1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <linux/uaccess.h> 76 #include <linux/bitops.h> 77 #include <linux/capability.h> 78 #include <linux/cpu.h> 79 #include <linux/types.h> 80 #include <linux/kernel.h> 81 #include <linux/hash.h> 82 #include <linux/slab.h> 83 #include <linux/sched.h> 84 #include <linux/mutex.h> 85 #include <linux/string.h> 86 #include <linux/mm.h> 87 #include <linux/socket.h> 88 #include <linux/sockios.h> 89 #include <linux/errno.h> 90 #include <linux/interrupt.h> 91 #include <linux/if_ether.h> 92 #include <linux/netdevice.h> 93 #include <linux/etherdevice.h> 94 #include <linux/ethtool.h> 95 #include <linux/notifier.h> 96 #include <linux/skbuff.h> 97 #include <linux/bpf.h> 98 #include <net/net_namespace.h> 99 #include <net/sock.h> 100 #include <net/busy_poll.h> 101 #include <linux/rtnetlink.h> 102 #include <linux/stat.h> 103 #include <net/dst.h> 104 #include <net/dst_metadata.h> 105 #include <net/pkt_sched.h> 106 #include <net/checksum.h> 107 #include <net/xfrm.h> 108 #include <linux/highmem.h> 109 #include <linux/init.h> 110 #include <linux/module.h> 111 #include <linux/netpoll.h> 112 #include <linux/rcupdate.h> 113 #include <linux/delay.h> 114 #include <net/iw_handler.h> 115 #include <asm/current.h> 116 #include <linux/audit.h> 117 #include <linux/dmaengine.h> 118 #include <linux/err.h> 119 #include <linux/ctype.h> 120 #include <linux/if_arp.h> 121 #include <linux/if_vlan.h> 122 #include <linux/ip.h> 123 #include <net/ip.h> 124 #include <net/mpls.h> 125 #include <linux/ipv6.h> 126 #include <linux/in.h> 127 #include <linux/jhash.h> 128 #include <linux/random.h> 129 #include <trace/events/napi.h> 130 #include <trace/events/net.h> 131 #include <trace/events/skb.h> 132 #include <linux/pci.h> 133 #include <linux/inetdevice.h> 134 #include <linux/cpu_rmap.h> 135 #include <linux/static_key.h> 136 #include <linux/hashtable.h> 137 #include <linux/vmalloc.h> 138 #include <linux/if_macvlan.h> 139 #include <linux/errqueue.h> 140 #include <linux/hrtimer.h> 141 #include <linux/netfilter_ingress.h> 142 #include <linux/crash_dump.h> 143 144 #include "net-sysfs.h" 145 146 /* Instead of increasing this, you should create a hash table. */ 147 #define MAX_GRO_SKBS 8 148 149 /* This should be increased if a protocol with a bigger head is added. */ 150 #define GRO_MAX_HEAD (MAX_HEADER + 128) 151 152 static DEFINE_SPINLOCK(ptype_lock); 153 static DEFINE_SPINLOCK(offload_lock); 154 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 155 struct list_head ptype_all __read_mostly; /* Taps */ 156 static struct list_head offload_base __read_mostly; 157 158 static int netif_rx_internal(struct sk_buff *skb); 159 static int call_netdevice_notifiers_info(unsigned long val, 160 struct net_device *dev, 161 struct netdev_notifier_info *info); 162 163 /* 164 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 165 * semaphore. 166 * 167 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 168 * 169 * Writers must hold the rtnl semaphore while they loop through the 170 * dev_base_head list, and hold dev_base_lock for writing when they do the 171 * actual updates. This allows pure readers to access the list even 172 * while a writer is preparing to update it. 173 * 174 * To put it another way, dev_base_lock is held for writing only to 175 * protect against pure readers; the rtnl semaphore provides the 176 * protection against other writers. 177 * 178 * See, for example usages, register_netdevice() and 179 * unregister_netdevice(), which must be called with the rtnl 180 * semaphore held. 181 */ 182 DEFINE_RWLOCK(dev_base_lock); 183 EXPORT_SYMBOL(dev_base_lock); 184 185 /* protects napi_hash addition/deletion and napi_gen_id */ 186 static DEFINE_SPINLOCK(napi_hash_lock); 187 188 static unsigned int napi_gen_id = NR_CPUS; 189 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8); 190 191 static seqcount_t devnet_rename_seq; 192 193 static inline void dev_base_seq_inc(struct net *net) 194 { 195 while (++net->dev_base_seq == 0) 196 ; 197 } 198 199 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 200 { 201 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ)); 202 203 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 204 } 205 206 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 207 { 208 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 209 } 210 211 static inline void rps_lock(struct softnet_data *sd) 212 { 213 #ifdef CONFIG_RPS 214 spin_lock(&sd->input_pkt_queue.lock); 215 #endif 216 } 217 218 static inline void rps_unlock(struct softnet_data *sd) 219 { 220 #ifdef CONFIG_RPS 221 spin_unlock(&sd->input_pkt_queue.lock); 222 #endif 223 } 224 225 /* Device list insertion */ 226 static void list_netdevice(struct net_device *dev) 227 { 228 struct net *net = dev_net(dev); 229 230 ASSERT_RTNL(); 231 232 write_lock_bh(&dev_base_lock); 233 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 234 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 235 hlist_add_head_rcu(&dev->index_hlist, 236 dev_index_hash(net, dev->ifindex)); 237 write_unlock_bh(&dev_base_lock); 238 239 dev_base_seq_inc(net); 240 } 241 242 /* Device list removal 243 * caller must respect a RCU grace period before freeing/reusing dev 244 */ 245 static void unlist_netdevice(struct net_device *dev) 246 { 247 ASSERT_RTNL(); 248 249 /* Unlink dev from the device chain */ 250 write_lock_bh(&dev_base_lock); 251 list_del_rcu(&dev->dev_list); 252 hlist_del_rcu(&dev->name_hlist); 253 hlist_del_rcu(&dev->index_hlist); 254 write_unlock_bh(&dev_base_lock); 255 256 dev_base_seq_inc(dev_net(dev)); 257 } 258 259 /* 260 * Our notifier list 261 */ 262 263 static RAW_NOTIFIER_HEAD(netdev_chain); 264 265 /* 266 * Device drivers call our routines to queue packets here. We empty the 267 * queue in the local softnet handler. 268 */ 269 270 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 271 EXPORT_PER_CPU_SYMBOL(softnet_data); 272 273 #ifdef CONFIG_LOCKDEP 274 /* 275 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 276 * according to dev->type 277 */ 278 static const unsigned short netdev_lock_type[] = { 279 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 280 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 281 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 282 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 283 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 284 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 285 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 286 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 287 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 288 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 289 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 290 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 291 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 292 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 293 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 294 295 static const char *const netdev_lock_name[] = { 296 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 297 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 298 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 299 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 300 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 301 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 302 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 303 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 304 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 305 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 306 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 307 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 308 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 309 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 310 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 311 312 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 313 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 314 315 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 316 { 317 int i; 318 319 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 320 if (netdev_lock_type[i] == dev_type) 321 return i; 322 /* the last key is used by default */ 323 return ARRAY_SIZE(netdev_lock_type) - 1; 324 } 325 326 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 327 unsigned short dev_type) 328 { 329 int i; 330 331 i = netdev_lock_pos(dev_type); 332 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 333 netdev_lock_name[i]); 334 } 335 336 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 337 { 338 int i; 339 340 i = netdev_lock_pos(dev->type); 341 lockdep_set_class_and_name(&dev->addr_list_lock, 342 &netdev_addr_lock_key[i], 343 netdev_lock_name[i]); 344 } 345 #else 346 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 347 unsigned short dev_type) 348 { 349 } 350 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 351 { 352 } 353 #endif 354 355 /******************************************************************************* 356 * 357 * Protocol management and registration routines 358 * 359 *******************************************************************************/ 360 361 362 /* 363 * Add a protocol ID to the list. Now that the input handler is 364 * smarter we can dispense with all the messy stuff that used to be 365 * here. 366 * 367 * BEWARE!!! Protocol handlers, mangling input packets, 368 * MUST BE last in hash buckets and checking protocol handlers 369 * MUST start from promiscuous ptype_all chain in net_bh. 370 * It is true now, do not change it. 371 * Explanation follows: if protocol handler, mangling packet, will 372 * be the first on list, it is not able to sense, that packet 373 * is cloned and should be copied-on-write, so that it will 374 * change it and subsequent readers will get broken packet. 375 * --ANK (980803) 376 */ 377 378 static inline struct list_head *ptype_head(const struct packet_type *pt) 379 { 380 if (pt->type == htons(ETH_P_ALL)) 381 return pt->dev ? &pt->dev->ptype_all : &ptype_all; 382 else 383 return pt->dev ? &pt->dev->ptype_specific : 384 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 385 } 386 387 /** 388 * dev_add_pack - add packet handler 389 * @pt: packet type declaration 390 * 391 * Add a protocol handler to the networking stack. The passed &packet_type 392 * is linked into kernel lists and may not be freed until it has been 393 * removed from the kernel lists. 394 * 395 * This call does not sleep therefore it can not 396 * guarantee all CPU's that are in middle of receiving packets 397 * will see the new packet type (until the next received packet). 398 */ 399 400 void dev_add_pack(struct packet_type *pt) 401 { 402 struct list_head *head = ptype_head(pt); 403 404 spin_lock(&ptype_lock); 405 list_add_rcu(&pt->list, head); 406 spin_unlock(&ptype_lock); 407 } 408 EXPORT_SYMBOL(dev_add_pack); 409 410 /** 411 * __dev_remove_pack - remove packet handler 412 * @pt: packet type declaration 413 * 414 * Remove a protocol handler that was previously added to the kernel 415 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 416 * from the kernel lists and can be freed or reused once this function 417 * returns. 418 * 419 * The packet type might still be in use by receivers 420 * and must not be freed until after all the CPU's have gone 421 * through a quiescent state. 422 */ 423 void __dev_remove_pack(struct packet_type *pt) 424 { 425 struct list_head *head = ptype_head(pt); 426 struct packet_type *pt1; 427 428 spin_lock(&ptype_lock); 429 430 list_for_each_entry(pt1, head, list) { 431 if (pt == pt1) { 432 list_del_rcu(&pt->list); 433 goto out; 434 } 435 } 436 437 pr_warn("dev_remove_pack: %p not found\n", pt); 438 out: 439 spin_unlock(&ptype_lock); 440 } 441 EXPORT_SYMBOL(__dev_remove_pack); 442 443 /** 444 * dev_remove_pack - remove packet handler 445 * @pt: packet type declaration 446 * 447 * Remove a protocol handler that was previously added to the kernel 448 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 449 * from the kernel lists and can be freed or reused once this function 450 * returns. 451 * 452 * This call sleeps to guarantee that no CPU is looking at the packet 453 * type after return. 454 */ 455 void dev_remove_pack(struct packet_type *pt) 456 { 457 __dev_remove_pack(pt); 458 459 synchronize_net(); 460 } 461 EXPORT_SYMBOL(dev_remove_pack); 462 463 464 /** 465 * dev_add_offload - register offload handlers 466 * @po: protocol offload declaration 467 * 468 * Add protocol offload handlers to the networking stack. The passed 469 * &proto_offload is linked into kernel lists and may not be freed until 470 * it has been removed from the kernel lists. 471 * 472 * This call does not sleep therefore it can not 473 * guarantee all CPU's that are in middle of receiving packets 474 * will see the new offload handlers (until the next received packet). 475 */ 476 void dev_add_offload(struct packet_offload *po) 477 { 478 struct packet_offload *elem; 479 480 spin_lock(&offload_lock); 481 list_for_each_entry(elem, &offload_base, list) { 482 if (po->priority < elem->priority) 483 break; 484 } 485 list_add_rcu(&po->list, elem->list.prev); 486 spin_unlock(&offload_lock); 487 } 488 EXPORT_SYMBOL(dev_add_offload); 489 490 /** 491 * __dev_remove_offload - remove offload handler 492 * @po: packet offload declaration 493 * 494 * Remove a protocol offload handler that was previously added to the 495 * kernel offload handlers by dev_add_offload(). The passed &offload_type 496 * is removed from the kernel lists and can be freed or reused once this 497 * function returns. 498 * 499 * The packet type might still be in use by receivers 500 * and must not be freed until after all the CPU's have gone 501 * through a quiescent state. 502 */ 503 static void __dev_remove_offload(struct packet_offload *po) 504 { 505 struct list_head *head = &offload_base; 506 struct packet_offload *po1; 507 508 spin_lock(&offload_lock); 509 510 list_for_each_entry(po1, head, list) { 511 if (po == po1) { 512 list_del_rcu(&po->list); 513 goto out; 514 } 515 } 516 517 pr_warn("dev_remove_offload: %p not found\n", po); 518 out: 519 spin_unlock(&offload_lock); 520 } 521 522 /** 523 * dev_remove_offload - remove packet offload handler 524 * @po: packet offload declaration 525 * 526 * Remove a packet offload handler that was previously added to the kernel 527 * offload handlers by dev_add_offload(). The passed &offload_type is 528 * removed from the kernel lists and can be freed or reused once this 529 * function returns. 530 * 531 * This call sleeps to guarantee that no CPU is looking at the packet 532 * type after return. 533 */ 534 void dev_remove_offload(struct packet_offload *po) 535 { 536 __dev_remove_offload(po); 537 538 synchronize_net(); 539 } 540 EXPORT_SYMBOL(dev_remove_offload); 541 542 /****************************************************************************** 543 * 544 * Device Boot-time Settings Routines 545 * 546 ******************************************************************************/ 547 548 /* Boot time configuration table */ 549 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 550 551 /** 552 * netdev_boot_setup_add - add new setup entry 553 * @name: name of the device 554 * @map: configured settings for the device 555 * 556 * Adds new setup entry to the dev_boot_setup list. The function 557 * returns 0 on error and 1 on success. This is a generic routine to 558 * all netdevices. 559 */ 560 static int netdev_boot_setup_add(char *name, struct ifmap *map) 561 { 562 struct netdev_boot_setup *s; 563 int i; 564 565 s = dev_boot_setup; 566 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 567 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 568 memset(s[i].name, 0, sizeof(s[i].name)); 569 strlcpy(s[i].name, name, IFNAMSIZ); 570 memcpy(&s[i].map, map, sizeof(s[i].map)); 571 break; 572 } 573 } 574 575 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 576 } 577 578 /** 579 * netdev_boot_setup_check - check boot time settings 580 * @dev: the netdevice 581 * 582 * Check boot time settings for the device. 583 * The found settings are set for the device to be used 584 * later in the device probing. 585 * Returns 0 if no settings found, 1 if they are. 586 */ 587 int netdev_boot_setup_check(struct net_device *dev) 588 { 589 struct netdev_boot_setup *s = dev_boot_setup; 590 int i; 591 592 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 593 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 594 !strcmp(dev->name, s[i].name)) { 595 dev->irq = s[i].map.irq; 596 dev->base_addr = s[i].map.base_addr; 597 dev->mem_start = s[i].map.mem_start; 598 dev->mem_end = s[i].map.mem_end; 599 return 1; 600 } 601 } 602 return 0; 603 } 604 EXPORT_SYMBOL(netdev_boot_setup_check); 605 606 607 /** 608 * netdev_boot_base - get address from boot time settings 609 * @prefix: prefix for network device 610 * @unit: id for network device 611 * 612 * Check boot time settings for the base address of device. 613 * The found settings are set for the device to be used 614 * later in the device probing. 615 * Returns 0 if no settings found. 616 */ 617 unsigned long netdev_boot_base(const char *prefix, int unit) 618 { 619 const struct netdev_boot_setup *s = dev_boot_setup; 620 char name[IFNAMSIZ]; 621 int i; 622 623 sprintf(name, "%s%d", prefix, unit); 624 625 /* 626 * If device already registered then return base of 1 627 * to indicate not to probe for this interface 628 */ 629 if (__dev_get_by_name(&init_net, name)) 630 return 1; 631 632 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 633 if (!strcmp(name, s[i].name)) 634 return s[i].map.base_addr; 635 return 0; 636 } 637 638 /* 639 * Saves at boot time configured settings for any netdevice. 640 */ 641 int __init netdev_boot_setup(char *str) 642 { 643 int ints[5]; 644 struct ifmap map; 645 646 str = get_options(str, ARRAY_SIZE(ints), ints); 647 if (!str || !*str) 648 return 0; 649 650 /* Save settings */ 651 memset(&map, 0, sizeof(map)); 652 if (ints[0] > 0) 653 map.irq = ints[1]; 654 if (ints[0] > 1) 655 map.base_addr = ints[2]; 656 if (ints[0] > 2) 657 map.mem_start = ints[3]; 658 if (ints[0] > 3) 659 map.mem_end = ints[4]; 660 661 /* Add new entry to the list */ 662 return netdev_boot_setup_add(str, &map); 663 } 664 665 __setup("netdev=", netdev_boot_setup); 666 667 /******************************************************************************* 668 * 669 * Device Interface Subroutines 670 * 671 *******************************************************************************/ 672 673 /** 674 * dev_get_iflink - get 'iflink' value of a interface 675 * @dev: targeted interface 676 * 677 * Indicates the ifindex the interface is linked to. 678 * Physical interfaces have the same 'ifindex' and 'iflink' values. 679 */ 680 681 int dev_get_iflink(const struct net_device *dev) 682 { 683 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 684 return dev->netdev_ops->ndo_get_iflink(dev); 685 686 return dev->ifindex; 687 } 688 EXPORT_SYMBOL(dev_get_iflink); 689 690 /** 691 * dev_fill_metadata_dst - Retrieve tunnel egress information. 692 * @dev: targeted interface 693 * @skb: The packet. 694 * 695 * For better visibility of tunnel traffic OVS needs to retrieve 696 * egress tunnel information for a packet. Following API allows 697 * user to get this info. 698 */ 699 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) 700 { 701 struct ip_tunnel_info *info; 702 703 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) 704 return -EINVAL; 705 706 info = skb_tunnel_info_unclone(skb); 707 if (!info) 708 return -ENOMEM; 709 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) 710 return -EINVAL; 711 712 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); 713 } 714 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); 715 716 /** 717 * __dev_get_by_name - find a device by its name 718 * @net: the applicable net namespace 719 * @name: name to find 720 * 721 * Find an interface by name. Must be called under RTNL semaphore 722 * or @dev_base_lock. If the name is found a pointer to the device 723 * is returned. If the name is not found then %NULL is returned. The 724 * reference counters are not incremented so the caller must be 725 * careful with locks. 726 */ 727 728 struct net_device *__dev_get_by_name(struct net *net, const char *name) 729 { 730 struct net_device *dev; 731 struct hlist_head *head = dev_name_hash(net, name); 732 733 hlist_for_each_entry(dev, head, name_hlist) 734 if (!strncmp(dev->name, name, IFNAMSIZ)) 735 return dev; 736 737 return NULL; 738 } 739 EXPORT_SYMBOL(__dev_get_by_name); 740 741 /** 742 * dev_get_by_name_rcu - find a device by its name 743 * @net: the applicable net namespace 744 * @name: name to find 745 * 746 * Find an interface by name. 747 * If the name is found a pointer to the device is returned. 748 * If the name is not found then %NULL is returned. 749 * The reference counters are not incremented so the caller must be 750 * careful with locks. The caller must hold RCU lock. 751 */ 752 753 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 754 { 755 struct net_device *dev; 756 struct hlist_head *head = dev_name_hash(net, name); 757 758 hlist_for_each_entry_rcu(dev, head, name_hlist) 759 if (!strncmp(dev->name, name, IFNAMSIZ)) 760 return dev; 761 762 return NULL; 763 } 764 EXPORT_SYMBOL(dev_get_by_name_rcu); 765 766 /** 767 * dev_get_by_name - find a device by its name 768 * @net: the applicable net namespace 769 * @name: name to find 770 * 771 * Find an interface by name. This can be called from any 772 * context and does its own locking. The returned handle has 773 * the usage count incremented and the caller must use dev_put() to 774 * release it when it is no longer needed. %NULL is returned if no 775 * matching device is found. 776 */ 777 778 struct net_device *dev_get_by_name(struct net *net, const char *name) 779 { 780 struct net_device *dev; 781 782 rcu_read_lock(); 783 dev = dev_get_by_name_rcu(net, name); 784 if (dev) 785 dev_hold(dev); 786 rcu_read_unlock(); 787 return dev; 788 } 789 EXPORT_SYMBOL(dev_get_by_name); 790 791 /** 792 * __dev_get_by_index - find a device by its ifindex 793 * @net: the applicable net namespace 794 * @ifindex: index of device 795 * 796 * Search for an interface by index. Returns %NULL if the device 797 * is not found or a pointer to the device. The device has not 798 * had its reference counter increased so the caller must be careful 799 * about locking. The caller must hold either the RTNL semaphore 800 * or @dev_base_lock. 801 */ 802 803 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 804 { 805 struct net_device *dev; 806 struct hlist_head *head = dev_index_hash(net, ifindex); 807 808 hlist_for_each_entry(dev, head, index_hlist) 809 if (dev->ifindex == ifindex) 810 return dev; 811 812 return NULL; 813 } 814 EXPORT_SYMBOL(__dev_get_by_index); 815 816 /** 817 * dev_get_by_index_rcu - find a device by its ifindex 818 * @net: the applicable net namespace 819 * @ifindex: index of device 820 * 821 * Search for an interface by index. Returns %NULL if the device 822 * is not found or a pointer to the device. The device has not 823 * had its reference counter increased so the caller must be careful 824 * about locking. The caller must hold RCU lock. 825 */ 826 827 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 828 { 829 struct net_device *dev; 830 struct hlist_head *head = dev_index_hash(net, ifindex); 831 832 hlist_for_each_entry_rcu(dev, head, index_hlist) 833 if (dev->ifindex == ifindex) 834 return dev; 835 836 return NULL; 837 } 838 EXPORT_SYMBOL(dev_get_by_index_rcu); 839 840 841 /** 842 * dev_get_by_index - find a device by its ifindex 843 * @net: the applicable net namespace 844 * @ifindex: index of device 845 * 846 * Search for an interface by index. Returns NULL if the device 847 * is not found or a pointer to the device. The device returned has 848 * had a reference added and the pointer is safe until the user calls 849 * dev_put to indicate they have finished with it. 850 */ 851 852 struct net_device *dev_get_by_index(struct net *net, int ifindex) 853 { 854 struct net_device *dev; 855 856 rcu_read_lock(); 857 dev = dev_get_by_index_rcu(net, ifindex); 858 if (dev) 859 dev_hold(dev); 860 rcu_read_unlock(); 861 return dev; 862 } 863 EXPORT_SYMBOL(dev_get_by_index); 864 865 /** 866 * netdev_get_name - get a netdevice name, knowing its ifindex. 867 * @net: network namespace 868 * @name: a pointer to the buffer where the name will be stored. 869 * @ifindex: the ifindex of the interface to get the name from. 870 * 871 * The use of raw_seqcount_begin() and cond_resched() before 872 * retrying is required as we want to give the writers a chance 873 * to complete when CONFIG_PREEMPT is not set. 874 */ 875 int netdev_get_name(struct net *net, char *name, int ifindex) 876 { 877 struct net_device *dev; 878 unsigned int seq; 879 880 retry: 881 seq = raw_seqcount_begin(&devnet_rename_seq); 882 rcu_read_lock(); 883 dev = dev_get_by_index_rcu(net, ifindex); 884 if (!dev) { 885 rcu_read_unlock(); 886 return -ENODEV; 887 } 888 889 strcpy(name, dev->name); 890 rcu_read_unlock(); 891 if (read_seqcount_retry(&devnet_rename_seq, seq)) { 892 cond_resched(); 893 goto retry; 894 } 895 896 return 0; 897 } 898 899 /** 900 * dev_getbyhwaddr_rcu - find a device by its hardware address 901 * @net: the applicable net namespace 902 * @type: media type of device 903 * @ha: hardware address 904 * 905 * Search for an interface by MAC address. Returns NULL if the device 906 * is not found or a pointer to the device. 907 * The caller must hold RCU or RTNL. 908 * The returned device has not had its ref count increased 909 * and the caller must therefore be careful about locking 910 * 911 */ 912 913 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 914 const char *ha) 915 { 916 struct net_device *dev; 917 918 for_each_netdev_rcu(net, dev) 919 if (dev->type == type && 920 !memcmp(dev->dev_addr, ha, dev->addr_len)) 921 return dev; 922 923 return NULL; 924 } 925 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 926 927 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 928 { 929 struct net_device *dev; 930 931 ASSERT_RTNL(); 932 for_each_netdev(net, dev) 933 if (dev->type == type) 934 return dev; 935 936 return NULL; 937 } 938 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 939 940 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 941 { 942 struct net_device *dev, *ret = NULL; 943 944 rcu_read_lock(); 945 for_each_netdev_rcu(net, dev) 946 if (dev->type == type) { 947 dev_hold(dev); 948 ret = dev; 949 break; 950 } 951 rcu_read_unlock(); 952 return ret; 953 } 954 EXPORT_SYMBOL(dev_getfirstbyhwtype); 955 956 /** 957 * __dev_get_by_flags - find any device with given flags 958 * @net: the applicable net namespace 959 * @if_flags: IFF_* values 960 * @mask: bitmask of bits in if_flags to check 961 * 962 * Search for any interface with the given flags. Returns NULL if a device 963 * is not found or a pointer to the device. Must be called inside 964 * rtnl_lock(), and result refcount is unchanged. 965 */ 966 967 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags, 968 unsigned short mask) 969 { 970 struct net_device *dev, *ret; 971 972 ASSERT_RTNL(); 973 974 ret = NULL; 975 for_each_netdev(net, dev) { 976 if (((dev->flags ^ if_flags) & mask) == 0) { 977 ret = dev; 978 break; 979 } 980 } 981 return ret; 982 } 983 EXPORT_SYMBOL(__dev_get_by_flags); 984 985 /** 986 * dev_valid_name - check if name is okay for network device 987 * @name: name string 988 * 989 * Network device names need to be valid file names to 990 * to allow sysfs to work. We also disallow any kind of 991 * whitespace. 992 */ 993 bool dev_valid_name(const char *name) 994 { 995 if (*name == '\0') 996 return false; 997 if (strlen(name) >= IFNAMSIZ) 998 return false; 999 if (!strcmp(name, ".") || !strcmp(name, "..")) 1000 return false; 1001 1002 while (*name) { 1003 if (*name == '/' || *name == ':' || isspace(*name)) 1004 return false; 1005 name++; 1006 } 1007 return true; 1008 } 1009 EXPORT_SYMBOL(dev_valid_name); 1010 1011 /** 1012 * __dev_alloc_name - allocate a name for a device 1013 * @net: network namespace to allocate the device name in 1014 * @name: name format string 1015 * @buf: scratch buffer and result name string 1016 * 1017 * Passed a format string - eg "lt%d" it will try and find a suitable 1018 * id. It scans list of devices to build up a free map, then chooses 1019 * the first empty slot. The caller must hold the dev_base or rtnl lock 1020 * while allocating the name and adding the device in order to avoid 1021 * duplicates. 1022 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1023 * Returns the number of the unit assigned or a negative errno code. 1024 */ 1025 1026 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 1027 { 1028 int i = 0; 1029 const char *p; 1030 const int max_netdevices = 8*PAGE_SIZE; 1031 unsigned long *inuse; 1032 struct net_device *d; 1033 1034 p = strnchr(name, IFNAMSIZ-1, '%'); 1035 if (p) { 1036 /* 1037 * Verify the string as this thing may have come from 1038 * the user. There must be either one "%d" and no other "%" 1039 * characters. 1040 */ 1041 if (p[1] != 'd' || strchr(p + 2, '%')) 1042 return -EINVAL; 1043 1044 /* Use one page as a bit array of possible slots */ 1045 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 1046 if (!inuse) 1047 return -ENOMEM; 1048 1049 for_each_netdev(net, d) { 1050 if (!sscanf(d->name, name, &i)) 1051 continue; 1052 if (i < 0 || i >= max_netdevices) 1053 continue; 1054 1055 /* avoid cases where sscanf is not exact inverse of printf */ 1056 snprintf(buf, IFNAMSIZ, name, i); 1057 if (!strncmp(buf, d->name, IFNAMSIZ)) 1058 set_bit(i, inuse); 1059 } 1060 1061 i = find_first_zero_bit(inuse, max_netdevices); 1062 free_page((unsigned long) inuse); 1063 } 1064 1065 if (buf != name) 1066 snprintf(buf, IFNAMSIZ, name, i); 1067 if (!