1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <asm/uaccess.h> 76 #include <asm/system.h> 77 #include <linux/bitops.h> 78 #include <linux/capability.h> 79 #include <linux/cpu.h> 80 #include <linux/types.h> 81 #include <linux/kernel.h> 82 #include <linux/hash.h> 83 #include <linux/slab.h> 84 #include <linux/sched.h> 85 #include <linux/mutex.h> 86 #include <linux/string.h> 87 #include <linux/mm.h> 88 #include <linux/socket.h> 89 #include <linux/sockios.h> 90 #include <linux/errno.h> 91 #include <linux/interrupt.h> 92 #include <linux/if_ether.h> 93 #include <linux/netdevice.h> 94 #include <linux/etherdevice.h> 95 #include <linux/ethtool.h> 96 #include <linux/notifier.h> 97 #include <linux/skbuff.h> 98 #include <net/net_namespace.h> 99 #include <net/sock.h> 100 #include <linux/rtnetlink.h> 101 #include <linux/proc_fs.h> 102 #include <linux/seq_file.h> 103 #include <linux/stat.h> 104 #include <net/dst.h> 105 #include <net/pkt_sched.h> 106 #include <net/checksum.h> 107 #include <net/xfrm.h> 108 #include <linux/highmem.h> 109 #include <linux/init.h> 110 #include <linux/kmod.h> 111 #include <linux/module.h> 112 #include <linux/netpoll.h> 113 #include <linux/rcupdate.h> 114 #include <linux/delay.h> 115 #include <net/wext.h> 116 #include <net/iw_handler.h> 117 #include <asm/current.h> 118 #include <linux/audit.h> 119 #include <linux/dmaengine.h> 120 #include <linux/err.h> 121 #include <linux/ctype.h> 122 #include <linux/if_arp.h> 123 #include <linux/if_vlan.h> 124 #include <linux/ip.h> 125 #include <net/ip.h> 126 #include <linux/ipv6.h> 127 #include <linux/in.h> 128 #include <linux/jhash.h> 129 #include <linux/random.h> 130 #include <trace/events/napi.h> 131 #include <trace/events/net.h> 132 #include <trace/events/skb.h> 133 #include <linux/pci.h> 134 #include <linux/inetdevice.h> 135 136 #include "net-sysfs.h" 137 138 /* Instead of increasing this, you should create a hash table. */ 139 #define MAX_GRO_SKBS 8 140 141 /* This should be increased if a protocol with a bigger head is added. */ 142 #define GRO_MAX_HEAD (MAX_HEADER + 128) 143 144 /* 145 * The list of packet types we will receive (as opposed to discard) 146 * and the routines to invoke. 147 * 148 * Why 16. Because with 16 the only overlap we get on a hash of the 149 * low nibble of the protocol value is RARP/SNAP/X.25. 150 * 151 * NOTE: That is no longer true with the addition of VLAN tags. Not 152 * sure which should go first, but I bet it won't make much 153 * difference if we are running VLANs. The good news is that 154 * this protocol won't be in the list unless compiled in, so 155 * the average user (w/out VLANs) will not be adversely affected. 156 * --BLG 157 * 158 * 0800 IP 159 * 8100 802.1Q VLAN 160 * 0001 802.3 161 * 0002 AX.25 162 * 0004 802.2 163 * 8035 RARP 164 * 0005 SNAP 165 * 0805 X.25 166 * 0806 ARP 167 * 8137 IPX 168 * 0009 Localtalk 169 * 86DD IPv6 170 */ 171 172 #define PTYPE_HASH_SIZE (16) 173 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 174 175 static DEFINE_SPINLOCK(ptype_lock); 176 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 177 static struct list_head ptype_all __read_mostly; /* Taps */ 178 179 /* 180 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 181 * semaphore. 182 * 183 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 184 * 185 * Writers must hold the rtnl semaphore while they loop through the 186 * dev_base_head list, and hold dev_base_lock for writing when they do the 187 * actual updates. This allows pure readers to access the list even 188 * while a writer is preparing to update it. 189 * 190 * To put it another way, dev_base_lock is held for writing only to 191 * protect against pure readers; the rtnl semaphore provides the 192 * protection against other writers. 193 * 194 * See, for example usages, register_netdevice() and 195 * unregister_netdevice(), which must be called with the rtnl 196 * semaphore held. 197 */ 198 DEFINE_RWLOCK(dev_base_lock); 199 EXPORT_SYMBOL(dev_base_lock); 200 201 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 202 { 203 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 204 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 205 } 206 207 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 208 { 209 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 210 } 211 212 static inline void rps_lock(struct softnet_data *sd) 213 { 214 #ifdef CONFIG_RPS 215 spin_lock(&sd->input_pkt_queue.lock); 216 #endif 217 } 218 219 static inline void rps_unlock(struct softnet_data *sd) 220 { 221 #ifdef CONFIG_RPS 222 spin_unlock(&sd->input_pkt_queue.lock); 223 #endif 224 } 225 226 /* Device list insertion */ 227 static int list_netdevice(struct net_device *dev) 228 { 229 struct net *net = dev_net(dev); 230 231 ASSERT_RTNL(); 232 233 write_lock_bh(&dev_base_lock); 234 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 235 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 236 hlist_add_head_rcu(&dev->index_hlist, 237 dev_index_hash(net, dev->ifindex)); 238 write_unlock_bh(&dev_base_lock); 239 return 0; 240 } 241 242 /* Device list removal 243 * caller must respect a RCU grace period before freeing/reusing dev 244 */ 245 static void unlist_netdevice(struct net_device *dev) 246 { 247 ASSERT_RTNL(); 248 249 /* Unlink dev from the device chain */ 250 write_lock_bh(&dev_base_lock); 251 list_del_rcu(&dev->dev_list); 252 hlist_del_rcu(&dev->name_hlist); 253 hlist_del_rcu(&dev->index_hlist); 254 write_unlock_bh(&dev_base_lock); 255 } 256 257 /* 258 * Our notifier list 259 */ 260 261 static RAW_NOTIFIER_HEAD(netdev_chain); 262 263 /* 264 * Device drivers call our routines to queue packets here. We empty the 265 * queue in the local softnet handler. 266 */ 267 268 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 269 EXPORT_PER_CPU_SYMBOL(softnet_data); 270 271 #ifdef CONFIG_LOCKDEP 272 /* 273 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 274 * according to dev->type 275 */ 276 static const unsigned short netdev_lock_type[] = 277 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 278 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 279 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 280 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 281 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 282 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 283 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 284 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 285 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 286 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 287 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 288 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 289 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211, 290 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, 291 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154, 292 ARPHRD_VOID, ARPHRD_NONE}; 293 294 static const char *const netdev_lock_name[] = 295 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 296 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 297 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 298 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 299 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 300 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 301 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 302 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 303 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 304 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 305 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 306 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 307 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211", 308 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", 309 "_xmit_PHONET_PIPE", "_xmit_IEEE802154", 310 "_xmit_VOID", "_xmit_NONE"}; 311 312 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 313 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 314 315 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 316 { 317 int i; 318 319 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 320 if (netdev_lock_type[i] == dev_type) 321 return i; 322 /* the last key is used by default */ 323 return ARRAY_SIZE(netdev_lock_type) - 1; 324 } 325 326 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 327 unsigned short dev_type) 328 { 329 int i; 330 331 i = netdev_lock_pos(dev_type); 332 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 333 netdev_lock_name[i]); 334 } 335 336 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 337 { 338 int i; 339 340 i = netdev_lock_pos(dev->type); 341 lockdep_set_class_and_name(&dev->addr_list_lock, 342 &netdev_addr_lock_key[i], 343 netdev_lock_name[i]); 344 } 345 #else 346 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 347 unsigned short dev_type) 348 { 349 } 350 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 351 { 352 } 353 #endif 354 355 /******************************************************************************* 356 357 Protocol management and registration routines 358 359 *******************************************************************************/ 360 361 /* 362 * Add a protocol ID to the list. Now that the input handler is 363 * smarter we can dispense with all the messy stuff that used to be 364 * here. 365 * 366 * BEWARE!!! Protocol handlers, mangling input packets, 367 * MUST BE last in hash buckets and checking protocol handlers 368 * MUST start from promiscuous ptype_all chain in net_bh. 369 * It is true now, do not change it. 370 * Explanation follows: if protocol handler, mangling packet, will 371 * be the first on list, it is not able to sense, that packet 372 * is cloned and should be copied-on-write, so that it will 373 * change it and subsequent readers will get broken packet. 