 		/* Unicast addresses changes may only happen under the rtnl,
6376 		 * therefore calling __dev_set_promiscuity here is safe.
6377 		 */
6378 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6379 			__dev_set_promiscuity(dev, 1, false);
6380 			dev->uc_promisc = true;
6381 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6382 			__dev_set_promiscuity(dev, -1, false);
6383 			dev->uc_promisc = false;
6384 		}
6385 	}
6386 
6387 	if (ops->ndo_set_rx_mode)
6388 		ops->ndo_set_rx_mode(dev);
6389 }
6390 
6391 void dev_set_rx_mode(struct net_device *dev)
6392 {
6393 	netif_addr_lock_bh(dev);
6394 	__dev_set_rx_mode(dev);
6395 	netif_addr_unlock_bh(dev);
6396 }
6397 
6398 /**
6399  *	dev_get_flags - get flags reported to userspace
6400  *	@dev: device
6401  *
6402  *	Get the combination of flag bits exported through APIs to userspace.
6403  */
6404 unsigned int dev_get_flags(const struct net_device *dev)
6405 {
6406 	unsigned int flags;
6407 
6408 	flags = (dev->flags & ~(IFF_PROMISC |
6409 				IFF_ALLMULTI |
6410 				IFF_RUNNING |
6411 				IFF_LOWER_UP |
6412 				IFF_DORMANT)) |
6413 		(dev->gflags & (IFF_PROMISC |
6414 				IFF_ALLMULTI));
6415 
6416 	if (netif_running(dev)) {
6417 		if (netif_oper_up(dev))
6418 			flags |= IFF_RUNNING;
6419 		if (netif_carrier_ok(dev))
6420 			flags |= IFF_LOWER_UP;
6421 		if (netif_dormant(dev))
6422 			flags |= IFF_DORMANT;
6423 	}
6424 
6425 	return flags;
6426 }
6427 EXPORT_SYMBOL(dev_get_flags);
6428 
6429 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6430 {
6431 	unsigned int old_flags = dev->flags;
6432 	int ret;
6433 
6434 	ASSERT_RTNL();
6435 
6436 	/*
6437 	 *	Set the flags on our device.
6438 	 */
6439 
6440 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6441 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6442 			       IFF_AUTOMEDIA)) |
6443 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6444 				    IFF_ALLMULTI));
6445 
6446 	/*
6447 	 *	Load in the correct multicast list now the flags have changed.
6448 	 */
6449 
6450 	if ((old_flags ^ flags) & IFF_MULTICAST)
6451 		dev_change_rx_flags(dev, IFF_MULTICAST);
6452 
6453 	dev_set_rx_mode(dev);
6454 
6455 	/*
6456 	 *	Have we downed the interface. We handle IFF_UP ourselves
6457 	 *	according to user attempts to set it, rather than blindly
6458 	 *	setting it.
6459 	 */
6460 
6461 	ret = 0;
6462 	if ((old_flags ^ flags) & IFF_UP)
6463 		ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
6464 
6465 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
6466 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
6467 		unsigned int old_flags = dev->flags;
6468 
6469 		dev->gflags ^= IFF_PROMISC;
6470 
6471 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
6472 			if (dev->flags != old_flags)
6473 				dev_set_rx_mode(dev);
6474 	}
6475 
6476 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6477 	 * is important. Some (broken) drivers set IFF_PROMISC, when
6478 	 * IFF_ALLMULTI is requested not asking us and not reporting.
6479 	 */
6480 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6481 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6482 
6483 		dev->gflags ^= IFF_ALLMULTI;
6484 		__dev_set_allmulti(dev, inc, false);
6485 	}
6486 
6487 	return ret;
6488 }
6489 
6490 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6491 			unsigned int gchanges)
6492 {
6493 	unsigned int changes = dev->flags ^ old_flags;
6494 
6495 	if (gchanges)
6496 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6497 
6498 	if (changes & IFF_UP) {
6499 		if (dev->flags & IFF_UP)
6500 			call_netdevice_notifiers(NETDEV_UP, dev);
6501 		else
6502 			call_netdevice_notifiers(NETDEV_DOWN, dev);
6503 	}
6504 
6505 	if (dev->flags & IFF_UP &&
6506 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6507 		struct netdev_notifier_change_info change_info;
6508 
6509 		change_info.flags_changed = changes;
6510 		call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6511 					      &change_info.info);
6512 	}
6513 }
6514 
6515 /**
6516  *	dev_change_flags - change device settings
6517  *	@dev: device
6518  *	@flags: device state flags
6519  *
6520  *	Change settings on device based state flags. The flags are
6521  *	in the userspace exported format.
6522  */
6523 int dev_change_flags(struct net_device *dev, unsigned int flags)
6524 {
6525 	int ret;
6526 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6527 
6528 	ret = __dev_change_flags(dev, flags);
6529 	if (ret < 0)
6530 		return ret;
6531 
6532 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6533 	__dev_notify_flags(dev, old_flags, changes);
6534 	return ret;
6535 }
6536 EXPORT_SYMBOL(dev_change_flags);
6537 
6538 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6539 {
6540 	const struct net_device_ops *ops = dev->netdev_ops;
6541 
6542 	if (ops->ndo_change_mtu)
6543 		return ops->ndo_change_mtu(dev, new_mtu);
6544 
6545 	dev->mtu = new_mtu;
6546 	return 0;
6547 }
6548 
6549 /**
6550  *	dev_set_mtu - Change maximum transfer unit
6551  *	@dev: device
6552  *	@new_mtu: new transfer unit
6553  *
6554  *	Change the maximum transfer size of the network device.
6555  */
6556 int dev_set_mtu(struct net_device *dev, int new_mtu)
6557 {
6558 	int err, orig_mtu;
6559 
6560 	if (new_mtu == dev->mtu)
6561 		return 0;
6562 
6563 	/* MTU must be positive, and in range */
6564 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
6565 		net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
6566 				    dev->name, new_mtu, dev->min_mtu);
6567 		return -EINVAL;
6568 	}
6569 
6570 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
6571 		net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
6572 				    dev->name, new_mtu, dev->max_mtu);
6573 		return -EINVAL;
6574 	}
6575 
6576 	if (!netif_device_present(dev))
6577 		return -ENODEV;
6578 
6579 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6580 	err = notifier_to_errno(err);
6581 	if (err)
6582 		return err;
6583 
6584 	orig_mtu = dev->mtu;
6585 	err = __dev_set_mtu(dev, new_mtu);
6586 
6587 	if (!err) {
6588 		err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6589 		err = notifier_to_errno(err);
6590 		if (err) {
6591 			/* setting mtu back and notifying everyone again,
6592 			 * so that they have a chance to revert changes.
