xref: /linux/net/core/dev.c (revision 50dc9a8572aa4d7cdc56670228fcde40289ed289)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <trace/events/qdisc.h>
135 #include <linux/inetdevice.h>
136 #include <linux/cpu_rmap.h>
137 #include <linux/static_key.h>
138 #include <linux/hashtable.h>
139 #include <linux/vmalloc.h>
140 #include <linux/if_macvlan.h>
141 #include <linux/errqueue.h>
142 #include <linux/hrtimer.h>
143 #include <linux/netfilter_ingress.h>
144 #include <linux/crash_dump.h>
145 #include <linux/sctp.h>
146 #include <net/udp_tunnel.h>
147 #include <linux/net_namespace.h>
148 #include <linux/indirect_call_wrapper.h>
149 #include <net/devlink.h>
150 #include <linux/pm_runtime.h>
151 #include <linux/prandom.h>
152 #include <linux/once_lite.h>
153 
154 #include "net-sysfs.h"
155 
156 #define MAX_GRO_SKBS 8
157 
158 /* This should be increased if a protocol with a bigger head is added. */
159 #define GRO_MAX_HEAD (MAX_HEADER + 128)
160 
161 static DEFINE_SPINLOCK(ptype_lock);
162 static DEFINE_SPINLOCK(offload_lock);
163 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
164 struct list_head ptype_all __read_mostly;	/* Taps */
165 static struct list_head offload_base __read_mostly;
166 
167 static int netif_rx_internal(struct sk_buff *skb);
168 static int call_netdevice_notifiers_info(unsigned long val,
169 					 struct netdev_notifier_info *info);
170 static int call_netdevice_notifiers_extack(unsigned long val,
171 					   struct net_device *dev,
172 					   struct netlink_ext_ack *extack);
173 static struct napi_struct *napi_by_id(unsigned int napi_id);
174 
175 /*
176  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
177  * semaphore.
178  *
179  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
180  *
181  * Writers must hold the rtnl semaphore while they loop through the
182  * dev_base_head list, and hold dev_base_lock for writing when they do the
183  * actual updates.  This allows pure readers to access the list even
184  * while a writer is preparing to update it.
185  *
186  * To put it another way, dev_base_lock is held for writing only to
187  * protect against pure readers; the rtnl semaphore provides the
188  * protection against other writers.
189  *
190  * See, for example usages, register_netdevice() and
191  * unregister_netdevice(), which must be called with the rtnl
192  * semaphore held.
193  */
194 DEFINE_RWLOCK(dev_base_lock);
195 EXPORT_SYMBOL(dev_base_lock);
196 
197 static DEFINE_MUTEX(ifalias_mutex);
198 
199 /* protects napi_hash addition/deletion and napi_gen_id */
200 static DEFINE_SPINLOCK(napi_hash_lock);
201 
202 static unsigned int napi_gen_id = NR_CPUS;
203 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
204 
205 static DECLARE_RWSEM(devnet_rename_sem);
206 
207 static inline void dev_base_seq_inc(struct net *net)
208 {
209 	while (++net->dev_base_seq == 0)
210 		;
211 }
212 
213 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
214 {
215 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
216 
217 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
218 }
219 
220 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
221 {
222 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
223 }
224 
225 static inline void rps_lock(struct softnet_data *sd)
226 {
227 #ifdef CONFIG_RPS
228 	spin_lock(&sd->input_pkt_queue.lock);
229 #endif
230 }
231 
232 static inline void rps_unlock(struct softnet_data *sd)
233 {
234 #ifdef CONFIG_RPS
235 	spin_unlock(&sd->input_pkt_queue.lock);
236 #endif
237 }
238 
239 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
240 						       const char *name)
241 {
242 	struct netdev_name_node *name_node;
243 
244 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
245 	if (!name_node)
246 		return NULL;
247 	INIT_HLIST_NODE(&name_node->hlist);
248 	name_node->dev = dev;
249 	name_node->name = name;
250 	return name_node;
251 }
252 
253 static struct netdev_name_node *
254 netdev_name_node_head_alloc(struct net_device *dev)
255 {
256 	struct netdev_name_node *name_node;
257 
258 	name_node = netdev_name_node_alloc(dev, dev->name);
259 	if (!name_node)
260 		return NULL;
261 	INIT_LIST_HEAD(&name_node->list);
262 	return name_node;
263 }
264 
265 static void netdev_name_node_free(struct netdev_name_node *name_node)
266 {
267 	kfree(name_node);
268 }
269 
270 static void netdev_name_node_add(struct net *net,
271 				 struct netdev_name_node *name_node)
272 {
273 	hlist_add_head_rcu(&name_node->hlist,
274 			   dev_name_hash(net, name_node->name));
275 }
276 
277 static void netdev_name_node_del(struct netdev_name_node *name_node)
278 {
279 	hlist_del_rcu(&name_node->hlist);
280 }
281 
282 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
283 							const char *name)
284 {
285 	struct hlist_head *head = dev_name_hash(net, name);
286 	struct netdev_name_node *name_node;
287 
288 	hlist_for_each_entry(name_node, head, hlist)
289 		if (!strcmp(name_node->name, name))
290 			return name_node;
291 	return NULL;
292 }
293 
294 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
295 							    const char *name)
296 {
297 	struct hlist_head *head = dev_name_hash(net, name);
298 	struct netdev_name_node *name_node;
299 
300 	hlist_for_each_entry_rcu(name_node, head, hlist)
301 		if (!strcmp(name_node->name, name))
302 			return name_node;
303 	return NULL;
304 }
305 
306 bool netdev_name_in_use(struct net *net, const char *name)
307 {
308 	return netdev_name_node_lookup(net, name);
309 }
310 EXPORT_SYMBOL(netdev_name_in_use);
311 
312 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
313 {
314 	struct netdev_name_node *name_node;
315 	struct net *net = dev_net(dev);
316 
317 	name_node = netdev_name_node_lookup(net, name);
318 	if (name_node)
319 		return -EEXIST;
320 	name_node = netdev_name_node_alloc(dev, name);
321 	if (!name_node)
322 		return -ENOMEM;
323 	netdev_name_node_add(net, name_node);
324 	/* The node that holds dev->name acts as a head of per-device list. */
325 	list_add_tail(&name_node->list, &dev->name_node->list);
326 
327 	return 0;
328 }
329 EXPORT_SYMBOL(netdev_name_node_alt_create);
330 
331 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
332 {
333 	list_del(&name_node->list);
334 	netdev_name_node_del(name_node);
335 	kfree(name_node->name);
336 	netdev_name_node_free(name_node);
337 }
338 
339 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
340 {
341 	struct netdev_name_node *name_node;
342 	struct net *net = dev_net(dev);
343 
344 	name_node = netdev_name_node_lookup(net, name);
345 	if (!name_node)
346 		return -ENOENT;
347 	/* lookup might have found our primary name or a name belonging
348 	 * to another device.
349 	 */
350 	if (name_node == dev->name_node || name_node->dev != dev)
351 		return -EINVAL;
352 
353 	__netdev_name_node_alt_destroy(name_node);
354 
355 	return 0;
356 }
357 EXPORT_SYMBOL(netdev_name_node_alt_destroy);
358 
359 static void netdev_name_node_alt_flush(struct net_device *dev)
360 {
361 	struct netdev_name_node *name_node, *tmp;
362 
363 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
364 		__netdev_name_node_alt_destroy(name_node);
365 }
366 
367 /* Device list insertion */
368 static void list_netdevice(struct net_device *dev)
369 {
370 	struct net *net = dev_net(dev);
371 
372 	ASSERT_RTNL();
373 
374 	write_lock_bh(&dev_base_lock);
375 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
376 	netdev_name_node_add(net, dev->name_node);
377 	hlist_add_head_rcu(&dev->index_hlist,
378 			   dev_index_hash(net, dev->ifindex));
379 	write_unlock_bh(&dev_base_lock);
380 
381 	dev_base_seq_inc(net);
382 }
383 
384 /* Device list removal
385  * caller must respect a RCU grace period before freeing/reusing dev
386  */
387 static void unlist_netdevice(struct net_device *dev)
388 {
389 	ASSERT_RTNL();
390 
391 	/* Unlink dev from the device chain */
392 	write_lock_bh(&dev_base_lock);
393 	list_del_rcu(&dev->dev_list);
394 	netdev_name_node_del(dev->name_node);
395 	hlist_del_rcu(&dev->index_hlist);
396 	write_unlock_bh(&dev_base_lock);
397 
398 	dev_base_seq_inc(dev_net(dev));
399 }
400 
401 /*
402  *	Our notifier list
403  */
404 
405 static RAW_NOTIFIER_HEAD(netdev_chain);
406 
407 /*
408  *	Device drivers call our routines to queue packets here. We empty the
409  *	queue in the local softnet handler.
410  */
411 
412 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
413 EXPORT_PER_CPU_SYMBOL(softnet_data);
414 
415 #ifdef CONFIG_LOCKDEP
416 /*
417  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
418  * according to dev->type
419  */
420 static const unsigned short netdev_lock_type[] = {
421 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
422 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
423 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
424 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
425 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
426 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
427 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
428 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
429 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
430 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
431 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
432 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
433 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
434 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
435 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
436 
437 static const char *const netdev_lock_name[] = {
438 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
439 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
440 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
441 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
442 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
443 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
444 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
445 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
446 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
447 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
448 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
449 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
450 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
451 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
452 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
453 
454 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
455 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
456 
457 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
458 {
459 	int i;
460 
461 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
462 		if (netdev_lock_type[i] == dev_type)
463 			return i;
464 	/* the last key is used by default */
465 	return ARRAY_SIZE(netdev_lock_type) - 1;
466 }
467 
468 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
469 						 unsigned short dev_type)
470 {
471 	int i;
472 
473 	i = netdev_lock_pos(dev_type);
474 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
475 				   netdev_lock_name[i]);
476 }
477 
478 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
479 {
480 	int i;
481 
482 	i = netdev_lock_pos(dev->type);
483 	lockdep_set_class_and_name(&dev->addr_list_lock,
484 				   &netdev_addr_lock_key[i],
485 				   netdev_lock_name[i]);
486 }
487 #else
488 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
489 						 unsigned short dev_type)
490 {
491 }
492 
493 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
494 {
495 }
496 #endif
497 
498 /*******************************************************************************
499  *
500  *		Protocol management and registration routines
501  *
502  *******************************************************************************/
503 
504 
505 /*
506  *	Add a protocol ID to the list. Now that the input handler is
507  *	smarter we can dispense with all the messy stuff that used to be
508  *	here.
509  *
510  *	BEWARE!!! Protocol handlers, mangling input packets,
511  *	MUST BE last in hash buckets and checking protocol handlers
512  *	MUST start from promiscuous ptype_all chain in net_bh.
513  *	It is true now, do not change it.
514  *	Explanation follows: if protocol handler, mangling packet, will
515  *	be the first on list, it is not able to sense, that packet
516  *	is cloned and should be copied-on-write, so that it will
517  *	change it and subsequent readers will get broken packet.
518  *							--ANK (980803)
519  */
520 
521 static inline struct list_head *ptype_head(const struct packet_type *pt)
522 {
523 	if (pt->type == htons(ETH_P_ALL))
524 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
525 	else
526 		return pt->dev ? &pt->dev->ptype_specific :
527 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
528 }
529 
530 /**
531  *	dev_add_pack - add packet handler
532  *	@pt: packet type declaration
533  *
534  *	Add a protocol handler to the networking stack. The passed &packet_type
535  *	is linked into kernel lists and may not be freed until it has been
536  *	removed from the kernel lists.
537  *
538  *	This call does not sleep therefore it can not
539  *	guarantee all CPU's that are in middle of receiving packets
540  *	will see the new packet type (until the next received packet).
541  */
542 
543 void dev_add_pack(struct packet_type *pt)
544 {
545 	struct list_head *head = ptype_head(pt);
546 
547 	spin_lock(&ptype_lock);
548 	list_add_rcu(&pt->list, head);
549 	spin_unlock(&ptype_lock);
550 }
551 EXPORT_SYMBOL(dev_add_pack);
552 
553 /**
554  *	__dev_remove_pack	 - remove packet handler
555  *	@pt: packet type declaration
556  *
557  *	Remove a protocol handler that was previously added to the kernel
558  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
559  *	from the kernel lists and can be freed or reused once this function
560  *	returns.
561  *
562  *      The packet type might still be in use by receivers
563  *	and must not be freed until after all the CPU's have gone
564  *	through a quiescent state.
565  */
566 void __dev_remove_pack(struct packet_type *pt)
567 {
568 	struct list_head *head = ptype_head(pt);
569 	struct packet_type *pt1;
570 
571 	spin_lock(&ptype_lock);
572 
573 	list_for_each_entry(pt1, head, list) {
574 		if (pt == pt1) {
575 			list_del_rcu(&pt->list);
576 			goto out;
577 		}
578 	}
579 
580 	pr_warn("dev_remove_pack: %p not found\n", pt);
581 out:
582 	spin_unlock(&ptype_lock);
583 }
584 EXPORT_SYMBOL(__dev_remove_pack);
585 
586 /**
587  *	dev_remove_pack	 - remove packet handler
588  *	@pt: packet type declaration
589  *
590  *	Remove a protocol handler that was previously added to the kernel
591  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
592  *	from the kernel lists and can be freed or reused once this function
593  *	returns.
594  *
595  *	This call sleeps to guarantee that no CPU is looking at the packet
596  *	type after return.
597  */
598 void dev_remove_pack(struct packet_type *pt)
599 {
600 	__dev_remove_pack(pt);
601 
602 	synchronize_net();
603 }
604 EXPORT_SYMBOL(dev_remove_pack);
605 
606 
607 /**
608  *	dev_add_offload - register offload handlers
609  *	@po: protocol offload declaration
610  *
611  *	Add protocol offload handlers to the networking stack. The passed
612  *	&proto_offload is linked into kernel lists and may not be freed until
613  *	it has been removed from the kernel lists.
614  *
615  *	This call does not sleep therefore it can not
616  *	guarantee all CPU's that are in middle of receiving packets
617  *	will see the new offload handlers (until the next received packet).
618  */
619 void dev_add_offload(struct packet_offload *po)
620 {
621 	struct packet_offload *elem;
622 
623 	spin_lock(&offload_lock);
624 	list_for_each_entry(elem, &offload_base, list) {
625 		if (po->priority < elem->priority)
626 			break;
627 	}
628 	list_add_rcu(&po->list, elem->list.prev);
629 	spin_unlock(&offload_lock);
630 }
631 EXPORT_SYMBOL(dev_add_offload);
632 
633 /**
634  *	__dev_remove_offload	 - remove offload handler
635  *	@po: packet offload declaration
636  *
637  *	Remove a protocol offload handler that was previously added to the
638  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
639  *	is removed from the kernel lists and can be freed or reused once this
640  *	function returns.
641  *
642  *      The packet type might still be in use by receivers
643  *	and must not be freed until after all the CPU's have gone
644  *	through a quiescent state.
645  */
646 static void __dev_remove_offload(struct packet_offload *po)
647 {
648 	struct list_head *head = &offload_base;
649 	struct packet_offload *po1;
650 
651 	spin_lock(&offload_lock);
652 
653 	list_for_each_entry(po1, head, list) {
654 		if (po == po1) {
655 			list_del_rcu(&po->list);
656 			goto out;
657 		}
658 	}
659 
660 	pr_warn("dev_remove_offload: %p not found\n", po);
661 out:
662 	spin_unlock(&offload_lock);
663 }
664 
665 /**
666  *	dev_remove_offload	 - remove packet offload handler
667  *	@po: packet offload declaration
668  *
669  *	Remove a packet offload handler that was previously added to the kernel
670  *	offload handlers by dev_add_offload(). The passed &offload_type is
671  *	removed from the kernel lists and can be freed or reused once this
672  *	function returns.
673  *
674  *	This call sleeps to guarantee that no CPU is looking at the packet
675  *	type after return.
676  */
677 void dev_remove_offload(struct packet_offload *po)
678 {
679 	__dev_remove_offload(po);
680 
681 	synchronize_net();
682 }
683 EXPORT_SYMBOL(dev_remove_offload);
684 
685 /*******************************************************************************
686  *
687  *			    Device Interface Subroutines
688  *
689  *******************************************************************************/
690 
691 /**
692  *	dev_get_iflink	- get 'iflink' value of a interface
693  *	@dev: targeted interface
694  *
695  *	Indicates the ifindex the interface is linked to.
696  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
697  */
698 
699 int dev_get_iflink(const struct net_device *dev)
700 {
701 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
702 		return dev->netdev_ops->ndo_get_iflink(dev);
703 
704 	return dev->ifindex;
705 }
706 EXPORT_SYMBOL(dev_get_iflink);
707 
708 /**
709  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
710  *	@dev: targeted interface
711  *	@skb: The packet.
712  *
713  *	For better visibility of tunnel traffic OVS needs to retrieve
714  *	egress tunnel information for a packet. Following API allows
715  *	user to get this info.
716  */
717 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
718 {
719 	struct ip_tunnel_info *info;
720 
721 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
722 		return -EINVAL;
723 
724 	info = skb_tunnel_info_unclone(skb);
725 	if (!info)
726 		return -ENOMEM;
727 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
728 		return -EINVAL;
729 
730 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
731 }
732 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
733 
734 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
735 {
736 	int k = stack->num_paths++;
737 
738 	if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
739 		return NULL;
740 
741 	return &stack->path[k];
742 }
743 
744 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
745 			  struct net_device_path_stack *stack)
746 {
747 	const struct net_device *last_dev;
748 	struct net_device_path_ctx ctx = {
749 		.dev	= dev,
750 		.daddr	= daddr,
751 	};
752 	struct net_device_path *path;
753 	int ret = 0;
754 
755 	stack->num_paths = 0;
756 	while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
757 		last_dev = ctx.dev;
758 		path = dev_fwd_path(stack);
759 		if (!path)
760 			return -1;
761 
762 		memset(path, 0, sizeof(struct net_device_path));
763 		ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
764 		if (ret < 0)
765 			return -1;
766 
767 		if (WARN_ON_ONCE(last_dev == ctx.dev))
768 			return -1;
769 	}
770 	path = dev_fwd_path(stack);
771 	if (!path)
772 		return -1;
773 	path->type = DEV_PATH_ETHERNET;
774 	path->dev = ctx.dev;
775 
776 	return ret;
777 }
778 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
779 
780 /**
781  *	__dev_get_by_name	- find a device by its name
782  *	@net: the applicable net namespace
783  *	@name: name to find
784  *
785  *	Find an interface by name. Must be called under RTNL semaphore
786  *	or @dev_base_lock. If the name is found a pointer to the device
787  *	is returned. If the name is not found then %NULL is returned. The
788  *	reference counters are not incremented so the caller must be
789  *	careful with locks.
790  */
791 
792 struct net_device *__dev_get_by_name(struct net *net, const char *name)
793 {
794 	struct netdev_name_node *node_name;
795 
796 	node_name = netdev_name_node_lookup(net, name);
797 	return node_name ? node_name->dev : NULL;
798 }
799 EXPORT_SYMBOL(__dev_get_by_name);
800 
801 /**
802  * dev_get_by_name_rcu	- find a device by its name
803  * @net: the applicable net namespace
804  * @name: name to find
805  *
806  * Find an interface by name.
807  * If the name is found a pointer to the device is returned.
808  * If the name is not found then %NULL is returned.
809  * The reference counters are not incremented so the caller must be
810  * careful with locks. The caller must hold RCU lock.
811  */
812 
813 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
814 {
815 	struct netdev_name_node *node_name;
816 
817 	node_name = netdev_name_node_lookup_rcu(net, name);
818 	return node_name ? node_name->dev : NULL;
819 }
820 EXPORT_SYMBOL(dev_get_by_name_rcu);
821 
822 /**
823  *	dev_get_by_name		- find a device by its name
824  *	@net: the applicable net namespace
825  *	@name: name to find
826  *
827  *	Find an interface by name. This can be called from any
828  *	context and does its own locking. The returned handle has
829  *	the usage count incremented and the caller must use dev_put() to
830  *	release it when it is no longer needed. %NULL is returned if no
831  *	matching device is found.
832  */
833 
834 struct net_device *dev_get_by_name(struct net *net, const char *name)
835 {
836 	struct net_device *dev;
837 
838 	rcu_read_lock();
839 	dev = dev_get_by_name_rcu(net, name);
840 	dev_hold(dev);
841 	rcu_read_unlock();
842 	return dev;
843 }
844 EXPORT_SYMBOL(dev_get_by_name);
845 
846 /**
847  *	__dev_get_by_index - find a device by its ifindex
848  *	@net: the applicable net namespace
849  *	@ifindex: index of device
850  *
851  *	Search for an interface by index. Returns %NULL if the device
852  *	is not found or a pointer to the device. The device has not
853  *	had its reference counter increased so the caller must be careful
854  *	about locking. The caller must hold either the RTNL semaphore
855  *	or @dev_base_lock.
856  */
857 
858 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
859 {
860 	struct net_device *dev;
861 	struct hlist_head *head = dev_index_hash(net, ifindex);
862 
863 	hlist_for_each_entry(dev, head, index_hlist)
864 		if (dev->ifindex == ifindex)
865 			return dev;
866 
867 	return NULL;
868 }
869 EXPORT_SYMBOL(__dev_get_by_index);
870 
871 /**
872  *	dev_get_by_index_rcu - find a device by its ifindex
873  *	@net: the applicable net namespace
874  *	@ifindex: index of device
875  *
876  *	Search for an interface by index. Returns %NULL if the device
877  *	is not found or a pointer to the device. The device has not
878  *	had its reference counter increased so the caller must be careful
879  *	about locking. The caller must hold RCU lock.
880  */
881 
882 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
883 {
884 	struct net_device *dev;
885 	struct hlist_head *head = dev_index_hash(net, ifindex);
886 
887 	hlist_for_each_entry_rcu(dev, head, index_hlist)
888 		if (dev->ifindex == ifindex)
889 			return dev;
890 
891 	return NULL;
892 }
893 EXPORT_SYMBOL(dev_get_by_index_rcu);
894 
895 
896 /**
897  *	dev_get_by_index - find a device by its ifindex
898  *	@net: the applicable net namespace
899  *	@ifindex: index of device
900  *
901  *	Search for an interface by index. Returns NULL if the device
902  *	is not found or a pointer to the device. The device returned has
903  *	had a reference added and the pointer is safe until the user calls
904  *	dev_put to indicate they have finished with it.
905  */
906 
907 struct net_device *dev_get_by_index(struct net *net, int ifindex)
908 {
909 	struct net_device *dev;
910 
911 	rcu_read_lock();
912 	dev = dev_get_by_index_rcu(net, ifindex);
913 	dev_hold(dev);
914 	rcu_read_unlock();
915 	return dev;
916 }
917 EXPORT_SYMBOL(dev_get_by_index);
918 
919 /**
920  *	dev_get_by_napi_id - find a device by napi_id
921  *	@napi_id: ID of the NAPI struct
922  *
923  *	Search for an interface by NAPI ID. Returns %NULL if the device
924  *	is not found or a pointer to the device. The device has not had
925  *	its reference counter increased so the caller must be careful
926  *	about locking. The caller must hold RCU lock.
927  */
928 
929 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
930 {
931 	struct napi_struct *napi;
932 
933 	WARN_ON_ONCE(!rcu_read_lock_held());
934 
935 	if (napi_id < MIN_NAPI_ID)
936 		return NULL;
937 
938 	napi = napi_by_id(napi_id);
939 
940 	return napi ? napi->dev : NULL;
941 }
942 EXPORT_SYMBOL(dev_get_by_napi_id);
943 
944 /**
945  *	netdev_get_name - get a netdevice name, knowing its ifindex.
946  *	@net: network namespace
947  *	@name: a pointer to the buffer where the name will be stored.
948  *	@ifindex: the ifindex of the interface to get the name from.
949  */
950 int netdev_get_name(struct net *net, char *name, int ifindex)
951 {
952 	struct net_device *dev;
953 	int ret;
954 
955 	down_read(&devnet_rename_sem);
956 	rcu_read_lock();
957 
958 	dev = dev_get_by_index_rcu(net, ifindex);
959 	if (!dev) {
960 		ret = -ENODEV;
961 		goto out;
962 	}
963 
964 	strcpy(name, dev->name);
965 
966 	ret = 0;
967 out:
968 	rcu_read_unlock();
969 	up_read(&devnet_rename_sem);
970 	return ret;
971 }
972 
973 /**
974  *	dev_getbyhwaddr_rcu - find a device by its hardware address
975  *	@net: the applicable net namespace
976  *	@type: media type of device
977  *	@ha: hardware address
978  *
979  *	Search for an interface by MAC address. Returns NULL if the device
980  *	is not found or a pointer to the device.
981  *	The caller must hold RCU or RTNL.
982  *	The returned device has not had its ref count increased
983  *	and the caller must therefore be careful about locking
984  *
985  */
986 
987 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
988 				       const char *ha)
989 {
990 	struct net_device *dev;
991 
992 	for_each_netdev_rcu(net, dev)
993 		if (dev->type == type &&
994 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
995 			return dev;
996 
997 	return NULL;
998 }
999 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1000 
1001 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1002 {
1003 	struct net_device *dev, *ret = NULL;
1004 
1005 	rcu_read_lock();
1006 	for_each_netdev_rcu(net, dev)
1007 		if (dev->type == type) {
1008 			dev_hold(dev);
1009 			ret = dev;
1010 			break;
1011 		}
1012 	rcu_read_unlock();
1013 	return ret;
1014 }
1015 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1016 
1017 /**
1018  *	__dev_get_by_flags - find any device with given flags
1019  *	@net: the applicable net namespace
1020  *	@if_flags: IFF_* values
1021  *	@mask: bitmask of bits in if_flags to check
1022  *
1023  *	Search for any interface with the given flags. Returns NULL if a device
1024  *	is not found or a pointer to the device. Must be called inside
1025  *	rtnl_lock(), and result refcount is unchanged.
1026  */
1027 
1028 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1029 				      unsigned short mask)
1030 {
1031 	struct net_device *dev, *ret;
1032 
1033 	ASSERT_RTNL();
1034 
1035 	ret = NULL;
1036 	for_each_netdev(net, dev) {
1037 		if (((dev->flags ^ if_flags) & mask) == 0) {
1038 			ret = dev;
1039 			break;
1040 		}
1041 	}
1042 	return ret;
1043 }
1044 EXPORT_SYMBOL(__dev_get_by_flags);
1045 
1046 /**
1047  *	dev_valid_name - check if name is okay for network device
1048  *	@name: name string
1049  *
1050  *	Network device names need to be valid file names to
1051  *	allow sysfs to work.  We also disallow any kind of
1052  *	whitespace.
1053  */
1054 bool dev_valid_name(const char *name)
1055 {
1056 	if (*name == '\0')
1057 		return false;
1058 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1059 		return false;
1060 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1061 		return false;
1062 
1063 	while (*name) {
1064 		if (*name == '/' || *name == ':' || isspace(*name))
1065 			return false;
1066 		name++;
1067 	}
1068 	return true;
1069 }
1070 EXPORT_SYMBOL(dev_valid_name);
1071 
1072 /**
1073  *	__dev_alloc_name - allocate a name for a device
1074  *	@net: network namespace to allocate the device name in
1075  *	@name: name format string
1076  *	@buf:  scratch buffer and result name string
1077  *
1078  *	Passed a format string - eg "lt%d" it will try and find a suitable
1079  *	id. It scans list of devices to build up a free map, then chooses
1080  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1081  *	while allocating the name and adding the device in order to avoid
1082  *	duplicates.
1083  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1084  *	Returns the number of the unit assigned or a negative errno code.
1085  */
1086 
1087 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1088 {
1089 	int i = 0;
1090 	const char *p;
1091 	const int max_netdevices = 8*PAGE_SIZE;
1092 	unsigned long *inuse;
1093 	struct net_device *d;
1094 
1095 	if (!dev_valid_name(name))
1096 		return -EINVAL;
1097 
1098 	p = strchr(name, '%');
1099 	if (p) {
1100 		/*
1101 		 * Verify the string as this thing may have come from
1102 		 * the user.  There must be either one "%d" and no other "%"
1103 		 * characters.
1104 		 */
1105 		if (p[1] != 'd' || strchr(p + 2, '%'))
1106 			return -EINVAL;
1107 
1108 		/* Use one page as a bit array of possible slots */
1109 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1110 		if (!inuse)
1111 			return -ENOMEM;
1112 
1113 		for_each_netdev(net, d) {
1114 			struct netdev_name_node *name_node;
1115 			list_for_each_entry(name_node, &d->name_node->list, list) {
1116 				if (!sscanf(name_node->name, name, &i))
1117 					continue;
1118 				if (i < 0 || i >= max_netdevices)
1119 					continue;
1120 
1121 				/*  avoid cases where sscanf is not exact inverse of printf */
1122 				snprintf(buf, IFNAMSIZ, name, i);
1123 				if (!strncmp(buf, name_node->name, IFNAMSIZ))
1124 					set_bit(i, inuse);
1125 			}
1126 			if (!sscanf(d->name, name, &i))
1127 				continue;
1128 			if (i < 0 || i >= max_netdevices)
1129 				continue;
1130 
1131 			/*  avoid cases where sscanf is not exact inverse of printf */
1132 			snprintf(buf, IFNAMSIZ, name, i);
1133 			if (!strncmp(buf, d->name, IFNAMSIZ))
1134 				set_bit(i, inuse);
1135 		}
1136 
1137 		i = find_first_zero_bit(inuse, max_netdevices);
1138 		free_page((unsigned long) inuse);
1139 	}
1140 
1141 	snprintf(buf, IFNAMSIZ, name, i);
1142 	if (!netdev_name_in_use(net, buf))
1143 		return i;
1144 
1145 	/* It is possible to run out of possible slots
1146 	 * when the name is long and there isn't enough space left
1147 	 * for the digits, or if all bits are used.
1148 	 */
1149 	return -ENFILE;
1150 }
1151 
1152 static int dev_alloc_name_ns(struct net *net,
1153 			     struct net_device *dev,
1154 			     const char *name)
1155 {
1156 	char buf[IFNAMSIZ];
1157 	int ret;
1158 
1159 	BUG_ON(!net);
1160 	ret = __dev_alloc_name(net, name, buf);
1161 	if (ret >= 0)
1162 		strlcpy(dev->name, buf, IFNAMSIZ);
1163 	return ret;
1164 }
1165 
1166 /**
1167  *	dev_alloc_name - allocate a name for a device
1168  *	@dev: device
1169  *	@name: name format string
1170  *
1171  *	Passed a format string - eg "lt%d" it will try and find a suitable
1172  *	id. It scans list of devices to build up a free map, then chooses
1173  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1174  *	while allocating the name and adding the device in order to avoid
1175  *	duplicates.
1176  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1177  *	Returns the number of the unit assigned or a negative errno code.
1178  */
1179 
1180 int dev_alloc_name(struct net_device *dev, const char *name)
1181 {
1182 	return dev_alloc_name_ns(dev_net(dev), dev, name);
1183 }
1184 EXPORT_SYMBOL(dev_alloc_name);
1185 
1186 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1187 			      const char *name)
1188 {
1189 	BUG_ON(!net);
1190 
1191 	if (!dev_valid_name(name))
1192 		return -EINVAL;
1193 
1194 	if (strchr(name, '%'))
1195 		return dev_alloc_name_ns(net, dev, name);
1196 	else if (netdev_name_in_use(net, name))
1197 		return -EEXIST;
1198 	else if (dev->name != name)
1199 		strlcpy(dev->name, name, IFNAMSIZ);
1200 
1201 	return 0;
1202 }
1203 
1204 /**
1205  *	dev_change_name - change name of a device
1206  *	@dev: device
1207  *	@newname: name (or format string) must be at least IFNAMSIZ
1208  *
1209  *	Change name of a device, can pass format strings "eth%d".
1210  *	for wildcarding.
1211  */
1212 int dev_change_name(struct net_device *dev, const char *newname)
1213 {
1214 	unsigned char old_assign_type;
1215 	char oldname[IFNAMSIZ];
1216 	int err = 0;
1217 	int ret;
1218 	struct net *net;
1219 
1220 	ASSERT_RTNL();
1221 	BUG_ON(!dev_net(dev));
1222 
1223 	net = dev_net(dev);
1224 
1225 	/* Some auto-enslaved devices e.g. failover slaves are
1226 	 * special, as userspace might rename the device after
1227 	 * the interface had been brought up and running since
1228 	 * the point kernel initiated auto-enslavement. Allow
1229 	 * live name change even when these slave devices are
1230 	 * up and running.
1231 	 *
1232 	 * Typically, users of these auto-enslaving devices
1233 	 * don't actually care about slave name change, as
1234 	 * they are supposed to operate on master interface
1235 	 * directly.
1236 	 */
1237 	if (dev->flags & IFF_UP &&
1238 	    likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1239 		return -EBUSY;
1240 
1241 	down_write(&devnet_rename_sem);
1242 
1243 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1244 		up_write(&devnet_rename_sem);
1245 		return 0;
1246 	}
1247 
1248 	memcpy(oldname, dev->name, IFNAMSIZ);
1249 
1250 	err = dev_get_valid_name(net, dev, newname);
1251 	if (err < 0) {
1252 		up_write(&devnet_rename_sem);
1253 		return err;
1254 	}
1255 
1256 	if (oldname[0] && !strchr(oldname, '%'))
1257 		netdev_info(dev, "renamed from %s\n", oldname);
1258 
1259 	old_assign_type = dev->name_assign_type;
1260 	dev->name_assign_type = NET_NAME_RENAMED;
1261 
1262 rollback:
1263 	ret = device_rename(&dev->dev, dev->name);
1264 	if (ret) {
1265 		memcpy(dev->name, oldname, IFNAMSIZ);
1266 		dev->name_assign_type = old_assign_type;
1267 		up_write(&devnet_rename_sem);
1268 		return ret;
1269 	}
1270 
1271 	up_write(&devnet_rename_sem);
1272 
1273 	netdev_adjacent_rename_links(dev, oldname);
1274 
1275 	write_lock_bh(&dev_base_lock);
1276 	netdev_name_node_del(dev->name_node);
1277 	write_unlock_bh(&dev_base_lock);
1278 
1279 	synchronize_rcu();
1280 
1281 	write_lock_bh(&dev_base_lock);
1282 	netdev_name_node_add(net, dev->name_node);
1283 	write_unlock_bh(&dev_base_lock);
1284 
1285 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1286 	ret = notifier_to_errno(ret);
1287 
1288 	if (ret) {
1289 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1290 		if (err >= 0) {
1291 			err = ret;
1292 			down_write(&devnet_rename_sem);
1293 			memcpy(dev->name, oldname, IFNAMSIZ);
1294 			memcpy(oldname, newname, IFNAMSIZ);
1295 			dev->name_assign_type = old_assign_type;
1296 			old_assign_type = NET_NAME_RENAMED;
1297 			goto rollback;
1298 		} else {
1299 			pr_err("%s: name change rollback failed: %d\n",
1300 			       dev->name, ret);
1301 		}
1302 	}
1303 
1304 	return err;
1305 }
1306 
1307 /**
1308  *	dev_set_alias - change ifalias of a device
1309  *	@dev: device
1310  *	@alias: name up to IFALIASZ
1311  *	@len: limit of bytes to copy from info
1312  *
1313  *	Set ifalias for a device,
1314  */
1315 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1316 {
1317 	struct dev_ifalias *new_alias = NULL;
1318 
1319 	if (len >= IFALIASZ)
1320 		return -EINVAL;
1321 
1322 	if (len) {
1323 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1324 		if (!new_alias)
1325 			return -ENOMEM;
1326 
1327 		memcpy(new_alias->ifalias, alias, len);
1328 		new_alias->ifalias[len] = 0;
1329 	}
1330 
1331 	mutex_lock(&ifalias_mutex);
1332 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1333 					mutex_is_locked(&ifalias_mutex));
1334 	mutex_unlock(&ifalias_mutex);
1335 
1336 	if (new_alias)
1337 		kfree_rcu(new_alias, rcuhead);
1338 
1339 	return len;
1340 }
1341 EXPORT_SYMBOL(dev_set_alias);
1342 
1343 /**
1344  *	dev_get_alias - get ifalias of a device
1345  *	@dev: device
1346  *	@name: buffer to store name of ifalias
1347  *	@len: size of buffer
1348  *
1349  *	get ifalias for a device.  Caller must make sure dev cannot go
1350  *	away,  e.g. rcu read lock or own a reference count to device.
1351  */
1352 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1353 {
1354 	const struct dev_ifalias *alias;
1355 	int ret = 0;
1356 
1357 	rcu_read_lock();
1358 	alias = rcu_dereference(dev->ifalias);
1359 	if (alias)
1360 		ret = snprintf(name, len, "%s", alias->ifalias);
1361 	rcu_read_unlock();
1362 
1363 	return ret;
1364 }
1365 
1366 /**
1367  *	netdev_features_change - device changes features
1368  *	@dev: device to cause notification
1369  *
1370  *	Called to indicate a device has changed features.
1371  */
1372 void netdev_features_change(struct net_device *dev)
1373 {
1374 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1375 }
1376 EXPORT_SYMBOL(netdev_features_change);
1377 
1378 /**
1379  *	netdev_state_change - device changes state
1380  *	@dev: device to cause notification
1381  *
1382  *	Called to indicate a device has changed state. This function calls
1383  *	the notifier chains for netdev_chain and sends a NEWLINK message
1384  *	to the routing socket.
1385  */
1386 void netdev_state_change(struct net_device *dev)
1387 {
1388 	if (dev->flags & IFF_UP) {
1389 		struct netdev_notifier_change_info change_info = {
1390 			.info.dev = dev,
1391 		};
1392 
1393 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1394 					      &change_info.info);
1395 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1396 	}
1397 }
1398 EXPORT_SYMBOL(netdev_state_change);
1399 
1400 /**
1401  * __netdev_notify_peers - notify network peers about existence of @dev,
1402  * to be called when rtnl lock is already held.
1403  * @dev: network device
1404  *
1405  * Generate traffic such that interested network peers are aware of
1406  * @dev, such as by generating a gratuitous ARP. This may be used when
1407  * a device wants to inform the rest of the network about some sort of
1408  * reconfiguration such as a failover event or virtual machine
1409  * migration.
1410  */
1411 void __netdev_notify_peers(struct net_device *dev)
1412 {
1413 	ASSERT_RTNL();
1414 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1415 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1416 }
1417 EXPORT_SYMBOL(__netdev_notify_peers);
1418 
1419 /**
1420  * netdev_notify_peers - notify network peers about existence of @dev
1421  * @dev: network device
1422  *
1423  * Generate traffic such that interested network peers are aware of
1424  * @dev, such as by generating a gratuitous ARP. This may be used when
1425  * a device wants to inform the rest of the network about some sort of
1426  * reconfiguration such as a failover event or virtual machine
1427  * migration.
1428  */
1429 void netdev_notify_peers(struct net_device *dev)
1430 {
1431 	rtnl_lock();
1432 	__netdev_notify_peers(dev);
1433 	rtnl_unlock();
1434 }
1435 EXPORT_SYMBOL(netdev_notify_peers);
1436 
1437 static int napi_threaded_poll(void *data);
1438 
1439 static int napi_kthread_create(struct napi_struct *n)
1440 {
1441 	int err = 0;
1442 
1443 	/* Create and wake up the kthread once to put it in
1444 	 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1445 	 * warning and work with loadavg.
1446 	 */
1447 	n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1448 				n->dev->name, n->napi_id);
1449 	if (IS_ERR(n->thread)) {
1450 		err = PTR_ERR(n->thread);
1451 		pr_err("kthread_run failed with err %d\n", err);
1452 		n->thread = NULL;
1453 	}
1454 
1455 	return err;
1456 }
1457 
1458 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1459 {
1460 	const struct net_device_ops *ops = dev->netdev_ops;
1461 	int ret;
1462 
1463 	ASSERT_RTNL();
1464 
1465 	if (!netif_device_present(dev)) {
1466 		/* may be detached because parent is runtime-suspended */
1467 		if (dev->dev.parent)
1468 			pm_runtime_resume(dev->dev.parent);
1469 		if (!netif_device_present(dev))
1470 			return -ENODEV;
1471 	}
1472 
1473 	/* Block netpoll from trying to do any rx path servicing.
1474 	 * If we don't do this there is a chance ndo_poll_controller
1475 	 * or ndo_poll may be running while we open the device
1476 	 */
1477 	netpoll_poll_disable(dev);
1478 
1479 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1480 	ret = notifier_to_errno(ret);
1481 	if (ret)
1482 		return ret;
1483 
1484 	set_bit(__LINK_STATE_START, &dev->state);
1485 
1486 	if (ops->ndo_validate_addr)
1487 		ret = ops->ndo_validate_addr(dev);
1488 
1489 	if (!ret && ops->ndo_open)
1490 		ret = ops->ndo_open(dev);
1491 
1492 	netpoll_poll_enable(dev);
1493 
1494 	if (ret)
1495 		clear_bit(__LINK_STATE_START, &dev->state);
1496 	else {
1497 		dev->flags |= IFF_UP;
1498 		dev_set_rx_mode(dev);
1499 		dev_activate(dev);
1500 		add_device_randomness(dev->dev_addr, dev->addr_len);
1501 	}
1502 
1503 	return ret;
1504 }
1505 
1506 /**
1507  *	dev_open	- prepare an interface for use.
1508  *	@dev: device to open
1509  *	@extack: netlink extended ack
1510  *
1511  *	Takes a device from down to up state. The device's private open
1512  *	function is invoked and then the multicast lists are loaded. Finally
1513  *	the device is moved into the up state and a %NETDEV_UP message is
1514  *	sent to the netdev notifier chain.
1515  *
1516  *	Calling this function on an active interface is a nop. On a failure
1517  *	a negative errno code is returned.
1518  */
1519 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1520 {
1521 	int ret;
1522 
1523 	if (dev->flags & IFF_UP)
1524 		return 0;
1525 
1526 	ret = __dev_open(dev, extack);
1527 	if (ret < 0)
1528 		return ret;
1529 
1530 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1531 	call_netdevice_notifiers(NETDEV_UP, dev);
1532 
1533 	return ret;
1534 }
1535 EXPORT_SYMBOL(dev_open);
1536 
1537 static void __dev_close_many(struct list_head *head)
1538 {
1539 	struct net_device *dev;
1540 
1541 	ASSERT_RTNL();
1542 	might_sleep();
1543 
1544 	list_for_each_entry(dev, head, close_list) {
1545 		/* Temporarily disable netpoll until the interface is down */
1546 		netpoll_poll_disable(dev);
1547 
1548 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1549 
1550 		clear_bit(__LINK_STATE_START, &dev->state);
1551 
1552 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1553 		 * can be even on different cpu. So just clear netif_running().
1554 		 *
1555 		 * dev->stop() will invoke napi_disable() on all of it's
1556 		 * napi_struct instances on this device.
1557 		 */
1558 		smp_mb__after_atomic(); /* Commit netif_running(). */
1559 	}
1560 
1561 	dev_deactivate_many(head);
1562 
1563 	list_for_each_entry(dev, head, close_list) {
1564 		const struct net_device_ops *ops = dev->netdev_ops;
1565 
1566 		/*
1567 		 *	Call the device specific close. This cannot fail.
1568 		 *	Only if device is UP
1569 		 *
1570 		 *	We allow it to be called even after a DETACH hot-plug
1571 		 *	event.
1572 		 */
1573 		if (ops->ndo_stop)
1574 			ops->ndo_stop(dev);
1575 
1576 		dev->flags &= ~IFF_UP;
1577 		netpoll_poll_enable(dev);
1578 	}
1579 }
1580 
1581 static void __dev_close(struct net_device *dev)
1582 {
1583 	LIST_HEAD(single);
1584 
1585 	list_add(&dev->close_list, &single);
1586 	__dev_close_many(&single);
1587 	list_del(&single);
1588 }
1589 
1590 void dev_close_many(struct list_head *head, bool unlink)
1591 {
1592 	struct net_device *dev, *tmp;
1593 
1594 	/* Remove the devices that don't need to be closed */
1595 	list_for_each_entry_safe(dev, tmp, head, close_list)
1596 		if (!(dev->flags & IFF_UP))
1597 			list_del_init(&dev->close_list);
1598 
1599 	__dev_close_many(head);
1600 
1601 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1602 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1603 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1604 		if (unlink)
1605 			list_del_init(&dev->close_list);
1606 	}
1607 }
1608 EXPORT_SYMBOL(dev_close_many);
1609 
1610 /**
1611  *	dev_close - shutdown an interface.