374 * --ANK (980803) 375 */ 376 377 static inline struct list_head *ptype_head(const struct packet_type *pt) 378 { 379 if (pt->type == htons(ETH_P_ALL)) 380 return &ptype_all; 381 else 382 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 383 } 384 385 /** 386 * dev_add_pack - add packet handler 387 * @pt: packet type declaration 388 * 389 * Add a protocol handler to the networking stack. The passed &packet_type 390 * is linked into kernel lists and may not be freed until it has been 391 * removed from the kernel lists. 392 * 393 * This call does not sleep therefore it can not 394 * guarantee all CPU's that are in middle of receiving packets 395 * will see the new packet type (until the next received packet). 396 */ 397 398 void dev_add_pack(struct packet_type *pt) 399 { 400 struct list_head *head = ptype_head(pt); 401 402 spin_lock(&ptype_lock); 403 list_add_rcu(&pt->list, head); 404 spin_unlock(&ptype_lock); 405 } 406 EXPORT_SYMBOL(dev_add_pack); 407 408 /** 409 * __dev_remove_pack - remove packet handler 410 * @pt: packet type declaration 411 * 412 * Remove a protocol handler that was previously added to the kernel 413 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 414 * from the kernel lists and can be freed or reused once this function 415 * returns. 416 * 417 * The packet type might still be in use by receivers 418 * and must not be freed until after all the CPU's have gone 419 * through a quiescent state. 420 */ 421 void __dev_remove_pack(struct packet_type *pt) 422 { 423 struct list_head *head = ptype_head(pt); 424 struct packet_type *pt1; 425 426 spin_lock(&ptype_lock); 427 428 list_for_each_entry(pt1, head, list) { 429 if (pt == pt1) { 430 list_del_rcu(&pt->list); 431 goto out; 432 } 433 } 434 435 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt); 436 out: 437 spin_unlock(&ptype_lock); 438 } 439 EXPORT_SYMBOL(__dev_remove_pack); 440 441 /** 442 * dev_remove_pack - remove packet handler 443 * @pt: packet type declaration 444 * 445 * Remove a protocol handler that was previously added to the kernel 446 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 447 * from the kernel lists and can be freed or reused once this function 448 * returns. 449 * 450 * This call sleeps to guarantee that no CPU is looking at the packet 451 * type after return. 452 */ 453 void dev_remove_pack(struct packet_type *pt) 454 { 455 __dev_remove_pack(pt); 456 457 synchronize_net(); 458 } 459 EXPORT_SYMBOL(dev_remove_pack); 460 461 /****************************************************************************** 462 463 Device Boot-time Settings Routines 464 465 *******************************************************************************/ 466 467 /* Boot time configuration table */ 468 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 469 470 /** 471 * netdev_boot_setup_add - add new setup entry 472 * @name: name of the device 473 * @map: configured settings for the device 474 * 475 * Adds new setup entry to the dev_boot_setup list. The function 476 * returns 0 on error and 1 on success. This is a generic routine to 477 * all netdevices. 478 */ 479 static int netdev_boot_setup_add(char *name, struct ifmap *map) 480 { 481 struct netdev_boot_setup *s; 482 int i; 483 484 s = dev_boot_setup; 485 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 486 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 487 memset(s[i].name, 0, sizeof(s[i].name)); 488 strlcpy(s[i].name, name, IFNAMSIZ); 489 memcpy(&s[i].map, map, sizeof(s[i].map)); 490 break; 491 } 492 } 493 494 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 495 } 496 497 /** 498 * netdev_boot_setup_check - check boot time settings 499 * @dev: the netdevice 500 * 501 * Check boot time settings for the device. 502 * The found settings are set for the device to be used 503 * later in the device probing. 504 * Returns 0 if no settings found, 1 if they are. 505 */ 506 int netdev_boot_setup_check(struct net_device *dev) 507 { 508 struct netdev_boot_setup *s = dev_boot_setup; 509 int i; 510 511 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 512 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 513 !strcmp(dev->name, s[i].name)) { 514 dev->irq = s[i].map.irq; 515 dev->base_addr = s[i].map.base_addr; 516 dev->mem_start = s[i].map.mem_start; 517 dev->mem_end = s[i].map.mem_end; 518 return 1; 519 } 520 } 521 return 0; 522 } 523 EXPORT_SYMBOL(netdev_boot_setup_check); 524 525 526 /** 527 * netdev_boot_base - get address from boot time settings 528 * @prefix: prefix for network device 529 * @unit: id for network device 530 * 531 * Check boot time settings for the base address of device. 532 * The found settings are set for the device to be used 533 * later in the device probing. 534 * Returns 0 if no settings found. 535 */ 536 unsigned long netdev_boot_base(const char *prefix, int unit) 537 { 538 const struct netdev_boot_setup *s = dev_boot_setup; 539 char name[IFNAMSIZ]; 540 int i; 541 542 sprintf(name, "%s%d", prefix, unit); 543 544 /* 545 * If device already registered then return base of 1 546 * to indicate not to probe for this interface 547 */ 548 if (__dev_get_by_name(&init_net, name)) 549 return 1; 550 551 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 552 if (!strcmp(name, s[i].name)) 553 return s[i].map.base_addr; 554 return 0; 555 } 556 557 /* 558 * Saves at boot time configured settings for any netdevice. 559 */ 560 int __init netdev_boot_setup(char *str) 561 { 562 int ints[5]; 563 struct ifmap map; 564 565 str = get_options(str, ARRAY_SIZE(ints), ints); 566 if (!str || !*str) 567 return 0; 568 569 /* Save settings */ 570 memset(&map, 0, sizeof(map)); 571 if (ints[0] > 0) 572 map.irq = ints[1]; 573 if (ints[0] > 1) 574 map.base_addr = ints[2]; 575 if (ints[0] > 2) 576 map.mem_start = ints[3]; 577 if (ints[0] > 3) 578 map.mem_end = ints[4]; 579 580 /* Add new entry to the list */ 581 return netdev_boot_setup_add(str, &map); 582 } 583 584 __setup("netdev=", netdev_boot_setup); 585 586 /******************************************************************************* 587 588 Device Interface Subroutines 589 590 *******************************************************************************/ 591 592 /** 593 * __dev_get_by_name - find a device by its name 594 * @net: the applicable net namespace 595 * @name: name to find 596 * 597 * Find an interface by name. Must be called under RTNL semaphore 598 * or @dev_base_lock. If the name is found a pointer to the device 599 * is returned. If the name is not found then %NULL is returned. The 600 * reference counters are not incremented so the caller must be 601 * careful with locks. 602 */ 603 604 struct net_device *__dev_get_by_name(struct net *net, const char *name) 605 { 606 struct hlist_node *p; 607 struct net_device *dev; 608 struct hlist_head *head = dev_name_hash(net, name); 609 610 hlist_for_each_entry(dev, p, head, name_hlist) 611 if (!strncmp(dev->name, name, IFNAMSIZ)) 612 return dev; 613 614 return NULL; 615 } 616 EXPORT_SYMBOL(__dev_get_by_name); 617 618 /** 619 * dev_get_by_name_rcu - find a device by its name 620 * @net: the applicable net namespace 621 * @name: name to find 622 * 623 * Find an interface by name. 624 * If the name is found a pointer to the device is returned. 625 * If the name is not found then %NULL is returned. 626 * The reference counters are not incremented so the caller must be 627 * careful with locks. The caller must hold RCU lock. 628 */ 629 630 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 631 { 632 struct hlist_node *p; 633 struct net_device *dev; 634 struct hlist_head *head = dev_name_hash(net, name); 635 636 hlist_for_each_entry_rcu(dev, p, head, name_hlist) 637 if (!strncmp(dev->name, name, IFNAMSIZ)) 638 return dev; 639 640 return NULL; 641 } 642 EXPORT_SYMBOL(dev_get_by_name_rcu); 643 644 /** 645 * dev_get_by_name - find a device by its name 646 * @net: the applicable net namespace 647 * @name: name to find 648 * 649 * Find an interface by name. This can be called from any 650 * context and does its own locking. The returned handle has 651 * the usage count incremented and the caller must use dev_put() to 652 * release it when it is no longer needed. %NULL is returned if no 653 * matching device is found. 