6593 			 */
6594 			__dev_set_mtu(dev, orig_mtu);
6595 			call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6596 		}
6597 	}
6598 	return err;
6599 }
6600 EXPORT_SYMBOL(dev_set_mtu);
6601 
6602 /**
6603  *	dev_set_group - Change group this device belongs to
6604  *	@dev: device
6605  *	@new_group: group this device should belong to
6606  */
6607 void dev_set_group(struct net_device *dev, int new_group)
6608 {
6609 	dev->group = new_group;
6610 }
6611 EXPORT_SYMBOL(dev_set_group);
6612 
6613 /**
6614  *	dev_set_mac_address - Change Media Access Control Address
6615  *	@dev: device
6616  *	@sa: new address
6617  *
6618  *	Change the hardware (MAC) address of the device
6619  */
6620 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6621 {
6622 	const struct net_device_ops *ops = dev->netdev_ops;
6623 	int err;
6624 
6625 	if (!ops->ndo_set_mac_address)
6626 		return -EOPNOTSUPP;
6627 	if (sa->sa_family != dev->type)
6628 		return -EINVAL;
6629 	if (!netif_device_present(dev))
6630 		return -ENODEV;
6631 	err = ops->ndo_set_mac_address(dev, sa);
6632 	if (err)
6633 		return err;
6634 	dev->addr_assign_type = NET_ADDR_SET;
6635 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6636 	add_device_randomness(dev->dev_addr, dev->addr_len);
6637 	return 0;
6638 }
6639 EXPORT_SYMBOL(dev_set_mac_address);
6640 
6641 /**
6642  *	dev_change_carrier - Change device carrier
6643  *	@dev: device
6644  *	@new_carrier: new value
6645  *
6646  *	Change device carrier
6647  */
6648 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6649 {
6650 	const struct net_device_ops *ops = dev->netdev_ops;
6651 
6652 	if (!ops->ndo_change_carrier)
6653 		return -EOPNOTSUPP;
6654 	if (!netif_device_present(dev))
6655 		return -ENODEV;
6656 	return ops->ndo_change_carrier(dev, new_carrier);
6657 }
6658 EXPORT_SYMBOL(dev_change_carrier);
6659 
6660 /**
6661  *	dev_get_phys_port_id - Get device physical port ID
6662  *	@dev: device
6663  *	@ppid: port ID
6664  *
6665  *	Get device physical port ID
6666  */
6667 int dev_get_phys_port_id(struct net_device *dev,
6668 			 struct netdev_phys_item_id *ppid)
6669 {
6670 	const struct net_device_ops *ops = dev->netdev_ops;
6671 
6672 	if (!ops->ndo_get_phys_port_id)
6673 		return -EOPNOTSUPP;
6674 	return ops->ndo_get_phys_port_id(dev, ppid);
6675 }
6676 EXPORT_SYMBOL(dev_get_phys_port_id);
6677 
6678 /**
6679  *	dev_get_phys_port_name - Get device physical port name
6680  *	@dev: device
6681  *	@name: port name
6682  *	@len: limit of bytes to copy to name
6683  *
6684  *	Get device physical port name
6685  */
6686 int dev_get_phys_port_name(struct net_device *dev,
6687 			   char *name, size_t len)
6688 {
6689 	const struct net_device_ops *ops = dev->netdev_ops;
6690 
6691 	if (!ops->ndo_get_phys_port_name)
6692 		return -EOPNOTSUPP;
6693 	return ops->ndo_get_phys_port_name(dev, name, len);
6694 }
6695 EXPORT_SYMBOL(dev_get_phys_port_name);
6696 
6697 /**
6698  *	dev_change_proto_down - update protocol port state information
6699  *	@dev: device
6700  *	@proto_down: new value
6701  *
6702  *	This info can be used by switch drivers to set the phys state of the
6703  *	port.
6704  */
6705 int dev_change_proto_down(struct net_device *dev, bool proto_down)
6706 {
6707 	const struct net_device_ops *ops = dev->netdev_ops;
6708 
6709 	if (!ops->ndo_change_proto_down)
6710 		return -EOPNOTSUPP;
6711 	if (!netif_device_present(dev))
6712 		return -ENODEV;
6713 	return ops->ndo_change_proto_down(dev, proto_down);
6714 }
6715 EXPORT_SYMBOL(dev_change_proto_down);
6716 
6717 /**
6718  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
6719  *	@dev: device
6720  *	@fd: new program fd or negative value to clear
6721  *	@flags: xdp-related flags
6722  *
6723  *	Set or clear a bpf program for a device
6724  */
6725 int dev_change_xdp_fd(struct net_device *dev, int fd, u32 flags)
6726 {
6727 	const struct net_device_ops *ops = dev->netdev_ops;
6728 	struct bpf_prog *prog = NULL;
6729 	struct netdev_xdp xdp;
6730 	int err;
6731 
6732 	ASSERT_RTNL();
6733 
6734 	if (!ops->ndo_xdp)
6735 		return -EOPNOTSUPP;
6736 	if (fd >= 0) {
6737 		if (flags & XDP_FLAGS_UPDATE_IF_NOEXIST) {
6738 			memset(&xdp, 0, sizeof(xdp));
6739 			xdp.command = XDP_QUERY_PROG;
6740 
6741 			err = ops->ndo_xdp(dev, &xdp);
6742 			if (err < 0)
6743 				return err;
6744 			if (xdp.prog_attached)
6745 				return -EBUSY;
6746 		}
6747 
6748 		prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
6749 		if (IS_ERR(prog))
6750 			return PTR_ERR(prog);
6751 	}
6752 
6753 	memset(&xdp, 0, sizeof(xdp));
6754 	xdp.command = XDP_SETUP_PROG;
6755 	xdp.prog = prog;
6756 
6757 	err = ops->ndo_xdp(dev, &xdp);
6758 	if (err < 0 && prog)
6759 		bpf_prog_put(prog);
6760 
6761 	return err;
6762 }
6763 
6764 /**
6765  *	dev_new_index	-	allocate an ifindex
6766  *	@net: the applicable net namespace
6767  *
6768  *	Returns a suitable unique value for a new device interface
6769  *	number.  The caller must hold the rtnl semaphore or the
6770  *	dev_base_lock to be sure it remains unique.
6771  */
6772 static int dev_new_index(struct net *net)
6773 {
6774 	int ifindex = net->ifindex;
6775 
6776 	for (;;) {
6777 		if (++ifindex <= 0)
6778 			ifindex = 1;
6779 		if (!__dev_get_by_index(net, ifindex))
6780 			return net->ifindex = ifindex;
6781 	}
6782 }
6783 
6784 /* Delayed registration/unregisteration */
6785 static LIST_HEAD(net_todo_list);
6786 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
6787 
6788 static void net_set_todo(struct net_device *dev)
6789 {
6790 	list_add_tail(&dev->todo_list, &net_todo_list);
6791 	dev_net(dev)->dev_unreg_count++;
6792 }
6793 
6794 static void rollback_registered_many(struct list_head *head)
6795 {
6796 	struct net_device *dev, *tmp;
6797 	LIST_HEAD(close_head);
6798 
6799 	BUG_ON(dev_boot_phase);
6800 	ASSERT_RTNL();
6801 
6802 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6803 		/* Some devices call without registering
6804 		 * for initialization unwind. Remove those
6805 		 * devices and proceed with the remaining.
6806 		 */
6807 		if (dev->reg_state == NETREG_UNINITIALIZED) {
6808 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6809 				 dev->name, dev);
6810 
6811 			WARN_ON(1);
6812 			list_del(&dev->unreg_list);
6813 			continue;
6814 		}
6815 		dev->dismantle = true;
6816 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
6817 	}
6818 
6819 	/* If device is running, close it first. */
6820 	list_for_each_entry(dev, head, unreg_list)
6821 		list_add_tail(&dev->close_list, &close_head);
6822 	dev_close_many(&close_head, true);
6823 
6824 	list_for_each_entry(dev, head, unreg_list) {
6825 		/* And unlink it from device chain. */
6826 		unlist_netdevice(dev);
6827 
6828 		dev->reg_state = NETREG_UNREGISTERING;
6829 	}
6830 	flush_all_backlogs();
6831 
6832 	synchronize_net();
6833 
6834 	list_for_each_entry(dev, head, unreg_list) {
6835 		struct sk_buff *skb = NULL;
6836 
6837 		/* Shutdown queueing discipline. */
6838 		dev_shutdown(dev);
6839 
6840 
6841 		/* Notify protocols, that we are about to destroy
6842 		 * this device. They should clean all the things.