1612  *	@dev: device to shutdown
1613  *
1614  *	This function moves an active device into down state. A
1615  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1616  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1617  *	chain.
1618  */
1619 void dev_close(struct net_device *dev)
1620 {
1621 	if (dev->flags & IFF_UP) {
1622 		LIST_HEAD(single);
1623 
1624 		list_add(&dev->close_list, &single);
1625 		dev_close_many(&single, true);
1626 		list_del(&single);
1627 	}
1628 }
1629 EXPORT_SYMBOL(dev_close);
1630 
1631 
1632 /**
1633  *	dev_disable_lro - disable Large Receive Offload on a device
1634  *	@dev: device
1635  *
1636  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1637  *	called under RTNL.  This is needed if received packets may be
1638  *	forwarded to another interface.
1639  */
1640 void dev_disable_lro(struct net_device *dev)
1641 {
1642 	struct net_device *lower_dev;
1643 	struct list_head *iter;
1644 
1645 	dev->wanted_features &= ~NETIF_F_LRO;
1646 	netdev_update_features(dev);
1647 
1648 	if (unlikely(dev->features & NETIF_F_LRO))
1649 		netdev_WARN(dev, "failed to disable LRO!\n");
1650 
1651 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1652 		dev_disable_lro(lower_dev);
1653 }
1654 EXPORT_SYMBOL(dev_disable_lro);
1655 
1656 /**
1657  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1658  *	@dev: device
1659  *
1660  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1661  *	called under RTNL.  This is needed if Generic XDP is installed on
1662  *	the device.
1663  */
1664 static void dev_disable_gro_hw(struct net_device *dev)
1665 {
1666 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1667 	netdev_update_features(dev);
1668 
1669 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1670 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1671 }
1672 
1673 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1674 {
1675 #define N(val) 						\
1676 	case NETDEV_##val:				\
1677 		return "NETDEV_" __stringify(val);
1678 	switch (cmd) {
1679 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1680 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1681 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1682 	N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1683 	N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1684 	N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1685 	N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1686 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1687 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1688 	N(PRE_CHANGEADDR)
1689 	}
1690 #undef N
1691 	return "UNKNOWN_NETDEV_EVENT";
1692 }
1693 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1694 
1695 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1696 				   struct net_device *dev)
1697 {
1698 	struct netdev_notifier_info info = {
1699 		.dev = dev,
1700 	};
1701 
1702 	return nb->notifier_call(nb, val, &info);
1703 }
1704 
1705 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1706 					     struct net_device *dev)
1707 {
1708 	int err;
1709 
1710 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1711 	err = notifier_to_errno(err);
1712 	if (err)
1713 		return err;
1714 
1715 	if (!(dev->flags & IFF_UP))
1716 		return 0;
1717 
1718 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1719 	return 0;
1720 }
1721 
1722 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1723 						struct net_device *dev)
1724 {
1725 	if (dev->flags & IFF_UP) {
1726 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1727 					dev);
1728 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1729 	}
1730 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1731 }
1732 
1733 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1734 						 struct net *net)
1735 {
1736 	struct net_device *dev;
1737 	int err;
1738 
1739 	for_each_netdev(net, dev) {
1740 		err = call_netdevice_register_notifiers(nb, dev);
1741 		if (err)
1742 			goto rollback;
1743 	}
1744 	return 0;
1745 
1746 rollback:
1747 	for_each_netdev_continue_reverse(net, dev)
1748 		call_netdevice_unregister_notifiers(nb, dev);
1749 	return err;
1750 }
1751 
1752 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1753 						    struct net *net)
1754 {
1755 	struct net_device *dev;
1756 
1757 	for_each_netdev(net, dev)
1758 		call_netdevice_unregister_notifiers(nb, dev);
1759 }
1760 
1761 static int dev_boot_phase = 1;
1762 
1763 /**
1764  * register_netdevice_notifier - register a network notifier block
1765  * @nb: notifier
1766  *
1767  * Register a notifier to be called when network device events occur.
1768  * The notifier passed is linked into the kernel structures and must
1769  * not be reused until it has been unregistered. A negative errno code
1770  * is returned on a failure.
1771  *
1772  * When registered all registration and up events are replayed
1773  * to the new notifier to allow device to have a race free
1774  * view of the network device list.
1775  */
1776 
1777 int register_netdevice_notifier(struct notifier_block *nb)
1778 {
1779 	struct net *net;
1780 	int err;
1781 
1782 	/* Close race with setup_net() and cleanup_net() */
1783 	down_write(&pernet_ops_rwsem);
1784 	rtnl_lock();
1785 	err = raw_notifier_chain_register(&netdev_chain, nb);
1786 	if (err)
1787 		goto unlock;
1788 	if (dev_boot_phase)
1789 		goto unlock;
1790 	for_each_net(net) {
1791 		err = call_netdevice_register_net_notifiers(nb, net);
1792 		if (err)
1793 			goto rollback;
1794 	}
1795 
1796 unlock:
1797 	rtnl_unlock();
1798 	up_write(&pernet_ops_rwsem);
1799 	return err;
1800 
1801 rollback:
1802 	for_each_net_continue_reverse(net)
1803 		call_netdevice_unregister_net_notifiers(nb, net);
1804 
1805 	raw_notifier_chain_unregister(&netdev_chain, nb);
1806 	goto unlock;
1807 }
1808 EXPORT_SYMBOL(register_netdevice_notifier);
1809 
1810 /**
1811  * unregister_netdevice_notifier - unregister a network notifier block
1812  * @nb: notifier
1813  *
1814  * Unregister a notifier previously registered by
1815  * register_netdevice_notifier(). The notifier is unlinked into the
1816  * kernel structures and may then be reused. A negative errno code
1817  * is returned on a failure.
1818  *
1819  * After unregistering unregister and down device events are synthesized
1820  * for all devices on the device list to the removed notifier to remove
1821  * the need for special case cleanup code.
1822  */
1823 
1824 int unregister_netdevice_notifier(struct notifier_block *nb)
1825 {
1826 	struct net *net;
1827 	int err;
1828 
1829 	/* Close race with setup_net() and cleanup_net() */
1830 	down_write(&pernet_ops_rwsem);
1831 	rtnl_lock();
1832 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1833 	if (err)
1834 		goto unlock;
1835 
1836 	for_each_net(net)
1837 		call_netdevice_unregister_net_notifiers(nb, net);
1838 
1839 unlock:
1840 	rtnl_unlock();
1841 	up_write(&pernet_ops_rwsem);
1842 	return err;
1843 }
1844 EXPORT_SYMBOL(unregister_netdevice_notifier);
1845 
1846 static int __register_netdevice_notifier_net(struct net *net,
1847 					     struct notifier_block *nb,
1848 					     bool ignore_call_fail)
1849 {
1850 	int err;
1851 
1852 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
1853 	if (err)
1854 		return err;
1855 	if (dev_boot_phase)
1856 		return 0;
1857 
1858 	err = call_netdevice_register_net_notifiers(nb, net);
1859 	if (err && !ignore_call_fail)
1860 		goto chain_unregister;
1861 
1862 	return 0;
1863 
1864 chain_unregister:
1865 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
1866 	return err;
1867 }
1868 
1869 static int __unregister_netdevice_notifier_net(struct net *net,
1870 					       struct notifier_block *nb)
1871 {
1872 	int err;
1873 
1874 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1875 	if (err)
1876 		return err;
1877 
1878 	call_netdevice_unregister_net_notifiers(nb, net);
1879 	return 0;
1880 }
1881 
1882 /**
1883  * register_netdevice_notifier_net - register a per-netns network notifier block
1884  * @net: network namespace
1885  * @nb: notifier
1886  *
1887  * Register a notifier to be called when network device events occur.
1888  * The notifier passed is linked into the kernel structures and must
1889  * not be reused until it has been unregistered. A negative errno code
1890  * is returned on a failure.
1891  *
1892  * When registered all registration and up events are replayed
1893  * to the new notifier to allow device to have a race free
1894  * view of the network device list.
1895  */
1896 
1897 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1898 {
1899 	int err;
1900 
1901 	rtnl_lock();
1902 	err = __register_netdevice_notifier_net(net, nb, false);
1903 	rtnl_unlock();
1904 	return err;
1905 }
1906 EXPORT_SYMBOL(register_netdevice_notifier_net);
1907 
1908 /**
1909  * unregister_netdevice_notifier_net - unregister a per-netns
1910  *                                     network notifier block
1911  * @net: network namespace
1912  * @nb: notifier
1913  *
1914  * Unregister a notifier previously registered by
1915  * register_netdevice_notifier(). The notifier is unlinked into the
1916  * kernel structures and may then be reused. A negative errno code
1917  * is returned on a failure.
1918  *
1919  * After unregistering unregister and down device events are synthesized
1920  * for all devices on the device list to the removed notifier to remove
1921  * the need for special case cleanup code.
1922  */
1923 
1924 int unregister_netdevice_notifier_net(struct net *net,
1925 				      struct notifier_block *nb)
1926 {
1927 	int err;
1928 
1929 	rtnl_lock();
1930 	err = __unregister_netdevice_notifier_net(net, nb);
1931 	rtnl_unlock();
1932 	return err;
1933 }
1934 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1935 
1936 int register_netdevice_notifier_dev_net(struct net_device *dev,
1937 					struct notifier_block *nb,
1938 					struct netdev_net_notifier *nn)
1939 {
1940 	int err;
1941 
1942 	rtnl_lock();
1943 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1944 	if (!err) {
1945 		nn->nb = nb;
1946 		list_add(&nn->list, &dev->net_notifier_list);
1947 	}
1948 	rtnl_unlock();
1949 	return err;
1950 }
1951 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1952 
1953 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1954 					  struct notifier_block *nb,
1955 					  struct netdev_net_notifier *nn)
1956 {
1957 	int err;
1958 
1959 	rtnl_lock();
1960 	list_del(&nn->list);
1961 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1962 	rtnl_unlock();
1963 	return err;
1964 }
1965 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1966 
1967 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1968 					     struct net *net)
1969 {
1970 	struct netdev_net_notifier *nn;
1971 
1972 	list_for_each_entry(nn, &dev->net_notifier_list, list) {
1973 		__unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
1974 		__register_netdevice_notifier_net(net, nn->nb, true);
1975 	}
1976 }
1977 
1978 /**
1979  *	call_netdevice_notifiers_info - call all network notifier blocks
1980  *	@val: value passed unmodified to notifier function
1981  *	@info: notifier information data
1982  *
1983  *	Call all network notifier blocks.  Parameters and return value
1984  *	are as for raw_notifier_call_chain().
1985  */
1986 
1987 static int call_netdevice_notifiers_info(unsigned long val,
1988 					 struct netdev_notifier_info *info)
1989 {
1990 	struct net *net = dev_net(info->dev);
1991 	int ret;
1992 
1993 	ASSERT_RTNL();
1994 
1995 	/* Run per-netns notifier block chain first, then run the global one.
1996 	 * Hopefully, one day, the global one is going to be removed after
1997 	 * all notifier block registrators get converted to be per-netns.
1998 	 */
1999 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2000 	if (ret & NOTIFY_STOP_MASK)
2001 		return ret;
2002 	return raw_notifier_call_chain(&netdev_chain, val, info);
2003 }
2004 
2005 static int call_netdevice_notifiers_extack(unsigned long val,
2006 					   struct net_device *dev,
2007 					   struct netlink_ext_ack *extack)
2008 {
2009 	struct netdev_notifier_info info = {
2010 		.dev = dev,
2011 		.extack = extack,
2012 	};
2013 
2014 	return call_netdevice_notifiers_info(val, &info);
2015 }
2016 
2017 /**
2018  *	call_netdevice_notifiers - call all network notifier blocks
2019  *      @val: value passed unmodified to notifier function
2020  *      @dev: net_device pointer passed unmodified to notifier function
2021  *
2022  *	Call all network notifier blocks.  Parameters and return value
2023  *	are as for raw_notifier_call_chain().
2024  */
2025 
2026 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2027 {
2028 	return call_netdevice_notifiers_extack(val, dev, NULL);
2029 }
2030 EXPORT_SYMBOL(call_netdevice_notifiers);
2031 
2032 /**
2033  *	call_netdevice_notifiers_mtu - call all network notifier blocks
2034  *	@val: value passed unmodified to notifier function
2035  *	@dev: net_device pointer passed unmodified to notifier function
2036  *	@arg: additional u32 argument passed to the notifier function
2037  *
2038  *	Call all network notifier blocks.  Parameters and return value
2039  *	are as for raw_notifier_call_chain().
2040  */
2041 static int call_netdevice_notifiers_mtu(unsigned long val,
2042 					struct net_device *dev, u32 arg)
2043 {
2044 	struct netdev_notifier_info_ext info = {
2045 		.info.dev = dev,
2046 		.ext.mtu = arg,
2047 	};
2048 
2049 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2050 
2051 	return call_netdevice_notifiers_info(val, &info.info);
2052 }
2053 
2054 #ifdef CONFIG_NET_INGRESS
2055 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2056 
2057 void net_inc_ingress_queue(void)
2058 {
2059 	static_branch_inc(&ingress_needed_key);
2060 }
2061 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2062 
2063 void net_dec_ingress_queue(void)
2064 {
2065 	static_branch_dec(&ingress_needed_key);
2066 }
2067 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2068 #endif
2069 
2070 #ifdef CONFIG_NET_EGRESS
2071 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2072 
2073 void net_inc_egress_queue(void)
2074 {
2075 	static_branch_inc(&egress_needed_key);
2076 }
2077 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2078 
2079 void net_dec_egress_queue(void)
2080 {
2081 	static_branch_dec(&egress_needed_key);
2082 }
2083 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2084 #endif
2085 
2086 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2087 #ifdef CONFIG_JUMP_LABEL
2088 static atomic_t netstamp_needed_deferred;
2089 static atomic_t netstamp_wanted;
2090 static void netstamp_clear(struct work_struct *work)
2091 {
2092 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2093 	int wanted;
2094 
2095 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2096 	if (wanted > 0)
2097 		static_branch_enable(&netstamp_needed_key);
2098 	else
2099 		static_branch_disable(&netstamp_needed_key);
2100 }
2101 static DECLARE_WORK(netstamp_work, netstamp_clear);
2102 #endif
2103 
2104 void net_enable_timestamp(void)
2105 {
2106 #ifdef CONFIG_JUMP_LABEL
2107 	int wanted;
2108 
2109 	while (1) {
2110 		wanted = atomic_read(&netstamp_wanted);
2111 		if (wanted <= 0)
2112 			break;
2113 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2114 			return;
2115 	}
2116 	atomic_inc(&netstamp_needed_deferred);
2117 	schedule_work(&netstamp_work);
2118 #else
2119 	static_branch_inc(&netstamp_needed_key);
2120 #endif
2121 }
2122 EXPORT_SYMBOL(net_enable_timestamp);
2123 
2124 void net_disable_timestamp(void)
2125 {
2126 #ifdef CONFIG_JUMP_LABEL
2127 	int wanted;
2128 
2129 	while (1) {
2130 		wanted = atomic_read(&netstamp_wanted);
2131 		if (wanted <= 1)
2132 			break;
2133 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2134 			return;
2135 	}
2136 	atomic_dec(&netstamp_needed_deferred);
2137 	schedule_work(&netstamp_work);
2138 #else
2139 	static_branch_dec(&netstamp_needed_key);
2140 #endif
2141 }
2142 EXPORT_SYMBOL(net_disable_timestamp);
2143 
2144 static inline void net_timestamp_set(struct sk_buff *skb)
2145 {
2146 	skb->tstamp = 0;
2147 	if (static_branch_unlikely(&netstamp_needed_key))
2148 		__net_timestamp(skb);
2149 }
2150 
2151 #define net_timestamp_check(COND, SKB)				\
2152 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2153 		if ((COND) && !(SKB)->tstamp)			\
2154 			__net_timestamp(SKB);			\
2155 	}							\
2156 
2157 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2158 {
2159 	return __is_skb_forwardable(dev, skb, true);
2160 }
2161 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2162 
2163 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2164 			      bool check_mtu)
2165 {
2166 	int ret = ____dev_forward_skb(dev, skb, check_mtu);
2167 
2168 	if (likely(!ret)) {
2169 		skb->protocol = eth_type_trans(skb, dev);
2170 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2171 	}
2172 
2173 	return ret;
2174 }
2175 
2176 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2177 {
2178 	return __dev_forward_skb2(dev, skb, true);
2179 }
2180 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2181 
2182 /**
2183  * dev_forward_skb - loopback an skb to another netif
2184  *
2185  * @dev: destination network device
2186  * @skb: buffer to forward
2187  *
2188  * return values:
2189  *	NET_RX_SUCCESS	(no congestion)
2190  *	NET_RX_DROP     (packet was dropped, but freed)
2191  *
2192  * dev_forward_skb can be used for injecting an skb from the
2193  * start_xmit function of one device into the receive queue
2194  * of another device.
2195  *
2196  * The receiving device may be in another namespace, so
2197  * we have to clear all information in the skb that could
2198  * impact namespace isolation.
2199  */
2200 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2201 {
2202 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2203 }
2204 EXPORT_SYMBOL_GPL(dev_forward_skb);
2205 
2206 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2207 {
2208 	return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2209 }
2210 
2211 static inline int deliver_skb(struct sk_buff *skb,
2212 			      struct packet_type *pt_prev,
2213 			      struct net_device *orig_dev)
2214 {
2215 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2216 		return -ENOMEM;
2217 	refcount_inc(&skb->users);
2218 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2219 }
2220 
2221 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2222 					  struct packet_type **pt,
2223 					  struct net_device *orig_dev,
2224 					  __be16 type,
2225 					  struct list_head *ptype_list)
2226 {
2227 	struct packet_type *ptype, *pt_prev = *pt;
2228 
2229 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2230 		if (ptype->type != type)
2231 			continue;
2232 		if (pt_prev)
2233 			deliver_skb(skb, pt_prev, orig_dev);
2234 		pt_prev = ptype;
2235 	}
2236 	*pt = pt_prev;
2237 }
2238 
2239 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2240 {
2241 	if (!ptype->af_packet_priv || !skb->sk)
2242 		return false;
2243 
2244 	if (ptype->id_match)
2245 		return ptype->id_match(ptype, skb->sk);
2246 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2247 		return true;
2248 
2249 	return false;
2250 }
2251 
2252 /**
2253  * dev_nit_active - return true if any network interface taps are in use
2254  *
2255  * @dev: network device to check for the presence of taps
2256  */
2257 bool dev_nit_active(struct net_device *dev)
2258 {
2259 	return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2260 }
2261 EXPORT_SYMBOL_GPL(dev_nit_active);
2262 
2263 /*
2264  *	Support routine. Sends outgoing frames to any network
2265  *	taps currently in use.
2266  */
2267 
2268 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2269 {
2270 	struct packet_type *ptype;
2271 	struct sk_buff *skb2 = NULL;
2272 	struct packet_type *pt_prev = NULL;
2273 	struct list_head *ptype_list = &ptype_all;
2274 
2275 	rcu_read_lock();
2276 again:
2277 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2278 		if (ptype->ignore_outgoing)
2279 			continue;
2280 
2281 		/* Never send packets back to the socket
2282 		 * they originated from - MvS (miquels@drinkel.ow.org)
2283 		 */
2284 		if (skb_loop_sk(ptype, skb))
2285 			continue;
2286 
2287 		if (pt_prev) {
2288 			deliver_skb(skb2, pt_prev, skb->dev);
2289 			pt_prev = ptype;
2290 			continue;
2291 		}
2292 
2293 		/* need to clone skb, done only once */
2294 		skb2 = skb_clone(skb, GFP_ATOMIC);
2295 		if (!skb2)
2296 			goto out_unlock;
2297 
2298 		net_timestamp_set(skb2);
2299 
2300 		/* skb->nh should be correctly
2301 		 * set by sender, so that the second statement is
2302 		 * just protection against buggy protocols.
2303 		 */
2304 		skb_reset_mac_header(skb2);
2305 
2306 		if (skb_network_header(skb2) < skb2->data ||
2307 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2308 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2309 					     ntohs(skb2->protocol),
2310 					     dev->name);
2311 			skb_reset_network_header(skb2);
2312 		}
2313 
2314 		skb2->transport_header = skb2->network_header;
2315 		skb2->pkt_type = PACKET_OUTGOING;
2316 		pt_prev = ptype;
2317 	}
2318 
2319 	if (ptype_list == &ptype_all) {
2320 		ptype_list = &dev->ptype_all;
2321 		goto again;
2322 	}
2323 out_unlock:
2324 	if (pt_prev) {
2325 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2326 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2327 		else
2328 			kfree_skb(skb2);
2329 	}
2330 	rcu_read_unlock();
2331 }
2332 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2333 
2334 /**
2335  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2336  * @dev: Network device
2337  * @txq: number of queues available
2338  *
2339  * If real_num_tx_queues is changed the tc mappings may no longer be
2340  * valid. To resolve this verify the tc mapping remains valid and if
2341  * not NULL the mapping. With no priorities mapping to this
2342  * offset/count pair it will no longer be used. In the worst case TC0
2343  * is invalid nothing can be done so disable priority mappings. If is
2344  * expected that drivers will fix this mapping if they can before
2345  * calling netif_set_real_num_tx_queues.
2346  */
2347 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2348 {
2349 	int i;
2350 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2351 
2352 	/* If TC0 is invalidated disable TC mapping */
2353 	if (tc->offset + tc->count > txq) {
2354 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2355 		dev->num_tc = 0;
2356 		return;
2357 	}
2358 
2359 	/* Invalidated prio to tc mappings set to TC0 */
2360 	for (i = 1; i < TC_BITMASK + 1; i++) {
2361 		int q = netdev_get_prio_tc_map(dev, i);
2362 
2363 		tc = &dev->tc_to_txq[q];
2364 		if (tc->offset + tc->count > txq) {
2365 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2366 				i, q);
2367 			netdev_set_prio_tc_map(dev, i, 0);
2368 		}
2369 	}
2370 }
2371 
2372 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2373 {
2374 	if (dev->num_tc) {
2375 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2376 		int i;
2377 
2378 		/* walk through the TCs and see if it falls into any of them */
2379 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2380 			if ((txq - tc->offset) < tc->count)
2381 				return i;
2382 		}
2383 
2384 		/* didn't find it, just return -1 to indicate no match */
2385 		return -1;
2386 	}
2387 
2388 	return 0;
2389 }
2390 EXPORT_SYMBOL(netdev_txq_to_tc);
2391 
2392 #ifdef CONFIG_XPS
2393 static struct static_key xps_needed __read_mostly;
2394 static struct static_key xps_rxqs_needed __read_mostly;
2395 static DEFINE_MUTEX(xps_map_mutex);
2396 #define xmap_dereference(P)		\
2397 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2398 
2399 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2400 			     struct xps_dev_maps *old_maps, int tci, u16 index)
2401 {
2402 	struct xps_map *map = NULL;
2403 	int pos;
2404 
2405 	if (dev_maps)
2406 		map = xmap_dereference(dev_maps->attr_map[tci]);
2407 	if (!map)
2408 		return false;
2409 
2410 	for (pos = map->len; pos--;) {
2411 		if (map->queues[pos] != index)
2412 			continue;
2413 
2414 		if (map->len > 1) {
2415 			map->queues[pos] = map->queues[--map->len];
2416 			break;
2417 		}
2418 
2419 		if (old_maps)
2420 			RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2421 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2422 		kfree_rcu(map, rcu);
2423 		return false;
2424 	}
2425 
2426 	return true;
2427 }
2428 
2429 static bool remove_xps_queue_cpu(struct net_device *dev,
2430 				 struct xps_dev_maps *dev_maps,
2431 				 int cpu, u16 offset, u16 count)
2432 {
2433 	int num_tc = dev_maps->num_tc;
2434 	bool active = false;
2435 	int tci;
2436 
2437 	for (tci = cpu * num_tc; num_tc--; tci++) {
2438 		int i, j;
2439 
2440 		for (i = count, j = offset; i--; j++) {
2441 			if (!remove_xps_queue(dev_maps, NULL, tci, j))
2442 				break;
2443 		}
2444 
2445 		active |= i < 0;
2446 	}
2447 
2448 	return active;
2449 }
2450 
2451 static void reset_xps_maps(struct net_device *dev,
2452 			   struct xps_dev_maps *dev_maps,
2453 			   enum xps_map_type type)
2454 {
2455 	static_key_slow_dec_cpuslocked(&xps_needed);
2456 	if (type == XPS_RXQS)
2457 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2458 
2459 	RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2460 
2461 	kfree_rcu(dev_maps, rcu);
2462 }
2463 
2464 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2465 			   u16 offset, u16 count)
2466 {
2467 	struct xps_dev_maps *dev_maps;
2468 	bool active = false;
2469 	int i, j;
2470 
2471 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2472 	if (!dev_maps)
2473 		return;
2474 
2475 	for (j = 0; j < dev_maps->nr_ids; j++)
2476 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2477 	if (!active)
2478 		reset_xps_maps(dev, dev_maps, type);
2479 
2480 	if (type == XPS_CPUS) {
2481 		for (i = offset + (count - 1); count--; i--)
2482 			netdev_queue_numa_node_write(
2483 				netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2484 	}
2485 }
2486 
2487 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2488 				   u16 count)
2489 {
2490 	if (!static_key_false(&xps_needed))
2491 		return;
2492 
2493 	cpus_read_lock();
2494 	mutex_lock(&xps_map_mutex);
2495 
2496 	if (static_key_false(&xps_rxqs_needed))
2497 		clean_xps_maps(dev, XPS_RXQS, offset, count);
2498 
2499 	clean_xps_maps(dev, XPS_CPUS, offset, count);
2500 
2501 	mutex_unlock(&xps_map_mutex);
2502 	cpus_read_unlock();
2503 }
2504 
2505 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2506 {
2507 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2508 }
2509 
2510 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2511 				      u16 index, bool is_rxqs_map)
2512 {
2513 	struct xps_map *new_map;
2514 	int alloc_len = XPS_MIN_MAP_ALLOC;
2515 	int i, pos;
2516 
2517 	for (pos = 0; map && pos < map->len; pos++) {
2518 		if (map->queues[pos] != index)
2519 			continue;
2520 		return map;
2521 	}
2522 
2523 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2524 	if (map) {
2525 		if (pos < map->alloc_len)
2526 			return map;
2527 
2528 		alloc_len = map->alloc_len * 2;
2529 	}
2530 
2531 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2532 	 *  map
2533 	 */
2534 	if (is_rxqs_map)
2535 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2536 	else
2537 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2538 				       cpu_to_node(attr_index));
2539 	if (!new_map)
2540 		return NULL;
2541 
2542 	for (i = 0; i < pos; i++)
2543 		new_map->queues[i] = map->queues[i];
2544 	new_map->alloc_len = alloc_len;
2545 	new_map->len = pos;
2546 
2547 	return new_map;
2548 }
2549 
2550 /* Copy xps maps at a given index */
2551 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2552 			      struct xps_dev_maps *new_dev_maps, int index,
2553 			      int tc, bool skip_tc)
2554 {
2555 	int i, tci = index * dev_maps->num_tc;
2556 	struct xps_map *map;
2557 
2558 	/* copy maps belonging to foreign traffic classes */
2559 	for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2560 		if (i == tc && skip_tc)
2561 			continue;
2562 
2563 		/* fill in the new device map from the old device map */
2564 		map = xmap_dereference(dev_maps->attr_map[tci]);
2565 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2566 	}
2567 }
2568 
2569 /* Must be called under cpus_read_lock */
2570 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2571 			  u16 index, enum xps_map_type type)
2572 {
2573 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2574 	const unsigned long *online_mask = NULL;
2575 	bool active = false, copy = false;
2576 	int i, j, tci, numa_node_id = -2;
2577 	int maps_sz, num_tc = 1, tc = 0;
2578 	struct xps_map *map, *new_map;
2579 	unsigned int nr_ids;
2580 
2581 	if (dev->num_tc) {
2582 		/* Do not allow XPS on subordinate device directly */
2583 		num_tc = dev->num_tc;
2584 		if (num_tc < 0)
2585 			return -EINVAL;
2586 
2587 		/* If queue belongs to subordinate dev use its map */
2588 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2589 
2590 		tc = netdev_txq_to_tc(dev, index);
2591 		if (tc < 0)
2592 			return -EINVAL;
2593 	}
2594 
2595 	mutex_lock(&xps_map_mutex);
2596 
2597 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2598 	if (type == XPS_RXQS) {
2599 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2600 		nr_ids = dev->num_rx_queues;
2601 	} else {
2602 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2603 		if (num_possible_cpus() > 1)
2604 			online_mask = cpumask_bits(cpu_online_mask);
2605 		nr_ids = nr_cpu_ids;
2606 	}
2607 
2608 	if (maps_sz < L1_CACHE_BYTES)
2609 		maps_sz = L1_CACHE_BYTES;
2610 
2611 	/* The old dev_maps could be larger or smaller than the one we're
2612 	 * setting up now, as dev->num_tc or nr_ids could have been updated in
2613 	 * between. We could try to be smart, but let's be safe instead and only
2614 	 * copy foreign traffic classes if the two map sizes match.
2615 	 */
2616 	if (dev_maps &&
2617 	    dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2618 		copy = true;
2619 
2620 	/* allocate memory for queue storage */
2621 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2622 	     j < nr_ids;) {
2623 		if (!new_dev_maps) {
2624 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2625 			if (!new_dev_maps) {
2626 				mutex_unlock(&xps_map_mutex);
2627 				return -ENOMEM;
2628 			}
2629 
2630 			new_dev_maps->nr_ids = nr_ids;
2631 			new_dev_maps->num_tc = num_tc;
2632 		}
2633 
2634 		tci = j * num_tc + tc;
2635 		map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2636 
2637 		map = expand_xps_map(map, j, index, type == XPS_RXQS);
2638 		if (!map)
2639 			goto error;
2640 
2641 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2642 	}
2643 
2644 	if (!new_dev_maps)
2645 		goto out_no_new_maps;
2646 
2647 	if (!dev_maps) {
2648 		/* Increment static keys at most once per type */
2649 		static_key_slow_inc_cpuslocked(&xps_needed);
2650 		if (type == XPS_RXQS)
2651 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2652 	}
2653 
2654 	for (j = 0; j < nr_ids; j++) {
2655 		bool skip_tc = false;
2656 
2657 		tci = j * num_tc + tc;
2658 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2659 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2660 			/* add tx-queue to CPU/rx-queue maps */
2661 			int pos = 0;
2662 
2663 			skip_tc = true;
2664 
2665 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2666 			while ((pos < map->len) && (map->queues[pos] != index))
2667 				pos++;
2668 
2669 			if (pos == map->len)
2670 				map->queues[map->len++] = index;
2671 #ifdef CONFIG_NUMA
2672 			if (type == XPS_CPUS) {
2673 				if (numa_node_id == -2)
2674 					numa_node_id = cpu_to_node(j);
2675 				else if (numa_node_id != cpu_to_node(j))
2676 					numa_node_id = -1;
2677 			}
2678 #endif
2679 		}
2680 
2681 		if (copy)
2682 			xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2683 					  skip_tc);
2684 	}
2685 
2686 	rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2687 
2688 	/* Cleanup old maps */
2689 	if (!dev_maps)
2690 		goto out_no_old_maps;
2691 
2692 	for (j = 0; j < dev_maps->nr_ids; j++) {
2693 		for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2694 			map = xmap_dereference(dev_maps->attr_map[tci]);
2695 			if (!map)
2696 				continue;
2697 
2698 			if (copy) {
2699 				new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2700 				if (map == new_map)
2701 					continue;
2702 			}
2703 
2704 			RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2705 			kfree_rcu(map, rcu);
2706 		}
2707 	}
2708 
2709 	old_dev_maps = dev_maps;
2710 
2711 out_no_old_maps:
2712 	dev_maps = new_dev_maps;
2713 	active = true;
2714 
2715 out_no_new_maps:
2716 	if (type == XPS_CPUS)
2717 		/* update Tx queue numa node */
2718 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2719 					     (numa_node_id >= 0) ?
2720 					     numa_node_id : NUMA_NO_NODE);
2721 
2722 	if (!dev_maps)
2723 		goto out_no_maps;
2724 
2725 	/* removes tx-queue from unused CPUs/rx-queues */
2726 	for (j = 0; j < dev_maps->nr_ids; j++) {
2727 		tci = j * dev_maps->num_tc;
2728 
2729 		for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2730 			if (i == tc &&
2731 			    netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2732 			    netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2733 				continue;
2734 
2735 			active |= remove_xps_queue(dev_maps,
2736 						   copy ? old_dev_maps : NULL,
2737 						   tci, index);
2738 		}
2739 	}
2740 
2741 	if (old_dev_maps)
2742 		kfree_rcu(old_dev_maps, rcu);
2743 
2744 	/* free map if not active */
2745 	if (!active)
2746 		reset_xps_maps(dev, dev_maps, type);
2747 
2748 out_no_maps:
2749 	mutex_unlock(&xps_map_mutex);
2750 
2751 	return 0;
2752 error:
2753 	/* remove any maps that we added */
2754 	for (j = 0; j < nr_ids; j++) {
2755 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2756 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2757 			map = copy ?
2758 			      xmap_dereference(dev_maps->attr_map[tci]) :
2759 			      NULL;
2760 			if (new_map && new_map != map)
2761 				kfree(new_map);
2762 		}
2763 	}
2764 
2765 	mutex_unlock(&xps_map_mutex);
2766 
2767 	kfree(new_dev_maps);
2768 	return -ENOMEM;
2769 }
2770 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2771 
2772 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2773 			u16 index)
2774 {
2775 	int ret;
2776 
2777 	cpus_read_lock();
2778 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2779 	cpus_read_unlock();
2780 
2781 	return ret;
2782 }
2783 EXPORT_SYMBOL(netif_set_xps_queue);
2784 
2785 #endif
2786 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2787 {
2788 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2789 
2790 	/* Unbind any subordinate channels */
2791 	while (txq-- != &dev->_tx[0]) {
2792 		if (txq->sb_dev)
2793 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2794 	}
2795 }
2796 
2797 void netdev_reset_tc(struct net_device *dev)
2798 {
2799 #ifdef CONFIG_XPS
2800 	netif_reset_xps_queues_gt(dev, 0);
2801 #endif
2802 	netdev_unbind_all_sb_channels(dev);
2803 
2804 	/* Reset TC configuration of device */
2805 	dev->num_tc = 0;
2806 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2807 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2808 }
2809 EXPORT_SYMBOL(netdev_reset_tc);
2810 
2811 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2812 {
2813 	if (tc >= dev->num_tc)
2814 		return -EINVAL;
2815 
2816 #ifdef CONFIG_XPS
2817 	netif_reset_xps_queues(dev, offset, count);
2818 #endif
2819 	dev->tc_to_txq[tc].count = count;
2820 	dev->tc_to_txq[tc].offset = offset;
2821 	return 0;
2822 }
2823 EXPORT_SYMBOL(netdev_set_tc_queue);
2824 
2825 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2826 {
2827 	if (num_tc > TC_MAX_QUEUE)
2828 		return -EINVAL;
2829 
2830 #ifdef CONFIG_XPS
2831 	netif_reset_xps_queues_gt(dev, 0);
2832 #endif
2833 	netdev_unbind_all_sb_channels(dev);
2834 
2835 	dev->num_tc = num_tc;
2836 	return 0;
2837 }
2838 EXPORT_SYMBOL(netdev_set_num_tc);
2839 
2840 void netdev_unbind_sb_channel(struct net_device *dev,
2841 			      struct net_device *sb_dev)
2842 {
2843 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2844 
2845 #ifdef CONFIG_XPS
2846 	netif_reset_xps_queues_gt(sb_dev, 0);
2847 #endif
2848 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2849 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2850 
2851 	while (txq-- != &dev->_tx[0]) {
2852 		if (txq->sb_dev == sb_dev)
2853 			txq->sb_dev = NULL;
2854 	}
2855 }
2856 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2857 
2858 int netdev_bind_sb_channel_queue(struct net_device *dev,
2859 				 struct net_device *sb_dev,
2860 				 u8 tc, u16 count, u16 offset)
2861 {
2862 	/* Make certain the sb_dev and dev are already configured */
2863 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2864 		return -EINVAL;
2865 
2866 	/* We cannot hand out queues we don't have */
2867 	if ((offset + count) > dev->real_num_tx_queues)
2868 		return -EINVAL;
2869 
2870 	/* Record the mapping */
2871 	sb_dev->tc_to_txq[tc].count = count;
2872 	sb_dev->tc_to_txq[tc].offset = offset;
2873 
2874 	/* Provide a way for Tx queue to find the tc_to_txq map or
2875 	 * XPS map for itself.
2876 	 */
2877 	while (count--)
2878 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2879 
2880 	return 0;
2881 }
2882 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2883 
2884 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2885 {
2886 	/* Do not use a multiqueue device to represent a subordinate channel */
2887 	if (netif_is_multiqueue(dev))
2888 		return -ENODEV;
2889 
2890 	/* We allow channels 1 - 32767 to be used for subordinate channels.
2891 	 * Channel 0 is meant to be "native" mode and used only to represent
2892 	 * the main root device. We allow writing 0 to reset the device back
2893 	 * to normal mode after being used as a subordinate channel.
2894 	 */
2895 	if (channel > S16_MAX)
2896 		return -EINVAL;
2897 
2898 	dev->num_tc = -channel;
2899 
2900 	return 0;
2901 }
2902 EXPORT_SYMBOL(netdev_set_sb_channel);
2903 
2904 /*
2905  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2906  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2907  */
2908 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2909 {
2910 	bool disabling;
2911 	int rc;
2912 
2913 	disabling = txq < dev->real_num_tx_queues;
2914 
2915 	if (txq < 1 || txq > dev->num_tx_queues)
2916 		return -EINVAL;
2917 
2918 	if (dev->reg_state == NETREG_REGISTERED ||
2919 	    dev->reg_state == NETREG_UNREGISTERING) {
2920 		ASSERT_RTNL();
2921 
2922 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2923 						  txq);
2924 		if (rc)
2925 			return rc;
2926 
2927 		if (dev->num_tc)
2928 			netif_setup_tc(dev, txq);
2929 
2930 		dev_qdisc_change_real_num_tx(dev, txq);
2931 
2932 		dev->real_num_tx_queues = txq;
2933 
2934 		if (disabling) {
2935 			synchronize_net();
2936 			qdisc_reset_all_tx_gt(dev, txq);
2937 #ifdef CONFIG_XPS
2938 			netif_reset_xps_queues_gt(dev, txq);
2939 #endif
2940 		}
2941 	} else {
2942 		dev->real_num_tx_queues = txq;
2943 	}
2944 
2945 	return 0;
2946 }
2947 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2948 
2949 #ifdef CONFIG_SYSFS
2950 /**
2951  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2952  *	@dev: Network device
2953  *	@rxq: Actual number of RX queues
2954  *
2955  *	This must be called either with the rtnl_lock held or before
2956  *	registration of the net device.  Returns 0 on success, or a
2957  *	negative error code.  If called before registration, it always
2958  *	succeeds.
2959  */
2960 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2961 {
2962 	int rc;
2963 
2964 	if (rxq < 1 || rxq > dev->num_rx_queues)
2965 		return -EINVAL;
2966 
2967 	if (dev->reg_state == NETREG_REGISTERED) {
2968 		ASSERT_RTNL();
2969 
2970 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2971 						  rxq);
2972 		if (rc)
2973 			return rc;
2974 	}
2975 
2976 	dev->real_num_rx_queues = rxq;
2977 	return 0;
2978 }
2979 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2980 #endif
2981 
2982 /**
2983  *	netif_set_real_num_queues - set actual number of RX and TX queues used
2984  *	@dev: Network device
2985  *	@txq: Actual number of TX queues
2986  *	@rxq: Actual number of RX queues
2987  *
2988  *	Set the real number of both TX and RX queues.
2989  *	Does nothing if the number of queues is already correct.
2990  */
2991 int netif_set_real_num_queues(struct net_device *dev,
2992 			      unsigned int txq, unsigned int rxq)
2993 {
2994 	unsigned int old_rxq = dev->real_num_rx_queues;
2995 	int err;
2996 
2997 	if (txq < 1 || txq > dev->num_tx_queues ||
2998 	    rxq < 1 || rxq > dev->num_rx_queues)
2999 		return -EINVAL;
3000 
3001 	/* Start from increases, so the error path only does decreases -
3002 	 * decreases can't fail.
3003 	 */
3004 	if (rxq > dev->real_num_rx_queues) {
3005 		err = netif_set_real_num_rx_queues(dev, rxq);
3006 		if (err)
3007 			return err;
3008 	}
3009 	if (txq > dev->real_num_tx_queues) {
3010 		err = netif_set_real_num_tx_queues(dev, txq);
3011 		if (err)
3012 			goto undo_rx;
3013 	}
3014 	if (rxq < dev->real_num_rx_queues)
3015 		WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3016 	if (txq < dev->real_num_tx_queues)
3017 		WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3018 
3019 	return 0;
3020 undo_rx:
3021 	WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3022 	return err;
3023 }
3024 EXPORT_SYMBOL(netif_set_real_num_queues);
3025 
3026 /**
3027  * netif_get_num_default_rss_queues - default number of RSS queues
3028  *
3029  * This routine should set an upper limit on the number of RSS queues
3030  * used by default by multiqueue devices.
3031  */
3032 int netif_get_num_default_rss_queues(void)
3033 {
3034 	return is_kdump_kernel() ?
3035 		1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
3036 }
3037 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3038 
3039 static void __netif_reschedule(struct Qdisc *q)
3040 {
3041 	struct softnet_data *sd;
3042 	unsigned long flags;
3043 
3044 	local_irq_save(flags);
3045 	sd = this_cpu_ptr(&softnet_data);
3046 	q->next_sched = NULL;
3047 	*sd->output_queue_tailp = q;
3048 	sd->output_queue_tailp = &q->next_sched;
3049 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3050 	local_irq_restore(flags);
3051 }
3052 
3053 void __netif_schedule(struct Qdisc *q)
3054 {
3055 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3056 		__netif_reschedule(q);
3057 }
3058 EXPORT_SYMBOL(__netif_schedule);
3059 
3060 struct dev_kfree_skb_cb {
3061 	enum skb_free_reason reason;
3062 };
3063 
3064 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3065 {
3066 	return (struct dev_kfree_skb_cb *)skb->cb;
3067 }
3068 
3069 void netif_schedule_queue(struct netdev_queue *txq)
3070 {
3071 	rcu_read_lock();
3072 	if (!netif_xmit_stopped(txq)) {
3073 		struct Qdisc *q = rcu_dereference(txq->qdisc);
3074 
3075 		__netif_schedule(q);
3076 	}
3077 	rcu_read_unlock();
3078 }
3079 EXPORT_SYMBOL(netif_schedule_queue);
3080 
3081 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3082 {
3083 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3084 		struct Qdisc *q;
3085 
3086 		rcu_read_lock();
3087 		q = rcu_dereference(dev_queue->qdisc);
3088 		__netif_schedule(q);
3089 		rcu_read_unlock();
3090 	}
3091 }
3092 EXPORT_SYMBOL(netif_tx_wake_queue);
3093 
3094 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3095 {
3096 	unsigned long flags;
3097 
3098 	if (unlikely(!skb))
3099 		return;
3100 
3101 	if (likely(refcount_read(&skb->users) == 1)) {
3102 		smp_rmb();
3103 		refcount_set(&skb->users, 0);
3104 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3105 		return;
3106 	}
3107 	get_kfree_skb_cb(skb)->reason = reason;
3108 	local_irq_save(flags);
3109 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3110 	__this_cpu_write(softnet_data.completion_queue, skb);
3111 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3112 	local_irq_restore(flags);
3113 }
3114 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3115 
3116 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3117 {
3118 	if (in_hardirq() || irqs_disabled())
3119 		__dev_kfree_skb_irq(skb, reason);
3120 	else
3121 		dev_kfree_skb(skb);
3122 }
3123 EXPORT_SYMBOL(__dev_kfree_skb_any);
3124 
3125 
3126 /**
3127  * netif_device_detach - mark device as removed
3128  * @dev: network device
3129  *
3130  * Mark device as removed from system and therefore no longer available.
