xref: /linux/net/core/dev.c (revision 53ed0af4964229595b60594b35334d006d411ef0)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitmap.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <net/tcx.h>
111 #include <linux/highmem.h>
112 #include <linux/init.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/iw_handler.h>
118 #include <asm/current.h>
119 #include <linux/audit.h>
120 #include <linux/dmaengine.h>
121 #include <linux/err.h>
122 #include <linux/ctype.h>
123 #include <linux/if_arp.h>
124 #include <linux/if_vlan.h>
125 #include <linux/ip.h>
126 #include <net/ip.h>
127 #include <net/mpls.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <trace/events/net.h>
134 #include <trace/events/skb.h>
135 #include <trace/events/qdisc.h>
136 #include <trace/events/xdp.h>
137 #include <linux/inetdevice.h>
138 #include <linux/cpu_rmap.h>
139 #include <linux/static_key.h>
140 #include <linux/hashtable.h>
141 #include <linux/vmalloc.h>
142 #include <linux/if_macvlan.h>
143 #include <linux/errqueue.h>
144 #include <linux/hrtimer.h>
145 #include <linux/netfilter_netdev.h>
146 #include <linux/crash_dump.h>
147 #include <linux/sctp.h>
148 #include <net/udp_tunnel.h>
149 #include <linux/net_namespace.h>
150 #include <linux/indirect_call_wrapper.h>
151 #include <net/devlink.h>
152 #include <linux/pm_runtime.h>
153 #include <linux/prandom.h>
154 #include <linux/once_lite.h>
155 #include <net/netdev_rx_queue.h>
156 #include <net/page_pool/types.h>
157 #include <net/page_pool/helpers.h>
158 #include <net/rps.h>
159 
160 #include "dev.h"
161 #include "net-sysfs.h"
162 
163 static DEFINE_SPINLOCK(ptype_lock);
164 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
165 
166 static int netif_rx_internal(struct sk_buff *skb);
167 static int call_netdevice_notifiers_extack(unsigned long val,
168 					   struct net_device *dev,
169 					   struct netlink_ext_ack *extack);
170 
171 static DEFINE_MUTEX(ifalias_mutex);
172 
173 /* protects napi_hash addition/deletion and napi_gen_id */
174 static DEFINE_SPINLOCK(napi_hash_lock);
175 
176 static unsigned int napi_gen_id = NR_CPUS;
177 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
178 
179 static DECLARE_RWSEM(devnet_rename_sem);
180 
181 static inline void dev_base_seq_inc(struct net *net)
182 {
183 	unsigned int val = net->dev_base_seq + 1;
184 
185 	WRITE_ONCE(net->dev_base_seq, val ?: 1);
186 }
187 
188 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
189 {
190 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
191 
192 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
193 }
194 
195 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
196 {
197 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
198 }
199 
200 static inline void rps_lock_irqsave(struct softnet_data *sd,
201 				    unsigned long *flags)
202 {
203 	if (IS_ENABLED(CONFIG_RPS))
204 		spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
205 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
206 		local_irq_save(*flags);
207 }
208 
209 static inline void rps_lock_irq_disable(struct softnet_data *sd)
210 {
211 	if (IS_ENABLED(CONFIG_RPS))
212 		spin_lock_irq(&sd->input_pkt_queue.lock);
213 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
214 		local_irq_disable();
215 }
216 
217 static inline void rps_unlock_irq_restore(struct softnet_data *sd,
218 					  unsigned long *flags)
219 {
220 	if (IS_ENABLED(CONFIG_RPS))
221 		spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
222 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
223 		local_irq_restore(*flags);
224 }
225 
226 static inline void rps_unlock_irq_enable(struct softnet_data *sd)
227 {
228 	if (IS_ENABLED(CONFIG_RPS))
229 		spin_unlock_irq(&sd->input_pkt_queue.lock);
230 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
231 		local_irq_enable();
232 }
233 
234 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
235 						       const char *name)
236 {
237 	struct netdev_name_node *name_node;
238 
239 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
240 	if (!name_node)
241 		return NULL;
242 	INIT_HLIST_NODE(&name_node->hlist);
243 	name_node->dev = dev;
244 	name_node->name = name;
245 	return name_node;
246 }
247 
248 static struct netdev_name_node *
249 netdev_name_node_head_alloc(struct net_device *dev)
250 {
251 	struct netdev_name_node *name_node;
252 
253 	name_node = netdev_name_node_alloc(dev, dev->name);
254 	if (!name_node)
255 		return NULL;
256 	INIT_LIST_HEAD(&name_node->list);
257 	return name_node;
258 }
259 
260 static void netdev_name_node_free(struct netdev_name_node *name_node)
261 {
262 	kfree(name_node);
263 }
264 
265 static void netdev_name_node_add(struct net *net,
266 				 struct netdev_name_node *name_node)
267 {
268 	hlist_add_head_rcu(&name_node->hlist,
269 			   dev_name_hash(net, name_node->name));
270 }
271 
272 static void netdev_name_node_del(struct netdev_name_node *name_node)
273 {
274 	hlist_del_rcu(&name_node->hlist);
275 }
276 
277 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
278 							const char *name)
279 {
280 	struct hlist_head *head = dev_name_hash(net, name);
281 	struct netdev_name_node *name_node;
282 
283 	hlist_for_each_entry(name_node, head, hlist)
284 		if (!strcmp(name_node->name, name))
285 			return name_node;
286 	return NULL;
287 }
288 
289 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
290 							    const char *name)
291 {
292 	struct hlist_head *head = dev_name_hash(net, name);
293 	struct netdev_name_node *name_node;
294 
295 	hlist_for_each_entry_rcu(name_node, head, hlist)
296 		if (!strcmp(name_node->name, name))
297 			return name_node;
298 	return NULL;
299 }
300 
301 bool netdev_name_in_use(struct net *net, const char *name)
302 {
303 	return netdev_name_node_lookup(net, name);
304 }
305 EXPORT_SYMBOL(netdev_name_in_use);
306 
307 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
308 {
309 	struct netdev_name_node *name_node;
310 	struct net *net = dev_net(dev);
311 
312 	name_node = netdev_name_node_lookup(net, name);
313 	if (name_node)
314 		return -EEXIST;
315 	name_node = netdev_name_node_alloc(dev, name);
316 	if (!name_node)
317 		return -ENOMEM;
318 	netdev_name_node_add(net, name_node);
319 	/* The node that holds dev->name acts as a head of per-device list. */
320 	list_add_tail_rcu(&name_node->list, &dev->name_node->list);
321 
322 	return 0;
323 }
324 
325 static void netdev_name_node_alt_free(struct rcu_head *head)
326 {
327 	struct netdev_name_node *name_node =
328 		container_of(head, struct netdev_name_node, rcu);
329 
330 	kfree(name_node->name);
331 	netdev_name_node_free(name_node);
332 }
333 
334 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
335 {
336 	netdev_name_node_del(name_node);
337 	list_del(&name_node->list);
338 	call_rcu(&name_node->rcu, netdev_name_node_alt_free);
339 }
340 
341 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
342 {
343 	struct netdev_name_node *name_node;
344 	struct net *net = dev_net(dev);
345 
346 	name_node = netdev_name_node_lookup(net, name);
347 	if (!name_node)
348 		return -ENOENT;
349 	/* lookup might have found our primary name or a name belonging
350 	 * to another device.
351 	 */
352 	if (name_node == dev->name_node || name_node->dev != dev)
353 		return -EINVAL;
354 
355 	__netdev_name_node_alt_destroy(name_node);
356 	return 0;
357 }
358 
359 static void netdev_name_node_alt_flush(struct net_device *dev)
360 {
361 	struct netdev_name_node *name_node, *tmp;
362 
363 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) {
364 		list_del(&name_node->list);
365 		netdev_name_node_alt_free(&name_node->rcu);
366 	}
367 }
368 
369 /* Device list insertion */
370 static void list_netdevice(struct net_device *dev)
371 {
372 	struct netdev_name_node *name_node;
373 	struct net *net = dev_net(dev);
374 
375 	ASSERT_RTNL();
376 
377 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
378 	netdev_name_node_add(net, dev->name_node);
379 	hlist_add_head_rcu(&dev->index_hlist,
380 			   dev_index_hash(net, dev->ifindex));
381 
382 	netdev_for_each_altname(dev, name_node)
383 		netdev_name_node_add(net, name_node);
384 
385 	/* We reserved the ifindex, this can't fail */
386 	WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL));
387 
388 	dev_base_seq_inc(net);
389 }
390 
391 /* Device list removal
392  * caller must respect a RCU grace period before freeing/reusing dev
393  */
394 static void unlist_netdevice(struct net_device *dev)
395 {
396 	struct netdev_name_node *name_node;
397 	struct net *net = dev_net(dev);
398 
399 	ASSERT_RTNL();
400 
401 	xa_erase(&net->dev_by_index, dev->ifindex);
402 
403 	netdev_for_each_altname(dev, name_node)
404 		netdev_name_node_del(name_node);
405 
406 	/* Unlink dev from the device chain */
407 	list_del_rcu(&dev->dev_list);
408 	netdev_name_node_del(dev->name_node);
409 	hlist_del_rcu(&dev->index_hlist);
410 
411 	dev_base_seq_inc(dev_net(dev));
412 }
413 
414 /*
415  *	Our notifier list
416  */
417 
418 static RAW_NOTIFIER_HEAD(netdev_chain);
419 
420 /*
421  *	Device drivers call our routines to queue packets here. We empty the
422  *	queue in the local softnet handler.
423  */
424 
425 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
426 EXPORT_PER_CPU_SYMBOL(softnet_data);
427 
428 /* Page_pool has a lockless array/stack to alloc/recycle pages.
429  * PP consumers must pay attention to run APIs in the appropriate context
430  * (e.g. NAPI context).
431  */
432 static DEFINE_PER_CPU(struct page_pool *, system_page_pool);
433 
434 #ifdef CONFIG_LOCKDEP
435 /*
436  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
437  * according to dev->type
438  */
439 static const unsigned short netdev_lock_type[] = {
440 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
441 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
442 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
443 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
444 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
445 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
446 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
447 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
448 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
449 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
450 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
451 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
452 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
453 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
454 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
455 
456 static const char *const netdev_lock_name[] = {
457 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
458 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
459 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
460 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
461 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
462 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
463 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
464 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
465 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
466 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
467 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
468 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
469 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
470 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
471 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
472 
473 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
474 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
475 
476 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
477 {
478 	int i;
479 
480 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
481 		if (netdev_lock_type[i] == dev_type)
482 			return i;
483 	/* the last key is used by default */
484 	return ARRAY_SIZE(netdev_lock_type) - 1;
485 }
486 
487 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
488 						 unsigned short dev_type)
489 {
490 	int i;
491 
492 	i = netdev_lock_pos(dev_type);
493 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
494 				   netdev_lock_name[i]);
495 }
496 
497 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
498 {
499 	int i;
500 
501 	i = netdev_lock_pos(dev->type);
502 	lockdep_set_class_and_name(&dev->addr_list_lock,
503 				   &netdev_addr_lock_key[i],
504 				   netdev_lock_name[i]);
505 }
506 #else
507 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
508 						 unsigned short dev_type)
509 {
510 }
511 
512 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
513 {
514 }
515 #endif
516 
517 /*******************************************************************************
518  *
519  *		Protocol management and registration routines
520  *
521  *******************************************************************************/
522 
523 
524 /*
525  *	Add a protocol ID to the list. Now that the input handler is
526  *	smarter we can dispense with all the messy stuff that used to be
527  *	here.
528  *
529  *	BEWARE!!! Protocol handlers, mangling input packets,
530  *	MUST BE last in hash buckets and checking protocol handlers
531  *	MUST start from promiscuous ptype_all chain in net_bh.
532  *	It is true now, do not change it.
533  *	Explanation follows: if protocol handler, mangling packet, will
534  *	be the first on list, it is not able to sense, that packet
535  *	is cloned and should be copied-on-write, so that it will
536  *	change it and subsequent readers will get broken packet.
537  *							--ANK (980803)
538  */
539 
540 static inline struct list_head *ptype_head(const struct packet_type *pt)
541 {
542 	if (pt->type == htons(ETH_P_ALL))
543 		return pt->dev ? &pt->dev->ptype_all : &net_hotdata.ptype_all;
544 	else
545 		return pt->dev ? &pt->dev->ptype_specific :
546 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
547 }
548 
549 /**
550  *	dev_add_pack - add packet handler
551  *	@pt: packet type declaration
552  *
553  *	Add a protocol handler to the networking stack. The passed &packet_type
554  *	is linked into kernel lists and may not be freed until it has been
555  *	removed from the kernel lists.
556  *
557  *	This call does not sleep therefore it can not
558  *	guarantee all CPU's that are in middle of receiving packets
559  *	will see the new packet type (until the next received packet).
560  */
561 
562 void dev_add_pack(struct packet_type *pt)
563 {
564 	struct list_head *head = ptype_head(pt);
565 
566 	spin_lock(&ptype_lock);
567 	list_add_rcu(&pt->list, head);
568 	spin_unlock(&ptype_lock);
569 }
570 EXPORT_SYMBOL(dev_add_pack);
571 
572 /**
573  *	__dev_remove_pack	 - remove packet handler
574  *	@pt: packet type declaration
575  *
576  *	Remove a protocol handler that was previously added to the kernel
577  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
578  *	from the kernel lists and can be freed or reused once this function
579  *	returns.
580  *
581  *      The packet type might still be in use by receivers
582  *	and must not be freed until after all the CPU's have gone
583  *	through a quiescent state.
584  */
585 void __dev_remove_pack(struct packet_type *pt)
586 {
587 	struct list_head *head = ptype_head(pt);
588 	struct packet_type *pt1;
589 
590 	spin_lock(&ptype_lock);
591 
592 	list_for_each_entry(pt1, head, list) {
593 		if (pt == pt1) {
594 			list_del_rcu(&pt->list);
595 			goto out;
596 		}
597 	}
598 
599 	pr_warn("dev_remove_pack: %p not found\n", pt);
600 out:
601 	spin_unlock(&ptype_lock);
602 }
603 EXPORT_SYMBOL(__dev_remove_pack);
604 
605 /**
606  *	dev_remove_pack	 - remove packet handler
607  *	@pt: packet type declaration
608  *
609  *	Remove a protocol handler that was previously added to the kernel
610  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
611  *	from the kernel lists and can be freed or reused once this function
612  *	returns.
613  *
614  *	This call sleeps to guarantee that no CPU is looking at the packet
615  *	type after return.
616  */
617 void dev_remove_pack(struct packet_type *pt)
618 {
619 	__dev_remove_pack(pt);
620 
621 	synchronize_net();
622 }
623 EXPORT_SYMBOL(dev_remove_pack);
624 
625 
626 /*******************************************************************************
627  *
628  *			    Device Interface Subroutines
629  *
630  *******************************************************************************/
631 
632 /**
633  *	dev_get_iflink	- get 'iflink' value of a interface
634  *	@dev: targeted interface
635  *
636  *	Indicates the ifindex the interface is linked to.
637  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
638  */
639 
640 int dev_get_iflink(const struct net_device *dev)
641 {
642 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
643 		return dev->netdev_ops->ndo_get_iflink(dev);
644 
645 	return READ_ONCE(dev->ifindex);
646 }
647 EXPORT_SYMBOL(dev_get_iflink);
648 
649 /**
650  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
651  *	@dev: targeted interface
652  *	@skb: The packet.
653  *
654  *	For better visibility of tunnel traffic OVS needs to retrieve
655  *	egress tunnel information for a packet. Following API allows
656  *	user to get this info.
657  */
658 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
659 {
660 	struct ip_tunnel_info *info;
661 
662 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
663 		return -EINVAL;
664 
665 	info = skb_tunnel_info_unclone(skb);
666 	if (!info)
667 		return -ENOMEM;
668 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
669 		return -EINVAL;
670 
671 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
672 }
673 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
674 
675 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
676 {
677 	int k = stack->num_paths++;
678 
679 	if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
680 		return NULL;
681 
682 	return &stack->path[k];
683 }
684 
685 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
686 			  struct net_device_path_stack *stack)
687 {
688 	const struct net_device *last_dev;
689 	struct net_device_path_ctx ctx = {
690 		.dev	= dev,
691 	};
692 	struct net_device_path *path;
693 	int ret = 0;
694 
695 	memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
696 	stack->num_paths = 0;
697 	while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
698 		last_dev = ctx.dev;
699 		path = dev_fwd_path(stack);
700 		if (!path)
701 			return -1;
702 
703 		memset(path, 0, sizeof(struct net_device_path));
704 		ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
705 		if (ret < 0)
706 			return -1;
707 
708 		if (WARN_ON_ONCE(last_dev == ctx.dev))
709 			return -1;
710 	}
711 
712 	if (!ctx.dev)
713 		return ret;
714 
715 	path = dev_fwd_path(stack);
716 	if (!path)
717 		return -1;
718 	path->type = DEV_PATH_ETHERNET;
719 	path->dev = ctx.dev;
720 
721 	return ret;
722 }
723 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
724 
725 /**
726  *	__dev_get_by_name	- find a device by its name
727  *	@net: the applicable net namespace
728  *	@name: name to find
729  *
730  *	Find an interface by name. Must be called under RTNL semaphore.
731  *	If the name is found a pointer to the device is returned.
732  *	If the name is not found then %NULL is returned. The
733  *	reference counters are not incremented so the caller must be
734  *	careful with locks.
735  */
736 
737 struct net_device *__dev_get_by_name(struct net *net, const char *name)
738 {
739 	struct netdev_name_node *node_name;
740 
741 	node_name = netdev_name_node_lookup(net, name);
742 	return node_name ? node_name->dev : NULL;
743 }
744 EXPORT_SYMBOL(__dev_get_by_name);
745 
746 /**
747  * dev_get_by_name_rcu	- find a device by its name
748  * @net: the applicable net namespace
749  * @name: name to find
750  *
751  * Find an interface by name.
752  * If the name is found a pointer to the device is returned.
753  * If the name is not found then %NULL is returned.
754  * The reference counters are not incremented so the caller must be
755  * careful with locks. The caller must hold RCU lock.
756  */
757 
758 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
759 {
760 	struct netdev_name_node *node_name;
761 
762 	node_name = netdev_name_node_lookup_rcu(net, name);
763 	return node_name ? node_name->dev : NULL;
764 }
765 EXPORT_SYMBOL(dev_get_by_name_rcu);
766 
767 /* Deprecated for new users, call netdev_get_by_name() instead */
768 struct net_device *dev_get_by_name(struct net *net, const char *name)
769 {
770 	struct net_device *dev;
771 
772 	rcu_read_lock();
773 	dev = dev_get_by_name_rcu(net, name);
774 	dev_hold(dev);
775 	rcu_read_unlock();
776 	return dev;
777 }
778 EXPORT_SYMBOL(dev_get_by_name);
779 
780 /**
781  *	netdev_get_by_name() - find a device by its name
782  *	@net: the applicable net namespace
783  *	@name: name to find
784  *	@tracker: tracking object for the acquired reference
785  *	@gfp: allocation flags for the tracker
786  *
787  *	Find an interface by name. This can be called from any
788  *	context and does its own locking. The returned handle has
789  *	the usage count incremented and the caller must use netdev_put() to
790  *	release it when it is no longer needed. %NULL is returned if no
791  *	matching device is found.
792  */
793 struct net_device *netdev_get_by_name(struct net *net, const char *name,
794 				      netdevice_tracker *tracker, gfp_t gfp)
795 {
796 	struct net_device *dev;
797 
798 	dev = dev_get_by_name(net, name);
799 	if (dev)
800 		netdev_tracker_alloc(dev, tracker, gfp);
801 	return dev;
802 }
803 EXPORT_SYMBOL(netdev_get_by_name);
804 
805 /**
806  *	__dev_get_by_index - find a device by its ifindex
807  *	@net: the applicable net namespace
808  *	@ifindex: index of device
809  *
810  *	Search for an interface by index. Returns %NULL if the device
811  *	is not found or a pointer to the device. The device has not
812  *	had its reference counter increased so the caller must be careful
813  *	about locking. The caller must hold the RTNL semaphore.
814  */
815 
816 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
817 {
818 	struct net_device *dev;
819 	struct hlist_head *head = dev_index_hash(net, ifindex);
820 
821 	hlist_for_each_entry(dev, head, index_hlist)
822 		if (dev->ifindex == ifindex)
823 			return dev;
824 
825 	return NULL;
826 }
827 EXPORT_SYMBOL(__dev_get_by_index);
828 
829 /**
830  *	dev_get_by_index_rcu - find a device by its ifindex
831  *	@net: the applicable net namespace
832  *	@ifindex: index of device
833  *
834  *	Search for an interface by index. Returns %NULL if the device
835  *	is not found or a pointer to the device. The device has not
836  *	had its reference counter increased so the caller must be careful
837  *	about locking. The caller must hold RCU lock.
838  */
839 
840 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
841 {
842 	struct net_device *dev;
843 	struct hlist_head *head = dev_index_hash(net, ifindex);
844 
845 	hlist_for_each_entry_rcu(dev, head, index_hlist)
846 		if (dev->ifindex == ifindex)
847 			return dev;
848 
849 	return NULL;
850 }
851 EXPORT_SYMBOL(dev_get_by_index_rcu);
852 
853 /* Deprecated for new users, call netdev_get_by_index() instead */
854 struct net_device *dev_get_by_index(struct net *net, int ifindex)
855 {
856 	struct net_device *dev;
857 
858 	rcu_read_lock();
859 	dev = dev_get_by_index_rcu(net, ifindex);
860 	dev_hold(dev);
861 	rcu_read_unlock();
862 	return dev;
863 }
864 EXPORT_SYMBOL(dev_get_by_index);
865 
866 /**
867  *	netdev_get_by_index() - find a device by its ifindex
868  *	@net: the applicable net namespace
869  *	@ifindex: index of device
870  *	@tracker: tracking object for the acquired reference
871  *	@gfp: allocation flags for the tracker
872  *
873  *	Search for an interface by index. Returns NULL if the device
874  *	is not found or a pointer to the device. The device returned has
875  *	had a reference added and the pointer is safe until the user calls
876  *	netdev_put() to indicate they have finished with it.
877  */
878 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
879 				       netdevice_tracker *tracker, gfp_t gfp)
880 {
881 	struct net_device *dev;
882 
883 	dev = dev_get_by_index(net, ifindex);
884 	if (dev)
885 		netdev_tracker_alloc(dev, tracker, gfp);
886 	return dev;
887 }
888 EXPORT_SYMBOL(netdev_get_by_index);
889 
890 /**
891  *	dev_get_by_napi_id - find a device by napi_id
892  *	@napi_id: ID of the NAPI struct
893  *
894  *	Search for an interface by NAPI ID. Returns %NULL if the device
895  *	is not found or a pointer to the device. The device has not had
896  *	its reference counter increased so the caller must be careful
897  *	about locking. The caller must hold RCU lock.
898  */
899 
900 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
901 {
902 	struct napi_struct *napi;
903 
904 	WARN_ON_ONCE(!rcu_read_lock_held());
905 
906 	if (napi_id < MIN_NAPI_ID)
907 		return NULL;
908 
909 	napi = napi_by_id(napi_id);
910 
911 	return napi ? napi->dev : NULL;
912 }
913 EXPORT_SYMBOL(dev_get_by_napi_id);
914 
915 /**
916  *	netdev_get_name - get a netdevice name, knowing its ifindex.
917  *	@net: network namespace
918  *	@name: a pointer to the buffer where the name will be stored.
919  *	@ifindex: the ifindex of the interface to get the name from.
920  */
921 int netdev_get_name(struct net *net, char *name, int ifindex)
922 {
923 	struct net_device *dev;
924 	int ret;
925 
926 	down_read(&devnet_rename_sem);
927 	rcu_read_lock();
928 
929 	dev = dev_get_by_index_rcu(net, ifindex);
930 	if (!dev) {
931 		ret = -ENODEV;
932 		goto out;
933 	}
934 
935 	strcpy(name, dev->name);
936 
937 	ret = 0;
938 out:
939 	rcu_read_unlock();
940 	up_read(&devnet_rename_sem);
941 	return ret;
942 }
943 
944 /**
945  *	dev_getbyhwaddr_rcu - find a device by its hardware address
946  *	@net: the applicable net namespace
947  *	@type: media type of device
948  *	@ha: hardware address
949  *
950  *	Search for an interface by MAC address. Returns NULL if the device
951  *	is not found or a pointer to the device.
952  *	The caller must hold RCU or RTNL.
953  *	The returned device has not had its ref count increased
954  *	and the caller must therefore be careful about locking
955  *
956  */
957 
958 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
959 				       const char *ha)
960 {
961 	struct net_device *dev;
962 
963 	for_each_netdev_rcu(net, dev)
964 		if (dev->type == type &&
965 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
966 			return dev;
967 
968 	return NULL;
969 }
970 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
971 
972 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
973 {
974 	struct net_device *dev, *ret = NULL;
975 
976 	rcu_read_lock();
977 	for_each_netdev_rcu(net, dev)
978 		if (dev->type == type) {
979 			dev_hold(dev);
980 			ret = dev;
981 			break;
982 		}
983 	rcu_read_unlock();
984 	return ret;
985 }
986 EXPORT_SYMBOL(dev_getfirstbyhwtype);
987 
988 /**
989  *	__dev_get_by_flags - find any device with given flags
990  *	@net: the applicable net namespace
991  *	@if_flags: IFF_* values
992  *	@mask: bitmask of bits in if_flags to check
993  *
994  *	Search for any interface with the given flags. Returns NULL if a device
995  *	is not found or a pointer to the device. Must be called inside
996  *	rtnl_lock(), and result refcount is unchanged.
997  */
998 
999 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1000 				      unsigned short mask)
1001 {
1002 	struct net_device *dev, *ret;
1003 
1004 	ASSERT_RTNL();
1005 
1006 	ret = NULL;
1007 	for_each_netdev(net, dev) {
1008 		if (((dev->flags ^ if_flags) & mask) == 0) {
1009 			ret = dev;
1010 			break;
1011 		}
1012 	}
1013 	return ret;
1014 }
1015 EXPORT_SYMBOL(__dev_get_by_flags);
1016 
1017 /**
1018  *	dev_valid_name - check if name is okay for network device
1019  *	@name: name string
1020  *
1021  *	Network device names need to be valid file names to
1022  *	allow sysfs to work.  We also disallow any kind of
1023  *	whitespace.
1024  */
1025 bool dev_valid_name(const char *name)
1026 {
1027 	if (*name == '\0')
1028 		return false;
1029 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1030 		return false;
1031 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1032 		return false;
1033 
1034 	while (*name) {
1035 		if (*name == '/' || *name == ':' || isspace(*name))
1036 			return false;
1037 		name++;
1038 	}
1039 	return true;
1040 }
1041 EXPORT_SYMBOL(dev_valid_name);
1042 
1043 /**
1044  *	__dev_alloc_name - allocate a name for a device
1045  *	@net: network namespace to allocate the device name in
1046  *	@name: name format string
1047  *	@res: result name string
1048  *
1049  *	Passed a format string - eg "lt%d" it will try and find a suitable
1050  *	id. It scans list of devices to build up a free map, then chooses
1051  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1052  *	while allocating the name and adding the device in order to avoid
1053  *	duplicates.
1054  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1055  *	Returns the number of the unit assigned or a negative errno code.
1056  */
1057 
1058 static int __dev_alloc_name(struct net *net, const char *name, char *res)
1059 {
1060 	int i = 0;
1061 	const char *p;
1062 	const int max_netdevices = 8*PAGE_SIZE;
1063 	unsigned long *inuse;
1064 	struct net_device *d;
1065 	char buf[IFNAMSIZ];
1066 
1067 	/* Verify the string as this thing may have come from the user.
1068 	 * There must be one "%d" and no other "%" characters.
1069 	 */
1070 	p = strchr(name, '%');
1071 	if (!p || p[1] != 'd' || strchr(p + 2, '%'))
1072 		return -EINVAL;
1073 
1074 	/* Use one page as a bit array of possible slots */
1075 	inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC);
1076 	if (!inuse)
1077 		return -ENOMEM;
1078 
1079 	for_each_netdev(net, d) {
1080 		struct netdev_name_node *name_node;
1081 
1082 		netdev_for_each_altname(d, name_node) {
1083 			if (!sscanf(name_node->name, name, &i))
1084 				continue;
1085 			if (i < 0 || i >= max_netdevices)
1086 				continue;
1087 
1088 			/* avoid cases where sscanf is not exact inverse of printf */
1089 			snprintf(buf, IFNAMSIZ, name, i);
1090 			if (!strncmp(buf, name_node->name, IFNAMSIZ))
1091 				__set_bit(i, inuse);
1092 		}
1093 		if (!sscanf(d->name, name, &i))
1094 			continue;
1095 		if (i < 0 || i >= max_netdevices)
1096 			continue;
1097 
1098 		/* avoid cases where sscanf is not exact inverse of printf */
1099 		snprintf(buf, IFNAMSIZ, name, i);
1100 		if (!strncmp(buf, d->name, IFNAMSIZ))
1101 			__set_bit(i, inuse);
1102 	}
1103 
1104 	i = find_first_zero_bit(inuse, max_netdevices);
1105 	bitmap_free(inuse);
1106 	if (i == max_netdevices)
1107 		return -ENFILE;
1108 
1109 	/* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */
1110 	strscpy(buf, name, IFNAMSIZ);
1111 	snprintf(res, IFNAMSIZ, buf, i);
1112 	return i;
1113 }
1114 
1115 /* Returns negative errno or allocated unit id (see __dev_alloc_name()) */
1116 static int dev_prep_valid_name(struct net *net, struct net_device *dev,
1117 			       const char *want_name, char *out_name,
1118 			       int dup_errno)
1119 {
1120 	if (!dev_valid_name(want_name))
1121 		return -EINVAL;
1122 
1123 	if (strchr(want_name, '%'))
1124 		return __dev_alloc_name(net, want_name, out_name);
1125 
1126 	if (netdev_name_in_use(net, want_name))
1127 		return -dup_errno;
1128 	if (out_name != want_name)
1129 		strscpy(out_name, want_name, IFNAMSIZ);
1130 	return 0;
1131 }
1132 
1133 /**
1134  *	dev_alloc_name - allocate a name for a device
1135  *	@dev: device
1136  *	@name: name format string
1137  *
1138  *	Passed a format string - eg "lt%d" it will try and find a suitable
1139  *	id. It scans list of devices to build up a free map, then chooses
1140  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1141  *	while allocating the name and adding the device in order to avoid
1142  *	duplicates.
1143  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1144  *	Returns the number of the unit assigned or a negative errno code.
1145  */
1146 
1147 int dev_alloc_name(struct net_device *dev, const char *name)
1148 {
1149 	return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE);
1150 }
1151 EXPORT_SYMBOL(dev_alloc_name);
1152 
1153 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1154 			      const char *name)
1155 {
1156 	int ret;
1157 
1158 	ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST);
1159 	return ret < 0 ? ret : 0;
1160 }
1161 
1162 /**
1163  *	dev_change_name - change name of a device
1164  *	@dev: device
1165  *	@newname: name (or format string) must be at least IFNAMSIZ
1166  *
1167  *	Change name of a device, can pass format strings "eth%d".
1168  *	for wildcarding.
1169  */
1170 int dev_change_name(struct net_device *dev, const char *newname)
1171 {
1172 	unsigned char old_assign_type;
1173 	char oldname[IFNAMSIZ];
1174 	int err = 0;
1175 	int ret;
1176 	struct net *net;
1177 
1178 	ASSERT_RTNL();
1179 	BUG_ON(!dev_net(dev));
1180 
1181 	net = dev_net(dev);
1182 
1183 	down_write(&devnet_rename_sem);
1184 
1185 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1186 		up_write(&devnet_rename_sem);
1187 		return 0;
1188 	}
1189 
1190 	memcpy(oldname, dev->name, IFNAMSIZ);
1191 
1192 	err = dev_get_valid_name(net, dev, newname);
1193 	if (err < 0) {
1194 		up_write(&devnet_rename_sem);
1195 		return err;
1196 	}
1197 
1198 	if (oldname[0] && !strchr(oldname, '%'))
1199 		netdev_info(dev, "renamed from %s%s\n", oldname,
1200 			    dev->flags & IFF_UP ? " (while UP)" : "");
1201 
1202 	old_assign_type = dev->name_assign_type;
1203 	WRITE_ONCE(dev->name_assign_type, NET_NAME_RENAMED);
1204 
1205 rollback:
1206 	ret = device_rename(&dev->dev, dev->name);
1207 	if (ret) {
1208 		memcpy(dev->name, oldname, IFNAMSIZ);
1209 		WRITE_ONCE(dev->name_assign_type, old_assign_type);
1210 		up_write(&devnet_rename_sem);
1211 		return ret;
1212 	}
1213 
1214 	up_write(&devnet_rename_sem);
1215 
1216 	netdev_adjacent_rename_links(dev, oldname);
1217 
1218 	netdev_name_node_del(dev->name_node);
1219 
1220 	synchronize_net();
1221 
1222 	netdev_name_node_add(net, dev->name_node);
1223 
1224 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1225 	ret = notifier_to_errno(ret);
1226 
1227 	if (ret) {
1228 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1229 		if (err >= 0) {
1230 			err = ret;
1231 			down_write(&devnet_rename_sem);
1232 			memcpy(dev->name, oldname, IFNAMSIZ);
1233 			memcpy(oldname, newname, IFNAMSIZ);
1234 			WRITE_ONCE(dev->name_assign_type, old_assign_type);
1235 			old_assign_type = NET_NAME_RENAMED;
1236 			goto rollback;
1237 		} else {
1238 			netdev_err(dev, "name change rollback failed: %d\n",
1239 				   ret);
1240 		}
1241 	}
1242 
1243 	return err;
1244 }
1245 
1246 /**
1247  *	dev_set_alias - change ifalias of a device
1248  *	@dev: device
1249  *	@alias: name up to IFALIASZ
1250  *	@len: limit of bytes to copy from info
1251  *
1252  *	Set ifalias for a device,
1253  */
1254 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1255 {
1256 	struct dev_ifalias *new_alias = NULL;
1257 
1258 	if (len >= IFALIASZ)
1259 		return -EINVAL;
1260 
1261 	if (len) {
1262 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1263 		if (!new_alias)
1264 			return -ENOMEM;
1265 
1266 		memcpy(new_alias->ifalias, alias, len);
1267 		new_alias->ifalias[len] = 0;
1268 	}
1269 
1270 	mutex_lock(&ifalias_mutex);
1271 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1272 					mutex_is_locked(&ifalias_mutex));
1273 	mutex_unlock(&ifalias_mutex);
1274 
1275 	if (new_alias)
1276 		kfree_rcu(new_alias, rcuhead);
1277 
1278 	return len;
1279 }
1280 EXPORT_SYMBOL(dev_set_alias);
1281 
1282 /**
1283  *	dev_get_alias - get ifalias of a device
1284  *	@dev: device
1285  *	@name: buffer to store name of ifalias
1286  *	@len: size of buffer
1287  *
1288  *	get ifalias for a device.  Caller must make sure dev cannot go
1289  *	away,  e.g. rcu read lock or own a reference count to device.
1290  */
1291 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1292 {
1293 	const struct dev_ifalias *alias;
1294 	int ret = 0;
1295 
1296 	rcu_read_lock();
1297 	alias = rcu_dereference(dev->ifalias);
1298 	if (alias)
1299 		ret = snprintf(name, len, "%s", alias->ifalias);
1300 	rcu_read_unlock();
1301 
1302 	return ret;
1303 }
1304 
1305 /**
1306  *	netdev_features_change - device changes features
1307  *	@dev: device to cause notification
1308  *
1309  *	Called to indicate a device has changed features.
1310  */
1311 void netdev_features_change(struct net_device *dev)
1312 {
1313 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1314 }
1315 EXPORT_SYMBOL(netdev_features_change);
1316 
1317 /**
1318  *	netdev_state_change - device changes state
1319  *	@dev: device to cause notification
1320  *
1321  *	Called to indicate a device has changed state. This function calls
1322  *	the notifier chains for netdev_chain and sends a NEWLINK message
1323  *	to the routing socket.
1324  */
1325 void netdev_state_change(struct net_device *dev)
1326 {
1327 	if (dev->flags & IFF_UP) {
1328 		struct netdev_notifier_change_info change_info = {
1329 			.info.dev = dev,
1330 		};
1331 
1332 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1333 					      &change_info.info);
1334 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1335 	}
1336 }
1337 EXPORT_SYMBOL(netdev_state_change);
1338 
1339 /**
1340  * __netdev_notify_peers - notify network peers about existence of @dev,
1341  * to be called when rtnl lock is already held.
1342  * @dev: network device
1343  *
1344  * Generate traffic such that interested network peers are aware of
1345  * @dev, such as by generating a gratuitous ARP. This may be used when
1346  * a device wants to inform the rest of the network about some sort of
1347  * reconfiguration such as a failover event or virtual machine
1348  * migration.
1349  */
1350 void __netdev_notify_peers(struct net_device *dev)
1351 {
1352 	ASSERT_RTNL();
1353 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1354 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1355 }
1356 EXPORT_SYMBOL(__netdev_notify_peers);
1357 
1358 /**
1359  * netdev_notify_peers - notify network peers about existence of @dev
1360  * @dev: network device
1361  *
1362  * Generate traffic such that interested network peers are aware of
1363  * @dev, such as by generating a gratuitous ARP. This may be used when
1364  * a device wants to inform the rest of the network about some sort of
1365  * reconfiguration such as a failover event or virtual machine
1366  * migration.
1367  */
1368 void netdev_notify_peers(struct net_device *dev)
1369 {
1370 	rtnl_lock();
1371 	__netdev_notify_peers(dev);
1372 	rtnl_unlock();
1373 }
1374 EXPORT_SYMBOL(netdev_notify_peers);
1375 
1376 static int napi_threaded_poll(void *data);
1377 
1378 static int napi_kthread_create(struct napi_struct *n)
1379 {
1380 	int err = 0;
1381 
1382 	/* Create and wake up the kthread once to put it in
1383 	 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1384 	 * warning and work with loadavg.
1385 	 */
1386 	n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1387 				n->dev->name, n->napi_id);
1388 	if (IS_ERR(n->thread)) {
1389 		err = PTR_ERR(n->thread);
1390 		pr_err("kthread_run failed with err %d\n", err);
1391 		n->thread = NULL;
1392 	}
1393 
1394 	return err;
1395 }
1396 
1397 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1398 {
1399 	const struct net_device_ops *ops = dev->netdev_ops;
1400 	int ret;
1401 
1402 	ASSERT_RTNL();
1403 	dev_addr_check(dev);
1404 
1405 	if (!netif_device_present(dev)) {
1406 		/* may be detached because parent is runtime-suspended */
1407 		if (dev->dev.parent)
1408 			pm_runtime_resume(dev->dev.parent);
1409 		if (!netif_device_present(dev))
1410 			return -ENODEV;
1411 	}
1412 
1413 	/* Block netpoll from trying to do any rx path servicing.
1414 	 * If we don't do this there is a chance ndo_poll_controller
1415 	 * or ndo_poll may be running while we open the device
1416 	 */
1417 	netpoll_poll_disable(dev);
1418 
1419 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1420 	ret = notifier_to_errno(ret);
1421 	if (ret)
1422 		return ret;
1423 
1424 	set_bit(__LINK_STATE_START, &dev->state);
1425 
1426 	if (ops->ndo_validate_addr)
1427 		ret = ops->ndo_validate_addr(dev);
1428 
1429 	if (!ret && ops->ndo_open)
1430 		ret = ops->ndo_open(dev);
1431 
1432 	netpoll_poll_enable(dev);
1433 
1434 	if (ret)
1435 		clear_bit(__LINK_STATE_START, &dev->state);
1436 	else {
1437 		dev->flags |= IFF_UP;
1438 		dev_set_rx_mode(dev);
1439 		dev_activate(dev);
1440 		add_device_randomness(dev->dev_addr, dev->addr_len);
1441 	}
1442 
1443 	return ret;
1444 }
1445 
1446 /**
1447  *	dev_open	- prepare an interface for use.
1448  *	@dev: device to open
1449  *	@extack: netlink extended ack
1450  *
1451  *	Takes a device from down to up state. The device's private open
1452  *	function is invoked and then the multicast lists are loaded. Finally
1453  *	the device is moved into the up state and a %NETDEV_UP message is
1454  *	sent to the netdev notifier chain.
1455  *
1456  *	Calling this function on an active interface is a nop. On a failure
1457  *	a negative errno code is returned.
1458  */
1459 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1460 {
1461 	int ret;
1462 
1463 	if (dev->flags & IFF_UP)
1464 		return 0;
1465 
1466 	ret = __dev_open(dev, extack);
1467 	if (ret < 0)
1468 		return ret;
1469 
1470 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1471 	call_netdevice_notifiers(NETDEV_UP, dev);
1472 
1473 	return ret;
1474 }
1475 EXPORT_SYMBOL(dev_open);
1476 
1477 static void __dev_close_many(struct list_head *head)
1478 {
1479 	struct net_device *dev;
1480 
1481 	ASSERT_RTNL();
1482 	might_sleep();
1483 
1484 	list_for_each_entry(dev, head, close_list) {
1485 		/* Temporarily disable netpoll until the interface is down */
1486 		netpoll_poll_disable(dev);
1487 
1488 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1489 
1490 		clear_bit(__LINK_STATE_START, &dev->state);
1491 
1492 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1493 		 * can be even on different cpu. So just clear netif_running().
1494 		 *
1495 		 * dev->stop() will invoke napi_disable() on all of it's
1496 		 * napi_struct instances on this device.
1497 		 */
1498 		smp_mb__after_atomic(); /* Commit netif_running(). */
1499 	}
1500 
1501 	dev_deactivate_many(head);
1502 
1503 	list_for_each_entry(dev, head, close_list) {
1504 		const struct net_device_ops *ops = dev->netdev_ops;
1505 
1506 		/*
1507 		 *	Call the device specific close. This cannot fail.
1508 		 *	Only if device is UP
1509 		 *
1510 		 *	We allow it to be called even after a DETACH hot-plug
1511 		 *	event.
1512 		 */
1513 		if (ops->ndo_stop)
1514 			ops->ndo_stop(dev);
1515 
1516 		dev->flags &= ~IFF_UP;
1517 		netpoll_poll_enable(dev);
1518 	}
1519 }
1520 
1521 static void __dev_close(struct net_device *dev)
1522 {
1523 	LIST_HEAD(single);
1524 
1525 	list_add(&dev->close_list, &single);
1526 	__dev_close_many(&single);
1527 	list_del(&single);
1528 }
1529 
1530 void dev_close_many(struct list_head *head, bool unlink)
1531 {
1532 	struct net_device *dev, *tmp;
1533 
1534 	/* Remove the devices that don't need to be closed */
1535 	list_for_each_entry_safe(dev, tmp, head, close_list)
1536 		if (!(dev->flags & IFF_UP))
1537 			list_del_init(&dev->close_list);
1538 
1539 	__dev_close_many(head);
1540 
1541 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1542 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1543 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1544 		if (unlink)
1545 			list_del_init(&dev->close_list);
1546 	}
1547 }
1548 EXPORT_SYMBOL(dev_close_many);
1549 
1550 /**
1551  *	dev_close - shutdown an interface.
1552  *	@dev: device to shutdown
1553  *
1554  *	This function moves an active device into down state. A
1555  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1556  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1557  *	chain.
1558  */
1559 void dev_close(struct net_device *dev)
1560 {
1561 	if (dev->flags & IFF_UP) {
1562 		LIST_HEAD(single);
1563 
1564 		list_add(&dev->close_list, &single);
1565 		dev_close_many(&single, true);
1566 		list_del(&single);
1567 	}
1568 }
1569 EXPORT_SYMBOL(dev_close);
1570 
1571 
1572 /**
1573  *	dev_disable_lro - disable Large Receive Offload on a device
1574  *	@dev: device
1575  *
1576  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1577  *	called under RTNL.  This is needed if received packets may be
1578  *	forwarded to another interface.
1579  */
1580 void dev_disable_lro(struct net_device *dev)
1581 {
1582 	struct net_device *lower_dev;
1583 	struct list_head *iter;
1584 
1585 	dev->wanted_features &= ~NETIF_F_LRO;
1586 	netdev_update_features(dev);
1587 
1588 	if (unlikely(dev->features & NETIF_F_LRO))
1589 		netdev_WARN(dev, "failed to disable LRO!\n");
1590 
1591 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1592 		dev_disable_lro(lower_dev);
1593 }
1594 EXPORT_SYMBOL(dev_disable_lro);
1595 
1596 /**
1597  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1598  *	@dev: device
1599  *
1600  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1601  *	called under RTNL.  This is needed if Generic XDP is installed on
1602  *	the device.
