1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET3 Protocol independent device support routines. 4 * 5 * Derived from the non IP parts of dev.c 1.0.19 6 * Authors: Ross Biro 7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 8 * Mark Evans, <evansmp@uhura.aston.ac.uk> 9 * 10 * Additional Authors: 11 * Florian la Roche <rzsfl@rz.uni-sb.de> 12 * Alan Cox <gw4pts@gw4pts.ampr.org> 13 * David Hinds <dahinds@users.sourceforge.net> 14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 15 * Adam Sulmicki <adam@cfar.umd.edu> 16 * Pekka Riikonen <priikone@poesidon.pspt.fi> 17 * 18 * Changes: 19 * D.J. Barrow : Fixed bug where dev->refcnt gets set 20 * to 2 if register_netdev gets called 21 * before net_dev_init & also removed a 22 * few lines of code in the process. 23 * Alan Cox : device private ioctl copies fields back. 24 * Alan Cox : Transmit queue code does relevant 25 * stunts to keep the queue safe. 26 * Alan Cox : Fixed double lock. 27 * Alan Cox : Fixed promisc NULL pointer trap 28 * ???????? : Support the full private ioctl range 29 * Alan Cox : Moved ioctl permission check into 30 * drivers 31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 32 * Alan Cox : 100 backlog just doesn't cut it when 33 * you start doing multicast video 8) 34 * Alan Cox : Rewrote net_bh and list manager. 35 * Alan Cox : Fix ETH_P_ALL echoback lengths. 36 * Alan Cox : Took out transmit every packet pass 37 * Saved a few bytes in the ioctl handler 38 * Alan Cox : Network driver sets packet type before 39 * calling netif_rx. Saves a function 40 * call a packet. 41 * Alan Cox : Hashed net_bh() 42 * Richard Kooijman: Timestamp fixes. 43 * Alan Cox : Wrong field in SIOCGIFDSTADDR 44 * Alan Cox : Device lock protection. 45 * Alan Cox : Fixed nasty side effect of device close 46 * changes. 47 * Rudi Cilibrasi : Pass the right thing to 48 * set_mac_address() 49 * Dave Miller : 32bit quantity for the device lock to 50 * make it work out on a Sparc. 51 * Bjorn Ekwall : Added KERNELD hack. 52 * Alan Cox : Cleaned up the backlog initialise. 53 * Craig Metz : SIOCGIFCONF fix if space for under 54 * 1 device. 55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 56 * is no device open function. 57 * Andi Kleen : Fix error reporting for SIOCGIFCONF 58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 59 * Cyrus Durgin : Cleaned for KMOD 60 * Adam Sulmicki : Bug Fix : Network Device Unload 61 * A network device unload needs to purge 62 * the backlog queue. 63 * Paul Rusty Russell : SIOCSIFNAME 64 * Pekka Riikonen : Netdev boot-time settings code 65 * Andrew Morton : Make unregister_netdevice wait 66 * indefinitely on dev->refcnt 67 * J Hadi Salim : - Backlog queue sampling 68 * - netif_rx() feedback 69 */ 70 71 #include <linux/uaccess.h> 72 #include <linux/bitops.h> 73 #include <linux/capability.h> 74 #include <linux/cpu.h> 75 #include <linux/types.h> 76 #include <linux/kernel.h> 77 #include <linux/hash.h> 78 #include <linux/slab.h> 79 #include <linux/sched.h> 80 #include <linux/sched/mm.h> 81 #include <linux/mutex.h> 82 #include <linux/string.h> 83 #include <linux/mm.h> 84 #include <linux/socket.h> 85 #include <linux/sockios.h> 86 #include <linux/errno.h> 87 #include <linux/interrupt.h> 88 #include <linux/if_ether.h> 89 #include <linux/netdevice.h> 90 #include <linux/etherdevice.h> 91 #include <linux/ethtool.h> 92 #include <linux/skbuff.h> 93 #include <linux/bpf.h> 94 #include <linux/bpf_trace.h> 95 #include <net/net_namespace.h> 96 #include <net/sock.h> 97 #include <net/busy_poll.h> 98 #include <linux/rtnetlink.h> 99 #include <linux/stat.h> 100 #include <net/dst.h> 101 #include <net/dst_metadata.h> 102 #include <net/pkt_sched.h> 103 #include <net/pkt_cls.h> 104 #include <net/checksum.h> 105 #include <net/xfrm.h> 106 #include <linux/highmem.h> 107 #include <linux/init.h> 108 #include <linux/module.h> 109 #include <linux/netpoll.h> 110 #include <linux/rcupdate.h> 111 #include <linux/delay.h> 112 #include <net/iw_handler.h> 113 #include <asm/current.h> 114 #include <linux/audit.h> 115 #include <linux/dmaengine.h> 116 #include <linux/err.h> 117 #include <linux/ctype.h> 118 #include <linux/if_arp.h> 119 #include <linux/if_vlan.h> 120 #include <linux/ip.h> 121 #include <net/ip.h> 122 #include <net/mpls.h> 123 #include <linux/ipv6.h> 124 #include <linux/in.h> 125 #include <linux/jhash.h> 126 #include <linux/random.h> 127 #include <trace/events/napi.h> 128 #include <trace/events/net.h> 129 #include <trace/events/skb.h> 130 #include <linux/inetdevice.h> 131 #include <linux/cpu_rmap.h> 132 #include <linux/static_key.h> 133 #include <linux/hashtable.h> 134 #include <linux/vmalloc.h> 135 #include <linux/if_macvlan.h> 136 #include <linux/errqueue.h> 137 #include <linux/hrtimer.h> 138 #include <linux/netfilter_ingress.h> 139 #include <linux/crash_dump.h> 140 #include <linux/sctp.h> 141 #include <net/udp_tunnel.h> 142 #include <linux/net_namespace.h> 143 #include <linux/indirect_call_wrapper.h> 144 #include <net/devlink.h> 145 146 #include "net-sysfs.h" 147 148 #define MAX_GRO_SKBS 8 149 #define MAX_NEST_DEV 8 150 151 /* This should be increased if a protocol with a bigger head is added. */ 152 #define GRO_MAX_HEAD (MAX_HEADER + 128) 153 154 static DEFINE_SPINLOCK(ptype_lock); 155 static DEFINE_SPINLOCK(offload_lock); 156 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 157 struct list_head ptype_all __read_mostly; /* Taps */ 158 static struct list_head offload_base __read_mostly; 159 160 static int netif_rx_internal(struct sk_buff *skb); 161 static int call_netdevice_notifiers_info(unsigned long val, 162 struct netdev_notifier_info *info); 163 static int call_netdevice_notifiers_extack(unsigned long val, 164 struct net_device *dev, 165 struct netlink_ext_ack *extack); 166 static struct napi_struct *napi_by_id(unsigned int napi_id); 167 168 /* 169 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 170 * semaphore. 171 * 172 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 173 * 174 * Writers must hold the rtnl semaphore while they loop through the 175 * dev_base_head list, and hold dev_base_lock for writing when they do the 176 * actual updates. This allows pure readers to access the list even 177 * while a writer is preparing to update it. 178 * 179 * To put it another way, dev_base_lock is held for writing only to 180 * protect against pure readers; the rtnl semaphore provides the 181 * protection against other writers. 182 * 183 * See, for example usages, register_netdevice() and 184 * unregister_netdevice(), which must be called with the rtnl 185 * semaphore held. 186 */ 187 DEFINE_RWLOCK(dev_base_lock); 188 EXPORT_SYMBOL(dev_base_lock); 189 190 static DEFINE_MUTEX(ifalias_mutex); 191 192 /* protects napi_hash addition/deletion and napi_gen_id */ 193 static DEFINE_SPINLOCK(napi_hash_lock); 194 195 static unsigned int napi_gen_id = NR_CPUS; 196 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8); 197 198 static seqcount_t devnet_rename_seq; 199 200 static inline void dev_base_seq_inc(struct net *net) 201 { 202 while (++net->dev_base_seq == 0) 203 ; 204 } 205 206 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 207 { 208 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ)); 209 210 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 211 } 212 213 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 214 { 215 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 216 } 217 218 static inline void rps_lock(struct softnet_data *sd) 219 { 220 #ifdef CONFIG_RPS 221 spin_lock(&sd->input_pkt_queue.lock); 222 #endif 223 } 224 225 static inline void rps_unlock(struct softnet_data *sd) 226 { 227 #ifdef CONFIG_RPS 228 spin_unlock(&sd->input_pkt_queue.lock); 229 #endif 230 } 231 232 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev, 233 const char *name) 234 { 235 struct netdev_name_node *name_node; 236 237 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL); 238 if (!name_node) 239 return NULL; 240 INIT_HLIST_NODE(&name_node->hlist); 241 name_node->dev = dev; 242 name_node->name = name; 243 return name_node; 244 } 245 246 static struct netdev_name_node * 247 netdev_name_node_head_alloc(struct net_device *dev) 248 { 249 struct netdev_name_node *name_node; 250 251 name_node = netdev_name_node_alloc(dev, dev->name); 252 if (!name_node) 253 return NULL; 254 INIT_LIST_HEAD(&name_node->list); 255 return name_node; 256 } 257 258 static void netdev_name_node_free(struct netdev_name_node *name_node) 259 { 260 kfree(name_node); 261 } 262 263 static void netdev_name_node_add(struct net *net, 264 struct netdev_name_node *name_node) 265 { 266 hlist_add_head_rcu(&name_node->hlist, 267 dev_name_hash(net, name_node->name)); 268 } 269 270 static void netdev_name_node_del(struct netdev_name_node *name_node) 271 { 272 hlist_del_rcu(&name_node->hlist); 273 } 274 275 static struct netdev_name_node *netdev_name_node_lookup(struct net *net, 276 const char *name) 277 { 278 struct hlist_head *head = dev_name_hash(net, name); 279 struct netdev_name_node *name_node; 280 281 hlist_for_each_entry(name_node, head, hlist) 282 if (!strcmp(name_node->name, name)) 283 return name_node; 284 return NULL; 285 } 286 287 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net, 288 const char *name) 289 { 290 struct hlist_head *head = dev_name_hash(net, name); 291 struct netdev_name_node *name_node; 292 293 hlist_for_each_entry_rcu(name_node, head, hlist) 294 if (!strcmp(name_node->name, name)) 295 return name_node; 296 return NULL; 297 } 298 299 int netdev_name_node_alt_create(struct net_device *dev, const char *name) 300 { 301 struct netdev_name_node *name_node; 302 struct net *net = dev_net(dev); 303 304 name_node = netdev_name_node_lookup(net, name); 305 if (name_node) 306 return -EEXIST; 307 name_node = netdev_name_node_alloc(dev, name); 308 if (!name_node) 309 return -ENOMEM; 310 netdev_name_node_add(net, name_node); 311 /* The node that holds dev->name acts as a head of per-device list. */ 312 list_add_tail(&name_node->list, &dev->name_node->list); 313 314 return 0; 315 } 316 EXPORT_SYMBOL(netdev_name_node_alt_create); 317 318 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node) 319 { 320 list_del(&name_node->list); 321 netdev_name_node_del(name_node); 322 kfree(name_node->name); 323 netdev_name_node_free(name_node); 324 } 325 326 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name) 327 { 328 struct netdev_name_node *name_node; 329 struct net *net = dev_net(dev); 330 331 name_node = netdev_name_node_lookup(net, name); 332 if (!name_node) 333 return -ENOENT; 334 __netdev_name_node_alt_destroy(name_node); 335 336 return 0; 337 } 338 EXPORT_SYMBOL(netdev_name_node_alt_destroy); 339 340 static void netdev_name_node_alt_flush(struct net_device *dev) 341 { 342 struct netdev_name_node *name_node, *tmp; 343 344 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) 345 __netdev_name_node_alt_destroy(name_node); 346 } 347 348 /* Device list insertion */ 349 static void list_netdevice(struct net_device *dev) 350 { 351 struct net *net = dev_net(dev); 352 353 ASSERT_RTNL(); 354 355 write_lock_bh(&dev_base_lock); 356 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 357 netdev_name_node_add(net, dev->name_node); 358 hlist_add_head_rcu(&dev->index_hlist, 359 dev_index_hash(net, dev->ifindex)); 360 write_unlock_bh(&dev_base_lock); 361 362 dev_base_seq_inc(net); 363 } 364 365 /* Device list removal 366 * caller must respect a RCU grace period before freeing/reusing dev 367 */ 368 static void unlist_netdevice(struct net_device *dev) 369 { 370 ASSERT_RTNL(); 371 372 /* Unlink dev from the device chain */ 373 write_lock_bh(&dev_base_lock); 374 list_del_rcu(&dev->dev_list); 375 netdev_name_node_del(dev->name_node); 376 hlist_del_rcu(&dev->index_hlist); 377 write_unlock_bh(&dev_base_lock); 378 379 dev_base_seq_inc(dev_net(dev)); 380 } 381 382 /* 383 * Our notifier list 384 */ 385 386 static RAW_NOTIFIER_HEAD(netdev_chain); 387 388 /* 389 * Device drivers call our routines to queue packets here. We empty the 390 * queue in the local softnet handler. 391 */ 392 393 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 394 EXPORT_PER_CPU_SYMBOL(softnet_data); 395 396 /******************************************************************************* 397 * 398 * Protocol management and registration routines 399 * 400 *******************************************************************************/ 401 402 403 /* 404 * Add a protocol ID to the list. Now that the input handler is 405 * smarter we can dispense with all the messy stuff that used to be 406 * here. 407 * 408 * BEWARE!!! Protocol handlers, mangling input packets, 409 * MUST BE last in hash buckets and checking protocol handlers 410 * MUST start from promiscuous ptype_all chain in net_bh. 411 * It is true now, do not change it. 412 * Explanation follows: if protocol handler, mangling packet, will 413 * be the first on list, it is not able to sense, that packet 414 * is cloned and should be copied-on-write, so that it will 415 * change it and subsequent readers will get broken packet. 416 * --ANK (980803) 417 */ 418 419 static inline struct list_head *ptype_head(const struct packet_type *pt) 420 { 421 if (pt->type == htons(ETH_P_ALL)) 422 return pt->dev ? &pt->dev->ptype_all : &ptype_all; 423 else 424 return pt->dev ? &pt->dev->ptype_specific : 425 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 426 } 427 428 /** 429 * dev_add_pack - add packet handler 430 * @pt: packet type declaration 431 * 432 * Add a protocol handler to the networking stack. The passed &packet_type 433 * is linked into kernel lists and may not be freed until it has been 434 * removed from the kernel lists. 435 * 436 * This call does not sleep therefore it can not 437 * guarantee all CPU's that are in middle of receiving packets 438 * will see the new packet type (until the next received packet). 439 */ 440 441 void dev_add_pack(struct packet_type *pt) 442 { 443 struct list_head *head = ptype_head(pt); 444 445 spin_lock(&ptype_lock); 446 list_add_rcu(&pt->list, head); 447 spin_unlock(&ptype_lock); 448 } 449 EXPORT_SYMBOL(dev_add_pack); 450 451 /** 452 * __dev_remove_pack - remove packet handler 453 * @pt: packet type declaration 454 * 455 * Remove a protocol handler that was previously added to the kernel 456 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 457 * from the kernel lists and can be freed or reused once this function 458 * returns. 459 * 460 * The packet type might still be in use by receivers 461 * and must not be freed until after all the CPU's have gone 462 * through a quiescent state. 463 */ 464 void __dev_remove_pack(struct packet_type *pt) 465 { 466 struct list_head *head = ptype_head(pt); 467 struct packet_type *pt1; 468 469 spin_lock(&ptype_lock); 470 471 list_for_each_entry(pt1, head, list) { 472 if (pt == pt1) { 473 list_del_rcu(&pt->list); 474 goto out; 475 } 476 } 477 478 pr_warn("dev_remove_pack: %p not found\n", pt); 479 out: 480 spin_unlock(&ptype_lock); 481 } 482 EXPORT_SYMBOL(__dev_remove_pack); 483 484 /** 485 * dev_remove_pack - remove packet handler 486 * @pt: packet type declaration 487 * 488 * Remove a protocol handler that was previously added to the kernel 489 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 490 * from the kernel lists and can be freed or reused once this function 491 * returns. 492 * 493 * This call sleeps to guarantee that no CPU is looking at the packet 494 * type after return. 495 */ 496 void dev_remove_pack(struct packet_type *pt) 497 { 498 __dev_remove_pack(pt); 499 500 synchronize_net(); 501 } 502 EXPORT_SYMBOL(dev_remove_pack); 503 504 505 /** 506 * dev_add_offload - register offload handlers 507 * @po: protocol offload declaration 508 * 509 * Add protocol offload handlers to the networking stack. The passed 510 * &proto_offload is linked into kernel lists and may not be freed until 511 * it has been removed from the kernel lists. 512 * 513 * This call does not sleep therefore it can not 514 * guarantee all CPU's that are in middle of receiving packets 515 * will see the new offload handlers (until the next received packet). 516 */ 517 void dev_add_offload(struct packet_offload *po) 518 { 519 struct packet_offload *elem; 520 521 spin_lock(&offload_lock); 522 list_for_each_entry(elem, &offload_base, list) { 523 if (po->priority < elem->priority) 524 break; 525 } 526 list_add_rcu(&po->list, elem->list.prev); 527 spin_unlock(&offload_lock); 528 } 529 EXPORT_SYMBOL(dev_add_offload); 530 531 /** 532 * __dev_remove_offload - remove offload handler 533 * @po: packet offload declaration 534 * 535 * Remove a protocol offload handler that was previously added to the 536 * kernel offload handlers by dev_add_offload(). The passed &offload_type 537 * is removed from the kernel lists and can be freed or reused once this 538 * function returns. 539 * 540 * The packet type might still be in use by receivers 541 * and must not be freed until after all the CPU's have gone 542 * through a quiescent state. 543 */ 544 static void __dev_remove_offload(struct packet_offload *po) 545 { 546 struct list_head *head = &offload_base; 547 struct packet_offload *po1; 548 549 spin_lock(&offload_lock); 550 551 list_for_each_entry(po1, head, list) { 552 if (po == po1) { 553 list_del_rcu(&po->list); 554 goto out; 555 } 556 } 557 558 pr_warn("dev_remove_offload: %p not found\n", po); 559 out: 560 spin_unlock(&offload_lock); 561 } 562 563 /** 564 * dev_remove_offload - remove packet offload handler 565 * @po: packet offload declaration 566 * 567 * Remove a packet offload handler that was previously added to the kernel 568 * offload handlers by dev_add_offload(). The passed &offload_type is 569 * removed from the kernel lists and can be freed or reused once this 570 * function returns. 571 * 572 * This call sleeps to guarantee that no CPU is looking at the packet 573 * type after return. 574 */ 575 void dev_remove_offload(struct packet_offload *po) 576 { 577 __dev_remove_offload(po); 578 579 synchronize_net(); 580 } 581 EXPORT_SYMBOL(dev_remove_offload); 582 583 /****************************************************************************** 584 * 585 * Device Boot-time Settings Routines 586 * 587 ******************************************************************************/ 588 589 /* Boot time configuration table */ 590 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 591 592 /** 593 * netdev_boot_setup_add - add new setup entry 594 * @name: name of the device 595 * @map: configured settings for the device 596 * 597 * Adds new setup entry to the dev_boot_setup list. The function 598 * returns 0 on error and 1 on success. This is a generic routine to 599 * all netdevices. 600 */ 601 static int netdev_boot_setup_add(char *name, struct ifmap *map) 602 { 603 struct netdev_boot_setup *s; 604 int i; 605 606 s = dev_boot_setup; 607 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 608 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 609 memset(s[i].name, 0, sizeof(s[i].name)); 610 strlcpy(s[i].name, name, IFNAMSIZ); 611 memcpy(&s[i].map, map, sizeof(s[i].map)); 612 break; 613 } 614 } 615 616 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 617 } 618 619 /** 620 * netdev_boot_setup_check - check boot time settings 621 * @dev: the netdevice 622 * 623 * Check boot time settings for the device. 624 * The found settings are set for the device to be used 625 * later in the device probing. 626 * Returns 0 if no settings found, 1 if they are. 627 */ 628 int netdev_boot_setup_check(struct net_device *dev) 629 { 630 struct netdev_boot_setup *s = dev_boot_setup; 631 int i; 632 633 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 634 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 635 !strcmp(dev->name, s[i].name)) { 636 dev->irq = s[i].map.irq; 637 dev->base_addr = s[i].map.base_addr; 638 dev->mem_start = s[i].map.mem_start; 639 dev->mem_end = s[i].map.mem_end; 640 return 1; 641 } 642 } 643 return 0; 644 } 645 EXPORT_SYMBOL(netdev_boot_setup_check); 646 647 648 /** 649 * netdev_boot_base - get address from boot time settings 650 * @prefix: prefix for network device 651 * @unit: id for network device 652 * 653 * Check boot time settings for the base address of device. 654 * The found settings are set for the device to be used 655 * later in the device probing. 656 * Returns 0 if no settings found. 657 */ 658 unsigned long netdev_boot_base(const char *prefix, int unit) 659 { 660 const struct netdev_boot_setup *s = dev_boot_setup; 661 char name[IFNAMSIZ]; 662 int i; 663 664 sprintf(name, "%s%d", prefix, unit); 665 666 /* 667 * If device already registered then return base of 1 668 * to indicate not to probe for this interface 669 */ 670 if (__dev_get_by_name(&init_net, name)) 671 return 1; 672 673 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 674 if (!strcmp(name, s[i].name)) 675 return s[i].map.base_addr; 676 return 0; 677 } 678 679 /* 680 * Saves at boot time configured settings for any netdevice. 681 */ 682 int __init netdev_boot_setup(char *str) 683 { 684 int ints[5]; 685 struct ifmap map; 686 687 str = get_options(str, ARRAY_SIZE(ints), ints); 688 if (!str || !*str) 689 return 0; 690 691 /* Save settings */ 692 memset(&map, 0, sizeof(map)); 693 if (ints[0] > 0) 694 map.irq = ints[1]; 695 if (ints[0] > 1) 696 map.base_addr = ints[2]; 697 if (ints[0] > 2) 698 map.mem_start = ints[3]; 699 if (ints[0] > 3) 700 map.mem_end = ints[4]; 701 702 /* Add new entry to the list */ 703 return netdev_boot_setup_add(str, &map); 704 } 705 706 __setup("netdev=", netdev_boot_setup); 707 708 /******************************************************************************* 709 * 710 * Device Interface Subroutines 711 * 712 *******************************************************************************/ 713 714 /** 715 * dev_get_iflink - get 'iflink' value of a interface 716 * @dev: targeted interface 717 * 718 * Indicates the ifindex the interface is linked to. 719 * Physical interfaces have the same 'ifindex' and 'iflink' values. 720 */ 721 722 int dev_get_iflink(const struct net_device *dev) 723 { 724 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 725 return dev->netdev_ops->ndo_get_iflink(dev); 726 727 return dev->ifindex; 728 } 729 EXPORT_SYMBOL(dev_get_iflink); 730 731 /** 732 * dev_fill_metadata_dst - Retrieve tunnel egress information. 733 * @dev: targeted interface 734 * @skb: The packet. 735 * 736 * For better visibility of tunnel traffic OVS needs to retrieve 737 * egress tunnel information for a packet. Following API allows 738 * user to get this info. 739 */ 740 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) 741 { 742 struct ip_tunnel_info *info; 743 744 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) 745 return -EINVAL; 746 747 info = skb_tunnel_info_unclone(skb); 748 if (!info) 749 return -ENOMEM; 750 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) 751 return -EINVAL; 752 753 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); 754 } 755 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); 756 757 /** 758 * __dev_get_by_name - find a device by its name 759 * @net: the applicable net namespace 760 * @name: name to find 761 * 762 * Find an interface by name. Must be called under RTNL semaphore 763 * or @dev_base_lock. If the name is found a pointer to the device 764 * is returned. If the name is not found then %NULL is returned. The 765 * reference counters are not incremented so the caller must be 766 * careful with locks. 767 */ 768 769 struct net_device *__dev_get_by_name(struct net *net, const char *name) 770 { 771 struct netdev_name_node *node_name; 772 773 node_name = netdev_name_node_lookup(net, name); 774 return node_name ? node_name->dev : NULL; 775 } 776 EXPORT_SYMBOL(__dev_get_by_name); 777 778 /** 779 * dev_get_by_name_rcu - find a device by its name 780 * @net: the applicable net namespace 781 * @name: name to find 782 * 783 * Find an interface by name. 784 * If the name is found a pointer to the device is returned. 785 * If the name is not found then %NULL is returned. 786 * The reference counters are not incremented so the caller must be 787 * careful with locks. The caller must hold RCU lock. 788 */ 789 790 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 791 { 792 struct netdev_name_node *node_name; 793 794 node_name = netdev_name_node_lookup_rcu(net, name); 795 return node_name ? node_name->dev : NULL; 796 } 797 EXPORT_SYMBOL(dev_get_by_name_rcu); 798 799 /** 800 * dev_get_by_name - find a device by its name 801 * @net: the applicable net namespace 802 * @name: name to find 803 * 804 * Find an interface by name. This can be called from any 805 * context and does its own locking. The returned handle has 806 * the usage count incremented and the caller must use dev_put() to 807 * release it when it is no longer needed. %NULL is returned if no 808 * matching device is found. 809 */ 810 811 struct net_device *dev_get_by_name(struct net *net, const char *name) 812 { 813 struct net_device *dev; 814 815 rcu_read_lock(); 816 dev = dev_get_by_name_rcu(net, name); 817 if (dev) 818 dev_hold(dev); 819 rcu_read_unlock(); 820 return dev; 821 } 822 EXPORT_SYMBOL(dev_get_by_name); 823 824 /** 825 * __dev_get_by_index - find a device by its ifindex 826 * @net: the applicable net namespace 827 * @ifindex: index of device 828 * 829 * Search for an interface by index. Returns %NULL if the device 830 * is not found or a pointer to the device. The device has not 831 * had its reference counter increased so the caller must be careful 832 * about locking. The caller must hold either the RTNL semaphore 833 * or @dev_base_lock. 834 */ 835 836 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 837 { 838 struct net_device *dev; 839 struct hlist_head *head = dev_index_hash(net, ifindex); 840 841 hlist_for_each_entry(dev, head, index_hlist) 842 if (dev->ifindex == ifindex) 843 return dev; 844 845 return NULL; 846 } 847 EXPORT_SYMBOL(__dev_get_by_index); 848 849 /** 850 * dev_get_by_index_rcu - find a device by its ifindex 851 * @net: the applicable net namespace 852 * @ifindex: index of device 853 * 854 * Search for an interface by index. Returns %NULL if the device 855 * is not found or a pointer to the device. The device has not 856 * had its reference counter increased so the caller must be careful 857 * about locking. The caller must hold RCU lock. 858 */ 859 860 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 861 { 862 struct net_device *dev; 863 struct hlist_head *head = dev_index_hash(net, ifindex); 864 865 hlist_for_each_entry_rcu(dev, head, index_hlist) 866 if (dev->ifindex == ifindex) 867 return dev; 868 869 return NULL; 870 } 871 EXPORT_SYMBOL(dev_get_by_index_rcu); 872 873 874 /** 875 * dev_get_by_index - find a device by its ifindex 876 * @net: the applicable net namespace 877 * @ifindex: index of device 878 * 879 * Search for an interface by index. Returns NULL if the device 880 * is not found or a pointer to the device. The device returned has 881 * had a reference added and the pointer is safe until the user calls 882 * dev_put to indicate they have finished with it. 883 */ 884 885 struct net_device *dev_get_by_index(struct net *net, int ifindex) 886 { 887 struct net_device *dev; 888 889 rcu_read_lock(); 890 dev = dev_get_by_index_rcu(net, ifindex); 891 if (dev) 892 dev_hold(dev); 893 rcu_read_unlock(); 894 return dev; 895 } 896 EXPORT_SYMBOL(dev_get_by_index); 897 898 /** 899 * dev_get_by_napi_id - find a device by napi_id 900 * @napi_id: ID of the NAPI struct 901 * 902 * Search for an interface by NAPI ID. Returns %NULL if the device 903 * is not found or a pointer to the device. The device has not had 904 * its reference counter increased so the caller must be careful 905 * about locking. The caller must hold RCU lock. 906 */ 907 908 struct net_device *dev_get_by_napi_id(unsigned int napi_id) 909 { 910 struct napi_struct *napi; 911 912 WARN_ON_ONCE(!rcu_read_lock_held()); 913 914 if (napi_id < MIN_NAPI_ID) 915 return NULL; 916 917 napi = napi_by_id(napi_id); 918 919 return napi ? napi->dev : NULL; 920 } 921 EXPORT_SYMBOL(dev_get_by_napi_id); 922 923 /** 924 * netdev_get_name - get a netdevice name, knowing its ifindex. 925 * @net: network namespace 926 * @name: a pointer to the buffer where the name will be stored. 927 * @ifindex: the ifindex of the interface to get the name from. 928 * 929 * The use of raw_seqcount_begin() and cond_resched() before 930 * retrying is required as we want to give the writers a chance 931 * to complete when CONFIG_PREEMPT is not set. 932 */ 933 int netdev_get_name(struct net *net, char *name, int ifindex) 934 { 935 struct net_device *dev; 936 unsigned int seq; 937 938 retry: 939 seq = raw_seqcount_begin(&devnet_rename_seq); 940 rcu_read_lock(); 941 dev = dev_get_by_index_rcu(net, ifindex); 942 if (!dev) { 943 rcu_read_unlock(); 944 return -ENODEV; 945 } 946 947 strcpy(name, dev->name); 948 rcu_read_unlock(); 949 if (read_seqcount_retry(&devnet_rename_seq, seq)) { 950 cond_resched(); 951 goto retry; 952 } 953 954 return 0; 955 } 956 957 /** 958 * dev_getbyhwaddr_rcu - find a device by its hardware address 959 * @net: the applicable net namespace 960 * @type: media type of device 961 * @ha: hardware address 962 * 963 * Search for an interface by MAC address. Returns NULL if the device 964 * is not found or a pointer to the device. 965 * The caller must hold RCU or RTNL. 966 * The returned device has not had its ref count increased 967 * and the caller must therefore be careful about locking 968 * 969 */ 970 971 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 972 const char *ha) 973 { 974 struct net_device *dev; 975 976 for_each_netdev_rcu(net, dev) 977 if (dev->type == type && 978 !memcmp(dev->dev_addr, ha, dev->addr_len)) 979 return dev; 980 981 return NULL; 982 } 983 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 984 985 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 986 { 987 struct net_device *dev; 988 989 ASSERT_RTNL(); 990 for_each_netdev(net, dev) 991 if (dev->type == type) 992 return dev; 993 994 return NULL; 995 } 996 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 997 998 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 999 { 1000 struct net_device *dev, *ret = NULL; 1001 1002 rcu_read_lock(); 1003 for_each_netdev_rcu(net, dev) 1004 if (dev->type == type) { 1005 dev_hold(dev); 1006 ret = dev; 1007 break; 1008 } 1009 rcu_read_unlock(); 1010 return ret; 1011 } 1012 EXPORT_SYMBOL(dev_getfirstbyhwtype); 1013 1014 /** 1015 * __dev_get_by_flags - find any device with given flags 1016 * @net: the applicable net namespace 1017 * @if_flags: IFF_* values 1018 * @mask: bitmask of bits in if_flags to check 1019 * 1020 * Search for any interface with the given flags. Returns NULL if a device 1021 * is not found or a pointer to the device. Must be called inside 1022 * rtnl_lock(), and result refcount is unchanged. 1023 */ 1024 1025 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags, 1026 unsigned short mask) 1027 { 1028 struct net_device *dev, *ret; 1029 1030 ASSERT_RTNL(); 1031 1032 ret = NULL; 1033 for_each_netdev(net, dev) { 1034 if (((dev->flags ^ if_flags) & mask) == 0) { 1035 ret = dev; 1036 break; 1037 } 1038 } 1039 return ret; 1040 } 1041 EXPORT_SYMBOL(__dev_get_by_flags); 1042 1043 /** 1044 * dev_valid_name - check if name is okay for network device 1045 * @name: name string 1046 * 1047 * Network device names need to be valid file names to 1048 * to allow sysfs to work. We also disallow any kind of 1049 * whitespace. 1050 */ 1051 bool dev_valid_name(const char *name) 1052 { 1053 if (*name == '\0') 1054 return false; 1055 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ) 1056 return false; 1057 if (!strcmp(name, ".") || !strcmp(name, "..")) 1058 return false; 1059 1060 while (*name) { 1061 if (*name == '/' || *name == ':' || isspace(*name)) 1062 return false; 1063 name++; 1064 } 1065 return true; 1066 } 1067 EXPORT_SYMBOL(dev_valid_name); 1068 1069 /** 1070 * __dev_alloc_name - allocate a name for a device 1071 * @net: network namespace to allocate the device name in 1072 * @name: name format string 1073 * @buf: scratch buffer and result name string 1074 * 1075 * Passed a format string - eg "lt%d" it will try and find a suitable 1076 * id. It scans list of devices to build up a free map, then chooses 1077 * the first empty slot. The caller must hold the dev_base or rtnl lock 1078 * while allocating the name and adding the device in order to avoid 1079 * duplicates. 1080 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1081 * Returns the number of the unit assigned or a negative errno code. 1082 */ 1083 1084 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 1085 { 1086 int i = 0; 1087 const char *p; 1088 const int max_netdevices = 8*PAGE_SIZE; 1089 unsigned long *inuse; 1090 struct net_device *d; 1091 1092 if (!dev_valid_name(name)) 1093 return -EINVAL; 1094 1095 p = strchr(name, '%'); 1096 if (p) { 1097 /* 1098 * Verify the string as this thing may have come from 1099 * the user. There must be either one "%d" and no other "%" 1100 * characters. 1101 */ 1102 if (p[1] != 'd' || strchr(p + 2, '%')) 1103 return -EINVAL; 1104 1105 /* Use one page as a bit array of possible slots */ 1106 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 1107 if (!inuse) 1108 return -ENOMEM; 1109 1110 for_each_netdev(net, d) { 1111 if (!sscanf(d->name, name, &i)) 1112 continue; 1113 if (i < 0 || i >= max_netdevices) 1114 continue; 1115 1116 /* avoid cases where sscanf is not exact inverse of printf */ 1117 snprintf(buf, IFNAMSIZ, name, i); 1118 if (!strncmp(buf, d->name, IFNAMSIZ)) 1119 set_bit(i, inuse); 1120 } 1121 1122 i = find_first_zero_bit(inuse, max_netdevices); 1123 free_page((unsigned long) inuse); 1124 } 1125 1126 snprintf(buf, IFNAMSIZ, name, i); 1127 if (!__dev_get_by_name(net, buf)) 1128 return i; 1129 1130 /* It is possible to run out of possible slots 1131 * when the name is long and there isn't enough space left 1132 * for the digits, or if all bits are used. 1133 */ 1134 return -ENFILE; 1135 } 1136 1137 static int dev_alloc_name_ns(struct net *net, 1138 struct net_device *dev, 1139 const char *name) 1140 { 1141 char buf[IFNAMSIZ]; 1142 int ret; 1143 1144 BUG_ON(!net); 1145 ret = __dev_alloc_name(net, name, buf); 1146 if (ret >= 0) 1147 strlcpy(dev->name, buf, IFNAMSIZ); 1148 return ret; 1149 } 1150 1151 /** 1152 * dev_alloc_name - allocate a name for a device 1153 * @dev: device 1154 * @name: name format string 1155 * 1156 * Passed a format string - eg "lt%d" it will try and find a suitable 1157 * id. It scans list of devices to build up a free map, then chooses 1158 * the first empty slot. The caller must hold the dev_base or rtnl lock 1159 * while allocating the name and adding the device in order to avoid 1160 * duplicates. 1161 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1162 * Returns the number of the unit assigned or a negative errno code. 1163 */ 1164 1165 int dev_alloc_name(struct net_device *dev, const char *name) 1166 { 1167 return dev_alloc_name_ns(dev_net(dev), dev, name); 1168 } 1169 EXPORT_SYMBOL(dev_alloc_name); 1170 1171 static int dev_get_valid_name(struct net *net, struct net_device *dev, 1172 const char *name) 1173 { 1174 BUG_ON(!net); 1175 1176 if (!dev_valid_name(name)) 1177 return -EINVAL; 1178 1179 if (strchr(name, '%')) 1180 return dev_alloc_name_ns(net, dev, name); 1181 else if (__dev_get_by_name(net, name)) 1182 return -EEXIST; 1183 else if (dev->name != name) 1184 strlcpy(dev->name, name, IFNAMSIZ); 1185 1186 return 0; 1187 } 1188 1189 /** 1190 * dev_change_name - change name of a device 1191 * @dev: device 1192 * @newname: name (or format string) must be at least IFNAMSIZ 1193 * 1194 * Change name of a device, can pass format strings "eth%d". 1195 * for wildcarding. 1196 */ 1197 int dev_change_name(struct net_device *dev, const char *newname) 1198 { 1199 unsigned char old_assign_type; 1200 char oldname[IFNAMSIZ]; 1201 int err = 0; 1202 int ret; 1203 struct net *net; 1204 1205 ASSERT_RTNL(); 1206 BUG_ON(!dev_net(dev)); 1207 1208 net = dev_net(dev); 1209 1210 /* Some auto-enslaved devices e.g. failover slaves are 1211 * special, as userspace might rename the device after 1212 * the interface had been brought up and running since 1213 * the point kernel initiated auto-enslavement. Allow 1214 * live name change even when these slave devices are 1215 * up and running. 1216 * 1217 * Typically, users of these auto-enslaving devices 1218 * don't actually care about slave name change, as 1219 * they are supposed to operate on master interface 1220 * directly. 