654 */ 655 656 struct net_device *dev_get_by_name(struct net *net, const char *name) 657 { 658 struct net_device *dev; 659 660 rcu_read_lock(); 661 dev = dev_get_by_name_rcu(net, name); 662 if (dev) 663 dev_hold(dev); 664 rcu_read_unlock(); 665 return dev; 666 } 667 EXPORT_SYMBOL(dev_get_by_name); 668 669 /** 670 * __dev_get_by_index - find a device by its ifindex 671 * @net: the applicable net namespace 672 * @ifindex: index of device 673 * 674 * Search for an interface by index. Returns %NULL if the device 675 * is not found or a pointer to the device. The device has not 676 * had its reference counter increased so the caller must be careful 677 * about locking. The caller must hold either the RTNL semaphore 678 * or @dev_base_lock. 679 */ 680 681 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 682 { 683 struct hlist_node *p; 684 struct net_device *dev; 685 struct hlist_head *head = dev_index_hash(net, ifindex); 686 687 hlist_for_each_entry(dev, p, head, index_hlist) 688 if (dev->ifindex == ifindex) 689 return dev; 690 691 return NULL; 692 } 693 EXPORT_SYMBOL(__dev_get_by_index); 694 695 /** 696 * dev_get_by_index_rcu - find a device by its ifindex 697 * @net: the applicable net namespace 698 * @ifindex: index of device 699 * 700 * Search for an interface by index. Returns %NULL if the device 701 * is not found or a pointer to the device. The device has not 702 * had its reference counter increased so the caller must be careful 703 * about locking. The caller must hold RCU lock. 704 */ 705 706 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 707 { 708 struct hlist_node *p; 709 struct net_device *dev; 710 struct hlist_head *head = dev_index_hash(net, ifindex); 711 712 hlist_for_each_entry_rcu(dev, p, head, index_hlist) 713 if (dev->ifindex == ifindex) 714 return dev; 715 716 return NULL; 717 } 718 EXPORT_SYMBOL(dev_get_by_index_rcu); 719 720 721 /** 722 * dev_get_by_index - find a device by its ifindex 723 * @net: the applicable net namespace 724 * @ifindex: index of device 725 * 726 * Search for an interface by index. Returns NULL if the device 727 * is not found or a pointer to the device. The device returned has 728 * had a reference added and the pointer is safe until the user calls 729 * dev_put to indicate they have finished with it. 730 */ 731 732 struct net_device *dev_get_by_index(struct net *net, int ifindex) 733 { 734 struct net_device *dev; 735 736 rcu_read_lock(); 737 dev = dev_get_by_index_rcu(net, ifindex); 738 if (dev) 739 dev_hold(dev); 740 rcu_read_unlock(); 741 return dev; 742 } 743 EXPORT_SYMBOL(dev_get_by_index); 744 745 /** 746 * dev_getbyhwaddr_rcu - find a device by its hardware address 747 * @net: the applicable net namespace 748 * @type: media type of device 749 * @ha: hardware address 750 * 751 * Search for an interface by MAC address. Returns NULL if the device 752 * is not found or a pointer to the device. 753 * The caller must hold RCU or RTNL. 754 * The returned device has not had its ref count increased 755 * and the caller must therefore be careful about locking 756 * 757 */ 758 759 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 760 const char *ha) 761 { 762 struct net_device *dev; 763 764 for_each_netdev_rcu(net, dev) 765 if (dev->type == type && 766 !memcmp(dev->dev_addr, ha, dev->addr_len)) 767 return dev; 768 769 return NULL; 770 } 771 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 772 773 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 774 { 775 struct net_device *dev; 776 777 ASSERT_RTNL(); 778 for_each_netdev(net, dev) 779 if (dev->type == type) 780 return dev; 781 782 return NULL; 783 } 784 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 785 786 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 787 { 788 struct net_device *dev, *ret = NULL; 789 790 rcu_read_lock(); 791 for_each_netdev_rcu(net, dev) 792 if (dev->type == type) { 793 dev_hold(dev); 794 ret = dev; 795 break; 796 } 797 rcu_read_unlock(); 798 return ret; 799 } 800 EXPORT_SYMBOL(dev_getfirstbyhwtype); 801 802 /** 803 * dev_get_by_flags_rcu - find any device with given flags 804 * @net: the applicable net namespace 805 * @if_flags: IFF_* values 806 * @mask: bitmask of bits in if_flags to check 807 * 808 * Search for any interface with the given flags. Returns NULL if a device 809 * is not found or a pointer to the device. Must be called inside 810 * rcu_read_lock(), and result refcount is unchanged. 811 */ 812 813 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags, 814 unsigned short mask) 815 { 816 struct net_device *dev, *ret; 817 818 ret = NULL; 819 for_each_netdev_rcu(net, dev) { 820 if (((dev->flags ^ if_flags) & mask) == 0) { 821 ret = dev; 822 break; 823 } 824 } 825 return ret; 826 } 827 EXPORT_SYMBOL(dev_get_by_flags_rcu); 828 829 /** 830 * dev_valid_name - check if name is okay for network device 831 * @name: name string 832 * 833 * Network device names need to be valid file names to 834 * to allow sysfs to work. We also disallow any kind of 835 * whitespace. 836 */ 837 int dev_valid_name(const char *name) 838 { 839 if (*name == '\0') 840 return 0; 841 if (strlen(name) >= IFNAMSIZ) 842 return 0; 843 if (!strcmp(name, ".") || !strcmp(name, "..")) 844 return 0; 845 846 while (*name) { 847 if (*name == '/' || isspace(*name)) 848 return 0; 849 name++; 850 } 851 return 1; 852 } 853 EXPORT_SYMBOL(dev_valid_name); 854 855 /** 856 * __dev_alloc_name - allocate a name for a device 857 * @net: network namespace to allocate the device name in 858 * @name: name format string 859 * @buf: scratch buffer and result name string 860 * 861 * Passed a format string - eg "lt%d" it will try and find a suitable 862 * id. It scans list of devices to build up a free map, then chooses 863 * the first empty slot. The caller must hold the dev_base or rtnl lock 864 * while allocating the name and adding the device in order to avoid 865 * duplicates. 866 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 867 * Returns the number of the unit assigned or a negative errno code. 868 */ 869 870 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 871 { 872 int i = 0; 873 const char *p; 874 const int max_netdevices = 8*PAGE_SIZE; 875 unsigned long *inuse; 876 struct net_device *d; 877 878 p = strnchr(name, IFNAMSIZ-1, '%'); 879 if (p) { 880 /* 881 * Verify the string as this thing may have come from 882 * the user. There must be either one "%d" and no other "%" 883 * characters. 884 */ 885 if (p[1] != 'd' || strchr(p + 2, '%')) 886 return -EINVAL; 887 888 /* Use one page as a bit array of possible slots */ 889 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 890 if (!inuse) 891 return -ENOMEM; 892 893 for_each_netdev(net, d) { 894 if (!sscanf(d->name, name, &i)) 895 continue; 896 if (i < 0 || i >= max_netdevices) 897 continue; 898 899 /* avoid cases where sscanf is not exact inverse of printf */ 900 snprintf(buf, IFNAMSIZ, name, i); 901 if (!strncmp(buf, d->name, IFNAMSIZ)) 902 set_bit(i, inuse); 903 } 904 905 i = find_first_zero_bit(inuse, max_netdevices); 906 free_page((unsigned long) inuse); 907 } 908 909 if (buf != name) 910 snprintf(buf, IFNAMSIZ, name, i); 911 if (!__dev_get_by_name(net, buf)) 912 return i; 913 914 /* It is possible to run out of possible slots 915 * when the name is long and there isn't enough space left 916 * for the digits, or if all bits are used. 917 */ 918 return -ENFILE; 919 } 920 921 /** 922 * dev_alloc_name - allocate a name for a device 923 * @dev: device 924 * @name: name format string 925 * 926 * Passed a format string - eg "lt%d" it will try and find a suitable 927 * id. It scans list of devices to build up a free map, then chooses 928 * the first empty slot. The caller must hold the dev_base or rtnl lock 929 * while allocating the name and adding the device in order to avoid 930 * duplicates. 931 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 932 * Returns the number of the unit assigned or a negative errno code. 933 */ 934 935 int dev_alloc_name(struct net_device *dev, const char *name) 936 { 937 char buf[IFNAMSIZ]; 938 struct net *net; 939 int ret; 940 941 BUG_ON(!dev_net(dev)); 942 net = dev_net(dev); 943 ret = __dev_alloc_name(net, name, buf); 944 if (ret >= 0) 945 strlcpy(dev->name, buf, IFNAMSIZ); 946 return ret; 947 } 948 EXPORT_SYMBOL(dev_alloc_name); 949 950 static int dev_get_valid_name(struct net_device *dev, const char *name, bool fmt) 951 { 952 struct net *net; 953 954 BUG_ON(!dev_net(dev)); 955 net = dev_net(dev); 956 957 if (!dev_valid_name(name)) 958 return -EINVAL; 959 960 if (fmt && strchr(name, '%')) 961 return dev_alloc_name(dev, name); 962 else if (__dev_get_by_name(net, name)) 963 return -EEXIST; 964 else if (dev->name != name) 965 strlcpy(dev->name, name, IFNAMSIZ); 966 967 return 0; 968 } 969 970 /** 971 * dev_change_name - change name of a device 972 * @dev: device 973 * @newname: name (or format string) must be at least IFNAMSIZ 974 * 975 * Change name of a device, can pass format strings "eth%d". 976 * for wildcarding. 977 */ 978 int dev_change_name(struct net_device *dev, const char *newname) 979 { 980 char oldname[IFNAMSIZ]; 981 int err = 0; 982 int ret; 983 struct net *net; 984 985 ASSERT_RTNL(); 986 BUG_ON(!dev_net(dev)); 987 988 net = dev_net(dev); 989 if (dev->flags & IFF_UP) 990 return -EBUSY; 991 992 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) 993 return 0; 994 995 memcpy(oldname, dev->name, IFNAMSIZ); 996 997 err = dev_get_valid_name(dev, newname, 1); 998 if (err < 0) 999 return err; 1000 1001 rollback: 1002 ret = device_rename(&dev->dev, dev->name); 1003 if (ret) { 1004 memcpy(dev->name, oldname, IFNAMSIZ); 1005 return ret; 1006 } 1007 1008 write_lock_bh(&dev_base_lock); 1009 hlist_del(&dev->name_hlist); 1010 write_unlock_bh(&dev_base_lock); 1011 1012 synchronize_rcu(); 1013 1014 write_lock_bh(&dev_base_lock); 1015 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1016 write_unlock_bh(&dev_base_lock); 1017 1018 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1019 ret = notifier_to_errno(ret); 1020 1021 if (ret) { 1022 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1023 if (err >= 0) { 1024 err = ret; 1025 memcpy(dev->name, oldname, IFNAMSIZ); 1026 goto rollback; 1027 } else { 1028 printk(KERN_ERR 1029 "%s: name change rollback failed: %d.