1603  */
1604 static void dev_disable_gro_hw(struct net_device *dev)
1605 {
1606 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1607 	netdev_update_features(dev);
1608 
1609 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1610 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1611 }
1612 
1613 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1614 {
1615 #define N(val) 						\
1616 	case NETDEV_##val:				\
1617 		return "NETDEV_" __stringify(val);
1618 	switch (cmd) {
1619 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1620 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1621 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1622 	N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1623 	N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1624 	N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1625 	N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1626 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1627 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1628 	N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1629 	N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1630 	N(XDP_FEAT_CHANGE)
1631 	}
1632 #undef N
1633 	return "UNKNOWN_NETDEV_EVENT";
1634 }
1635 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1636 
1637 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1638 				   struct net_device *dev)
1639 {
1640 	struct netdev_notifier_info info = {
1641 		.dev = dev,
1642 	};
1643 
1644 	return nb->notifier_call(nb, val, &info);
1645 }
1646 
1647 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1648 					     struct net_device *dev)
1649 {
1650 	int err;
1651 
1652 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1653 	err = notifier_to_errno(err);
1654 	if (err)
1655 		return err;
1656 
1657 	if (!(dev->flags & IFF_UP))
1658 		return 0;
1659 
1660 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1661 	return 0;
1662 }
1663 
1664 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1665 						struct net_device *dev)
1666 {
1667 	if (dev->flags & IFF_UP) {
1668 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1669 					dev);
1670 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1671 	}
1672 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1673 }
1674 
1675 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1676 						 struct net *net)
1677 {
1678 	struct net_device *dev;
1679 	int err;
1680 
1681 	for_each_netdev(net, dev) {
1682 		err = call_netdevice_register_notifiers(nb, dev);
1683 		if (err)
1684 			goto rollback;
1685 	}
1686 	return 0;
1687 
1688 rollback:
1689 	for_each_netdev_continue_reverse(net, dev)
1690 		call_netdevice_unregister_notifiers(nb, dev);
1691 	return err;
1692 }
1693 
1694 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1695 						    struct net *net)
1696 {
1697 	struct net_device *dev;
1698 
1699 	for_each_netdev(net, dev)
1700 		call_netdevice_unregister_notifiers(nb, dev);
1701 }
1702 
1703 static int dev_boot_phase = 1;
1704 
1705 /**
1706  * register_netdevice_notifier - register a network notifier block
1707  * @nb: notifier
1708  *
1709  * Register a notifier to be called when network device events occur.
1710  * The notifier passed is linked into the kernel structures and must
1711  * not be reused until it has been unregistered. A negative errno code
1712  * is returned on a failure.
1713  *
1714  * When registered all registration and up events are replayed
1715  * to the new notifier to allow device to have a race free
1716  * view of the network device list.
1717  */
1718 
1719 int register_netdevice_notifier(struct notifier_block *nb)
1720 {
1721 	struct net *net;
1722 	int err;
1723 
1724 	/* Close race with setup_net() and cleanup_net() */
1725 	down_write(&pernet_ops_rwsem);
1726 	rtnl_lock();
1727 	err = raw_notifier_chain_register(&netdev_chain, nb);
1728 	if (err)
1729 		goto unlock;
1730 	if (dev_boot_phase)
1731 		goto unlock;
1732 	for_each_net(net) {
1733 		err = call_netdevice_register_net_notifiers(nb, net);
1734 		if (err)
1735 			goto rollback;
1736 	}
1737 
1738 unlock:
1739 	rtnl_unlock();
1740 	up_write(&pernet_ops_rwsem);
1741 	return err;
1742 
1743 rollback:
1744 	for_each_net_continue_reverse(net)
1745 		call_netdevice_unregister_net_notifiers(nb, net);
1746 
1747 	raw_notifier_chain_unregister(&netdev_chain, nb);
1748 	goto unlock;
1749 }
1750 EXPORT_SYMBOL(register_netdevice_notifier);
1751 
1752 /**
1753  * unregister_netdevice_notifier - unregister a network notifier block
1754  * @nb: notifier
1755  *
1756  * Unregister a notifier previously registered by
1757  * register_netdevice_notifier(). The notifier is unlinked into the
1758  * kernel structures and may then be reused. A negative errno code
1759  * is returned on a failure.
1760  *
1761  * After unregistering unregister and down device events are synthesized
1762  * for all devices on the device list to the removed notifier to remove
1763  * the need for special case cleanup code.
1764  */
1765 
1766 int unregister_netdevice_notifier(struct notifier_block *nb)
1767 {
1768 	struct net *net;
1769 	int err;
1770 
1771 	/* Close race with setup_net() and cleanup_net() */
1772 	down_write(&pernet_ops_rwsem);
1773 	rtnl_lock();
1774 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1775 	if (err)
1776 		goto unlock;
1777 
1778 	for_each_net(net)
1779 		call_netdevice_unregister_net_notifiers(nb, net);
1780 
1781 unlock:
1782 	rtnl_unlock();
1783 	up_write(&pernet_ops_rwsem);
1784 	return err;
1785 }
1786 EXPORT_SYMBOL(unregister_netdevice_notifier);
1787 
1788 static int __register_netdevice_notifier_net(struct net *net,
1789 					     struct notifier_block *nb,
1790 					     bool ignore_call_fail)
1791 {
1792 	int err;
1793 
1794 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
1795 	if (err)
1796 		return err;
1797 	if (dev_boot_phase)
1798 		return 0;
1799 
1800 	err = call_netdevice_register_net_notifiers(nb, net);
1801 	if (err && !ignore_call_fail)
1802 		goto chain_unregister;
1803 
1804 	return 0;
1805 
1806 chain_unregister:
1807 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
1808 	return err;
1809 }
1810 
1811 static int __unregister_netdevice_notifier_net(struct net *net,
1812 					       struct notifier_block *nb)
1813 {
1814 	int err;
1815 
1816 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1817 	if (err)
1818 		return err;
1819 
1820 	call_netdevice_unregister_net_notifiers(nb, net);
1821 	return 0;
1822 }
1823 
1824 /**
1825  * register_netdevice_notifier_net - register a per-netns network notifier block
1826  * @net: network namespace
1827  * @nb: notifier
1828  *
1829  * Register a notifier to be called when network device events occur.
1830  * The notifier passed is linked into the kernel structures and must
1831  * not be reused until it has been unregistered. A negative errno code
1832  * is returned on a failure.
1833  *
1834  * When registered all registration and up events are replayed
1835  * to the new notifier to allow device to have a race free
1836  * view of the network device list.
1837  */
1838 
1839 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1840 {
1841 	int err;
1842 
1843 	rtnl_lock();
1844 	err = __register_netdevice_notifier_net(net, nb, false);
1845 	rtnl_unlock();
1846 	return err;
1847 }
1848 EXPORT_SYMBOL(register_netdevice_notifier_net);
1849 
1850 /**
1851  * unregister_netdevice_notifier_net - unregister a per-netns
1852  *                                     network notifier block
1853  * @net: network namespace
1854  * @nb: notifier
1855  *
1856  * Unregister a notifier previously registered by
1857  * register_netdevice_notifier_net(). The notifier is unlinked from the
1858  * kernel structures and may then be reused. A negative errno code
1859  * is returned on a failure.
1860  *
1861  * After unregistering unregister and down device events are synthesized
1862  * for all devices on the device list to the removed notifier to remove
1863  * the need for special case cleanup code.
1864  */
1865 
1866 int unregister_netdevice_notifier_net(struct net *net,
1867 				      struct notifier_block *nb)
1868 {
1869 	int err;
1870 
1871 	rtnl_lock();
1872 	err = __unregister_netdevice_notifier_net(net, nb);
1873 	rtnl_unlock();
1874 	return err;
1875 }
1876 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1877 
1878 static void __move_netdevice_notifier_net(struct net *src_net,
1879 					  struct net *dst_net,
1880 					  struct notifier_block *nb)
1881 {
1882 	__unregister_netdevice_notifier_net(src_net, nb);
1883 	__register_netdevice_notifier_net(dst_net, nb, true);
1884 }
1885 
1886 int register_netdevice_notifier_dev_net(struct net_device *dev,
1887 					struct notifier_block *nb,
1888 					struct netdev_net_notifier *nn)
1889 {
1890 	int err;
1891 
1892 	rtnl_lock();
1893 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1894 	if (!err) {
1895 		nn->nb = nb;
1896 		list_add(&nn->list, &dev->net_notifier_list);
1897 	}
1898 	rtnl_unlock();
1899 	return err;
1900 }
1901 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1902 
1903 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1904 					  struct notifier_block *nb,
1905 					  struct netdev_net_notifier *nn)
1906 {
1907 	int err;
1908 
1909 	rtnl_lock();
1910 	list_del(&nn->list);
1911 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1912 	rtnl_unlock();
1913 	return err;
1914 }
1915 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1916 
1917 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1918 					     struct net *net)
1919 {
1920 	struct netdev_net_notifier *nn;
1921 
1922 	list_for_each_entry(nn, &dev->net_notifier_list, list)
1923 		__move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
1924 }
1925 
1926 /**
1927  *	call_netdevice_notifiers_info - call all network notifier blocks
1928  *	@val: value passed unmodified to notifier function
1929  *	@info: notifier information data
1930  *
1931  *	Call all network notifier blocks.  Parameters and return value
1932  *	are as for raw_notifier_call_chain().
1933  */
1934 
1935 int call_netdevice_notifiers_info(unsigned long val,
1936 				  struct netdev_notifier_info *info)
1937 {
1938 	struct net *net = dev_net(info->dev);
1939 	int ret;
1940 
1941 	ASSERT_RTNL();
1942 
1943 	/* Run per-netns notifier block chain first, then run the global one.
1944 	 * Hopefully, one day, the global one is going to be removed after
1945 	 * all notifier block registrators get converted to be per-netns.
1946 	 */
1947 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1948 	if (ret & NOTIFY_STOP_MASK)
1949 		return ret;
1950 	return raw_notifier_call_chain(&netdev_chain, val, info);
1951 }
1952 
1953 /**
1954  *	call_netdevice_notifiers_info_robust - call per-netns notifier blocks
1955  *	                                       for and rollback on error
1956  *	@val_up: value passed unmodified to notifier function
1957  *	@val_down: value passed unmodified to the notifier function when
1958  *	           recovering from an error on @val_up
1959  *	@info: notifier information data
1960  *
1961  *	Call all per-netns network notifier blocks, but not notifier blocks on
1962  *	the global notifier chain. Parameters and return value are as for
1963  *	raw_notifier_call_chain_robust().
1964  */
1965 
1966 static int
1967 call_netdevice_notifiers_info_robust(unsigned long val_up,
1968 				     unsigned long val_down,
1969 				     struct netdev_notifier_info *info)
1970 {
1971 	struct net *net = dev_net(info->dev);
1972 
1973 	ASSERT_RTNL();
1974 
1975 	return raw_notifier_call_chain_robust(&net->netdev_chain,
1976 					      val_up, val_down, info);
1977 }
1978 
1979 static int call_netdevice_notifiers_extack(unsigned long val,
1980 					   struct net_device *dev,
1981 					   struct netlink_ext_ack *extack)
1982 {
1983 	struct netdev_notifier_info info = {
1984 		.dev = dev,
1985 		.extack = extack,
1986 	};
1987 
1988 	return call_netdevice_notifiers_info(val, &info);
1989 }
1990 
1991 /**
1992  *	call_netdevice_notifiers - call all network notifier blocks
1993  *      @val: value passed unmodified to notifier function
1994  *      @dev: net_device pointer passed unmodified to notifier function
1995  *
1996  *	Call all network notifier blocks.  Parameters and return value
1997  *	are as for raw_notifier_call_chain().
1998  */
1999 
2000 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2001 {
2002 	return call_netdevice_notifiers_extack(val, dev, NULL);
2003 }
2004 EXPORT_SYMBOL(call_netdevice_notifiers);
2005 
2006 /**
2007  *	call_netdevice_notifiers_mtu - call all network notifier blocks
2008  *	@val: value passed unmodified to notifier function
2009  *	@dev: net_device pointer passed unmodified to notifier function
2010  *	@arg: additional u32 argument passed to the notifier function
2011  *
2012  *	Call all network notifier blocks.  Parameters and return value
2013  *	are as for raw_notifier_call_chain().
2014  */
2015 static int call_netdevice_notifiers_mtu(unsigned long val,
2016 					struct net_device *dev, u32 arg)
2017 {
2018 	struct netdev_notifier_info_ext info = {
2019 		.info.dev = dev,
2020 		.ext.mtu = arg,
2021 	};
2022 
2023 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2024 
2025 	return call_netdevice_notifiers_info(val, &info.info);
2026 }
2027 
2028 #ifdef CONFIG_NET_INGRESS
2029 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2030 
2031 void net_inc_ingress_queue(void)
2032 {
2033 	static_branch_inc(&ingress_needed_key);
2034 }
2035 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2036 
2037 void net_dec_ingress_queue(void)
2038 {
2039 	static_branch_dec(&ingress_needed_key);
2040 }
2041 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2042 #endif
2043 
2044 #ifdef CONFIG_NET_EGRESS
2045 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2046 
2047 void net_inc_egress_queue(void)
2048 {
2049 	static_branch_inc(&egress_needed_key);
2050 }
2051 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2052 
2053 void net_dec_egress_queue(void)
2054 {
2055 	static_branch_dec(&egress_needed_key);
2056 }
2057 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2058 #endif
2059 
2060 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2061 EXPORT_SYMBOL(netstamp_needed_key);
2062 #ifdef CONFIG_JUMP_LABEL
2063 static atomic_t netstamp_needed_deferred;
2064 static atomic_t netstamp_wanted;
2065 static void netstamp_clear(struct work_struct *work)
2066 {
2067 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2068 	int wanted;
2069 
2070 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2071 	if (wanted > 0)
2072 		static_branch_enable(&netstamp_needed_key);
2073 	else
2074 		static_branch_disable(&netstamp_needed_key);
2075 }
2076 static DECLARE_WORK(netstamp_work, netstamp_clear);
2077 #endif
2078 
2079 void net_enable_timestamp(void)
2080 {
2081 #ifdef CONFIG_JUMP_LABEL
2082 	int wanted = atomic_read(&netstamp_wanted);
2083 
2084 	while (wanted > 0) {
2085 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2086 			return;
2087 	}
2088 	atomic_inc(&netstamp_needed_deferred);
2089 	schedule_work(&netstamp_work);
2090 #else
2091 	static_branch_inc(&netstamp_needed_key);
2092 #endif
2093 }
2094 EXPORT_SYMBOL(net_enable_timestamp);
2095 
2096 void net_disable_timestamp(void)
2097 {
2098 #ifdef CONFIG_JUMP_LABEL
2099 	int wanted = atomic_read(&netstamp_wanted);
2100 
2101 	while (wanted > 1) {
2102 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2103 			return;
2104 	}
2105 	atomic_dec(&netstamp_needed_deferred);
2106 	schedule_work(&netstamp_work);
2107 #else
2108 	static_branch_dec(&netstamp_needed_key);
2109 #endif
2110 }
2111 EXPORT_SYMBOL(net_disable_timestamp);
2112 
2113 static inline void net_timestamp_set(struct sk_buff *skb)
2114 {
2115 	skb->tstamp = 0;
2116 	skb->mono_delivery_time = 0;
2117 	if (static_branch_unlikely(&netstamp_needed_key))
2118 		skb->tstamp = ktime_get_real();
2119 }
2120 
2121 #define net_timestamp_check(COND, SKB)				\
2122 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2123 		if ((COND) && !(SKB)->tstamp)			\
2124 			(SKB)->tstamp = ktime_get_real();	\
2125 	}							\
2126 
2127 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2128 {
2129 	return __is_skb_forwardable(dev, skb, true);
2130 }
2131 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2132 
2133 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2134 			      bool check_mtu)
2135 {
2136 	int ret = ____dev_forward_skb(dev, skb, check_mtu);
2137 
2138 	if (likely(!ret)) {
2139 		skb->protocol = eth_type_trans(skb, dev);
2140 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2141 	}
2142 
2143 	return ret;
2144 }
2145 
2146 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2147 {
2148 	return __dev_forward_skb2(dev, skb, true);
2149 }
2150 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2151 
2152 /**
2153  * dev_forward_skb - loopback an skb to another netif
2154  *
2155  * @dev: destination network device
2156  * @skb: buffer to forward
2157  *
2158  * return values:
2159  *	NET_RX_SUCCESS	(no congestion)
2160  *	NET_RX_DROP     (packet was dropped, but freed)
2161  *
2162  * dev_forward_skb can be used for injecting an skb from the
2163  * start_xmit function of one device into the receive queue
2164  * of another device.
2165  *
2166  * The receiving device may be in another namespace, so
2167  * we have to clear all information in the skb that could
2168  * impact namespace isolation.
2169  */
2170 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2171 {
2172 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2173 }
2174 EXPORT_SYMBOL_GPL(dev_forward_skb);
2175 
2176 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2177 {
2178 	return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2179 }
2180 
2181 static inline int deliver_skb(struct sk_buff *skb,
2182 			      struct packet_type *pt_prev,
2183 			      struct net_device *orig_dev)
2184 {
2185 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2186 		return -ENOMEM;
2187 	refcount_inc(&skb->users);
2188 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2189 }
2190 
2191 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2192 					  struct packet_type **pt,
2193 					  struct net_device *orig_dev,
2194 					  __be16 type,
2195 					  struct list_head *ptype_list)
2196 {
2197 	struct packet_type *ptype, *pt_prev = *pt;
2198 
2199 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2200 		if (ptype->type != type)
2201 			continue;
2202 		if (pt_prev)
2203 			deliver_skb(skb, pt_prev, orig_dev);
2204 		pt_prev = ptype;
2205 	}
2206 	*pt = pt_prev;
2207 }
2208 
2209 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2210 {
2211 	if (!ptype->af_packet_priv || !skb->sk)
2212 		return false;
2213 
2214 	if (ptype->id_match)
2215 		return ptype->id_match(ptype, skb->sk);
2216 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2217 		return true;
2218 
2219 	return false;
2220 }
2221 
2222 /**
2223  * dev_nit_active - return true if any network interface taps are in use
2224  *
2225  * @dev: network device to check for the presence of taps
2226  */
2227 bool dev_nit_active(struct net_device *dev)
2228 {
2229 	return !list_empty(&net_hotdata.ptype_all) ||
2230 	       !list_empty(&dev->ptype_all);
2231 }
2232 EXPORT_SYMBOL_GPL(dev_nit_active);
2233 
2234 /*
2235  *	Support routine. Sends outgoing frames to any network
2236  *	taps currently in use.
2237  */
2238 
2239 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2240 {
2241 	struct list_head *ptype_list = &net_hotdata.ptype_all;
2242 	struct packet_type *ptype, *pt_prev = NULL;
2243 	struct sk_buff *skb2 = NULL;
2244 
2245 	rcu_read_lock();
2246 again:
2247 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2248 		if (READ_ONCE(ptype->ignore_outgoing))
2249 			continue;
2250 
2251 		/* Never send packets back to the socket
2252 		 * they originated from - MvS (miquels@drinkel.ow.org)
2253 		 */
2254 		if (skb_loop_sk(ptype, skb))
2255 			continue;
2256 
2257 		if (pt_prev) {
2258 			deliver_skb(skb2, pt_prev, skb->dev);
2259 			pt_prev = ptype;
2260 			continue;
2261 		}
2262 
2263 		/* need to clone skb, done only once */
2264 		skb2 = skb_clone(skb, GFP_ATOMIC);
2265 		if (!skb2)
2266 			goto out_unlock;
2267 
2268 		net_timestamp_set(skb2);
2269 
2270 		/* skb->nh should be correctly
2271 		 * set by sender, so that the second statement is
2272 		 * just protection against buggy protocols.
2273 		 */
2274 		skb_reset_mac_header(skb2);
2275 
2276 		if (skb_network_header(skb2) < skb2->data ||
2277 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2278 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2279 					     ntohs(skb2->protocol),
2280 					     dev->name);
2281 			skb_reset_network_header(skb2);
2282 		}
2283 
2284 		skb2->transport_header = skb2->network_header;
2285 		skb2->pkt_type = PACKET_OUTGOING;
2286 		pt_prev = ptype;
2287 	}
2288 
2289 	if (ptype_list == &net_hotdata.ptype_all) {
2290 		ptype_list = &dev->ptype_all;
2291 		goto again;
2292 	}
2293 out_unlock:
2294 	if (pt_prev) {
2295 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2296 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2297 		else
2298 			kfree_skb(skb2);
2299 	}
2300 	rcu_read_unlock();
2301 }
2302 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2303 
2304 /**
2305  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2306  * @dev: Network device
2307  * @txq: number of queues available
2308  *
2309  * If real_num_tx_queues is changed the tc mappings may no longer be
2310  * valid. To resolve this verify the tc mapping remains valid and if
2311  * not NULL the mapping. With no priorities mapping to this
2312  * offset/count pair it will no longer be used. In the worst case TC0
2313  * is invalid nothing can be done so disable priority mappings. If is
2314  * expected that drivers will fix this mapping if they can before
2315  * calling netif_set_real_num_tx_queues.
2316  */
2317 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2318 {
2319 	int i;
2320 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2321 
2322 	/* If TC0 is invalidated disable TC mapping */
2323 	if (tc->offset + tc->count > txq) {
2324 		netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2325 		dev->num_tc = 0;
2326 		return;
2327 	}
2328 
2329 	/* Invalidated prio to tc mappings set to TC0 */
2330 	for (i = 1; i < TC_BITMASK + 1; i++) {
2331 		int q = netdev_get_prio_tc_map(dev, i);
2332 
2333 		tc = &dev->tc_to_txq[q];
2334 		if (tc->offset + tc->count > txq) {
2335 			netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2336 				    i, q);
2337 			netdev_set_prio_tc_map(dev, i, 0);
2338 		}
2339 	}
2340 }
2341 
2342 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2343 {
2344 	if (dev->num_tc) {
2345 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2346 		int i;
2347 
2348 		/* walk through the TCs and see if it falls into any of them */
2349 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2350 			if ((txq - tc->offset) < tc->count)
2351 				return i;
2352 		}
2353 
2354 		/* didn't find it, just return -1 to indicate no match */
2355 		return -1;
2356 	}
2357 
2358 	return 0;
2359 }
2360 EXPORT_SYMBOL(netdev_txq_to_tc);
2361 
2362 #ifdef CONFIG_XPS
2363 static struct static_key xps_needed __read_mostly;
2364 static struct static_key xps_rxqs_needed __read_mostly;
2365 static DEFINE_MUTEX(xps_map_mutex);
2366 #define xmap_dereference(P)		\
2367 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2368 
2369 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2370 			     struct xps_dev_maps *old_maps, int tci, u16 index)
2371 {
2372 	struct xps_map *map = NULL;
2373 	int pos;
2374 
2375 	map = xmap_dereference(dev_maps->attr_map[tci]);
2376 	if (!map)
2377 		return false;
2378 
2379 	for (pos = map->len; pos--;) {
2380 		if (map->queues[pos] != index)
2381 			continue;
2382 
2383 		if (map->len > 1) {
2384 			map->queues[pos] = map->queues[--map->len];
2385 			break;
2386 		}
2387 
2388 		if (old_maps)
2389 			RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2390 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2391 		kfree_rcu(map, rcu);
2392 		return false;
2393 	}
2394 
2395 	return true;
2396 }
2397 
2398 static bool remove_xps_queue_cpu(struct net_device *dev,
2399 				 struct xps_dev_maps *dev_maps,
2400 				 int cpu, u16 offset, u16 count)
2401 {
2402 	int num_tc = dev_maps->num_tc;
2403 	bool active = false;
2404 	int tci;
2405 
2406 	for (tci = cpu * num_tc; num_tc--; tci++) {
2407 		int i, j;
2408 
2409 		for (i = count, j = offset; i--; j++) {
2410 			if (!remove_xps_queue(dev_maps, NULL, tci, j))
2411 				break;
2412 		}
2413 
2414 		active |= i < 0;
2415 	}
2416 
2417 	return active;
2418 }
2419 
2420 static void reset_xps_maps(struct net_device *dev,
2421 			   struct xps_dev_maps *dev_maps,
2422 			   enum xps_map_type type)
2423 {
2424 	static_key_slow_dec_cpuslocked(&xps_needed);
2425 	if (type == XPS_RXQS)
2426 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2427 
2428 	RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2429 
2430 	kfree_rcu(dev_maps, rcu);
2431 }
2432 
2433 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2434 			   u16 offset, u16 count)
2435 {
2436 	struct xps_dev_maps *dev_maps;
2437 	bool active = false;
2438 	int i, j;
2439 
2440 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2441 	if (!dev_maps)
2442 		return;
2443 
2444 	for (j = 0; j < dev_maps->nr_ids; j++)
2445 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2446 	if (!active)
2447 		reset_xps_maps(dev, dev_maps, type);
2448 
2449 	if (type == XPS_CPUS) {
2450 		for (i = offset + (count - 1); count--; i--)
2451 			netdev_queue_numa_node_write(
2452 				netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2453 	}
2454 }
2455 
2456 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2457 				   u16 count)
2458 {
2459 	if (!static_key_false(&xps_needed))
2460 		return;
2461 
2462 	cpus_read_lock();
2463 	mutex_lock(&xps_map_mutex);
2464 
2465 	if (static_key_false(&xps_rxqs_needed))
2466 		clean_xps_maps(dev, XPS_RXQS, offset, count);
2467 
2468 	clean_xps_maps(dev, XPS_CPUS, offset, count);
2469 
2470 	mutex_unlock(&xps_map_mutex);
2471 	cpus_read_unlock();
2472 }
2473 
2474 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2475 {
2476 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2477 }
2478 
2479 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2480 				      u16 index, bool is_rxqs_map)
2481 {
2482 	struct xps_map *new_map;
2483 	int alloc_len = XPS_MIN_MAP_ALLOC;
2484 	int i, pos;
2485 
2486 	for (pos = 0; map && pos < map->len; pos++) {
2487 		if (map->queues[pos] != index)
2488 			continue;
2489 		return map;
2490 	}
2491 
2492 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2493 	if (map) {
2494 		if (pos < map->alloc_len)
2495 			return map;
2496 
2497 		alloc_len = map->alloc_len * 2;
2498 	}
2499 
2500 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2501 	 *  map
2502 	 */
2503 	if (is_rxqs_map)
2504 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2505 	else
2506 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2507 				       cpu_to_node(attr_index));
2508 	if (!new_map)
2509 		return NULL;
2510 
2511 	for (i = 0; i < pos; i++)
2512 		new_map->queues[i] = map->queues[i];
2513 	new_map->alloc_len = alloc_len;
2514 	new_map->len = pos;
2515 
2516 	return new_map;
2517 }
2518 
2519 /* Copy xps maps at a given index */
2520 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2521 			      struct xps_dev_maps *new_dev_maps, int index,
2522 			      int tc, bool skip_tc)
2523 {
2524 	int i, tci = index * dev_maps->num_tc;
2525 	struct xps_map *map;
2526 
2527 	/* copy maps belonging to foreign traffic classes */
2528 	for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2529 		if (i == tc && skip_tc)
2530 			continue;
2531 
2532 		/* fill in the new device map from the old device map */
2533 		map = xmap_dereference(dev_maps->attr_map[tci]);
2534 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2535 	}
2536 }
2537 
2538 /* Must be called under cpus_read_lock */
2539 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2540 			  u16 index, enum xps_map_type type)
2541 {
2542 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2543 	const unsigned long *online_mask = NULL;
2544 	bool active = false, copy = false;
2545 	int i, j, tci, numa_node_id = -2;
2546 	int maps_sz, num_tc = 1, tc = 0;
2547 	struct xps_map *map, *new_map;
2548 	unsigned int nr_ids;
2549 
2550 	WARN_ON_ONCE(index >= dev->num_tx_queues);
2551 
2552 	if (dev->num_tc) {
2553 		/* Do not allow XPS on subordinate device directly */
2554 		num_tc = dev->num_tc;
2555 		if (num_tc < 0)
2556 			return -EINVAL;
2557 
2558 		/* If queue belongs to subordinate dev use its map */
2559 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2560 
2561 		tc = netdev_txq_to_tc(dev, index);
2562 		if (tc < 0)
2563 			return -EINVAL;
2564 	}
2565 
2566 	mutex_lock(&xps_map_mutex);
2567 
2568 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2569 	if (type == XPS_RXQS) {
2570 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2571 		nr_ids = dev->num_rx_queues;
2572 	} else {
2573 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2574 		if (num_possible_cpus() > 1)
2575 			online_mask = cpumask_bits(cpu_online_mask);
2576 		nr_ids = nr_cpu_ids;
2577 	}
2578 
2579 	if (maps_sz < L1_CACHE_BYTES)
2580 		maps_sz = L1_CACHE_BYTES;
2581 
2582 	/* The old dev_maps could be larger or smaller than the one we're
2583 	 * setting up now, as dev->num_tc or nr_ids could have been updated in
2584 	 * between. We could try to be smart, but let's be safe instead and only
2585 	 * copy foreign traffic classes if the two map sizes match.
2586 	 */
2587 	if (dev_maps &&
2588 	    dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2589 		copy = true;
2590 
2591 	/* allocate memory for queue storage */
2592 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2593 	     j < nr_ids;) {
2594 		if (!new_dev_maps) {
2595 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2596 			if (!new_dev_maps) {
2597 				mutex_unlock(&xps_map_mutex);
2598 				return -ENOMEM;
2599 			}
2600 
2601 			new_dev_maps->nr_ids = nr_ids;
2602 			new_dev_maps->num_tc = num_tc;
2603 		}
2604 
2605 		tci = j * num_tc + tc;
2606 		map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2607 
2608 		map = expand_xps_map(map, j, index, type == XPS_RXQS);
2609 		if (!map)
2610 			goto error;
2611 
2612 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2613 	}
2614 
2615 	if (!new_dev_maps)
2616 		goto out_no_new_maps;
2617 
2618 	if (!dev_maps) {
2619 		/* Increment static keys at most once per type */
2620 		static_key_slow_inc_cpuslocked(&xps_needed);
2621 		if (type == XPS_RXQS)
2622 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2623 	}
2624 
2625 	for (j = 0; j < nr_ids; j++) {
2626 		bool skip_tc = false;
2627 
2628 		tci = j * num_tc + tc;
2629 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2630 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2631 			/* add tx-queue to CPU/rx-queue maps */
2632 			int pos = 0;
2633 
2634 			skip_tc = true;
2635 
2636 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2637 			while ((pos < map->len) && (map->queues[pos] != index))
2638 				pos++;
2639 
2640 			if (pos == map->len)
2641 				map->queues[map->len++] = index;
2642 #ifdef CONFIG_NUMA
2643 			if (type == XPS_CPUS) {
2644 				if (numa_node_id == -2)
2645 					numa_node_id = cpu_to_node(j);
2646 				else if (numa_node_id != cpu_to_node(j))
2647 					numa_node_id = -1;
2648 			}
2649 #endif
2650 		}
2651 
2652 		if (copy)
2653 			xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2654 					  skip_tc);
2655 	}
2656 
2657 	rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2658 
2659 	/* Cleanup old maps */
2660 	if (!dev_maps)
2661 		goto out_no_old_maps;
2662 
2663 	for (j = 0; j < dev_maps->nr_ids; j++) {
2664 		for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2665 			map = xmap_dereference(dev_maps->attr_map[tci]);
2666 			if (!map)
2667 				continue;
2668 
2669 			if (copy) {
2670 				new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2671 				if (map == new_map)
2672 					continue;
2673 			}
2674 
2675 			RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2676 			kfree_rcu(map, rcu);
2677 		}
2678 	}
2679 
2680 	old_dev_maps = dev_maps;
2681 
2682 out_no_old_maps:
2683 	dev_maps = new_dev_maps;
2684 	active = true;
2685 
2686 out_no_new_maps:
2687 	if (type == XPS_CPUS)
2688 		/* update Tx queue numa node */
2689 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2690 					     (numa_node_id >= 0) ?
2691 					     numa_node_id : NUMA_NO_NODE);
2692 
2693 	if (!dev_maps)
2694 		goto out_no_maps;
2695 
2696 	/* removes tx-queue from unused CPUs/rx-queues */
2697 	for (j = 0; j < dev_maps->nr_ids; j++) {
2698 		tci = j * dev_maps->num_tc;
2699 
2700 		for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2701 			if (i == tc &&
2702 			    netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2703 			    netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2704 				continue;
2705 
2706 			active |= remove_xps_queue(dev_maps,
2707 						   copy ? old_dev_maps : NULL,
2708 						   tci, index);
2709 		}
2710 	}
2711 
2712 	if (old_dev_maps)
2713 		kfree_rcu(old_dev_maps, rcu);
2714 
2715 	/* free map if not active */
2716 	if (!active)
2717 		reset_xps_maps(dev, dev_maps, type);
2718 
2719 out_no_maps:
2720 	mutex_unlock(&xps_map_mutex);
2721 
2722 	return 0;
2723 error:
2724 	/* remove any maps that we added */
2725 	for (j = 0; j < nr_ids; j++) {
2726 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2727 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2728 			map = copy ?
2729 			      xmap_dereference(dev_maps->attr_map[tci]) :
2730 			      NULL;
2731 			if (new_map && new_map != map)
2732 				kfree(new_map);
2733 		}
2734 	}
2735 
2736 	mutex_unlock(&xps_map_mutex);
2737 
2738 	kfree(new_dev_maps);
2739 	return -ENOMEM;
2740 }
2741 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2742 
2743 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2744 			u16 index)
2745 {
2746 	int ret;
2747 
2748 	cpus_read_lock();
2749 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2750 	cpus_read_unlock();
2751 
2752 	return ret;
2753 }
2754 EXPORT_SYMBOL(netif_set_xps_queue);
2755 
2756 #endif
2757 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2758 {
2759 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2760 
2761 	/* Unbind any subordinate channels */
2762 	while (txq-- != &dev->_tx[0]) {
2763 		if (txq->sb_dev)
2764 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2765 	}
2766 }
2767 
2768 void netdev_reset_tc(struct net_device *dev)
2769 {
2770 #ifdef CONFIG_XPS
2771 	netif_reset_xps_queues_gt(dev, 0);
2772 #endif
2773 	netdev_unbind_all_sb_channels(dev);
2774 
2775 	/* Reset TC configuration of device */
2776 	dev->num_tc = 0;
2777 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2778 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2779 }
2780 EXPORT_SYMBOL(netdev_reset_tc);
2781 
2782 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2783 {
2784 	if (tc >= dev->num_tc)
2785 		return -EINVAL;
2786 
2787 #ifdef CONFIG_XPS
2788 	netif_reset_xps_queues(dev, offset, count);
2789 #endif
2790 	dev->tc_to_txq[tc].count = count;
2791 	dev->tc_to_txq[tc].offset = offset;
2792 	return 0;
2793 }
2794 EXPORT_SYMBOL(netdev_set_tc_queue);
2795 
2796 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2797 {
2798 	if (num_tc > TC_MAX_QUEUE)
2799 		return -EINVAL;
2800 
2801 #ifdef CONFIG_XPS
2802 	netif_reset_xps_queues_gt(dev, 0);
2803 #endif
2804 	netdev_unbind_all_sb_channels(dev);
2805 
2806 	dev->num_tc = num_tc;
2807 	return 0;
2808 }
2809 EXPORT_SYMBOL(netdev_set_num_tc);
2810 
2811 void netdev_unbind_sb_channel(struct net_device *dev,
2812 			      struct net_device *sb_dev)
2813 {
2814 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2815 
2816 #ifdef CONFIG_XPS
2817 	netif_reset_xps_queues_gt(sb_dev, 0);
2818 #endif
2819 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2820 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2821 
2822 	while (txq-- != &dev->_tx[0]) {
2823 		if (txq->sb_dev == sb_dev)
2824 			txq->sb_dev = NULL;
2825 	}
2826 }
2827 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2828 
2829 int netdev_bind_sb_channel_queue(struct net_device *dev,
2830 				 struct net_device *sb_dev,
2831 				 u8 tc, u16 count, u16 offset)
2832 {
2833 	/* Make certain the sb_dev and dev are already configured */
2834 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2835 		return -EINVAL;
2836 
2837 	/* We cannot hand out queues we don't have */
2838 	if ((offset + count) > dev->real_num_tx_queues)
2839 		return -EINVAL;
2840 
2841 	/* Record the mapping */
2842 	sb_dev->tc_to_txq[tc].count = count;
2843 	sb_dev->tc_to_txq[tc].offset = offset;
2844 
2845 	/* Provide a way for Tx queue to find the tc_to_txq map or
2846 	 * XPS map for itself.
2847 	 */
2848 	while (count--)
2849 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2850 
2851 	return 0;
2852 }
2853 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2854 
2855 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2856 {
2857 	/* Do not use a multiqueue device to represent a subordinate channel */
2858 	if (netif_is_multiqueue(dev))
2859 		return -ENODEV;
2860 
2861 	/* We allow channels 1 - 32767 to be used for subordinate channels.
2862 	 * Channel 0 is meant to be "native" mode and used only to represent
2863 	 * the main root device. We allow writing 0 to reset the device back
2864 	 * to normal mode after being used as a subordinate channel.
2865 	 */
2866 	if (channel > S16_MAX)
2867 		return -EINVAL;
2868 
2869 	dev->num_tc = -channel;
2870 
2871 	return 0;
2872 }
2873 EXPORT_SYMBOL(netdev_set_sb_channel);
2874 
2875 /*
2876  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2877  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2878  */
2879 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2880 {
2881 	bool disabling;
2882 	int rc;
2883 
2884 	disabling = txq < dev->real_num_tx_queues;
2885 
2886 	if (txq < 1 || txq > dev->num_tx_queues)
2887 		return -EINVAL;
2888 
2889 	if (dev->reg_state == NETREG_REGISTERED ||
2890 	    dev->reg_state == NETREG_UNREGISTERING) {
2891 		ASSERT_RTNL();
2892 
2893 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2894 						  txq);
2895 		if (rc)
2896 			return rc;
2897 
2898 		if (dev->num_tc)
2899 			netif_setup_tc(dev, txq);
2900 
2901 		dev_qdisc_change_real_num_tx(dev, txq);
2902 
2903 		dev->real_num_tx_queues = txq;
2904 
2905 		if (disabling) {
2906 			synchronize_net();
2907 			qdisc_reset_all_tx_gt(dev, txq);
2908 #ifdef CONFIG_XPS
2909 			netif_reset_xps_queues_gt(dev, txq);
2910 #endif
2911 		}
2912 	} else {
2913 		dev->real_num_tx_queues = txq;
2914 	}
2915 
2916 	return 0;
2917 }
2918 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2919 
2920 #ifdef CONFIG_SYSFS
2921 /**
2922  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2923  *	@dev: Network device
2924  *	@rxq: Actual number of RX queues
2925  *
2926  *	This must be called either with the rtnl_lock held or before
2927  *	registration of the net device.  Returns 0 on success, or a
2928  *	negative error code.  If called before registration, it always
2929  *	succeeds.
2930  */
2931 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2932 {
2933 	int rc;
2934 
2935 	if (rxq < 1 || rxq > dev->num_rx_queues)
2936 		return -EINVAL;
2937 
2938 	if (dev->reg_state == NETREG_REGISTERED) {
2939 		ASSERT_RTNL();
2940 
2941 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2942 						  rxq);
2943 		if (rc)
2944 			return rc;
2945 	}
2946 
2947 	dev->real_num_rx_queues = rxq;
2948 	return 0;
2949 }
2950 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2951 #endif
2952 
2953 /**
2954  *	netif_set_real_num_queues - set actual number of RX and TX queues used
2955  *	@dev: Network device
2956  *	@txq: Actual number of TX queues
2957  *	@rxq: Actual number of RX queues
2958  *
2959  *	Set the real number of both TX and RX queues.
2960  *	Does nothing if the number of queues is already correct.
2961  */
2962 int netif_set_real_num_queues(struct net_device *dev,
2963 			      unsigned int txq, unsigned int rxq)
2964 {
2965 	unsigned int old_rxq = dev->real_num_rx_queues;
2966 	int err;
2967 
2968 	if (txq < 1 || txq > dev->num_tx_queues ||
2969 	    rxq < 1 || rxq > dev->num_rx_queues)
2970 		return -EINVAL;
2971 
2972 	/* Start from increases, so the error path only does decreases -
2973 	 * decreases can't fail.
2974 	 */
2975 	if (rxq > dev->real_num_rx_queues) {
2976 		err = netif_set_real_num_rx_queues(dev, rxq);
2977 		if (err)
2978 			return err;
2979 	}
2980 	if (txq > dev->real_num_tx_queues) {
2981 		err = netif_set_real_num_tx_queues(dev, txq);
2982 		if (err)
2983 			goto undo_rx;
2984 	}
2985 	if (rxq < dev->real_num_rx_queues)
2986 		WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
2987 	if (txq < dev->real_num_tx_queues)
2988 		WARN_ON(netif_set_real_num_tx_queues(dev, txq));
2989 
2990 	return 0;
2991 undo_rx:
2992 	WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
2993 	return err;
2994 }
2995 EXPORT_SYMBOL(netif_set_real_num_queues);
2996 
2997 /**
2998  * netif_set_tso_max_size() - set the max size of TSO frames supported
2999  * @dev:	netdev to update
3000  * @size:	max skb->len of a TSO frame
3001  *
3002  * Set the limit on the size of TSO super-frames the device can handle.
3003  * Unless explicitly set the stack will assume the value of
3004  * %GSO_LEGACY_MAX_SIZE.
3005  */
3006 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3007 {
3008 	dev->tso_max_size = min(GSO_MAX_SIZE, size);
3009 	if (size < READ_ONCE(dev->gso_max_size))
3010 		netif_set_gso_max_size(dev, size);
3011 	if (size < READ_ONCE(dev->gso_ipv4_max_size))
3012 		netif_set_gso_ipv4_max_size(dev, size);
3013 }
3014 EXPORT_SYMBOL(netif_set_tso_max_size);
3015 
3016 /**
3017  * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3018  * @dev:	netdev to update
3019  * @segs:	max number of TCP segments
3020  *
3021  * Set the limit on the number of TCP segments the device can generate from
3022  * a single TSO super-frame.
3023  * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3024  */
3025 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3026 {
3027 	dev->tso_max_segs = segs;
3028 	if (segs < READ_ONCE(dev->gso_max_segs))
3029 		netif_set_gso_max_segs(dev, segs);
3030 }
3031 EXPORT_SYMBOL(netif_set_tso_max_segs);
3032 
3033 /**
3034  * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3035  * @to:		netdev to update
3036  * @from:	netdev from which to copy the limits
3037  */
3038 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3039 {
3040 	netif_set_tso_max_size(to, from->tso_max_size);
3041 	netif_set_tso_max_segs(to, from->tso_max_segs);
3042 }
3043 EXPORT_SYMBOL(netif_inherit_tso_max);
3044 
3045 /**
3046  * netif_get_num_default_rss_queues - default number of RSS queues
3047  *
3048  * Default value is the number of physical cores if there are only 1 or 2, or
3049  * divided by 2 if there are more.
3050  */
3051 int netif_get_num_default_rss_queues(void)
3052 {
3053 	cpumask_var_t cpus;
3054 	int cpu, count = 0;
3055 
3056 	if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3057 		return 1;
3058 
3059 	cpumask_copy(cpus, cpu_online_mask);
3060 	for_each_cpu(cpu, cpus) {
3061 		++count;
3062 		cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3063 	}
3064 	free_cpumask_var(cpus);
3065 
3066 	return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3067 }
3068 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3069 
3070 static void __netif_reschedule(struct Qdisc *q)
3071 {
3072 	struct softnet_data *sd;
3073 	unsigned long flags;
3074 
3075 	local_irq_save(flags);
3076 	sd = this_cpu_ptr(&softnet_data);
3077 	q->next_sched = NULL;
3078 	*sd->output_queue_tailp = q;
3079 	sd->output_queue_tailp = &q->next_sched;
3080 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3081 	local_irq_restore(flags);
3082 }
3083 
3084 void __netif_schedule(struct Qdisc *q)
3085 {
3086 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3087 		__netif_reschedule(q);
3088 }
3089 EXPORT_SYMBOL(__netif_schedule);
3090 
3091 struct dev_kfree_skb_cb {
3092 	enum skb_drop_reason reason;
3093 };
3094 
3095 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3096 {
3097 	return (struct dev_kfree_skb_cb *)skb->cb;
3098 }
3099 
3100 void netif_schedule_queue(struct netdev_queue *txq)
3101 {
3102 	rcu_read_lock();
3103 	if (!netif_xmit_stopped(txq)) {
3104 		struct Qdisc *q = rcu_dereference(txq->qdisc);
3105 
3106 		__netif_schedule(q);
3107 	}
3108 	rcu_read_unlock();
3109 }
3110 EXPORT_SYMBOL(netif_schedule_queue);
3111 
3112 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3113 {
3114 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3115 		struct Qdisc *q;
3116 
3117 		rcu_read_lock();
3118 		q = rcu_dereference(dev_queue->qdisc);
3119 		__netif_schedule(q);
3120 		rcu_read_unlock();
3121 	}
3122 }
3123 EXPORT_SYMBOL(netif_tx_wake_queue);
3124 
3125 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3126 {
3127 	unsigned long flags;
3128 
3129 	if (unlikely(!skb))
3130 		return;
3131 
3132 	if (likely(refcount_read(&skb->users) == 1)) {
3133 		smp_rmb();
3134 		refcount_set(&skb->users, 0);
3135 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3136 		return;
3137 	}
3138 	get_kfree_skb_cb(skb)->reason = reason;
3139 	local_irq_save(flags);
3140 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3141 	__this_cpu_write(softnet_data.completion_queue, skb);
3142 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3143 	local_irq_restore(flags);
3144 }
3145 EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
3146 
3147 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3148 {
3149 	if (in_hardirq() || irqs_disabled())
3150 		dev_kfree_skb_irq_reason(skb, reason);
3151 	else
3152 		kfree_skb_reason(skb, reason);
3153 }
3154 EXPORT_SYMBOL(dev_kfree_skb_any_reason);
3155 
3156 
3157 /**
3158  * netif_device_detach - mark device as removed
3159  * @dev: network device
3160  *
3161  * Mark device as removed from system and therefore no longer available.