3131  */
3132 void netif_device_detach(struct net_device *dev)
3133 {
3134 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3135 	    netif_running(dev)) {
3136 		netif_tx_stop_all_queues(dev);
3137 	}
3138 }
3139 EXPORT_SYMBOL(netif_device_detach);
3140 
3141 /**
3142  * netif_device_attach - mark device as attached
3143  * @dev: network device
3144  *
3145  * Mark device as attached from system and restart if needed.
3146  */
3147 void netif_device_attach(struct net_device *dev)
3148 {
3149 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3150 	    netif_running(dev)) {
3151 		netif_tx_wake_all_queues(dev);
3152 		__netdev_watchdog_up(dev);
3153 	}
3154 }
3155 EXPORT_SYMBOL(netif_device_attach);
3156 
3157 /*
3158  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3159  * to be used as a distribution range.
3160  */
3161 static u16 skb_tx_hash(const struct net_device *dev,
3162 		       const struct net_device *sb_dev,
3163 		       struct sk_buff *skb)
3164 {
3165 	u32 hash;
3166 	u16 qoffset = 0;
3167 	u16 qcount = dev->real_num_tx_queues;
3168 
3169 	if (dev->num_tc) {
3170 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3171 
3172 		qoffset = sb_dev->tc_to_txq[tc].offset;
3173 		qcount = sb_dev->tc_to_txq[tc].count;
3174 	}
3175 
3176 	if (skb_rx_queue_recorded(skb)) {
3177 		hash = skb_get_rx_queue(skb);
3178 		if (hash >= qoffset)
3179 			hash -= qoffset;
3180 		while (unlikely(hash >= qcount))
3181 			hash -= qcount;
3182 		return hash + qoffset;
3183 	}
3184 
3185 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3186 }
3187 
3188 static void skb_warn_bad_offload(const struct sk_buff *skb)
3189 {
3190 	static const netdev_features_t null_features;
3191 	struct net_device *dev = skb->dev;
3192 	const char *name = "";
3193 
3194 	if (!net_ratelimit())
3195 		return;
3196 
3197 	if (dev) {
3198 		if (dev->dev.parent)
3199 			name = dev_driver_string(dev->dev.parent);
3200 		else
3201 			name = netdev_name(dev);
3202 	}
3203 	skb_dump(KERN_WARNING, skb, false);
3204 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3205 	     name, dev ? &dev->features : &null_features,
3206 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3207 }
3208 
3209 /*
3210  * Invalidate hardware checksum when packet is to be mangled, and
3211  * complete checksum manually on outgoing path.
3212  */
3213 int skb_checksum_help(struct sk_buff *skb)
3214 {
3215 	__wsum csum;
3216 	int ret = 0, offset;
3217 
3218 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3219 		goto out_set_summed;
3220 
3221 	if (unlikely(skb_is_gso(skb))) {
3222 		skb_warn_bad_offload(skb);
3223 		return -EINVAL;
3224 	}
3225 
3226 	/* Before computing a checksum, we should make sure no frag could
3227 	 * be modified by an external entity : checksum could be wrong.
3228 	 */
3229 	if (skb_has_shared_frag(skb)) {
3230 		ret = __skb_linearize(skb);
3231 		if (ret)
3232 			goto out;
3233 	}
3234 
3235 	offset = skb_checksum_start_offset(skb);
3236 	BUG_ON(offset >= skb_headlen(skb));
3237 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3238 
3239 	offset += skb->csum_offset;
3240 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3241 
3242 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3243 	if (ret)
3244 		goto out;
3245 
3246 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3247 out_set_summed:
3248 	skb->ip_summed = CHECKSUM_NONE;
3249 out:
3250 	return ret;
3251 }
3252 EXPORT_SYMBOL(skb_checksum_help);
3253 
3254 int skb_crc32c_csum_help(struct sk_buff *skb)
3255 {
3256 	__le32 crc32c_csum;
3257 	int ret = 0, offset, start;
3258 
3259 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3260 		goto out;
3261 
3262 	if (unlikely(skb_is_gso(skb)))
3263 		goto out;
3264 
3265 	/* Before computing a checksum, we should make sure no frag could
3266 	 * be modified by an external entity : checksum could be wrong.
3267 	 */
3268 	if (unlikely(skb_has_shared_frag(skb))) {
3269 		ret = __skb_linearize(skb);
3270 		if (ret)
3271 			goto out;
3272 	}
3273 	start = skb_checksum_start_offset(skb);
3274 	offset = start + offsetof(struct sctphdr, checksum);
3275 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3276 		ret = -EINVAL;
3277 		goto out;
3278 	}
3279 
3280 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3281 	if (ret)
3282 		goto out;
3283 
3284 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3285 						  skb->len - start, ~(__u32)0,
3286 						  crc32c_csum_stub));
3287 	*(__le32 *)(skb->data + offset) = crc32c_csum;
3288 	skb->ip_summed = CHECKSUM_NONE;
3289 	skb->csum_not_inet = 0;
3290 out:
3291 	return ret;
3292 }
3293 
3294 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3295 {
3296 	__be16 type = skb->protocol;
3297 
3298 	/* Tunnel gso handlers can set protocol to ethernet. */
3299 	if (type == htons(ETH_P_TEB)) {
3300 		struct ethhdr *eth;
3301 
3302 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3303 			return 0;
3304 
3305 		eth = (struct ethhdr *)skb->data;
3306 		type = eth->h_proto;
3307 	}
3308 
3309 	return __vlan_get_protocol(skb, type, depth);
3310 }
3311 
3312 /**
3313  *	skb_mac_gso_segment - mac layer segmentation handler.
3314  *	@skb: buffer to segment
3315  *	@features: features for the output path (see dev->features)
3316  */
3317 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3318 				    netdev_features_t features)
3319 {
3320 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3321 	struct packet_offload *ptype;
3322 	int vlan_depth = skb->mac_len;
3323 	__be16 type = skb_network_protocol(skb, &vlan_depth);
3324 
3325 	if (unlikely(!type))
3326 		return ERR_PTR(-EINVAL);
3327 
3328 	__skb_pull(skb, vlan_depth);
3329 
3330 	rcu_read_lock();
3331 	list_for_each_entry_rcu(ptype, &offload_base, list) {
3332 		if (ptype->type == type && ptype->callbacks.gso_segment) {
3333 			segs = ptype->callbacks.gso_segment(skb, features);
3334 			break;
3335 		}
3336 	}
3337 	rcu_read_unlock();
3338 
3339 	__skb_push(skb, skb->data - skb_mac_header(skb));
3340 
3341 	return segs;
3342 }
3343 EXPORT_SYMBOL(skb_mac_gso_segment);
3344 
3345 
3346 /* openvswitch calls this on rx path, so we need a different check.
3347  */
3348 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3349 {
3350 	if (tx_path)
3351 		return skb->ip_summed != CHECKSUM_PARTIAL &&
3352 		       skb->ip_summed != CHECKSUM_UNNECESSARY;
3353 
3354 	return skb->ip_summed == CHECKSUM_NONE;
3355 }
3356 
3357 /**
3358  *	__skb_gso_segment - Perform segmentation on skb.
3359  *	@skb: buffer to segment
3360  *	@features: features for the output path (see dev->features)
3361  *	@tx_path: whether it is called in TX path
3362  *
3363  *	This function segments the given skb and returns a list of segments.
3364  *
3365  *	It may return NULL if the skb requires no segmentation.  This is
3366  *	only possible when GSO is used for verifying header integrity.
3367  *
3368  *	Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3369  */
3370 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3371 				  netdev_features_t features, bool tx_path)
3372 {
3373 	struct sk_buff *segs;
3374 
3375 	if (unlikely(skb_needs_check(skb, tx_path))) {
3376 		int err;
3377 
3378 		/* We're going to init ->check field in TCP or UDP header */
3379 		err = skb_cow_head(skb, 0);
3380 		if (err < 0)
3381 			return ERR_PTR(err);
3382 	}
3383 
3384 	/* Only report GSO partial support if it will enable us to
3385 	 * support segmentation on this frame without needing additional
3386 	 * work.
3387 	 */
3388 	if (features & NETIF_F_GSO_PARTIAL) {
3389 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3390 		struct net_device *dev = skb->dev;
3391 
3392 		partial_features |= dev->features & dev->gso_partial_features;
3393 		if (!skb_gso_ok(skb, features | partial_features))
3394 			features &= ~NETIF_F_GSO_PARTIAL;
3395 	}
3396 
3397 	BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3398 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3399 
3400 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3401 	SKB_GSO_CB(skb)->encap_level = 0;
3402 
3403 	skb_reset_mac_header(skb);
3404 	skb_reset_mac_len(skb);
3405 
3406 	segs = skb_mac_gso_segment(skb, features);
3407 
3408 	if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3409 		skb_warn_bad_offload(skb);
3410 
3411 	return segs;
3412 }
3413 EXPORT_SYMBOL(__skb_gso_segment);
3414 
3415 /* Take action when hardware reception checksum errors are detected. */
3416 #ifdef CONFIG_BUG
3417 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3418 {
3419 	pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3420 	skb_dump(KERN_ERR, skb, true);
3421 	dump_stack();
3422 }
3423 
3424 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3425 {
3426 	DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3427 }
3428 EXPORT_SYMBOL(netdev_rx_csum_fault);
3429 #endif
3430 
3431 /* XXX: check that highmem exists at all on the given machine. */
3432 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3433 {
3434 #ifdef CONFIG_HIGHMEM
3435 	int i;
3436 
3437 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3438 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3439 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3440 
3441 			if (PageHighMem(skb_frag_page(frag)))
3442 				return 1;
3443 		}
3444 	}
3445 #endif
3446 	return 0;
3447 }
3448 
3449 /* If MPLS offload request, verify we are testing hardware MPLS features
3450  * instead of standard features for the netdev.
3451  */
3452 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3453 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3454 					   netdev_features_t features,
3455 					   __be16 type)
3456 {
3457 	if (eth_p_mpls(type))
3458 		features &= skb->dev->mpls_features;
3459 
3460 	return features;
3461 }
3462 #else
3463 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3464 					   netdev_features_t features,
3465 					   __be16 type)
3466 {
3467 	return features;
3468 }
3469 #endif
3470 
3471 static netdev_features_t harmonize_features(struct sk_buff *skb,
3472 	netdev_features_t features)
3473 {
3474 	__be16 type;
3475 
3476 	type = skb_network_protocol(skb, NULL);
3477 	features = net_mpls_features(skb, features, type);
3478 
3479 	if (skb->ip_summed != CHECKSUM_NONE &&
3480 	    !can_checksum_protocol(features, type)) {
3481 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3482 	}
3483 	if (illegal_highdma(skb->dev, skb))
3484 		features &= ~NETIF_F_SG;
3485 
3486 	return features;
3487 }
3488 
3489 netdev_features_t passthru_features_check(struct sk_buff *skb,
3490 					  struct net_device *dev,
3491 					  netdev_features_t features)
3492 {
3493 	return features;
3494 }
3495 EXPORT_SYMBOL(passthru_features_check);
3496 
3497 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3498 					     struct net_device *dev,
3499 					     netdev_features_t features)
3500 {
3501 	return vlan_features_check(skb, features);
3502 }
3503 
3504 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3505 					    struct net_device *dev,
3506 					    netdev_features_t features)
3507 {
3508 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3509 
3510 	if (gso_segs > dev->gso_max_segs)
3511 		return features & ~NETIF_F_GSO_MASK;
3512 
3513 	if (!skb_shinfo(skb)->gso_type) {
3514 		skb_warn_bad_offload(skb);
3515 		return features & ~NETIF_F_GSO_MASK;
3516 	}
3517 
3518 	/* Support for GSO partial features requires software
3519 	 * intervention before we can actually process the packets
3520 	 * so we need to strip support for any partial features now
3521 	 * and we can pull them back in after we have partially
3522 	 * segmented the frame.
3523 	 */
3524 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3525 		features &= ~dev->gso_partial_features;
3526 
3527 	/* Make sure to clear the IPv4 ID mangling feature if the
3528 	 * IPv4 header has the potential to be fragmented.
3529 	 */
3530 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3531 		struct iphdr *iph = skb->encapsulation ?
3532 				    inner_ip_hdr(skb) : ip_hdr(skb);
3533 
3534 		if (!(iph->frag_off & htons(IP_DF)))
3535 			features &= ~NETIF_F_TSO_MANGLEID;
3536 	}
3537 
3538 	return features;
3539 }
3540 
3541 netdev_features_t netif_skb_features(struct sk_buff *skb)
3542 {
3543 	struct net_device *dev = skb->dev;
3544 	netdev_features_t features = dev->features;
3545 
3546 	if (skb_is_gso(skb))
3547 		features = gso_features_check(skb, dev, features);
3548 
3549 	/* If encapsulation offload request, verify we are testing
3550 	 * hardware encapsulation features instead of standard
3551 	 * features for the netdev
3552 	 */
3553 	if (skb->encapsulation)
3554 		features &= dev->hw_enc_features;
3555 
3556 	if (skb_vlan_tagged(skb))
3557 		features = netdev_intersect_features(features,
3558 						     dev->vlan_features |
3559 						     NETIF_F_HW_VLAN_CTAG_TX |
3560 						     NETIF_F_HW_VLAN_STAG_TX);
3561 
3562 	if (dev->netdev_ops->ndo_features_check)
3563 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3564 								features);
3565 	else
3566 		features &= dflt_features_check(skb, dev, features);
3567 
3568 	return harmonize_features(skb, features);
3569 }
3570 EXPORT_SYMBOL(netif_skb_features);
3571 
3572 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3573 		    struct netdev_queue *txq, bool more)
3574 {
3575 	unsigned int len;
3576 	int rc;
3577 
3578 	if (dev_nit_active(dev))
3579 		dev_queue_xmit_nit(skb, dev);
3580 
3581 	len = skb->len;
3582 	PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies);
3583 	trace_net_dev_start_xmit(skb, dev);
3584 	rc = netdev_start_xmit(skb, dev, txq, more);
3585 	trace_net_dev_xmit(skb, rc, dev, len);
3586 
3587 	return rc;
3588 }
3589 
3590 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3591 				    struct netdev_queue *txq, int *ret)
3592 {
3593 	struct sk_buff *skb = first;
3594 	int rc = NETDEV_TX_OK;
3595 
3596 	while (skb) {
3597 		struct sk_buff *next = skb->next;
3598 
3599 		skb_mark_not_on_list(skb);
3600 		rc = xmit_one(skb, dev, txq, next != NULL);
3601 		if (unlikely(!dev_xmit_complete(rc))) {
3602 			skb->next = next;
3603 			goto out;
3604 		}
3605 
3606 		skb = next;
3607 		if (netif_tx_queue_stopped(txq) && skb) {
3608 			rc = NETDEV_TX_BUSY;
3609 			break;
3610 		}
3611 	}
3612 
3613 out:
3614 	*ret = rc;
3615 	return skb;
3616 }
3617 
3618 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3619 					  netdev_features_t features)
3620 {
3621 	if (skb_vlan_tag_present(skb) &&
3622 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3623 		skb = __vlan_hwaccel_push_inside(skb);
3624 	return skb;
3625 }
3626 
3627 int skb_csum_hwoffload_help(struct sk_buff *skb,
3628 			    const netdev_features_t features)
3629 {
3630 	if (unlikely(skb_csum_is_sctp(skb)))
3631 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3632 			skb_crc32c_csum_help(skb);
3633 
3634 	if (features & NETIF_F_HW_CSUM)
3635 		return 0;
3636 
3637 	if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3638 		switch (skb->csum_offset) {
3639 		case offsetof(struct tcphdr, check):
3640 		case offsetof(struct udphdr, check):
3641 			return 0;
3642 		}
3643 	}
3644 
3645 	return skb_checksum_help(skb);
3646 }
3647 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3648 
3649 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3650 {
3651 	netdev_features_t features;
3652 
3653 	features = netif_skb_features(skb);
3654 	skb = validate_xmit_vlan(skb, features);
3655 	if (unlikely(!skb))
3656 		goto out_null;
3657 
3658 	skb = sk_validate_xmit_skb(skb, dev);
3659 	if (unlikely(!skb))
3660 		goto out_null;
3661 
3662 	if (netif_needs_gso(skb, features)) {
3663 		struct sk_buff *segs;
3664 
3665 		segs = skb_gso_segment(skb, features);
3666 		if (IS_ERR(segs)) {
3667 			goto out_kfree_skb;
3668 		} else if (segs) {
3669 			consume_skb(skb);
3670 			skb = segs;
3671 		}
3672 	} else {
3673 		if (skb_needs_linearize(skb, features) &&
3674 		    __skb_linearize(skb))
3675 			goto out_kfree_skb;
3676 
3677 		/* If packet is not checksummed and device does not
3678 		 * support checksumming for this protocol, complete
3679 		 * checksumming here.
3680 		 */
3681 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3682 			if (skb->encapsulation)
3683 				skb_set_inner_transport_header(skb,
3684 							       skb_checksum_start_offset(skb));
3685 			else
3686 				skb_set_transport_header(skb,
3687 							 skb_checksum_start_offset(skb));
3688 			if (skb_csum_hwoffload_help(skb, features))
3689 				goto out_kfree_skb;
3690 		}
3691 	}
3692 
3693 	skb = validate_xmit_xfrm(skb, features, again);
3694 
3695 	return skb;
3696 
3697 out_kfree_skb:
3698 	kfree_skb(skb);
3699 out_null:
3700 	atomic_long_inc(&dev->tx_dropped);
3701 	return NULL;
3702 }
3703 
3704 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3705 {
3706 	struct sk_buff *next, *head = NULL, *tail;
3707 
3708 	for (; skb != NULL; skb = next) {
3709 		next = skb->next;
3710 		skb_mark_not_on_list(skb);
3711 
3712 		/* in case skb wont be segmented, point to itself */
3713 		skb->prev = skb;
3714 
3715 		skb = validate_xmit_skb(skb, dev, again);
3716 		if (!skb)
3717 			continue;
3718 
3719 		if (!head)
3720 			head = skb;
3721 		else
3722 			tail->next = skb;
3723 		/* If skb was segmented, skb->prev points to
3724 		 * the last segment. If not, it still contains skb.
3725 		 */
3726 		tail = skb->prev;
3727 	}
3728 	return head;
3729 }
3730 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3731 
3732 static void qdisc_pkt_len_init(struct sk_buff *skb)
3733 {
3734 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3735 
3736 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3737 
3738 	/* To get more precise estimation of bytes sent on wire,
3739 	 * we add to pkt_len the headers size of all segments
3740 	 */
3741 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3742 		unsigned int hdr_len;
3743 		u16 gso_segs = shinfo->gso_segs;
3744 
3745 		/* mac layer + network layer */
3746 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3747 
3748 		/* + transport layer */
3749 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3750 			const struct tcphdr *th;
3751 			struct tcphdr _tcphdr;
3752 
3753 			th = skb_header_pointer(skb, skb_transport_offset(skb),
3754 						sizeof(_tcphdr), &_tcphdr);
3755 			if (likely(th))
3756 				hdr_len += __tcp_hdrlen(th);
3757 		} else {
3758 			struct udphdr _udphdr;
3759 
3760 			if (skb_header_pointer(skb, skb_transport_offset(skb),
3761 					       sizeof(_udphdr), &_udphdr))
3762 				hdr_len += sizeof(struct udphdr);
3763 		}
3764 
3765 		if (shinfo->gso_type & SKB_GSO_DODGY)
3766 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3767 						shinfo->gso_size);
3768 
3769 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3770 	}
3771 }
3772 
3773 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3774 			     struct sk_buff **to_free,
3775 			     struct netdev_queue *txq)
3776 {
3777 	int rc;
3778 
3779 	rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3780 	if (rc == NET_XMIT_SUCCESS)
3781 		trace_qdisc_enqueue(q, txq, skb);
3782 	return rc;
3783 }
3784 
3785 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3786 				 struct net_device *dev,
3787 				 struct netdev_queue *txq)
3788 {
3789 	spinlock_t *root_lock = qdisc_lock(q);
3790 	struct sk_buff *to_free = NULL;
3791 	bool contended;
3792 	int rc;
3793 
3794 	qdisc_calculate_pkt_len(skb, q);
3795 
3796 	if (q->flags & TCQ_F_NOLOCK) {
3797 		if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3798 		    qdisc_run_begin(q)) {
3799 			/* Retest nolock_qdisc_is_empty() within the protection
3800 			 * of q->seqlock to protect from racing with requeuing.
3801 			 */
3802 			if (unlikely(!nolock_qdisc_is_empty(q))) {
3803 				rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3804 				__qdisc_run(q);
3805 				qdisc_run_end(q);
3806 
3807 				goto no_lock_out;
3808 			}
3809 
3810 			qdisc_bstats_cpu_update(q, skb);
3811 			if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3812 			    !nolock_qdisc_is_empty(q))
3813 				__qdisc_run(q);
3814 
3815 			qdisc_run_end(q);
3816 			return NET_XMIT_SUCCESS;
3817 		}
3818 
3819 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3820 		qdisc_run(q);
3821 
3822 no_lock_out:
3823 		if (unlikely(to_free))
3824 			kfree_skb_list(to_free);
3825 		return rc;
3826 	}
3827 
3828 	/*
3829 	 * Heuristic to force contended enqueues to serialize on a
3830 	 * separate lock before trying to get qdisc main lock.
3831 	 * This permits qdisc->running owner to get the lock more
3832 	 * often and dequeue packets faster.
3833 	 */
3834 	contended = qdisc_is_running(q);
3835 	if (unlikely(contended))
3836 		spin_lock(&q->busylock);
3837 
3838 	spin_lock(root_lock);
3839 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3840 		__qdisc_drop(skb, &to_free);
3841 		rc = NET_XMIT_DROP;
3842 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3843 		   qdisc_run_begin(q)) {
3844 		/*
3845 		 * This is a work-conserving queue; there are no old skbs
3846 		 * waiting to be sent out; and the qdisc is not running -
3847 		 * xmit the skb directly.
3848 		 */
3849 
3850 		qdisc_bstats_update(q, skb);
3851 
3852 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3853 			if (unlikely(contended)) {
3854 				spin_unlock(&q->busylock);
3855 				contended = false;
3856 			}
3857 			__qdisc_run(q);
3858 		}
3859 
3860 		qdisc_run_end(q);
3861 		rc = NET_XMIT_SUCCESS;
3862 	} else {
3863 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3864 		if (qdisc_run_begin(q)) {
3865 			if (unlikely(contended)) {
3866 				spin_unlock(&q->busylock);
3867 				contended = false;
3868 			}
3869 			__qdisc_run(q);
3870 			qdisc_run_end(q);
3871 		}
3872 	}
3873 	spin_unlock(root_lock);
3874 	if (unlikely(to_free))
3875 		kfree_skb_list(to_free);
3876 	if (unlikely(contended))
3877 		spin_unlock(&q->busylock);
3878 	return rc;
3879 }
3880 
3881 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3882 static void skb_update_prio(struct sk_buff *skb)
3883 {
3884 	const struct netprio_map *map;
3885 	const struct sock *sk;
3886 	unsigned int prioidx;
3887 
3888 	if (skb->priority)
3889 		return;
3890 	map = rcu_dereference_bh(skb->dev->priomap);
3891 	if (!map)
3892 		return;
3893 	sk = skb_to_full_sk(skb);
3894 	if (!sk)
3895 		return;
3896 
3897 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3898 
3899 	if (prioidx < map->priomap_len)
3900 		skb->priority = map->priomap[prioidx];
3901 }
3902 #else
3903 #define skb_update_prio(skb)
3904 #endif
3905 
3906 /**
3907  *	dev_loopback_xmit - loop back @skb
3908  *	@net: network namespace this loopback is happening in
3909  *	@sk:  sk needed to be a netfilter okfn
3910  *	@skb: buffer to transmit
3911  */
3912 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3913 {
3914 	skb_reset_mac_header(skb);
3915 	__skb_pull(skb, skb_network_offset(skb));
3916 	skb->pkt_type = PACKET_LOOPBACK;
3917 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3918 	WARN_ON(!skb_dst(skb));
3919 	skb_dst_force(skb);
3920 	netif_rx_ni(skb);
3921 	return 0;
3922 }
3923 EXPORT_SYMBOL(dev_loopback_xmit);
3924 
3925 #ifdef CONFIG_NET_EGRESS
3926 static struct sk_buff *
3927 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3928 {
3929 	struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3930 	struct tcf_result cl_res;
3931 
3932 	if (!miniq)
3933 		return skb;
3934 
3935 	/* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3936 	qdisc_skb_cb(skb)->mru = 0;
3937 	qdisc_skb_cb(skb)->post_ct = false;
3938 	mini_qdisc_bstats_cpu_update(miniq, skb);
3939 
3940 	switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
3941 	case TC_ACT_OK:
3942 	case TC_ACT_RECLASSIFY:
3943 		skb->tc_index = TC_H_MIN(cl_res.classid);
3944 		break;
3945 	case TC_ACT_SHOT:
3946 		mini_qdisc_qstats_cpu_drop(miniq);
3947 		*ret = NET_XMIT_DROP;
3948 		kfree_skb(skb);
3949 		return NULL;
3950 	case TC_ACT_STOLEN:
3951 	case TC_ACT_QUEUED:
3952 	case TC_ACT_TRAP:
3953 		*ret = NET_XMIT_SUCCESS;
3954 		consume_skb(skb);
3955 		return NULL;
3956 	case TC_ACT_REDIRECT:
3957 		/* No need to push/pop skb's mac_header here on egress! */
3958 		skb_do_redirect(skb);
3959 		*ret = NET_XMIT_SUCCESS;
3960 		return NULL;
3961 	default:
3962 		break;
3963 	}
3964 
3965 	return skb;
3966 }
3967 #endif /* CONFIG_NET_EGRESS */
3968 
3969 #ifdef CONFIG_XPS
3970 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3971 			       struct xps_dev_maps *dev_maps, unsigned int tci)
3972 {
3973 	int tc = netdev_get_prio_tc_map(dev, skb->priority);
3974 	struct xps_map *map;
3975 	int queue_index = -1;
3976 
3977 	if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
3978 		return queue_index;
3979 
3980 	tci *= dev_maps->num_tc;
3981 	tci += tc;
3982 
3983 	map = rcu_dereference(dev_maps->attr_map[tci]);
3984 	if (map) {
3985 		if (map->len == 1)
3986 			queue_index = map->queues[0];
3987 		else
3988 			queue_index = map->queues[reciprocal_scale(
3989 						skb_get_hash(skb), map->len)];
3990 		if (unlikely(queue_index >= dev->real_num_tx_queues))
3991 			queue_index = -1;
3992 	}
3993 	return queue_index;
3994 }
3995 #endif
3996 
3997 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3998 			 struct sk_buff *skb)
3999 {
4000 #ifdef CONFIG_XPS
4001 	struct xps_dev_maps *dev_maps;
4002 	struct sock *sk = skb->sk;
4003 	int queue_index = -1;
4004 
4005 	if (!static_key_false(&xps_needed))
4006 		return -1;
4007 
4008 	rcu_read_lock();
4009 	if (!static_key_false(&xps_rxqs_needed))
4010 		goto get_cpus_map;
4011 
4012 	dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4013 	if (dev_maps) {
4014 		int tci = sk_rx_queue_get(sk);
4015 
4016 		if (tci >= 0)
4017 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4018 							  tci);
4019 	}
4020 
4021 get_cpus_map:
4022 	if (queue_index < 0) {
4023 		dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4024 		if (dev_maps) {
4025 			unsigned int tci = skb->sender_cpu - 1;
4026 
4027 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4028 							  tci);
4029 		}
4030 	}
4031 	rcu_read_unlock();
4032 
4033 	return queue_index;
4034 #else
4035 	return -1;
4036 #endif
4037 }
4038 
4039 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4040 		     struct net_device *sb_dev)
4041 {
4042 	return 0;
4043 }
4044 EXPORT_SYMBOL(dev_pick_tx_zero);
4045 
4046 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4047 		       struct net_device *sb_dev)
4048 {
4049 	return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4050 }
4051 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4052 
4053 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4054 		     struct net_device *sb_dev)
4055 {
4056 	struct sock *sk = skb->sk;
4057 	int queue_index = sk_tx_queue_get(sk);
4058 
4059 	sb_dev = sb_dev ? : dev;
4060 
4061 	if (queue_index < 0 || skb->ooo_okay ||
4062 	    queue_index >= dev->real_num_tx_queues) {
4063 		int new_index = get_xps_queue(dev, sb_dev, skb);
4064 
4065 		if (new_index < 0)
4066 			new_index = skb_tx_hash(dev, sb_dev, skb);
4067 
4068 		if (queue_index != new_index && sk &&
4069 		    sk_fullsock(sk) &&
4070 		    rcu_access_pointer(sk->sk_dst_cache))
4071 			sk_tx_queue_set(sk, new_index);
4072 
4073 		queue_index = new_index;
4074 	}
4075 
4076 	return queue_index;
4077 }
4078 EXPORT_SYMBOL(netdev_pick_tx);
4079 
4080 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4081 					 struct sk_buff *skb,
4082 					 struct net_device *sb_dev)
4083 {
4084 	int queue_index = 0;
4085 
4086 #ifdef CONFIG_XPS
4087 	u32 sender_cpu = skb->sender_cpu - 1;
4088 
4089 	if (sender_cpu >= (u32)NR_CPUS)
4090 		skb->sender_cpu = raw_smp_processor_id() + 1;
4091 #endif
4092 
4093 	if (dev->real_num_tx_queues != 1) {
4094 		const struct net_device_ops *ops = dev->netdev_ops;
4095 
4096 		if (ops->ndo_select_queue)
4097 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4098 		else
4099 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4100 
4101 		queue_index = netdev_cap_txqueue(dev, queue_index);
4102 	}
4103 
4104 	skb_set_queue_mapping(skb, queue_index);
4105 	return netdev_get_tx_queue(dev, queue_index);
4106 }
4107 
4108 /**
4109  *	__dev_queue_xmit - transmit a buffer
4110  *	@skb: buffer to transmit
4111  *	@sb_dev: suboordinate device used for L2 forwarding offload
4112  *
4113  *	Queue a buffer for transmission to a network device. The caller must
4114  *	have set the device and priority and built the buffer before calling
4115  *	this function. The function can be called from an interrupt.
4116  *
4117  *	A negative errno code is returned on a failure. A success does not
4118  *	guarantee the frame will be transmitted as it may be dropped due
4119  *	to congestion or traffic shaping.
4120  *
4121  * -----------------------------------------------------------------------------------
4122  *      I notice this method can also return errors from the queue disciplines,
4123  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
4124  *      be positive.
4125  *
4126  *      Regardless of the return value, the skb is consumed, so it is currently
4127  *      difficult to retry a send to this method.  (You can bump the ref count
4128  *      before sending to hold a reference for retry if you are careful.)
4129  *
4130  *      When calling this method, interrupts MUST be enabled.  This is because
4131  *      the BH enable code must have IRQs enabled so that it will not deadlock.
4132  *          --BLG
4133  */
4134 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4135 {
4136 	struct net_device *dev = skb->dev;
4137 	struct netdev_queue *txq;
4138 	struct Qdisc *q;
4139 	int rc = -ENOMEM;
4140 	bool again = false;
4141 
4142 	skb_reset_mac_header(skb);
4143 
4144 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4145 		__skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4146 
4147 	/* Disable soft irqs for various locks below. Also
4148 	 * stops preemption for RCU.
4149 	 */
4150 	rcu_read_lock_bh();
4151 
4152 	skb_update_prio(skb);
4153 
4154 	qdisc_pkt_len_init(skb);
4155 #ifdef CONFIG_NET_CLS_ACT
4156 	skb->tc_at_ingress = 0;
4157 # ifdef CONFIG_NET_EGRESS
4158 	if (static_branch_unlikely(&egress_needed_key)) {
4159 		skb = sch_handle_egress(skb, &rc, dev);
4160 		if (!skb)
4161 			goto out;
4162 	}
4163 # endif
4164 #endif
4165 	/* If device/qdisc don't need skb->dst, release it right now while
4166 	 * its hot in this cpu cache.
4167 	 */
4168 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4169 		skb_dst_drop(skb);
4170 	else
4171 		skb_dst_force(skb);
4172 
4173 	txq = netdev_core_pick_tx(dev, skb, sb_dev);
4174 	q = rcu_dereference_bh(txq->qdisc);
4175 
4176 	trace_net_dev_queue(skb);
4177 	if (q->enqueue) {
4178 		rc = __dev_xmit_skb(skb, q, dev, txq);
4179 		goto out;
4180 	}
4181 
4182 	/* The device has no queue. Common case for software devices:
4183 	 * loopback, all the sorts of tunnels...
4184 
4185 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4186 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4187 	 * counters.)
4188 	 * However, it is possible, that they rely on protection
4189 	 * made by us here.
4190 
4191 	 * Check this and shot the lock. It is not prone from deadlocks.
4192 	 *Either shot noqueue qdisc, it is even simpler 8)
4193 	 */
4194 	if (dev->flags & IFF_UP) {
4195 		int cpu = smp_processor_id(); /* ok because BHs are off */
4196 
4197 		if (txq->xmit_lock_owner != cpu) {
4198 			if (dev_xmit_recursion())
4199 				goto recursion_alert;
4200 
4201 			skb = validate_xmit_skb(skb, dev, &again);
4202 			if (!skb)
4203 				goto out;
4204 
4205 			PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4206 			HARD_TX_LOCK(dev, txq, cpu);
4207 
4208 			if (!netif_xmit_stopped(txq)) {
4209 				dev_xmit_recursion_inc();
4210 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4211 				dev_xmit_recursion_dec();
4212 				if (dev_xmit_complete(rc)) {
4213 					HARD_TX_UNLOCK(dev, txq);
4214 					goto out;
4215 				}
4216 			}
4217 			HARD_TX_UNLOCK(dev, txq);
4218 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4219 					     dev->name);
4220 		} else {
4221 			/* Recursion is detected! It is possible,
4222 			 * unfortunately
4223 			 */
4224 recursion_alert:
4225 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4226 					     dev->name);
4227 		}
4228 	}
4229 
4230 	rc = -ENETDOWN;
4231 	rcu_read_unlock_bh();
4232 
4233 	atomic_long_inc(&dev->tx_dropped);
4234 	kfree_skb_list(skb);
4235 	return rc;
4236 out:
4237 	rcu_read_unlock_bh();
4238 	return rc;
4239 }
4240 
4241 int dev_queue_xmit(struct sk_buff *skb)
4242 {
4243 	return __dev_queue_xmit(skb, NULL);
4244 }
4245 EXPORT_SYMBOL(dev_queue_xmit);
4246 
4247 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4248 {
4249 	return __dev_queue_xmit(skb, sb_dev);
4250 }
4251 EXPORT_SYMBOL(dev_queue_xmit_accel);
4252 
4253 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4254 {
4255 	struct net_device *dev = skb->dev;
4256 	struct sk_buff *orig_skb = skb;
4257 	struct netdev_queue *txq;
4258 	int ret = NETDEV_TX_BUSY;
4259 	bool again = false;
4260 
4261 	if (unlikely(!netif_running(dev) ||
4262 		     !netif_carrier_ok(dev)))
4263 		goto drop;
4264 
4265 	skb = validate_xmit_skb_list(skb, dev, &again);
4266 	if (skb != orig_skb)
4267 		goto drop;
4268 
4269 	skb_set_queue_mapping(skb, queue_id);
4270 	txq = skb_get_tx_queue(dev, skb);
4271 	PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4272 
4273 	local_bh_disable();
4274 
4275 	dev_xmit_recursion_inc();
4276 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4277 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4278 		ret = netdev_start_xmit(skb, dev, txq, false);
4279 	HARD_TX_UNLOCK(dev, txq);
4280 	dev_xmit_recursion_dec();
4281 
4282 	local_bh_enable();
4283 	return ret;
4284 drop:
4285 	atomic_long_inc(&dev->tx_dropped);
4286 	kfree_skb_list(skb);
4287 	return NET_XMIT_DROP;
4288 }
4289 EXPORT_SYMBOL(__dev_direct_xmit);
4290 
4291 /*************************************************************************
4292  *			Receiver routines
4293  *************************************************************************/
4294 
4295 int netdev_max_backlog __read_mostly = 1000;
4296 EXPORT_SYMBOL(netdev_max_backlog);
4297 
4298 int netdev_tstamp_prequeue __read_mostly = 1;
4299 int netdev_budget __read_mostly = 300;
4300 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4301 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4302 int weight_p __read_mostly = 64;           /* old backlog weight */
4303 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4304 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4305 int dev_rx_weight __read_mostly = 64;
4306 int dev_tx_weight __read_mostly = 64;
4307 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4308 int gro_normal_batch __read_mostly = 8;
4309 
4310 /* Called with irq disabled */
4311 static inline void ____napi_schedule(struct softnet_data *sd,
4312 				     struct napi_struct *napi)
4313 {
4314 	struct task_struct *thread;
4315 
4316 	if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4317 		/* Paired with smp_mb__before_atomic() in
4318 		 * napi_enable()/dev_set_threaded().
4319 		 * Use READ_ONCE() to guarantee a complete
4320 		 * read on napi->thread. Only call
4321 		 * wake_up_process() when it's not NULL.
4322 		 */
4323 		thread = READ_ONCE(napi->thread);
4324 		if (thread) {
4325 			/* Avoid doing set_bit() if the thread is in
4326 			 * INTERRUPTIBLE state, cause napi_thread_wait()
4327 			 * makes sure to proceed with napi polling
4328 			 * if the thread is explicitly woken from here.
4329 			 */
4330 			if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4331 				set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4332 			wake_up_process(thread);
4333 			return;
4334 		}
4335 	}
4336 
4337 	list_add_tail(&napi->poll_list, &sd->poll_list);
4338 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4339 }
4340 
4341 #ifdef CONFIG_RPS
4342 
4343 /* One global table that all flow-based protocols share. */
4344 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4345 EXPORT_SYMBOL(rps_sock_flow_table);
4346 u32 rps_cpu_mask __read_mostly;
4347 EXPORT_SYMBOL(rps_cpu_mask);
4348 
4349 struct static_key_false rps_needed __read_mostly;
4350 EXPORT_SYMBOL(rps_needed);
4351 struct static_key_false rfs_needed __read_mostly;
4352 EXPORT_SYMBOL(rfs_needed);
4353 
4354 static struct rps_dev_flow *
4355 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4356 	    struct rps_dev_flow *rflow, u16 next_cpu)
4357 {
4358 	if (next_cpu < nr_cpu_ids) {
4359 #ifdef CONFIG_RFS_ACCEL
4360 		struct netdev_rx_queue *rxqueue;
4361 		struct rps_dev_flow_table *flow_table;
4362 		struct rps_dev_flow *old_rflow;
4363 		u32 flow_id;
4364 		u16 rxq_index;
4365 		int rc;
4366 
4367 		/* Should we steer this flow to a different hardware queue? */
4368 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4369 		    !(dev->features & NETIF_F_NTUPLE))
4370 			goto out;
4371 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4372 		if (rxq_index == skb_get_rx_queue(skb))
4373 			goto out;
4374 
4375 		rxqueue = dev->_rx + rxq_index;
4376 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4377 		if (!flow_table)
4378 			goto out;
4379 		flow_id = skb_get_hash(skb) & flow_table->mask;
4380 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4381 							rxq_index, flow_id);
4382 		if (rc < 0)
4383 			goto out;
4384 		old_rflow = rflow;
4385 		rflow = &flow_table->flows[flow_id];
4386 		rflow->filter = rc;
4387 		if (old_rflow->filter == rflow->filter)
4388 			old_rflow->filter = RPS_NO_FILTER;
4389 	out:
4390 #endif
4391 		rflow->last_qtail =
4392 			per_cpu(softnet_data, next_cpu).input_queue_head;
4393 	}
4394 
4395 	rflow->cpu = next_cpu;
4396 	return rflow;
4397 }
4398 
4399 /*
4400  * get_rps_cpu is called from netif_receive_skb and returns the target
4401  * CPU from the RPS map of the receiving queue for a given skb.
4402  * rcu_read_lock must be held on entry.
4403  */
4404 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4405 		       struct rps_dev_flow **rflowp)
4406 {
4407 	const struct rps_sock_flow_table *sock_flow_table;
4408 	struct netdev_rx_queue *rxqueue = dev->_rx;
4409 	struct rps_dev_flow_table *flow_table;
4410 	struct rps_map *map;
4411 	int cpu = -1;
4412 	u32 tcpu;
4413 	u32 hash;
4414 
4415 	if (skb_rx_queue_recorded(skb)) {
4416 		u16 index = skb_get_rx_queue(skb);
4417 
4418 		if (unlikely(index >= dev->real_num_rx_queues)) {
4419 			WARN_ONCE(dev->real_num_rx_queues > 1,
4420 				  "%s received packet on queue %u, but number "
4421 				  "of RX queues is %u\n",
4422 				  dev->name, index, dev->real_num_rx_queues);
4423 			goto done;
4424 		}
4425 		rxqueue += index;
4426 	}
4427 
4428 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4429 
4430 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4431 	map = rcu_dereference(rxqueue->rps_map);
4432 	if (!flow_table && !map)
4433 		goto done;
4434 
4435 	skb_reset_network_header(skb);
4436 	hash = skb_get_hash(skb);
4437 	if (!hash)
4438 		goto done;
4439 
4440 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
4441 	if (flow_table && sock_flow_table) {
4442 		struct rps_dev_flow *rflow;
4443 		u32 next_cpu;
4444 		u32 ident;
4445 
4446 		/* First check into global flow table if there is a match */
4447 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4448 		if ((ident ^ hash) & ~rps_cpu_mask)
4449 			goto try_rps;
4450 
4451 		next_cpu = ident & rps_cpu_mask;
4452 
4453 		/* OK, now we know there is a match,
4454 		 * we can look at the local (per receive queue) flow table
4455 		 */
4456 		rflow = &flow_table->flows[hash & flow_table->mask];
4457 		tcpu = rflow->cpu;
4458 
4459 		/*
4460 		 * If the desired CPU (where last recvmsg was done) is
4461 		 * different from current CPU (one in the rx-queue flow
4462 		 * table entry), switch if one of the following holds:
4463 		 *   - Current CPU is unset (>= nr_cpu_ids).
4464 		 *   - Current CPU is offline.
4465 		 *   - The current CPU's queue tail has advanced beyond the
4466 		 *     last packet that was enqueued using this table entry.
4467 		 *     This guarantees that all previous packets for the flow
4468 		 *     have been dequeued, thus preserving in order delivery.
4469 		 */
4470 		if (unlikely(tcpu != next_cpu) &&
4471 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4472 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4473 		      rflow->last_qtail)) >= 0)) {
4474 			tcpu = next_cpu;
4475 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4476 		}
4477 
4478 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4479 			*rflowp = rflow;
4480 			cpu = tcpu;
4481 			goto done;
4482 		}
4483 	}
4484 
4485 try_rps:
4486 
4487 	if (map) {
4488 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4489 		if (cpu_online(tcpu)) {
4490 			cpu = tcpu;
4491 			goto done;
4492 		}
4493 	}
4494 
4495 done:
4496 	return cpu;
4497 }
4498 
4499 #ifdef CONFIG_RFS_ACCEL
4500 
4501 /**
4502  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4503  * @dev: Device on which the filter was set
4504  * @rxq_index: RX queue index
4505  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4506  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4507  *
4508  * Drivers that implement ndo_rx_flow_steer() should periodically call
4509  * this function for each installed filter and remove the filters for
4510  * which it returns %true.