6843 		 */
6844 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6845 
6846 		if (!dev->rtnl_link_ops ||
6847 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6848 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6849 						     GFP_KERNEL);
6850 
6851 		/*
6852 		 *	Flush the unicast and multicast chains
6853 		 */
6854 		dev_uc_flush(dev);
6855 		dev_mc_flush(dev);
6856 
6857 		if (dev->netdev_ops->ndo_uninit)
6858 			dev->netdev_ops->ndo_uninit(dev);
6859 
6860 		if (skb)
6861 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6862 
6863 		/* Notifier chain MUST detach us all upper devices. */
6864 		WARN_ON(netdev_has_any_upper_dev(dev));
6865 		WARN_ON(netdev_has_any_lower_dev(dev));
6866 
6867 		/* Remove entries from kobject tree */
6868 		netdev_unregister_kobject(dev);
6869 #ifdef CONFIG_XPS
6870 		/* Remove XPS queueing entries */
6871 		netif_reset_xps_queues_gt(dev, 0);
6872 #endif
6873 	}
6874 
6875 	synchronize_net();
6876 
6877 	list_for_each_entry(dev, head, unreg_list)
6878 		dev_put(dev);
6879 }
6880 
6881 static void rollback_registered(struct net_device *dev)
6882 {
6883 	LIST_HEAD(single);
6884 
6885 	list_add(&dev->unreg_list, &single);
6886 	rollback_registered_many(&single);
6887 	list_del(&single);
6888 }
6889 
6890 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
6891 	struct net_device *upper, netdev_features_t features)
6892 {
6893 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6894 	netdev_features_t feature;
6895 	int feature_bit;
6896 
6897 	for_each_netdev_feature(&upper_disables, feature_bit) {
6898 		feature = __NETIF_F_BIT(feature_bit);
6899 		if (!(upper->wanted_features & feature)
6900 		    && (features & feature)) {
6901 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
6902 				   &feature, upper->name);
6903 			features &= ~feature;
6904 		}
6905 	}
6906 
6907 	return features;
6908 }
6909 
6910 static void netdev_sync_lower_features(struct net_device *upper,
6911 	struct net_device *lower, netdev_features_t features)
6912 {
6913 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6914 	netdev_features_t feature;
6915 	int feature_bit;
6916 
6917 	for_each_netdev_feature(&upper_disables, feature_bit) {
6918 		feature = __NETIF_F_BIT(feature_bit);
6919 		if (!(features & feature) && (lower->features & feature)) {
6920 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
6921 				   &feature, lower->name);
6922 			lower->wanted_features &= ~feature;
6923 			netdev_update_features(lower);
6924 
6925 			if (unlikely(lower->features & feature))
6926 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
6927 					    &feature, lower->name);
6928 		}
6929 	}
6930 }
6931 
6932 static netdev_features_t netdev_fix_features(struct net_device *dev,
6933 	netdev_features_t features)
6934 {
6935 	/* Fix illegal checksum combinations */
6936 	if ((features & NETIF_F_HW_CSUM) &&
6937 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6938 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6939 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6940 	}
6941 
6942 	/* TSO requires that SG is present as well. */
6943 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6944 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6945 		features &= ~NETIF_F_ALL_TSO;
6946 	}
6947 
6948 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6949 					!(features & NETIF_F_IP_CSUM)) {
6950 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6951 		features &= ~NETIF_F_TSO;
6952 		features &= ~NETIF_F_TSO_ECN;
6953 	}
6954 
6955 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6956 					 !(features & NETIF_F_IPV6_CSUM)) {
6957 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6958 		features &= ~NETIF_F_TSO6;
6959 	}
6960 
6961 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
6962 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
6963 		features &= ~NETIF_F_TSO_MANGLEID;
6964 
6965 	/* TSO ECN requires that TSO is present as well. */
6966 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6967 		features &= ~NETIF_F_TSO_ECN;
6968 
6969 	/* Software GSO depends on SG. */
6970 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6971 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6972 		features &= ~NETIF_F_GSO;
6973 	}
6974 
6975 	/* UFO needs SG and checksumming */
6976 	if (features & NETIF_F_UFO) {
6977 		/* maybe split UFO into V4 and V6? */
6978 		if (!(features & NETIF_F_HW_CSUM) &&
6979 		    ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) !=
6980 		     (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) {
6981 			netdev_dbg(dev,
6982 				"Dropping NETIF_F_UFO since no checksum offload features.\n");
6983 			features &= ~NETIF_F_UFO;
6984 		}
6985 
6986 		if (!(features & NETIF_F_SG)) {
6987 			netdev_dbg(dev,
6988 				"Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6989 			features &= ~NETIF_F_UFO;
6990 		}
6991 	}
6992 
6993 	/* GSO partial features require GSO partial be set */
6994 	if ((features & dev->gso_partial_features) &&
6995 	    !(features & NETIF_F_GSO_PARTIAL)) {
6996 		netdev_dbg(dev,
6997 			   "Dropping partially supported GSO features since no GSO partial.\n");
6998 		features &= ~dev->gso_partial_features;
6999 	}
7000 
7001 	return features;
7002 }
7003 
7004 int __netdev_update_features(struct net_device *dev)
7005 {
7006 	struct net_device *upper, *lower;
7007 	netdev_features_t features;
7008 	struct list_head *iter;
7009 	int err = -1;
7010 
7011 	ASSERT_RTNL();
7012 
7013 	features = netdev_get_wanted_features(dev);
7014 
7015 	if (dev->netdev_ops->ndo_fix_features)
7016 		features = dev->netdev_ops->ndo_fix_features(dev, features);
7017 
7018 	/* driver might be less strict about feature dependencies */
7019 	features = netdev_fix_features(dev, features);
7020 
7021 	/* some features can't be enabled if they're off an an upper device */
7022 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
7023 		features = netdev_sync_upper_features(dev, upper, features);
7024 
7025 	if (dev->features == features)
7026 		goto sync_lower;
7027 
7028 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
7029 		&dev->features, &features);
7030 
7031 	if (dev->netdev_ops->ndo_set_features)
7032 		err = dev->netdev_ops->ndo_set_features(dev, features);
7033 	else
7034 		err = 0;
7035 
7036 	if (unlikely(err < 0)) {
7037 		netdev_err(dev,
7038 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
7039 			err, &features, &dev->features);
7040 		/* return non-0 since some features might have changed and
7041 		 * it's better to fire a spurious notification than miss it
7042 		 */
7043 		return -1;
7044 	}
7045 
7046 sync_lower:
7047 	/* some features must be disabled on lower devices when disabled
7048 	 * on an upper device (think: bonding master or bridge)
7049 	 */
7050 	netdev_for_each_lower_dev(dev, lower, iter)
7051 		netdev_sync_lower_features(dev, lower, features);
7052 
7053 	if (!err)
7054 		dev->features = features;
7055 
7056 	return err < 0 ? 0 : 1;
7057 }
7058 
7059 /**
7060  *	netdev_update_features - recalculate device features
7061  *	@dev: the device to check
7062  *
7063  *	Recalculate dev->features set and send notifications if it
7064  *	has changed. Should be called after driver or hardware dependent
7065  *	conditions might have changed that influence the features.
7066  */
7067 void netdev_update_features(struct net_device *dev)
7068 {
7069 	if (__netdev_update_features(dev))
7070 		netdev_features_change(dev);
7071 }
7072 EXPORT_SYMBOL(netdev_update_features);
7073 
7074 /**
7075  *	netdev_change_features - recalculate device features
7076  *	@dev: the device to check
7077  *
7078  *	Recalculate dev->features set and send notifications even
7079  *	if they have not changed. Should be called instead of
7080  *	netdev_update_features() if also dev->vlan_features might
7081  *	have changed to allow the changes to be propagated to stacked
7082  *	VLAN devices.
7083  */
7084 void netdev_change_features(struct net_device *dev)
7085 {
7086 	__netdev_update_features(dev);
7087 	netdev_features_change(dev);
7088 }
7089 EXPORT_SYMBOL(netdev_change_features);
7090 
7091 /**
7092  *	netif_stacked_transfer_operstate -	transfer operstate
7093  *	@rootdev: the root or lower level device to transfer state from
7094  *	@dev: the device to transfer operstate to
7095  *
7096  *	Transfer operational state from root to device. This is normally
7097  *	called when a stacking relationship exists between the root
7098  *	device and the device(a leaf device).
7099  */
7100 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7101 					struct net_device *dev)
7102 {
7103 	if (rootdev->operstate == IF_OPER_DORMANT)
7104 		netif_dormant_on(dev);
7105 	else
7106 		netif_dormant_off(dev);
7107 
7108 	if (netif_carrier_ok(rootdev)) {
7109 		if (!netif_carrier_ok(dev))
7110 			netif_carrier_on(dev);
7111 	} else {
7112 		if (netif_carrier_ok(dev))
7113 			netif_carrier_off(dev);
7114 	}
7115 }
7116 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7117 
7118 #ifdef CONFIG_SYSFS
7119 static int netif_alloc_rx_queues(struct net_device *dev)
7120 {
7121 	unsigned int i, count = dev->num_rx_queues;
7122 	struct netdev_rx_queue *rx;
7123 	size_t sz = count * sizeof(*rx);
7124 
7125 	BUG_ON(count < 1);
7126 
7127 	rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7128 	if (!rx) {
7129 		rx = vzalloc(sz);
7130 		if (!rx)
7131 			return -ENOMEM;
7132 	}
7133 	dev->_rx = rx;
7134 
7135 	for (i = 0; i < count; i++)
7136 		rx[i].dev = dev;
7137 	return 0;
7138 }
7139 #endif
7140 
7141 static void netdev_init_one_queue(struct net_device *dev,
7142 				  struct netdev_queue *queue, void *_unused)
7143 {
7144 	/* Initialize queue lock */
7145 	spin_lock_init(&queue->_xmit_lock);
7146 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7147 	queue->xmit_lock_owner = -1;
7148 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
7149 	queue->dev = dev;
7150 #ifdef CONFIG_BQL
7151 	dql_init(&queue->dql, HZ);
7152 #endif
7153 }
7154 
7155 static void netif_free_tx_queues(struct net_device *dev)
7156 {
7157 	kvfree(dev->_tx);
7158 }
7159 
7160 static int netif_alloc_netdev_queues(struct net_device *dev)
7161 {
7162 	unsigned int count = dev->num_tx_queues;
7163 	struct netdev_queue *tx;
7164 	size_t sz = count * sizeof(*tx);
7165 
7166 	if (count < 1 || count > 0xffff)
7167 		return -EINVAL;
7168 
7169 	tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7170 	if (!tx) {
7171 		tx = vzalloc(sz);
7172 		if (!tx)
7173 			return -ENOMEM;
7174 	}
7175 	dev->_tx = tx;
7176 
7177 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7178 	spin_lock_init(&dev->tx_global_lock);
7179 
7180 	return 0;
7181 }
7182 
7183 void netif_tx_stop_all_queues(struct net_device *dev)
7184 {
7185 	unsigned int i;
7186 
7187 	for (i = 0; i < dev->num_tx_queues; i++) {
7188 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7189 
7190 		netif_tx_stop_queue(txq);
7191 	}
7192 }
7193 EXPORT_SYMBOL(netif_tx_stop_all_queues);
7194 
7195 /**
7196  *	register_netdevice	- register a network device
7197  *	@dev: device to register
7198  *
7199  *	Take a completed network device structure and add it to the kernel
7200  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7201  *	chain. 0 is returned on success. A negative errno code is returned
7202  *	on a failure to set up the device, or if the name is a duplicate.