3162  */
3163 void netif_device_detach(struct net_device *dev)
3164 {
3165 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3166 	    netif_running(dev)) {
3167 		netif_tx_stop_all_queues(dev);
3168 	}
3169 }
3170 EXPORT_SYMBOL(netif_device_detach);
3171 
3172 /**
3173  * netif_device_attach - mark device as attached
3174  * @dev: network device
3175  *
3176  * Mark device as attached from system and restart if needed.
3177  */
3178 void netif_device_attach(struct net_device *dev)
3179 {
3180 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3181 	    netif_running(dev)) {
3182 		netif_tx_wake_all_queues(dev);
3183 		__netdev_watchdog_up(dev);
3184 	}
3185 }
3186 EXPORT_SYMBOL(netif_device_attach);
3187 
3188 /*
3189  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3190  * to be used as a distribution range.
3191  */
3192 static u16 skb_tx_hash(const struct net_device *dev,
3193 		       const struct net_device *sb_dev,
3194 		       struct sk_buff *skb)
3195 {
3196 	u32 hash;
3197 	u16 qoffset = 0;
3198 	u16 qcount = dev->real_num_tx_queues;
3199 
3200 	if (dev->num_tc) {
3201 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3202 
3203 		qoffset = sb_dev->tc_to_txq[tc].offset;
3204 		qcount = sb_dev->tc_to_txq[tc].count;
3205 		if (unlikely(!qcount)) {
3206 			net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3207 					     sb_dev->name, qoffset, tc);
3208 			qoffset = 0;
3209 			qcount = dev->real_num_tx_queues;
3210 		}
3211 	}
3212 
3213 	if (skb_rx_queue_recorded(skb)) {
3214 		DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3215 		hash = skb_get_rx_queue(skb);
3216 		if (hash >= qoffset)
3217 			hash -= qoffset;
3218 		while (unlikely(hash >= qcount))
3219 			hash -= qcount;
3220 		return hash + qoffset;
3221 	}
3222 
3223 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3224 }
3225 
3226 void skb_warn_bad_offload(const struct sk_buff *skb)
3227 {
3228 	static const netdev_features_t null_features;
3229 	struct net_device *dev = skb->dev;
3230 	const char *name = "";
3231 
3232 	if (!net_ratelimit())
3233 		return;
3234 
3235 	if (dev) {
3236 		if (dev->dev.parent)
3237 			name = dev_driver_string(dev->dev.parent);
3238 		else
3239 			name = netdev_name(dev);
3240 	}
3241 	skb_dump(KERN_WARNING, skb, false);
3242 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3243 	     name, dev ? &dev->features : &null_features,
3244 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3245 }
3246 
3247 /*
3248  * Invalidate hardware checksum when packet is to be mangled, and
3249  * complete checksum manually on outgoing path.
3250  */
3251 int skb_checksum_help(struct sk_buff *skb)
3252 {
3253 	__wsum csum;
3254 	int ret = 0, offset;
3255 
3256 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3257 		goto out_set_summed;
3258 
3259 	if (unlikely(skb_is_gso(skb))) {
3260 		skb_warn_bad_offload(skb);
3261 		return -EINVAL;
3262 	}
3263 
3264 	/* Before computing a checksum, we should make sure no frag could
3265 	 * be modified by an external entity : checksum could be wrong.
3266 	 */
3267 	if (skb_has_shared_frag(skb)) {
3268 		ret = __skb_linearize(skb);
3269 		if (ret)
3270 			goto out;
3271 	}
3272 
3273 	offset = skb_checksum_start_offset(skb);
3274 	ret = -EINVAL;
3275 	if (unlikely(offset >= skb_headlen(skb))) {
3276 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3277 		WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n",
3278 			  offset, skb_headlen(skb));
3279 		goto out;
3280 	}
3281 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3282 
3283 	offset += skb->csum_offset;
3284 	if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) {
3285 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3286 		WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n",
3287 			  offset + sizeof(__sum16), skb_headlen(skb));
3288 		goto out;
3289 	}
3290 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3291 	if (ret)
3292 		goto out;
3293 
3294 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3295 out_set_summed:
3296 	skb->ip_summed = CHECKSUM_NONE;
3297 out:
3298 	return ret;
3299 }
3300 EXPORT_SYMBOL(skb_checksum_help);
3301 
3302 int skb_crc32c_csum_help(struct sk_buff *skb)
3303 {
3304 	__le32 crc32c_csum;
3305 	int ret = 0, offset, start;
3306 
3307 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3308 		goto out;
3309 
3310 	if (unlikely(skb_is_gso(skb)))
3311 		goto out;
3312 
3313 	/* Before computing a checksum, we should make sure no frag could
3314 	 * be modified by an external entity : checksum could be wrong.
3315 	 */
3316 	if (unlikely(skb_has_shared_frag(skb))) {
3317 		ret = __skb_linearize(skb);
3318 		if (ret)
3319 			goto out;
3320 	}
3321 	start = skb_checksum_start_offset(skb);
3322 	offset = start + offsetof(struct sctphdr, checksum);
3323 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3324 		ret = -EINVAL;
3325 		goto out;
3326 	}
3327 
3328 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3329 	if (ret)
3330 		goto out;
3331 
3332 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3333 						  skb->len - start, ~(__u32)0,
3334 						  crc32c_csum_stub));
3335 	*(__le32 *)(skb->data + offset) = crc32c_csum;
3336 	skb_reset_csum_not_inet(skb);
3337 out:
3338 	return ret;
3339 }
3340 
3341 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3342 {
3343 	__be16 type = skb->protocol;
3344 
3345 	/* Tunnel gso handlers can set protocol to ethernet. */
3346 	if (type == htons(ETH_P_TEB)) {
3347 		struct ethhdr *eth;
3348 
3349 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3350 			return 0;
3351 
3352 		eth = (struct ethhdr *)skb->data;
3353 		type = eth->h_proto;
3354 	}
3355 
3356 	return vlan_get_protocol_and_depth(skb, type, depth);
3357 }
3358 
3359 
3360 /* Take action when hardware reception checksum errors are detected. */
3361 #ifdef CONFIG_BUG
3362 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3363 {
3364 	netdev_err(dev, "hw csum failure\n");
3365 	skb_dump(KERN_ERR, skb, true);
3366 	dump_stack();
3367 }
3368 
3369 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3370 {
3371 	DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3372 }
3373 EXPORT_SYMBOL(netdev_rx_csum_fault);
3374 #endif
3375 
3376 /* XXX: check that highmem exists at all on the given machine. */
3377 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3378 {
3379 #ifdef CONFIG_HIGHMEM
3380 	int i;
3381 
3382 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3383 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3384 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3385 
3386 			if (PageHighMem(skb_frag_page(frag)))
3387 				return 1;
3388 		}
3389 	}
3390 #endif
3391 	return 0;
3392 }
3393 
3394 /* If MPLS offload request, verify we are testing hardware MPLS features
3395  * instead of standard features for the netdev.
3396  */
3397 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3398 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3399 					   netdev_features_t features,
3400 					   __be16 type)
3401 {
3402 	if (eth_p_mpls(type))
3403 		features &= skb->dev->mpls_features;
3404 
3405 	return features;
3406 }
3407 #else
3408 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3409 					   netdev_features_t features,
3410 					   __be16 type)
3411 {
3412 	return features;
3413 }
3414 #endif
3415 
3416 static netdev_features_t harmonize_features(struct sk_buff *skb,
3417 	netdev_features_t features)
3418 {
3419 	__be16 type;
3420 
3421 	type = skb_network_protocol(skb, NULL);
3422 	features = net_mpls_features(skb, features, type);
3423 
3424 	if (skb->ip_summed != CHECKSUM_NONE &&
3425 	    !can_checksum_protocol(features, type)) {
3426 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3427 	}
3428 	if (illegal_highdma(skb->dev, skb))
3429 		features &= ~NETIF_F_SG;
3430 
3431 	return features;
3432 }
3433 
3434 netdev_features_t passthru_features_check(struct sk_buff *skb,
3435 					  struct net_device *dev,
3436 					  netdev_features_t features)
3437 {
3438 	return features;
3439 }
3440 EXPORT_SYMBOL(passthru_features_check);
3441 
3442 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3443 					     struct net_device *dev,
3444 					     netdev_features_t features)
3445 {
3446 	return vlan_features_check(skb, features);
3447 }
3448 
3449 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3450 					    struct net_device *dev,
3451 					    netdev_features_t features)
3452 {
3453 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3454 
3455 	if (gso_segs > READ_ONCE(dev->gso_max_segs))
3456 		return features & ~NETIF_F_GSO_MASK;
3457 
3458 	if (unlikely(skb->len >= READ_ONCE(dev->gso_max_size)))
3459 		return features & ~NETIF_F_GSO_MASK;
3460 
3461 	if (!skb_shinfo(skb)->gso_type) {
3462 		skb_warn_bad_offload(skb);
3463 		return features & ~NETIF_F_GSO_MASK;
3464 	}
3465 
3466 	/* Support for GSO partial features requires software
3467 	 * intervention before we can actually process the packets
3468 	 * so we need to strip support for any partial features now
3469 	 * and we can pull them back in after we have partially
3470 	 * segmented the frame.
3471 	 */
3472 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3473 		features &= ~dev->gso_partial_features;
3474 
3475 	/* Make sure to clear the IPv4 ID mangling feature if the
3476 	 * IPv4 header has the potential to be fragmented.
3477 	 */
3478 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3479 		struct iphdr *iph = skb->encapsulation ?
3480 				    inner_ip_hdr(skb) : ip_hdr(skb);
3481 
3482 		if (!(iph->frag_off & htons(IP_DF)))
3483 			features &= ~NETIF_F_TSO_MANGLEID;
3484 	}
3485 
3486 	return features;
3487 }
3488 
3489 netdev_features_t netif_skb_features(struct sk_buff *skb)
3490 {
3491 	struct net_device *dev = skb->dev;
3492 	netdev_features_t features = dev->features;
3493 
3494 	if (skb_is_gso(skb))
3495 		features = gso_features_check(skb, dev, features);
3496 
3497 	/* If encapsulation offload request, verify we are testing
3498 	 * hardware encapsulation features instead of standard
3499 	 * features for the netdev
3500 	 */
3501 	if (skb->encapsulation)
3502 		features &= dev->hw_enc_features;
3503 
3504 	if (skb_vlan_tagged(skb))
3505 		features = netdev_intersect_features(features,
3506 						     dev->vlan_features |
3507 						     NETIF_F_HW_VLAN_CTAG_TX |
3508 						     NETIF_F_HW_VLAN_STAG_TX);
3509 
3510 	if (dev->netdev_ops->ndo_features_check)
3511 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3512 								features);
3513 	else
3514 		features &= dflt_features_check(skb, dev, features);
3515 
3516 	return harmonize_features(skb, features);
3517 }
3518 EXPORT_SYMBOL(netif_skb_features);
3519 
3520 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3521 		    struct netdev_queue *txq, bool more)
3522 {
3523 	unsigned int len;
3524 	int rc;
3525 
3526 	if (dev_nit_active(dev))
3527 		dev_queue_xmit_nit(skb, dev);
3528 
3529 	len = skb->len;
3530 	trace_net_dev_start_xmit(skb, dev);
3531 	rc = netdev_start_xmit(skb, dev, txq, more);
3532 	trace_net_dev_xmit(skb, rc, dev, len);
3533 
3534 	return rc;
3535 }
3536 
3537 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3538 				    struct netdev_queue *txq, int *ret)
3539 {
3540 	struct sk_buff *skb = first;
3541 	int rc = NETDEV_TX_OK;
3542 
3543 	while (skb) {
3544 		struct sk_buff *next = skb->next;
3545 
3546 		skb_mark_not_on_list(skb);
3547 		rc = xmit_one(skb, dev, txq, next != NULL);
3548 		if (unlikely(!dev_xmit_complete(rc))) {
3549 			skb->next = next;
3550 			goto out;
3551 		}
3552 
3553 		skb = next;
3554 		if (netif_tx_queue_stopped(txq) && skb) {
3555 			rc = NETDEV_TX_BUSY;
3556 			break;
3557 		}
3558 	}
3559 
3560 out:
3561 	*ret = rc;
3562 	return skb;
3563 }
3564 
3565 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3566 					  netdev_features_t features)
3567 {
3568 	if (skb_vlan_tag_present(skb) &&
3569 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3570 		skb = __vlan_hwaccel_push_inside(skb);
3571 	return skb;
3572 }
3573 
3574 int skb_csum_hwoffload_help(struct sk_buff *skb,
3575 			    const netdev_features_t features)
3576 {
3577 	if (unlikely(skb_csum_is_sctp(skb)))
3578 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3579 			skb_crc32c_csum_help(skb);
3580 
3581 	if (features & NETIF_F_HW_CSUM)
3582 		return 0;
3583 
3584 	if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3585 		switch (skb->csum_offset) {
3586 		case offsetof(struct tcphdr, check):
3587 		case offsetof(struct udphdr, check):
3588 			return 0;
3589 		}
3590 	}
3591 
3592 	return skb_checksum_help(skb);
3593 }
3594 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3595 
3596 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3597 {
3598 	netdev_features_t features;
3599 
3600 	features = netif_skb_features(skb);
3601 	skb = validate_xmit_vlan(skb, features);
3602 	if (unlikely(!skb))
3603 		goto out_null;
3604 
3605 	skb = sk_validate_xmit_skb(skb, dev);
3606 	if (unlikely(!skb))
3607 		goto out_null;
3608 
3609 	if (netif_needs_gso(skb, features)) {
3610 		struct sk_buff *segs;
3611 
3612 		segs = skb_gso_segment(skb, features);
3613 		if (IS_ERR(segs)) {
3614 			goto out_kfree_skb;
3615 		} else if (segs) {
3616 			consume_skb(skb);
3617 			skb = segs;
3618 		}
3619 	} else {
3620 		if (skb_needs_linearize(skb, features) &&
3621 		    __skb_linearize(skb))
3622 			goto out_kfree_skb;
3623 
3624 		/* If packet is not checksummed and device does not
3625 		 * support checksumming for this protocol, complete
3626 		 * checksumming here.
3627 		 */
3628 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3629 			if (skb->encapsulation)
3630 				skb_set_inner_transport_header(skb,
3631 							       skb_checksum_start_offset(skb));
3632 			else
3633 				skb_set_transport_header(skb,
3634 							 skb_checksum_start_offset(skb));
3635 			if (skb_csum_hwoffload_help(skb, features))
3636 				goto out_kfree_skb;
3637 		}
3638 	}
3639 
3640 	skb = validate_xmit_xfrm(skb, features, again);
3641 
3642 	return skb;
3643 
3644 out_kfree_skb:
3645 	kfree_skb(skb);
3646 out_null:
3647 	dev_core_stats_tx_dropped_inc(dev);
3648 	return NULL;
3649 }
3650 
3651 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3652 {
3653 	struct sk_buff *next, *head = NULL, *tail;
3654 
3655 	for (; skb != NULL; skb = next) {
3656 		next = skb->next;
3657 		skb_mark_not_on_list(skb);
3658 
3659 		/* in case skb wont be segmented, point to itself */
3660 		skb->prev = skb;
3661 
3662 		skb = validate_xmit_skb(skb, dev, again);
3663 		if (!skb)
3664 			continue;
3665 
3666 		if (!head)
3667 			head = skb;
3668 		else
3669 			tail->next = skb;
3670 		/* If skb was segmented, skb->prev points to
3671 		 * the last segment. If not, it still contains skb.
3672 		 */
3673 		tail = skb->prev;
3674 	}
3675 	return head;
3676 }
3677 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3678 
3679 static void qdisc_pkt_len_init(struct sk_buff *skb)
3680 {
3681 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3682 
3683 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3684 
3685 	/* To get more precise estimation of bytes sent on wire,
3686 	 * we add to pkt_len the headers size of all segments
3687 	 */
3688 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3689 		u16 gso_segs = shinfo->gso_segs;
3690 		unsigned int hdr_len;
3691 
3692 		/* mac layer + network layer */
3693 		hdr_len = skb_transport_offset(skb);
3694 
3695 		/* + transport layer */
3696 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3697 			const struct tcphdr *th;
3698 			struct tcphdr _tcphdr;
3699 
3700 			th = skb_header_pointer(skb, hdr_len,
3701 						sizeof(_tcphdr), &_tcphdr);
3702 			if (likely(th))
3703 				hdr_len += __tcp_hdrlen(th);
3704 		} else {
3705 			struct udphdr _udphdr;
3706 
3707 			if (skb_header_pointer(skb, hdr_len,
3708 					       sizeof(_udphdr), &_udphdr))
3709 				hdr_len += sizeof(struct udphdr);
3710 		}
3711 
3712 		if (shinfo->gso_type & SKB_GSO_DODGY)
3713 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3714 						shinfo->gso_size);
3715 
3716 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3717 	}
3718 }
3719 
3720 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3721 			     struct sk_buff **to_free,
3722 			     struct netdev_queue *txq)
3723 {
3724 	int rc;
3725 
3726 	rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3727 	if (rc == NET_XMIT_SUCCESS)
3728 		trace_qdisc_enqueue(q, txq, skb);
3729 	return rc;
3730 }
3731 
3732 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3733 				 struct net_device *dev,
3734 				 struct netdev_queue *txq)
3735 {
3736 	spinlock_t *root_lock = qdisc_lock(q);
3737 	struct sk_buff *to_free = NULL;
3738 	bool contended;
3739 	int rc;
3740 
3741 	qdisc_calculate_pkt_len(skb, q);
3742 
3743 	tcf_set_drop_reason(skb, SKB_DROP_REASON_QDISC_DROP);
3744 
3745 	if (q->flags & TCQ_F_NOLOCK) {
3746 		if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3747 		    qdisc_run_begin(q)) {
3748 			/* Retest nolock_qdisc_is_empty() within the protection
3749 			 * of q->seqlock to protect from racing with requeuing.
3750 			 */
3751 			if (unlikely(!nolock_qdisc_is_empty(q))) {
3752 				rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3753 				__qdisc_run(q);
3754 				qdisc_run_end(q);
3755 
3756 				goto no_lock_out;
3757 			}
3758 
3759 			qdisc_bstats_cpu_update(q, skb);
3760 			if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3761 			    !nolock_qdisc_is_empty(q))
3762 				__qdisc_run(q);
3763 
3764 			qdisc_run_end(q);
3765 			return NET_XMIT_SUCCESS;
3766 		}
3767 
3768 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3769 		qdisc_run(q);
3770 
3771 no_lock_out:
3772 		if (unlikely(to_free))
3773 			kfree_skb_list_reason(to_free,
3774 					      tcf_get_drop_reason(to_free));
3775 		return rc;
3776 	}
3777 
3778 	/*
3779 	 * Heuristic to force contended enqueues to serialize on a
3780 	 * separate lock before trying to get qdisc main lock.
3781 	 * This permits qdisc->running owner to get the lock more
3782 	 * often and dequeue packets faster.
3783 	 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3784 	 * and then other tasks will only enqueue packets. The packets will be
3785 	 * sent after the qdisc owner is scheduled again. To prevent this
3786 	 * scenario the task always serialize on the lock.
3787 	 */
3788 	contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
3789 	if (unlikely(contended))
3790 		spin_lock(&q->busylock);
3791 
3792 	spin_lock(root_lock);
3793 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3794 		__qdisc_drop(skb, &to_free);
3795 		rc = NET_XMIT_DROP;
3796 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3797 		   qdisc_run_begin(q)) {
3798 		/*
3799 		 * This is a work-conserving queue; there are no old skbs
3800 		 * waiting to be sent out; and the qdisc is not running -
3801 		 * xmit the skb directly.
3802 		 */
3803 
3804 		qdisc_bstats_update(q, skb);
3805 
3806 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3807 			if (unlikely(contended)) {
3808 				spin_unlock(&q->busylock);
3809 				contended = false;
3810 			}
3811 			__qdisc_run(q);
3812 		}
3813 
3814 		qdisc_run_end(q);
3815 		rc = NET_XMIT_SUCCESS;
3816 	} else {
3817 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3818 		if (qdisc_run_begin(q)) {
3819 			if (unlikely(contended)) {
3820 				spin_unlock(&q->busylock);
3821 				contended = false;
3822 			}
3823 			__qdisc_run(q);
3824 			qdisc_run_end(q);
3825 		}
3826 	}
3827 	spin_unlock(root_lock);
3828 	if (unlikely(to_free))
3829 		kfree_skb_list_reason(to_free,
3830 				      tcf_get_drop_reason(to_free));
3831 	if (unlikely(contended))
3832 		spin_unlock(&q->busylock);
3833 	return rc;
3834 }
3835 
3836 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3837 static void skb_update_prio(struct sk_buff *skb)
3838 {
3839 	const struct netprio_map *map;
3840 	const struct sock *sk;
3841 	unsigned int prioidx;
3842 
3843 	if (skb->priority)
3844 		return;
3845 	map = rcu_dereference_bh(skb->dev->priomap);
3846 	if (!map)
3847 		return;
3848 	sk = skb_to_full_sk(skb);
3849 	if (!sk)
3850 		return;
3851 
3852 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3853 
3854 	if (prioidx < map->priomap_len)
3855 		skb->priority = map->priomap[prioidx];
3856 }
3857 #else
3858 #define skb_update_prio(skb)
3859 #endif
3860 
3861 /**
3862  *	dev_loopback_xmit - loop back @skb
3863  *	@net: network namespace this loopback is happening in
3864  *	@sk:  sk needed to be a netfilter okfn
3865  *	@skb: buffer to transmit
3866  */
3867 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3868 {
3869 	skb_reset_mac_header(skb);
3870 	__skb_pull(skb, skb_network_offset(skb));
3871 	skb->pkt_type = PACKET_LOOPBACK;
3872 	if (skb->ip_summed == CHECKSUM_NONE)
3873 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3874 	DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
3875 	skb_dst_force(skb);
3876 	netif_rx(skb);
3877 	return 0;
3878 }
3879 EXPORT_SYMBOL(dev_loopback_xmit);
3880 
3881 #ifdef CONFIG_NET_EGRESS
3882 static struct netdev_queue *
3883 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
3884 {
3885 	int qm = skb_get_queue_mapping(skb);
3886 
3887 	return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
3888 }
3889 
3890 static bool netdev_xmit_txqueue_skipped(void)
3891 {
3892 	return __this_cpu_read(softnet_data.xmit.skip_txqueue);
3893 }
3894 
3895 void netdev_xmit_skip_txqueue(bool skip)
3896 {
3897 	__this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
3898 }
3899 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
3900 #endif /* CONFIG_NET_EGRESS */
3901 
3902 #ifdef CONFIG_NET_XGRESS
3903 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb,
3904 		  enum skb_drop_reason *drop_reason)
3905 {
3906 	int ret = TC_ACT_UNSPEC;
3907 #ifdef CONFIG_NET_CLS_ACT
3908 	struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq);
3909 	struct tcf_result res;
3910 
3911 	if (!miniq)
3912 		return ret;
3913 
3914 	tc_skb_cb(skb)->mru = 0;
3915 	tc_skb_cb(skb)->post_ct = false;
3916 	tcf_set_drop_reason(skb, *drop_reason);
3917 
3918 	mini_qdisc_bstats_cpu_update(miniq, skb);
3919 	ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false);
3920 	/* Only tcf related quirks below. */
3921 	switch (ret) {
3922 	case TC_ACT_SHOT:
3923 		*drop_reason = tcf_get_drop_reason(skb);
3924 		mini_qdisc_qstats_cpu_drop(miniq);
3925 		break;
3926 	case TC_ACT_OK:
3927 	case TC_ACT_RECLASSIFY:
3928 		skb->tc_index = TC_H_MIN(res.classid);
3929 		break;
3930 	}
3931 #endif /* CONFIG_NET_CLS_ACT */
3932 	return ret;
3933 }
3934 
3935 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key);
3936 
3937 void tcx_inc(void)
3938 {
3939 	static_branch_inc(&tcx_needed_key);
3940 }
3941 
3942 void tcx_dec(void)
3943 {
3944 	static_branch_dec(&tcx_needed_key);
3945 }
3946 
3947 static __always_inline enum tcx_action_base
3948 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb,
3949 	const bool needs_mac)
3950 {
3951 	const struct bpf_mprog_fp *fp;
3952 	const struct bpf_prog *prog;
3953 	int ret = TCX_NEXT;
3954 
3955 	if (needs_mac)
3956 		__skb_push(skb, skb->mac_len);
3957 	bpf_mprog_foreach_prog(entry, fp, prog) {
3958 		bpf_compute_data_pointers(skb);
3959 		ret = bpf_prog_run(prog, skb);
3960 		if (ret != TCX_NEXT)
3961 			break;
3962 	}
3963 	if (needs_mac)
3964 		__skb_pull(skb, skb->mac_len);
3965 	return tcx_action_code(skb, ret);
3966 }
3967 
3968 static __always_inline struct sk_buff *
3969 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3970 		   struct net_device *orig_dev, bool *another)
3971 {
3972 	struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress);
3973 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS;
3974 	int sch_ret;
3975 
3976 	if (!entry)
3977 		return skb;
3978 	if (*pt_prev) {
3979 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
3980 		*pt_prev = NULL;
3981 	}
3982 
3983 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3984 	tcx_set_ingress(skb, true);
3985 
3986 	if (static_branch_unlikely(&tcx_needed_key)) {
3987 		sch_ret = tcx_run(entry, skb, true);
3988 		if (sch_ret != TC_ACT_UNSPEC)
3989 			goto ingress_verdict;
3990 	}
3991 	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
3992 ingress_verdict:
3993 	switch (sch_ret) {
3994 	case TC_ACT_REDIRECT:
3995 		/* skb_mac_header check was done by BPF, so we can safely
3996 		 * push the L2 header back before redirecting to another
3997 		 * netdev.
3998 		 */
3999 		__skb_push(skb, skb->mac_len);
4000 		if (skb_do_redirect(skb) == -EAGAIN) {
4001 			__skb_pull(skb, skb->mac_len);
4002 			*another = true;
4003 			break;
4004 		}
4005 		*ret = NET_RX_SUCCESS;
4006 		return NULL;
4007 	case TC_ACT_SHOT:
4008 		kfree_skb_reason(skb, drop_reason);
4009 		*ret = NET_RX_DROP;
4010 		return NULL;
4011 	/* used by tc_run */
4012 	case TC_ACT_STOLEN:
4013 	case TC_ACT_QUEUED:
4014 	case TC_ACT_TRAP:
4015 		consume_skb(skb);
4016 		fallthrough;
4017 	case TC_ACT_CONSUMED:
4018 		*ret = NET_RX_SUCCESS;
4019 		return NULL;
4020 	}
4021 
4022 	return skb;
4023 }
4024 
4025 static __always_inline struct sk_buff *
4026 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4027 {
4028 	struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress);
4029 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS;
4030 	int sch_ret;
4031 
4032 	if (!entry)
4033 		return skb;
4034 
4035 	/* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
4036 	 * already set by the caller.
4037 	 */
4038 	if (static_branch_unlikely(&tcx_needed_key)) {
4039 		sch_ret = tcx_run(entry, skb, false);
4040 		if (sch_ret != TC_ACT_UNSPEC)
4041 			goto egress_verdict;
4042 	}
4043 	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4044 egress_verdict:
4045 	switch (sch_ret) {
4046 	case TC_ACT_REDIRECT:
4047 		/* No need to push/pop skb's mac_header here on egress! */
4048 		skb_do_redirect(skb);
4049 		*ret = NET_XMIT_SUCCESS;
4050 		return NULL;
4051 	case TC_ACT_SHOT:
4052 		kfree_skb_reason(skb, drop_reason);
4053 		*ret = NET_XMIT_DROP;
4054 		return NULL;
4055 	/* used by tc_run */
4056 	case TC_ACT_STOLEN:
4057 	case TC_ACT_QUEUED:
4058 	case TC_ACT_TRAP:
4059 		consume_skb(skb);
4060 		fallthrough;
4061 	case TC_ACT_CONSUMED:
4062 		*ret = NET_XMIT_SUCCESS;
4063 		return NULL;
4064 	}
4065 
4066 	return skb;
4067 }
4068 #else
4069 static __always_inline struct sk_buff *
4070 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4071 		   struct net_device *orig_dev, bool *another)
4072 {
4073 	return skb;
4074 }
4075 
4076 static __always_inline struct sk_buff *
4077 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4078 {
4079 	return skb;
4080 }
4081 #endif /* CONFIG_NET_XGRESS */
4082 
4083 #ifdef CONFIG_XPS
4084 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4085 			       struct xps_dev_maps *dev_maps, unsigned int tci)
4086 {
4087 	int tc = netdev_get_prio_tc_map(dev, skb->priority);
4088 	struct xps_map *map;
4089 	int queue_index = -1;
4090 
4091 	if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4092 		return queue_index;
4093 
4094 	tci *= dev_maps->num_tc;
4095 	tci += tc;
4096 
4097 	map = rcu_dereference(dev_maps->attr_map[tci]);
4098 	if (map) {
4099 		if (map->len == 1)
4100 			queue_index = map->queues[0];
4101 		else
4102 			queue_index = map->queues[reciprocal_scale(
4103 						skb_get_hash(skb), map->len)];
4104 		if (unlikely(queue_index >= dev->real_num_tx_queues))
4105 			queue_index = -1;
4106 	}
4107 	return queue_index;
4108 }
4109 #endif
4110 
4111 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4112 			 struct sk_buff *skb)
4113 {
4114 #ifdef CONFIG_XPS
4115 	struct xps_dev_maps *dev_maps;
4116 	struct sock *sk = skb->sk;
4117 	int queue_index = -1;
4118 
4119 	if (!static_key_false(&xps_needed))
4120 		return -1;
4121 
4122 	rcu_read_lock();
4123 	if (!static_key_false(&xps_rxqs_needed))
4124 		goto get_cpus_map;
4125 
4126 	dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4127 	if (dev_maps) {
4128 		int tci = sk_rx_queue_get(sk);
4129 
4130 		if (tci >= 0)
4131 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4132 							  tci);
4133 	}
4134 
4135 get_cpus_map:
4136 	if (queue_index < 0) {
4137 		dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4138 		if (dev_maps) {
4139 			unsigned int tci = skb->sender_cpu - 1;
4140 
4141 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4142 							  tci);
4143 		}
4144 	}
4145 	rcu_read_unlock();
4146 
4147 	return queue_index;
4148 #else
4149 	return -1;
4150 #endif
4151 }
4152 
4153 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4154 		     struct net_device *sb_dev)
4155 {
4156 	return 0;
4157 }
4158 EXPORT_SYMBOL(dev_pick_tx_zero);
4159 
4160 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4161 		       struct net_device *sb_dev)
4162 {
4163 	return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4164 }
4165 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4166 
4167 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4168 		     struct net_device *sb_dev)
4169 {
4170 	struct sock *sk = skb->sk;
4171 	int queue_index = sk_tx_queue_get(sk);
4172 
4173 	sb_dev = sb_dev ? : dev;
4174 
4175 	if (queue_index < 0 || skb->ooo_okay ||
4176 	    queue_index >= dev->real_num_tx_queues) {
4177 		int new_index = get_xps_queue(dev, sb_dev, skb);
4178 
4179 		if (new_index < 0)
4180 			new_index = skb_tx_hash(dev, sb_dev, skb);
4181 
4182 		if (queue_index != new_index && sk &&
4183 		    sk_fullsock(sk) &&
4184 		    rcu_access_pointer(sk->sk_dst_cache))
4185 			sk_tx_queue_set(sk, new_index);
4186 
4187 		queue_index = new_index;
4188 	}
4189 
4190 	return queue_index;
4191 }
4192 EXPORT_SYMBOL(netdev_pick_tx);
4193 
4194 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4195 					 struct sk_buff *skb,
4196 					 struct net_device *sb_dev)
4197 {
4198 	int queue_index = 0;
4199 
4200 #ifdef CONFIG_XPS
4201 	u32 sender_cpu = skb->sender_cpu - 1;
4202 
4203 	if (sender_cpu >= (u32)NR_CPUS)
4204 		skb->sender_cpu = raw_smp_processor_id() + 1;
4205 #endif
4206 
4207 	if (dev->real_num_tx_queues != 1) {
4208 		const struct net_device_ops *ops = dev->netdev_ops;
4209 
4210 		if (ops->ndo_select_queue)
4211 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4212 		else
4213 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4214 
4215 		queue_index = netdev_cap_txqueue(dev, queue_index);
4216 	}
4217 
4218 	skb_set_queue_mapping(skb, queue_index);
4219 	return netdev_get_tx_queue(dev, queue_index);
4220 }
4221 
4222 /**
4223  * __dev_queue_xmit() - transmit a buffer
4224  * @skb:	buffer to transmit
4225  * @sb_dev:	suboordinate device used for L2 forwarding offload
4226  *
4227  * Queue a buffer for transmission to a network device. The caller must
4228  * have set the device and priority and built the buffer before calling
4229  * this function. The function can be called from an interrupt.
4230  *
4231  * When calling this method, interrupts MUST be enabled. This is because
4232  * the BH enable code must have IRQs enabled so that it will not deadlock.
4233  *
4234  * Regardless of the return value, the skb is consumed, so it is currently
4235  * difficult to retry a send to this method. (You can bump the ref count
4236  * before sending to hold a reference for retry if you are careful.)
4237  *
4238  * Return:
4239  * * 0				- buffer successfully transmitted
4240  * * positive qdisc return code	- NET_XMIT_DROP etc.
4241  * * negative errno		- other errors
4242  */
4243 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4244 {
4245 	struct net_device *dev = skb->dev;
4246 	struct netdev_queue *txq = NULL;
4247 	struct Qdisc *q;
4248 	int rc = -ENOMEM;
4249 	bool again = false;
4250 
4251 	skb_reset_mac_header(skb);
4252 	skb_assert_len(skb);
4253 
4254 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4255 		__skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4256 
4257 	/* Disable soft irqs for various locks below. Also
4258 	 * stops preemption for RCU.
4259 	 */
4260 	rcu_read_lock_bh();
4261 
4262 	skb_update_prio(skb);
4263 
4264 	qdisc_pkt_len_init(skb);
4265 	tcx_set_ingress(skb, false);
4266 #ifdef CONFIG_NET_EGRESS
4267 	if (static_branch_unlikely(&egress_needed_key)) {
4268 		if (nf_hook_egress_active()) {
4269 			skb = nf_hook_egress(skb, &rc, dev);
4270 			if (!skb)
4271 				goto out;
4272 		}
4273 
4274 		netdev_xmit_skip_txqueue(false);
4275 
4276 		nf_skip_egress(skb, true);
4277 		skb = sch_handle_egress(skb, &rc, dev);
4278 		if (!skb)
4279 			goto out;
4280 		nf_skip_egress(skb, false);
4281 
4282 		if (netdev_xmit_txqueue_skipped())
4283 			txq = netdev_tx_queue_mapping(dev, skb);
4284 	}
4285 #endif
4286 	/* If device/qdisc don't need skb->dst, release it right now while
4287 	 * its hot in this cpu cache.
4288 	 */
4289 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4290 		skb_dst_drop(skb);
4291 	else
4292 		skb_dst_force(skb);
4293 
4294 	if (!txq)
4295 		txq = netdev_core_pick_tx(dev, skb, sb_dev);
4296 
4297 	q = rcu_dereference_bh(txq->qdisc);
4298 
4299 	trace_net_dev_queue(skb);
4300 	if (q->enqueue) {
4301 		rc = __dev_xmit_skb(skb, q, dev, txq);
4302 		goto out;
4303 	}
4304 
4305 	/* The device has no queue. Common case for software devices:
4306 	 * loopback, all the sorts of tunnels...
4307 
4308 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4309 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4310 	 * counters.)
4311 	 * However, it is possible, that they rely on protection
4312 	 * made by us here.
4313 
4314 	 * Check this and shot the lock. It is not prone from deadlocks.
4315 	 *Either shot noqueue qdisc, it is even simpler 8)
4316 	 */
4317 	if (dev->flags & IFF_UP) {
4318 		int cpu = smp_processor_id(); /* ok because BHs are off */
4319 
4320 		/* Other cpus might concurrently change txq->xmit_lock_owner
4321 		 * to -1 or to their cpu id, but not to our id.
4322 		 */
4323 		if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4324 			if (dev_xmit_recursion())
4325 				goto recursion_alert;
4326 
4327 			skb = validate_xmit_skb(skb, dev, &again);
4328 			if (!skb)
4329 				goto out;
4330 
4331 			HARD_TX_LOCK(dev, txq, cpu);
4332 
4333 			if (!netif_xmit_stopped(txq)) {
4334 				dev_xmit_recursion_inc();
4335 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4336 				dev_xmit_recursion_dec();
4337 				if (dev_xmit_complete(rc)) {
4338 					HARD_TX_UNLOCK(dev, txq);
4339 					goto out;
4340 				}
4341 			}
4342 			HARD_TX_UNLOCK(dev, txq);
4343 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4344 					     dev->name);
4345 		} else {
4346 			/* Recursion is detected! It is possible,
4347 			 * unfortunately
4348 			 */
4349 recursion_alert:
4350 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4351 					     dev->name);
4352 		}
4353 	}
4354 
4355 	rc = -ENETDOWN;
4356 	rcu_read_unlock_bh();
4357 
4358 	dev_core_stats_tx_dropped_inc(dev);
4359 	kfree_skb_list(skb);
4360 	return rc;
4361 out:
4362 	rcu_read_unlock_bh();
4363 	return rc;
4364 }
4365 EXPORT_SYMBOL(__dev_queue_xmit);
4366 
4367 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4368 {
4369 	struct net_device *dev = skb->dev;
4370 	struct sk_buff *orig_skb = skb;
4371 	struct netdev_queue *txq;
4372 	int ret = NETDEV_TX_BUSY;
4373 	bool again = false;
4374 
4375 	if (unlikely(!netif_running(dev) ||
4376 		     !netif_carrier_ok(dev)))
4377 		goto drop;
4378 
4379 	skb = validate_xmit_skb_list(skb, dev, &again);
4380 	if (skb != orig_skb)
4381 		goto drop;
4382 
4383 	skb_set_queue_mapping(skb, queue_id);
4384 	txq = skb_get_tx_queue(dev, skb);
4385 
4386 	local_bh_disable();
4387 
4388 	dev_xmit_recursion_inc();
4389 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4390 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4391 		ret = netdev_start_xmit(skb, dev, txq, false);
4392 	HARD_TX_UNLOCK(dev, txq);
4393 	dev_xmit_recursion_dec();
4394 
4395 	local_bh_enable();
4396 	return ret;
4397 drop:
4398 	dev_core_stats_tx_dropped_inc(dev);
4399 	kfree_skb_list(skb);
4400 	return NET_XMIT_DROP;
4401 }
4402 EXPORT_SYMBOL(__dev_direct_xmit);
4403 
4404 /*************************************************************************
4405  *			Receiver routines
4406  *************************************************************************/
4407 
4408 unsigned int sysctl_skb_defer_max __read_mostly = 64;
4409 int weight_p __read_mostly = 64;           /* old backlog weight */
4410 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4411 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4412 
4413 /* Called with irq disabled */
4414 static inline void ____napi_schedule(struct softnet_data *sd,
4415 				     struct napi_struct *napi)
4416 {
4417 	struct task_struct *thread;
4418 
4419 	lockdep_assert_irqs_disabled();
4420 
4421 	if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4422 		/* Paired with smp_mb__before_atomic() in
4423 		 * napi_enable()/dev_set_threaded().
4424 		 * Use READ_ONCE() to guarantee a complete
4425 		 * read on napi->thread. Only call
4426 		 * wake_up_process() when it's not NULL.
4427 		 */
4428 		thread = READ_ONCE(napi->thread);
4429 		if (thread) {
4430 			/* Avoid doing set_bit() if the thread is in
4431 			 * INTERRUPTIBLE state, cause napi_thread_wait()
4432 			 * makes sure to proceed with napi polling
4433 			 * if the thread is explicitly woken from here.
4434 			 */
4435 			if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4436 				set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4437 			wake_up_process(thread);
4438 			return;
4439 		}
4440 	}
4441 
4442 	list_add_tail(&napi->poll_list, &sd->poll_list);
4443 	WRITE_ONCE(napi->list_owner, smp_processor_id());
4444 	/* If not called from net_rx_action()
4445 	 * we have to raise NET_RX_SOFTIRQ.
4446 	 */
4447 	if (!sd->in_net_rx_action)
4448 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4449 }
4450 
4451 #ifdef CONFIG_RPS
4452 
4453 struct static_key_false rps_needed __read_mostly;
4454 EXPORT_SYMBOL(rps_needed);
4455 struct static_key_false rfs_needed __read_mostly;
4456 EXPORT_SYMBOL(rfs_needed);
4457 
4458 static struct rps_dev_flow *
4459 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4460 	    struct rps_dev_flow *rflow, u16 next_cpu)
4461 {
4462 	if (next_cpu < nr_cpu_ids) {
4463 #ifdef CONFIG_RFS_ACCEL
4464 		struct netdev_rx_queue *rxqueue;
4465 		struct rps_dev_flow_table *flow_table;
4466 		struct rps_dev_flow *old_rflow;
4467 		u32 flow_id;
4468 		u16 rxq_index;
4469 		int rc;
4470 
4471 		/* Should we steer this flow to a different hardware queue? */
4472 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4473 		    !(dev->features & NETIF_F_NTUPLE))
4474 			goto out;
4475 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4476 		if (rxq_index == skb_get_rx_queue(skb))
4477 			goto out;
4478 
4479 		rxqueue = dev->_rx + rxq_index;
4480 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4481 		if (!flow_table)
4482 			goto out;
4483 		flow_id = skb_get_hash(skb) & flow_table->mask;
4484 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4485 							rxq_index, flow_id);
4486 		if (rc < 0)
4487 			goto out;
4488 		old_rflow = rflow;
4489 		rflow = &flow_table->flows[flow_id];
4490 		rflow->filter = rc;
4491 		if (old_rflow->filter == rflow->filter)
4492 			old_rflow->filter = RPS_NO_FILTER;
4493 	out:
4494 #endif
4495 		rflow->last_qtail =
4496 			per_cpu(softnet_data, next_cpu).input_queue_head;
4497 	}
4498 
4499 	rflow->cpu = next_cpu;
4500 	return rflow;
4501 }
4502 
4503 /*
4504  * get_rps_cpu is called from netif_receive_skb and returns the target
4505  * CPU from the RPS map of the receiving queue for a given skb.
4506  * rcu_read_lock must be held on entry.
4507  */
4508 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4509 		       struct rps_dev_flow **rflowp)
4510 {
4511 	const struct rps_sock_flow_table *sock_flow_table;
4512 	struct netdev_rx_queue *rxqueue = dev->_rx;
4513 	struct rps_dev_flow_table *flow_table;
4514 	struct rps_map *map;
4515 	int cpu = -1;
4516 	u32 tcpu;
4517 	u32 hash;
4518 
4519 	if (skb_rx_queue_recorded(skb)) {
4520 		u16 index = skb_get_rx_queue(skb);
4521 
4522 		if (unlikely(index >= dev->real_num_rx_queues)) {
4523 			WARN_ONCE(dev->real_num_rx_queues > 1,
4524 				  "%s received packet on queue %u, but number "
4525 				  "of RX queues is %u\n",
4526 				  dev->name, index, dev->real_num_rx_queues);
4527 			goto done;
4528 		}
4529 		rxqueue += index;
4530 	}
4531 
4532 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4533 
4534 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4535 	map = rcu_dereference(rxqueue->rps_map);
4536 	if (!flow_table && !map)
4537 		goto done;
4538 
4539 	skb_reset_network_header(skb);
4540 	hash = skb_get_hash(skb);
4541 	if (!hash)
4542 		goto done;
4543 
4544 	sock_flow_table = rcu_dereference(net_hotdata.rps_sock_flow_table);
4545 	if (flow_table && sock_flow_table) {
4546 		struct rps_dev_flow *rflow;
4547 		u32 next_cpu;
4548 		u32 ident;
4549 
4550 		/* First check into global flow table if there is a match.
4551 		 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
4552 		 */
4553 		ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
4554 		if ((ident ^ hash) & ~net_hotdata.rps_cpu_mask)
4555 			goto try_rps;
4556 
4557 		next_cpu = ident & net_hotdata.rps_cpu_mask;
4558 
4559 		/* OK, now we know there is a match,
4560 		 * we can look at the local (per receive queue) flow table
4561 		 */
4562 		rflow = &flow_table->flows[hash & flow_table->mask];
4563 		tcpu = rflow->cpu;
4564 
4565 		/*
4566 		 * If the desired CPU (where last recvmsg was done) is
4567 		 * different from current CPU (one in the rx-queue flow
4568 		 * table entry), switch if one of the following holds:
4569 		 *   - Current CPU is unset (>= nr_cpu_ids).
4570 		 *   - Current CPU is offline.
4571 		 *   - The current CPU's queue tail has advanced beyond the
4572 		 *     last packet that was enqueued using this table entry.