1221 */ 1222 if (dev->flags & IFF_UP && 1223 likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK))) 1224 return -EBUSY; 1225 1226 write_seqcount_begin(&devnet_rename_seq); 1227 1228 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1229 write_seqcount_end(&devnet_rename_seq); 1230 return 0; 1231 } 1232 1233 memcpy(oldname, dev->name, IFNAMSIZ); 1234 1235 err = dev_get_valid_name(net, dev, newname); 1236 if (err < 0) { 1237 write_seqcount_end(&devnet_rename_seq); 1238 return err; 1239 } 1240 1241 if (oldname[0] && !strchr(oldname, '%')) 1242 netdev_info(dev, "renamed from %s\n", oldname); 1243 1244 old_assign_type = dev->name_assign_type; 1245 dev->name_assign_type = NET_NAME_RENAMED; 1246 1247 rollback: 1248 ret = device_rename(&dev->dev, dev->name); 1249 if (ret) { 1250 memcpy(dev->name, oldname, IFNAMSIZ); 1251 dev->name_assign_type = old_assign_type; 1252 write_seqcount_end(&devnet_rename_seq); 1253 return ret; 1254 } 1255 1256 write_seqcount_end(&devnet_rename_seq); 1257 1258 netdev_adjacent_rename_links(dev, oldname); 1259 1260 write_lock_bh(&dev_base_lock); 1261 netdev_name_node_del(dev->name_node); 1262 write_unlock_bh(&dev_base_lock); 1263 1264 synchronize_rcu(); 1265 1266 write_lock_bh(&dev_base_lock); 1267 netdev_name_node_add(net, dev->name_node); 1268 write_unlock_bh(&dev_base_lock); 1269 1270 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1271 ret = notifier_to_errno(ret); 1272 1273 if (ret) { 1274 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1275 if (err >= 0) { 1276 err = ret; 1277 write_seqcount_begin(&devnet_rename_seq); 1278 memcpy(dev->name, oldname, IFNAMSIZ); 1279 memcpy(oldname, newname, IFNAMSIZ); 1280 dev->name_assign_type = old_assign_type; 1281 old_assign_type = NET_NAME_RENAMED; 1282 goto rollback; 1283 } else { 1284 pr_err("%s: name change rollback failed: %d\n", 1285 dev->name, ret); 1286 } 1287 } 1288 1289 return err; 1290 } 1291 1292 /** 1293 * dev_set_alias - change ifalias of a device 1294 * @dev: device 1295 * @alias: name up to IFALIASZ 1296 * @len: limit of bytes to copy from info 1297 * 1298 * Set ifalias for a device, 1299 */ 1300 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1301 { 1302 struct dev_ifalias *new_alias = NULL; 1303 1304 if (len >= IFALIASZ) 1305 return -EINVAL; 1306 1307 if (len) { 1308 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL); 1309 if (!new_alias) 1310 return -ENOMEM; 1311 1312 memcpy(new_alias->ifalias, alias, len); 1313 new_alias->ifalias[len] = 0; 1314 } 1315 1316 mutex_lock(&ifalias_mutex); 1317 new_alias = rcu_replace_pointer(dev->ifalias, new_alias, 1318 mutex_is_locked(&ifalias_mutex)); 1319 mutex_unlock(&ifalias_mutex); 1320 1321 if (new_alias) 1322 kfree_rcu(new_alias, rcuhead); 1323 1324 return len; 1325 } 1326 EXPORT_SYMBOL(dev_set_alias); 1327 1328 /** 1329 * dev_get_alias - get ifalias of a device 1330 * @dev: device 1331 * @name: buffer to store name of ifalias 1332 * @len: size of buffer 1333 * 1334 * get ifalias for a device. Caller must make sure dev cannot go 1335 * away, e.g. rcu read lock or own a reference count to device. 1336 */ 1337 int dev_get_alias(const struct net_device *dev, char *name, size_t len) 1338 { 1339 const struct dev_ifalias *alias; 1340 int ret = 0; 1341 1342 rcu_read_lock(); 1343 alias = rcu_dereference(dev->ifalias); 1344 if (alias) 1345 ret = snprintf(name, len, "%s", alias->ifalias); 1346 rcu_read_unlock(); 1347 1348 return ret; 1349 } 1350 1351 /** 1352 * netdev_features_change - device changes features 1353 * @dev: device to cause notification 1354 * 1355 * Called to indicate a device has changed features. 1356 */ 1357 void netdev_features_change(struct net_device *dev) 1358 { 1359 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1360 } 1361 EXPORT_SYMBOL(netdev_features_change); 1362 1363 /** 1364 * netdev_state_change - device changes state 1365 * @dev: device to cause notification 1366 * 1367 * Called to indicate a device has changed state. This function calls 1368 * the notifier chains for netdev_chain and sends a NEWLINK message 1369 * to the routing socket. 1370 */ 1371 void netdev_state_change(struct net_device *dev) 1372 { 1373 if (dev->flags & IFF_UP) { 1374 struct netdev_notifier_change_info change_info = { 1375 .info.dev = dev, 1376 }; 1377 1378 call_netdevice_notifiers_info(NETDEV_CHANGE, 1379 &change_info.info); 1380 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL); 1381 } 1382 } 1383 EXPORT_SYMBOL(netdev_state_change); 1384 1385 /** 1386 * netdev_notify_peers - notify network peers about existence of @dev 1387 * @dev: network device 1388 * 1389 * Generate traffic such that interested network peers are aware of 1390 * @dev, such as by generating a gratuitous ARP. This may be used when 1391 * a device wants to inform the rest of the network about some sort of 1392 * reconfiguration such as a failover event or virtual machine 1393 * migration. 1394 */ 1395 void netdev_notify_peers(struct net_device *dev) 1396 { 1397 rtnl_lock(); 1398 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1399 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev); 1400 rtnl_unlock(); 1401 } 1402 EXPORT_SYMBOL(netdev_notify_peers); 1403 1404 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack) 1405 { 1406 const struct net_device_ops *ops = dev->netdev_ops; 1407 int ret; 1408 1409 ASSERT_RTNL(); 1410 1411 if (!netif_device_present(dev)) 1412 return -ENODEV; 1413 1414 /* Block netpoll from trying to do any rx path servicing. 1415 * If we don't do this there is a chance ndo_poll_controller 1416 * or ndo_poll may be running while we open the device 1417 */ 1418 netpoll_poll_disable(dev); 1419 1420 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack); 1421 ret = notifier_to_errno(ret); 1422 if (ret) 1423 return ret; 1424 1425 set_bit(__LINK_STATE_START, &dev->state); 1426 1427 if (ops->ndo_validate_addr) 1428 ret = ops->ndo_validate_addr(dev); 1429 1430 if (!ret && ops->ndo_open) 1431 ret = ops->ndo_open(dev); 1432 1433 netpoll_poll_enable(dev); 1434 1435 if (ret) 1436 clear_bit(__LINK_STATE_START, &dev->state); 1437 else { 1438 dev->flags |= IFF_UP; 1439 dev_set_rx_mode(dev); 1440 dev_activate(dev); 1441 add_device_randomness(dev->dev_addr, dev->addr_len); 1442 } 1443 1444 return ret; 1445 } 1446 1447 /** 1448 * dev_open - prepare an interface for use. 1449 * @dev: device to open 1450 * @extack: netlink extended ack 1451 * 1452 * Takes a device from down to up state. The device's private open 1453 * function is invoked and then the multicast lists are loaded. Finally 1454 * the device is moved into the up state and a %NETDEV_UP message is 1455 * sent to the netdev notifier chain. 1456 * 1457 * Calling this function on an active interface is a nop. On a failure 1458 * a negative errno code is returned. 1459 */ 1460 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack) 1461 { 1462 int ret; 1463 1464 if (dev->flags & IFF_UP) 1465 return 0; 1466 1467 ret = __dev_open(dev, extack); 1468 if (ret < 0) 1469 return ret; 1470 1471 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1472 call_netdevice_notifiers(NETDEV_UP, dev); 1473 1474 return ret; 1475 } 1476 EXPORT_SYMBOL(dev_open); 1477 1478 static void __dev_close_many(struct list_head *head) 1479 { 1480 struct net_device *dev; 1481 1482 ASSERT_RTNL(); 1483 might_sleep(); 1484 1485 list_for_each_entry(dev, head, close_list) { 1486 /* Temporarily disable netpoll until the interface is down */ 1487 netpoll_poll_disable(dev); 1488 1489 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1490 1491 clear_bit(__LINK_STATE_START, &dev->state); 1492 1493 /* Synchronize to scheduled poll. We cannot touch poll list, it 1494 * can be even on different cpu. So just clear netif_running(). 1495 * 1496 * dev->stop() will invoke napi_disable() on all of it's 1497 * napi_struct instances on this device. 1498 */ 1499 smp_mb__after_atomic(); /* Commit netif_running(). */ 1500 } 1501 1502 dev_deactivate_many(head); 1503 1504 list_for_each_entry(dev, head, close_list) { 1505 const struct net_device_ops *ops = dev->netdev_ops; 1506 1507 /* 1508 * Call the device specific close. This cannot fail. 1509 * Only if device is UP 1510 * 1511 * We allow it to be called even after a DETACH hot-plug 1512 * event. 1513 */ 1514 if (ops->ndo_stop) 1515 ops->ndo_stop(dev); 1516 1517 dev->flags &= ~IFF_UP; 1518 netpoll_poll_enable(dev); 1519 } 1520 } 1521 1522 static void __dev_close(struct net_device *dev) 1523 { 1524 LIST_HEAD(single); 1525 1526 list_add(&dev->close_list, &single); 1527 __dev_close_many(&single); 1528 list_del(&single); 1529 } 1530 1531 void dev_close_many(struct list_head *head, bool unlink) 1532 { 1533 struct net_device *dev, *tmp; 1534 1535 /* Remove the devices that don't need to be closed */ 1536 list_for_each_entry_safe(dev, tmp, head, close_list) 1537 if (!(dev->flags & IFF_UP)) 1538 list_del_init(&dev->close_list); 1539 1540 __dev_close_many(head); 1541 1542 list_for_each_entry_safe(dev, tmp, head, close_list) { 1543 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1544 call_netdevice_notifiers(NETDEV_DOWN, dev); 1545 if (unlink) 1546 list_del_init(&dev->close_list); 1547 } 1548 } 1549 EXPORT_SYMBOL(dev_close_many); 1550 1551 /** 1552 * dev_close - shutdown an interface. 1553 * @dev: device to shutdown 1554 * 1555 * This function moves an active device into down state. A 1556 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1557 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1558 * chain. 1559 */ 1560 void dev_close(struct net_device *dev) 1561 { 1562 if (dev->flags & IFF_UP) { 1563 LIST_HEAD(single); 1564 1565 list_add(&dev->close_list, &single); 1566 dev_close_many(&single, true); 1567 list_del(&single); 1568 } 1569 } 1570 EXPORT_SYMBOL(dev_close); 1571 1572 1573 /** 1574 * dev_disable_lro - disable Large Receive Offload on a device 1575 * @dev: device 1576 * 1577 * Disable Large Receive Offload (LRO) on a net device. Must be 1578 * called under RTNL. This is needed if received packets may be 1579 * forwarded to another interface. 1580 */ 1581 void dev_disable_lro(struct net_device *dev) 1582 { 1583 struct net_device *lower_dev; 1584 struct list_head *iter; 1585 1586 dev->wanted_features &= ~NETIF_F_LRO; 1587 netdev_update_features(dev); 1588 1589 if (unlikely(dev->features & NETIF_F_LRO)) 1590 netdev_WARN(dev, "failed to disable LRO!\n"); 1591 1592 netdev_for_each_lower_dev(dev, lower_dev, iter) 1593 dev_disable_lro(lower_dev); 1594 } 1595 EXPORT_SYMBOL(dev_disable_lro); 1596 1597 /** 1598 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device 1599 * @dev: device 1600 * 1601 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be 1602 * called under RTNL. This is needed if Generic XDP is installed on 1603 * the device. 1604 */ 1605 static void dev_disable_gro_hw(struct net_device *dev) 1606 { 1607 dev->wanted_features &= ~NETIF_F_GRO_HW; 1608 netdev_update_features(dev); 1609 1610 if (unlikely(dev->features & NETIF_F_GRO_HW)) 1611 netdev_WARN(dev, "failed to disable GRO_HW!\n"); 1612 } 1613 1614 const char *netdev_cmd_to_name(enum netdev_cmd cmd) 1615 { 1616 #define N(val) \ 1617 case NETDEV_##val: \ 1618 return "NETDEV_" __stringify(val); 1619 switch (cmd) { 1620 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER) 1621 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE) 1622 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE) 1623 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER) 1624 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO) 1625 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO) 1626 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN) 1627 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO) 1628 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO) 1629 N(PRE_CHANGEADDR) 1630 } 1631 #undef N 1632 return "UNKNOWN_NETDEV_EVENT"; 1633 } 1634 EXPORT_SYMBOL_GPL(netdev_cmd_to_name); 1635 1636 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1637 struct net_device *dev) 1638 { 1639 struct netdev_notifier_info info = { 1640 .dev = dev, 1641 }; 1642 1643 return nb->notifier_call(nb, val, &info); 1644 } 1645 1646 static int call_netdevice_register_notifiers(struct notifier_block *nb, 1647 struct net_device *dev) 1648 { 1649 int err; 1650 1651 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1652 err = notifier_to_errno(err); 1653 if (err) 1654 return err; 1655 1656 if (!(dev->flags & IFF_UP)) 1657 return 0; 1658 1659 call_netdevice_notifier(nb, NETDEV_UP, dev); 1660 return 0; 1661 } 1662 1663 static void call_netdevice_unregister_notifiers(struct notifier_block *nb, 1664 struct net_device *dev) 1665 { 1666 if (dev->flags & IFF_UP) { 1667 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1668 dev); 1669 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1670 } 1671 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1672 } 1673 1674 static int call_netdevice_register_net_notifiers(struct notifier_block *nb, 1675 struct net *net) 1676 { 1677 struct net_device *dev; 1678 int err; 1679 1680 for_each_netdev(net, dev) { 1681 err = call_netdevice_register_notifiers(nb, dev); 1682 if (err) 1683 goto rollback; 1684 } 1685 return 0; 1686 1687 rollback: 1688 for_each_netdev_continue_reverse(net, dev) 1689 call_netdevice_unregister_notifiers(nb, dev); 1690 return err; 1691 } 1692 1693 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb, 1694 struct net *net) 1695 { 1696 struct net_device *dev; 1697 1698 for_each_netdev(net, dev) 1699 call_netdevice_unregister_notifiers(nb, dev); 1700 } 1701 1702 static int dev_boot_phase = 1; 1703 1704 /** 1705 * register_netdevice_notifier - register a network notifier block 1706 * @nb: notifier 1707 * 1708 * Register a notifier to be called when network device events occur. 1709 * The notifier passed is linked into the kernel structures and must 1710 * not be reused until it has been unregistered. A negative errno code 1711 * is returned on a failure. 1712 * 1713 * When registered all registration and up events are replayed 1714 * to the new notifier to allow device to have a race free 1715 * view of the network device list. 1716 */ 1717 1718 int register_netdevice_notifier(struct notifier_block *nb) 1719 { 1720 struct net *net; 1721 int err; 1722 1723 /* Close race with setup_net() and cleanup_net() */ 1724 down_write(&pernet_ops_rwsem); 1725 rtnl_lock(); 1726 err = raw_notifier_chain_register(&netdev_chain, nb); 1727 if (err) 1728 goto unlock; 1729 if (dev_boot_phase) 1730 goto unlock; 1731 for_each_net(net) { 1732 err = call_netdevice_register_net_notifiers(nb, net); 1733 if (err) 1734 goto rollback; 1735 } 1736 1737 unlock: 1738 rtnl_unlock(); 1739 up_write(&pernet_ops_rwsem); 1740 return err; 1741 1742 rollback: 1743 for_each_net_continue_reverse(net) 1744 call_netdevice_unregister_net_notifiers(nb, net); 1745 1746 raw_notifier_chain_unregister(&netdev_chain, nb); 1747 goto unlock; 1748 } 1749 EXPORT_SYMBOL(register_netdevice_notifier); 1750 1751 /** 1752 * unregister_netdevice_notifier - unregister a network notifier block 1753 * @nb: notifier 1754 * 1755 * Unregister a notifier previously registered by 1756 * register_netdevice_notifier(). The notifier is unlinked into the 1757 * kernel structures and may then be reused. A negative errno code 1758 * is returned on a failure. 1759 * 1760 * After unregistering unregister and down device events are synthesized 1761 * for all devices on the device list to the removed notifier to remove 1762 * the need for special case cleanup code. 1763 */ 1764 1765 int unregister_netdevice_notifier(struct notifier_block *nb) 1766 { 1767 struct net_device *dev; 1768 struct net *net; 1769 int err; 1770 1771 /* Close race with setup_net() and cleanup_net() */ 1772 down_write(&pernet_ops_rwsem); 1773 rtnl_lock(); 1774 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1775 if (err) 1776 goto unlock; 1777 1778 for_each_net(net) { 1779 for_each_netdev(net, dev) { 1780 if (dev->flags & IFF_UP) { 1781 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1782 dev); 1783 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1784 } 1785 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1786 } 1787 } 1788 unlock: 1789 rtnl_unlock(); 1790 up_write(&pernet_ops_rwsem); 1791 return err; 1792 } 1793 EXPORT_SYMBOL(unregister_netdevice_notifier); 1794 1795 /** 1796 * register_netdevice_notifier_net - register a per-netns network notifier block 1797 * @net: network namespace 1798 * @nb: notifier 1799 * 1800 * Register a notifier to be called when network device events occur. 1801 * The notifier passed is linked into the kernel structures and must 1802 * not be reused until it has been unregistered. A negative errno code 1803 * is returned on a failure. 1804 * 1805 * When registered all registration and up events are replayed 1806 * to the new notifier to allow device to have a race free 1807 * view of the network device list. 1808 */ 1809 1810 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb) 1811 { 1812 int err; 1813 1814 rtnl_lock(); 1815 err = raw_notifier_chain_register(&net->netdev_chain, nb); 1816 if (err) 1817 goto unlock; 1818 if (dev_boot_phase) 1819 goto unlock; 1820 1821 err = call_netdevice_register_net_notifiers(nb, net); 1822 if (err) 1823 goto chain_unregister; 1824 1825 unlock: 1826 rtnl_unlock(); 1827 return err; 1828 1829 chain_unregister: 1830 raw_notifier_chain_unregister(&netdev_chain, nb); 1831 goto unlock; 1832 } 1833 EXPORT_SYMBOL(register_netdevice_notifier_net); 1834 1835 /** 1836 * unregister_netdevice_notifier_net - unregister a per-netns 1837 * network notifier block 1838 * @net: network namespace 1839 * @nb: notifier 1840 * 1841 * Unregister a notifier previously registered by 1842 * register_netdevice_notifier(). The notifier is unlinked into the 1843 * kernel structures and may then be reused. A negative errno code 1844 * is returned on a failure. 1845 * 1846 * After unregistering unregister and down device events are synthesized 1847 * for all devices on the device list to the removed notifier to remove 1848 * the need for special case cleanup code. 1849 */ 1850 1851 int unregister_netdevice_notifier_net(struct net *net, 1852 struct notifier_block *nb) 1853 { 1854 int err; 1855 1856 rtnl_lock(); 1857 err = raw_notifier_chain_unregister(&net->netdev_chain, nb); 1858 if (err) 1859 goto unlock; 1860 1861 call_netdevice_unregister_net_notifiers(nb, net); 1862 1863 unlock: 1864 rtnl_unlock(); 1865 return err; 1866 } 1867 EXPORT_SYMBOL(unregister_netdevice_notifier_net); 1868 1869 /** 1870 * call_netdevice_notifiers_info - call all network notifier blocks 1871 * @val: value passed unmodified to notifier function 1872 * @info: notifier information data 1873 * 1874 * Call all network notifier blocks. Parameters and return value 1875 * are as for raw_notifier_call_chain(). 1876 */ 1877 1878 static int call_netdevice_notifiers_info(unsigned long val, 1879 struct netdev_notifier_info *info) 1880 { 1881 struct net *net = dev_net(info->dev); 1882 int ret; 1883 1884 ASSERT_RTNL(); 1885 1886 /* Run per-netns notifier block chain first, then run the global one. 1887 * Hopefully, one day, the global one is going to be removed after 1888 * all notifier block registrators get converted to be per-netns. 1889 */ 1890 ret = raw_notifier_call_chain(&net->netdev_chain, val, info); 1891 if (ret & NOTIFY_STOP_MASK) 1892 return ret; 1893 return raw_notifier_call_chain(&netdev_chain, val, info); 1894 } 1895 1896 static int call_netdevice_notifiers_extack(unsigned long val, 1897 struct net_device *dev, 1898 struct netlink_ext_ack *extack) 1899 { 1900 struct netdev_notifier_info info = { 1901 .dev = dev, 1902 .extack = extack, 1903 }; 1904 1905 return call_netdevice_notifiers_info(val, &info); 1906 } 1907 1908 /** 1909 * call_netdevice_notifiers - call all network notifier blocks 1910 * @val: value passed unmodified to notifier function 1911 * @dev: net_device pointer passed unmodified to notifier function 1912 * 1913 * Call all network notifier blocks. Parameters and return value 1914 * are as for raw_notifier_call_chain(). 1915 */ 1916 1917 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1918 { 1919 return call_netdevice_notifiers_extack(val, dev, NULL); 1920 } 1921 EXPORT_SYMBOL(call_netdevice_notifiers); 1922 1923 /** 1924 * call_netdevice_notifiers_mtu - call all network notifier blocks 1925 * @val: value passed unmodified to notifier function 1926 * @dev: net_device pointer passed unmodified to notifier function 1927 * @arg: additional u32 argument passed to the notifier function 1928 * 1929 * Call all network notifier blocks. Parameters and return value 1930 * are as for raw_notifier_call_chain(). 1931 */ 1932 static int call_netdevice_notifiers_mtu(unsigned long val, 1933 struct net_device *dev, u32 arg) 1934 { 1935 struct netdev_notifier_info_ext info = { 1936 .info.dev = dev, 1937 .ext.mtu = arg, 1938 }; 1939 1940 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0); 1941 1942 return call_netdevice_notifiers_info(val, &info.info); 1943 } 1944 1945 #ifdef CONFIG_NET_INGRESS 1946 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key); 1947 1948 void net_inc_ingress_queue(void) 1949 { 1950 static_branch_inc(&ingress_needed_key); 1951 } 1952 EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 1953 1954 void net_dec_ingress_queue(void) 1955 { 1956 static_branch_dec(&ingress_needed_key); 1957 } 1958 EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 1959 #endif 1960 1961 #ifdef CONFIG_NET_EGRESS 1962 static DEFINE_STATIC_KEY_FALSE(egress_needed_key); 1963 1964 void net_inc_egress_queue(void) 1965 { 1966 static_branch_inc(&egress_needed_key); 1967 } 1968 EXPORT_SYMBOL_GPL(net_inc_egress_queue); 1969 1970 void net_dec_egress_queue(void) 1971 { 1972 static_branch_dec(&egress_needed_key); 1973 } 1974 EXPORT_SYMBOL_GPL(net_dec_egress_queue); 1975 #endif 1976 1977 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key); 1978 #ifdef CONFIG_JUMP_LABEL 1979 static atomic_t netstamp_needed_deferred; 1980 static atomic_t netstamp_wanted; 1981 static void netstamp_clear(struct work_struct *work) 1982 { 1983 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 1984 int wanted; 1985 1986 wanted = atomic_add_return(deferred, &netstamp_wanted); 1987 if (wanted > 0) 1988 static_branch_enable(&netstamp_needed_key); 1989 else 1990 static_branch_disable(&netstamp_needed_key); 1991 } 1992 static DECLARE_WORK(netstamp_work, netstamp_clear); 1993 #endif 1994 1995 void net_enable_timestamp(void) 1996 { 1997 #ifdef CONFIG_JUMP_LABEL 1998 int wanted; 1999 2000 while (1) { 2001 wanted = atomic_read(&netstamp_wanted); 2002 if (wanted <= 0) 2003 break; 2004 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted) 2005 return; 2006 } 2007 atomic_inc(&netstamp_needed_deferred); 2008 schedule_work(&netstamp_work); 2009 #else 2010 static_branch_inc(&netstamp_needed_key); 2011 #endif 2012 } 2013 EXPORT_SYMBOL(net_enable_timestamp); 2014 2015 void net_disable_timestamp(void) 2016 { 2017 #ifdef CONFIG_JUMP_LABEL 2018 int wanted; 2019 2020 while (1) { 2021 wanted = atomic_read(&netstamp_wanted); 2022 if (wanted <= 1) 2023 break; 2024 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted) 2025 return; 2026 } 2027 atomic_dec(&netstamp_needed_deferred); 2028 schedule_work(&netstamp_work); 2029 #else 2030 static_branch_dec(&netstamp_needed_key); 2031 #endif 2032 } 2033 EXPORT_SYMBOL(net_disable_timestamp); 2034 2035 static inline void net_timestamp_set(struct sk_buff *skb) 2036 { 2037 skb->tstamp = 0; 2038 if (static_branch_unlikely(&netstamp_needed_key)) 2039 __net_timestamp(skb); 2040 } 2041 2042 #define net_timestamp_check(COND, SKB) \ 2043 if (static_branch_unlikely(&netstamp_needed_key)) { \ 2044 if ((COND) && !(SKB)->tstamp) \ 2045 __net_timestamp(SKB); \ 2046 } \ 2047 2048 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb) 2049 { 2050 unsigned int len; 2051 2052 if (!(dev->flags & IFF_UP)) 2053 return false; 2054 2055 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 2056 if (skb->len <= len) 2057 return true; 2058 2059 /* if TSO is enabled, we don't care about the length as the packet 2060 * could be forwarded without being segmented before 2061 */ 2062 if (skb_is_gso(skb)) 2063 return true; 2064 2065 return false; 2066 } 2067 EXPORT_SYMBOL_GPL(is_skb_forwardable); 2068 2069 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 2070 { 2071 int ret = ____dev_forward_skb(dev, skb); 2072 2073 if (likely(!ret)) { 2074 skb->protocol = eth_type_trans(skb, dev); 2075 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 2076 } 2077 2078 return ret; 2079 } 2080 EXPORT_SYMBOL_GPL(__dev_forward_skb); 2081 2082 /** 2083 * dev_forward_skb - loopback an skb to another netif 2084 * 2085 * @dev: destination network device 2086 * @skb: buffer to forward 2087 * 2088 * return values: 2089 * NET_RX_SUCCESS (no congestion) 2090 * NET_RX_DROP (packet was dropped, but freed) 2091 * 2092 * dev_forward_skb can be used for injecting an skb from the 2093 * start_xmit function of one device into the receive queue 2094 * of another device. 2095 * 2096 * The receiving device may be in another namespace, so 2097 * we have to clear all information in the skb that could 2098 * impact namespace isolation. 2099 */ 2100 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 2101 { 2102 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 2103 } 2104 EXPORT_SYMBOL_GPL(dev_forward_skb); 2105 2106 static inline int deliver_skb(struct sk_buff *skb, 2107 struct packet_type *pt_prev, 2108 struct net_device *orig_dev) 2109 { 2110 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 2111 return -ENOMEM; 2112 refcount_inc(&skb->users); 2113 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2114 } 2115 2116 static inline void deliver_ptype_list_skb(struct sk_buff *skb, 2117 struct packet_type **pt, 2118 struct net_device *orig_dev, 2119 __be16 type, 2120 struct list_head *ptype_list) 2121 { 2122 struct packet_type *ptype, *pt_prev = *pt; 2123 2124 list_for_each_entry_rcu(ptype, ptype_list, list) { 2125 if (ptype->type != type) 2126 continue; 2127 if (pt_prev) 2128 deliver_skb(skb, pt_prev, orig_dev); 2129 pt_prev = ptype; 2130 } 2131 *pt = pt_prev; 2132 } 2133 2134 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 2135 { 2136 if (!ptype->af_packet_priv || !skb->sk) 2137 return false; 2138 2139 if (ptype->id_match) 2140 return ptype->id_match(ptype, skb->sk); 2141 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 2142 return true; 2143 2144 return false; 2145 } 2146 2147 /** 2148 * dev_nit_active - return true if any network interface taps are in use 2149 * 2150 * @dev: network device to check for the presence of taps 2151 */ 2152 bool dev_nit_active(struct net_device *dev) 2153 { 2154 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all); 2155 } 2156 EXPORT_SYMBOL_GPL(dev_nit_active); 2157 2158 /* 2159 * Support routine. Sends outgoing frames to any network 2160 * taps currently in use. 2161 */ 2162 2163 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 2164 { 2165 struct packet_type *ptype; 2166 struct sk_buff *skb2 = NULL; 2167 struct packet_type *pt_prev = NULL; 2168 struct list_head *ptype_list = &ptype_all; 2169 2170 rcu_read_lock(); 2171 again: 2172 list_for_each_entry_rcu(ptype, ptype_list, list) { 2173 if (ptype->ignore_outgoing) 2174 continue; 2175 2176 /* Never send packets back to the socket 2177 * they originated from - MvS (miquels@drinkel.ow.org) 2178 */ 2179 if (skb_loop_sk(ptype, skb)) 2180 continue; 2181 2182 if (pt_prev) { 2183 deliver_skb(skb2, pt_prev, skb->dev); 2184 pt_prev = ptype; 2185 continue; 2186 } 2187 2188 /* need to clone skb, done only once */ 2189 skb2 = skb_clone(skb, GFP_ATOMIC); 2190 if (!skb2) 2191 goto out_unlock; 2192 2193 net_timestamp_set(skb2); 2194 2195 /* skb->nh should be correctly 2196 * set by sender, so that the second statement is 2197 * just protection against buggy protocols. 2198 */ 2199 skb_reset_mac_header(skb2); 2200 2201 if (skb_network_header(skb2) < skb2->data || 2202 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 2203 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 2204 ntohs(skb2->protocol), 2205 dev->name); 2206 skb_reset_network_header(skb2); 2207 } 2208 2209 skb2->transport_header = skb2->network_header; 2210 skb2->pkt_type = PACKET_OUTGOING; 2211 pt_prev = ptype; 2212 } 2213 2214 if (ptype_list == &ptype_all) { 2215 ptype_list = &dev->ptype_all; 2216 goto again; 2217 } 2218 out_unlock: 2219 if (pt_prev) { 2220 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC)) 2221 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 2222 else 2223 kfree_skb(skb2); 2224 } 2225 rcu_read_unlock(); 2226 } 2227 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit); 2228 2229 /** 2230 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 2231 * @dev: Network device 2232 * @txq: number of queues available 2233 * 2234 * If real_num_tx_queues is changed the tc mappings may no longer be 2235 * valid. To resolve this verify the tc mapping remains valid and if 2236 * not NULL the mapping. With no priorities mapping to this 2237 * offset/count pair it will no longer be used. In the worst case TC0 2238 * is invalid nothing can be done so disable priority mappings. If is 2239 * expected that drivers will fix this mapping if they can before 2240 * calling netif_set_real_num_tx_queues. 2241 */ 2242 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 2243 { 2244 int i; 2245 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2246 2247 /* If TC0 is invalidated disable TC mapping */ 2248 if (tc->offset + tc->count > txq) { 2249 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 2250 dev->num_tc = 0; 2251 return; 2252 } 2253 2254 /* Invalidated prio to tc mappings set to TC0 */ 2255 for (i = 1; i < TC_BITMASK + 1; i++) { 2256 int q = netdev_get_prio_tc_map(dev, i); 2257 2258 tc = &dev->tc_to_txq[q]; 2259 if (tc->offset + tc->count > txq) { 2260 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 2261 i, q); 2262 netdev_set_prio_tc_map(dev, i, 0); 2263 } 2264 } 2265 } 2266 2267 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq) 2268 { 2269 if (dev->num_tc) { 2270 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2271 int i; 2272 2273 /* walk through the TCs and see if it falls into any of them */ 2274 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) { 2275 if ((txq - tc->offset) < tc->count) 2276 return i; 2277 } 2278 2279 /* didn't find it, just return -1 to indicate no match */ 2280 return -1; 2281 } 2282 2283 return 0; 2284 } 2285 EXPORT_SYMBOL(netdev_txq_to_tc); 2286 2287 #ifdef CONFIG_XPS 2288 struct static_key xps_needed __read_mostly; 2289 EXPORT_SYMBOL(xps_needed); 2290 struct static_key xps_rxqs_needed __read_mostly; 2291 EXPORT_SYMBOL(xps_rxqs_needed); 2292 static DEFINE_MUTEX(xps_map_mutex); 2293 #define xmap_dereference(P) \ 2294 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 2295 2296 static bool remove_xps_queue(struct xps_dev_maps *dev_maps, 2297 int tci, u16 index) 2298 { 2299 struct xps_map *map = NULL; 2300 int pos; 2301 2302 if (dev_maps) 2303 map = xmap_dereference(dev_maps->attr_map[tci]); 2304 if (!map) 2305 return false; 2306 2307 for (pos = map->len; pos--;) { 2308 if (map->queues[pos] != index) 2309 continue; 2310 2311 if (map->len > 1) { 2312 map->queues[pos] = map->queues[--map->len]; 2313 break; 2314 } 2315 2316 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); 2317 kfree_rcu(map, rcu); 2318 return false; 2319 } 2320 2321 return true; 2322 } 2323 2324 static bool remove_xps_queue_cpu(struct net_device *dev, 2325 struct xps_dev_maps *dev_maps, 2326 int cpu, u16 offset, u16 count) 2327 { 2328 int num_tc = dev->num_tc ? : 1; 2329 bool active = false; 2330 int tci; 2331 2332 for (tci = cpu * num_tc; num_tc--; tci++) { 2333 int i, j; 2334 2335 for (i = count, j = offset; i--; j++) { 2336 if (!remove_xps_queue(dev_maps, tci, j)) 2337 break; 2338 } 2339 2340 active |= i < 0; 2341 } 2342 2343 return active; 2344 } 2345 2346 static void reset_xps_maps(struct net_device *dev, 2347 struct xps_dev_maps *dev_maps, 2348 bool is_rxqs_map) 2349 { 2350 if (is_rxqs_map) { 2351 static_key_slow_dec_cpuslocked(&xps_rxqs_needed); 2352 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL); 2353 } else { 2354 RCU_INIT_POINTER(dev->xps_cpus_map, NULL); 2355 } 2356 static_key_slow_dec_cpuslocked(&xps_needed); 2357 kfree_rcu(dev_maps, rcu); 2358 } 2359 2360 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask, 2361 struct xps_dev_maps *dev_maps, unsigned int nr_ids, 2362 u16 offset, u16 count, bool is_rxqs_map) 2363 { 2364 bool active = false; 2365 int i, j; 2366 2367 for (j = -1; j = netif_attrmask_next(j, mask, nr_ids), 2368 j < nr_ids;) 2369 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, 2370 count); 2371 if (!active) 2372 reset_xps_maps(dev, dev_maps, is_rxqs_map); 2373 2374 if (!is_rxqs_map) { 2375 for (i = offset + (count - 1); count--; i--) { 2376 netdev_queue_numa_node_write( 2377 netdev_get_tx_queue(dev, i), 2378 NUMA_NO_NODE); 2379 } 2380 } 2381 } 2382 2383 static void netif_reset_xps_queues(struct net_device *dev, u16 offset, 2384 u16 count) 2385 { 2386 const unsigned long *possible_mask = NULL; 2387 struct xps_dev_maps *dev_maps; 2388 unsigned int nr_ids; 2389 2390 if (!static_key_false(&xps_needed)) 2391 return; 2392 2393 cpus_read_lock(); 2394 mutex_lock(&xps_map_mutex); 2395 2396 if (static_key_false(&xps_rxqs_needed)) { 2397 dev_maps = xmap_dereference(dev->xps_rxqs_map); 2398 if (dev_maps) { 2399 nr_ids = dev->num_rx_queues; 2400 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, 2401 offset, count, true); 2402 } 2403 } 2404 2405 dev_maps = xmap_dereference(dev->xps_cpus_map); 2406 if (!dev_maps) 2407 goto out_no_maps; 2408 2409 if (num_possible_cpus() > 1) 2410 possible_mask = cpumask_bits(cpu_possible_mask); 2411 nr_ids = nr_cpu_ids; 2412 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count, 2413 false); 2414 2415 out_no_maps: 2416 mutex_unlock(&xps_map_mutex); 2417 cpus_read_unlock(); 2418 } 2419 2420 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 2421 { 2422 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index); 2423 } 2424 2425 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index, 2426 u16 index, bool is_rxqs_map) 2427 { 2428 struct xps_map *new_map; 2429 int alloc_len = XPS_MIN_MAP_ALLOC; 2430 int i, pos; 2431 2432 for (pos = 0; map && pos < map->len; pos++) { 2433 if (map->queues[pos] != index) 2434 continue; 2435 return map; 2436 } 2437 2438 /* Need to add tx-queue to this CPU's/rx-queue's existing map */ 2439 if (map) { 2440 if (pos < map->alloc_len) 2441 return map; 2442 2443 alloc_len = map->alloc_len * 2; 2444 } 2445 2446 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's 2447 * map 2448 */ 2449 if (is_rxqs_map) 2450 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL); 2451 else 2452 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 2453 cpu_to_node(attr_index)); 2454 if (!new_map) 2455 return NULL; 2456 2457 for (i = 0; i < pos; i++) 2458 new_map->queues[i] = map->queues[i]; 2459 new_map->alloc_len = alloc_len; 2460 new_map->len = pos; 2461 2462 return new_map; 2463 } 2464 2465 /* Must be called under cpus_read_lock */ 2466 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 2467 u16 index, bool is_rxqs_map) 2468 { 2469 const unsigned long *online_mask = NULL, *possible_mask = NULL; 2470 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL; 2471 int i, j, tci, numa_node_id = -2; 2472 int maps_sz, num_tc = 1, tc = 0; 2473 struct xps_map *map, *new_map; 2474 bool active = false; 2475 unsigned int nr_ids; 2476 2477 if (dev->num_tc) { 2478 /* Do not allow XPS on subordinate device directly */ 2479 num_tc = dev->num_tc; 2480 if (num_tc < 0) 2481 return -EINVAL; 2482 2483 /* If queue belongs to subordinate dev use its map */ 2484 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev; 2485 2486 tc = netdev_txq_to_tc(dev, index); 2487 if (tc < 0) 2488 return -EINVAL; 2489 } 2490 2491 mutex_lock(&xps_map_mutex); 2492 if (is_rxqs_map) { 2493 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues); 2494 dev_maps = xmap_dereference(dev->xps_rxqs_map); 2495 nr_ids = dev->num_rx_queues; 2496 } else { 2497 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc); 2498 if (num_possible_cpus() > 1) { 2499 online_mask = cpumask_bits(cpu_online_mask); 2500 possible_mask = cpumask_bits(cpu_possible_mask); 2501 } 2502 dev_maps = xmap_dereference(dev->xps_cpus_map); 2503 nr_ids = nr_cpu_ids; 2504 } 2505 2506 if (maps_sz < L1_CACHE_BYTES) 2507 maps_sz = L1_CACHE_BYTES; 2508 2509 /* allocate memory for queue storage */ 2510 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids), 2511 j < nr_ids;) { 2512 if (!new_dev_maps) 2513 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2514 if (!new_dev_maps) { 2515 mutex_unlock(&xps_map_mutex); 2516 return -ENOMEM; 2517 } 2518 2519 tci = j * num_tc + tc; 2520 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) : 2521 NULL; 2522 2523 map = expand_xps_map(map, j, index, is_rxqs_map); 2524 if (!map) 2525 goto error; 2526 2527 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2528 } 2529 2530 if (!new_dev_maps) 2531 goto out_no_new_maps; 2532 2533 if (!dev_maps) { 2534 /* Increment static keys at most once per type */ 2535 static_key_slow_inc_cpuslocked(&xps_needed); 2536 if (is_rxqs_map) 2537 static_key_slow_inc_cpuslocked(&xps_rxqs_needed); 2538 } 2539 2540 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2541 j < nr_ids;) { 2542 /* copy maps belonging to foreign traffic classes */ 2543 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) { 2544 /* fill in the new device map from the old device map */ 2545 map = xmap_dereference(dev_maps->attr_map[tci]); 2546 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2547 } 2548 2549 /* We need to explicitly update tci as prevous loop 2550 * could break out early if dev_maps is NULL. 2551 */ 2552 tci = j * num_tc + tc; 2553 2554 if (netif_attr_test_mask(j, mask, nr_ids) && 2555 netif_attr_test_online(j, online_mask, nr_ids)) { 2556 /* add tx-queue to CPU/rx-queue maps */ 2557 int pos = 0; 2558 2559 map = xmap_dereference(new_dev_maps->attr_map[tci]); 2560 while ((pos < map->len) && (map->queues[pos] != index)) 2561 pos++; 2562 2563 if (pos == map->len) 2564 map->queues[map->len++] = index; 2565 #ifdef CONFIG_NUMA 2566 if (!is_rxqs_map) { 2567 if (numa_node_id == -2) 2568 numa_node_id = cpu_to_node(j); 2569 else if (numa_node_id != cpu_to_node(j)) 2570 numa_node_id = -1; 2571 } 2572 #endif 2573 } else if (dev_maps) { 2574 /* fill in the new device map from the old device map */ 2575 map = xmap_dereference(dev_maps->attr_map[tci]); 2576 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2577 } 2578 2579 /* copy maps belonging to foreign traffic classes */ 2580 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) { 2581 /* fill in the new device map from the old device map */ 2582 map = xmap_dereference(dev_maps->attr_map[tci]); 2583 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2584 } 2585 } 2586 2587 if (is_rxqs_map) 2588 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps); 2589 else 2590 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps); 2591 2592 /* Cleanup old maps */ 2593 if (!dev_maps) 2594 goto out_no_old_maps; 2595 2596 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2597 j < nr_ids;) { 2598 for (i = num_tc, tci = j * num_tc; i--; tci++) { 2599 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2600 map = xmap_dereference(dev_maps->attr_map[tci]); 2601 if (map && map != new_map) 2602 kfree_rcu(map, rcu); 2603 } 2604 } 2605 2606 kfree_rcu(dev_maps, rcu); 2607 2608 out_no_old_maps: 2609 dev_maps = new_dev_maps; 2610 active = true; 2611 2612 out_no_new_maps: 2613 if (!is_rxqs_map) { 2614 /* update Tx queue numa node */ 2615 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2616 (numa_node_id >= 0) ? 