4511  */
4512 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4513 			 u32 flow_id, u16 filter_id)
4514 {
4515 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4516 	struct rps_dev_flow_table *flow_table;
4517 	struct rps_dev_flow *rflow;
4518 	bool expire = true;
4519 	unsigned int cpu;
4520 
4521 	rcu_read_lock();
4522 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4523 	if (flow_table && flow_id <= flow_table->mask) {
4524 		rflow = &flow_table->flows[flow_id];
4525 		cpu = READ_ONCE(rflow->cpu);
4526 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4527 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4528 			   rflow->last_qtail) <
4529 		     (int)(10 * flow_table->mask)))
4530 			expire = false;
4531 	}
4532 	rcu_read_unlock();
4533 	return expire;
4534 }
4535 EXPORT_SYMBOL(rps_may_expire_flow);
4536 
4537 #endif /* CONFIG_RFS_ACCEL */
4538 
4539 /* Called from hardirq (IPI) context */
4540 static void rps_trigger_softirq(void *data)
4541 {
4542 	struct softnet_data *sd = data;
4543 
4544 	____napi_schedule(sd, &sd->backlog);
4545 	sd->received_rps++;
4546 }
4547 
4548 #endif /* CONFIG_RPS */
4549 
4550 /*
4551  * Check if this softnet_data structure is another cpu one
4552  * If yes, queue it to our IPI list and return 1
4553  * If no, return 0
4554  */
4555 static int rps_ipi_queued(struct softnet_data *sd)
4556 {
4557 #ifdef CONFIG_RPS
4558 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4559 
4560 	if (sd != mysd) {
4561 		sd->rps_ipi_next = mysd->rps_ipi_list;
4562 		mysd->rps_ipi_list = sd;
4563 
4564 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4565 		return 1;
4566 	}
4567 #endif /* CONFIG_RPS */
4568 	return 0;
4569 }
4570 
4571 #ifdef CONFIG_NET_FLOW_LIMIT
4572 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4573 #endif
4574 
4575 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4576 {
4577 #ifdef CONFIG_NET_FLOW_LIMIT
4578 	struct sd_flow_limit *fl;
4579 	struct softnet_data *sd;
4580 	unsigned int old_flow, new_flow;
4581 
4582 	if (qlen < (netdev_max_backlog >> 1))
4583 		return false;
4584 
4585 	sd = this_cpu_ptr(&softnet_data);
4586 
4587 	rcu_read_lock();
4588 	fl = rcu_dereference(sd->flow_limit);
4589 	if (fl) {
4590 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4591 		old_flow = fl->history[fl->history_head];
4592 		fl->history[fl->history_head] = new_flow;
4593 
4594 		fl->history_head++;
4595 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4596 
4597 		if (likely(fl->buckets[old_flow]))
4598 			fl->buckets[old_flow]--;
4599 
4600 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4601 			fl->count++;
4602 			rcu_read_unlock();
4603 			return true;
4604 		}
4605 	}
4606 	rcu_read_unlock();
4607 #endif
4608 	return false;
4609 }
4610 
4611 /*
4612  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4613  * queue (may be a remote CPU queue).
4614  */
4615 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4616 			      unsigned int *qtail)
4617 {
4618 	struct softnet_data *sd;
4619 	unsigned long flags;
4620 	unsigned int qlen;
4621 
4622 	sd = &per_cpu(softnet_data, cpu);
4623 
4624 	local_irq_save(flags);
4625 
4626 	rps_lock(sd);
4627 	if (!netif_running(skb->dev))
4628 		goto drop;
4629 	qlen = skb_queue_len(&sd->input_pkt_queue);
4630 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4631 		if (qlen) {
4632 enqueue:
4633 			__skb_queue_tail(&sd->input_pkt_queue, skb);
4634 			input_queue_tail_incr_save(sd, qtail);
4635 			rps_unlock(sd);
4636 			local_irq_restore(flags);
4637 			return NET_RX_SUCCESS;
4638 		}
4639 
4640 		/* Schedule NAPI for backlog device
4641 		 * We can use non atomic operation since we own the queue lock
4642 		 */
4643 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4644 			if (!rps_ipi_queued(sd))
4645 				____napi_schedule(sd, &sd->backlog);
4646 		}
4647 		goto enqueue;
4648 	}
4649 
4650 drop:
4651 	sd->dropped++;
4652 	rps_unlock(sd);
4653 
4654 	local_irq_restore(flags);
4655 
4656 	atomic_long_inc(&skb->dev->rx_dropped);
4657 	kfree_skb(skb);
4658 	return NET_RX_DROP;
4659 }
4660 
4661 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4662 {
4663 	struct net_device *dev = skb->dev;
4664 	struct netdev_rx_queue *rxqueue;
4665 
4666 	rxqueue = dev->_rx;
4667 
4668 	if (skb_rx_queue_recorded(skb)) {
4669 		u16 index = skb_get_rx_queue(skb);
4670 
4671 		if (unlikely(index >= dev->real_num_rx_queues)) {
4672 			WARN_ONCE(dev->real_num_rx_queues > 1,
4673 				  "%s received packet on queue %u, but number "
4674 				  "of RX queues is %u\n",
4675 				  dev->name, index, dev->real_num_rx_queues);
4676 
4677 			return rxqueue; /* Return first rxqueue */
4678 		}
4679 		rxqueue += index;
4680 	}
4681 	return rxqueue;
4682 }
4683 
4684 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4685 			     struct bpf_prog *xdp_prog)
4686 {
4687 	void *orig_data, *orig_data_end, *hard_start;
4688 	struct netdev_rx_queue *rxqueue;
4689 	bool orig_bcast, orig_host;
4690 	u32 mac_len, frame_sz;
4691 	__be16 orig_eth_type;
4692 	struct ethhdr *eth;
4693 	u32 metalen, act;
4694 	int off;
4695 
4696 	/* The XDP program wants to see the packet starting at the MAC
4697 	 * header.
4698 	 */
4699 	mac_len = skb->data - skb_mac_header(skb);
4700 	hard_start = skb->data - skb_headroom(skb);
4701 
4702 	/* SKB "head" area always have tailroom for skb_shared_info */
4703 	frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4704 	frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4705 
4706 	rxqueue = netif_get_rxqueue(skb);
4707 	xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4708 	xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4709 			 skb_headlen(skb) + mac_len, true);
4710 
4711 	orig_data_end = xdp->data_end;
4712 	orig_data = xdp->data;
4713 	eth = (struct ethhdr *)xdp->data;
4714 	orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4715 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4716 	orig_eth_type = eth->h_proto;
4717 
4718 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4719 
4720 	/* check if bpf_xdp_adjust_head was used */
4721 	off = xdp->data - orig_data;
4722 	if (off) {
4723 		if (off > 0)
4724 			__skb_pull(skb, off);
4725 		else if (off < 0)
4726 			__skb_push(skb, -off);
4727 
4728 		skb->mac_header += off;
4729 		skb_reset_network_header(skb);
4730 	}
4731 
4732 	/* check if bpf_xdp_adjust_tail was used */
4733 	off = xdp->data_end - orig_data_end;
4734 	if (off != 0) {
4735 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4736 		skb->len += off; /* positive on grow, negative on shrink */
4737 	}
4738 
4739 	/* check if XDP changed eth hdr such SKB needs update */
4740 	eth = (struct ethhdr *)xdp->data;
4741 	if ((orig_eth_type != eth->h_proto) ||
4742 	    (orig_host != ether_addr_equal_64bits(eth->h_dest,
4743 						  skb->dev->dev_addr)) ||
4744 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4745 		__skb_push(skb, ETH_HLEN);
4746 		skb->pkt_type = PACKET_HOST;
4747 		skb->protocol = eth_type_trans(skb, skb->dev);
4748 	}
4749 
4750 	/* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4751 	 * before calling us again on redirect path. We do not call do_redirect
4752 	 * as we leave that up to the caller.
4753 	 *
4754 	 * Caller is responsible for managing lifetime of skb (i.e. calling
4755 	 * kfree_skb in response to actions it cannot handle/XDP_DROP).
4756 	 */
4757 	switch (act) {
4758 	case XDP_REDIRECT:
4759 	case XDP_TX:
4760 		__skb_push(skb, mac_len);
4761 		break;
4762 	case XDP_PASS:
4763 		metalen = xdp->data - xdp->data_meta;
4764 		if (metalen)
4765 			skb_metadata_set(skb, metalen);
4766 		break;
4767 	}
4768 
4769 	return act;
4770 }
4771 
4772 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4773 				     struct xdp_buff *xdp,
4774 				     struct bpf_prog *xdp_prog)
4775 {
4776 	u32 act = XDP_DROP;
4777 
4778 	/* Reinjected packets coming from act_mirred or similar should
4779 	 * not get XDP generic processing.
4780 	 */
4781 	if (skb_is_redirected(skb))
4782 		return XDP_PASS;
4783 
4784 	/* XDP packets must be linear and must have sufficient headroom
4785 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4786 	 * native XDP provides, thus we need to do it here as well.
4787 	 */
4788 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4789 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4790 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4791 		int troom = skb->tail + skb->data_len - skb->end;
4792 
4793 		/* In case we have to go down the path and also linearize,
4794 		 * then lets do the pskb_expand_head() work just once here.
4795 		 */
4796 		if (pskb_expand_head(skb,
4797 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4798 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4799 			goto do_drop;
4800 		if (skb_linearize(skb))
4801 			goto do_drop;
4802 	}
4803 
4804 	act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4805 	switch (act) {
4806 	case XDP_REDIRECT:
4807 	case XDP_TX:
4808 	case XDP_PASS:
4809 		break;
4810 	default:
4811 		bpf_warn_invalid_xdp_action(act);
4812 		fallthrough;
4813 	case XDP_ABORTED:
4814 		trace_xdp_exception(skb->dev, xdp_prog, act);
4815 		fallthrough;
4816 	case XDP_DROP:
4817 	do_drop:
4818 		kfree_skb(skb);
4819 		break;
4820 	}
4821 
4822 	return act;
4823 }
4824 
4825 /* When doing generic XDP we have to bypass the qdisc layer and the
4826  * network taps in order to match in-driver-XDP behavior.
4827  */
4828 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4829 {
4830 	struct net_device *dev = skb->dev;
4831 	struct netdev_queue *txq;
4832 	bool free_skb = true;
4833 	int cpu, rc;
4834 
4835 	txq = netdev_core_pick_tx(dev, skb, NULL);
4836 	cpu = smp_processor_id();
4837 	HARD_TX_LOCK(dev, txq, cpu);
4838 	if (!netif_xmit_stopped(txq)) {
4839 		rc = netdev_start_xmit(skb, dev, txq, 0);
4840 		if (dev_xmit_complete(rc))
4841 			free_skb = false;
4842 	}
4843 	HARD_TX_UNLOCK(dev, txq);
4844 	if (free_skb) {
4845 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
4846 		kfree_skb(skb);
4847 	}
4848 }
4849 
4850 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4851 
4852 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4853 {
4854 	if (xdp_prog) {
4855 		struct xdp_buff xdp;
4856 		u32 act;
4857 		int err;
4858 
4859 		act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4860 		if (act != XDP_PASS) {
4861 			switch (act) {
4862 			case XDP_REDIRECT:
4863 				err = xdp_do_generic_redirect(skb->dev, skb,
4864 							      &xdp, xdp_prog);
4865 				if (err)
4866 					goto out_redir;
4867 				break;
4868 			case XDP_TX:
4869 				generic_xdp_tx(skb, xdp_prog);
4870 				break;
4871 			}
4872 			return XDP_DROP;
4873 		}
4874 	}
4875 	return XDP_PASS;
4876 out_redir:
4877 	kfree_skb(skb);
4878 	return XDP_DROP;
4879 }
4880 EXPORT_SYMBOL_GPL(do_xdp_generic);
4881 
4882 static int netif_rx_internal(struct sk_buff *skb)
4883 {
4884 	int ret;
4885 
4886 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4887 
4888 	trace_netif_rx(skb);
4889 
4890 #ifdef CONFIG_RPS
4891 	if (static_branch_unlikely(&rps_needed)) {
4892 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4893 		int cpu;
4894 
4895 		preempt_disable();
4896 		rcu_read_lock();
4897 
4898 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
4899 		if (cpu < 0)
4900 			cpu = smp_processor_id();
4901 
4902 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4903 
4904 		rcu_read_unlock();
4905 		preempt_enable();
4906 	} else
4907 #endif
4908 	{
4909 		unsigned int qtail;
4910 
4911 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4912 		put_cpu();
4913 	}
4914 	return ret;
4915 }
4916 
4917 /**
4918  *	netif_rx	-	post buffer to the network code
4919  *	@skb: buffer to post
4920  *
4921  *	This function receives a packet from a device driver and queues it for
4922  *	the upper (protocol) levels to process.  It always succeeds. The buffer
4923  *	may be dropped during processing for congestion control or by the
4924  *	protocol layers.
4925  *
4926  *	return values:
4927  *	NET_RX_SUCCESS	(no congestion)
4928  *	NET_RX_DROP     (packet was dropped)
4929  *
4930  */
4931 
4932 int netif_rx(struct sk_buff *skb)
4933 {
4934 	int ret;
4935 
4936 	trace_netif_rx_entry(skb);
4937 
4938 	ret = netif_rx_internal(skb);
4939 	trace_netif_rx_exit(ret);
4940 
4941 	return ret;
4942 }
4943 EXPORT_SYMBOL(netif_rx);
4944 
4945 int netif_rx_ni(struct sk_buff *skb)
4946 {
4947 	int err;
4948 
4949 	trace_netif_rx_ni_entry(skb);
4950 
4951 	preempt_disable();
4952 	err = netif_rx_internal(skb);
4953 	if (local_softirq_pending())
4954 		do_softirq();
4955 	preempt_enable();
4956 	trace_netif_rx_ni_exit(err);
4957 
4958 	return err;
4959 }
4960 EXPORT_SYMBOL(netif_rx_ni);
4961 
4962 int netif_rx_any_context(struct sk_buff *skb)
4963 {
4964 	/*
4965 	 * If invoked from contexts which do not invoke bottom half
4966 	 * processing either at return from interrupt or when softrqs are
4967 	 * reenabled, use netif_rx_ni() which invokes bottomhalf processing
4968 	 * directly.
4969 	 */
4970 	if (in_interrupt())
4971 		return netif_rx(skb);
4972 	else
4973 		return netif_rx_ni(skb);
4974 }
4975 EXPORT_SYMBOL(netif_rx_any_context);
4976 
4977 static __latent_entropy void net_tx_action(struct softirq_action *h)
4978 {
4979 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4980 
4981 	if (sd->completion_queue) {
4982 		struct sk_buff *clist;
4983 
4984 		local_irq_disable();
4985 		clist = sd->completion_queue;
4986 		sd->completion_queue = NULL;
4987 		local_irq_enable();
4988 
4989 		while (clist) {
4990 			struct sk_buff *skb = clist;
4991 
4992 			clist = clist->next;
4993 
4994 			WARN_ON(refcount_read(&skb->users));
4995 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4996 				trace_consume_skb(skb);
4997 			else
4998 				trace_kfree_skb(skb, net_tx_action);
4999 
5000 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5001 				__kfree_skb(skb);
5002 			else
5003 				__kfree_skb_defer(skb);
5004 		}
5005 	}
5006 
5007 	if (sd->output_queue) {
5008 		struct Qdisc *head;
5009 
5010 		local_irq_disable();
5011 		head = sd->output_queue;
5012 		sd->output_queue = NULL;
5013 		sd->output_queue_tailp = &sd->output_queue;
5014 		local_irq_enable();
5015 
5016 		rcu_read_lock();
5017 
5018 		while (head) {
5019 			struct Qdisc *q = head;
5020 			spinlock_t *root_lock = NULL;
5021 
5022 			head = head->next_sched;
5023 
5024 			/* We need to make sure head->next_sched is read
5025 			 * before clearing __QDISC_STATE_SCHED
5026 			 */
5027 			smp_mb__before_atomic();
5028 
5029 			if (!(q->flags & TCQ_F_NOLOCK)) {
5030 				root_lock = qdisc_lock(q);
5031 				spin_lock(root_lock);
5032 			} else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5033 						     &q->state))) {
5034 				/* There is a synchronize_net() between
5035 				 * STATE_DEACTIVATED flag being set and
5036 				 * qdisc_reset()/some_qdisc_is_busy() in
5037 				 * dev_deactivate(), so we can safely bail out
5038 				 * early here to avoid data race between
5039 				 * qdisc_deactivate() and some_qdisc_is_busy()
5040 				 * for lockless qdisc.
5041 				 */
5042 				clear_bit(__QDISC_STATE_SCHED, &q->state);
5043 				continue;
5044 			}
5045 
5046 			clear_bit(__QDISC_STATE_SCHED, &q->state);
5047 			qdisc_run(q);
5048 			if (root_lock)
5049 				spin_unlock(root_lock);
5050 		}
5051 
5052 		rcu_read_unlock();
5053 	}
5054 
5055 	xfrm_dev_backlog(sd);
5056 }
5057 
5058 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5059 /* This hook is defined here for ATM LANE */
5060 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5061 			     unsigned char *addr) __read_mostly;
5062 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5063 #endif
5064 
5065 static inline struct sk_buff *
5066 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
5067 		   struct net_device *orig_dev, bool *another)
5068 {
5069 #ifdef CONFIG_NET_CLS_ACT
5070 	struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
5071 	struct tcf_result cl_res;
5072 
5073 	/* If there's at least one ingress present somewhere (so
5074 	 * we get here via enabled static key), remaining devices
5075 	 * that are not configured with an ingress qdisc will bail
5076 	 * out here.
5077 	 */
5078 	if (!miniq)
5079 		return skb;
5080 
5081 	if (*pt_prev) {
5082 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
5083 		*pt_prev = NULL;
5084 	}
5085 
5086 	qdisc_skb_cb(skb)->pkt_len = skb->len;
5087 	qdisc_skb_cb(skb)->mru = 0;
5088 	qdisc_skb_cb(skb)->post_ct = false;
5089 	skb->tc_at_ingress = 1;
5090 	mini_qdisc_bstats_cpu_update(miniq, skb);
5091 
5092 	switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
5093 	case TC_ACT_OK:
5094 	case TC_ACT_RECLASSIFY:
5095 		skb->tc_index = TC_H_MIN(cl_res.classid);
5096 		break;
5097 	case TC_ACT_SHOT:
5098 		mini_qdisc_qstats_cpu_drop(miniq);
5099 		kfree_skb(skb);
5100 		return NULL;
5101 	case TC_ACT_STOLEN:
5102 	case TC_ACT_QUEUED:
5103 	case TC_ACT_TRAP:
5104 		consume_skb(skb);
5105 		return NULL;
5106 	case TC_ACT_REDIRECT:
5107 		/* skb_mac_header check was done by cls/act_bpf, so
5108 		 * we can safely push the L2 header back before
5109 		 * redirecting to another netdev
5110 		 */
5111 		__skb_push(skb, skb->mac_len);
5112 		if (skb_do_redirect(skb) == -EAGAIN) {
5113 			__skb_pull(skb, skb->mac_len);
5114 			*another = true;
5115 			break;
5116 		}
5117 		return NULL;
5118 	case TC_ACT_CONSUMED:
5119 		return NULL;
5120 	default:
5121 		break;
5122 	}
5123 #endif /* CONFIG_NET_CLS_ACT */
5124 	return skb;
5125 }
5126 
5127 /**
5128  *	netdev_is_rx_handler_busy - check if receive handler is registered
5129  *	@dev: device to check
5130  *
5131  *	Check if a receive handler is already registered for a given device.
5132  *	Return true if there one.
5133  *
5134  *	The caller must hold the rtnl_mutex.
5135  */
5136 bool netdev_is_rx_handler_busy(struct net_device *dev)
5137 {
5138 	ASSERT_RTNL();
5139 	return dev && rtnl_dereference(dev->rx_handler);
5140 }
5141 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5142 
5143 /**
5144  *	netdev_rx_handler_register - register receive handler
5145  *	@dev: device to register a handler for
5146  *	@rx_handler: receive handler to register
5147  *	@rx_handler_data: data pointer that is used by rx handler
5148  *
5149  *	Register a receive handler for a device. This handler will then be
5150  *	called from __netif_receive_skb. A negative errno code is returned
5151  *	on a failure.
5152  *
5153  *	The caller must hold the rtnl_mutex.
5154  *
5155  *	For a general description of rx_handler, see enum rx_handler_result.
5156  */
5157 int netdev_rx_handler_register(struct net_device *dev,
5158 			       rx_handler_func_t *rx_handler,
5159 			       void *rx_handler_data)
5160 {
5161 	if (netdev_is_rx_handler_busy(dev))
5162 		return -EBUSY;
5163 
5164 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
5165 		return -EINVAL;
5166 
5167 	/* Note: rx_handler_data must be set before rx_handler */
5168 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5169 	rcu_assign_pointer(dev->rx_handler, rx_handler);
5170 
5171 	return 0;
5172 }
5173 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5174 
5175 /**
5176  *	netdev_rx_handler_unregister - unregister receive handler
5177  *	@dev: device to unregister a handler from
5178  *
5179  *	Unregister a receive handler from a device.
5180  *
5181  *	The caller must hold the rtnl_mutex.
5182  */
5183 void netdev_rx_handler_unregister(struct net_device *dev)
5184 {
5185 
5186 	ASSERT_RTNL();
5187 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5188 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5189 	 * section has a guarantee to see a non NULL rx_handler_data
5190 	 * as well.
5191 	 */
5192 	synchronize_net();
5193 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5194 }
5195 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5196 
5197 /*
5198  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5199  * the special handling of PFMEMALLOC skbs.
5200  */
5201 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5202 {
5203 	switch (skb->protocol) {
5204 	case htons(ETH_P_ARP):
5205 	case htons(ETH_P_IP):
5206 	case htons(ETH_P_IPV6):
5207 	case htons(ETH_P_8021Q):
5208 	case htons(ETH_P_8021AD):
5209 		return true;
5210 	default:
5211 		return false;
5212 	}
5213 }
5214 
5215 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5216 			     int *ret, struct net_device *orig_dev)
5217 {
5218 	if (nf_hook_ingress_active(skb)) {
5219 		int ingress_retval;
5220 
5221 		if (*pt_prev) {
5222 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5223 			*pt_prev = NULL;
5224 		}
5225 
5226 		rcu_read_lock();
5227 		ingress_retval = nf_hook_ingress(skb);
5228 		rcu_read_unlock();
5229 		return ingress_retval;
5230 	}
5231 	return 0;
5232 }
5233 
5234 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5235 				    struct packet_type **ppt_prev)
5236 {
5237 	struct packet_type *ptype, *pt_prev;
5238 	rx_handler_func_t *rx_handler;
5239 	struct sk_buff *skb = *pskb;
5240 	struct net_device *orig_dev;
5241 	bool deliver_exact = false;
5242 	int ret = NET_RX_DROP;
5243 	__be16 type;
5244 
5245 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
5246 
5247 	trace_netif_receive_skb(skb);
5248 
5249 	orig_dev = skb->dev;
5250 
5251 	skb_reset_network_header(skb);
5252 	if (!skb_transport_header_was_set(skb))
5253 		skb_reset_transport_header(skb);
5254 	skb_reset_mac_len(skb);
5255 
5256 	pt_prev = NULL;
5257 
5258 another_round:
5259 	skb->skb_iif = skb->dev->ifindex;
5260 
5261 	__this_cpu_inc(softnet_data.processed);
5262 
5263 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5264 		int ret2;
5265 
5266 		migrate_disable();
5267 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5268 		migrate_enable();
5269 
5270 		if (ret2 != XDP_PASS) {
5271 			ret = NET_RX_DROP;
5272 			goto out;
5273 		}
5274 	}
5275 
5276 	if (eth_type_vlan(skb->protocol)) {
5277 		skb = skb_vlan_untag(skb);
5278 		if (unlikely(!skb))
5279 			goto out;
5280 	}
5281 
5282 	if (skb_skip_tc_classify(skb))
5283 		goto skip_classify;
5284 
5285 	if (pfmemalloc)
5286 		goto skip_taps;
5287 
5288 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
5289 		if (pt_prev)
5290 			ret = deliver_skb(skb, pt_prev, orig_dev);
5291 		pt_prev = ptype;
5292 	}
5293 
5294 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5295 		if (pt_prev)
5296 			ret = deliver_skb(skb, pt_prev, orig_dev);
5297 		pt_prev = ptype;
5298 	}
5299 
5300 skip_taps:
5301 #ifdef CONFIG_NET_INGRESS
5302 	if (static_branch_unlikely(&ingress_needed_key)) {
5303 		bool another = false;
5304 
5305 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5306 					 &another);
5307 		if (another)
5308 			goto another_round;
5309 		if (!skb)
5310 			goto out;
5311 
5312 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5313 			goto out;
5314 	}
5315 #endif
5316 	skb_reset_redirect(skb);
5317 skip_classify:
5318 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5319 		goto drop;
5320 
5321 	if (skb_vlan_tag_present(skb)) {
5322 		if (pt_prev) {
5323 			ret = deliver_skb(skb, pt_prev, orig_dev);
5324 			pt_prev = NULL;
5325 		}
5326 		if (vlan_do_receive(&skb))
5327 			goto another_round;
5328 		else if (unlikely(!skb))
5329 			goto out;
5330 	}
5331 
5332 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5333 	if (rx_handler) {
5334 		if (pt_prev) {
5335 			ret = deliver_skb(skb, pt_prev, orig_dev);
5336 			pt_prev = NULL;
5337 		}
5338 		switch (rx_handler(&skb)) {
5339 		case RX_HANDLER_CONSUMED:
5340 			ret = NET_RX_SUCCESS;
5341 			goto out;
5342 		case RX_HANDLER_ANOTHER:
5343 			goto another_round;
5344 		case RX_HANDLER_EXACT:
5345 			deliver_exact = true;
5346 			break;
5347 		case RX_HANDLER_PASS:
5348 			break;
5349 		default:
5350 			BUG();
5351 		}
5352 	}
5353 
5354 	if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5355 check_vlan_id:
5356 		if (skb_vlan_tag_get_id(skb)) {
5357 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5358 			 * find vlan device.
5359 			 */
5360 			skb->pkt_type = PACKET_OTHERHOST;
5361 		} else if (eth_type_vlan(skb->protocol)) {
5362 			/* Outer header is 802.1P with vlan 0, inner header is
5363 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5364 			 * not find vlan dev for vlan id 0.
5365 			 */
5366 			__vlan_hwaccel_clear_tag(skb);
5367 			skb = skb_vlan_untag(skb);
5368 			if (unlikely(!skb))
5369 				goto out;
5370 			if (vlan_do_receive(&skb))
5371 				/* After stripping off 802.1P header with vlan 0
5372 				 * vlan dev is found for inner header.
5373 				 */
5374 				goto another_round;
5375 			else if (unlikely(!skb))
5376 				goto out;
5377 			else
5378 				/* We have stripped outer 802.1P vlan 0 header.
5379 				 * But could not find vlan dev.
5380 				 * check again for vlan id to set OTHERHOST.
5381 				 */
5382 				goto check_vlan_id;
5383 		}
5384 		/* Note: we might in the future use prio bits
5385 		 * and set skb->priority like in vlan_do_receive()
5386 		 * For the time being, just ignore Priority Code Point
5387 		 */
5388 		__vlan_hwaccel_clear_tag(skb);
5389 	}
5390 
5391 	type = skb->protocol;
5392 
5393 	/* deliver only exact match when indicated */
5394 	if (likely(!deliver_exact)) {
5395 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5396 				       &ptype_base[ntohs(type) &
5397 						   PTYPE_HASH_MASK]);
5398 	}
5399 
5400 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5401 			       &orig_dev->ptype_specific);
5402 
5403 	if (unlikely(skb->dev != orig_dev)) {
5404 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5405 				       &skb->dev->ptype_specific);
5406 	}
5407 
5408 	if (pt_prev) {
5409 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5410 			goto drop;
5411 		*ppt_prev = pt_prev;
5412 	} else {
5413 drop:
5414 		if (!deliver_exact)
5415 			atomic_long_inc(&skb->dev->rx_dropped);
5416 		else
5417 			atomic_long_inc(&skb->dev->rx_nohandler);
5418 		kfree_skb(skb);
5419 		/* Jamal, now you will not able to escape explaining
5420 		 * me how you were going to use this. :-)
5421 		 */
5422 		ret = NET_RX_DROP;
5423 	}
5424 
5425 out:
5426 	/* The invariant here is that if *ppt_prev is not NULL
5427 	 * then skb should also be non-NULL.
5428 	 *
5429 	 * Apparently *ppt_prev assignment above holds this invariant due to
5430 	 * skb dereferencing near it.
5431 	 */
5432 	*pskb = skb;
5433 	return ret;
5434 }
5435 
5436 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5437 {
5438 	struct net_device *orig_dev = skb->dev;
5439 	struct packet_type *pt_prev = NULL;
5440 	int ret;
5441 
5442 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5443 	if (pt_prev)
5444 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5445 					 skb->dev, pt_prev, orig_dev);
5446 	return ret;
5447 }
5448 
5449 /**
5450  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5451  *	@skb: buffer to process
5452  *
5453  *	More direct receive version of netif_receive_skb().  It should
5454  *	only be used by callers that have a need to skip RPS and Generic XDP.
5455  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5456  *
5457  *	This function may only be called from softirq context and interrupts
5458  *	should be enabled.
5459  *
5460  *	Return values (usually ignored):
5461  *	NET_RX_SUCCESS: no congestion
5462  *	NET_RX_DROP: packet was dropped
5463  */
5464 int netif_receive_skb_core(struct sk_buff *skb)
5465 {
5466 	int ret;
5467 
5468 	rcu_read_lock();
5469 	ret = __netif_receive_skb_one_core(skb, false);
5470 	rcu_read_unlock();
5471 
5472 	return ret;
5473 }
5474 EXPORT_SYMBOL(netif_receive_skb_core);
5475 
5476 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5477 						  struct packet_type *pt_prev,
5478 						  struct net_device *orig_dev)
5479 {
5480 	struct sk_buff *skb, *next;
5481 
5482 	if (!pt_prev)
5483 		return;
5484 	if (list_empty(head))
5485 		return;
5486 	if (pt_prev->list_func != NULL)
5487 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5488 				   ip_list_rcv, head, pt_prev, orig_dev);
5489 	else
5490 		list_for_each_entry_safe(skb, next, head, list) {
5491 			skb_list_del_init(skb);
5492 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5493 		}
5494 }
5495 
5496 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5497 {
5498 	/* Fast-path assumptions:
5499 	 * - There is no RX handler.
5500 	 * - Only one packet_type matches.
5501 	 * If either of these fails, we will end up doing some per-packet
5502 	 * processing in-line, then handling the 'last ptype' for the whole
5503 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5504 	 * because the 'last ptype' must be constant across the sublist, and all
5505 	 * other ptypes are handled per-packet.
5506 	 */
5507 	/* Current (common) ptype of sublist */
5508 	struct packet_type *pt_curr = NULL;
5509 	/* Current (common) orig_dev of sublist */
5510 	struct net_device *od_curr = NULL;
5511 	struct list_head sublist;
5512 	struct sk_buff *skb, *next;
5513 
5514 	INIT_LIST_HEAD(&sublist);
5515 	list_for_each_entry_safe(skb, next, head, list) {
5516 		struct net_device *orig_dev = skb->dev;
5517 		struct packet_type *pt_prev = NULL;
5518 
5519 		skb_list_del_init(skb);
5520 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5521 		if (!pt_prev)
5522 			continue;
5523 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5524 			/* dispatch old sublist */
5525 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5526 			/* start new sublist */
5527 			INIT_LIST_HEAD(&sublist);
5528 			pt_curr = pt_prev;
5529 			od_curr = orig_dev;
5530 		}
5531 		list_add_tail(&skb->list, &sublist);
5532 	}
5533 
5534 	/* dispatch final sublist */
5535 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5536 }
5537 
5538 static int __netif_receive_skb(struct sk_buff *skb)
5539 {
5540 	int ret;
5541 
5542 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5543 		unsigned int noreclaim_flag;
5544 
5545 		/*
5546 		 * PFMEMALLOC skbs are special, they should
5547 		 * - be delivered to SOCK_MEMALLOC sockets only
5548 		 * - stay away from userspace
5549 		 * - have bounded memory usage
5550 		 *
5551 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5552 		 * context down to all allocation sites.
5553 		 */
5554 		noreclaim_flag = memalloc_noreclaim_save();
5555 		ret = __netif_receive_skb_one_core(skb, true);
5556 		memalloc_noreclaim_restore(noreclaim_flag);
5557 	} else
5558 		ret = __netif_receive_skb_one_core(skb, false);
5559 
5560 	return ret;
5561 }
5562 
5563 static void __netif_receive_skb_list(struct list_head *head)
5564 {
5565 	unsigned long noreclaim_flag = 0;
5566 	struct sk_buff *skb, *next;
5567 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5568 
5569 	list_for_each_entry_safe(skb, next, head, list) {
5570 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5571 			struct list_head sublist;
5572 
5573 			/* Handle the previous sublist */
5574 			list_cut_before(&sublist, head, &skb->list);
5575 			if (!list_empty(&sublist))
5576 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5577 			pfmemalloc = !pfmemalloc;
5578 			/* See comments in __netif_receive_skb */
5579 			if (pfmemalloc)
5580 				noreclaim_flag = memalloc_noreclaim_save();
5581 			else
5582 				memalloc_noreclaim_restore(noreclaim_flag);
5583 		}
5584 	}
5585 	/* Handle the remaining sublist */
5586 	if (!list_empty(head))
5587 		__netif_receive_skb_list_core(head, pfmemalloc);
5588 	/* Restore pflags */
5589 	if (pfmemalloc)
5590 		memalloc_noreclaim_restore(noreclaim_flag);
5591 }
5592 
5593 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5594 {
5595 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5596 	struct bpf_prog *new = xdp->prog;
5597 	int ret = 0;
5598 
5599 	switch (xdp->command) {
5600 	case XDP_SETUP_PROG:
5601 		rcu_assign_pointer(dev->xdp_prog, new);
5602 		if (old)
5603 			bpf_prog_put(old);
5604 
5605 		if (old && !new) {
5606 			static_branch_dec(&generic_xdp_needed_key);
5607 		} else if (new && !old) {
5608 			static_branch_inc(&generic_xdp_needed_key);
5609 			dev_disable_lro(dev);
5610 			dev_disable_gro_hw(dev);
5611 		}
5612 		break;
5613 
5614 	default:
5615 		ret = -EINVAL;
5616 		break;
5617 	}
5618 
5619 	return ret;
5620 }
5621 
5622 static int netif_receive_skb_internal(struct sk_buff *skb)
5623 {
5624 	int ret;
5625 
5626 	net_timestamp_check(netdev_tstamp_prequeue, skb);
5627 
5628 	if (skb_defer_rx_timestamp(skb))
5629 		return NET_RX_SUCCESS;
5630 
5631 	rcu_read_lock();
5632 #ifdef CONFIG_RPS
5633 	if (static_branch_unlikely(&rps_needed)) {
5634 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5635 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5636 
5637 		if (cpu >= 0) {
5638 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5639 			rcu_read_unlock();
5640 			return ret;
5641 		}
5642 	}
5643 #endif
5644 	ret = __netif_receive_skb(skb);
5645 	rcu_read_unlock();
5646 	return ret;
5647 }
5648 
5649 static void netif_receive_skb_list_internal(struct list_head *head)
5650 {
5651 	struct sk_buff *skb, *next;
5652 	struct list_head sublist;
5653 
5654 	INIT_LIST_HEAD(&sublist);
5655 	list_for_each_entry_safe(skb, next, head, list) {
5656 		net_timestamp_check(netdev_tstamp_prequeue, skb);
5657 		skb_list_del_init(skb);
5658 		if (!skb_defer_rx_timestamp(skb))
5659 			list_add_tail(&skb->list, &sublist);
5660 	}
5661 	list_splice_init(&sublist, head);
5662 
5663 	rcu_read_lock();
5664 #ifdef CONFIG_RPS
5665 	if (static_branch_unlikely(&rps_needed)) {
5666 		list_for_each_entry_safe(skb, next, head, list) {
5667 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5668 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5669 
5670 			if (cpu >= 0) {
5671 				/* Will be handled, remove from list */
5672 				skb_list_del_init(skb);
5673 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5674 			}
5675 		}
5676 	}
5677 #endif
5678 	__netif_receive_skb_list(head);
5679 	rcu_read_unlock();
5680 }
5681 
5682 /**
5683  *	netif_receive_skb - process receive buffer from network
5684  *	@skb: buffer to process
5685  *
5686  *	netif_receive_skb() is the main receive data processing function.
5687  *	It always succeeds. The buffer may be dropped during processing
5688  *	for congestion control or by the protocol layers.
5689  *
5690  *	This function may only be called from softirq context and interrupts
5691  *	should be enabled.
5692  *
5693  *	Return values (usually ignored):
5694  *	NET_RX_SUCCESS: no congestion
5695  *	NET_RX_DROP: packet was dropped
5696  */
5697 int netif_receive_skb(struct sk_buff *skb)
5698 {
5699 	int ret;
5700 
5701 	trace_netif_receive_skb_entry(skb);
5702 
5703 	ret = netif_receive_skb_internal(skb);
5704 	trace_netif_receive_skb_exit(ret);
5705 
5706 	return ret;
5707 }
5708 EXPORT_SYMBOL(netif_receive_skb);
5709 
5710 /**
5711  *	netif_receive_skb_list - process many receive buffers from network
5712  *	@head: list of skbs to process.
5713  *
5714  *	Since return value of netif_receive_skb() is normally ignored, and
5715  *	wouldn't be meaningful for a list, this function returns void.
5716  *
5717  *	This function may only be called from softirq context and interrupts
5718  *	should be enabled.
5719  */
5720 void netif_receive_skb_list(struct list_head *head)
5721 {
5722 	struct sk_buff *skb;
5723 
5724 	if (list_empty(head))
5725 		return;
5726 	if (trace_netif_receive_skb_list_entry_enabled()) {
5727 		list_for_each_entry(skb, head, list)
5728 			trace_netif_receive_skb_list_entry(skb);
5729 	}
5730 	netif_receive_skb_list_internal(head);
5731 	trace_netif_receive_skb_list_exit(0);
5732 }
5733 EXPORT_SYMBOL(netif_receive_skb_list);
5734 
5735 static DEFINE_PER_CPU(struct work_struct, flush_works);
5736 
5737 /* Network device is going away, flush any packets still pending */
5738 static void flush_backlog(struct work_struct *work)
5739 {
5740 	struct sk_buff *skb, *tmp;
5741 	struct softnet_data *sd;
5742 
5743 	local_bh_disable();
5744 	sd = this_cpu_ptr(&softnet_data);
5745 
5746 	local_irq_disable();
5747 	rps_lock(sd);
5748 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5749 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5750 			__skb_unlink(skb, &sd->input_pkt_queue);
5751 			dev_kfree_skb_irq(skb);
5752 			input_queue_head_incr(sd);
5753 		}
5754 	}
5755 	rps_unlock(sd);
5756 	local_irq_enable();
5757 
5758 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5759 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5760 			__skb_unlink(skb, &sd->process_queue);
5761 			kfree_skb(skb);
5762 			input_queue_head_incr(sd);
5763 		}
5764 	}
5765 	local_bh_enable();
5766 }
5767 
5768 static bool flush_required(int cpu)
5769 {
5770 #if IS_ENABLED(CONFIG_RPS)
5771 	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5772 	bool do_flush;
5773 
5774 	local_irq_disable();
5775 	rps_lock(sd);
5776 
5777 	/* as insertion into process_queue happens with the rps lock held,
5778 	 * process_queue access may race only with dequeue
5779 	 */
5780 	do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5781 		   !skb_queue_empty_lockless(&sd->process_queue);
5782 	rps_unlock(sd);
5783 	local_irq_enable();
5784 
5785 	return do_flush;
5786 #endif
5787 	/* without RPS we can't safely check input_pkt_queue: during a
5788 	 * concurrent remote skb_queue_splice() we can detect as empty both
5789 	 * input_pkt_queue and process_queue even if the latter could end-up
5790 	 * containing a lot of packets.
5791 	 */
5792 	return true;
5793 }
5794 
5795 static void flush_all_backlogs(void)
5796 {
5797 	static cpumask_t flush_cpus;
5798 	unsigned int cpu;
5799 
5800 	/* since we are under rtnl lock protection we can use static data
5801 	 * for the cpumask and avoid allocating on stack the possibly
5802 	 * large mask
5803 	 */
5804 	ASSERT_RTNL();
5805 
5806 	cpus_read_lock();
5807 
5808 	cpumask_clear(&flush_cpus);
5809 	for_each_online_cpu(cpu) {
5810 		if (flush_required(cpu)) {
5811 			queue_work_on(cpu, system_highpri_wq,
5812 				      per_cpu_ptr(&flush_works, cpu));
5813 			cpumask_set_cpu(cpu, &flush_cpus);
5814 		}
5815 	}
5816 
5817 	/* we can have in flight packet[s] on the cpus we are not flushing,
5818 	 * synchronize_net() in unregister_netdevice_many() will take care of
5819 	 * them
5820 	 */
5821 	for_each_cpu(cpu, &flush_cpus)
5822 		flush_work(per_cpu_ptr(&flush_works, cpu));
5823 
5824 	cpus_read_unlock();
5825 }
5826 
5827 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5828 static void gro_normal_list(struct napi_struct *napi)
5829 {
5830 	if (!napi->rx_count)
5831 		return;
5832 	netif_receive_skb_list_internal(&napi->rx_list);
5833 	INIT_LIST_HEAD(&napi->rx_list);
5834 	napi->rx_count = 0;
5835 }
5836 
5837 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5838  * pass the whole batch up to the stack.
5839  */
5840 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb, int segs)
5841 {
5842 	list_add_tail(&skb->list, &napi->rx_list);
5843 	napi->rx_count += segs;
5844 	if (napi->rx_count >= gro_normal_batch)
5845 		gro_normal_list(napi);
5846 }
5847 
5848 static void napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5849 {
5850 	struct packet_offload *ptype;
5851 	__be16 type = skb->protocol;
5852 	struct list_head *head = &offload_base;
5853 	int err = -ENOENT;
5854 
5855 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5856 
5857 	if (NAPI_GRO_CB(skb)->count == 1) {
5858 		skb_shinfo(skb)->gso_size = 0;
5859 		goto out;
5860 	}
5861 
5862 	rcu_read_lock();
5863 	list_for_each_entry_rcu(ptype, head, list) {
5864 		if (ptype->type != type || !ptype->callbacks.gro_complete)
5865 			continue;
5866 
5867 		err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5868 					 ipv6_gro_complete, inet_gro_complete,
5869 					 skb, 0);
5870 		break;
5871 	}
5872 	rcu_read_unlock();
5873 
5874 	if (err) {
5875 		WARN_ON(&ptype->list == head);
5876 		kfree_skb(skb);
5877 		return;
5878 	}
5879 
5880 out:
5881 	gro_normal_one(napi, skb, NAPI_GRO_CB(skb)->count);
5882 }
5883 
5884 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5885 				   bool flush_old)
5886 {
5887 	struct list_head *head = &napi->gro_hash[index].list;
5888 	struct sk_buff *skb, *p;
5889 
5890 	list_for_each_entry_safe_reverse(skb, p, head, list) {
5891 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5892 			return;
5893 		skb_list_del_init(skb);
5894 		napi_gro_complete(napi, skb);
5895 		napi->gro_hash[index].count--;
5896 	}
5897 
5898 	if (!napi->gro_hash[index].count)
5899 		__clear_bit(index, &napi->gro_bitmask);
5900 }
5901 
5902 /* napi->gro_hash[].list contains packets ordered by age.
5903  * youngest packets at the head of it.
5904  * Complete skbs in reverse order to reduce latencies.