4573 		 *     This guarantees that all previous packets for the flow
4574 		 *     have been dequeued, thus preserving in order delivery.
4575 		 */
4576 		if (unlikely(tcpu != next_cpu) &&
4577 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4578 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4579 		      rflow->last_qtail)) >= 0)) {
4580 			tcpu = next_cpu;
4581 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4582 		}
4583 
4584 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4585 			*rflowp = rflow;
4586 			cpu = tcpu;
4587 			goto done;
4588 		}
4589 	}
4590 
4591 try_rps:
4592 
4593 	if (map) {
4594 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4595 		if (cpu_online(tcpu)) {
4596 			cpu = tcpu;
4597 			goto done;
4598 		}
4599 	}
4600 
4601 done:
4602 	return cpu;
4603 }
4604 
4605 #ifdef CONFIG_RFS_ACCEL
4606 
4607 /**
4608  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4609  * @dev: Device on which the filter was set
4610  * @rxq_index: RX queue index
4611  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4612  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4613  *
4614  * Drivers that implement ndo_rx_flow_steer() should periodically call
4615  * this function for each installed filter and remove the filters for
4616  * which it returns %true.
4617  */
4618 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4619 			 u32 flow_id, u16 filter_id)
4620 {
4621 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4622 	struct rps_dev_flow_table *flow_table;
4623 	struct rps_dev_flow *rflow;
4624 	bool expire = true;
4625 	unsigned int cpu;
4626 
4627 	rcu_read_lock();
4628 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4629 	if (flow_table && flow_id <= flow_table->mask) {
4630 		rflow = &flow_table->flows[flow_id];
4631 		cpu = READ_ONCE(rflow->cpu);
4632 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4633 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4634 			   rflow->last_qtail) <
4635 		     (int)(10 * flow_table->mask)))
4636 			expire = false;
4637 	}
4638 	rcu_read_unlock();
4639 	return expire;
4640 }
4641 EXPORT_SYMBOL(rps_may_expire_flow);
4642 
4643 #endif /* CONFIG_RFS_ACCEL */
4644 
4645 /* Called from hardirq (IPI) context */
4646 static void rps_trigger_softirq(void *data)
4647 {
4648 	struct softnet_data *sd = data;
4649 
4650 	____napi_schedule(sd, &sd->backlog);
4651 	sd->received_rps++;
4652 }
4653 
4654 #endif /* CONFIG_RPS */
4655 
4656 /* Called from hardirq (IPI) context */
4657 static void trigger_rx_softirq(void *data)
4658 {
4659 	struct softnet_data *sd = data;
4660 
4661 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4662 	smp_store_release(&sd->defer_ipi_scheduled, 0);
4663 }
4664 
4665 /*
4666  * After we queued a packet into sd->input_pkt_queue,
4667  * we need to make sure this queue is serviced soon.
4668  *
4669  * - If this is another cpu queue, link it to our rps_ipi_list,
4670  *   and make sure we will process rps_ipi_list from net_rx_action().
4671  *
4672  * - If this is our own queue, NAPI schedule our backlog.
4673  *   Note that this also raises NET_RX_SOFTIRQ.
4674  */
4675 static void napi_schedule_rps(struct softnet_data *sd)
4676 {
4677 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4678 
4679 #ifdef CONFIG_RPS
4680 	if (sd != mysd) {
4681 		sd->rps_ipi_next = mysd->rps_ipi_list;
4682 		mysd->rps_ipi_list = sd;
4683 
4684 		/* If not called from net_rx_action() or napi_threaded_poll()
4685 		 * we have to raise NET_RX_SOFTIRQ.
4686 		 */
4687 		if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
4688 			__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4689 		return;
4690 	}
4691 #endif /* CONFIG_RPS */
4692 	__napi_schedule_irqoff(&mysd->backlog);
4693 }
4694 
4695 #ifdef CONFIG_NET_FLOW_LIMIT
4696 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4697 #endif
4698 
4699 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4700 {
4701 #ifdef CONFIG_NET_FLOW_LIMIT
4702 	struct sd_flow_limit *fl;
4703 	struct softnet_data *sd;
4704 	unsigned int old_flow, new_flow;
4705 
4706 	if (qlen < (READ_ONCE(net_hotdata.max_backlog) >> 1))
4707 		return false;
4708 
4709 	sd = this_cpu_ptr(&softnet_data);
4710 
4711 	rcu_read_lock();
4712 	fl = rcu_dereference(sd->flow_limit);
4713 	if (fl) {
4714 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4715 		old_flow = fl->history[fl->history_head];
4716 		fl->history[fl->history_head] = new_flow;
4717 
4718 		fl->history_head++;
4719 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4720 
4721 		if (likely(fl->buckets[old_flow]))
4722 			fl->buckets[old_flow]--;
4723 
4724 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4725 			fl->count++;
4726 			rcu_read_unlock();
4727 			return true;
4728 		}
4729 	}
4730 	rcu_read_unlock();
4731 #endif
4732 	return false;
4733 }
4734 
4735 /*
4736  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4737  * queue (may be a remote CPU queue).
4738  */
4739 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4740 			      unsigned int *qtail)
4741 {
4742 	enum skb_drop_reason reason;
4743 	struct softnet_data *sd;
4744 	unsigned long flags;
4745 	unsigned int qlen;
4746 
4747 	reason = SKB_DROP_REASON_NOT_SPECIFIED;
4748 	sd = &per_cpu(softnet_data, cpu);
4749 
4750 	rps_lock_irqsave(sd, &flags);
4751 	if (!netif_running(skb->dev))
4752 		goto drop;
4753 	qlen = skb_queue_len(&sd->input_pkt_queue);
4754 	if (qlen <= READ_ONCE(net_hotdata.max_backlog) &&
4755 	    !skb_flow_limit(skb, qlen)) {
4756 		if (qlen) {
4757 enqueue:
4758 			__skb_queue_tail(&sd->input_pkt_queue, skb);
4759 			input_queue_tail_incr_save(sd, qtail);
4760 			rps_unlock_irq_restore(sd, &flags);
4761 			return NET_RX_SUCCESS;
4762 		}
4763 
4764 		/* Schedule NAPI for backlog device
4765 		 * We can use non atomic operation since we own the queue lock
4766 		 */
4767 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4768 			napi_schedule_rps(sd);
4769 		goto enqueue;
4770 	}
4771 	reason = SKB_DROP_REASON_CPU_BACKLOG;
4772 
4773 drop:
4774 	sd->dropped++;
4775 	rps_unlock_irq_restore(sd, &flags);
4776 
4777 	dev_core_stats_rx_dropped_inc(skb->dev);
4778 	kfree_skb_reason(skb, reason);
4779 	return NET_RX_DROP;
4780 }
4781 
4782 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4783 {
4784 	struct net_device *dev = skb->dev;
4785 	struct netdev_rx_queue *rxqueue;
4786 
4787 	rxqueue = dev->_rx;
4788 
4789 	if (skb_rx_queue_recorded(skb)) {
4790 		u16 index = skb_get_rx_queue(skb);
4791 
4792 		if (unlikely(index >= dev->real_num_rx_queues)) {
4793 			WARN_ONCE(dev->real_num_rx_queues > 1,
4794 				  "%s received packet on queue %u, but number "
4795 				  "of RX queues is %u\n",
4796 				  dev->name, index, dev->real_num_rx_queues);
4797 
4798 			return rxqueue; /* Return first rxqueue */
4799 		}
4800 		rxqueue += index;
4801 	}
4802 	return rxqueue;
4803 }
4804 
4805 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4806 			     struct bpf_prog *xdp_prog)
4807 {
4808 	void *orig_data, *orig_data_end, *hard_start;
4809 	struct netdev_rx_queue *rxqueue;
4810 	bool orig_bcast, orig_host;
4811 	u32 mac_len, frame_sz;
4812 	__be16 orig_eth_type;
4813 	struct ethhdr *eth;
4814 	u32 metalen, act;
4815 	int off;
4816 
4817 	/* The XDP program wants to see the packet starting at the MAC
4818 	 * header.
4819 	 */
4820 	mac_len = skb->data - skb_mac_header(skb);
4821 	hard_start = skb->data - skb_headroom(skb);
4822 
4823 	/* SKB "head" area always have tailroom for skb_shared_info */
4824 	frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4825 	frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4826 
4827 	rxqueue = netif_get_rxqueue(skb);
4828 	xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4829 	xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4830 			 skb_headlen(skb) + mac_len, true);
4831 	if (skb_is_nonlinear(skb)) {
4832 		skb_shinfo(skb)->xdp_frags_size = skb->data_len;
4833 		xdp_buff_set_frags_flag(xdp);
4834 	} else {
4835 		xdp_buff_clear_frags_flag(xdp);
4836 	}
4837 
4838 	orig_data_end = xdp->data_end;
4839 	orig_data = xdp->data;
4840 	eth = (struct ethhdr *)xdp->data;
4841 	orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4842 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4843 	orig_eth_type = eth->h_proto;
4844 
4845 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4846 
4847 	/* check if bpf_xdp_adjust_head was used */
4848 	off = xdp->data - orig_data;
4849 	if (off) {
4850 		if (off > 0)
4851 			__skb_pull(skb, off);
4852 		else if (off < 0)
4853 			__skb_push(skb, -off);
4854 
4855 		skb->mac_header += off;
4856 		skb_reset_network_header(skb);
4857 	}
4858 
4859 	/* check if bpf_xdp_adjust_tail was used */
4860 	off = xdp->data_end - orig_data_end;
4861 	if (off != 0) {
4862 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4863 		skb->len += off; /* positive on grow, negative on shrink */
4864 	}
4865 
4866 	/* XDP frag metadata (e.g. nr_frags) are updated in eBPF helpers
4867 	 * (e.g. bpf_xdp_adjust_tail), we need to update data_len here.
4868 	 */
4869 	if (xdp_buff_has_frags(xdp))
4870 		skb->data_len = skb_shinfo(skb)->xdp_frags_size;
4871 	else
4872 		skb->data_len = 0;
4873 
4874 	/* check if XDP changed eth hdr such SKB needs update */
4875 	eth = (struct ethhdr *)xdp->data;
4876 	if ((orig_eth_type != eth->h_proto) ||
4877 	    (orig_host != ether_addr_equal_64bits(eth->h_dest,
4878 						  skb->dev->dev_addr)) ||
4879 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4880 		__skb_push(skb, ETH_HLEN);
4881 		skb->pkt_type = PACKET_HOST;
4882 		skb->protocol = eth_type_trans(skb, skb->dev);
4883 	}
4884 
4885 	/* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4886 	 * before calling us again on redirect path. We do not call do_redirect
4887 	 * as we leave that up to the caller.
4888 	 *
4889 	 * Caller is responsible for managing lifetime of skb (i.e. calling
4890 	 * kfree_skb in response to actions it cannot handle/XDP_DROP).
4891 	 */
4892 	switch (act) {
4893 	case XDP_REDIRECT:
4894 	case XDP_TX:
4895 		__skb_push(skb, mac_len);
4896 		break;
4897 	case XDP_PASS:
4898 		metalen = xdp->data - xdp->data_meta;
4899 		if (metalen)
4900 			skb_metadata_set(skb, metalen);
4901 		break;
4902 	}
4903 
4904 	return act;
4905 }
4906 
4907 static int
4908 netif_skb_check_for_xdp(struct sk_buff **pskb, struct bpf_prog *prog)
4909 {
4910 	struct sk_buff *skb = *pskb;
4911 	int err, hroom, troom;
4912 
4913 	if (!skb_cow_data_for_xdp(this_cpu_read(system_page_pool), pskb, prog))
4914 		return 0;
4915 
4916 	/* In case we have to go down the path and also linearize,
4917 	 * then lets do the pskb_expand_head() work just once here.
4918 	 */
4919 	hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4920 	troom = skb->tail + skb->data_len - skb->end;
4921 	err = pskb_expand_head(skb,
4922 			       hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4923 			       troom > 0 ? troom + 128 : 0, GFP_ATOMIC);
4924 	if (err)
4925 		return err;
4926 
4927 	return skb_linearize(skb);
4928 }
4929 
4930 static u32 netif_receive_generic_xdp(struct sk_buff **pskb,
4931 				     struct xdp_buff *xdp,
4932 				     struct bpf_prog *xdp_prog)
4933 {
4934 	struct sk_buff *skb = *pskb;
4935 	u32 mac_len, act = XDP_DROP;
4936 
4937 	/* Reinjected packets coming from act_mirred or similar should
4938 	 * not get XDP generic processing.
4939 	 */
4940 	if (skb_is_redirected(skb))
4941 		return XDP_PASS;
4942 
4943 	/* XDP packets must have sufficient headroom of XDP_PACKET_HEADROOM
4944 	 * bytes. This is the guarantee that also native XDP provides,
4945 	 * thus we need to do it here as well.
4946 	 */
4947 	mac_len = skb->data - skb_mac_header(skb);
4948 	__skb_push(skb, mac_len);
4949 
4950 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4951 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4952 		if (netif_skb_check_for_xdp(pskb, xdp_prog))
4953 			goto do_drop;
4954 	}
4955 
4956 	__skb_pull(*pskb, mac_len);
4957 
4958 	act = bpf_prog_run_generic_xdp(*pskb, xdp, xdp_prog);
4959 	switch (act) {
4960 	case XDP_REDIRECT:
4961 	case XDP_TX:
4962 	case XDP_PASS:
4963 		break;
4964 	default:
4965 		bpf_warn_invalid_xdp_action((*pskb)->dev, xdp_prog, act);
4966 		fallthrough;
4967 	case XDP_ABORTED:
4968 		trace_xdp_exception((*pskb)->dev, xdp_prog, act);
4969 		fallthrough;
4970 	case XDP_DROP:
4971 	do_drop:
4972 		kfree_skb(*pskb);
4973 		break;
4974 	}
4975 
4976 	return act;
4977 }
4978 
4979 /* When doing generic XDP we have to bypass the qdisc layer and the
4980  * network taps in order to match in-driver-XDP behavior. This also means
4981  * that XDP packets are able to starve other packets going through a qdisc,
4982  * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
4983  * queues, so they do not have this starvation issue.
4984  */
4985 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4986 {
4987 	struct net_device *dev = skb->dev;
4988 	struct netdev_queue *txq;
4989 	bool free_skb = true;
4990 	int cpu, rc;
4991 
4992 	txq = netdev_core_pick_tx(dev, skb, NULL);
4993 	cpu = smp_processor_id();
4994 	HARD_TX_LOCK(dev, txq, cpu);
4995 	if (!netif_xmit_frozen_or_drv_stopped(txq)) {
4996 		rc = netdev_start_xmit(skb, dev, txq, 0);
4997 		if (dev_xmit_complete(rc))
4998 			free_skb = false;
4999 	}
5000 	HARD_TX_UNLOCK(dev, txq);
5001 	if (free_skb) {
5002 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
5003 		dev_core_stats_tx_dropped_inc(dev);
5004 		kfree_skb(skb);
5005 	}
5006 }
5007 
5008 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
5009 
5010 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff **pskb)
5011 {
5012 	if (xdp_prog) {
5013 		struct xdp_buff xdp;
5014 		u32 act;
5015 		int err;
5016 
5017 		act = netif_receive_generic_xdp(pskb, &xdp, xdp_prog);
5018 		if (act != XDP_PASS) {
5019 			switch (act) {
5020 			case XDP_REDIRECT:
5021 				err = xdp_do_generic_redirect((*pskb)->dev, *pskb,
5022 							      &xdp, xdp_prog);
5023 				if (err)
5024 					goto out_redir;
5025 				break;
5026 			case XDP_TX:
5027 				generic_xdp_tx(*pskb, xdp_prog);
5028 				break;
5029 			}
5030 			return XDP_DROP;
5031 		}
5032 	}
5033 	return XDP_PASS;
5034 out_redir:
5035 	kfree_skb_reason(*pskb, SKB_DROP_REASON_XDP);
5036 	return XDP_DROP;
5037 }
5038 EXPORT_SYMBOL_GPL(do_xdp_generic);
5039 
5040 static int netif_rx_internal(struct sk_buff *skb)
5041 {
5042 	int ret;
5043 
5044 	net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5045 
5046 	trace_netif_rx(skb);
5047 
5048 #ifdef CONFIG_RPS
5049 	if (static_branch_unlikely(&rps_needed)) {
5050 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5051 		int cpu;
5052 
5053 		rcu_read_lock();
5054 
5055 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
5056 		if (cpu < 0)
5057 			cpu = smp_processor_id();
5058 
5059 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5060 
5061 		rcu_read_unlock();
5062 	} else
5063 #endif
5064 	{
5065 		unsigned int qtail;
5066 
5067 		ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
5068 	}
5069 	return ret;
5070 }
5071 
5072 /**
5073  *	__netif_rx	-	Slightly optimized version of netif_rx
5074  *	@skb: buffer to post
5075  *
5076  *	This behaves as netif_rx except that it does not disable bottom halves.
5077  *	As a result this function may only be invoked from the interrupt context
5078  *	(either hard or soft interrupt).
5079  */
5080 int __netif_rx(struct sk_buff *skb)
5081 {
5082 	int ret;
5083 
5084 	lockdep_assert_once(hardirq_count() | softirq_count());
5085 
5086 	trace_netif_rx_entry(skb);
5087 	ret = netif_rx_internal(skb);
5088 	trace_netif_rx_exit(ret);
5089 	return ret;
5090 }
5091 EXPORT_SYMBOL(__netif_rx);
5092 
5093 /**
5094  *	netif_rx	-	post buffer to the network code
5095  *	@skb: buffer to post
5096  *
5097  *	This function receives a packet from a device driver and queues it for
5098  *	the upper (protocol) levels to process via the backlog NAPI device. It
5099  *	always succeeds. The buffer may be dropped during processing for
5100  *	congestion control or by the protocol layers.
5101  *	The network buffer is passed via the backlog NAPI device. Modern NIC
5102  *	driver should use NAPI and GRO.
5103  *	This function can used from interrupt and from process context. The
5104  *	caller from process context must not disable interrupts before invoking
5105  *	this function.
5106  *
5107  *	return values:
5108  *	NET_RX_SUCCESS	(no congestion)
5109  *	NET_RX_DROP     (packet was dropped)
5110  *
5111  */
5112 int netif_rx(struct sk_buff *skb)
5113 {
5114 	bool need_bh_off = !(hardirq_count() | softirq_count());
5115 	int ret;
5116 
5117 	if (need_bh_off)
5118 		local_bh_disable();
5119 	trace_netif_rx_entry(skb);
5120 	ret = netif_rx_internal(skb);
5121 	trace_netif_rx_exit(ret);
5122 	if (need_bh_off)
5123 		local_bh_enable();
5124 	return ret;
5125 }
5126 EXPORT_SYMBOL(netif_rx);
5127 
5128 static __latent_entropy void net_tx_action(struct softirq_action *h)
5129 {
5130 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5131 
5132 	if (sd->completion_queue) {
5133 		struct sk_buff *clist;
5134 
5135 		local_irq_disable();
5136 		clist = sd->completion_queue;
5137 		sd->completion_queue = NULL;
5138 		local_irq_enable();
5139 
5140 		while (clist) {
5141 			struct sk_buff *skb = clist;
5142 
5143 			clist = clist->next;
5144 
5145 			WARN_ON(refcount_read(&skb->users));
5146 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
5147 				trace_consume_skb(skb, net_tx_action);
5148 			else
5149 				trace_kfree_skb(skb, net_tx_action,
5150 						get_kfree_skb_cb(skb)->reason);
5151 
5152 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5153 				__kfree_skb(skb);
5154 			else
5155 				__napi_kfree_skb(skb,
5156 						 get_kfree_skb_cb(skb)->reason);
5157 		}
5158 	}
5159 
5160 	if (sd->output_queue) {
5161 		struct Qdisc *head;
5162 
5163 		local_irq_disable();
5164 		head = sd->output_queue;
5165 		sd->output_queue = NULL;
5166 		sd->output_queue_tailp = &sd->output_queue;
5167 		local_irq_enable();
5168 
5169 		rcu_read_lock();
5170 
5171 		while (head) {
5172 			struct Qdisc *q = head;
5173 			spinlock_t *root_lock = NULL;
5174 
5175 			head = head->next_sched;
5176 
5177 			/* We need to make sure head->next_sched is read
5178 			 * before clearing __QDISC_STATE_SCHED
5179 			 */
5180 			smp_mb__before_atomic();
5181 
5182 			if (!(q->flags & TCQ_F_NOLOCK)) {
5183 				root_lock = qdisc_lock(q);
5184 				spin_lock(root_lock);
5185 			} else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5186 						     &q->state))) {
5187 				/* There is a synchronize_net() between
5188 				 * STATE_DEACTIVATED flag being set and
5189 				 * qdisc_reset()/some_qdisc_is_busy() in
5190 				 * dev_deactivate(), so we can safely bail out
5191 				 * early here to avoid data race between
5192 				 * qdisc_deactivate() and some_qdisc_is_busy()
5193 				 * for lockless qdisc.
5194 				 */
5195 				clear_bit(__QDISC_STATE_SCHED, &q->state);
5196 				continue;
5197 			}
5198 
5199 			clear_bit(__QDISC_STATE_SCHED, &q->state);
5200 			qdisc_run(q);
5201 			if (root_lock)
5202 				spin_unlock(root_lock);
5203 		}
5204 
5205 		rcu_read_unlock();
5206 	}
5207 
5208 	xfrm_dev_backlog(sd);
5209 }
5210 
5211 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5212 /* This hook is defined here for ATM LANE */
5213 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5214 			     unsigned char *addr) __read_mostly;
5215 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5216 #endif
5217 
5218 /**
5219  *	netdev_is_rx_handler_busy - check if receive handler is registered
5220  *	@dev: device to check
5221  *
5222  *	Check if a receive handler is already registered for a given device.
5223  *	Return true if there one.
5224  *
5225  *	The caller must hold the rtnl_mutex.
5226  */
5227 bool netdev_is_rx_handler_busy(struct net_device *dev)
5228 {
5229 	ASSERT_RTNL();
5230 	return dev && rtnl_dereference(dev->rx_handler);
5231 }
5232 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5233 
5234 /**
5235  *	netdev_rx_handler_register - register receive handler
5236  *	@dev: device to register a handler for
5237  *	@rx_handler: receive handler to register
5238  *	@rx_handler_data: data pointer that is used by rx handler
5239  *
5240  *	Register a receive handler for a device. This handler will then be
5241  *	called from __netif_receive_skb. A negative errno code is returned
5242  *	on a failure.
5243  *
5244  *	The caller must hold the rtnl_mutex.
5245  *
5246  *	For a general description of rx_handler, see enum rx_handler_result.
5247  */
5248 int netdev_rx_handler_register(struct net_device *dev,
5249 			       rx_handler_func_t *rx_handler,
5250 			       void *rx_handler_data)
5251 {
5252 	if (netdev_is_rx_handler_busy(dev))
5253 		return -EBUSY;
5254 
5255 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
5256 		return -EINVAL;
5257 
5258 	/* Note: rx_handler_data must be set before rx_handler */
5259 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5260 	rcu_assign_pointer(dev->rx_handler, rx_handler);
5261 
5262 	return 0;
5263 }
5264 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5265 
5266 /**
5267  *	netdev_rx_handler_unregister - unregister receive handler
5268  *	@dev: device to unregister a handler from
5269  *
5270  *	Unregister a receive handler from a device.
5271  *
5272  *	The caller must hold the rtnl_mutex.
5273  */
5274 void netdev_rx_handler_unregister(struct net_device *dev)
5275 {
5276 
5277 	ASSERT_RTNL();
5278 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5279 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5280 	 * section has a guarantee to see a non NULL rx_handler_data
5281 	 * as well.
5282 	 */
5283 	synchronize_net();
5284 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5285 }
5286 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5287 
5288 /*
5289  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5290  * the special handling of PFMEMALLOC skbs.
5291  */
5292 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5293 {
5294 	switch (skb->protocol) {
5295 	case htons(ETH_P_ARP):
5296 	case htons(ETH_P_IP):
5297 	case htons(ETH_P_IPV6):
5298 	case htons(ETH_P_8021Q):
5299 	case htons(ETH_P_8021AD):
5300 		return true;
5301 	default:
5302 		return false;
5303 	}
5304 }
5305 
5306 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5307 			     int *ret, struct net_device *orig_dev)
5308 {
5309 	if (nf_hook_ingress_active(skb)) {
5310 		int ingress_retval;
5311 
5312 		if (*pt_prev) {
5313 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5314 			*pt_prev = NULL;
5315 		}
5316 
5317 		rcu_read_lock();
5318 		ingress_retval = nf_hook_ingress(skb);
5319 		rcu_read_unlock();
5320 		return ingress_retval;
5321 	}
5322 	return 0;
5323 }
5324 
5325 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5326 				    struct packet_type **ppt_prev)
5327 {
5328 	struct packet_type *ptype, *pt_prev;
5329 	rx_handler_func_t *rx_handler;
5330 	struct sk_buff *skb = *pskb;
5331 	struct net_device *orig_dev;
5332 	bool deliver_exact = false;
5333 	int ret = NET_RX_DROP;
5334 	__be16 type;
5335 
5336 	net_timestamp_check(!READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5337 
5338 	trace_netif_receive_skb(skb);
5339 
5340 	orig_dev = skb->dev;
5341 
5342 	skb_reset_network_header(skb);
5343 	if (!skb_transport_header_was_set(skb))
5344 		skb_reset_transport_header(skb);
5345 	skb_reset_mac_len(skb);
5346 
5347 	pt_prev = NULL;
5348 
5349 another_round:
5350 	skb->skb_iif = skb->dev->ifindex;
5351 
5352 	__this_cpu_inc(softnet_data.processed);
5353 
5354 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5355 		int ret2;
5356 
5357 		migrate_disable();
5358 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog),
5359 				      &skb);
5360 		migrate_enable();
5361 
5362 		if (ret2 != XDP_PASS) {
5363 			ret = NET_RX_DROP;
5364 			goto out;
5365 		}
5366 	}
5367 
5368 	if (eth_type_vlan(skb->protocol)) {
5369 		skb = skb_vlan_untag(skb);
5370 		if (unlikely(!skb))
5371 			goto out;
5372 	}
5373 
5374 	if (skb_skip_tc_classify(skb))
5375 		goto skip_classify;
5376 
5377 	if (pfmemalloc)
5378 		goto skip_taps;
5379 
5380 	list_for_each_entry_rcu(ptype, &net_hotdata.ptype_all, list) {
5381 		if (pt_prev)
5382 			ret = deliver_skb(skb, pt_prev, orig_dev);
5383 		pt_prev = ptype;
5384 	}
5385 
5386 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5387 		if (pt_prev)
5388 			ret = deliver_skb(skb, pt_prev, orig_dev);
5389 		pt_prev = ptype;
5390 	}
5391 
5392 skip_taps:
5393 #ifdef CONFIG_NET_INGRESS
5394 	if (static_branch_unlikely(&ingress_needed_key)) {
5395 		bool another = false;
5396 
5397 		nf_skip_egress(skb, true);
5398 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5399 					 &another);
5400 		if (another)
5401 			goto another_round;
5402 		if (!skb)
5403 			goto out;
5404 
5405 		nf_skip_egress(skb, false);
5406 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5407 			goto out;
5408 	}
5409 #endif
5410 	skb_reset_redirect(skb);
5411 skip_classify:
5412 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5413 		goto drop;
5414 
5415 	if (skb_vlan_tag_present(skb)) {
5416 		if (pt_prev) {
5417 			ret = deliver_skb(skb, pt_prev, orig_dev);
5418 			pt_prev = NULL;
5419 		}
5420 		if (vlan_do_receive(&skb))
5421 			goto another_round;
5422 		else if (unlikely(!skb))
5423 			goto out;
5424 	}
5425 
5426 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5427 	if (rx_handler) {
5428 		if (pt_prev) {
5429 			ret = deliver_skb(skb, pt_prev, orig_dev);
5430 			pt_prev = NULL;
5431 		}
5432 		switch (rx_handler(&skb)) {
5433 		case RX_HANDLER_CONSUMED:
5434 			ret = NET_RX_SUCCESS;
5435 			goto out;
5436 		case RX_HANDLER_ANOTHER:
5437 			goto another_round;
5438 		case RX_HANDLER_EXACT:
5439 			deliver_exact = true;
5440 			break;
5441 		case RX_HANDLER_PASS:
5442 			break;
5443 		default:
5444 			BUG();
5445 		}
5446 	}
5447 
5448 	if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5449 check_vlan_id:
5450 		if (skb_vlan_tag_get_id(skb)) {
5451 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5452 			 * find vlan device.
5453 			 */
5454 			skb->pkt_type = PACKET_OTHERHOST;
5455 		} else if (eth_type_vlan(skb->protocol)) {
5456 			/* Outer header is 802.1P with vlan 0, inner header is
5457 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5458 			 * not find vlan dev for vlan id 0.
5459 			 */
5460 			__vlan_hwaccel_clear_tag(skb);
5461 			skb = skb_vlan_untag(skb);
5462 			if (unlikely(!skb))
5463 				goto out;
5464 			if (vlan_do_receive(&skb))
5465 				/* After stripping off 802.1P header with vlan 0
5466 				 * vlan dev is found for inner header.
5467 				 */
5468 				goto another_round;
5469 			else if (unlikely(!skb))
5470 				goto out;
5471 			else
5472 				/* We have stripped outer 802.1P vlan 0 header.
5473 				 * But could not find vlan dev.
5474 				 * check again for vlan id to set OTHERHOST.
5475 				 */
5476 				goto check_vlan_id;
5477 		}
5478 		/* Note: we might in the future use prio bits
5479 		 * and set skb->priority like in vlan_do_receive()
5480 		 * For the time being, just ignore Priority Code Point
5481 		 */
5482 		__vlan_hwaccel_clear_tag(skb);
5483 	}
5484 
5485 	type = skb->protocol;
5486 
5487 	/* deliver only exact match when indicated */
5488 	if (likely(!deliver_exact)) {
5489 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5490 				       &ptype_base[ntohs(type) &
5491 						   PTYPE_HASH_MASK]);
5492 	}
5493 
5494 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5495 			       &orig_dev->ptype_specific);
5496 
5497 	if (unlikely(skb->dev != orig_dev)) {
5498 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5499 				       &skb->dev->ptype_specific);
5500 	}
5501 
5502 	if (pt_prev) {
5503 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5504 			goto drop;
5505 		*ppt_prev = pt_prev;
5506 	} else {
5507 drop:
5508 		if (!deliver_exact)
5509 			dev_core_stats_rx_dropped_inc(skb->dev);
5510 		else
5511 			dev_core_stats_rx_nohandler_inc(skb->dev);
5512 		kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5513 		/* Jamal, now you will not able to escape explaining
5514 		 * me how you were going to use this. :-)
5515 		 */
5516 		ret = NET_RX_DROP;
5517 	}
5518 
5519 out:
5520 	/* The invariant here is that if *ppt_prev is not NULL
5521 	 * then skb should also be non-NULL.
5522 	 *
5523 	 * Apparently *ppt_prev assignment above holds this invariant due to
5524 	 * skb dereferencing near it.
5525 	 */
5526 	*pskb = skb;
5527 	return ret;
5528 }
5529 
5530 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5531 {
5532 	struct net_device *orig_dev = skb->dev;
5533 	struct packet_type *pt_prev = NULL;
5534 	int ret;
5535 
5536 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5537 	if (pt_prev)
5538 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5539 					 skb->dev, pt_prev, orig_dev);
5540 	return ret;
5541 }
5542 
5543 /**
5544  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5545  *	@skb: buffer to process
5546  *
5547  *	More direct receive version of netif_receive_skb().  It should
5548  *	only be used by callers that have a need to skip RPS and Generic XDP.
5549  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5550  *
5551  *	This function may only be called from softirq context and interrupts
5552  *	should be enabled.
5553  *
5554  *	Return values (usually ignored):
5555  *	NET_RX_SUCCESS: no congestion
5556  *	NET_RX_DROP: packet was dropped
5557  */
5558 int netif_receive_skb_core(struct sk_buff *skb)
5559 {
5560 	int ret;
5561 
5562 	rcu_read_lock();
5563 	ret = __netif_receive_skb_one_core(skb, false);
5564 	rcu_read_unlock();
5565 
5566 	return ret;
5567 }
5568 EXPORT_SYMBOL(netif_receive_skb_core);
5569 
5570 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5571 						  struct packet_type *pt_prev,
5572 						  struct net_device *orig_dev)
5573 {
5574 	struct sk_buff *skb, *next;
5575 
5576 	if (!pt_prev)
5577 		return;
5578 	if (list_empty(head))
5579 		return;
5580 	if (pt_prev->list_func != NULL)
5581 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5582 				   ip_list_rcv, head, pt_prev, orig_dev);
5583 	else
5584 		list_for_each_entry_safe(skb, next, head, list) {
5585 			skb_list_del_init(skb);
5586 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5587 		}
5588 }
5589 
5590 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5591 {
5592 	/* Fast-path assumptions:
5593 	 * - There is no RX handler.
5594 	 * - Only one packet_type matches.
5595 	 * If either of these fails, we will end up doing some per-packet
5596 	 * processing in-line, then handling the 'last ptype' for the whole
5597 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5598 	 * because the 'last ptype' must be constant across the sublist, and all
5599 	 * other ptypes are handled per-packet.
5600 	 */
5601 	/* Current (common) ptype of sublist */
5602 	struct packet_type *pt_curr = NULL;
5603 	/* Current (common) orig_dev of sublist */
5604 	struct net_device *od_curr = NULL;
5605 	struct list_head sublist;
5606 	struct sk_buff *skb, *next;
5607 
5608 	INIT_LIST_HEAD(&sublist);
5609 	list_for_each_entry_safe(skb, next, head, list) {
5610 		struct net_device *orig_dev = skb->dev;
5611 		struct packet_type *pt_prev = NULL;
5612 
5613 		skb_list_del_init(skb);
5614 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5615 		if (!pt_prev)
5616 			continue;
5617 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5618 			/* dispatch old sublist */
5619 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5620 			/* start new sublist */
5621 			INIT_LIST_HEAD(&sublist);
5622 			pt_curr = pt_prev;
5623 			od_curr = orig_dev;
5624 		}
5625 		list_add_tail(&skb->list, &sublist);
5626 	}
5627 
5628 	/* dispatch final sublist */
5629 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5630 }
5631 
5632 static int __netif_receive_skb(struct sk_buff *skb)
5633 {
5634 	int ret;
5635 
5636 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5637 		unsigned int noreclaim_flag;
5638 
5639 		/*
5640 		 * PFMEMALLOC skbs are special, they should
5641 		 * - be delivered to SOCK_MEMALLOC sockets only
5642 		 * - stay away from userspace
5643 		 * - have bounded memory usage
5644 		 *
5645 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5646 		 * context down to all allocation sites.
5647 		 */
5648 		noreclaim_flag = memalloc_noreclaim_save();
5649 		ret = __netif_receive_skb_one_core(skb, true);
5650 		memalloc_noreclaim_restore(noreclaim_flag);
5651 	} else
5652 		ret = __netif_receive_skb_one_core(skb, false);
5653 
5654 	return ret;
5655 }
5656 
5657 static void __netif_receive_skb_list(struct list_head *head)
5658 {
5659 	unsigned long noreclaim_flag = 0;
5660 	struct sk_buff *skb, *next;
5661 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5662 
5663 	list_for_each_entry_safe(skb, next, head, list) {
5664 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5665 			struct list_head sublist;
5666 
5667 			/* Handle the previous sublist */
5668 			list_cut_before(&sublist, head, &skb->list);
5669 			if (!list_empty(&sublist))
5670 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5671 			pfmemalloc = !pfmemalloc;
5672 			/* See comments in __netif_receive_skb */
5673 			if (pfmemalloc)
5674 				noreclaim_flag = memalloc_noreclaim_save();
5675 			else
5676 				memalloc_noreclaim_restore(noreclaim_flag);
5677 		}
5678 	}
5679 	/* Handle the remaining sublist */
5680 	if (!list_empty(head))
5681 		__netif_receive_skb_list_core(head, pfmemalloc);
5682 	/* Restore pflags */
5683 	if (pfmemalloc)
5684 		memalloc_noreclaim_restore(noreclaim_flag);
5685 }
5686 
5687 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5688 {
5689 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5690 	struct bpf_prog *new = xdp->prog;
5691 	int ret = 0;
5692 
5693 	switch (xdp->command) {
5694 	case XDP_SETUP_PROG:
5695 		rcu_assign_pointer(dev->xdp_prog, new);
5696 		if (old)
5697 			bpf_prog_put(old);
5698 
5699 		if (old && !new) {
5700 			static_branch_dec(&generic_xdp_needed_key);
5701 		} else if (new && !old) {
5702 			static_branch_inc(&generic_xdp_needed_key);
5703 			dev_disable_lro(dev);
5704 			dev_disable_gro_hw(dev);
5705 		}
5706 		break;
5707 
5708 	default:
5709 		ret = -EINVAL;
5710 		break;
5711 	}
5712 
5713 	return ret;
5714 }
5715 
5716 static int netif_receive_skb_internal(struct sk_buff *skb)
5717 {
5718 	int ret;
5719 
5720 	net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5721 
5722 	if (skb_defer_rx_timestamp(skb))
5723 		return NET_RX_SUCCESS;
5724 
5725 	rcu_read_lock();
5726 #ifdef CONFIG_RPS
5727 	if (static_branch_unlikely(&rps_needed)) {
5728 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5729 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5730 
5731 		if (cpu >= 0) {
5732 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5733 			rcu_read_unlock();
5734 			return ret;
5735 		}
5736 	}
5737 #endif
5738 	ret = __netif_receive_skb(skb);
5739 	rcu_read_unlock();
5740 	return ret;
5741 }
5742 
5743 void netif_receive_skb_list_internal(struct list_head *head)
5744 {
5745 	struct sk_buff *skb, *next;
5746 	struct list_head sublist;
5747 
5748 	INIT_LIST_HEAD(&sublist);
5749 	list_for_each_entry_safe(skb, next, head, list) {
5750 		net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue),
5751 				    skb);
5752 		skb_list_del_init(skb);
5753 		if (!skb_defer_rx_timestamp(skb))
5754 			list_add_tail(&skb->list, &sublist);
5755 	}
5756 	list_splice_init(&sublist, head);
5757 
5758 	rcu_read_lock();
5759 #ifdef CONFIG_RPS
5760 	if (static_branch_unlikely(&rps_needed)) {
5761 		list_for_each_entry_safe(skb, next, head, list) {
5762 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5763 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5764 
5765 			if (cpu >= 0) {
5766 				/* Will be handled, remove from list */
5767 				skb_list_del_init(skb);
5768 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5769 			}
5770 		}
5771 	}
5772 #endif
5773 	__netif_receive_skb_list(head);
5774 	rcu_read_unlock();
5775 }
5776 
5777 /**
5778  *	netif_receive_skb - process receive buffer from network
5779  *	@skb: buffer to process
5780  *
5781  *	netif_receive_skb() is the main receive data processing function.
5782  *	It always succeeds. The buffer may be dropped during processing
5783  *	for congestion control or by the protocol layers.
5784  *
5785  *	This function may only be called from softirq context and interrupts
5786  *	should be enabled.
5787  *
5788  *	Return values (usually ignored):
5789  *	NET_RX_SUCCESS: no congestion
5790  *	NET_RX_DROP: packet was dropped
5791  */
5792 int netif_receive_skb(struct sk_buff *skb)
5793 {
5794 	int ret;
5795 
5796 	trace_netif_receive_skb_entry(skb);
5797 
5798 	ret = netif_receive_skb_internal(skb);
5799 	trace_netif_receive_skb_exit(ret);
5800 
5801 	return ret;
5802 }
5803 EXPORT_SYMBOL(netif_receive_skb);
5804 
5805 /**
5806  *	netif_receive_skb_list - process many receive buffers from network
5807  *	@head: list of skbs to process.
5808  *
5809  *	Since return value of netif_receive_skb() is normally ignored, and
5810  *	wouldn't be meaningful for a list, this function returns void.
5811  *
5812  *	This function may only be called from softirq context and interrupts
5813  *	should be enabled.
5814  */
5815 void netif_receive_skb_list(struct list_head *head)
5816 {
5817 	struct sk_buff *skb;
5818 
5819 	if (list_empty(head))
5820 		return;
5821 	if (trace_netif_receive_skb_list_entry_enabled()) {
5822 		list_for_each_entry(skb, head, list)
5823 			trace_netif_receive_skb_list_entry(skb);
5824 	}
5825 	netif_receive_skb_list_internal(head);
5826 	trace_netif_receive_skb_list_exit(0);
5827 }
5828 EXPORT_SYMBOL(netif_receive_skb_list);
5829 
5830 static DEFINE_PER_CPU(struct work_struct, flush_works);
5831 
5832 /* Network device is going away, flush any packets still pending */
5833 static void flush_backlog(struct work_struct *work)
5834 {
5835 	struct sk_buff *skb, *tmp;
5836 	struct softnet_data *sd;
5837 
5838 	local_bh_disable();
5839 	sd = this_cpu_ptr(&softnet_data);
5840 
5841 	rps_lock_irq_disable(sd);
5842 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5843 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5844 			__skb_unlink(skb, &sd->input_pkt_queue);
5845 			dev_kfree_skb_irq(skb);
5846 			input_queue_head_incr(sd);
5847 		}
5848 	}
5849 	rps_unlock_irq_enable(sd);
5850 
5851 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5852 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5853 			__skb_unlink(skb, &sd->process_queue);
5854 			kfree_skb(skb);
5855 			input_queue_head_incr(sd);
5856 		}
5857 	}
5858 	local_bh_enable();
5859 }
5860 
5861 static bool flush_required(int cpu)
5862 {
5863 #if IS_ENABLED(CONFIG_RPS)
5864 	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5865 	bool do_flush;
5866 
5867 	rps_lock_irq_disable(sd);
5868 
5869 	/* as insertion into process_queue happens with the rps lock held,
5870 	 * process_queue access may race only with dequeue
5871 	 */
5872 	do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5873 		   !skb_queue_empty_lockless(&sd->process_queue);
5874 	rps_unlock_irq_enable(sd);
5875 
5876 	return do_flush;
5877 #endif
5878 	/* without RPS we can't safely check input_pkt_queue: during a
5879 	 * concurrent remote skb_queue_splice() we can detect as empty both
5880 	 * input_pkt_queue and process_queue even if the latter could end-up
5881 	 * containing a lot of packets.
5882 	 */
5883 	return true;
5884 }
5885 
5886 static void flush_all_backlogs(void)
5887 {
5888 	static cpumask_t flush_cpus;
5889 	unsigned int cpu;
5890 
5891 	/* since we are under rtnl lock protection we can use static data
5892 	 * for the cpumask and avoid allocating on stack the possibly
5893 	 * large mask
5894 	 */
5895 	ASSERT_RTNL();
5896 
5897 	cpus_read_lock();
5898 
5899 	cpumask_clear(&flush_cpus);
5900 	for_each_online_cpu(cpu) {
5901 		if (flush_required(cpu)) {
5902 			queue_work_on(cpu, system_highpri_wq,
5903 				      per_cpu_ptr(&flush_works, cpu));
5904 			cpumask_set_cpu(cpu, &flush_cpus);
5905 		}
5906 	}
5907 
5908 	/* we can have in flight packet[s] on the cpus we are not flushing,
5909 	 * synchronize_net() in unregister_netdevice_many() will take care of
5910 	 * them
5911 	 */
5912 	for_each_cpu(cpu, &flush_cpus)
5913 		flush_work(per_cpu_ptr(&flush_works, cpu));
5914 
5915 	cpus_read_unlock();
5916 }
5917 
5918 static void net_rps_send_ipi(struct softnet_data *remsd)
5919 {
5920 #ifdef CONFIG_RPS
5921 	while (remsd) {
5922 		struct softnet_data *next = remsd->rps_ipi_next;
5923 
5924 		if (cpu_online(remsd->cpu))
5925 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
5926 		remsd = next;
5927 	}
5928 #endif
5929 }
5930 
5931 /*
5932  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5933  * Note: called with local irq disabled, but exits with local irq enabled.
5934  */
5935 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5936 {
5937 #ifdef CONFIG_RPS
5938 	struct softnet_data *remsd = sd->rps_ipi_list;
5939 
5940 	if (remsd) {
5941 		sd->rps_ipi_list = NULL;
5942 
5943 		local_irq_enable();
5944 
5945 		/* Send pending IPI's to kick RPS processing on remote cpus. */
5946 		net_rps_send_ipi(remsd);
5947 	} else
5948 #endif
5949 		local_irq_enable();
5950 }
5951 
5952 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5953 {
5954 #ifdef CONFIG_RPS
5955 	return sd->rps_ipi_list != NULL;
5956 #else
5957 	return false;
5958 #endif
5959 }
5960 
5961 static int process_backlog(struct napi_struct *napi, int quota)
5962 {
5963 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5964 	bool again = true;
5965 	int work = 0;
5966 
5967 	/* Check if we have pending ipi, its better to send them now,
5968 	 * not waiting net_rx_action() end.