__dev_get_by_name(net, buf)) 1068 return i; 1069 1070 /* It is possible to run out of possible slots 1071 * when the name is long and there isn't enough space left 1072 * for the digits, or if all bits are used. 1073 */ 1074 return -ENFILE; 1075 } 1076 1077 /** 1078 * dev_alloc_name - allocate a name for a device 1079 * @dev: device 1080 * @name: name format string 1081 * 1082 * Passed a format string - eg "lt%d" it will try and find a suitable 1083 * id. It scans list of devices to build up a free map, then chooses 1084 * the first empty slot. The caller must hold the dev_base or rtnl lock 1085 * while allocating the name and adding the device in order to avoid 1086 * duplicates. 1087 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1088 * Returns the number of the unit assigned or a negative errno code. 1089 */ 1090 1091 int dev_alloc_name(struct net_device *dev, const char *name) 1092 { 1093 char buf[IFNAMSIZ]; 1094 struct net *net; 1095 int ret; 1096 1097 BUG_ON(!dev_net(dev)); 1098 net = dev_net(dev); 1099 ret = __dev_alloc_name(net, name, buf); 1100 if (ret >= 0) 1101 strlcpy(dev->name, buf, IFNAMSIZ); 1102 return ret; 1103 } 1104 EXPORT_SYMBOL(dev_alloc_name); 1105 1106 static int dev_alloc_name_ns(struct net *net, 1107 struct net_device *dev, 1108 const char *name) 1109 { 1110 char buf[IFNAMSIZ]; 1111 int ret; 1112 1113 ret = __dev_alloc_name(net, name, buf); 1114 if (ret >= 0) 1115 strlcpy(dev->name, buf, IFNAMSIZ); 1116 return ret; 1117 } 1118 1119 static int dev_get_valid_name(struct net *net, 1120 struct net_device *dev, 1121 const char *name) 1122 { 1123 BUG_ON(!net); 1124 1125 if (!dev_valid_name(name)) 1126 return -EINVAL; 1127 1128 if (strchr(name, '%')) 1129 return dev_alloc_name_ns(net, dev, name); 1130 else if (__dev_get_by_name(net, name)) 1131 return -EEXIST; 1132 else if (dev->name != name) 1133 strlcpy(dev->name, name, IFNAMSIZ); 1134 1135 return 0; 1136 } 1137 1138 /** 1139 * dev_change_name - change name of a device 1140 * @dev: device 1141 * @newname: name (or format string) must be at least IFNAMSIZ 1142 * 1143 * Change name of a device, can pass format strings "eth%d". 1144 * for wildcarding. 1145 */ 1146 int dev_change_name(struct net_device *dev, const char *newname) 1147 { 1148 unsigned char old_assign_type; 1149 char oldname[IFNAMSIZ]; 1150 int err = 0; 1151 int ret; 1152 struct net *net; 1153 1154 ASSERT_RTNL(); 1155 BUG_ON(!dev_net(dev)); 1156 1157 net = dev_net(dev); 1158 if (dev->flags & IFF_UP) 1159 return -EBUSY; 1160 1161 write_seqcount_begin(&devnet_rename_seq); 1162 1163 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1164 write_seqcount_end(&devnet_rename_seq); 1165 return 0; 1166 } 1167 1168 memcpy(oldname, dev->name, IFNAMSIZ); 1169 1170 err = dev_get_valid_name(net, dev, newname); 1171 if (err < 0) { 1172 write_seqcount_end(&devnet_rename_seq); 1173 return err; 1174 } 1175 1176 if (oldname[0] && !strchr(oldname, '%')) 1177 netdev_info(dev, "renamed from %s\n", oldname); 1178 1179 old_assign_type = dev->name_assign_type; 1180 dev->name_assign_type = NET_NAME_RENAMED; 1181 1182 rollback: 1183 ret = device_rename(&dev->dev, dev->name); 1184 if (ret) { 1185 memcpy(dev->name, oldname, IFNAMSIZ); 1186 dev->name_assign_type = old_assign_type; 1187 write_seqcount_end(&devnet_rename_seq); 1188 return ret; 1189 } 1190 1191 write_seqcount_end(&devnet_rename_seq); 1192 1193 netdev_adjacent_rename_links(dev, oldname); 1194 1195 write_lock_bh(&dev_base_lock); 1196 hlist_del_rcu(&dev->name_hlist); 1197 write_unlock_bh(&dev_base_lock); 1198 1199 synchronize_rcu(); 1200 1201 write_lock_bh(&dev_base_lock); 1202 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1203 write_unlock_bh(&dev_base_lock); 1204 1205 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1206 ret = notifier_to_errno(ret); 1207 1208 if (ret) { 1209 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1210 if (err >= 0) { 1211 err = ret; 1212 write_seqcount_begin(&devnet_rename_seq); 1213 memcpy(dev->name, oldname, IFNAMSIZ); 1214 memcpy(oldname, newname, IFNAMSIZ); 1215 dev->name_assign_type = old_assign_type; 1216 old_assign_type = NET_NAME_RENAMED; 1217 goto rollback; 1218 } else { 1219 pr_err("%s: name change rollback failed: %d\n", 1220 dev->name, ret); 1221 } 1222 } 1223 1224 return err; 1225 } 1226 1227 /** 1228 * dev_set_alias - change ifalias of a device 1229 * @dev: device 1230 * @alias: name up to IFALIASZ 1231 * @len: limit of bytes to copy from info 1232 * 1233 * Set ifalias for a device, 1234 */ 1235 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1236 { 1237 char *new_ifalias; 1238 1239 ASSERT_RTNL(); 1240 1241 if (len >= IFALIASZ) 1242 return -EINVAL; 1243 1244 if (!len) { 1245 kfree(dev->ifalias); 1246 dev->ifalias = NULL; 1247 return 0; 1248 } 1249 1250 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL); 1251 if (!new_ifalias) 1252 return -ENOMEM; 1253 dev->ifalias = new_ifalias; 1254 1255 strlcpy(dev->ifalias, alias, len+1); 1256 return len; 1257 } 1258 1259 1260 /** 1261 * netdev_features_change - device changes features 1262 * @dev: device to cause notification 1263 * 1264 * Called to indicate a device has changed features. 1265 */ 1266 void netdev_features_change(struct net_device *dev) 1267 { 1268 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1269 } 1270 EXPORT_SYMBOL(netdev_features_change); 1271 1272 /** 1273 * netdev_state_change - device changes state 1274 * @dev: device to cause notification 1275 * 1276 * Called to indicate a device has changed state. This function calls 1277 * the notifier chains for netdev_chain and sends a NEWLINK message 1278 * to the routing socket. 1279 */ 1280 void netdev_state_change(struct net_device *dev) 1281 { 1282 if (dev->flags & IFF_UP) { 1283 struct netdev_notifier_change_info change_info; 1284 1285 change_info.flags_changed = 0; 1286 call_netdevice_notifiers_info(NETDEV_CHANGE, dev, 1287 &change_info.info); 1288 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL); 1289 } 1290 } 1291 EXPORT_SYMBOL(netdev_state_change); 1292 1293 /** 1294 * netdev_notify_peers - notify network peers about existence of @dev 1295 * @dev: network device 1296 * 1297 * Generate traffic such that interested network peers are aware of 1298 * @dev, such as by generating a gratuitous ARP. This may be used when 1299 * a device wants to inform the rest of the network about some sort of 1300 * reconfiguration such as a failover event or virtual machine 1301 * migration. 1302 */ 1303 void netdev_notify_peers(struct net_device *dev) 1304 { 1305 rtnl_lock(); 1306 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1307 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev); 1308 rtnl_unlock(); 1309 } 1310 EXPORT_SYMBOL(netdev_notify_peers); 1311 1312 static int __dev_open(struct net_device *dev) 1313 { 1314 const struct net_device_ops *ops = dev->netdev_ops; 1315 int ret; 1316 1317 ASSERT_RTNL(); 1318 1319 if (!netif_device_present(dev)) 1320 return -ENODEV; 1321 1322 /* Block netpoll from trying to do any rx path servicing. 1323 * If we don't do this there is a chance ndo_poll_controller 1324 * or ndo_poll may be running while we open the device 1325 */ 1326 netpoll_poll_disable(dev); 1327 1328 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1329 ret = notifier_to_errno(ret); 1330 if (ret) 1331 return ret; 1332 1333 set_bit(__LINK_STATE_START, &dev->state); 1334 1335 if (ops->ndo_validate_addr) 1336 ret = ops->ndo_validate_addr(dev); 1337 1338 if (!ret && ops->ndo_open) 1339 ret = ops->ndo_open(dev); 1340 1341 netpoll_poll_enable(dev); 1342 1343 if (ret) 1344 clear_bit(__LINK_STATE_START, &dev->state); 1345 else { 1346 dev->flags |= IFF_UP; 1347 dev_set_rx_mode(dev); 1348 dev_activate(dev); 1349 add_device_randomness(dev->dev_addr, dev->addr_len); 1350 } 1351 1352 return ret; 1353 } 1354 1355 /** 1356 * dev_open - prepare an interface for use. 1357 * @dev: device to open 1358 * 1359 * Takes a device from down to up state. The device's private open 1360 * function is invoked and then the multicast lists are loaded. Finally 1361 * the device is moved into the up state and a %NETDEV_UP message is 1362 * sent to the netdev notifier chain. 1363 * 1364 * Calling this function on an active interface is a nop. On a failure 1365 * a negative errno code is returned. 1366 */ 1367 int dev_open(struct net_device *dev) 1368 { 1369 int ret; 1370 1371 if (dev->flags & IFF_UP) 1372 return 0; 1373 1374 ret = __dev_open(dev); 1375 if (ret < 0) 1376 return ret; 1377 1378 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1379 call_netdevice_notifiers(NETDEV_UP, dev); 1380 1381 return ret; 1382 } 1383 EXPORT_SYMBOL(dev_open); 1384 1385 static int __dev_close_many(struct list_head *head) 1386 { 1387 struct net_device *dev; 1388 1389 ASSERT_RTNL(); 1390 might_sleep(); 1391 1392 list_for_each_entry(dev, head, close_list) { 1393 /* Temporarily disable netpoll until the interface is down */ 1394 netpoll_poll_disable(dev); 1395 1396 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1397 1398 clear_bit(__LINK_STATE_START, &dev->state); 1399 1400 /* Synchronize to scheduled poll. We cannot touch poll list, it 1401 * can be even on different cpu. So just clear netif_running(). 1402 * 1403 * dev->stop() will invoke napi_disable() on all of it's 1404 * napi_struct instances on this device. 1405 */ 1406 smp_mb__after_atomic(); /* Commit netif_running(). */ 1407 } 1408 1409 dev_deactivate_many(head); 1410 1411 list_for_each_entry(dev, head, close_list) { 1412 const struct net_device_ops *ops = dev->netdev_ops; 1413 1414 /* 1415 * Call the device specific close. This cannot fail. 1416 * Only if device is UP 1417 * 1418 * We allow it to be called even after a DETACH hot-plug 1419 * event. 1420 */ 1421 if (ops->ndo_stop) 1422 ops->ndo_stop(dev); 1423 1424 dev->flags &= ~IFF_UP; 1425 netpoll_poll_enable(dev); 1426 } 1427 1428 return 0; 1429 } 1430 1431 static int __dev_close(struct net_device *dev) 1432 { 1433 int retval; 1434 LIST_HEAD(single); 1435 1436 list_add(&dev->close_list, &single); 1437 retval = __dev_close_many(&single); 1438 list_del(&single); 1439 1440 return retval; 1441 } 1442 1443 int dev_close_many(struct list_head *head, bool unlink) 1444 { 1445 struct net_device *dev, *tmp; 1446 1447 /* Remove the devices that don't need to be closed */ 1448 list_for_each_entry_safe(dev, tmp, head, close_list) 1449 if (!(dev->flags & IFF_UP)) 1450 list_del_init(&dev->close_list); 1451 1452 __dev_close_many(head); 1453 1454 list_for_each_entry_safe(dev, tmp, head, close_list) { 1455 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1456 call_netdevice_notifiers(NETDEV_DOWN, dev); 1457 if (unlink) 1458 list_del_init(&dev->close_list); 1459 } 1460 1461 return 0; 1462 } 1463 EXPORT_SYMBOL(dev_close_many); 1464 1465 /** 1466 * dev_close - shutdown an interface. 1467 * @dev: device to shutdown 1468 * 1469 * This function moves an active device into down state. A 1470 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1471 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1472 * chain. 1473 */ 1474 int dev_close(struct net_device *dev) 1475 { 1476 if (dev->flags & IFF_UP) { 1477 LIST_HEAD(single); 1478 1479 list_add(&dev->close_list, &single); 1480 dev_close_many(&single, true); 1481 list_del(&single); 1482 } 1483 return 0; 1484 } 1485 EXPORT_SYMBOL(dev_close); 1486 1487 1488 /** 1489 * dev_disable_lro - disable Large Receive Offload on a device 1490 * @dev: device 1491 * 1492 * Disable Large Receive Offload (LRO) on a net device. Must be 1493 * called under RTNL. This is needed if received packets may be 1494 * forwarded to another interface. 1495 */ 1496 void dev_disable_lro(struct net_device *dev) 1497 { 1498 struct net_device *lower_dev; 1499 struct list_head *iter; 1500 1501 dev->wanted_features &= ~NETIF_F_LRO; 1502 netdev_update_features(dev); 1503 1504 if (unlikely(dev->features & NETIF_F_LRO)) 1505 netdev_WARN(dev, "failed to disable LRO!\n"); 1506 1507 netdev_for_each_lower_dev(dev, lower_dev, iter) 1508 dev_disable_lro(lower_dev); 1509 } 1510 EXPORT_SYMBOL(dev_disable_lro); 1511 1512 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1513 struct net_device *dev) 1514 { 1515 struct netdev_notifier_info info; 1516 1517 netdev_notifier_info_init(&info, dev); 1518 return nb->notifier_call(nb, val, &info); 1519 } 1520 1521 static int dev_boot_phase = 1; 1522 1523 /** 1524 * register_netdevice_notifier - register a network notifier block 1525 * @nb: notifier 1526 * 1527 * Register a notifier to be called when network device events occur. 1528 * The notifier passed is linked into the kernel structures and must 1529 * not be reused until it has been unregistered. A negative errno code 1530 * is returned on a failure. 1531 * 1532 * When registered all registration and up events are replayed 1533 * to the new notifier to allow device to have a race free 1534 * view of the network device list. 1535 */ 1536 1537 int register_netdevice_notifier(struct notifier_block *nb) 1538 { 1539 struct net_device *dev; 1540 struct net_device *last; 1541 struct net *net; 1542 int err; 1543 1544 rtnl_lock(); 1545 err = raw_notifier_chain_register(&netdev_chain, nb); 1546 if (err) 1547 goto unlock; 1548 if (dev_boot_phase) 1549 goto unlock; 1550 for_each_net(net) { 1551 for_each_netdev(net, dev) { 1552 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1553 err = notifier_to_errno(err); 1554 if (err) 1555 goto rollback; 1556 1557 if (!(dev->flags & IFF_UP)) 1558 continue; 1559 1560 call_netdevice_notifier(nb, NETDEV_UP, dev); 1561 } 1562 } 1563 1564 unlock: 1565 rtnl_unlock(); 1566 return err; 1567 1568 rollback: 1569 last = dev; 1570 for_each_net(net) { 1571 for_each_netdev(net, dev) { 1572 if (dev == last) 1573 goto outroll; 1574 1575 if (dev->flags & IFF_UP) { 1576 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1577 dev); 1578 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1579 } 1580 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1581 } 1582 } 1583 1584 outroll: 1585 raw_notifier_chain_unregister(&netdev_chain, nb); 1586 goto unlock; 1587 } 1588 EXPORT_SYMBOL(register_netdevice_notifier); 1589 1590 /** 1591 * unregister_netdevice_notifier - unregister a network notifier block 1592 * @nb: notifier 1593 * 1594 * Unregister a notifier previously registered by 1595 * register_netdevice_notifier(). The notifier is unlinked into the 1596 * kernel structures and may then be reused. A negative errno code 1597 * is returned on a failure. 1598 * 1599 * After unregistering unregister and down device events are synthesized 1600 * for all devices on the device list to the removed notifier to remove 1601 * the need for special case cleanup code. 1602 */ 1603 1604 int unregister_netdevice_notifier(struct notifier_block *nb) 1605 { 1606 struct net_device *dev; 1607 struct net *net; 1608 int err; 1609 1610 rtnl_lock(); 1611 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1612 if (err) 1613 goto unlock; 1614 1615 for_each_net(net) { 1616 for_each_netdev(net, dev) { 1617 if (dev->flags & IFF_UP) { 1618 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1619 dev); 1620 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1621 } 1622 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1623 } 1624 } 1625 unlock: 1626 rtnl_unlock(); 1627 return err; 1628 } 1629 EXPORT_SYMBOL(unregister_netdevice_notifier); 1630 1631 /** 1632 * call_netdevice_notifiers_info - call all network notifier blocks 1633 * @val: value passed unmodified to notifier function 1634 * @dev: net_device pointer passed unmodified to notifier function 1635 * @info: notifier information data 1636 * 1637 * Call all network notifier blocks. Parameters and return value 1638 * are as for raw_notifier_call_chain(). 1639 */ 1640 1641 static int call_netdevice_notifiers_info(unsigned long val, 1642 struct net_device *dev, 1643 struct netdev_notifier_info *info) 1644 { 1645 ASSERT_RTNL(); 1646 netdev_notifier_info_init(info, dev); 1647 return raw_notifier_call_chain(&netdev_chain, val, info); 1648 } 1649 1650 /** 1651 * call_netdevice_notifiers - call all network notifier blocks 1652 * @val: value passed unmodified to notifier function 1653 * @dev: net_device pointer passed unmodified to notifier function 1654 * 1655 * Call all network notifier blocks. Parameters and return value 1656 * are as for raw_notifier_call_chain(). 1657 */ 1658 1659 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1660 { 1661 struct netdev_notifier_info info; 1662 1663 return call_netdevice_notifiers_info(val, dev, &info); 1664 } 1665 EXPORT_SYMBOL(call_netdevice_notifiers); 1666 1667 #ifdef CONFIG_NET_INGRESS 1668 static struct static_key ingress_needed __read_mostly; 1669 1670 void net_inc_ingress_queue(void) 1671 { 1672 static_key_slow_inc(&ingress_needed); 1673 } 1674 EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 1675 1676 void net_dec_ingress_queue(void) 1677 { 1678 static_key_slow_dec(&ingress_needed); 1679 } 1680 EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 1681 #endif 1682 1683 #ifdef CONFIG_NET_EGRESS 1684 static struct static_key egress_needed __read_mostly; 1685 1686 void net_inc_egress_queue(void) 1687 { 1688 static_key_slow_inc(&egress_needed); 1689 } 1690 EXPORT_SYMBOL_GPL(net_inc_egress_queue); 1691 1692 void net_dec_egress_queue(void) 1693 { 1694 static_key_slow_dec(&egress_needed); 1695 } 1696 EXPORT_SYMBOL_GPL(net_dec_egress_queue); 1697 #endif 1698 1699 static struct static_key netstamp_needed __read_mostly; 1700 #ifdef HAVE_JUMP_LABEL 1701 static atomic_t netstamp_needed_deferred; 1702 static atomic_t netstamp_wanted; 1703 static void netstamp_clear(struct work_struct *work) 1704 { 1705 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 1706 int wanted; 1707 1708 wanted = atomic_add_return(deferred, &netstamp_wanted); 1709 if (wanted > 0) 1710 static_key_enable(&netstamp_needed); 1711 else 1712 static_key_disable(&netstamp_needed); 1713 } 1714 static DECLARE_WORK(netstamp_work, netstamp_clear); 1715 #endif 1716 1717 void net_enable_timestamp(void) 1718 { 1719 #ifdef HAVE_JUMP_LABEL 1720 int wanted; 1721 1722 while (1) { 1723 wanted = atomic_read(&netstamp_wanted); 1724 if (wanted <= 0) 1725 break; 1726 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted) 1727 return; 1728 } 1729 atomic_inc(&netstamp_needed_deferred); 1730 schedule_work(&netstamp_work); 1731 #else 1732 static_key_slow_inc(&netstamp_needed); 1733 #endif 1734 } 1735 EXPORT_SYMBOL(net_enable_timestamp); 1736 1737 void net_disable_timestamp(void) 1738 { 1739 #ifdef HAVE_JUMP_LABEL 1740 int wanted; 1741 1742 while (1) { 1743 wanted = atomic_read(&netstamp_wanted); 1744 if (wanted <= 1) 1745 break; 1746 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted) 1747 return; 1748 } 1749 atomic_dec(&netstamp_needed_deferred); 1750 schedule_work(&netstamp_work); 1751 #else 1752 static_key_slow_dec(&netstamp_needed); 1753 #endif 1754 } 1755 EXPORT_SYMBOL(net_disable_timestamp); 1756 1757 static inline void net_timestamp_set(struct sk_buff *skb) 1758 { 1759 skb->tstamp = 0; 1760 if (static_key_false(&netstamp_needed)) 1761 __net_timestamp(skb); 1762 } 1763 1764 #define net_timestamp_check(COND, SKB) \ 1765 if (static_key_false(&netstamp_needed)) { \ 1766 if ((COND) && !(SKB)->tstamp) \ 1767 __net_timestamp(SKB); \ 1768 } \ 1769 1770 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb) 1771 { 1772 unsigned int len; 1773 1774 if (!(dev->flags & IFF_UP)) 1775 return false; 1776 1777 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 1778 if (skb->len <= len) 1779 return true; 1780 1781 /* if TSO is enabled, we don't care about the length as the packet 1782 * could be forwarded without being segmented before 1783 */ 1784 if (skb_is_gso(skb)) 1785 return true; 1786 1787 return false; 1788 } 1789 EXPORT_SYMBOL_GPL(is_skb_forwardable); 1790 1791 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1792 { 1793 int ret = ____dev_forward_skb(dev, skb); 1794 1795 if (likely(!ret)) { 1796 skb->protocol = eth_type_trans(skb, dev); 1797 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 1798 } 1799 1800 return ret; 1801 } 1802 EXPORT_SYMBOL_GPL(__dev_forward_skb); 1803 1804 /** 1805 * dev_forward_skb - loopback an skb to another netif 1806 * 1807 * @dev: destination network device 1808 * @skb: buffer to forward 1809 * 1810 * return values: 1811 * NET_RX_SUCCESS (no congestion) 1812 * NET_RX_DROP (packet was dropped, but freed) 1813 * 1814 * dev_forward_skb can be used for injecting an skb from the 1815 * start_xmit function of one device into the receive queue 1816 * of another device. 1817 * 1818 * The receiving device may be in another namespace, so 1819 * we have to clear all information in the skb that could 1820 * impact namespace isolation. 1821 */ 1822 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1823 { 1824 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 1825 } 1826 EXPORT_SYMBOL_GPL(dev_forward_skb); 1827 1828 static inline int deliver_skb(struct sk_buff *skb, 1829 struct packet_type *pt_prev, 1830 struct net_device *orig_dev) 1831 { 1832 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 1833 return -ENOMEM; 1834 atomic_inc(&skb->users); 1835 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1836 } 1837 1838 static inline void deliver_ptype_list_skb(struct sk_buff *skb, 1839 struct packet_type **pt, 1840 struct net_device *orig_dev, 1841 __be16 type, 1842 struct list_head *ptype_list) 1843 { 1844 struct packet_type *ptype, *pt_prev = *pt; 1845 1846 list_for_each_entry_rcu(ptype, ptype_list, list) { 1847 if (ptype->type != type) 1848 continue; 1849 if (pt_prev) 1850 deliver_skb(skb, pt_prev, orig_dev); 1851 pt_prev = ptype; 1852 } 1853 *pt = pt_prev; 1854 } 1855 1856 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 1857 { 1858 if (!ptype->af_packet_priv || !skb->sk) 1859 return false; 1860 1861 if (ptype->id_match) 1862 return ptype->id_match(ptype, skb->sk); 1863 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 1864 return true; 1865 1866 return false; 1867 } 1868 1869 /* 1870 * Support routine. Sends outgoing frames to any network 1871 * taps currently in use. 1872 */ 1873 1874 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1875 { 1876 struct packet_type *ptype; 1877 struct sk_buff *skb2 = NULL; 1878 struct packet_type *pt_prev = NULL; 1879 struct list_head *ptype_list = &ptype_all; 1880 1881 rcu_read_lock(); 1882 again: 1883 list_for_each_entry_rcu(ptype, ptype_list, list) { 1884 /* Never send packets back to the socket 1885 * they originated from - MvS (miquels@drinkel.ow.org) 1886 */ 1887 if (skb_loop_sk(ptype, skb)) 1888 continue; 1889 1890 if (pt_prev) { 1891 deliver_skb(skb2, pt_prev, skb->dev); 1892 pt_prev = ptype; 1893 continue; 1894 } 1895 1896 /* need to clone skb, done only once */ 1897 skb2 = skb_clone(skb, GFP_ATOMIC); 1898 if (!skb2) 1899 goto out_unlock; 1900 1901 net_timestamp_set(skb2); 1902 1903 /* skb->nh should be correctly 1904 * set by sender, so that the second statement is 1905 * just protection against buggy protocols. 1906 */ 1907 skb_reset_mac_header(skb2); 1908 1909 if (skb_network_header(skb2) < skb2->data || 1910 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 1911 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 1912 ntohs(skb2->protocol), 1913 dev->name); 1914 skb_reset_network_header(skb2); 1915 } 1916 1917 skb2->transport_header = skb2->network_header; 1918 skb2->pkt_type = PACKET_OUTGOING; 1919 pt_prev = ptype; 1920 } 1921 1922 if (ptype_list == &ptype_all) { 1923 ptype_list = &dev->ptype_all; 1924 goto again; 1925 } 1926 out_unlock: 1927 if (pt_prev) 1928 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 1929 rcu_read_unlock(); 1930 } 1931 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit); 1932 1933 /** 1934 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 1935 * @dev: Network device 1936 * @txq: number of queues available 1937 * 1938 * If real_num_tx_queues is changed the tc mappings may no longer be 1939 * valid. To resolve this verify the tc mapping remains valid and if 1940 * not NULL the mapping. With no priorities mapping to this 1941 * offset/count pair it will no longer be used. In the worst case TC0 1942 * is invalid nothing can be done so disable priority mappings. If is 1943 * expected that drivers will fix this mapping if they can before 1944 * calling netif_set_real_num_tx_queues. 1945 */ 1946 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 1947 { 1948 int i; 1949 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 1950 1951 /* If TC0 is invalidated disable TC mapping */ 1952 if (tc->offset + tc->count > txq) { 1953 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 1954 dev->num_tc = 0; 1955 return; 1956 } 1957 1958 /* Invalidated prio to tc mappings set to TC0 */ 1959 for (i = 1; i < TC_BITMASK + 1; i++) { 1960 int q = netdev_get_prio_tc_map(dev, i); 1961 1962 tc = &dev->tc_to_txq[q]; 1963 if (tc->offset + tc->count > txq) { 1964 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 1965 i, q); 1966 netdev_set_prio_tc_map(dev, i, 0); 1967 } 1968 } 1969 } 1970 1971 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq) 1972 { 1973 if (dev->num_tc) { 1974 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 1975 int i; 1976 1977 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) { 1978 if ((txq - tc->offset) < tc->count) 1979 return i; 1980 } 1981 1982 return -1; 1983 } 1984 1985 return 0; 1986 } 1987 1988 #ifdef CONFIG_XPS 1989 static DEFINE_MUTEX(xps_map_mutex); 1990 #define xmap_dereference(P) \ 1991 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 1992 1993 static bool remove_xps_queue(struct xps_dev_maps *dev_maps, 1994 int tci, u16 index) 1995 { 1996 struct xps_map *map = NULL; 1997 int pos; 1998 1999 if (dev_maps) 2000 map = xmap_dereference(dev_maps->cpu_map[tci]); 2001 if (!map) 2002 return false; 2003 2004 for (pos = map->len; pos--;) { 2005 if (map->queues[pos] != index) 2006 continue; 2007 2008 if (map->len > 1) { 2009 map->queues[pos] = map->queues[--map->len]; 2010 break; 2011 } 2012 2013 RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL); 2014 kfree_rcu(map, rcu); 2015 return false; 2016 } 2017 2018 return true; 2019 } 2020 2021 static bool remove_xps_queue_cpu(struct net_device *dev, 2022 struct xps_dev_maps *dev_maps, 2023 int cpu, u16 offset, u16 count) 2024 { 2025 int num_tc = dev->num_tc ? : 1; 2026 bool active = false; 2027 int tci; 2028 2029 for (tci = cpu * num_tc; num_tc--; tci++) { 2030 int i, j; 2031 2032 for (i = count, j = offset; i--; j++) { 2033 if (!remove_xps_queue(dev_maps, cpu, j)) 2034 break; 2035 } 2036 2037 active |= i < 0; 2038 } 2039 2040 return active; 2041 } 2042 2043 static void netif_reset_xps_queues(struct net_device *dev, u16 offset, 2044 u16 count) 2045 { 2046 struct xps_dev_maps *dev_maps; 2047 int cpu, i; 2048 bool active = false; 2049 2050 mutex_lock(&xps_map_mutex); 2051 dev_maps = xmap_dereference(dev->xps_maps); 2052 2053 if (!dev_maps) 2054 goto out_no_maps; 2055 2056 for_each_possible_cpu(cpu) 2057 active |= remove_xps_queue_cpu(dev, dev_maps, cpu, 2058 offset, count); 2059 2060 if (!active) { 2061 RCU_INIT_POINTER(dev->xps_maps, NULL); 2062 kfree_rcu(dev_maps, rcu); 2063 } 2064 2065 for (i = offset + (count - 1); count--; i--) 2066 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i), 2067 NUMA_NO_NODE); 2068 2069 out_no_maps: 2070 mutex_unlock(&xps_map_mutex); 2071 } 2072 2073 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 2074 { 2075 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index); 2076 } 2077 2078 static struct xps_map *expand_xps_map(struct xps_map *map, 2079 int cpu, u16 index) 2080 { 2081 struct xps_map *new_map; 2082 int alloc_len = XPS_MIN_MAP_ALLOC; 2083 int i, pos; 2084 2085 for (pos = 0; map && pos < map->len; pos++) { 2086 if (map->queues[pos] != index) 2087 continue; 2088 return map; 2089 } 2090 2091 /* Need to add queue to this CPU's existing map */ 2092 if (map) { 2093 if (pos < map->alloc_len) 2094 return map; 2095 2096 alloc_len = map->alloc_len * 2; 2097 } 2098 2099 /* Need to allocate new map to store queue on this CPU's map */ 2100 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 2101 cpu_to_node(cpu)); 2102 if (!new_map) 2103 return NULL; 2104 2105 for (i = 0; i < pos; i++) 2106 new_map->queues[i] = map->queues[i]; 2107 new_map->alloc_len = alloc_len; 2108 new_map->len = pos; 2109 2110 return new_map; 2111 } 2112 2113 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 2114 u16 index) 2115 { 2116 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL; 2117 int i, cpu, tci, numa_node_id = -2; 2118 int maps_sz, num_tc = 1, tc = 0; 2119 struct xps_map *map, *new_map; 2120 bool active = false; 2121 2122 if (dev->num_tc) { 2123 num_tc = dev->num_tc; 2124 tc = netdev_txq_to_tc(dev, index); 2125 if (tc < 0) 2126 return -EINVAL; 2127 } 2128 2129 maps_sz = XPS_DEV_MAPS_SIZE(num_tc); 2130 if (maps_sz < L1_CACHE_BYTES) 2131 maps_sz = L1_CACHE_BYTES; 2132 2133 mutex_lock(&xps_map_mutex); 2134 2135 dev_maps = xmap_dereference(dev->xps_maps); 2136 2137 /* allocate memory for queue storage */ 2138 for_each_cpu_and(cpu, cpu_online_mask, mask) { 2139 if (!new_dev_maps) 2140 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2141 if (!new_dev_maps) { 2142 mutex_unlock(&xps_map_mutex); 2143 return -ENOMEM; 2144 } 2145 2146 tci = cpu * num_tc + tc; 2147 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) : 2148 NULL; 2149 2150 map = expand_xps_map(map, cpu, index); 2151 if (!map) 2152 goto error; 2153 2154 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2155 } 2156 2157 if (!new_dev_maps) 2158 goto out_no_new_maps; 2159 2160 for_each_possible_cpu(cpu) { 2161 /* copy maps belonging to foreign traffic classes */ 2162 for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) { 2163 /* fill in the new device map from the old device map */ 2164 map = xmap_dereference(dev_maps->cpu_map[tci]); 2165 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2166 } 2167 2168 /* We need to explicitly update tci as prevous loop 2169 * could break out early if dev_maps is NULL. 2170 */ 2171 tci = cpu * num_tc + tc; 2172 2173 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) { 2174 /* add queue to CPU maps */ 2175 int pos = 0; 2176 2177 map = xmap_dereference(new_dev_maps->cpu_map[tci]); 2178 while ((pos < map->len) && (map->queues[pos] != index)) 2179 pos++; 2180 2181 if (pos == map->len) 2182 map->queues[map->len++] = index; 2183 #ifdef CONFIG_NUMA 2184 if (numa_node_id == -2) 2185 numa_node_id = cpu_to_node(cpu); 2186 else if (numa_node_id != cpu_to_node(cpu)) 2187 numa_node_id = -1; 2188 #endif 2189 } else if (dev_maps) { 2190 /* fill in the new device map from the old device map */ 2191 map = xmap_dereference(dev_maps->cpu_map[tci]); 2192 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2193 } 2194 2195 /* copy maps belonging to foreign traffic classes */ 2196 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) { 2197 /* fill in the new device map from the old device map */ 2198 map = xmap_dereference(dev_maps->cpu_map[tci]); 2199 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2200 } 2201 } 2202 2203 rcu_assign_pointer(dev->xps_maps, new_dev_maps); 2204 2205 /* Cleanup old maps */ 2206 if (!dev_maps) 2207 goto out_no_old_maps; 2208 2209 for_each_possible_cpu(cpu) { 2210 for (i = num_tc, tci = cpu * num_tc; i--; tci++) { 2211 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]); 2212 map = xmap_dereference(dev_maps->cpu_map[tci]); 2213 if (map && map != new_map) 2214 kfree_rcu(map, rcu); 2215 } 2216 } 2217 2218 kfree_rcu(dev_maps, rcu); 2219 2220 out_no_old_maps: 2221 dev_maps = new_dev_maps; 2222 active = true; 2223 2224 out_no_new_maps: 2225 /* update Tx queue numa node */ 2226 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2227 (numa_node_id >= 0) ? numa_node_id : 2228 NUMA_NO_NODE); 2229 2230 if (!dev_maps) 2231 goto out_no_maps; 2232 2233 /* removes queue from unused CPUs */ 2234 for_each_possible_cpu(cpu) { 2235 for (i = tc, tci = cpu * num_tc; i--; tci++) 2236 active |= remove_xps_queue(dev_maps, tci, index); 2237 if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu)) 2238 active |= remove_xps_queue(dev_maps, tci, index); 2239 for (i = num_tc - tc, tci++; --i; tci++) 2240 active |= remove_xps_queue(dev_maps, tci, index); 2241 } 2242 2243 /* free map if not active */ 2244 if (!active) { 2245 RCU_INIT_POINTER(dev->xps_maps, NULL); 2246 kfree_rcu(dev_maps, rcu); 2247 } 2248 2249 out_no_maps: 2250 mutex_unlock(&xps_map_mutex); 2251 2252 return 0; 2253 error: 2254 /* remove any maps that we added */ 2255 for_each_possible_cpu(cpu) { 2256 for (i = num_tc, tci = cpu * num_tc; i--; tci++) { 2257 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]); 2258 map = dev_maps ? 