5905  */
5906 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5907 {
5908 	unsigned long bitmask = napi->gro_bitmask;
5909 	unsigned int i, base = ~0U;
5910 
5911 	while ((i = ffs(bitmask)) != 0) {
5912 		bitmask >>= i;
5913 		base += i;
5914 		__napi_gro_flush_chain(napi, base, flush_old);
5915 	}
5916 }
5917 EXPORT_SYMBOL(napi_gro_flush);
5918 
5919 static void gro_list_prepare(const struct list_head *head,
5920 			     const struct sk_buff *skb)
5921 {
5922 	unsigned int maclen = skb->dev->hard_header_len;
5923 	u32 hash = skb_get_hash_raw(skb);
5924 	struct sk_buff *p;
5925 
5926 	list_for_each_entry(p, head, list) {
5927 		unsigned long diffs;
5928 
5929 		NAPI_GRO_CB(p)->flush = 0;
5930 
5931 		if (hash != skb_get_hash_raw(p)) {
5932 			NAPI_GRO_CB(p)->same_flow = 0;
5933 			continue;
5934 		}
5935 
5936 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5937 		diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5938 		if (skb_vlan_tag_present(p))
5939 			diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
5940 		diffs |= skb_metadata_differs(p, skb);
5941 		if (maclen == ETH_HLEN)
5942 			diffs |= compare_ether_header(skb_mac_header(p),
5943 						      skb_mac_header(skb));
5944 		else if (!diffs)
5945 			diffs = memcmp(skb_mac_header(p),
5946 				       skb_mac_header(skb),
5947 				       maclen);
5948 
5949 		/* in most common scenarions 'slow_gro' is 0
5950 		 * otherwise we are already on some slower paths
5951 		 * either skip all the infrequent tests altogether or
5952 		 * avoid trying too hard to skip each of them individually
5953 		 */
5954 		if (!diffs && unlikely(skb->slow_gro | p->slow_gro)) {
5955 #if IS_ENABLED(CONFIG_SKB_EXTENSIONS) && IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
5956 			struct tc_skb_ext *skb_ext;
5957 			struct tc_skb_ext *p_ext;
5958 #endif
5959 
5960 			diffs |= p->sk != skb->sk;
5961 			diffs |= skb_metadata_dst_cmp(p, skb);
5962 			diffs |= skb_get_nfct(p) ^ skb_get_nfct(skb);
5963 
5964 #if IS_ENABLED(CONFIG_SKB_EXTENSIONS) && IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
5965 			skb_ext = skb_ext_find(skb, TC_SKB_EXT);
5966 			p_ext = skb_ext_find(p, TC_SKB_EXT);
5967 
5968 			diffs |= (!!p_ext) ^ (!!skb_ext);
5969 			if (!diffs && unlikely(skb_ext))
5970 				diffs |= p_ext->chain ^ skb_ext->chain;
5971 #endif
5972 		}
5973 
5974 		NAPI_GRO_CB(p)->same_flow = !diffs;
5975 	}
5976 }
5977 
5978 static inline void skb_gro_reset_offset(struct sk_buff *skb, u32 nhoff)
5979 {
5980 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
5981 	const skb_frag_t *frag0 = &pinfo->frags[0];
5982 
5983 	NAPI_GRO_CB(skb)->data_offset = 0;
5984 	NAPI_GRO_CB(skb)->frag0 = NULL;
5985 	NAPI_GRO_CB(skb)->frag0_len = 0;
5986 
5987 	if (!skb_headlen(skb) && pinfo->nr_frags &&
5988 	    !PageHighMem(skb_frag_page(frag0)) &&
5989 	    (!NET_IP_ALIGN || !((skb_frag_off(frag0) + nhoff) & 3))) {
5990 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5991 		NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5992 						    skb_frag_size(frag0),
5993 						    skb->end - skb->tail);
5994 	}
5995 }
5996 
5997 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5998 {
5999 	struct skb_shared_info *pinfo = skb_shinfo(skb);
6000 
6001 	BUG_ON(skb->end - skb->tail < grow);
6002 
6003 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
6004 
6005 	skb->data_len -= grow;
6006 	skb->tail += grow;
6007 
6008 	skb_frag_off_add(&pinfo->frags[0], grow);
6009 	skb_frag_size_sub(&pinfo->frags[0], grow);
6010 
6011 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
6012 		skb_frag_unref(skb, 0);
6013 		memmove(pinfo->frags, pinfo->frags + 1,
6014 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
6015 	}
6016 }
6017 
6018 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
6019 {
6020 	struct sk_buff *oldest;
6021 
6022 	oldest = list_last_entry(head, struct sk_buff, list);
6023 
6024 	/* We are called with head length >= MAX_GRO_SKBS, so this is
6025 	 * impossible.
6026 	 */
6027 	if (WARN_ON_ONCE(!oldest))
6028 		return;
6029 
6030 	/* Do not adjust napi->gro_hash[].count, caller is adding a new
6031 	 * SKB to the chain.
6032 	 */
6033 	skb_list_del_init(oldest);
6034 	napi_gro_complete(napi, oldest);
6035 }
6036 
6037 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6038 {
6039 	u32 bucket = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
6040 	struct gro_list *gro_list = &napi->gro_hash[bucket];
6041 	struct list_head *head = &offload_base;
6042 	struct packet_offload *ptype;
6043 	__be16 type = skb->protocol;
6044 	struct sk_buff *pp = NULL;
6045 	enum gro_result ret;
6046 	int same_flow;
6047 	int grow;
6048 
6049 	if (netif_elide_gro(skb->dev))
6050 		goto normal;
6051 
6052 	gro_list_prepare(&gro_list->list, skb);
6053 
6054 	rcu_read_lock();
6055 	list_for_each_entry_rcu(ptype, head, list) {
6056 		if (ptype->type != type || !ptype->callbacks.gro_receive)
6057 			continue;
6058 
6059 		skb_set_network_header(skb, skb_gro_offset(skb));
6060 		skb_reset_mac_len(skb);
6061 		NAPI_GRO_CB(skb)->same_flow = 0;
6062 		NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
6063 		NAPI_GRO_CB(skb)->free = 0;
6064 		NAPI_GRO_CB(skb)->encap_mark = 0;
6065 		NAPI_GRO_CB(skb)->recursion_counter = 0;
6066 		NAPI_GRO_CB(skb)->is_fou = 0;
6067 		NAPI_GRO_CB(skb)->is_atomic = 1;
6068 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
6069 
6070 		/* Setup for GRO checksum validation */
6071 		switch (skb->ip_summed) {
6072 		case CHECKSUM_COMPLETE:
6073 			NAPI_GRO_CB(skb)->csum = skb->csum;
6074 			NAPI_GRO_CB(skb)->csum_valid = 1;
6075 			NAPI_GRO_CB(skb)->csum_cnt = 0;
6076 			break;
6077 		case CHECKSUM_UNNECESSARY:
6078 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
6079 			NAPI_GRO_CB(skb)->csum_valid = 0;
6080 			break;
6081 		default:
6082 			NAPI_GRO_CB(skb)->csum_cnt = 0;
6083 			NAPI_GRO_CB(skb)->csum_valid = 0;
6084 		}
6085 
6086 		pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
6087 					ipv6_gro_receive, inet_gro_receive,
6088 					&gro_list->list, skb);
6089 		break;
6090 	}
6091 	rcu_read_unlock();
6092 
6093 	if (&ptype->list == head)
6094 		goto normal;
6095 
6096 	if (PTR_ERR(pp) == -EINPROGRESS) {
6097 		ret = GRO_CONSUMED;
6098 		goto ok;
6099 	}
6100 
6101 	same_flow = NAPI_GRO_CB(skb)->same_flow;
6102 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
6103 
6104 	if (pp) {
6105 		skb_list_del_init(pp);
6106 		napi_gro_complete(napi, pp);
6107 		gro_list->count--;
6108 	}
6109 
6110 	if (same_flow)
6111 		goto ok;
6112 
6113 	if (NAPI_GRO_CB(skb)->flush)
6114 		goto normal;
6115 
6116 	if (unlikely(gro_list->count >= MAX_GRO_SKBS))
6117 		gro_flush_oldest(napi, &gro_list->list);
6118 	else
6119 		gro_list->count++;
6120 
6121 	NAPI_GRO_CB(skb)->count = 1;
6122 	NAPI_GRO_CB(skb)->age = jiffies;
6123 	NAPI_GRO_CB(skb)->last = skb;
6124 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
6125 	list_add(&skb->list, &gro_list->list);
6126 	ret = GRO_HELD;
6127 
6128 pull:
6129 	grow = skb_gro_offset(skb) - skb_headlen(skb);
6130 	if (grow > 0)
6131 		gro_pull_from_frag0(skb, grow);
6132 ok:
6133 	if (gro_list->count) {
6134 		if (!test_bit(bucket, &napi->gro_bitmask))
6135 			__set_bit(bucket, &napi->gro_bitmask);
6136 	} else if (test_bit(bucket, &napi->gro_bitmask)) {
6137 		__clear_bit(bucket, &napi->gro_bitmask);
6138 	}
6139 
6140 	return ret;
6141 
6142 normal:
6143 	ret = GRO_NORMAL;
6144 	goto pull;
6145 }
6146 
6147 struct packet_offload *gro_find_receive_by_type(__be16 type)
6148 {
6149 	struct list_head *offload_head = &offload_base;
6150 	struct packet_offload *ptype;
6151 
6152 	list_for_each_entry_rcu(ptype, offload_head, list) {
6153 		if (ptype->type != type || !ptype->callbacks.gro_receive)
6154 			continue;
6155 		return ptype;
6156 	}
6157 	return NULL;
6158 }
6159 EXPORT_SYMBOL(gro_find_receive_by_type);
6160 
6161 struct packet_offload *gro_find_complete_by_type(__be16 type)
6162 {
6163 	struct list_head *offload_head = &offload_base;
6164 	struct packet_offload *ptype;
6165 
6166 	list_for_each_entry_rcu(ptype, offload_head, list) {
6167 		if (ptype->type != type || !ptype->callbacks.gro_complete)
6168 			continue;
6169 		return ptype;
6170 	}
6171 	return NULL;
6172 }
6173 EXPORT_SYMBOL(gro_find_complete_by_type);
6174 
6175 static gro_result_t napi_skb_finish(struct napi_struct *napi,
6176 				    struct sk_buff *skb,
6177 				    gro_result_t ret)
6178 {
6179 	switch (ret) {
6180 	case GRO_NORMAL:
6181 		gro_normal_one(napi, skb, 1);
6182 		break;
6183 
6184 	case GRO_MERGED_FREE:
6185 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6186 			napi_skb_free_stolen_head(skb);
6187 		else if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
6188 			__kfree_skb(skb);
6189 		else
6190 			__kfree_skb_defer(skb);
6191 		break;
6192 
6193 	case GRO_HELD:
6194 	case GRO_MERGED:
6195 	case GRO_CONSUMED:
6196 		break;
6197 	}
6198 
6199 	return ret;
6200 }
6201 
6202 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6203 {
6204 	gro_result_t ret;
6205 
6206 	skb_mark_napi_id(skb, napi);
6207 	trace_napi_gro_receive_entry(skb);
6208 
6209 	skb_gro_reset_offset(skb, 0);
6210 
6211 	ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
6212 	trace_napi_gro_receive_exit(ret);
6213 
6214 	return ret;
6215 }
6216 EXPORT_SYMBOL(napi_gro_receive);
6217 
6218 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
6219 {
6220 	if (unlikely(skb->pfmemalloc)) {
6221 		consume_skb(skb);
6222 		return;
6223 	}
6224 	__skb_pull(skb, skb_headlen(skb));
6225 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
6226 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
6227 	__vlan_hwaccel_clear_tag(skb);
6228 	skb->dev = napi->dev;
6229 	skb->skb_iif = 0;
6230 
6231 	/* eth_type_trans() assumes pkt_type is PACKET_HOST */
6232 	skb->pkt_type = PACKET_HOST;
6233 
6234 	skb->encapsulation = 0;
6235 	skb_shinfo(skb)->gso_type = 0;
6236 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6237 	if (unlikely(skb->slow_gro)) {
6238 		skb_orphan(skb);
6239 		skb_ext_reset(skb);
6240 		nf_reset_ct(skb);
6241 		skb->slow_gro = 0;
6242 	}
6243 
6244 	napi->skb = skb;
6245 }
6246 
6247 struct sk_buff *napi_get_frags(struct napi_struct *napi)
6248 {
6249 	struct sk_buff *skb = napi->skb;
6250 
6251 	if (!skb) {
6252 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
6253 		if (skb) {
6254 			napi->skb = skb;
6255 			skb_mark_napi_id(skb, napi);
6256 		}
6257 	}
6258 	return skb;
6259 }
6260 EXPORT_SYMBOL(napi_get_frags);
6261 
6262 static gro_result_t napi_frags_finish(struct napi_struct *napi,
6263 				      struct sk_buff *skb,
6264 				      gro_result_t ret)
6265 {
6266 	switch (ret) {
6267 	case GRO_NORMAL:
6268 	case GRO_HELD:
6269 		__skb_push(skb, ETH_HLEN);
6270 		skb->protocol = eth_type_trans(skb, skb->dev);
6271 		if (ret == GRO_NORMAL)
6272 			gro_normal_one(napi, skb, 1);
6273 		break;
6274 
6275 	case GRO_MERGED_FREE:
6276 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6277 			napi_skb_free_stolen_head(skb);
6278 		else
6279 			napi_reuse_skb(napi, skb);
6280 		break;
6281 
6282 	case GRO_MERGED:
6283 	case GRO_CONSUMED:
6284 		break;
6285 	}
6286 
6287 	return ret;
6288 }
6289 
6290 /* Upper GRO stack assumes network header starts at gro_offset=0
6291  * Drivers could call both napi_gro_frags() and napi_gro_receive()
6292  * We copy ethernet header into skb->data to have a common layout.
6293  */
6294 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
6295 {
6296 	struct sk_buff *skb = napi->skb;
6297 	const struct ethhdr *eth;
6298 	unsigned int hlen = sizeof(*eth);
6299 
6300 	napi->skb = NULL;
6301 
6302 	skb_reset_mac_header(skb);
6303 	skb_gro_reset_offset(skb, hlen);
6304 
6305 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
6306 		eth = skb_gro_header_slow(skb, hlen, 0);
6307 		if (unlikely(!eth)) {
6308 			net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6309 					     __func__, napi->dev->name);
6310 			napi_reuse_skb(napi, skb);
6311 			return NULL;
6312 		}
6313 	} else {
6314 		eth = (const struct ethhdr *)skb->data;
6315 		gro_pull_from_frag0(skb, hlen);
6316 		NAPI_GRO_CB(skb)->frag0 += hlen;
6317 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
6318 	}
6319 	__skb_pull(skb, hlen);
6320 
6321 	/*
6322 	 * This works because the only protocols we care about don't require
6323 	 * special handling.
6324 	 * We'll fix it up properly in napi_frags_finish()
6325 	 */
6326 	skb->protocol = eth->h_proto;
6327 
6328 	return skb;
6329 }
6330 
6331 gro_result_t napi_gro_frags(struct napi_struct *napi)
6332 {
6333 	gro_result_t ret;
6334 	struct sk_buff *skb = napi_frags_skb(napi);
6335 
6336 	trace_napi_gro_frags_entry(skb);
6337 
6338 	ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6339 	trace_napi_gro_frags_exit(ret);
6340 
6341 	return ret;
6342 }
6343 EXPORT_SYMBOL(napi_gro_frags);
6344 
6345 /* Compute the checksum from gro_offset and return the folded value
6346  * after adding in any pseudo checksum.
6347  */
6348 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6349 {
6350 	__wsum wsum;
6351 	__sum16 sum;
6352 
6353 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6354 
6355 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6356 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6357 	/* See comments in __skb_checksum_complete(). */
6358 	if (likely(!sum)) {
6359 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6360 		    !skb->csum_complete_sw)
6361 			netdev_rx_csum_fault(skb->dev, skb);
6362 	}
6363 
6364 	NAPI_GRO_CB(skb)->csum = wsum;
6365 	NAPI_GRO_CB(skb)->csum_valid = 1;
6366 
6367 	return sum;
6368 }
6369 EXPORT_SYMBOL(__skb_gro_checksum_complete);
6370 
6371 static void net_rps_send_ipi(struct softnet_data *remsd)
6372 {
6373 #ifdef CONFIG_RPS
6374 	while (remsd) {
6375 		struct softnet_data *next = remsd->rps_ipi_next;
6376 
6377 		if (cpu_online(remsd->cpu))
6378 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
6379 		remsd = next;
6380 	}
6381 #endif
6382 }
6383 
6384 /*
6385  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6386  * Note: called with local irq disabled, but exits with local irq enabled.
6387  */
6388 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6389 {
6390 #ifdef CONFIG_RPS
6391 	struct softnet_data *remsd = sd->rps_ipi_list;
6392 
6393 	if (remsd) {
6394 		sd->rps_ipi_list = NULL;
6395 
6396 		local_irq_enable();
6397 
6398 		/* Send pending IPI's to kick RPS processing on remote cpus. */
6399 		net_rps_send_ipi(remsd);
6400 	} else
6401 #endif
6402 		local_irq_enable();
6403 }
6404 
6405 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6406 {
6407 #ifdef CONFIG_RPS
6408 	return sd->rps_ipi_list != NULL;
6409 #else
6410 	return false;
6411 #endif
6412 }
6413 
6414 static int process_backlog(struct napi_struct *napi, int quota)
6415 {
6416 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6417 	bool again = true;
6418 	int work = 0;
6419 
6420 	/* Check if we have pending ipi, its better to send them now,
6421 	 * not waiting net_rx_action() end.
6422 	 */
6423 	if (sd_has_rps_ipi_waiting(sd)) {
6424 		local_irq_disable();
6425 		net_rps_action_and_irq_enable(sd);
6426 	}
6427 
6428 	napi->weight = dev_rx_weight;
6429 	while (again) {
6430 		struct sk_buff *skb;
6431 
6432 		while ((skb = __skb_dequeue(&sd->process_queue))) {
6433 			rcu_read_lock();
6434 			__netif_receive_skb(skb);
6435 			rcu_read_unlock();
6436 			input_queue_head_incr(sd);
6437 			if (++work >= quota)
6438 				return work;
6439 
6440 		}
6441 
6442 		local_irq_disable();
6443 		rps_lock(sd);
6444 		if (skb_queue_empty(&sd->input_pkt_queue)) {
6445 			/*
6446 			 * Inline a custom version of __napi_complete().
6447 			 * only current cpu owns and manipulates this napi,
6448 			 * and NAPI_STATE_SCHED is the only possible flag set
6449 			 * on backlog.
6450 			 * We can use a plain write instead of clear_bit(),
6451 			 * and we dont need an smp_mb() memory barrier.
6452 			 */
6453 			napi->state = 0;
6454 			again = false;
6455 		} else {
6456 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
6457 						   &sd->process_queue);
6458 		}
6459 		rps_unlock(sd);
6460 		local_irq_enable();
6461 	}
6462 
6463 	return work;
6464 }
6465 
6466 /**
6467  * __napi_schedule - schedule for receive
6468  * @n: entry to schedule
6469  *
6470  * The entry's receive function will be scheduled to run.
6471  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6472  */
6473 void __napi_schedule(struct napi_struct *n)
6474 {
6475 	unsigned long flags;
6476 
6477 	local_irq_save(flags);
6478 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6479 	local_irq_restore(flags);
6480 }
6481 EXPORT_SYMBOL(__napi_schedule);
6482 
6483 /**
6484  *	napi_schedule_prep - check if napi can be scheduled
6485  *	@n: napi context
6486  *
6487  * Test if NAPI routine is already running, and if not mark
6488  * it as running.  This is used as a condition variable to
6489  * insure only one NAPI poll instance runs.  We also make
6490  * sure there is no pending NAPI disable.
6491  */
6492 bool napi_schedule_prep(struct napi_struct *n)
6493 {
6494 	unsigned long val, new;
6495 
6496 	do {
6497 		val = READ_ONCE(n->state);
6498 		if (unlikely(val & NAPIF_STATE_DISABLE))
6499 			return false;
6500 		new = val | NAPIF_STATE_SCHED;
6501 
6502 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
6503 		 * This was suggested by Alexander Duyck, as compiler
6504 		 * emits better code than :
6505 		 * if (val & NAPIF_STATE_SCHED)
6506 		 *     new |= NAPIF_STATE_MISSED;
6507 		 */
6508 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6509 						   NAPIF_STATE_MISSED;
6510 	} while (cmpxchg(&n->state, val, new) != val);
6511 
6512 	return !(val & NAPIF_STATE_SCHED);
6513 }
6514 EXPORT_SYMBOL(napi_schedule_prep);
6515 
6516 /**
6517  * __napi_schedule_irqoff - schedule for receive
6518  * @n: entry to schedule
6519  *
6520  * Variant of __napi_schedule() assuming hard irqs are masked.
6521  *
6522  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6523  * because the interrupt disabled assumption might not be true
6524  * due to force-threaded interrupts and spinlock substitution.
6525  */
6526 void __napi_schedule_irqoff(struct napi_struct *n)
6527 {
6528 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6529 		____napi_schedule(this_cpu_ptr(&softnet_data), n);
6530 	else
6531 		__napi_schedule(n);
6532 }
6533 EXPORT_SYMBOL(__napi_schedule_irqoff);
6534 
6535 bool napi_complete_done(struct napi_struct *n, int work_done)
6536 {
6537 	unsigned long flags, val, new, timeout = 0;
6538 	bool ret = true;
6539 
6540 	/*
6541 	 * 1) Don't let napi dequeue from the cpu poll list
6542 	 *    just in case its running on a different cpu.
6543 	 * 2) If we are busy polling, do nothing here, we have
6544 	 *    the guarantee we will be called later.
6545 	 */
6546 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6547 				 NAPIF_STATE_IN_BUSY_POLL)))
6548 		return false;
6549 
6550 	if (work_done) {
6551 		if (n->gro_bitmask)
6552 			timeout = READ_ONCE(n->dev->gro_flush_timeout);
6553 		n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6554 	}
6555 	if (n->defer_hard_irqs_count > 0) {
6556 		n->defer_hard_irqs_count--;
6557 		timeout = READ_ONCE(n->dev->gro_flush_timeout);
6558 		if (timeout)
6559 			ret = false;
6560 	}
6561 	if (n->gro_bitmask) {
6562 		/* When the NAPI instance uses a timeout and keeps postponing
6563 		 * it, we need to bound somehow the time packets are kept in
6564 		 * the GRO layer
6565 		 */
6566 		napi_gro_flush(n, !!timeout);
6567 	}
6568 
6569 	gro_normal_list(n);
6570 
6571 	if (unlikely(!list_empty(&n->poll_list))) {
6572 		/* If n->poll_list is not empty, we need to mask irqs */
6573 		local_irq_save(flags);
6574 		list_del_init(&n->poll_list);
6575 		local_irq_restore(flags);
6576 	}
6577 
6578 	do {
6579 		val = READ_ONCE(n->state);
6580 
6581 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6582 
6583 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6584 			      NAPIF_STATE_SCHED_THREADED |
6585 			      NAPIF_STATE_PREFER_BUSY_POLL);
6586 
6587 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6588 		 * because we will call napi->poll() one more time.
6589 		 * This C code was suggested by Alexander Duyck to help gcc.
6590 		 */
6591 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6592 						    NAPIF_STATE_SCHED;
6593 	} while (cmpxchg(&n->state, val, new) != val);
6594 
6595 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6596 		__napi_schedule(n);
6597 		return false;
6598 	}
6599 
6600 	if (timeout)
6601 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
6602 			      HRTIMER_MODE_REL_PINNED);
6603 	return ret;
6604 }
6605 EXPORT_SYMBOL(napi_complete_done);
6606 
6607 /* must be called under rcu_read_lock(), as we dont take a reference */
6608 static struct napi_struct *napi_by_id(unsigned int napi_id)
6609 {
6610 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6611 	struct napi_struct *napi;
6612 
6613 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6614 		if (napi->napi_id == napi_id)
6615 			return napi;
6616 
6617 	return NULL;
6618 }
6619 
6620 #if defined(CONFIG_NET_RX_BUSY_POLL)
6621 
6622 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6623 {
6624 	if (!skip_schedule) {
6625 		gro_normal_list(napi);
6626 		__napi_schedule(napi);
6627 		return;
6628 	}
6629 
6630 	if (napi->gro_bitmask) {
6631 		/* flush too old packets
6632 		 * If HZ < 1000, flush all packets.
6633 		 */
6634 		napi_gro_flush(napi, HZ >= 1000);
6635 	}
6636 
6637 	gro_normal_list(napi);
6638 	clear_bit(NAPI_STATE_SCHED, &napi->state);
6639 }
6640 
6641 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6642 			   u16 budget)
6643 {
6644 	bool skip_schedule = false;
6645 	unsigned long timeout;
6646 	int rc;
6647 
6648 	/* Busy polling means there is a high chance device driver hard irq
6649 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6650 	 * set in napi_schedule_prep().
6651 	 * Since we are about to call napi->poll() once more, we can safely
6652 	 * clear NAPI_STATE_MISSED.
6653 	 *
6654 	 * Note: x86 could use a single "lock and ..." instruction
6655 	 * to perform these two clear_bit()
6656 	 */
6657 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6658 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6659 
6660 	local_bh_disable();
6661 
6662 	if (prefer_busy_poll) {
6663 		napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6664 		timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6665 		if (napi->defer_hard_irqs_count && timeout) {
6666 			hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6667 			skip_schedule = true;
6668 		}
6669 	}
6670 
6671 	/* All we really want here is to re-enable device interrupts.
6672 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6673 	 */
6674 	rc = napi->poll(napi, budget);
6675 	/* We can't gro_normal_list() here, because napi->poll() might have
6676 	 * rearmed the napi (napi_complete_done()) in which case it could
6677 	 * already be running on another CPU.
6678 	 */
6679 	trace_napi_poll(napi, rc, budget);
6680 	netpoll_poll_unlock(have_poll_lock);
6681 	if (rc == budget)
6682 		__busy_poll_stop(napi, skip_schedule);
6683 	local_bh_enable();
6684 }
6685 
6686 void napi_busy_loop(unsigned int napi_id,
6687 		    bool (*loop_end)(void *, unsigned long),
6688 		    void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6689 {
6690 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6691 	int (*napi_poll)(struct napi_struct *napi, int budget);
6692 	void *have_poll_lock = NULL;
6693 	struct napi_struct *napi;
6694 
6695 restart:
6696 	napi_poll = NULL;
6697 
6698 	rcu_read_lock();
6699 
6700 	napi = napi_by_id(napi_id);
6701 	if (!napi)
6702 		goto out;
6703 
6704 	preempt_disable();
6705 	for (;;) {
6706 		int work = 0;
6707 
6708 		local_bh_disable();
6709 		if (!napi_poll) {
6710 			unsigned long val = READ_ONCE(napi->state);
6711 
6712 			/* If multiple threads are competing for this napi,
6713 			 * we avoid dirtying napi->state as much as we can.
6714 			 */
6715 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6716 				   NAPIF_STATE_IN_BUSY_POLL)) {
6717 				if (prefer_busy_poll)
6718 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6719 				goto count;
6720 			}
6721 			if (cmpxchg(&napi->state, val,
6722 				    val | NAPIF_STATE_IN_BUSY_POLL |
6723 					  NAPIF_STATE_SCHED) != val) {
6724 				if (prefer_busy_poll)
6725 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6726 				goto count;
6727 			}
6728 			have_poll_lock = netpoll_poll_lock(napi);
6729 			napi_poll = napi->poll;
6730 		}
6731 		work = napi_poll(napi, budget);
6732 		trace_napi_poll(napi, work, budget);
6733 		gro_normal_list(napi);
6734 count:
6735 		if (work > 0)
6736 			__NET_ADD_STATS(dev_net(napi->dev),
6737 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6738 		local_bh_enable();
6739 
6740 		if (!loop_end || loop_end(loop_end_arg, start_time))
6741 			break;
6742 
6743 		if (unlikely(need_resched())) {
6744 			if (napi_poll)
6745 				busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6746 			preempt_enable();
6747 			rcu_read_unlock();
6748 			cond_resched();
6749 			if (loop_end(loop_end_arg, start_time))
6750 				return;
6751 			goto restart;
6752 		}
6753 		cpu_relax();
6754 	}
6755 	if (napi_poll)
6756 		busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6757 	preempt_enable();
6758 out:
6759 	rcu_read_unlock();
6760 }
6761 EXPORT_SYMBOL(napi_busy_loop);
6762 
6763 #endif /* CONFIG_NET_RX_BUSY_POLL */
6764 
6765 static void napi_hash_add(struct napi_struct *napi)
6766 {
6767 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6768 		return;
6769 
6770 	spin_lock(&napi_hash_lock);
6771 
6772 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6773 	do {
6774 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6775 			napi_gen_id = MIN_NAPI_ID;
6776 	} while (napi_by_id(napi_gen_id));
6777 	napi->napi_id = napi_gen_id;
6778 
6779 	hlist_add_head_rcu(&napi->napi_hash_node,
6780 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6781 
6782 	spin_unlock(&napi_hash_lock);
6783 }
6784 
6785 /* Warning : caller is responsible to make sure rcu grace period
6786  * is respected before freeing memory containing @napi
6787  */
6788 static void napi_hash_del(struct napi_struct *napi)
6789 {
6790 	spin_lock(&napi_hash_lock);
6791 
6792 	hlist_del_init_rcu(&napi->napi_hash_node);
6793 
6794 	spin_unlock(&napi_hash_lock);
6795 }
6796 
6797 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6798 {
6799 	struct napi_struct *napi;
6800 
6801 	napi = container_of(timer, struct napi_struct, timer);
6802 
6803 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6804 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6805 	 */
6806 	if (!napi_disable_pending(napi) &&
6807 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6808 		clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6809 		__napi_schedule_irqoff(napi);
6810 	}
6811 
6812 	return HRTIMER_NORESTART;
6813 }
6814 
6815 static void init_gro_hash(struct napi_struct *napi)
6816 {
6817 	int i;
6818 
6819 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6820 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6821 		napi->gro_hash[i].count = 0;
6822 	}
6823 	napi->gro_bitmask = 0;
6824 }
6825 
6826 int dev_set_threaded(struct net_device *dev, bool threaded)
6827 {
6828 	struct napi_struct *napi;
6829 	int err = 0;
6830 
6831 	if (dev->threaded == threaded)
6832 		return 0;
6833 
6834 	if (threaded) {
6835 		list_for_each_entry(napi, &dev->napi_list, dev_list) {
6836 			if (!napi->thread) {
6837 				err = napi_kthread_create(napi);
6838 				if (err) {
6839 					threaded = false;
6840 					break;
6841 				}
6842 			}
6843 		}
6844 	}
6845 
6846 	dev->threaded = threaded;
6847 
6848 	/* Make sure kthread is created before THREADED bit
6849 	 * is set.
6850 	 */
6851 	smp_mb__before_atomic();
6852 
6853 	/* Setting/unsetting threaded mode on a napi might not immediately
6854 	 * take effect, if the current napi instance is actively being
6855 	 * polled. In this case, the switch between threaded mode and
6856 	 * softirq mode will happen in the next round of napi_schedule().
6857 	 * This should not cause hiccups/stalls to the live traffic.
6858 	 */
6859 	list_for_each_entry(napi, &dev->napi_list, dev_list) {
6860 		if (threaded)
6861 			set_bit(NAPI_STATE_THREADED, &napi->state);
6862 		else
6863 			clear_bit(NAPI_STATE_THREADED, &napi->state);
6864 	}
6865 
6866 	return err;
6867 }
6868 EXPORT_SYMBOL(dev_set_threaded);
6869 
6870 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6871 		    int (*poll)(struct napi_struct *, int), int weight)
6872 {
6873 	if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6874 		return;
6875 
6876 	INIT_LIST_HEAD(&napi->poll_list);
6877 	INIT_HLIST_NODE(&napi->napi_hash_node);
6878 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6879 	napi->timer.function = napi_watchdog;
6880 	init_gro_hash(napi);
6881 	napi->skb = NULL;
6882 	INIT_LIST_HEAD(&napi->rx_list);
6883 	napi->rx_count = 0;
6884 	napi->poll = poll;
6885 	if (weight > NAPI_POLL_WEIGHT)
6886 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6887 				weight);
6888 	napi->weight = weight;
6889 	napi->dev = dev;
6890 #ifdef CONFIG_NETPOLL
6891 	napi->poll_owner = -1;
6892 #endif
6893 	set_bit(NAPI_STATE_SCHED, &napi->state);
6894 	set_bit(NAPI_STATE_NPSVC, &napi->state);
6895 	list_add_rcu(&napi->dev_list, &dev->napi_list);
6896 	napi_hash_add(napi);
6897 	/* Create kthread for this napi if dev->threaded is set.
6898 	 * Clear dev->threaded if kthread creation failed so that
6899 	 * threaded mode will not be enabled in napi_enable().
6900 	 */
6901 	if (dev->threaded && napi_kthread_create(napi))
6902 		dev->threaded = 0;
6903 }
6904 EXPORT_SYMBOL(netif_napi_add);
6905 
6906 void napi_disable(struct napi_struct *n)
6907 {
6908 	unsigned long val, new;
6909 
6910 	might_sleep();
6911 	set_bit(NAPI_STATE_DISABLE, &n->state);
6912 
6913 	do {
6914 		val = READ_ONCE(n->state);
6915 		if (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6916 			usleep_range(20, 200);
6917 			continue;
6918 		}
6919 
6920 		new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6921 		new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6922 	} while (cmpxchg(&n->state, val, new) != val);
6923 
6924 	hrtimer_cancel(&n->timer);
6925 
6926 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6927 }
6928 EXPORT_SYMBOL(napi_disable);
6929 
6930 /**
6931  *	napi_enable - enable NAPI scheduling
6932  *	@n: NAPI context
6933  *
6934  * Resume NAPI from being scheduled on this context.
6935  * Must be paired with napi_disable.
6936  */
6937 void napi_enable(struct napi_struct *n)
6938 {
6939 	unsigned long val, new;
6940 
6941 	do {
6942 		val = READ_ONCE(n->state);
6943 		BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6944 
6945 		new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6946 		if (n->dev->threaded && n->thread)
6947 			new |= NAPIF_STATE_THREADED;
6948 	} while (cmpxchg(&n->state, val, new) != val);
6949 }
6950 EXPORT_SYMBOL(napi_enable);
6951 
6952 static void flush_gro_hash(struct napi_struct *napi)
6953 {
6954 	int i;
6955 
6956 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6957 		struct sk_buff *skb, *n;
6958 
6959 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6960 			kfree_skb(skb);
6961 		napi->gro_hash[i].count = 0;
6962 	}
6963 }
6964 
6965 /* Must be called in process context */
6966 void __netif_napi_del(struct napi_struct *napi)
6967 {
6968 	if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6969 		return;
6970 
6971 	napi_hash_del(napi);
6972 	list_del_rcu(&napi->dev_list);
6973 	napi_free_frags(napi);
6974 
6975 	flush_gro_hash(napi);
6976 	napi->gro_bitmask = 0;
6977 
6978 	if (napi->thread) {
6979 		kthread_stop(napi->thread);
6980 		napi->thread = NULL;
6981 	}
6982 }
6983 EXPORT_SYMBOL(__netif_napi_del);
6984 
6985 static int __napi_poll(struct napi_struct *n, bool *repoll)
6986 {
6987 	int work, weight;
6988 
6989 	weight = n->weight;
6990 
6991 	/* This NAPI_STATE_SCHED test is for avoiding a race
6992 	 * with netpoll's poll_napi().  Only the entity which
6993 	 * obtains the lock and sees NAPI_STATE_SCHED set will
6994 	 * actually make the ->poll() call.  Therefore we avoid
6995 	 * accidentally calling ->poll() when NAPI is not scheduled.
6996 	 */
6997 	work = 0;
6998 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6999 		work = n->poll(n, weight);
7000 		trace_napi_poll(n, work, weight);
7001 	}
7002 
7003 	if (unlikely(work > weight))
7004 		pr_err_once("NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
7005 			    n->poll, work, weight);
7006 
7007 	if (likely(work < weight))
7008 		return work;
7009 
7010 	/* Drivers must not modify the NAPI state if they
7011 	 * consume the entire weight.  In such cases this code
7012 	 * still "owns" the NAPI instance and therefore can
7013 	 * move the instance around on the list at-will.
7014 	 */
7015 	if (unlikely(napi_disable_pending(n))) {
7016 		napi_complete(n);
7017 		return work;
7018 	}
7019 
7020 	/* The NAPI context has more processing work, but busy-polling
7021 	 * is preferred. Exit early.
7022 	 */
7023 	if (napi_prefer_busy_poll(n)) {
7024 		if (napi_complete_done(n, work)) {
7025 			/* If timeout is not set, we need to make sure
7026 			 * that the NAPI is re-scheduled.
7027 			 */
7028 			napi_schedule(n);
7029 		}
7030 		return work;
7031 	}
7032 
7033 	if (n->gro_bitmask) {
7034 		/* flush too old packets
7035 		 * If HZ < 1000, flush all packets.
7036 		 */
7037 		napi_gro_flush(n, HZ >= 1000);
7038 	}
7039 
7040 	gro_normal_list(n);
7041 
7042 	/* Some drivers may have called napi_schedule
7043 	 * prior to exhausting their budget.
7044 	 */
7045 	if (unlikely(!list_empty(&n->poll_list))) {
7046 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
7047 			     n->dev ? n->dev->name : "backlog");
7048 		return work;
7049 	}
7050 
7051 	*repoll = true;
7052 
7053 	return work;
7054 }
7055 
7056 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
7057 {
7058 	bool do_repoll = false;
7059 	void *have;
7060 	int work;
7061 
7062 	list_del_init(&n->poll_list);
7063 
7064 	have = netpoll_poll_lock(n);
7065 
7066 	work = __napi_poll(n, &do_repoll);
7067 
7068 	if (do_repoll)
7069 		list_add_tail(&n->poll_list, repoll);
7070 
7071 	netpoll_poll_unlock(have);
7072 
7073 	return work;
7074 }
7075 
7076 static int napi_thread_wait(struct napi_struct *napi)
7077 {
7078 	bool woken = false;
7079 
7080 	set_current_state(TASK_INTERRUPTIBLE);
7081 
7082 	while (!kthread_should_stop()) {
7083 		/* Testing SCHED_THREADED bit here to make sure the current
7084 		 * kthread owns this napi and could poll on this napi.
7085 		 * Testing SCHED bit is not enough because SCHED bit might be
7086 		 * set by some other busy poll thread or by napi_disable().
7087 		 */
7088 		if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
7089 			WARN_ON(!list_empty(&napi->poll_list));
7090 			__set_current_state(TASK_RUNNING);
7091 			return 0;
7092 		}
7093 
7094 		schedule();
7095 		/* woken being true indicates this thread owns this napi. */
7096 		woken = true;
7097 		set_current_state(TASK_INTERRUPTIBLE);
7098 	}
7099 	__set_current_state(TASK_RUNNING);
7100 
7101 	return -1;
7102 }
7103 
7104 static int napi_threaded_poll(void *data)
7105 {
7106 	struct napi_struct *napi = data;
7107 	void *have;
7108 
7109 	while (!napi_thread_wait(napi)) {
7110 		for (;;) {
7111 			bool repoll = false;
7112 
7113 			local_bh_disable();
7114 
7115 			have = netpoll_poll_lock(napi);
7116 			__napi_poll(napi, &repoll);
7117 			netpoll_poll_unlock(have);
7118 
7119 			local_bh_enable();
7120 
7121 			if (!repoll)
7122 				break;
7123 
7124 			cond_resched();
7125 		}
7126 	}
7127 	return 0;
7128 }
7129 
7130 static __latent_entropy void net_rx_action(struct softirq_action *h)
7131 {
7132 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7133 	unsigned long time_limit = jiffies +
7134 		usecs_to_jiffies(netdev_budget_usecs);
7135 	int budget = netdev_budget;
7136 	LIST_HEAD(list);
7137 	LIST_HEAD(repoll);
7138 
7139 	local_irq_disable();
7140 	list_splice_init(&sd->poll_list, &list);
7141 	local_irq_enable();
7142 
7143 	for (;;) {
7144 		struct napi_struct *n;
7145 
7146 		if (list_empty(&list)) {
7147 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
7148 				return;
7149 			break;
7150 		}
7151 
7152 		n = list_first_entry(&list, struct napi_struct, poll_list);
7153 		budget -= napi_poll(n, &repoll);
7154 
7155 		/* If softirq window is exhausted then punt.
7156 		 * Allow this to run for 2 jiffies since which will allow
7157 		 * an average latency of 1.5/HZ.
7158 		 */
7159 		if (unlikely(budget <= 0 ||
7160 			     time_after_eq(jiffies, time_limit))) {
7161 			sd->time_squeeze++;
7162 			break;
7163 		}
7164 	}
7165 
7166 	local_irq_disable();
7167 
7168 	list_splice_tail_init(&sd->poll_list, &list);
7169 	list_splice_tail(&repoll, &list);
7170 	list_splice(&list, &sd->poll_list);
7171 	if (!list_empty(&sd->poll_list))
7172 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
7173 
7174 	net_rps_action_and_irq_enable(sd);
7175 }
7176 
7177 struct netdev_adjacent {
7178 	struct net_device *dev;
7179 
7180 	/* upper master flag, there can only be one master device per list */
7181 	bool master;
7182 
7183 	/* lookup ignore flag */
7184 	bool ignore;
7185 
7186 	/* counter for the number of times this device was added to us */
7187 	u16 ref_nr;
7188 
7189 	/* private field for the users */
7190 	void *private;
7191 
7192 	struct list_head list;
7193 	struct rcu_head rcu;
7194 };
7195 
7196 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7197 						 struct list_head *adj_list)
7198 {
7199 	struct netdev_adjacent *adj;
7200 
7201 	list_for_each_entry(adj, adj_list, list) {
7202 		if (adj->dev == adj_dev)
7203 			return adj;
7204 	}
7205 	return NULL;
7206 }
7207 
7208 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7209 				    struct netdev_nested_priv *priv)
7210 {
7211 	struct net_device *dev = (struct net_device *)priv->data;
7212 
7213 	return upper_dev == dev;
7214 }
7215 
7216 /**
7217  * netdev_has_upper_dev - Check if device is linked to an upper device
7218  * @dev: device
7219  * @upper_dev: upper device to check
7220  *
7221  * Find out if a device is linked to specified upper device and return true
7222  * in case it is. Note that this checks only immediate upper device,
7223  * not through a complete stack of devices. The caller must hold the RTNL lock.
7224  */
7225 bool netdev_has_upper_dev(struct net_device *dev,
7226 			  struct net_device *upper_dev)
7227 {
7228 	struct netdev_nested_priv priv = {
7229 		.data = (void *)upper_dev,
7230 	};
7231 
7232 	ASSERT_RTNL();
7233 
7234 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7235 					     &priv);
7236 }
7237 EXPORT_SYMBOL(netdev_has_upper_dev);
7238 
7239 /**
7240  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7241  * @dev: device
7242  * @upper_dev: upper device to check
7243  *
7244  * Find out if a device is linked to specified upper device and return true
7245  * in case it is. Note that this checks the entire upper device chain.
7246  * The caller must hold rcu lock.
7247  */
7248 
7249 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7250 				  struct net_device *upper_dev)
7251 {
7252 	struct netdev_nested_priv priv = {
7253 		.data = (void *)upper_dev,
7254 	};
7255 
7256 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7257 					       &priv);
7258 }
7259 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7260 
7261 /**
7262  * netdev_has_any_upper_dev - Check if device is linked to some device
7263  * @dev: device
7264  *
7265  * Find out if a device is linked to an upper device and return true in case
7266  * it is. The caller must hold the RTNL lock.
7267  */
7268 bool netdev_has_any_upper_dev(struct net_device *dev)
7269 {
7270 	ASSERT_RTNL();
7271 
7272 	return !list_empty(&dev->adj_list.upper);
7273 }
7274 EXPORT_SYMBOL(netdev_has_any_upper_dev);
7275 
7276 /**
7277  * netdev_master_upper_dev_get - Get master upper device
7278  * @dev: device
7279  *
7280  * Find a master upper device and return pointer to it or NULL in case
7281  * it's not there. The caller must hold the RTNL lock.
7282  */
7283 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7284 {
7285 	struct netdev_adjacent *upper;
7286 
7287 	ASSERT_RTNL();
7288 
7289 	if (list_empty(&dev->adj_list.upper))
7290 		return NULL;
7291 
7292 	upper = list_first_entry(&dev->adj_list.upper,
7293 				 struct netdev_adjacent, list);
7294 	if (likely(upper->master))
7295 		return upper->dev;
7296 	return NULL;
7297 }
7298 EXPORT_SYMBOL(netdev_master_upper_dev_get);
7299 
7300 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7301 {
7302 	struct netdev_adjacent *upper;
7303 
7304 	ASSERT_RTNL();
7305 
7306 	if (list_empty(&dev->adj_list.upper))
7307 		return NULL;
7308 
7309 	upper = list_first_entry(&dev->adj_list.upper,
7310 				 struct netdev_adjacent, list);
7311 	if (likely(upper->master) && !upper->ignore)
7312 		return upper->dev;
7313 	return NULL;
7314 }
7315 
7316 /**
7317  * netdev_has_any_lower_dev - Check if device is linked to some device
7318  * @dev: device
7319  *
7320  * Find out if a device is linked to a lower device and return true in case
7321  * it is. The caller must hold the RTNL lock.