2617 numa_node_id : NUMA_NO_NODE); 2618 } 2619 2620 if (!dev_maps) 2621 goto out_no_maps; 2622 2623 /* removes tx-queue from unused CPUs/rx-queues */ 2624 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2625 j < nr_ids;) { 2626 for (i = tc, tci = j * num_tc; i--; tci++) 2627 active |= remove_xps_queue(dev_maps, tci, index); 2628 if (!netif_attr_test_mask(j, mask, nr_ids) || 2629 !netif_attr_test_online(j, online_mask, nr_ids)) 2630 active |= remove_xps_queue(dev_maps, tci, index); 2631 for (i = num_tc - tc, tci++; --i; tci++) 2632 active |= remove_xps_queue(dev_maps, tci, index); 2633 } 2634 2635 /* free map if not active */ 2636 if (!active) 2637 reset_xps_maps(dev, dev_maps, is_rxqs_map); 2638 2639 out_no_maps: 2640 mutex_unlock(&xps_map_mutex); 2641 2642 return 0; 2643 error: 2644 /* remove any maps that we added */ 2645 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2646 j < nr_ids;) { 2647 for (i = num_tc, tci = j * num_tc; i--; tci++) { 2648 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2649 map = dev_maps ? 2650 xmap_dereference(dev_maps->attr_map[tci]) : 2651 NULL; 2652 if (new_map && new_map != map) 2653 kfree(new_map); 2654 } 2655 } 2656 2657 mutex_unlock(&xps_map_mutex); 2658 2659 kfree(new_dev_maps); 2660 return -ENOMEM; 2661 } 2662 EXPORT_SYMBOL_GPL(__netif_set_xps_queue); 2663 2664 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 2665 u16 index) 2666 { 2667 int ret; 2668 2669 cpus_read_lock(); 2670 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, false); 2671 cpus_read_unlock(); 2672 2673 return ret; 2674 } 2675 EXPORT_SYMBOL(netif_set_xps_queue); 2676 2677 #endif 2678 static void netdev_unbind_all_sb_channels(struct net_device *dev) 2679 { 2680 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 2681 2682 /* Unbind any subordinate channels */ 2683 while (txq-- != &dev->_tx[0]) { 2684 if (txq->sb_dev) 2685 netdev_unbind_sb_channel(dev, txq->sb_dev); 2686 } 2687 } 2688 2689 void netdev_reset_tc(struct net_device *dev) 2690 { 2691 #ifdef CONFIG_XPS 2692 netif_reset_xps_queues_gt(dev, 0); 2693 #endif 2694 netdev_unbind_all_sb_channels(dev); 2695 2696 /* Reset TC configuration of device */ 2697 dev->num_tc = 0; 2698 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 2699 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 2700 } 2701 EXPORT_SYMBOL(netdev_reset_tc); 2702 2703 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 2704 { 2705 if (tc >= dev->num_tc) 2706 return -EINVAL; 2707 2708 #ifdef CONFIG_XPS 2709 netif_reset_xps_queues(dev, offset, count); 2710 #endif 2711 dev->tc_to_txq[tc].count = count; 2712 dev->tc_to_txq[tc].offset = offset; 2713 return 0; 2714 } 2715 EXPORT_SYMBOL(netdev_set_tc_queue); 2716 2717 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 2718 { 2719 if (num_tc > TC_MAX_QUEUE) 2720 return -EINVAL; 2721 2722 #ifdef CONFIG_XPS 2723 netif_reset_xps_queues_gt(dev, 0); 2724 #endif 2725 netdev_unbind_all_sb_channels(dev); 2726 2727 dev->num_tc = num_tc; 2728 return 0; 2729 } 2730 EXPORT_SYMBOL(netdev_set_num_tc); 2731 2732 void netdev_unbind_sb_channel(struct net_device *dev, 2733 struct net_device *sb_dev) 2734 { 2735 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 2736 2737 #ifdef CONFIG_XPS 2738 netif_reset_xps_queues_gt(sb_dev, 0); 2739 #endif 2740 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq)); 2741 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map)); 2742 2743 while (txq-- != &dev->_tx[0]) { 2744 if (txq->sb_dev == sb_dev) 2745 txq->sb_dev = NULL; 2746 } 2747 } 2748 EXPORT_SYMBOL(netdev_unbind_sb_channel); 2749 2750 int netdev_bind_sb_channel_queue(struct net_device *dev, 2751 struct net_device *sb_dev, 2752 u8 tc, u16 count, u16 offset) 2753 { 2754 /* Make certain the sb_dev and dev are already configured */ 2755 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc) 2756 return -EINVAL; 2757 2758 /* We cannot hand out queues we don't have */ 2759 if ((offset + count) > dev->real_num_tx_queues) 2760 return -EINVAL; 2761 2762 /* Record the mapping */ 2763 sb_dev->tc_to_txq[tc].count = count; 2764 sb_dev->tc_to_txq[tc].offset = offset; 2765 2766 /* Provide a way for Tx queue to find the tc_to_txq map or 2767 * XPS map for itself. 2768 */ 2769 while (count--) 2770 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev; 2771 2772 return 0; 2773 } 2774 EXPORT_SYMBOL(netdev_bind_sb_channel_queue); 2775 2776 int netdev_set_sb_channel(struct net_device *dev, u16 channel) 2777 { 2778 /* Do not use a multiqueue device to represent a subordinate channel */ 2779 if (netif_is_multiqueue(dev)) 2780 return -ENODEV; 2781 2782 /* We allow channels 1 - 32767 to be used for subordinate channels. 2783 * Channel 0 is meant to be "native" mode and used only to represent 2784 * the main root device. We allow writing 0 to reset the device back 2785 * to normal mode after being used as a subordinate channel. 2786 */ 2787 if (channel > S16_MAX) 2788 return -EINVAL; 2789 2790 dev->num_tc = -channel; 2791 2792 return 0; 2793 } 2794 EXPORT_SYMBOL(netdev_set_sb_channel); 2795 2796 /* 2797 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2798 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed. 2799 */ 2800 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2801 { 2802 bool disabling; 2803 int rc; 2804 2805 disabling = txq < dev->real_num_tx_queues; 2806 2807 if (txq < 1 || txq > dev->num_tx_queues) 2808 return -EINVAL; 2809 2810 if (dev->reg_state == NETREG_REGISTERED || 2811 dev->reg_state == NETREG_UNREGISTERING) { 2812 ASSERT_RTNL(); 2813 2814 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2815 txq); 2816 if (rc) 2817 return rc; 2818 2819 if (dev->num_tc) 2820 netif_setup_tc(dev, txq); 2821 2822 dev->real_num_tx_queues = txq; 2823 2824 if (disabling) { 2825 synchronize_net(); 2826 qdisc_reset_all_tx_gt(dev, txq); 2827 #ifdef CONFIG_XPS 2828 netif_reset_xps_queues_gt(dev, txq); 2829 #endif 2830 } 2831 } else { 2832 dev->real_num_tx_queues = txq; 2833 } 2834 2835 return 0; 2836 } 2837 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2838 2839 #ifdef CONFIG_SYSFS 2840 /** 2841 * netif_set_real_num_rx_queues - set actual number of RX queues used 2842 * @dev: Network device 2843 * @rxq: Actual number of RX queues 2844 * 2845 * This must be called either with the rtnl_lock held or before 2846 * registration of the net device. Returns 0 on success, or a 2847 * negative error code. If called before registration, it always 2848 * succeeds. 2849 */ 2850 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2851 { 2852 int rc; 2853 2854 if (rxq < 1 || rxq > dev->num_rx_queues) 2855 return -EINVAL; 2856 2857 if (dev->reg_state == NETREG_REGISTERED) { 2858 ASSERT_RTNL(); 2859 2860 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 2861 rxq); 2862 if (rc) 2863 return rc; 2864 } 2865 2866 dev->real_num_rx_queues = rxq; 2867 return 0; 2868 } 2869 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 2870 #endif 2871 2872 /** 2873 * netif_get_num_default_rss_queues - default number of RSS queues 2874 * 2875 * This routine should set an upper limit on the number of RSS queues 2876 * used by default by multiqueue devices. 2877 */ 2878 int netif_get_num_default_rss_queues(void) 2879 { 2880 return is_kdump_kernel() ? 2881 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 2882 } 2883 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 2884 2885 static void __netif_reschedule(struct Qdisc *q) 2886 { 2887 struct softnet_data *sd; 2888 unsigned long flags; 2889 2890 local_irq_save(flags); 2891 sd = this_cpu_ptr(&softnet_data); 2892 q->next_sched = NULL; 2893 *sd->output_queue_tailp = q; 2894 sd->output_queue_tailp = &q->next_sched; 2895 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2896 local_irq_restore(flags); 2897 } 2898 2899 void __netif_schedule(struct Qdisc *q) 2900 { 2901 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 2902 __netif_reschedule(q); 2903 } 2904 EXPORT_SYMBOL(__netif_schedule); 2905 2906 struct dev_kfree_skb_cb { 2907 enum skb_free_reason reason; 2908 }; 2909 2910 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 2911 { 2912 return (struct dev_kfree_skb_cb *)skb->cb; 2913 } 2914 2915 void netif_schedule_queue(struct netdev_queue *txq) 2916 { 2917 rcu_read_lock(); 2918 if (!netif_xmit_stopped(txq)) { 2919 struct Qdisc *q = rcu_dereference(txq->qdisc); 2920 2921 __netif_schedule(q); 2922 } 2923 rcu_read_unlock(); 2924 } 2925 EXPORT_SYMBOL(netif_schedule_queue); 2926 2927 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 2928 { 2929 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 2930 struct Qdisc *q; 2931 2932 rcu_read_lock(); 2933 q = rcu_dereference(dev_queue->qdisc); 2934 __netif_schedule(q); 2935 rcu_read_unlock(); 2936 } 2937 } 2938 EXPORT_SYMBOL(netif_tx_wake_queue); 2939 2940 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason) 2941 { 2942 unsigned long flags; 2943 2944 if (unlikely(!skb)) 2945 return; 2946 2947 if (likely(refcount_read(&skb->users) == 1)) { 2948 smp_rmb(); 2949 refcount_set(&skb->users, 0); 2950 } else if (likely(!refcount_dec_and_test(&skb->users))) { 2951 return; 2952 } 2953 get_kfree_skb_cb(skb)->reason = reason; 2954 local_irq_save(flags); 2955 skb->next = __this_cpu_read(softnet_data.completion_queue); 2956 __this_cpu_write(softnet_data.completion_queue, skb); 2957 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2958 local_irq_restore(flags); 2959 } 2960 EXPORT_SYMBOL(__dev_kfree_skb_irq); 2961 2962 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason) 2963 { 2964 if (in_irq() || irqs_disabled()) 2965 __dev_kfree_skb_irq(skb, reason); 2966 else 2967 dev_kfree_skb(skb); 2968 } 2969 EXPORT_SYMBOL(__dev_kfree_skb_any); 2970 2971 2972 /** 2973 * netif_device_detach - mark device as removed 2974 * @dev: network device 2975 * 2976 * Mark device as removed from system and therefore no longer available. 2977 */ 2978 void netif_device_detach(struct net_device *dev) 2979 { 2980 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 2981 netif_running(dev)) { 2982 netif_tx_stop_all_queues(dev); 2983 } 2984 } 2985 EXPORT_SYMBOL(netif_device_detach); 2986 2987 /** 2988 * netif_device_attach - mark device as attached 2989 * @dev: network device 2990 * 2991 * Mark device as attached from system and restart if needed. 2992 */ 2993 void netif_device_attach(struct net_device *dev) 2994 { 2995 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 2996 netif_running(dev)) { 2997 netif_tx_wake_all_queues(dev); 2998 __netdev_watchdog_up(dev); 2999 } 3000 } 3001 EXPORT_SYMBOL(netif_device_attach); 3002 3003 /* 3004 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 3005 * to be used as a distribution range. 3006 */ 3007 static u16 skb_tx_hash(const struct net_device *dev, 3008 const struct net_device *sb_dev, 3009 struct sk_buff *skb) 3010 { 3011 u32 hash; 3012 u16 qoffset = 0; 3013 u16 qcount = dev->real_num_tx_queues; 3014 3015 if (dev->num_tc) { 3016 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 3017 3018 qoffset = sb_dev->tc_to_txq[tc].offset; 3019 qcount = sb_dev->tc_to_txq[tc].count; 3020 } 3021 3022 if (skb_rx_queue_recorded(skb)) { 3023 hash = skb_get_rx_queue(skb); 3024 while (unlikely(hash >= qcount)) 3025 hash -= qcount; 3026 return hash + qoffset; 3027 } 3028 3029 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; 3030 } 3031 3032 static void skb_warn_bad_offload(const struct sk_buff *skb) 3033 { 3034 static const netdev_features_t null_features; 3035 struct net_device *dev = skb->dev; 3036 const char *name = ""; 3037 3038 if (!net_ratelimit()) 3039 return; 3040 3041 if (dev) { 3042 if (dev->dev.parent) 3043 name = dev_driver_string(dev->dev.parent); 3044 else 3045 name = netdev_name(dev); 3046 } 3047 skb_dump(KERN_WARNING, skb, false); 3048 WARN(1, "%s: caps=(%pNF, %pNF)\n", 3049 name, dev ? &dev->features : &null_features, 3050 skb->sk ? &skb->sk->sk_route_caps : &null_features); 3051 } 3052 3053 /* 3054 * Invalidate hardware checksum when packet is to be mangled, and 3055 * complete checksum manually on outgoing path. 3056 */ 3057 int skb_checksum_help(struct sk_buff *skb) 3058 { 3059 __wsum csum; 3060 int ret = 0, offset; 3061 3062 if (skb->ip_summed == CHECKSUM_COMPLETE) 3063 goto out_set_summed; 3064 3065 if (unlikely(skb_shinfo(skb)->gso_size)) { 3066 skb_warn_bad_offload(skb); 3067 return -EINVAL; 3068 } 3069 3070 /* Before computing a checksum, we should make sure no frag could 3071 * be modified by an external entity : checksum could be wrong. 3072 */ 3073 if (skb_has_shared_frag(skb)) { 3074 ret = __skb_linearize(skb); 3075 if (ret) 3076 goto out; 3077 } 3078 3079 offset = skb_checksum_start_offset(skb); 3080 BUG_ON(offset >= skb_headlen(skb)); 3081 csum = skb_checksum(skb, offset, skb->len - offset, 0); 3082 3083 offset += skb->csum_offset; 3084 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 3085 3086 ret = skb_ensure_writable(skb, offset + sizeof(__sum16)); 3087 if (ret) 3088 goto out; 3089 3090 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0; 3091 out_set_summed: 3092 skb->ip_summed = CHECKSUM_NONE; 3093 out: 3094 return ret; 3095 } 3096 EXPORT_SYMBOL(skb_checksum_help); 3097 3098 int skb_crc32c_csum_help(struct sk_buff *skb) 3099 { 3100 __le32 crc32c_csum; 3101 int ret = 0, offset, start; 3102 3103 if (skb->ip_summed != CHECKSUM_PARTIAL) 3104 goto out; 3105 3106 if (unlikely(skb_is_gso(skb))) 3107 goto out; 3108 3109 /* Before computing a checksum, we should make sure no frag could 3110 * be modified by an external entity : checksum could be wrong. 3111 */ 3112 if (unlikely(skb_has_shared_frag(skb))) { 3113 ret = __skb_linearize(skb); 3114 if (ret) 3115 goto out; 3116 } 3117 start = skb_checksum_start_offset(skb); 3118 offset = start + offsetof(struct sctphdr, checksum); 3119 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) { 3120 ret = -EINVAL; 3121 goto out; 3122 } 3123 3124 ret = skb_ensure_writable(skb, offset + sizeof(__le32)); 3125 if (ret) 3126 goto out; 3127 3128 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start, 3129 skb->len - start, ~(__u32)0, 3130 crc32c_csum_stub)); 3131 *(__le32 *)(skb->data + offset) = crc32c_csum; 3132 skb->ip_summed = CHECKSUM_NONE; 3133 skb->csum_not_inet = 0; 3134 out: 3135 return ret; 3136 } 3137 3138 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 3139 { 3140 __be16 type = skb->protocol; 3141 3142 /* Tunnel gso handlers can set protocol to ethernet. */ 3143 if (type == htons(ETH_P_TEB)) { 3144 struct ethhdr *eth; 3145 3146 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 3147 return 0; 3148 3149 eth = (struct ethhdr *)skb->data; 3150 type = eth->h_proto; 3151 } 3152 3153 return __vlan_get_protocol(skb, type, depth); 3154 } 3155 3156 /** 3157 * skb_mac_gso_segment - mac layer segmentation handler. 3158 * @skb: buffer to segment 3159 * @features: features for the output path (see dev->features) 3160 */ 3161 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 3162 netdev_features_t features) 3163 { 3164 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 3165 struct packet_offload *ptype; 3166 int vlan_depth = skb->mac_len; 3167 __be16 type = skb_network_protocol(skb, &vlan_depth); 3168 3169 if (unlikely(!type)) 3170 return ERR_PTR(-EINVAL); 3171 3172 __skb_pull(skb, vlan_depth); 3173 3174 rcu_read_lock(); 3175 list_for_each_entry_rcu(ptype, &offload_base, list) { 3176 if (ptype->type == type && ptype->callbacks.gso_segment) { 3177 segs = ptype->callbacks.gso_segment(skb, features); 3178 break; 3179 } 3180 } 3181 rcu_read_unlock(); 3182 3183 __skb_push(skb, skb->data - skb_mac_header(skb)); 3184 3185 return segs; 3186 } 3187 EXPORT_SYMBOL(skb_mac_gso_segment); 3188 3189 3190 /* openvswitch calls this on rx path, so we need a different check. 3191 */ 3192 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) 3193 { 3194 if (tx_path) 3195 return skb->ip_summed != CHECKSUM_PARTIAL && 3196 skb->ip_summed != CHECKSUM_UNNECESSARY; 3197 3198 return skb->ip_summed == CHECKSUM_NONE; 3199 } 3200 3201 /** 3202 * __skb_gso_segment - Perform segmentation on skb. 3203 * @skb: buffer to segment 3204 * @features: features for the output path (see dev->features) 3205 * @tx_path: whether it is called in TX path 3206 * 3207 * This function segments the given skb and returns a list of segments. 3208 * 3209 * It may return NULL if the skb requires no segmentation. This is 3210 * only possible when GSO is used for verifying header integrity. 3211 * 3212 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb. 3213 */ 3214 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 3215 netdev_features_t features, bool tx_path) 3216 { 3217 struct sk_buff *segs; 3218 3219 if (unlikely(skb_needs_check(skb, tx_path))) { 3220 int err; 3221 3222 /* We're going to init ->check field in TCP or UDP header */ 3223 err = skb_cow_head(skb, 0); 3224 if (err < 0) 3225 return ERR_PTR(err); 3226 } 3227 3228 /* Only report GSO partial support if it will enable us to 3229 * support segmentation on this frame without needing additional 3230 * work. 3231 */ 3232 if (features & NETIF_F_GSO_PARTIAL) { 3233 netdev_features_t partial_features = NETIF_F_GSO_ROBUST; 3234 struct net_device *dev = skb->dev; 3235 3236 partial_features |= dev->features & dev->gso_partial_features; 3237 if (!skb_gso_ok(skb, features | partial_features)) 3238 features &= ~NETIF_F_GSO_PARTIAL; 3239 } 3240 3241 BUILD_BUG_ON(SKB_SGO_CB_OFFSET + 3242 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb)); 3243 3244 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); 3245 SKB_GSO_CB(skb)->encap_level = 0; 3246 3247 skb_reset_mac_header(skb); 3248 skb_reset_mac_len(skb); 3249 3250 segs = skb_mac_gso_segment(skb, features); 3251 3252 if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs))) 3253 skb_warn_bad_offload(skb); 3254 3255 return segs; 3256 } 3257 EXPORT_SYMBOL(__skb_gso_segment); 3258 3259 /* Take action when hardware reception checksum errors are detected. */ 3260 #ifdef CONFIG_BUG 3261 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb) 3262 { 3263 if (net_ratelimit()) { 3264 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 3265 skb_dump(KERN_ERR, skb, true); 3266 dump_stack(); 3267 } 3268 } 3269 EXPORT_SYMBOL(netdev_rx_csum_fault); 3270 #endif 3271 3272 /* XXX: check that highmem exists at all on the given machine. */ 3273 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 3274 { 3275 #ifdef CONFIG_HIGHMEM 3276 int i; 3277 3278 if (!(dev->features & NETIF_F_HIGHDMA)) { 3279 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3280 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3281 3282 if (PageHighMem(skb_frag_page(frag))) 3283 return 1; 3284 } 3285 } 3286 #endif 3287 return 0; 3288 } 3289 3290 /* If MPLS offload request, verify we are testing hardware MPLS features 3291 * instead of standard features for the netdev. 3292 */ 3293 #if IS_ENABLED(CONFIG_NET_MPLS_GSO) 3294 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3295 netdev_features_t features, 3296 __be16 type) 3297 { 3298 if (eth_p_mpls(type)) 3299 features &= skb->dev->mpls_features; 3300 3301 return features; 3302 } 3303 #else 3304 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3305 netdev_features_t features, 3306 __be16 type) 3307 { 3308 return features; 3309 } 3310 #endif 3311 3312 static netdev_features_t harmonize_features(struct sk_buff *skb, 3313 netdev_features_t features) 3314 { 3315 int tmp; 3316 __be16 type; 3317 3318 type = skb_network_protocol(skb, &tmp); 3319 features = net_mpls_features(skb, features, type); 3320 3321 if (skb->ip_summed != CHECKSUM_NONE && 3322 !can_checksum_protocol(features, type)) { 3323 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3324 } 3325 if (illegal_highdma(skb->dev, skb)) 3326 features &= ~NETIF_F_SG; 3327 3328 return features; 3329 } 3330 3331 netdev_features_t passthru_features_check(struct sk_buff *skb, 3332 struct net_device *dev, 3333 netdev_features_t features) 3334 { 3335 return features; 3336 } 3337 EXPORT_SYMBOL(passthru_features_check); 3338 3339 static netdev_features_t dflt_features_check(struct sk_buff *skb, 3340 struct net_device *dev, 3341 netdev_features_t features) 3342 { 3343 return vlan_features_check(skb, features); 3344 } 3345 3346 static netdev_features_t gso_features_check(const struct sk_buff *skb, 3347 struct net_device *dev, 3348 netdev_features_t features) 3349 { 3350 u16 gso_segs = skb_shinfo(skb)->gso_segs; 3351 3352 if (gso_segs > dev->gso_max_segs) 3353 return features & ~NETIF_F_GSO_MASK; 3354 3355 /* Support for GSO partial features requires software 3356 * intervention before we can actually process the packets 3357 * so we need to strip support for any partial features now 3358 * and we can pull them back in after we have partially 3359 * segmented the frame. 3360 */ 3361 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL)) 3362 features &= ~dev->gso_partial_features; 3363 3364 /* Make sure to clear the IPv4 ID mangling feature if the 3365 * IPv4 header has the potential to be fragmented. 3366 */ 3367 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { 3368 struct iphdr *iph = skb->encapsulation ? 3369 inner_ip_hdr(skb) : ip_hdr(skb); 3370 3371 if (!(iph->frag_off & htons(IP_DF))) 3372 features &= ~NETIF_F_TSO_MANGLEID; 3373 } 3374 3375 return features; 3376 } 3377 3378 netdev_features_t netif_skb_features(struct sk_buff *skb) 3379 { 3380 struct net_device *dev = skb->dev; 3381 netdev_features_t features = dev->features; 3382 3383 if (skb_is_gso(skb)) 3384 features = gso_features_check(skb, dev, features); 3385 3386 /* If encapsulation offload request, verify we are testing 3387 * hardware encapsulation features instead of standard 3388 * features for the netdev 3389 */ 3390 if (skb->encapsulation) 3391 features &= dev->hw_enc_features; 3392 3393 if (skb_vlan_tagged(skb)) 3394 features = netdev_intersect_features(features, 3395 dev->vlan_features | 3396 NETIF_F_HW_VLAN_CTAG_TX | 3397 NETIF_F_HW_VLAN_STAG_TX); 3398 3399 if (dev->netdev_ops->ndo_features_check) 3400 features &= dev->netdev_ops->ndo_features_check(skb, dev, 3401 features); 3402 else 3403 features &= dflt_features_check(skb, dev, features); 3404 3405 return harmonize_features(skb, features); 3406 } 3407 EXPORT_SYMBOL(netif_skb_features); 3408 3409 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 3410 struct netdev_queue *txq, bool more) 3411 { 3412 unsigned int len; 3413 int rc; 3414 3415 if (dev_nit_active(dev)) 3416 dev_queue_xmit_nit(skb, dev); 3417 3418 len = skb->len; 3419 trace_net_dev_start_xmit(skb, dev); 3420 rc = netdev_start_xmit(skb, dev, txq, more); 3421 trace_net_dev_xmit(skb, rc, dev, len); 3422 3423 return rc; 3424 } 3425 3426 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 3427 struct netdev_queue *txq, int *ret) 3428 { 3429 struct sk_buff *skb = first; 3430 int rc = NETDEV_TX_OK; 3431 3432 while (skb) { 3433 struct sk_buff *next = skb->next; 3434 3435 skb_mark_not_on_list(skb); 3436 rc = xmit_one(skb, dev, txq, next != NULL); 3437 if (unlikely(!dev_xmit_complete(rc))) { 3438 skb->next = next; 3439 goto out; 3440 } 3441 3442 skb = next; 3443 if (netif_tx_queue_stopped(txq) && skb) { 3444 rc = NETDEV_TX_BUSY; 3445 break; 3446 } 3447 } 3448 3449 out: 3450 *ret = rc; 3451 return skb; 3452 } 3453 3454 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 3455 netdev_features_t features) 3456 { 3457 if (skb_vlan_tag_present(skb) && 3458 !vlan_hw_offload_capable(features, skb->vlan_proto)) 3459 skb = __vlan_hwaccel_push_inside(skb); 3460 return skb; 3461 } 3462 3463 int skb_csum_hwoffload_help(struct sk_buff *skb, 3464 const netdev_features_t features) 3465 { 3466 if (unlikely(skb->csum_not_inet)) 3467 return !!(features & NETIF_F_SCTP_CRC) ? 0 : 3468 skb_crc32c_csum_help(skb); 3469 3470 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb); 3471 } 3472 EXPORT_SYMBOL(skb_csum_hwoffload_help); 3473 3474 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again) 3475 { 3476 netdev_features_t features; 3477 3478 features = netif_skb_features(skb); 3479 skb = validate_xmit_vlan(skb, features); 3480 if (unlikely(!skb)) 3481 goto out_null; 3482 3483 skb = sk_validate_xmit_skb(skb, dev); 3484 if (unlikely(!skb)) 3485 goto out_null; 3486 3487 if (netif_needs_gso(skb, features)) { 3488 struct sk_buff *segs; 3489 3490 segs = skb_gso_segment(skb, features); 3491 if (IS_ERR(segs)) { 3492 goto out_kfree_skb; 3493 } else if (segs) { 3494 consume_skb(skb); 3495 skb = segs; 3496 } 3497 } else { 3498 if (skb_needs_linearize(skb, features) && 3499 __skb_linearize(skb)) 3500 goto out_kfree_skb; 3501 3502 /* If packet is not checksummed and device does not 3503 * support checksumming for this protocol, complete 3504 * checksumming here. 3505 */ 3506 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3507 if (skb->encapsulation) 3508 skb_set_inner_transport_header(skb, 3509 skb_checksum_start_offset(skb)); 3510 else 3511 skb_set_transport_header(skb, 3512 skb_checksum_start_offset(skb)); 3513 if (skb_csum_hwoffload_help(skb, features)) 3514 goto out_kfree_skb; 3515 } 3516 } 3517 3518 skb = validate_xmit_xfrm(skb, features, again); 3519 3520 return skb; 3521 3522 out_kfree_skb: 3523 kfree_skb(skb); 3524 out_null: 3525 atomic_long_inc(&dev->tx_dropped); 3526 return NULL; 3527 } 3528 3529 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again) 3530 { 3531 struct sk_buff *next, *head = NULL, *tail; 3532 3533 for (; skb != NULL; skb = next) { 3534 next = skb->next; 3535 skb_mark_not_on_list(skb); 3536 3537 /* in case skb wont be segmented, point to itself */ 3538 skb->prev = skb; 3539 3540 skb = validate_xmit_skb(skb, dev, again); 3541 if (!skb) 3542 continue; 3543 3544 if (!head) 3545 head = skb; 3546 else 3547 tail->next = skb; 3548 /* If skb was segmented, skb->prev points to 3549 * the last segment. If not, it still contains skb. 3550 */ 3551 tail = skb->prev; 3552 } 3553 return head; 3554 } 3555 EXPORT_SYMBOL_GPL(validate_xmit_skb_list); 3556 3557 static void qdisc_pkt_len_init(struct sk_buff *skb) 3558 { 3559 const struct skb_shared_info *shinfo = skb_shinfo(skb); 3560 3561 qdisc_skb_cb(skb)->pkt_len = skb->len; 3562 3563 /* To get more precise estimation of bytes sent on wire, 3564 * we add to pkt_len the headers size of all segments 3565 */ 3566 if (shinfo->gso_size && skb_transport_header_was_set(skb)) { 3567 unsigned int hdr_len; 3568 u16 gso_segs = shinfo->gso_segs; 3569 3570 /* mac layer + network layer */ 3571 hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 3572 3573 /* + transport layer */ 3574 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 3575 const struct tcphdr *th; 3576 struct tcphdr _tcphdr; 3577 3578 th = skb_header_pointer(skb, skb_transport_offset(skb), 3579 sizeof(_tcphdr), &_tcphdr); 3580 if (likely(th)) 3581 hdr_len += __tcp_hdrlen(th); 3582 } else { 3583 struct udphdr _udphdr; 3584 3585 if (skb_header_pointer(skb, skb_transport_offset(skb), 3586 sizeof(_udphdr), &_udphdr)) 3587 hdr_len += sizeof(struct udphdr); 3588 } 3589 3590 if (shinfo->gso_type & SKB_GSO_DODGY) 3591 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 3592 shinfo->gso_size); 3593 3594 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 3595 } 3596 } 3597 3598 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 3599 struct net_device *dev, 3600 struct netdev_queue *txq) 3601 { 3602 spinlock_t *root_lock = qdisc_lock(q); 3603 struct sk_buff *to_free = NULL; 3604 bool contended; 3605 int rc; 3606 3607 qdisc_calculate_pkt_len(skb, q); 3608 3609 if (q->flags & TCQ_F_NOLOCK) { 3610 if ((q->flags & TCQ_F_CAN_BYPASS) && READ_ONCE(q->empty) && 3611 qdisc_run_begin(q)) { 3612 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, 3613 &q->state))) { 3614 __qdisc_drop(skb, &to_free); 3615 rc = NET_XMIT_DROP; 3616 goto end_run; 3617 } 3618 qdisc_bstats_cpu_update(q, skb); 3619 3620 rc = NET_XMIT_SUCCESS; 3621 if (sch_direct_xmit(skb, q, dev, txq, NULL, true)) 3622 __qdisc_run(q); 3623 3624 end_run: 3625 qdisc_run_end(q); 3626 } else { 3627 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3628 qdisc_run(q); 3629 } 3630 3631 if (unlikely(to_free)) 3632 kfree_skb_list(to_free); 3633 return rc; 3634 } 3635 3636 /* 3637 * Heuristic to force contended enqueues to serialize on a 3638 * separate lock before trying to get qdisc main lock. 3639 * This permits qdisc->running owner to get the lock more 3640 * often and dequeue packets faster. 3641 */ 3642 contended = qdisc_is_running(q); 3643 if (unlikely(contended)) 3644 spin_lock(&q->busylock); 3645 3646 spin_lock(root_lock); 3647 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 3648 __qdisc_drop(skb, &to_free); 3649 rc = NET_XMIT_DROP; 3650 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 3651 qdisc_run_begin(q)) { 3652 /* 3653 * This is a work-conserving queue; there are no old skbs 3654 * waiting to be sent out; and the qdisc is not running - 3655 * xmit the skb directly. 3656 */ 3657 3658 qdisc_bstats_update(q, skb); 3659 3660 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 3661 if (unlikely(contended)) { 3662 spin_unlock(&q->busylock); 3663 contended = false; 3664 } 3665 __qdisc_run(q); 3666 } 3667 3668 qdisc_run_end(q); 3669 rc = NET_XMIT_SUCCESS; 3670 } else { 3671 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3672 if (qdisc_run_begin(q)) { 3673 if (unlikely(contended)) { 3674 spin_unlock(&q->busylock); 3675 contended = false; 3676 } 3677 __qdisc_run(q); 3678 qdisc_run_end(q); 3679 } 3680 } 3681 spin_unlock(root_lock); 3682 if (unlikely(to_free)) 3683 kfree_skb_list(to_free); 3684 if (unlikely(contended)) 3685 spin_unlock(&q->busylock); 3686 return rc; 3687 } 3688 3689 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 3690 static void skb_update_prio(struct sk_buff *skb) 3691 { 3692 const struct netprio_map *map; 3693 const struct sock *sk; 3694 unsigned int prioidx; 3695 3696 if (skb->priority) 3697 return; 3698 map = rcu_dereference_bh(skb->dev->priomap); 3699 if (!map) 3700 return; 3701 sk = skb_to_full_sk(skb); 3702 if (!sk) 3703 return; 3704 3705 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data); 3706 3707 if (prioidx < map->priomap_len) 3708 skb->priority = map->priomap[prioidx]; 3709 } 3710 #else 3711 #define skb_update_prio(skb) 3712 #endif 3713 3714 /** 3715 * dev_loopback_xmit - loop back @skb 3716 * @net: network namespace this loopback is happening in 3717 * @sk: sk needed to be a netfilter okfn 3718 * @skb: buffer to transmit 3719 */ 3720 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) 3721 { 3722 skb_reset_mac_header(skb); 3723 __skb_pull(skb, skb_network_offset(skb)); 3724 skb->pkt_type = PACKET_LOOPBACK; 3725 skb->ip_summed = CHECKSUM_UNNECESSARY; 3726 WARN_ON(!skb_dst(skb)); 3727 skb_dst_force(skb); 3728 netif_rx_ni(skb); 3729 return 0; 3730 } 3731 EXPORT_SYMBOL(dev_loopback_xmit); 3732 3733 #ifdef CONFIG_NET_EGRESS 3734 static struct sk_buff * 3735 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 3736 { 3737 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress); 3738 struct tcf_result cl_res; 3739 3740 if (!miniq) 3741 return skb; 3742 3743 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */ 3744 mini_qdisc_bstats_cpu_update(miniq, skb); 3745 3746 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) { 3747 case TC_ACT_OK: 3748 case TC_ACT_RECLASSIFY: 3749 skb->tc_index = TC_H_MIN(cl_res.classid); 3750 break; 3751 case TC_ACT_SHOT: 3752 mini_qdisc_qstats_cpu_drop(miniq); 3753 *ret = NET_XMIT_DROP; 3754 kfree_skb(skb); 3755 return NULL; 3756 case TC_ACT_STOLEN: 3757 case TC_ACT_QUEUED: 3758 case TC_ACT_TRAP: 3759 *ret = NET_XMIT_SUCCESS; 3760 consume_skb(skb); 3761 return NULL; 3762 case TC_ACT_REDIRECT: 3763 /* No need to push/pop skb's mac_header here on egress! */ 3764 skb_do_redirect(skb); 3765 *ret = NET_XMIT_SUCCESS; 3766 return NULL; 3767 default: 3768 break; 3769 } 3770 3771 return skb; 3772 } 3773 #endif /* CONFIG_NET_EGRESS */ 3774 3775 #ifdef CONFIG_XPS 3776 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb, 3777 struct xps_dev_maps *dev_maps, unsigned int tci) 3778 { 3779 struct xps_map *map; 3780 int queue_index = -1; 3781 3782 if (dev->num_tc) { 3783 tci *= dev->num_tc; 3784 tci += netdev_get_prio_tc_map(dev, skb->priority); 3785 } 3786 3787 map = rcu_dereference(dev_maps->attr_map[tci]); 3788 if (map) { 3789 if (map->len == 1) 3790 queue_index = map->queues[0]; 3791 else 3792 queue_index = map->queues[reciprocal_scale( 3793 skb_get_hash(skb), map->len)]; 3794 if (unlikely(queue_index >= dev->real_num_tx_queues)) 3795 queue_index = -1; 3796 } 3797 return queue_index; 3798 } 3799 #endif 3800 3801 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev, 3802 struct sk_buff *skb) 3803 { 3804 #ifdef CONFIG_XPS 3805 struct xps_dev_maps *dev_maps; 3806 struct sock *sk = skb->sk; 3807 int queue_index = -1; 3808 3809 if (!static_key_false(&xps_needed)) 3810 return -1; 3811 3812 rcu_read_lock(); 3813 if (!static_key_false(&xps_rxqs_needed)) 3814 goto get_cpus_map; 3815 3816 dev_maps = rcu_dereference(sb_dev->xps_rxqs_map); 3817 if (dev_maps) { 3818 int tci = sk_rx_queue_get(sk); 3819 3820 if (tci >= 0 && tci < dev->num_rx_queues) 3821 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 3822 tci); 3823 } 3824 3825 get_cpus_map: 3826 if (queue_index < 0) { 3827 dev_maps = rcu_dereference(sb_dev->xps_cpus_map); 3828 if (dev_maps) { 3829 unsigned int tci = skb->sender_cpu - 1; 3830 3831 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 3832 tci); 3833 } 3834 } 3835 rcu_read_unlock(); 3836 3837 return queue_index; 3838 #else 3839 return -1; 3840 #endif 3841 } 3842 3843 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 3844 struct net_device *sb_dev) 3845 { 3846 return 0; 3847 } 3848 EXPORT_SYMBOL(dev_pick_tx_zero); 3849 3850 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb, 3851 struct net_device *sb_dev) 3852 { 3853 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues; 3854 } 3855 EXPORT_SYMBOL(dev_pick_tx_cpu_id); 3856 3857 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 3858 struct net_device *sb_dev) 3859 { 3860 struct sock *sk = skb->sk; 3861 int queue_index = sk_tx_queue_get(sk); 3862 3863 sb_dev = sb_dev ? : dev; 3864 3865 if (queue_index < 0 || skb->ooo_okay || 3866 queue_index >= dev->real_num_tx_queues) { 3867 int new_index = get_xps_queue(dev, sb_dev, skb); 3868 3869 if (new_index < 0) 3870 new_index = skb_tx_hash(dev, sb_dev, skb); 3871 3872 if (queue_index != new_index && sk && 3873 sk_fullsock(sk) && 3874 rcu_access_pointer(sk->sk_dst_cache)) 3875 sk_tx_queue_set(sk, new_index); 3876 3877 queue_index = new_index; 3878 } 3879 3880 return queue_index; 3881 } 3882 EXPORT_SYMBOL(netdev_pick_tx); 3883 3884 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, 3885 struct sk_buff *skb, 3886 struct net_device *sb_dev) 3887 { 3888 int queue_index = 0; 3889 3890 #ifdef CONFIG_XPS 3891 u32 sender_cpu = skb->sender_cpu - 1; 3892 3893 if (sender_cpu >= (u32)NR_CPUS) 3894 skb->sender_cpu = raw_smp_processor_id() + 1; 3895 #endif 3896 3897 if (dev->real_num_tx_queues != 1) { 3898 const struct net_device_ops *ops = dev->netdev_ops; 3899 3900 if (ops->ndo_select_queue) 3901 queue_index = ops->ndo_select_queue(dev, skb, sb_dev); 3902 else 3903 queue_index = netdev_pick_tx(dev, skb, sb_dev); 3904 3905 queue_index = netdev_cap_txqueue(dev, queue_index); 3906 } 3907 3908 skb_set_queue_mapping(skb, queue_index); 3909 return netdev_get_tx_queue(dev, queue_index); 3910 } 3911 3912 /** 3913 * __dev_queue_xmit - transmit a buffer 3914 * @skb: buffer to transmit 3915 * @sb_dev: suboordinate device used for L2 forwarding offload 3916 * 3917 * Queue a buffer for transmission to a network device. The caller must 3918 * have set the device and priority and built the buffer before calling 3919 * this function. The function can be called from an interrupt. 