5969 	 */
5970 	if (sd_has_rps_ipi_waiting(sd)) {
5971 		local_irq_disable();
5972 		net_rps_action_and_irq_enable(sd);
5973 	}
5974 
5975 	napi->weight = READ_ONCE(net_hotdata.dev_rx_weight);
5976 	while (again) {
5977 		struct sk_buff *skb;
5978 
5979 		while ((skb = __skb_dequeue(&sd->process_queue))) {
5980 			rcu_read_lock();
5981 			__netif_receive_skb(skb);
5982 			rcu_read_unlock();
5983 			input_queue_head_incr(sd);
5984 			if (++work >= quota)
5985 				return work;
5986 
5987 		}
5988 
5989 		rps_lock_irq_disable(sd);
5990 		if (skb_queue_empty(&sd->input_pkt_queue)) {
5991 			/*
5992 			 * Inline a custom version of __napi_complete().
5993 			 * only current cpu owns and manipulates this napi,
5994 			 * and NAPI_STATE_SCHED is the only possible flag set
5995 			 * on backlog.
5996 			 * We can use a plain write instead of clear_bit(),
5997 			 * and we dont need an smp_mb() memory barrier.
5998 			 */
5999 			napi->state = 0;
6000 			again = false;
6001 		} else {
6002 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
6003 						   &sd->process_queue);
6004 		}
6005 		rps_unlock_irq_enable(sd);
6006 	}
6007 
6008 	return work;
6009 }
6010 
6011 /**
6012  * __napi_schedule - schedule for receive
6013  * @n: entry to schedule
6014  *
6015  * The entry's receive function will be scheduled to run.
6016  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6017  */
6018 void __napi_schedule(struct napi_struct *n)
6019 {
6020 	unsigned long flags;
6021 
6022 	local_irq_save(flags);
6023 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6024 	local_irq_restore(flags);
6025 }
6026 EXPORT_SYMBOL(__napi_schedule);
6027 
6028 /**
6029  *	napi_schedule_prep - check if napi can be scheduled
6030  *	@n: napi context
6031  *
6032  * Test if NAPI routine is already running, and if not mark
6033  * it as running.  This is used as a condition variable to
6034  * insure only one NAPI poll instance runs.  We also make
6035  * sure there is no pending NAPI disable.
6036  */
6037 bool napi_schedule_prep(struct napi_struct *n)
6038 {
6039 	unsigned long new, val = READ_ONCE(n->state);
6040 
6041 	do {
6042 		if (unlikely(val & NAPIF_STATE_DISABLE))
6043 			return false;
6044 		new = val | NAPIF_STATE_SCHED;
6045 
6046 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
6047 		 * This was suggested by Alexander Duyck, as compiler
6048 		 * emits better code than :
6049 		 * if (val & NAPIF_STATE_SCHED)
6050 		 *     new |= NAPIF_STATE_MISSED;
6051 		 */
6052 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6053 						   NAPIF_STATE_MISSED;
6054 	} while (!try_cmpxchg(&n->state, &val, new));
6055 
6056 	return !(val & NAPIF_STATE_SCHED);
6057 }
6058 EXPORT_SYMBOL(napi_schedule_prep);
6059 
6060 /**
6061  * __napi_schedule_irqoff - schedule for receive
6062  * @n: entry to schedule
6063  *
6064  * Variant of __napi_schedule() assuming hard irqs are masked.
6065  *
6066  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6067  * because the interrupt disabled assumption might not be true
6068  * due to force-threaded interrupts and spinlock substitution.
6069  */
6070 void __napi_schedule_irqoff(struct napi_struct *n)
6071 {
6072 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6073 		____napi_schedule(this_cpu_ptr(&softnet_data), n);
6074 	else
6075 		__napi_schedule(n);
6076 }
6077 EXPORT_SYMBOL(__napi_schedule_irqoff);
6078 
6079 bool napi_complete_done(struct napi_struct *n, int work_done)
6080 {
6081 	unsigned long flags, val, new, timeout = 0;
6082 	bool ret = true;
6083 
6084 	/*
6085 	 * 1) Don't let napi dequeue from the cpu poll list
6086 	 *    just in case its running on a different cpu.
6087 	 * 2) If we are busy polling, do nothing here, we have
6088 	 *    the guarantee we will be called later.
6089 	 */
6090 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6091 				 NAPIF_STATE_IN_BUSY_POLL)))
6092 		return false;
6093 
6094 	if (work_done) {
6095 		if (n->gro_bitmask)
6096 			timeout = READ_ONCE(n->dev->gro_flush_timeout);
6097 		n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6098 	}
6099 	if (n->defer_hard_irqs_count > 0) {
6100 		n->defer_hard_irqs_count--;
6101 		timeout = READ_ONCE(n->dev->gro_flush_timeout);
6102 		if (timeout)
6103 			ret = false;
6104 	}
6105 	if (n->gro_bitmask) {
6106 		/* When the NAPI instance uses a timeout and keeps postponing
6107 		 * it, we need to bound somehow the time packets are kept in
6108 		 * the GRO layer
6109 		 */
6110 		napi_gro_flush(n, !!timeout);
6111 	}
6112 
6113 	gro_normal_list(n);
6114 
6115 	if (unlikely(!list_empty(&n->poll_list))) {
6116 		/* If n->poll_list is not empty, we need to mask irqs */
6117 		local_irq_save(flags);
6118 		list_del_init(&n->poll_list);
6119 		local_irq_restore(flags);
6120 	}
6121 	WRITE_ONCE(n->list_owner, -1);
6122 
6123 	val = READ_ONCE(n->state);
6124 	do {
6125 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6126 
6127 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6128 			      NAPIF_STATE_SCHED_THREADED |
6129 			      NAPIF_STATE_PREFER_BUSY_POLL);
6130 
6131 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6132 		 * because we will call napi->poll() one more time.
6133 		 * This C code was suggested by Alexander Duyck to help gcc.
6134 		 */
6135 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6136 						    NAPIF_STATE_SCHED;
6137 	} while (!try_cmpxchg(&n->state, &val, new));
6138 
6139 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6140 		__napi_schedule(n);
6141 		return false;
6142 	}
6143 
6144 	if (timeout)
6145 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
6146 			      HRTIMER_MODE_REL_PINNED);
6147 	return ret;
6148 }
6149 EXPORT_SYMBOL(napi_complete_done);
6150 
6151 /* must be called under rcu_read_lock(), as we dont take a reference */
6152 struct napi_struct *napi_by_id(unsigned int napi_id)
6153 {
6154 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6155 	struct napi_struct *napi;
6156 
6157 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6158 		if (napi->napi_id == napi_id)
6159 			return napi;
6160 
6161 	return NULL;
6162 }
6163 
6164 static void skb_defer_free_flush(struct softnet_data *sd)
6165 {
6166 	struct sk_buff *skb, *next;
6167 
6168 	/* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6169 	if (!READ_ONCE(sd->defer_list))
6170 		return;
6171 
6172 	spin_lock(&sd->defer_lock);
6173 	skb = sd->defer_list;
6174 	sd->defer_list = NULL;
6175 	sd->defer_count = 0;
6176 	spin_unlock(&sd->defer_lock);
6177 
6178 	while (skb != NULL) {
6179 		next = skb->next;
6180 		napi_consume_skb(skb, 1);
6181 		skb = next;
6182 	}
6183 }
6184 
6185 #if defined(CONFIG_NET_RX_BUSY_POLL)
6186 
6187 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6188 {
6189 	if (!skip_schedule) {
6190 		gro_normal_list(napi);
6191 		__napi_schedule(napi);
6192 		return;
6193 	}
6194 
6195 	if (napi->gro_bitmask) {
6196 		/* flush too old packets
6197 		 * If HZ < 1000, flush all packets.
6198 		 */
6199 		napi_gro_flush(napi, HZ >= 1000);
6200 	}
6201 
6202 	gro_normal_list(napi);
6203 	clear_bit(NAPI_STATE_SCHED, &napi->state);
6204 }
6205 
6206 enum {
6207 	NAPI_F_PREFER_BUSY_POLL	= 1,
6208 	NAPI_F_END_ON_RESCHED	= 2,
6209 };
6210 
6211 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock,
6212 			   unsigned flags, u16 budget)
6213 {
6214 	bool skip_schedule = false;
6215 	unsigned long timeout;
6216 	int rc;
6217 
6218 	/* Busy polling means there is a high chance device driver hard irq
6219 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6220 	 * set in napi_schedule_prep().
6221 	 * Since we are about to call napi->poll() once more, we can safely
6222 	 * clear NAPI_STATE_MISSED.
6223 	 *
6224 	 * Note: x86 could use a single "lock and ..." instruction
6225 	 * to perform these two clear_bit()
6226 	 */
6227 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6228 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6229 
6230 	local_bh_disable();
6231 
6232 	if (flags & NAPI_F_PREFER_BUSY_POLL) {
6233 		napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6234 		timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6235 		if (napi->defer_hard_irqs_count && timeout) {
6236 			hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6237 			skip_schedule = true;
6238 		}
6239 	}
6240 
6241 	/* All we really want here is to re-enable device interrupts.
6242 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6243 	 */
6244 	rc = napi->poll(napi, budget);
6245 	/* We can't gro_normal_list() here, because napi->poll() might have
6246 	 * rearmed the napi (napi_complete_done()) in which case it could
6247 	 * already be running on another CPU.
6248 	 */
6249 	trace_napi_poll(napi, rc, budget);
6250 	netpoll_poll_unlock(have_poll_lock);
6251 	if (rc == budget)
6252 		__busy_poll_stop(napi, skip_schedule);
6253 	local_bh_enable();
6254 }
6255 
6256 static void __napi_busy_loop(unsigned int napi_id,
6257 		      bool (*loop_end)(void *, unsigned long),
6258 		      void *loop_end_arg, unsigned flags, u16 budget)
6259 {
6260 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6261 	int (*napi_poll)(struct napi_struct *napi, int budget);
6262 	void *have_poll_lock = NULL;
6263 	struct napi_struct *napi;
6264 
6265 	WARN_ON_ONCE(!rcu_read_lock_held());
6266 
6267 restart:
6268 	napi_poll = NULL;
6269 
6270 	napi = napi_by_id(napi_id);
6271 	if (!napi)
6272 		return;
6273 
6274 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6275 		preempt_disable();
6276 	for (;;) {
6277 		int work = 0;
6278 
6279 		local_bh_disable();
6280 		if (!napi_poll) {
6281 			unsigned long val = READ_ONCE(napi->state);
6282 
6283 			/* If multiple threads are competing for this napi,
6284 			 * we avoid dirtying napi->state as much as we can.
6285 			 */
6286 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6287 				   NAPIF_STATE_IN_BUSY_POLL)) {
6288 				if (flags & NAPI_F_PREFER_BUSY_POLL)
6289 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6290 				goto count;
6291 			}
6292 			if (cmpxchg(&napi->state, val,
6293 				    val | NAPIF_STATE_IN_BUSY_POLL |
6294 					  NAPIF_STATE_SCHED) != val) {
6295 				if (flags & NAPI_F_PREFER_BUSY_POLL)
6296 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6297 				goto count;
6298 			}
6299 			have_poll_lock = netpoll_poll_lock(napi);
6300 			napi_poll = napi->poll;
6301 		}
6302 		work = napi_poll(napi, budget);
6303 		trace_napi_poll(napi, work, budget);
6304 		gro_normal_list(napi);
6305 count:
6306 		if (work > 0)
6307 			__NET_ADD_STATS(dev_net(napi->dev),
6308 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6309 		skb_defer_free_flush(this_cpu_ptr(&softnet_data));
6310 		local_bh_enable();
6311 
6312 		if (!loop_end || loop_end(loop_end_arg, start_time))
6313 			break;
6314 
6315 		if (unlikely(need_resched())) {
6316 			if (flags & NAPI_F_END_ON_RESCHED)
6317 				break;
6318 			if (napi_poll)
6319 				busy_poll_stop(napi, have_poll_lock, flags, budget);
6320 			if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6321 				preempt_enable();
6322 			rcu_read_unlock();
6323 			cond_resched();
6324 			rcu_read_lock();
6325 			if (loop_end(loop_end_arg, start_time))
6326 				return;
6327 			goto restart;
6328 		}
6329 		cpu_relax();
6330 	}
6331 	if (napi_poll)
6332 		busy_poll_stop(napi, have_poll_lock, flags, budget);
6333 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6334 		preempt_enable();
6335 }
6336 
6337 void napi_busy_loop_rcu(unsigned int napi_id,
6338 			bool (*loop_end)(void *, unsigned long),
6339 			void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6340 {
6341 	unsigned flags = NAPI_F_END_ON_RESCHED;
6342 
6343 	if (prefer_busy_poll)
6344 		flags |= NAPI_F_PREFER_BUSY_POLL;
6345 
6346 	__napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6347 }
6348 
6349 void napi_busy_loop(unsigned int napi_id,
6350 		    bool (*loop_end)(void *, unsigned long),
6351 		    void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6352 {
6353 	unsigned flags = prefer_busy_poll ? NAPI_F_PREFER_BUSY_POLL : 0;
6354 
6355 	rcu_read_lock();
6356 	__napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6357 	rcu_read_unlock();
6358 }
6359 EXPORT_SYMBOL(napi_busy_loop);
6360 
6361 #endif /* CONFIG_NET_RX_BUSY_POLL */
6362 
6363 static void napi_hash_add(struct napi_struct *napi)
6364 {
6365 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6366 		return;
6367 
6368 	spin_lock(&napi_hash_lock);
6369 
6370 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6371 	do {
6372 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6373 			napi_gen_id = MIN_NAPI_ID;
6374 	} while (napi_by_id(napi_gen_id));
6375 	napi->napi_id = napi_gen_id;
6376 
6377 	hlist_add_head_rcu(&napi->napi_hash_node,
6378 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6379 
6380 	spin_unlock(&napi_hash_lock);
6381 }
6382 
6383 /* Warning : caller is responsible to make sure rcu grace period
6384  * is respected before freeing memory containing @napi
6385  */
6386 static void napi_hash_del(struct napi_struct *napi)
6387 {
6388 	spin_lock(&napi_hash_lock);
6389 
6390 	hlist_del_init_rcu(&napi->napi_hash_node);
6391 
6392 	spin_unlock(&napi_hash_lock);
6393 }
6394 
6395 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6396 {
6397 	struct napi_struct *napi;
6398 
6399 	napi = container_of(timer, struct napi_struct, timer);
6400 
6401 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6402 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6403 	 */
6404 	if (!napi_disable_pending(napi) &&
6405 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6406 		clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6407 		__napi_schedule_irqoff(napi);
6408 	}
6409 
6410 	return HRTIMER_NORESTART;
6411 }
6412 
6413 static void init_gro_hash(struct napi_struct *napi)
6414 {
6415 	int i;
6416 
6417 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6418 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6419 		napi->gro_hash[i].count = 0;
6420 	}
6421 	napi->gro_bitmask = 0;
6422 }
6423 
6424 int dev_set_threaded(struct net_device *dev, bool threaded)
6425 {
6426 	struct napi_struct *napi;
6427 	int err = 0;
6428 
6429 	if (dev->threaded == threaded)
6430 		return 0;
6431 
6432 	if (threaded) {
6433 		list_for_each_entry(napi, &dev->napi_list, dev_list) {
6434 			if (!napi->thread) {
6435 				err = napi_kthread_create(napi);
6436 				if (err) {
6437 					threaded = false;
6438 					break;
6439 				}
6440 			}
6441 		}
6442 	}
6443 
6444 	dev->threaded = threaded;
6445 
6446 	/* Make sure kthread is created before THREADED bit
6447 	 * is set.
6448 	 */
6449 	smp_mb__before_atomic();
6450 
6451 	/* Setting/unsetting threaded mode on a napi might not immediately
6452 	 * take effect, if the current napi instance is actively being
6453 	 * polled. In this case, the switch between threaded mode and
6454 	 * softirq mode will happen in the next round of napi_schedule().
6455 	 * This should not cause hiccups/stalls to the live traffic.
6456 	 */
6457 	list_for_each_entry(napi, &dev->napi_list, dev_list)
6458 		assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
6459 
6460 	return err;
6461 }
6462 EXPORT_SYMBOL(dev_set_threaded);
6463 
6464 /**
6465  * netif_queue_set_napi - Associate queue with the napi
6466  * @dev: device to which NAPI and queue belong
6467  * @queue_index: Index of queue
6468  * @type: queue type as RX or TX
6469  * @napi: NAPI context, pass NULL to clear previously set NAPI
6470  *
6471  * Set queue with its corresponding napi context. This should be done after
6472  * registering the NAPI handler for the queue-vector and the queues have been
6473  * mapped to the corresponding interrupt vector.
6474  */
6475 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index,
6476 			  enum netdev_queue_type type, struct napi_struct *napi)
6477 {
6478 	struct netdev_rx_queue *rxq;
6479 	struct netdev_queue *txq;
6480 
6481 	if (WARN_ON_ONCE(napi && !napi->dev))
6482 		return;
6483 	if (dev->reg_state >= NETREG_REGISTERED)
6484 		ASSERT_RTNL();
6485 
6486 	switch (type) {
6487 	case NETDEV_QUEUE_TYPE_RX:
6488 		rxq = __netif_get_rx_queue(dev, queue_index);
6489 		rxq->napi = napi;
6490 		return;
6491 	case NETDEV_QUEUE_TYPE_TX:
6492 		txq = netdev_get_tx_queue(dev, queue_index);
6493 		txq->napi = napi;
6494 		return;
6495 	default:
6496 		return;
6497 	}
6498 }
6499 EXPORT_SYMBOL(netif_queue_set_napi);
6500 
6501 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
6502 			   int (*poll)(struct napi_struct *, int), int weight)
6503 {
6504 	if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6505 		return;
6506 
6507 	INIT_LIST_HEAD(&napi->poll_list);
6508 	INIT_HLIST_NODE(&napi->napi_hash_node);
6509 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6510 	napi->timer.function = napi_watchdog;
6511 	init_gro_hash(napi);
6512 	napi->skb = NULL;
6513 	INIT_LIST_HEAD(&napi->rx_list);
6514 	napi->rx_count = 0;
6515 	napi->poll = poll;
6516 	if (weight > NAPI_POLL_WEIGHT)
6517 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6518 				weight);
6519 	napi->weight = weight;
6520 	napi->dev = dev;
6521 #ifdef CONFIG_NETPOLL
6522 	napi->poll_owner = -1;
6523 #endif
6524 	napi->list_owner = -1;
6525 	set_bit(NAPI_STATE_SCHED, &napi->state);
6526 	set_bit(NAPI_STATE_NPSVC, &napi->state);
6527 	list_add_rcu(&napi->dev_list, &dev->napi_list);
6528 	napi_hash_add(napi);
6529 	napi_get_frags_check(napi);
6530 	/* Create kthread for this napi if dev->threaded is set.
6531 	 * Clear dev->threaded if kthread creation failed so that
6532 	 * threaded mode will not be enabled in napi_enable().
6533 	 */
6534 	if (dev->threaded && napi_kthread_create(napi))
6535 		dev->threaded = 0;
6536 	netif_napi_set_irq(napi, -1);
6537 }
6538 EXPORT_SYMBOL(netif_napi_add_weight);
6539 
6540 void napi_disable(struct napi_struct *n)
6541 {
6542 	unsigned long val, new;
6543 
6544 	might_sleep();
6545 	set_bit(NAPI_STATE_DISABLE, &n->state);
6546 
6547 	val = READ_ONCE(n->state);
6548 	do {
6549 		while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6550 			usleep_range(20, 200);
6551 			val = READ_ONCE(n->state);
6552 		}
6553 
6554 		new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6555 		new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6556 	} while (!try_cmpxchg(&n->state, &val, new));
6557 
6558 	hrtimer_cancel(&n->timer);
6559 
6560 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6561 }
6562 EXPORT_SYMBOL(napi_disable);
6563 
6564 /**
6565  *	napi_enable - enable NAPI scheduling
6566  *	@n: NAPI context
6567  *
6568  * Resume NAPI from being scheduled on this context.
6569  * Must be paired with napi_disable.
6570  */
6571 void napi_enable(struct napi_struct *n)
6572 {
6573 	unsigned long new, val = READ_ONCE(n->state);
6574 
6575 	do {
6576 		BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6577 
6578 		new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6579 		if (n->dev->threaded && n->thread)
6580 			new |= NAPIF_STATE_THREADED;
6581 	} while (!try_cmpxchg(&n->state, &val, new));
6582 }
6583 EXPORT_SYMBOL(napi_enable);
6584 
6585 static void flush_gro_hash(struct napi_struct *napi)
6586 {
6587 	int i;
6588 
6589 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6590 		struct sk_buff *skb, *n;
6591 
6592 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6593 			kfree_skb(skb);
6594 		napi->gro_hash[i].count = 0;
6595 	}
6596 }
6597 
6598 /* Must be called in process context */
6599 void __netif_napi_del(struct napi_struct *napi)
6600 {
6601 	if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6602 		return;
6603 
6604 	napi_hash_del(napi);
6605 	list_del_rcu(&napi->dev_list);
6606 	napi_free_frags(napi);
6607 
6608 	flush_gro_hash(napi);
6609 	napi->gro_bitmask = 0;
6610 
6611 	if (napi->thread) {
6612 		kthread_stop(napi->thread);
6613 		napi->thread = NULL;
6614 	}
6615 }
6616 EXPORT_SYMBOL(__netif_napi_del);
6617 
6618 static int __napi_poll(struct napi_struct *n, bool *repoll)
6619 {
6620 	int work, weight;
6621 
6622 	weight = n->weight;
6623 
6624 	/* This NAPI_STATE_SCHED test is for avoiding a race
6625 	 * with netpoll's poll_napi().  Only the entity which
6626 	 * obtains the lock and sees NAPI_STATE_SCHED set will
6627 	 * actually make the ->poll() call.  Therefore we avoid
6628 	 * accidentally calling ->poll() when NAPI is not scheduled.
6629 	 */
6630 	work = 0;
6631 	if (napi_is_scheduled(n)) {
6632 		work = n->poll(n, weight);
6633 		trace_napi_poll(n, work, weight);
6634 
6635 		xdp_do_check_flushed(n);
6636 	}
6637 
6638 	if (unlikely(work > weight))
6639 		netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6640 				n->poll, work, weight);
6641 
6642 	if (likely(work < weight))
6643 		return work;
6644 
6645 	/* Drivers must not modify the NAPI state if they
6646 	 * consume the entire weight.  In such cases this code
6647 	 * still "owns" the NAPI instance and therefore can
6648 	 * move the instance around on the list at-will.
6649 	 */
6650 	if (unlikely(napi_disable_pending(n))) {
6651 		napi_complete(n);
6652 		return work;
6653 	}
6654 
6655 	/* The NAPI context has more processing work, but busy-polling
6656 	 * is preferred. Exit early.
6657 	 */
6658 	if (napi_prefer_busy_poll(n)) {
6659 		if (napi_complete_done(n, work)) {
6660 			/* If timeout is not set, we need to make sure
6661 			 * that the NAPI is re-scheduled.
6662 			 */
6663 			napi_schedule(n);
6664 		}
6665 		return work;
6666 	}
6667 
6668 	if (n->gro_bitmask) {
6669 		/* flush too old packets
6670 		 * If HZ < 1000, flush all packets.
6671 		 */
6672 		napi_gro_flush(n, HZ >= 1000);
6673 	}
6674 
6675 	gro_normal_list(n);
6676 
6677 	/* Some drivers may have called napi_schedule
6678 	 * prior to exhausting their budget.
6679 	 */
6680 	if (unlikely(!list_empty(&n->poll_list))) {
6681 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6682 			     n->dev ? n->dev->name : "backlog");
6683 		return work;
6684 	}
6685 
6686 	*repoll = true;
6687 
6688 	return work;
6689 }
6690 
6691 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6692 {
6693 	bool do_repoll = false;
6694 	void *have;
6695 	int work;
6696 
6697 	list_del_init(&n->poll_list);
6698 
6699 	have = netpoll_poll_lock(n);
6700 
6701 	work = __napi_poll(n, &do_repoll);
6702 
6703 	if (do_repoll)
6704 		list_add_tail(&n->poll_list, repoll);
6705 
6706 	netpoll_poll_unlock(have);
6707 
6708 	return work;
6709 }
6710 
6711 static int napi_thread_wait(struct napi_struct *napi)
6712 {
6713 	bool woken = false;
6714 
6715 	set_current_state(TASK_INTERRUPTIBLE);
6716 
6717 	while (!kthread_should_stop()) {
6718 		/* Testing SCHED_THREADED bit here to make sure the current
6719 		 * kthread owns this napi and could poll on this napi.
6720 		 * Testing SCHED bit is not enough because SCHED bit might be
6721 		 * set by some other busy poll thread or by napi_disable().
6722 		 */
6723 		if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
6724 			WARN_ON(!list_empty(&napi->poll_list));
6725 			__set_current_state(TASK_RUNNING);
6726 			return 0;
6727 		}
6728 
6729 		schedule();
6730 		/* woken being true indicates this thread owns this napi. */
6731 		woken = true;
6732 		set_current_state(TASK_INTERRUPTIBLE);
6733 	}
6734 	__set_current_state(TASK_RUNNING);
6735 
6736 	return -1;
6737 }
6738 
6739 static int napi_threaded_poll(void *data)
6740 {
6741 	struct napi_struct *napi = data;
6742 	struct softnet_data *sd;
6743 	void *have;
6744 
6745 	while (!napi_thread_wait(napi)) {
6746 		unsigned long last_qs = jiffies;
6747 
6748 		for (;;) {
6749 			bool repoll = false;
6750 
6751 			local_bh_disable();
6752 			sd = this_cpu_ptr(&softnet_data);
6753 			sd->in_napi_threaded_poll = true;
6754 
6755 			have = netpoll_poll_lock(napi);
6756 			__napi_poll(napi, &repoll);
6757 			netpoll_poll_unlock(have);
6758 
6759 			sd->in_napi_threaded_poll = false;
6760 			barrier();
6761 
6762 			if (sd_has_rps_ipi_waiting(sd)) {
6763 				local_irq_disable();
6764 				net_rps_action_and_irq_enable(sd);
6765 			}
6766 			skb_defer_free_flush(sd);
6767 			local_bh_enable();
6768 
6769 			if (!repoll)
6770 				break;
6771 
6772 			rcu_softirq_qs_periodic(last_qs);
6773 			cond_resched();
6774 		}
6775 	}
6776 	return 0;
6777 }
6778 
6779 static __latent_entropy void net_rx_action(struct softirq_action *h)
6780 {
6781 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6782 	unsigned long time_limit = jiffies +
6783 		usecs_to_jiffies(READ_ONCE(net_hotdata.netdev_budget_usecs));
6784 	int budget = READ_ONCE(net_hotdata.netdev_budget);
6785 	LIST_HEAD(list);
6786 	LIST_HEAD(repoll);
6787 
6788 start:
6789 	sd->in_net_rx_action = true;
6790 	local_irq_disable();
6791 	list_splice_init(&sd->poll_list, &list);
6792 	local_irq_enable();
6793 
6794 	for (;;) {
6795 		struct napi_struct *n;
6796 
6797 		skb_defer_free_flush(sd);
6798 
6799 		if (list_empty(&list)) {
6800 			if (list_empty(&repoll)) {
6801 				sd->in_net_rx_action = false;
6802 				barrier();
6803 				/* We need to check if ____napi_schedule()
6804 				 * had refilled poll_list while
6805 				 * sd->in_net_rx_action was true.
6806 				 */
6807 				if (!list_empty(&sd->poll_list))
6808 					goto start;
6809 				if (!sd_has_rps_ipi_waiting(sd))
6810 					goto end;
6811 			}
6812 			break;
6813 		}
6814 
6815 		n = list_first_entry(&list, struct napi_struct, poll_list);
6816 		budget -= napi_poll(n, &repoll);
6817 
6818 		/* If softirq window is exhausted then punt.
6819 		 * Allow this to run for 2 jiffies since which will allow
6820 		 * an average latency of 1.5/HZ.
6821 		 */
6822 		if (unlikely(budget <= 0 ||
6823 			     time_after_eq(jiffies, time_limit))) {
6824 			sd->time_squeeze++;
6825 			break;
6826 		}
6827 	}
6828 
6829 	local_irq_disable();
6830 
6831 	list_splice_tail_init(&sd->poll_list, &list);
6832 	list_splice_tail(&repoll, &list);
6833 	list_splice(&list, &sd->poll_list);
6834 	if (!list_empty(&sd->poll_list))
6835 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
6836 	else
6837 		sd->in_net_rx_action = false;
6838 
6839 	net_rps_action_and_irq_enable(sd);
6840 end:;
6841 }
6842 
6843 struct netdev_adjacent {
6844 	struct net_device *dev;
6845 	netdevice_tracker dev_tracker;
6846 
6847 	/* upper master flag, there can only be one master device per list */
6848 	bool master;
6849 
6850 	/* lookup ignore flag */
6851 	bool ignore;
6852 
6853 	/* counter for the number of times this device was added to us */
6854 	u16 ref_nr;
6855 
6856 	/* private field for the users */
6857 	void *private;
6858 
6859 	struct list_head list;
6860 	struct rcu_head rcu;
6861 };
6862 
6863 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6864 						 struct list_head *adj_list)
6865 {
6866 	struct netdev_adjacent *adj;
6867 
6868 	list_for_each_entry(adj, adj_list, list) {
6869 		if (adj->dev == adj_dev)
6870 			return adj;
6871 	}
6872 	return NULL;
6873 }
6874 
6875 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6876 				    struct netdev_nested_priv *priv)
6877 {
6878 	struct net_device *dev = (struct net_device *)priv->data;
6879 
6880 	return upper_dev == dev;
6881 }
6882 
6883 /**
6884  * netdev_has_upper_dev - Check if device is linked to an upper device
6885  * @dev: device
6886  * @upper_dev: upper device to check
6887  *
6888  * Find out if a device is linked to specified upper device and return true
6889  * in case it is. Note that this checks only immediate upper device,
6890  * not through a complete stack of devices. The caller must hold the RTNL lock.
6891  */
6892 bool netdev_has_upper_dev(struct net_device *dev,
6893 			  struct net_device *upper_dev)
6894 {
6895 	struct netdev_nested_priv priv = {
6896 		.data = (void *)upper_dev,
6897 	};
6898 
6899 	ASSERT_RTNL();
6900 
6901 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6902 					     &priv);
6903 }
6904 EXPORT_SYMBOL(netdev_has_upper_dev);
6905 
6906 /**
6907  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
6908  * @dev: device
6909  * @upper_dev: upper device to check
6910  *
6911  * Find out if a device is linked to specified upper device and return true
6912  * in case it is. Note that this checks the entire upper device chain.
6913  * The caller must hold rcu lock.
6914  */
6915 
6916 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6917 				  struct net_device *upper_dev)
6918 {
6919 	struct netdev_nested_priv priv = {
6920 		.data = (void *)upper_dev,
6921 	};
6922 
6923 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6924 					       &priv);
6925 }
6926 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6927 
6928 /**
6929  * netdev_has_any_upper_dev - Check if device is linked to some device
6930  * @dev: device
6931  *
6932  * Find out if a device is linked to an upper device and return true in case
6933  * it is. The caller must hold the RTNL lock.
6934  */
6935 bool netdev_has_any_upper_dev(struct net_device *dev)
6936 {
6937 	ASSERT_RTNL();
6938 
6939 	return !list_empty(&dev->adj_list.upper);
6940 }
6941 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6942 
6943 /**
6944  * netdev_master_upper_dev_get - Get master upper device
6945  * @dev: device
6946  *
6947  * Find a master upper device and return pointer to it or NULL in case
6948  * it's not there. The caller must hold the RTNL lock.
6949  */
6950 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6951 {
6952 	struct netdev_adjacent *upper;
6953 
6954 	ASSERT_RTNL();
6955 
6956 	if (list_empty(&dev->adj_list.upper))
6957 		return NULL;
6958 
6959 	upper = list_first_entry(&dev->adj_list.upper,
6960 				 struct netdev_adjacent, list);
6961 	if (likely(upper->master))
6962 		return upper->dev;
6963 	return NULL;
6964 }
6965 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6966 
6967 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6968 {
6969 	struct netdev_adjacent *upper;
6970 
6971 	ASSERT_RTNL();
6972 
6973 	if (list_empty(&dev->adj_list.upper))
6974 		return NULL;
6975 
6976 	upper = list_first_entry(&dev->adj_list.upper,
6977 				 struct netdev_adjacent, list);
6978 	if (likely(upper->master) && !upper->ignore)
6979 		return upper->dev;
6980 	return NULL;
6981 }
6982 
6983 /**
6984  * netdev_has_any_lower_dev - Check if device is linked to some device
6985  * @dev: device
6986  *
6987  * Find out if a device is linked to a lower device and return true in case
6988  * it is. The caller must hold the RTNL lock.
6989  */
6990 static bool netdev_has_any_lower_dev(struct net_device *dev)
6991 {
6992 	ASSERT_RTNL();
6993 
6994 	return !list_empty(&dev->adj_list.lower);
6995 }
6996 
6997 void *netdev_adjacent_get_private(struct list_head *adj_list)
6998 {
6999 	struct netdev_adjacent *adj;
7000 
7001 	adj = list_entry(adj_list, struct netdev_adjacent, list);
7002 
7003 	return adj->private;
7004 }
7005 EXPORT_SYMBOL(netdev_adjacent_get_private);
7006 
7007 /**
7008  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7009  * @dev: device
7010  * @iter: list_head ** of the current position
7011  *
7012  * Gets the next device from the dev's upper list, starting from iter
7013  * position. The caller must hold RCU read lock.
7014  */
7015 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7016 						 struct list_head **iter)
7017 {
7018 	struct netdev_adjacent *upper;
7019 
7020 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7021 
7022 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7023 
7024 	if (&upper->list == &dev->adj_list.upper)
7025 		return NULL;
7026 
7027 	*iter = &upper->list;
7028 
7029 	return upper->dev;
7030 }
7031 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7032 
7033 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7034 						  struct list_head **iter,
7035 						  bool *ignore)
7036 {
7037 	struct netdev_adjacent *upper;
7038 
7039 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7040 
7041 	if (&upper->list == &dev->adj_list.upper)
7042 		return NULL;
7043 
7044 	*iter = &upper->list;
7045 	*ignore = upper->ignore;
7046 
7047 	return upper->dev;
7048 }
7049 
7050 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7051 						    struct list_head **iter)
7052 {
7053 	struct netdev_adjacent *upper;
7054 
7055 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7056 
7057 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7058 
7059 	if (&upper->list == &dev->adj_list.upper)
7060 		return NULL;
7061 
7062 	*iter = &upper->list;
7063 
7064 	return upper->dev;
7065 }
7066 
7067 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7068 				       int (*fn)(struct net_device *dev,
7069 					 struct netdev_nested_priv *priv),
7070 				       struct netdev_nested_priv *priv)
7071 {
7072 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7073 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7074 	int ret, cur = 0;
7075 	bool ignore;
7076 
7077 	now = dev;
7078 	iter = &dev->adj_list.upper;
7079 
7080 	while (1) {
7081 		if (now != dev) {
7082 			ret = fn(now, priv);
7083 			if (ret)
7084 				return ret;
7085 		}
7086 
7087 		next = NULL;
7088 		while (1) {
7089 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
7090 			if (!udev)
7091 				break;
7092 			if (ignore)
7093 				continue;
7094 
7095 			next = udev;
7096 			niter = &udev->adj_list.upper;
7097 			dev_stack[cur] = now;
7098 			iter_stack[cur++] = iter;
7099 			break;
7100 		}
7101 
7102 		if (!next) {
7103 			if (!cur)
7104 				return 0;
7105 			next = dev_stack[--cur];
7106 			niter = iter_stack[cur];
7107 		}
7108 
7109 		now = next;
7110 		iter = niter;
7111 	}
7112 
7113 	return 0;
7114 }
7115 
7116 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7117 				  int (*fn)(struct net_device *dev,
7118 					    struct netdev_nested_priv *priv),
7119 				  struct netdev_nested_priv *priv)
7120 {
7121 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7122 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7123 	int ret, cur = 0;
7124 
7125 	now = dev;
7126 	iter = &dev->adj_list.upper;
7127 
7128 	while (1) {
7129 		if (now != dev) {
7130 			ret = fn(now, priv);
7131 			if (ret)
7132 				return ret;
7133 		}
7134 
7135 		next = NULL;
7136 		while (1) {
7137 			udev = netdev_next_upper_dev_rcu(now, &iter);
7138 			if (!udev)
7139 				break;
7140 
7141 			next = udev;
7142 			niter = &udev->adj_list.upper;
7143 			dev_stack[cur] = now;
7144 			iter_stack[cur++] = iter;
7145 			break;
7146 		}
7147 
7148 		if (!next) {
7149 			if (!cur)
7150 				return 0;
7151 			next = dev_stack[--cur];
7152 			niter = iter_stack[cur];
7153 		}
7154 
7155 		now = next;
7156 		iter = niter;
7157 	}
7158 
7159 	return 0;
7160 }
7161 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7162 
7163 static bool __netdev_has_upper_dev(struct net_device *dev,
7164 				   struct net_device *upper_dev)
7165 {
7166 	struct netdev_nested_priv priv = {
7167 		.flags = 0,
7168 		.data = (void *)upper_dev,
7169 	};
7170 
7171 	ASSERT_RTNL();
7172 
7173 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7174 					   &priv);
7175 }
7176 
7177 /**
7178  * netdev_lower_get_next_private - Get the next ->private from the
7179  *				   lower neighbour list
7180  * @dev: device
7181  * @iter: list_head ** of the current position
7182  *
7183  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7184  * list, starting from iter position. The caller must hold either hold the
7185  * RTNL lock or its own locking that guarantees that the neighbour lower
7186  * list will remain unchanged.
7187  */
7188 void *netdev_lower_get_next_private(struct net_device *dev,
7189 				    struct list_head **iter)
7190 {
7191 	struct netdev_adjacent *lower;
7192 
7193 	lower = list_entry(*iter, struct netdev_adjacent, list);
7194 
7195 	if (&lower->list == &dev->adj_list.lower)
7196 		return NULL;
7197 
7198 	*iter = lower->list.next;
7199 
7200 	return lower->private;
7201 }
7202 EXPORT_SYMBOL(netdev_lower_get_next_private);
7203 
7204 /**
7205  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7206  *				       lower neighbour list, RCU
7207  *				       variant
7208  * @dev: device
7209  * @iter: list_head ** of the current position
7210  *
7211  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7212  * list, starting from iter position. The caller must hold RCU read lock.
7213  */
7214 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7215 					struct list_head **iter)
7216 {
7217 	struct netdev_adjacent *lower;
7218 
7219 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7220 
7221 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7222 
7223 	if (&lower->list == &dev->adj_list.lower)
7224 		return NULL;
7225 
7226 	*iter = &lower->list;
7227 
7228 	return lower->private;
7229 }
7230 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7231 
7232 /**
7233  * netdev_lower_get_next - Get the next device from the lower neighbour
7234  *                         list
7235  * @dev: device
7236  * @iter: list_head ** of the current position
7237  *
7238  * Gets the next netdev_adjacent from the dev's lower neighbour
7239  * list, starting from iter position. The caller must hold RTNL lock or
7240  * its own locking that guarantees that the neighbour lower
7241  * list will remain unchanged.
7242  */
7243 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7244 {
7245 	struct netdev_adjacent *lower;
7246 
7247 	lower = list_entry(*iter, struct netdev_adjacent, list);
7248 
7249 	if (&lower->list == &dev->adj_list.lower)
7250 		return NULL;
7251 
7252 	*iter = lower->list.next;
7253 
7254 	return lower->dev;
7255 }
7256 EXPORT_SYMBOL(netdev_lower_get_next);
7257 
7258 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7259 						struct list_head **iter)
7260 {
7261 	struct netdev_adjacent *lower;
7262 
7263 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7264 
7265 	if (&lower->list == &dev->adj_list.lower)
7266 		return NULL;
7267 
7268 	*iter = &lower->list;
7269 
7270 	return lower->dev;
7271 }
7272 
7273 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7274 						  struct list_head **iter,
7275 						  bool *ignore)
7276 {
7277 	struct netdev_adjacent *lower;
7278 
7279 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7280 
7281 	if (&lower->list == &dev->adj_list.lower)
7282 		return NULL;
7283 
7284 	*iter = &lower->list;
7285 	*ignore = lower->ignore;
7286 
7287 	return lower->dev;
7288 }
7289 
7290 int netdev_walk_all_lower_dev(struct net_device *dev,
7291 			      int (*fn)(struct net_device *dev,
7292 					struct netdev_nested_priv *priv),
7293 			      struct netdev_nested_priv *priv)
7294 {
7295 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7296 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7297 	int ret, cur = 0;
7298 
7299 	now = dev;
7300 	iter = &dev->adj_list.lower;
7301 
7302 	while (1) {
7303 		if (now != dev) {
7304 			ret = fn(now, priv);
7305 			if (ret)
7306 				return ret;
7307 		}
7308 
7309 		next = NULL;
7310 		while (1) {
7311 			ldev = netdev_next_lower_dev(now, &iter);
7312 			if (!ldev)
7313 				break;
7314 
7315 			next = ldev;
7316 			niter = &ldev->adj_list.lower;
7317 			dev_stack[cur] = now;
7318 			iter_stack[cur++] = iter;
7319 			break;
7320 		}
7321 
7322 		if (!next) {
7323 			if (!cur)
7324 				return 0;
7325 			next = dev_stack[--cur];
7326 			niter = iter_stack[cur];
7327 		}
7328 
7329 		now = next;
7330 		iter = niter;
7331 	}
7332 
7333 	return 0;
7334 }
7335 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7336 
7337 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7338 				       int (*fn)(struct net_device *dev,
7339 					 struct netdev_nested_priv *priv),
7340 				       struct netdev_nested_priv *priv)
7341 {
7342 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7343 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7344 	int ret, cur = 0;
7345 	bool ignore;
7346 
7347 	now = dev;
7348 	iter = &dev->adj_list.lower;
7349 
7350 	while (1) {
7351 		if (now != dev) {
7352 			ret = fn(now, priv);
7353 			if (ret)
7354 				return ret;
7355 		}
7356 
7357 		next = NULL;
7358 		while (1) {
7359 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7360 			if (!ldev)
7361 				break;
7362 			if (ignore)
7363 				continue;
7364 
7365 			next = ldev;
7366 			niter = &ldev->adj_list.lower;
7367 			dev_stack[cur] = now;
7368 			iter_stack[cur++] = iter;
7369 			break;
7370 		}
7371 
7372 		if (!next) {
7373 			if (!cur)
7374 				return 0;
7375 			next = dev_stack[--cur];
7376 			niter = iter_stack[cur];
7377 		}
7378 
7379 		now = next;
7380 		iter = niter;
7381 	}
7382 
7383 	return 0;
7384 }
7385 
7386 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7387 					     struct list_head **iter)
7388 {
7389 	struct netdev_adjacent *lower;
7390 
7391 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7392 	if (&lower->list == &dev->adj_list.lower)
7393 		return NULL;
7394 
7395 	*iter = &lower->list;
7396 
7397 	return lower->dev;
7398 }
7399 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7400 
7401 static u8 __netdev_upper_depth(struct net_device *dev)
7402 {
7403 	struct net_device *udev;
7404 	struct list_head *iter;
7405 	u8 max_depth = 0;
7406 	bool ignore;
7407 
7408 	for (iter = &dev->adj_list.upper,
7409 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7410 	     udev;
7411 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7412 		if (ignore)
7413 			continue;
7414 		if (max_depth < udev->upper_level)
7415 			max_depth = udev->upper_level;
7416 	}
7417 
7418 	return max_depth;
7419 }
7420 
7421 static u8 __netdev_lower_depth(struct net_device *dev)
7422 {
7423 	struct net_device *ldev;
7424 	struct list_head *iter;
7425 	u8 max_depth = 0;
7426 	bool ignore;
7427 
7428 	for (iter = &dev->adj_list.lower,
7429 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7430 	     ldev;
7431 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7432 		if (ignore)
7433 			continue;
7434 		if (max_depth < ldev->lower_level)
7435 			max_depth = ldev->lower_level;
7436 	}
7437 
7438 	return max_depth;
7439 }
7440 
7441 static int __netdev_update_upper_level(struct net_device *dev,
7442 				       struct netdev_nested_priv *__unused)
7443 {
7444 	dev->upper_level = __netdev_upper_depth(dev) + 1;
7445 	return 0;
7446 }
7447 
7448 #ifdef CONFIG_LOCKDEP
7449 static LIST_HEAD(net_unlink_list);
7450 
7451 static void net_unlink_todo(struct net_device *dev)
7452 {
7453 	if (list_empty(&dev->unlink_list))
7454 		list_add_tail(&dev->unlink_list, &net_unlink_list);
7455 }
7456 #endif
7457 
7458 static int __netdev_update_lower_level(struct net_device *dev,
7459 				       struct netdev_nested_priv *priv)
7460 {
7461 	dev->lower_level = __netdev_lower_depth(dev) + 1;
7462 
7463 #ifdef CONFIG_LOCKDEP
7464 	if (!priv)
7465 		return 0;
7466 
7467 	if (priv->flags & NESTED_SYNC_IMM)
7468 		dev->nested_level = dev->lower_level - 1;
7469 	if (priv->flags & NESTED_SYNC_TODO)
7470 		net_unlink_todo(dev);
7471 #endif
7472 	return 0;
7473 }
7474 
7475 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7476 				  int (*fn)(struct net_device *dev,
7477 					    struct netdev_nested_priv *priv),
7478 				  struct netdev_nested_priv *priv)
7479 {
7480 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7481 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7482 	int ret, cur = 0;
7483 
7484 	now = dev;
7485 	iter = &dev->adj_list.lower;
7486 
7487 	while (1) {
7488 		if (now != dev) {
7489 			ret = fn(now, priv);
7490 			if (ret)
7491 				return ret;
7492 		}
7493 
7494 		next = NULL;
7495 		while (1) {
7496 			ldev = netdev_next_lower_dev_rcu(now, &iter);
7497 			if (!ldev)
7498 				break;
7499 
7500 			next = ldev;
7501 			niter = &ldev->adj_list.lower;
7502 			dev_stack[cur] = now;
7503 			iter_stack[cur++] = iter;
7504 			break;
7505 		}
7506 
7507 		if (!next) {
7508 			if (!cur)
7509 				return 0;
7510 			next = dev_stack[--cur];
7511 			niter = iter_stack[cur];
7512 		}
7513 
7514 		now = next;
7515 		iter = niter;
7516 	}
7517 
7518 	return 0;
7519 }
7520 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7521 
7522 /**
7523  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7524  *				       lower neighbour list, RCU
7525  *				       variant
7526  * @dev: device
7527  *
7528  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7529  * list. The caller must hold RCU read lock.