2259 xmap_dereference(dev_maps->cpu_map[tci]) : 2260 NULL; 2261 if (new_map && new_map != map) 2262 kfree(new_map); 2263 } 2264 } 2265 2266 mutex_unlock(&xps_map_mutex); 2267 2268 kfree(new_dev_maps); 2269 return -ENOMEM; 2270 } 2271 EXPORT_SYMBOL(netif_set_xps_queue); 2272 2273 #endif 2274 void netdev_reset_tc(struct net_device *dev) 2275 { 2276 #ifdef CONFIG_XPS 2277 netif_reset_xps_queues_gt(dev, 0); 2278 #endif 2279 dev->num_tc = 0; 2280 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 2281 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 2282 } 2283 EXPORT_SYMBOL(netdev_reset_tc); 2284 2285 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 2286 { 2287 if (tc >= dev->num_tc) 2288 return -EINVAL; 2289 2290 #ifdef CONFIG_XPS 2291 netif_reset_xps_queues(dev, offset, count); 2292 #endif 2293 dev->tc_to_txq[tc].count = count; 2294 dev->tc_to_txq[tc].offset = offset; 2295 return 0; 2296 } 2297 EXPORT_SYMBOL(netdev_set_tc_queue); 2298 2299 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 2300 { 2301 if (num_tc > TC_MAX_QUEUE) 2302 return -EINVAL; 2303 2304 #ifdef CONFIG_XPS 2305 netif_reset_xps_queues_gt(dev, 0); 2306 #endif 2307 dev->num_tc = num_tc; 2308 return 0; 2309 } 2310 EXPORT_SYMBOL(netdev_set_num_tc); 2311 2312 /* 2313 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2314 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed. 2315 */ 2316 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2317 { 2318 int rc; 2319 2320 if (txq < 1 || txq > dev->num_tx_queues) 2321 return -EINVAL; 2322 2323 if (dev->reg_state == NETREG_REGISTERED || 2324 dev->reg_state == NETREG_UNREGISTERING) { 2325 ASSERT_RTNL(); 2326 2327 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2328 txq); 2329 if (rc) 2330 return rc; 2331 2332 if (dev->num_tc) 2333 netif_setup_tc(dev, txq); 2334 2335 if (txq < dev->real_num_tx_queues) { 2336 qdisc_reset_all_tx_gt(dev, txq); 2337 #ifdef CONFIG_XPS 2338 netif_reset_xps_queues_gt(dev, txq); 2339 #endif 2340 } 2341 } 2342 2343 dev->real_num_tx_queues = txq; 2344 return 0; 2345 } 2346 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2347 2348 #ifdef CONFIG_SYSFS 2349 /** 2350 * netif_set_real_num_rx_queues - set actual number of RX queues used 2351 * @dev: Network device 2352 * @rxq: Actual number of RX queues 2353 * 2354 * This must be called either with the rtnl_lock held or before 2355 * registration of the net device. Returns 0 on success, or a 2356 * negative error code. If called before registration, it always 2357 * succeeds. 2358 */ 2359 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2360 { 2361 int rc; 2362 2363 if (rxq < 1 || rxq > dev->num_rx_queues) 2364 return -EINVAL; 2365 2366 if (dev->reg_state == NETREG_REGISTERED) { 2367 ASSERT_RTNL(); 2368 2369 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 2370 rxq); 2371 if (rc) 2372 return rc; 2373 } 2374 2375 dev->real_num_rx_queues = rxq; 2376 return 0; 2377 } 2378 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 2379 #endif 2380 2381 /** 2382 * netif_get_num_default_rss_queues - default number of RSS queues 2383 * 2384 * This routine should set an upper limit on the number of RSS queues 2385 * used by default by multiqueue devices. 2386 */ 2387 int netif_get_num_default_rss_queues(void) 2388 { 2389 return is_kdump_kernel() ? 2390 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 2391 } 2392 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 2393 2394 static void __netif_reschedule(struct Qdisc *q) 2395 { 2396 struct softnet_data *sd; 2397 unsigned long flags; 2398 2399 local_irq_save(flags); 2400 sd = this_cpu_ptr(&softnet_data); 2401 q->next_sched = NULL; 2402 *sd->output_queue_tailp = q; 2403 sd->output_queue_tailp = &q->next_sched; 2404 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2405 local_irq_restore(flags); 2406 } 2407 2408 void __netif_schedule(struct Qdisc *q) 2409 { 2410 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 2411 __netif_reschedule(q); 2412 } 2413 EXPORT_SYMBOL(__netif_schedule); 2414 2415 struct dev_kfree_skb_cb { 2416 enum skb_free_reason reason; 2417 }; 2418 2419 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 2420 { 2421 return (struct dev_kfree_skb_cb *)skb->cb; 2422 } 2423 2424 void netif_schedule_queue(struct netdev_queue *txq) 2425 { 2426 rcu_read_lock(); 2427 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) { 2428 struct Qdisc *q = rcu_dereference(txq->qdisc); 2429 2430 __netif_schedule(q); 2431 } 2432 rcu_read_unlock(); 2433 } 2434 EXPORT_SYMBOL(netif_schedule_queue); 2435 2436 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 2437 { 2438 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 2439 struct Qdisc *q; 2440 2441 rcu_read_lock(); 2442 q = rcu_dereference(dev_queue->qdisc); 2443 __netif_schedule(q); 2444 rcu_read_unlock(); 2445 } 2446 } 2447 EXPORT_SYMBOL(netif_tx_wake_queue); 2448 2449 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason) 2450 { 2451 unsigned long flags; 2452 2453 if (unlikely(!skb)) 2454 return; 2455 2456 if (likely(atomic_read(&skb->users) == 1)) { 2457 smp_rmb(); 2458 atomic_set(&skb->users, 0); 2459 } else if (likely(!atomic_dec_and_test(&skb->users))) { 2460 return; 2461 } 2462 get_kfree_skb_cb(skb)->reason = reason; 2463 local_irq_save(flags); 2464 skb->next = __this_cpu_read(softnet_data.completion_queue); 2465 __this_cpu_write(softnet_data.completion_queue, skb); 2466 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2467 local_irq_restore(flags); 2468 } 2469 EXPORT_SYMBOL(__dev_kfree_skb_irq); 2470 2471 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason) 2472 { 2473 if (in_irq() || irqs_disabled()) 2474 __dev_kfree_skb_irq(skb, reason); 2475 else 2476 dev_kfree_skb(skb); 2477 } 2478 EXPORT_SYMBOL(__dev_kfree_skb_any); 2479 2480 2481 /** 2482 * netif_device_detach - mark device as removed 2483 * @dev: network device 2484 * 2485 * Mark device as removed from system and therefore no longer available. 2486 */ 2487 void netif_device_detach(struct net_device *dev) 2488 { 2489 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 2490 netif_running(dev)) { 2491 netif_tx_stop_all_queues(dev); 2492 } 2493 } 2494 EXPORT_SYMBOL(netif_device_detach); 2495 2496 /** 2497 * netif_device_attach - mark device as attached 2498 * @dev: network device 2499 * 2500 * Mark device as attached from system and restart if needed. 2501 */ 2502 void netif_device_attach(struct net_device *dev) 2503 { 2504 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 2505 netif_running(dev)) { 2506 netif_tx_wake_all_queues(dev); 2507 __netdev_watchdog_up(dev); 2508 } 2509 } 2510 EXPORT_SYMBOL(netif_device_attach); 2511 2512 /* 2513 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 2514 * to be used as a distribution range. 2515 */ 2516 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb, 2517 unsigned int num_tx_queues) 2518 { 2519 u32 hash; 2520 u16 qoffset = 0; 2521 u16 qcount = num_tx_queues; 2522 2523 if (skb_rx_queue_recorded(skb)) { 2524 hash = skb_get_rx_queue(skb); 2525 while (unlikely(hash >= num_tx_queues)) 2526 hash -= num_tx_queues; 2527 return hash; 2528 } 2529 2530 if (dev->num_tc) { 2531 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 2532 2533 qoffset = dev->tc_to_txq[tc].offset; 2534 qcount = dev->tc_to_txq[tc].count; 2535 } 2536 2537 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; 2538 } 2539 EXPORT_SYMBOL(__skb_tx_hash); 2540 2541 static void skb_warn_bad_offload(const struct sk_buff *skb) 2542 { 2543 static const netdev_features_t null_features; 2544 struct net_device *dev = skb->dev; 2545 const char *name = ""; 2546 2547 if (!net_ratelimit()) 2548 return; 2549 2550 if (dev) { 2551 if (dev->dev.parent) 2552 name = dev_driver_string(dev->dev.parent); 2553 else 2554 name = netdev_name(dev); 2555 } 2556 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d " 2557 "gso_type=%d ip_summed=%d\n", 2558 name, dev ? &dev->features : &null_features, 2559 skb->sk ? &skb->sk->sk_route_caps : &null_features, 2560 skb->len, skb->data_len, skb_shinfo(skb)->gso_size, 2561 skb_shinfo(skb)->gso_type, skb->ip_summed); 2562 } 2563 2564 /* 2565 * Invalidate hardware checksum when packet is to be mangled, and 2566 * complete checksum manually on outgoing path. 2567 */ 2568 int skb_checksum_help(struct sk_buff *skb) 2569 { 2570 __wsum csum; 2571 int ret = 0, offset; 2572 2573 if (skb->ip_summed == CHECKSUM_COMPLETE) 2574 goto out_set_summed; 2575 2576 if (unlikely(skb_shinfo(skb)->gso_size)) { 2577 skb_warn_bad_offload(skb); 2578 return -EINVAL; 2579 } 2580 2581 /* Before computing a checksum, we should make sure no frag could 2582 * be modified by an external entity : checksum could be wrong. 2583 */ 2584 if (skb_has_shared_frag(skb)) { 2585 ret = __skb_linearize(skb); 2586 if (ret) 2587 goto out; 2588 } 2589 2590 offset = skb_checksum_start_offset(skb); 2591 BUG_ON(offset >= skb_headlen(skb)); 2592 csum = skb_checksum(skb, offset, skb->len - offset, 0); 2593 2594 offset += skb->csum_offset; 2595 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 2596 2597 if (skb_cloned(skb) && 2598 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 2599 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2600 if (ret) 2601 goto out; 2602 } 2603 2604 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0; 2605 out_set_summed: 2606 skb->ip_summed = CHECKSUM_NONE; 2607 out: 2608 return ret; 2609 } 2610 EXPORT_SYMBOL(skb_checksum_help); 2611 2612 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 2613 { 2614 __be16 type = skb->protocol; 2615 2616 /* Tunnel gso handlers can set protocol to ethernet. */ 2617 if (type == htons(ETH_P_TEB)) { 2618 struct ethhdr *eth; 2619 2620 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 2621 return 0; 2622 2623 eth = (struct ethhdr *)skb_mac_header(skb); 2624 type = eth->h_proto; 2625 } 2626 2627 return __vlan_get_protocol(skb, type, depth); 2628 } 2629 2630 /** 2631 * skb_mac_gso_segment - mac layer segmentation handler. 2632 * @skb: buffer to segment 2633 * @features: features for the output path (see dev->features) 2634 */ 2635 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 2636 netdev_features_t features) 2637 { 2638 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 2639 struct packet_offload *ptype; 2640 int vlan_depth = skb->mac_len; 2641 __be16 type = skb_network_protocol(skb, &vlan_depth); 2642 2643 if (unlikely(!type)) 2644 return ERR_PTR(-EINVAL); 2645 2646 __skb_pull(skb, vlan_depth); 2647 2648 rcu_read_lock(); 2649 list_for_each_entry_rcu(ptype, &offload_base, list) { 2650 if (ptype->type == type && ptype->callbacks.gso_segment) { 2651 segs = ptype->callbacks.gso_segment(skb, features); 2652 break; 2653 } 2654 } 2655 rcu_read_unlock(); 2656 2657 __skb_push(skb, skb->data - skb_mac_header(skb)); 2658 2659 return segs; 2660 } 2661 EXPORT_SYMBOL(skb_mac_gso_segment); 2662 2663 2664 /* openvswitch calls this on rx path, so we need a different check. 2665 */ 2666 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) 2667 { 2668 if (tx_path) 2669 return skb->ip_summed != CHECKSUM_PARTIAL && 2670 skb->ip_summed != CHECKSUM_NONE; 2671 2672 return skb->ip_summed == CHECKSUM_NONE; 2673 } 2674 2675 /** 2676 * __skb_gso_segment - Perform segmentation on skb. 2677 * @skb: buffer to segment 2678 * @features: features for the output path (see dev->features) 2679 * @tx_path: whether it is called in TX path 2680 * 2681 * This function segments the given skb and returns a list of segments. 2682 * 2683 * It may return NULL if the skb requires no segmentation. This is 2684 * only possible when GSO is used for verifying header integrity. 2685 * 2686 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb. 2687 */ 2688 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 2689 netdev_features_t features, bool tx_path) 2690 { 2691 struct sk_buff *segs; 2692 2693 if (unlikely(skb_needs_check(skb, tx_path))) { 2694 int err; 2695 2696 /* We're going to init ->check field in TCP or UDP header */ 2697 err = skb_cow_head(skb, 0); 2698 if (err < 0) 2699 return ERR_PTR(err); 2700 } 2701 2702 /* Only report GSO partial support if it will enable us to 2703 * support segmentation on this frame without needing additional 2704 * work. 2705 */ 2706 if (features & NETIF_F_GSO_PARTIAL) { 2707 netdev_features_t partial_features = NETIF_F_GSO_ROBUST; 2708 struct net_device *dev = skb->dev; 2709 2710 partial_features |= dev->features & dev->gso_partial_features; 2711 if (!skb_gso_ok(skb, features | partial_features)) 2712 features &= ~NETIF_F_GSO_PARTIAL; 2713 } 2714 2715 BUILD_BUG_ON(SKB_SGO_CB_OFFSET + 2716 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb)); 2717 2718 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); 2719 SKB_GSO_CB(skb)->encap_level = 0; 2720 2721 skb_reset_mac_header(skb); 2722 skb_reset_mac_len(skb); 2723 2724 segs = skb_mac_gso_segment(skb, features); 2725 2726 if (unlikely(skb_needs_check(skb, tx_path))) 2727 skb_warn_bad_offload(skb); 2728 2729 return segs; 2730 } 2731 EXPORT_SYMBOL(__skb_gso_segment); 2732 2733 /* Take action when hardware reception checksum errors are detected. */ 2734 #ifdef CONFIG_BUG 2735 void netdev_rx_csum_fault(struct net_device *dev) 2736 { 2737 if (net_ratelimit()) { 2738 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 2739 dump_stack(); 2740 } 2741 } 2742 EXPORT_SYMBOL(netdev_rx_csum_fault); 2743 #endif 2744 2745 /* Actually, we should eliminate this check as soon as we know, that: 2746 * 1. IOMMU is present and allows to map all the memory. 2747 * 2. No high memory really exists on this machine. 2748 */ 2749 2750 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 2751 { 2752 #ifdef CONFIG_HIGHMEM 2753 int i; 2754 2755 if (!(dev->features & NETIF_F_HIGHDMA)) { 2756 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2757 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2758 2759 if (PageHighMem(skb_frag_page(frag))) 2760 return 1; 2761 } 2762 } 2763 2764 if (PCI_DMA_BUS_IS_PHYS) { 2765 struct device *pdev = dev->dev.parent; 2766 2767 if (!pdev) 2768 return 0; 2769 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2770 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2771 dma_addr_t addr = page_to_phys(skb_frag_page(frag)); 2772 2773 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask) 2774 return 1; 2775 } 2776 } 2777 #endif 2778 return 0; 2779 } 2780 2781 /* If MPLS offload request, verify we are testing hardware MPLS features 2782 * instead of standard features for the netdev. 2783 */ 2784 #if IS_ENABLED(CONFIG_NET_MPLS_GSO) 2785 static netdev_features_t net_mpls_features(struct sk_buff *skb, 2786 netdev_features_t features, 2787 __be16 type) 2788 { 2789 if (eth_p_mpls(type)) 2790 features &= skb->dev->mpls_features; 2791 2792 return features; 2793 } 2794 #else 2795 static netdev_features_t net_mpls_features(struct sk_buff *skb, 2796 netdev_features_t features, 2797 __be16 type) 2798 { 2799 return features; 2800 } 2801 #endif 2802 2803 static netdev_features_t harmonize_features(struct sk_buff *skb, 2804 netdev_features_t features) 2805 { 2806 int tmp; 2807 __be16 type; 2808 2809 type = skb_network_protocol(skb, &tmp); 2810 features = net_mpls_features(skb, features, type); 2811 2812 if (skb->ip_summed != CHECKSUM_NONE && 2813 !can_checksum_protocol(features, type)) { 2814 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 2815 } 2816 if (illegal_highdma(skb->dev, skb)) 2817 features &= ~NETIF_F_SG; 2818 2819 return features; 2820 } 2821 2822 netdev_features_t passthru_features_check(struct sk_buff *skb, 2823 struct net_device *dev, 2824 netdev_features_t features) 2825 { 2826 return features; 2827 } 2828 EXPORT_SYMBOL(passthru_features_check); 2829 2830 static netdev_features_t dflt_features_check(const struct sk_buff *skb, 2831 struct net_device *dev, 2832 netdev_features_t features) 2833 { 2834 return vlan_features_check(skb, features); 2835 } 2836 2837 static netdev_features_t gso_features_check(const struct sk_buff *skb, 2838 struct net_device *dev, 2839 netdev_features_t features) 2840 { 2841 u16 gso_segs = skb_shinfo(skb)->gso_segs; 2842 2843 if (gso_segs > dev->gso_max_segs) 2844 return features & ~NETIF_F_GSO_MASK; 2845 2846 /* Support for GSO partial features requires software 2847 * intervention before we can actually process the packets 2848 * so we need to strip support for any partial features now 2849 * and we can pull them back in after we have partially 2850 * segmented the frame. 2851 */ 2852 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL)) 2853 features &= ~dev->gso_partial_features; 2854 2855 /* Make sure to clear the IPv4 ID mangling feature if the 2856 * IPv4 header has the potential to be fragmented. 2857 */ 2858 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { 2859 struct iphdr *iph = skb->encapsulation ? 2860 inner_ip_hdr(skb) : ip_hdr(skb); 2861 2862 if (!(iph->frag_off & htons(IP_DF))) 2863 features &= ~NETIF_F_TSO_MANGLEID; 2864 } 2865 2866 return features; 2867 } 2868 2869 netdev_features_t netif_skb_features(struct sk_buff *skb) 2870 { 2871 struct net_device *dev = skb->dev; 2872 netdev_features_t features = dev->features; 2873 2874 if (skb_is_gso(skb)) 2875 features = gso_features_check(skb, dev, features); 2876 2877 /* If encapsulation offload request, verify we are testing 2878 * hardware encapsulation features instead of standard 2879 * features for the netdev 2880 */ 2881 if (skb->encapsulation) 2882 features &= dev->hw_enc_features; 2883 2884 if (skb_vlan_tagged(skb)) 2885 features = netdev_intersect_features(features, 2886 dev->vlan_features | 2887 NETIF_F_HW_VLAN_CTAG_TX | 2888 NETIF_F_HW_VLAN_STAG_TX); 2889 2890 if (dev->netdev_ops->ndo_features_check) 2891 features &= dev->netdev_ops->ndo_features_check(skb, dev, 2892 features); 2893 else 2894 features &= dflt_features_check(skb, dev, features); 2895 2896 return harmonize_features(skb, features); 2897 } 2898 EXPORT_SYMBOL(netif_skb_features); 2899 2900 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 2901 struct netdev_queue *txq, bool more) 2902 { 2903 unsigned int len; 2904 int rc; 2905 2906 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all)) 2907 dev_queue_xmit_nit(skb, dev); 2908 2909 len = skb->len; 2910 trace_net_dev_start_xmit(skb, dev); 2911 rc = netdev_start_xmit(skb, dev, txq, more); 2912 trace_net_dev_xmit(skb, rc, dev, len); 2913 2914 return rc; 2915 } 2916 2917 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 2918 struct netdev_queue *txq, int *ret) 2919 { 2920 struct sk_buff *skb = first; 2921 int rc = NETDEV_TX_OK; 2922 2923 while (skb) { 2924 struct sk_buff *next = skb->next; 2925 2926 skb->next = NULL; 2927 rc = xmit_one(skb, dev, txq, next != NULL); 2928 if (unlikely(!dev_xmit_complete(rc))) { 2929 skb->next = next; 2930 goto out; 2931 } 2932 2933 skb = next; 2934 if (netif_xmit_stopped(txq) && skb) { 2935 rc = NETDEV_TX_BUSY; 2936 break; 2937 } 2938 } 2939 2940 out: 2941 *ret = rc; 2942 return skb; 2943 } 2944 2945 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 2946 netdev_features_t features) 2947 { 2948 if (skb_vlan_tag_present(skb) && 2949 !vlan_hw_offload_capable(features, skb->vlan_proto)) 2950 skb = __vlan_hwaccel_push_inside(skb); 2951 return skb; 2952 } 2953 2954 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev) 2955 { 2956 netdev_features_t features; 2957 2958 features = netif_skb_features(skb); 2959 skb = validate_xmit_vlan(skb, features); 2960 if (unlikely(!skb)) 2961 goto out_null; 2962 2963 if (netif_needs_gso(skb, features)) { 2964 struct sk_buff *segs; 2965 2966 segs = skb_gso_segment(skb, features); 2967 if (IS_ERR(segs)) { 2968 goto out_kfree_skb; 2969 } else if (segs) { 2970 consume_skb(skb); 2971 skb = segs; 2972 } 2973 } else { 2974 if (skb_needs_linearize(skb, features) && 2975 __skb_linearize(skb)) 2976 goto out_kfree_skb; 2977 2978 /* If packet is not checksummed and device does not 2979 * support checksumming for this protocol, complete 2980 * checksumming here. 2981 */ 2982 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2983 if (skb->encapsulation) 2984 skb_set_inner_transport_header(skb, 2985 skb_checksum_start_offset(skb)); 2986 else 2987 skb_set_transport_header(skb, 2988 skb_checksum_start_offset(skb)); 2989 if (!(features & NETIF_F_CSUM_MASK) && 2990 skb_checksum_help(skb)) 2991 goto out_kfree_skb; 2992 } 2993 } 2994 2995 return skb; 2996 2997 out_kfree_skb: 2998 kfree_skb(skb); 2999 out_null: 3000 atomic_long_inc(&dev->tx_dropped); 3001 return NULL; 3002 } 3003 3004 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev) 3005 { 3006 struct sk_buff *next, *head = NULL, *tail; 3007 3008 for (; skb != NULL; skb = next) { 3009 next = skb->next; 3010 skb->next = NULL; 3011 3012 /* in case skb wont be segmented, point to itself */ 3013 skb->prev = skb; 3014 3015 skb = validate_xmit_skb(skb, dev); 3016 if (!skb) 3017 continue; 3018 3019 if (!head) 3020 head = skb; 3021 else 3022 tail->next = skb; 3023 /* If skb was segmented, skb->prev points to 3024 * the last segment. If not, it still contains skb. 3025 */ 3026 tail = skb->prev; 3027 } 3028 return head; 3029 } 3030 EXPORT_SYMBOL_GPL(validate_xmit_skb_list); 3031 3032 static void qdisc_pkt_len_init(struct sk_buff *skb) 3033 { 3034 const struct skb_shared_info *shinfo = skb_shinfo(skb); 3035 3036 qdisc_skb_cb(skb)->pkt_len = skb->len; 3037 3038 /* To get more precise estimation of bytes sent on wire, 3039 * we add to pkt_len the headers size of all segments 3040 */ 3041 if (shinfo->gso_size) { 3042 unsigned int hdr_len; 3043 u16 gso_segs = shinfo->gso_segs; 3044 3045 /* mac layer + network layer */ 3046 hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 3047 3048 /* + transport layer */ 3049 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 3050 hdr_len += tcp_hdrlen(skb); 3051 else 3052 hdr_len += sizeof(struct udphdr); 3053 3054 if (shinfo->gso_type & SKB_GSO_DODGY) 3055 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 3056 shinfo->gso_size); 3057 3058 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 3059 } 3060 } 3061 3062 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 3063 struct net_device *dev, 3064 struct netdev_queue *txq) 3065 { 3066 spinlock_t *root_lock = qdisc_lock(q); 3067 struct sk_buff *to_free = NULL; 3068 bool contended; 3069 int rc; 3070 3071 qdisc_calculate_pkt_len(skb, q); 3072 /* 3073 * Heuristic to force contended enqueues to serialize on a 3074 * separate lock before trying to get qdisc main lock. 3075 * This permits qdisc->running owner to get the lock more 3076 * often and dequeue packets faster. 3077 */ 3078 contended = qdisc_is_running(q); 3079 if (unlikely(contended)) 3080 spin_lock(&q->busylock); 3081 3082 spin_lock(root_lock); 3083 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 3084 __qdisc_drop(skb, &to_free); 3085 rc = NET_XMIT_DROP; 3086 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 3087 qdisc_run_begin(q)) { 3088 /* 3089 * This is a work-conserving queue; there are no old skbs 3090 * waiting to be sent out; and the qdisc is not running - 3091 * xmit the skb directly. 3092 */ 3093 3094 qdisc_bstats_update(q, skb); 3095 3096 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 3097 if (unlikely(contended)) { 3098 spin_unlock(&q->busylock); 3099 contended = false; 3100 } 3101 __qdisc_run(q); 3102 } else 3103 qdisc_run_end(q); 3104 3105 rc = NET_XMIT_SUCCESS; 3106 } else { 3107 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3108 if (qdisc_run_begin(q)) { 3109 if (unlikely(contended)) { 3110 spin_unlock(&q->busylock); 3111 contended = false; 3112 } 3113 __qdisc_run(q); 3114 } 3115 } 3116 spin_unlock(root_lock); 3117 if (unlikely(to_free)) 3118 kfree_skb_list(to_free); 3119 if (unlikely(contended)) 3120 spin_unlock(&q->busylock); 3121 return rc; 3122 } 3123 3124 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 3125 static void skb_update_prio(struct sk_buff *skb) 3126 { 3127 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap); 3128 3129 if (!skb->priority && skb->sk && map) { 3130 unsigned int prioidx = 3131 sock_cgroup_prioidx(&skb->sk->sk_cgrp_data); 3132 3133 if (prioidx < map->priomap_len) 3134 skb->priority = map->priomap[prioidx]; 3135 } 3136 } 3137 #else 3138 #define skb_update_prio(skb) 3139 #endif 3140 3141 DEFINE_PER_CPU(int, xmit_recursion); 3142 EXPORT_SYMBOL(xmit_recursion); 3143 3144 /** 3145 * dev_loopback_xmit - loop back @skb 3146 * @net: network namespace this loopback is happening in 3147 * @sk: sk needed to be a netfilter okfn 3148 * @skb: buffer to transmit 3149 */ 3150 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) 3151 { 3152 skb_reset_mac_header(skb); 3153 __skb_pull(skb, skb_network_offset(skb)); 3154 skb->pkt_type = PACKET_LOOPBACK; 3155 skb->ip_summed = CHECKSUM_UNNECESSARY; 3156 WARN_ON(!skb_dst(skb)); 3157 skb_dst_force(skb); 3158 netif_rx_ni(skb); 3159 return 0; 3160 } 3161 EXPORT_SYMBOL(dev_loopback_xmit); 3162 3163 #ifdef CONFIG_NET_EGRESS 3164 static struct sk_buff * 3165 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 3166 { 3167 struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list); 3168 struct tcf_result cl_res; 3169 3170 if (!cl) 3171 return skb; 3172 3173 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */ 3174 qdisc_bstats_cpu_update(cl->q, skb); 3175 3176 switch (tc_classify(skb, cl, &cl_res, false)) { 3177 case TC_ACT_OK: 3178 case TC_ACT_RECLASSIFY: 3179 skb->tc_index = TC_H_MIN(cl_res.classid); 3180 break; 3181 case TC_ACT_SHOT: 3182 qdisc_qstats_cpu_drop(cl->q); 3183 *ret = NET_XMIT_DROP; 3184 kfree_skb(skb); 3185 return NULL; 3186 case TC_ACT_STOLEN: 3187 case TC_ACT_QUEUED: 3188 *ret = NET_XMIT_SUCCESS; 3189 consume_skb(skb); 3190 return NULL; 3191 case TC_ACT_REDIRECT: 3192 /* No need to push/pop skb's mac_header here on egress! */ 3193 skb_do_redirect(skb); 3194 *ret = NET_XMIT_SUCCESS; 3195 return NULL; 3196 default: 3197 break; 3198 } 3199 3200 return skb; 3201 } 3202 #endif /* CONFIG_NET_EGRESS */ 3203 3204 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb) 3205 { 3206 #ifdef CONFIG_XPS 3207 struct xps_dev_maps *dev_maps; 3208 struct xps_map *map; 3209 int queue_index = -1; 3210 3211 rcu_read_lock(); 3212 dev_maps = rcu_dereference(dev->xps_maps); 3213 if (dev_maps) { 3214 unsigned int tci = skb->sender_cpu - 1; 3215 3216 if (dev->num_tc) { 3217 tci *= dev->num_tc; 3218 tci += netdev_get_prio_tc_map(dev, skb->priority); 3219 } 3220 3221 map = rcu_dereference(dev_maps->cpu_map[tci]); 3222 if (map) { 3223 if (map->len == 1) 3224 queue_index = map->queues[0]; 3225 else 3226 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb), 3227 map->len)]; 3228 if (unlikely(queue_index >= dev->real_num_tx_queues)) 3229 queue_index = -1; 3230 } 3231 } 3232 rcu_read_unlock(); 3233 3234 return queue_index; 3235 #else 3236 return -1; 3237 #endif 3238 } 3239 3240 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb) 3241 { 3242 struct sock *sk = skb->sk; 3243 int queue_index = sk_tx_queue_get(sk); 3244 3245 if (queue_index < 0 || skb->ooo_okay || 3246 queue_index >= dev->real_num_tx_queues) { 3247 int new_index = get_xps_queue(dev, skb); 3248 3249 if (new_index < 0) 3250 new_index = skb_tx_hash(dev, skb); 3251 3252 if (queue_index != new_index && sk && 3253 sk_fullsock(sk) && 3254 rcu_access_pointer(sk->sk_dst_cache)) 3255 sk_tx_queue_set(sk, new_index); 3256 3257 queue_index = new_index; 3258 } 3259 3260 return queue_index; 3261 } 3262 3263 struct netdev_queue *netdev_pick_tx(struct net_device *dev, 3264 struct sk_buff *skb, 3265 void *accel_priv) 3266 { 3267 int queue_index = 0; 3268 3269 #ifdef CONFIG_XPS 3270 u32 sender_cpu = skb->sender_cpu - 1; 3271 3272 if (sender_cpu >= (u32)NR_CPUS) 3273 skb->sender_cpu = raw_smp_processor_id() + 1; 3274 #endif 3275 3276 if (dev->real_num_tx_queues != 1) { 3277 const struct net_device_ops *ops = dev->netdev_ops; 3278 3279 if (ops->ndo_select_queue) 3280 queue_index = ops->ndo_select_queue(dev, skb, accel_priv, 3281 __netdev_pick_tx); 3282 else 3283 queue_index = __netdev_pick_tx(dev, skb); 3284 3285 if (!accel_priv) 3286 queue_index = netdev_cap_txqueue(dev, queue_index); 3287 } 3288 3289 skb_set_queue_mapping(skb, queue_index); 3290 return netdev_get_tx_queue(dev, queue_index); 3291 } 3292 3293 /** 3294 * __dev_queue_xmit - transmit a buffer 3295 * @skb: buffer to transmit 3296 * @accel_priv: private data used for L2 forwarding offload 3297 * 3298 * Queue a buffer for transmission to a network device. The caller must 3299 * have set the device and priority and built the buffer before calling 3300 * this function. The function can be called from an interrupt. 