3920 * 3921 * A negative errno code is returned on a failure. A success does not 3922 * guarantee the frame will be transmitted as it may be dropped due 3923 * to congestion or traffic shaping. 3924 * 3925 * ----------------------------------------------------------------------------------- 3926 * I notice this method can also return errors from the queue disciplines, 3927 * including NET_XMIT_DROP, which is a positive value. So, errors can also 3928 * be positive. 3929 * 3930 * Regardless of the return value, the skb is consumed, so it is currently 3931 * difficult to retry a send to this method. (You can bump the ref count 3932 * before sending to hold a reference for retry if you are careful.) 3933 * 3934 * When calling this method, interrupts MUST be enabled. This is because 3935 * the BH enable code must have IRQs enabled so that it will not deadlock. 3936 * --BLG 3937 */ 3938 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev) 3939 { 3940 struct net_device *dev = skb->dev; 3941 struct netdev_queue *txq; 3942 struct Qdisc *q; 3943 int rc = -ENOMEM; 3944 bool again = false; 3945 3946 skb_reset_mac_header(skb); 3947 3948 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP)) 3949 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED); 3950 3951 /* Disable soft irqs for various locks below. Also 3952 * stops preemption for RCU. 3953 */ 3954 rcu_read_lock_bh(); 3955 3956 skb_update_prio(skb); 3957 3958 qdisc_pkt_len_init(skb); 3959 #ifdef CONFIG_NET_CLS_ACT 3960 skb->tc_at_ingress = 0; 3961 # ifdef CONFIG_NET_EGRESS 3962 if (static_branch_unlikely(&egress_needed_key)) { 3963 skb = sch_handle_egress(skb, &rc, dev); 3964 if (!skb) 3965 goto out; 3966 } 3967 # endif 3968 #endif 3969 /* If device/qdisc don't need skb->dst, release it right now while 3970 * its hot in this cpu cache. 3971 */ 3972 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 3973 skb_dst_drop(skb); 3974 else 3975 skb_dst_force(skb); 3976 3977 txq = netdev_core_pick_tx(dev, skb, sb_dev); 3978 q = rcu_dereference_bh(txq->qdisc); 3979 3980 trace_net_dev_queue(skb); 3981 if (q->enqueue) { 3982 rc = __dev_xmit_skb(skb, q, dev, txq); 3983 goto out; 3984 } 3985 3986 /* The device has no queue. Common case for software devices: 3987 * loopback, all the sorts of tunnels... 3988 3989 * Really, it is unlikely that netif_tx_lock protection is necessary 3990 * here. (f.e. loopback and IP tunnels are clean ignoring statistics 3991 * counters.) 3992 * However, it is possible, that they rely on protection 3993 * made by us here. 3994 3995 * Check this and shot the lock. It is not prone from deadlocks. 3996 *Either shot noqueue qdisc, it is even simpler 8) 3997 */ 3998 if (dev->flags & IFF_UP) { 3999 int cpu = smp_processor_id(); /* ok because BHs are off */ 4000 4001 if (txq->xmit_lock_owner != cpu) { 4002 if (dev_xmit_recursion()) 4003 goto recursion_alert; 4004 4005 skb = validate_xmit_skb(skb, dev, &again); 4006 if (!skb) 4007 goto out; 4008 4009 HARD_TX_LOCK(dev, txq, cpu); 4010 4011 if (!netif_xmit_stopped(txq)) { 4012 dev_xmit_recursion_inc(); 4013 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 4014 dev_xmit_recursion_dec(); 4015 if (dev_xmit_complete(rc)) { 4016 HARD_TX_UNLOCK(dev, txq); 4017 goto out; 4018 } 4019 } 4020 HARD_TX_UNLOCK(dev, txq); 4021 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 4022 dev->name); 4023 } else { 4024 /* Recursion is detected! It is possible, 4025 * unfortunately 4026 */ 4027 recursion_alert: 4028 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 4029 dev->name); 4030 } 4031 } 4032 4033 rc = -ENETDOWN; 4034 rcu_read_unlock_bh(); 4035 4036 atomic_long_inc(&dev->tx_dropped); 4037 kfree_skb_list(skb); 4038 return rc; 4039 out: 4040 rcu_read_unlock_bh(); 4041 return rc; 4042 } 4043 4044 int dev_queue_xmit(struct sk_buff *skb) 4045 { 4046 return __dev_queue_xmit(skb, NULL); 4047 } 4048 EXPORT_SYMBOL(dev_queue_xmit); 4049 4050 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev) 4051 { 4052 return __dev_queue_xmit(skb, sb_dev); 4053 } 4054 EXPORT_SYMBOL(dev_queue_xmit_accel); 4055 4056 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id) 4057 { 4058 struct net_device *dev = skb->dev; 4059 struct sk_buff *orig_skb = skb; 4060 struct netdev_queue *txq; 4061 int ret = NETDEV_TX_BUSY; 4062 bool again = false; 4063 4064 if (unlikely(!netif_running(dev) || 4065 !netif_carrier_ok(dev))) 4066 goto drop; 4067 4068 skb = validate_xmit_skb_list(skb, dev, &again); 4069 if (skb != orig_skb) 4070 goto drop; 4071 4072 skb_set_queue_mapping(skb, queue_id); 4073 txq = skb_get_tx_queue(dev, skb); 4074 4075 local_bh_disable(); 4076 4077 HARD_TX_LOCK(dev, txq, smp_processor_id()); 4078 if (!netif_xmit_frozen_or_drv_stopped(txq)) 4079 ret = netdev_start_xmit(skb, dev, txq, false); 4080 HARD_TX_UNLOCK(dev, txq); 4081 4082 local_bh_enable(); 4083 4084 if (!dev_xmit_complete(ret)) 4085 kfree_skb(skb); 4086 4087 return ret; 4088 drop: 4089 atomic_long_inc(&dev->tx_dropped); 4090 kfree_skb_list(skb); 4091 return NET_XMIT_DROP; 4092 } 4093 EXPORT_SYMBOL(dev_direct_xmit); 4094 4095 /************************************************************************* 4096 * Receiver routines 4097 *************************************************************************/ 4098 4099 int netdev_max_backlog __read_mostly = 1000; 4100 EXPORT_SYMBOL(netdev_max_backlog); 4101 4102 int netdev_tstamp_prequeue __read_mostly = 1; 4103 int netdev_budget __read_mostly = 300; 4104 unsigned int __read_mostly netdev_budget_usecs = 2000; 4105 int weight_p __read_mostly = 64; /* old backlog weight */ 4106 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */ 4107 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */ 4108 int dev_rx_weight __read_mostly = 64; 4109 int dev_tx_weight __read_mostly = 64; 4110 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */ 4111 int gro_normal_batch __read_mostly = 8; 4112 4113 /* Called with irq disabled */ 4114 static inline void ____napi_schedule(struct softnet_data *sd, 4115 struct napi_struct *napi) 4116 { 4117 list_add_tail(&napi->poll_list, &sd->poll_list); 4118 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4119 } 4120 4121 #ifdef CONFIG_RPS 4122 4123 /* One global table that all flow-based protocols share. */ 4124 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 4125 EXPORT_SYMBOL(rps_sock_flow_table); 4126 u32 rps_cpu_mask __read_mostly; 4127 EXPORT_SYMBOL(rps_cpu_mask); 4128 4129 struct static_key_false rps_needed __read_mostly; 4130 EXPORT_SYMBOL(rps_needed); 4131 struct static_key_false rfs_needed __read_mostly; 4132 EXPORT_SYMBOL(rfs_needed); 4133 4134 static struct rps_dev_flow * 4135 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4136 struct rps_dev_flow *rflow, u16 next_cpu) 4137 { 4138 if (next_cpu < nr_cpu_ids) { 4139 #ifdef CONFIG_RFS_ACCEL 4140 struct netdev_rx_queue *rxqueue; 4141 struct rps_dev_flow_table *flow_table; 4142 struct rps_dev_flow *old_rflow; 4143 u32 flow_id; 4144 u16 rxq_index; 4145 int rc; 4146 4147 /* Should we steer this flow to a different hardware queue? */ 4148 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 4149 !(dev->features & NETIF_F_NTUPLE)) 4150 goto out; 4151 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 4152 if (rxq_index == skb_get_rx_queue(skb)) 4153 goto out; 4154 4155 rxqueue = dev->_rx + rxq_index; 4156 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4157 if (!flow_table) 4158 goto out; 4159 flow_id = skb_get_hash(skb) & flow_table->mask; 4160 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 4161 rxq_index, flow_id); 4162 if (rc < 0) 4163 goto out; 4164 old_rflow = rflow; 4165 rflow = &flow_table->flows[flow_id]; 4166 rflow->filter = rc; 4167 if (old_rflow->filter == rflow->filter) 4168 old_rflow->filter = RPS_NO_FILTER; 4169 out: 4170 #endif 4171 rflow->last_qtail = 4172 per_cpu(softnet_data, next_cpu).input_queue_head; 4173 } 4174 4175 rflow->cpu = next_cpu; 4176 return rflow; 4177 } 4178 4179 /* 4180 * get_rps_cpu is called from netif_receive_skb and returns the target 4181 * CPU from the RPS map of the receiving queue for a given skb. 4182 * rcu_read_lock must be held on entry. 4183 */ 4184 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4185 struct rps_dev_flow **rflowp) 4186 { 4187 const struct rps_sock_flow_table *sock_flow_table; 4188 struct netdev_rx_queue *rxqueue = dev->_rx; 4189 struct rps_dev_flow_table *flow_table; 4190 struct rps_map *map; 4191 int cpu = -1; 4192 u32 tcpu; 4193 u32 hash; 4194 4195 if (skb_rx_queue_recorded(skb)) { 4196 u16 index = skb_get_rx_queue(skb); 4197 4198 if (unlikely(index >= dev->real_num_rx_queues)) { 4199 WARN_ONCE(dev->real_num_rx_queues > 1, 4200 "%s received packet on queue %u, but number " 4201 "of RX queues is %u\n", 4202 dev->name, index, dev->real_num_rx_queues); 4203 goto done; 4204 } 4205 rxqueue += index; 4206 } 4207 4208 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 4209 4210 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4211 map = rcu_dereference(rxqueue->rps_map); 4212 if (!flow_table && !map) 4213 goto done; 4214 4215 skb_reset_network_header(skb); 4216 hash = skb_get_hash(skb); 4217 if (!hash) 4218 goto done; 4219 4220 sock_flow_table = rcu_dereference(rps_sock_flow_table); 4221 if (flow_table && sock_flow_table) { 4222 struct rps_dev_flow *rflow; 4223 u32 next_cpu; 4224 u32 ident; 4225 4226 /* First check into global flow table if there is a match */ 4227 ident = sock_flow_table->ents[hash & sock_flow_table->mask]; 4228 if ((ident ^ hash) & ~rps_cpu_mask) 4229 goto try_rps; 4230 4231 next_cpu = ident & rps_cpu_mask; 4232 4233 /* OK, now we know there is a match, 4234 * we can look at the local (per receive queue) flow table 4235 */ 4236 rflow = &flow_table->flows[hash & flow_table->mask]; 4237 tcpu = rflow->cpu; 4238 4239 /* 4240 * If the desired CPU (where last recvmsg was done) is 4241 * different from current CPU (one in the rx-queue flow 4242 * table entry), switch if one of the following holds: 4243 * - Current CPU is unset (>= nr_cpu_ids). 4244 * - Current CPU is offline. 4245 * - The current CPU's queue tail has advanced beyond the 4246 * last packet that was enqueued using this table entry. 4247 * This guarantees that all previous packets for the flow 4248 * have been dequeued, thus preserving in order delivery. 4249 */ 4250 if (unlikely(tcpu != next_cpu) && 4251 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 4252 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 4253 rflow->last_qtail)) >= 0)) { 4254 tcpu = next_cpu; 4255 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 4256 } 4257 4258 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 4259 *rflowp = rflow; 4260 cpu = tcpu; 4261 goto done; 4262 } 4263 } 4264 4265 try_rps: 4266 4267 if (map) { 4268 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 4269 if (cpu_online(tcpu)) { 4270 cpu = tcpu; 4271 goto done; 4272 } 4273 } 4274 4275 done: 4276 return cpu; 4277 } 4278 4279 #ifdef CONFIG_RFS_ACCEL 4280 4281 /** 4282 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 4283 * @dev: Device on which the filter was set 4284 * @rxq_index: RX queue index 4285 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 4286 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 4287 * 4288 * Drivers that implement ndo_rx_flow_steer() should periodically call 4289 * this function for each installed filter and remove the filters for 4290 * which it returns %true. 4291 */ 4292 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 4293 u32 flow_id, u16 filter_id) 4294 { 4295 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 4296 struct rps_dev_flow_table *flow_table; 4297 struct rps_dev_flow *rflow; 4298 bool expire = true; 4299 unsigned int cpu; 4300 4301 rcu_read_lock(); 4302 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4303 if (flow_table && flow_id <= flow_table->mask) { 4304 rflow = &flow_table->flows[flow_id]; 4305 cpu = READ_ONCE(rflow->cpu); 4306 if (rflow->filter == filter_id && cpu < nr_cpu_ids && 4307 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 4308 rflow->last_qtail) < 4309 (int)(10 * flow_table->mask))) 4310 expire = false; 4311 } 4312 rcu_read_unlock(); 4313 return expire; 4314 } 4315 EXPORT_SYMBOL(rps_may_expire_flow); 4316 4317 #endif /* CONFIG_RFS_ACCEL */ 4318 4319 /* Called from hardirq (IPI) context */ 4320 static void rps_trigger_softirq(void *data) 4321 { 4322 struct softnet_data *sd = data; 4323 4324 ____napi_schedule(sd, &sd->backlog); 4325 sd->received_rps++; 4326 } 4327 4328 #endif /* CONFIG_RPS */ 4329 4330 /* 4331 * Check if this softnet_data structure is another cpu one 4332 * If yes, queue it to our IPI list and return 1 4333 * If no, return 0 4334 */ 4335 static int rps_ipi_queued(struct softnet_data *sd) 4336 { 4337 #ifdef CONFIG_RPS 4338 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 4339 4340 if (sd != mysd) { 4341 sd->rps_ipi_next = mysd->rps_ipi_list; 4342 mysd->rps_ipi_list = sd; 4343 4344 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4345 return 1; 4346 } 4347 #endif /* CONFIG_RPS */ 4348 return 0; 4349 } 4350 4351 #ifdef CONFIG_NET_FLOW_LIMIT 4352 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 4353 #endif 4354 4355 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 4356 { 4357 #ifdef CONFIG_NET_FLOW_LIMIT 4358 struct sd_flow_limit *fl; 4359 struct softnet_data *sd; 4360 unsigned int old_flow, new_flow; 4361 4362 if (qlen < (netdev_max_backlog >> 1)) 4363 return false; 4364 4365 sd = this_cpu_ptr(&softnet_data); 4366 4367 rcu_read_lock(); 4368 fl = rcu_dereference(sd->flow_limit); 4369 if (fl) { 4370 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); 4371 old_flow = fl->history[fl->history_head]; 4372 fl->history[fl->history_head] = new_flow; 4373 4374 fl->history_head++; 4375 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 4376 4377 if (likely(fl->buckets[old_flow])) 4378 fl->buckets[old_flow]--; 4379 4380 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 4381 fl->count++; 4382 rcu_read_unlock(); 4383 return true; 4384 } 4385 } 4386 rcu_read_unlock(); 4387 #endif 4388 return false; 4389 } 4390 4391 /* 4392 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 4393 * queue (may be a remote CPU queue). 4394 */ 4395 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 4396 unsigned int *qtail) 4397 { 4398 struct softnet_data *sd; 4399 unsigned long flags; 4400 unsigned int qlen; 4401 4402 sd = &per_cpu(softnet_data, cpu); 4403 4404 local_irq_save(flags); 4405 4406 rps_lock(sd); 4407 if (!netif_running(skb->dev)) 4408 goto drop; 4409 qlen = skb_queue_len(&sd->input_pkt_queue); 4410 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) { 4411 if (qlen) { 4412 enqueue: 4413 __skb_queue_tail(&sd->input_pkt_queue, skb); 4414 input_queue_tail_incr_save(sd, qtail); 4415 rps_unlock(sd); 4416 local_irq_restore(flags); 4417 return NET_RX_SUCCESS; 4418 } 4419 4420 /* Schedule NAPI for backlog device 4421 * We can use non atomic operation since we own the queue lock 4422 */ 4423 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 4424 if (!rps_ipi_queued(sd)) 4425 ____napi_schedule(sd, &sd->backlog); 4426 } 4427 goto enqueue; 4428 } 4429 4430 drop: 4431 sd->dropped++; 4432 rps_unlock(sd); 4433 4434 local_irq_restore(flags); 4435 4436 atomic_long_inc(&skb->dev->rx_dropped); 4437 kfree_skb(skb); 4438 return NET_RX_DROP; 4439 } 4440 4441 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb) 4442 { 4443 struct net_device *dev = skb->dev; 4444 struct netdev_rx_queue *rxqueue; 4445 4446 rxqueue = dev->_rx; 4447 4448 if (skb_rx_queue_recorded(skb)) { 4449 u16 index = skb_get_rx_queue(skb); 4450 4451 if (unlikely(index >= dev->real_num_rx_queues)) { 4452 WARN_ONCE(dev->real_num_rx_queues > 1, 4453 "%s received packet on queue %u, but number " 4454 "of RX queues is %u\n", 4455 dev->name, index, dev->real_num_rx_queues); 4456 4457 return rxqueue; /* Return first rxqueue */ 4458 } 4459 rxqueue += index; 4460 } 4461 return rxqueue; 4462 } 4463 4464 static u32 netif_receive_generic_xdp(struct sk_buff *skb, 4465 struct xdp_buff *xdp, 4466 struct bpf_prog *xdp_prog) 4467 { 4468 struct netdev_rx_queue *rxqueue; 4469 void *orig_data, *orig_data_end; 4470 u32 metalen, act = XDP_DROP; 4471 __be16 orig_eth_type; 4472 struct ethhdr *eth; 4473 bool orig_bcast; 4474 int hlen, off; 4475 u32 mac_len; 4476 4477 /* Reinjected packets coming from act_mirred or similar should 4478 * not get XDP generic processing. 4479 */ 4480 if (skb_cloned(skb) || skb_is_tc_redirected(skb)) 4481 return XDP_PASS; 4482 4483 /* XDP packets must be linear and must have sufficient headroom 4484 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also 4485 * native XDP provides, thus we need to do it here as well. 4486 */ 4487 if (skb_is_nonlinear(skb) || 4488 skb_headroom(skb) < XDP_PACKET_HEADROOM) { 4489 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb); 4490 int troom = skb->tail + skb->data_len - skb->end; 4491 4492 /* In case we have to go down the path and also linearize, 4493 * then lets do the pskb_expand_head() work just once here. 4494 */ 4495 if (pskb_expand_head(skb, 4496 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0, 4497 troom > 0 ? troom + 128 : 0, GFP_ATOMIC)) 4498 goto do_drop; 4499 if (skb_linearize(skb)) 4500 goto do_drop; 4501 } 4502 4503 /* The XDP program wants to see the packet starting at the MAC 4504 * header. 4505 */ 4506 mac_len = skb->data - skb_mac_header(skb); 4507 hlen = skb_headlen(skb) + mac_len; 4508 xdp->data = skb->data - mac_len; 4509 xdp->data_meta = xdp->data; 4510 xdp->data_end = xdp->data + hlen; 4511 xdp->data_hard_start = skb->data - skb_headroom(skb); 4512 orig_data_end = xdp->data_end; 4513 orig_data = xdp->data; 4514 eth = (struct ethhdr *)xdp->data; 4515 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest); 4516 orig_eth_type = eth->h_proto; 4517 4518 rxqueue = netif_get_rxqueue(skb); 4519 xdp->rxq = &rxqueue->xdp_rxq; 4520 4521 act = bpf_prog_run_xdp(xdp_prog, xdp); 4522 4523 /* check if bpf_xdp_adjust_head was used */ 4524 off = xdp->data - orig_data; 4525 if (off) { 4526 if (off > 0) 4527 __skb_pull(skb, off); 4528 else if (off < 0) 4529 __skb_push(skb, -off); 4530 4531 skb->mac_header += off; 4532 skb_reset_network_header(skb); 4533 } 4534 4535 /* check if bpf_xdp_adjust_tail was used. it can only "shrink" 4536 * pckt. 4537 */ 4538 off = orig_data_end - xdp->data_end; 4539 if (off != 0) { 4540 skb_set_tail_pointer(skb, xdp->data_end - xdp->data); 4541 skb->len -= off; 4542 4543 } 4544 4545 /* check if XDP changed eth hdr such SKB needs update */ 4546 eth = (struct ethhdr *)xdp->data; 4547 if ((orig_eth_type != eth->h_proto) || 4548 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) { 4549 __skb_push(skb, ETH_HLEN); 4550 skb->protocol = eth_type_trans(skb, skb->dev); 4551 } 4552 4553 switch (act) { 4554 case XDP_REDIRECT: 4555 case XDP_TX: 4556 __skb_push(skb, mac_len); 4557 break; 4558 case XDP_PASS: 4559 metalen = xdp->data - xdp->data_meta; 4560 if (metalen) 4561 skb_metadata_set(skb, metalen); 4562 break; 4563 default: 4564 bpf_warn_invalid_xdp_action(act); 4565 /* fall through */ 4566 case XDP_ABORTED: 4567 trace_xdp_exception(skb->dev, xdp_prog, act); 4568 /* fall through */ 4569 case XDP_DROP: 4570 do_drop: 4571 kfree_skb(skb); 4572 break; 4573 } 4574 4575 return act; 4576 } 4577 4578 /* When doing generic XDP we have to bypass the qdisc layer and the 4579 * network taps in order to match in-driver-XDP behavior. 4580 */ 4581 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog) 4582 { 4583 struct net_device *dev = skb->dev; 4584 struct netdev_queue *txq; 4585 bool free_skb = true; 4586 int cpu, rc; 4587 4588 txq = netdev_core_pick_tx(dev, skb, NULL); 4589 cpu = smp_processor_id(); 4590 HARD_TX_LOCK(dev, txq, cpu); 4591 if (!netif_xmit_stopped(txq)) { 4592 rc = netdev_start_xmit(skb, dev, txq, 0); 4593 if (dev_xmit_complete(rc)) 4594 free_skb = false; 4595 } 4596 HARD_TX_UNLOCK(dev, txq); 4597 if (free_skb) { 4598 trace_xdp_exception(dev, xdp_prog, XDP_TX); 4599 kfree_skb(skb); 4600 } 4601 } 4602 EXPORT_SYMBOL_GPL(generic_xdp_tx); 4603 4604 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key); 4605 4606 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb) 4607 { 4608 if (xdp_prog) { 4609 struct xdp_buff xdp; 4610 u32 act; 4611 int err; 4612 4613 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog); 4614 if (act != XDP_PASS) { 4615 switch (act) { 4616 case XDP_REDIRECT: 4617 err = xdp_do_generic_redirect(skb->dev, skb, 4618 &xdp, xdp_prog); 4619 if (err) 4620 goto out_redir; 4621 break; 4622 case XDP_TX: 4623 generic_xdp_tx(skb, xdp_prog); 4624 break; 4625 } 4626 return XDP_DROP; 4627 } 4628 } 4629 return XDP_PASS; 4630 out_redir: 4631 kfree_skb(skb); 4632 return XDP_DROP; 4633 } 4634 EXPORT_SYMBOL_GPL(do_xdp_generic); 4635 4636 static int netif_rx_internal(struct sk_buff *skb) 4637 { 4638 int ret; 4639 4640 net_timestamp_check(netdev_tstamp_prequeue, skb); 4641 4642 trace_netif_rx(skb); 4643 4644 #ifdef CONFIG_RPS 4645 if (static_branch_unlikely(&rps_needed)) { 4646 struct rps_dev_flow voidflow, *rflow = &voidflow; 4647 int cpu; 4648 4649 preempt_disable(); 4650 rcu_read_lock(); 4651 4652 cpu = get_rps_cpu(skb->dev, skb, &rflow); 4653 if (cpu < 0) 4654 cpu = smp_processor_id(); 4655 4656 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 4657 4658 rcu_read_unlock(); 4659 preempt_enable(); 4660 } else 4661 #endif 4662 { 4663 unsigned int qtail; 4664 4665 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 4666 put_cpu(); 4667 } 4668 return ret; 4669 } 4670 4671 /** 4672 * netif_rx - post buffer to the network code 4673 * @skb: buffer to post 4674 * 4675 * This function receives a packet from a device driver and queues it for 4676 * the upper (protocol) levels to process. It always succeeds. The buffer 4677 * may be dropped during processing for congestion control or by the 4678 * protocol layers. 4679 * 4680 * return values: 4681 * NET_RX_SUCCESS (no congestion) 4682 * NET_RX_DROP (packet was dropped) 4683 * 4684 */ 4685 4686 int netif_rx(struct sk_buff *skb) 4687 { 4688 int ret; 4689 4690 trace_netif_rx_entry(skb); 4691 4692 ret = netif_rx_internal(skb); 4693 trace_netif_rx_exit(ret); 4694 4695 return ret; 4696 } 4697 EXPORT_SYMBOL(netif_rx); 4698 4699 int netif_rx_ni(struct sk_buff *skb) 4700 { 4701 int err; 4702 4703 trace_netif_rx_ni_entry(skb); 4704 4705 preempt_disable(); 4706 err = netif_rx_internal(skb); 4707 if (local_softirq_pending()) 4708 do_softirq(); 4709 preempt_enable(); 4710 trace_netif_rx_ni_exit(err); 4711 4712 return err; 4713 } 4714 EXPORT_SYMBOL(netif_rx_ni); 4715 4716 static __latent_entropy void net_tx_action(struct softirq_action *h) 4717 { 4718 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 4719 4720 if (sd->completion_queue) { 4721 struct sk_buff *clist; 4722 4723 local_irq_disable(); 4724 clist = sd->completion_queue; 4725 sd->completion_queue = NULL; 4726 local_irq_enable(); 4727 4728 while (clist) { 4729 struct sk_buff *skb = clist; 4730 4731 clist = clist->next; 4732 4733 WARN_ON(refcount_read(&skb->users)); 4734 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED)) 4735 trace_consume_skb(skb); 4736 else 4737 trace_kfree_skb(skb, net_tx_action); 4738 4739 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) 4740 __kfree_skb(skb); 4741 else 4742 __kfree_skb_defer(skb); 4743 } 4744 4745 __kfree_skb_flush(); 4746 } 4747 4748 if (sd->output_queue) { 4749 struct Qdisc *head; 4750 4751 local_irq_disable(); 4752 head = sd->output_queue; 4753 sd->output_queue = NULL; 4754 sd->output_queue_tailp = &sd->output_queue; 4755 local_irq_enable(); 4756 4757 while (head) { 4758 struct Qdisc *q = head; 4759 spinlock_t *root_lock = NULL; 4760 4761 head = head->next_sched; 4762 4763 if (!(q->flags & TCQ_F_NOLOCK)) { 4764 root_lock = qdisc_lock(q); 4765 spin_lock(root_lock); 4766 } 4767 /* We need to make sure head->next_sched is read 4768 * before clearing __QDISC_STATE_SCHED 4769 */ 4770 smp_mb__before_atomic(); 4771 clear_bit(__QDISC_STATE_SCHED, &q->state); 4772 qdisc_run(q); 4773 if (root_lock) 4774 spin_unlock(root_lock); 4775 } 4776 } 4777 4778 xfrm_dev_backlog(sd); 4779 } 4780 4781 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE) 4782 /* This hook is defined here for ATM LANE */ 4783 int (*br_fdb_test_addr_hook)(struct net_device *dev, 4784 unsigned char *addr) __read_mostly; 4785 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 4786 #endif 4787 4788 static inline struct sk_buff * 4789 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 4790 struct net_device *orig_dev) 4791 { 4792 #ifdef CONFIG_NET_CLS_ACT 4793 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress); 4794 struct tcf_result cl_res; 4795 4796 /* If there's at least one ingress present somewhere (so 4797 * we get here via enabled static key), remaining devices 4798 * that are not configured with an ingress qdisc will bail 4799 * out here. 4800 */ 4801 if (!miniq) 4802 return skb; 4803 4804 if (*pt_prev) { 4805 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4806 *pt_prev = NULL; 4807 } 4808 4809 qdisc_skb_cb(skb)->pkt_len = skb->len; 4810 skb->tc_at_ingress = 1; 4811 mini_qdisc_bstats_cpu_update(miniq, skb); 4812 4813 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) { 4814 case TC_ACT_OK: 4815 case TC_ACT_RECLASSIFY: 4816 skb->tc_index = TC_H_MIN(cl_res.classid); 4817 break; 4818 case TC_ACT_SHOT: 4819 mini_qdisc_qstats_cpu_drop(miniq); 4820 kfree_skb(skb); 4821 return NULL; 4822 case TC_ACT_STOLEN: 4823 case TC_ACT_QUEUED: 4824 case TC_ACT_TRAP: 4825 consume_skb(skb); 4826 return NULL; 4827 case TC_ACT_REDIRECT: 4828 /* skb_mac_header check was done by cls/act_bpf, so 4829 * we can safely push the L2 header back before 4830 * redirecting to another netdev 4831 */ 4832 __skb_push(skb, skb->mac_len); 4833 skb_do_redirect(skb); 4834 return NULL; 4835 case TC_ACT_CONSUMED: 4836 return NULL; 4837 default: 4838 break; 4839 } 4840 #endif /* CONFIG_NET_CLS_ACT */ 4841 return skb; 4842 } 4843 4844 /** 4845 * netdev_is_rx_handler_busy - check if receive handler is registered 4846 * @dev: device to check 4847 * 4848 * Check if a receive handler is already registered for a given device. 4849 * Return true if there one. 4850 * 4851 * The caller must hold the rtnl_mutex. 4852 */ 4853 bool netdev_is_rx_handler_busy(struct net_device *dev) 4854 { 4855 ASSERT_RTNL(); 4856 return dev && rtnl_dereference(dev->rx_handler); 4857 } 4858 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy); 4859 4860 /** 4861 * netdev_rx_handler_register - register receive handler 4862 * @dev: device to register a handler for 4863 * @rx_handler: receive handler to register 4864 * @rx_handler_data: data pointer that is used by rx handler 4865 * 4866 * Register a receive handler for a device. This handler will then be 4867 * called from __netif_receive_skb. A negative errno code is returned 4868 * on a failure. 4869 * 4870 * The caller must hold the rtnl_mutex. 4871 * 4872 * For a general description of rx_handler, see enum rx_handler_result. 4873 */ 4874 int netdev_rx_handler_register(struct net_device *dev, 4875 rx_handler_func_t *rx_handler, 4876 void *rx_handler_data) 4877 { 4878 if (netdev_is_rx_handler_busy(dev)) 4879 return -EBUSY; 4880 4881 if (dev->priv_flags & IFF_NO_RX_HANDLER) 4882 return -EINVAL; 4883 4884 /* Note: rx_handler_data must be set before rx_handler */ 4885 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 4886 rcu_assign_pointer(dev->rx_handler, rx_handler); 4887 4888 return 0; 4889 } 4890 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 4891 4892 /** 4893 * netdev_rx_handler_unregister - unregister receive handler 4894 * @dev: device to unregister a handler from 4895 * 4896 * Unregister a receive handler from a device. 4897 * 4898 * The caller must hold the rtnl_mutex. 4899 */ 4900 void netdev_rx_handler_unregister(struct net_device *dev) 4901 { 4902 4903 ASSERT_RTNL(); 4904 RCU_INIT_POINTER(dev->rx_handler, NULL); 4905 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 4906 * section has a guarantee to see a non NULL rx_handler_data 4907 * as well. 4908 */ 4909 synchronize_net(); 4910 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 4911 } 4912 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 4913 4914 /* 4915 * Limit the use of PFMEMALLOC reserves to those protocols that implement 4916 * the special handling of PFMEMALLOC skbs. 4917 */ 4918 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 4919 { 4920 switch (skb->protocol) { 4921 case htons(ETH_P_ARP): 4922 case htons(ETH_P_IP): 4923 case htons(ETH_P_IPV6): 4924 case htons(ETH_P_8021Q): 4925 case htons(ETH_P_8021AD): 4926 return true; 4927 default: 4928 return false; 4929 } 4930 } 4931 4932 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, 4933 int *ret, struct net_device *orig_dev) 4934 { 4935 if (nf_hook_ingress_active(skb)) { 4936 int ingress_retval; 4937 4938 if (*pt_prev) { 4939 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4940 *pt_prev = NULL; 4941 } 4942 4943 rcu_read_lock(); 4944 ingress_retval = nf_hook_ingress(skb); 4945 rcu_read_unlock(); 4946 return ingress_retval; 4947 } 4948 return 0; 4949 } 4950 4951 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc, 4952 struct packet_type **ppt_prev) 4953 { 4954 struct packet_type *ptype, *pt_prev; 4955 rx_handler_func_t *rx_handler; 4956 struct net_device *orig_dev; 4957 bool deliver_exact = false; 4958 int ret = NET_RX_DROP; 4959 __be16 type; 4960 4961 net_timestamp_check(!netdev_tstamp_prequeue, skb); 4962 4963 trace_netif_receive_skb(skb); 4964 4965 orig_dev = skb->dev; 4966 4967 skb_reset_network_header(skb); 4968 if (!skb_transport_header_was_set(skb)) 4969 skb_reset_transport_header(skb); 4970 skb_reset_mac_len(skb); 4971 4972 pt_prev = NULL; 4973 4974 another_round: 4975 skb->skb_iif = skb->dev->ifindex; 4976 4977 __this_cpu_inc(softnet_data.processed); 4978 4979 if (static_branch_unlikely(&generic_xdp_needed_key)) { 4980 int ret2; 4981 4982 preempt_disable(); 4983 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb); 4984 preempt_enable(); 4985 4986 if (ret2 != XDP_PASS) 4987 return NET_RX_DROP; 4988 skb_reset_mac_len(skb); 4989 } 4990 4991 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 4992 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 4993 skb = skb_vlan_untag(skb); 4994 if (unlikely(!skb)) 4995 goto out; 4996 } 4997 4998 if (skb_skip_tc_classify(skb)) 4999 goto skip_classify; 5000 5001 if (pfmemalloc) 5002 goto skip_taps; 5003 5004 list_for_each_entry_rcu(ptype, &ptype_all, list) { 5005 if (pt_prev) 5006 ret = deliver_skb(skb, pt_prev, orig_dev); 5007 pt_prev = ptype; 5008 } 5009 5010 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 5011 if (pt_prev) 5012 ret = deliver_skb(skb, pt_prev, orig_dev); 5013 pt_prev = ptype; 5014 } 5015 5016 skip_taps: 5017 #ifdef CONFIG_NET_INGRESS 5018 if (static_branch_unlikely(&ingress_needed_key)) { 5019 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev); 5020 if (!skb) 5021 goto out; 5022 5023 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) 5024 goto out; 5025 } 5026 #endif 5027 skb_reset_tc(skb); 5028 skip_classify: 5029 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 5030 goto drop; 5031 5032 if (skb_vlan_tag_present(skb)) { 5033 if (pt_prev) { 5034 ret = deliver_skb(skb, pt_prev, orig_dev); 5035 pt_prev = NULL; 5036 } 5037 if (vlan_do_receive(&skb)) 5038 goto another_round; 5039 else if (unlikely(!skb)) 5040 goto out; 5041 } 5042 5043 rx_handler = rcu_dereference(skb->dev->rx_handler); 5044 if (rx_handler) { 5045 if (pt_prev) { 5046 ret = deliver_skb(skb, pt_prev, orig_dev); 5047 pt_prev = NULL; 5048 } 5049 switch (rx_handler(&skb)) { 5050 case RX_HANDLER_CONSUMED: 5051 ret = NET_RX_SUCCESS; 5052 goto out; 5053 case RX_HANDLER_ANOTHER: 5054 goto another_round; 5055 case RX_HANDLER_EXACT: 5056 deliver_exact = true; 5057 case RX_HANDLER_PASS: 5058 break; 5059 default: 5060 BUG(); 5061 } 5062 } 5063 5064 if (unlikely(skb_vlan_tag_present(skb))) { 5065 check_vlan_id: 5066 if (skb_vlan_tag_get_id(skb)) { 5067 /* Vlan id is non 0 and vlan_do_receive() above couldn't 5068 * find vlan device. 5069 */ 5070 skb->pkt_type = PACKET_OTHERHOST; 5071 } else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 5072 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 5073 /* Outer header is 802.1P with vlan 0, inner header is 5074 * 802.1Q or 802.1AD and vlan_do_receive() above could 5075 * not find vlan dev for vlan id 0. 5076 */ 5077 __vlan_hwaccel_clear_tag(skb); 5078 skb = skb_vlan_untag(skb); 5079 if (unlikely(!skb)) 5080 goto out; 5081 if (vlan_do_receive(&skb)) 5082 /* After stripping off 802.1P header with vlan 0 5083 * vlan dev is found for inner header. 5084 */ 5085 goto another_round; 5086 else if (unlikely(!skb)) 5087 goto out; 5088 else 5089 /* We have stripped outer 802.1P vlan 0 header. 5090 * But could not find vlan dev. 5091 * check again for vlan id to set OTHERHOST. 5092 */ 5093 goto check_vlan_id; 5094 } 5095 /* Note: we might in the future use prio bits 5096 * and set skb->priority like in vlan_do_receive() 5097 * For the time being, just ignore Priority Code Point 5098 */ 5099 __vlan_hwaccel_clear_tag(skb); 5100 } 5101 5102 type = skb->protocol; 5103 5104 /* deliver only exact match when indicated */ 5105 if (likely(!deliver_exact)) { 5106 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5107 &ptype_base[ntohs(type) & 5108 PTYPE_HASH_MASK]); 5109 } 5110 5111 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5112 &orig_dev->ptype_specific); 5113 5114 if (unlikely(skb->dev != orig_dev)) { 5115 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5116 &skb->dev->ptype_specific); 5117 } 5118 5119 if (pt_prev) { 5120 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 5121 goto drop; 5122 *ppt_prev = pt_prev; 5123 } else { 5124 drop: 5125 if (!deliver_exact) 5126 atomic_long_inc(&skb->dev->rx_dropped); 5127 else 5128 atomic_long_inc(&skb->dev->rx_nohandler); 5129 kfree_skb(skb); 5130 /* Jamal, now you will not able to escape explaining 5131 * me how you were going to use this. :-) 5132 */ 5133 ret = NET_RX_DROP; 5134 } 5135 5136 out: 5137 return ret; 5138 } 5139 5140 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc) 5141 { 5142 struct net_device *orig_dev = skb->dev; 5143 struct packet_type *pt_prev = NULL; 5144 int ret; 5145 5146 ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev); 5147 if (pt_prev) 5148 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb, 5149 skb->dev, pt_prev, orig_dev); 5150 return ret; 5151 } 5152 5153 /** 5154 * netif_receive_skb_core - special purpose version of netif_receive_skb 5155 * @skb: buffer to process 5156 * 5157 * More direct receive version of netif_receive_skb(). It should 5158 * only be used by callers that have a need to skip RPS and Generic XDP. 5159 * Caller must also take care of handling if (page_is_)pfmemalloc. 5160 * 5161 * This function may only be called from softirq context and interrupts 5162 * should be enabled. 5163 * 5164 * Return values (usually ignored): 5165 * NET_RX_SUCCESS: no congestion 5166 * NET_RX_DROP: packet was dropped 5167 */ 5168 int netif_receive_skb_core(struct sk_buff *skb) 5169 { 5170 int ret; 5171 5172 rcu_read_lock(); 5173 ret = __netif_receive_skb_one_core(skb, false); 5174 rcu_read_unlock(); 5175 5176 return ret; 5177 } 5178 EXPORT_SYMBOL(netif_receive_skb_core); 5179 5180 static inline void __netif_receive_skb_list_ptype(struct list_head *head, 5181 struct packet_type *pt_prev, 5182 struct net_device *orig_dev) 5183 { 5184 struct sk_buff *skb, *next; 5185 5186 if (!pt_prev) 5187 return; 5188 if (list_empty(head)) 5189 return; 5190 if (pt_prev->list_func != NULL) 5191 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv, 5192 ip_list_rcv, head, pt_prev, orig_dev); 5193 else 5194 list_for_each_entry_safe(skb, next, head, list) { 5195 skb_list_del_init(skb); 5196 pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 5197 } 5198 } 5199 5200 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc) 5201 { 5202 /* Fast-path assumptions: 5203 * - There is no RX handler. 5204 * - Only one packet_type matches. 5205 * If either of these fails, we will end up doing some per-packet 5206 * processing in-line, then handling the 'last ptype' for the whole 5207 * sublist. This can't cause out-of-order delivery to any single ptype, 5208 * because the 'last ptype' must be constant across the sublist, and all 5209 * other ptypes are handled per-packet. 5210 */ 5211 /* Current (common) ptype of sublist */ 5212 struct packet_type *pt_curr = NULL; 5213 /* Current (common) orig_dev of sublist */ 5214 struct net_device *od_curr = NULL; 5215 struct list_head sublist; 5216 struct sk_buff *skb, *next; 5217 5218 INIT_LIST_HEAD(&sublist); 5219 list_for_each_entry_safe(skb, next, head, list) { 5220 struct net_device *orig_dev = skb->dev; 5221 struct packet_type *pt_prev = NULL; 5222 5223 skb_list_del_init(skb); 5224 __netif_receive_skb_core(skb, pfmemalloc, &pt_prev); 5225 if (!pt_prev) 5226 continue; 5227 if (pt_curr != pt_prev || od_curr != orig_dev) { 5228 /* dispatch old sublist */ 5229 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 5230 /* start new sublist */ 5231 INIT_LIST_HEAD(&sublist); 5232 pt_curr = pt_prev; 5233 od_curr = orig_dev; 5234 } 5235 list_add_tail(&skb->list, &sublist); 5236 } 5237 5238 /* dispatch final sublist */ 5239 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 5240 } 5241 5242 static int __netif_receive_skb(struct sk_buff *skb) 5243 { 5244 int ret; 5245 5246 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 5247 unsigned int noreclaim_flag; 5248 5249 /* 5250 * PFMEMALLOC skbs are special, they should 5251 * - be delivered to SOCK_MEMALLOC sockets only 5252 * - stay away from userspace 5253 * - have bounded memory usage 5254 * 5255 * Use PF_MEMALLOC as this saves us from propagating the allocation 5256 * context down to all allocation sites. 