7203  *
7204  *	Callers must hold the rtnl semaphore. You may want
7205  *	register_netdev() instead of this.
7206  *
7207  *	BUGS:
7208  *	The locking appears insufficient to guarantee two parallel registers
7209  *	will not get the same name.
7210  */
7211 
7212 int register_netdevice(struct net_device *dev)
7213 {
7214 	int ret;
7215 	struct net *net = dev_net(dev);
7216 
7217 	BUG_ON(dev_boot_phase);
7218 	ASSERT_RTNL();
7219 
7220 	might_sleep();
7221 
7222 	/* When net_device's are persistent, this will be fatal. */
7223 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
7224 	BUG_ON(!net);
7225 
7226 	spin_lock_init(&dev->addr_list_lock);
7227 	netdev_set_addr_lockdep_class(dev);
7228 
7229 	ret = dev_get_valid_name(net, dev, dev->name);
7230 	if (ret < 0)
7231 		goto out;
7232 
7233 	/* Init, if this function is available */
7234 	if (dev->netdev_ops->ndo_init) {
7235 		ret = dev->netdev_ops->ndo_init(dev);
7236 		if (ret) {
7237 			if (ret > 0)
7238 				ret = -EIO;
7239 			goto out;
7240 		}
7241 	}
7242 
7243 	if (((dev->hw_features | dev->features) &
7244 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
7245 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7246 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7247 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7248 		ret = -EINVAL;
7249 		goto err_uninit;
7250 	}
7251 
7252 	ret = -EBUSY;
7253 	if (!dev->ifindex)
7254 		dev->ifindex = dev_new_index(net);
7255 	else if (__dev_get_by_index(net, dev->ifindex))
7256 		goto err_uninit;
7257 
7258 	/* Transfer changeable features to wanted_features and enable
7259 	 * software offloads (GSO and GRO).
7260 	 */
7261 	dev->hw_features |= NETIF_F_SOFT_FEATURES;
7262 	dev->features |= NETIF_F_SOFT_FEATURES;
7263 	dev->wanted_features = dev->features & dev->hw_features;
7264 
7265 	if (!(dev->flags & IFF_LOOPBACK))
7266 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
7267 
7268 	/* If IPv4 TCP segmentation offload is supported we should also
7269 	 * allow the device to enable segmenting the frame with the option
7270 	 * of ignoring a static IP ID value.  This doesn't enable the
7271 	 * feature itself but allows the user to enable it later.
7272 	 */
7273 	if (dev->hw_features & NETIF_F_TSO)
7274 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
7275 	if (dev->vlan_features & NETIF_F_TSO)
7276 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7277 	if (dev->mpls_features & NETIF_F_TSO)
7278 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7279 	if (dev->hw_enc_features & NETIF_F_TSO)
7280 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7281 
7282 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7283 	 */
7284 	dev->vlan_features |= NETIF_F_HIGHDMA;
7285 
7286 	/* Make NETIF_F_SG inheritable to tunnel devices.
7287 	 */
7288 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7289 
7290 	/* Make NETIF_F_SG inheritable to MPLS.
7291 	 */
7292 	dev->mpls_features |= NETIF_F_SG;
7293 
7294 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7295 	ret = notifier_to_errno(ret);
7296 	if (ret)
7297 		goto err_uninit;
7298 
7299 	ret = netdev_register_kobject(dev);
7300 	if (ret)
7301 		goto err_uninit;
7302 	dev->reg_state = NETREG_REGISTERED;
7303 
7304 	__netdev_update_features(dev);
7305 
7306 	/*
7307 	 *	Default initial state at registry is that the
7308 	 *	device is present.
7309 	 */
7310 
7311 	set_bit(__LINK_STATE_PRESENT, &dev->state);
7312 
7313 	linkwatch_init_dev(dev);
7314 
7315 	dev_init_scheduler(dev);
7316 	dev_hold(dev);
7317 	list_netdevice(dev);
7318 	add_device_randomness(dev->dev_addr, dev->addr_len);
7319 
7320 	/* If the device has permanent device address, driver should
7321 	 * set dev_addr and also addr_assign_type should be set to
7322 	 * NET_ADDR_PERM (default value).
7323 	 */
7324 	if (dev->addr_assign_type == NET_ADDR_PERM)
7325 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7326 
7327 	/* Notify protocols, that a new device appeared. */
7328 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7329 	ret = notifier_to_errno(ret);
7330 	if (ret) {
7331 		rollback_registered(dev);
7332 		dev->reg_state = NETREG_UNREGISTERED;
7333 	}
7334 	/*
7335 	 *	Prevent userspace races by waiting until the network
7336 	 *	device is fully setup before sending notifications.
7337 	 */
7338 	if (!dev->rtnl_link_ops ||
7339 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7340 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7341 
7342 out:
7343 	return ret;
7344 
7345 err_uninit:
7346 	if (dev->netdev_ops->ndo_uninit)
7347 		dev->netdev_ops->ndo_uninit(dev);
7348 	goto out;
7349 }
7350 EXPORT_SYMBOL(register_netdevice);
7351 
7352 /**
7353  *	init_dummy_netdev	- init a dummy network device for NAPI
7354  *	@dev: device to init
7355  *
7356  *	This takes a network device structure and initialize the minimum
7357  *	amount of fields so it can be used to schedule NAPI polls without
7358  *	registering a full blown interface. This is to be used by drivers
7359  *	that need to tie several hardware interfaces to a single NAPI
7360  *	poll scheduler due to HW limitations.
7361  */
7362 int init_dummy_netdev(struct net_device *dev)
7363 {
7364 	/* Clear everything. Note we don't initialize spinlocks
7365 	 * are they aren't supposed to be taken by any of the
7366 	 * NAPI code and this dummy netdev is supposed to be
7367 	 * only ever used for NAPI polls
7368 	 */
7369 	memset(dev, 0, sizeof(struct net_device));
7370 
7371 	/* make sure we BUG if trying to hit standard
7372 	 * register/unregister code path
7373 	 */
7374 	dev->reg_state = NETREG_DUMMY;
7375 
7376 	/* NAPI wants this */
7377 	INIT_LIST_HEAD(&dev->napi_list);
7378 
7379 	/* a dummy interface is started by default */
7380 	set_bit(__LINK_STATE_PRESENT, &dev->state);
7381 	set_bit(__LINK_STATE_START, &dev->state);
7382 
7383 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
7384 	 * because users of this 'device' dont need to change
7385 	 * its refcount.
7386 	 */
7387 
7388 	return 0;
7389 }
7390 EXPORT_SYMBOL_GPL(init_dummy_netdev);
7391 
7392 
7393 /**
7394  *	register_netdev	- register a network device
7395  *	@dev: device to register
7396  *
7397  *	Take a completed network device structure and add it to the kernel
7398  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7399  *	chain. 0 is returned on success. A negative errno code is returned
7400  *	on a failure to set up the device, or if the name is a duplicate.
7401  *
7402  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
7403  *	and expands the device name if you passed a format string to
7404  *	alloc_netdev.