\n", 1030 dev->name, ret); 1031 } 1032 } 1033 1034 return err; 1035 } 1036 1037 /** 1038 * dev_set_alias - change ifalias of a device 1039 * @dev: device 1040 * @alias: name up to IFALIASZ 1041 * @len: limit of bytes to copy from info 1042 * 1043 * Set ifalias for a device, 1044 */ 1045 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1046 { 1047 ASSERT_RTNL(); 1048 1049 if (len >= IFALIASZ) 1050 return -EINVAL; 1051 1052 if (!len) { 1053 if (dev->ifalias) { 1054 kfree(dev->ifalias); 1055 dev->ifalias = NULL; 1056 } 1057 return 0; 1058 } 1059 1060 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL); 1061 if (!dev->ifalias) 1062 return -ENOMEM; 1063 1064 strlcpy(dev->ifalias, alias, len+1); 1065 return len; 1066 } 1067 1068 1069 /** 1070 * netdev_features_change - device changes features 1071 * @dev: device to cause notification 1072 * 1073 * Called to indicate a device has changed features. 1074 */ 1075 void netdev_features_change(struct net_device *dev) 1076 { 1077 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1078 } 1079 EXPORT_SYMBOL(netdev_features_change); 1080 1081 /** 1082 * netdev_state_change - device changes state 1083 * @dev: device to cause notification 1084 * 1085 * Called to indicate a device has changed state. This function calls 1086 * the notifier chains for netdev_chain and sends a NEWLINK message 1087 * to the routing socket. 1088 */ 1089 void netdev_state_change(struct net_device *dev) 1090 { 1091 if (dev->flags & IFF_UP) { 1092 call_netdevice_notifiers(NETDEV_CHANGE, dev); 1093 rtmsg_ifinfo(RTM_NEWLINK, dev, 0); 1094 } 1095 } 1096 EXPORT_SYMBOL(netdev_state_change); 1097 1098 int netdev_bonding_change(struct net_device *dev, unsigned long event) 1099 { 1100 return call_netdevice_notifiers(event, dev); 1101 } 1102 EXPORT_SYMBOL(netdev_bonding_change); 1103 1104 /** 1105 * dev_load - load a network module 1106 * @net: the applicable net namespace 1107 * @name: name of interface 1108 * 1109 * If a network interface is not present and the process has suitable 1110 * privileges this function loads the module. If module loading is not 1111 * available in this kernel then it becomes a nop. 1112 */ 1113 1114 void dev_load(struct net *net, const char *name) 1115 { 1116 struct net_device *dev; 1117 1118 rcu_read_lock(); 1119 dev = dev_get_by_name_rcu(net, name); 1120 rcu_read_unlock(); 1121 1122 if (!dev && capable(CAP_NET_ADMIN)) 1123 request_module("%s", name); 1124 } 1125 EXPORT_SYMBOL(dev_load); 1126 1127 static int __dev_open(struct net_device *dev) 1128 { 1129 const struct net_device_ops *ops = dev->netdev_ops; 1130 int ret; 1131 1132 ASSERT_RTNL(); 1133 1134 /* 1135 * Is it even present? 1136 */ 1137 if (!netif_device_present(dev)) 1138 return -ENODEV; 1139 1140 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1141 ret = notifier_to_errno(ret); 1142 if (ret) 1143 return ret; 1144 1145 /* 1146 * Call device private open method 1147 */ 1148 set_bit(__LINK_STATE_START, &dev->state); 1149 1150 if (ops->ndo_validate_addr) 1151 ret = ops->ndo_validate_addr(dev); 1152 1153 if (!ret && ops->ndo_open) 1154 ret = ops->ndo_open(dev); 1155 1156 /* 1157 * If it went open OK then: 1158 */ 1159 1160 if (ret) 1161 clear_bit(__LINK_STATE_START, &dev->state); 1162 else { 1163 /* 1164 * Set the flags. 1165 */ 1166 dev->flags |= IFF_UP; 1167 1168 /* 1169 * Enable NET_DMA 1170 */ 1171 net_dmaengine_get(); 1172 1173 /* 1174 * Initialize multicasting status 1175 */ 1176 dev_set_rx_mode(dev); 1177 1178 /* 1179 * Wakeup transmit queue engine 1180 */ 1181 dev_activate(dev); 1182 } 1183 1184 return ret; 1185 } 1186 1187 /** 1188 * dev_open - prepare an interface for use. 1189 * @dev: device to open 1190 * 1191 * Takes a device from down to up state. The device's private open 1192 * function is invoked and then the multicast lists are loaded. Finally 1193 * the device is moved into the up state and a %NETDEV_UP message is 1194 * sent to the netdev notifier chain. 1195 * 1196 * Calling this function on an active interface is a nop. On a failure 1197 * a negative errno code is returned. 1198 */ 1199 int dev_open(struct net_device *dev) 1200 { 1201 int ret; 1202 1203 /* 1204 * Is it already up? 1205 */ 1206 if (dev->flags & IFF_UP) 1207 return 0; 1208 1209 /* 1210 * Open device 1211 */ 1212 ret = __dev_open(dev); 1213 if (ret < 0) 1214 return ret; 1215 1216 /* 1217 * ... and announce new interface. 1218 */ 1219 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING); 1220 call_netdevice_notifiers(NETDEV_UP, dev); 1221 1222 return ret; 1223 } 1224 EXPORT_SYMBOL(dev_open); 1225 1226 static int __dev_close_many(struct list_head *head) 1227 { 1228 struct net_device *dev; 1229 1230 ASSERT_RTNL(); 1231 might_sleep(); 1232 1233 list_for_each_entry(dev, head, unreg_list) { 1234 /* 1235 * Tell people we are going down, so that they can 1236 * prepare to death, when device is still operating. 1237 */ 1238 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1239 1240 clear_bit(__LINK_STATE_START, &dev->state); 1241 1242 /* Synchronize to scheduled poll. We cannot touch poll list, it 1243 * can be even on different cpu. So just clear netif_running(). 1244 * 1245 * dev->stop() will invoke napi_disable() on all of it's 1246 * napi_struct instances on this device. 1247 */ 1248 smp_mb__after_clear_bit(); /* Commit netif_running(). */ 1249 } 1250 1251 dev_deactivate_many(head); 1252 1253 list_for_each_entry(dev, head, unreg_list) { 1254 const struct net_device_ops *ops = dev->netdev_ops; 1255 1256 /* 1257 * Call the device specific close. This cannot fail. 1258 * Only if device is UP 1259 * 1260 * We allow it to be called even after a DETACH hot-plug 1261 * event. 1262 */ 1263 if (ops->ndo_stop) 1264 ops->ndo_stop(dev); 1265 1266 /* 1267 * Device is now down. 1268 */ 1269 1270 dev->flags &= ~IFF_UP; 1271 1272 /* 1273 * Shutdown NET_DMA 1274 */ 1275 net_dmaengine_put(); 1276 } 1277 1278 return 0; 1279 } 1280 1281 static int __dev_close(struct net_device *dev) 1282 { 1283 LIST_HEAD(single); 1284 1285 list_add(&dev->unreg_list, &single); 1286 return __dev_close_many(&single); 1287 } 1288 1289 int dev_close_many(struct list_head *head) 1290 { 1291 struct net_device *dev, *tmp; 1292 LIST_HEAD(tmp_list); 1293 1294 list_for_each_entry_safe(dev, tmp, head, unreg_list) 1295 if (!(dev->flags & IFF_UP)) 1296 list_move(&dev->unreg_list, &tmp_list); 1297 1298 __dev_close_many(head); 1299 1300 /* 1301 * Tell people we are down 1302 */ 1303 list_for_each_entry(dev, head, unreg_list) { 1304 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING); 1305 call_netdevice_notifiers(NETDEV_DOWN, dev); 1306 } 1307 1308 /* rollback_registered_many needs the complete original list */ 1309 list_splice(&tmp_list, head); 1310 return 0; 1311 } 1312 1313 /** 1314 * dev_close - shutdown an interface. 1315 * @dev: device to shutdown 1316 * 1317 * This function moves an active device into down state. A 1318 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1319 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1320 * chain. 1321 */ 1322 int dev_close(struct net_device *dev) 1323 { 1324 LIST_HEAD(single); 1325 1326 list_add(&dev->unreg_list, &single); 1327 dev_close_many(&single); 1328 1329 return 0; 1330 } 1331 EXPORT_SYMBOL(dev_close); 1332 1333 1334 /** 1335 * dev_disable_lro - disable Large Receive Offload on a device 1336 * @dev: device 1337 * 1338 * Disable Large Receive Offload (LRO) on a net device. Must be 1339 * called under RTNL. This is needed if received packets may be 1340 * forwarded to another interface. 1341 */ 1342 void dev_disable_lro(struct net_device *dev) 1343 { 1344 if (dev->ethtool_ops && dev->ethtool_ops->get_flags && 1345 dev->ethtool_ops->set_flags) { 1346 u32 flags = dev->ethtool_ops->get_flags(dev); 1347 if (flags & ETH_FLAG_LRO) { 1348 flags &= ~ETH_FLAG_LRO; 1349 dev->ethtool_ops->set_flags(dev, flags); 1350 } 1351 } 1352 WARN_ON(dev->features & NETIF_F_LRO); 1353 } 1354 EXPORT_SYMBOL(dev_disable_lro); 1355 1356 1357 static int dev_boot_phase = 1; 1358 1359 /* 1360 * Device change register/unregister. These are not inline or static 1361 * as we export them to the world. 1362 */ 1363 1364 /** 1365 * register_netdevice_notifier - register a network notifier block 1366 * @nb: notifier 1367 * 1368 * Register a notifier to be called when network device events occur. 1369 * The notifier passed is linked into the kernel structures and must 1370 * not be reused until it has been unregistered. A negative errno code 1371 * is returned on a failure. 1372 * 1373 * When registered all registration and up events are replayed 1374 * to the new notifier to allow device to have a race free 1375 * view of the network device list. 1376 */ 1377 1378 int register_netdevice_notifier(struct notifier_block *nb) 1379 { 1380 struct net_device *dev; 1381 struct net_device *last; 1382 struct net *net; 1383 int err; 1384 1385 rtnl_lock(); 1386 err = raw_notifier_chain_register(&netdev_chain, nb); 1387 if (err) 1388 goto unlock; 1389 if (dev_boot_phase) 1390 goto unlock; 1391 for_each_net(net) { 1392 for_each_netdev(net, dev) { 1393 err = nb->notifier_call(nb, NETDEV_REGISTER, dev); 1394 err = notifier_to_errno(err); 1395 if (err) 1396 goto rollback; 1397 1398 if (!(dev->flags & IFF_UP)) 1399 continue; 1400 1401 nb->notifier_call(nb, NETDEV_UP, dev); 1402 } 1403 } 1404 1405 unlock: 1406 rtnl_unlock(); 1407 return err; 1408 1409 rollback: 1410 last = dev; 1411 for_each_net(net) { 1412 for_each_netdev(net, dev) { 1413 if (dev == last) 1414 break; 1415 1416 if (dev->flags & IFF_UP) { 1417 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev); 1418 nb->notifier_call(nb, NETDEV_DOWN, dev); 1419 } 1420 nb->notifier_call(nb, NETDEV_UNREGISTER, dev); 1421 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev); 1422 } 1423 } 1424 1425 raw_notifier_chain_unregister(&netdev_chain, nb); 1426 goto unlock; 1427 } 1428 EXPORT_SYMBOL(register_netdevice_notifier); 1429 1430 /** 1431 * unregister_netdevice_notifier - unregister a network notifier block 1432 * @nb: notifier 1433 * 1434 * Unregister a notifier previously registered by 1435 * register_netdevice_notifier(). The notifier is unlinked into the 1436 * kernel structures and may then be reused. A negative errno code 1437 * is returned on a failure. 