3301 * 3302 * A negative errno code is returned on a failure. A success does not 3303 * guarantee the frame will be transmitted as it may be dropped due 3304 * to congestion or traffic shaping. 3305 * 3306 * ----------------------------------------------------------------------------------- 3307 * I notice this method can also return errors from the queue disciplines, 3308 * including NET_XMIT_DROP, which is a positive value. So, errors can also 3309 * be positive. 3310 * 3311 * Regardless of the return value, the skb is consumed, so it is currently 3312 * difficult to retry a send to this method. (You can bump the ref count 3313 * before sending to hold a reference for retry if you are careful.) 3314 * 3315 * When calling this method, interrupts MUST be enabled. This is because 3316 * the BH enable code must have IRQs enabled so that it will not deadlock. 3317 * --BLG 3318 */ 3319 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv) 3320 { 3321 struct net_device *dev = skb->dev; 3322 struct netdev_queue *txq; 3323 struct Qdisc *q; 3324 int rc = -ENOMEM; 3325 3326 skb_reset_mac_header(skb); 3327 3328 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP)) 3329 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED); 3330 3331 /* Disable soft irqs for various locks below. Also 3332 * stops preemption for RCU. 3333 */ 3334 rcu_read_lock_bh(); 3335 3336 skb_update_prio(skb); 3337 3338 qdisc_pkt_len_init(skb); 3339 #ifdef CONFIG_NET_CLS_ACT 3340 skb->tc_at_ingress = 0; 3341 # ifdef CONFIG_NET_EGRESS 3342 if (static_key_false(&egress_needed)) { 3343 skb = sch_handle_egress(skb, &rc, dev); 3344 if (!skb) 3345 goto out; 3346 } 3347 # endif 3348 #endif 3349 /* If device/qdisc don't need skb->dst, release it right now while 3350 * its hot in this cpu cache. 3351 */ 3352 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 3353 skb_dst_drop(skb); 3354 else 3355 skb_dst_force(skb); 3356 3357 txq = netdev_pick_tx(dev, skb, accel_priv); 3358 q = rcu_dereference_bh(txq->qdisc); 3359 3360 trace_net_dev_queue(skb); 3361 if (q->enqueue) { 3362 rc = __dev_xmit_skb(skb, q, dev, txq); 3363 goto out; 3364 } 3365 3366 /* The device has no queue. Common case for software devices: 3367 * loopback, all the sorts of tunnels... 3368 3369 * Really, it is unlikely that netif_tx_lock protection is necessary 3370 * here. (f.e. loopback and IP tunnels are clean ignoring statistics 3371 * counters.) 3372 * However, it is possible, that they rely on protection 3373 * made by us here. 3374 3375 * Check this and shot the lock. It is not prone from deadlocks. 3376 *Either shot noqueue qdisc, it is even simpler 8) 3377 */ 3378 if (dev->flags & IFF_UP) { 3379 int cpu = smp_processor_id(); /* ok because BHs are off */ 3380 3381 if (txq->xmit_lock_owner != cpu) { 3382 if (unlikely(__this_cpu_read(xmit_recursion) > 3383 XMIT_RECURSION_LIMIT)) 3384 goto recursion_alert; 3385 3386 skb = validate_xmit_skb(skb, dev); 3387 if (!skb) 3388 goto out; 3389 3390 HARD_TX_LOCK(dev, txq, cpu); 3391 3392 if (!netif_xmit_stopped(txq)) { 3393 __this_cpu_inc(xmit_recursion); 3394 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 3395 __this_cpu_dec(xmit_recursion); 3396 if (dev_xmit_complete(rc)) { 3397 HARD_TX_UNLOCK(dev, txq); 3398 goto out; 3399 } 3400 } 3401 HARD_TX_UNLOCK(dev, txq); 3402 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 3403 dev->name); 3404 } else { 3405 /* Recursion is detected! It is possible, 3406 * unfortunately 3407 */ 3408 recursion_alert: 3409 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 3410 dev->name); 3411 } 3412 } 3413 3414 rc = -ENETDOWN; 3415 rcu_read_unlock_bh(); 3416 3417 atomic_long_inc(&dev->tx_dropped); 3418 kfree_skb_list(skb); 3419 return rc; 3420 out: 3421 rcu_read_unlock_bh(); 3422 return rc; 3423 } 3424 3425 int dev_queue_xmit(struct sk_buff *skb) 3426 { 3427 return __dev_queue_xmit(skb, NULL); 3428 } 3429 EXPORT_SYMBOL(dev_queue_xmit); 3430 3431 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv) 3432 { 3433 return __dev_queue_xmit(skb, accel_priv); 3434 } 3435 EXPORT_SYMBOL(dev_queue_xmit_accel); 3436 3437 3438 /************************************************************************* 3439 * Receiver routines 3440 *************************************************************************/ 3441 3442 int netdev_max_backlog __read_mostly = 1000; 3443 EXPORT_SYMBOL(netdev_max_backlog); 3444 3445 int netdev_tstamp_prequeue __read_mostly = 1; 3446 int netdev_budget __read_mostly = 300; 3447 int weight_p __read_mostly = 64; /* old backlog weight */ 3448 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */ 3449 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */ 3450 int dev_rx_weight __read_mostly = 64; 3451 int dev_tx_weight __read_mostly = 64; 3452 3453 /* Called with irq disabled */ 3454 static inline void ____napi_schedule(struct softnet_data *sd, 3455 struct napi_struct *napi) 3456 { 3457 list_add_tail(&napi->poll_list, &sd->poll_list); 3458 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3459 } 3460 3461 #ifdef CONFIG_RPS 3462 3463 /* One global table that all flow-based protocols share. */ 3464 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 3465 EXPORT_SYMBOL(rps_sock_flow_table); 3466 u32 rps_cpu_mask __read_mostly; 3467 EXPORT_SYMBOL(rps_cpu_mask); 3468 3469 struct static_key rps_needed __read_mostly; 3470 EXPORT_SYMBOL(rps_needed); 3471 struct static_key rfs_needed __read_mostly; 3472 EXPORT_SYMBOL(rfs_needed); 3473 3474 static struct rps_dev_flow * 3475 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3476 struct rps_dev_flow *rflow, u16 next_cpu) 3477 { 3478 if (next_cpu < nr_cpu_ids) { 3479 #ifdef CONFIG_RFS_ACCEL 3480 struct netdev_rx_queue *rxqueue; 3481 struct rps_dev_flow_table *flow_table; 3482 struct rps_dev_flow *old_rflow; 3483 u32 flow_id; 3484 u16 rxq_index; 3485 int rc; 3486 3487 /* Should we steer this flow to a different hardware queue? */ 3488 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 3489 !(dev->features & NETIF_F_NTUPLE)) 3490 goto out; 3491 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 3492 if (rxq_index == skb_get_rx_queue(skb)) 3493 goto out; 3494 3495 rxqueue = dev->_rx + rxq_index; 3496 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3497 if (!flow_table) 3498 goto out; 3499 flow_id = skb_get_hash(skb) & flow_table->mask; 3500 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 3501 rxq_index, flow_id); 3502 if (rc < 0) 3503 goto out; 3504 old_rflow = rflow; 3505 rflow = &flow_table->flows[flow_id]; 3506 rflow->filter = rc; 3507 if (old_rflow->filter == rflow->filter) 3508 old_rflow->filter = RPS_NO_FILTER; 3509 out: 3510 #endif 3511 rflow->last_qtail = 3512 per_cpu(softnet_data, next_cpu).input_queue_head; 3513 } 3514 3515 rflow->cpu = next_cpu; 3516 return rflow; 3517 } 3518 3519 /* 3520 * get_rps_cpu is called from netif_receive_skb and returns the target 3521 * CPU from the RPS map of the receiving queue for a given skb. 3522 * rcu_read_lock must be held on entry. 3523 */ 3524 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3525 struct rps_dev_flow **rflowp) 3526 { 3527 const struct rps_sock_flow_table *sock_flow_table; 3528 struct netdev_rx_queue *rxqueue = dev->_rx; 3529 struct rps_dev_flow_table *flow_table; 3530 struct rps_map *map; 3531 int cpu = -1; 3532 u32 tcpu; 3533 u32 hash; 3534 3535 if (skb_rx_queue_recorded(skb)) { 3536 u16 index = skb_get_rx_queue(skb); 3537 3538 if (unlikely(index >= dev->real_num_rx_queues)) { 3539 WARN_ONCE(dev->real_num_rx_queues > 1, 3540 "%s received packet on queue %u, but number " 3541 "of RX queues is %u\n", 3542 dev->name, index, dev->real_num_rx_queues); 3543 goto done; 3544 } 3545 rxqueue += index; 3546 } 3547 3548 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 3549 3550 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3551 map = rcu_dereference(rxqueue->rps_map); 3552 if (!flow_table && !map) 3553 goto done; 3554 3555 skb_reset_network_header(skb); 3556 hash = skb_get_hash(skb); 3557 if (!hash) 3558 goto done; 3559 3560 sock_flow_table = rcu_dereference(rps_sock_flow_table); 3561 if (flow_table && sock_flow_table) { 3562 struct rps_dev_flow *rflow; 3563 u32 next_cpu; 3564 u32 ident; 3565 3566 /* First check into global flow table if there is a match */ 3567 ident = sock_flow_table->ents[hash & sock_flow_table->mask]; 3568 if ((ident ^ hash) & ~rps_cpu_mask) 3569 goto try_rps; 3570 3571 next_cpu = ident & rps_cpu_mask; 3572 3573 /* OK, now we know there is a match, 3574 * we can look at the local (per receive queue) flow table 3575 */ 3576 rflow = &flow_table->flows[hash & flow_table->mask]; 3577 tcpu = rflow->cpu; 3578 3579 /* 3580 * If the desired CPU (where last recvmsg was done) is 3581 * different from current CPU (one in the rx-queue flow 3582 * table entry), switch if one of the following holds: 3583 * - Current CPU is unset (>= nr_cpu_ids). 3584 * - Current CPU is offline. 3585 * - The current CPU's queue tail has advanced beyond the 3586 * last packet that was enqueued using this table entry. 3587 * This guarantees that all previous packets for the flow 3588 * have been dequeued, thus preserving in order delivery. 3589 */ 3590 if (unlikely(tcpu != next_cpu) && 3591 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 3592 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 3593 rflow->last_qtail)) >= 0)) { 3594 tcpu = next_cpu; 3595 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 3596 } 3597 3598 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 3599 *rflowp = rflow; 3600 cpu = tcpu; 3601 goto done; 3602 } 3603 } 3604 3605 try_rps: 3606 3607 if (map) { 3608 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 3609 if (cpu_online(tcpu)) { 3610 cpu = tcpu; 3611 goto done; 3612 } 3613 } 3614 3615 done: 3616 return cpu; 3617 } 3618 3619 #ifdef CONFIG_RFS_ACCEL 3620 3621 /** 3622 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 3623 * @dev: Device on which the filter was set 3624 * @rxq_index: RX queue index 3625 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 3626 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 3627 * 3628 * Drivers that implement ndo_rx_flow_steer() should periodically call 3629 * this function for each installed filter and remove the filters for 3630 * which it returns %true. 3631 */ 3632 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 3633 u32 flow_id, u16 filter_id) 3634 { 3635 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 3636 struct rps_dev_flow_table *flow_table; 3637 struct rps_dev_flow *rflow; 3638 bool expire = true; 3639 unsigned int cpu; 3640 3641 rcu_read_lock(); 3642 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3643 if (flow_table && flow_id <= flow_table->mask) { 3644 rflow = &flow_table->flows[flow_id]; 3645 cpu = ACCESS_ONCE(rflow->cpu); 3646 if (rflow->filter == filter_id && cpu < nr_cpu_ids && 3647 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 3648 rflow->last_qtail) < 3649 (int)(10 * flow_table->mask))) 3650 expire = false; 3651 } 3652 rcu_read_unlock(); 3653 return expire; 3654 } 3655 EXPORT_SYMBOL(rps_may_expire_flow); 3656 3657 #endif /* CONFIG_RFS_ACCEL */ 3658 3659 /* Called from hardirq (IPI) context */ 3660 static void rps_trigger_softirq(void *data) 3661 { 3662 struct softnet_data *sd = data; 3663 3664 ____napi_schedule(sd, &sd->backlog); 3665 sd->received_rps++; 3666 } 3667 3668 #endif /* CONFIG_RPS */ 3669 3670 /* 3671 * Check if this softnet_data structure is another cpu one 3672 * If yes, queue it to our IPI list and return 1 3673 * If no, return 0 3674 */ 3675 static int rps_ipi_queued(struct softnet_data *sd) 3676 { 3677 #ifdef CONFIG_RPS 3678 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 3679 3680 if (sd != mysd) { 3681 sd->rps_ipi_next = mysd->rps_ipi_list; 3682 mysd->rps_ipi_list = sd; 3683 3684 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3685 return 1; 3686 } 3687 #endif /* CONFIG_RPS */ 3688 return 0; 3689 } 3690 3691 #ifdef CONFIG_NET_FLOW_LIMIT 3692 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 3693 #endif 3694 3695 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 3696 { 3697 #ifdef CONFIG_NET_FLOW_LIMIT 3698 struct sd_flow_limit *fl; 3699 struct softnet_data *sd; 3700 unsigned int old_flow, new_flow; 3701 3702 if (qlen < (netdev_max_backlog >> 1)) 3703 return false; 3704 3705 sd = this_cpu_ptr(&softnet_data); 3706 3707 rcu_read_lock(); 3708 fl = rcu_dereference(sd->flow_limit); 3709 if (fl) { 3710 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); 3711 old_flow = fl->history[fl->history_head]; 3712 fl->history[fl->history_head] = new_flow; 3713 3714 fl->history_head++; 3715 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 3716 3717 if (likely(fl->buckets[old_flow])) 3718 fl->buckets[old_flow]--; 3719 3720 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 3721 fl->count++; 3722 rcu_read_unlock(); 3723 return true; 3724 } 3725 } 3726 rcu_read_unlock(); 3727 #endif 3728 return false; 3729 } 3730 3731 /* 3732 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 3733 * queue (may be a remote CPU queue). 3734 */ 3735 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 3736 unsigned int *qtail) 3737 { 3738 struct softnet_data *sd; 3739 unsigned long flags; 3740 unsigned int qlen; 3741 3742 sd = &per_cpu(softnet_data, cpu); 3743 3744 local_irq_save(flags); 3745 3746 rps_lock(sd); 3747 if (!netif_running(skb->dev)) 3748 goto drop; 3749 qlen = skb_queue_len(&sd->input_pkt_queue); 3750 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) { 3751 if (qlen) { 3752 enqueue: 3753 __skb_queue_tail(&sd->input_pkt_queue, skb); 3754 input_queue_tail_incr_save(sd, qtail); 3755 rps_unlock(sd); 3756 local_irq_restore(flags); 3757 return NET_RX_SUCCESS; 3758 } 3759 3760 /* Schedule NAPI for backlog device 3761 * We can use non atomic operation since we own the queue lock 3762 */ 3763 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 3764 if (!rps_ipi_queued(sd)) 3765 ____napi_schedule(sd, &sd->backlog); 3766 } 3767 goto enqueue; 3768 } 3769 3770 drop: 3771 sd->dropped++; 3772 rps_unlock(sd); 3773 3774 local_irq_restore(flags); 3775 3776 atomic_long_inc(&skb->dev->rx_dropped); 3777 kfree_skb(skb); 3778 return NET_RX_DROP; 3779 } 3780 3781 static int netif_rx_internal(struct sk_buff *skb) 3782 { 3783 int ret; 3784 3785 net_timestamp_check(netdev_tstamp_prequeue, skb); 3786 3787 trace_netif_rx(skb); 3788 #ifdef CONFIG_RPS 3789 if (static_key_false(&rps_needed)) { 3790 struct rps_dev_flow voidflow, *rflow = &voidflow; 3791 int cpu; 3792 3793 preempt_disable(); 3794 rcu_read_lock(); 3795 3796 cpu = get_rps_cpu(skb->dev, skb, &rflow); 3797 if (cpu < 0) 3798 cpu = smp_processor_id(); 3799 3800 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3801 3802 rcu_read_unlock(); 3803 preempt_enable(); 3804 } else 3805 #endif 3806 { 3807 unsigned int qtail; 3808 3809 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 3810 put_cpu(); 3811 } 3812 return ret; 3813 } 3814 3815 /** 3816 * netif_rx - post buffer to the network code 3817 * @skb: buffer to post 3818 * 3819 * This function receives a packet from a device driver and queues it for 3820 * the upper (protocol) levels to process. It always succeeds. The buffer 3821 * may be dropped during processing for congestion control or by the 3822 * protocol layers. 3823 * 3824 * return values: 3825 * NET_RX_SUCCESS (no congestion) 3826 * NET_RX_DROP (packet was dropped) 3827 * 3828 */ 3829 3830 int netif_rx(struct sk_buff *skb) 3831 { 3832 trace_netif_rx_entry(skb); 3833 3834 return netif_rx_internal(skb); 3835 } 3836 EXPORT_SYMBOL(netif_rx); 3837 3838 int netif_rx_ni(struct sk_buff *skb) 3839 { 3840 int err; 3841 3842 trace_netif_rx_ni_entry(skb); 3843 3844 preempt_disable(); 3845 err = netif_rx_internal(skb); 3846 if (local_softirq_pending()) 3847 do_softirq(); 3848 preempt_enable(); 3849 3850 return err; 3851 } 3852 EXPORT_SYMBOL(netif_rx_ni); 3853 3854 static __latent_entropy void net_tx_action(struct softirq_action *h) 3855 { 3856 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 3857 3858 if (sd->completion_queue) { 3859 struct sk_buff *clist; 3860 3861 local_irq_disable(); 3862 clist = sd->completion_queue; 3863 sd->completion_queue = NULL; 3864 local_irq_enable(); 3865 3866 while (clist) { 3867 struct sk_buff *skb = clist; 3868 3869 clist = clist->next; 3870 3871 WARN_ON(atomic_read(&skb->users)); 3872 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED)) 3873 trace_consume_skb(skb); 3874 else 3875 trace_kfree_skb(skb, net_tx_action); 3876 3877 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) 3878 __kfree_skb(skb); 3879 else 3880 __kfree_skb_defer(skb); 3881 } 3882 3883 __kfree_skb_flush(); 3884 } 3885 3886 if (sd->output_queue) { 3887 struct Qdisc *head; 3888 3889 local_irq_disable(); 3890 head = sd->output_queue; 3891 sd->output_queue = NULL; 3892 sd->output_queue_tailp = &sd->output_queue; 3893 local_irq_enable(); 3894 3895 while (head) { 3896 struct Qdisc *q = head; 3897 spinlock_t *root_lock; 3898 3899 head = head->next_sched; 3900 3901 root_lock = qdisc_lock(q); 3902 spin_lock(root_lock); 3903 /* We need to make sure head->next_sched is read 3904 * before clearing __QDISC_STATE_SCHED 3905 */ 3906 smp_mb__before_atomic(); 3907 clear_bit(__QDISC_STATE_SCHED, &q->state); 3908 qdisc_run(q); 3909 spin_unlock(root_lock); 3910 } 3911 } 3912 } 3913 3914 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE) 3915 /* This hook is defined here for ATM LANE */ 3916 int (*br_fdb_test_addr_hook)(struct net_device *dev, 3917 unsigned char *addr) __read_mostly; 3918 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 3919 #endif 3920 3921 static inline struct sk_buff * 3922 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 3923 struct net_device *orig_dev) 3924 { 3925 #ifdef CONFIG_NET_CLS_ACT 3926 struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list); 3927 struct tcf_result cl_res; 3928 3929 /* If there's at least one ingress present somewhere (so 3930 * we get here via enabled static key), remaining devices 3931 * that are not configured with an ingress qdisc will bail 3932 * out here. 3933 */ 3934 if (!cl) 3935 return skb; 3936 if (*pt_prev) { 3937 *ret = deliver_skb(skb, *pt_prev, orig_dev); 3938 *pt_prev = NULL; 3939 } 3940 3941 qdisc_skb_cb(skb)->pkt_len = skb->len; 3942 skb->tc_at_ingress = 1; 3943 qdisc_bstats_cpu_update(cl->q, skb); 3944 3945 switch (tc_classify(skb, cl, &cl_res, false)) { 3946 case TC_ACT_OK: 3947 case TC_ACT_RECLASSIFY: 3948 skb->tc_index = TC_H_MIN(cl_res.classid); 3949 break; 3950 case TC_ACT_SHOT: 3951 qdisc_qstats_cpu_drop(cl->q); 3952 kfree_skb(skb); 3953 return NULL; 3954 case TC_ACT_STOLEN: 3955 case TC_ACT_QUEUED: 3956 consume_skb(skb); 3957 return NULL; 3958 case TC_ACT_REDIRECT: 3959 /* skb_mac_header check was done by cls/act_bpf, so 3960 * we can safely push the L2 header back before 3961 * redirecting to another netdev 3962 */ 3963 __skb_push(skb, skb->mac_len); 3964 skb_do_redirect(skb); 3965 return NULL; 3966 default: 3967 break; 3968 } 3969 #endif /* CONFIG_NET_CLS_ACT */ 3970 return skb; 3971 } 3972 3973 /** 3974 * netdev_is_rx_handler_busy - check if receive handler is registered 3975 * @dev: device to check 3976 * 3977 * Check if a receive handler is already registered for a given device. 3978 * Return true if there one. 3979 * 3980 * The caller must hold the rtnl_mutex. 3981 */ 3982 bool netdev_is_rx_handler_busy(struct net_device *dev) 3983 { 3984 ASSERT_RTNL(); 3985 return dev && rtnl_dereference(dev->rx_handler); 3986 } 3987 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy); 3988 3989 /** 3990 * netdev_rx_handler_register - register receive handler 3991 * @dev: device to register a handler for 3992 * @rx_handler: receive handler to register 3993 * @rx_handler_data: data pointer that is used by rx handler 3994 * 3995 * Register a receive handler for a device. This handler will then be 3996 * called from __netif_receive_skb. A negative errno code is returned 3997 * on a failure. 3998 * 3999 * The caller must hold the rtnl_mutex. 4000 * 4001 * For a general description of rx_handler, see enum rx_handler_result. 4002 */ 4003 int netdev_rx_handler_register(struct net_device *dev, 4004 rx_handler_func_t *rx_handler, 4005 void *rx_handler_data) 4006 { 4007 if (netdev_is_rx_handler_busy(dev)) 4008 return -EBUSY; 4009 4010 /* Note: rx_handler_data must be set before rx_handler */ 4011 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 4012 rcu_assign_pointer(dev->rx_handler, rx_handler); 4013 4014 return 0; 4015 } 4016 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 4017 4018 /** 4019 * netdev_rx_handler_unregister - unregister receive handler 4020 * @dev: device to unregister a handler from 4021 * 4022 * Unregister a receive handler from a device. 4023 * 4024 * The caller must hold the rtnl_mutex. 4025 */ 4026 void netdev_rx_handler_unregister(struct net_device *dev) 4027 { 4028 4029 ASSERT_RTNL(); 4030 RCU_INIT_POINTER(dev->rx_handler, NULL); 4031 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 4032 * section has a guarantee to see a non NULL rx_handler_data 4033 * as well. 4034 */ 4035 synchronize_net(); 4036 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 4037 } 4038 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 4039 4040 /* 4041 * Limit the use of PFMEMALLOC reserves to those protocols that implement 4042 * the special handling of PFMEMALLOC skbs. 4043 */ 4044 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 4045 { 4046 switch (skb->protocol) { 4047 case htons(ETH_P_ARP): 4048 case htons(ETH_P_IP): 4049 case htons(ETH_P_IPV6): 4050 case htons(ETH_P_8021Q): 4051 case htons(ETH_P_8021AD): 4052 return true; 4053 default: 4054 return false; 4055 } 4056 } 4057 4058 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, 4059 int *ret, struct net_device *orig_dev) 4060 { 4061 #ifdef CONFIG_NETFILTER_INGRESS 4062 if (nf_hook_ingress_active(skb)) { 4063 int ingress_retval; 4064 4065 if (*pt_prev) { 4066 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4067 *pt_prev = NULL; 4068 } 4069 4070 rcu_read_lock(); 4071 ingress_retval = nf_hook_ingress(skb); 4072 rcu_read_unlock(); 4073 return ingress_retval; 4074 } 4075 #endif /* CONFIG_NETFILTER_INGRESS */ 4076 return 0; 4077 } 4078 4079 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc) 4080 { 4081 struct packet_type *ptype, *pt_prev; 4082 rx_handler_func_t *rx_handler; 4083 struct net_device *orig_dev; 4084 bool deliver_exact = false; 4085 int ret = NET_RX_DROP; 4086 __be16 type; 4087 4088 net_timestamp_check(!netdev_tstamp_prequeue, skb); 4089 4090 trace_netif_receive_skb(skb); 4091 4092 orig_dev = skb->dev; 4093 4094 skb_reset_network_header(skb); 4095 if (!skb_transport_header_was_set(skb)) 4096 skb_reset_transport_header(skb); 4097 skb_reset_mac_len(skb); 4098 4099 pt_prev = NULL; 4100 4101 another_round: 4102 skb->skb_iif = skb->dev->ifindex; 4103 4104 __this_cpu_inc(softnet_data.processed); 4105 4106 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 4107 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 4108 skb = skb_vlan_untag(skb); 4109 if (unlikely(!skb)) 4110 goto out; 4111 } 4112 4113 if (skb_skip_tc_classify(skb)) 4114 goto skip_classify; 4115 4116 if (pfmemalloc) 4117 goto skip_taps; 4118 4119 list_for_each_entry_rcu(ptype, &ptype_all, list) { 4120 if (pt_prev) 4121 ret = deliver_skb(skb, pt_prev, orig_dev); 4122 pt_prev = ptype; 4123 } 4124 4125 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 4126 if (pt_prev) 4127 ret = deliver_skb(skb, pt_prev, orig_dev); 4128 pt_prev = ptype; 4129 } 4130 4131 skip_taps: 4132 #ifdef CONFIG_NET_INGRESS 4133 if (static_key_false(&ingress_needed)) { 4134 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev); 4135 if (!skb) 4136 goto out; 4137 4138 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) 4139 goto out; 4140 } 4141 #endif 4142 skb_reset_tc(skb); 4143 skip_classify: 4144 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 4145 goto drop; 4146 4147 if (skb_vlan_tag_present(skb)) { 4148 if (pt_prev) { 4149 ret = deliver_skb(skb, pt_prev, orig_dev); 4150 pt_prev = NULL; 4151 } 4152 if (vlan_do_receive(&skb)) 4153 goto another_round; 4154 else if (unlikely(!skb)) 4155 goto out; 4156 } 4157 4158 rx_handler = rcu_dereference(skb->dev->rx_handler); 4159 if (rx_handler) { 4160 if (pt_prev) { 4161 ret = deliver_skb(skb, pt_prev, orig_dev); 4162 pt_prev = NULL; 4163 } 4164 switch (rx_handler(&skb)) { 4165 case RX_HANDLER_CONSUMED: 4166 ret = NET_RX_SUCCESS; 4167 goto out; 4168 case RX_HANDLER_ANOTHER: 4169 goto another_round; 4170 case RX_HANDLER_EXACT: 4171 deliver_exact = true; 4172 case RX_HANDLER_PASS: 4173 break; 4174 default: 4175 BUG(); 4176 } 4177 } 4178 4179 if (unlikely(skb_vlan_tag_present(skb))) { 4180 if (skb_vlan_tag_get_id(skb)) 4181 skb->pkt_type = PACKET_OTHERHOST; 4182 /* Note: we might in the future use prio bits 4183 * and set skb->priority like in vlan_do_receive() 4184 * For the time being, just ignore Priority Code Point 4185 */ 4186 skb->vlan_tci = 0; 4187 } 4188 4189 type = skb->protocol; 4190 4191 /* deliver only exact match when indicated */ 4192 if (likely(!deliver_exact)) { 4193 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4194 &ptype_base[ntohs(type) & 4195 PTYPE_HASH_MASK]); 4196 } 4197 4198 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4199 &orig_dev->ptype_specific); 4200 4201 if (unlikely(skb->dev != orig_dev)) { 4202 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4203 &skb->dev->ptype_specific); 4204 } 4205 4206 if (pt_prev) { 4207 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 4208 goto drop; 4209 else 4210 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 4211 } else { 4212 drop: 4213 if (!deliver_exact) 4214 atomic_long_inc(&skb->dev->rx_dropped); 4215 else 4216 atomic_long_inc(&skb->dev->rx_nohandler); 4217 kfree_skb(skb); 4218 /* Jamal, now you will not able to escape explaining 4219 * me how you were going to use this. :-) 4220 */ 4221 ret = NET_RX_DROP; 4222 } 4223 4224 out: 4225 return ret; 4226 } 4227 4228 static int __netif_receive_skb(struct sk_buff *skb) 4229 { 4230 int ret; 4231 4232 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 4233 unsigned long pflags = current->flags; 4234 4235 /* 4236 * PFMEMALLOC skbs are special, they should 4237 * - be delivered to SOCK_MEMALLOC sockets only 4238 * - stay away from userspace 4239 * - have bounded memory usage 4240 * 4241 * Use PF_MEMALLOC as this saves us from propagating the allocation 4242 * context down to all allocation sites. 4243 */ 4244 current->flags |= PF_MEMALLOC; 4245 ret = __netif_receive_skb_core(skb, true); 4246 current_restore_flags(pflags, PF_MEMALLOC); 4247 } else 4248 ret = __netif_receive_skb_core(skb, false); 4249 4250 return ret; 4251 } 4252 4253 static int netif_receive_skb_internal(struct sk_buff *skb) 4254 { 4255 int ret; 4256 4257 net_timestamp_check(netdev_tstamp_prequeue, skb); 4258 4259 if (skb_defer_rx_timestamp(skb)) 4260 return NET_RX_SUCCESS; 4261 4262 rcu_read_lock(); 4263 4264 #ifdef CONFIG_RPS 4265 if (static_key_false(&rps_needed)) { 4266 struct rps_dev_flow voidflow, *rflow = &voidflow; 4267 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 4268 4269 if (cpu >= 0) { 4270 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 4271 rcu_read_unlock(); 4272 return ret; 4273 } 4274 } 4275 #endif 4276 ret = __netif_receive_skb(skb); 4277 rcu_read_unlock(); 4278 return ret; 4279 } 4280 4281 /** 4282 * netif_receive_skb - process receive buffer from network 4283 * @skb: buffer to process 4284 * 4285 * netif_receive_skb() is the main receive data processing function. 