7322  */
7323 static bool netdev_has_any_lower_dev(struct net_device *dev)
7324 {
7325 	ASSERT_RTNL();
7326 
7327 	return !list_empty(&dev->adj_list.lower);
7328 }
7329 
7330 void *netdev_adjacent_get_private(struct list_head *adj_list)
7331 {
7332 	struct netdev_adjacent *adj;
7333 
7334 	adj = list_entry(adj_list, struct netdev_adjacent, list);
7335 
7336 	return adj->private;
7337 }
7338 EXPORT_SYMBOL(netdev_adjacent_get_private);
7339 
7340 /**
7341  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7342  * @dev: device
7343  * @iter: list_head ** of the current position
7344  *
7345  * Gets the next device from the dev's upper list, starting from iter
7346  * position. The caller must hold RCU read lock.
7347  */
7348 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7349 						 struct list_head **iter)
7350 {
7351 	struct netdev_adjacent *upper;
7352 
7353 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7354 
7355 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7356 
7357 	if (&upper->list == &dev->adj_list.upper)
7358 		return NULL;
7359 
7360 	*iter = &upper->list;
7361 
7362 	return upper->dev;
7363 }
7364 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7365 
7366 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7367 						  struct list_head **iter,
7368 						  bool *ignore)
7369 {
7370 	struct netdev_adjacent *upper;
7371 
7372 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7373 
7374 	if (&upper->list == &dev->adj_list.upper)
7375 		return NULL;
7376 
7377 	*iter = &upper->list;
7378 	*ignore = upper->ignore;
7379 
7380 	return upper->dev;
7381 }
7382 
7383 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7384 						    struct list_head **iter)
7385 {
7386 	struct netdev_adjacent *upper;
7387 
7388 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7389 
7390 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7391 
7392 	if (&upper->list == &dev->adj_list.upper)
7393 		return NULL;
7394 
7395 	*iter = &upper->list;
7396 
7397 	return upper->dev;
7398 }
7399 
7400 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7401 				       int (*fn)(struct net_device *dev,
7402 					 struct netdev_nested_priv *priv),
7403 				       struct netdev_nested_priv *priv)
7404 {
7405 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7406 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7407 	int ret, cur = 0;
7408 	bool ignore;
7409 
7410 	now = dev;
7411 	iter = &dev->adj_list.upper;
7412 
7413 	while (1) {
7414 		if (now != dev) {
7415 			ret = fn(now, priv);
7416 			if (ret)
7417 				return ret;
7418 		}
7419 
7420 		next = NULL;
7421 		while (1) {
7422 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
7423 			if (!udev)
7424 				break;
7425 			if (ignore)
7426 				continue;
7427 
7428 			next = udev;
7429 			niter = &udev->adj_list.upper;
7430 			dev_stack[cur] = now;
7431 			iter_stack[cur++] = iter;
7432 			break;
7433 		}
7434 
7435 		if (!next) {
7436 			if (!cur)
7437 				return 0;
7438 			next = dev_stack[--cur];
7439 			niter = iter_stack[cur];
7440 		}
7441 
7442 		now = next;
7443 		iter = niter;
7444 	}
7445 
7446 	return 0;
7447 }
7448 
7449 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7450 				  int (*fn)(struct net_device *dev,
7451 					    struct netdev_nested_priv *priv),
7452 				  struct netdev_nested_priv *priv)
7453 {
7454 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7455 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7456 	int ret, cur = 0;
7457 
7458 	now = dev;
7459 	iter = &dev->adj_list.upper;
7460 
7461 	while (1) {
7462 		if (now != dev) {
7463 			ret = fn(now, priv);
7464 			if (ret)
7465 				return ret;
7466 		}
7467 
7468 		next = NULL;
7469 		while (1) {
7470 			udev = netdev_next_upper_dev_rcu(now, &iter);
7471 			if (!udev)
7472 				break;
7473 
7474 			next = udev;
7475 			niter = &udev->adj_list.upper;
7476 			dev_stack[cur] = now;
7477 			iter_stack[cur++] = iter;
7478 			break;
7479 		}
7480 
7481 		if (!next) {
7482 			if (!cur)
7483 				return 0;
7484 			next = dev_stack[--cur];
7485 			niter = iter_stack[cur];
7486 		}
7487 
7488 		now = next;
7489 		iter = niter;
7490 	}
7491 
7492 	return 0;
7493 }
7494 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7495 
7496 static bool __netdev_has_upper_dev(struct net_device *dev,
7497 				   struct net_device *upper_dev)
7498 {
7499 	struct netdev_nested_priv priv = {
7500 		.flags = 0,
7501 		.data = (void *)upper_dev,
7502 	};
7503 
7504 	ASSERT_RTNL();
7505 
7506 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7507 					   &priv);
7508 }
7509 
7510 /**
7511  * netdev_lower_get_next_private - Get the next ->private from the
7512  *				   lower neighbour list
7513  * @dev: device
7514  * @iter: list_head ** of the current position
7515  *
7516  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7517  * list, starting from iter position. The caller must hold either hold the
7518  * RTNL lock or its own locking that guarantees that the neighbour lower
7519  * list will remain unchanged.
7520  */
7521 void *netdev_lower_get_next_private(struct net_device *dev,
7522 				    struct list_head **iter)
7523 {
7524 	struct netdev_adjacent *lower;
7525 
7526 	lower = list_entry(*iter, struct netdev_adjacent, list);
7527 
7528 	if (&lower->list == &dev->adj_list.lower)
7529 		return NULL;
7530 
7531 	*iter = lower->list.next;
7532 
7533 	return lower->private;
7534 }
7535 EXPORT_SYMBOL(netdev_lower_get_next_private);
7536 
7537 /**
7538  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7539  *				       lower neighbour list, RCU
7540  *				       variant
7541  * @dev: device
7542  * @iter: list_head ** of the current position
7543  *
7544  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7545  * list, starting from iter position. The caller must hold RCU read lock.
7546  */
7547 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7548 					struct list_head **iter)
7549 {
7550 	struct netdev_adjacent *lower;
7551 
7552 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7553 
7554 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7555 
7556 	if (&lower->list == &dev->adj_list.lower)
7557 		return NULL;
7558 
7559 	*iter = &lower->list;
7560 
7561 	return lower->private;
7562 }
7563 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7564 
7565 /**
7566  * netdev_lower_get_next - Get the next device from the lower neighbour
7567  *                         list
7568  * @dev: device
7569  * @iter: list_head ** of the current position
7570  *
7571  * Gets the next netdev_adjacent from the dev's lower neighbour
7572  * list, starting from iter position. The caller must hold RTNL lock or
7573  * its own locking that guarantees that the neighbour lower
7574  * list will remain unchanged.
7575  */
7576 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7577 {
7578 	struct netdev_adjacent *lower;
7579 
7580 	lower = list_entry(*iter, struct netdev_adjacent, list);
7581 
7582 	if (&lower->list == &dev->adj_list.lower)
7583 		return NULL;
7584 
7585 	*iter = lower->list.next;
7586 
7587 	return lower->dev;
7588 }
7589 EXPORT_SYMBOL(netdev_lower_get_next);
7590 
7591 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7592 						struct list_head **iter)
7593 {
7594 	struct netdev_adjacent *lower;
7595 
7596 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7597 
7598 	if (&lower->list == &dev->adj_list.lower)
7599 		return NULL;
7600 
7601 	*iter = &lower->list;
7602 
7603 	return lower->dev;
7604 }
7605 
7606 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7607 						  struct list_head **iter,
7608 						  bool *ignore)
7609 {
7610 	struct netdev_adjacent *lower;
7611 
7612 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7613 
7614 	if (&lower->list == &dev->adj_list.lower)
7615 		return NULL;
7616 
7617 	*iter = &lower->list;
7618 	*ignore = lower->ignore;
7619 
7620 	return lower->dev;
7621 }
7622 
7623 int netdev_walk_all_lower_dev(struct net_device *dev,
7624 			      int (*fn)(struct net_device *dev,
7625 					struct netdev_nested_priv *priv),
7626 			      struct netdev_nested_priv *priv)
7627 {
7628 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7629 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7630 	int ret, cur = 0;
7631 
7632 	now = dev;
7633 	iter = &dev->adj_list.lower;
7634 
7635 	while (1) {
7636 		if (now != dev) {
7637 			ret = fn(now, priv);
7638 			if (ret)
7639 				return ret;
7640 		}
7641 
7642 		next = NULL;
7643 		while (1) {
7644 			ldev = netdev_next_lower_dev(now, &iter);
7645 			if (!ldev)
7646 				break;
7647 
7648 			next = ldev;
7649 			niter = &ldev->adj_list.lower;
7650 			dev_stack[cur] = now;
7651 			iter_stack[cur++] = iter;
7652 			break;
7653 		}
7654 
7655 		if (!next) {
7656 			if (!cur)
7657 				return 0;
7658 			next = dev_stack[--cur];
7659 			niter = iter_stack[cur];
7660 		}
7661 
7662 		now = next;
7663 		iter = niter;
7664 	}
7665 
7666 	return 0;
7667 }
7668 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7669 
7670 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7671 				       int (*fn)(struct net_device *dev,
7672 					 struct netdev_nested_priv *priv),
7673 				       struct netdev_nested_priv *priv)
7674 {
7675 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7676 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7677 	int ret, cur = 0;
7678 	bool ignore;
7679 
7680 	now = dev;
7681 	iter = &dev->adj_list.lower;
7682 
7683 	while (1) {
7684 		if (now != dev) {
7685 			ret = fn(now, priv);
7686 			if (ret)
7687 				return ret;
7688 		}
7689 
7690 		next = NULL;
7691 		while (1) {
7692 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7693 			if (!ldev)
7694 				break;
7695 			if (ignore)
7696 				continue;
7697 
7698 			next = ldev;
7699 			niter = &ldev->adj_list.lower;
7700 			dev_stack[cur] = now;
7701 			iter_stack[cur++] = iter;
7702 			break;
7703 		}
7704 
7705 		if (!next) {
7706 			if (!cur)
7707 				return 0;
7708 			next = dev_stack[--cur];
7709 			niter = iter_stack[cur];
7710 		}
7711 
7712 		now = next;
7713 		iter = niter;
7714 	}
7715 
7716 	return 0;
7717 }
7718 
7719 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7720 					     struct list_head **iter)
7721 {
7722 	struct netdev_adjacent *lower;
7723 
7724 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7725 	if (&lower->list == &dev->adj_list.lower)
7726 		return NULL;
7727 
7728 	*iter = &lower->list;
7729 
7730 	return lower->dev;
7731 }
7732 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7733 
7734 static u8 __netdev_upper_depth(struct net_device *dev)
7735 {
7736 	struct net_device *udev;
7737 	struct list_head *iter;
7738 	u8 max_depth = 0;
7739 	bool ignore;
7740 
7741 	for (iter = &dev->adj_list.upper,
7742 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7743 	     udev;
7744 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7745 		if (ignore)
7746 			continue;
7747 		if (max_depth < udev->upper_level)
7748 			max_depth = udev->upper_level;
7749 	}
7750 
7751 	return max_depth;
7752 }
7753 
7754 static u8 __netdev_lower_depth(struct net_device *dev)
7755 {
7756 	struct net_device *ldev;
7757 	struct list_head *iter;
7758 	u8 max_depth = 0;
7759 	bool ignore;
7760 
7761 	for (iter = &dev->adj_list.lower,
7762 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7763 	     ldev;
7764 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7765 		if (ignore)
7766 			continue;
7767 		if (max_depth < ldev->lower_level)
7768 			max_depth = ldev->lower_level;
7769 	}
7770 
7771 	return max_depth;
7772 }
7773 
7774 static int __netdev_update_upper_level(struct net_device *dev,
7775 				       struct netdev_nested_priv *__unused)
7776 {
7777 	dev->upper_level = __netdev_upper_depth(dev) + 1;
7778 	return 0;
7779 }
7780 
7781 static int __netdev_update_lower_level(struct net_device *dev,
7782 				       struct netdev_nested_priv *priv)
7783 {
7784 	dev->lower_level = __netdev_lower_depth(dev) + 1;
7785 
7786 #ifdef CONFIG_LOCKDEP
7787 	if (!priv)
7788 		return 0;
7789 
7790 	if (priv->flags & NESTED_SYNC_IMM)
7791 		dev->nested_level = dev->lower_level - 1;
7792 	if (priv->flags & NESTED_SYNC_TODO)
7793 		net_unlink_todo(dev);
7794 #endif
7795 	return 0;
7796 }
7797 
7798 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7799 				  int (*fn)(struct net_device *dev,
7800 					    struct netdev_nested_priv *priv),
7801 				  struct netdev_nested_priv *priv)
7802 {
7803 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7804 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7805 	int ret, cur = 0;
7806 
7807 	now = dev;
7808 	iter = &dev->adj_list.lower;
7809 
7810 	while (1) {
7811 		if (now != dev) {
7812 			ret = fn(now, priv);
7813 			if (ret)
7814 				return ret;
7815 		}
7816 
7817 		next = NULL;
7818 		while (1) {
7819 			ldev = netdev_next_lower_dev_rcu(now, &iter);
7820 			if (!ldev)
7821 				break;
7822 
7823 			next = ldev;
7824 			niter = &ldev->adj_list.lower;
7825 			dev_stack[cur] = now;
7826 			iter_stack[cur++] = iter;
7827 			break;
7828 		}
7829 
7830 		if (!next) {
7831 			if (!cur)
7832 				return 0;
7833 			next = dev_stack[--cur];
7834 			niter = iter_stack[cur];
7835 		}
7836 
7837 		now = next;
7838 		iter = niter;
7839 	}
7840 
7841 	return 0;
7842 }
7843 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7844 
7845 /**
7846  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7847  *				       lower neighbour list, RCU
7848  *				       variant
7849  * @dev: device
7850  *
7851  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7852  * list. The caller must hold RCU read lock.
7853  */
7854 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7855 {
7856 	struct netdev_adjacent *lower;
7857 
7858 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
7859 			struct netdev_adjacent, list);
7860 	if (lower)
7861 		return lower->private;
7862 	return NULL;
7863 }
7864 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7865 
7866 /**
7867  * netdev_master_upper_dev_get_rcu - Get master upper device
7868  * @dev: device
7869  *
7870  * Find a master upper device and return pointer to it or NULL in case
7871  * it's not there. The caller must hold the RCU read lock.
7872  */
7873 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7874 {
7875 	struct netdev_adjacent *upper;
7876 
7877 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
7878 				       struct netdev_adjacent, list);
7879 	if (upper && likely(upper->master))
7880 		return upper->dev;
7881 	return NULL;
7882 }
7883 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7884 
7885 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7886 			      struct net_device *adj_dev,
7887 			      struct list_head *dev_list)
7888 {
7889 	char linkname[IFNAMSIZ+7];
7890 
7891 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7892 		"upper_%s" : "lower_%s", adj_dev->name);
7893 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7894 				 linkname);
7895 }
7896 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7897 			       char *name,
7898 			       struct list_head *dev_list)
7899 {
7900 	char linkname[IFNAMSIZ+7];
7901 
7902 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7903 		"upper_%s" : "lower_%s", name);
7904 	sysfs_remove_link(&(dev->dev.kobj), linkname);
7905 }
7906 
7907 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7908 						 struct net_device *adj_dev,
7909 						 struct list_head *dev_list)
7910 {
7911 	return (dev_list == &dev->adj_list.upper ||
7912 		dev_list == &dev->adj_list.lower) &&
7913 		net_eq(dev_net(dev), dev_net(adj_dev));
7914 }
7915 
7916 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7917 					struct net_device *adj_dev,
7918 					struct list_head *dev_list,
7919 					void *private, bool master)
7920 {
7921 	struct netdev_adjacent *adj;
7922 	int ret;
7923 
7924 	adj = __netdev_find_adj(adj_dev, dev_list);
7925 
7926 	if (adj) {
7927 		adj->ref_nr += 1;
7928 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7929 			 dev->name, adj_dev->name, adj->ref_nr);
7930 
7931 		return 0;
7932 	}
7933 
7934 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7935 	if (!adj)
7936 		return -ENOMEM;
7937 
7938 	adj->dev = adj_dev;
7939 	adj->master = master;
7940 	adj->ref_nr = 1;
7941 	adj->private = private;
7942 	adj->ignore = false;
7943 	dev_hold(adj_dev);
7944 
7945 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7946 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7947 
7948 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7949 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7950 		if (ret)
7951 			goto free_adj;
7952 	}
7953 
7954 	/* Ensure that master link is always the first item in list. */
7955 	if (master) {
7956 		ret = sysfs_create_link(&(dev->dev.kobj),
7957 					&(adj_dev->dev.kobj), "master");
7958 		if (ret)
7959 			goto remove_symlinks;
7960 
7961 		list_add_rcu(&adj->list, dev_list);
7962 	} else {
7963 		list_add_tail_rcu(&adj->list, dev_list);
7964 	}
7965 
7966 	return 0;
7967 
7968 remove_symlinks:
7969 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7970 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7971 free_adj:
7972 	kfree(adj);
7973 	dev_put(adj_dev);
7974 
7975 	return ret;
7976 }
7977 
7978 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7979 					 struct net_device *adj_dev,
7980 					 u16 ref_nr,
7981 					 struct list_head *dev_list)
7982 {
7983 	struct netdev_adjacent *adj;
7984 
7985 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7986 		 dev->name, adj_dev->name, ref_nr);
7987 
7988 	adj = __netdev_find_adj(adj_dev, dev_list);
7989 
7990 	if (!adj) {
7991 		pr_err("Adjacency does not exist for device %s from %s\n",
7992 		       dev->name, adj_dev->name);
7993 		WARN_ON(1);
7994 		return;
7995 	}
7996 
7997 	if (adj->ref_nr > ref_nr) {
7998 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7999 			 dev->name, adj_dev->name, ref_nr,
8000 			 adj->ref_nr - ref_nr);
8001 		adj->ref_nr -= ref_nr;
8002 		return;
8003 	}
8004 
8005 	if (adj->master)
8006 		sysfs_remove_link(&(dev->dev.kobj), "master");
8007 
8008 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8009 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8010 
8011 	list_del_rcu(&adj->list);
8012 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
8013 		 adj_dev->name, dev->name, adj_dev->name);
8014 	dev_put(adj_dev);
8015 	kfree_rcu(adj, rcu);
8016 }
8017 
8018 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
8019 					    struct net_device *upper_dev,
8020 					    struct list_head *up_list,
8021 					    struct list_head *down_list,
8022 					    void *private, bool master)
8023 {
8024 	int ret;
8025 
8026 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
8027 					   private, master);
8028 	if (ret)
8029 		return ret;
8030 
8031 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
8032 					   private, false);
8033 	if (ret) {
8034 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
8035 		return ret;
8036 	}
8037 
8038 	return 0;
8039 }
8040 
8041 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
8042 					       struct net_device *upper_dev,
8043 					       u16 ref_nr,
8044 					       struct list_head *up_list,
8045 					       struct list_head *down_list)
8046 {
8047 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
8048 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
8049 }
8050 
8051 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
8052 						struct net_device *upper_dev,
8053 						void *private, bool master)
8054 {
8055 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
8056 						&dev->adj_list.upper,
8057 						&upper_dev->adj_list.lower,
8058 						private, master);
8059 }
8060 
8061 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
8062 						   struct net_device *upper_dev)
8063 {
8064 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
8065 					   &dev->adj_list.upper,
8066 					   &upper_dev->adj_list.lower);
8067 }
8068 
8069 static int __netdev_upper_dev_link(struct net_device *dev,
8070 				   struct net_device *upper_dev, bool master,
8071 				   void *upper_priv, void *upper_info,
8072 				   struct netdev_nested_priv *priv,
8073 				   struct netlink_ext_ack *extack)
8074 {
8075 	struct netdev_notifier_changeupper_info changeupper_info = {
8076 		.info = {
8077 			.dev = dev,
8078 			.extack = extack,
8079 		},
8080 		.upper_dev = upper_dev,
8081 		.master = master,
8082 		.linking = true,
8083 		.upper_info = upper_info,
8084 	};
8085 	struct net_device *master_dev;
8086 	int ret = 0;
8087 
8088 	ASSERT_RTNL();
8089 
8090 	if (dev == upper_dev)
8091 		return -EBUSY;
8092 
8093 	/* To prevent loops, check if dev is not upper device to upper_dev. */
8094 	if (__netdev_has_upper_dev(upper_dev, dev))
8095 		return -EBUSY;
8096 
8097 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
8098 		return -EMLINK;
8099 
8100 	if (!master) {
8101 		if (__netdev_has_upper_dev(dev, upper_dev))
8102 			return -EEXIST;
8103 	} else {
8104 		master_dev = __netdev_master_upper_dev_get(dev);
8105 		if (master_dev)
8106 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
8107 	}
8108 
8109 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8110 					    &changeupper_info.info);
8111 	ret = notifier_to_errno(ret);
8112 	if (ret)
8113 		return ret;
8114 
8115 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
8116 						   master);
8117 	if (ret)
8118 		return ret;
8119 
8120 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8121 					    &changeupper_info.info);
8122 	ret = notifier_to_errno(ret);
8123 	if (ret)
8124 		goto rollback;
8125 
8126 	__netdev_update_upper_level(dev, NULL);
8127 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8128 
8129 	__netdev_update_lower_level(upper_dev, priv);
8130 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8131 				    priv);
8132 
8133 	return 0;
8134 
8135 rollback:
8136 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8137 
8138 	return ret;
8139 }
8140 
8141 /**
8142  * netdev_upper_dev_link - Add a link to the upper device
8143  * @dev: device
8144  * @upper_dev: new upper device
8145  * @extack: netlink extended ack
8146  *
8147  * Adds a link to device which is upper to this one. The caller must hold
8148  * the RTNL lock. On a failure a negative errno code is returned.
8149  * On success the reference counts are adjusted and the function
8150  * returns zero.
8151  */
8152 int netdev_upper_dev_link(struct net_device *dev,
8153 			  struct net_device *upper_dev,
8154 			  struct netlink_ext_ack *extack)
8155 {
8156 	struct netdev_nested_priv priv = {
8157 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8158 		.data = NULL,
8159 	};
8160 
8161 	return __netdev_upper_dev_link(dev, upper_dev, false,
8162 				       NULL, NULL, &priv, extack);
8163 }
8164 EXPORT_SYMBOL(netdev_upper_dev_link);
8165 
8166 /**
8167  * netdev_master_upper_dev_link - Add a master link to the upper device
8168  * @dev: device
8169  * @upper_dev: new upper device
8170  * @upper_priv: upper device private
8171  * @upper_info: upper info to be passed down via notifier
8172  * @extack: netlink extended ack
8173  *
8174  * Adds a link to device which is upper to this one. In this case, only
8175  * one master upper device can be linked, although other non-master devices
8176  * might be linked as well. The caller must hold the RTNL lock.
8177  * On a failure a negative errno code is returned. On success the reference
8178  * counts are adjusted and the function returns zero.
8179  */
8180 int netdev_master_upper_dev_link(struct net_device *dev,
8181 				 struct net_device *upper_dev,
8182 				 void *upper_priv, void *upper_info,
8183 				 struct netlink_ext_ack *extack)
8184 {
8185 	struct netdev_nested_priv priv = {
8186 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8187 		.data = NULL,
8188 	};
8189 
8190 	return __netdev_upper_dev_link(dev, upper_dev, true,
8191 				       upper_priv, upper_info, &priv, extack);
8192 }
8193 EXPORT_SYMBOL(netdev_master_upper_dev_link);
8194 
8195 static void __netdev_upper_dev_unlink(struct net_device *dev,
8196 				      struct net_device *upper_dev,
8197 				      struct netdev_nested_priv *priv)
8198 {
8199 	struct netdev_notifier_changeupper_info changeupper_info = {
8200 		.info = {
8201 			.dev = dev,
8202 		},
8203 		.upper_dev = upper_dev,
8204 		.linking = false,
8205 	};
8206 
8207 	ASSERT_RTNL();
8208 
8209 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8210 
8211 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8212 				      &changeupper_info.info);
8213 
8214 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8215 
8216 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8217 				      &changeupper_info.info);
8218 
8219 	__netdev_update_upper_level(dev, NULL);
8220 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8221 
8222 	__netdev_update_lower_level(upper_dev, priv);
8223 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8224 				    priv);
8225 }
8226 
8227 /**
8228  * netdev_upper_dev_unlink - Removes a link to upper device
8229  * @dev: device
8230  * @upper_dev: new upper device
8231  *
8232  * Removes a link to device which is upper to this one. The caller must hold
8233  * the RTNL lock.
8234  */
8235 void netdev_upper_dev_unlink(struct net_device *dev,
8236 			     struct net_device *upper_dev)
8237 {
8238 	struct netdev_nested_priv priv = {
8239 		.flags = NESTED_SYNC_TODO,
8240 		.data = NULL,
8241 	};
8242 
8243 	__netdev_upper_dev_unlink(dev, upper_dev, &priv);
8244 }
8245 EXPORT_SYMBOL(netdev_upper_dev_unlink);
8246 
8247 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8248 				      struct net_device *lower_dev,
8249 				      bool val)
8250 {
8251 	struct netdev_adjacent *adj;
8252 
8253 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8254 	if (adj)
8255 		adj->ignore = val;
8256 
8257 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8258 	if (adj)
8259 		adj->ignore = val;
8260 }
8261 
8262 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8263 					struct net_device *lower_dev)
8264 {
8265 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8266 }
8267 
8268 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8269 				       struct net_device *lower_dev)
8270 {
8271 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8272 }
8273 
8274 int netdev_adjacent_change_prepare(struct net_device *old_dev,
8275 				   struct net_device *new_dev,
8276 				   struct net_device *dev,
8277 				   struct netlink_ext_ack *extack)
8278 {
8279 	struct netdev_nested_priv priv = {
8280 		.flags = 0,
8281 		.data = NULL,
8282 	};
8283 	int err;
8284 
8285 	if (!new_dev)
8286 		return 0;
8287 
8288 	if (old_dev && new_dev != old_dev)
8289 		netdev_adjacent_dev_disable(dev, old_dev);
8290 	err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8291 				      extack);
8292 	if (err) {
8293 		if (old_dev && new_dev != old_dev)
8294 			netdev_adjacent_dev_enable(dev, old_dev);
8295 		return err;
8296 	}
8297 
8298 	return 0;
8299 }
8300 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8301 
8302 void netdev_adjacent_change_commit(struct net_device *old_dev,
8303 				   struct net_device *new_dev,
8304 				   struct net_device *dev)
8305 {
8306 	struct netdev_nested_priv priv = {
8307 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8308 		.data = NULL,
8309 	};
8310 
8311 	if (!new_dev || !old_dev)
8312 		return;
8313 
8314 	if (new_dev == old_dev)
8315 		return;
8316 
8317 	netdev_adjacent_dev_enable(dev, old_dev);
8318 	__netdev_upper_dev_unlink(old_dev, dev, &priv);
8319 }
8320 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8321 
8322 void netdev_adjacent_change_abort(struct net_device *old_dev,
8323 				  struct net_device *new_dev,
8324 				  struct net_device *dev)
8325 {
8326 	struct netdev_nested_priv priv = {
8327 		.flags = 0,
8328 		.data = NULL,
8329 	};
8330 
8331 	if (!new_dev)
8332 		return;
8333 
8334 	if (old_dev && new_dev != old_dev)
8335 		netdev_adjacent_dev_enable(dev, old_dev);
8336 
8337 	__netdev_upper_dev_unlink(new_dev, dev, &priv);
8338 }
8339 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8340 
8341 /**
8342  * netdev_bonding_info_change - Dispatch event about slave change
8343  * @dev: device
8344  * @bonding_info: info to dispatch
8345  *
8346  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8347  * The caller must hold the RTNL lock.
8348  */
8349 void netdev_bonding_info_change(struct net_device *dev,
8350 				struct netdev_bonding_info *bonding_info)
8351 {
8352 	struct netdev_notifier_bonding_info info = {
8353 		.info.dev = dev,
8354 	};
8355 
8356 	memcpy(&info.bonding_info, bonding_info,
8357 	       sizeof(struct netdev_bonding_info));
8358 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8359 				      &info.info);
8360 }
8361 EXPORT_SYMBOL(netdev_bonding_info_change);
8362 
8363 /**
8364  * netdev_get_xmit_slave - Get the xmit slave of master device
8365  * @dev: device
8366  * @skb: The packet
8367  * @all_slaves: assume all the slaves are active
8368  *
8369  * The reference counters are not incremented so the caller must be
8370  * careful with locks. The caller must hold RCU lock.
8371  * %NULL is returned if no slave is found.
8372  */
8373 
8374 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8375 					 struct sk_buff *skb,
8376 					 bool all_slaves)
8377 {
8378 	const struct net_device_ops *ops = dev->netdev_ops;
8379 
8380 	if (!ops->ndo_get_xmit_slave)
8381 		return NULL;
8382 	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8383 }
8384 EXPORT_SYMBOL(netdev_get_xmit_slave);
8385 
8386 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8387 						  struct sock *sk)
8388 {
8389 	const struct net_device_ops *ops = dev->netdev_ops;
8390 
8391 	if (!ops->ndo_sk_get_lower_dev)
8392 		return NULL;
8393 	return ops->ndo_sk_get_lower_dev(dev, sk);
8394 }
8395 
8396 /**
8397  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8398  * @dev: device
8399  * @sk: the socket
8400  *
8401  * %NULL is returned if no lower device is found.
8402  */
8403 
8404 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8405 					    struct sock *sk)
8406 {
8407 	struct net_device *lower;
8408 
8409 	lower = netdev_sk_get_lower_dev(dev, sk);
8410 	while (lower) {
8411 		dev = lower;
8412 		lower = netdev_sk_get_lower_dev(dev, sk);
8413 	}
8414 
8415 	return dev;
8416 }
8417 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8418 
8419 static void netdev_adjacent_add_links(struct net_device *dev)
8420 {
8421 	struct netdev_adjacent *iter;
8422 
8423 	struct net *net = dev_net(dev);
8424 
8425 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8426 		if (!net_eq(net, dev_net(iter->dev)))
8427 			continue;
8428 		netdev_adjacent_sysfs_add(iter->dev, dev,
8429 					  &iter->dev->adj_list.lower);
8430 		netdev_adjacent_sysfs_add(dev, iter->dev,
8431 					  &dev->adj_list.upper);
8432 	}
8433 
8434 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8435 		if (!net_eq(net, dev_net(iter->dev)))
8436 			continue;
8437 		netdev_adjacent_sysfs_add(iter->dev, dev,
8438 					  &iter->dev->adj_list.upper);
8439 		netdev_adjacent_sysfs_add(dev, iter->dev,
8440 					  &dev->adj_list.lower);
8441 	}
8442 }
8443 
8444 static void netdev_adjacent_del_links(struct net_device *dev)
8445 {
8446 	struct netdev_adjacent *iter;
8447 
8448 	struct net *net = dev_net(dev);
8449 
8450 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8451 		if (!net_eq(net, dev_net(iter->dev)))
8452 			continue;
8453 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8454 					  &iter->dev->adj_list.lower);
8455 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8456 					  &dev->adj_list.upper);
8457 	}
8458 
8459 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8460 		if (!net_eq(net, dev_net(iter->dev)))
8461 			continue;
8462 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8463 					  &iter->dev->adj_list.upper);
8464 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8465 					  &dev->adj_list.lower);
8466 	}
8467 }
8468 
8469 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8470 {
8471 	struct netdev_adjacent *iter;
8472 
8473 	struct net *net = dev_net(dev);
8474 
8475 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8476 		if (!net_eq(net, dev_net(iter->dev)))
8477 			continue;
8478 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8479 					  &iter->dev->adj_list.lower);
8480 		netdev_adjacent_sysfs_add(iter->dev, dev,
8481 					  &iter->dev->adj_list.lower);
8482 	}
8483 
8484 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8485 		if (!net_eq(net, dev_net(iter->dev)))
8486 			continue;
8487 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8488 					  &iter->dev->adj_list.upper);
8489 		netdev_adjacent_sysfs_add(iter->dev, dev,
8490 					  &iter->dev->adj_list.upper);
8491 	}
8492 }
8493 
8494 void *netdev_lower_dev_get_private(struct net_device *dev,
8495 				   struct net_device *lower_dev)
8496 {
8497 	struct netdev_adjacent *lower;
8498 
8499 	if (!lower_dev)
8500 		return NULL;
8501 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8502 	if (!lower)
8503 		return NULL;
8504 
8505 	return lower->private;
8506 }
8507 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8508 
8509 
8510 /**
8511  * netdev_lower_state_changed - Dispatch event about lower device state change
8512  * @lower_dev: device
8513  * @lower_state_info: state to dispatch
8514  *
8515  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8516  * The caller must hold the RTNL lock.
8517  */
8518 void netdev_lower_state_changed(struct net_device *lower_dev,
8519 				void *lower_state_info)
8520 {
8521 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8522 		.info.dev = lower_dev,
8523 	};
8524 
8525 	ASSERT_RTNL();
8526 	changelowerstate_info.lower_state_info = lower_state_info;
8527 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8528 				      &changelowerstate_info.info);
8529 }
8530 EXPORT_SYMBOL(netdev_lower_state_changed);
8531 
8532 static void dev_change_rx_flags(struct net_device *dev, int flags)
8533 {
8534 	const struct net_device_ops *ops = dev->netdev_ops;
8535 
8536 	if (ops->ndo_change_rx_flags)
8537 		ops->ndo_change_rx_flags(dev, flags);
8538 }
8539 
8540 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8541 {
8542 	unsigned int old_flags = dev->flags;
8543 	kuid_t uid;
8544 	kgid_t gid;
8545 
8546 	ASSERT_RTNL();
8547 
8548 	dev->flags |= IFF_PROMISC;
8549 	dev->promiscuity += inc;
8550 	if (dev->promiscuity == 0) {
8551 		/*
8552 		 * Avoid overflow.
8553 		 * If inc causes overflow, untouch promisc and return error.
8554 		 */
8555 		if (inc < 0)
8556 			dev->flags &= ~IFF_PROMISC;
8557 		else {
8558 			dev->promiscuity -= inc;
8559 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
8560 				dev->name);
8561 			return -EOVERFLOW;
8562 		}
8563 	}
8564 	if (dev->flags != old_flags) {
8565 		pr_info("device %s %s promiscuous mode\n",
8566 			dev->name,
8567 			dev->flags & IFF_PROMISC ? "entered" : "left");
8568 		if (audit_enabled) {
8569 			current_uid_gid(&uid, &gid);
8570 			audit_log(audit_context(), GFP_ATOMIC,
8571 				  AUDIT_ANOM_PROMISCUOUS,
8572 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8573 				  dev->name, (dev->flags & IFF_PROMISC),
8574 				  (old_flags & IFF_PROMISC),
8575 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
8576 				  from_kuid(&init_user_ns, uid),
8577 				  from_kgid(&init_user_ns, gid),
8578 				  audit_get_sessionid(current));
8579 		}
8580 
8581 		dev_change_rx_flags(dev, IFF_PROMISC);
8582 	}
8583 	if (notify)
8584 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
8585 	return 0;
8586 }
8587 
8588 /**
8589  *	dev_set_promiscuity	- update promiscuity count on a device
8590  *	@dev: device
8591  *	@inc: modifier
8592  *
8593  *	Add or remove promiscuity from a device. While the count in the device
8594  *	remains above zero the interface remains promiscuous. Once it hits zero
8595  *	the device reverts back to normal filtering operation. A negative inc
8596  *	value is used to drop promiscuity on the device.
8597  *	Return 0 if successful or a negative errno code on error.
8598  */
8599 int dev_set_promiscuity(struct net_device *dev, int inc)
8600 {
8601 	unsigned int old_flags = dev->flags;
8602 	int err;
8603 
8604 	err = __dev_set_promiscuity(dev, inc, true);
8605 	if (err < 0)
8606 		return err;
8607 	if (dev->flags != old_flags)
8608 		dev_set_rx_mode(dev);
8609 	return err;
8610 }
8611 EXPORT_SYMBOL(dev_set_promiscuity);
8612 
8613 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8614 {
8615 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8616 
8617 	ASSERT_RTNL();
8618 
8619 	dev->flags |= IFF_ALLMULTI;
8620 	dev->allmulti += inc;
8621 	if (dev->allmulti == 0) {
8622 		/*
8623 		 * Avoid overflow.
8624 		 * If inc causes overflow, untouch allmulti and return error.
8625 		 */
8626 		if (inc < 0)
8627 			dev->flags &= ~IFF_ALLMULTI;
8628 		else {
8629 			dev->allmulti -= inc;
8630 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8631 				dev->name);
8632 			return -EOVERFLOW;
8633 		}
8634 	}
8635 	if (dev->flags ^ old_flags) {
8636 		dev_change_rx_flags(dev, IFF_ALLMULTI);
8637 		dev_set_rx_mode(dev);
8638 		if (notify)
8639 			__dev_notify_flags(dev, old_flags,
8640 					   dev->gflags ^ old_gflags);
8641 	}
8642 	return 0;
8643 }
8644 
8645 /**
8646  *	dev_set_allmulti	- update allmulti count on a device
8647  *	@dev: device
8648  *	@inc: modifier
8649  *
8650  *	Add or remove reception of all multicast frames to a device. While the
8651  *	count in the device remains above zero the interface remains listening
8652  *	to all interfaces. Once it hits zero the device reverts back to normal
8653  *	filtering operation. A negative @inc value is used to drop the counter
8654  *	when releasing a resource needing all multicasts.
8655  *	Return 0 if successful or a negative errno code on error.
8656  */
8657 
8658 int dev_set_allmulti(struct net_device *dev, int inc)
8659 {
8660 	return __dev_set_allmulti(dev, inc, true);
8661 }
8662 EXPORT_SYMBOL(dev_set_allmulti);
8663 
8664 /*
8665  *	Upload unicast and multicast address lists to device and
8666  *	configure RX filtering. When the device doesn't support unicast
8667  *	filtering it is put in promiscuous mode while unicast addresses
8668  *	are present.
8669  */
8670 void __dev_set_rx_mode(struct net_device *dev)
8671 {
8672 	const struct net_device_ops *ops = dev->netdev_ops;
8673 
8674 	/* dev_open will call this function so the list will stay sane. */
8675 	if (!(dev->flags&IFF_UP))
8676 		return;
8677 
8678 	if (!netif_device_present(dev))
8679 		return;
8680 
8681 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8682 		/* Unicast addresses changes may only happen under the rtnl,
8683 		 * therefore calling __dev_set_promiscuity here is safe.
8684 		 */
8685 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8686 			__dev_set_promiscuity(dev, 1, false);
8687 			dev->uc_promisc = true;
8688 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8689 			__dev_set_promiscuity(dev, -1, false);
8690 			dev->uc_promisc = false;
8691 		}
8692 	}
8693 
8694 	if (ops->ndo_set_rx_mode)
8695 		ops->ndo_set_rx_mode(dev);
8696 }
8697 
8698 void dev_set_rx_mode(struct net_device *dev)
8699 {
8700 	netif_addr_lock_bh(dev);
8701 	__dev_set_rx_mode(dev);
8702 	netif_addr_unlock_bh(dev);
8703 }
8704 
8705 /**
8706  *	dev_get_flags - get flags reported to userspace
8707  *	@dev: device
8708  *
8709  *	Get the combination of flag bits exported through APIs to userspace.
8710  */
8711 unsigned int dev_get_flags(const struct net_device *dev)
8712 {
8713 	unsigned int flags;
8714 
8715 	flags = (dev->flags & ~(IFF_PROMISC |
8716 				IFF_ALLMULTI |
8717 				IFF_RUNNING |
8718 				IFF_LOWER_UP |
8719 				IFF_DORMANT)) |
8720 		(dev->gflags & (IFF_PROMISC |
8721 				IFF_ALLMULTI));
8722 
8723 	if (netif_running(dev)) {
8724 		if (netif_oper_up(dev))
8725 			flags |= IFF_RUNNING;
8726 		if (netif_carrier_ok(dev))
8727 			flags |= IFF_LOWER_UP;
8728 		if (netif_dormant(dev))
8729 			flags |= IFF_DORMANT;
8730 	}
8731 
8732 	return flags;
8733 }
8734 EXPORT_SYMBOL(dev_get_flags);
8735 
8736 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8737 		       struct netlink_ext_ack *extack)
8738 {
8739 	unsigned int old_flags = dev->flags;
8740 	int ret;
8741 
8742 	ASSERT_RTNL();
8743 
8744 	/*
8745 	 *	Set the flags on our device.
8746 	 */
8747 
8748 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8749 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8750 			       IFF_AUTOMEDIA)) |
8751 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8752 				    IFF_ALLMULTI));
8753 
8754 	/*
8755 	 *	Load in the correct multicast list now the flags have changed.
8756 	 */
8757 
8758 	if ((old_flags ^ flags) & IFF_MULTICAST)
8759 		dev_change_rx_flags(dev, IFF_MULTICAST);
8760 
8761 	dev_set_rx_mode(dev);
8762 
8763 	/*
8764 	 *	Have we downed the interface. We handle IFF_UP ourselves
8765 	 *	according to user attempts to set it, rather than blindly
8766 	 *	setting it.
8767 	 */
8768 
8769 	ret = 0;
8770 	if ((old_flags ^ flags) & IFF_UP) {
8771 		if (old_flags & IFF_UP)
8772 			__dev_close(dev);
8773 		else
8774 			ret = __dev_open(dev, extack);
8775 	}
8776 
8777 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
8778 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
8779 		unsigned int old_flags = dev->flags;
8780 
8781 		dev->gflags ^= IFF_PROMISC;
8782 
8783 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
8784 			if (dev->flags != old_flags)
8785 				dev_set_rx_mode(dev);
8786 	}
8787 
8788 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8789 	 * is important. Some (broken) drivers set IFF_PROMISC, when
8790 	 * IFF_ALLMULTI is requested not asking us and not reporting.
8791 	 */
8792 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8793 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8794 
8795 		dev->gflags ^= IFF_ALLMULTI;
8796 		__dev_set_allmulti(dev, inc, false);
8797 	}
8798 
8799 	return ret;
8800 }
8801 
8802 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8803 			unsigned int gchanges)
8804 {
8805 	unsigned int changes = dev->flags ^ old_flags;
8806 
8807 	if (gchanges)
8808 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8809 
8810 	if (changes & IFF_UP) {
8811 		if (dev->flags & IFF_UP)
8812 			call_netdevice_notifiers(NETDEV_UP, dev);
8813 		else
8814 			call_netdevice_notifiers(NETDEV_DOWN, dev);
8815 	}
8816 
8817 	if (dev->flags & IFF_UP &&
8818 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8819 		struct netdev_notifier_change_info change_info = {
8820 			.info = {
8821 				.dev = dev,
8822 			},
8823 			.flags_changed = changes,
8824 		};
8825 
8826 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8827 	}
8828 }
8829 
8830 /**
8831  *	dev_change_flags - change device settings
8832  *	@dev: device
8833  *	@flags: device state flags
8834  *	@extack: netlink extended ack
8835  *
8836  *	Change settings on device based state flags. The flags are
8837  *	in the userspace exported format.
8838  */
8839 int dev_change_flags(struct net_device *dev, unsigned int flags,
8840 		     struct netlink_ext_ack *extack)
8841 {
8842 	int ret;
8843 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8844 
8845 	ret = __dev_change_flags(dev, flags, extack);
8846 	if (ret < 0)
8847 		return ret;
8848 
8849 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8850 	__dev_notify_flags(dev, old_flags, changes);
8851 	return ret;
8852 }
8853 EXPORT_SYMBOL(dev_change_flags);
8854 
8855 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8856 {
8857 	const struct net_device_ops *ops = dev->netdev_ops;
8858 
8859 	if (ops->ndo_change_mtu)
8860 		return ops->ndo_change_mtu(dev, new_mtu);
8861 
8862 	/* Pairs with all the lockless reads of dev->mtu in the stack */
8863 	WRITE_ONCE(dev->mtu, new_mtu);
8864 	return 0;
8865 }
8866 EXPORT_SYMBOL(__dev_set_mtu);
8867 
8868 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8869 		     struct netlink_ext_ack *extack)
8870 {
8871 	/* MTU must be positive, and in range */
8872 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8873 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8874 		return -EINVAL;
8875 	}
8876 
8877 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8878 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8879 		return -EINVAL;
8880 	}
8881 	return 0;
8882 }
8883 
8884 /**
8885  *	dev_set_mtu_ext - Change maximum transfer unit
8886  *	@dev: device
8887  *	@new_mtu: new transfer unit
8888  *	@extack: netlink extended ack
8889  *
8890  *	Change the maximum transfer size of the network device.