1438 */ 1439 1440 int unregister_netdevice_notifier(struct notifier_block *nb) 1441 { 1442 int err; 1443 1444 rtnl_lock(); 1445 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1446 rtnl_unlock(); 1447 return err; 1448 } 1449 EXPORT_SYMBOL(unregister_netdevice_notifier); 1450 1451 /** 1452 * call_netdevice_notifiers - call all network notifier blocks 1453 * @val: value passed unmodified to notifier function 1454 * @dev: net_device pointer passed unmodified to notifier function 1455 * 1456 * Call all network notifier blocks. Parameters and return value 1457 * are as for raw_notifier_call_chain(). 1458 */ 1459 1460 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1461 { 1462 ASSERT_RTNL(); 1463 return raw_notifier_call_chain(&netdev_chain, val, dev); 1464 } 1465 1466 /* When > 0 there are consumers of rx skb time stamps */ 1467 static atomic_t netstamp_needed = ATOMIC_INIT(0); 1468 1469 void net_enable_timestamp(void) 1470 { 1471 atomic_inc(&netstamp_needed); 1472 } 1473 EXPORT_SYMBOL(net_enable_timestamp); 1474 1475 void net_disable_timestamp(void) 1476 { 1477 atomic_dec(&netstamp_needed); 1478 } 1479 EXPORT_SYMBOL(net_disable_timestamp); 1480 1481 static inline void net_timestamp_set(struct sk_buff *skb) 1482 { 1483 if (atomic_read(&netstamp_needed)) 1484 __net_timestamp(skb); 1485 else 1486 skb->tstamp.tv64 = 0; 1487 } 1488 1489 static inline void net_timestamp_check(struct sk_buff *skb) 1490 { 1491 if (!skb->tstamp.tv64 && atomic_read(&netstamp_needed)) 1492 __net_timestamp(skb); 1493 } 1494 1495 /** 1496 * dev_forward_skb - loopback an skb to another netif 1497 * 1498 * @dev: destination network device 1499 * @skb: buffer to forward 1500 * 1501 * return values: 1502 * NET_RX_SUCCESS (no congestion) 1503 * NET_RX_DROP (packet was dropped, but freed) 1504 * 1505 * dev_forward_skb can be used for injecting an skb from the 1506 * start_xmit function of one device into the receive queue 1507 * of another device. 1508 * 1509 * The receiving device may be in another namespace, so 1510 * we have to clear all information in the skb that could 1511 * impact namespace isolation. 1512 */ 1513 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1514 { 1515 skb_orphan(skb); 1516 nf_reset(skb); 1517 1518 if (unlikely(!(dev->flags & IFF_UP) || 1519 (skb->len > (dev->mtu + dev->hard_header_len + VLAN_HLEN)))) { 1520 atomic_long_inc(&dev->rx_dropped); 1521 kfree_skb(skb); 1522 return NET_RX_DROP; 1523 } 1524 skb_set_dev(skb, dev); 1525 skb->tstamp.tv64 = 0; 1526 skb->pkt_type = PACKET_HOST; 1527 skb->protocol = eth_type_trans(skb, dev); 1528 return netif_rx(skb); 1529 } 1530 EXPORT_SYMBOL_GPL(dev_forward_skb); 1531 1532 static inline int deliver_skb(struct sk_buff *skb, 1533 struct packet_type *pt_prev, 1534 struct net_device *orig_dev) 1535 { 1536 atomic_inc(&skb->users); 1537 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1538 } 1539 1540 /* 1541 * Support routine. Sends outgoing frames to any network 1542 * taps currently in use. 1543 */ 1544 1545 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1546 { 1547 struct packet_type *ptype; 1548 struct sk_buff *skb2 = NULL; 1549 struct packet_type *pt_prev = NULL; 1550 1551 rcu_read_lock(); 1552 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1553 /* Never send packets back to the socket 1554 * they originated from - MvS (miquels@drinkel.ow.org) 1555 */ 1556 if ((ptype->dev == dev || !ptype->dev) && 1557 (ptype->af_packet_priv == NULL || 1558 (struct sock *)ptype->af_packet_priv != skb->sk)) { 1559 if (pt_prev) { 1560 deliver_skb(skb2, pt_prev, skb->dev); 1561 pt_prev = ptype; 1562 continue; 1563 } 1564 1565 skb2 = skb_clone(skb, GFP_ATOMIC); 1566 if (!skb2) 1567 break; 1568 1569 net_timestamp_set(skb2); 1570 1571 /* skb->nh should be correctly 1572 set by sender, so that the second statement is 1573 just protection against buggy protocols. 1574 */ 1575 skb_reset_mac_header(skb2); 1576 1577 if (skb_network_header(skb2) < skb2->data || 1578 skb2->network_header > skb2->tail) { 1579 if (net_ratelimit()) 1580 printk(KERN_CRIT "protocol %04x is " 1581 "buggy, dev %s\n", 1582 ntohs(skb2->protocol), 1583 dev->name); 1584 skb_reset_network_header(skb2); 1585 } 1586 1587 skb2->transport_header = skb2->network_header; 1588 skb2->pkt_type = PACKET_OUTGOING; 1589 pt_prev = ptype; 1590 } 1591 } 1592 if (pt_prev) 1593 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 1594 rcu_read_unlock(); 1595 } 1596 1597 /* 1598 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 1599 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed. 1600 */ 1601 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 1602 { 1603 int rc; 1604 1605 if (txq < 1 || txq > dev->num_tx_queues) 1606 return -EINVAL; 1607 1608 if (dev->reg_state == NETREG_REGISTERED) { 1609 ASSERT_RTNL(); 1610 1611 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 1612 txq); 1613 if (rc) 1614 return rc; 1615 1616 if (txq < dev->real_num_tx_queues) 1617 qdisc_reset_all_tx_gt(dev, txq); 1618 } 1619 1620 dev->real_num_tx_queues = txq; 1621 return 0; 1622 } 1623 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 1624 1625 #ifdef CONFIG_RPS 1626 /** 1627 * netif_set_real_num_rx_queues - set actual number of RX queues used 1628 * @dev: Network device 1629 * @rxq: Actual number of RX queues 1630 * 1631 * This must be called either with the rtnl_lock held or before 1632 * registration of the net device. Returns 0 on success, or a 1633 * negative error code. If called before registration, it always 1634 * succeeds. 1635 */ 1636 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 1637 { 1638 int rc; 1639 1640 if (rxq < 1 || rxq > dev->num_rx_queues) 1641 return -EINVAL; 1642 1643 if (dev->reg_state == NETREG_REGISTERED) { 1644 ASSERT_RTNL(); 1645 1646 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 1647 rxq); 1648 if (rc) 1649 return rc; 1650 } 1651 1652 dev->real_num_rx_queues = rxq; 1653 return 0; 1654 } 1655 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 1656 #endif 1657 1658 static inline void __netif_reschedule(struct Qdisc *q) 1659 { 1660 struct softnet_data *sd; 1661 unsigned long flags; 1662 1663 local_irq_save(flags); 1664 sd = &__get_cpu_var(softnet_data); 1665 q->next_sched = NULL; 1666 *sd->output_queue_tailp = q; 1667 sd->output_queue_tailp = &q->next_sched; 1668 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1669 local_irq_restore(flags); 1670 } 1671 1672 void __netif_schedule(struct Qdisc *q) 1673 { 1674 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 1675 __netif_reschedule(q); 1676 } 1677 EXPORT_SYMBOL(__netif_schedule); 1678 1679 void dev_kfree_skb_irq(struct sk_buff *skb) 1680 { 1681 if (atomic_dec_and_test(&skb->users)) { 1682 struct softnet_data *sd; 1683 unsigned long flags; 1684 1685 local_irq_save(flags); 1686 sd = &__get_cpu_var(softnet_data); 1687 skb->next = sd->completion_queue; 1688 sd->completion_queue = skb; 1689 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1690 local_irq_restore(flags); 1691 } 1692 } 1693 EXPORT_SYMBOL(dev_kfree_skb_irq); 1694 1695 void dev_kfree_skb_any(struct sk_buff *skb) 1696 { 1697 if (in_irq() || irqs_disabled()) 1698 dev_kfree_skb_irq(skb); 1699 else 1700 dev_kfree_skb(skb); 1701 } 1702 EXPORT_SYMBOL(dev_kfree_skb_any); 1703 1704 1705 /** 1706 * netif_device_detach - mark device as removed 1707 * @dev: network device 1708 * 1709 * Mark device as removed from system and therefore no longer available. 1710 */ 1711 void netif_device_detach(struct net_device *dev) 1712 { 1713 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 1714 netif_running(dev)) { 1715 netif_tx_stop_all_queues(dev); 1716 } 1717 } 1718 EXPORT_SYMBOL(netif_device_detach); 1719 1720 /** 1721 * netif_device_attach - mark device as attached 1722 * @dev: network device 1723 * 1724 * Mark device as attached from system and restart if needed. 1725 */ 1726 void netif_device_attach(struct net_device *dev) 1727 { 1728 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 1729 netif_running(dev)) { 1730 netif_tx_wake_all_queues(dev); 1731 __netdev_watchdog_up(dev); 1732 } 1733 } 1734 EXPORT_SYMBOL(netif_device_attach); 1735 1736 /** 1737 * skb_dev_set -- assign a new device to a buffer 1738 * @skb: buffer for the new device 1739 * @dev: network device 1740 * 1741 * If an skb is owned by a device already, we have to reset 1742 * all data private to the namespace a device belongs to 1743 * before assigning it a new device. 