4286 * It always succeeds. The buffer may be dropped during processing 4287 * for congestion control or by the protocol layers. 4288 * 4289 * This function may only be called from softirq context and interrupts 4290 * should be enabled. 4291 * 4292 * Return values (usually ignored): 4293 * NET_RX_SUCCESS: no congestion 4294 * NET_RX_DROP: packet was dropped 4295 */ 4296 int netif_receive_skb(struct sk_buff *skb) 4297 { 4298 trace_netif_receive_skb_entry(skb); 4299 4300 return netif_receive_skb_internal(skb); 4301 } 4302 EXPORT_SYMBOL(netif_receive_skb); 4303 4304 DEFINE_PER_CPU(struct work_struct, flush_works); 4305 4306 /* Network device is going away, flush any packets still pending */ 4307 static void flush_backlog(struct work_struct *work) 4308 { 4309 struct sk_buff *skb, *tmp; 4310 struct softnet_data *sd; 4311 4312 local_bh_disable(); 4313 sd = this_cpu_ptr(&softnet_data); 4314 4315 local_irq_disable(); 4316 rps_lock(sd); 4317 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 4318 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 4319 __skb_unlink(skb, &sd->input_pkt_queue); 4320 kfree_skb(skb); 4321 input_queue_head_incr(sd); 4322 } 4323 } 4324 rps_unlock(sd); 4325 local_irq_enable(); 4326 4327 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 4328 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 4329 __skb_unlink(skb, &sd->process_queue); 4330 kfree_skb(skb); 4331 input_queue_head_incr(sd); 4332 } 4333 } 4334 local_bh_enable(); 4335 } 4336 4337 static void flush_all_backlogs(void) 4338 { 4339 unsigned int cpu; 4340 4341 get_online_cpus(); 4342 4343 for_each_online_cpu(cpu) 4344 queue_work_on(cpu, system_highpri_wq, 4345 per_cpu_ptr(&flush_works, cpu)); 4346 4347 for_each_online_cpu(cpu) 4348 flush_work(per_cpu_ptr(&flush_works, cpu)); 4349 4350 put_online_cpus(); 4351 } 4352 4353 static int napi_gro_complete(struct sk_buff *skb) 4354 { 4355 struct packet_offload *ptype; 4356 __be16 type = skb->protocol; 4357 struct list_head *head = &offload_base; 4358 int err = -ENOENT; 4359 4360 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb)); 4361 4362 if (NAPI_GRO_CB(skb)->count == 1) { 4363 skb_shinfo(skb)->gso_size = 0; 4364 goto out; 4365 } 4366 4367 rcu_read_lock(); 4368 list_for_each_entry_rcu(ptype, head, list) { 4369 if (ptype->type != type || !ptype->callbacks.gro_complete) 4370 continue; 4371 4372 err = ptype->callbacks.gro_complete(skb, 0); 4373 break; 4374 } 4375 rcu_read_unlock(); 4376 4377 if (err) { 4378 WARN_ON(&ptype->list == head); 4379 kfree_skb(skb); 4380 return NET_RX_SUCCESS; 4381 } 4382 4383 out: 4384 return netif_receive_skb_internal(skb); 4385 } 4386 4387 /* napi->gro_list contains packets ordered by age. 4388 * youngest packets at the head of it. 4389 * Complete skbs in reverse order to reduce latencies. 4390 */ 4391 void napi_gro_flush(struct napi_struct *napi, bool flush_old) 4392 { 4393 struct sk_buff *skb, *prev = NULL; 4394 4395 /* scan list and build reverse chain */ 4396 for (skb = napi->gro_list; skb != NULL; skb = skb->next) { 4397 skb->prev = prev; 4398 prev = skb; 4399 } 4400 4401 for (skb = prev; skb; skb = prev) { 4402 skb->next = NULL; 4403 4404 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies) 4405 return; 4406 4407 prev = skb->prev; 4408 napi_gro_complete(skb); 4409 napi->gro_count--; 4410 } 4411 4412 napi->gro_list = NULL; 4413 } 4414 EXPORT_SYMBOL(napi_gro_flush); 4415 4416 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb) 4417 { 4418 struct sk_buff *p; 4419 unsigned int maclen = skb->dev->hard_header_len; 4420 u32 hash = skb_get_hash_raw(skb); 4421 4422 for (p = napi->gro_list; p; p = p->next) { 4423 unsigned long diffs; 4424 4425 NAPI_GRO_CB(p)->flush = 0; 4426 4427 if (hash != skb_get_hash_raw(p)) { 4428 NAPI_GRO_CB(p)->same_flow = 0; 4429 continue; 4430 } 4431 4432 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 4433 diffs |= p->vlan_tci ^ skb->vlan_tci; 4434 diffs |= skb_metadata_dst_cmp(p, skb); 4435 if (maclen == ETH_HLEN) 4436 diffs |= compare_ether_header(skb_mac_header(p), 4437 skb_mac_header(skb)); 4438 else if (!diffs) 4439 diffs = memcmp(skb_mac_header(p), 4440 skb_mac_header(skb), 4441 maclen); 4442 NAPI_GRO_CB(p)->same_flow = !diffs; 4443 } 4444 } 4445 4446 static void skb_gro_reset_offset(struct sk_buff *skb) 4447 { 4448 const struct skb_shared_info *pinfo = skb_shinfo(skb); 4449 const skb_frag_t *frag0 = &pinfo->frags[0]; 4450 4451 NAPI_GRO_CB(skb)->data_offset = 0; 4452 NAPI_GRO_CB(skb)->frag0 = NULL; 4453 NAPI_GRO_CB(skb)->frag0_len = 0; 4454 4455 if (skb_mac_header(skb) == skb_tail_pointer(skb) && 4456 pinfo->nr_frags && 4457 !PageHighMem(skb_frag_page(frag0))) { 4458 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0); 4459 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int, 4460 skb_frag_size(frag0), 4461 skb->end - skb->tail); 4462 } 4463 } 4464 4465 static void gro_pull_from_frag0(struct sk_buff *skb, int grow) 4466 { 4467 struct skb_shared_info *pinfo = skb_shinfo(skb); 4468 4469 BUG_ON(skb->end - skb->tail < grow); 4470 4471 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 4472 4473 skb->data_len -= grow; 4474 skb->tail += grow; 4475 4476 pinfo->frags[0].page_offset += grow; 4477 skb_frag_size_sub(&pinfo->frags[0], grow); 4478 4479 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) { 4480 skb_frag_unref(skb, 0); 4481 memmove(pinfo->frags, pinfo->frags + 1, 4482 --pinfo->nr_frags * sizeof(pinfo->frags[0])); 4483 } 4484 } 4485 4486 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 4487 { 4488 struct sk_buff **pp = NULL; 4489 struct packet_offload *ptype; 4490 __be16 type = skb->protocol; 4491 struct list_head *head = &offload_base; 4492 int same_flow; 4493 enum gro_result ret; 4494 int grow; 4495 4496 if (!(skb->dev->features & NETIF_F_GRO)) 4497 goto normal; 4498 4499 if (skb->csum_bad) 4500 goto normal; 4501 4502 gro_list_prepare(napi, skb); 4503 4504 rcu_read_lock(); 4505 list_for_each_entry_rcu(ptype, head, list) { 4506 if (ptype->type != type || !ptype->callbacks.gro_receive) 4507 continue; 4508 4509 skb_set_network_header(skb, skb_gro_offset(skb)); 4510 skb_reset_mac_len(skb); 4511 NAPI_GRO_CB(skb)->same_flow = 0; 4512 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb); 4513 NAPI_GRO_CB(skb)->free = 0; 4514 NAPI_GRO_CB(skb)->encap_mark = 0; 4515 NAPI_GRO_CB(skb)->recursion_counter = 0; 4516 NAPI_GRO_CB(skb)->is_fou = 0; 4517 NAPI_GRO_CB(skb)->is_atomic = 1; 4518 NAPI_GRO_CB(skb)->gro_remcsum_start = 0; 4519 4520 /* Setup for GRO checksum validation */ 4521 switch (skb->ip_summed) { 4522 case CHECKSUM_COMPLETE: 4523 NAPI_GRO_CB(skb)->csum = skb->csum; 4524 NAPI_GRO_CB(skb)->csum_valid = 1; 4525 NAPI_GRO_CB(skb)->csum_cnt = 0; 4526 break; 4527 case CHECKSUM_UNNECESSARY: 4528 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1; 4529 NAPI_GRO_CB(skb)->csum_valid = 0; 4530 break; 4531 default: 4532 NAPI_GRO_CB(skb)->csum_cnt = 0; 4533 NAPI_GRO_CB(skb)->csum_valid = 0; 4534 } 4535 4536 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb); 4537 break; 4538 } 4539 rcu_read_unlock(); 4540 4541 if (&ptype->list == head) 4542 goto normal; 4543 4544 if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) { 4545 ret = GRO_CONSUMED; 4546 goto ok; 4547 } 4548 4549 same_flow = NAPI_GRO_CB(skb)->same_flow; 4550 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 4551 4552 if (pp) { 4553 struct sk_buff *nskb = *pp; 4554 4555 *pp = nskb->next; 4556 nskb->next = NULL; 4557 napi_gro_complete(nskb); 4558 napi->gro_count--; 4559 } 4560 4561 if (same_flow) 4562 goto ok; 4563 4564 if (NAPI_GRO_CB(skb)->flush) 4565 goto normal; 4566 4567 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) { 4568 struct sk_buff *nskb = napi->gro_list; 4569 4570 /* locate the end of the list to select the 'oldest' flow */ 4571 while (nskb->next) { 4572 pp = &nskb->next; 4573 nskb = *pp; 4574 } 4575 *pp = NULL; 4576 nskb->next = NULL; 4577 napi_gro_complete(nskb); 4578 } else { 4579 napi->gro_count++; 4580 } 4581 NAPI_GRO_CB(skb)->count = 1; 4582 NAPI_GRO_CB(skb)->age = jiffies; 4583 NAPI_GRO_CB(skb)->last = skb; 4584 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 4585 skb->next = napi->gro_list; 4586 napi->gro_list = skb; 4587 ret = GRO_HELD; 4588 4589 pull: 4590 grow = skb_gro_offset(skb) - skb_headlen(skb); 4591 if (grow > 0) 4592 gro_pull_from_frag0(skb, grow); 4593 ok: 4594 return ret; 4595 4596 normal: 4597 ret = GRO_NORMAL; 4598 goto pull; 4599 } 4600 4601 struct packet_offload *gro_find_receive_by_type(__be16 type) 4602 { 4603 struct list_head *offload_head = &offload_base; 4604 struct packet_offload *ptype; 4605 4606 list_for_each_entry_rcu(ptype, offload_head, list) { 4607 if (ptype->type != type || !ptype->callbacks.gro_receive) 4608 continue; 4609 return ptype; 4610 } 4611 return NULL; 4612 } 4613 EXPORT_SYMBOL(gro_find_receive_by_type); 4614 4615 struct packet_offload *gro_find_complete_by_type(__be16 type) 4616 { 4617 struct list_head *offload_head = &offload_base; 4618 struct packet_offload *ptype; 4619 4620 list_for_each_entry_rcu(ptype, offload_head, list) { 4621 if (ptype->type != type || !ptype->callbacks.gro_complete) 4622 continue; 4623 return ptype; 4624 } 4625 return NULL; 4626 } 4627 EXPORT_SYMBOL(gro_find_complete_by_type); 4628 4629 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 4630 { 4631 switch (ret) { 4632 case GRO_NORMAL: 4633 if (netif_receive_skb_internal(skb)) 4634 ret = GRO_DROP; 4635 break; 4636 4637 case GRO_DROP: 4638 kfree_skb(skb); 4639 break; 4640 4641 case GRO_MERGED_FREE: 4642 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) { 4643 skb_dst_drop(skb); 4644 secpath_reset(skb); 4645 kmem_cache_free(skbuff_head_cache, skb); 4646 } else { 4647 __kfree_skb(skb); 4648 } 4649 break; 4650 4651 case GRO_HELD: 4652 case GRO_MERGED: 4653 case GRO_CONSUMED: 4654 break; 4655 } 4656 4657 return ret; 4658 } 4659 4660 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 4661 { 4662 skb_mark_napi_id(skb, napi); 4663 trace_napi_gro_receive_entry(skb); 4664 4665 skb_gro_reset_offset(skb); 4666 4667 return napi_skb_finish(dev_gro_receive(napi, skb), skb); 4668 } 4669 EXPORT_SYMBOL(napi_gro_receive); 4670 4671 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 4672 { 4673 if (unlikely(skb->pfmemalloc)) { 4674 consume_skb(skb); 4675 return; 4676 } 4677 __skb_pull(skb, skb_headlen(skb)); 4678 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 4679 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 4680 skb->vlan_tci = 0; 4681 skb->dev = napi->dev; 4682 skb->skb_iif = 0; 4683 skb->encapsulation = 0; 4684 skb_shinfo(skb)->gso_type = 0; 4685 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 4686 secpath_reset(skb); 4687 4688 napi->skb = skb; 4689 } 4690 4691 struct sk_buff *napi_get_frags(struct napi_struct *napi) 4692 { 4693 struct sk_buff *skb = napi->skb; 4694 4695 if (!skb) { 4696 skb = napi_alloc_skb(napi, GRO_MAX_HEAD); 4697 if (skb) { 4698 napi->skb = skb; 4699 skb_mark_napi_id(skb, napi); 4700 } 4701 } 4702 return skb; 4703 } 4704 EXPORT_SYMBOL(napi_get_frags); 4705 4706 static gro_result_t napi_frags_finish(struct napi_struct *napi, 4707 struct sk_buff *skb, 4708 gro_result_t ret) 4709 { 4710 switch (ret) { 4711 case GRO_NORMAL: 4712 case GRO_HELD: 4713 __skb_push(skb, ETH_HLEN); 4714 skb->protocol = eth_type_trans(skb, skb->dev); 4715 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb)) 4716 ret = GRO_DROP; 4717 break; 4718 4719 case GRO_DROP: 4720 case GRO_MERGED_FREE: 4721 napi_reuse_skb(napi, skb); 4722 break; 4723 4724 case GRO_MERGED: 4725 case GRO_CONSUMED: 4726 break; 4727 } 4728 4729 return ret; 4730 } 4731 4732 /* Upper GRO stack assumes network header starts at gro_offset=0 4733 * Drivers could call both napi_gro_frags() and napi_gro_receive() 4734 * We copy ethernet header into skb->data to have a common layout. 4735 */ 4736 static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 4737 { 4738 struct sk_buff *skb = napi->skb; 4739 const struct ethhdr *eth; 4740 unsigned int hlen = sizeof(*eth); 4741 4742 napi->skb = NULL; 4743 4744 skb_reset_mac_header(skb); 4745 skb_gro_reset_offset(skb); 4746 4747 eth = skb_gro_header_fast(skb, 0); 4748 if (unlikely(skb_gro_header_hard(skb, hlen))) { 4749 eth = skb_gro_header_slow(skb, hlen, 0); 4750 if (unlikely(!eth)) { 4751 net_warn_ratelimited("%s: dropping impossible skb from %s\n", 4752 __func__, napi->dev->name); 4753 napi_reuse_skb(napi, skb); 4754 return NULL; 4755 } 4756 } else { 4757 gro_pull_from_frag0(skb, hlen); 4758 NAPI_GRO_CB(skb)->frag0 += hlen; 4759 NAPI_GRO_CB(skb)->frag0_len -= hlen; 4760 } 4761 __skb_pull(skb, hlen); 4762 4763 /* 4764 * This works because the only protocols we care about don't require 4765 * special handling. 4766 * We'll fix it up properly in napi_frags_finish() 4767 */ 4768 skb->protocol = eth->h_proto; 4769 4770 return skb; 4771 } 4772 4773 gro_result_t napi_gro_frags(struct napi_struct *napi) 4774 { 4775 struct sk_buff *skb = napi_frags_skb(napi); 4776 4777 if (!skb) 4778 return GRO_DROP; 4779 4780 trace_napi_gro_frags_entry(skb); 4781 4782 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb)); 4783 } 4784 EXPORT_SYMBOL(napi_gro_frags); 4785 4786 /* Compute the checksum from gro_offset and return the folded value 4787 * after adding in any pseudo checksum. 4788 */ 4789 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb) 4790 { 4791 __wsum wsum; 4792 __sum16 sum; 4793 4794 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0); 4795 4796 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */ 4797 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum)); 4798 if (likely(!sum)) { 4799 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 4800 !skb->csum_complete_sw) 4801 netdev_rx_csum_fault(skb->dev); 4802 } 4803 4804 NAPI_GRO_CB(skb)->csum = wsum; 4805 NAPI_GRO_CB(skb)->csum_valid = 1; 4806 4807 return sum; 4808 } 4809 EXPORT_SYMBOL(__skb_gro_checksum_complete); 4810 4811 /* 4812 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 4813 * Note: called with local irq disabled, but exits with local irq enabled. 4814 */ 4815 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 4816 { 4817 #ifdef CONFIG_RPS 4818 struct softnet_data *remsd = sd->rps_ipi_list; 4819 4820 if (remsd) { 4821 sd->rps_ipi_list = NULL; 4822 4823 local_irq_enable(); 4824 4825 /* Send pending IPI's to kick RPS processing on remote cpus. */ 4826 while (remsd) { 4827 struct softnet_data *next = remsd->rps_ipi_next; 4828 4829 if (cpu_online(remsd->cpu)) 4830 smp_call_function_single_async(remsd->cpu, 4831 &remsd->csd); 4832 remsd = next; 4833 } 4834 } else 4835 #endif 4836 local_irq_enable(); 4837 } 4838 4839 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 4840 { 4841 #ifdef CONFIG_RPS 4842 return sd->rps_ipi_list != NULL; 4843 #else 4844 return false; 4845 #endif 4846 } 4847 4848 static int process_backlog(struct napi_struct *napi, int quota) 4849 { 4850 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 4851 bool again = true; 4852 int work = 0; 4853 4854 /* Check if we have pending ipi, its better to send them now, 4855 * not waiting net_rx_action() end. 4856 */ 4857 if (sd_has_rps_ipi_waiting(sd)) { 4858 local_irq_disable(); 4859 net_rps_action_and_irq_enable(sd); 4860 } 4861 4862 napi->weight = dev_rx_weight; 4863 while (again) { 4864 struct sk_buff *skb; 4865 4866 while ((skb = __skb_dequeue(&sd->process_queue))) { 4867 rcu_read_lock(); 4868 __netif_receive_skb(skb); 4869 rcu_read_unlock(); 4870 input_queue_head_incr(sd); 4871 if (++work >= quota) 4872 return work; 4873 4874 } 4875 4876 local_irq_disable(); 4877 rps_lock(sd); 4878 if (skb_queue_empty(&sd->input_pkt_queue)) { 4879 /* 4880 * Inline a custom version of __napi_complete(). 4881 * only current cpu owns and manipulates this napi, 4882 * and NAPI_STATE_SCHED is the only possible flag set 4883 * on backlog. 4884 * We can use a plain write instead of clear_bit(), 4885 * and we dont need an smp_mb() memory barrier. 4886 */ 4887 napi->state = 0; 4888 again = false; 4889 } else { 4890 skb_queue_splice_tail_init(&sd->input_pkt_queue, 4891 &sd->process_queue); 4892 } 4893 rps_unlock(sd); 4894 local_irq_enable(); 4895 } 4896 4897 return work; 4898 } 4899 4900 /** 4901 * __napi_schedule - schedule for receive 4902 * @n: entry to schedule 4903 * 4904 * The entry's receive function will be scheduled to run. 4905 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 4906 */ 4907 void __napi_schedule(struct napi_struct *n) 4908 { 4909 unsigned long flags; 4910 4911 local_irq_save(flags); 4912 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 4913 local_irq_restore(flags); 4914 } 4915 EXPORT_SYMBOL(__napi_schedule); 4916 4917 /** 4918 * napi_schedule_prep - check if napi can be scheduled 4919 * @n: napi context 4920 * 4921 * Test if NAPI routine is already running, and if not mark 4922 * it as running. This is used as a condition variable 4923 * insure only one NAPI poll instance runs. We also make 4924 * sure there is no pending NAPI disable. 4925 */ 4926 bool napi_schedule_prep(struct napi_struct *n) 4927 { 4928 unsigned long val, new; 4929 4930 do { 4931 val = READ_ONCE(n->state); 4932 if (unlikely(val & NAPIF_STATE_DISABLE)) 4933 return false; 4934 new = val | NAPIF_STATE_SCHED; 4935 4936 /* Sets STATE_MISSED bit if STATE_SCHED was already set 4937 * This was suggested by Alexander Duyck, as compiler 4938 * emits better code than : 4939 * if (val & NAPIF_STATE_SCHED) 4940 * new |= NAPIF_STATE_MISSED; 4941 */ 4942 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED * 4943 NAPIF_STATE_MISSED; 4944 } while (cmpxchg(&n->state, val, new) != val); 4945 4946 return !(val & NAPIF_STATE_SCHED); 4947 } 4948 EXPORT_SYMBOL(napi_schedule_prep); 4949 4950 /** 4951 * __napi_schedule_irqoff - schedule for receive 4952 * @n: entry to schedule 4953 * 4954 * Variant of __napi_schedule() assuming hard irqs are masked 4955 */ 4956 void __napi_schedule_irqoff(struct napi_struct *n) 4957 { 4958 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 4959 } 4960 EXPORT_SYMBOL(__napi_schedule_irqoff); 4961 4962 bool napi_complete_done(struct napi_struct *n, int work_done) 4963 { 4964 unsigned long flags, val, new; 4965 4966 /* 4967 * 1) Don't let napi dequeue from the cpu poll list 4968 * just in case its running on a different cpu. 4969 * 2) If we are busy polling, do nothing here, we have 4970 * the guarantee we will be called later. 4971 */ 4972 if (unlikely(n->state & (NAPIF_STATE_NPSVC | 4973 NAPIF_STATE_IN_BUSY_POLL))) 4974 return false; 4975 4976 if (n->gro_list) { 4977 unsigned long timeout = 0; 4978 4979 if (work_done) 4980 timeout = n->dev->gro_flush_timeout; 4981 4982 if (timeout) 4983 hrtimer_start(&n->timer, ns_to_ktime(timeout), 4984 HRTIMER_MODE_REL_PINNED); 4985 else 4986 napi_gro_flush(n, false); 4987 } 4988 if (unlikely(!list_empty(&n->poll_list))) { 4989 /* If n->poll_list is not empty, we need to mask irqs */ 4990 local_irq_save(flags); 4991 list_del_init(&n->poll_list); 4992 local_irq_restore(flags); 4993 } 4994 4995 do { 4996 val = READ_ONCE(n->state); 4997 4998 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED)); 4999 5000 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED); 5001 5002 /* If STATE_MISSED was set, leave STATE_SCHED set, 5003 * because we will call napi->poll() one more time. 5004 * This C code was suggested by Alexander Duyck to help gcc. 5005 */ 5006 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED * 5007 NAPIF_STATE_SCHED; 5008 } while (cmpxchg(&n->state, val, new) != val); 5009 5010 if (unlikely(val & NAPIF_STATE_MISSED)) { 5011 __napi_schedule(n); 5012 return false; 5013 } 5014 5015 return true; 5016 } 5017 EXPORT_SYMBOL(napi_complete_done); 5018 5019 /* must be called under rcu_read_lock(), as we dont take a reference */ 5020 static struct napi_struct *napi_by_id(unsigned int napi_id) 5021 { 5022 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 5023 struct napi_struct *napi; 5024 5025 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 5026 if (napi->napi_id == napi_id) 5027 return napi; 5028 5029 return NULL; 5030 } 5031 5032 #if defined(CONFIG_NET_RX_BUSY_POLL) 5033 5034 #define BUSY_POLL_BUDGET 8 5035 5036 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock) 5037 { 5038 int rc; 5039 5040 /* Busy polling means there is a high chance device driver hard irq 5041 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was 5042 * set in napi_schedule_prep(). 5043 * Since we are about to call napi->poll() once more, we can safely 5044 * clear NAPI_STATE_MISSED. 5045 * 5046 * Note: x86 could use a single "lock and ..." instruction 5047 * to perform these two clear_bit() 5048 */ 5049 clear_bit(NAPI_STATE_MISSED, &napi->state); 5050 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state); 5051 5052 local_bh_disable(); 5053 5054 /* All we really want here is to re-enable device interrupts. 5055 * Ideally, a new ndo_busy_poll_stop() could avoid another round. 5056 */ 5057 rc = napi->poll(napi, BUSY_POLL_BUDGET); 5058 netpoll_poll_unlock(have_poll_lock); 5059 if (rc == BUSY_POLL_BUDGET) 5060 __napi_schedule(napi); 5061 local_bh_enable(); 5062 if (local_softirq_pending()) 5063 do_softirq(); 5064 } 5065 5066 bool sk_busy_loop(struct sock *sk, int nonblock) 5067 { 5068 unsigned long end_time = !nonblock ? sk_busy_loop_end_time(sk) : 0; 5069 int (*napi_poll)(struct napi_struct *napi, int budget); 5070 void *have_poll_lock = NULL; 5071 struct napi_struct *napi; 5072 int rc; 5073 5074 restart: 5075 rc = false; 5076 napi_poll = NULL; 5077 5078 rcu_read_lock(); 5079 5080 napi = napi_by_id(sk->sk_napi_id); 5081 if (!napi) 5082 goto out; 5083 5084 preempt_disable(); 5085 for (;;) { 5086 rc = 0; 5087 local_bh_disable(); 5088 if (!napi_poll) { 5089 unsigned long val = READ_ONCE(napi->state); 5090 5091 /* If multiple threads are competing for this napi, 5092 * we avoid dirtying napi->state as much as we can. 5093 */ 5094 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED | 5095 NAPIF_STATE_IN_BUSY_POLL)) 5096 goto count; 5097 if (cmpxchg(&napi->state, val, 5098 val | NAPIF_STATE_IN_BUSY_POLL | 5099 NAPIF_STATE_SCHED) != val) 5100 goto count; 5101 have_poll_lock = netpoll_poll_lock(napi); 5102 napi_poll = napi->poll; 5103 } 5104 rc = napi_poll(napi, BUSY_POLL_BUDGET); 5105 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET); 5106 count: 5107 if (rc > 0) 5108 __NET_ADD_STATS(sock_net(sk), 5109 LINUX_MIB_BUSYPOLLRXPACKETS, rc); 5110 local_bh_enable(); 5111 5112 if (nonblock || !skb_queue_empty(&sk->sk_receive_queue) || 5113 busy_loop_timeout(end_time)) 5114 break; 5115 5116 if (unlikely(need_resched())) { 5117 if (napi_poll) 5118 busy_poll_stop(napi, have_poll_lock); 5119 preempt_enable(); 5120 rcu_read_unlock(); 5121 cond_resched(); 5122 rc = !skb_queue_empty(&sk->sk_receive_queue); 5123 if (rc || busy_loop_timeout(end_time)) 5124 return rc; 5125 goto restart; 5126 } 5127 cpu_relax(); 5128 } 5129 if (napi_poll) 5130 busy_poll_stop(napi, have_poll_lock); 5131 preempt_enable(); 5132 rc = !skb_queue_empty(&sk->sk_receive_queue); 5133 out: 5134 rcu_read_unlock(); 5135 return rc; 5136 } 5137 EXPORT_SYMBOL(sk_busy_loop); 5138 5139 #endif /* CONFIG_NET_RX_BUSY_POLL */ 5140 5141 static void napi_hash_add(struct napi_struct *napi) 5142 { 5143 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) || 5144 test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) 5145 return; 5146 5147 spin_lock(&napi_hash_lock); 5148 5149 /* 0..NR_CPUS+1 range is reserved for sender_cpu use */ 5150 do { 5151 if (unlikely(++napi_gen_id < NR_CPUS + 1)) 5152 napi_gen_id = NR_CPUS + 1; 5153 } while (napi_by_id(napi_gen_id)); 5154 napi->napi_id = napi_gen_id; 5155 5156 hlist_add_head_rcu(&napi->napi_hash_node, 5157 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 5158 5159 spin_unlock(&napi_hash_lock); 5160 } 5161 5162 /* Warning : caller is responsible to make sure rcu grace period 5163 * is respected before freeing memory containing @napi 5164 */ 5165 bool napi_hash_del(struct napi_struct *napi) 5166 { 5167 bool rcu_sync_needed = false; 5168 5169 spin_lock(&napi_hash_lock); 5170 5171 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) { 5172 rcu_sync_needed = true; 5173 hlist_del_rcu(&napi->napi_hash_node); 5174 } 5175 spin_unlock(&napi_hash_lock); 5176 return rcu_sync_needed; 5177 } 5178 EXPORT_SYMBOL_GPL(napi_hash_del); 5179 5180 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 5181 { 5182 struct napi_struct *napi; 5183 5184 napi = container_of(timer, struct napi_struct, timer); 5185 5186 /* Note : we use a relaxed variant of napi_schedule_prep() not setting 5187 * NAPI_STATE_MISSED, since we do not react to a device IRQ. 5188 */ 5189 if (napi->gro_list && !napi_disable_pending(napi) && 5190 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) 5191 __napi_schedule_irqoff(napi); 5192 5193 return HRTIMER_NORESTART; 5194 } 5195 5196 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 5197 int (*poll)(struct napi_struct *, int), int weight) 5198 { 5199 INIT_LIST_HEAD(&napi->poll_list); 5200 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 5201 napi->timer.function = napi_watchdog; 5202 napi->gro_count = 0; 5203 napi->gro_list = NULL; 5204 napi->skb = NULL; 5205 napi->poll = poll; 5206 if (weight > NAPI_POLL_WEIGHT) 5207 pr_err_once("netif_napi_add() called with weight %d on device %s\n", 5208 weight, dev->name); 5209 napi->weight = weight; 5210 list_add(&napi->dev_list, &dev->napi_list); 5211 napi->dev = dev; 5212 #ifdef CONFIG_NETPOLL 5213 napi->poll_owner = -1; 5214 #endif 5215 set_bit(NAPI_STATE_SCHED, &napi->state); 5216 napi_hash_add(napi); 5217 } 5218 EXPORT_SYMBOL(netif_napi_add); 5219 5220 void napi_disable(struct napi_struct *n) 5221 { 5222 might_sleep(); 5223 set_bit(NAPI_STATE_DISABLE, &n->state); 5224 5225 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state)) 5226 msleep(1); 5227 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state)) 5228 msleep(1); 5229 5230 hrtimer_cancel(&n->timer); 5231 5232 clear_bit(NAPI_STATE_DISABLE, &n->state); 5233 } 5234 EXPORT_SYMBOL(napi_disable); 5235 5236 /* Must be called in process context */ 5237 void netif_napi_del(struct napi_struct *napi) 5238 { 5239 might_sleep(); 5240 if (napi_hash_del(napi)) 5241 synchronize_net(); 5242 list_del_init(&napi->dev_list); 5243 napi_free_frags(napi); 5244 5245 kfree_skb_list(napi->gro_list); 5246 napi->gro_list = NULL; 5247 napi->gro_count = 0; 5248 } 5249 EXPORT_SYMBOL(netif_napi_del); 5250 5251 static int napi_poll(struct napi_struct *n, struct list_head *repoll) 5252 { 5253 void *have; 5254 int work, weight; 5255 5256 list_del_init(&n->poll_list); 5257 5258 have = netpoll_poll_lock(n); 5259 5260 weight = n->weight; 5261 5262 /* This NAPI_STATE_SCHED test is for avoiding a race 5263 * with netpoll's poll_napi(). Only the entity which 5264 * obtains the lock and sees NAPI_STATE_SCHED set will 5265 * actually make the ->poll() call. Therefore we avoid 5266 * accidentally calling ->poll() when NAPI is not scheduled. 5267 */ 5268 work = 0; 5269 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 5270 work = n->poll(n, weight); 5271 trace_napi_poll(n, work, weight); 5272 } 5273 5274 WARN_ON_ONCE(work > weight); 5275 5276 if (likely(work < weight)) 5277 goto out_unlock; 5278 5279 /* Drivers must not modify the NAPI state if they 5280 * consume the entire weight. In such cases this code 5281 * still "owns" the NAPI instance and therefore can 5282 * move the instance around on the list at-will. 5283 */ 5284 if (unlikely(napi_disable_pending(n))) { 5285 napi_complete(n); 5286 goto out_unlock; 5287 } 5288 5289 if (n->gro_list) { 5290 /* flush too old packets 5291 * If HZ < 1000, flush all packets. 5292 */ 5293 napi_gro_flush(n, HZ >= 1000); 5294 } 5295 5296 /* Some drivers may have called napi_schedule 5297 * prior to exhausting their budget. 5298 */ 5299 if (unlikely(!list_empty(&n->poll_list))) { 5300 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 5301 n->dev ? n->dev->name : "backlog"); 5302 goto out_unlock; 5303 } 5304 5305 list_add_tail(&n->poll_list, repoll); 5306 5307 out_unlock: 5308 netpoll_poll_unlock(have); 5309 5310 return work; 5311 } 5312 5313 static __latent_entropy void net_rx_action(struct softirq_action *h) 5314 { 5315 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 5316 unsigned long time_limit = jiffies + 2; 5317 int budget = netdev_budget; 5318 LIST_HEAD(list); 5319 LIST_HEAD(repoll); 5320 5321 local_irq_disable(); 5322 list_splice_init(&sd->poll_list, &list); 5323 local_irq_enable(); 5324 5325 for (;;) { 5326 struct napi_struct *n; 5327 5328 if (list_empty(&list)) { 5329 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll)) 5330 goto out; 5331 break; 5332 } 5333 5334 n = list_first_entry(&list, struct napi_struct, poll_list); 5335 budget -= napi_poll(n, &repoll); 5336 5337 /* If softirq window is exhausted then punt. 5338 * Allow this to run for 2 jiffies since which will allow 5339 * an average latency of 1.5/HZ. 5340 */ 5341 if (unlikely(budget <= 0 || 5342 time_after_eq(jiffies, time_limit))) { 5343 sd->time_squeeze++; 5344 break; 5345 } 5346 } 5347 5348 local_irq_disable(); 5349 5350 list_splice_tail_init(&sd->poll_list, &list); 5351 list_splice_tail(&repoll, &list); 5352 list_splice(&list, &sd->poll_list); 5353 if (!list_empty(&sd->poll_list)) 5354 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 5355 5356 net_rps_action_and_irq_enable(sd); 5357 out: 5358 __kfree_skb_flush(); 5359 } 5360 5361 struct netdev_adjacent { 5362 struct net_device *dev; 5363 5364 /* upper master flag, there can only be one master device per list */ 5365 bool master; 5366 5367 /* counter for the number of times this device was added to us */ 5368 u16 ref_nr; 5369 5370 /* private field for the users */ 5371 void *private; 5372 5373 struct list_head list; 5374 struct rcu_head rcu; 5375 }; 5376 5377 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, 5378 struct list_head *adj_list) 5379 { 5380 struct netdev_adjacent *adj; 5381 5382 list_for_each_entry(adj, adj_list, list) { 5383 if (adj->dev == adj_dev) 5384 return adj; 5385 } 5386 return NULL; 5387 } 5388 5389 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data) 5390 { 5391 struct net_device *dev = data; 5392 5393 return upper_dev == dev; 5394 } 5395 5396 /** 5397 * netdev_has_upper_dev - Check if device is linked to an upper device 5398 * @dev: device 5399 * @upper_dev: upper device to check 5400 * 5401 * Find out if a device is linked to specified upper device and return true 5402 * in case it is. Note that this checks only immediate upper device, 5403 * not through a complete stack of devices. The caller must hold the RTNL lock. 5404 */ 5405 bool netdev_has_upper_dev(struct net_device *dev, 5406 struct net_device *upper_dev) 5407 { 5408 ASSERT_RTNL(); 5409 5410 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev, 5411 upper_dev); 5412 } 5413 EXPORT_SYMBOL(netdev_has_upper_dev); 5414 5415 /** 5416 * netdev_has_upper_dev_all - Check if device is linked to an upper device 5417 * @dev: device 5418 * @upper_dev: upper device to check 5419 * 5420 * Find out if a device is linked to specified upper device and return true 5421 * in case it is. Note that this checks the entire upper device chain. 