5257 */ 5258 noreclaim_flag = memalloc_noreclaim_save(); 5259 ret = __netif_receive_skb_one_core(skb, true); 5260 memalloc_noreclaim_restore(noreclaim_flag); 5261 } else 5262 ret = __netif_receive_skb_one_core(skb, false); 5263 5264 return ret; 5265 } 5266 5267 static void __netif_receive_skb_list(struct list_head *head) 5268 { 5269 unsigned long noreclaim_flag = 0; 5270 struct sk_buff *skb, *next; 5271 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */ 5272 5273 list_for_each_entry_safe(skb, next, head, list) { 5274 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) { 5275 struct list_head sublist; 5276 5277 /* Handle the previous sublist */ 5278 list_cut_before(&sublist, head, &skb->list); 5279 if (!list_empty(&sublist)) 5280 __netif_receive_skb_list_core(&sublist, pfmemalloc); 5281 pfmemalloc = !pfmemalloc; 5282 /* See comments in __netif_receive_skb */ 5283 if (pfmemalloc) 5284 noreclaim_flag = memalloc_noreclaim_save(); 5285 else 5286 memalloc_noreclaim_restore(noreclaim_flag); 5287 } 5288 } 5289 /* Handle the remaining sublist */ 5290 if (!list_empty(head)) 5291 __netif_receive_skb_list_core(head, pfmemalloc); 5292 /* Restore pflags */ 5293 if (pfmemalloc) 5294 memalloc_noreclaim_restore(noreclaim_flag); 5295 } 5296 5297 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp) 5298 { 5299 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog); 5300 struct bpf_prog *new = xdp->prog; 5301 int ret = 0; 5302 5303 switch (xdp->command) { 5304 case XDP_SETUP_PROG: 5305 rcu_assign_pointer(dev->xdp_prog, new); 5306 if (old) 5307 bpf_prog_put(old); 5308 5309 if (old && !new) { 5310 static_branch_dec(&generic_xdp_needed_key); 5311 } else if (new && !old) { 5312 static_branch_inc(&generic_xdp_needed_key); 5313 dev_disable_lro(dev); 5314 dev_disable_gro_hw(dev); 5315 } 5316 break; 5317 5318 case XDP_QUERY_PROG: 5319 xdp->prog_id = old ? old->aux->id : 0; 5320 break; 5321 5322 default: 5323 ret = -EINVAL; 5324 break; 5325 } 5326 5327 return ret; 5328 } 5329 5330 static int netif_receive_skb_internal(struct sk_buff *skb) 5331 { 5332 int ret; 5333 5334 net_timestamp_check(netdev_tstamp_prequeue, skb); 5335 5336 if (skb_defer_rx_timestamp(skb)) 5337 return NET_RX_SUCCESS; 5338 5339 rcu_read_lock(); 5340 #ifdef CONFIG_RPS 5341 if (static_branch_unlikely(&rps_needed)) { 5342 struct rps_dev_flow voidflow, *rflow = &voidflow; 5343 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 5344 5345 if (cpu >= 0) { 5346 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5347 rcu_read_unlock(); 5348 return ret; 5349 } 5350 } 5351 #endif 5352 ret = __netif_receive_skb(skb); 5353 rcu_read_unlock(); 5354 return ret; 5355 } 5356 5357 static void netif_receive_skb_list_internal(struct list_head *head) 5358 { 5359 struct sk_buff *skb, *next; 5360 struct list_head sublist; 5361 5362 INIT_LIST_HEAD(&sublist); 5363 list_for_each_entry_safe(skb, next, head, list) { 5364 net_timestamp_check(netdev_tstamp_prequeue, skb); 5365 skb_list_del_init(skb); 5366 if (!skb_defer_rx_timestamp(skb)) 5367 list_add_tail(&skb->list, &sublist); 5368 } 5369 list_splice_init(&sublist, head); 5370 5371 rcu_read_lock(); 5372 #ifdef CONFIG_RPS 5373 if (static_branch_unlikely(&rps_needed)) { 5374 list_for_each_entry_safe(skb, next, head, list) { 5375 struct rps_dev_flow voidflow, *rflow = &voidflow; 5376 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 5377 5378 if (cpu >= 0) { 5379 /* Will be handled, remove from list */ 5380 skb_list_del_init(skb); 5381 enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5382 } 5383 } 5384 } 5385 #endif 5386 __netif_receive_skb_list(head); 5387 rcu_read_unlock(); 5388 } 5389 5390 /** 5391 * netif_receive_skb - process receive buffer from network 5392 * @skb: buffer to process 5393 * 5394 * netif_receive_skb() is the main receive data processing function. 5395 * It always succeeds. The buffer may be dropped during processing 5396 * for congestion control or by the protocol layers. 5397 * 5398 * This function may only be called from softirq context and interrupts 5399 * should be enabled. 5400 * 5401 * Return values (usually ignored): 5402 * NET_RX_SUCCESS: no congestion 5403 * NET_RX_DROP: packet was dropped 5404 */ 5405 int netif_receive_skb(struct sk_buff *skb) 5406 { 5407 int ret; 5408 5409 trace_netif_receive_skb_entry(skb); 5410 5411 ret = netif_receive_skb_internal(skb); 5412 trace_netif_receive_skb_exit(ret); 5413 5414 return ret; 5415 } 5416 EXPORT_SYMBOL(netif_receive_skb); 5417 5418 /** 5419 * netif_receive_skb_list - process many receive buffers from network 5420 * @head: list of skbs to process. 5421 * 5422 * Since return value of netif_receive_skb() is normally ignored, and 5423 * wouldn't be meaningful for a list, this function returns void. 5424 * 5425 * This function may only be called from softirq context and interrupts 5426 * should be enabled. 5427 */ 5428 void netif_receive_skb_list(struct list_head *head) 5429 { 5430 struct sk_buff *skb; 5431 5432 if (list_empty(head)) 5433 return; 5434 if (trace_netif_receive_skb_list_entry_enabled()) { 5435 list_for_each_entry(skb, head, list) 5436 trace_netif_receive_skb_list_entry(skb); 5437 } 5438 netif_receive_skb_list_internal(head); 5439 trace_netif_receive_skb_list_exit(0); 5440 } 5441 EXPORT_SYMBOL(netif_receive_skb_list); 5442 5443 DEFINE_PER_CPU(struct work_struct, flush_works); 5444 5445 /* Network device is going away, flush any packets still pending */ 5446 static void flush_backlog(struct work_struct *work) 5447 { 5448 struct sk_buff *skb, *tmp; 5449 struct softnet_data *sd; 5450 5451 local_bh_disable(); 5452 sd = this_cpu_ptr(&softnet_data); 5453 5454 local_irq_disable(); 5455 rps_lock(sd); 5456 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 5457 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 5458 __skb_unlink(skb, &sd->input_pkt_queue); 5459 kfree_skb(skb); 5460 input_queue_head_incr(sd); 5461 } 5462 } 5463 rps_unlock(sd); 5464 local_irq_enable(); 5465 5466 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 5467 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 5468 __skb_unlink(skb, &sd->process_queue); 5469 kfree_skb(skb); 5470 input_queue_head_incr(sd); 5471 } 5472 } 5473 local_bh_enable(); 5474 } 5475 5476 static void flush_all_backlogs(void) 5477 { 5478 unsigned int cpu; 5479 5480 get_online_cpus(); 5481 5482 for_each_online_cpu(cpu) 5483 queue_work_on(cpu, system_highpri_wq, 5484 per_cpu_ptr(&flush_works, cpu)); 5485 5486 for_each_online_cpu(cpu) 5487 flush_work(per_cpu_ptr(&flush_works, cpu)); 5488 5489 put_online_cpus(); 5490 } 5491 5492 INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int)); 5493 INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int)); 5494 static int napi_gro_complete(struct sk_buff *skb) 5495 { 5496 struct packet_offload *ptype; 5497 __be16 type = skb->protocol; 5498 struct list_head *head = &offload_base; 5499 int err = -ENOENT; 5500 5501 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb)); 5502 5503 if (NAPI_GRO_CB(skb)->count == 1) { 5504 skb_shinfo(skb)->gso_size = 0; 5505 goto out; 5506 } 5507 5508 rcu_read_lock(); 5509 list_for_each_entry_rcu(ptype, head, list) { 5510 if (ptype->type != type || !ptype->callbacks.gro_complete) 5511 continue; 5512 5513 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete, 5514 ipv6_gro_complete, inet_gro_complete, 5515 skb, 0); 5516 break; 5517 } 5518 rcu_read_unlock(); 5519 5520 if (err) { 5521 WARN_ON(&ptype->list == head); 5522 kfree_skb(skb); 5523 return NET_RX_SUCCESS; 5524 } 5525 5526 out: 5527 return netif_receive_skb_internal(skb); 5528 } 5529 5530 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index, 5531 bool flush_old) 5532 { 5533 struct list_head *head = &napi->gro_hash[index].list; 5534 struct sk_buff *skb, *p; 5535 5536 list_for_each_entry_safe_reverse(skb, p, head, list) { 5537 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies) 5538 return; 5539 skb_list_del_init(skb); 5540 napi_gro_complete(skb); 5541 napi->gro_hash[index].count--; 5542 } 5543 5544 if (!napi->gro_hash[index].count) 5545 __clear_bit(index, &napi->gro_bitmask); 5546 } 5547 5548 /* napi->gro_hash[].list contains packets ordered by age. 5549 * youngest packets at the head of it. 5550 * Complete skbs in reverse order to reduce latencies. 5551 */ 5552 void napi_gro_flush(struct napi_struct *napi, bool flush_old) 5553 { 5554 unsigned long bitmask = napi->gro_bitmask; 5555 unsigned int i, base = ~0U; 5556 5557 while ((i = ffs(bitmask)) != 0) { 5558 bitmask >>= i; 5559 base += i; 5560 __napi_gro_flush_chain(napi, base, flush_old); 5561 } 5562 } 5563 EXPORT_SYMBOL(napi_gro_flush); 5564 5565 static struct list_head *gro_list_prepare(struct napi_struct *napi, 5566 struct sk_buff *skb) 5567 { 5568 unsigned int maclen = skb->dev->hard_header_len; 5569 u32 hash = skb_get_hash_raw(skb); 5570 struct list_head *head; 5571 struct sk_buff *p; 5572 5573 head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list; 5574 list_for_each_entry(p, head, list) { 5575 unsigned long diffs; 5576 5577 NAPI_GRO_CB(p)->flush = 0; 5578 5579 if (hash != skb_get_hash_raw(p)) { 5580 NAPI_GRO_CB(p)->same_flow = 0; 5581 continue; 5582 } 5583 5584 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 5585 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb); 5586 if (skb_vlan_tag_present(p)) 5587 diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb); 5588 diffs |= skb_metadata_dst_cmp(p, skb); 5589 diffs |= skb_metadata_differs(p, skb); 5590 if (maclen == ETH_HLEN) 5591 diffs |= compare_ether_header(skb_mac_header(p), 5592 skb_mac_header(skb)); 5593 else if (!diffs) 5594 diffs = memcmp(skb_mac_header(p), 5595 skb_mac_header(skb), 5596 maclen); 5597 NAPI_GRO_CB(p)->same_flow = !diffs; 5598 } 5599 5600 return head; 5601 } 5602 5603 static void skb_gro_reset_offset(struct sk_buff *skb) 5604 { 5605 const struct skb_shared_info *pinfo = skb_shinfo(skb); 5606 const skb_frag_t *frag0 = &pinfo->frags[0]; 5607 5608 NAPI_GRO_CB(skb)->data_offset = 0; 5609 NAPI_GRO_CB(skb)->frag0 = NULL; 5610 NAPI_GRO_CB(skb)->frag0_len = 0; 5611 5612 if (!skb_headlen(skb) && pinfo->nr_frags && 5613 !PageHighMem(skb_frag_page(frag0))) { 5614 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0); 5615 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int, 5616 skb_frag_size(frag0), 5617 skb->end - skb->tail); 5618 } 5619 } 5620 5621 static void gro_pull_from_frag0(struct sk_buff *skb, int grow) 5622 { 5623 struct skb_shared_info *pinfo = skb_shinfo(skb); 5624 5625 BUG_ON(skb->end - skb->tail < grow); 5626 5627 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 5628 5629 skb->data_len -= grow; 5630 skb->tail += grow; 5631 5632 skb_frag_off_add(&pinfo->frags[0], grow); 5633 skb_frag_size_sub(&pinfo->frags[0], grow); 5634 5635 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) { 5636 skb_frag_unref(skb, 0); 5637 memmove(pinfo->frags, pinfo->frags + 1, 5638 --pinfo->nr_frags * sizeof(pinfo->frags[0])); 5639 } 5640 } 5641 5642 static void gro_flush_oldest(struct list_head *head) 5643 { 5644 struct sk_buff *oldest; 5645 5646 oldest = list_last_entry(head, struct sk_buff, list); 5647 5648 /* We are called with head length >= MAX_GRO_SKBS, so this is 5649 * impossible. 5650 */ 5651 if (WARN_ON_ONCE(!oldest)) 5652 return; 5653 5654 /* Do not adjust napi->gro_hash[].count, caller is adding a new 5655 * SKB to the chain. 5656 */ 5657 skb_list_del_init(oldest); 5658 napi_gro_complete(oldest); 5659 } 5660 5661 INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *, 5662 struct sk_buff *)); 5663 INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *, 5664 struct sk_buff *)); 5665 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 5666 { 5667 u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1); 5668 struct list_head *head = &offload_base; 5669 struct packet_offload *ptype; 5670 __be16 type = skb->protocol; 5671 struct list_head *gro_head; 5672 struct sk_buff *pp = NULL; 5673 enum gro_result ret; 5674 int same_flow; 5675 int grow; 5676 5677 if (netif_elide_gro(skb->dev)) 5678 goto normal; 5679 5680 gro_head = gro_list_prepare(napi, skb); 5681 5682 rcu_read_lock(); 5683 list_for_each_entry_rcu(ptype, head, list) { 5684 if (ptype->type != type || !ptype->callbacks.gro_receive) 5685 continue; 5686 5687 skb_set_network_header(skb, skb_gro_offset(skb)); 5688 skb_reset_mac_len(skb); 5689 NAPI_GRO_CB(skb)->same_flow = 0; 5690 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb); 5691 NAPI_GRO_CB(skb)->free = 0; 5692 NAPI_GRO_CB(skb)->encap_mark = 0; 5693 NAPI_GRO_CB(skb)->recursion_counter = 0; 5694 NAPI_GRO_CB(skb)->is_fou = 0; 5695 NAPI_GRO_CB(skb)->is_atomic = 1; 5696 NAPI_GRO_CB(skb)->gro_remcsum_start = 0; 5697 5698 /* Setup for GRO checksum validation */ 5699 switch (skb->ip_summed) { 5700 case CHECKSUM_COMPLETE: 5701 NAPI_GRO_CB(skb)->csum = skb->csum; 5702 NAPI_GRO_CB(skb)->csum_valid = 1; 5703 NAPI_GRO_CB(skb)->csum_cnt = 0; 5704 break; 5705 case CHECKSUM_UNNECESSARY: 5706 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1; 5707 NAPI_GRO_CB(skb)->csum_valid = 0; 5708 break; 5709 default: 5710 NAPI_GRO_CB(skb)->csum_cnt = 0; 5711 NAPI_GRO_CB(skb)->csum_valid = 0; 5712 } 5713 5714 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive, 5715 ipv6_gro_receive, inet_gro_receive, 5716 gro_head, skb); 5717 break; 5718 } 5719 rcu_read_unlock(); 5720 5721 if (&ptype->list == head) 5722 goto normal; 5723 5724 if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) { 5725 ret = GRO_CONSUMED; 5726 goto ok; 5727 } 5728 5729 same_flow = NAPI_GRO_CB(skb)->same_flow; 5730 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 5731 5732 if (pp) { 5733 skb_list_del_init(pp); 5734 napi_gro_complete(pp); 5735 napi->gro_hash[hash].count--; 5736 } 5737 5738 if (same_flow) 5739 goto ok; 5740 5741 if (NAPI_GRO_CB(skb)->flush) 5742 goto normal; 5743 5744 if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) { 5745 gro_flush_oldest(gro_head); 5746 } else { 5747 napi->gro_hash[hash].count++; 5748 } 5749 NAPI_GRO_CB(skb)->count = 1; 5750 NAPI_GRO_CB(skb)->age = jiffies; 5751 NAPI_GRO_CB(skb)->last = skb; 5752 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 5753 list_add(&skb->list, gro_head); 5754 ret = GRO_HELD; 5755 5756 pull: 5757 grow = skb_gro_offset(skb) - skb_headlen(skb); 5758 if (grow > 0) 5759 gro_pull_from_frag0(skb, grow); 5760 ok: 5761 if (napi->gro_hash[hash].count) { 5762 if (!test_bit(hash, &napi->gro_bitmask)) 5763 __set_bit(hash, &napi->gro_bitmask); 5764 } else if (test_bit(hash, &napi->gro_bitmask)) { 5765 __clear_bit(hash, &napi->gro_bitmask); 5766 } 5767 5768 return ret; 5769 5770 normal: 5771 ret = GRO_NORMAL; 5772 goto pull; 5773 } 5774 5775 struct packet_offload *gro_find_receive_by_type(__be16 type) 5776 { 5777 struct list_head *offload_head = &offload_base; 5778 struct packet_offload *ptype; 5779 5780 list_for_each_entry_rcu(ptype, offload_head, list) { 5781 if (ptype->type != type || !ptype->callbacks.gro_receive) 5782 continue; 5783 return ptype; 5784 } 5785 return NULL; 5786 } 5787 EXPORT_SYMBOL(gro_find_receive_by_type); 5788 5789 struct packet_offload *gro_find_complete_by_type(__be16 type) 5790 { 5791 struct list_head *offload_head = &offload_base; 5792 struct packet_offload *ptype; 5793 5794 list_for_each_entry_rcu(ptype, offload_head, list) { 5795 if (ptype->type != type || !ptype->callbacks.gro_complete) 5796 continue; 5797 return ptype; 5798 } 5799 return NULL; 5800 } 5801 EXPORT_SYMBOL(gro_find_complete_by_type); 5802 5803 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */ 5804 static void gro_normal_list(struct napi_struct *napi) 5805 { 5806 if (!napi->rx_count) 5807 return; 5808 netif_receive_skb_list_internal(&napi->rx_list); 5809 INIT_LIST_HEAD(&napi->rx_list); 5810 napi->rx_count = 0; 5811 } 5812 5813 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded, 5814 * pass the whole batch up to the stack. 5815 */ 5816 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb) 5817 { 5818 list_add_tail(&skb->list, &napi->rx_list); 5819 if (++napi->rx_count >= gro_normal_batch) 5820 gro_normal_list(napi); 5821 } 5822 5823 static void napi_skb_free_stolen_head(struct sk_buff *skb) 5824 { 5825 skb_dst_drop(skb); 5826 skb_ext_put(skb); 5827 kmem_cache_free(skbuff_head_cache, skb); 5828 } 5829 5830 static gro_result_t napi_skb_finish(struct napi_struct *napi, 5831 struct sk_buff *skb, 5832 gro_result_t ret) 5833 { 5834 switch (ret) { 5835 case GRO_NORMAL: 5836 gro_normal_one(napi, skb); 5837 break; 5838 5839 case GRO_DROP: 5840 kfree_skb(skb); 5841 break; 5842 5843 case GRO_MERGED_FREE: 5844 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 5845 napi_skb_free_stolen_head(skb); 5846 else 5847 __kfree_skb(skb); 5848 break; 5849 5850 case GRO_HELD: 5851 case GRO_MERGED: 5852 case GRO_CONSUMED: 5853 break; 5854 } 5855 5856 return ret; 5857 } 5858 5859 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 5860 { 5861 gro_result_t ret; 5862 5863 skb_mark_napi_id(skb, napi); 5864 trace_napi_gro_receive_entry(skb); 5865 5866 skb_gro_reset_offset(skb); 5867 5868 ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb)); 5869 trace_napi_gro_receive_exit(ret); 5870 5871 return ret; 5872 } 5873 EXPORT_SYMBOL(napi_gro_receive); 5874 5875 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 5876 { 5877 if (unlikely(skb->pfmemalloc)) { 5878 consume_skb(skb); 5879 return; 5880 } 5881 __skb_pull(skb, skb_headlen(skb)); 5882 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 5883 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 5884 __vlan_hwaccel_clear_tag(skb); 5885 skb->dev = napi->dev; 5886 skb->skb_iif = 0; 5887 5888 /* eth_type_trans() assumes pkt_type is PACKET_HOST */ 5889 skb->pkt_type = PACKET_HOST; 5890 5891 skb->encapsulation = 0; 5892 skb_shinfo(skb)->gso_type = 0; 5893 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 5894 skb_ext_reset(skb); 5895 5896 napi->skb = skb; 5897 } 5898 5899 struct sk_buff *napi_get_frags(struct napi_struct *napi) 5900 { 5901 struct sk_buff *skb = napi->skb; 5902 5903 if (!skb) { 5904 skb = napi_alloc_skb(napi, GRO_MAX_HEAD); 5905 if (skb) { 5906 napi->skb = skb; 5907 skb_mark_napi_id(skb, napi); 5908 } 5909 } 5910 return skb; 5911 } 5912 EXPORT_SYMBOL(napi_get_frags); 5913 5914 static gro_result_t napi_frags_finish(struct napi_struct *napi, 5915 struct sk_buff *skb, 5916 gro_result_t ret) 5917 { 5918 switch (ret) { 5919 case GRO_NORMAL: 5920 case GRO_HELD: 5921 __skb_push(skb, ETH_HLEN); 5922 skb->protocol = eth_type_trans(skb, skb->dev); 5923 if (ret == GRO_NORMAL) 5924 gro_normal_one(napi, skb); 5925 break; 5926 5927 case GRO_DROP: 5928 napi_reuse_skb(napi, skb); 5929 break; 5930 5931 case GRO_MERGED_FREE: 5932 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 5933 napi_skb_free_stolen_head(skb); 5934 else 5935 napi_reuse_skb(napi, skb); 5936 break; 5937 5938 case GRO_MERGED: 5939 case GRO_CONSUMED: 5940 break; 5941 } 5942 5943 return ret; 5944 } 5945 5946 /* Upper GRO stack assumes network header starts at gro_offset=0 5947 * Drivers could call both napi_gro_frags() and napi_gro_receive() 5948 * We copy ethernet header into skb->data to have a common layout. 5949 */ 5950 static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 5951 { 5952 struct sk_buff *skb = napi->skb; 5953 const struct ethhdr *eth; 5954 unsigned int hlen = sizeof(*eth); 5955 5956 napi->skb = NULL; 5957 5958 skb_reset_mac_header(skb); 5959 skb_gro_reset_offset(skb); 5960 5961 if (unlikely(skb_gro_header_hard(skb, hlen))) { 5962 eth = skb_gro_header_slow(skb, hlen, 0); 5963 if (unlikely(!eth)) { 5964 net_warn_ratelimited("%s: dropping impossible skb from %s\n", 5965 __func__, napi->dev->name); 5966 napi_reuse_skb(napi, skb); 5967 return NULL; 5968 } 5969 } else { 5970 eth = (const struct ethhdr *)skb->data; 5971 gro_pull_from_frag0(skb, hlen); 5972 NAPI_GRO_CB(skb)->frag0 += hlen; 5973 NAPI_GRO_CB(skb)->frag0_len -= hlen; 5974 } 5975 __skb_pull(skb, hlen); 5976 5977 /* 5978 * This works because the only protocols we care about don't require 5979 * special handling. 5980 * We'll fix it up properly in napi_frags_finish() 5981 */ 5982 skb->protocol = eth->h_proto; 5983 5984 return skb; 5985 } 5986 5987 gro_result_t napi_gro_frags(struct napi_struct *napi) 5988 { 5989 gro_result_t ret; 5990 struct sk_buff *skb = napi_frags_skb(napi); 5991 5992 if (!skb) 5993 return GRO_DROP; 5994 5995 trace_napi_gro_frags_entry(skb); 5996 5997 ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb)); 5998 trace_napi_gro_frags_exit(ret); 5999 6000 return ret; 6001 } 6002 EXPORT_SYMBOL(napi_gro_frags); 6003 6004 /* Compute the checksum from gro_offset and return the folded value 6005 * after adding in any pseudo checksum. 6006 */ 6007 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb) 6008 { 6009 __wsum wsum; 6010 __sum16 sum; 6011 6012 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0); 6013 6014 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */ 6015 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum)); 6016 /* See comments in __skb_checksum_complete(). */ 6017 if (likely(!sum)) { 6018 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 6019 !skb->csum_complete_sw) 6020 netdev_rx_csum_fault(skb->dev, skb); 6021 } 6022 6023 NAPI_GRO_CB(skb)->csum = wsum; 6024 NAPI_GRO_CB(skb)->csum_valid = 1; 6025 6026 return sum; 6027 } 6028 EXPORT_SYMBOL(__skb_gro_checksum_complete); 6029 6030 static void net_rps_send_ipi(struct softnet_data *remsd) 6031 { 6032 #ifdef CONFIG_RPS 6033 while (remsd) { 6034 struct softnet_data *next = remsd->rps_ipi_next; 6035 6036 if (cpu_online(remsd->cpu)) 6037 smp_call_function_single_async(remsd->cpu, &remsd->csd); 6038 remsd = next; 6039 } 6040 #endif 6041 } 6042 6043 /* 6044 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 6045 * Note: called with local irq disabled, but exits with local irq enabled. 6046 */ 6047 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 6048 { 6049 #ifdef CONFIG_RPS 6050 struct softnet_data *remsd = sd->rps_ipi_list; 6051 6052 if (remsd) { 6053 sd->rps_ipi_list = NULL; 6054 6055 local_irq_enable(); 6056 6057 /* Send pending IPI's to kick RPS processing on remote cpus. */ 6058 net_rps_send_ipi(remsd); 6059 } else 6060 #endif 6061 local_irq_enable(); 6062 } 6063 6064 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 6065 { 6066 #ifdef CONFIG_RPS 6067 return sd->rps_ipi_list != NULL; 6068 #else 6069 return false; 6070 #endif 6071 } 6072 6073 static int process_backlog(struct napi_struct *napi, int quota) 6074 { 6075 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 6076 bool again = true; 6077 int work = 0; 6078 6079 /* Check if we have pending ipi, its better to send them now, 6080 * not waiting net_rx_action() end. 6081 */ 6082 if (sd_has_rps_ipi_waiting(sd)) { 6083 local_irq_disable(); 6084 net_rps_action_and_irq_enable(sd); 6085 } 6086 6087 napi->weight = dev_rx_weight; 6088 while (again) { 6089 struct sk_buff *skb; 6090 6091 while ((skb = __skb_dequeue(&sd->process_queue))) { 6092 rcu_read_lock(); 6093 __netif_receive_skb(skb); 6094 rcu_read_unlock(); 6095 input_queue_head_incr(sd); 6096 if (++work >= quota) 6097 return work; 6098 6099 } 6100 6101 local_irq_disable(); 6102 rps_lock(sd); 6103 if (skb_queue_empty(&sd->input_pkt_queue)) { 6104 /* 6105 * Inline a custom version of __napi_complete(). 6106 * only current cpu owns and manipulates this napi, 6107 * and NAPI_STATE_SCHED is the only possible flag set 6108 * on backlog. 6109 * We can use a plain write instead of clear_bit(), 6110 * and we dont need an smp_mb() memory barrier. 6111 */ 6112 napi->state = 0; 6113 again = false; 6114 } else { 6115 skb_queue_splice_tail_init(&sd->input_pkt_queue, 6116 &sd->process_queue); 6117 } 6118 rps_unlock(sd); 6119 local_irq_enable(); 6120 } 6121 6122 return work; 6123 } 6124 6125 /** 6126 * __napi_schedule - schedule for receive 6127 * @n: entry to schedule 6128 * 6129 * The entry's receive function will be scheduled to run. 6130 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 6131 */ 6132 void __napi_schedule(struct napi_struct *n) 6133 { 6134 unsigned long flags; 6135 6136 local_irq_save(flags); 6137 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 6138 local_irq_restore(flags); 6139 } 6140 EXPORT_SYMBOL(__napi_schedule); 6141 6142 /** 6143 * napi_schedule_prep - check if napi can be scheduled 6144 * @n: napi context 6145 * 6146 * Test if NAPI routine is already running, and if not mark 6147 * it as running. This is used as a condition variable 6148 * insure only one NAPI poll instance runs. We also make 6149 * sure there is no pending NAPI disable. 6150 */ 6151 bool napi_schedule_prep(struct napi_struct *n) 6152 { 6153 unsigned long val, new; 6154 6155 do { 6156 val = READ_ONCE(n->state); 6157 if (unlikely(val & NAPIF_STATE_DISABLE)) 6158 return false; 6159 new = val | NAPIF_STATE_SCHED; 6160 6161 /* Sets STATE_MISSED bit if STATE_SCHED was already set 6162 * This was suggested by Alexander Duyck, as compiler 6163 * emits better code than : 6164 * if (val & NAPIF_STATE_SCHED) 6165 * new |= NAPIF_STATE_MISSED; 6166 */ 6167 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED * 6168 NAPIF_STATE_MISSED; 6169 } while (cmpxchg(&n->state, val, new) != val); 6170 6171 return !(val & NAPIF_STATE_SCHED); 6172 } 6173 EXPORT_SYMBOL(napi_schedule_prep); 6174 6175 /** 6176 * __napi_schedule_irqoff - schedule for receive 6177 * @n: entry to schedule 6178 * 6179 * Variant of __napi_schedule() assuming hard irqs are masked 6180 */ 6181 void __napi_schedule_irqoff(struct napi_struct *n) 6182 { 6183 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 6184 } 6185 EXPORT_SYMBOL(__napi_schedule_irqoff); 6186 6187 bool napi_complete_done(struct napi_struct *n, int work_done) 6188 { 6189 unsigned long flags, val, new; 6190 6191 /* 6192 * 1) Don't let napi dequeue from the cpu poll list 6193 * just in case its running on a different cpu. 6194 * 2) If we are busy polling, do nothing here, we have 6195 * the guarantee we will be called later. 6196 */ 6197 if (unlikely(n->state & (NAPIF_STATE_NPSVC | 6198 NAPIF_STATE_IN_BUSY_POLL))) 6199 return false; 6200 6201 gro_normal_list(n); 6202 6203 if (n->gro_bitmask) { 6204 unsigned long timeout = 0; 6205 6206 if (work_done) 6207 timeout = n->dev->gro_flush_timeout; 6208 6209 /* When the NAPI instance uses a timeout and keeps postponing 6210 * it, we need to bound somehow the time packets are kept in 6211 * the GRO layer 6212 */ 6213 napi_gro_flush(n, !!timeout); 6214 if (timeout) 6215 hrtimer_start(&n->timer, ns_to_ktime(timeout), 6216 HRTIMER_MODE_REL_PINNED); 6217 } 6218 if (unlikely(!list_empty(&n->poll_list))) { 6219 /* If n->poll_list is not empty, we need to mask irqs */ 6220 local_irq_save(flags); 6221 list_del_init(&n->poll_list); 6222 local_irq_restore(flags); 6223 } 6224 6225 do { 6226 val = READ_ONCE(n->state); 6227 6228 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED)); 6229 6230 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED); 6231 6232 /* If STATE_MISSED was set, leave STATE_SCHED set, 6233 * because we will call napi->poll() one more time. 6234 * This C code was suggested by Alexander Duyck to help gcc. 6235 */ 6236 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED * 6237 NAPIF_STATE_SCHED; 6238 } while (cmpxchg(&n->state, val, new) != val); 6239 6240 if (unlikely(val & NAPIF_STATE_MISSED)) { 6241 __napi_schedule(n); 6242 return false; 6243 } 6244 6245 return true; 6246 } 6247 EXPORT_SYMBOL(napi_complete_done); 6248 6249 /* must be called under rcu_read_lock(), as we dont take a reference */ 6250 static struct napi_struct *napi_by_id(unsigned int napi_id) 6251 { 6252 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 6253 struct napi_struct *napi; 6254 6255 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 6256 if (napi->napi_id == napi_id) 6257 return napi; 6258 6259 return NULL; 6260 } 6261 6262 #if defined(CONFIG_NET_RX_BUSY_POLL) 6263 6264 #define BUSY_POLL_BUDGET 8 6265 6266 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock) 6267 { 6268 int rc; 6269 6270 /* Busy polling means there is a high chance device driver hard irq 6271 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was 6272 * set in napi_schedule_prep(). 6273 * Since we are about to call napi->poll() once more, we can safely 6274 * clear NAPI_STATE_MISSED. 6275 * 6276 * Note: x86 could use a single "lock and ..." instruction 6277 * to perform these two clear_bit() 6278 */ 6279 clear_bit(NAPI_STATE_MISSED, &napi->state); 6280 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state); 6281 6282 local_bh_disable(); 6283 6284 /* All we really want here is to re-enable device interrupts. 6285 * Ideally, a new ndo_busy_poll_stop() could avoid another round. 6286 */ 6287 rc = napi->poll(napi, BUSY_POLL_BUDGET); 6288 /* We can't gro_normal_list() here, because napi->poll() might have 6289 * rearmed the napi (napi_complete_done()) in which case it could 6290 * already be running on another CPU. 6291 */ 6292 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET); 6293 netpoll_poll_unlock(have_poll_lock); 6294 if (rc == BUSY_POLL_BUDGET) { 6295 /* As the whole budget was spent, we still own the napi so can 6296 * safely handle the rx_list. 6297 */ 6298 gro_normal_list(napi); 6299 __napi_schedule(napi); 6300 } 6301 local_bh_enable(); 6302 } 6303 6304 void napi_busy_loop(unsigned int napi_id, 6305 bool (*loop_end)(void *, unsigned long), 6306 void *loop_end_arg) 6307 { 6308 unsigned long start_time = loop_end ? busy_loop_current_time() : 0; 6309 int (*napi_poll)(struct napi_struct *napi, int budget); 6310 void *have_poll_lock = NULL; 6311 struct napi_struct *napi; 6312 6313 restart: 6314 napi_poll = NULL; 6315 6316 rcu_read_lock(); 6317 6318 napi = napi_by_id(napi_id); 6319 if (!napi) 6320 goto out; 6321 6322 preempt_disable(); 6323 for (;;) { 6324 int work = 0; 6325 6326 local_bh_disable(); 6327 if (!napi_poll) { 6328 unsigned long val = READ_ONCE(napi->state); 6329 6330 /* If multiple threads are competing for this napi, 6331 * we avoid dirtying napi->state as much as we can. 6332 */ 6333 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED | 6334 NAPIF_STATE_IN_BUSY_POLL)) 6335 goto count; 6336 if (cmpxchg(&napi->state, val, 6337 val | NAPIF_STATE_IN_BUSY_POLL | 6338 NAPIF_STATE_SCHED) != val) 6339 goto count; 6340 have_poll_lock = netpoll_poll_lock(napi); 6341 napi_poll = napi->poll; 6342 } 6343 work = napi_poll(napi, BUSY_POLL_BUDGET); 6344 trace_napi_poll(napi, work, BUSY_POLL_BUDGET); 6345 gro_normal_list(napi); 6346 count: 6347 if (work > 0) 6348 __NET_ADD_STATS(dev_net(napi->dev), 6349 LINUX_MIB_BUSYPOLLRXPACKETS, work); 6350 local_bh_enable(); 6351 6352 if (!loop_end || loop_end(loop_end_arg, start_time)) 6353 break; 6354 6355 if (unlikely(need_resched())) { 6356 if (napi_poll) 6357 busy_poll_stop(napi, have_poll_lock); 6358 preempt_enable(); 6359 rcu_read_unlock(); 6360 cond_resched(); 6361 if (loop_end(loop_end_arg, start_time)) 6362 return; 6363 goto restart; 6364 } 6365 cpu_relax(); 6366 } 6367 if (napi_poll) 6368 busy_poll_stop(napi, have_poll_lock); 6369 preempt_enable(); 6370 out: 6371 rcu_read_unlock(); 6372 } 6373 EXPORT_SYMBOL(napi_busy_loop); 6374 6375 #endif /* CONFIG_NET_RX_BUSY_POLL */ 6376 6377 static void napi_hash_add(struct napi_struct *napi) 6378 { 6379 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) || 6380 test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) 6381 return; 6382 6383 spin_lock(&napi_hash_lock); 6384 6385 /* 0..NR_CPUS range is reserved for sender_cpu use */ 6386 do { 6387 if (unlikely(++napi_gen_id < MIN_NAPI_ID)) 6388 napi_gen_id = MIN_NAPI_ID; 6389 } while (napi_by_id(napi_gen_id)); 6390 napi->napi_id = napi_gen_id; 6391 6392 hlist_add_head_rcu(&napi->napi_hash_node, 6393 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 6394 6395 spin_unlock(&napi_hash_lock); 6396 } 6397 6398 /* Warning : caller is responsible to make sure rcu grace period 6399 * is respected before freeing memory containing @napi 6400 */ 6401 bool napi_hash_del(struct napi_struct *napi) 6402 { 6403 bool rcu_sync_needed = false; 6404 6405 spin_lock(&napi_hash_lock); 6406 6407 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) { 6408 rcu_sync_needed = true; 6409 hlist_del_rcu(&napi->napi_hash_node); 6410 } 6411 spin_unlock(&napi_hash_lock); 6412 return rcu_sync_needed; 6413 } 6414 EXPORT_SYMBOL_GPL(napi_hash_del); 6415 6416 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 6417 { 6418 struct napi_struct *napi; 6419 6420 napi = container_of(timer, struct napi_struct, timer); 6421 6422 /* Note : we use a relaxed variant of napi_schedule_prep() not setting 6423 * NAPI_STATE_MISSED, since we do not react to a device IRQ. 6424 */ 6425 if (napi->gro_bitmask && !napi_disable_pending(napi) && 6426 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) 6427 __napi_schedule_irqoff(napi); 6428 6429 return HRTIMER_NORESTART; 6430 } 6431 6432 static void init_gro_hash(struct napi_struct *napi) 6433 { 6434 int i; 6435 6436 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 6437 INIT_LIST_HEAD(&napi->gro_hash[i].list); 6438 napi->gro_hash[i].count = 0; 6439 } 6440 napi->gro_bitmask = 0; 6441 } 6442 6443 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 6444 int (*poll)(struct napi_struct *, int), int weight) 6445 { 6446 INIT_LIST_HEAD(&napi->poll_list); 6447 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 6448 napi->timer.function = napi_watchdog; 6449 init_gro_hash(napi); 6450 napi->skb = NULL; 6451 INIT_LIST_HEAD(&napi->rx_list); 6452 napi->rx_count = 0; 6453 napi->poll = poll; 6454 if (weight > NAPI_POLL_WEIGHT) 6455 netdev_err_once(dev, "%s() called with weight %d\n", __func__, 6456 weight); 6457 napi->weight = weight; 6458 list_add(&napi->dev_list, &dev->napi_list); 6459 napi->dev = dev; 6460 #ifdef CONFIG_NETPOLL 6461 napi->poll_owner = -1; 6462 #endif 6463 set_bit(NAPI_STATE_SCHED, &napi->state); 6464 napi_hash_add(napi); 6465 } 6466 EXPORT_SYMBOL(netif_napi_add); 6467 6468 void napi_disable(struct napi_struct *n) 6469 { 6470 might_sleep(); 6471 set_bit(NAPI_STATE_DISABLE, &n->state); 6472 6473 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state)) 6474 msleep(1); 6475 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state)) 6476 msleep(1); 6477 6478 hrtimer_cancel(&n->timer); 6479 6480 clear_bit(NAPI_STATE_DISABLE, &n->state); 6481 } 6482 EXPORT_SYMBOL(napi_disable); 6483 6484 static void flush_gro_hash(struct napi_struct *napi) 6485 { 6486 int i; 6487 6488 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 6489 struct sk_buff *skb, *n; 6490 6491 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list) 6492 kfree_skb(skb); 6493 napi->gro_hash[i].count = 0; 6494 } 6495 } 6496 6497 /* Must be called in process context */ 6498 void netif_napi_del(struct napi_struct *napi) 6499 { 6500 might_sleep(); 6501 if (napi_hash_del(napi)) 6502 synchronize_net(); 6503 list_del_init(&napi->dev_list); 6504 napi_free_frags(napi); 6505 6506 flush_gro_hash(napi); 6507 napi->gro_bitmask = 0; 6508 } 6509 EXPORT_SYMBOL(netif_napi_del); 6510 6511 static int napi_poll(struct napi_struct *n, struct list_head *repoll) 6512 { 6513 void *have; 6514 int work, weight; 6515 6516 list_del_init(&n->poll_list); 6517 6518 have = netpoll_poll_lock(n); 6519 6520 weight = n->weight; 6521 6522 /* This NAPI_STATE_SCHED test is for avoiding a race 6523 * with netpoll's poll_napi(). Only the entity which 6524 * obtains the lock and sees NAPI_STATE_SCHED set will 6525 * actually make the ->poll() call. Therefore we avoid 6526 * accidentally calling ->poll() when NAPI is not scheduled. 6527 */ 6528 work = 0; 6529 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 6530 work = n->poll(n, weight); 6531 trace_napi_poll(n, work, weight); 6532 } 6533 6534 WARN_ON_ONCE(work > weight); 6535 6536 if (likely(work < weight)) 6537 goto out_unlock; 6538 6539 /* Drivers must not modify the NAPI state if they 6540 * consume the entire weight. In such cases this code 6541 * still "owns" the NAPI instance and therefore can 6542 * move the instance around on the list at-will. 6543 */ 6544 if (unlikely(napi_disable_pending(n))) { 6545 napi_complete(n); 6546 goto out_unlock; 6547 } 6548 6549 gro_normal_list(n); 6550 6551 if (n->gro_bitmask) { 6552 /* flush too old packets 6553 * If HZ < 1000, flush all packets. 6554 */ 6555 napi_gro_flush(n, HZ >= 1000); 6556 } 6557 6558 /* Some drivers may have called napi_schedule 6559 * prior to exhausting their budget. 