1744 */ 1745 #ifdef CONFIG_NET_NS 1746 void skb_set_dev(struct sk_buff *skb, struct net_device *dev) 1747 { 1748 skb_dst_drop(skb); 1749 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) { 1750 secpath_reset(skb); 1751 nf_reset(skb); 1752 skb_init_secmark(skb); 1753 skb->mark = 0; 1754 skb->priority = 0; 1755 skb->nf_trace = 0; 1756 skb->ipvs_property = 0; 1757 #ifdef CONFIG_NET_SCHED 1758 skb->tc_index = 0; 1759 #endif 1760 } 1761 skb->dev = dev; 1762 } 1763 EXPORT_SYMBOL(skb_set_dev); 1764 #endif /* CONFIG_NET_NS */ 1765 1766 /* 1767 * Invalidate hardware checksum when packet is to be mangled, and 1768 * complete checksum manually on outgoing path. 1769 */ 1770 int skb_checksum_help(struct sk_buff *skb) 1771 { 1772 __wsum csum; 1773 int ret = 0, offset; 1774 1775 if (skb->ip_summed == CHECKSUM_COMPLETE) 1776 goto out_set_summed; 1777 1778 if (unlikely(skb_shinfo(skb)->gso_size)) { 1779 /* Let GSO fix up the checksum. */ 1780 goto out_set_summed; 1781 } 1782 1783 offset = skb_checksum_start_offset(skb); 1784 BUG_ON(offset >= skb_headlen(skb)); 1785 csum = skb_checksum(skb, offset, skb->len - offset, 0); 1786 1787 offset += skb->csum_offset; 1788 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 1789 1790 if (skb_cloned(skb) && 1791 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 1792 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 1793 if (ret) 1794 goto out; 1795 } 1796 1797 *(__sum16 *)(skb->data + offset) = csum_fold(csum); 1798 out_set_summed: 1799 skb->ip_summed = CHECKSUM_NONE; 1800 out: 1801 return ret; 1802 } 1803 EXPORT_SYMBOL(skb_checksum_help); 1804 1805 /** 1806 * skb_gso_segment - Perform segmentation on skb. 1807 * @skb: buffer to segment 1808 * @features: features for the output path (see dev->features) 1809 * 1810 * This function segments the given skb and returns a list of segments. 1811 * 1812 * It may return NULL if the skb requires no segmentation. This is 1813 * only possible when GSO is used for verifying header integrity. 1814 */ 1815 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features) 1816 { 1817 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 1818 struct packet_type *ptype; 1819 __be16 type = skb->protocol; 1820 int vlan_depth = ETH_HLEN; 1821 int err; 1822 1823 while (type == htons(ETH_P_8021Q)) { 1824 struct vlan_hdr *vh; 1825 1826 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN))) 1827 return ERR_PTR(-EINVAL); 1828 1829 vh = (struct vlan_hdr *)(skb->data + vlan_depth); 1830 type = vh->h_vlan_encapsulated_proto; 1831 vlan_depth += VLAN_HLEN; 1832 } 1833 1834 skb_reset_mac_header(skb); 1835 skb->mac_len = skb->network_header - skb->mac_header; 1836 __skb_pull(skb, skb->mac_len); 1837 1838 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1839 struct net_device *dev = skb->dev; 1840 struct ethtool_drvinfo info = {}; 1841 1842 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo) 1843 dev->ethtool_ops->get_drvinfo(dev, &info); 1844 1845 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d ip_summed=%d\n", 1846 info.driver, dev ? dev->features : 0L, 1847 skb->sk ? skb->sk->sk_route_caps : 0L, 1848 skb->len, skb->data_len, skb->ip_summed); 1849 1850 if (skb_header_cloned(skb) && 1851 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))) 1852 return ERR_PTR(err); 1853 } 1854 1855 rcu_read_lock(); 1856 list_for_each_entry_rcu(ptype, 1857 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 1858 if (ptype->type == type && !ptype->dev && ptype->gso_segment) { 1859 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1860 err = ptype->gso_send_check(skb); 1861 segs = ERR_PTR(err); 1862 if (err || skb_gso_ok(skb, features)) 1863 break; 1864 __skb_push(skb, (skb->data - 1865 skb_network_header(skb))); 1866 } 1867 segs = ptype->gso_segment(skb, features); 1868 break; 1869 } 1870 } 1871 rcu_read_unlock(); 1872 1873 __skb_push(skb, skb->data - skb_mac_header(skb)); 1874 1875 return segs; 1876 } 1877 EXPORT_SYMBOL(skb_gso_segment); 1878 1879 /* Take action when hardware reception checksum errors are detected. */ 1880 #ifdef CONFIG_BUG 1881 void netdev_rx_csum_fault(struct net_device *dev) 1882 { 1883 if (net_ratelimit()) { 1884 printk(KERN_ERR "%s: hw csum failure.\n", 1885 dev ? dev->name : "<unknown>"); 1886 dump_stack(); 1887 } 1888 } 1889 EXPORT_SYMBOL(netdev_rx_csum_fault); 1890 #endif 1891 1892 /* Actually, we should eliminate this check as soon as we know, that: 1893 * 1. IOMMU is present and allows to map all the memory. 1894 * 2. No high memory really exists on this machine. 1895 */ 1896 1897 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 1898 { 1899 #ifdef CONFIG_HIGHMEM 1900 int i; 1901 if (!(dev->features & NETIF_F_HIGHDMA)) { 1902 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1903 if (PageHighMem(skb_shinfo(skb)->frags[i].page)) 1904 return 1; 1905 } 1906 1907 if (PCI_DMA_BUS_IS_PHYS) { 1908 struct device *pdev = dev->dev.parent; 1909 1910 if (!pdev) 1911 return 0; 1912 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1913 dma_addr_t addr = page_to_phys(skb_shinfo(skb)->frags[i].page); 1914 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask) 1915 return 1; 1916 } 1917 } 1918 #endif 1919 return 0; 1920 } 1921 1922 struct dev_gso_cb { 1923 void (*destructor)(struct sk_buff *skb); 1924 }; 1925 1926 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb) 1927 1928 static void dev_gso_skb_destructor(struct sk_buff *skb) 1929 { 1930 struct dev_gso_cb *cb; 1931 1932 do { 1933 struct sk_buff *nskb = skb->next; 1934 1935 skb->next = nskb->next; 1936 nskb->next = NULL; 1937 kfree_skb(nskb); 1938 } while (skb->next); 1939 1940 cb = DEV_GSO_CB(skb); 1941 if (cb->destructor) 1942 cb->destructor(skb); 1943 } 1944 1945 /** 1946 * dev_gso_segment - Perform emulated hardware segmentation on skb. 1947 * @skb: buffer to segment 1948 * @features: device features as applicable to this skb 1949 * 1950 * This function segments the given skb and stores the list of segments 1951 * in skb->next. 1952 */ 1953 static int dev_gso_segment(struct sk_buff *skb, int features) 1954 { 1955 struct sk_buff *segs; 1956 1957 segs = skb_gso_segment(skb, features); 1958 1959 /* Verifying header integrity only. */ 1960 if (!segs) 1961 return 0; 1962 1963 if (IS_ERR(segs)) 1964 return PTR_ERR(segs); 1965 1966 skb->next = segs; 1967 DEV_GSO_CB(skb)->destructor = skb->destructor; 1968 skb->destructor = dev_gso_skb_destructor; 1969 1970 return 0; 1971 } 1972 1973 /* 1974 * Try to orphan skb early, right before transmission by the device. 1975 * We cannot orphan skb if tx timestamp is requested or the sk-reference 1976 * is needed on driver level for other reasons, e.g. see net/can/raw.c 1977 */ 1978 static inline void skb_orphan_try(struct sk_buff *skb) 1979 { 1980 struct sock *sk = skb->sk; 1981 1982 if (sk && !skb_shinfo(skb)->tx_flags) { 1983 /* skb_tx_hash() wont be able to get sk. 1984 * We copy sk_hash into skb->rxhash 1985 */ 1986 if (!skb->rxhash) 1987 skb->rxhash = sk->sk_hash; 1988 skb_orphan(skb); 1989 } 1990 } 1991 1992 static bool can_checksum_protocol(unsigned long features, __be16 protocol) 1993 { 1994 return ((features & NETIF_F_GEN_CSUM) || 1995 ((features & NETIF_F_V4_CSUM) && 1996 protocol == htons(ETH_P_IP)) || 1997 ((features & NETIF_F_V6_CSUM) && 1998 protocol == htons(ETH_P_IPV6)) || 1999 ((features & NETIF_F_FCOE_CRC) && 2000 protocol == htons(ETH_P_FCOE))); 2001 } 2002 2003 static int harmonize_features(struct sk_buff *skb, __be16 protocol, int features) 2004 { 2005 if (!can_checksum_protocol(features, protocol)) { 2006 features &= ~NETIF_F_ALL_CSUM; 2007 features &= ~NETIF_F_SG; 2008 } else if (illegal_highdma(skb->dev, skb)) { 2009 features &= ~NETIF_F_SG; 2010 } 2011 2012 return features; 2013 } 2014 2015 int netif_skb_features(struct sk_buff *skb) 2016 { 2017 __be16 protocol = skb->protocol; 2018 int features = skb->dev->features; 2019 2020 if (protocol == htons(ETH_P_8021Q)) { 2021 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data; 2022 protocol = veh->h_vlan_encapsulated_proto; 2023 } else if (!vlan_tx_tag_present(skb)) { 2024 return harmonize_features(skb, protocol, features); 2025 } 2026 2027 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX); 2028 2029 if (protocol != htons(ETH_P_8021Q)) { 2030 return harmonize_features(skb, protocol, features); 2031 } else { 2032 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST | 2033 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX; 2034 return harmonize_features(skb, protocol, features); 2035 } 2036 } 2037 EXPORT_SYMBOL(netif_skb_features); 2038 2039 /* 2040 * Returns true if either: 2041 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 2042 * 2. skb is fragmented and the device does not support SG, or if 2043 * at least one of fragments is in highmem and device does not 2044 * support DMA from it. 2045 */ 2046 static inline int skb_needs_linearize(struct sk_buff *skb, 2047 int features) 2048 { 2049 return skb_is_nonlinear(skb) && 2050 ((skb_has_frag_list(skb) && 2051 !(features & NETIF_F_FRAGLIST)) || 2052 (skb_shinfo(skb)->nr_frags && 2053 !(features & NETIF_F_SG))); 2054 } 2055 2056 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 2057 struct netdev_queue *txq) 2058 { 2059 const struct net_device_ops *ops = dev->netdev_ops; 2060 int rc = NETDEV_TX_OK; 2061 2062 if (likely(!skb->next)) { 2063 int features; 2064 2065 /* 2066 * If device doesnt need skb->dst, release it right now while 2067 * its hot in this cpu cache 2068 */ 2069 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 2070 skb_dst_drop(skb); 2071 2072 if (!list_empty(&ptype_all)) 2073 dev_queue_xmit_nit(skb, dev); 2074 2075 skb_orphan_try(skb); 2076 2077 features = netif_skb_features(skb); 2078 2079 if (vlan_tx_tag_present(skb) && 2080 !(features & NETIF_F_HW_VLAN_TX)) { 2081 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb)); 2082 if (unlikely(!skb)) 2083 goto out; 2084 2085 skb->vlan_tci = 0; 2086 } 2087 2088 if (netif_needs_gso(skb, features)) { 2089 if (unlikely(dev_gso_segment(skb, features))) 2090 goto out_kfree_skb; 2091 if (skb->next) 2092 goto gso; 2093 } else { 2094 if (skb_needs_linearize(skb, features) && 2095 __skb_linearize(skb)) 2096 goto out_kfree_skb; 2097 2098 /* If packet is not checksummed and device does not 2099 * support checksumming for this protocol, complete 2100 * checksumming here. 2101 */ 2102 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2103 skb_set_transport_header(skb, 2104 skb_checksum_start_offset(skb)); 2105 if (!