7405  */
7406 int register_netdev(struct net_device *dev)
7407 {
7408 	int err;
7409 
7410 	rtnl_lock();
7411 	err = register_netdevice(dev);
7412 	rtnl_unlock();
7413 	return err;
7414 }
7415 EXPORT_SYMBOL(register_netdev);
7416 
7417 int netdev_refcnt_read(const struct net_device *dev)
7418 {
7419 	int i, refcnt = 0;
7420 
7421 	for_each_possible_cpu(i)
7422 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7423 	return refcnt;
7424 }
7425 EXPORT_SYMBOL(netdev_refcnt_read);
7426 
7427 /**
7428  * netdev_wait_allrefs - wait until all references are gone.
7429  * @dev: target net_device
7430  *
7431  * This is called when unregistering network devices.
7432  *
7433  * Any protocol or device that holds a reference should register
7434  * for netdevice notification, and cleanup and put back the
7435  * reference if they receive an UNREGISTER event.
7436  * We can get stuck here if buggy protocols don't correctly
7437  * call dev_put.
7438  */
7439 static void netdev_wait_allrefs(struct net_device *dev)
7440 {
7441 	unsigned long rebroadcast_time, warning_time;
7442 	int refcnt;
7443 
7444 	linkwatch_forget_dev(dev);
7445 
7446 	rebroadcast_time = warning_time = jiffies;
7447 	refcnt = netdev_refcnt_read(dev);
7448 
7449 	while (refcnt != 0) {
7450 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
7451 			rtnl_lock();
7452 
7453 			/* Rebroadcast unregister notification */
7454 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7455 
7456 			__rtnl_unlock();
7457 			rcu_barrier();
7458 			rtnl_lock();
7459 
7460 			call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7461 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7462 				     &dev->state)) {
7463 				/* We must not have linkwatch events
7464 				 * pending on unregister. If this
7465 				 * happens, we simply run the queue
7466 				 * unscheduled, resulting in a noop
7467 				 * for this device.
7468 				 */
7469 				linkwatch_run_queue();
7470 			}
7471 
7472 			__rtnl_unlock();
7473 
7474 			rebroadcast_time = jiffies;
7475 		}
7476 
7477 		msleep(250);
7478 
7479 		refcnt = netdev_refcnt_read(dev);
7480 
7481 		if (time_after(jiffies, warning_time + 10 * HZ)) {
7482 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7483 				 dev->name, refcnt);
7484 			warning_time = jiffies;
7485 		}
7486 	}
7487 }
7488 
7489 /* The sequence is:
7490  *
7491  *	rtnl_lock();
7492  *	...
7493  *	register_netdevice(x1);
7494  *	register_netdevice(x2);
7495  *	...
7496  *	unregister_netdevice(y1);
7497  *	unregister_netdevice(y2);
7498  *      ...
7499  *	rtnl_unlock();
7500  *	free_netdev(y1);
7501  *	free_netdev(y2);
7502  *
7503  * We are invoked by rtnl_unlock().
7504  * This allows us to deal with problems:
7505  * 1) We can delete sysfs objects which invoke hotplug
7506  *    without deadlocking with linkwatch via keventd.
7507  * 2) Since we run with the RTNL semaphore not held, we can sleep
7508  *    safely in order to wait for the netdev refcnt to drop to zero.
7509  *
7510  * We must not return until all unregister events added during
7511  * the interval the lock was held have been completed.
7512  */
7513 void netdev_run_todo(void)
7514 {
7515 	struct list_head list;
7516 
7517 	/* Snapshot list, allow later requests */
7518 	list_replace_init(&net_todo_list, &list);
7519 
7520 	__rtnl_unlock();
7521 
7522 
7523 	/* Wait for rcu callbacks to finish before next phase */
7524 	if (!list_empty(&list))
7525 		rcu_barrier();
7526 
7527 	while (!list_empty(&list)) {
7528 		struct net_device *dev
7529 			= list_first_entry(&list, struct net_device, todo_list);
7530 		list_del(&dev->todo_list);
7531 
7532 		rtnl_lock();
7533 		call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7534 		__rtnl_unlock();
7535 
7536 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7537 			pr_err("network todo '%s' but state %d\n",
7538 			       dev->name, dev->reg_state);
7539 			dump_stack();
7540 			continue;
7541 		}
7542 
7543 		dev->reg_state = NETREG_UNREGISTERED;
7544 
7545 		netdev_wait_allrefs(dev);
7546 
7547 		/* paranoia */
7548 		BUG_ON(netdev_refcnt_read(dev));
7549 		BUG_ON(!list_empty(&dev->ptype_all));
7550 		BUG_ON(!list_empty(&dev->ptype_specific));
7551 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
7552 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
7553 		WARN_ON(dev->dn_ptr);
7554 
7555 		if (dev->destructor)
7556 			dev->destructor(dev);
7557 
7558 		/* Report a network device has been unregistered */
7559 		rtnl_lock();
7560 		dev_net(dev)->dev_unreg_count--;
7561 		__rtnl_unlock();
7562 		wake_up(&netdev_unregistering_wq);
7563 
7564 		/* Free network device */
7565 		kobject_put(&dev->dev.kobj);
7566 	}
7567 }
7568 
7569 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7570  * all the same fields in the same order as net_device_stats, with only
7571  * the type differing, but rtnl_link_stats64 may have additional fields
7572  * at the end for newer counters.
7573  */
7574 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7575 			     const struct net_device_stats *netdev_stats)
7576 {
7577 #if BITS_PER_LONG == 64
7578 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
7579 	memcpy(stats64, netdev_stats, sizeof(*stats64));
7580 	/* zero out counters that only exist in rtnl_link_stats64 */
7581 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
7582 	       sizeof(*stats64) - sizeof(*netdev_stats));
7583 #else
7584 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
7585 	const unsigned long *src = (const unsigned long *)netdev_stats;
7586 	u64 *dst = (u64 *)stats64;
7587 
7588 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
7589 	for (i = 0; i < n; i++)
7590 		dst[i] = src[i];
7591 	/* zero out counters that only exist in rtnl_link_stats64 */
7592 	memset((char *)stats64 + n * sizeof(u64), 0,
7593 	       sizeof(*stats64) - n * sizeof(u64));
7594 #endif
7595 }
7596 EXPORT_SYMBOL(netdev_stats_to_stats64);
7597 
7598 /**
7599  *	dev_get_stats	- get network device statistics
7600  *	@dev: device to get statistics from
7601  *	@storage: place to store stats
7602  *
7603  *	Get network statistics from device. Return @storage.
7604  *	The device driver may provide its own method by setting
7605  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7606  *	otherwise the internal statistics structure is used.
7607  */
7608 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7609 					struct rtnl_link_stats64 *storage)
7610 {
7611 	const struct net_device_ops *ops = dev->netdev_ops;
7612 
7613 	if (ops->ndo_get_stats64) {
7614 		memset(storage, 0, sizeof(*storage));
7615 		ops->ndo_get_stats64(dev, storage);
7616 	} else if (ops->ndo_get_stats) {
7617 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
7618 	} else {
7619 		netdev_stats_to_stats64(storage, &dev->stats);
7620 	}
7621 	storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
7622 	storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
7623 	storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler);
7624 	return storage;
7625 }
7626 EXPORT_SYMBOL(dev_get_stats);
7627 
7628 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
7629 {
7630 	struct netdev_queue *queue = dev_ingress_queue(dev);
7631 
7632 #ifdef CONFIG_NET_CLS_ACT
7633 	if (queue)
7634 		return queue;
7635 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7636 	if (!queue)
7637 		return NULL;
7638 	netdev_init_one_queue(dev, queue, NULL);
7639 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
7640 	queue->qdisc_sleeping = &noop_qdisc;
7641 	rcu_assign_pointer(dev->ingress_queue, queue);
7642 #endif
7643 	return queue;
7644 }
7645 
7646 static const struct ethtool_ops default_ethtool_ops;
7647 
7648 void netdev_set_default_ethtool_ops(struct net_device *dev,
7649 				    const struct ethtool_ops *ops)
7650 {
7651 	if (dev->ethtool_ops == &default_ethtool_ops)
7652 		dev->ethtool_ops = ops;
7653 }
7654 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7655 
7656 void netdev_freemem(struct net_device *dev)
7657 {
7658 	char *addr = (char *)dev - dev->padded;
7659 
7660 	kvfree(addr);
7661 }
7662 
7663 /**
7664  * alloc_netdev_mqs - allocate network device
7665  * @sizeof_priv: size of private data to allocate space for
7666  * @name: device name format string
7667  * @name_assign_type: origin of device name
7668  * @setup: callback to initialize device
7669  * @txqs: the number of TX subqueues to allocate
7670  * @rxqs: the number of RX subqueues to allocate
7671  *
7672  * Allocates a struct net_device with private data area for driver use
7673  * and performs basic initialization.  Also allocates subqueue structs
7674  * for each queue on the device.