8891  */
8892 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8893 		    struct netlink_ext_ack *extack)
8894 {
8895 	int err, orig_mtu;
8896 
8897 	if (new_mtu == dev->mtu)
8898 		return 0;
8899 
8900 	err = dev_validate_mtu(dev, new_mtu, extack);
8901 	if (err)
8902 		return err;
8903 
8904 	if (!netif_device_present(dev))
8905 		return -ENODEV;
8906 
8907 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8908 	err = notifier_to_errno(err);
8909 	if (err)
8910 		return err;
8911 
8912 	orig_mtu = dev->mtu;
8913 	err = __dev_set_mtu(dev, new_mtu);
8914 
8915 	if (!err) {
8916 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8917 						   orig_mtu);
8918 		err = notifier_to_errno(err);
8919 		if (err) {
8920 			/* setting mtu back and notifying everyone again,
8921 			 * so that they have a chance to revert changes.
8922 			 */
8923 			__dev_set_mtu(dev, orig_mtu);
8924 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8925 						     new_mtu);
8926 		}
8927 	}
8928 	return err;
8929 }
8930 
8931 int dev_set_mtu(struct net_device *dev, int new_mtu)
8932 {
8933 	struct netlink_ext_ack extack;
8934 	int err;
8935 
8936 	memset(&extack, 0, sizeof(extack));
8937 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
8938 	if (err && extack._msg)
8939 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8940 	return err;
8941 }
8942 EXPORT_SYMBOL(dev_set_mtu);
8943 
8944 /**
8945  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
8946  *	@dev: device
8947  *	@new_len: new tx queue length
8948  */
8949 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8950 {
8951 	unsigned int orig_len = dev->tx_queue_len;
8952 	int res;
8953 
8954 	if (new_len != (unsigned int)new_len)
8955 		return -ERANGE;
8956 
8957 	if (new_len != orig_len) {
8958 		dev->tx_queue_len = new_len;
8959 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8960 		res = notifier_to_errno(res);
8961 		if (res)
8962 			goto err_rollback;
8963 		res = dev_qdisc_change_tx_queue_len(dev);
8964 		if (res)
8965 			goto err_rollback;
8966 	}
8967 
8968 	return 0;
8969 
8970 err_rollback:
8971 	netdev_err(dev, "refused to change device tx_queue_len\n");
8972 	dev->tx_queue_len = orig_len;
8973 	return res;
8974 }
8975 
8976 /**
8977  *	dev_set_group - Change group this device belongs to
8978  *	@dev: device
8979  *	@new_group: group this device should belong to
8980  */
8981 void dev_set_group(struct net_device *dev, int new_group)
8982 {
8983 	dev->group = new_group;
8984 }
8985 EXPORT_SYMBOL(dev_set_group);
8986 
8987 /**
8988  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8989  *	@dev: device
8990  *	@addr: new address
8991  *	@extack: netlink extended ack
8992  */
8993 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8994 			      struct netlink_ext_ack *extack)
8995 {
8996 	struct netdev_notifier_pre_changeaddr_info info = {
8997 		.info.dev = dev,
8998 		.info.extack = extack,
8999 		.dev_addr = addr,
9000 	};
9001 	int rc;
9002 
9003 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
9004 	return notifier_to_errno(rc);
9005 }
9006 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
9007 
9008 /**
9009  *	dev_set_mac_address - Change Media Access Control Address
9010  *	@dev: device
9011  *	@sa: new address
9012  *	@extack: netlink extended ack
9013  *
9014  *	Change the hardware (MAC) address of the device
9015  */
9016 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
9017 			struct netlink_ext_ack *extack)
9018 {
9019 	const struct net_device_ops *ops = dev->netdev_ops;
9020 	int err;
9021 
9022 	if (!ops->ndo_set_mac_address)
9023 		return -EOPNOTSUPP;
9024 	if (sa->sa_family != dev->type)
9025 		return -EINVAL;
9026 	if (!netif_device_present(dev))
9027 		return -ENODEV;
9028 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
9029 	if (err)
9030 		return err;
9031 	err = ops->ndo_set_mac_address(dev, sa);
9032 	if (err)
9033 		return err;
9034 	dev->addr_assign_type = NET_ADDR_SET;
9035 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
9036 	add_device_randomness(dev->dev_addr, dev->addr_len);
9037 	return 0;
9038 }
9039 EXPORT_SYMBOL(dev_set_mac_address);
9040 
9041 static DECLARE_RWSEM(dev_addr_sem);
9042 
9043 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
9044 			     struct netlink_ext_ack *extack)
9045 {
9046 	int ret;
9047 
9048 	down_write(&dev_addr_sem);
9049 	ret = dev_set_mac_address(dev, sa, extack);
9050 	up_write(&dev_addr_sem);
9051 	return ret;
9052 }
9053 EXPORT_SYMBOL(dev_set_mac_address_user);
9054 
9055 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
9056 {
9057 	size_t size = sizeof(sa->sa_data);
9058 	struct net_device *dev;
9059 	int ret = 0;
9060 
9061 	down_read(&dev_addr_sem);
9062 	rcu_read_lock();
9063 
9064 	dev = dev_get_by_name_rcu(net, dev_name);
9065 	if (!dev) {
9066 		ret = -ENODEV;
9067 		goto unlock;
9068 	}
9069 	if (!dev->addr_len)
9070 		memset(sa->sa_data, 0, size);
9071 	else
9072 		memcpy(sa->sa_data, dev->dev_addr,
9073 		       min_t(size_t, size, dev->addr_len));
9074 	sa->sa_family = dev->type;
9075 
9076 unlock:
9077 	rcu_read_unlock();
9078 	up_read(&dev_addr_sem);
9079 	return ret;
9080 }
9081 EXPORT_SYMBOL(dev_get_mac_address);
9082 
9083 /**
9084  *	dev_change_carrier - Change device carrier
9085  *	@dev: device
9086  *	@new_carrier: new value
9087  *
9088  *	Change device carrier
9089  */
9090 int dev_change_carrier(struct net_device *dev, bool new_carrier)
9091 {
9092 	const struct net_device_ops *ops = dev->netdev_ops;
9093 
9094 	if (!ops->ndo_change_carrier)
9095 		return -EOPNOTSUPP;
9096 	if (!netif_device_present(dev))
9097 		return -ENODEV;
9098 	return ops->ndo_change_carrier(dev, new_carrier);
9099 }
9100 EXPORT_SYMBOL(dev_change_carrier);
9101 
9102 /**
9103  *	dev_get_phys_port_id - Get device physical port ID
9104  *	@dev: device
9105  *	@ppid: port ID
9106  *
9107  *	Get device physical port ID
9108  */
9109 int dev_get_phys_port_id(struct net_device *dev,
9110 			 struct netdev_phys_item_id *ppid)
9111 {
9112 	const struct net_device_ops *ops = dev->netdev_ops;
9113 
9114 	if (!ops->ndo_get_phys_port_id)
9115 		return -EOPNOTSUPP;
9116 	return ops->ndo_get_phys_port_id(dev, ppid);
9117 }
9118 EXPORT_SYMBOL(dev_get_phys_port_id);
9119 
9120 /**
9121  *	dev_get_phys_port_name - Get device physical port name
9122  *	@dev: device
9123  *	@name: port name
9124  *	@len: limit of bytes to copy to name
9125  *
9126  *	Get device physical port name
9127  */
9128 int dev_get_phys_port_name(struct net_device *dev,
9129 			   char *name, size_t len)
9130 {
9131 	const struct net_device_ops *ops = dev->netdev_ops;
9132 	int err;
9133 
9134 	if (ops->ndo_get_phys_port_name) {
9135 		err = ops->ndo_get_phys_port_name(dev, name, len);
9136 		if (err != -EOPNOTSUPP)
9137 			return err;
9138 	}
9139 	return devlink_compat_phys_port_name_get(dev, name, len);
9140 }
9141 EXPORT_SYMBOL(dev_get_phys_port_name);
9142 
9143 /**
9144  *	dev_get_port_parent_id - Get the device's port parent identifier
9145  *	@dev: network device
9146  *	@ppid: pointer to a storage for the port's parent identifier
9147  *	@recurse: allow/disallow recursion to lower devices
9148  *
9149  *	Get the devices's port parent identifier
9150  */
9151 int dev_get_port_parent_id(struct net_device *dev,
9152 			   struct netdev_phys_item_id *ppid,
9153 			   bool recurse)
9154 {
9155 	const struct net_device_ops *ops = dev->netdev_ops;
9156 	struct netdev_phys_item_id first = { };
9157 	struct net_device *lower_dev;
9158 	struct list_head *iter;
9159 	int err;
9160 
9161 	if (ops->ndo_get_port_parent_id) {
9162 		err = ops->ndo_get_port_parent_id(dev, ppid);
9163 		if (err != -EOPNOTSUPP)
9164 			return err;
9165 	}
9166 
9167 	err = devlink_compat_switch_id_get(dev, ppid);
9168 	if (!recurse || err != -EOPNOTSUPP)
9169 		return err;
9170 
9171 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
9172 		err = dev_get_port_parent_id(lower_dev, ppid, true);
9173 		if (err)
9174 			break;
9175 		if (!first.id_len)
9176 			first = *ppid;
9177 		else if (memcmp(&first, ppid, sizeof(*ppid)))
9178 			return -EOPNOTSUPP;
9179 	}
9180 
9181 	return err;
9182 }
9183 EXPORT_SYMBOL(dev_get_port_parent_id);
9184 
9185 /**
9186  *	netdev_port_same_parent_id - Indicate if two network devices have
9187  *	the same port parent identifier
9188  *	@a: first network device
9189  *	@b: second network device
9190  */
9191 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9192 {
9193 	struct netdev_phys_item_id a_id = { };
9194 	struct netdev_phys_item_id b_id = { };
9195 
9196 	if (dev_get_port_parent_id(a, &a_id, true) ||
9197 	    dev_get_port_parent_id(b, &b_id, true))
9198 		return false;
9199 
9200 	return netdev_phys_item_id_same(&a_id, &b_id);
9201 }
9202 EXPORT_SYMBOL(netdev_port_same_parent_id);
9203 
9204 /**
9205  *	dev_change_proto_down - update protocol port state information
9206  *	@dev: device
9207  *	@proto_down: new value
9208  *
9209  *	This info can be used by switch drivers to set the phys state of the
9210  *	port.
9211  */
9212 int dev_change_proto_down(struct net_device *dev, bool proto_down)
9213 {
9214 	const struct net_device_ops *ops = dev->netdev_ops;
9215 
9216 	if (!ops->ndo_change_proto_down)
9217 		return -EOPNOTSUPP;
9218 	if (!netif_device_present(dev))
9219 		return -ENODEV;
9220 	return ops->ndo_change_proto_down(dev, proto_down);
9221 }
9222 EXPORT_SYMBOL(dev_change_proto_down);
9223 
9224 /**
9225  *	dev_change_proto_down_generic - generic implementation for
9226  * 	ndo_change_proto_down that sets carrier according to
9227  * 	proto_down.
9228  *
9229  *	@dev: device
9230  *	@proto_down: new value
9231  */
9232 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
9233 {
9234 	if (proto_down)
9235 		netif_carrier_off(dev);
9236 	else
9237 		netif_carrier_on(dev);
9238 	dev->proto_down = proto_down;
9239 	return 0;
9240 }
9241 EXPORT_SYMBOL(dev_change_proto_down_generic);
9242 
9243 /**
9244  *	dev_change_proto_down_reason - proto down reason
9245  *
9246  *	@dev: device
9247  *	@mask: proto down mask
9248  *	@value: proto down value
9249  */
9250 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9251 				  u32 value)
9252 {
9253 	int b;
9254 
9255 	if (!mask) {
9256 		dev->proto_down_reason = value;
9257 	} else {
9258 		for_each_set_bit(b, &mask, 32) {
9259 			if (value & (1 << b))
9260 				dev->proto_down_reason |= BIT(b);
9261 			else
9262 				dev->proto_down_reason &= ~BIT(b);
9263 		}
9264 	}
9265 }
9266 EXPORT_SYMBOL(dev_change_proto_down_reason);
9267 
9268 struct bpf_xdp_link {
9269 	struct bpf_link link;
9270 	struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9271 	int flags;
9272 };
9273 
9274 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9275 {
9276 	if (flags & XDP_FLAGS_HW_MODE)
9277 		return XDP_MODE_HW;
9278 	if (flags & XDP_FLAGS_DRV_MODE)
9279 		return XDP_MODE_DRV;
9280 	if (flags & XDP_FLAGS_SKB_MODE)
9281 		return XDP_MODE_SKB;
9282 	return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9283 }
9284 
9285 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9286 {
9287 	switch (mode) {
9288 	case XDP_MODE_SKB:
9289 		return generic_xdp_install;
9290 	case XDP_MODE_DRV:
9291 	case XDP_MODE_HW:
9292 		return dev->netdev_ops->ndo_bpf;
9293 	default:
9294 		return NULL;
9295 	}
9296 }
9297 
9298 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9299 					 enum bpf_xdp_mode mode)
9300 {
9301 	return dev->xdp_state[mode].link;
9302 }
9303 
9304 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9305 				     enum bpf_xdp_mode mode)
9306 {
9307 	struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9308 
9309 	if (link)
9310 		return link->link.prog;
9311 	return dev->xdp_state[mode].prog;
9312 }
9313 
9314 u8 dev_xdp_prog_count(struct net_device *dev)
9315 {
9316 	u8 count = 0;
9317 	int i;
9318 
9319 	for (i = 0; i < __MAX_XDP_MODE; i++)
9320 		if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9321 			count++;
9322 	return count;
9323 }
9324 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9325 
9326 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9327 {
9328 	struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9329 
9330 	return prog ? prog->aux->id : 0;
9331 }
9332 
9333 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9334 			     struct bpf_xdp_link *link)
9335 {
9336 	dev->xdp_state[mode].link = link;
9337 	dev->xdp_state[mode].prog = NULL;
9338 }
9339 
9340 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9341 			     struct bpf_prog *prog)
9342 {
9343 	dev->xdp_state[mode].link = NULL;
9344 	dev->xdp_state[mode].prog = prog;
9345 }
9346 
9347 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9348 			   bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9349 			   u32 flags, struct bpf_prog *prog)
9350 {
9351 	struct netdev_bpf xdp;
9352 	int err;
9353 
9354 	memset(&xdp, 0, sizeof(xdp));
9355 	xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9356 	xdp.extack = extack;
9357 	xdp.flags = flags;
9358 	xdp.prog = prog;
9359 
9360 	/* Drivers assume refcnt is already incremented (i.e, prog pointer is
9361 	 * "moved" into driver), so they don't increment it on their own, but
9362 	 * they do decrement refcnt when program is detached or replaced.
9363 	 * Given net_device also owns link/prog, we need to bump refcnt here
9364 	 * to prevent drivers from underflowing it.
9365 	 */
9366 	if (prog)
9367 		bpf_prog_inc(prog);
9368 	err = bpf_op(dev, &xdp);
9369 	if (err) {
9370 		if (prog)
9371 			bpf_prog_put(prog);
9372 		return err;
9373 	}
9374 
9375 	if (mode != XDP_MODE_HW)
9376 		bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9377 
9378 	return 0;
9379 }
9380 
9381 static void dev_xdp_uninstall(struct net_device *dev)
9382 {
9383 	struct bpf_xdp_link *link;
9384 	struct bpf_prog *prog;
9385 	enum bpf_xdp_mode mode;
9386 	bpf_op_t bpf_op;
9387 
9388 	ASSERT_RTNL();
9389 
9390 	for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9391 		prog = dev_xdp_prog(dev, mode);
9392 		if (!prog)
9393 			continue;
9394 
9395 		bpf_op = dev_xdp_bpf_op(dev, mode);
9396 		if (!bpf_op)
9397 			continue;
9398 
9399 		WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9400 
9401 		/* auto-detach link from net device */
9402 		link = dev_xdp_link(dev, mode);
9403 		if (link)
9404 			link->dev = NULL;
9405 		else
9406 			bpf_prog_put(prog);
9407 
9408 		dev_xdp_set_link(dev, mode, NULL);
9409 	}
9410 }
9411 
9412 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9413 			  struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9414 			  struct bpf_prog *old_prog, u32 flags)
9415 {
9416 	unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9417 	struct bpf_prog *cur_prog;
9418 	struct net_device *upper;
9419 	struct list_head *iter;
9420 	enum bpf_xdp_mode mode;
9421 	bpf_op_t bpf_op;
9422 	int err;
9423 
9424 	ASSERT_RTNL();
9425 
9426 	/* either link or prog attachment, never both */
9427 	if (link && (new_prog || old_prog))
9428 		return -EINVAL;
9429 	/* link supports only XDP mode flags */
9430 	if (link && (flags & ~XDP_FLAGS_MODES)) {
9431 		NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9432 		return -EINVAL;
9433 	}
9434 	/* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9435 	if (num_modes > 1) {
9436 		NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9437 		return -EINVAL;
9438 	}
9439 	/* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9440 	if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9441 		NL_SET_ERR_MSG(extack,
9442 			       "More than one program loaded, unset mode is ambiguous");
9443 		return -EINVAL;
9444 	}
9445 	/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9446 	if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9447 		NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9448 		return -EINVAL;
9449 	}
9450 
9451 	mode = dev_xdp_mode(dev, flags);
9452 	/* can't replace attached link */
9453 	if (dev_xdp_link(dev, mode)) {
9454 		NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9455 		return -EBUSY;
9456 	}
9457 
9458 	/* don't allow if an upper device already has a program */
9459 	netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9460 		if (dev_xdp_prog_count(upper) > 0) {
9461 			NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9462 			return -EEXIST;
9463 		}
9464 	}
9465 
9466 	cur_prog = dev_xdp_prog(dev, mode);
9467 	/* can't replace attached prog with link */
9468 	if (link && cur_prog) {
9469 		NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9470 		return -EBUSY;
9471 	}
9472 	if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9473 		NL_SET_ERR_MSG(extack, "Active program does not match expected");
9474 		return -EEXIST;
9475 	}
9476 
9477 	/* put effective new program into new_prog */
9478 	if (link)
9479 		new_prog = link->link.prog;
9480 
9481 	if (new_prog) {
9482 		bool offload = mode == XDP_MODE_HW;
9483 		enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9484 					       ? XDP_MODE_DRV : XDP_MODE_SKB;
9485 
9486 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9487 			NL_SET_ERR_MSG(extack, "XDP program already attached");
9488 			return -EBUSY;
9489 		}
9490 		if (!offload && dev_xdp_prog(dev, other_mode)) {
9491 			NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9492 			return -EEXIST;
9493 		}
9494 		if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9495 			NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9496 			return -EINVAL;
9497 		}
9498 		if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9499 			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9500 			return -EINVAL;
9501 		}
9502 		if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9503 			NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9504 			return -EINVAL;
9505 		}
9506 	}
9507 
9508 	/* don't call drivers if the effective program didn't change */
9509 	if (new_prog != cur_prog) {
9510 		bpf_op = dev_xdp_bpf_op(dev, mode);
9511 		if (!bpf_op) {
9512 			NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9513 			return -EOPNOTSUPP;
9514 		}
9515 
9516 		err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9517 		if (err)
9518 			return err;
9519 	}
9520 
9521 	if (link)
9522 		dev_xdp_set_link(dev, mode, link);
9523 	else
9524 		dev_xdp_set_prog(dev, mode, new_prog);
9525 	if (cur_prog)
9526 		bpf_prog_put(cur_prog);
9527 
9528 	return 0;
9529 }
9530 
9531 static int dev_xdp_attach_link(struct net_device *dev,
9532 			       struct netlink_ext_ack *extack,
9533 			       struct bpf_xdp_link *link)
9534 {
9535 	return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9536 }
9537 
9538 static int dev_xdp_detach_link(struct net_device *dev,
9539 			       struct netlink_ext_ack *extack,
9540 			       struct bpf_xdp_link *link)
9541 {
9542 	enum bpf_xdp_mode mode;
9543 	bpf_op_t bpf_op;
9544 
9545 	ASSERT_RTNL();
9546 
9547 	mode = dev_xdp_mode(dev, link->flags);
9548 	if (dev_xdp_link(dev, mode) != link)
9549 		return -EINVAL;
9550 
9551 	bpf_op = dev_xdp_bpf_op(dev, mode);
9552 	WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9553 	dev_xdp_set_link(dev, mode, NULL);
9554 	return 0;
9555 }
9556 
9557 static void bpf_xdp_link_release(struct bpf_link *link)
9558 {
9559 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9560 
9561 	rtnl_lock();
9562 
9563 	/* if racing with net_device's tear down, xdp_link->dev might be
9564 	 * already NULL, in which case link was already auto-detached
9565 	 */
9566 	if (xdp_link->dev) {
9567 		WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9568 		xdp_link->dev = NULL;
9569 	}
9570 
9571 	rtnl_unlock();
9572 }
9573 
9574 static int bpf_xdp_link_detach(struct bpf_link *link)
9575 {
9576 	bpf_xdp_link_release(link);
9577 	return 0;
9578 }
9579 
9580 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9581 {
9582 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9583 
9584 	kfree(xdp_link);
9585 }
9586 
9587 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9588 				     struct seq_file *seq)
9589 {
9590 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9591 	u32 ifindex = 0;
9592 
9593 	rtnl_lock();
9594 	if (xdp_link->dev)
9595 		ifindex = xdp_link->dev->ifindex;
9596 	rtnl_unlock();
9597 
9598 	seq_printf(seq, "ifindex:\t%u\n", ifindex);
9599 }
9600 
9601 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9602 				       struct bpf_link_info *info)
9603 {
9604 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9605 	u32 ifindex = 0;
9606 
9607 	rtnl_lock();
9608 	if (xdp_link->dev)
9609 		ifindex = xdp_link->dev->ifindex;
9610 	rtnl_unlock();
9611 
9612 	info->xdp.ifindex = ifindex;
9613 	return 0;
9614 }
9615 
9616 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9617 			       struct bpf_prog *old_prog)
9618 {
9619 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9620 	enum bpf_xdp_mode mode;
9621 	bpf_op_t bpf_op;
9622 	int err = 0;
9623 
9624 	rtnl_lock();
9625 
9626 	/* link might have been auto-released already, so fail */
9627 	if (!xdp_link->dev) {
9628 		err = -ENOLINK;
9629 		goto out_unlock;
9630 	}
9631 
9632 	if (old_prog && link->prog != old_prog) {
9633 		err = -EPERM;
9634 		goto out_unlock;
9635 	}
9636 	old_prog = link->prog;
9637 	if (old_prog == new_prog) {
9638 		/* no-op, don't disturb drivers */
9639 		bpf_prog_put(new_prog);
9640 		goto out_unlock;
9641 	}
9642 
9643 	mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9644 	bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9645 	err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9646 			      xdp_link->flags, new_prog);
9647 	if (err)
9648 		goto out_unlock;
9649 
9650 	old_prog = xchg(&link->prog, new_prog);
9651 	bpf_prog_put(old_prog);
9652 
9653 out_unlock:
9654 	rtnl_unlock();
9655 	return err;
9656 }
9657 
9658 static const struct bpf_link_ops bpf_xdp_link_lops = {
9659 	.release = bpf_xdp_link_release,
9660 	.dealloc = bpf_xdp_link_dealloc,
9661 	.detach = bpf_xdp_link_detach,
9662 	.show_fdinfo = bpf_xdp_link_show_fdinfo,
9663 	.fill_link_info = bpf_xdp_link_fill_link_info,
9664 	.update_prog = bpf_xdp_link_update,
9665 };
9666 
9667 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9668 {
9669 	struct net *net = current->nsproxy->net_ns;
9670 	struct bpf_link_primer link_primer;
9671 	struct bpf_xdp_link *link;
9672 	struct net_device *dev;
9673 	int err, fd;
9674 
9675 	rtnl_lock();
9676 	dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9677 	if (!dev) {
9678 		rtnl_unlock();
9679 		return -EINVAL;
9680 	}
9681 
9682 	link = kzalloc(sizeof(*link), GFP_USER);
9683 	if (!link) {
9684 		err = -ENOMEM;
9685 		goto unlock;
9686 	}
9687 
9688 	bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9689 	link->dev = dev;
9690 	link->flags = attr->link_create.flags;
9691 
9692 	err = bpf_link_prime(&link->link, &link_primer);
9693 	if (err) {
9694 		kfree(link);
9695 		goto unlock;
9696 	}
9697 
9698 	err = dev_xdp_attach_link(dev, NULL, link);
9699 	rtnl_unlock();
9700 
9701 	if (err) {
9702 		link->dev = NULL;
9703 		bpf_link_cleanup(&link_primer);
9704 		goto out_put_dev;
9705 	}
9706 
9707 	fd = bpf_link_settle(&link_primer);
9708 	/* link itself doesn't hold dev's refcnt to not complicate shutdown */
9709 	dev_put(dev);
9710 	return fd;
9711 
9712 unlock:
9713 	rtnl_unlock();
9714 
9715 out_put_dev:
9716 	dev_put(dev);
9717 	return err;
9718 }
9719 
9720 /**
9721  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
9722  *	@dev: device
9723  *	@extack: netlink extended ack
9724  *	@fd: new program fd or negative value to clear
9725  *	@expected_fd: old program fd that userspace expects to replace or clear
9726  *	@flags: xdp-related flags
9727  *
9728  *	Set or clear a bpf program for a device
9729  */
9730 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9731 		      int fd, int expected_fd, u32 flags)
9732 {
9733 	enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9734 	struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9735 	int err;
9736 
9737 	ASSERT_RTNL();
9738 
9739 	if (fd >= 0) {
9740 		new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9741 						 mode != XDP_MODE_SKB);
9742 		if (IS_ERR(new_prog))
9743 			return PTR_ERR(new_prog);
9744 	}
9745 
9746 	if (expected_fd >= 0) {
9747 		old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9748 						 mode != XDP_MODE_SKB);
9749 		if (IS_ERR(old_prog)) {
9750 			err = PTR_ERR(old_prog);
9751 			old_prog = NULL;
9752 			goto err_out;
9753 		}
9754 	}
9755 
9756 	err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9757 
9758 err_out:
9759 	if (err && new_prog)
9760 		bpf_prog_put(new_prog);
9761 	if (old_prog)
9762 		bpf_prog_put(old_prog);
9763 	return err;
9764 }
9765 
9766 /**
9767  *	dev_new_index	-	allocate an ifindex
9768  *	@net: the applicable net namespace
9769  *
9770  *	Returns a suitable unique value for a new device interface
9771  *	number.  The caller must hold the rtnl semaphore or the
9772  *	dev_base_lock to be sure it remains unique.
9773  */
9774 static int dev_new_index(struct net *net)
9775 {
9776 	int ifindex = net->ifindex;
9777 
9778 	for (;;) {
9779 		if (++ifindex <= 0)
9780 			ifindex = 1;
9781 		if (!__dev_get_by_index(net, ifindex))
9782 			return net->ifindex = ifindex;
9783 	}
9784 }
9785 
9786 /* Delayed registration/unregisteration */
9787 static LIST_HEAD(net_todo_list);
9788 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9789 
9790 static void net_set_todo(struct net_device *dev)
9791 {
9792 	list_add_tail(&dev->todo_list, &net_todo_list);
9793 	dev_net(dev)->dev_unreg_count++;
9794 }
9795 
9796 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9797 	struct net_device *upper, netdev_features_t features)
9798 {
9799 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9800 	netdev_features_t feature;
9801 	int feature_bit;
9802 
9803 	for_each_netdev_feature(upper_disables, feature_bit) {
9804 		feature = __NETIF_F_BIT(feature_bit);
9805 		if (!(upper->wanted_features & feature)
9806 		    && (features & feature)) {
9807 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9808 				   &feature, upper->name);
9809 			features &= ~feature;
9810 		}
9811 	}
9812 
9813 	return features;
9814 }
9815 
9816 static void netdev_sync_lower_features(struct net_device *upper,
9817 	struct net_device *lower, netdev_features_t features)
9818 {
9819 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9820 	netdev_features_t feature;
9821 	int feature_bit;
9822 
9823 	for_each_netdev_feature(upper_disables, feature_bit) {
9824 		feature = __NETIF_F_BIT(feature_bit);
9825 		if (!(features & feature) && (lower->features & feature)) {
9826 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9827 				   &feature, lower->name);
9828 			lower->wanted_features &= ~feature;
9829 			__netdev_update_features(lower);
9830 
9831 			if (unlikely(lower->features & feature))
9832 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9833 					    &feature, lower->name);
9834 			else
9835 				netdev_features_change(lower);
9836 		}
9837 	}
9838 }
9839 
9840 static netdev_features_t netdev_fix_features(struct net_device *dev,
9841 	netdev_features_t features)
9842 {
9843 	/* Fix illegal checksum combinations */
9844 	if ((features & NETIF_F_HW_CSUM) &&
9845 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9846 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9847 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9848 	}
9849 
9850 	/* TSO requires that SG is present as well. */
9851 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9852 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9853 		features &= ~NETIF_F_ALL_TSO;
9854 	}
9855 
9856 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9857 					!(features & NETIF_F_IP_CSUM)) {
9858 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9859 		features &= ~NETIF_F_TSO;
9860 		features &= ~NETIF_F_TSO_ECN;
9861 	}
9862 
9863 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9864 					 !(features & NETIF_F_IPV6_CSUM)) {
9865 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9866 		features &= ~NETIF_F_TSO6;
9867 	}
9868 
9869 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9870 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9871 		features &= ~NETIF_F_TSO_MANGLEID;
9872 
9873 	/* TSO ECN requires that TSO is present as well. */
9874 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9875 		features &= ~NETIF_F_TSO_ECN;
9876 
9877 	/* Software GSO depends on SG. */
9878 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9879 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9880 		features &= ~NETIF_F_GSO;
9881 	}
9882 
9883 	/* GSO partial features require GSO partial be set */
9884 	if ((features & dev->gso_partial_features) &&
9885 	    !(features & NETIF_F_GSO_PARTIAL)) {
9886 		netdev_dbg(dev,
9887 			   "Dropping partially supported GSO features since no GSO partial.\n");
9888 		features &= ~dev->gso_partial_features;
9889 	}
9890 
9891 	if (!(features & NETIF_F_RXCSUM)) {
9892 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9893 		 * successfully merged by hardware must also have the
9894 		 * checksum verified by hardware.  If the user does not
9895 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
9896 		 */
9897 		if (features & NETIF_F_GRO_HW) {
9898 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9899 			features &= ~NETIF_F_GRO_HW;
9900 		}
9901 	}
9902 
9903 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
9904 	if (features & NETIF_F_RXFCS) {
9905 		if (features & NETIF_F_LRO) {
9906 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9907 			features &= ~NETIF_F_LRO;
9908 		}
9909 
9910 		if (features & NETIF_F_GRO_HW) {
9911 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9912 			features &= ~NETIF_F_GRO_HW;
9913 		}
9914 	}
9915 
9916 	if (features & NETIF_F_HW_TLS_TX) {
9917 		bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9918 			(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9919 		bool hw_csum = features & NETIF_F_HW_CSUM;
9920 
9921 		if (!ip_csum && !hw_csum) {
9922 			netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9923 			features &= ~NETIF_F_HW_TLS_TX;
9924 		}
9925 	}
9926 
9927 	if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9928 		netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9929 		features &= ~NETIF_F_HW_TLS_RX;
9930 	}
9931 
9932 	return features;
9933 }
9934 
9935 int __netdev_update_features(struct net_device *dev)
9936 {
9937 	struct net_device *upper, *lower;
9938 	netdev_features_t features;
9939 	struct list_head *iter;
9940 	int err = -1;
9941 
9942 	ASSERT_RTNL();
9943 
9944 	features = netdev_get_wanted_features(dev);
9945 
9946 	if (dev->netdev_ops->ndo_fix_features)
9947 		features = dev->netdev_ops->ndo_fix_features(dev, features);
9948 
9949 	/* driver might be less strict about feature dependencies */
9950 	features = netdev_fix_features(dev, features);
9951 
9952 	/* some features can't be enabled if they're off on an upper device */
9953 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
9954 		features = netdev_sync_upper_features(dev, upper, features);
9955 
9956 	if (dev->features == features)
9957 		goto sync_lower;
9958 
9959 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9960 		&dev->features, &features);
9961 
9962 	if (dev->netdev_ops->ndo_set_features)
9963 		err = dev->netdev_ops->ndo_set_features(dev, features);
9964 	else
9965 		err = 0;
9966 
9967 	if (unlikely(err < 0)) {
9968 		netdev_err(dev,
9969 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
9970 			err, &features, &dev->features);
9971 		/* return non-0 since some features might have changed and
9972 		 * it's better to fire a spurious notification than miss it
9973 		 */
9974 		return -1;
9975 	}
9976 
9977 sync_lower:
9978 	/* some features must be disabled on lower devices when disabled
9979 	 * on an upper device (think: bonding master or bridge)
9980 	 */
9981 	netdev_for_each_lower_dev(dev, lower, iter)
9982 		netdev_sync_lower_features(dev, lower, features);
9983 
9984 	if (!err) {
9985 		netdev_features_t diff = features ^ dev->features;
9986 
9987 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9988 			/* udp_tunnel_{get,drop}_rx_info both need
9989 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9990 			 * device, or they won't do anything.
9991 			 * Thus we need to update dev->features
9992 			 * *before* calling udp_tunnel_get_rx_info,
9993 			 * but *after* calling udp_tunnel_drop_rx_info.
9994 			 */
9995 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9996 				dev->features = features;
9997 				udp_tunnel_get_rx_info(dev);
9998 			} else {
9999 				udp_tunnel_drop_rx_info(dev);
10000 			}
10001 		}
10002 
10003 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
10004 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
10005 				dev->features = features;
10006 				err |= vlan_get_rx_ctag_filter_info(dev);
10007 			} else {
10008 				vlan_drop_rx_ctag_filter_info(dev);
10009 			}
10010 		}
10011 
10012 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
10013 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
10014 				dev->features = features;
10015 				err |= vlan_get_rx_stag_filter_info(dev);
10016 			} else {
10017 				vlan_drop_rx_stag_filter_info(dev);
10018 			}
10019 		}
10020 
10021 		dev->features = features;
10022 	}
10023 
10024 	return err < 0 ? 0 : 1;
10025 }
10026 
10027 /**
10028  *	netdev_update_features - recalculate device features
10029  *	@dev: the device to check
10030  *
10031  *	Recalculate dev->features set and send notifications if it
10032  *	has changed. Should be called after driver or hardware dependent
10033  *	conditions might have changed that influence the features.
10034  */
10035 void netdev_update_features(struct net_device *dev)
10036 {
10037 	if (__netdev_update_features(dev))
10038 		netdev_features_change(dev);
10039 }
10040 EXPORT_SYMBOL(netdev_update_features);
10041 
10042 /**
10043  *	netdev_change_features - recalculate device features
10044  *	@dev: the device to check
10045  *
10046  *	Recalculate dev->features set and send notifications even
10047  *	if they have not changed. Should be called instead of
10048  *	netdev_update_features() if also dev->vlan_features might
10049  *	have changed to allow the changes to be propagated to stacked
10050  *	VLAN devices.
10051  */
10052 void netdev_change_features(struct net_device *dev)
10053 {
10054 	__netdev_update_features(dev);
10055 	netdev_features_change(dev);
10056 }
10057 EXPORT_SYMBOL(netdev_change_features);
10058 
10059 /**
10060  *	netif_stacked_transfer_operstate -	transfer operstate
10061  *	@rootdev: the root or lower level device to transfer state from
10062  *	@dev: the device to transfer operstate to
10063  *
10064  *	Transfer operational state from root to device. This is normally
10065  *	called when a stacking relationship exists between the root
10066  *	device and the device(a leaf device).
10067  */
10068 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
10069 					struct net_device *dev)
10070 {
10071 	if (rootdev->operstate == IF_OPER_DORMANT)
10072 		netif_dormant_on(dev);
10073 	else
10074 		netif_dormant_off(dev);
10075 
10076 	if (rootdev->operstate == IF_OPER_TESTING)
10077 		netif_testing_on(dev);
10078 	else
10079 		netif_testing_off(dev);
10080 
10081 	if (netif_carrier_ok(rootdev))
10082 		netif_carrier_on(dev);
10083 	else
10084 		netif_carrier_off(dev);
10085 }
10086 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
10087 
10088 static int netif_alloc_rx_queues(struct net_device *dev)
10089 {
10090 	unsigned int i, count = dev->num_rx_queues;
10091 	struct netdev_rx_queue *rx;
10092 	size_t sz = count * sizeof(*rx);
10093 	int err = 0;
10094 
10095 	BUG_ON(count < 1);
10096 
10097 	rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10098 	if (!rx)
10099 		return -ENOMEM;
10100 
10101 	dev->_rx = rx;
10102 
10103 	for (i = 0; i < count; i++) {
10104 		rx[i].dev = dev;
10105 
10106 		/* XDP RX-queue setup */
10107 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10108 		if (err < 0)
10109 			goto err_rxq_info;
10110 	}
10111 	return 0;
10112 
10113 err_rxq_info:
10114 	/* Rollback successful reg's and free other resources */
10115 	while (i--)
10116 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10117 	kvfree(dev->_rx);
10118 	dev->_rx = NULL;
10119 	return err;
10120 }
10121 
10122 static void netif_free_rx_queues(struct net_device *dev)
10123 {
10124 	unsigned int i, count = dev->num_rx_queues;
10125 
10126 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10127 	if (!dev->_rx)
10128 		return;
10129 
10130 	for (i = 0; i < count; i++)
10131 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10132 
10133 	kvfree(dev->_rx);
10134 }
10135 
10136 static void netdev_init_one_queue(struct net_device *dev,
10137 				  struct netdev_queue *queue, void *_unused)
10138 {
10139 	/* Initialize queue lock */
10140 	spin_lock_init(&queue->_xmit_lock);
10141 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10142 	queue->xmit_lock_owner = -1;
10143 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10144 	queue->dev = dev;
10145 #ifdef CONFIG_BQL
10146 	dql_init(&queue->dql, HZ);
10147 #endif
10148 }
10149 
10150 static void netif_free_tx_queues(struct net_device *dev)
10151 {
10152 	kvfree(dev->_tx);
10153 }
10154 
10155 static int netif_alloc_netdev_queues(struct net_device *dev)
10156 {
10157 	unsigned int count = dev->num_tx_queues;
10158 	struct netdev_queue *tx;
10159 	size_t sz = count * sizeof(*tx);
10160 
10161 	if (count < 1 || count > 0xffff)
10162 		return -EINVAL;
10163 
10164 	tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10165 	if (!tx)
10166 		return -ENOMEM;
10167 
10168 	dev->_tx = tx;
10169 
10170 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10171 	spin_lock_init(&dev->tx_global_lock);
10172 
10173 	return 0;
10174 }
10175 
10176 void netif_tx_stop_all_queues(struct net_device *dev)
10177 {
10178 	unsigned int i;
10179 
10180 	for (i = 0; i < dev->num_tx_queues; i++) {
10181 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10182 
10183 		netif_tx_stop_queue(txq);
10184 	}
10185 }
10186 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10187 
10188 /**
10189  *	register_netdevice	- register a network device
10190  *	@dev: device to register
10191  *
10192  *	Take a completed network device structure and add it to the kernel
10193  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10194  *	chain. 0 is returned on success. A negative errno code is returned
10195  *	on a failure to set up the device, or if the name is a duplicate.
10196  *
10197  *	Callers must hold the rtnl semaphore. You may want
10198  *	register_netdev() instead of this.
10199  *
10200  *	BUGS:
10201  *	The locking appears insufficient to guarantee two parallel registers
10202  *	will not get the same name.
10203  */
10204 
10205 int register_netdevice(struct net_device *dev)
10206 {
10207 	int ret;
10208 	struct net *net = dev_net(dev);
10209 
10210 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10211 		     NETDEV_FEATURE_COUNT);
10212 	BUG_ON(dev_boot_phase);
10213 	ASSERT_RTNL();
10214 
10215 	might_sleep();
10216 
10217 	/* When net_device's are persistent, this will be fatal. */
10218 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10219 	BUG_ON(!net);
10220 
10221 	ret = ethtool_check_ops(dev->ethtool_ops);
10222 	if (ret)
10223 		return ret;
10224 
10225 	spin_lock_init(&dev->addr_list_lock);
10226 	netdev_set_addr_lockdep_class(dev);
10227 
10228 	ret = dev_get_valid_name(net, dev, dev->name);
10229 	if (ret < 0)
10230 		goto out;
10231 
10232 	ret = -ENOMEM;
10233 	dev->name_node = netdev_name_node_head_alloc(dev);
10234 	if (!dev->name_node)
10235 		goto out;
10236 
10237 	/* Init, if this function is available */
10238 	if (dev->netdev_ops->ndo_init) {
10239 		ret = dev->netdev_ops->ndo_init(dev);
10240 		if (ret) {
10241 			if (ret > 0)
10242 				ret = -EIO;
10243 			goto err_free_name;
10244 		}
10245 	}
10246 
10247 	if (((dev->hw_features | dev->features) &
10248 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
10249 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10250 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10251 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10252 		ret = -EINVAL;
10253 		goto err_uninit;
10254 	}
10255 
10256 	ret = -EBUSY;
10257 	if (!dev->ifindex)
10258 		dev->ifindex = dev_new_index(net);
10259 	else if (__dev_get_by_index(net, dev->ifindex))
10260 		goto err_uninit;
10261 
10262 	/* Transfer changeable features to wanted_features and enable
10263 	 * software offloads (GSO and GRO).
10264 	 */
10265 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10266 	dev->features |= NETIF_F_SOFT_FEATURES;
10267 
10268 	if (dev->udp_tunnel_nic_info) {
10269 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10270 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10271 	}
10272 
10273 	dev->wanted_features = dev->features & dev->hw_features;
10274 
10275 	if (!(dev->flags & IFF_LOOPBACK))
10276 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
10277 
10278 	/* If IPv4 TCP segmentation offload is supported we should also
10279 	 * allow the device to enable segmenting the frame with the option
10280 	 * of ignoring a static IP ID value.  This doesn't enable the
10281 	 * feature itself but allows the user to enable it later.
10282 	 */
10283 	if (dev->hw_features & NETIF_F_TSO)
10284 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
10285 	if (dev->vlan_features & NETIF_F_TSO)
10286 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10287 	if (dev->mpls_features & NETIF_F_TSO)
10288 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10289 	if (dev->hw_enc_features & NETIF_F_TSO)
10290 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10291 
10292 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10293 	 */
10294 	dev->vlan_features |= NETIF_F_HIGHDMA;
10295 
10296 	/* Make NETIF_F_SG inheritable to tunnel devices.
10297 	 */
10298 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10299 
10300 	/* Make NETIF_F_SG inheritable to MPLS.
10301 	 */
10302 	dev->mpls_features |= NETIF_F_SG;
10303 
10304 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10305 	ret = notifier_to_errno(ret);
10306 	if (ret)
10307 		goto err_uninit;
10308 
10309 	ret = netdev_register_kobject(dev);
10310 	if (ret) {
10311 		dev->reg_state = NETREG_UNREGISTERED;
10312 		goto err_uninit;
10313 	}
10314 	dev->reg_state = NETREG_REGISTERED;
10315 
10316 	__netdev_update_features(dev);
10317 
10318 	/*
10319 	 *	Default initial state at registry is that the
10320 	 *	device is present.
10321 	 */
10322 
10323 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10324 
10325 	linkwatch_init_dev(dev);
10326 
10327 	dev_init_scheduler(dev);
10328 	dev_hold(dev);
10329 	list_netdevice(dev);
10330 	add_device_randomness(dev->dev_addr, dev->addr_len);
10331 
10332 	/* If the device has permanent device address, driver should
10333 	 * set dev_addr and also addr_assign_type should be set to
10334 	 * NET_ADDR_PERM (default value).