(features & NETIF_F_ALL_CSUM) && 2106 skb_checksum_help(skb)) 2107 goto out_kfree_skb; 2108 } 2109 } 2110 2111 rc = ops->ndo_start_xmit(skb, dev); 2112 trace_net_dev_xmit(skb, rc); 2113 if (rc == NETDEV_TX_OK) 2114 txq_trans_update(txq); 2115 return rc; 2116 } 2117 2118 gso: 2119 do { 2120 struct sk_buff *nskb = skb->next; 2121 2122 skb->next = nskb->next; 2123 nskb->next = NULL; 2124 2125 /* 2126 * If device doesnt need nskb->dst, release it right now while 2127 * its hot in this cpu cache 2128 */ 2129 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 2130 skb_dst_drop(nskb); 2131 2132 rc = ops->ndo_start_xmit(nskb, dev); 2133 trace_net_dev_xmit(nskb, rc); 2134 if (unlikely(rc != NETDEV_TX_OK)) { 2135 if (rc & ~NETDEV_TX_MASK) 2136 goto out_kfree_gso_skb; 2137 nskb->next = skb->next; 2138 skb->next = nskb; 2139 return rc; 2140 } 2141 txq_trans_update(txq); 2142 if (unlikely(netif_tx_queue_stopped(txq) && skb->next)) 2143 return NETDEV_TX_BUSY; 2144 } while (skb->next); 2145 2146 out_kfree_gso_skb: 2147 if (likely(skb->next == NULL)) 2148 skb->destructor = DEV_GSO_CB(skb)->destructor; 2149 out_kfree_skb: 2150 kfree_skb(skb); 2151 out: 2152 return rc; 2153 } 2154 2155 static u32 hashrnd __read_mostly; 2156 2157 /* 2158 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 2159 * to be used as a distribution range. 2160 */ 2161 u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb, 2162 unsigned int num_tx_queues) 2163 { 2164 u32 hash; 2165 2166 if (skb_rx_queue_recorded(skb)) { 2167 hash = skb_get_rx_queue(skb); 2168 while (unlikely(hash >= num_tx_queues)) 2169 hash -= num_tx_queues; 2170 return hash; 2171 } 2172 2173 if (skb->sk && skb->sk->sk_hash) 2174 hash = skb->sk->sk_hash; 2175 else 2176 hash = (__force u16) skb->protocol ^ skb->rxhash; 2177 hash = jhash_1word(hash, hashrnd); 2178 2179 return (u16) (((u64) hash * num_tx_queues) >> 32); 2180 } 2181 EXPORT_SYMBOL(__skb_tx_hash); 2182 2183 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index) 2184 { 2185 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 2186 if (net_ratelimit()) { 2187 pr_warning("%s selects TX queue %d, but " 2188 "real number of TX queues is %d\n", 2189 dev->name, queue_index, dev->real_num_tx_queues); 2190 } 2191 return 0; 2192 } 2193 return queue_index; 2194 } 2195 2196 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb) 2197 { 2198 #ifdef CONFIG_XPS 2199 struct xps_dev_maps *dev_maps; 2200 struct xps_map *map; 2201 int queue_index = -1; 2202 2203 rcu_read_lock(); 2204 dev_maps = rcu_dereference(dev->xps_maps); 2205 if (dev_maps) { 2206 map = rcu_dereference( 2207 dev_maps->cpu_map[raw_smp_processor_id()]); 2208 if (map) { 2209 if (map->len == 1) 2210 queue_index = map->queues[0]; 2211 else { 2212 u32 hash; 2213 if (skb->sk && skb->sk->sk_hash) 2214 hash = skb->sk->sk_hash; 2215 else 2216 hash = (__force u16) skb->protocol ^ 2217 skb->rxhash; 2218 hash = jhash_1word(hash, hashrnd); 2219 queue_index = map->queues[ 2220 ((u64)hash * map->len) >> 32]; 2221 } 2222 if (unlikely(queue_index >= dev->real_num_tx_queues)) 2223 queue_index = -1; 2224 } 2225 } 2226 rcu_read_unlock(); 2227 2228 return queue_index; 2229 #else 2230 return -1; 2231 #endif 2232 } 2233 2234 static struct netdev_queue *dev_pick_tx(struct net_device *dev, 2235 struct sk_buff *skb) 2236 { 2237 int queue_index; 2238 const struct net_device_ops *ops = dev->netdev_ops; 2239 2240 if (dev->real_num_tx_queues == 1) 2241 queue_index = 0; 2242 else if (ops->ndo_select_queue) { 2243 queue_index = ops->ndo_select_queue(dev, skb); 2244 queue_index = dev_cap_txqueue(dev, queue_index); 2245 } else { 2246 struct sock *sk = skb->sk; 2247 queue_index = sk_tx_queue_get(sk); 2248 2249 if (queue_index < 0 || skb->ooo_okay || 2250 queue_index >= dev->real_num_tx_queues) { 2251 int old_index = queue_index; 2252 2253 queue_index = get_xps_queue(dev, skb); 2254 if (queue_index < 0) 2255 queue_index = skb_tx_hash(dev, skb); 2256 2257 if (queue_index != old_index && sk) { 2258 struct dst_entry *dst = 2259 rcu_dereference_check(sk->sk_dst_cache, 1); 2260 2261 if (dst && skb_dst(skb) == dst) 2262 sk_tx_queue_set(sk, queue_index); 2263 } 2264 } 2265 } 2266 2267 skb_set_queue_mapping(skb, queue_index); 2268 return netdev_get_tx_queue(dev, queue_index); 2269 } 2270 2271 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 2272 struct net_device *dev, 2273 struct netdev_queue *txq) 2274 { 2275 spinlock_t *root_lock = qdisc_lock(q); 2276 bool contended = qdisc_is_running(q); 2277 int rc; 2278 2279 /* 2280 * Heuristic to force contended enqueues to serialize on a 2281 * separate lock before trying to get qdisc main lock. 2282 * This permits __QDISC_STATE_RUNNING owner to get the lock more often 2283 * and dequeue packets faster. 2284 */ 2285 if (unlikely(contended)) 2286 spin_lock(&q->busylock); 2287 2288 spin_lock(root_lock); 2289 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 2290 kfree_skb(skb); 2291 rc = NET_XMIT_DROP; 2292 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 2293 qdisc_run_begin(q)) { 2294 /* 2295 * This is a work-conserving queue; there are no old skbs 2296 * waiting to be sent out; and the qdisc is not running - 2297 * xmit the skb directly. 2298 */ 2299 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE)) 2300 skb_dst_force(skb); 2301 2302 qdisc_skb_cb(skb)->pkt_len = skb->len; 2303 qdisc_bstats_update(q, skb); 2304 2305 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) { 2306 if (unlikely(contended)) { 2307 spin_unlock(&q->busylock); 2308 contended = false; 2309 } 2310 __qdisc_run(q); 2311 } else 2312 qdisc_run_end(q); 2313 2314 rc = NET_XMIT_SUCCESS; 2315 } else { 2316 skb_dst_force(skb); 2317 rc = qdisc_enqueue_root(skb, q); 2318 if (qdisc_run_begin(q)) { 2319 if (unlikely(contended)) { 2320 spin_unlock(&q->busylock); 2321 contended = false; 2322 } 2323 __qdisc_run(q); 2324 } 2325 } 2326 spin_unlock(root_lock); 2327 if (unlikely(contended)) 2328 spin_unlock(&q->busylock); 2329 return rc; 2330 } 2331 2332 static DEFINE_PER_CPU(int, xmit_recursion); 2333 #define RECURSION_LIMIT 10 2334 2335 /** 2336 * dev_queue_xmit - transmit a buffer 2337 * @skb: buffer to transmit 2338 * 2339 * Queue a buffer for transmission to a network device. The caller must 2340 * have set the device and priority and built the buffer before calling 2341 * this function. The function can be called from an interrupt. 2342 * 2343 * A negative errno code is returned on a failure. A success does not 2344 * guarantee the frame will be transmitted as it may be dropped due 2345 * to congestion or traffic shaping. 2346 * 2347 * ----------------------------------------------------------------------------------- 2348 * I notice this method can also return errors from the queue disciplines, 2349 * including NET_XMIT_DROP, which is a positive value. So, errors can also 2350 * be positive. 2351 * 2352 * Regardless of the return value, the skb is consumed, so it is currently 2353 * difficult to retry a send to this method. (You can bump the ref count 2354 * before sending to hold a reference for retry if you are careful.) 2355 * 2356 * When calling this method, interrupts MUST be enabled. This is because 2357 * the BH enable code must have IRQs enabled so that it will not deadlock. 2358 * --BLG 2359 */ 2360 int dev_queue_xmit(struct sk_buff *skb) 2361 { 2362 struct net_device *dev = skb->dev; 2363 struct netdev_queue *txq; 2364 struct Qdisc *q; 2365 int rc = -ENOMEM; 2366 2367 /* Disable soft irqs for various locks below. Also 2368 * stops preemption for RCU. 2369 */ 2370 rcu_read_lock_bh(); 2371 2372 txq = dev_pick_tx(dev, skb); 2373 q = rcu_dereference_bh(txq->qdisc); 2374 2375 #ifdef CONFIG_NET_CLS_ACT 2376 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS); 2377 #endif 2378 trace_net_dev_queue(skb); 2379 if (q->enqueue) { 2380 rc = __dev_xmit_skb(skb, q, dev, txq); 2381 goto out; 2382 } 2383 2384 /* The device has no queue. Common case for software devices: 2385 loopback, all the sorts of tunnels... 2386 2387 Really, it is unlikely that netif_tx_lock protection is necessary 2388 here. (f.e. loopback and IP tunnels are clean ignoring statistics 2389 counters.) 2390 However, it is possible, that they rely on protection 2391 made by us here. 2392 2393 Check this and shot the lock. It is not prone from deadlocks. 2394 Either shot noqueue qdisc, it is even simpler 8) 2395 */ 2396 if (dev->flags & IFF_UP) { 2397 int cpu = smp_processor_id(); /* ok because BHs are off */ 2398 2399 if (txq->xmit_lock_owner != cpu) { 2400 2401 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT) 2402 goto recursion_alert; 2403 2404 HARD_TX_LOCK(dev, txq, cpu); 2405 2406 if (!netif_tx_queue_stopped(txq)) { 2407 __this_cpu_inc(xmit_recursion); 2408 rc = dev_hard_start_xmit(skb, dev, txq); 2409 __this_cpu_dec(xmit_recursion); 2410 if (dev_xmit_complete(rc)) { 2411 HARD_TX_UNLOCK(dev, txq); 2412 goto out; 2413 } 2414 } 2415 HARD_TX_UNLOCK(dev, txq); 2416 if (net_ratelimit()) 2417 printk(KERN_CRIT "Virtual device %s asks to " 2418 "queue packet!\n", dev->name); 2419 } else { 2420 /* Recursion is detected! It is possible, 2421 * unfortunately 2422 */ 2423 recursion_alert: 2424 if (net_ratelimit()) 2425 printk(KERN_CRIT "Dead loop on virtual device " 2426 "%s, fix it urgently!