7675  */
7676 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
7677 		unsigned char name_assign_type,
7678 		void (*setup)(struct net_device *),
7679 		unsigned int txqs, unsigned int rxqs)
7680 {
7681 	struct net_device *dev;
7682 	size_t alloc_size;
7683 	struct net_device *p;
7684 
7685 	BUG_ON(strlen(name) >= sizeof(dev->name));
7686 
7687 	if (txqs < 1) {
7688 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
7689 		return NULL;
7690 	}
7691 
7692 #ifdef CONFIG_SYSFS
7693 	if (rxqs < 1) {
7694 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
7695 		return NULL;
7696 	}
7697 #endif
7698 
7699 	alloc_size = sizeof(struct net_device);
7700 	if (sizeof_priv) {
7701 		/* ensure 32-byte alignment of private area */
7702 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
7703 		alloc_size += sizeof_priv;
7704 	}
7705 	/* ensure 32-byte alignment of whole construct */
7706 	alloc_size += NETDEV_ALIGN - 1;
7707 
7708 	p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7709 	if (!p)
7710 		p = vzalloc(alloc_size);
7711 	if (!p)
7712 		return NULL;
7713 
7714 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
7715 	dev->padded = (char *)dev - (char *)p;
7716 
7717 	dev->pcpu_refcnt = alloc_percpu(int);
7718 	if (!dev->pcpu_refcnt)
7719 		goto free_dev;
7720 
7721 	if (dev_addr_init(dev))
7722 		goto free_pcpu;
7723 
7724 	dev_mc_init(dev);
7725 	dev_uc_init(dev);
7726 
7727 	dev_net_set(dev, &init_net);
7728 
7729 	dev->gso_max_size = GSO_MAX_SIZE;
7730 	dev->gso_max_segs = GSO_MAX_SEGS;
7731 
7732 	INIT_LIST_HEAD(&dev->napi_list);
7733 	INIT_LIST_HEAD(&dev->unreg_list);
7734 	INIT_LIST_HEAD(&dev->close_list);
7735 	INIT_LIST_HEAD(&dev->link_watch_list);
7736 	INIT_LIST_HEAD(&dev->adj_list.upper);
7737 	INIT_LIST_HEAD(&dev->adj_list.lower);
7738 	INIT_LIST_HEAD(&dev->ptype_all);
7739 	INIT_LIST_HEAD(&dev->ptype_specific);
7740 #ifdef CONFIG_NET_SCHED
7741 	hash_init(dev->qdisc_hash);
7742 #endif
7743 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
7744 	setup(dev);
7745 
7746 	if (!dev->tx_queue_len) {
7747 		dev->priv_flags |= IFF_NO_QUEUE;
7748 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
7749 	}
7750 
7751 	dev->num_tx_queues = txqs;
7752 	dev->real_num_tx_queues = txqs;
7753 	if (netif_alloc_netdev_queues(dev))
7754 		goto free_all;
7755 
7756 #ifdef CONFIG_SYSFS
7757 	dev->num_rx_queues = rxqs;
7758 	dev->real_num_rx_queues = rxqs;
7759 	if (netif_alloc_rx_queues(dev))
7760 		goto free_all;
7761 #endif
7762 
7763 	strcpy(dev->name, name);
7764 	dev->name_assign_type = name_assign_type;
7765 	dev->group = INIT_NETDEV_GROUP;
7766 	if (!dev->ethtool_ops)
7767 		dev->ethtool_ops = &default_ethtool_ops;
7768 
7769 	nf_hook_ingress_init(dev);
7770 
7771 	return dev;
7772 
7773 free_all:
7774 	free_netdev(dev);
7775 	return NULL;
7776 
7777 free_pcpu:
7778 	free_percpu(dev->pcpu_refcnt);
7779 free_dev:
7780 	netdev_freemem(dev);
7781 	return NULL;
7782 }
7783 EXPORT_SYMBOL(alloc_netdev_mqs);
7784 
7785 /**
7786  * free_netdev - free network device
7787  * @dev: device
7788  *
7789  * This function does the last stage of destroying an allocated device
7790  * interface. The reference to the device object is released. If this
7791  * is the last reference then it will be freed.Must be called in process
7792  * context.
7793  */
7794 void free_netdev(struct net_device *dev)
7795 {
7796 	struct napi_struct *p, *n;
7797 
7798 	might_sleep();
7799 	netif_free_tx_queues(dev);
7800 #ifdef CONFIG_SYSFS
7801 	kvfree(dev->_rx);
7802 #endif
7803 
7804 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
7805 
7806 	/* Flush device addresses */
7807 	dev_addr_flush(dev);
7808 
7809 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7810 		netif_napi_del(p);
7811 
7812 	free_percpu(dev->pcpu_refcnt);
7813 	dev->pcpu_refcnt = NULL;
7814 
7815 	/*  Compatibility with error handling in drivers */
7816 	if (dev->reg_state == NETREG_UNINITIALIZED) {
7817 		netdev_freemem(dev);
7818 		return;
7819 	}
7820 
7821 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7822 	dev->reg_state = NETREG_RELEASED;
7823 
7824 	/* will free via device release */
7825 	put_device(&dev->dev);
7826 }
7827 EXPORT_SYMBOL(free_netdev);
7828 
7829 /**
7830  *	synchronize_net -  Synchronize with packet receive processing
7831  *
7832  *	Wait for packets currently being received to be done.
7833  *	Does not block later packets from starting.
7834  */
7835 void synchronize_net(void)
7836 {
7837 	might_sleep();
7838 	if (rtnl_is_locked())
7839 		synchronize_rcu_expedited();
7840 	else
7841 		synchronize_rcu();
7842 }
7843 EXPORT_SYMBOL(synchronize_net);
7844 
7845 /**
7846  *	unregister_netdevice_queue - remove device from the kernel
7847  *	@dev: device
7848  *	@head: list
7849  *
7850  *	This function shuts down a device interface and removes it
7851  *	from the kernel tables.
7852  *	If head not NULL, device is queued to be unregistered later.
7853  *
7854  *	Callers must hold the rtnl semaphore.  You may want
7855  *	unregister_netdev() instead of this.
7856  */
7857 
7858 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
7859 {
7860 	ASSERT_RTNL();
7861 
7862 	if (head) {
7863 		list_move_tail(&dev->unreg_list, head);
7864 	} else {
7865 		rollback_registered(dev);
7866 		/* Finish processing unregister after unlock */
7867 		net_set_todo(dev);
7868 	}
7869 }
7870 EXPORT_SYMBOL(unregister_netdevice_queue);
7871 
7872 /**
7873  *	unregister_netdevice_many - unregister many devices
7874  *	@head: list of devices
7875  *
7876  *  Note: As most callers use a stack allocated list_head,
7877  *  we force a list_del() to make sure stack wont be corrupted later.
7878  */
7879 void unregister_netdevice_many(struct list_head *head)
7880 {
7881 	struct net_device *dev;
7882 
7883 	if (!list_empty(head)) {
7884 		rollback_registered_many(head);
7885 		list_for_each_entry(dev, head, unreg_list)
7886 			net_set_todo(dev);
7887 		list_del(head);
7888 	}
7889 }
7890 EXPORT_SYMBOL(unregister_netdevice_many);
7891 
7892 /**
7893  *	unregister_netdev - remove device from the kernel
7894  *	@dev: device
7895  *
7896  *	This function shuts down a device interface and removes it
7897  *	from the kernel tables.
7898  *
7899  *	This is just a wrapper for unregister_netdevice that takes
7900  *	the rtnl semaphore.  In general you want to use this and not
7901  *	unregister_netdevice.
7902  */
7903 void unregister_netdev(struct net_device *dev)
7904 {
7905 	rtnl_lock();
7906 	unregister_netdevice(dev);
7907 	rtnl_unlock();
7908 }
7909 EXPORT_SYMBOL(unregister_netdev);
7910 
7911 /**
7912  *	dev_change_net_namespace - move device to different nethost namespace
7913  *	@dev: device
7914  *	@net: network namespace
7915  *	@pat: If not NULL name pattern to try if the current device name
7916  *	      is already taken in the destination network namespace.
7917  *
7918  *	This function shuts down a device interface and moves it
7919  *	to a new network namespace. On success 0 is returned, on
7920  *	a failure a netagive errno code is returned.