7530  */
7531 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7532 {
7533 	struct netdev_adjacent *lower;
7534 
7535 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
7536 			struct netdev_adjacent, list);
7537 	if (lower)
7538 		return lower->private;
7539 	return NULL;
7540 }
7541 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7542 
7543 /**
7544  * netdev_master_upper_dev_get_rcu - Get master upper device
7545  * @dev: device
7546  *
7547  * Find a master upper device and return pointer to it or NULL in case
7548  * it's not there. The caller must hold the RCU read lock.
7549  */
7550 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7551 {
7552 	struct netdev_adjacent *upper;
7553 
7554 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
7555 				       struct netdev_adjacent, list);
7556 	if (upper && likely(upper->master))
7557 		return upper->dev;
7558 	return NULL;
7559 }
7560 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7561 
7562 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7563 			      struct net_device *adj_dev,
7564 			      struct list_head *dev_list)
7565 {
7566 	char linkname[IFNAMSIZ+7];
7567 
7568 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7569 		"upper_%s" : "lower_%s", adj_dev->name);
7570 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7571 				 linkname);
7572 }
7573 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7574 			       char *name,
7575 			       struct list_head *dev_list)
7576 {
7577 	char linkname[IFNAMSIZ+7];
7578 
7579 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7580 		"upper_%s" : "lower_%s", name);
7581 	sysfs_remove_link(&(dev->dev.kobj), linkname);
7582 }
7583 
7584 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7585 						 struct net_device *adj_dev,
7586 						 struct list_head *dev_list)
7587 {
7588 	return (dev_list == &dev->adj_list.upper ||
7589 		dev_list == &dev->adj_list.lower) &&
7590 		net_eq(dev_net(dev), dev_net(adj_dev));
7591 }
7592 
7593 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7594 					struct net_device *adj_dev,
7595 					struct list_head *dev_list,
7596 					void *private, bool master)
7597 {
7598 	struct netdev_adjacent *adj;
7599 	int ret;
7600 
7601 	adj = __netdev_find_adj(adj_dev, dev_list);
7602 
7603 	if (adj) {
7604 		adj->ref_nr += 1;
7605 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7606 			 dev->name, adj_dev->name, adj->ref_nr);
7607 
7608 		return 0;
7609 	}
7610 
7611 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7612 	if (!adj)
7613 		return -ENOMEM;
7614 
7615 	adj->dev = adj_dev;
7616 	adj->master = master;
7617 	adj->ref_nr = 1;
7618 	adj->private = private;
7619 	adj->ignore = false;
7620 	netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
7621 
7622 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7623 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7624 
7625 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7626 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7627 		if (ret)
7628 			goto free_adj;
7629 	}
7630 
7631 	/* Ensure that master link is always the first item in list. */
7632 	if (master) {
7633 		ret = sysfs_create_link(&(dev->dev.kobj),
7634 					&(adj_dev->dev.kobj), "master");
7635 		if (ret)
7636 			goto remove_symlinks;
7637 
7638 		list_add_rcu(&adj->list, dev_list);
7639 	} else {
7640 		list_add_tail_rcu(&adj->list, dev_list);
7641 	}
7642 
7643 	return 0;
7644 
7645 remove_symlinks:
7646 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7647 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7648 free_adj:
7649 	netdev_put(adj_dev, &adj->dev_tracker);
7650 	kfree(adj);
7651 
7652 	return ret;
7653 }
7654 
7655 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7656 					 struct net_device *adj_dev,
7657 					 u16 ref_nr,
7658 					 struct list_head *dev_list)
7659 {
7660 	struct netdev_adjacent *adj;
7661 
7662 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7663 		 dev->name, adj_dev->name, ref_nr);
7664 
7665 	adj = __netdev_find_adj(adj_dev, dev_list);
7666 
7667 	if (!adj) {
7668 		pr_err("Adjacency does not exist for device %s from %s\n",
7669 		       dev->name, adj_dev->name);
7670 		WARN_ON(1);
7671 		return;
7672 	}
7673 
7674 	if (adj->ref_nr > ref_nr) {
7675 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7676 			 dev->name, adj_dev->name, ref_nr,
7677 			 adj->ref_nr - ref_nr);
7678 		adj->ref_nr -= ref_nr;
7679 		return;
7680 	}
7681 
7682 	if (adj->master)
7683 		sysfs_remove_link(&(dev->dev.kobj), "master");
7684 
7685 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7686 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7687 
7688 	list_del_rcu(&adj->list);
7689 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7690 		 adj_dev->name, dev->name, adj_dev->name);
7691 	netdev_put(adj_dev, &adj->dev_tracker);
7692 	kfree_rcu(adj, rcu);
7693 }
7694 
7695 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7696 					    struct net_device *upper_dev,
7697 					    struct list_head *up_list,
7698 					    struct list_head *down_list,
7699 					    void *private, bool master)
7700 {
7701 	int ret;
7702 
7703 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7704 					   private, master);
7705 	if (ret)
7706 		return ret;
7707 
7708 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7709 					   private, false);
7710 	if (ret) {
7711 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7712 		return ret;
7713 	}
7714 
7715 	return 0;
7716 }
7717 
7718 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7719 					       struct net_device *upper_dev,
7720 					       u16 ref_nr,
7721 					       struct list_head *up_list,
7722 					       struct list_head *down_list)
7723 {
7724 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7725 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7726 }
7727 
7728 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7729 						struct net_device *upper_dev,
7730 						void *private, bool master)
7731 {
7732 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7733 						&dev->adj_list.upper,
7734 						&upper_dev->adj_list.lower,
7735 						private, master);
7736 }
7737 
7738 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7739 						   struct net_device *upper_dev)
7740 {
7741 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7742 					   &dev->adj_list.upper,
7743 					   &upper_dev->adj_list.lower);
7744 }
7745 
7746 static int __netdev_upper_dev_link(struct net_device *dev,
7747 				   struct net_device *upper_dev, bool master,
7748 				   void *upper_priv, void *upper_info,
7749 				   struct netdev_nested_priv *priv,
7750 				   struct netlink_ext_ack *extack)
7751 {
7752 	struct netdev_notifier_changeupper_info changeupper_info = {
7753 		.info = {
7754 			.dev = dev,
7755 			.extack = extack,
7756 		},
7757 		.upper_dev = upper_dev,
7758 		.master = master,
7759 		.linking = true,
7760 		.upper_info = upper_info,
7761 	};
7762 	struct net_device *master_dev;
7763 	int ret = 0;
7764 
7765 	ASSERT_RTNL();
7766 
7767 	if (dev == upper_dev)
7768 		return -EBUSY;
7769 
7770 	/* To prevent loops, check if dev is not upper device to upper_dev. */
7771 	if (__netdev_has_upper_dev(upper_dev, dev))
7772 		return -EBUSY;
7773 
7774 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7775 		return -EMLINK;
7776 
7777 	if (!master) {
7778 		if (__netdev_has_upper_dev(dev, upper_dev))
7779 			return -EEXIST;
7780 	} else {
7781 		master_dev = __netdev_master_upper_dev_get(dev);
7782 		if (master_dev)
7783 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
7784 	}
7785 
7786 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7787 					    &changeupper_info.info);
7788 	ret = notifier_to_errno(ret);
7789 	if (ret)
7790 		return ret;
7791 
7792 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7793 						   master);
7794 	if (ret)
7795 		return ret;
7796 
7797 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7798 					    &changeupper_info.info);
7799 	ret = notifier_to_errno(ret);
7800 	if (ret)
7801 		goto rollback;
7802 
7803 	__netdev_update_upper_level(dev, NULL);
7804 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7805 
7806 	__netdev_update_lower_level(upper_dev, priv);
7807 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7808 				    priv);
7809 
7810 	return 0;
7811 
7812 rollback:
7813 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7814 
7815 	return ret;
7816 }
7817 
7818 /**
7819  * netdev_upper_dev_link - Add a link to the upper device
7820  * @dev: device
7821  * @upper_dev: new upper device
7822  * @extack: netlink extended ack
7823  *
7824  * Adds a link to device which is upper to this one. The caller must hold
7825  * the RTNL lock. On a failure a negative errno code is returned.
7826  * On success the reference counts are adjusted and the function
7827  * returns zero.
7828  */
7829 int netdev_upper_dev_link(struct net_device *dev,
7830 			  struct net_device *upper_dev,
7831 			  struct netlink_ext_ack *extack)
7832 {
7833 	struct netdev_nested_priv priv = {
7834 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7835 		.data = NULL,
7836 	};
7837 
7838 	return __netdev_upper_dev_link(dev, upper_dev, false,
7839 				       NULL, NULL, &priv, extack);
7840 }
7841 EXPORT_SYMBOL(netdev_upper_dev_link);
7842 
7843 /**
7844  * netdev_master_upper_dev_link - Add a master link to the upper device
7845  * @dev: device
7846  * @upper_dev: new upper device
7847  * @upper_priv: upper device private
7848  * @upper_info: upper info to be passed down via notifier
7849  * @extack: netlink extended ack
7850  *
7851  * Adds a link to device which is upper to this one. In this case, only
7852  * one master upper device can be linked, although other non-master devices
7853  * might be linked as well. The caller must hold the RTNL lock.
7854  * On a failure a negative errno code is returned. On success the reference
7855  * counts are adjusted and the function returns zero.
7856  */
7857 int netdev_master_upper_dev_link(struct net_device *dev,
7858 				 struct net_device *upper_dev,
7859 				 void *upper_priv, void *upper_info,
7860 				 struct netlink_ext_ack *extack)
7861 {
7862 	struct netdev_nested_priv priv = {
7863 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7864 		.data = NULL,
7865 	};
7866 
7867 	return __netdev_upper_dev_link(dev, upper_dev, true,
7868 				       upper_priv, upper_info, &priv, extack);
7869 }
7870 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7871 
7872 static void __netdev_upper_dev_unlink(struct net_device *dev,
7873 				      struct net_device *upper_dev,
7874 				      struct netdev_nested_priv *priv)
7875 {
7876 	struct netdev_notifier_changeupper_info changeupper_info = {
7877 		.info = {
7878 			.dev = dev,
7879 		},
7880 		.upper_dev = upper_dev,
7881 		.linking = false,
7882 	};
7883 
7884 	ASSERT_RTNL();
7885 
7886 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7887 
7888 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7889 				      &changeupper_info.info);
7890 
7891 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7892 
7893 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7894 				      &changeupper_info.info);
7895 
7896 	__netdev_update_upper_level(dev, NULL);
7897 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7898 
7899 	__netdev_update_lower_level(upper_dev, priv);
7900 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7901 				    priv);
7902 }
7903 
7904 /**
7905  * netdev_upper_dev_unlink - Removes a link to upper device
7906  * @dev: device
7907  * @upper_dev: new upper device
7908  *
7909  * Removes a link to device which is upper to this one. The caller must hold
7910  * the RTNL lock.
7911  */
7912 void netdev_upper_dev_unlink(struct net_device *dev,
7913 			     struct net_device *upper_dev)
7914 {
7915 	struct netdev_nested_priv priv = {
7916 		.flags = NESTED_SYNC_TODO,
7917 		.data = NULL,
7918 	};
7919 
7920 	__netdev_upper_dev_unlink(dev, upper_dev, &priv);
7921 }
7922 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7923 
7924 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7925 				      struct net_device *lower_dev,
7926 				      bool val)
7927 {
7928 	struct netdev_adjacent *adj;
7929 
7930 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7931 	if (adj)
7932 		adj->ignore = val;
7933 
7934 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7935 	if (adj)
7936 		adj->ignore = val;
7937 }
7938 
7939 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7940 					struct net_device *lower_dev)
7941 {
7942 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7943 }
7944 
7945 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7946 				       struct net_device *lower_dev)
7947 {
7948 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7949 }
7950 
7951 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7952 				   struct net_device *new_dev,
7953 				   struct net_device *dev,
7954 				   struct netlink_ext_ack *extack)
7955 {
7956 	struct netdev_nested_priv priv = {
7957 		.flags = 0,
7958 		.data = NULL,
7959 	};
7960 	int err;
7961 
7962 	if (!new_dev)
7963 		return 0;
7964 
7965 	if (old_dev && new_dev != old_dev)
7966 		netdev_adjacent_dev_disable(dev, old_dev);
7967 	err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
7968 				      extack);
7969 	if (err) {
7970 		if (old_dev && new_dev != old_dev)
7971 			netdev_adjacent_dev_enable(dev, old_dev);
7972 		return err;
7973 	}
7974 
7975 	return 0;
7976 }
7977 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7978 
7979 void netdev_adjacent_change_commit(struct net_device *old_dev,
7980 				   struct net_device *new_dev,
7981 				   struct net_device *dev)
7982 {
7983 	struct netdev_nested_priv priv = {
7984 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7985 		.data = NULL,
7986 	};
7987 
7988 	if (!new_dev || !old_dev)
7989 		return;
7990 
7991 	if (new_dev == old_dev)
7992 		return;
7993 
7994 	netdev_adjacent_dev_enable(dev, old_dev);
7995 	__netdev_upper_dev_unlink(old_dev, dev, &priv);
7996 }
7997 EXPORT_SYMBOL(netdev_adjacent_change_commit);
7998 
7999 void netdev_adjacent_change_abort(struct net_device *old_dev,
8000 				  struct net_device *new_dev,
8001 				  struct net_device *dev)
8002 {
8003 	struct netdev_nested_priv priv = {
8004 		.flags = 0,
8005 		.data = NULL,
8006 	};
8007 
8008 	if (!new_dev)
8009 		return;
8010 
8011 	if (old_dev && new_dev != old_dev)
8012 		netdev_adjacent_dev_enable(dev, old_dev);
8013 
8014 	__netdev_upper_dev_unlink(new_dev, dev, &priv);
8015 }
8016 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8017 
8018 /**
8019  * netdev_bonding_info_change - Dispatch event about slave change
8020  * @dev: device
8021  * @bonding_info: info to dispatch
8022  *
8023  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8024  * The caller must hold the RTNL lock.
8025  */
8026 void netdev_bonding_info_change(struct net_device *dev,
8027 				struct netdev_bonding_info *bonding_info)
8028 {
8029 	struct netdev_notifier_bonding_info info = {
8030 		.info.dev = dev,
8031 	};
8032 
8033 	memcpy(&info.bonding_info, bonding_info,
8034 	       sizeof(struct netdev_bonding_info));
8035 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8036 				      &info.info);
8037 }
8038 EXPORT_SYMBOL(netdev_bonding_info_change);
8039 
8040 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
8041 					   struct netlink_ext_ack *extack)
8042 {
8043 	struct netdev_notifier_offload_xstats_info info = {
8044 		.info.dev = dev,
8045 		.info.extack = extack,
8046 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8047 	};
8048 	int err;
8049 	int rc;
8050 
8051 	dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
8052 					 GFP_KERNEL);
8053 	if (!dev->offload_xstats_l3)
8054 		return -ENOMEM;
8055 
8056 	rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
8057 						  NETDEV_OFFLOAD_XSTATS_DISABLE,
8058 						  &info.info);
8059 	err = notifier_to_errno(rc);
8060 	if (err)
8061 		goto free_stats;
8062 
8063 	return 0;
8064 
8065 free_stats:
8066 	kfree(dev->offload_xstats_l3);
8067 	dev->offload_xstats_l3 = NULL;
8068 	return err;
8069 }
8070 
8071 int netdev_offload_xstats_enable(struct net_device *dev,
8072 				 enum netdev_offload_xstats_type type,
8073 				 struct netlink_ext_ack *extack)
8074 {
8075 	ASSERT_RTNL();
8076 
8077 	if (netdev_offload_xstats_enabled(dev, type))
8078 		return -EALREADY;
8079 
8080 	switch (type) {
8081 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8082 		return netdev_offload_xstats_enable_l3(dev, extack);
8083 	}
8084 
8085 	WARN_ON(1);
8086 	return -EINVAL;
8087 }
8088 EXPORT_SYMBOL(netdev_offload_xstats_enable);
8089 
8090 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
8091 {
8092 	struct netdev_notifier_offload_xstats_info info = {
8093 		.info.dev = dev,
8094 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8095 	};
8096 
8097 	call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
8098 				      &info.info);
8099 	kfree(dev->offload_xstats_l3);
8100 	dev->offload_xstats_l3 = NULL;
8101 }
8102 
8103 int netdev_offload_xstats_disable(struct net_device *dev,
8104 				  enum netdev_offload_xstats_type type)
8105 {
8106 	ASSERT_RTNL();
8107 
8108 	if (!netdev_offload_xstats_enabled(dev, type))
8109 		return -EALREADY;
8110 
8111 	switch (type) {
8112 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8113 		netdev_offload_xstats_disable_l3(dev);
8114 		return 0;
8115 	}
8116 
8117 	WARN_ON(1);
8118 	return -EINVAL;
8119 }
8120 EXPORT_SYMBOL(netdev_offload_xstats_disable);
8121 
8122 static void netdev_offload_xstats_disable_all(struct net_device *dev)
8123 {
8124 	netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
8125 }
8126 
8127 static struct rtnl_hw_stats64 *
8128 netdev_offload_xstats_get_ptr(const struct net_device *dev,
8129 			      enum netdev_offload_xstats_type type)
8130 {
8131 	switch (type) {
8132 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8133 		return dev->offload_xstats_l3;
8134 	}
8135 
8136 	WARN_ON(1);
8137 	return NULL;
8138 }
8139 
8140 bool netdev_offload_xstats_enabled(const struct net_device *dev,
8141 				   enum netdev_offload_xstats_type type)
8142 {
8143 	ASSERT_RTNL();
8144 
8145 	return netdev_offload_xstats_get_ptr(dev, type);
8146 }
8147 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
8148 
8149 struct netdev_notifier_offload_xstats_ru {
8150 	bool used;
8151 };
8152 
8153 struct netdev_notifier_offload_xstats_rd {
8154 	struct rtnl_hw_stats64 stats;
8155 	bool used;
8156 };
8157 
8158 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8159 				  const struct rtnl_hw_stats64 *src)
8160 {
8161 	dest->rx_packets	  += src->rx_packets;
8162 	dest->tx_packets	  += src->tx_packets;
8163 	dest->rx_bytes		  += src->rx_bytes;
8164 	dest->tx_bytes		  += src->tx_bytes;
8165 	dest->rx_errors		  += src->rx_errors;
8166 	dest->tx_errors		  += src->tx_errors;
8167 	dest->rx_dropped	  += src->rx_dropped;
8168 	dest->tx_dropped	  += src->tx_dropped;
8169 	dest->multicast		  += src->multicast;
8170 }
8171 
8172 static int netdev_offload_xstats_get_used(struct net_device *dev,
8173 					  enum netdev_offload_xstats_type type,
8174 					  bool *p_used,
8175 					  struct netlink_ext_ack *extack)
8176 {
8177 	struct netdev_notifier_offload_xstats_ru report_used = {};
8178 	struct netdev_notifier_offload_xstats_info info = {
8179 		.info.dev = dev,
8180 		.info.extack = extack,
8181 		.type = type,
8182 		.report_used = &report_used,
8183 	};
8184 	int rc;
8185 
8186 	WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8187 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8188 					   &info.info);
8189 	*p_used = report_used.used;
8190 	return notifier_to_errno(rc);
8191 }
8192 
8193 static int netdev_offload_xstats_get_stats(struct net_device *dev,
8194 					   enum netdev_offload_xstats_type type,
8195 					   struct rtnl_hw_stats64 *p_stats,
8196 					   bool *p_used,
8197 					   struct netlink_ext_ack *extack)
8198 {
8199 	struct netdev_notifier_offload_xstats_rd report_delta = {};
8200 	struct netdev_notifier_offload_xstats_info info = {
8201 		.info.dev = dev,
8202 		.info.extack = extack,
8203 		.type = type,
8204 		.report_delta = &report_delta,
8205 	};
8206 	struct rtnl_hw_stats64 *stats;
8207 	int rc;
8208 
8209 	stats = netdev_offload_xstats_get_ptr(dev, type);
8210 	if (WARN_ON(!stats))
8211 		return -EINVAL;
8212 
8213 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8214 					   &info.info);
8215 
8216 	/* Cache whatever we got, even if there was an error, otherwise the
8217 	 * successful stats retrievals would get lost.
8218 	 */
8219 	netdev_hw_stats64_add(stats, &report_delta.stats);
8220 
8221 	if (p_stats)
8222 		*p_stats = *stats;
8223 	*p_used = report_delta.used;
8224 
8225 	return notifier_to_errno(rc);
8226 }
8227 
8228 int netdev_offload_xstats_get(struct net_device *dev,
8229 			      enum netdev_offload_xstats_type type,
8230 			      struct rtnl_hw_stats64 *p_stats, bool *p_used,
8231 			      struct netlink_ext_ack *extack)
8232 {
8233 	ASSERT_RTNL();
8234 
8235 	if (p_stats)
8236 		return netdev_offload_xstats_get_stats(dev, type, p_stats,
8237 						       p_used, extack);
8238 	else
8239 		return netdev_offload_xstats_get_used(dev, type, p_used,
8240 						      extack);
8241 }
8242 EXPORT_SYMBOL(netdev_offload_xstats_get);
8243 
8244 void
8245 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8246 				   const struct rtnl_hw_stats64 *stats)
8247 {
8248 	report_delta->used = true;
8249 	netdev_hw_stats64_add(&report_delta->stats, stats);
8250 }
8251 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8252 
8253 void
8254 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8255 {
8256 	report_used->used = true;
8257 }
8258 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8259 
8260 void netdev_offload_xstats_push_delta(struct net_device *dev,
8261 				      enum netdev_offload_xstats_type type,
8262 				      const struct rtnl_hw_stats64 *p_stats)
8263 {
8264 	struct rtnl_hw_stats64 *stats;
8265 
8266 	ASSERT_RTNL();
8267 
8268 	stats = netdev_offload_xstats_get_ptr(dev, type);
8269 	if (WARN_ON(!stats))
8270 		return;
8271 
8272 	netdev_hw_stats64_add(stats, p_stats);
8273 }
8274 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8275 
8276 /**
8277  * netdev_get_xmit_slave - Get the xmit slave of master device
8278  * @dev: device
8279  * @skb: The packet
8280  * @all_slaves: assume all the slaves are active
8281  *
8282  * The reference counters are not incremented so the caller must be
8283  * careful with locks. The caller must hold RCU lock.
8284  * %NULL is returned if no slave is found.
8285  */
8286 
8287 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8288 					 struct sk_buff *skb,
8289 					 bool all_slaves)
8290 {
8291 	const struct net_device_ops *ops = dev->netdev_ops;
8292 
8293 	if (!ops->ndo_get_xmit_slave)
8294 		return NULL;
8295 	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8296 }
8297 EXPORT_SYMBOL(netdev_get_xmit_slave);
8298 
8299 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8300 						  struct sock *sk)
8301 {
8302 	const struct net_device_ops *ops = dev->netdev_ops;
8303 
8304 	if (!ops->ndo_sk_get_lower_dev)
8305 		return NULL;
8306 	return ops->ndo_sk_get_lower_dev(dev, sk);
8307 }
8308 
8309 /**
8310  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8311  * @dev: device
8312  * @sk: the socket
8313  *
8314  * %NULL is returned if no lower device is found.
8315  */
8316 
8317 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8318 					    struct sock *sk)
8319 {
8320 	struct net_device *lower;
8321 
8322 	lower = netdev_sk_get_lower_dev(dev, sk);
8323 	while (lower) {
8324 		dev = lower;
8325 		lower = netdev_sk_get_lower_dev(dev, sk);
8326 	}
8327 
8328 	return dev;
8329 }
8330 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8331 
8332 static void netdev_adjacent_add_links(struct net_device *dev)
8333 {
8334 	struct netdev_adjacent *iter;
8335 
8336 	struct net *net = dev_net(dev);
8337 
8338 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8339 		if (!net_eq(net, dev_net(iter->dev)))
8340 			continue;
8341 		netdev_adjacent_sysfs_add(iter->dev, dev,
8342 					  &iter->dev->adj_list.lower);
8343 		netdev_adjacent_sysfs_add(dev, iter->dev,
8344 					  &dev->adj_list.upper);
8345 	}
8346 
8347 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8348 		if (!net_eq(net, dev_net(iter->dev)))
8349 			continue;
8350 		netdev_adjacent_sysfs_add(iter->dev, dev,
8351 					  &iter->dev->adj_list.upper);
8352 		netdev_adjacent_sysfs_add(dev, iter->dev,
8353 					  &dev->adj_list.lower);
8354 	}
8355 }
8356 
8357 static void netdev_adjacent_del_links(struct net_device *dev)
8358 {
8359 	struct netdev_adjacent *iter;
8360 
8361 	struct net *net = dev_net(dev);
8362 
8363 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8364 		if (!net_eq(net, dev_net(iter->dev)))
8365 			continue;
8366 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8367 					  &iter->dev->adj_list.lower);
8368 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8369 					  &dev->adj_list.upper);
8370 	}
8371 
8372 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8373 		if (!net_eq(net, dev_net(iter->dev)))
8374 			continue;
8375 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8376 					  &iter->dev->adj_list.upper);
8377 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8378 					  &dev->adj_list.lower);
8379 	}
8380 }
8381 
8382 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8383 {
8384 	struct netdev_adjacent *iter;
8385 
8386 	struct net *net = dev_net(dev);
8387 
8388 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8389 		if (!net_eq(net, dev_net(iter->dev)))
8390 			continue;
8391 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8392 					  &iter->dev->adj_list.lower);
8393 		netdev_adjacent_sysfs_add(iter->dev, dev,
8394 					  &iter->dev->adj_list.lower);
8395 	}
8396 
8397 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8398 		if (!net_eq(net, dev_net(iter->dev)))
8399 			continue;
8400 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8401 					  &iter->dev->adj_list.upper);
8402 		netdev_adjacent_sysfs_add(iter->dev, dev,
8403 					  &iter->dev->adj_list.upper);
8404 	}
8405 }
8406 
8407 void *netdev_lower_dev_get_private(struct net_device *dev,
8408 				   struct net_device *lower_dev)
8409 {
8410 	struct netdev_adjacent *lower;
8411 
8412 	if (!lower_dev)
8413 		return NULL;
8414 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8415 	if (!lower)
8416 		return NULL;
8417 
8418 	return lower->private;
8419 }
8420 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8421 
8422 
8423 /**
8424  * netdev_lower_state_changed - Dispatch event about lower device state change
8425  * @lower_dev: device
8426  * @lower_state_info: state to dispatch
8427  *
8428  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8429  * The caller must hold the RTNL lock.
8430  */
8431 void netdev_lower_state_changed(struct net_device *lower_dev,
8432 				void *lower_state_info)
8433 {
8434 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8435 		.info.dev = lower_dev,
8436 	};
8437 
8438 	ASSERT_RTNL();
8439 	changelowerstate_info.lower_state_info = lower_state_info;
8440 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8441 				      &changelowerstate_info.info);
8442 }
8443 EXPORT_SYMBOL(netdev_lower_state_changed);
8444 
8445 static void dev_change_rx_flags(struct net_device *dev, int flags)
8446 {
8447 	const struct net_device_ops *ops = dev->netdev_ops;
8448 
8449 	if (ops->ndo_change_rx_flags)
8450 		ops->ndo_change_rx_flags(dev, flags);
8451 }
8452 
8453 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8454 {
8455 	unsigned int old_flags = dev->flags;
8456 	kuid_t uid;
8457 	kgid_t gid;
8458 
8459 	ASSERT_RTNL();
8460 
8461 	dev->flags |= IFF_PROMISC;
8462 	dev->promiscuity += inc;
8463 	if (dev->promiscuity == 0) {
8464 		/*
8465 		 * Avoid overflow.
8466 		 * If inc causes overflow, untouch promisc and return error.
8467 		 */
8468 		if (inc < 0)
8469 			dev->flags &= ~IFF_PROMISC;
8470 		else {
8471 			dev->promiscuity -= inc;
8472 			netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8473 			return -EOVERFLOW;
8474 		}
8475 	}
8476 	if (dev->flags != old_flags) {
8477 		netdev_info(dev, "%s promiscuous mode\n",
8478 			    dev->flags & IFF_PROMISC ? "entered" : "left");
8479 		if (audit_enabled) {
8480 			current_uid_gid(&uid, &gid);
8481 			audit_log(audit_context(), GFP_ATOMIC,
8482 				  AUDIT_ANOM_PROMISCUOUS,
8483 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8484 				  dev->name, (dev->flags & IFF_PROMISC),
8485 				  (old_flags & IFF_PROMISC),
8486 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
8487 				  from_kuid(&init_user_ns, uid),
8488 				  from_kgid(&init_user_ns, gid),
8489 				  audit_get_sessionid(current));
8490 		}
8491 
8492 		dev_change_rx_flags(dev, IFF_PROMISC);
8493 	}
8494 	if (notify)
8495 		__dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
8496 	return 0;
8497 }
8498 
8499 /**
8500  *	dev_set_promiscuity	- update promiscuity count on a device
8501  *	@dev: device
8502  *	@inc: modifier
8503  *
8504  *	Add or remove promiscuity from a device. While the count in the device
8505  *	remains above zero the interface remains promiscuous. Once it hits zero
8506  *	the device reverts back to normal filtering operation. A negative inc
8507  *	value is used to drop promiscuity on the device.
8508  *	Return 0 if successful or a negative errno code on error.
8509  */
8510 int dev_set_promiscuity(struct net_device *dev, int inc)
8511 {
8512 	unsigned int old_flags = dev->flags;
8513 	int err;
8514 
8515 	err = __dev_set_promiscuity(dev, inc, true);
8516 	if (err < 0)
8517 		return err;
8518 	if (dev->flags != old_flags)
8519 		dev_set_rx_mode(dev);
8520 	return err;
8521 }
8522 EXPORT_SYMBOL(dev_set_promiscuity);
8523 
8524 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8525 {
8526 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8527 
8528 	ASSERT_RTNL();
8529 
8530 	dev->flags |= IFF_ALLMULTI;
8531 	dev->allmulti += inc;
8532 	if (dev->allmulti == 0) {
8533 		/*
8534 		 * Avoid overflow.
8535 		 * If inc causes overflow, untouch allmulti and return error.
8536 		 */
8537 		if (inc < 0)
8538 			dev->flags &= ~IFF_ALLMULTI;
8539 		else {
8540 			dev->allmulti -= inc;
8541 			netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8542 			return -EOVERFLOW;
8543 		}
8544 	}
8545 	if (dev->flags ^ old_flags) {
8546 		netdev_info(dev, "%s allmulticast mode\n",
8547 			    dev->flags & IFF_ALLMULTI ? "entered" : "left");
8548 		dev_change_rx_flags(dev, IFF_ALLMULTI);
8549 		dev_set_rx_mode(dev);
8550 		if (notify)
8551 			__dev_notify_flags(dev, old_flags,
8552 					   dev->gflags ^ old_gflags, 0, NULL);
8553 	}
8554 	return 0;
8555 }
8556 
8557 /**
8558  *	dev_set_allmulti	- update allmulti count on a device
8559  *	@dev: device
8560  *	@inc: modifier
8561  *
8562  *	Add or remove reception of all multicast frames to a device. While the
8563  *	count in the device remains above zero the interface remains listening
8564  *	to all interfaces. Once it hits zero the device reverts back to normal
8565  *	filtering operation. A negative @inc value is used to drop the counter
8566  *	when releasing a resource needing all multicasts.
8567  *	Return 0 if successful or a negative errno code on error.
8568  */
8569 
8570 int dev_set_allmulti(struct net_device *dev, int inc)
8571 {
8572 	return __dev_set_allmulti(dev, inc, true);
8573 }
8574 EXPORT_SYMBOL(dev_set_allmulti);
8575 
8576 /*
8577  *	Upload unicast and multicast address lists to device and
8578  *	configure RX filtering. When the device doesn't support unicast
8579  *	filtering it is put in promiscuous mode while unicast addresses
8580  *	are present.
8581  */
8582 void __dev_set_rx_mode(struct net_device *dev)
8583 {
8584 	const struct net_device_ops *ops = dev->netdev_ops;
8585 
8586 	/* dev_open will call this function so the list will stay sane. */
8587 	if (!(dev->flags&IFF_UP))
8588 		return;
8589 
8590 	if (!netif_device_present(dev))
8591 		return;
8592 
8593 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8594 		/* Unicast addresses changes may only happen under the rtnl,
8595 		 * therefore calling __dev_set_promiscuity here is safe.
8596 		 */
8597 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8598 			__dev_set_promiscuity(dev, 1, false);
8599 			dev->uc_promisc = true;
8600 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8601 			__dev_set_promiscuity(dev, -1, false);
8602 			dev->uc_promisc = false;
8603 		}
8604 	}
8605 
8606 	if (ops->ndo_set_rx_mode)
8607 		ops->ndo_set_rx_mode(dev);
8608 }
8609 
8610 void dev_set_rx_mode(struct net_device *dev)
8611 {
8612 	netif_addr_lock_bh(dev);
8613 	__dev_set_rx_mode(dev);
8614 	netif_addr_unlock_bh(dev);
8615 }
8616 
8617 /**
8618  *	dev_get_flags - get flags reported to userspace
8619  *	@dev: device
8620  *
8621  *	Get the combination of flag bits exported through APIs to userspace.
8622  */
8623 unsigned int dev_get_flags(const struct net_device *dev)
8624 {
8625 	unsigned int flags;
8626 
8627 	flags = (READ_ONCE(dev->flags) & ~(IFF_PROMISC |
8628 				IFF_ALLMULTI |
8629 				IFF_RUNNING |
8630 				IFF_LOWER_UP |
8631 				IFF_DORMANT)) |
8632 		(READ_ONCE(dev->gflags) & (IFF_PROMISC |
8633 				IFF_ALLMULTI));
8634 
8635 	if (netif_running(dev)) {
8636 		if (netif_oper_up(dev))
8637 			flags |= IFF_RUNNING;
8638 		if (netif_carrier_ok(dev))
8639 			flags |= IFF_LOWER_UP;
8640 		if (netif_dormant(dev))
8641 			flags |= IFF_DORMANT;
8642 	}
8643 
8644 	return flags;
8645 }
8646 EXPORT_SYMBOL(dev_get_flags);
8647 
8648 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8649 		       struct netlink_ext_ack *extack)
8650 {
8651 	unsigned int old_flags = dev->flags;
8652 	int ret;
8653 
8654 	ASSERT_RTNL();
8655 
8656 	/*
8657 	 *	Set the flags on our device.
8658 	 */
8659 
8660 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8661 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8662 			       IFF_AUTOMEDIA)) |
8663 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8664 				    IFF_ALLMULTI));
8665 
8666 	/*
8667 	 *	Load in the correct multicast list now the flags have changed.
8668 	 */
8669 
8670 	if ((old_flags ^ flags) & IFF_MULTICAST)
8671 		dev_change_rx_flags(dev, IFF_MULTICAST);
8672 
8673 	dev_set_rx_mode(dev);
8674 
8675 	/*
8676 	 *	Have we downed the interface. We handle IFF_UP ourselves
8677 	 *	according to user attempts to set it, rather than blindly
8678 	 *	setting it.
8679 	 */
8680 
8681 	ret = 0;
8682 	if ((old_flags ^ flags) & IFF_UP) {
8683 		if (old_flags & IFF_UP)
8684 			__dev_close(dev);
8685 		else
8686 			ret = __dev_open(dev, extack);
8687 	}
8688 
8689 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
8690 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
8691 		unsigned int old_flags = dev->flags;
8692 
8693 		dev->gflags ^= IFF_PROMISC;
8694 
8695 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
8696 			if (dev->flags != old_flags)
8697 				dev_set_rx_mode(dev);
8698 	}
8699 
8700 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8701 	 * is important. Some (broken) drivers set IFF_PROMISC, when
8702 	 * IFF_ALLMULTI is requested not asking us and not reporting.
8703 	 */
8704 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8705 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8706 
8707 		dev->gflags ^= IFF_ALLMULTI;
8708 		__dev_set_allmulti(dev, inc, false);
8709 	}
8710 
8711 	return ret;
8712 }
8713 
8714 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8715 			unsigned int gchanges, u32 portid,
8716 			const struct nlmsghdr *nlh)
8717 {
8718 	unsigned int changes = dev->flags ^ old_flags;
8719 
8720 	if (gchanges)
8721 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
8722 
8723 	if (changes & IFF_UP) {
8724 		if (dev->flags & IFF_UP)
8725 			call_netdevice_notifiers(NETDEV_UP, dev);
8726 		else
8727 			call_netdevice_notifiers(NETDEV_DOWN, dev);
8728 	}
8729 
8730 	if (dev->flags & IFF_UP &&
8731 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8732 		struct netdev_notifier_change_info change_info = {
8733 			.info = {
8734 				.dev = dev,
8735 			},
8736 			.flags_changed = changes,
8737 		};
8738 
8739 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8740 	}
8741 }
8742 
8743 /**
8744  *	dev_change_flags - change device settings
8745  *	@dev: device
8746  *	@flags: device state flags
8747  *	@extack: netlink extended ack
8748  *
8749  *	Change settings on device based state flags. The flags are
8750  *	in the userspace exported format.
8751  */
8752 int dev_change_flags(struct net_device *dev, unsigned int flags,
8753 		     struct netlink_ext_ack *extack)
8754 {
8755 	int ret;
8756 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8757 
8758 	ret = __dev_change_flags(dev, flags, extack);
8759 	if (ret < 0)
8760 		return ret;
8761 
8762 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8763 	__dev_notify_flags(dev, old_flags, changes, 0, NULL);
8764 	return ret;
8765 }
8766 EXPORT_SYMBOL(dev_change_flags);
8767 
8768 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8769 {
8770 	const struct net_device_ops *ops = dev->netdev_ops;
8771 
8772 	if (ops->ndo_change_mtu)
8773 		return ops->ndo_change_mtu(dev, new_mtu);
8774 
8775 	/* Pairs with all the lockless reads of dev->mtu in the stack */
8776 	WRITE_ONCE(dev->mtu, new_mtu);
8777 	return 0;
8778 }
8779 EXPORT_SYMBOL(__dev_set_mtu);
8780 
8781 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8782 		     struct netlink_ext_ack *extack)
8783 {
8784 	/* MTU must be positive, and in range */
8785 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8786 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8787 		return -EINVAL;
8788 	}
8789 
8790 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8791 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8792 		return -EINVAL;
8793 	}
8794 	return 0;
8795 }
8796 
8797 /**
8798  *	dev_set_mtu_ext - Change maximum transfer unit
8799  *	@dev: device
8800  *	@new_mtu: new transfer unit
8801  *	@extack: netlink extended ack
8802  *
8803  *	Change the maximum transfer size of the network device.
8804  */
8805 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8806 		    struct netlink_ext_ack *extack)
8807 {
8808 	int err, orig_mtu;
8809 
8810 	if (new_mtu == dev->mtu)
8811 		return 0;
8812 
8813 	err = dev_validate_mtu(dev, new_mtu, extack);
8814 	if (err)
8815 		return err;
8816 
8817 	if (!netif_device_present(dev))
8818 		return -ENODEV;
8819 
8820 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8821 	err = notifier_to_errno(err);
8822 	if (err)
8823 		return err;
8824 
8825 	orig_mtu = dev->mtu;
8826 	err = __dev_set_mtu(dev, new_mtu);
8827 
8828 	if (!err) {
8829 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8830 						   orig_mtu);
8831 		err = notifier_to_errno(err);
8832 		if (err) {
8833 			/* setting mtu back and notifying everyone again,
8834 			 * so that they have a chance to revert changes.
8835 			 */
8836 			__dev_set_mtu(dev, orig_mtu);
8837 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8838 						     new_mtu);
8839 		}
8840 	}
8841 	return err;
8842 }
8843 
8844 int dev_set_mtu(struct net_device *dev, int new_mtu)
8845 {
8846 	struct netlink_ext_ack extack;
8847 	int err;
8848 
8849 	memset(&extack, 0, sizeof(extack));
8850 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
8851 	if (err && extack._msg)
8852 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8853 	return err;
8854 }
8855 EXPORT_SYMBOL(dev_set_mtu);
8856 
8857 /**
8858  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
8859  *	@dev: device
8860  *	@new_len: new tx queue length
8861  */
8862 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8863 {
8864 	unsigned int orig_len = dev->tx_queue_len;
8865 	int res;
8866 
8867 	if (new_len != (unsigned int)new_len)
8868 		return -ERANGE;
8869 
8870 	if (new_len != orig_len) {
8871 		dev->tx_queue_len = new_len;
8872 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8873 		res = notifier_to_errno(res);
8874 		if (res)
8875 			goto err_rollback;
8876 		res = dev_qdisc_change_tx_queue_len(dev);
8877 		if (res)
8878 			goto err_rollback;
8879 	}
8880 
8881 	return 0;
8882 
8883 err_rollback:
8884 	netdev_err(dev, "refused to change device tx_queue_len\n");
8885 	dev->tx_queue_len = orig_len;
8886 	return res;
8887 }
8888 
8889 /**
8890  *	dev_set_group - Change group this device belongs to
8891  *	@dev: device
8892  *	@new_group: group this device should belong to
8893  */
8894 void dev_set_group(struct net_device *dev, int new_group)
8895 {
8896 	dev->group = new_group;
8897 }
8898 
8899 /**
8900  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8901  *	@dev: device
8902  *	@addr: new address
8903  *	@extack: netlink extended ack
8904  */
8905 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8906 			      struct netlink_ext_ack *extack)
8907 {
8908 	struct netdev_notifier_pre_changeaddr_info info = {
8909 		.info.dev = dev,
8910 		.info.extack = extack,
8911 		.dev_addr = addr,
8912 	};
8913 	int rc;
8914 
8915 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8916 	return notifier_to_errno(rc);
8917 }
8918 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8919 
8920 /**
8921  *	dev_set_mac_address - Change Media Access Control Address
8922  *	@dev: device
8923  *	@sa: new address
8924  *	@extack: netlink extended ack
8925  *
8926  *	Change the hardware (MAC) address of the device
8927  */
8928 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8929 			struct netlink_ext_ack *extack)
8930 {
8931 	const struct net_device_ops *ops = dev->netdev_ops;
8932 	int err;
8933 
8934 	if (!ops->ndo_set_mac_address)
8935 		return -EOPNOTSUPP;
8936 	if (sa->sa_family != dev->type)
8937 		return -EINVAL;
8938 	if (!netif_device_present(dev))
8939 		return -ENODEV;
8940 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8941 	if (err)
8942 		return err;
8943 	if (memcmp(dev->dev_addr, sa->sa_data, dev->addr_len)) {
8944 		err = ops->ndo_set_mac_address(dev, sa);
8945 		if (err)
8946 			return err;
8947 	}
8948 	dev->addr_assign_type = NET_ADDR_SET;
8949 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8950 	add_device_randomness(dev->dev_addr, dev->addr_len);
8951 	return 0;
8952 }
8953 EXPORT_SYMBOL(dev_set_mac_address);
8954 
8955 DECLARE_RWSEM(dev_addr_sem);
8956 
8957 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8958 			     struct netlink_ext_ack *extack)
8959 {
8960 	int ret;
8961 
8962 	down_write(&dev_addr_sem);
8963 	ret = dev_set_mac_address(dev, sa, extack);
8964 	up_write(&dev_addr_sem);
8965 	return ret;
8966 }
8967 EXPORT_SYMBOL(dev_set_mac_address_user);
8968 
8969 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8970 {
8971 	size_t size = sizeof(sa->sa_data_min);
8972 	struct net_device *dev;
8973 	int ret = 0;
8974 
8975 	down_read(&dev_addr_sem);
8976 	rcu_read_lock();
8977 
8978 	dev = dev_get_by_name_rcu(net, dev_name);
8979 	if (!dev) {
8980 		ret = -ENODEV;
8981 		goto unlock;
8982 	}
8983 	if (!dev->addr_len)
8984 		memset(sa->sa_data, 0, size);
8985 	else
8986 		memcpy(sa->sa_data, dev->dev_addr,
8987 		       min_t(size_t, size, dev->addr_len));
8988 	sa->sa_family = dev->type;
8989 
8990 unlock:
8991 	rcu_read_unlock();
8992 	up_read(&dev_addr_sem);
8993 	return ret;
8994 }
8995 EXPORT_SYMBOL(dev_get_mac_address);
8996 
8997 /**
8998  *	dev_change_carrier - Change device carrier
8999  *	@dev: device
9000  *	@new_carrier: new value
9001  *
9002  *	Change device carrier
9003  */
9004 int dev_change_carrier(struct net_device *dev, bool new_carrier)
9005 {
9006 	const struct net_device_ops *ops = dev->netdev_ops;
9007 
9008 	if (!ops->ndo_change_carrier)
9009 		return -EOPNOTSUPP;
9010 	if (!netif_device_present(dev))
9011 		return -ENODEV;
9012 	return ops->ndo_change_carrier(dev, new_carrier);
9013 }
9014 
9015 /**
9016  *	dev_get_phys_port_id - Get device physical port ID
9017  *	@dev: device
9018  *	@ppid: port ID
9019  *
9020  *	Get device physical port ID
9021  */
9022 int dev_get_phys_port_id(struct net_device *dev,
9023 			 struct netdev_phys_item_id *ppid)
9024 {
9025 	const struct net_device_ops *ops = dev->netdev_ops;
9026 
9027 	if (!ops->ndo_get_phys_port_id)
9028 		return -EOPNOTSUPP;
9029 	return ops->ndo_get_phys_port_id(dev, ppid);
9030 }
9031 
9032 /**
9033  *	dev_get_phys_port_name - Get device physical port name
9034  *	@dev: device
9035  *	@name: port name
9036  *	@len: limit of bytes to copy to name
9037  *
9038  *	Get device physical port name
9039  */
9040 int dev_get_phys_port_name(struct net_device *dev,
9041 			   char *name, size_t len)
9042 {
9043 	const struct net_device_ops *ops = dev->netdev_ops;
9044 	int err;
9045 
9046 	if (ops->ndo_get_phys_port_name) {
9047 		err = ops->ndo_get_phys_port_name(dev, name, len);
9048 		if (err != -EOPNOTSUPP)
9049 			return err;
9050 	}
9051 	return devlink_compat_phys_port_name_get(dev, name, len);
9052 }
9053 
9054 /**
9055  *	dev_get_port_parent_id - Get the device's port parent identifier
9056  *	@dev: network device
9057  *	@ppid: pointer to a storage for the port's parent identifier
9058  *	@recurse: allow/disallow recursion to lower devices
9059  *
9060  *	Get the devices's port parent identifier
9061  */
9062 int dev_get_port_parent_id(struct net_device *dev,
9063 			   struct netdev_phys_item_id *ppid,
9064 			   bool recurse)
9065 {
9066 	const struct net_device_ops *ops = dev->netdev_ops;
9067 	struct netdev_phys_item_id first = { };
9068 	struct net_device *lower_dev;
9069 	struct list_head *iter;
9070 	int err;
9071 
9072 	if (ops->ndo_get_port_parent_id) {
9073 		err = ops->ndo_get_port_parent_id(dev, ppid);
9074 		if (err != -EOPNOTSUPP)
9075 			return err;
9076 	}
9077 
9078 	err = devlink_compat_switch_id_get(dev, ppid);
9079 	if (!recurse || err != -EOPNOTSUPP)
9080 		return err;
9081 
9082 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
9083 		err = dev_get_port_parent_id(lower_dev, ppid, true);
9084 		if (err)
9085 			break;
9086 		if (!first.id_len)
9087 			first = *ppid;
9088 		else if (memcmp(&first, ppid, sizeof(*ppid)))
9089 			return -EOPNOTSUPP;
9090 	}
9091 
9092 	return err;
9093 }
9094 EXPORT_SYMBOL(dev_get_port_parent_id);
9095 
9096 /**
9097  *	netdev_port_same_parent_id - Indicate if two network devices have
9098  *	the same port parent identifier
9099  *	@a: first network device
9100  *	@b: second network device
9101  */
9102 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9103 {
9104 	struct netdev_phys_item_id a_id = { };
9105 	struct netdev_phys_item_id b_id = { };
9106 
9107 	if (dev_get_port_parent_id(a, &a_id, true) ||
9108 	    dev_get_port_parent_id(b, &b_id, true))
9109 		return false;
9110 
9111 	return netdev_phys_item_id_same(&a_id, &b_id);
9112 }
9113 EXPORT_SYMBOL(netdev_port_same_parent_id);
9114 
9115 /**
9116  *	dev_change_proto_down - set carrier according to proto_down.