5422 * The caller must hold rcu lock. 5423 */ 5424 5425 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 5426 struct net_device *upper_dev) 5427 { 5428 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev, 5429 upper_dev); 5430 } 5431 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu); 5432 5433 /** 5434 * netdev_has_any_upper_dev - Check if device is linked to some device 5435 * @dev: device 5436 * 5437 * Find out if a device is linked to an upper device and return true in case 5438 * it is. The caller must hold the RTNL lock. 5439 */ 5440 static bool netdev_has_any_upper_dev(struct net_device *dev) 5441 { 5442 ASSERT_RTNL(); 5443 5444 return !list_empty(&dev->adj_list.upper); 5445 } 5446 5447 /** 5448 * netdev_master_upper_dev_get - Get master upper device 5449 * @dev: device 5450 * 5451 * Find a master upper device and return pointer to it or NULL in case 5452 * it's not there. The caller must hold the RTNL lock. 5453 */ 5454 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 5455 { 5456 struct netdev_adjacent *upper; 5457 5458 ASSERT_RTNL(); 5459 5460 if (list_empty(&dev->adj_list.upper)) 5461 return NULL; 5462 5463 upper = list_first_entry(&dev->adj_list.upper, 5464 struct netdev_adjacent, list); 5465 if (likely(upper->master)) 5466 return upper->dev; 5467 return NULL; 5468 } 5469 EXPORT_SYMBOL(netdev_master_upper_dev_get); 5470 5471 /** 5472 * netdev_has_any_lower_dev - Check if device is linked to some device 5473 * @dev: device 5474 * 5475 * Find out if a device is linked to a lower device and return true in case 5476 * it is. The caller must hold the RTNL lock. 5477 */ 5478 static bool netdev_has_any_lower_dev(struct net_device *dev) 5479 { 5480 ASSERT_RTNL(); 5481 5482 return !list_empty(&dev->adj_list.lower); 5483 } 5484 5485 void *netdev_adjacent_get_private(struct list_head *adj_list) 5486 { 5487 struct netdev_adjacent *adj; 5488 5489 adj = list_entry(adj_list, struct netdev_adjacent, list); 5490 5491 return adj->private; 5492 } 5493 EXPORT_SYMBOL(netdev_adjacent_get_private); 5494 5495 /** 5496 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 5497 * @dev: device 5498 * @iter: list_head ** of the current position 5499 * 5500 * Gets the next device from the dev's upper list, starting from iter 5501 * position. The caller must hold RCU read lock. 5502 */ 5503 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 5504 struct list_head **iter) 5505 { 5506 struct netdev_adjacent *upper; 5507 5508 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 5509 5510 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5511 5512 if (&upper->list == &dev->adj_list.upper) 5513 return NULL; 5514 5515 *iter = &upper->list; 5516 5517 return upper->dev; 5518 } 5519 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 5520 5521 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev, 5522 struct list_head **iter) 5523 { 5524 struct netdev_adjacent *upper; 5525 5526 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 5527 5528 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5529 5530 if (&upper->list == &dev->adj_list.upper) 5531 return NULL; 5532 5533 *iter = &upper->list; 5534 5535 return upper->dev; 5536 } 5537 5538 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 5539 int (*fn)(struct net_device *dev, 5540 void *data), 5541 void *data) 5542 { 5543 struct net_device *udev; 5544 struct list_head *iter; 5545 int ret; 5546 5547 for (iter = &dev->adj_list.upper, 5548 udev = netdev_next_upper_dev_rcu(dev, &iter); 5549 udev; 5550 udev = netdev_next_upper_dev_rcu(dev, &iter)) { 5551 /* first is the upper device itself */ 5552 ret = fn(udev, data); 5553 if (ret) 5554 return ret; 5555 5556 /* then look at all of its upper devices */ 5557 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data); 5558 if (ret) 5559 return ret; 5560 } 5561 5562 return 0; 5563 } 5564 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu); 5565 5566 /** 5567 * netdev_lower_get_next_private - Get the next ->private from the 5568 * lower neighbour list 5569 * @dev: device 5570 * @iter: list_head ** of the current position 5571 * 5572 * Gets the next netdev_adjacent->private from the dev's lower neighbour 5573 * list, starting from iter position. The caller must hold either hold the 5574 * RTNL lock or its own locking that guarantees that the neighbour lower 5575 * list will remain unchanged. 5576 */ 5577 void *netdev_lower_get_next_private(struct net_device *dev, 5578 struct list_head **iter) 5579 { 5580 struct netdev_adjacent *lower; 5581 5582 lower = list_entry(*iter, struct netdev_adjacent, list); 5583 5584 if (&lower->list == &dev->adj_list.lower) 5585 return NULL; 5586 5587 *iter = lower->list.next; 5588 5589 return lower->private; 5590 } 5591 EXPORT_SYMBOL(netdev_lower_get_next_private); 5592 5593 /** 5594 * netdev_lower_get_next_private_rcu - Get the next ->private from the 5595 * lower neighbour list, RCU 5596 * variant 5597 * @dev: device 5598 * @iter: list_head ** of the current position 5599 * 5600 * Gets the next netdev_adjacent->private from the dev's lower neighbour 5601 * list, starting from iter position. The caller must hold RCU read lock. 5602 */ 5603 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 5604 struct list_head **iter) 5605 { 5606 struct netdev_adjacent *lower; 5607 5608 WARN_ON_ONCE(!rcu_read_lock_held()); 5609 5610 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5611 5612 if (&lower->list == &dev->adj_list.lower) 5613 return NULL; 5614 5615 *iter = &lower->list; 5616 5617 return lower->private; 5618 } 5619 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 5620 5621 /** 5622 * netdev_lower_get_next - Get the next device from the lower neighbour 5623 * list 5624 * @dev: device 5625 * @iter: list_head ** of the current position 5626 * 5627 * Gets the next netdev_adjacent from the dev's lower neighbour 5628 * list, starting from iter position. The caller must hold RTNL lock or 5629 * its own locking that guarantees that the neighbour lower 5630 * list will remain unchanged. 5631 */ 5632 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 5633 { 5634 struct netdev_adjacent *lower; 5635 5636 lower = list_entry(*iter, struct netdev_adjacent, list); 5637 5638 if (&lower->list == &dev->adj_list.lower) 5639 return NULL; 5640 5641 *iter = lower->list.next; 5642 5643 return lower->dev; 5644 } 5645 EXPORT_SYMBOL(netdev_lower_get_next); 5646 5647 static struct net_device *netdev_next_lower_dev(struct net_device *dev, 5648 struct list_head **iter) 5649 { 5650 struct netdev_adjacent *lower; 5651 5652 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 5653 5654 if (&lower->list == &dev->adj_list.lower) 5655 return NULL; 5656 5657 *iter = &lower->list; 5658 5659 return lower->dev; 5660 } 5661 5662 int netdev_walk_all_lower_dev(struct net_device *dev, 5663 int (*fn)(struct net_device *dev, 5664 void *data), 5665 void *data) 5666 { 5667 struct net_device *ldev; 5668 struct list_head *iter; 5669 int ret; 5670 5671 for (iter = &dev->adj_list.lower, 5672 ldev = netdev_next_lower_dev(dev, &iter); 5673 ldev; 5674 ldev = netdev_next_lower_dev(dev, &iter)) { 5675 /* first is the lower device itself */ 5676 ret = fn(ldev, data); 5677 if (ret) 5678 return ret; 5679 5680 /* then look at all of its lower devices */ 5681 ret = netdev_walk_all_lower_dev(ldev, fn, data); 5682 if (ret) 5683 return ret; 5684 } 5685 5686 return 0; 5687 } 5688 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev); 5689 5690 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 5691 struct list_head **iter) 5692 { 5693 struct netdev_adjacent *lower; 5694 5695 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5696 if (&lower->list == &dev->adj_list.lower) 5697 return NULL; 5698 5699 *iter = &lower->list; 5700 5701 return lower->dev; 5702 } 5703 5704 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 5705 int (*fn)(struct net_device *dev, 5706 void *data), 5707 void *data) 5708 { 5709 struct net_device *ldev; 5710 struct list_head *iter; 5711 int ret; 5712 5713 for (iter = &dev->adj_list.lower, 5714 ldev = netdev_next_lower_dev_rcu(dev, &iter); 5715 ldev; 5716 ldev = netdev_next_lower_dev_rcu(dev, &iter)) { 5717 /* first is the lower device itself */ 5718 ret = fn(ldev, data); 5719 if (ret) 5720 return ret; 5721 5722 /* then look at all of its lower devices */ 5723 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data); 5724 if (ret) 5725 return ret; 5726 } 5727 5728 return 0; 5729 } 5730 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu); 5731 5732 /** 5733 * netdev_lower_get_first_private_rcu - Get the first ->private from the 5734 * lower neighbour list, RCU 5735 * variant 5736 * @dev: device 5737 * 5738 * Gets the first netdev_adjacent->private from the dev's lower neighbour 5739 * list. The caller must hold RCU read lock. 5740 */ 5741 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 5742 { 5743 struct netdev_adjacent *lower; 5744 5745 lower = list_first_or_null_rcu(&dev->adj_list.lower, 5746 struct netdev_adjacent, list); 5747 if (lower) 5748 return lower->private; 5749 return NULL; 5750 } 5751 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 5752 5753 /** 5754 * netdev_master_upper_dev_get_rcu - Get master upper device 5755 * @dev: device 5756 * 5757 * Find a master upper device and return pointer to it or NULL in case 5758 * it's not there. The caller must hold the RCU read lock. 5759 */ 5760 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 5761 { 5762 struct netdev_adjacent *upper; 5763 5764 upper = list_first_or_null_rcu(&dev->adj_list.upper, 5765 struct netdev_adjacent, list); 5766 if (upper && likely(upper->master)) 5767 return upper->dev; 5768 return NULL; 5769 } 5770 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 5771 5772 static int netdev_adjacent_sysfs_add(struct net_device *dev, 5773 struct net_device *adj_dev, 5774 struct list_head *dev_list) 5775 { 5776 char linkname[IFNAMSIZ+7]; 5777 5778 sprintf(linkname, dev_list == &dev->adj_list.upper ? 5779 "upper_%s" : "lower_%s", adj_dev->name); 5780 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 5781 linkname); 5782 } 5783 static void netdev_adjacent_sysfs_del(struct net_device *dev, 5784 char *name, 5785 struct list_head *dev_list) 5786 { 5787 char linkname[IFNAMSIZ+7]; 5788 5789 sprintf(linkname, dev_list == &dev->adj_list.upper ? 5790 "upper_%s" : "lower_%s", name); 5791 sysfs_remove_link(&(dev->dev.kobj), linkname); 5792 } 5793 5794 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 5795 struct net_device *adj_dev, 5796 struct list_head *dev_list) 5797 { 5798 return (dev_list == &dev->adj_list.upper || 5799 dev_list == &dev->adj_list.lower) && 5800 net_eq(dev_net(dev), dev_net(adj_dev)); 5801 } 5802 5803 static int __netdev_adjacent_dev_insert(struct net_device *dev, 5804 struct net_device *adj_dev, 5805 struct list_head *dev_list, 5806 void *private, bool master) 5807 { 5808 struct netdev_adjacent *adj; 5809 int ret; 5810 5811 adj = __netdev_find_adj(adj_dev, dev_list); 5812 5813 if (adj) { 5814 adj->ref_nr += 1; 5815 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n", 5816 dev->name, adj_dev->name, adj->ref_nr); 5817 5818 return 0; 5819 } 5820 5821 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 5822 if (!adj) 5823 return -ENOMEM; 5824 5825 adj->dev = adj_dev; 5826 adj->master = master; 5827 adj->ref_nr = 1; 5828 adj->private = private; 5829 dev_hold(adj_dev); 5830 5831 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n", 5832 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name); 5833 5834 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 5835 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 5836 if (ret) 5837 goto free_adj; 5838 } 5839 5840 /* Ensure that master link is always the first item in list. */ 5841 if (master) { 5842 ret = sysfs_create_link(&(dev->dev.kobj), 5843 &(adj_dev->dev.kobj), "master"); 5844 if (ret) 5845 goto remove_symlinks; 5846 5847 list_add_rcu(&adj->list, dev_list); 5848 } else { 5849 list_add_tail_rcu(&adj->list, dev_list); 5850 } 5851 5852 return 0; 5853 5854 remove_symlinks: 5855 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 5856 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 5857 free_adj: 5858 kfree(adj); 5859 dev_put(adj_dev); 5860 5861 return ret; 5862 } 5863 5864 static void __netdev_adjacent_dev_remove(struct net_device *dev, 5865 struct net_device *adj_dev, 5866 u16 ref_nr, 5867 struct list_head *dev_list) 5868 { 5869 struct netdev_adjacent *adj; 5870 5871 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n", 5872 dev->name, adj_dev->name, ref_nr); 5873 5874 adj = __netdev_find_adj(adj_dev, dev_list); 5875 5876 if (!adj) { 5877 pr_err("Adjacency does not exist for device %s from %s\n", 5878 dev->name, adj_dev->name); 5879 WARN_ON(1); 5880 return; 5881 } 5882 5883 if (adj->ref_nr > ref_nr) { 5884 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n", 5885 dev->name, adj_dev->name, ref_nr, 5886 adj->ref_nr - ref_nr); 5887 adj->ref_nr -= ref_nr; 5888 return; 5889 } 5890 5891 if (adj->master) 5892 sysfs_remove_link(&(dev->dev.kobj), "master"); 5893 5894 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 5895 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 5896 5897 list_del_rcu(&adj->list); 5898 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n", 5899 adj_dev->name, dev->name, adj_dev->name); 5900 dev_put(adj_dev); 5901 kfree_rcu(adj, rcu); 5902 } 5903 5904 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 5905 struct net_device *upper_dev, 5906 struct list_head *up_list, 5907 struct list_head *down_list, 5908 void *private, bool master) 5909 { 5910 int ret; 5911 5912 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, 5913 private, master); 5914 if (ret) 5915 return ret; 5916 5917 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, 5918 private, false); 5919 if (ret) { 5920 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list); 5921 return ret; 5922 } 5923 5924 return 0; 5925 } 5926 5927 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 5928 struct net_device *upper_dev, 5929 u16 ref_nr, 5930 struct list_head *up_list, 5931 struct list_head *down_list) 5932 { 5933 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list); 5934 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list); 5935 } 5936 5937 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 5938 struct net_device *upper_dev, 5939 void *private, bool master) 5940 { 5941 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 5942 &dev->adj_list.upper, 5943 &upper_dev->adj_list.lower, 5944 private, master); 5945 } 5946 5947 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 5948 struct net_device *upper_dev) 5949 { 5950 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1, 5951 &dev->adj_list.upper, 5952 &upper_dev->adj_list.lower); 5953 } 5954 5955 static int __netdev_upper_dev_link(struct net_device *dev, 5956 struct net_device *upper_dev, bool master, 5957 void *upper_priv, void *upper_info) 5958 { 5959 struct netdev_notifier_changeupper_info changeupper_info; 5960 int ret = 0; 5961 5962 ASSERT_RTNL(); 5963 5964 if (dev == upper_dev) 5965 return -EBUSY; 5966 5967 /* To prevent loops, check if dev is not upper device to upper_dev. */ 5968 if (netdev_has_upper_dev(upper_dev, dev)) 5969 return -EBUSY; 5970 5971 if (netdev_has_upper_dev(dev, upper_dev)) 5972 return -EEXIST; 5973 5974 if (master && netdev_master_upper_dev_get(dev)) 5975 return -EBUSY; 5976 5977 changeupper_info.upper_dev = upper_dev; 5978 changeupper_info.master = master; 5979 changeupper_info.linking = true; 5980 changeupper_info.upper_info = upper_info; 5981 5982 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev, 5983 &changeupper_info.info); 5984 ret = notifier_to_errno(ret); 5985 if (ret) 5986 return ret; 5987 5988 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv, 5989 master); 5990 if (ret) 5991 return ret; 5992 5993 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev, 5994 &changeupper_info.info); 5995 ret = notifier_to_errno(ret); 5996 if (ret) 5997 goto rollback; 5998 5999 return 0; 6000 6001 rollback: 6002 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 6003 6004 return ret; 6005 } 6006 6007 /** 6008 * netdev_upper_dev_link - Add a link to the upper device 6009 * @dev: device 6010 * @upper_dev: new upper device 6011 * 6012 * Adds a link to device which is upper to this one. The caller must hold 6013 * the RTNL lock. On a failure a negative errno code is returned. 6014 * On success the reference counts are adjusted and the function 6015 * returns zero. 6016 */ 6017 int netdev_upper_dev_link(struct net_device *dev, 6018 struct net_device *upper_dev) 6019 { 6020 return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL); 6021 } 6022 EXPORT_SYMBOL(netdev_upper_dev_link); 6023 6024 /** 6025 * netdev_master_upper_dev_link - Add a master link to the upper device 6026 * @dev: device 6027 * @upper_dev: new upper device 6028 * @upper_priv: upper device private 6029 * @upper_info: upper info to be passed down via notifier 6030 * 6031 * Adds a link to device which is upper to this one. In this case, only 6032 * one master upper device can be linked, although other non-master devices 6033 * might be linked as well. The caller must hold the RTNL lock. 6034 * On a failure a negative errno code is returned. On success the reference 6035 * counts are adjusted and the function returns zero. 6036 */ 6037 int netdev_master_upper_dev_link(struct net_device *dev, 6038 struct net_device *upper_dev, 6039 void *upper_priv, void *upper_info) 6040 { 6041 return __netdev_upper_dev_link(dev, upper_dev, true, 6042 upper_priv, upper_info); 6043 } 6044 EXPORT_SYMBOL(netdev_master_upper_dev_link); 6045 6046 /** 6047 * netdev_upper_dev_unlink - Removes a link to upper device 6048 * @dev: device 6049 * @upper_dev: new upper device 6050 * 6051 * Removes a link to device which is upper to this one. The caller must hold 6052 * the RTNL lock. 6053 */ 6054 void netdev_upper_dev_unlink(struct net_device *dev, 6055 struct net_device *upper_dev) 6056 { 6057 struct netdev_notifier_changeupper_info changeupper_info; 6058 6059 ASSERT_RTNL(); 6060 6061 changeupper_info.upper_dev = upper_dev; 6062 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; 6063 changeupper_info.linking = false; 6064 6065 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev, 6066 &changeupper_info.info); 6067 6068 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 6069 6070 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev, 6071 &changeupper_info.info); 6072 } 6073 EXPORT_SYMBOL(netdev_upper_dev_unlink); 6074 6075 /** 6076 * netdev_bonding_info_change - Dispatch event about slave change 6077 * @dev: device 6078 * @bonding_info: info to dispatch 6079 * 6080 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 6081 * The caller must hold the RTNL lock. 6082 */ 6083 void netdev_bonding_info_change(struct net_device *dev, 6084 struct netdev_bonding_info *bonding_info) 6085 { 6086 struct netdev_notifier_bonding_info info; 6087 6088 memcpy(&info.bonding_info, bonding_info, 6089 sizeof(struct netdev_bonding_info)); 6090 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev, 6091 &info.info); 6092 } 6093 EXPORT_SYMBOL(netdev_bonding_info_change); 6094 6095 static void netdev_adjacent_add_links(struct net_device *dev) 6096 { 6097 struct netdev_adjacent *iter; 6098 6099 struct net *net = dev_net(dev); 6100 6101 list_for_each_entry(iter, &dev->adj_list.upper, list) { 6102 if (!net_eq(net, dev_net(iter->dev))) 6103 continue; 6104 netdev_adjacent_sysfs_add(iter->dev, dev, 6105 &iter->dev->adj_list.lower); 6106 netdev_adjacent_sysfs_add(dev, iter->dev, 6107 &dev->adj_list.upper); 6108 } 6109 6110 list_for_each_entry(iter, &dev->adj_list.lower, list) { 6111 if (!net_eq(net, dev_net(iter->dev))) 6112 continue; 6113 netdev_adjacent_sysfs_add(iter->dev, dev, 6114 &iter->dev->adj_list.upper); 6115 netdev_adjacent_sysfs_add(dev, iter->dev, 6116 &dev->adj_list.lower); 6117 } 6118 } 6119 6120 static void netdev_adjacent_del_links(struct net_device *dev) 6121 { 6122 struct netdev_adjacent *iter; 6123 6124 struct net *net = dev_net(dev); 6125 6126 list_for_each_entry(iter, &dev->adj_list.upper, list) { 6127 if (!net_eq(net, dev_net(iter->dev))) 6128 continue; 6129 netdev_adjacent_sysfs_del(iter->dev, dev->name, 6130 &iter->dev->adj_list.lower); 6131 netdev_adjacent_sysfs_del(dev, iter->dev->name, 6132 &dev->adj_list.upper); 6133 } 6134 6135 list_for_each_entry(iter, &dev->adj_list.lower, list) { 6136 if (!net_eq(net, dev_net(iter->dev))) 6137 continue; 6138 netdev_adjacent_sysfs_del(iter->dev, dev->name, 6139 &iter->dev->adj_list.upper); 6140 netdev_adjacent_sysfs_del(dev, iter->dev->name, 6141 &dev->adj_list.lower); 6142 } 6143 } 6144 6145 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 6146 { 6147 struct netdev_adjacent *iter; 6148 6149 struct net *net = dev_net(dev); 6150 6151 list_for_each_entry(iter, &dev->adj_list.upper, list) { 6152 if (!net_eq(net, dev_net(iter->dev))) 6153 continue; 6154 netdev_adjacent_sysfs_del(iter->dev, oldname, 6155 &iter->dev->adj_list.lower); 6156 netdev_adjacent_sysfs_add(iter->dev, dev, 6157 &iter->dev->adj_list.lower); 6158 } 6159 6160 list_for_each_entry(iter, &dev->adj_list.lower, list) { 6161 if (!net_eq(net, dev_net(iter->dev))) 6162 continue; 6163 netdev_adjacent_sysfs_del(iter->dev, oldname, 6164 &iter->dev->adj_list.upper); 6165 netdev_adjacent_sysfs_add(iter->dev, dev, 6166 &iter->dev->adj_list.upper); 6167 } 6168 } 6169 6170 void *netdev_lower_dev_get_private(struct net_device *dev, 6171 struct net_device *lower_dev) 6172 { 6173 struct netdev_adjacent *lower; 6174 6175 if (!lower_dev) 6176 return NULL; 6177 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower); 6178 if (!lower) 6179 return NULL; 6180 6181 return lower->private; 6182 } 6183 EXPORT_SYMBOL(netdev_lower_dev_get_private); 6184 6185 6186 int dev_get_nest_level(struct net_device *dev) 6187 { 6188 struct net_device *lower = NULL; 6189 struct list_head *iter; 6190 int max_nest = -1; 6191 int nest; 6192 6193 ASSERT_RTNL(); 6194 6195 netdev_for_each_lower_dev(dev, lower, iter) { 6196 nest = dev_get_nest_level(lower); 6197 if (max_nest < nest) 6198 max_nest = nest; 6199 } 6200 6201 return max_nest + 1; 6202 } 6203 EXPORT_SYMBOL(dev_get_nest_level); 6204 6205 /** 6206 * netdev_lower_change - Dispatch event about lower device state change 6207 * @lower_dev: device 6208 * @lower_state_info: state to dispatch 6209 * 6210 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info. 6211 * The caller must hold the RTNL lock. 6212 */ 6213 void netdev_lower_state_changed(struct net_device *lower_dev, 6214 void *lower_state_info) 6215 { 6216 struct netdev_notifier_changelowerstate_info changelowerstate_info; 6217 6218 ASSERT_RTNL(); 6219 changelowerstate_info.lower_state_info = lower_state_info; 6220 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev, 6221 &changelowerstate_info.info); 6222 } 6223 EXPORT_SYMBOL(netdev_lower_state_changed); 6224 6225 static void dev_change_rx_flags(struct net_device *dev, int flags) 6226 { 6227 const struct net_device_ops *ops = dev->netdev_ops; 6228 6229 if (ops->ndo_change_rx_flags) 6230 ops->ndo_change_rx_flags(dev, flags); 6231 } 6232 6233 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 6234 { 6235 unsigned int old_flags = dev->flags; 6236 kuid_t uid; 6237 kgid_t gid; 6238 6239 ASSERT_RTNL(); 6240 6241 dev->flags |= IFF_PROMISC; 6242 dev->promiscuity += inc; 6243 if (dev->promiscuity == 0) { 6244 /* 6245 * Avoid overflow. 6246 * If inc causes overflow, untouch promisc and return error. 6247 */ 6248 if (inc < 0) 6249 dev->flags &= ~IFF_PROMISC; 6250 else { 6251 dev->promiscuity -= inc; 6252 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 6253 dev->name); 6254 return -EOVERFLOW; 6255 } 6256 } 6257 if (dev->flags != old_flags) { 6258 pr_info("device %s %s promiscuous mode\n", 6259 dev->name, 6260 dev->flags & IFF_PROMISC ? "entered" : "left"); 6261 if (audit_enabled) { 6262 current_uid_gid(&uid, &gid); 6263 audit_log(current->audit_context, GFP_ATOMIC, 6264 AUDIT_ANOM_PROMISCUOUS, 6265 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 6266 dev->name, (dev->flags & IFF_PROMISC), 6267 (old_flags & IFF_PROMISC), 6268 from_kuid(&init_user_ns, audit_get_loginuid(current)), 6269 from_kuid(&init_user_ns, uid), 6270 from_kgid(&init_user_ns, gid), 6271 audit_get_sessionid(current)); 6272 } 6273 6274 dev_change_rx_flags(dev, IFF_PROMISC); 6275 } 6276 if (notify) 6277 __dev_notify_flags(dev, old_flags, IFF_PROMISC); 6278 return 0; 6279 } 6280 6281 /** 6282 * dev_set_promiscuity - update promiscuity count on a device 6283 * @dev: device 6284 * @inc: modifier 6285 * 6286 * Add or remove promiscuity from a device. While the count in the device 6287 * remains above zero the interface remains promiscuous. Once it hits zero 6288 * the device reverts back to normal filtering operation. A negative inc 6289 * value is used to drop promiscuity on the device. 6290 * Return 0 if successful or a negative errno code on error. 6291 */ 6292 int dev_set_promiscuity(struct net_device *dev, int inc) 6293 { 6294 unsigned int old_flags = dev->flags; 6295 int err; 6296 6297 err = __dev_set_promiscuity(dev, inc, true); 6298 if (err < 0) 6299 return err; 6300 if (dev->flags != old_flags) 6301 dev_set_rx_mode(dev); 6302 return err; 6303 } 6304 EXPORT_SYMBOL(dev_set_promiscuity); 6305 6306 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 6307 { 6308 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 6309 6310 ASSERT_RTNL(); 6311 6312 dev->flags |= IFF_ALLMULTI; 6313 dev->allmulti += inc; 6314 if (dev->allmulti == 0) { 6315 /* 6316 * Avoid overflow. 6317 * If inc causes overflow, untouch allmulti and return error. 6318 */ 6319 if (inc < 0) 6320 dev->flags &= ~IFF_ALLMULTI; 6321 else { 6322 dev->allmulti -= inc; 6323 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 6324 dev->name); 6325 return -EOVERFLOW; 6326 } 6327 } 6328 if (dev->flags ^ old_flags) { 6329 dev_change_rx_flags(dev, IFF_ALLMULTI); 6330 dev_set_rx_mode(dev); 6331 if (notify) 6332 __dev_notify_flags(dev, old_flags, 6333 dev->gflags ^ old_gflags); 6334 } 6335 return 0; 6336 } 6337 6338 /** 6339 * dev_set_allmulti - update allmulti count on a device 6340 * @dev: device 6341 * @inc: modifier 6342 * 6343 * Add or remove reception of all multicast frames to a device. While the 6344 * count in the device remains above zero the interface remains listening 6345 * to all interfaces. Once it hits zero the device reverts back to normal 6346 * filtering operation. A negative @inc value is used to drop the counter 6347 * when releasing a resource needing all multicasts. 6348 * Return 0 if successful or a negative errno code on error. 6349 */ 6350 6351 int dev_set_allmulti(struct net_device *dev, int inc) 6352 { 6353 return __dev_set_allmulti(dev, inc, true); 6354 } 6355 EXPORT_SYMBOL(dev_set_allmulti); 6356 6357 /* 6358 * Upload unicast and multicast address lists to device and 6359 * configure RX filtering. When the device doesn't support unicast 6360 * filtering it is put in promiscuous mode while unicast addresses 6361 * are present. 6362 */ 6363 void __dev_set_rx_mode(struct net_device *dev) 6364 { 6365 const struct net_device_ops *ops = dev->netdev_ops; 6366 6367 /* dev_open will call this function so the list will stay sane. */ 6368 if (!(dev->flags&IFF_UP)) 6369 return; 6370 6371 if (!netif_device_present(dev)) 6372 return; 6373 6374 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 6375 /* Unicast addresses changes may only happen under the rtnl, 6376 * therefore calling __dev_set_promiscuity here is safe. 6377 */ 6378 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 6379 __dev_set_promiscuity(dev, 1, false); 6380 dev->uc_promisc = true; 6381 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 6382 __dev_set_promiscuity(dev, -1, false); 6383 dev->uc_promisc = false; 6384 } 6385 } 6386 6387 if (ops->ndo_set_rx_mode) 6388 ops->ndo_set_rx_mode(dev); 6389 } 6390 6391 void dev_set_rx_mode(struct net_device *dev) 6392 { 6393 netif_addr_lock_bh(dev); 6394 __dev_set_rx_mode(dev); 6395 netif_addr_unlock_bh(dev); 6396 } 6397 6398 /** 6399 * dev_get_flags - get flags reported to userspace 6400 * @dev: device 6401 * 6402 * Get the combination of flag bits exported through APIs to userspace. 