7921  *
7922  *	Callers must hold the rtnl semaphore.
7923  */
7924 
7925 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7926 {
7927 	int err;
7928 
7929 	ASSERT_RTNL();
7930 
7931 	/* Don't allow namespace local devices to be moved. */
7932 	err = -EINVAL;
7933 	if (dev->features & NETIF_F_NETNS_LOCAL)
7934 		goto out;
7935 
7936 	/* Ensure the device has been registrered */
7937 	if (dev->reg_state != NETREG_REGISTERED)
7938 		goto out;
7939 
7940 	/* Get out if there is nothing todo */
7941 	err = 0;
7942 	if (net_eq(dev_net(dev), net))
7943 		goto out;
7944 
7945 	/* Pick the destination device name, and ensure
7946 	 * we can use it in the destination network namespace.
7947 	 */
7948 	err = -EEXIST;
7949 	if (__dev_get_by_name(net, dev->name)) {
7950 		/* We get here if we can't use the current device name */
7951 		if (!pat)
7952 			goto out;
7953 		if (dev_get_valid_name(net, dev, pat) < 0)
7954 			goto out;
7955 	}
7956 
7957 	/*
7958 	 * And now a mini version of register_netdevice unregister_netdevice.
7959 	 */
7960 
7961 	/* If device is running close it first. */
7962 	dev_close(dev);
7963 
7964 	/* And unlink it from device chain */
7965 	err = -ENODEV;
7966 	unlist_netdevice(dev);
7967 
7968 	synchronize_net();
7969 
7970 	/* Shutdown queueing discipline. */
7971 	dev_shutdown(dev);
7972 
7973 	/* Notify protocols, that we are about to destroy
7974 	 * this device. They should clean all the things.
7975 	 *
7976 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
7977 	 * This is wanted because this way 8021q and macvlan know
7978 	 * the device is just moving and can keep their slaves up.
7979 	 */
7980 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7981 	rcu_barrier();
7982 	call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7983 	rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7984 
7985 	/*
7986 	 *	Flush the unicast and multicast chains
7987 	 */
7988 	dev_uc_flush(dev);
7989 	dev_mc_flush(dev);
7990 
7991 	/* Send a netdev-removed uevent to the old namespace */
7992 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7993 	netdev_adjacent_del_links(dev);
7994 
7995 	/* Actually switch the network namespace */
7996 	dev_net_set(dev, net);
7997 
7998 	/* If there is an ifindex conflict assign a new one */
7999 	if (__dev_get_by_index(net, dev->ifindex))
8000 		dev->ifindex = dev_new_index(net);
8001 
8002 	/* Send a netdev-add uevent to the new namespace */
8003 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
8004 	netdev_adjacent_add_links(dev);
8005 
8006 	/* Fixup kobjects */
8007 	err = device_rename(&dev->dev, dev->name);
8008 	WARN_ON(err);
8009 
8010 	/* Add the device back in the hashes */
8011 	list_netdevice(dev);
8012 
8013 	/* Notify protocols, that a new device appeared. */
8014 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
8015 
8016 	/*
8017 	 *	Prevent userspace races by waiting until the network
8018 	 *	device is fully setup before sending notifications.
8019 	 */
8020 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8021 
8022 	synchronize_net();
8023 	err = 0;
8024 out:
8025 	return err;
8026 }
8027 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
8028 
8029 static int dev_cpu_dead(unsigned int oldcpu)
8030 {
8031 	struct sk_buff **list_skb;
8032 	struct sk_buff *skb;
8033 	unsigned int cpu;
8034 	struct softnet_data *sd, *oldsd;
8035 
8036 	local_irq_disable();
8037 	cpu = smp_processor_id();
8038 	sd = &per_cpu(softnet_data, cpu);
8039 	oldsd = &per_cpu(softnet_data, oldcpu);
8040 
8041 	/* Find end of our completion_queue. */
8042 	list_skb = &sd->completion_queue;
8043 	while (*list_skb)
8044 		list_skb = &(*list_skb)->next;
8045 	/* Append completion queue from offline CPU. */
8046 	*list_skb = oldsd->completion_queue;
8047 	oldsd->completion_queue = NULL;
8048 
8049 	/* Append output queue from offline CPU. */
8050 	if (oldsd->output_queue) {
8051 		*sd->output_queue_tailp = oldsd->output_queue;
8052 		sd->output_queue_tailp = oldsd->output_queue_tailp;
8053 		oldsd->output_queue = NULL;
8054 		oldsd->output_queue_tailp = &oldsd->output_queue;
8055 	}
8056 	/* Append NAPI poll list from offline CPU, with one exception :
8057 	 * process_backlog() must be called by cpu owning percpu backlog.
8058 	 * We properly handle process_queue & input_pkt_queue later.
8059 	 */
8060 	while (!list_empty(&oldsd->poll_list)) {
8061 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
8062 							    struct napi_struct,
8063 							    poll_list);
8064 
8065 		list_del_init(&napi->poll_list);
8066 		if (napi->poll == process_backlog)
8067 			napi->state = 0;
8068 		else
8069 			____napi_schedule(sd, napi);
8070 	}
8071 
8072 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
8073 	local_irq_enable();
8074 
8075 	/* Process offline CPU's input_pkt_queue */
8076 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
8077 		netif_rx_ni(skb);
8078 		input_queue_head_incr(oldsd);
8079 	}
8080 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
8081 		netif_rx_ni(skb);
8082 		input_queue_head_incr(oldsd);
8083 	}
8084 
8085 	return 0;
8086 }
8087 
8088 /**
8089  *	netdev_increment_features - increment feature set by one
8090  *	@all: current feature set
8091  *	@one: new feature set
8092  *	@mask: mask feature set
8093  *
8094  *	Computes a new feature set after adding a device with feature set
8095  *	@one to the master device with current feature set @all.  Will not
8096  *	enable anything that is off in @mask. Returns the new feature set.
8097  */
8098 netdev_features_t netdev_increment_features(netdev_features_t all,
8099 	netdev_features_t one, netdev_features_t mask)
8100 {
8101 	if (mask & NETIF_F_HW_CSUM)
8102 		mask |= NETIF_F_CSUM_MASK;
8103 	mask |= NETIF_F_VLAN_CHALLENGED;
8104 
8105 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
8106 	all &= one | ~NETIF_F_ALL_FOR_ALL;
8107 
8108 	/* If one device supports hw checksumming, set for all. */
8109 	if (all & NETIF_F_HW_CSUM)
8110 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
8111 
8112 	return all;
8113 }
8114 EXPORT_SYMBOL(netdev_increment_features);
8115 
8116 static struct hlist_head * __net_init netdev_create_hash(void)
8117 {
8118 	int i;
8119 	struct hlist_head *hash;
8120 
8121 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8122 	if (hash != NULL)
8123 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
8124 			INIT_HLIST_HEAD(&hash[i]);
8125 
8126 	return hash;
8127 }
8128 
8129 /* Initialize per network namespace state */
8130 static int __net_init netdev_init(struct net *net)
8131 {
8132 	if (net != &init_net)
8133 		INIT_LIST_HEAD(&net->dev_base_head);
8134 
8135 	net->dev_name_head = netdev_create_hash();
8136 	if (net->dev_name_head == NULL)
8137 		goto err_name;
8138 
8139 	net->dev_index_head = netdev_create_hash();
8140 	if (net->dev_index_head == NULL)
8141 		goto err_idx;
8142 
8143 	return 0;
8144 
8145 err_idx:
8146 	kfree(net->dev_name_head);
8147 err_name:
8148 	return -ENOMEM;
8149 }
8150 
8151 /**
8152  *	netdev_drivername - network driver for the device
8153  *	@dev: network device
8154  *
8155  *	Determine network driver for device.
8156  */
8157 const char *netdev_drivername(const struct net_device *dev)
8158 {
8159 	const struct device_driver *driver;
8160 	const struct device *parent;
8161 	const char *empty = "";
8162 
8163 	parent = dev->dev.parent;
8164 	if (!parent)
8165 		return empty;
8166 
8167 	driver = parent->driver;
8168 	if (driver && driver->name)
8169 		return driver->name;
8170 	return empty;
8171 }
8172 
8173 static void __netdev_printk(const char *level, const struct net_device *dev,
8174 			    struct va_format *vaf)
8175 {
8176 	if (dev && dev->dev.parent) {
8177 		dev_printk_emit(level[1] - '0',
8178 				dev->dev.parent,
8179 				"%s %s %s%s: %pV",
8180 				dev_driver_string(dev->dev.parent),
8181 				dev_name(dev->dev.parent),
8182 				netdev_name(dev), netdev_reg_state(dev),
8183 				vaf);
8184 	} else if (dev) {
8185 		printk("%s%s%s: %pV",
8186 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
8187 	} else {
8188 		printk("%s(NULL net_device): %pV", level, vaf);
8189 	}
8190 }
8191 
8192 void netdev_printk(const char *level, const struct net_device *dev,
8193 		   const char *format, ...)