9117  *
9118  *	@dev: device
9119  *	@proto_down: new value
9120  */
9121 int dev_change_proto_down(struct net_device *dev, bool proto_down)
9122 {
9123 	if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN))
9124 		return -EOPNOTSUPP;
9125 	if (!netif_device_present(dev))
9126 		return -ENODEV;
9127 	if (proto_down)
9128 		netif_carrier_off(dev);
9129 	else
9130 		netif_carrier_on(dev);
9131 	dev->proto_down = proto_down;
9132 	return 0;
9133 }
9134 
9135 /**
9136  *	dev_change_proto_down_reason - proto down reason
9137  *
9138  *	@dev: device
9139  *	@mask: proto down mask
9140  *	@value: proto down value
9141  */
9142 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9143 				  u32 value)
9144 {
9145 	int b;
9146 
9147 	if (!mask) {
9148 		dev->proto_down_reason = value;
9149 	} else {
9150 		for_each_set_bit(b, &mask, 32) {
9151 			if (value & (1 << b))
9152 				dev->proto_down_reason |= BIT(b);
9153 			else
9154 				dev->proto_down_reason &= ~BIT(b);
9155 		}
9156 	}
9157 }
9158 
9159 struct bpf_xdp_link {
9160 	struct bpf_link link;
9161 	struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9162 	int flags;
9163 };
9164 
9165 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9166 {
9167 	if (flags & XDP_FLAGS_HW_MODE)
9168 		return XDP_MODE_HW;
9169 	if (flags & XDP_FLAGS_DRV_MODE)
9170 		return XDP_MODE_DRV;
9171 	if (flags & XDP_FLAGS_SKB_MODE)
9172 		return XDP_MODE_SKB;
9173 	return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9174 }
9175 
9176 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9177 {
9178 	switch (mode) {
9179 	case XDP_MODE_SKB:
9180 		return generic_xdp_install;
9181 	case XDP_MODE_DRV:
9182 	case XDP_MODE_HW:
9183 		return dev->netdev_ops->ndo_bpf;
9184 	default:
9185 		return NULL;
9186 	}
9187 }
9188 
9189 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9190 					 enum bpf_xdp_mode mode)
9191 {
9192 	return dev->xdp_state[mode].link;
9193 }
9194 
9195 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9196 				     enum bpf_xdp_mode mode)
9197 {
9198 	struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9199 
9200 	if (link)
9201 		return link->link.prog;
9202 	return dev->xdp_state[mode].prog;
9203 }
9204 
9205 u8 dev_xdp_prog_count(struct net_device *dev)
9206 {
9207 	u8 count = 0;
9208 	int i;
9209 
9210 	for (i = 0; i < __MAX_XDP_MODE; i++)
9211 		if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9212 			count++;
9213 	return count;
9214 }
9215 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9216 
9217 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9218 {
9219 	struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9220 
9221 	return prog ? prog->aux->id : 0;
9222 }
9223 
9224 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9225 			     struct bpf_xdp_link *link)
9226 {
9227 	dev->xdp_state[mode].link = link;
9228 	dev->xdp_state[mode].prog = NULL;
9229 }
9230 
9231 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9232 			     struct bpf_prog *prog)
9233 {
9234 	dev->xdp_state[mode].link = NULL;
9235 	dev->xdp_state[mode].prog = prog;
9236 }
9237 
9238 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9239 			   bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9240 			   u32 flags, struct bpf_prog *prog)
9241 {
9242 	struct netdev_bpf xdp;
9243 	int err;
9244 
9245 	memset(&xdp, 0, sizeof(xdp));
9246 	xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9247 	xdp.extack = extack;
9248 	xdp.flags = flags;
9249 	xdp.prog = prog;
9250 
9251 	/* Drivers assume refcnt is already incremented (i.e, prog pointer is
9252 	 * "moved" into driver), so they don't increment it on their own, but
9253 	 * they do decrement refcnt when program is detached or replaced.
9254 	 * Given net_device also owns link/prog, we need to bump refcnt here
9255 	 * to prevent drivers from underflowing it.
9256 	 */
9257 	if (prog)
9258 		bpf_prog_inc(prog);
9259 	err = bpf_op(dev, &xdp);
9260 	if (err) {
9261 		if (prog)
9262 			bpf_prog_put(prog);
9263 		return err;
9264 	}
9265 
9266 	if (mode != XDP_MODE_HW)
9267 		bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9268 
9269 	return 0;
9270 }
9271 
9272 static void dev_xdp_uninstall(struct net_device *dev)
9273 {
9274 	struct bpf_xdp_link *link;
9275 	struct bpf_prog *prog;
9276 	enum bpf_xdp_mode mode;
9277 	bpf_op_t bpf_op;
9278 
9279 	ASSERT_RTNL();
9280 
9281 	for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9282 		prog = dev_xdp_prog(dev, mode);
9283 		if (!prog)
9284 			continue;
9285 
9286 		bpf_op = dev_xdp_bpf_op(dev, mode);
9287 		if (!bpf_op)
9288 			continue;
9289 
9290 		WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9291 
9292 		/* auto-detach link from net device */
9293 		link = dev_xdp_link(dev, mode);
9294 		if (link)
9295 			link->dev = NULL;
9296 		else
9297 			bpf_prog_put(prog);
9298 
9299 		dev_xdp_set_link(dev, mode, NULL);
9300 	}
9301 }
9302 
9303 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9304 			  struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9305 			  struct bpf_prog *old_prog, u32 flags)
9306 {
9307 	unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9308 	struct bpf_prog *cur_prog;
9309 	struct net_device *upper;
9310 	struct list_head *iter;
9311 	enum bpf_xdp_mode mode;
9312 	bpf_op_t bpf_op;
9313 	int err;
9314 
9315 	ASSERT_RTNL();
9316 
9317 	/* either link or prog attachment, never both */
9318 	if (link && (new_prog || old_prog))
9319 		return -EINVAL;
9320 	/* link supports only XDP mode flags */
9321 	if (link && (flags & ~XDP_FLAGS_MODES)) {
9322 		NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9323 		return -EINVAL;
9324 	}
9325 	/* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9326 	if (num_modes > 1) {
9327 		NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9328 		return -EINVAL;
9329 	}
9330 	/* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9331 	if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9332 		NL_SET_ERR_MSG(extack,
9333 			       "More than one program loaded, unset mode is ambiguous");
9334 		return -EINVAL;
9335 	}
9336 	/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9337 	if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9338 		NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9339 		return -EINVAL;
9340 	}
9341 
9342 	mode = dev_xdp_mode(dev, flags);
9343 	/* can't replace attached link */
9344 	if (dev_xdp_link(dev, mode)) {
9345 		NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9346 		return -EBUSY;
9347 	}
9348 
9349 	/* don't allow if an upper device already has a program */
9350 	netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9351 		if (dev_xdp_prog_count(upper) > 0) {
9352 			NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9353 			return -EEXIST;
9354 		}
9355 	}
9356 
9357 	cur_prog = dev_xdp_prog(dev, mode);
9358 	/* can't replace attached prog with link */
9359 	if (link && cur_prog) {
9360 		NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9361 		return -EBUSY;
9362 	}
9363 	if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9364 		NL_SET_ERR_MSG(extack, "Active program does not match expected");
9365 		return -EEXIST;
9366 	}
9367 
9368 	/* put effective new program into new_prog */
9369 	if (link)
9370 		new_prog = link->link.prog;
9371 
9372 	if (new_prog) {
9373 		bool offload = mode == XDP_MODE_HW;
9374 		enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9375 					       ? XDP_MODE_DRV : XDP_MODE_SKB;
9376 
9377 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9378 			NL_SET_ERR_MSG(extack, "XDP program already attached");
9379 			return -EBUSY;
9380 		}
9381 		if (!offload && dev_xdp_prog(dev, other_mode)) {
9382 			NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9383 			return -EEXIST;
9384 		}
9385 		if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
9386 			NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
9387 			return -EINVAL;
9388 		}
9389 		if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
9390 			NL_SET_ERR_MSG(extack, "Program bound to different device");
9391 			return -EINVAL;
9392 		}
9393 		if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9394 			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9395 			return -EINVAL;
9396 		}
9397 		if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9398 			NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9399 			return -EINVAL;
9400 		}
9401 	}
9402 
9403 	/* don't call drivers if the effective program didn't change */
9404 	if (new_prog != cur_prog) {
9405 		bpf_op = dev_xdp_bpf_op(dev, mode);
9406 		if (!bpf_op) {
9407 			NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9408 			return -EOPNOTSUPP;
9409 		}
9410 
9411 		err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9412 		if (err)
9413 			return err;
9414 	}
9415 
9416 	if (link)
9417 		dev_xdp_set_link(dev, mode, link);
9418 	else
9419 		dev_xdp_set_prog(dev, mode, new_prog);
9420 	if (cur_prog)
9421 		bpf_prog_put(cur_prog);
9422 
9423 	return 0;
9424 }
9425 
9426 static int dev_xdp_attach_link(struct net_device *dev,
9427 			       struct netlink_ext_ack *extack,
9428 			       struct bpf_xdp_link *link)
9429 {
9430 	return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9431 }
9432 
9433 static int dev_xdp_detach_link(struct net_device *dev,
9434 			       struct netlink_ext_ack *extack,
9435 			       struct bpf_xdp_link *link)
9436 {
9437 	enum bpf_xdp_mode mode;
9438 	bpf_op_t bpf_op;
9439 
9440 	ASSERT_RTNL();
9441 
9442 	mode = dev_xdp_mode(dev, link->flags);
9443 	if (dev_xdp_link(dev, mode) != link)
9444 		return -EINVAL;
9445 
9446 	bpf_op = dev_xdp_bpf_op(dev, mode);
9447 	WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9448 	dev_xdp_set_link(dev, mode, NULL);
9449 	return 0;
9450 }
9451 
9452 static void bpf_xdp_link_release(struct bpf_link *link)
9453 {
9454 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9455 
9456 	rtnl_lock();
9457 
9458 	/* if racing with net_device's tear down, xdp_link->dev might be
9459 	 * already NULL, in which case link was already auto-detached
9460 	 */
9461 	if (xdp_link->dev) {
9462 		WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9463 		xdp_link->dev = NULL;
9464 	}
9465 
9466 	rtnl_unlock();
9467 }
9468 
9469 static int bpf_xdp_link_detach(struct bpf_link *link)
9470 {
9471 	bpf_xdp_link_release(link);
9472 	return 0;
9473 }
9474 
9475 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9476 {
9477 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9478 
9479 	kfree(xdp_link);
9480 }
9481 
9482 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9483 				     struct seq_file *seq)
9484 {
9485 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9486 	u32 ifindex = 0;
9487 
9488 	rtnl_lock();
9489 	if (xdp_link->dev)
9490 		ifindex = xdp_link->dev->ifindex;
9491 	rtnl_unlock();
9492 
9493 	seq_printf(seq, "ifindex:\t%u\n", ifindex);
9494 }
9495 
9496 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9497 				       struct bpf_link_info *info)
9498 {
9499 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9500 	u32 ifindex = 0;
9501 
9502 	rtnl_lock();
9503 	if (xdp_link->dev)
9504 		ifindex = xdp_link->dev->ifindex;
9505 	rtnl_unlock();
9506 
9507 	info->xdp.ifindex = ifindex;
9508 	return 0;
9509 }
9510 
9511 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9512 			       struct bpf_prog *old_prog)
9513 {
9514 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9515 	enum bpf_xdp_mode mode;
9516 	bpf_op_t bpf_op;
9517 	int err = 0;
9518 
9519 	rtnl_lock();
9520 
9521 	/* link might have been auto-released already, so fail */
9522 	if (!xdp_link->dev) {
9523 		err = -ENOLINK;
9524 		goto out_unlock;
9525 	}
9526 
9527 	if (old_prog && link->prog != old_prog) {
9528 		err = -EPERM;
9529 		goto out_unlock;
9530 	}
9531 	old_prog = link->prog;
9532 	if (old_prog->type != new_prog->type ||
9533 	    old_prog->expected_attach_type != new_prog->expected_attach_type) {
9534 		err = -EINVAL;
9535 		goto out_unlock;
9536 	}
9537 
9538 	if (old_prog == new_prog) {
9539 		/* no-op, don't disturb drivers */
9540 		bpf_prog_put(new_prog);
9541 		goto out_unlock;
9542 	}
9543 
9544 	mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9545 	bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9546 	err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9547 			      xdp_link->flags, new_prog);
9548 	if (err)
9549 		goto out_unlock;
9550 
9551 	old_prog = xchg(&link->prog, new_prog);
9552 	bpf_prog_put(old_prog);
9553 
9554 out_unlock:
9555 	rtnl_unlock();
9556 	return err;
9557 }
9558 
9559 static const struct bpf_link_ops bpf_xdp_link_lops = {
9560 	.release = bpf_xdp_link_release,
9561 	.dealloc = bpf_xdp_link_dealloc,
9562 	.detach = bpf_xdp_link_detach,
9563 	.show_fdinfo = bpf_xdp_link_show_fdinfo,
9564 	.fill_link_info = bpf_xdp_link_fill_link_info,
9565 	.update_prog = bpf_xdp_link_update,
9566 };
9567 
9568 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9569 {
9570 	struct net *net = current->nsproxy->net_ns;
9571 	struct bpf_link_primer link_primer;
9572 	struct netlink_ext_ack extack = {};
9573 	struct bpf_xdp_link *link;
9574 	struct net_device *dev;
9575 	int err, fd;
9576 
9577 	rtnl_lock();
9578 	dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9579 	if (!dev) {
9580 		rtnl_unlock();
9581 		return -EINVAL;
9582 	}
9583 
9584 	link = kzalloc(sizeof(*link), GFP_USER);
9585 	if (!link) {
9586 		err = -ENOMEM;
9587 		goto unlock;
9588 	}
9589 
9590 	bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9591 	link->dev = dev;
9592 	link->flags = attr->link_create.flags;
9593 
9594 	err = bpf_link_prime(&link->link, &link_primer);
9595 	if (err) {
9596 		kfree(link);
9597 		goto unlock;
9598 	}
9599 
9600 	err = dev_xdp_attach_link(dev, &extack, link);
9601 	rtnl_unlock();
9602 
9603 	if (err) {
9604 		link->dev = NULL;
9605 		bpf_link_cleanup(&link_primer);
9606 		trace_bpf_xdp_link_attach_failed(extack._msg);
9607 		goto out_put_dev;
9608 	}
9609 
9610 	fd = bpf_link_settle(&link_primer);
9611 	/* link itself doesn't hold dev's refcnt to not complicate shutdown */
9612 	dev_put(dev);
9613 	return fd;
9614 
9615 unlock:
9616 	rtnl_unlock();
9617 
9618 out_put_dev:
9619 	dev_put(dev);
9620 	return err;
9621 }
9622 
9623 /**
9624  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
9625  *	@dev: device
9626  *	@extack: netlink extended ack
9627  *	@fd: new program fd or negative value to clear
9628  *	@expected_fd: old program fd that userspace expects to replace or clear
9629  *	@flags: xdp-related flags
9630  *
9631  *	Set or clear a bpf program for a device
9632  */
9633 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9634 		      int fd, int expected_fd, u32 flags)
9635 {
9636 	enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9637 	struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9638 	int err;
9639 
9640 	ASSERT_RTNL();
9641 
9642 	if (fd >= 0) {
9643 		new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9644 						 mode != XDP_MODE_SKB);
9645 		if (IS_ERR(new_prog))
9646 			return PTR_ERR(new_prog);
9647 	}
9648 
9649 	if (expected_fd >= 0) {
9650 		old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9651 						 mode != XDP_MODE_SKB);
9652 		if (IS_ERR(old_prog)) {
9653 			err = PTR_ERR(old_prog);
9654 			old_prog = NULL;
9655 			goto err_out;
9656 		}
9657 	}
9658 
9659 	err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9660 
9661 err_out:
9662 	if (err && new_prog)
9663 		bpf_prog_put(new_prog);
9664 	if (old_prog)
9665 		bpf_prog_put(old_prog);
9666 	return err;
9667 }
9668 
9669 /**
9670  * dev_index_reserve() - allocate an ifindex in a namespace
9671  * @net: the applicable net namespace
9672  * @ifindex: requested ifindex, pass %0 to get one allocated
9673  *
9674  * Allocate a ifindex for a new device. Caller must either use the ifindex
9675  * to store the device (via list_netdevice()) or call dev_index_release()
9676  * to give the index up.
9677  *
9678  * Return: a suitable unique value for a new device interface number or -errno.
9679  */
9680 static int dev_index_reserve(struct net *net, u32 ifindex)
9681 {
9682 	int err;
9683 
9684 	if (ifindex > INT_MAX) {
9685 		DEBUG_NET_WARN_ON_ONCE(1);
9686 		return -EINVAL;
9687 	}
9688 
9689 	if (!ifindex)
9690 		err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL,
9691 				      xa_limit_31b, &net->ifindex, GFP_KERNEL);
9692 	else
9693 		err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL);
9694 	if (err < 0)
9695 		return err;
9696 
9697 	return ifindex;
9698 }
9699 
9700 static void dev_index_release(struct net *net, int ifindex)
9701 {
9702 	/* Expect only unused indexes, unlist_netdevice() removes the used */
9703 	WARN_ON(xa_erase(&net->dev_by_index, ifindex));
9704 }
9705 
9706 /* Delayed registration/unregisteration */
9707 LIST_HEAD(net_todo_list);
9708 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9709 atomic_t dev_unreg_count = ATOMIC_INIT(0);
9710 
9711 static void net_set_todo(struct net_device *dev)
9712 {
9713 	list_add_tail(&dev->todo_list, &net_todo_list);
9714 }
9715 
9716 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9717 	struct net_device *upper, netdev_features_t features)
9718 {
9719 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9720 	netdev_features_t feature;
9721 	int feature_bit;
9722 
9723 	for_each_netdev_feature(upper_disables, feature_bit) {
9724 		feature = __NETIF_F_BIT(feature_bit);
9725 		if (!(upper->wanted_features & feature)
9726 		    && (features & feature)) {
9727 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9728 				   &feature, upper->name);
9729 			features &= ~feature;
9730 		}
9731 	}
9732 
9733 	return features;
9734 }
9735 
9736 static void netdev_sync_lower_features(struct net_device *upper,
9737 	struct net_device *lower, netdev_features_t features)
9738 {
9739 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9740 	netdev_features_t feature;
9741 	int feature_bit;
9742 
9743 	for_each_netdev_feature(upper_disables, feature_bit) {
9744 		feature = __NETIF_F_BIT(feature_bit);
9745 		if (!(features & feature) && (lower->features & feature)) {
9746 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9747 				   &feature, lower->name);
9748 			lower->wanted_features &= ~feature;
9749 			__netdev_update_features(lower);
9750 
9751 			if (unlikely(lower->features & feature))
9752 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9753 					    &feature, lower->name);
9754 			else
9755 				netdev_features_change(lower);
9756 		}
9757 	}
9758 }
9759 
9760 static netdev_features_t netdev_fix_features(struct net_device *dev,
9761 	netdev_features_t features)
9762 {
9763 	/* Fix illegal checksum combinations */
9764 	if ((features & NETIF_F_HW_CSUM) &&
9765 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9766 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9767 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9768 	}
9769 
9770 	/* TSO requires that SG is present as well. */
9771 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9772 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9773 		features &= ~NETIF_F_ALL_TSO;
9774 	}
9775 
9776 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9777 					!(features & NETIF_F_IP_CSUM)) {
9778 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9779 		features &= ~NETIF_F_TSO;
9780 		features &= ~NETIF_F_TSO_ECN;
9781 	}
9782 
9783 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9784 					 !(features & NETIF_F_IPV6_CSUM)) {
9785 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9786 		features &= ~NETIF_F_TSO6;
9787 	}
9788 
9789 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9790 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9791 		features &= ~NETIF_F_TSO_MANGLEID;
9792 
9793 	/* TSO ECN requires that TSO is present as well. */
9794 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9795 		features &= ~NETIF_F_TSO_ECN;
9796 
9797 	/* Software GSO depends on SG. */
9798 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9799 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9800 		features &= ~NETIF_F_GSO;
9801 	}
9802 
9803 	/* GSO partial features require GSO partial be set */
9804 	if ((features & dev->gso_partial_features) &&
9805 	    !(features & NETIF_F_GSO_PARTIAL)) {
9806 		netdev_dbg(dev,
9807 			   "Dropping partially supported GSO features since no GSO partial.\n");
9808 		features &= ~dev->gso_partial_features;
9809 	}
9810 
9811 	if (!(features & NETIF_F_RXCSUM)) {
9812 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9813 		 * successfully merged by hardware must also have the
9814 		 * checksum verified by hardware.  If the user does not
9815 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
9816 		 */
9817 		if (features & NETIF_F_GRO_HW) {
9818 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9819 			features &= ~NETIF_F_GRO_HW;
9820 		}
9821 	}
9822 
9823 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
9824 	if (features & NETIF_F_RXFCS) {
9825 		if (features & NETIF_F_LRO) {
9826 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9827 			features &= ~NETIF_F_LRO;
9828 		}
9829 
9830 		if (features & NETIF_F_GRO_HW) {
9831 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9832 			features &= ~NETIF_F_GRO_HW;
9833 		}
9834 	}
9835 
9836 	if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
9837 		netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
9838 		features &= ~NETIF_F_LRO;
9839 	}
9840 
9841 	if (features & NETIF_F_HW_TLS_TX) {
9842 		bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9843 			(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9844 		bool hw_csum = features & NETIF_F_HW_CSUM;
9845 
9846 		if (!ip_csum && !hw_csum) {
9847 			netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9848 			features &= ~NETIF_F_HW_TLS_TX;
9849 		}
9850 	}
9851 
9852 	if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9853 		netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9854 		features &= ~NETIF_F_HW_TLS_RX;
9855 	}
9856 
9857 	return features;
9858 }
9859 
9860 int __netdev_update_features(struct net_device *dev)
9861 {
9862 	struct net_device *upper, *lower;
9863 	netdev_features_t features;
9864 	struct list_head *iter;
9865 	int err = -1;
9866 
9867 	ASSERT_RTNL();
9868 
9869 	features = netdev_get_wanted_features(dev);
9870 
9871 	if (dev->netdev_ops->ndo_fix_features)
9872 		features = dev->netdev_ops->ndo_fix_features(dev, features);
9873 
9874 	/* driver might be less strict about feature dependencies */
9875 	features = netdev_fix_features(dev, features);
9876 
9877 	/* some features can't be enabled if they're off on an upper device */
9878 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
9879 		features = netdev_sync_upper_features(dev, upper, features);
9880 
9881 	if (dev->features == features)
9882 		goto sync_lower;
9883 
9884 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9885 		&dev->features, &features);
9886 
9887 	if (dev->netdev_ops->ndo_set_features)
9888 		err = dev->netdev_ops->ndo_set_features(dev, features);
9889 	else
9890 		err = 0;
9891 
9892 	if (unlikely(err < 0)) {
9893 		netdev_err(dev,
9894 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
9895 			err, &features, &dev->features);
9896 		/* return non-0 since some features might have changed and
9897 		 * it's better to fire a spurious notification than miss it
9898 		 */
9899 		return -1;
9900 	}
9901 
9902 sync_lower:
9903 	/* some features must be disabled on lower devices when disabled
9904 	 * on an upper device (think: bonding master or bridge)
9905 	 */
9906 	netdev_for_each_lower_dev(dev, lower, iter)
9907 		netdev_sync_lower_features(dev, lower, features);
9908 
9909 	if (!err) {
9910 		netdev_features_t diff = features ^ dev->features;
9911 
9912 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9913 			/* udp_tunnel_{get,drop}_rx_info both need
9914 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9915 			 * device, or they won't do anything.
9916 			 * Thus we need to update dev->features
9917 			 * *before* calling udp_tunnel_get_rx_info,
9918 			 * but *after* calling udp_tunnel_drop_rx_info.
9919 			 */
9920 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9921 				dev->features = features;
9922 				udp_tunnel_get_rx_info(dev);
9923 			} else {
9924 				udp_tunnel_drop_rx_info(dev);
9925 			}
9926 		}
9927 
9928 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9929 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9930 				dev->features = features;
9931 				err |= vlan_get_rx_ctag_filter_info(dev);
9932 			} else {
9933 				vlan_drop_rx_ctag_filter_info(dev);
9934 			}
9935 		}
9936 
9937 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9938 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9939 				dev->features = features;
9940 				err |= vlan_get_rx_stag_filter_info(dev);
9941 			} else {
9942 				vlan_drop_rx_stag_filter_info(dev);
9943 			}
9944 		}
9945 
9946 		dev->features = features;
9947 	}
9948 
9949 	return err < 0 ? 0 : 1;
9950 }
9951 
9952 /**
9953  *	netdev_update_features - recalculate device features
9954  *	@dev: the device to check
9955  *
9956  *	Recalculate dev->features set and send notifications if it
9957  *	has changed. Should be called after driver or hardware dependent
9958  *	conditions might have changed that influence the features.
9959  */
9960 void netdev_update_features(struct net_device *dev)
9961 {
9962 	if (__netdev_update_features(dev))
9963 		netdev_features_change(dev);
9964 }
9965 EXPORT_SYMBOL(netdev_update_features);
9966 
9967 /**
9968  *	netdev_change_features - recalculate device features
9969  *	@dev: the device to check
9970  *
9971  *	Recalculate dev->features set and send notifications even
9972  *	if they have not changed. Should be called instead of
9973  *	netdev_update_features() if also dev->vlan_features might
9974  *	have changed to allow the changes to be propagated to stacked
9975  *	VLAN devices.
9976  */
9977 void netdev_change_features(struct net_device *dev)
9978 {
9979 	__netdev_update_features(dev);
9980 	netdev_features_change(dev);
9981 }
9982 EXPORT_SYMBOL(netdev_change_features);
9983 
9984 /**
9985  *	netif_stacked_transfer_operstate -	transfer operstate
9986  *	@rootdev: the root or lower level device to transfer state from
9987  *	@dev: the device to transfer operstate to
9988  *
9989  *	Transfer operational state from root to device. This is normally
9990  *	called when a stacking relationship exists between the root
9991  *	device and the device(a leaf device).
9992  */
9993 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9994 					struct net_device *dev)
9995 {
9996 	if (rootdev->operstate == IF_OPER_DORMANT)
9997 		netif_dormant_on(dev);
9998 	else
9999 		netif_dormant_off(dev);
10000 
10001 	if (rootdev->operstate == IF_OPER_TESTING)
10002 		netif_testing_on(dev);
10003 	else
10004 		netif_testing_off(dev);
10005 
10006 	if (netif_carrier_ok(rootdev))
10007 		netif_carrier_on(dev);
10008 	else
10009 		netif_carrier_off(dev);
10010 }
10011 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
10012 
10013 static int netif_alloc_rx_queues(struct net_device *dev)
10014 {
10015 	unsigned int i, count = dev->num_rx_queues;
10016 	struct netdev_rx_queue *rx;
10017 	size_t sz = count * sizeof(*rx);
10018 	int err = 0;
10019 
10020 	BUG_ON(count < 1);
10021 
10022 	rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10023 	if (!rx)
10024 		return -ENOMEM;
10025 
10026 	dev->_rx = rx;
10027 
10028 	for (i = 0; i < count; i++) {
10029 		rx[i].dev = dev;
10030 
10031 		/* XDP RX-queue setup */
10032 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10033 		if (err < 0)
10034 			goto err_rxq_info;
10035 	}
10036 	return 0;
10037 
10038 err_rxq_info:
10039 	/* Rollback successful reg's and free other resources */
10040 	while (i--)
10041 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10042 	kvfree(dev->_rx);
10043 	dev->_rx = NULL;
10044 	return err;
10045 }
10046 
10047 static void netif_free_rx_queues(struct net_device *dev)
10048 {
10049 	unsigned int i, count = dev->num_rx_queues;
10050 
10051 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10052 	if (!dev->_rx)
10053 		return;
10054 
10055 	for (i = 0; i < count; i++)
10056 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10057 
10058 	kvfree(dev->_rx);
10059 }
10060 
10061 static void netdev_init_one_queue(struct net_device *dev,
10062 				  struct netdev_queue *queue, void *_unused)
10063 {
10064 	/* Initialize queue lock */
10065 	spin_lock_init(&queue->_xmit_lock);
10066 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10067 	queue->xmit_lock_owner = -1;
10068 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10069 	queue->dev = dev;
10070 #ifdef CONFIG_BQL
10071 	dql_init(&queue->dql, HZ);
10072 #endif
10073 }
10074 
10075 static void netif_free_tx_queues(struct net_device *dev)
10076 {
10077 	kvfree(dev->_tx);
10078 }
10079 
10080 static int netif_alloc_netdev_queues(struct net_device *dev)
10081 {
10082 	unsigned int count = dev->num_tx_queues;
10083 	struct netdev_queue *tx;
10084 	size_t sz = count * sizeof(*tx);
10085 
10086 	if (count < 1 || count > 0xffff)
10087 		return -EINVAL;
10088 
10089 	tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10090 	if (!tx)
10091 		return -ENOMEM;
10092 
10093 	dev->_tx = tx;
10094 
10095 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10096 	spin_lock_init(&dev->tx_global_lock);
10097 
10098 	return 0;
10099 }
10100 
10101 void netif_tx_stop_all_queues(struct net_device *dev)
10102 {
10103 	unsigned int i;
10104 
10105 	for (i = 0; i < dev->num_tx_queues; i++) {
10106 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10107 
10108 		netif_tx_stop_queue(txq);
10109 	}
10110 }
10111 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10112 
10113 static int netdev_do_alloc_pcpu_stats(struct net_device *dev)
10114 {
10115 	void __percpu *v;
10116 
10117 	/* Drivers implementing ndo_get_peer_dev must support tstat
10118 	 * accounting, so that skb_do_redirect() can bump the dev's
10119 	 * RX stats upon network namespace switch.
10120 	 */
10121 	if (dev->netdev_ops->ndo_get_peer_dev &&
10122 	    dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS)
10123 		return -EOPNOTSUPP;
10124 
10125 	switch (dev->pcpu_stat_type) {
10126 	case NETDEV_PCPU_STAT_NONE:
10127 		return 0;
10128 	case NETDEV_PCPU_STAT_LSTATS:
10129 		v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats);
10130 		break;
10131 	case NETDEV_PCPU_STAT_TSTATS:
10132 		v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats);
10133 		break;
10134 	case NETDEV_PCPU_STAT_DSTATS:
10135 		v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
10136 		break;
10137 	default:
10138 		return -EINVAL;
10139 	}
10140 
10141 	return v ? 0 : -ENOMEM;
10142 }
10143 
10144 static void netdev_do_free_pcpu_stats(struct net_device *dev)
10145 {
10146 	switch (dev->pcpu_stat_type) {
10147 	case NETDEV_PCPU_STAT_NONE:
10148 		return;
10149 	case NETDEV_PCPU_STAT_LSTATS:
10150 		free_percpu(dev->lstats);
10151 		break;
10152 	case NETDEV_PCPU_STAT_TSTATS:
10153 		free_percpu(dev->tstats);
10154 		break;
10155 	case NETDEV_PCPU_STAT_DSTATS:
10156 		free_percpu(dev->dstats);
10157 		break;
10158 	}
10159 }
10160 
10161 /**
10162  * register_netdevice() - register a network device
10163  * @dev: device to register
10164  *
10165  * Take a prepared network device structure and make it externally accessible.
10166  * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
10167  * Callers must hold the rtnl lock - you may want register_netdev()
10168  * instead of this.
10169  */
10170 int register_netdevice(struct net_device *dev)
10171 {
10172 	int ret;
10173 	struct net *net = dev_net(dev);
10174 
10175 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10176 		     NETDEV_FEATURE_COUNT);
10177 	BUG_ON(dev_boot_phase);
10178 	ASSERT_RTNL();
10179 
10180 	might_sleep();
10181 
10182 	/* When net_device's are persistent, this will be fatal. */
10183 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10184 	BUG_ON(!net);
10185 
10186 	ret = ethtool_check_ops(dev->ethtool_ops);
10187 	if (ret)
10188 		return ret;
10189 
10190 	spin_lock_init(&dev->addr_list_lock);
10191 	netdev_set_addr_lockdep_class(dev);
10192 
10193 	ret = dev_get_valid_name(net, dev, dev->name);
10194 	if (ret < 0)
10195 		goto out;
10196 
10197 	ret = -ENOMEM;
10198 	dev->name_node = netdev_name_node_head_alloc(dev);
10199 	if (!dev->name_node)
10200 		goto out;
10201 
10202 	/* Init, if this function is available */
10203 	if (dev->netdev_ops->ndo_init) {
10204 		ret = dev->netdev_ops->ndo_init(dev);
10205 		if (ret) {
10206 			if (ret > 0)
10207 				ret = -EIO;
10208 			goto err_free_name;
10209 		}
10210 	}
10211 
10212 	if (((dev->hw_features | dev->features) &
10213 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
10214 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10215 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10216 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10217 		ret = -EINVAL;
10218 		goto err_uninit;
10219 	}
10220 
10221 	ret = netdev_do_alloc_pcpu_stats(dev);
10222 	if (ret)
10223 		goto err_uninit;
10224 
10225 	ret = dev_index_reserve(net, dev->ifindex);
10226 	if (ret < 0)
10227 		goto err_free_pcpu;
10228 	dev->ifindex = ret;
10229 
10230 	/* Transfer changeable features to wanted_features and enable
10231 	 * software offloads (GSO and GRO).
10232 	 */
10233 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10234 	dev->features |= NETIF_F_SOFT_FEATURES;
10235 
10236 	if (dev->udp_tunnel_nic_info) {
10237 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10238 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10239 	}
10240 
10241 	dev->wanted_features = dev->features & dev->hw_features;
10242 
10243 	if (!(dev->flags & IFF_LOOPBACK))
10244 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
10245 
10246 	/* If IPv4 TCP segmentation offload is supported we should also
10247 	 * allow the device to enable segmenting the frame with the option
10248 	 * of ignoring a static IP ID value.  This doesn't enable the
10249 	 * feature itself but allows the user to enable it later.
10250 	 */
10251 	if (dev->hw_features & NETIF_F_TSO)
10252 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
10253 	if (dev->vlan_features & NETIF_F_TSO)
10254 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10255 	if (dev->mpls_features & NETIF_F_TSO)
10256 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10257 	if (dev->hw_enc_features & NETIF_F_TSO)
10258 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10259 
10260 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10261 	 */
10262 	dev->vlan_features |= NETIF_F_HIGHDMA;
10263 
10264 	/* Make NETIF_F_SG inheritable to tunnel devices.
10265 	 */
10266 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10267 
10268 	/* Make NETIF_F_SG inheritable to MPLS.
10269 	 */
10270 	dev->mpls_features |= NETIF_F_SG;
10271 
10272 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10273 	ret = notifier_to_errno(ret);
10274 	if (ret)
10275 		goto err_ifindex_release;
10276 
10277 	ret = netdev_register_kobject(dev);
10278 
10279 	WRITE_ONCE(dev->reg_state, ret ? NETREG_UNREGISTERED : NETREG_REGISTERED);
10280 
10281 	if (ret)
10282 		goto err_uninit_notify;
10283 
10284 	__netdev_update_features(dev);
10285 
10286 	/*
10287 	 *	Default initial state at registry is that the
10288 	 *	device is present.
10289 	 */
10290 
10291 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10292 
10293 	linkwatch_init_dev(dev);
10294 
10295 	dev_init_scheduler(dev);
10296 
10297 	netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
10298 	list_netdevice(dev);
10299 
10300 	add_device_randomness(dev->dev_addr, dev->addr_len);
10301 
10302 	/* If the device has permanent device address, driver should
10303 	 * set dev_addr and also addr_assign_type should be set to
10304 	 * NET_ADDR_PERM (default value).
10305 	 */
10306 	if (dev->addr_assign_type == NET_ADDR_PERM)
10307 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10308 
10309 	/* Notify protocols, that a new device appeared. */
10310 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10311 	ret = notifier_to_errno(ret);
10312 	if (ret) {
10313 		/* Expect explicit free_netdev() on failure */
10314 		dev->needs_free_netdev = false;
10315 		unregister_netdevice_queue(dev, NULL);
10316 		goto out;
10317 	}
10318 	/*
10319 	 *	Prevent userspace races by waiting until the network
10320 	 *	device is fully setup before sending notifications.
10321 	 */
10322 	if (!dev->rtnl_link_ops ||
10323 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10324 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
10325 
10326 out:
10327 	return ret;
10328 
10329 err_uninit_notify:
10330 	call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10331 err_ifindex_release:
10332 	dev_index_release(net, dev->ifindex);
10333 err_free_pcpu:
10334 	netdev_do_free_pcpu_stats(dev);
10335 err_uninit:
10336 	if (dev->netdev_ops->ndo_uninit)
10337 		dev->netdev_ops->ndo_uninit(dev);
10338 	if (dev->priv_destructor)
10339 		dev->priv_destructor(dev);
10340 err_free_name:
10341 	netdev_name_node_free(dev->name_node);
10342 	goto out;
10343 }
10344 EXPORT_SYMBOL(register_netdevice);
10345 
10346 /**
10347  *	init_dummy_netdev	- init a dummy network device for NAPI
10348  *	@dev: device to init
10349  *
10350  *	This takes a network device structure and initialize the minimum
10351  *	amount of fields so it can be used to schedule NAPI polls without
10352  *	registering a full blown interface. This is to be used by drivers
10353  *	that need to tie several hardware interfaces to a single NAPI
10354  *	poll scheduler due to HW limitations.
10355  */
10356 void init_dummy_netdev(struct net_device *dev)
10357 {
10358 	/* Clear everything. Note we don't initialize spinlocks
10359 	 * are they aren't supposed to be taken by any of the
10360 	 * NAPI code and this dummy netdev is supposed to be
10361 	 * only ever used for NAPI polls
10362 	 */
10363 	memset(dev, 0, sizeof(struct net_device));
10364 
10365 	/* make sure we BUG if trying to hit standard
10366 	 * register/unregister code path
10367 	 */
10368 	dev->reg_state = NETREG_DUMMY;
10369 
10370 	/* NAPI wants this */
10371 	INIT_LIST_HEAD(&dev->napi_list);
10372 
10373 	/* a dummy interface is started by default */
10374 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10375 	set_bit(__LINK_STATE_START, &dev->state);
10376 
10377 	/* napi_busy_loop stats accounting wants this */
10378 	dev_net_set(dev, &init_net);
10379 
10380 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
10381 	 * because users of this 'device' dont need to change
10382 	 * its refcount.
10383 	 */
10384 }
10385 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10386 
10387 
10388 /**
10389  *	register_netdev	- register a network device
10390  *	@dev: device to register
10391  *
10392  *	Take a completed network device structure and add it to the kernel
10393  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10394  *	chain. 0 is returned on success. A negative errno code is returned
10395  *	on a failure to set up the device, or if the name is a duplicate.
10396  *
10397  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
10398  *	and expands the device name if you passed a format string to
10399  *	alloc_netdev.
10400  */
10401 int register_netdev(struct net_device *dev)
10402 {
10403 	int err;
10404 
10405 	if (rtnl_lock_killable())
10406 		return -EINTR;
10407 	err = register_netdevice(dev);
10408 	rtnl_unlock();
10409 	return err;
10410 }
10411 EXPORT_SYMBOL(register_netdev);
10412 
10413 int netdev_refcnt_read(const struct net_device *dev)
10414 {
10415 #ifdef CONFIG_PCPU_DEV_REFCNT
10416 	int i, refcnt = 0;
10417 
10418 	for_each_possible_cpu(i)
10419 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10420 	return refcnt;
10421 #else
10422 	return refcount_read(&dev->dev_refcnt);
10423 #endif
10424 }
10425 EXPORT_SYMBOL(netdev_refcnt_read);
10426 
10427 int netdev_unregister_timeout_secs __read_mostly = 10;
10428 
10429 #define WAIT_REFS_MIN_MSECS 1
10430 #define WAIT_REFS_MAX_MSECS 250
10431 /**
10432  * netdev_wait_allrefs_any - wait until all references are gone.
10433  * @list: list of net_devices to wait on
10434  *
10435  * This is called when unregistering network devices.
10436  *
10437  * Any protocol or device that holds a reference should register
10438  * for netdevice notification, and cleanup and put back the
10439  * reference if they receive an UNREGISTER event.
10440  * We can get stuck here if buggy protocols don't correctly
10441  * call dev_put.
10442  */
10443 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
10444 {
10445 	unsigned long rebroadcast_time, warning_time;
10446 	struct net_device *dev;
10447 	int wait = 0;
10448 
10449 	rebroadcast_time = warning_time = jiffies;
10450 
10451 	list_for_each_entry(dev, list, todo_list)
10452 		if (netdev_refcnt_read(dev) == 1)
10453 			return dev;
10454 
10455 	while (true) {
10456 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10457 			rtnl_lock();
10458 
10459 			/* Rebroadcast unregister notification */
10460 			list_for_each_entry(dev, list, todo_list)
10461 				call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10462 
10463 			__rtnl_unlock();
10464 			rcu_barrier();
10465 			rtnl_lock();
10466 
10467 			list_for_each_entry(dev, list, todo_list)
10468 				if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10469 					     &dev->state)) {
10470 					/* We must not have linkwatch events
10471 					 * pending on unregister. If this
10472 					 * happens, we simply run the queue
10473 					 * unscheduled, resulting in a noop
10474 					 * for this device.