6403 */ 6404 unsigned int dev_get_flags(const struct net_device *dev) 6405 { 6406 unsigned int flags; 6407 6408 flags = (dev->flags & ~(IFF_PROMISC | 6409 IFF_ALLMULTI | 6410 IFF_RUNNING | 6411 IFF_LOWER_UP | 6412 IFF_DORMANT)) | 6413 (dev->gflags & (IFF_PROMISC | 6414 IFF_ALLMULTI)); 6415 6416 if (netif_running(dev)) { 6417 if (netif_oper_up(dev)) 6418 flags |= IFF_RUNNING; 6419 if (netif_carrier_ok(dev)) 6420 flags |= IFF_LOWER_UP; 6421 if (netif_dormant(dev)) 6422 flags |= IFF_DORMANT; 6423 } 6424 6425 return flags; 6426 } 6427 EXPORT_SYMBOL(dev_get_flags); 6428 6429 int __dev_change_flags(struct net_device *dev, unsigned int flags) 6430 { 6431 unsigned int old_flags = dev->flags; 6432 int ret; 6433 6434 ASSERT_RTNL(); 6435 6436 /* 6437 * Set the flags on our device. 6438 */ 6439 6440 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 6441 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 6442 IFF_AUTOMEDIA)) | 6443 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 6444 IFF_ALLMULTI)); 6445 6446 /* 6447 * Load in the correct multicast list now the flags have changed. 6448 */ 6449 6450 if ((old_flags ^ flags) & IFF_MULTICAST) 6451 dev_change_rx_flags(dev, IFF_MULTICAST); 6452 6453 dev_set_rx_mode(dev); 6454 6455 /* 6456 * Have we downed the interface. We handle IFF_UP ourselves 6457 * according to user attempts to set it, rather than blindly 6458 * setting it. 6459 */ 6460 6461 ret = 0; 6462 if ((old_flags ^ flags) & IFF_UP) 6463 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev); 6464 6465 if ((flags ^ dev->gflags) & IFF_PROMISC) { 6466 int inc = (flags & IFF_PROMISC) ? 1 : -1; 6467 unsigned int old_flags = dev->flags; 6468 6469 dev->gflags ^= IFF_PROMISC; 6470 6471 if (__dev_set_promiscuity(dev, inc, false) >= 0) 6472 if (dev->flags != old_flags) 6473 dev_set_rx_mode(dev); 6474 } 6475 6476 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 6477 * is important. Some (broken) drivers set IFF_PROMISC, when 6478 * IFF_ALLMULTI is requested not asking us and not reporting. 6479 */ 6480 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 6481 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 6482 6483 dev->gflags ^= IFF_ALLMULTI; 6484 __dev_set_allmulti(dev, inc, false); 6485 } 6486 6487 return ret; 6488 } 6489 6490 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 6491 unsigned int gchanges) 6492 { 6493 unsigned int changes = dev->flags ^ old_flags; 6494 6495 if (gchanges) 6496 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC); 6497 6498 if (changes & IFF_UP) { 6499 if (dev->flags & IFF_UP) 6500 call_netdevice_notifiers(NETDEV_UP, dev); 6501 else 6502 call_netdevice_notifiers(NETDEV_DOWN, dev); 6503 } 6504 6505 if (dev->flags & IFF_UP && 6506 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 6507 struct netdev_notifier_change_info change_info; 6508 6509 change_info.flags_changed = changes; 6510 call_netdevice_notifiers_info(NETDEV_CHANGE, dev, 6511 &change_info.info); 6512 } 6513 } 6514 6515 /** 6516 * dev_change_flags - change device settings 6517 * @dev: device 6518 * @flags: device state flags 6519 * 6520 * Change settings on device based state flags. The flags are 6521 * in the userspace exported format. 6522 */ 6523 int dev_change_flags(struct net_device *dev, unsigned int flags) 6524 { 6525 int ret; 6526 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 6527 6528 ret = __dev_change_flags(dev, flags); 6529 if (ret < 0) 6530 return ret; 6531 6532 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 6533 __dev_notify_flags(dev, old_flags, changes); 6534 return ret; 6535 } 6536 EXPORT_SYMBOL(dev_change_flags); 6537 6538 static int __dev_set_mtu(struct net_device *dev, int new_mtu) 6539 { 6540 const struct net_device_ops *ops = dev->netdev_ops; 6541 6542 if (ops->ndo_change_mtu) 6543 return ops->ndo_change_mtu(dev, new_mtu); 6544 6545 dev->mtu = new_mtu; 6546 return 0; 6547 } 6548 6549 /** 6550 * dev_set_mtu - Change maximum transfer unit 6551 * @dev: device 6552 * @new_mtu: new transfer unit 6553 * 6554 * Change the maximum transfer size of the network device. 6555 */ 6556 int dev_set_mtu(struct net_device *dev, int new_mtu) 6557 { 6558 int err, orig_mtu; 6559 6560 if (new_mtu == dev->mtu) 6561 return 0; 6562 6563 /* MTU must be positive, and in range */ 6564 if (new_mtu < 0 || new_mtu < dev->min_mtu) { 6565 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n", 6566 dev->name, new_mtu, dev->min_mtu); 6567 return -EINVAL; 6568 } 6569 6570 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) { 6571 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n", 6572 dev->name, new_mtu, dev->max_mtu); 6573 return -EINVAL; 6574 } 6575 6576 if (!netif_device_present(dev)) 6577 return -ENODEV; 6578 6579 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 6580 err = notifier_to_errno(err); 6581 if (err) 6582 return err; 6583 6584 orig_mtu = dev->mtu; 6585 err = __dev_set_mtu(dev, new_mtu); 6586 6587 if (!err) { 6588 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 6589 err = notifier_to_errno(err); 6590 if (err) { 6591 /* setting mtu back and notifying everyone again, 6592 * so that they have a chance to revert changes. 6593 */ 6594 __dev_set_mtu(dev, orig_mtu); 6595 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 6596 } 6597 } 6598 return err; 6599 } 6600 EXPORT_SYMBOL(dev_set_mtu); 6601 6602 /** 6603 * dev_set_group - Change group this device belongs to 6604 * @dev: device 6605 * @new_group: group this device should belong to 6606 */ 6607 void dev_set_group(struct net_device *dev, int new_group) 6608 { 6609 dev->group = new_group; 6610 } 6611 EXPORT_SYMBOL(dev_set_group); 6612 6613 /** 6614 * dev_set_mac_address - Change Media Access Control Address 6615 * @dev: device 6616 * @sa: new address 6617 * 6618 * Change the hardware (MAC) address of the device 6619 */ 6620 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 6621 { 6622 const struct net_device_ops *ops = dev->netdev_ops; 6623 int err; 6624 6625 if (!ops->ndo_set_mac_address) 6626 return -EOPNOTSUPP; 6627 if (sa->sa_family != dev->type) 6628 return -EINVAL; 6629 if (!netif_device_present(dev)) 6630 return -ENODEV; 6631 err = ops->ndo_set_mac_address(dev, sa); 6632 if (err) 6633 return err; 6634 dev->addr_assign_type = NET_ADDR_SET; 6635 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 6636 add_device_randomness(dev->dev_addr, dev->addr_len); 6637 return 0; 6638 } 6639 EXPORT_SYMBOL(dev_set_mac_address); 6640 6641 /** 6642 * dev_change_carrier - Change device carrier 6643 * @dev: device 6644 * @new_carrier: new value 6645 * 6646 * Change device carrier 6647 */ 6648 int dev_change_carrier(struct net_device *dev, bool new_carrier) 6649 { 6650 const struct net_device_ops *ops = dev->netdev_ops; 6651 6652 if (!ops->ndo_change_carrier) 6653 return -EOPNOTSUPP; 6654 if (!netif_device_present(dev)) 6655 return -ENODEV; 6656 return ops->ndo_change_carrier(dev, new_carrier); 6657 } 6658 EXPORT_SYMBOL(dev_change_carrier); 6659 6660 /** 6661 * dev_get_phys_port_id - Get device physical port ID 6662 * @dev: device 6663 * @ppid: port ID 6664 * 6665 * Get device physical port ID 6666 */ 6667 int dev_get_phys_port_id(struct net_device *dev, 6668 struct netdev_phys_item_id *ppid) 6669 { 6670 const struct net_device_ops *ops = dev->netdev_ops; 6671 6672 if (!ops->ndo_get_phys_port_id) 6673 return -EOPNOTSUPP; 6674 return ops->ndo_get_phys_port_id(dev, ppid); 6675 } 6676 EXPORT_SYMBOL(dev_get_phys_port_id); 6677 6678 /** 6679 * dev_get_phys_port_name - Get device physical port name 6680 * @dev: device 6681 * @name: port name 6682 * @len: limit of bytes to copy to name 6683 * 6684 * Get device physical port name 6685 */ 6686 int dev_get_phys_port_name(struct net_device *dev, 6687 char *name, size_t len) 6688 { 6689 const struct net_device_ops *ops = dev->netdev_ops; 6690 6691 if (!ops->ndo_get_phys_port_name) 6692 return -EOPNOTSUPP; 6693 return ops->ndo_get_phys_port_name(dev, name, len); 6694 } 6695 EXPORT_SYMBOL(dev_get_phys_port_name); 6696 6697 /** 6698 * dev_change_proto_down - update protocol port state information 6699 * @dev: device 6700 * @proto_down: new value 6701 * 6702 * This info can be used by switch drivers to set the phys state of the 6703 * port. 6704 */ 6705 int dev_change_proto_down(struct net_device *dev, bool proto_down) 6706 { 6707 const struct net_device_ops *ops = dev->netdev_ops; 6708 6709 if (!ops->ndo_change_proto_down) 6710 return -EOPNOTSUPP; 6711 if (!netif_device_present(dev)) 6712 return -ENODEV; 6713 return ops->ndo_change_proto_down(dev, proto_down); 6714 } 6715 EXPORT_SYMBOL(dev_change_proto_down); 6716 6717 /** 6718 * dev_change_xdp_fd - set or clear a bpf program for a device rx path 6719 * @dev: device 6720 * @fd: new program fd or negative value to clear 6721 * @flags: xdp-related flags 6722 * 6723 * Set or clear a bpf program for a device 6724 */ 6725 int dev_change_xdp_fd(struct net_device *dev, int fd, u32 flags) 6726 { 6727 const struct net_device_ops *ops = dev->netdev_ops; 6728 struct bpf_prog *prog = NULL; 6729 struct netdev_xdp xdp; 6730 int err; 6731 6732 ASSERT_RTNL(); 6733 6734 if (!ops->ndo_xdp) 6735 return -EOPNOTSUPP; 6736 if (fd >= 0) { 6737 if (flags & XDP_FLAGS_UPDATE_IF_NOEXIST) { 6738 memset(&xdp, 0, sizeof(xdp)); 6739 xdp.command = XDP_QUERY_PROG; 6740 6741 err = ops->ndo_xdp(dev, &xdp); 6742 if (err < 0) 6743 return err; 6744 if (xdp.prog_attached) 6745 return -EBUSY; 6746 } 6747 6748 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP); 6749 if (IS_ERR(prog)) 6750 return PTR_ERR(prog); 6751 } 6752 6753 memset(&xdp, 0, sizeof(xdp)); 6754 xdp.command = XDP_SETUP_PROG; 6755 xdp.prog = prog; 6756 6757 err = ops->ndo_xdp(dev, &xdp); 6758 if (err < 0 && prog) 6759 bpf_prog_put(prog); 6760 6761 return err; 6762 } 6763 6764 /** 6765 * dev_new_index - allocate an ifindex 6766 * @net: the applicable net namespace 6767 * 6768 * Returns a suitable unique value for a new device interface 6769 * number. The caller must hold the rtnl semaphore or the 6770 * dev_base_lock to be sure it remains unique. 6771 */ 6772 static int dev_new_index(struct net *net) 6773 { 6774 int ifindex = net->ifindex; 6775 6776 for (;;) { 6777 if (++ifindex <= 0) 6778 ifindex = 1; 6779 if (!__dev_get_by_index(net, ifindex)) 6780 return net->ifindex = ifindex; 6781 } 6782 } 6783 6784 /* Delayed registration/unregisteration */ 6785 static LIST_HEAD(net_todo_list); 6786 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 6787 6788 static void net_set_todo(struct net_device *dev) 6789 { 6790 list_add_tail(&dev->todo_list, &net_todo_list); 6791 dev_net(dev)->dev_unreg_count++; 6792 } 6793 6794 static void rollback_registered_many(struct list_head *head) 6795 { 6796 struct net_device *dev, *tmp; 6797 LIST_HEAD(close_head); 6798 6799 BUG_ON(dev_boot_phase); 6800 ASSERT_RTNL(); 6801 6802 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 6803 /* Some devices call without registering 6804 * for initialization unwind. Remove those 6805 * devices and proceed with the remaining. 6806 */ 6807 if (dev->reg_state == NETREG_UNINITIALIZED) { 6808 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 6809 dev->name, dev); 6810 6811 WARN_ON(1); 6812 list_del(&dev->unreg_list); 6813 continue; 6814 } 6815 dev->dismantle = true; 6816 BUG_ON(dev->reg_state != NETREG_REGISTERED); 6817 } 6818 6819 /* If device is running, close it first. */ 6820 list_for_each_entry(dev, head, unreg_list) 6821 list_add_tail(&dev->close_list, &close_head); 6822 dev_close_many(&close_head, true); 6823 6824 list_for_each_entry(dev, head, unreg_list) { 6825 /* And unlink it from device chain. */ 6826 unlist_netdevice(dev); 6827 6828 dev->reg_state = NETREG_UNREGISTERING; 6829 } 6830 flush_all_backlogs(); 6831 6832 synchronize_net(); 6833 6834 list_for_each_entry(dev, head, unreg_list) { 6835 struct sk_buff *skb = NULL; 6836 6837 /* Shutdown queueing discipline. */ 6838 dev_shutdown(dev); 6839 6840 6841 /* Notify protocols, that we are about to destroy 6842 * this device. They should clean all the things. 6843 */ 6844 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 6845 6846 if (!dev->rtnl_link_ops || 6847 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 6848 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 6849 GFP_KERNEL); 6850 6851 /* 6852 * Flush the unicast and multicast chains 6853 */ 6854 dev_uc_flush(dev); 6855 dev_mc_flush(dev); 6856 6857 if (dev->netdev_ops->ndo_uninit) 6858 dev->netdev_ops->ndo_uninit(dev); 6859 6860 if (skb) 6861 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL); 6862 6863 /* Notifier chain MUST detach us all upper devices. */ 6864 WARN_ON(netdev_has_any_upper_dev(dev)); 6865 WARN_ON(netdev_has_any_lower_dev(dev)); 6866 6867 /* Remove entries from kobject tree */ 6868 netdev_unregister_kobject(dev); 6869 #ifdef CONFIG_XPS 6870 /* Remove XPS queueing entries */ 6871 netif_reset_xps_queues_gt(dev, 0); 6872 #endif 6873 } 6874 6875 synchronize_net(); 6876 6877 list_for_each_entry(dev, head, unreg_list) 6878 dev_put(dev); 6879 } 6880 6881 static void rollback_registered(struct net_device *dev) 6882 { 6883 LIST_HEAD(single); 6884 6885 list_add(&dev->unreg_list, &single); 6886 rollback_registered_many(&single); 6887 list_del(&single); 6888 } 6889 6890 static netdev_features_t netdev_sync_upper_features(struct net_device *lower, 6891 struct net_device *upper, netdev_features_t features) 6892 { 6893 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 6894 netdev_features_t feature; 6895 int feature_bit; 6896 6897 for_each_netdev_feature(&upper_disables, feature_bit) { 6898 feature = __NETIF_F_BIT(feature_bit); 6899 if (!(upper->wanted_features & feature) 6900 && (features & feature)) { 6901 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n", 6902 &feature, upper->name); 6903 features &= ~feature; 6904 } 6905 } 6906 6907 return features; 6908 } 6909 6910 static void netdev_sync_lower_features(struct net_device *upper, 6911 struct net_device *lower, netdev_features_t features) 6912 { 6913 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 6914 netdev_features_t feature; 6915 int feature_bit; 6916 6917 for_each_netdev_feature(&upper_disables, feature_bit) { 6918 feature = __NETIF_F_BIT(feature_bit); 6919 if (!(features & feature) && (lower->features & feature)) { 6920 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n", 6921 &feature, lower->name); 6922 lower->wanted_features &= ~feature; 6923 netdev_update_features(lower); 6924 6925 if (unlikely(lower->features & feature)) 6926 netdev_WARN(upper, "failed to disable %pNF on %s!\n", 6927 &feature, lower->name); 6928 } 6929 } 6930 } 6931 6932 static netdev_features_t netdev_fix_features(struct net_device *dev, 6933 netdev_features_t features) 6934 { 6935 /* Fix illegal checksum combinations */ 6936 if ((features & NETIF_F_HW_CSUM) && 6937 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 6938 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 6939 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 6940 } 6941 6942 /* TSO requires that SG is present as well. */ 6943 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 6944 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 6945 features &= ~NETIF_F_ALL_TSO; 6946 } 6947 6948 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 6949 !(features & NETIF_F_IP_CSUM)) { 6950 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 6951 features &= ~NETIF_F_TSO; 6952 features &= ~NETIF_F_TSO_ECN; 6953 } 6954 6955 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 6956 !(features & NETIF_F_IPV6_CSUM)) { 6957 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 6958 features &= ~NETIF_F_TSO6; 6959 } 6960 6961 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */ 6962 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO)) 6963 features &= ~NETIF_F_TSO_MANGLEID; 6964 6965 /* TSO ECN requires that TSO is present as well. */ 6966 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 6967 features &= ~NETIF_F_TSO_ECN; 6968 6969 /* Software GSO depends on SG. */ 6970 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 6971 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 6972 features &= ~NETIF_F_GSO; 6973 } 6974 6975 /* UFO needs SG and checksumming */ 6976 if (features & NETIF_F_UFO) { 6977 /* maybe split UFO into V4 and V6? */ 6978 if (!(features & NETIF_F_HW_CSUM) && 6979 ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) != 6980 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) { 6981 netdev_dbg(dev, 6982 "Dropping NETIF_F_UFO since no checksum offload features.\n"); 6983 features &= ~NETIF_F_UFO; 6984 } 6985 6986 if (!(features & NETIF_F_SG)) { 6987 netdev_dbg(dev, 6988 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n"); 6989 features &= ~NETIF_F_UFO; 6990 } 6991 } 6992 6993 /* GSO partial features require GSO partial be set */ 6994 if ((features & dev->gso_partial_features) && 6995 !(features & NETIF_F_GSO_PARTIAL)) { 6996 netdev_dbg(dev, 6997 "Dropping partially supported GSO features since no GSO partial.\n"); 6998 features &= ~dev->gso_partial_features; 6999 } 7000 7001 return features; 7002 } 7003 7004 int __netdev_update_features(struct net_device *dev) 7005 { 7006 struct net_device *upper, *lower; 7007 netdev_features_t features; 7008 struct list_head *iter; 7009 int err = -1; 7010 7011 ASSERT_RTNL(); 7012 7013 features = netdev_get_wanted_features(dev); 7014 7015 if (dev->netdev_ops->ndo_fix_features) 7016 features = dev->netdev_ops->ndo_fix_features(dev, features); 7017 7018 /* driver might be less strict about feature dependencies */ 7019 features = netdev_fix_features(dev, features); 7020 7021 /* some features can't be enabled if they're off an an upper device */ 7022 netdev_for_each_upper_dev_rcu(dev, upper, iter) 7023 features = netdev_sync_upper_features(dev, upper, features); 7024 7025 if (dev->features == features) 7026 goto sync_lower; 7027 7028 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 7029 &dev->features, &features); 7030 7031 if (dev->netdev_ops->ndo_set_features) 7032 err = dev->netdev_ops->ndo_set_features(dev, features); 7033 else 7034 err = 0; 7035 7036 if (unlikely(err < 0)) { 7037 netdev_err(dev, 7038 "set_features() failed (%d); wanted %pNF, left %pNF\n", 7039 err, &features, &dev->features); 7040 /* return non-0 since some features might have changed and 7041 * it's better to fire a spurious notification than miss it 7042 */ 7043 return -1; 7044 } 7045 7046 sync_lower: 7047 /* some features must be disabled on lower devices when disabled 7048 * on an upper device (think: bonding master or bridge) 7049 */ 7050 netdev_for_each_lower_dev(dev, lower, iter) 7051 netdev_sync_lower_features(dev, lower, features); 7052 7053 if (!err) 7054 dev->features = features; 7055 7056 return err < 0 ? 0 : 1; 7057 } 7058 7059 /** 7060 * netdev_update_features - recalculate device features 7061 * @dev: the device to check 7062 * 7063 * Recalculate dev->features set and send notifications if it 7064 * has changed. Should be called after driver or hardware dependent 7065 * conditions might have changed that influence the features. 7066 */ 7067 void netdev_update_features(struct net_device *dev) 7068 { 7069 if (__netdev_update_features(dev)) 7070 netdev_features_change(dev); 7071 } 7072 EXPORT_SYMBOL(netdev_update_features); 7073 7074 /** 7075 * netdev_change_features - recalculate device features 7076 * @dev: the device to check 7077 * 7078 * Recalculate dev->features set and send notifications even 7079 * if they have not changed. Should be called instead of 7080 * netdev_update_features() if also dev->vlan_features might 7081 * have changed to allow the changes to be propagated to stacked 7082 * VLAN devices. 7083 */ 7084 void netdev_change_features(struct net_device *dev) 7085 { 7086 __netdev_update_features(dev); 7087 netdev_features_change(dev); 7088 } 7089 EXPORT_SYMBOL(netdev_change_features); 7090 7091 /** 7092 * netif_stacked_transfer_operstate - transfer operstate 7093 * @rootdev: the root or lower level device to transfer state from 7094 * @dev: the device to transfer operstate to 7095 * 7096 * Transfer operational state from root to device. This is normally 7097 * called when a stacking relationship exists between the root 7098 * device and the device(a leaf device). 7099 */ 7100 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 7101 struct net_device *dev) 7102 { 7103 if (rootdev->operstate == IF_OPER_DORMANT) 7104 netif_dormant_on(dev); 7105 else 7106 netif_dormant_off(dev); 7107 7108 if (netif_carrier_ok(rootdev)) { 7109 if (!netif_carrier_ok(dev)) 7110 netif_carrier_on(dev); 7111 } else { 7112 if (netif_carrier_ok(dev)) 7113 netif_carrier_off(dev); 7114 } 7115 } 7116 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 7117 7118 #ifdef CONFIG_SYSFS 7119 static int netif_alloc_rx_queues(struct net_device *dev) 7120 { 7121 unsigned int i, count = dev->num_rx_queues; 7122 struct netdev_rx_queue *rx; 7123 size_t sz = count * sizeof(*rx); 7124 7125 BUG_ON(count < 1); 7126 7127 rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 7128 if (!rx) { 7129 rx = vzalloc(sz); 7130 if (!rx) 7131 return -ENOMEM; 7132 } 7133 dev->_rx = rx; 7134 7135 for (i = 0; i < count; i++) 7136 rx[i].dev = dev; 7137 return 0; 7138 } 7139 #endif 7140 7141 static void netdev_init_one_queue(struct net_device *dev, 7142 struct netdev_queue *queue, void *_unused) 7143 { 7144 /* Initialize queue lock */ 7145 spin_lock_init(&queue->_xmit_lock); 7146 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 7147 queue->xmit_lock_owner = -1; 7148 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 7149 queue->dev = dev; 7150 #ifdef CONFIG_BQL 7151 dql_init(&queue->dql, HZ); 7152 #endif 7153 } 7154 7155 static void netif_free_tx_queues(struct net_device *dev) 7156 { 7157 kvfree(dev->_tx); 7158 } 7159 7160 static int netif_alloc_netdev_queues(struct net_device *dev) 7161 { 7162 unsigned int count = dev->num_tx_queues; 7163 struct netdev_queue *tx; 7164 size_t sz = count * sizeof(*tx); 7165 7166 if (count < 1 || count > 0xffff) 7167 return -EINVAL; 7168 7169 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 7170 if (!tx) { 7171 tx = vzalloc(sz); 7172 if (!tx) 7173 return -ENOMEM; 7174 } 7175 dev->_tx = tx; 7176 7177 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 7178 spin_lock_init(&dev->tx_global_lock); 7179 7180 return 0; 7181 } 7182 7183 void netif_tx_stop_all_queues(struct net_device *dev) 7184 { 7185 unsigned int i; 7186 7187 for (i = 0; i < dev->num_tx_queues; i++) { 7188 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 7189 7190 netif_tx_stop_queue(txq); 7191 } 7192 } 7193 EXPORT_SYMBOL(netif_tx_stop_all_queues); 7194 7195 /** 7196 * register_netdevice - register a network device 7197 * @dev: device to register 7198 * 7199 * Take a completed network device structure and add it to the kernel 7200 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 7201 * chain. 0 is returned on success. A negative errno code is returned 7202 * on a failure to set up the device, or if the name is a duplicate. 7203 * 7204 * Callers must hold the rtnl semaphore. You may want 7205 * register_netdev() instead of this. 7206 * 7207 * BUGS: 7208 * The locking appears insufficient to guarantee two parallel registers 7209 * will not get the same name. 7210 */ 7211 7212 int register_netdevice(struct net_device *dev) 7213 { 7214 int ret; 7215 struct net *net = dev_net(dev); 7216 7217 BUG_ON(dev_boot_phase); 7218 ASSERT_RTNL(); 7219 7220 might_sleep(); 7221 7222 /* When net_device's are persistent, this will be fatal. */ 7223 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 7224 BUG_ON(!net); 7225 7226 spin_lock_init(&dev->addr_list_lock); 7227 netdev_set_addr_lockdep_class(dev); 7228 7229 ret = dev_get_valid_name(net, dev, dev->name); 7230 if (ret < 0) 7231 goto out; 7232 7233 /* Init, if this function is available */ 7234 if (dev->netdev_ops->ndo_init) { 7235 ret = dev->netdev_ops->ndo_init(dev); 7236 if (ret) { 7237 if (ret > 0) 7238 ret = -EIO; 7239 goto out; 7240 } 7241 } 7242 7243 if (((dev->hw_features | dev->features) & 7244 NETIF_F_HW_VLAN_CTAG_FILTER) && 7245 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 7246 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 7247 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 7248 ret = -EINVAL; 7249 goto err_uninit; 7250 } 7251 7252 ret = -EBUSY; 7253 if (!dev->ifindex) 7254 dev->ifindex = dev_new_index(net); 7255 else if (__dev_get_by_index(net, dev->ifindex)) 7256 goto err_uninit; 7257 7258 /* Transfer changeable features to wanted_features and enable 7259 * software offloads (GSO and GRO). 7260 */ 7261 dev->hw_features |= NETIF_F_SOFT_FEATURES; 7262 dev->features |= NETIF_F_SOFT_FEATURES; 7263 dev->wanted_features = dev->features & dev->hw_features; 7264 7265 if (!(dev->flags & IFF_LOOPBACK)) 7266 dev->hw_features |= NETIF_F_NOCACHE_COPY; 7267 7268 /* If IPv4 TCP segmentation offload is supported we should also 7269 * allow the device to enable segmenting the frame with the option 7270 * of ignoring a static IP ID value. This doesn't enable the 7271 * feature itself but allows the user to enable it later. 7272 */ 7273 if (dev->hw_features & NETIF_F_TSO) 7274 dev->hw_features |= NETIF_F_TSO_MANGLEID; 7275 if (dev->vlan_features & NETIF_F_TSO) 7276 dev->vlan_features |= NETIF_F_TSO_MANGLEID; 7277 if (dev->mpls_features & NETIF_F_TSO) 7278 dev->mpls_features |= NETIF_F_TSO_MANGLEID; 7279 if (dev->hw_enc_features & NETIF_F_TSO) 7280 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 7281 7282 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 7283 */ 7284 dev->vlan_features |= NETIF_F_HIGHDMA; 7285 7286 /* Make NETIF_F_SG inheritable to tunnel devices. 7287 */ 7288 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL; 7289 7290 /* Make NETIF_F_SG inheritable to MPLS. 7291 */ 7292 dev->mpls_features |= NETIF_F_SG; 7293 7294 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 7295 ret = notifier_to_errno(ret); 7296 if (ret) 7297 goto err_uninit; 7298 7299 ret = netdev_register_kobject(dev); 7300 if (ret) 7301 goto err_uninit; 7302 dev->reg_state = NETREG_REGISTERED; 7303 7304 __netdev_update_features(dev); 7305 7306 /* 7307 * Default initial state at registry is that the 7308 * device is present. 7309 */ 7310 7311 set_bit(__LINK_STATE_PRESENT, &dev->state); 7312 7313 linkwatch_init_dev(dev); 7314 7315 dev_init_scheduler(dev); 7316 dev_hold(dev); 7317 list_netdevice(dev); 7318 add_device_randomness(dev->dev_addr, dev->addr_len); 7319 7320 /* If the device has permanent device address, driver should 7321 * set dev_addr and also addr_assign_type should be set to 7322 * NET_ADDR_PERM (default value). 7323 */ 7324 if (dev->addr_assign_type == NET_ADDR_PERM) 7325 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 7326 7327 /* Notify protocols, that a new device appeared. */ 7328 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 7329 ret = notifier_to_errno(ret); 7330 if (ret) { 7331 rollback_registered(dev); 7332 dev->reg_state = NETREG_UNREGISTERED; 7333 } 7334 /* 7335 * Prevent userspace races by waiting until the network 7336 * device is fully setup before sending notifications. 7337 */ 7338 if (!dev->rtnl_link_ops || 7339 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 7340 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 7341 7342 out: 7343 return ret; 7344 7345 err_uninit: 7346 if (dev->netdev_ops->ndo_uninit) 7347 dev->netdev_ops->ndo_uninit(dev); 7348 goto out; 7349 } 7350 EXPORT_SYMBOL(register_netdevice); 7351 7352 /** 7353 * init_dummy_netdev - init a dummy network device for NAPI 7354 * @dev: device to init 7355 * 7356 * This takes a network device structure and initialize the minimum 7357 * amount of fields so it can be used to schedule NAPI polls without 7358 * registering a full blown interface. This is to be used by drivers 7359 * that need to tie several hardware interfaces to a single NAPI 7360 * poll scheduler due to HW limitations. 7361 */ 7362 int init_dummy_netdev(struct net_device *dev) 7363 { 7364 /* Clear everything. Note we don't initialize spinlocks 7365 * are they aren't supposed to be taken by any of the 7366 * NAPI code and this dummy netdev is supposed to be 7367 * only ever used for NAPI polls 7368 */ 7369 memset(dev, 0, sizeof(struct net_device)); 7370 7371 /* make sure we BUG if trying to hit standard 7372 * register/unregister code path 7373 */ 7374 dev->reg_state = NETREG_DUMMY; 7375 7376 /* NAPI wants this */ 7377 INIT_LIST_HEAD(&dev->napi_list); 7378 7379 /* a dummy interface is started by default */ 7380 set_bit(__LINK_STATE_PRESENT, &dev->state); 7381 set_bit(__LINK_STATE_START, &dev->state); 7382 7383 /* Note : We dont allocate pcpu_refcnt for dummy devices, 7384 * because users of this 'device' dont need to change 7385 * its refcount. 7386 */ 7387 7388 return 0; 7389 } 7390 EXPORT_SYMBOL_GPL(init_dummy_netdev); 7391 7392 7393 /** 7394 * register_netdev - register a network device 7395 * @dev: device to register 7396 * 7397 * Take a completed network device structure and add it to the kernel 7398 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 7399 * chain. 0 is returned on success. A negative errno code is returned 7400 * on a failure to set up the device, or if the name is a duplicate. 7401 * 7402 * This is a wrapper around register_netdevice that takes the rtnl semaphore 7403 * and expands the device name if you passed a format string to 7404 * alloc_netdev. 