6560 */ 6561 if (unlikely(!list_empty(&n->poll_list))) { 6562 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 6563 n->dev ? n->dev->name : "backlog"); 6564 goto out_unlock; 6565 } 6566 6567 list_add_tail(&n->poll_list, repoll); 6568 6569 out_unlock: 6570 netpoll_poll_unlock(have); 6571 6572 return work; 6573 } 6574 6575 static __latent_entropy void net_rx_action(struct softirq_action *h) 6576 { 6577 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 6578 unsigned long time_limit = jiffies + 6579 usecs_to_jiffies(netdev_budget_usecs); 6580 int budget = netdev_budget; 6581 LIST_HEAD(list); 6582 LIST_HEAD(repoll); 6583 6584 local_irq_disable(); 6585 list_splice_init(&sd->poll_list, &list); 6586 local_irq_enable(); 6587 6588 for (;;) { 6589 struct napi_struct *n; 6590 6591 if (list_empty(&list)) { 6592 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll)) 6593 goto out; 6594 break; 6595 } 6596 6597 n = list_first_entry(&list, struct napi_struct, poll_list); 6598 budget -= napi_poll(n, &repoll); 6599 6600 /* If softirq window is exhausted then punt. 6601 * Allow this to run for 2 jiffies since which will allow 6602 * an average latency of 1.5/HZ. 6603 */ 6604 if (unlikely(budget <= 0 || 6605 time_after_eq(jiffies, time_limit))) { 6606 sd->time_squeeze++; 6607 break; 6608 } 6609 } 6610 6611 local_irq_disable(); 6612 6613 list_splice_tail_init(&sd->poll_list, &list); 6614 list_splice_tail(&repoll, &list); 6615 list_splice(&list, &sd->poll_list); 6616 if (!list_empty(&sd->poll_list)) 6617 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 6618 6619 net_rps_action_and_irq_enable(sd); 6620 out: 6621 __kfree_skb_flush(); 6622 } 6623 6624 struct netdev_adjacent { 6625 struct net_device *dev; 6626 6627 /* upper master flag, there can only be one master device per list */ 6628 bool master; 6629 6630 /* lookup ignore flag */ 6631 bool ignore; 6632 6633 /* counter for the number of times this device was added to us */ 6634 u16 ref_nr; 6635 6636 /* private field for the users */ 6637 void *private; 6638 6639 struct list_head list; 6640 struct rcu_head rcu; 6641 }; 6642 6643 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, 6644 struct list_head *adj_list) 6645 { 6646 struct netdev_adjacent *adj; 6647 6648 list_for_each_entry(adj, adj_list, list) { 6649 if (adj->dev == adj_dev) 6650 return adj; 6651 } 6652 return NULL; 6653 } 6654 6655 static int ____netdev_has_upper_dev(struct net_device *upper_dev, void *data) 6656 { 6657 struct net_device *dev = data; 6658 6659 return upper_dev == dev; 6660 } 6661 6662 /** 6663 * netdev_has_upper_dev - Check if device is linked to an upper device 6664 * @dev: device 6665 * @upper_dev: upper device to check 6666 * 6667 * Find out if a device is linked to specified upper device and return true 6668 * in case it is. Note that this checks only immediate upper device, 6669 * not through a complete stack of devices. The caller must hold the RTNL lock. 6670 */ 6671 bool netdev_has_upper_dev(struct net_device *dev, 6672 struct net_device *upper_dev) 6673 { 6674 ASSERT_RTNL(); 6675 6676 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev, 6677 upper_dev); 6678 } 6679 EXPORT_SYMBOL(netdev_has_upper_dev); 6680 6681 /** 6682 * netdev_has_upper_dev_all - Check if device is linked to an upper device 6683 * @dev: device 6684 * @upper_dev: upper device to check 6685 * 6686 * Find out if a device is linked to specified upper device and return true 6687 * in case it is. Note that this checks the entire upper device chain. 6688 * The caller must hold rcu lock. 6689 */ 6690 6691 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 6692 struct net_device *upper_dev) 6693 { 6694 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev, 6695 upper_dev); 6696 } 6697 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu); 6698 6699 /** 6700 * netdev_has_any_upper_dev - Check if device is linked to some device 6701 * @dev: device 6702 * 6703 * Find out if a device is linked to an upper device and return true in case 6704 * it is. The caller must hold the RTNL lock. 6705 */ 6706 bool netdev_has_any_upper_dev(struct net_device *dev) 6707 { 6708 ASSERT_RTNL(); 6709 6710 return !list_empty(&dev->adj_list.upper); 6711 } 6712 EXPORT_SYMBOL(netdev_has_any_upper_dev); 6713 6714 /** 6715 * netdev_master_upper_dev_get - Get master upper device 6716 * @dev: device 6717 * 6718 * Find a master upper device and return pointer to it or NULL in case 6719 * it's not there. The caller must hold the RTNL lock. 6720 */ 6721 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 6722 { 6723 struct netdev_adjacent *upper; 6724 6725 ASSERT_RTNL(); 6726 6727 if (list_empty(&dev->adj_list.upper)) 6728 return NULL; 6729 6730 upper = list_first_entry(&dev->adj_list.upper, 6731 struct netdev_adjacent, list); 6732 if (likely(upper->master)) 6733 return upper->dev; 6734 return NULL; 6735 } 6736 EXPORT_SYMBOL(netdev_master_upper_dev_get); 6737 6738 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev) 6739 { 6740 struct netdev_adjacent *upper; 6741 6742 ASSERT_RTNL(); 6743 6744 if (list_empty(&dev->adj_list.upper)) 6745 return NULL; 6746 6747 upper = list_first_entry(&dev->adj_list.upper, 6748 struct netdev_adjacent, list); 6749 if (likely(upper->master) && !upper->ignore) 6750 return upper->dev; 6751 return NULL; 6752 } 6753 6754 /** 6755 * netdev_has_any_lower_dev - Check if device is linked to some device 6756 * @dev: device 6757 * 6758 * Find out if a device is linked to a lower device and return true in case 6759 * it is. The caller must hold the RTNL lock. 6760 */ 6761 static bool netdev_has_any_lower_dev(struct net_device *dev) 6762 { 6763 ASSERT_RTNL(); 6764 6765 return !list_empty(&dev->adj_list.lower); 6766 } 6767 6768 void *netdev_adjacent_get_private(struct list_head *adj_list) 6769 { 6770 struct netdev_adjacent *adj; 6771 6772 adj = list_entry(adj_list, struct netdev_adjacent, list); 6773 6774 return adj->private; 6775 } 6776 EXPORT_SYMBOL(netdev_adjacent_get_private); 6777 6778 /** 6779 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 6780 * @dev: device 6781 * @iter: list_head ** of the current position 6782 * 6783 * Gets the next device from the dev's upper list, starting from iter 6784 * position. The caller must hold RCU read lock. 6785 */ 6786 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 6787 struct list_head **iter) 6788 { 6789 struct netdev_adjacent *upper; 6790 6791 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 6792 6793 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6794 6795 if (&upper->list == &dev->adj_list.upper) 6796 return NULL; 6797 6798 *iter = &upper->list; 6799 6800 return upper->dev; 6801 } 6802 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 6803 6804 static struct net_device *__netdev_next_upper_dev(struct net_device *dev, 6805 struct list_head **iter, 6806 bool *ignore) 6807 { 6808 struct netdev_adjacent *upper; 6809 6810 upper = list_entry((*iter)->next, struct netdev_adjacent, list); 6811 6812 if (&upper->list == &dev->adj_list.upper) 6813 return NULL; 6814 6815 *iter = &upper->list; 6816 *ignore = upper->ignore; 6817 6818 return upper->dev; 6819 } 6820 6821 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev, 6822 struct list_head **iter) 6823 { 6824 struct netdev_adjacent *upper; 6825 6826 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 6827 6828 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6829 6830 if (&upper->list == &dev->adj_list.upper) 6831 return NULL; 6832 6833 *iter = &upper->list; 6834 6835 return upper->dev; 6836 } 6837 6838 static int __netdev_walk_all_upper_dev(struct net_device *dev, 6839 int (*fn)(struct net_device *dev, 6840 void *data), 6841 void *data) 6842 { 6843 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 6844 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 6845 int ret, cur = 0; 6846 bool ignore; 6847 6848 now = dev; 6849 iter = &dev->adj_list.upper; 6850 6851 while (1) { 6852 if (now != dev) { 6853 ret = fn(now, data); 6854 if (ret) 6855 return ret; 6856 } 6857 6858 next = NULL; 6859 while (1) { 6860 udev = __netdev_next_upper_dev(now, &iter, &ignore); 6861 if (!udev) 6862 break; 6863 if (ignore) 6864 continue; 6865 6866 next = udev; 6867 niter = &udev->adj_list.upper; 6868 dev_stack[cur] = now; 6869 iter_stack[cur++] = iter; 6870 break; 6871 } 6872 6873 if (!next) { 6874 if (!cur) 6875 return 0; 6876 next = dev_stack[--cur]; 6877 niter = iter_stack[cur]; 6878 } 6879 6880 now = next; 6881 iter = niter; 6882 } 6883 6884 return 0; 6885 } 6886 6887 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 6888 int (*fn)(struct net_device *dev, 6889 void *data), 6890 void *data) 6891 { 6892 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 6893 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 6894 int ret, cur = 0; 6895 6896 now = dev; 6897 iter = &dev->adj_list.upper; 6898 6899 while (1) { 6900 if (now != dev) { 6901 ret = fn(now, data); 6902 if (ret) 6903 return ret; 6904 } 6905 6906 next = NULL; 6907 while (1) { 6908 udev = netdev_next_upper_dev_rcu(now, &iter); 6909 if (!udev) 6910 break; 6911 6912 next = udev; 6913 niter = &udev->adj_list.upper; 6914 dev_stack[cur] = now; 6915 iter_stack[cur++] = iter; 6916 break; 6917 } 6918 6919 if (!next) { 6920 if (!cur) 6921 return 0; 6922 next = dev_stack[--cur]; 6923 niter = iter_stack[cur]; 6924 } 6925 6926 now = next; 6927 iter = niter; 6928 } 6929 6930 return 0; 6931 } 6932 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu); 6933 6934 static bool __netdev_has_upper_dev(struct net_device *dev, 6935 struct net_device *upper_dev) 6936 { 6937 ASSERT_RTNL(); 6938 6939 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev, 6940 upper_dev); 6941 } 6942 6943 /** 6944 * netdev_lower_get_next_private - Get the next ->private from the 6945 * lower neighbour list 6946 * @dev: device 6947 * @iter: list_head ** of the current position 6948 * 6949 * Gets the next netdev_adjacent->private from the dev's lower neighbour 6950 * list, starting from iter position. The caller must hold either hold the 6951 * RTNL lock or its own locking that guarantees that the neighbour lower 6952 * list will remain unchanged. 6953 */ 6954 void *netdev_lower_get_next_private(struct net_device *dev, 6955 struct list_head **iter) 6956 { 6957 struct netdev_adjacent *lower; 6958 6959 lower = list_entry(*iter, struct netdev_adjacent, list); 6960 6961 if (&lower->list == &dev->adj_list.lower) 6962 return NULL; 6963 6964 *iter = lower->list.next; 6965 6966 return lower->private; 6967 } 6968 EXPORT_SYMBOL(netdev_lower_get_next_private); 6969 6970 /** 6971 * netdev_lower_get_next_private_rcu - Get the next ->private from the 6972 * lower neighbour list, RCU 6973 * variant 6974 * @dev: device 6975 * @iter: list_head ** of the current position 6976 * 6977 * Gets the next netdev_adjacent->private from the dev's lower neighbour 6978 * list, starting from iter position. The caller must hold RCU read lock. 6979 */ 6980 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 6981 struct list_head **iter) 6982 { 6983 struct netdev_adjacent *lower; 6984 6985 WARN_ON_ONCE(!rcu_read_lock_held()); 6986 6987 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6988 6989 if (&lower->list == &dev->adj_list.lower) 6990 return NULL; 6991 6992 *iter = &lower->list; 6993 6994 return lower->private; 6995 } 6996 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 6997 6998 /** 6999 * netdev_lower_get_next - Get the next device from the lower neighbour 7000 * list 7001 * @dev: device 7002 * @iter: list_head ** of the current position 7003 * 7004 * Gets the next netdev_adjacent from the dev's lower neighbour 7005 * list, starting from iter position. The caller must hold RTNL lock or 7006 * its own locking that guarantees that the neighbour lower 7007 * list will remain unchanged. 7008 */ 7009 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 7010 { 7011 struct netdev_adjacent *lower; 7012 7013 lower = list_entry(*iter, struct netdev_adjacent, list); 7014 7015 if (&lower->list == &dev->adj_list.lower) 7016 return NULL; 7017 7018 *iter = lower->list.next; 7019 7020 return lower->dev; 7021 } 7022 EXPORT_SYMBOL(netdev_lower_get_next); 7023 7024 static struct net_device *netdev_next_lower_dev(struct net_device *dev, 7025 struct list_head **iter) 7026 { 7027 struct netdev_adjacent *lower; 7028 7029 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 7030 7031 if (&lower->list == &dev->adj_list.lower) 7032 return NULL; 7033 7034 *iter = &lower->list; 7035 7036 return lower->dev; 7037 } 7038 7039 static struct net_device *__netdev_next_lower_dev(struct net_device *dev, 7040 struct list_head **iter, 7041 bool *ignore) 7042 { 7043 struct netdev_adjacent *lower; 7044 7045 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 7046 7047 if (&lower->list == &dev->adj_list.lower) 7048 return NULL; 7049 7050 *iter = &lower->list; 7051 *ignore = lower->ignore; 7052 7053 return lower->dev; 7054 } 7055 7056 int netdev_walk_all_lower_dev(struct net_device *dev, 7057 int (*fn)(struct net_device *dev, 7058 void *data), 7059 void *data) 7060 { 7061 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7062 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7063 int ret, cur = 0; 7064 7065 now = dev; 7066 iter = &dev->adj_list.lower; 7067 7068 while (1) { 7069 if (now != dev) { 7070 ret = fn(now, data); 7071 if (ret) 7072 return ret; 7073 } 7074 7075 next = NULL; 7076 while (1) { 7077 ldev = netdev_next_lower_dev(now, &iter); 7078 if (!ldev) 7079 break; 7080 7081 next = ldev; 7082 niter = &ldev->adj_list.lower; 7083 dev_stack[cur] = now; 7084 iter_stack[cur++] = iter; 7085 break; 7086 } 7087 7088 if (!next) { 7089 if (!cur) 7090 return 0; 7091 next = dev_stack[--cur]; 7092 niter = iter_stack[cur]; 7093 } 7094 7095 now = next; 7096 iter = niter; 7097 } 7098 7099 return 0; 7100 } 7101 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev); 7102 7103 static int __netdev_walk_all_lower_dev(struct net_device *dev, 7104 int (*fn)(struct net_device *dev, 7105 void *data), 7106 void *data) 7107 { 7108 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7109 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7110 int ret, cur = 0; 7111 bool ignore; 7112 7113 now = dev; 7114 iter = &dev->adj_list.lower; 7115 7116 while (1) { 7117 if (now != dev) { 7118 ret = fn(now, data); 7119 if (ret) 7120 return ret; 7121 } 7122 7123 next = NULL; 7124 while (1) { 7125 ldev = __netdev_next_lower_dev(now, &iter, &ignore); 7126 if (!ldev) 7127 break; 7128 if (ignore) 7129 continue; 7130 7131 next = ldev; 7132 niter = &ldev->adj_list.lower; 7133 dev_stack[cur] = now; 7134 iter_stack[cur++] = iter; 7135 break; 7136 } 7137 7138 if (!next) { 7139 if (!cur) 7140 return 0; 7141 next = dev_stack[--cur]; 7142 niter = iter_stack[cur]; 7143 } 7144 7145 now = next; 7146 iter = niter; 7147 } 7148 7149 return 0; 7150 } 7151 7152 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 7153 struct list_head **iter) 7154 { 7155 struct netdev_adjacent *lower; 7156 7157 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7158 if (&lower->list == &dev->adj_list.lower) 7159 return NULL; 7160 7161 *iter = &lower->list; 7162 7163 return lower->dev; 7164 } 7165 7166 static u8 __netdev_upper_depth(struct net_device *dev) 7167 { 7168 struct net_device *udev; 7169 struct list_head *iter; 7170 u8 max_depth = 0; 7171 bool ignore; 7172 7173 for (iter = &dev->adj_list.upper, 7174 udev = __netdev_next_upper_dev(dev, &iter, &ignore); 7175 udev; 7176 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) { 7177 if (ignore) 7178 continue; 7179 if (max_depth < udev->upper_level) 7180 max_depth = udev->upper_level; 7181 } 7182 7183 return max_depth; 7184 } 7185 7186 static u8 __netdev_lower_depth(struct net_device *dev) 7187 { 7188 struct net_device *ldev; 7189 struct list_head *iter; 7190 u8 max_depth = 0; 7191 bool ignore; 7192 7193 for (iter = &dev->adj_list.lower, 7194 ldev = __netdev_next_lower_dev(dev, &iter, &ignore); 7195 ldev; 7196 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) { 7197 if (ignore) 7198 continue; 7199 if (max_depth < ldev->lower_level) 7200 max_depth = ldev->lower_level; 7201 } 7202 7203 return max_depth; 7204 } 7205 7206 static int __netdev_update_upper_level(struct net_device *dev, void *data) 7207 { 7208 dev->upper_level = __netdev_upper_depth(dev) + 1; 7209 return 0; 7210 } 7211 7212 static int __netdev_update_lower_level(struct net_device *dev, void *data) 7213 { 7214 dev->lower_level = __netdev_lower_depth(dev) + 1; 7215 return 0; 7216 } 7217 7218 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 7219 int (*fn)(struct net_device *dev, 7220 void *data), 7221 void *data) 7222 { 7223 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7224 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7225 int ret, cur = 0; 7226 7227 now = dev; 7228 iter = &dev->adj_list.lower; 7229 7230 while (1) { 7231 if (now != dev) { 7232 ret = fn(now, data); 7233 if (ret) 7234 return ret; 7235 } 7236 7237 next = NULL; 7238 while (1) { 7239 ldev = netdev_next_lower_dev_rcu(now, &iter); 7240 if (!ldev) 7241 break; 7242 7243 next = ldev; 7244 niter = &ldev->adj_list.lower; 7245 dev_stack[cur] = now; 7246 iter_stack[cur++] = iter; 7247 break; 7248 } 7249 7250 if (!next) { 7251 if (!cur) 7252 return 0; 7253 next = dev_stack[--cur]; 7254 niter = iter_stack[cur]; 7255 } 7256 7257 now = next; 7258 iter = niter; 7259 } 7260 7261 return 0; 7262 } 7263 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu); 7264 7265 /** 7266 * netdev_lower_get_first_private_rcu - Get the first ->private from the 7267 * lower neighbour list, RCU 7268 * variant 7269 * @dev: device 7270 * 7271 * Gets the first netdev_adjacent->private from the dev's lower neighbour 7272 * list. The caller must hold RCU read lock. 7273 */ 7274 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 7275 { 7276 struct netdev_adjacent *lower; 7277 7278 lower = list_first_or_null_rcu(&dev->adj_list.lower, 7279 struct netdev_adjacent, list); 7280 if (lower) 7281 return lower->private; 7282 return NULL; 7283 } 7284 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 7285 7286 /** 7287 * netdev_master_upper_dev_get_rcu - Get master upper device 7288 * @dev: device 7289 * 7290 * Find a master upper device and return pointer to it or NULL in case 7291 * it's not there. The caller must hold the RCU read lock. 7292 */ 7293 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 7294 { 7295 struct netdev_adjacent *upper; 7296 7297 upper = list_first_or_null_rcu(&dev->adj_list.upper, 7298 struct netdev_adjacent, list); 7299 if (upper && likely(upper->master)) 7300 return upper->dev; 7301 return NULL; 7302 } 7303 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 7304 7305 static int netdev_adjacent_sysfs_add(struct net_device *dev, 7306 struct net_device *adj_dev, 7307 struct list_head *dev_list) 7308 { 7309 char linkname[IFNAMSIZ+7]; 7310 7311 sprintf(linkname, dev_list == &dev->adj_list.upper ? 7312 "upper_%s" : "lower_%s", adj_dev->name); 7313 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 7314 linkname); 7315 } 7316 static void netdev_adjacent_sysfs_del(struct net_device *dev, 7317 char *name, 7318 struct list_head *dev_list) 7319 { 7320 char linkname[IFNAMSIZ+7]; 7321 7322 sprintf(linkname, dev_list == &dev->adj_list.upper ? 7323 "upper_%s" : "lower_%s", name); 7324 sysfs_remove_link(&(dev->dev.kobj), linkname); 7325 } 7326 7327 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 7328 struct net_device *adj_dev, 7329 struct list_head *dev_list) 7330 { 7331 return (dev_list == &dev->adj_list.upper || 7332 dev_list == &dev->adj_list.lower) && 7333 net_eq(dev_net(dev), dev_net(adj_dev)); 7334 } 7335 7336 static int __netdev_adjacent_dev_insert(struct net_device *dev, 7337 struct net_device *adj_dev, 7338 struct list_head *dev_list, 7339 void *private, bool master) 7340 { 7341 struct netdev_adjacent *adj; 7342 int ret; 7343 7344 adj = __netdev_find_adj(adj_dev, dev_list); 7345 7346 if (adj) { 7347 adj->ref_nr += 1; 7348 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n", 7349 dev->name, adj_dev->name, adj->ref_nr); 7350 7351 return 0; 7352 } 7353 7354 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 7355 if (!adj) 7356 return -ENOMEM; 7357 7358 adj->dev = adj_dev; 7359 adj->master = master; 7360 adj->ref_nr = 1; 7361 adj->private = private; 7362 adj->ignore = false; 7363 dev_hold(adj_dev); 7364 7365 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n", 7366 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name); 7367 7368 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 7369 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 7370 if (ret) 7371 goto free_adj; 7372 } 7373 7374 /* Ensure that master link is always the first item in list. */ 7375 if (master) { 7376 ret = sysfs_create_link(&(dev->dev.kobj), 7377 &(adj_dev->dev.kobj), "master"); 7378 if (ret) 7379 goto remove_symlinks; 7380 7381 list_add_rcu(&adj->list, dev_list); 7382 } else { 7383 list_add_tail_rcu(&adj->list, dev_list); 7384 } 7385 7386 return 0; 7387 7388 remove_symlinks: 7389 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 7390 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 7391 free_adj: 7392 kfree(adj); 7393 dev_put(adj_dev); 7394 7395 return ret; 7396 } 7397 7398 static void __netdev_adjacent_dev_remove(struct net_device *dev, 7399 struct net_device *adj_dev, 7400 u16 ref_nr, 7401 struct list_head *dev_list) 7402 { 7403 struct netdev_adjacent *adj; 7404 7405 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n", 7406 dev->name, adj_dev->name, ref_nr); 7407 7408 adj = __netdev_find_adj(adj_dev, dev_list); 7409 7410 if (!adj) { 7411 pr_err("Adjacency does not exist for device %s from %s\n", 7412 dev->name, adj_dev->name); 7413 WARN_ON(1); 7414 return; 7415 } 7416 7417 if (adj->ref_nr > ref_nr) { 7418 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n", 7419 dev->name, adj_dev->name, ref_nr, 7420 adj->ref_nr - ref_nr); 7421 adj->ref_nr -= ref_nr; 7422 return; 7423 } 7424 7425 if (adj->master) 7426 sysfs_remove_link(&(dev->dev.kobj), "master"); 7427 7428 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 7429 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 7430 7431 list_del_rcu(&adj->list); 7432 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n", 7433 adj_dev->name, dev->name, adj_dev->name); 7434 dev_put(adj_dev); 7435 kfree_rcu(adj, rcu); 7436 } 7437 7438 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 7439 struct net_device *upper_dev, 7440 struct list_head *up_list, 7441 struct list_head *down_list, 7442 void *private, bool master) 7443 { 7444 int ret; 7445 7446 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, 7447 private, master); 7448 if (ret) 7449 return ret; 7450 7451 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, 7452 private, false); 7453 if (ret) { 7454 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list); 7455 return ret; 7456 } 7457 7458 return 0; 7459 } 7460 7461 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 7462 struct net_device *upper_dev, 7463 u16 ref_nr, 7464 struct list_head *up_list, 7465 struct list_head *down_list) 7466 { 7467 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list); 7468 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list); 7469 } 7470 7471 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 7472 struct net_device *upper_dev, 7473 void *private, bool master) 7474 { 7475 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 7476 &dev->adj_list.upper, 7477 &upper_dev->adj_list.lower, 7478 private, master); 7479 } 7480 7481 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 7482 struct net_device *upper_dev) 7483 { 7484 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1, 7485 &dev->adj_list.upper, 7486 &upper_dev->adj_list.lower); 7487 } 7488 7489 static int __netdev_upper_dev_link(struct net_device *dev, 7490 struct net_device *upper_dev, bool master, 7491 void *upper_priv, void *upper_info, 7492 struct netlink_ext_ack *extack) 7493 { 7494 struct netdev_notifier_changeupper_info changeupper_info = { 7495 .info = { 7496 .dev = dev, 7497 .extack = extack, 7498 }, 7499 .upper_dev = upper_dev, 7500 .master = master, 7501 .linking = true, 7502 .upper_info = upper_info, 7503 }; 7504 struct net_device *master_dev; 7505 int ret = 0; 7506 7507 ASSERT_RTNL(); 7508 7509 if (dev == upper_dev) 7510 return -EBUSY; 7511 7512 /* To prevent loops, check if dev is not upper device to upper_dev. */ 7513 if (__netdev_has_upper_dev(upper_dev, dev)) 7514 return -EBUSY; 7515 7516 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV) 7517 return -EMLINK; 7518 7519 if (!master) { 7520 if (__netdev_has_upper_dev(dev, upper_dev)) 7521 return -EEXIST; 7522 } else { 7523 master_dev = __netdev_master_upper_dev_get(dev); 7524 if (master_dev) 7525 return master_dev == upper_dev ? -EEXIST : -EBUSY; 7526 } 7527 7528 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 7529 &changeupper_info.info); 7530 ret = notifier_to_errno(ret); 7531 if (ret) 7532 return ret; 7533 7534 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv, 7535 master); 7536 if (ret) 7537 return ret; 7538 7539 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 7540 &changeupper_info.info); 7541 ret = notifier_to_errno(ret); 7542 if (ret) 7543 goto rollback; 7544 7545 __netdev_update_upper_level(dev, NULL); 7546 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 7547 7548 __netdev_update_lower_level(upper_dev, NULL); 7549 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, 7550 NULL); 7551 7552 return 0; 7553 7554 rollback: 7555 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 7556 7557 return ret; 7558 } 7559 7560 /** 7561 * netdev_upper_dev_link - Add a link to the upper device 7562 * @dev: device 7563 * @upper_dev: new upper device 7564 * @extack: netlink extended ack 7565 * 7566 * Adds a link to device which is upper to this one. The caller must hold 7567 * the RTNL lock. On a failure a negative errno code is returned. 7568 * On success the reference counts are adjusted and the function 7569 * returns zero. 7570 */ 7571 int netdev_upper_dev_link(struct net_device *dev, 7572 struct net_device *upper_dev, 7573 struct netlink_ext_ack *extack) 7574 { 7575 return __netdev_upper_dev_link(dev, upper_dev, false, 7576 NULL, NULL, extack); 7577 } 7578 EXPORT_SYMBOL(netdev_upper_dev_link); 7579 7580 /** 7581 * netdev_master_upper_dev_link - Add a master link to the upper device 7582 * @dev: device 7583 * @upper_dev: new upper device 7584 * @upper_priv: upper device private 7585 * @upper_info: upper info to be passed down via notifier 7586 * @extack: netlink extended ack 7587 * 7588 * Adds a link to device which is upper to this one. In this case, only 7589 * one master upper device can be linked, although other non-master devices 7590 * might be linked as well. The caller must hold the RTNL lock. 7591 * On a failure a negative errno code is returned. On success the reference 7592 * counts are adjusted and the function returns zero. 7593 */ 7594 int netdev_master_upper_dev_link(struct net_device *dev, 7595 struct net_device *upper_dev, 7596 void *upper_priv, void *upper_info, 7597 struct netlink_ext_ack *extack) 7598 { 7599 return __netdev_upper_dev_link(dev, upper_dev, true, 7600 upper_priv, upper_info, extack); 7601 } 7602 EXPORT_SYMBOL(netdev_master_upper_dev_link); 7603 7604 /** 7605 * netdev_upper_dev_unlink - Removes a link to upper device 7606 * @dev: device 7607 * @upper_dev: new upper device 7608 * 7609 * Removes a link to device which is upper to this one. The caller must hold 7610 * the RTNL lock. 7611 */ 7612 void netdev_upper_dev_unlink(struct net_device *dev, 7613 struct net_device *upper_dev) 7614 { 7615 struct netdev_notifier_changeupper_info changeupper_info = { 7616 .info = { 7617 .dev = dev, 7618 }, 7619 .upper_dev = upper_dev, 7620 .linking = false, 7621 }; 7622 7623 ASSERT_RTNL(); 7624 7625 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; 7626 7627 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 7628 &changeupper_info.info); 7629 7630 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 7631 7632 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 7633 &changeupper_info.info); 7634 7635 __netdev_update_upper_level(dev, NULL); 7636 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 7637 7638 __netdev_update_lower_level(upper_dev, NULL); 7639 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, 7640 NULL); 7641 } 7642 EXPORT_SYMBOL(netdev_upper_dev_unlink); 7643 7644 static void __netdev_adjacent_dev_set(struct net_device *upper_dev, 7645 struct net_device *lower_dev, 7646 bool val) 7647 { 7648 struct netdev_adjacent *adj; 7649 7650 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower); 7651 if (adj) 7652 adj->ignore = val; 7653 7654 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper); 7655 if (adj) 7656 adj->ignore = val; 7657 } 7658 7659 static void netdev_adjacent_dev_disable(struct net_device *upper_dev, 7660 struct net_device *lower_dev) 7661 { 7662 __netdev_adjacent_dev_set(upper_dev, lower_dev, true); 7663 } 7664 7665 static void netdev_adjacent_dev_enable(struct net_device *upper_dev, 7666 struct net_device *lower_dev) 7667 { 7668 __netdev_adjacent_dev_set(upper_dev, lower_dev, false); 7669 } 7670 7671 int netdev_adjacent_change_prepare(struct net_device *old_dev, 7672 struct net_device *new_dev, 7673 struct net_device *dev, 7674 struct netlink_ext_ack *extack) 7675 { 7676 int err; 7677 7678 if (!new_dev) 7679 return 0; 7680 7681 if (old_dev && new_dev != old_dev) 7682 netdev_adjacent_dev_disable(dev, old_dev); 7683 7684 err = netdev_upper_dev_link(new_dev, dev, extack); 7685 if (err) { 7686 if (old_dev && new_dev != old_dev) 7687 netdev_adjacent_dev_enable(dev, old_dev); 7688 return err; 7689 } 7690 7691 return 0; 7692 } 7693 EXPORT_SYMBOL(netdev_adjacent_change_prepare); 7694 7695 void netdev_adjacent_change_commit(struct net_device *old_dev, 7696 struct net_device *new_dev, 7697 struct net_device *dev) 7698 { 7699 if (!new_dev || !old_dev) 7700 return; 7701 7702 if (new_dev == old_dev) 7703 return; 7704 7705 netdev_adjacent_dev_enable(dev, old_dev); 7706 netdev_upper_dev_unlink(old_dev, dev); 7707 } 7708 EXPORT_SYMBOL(netdev_adjacent_change_commit); 7709 7710 void netdev_adjacent_change_abort(struct net_device *old_dev, 7711 struct net_device *new_dev, 7712 struct net_device *dev) 7713 { 7714 if (!new_dev) 7715 return; 7716 7717 if (old_dev && new_dev != old_dev) 7718 netdev_adjacent_dev_enable(dev, old_dev); 7719 7720 netdev_upper_dev_unlink(new_dev, dev); 7721 } 7722 EXPORT_SYMBOL(netdev_adjacent_change_abort); 7723 7724 /** 7725 * netdev_bonding_info_change - Dispatch event about slave change 7726 * @dev: device 7727 * @bonding_info: info to dispatch 7728 * 7729 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 7730 * The caller must hold the RTNL lock. 7731 */ 7732 void netdev_bonding_info_change(struct net_device *dev, 7733 struct netdev_bonding_info *bonding_info) 7734 { 7735 struct netdev_notifier_bonding_info info = { 7736 .info.dev = dev, 7737 }; 7738 7739 memcpy(&info.bonding_info, bonding_info, 7740 sizeof(struct netdev_bonding_info)); 7741 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, 7742 &info.info); 7743 } 7744 EXPORT_SYMBOL(netdev_bonding_info_change); 7745 7746 static void netdev_adjacent_add_links(struct net_device *dev) 7747 { 7748 struct netdev_adjacent *iter; 7749 7750 struct net *net = dev_net(dev); 7751 7752 list_for_each_entry(iter, &dev->adj_list.upper, list) { 7753 if (!net_eq(net, dev_net(iter->dev))) 7754 continue; 7755 netdev_adjacent_sysfs_add(iter->dev, dev, 7756 &iter->dev->adj_list.lower); 7757 netdev_adjacent_sysfs_add(dev, iter->dev, 7758 &dev->adj_list.upper); 7759 } 7760 7761 list_for_each_entry(iter, &dev->adj_list.lower, list) { 7762 if (!net_eq(net, dev_net(iter->dev))) 7763 continue; 7764 netdev_adjacent_sysfs_add(iter->dev, dev, 7765 &iter->dev->adj_list.upper); 7766 netdev_adjacent_sysfs_add(dev, iter->dev, 7767 &dev->adj_list.lower); 7768 } 7769 } 7770 7771 static void netdev_adjacent_del_links(struct net_device *dev) 7772 { 7773 struct netdev_adjacent *iter; 7774 7775 struct net *net = dev_net(dev); 7776 7777 list_for_each_entry(iter, &dev->adj_list.upper, list) { 7778 if (!net_eq(net, dev_net(iter->dev))) 7779 continue; 7780 netdev_adjacent_sysfs_del(iter->dev, dev->name, 7781 &iter->dev->adj_list.lower); 7782 netdev_adjacent_sysfs_del(dev, iter->dev->name, 7783 &dev->adj_list.upper); 7784 } 7785 7786 list_for_each_entry(iter, &dev->adj_list.lower, list) { 7787 if (!net_eq(net, dev_net(iter->dev))) 7788 continue; 7789 netdev_adjacent_sysfs_del(iter->dev, dev->name, 7790 &iter->dev->adj_list.upper); 7791 netdev_adjacent_sysfs_del(dev, iter->dev->name, 7792 &dev->adj_list.lower); 7793 } 7794 } 7795 7796 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 7797 { 7798 struct netdev_adjacent *iter; 7799 7800 struct net *net = dev_net(dev); 7801 7802 list_for_each_entry(iter, &dev->adj_list.upper, list) { 7803 if (!net_eq(net, dev_net(iter->dev))) 7804 continue; 7805 netdev_adjacent_sysfs_del(iter->dev, oldname, 7806 &iter->dev->adj_list.lower); 7807 netdev_adjacent_sysfs_add(iter->dev, dev, 7808 &iter->dev->adj_list.lower); 7809 } 7810 7811 list_for_each_entry(iter, &dev->adj_list.lower, list) { 7812 if (!net_eq(net, dev_net(iter->dev))) 7813 continue; 7814 netdev_adjacent_sysfs_del(iter->dev, oldname, 7815 &iter->dev->adj_list.upper); 7816 netdev_adjacent_sysfs_add(iter->dev, dev, 7817 &iter->dev->adj_list.upper); 7818 } 7819 } 7820 7821 void *netdev_lower_dev_get_private(struct net_device *dev, 7822 struct net_device *lower_dev) 7823 { 7824 struct netdev_adjacent *lower; 7825 7826 if (!lower_dev) 7827 return NULL; 7828 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower); 7829 if (!lower) 7830 return NULL; 7831 7832 return lower->private; 7833 } 7834 EXPORT_SYMBOL(netdev_lower_dev_get_private); 7835 7836 7837 /** 7838 * netdev_lower_change - Dispatch event about lower device state change 7839 * @lower_dev: device 7840 * @lower_state_info: state to dispatch 7841 * 7842 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info. 7843 * The caller must hold the RTNL lock. 7844 */ 7845 void netdev_lower_state_changed(struct net_device *lower_dev, 7846 void *lower_state_info) 7847 { 7848 struct netdev_notifier_changelowerstate_info changelowerstate_info = { 7849 .info.dev = lower_dev, 7850 }; 7851 7852 ASSERT_RTNL(); 7853 changelowerstate_info.lower_state_info = lower_state_info; 7854 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, 7855 &changelowerstate_info.info); 7856 } 7857 EXPORT_SYMBOL(netdev_lower_state_changed); 7858 7859 static void dev_change_rx_flags(struct net_device *dev, int flags) 7860 { 7861 const struct net_device_ops *ops = dev->netdev_ops; 7862 7863 if (ops->ndo_change_rx_flags) 7864 ops->ndo_change_rx_flags(dev, flags); 7865 } 7866 7867 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 7868 { 7869 unsigned int old_flags = dev->flags; 7870 kuid_t uid; 7871 kgid_t gid; 7872 7873 ASSERT_RTNL(); 7874 7875 dev->flags |= IFF_PROMISC; 7876 dev->promiscuity += inc; 7877 if (dev->promiscuity == 0) { 7878 /* 7879 * Avoid overflow. 7880 * If inc causes overflow, untouch promisc and return error. 7881 */ 7882 if (inc < 0) 7883 dev->flags &= ~IFF_PROMISC; 7884 else { 7885 dev->promiscuity -= inc; 7886 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 7887 dev->name); 7888 return -EOVERFLOW; 7889 } 7890 } 7891 if (dev->flags != old_flags) { 7892 pr_info("device %s %s promiscuous mode\n", 7893 dev->name, 7894 dev->flags & IFF_PROMISC ? "entered" : "left"); 7895 if (audit_enabled) { 7896 current_uid_gid(&uid, &gid); 7897 audit_log(audit_context(), GFP_ATOMIC, 7898 AUDIT_ANOM_PROMISCUOUS, 7899 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 7900 dev->name, (dev->flags & IFF_PROMISC), 7901 (old_flags & IFF_PROMISC), 7902 from_kuid(&init_user_ns, audit_get_loginuid(current)), 7903 from_kuid(&init_user_ns, uid), 7904 from_kgid(&init_user_ns, gid), 7905 audit_get_sessionid(current)); 7906 } 7907 7908 dev_change_rx_flags(dev, IFF_PROMISC); 7909 } 7910 if (notify) 7911 __dev_notify_flags(dev, old_flags, IFF_PROMISC); 7912 return 0; 7913 } 7914 7915 /** 7916 * dev_set_promiscuity - update promiscuity count on a device 7917 * @dev: device 7918 * @inc: modifier 7919 * 7920 * Add or remove promiscuity from a device. While the count in the device 7921 * remains above zero the interface remains promiscuous. Once it hits zero 7922 * the device reverts back to normal filtering operation. A negative inc 7923 * value is used to drop promiscuity on the device. 7924 * Return 0 if successful or a negative errno code on error. 7925 */ 7926 int dev_set_promiscuity(struct net_device *dev, int inc) 7927 { 7928 unsigned int old_flags = dev->flags; 7929 int err; 7930 7931 err = __dev_set_promiscuity(dev, inc, true); 7932 if (err < 0) 7933 return err; 7934 if (dev->flags != old_flags) 7935 dev_set_rx_mode(dev); 7936 return err; 7937 } 7938 EXPORT_SYMBOL(dev_set_promiscuity); 7939 7940 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 7941 { 7942 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 7943 7944 ASSERT_RTNL(); 7945 7946 dev->flags |= IFF_ALLMULTI; 7947 dev->allmulti += inc; 7948 if (dev->allmulti == 0) { 7949 /* 7950 * Avoid overflow. 7951 * If inc causes overflow, untouch allmulti and return error. 