10335 	 */
10336 	if (dev->addr_assign_type == NET_ADDR_PERM)
10337 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10338 
10339 	/* Notify protocols, that a new device appeared. */
10340 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10341 	ret = notifier_to_errno(ret);
10342 	if (ret) {
10343 		/* Expect explicit free_netdev() on failure */
10344 		dev->needs_free_netdev = false;
10345 		unregister_netdevice_queue(dev, NULL);
10346 		goto out;
10347 	}
10348 	/*
10349 	 *	Prevent userspace races by waiting until the network
10350 	 *	device is fully setup before sending notifications.
10351 	 */
10352 	if (!dev->rtnl_link_ops ||
10353 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10354 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10355 
10356 out:
10357 	return ret;
10358 
10359 err_uninit:
10360 	if (dev->netdev_ops->ndo_uninit)
10361 		dev->netdev_ops->ndo_uninit(dev);
10362 	if (dev->priv_destructor)
10363 		dev->priv_destructor(dev);
10364 err_free_name:
10365 	netdev_name_node_free(dev->name_node);
10366 	goto out;
10367 }
10368 EXPORT_SYMBOL(register_netdevice);
10369 
10370 /**
10371  *	init_dummy_netdev	- init a dummy network device for NAPI
10372  *	@dev: device to init
10373  *
10374  *	This takes a network device structure and initialize the minimum
10375  *	amount of fields so it can be used to schedule NAPI polls without
10376  *	registering a full blown interface. This is to be used by drivers
10377  *	that need to tie several hardware interfaces to a single NAPI
10378  *	poll scheduler due to HW limitations.
10379  */
10380 int init_dummy_netdev(struct net_device *dev)
10381 {
10382 	/* Clear everything. Note we don't initialize spinlocks
10383 	 * are they aren't supposed to be taken by any of the
10384 	 * NAPI code and this dummy netdev is supposed to be
10385 	 * only ever used for NAPI polls
10386 	 */
10387 	memset(dev, 0, sizeof(struct net_device));
10388 
10389 	/* make sure we BUG if trying to hit standard
10390 	 * register/unregister code path
10391 	 */
10392 	dev->reg_state = NETREG_DUMMY;
10393 
10394 	/* NAPI wants this */
10395 	INIT_LIST_HEAD(&dev->napi_list);
10396 
10397 	/* a dummy interface is started by default */
10398 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10399 	set_bit(__LINK_STATE_START, &dev->state);
10400 
10401 	/* napi_busy_loop stats accounting wants this */
10402 	dev_net_set(dev, &init_net);
10403 
10404 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
10405 	 * because users of this 'device' dont need to change
10406 	 * its refcount.
10407 	 */
10408 
10409 	return 0;
10410 }
10411 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10412 
10413 
10414 /**
10415  *	register_netdev	- register a network device
10416  *	@dev: device to register
10417  *
10418  *	Take a completed network device structure and add it to the kernel
10419  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10420  *	chain. 0 is returned on success. A negative errno code is returned
10421  *	on a failure to set up the device, or if the name is a duplicate.
10422  *
10423  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
10424  *	and expands the device name if you passed a format string to
10425  *	alloc_netdev.
10426  */
10427 int register_netdev(struct net_device *dev)
10428 {
10429 	int err;
10430 
10431 	if (rtnl_lock_killable())
10432 		return -EINTR;
10433 	err = register_netdevice(dev);
10434 	rtnl_unlock();
10435 	return err;
10436 }
10437 EXPORT_SYMBOL(register_netdev);
10438 
10439 int netdev_refcnt_read(const struct net_device *dev)
10440 {
10441 #ifdef CONFIG_PCPU_DEV_REFCNT
10442 	int i, refcnt = 0;
10443 
10444 	for_each_possible_cpu(i)
10445 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10446 	return refcnt;
10447 #else
10448 	return refcount_read(&dev->dev_refcnt);
10449 #endif
10450 }
10451 EXPORT_SYMBOL(netdev_refcnt_read);
10452 
10453 int netdev_unregister_timeout_secs __read_mostly = 10;
10454 
10455 #define WAIT_REFS_MIN_MSECS 1
10456 #define WAIT_REFS_MAX_MSECS 250
10457 /**
10458  * netdev_wait_allrefs - wait until all references are gone.
10459  * @dev: target net_device
10460  *
10461  * This is called when unregistering network devices.
10462  *
10463  * Any protocol or device that holds a reference should register
10464  * for netdevice notification, and cleanup and put back the
10465  * reference if they receive an UNREGISTER event.
10466  * We can get stuck here if buggy protocols don't correctly
10467  * call dev_put.
10468  */
10469 static void netdev_wait_allrefs(struct net_device *dev)
10470 {
10471 	unsigned long rebroadcast_time, warning_time;
10472 	int wait = 0, refcnt;
10473 
10474 	linkwatch_forget_dev(dev);
10475 
10476 	rebroadcast_time = warning_time = jiffies;
10477 	refcnt = netdev_refcnt_read(dev);
10478 
10479 	while (refcnt != 1) {
10480 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10481 			rtnl_lock();
10482 
10483 			/* Rebroadcast unregister notification */
10484 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10485 
10486 			__rtnl_unlock();
10487 			rcu_barrier();
10488 			rtnl_lock();
10489 
10490 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10491 				     &dev->state)) {
10492 				/* We must not have linkwatch events
10493 				 * pending on unregister. If this
10494 				 * happens, we simply run the queue
10495 				 * unscheduled, resulting in a noop
10496 				 * for this device.
10497 				 */
10498 				linkwatch_run_queue();
10499 			}
10500 
10501 			__rtnl_unlock();
10502 
10503 			rebroadcast_time = jiffies;
10504 		}
10505 
10506 		if (!wait) {
10507 			rcu_barrier();
10508 			wait = WAIT_REFS_MIN_MSECS;
10509 		} else {
10510 			msleep(wait);
10511 			wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10512 		}
10513 
10514 		refcnt = netdev_refcnt_read(dev);
10515 
10516 		if (refcnt != 1 &&
10517 		    time_after(jiffies, warning_time +
10518 			       netdev_unregister_timeout_secs * HZ)) {
10519 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10520 				 dev->name, refcnt);
10521 			warning_time = jiffies;
10522 		}
10523 	}
10524 }
10525 
10526 /* The sequence is:
10527  *
10528  *	rtnl_lock();
10529  *	...
10530  *	register_netdevice(x1);
10531  *	register_netdevice(x2);
10532  *	...
10533  *	unregister_netdevice(y1);
10534  *	unregister_netdevice(y2);
10535  *      ...
10536  *	rtnl_unlock();
10537  *	free_netdev(y1);
10538  *	free_netdev(y2);
10539  *
10540  * We are invoked by rtnl_unlock().
10541  * This allows us to deal with problems:
10542  * 1) We can delete sysfs objects which invoke hotplug
10543  *    without deadlocking with linkwatch via keventd.
10544  * 2) Since we run with the RTNL semaphore not held, we can sleep
10545  *    safely in order to wait for the netdev refcnt to drop to zero.
10546  *
10547  * We must not return until all unregister events added during
10548  * the interval the lock was held have been completed.
10549  */
10550 void netdev_run_todo(void)
10551 {
10552 	struct list_head list;
10553 #ifdef CONFIG_LOCKDEP
10554 	struct list_head unlink_list;
10555 
10556 	list_replace_init(&net_unlink_list, &unlink_list);
10557 
10558 	while (!list_empty(&unlink_list)) {
10559 		struct net_device *dev = list_first_entry(&unlink_list,
10560 							  struct net_device,
10561 							  unlink_list);
10562 		list_del_init(&dev->unlink_list);
10563 		dev->nested_level = dev->lower_level - 1;
10564 	}
10565 #endif
10566 
10567 	/* Snapshot list, allow later requests */
10568 	list_replace_init(&net_todo_list, &list);
10569 
10570 	__rtnl_unlock();
10571 
10572 
10573 	/* Wait for rcu callbacks to finish before next phase */
10574 	if (!list_empty(&list))
10575 		rcu_barrier();
10576 
10577 	while (!list_empty(&list)) {
10578 		struct net_device *dev
10579 			= list_first_entry(&list, struct net_device, todo_list);
10580 		list_del(&dev->todo_list);
10581 
10582 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10583 			pr_err("network todo '%s' but state %d\n",
10584 			       dev->name, dev->reg_state);
10585 			dump_stack();
10586 			continue;
10587 		}
10588 
10589 		dev->reg_state = NETREG_UNREGISTERED;
10590 
10591 		netdev_wait_allrefs(dev);
10592 
10593 		/* paranoia */
10594 		BUG_ON(netdev_refcnt_read(dev) != 1);
10595 		BUG_ON(!list_empty(&dev->ptype_all));
10596 		BUG_ON(!list_empty(&dev->ptype_specific));
10597 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
10598 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10599 #if IS_ENABLED(CONFIG_DECNET)
10600 		WARN_ON(dev->dn_ptr);
10601 #endif
10602 		if (dev->priv_destructor)
10603 			dev->priv_destructor(dev);
10604 		if (dev->needs_free_netdev)
10605 			free_netdev(dev);
10606 
10607 		/* Report a network device has been unregistered */
10608 		rtnl_lock();
10609 		dev_net(dev)->dev_unreg_count--;
10610 		__rtnl_unlock();
10611 		wake_up(&netdev_unregistering_wq);
10612 
10613 		/* Free network device */
10614 		kobject_put(&dev->dev.kobj);
10615 	}
10616 }
10617 
10618 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10619  * all the same fields in the same order as net_device_stats, with only
10620  * the type differing, but rtnl_link_stats64 may have additional fields
10621  * at the end for newer counters.
10622  */
10623 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10624 			     const struct net_device_stats *netdev_stats)
10625 {
10626 #if BITS_PER_LONG == 64
10627 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
10628 	memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
10629 	/* zero out counters that only exist in rtnl_link_stats64 */
10630 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
10631 	       sizeof(*stats64) - sizeof(*netdev_stats));
10632 #else
10633 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
10634 	const unsigned long *src = (const unsigned long *)netdev_stats;
10635 	u64 *dst = (u64 *)stats64;
10636 
10637 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10638 	for (i = 0; i < n; i++)
10639 		dst[i] = src[i];
10640 	/* zero out counters that only exist in rtnl_link_stats64 */
10641 	memset((char *)stats64 + n * sizeof(u64), 0,
10642 	       sizeof(*stats64) - n * sizeof(u64));
10643 #endif
10644 }
10645 EXPORT_SYMBOL(netdev_stats_to_stats64);
10646 
10647 /**
10648  *	dev_get_stats	- get network device statistics
10649  *	@dev: device to get statistics from
10650  *	@storage: place to store stats
10651  *
10652  *	Get network statistics from device. Return @storage.
10653  *	The device driver may provide its own method by setting
10654  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10655  *	otherwise the internal statistics structure is used.
10656  */
10657 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10658 					struct rtnl_link_stats64 *storage)
10659 {
10660 	const struct net_device_ops *ops = dev->netdev_ops;
10661 
10662 	if (ops->ndo_get_stats64) {
10663 		memset(storage, 0, sizeof(*storage));
10664 		ops->ndo_get_stats64(dev, storage);
10665 	} else if (ops->ndo_get_stats) {
10666 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10667 	} else {
10668 		netdev_stats_to_stats64(storage, &dev->stats);
10669 	}
10670 	storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
10671 	storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
10672 	storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
10673 	return storage;
10674 }
10675 EXPORT_SYMBOL(dev_get_stats);
10676 
10677 /**
10678  *	dev_fetch_sw_netstats - get per-cpu network device statistics
10679  *	@s: place to store stats
10680  *	@netstats: per-cpu network stats to read from
10681  *
10682  *	Read per-cpu network statistics and populate the related fields in @s.
10683  */
10684 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10685 			   const struct pcpu_sw_netstats __percpu *netstats)
10686 {
10687 	int cpu;
10688 
10689 	for_each_possible_cpu(cpu) {
10690 		const struct pcpu_sw_netstats *stats;
10691 		struct pcpu_sw_netstats tmp;
10692 		unsigned int start;
10693 
10694 		stats = per_cpu_ptr(netstats, cpu);
10695 		do {
10696 			start = u64_stats_fetch_begin_irq(&stats->syncp);
10697 			tmp.rx_packets = stats->rx_packets;
10698 			tmp.rx_bytes   = stats->rx_bytes;
10699 			tmp.tx_packets = stats->tx_packets;
10700 			tmp.tx_bytes   = stats->tx_bytes;
10701 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10702 
10703 		s->rx_packets += tmp.rx_packets;
10704 		s->rx_bytes   += tmp.rx_bytes;
10705 		s->tx_packets += tmp.tx_packets;
10706 		s->tx_bytes   += tmp.tx_bytes;
10707 	}
10708 }
10709 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10710 
10711 /**
10712  *	dev_get_tstats64 - ndo_get_stats64 implementation
10713  *	@dev: device to get statistics from
10714  *	@s: place to store stats
10715  *
10716  *	Populate @s from dev->stats and dev->tstats. Can be used as
10717  *	ndo_get_stats64() callback.
10718  */
10719 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10720 {
10721 	netdev_stats_to_stats64(s, &dev->stats);
10722 	dev_fetch_sw_netstats(s, dev->tstats);
10723 }
10724 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10725 
10726 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10727 {
10728 	struct netdev_queue *queue = dev_ingress_queue(dev);
10729 
10730 #ifdef CONFIG_NET_CLS_ACT
10731 	if (queue)
10732 		return queue;
10733 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10734 	if (!queue)
10735 		return NULL;
10736 	netdev_init_one_queue(dev, queue, NULL);
10737 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10738 	queue->qdisc_sleeping = &noop_qdisc;
10739 	rcu_assign_pointer(dev->ingress_queue, queue);
10740 #endif
10741 	return queue;
10742 }
10743 
10744 static const struct ethtool_ops default_ethtool_ops;
10745 
10746 void netdev_set_default_ethtool_ops(struct net_device *dev,
10747 				    const struct ethtool_ops *ops)
10748 {
10749 	if (dev->ethtool_ops == &default_ethtool_ops)
10750 		dev->ethtool_ops = ops;
10751 }
10752 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10753 
10754 void netdev_freemem(struct net_device *dev)
10755 {
10756 	char *addr = (char *)dev - dev->padded;
10757 
10758 	kvfree(addr);
10759 }
10760 
10761 /**
10762  * alloc_netdev_mqs - allocate network device
10763  * @sizeof_priv: size of private data to allocate space for
10764  * @name: device name format string
10765  * @name_assign_type: origin of device name
10766  * @setup: callback to initialize device
10767  * @txqs: the number of TX subqueues to allocate
10768  * @rxqs: the number of RX subqueues to allocate
10769  *
10770  * Allocates a struct net_device with private data area for driver use
10771  * and performs basic initialization.  Also allocates subqueue structs
10772  * for each queue on the device.
10773  */
10774 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10775 		unsigned char name_assign_type,
10776 		void (*setup)(struct net_device *),
10777 		unsigned int txqs, unsigned int rxqs)
10778 {
10779 	struct net_device *dev;
10780 	unsigned int alloc_size;
10781 	struct net_device *p;
10782 
10783 	BUG_ON(strlen(name) >= sizeof(dev->name));
10784 
10785 	if (txqs < 1) {
10786 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10787 		return NULL;
10788 	}
10789 
10790 	if (rxqs < 1) {
10791 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10792 		return NULL;
10793 	}
10794 
10795 	alloc_size = sizeof(struct net_device);
10796 	if (sizeof_priv) {
10797 		/* ensure 32-byte alignment of private area */
10798 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10799 		alloc_size += sizeof_priv;
10800 	}
10801 	/* ensure 32-byte alignment of whole construct */
10802 	alloc_size += NETDEV_ALIGN - 1;
10803 
10804 	p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10805 	if (!p)
10806 		return NULL;
10807 
10808 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
10809 	dev->padded = (char *)dev - (char *)p;
10810 
10811 #ifdef CONFIG_PCPU_DEV_REFCNT
10812 	dev->pcpu_refcnt = alloc_percpu(int);
10813 	if (!dev->pcpu_refcnt)
10814 		goto free_dev;
10815 	dev_hold(dev);
10816 #else
10817 	refcount_set(&dev->dev_refcnt, 1);
10818 #endif
10819 
10820 	if (dev_addr_init(dev))
10821 		goto free_pcpu;
10822 
10823 	dev_mc_init(dev);
10824 	dev_uc_init(dev);
10825 
10826 	dev_net_set(dev, &init_net);
10827 
10828 	dev->gso_max_size = GSO_MAX_SIZE;
10829 	dev->gso_max_segs = GSO_MAX_SEGS;
10830 	dev->upper_level = 1;
10831 	dev->lower_level = 1;
10832 #ifdef CONFIG_LOCKDEP
10833 	dev->nested_level = 0;
10834 	INIT_LIST_HEAD(&dev->unlink_list);
10835 #endif
10836 
10837 	INIT_LIST_HEAD(&dev->napi_list);
10838 	INIT_LIST_HEAD(&dev->unreg_list);
10839 	INIT_LIST_HEAD(&dev->close_list);
10840 	INIT_LIST_HEAD(&dev->link_watch_list);
10841 	INIT_LIST_HEAD(&dev->adj_list.upper);
10842 	INIT_LIST_HEAD(&dev->adj_list.lower);
10843 	INIT_LIST_HEAD(&dev->ptype_all);
10844 	INIT_LIST_HEAD(&dev->ptype_specific);
10845 	INIT_LIST_HEAD(&dev->net_notifier_list);
10846 #ifdef CONFIG_NET_SCHED
10847 	hash_init(dev->qdisc_hash);
10848 #endif
10849 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10850 	setup(dev);
10851 
10852 	if (!dev->tx_queue_len) {
10853 		dev->priv_flags |= IFF_NO_QUEUE;
10854 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10855 	}
10856 
10857 	dev->num_tx_queues = txqs;
10858 	dev->real_num_tx_queues = txqs;
10859 	if (netif_alloc_netdev_queues(dev))
10860 		goto free_all;
10861 
10862 	dev->num_rx_queues = rxqs;
10863 	dev->real_num_rx_queues = rxqs;
10864 	if (netif_alloc_rx_queues(dev))
10865 		goto free_all;
10866 
10867 	strcpy(dev->name, name);
10868 	dev->name_assign_type = name_assign_type;
10869 	dev->group = INIT_NETDEV_GROUP;
10870 	if (!dev->ethtool_ops)
10871 		dev->ethtool_ops = &default_ethtool_ops;
10872 
10873 	nf_hook_ingress_init(dev);
10874 
10875 	return dev;
10876 
10877 free_all:
10878 	free_netdev(dev);
10879 	return NULL;
10880 
10881 free_pcpu:
10882 #ifdef CONFIG_PCPU_DEV_REFCNT
10883 	free_percpu(dev->pcpu_refcnt);
10884 free_dev:
10885 #endif
10886 	netdev_freemem(dev);
10887 	return NULL;
10888 }
10889 EXPORT_SYMBOL(alloc_netdev_mqs);
10890 
10891 /**
10892  * free_netdev - free network device
10893  * @dev: device
10894  *
10895  * This function does the last stage of destroying an allocated device
10896  * interface. The reference to the device object is released. If this
10897  * is the last reference then it will be freed.Must be called in process
10898  * context.
10899  */
10900 void free_netdev(struct net_device *dev)
10901 {
10902 	struct napi_struct *p, *n;
10903 
10904 	might_sleep();
10905 
10906 	/* When called immediately after register_netdevice() failed the unwind
10907 	 * handling may still be dismantling the device. Handle that case by
10908 	 * deferring the free.
10909 	 */
10910 	if (dev->reg_state == NETREG_UNREGISTERING) {
10911 		ASSERT_RTNL();
10912 		dev->needs_free_netdev = true;
10913 		return;
10914 	}
10915 
10916 	netif_free_tx_queues(dev);
10917 	netif_free_rx_queues(dev);
10918 
10919 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10920 
10921 	/* Flush device addresses */
10922 	dev_addr_flush(dev);
10923 
10924 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10925 		netif_napi_del(p);
10926 
10927 #ifdef CONFIG_PCPU_DEV_REFCNT
10928 	free_percpu(dev->pcpu_refcnt);
10929 	dev->pcpu_refcnt = NULL;
10930 #endif
10931 	free_percpu(dev->xdp_bulkq);
10932 	dev->xdp_bulkq = NULL;
10933 
10934 	/*  Compatibility with error handling in drivers */
10935 	if (dev->reg_state == NETREG_UNINITIALIZED) {
10936 		netdev_freemem(dev);
10937 		return;
10938 	}
10939 
10940 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10941 	dev->reg_state = NETREG_RELEASED;
10942 
10943 	/* will free via device release */
10944 	put_device(&dev->dev);
10945 }
10946 EXPORT_SYMBOL(free_netdev);
10947 
10948 /**
10949  *	synchronize_net -  Synchronize with packet receive processing
10950  *
10951  *	Wait for packets currently being received to be done.
10952  *	Does not block later packets from starting.
10953  */
10954 void synchronize_net(void)
10955 {
10956 	might_sleep();
10957 	if (rtnl_is_locked())
10958 		synchronize_rcu_expedited();
10959 	else
10960 		synchronize_rcu();
10961 }
10962 EXPORT_SYMBOL(synchronize_net);
10963 
10964 /**
10965  *	unregister_netdevice_queue - remove device from the kernel
10966  *	@dev: device
10967  *	@head: list
10968  *
10969  *	This function shuts down a device interface and removes it
10970  *	from the kernel tables.
10971  *	If head not NULL, device is queued to be unregistered later.
10972  *
10973  *	Callers must hold the rtnl semaphore.  You may want
10974  *	unregister_netdev() instead of this.
10975  */
10976 
10977 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10978 {
10979 	ASSERT_RTNL();
10980 
10981 	if (head) {
10982 		list_move_tail(&dev->unreg_list, head);
10983 	} else {
10984 		LIST_HEAD(single);
10985 
10986 		list_add(&dev->unreg_list, &single);
10987 		unregister_netdevice_many(&single);
10988 	}
10989 }
10990 EXPORT_SYMBOL(unregister_netdevice_queue);
10991 
10992 /**
10993  *	unregister_netdevice_many - unregister many devices
10994  *	@head: list of devices
10995  *
10996  *  Note: As most callers use a stack allocated list_head,
10997  *  we force a list_del() to make sure stack wont be corrupted later.
10998  */
10999 void unregister_netdevice_many(struct list_head *head)
11000 {
11001 	struct net_device *dev, *tmp;
11002 	LIST_HEAD(close_head);
11003 
11004 	BUG_ON(dev_boot_phase);
11005 	ASSERT_RTNL();
11006 
11007 	if (list_empty(head))
11008 		return;
11009 
11010 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
11011 		/* Some devices call without registering
11012 		 * for initialization unwind. Remove those
11013 		 * devices and proceed with the remaining.
11014 		 */
11015 		if (dev->reg_state == NETREG_UNINITIALIZED) {
11016 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
11017 				 dev->name, dev);
11018 
11019 			WARN_ON(1);
11020 			list_del(&dev->unreg_list);
11021 			continue;
11022 		}
11023 		dev->dismantle = true;
11024 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
11025 	}
11026 
11027 	/* If device is running, close it first. */
11028 	list_for_each_entry(dev, head, unreg_list)
11029 		list_add_tail(&dev->close_list, &close_head);
11030 	dev_close_many(&close_head, true);
11031 
11032 	list_for_each_entry(dev, head, unreg_list) {
11033 		/* And unlink it from device chain. */
11034 		unlist_netdevice(dev);
11035 
11036 		dev->reg_state = NETREG_UNREGISTERING;
11037 	}
11038 	flush_all_backlogs();
11039 
11040 	synchronize_net();
11041 
11042 	list_for_each_entry(dev, head, unreg_list) {
11043 		struct sk_buff *skb = NULL;
11044 
11045 		/* Shutdown queueing discipline. */
11046 		dev_shutdown(dev);
11047 
11048 		dev_xdp_uninstall(dev);
11049 
11050 		/* Notify protocols, that we are about to destroy
11051 		 * this device. They should clean all the things.
11052 		 */
11053 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11054 
11055 		if (!dev->rtnl_link_ops ||
11056 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11057 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11058 						     GFP_KERNEL, NULL, 0);
11059 
11060 		/*
11061 		 *	Flush the unicast and multicast chains
11062 		 */
11063 		dev_uc_flush(dev);
11064 		dev_mc_flush(dev);
11065 
11066 		netdev_name_node_alt_flush(dev);
11067 		netdev_name_node_free(dev->name_node);
11068 
11069 		if (dev->netdev_ops->ndo_uninit)
11070 			dev->netdev_ops->ndo_uninit(dev);
11071 
11072 		if (skb)
11073 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
11074 
11075 		/* Notifier chain MUST detach us all upper devices. */
11076 		WARN_ON(netdev_has_any_upper_dev(dev));
11077 		WARN_ON(netdev_has_any_lower_dev(dev));
11078 
11079 		/* Remove entries from kobject tree */
11080 		netdev_unregister_kobject(dev);
11081 #ifdef CONFIG_XPS
11082 		/* Remove XPS queueing entries */
11083 		netif_reset_xps_queues_gt(dev, 0);
11084 #endif
11085 	}
11086 
11087 	synchronize_net();
11088 
11089 	list_for_each_entry(dev, head, unreg_list) {
11090 		dev_put(dev);
11091 		net_set_todo(dev);
11092 	}
11093 
11094 	list_del(head);
11095 }
11096 EXPORT_SYMBOL(unregister_netdevice_many);
11097 
11098 /**
11099  *	unregister_netdev - remove device from the kernel
11100  *	@dev: device
11101  *
11102  *	This function shuts down a device interface and removes it
11103  *	from the kernel tables.
11104  *
11105  *	This is just a wrapper for unregister_netdevice that takes
11106  *	the rtnl semaphore.  In general you want to use this and not
11107  *	unregister_netdevice.
11108  */
11109 void unregister_netdev(struct net_device *dev)
11110 {
11111 	rtnl_lock();
11112 	unregister_netdevice(dev);
11113 	rtnl_unlock();
11114 }
11115 EXPORT_SYMBOL(unregister_netdev);
11116 
11117 /**
11118  *	__dev_change_net_namespace - move device to different nethost namespace
11119  *	@dev: device
11120  *	@net: network namespace
11121  *	@pat: If not NULL name pattern to try if the current device name
11122  *	      is already taken in the destination network namespace.
11123  *	@new_ifindex: If not zero, specifies device index in the target
11124  *	              namespace.
11125  *
11126  *	This function shuts down a device interface and moves it
11127  *	to a new network namespace. On success 0 is returned, on
11128  *	a failure a netagive errno code is returned.
11129  *
11130  *	Callers must hold the rtnl semaphore.
11131  */
11132 
11133 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11134 			       const char *pat, int new_ifindex)
11135 {
11136 	struct net *net_old = dev_net(dev);
11137 	int err, new_nsid;
11138 
11139 	ASSERT_RTNL();
11140 
11141 	/* Don't allow namespace local devices to be moved. */
11142 	err = -EINVAL;
11143 	if (dev->features & NETIF_F_NETNS_LOCAL)
11144 		goto out;
11145 
11146 	/* Ensure the device has been registrered */
11147 	if (dev->reg_state != NETREG_REGISTERED)
11148 		goto out;
11149 
11150 	/* Get out if there is nothing todo */
11151 	err = 0;
11152 	if (net_eq(net_old, net))
11153 		goto out;
11154 
11155 	/* Pick the destination device name, and ensure
11156 	 * we can use it in the destination network namespace.
11157 	 */
11158 	err = -EEXIST;
11159 	if (netdev_name_in_use(net, dev->name)) {
11160 		/* We get here if we can't use the current device name */
11161 		if (!pat)
11162 			goto out;
11163 		err = dev_get_valid_name(net, dev, pat);
11164 		if (err < 0)
11165 			goto out;
11166 	}
11167 
11168 	/* Check that new_ifindex isn't used yet. */
11169 	err = -EBUSY;
11170 	if (new_ifindex && __dev_get_by_index(net, new_ifindex))
11171 		goto out;
11172 
11173 	/*
11174 	 * And now a mini version of register_netdevice unregister_netdevice.
11175 	 */
11176 
11177 	/* If device is running close it first. */
11178 	dev_close(dev);
11179 
11180 	/* And unlink it from device chain */
11181 	unlist_netdevice(dev);
11182 
11183 	synchronize_net();
11184 
11185 	/* Shutdown queueing discipline. */
11186 	dev_shutdown(dev);
11187 
11188 	/* Notify protocols, that we are about to destroy
11189 	 * this device. They should clean all the things.
11190 	 *
11191 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
11192 	 * This is wanted because this way 8021q and macvlan know
11193 	 * the device is just moving and can keep their slaves up.
11194 	 */
11195 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11196 	rcu_barrier();
11197 
11198 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11199 	/* If there is an ifindex conflict assign a new one */
11200 	if (!new_ifindex) {
11201 		if (__dev_get_by_index(net, dev->ifindex))
11202 			new_ifindex = dev_new_index(net);
11203 		else
11204 			new_ifindex = dev->ifindex;
11205 	}
11206 
11207 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11208 			    new_ifindex);
11209 
11210 	/*
11211 	 *	Flush the unicast and multicast chains
11212 	 */
11213 	dev_uc_flush(dev);
11214 	dev_mc_flush(dev);
11215 
11216 	/* Send a netdev-removed uevent to the old namespace */
11217 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11218 	netdev_adjacent_del_links(dev);
11219 
11220 	/* Move per-net netdevice notifiers that are following the netdevice */
11221 	move_netdevice_notifiers_dev_net(dev, net);
11222 
11223 	/* Actually switch the network namespace */
11224 	dev_net_set(dev, net);
11225 	dev->ifindex = new_ifindex;
11226 
11227 	/* Send a netdev-add uevent to the new namespace */
11228 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11229 	netdev_adjacent_add_links(dev);
11230 
11231 	/* Fixup kobjects */
11232 	err = device_rename(&dev->dev, dev->name);
11233 	WARN_ON(err);
11234 
11235 	/* Adapt owner in case owning user namespace of target network
11236 	 * namespace is different from the original one.
11237 	 */
11238 	err = netdev_change_owner(dev, net_old, net);
11239 	WARN_ON(err);
11240 
11241 	/* Add the device back in the hashes */
11242 	list_netdevice(dev);
11243 
11244 	/* Notify protocols, that a new device appeared. */
11245 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
11246 
11247 	/*
11248 	 *	Prevent userspace races by waiting until the network
11249 	 *	device is fully setup before sending notifications.
11250 	 */
11251 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
11252 
11253 	synchronize_net();
11254 	err = 0;
11255 out:
11256 	return err;
11257 }
11258 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11259 
11260 static int dev_cpu_dead(unsigned int oldcpu)
11261 {
11262 	struct sk_buff **list_skb;
11263 	struct sk_buff *skb;
11264 	unsigned int cpu;
11265 	struct softnet_data *sd, *oldsd, *remsd = NULL;
11266 
11267 	local_irq_disable();
11268 	cpu = smp_processor_id();
11269 	sd = &per_cpu(softnet_data, cpu);
11270 	oldsd = &per_cpu(softnet_data, oldcpu);
11271 
11272 	/* Find end of our completion_queue. */
11273 	list_skb = &sd->completion_queue;
11274 	while (*list_skb)
11275 		list_skb = &(*list_skb)->next;
11276 	/* Append completion queue from offline CPU. */
11277 	*list_skb = oldsd->completion_queue;
11278 	oldsd->completion_queue = NULL;
11279 
11280 	/* Append output queue from offline CPU. */
11281 	if (oldsd->output_queue) {
11282 		*sd->output_queue_tailp = oldsd->output_queue;
11283 		sd->output_queue_tailp = oldsd->output_queue_tailp;
11284 		oldsd->output_queue = NULL;
11285 		oldsd->output_queue_tailp = &oldsd->output_queue;
11286 	}
11287 	/* Append NAPI poll list from offline CPU, with one exception :
11288 	 * process_backlog() must be called by cpu owning percpu backlog.
11289 	 * We properly handle process_queue & input_pkt_queue later.
11290 	 */
11291 	while (!list_empty(&oldsd->poll_list)) {
11292 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11293 							    struct napi_struct,
11294 							    poll_list);
11295 
11296 		list_del_init(&napi->poll_list);
11297 		if (napi->poll == process_backlog)
11298 			napi->state = 0;
11299 		else
11300 			____napi_schedule(sd, napi);
11301 	}
11302 
11303 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
11304 	local_irq_enable();
11305 
11306 #ifdef CONFIG_RPS
11307 	remsd = oldsd->rps_ipi_list;
11308 	oldsd->rps_ipi_list = NULL;
11309 #endif
11310 	/* send out pending IPI's on offline CPU */
11311 	net_rps_send_ipi(remsd);
11312 
11313 	/* Process offline CPU's input_pkt_queue */
11314 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11315 		netif_rx_ni(skb);
11316 		input_queue_head_incr(oldsd);
11317 	}
11318 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11319 		netif_rx_ni(skb);
11320 		input_queue_head_incr(oldsd);
11321 	}
11322 
11323 	return 0;
11324 }
11325 
11326 /**
11327  *	netdev_increment_features - increment feature set by one
11328  *	@all: current feature set
11329  *	@one: new feature set
11330  *	@mask: mask feature set
11331  *
11332  *	Computes a new feature set after adding a device with feature set
11333  *	@one to the master device with current feature set @all.  Will not
11334  *	enable anything that is off in @mask. Returns the new feature set.
11335  */
11336 netdev_features_t netdev_increment_features(netdev_features_t all,
11337 	netdev_features_t one, netdev_features_t mask)
11338 {
11339 	if (mask & NETIF_F_HW_CSUM)
11340 		mask |= NETIF_F_CSUM_MASK;
11341 	mask |= NETIF_F_VLAN_CHALLENGED;
11342 
11343 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11344 	all &= one | ~NETIF_F_ALL_FOR_ALL;
11345 
11346 	/* If one device supports hw checksumming, set for all. */
11347 	if (all & NETIF_F_HW_CSUM)
11348 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11349 
11350 	return all;
11351 }
11352 EXPORT_SYMBOL(netdev_increment_features);
11353 
11354 static struct hlist_head * __net_init netdev_create_hash(void)
11355 {
11356 	int i;
11357 	struct hlist_head *hash;
11358 
11359 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11360 	if (hash != NULL)
11361 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
11362 			INIT_HLIST_HEAD(&hash[i]);
11363 
11364 	return hash;
11365 }
11366 
11367 /* Initialize per network namespace state */
11368 static int __net_init netdev_init(struct net *net)
11369 {
11370 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
11371 		     8 * sizeof_field(struct napi_struct, gro_bitmask));
11372 
11373 	if (net != &init_net)
11374 		INIT_LIST_HEAD(&net->dev_base_head);
11375 
11376 	net->dev_name_head = netdev_create_hash();
11377 	if (net->dev_name_head == NULL)
11378 		goto err_name;
11379 
11380 	net->dev_index_head = netdev_create_hash();
11381 	if (net->dev_index_head == NULL)
11382 		goto err_idx;
11383 
11384 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11385 
11386 	return 0;
11387 
11388 err_idx:
11389 	kfree(net->dev_name_head);
11390 err_name:
11391 	return -ENOMEM;
11392 }
11393 
11394 /**
11395  *	netdev_drivername - network driver for the device
11396  *	@dev: network device
11397  *
11398  *	Determine network driver for device.
11399  */
11400 const char *netdev_drivername(const struct net_device *dev)
11401 {
11402 	const struct device_driver *driver;
11403 	const struct device *parent;
11404 	const char *empty = "";
11405 
11406 	parent = dev->dev.parent;
11407 	if (!parent)
11408 		return empty;
11409 
11410 	driver = parent->driver;
11411 	if (driver && driver->name)
11412 		return driver->name;
11413 	return empty;
11414 }
11415 
11416 static void __netdev_printk(const char *level, const struct net_device *dev,
11417 			    struct va_format *vaf)
11418 {
11419 	if (dev && dev->dev.parent) {
11420 		dev_printk_emit(level[1] - '0',
11421 				dev->dev.parent,
11422 				"%s %s %s%s: %pV",
11423 				dev_driver_string(dev->dev.parent),
11424 				dev_name(dev->dev.parent),
11425 				netdev_name(dev), netdev_reg_state(dev),
11426 				vaf);
11427 	} else if (dev) {
11428 		printk("%s%s%s: %pV",
11429 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
11430 	} else {
11431 		printk("%s(NULL net_device): %pV", level, vaf);
11432 	}
11433 }
11434 
11435 void netdev_printk(const char *level, const struct net_device *dev,
11436 		   const char *format, ...)
11437 {
11438 	struct va_format vaf;
11439 	va_list args;
11440 
11441 	va_start(args, format);
11442 
11443 	vaf.fmt = format;
11444 	vaf.va = &args;
11445 
11446 	__netdev_printk(level, dev, &vaf);
11447 
11448 	va_end(args);
11449 }
11450 EXPORT_SYMBOL(netdev_printk);
11451 
11452 #define define_netdev_printk_level(func, level)			\
11453 void func(const struct net_device *dev, const char *fmt, ...)	\
11454 {								\
11455 	struct va_format vaf;					\
11456 	va_list args;						\
11457 								\
11458 	va_start(args, fmt);					\
11459 								\
11460 	vaf.fmt = fmt;						\
11461 	vaf.va = &args;						\
11462 								\
11463 	__netdev_printk(level, dev, &vaf);			\
11464 								\
11465 	va_end(args);						\
11466 }								\
11467 EXPORT_SYMBOL(func);
11468 
11469 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11470 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11471 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11472 define_netdev_printk_level(netdev_err, KERN_ERR);
11473 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11474 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11475 define_netdev_printk_level(netdev_info, KERN_INFO);
11476 
11477 static void __net_exit netdev_exit(struct net *net)
11478 {
11479 	kfree(net->dev_name_head);
11480 	kfree(net->dev_index_head);
11481 	if (net != &init_net)
11482 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11483 }
11484 
11485 static struct pernet_operations __net_initdata netdev_net_ops = {
11486 	.init = netdev_init,
11487 	.exit = netdev_exit,
11488 };
11489 
11490 static void __net_exit default_device_exit(struct net *net)
11491 {
11492 	struct net_device *dev, *aux;
11493 	/*
11494 	 * Push all migratable network devices back to the
11495 	 * initial network namespace
11496 	 */
11497 	rtnl_lock();
11498 	for_each_netdev_safe(net, dev, aux) {
11499 		int err;
11500 		char fb_name[IFNAMSIZ];
11501 
11502 		/* Ignore unmoveable devices (i.e. loopback) */
11503 		if (dev->features & NETIF_F_NETNS_LOCAL)
11504 			continue;
11505 
11506 		/* Leave virtual devices for the generic cleanup */
11507 		if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11508 			continue;
11509 
11510 		/* Push remaining network devices to init_net */
11511 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11512 		if (netdev_name_in_use(&init_net, fb_name))
11513 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
11514 		err = dev_change_net_namespace(dev, &init_net, fb_name);
11515 		if (err) {
11516 			pr_emerg("%s: failed to move %s to init_net: %d\n",
11517 				 __func__, dev->name, err);
11518 			BUG();
11519 		}
11520 	}
11521 	rtnl_unlock();
11522 }
11523 
11524 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
11525 {
11526 	/* Return with the rtnl_lock held when there are no network
11527 	 * devices unregistering in any network namespace in net_list.
11528 	 */
11529 	struct net *net;
11530 	bool unregistering;
11531 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
11532 
11533 	add_wait_queue(&netdev_unregistering_wq, &wait);
11534 	for (;;) {
11535 		unregistering = false;
11536 		rtnl_lock();
11537 		list_for_each_entry(net, net_list, exit_list) {
11538 			if (net->dev_unreg_count > 0) {
11539 				unregistering = true;
11540 				break;
11541 			}
11542 		}
11543 		if (!unregistering)
11544 			break;
11545 		__rtnl_unlock();
11546 
11547 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
11548 	}
11549 	remove_wait_queue(&netdev_unregistering_wq, &wait);
11550 }
11551 
11552 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11553 {
11554 	/* At exit all network devices most be removed from a network
11555 	 * namespace.  Do this in the reverse order of registration.
11556 	 * Do this across as many network namespaces as possible to
11557 	 * improve batching efficiency.
11558 	 */
11559 	struct net_device *dev;
11560 	struct net *net;
11561 	LIST_HEAD(dev_kill_list);
11562 
11563 	/* To prevent network device cleanup code from dereferencing
11564 	 * loopback devices or network devices that have been freed
11565 	 * wait here for all pending unregistrations to complete,
11566 	 * before unregistring the loopback device and allowing the
11567 	 * network namespace be freed.
11568 	 *
11569 	 * The netdev todo list containing all network devices
11570 	 * unregistrations that happen in default_device_exit_batch
11571 	 * will run in the rtnl_unlock() at the end of
11572 	 * default_device_exit_batch.
11573 	 */
11574 	rtnl_lock_unregistering(net_list);
11575 	list_for_each_entry(net, net_list, exit_list) {
11576 		for_each_netdev_reverse(net, dev) {
11577 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11578 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11579 			else
11580 				unregister_netdevice_queue(dev, &dev_kill_list);
11581 		}
11582 	}
11583 	unregister_netdevice_many(&dev_kill_list);
11584 	rtnl_unlock();
11585 }
11586 
11587 static struct pernet_operations __net_initdata default_device_ops = {
11588 	.exit = default_device_exit,
11589 	.exit_batch = default_device_exit_batch,
11590 };
11591 
11592 /*
11593  *	Initialize the DEV module. At boot time this walks the device list and
11594  *	unhooks any devices that fail to initialise (normally hardware not
11595  *	present) and leaves us with a valid list of present and active devices.
11596  *
11597  */
11598 
11599 /*
11600  *       This is called single threaded during boot, so no need
11601  *       to take the rtnl semaphore.
11602  */
11603 static int __init net_dev_init(void)
11604 {
11605 	int i, rc = -ENOMEM;
11606 
11607 	BUG_ON(!dev_boot_phase);
11608 
11609 	if (dev_proc_init())
11610 		goto out;
11611 
11612 	if (netdev_kobject_init())
11613 		goto out;
11614 
11615 	INIT_LIST_HEAD(&ptype_all);
11616 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
11617 		INIT_LIST_HEAD(&ptype_base[i]);
11618 
11619 	INIT_LIST_HEAD(&offload_base);
11620 
11621 	if (register_pernet_subsys(&netdev_net_ops))
11622 		goto out;
11623 
11624 	/*
11625 	 *	Initialise the packet receive queues.
11626 	 */
11627 
11628 	for_each_possible_cpu(i) {
11629 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11630 		struct softnet_data *sd = &per_cpu(softnet_data, i);
11631 
11632 		INIT_WORK(flush, flush_backlog);
11633 
11634 		skb_queue_head_init(&sd->input_pkt_queue);
11635 		skb_queue_head_init(&sd->process_queue);
11636 #ifdef CONFIG_XFRM_OFFLOAD
11637 		skb_queue_head_init(&sd->xfrm_backlog);
11638 #endif
11639 		INIT_LIST_HEAD(&sd->poll_list);
11640 		sd->output_queue_tailp = &sd->output_queue;
11641 #ifdef CONFIG_RPS
11642 		INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11643 		sd->cpu = i;
11644 #endif
11645 
11646 		init_gro_hash(&sd->backlog);
11647 		sd->backlog.poll = process_backlog;
11648 		sd->backlog.weight = weight_p;
11649 	}
11650 
11651 	dev_boot_phase = 0;
11652 
11653 	/* The loopback device is special if any other network devices
11654 	 * is present in a network namespace the loopback device must
11655 	 * be present. Since we now dynamically allocate and free the
11656 	 * loopback device ensure this invariant is maintained by
11657 	 * keeping the loopback device as the first device on the
11658 	 * list of network devices.  Ensuring the loopback devices
11659 	 * is the first device that appears and the last network device
11660 	 * that disappears.
11661 	 */
11662 	if (register_pernet_device(&loopback_net_ops))
11663 		goto out;
11664 
11665 	if (register_pernet_device(&default_device_ops))
11666 		goto out;
11667 
11668 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11669 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11670 
11671 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11672 				       NULL, dev_cpu_dead);
11673 	WARN_ON(rc < 0);
11674 	rc = 0;
11675 out:
11676 	return rc;
11677 }
11678 
11679 subsys_initcall(net_dev_init);
11680