10475 					 */
10476 					linkwatch_run_queue();
10477 					break;
10478 				}
10479 
10480 			__rtnl_unlock();
10481 
10482 			rebroadcast_time = jiffies;
10483 		}
10484 
10485 		if (!wait) {
10486 			rcu_barrier();
10487 			wait = WAIT_REFS_MIN_MSECS;
10488 		} else {
10489 			msleep(wait);
10490 			wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10491 		}
10492 
10493 		list_for_each_entry(dev, list, todo_list)
10494 			if (netdev_refcnt_read(dev) == 1)
10495 				return dev;
10496 
10497 		if (time_after(jiffies, warning_time +
10498 			       READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
10499 			list_for_each_entry(dev, list, todo_list) {
10500 				pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10501 					 dev->name, netdev_refcnt_read(dev));
10502 				ref_tracker_dir_print(&dev->refcnt_tracker, 10);
10503 			}
10504 
10505 			warning_time = jiffies;
10506 		}
10507 	}
10508 }
10509 
10510 /* The sequence is:
10511  *
10512  *	rtnl_lock();
10513  *	...
10514  *	register_netdevice(x1);
10515  *	register_netdevice(x2);
10516  *	...
10517  *	unregister_netdevice(y1);
10518  *	unregister_netdevice(y2);
10519  *      ...
10520  *	rtnl_unlock();
10521  *	free_netdev(y1);
10522  *	free_netdev(y2);
10523  *
10524  * We are invoked by rtnl_unlock().
10525  * This allows us to deal with problems:
10526  * 1) We can delete sysfs objects which invoke hotplug
10527  *    without deadlocking with linkwatch via keventd.
10528  * 2) Since we run with the RTNL semaphore not held, we can sleep
10529  *    safely in order to wait for the netdev refcnt to drop to zero.
10530  *
10531  * We must not return until all unregister events added during
10532  * the interval the lock was held have been completed.
10533  */
10534 void netdev_run_todo(void)
10535 {
10536 	struct net_device *dev, *tmp;
10537 	struct list_head list;
10538 	int cnt;
10539 #ifdef CONFIG_LOCKDEP
10540 	struct list_head unlink_list;
10541 
10542 	list_replace_init(&net_unlink_list, &unlink_list);
10543 
10544 	while (!list_empty(&unlink_list)) {
10545 		struct net_device *dev = list_first_entry(&unlink_list,
10546 							  struct net_device,
10547 							  unlink_list);
10548 		list_del_init(&dev->unlink_list);
10549 		dev->nested_level = dev->lower_level - 1;
10550 	}
10551 #endif
10552 
10553 	/* Snapshot list, allow later requests */
10554 	list_replace_init(&net_todo_list, &list);
10555 
10556 	__rtnl_unlock();
10557 
10558 	/* Wait for rcu callbacks to finish before next phase */
10559 	if (!list_empty(&list))
10560 		rcu_barrier();
10561 
10562 	list_for_each_entry_safe(dev, tmp, &list, todo_list) {
10563 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10564 			netdev_WARN(dev, "run_todo but not unregistering\n");
10565 			list_del(&dev->todo_list);
10566 			continue;
10567 		}
10568 
10569 		WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERED);
10570 		linkwatch_sync_dev(dev);
10571 	}
10572 
10573 	cnt = 0;
10574 	while (!list_empty(&list)) {
10575 		dev = netdev_wait_allrefs_any(&list);
10576 		list_del(&dev->todo_list);
10577 
10578 		/* paranoia */
10579 		BUG_ON(netdev_refcnt_read(dev) != 1);
10580 		BUG_ON(!list_empty(&dev->ptype_all));
10581 		BUG_ON(!list_empty(&dev->ptype_specific));
10582 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
10583 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10584 
10585 		netdev_do_free_pcpu_stats(dev);
10586 		if (dev->priv_destructor)
10587 			dev->priv_destructor(dev);
10588 		if (dev->needs_free_netdev)
10589 			free_netdev(dev);
10590 
10591 		cnt++;
10592 
10593 		/* Free network device */
10594 		kobject_put(&dev->dev.kobj);
10595 	}
10596 	if (cnt && atomic_sub_and_test(cnt, &dev_unreg_count))
10597 		wake_up(&netdev_unregistering_wq);
10598 }
10599 
10600 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10601  * all the same fields in the same order as net_device_stats, with only
10602  * the type differing, but rtnl_link_stats64 may have additional fields
10603  * at the end for newer counters.
10604  */
10605 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10606 			     const struct net_device_stats *netdev_stats)
10607 {
10608 	size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
10609 	const atomic_long_t *src = (atomic_long_t *)netdev_stats;
10610 	u64 *dst = (u64 *)stats64;
10611 
10612 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10613 	for (i = 0; i < n; i++)
10614 		dst[i] = (unsigned long)atomic_long_read(&src[i]);
10615 	/* zero out counters that only exist in rtnl_link_stats64 */
10616 	memset((char *)stats64 + n * sizeof(u64), 0,
10617 	       sizeof(*stats64) - n * sizeof(u64));
10618 }
10619 EXPORT_SYMBOL(netdev_stats_to_stats64);
10620 
10621 static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc(
10622 		struct net_device *dev)
10623 {
10624 	struct net_device_core_stats __percpu *p;
10625 
10626 	p = alloc_percpu_gfp(struct net_device_core_stats,
10627 			     GFP_ATOMIC | __GFP_NOWARN);
10628 
10629 	if (p && cmpxchg(&dev->core_stats, NULL, p))
10630 		free_percpu(p);
10631 
10632 	/* This READ_ONCE() pairs with the cmpxchg() above */
10633 	return READ_ONCE(dev->core_stats);
10634 }
10635 
10636 noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset)
10637 {
10638 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10639 	struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
10640 	unsigned long __percpu *field;
10641 
10642 	if (unlikely(!p)) {
10643 		p = netdev_core_stats_alloc(dev);
10644 		if (!p)
10645 			return;
10646 	}
10647 
10648 	field = (__force unsigned long __percpu *)((__force void *)p + offset);
10649 	this_cpu_inc(*field);
10650 }
10651 EXPORT_SYMBOL_GPL(netdev_core_stats_inc);
10652 
10653 /**
10654  *	dev_get_stats	- get network device statistics
10655  *	@dev: device to get statistics from
10656  *	@storage: place to store stats
10657  *
10658  *	Get network statistics from device. Return @storage.
10659  *	The device driver may provide its own method by setting
10660  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10661  *	otherwise the internal statistics structure is used.
10662  */
10663 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10664 					struct rtnl_link_stats64 *storage)
10665 {
10666 	const struct net_device_ops *ops = dev->netdev_ops;
10667 	const struct net_device_core_stats __percpu *p;
10668 
10669 	if (ops->ndo_get_stats64) {
10670 		memset(storage, 0, sizeof(*storage));
10671 		ops->ndo_get_stats64(dev, storage);
10672 	} else if (ops->ndo_get_stats) {
10673 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10674 	} else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_TSTATS) {
10675 		dev_get_tstats64(dev, storage);
10676 	} else {
10677 		netdev_stats_to_stats64(storage, &dev->stats);
10678 	}
10679 
10680 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10681 	p = READ_ONCE(dev->core_stats);
10682 	if (p) {
10683 		const struct net_device_core_stats *core_stats;
10684 		int i;
10685 
10686 		for_each_possible_cpu(i) {
10687 			core_stats = per_cpu_ptr(p, i);
10688 			storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
10689 			storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
10690 			storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
10691 			storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
10692 		}
10693 	}
10694 	return storage;
10695 }
10696 EXPORT_SYMBOL(dev_get_stats);
10697 
10698 /**
10699  *	dev_fetch_sw_netstats - get per-cpu network device statistics
10700  *	@s: place to store stats
10701  *	@netstats: per-cpu network stats to read from
10702  *
10703  *	Read per-cpu network statistics and populate the related fields in @s.
10704  */
10705 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10706 			   const struct pcpu_sw_netstats __percpu *netstats)
10707 {
10708 	int cpu;
10709 
10710 	for_each_possible_cpu(cpu) {
10711 		u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
10712 		const struct pcpu_sw_netstats *stats;
10713 		unsigned int start;
10714 
10715 		stats = per_cpu_ptr(netstats, cpu);
10716 		do {
10717 			start = u64_stats_fetch_begin(&stats->syncp);
10718 			rx_packets = u64_stats_read(&stats->rx_packets);
10719 			rx_bytes   = u64_stats_read(&stats->rx_bytes);
10720 			tx_packets = u64_stats_read(&stats->tx_packets);
10721 			tx_bytes   = u64_stats_read(&stats->tx_bytes);
10722 		} while (u64_stats_fetch_retry(&stats->syncp, start));
10723 
10724 		s->rx_packets += rx_packets;
10725 		s->rx_bytes   += rx_bytes;
10726 		s->tx_packets += tx_packets;
10727 		s->tx_bytes   += tx_bytes;
10728 	}
10729 }
10730 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10731 
10732 /**
10733  *	dev_get_tstats64 - ndo_get_stats64 implementation
10734  *	@dev: device to get statistics from
10735  *	@s: place to store stats
10736  *
10737  *	Populate @s from dev->stats and dev->tstats. Can be used as
10738  *	ndo_get_stats64() callback.
10739  */
10740 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10741 {
10742 	netdev_stats_to_stats64(s, &dev->stats);
10743 	dev_fetch_sw_netstats(s, dev->tstats);
10744 }
10745 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10746 
10747 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10748 {
10749 	struct netdev_queue *queue = dev_ingress_queue(dev);
10750 
10751 #ifdef CONFIG_NET_CLS_ACT
10752 	if (queue)
10753 		return queue;
10754 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10755 	if (!queue)
10756 		return NULL;
10757 	netdev_init_one_queue(dev, queue, NULL);
10758 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10759 	RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
10760 	rcu_assign_pointer(dev->ingress_queue, queue);
10761 #endif
10762 	return queue;
10763 }
10764 
10765 static const struct ethtool_ops default_ethtool_ops;
10766 
10767 void netdev_set_default_ethtool_ops(struct net_device *dev,
10768 				    const struct ethtool_ops *ops)
10769 {
10770 	if (dev->ethtool_ops == &default_ethtool_ops)
10771 		dev->ethtool_ops = ops;
10772 }
10773 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10774 
10775 /**
10776  * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
10777  * @dev: netdev to enable the IRQ coalescing on
10778  *
10779  * Sets a conservative default for SW IRQ coalescing. Users can use
10780  * sysfs attributes to override the default values.
10781  */
10782 void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
10783 {
10784 	WARN_ON(dev->reg_state == NETREG_REGISTERED);
10785 
10786 	if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
10787 		dev->gro_flush_timeout = 20000;
10788 		dev->napi_defer_hard_irqs = 1;
10789 	}
10790 }
10791 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
10792 
10793 void netdev_freemem(struct net_device *dev)
10794 {
10795 	char *addr = (char *)dev - dev->padded;
10796 
10797 	kvfree(addr);
10798 }
10799 
10800 /**
10801  * alloc_netdev_mqs - allocate network device
10802  * @sizeof_priv: size of private data to allocate space for
10803  * @name: device name format string
10804  * @name_assign_type: origin of device name
10805  * @setup: callback to initialize device
10806  * @txqs: the number of TX subqueues to allocate
10807  * @rxqs: the number of RX subqueues to allocate
10808  *
10809  * Allocates a struct net_device with private data area for driver use
10810  * and performs basic initialization.  Also allocates subqueue structs
10811  * for each queue on the device.
10812  */
10813 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10814 		unsigned char name_assign_type,
10815 		void (*setup)(struct net_device *),
10816 		unsigned int txqs, unsigned int rxqs)
10817 {
10818 	struct net_device *dev;
10819 	unsigned int alloc_size;
10820 	struct net_device *p;
10821 
10822 	BUG_ON(strlen(name) >= sizeof(dev->name));
10823 
10824 	if (txqs < 1) {
10825 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10826 		return NULL;
10827 	}
10828 
10829 	if (rxqs < 1) {
10830 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10831 		return NULL;
10832 	}
10833 
10834 	alloc_size = sizeof(struct net_device);
10835 	if (sizeof_priv) {
10836 		/* ensure 32-byte alignment of private area */
10837 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10838 		alloc_size += sizeof_priv;
10839 	}
10840 	/* ensure 32-byte alignment of whole construct */
10841 	alloc_size += NETDEV_ALIGN - 1;
10842 
10843 	p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10844 	if (!p)
10845 		return NULL;
10846 
10847 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
10848 	dev->padded = (char *)dev - (char *)p;
10849 
10850 	ref_tracker_dir_init(&dev->refcnt_tracker, 128, name);
10851 #ifdef CONFIG_PCPU_DEV_REFCNT
10852 	dev->pcpu_refcnt = alloc_percpu(int);
10853 	if (!dev->pcpu_refcnt)
10854 		goto free_dev;
10855 	__dev_hold(dev);
10856 #else
10857 	refcount_set(&dev->dev_refcnt, 1);
10858 #endif
10859 
10860 	if (dev_addr_init(dev))
10861 		goto free_pcpu;
10862 
10863 	dev_mc_init(dev);
10864 	dev_uc_init(dev);
10865 
10866 	dev_net_set(dev, &init_net);
10867 
10868 	dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
10869 	dev->xdp_zc_max_segs = 1;
10870 	dev->gso_max_segs = GSO_MAX_SEGS;
10871 	dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
10872 	dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
10873 	dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
10874 	dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
10875 	dev->tso_max_segs = TSO_MAX_SEGS;
10876 	dev->upper_level = 1;
10877 	dev->lower_level = 1;
10878 #ifdef CONFIG_LOCKDEP
10879 	dev->nested_level = 0;
10880 	INIT_LIST_HEAD(&dev->unlink_list);
10881 #endif
10882 
10883 	INIT_LIST_HEAD(&dev->napi_list);
10884 	INIT_LIST_HEAD(&dev->unreg_list);
10885 	INIT_LIST_HEAD(&dev->close_list);
10886 	INIT_LIST_HEAD(&dev->link_watch_list);
10887 	INIT_LIST_HEAD(&dev->adj_list.upper);
10888 	INIT_LIST_HEAD(&dev->adj_list.lower);
10889 	INIT_LIST_HEAD(&dev->ptype_all);
10890 	INIT_LIST_HEAD(&dev->ptype_specific);
10891 	INIT_LIST_HEAD(&dev->net_notifier_list);
10892 #ifdef CONFIG_NET_SCHED
10893 	hash_init(dev->qdisc_hash);
10894 #endif
10895 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10896 	setup(dev);
10897 
10898 	if (!dev->tx_queue_len) {
10899 		dev->priv_flags |= IFF_NO_QUEUE;
10900 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10901 	}
10902 
10903 	dev->num_tx_queues = txqs;
10904 	dev->real_num_tx_queues = txqs;
10905 	if (netif_alloc_netdev_queues(dev))
10906 		goto free_all;
10907 
10908 	dev->num_rx_queues = rxqs;
10909 	dev->real_num_rx_queues = rxqs;
10910 	if (netif_alloc_rx_queues(dev))
10911 		goto free_all;
10912 
10913 	strcpy(dev->name, name);
10914 	dev->name_assign_type = name_assign_type;
10915 	dev->group = INIT_NETDEV_GROUP;
10916 	if (!dev->ethtool_ops)
10917 		dev->ethtool_ops = &default_ethtool_ops;
10918 
10919 	nf_hook_netdev_init(dev);
10920 
10921 	return dev;
10922 
10923 free_all:
10924 	free_netdev(dev);
10925 	return NULL;
10926 
10927 free_pcpu:
10928 #ifdef CONFIG_PCPU_DEV_REFCNT
10929 	free_percpu(dev->pcpu_refcnt);
10930 free_dev:
10931 #endif
10932 	netdev_freemem(dev);
10933 	return NULL;
10934 }
10935 EXPORT_SYMBOL(alloc_netdev_mqs);
10936 
10937 /**
10938  * free_netdev - free network device
10939  * @dev: device
10940  *
10941  * This function does the last stage of destroying an allocated device
10942  * interface. The reference to the device object is released. If this
10943  * is the last reference then it will be freed.Must be called in process
10944  * context.
10945  */
10946 void free_netdev(struct net_device *dev)
10947 {
10948 	struct napi_struct *p, *n;
10949 
10950 	might_sleep();
10951 
10952 	/* When called immediately after register_netdevice() failed the unwind
10953 	 * handling may still be dismantling the device. Handle that case by
10954 	 * deferring the free.
10955 	 */
10956 	if (dev->reg_state == NETREG_UNREGISTERING) {
10957 		ASSERT_RTNL();
10958 		dev->needs_free_netdev = true;
10959 		return;
10960 	}
10961 
10962 	netif_free_tx_queues(dev);
10963 	netif_free_rx_queues(dev);
10964 
10965 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10966 
10967 	/* Flush device addresses */
10968 	dev_addr_flush(dev);
10969 
10970 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10971 		netif_napi_del(p);
10972 
10973 	ref_tracker_dir_exit(&dev->refcnt_tracker);
10974 #ifdef CONFIG_PCPU_DEV_REFCNT
10975 	free_percpu(dev->pcpu_refcnt);
10976 	dev->pcpu_refcnt = NULL;
10977 #endif
10978 	free_percpu(dev->core_stats);
10979 	dev->core_stats = NULL;
10980 	free_percpu(dev->xdp_bulkq);
10981 	dev->xdp_bulkq = NULL;
10982 
10983 	/*  Compatibility with error handling in drivers */
10984 	if (dev->reg_state == NETREG_UNINITIALIZED) {
10985 		netdev_freemem(dev);
10986 		return;
10987 	}
10988 
10989 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10990 	WRITE_ONCE(dev->reg_state, NETREG_RELEASED);
10991 
10992 	/* will free via device release */
10993 	put_device(&dev->dev);
10994 }
10995 EXPORT_SYMBOL(free_netdev);
10996 
10997 /**
10998  *	synchronize_net -  Synchronize with packet receive processing
10999  *
11000  *	Wait for packets currently being received to be done.
11001  *	Does not block later packets from starting.
11002  */
11003 void synchronize_net(void)
11004 {
11005 	might_sleep();
11006 	if (rtnl_is_locked())
11007 		synchronize_rcu_expedited();
11008 	else
11009 		synchronize_rcu();
11010 }
11011 EXPORT_SYMBOL(synchronize_net);
11012 
11013 /**
11014  *	unregister_netdevice_queue - remove device from the kernel
11015  *	@dev: device
11016  *	@head: list
11017  *
11018  *	This function shuts down a device interface and removes it
11019  *	from the kernel tables.
11020  *	If head not NULL, device is queued to be unregistered later.
11021  *
11022  *	Callers must hold the rtnl semaphore.  You may want
11023  *	unregister_netdev() instead of this.
11024  */
11025 
11026 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
11027 {
11028 	ASSERT_RTNL();
11029 
11030 	if (head) {
11031 		list_move_tail(&dev->unreg_list, head);
11032 	} else {
11033 		LIST_HEAD(single);
11034 
11035 		list_add(&dev->unreg_list, &single);
11036 		unregister_netdevice_many(&single);
11037 	}
11038 }
11039 EXPORT_SYMBOL(unregister_netdevice_queue);
11040 
11041 void unregister_netdevice_many_notify(struct list_head *head,
11042 				      u32 portid, const struct nlmsghdr *nlh)
11043 {
11044 	struct net_device *dev, *tmp;
11045 	LIST_HEAD(close_head);
11046 	int cnt = 0;
11047 
11048 	BUG_ON(dev_boot_phase);
11049 	ASSERT_RTNL();
11050 
11051 	if (list_empty(head))
11052 		return;
11053 
11054 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
11055 		/* Some devices call without registering
11056 		 * for initialization unwind. Remove those
11057 		 * devices and proceed with the remaining.
11058 		 */
11059 		if (dev->reg_state == NETREG_UNINITIALIZED) {
11060 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
11061 				 dev->name, dev);
11062 
11063 			WARN_ON(1);
11064 			list_del(&dev->unreg_list);
11065 			continue;
11066 		}
11067 		dev->dismantle = true;
11068 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
11069 	}
11070 
11071 	/* If device is running, close it first. */
11072 	list_for_each_entry(dev, head, unreg_list)
11073 		list_add_tail(&dev->close_list, &close_head);
11074 	dev_close_many(&close_head, true);
11075 
11076 	list_for_each_entry(dev, head, unreg_list) {
11077 		/* And unlink it from device chain. */
11078 		unlist_netdevice(dev);
11079 		WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERING);
11080 	}
11081 	flush_all_backlogs();
11082 
11083 	synchronize_net();
11084 
11085 	list_for_each_entry(dev, head, unreg_list) {
11086 		struct sk_buff *skb = NULL;
11087 
11088 		/* Shutdown queueing discipline. */
11089 		dev_shutdown(dev);
11090 		dev_tcx_uninstall(dev);
11091 		dev_xdp_uninstall(dev);
11092 		bpf_dev_bound_netdev_unregister(dev);
11093 
11094 		netdev_offload_xstats_disable_all(dev);
11095 
11096 		/* Notify protocols, that we are about to destroy
11097 		 * this device. They should clean all the things.
11098 		 */
11099 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11100 
11101 		if (!dev->rtnl_link_ops ||
11102 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11103 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11104 						     GFP_KERNEL, NULL, 0,
11105 						     portid, nlh);
11106 
11107 		/*
11108 		 *	Flush the unicast and multicast chains
11109 		 */
11110 		dev_uc_flush(dev);
11111 		dev_mc_flush(dev);
11112 
11113 		netdev_name_node_alt_flush(dev);
11114 		netdev_name_node_free(dev->name_node);
11115 
11116 		call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
11117 
11118 		if (dev->netdev_ops->ndo_uninit)
11119 			dev->netdev_ops->ndo_uninit(dev);
11120 
11121 		if (skb)
11122 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
11123 
11124 		/* Notifier chain MUST detach us all upper devices. */
11125 		WARN_ON(netdev_has_any_upper_dev(dev));
11126 		WARN_ON(netdev_has_any_lower_dev(dev));
11127 
11128 		/* Remove entries from kobject tree */
11129 		netdev_unregister_kobject(dev);
11130 #ifdef CONFIG_XPS
11131 		/* Remove XPS queueing entries */
11132 		netif_reset_xps_queues_gt(dev, 0);
11133 #endif
11134 	}
11135 
11136 	synchronize_net();
11137 
11138 	list_for_each_entry(dev, head, unreg_list) {
11139 		netdev_put(dev, &dev->dev_registered_tracker);
11140 		net_set_todo(dev);
11141 		cnt++;
11142 	}
11143 	atomic_add(cnt, &dev_unreg_count);
11144 
11145 	list_del(head);
11146 }
11147 
11148 /**
11149  *	unregister_netdevice_many - unregister many devices
11150  *	@head: list of devices
11151  *
11152  *  Note: As most callers use a stack allocated list_head,
11153  *  we force a list_del() to make sure stack wont be corrupted later.
11154  */
11155 void unregister_netdevice_many(struct list_head *head)
11156 {
11157 	unregister_netdevice_many_notify(head, 0, NULL);
11158 }
11159 EXPORT_SYMBOL(unregister_netdevice_many);
11160 
11161 /**
11162  *	unregister_netdev - remove device from the kernel
11163  *	@dev: device
11164  *
11165  *	This function shuts down a device interface and removes it
11166  *	from the kernel tables.
11167  *
11168  *	This is just a wrapper for unregister_netdevice that takes
11169  *	the rtnl semaphore.  In general you want to use this and not
11170  *	unregister_netdevice.
11171  */
11172 void unregister_netdev(struct net_device *dev)
11173 {
11174 	rtnl_lock();
11175 	unregister_netdevice(dev);
11176 	rtnl_unlock();
11177 }
11178 EXPORT_SYMBOL(unregister_netdev);
11179 
11180 /**
11181  *	__dev_change_net_namespace - move device to different nethost namespace
11182  *	@dev: device
11183  *	@net: network namespace
11184  *	@pat: If not NULL name pattern to try if the current device name
11185  *	      is already taken in the destination network namespace.
11186  *	@new_ifindex: If not zero, specifies device index in the target
11187  *	              namespace.
11188  *
11189  *	This function shuts down a device interface and moves it
11190  *	to a new network namespace. On success 0 is returned, on
11191  *	a failure a netagive errno code is returned.
11192  *
11193  *	Callers must hold the rtnl semaphore.
11194  */
11195 
11196 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11197 			       const char *pat, int new_ifindex)
11198 {
11199 	struct netdev_name_node *name_node;
11200 	struct net *net_old = dev_net(dev);
11201 	char new_name[IFNAMSIZ] = {};
11202 	int err, new_nsid;
11203 
11204 	ASSERT_RTNL();
11205 
11206 	/* Don't allow namespace local devices to be moved. */
11207 	err = -EINVAL;
11208 	if (dev->features & NETIF_F_NETNS_LOCAL)
11209 		goto out;
11210 
11211 	/* Ensure the device has been registrered */
11212 	if (dev->reg_state != NETREG_REGISTERED)
11213 		goto out;
11214 
11215 	/* Get out if there is nothing todo */
11216 	err = 0;
11217 	if (net_eq(net_old, net))
11218 		goto out;
11219 
11220 	/* Pick the destination device name, and ensure
11221 	 * we can use it in the destination network namespace.
11222 	 */
11223 	err = -EEXIST;
11224 	if (netdev_name_in_use(net, dev->name)) {
11225 		/* We get here if we can't use the current device name */
11226 		if (!pat)
11227 			goto out;
11228 		err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST);
11229 		if (err < 0)
11230 			goto out;
11231 	}
11232 	/* Check that none of the altnames conflicts. */
11233 	err = -EEXIST;
11234 	netdev_for_each_altname(dev, name_node)
11235 		if (netdev_name_in_use(net, name_node->name))
11236 			goto out;
11237 
11238 	/* Check that new_ifindex isn't used yet. */
11239 	if (new_ifindex) {
11240 		err = dev_index_reserve(net, new_ifindex);
11241 		if (err < 0)
11242 			goto out;
11243 	} else {
11244 		/* If there is an ifindex conflict assign a new one */
11245 		err = dev_index_reserve(net, dev->ifindex);
11246 		if (err == -EBUSY)
11247 			err = dev_index_reserve(net, 0);
11248 		if (err < 0)
11249 			goto out;
11250 		new_ifindex = err;
11251 	}
11252 
11253 	/*
11254 	 * And now a mini version of register_netdevice unregister_netdevice.
11255 	 */
11256 
11257 	/* If device is running close it first. */
11258 	dev_close(dev);
11259 
11260 	/* And unlink it from device chain */
11261 	unlist_netdevice(dev);
11262 
11263 	synchronize_net();
11264 
11265 	/* Shutdown queueing discipline. */
11266 	dev_shutdown(dev);
11267 
11268 	/* Notify protocols, that we are about to destroy
11269 	 * this device. They should clean all the things.
11270 	 *
11271 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
11272 	 * This is wanted because this way 8021q and macvlan know
11273 	 * the device is just moving and can keep their slaves up.
11274 	 */
11275 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11276 	rcu_barrier();
11277 
11278 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11279 
11280 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11281 			    new_ifindex);
11282 
11283 	/*
11284 	 *	Flush the unicast and multicast chains
11285 	 */
11286 	dev_uc_flush(dev);
11287 	dev_mc_flush(dev);
11288 
11289 	/* Send a netdev-removed uevent to the old namespace */
11290 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11291 	netdev_adjacent_del_links(dev);
11292 
11293 	/* Move per-net netdevice notifiers that are following the netdevice */
11294 	move_netdevice_notifiers_dev_net(dev, net);
11295 
11296 	/* Actually switch the network namespace */
11297 	dev_net_set(dev, net);
11298 	dev->ifindex = new_ifindex;
11299 
11300 	if (new_name[0]) /* Rename the netdev to prepared name */
11301 		strscpy(dev->name, new_name, IFNAMSIZ);
11302 
11303 	/* Fixup kobjects */
11304 	dev_set_uevent_suppress(&dev->dev, 1);
11305 	err = device_rename(&dev->dev, dev->name);
11306 	dev_set_uevent_suppress(&dev->dev, 0);
11307 	WARN_ON(err);
11308 
11309 	/* Send a netdev-add uevent to the new namespace */
11310 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11311 	netdev_adjacent_add_links(dev);
11312 
11313 	/* Adapt owner in case owning user namespace of target network
11314 	 * namespace is different from the original one.
11315 	 */
11316 	err = netdev_change_owner(dev, net_old, net);
11317 	WARN_ON(err);
11318 
11319 	/* Add the device back in the hashes */
11320 	list_netdevice(dev);
11321 
11322 	/* Notify protocols, that a new device appeared. */
11323 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
11324 
11325 	/*
11326 	 *	Prevent userspace races by waiting until the network
11327 	 *	device is fully setup before sending notifications.
11328 	 */
11329 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11330 
11331 	synchronize_net();
11332 	err = 0;
11333 out:
11334 	return err;
11335 }
11336 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11337 
11338 static int dev_cpu_dead(unsigned int oldcpu)
11339 {
11340 	struct sk_buff **list_skb;
11341 	struct sk_buff *skb;
11342 	unsigned int cpu;
11343 	struct softnet_data *sd, *oldsd, *remsd = NULL;
11344 
11345 	local_irq_disable();
11346 	cpu = smp_processor_id();
11347 	sd = &per_cpu(softnet_data, cpu);
11348 	oldsd = &per_cpu(softnet_data, oldcpu);
11349 
11350 	/* Find end of our completion_queue. */
11351 	list_skb = &sd->completion_queue;
11352 	while (*list_skb)
11353 		list_skb = &(*list_skb)->next;
11354 	/* Append completion queue from offline CPU. */
11355 	*list_skb = oldsd->completion_queue;
11356 	oldsd->completion_queue = NULL;
11357 
11358 	/* Append output queue from offline CPU. */
11359 	if (oldsd->output_queue) {
11360 		*sd->output_queue_tailp = oldsd->output_queue;
11361 		sd->output_queue_tailp = oldsd->output_queue_tailp;
11362 		oldsd->output_queue = NULL;
11363 		oldsd->output_queue_tailp = &oldsd->output_queue;
11364 	}
11365 	/* Append NAPI poll list from offline CPU, with one exception :
11366 	 * process_backlog() must be called by cpu owning percpu backlog.
11367 	 * We properly handle process_queue & input_pkt_queue later.
11368 	 */
11369 	while (!list_empty(&oldsd->poll_list)) {
11370 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11371 							    struct napi_struct,
11372 							    poll_list);
11373 
11374 		list_del_init(&napi->poll_list);
11375 		if (napi->poll == process_backlog)
11376 			napi->state = 0;
11377 		else
11378 			____napi_schedule(sd, napi);
11379 	}
11380 
11381 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
11382 	local_irq_enable();
11383 
11384 #ifdef CONFIG_RPS
11385 	remsd = oldsd->rps_ipi_list;
11386 	oldsd->rps_ipi_list = NULL;
11387 #endif
11388 	/* send out pending IPI's on offline CPU */
11389 	net_rps_send_ipi(remsd);
11390 
11391 	/* Process offline CPU's input_pkt_queue */
11392 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11393 		netif_rx(skb);
11394 		input_queue_head_incr(oldsd);
11395 	}
11396 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11397 		netif_rx(skb);
11398 		input_queue_head_incr(oldsd);
11399 	}
11400 
11401 	return 0;
11402 }
11403 
11404 /**
11405  *	netdev_increment_features - increment feature set by one
11406  *	@all: current feature set
11407  *	@one: new feature set
11408  *	@mask: mask feature set
11409  *
11410  *	Computes a new feature set after adding a device with feature set
11411  *	@one to the master device with current feature set @all.  Will not
11412  *	enable anything that is off in @mask. Returns the new feature set.
11413  */
11414 netdev_features_t netdev_increment_features(netdev_features_t all,
11415 	netdev_features_t one, netdev_features_t mask)
11416 {
11417 	if (mask & NETIF_F_HW_CSUM)
11418 		mask |= NETIF_F_CSUM_MASK;
11419 	mask |= NETIF_F_VLAN_CHALLENGED;
11420 
11421 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11422 	all &= one | ~NETIF_F_ALL_FOR_ALL;
11423 
11424 	/* If one device supports hw checksumming, set for all. */
11425 	if (all & NETIF_F_HW_CSUM)
11426 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11427 
11428 	return all;
11429 }
11430 EXPORT_SYMBOL(netdev_increment_features);
11431 
11432 static struct hlist_head * __net_init netdev_create_hash(void)
11433 {
11434 	int i;
11435 	struct hlist_head *hash;
11436 
11437 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11438 	if (hash != NULL)
11439 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
11440 			INIT_HLIST_HEAD(&hash[i]);
11441 
11442 	return hash;
11443 }
11444 
11445 /* Initialize per network namespace state */
11446 static int __net_init netdev_init(struct net *net)
11447 {
11448 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
11449 		     8 * sizeof_field(struct napi_struct, gro_bitmask));
11450 
11451 	INIT_LIST_HEAD(&net->dev_base_head);
11452 
11453 	net->dev_name_head = netdev_create_hash();
11454 	if (net->dev_name_head == NULL)
11455 		goto err_name;
11456 
11457 	net->dev_index_head = netdev_create_hash();
11458 	if (net->dev_index_head == NULL)
11459 		goto err_idx;
11460 
11461 	xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1);
11462 
11463 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11464 
11465 	return 0;
11466 
11467 err_idx:
11468 	kfree(net->dev_name_head);
11469 err_name:
11470 	return -ENOMEM;
11471 }
11472 
11473 /**
11474  *	netdev_drivername - network driver for the device
11475  *	@dev: network device
11476  *
11477  *	Determine network driver for device.
11478  */
11479 const char *netdev_drivername(const struct net_device *dev)
11480 {
11481 	const struct device_driver *driver;
11482 	const struct device *parent;
11483 	const char *empty = "";
11484 
11485 	parent = dev->dev.parent;
11486 	if (!parent)
11487 		return empty;
11488 
11489 	driver = parent->driver;
11490 	if (driver && driver->name)
11491 		return driver->name;
11492 	return empty;
11493 }
11494 
11495 static void __netdev_printk(const char *level, const struct net_device *dev,
11496 			    struct va_format *vaf)
11497 {
11498 	if (dev && dev->dev.parent) {
11499 		dev_printk_emit(level[1] - '0',
11500 				dev->dev.parent,
11501 				"%s %s %s%s: %pV",
11502 				dev_driver_string(dev->dev.parent),
11503 				dev_name(dev->dev.parent),
11504 				netdev_name(dev), netdev_reg_state(dev),
11505 				vaf);
11506 	} else if (dev) {
11507 		printk("%s%s%s: %pV",
11508 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
11509 	} else {
11510 		printk("%s(NULL net_device): %pV", level, vaf);
11511 	}
11512 }
11513 
11514 void netdev_printk(const char *level, const struct net_device *dev,
11515 		   const char *format, ...)
11516 {
11517 	struct va_format vaf;
11518 	va_list args;
11519 
11520 	va_start(args, format);
11521 
11522 	vaf.fmt = format;
11523 	vaf.va = &args;
11524 
11525 	__netdev_printk(level, dev, &vaf);
11526 
11527 	va_end(args);
11528 }
11529 EXPORT_SYMBOL(netdev_printk);
11530 
11531 #define define_netdev_printk_level(func, level)			\
11532 void func(const struct net_device *dev, const char *fmt, ...)	\
11533 {								\
11534 	struct va_format vaf;					\
11535 	va_list args;						\
11536 								\
11537 	va_start(args, fmt);					\
11538 								\
11539 	vaf.fmt = fmt;						\
11540 	vaf.va = &args;						\
11541 								\
11542 	__netdev_printk(level, dev, &vaf);			\
11543 								\
11544 	va_end(args);						\
11545 }								\
11546 EXPORT_SYMBOL(func);
11547 
11548 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11549 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11550 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11551 define_netdev_printk_level(netdev_err, KERN_ERR);
11552 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11553 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11554 define_netdev_printk_level(netdev_info, KERN_INFO);
11555 
11556 static void __net_exit netdev_exit(struct net *net)
11557 {
11558 	kfree(net->dev_name_head);
11559 	kfree(net->dev_index_head);
11560 	xa_destroy(&net->dev_by_index);
11561 	if (net != &init_net)
11562 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11563 }
11564 
11565 static struct pernet_operations __net_initdata netdev_net_ops = {
11566 	.init = netdev_init,
11567 	.exit = netdev_exit,
11568 };
11569 
11570 static void __net_exit default_device_exit_net(struct net *net)
11571 {
11572 	struct netdev_name_node *name_node, *tmp;
11573 	struct net_device *dev, *aux;
11574 	/*
11575 	 * Push all migratable network devices back to the
11576 	 * initial network namespace
11577 	 */
11578 	ASSERT_RTNL();
11579 	for_each_netdev_safe(net, dev, aux) {
11580 		int err;
11581 		char fb_name[IFNAMSIZ];
11582 
11583 		/* Ignore unmoveable devices (i.e. loopback) */
11584 		if (dev->features & NETIF_F_NETNS_LOCAL)
11585 			continue;
11586 
11587 		/* Leave virtual devices for the generic cleanup */
11588 		if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11589 			continue;
11590 
11591 		/* Push remaining network devices to init_net */
11592 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11593 		if (netdev_name_in_use(&init_net, fb_name))
11594 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
11595 
11596 		netdev_for_each_altname_safe(dev, name_node, tmp)
11597 			if (netdev_name_in_use(&init_net, name_node->name))
11598 				__netdev_name_node_alt_destroy(name_node);
11599 
11600 		err = dev_change_net_namespace(dev, &init_net, fb_name);
11601 		if (err) {
11602 			pr_emerg("%s: failed to move %s to init_net: %d\n",
11603 				 __func__, dev->name, err);
11604 			BUG();
11605 		}
11606 	}
11607 }
11608 
11609 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11610 {
11611 	/* At exit all network devices most be removed from a network
11612 	 * namespace.  Do this in the reverse order of registration.
11613 	 * Do this across as many network namespaces as possible to
11614 	 * improve batching efficiency.
11615 	 */
11616 	struct net_device *dev;
11617 	struct net *net;
11618 	LIST_HEAD(dev_kill_list);
11619 
11620 	rtnl_lock();
11621 	list_for_each_entry(net, net_list, exit_list) {
11622 		default_device_exit_net(net);
11623 		cond_resched();
11624 	}
11625 
11626 	list_for_each_entry(net, net_list, exit_list) {
11627 		for_each_netdev_reverse(net, dev) {
11628 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11629 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11630 			else
11631 				unregister_netdevice_queue(dev, &dev_kill_list);
11632 		}
11633 	}
11634 	unregister_netdevice_many(&dev_kill_list);
11635 	rtnl_unlock();
11636 }
11637 
11638 static struct pernet_operations __net_initdata default_device_ops = {
11639 	.exit_batch = default_device_exit_batch,
11640 };
11641 
11642 static void __init net_dev_struct_check(void)
11643 {
11644 	/* TX read-mostly hotpath */
11645 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, priv_flags);
11646 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, netdev_ops);
11647 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, header_ops);
11648 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, _tx);
11649 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, real_num_tx_queues);
11650 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_size);
11651 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_ipv4_max_size);
11652 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_segs);
11653 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_partial_features);
11654 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, num_tc);
11655 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, mtu);
11656 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, needed_headroom);
11657 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tc_to_txq);
11658 #ifdef CONFIG_XPS
11659 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, xps_maps);
11660 #endif
11661 #ifdef CONFIG_NETFILTER_EGRESS
11662 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, nf_hooks_egress);
11663 #endif
11664 #ifdef CONFIG_NET_XGRESS
11665 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tcx_egress);
11666 #endif
11667 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_tx, 160);
11668 
11669 	/* TXRX read-mostly hotpath */
11670 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, lstats);
11671 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, state);
11672 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, flags);
11673 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, hard_header_len);
11674 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, features);
11675 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, ip6_ptr);
11676 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_txrx, 46);
11677 
11678 	/* RX read-mostly hotpath */
11679 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ptype_specific);
11680 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ifindex);
11681 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, real_num_rx_queues);
11682 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, _rx);
11683 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_flush_timeout);
11684 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, napi_defer_hard_irqs);
11685 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_max_size);
11686 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_ipv4_max_size);
11687 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler);
11688 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler_data);
11689 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, nd_net);
11690 #ifdef CONFIG_NETPOLL
11691 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, npinfo);
11692 #endif
11693 #ifdef CONFIG_NET_XGRESS
11694 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, tcx_ingress);
11695 #endif
11696 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_rx, 104);
11697 }
11698 
11699 /*
11700  *	Initialize the DEV module. At boot time this walks the device list and
11701  *	unhooks any devices that fail to initialise (normally hardware not
11702  *	present) and leaves us with a valid list of present and active devices.
11703  *
11704  */
11705 
11706 /* We allocate 256 pages for each CPU if PAGE_SHIFT is 12 */
11707 #define SYSTEM_PERCPU_PAGE_POOL_SIZE	((1 << 20) / PAGE_SIZE)
11708 
11709 static int net_page_pool_create(int cpuid)
11710 {
11711 #if IS_ENABLED(CONFIG_PAGE_POOL)
11712 	struct page_pool_params page_pool_params = {
11713 		.pool_size = SYSTEM_PERCPU_PAGE_POOL_SIZE,
11714 		.flags = PP_FLAG_SYSTEM_POOL,
11715 		.nid = NUMA_NO_NODE,
11716 	};
11717 	struct page_pool *pp_ptr;
11718 
11719 	pp_ptr = page_pool_create_percpu(&page_pool_params, cpuid);
11720 	if (IS_ERR(pp_ptr))
11721 		return -ENOMEM;
11722 
11723 	per_cpu(system_page_pool, cpuid) = pp_ptr;
11724 #endif
11725 	return 0;
11726 }
11727 
11728 /*
11729  *       This is called single threaded during boot, so no need
11730  *       to take the rtnl semaphore.
11731  */
11732 static int __init net_dev_init(void)
11733 {
11734 	int i, rc = -ENOMEM;
11735 
11736 	BUG_ON(!dev_boot_phase);
11737 
11738 	net_dev_struct_check();
11739 
11740 	if (dev_proc_init())
11741 		goto out;
11742 
11743 	if (netdev_kobject_init())
11744 		goto out;
11745 
11746 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
11747 		INIT_LIST_HEAD(&ptype_base[i]);
11748 
11749 	if (register_pernet_subsys(&netdev_net_ops))
11750 		goto out;
11751 
11752 	/*
11753 	 *	Initialise the packet receive queues.
11754 	 */
11755 
11756 	for_each_possible_cpu(i) {
11757 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11758 		struct softnet_data *sd = &per_cpu(softnet_data, i);
11759 
11760 		INIT_WORK(flush, flush_backlog);
11761 
11762 		skb_queue_head_init(&sd->input_pkt_queue);
11763 		skb_queue_head_init(&sd->process_queue);
11764 #ifdef CONFIG_XFRM_OFFLOAD
11765 		skb_queue_head_init(&sd->xfrm_backlog);
11766 #endif
11767 		INIT_LIST_HEAD(&sd->poll_list);
11768 		sd->output_queue_tailp = &sd->output_queue;
11769 #ifdef CONFIG_RPS
11770 		INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11771 		sd->cpu = i;
11772 #endif
11773 		INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
11774 		spin_lock_init(&sd->defer_lock);
11775 
11776 		init_gro_hash(&sd->backlog);
11777 		sd->backlog.poll = process_backlog;
11778 		sd->backlog.weight = weight_p;
11779 
11780 		if (net_page_pool_create(i))
11781 			goto out;
11782 	}
11783 
11784 	dev_boot_phase = 0;
11785 
11786 	/* The loopback device is special if any other network devices
11787 	 * is present in a network namespace the loopback device must
11788 	 * be present. Since we now dynamically allocate and free the
11789 	 * loopback device ensure this invariant is maintained by
11790 	 * keeping the loopback device as the first device on the
11791 	 * list of network devices.  Ensuring the loopback devices
11792 	 * is the first device that appears and the last network device
11793 	 * that disappears.
11794 	 */
11795 	if (register_pernet_device(&loopback_net_ops))
11796 		goto out;
11797 
11798 	if (register_pernet_device(&default_device_ops))
11799 		goto out;
11800 
11801 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11802 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11803 
11804 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11805 				       NULL, dev_cpu_dead);
11806 	WARN_ON(rc < 0);
11807 	rc = 0;
11808 out:
11809 	if (rc < 0) {
11810 		for_each_possible_cpu(i) {
11811 			struct page_pool *pp_ptr;
11812 
11813 			pp_ptr = per_cpu(system_page_pool, i);
11814 			if (!pp_ptr)
11815 				continue;
11816 
11817 			page_pool_destroy(pp_ptr);
11818 			per_cpu(system_page_pool, i) = NULL;
11819 		}
11820 	}
11821 
11822 	return rc;
11823 }
11824 
11825 subsys_initcall(net_dev_init);
11826