7952 */ 7953 if (inc < 0) 7954 dev->flags &= ~IFF_ALLMULTI; 7955 else { 7956 dev->allmulti -= inc; 7957 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 7958 dev->name); 7959 return -EOVERFLOW; 7960 } 7961 } 7962 if (dev->flags ^ old_flags) { 7963 dev_change_rx_flags(dev, IFF_ALLMULTI); 7964 dev_set_rx_mode(dev); 7965 if (notify) 7966 __dev_notify_flags(dev, old_flags, 7967 dev->gflags ^ old_gflags); 7968 } 7969 return 0; 7970 } 7971 7972 /** 7973 * dev_set_allmulti - update allmulti count on a device 7974 * @dev: device 7975 * @inc: modifier 7976 * 7977 * Add or remove reception of all multicast frames to a device. While the 7978 * count in the device remains above zero the interface remains listening 7979 * to all interfaces. Once it hits zero the device reverts back to normal 7980 * filtering operation. A negative @inc value is used to drop the counter 7981 * when releasing a resource needing all multicasts. 7982 * Return 0 if successful or a negative errno code on error. 7983 */ 7984 7985 int dev_set_allmulti(struct net_device *dev, int inc) 7986 { 7987 return __dev_set_allmulti(dev, inc, true); 7988 } 7989 EXPORT_SYMBOL(dev_set_allmulti); 7990 7991 /* 7992 * Upload unicast and multicast address lists to device and 7993 * configure RX filtering. When the device doesn't support unicast 7994 * filtering it is put in promiscuous mode while unicast addresses 7995 * are present. 7996 */ 7997 void __dev_set_rx_mode(struct net_device *dev) 7998 { 7999 const struct net_device_ops *ops = dev->netdev_ops; 8000 8001 /* dev_open will call this function so the list will stay sane. */ 8002 if (!(dev->flags&IFF_UP)) 8003 return; 8004 8005 if (!netif_device_present(dev)) 8006 return; 8007 8008 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 8009 /* Unicast addresses changes may only happen under the rtnl, 8010 * therefore calling __dev_set_promiscuity here is safe. 8011 */ 8012 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 8013 __dev_set_promiscuity(dev, 1, false); 8014 dev->uc_promisc = true; 8015 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 8016 __dev_set_promiscuity(dev, -1, false); 8017 dev->uc_promisc = false; 8018 } 8019 } 8020 8021 if (ops->ndo_set_rx_mode) 8022 ops->ndo_set_rx_mode(dev); 8023 } 8024 8025 void dev_set_rx_mode(struct net_device *dev) 8026 { 8027 netif_addr_lock_bh(dev); 8028 __dev_set_rx_mode(dev); 8029 netif_addr_unlock_bh(dev); 8030 } 8031 8032 /** 8033 * dev_get_flags - get flags reported to userspace 8034 * @dev: device 8035 * 8036 * Get the combination of flag bits exported through APIs to userspace. 8037 */ 8038 unsigned int dev_get_flags(const struct net_device *dev) 8039 { 8040 unsigned int flags; 8041 8042 flags = (dev->flags & ~(IFF_PROMISC | 8043 IFF_ALLMULTI | 8044 IFF_RUNNING | 8045 IFF_LOWER_UP | 8046 IFF_DORMANT)) | 8047 (dev->gflags & (IFF_PROMISC | 8048 IFF_ALLMULTI)); 8049 8050 if (netif_running(dev)) { 8051 if (netif_oper_up(dev)) 8052 flags |= IFF_RUNNING; 8053 if (netif_carrier_ok(dev)) 8054 flags |= IFF_LOWER_UP; 8055 if (netif_dormant(dev)) 8056 flags |= IFF_DORMANT; 8057 } 8058 8059 return flags; 8060 } 8061 EXPORT_SYMBOL(dev_get_flags); 8062 8063 int __dev_change_flags(struct net_device *dev, unsigned int flags, 8064 struct netlink_ext_ack *extack) 8065 { 8066 unsigned int old_flags = dev->flags; 8067 int ret; 8068 8069 ASSERT_RTNL(); 8070 8071 /* 8072 * Set the flags on our device. 8073 */ 8074 8075 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 8076 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 8077 IFF_AUTOMEDIA)) | 8078 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 8079 IFF_ALLMULTI)); 8080 8081 /* 8082 * Load in the correct multicast list now the flags have changed. 8083 */ 8084 8085 if ((old_flags ^ flags) & IFF_MULTICAST) 8086 dev_change_rx_flags(dev, IFF_MULTICAST); 8087 8088 dev_set_rx_mode(dev); 8089 8090 /* 8091 * Have we downed the interface. We handle IFF_UP ourselves 8092 * according to user attempts to set it, rather than blindly 8093 * setting it. 8094 */ 8095 8096 ret = 0; 8097 if ((old_flags ^ flags) & IFF_UP) { 8098 if (old_flags & IFF_UP) 8099 __dev_close(dev); 8100 else 8101 ret = __dev_open(dev, extack); 8102 } 8103 8104 if ((flags ^ dev->gflags) & IFF_PROMISC) { 8105 int inc = (flags & IFF_PROMISC) ? 1 : -1; 8106 unsigned int old_flags = dev->flags; 8107 8108 dev->gflags ^= IFF_PROMISC; 8109 8110 if (__dev_set_promiscuity(dev, inc, false) >= 0) 8111 if (dev->flags != old_flags) 8112 dev_set_rx_mode(dev); 8113 } 8114 8115 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 8116 * is important. Some (broken) drivers set IFF_PROMISC, when 8117 * IFF_ALLMULTI is requested not asking us and not reporting. 8118 */ 8119 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 8120 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 8121 8122 dev->gflags ^= IFF_ALLMULTI; 8123 __dev_set_allmulti(dev, inc, false); 8124 } 8125 8126 return ret; 8127 } 8128 8129 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 8130 unsigned int gchanges) 8131 { 8132 unsigned int changes = dev->flags ^ old_flags; 8133 8134 if (gchanges) 8135 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC); 8136 8137 if (changes & IFF_UP) { 8138 if (dev->flags & IFF_UP) 8139 call_netdevice_notifiers(NETDEV_UP, dev); 8140 else 8141 call_netdevice_notifiers(NETDEV_DOWN, dev); 8142 } 8143 8144 if (dev->flags & IFF_UP && 8145 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 8146 struct netdev_notifier_change_info change_info = { 8147 .info = { 8148 .dev = dev, 8149 }, 8150 .flags_changed = changes, 8151 }; 8152 8153 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info); 8154 } 8155 } 8156 8157 /** 8158 * dev_change_flags - change device settings 8159 * @dev: device 8160 * @flags: device state flags 8161 * @extack: netlink extended ack 8162 * 8163 * Change settings on device based state flags. The flags are 8164 * in the userspace exported format. 8165 */ 8166 int dev_change_flags(struct net_device *dev, unsigned int flags, 8167 struct netlink_ext_ack *extack) 8168 { 8169 int ret; 8170 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 8171 8172 ret = __dev_change_flags(dev, flags, extack); 8173 if (ret < 0) 8174 return ret; 8175 8176 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 8177 __dev_notify_flags(dev, old_flags, changes); 8178 return ret; 8179 } 8180 EXPORT_SYMBOL(dev_change_flags); 8181 8182 int __dev_set_mtu(struct net_device *dev, int new_mtu) 8183 { 8184 const struct net_device_ops *ops = dev->netdev_ops; 8185 8186 if (ops->ndo_change_mtu) 8187 return ops->ndo_change_mtu(dev, new_mtu); 8188 8189 /* Pairs with all the lockless reads of dev->mtu in the stack */ 8190 WRITE_ONCE(dev->mtu, new_mtu); 8191 return 0; 8192 } 8193 EXPORT_SYMBOL(__dev_set_mtu); 8194 8195 /** 8196 * dev_set_mtu_ext - Change maximum transfer unit 8197 * @dev: device 8198 * @new_mtu: new transfer unit 8199 * @extack: netlink extended ack 8200 * 8201 * Change the maximum transfer size of the network device. 8202 */ 8203 int dev_set_mtu_ext(struct net_device *dev, int new_mtu, 8204 struct netlink_ext_ack *extack) 8205 { 8206 int err, orig_mtu; 8207 8208 if (new_mtu == dev->mtu) 8209 return 0; 8210 8211 /* MTU must be positive, and in range */ 8212 if (new_mtu < 0 || new_mtu < dev->min_mtu) { 8213 NL_SET_ERR_MSG(extack, "mtu less than device minimum"); 8214 return -EINVAL; 8215 } 8216 8217 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) { 8218 NL_SET_ERR_MSG(extack, "mtu greater than device maximum"); 8219 return -EINVAL; 8220 } 8221 8222 if (!netif_device_present(dev)) 8223 return -ENODEV; 8224 8225 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 8226 err = notifier_to_errno(err); 8227 if (err) 8228 return err; 8229 8230 orig_mtu = dev->mtu; 8231 err = __dev_set_mtu(dev, new_mtu); 8232 8233 if (!err) { 8234 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 8235 orig_mtu); 8236 err = notifier_to_errno(err); 8237 if (err) { 8238 /* setting mtu back and notifying everyone again, 8239 * so that they have a chance to revert changes. 8240 */ 8241 __dev_set_mtu(dev, orig_mtu); 8242 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 8243 new_mtu); 8244 } 8245 } 8246 return err; 8247 } 8248 8249 int dev_set_mtu(struct net_device *dev, int new_mtu) 8250 { 8251 struct netlink_ext_ack extack; 8252 int err; 8253 8254 memset(&extack, 0, sizeof(extack)); 8255 err = dev_set_mtu_ext(dev, new_mtu, &extack); 8256 if (err && extack._msg) 8257 net_err_ratelimited("%s: %s\n", dev->name, extack._msg); 8258 return err; 8259 } 8260 EXPORT_SYMBOL(dev_set_mtu); 8261 8262 /** 8263 * dev_change_tx_queue_len - Change TX queue length of a netdevice 8264 * @dev: device 8265 * @new_len: new tx queue length 8266 */ 8267 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len) 8268 { 8269 unsigned int orig_len = dev->tx_queue_len; 8270 int res; 8271 8272 if (new_len != (unsigned int)new_len) 8273 return -ERANGE; 8274 8275 if (new_len != orig_len) { 8276 dev->tx_queue_len = new_len; 8277 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev); 8278 res = notifier_to_errno(res); 8279 if (res) 8280 goto err_rollback; 8281 res = dev_qdisc_change_tx_queue_len(dev); 8282 if (res) 8283 goto err_rollback; 8284 } 8285 8286 return 0; 8287 8288 err_rollback: 8289 netdev_err(dev, "refused to change device tx_queue_len\n"); 8290 dev->tx_queue_len = orig_len; 8291 return res; 8292 } 8293 8294 /** 8295 * dev_set_group - Change group this device belongs to 8296 * @dev: device 8297 * @new_group: group this device should belong to 8298 */ 8299 void dev_set_group(struct net_device *dev, int new_group) 8300 { 8301 dev->group = new_group; 8302 } 8303 EXPORT_SYMBOL(dev_set_group); 8304 8305 /** 8306 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR. 8307 * @dev: device 8308 * @addr: new address 8309 * @extack: netlink extended ack 8310 */ 8311 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr, 8312 struct netlink_ext_ack *extack) 8313 { 8314 struct netdev_notifier_pre_changeaddr_info info = { 8315 .info.dev = dev, 8316 .info.extack = extack, 8317 .dev_addr = addr, 8318 }; 8319 int rc; 8320 8321 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info); 8322 return notifier_to_errno(rc); 8323 } 8324 EXPORT_SYMBOL(dev_pre_changeaddr_notify); 8325 8326 /** 8327 * dev_set_mac_address - Change Media Access Control Address 8328 * @dev: device 8329 * @sa: new address 8330 * @extack: netlink extended ack 8331 * 8332 * Change the hardware (MAC) address of the device 8333 */ 8334 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa, 8335 struct netlink_ext_ack *extack) 8336 { 8337 const struct net_device_ops *ops = dev->netdev_ops; 8338 int err; 8339 8340 if (!ops->ndo_set_mac_address) 8341 return -EOPNOTSUPP; 8342 if (sa->sa_family != dev->type) 8343 return -EINVAL; 8344 if (!netif_device_present(dev)) 8345 return -ENODEV; 8346 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack); 8347 if (err) 8348 return err; 8349 err = ops->ndo_set_mac_address(dev, sa); 8350 if (err) 8351 return err; 8352 dev->addr_assign_type = NET_ADDR_SET; 8353 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 8354 add_device_randomness(dev->dev_addr, dev->addr_len); 8355 return 0; 8356 } 8357 EXPORT_SYMBOL(dev_set_mac_address); 8358 8359 /** 8360 * dev_change_carrier - Change device carrier 8361 * @dev: device 8362 * @new_carrier: new value 8363 * 8364 * Change device carrier 8365 */ 8366 int dev_change_carrier(struct net_device *dev, bool new_carrier) 8367 { 8368 const struct net_device_ops *ops = dev->netdev_ops; 8369 8370 if (!ops->ndo_change_carrier) 8371 return -EOPNOTSUPP; 8372 if (!netif_device_present(dev)) 8373 return -ENODEV; 8374 return ops->ndo_change_carrier(dev, new_carrier); 8375 } 8376 EXPORT_SYMBOL(dev_change_carrier); 8377 8378 /** 8379 * dev_get_phys_port_id - Get device physical port ID 8380 * @dev: device 8381 * @ppid: port ID 8382 * 8383 * Get device physical port ID 8384 */ 8385 int dev_get_phys_port_id(struct net_device *dev, 8386 struct netdev_phys_item_id *ppid) 8387 { 8388 const struct net_device_ops *ops = dev->netdev_ops; 8389 8390 if (!ops->ndo_get_phys_port_id) 8391 return -EOPNOTSUPP; 8392 return ops->ndo_get_phys_port_id(dev, ppid); 8393 } 8394 EXPORT_SYMBOL(dev_get_phys_port_id); 8395 8396 /** 8397 * dev_get_phys_port_name - Get device physical port name 8398 * @dev: device 8399 * @name: port name 8400 * @len: limit of bytes to copy to name 8401 * 8402 * Get device physical port name 8403 */ 8404 int dev_get_phys_port_name(struct net_device *dev, 8405 char *name, size_t len) 8406 { 8407 const struct net_device_ops *ops = dev->netdev_ops; 8408 int err; 8409 8410 if (ops->ndo_get_phys_port_name) { 8411 err = ops->ndo_get_phys_port_name(dev, name, len); 8412 if (err != -EOPNOTSUPP) 8413 return err; 8414 } 8415 return devlink_compat_phys_port_name_get(dev, name, len); 8416 } 8417 EXPORT_SYMBOL(dev_get_phys_port_name); 8418 8419 /** 8420 * dev_get_port_parent_id - Get the device's port parent identifier 8421 * @dev: network device 8422 * @ppid: pointer to a storage for the port's parent identifier 8423 * @recurse: allow/disallow recursion to lower devices 8424 * 8425 * Get the devices's port parent identifier 8426 */ 8427 int dev_get_port_parent_id(struct net_device *dev, 8428 struct netdev_phys_item_id *ppid, 8429 bool recurse) 8430 { 8431 const struct net_device_ops *ops = dev->netdev_ops; 8432 struct netdev_phys_item_id first = { }; 8433 struct net_device *lower_dev; 8434 struct list_head *iter; 8435 int err; 8436 8437 if (ops->ndo_get_port_parent_id) { 8438 err = ops->ndo_get_port_parent_id(dev, ppid); 8439 if (err != -EOPNOTSUPP) 8440 return err; 8441 } 8442 8443 err = devlink_compat_switch_id_get(dev, ppid); 8444 if (!err || err != -EOPNOTSUPP) 8445 return err; 8446 8447 if (!recurse) 8448 return -EOPNOTSUPP; 8449 8450 netdev_for_each_lower_dev(dev, lower_dev, iter) { 8451 err = dev_get_port_parent_id(lower_dev, ppid, recurse); 8452 if (err) 8453 break; 8454 if (!first.id_len) 8455 first = *ppid; 8456 else if (memcmp(&first, ppid, sizeof(*ppid))) 8457 return -ENODATA; 8458 } 8459 8460 return err; 8461 } 8462 EXPORT_SYMBOL(dev_get_port_parent_id); 8463 8464 /** 8465 * netdev_port_same_parent_id - Indicate if two network devices have 8466 * the same port parent identifier 8467 * @a: first network device 8468 * @b: second network device 8469 */ 8470 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b) 8471 { 8472 struct netdev_phys_item_id a_id = { }; 8473 struct netdev_phys_item_id b_id = { }; 8474 8475 if (dev_get_port_parent_id(a, &a_id, true) || 8476 dev_get_port_parent_id(b, &b_id, true)) 8477 return false; 8478 8479 return netdev_phys_item_id_same(&a_id, &b_id); 8480 } 8481 EXPORT_SYMBOL(netdev_port_same_parent_id); 8482 8483 /** 8484 * dev_change_proto_down - update protocol port state information 8485 * @dev: device 8486 * @proto_down: new value 8487 * 8488 * This info can be used by switch drivers to set the phys state of the 8489 * port. 8490 */ 8491 int dev_change_proto_down(struct net_device *dev, bool proto_down) 8492 { 8493 const struct net_device_ops *ops = dev->netdev_ops; 8494 8495 if (!ops->ndo_change_proto_down) 8496 return -EOPNOTSUPP; 8497 if (!netif_device_present(dev)) 8498 return -ENODEV; 8499 return ops->ndo_change_proto_down(dev, proto_down); 8500 } 8501 EXPORT_SYMBOL(dev_change_proto_down); 8502 8503 /** 8504 * dev_change_proto_down_generic - generic implementation for 8505 * ndo_change_proto_down that sets carrier according to 8506 * proto_down. 8507 * 8508 * @dev: device 8509 * @proto_down: new value 8510 */ 8511 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down) 8512 { 8513 if (proto_down) 8514 netif_carrier_off(dev); 8515 else 8516 netif_carrier_on(dev); 8517 dev->proto_down = proto_down; 8518 return 0; 8519 } 8520 EXPORT_SYMBOL(dev_change_proto_down_generic); 8521 8522 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op, 8523 enum bpf_netdev_command cmd) 8524 { 8525 struct netdev_bpf xdp; 8526 8527 if (!bpf_op) 8528 return 0; 8529 8530 memset(&xdp, 0, sizeof(xdp)); 8531 xdp.command = cmd; 8532 8533 /* Query must always succeed. */ 8534 WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG); 8535 8536 return xdp.prog_id; 8537 } 8538 8539 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op, 8540 struct netlink_ext_ack *extack, u32 flags, 8541 struct bpf_prog *prog) 8542 { 8543 bool non_hw = !(flags & XDP_FLAGS_HW_MODE); 8544 struct bpf_prog *prev_prog = NULL; 8545 struct netdev_bpf xdp; 8546 int err; 8547 8548 if (non_hw) { 8549 prev_prog = bpf_prog_by_id(__dev_xdp_query(dev, bpf_op, 8550 XDP_QUERY_PROG)); 8551 if (IS_ERR(prev_prog)) 8552 prev_prog = NULL; 8553 } 8554 8555 memset(&xdp, 0, sizeof(xdp)); 8556 if (flags & XDP_FLAGS_HW_MODE) 8557 xdp.command = XDP_SETUP_PROG_HW; 8558 else 8559 xdp.command = XDP_SETUP_PROG; 8560 xdp.extack = extack; 8561 xdp.flags = flags; 8562 xdp.prog = prog; 8563 8564 err = bpf_op(dev, &xdp); 8565 if (!err && non_hw) 8566 bpf_prog_change_xdp(prev_prog, prog); 8567 8568 if (prev_prog) 8569 bpf_prog_put(prev_prog); 8570 8571 return err; 8572 } 8573 8574 static void dev_xdp_uninstall(struct net_device *dev) 8575 { 8576 struct netdev_bpf xdp; 8577 bpf_op_t ndo_bpf; 8578 8579 /* Remove generic XDP */ 8580 WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL)); 8581 8582 /* Remove from the driver */ 8583 ndo_bpf = dev->netdev_ops->ndo_bpf; 8584 if (!ndo_bpf) 8585 return; 8586 8587 memset(&xdp, 0, sizeof(xdp)); 8588 xdp.command = XDP_QUERY_PROG; 8589 WARN_ON(ndo_bpf(dev, &xdp)); 8590 if (xdp.prog_id) 8591 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags, 8592 NULL)); 8593 8594 /* Remove HW offload */ 8595 memset(&xdp, 0, sizeof(xdp)); 8596 xdp.command = XDP_QUERY_PROG_HW; 8597 if (!ndo_bpf(dev, &xdp) && xdp.prog_id) 8598 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags, 8599 NULL)); 8600 } 8601 8602 /** 8603 * dev_change_xdp_fd - set or clear a bpf program for a device rx path 8604 * @dev: device 8605 * @extack: netlink extended ack 8606 * @fd: new program fd or negative value to clear 8607 * @flags: xdp-related flags 8608 * 8609 * Set or clear a bpf program for a device 8610 */ 8611 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 8612 int fd, u32 flags) 8613 { 8614 const struct net_device_ops *ops = dev->netdev_ops; 8615 enum bpf_netdev_command query; 8616 struct bpf_prog *prog = NULL; 8617 bpf_op_t bpf_op, bpf_chk; 8618 bool offload; 8619 int err; 8620 8621 ASSERT_RTNL(); 8622 8623 offload = flags & XDP_FLAGS_HW_MODE; 8624 query = offload ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG; 8625 8626 bpf_op = bpf_chk = ops->ndo_bpf; 8627 if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) { 8628 NL_SET_ERR_MSG(extack, "underlying driver does not support XDP in native mode"); 8629 return -EOPNOTSUPP; 8630 } 8631 if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE)) 8632 bpf_op = generic_xdp_install; 8633 if (bpf_op == bpf_chk) 8634 bpf_chk = generic_xdp_install; 8635 8636 if (fd >= 0) { 8637 u32 prog_id; 8638 8639 if (!offload && __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG)) { 8640 NL_SET_ERR_MSG(extack, "native and generic XDP can't be active at the same time"); 8641 return -EEXIST; 8642 } 8643 8644 prog_id = __dev_xdp_query(dev, bpf_op, query); 8645 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && prog_id) { 8646 NL_SET_ERR_MSG(extack, "XDP program already attached"); 8647 return -EBUSY; 8648 } 8649 8650 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP, 8651 bpf_op == ops->ndo_bpf); 8652 if (IS_ERR(prog)) 8653 return PTR_ERR(prog); 8654 8655 if (!offload && bpf_prog_is_dev_bound(prog->aux)) { 8656 NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported"); 8657 bpf_prog_put(prog); 8658 return -EINVAL; 8659 } 8660 8661 /* prog->aux->id may be 0 for orphaned device-bound progs */ 8662 if (prog->aux->id && prog->aux->id == prog_id) { 8663 bpf_prog_put(prog); 8664 return 0; 8665 } 8666 } else { 8667 if (!__dev_xdp_query(dev, bpf_op, query)) 8668 return 0; 8669 } 8670 8671 err = dev_xdp_install(dev, bpf_op, extack, flags, prog); 8672 if (err < 0 && prog) 8673 bpf_prog_put(prog); 8674 8675 return err; 8676 } 8677 8678 /** 8679 * dev_new_index - allocate an ifindex 8680 * @net: the applicable net namespace 8681 * 8682 * Returns a suitable unique value for a new device interface 8683 * number. The caller must hold the rtnl semaphore or the 8684 * dev_base_lock to be sure it remains unique. 8685 */ 8686 static int dev_new_index(struct net *net) 8687 { 8688 int ifindex = net->ifindex; 8689 8690 for (;;) { 8691 if (++ifindex <= 0) 8692 ifindex = 1; 8693 if (!__dev_get_by_index(net, ifindex)) 8694 return net->ifindex = ifindex; 8695 } 8696 } 8697 8698 /* Delayed registration/unregisteration */ 8699 static LIST_HEAD(net_todo_list); 8700 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 8701 8702 static void net_set_todo(struct net_device *dev) 8703 { 8704 list_add_tail(&dev->todo_list, &net_todo_list); 8705 dev_net(dev)->dev_unreg_count++; 8706 } 8707 8708 static void rollback_registered_many(struct list_head *head) 8709 { 8710 struct net_device *dev, *tmp; 8711 LIST_HEAD(close_head); 8712 8713 BUG_ON(dev_boot_phase); 8714 ASSERT_RTNL(); 8715 8716 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 8717 /* Some devices call without registering 8718 * for initialization unwind. Remove those 8719 * devices and proceed with the remaining. 8720 */ 8721 if (dev->reg_state == NETREG_UNINITIALIZED) { 8722 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 8723 dev->name, dev); 8724 8725 WARN_ON(1); 8726 list_del(&dev->unreg_list); 8727 continue; 8728 } 8729 dev->dismantle = true; 8730 BUG_ON(dev->reg_state != NETREG_REGISTERED); 8731 } 8732 8733 /* If device is running, close it first. */ 8734 list_for_each_entry(dev, head, unreg_list) 8735 list_add_tail(&dev->close_list, &close_head); 8736 dev_close_many(&close_head, true); 8737 8738 list_for_each_entry(dev, head, unreg_list) { 8739 /* And unlink it from device chain. */ 8740 unlist_netdevice(dev); 8741 8742 dev->reg_state = NETREG_UNREGISTERING; 8743 } 8744 flush_all_backlogs(); 8745 8746 synchronize_net(); 8747 8748 list_for_each_entry(dev, head, unreg_list) { 8749 struct sk_buff *skb = NULL; 8750 8751 /* Shutdown queueing discipline. */ 8752 dev_shutdown(dev); 8753 8754 dev_xdp_uninstall(dev); 8755 8756 /* Notify protocols, that we are about to destroy 8757 * this device. They should clean all the things. 8758 */ 8759 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 8760 8761 if (!dev->rtnl_link_ops || 8762 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 8763 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0, 8764 GFP_KERNEL, NULL, 0); 8765 8766 /* 8767 * Flush the unicast and multicast chains 8768 */ 8769 dev_uc_flush(dev); 8770 dev_mc_flush(dev); 8771 8772 netdev_name_node_alt_flush(dev); 8773 netdev_name_node_free(dev->name_node); 8774 8775 if (dev->netdev_ops->ndo_uninit) 8776 dev->netdev_ops->ndo_uninit(dev); 8777 8778 if (skb) 8779 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL); 8780 8781 /* Notifier chain MUST detach us all upper devices. */ 8782 WARN_ON(netdev_has_any_upper_dev(dev)); 8783 WARN_ON(netdev_has_any_lower_dev(dev)); 8784 8785 /* Remove entries from kobject tree */ 8786 netdev_unregister_kobject(dev); 8787 #ifdef CONFIG_XPS 8788 /* Remove XPS queueing entries */ 8789 netif_reset_xps_queues_gt(dev, 0); 8790 #endif 8791 } 8792 8793 synchronize_net(); 8794 8795 list_for_each_entry(dev, head, unreg_list) 8796 dev_put(dev); 8797 } 8798 8799 static void rollback_registered(struct net_device *dev) 8800 { 8801 LIST_HEAD(single); 8802 8803 list_add(&dev->unreg_list, &single); 8804 rollback_registered_many(&single); 8805 list_del(&single); 8806 } 8807 8808 static netdev_features_t netdev_sync_upper_features(struct net_device *lower, 8809 struct net_device *upper, netdev_features_t features) 8810 { 8811 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 8812 netdev_features_t feature; 8813 int feature_bit; 8814 8815 for_each_netdev_feature(upper_disables, feature_bit) { 8816 feature = __NETIF_F_BIT(feature_bit); 8817 if (!(upper->wanted_features & feature) 8818 && (features & feature)) { 8819 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n", 8820 &feature, upper->name); 8821 features &= ~feature; 8822 } 8823 } 8824 8825 return features; 8826 } 8827 8828 static void netdev_sync_lower_features(struct net_device *upper, 8829 struct net_device *lower, netdev_features_t features) 8830 { 8831 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 8832 netdev_features_t feature; 8833 int feature_bit; 8834 8835 for_each_netdev_feature(upper_disables, feature_bit) { 8836 feature = __NETIF_F_BIT(feature_bit); 8837 if (!(features & feature) && (lower->features & feature)) { 8838 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n", 8839 &feature, lower->name); 8840 lower->wanted_features &= ~feature; 8841 netdev_update_features(lower); 8842 8843 if (unlikely(lower->features & feature)) 8844 netdev_WARN(upper, "failed to disable %pNF on %s!\n", 8845 &feature, lower->name); 8846 } 8847 } 8848 } 8849 8850 static netdev_features_t netdev_fix_features(struct net_device *dev, 8851 netdev_features_t features) 8852 { 8853 /* Fix illegal checksum combinations */ 8854 if ((features & NETIF_F_HW_CSUM) && 8855 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 8856 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 8857 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 8858 } 8859 8860 /* TSO requires that SG is present as well. */ 8861 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 8862 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 8863 features &= ~NETIF_F_ALL_TSO; 8864 } 8865 8866 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 8867 !(features & NETIF_F_IP_CSUM)) { 8868 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 8869 features &= ~NETIF_F_TSO; 8870 features &= ~NETIF_F_TSO_ECN; 8871 } 8872 8873 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 8874 !(features & NETIF_F_IPV6_CSUM)) { 8875 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 8876 features &= ~NETIF_F_TSO6; 8877 } 8878 8879 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */ 8880 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO)) 8881 features &= ~NETIF_F_TSO_MANGLEID; 8882 8883 /* TSO ECN requires that TSO is present as well. */ 8884 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 8885 features &= ~NETIF_F_TSO_ECN; 8886 8887 /* Software GSO depends on SG. */ 8888 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 8889 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 8890 features &= ~NETIF_F_GSO; 8891 } 8892 8893 /* GSO partial features require GSO partial be set */ 8894 if ((features & dev->gso_partial_features) && 8895 !(features & NETIF_F_GSO_PARTIAL)) { 8896 netdev_dbg(dev, 8897 "Dropping partially supported GSO features since no GSO partial.\n"); 8898 features &= ~dev->gso_partial_features; 8899 } 8900 8901 if (!(features & NETIF_F_RXCSUM)) { 8902 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet 8903 * successfully merged by hardware must also have the 8904 * checksum verified by hardware. If the user does not 8905 * want to enable RXCSUM, logically, we should disable GRO_HW. 8906 */ 8907 if (features & NETIF_F_GRO_HW) { 8908 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n"); 8909 features &= ~NETIF_F_GRO_HW; 8910 } 8911 } 8912 8913 /* LRO/HW-GRO features cannot be combined with RX-FCS */ 8914 if (features & NETIF_F_RXFCS) { 8915 if (features & NETIF_F_LRO) { 8916 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n"); 8917 features &= ~NETIF_F_LRO; 8918 } 8919 8920 if (features & NETIF_F_GRO_HW) { 8921 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n"); 8922 features &= ~NETIF_F_GRO_HW; 8923 } 8924 } 8925 8926 return features; 8927 } 8928 8929 int __netdev_update_features(struct net_device *dev) 8930 { 8931 struct net_device *upper, *lower; 8932 netdev_features_t features; 8933 struct list_head *iter; 8934 int err = -1; 8935 8936 ASSERT_RTNL(); 8937 8938 features = netdev_get_wanted_features(dev); 8939 8940 if (dev->netdev_ops->ndo_fix_features) 8941 features = dev->netdev_ops->ndo_fix_features(dev, features); 8942 8943 /* driver might be less strict about feature dependencies */ 8944 features = netdev_fix_features(dev, features); 8945 8946 /* some features can't be enabled if they're off an an upper device */ 8947 netdev_for_each_upper_dev_rcu(dev, upper, iter) 8948 features = netdev_sync_upper_features(dev, upper, features); 8949 8950 if (dev->features == features) 8951 goto sync_lower; 8952 8953 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 8954 &dev->features, &features); 8955 8956 if (dev->netdev_ops->ndo_set_features) 8957 err = dev->netdev_ops->ndo_set_features(dev, features); 8958 else 8959 err = 0; 8960 8961 if (unlikely(err < 0)) { 8962 netdev_err(dev, 8963 "set_features() failed (%d); wanted %pNF, left %pNF\n", 8964 err, &features, &dev->features); 8965 /* return non-0 since some features might have changed and 8966 * it's better to fire a spurious notification than miss it 8967 */ 8968 return -1; 8969 } 8970 8971 sync_lower: 8972 /* some features must be disabled on lower devices when disabled 8973 * on an upper device (think: bonding master or bridge) 8974 */ 8975 netdev_for_each_lower_dev(dev, lower, iter) 8976 netdev_sync_lower_features(dev, lower, features); 8977 8978 if (!err) { 8979 netdev_features_t diff = features ^ dev->features; 8980 8981 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) { 8982 /* udp_tunnel_{get,drop}_rx_info both need 8983 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the 8984 * device, or they won't do anything. 8985 * Thus we need to update dev->features 8986 * *before* calling udp_tunnel_get_rx_info, 8987 * but *after* calling udp_tunnel_drop_rx_info. 8988 */ 8989 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) { 8990 dev->features = features; 8991 udp_tunnel_get_rx_info(dev); 8992 } else { 8993 udp_tunnel_drop_rx_info(dev); 8994 } 8995 } 8996 8997 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) { 8998 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) { 8999 dev->features = features; 9000 err |= vlan_get_rx_ctag_filter_info(dev); 9001 } else { 9002 vlan_drop_rx_ctag_filter_info(dev); 9003 } 9004 } 9005 9006 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) { 9007 if (features & NETIF_F_HW_VLAN_STAG_FILTER) { 9008 dev->features = features; 9009 err |= vlan_get_rx_stag_filter_info(dev); 9010 } else { 9011 vlan_drop_rx_stag_filter_info(dev); 9012 } 9013 } 9014 9015 dev->features = features; 9016 } 9017 9018 return err < 0 ? 0 : 1; 9019 } 9020 9021 /** 9022 * netdev_update_features - recalculate device features 9023 * @dev: the device to check 9024 * 9025 * Recalculate dev->features set and send notifications if it 9026 * has changed. Should be called after driver or hardware dependent 9027 * conditions might have changed that influence the features. 9028 */ 9029 void netdev_update_features(struct net_device *dev) 9030 { 9031 if (__netdev_update_features(dev)) 9032 netdev_features_change(dev); 9033 } 9034 EXPORT_SYMBOL(netdev_update_features); 9035 9036 /** 9037 * netdev_change_features - recalculate device features 9038 * @dev: the device to check 9039 * 9040 * Recalculate dev->features set and send notifications even 9041 * if they have not changed. Should be called instead of 9042 * netdev_update_features() if also dev->vlan_features might 9043 * have changed to allow the changes to be propagated to stacked 9044 * VLAN devices. 9045 */ 9046 void netdev_change_features(struct net_device *dev) 9047 { 9048 __netdev_update_features(dev); 9049 netdev_features_change(dev); 9050 } 9051 EXPORT_SYMBOL(netdev_change_features); 9052 9053 /** 9054 * netif_stacked_transfer_operstate - transfer operstate 9055 * @rootdev: the root or lower level device to transfer state from 9056 * @dev: the device to transfer operstate to 9057 * 9058 * Transfer operational state from root to device. This is normally 9059 * called when a stacking relationship exists between the root 9060 * device and the device(a leaf device). 9061 */ 9062 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 9063 struct net_device *dev) 9064 { 9065 if (rootdev->operstate == IF_OPER_DORMANT) 9066 netif_dormant_on(dev); 9067 else 9068 netif_dormant_off(dev); 9069 9070 if (netif_carrier_ok(rootdev)) 9071 netif_carrier_on(dev); 9072 else 9073 netif_carrier_off(dev); 9074 } 9075 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 9076 9077 static int netif_alloc_rx_queues(struct net_device *dev) 9078 { 9079 unsigned int i, count = dev->num_rx_queues; 9080 struct netdev_rx_queue *rx; 9081 size_t sz = count * sizeof(*rx); 9082 int err = 0; 9083 9084 BUG_ON(count < 1); 9085 9086 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 9087 if (!rx) 9088 return -ENOMEM; 9089 9090 dev->_rx = rx; 9091 9092 for (i = 0; i < count; i++) { 9093 rx[i].dev = dev; 9094 9095 /* XDP RX-queue setup */ 9096 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i); 9097 if (err < 0) 9098 goto err_rxq_info; 9099 } 9100 return 0; 9101 9102 err_rxq_info: 9103 /* Rollback successful reg's and free other resources */ 9104 while (i--) 9105 xdp_rxq_info_unreg(&rx[i].xdp_rxq); 9106 kvfree(dev->_rx); 9107 dev->_rx = NULL; 9108 return err; 9109 } 9110 9111 static void netif_free_rx_queues(struct net_device *dev) 9112 { 9113 unsigned int i, count = dev->num_rx_queues; 9114 9115 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */ 9116 if (!dev->_rx) 9117 return; 9118 9119 for (i = 0; i < count; i++) 9120 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq); 9121 9122 kvfree(dev->_rx); 9123 } 9124 9125 static void netdev_init_one_queue(struct net_device *dev, 9126 struct netdev_queue *queue, void *_unused) 9127 { 9128 /* Initialize queue lock */ 9129 spin_lock_init(&queue->_xmit_lock); 9130 lockdep_set_class(&queue->_xmit_lock, &dev->qdisc_xmit_lock_key); 9131 queue->xmit_lock_owner = -1; 9132 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 9133 queue->dev = dev; 9134 #ifdef CONFIG_BQL 9135 dql_init(&queue->dql, HZ); 9136 #endif 9137 } 9138 9139 static void netif_free_tx_queues(struct net_device *dev) 9140 { 9141 kvfree(dev->_tx); 9142 } 9143 9144 static int netif_alloc_netdev_queues(struct net_device *dev) 9145 { 9146 unsigned int count = dev->num_tx_queues; 9147 struct netdev_queue *tx; 9148 size_t sz = count * sizeof(*tx); 9149 9150 if (count < 1 || count > 0xffff) 9151 return -EINVAL; 9152 9153 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 9154 if (!tx) 9155 return -ENOMEM; 9156 9157 dev->_tx = tx; 9158 9159 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 9160 spin_lock_init(&dev->tx_global_lock); 9161 9162 return 0; 9163 } 9164 9165 void netif_tx_stop_all_queues(struct net_device *dev) 9166 { 9167 unsigned int i; 9168 9169 for (i = 0; i < dev->num_tx_queues; i++) { 9170 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 9171 9172 netif_tx_stop_queue(txq); 9173 } 9174 } 9175 EXPORT_SYMBOL(netif_tx_stop_all_queues); 9176 9177 static void netdev_register_lockdep_key(struct net_device *dev) 9178 { 9179 lockdep_register_key(&dev->qdisc_tx_busylock_key); 9180 lockdep_register_key(&dev->qdisc_running_key); 9181 lockdep_register_key(&dev->qdisc_xmit_lock_key); 9182 lockdep_register_key(&dev->addr_list_lock_key); 9183 } 9184 9185 static void netdev_unregister_lockdep_key(struct net_device *dev) 9186 { 9187 lockdep_unregister_key(&dev->qdisc_tx_busylock_key); 9188 lockdep_unregister_key(&dev->qdisc_running_key); 9189 lockdep_unregister_key(&dev->qdisc_xmit_lock_key); 9190 lockdep_unregister_key(&dev->addr_list_lock_key); 9191 } 9192 9193 void netdev_update_lockdep_key(struct net_device *dev) 9194 { 9195 struct netdev_queue *queue; 9196 int i; 9197 9198 lockdep_unregister_key(&dev->qdisc_xmit_lock_key); 9199 lockdep_unregister_key(&dev->addr_list_lock_key); 9200 9201 lockdep_register_key(&dev->qdisc_xmit_lock_key); 9202 lockdep_register_key(&dev->addr_list_lock_key); 9203 9204 lockdep_set_class(&dev->addr_list_lock, &dev->addr_list_lock_key); 9205 for (i = 0; i < dev->num_tx_queues; i++) { 9206 queue = netdev_get_tx_queue(dev, i); 9207 9208 lockdep_set_class(&queue->_xmit_lock, 9209 &dev->qdisc_xmit_lock_key); 9210 } 9211 } 9212 EXPORT_SYMBOL(netdev_update_lockdep_key); 9213 9214 /** 9215 * register_netdevice - register a network device 9216 * @dev: device to register 9217 * 9218 * Take a completed network device structure and add it to the kernel 9219 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 9220 * chain. 0 is returned on success. A negative errno code is returned 9221 * on a failure to set up the device, or if the name is a duplicate. 9222 * 9223 * Callers must hold the rtnl semaphore. You may want 9224 * register_netdev() instead of this. 9225 * 9226 * BUGS: 9227 * The locking appears insufficient to guarantee two parallel registers 9228 * will not get the same name. 9229 */ 9230 9231 int register_netdevice(struct net_device *dev) 9232 { 9233 int ret; 9234 struct net *net = dev_net(dev); 9235 9236 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE < 9237 NETDEV_FEATURE_COUNT); 9238 BUG_ON(dev_boot_phase); 9239 ASSERT_RTNL(); 9240 9241 might_sleep(); 9242 9243 /* When net_device's are persistent, this will be fatal. */ 9244 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 9245 BUG_ON(!net); 9246 9247 spin_lock_init(&dev->addr_list_lock); 9248 lockdep_set_class(&dev->addr_list_lock, &dev->addr_list_lock_key); 9249 9250 ret = dev_get_valid_name(net, dev, dev->name); 9251 if (ret < 0) 9252 goto out; 9253 9254 ret = -ENOMEM; 9255 dev->name_node = netdev_name_node_head_alloc(dev); 9256 if (!dev->name_node) 9257 goto out; 9258 9259 /* Init, if this function is available */ 9260 if (dev->netdev_ops->ndo_init) { 9261 ret = dev->netdev_ops->ndo_init(dev); 9262 if (ret) { 9263 if (ret > 0) 9264 ret = -EIO; 9265 goto err_free_name; 9266 } 9267 } 9268 9269 if (((dev->hw_features | dev->features) & 9270 NETIF_F_HW_VLAN_CTAG_FILTER) && 9271 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 9272 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 9273 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 9274 ret = -EINVAL; 9275 goto err_uninit; 9276 } 9277 9278 ret = -EBUSY; 9279 if (!dev->ifindex) 9280 dev->ifindex = dev_new_index(net); 9281 else if (__dev_get_by_index(net, dev->ifindex)) 9282 goto err_uninit; 9283 9284 /* Transfer changeable features to wanted_features and enable 9285 * software offloads (GSO and GRO). 