7405 */ 7406 int register_netdev(struct net_device *dev) 7407 { 7408 int err; 7409 7410 rtnl_lock(); 7411 err = register_netdevice(dev); 7412 rtnl_unlock(); 7413 return err; 7414 } 7415 EXPORT_SYMBOL(register_netdev); 7416 7417 int netdev_refcnt_read(const struct net_device *dev) 7418 { 7419 int i, refcnt = 0; 7420 7421 for_each_possible_cpu(i) 7422 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 7423 return refcnt; 7424 } 7425 EXPORT_SYMBOL(netdev_refcnt_read); 7426 7427 /** 7428 * netdev_wait_allrefs - wait until all references are gone. 7429 * @dev: target net_device 7430 * 7431 * This is called when unregistering network devices. 7432 * 7433 * Any protocol or device that holds a reference should register 7434 * for netdevice notification, and cleanup and put back the 7435 * reference if they receive an UNREGISTER event. 7436 * We can get stuck here if buggy protocols don't correctly 7437 * call dev_put. 7438 */ 7439 static void netdev_wait_allrefs(struct net_device *dev) 7440 { 7441 unsigned long rebroadcast_time, warning_time; 7442 int refcnt; 7443 7444 linkwatch_forget_dev(dev); 7445 7446 rebroadcast_time = warning_time = jiffies; 7447 refcnt = netdev_refcnt_read(dev); 7448 7449 while (refcnt != 0) { 7450 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 7451 rtnl_lock(); 7452 7453 /* Rebroadcast unregister notification */ 7454 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 7455 7456 __rtnl_unlock(); 7457 rcu_barrier(); 7458 rtnl_lock(); 7459 7460 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 7461 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 7462 &dev->state)) { 7463 /* We must not have linkwatch events 7464 * pending on unregister. If this 7465 * happens, we simply run the queue 7466 * unscheduled, resulting in a noop 7467 * for this device. 7468 */ 7469 linkwatch_run_queue(); 7470 } 7471 7472 __rtnl_unlock(); 7473 7474 rebroadcast_time = jiffies; 7475 } 7476 7477 msleep(250); 7478 7479 refcnt = netdev_refcnt_read(dev); 7480 7481 if (time_after(jiffies, warning_time + 10 * HZ)) { 7482 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 7483 dev->name, refcnt); 7484 warning_time = jiffies; 7485 } 7486 } 7487 } 7488 7489 /* The sequence is: 7490 * 7491 * rtnl_lock(); 7492 * ... 7493 * register_netdevice(x1); 7494 * register_netdevice(x2); 7495 * ... 7496 * unregister_netdevice(y1); 7497 * unregister_netdevice(y2); 7498 * ... 7499 * rtnl_unlock(); 7500 * free_netdev(y1); 7501 * free_netdev(y2); 7502 * 7503 * We are invoked by rtnl_unlock(). 7504 * This allows us to deal with problems: 7505 * 1) We can delete sysfs objects which invoke hotplug 7506 * without deadlocking with linkwatch via keventd. 7507 * 2) Since we run with the RTNL semaphore not held, we can sleep 7508 * safely in order to wait for the netdev refcnt to drop to zero. 7509 * 7510 * We must not return until all unregister events added during 7511 * the interval the lock was held have been completed. 7512 */ 7513 void netdev_run_todo(void) 7514 { 7515 struct list_head list; 7516 7517 /* Snapshot list, allow later requests */ 7518 list_replace_init(&net_todo_list, &list); 7519 7520 __rtnl_unlock(); 7521 7522 7523 /* Wait for rcu callbacks to finish before next phase */ 7524 if (!list_empty(&list)) 7525 rcu_barrier(); 7526 7527 while (!list_empty(&list)) { 7528 struct net_device *dev 7529 = list_first_entry(&list, struct net_device, todo_list); 7530 list_del(&dev->todo_list); 7531 7532 rtnl_lock(); 7533 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 7534 __rtnl_unlock(); 7535 7536 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 7537 pr_err("network todo '%s' but state %d\n", 7538 dev->name, dev->reg_state); 7539 dump_stack(); 7540 continue; 7541 } 7542 7543 dev->reg_state = NETREG_UNREGISTERED; 7544 7545 netdev_wait_allrefs(dev); 7546 7547 /* paranoia */ 7548 BUG_ON(netdev_refcnt_read(dev)); 7549 BUG_ON(!list_empty(&dev->ptype_all)); 7550 BUG_ON(!list_empty(&dev->ptype_specific)); 7551 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 7552 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 7553 WARN_ON(dev->dn_ptr); 7554 7555 if (dev->destructor) 7556 dev->destructor(dev); 7557 7558 /* Report a network device has been unregistered */ 7559 rtnl_lock(); 7560 dev_net(dev)->dev_unreg_count--; 7561 __rtnl_unlock(); 7562 wake_up(&netdev_unregistering_wq); 7563 7564 /* Free network device */ 7565 kobject_put(&dev->dev.kobj); 7566 } 7567 } 7568 7569 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has 7570 * all the same fields in the same order as net_device_stats, with only 7571 * the type differing, but rtnl_link_stats64 may have additional fields 7572 * at the end for newer counters. 7573 */ 7574 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 7575 const struct net_device_stats *netdev_stats) 7576 { 7577 #if BITS_PER_LONG == 64 7578 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats)); 7579 memcpy(stats64, netdev_stats, sizeof(*stats64)); 7580 /* zero out counters that only exist in rtnl_link_stats64 */ 7581 memset((char *)stats64 + sizeof(*netdev_stats), 0, 7582 sizeof(*stats64) - sizeof(*netdev_stats)); 7583 #else 7584 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long); 7585 const unsigned long *src = (const unsigned long *)netdev_stats; 7586 u64 *dst = (u64 *)stats64; 7587 7588 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64)); 7589 for (i = 0; i < n; i++) 7590 dst[i] = src[i]; 7591 /* zero out counters that only exist in rtnl_link_stats64 */ 7592 memset((char *)stats64 + n * sizeof(u64), 0, 7593 sizeof(*stats64) - n * sizeof(u64)); 7594 #endif 7595 } 7596 EXPORT_SYMBOL(netdev_stats_to_stats64); 7597 7598 /** 7599 * dev_get_stats - get network device statistics 7600 * @dev: device to get statistics from 7601 * @storage: place to store stats 7602 * 7603 * Get network statistics from device. Return @storage. 7604 * The device driver may provide its own method by setting 7605 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 7606 * otherwise the internal statistics structure is used. 7607 */ 7608 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 7609 struct rtnl_link_stats64 *storage) 7610 { 7611 const struct net_device_ops *ops = dev->netdev_ops; 7612 7613 if (ops->ndo_get_stats64) { 7614 memset(storage, 0, sizeof(*storage)); 7615 ops->ndo_get_stats64(dev, storage); 7616 } else if (ops->ndo_get_stats) { 7617 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 7618 } else { 7619 netdev_stats_to_stats64(storage, &dev->stats); 7620 } 7621 storage->rx_dropped += atomic_long_read(&dev->rx_dropped); 7622 storage->tx_dropped += atomic_long_read(&dev->tx_dropped); 7623 storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler); 7624 return storage; 7625 } 7626 EXPORT_SYMBOL(dev_get_stats); 7627 7628 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 7629 { 7630 struct netdev_queue *queue = dev_ingress_queue(dev); 7631 7632 #ifdef CONFIG_NET_CLS_ACT 7633 if (queue) 7634 return queue; 7635 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 7636 if (!queue) 7637 return NULL; 7638 netdev_init_one_queue(dev, queue, NULL); 7639 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 7640 queue->qdisc_sleeping = &noop_qdisc; 7641 rcu_assign_pointer(dev->ingress_queue, queue); 7642 #endif 7643 return queue; 7644 } 7645 7646 static const struct ethtool_ops default_ethtool_ops; 7647 7648 void netdev_set_default_ethtool_ops(struct net_device *dev, 7649 const struct ethtool_ops *ops) 7650 { 7651 if (dev->ethtool_ops == &default_ethtool_ops) 7652 dev->ethtool_ops = ops; 7653 } 7654 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 7655 7656 void netdev_freemem(struct net_device *dev) 7657 { 7658 char *addr = (char *)dev - dev->padded; 7659 7660 kvfree(addr); 7661 } 7662 7663 /** 7664 * alloc_netdev_mqs - allocate network device 7665 * @sizeof_priv: size of private data to allocate space for 7666 * @name: device name format string 7667 * @name_assign_type: origin of device name 7668 * @setup: callback to initialize device 7669 * @txqs: the number of TX subqueues to allocate 7670 * @rxqs: the number of RX subqueues to allocate 7671 * 7672 * Allocates a struct net_device with private data area for driver use 7673 * and performs basic initialization. Also allocates subqueue structs 7674 * for each queue on the device. 7675 */ 7676 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 7677 unsigned char name_assign_type, 7678 void (*setup)(struct net_device *), 7679 unsigned int txqs, unsigned int rxqs) 7680 { 7681 struct net_device *dev; 7682 size_t alloc_size; 7683 struct net_device *p; 7684 7685 BUG_ON(strlen(name) >= sizeof(dev->name)); 7686 7687 if (txqs < 1) { 7688 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 7689 return NULL; 7690 } 7691 7692 #ifdef CONFIG_SYSFS 7693 if (rxqs < 1) { 7694 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 7695 return NULL; 7696 } 7697 #endif 7698 7699 alloc_size = sizeof(struct net_device); 7700 if (sizeof_priv) { 7701 /* ensure 32-byte alignment of private area */ 7702 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 7703 alloc_size += sizeof_priv; 7704 } 7705 /* ensure 32-byte alignment of whole construct */ 7706 alloc_size += NETDEV_ALIGN - 1; 7707 7708 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 7709 if (!p) 7710 p = vzalloc(alloc_size); 7711 if (!p) 7712 return NULL; 7713 7714 dev = PTR_ALIGN(p, NETDEV_ALIGN); 7715 dev->padded = (char *)dev - (char *)p; 7716 7717 dev->pcpu_refcnt = alloc_percpu(int); 7718 if (!dev->pcpu_refcnt) 7719 goto free_dev; 7720 7721 if (dev_addr_init(dev)) 7722 goto free_pcpu; 7723 7724 dev_mc_init(dev); 7725 dev_uc_init(dev); 7726 7727 dev_net_set(dev, &init_net); 7728 7729 dev->gso_max_size = GSO_MAX_SIZE; 7730 dev->gso_max_segs = GSO_MAX_SEGS; 7731 7732 INIT_LIST_HEAD(&dev->napi_list); 7733 INIT_LIST_HEAD(&dev->unreg_list); 7734 INIT_LIST_HEAD(&dev->close_list); 7735 INIT_LIST_HEAD(&dev->link_watch_list); 7736 INIT_LIST_HEAD(&dev->adj_list.upper); 7737 INIT_LIST_HEAD(&dev->adj_list.lower); 7738 INIT_LIST_HEAD(&dev->ptype_all); 7739 INIT_LIST_HEAD(&dev->ptype_specific); 7740 #ifdef CONFIG_NET_SCHED 7741 hash_init(dev->qdisc_hash); 7742 #endif 7743 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 7744 setup(dev); 7745 7746 if (!dev->tx_queue_len) { 7747 dev->priv_flags |= IFF_NO_QUEUE; 7748 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; 7749 } 7750 7751 dev->num_tx_queues = txqs; 7752 dev->real_num_tx_queues = txqs; 7753 if (netif_alloc_netdev_queues(dev)) 7754 goto free_all; 7755 7756 #ifdef CONFIG_SYSFS 7757 dev->num_rx_queues = rxqs; 7758 dev->real_num_rx_queues = rxqs; 7759 if (netif_alloc_rx_queues(dev)) 7760 goto free_all; 7761 #endif 7762 7763 strcpy(dev->name, name); 7764 dev->name_assign_type = name_assign_type; 7765 dev->group = INIT_NETDEV_GROUP; 7766 if (!dev->ethtool_ops) 7767 dev->ethtool_ops = &default_ethtool_ops; 7768 7769 nf_hook_ingress_init(dev); 7770 7771 return dev; 7772 7773 free_all: 7774 free_netdev(dev); 7775 return NULL; 7776 7777 free_pcpu: 7778 free_percpu(dev->pcpu_refcnt); 7779 free_dev: 7780 netdev_freemem(dev); 7781 return NULL; 7782 } 7783 EXPORT_SYMBOL(alloc_netdev_mqs); 7784 7785 /** 7786 * free_netdev - free network device 7787 * @dev: device 7788 * 7789 * This function does the last stage of destroying an allocated device 7790 * interface. The reference to the device object is released. If this 7791 * is the last reference then it will be freed.Must be called in process 7792 * context. 7793 */ 7794 void free_netdev(struct net_device *dev) 7795 { 7796 struct napi_struct *p, *n; 7797 7798 might_sleep(); 7799 netif_free_tx_queues(dev); 7800 #ifdef CONFIG_SYSFS 7801 kvfree(dev->_rx); 7802 #endif 7803 7804 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 7805 7806 /* Flush device addresses */ 7807 dev_addr_flush(dev); 7808 7809 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 7810 netif_napi_del(p); 7811 7812 free_percpu(dev->pcpu_refcnt); 7813 dev->pcpu_refcnt = NULL; 7814 7815 /* Compatibility with error handling in drivers */ 7816 if (dev->reg_state == NETREG_UNINITIALIZED) { 7817 netdev_freemem(dev); 7818 return; 7819 } 7820 7821 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 7822 dev->reg_state = NETREG_RELEASED; 7823 7824 /* will free via device release */ 7825 put_device(&dev->dev); 7826 } 7827 EXPORT_SYMBOL(free_netdev); 7828 7829 /** 7830 * synchronize_net - Synchronize with packet receive processing 7831 * 7832 * Wait for packets currently being received to be done. 7833 * Does not block later packets from starting. 7834 */ 7835 void synchronize_net(void) 7836 { 7837 might_sleep(); 7838 if (rtnl_is_locked()) 7839 synchronize_rcu_expedited(); 7840 else 7841 synchronize_rcu(); 7842 } 7843 EXPORT_SYMBOL(synchronize_net); 7844 7845 /** 7846 * unregister_netdevice_queue - remove device from the kernel 7847 * @dev: device 7848 * @head: list 7849 * 7850 * This function shuts down a device interface and removes it 7851 * from the kernel tables. 7852 * If head not NULL, device is queued to be unregistered later. 7853 * 7854 * Callers must hold the rtnl semaphore. You may want 7855 * unregister_netdev() instead of this. 7856 */ 7857 7858 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 7859 { 7860 ASSERT_RTNL(); 7861 7862 if (head) { 7863 list_move_tail(&dev->unreg_list, head); 7864 } else { 7865 rollback_registered(dev); 7866 /* Finish processing unregister after unlock */ 7867 net_set_todo(dev); 7868 } 7869 } 7870 EXPORT_SYMBOL(unregister_netdevice_queue); 7871 7872 /** 7873 * unregister_netdevice_many - unregister many devices 7874 * @head: list of devices 7875 * 7876 * Note: As most callers use a stack allocated list_head, 7877 * we force a list_del() to make sure stack wont be corrupted later. 7878 */ 7879 void unregister_netdevice_many(struct list_head *head) 7880 { 7881 struct net_device *dev; 7882 7883 if (!list_empty(head)) { 7884 rollback_registered_many(head); 7885 list_for_each_entry(dev, head, unreg_list) 7886 net_set_todo(dev); 7887 list_del(head); 7888 } 7889 } 7890 EXPORT_SYMBOL(unregister_netdevice_many); 7891 7892 /** 7893 * unregister_netdev - remove device from the kernel 7894 * @dev: device 7895 * 7896 * This function shuts down a device interface and removes it 7897 * from the kernel tables. 7898 * 7899 * This is just a wrapper for unregister_netdevice that takes 7900 * the rtnl semaphore. In general you want to use this and not 7901 * unregister_netdevice. 7902 */ 7903 void unregister_netdev(struct net_device *dev) 7904 { 7905 rtnl_lock(); 7906 unregister_netdevice(dev); 7907 rtnl_unlock(); 7908 } 7909 EXPORT_SYMBOL(unregister_netdev); 7910 7911 /** 7912 * dev_change_net_namespace - move device to different nethost namespace 7913 * @dev: device 7914 * @net: network namespace 7915 * @pat: If not NULL name pattern to try if the current device name 7916 * is already taken in the destination network namespace. 7917 * 7918 * This function shuts down a device interface and moves it 7919 * to a new network namespace. On success 0 is returned, on 7920 * a failure a netagive errno code is returned. 7921 * 7922 * Callers must hold the rtnl semaphore. 7923 */ 7924 7925 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 7926 { 7927 int err; 7928 7929 ASSERT_RTNL(); 7930 7931 /* Don't allow namespace local devices to be moved. */ 7932 err = -EINVAL; 7933 if (dev->features & NETIF_F_NETNS_LOCAL) 7934 goto out; 7935 7936 /* Ensure the device has been registrered */ 7937 if (dev->reg_state != NETREG_REGISTERED) 7938 goto out; 7939 7940 /* Get out if there is nothing todo */ 7941 err = 0; 7942 if (net_eq(dev_net(dev), net)) 7943 goto out; 7944 7945 /* Pick the destination device name, and ensure 7946 * we can use it in the destination network namespace. 7947 */ 7948 err = -EEXIST; 7949 if (__dev_get_by_name(net, dev->name)) { 7950 /* We get here if we can't use the current device name */ 7951 if (!pat) 7952 goto out; 7953 if (dev_get_valid_name(net, dev, pat) < 0) 7954 goto out; 7955 } 7956 7957 /* 7958 * And now a mini version of register_netdevice unregister_netdevice. 7959 */ 7960 7961 /* If device is running close it first. */ 7962 dev_close(dev); 7963 7964 /* And unlink it from device chain */ 7965 err = -ENODEV; 7966 unlist_netdevice(dev); 7967 7968 synchronize_net(); 7969 7970 /* Shutdown queueing discipline. */ 7971 dev_shutdown(dev); 7972 7973 /* Notify protocols, that we are about to destroy 7974 * this device. They should clean all the things. 7975 * 7976 * Note that dev->reg_state stays at NETREG_REGISTERED. 7977 * This is wanted because this way 8021q and macvlan know 7978 * the device is just moving and can keep their slaves up. 7979 */ 7980 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 7981 rcu_barrier(); 7982 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 7983 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL); 7984 7985 /* 7986 * Flush the unicast and multicast chains 7987 */ 7988 dev_uc_flush(dev); 7989 dev_mc_flush(dev); 7990 7991 /* Send a netdev-removed uevent to the old namespace */ 7992 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 7993 netdev_adjacent_del_links(dev); 7994 7995 /* Actually switch the network namespace */ 7996 dev_net_set(dev, net); 7997 7998 /* If there is an ifindex conflict assign a new one */ 7999 if (__dev_get_by_index(net, dev->ifindex)) 8000 dev->ifindex = dev_new_index(net); 8001 8002 /* Send a netdev-add uevent to the new namespace */ 8003 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 8004 netdev_adjacent_add_links(dev); 8005 8006 /* Fixup kobjects */ 8007 err = device_rename(&dev->dev, dev->name); 8008 WARN_ON(err); 8009 8010 /* Add the device back in the hashes */ 8011 list_netdevice(dev); 8012 8013 /* Notify protocols, that a new device appeared. */ 8014 call_netdevice_notifiers(NETDEV_REGISTER, dev); 8015 8016 /* 8017 * Prevent userspace races by waiting until the network 8018 * device is fully setup before sending notifications. 8019 */ 8020 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 8021 8022 synchronize_net(); 8023 err = 0; 8024 out: 8025 return err; 8026 } 8027 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 8028 8029 static int dev_cpu_dead(unsigned int oldcpu) 8030 { 8031 struct sk_buff **list_skb; 8032 struct sk_buff *skb; 8033 unsigned int cpu; 8034 struct softnet_data *sd, *oldsd; 8035 8036 local_irq_disable(); 8037 cpu = smp_processor_id(); 8038 sd = &per_cpu(softnet_data, cpu); 8039 oldsd = &per_cpu(softnet_data, oldcpu); 8040 8041 /* Find end of our completion_queue. */ 8042 list_skb = &sd->completion_queue; 8043 while (*list_skb) 8044 list_skb = &(*list_skb)->next; 8045 /* Append completion queue from offline CPU. */ 8046 *list_skb = oldsd->completion_queue; 8047 oldsd->completion_queue = NULL; 8048 8049 /* Append output queue from offline CPU. */ 8050 if (oldsd->output_queue) { 8051 *sd->output_queue_tailp = oldsd->output_queue; 8052 sd->output_queue_tailp = oldsd->output_queue_tailp; 8053 oldsd->output_queue = NULL; 8054 oldsd->output_queue_tailp = &oldsd->output_queue; 8055 } 8056 /* Append NAPI poll list from offline CPU, with one exception : 8057 * process_backlog() must be called by cpu owning percpu backlog. 8058 * We properly handle process_queue & input_pkt_queue later. 8059 */ 8060 while (!list_empty(&oldsd->poll_list)) { 8061 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 8062 struct napi_struct, 8063 poll_list); 8064 8065 list_del_init(&napi->poll_list); 8066 if (napi->poll == process_backlog) 8067 napi->state = 0; 8068 else 8069 ____napi_schedule(sd, napi); 8070 } 8071 8072 raise_softirq_irqoff(NET_TX_SOFTIRQ); 8073 local_irq_enable(); 8074 8075 /* Process offline CPU's input_pkt_queue */ 8076 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 8077 netif_rx_ni(skb); 8078 input_queue_head_incr(oldsd); 8079 } 8080 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 8081 netif_rx_ni(skb); 8082 input_queue_head_incr(oldsd); 8083 } 8084 8085 return 0; 8086 } 8087 8088 /** 8089 * netdev_increment_features - increment feature set by one 8090 * @all: current feature set 8091 * @one: new feature set 8092 * @mask: mask feature set 8093 * 8094 * Computes a new feature set after adding a device with feature set 8095 * @one to the master device with current feature set @all. Will not 8096 * enable anything that is off in @mask. Returns the new feature set. 8097 */ 8098 netdev_features_t netdev_increment_features(netdev_features_t all, 8099 netdev_features_t one, netdev_features_t mask) 8100 { 8101 if (mask & NETIF_F_HW_CSUM) 8102 mask |= NETIF_F_CSUM_MASK; 8103 mask |= NETIF_F_VLAN_CHALLENGED; 8104 8105 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask; 8106 all &= one | ~NETIF_F_ALL_FOR_ALL; 8107 8108 /* If one device supports hw checksumming, set for all. */ 8109 if (all & NETIF_F_HW_CSUM) 8110 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM); 8111 8112 return all; 8113 } 8114 EXPORT_SYMBOL(netdev_increment_features); 8115 8116 static struct hlist_head * __net_init netdev_create_hash(void) 8117 { 8118 int i; 8119 struct hlist_head *hash; 8120 8121 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 8122 if (hash != NULL) 8123 for (i = 0; i < NETDEV_HASHENTRIES; i++) 8124 INIT_HLIST_HEAD(&hash[i]); 8125 8126 return hash; 8127 } 8128 8129 /* Initialize per network namespace state */ 8130 static int __net_init netdev_init(struct net *net) 8131 { 8132 if (net != &init_net) 8133 INIT_LIST_HEAD(&net->dev_base_head); 8134 8135 net->dev_name_head = netdev_create_hash(); 8136 if (net->dev_name_head == NULL) 8137 goto err_name; 8138 8139 net->dev_index_head = netdev_create_hash(); 8140 if (net->dev_index_head == NULL) 8141 goto err_idx; 8142 8143 return 0; 8144 8145 err_idx: 8146 kfree(net->dev_name_head); 8147 err_name: 8148 return -ENOMEM; 8149 } 8150 8151 /** 8152 * netdev_drivername - network driver for the device 8153 * @dev: network device 8154 * 8155 * Determine network driver for device. 8156 */ 8157 const char *netdev_drivername(const struct net_device *dev) 8158 { 8159 const struct device_driver *driver; 8160 const struct device *parent; 8161 const char *empty = ""; 8162 8163 parent = dev->dev.parent; 8164 if (!parent) 8165 return empty; 8166 8167 driver = parent->driver; 8168 if (driver && driver->name) 8169 return driver->name; 8170 return empty; 8171 } 8172 8173 static void __netdev_printk(const char *level, const struct net_device *dev, 8174 struct va_format *vaf) 8175 { 8176 if (dev && dev->dev.parent) { 8177 dev_printk_emit(level[1] - '0', 8178 dev->dev.parent, 8179 "%s %s %s%s: %pV", 8180 dev_driver_string(dev->dev.parent), 8181 dev_name(dev->dev.parent), 8182 netdev_name(dev), netdev_reg_state(dev), 8183 vaf); 8184 } else if (dev) { 8185 printk("%s%s%s: %pV", 8186 level, netdev_name(dev), netdev_reg_state(dev), vaf); 8187 } else { 8188 printk("%s(NULL net_device): %pV", level, vaf); 8189 } 8190 } 8191 8192 void netdev_printk(const char *level, const struct net_device *dev, 8193 const char *format, ...) 8194 { 8195 struct va_format vaf; 8196 va_list args; 8197 8198 va_start(args, format); 8199 8200 vaf.fmt = format; 8201 vaf.va = &args; 8202 8203 __netdev_printk(level, dev, &vaf); 8204 8205 va_end(args); 8206 } 8207 EXPORT_SYMBOL(netdev_printk); 8208 8209 #define define_netdev_printk_level(func, level) \ 8210 void func(const struct net_device *dev, const char *fmt, ...) \ 8211 { \ 8212 struct va_format vaf; \ 8213 va_list args; \ 8214 \ 8215 va_start(args, fmt); \ 8216 \ 8217 vaf.fmt = fmt; \ 8218 vaf.va = &args; \ 8219 \ 8220 __netdev_printk(level, dev, &vaf); \ 8221 \ 8222 va_end(args); \ 8223 } \ 8224 EXPORT_SYMBOL(func); 8225 8226 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 8227 define_netdev_printk_level(netdev_alert, KERN_ALERT); 8228 define_netdev_printk_level(netdev_crit, KERN_CRIT); 8229 define_netdev_printk_level(netdev_err, KERN_ERR); 8230 define_netdev_printk_level(netdev_warn, KERN_WARNING); 8231 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 8232 define_netdev_printk_level(netdev_info, KERN_INFO); 8233 8234 static void __net_exit netdev_exit(struct net *net) 8235 { 8236 kfree(net->dev_name_head); 8237 kfree(net->dev_index_head); 8238 } 8239 8240 static struct pernet_operations __net_initdata netdev_net_ops = { 8241 .init = netdev_init, 8242 .exit = netdev_exit, 8243 }; 8244 8245 static void __net_exit default_device_exit(struct net *net) 8246 { 8247 struct net_device *dev, *aux; 8248 /* 8249 * Push all migratable network devices back to the 8250 * initial network namespace 8251 */ 8252 rtnl_lock(); 8253 for_each_netdev_safe(net, dev, aux) { 8254 int err; 8255 char fb_name[IFNAMSIZ]; 8256 8257 /* Ignore unmoveable devices (i.e. loopback) */ 8258 if (dev->features & NETIF_F_NETNS_LOCAL) 8259 continue; 8260 8261 /* Leave virtual devices for the generic cleanup */ 8262 if (dev->rtnl_link_ops) 8263 continue; 8264 8265 /* Push remaining network devices to init_net */ 8266 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 8267 err = dev_change_net_namespace(dev, &init_net, fb_name); 8268 if (err) { 8269 pr_emerg("%s: failed to move %s to init_net: %d\n", 8270 __func__, dev->name, err); 8271 BUG(); 8272 } 8273 } 8274 rtnl_unlock(); 8275 } 8276 8277 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list) 8278 { 8279 /* Return with the rtnl_lock held when there are no network 8280 * devices unregistering in any network namespace in net_list. 8281 */ 8282 struct net *net; 8283 bool unregistering; 8284 DEFINE_WAIT_FUNC(wait, woken_wake_function); 8285 8286 add_wait_queue(&netdev_unregistering_wq, &wait); 8287 for (;;) { 8288 unregistering = false; 8289 rtnl_lock(); 8290 list_for_each_entry(net, net_list, exit_list) { 8291 if (net->dev_unreg_count > 0) { 8292 unregistering = true; 8293 break; 8294 } 8295 } 8296 if (!unregistering) 8297 break; 8298 __rtnl_unlock(); 8299 8300 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 8301 } 8302 remove_wait_queue(&netdev_unregistering_wq, &wait); 8303 } 8304 8305 static void __net_exit default_device_exit_batch(struct list_head *net_list) 8306 { 8307 /* At exit all network devices most be removed from a network 8308 * namespace. Do this in the reverse order of registration. 8309 * Do this across as many network namespaces as possible to 8310 * improve batching efficiency. 8311 */ 8312 struct net_device *dev; 8313 struct net *net; 8314 LIST_HEAD(dev_kill_list); 8315 8316 /* To prevent network device cleanup code from dereferencing 8317 * loopback devices or network devices that have been freed 8318 * wait here for all pending unregistrations to complete, 8319 * before unregistring the loopback device and allowing the 8320 * network namespace be freed. 8321 * 8322 * The netdev todo list containing all network devices 8323 * unregistrations that happen in default_device_exit_batch 8324 * will run in the rtnl_unlock() at the end of 8325 * default_device_exit_batch. 8326 */ 8327 rtnl_lock_unregistering(net_list); 8328 list_for_each_entry(net, net_list, exit_list) { 8329 for_each_netdev_reverse(net, dev) { 8330 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 8331 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 8332 else 8333 unregister_netdevice_queue(dev, &dev_kill_list); 8334 } 8335 } 8336 unregister_netdevice_many(&dev_kill_list); 8337 rtnl_unlock(); 8338 } 8339 8340 static struct pernet_operations __net_initdata default_device_ops = { 8341 .exit = default_device_exit, 8342 .exit_batch = default_device_exit_batch, 8343 }; 8344 8345 /* 8346 * Initialize the DEV module. At boot time this walks the device list and 8347 * unhooks any devices that fail to initialise (normally hardware not 8348 * present) and leaves us with a valid list of present and active devices. 8349 * 8350 */ 8351 8352 /* 8353 * This is called single threaded during boot, so no need 8354 * to take the rtnl semaphore. 8355 */ 8356 static int __init net_dev_init(void) 8357 { 8358 int i, rc = -ENOMEM; 8359 8360 BUG_ON(!dev_boot_phase); 8361 8362 if (dev_proc_init()) 8363 goto out; 8364 8365 if (netdev_kobject_init()) 8366 goto out; 8367 8368 INIT_LIST_HEAD(&ptype_all); 8369 for (i = 0; i < PTYPE_HASH_SIZE; i++) 8370 INIT_LIST_HEAD(&ptype_base[i]); 8371 8372 INIT_LIST_HEAD(&offload_base); 8373 8374 if (register_pernet_subsys(&netdev_net_ops)) 8375 goto out; 8376 8377 /* 8378 * Initialise the packet receive queues. 8379 */ 8380 8381 for_each_possible_cpu(i) { 8382 struct work_struct *flush = per_cpu_ptr(&flush_works, i); 8383 struct softnet_data *sd = &per_cpu(softnet_data, i); 8384 8385 INIT_WORK(flush, flush_backlog); 8386 8387 skb_queue_head_init(&sd->input_pkt_queue); 8388 skb_queue_head_init(&sd->process_queue); 8389 INIT_LIST_HEAD(&sd->poll_list); 8390 sd->output_queue_tailp = &sd->output_queue; 8391 #ifdef CONFIG_RPS 8392 sd->csd.func = rps_trigger_softirq; 8393 sd->csd.info = sd; 8394 sd->cpu = i; 8395 #endif 8396 8397 sd->backlog.poll = process_backlog; 8398 sd->backlog.weight = weight_p; 8399 } 8400 8401 dev_boot_phase = 0; 8402 8403 /* The loopback device is special if any other network devices 8404 * is present in a network namespace the loopback device must 8405 * be present. Since we now dynamically allocate and free the 8406 * loopback device ensure this invariant is maintained by 8407 * keeping the loopback device as the first device on the 8408 * list of network devices. Ensuring the loopback devices 8409 * is the first device that appears and the last network device 8410 * that disappears. 8411 */ 8412 if (register_pernet_device(&loopback_net_ops)) 8413 goto out; 8414 8415 if (register_pernet_device(&default_device_ops)) 8416 goto out; 8417 8418 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 8419 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 8420 8421 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead", 8422 NULL, dev_cpu_dead); 8423 WARN_ON(rc < 0); 8424 dst_subsys_init(); 8425 rc = 0; 8426 out: 8427 return rc; 8428 } 8429 8430 subsys_initcall(net_dev_init); 8431