8194 {
8195 	struct va_format vaf;
8196 	va_list args;
8197 
8198 	va_start(args, format);
8199 
8200 	vaf.fmt = format;
8201 	vaf.va = &args;
8202 
8203 	__netdev_printk(level, dev, &vaf);
8204 
8205 	va_end(args);
8206 }
8207 EXPORT_SYMBOL(netdev_printk);
8208 
8209 #define define_netdev_printk_level(func, level)			\
8210 void func(const struct net_device *dev, const char *fmt, ...)	\
8211 {								\
8212 	struct va_format vaf;					\
8213 	va_list args;						\
8214 								\
8215 	va_start(args, fmt);					\
8216 								\
8217 	vaf.fmt = fmt;						\
8218 	vaf.va = &args;						\
8219 								\
8220 	__netdev_printk(level, dev, &vaf);			\
8221 								\
8222 	va_end(args);						\
8223 }								\
8224 EXPORT_SYMBOL(func);
8225 
8226 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8227 define_netdev_printk_level(netdev_alert, KERN_ALERT);
8228 define_netdev_printk_level(netdev_crit, KERN_CRIT);
8229 define_netdev_printk_level(netdev_err, KERN_ERR);
8230 define_netdev_printk_level(netdev_warn, KERN_WARNING);
8231 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8232 define_netdev_printk_level(netdev_info, KERN_INFO);
8233 
8234 static void __net_exit netdev_exit(struct net *net)
8235 {
8236 	kfree(net->dev_name_head);
8237 	kfree(net->dev_index_head);
8238 }
8239 
8240 static struct pernet_operations __net_initdata netdev_net_ops = {
8241 	.init = netdev_init,
8242 	.exit = netdev_exit,
8243 };
8244 
8245 static void __net_exit default_device_exit(struct net *net)
8246 {
8247 	struct net_device *dev, *aux;
8248 	/*
8249 	 * Push all migratable network devices back to the
8250 	 * initial network namespace
8251 	 */
8252 	rtnl_lock();
8253 	for_each_netdev_safe(net, dev, aux) {
8254 		int err;
8255 		char fb_name[IFNAMSIZ];
8256 
8257 		/* Ignore unmoveable devices (i.e. loopback) */
8258 		if (dev->features & NETIF_F_NETNS_LOCAL)
8259 			continue;
8260 
8261 		/* Leave virtual devices for the generic cleanup */
8262 		if (dev->rtnl_link_ops)
8263 			continue;
8264 
8265 		/* Push remaining network devices to init_net */
8266 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8267 		err = dev_change_net_namespace(dev, &init_net, fb_name);
8268 		if (err) {
8269 			pr_emerg("%s: failed to move %s to init_net: %d\n",
8270 				 __func__, dev->name, err);
8271 			BUG();
8272 		}
8273 	}
8274 	rtnl_unlock();
8275 }
8276 
8277 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8278 {
8279 	/* Return with the rtnl_lock held when there are no network
8280 	 * devices unregistering in any network namespace in net_list.
8281 	 */
8282 	struct net *net;
8283 	bool unregistering;
8284 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
8285 
8286 	add_wait_queue(&netdev_unregistering_wq, &wait);
8287 	for (;;) {
8288 		unregistering = false;
8289 		rtnl_lock();
8290 		list_for_each_entry(net, net_list, exit_list) {
8291 			if (net->dev_unreg_count > 0) {
8292 				unregistering = true;
8293 				break;
8294 			}
8295 		}
8296 		if (!unregistering)
8297 			break;
8298 		__rtnl_unlock();
8299 
8300 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8301 	}
8302 	remove_wait_queue(&netdev_unregistering_wq, &wait);
8303 }
8304 
8305 static void __net_exit default_device_exit_batch(struct list_head *net_list)
8306 {
8307 	/* At exit all network devices most be removed from a network
8308 	 * namespace.  Do this in the reverse order of registration.
8309 	 * Do this across as many network namespaces as possible to
8310 	 * improve batching efficiency.
8311 	 */
8312 	struct net_device *dev;
8313 	struct net *net;
8314 	LIST_HEAD(dev_kill_list);
8315 
8316 	/* To prevent network device cleanup code from dereferencing
8317 	 * loopback devices or network devices that have been freed
8318 	 * wait here for all pending unregistrations to complete,
8319 	 * before unregistring the loopback device and allowing the
8320 	 * network namespace be freed.
8321 	 *
8322 	 * The netdev todo list containing all network devices
8323 	 * unregistrations that happen in default_device_exit_batch
8324 	 * will run in the rtnl_unlock() at the end of
8325 	 * default_device_exit_batch.
8326 	 */
8327 	rtnl_lock_unregistering(net_list);
8328 	list_for_each_entry(net, net_list, exit_list) {
8329 		for_each_netdev_reverse(net, dev) {
8330 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8331 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8332 			else
8333 				unregister_netdevice_queue(dev, &dev_kill_list);
8334 		}
8335 	}
8336 	unregister_netdevice_many(&dev_kill_list);
8337 	rtnl_unlock();
8338 }
8339 
8340 static struct pernet_operations __net_initdata default_device_ops = {
8341 	.exit = default_device_exit,
8342 	.exit_batch = default_device_exit_batch,
8343 };
8344 
8345 /*
8346  *	Initialize the DEV module. At boot time this walks the device list and
8347  *	unhooks any devices that fail to initialise (normally hardware not
8348  *	present) and leaves us with a valid list of present and active devices.
8349  *
8350  */
8351 
8352 /*
8353  *       This is called single threaded during boot, so no need
8354  *       to take the rtnl semaphore.
8355  */
8356 static int __init net_dev_init(void)
8357 {
8358 	int i, rc = -ENOMEM;
8359 
8360 	BUG_ON(!dev_boot_phase);
8361 
8362 	if (dev_proc_init())
8363 		goto out;
8364 
8365 	if (netdev_kobject_init())
8366 		goto out;
8367 
8368 	INIT_LIST_HEAD(&ptype_all);
8369 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
8370 		INIT_LIST_HEAD(&ptype_base[i]);
8371 
8372 	INIT_LIST_HEAD(&offload_base);
8373 
8374 	if (register_pernet_subsys(&netdev_net_ops))
8375 		goto out;
8376 
8377 	/*
8378 	 *	Initialise the packet receive queues.
8379 	 */
8380 
8381 	for_each_possible_cpu(i) {
8382 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
8383 		struct softnet_data *sd = &per_cpu(softnet_data, i);
8384 
8385 		INIT_WORK(flush, flush_backlog);
8386 
8387 		skb_queue_head_init(&sd->input_pkt_queue);
8388 		skb_queue_head_init(&sd->process_queue);
8389 		INIT_LIST_HEAD(&sd->poll_list);
8390 		sd->output_queue_tailp = &sd->output_queue;
8391 #ifdef CONFIG_RPS
8392 		sd->csd.func = rps_trigger_softirq;
8393 		sd->csd.info = sd;
8394 		sd->cpu = i;
8395 #endif
8396 
8397 		sd->backlog.poll = process_backlog;
8398 		sd->backlog.weight = weight_p;
8399 	}
8400 
8401 	dev_boot_phase = 0;
8402 
8403 	/* The loopback device is special if any other network devices
8404 	 * is present in a network namespace the loopback device must
8405 	 * be present. Since we now dynamically allocate and free the
8406 	 * loopback device ensure this invariant is maintained by
8407 	 * keeping the loopback device as the first device on the
8408 	 * list of network devices.  Ensuring the loopback devices
8409 	 * is the first device that appears and the last network device
8410 	 * that disappears.
8411 	 */
8412 	if (register_pernet_device(&loopback_net_ops))
8413 		goto out;
8414 
8415 	if (register_pernet_device(&default_device_ops))
8416 		goto out;
8417 
8418 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8419 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
8420 
8421 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
8422 				       NULL, dev_cpu_dead);
8423 	WARN_ON(rc < 0);
8424 	dst_subsys_init();
8425 	rc = 0;
8426 out:
8427 	return rc;
8428 }
8429 
8430 subsys_initcall(net_dev_init);
8431