9286 */ 9287 dev->hw_features |= NETIF_F_SOFT_FEATURES; 9288 dev->features |= NETIF_F_SOFT_FEATURES; 9289 9290 if (dev->netdev_ops->ndo_udp_tunnel_add) { 9291 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT; 9292 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT; 9293 } 9294 9295 dev->wanted_features = dev->features & dev->hw_features; 9296 9297 if (!(dev->flags & IFF_LOOPBACK)) 9298 dev->hw_features |= NETIF_F_NOCACHE_COPY; 9299 9300 /* If IPv4 TCP segmentation offload is supported we should also 9301 * allow the device to enable segmenting the frame with the option 9302 * of ignoring a static IP ID value. This doesn't enable the 9303 * feature itself but allows the user to enable it later. 9304 */ 9305 if (dev->hw_features & NETIF_F_TSO) 9306 dev->hw_features |= NETIF_F_TSO_MANGLEID; 9307 if (dev->vlan_features & NETIF_F_TSO) 9308 dev->vlan_features |= NETIF_F_TSO_MANGLEID; 9309 if (dev->mpls_features & NETIF_F_TSO) 9310 dev->mpls_features |= NETIF_F_TSO_MANGLEID; 9311 if (dev->hw_enc_features & NETIF_F_TSO) 9312 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 9313 9314 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 9315 */ 9316 dev->vlan_features |= NETIF_F_HIGHDMA; 9317 9318 /* Make NETIF_F_SG inheritable to tunnel devices. 9319 */ 9320 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL; 9321 9322 /* Make NETIF_F_SG inheritable to MPLS. 9323 */ 9324 dev->mpls_features |= NETIF_F_SG; 9325 9326 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 9327 ret = notifier_to_errno(ret); 9328 if (ret) 9329 goto err_uninit; 9330 9331 ret = netdev_register_kobject(dev); 9332 if (ret) 9333 goto err_uninit; 9334 dev->reg_state = NETREG_REGISTERED; 9335 9336 __netdev_update_features(dev); 9337 9338 /* 9339 * Default initial state at registry is that the 9340 * device is present. 9341 */ 9342 9343 set_bit(__LINK_STATE_PRESENT, &dev->state); 9344 9345 linkwatch_init_dev(dev); 9346 9347 dev_init_scheduler(dev); 9348 dev_hold(dev); 9349 list_netdevice(dev); 9350 add_device_randomness(dev->dev_addr, dev->addr_len); 9351 9352 /* If the device has permanent device address, driver should 9353 * set dev_addr and also addr_assign_type should be set to 9354 * NET_ADDR_PERM (default value). 9355 */ 9356 if (dev->addr_assign_type == NET_ADDR_PERM) 9357 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 9358 9359 /* Notify protocols, that a new device appeared. */ 9360 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 9361 ret = notifier_to_errno(ret); 9362 if (ret) { 9363 rollback_registered(dev); 9364 rcu_barrier(); 9365 9366 dev->reg_state = NETREG_UNREGISTERED; 9367 } 9368 /* 9369 * Prevent userspace races by waiting until the network 9370 * device is fully setup before sending notifications. 9371 */ 9372 if (!dev->rtnl_link_ops || 9373 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 9374 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 9375 9376 out: 9377 return ret; 9378 9379 err_uninit: 9380 if (dev->netdev_ops->ndo_uninit) 9381 dev->netdev_ops->ndo_uninit(dev); 9382 if (dev->priv_destructor) 9383 dev->priv_destructor(dev); 9384 err_free_name: 9385 netdev_name_node_free(dev->name_node); 9386 goto out; 9387 } 9388 EXPORT_SYMBOL(register_netdevice); 9389 9390 /** 9391 * init_dummy_netdev - init a dummy network device for NAPI 9392 * @dev: device to init 9393 * 9394 * This takes a network device structure and initialize the minimum 9395 * amount of fields so it can be used to schedule NAPI polls without 9396 * registering a full blown interface. This is to be used by drivers 9397 * that need to tie several hardware interfaces to a single NAPI 9398 * poll scheduler due to HW limitations. 9399 */ 9400 int init_dummy_netdev(struct net_device *dev) 9401 { 9402 /* Clear everything. Note we don't initialize spinlocks 9403 * are they aren't supposed to be taken by any of the 9404 * NAPI code and this dummy netdev is supposed to be 9405 * only ever used for NAPI polls 9406 */ 9407 memset(dev, 0, sizeof(struct net_device)); 9408 9409 /* make sure we BUG if trying to hit standard 9410 * register/unregister code path 9411 */ 9412 dev->reg_state = NETREG_DUMMY; 9413 9414 /* NAPI wants this */ 9415 INIT_LIST_HEAD(&dev->napi_list); 9416 9417 /* a dummy interface is started by default */ 9418 set_bit(__LINK_STATE_PRESENT, &dev->state); 9419 set_bit(__LINK_STATE_START, &dev->state); 9420 9421 /* napi_busy_loop stats accounting wants this */ 9422 dev_net_set(dev, &init_net); 9423 9424 /* Note : We dont allocate pcpu_refcnt for dummy devices, 9425 * because users of this 'device' dont need to change 9426 * its refcount. 9427 */ 9428 9429 return 0; 9430 } 9431 EXPORT_SYMBOL_GPL(init_dummy_netdev); 9432 9433 9434 /** 9435 * register_netdev - register a network device 9436 * @dev: device to register 9437 * 9438 * Take a completed network device structure and add it to the kernel 9439 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 9440 * chain. 0 is returned on success. A negative errno code is returned 9441 * on a failure to set up the device, or if the name is a duplicate. 9442 * 9443 * This is a wrapper around register_netdevice that takes the rtnl semaphore 9444 * and expands the device name if you passed a format string to 9445 * alloc_netdev. 9446 */ 9447 int register_netdev(struct net_device *dev) 9448 { 9449 int err; 9450 9451 if (rtnl_lock_killable()) 9452 return -EINTR; 9453 err = register_netdevice(dev); 9454 rtnl_unlock(); 9455 return err; 9456 } 9457 EXPORT_SYMBOL(register_netdev); 9458 9459 int netdev_refcnt_read(const struct net_device *dev) 9460 { 9461 int i, refcnt = 0; 9462 9463 for_each_possible_cpu(i) 9464 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 9465 return refcnt; 9466 } 9467 EXPORT_SYMBOL(netdev_refcnt_read); 9468 9469 /** 9470 * netdev_wait_allrefs - wait until all references are gone. 9471 * @dev: target net_device 9472 * 9473 * This is called when unregistering network devices. 9474 * 9475 * Any protocol or device that holds a reference should register 9476 * for netdevice notification, and cleanup and put back the 9477 * reference if they receive an UNREGISTER event. 9478 * We can get stuck here if buggy protocols don't correctly 9479 * call dev_put. 9480 */ 9481 static void netdev_wait_allrefs(struct net_device *dev) 9482 { 9483 unsigned long rebroadcast_time, warning_time; 9484 int refcnt; 9485 9486 linkwatch_forget_dev(dev); 9487 9488 rebroadcast_time = warning_time = jiffies; 9489 refcnt = netdev_refcnt_read(dev); 9490 9491 while (refcnt != 0) { 9492 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 9493 rtnl_lock(); 9494 9495 /* Rebroadcast unregister notification */ 9496 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 9497 9498 __rtnl_unlock(); 9499 rcu_barrier(); 9500 rtnl_lock(); 9501 9502 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 9503 &dev->state)) { 9504 /* We must not have linkwatch events 9505 * pending on unregister. If this 9506 * happens, we simply run the queue 9507 * unscheduled, resulting in a noop 9508 * for this device. 9509 */ 9510 linkwatch_run_queue(); 9511 } 9512 9513 __rtnl_unlock(); 9514 9515 rebroadcast_time = jiffies; 9516 } 9517 9518 msleep(250); 9519 9520 refcnt = netdev_refcnt_read(dev); 9521 9522 if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) { 9523 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 9524 dev->name, refcnt); 9525 warning_time = jiffies; 9526 } 9527 } 9528 } 9529 9530 /* The sequence is: 9531 * 9532 * rtnl_lock(); 9533 * ... 9534 * register_netdevice(x1); 9535 * register_netdevice(x2); 9536 * ... 9537 * unregister_netdevice(y1); 9538 * unregister_netdevice(y2); 9539 * ... 9540 * rtnl_unlock(); 9541 * free_netdev(y1); 9542 * free_netdev(y2); 9543 * 9544 * We are invoked by rtnl_unlock(). 9545 * This allows us to deal with problems: 9546 * 1) We can delete sysfs objects which invoke hotplug 9547 * without deadlocking with linkwatch via keventd. 9548 * 2) Since we run with the RTNL semaphore not held, we can sleep 9549 * safely in order to wait for the netdev refcnt to drop to zero. 9550 * 9551 * We must not return until all unregister events added during 9552 * the interval the lock was held have been completed. 9553 */ 9554 void netdev_run_todo(void) 9555 { 9556 struct list_head list; 9557 9558 /* Snapshot list, allow later requests */ 9559 list_replace_init(&net_todo_list, &list); 9560 9561 __rtnl_unlock(); 9562 9563 9564 /* Wait for rcu callbacks to finish before next phase */ 9565 if (!list_empty(&list)) 9566 rcu_barrier(); 9567 9568 while (!list_empty(&list)) { 9569 struct net_device *dev 9570 = list_first_entry(&list, struct net_device, todo_list); 9571 list_del(&dev->todo_list); 9572 9573 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 9574 pr_err("network todo '%s' but state %d\n", 9575 dev->name, dev->reg_state); 9576 dump_stack(); 9577 continue; 9578 } 9579 9580 dev->reg_state = NETREG_UNREGISTERED; 9581 9582 netdev_wait_allrefs(dev); 9583 9584 /* paranoia */ 9585 BUG_ON(netdev_refcnt_read(dev)); 9586 BUG_ON(!list_empty(&dev->ptype_all)); 9587 BUG_ON(!list_empty(&dev->ptype_specific)); 9588 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 9589 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 9590 #if IS_ENABLED(CONFIG_DECNET) 9591 WARN_ON(dev->dn_ptr); 9592 #endif 9593 if (dev->priv_destructor) 9594 dev->priv_destructor(dev); 9595 if (dev->needs_free_netdev) 9596 free_netdev(dev); 9597 9598 /* Report a network device has been unregistered */ 9599 rtnl_lock(); 9600 dev_net(dev)->dev_unreg_count--; 9601 __rtnl_unlock(); 9602 wake_up(&netdev_unregistering_wq); 9603 9604 /* Free network device */ 9605 kobject_put(&dev->dev.kobj); 9606 } 9607 } 9608 9609 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has 9610 * all the same fields in the same order as net_device_stats, with only 9611 * the type differing, but rtnl_link_stats64 may have additional fields 9612 * at the end for newer counters. 9613 */ 9614 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 9615 const struct net_device_stats *netdev_stats) 9616 { 9617 #if BITS_PER_LONG == 64 9618 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats)); 9619 memcpy(stats64, netdev_stats, sizeof(*netdev_stats)); 9620 /* zero out counters that only exist in rtnl_link_stats64 */ 9621 memset((char *)stats64 + sizeof(*netdev_stats), 0, 9622 sizeof(*stats64) - sizeof(*netdev_stats)); 9623 #else 9624 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long); 9625 const unsigned long *src = (const unsigned long *)netdev_stats; 9626 u64 *dst = (u64 *)stats64; 9627 9628 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64)); 9629 for (i = 0; i < n; i++) 9630 dst[i] = src[i]; 9631 /* zero out counters that only exist in rtnl_link_stats64 */ 9632 memset((char *)stats64 + n * sizeof(u64), 0, 9633 sizeof(*stats64) - n * sizeof(u64)); 9634 #endif 9635 } 9636 EXPORT_SYMBOL(netdev_stats_to_stats64); 9637 9638 /** 9639 * dev_get_stats - get network device statistics 9640 * @dev: device to get statistics from 9641 * @storage: place to store stats 9642 * 9643 * Get network statistics from device. Return @storage. 9644 * The device driver may provide its own method by setting 9645 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 9646 * otherwise the internal statistics structure is used. 9647 */ 9648 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 9649 struct rtnl_link_stats64 *storage) 9650 { 9651 const struct net_device_ops *ops = dev->netdev_ops; 9652 9653 if (ops->ndo_get_stats64) { 9654 memset(storage, 0, sizeof(*storage)); 9655 ops->ndo_get_stats64(dev, storage); 9656 } else if (ops->ndo_get_stats) { 9657 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 9658 } else { 9659 netdev_stats_to_stats64(storage, &dev->stats); 9660 } 9661 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped); 9662 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped); 9663 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler); 9664 return storage; 9665 } 9666 EXPORT_SYMBOL(dev_get_stats); 9667 9668 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 9669 { 9670 struct netdev_queue *queue = dev_ingress_queue(dev); 9671 9672 #ifdef CONFIG_NET_CLS_ACT 9673 if (queue) 9674 return queue; 9675 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 9676 if (!queue) 9677 return NULL; 9678 netdev_init_one_queue(dev, queue, NULL); 9679 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 9680 queue->qdisc_sleeping = &noop_qdisc; 9681 rcu_assign_pointer(dev->ingress_queue, queue); 9682 #endif 9683 return queue; 9684 } 9685 9686 static const struct ethtool_ops default_ethtool_ops; 9687 9688 void netdev_set_default_ethtool_ops(struct net_device *dev, 9689 const struct ethtool_ops *ops) 9690 { 9691 if (dev->ethtool_ops == &default_ethtool_ops) 9692 dev->ethtool_ops = ops; 9693 } 9694 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 9695 9696 void netdev_freemem(struct net_device *dev) 9697 { 9698 char *addr = (char *)dev - dev->padded; 9699 9700 kvfree(addr); 9701 } 9702 9703 /** 9704 * alloc_netdev_mqs - allocate network device 9705 * @sizeof_priv: size of private data to allocate space for 9706 * @name: device name format string 9707 * @name_assign_type: origin of device name 9708 * @setup: callback to initialize device 9709 * @txqs: the number of TX subqueues to allocate 9710 * @rxqs: the number of RX subqueues to allocate 9711 * 9712 * Allocates a struct net_device with private data area for driver use 9713 * and performs basic initialization. Also allocates subqueue structs 9714 * for each queue on the device. 9715 */ 9716 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 9717 unsigned char name_assign_type, 9718 void (*setup)(struct net_device *), 9719 unsigned int txqs, unsigned int rxqs) 9720 { 9721 struct net_device *dev; 9722 unsigned int alloc_size; 9723 struct net_device *p; 9724 9725 BUG_ON(strlen(name) >= sizeof(dev->name)); 9726 9727 if (txqs < 1) { 9728 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 9729 return NULL; 9730 } 9731 9732 if (rxqs < 1) { 9733 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 9734 return NULL; 9735 } 9736 9737 alloc_size = sizeof(struct net_device); 9738 if (sizeof_priv) { 9739 /* ensure 32-byte alignment of private area */ 9740 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 9741 alloc_size += sizeof_priv; 9742 } 9743 /* ensure 32-byte alignment of whole construct */ 9744 alloc_size += NETDEV_ALIGN - 1; 9745 9746 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 9747 if (!p) 9748 return NULL; 9749 9750 dev = PTR_ALIGN(p, NETDEV_ALIGN); 9751 dev->padded = (char *)dev - (char *)p; 9752 9753 dev->pcpu_refcnt = alloc_percpu(int); 9754 if (!dev->pcpu_refcnt) 9755 goto free_dev; 9756 9757 if (dev_addr_init(dev)) 9758 goto free_pcpu; 9759 9760 dev_mc_init(dev); 9761 dev_uc_init(dev); 9762 9763 dev_net_set(dev, &init_net); 9764 9765 netdev_register_lockdep_key(dev); 9766 9767 dev->gso_max_size = GSO_MAX_SIZE; 9768 dev->gso_max_segs = GSO_MAX_SEGS; 9769 dev->upper_level = 1; 9770 dev->lower_level = 1; 9771 9772 INIT_LIST_HEAD(&dev->napi_list); 9773 INIT_LIST_HEAD(&dev->unreg_list); 9774 INIT_LIST_HEAD(&dev->close_list); 9775 INIT_LIST_HEAD(&dev->link_watch_list); 9776 INIT_LIST_HEAD(&dev->adj_list.upper); 9777 INIT_LIST_HEAD(&dev->adj_list.lower); 9778 INIT_LIST_HEAD(&dev->ptype_all); 9779 INIT_LIST_HEAD(&dev->ptype_specific); 9780 #ifdef CONFIG_NET_SCHED 9781 hash_init(dev->qdisc_hash); 9782 #endif 9783 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 9784 setup(dev); 9785 9786 if (!dev->tx_queue_len) { 9787 dev->priv_flags |= IFF_NO_QUEUE; 9788 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; 9789 } 9790 9791 dev->num_tx_queues = txqs; 9792 dev->real_num_tx_queues = txqs; 9793 if (netif_alloc_netdev_queues(dev)) 9794 goto free_all; 9795 9796 dev->num_rx_queues = rxqs; 9797 dev->real_num_rx_queues = rxqs; 9798 if (netif_alloc_rx_queues(dev)) 9799 goto free_all; 9800 9801 strcpy(dev->name, name); 9802 dev->name_assign_type = name_assign_type; 9803 dev->group = INIT_NETDEV_GROUP; 9804 if (!dev->ethtool_ops) 9805 dev->ethtool_ops = &default_ethtool_ops; 9806 9807 nf_hook_ingress_init(dev); 9808 9809 return dev; 9810 9811 free_all: 9812 free_netdev(dev); 9813 return NULL; 9814 9815 free_pcpu: 9816 free_percpu(dev->pcpu_refcnt); 9817 free_dev: 9818 netdev_freemem(dev); 9819 return NULL; 9820 } 9821 EXPORT_SYMBOL(alloc_netdev_mqs); 9822 9823 /** 9824 * free_netdev - free network device 9825 * @dev: device 9826 * 9827 * This function does the last stage of destroying an allocated device 9828 * interface. The reference to the device object is released. If this 9829 * is the last reference then it will be freed.Must be called in process 9830 * context. 9831 */ 9832 void free_netdev(struct net_device *dev) 9833 { 9834 struct napi_struct *p, *n; 9835 9836 might_sleep(); 9837 netif_free_tx_queues(dev); 9838 netif_free_rx_queues(dev); 9839 9840 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 9841 9842 /* Flush device addresses */ 9843 dev_addr_flush(dev); 9844 9845 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 9846 netif_napi_del(p); 9847 9848 free_percpu(dev->pcpu_refcnt); 9849 dev->pcpu_refcnt = NULL; 9850 free_percpu(dev->xdp_bulkq); 9851 dev->xdp_bulkq = NULL; 9852 9853 netdev_unregister_lockdep_key(dev); 9854 9855 /* Compatibility with error handling in drivers */ 9856 if (dev->reg_state == NETREG_UNINITIALIZED) { 9857 netdev_freemem(dev); 9858 return; 9859 } 9860 9861 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 9862 dev->reg_state = NETREG_RELEASED; 9863 9864 /* will free via device release */ 9865 put_device(&dev->dev); 9866 } 9867 EXPORT_SYMBOL(free_netdev); 9868 9869 /** 9870 * synchronize_net - Synchronize with packet receive processing 9871 * 9872 * Wait for packets currently being received to be done. 9873 * Does not block later packets from starting. 9874 */ 9875 void synchronize_net(void) 9876 { 9877 might_sleep(); 9878 if (rtnl_is_locked()) 9879 synchronize_rcu_expedited(); 9880 else 9881 synchronize_rcu(); 9882 } 9883 EXPORT_SYMBOL(synchronize_net); 9884 9885 /** 9886 * unregister_netdevice_queue - remove device from the kernel 9887 * @dev: device 9888 * @head: list 9889 * 9890 * This function shuts down a device interface and removes it 9891 * from the kernel tables. 9892 * If head not NULL, device is queued to be unregistered later. 9893 * 9894 * Callers must hold the rtnl semaphore. You may want 9895 * unregister_netdev() instead of this. 9896 */ 9897 9898 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 9899 { 9900 ASSERT_RTNL(); 9901 9902 if (head) { 9903 list_move_tail(&dev->unreg_list, head); 9904 } else { 9905 rollback_registered(dev); 9906 /* Finish processing unregister after unlock */ 9907 net_set_todo(dev); 9908 } 9909 } 9910 EXPORT_SYMBOL(unregister_netdevice_queue); 9911 9912 /** 9913 * unregister_netdevice_many - unregister many devices 9914 * @head: list of devices 9915 * 9916 * Note: As most callers use a stack allocated list_head, 9917 * we force a list_del() to make sure stack wont be corrupted later. 9918 */ 9919 void unregister_netdevice_many(struct list_head *head) 9920 { 9921 struct net_device *dev; 9922 9923 if (!list_empty(head)) { 9924 rollback_registered_many(head); 9925 list_for_each_entry(dev, head, unreg_list) 9926 net_set_todo(dev); 9927 list_del(head); 9928 } 9929 } 9930 EXPORT_SYMBOL(unregister_netdevice_many); 9931 9932 /** 9933 * unregister_netdev - remove device from the kernel 9934 * @dev: device 9935 * 9936 * This function shuts down a device interface and removes it 9937 * from the kernel tables. 9938 * 9939 * This is just a wrapper for unregister_netdevice that takes 9940 * the rtnl semaphore. In general you want to use this and not 9941 * unregister_netdevice. 9942 */ 9943 void unregister_netdev(struct net_device *dev) 9944 { 9945 rtnl_lock(); 9946 unregister_netdevice(dev); 9947 rtnl_unlock(); 9948 } 9949 EXPORT_SYMBOL(unregister_netdev); 9950 9951 /** 9952 * dev_change_net_namespace - move device to different nethost namespace 9953 * @dev: device 9954 * @net: network namespace 9955 * @pat: If not NULL name pattern to try if the current device name 9956 * is already taken in the destination network namespace. 9957 * 9958 * This function shuts down a device interface and moves it 9959 * to a new network namespace. On success 0 is returned, on 9960 * a failure a netagive errno code is returned. 9961 * 9962 * Callers must hold the rtnl semaphore. 9963 */ 9964 9965 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 9966 { 9967 int err, new_nsid, new_ifindex; 9968 9969 ASSERT_RTNL(); 9970 9971 /* Don't allow namespace local devices to be moved. */ 9972 err = -EINVAL; 9973 if (dev->features & NETIF_F_NETNS_LOCAL) 9974 goto out; 9975 9976 /* Ensure the device has been registrered */ 9977 if (dev->reg_state != NETREG_REGISTERED) 9978 goto out; 9979 9980 /* Get out if there is nothing todo */ 9981 err = 0; 9982 if (net_eq(dev_net(dev), net)) 9983 goto out; 9984 9985 /* Pick the destination device name, and ensure 9986 * we can use it in the destination network namespace. 9987 */ 9988 err = -EEXIST; 9989 if (__dev_get_by_name(net, dev->name)) { 9990 /* We get here if we can't use the current device name */ 9991 if (!pat) 9992 goto out; 9993 err = dev_get_valid_name(net, dev, pat); 9994 if (err < 0) 9995 goto out; 9996 } 9997 9998 /* 9999 * And now a mini version of register_netdevice unregister_netdevice. 10000 */ 10001 10002 /* If device is running close it first. */ 10003 dev_close(dev); 10004 10005 /* And unlink it from device chain */ 10006 unlist_netdevice(dev); 10007 10008 synchronize_net(); 10009 10010 /* Shutdown queueing discipline. */ 10011 dev_shutdown(dev); 10012 10013 /* Notify protocols, that we are about to destroy 10014 * this device. They should clean all the things. 10015 * 10016 * Note that dev->reg_state stays at NETREG_REGISTERED. 10017 * This is wanted because this way 8021q and macvlan know 10018 * the device is just moving and can keep their slaves up. 10019 */ 10020 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 10021 rcu_barrier(); 10022 10023 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL); 10024 /* If there is an ifindex conflict assign a new one */ 10025 if (__dev_get_by_index(net, dev->ifindex)) 10026 new_ifindex = dev_new_index(net); 10027 else 10028 new_ifindex = dev->ifindex; 10029 10030 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid, 10031 new_ifindex); 10032 10033 /* 10034 * Flush the unicast and multicast chains 10035 */ 10036 dev_uc_flush(dev); 10037 dev_mc_flush(dev); 10038 10039 /* Send a netdev-removed uevent to the old namespace */ 10040 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 10041 netdev_adjacent_del_links(dev); 10042 10043 /* Actually switch the network namespace */ 10044 dev_net_set(dev, net); 10045 dev->ifindex = new_ifindex; 10046 10047 /* Send a netdev-add uevent to the new namespace */ 10048 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 10049 netdev_adjacent_add_links(dev); 10050 10051 /* Fixup kobjects */ 10052 err = device_rename(&dev->dev, dev->name); 10053 WARN_ON(err); 10054 10055 /* Add the device back in the hashes */ 10056 list_netdevice(dev); 10057 10058 /* Notify protocols, that a new device appeared. */ 10059 call_netdevice_notifiers(NETDEV_REGISTER, dev); 10060 10061 /* 10062 * Prevent userspace races by waiting until the network 10063 * device is fully setup before sending notifications. 10064 */ 10065 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 10066 10067 synchronize_net(); 10068 err = 0; 10069 out: 10070 return err; 10071 } 10072 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 10073 10074 static int dev_cpu_dead(unsigned int oldcpu) 10075 { 10076 struct sk_buff **list_skb; 10077 struct sk_buff *skb; 10078 unsigned int cpu; 10079 struct softnet_data *sd, *oldsd, *remsd = NULL; 10080 10081 local_irq_disable(); 10082 cpu = smp_processor_id(); 10083 sd = &per_cpu(softnet_data, cpu); 10084 oldsd = &per_cpu(softnet_data, oldcpu); 10085 10086 /* Find end of our completion_queue. */ 10087 list_skb = &sd->completion_queue; 10088 while (*list_skb) 10089 list_skb = &(*list_skb)->next; 10090 /* Append completion queue from offline CPU. */ 10091 *list_skb = oldsd->completion_queue; 10092 oldsd->completion_queue = NULL; 10093 10094 /* Append output queue from offline CPU. */ 10095 if (oldsd->output_queue) { 10096 *sd->output_queue_tailp = oldsd->output_queue; 10097 sd->output_queue_tailp = oldsd->output_queue_tailp; 10098 oldsd->output_queue = NULL; 10099 oldsd->output_queue_tailp = &oldsd->output_queue; 10100 } 10101 /* Append NAPI poll list from offline CPU, with one exception : 10102 * process_backlog() must be called by cpu owning percpu backlog. 10103 * We properly handle process_queue & input_pkt_queue later. 10104 */ 10105 while (!list_empty(&oldsd->poll_list)) { 10106 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 10107 struct napi_struct, 10108 poll_list); 10109 10110 list_del_init(&napi->poll_list); 10111 if (napi->poll == process_backlog) 10112 napi->state = 0; 10113 else 10114 ____napi_schedule(sd, napi); 10115 } 10116 10117 raise_softirq_irqoff(NET_TX_SOFTIRQ); 10118 local_irq_enable(); 10119 10120 #ifdef CONFIG_RPS 10121 remsd = oldsd->rps_ipi_list; 10122 oldsd->rps_ipi_list = NULL; 10123 #endif 10124 /* send out pending IPI's on offline CPU */ 10125 net_rps_send_ipi(remsd); 10126 10127 /* Process offline CPU's input_pkt_queue */ 10128 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 10129 netif_rx_ni(skb); 10130 input_queue_head_incr(oldsd); 10131 } 10132 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 10133 netif_rx_ni(skb); 10134 input_queue_head_incr(oldsd); 10135 } 10136 10137 return 0; 10138 } 10139 10140 /** 10141 * netdev_increment_features - increment feature set by one 10142 * @all: current feature set 10143 * @one: new feature set 10144 * @mask: mask feature set 10145 * 10146 * Computes a new feature set after adding a device with feature set 10147 * @one to the master device with current feature set @all. Will not 10148 * enable anything that is off in @mask. Returns the new feature set. 10149 */ 10150 netdev_features_t netdev_increment_features(netdev_features_t all, 10151 netdev_features_t one, netdev_features_t mask) 10152 { 10153 if (mask & NETIF_F_HW_CSUM) 10154 mask |= NETIF_F_CSUM_MASK; 10155 mask |= NETIF_F_VLAN_CHALLENGED; 10156 10157 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask; 10158 all &= one | ~NETIF_F_ALL_FOR_ALL; 10159 10160 /* If one device supports hw checksumming, set for all. */ 10161 if (all & NETIF_F_HW_CSUM) 10162 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM); 10163 10164 return all; 10165 } 10166 EXPORT_SYMBOL(netdev_increment_features); 10167 10168 static struct hlist_head * __net_init netdev_create_hash(void) 10169 { 10170 int i; 10171 struct hlist_head *hash; 10172 10173 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL); 10174 if (hash != NULL) 10175 for (i = 0; i < NETDEV_HASHENTRIES; i++) 10176 INIT_HLIST_HEAD(&hash[i]); 10177 10178 return hash; 10179 } 10180 10181 /* Initialize per network namespace state */ 10182 static int __net_init netdev_init(struct net *net) 10183 { 10184 BUILD_BUG_ON(GRO_HASH_BUCKETS > 10185 8 * sizeof_field(struct napi_struct, gro_bitmask)); 10186 10187 if (net != &init_net) 10188 INIT_LIST_HEAD(&net->dev_base_head); 10189 10190 net->dev_name_head = netdev_create_hash(); 10191 if (net->dev_name_head == NULL) 10192 goto err_name; 10193 10194 net->dev_index_head = netdev_create_hash(); 10195 if (net->dev_index_head == NULL) 10196 goto err_idx; 10197 10198 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain); 10199 10200 return 0; 10201 10202 err_idx: 10203 kfree(net->dev_name_head); 10204 err_name: 10205 return -ENOMEM; 10206 } 10207 10208 /** 10209 * netdev_drivername - network driver for the device 10210 * @dev: network device 10211 * 10212 * Determine network driver for device. 10213 */ 10214 const char *netdev_drivername(const struct net_device *dev) 10215 { 10216 const struct device_driver *driver; 10217 const struct device *parent; 10218 const char *empty = ""; 10219 10220 parent = dev->dev.parent; 10221 if (!parent) 10222 return empty; 10223 10224 driver = parent->driver; 10225 if (driver && driver->name) 10226 return driver->name; 10227 return empty; 10228 } 10229 10230 static void __netdev_printk(const char *level, const struct net_device *dev, 10231 struct va_format *vaf) 10232 { 10233 if (dev && dev->dev.parent) { 10234 dev_printk_emit(level[1] - '0', 10235 dev->dev.parent, 10236 "%s %s %s%s: %pV", 10237 dev_driver_string(dev->dev.parent), 10238 dev_name(dev->dev.parent), 10239 netdev_name(dev), netdev_reg_state(dev), 10240 vaf); 10241 } else if (dev) { 10242 printk("%s%s%s: %pV", 10243 level, netdev_name(dev), netdev_reg_state(dev), vaf); 10244 } else { 10245 printk("%s(NULL net_device): %pV", level, vaf); 10246 } 10247 } 10248 10249 void netdev_printk(const char *level, const struct net_device *dev, 10250 const char *format, ...) 10251 { 10252 struct va_format vaf; 10253 va_list args; 10254 10255 va_start(args, format); 10256 10257 vaf.fmt = format; 10258 vaf.va = &args; 10259 10260 __netdev_printk(level, dev, &vaf); 10261 10262 va_end(args); 10263 } 10264 EXPORT_SYMBOL(netdev_printk); 10265 10266 #define define_netdev_printk_level(func, level) \ 10267 void func(const struct net_device *dev, const char *fmt, ...) \ 10268 { \ 10269 struct va_format vaf; \ 10270 va_list args; \ 10271 \ 10272 va_start(args, fmt); \ 10273 \ 10274 vaf.fmt = fmt; \ 10275 vaf.va = &args; \ 10276 \ 10277 __netdev_printk(level, dev, &vaf); \ 10278 \ 10279 va_end(args); \ 10280 } \ 10281 EXPORT_SYMBOL(func); 10282 10283 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 10284 define_netdev_printk_level(netdev_alert, KERN_ALERT); 10285 define_netdev_printk_level(netdev_crit, KERN_CRIT); 10286 define_netdev_printk_level(netdev_err, KERN_ERR); 10287 define_netdev_printk_level(netdev_warn, KERN_WARNING); 10288 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 10289 define_netdev_printk_level(netdev_info, KERN_INFO); 10290 10291 static void __net_exit netdev_exit(struct net *net) 10292 { 10293 kfree(net->dev_name_head); 10294 kfree(net->dev_index_head); 10295 if (net != &init_net) 10296 WARN_ON_ONCE(!list_empty(&net->dev_base_head)); 10297 } 10298 10299 static struct pernet_operations __net_initdata netdev_net_ops = { 10300 .init = netdev_init, 10301 .exit = netdev_exit, 10302 }; 10303 10304 static void __net_exit default_device_exit(struct net *net) 10305 { 10306 struct net_device *dev, *aux; 10307 /* 10308 * Push all migratable network devices back to the 10309 * initial network namespace 10310 */ 10311 rtnl_lock(); 10312 for_each_netdev_safe(net, dev, aux) { 10313 int err; 10314 char fb_name[IFNAMSIZ]; 10315 10316 /* Ignore unmoveable devices (i.e. loopback) */ 10317 if (dev->features & NETIF_F_NETNS_LOCAL) 10318 continue; 10319 10320 /* Leave virtual devices for the generic cleanup */ 10321 if (dev->rtnl_link_ops) 10322 continue; 10323 10324 /* Push remaining network devices to init_net */ 10325 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 10326 if (__dev_get_by_name(&init_net, fb_name)) 10327 snprintf(fb_name, IFNAMSIZ, "dev%%d"); 10328 err = dev_change_net_namespace(dev, &init_net, fb_name); 10329 if (err) { 10330 pr_emerg("%s: failed to move %s to init_net: %d\n", 10331 __func__, dev->name, err); 10332 BUG(); 10333 } 10334 } 10335 rtnl_unlock(); 10336 } 10337 10338 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list) 10339 { 10340 /* Return with the rtnl_lock held when there are no network 10341 * devices unregistering in any network namespace in net_list. 10342 */ 10343 struct net *net; 10344 bool unregistering; 10345 DEFINE_WAIT_FUNC(wait, woken_wake_function); 10346 10347 add_wait_queue(&netdev_unregistering_wq, &wait); 10348 for (;;) { 10349 unregistering = false; 10350 rtnl_lock(); 10351 list_for_each_entry(net, net_list, exit_list) { 10352 if (net->dev_unreg_count > 0) { 10353 unregistering = true; 10354 break; 10355 } 10356 } 10357 if (!unregistering) 10358 break; 10359 __rtnl_unlock(); 10360 10361 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 10362 } 10363 remove_wait_queue(&netdev_unregistering_wq, &wait); 10364 } 10365 10366 static void __net_exit default_device_exit_batch(struct list_head *net_list) 10367 { 10368 /* At exit all network devices most be removed from a network 10369 * namespace. Do this in the reverse order of registration. 10370 * Do this across as many network namespaces as possible to 10371 * improve batching efficiency. 10372 */ 10373 struct net_device *dev; 10374 struct net *net; 10375 LIST_HEAD(dev_kill_list); 10376 10377 /* To prevent network device cleanup code from dereferencing 10378 * loopback devices or network devices that have been freed 10379 * wait here for all pending unregistrations to complete, 10380 * before unregistring the loopback device and allowing the 10381 * network namespace be freed. 10382 * 10383 * The netdev todo list containing all network devices 10384 * unregistrations that happen in default_device_exit_batch 10385 * will run in the rtnl_unlock() at the end of 10386 * default_device_exit_batch. 10387 */ 10388 rtnl_lock_unregistering(net_list); 10389 list_for_each_entry(net, net_list, exit_list) { 10390 for_each_netdev_reverse(net, dev) { 10391 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 10392 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 10393 else 10394 unregister_netdevice_queue(dev, &dev_kill_list); 10395 } 10396 } 10397 unregister_netdevice_many(&dev_kill_list); 10398 rtnl_unlock(); 10399 } 10400 10401 static struct pernet_operations __net_initdata default_device_ops = { 10402 .exit = default_device_exit, 10403 .exit_batch = default_device_exit_batch, 10404 }; 10405 10406 /* 10407 * Initialize the DEV module. At boot time this walks the device list and 10408 * unhooks any devices that fail to initialise (normally hardware not 10409 * present) and leaves us with a valid list of present and active devices. 10410 * 10411 */ 10412 10413 /* 10414 * This is called single threaded during boot, so no need 10415 * to take the rtnl semaphore. 10416 */ 10417 static int __init net_dev_init(void) 10418 { 10419 int i, rc = -ENOMEM; 10420 10421 BUG_ON(!dev_boot_phase); 10422 10423 if (dev_proc_init()) 10424 goto out; 10425 10426 if (netdev_kobject_init()) 10427 goto out; 10428 10429 INIT_LIST_HEAD(&ptype_all); 10430 for (i = 0; i < PTYPE_HASH_SIZE; i++) 10431 INIT_LIST_HEAD(&ptype_base[i]); 10432 10433 INIT_LIST_HEAD(&offload_base); 10434 10435 if (register_pernet_subsys(&netdev_net_ops)) 10436 goto out; 10437 10438 /* 10439 * Initialise the packet receive queues. 10440 */ 10441 10442 for_each_possible_cpu(i) { 10443 struct work_struct *flush = per_cpu_ptr(&flush_works, i); 10444 struct softnet_data *sd = &per_cpu(softnet_data, i); 10445 10446 INIT_WORK(flush, flush_backlog); 10447 10448 skb_queue_head_init(&sd->input_pkt_queue); 10449 skb_queue_head_init(&sd->process_queue); 10450 #ifdef CONFIG_XFRM_OFFLOAD 10451 skb_queue_head_init(&sd->xfrm_backlog); 10452 #endif 10453 INIT_LIST_HEAD(&sd->poll_list); 10454 sd->output_queue_tailp = &sd->output_queue; 10455 #ifdef CONFIG_RPS 10456 sd->csd.func = rps_trigger_softirq; 10457 sd->csd.info = sd; 10458 sd->cpu = i; 10459 #endif 10460 10461 init_gro_hash(&sd->backlog); 10462 sd->backlog.poll = process_backlog; 10463 sd->backlog.weight = weight_p; 10464 } 10465 10466 dev_boot_phase = 0; 10467 10468 /* The loopback device is special if any other network devices 10469 * is present in a network namespace the loopback device must 10470 * be present. Since we now dynamically allocate and free the 10471 * loopback device ensure this invariant is maintained by 10472 * keeping the loopback device as the first device on the 10473 * list of network devices. Ensuring the loopback devices 10474 * is the first device that appears and the last network device 10475 * that disappears. 10476 */ 10477 if (register_pernet_device(&loopback_net_ops)) 10478 goto out; 10479 10480 if (register_pernet_device(&default_device_ops)) 10481 goto out; 10482 10483 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 10484 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 10485 10486 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead", 10487 NULL, dev_cpu_dead); 10488 WARN_ON(rc < 0); 10489 rc = 0; 10490 out: 10491 return rc; 10492 } 10493 10494 subsys_initcall(net_dev_init); 10495