\n", dev->name); 2427 } 2428 } 2429 2430 rc = -ENETDOWN; 2431 rcu_read_unlock_bh(); 2432 2433 kfree_skb(skb); 2434 return rc; 2435 out: 2436 rcu_read_unlock_bh(); 2437 return rc; 2438 } 2439 EXPORT_SYMBOL(dev_queue_xmit); 2440 2441 2442 /*======================================================================= 2443 Receiver routines 2444 =======================================================================*/ 2445 2446 int netdev_max_backlog __read_mostly = 1000; 2447 int netdev_tstamp_prequeue __read_mostly = 1; 2448 int netdev_budget __read_mostly = 300; 2449 int weight_p __read_mostly = 64; /* old backlog weight */ 2450 2451 /* Called with irq disabled */ 2452 static inline void ____napi_schedule(struct softnet_data *sd, 2453 struct napi_struct *napi) 2454 { 2455 list_add_tail(&napi->poll_list, &sd->poll_list); 2456 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2457 } 2458 2459 /* 2460 * __skb_get_rxhash: calculate a flow hash based on src/dst addresses 2461 * and src/dst port numbers. Returns a non-zero hash number on success 2462 * and 0 on failure. 2463 */ 2464 __u32 __skb_get_rxhash(struct sk_buff *skb) 2465 { 2466 int nhoff, hash = 0, poff; 2467 struct ipv6hdr *ip6; 2468 struct iphdr *ip; 2469 u8 ip_proto; 2470 u32 addr1, addr2, ihl; 2471 union { 2472 u32 v32; 2473 u16 v16[2]; 2474 } ports; 2475 2476 nhoff = skb_network_offset(skb); 2477 2478 switch (skb->protocol) { 2479 case __constant_htons(ETH_P_IP): 2480 if (!pskb_may_pull(skb, sizeof(*ip) + nhoff)) 2481 goto done; 2482 2483 ip = (struct iphdr *) (skb->data + nhoff); 2484 if (ip->frag_off & htons(IP_MF | IP_OFFSET)) 2485 ip_proto = 0; 2486 else 2487 ip_proto = ip->protocol; 2488 addr1 = (__force u32) ip->saddr; 2489 addr2 = (__force u32) ip->daddr; 2490 ihl = ip->ihl; 2491 break; 2492 case __constant_htons(ETH_P_IPV6): 2493 if (!pskb_may_pull(skb, sizeof(*ip6) + nhoff)) 2494 goto done; 2495 2496 ip6 = (struct ipv6hdr *) (skb->data + nhoff); 2497 ip_proto = ip6->nexthdr; 2498 addr1 = (__force u32) ip6->saddr.s6_addr32[3]; 2499 addr2 = (__force u32) ip6->daddr.s6_addr32[3]; 2500 ihl = (40 >> 2); 2501 break; 2502 default: 2503 goto done; 2504 } 2505 2506 ports.v32 = 0; 2507 poff = proto_ports_offset(ip_proto); 2508 if (poff >= 0) { 2509 nhoff += ihl * 4 + poff; 2510 if (pskb_may_pull(skb, nhoff + 4)) { 2511 ports.v32 = * (__force u32 *) (skb->data + nhoff); 2512 if (ports.v16[1] < ports.v16[0]) 2513 swap(ports.v16[0], ports.v16[1]); 2514 } 2515 } 2516 2517 /* get a consistent hash (same value on both flow directions) */ 2518 if (addr2 < addr1) 2519 swap(addr1, addr2); 2520 2521 hash = jhash_3words(addr1, addr2, ports.v32, hashrnd); 2522 if (!hash) 2523 hash = 1; 2524 2525 done: 2526 return hash; 2527 } 2528 EXPORT_SYMBOL(__skb_get_rxhash); 2529 2530 #ifdef CONFIG_RPS 2531 2532 /* One global table that all flow-based protocols share. */ 2533 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 2534 EXPORT_SYMBOL(rps_sock_flow_table); 2535 2536 /* 2537 * get_rps_cpu is called from netif_receive_skb and returns the target 2538 * CPU from the RPS map of the receiving queue for a given skb. 2539 * rcu_read_lock must be held on entry. 2540 */ 2541 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 2542 struct rps_dev_flow **rflowp) 2543 { 2544 struct netdev_rx_queue *rxqueue; 2545 struct rps_map *map; 2546 struct rps_dev_flow_table *flow_table; 2547 struct rps_sock_flow_table *sock_flow_table; 2548 int cpu = -1; 2549 u16 tcpu; 2550 2551 if (skb_rx_queue_recorded(skb)) { 2552 u16 index = skb_get_rx_queue(skb); 2553 if (unlikely(index >= dev->real_num_rx_queues)) { 2554 WARN_ONCE(dev->real_num_rx_queues > 1, 2555 "%s received packet on queue %u, but number " 2556 "of RX queues is %u\n", 2557 dev->name, index, dev->real_num_rx_queues); 2558 goto done; 2559 } 2560 rxqueue = dev->_rx + index; 2561 } else 2562 rxqueue = dev->_rx; 2563 2564 map = rcu_dereference(rxqueue->rps_map); 2565 if (map) { 2566 if (map->len == 1 && 2567 !rcu_dereference_raw(rxqueue->rps_flow_table)) { 2568 tcpu = map->cpus[0]; 2569 if (cpu_online(tcpu)) 2570 cpu = tcpu; 2571 goto done; 2572 } 2573 } else if (!rcu_dereference_raw(rxqueue->rps_flow_table)) { 2574 goto done; 2575 } 2576 2577 skb_reset_network_header(skb); 2578 if (!skb_get_rxhash(skb)) 2579 goto done; 2580 2581 flow_table = rcu_dereference(rxqueue->rps_flow_table); 2582 sock_flow_table = rcu_dereference(rps_sock_flow_table); 2583 if (flow_table && sock_flow_table) { 2584 u16 next_cpu; 2585 struct rps_dev_flow *rflow; 2586 2587 rflow = &flow_table->flows[skb->rxhash & flow_table->mask]; 2588 tcpu = rflow->cpu; 2589 2590 next_cpu = sock_flow_table->ents[skb->rxhash & 2591 sock_flow_table->mask]; 2592 2593 /* 2594 * If the desired CPU (where last recvmsg was done) is 2595 * different from current CPU (one in the rx-queue flow 2596 * table entry), switch if one of the following holds: 2597 * - Current CPU is unset (equal to RPS_NO_CPU). 2598 * - Current CPU is offline. 2599 * - The current CPU's queue tail has advanced beyond the 2600 * last packet that was enqueued using this table entry. 2601 * This guarantees that all previous packets for the flow 2602 * have been dequeued, thus preserving in order delivery. 2603 */ 2604 if (unlikely(tcpu != next_cpu) && 2605 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) || 2606 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 2607 rflow->last_qtail)) >= 0)) { 2608 tcpu = rflow->cpu = next_cpu; 2609 if (tcpu != RPS_NO_CPU) 2610 rflow->last_qtail = per_cpu(softnet_data, 2611 tcpu).input_queue_head; 2612 } 2613 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) { 2614 *rflowp = rflow; 2615 cpu = tcpu; 2616 goto done; 2617 } 2618 } 2619 2620 if (map) { 2621 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32]; 2622 2623 if (cpu_online(tcpu)) { 2624 cpu = tcpu; 2625 goto done; 2626 } 2627 } 2628 2629 done: 2630 return cpu; 2631 } 2632 2633 /* Called from hardirq (IPI) context */ 2634 static void rps_trigger_softirq(void *data) 2635 { 2636 struct softnet_data *sd = data; 2637 2638 ____napi_schedule(sd, &sd->backlog); 2639 sd->received_rps++; 2640 } 2641 2642 #endif /* CONFIG_RPS */ 2643 2644 /* 2645 * Check if this softnet_data structure is another cpu one 2646 * If yes, queue it to our IPI list and return 1 2647 * If no, return 0 2648 */ 2649 static int rps_ipi_queued(struct softnet_data *sd) 2650 { 2651 #ifdef CONFIG_RPS 2652 struct softnet_data *mysd = &__get_cpu_var(softnet_data); 2653 2654 if (sd != mysd) { 2655 sd->rps_ipi_next = mysd->rps_ipi_list; 2656 mysd->rps_ipi_list = sd; 2657 2658 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2659 return 1; 2660 } 2661 #endif /* CONFIG_RPS */ 2662 return 0; 2663 } 2664 2665 /* 2666 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 2667 * queue (may be a remote CPU queue). 2668 */ 2669 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 2670 unsigned int *qtail) 2671 { 2672 struct softnet_data *sd; 2673 unsigned long flags; 2674 2675 sd = &per_cpu(softnet_data, cpu); 2676 2677 local_irq_save(flags); 2678 2679 rps_lock(sd); 2680 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) { 2681 if (skb_queue_len(&sd->input_pkt_queue)) { 2682 enqueue: 2683 __skb_queue_tail(&sd->input_pkt_queue, skb); 2684 input_queue_tail_incr_save(sd, qtail); 2685 rps_unlock(sd); 2686 local_irq_restore(flags); 2687 return NET_RX_SUCCESS; 2688 } 2689 2690 /* Schedule NAPI for backlog device 2691 * We can use non atomic operation since we own the queue lock 2692 */ 2693 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 2694 if (!rps_ipi_queued(sd)) 2695 ____napi_schedule(sd, &sd->backlog); 2696 } 2697 goto enqueue; 2698 } 2699 2700 sd->dropped++; 2701 rps_unlock(sd); 2702 2703 local_irq_restore(flags); 2704 2705 atomic_long_inc(&skb->dev->rx_dropped); 2706 kfree_skb(skb); 2707 return NET_RX_DROP; 2708 } 2709 2710 /** 2711 * netif_rx - post buffer to the network code 2712 * @skb: buffer to post 2713 * 2714 * This function receives a packet from a device driver and queues it for 2715 * the upper (protocol) levels to process. It always succeeds. The buffer 2716 * may be dropped during processing for congestion control or by the 2717 * protocol layers. 2718 * 2719 * return values: 2720 * NET_RX_SUCCESS (no congestion) 2721 * NET_RX_DROP (packet was dropped) 2722 * 2723 */ 2724 2725 int netif_rx(struct sk_buff *skb) 2726 { 2727 int ret; 2728 2729 /* if netpoll wants it, pretend we never saw it */ 2730 if (netpoll_rx(skb)) 2731 return NET_RX_DROP; 2732 2733 if (netdev_tstamp_prequeue) 2734 net_timestamp_check(skb); 2735 2736 trace_netif_rx(skb); 2737 #ifdef CONFIG_RPS 2738 { 2739 struct rps_dev_flow voidflow, *rflow = &voidflow; 2740 int cpu; 2741 2742 preempt_disable(); 2743 rcu_read_lock(); 2744 2745 cpu = get_rps_cpu(skb->dev, skb, &rflow); 2746 if (cpu < 0) 2747 cpu = smp_processor_id(); 2748 2749 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 2750 2751 rcu_read_unlock(); 2752 preempt_enable(); 2753 } 2754 #else 2755 { 2756 unsigned int qtail; 2757 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 2758 put_cpu(); 2759 } 2760 #endif 2761 return ret; 2762 } 2763 EXPORT_SYMBOL(netif_rx); 2764 2765 int netif_rx_ni(struct sk_buff *skb) 2766 { 2767 int err; 2768 2769 preempt_disable(); 2770 err = netif_rx(skb); 2771 if (local_softirq_pending()) 2772 do_softirq(); 2773 preempt_enable(); 2774 2775 return err; 2776 } 2777 EXPORT_SYMBOL(netif_rx_ni); 2778 2779 static void net_tx_action(struct softirq_action *h) 2780 { 2781 struct softnet_data *sd = &__get_cpu_var(softnet_data); 2782 2783 if (sd->completion_queue) { 2784 struct sk_buff *clist; 2785 2786 local_irq_disable(); 2787 clist = sd->completion_queue; 2788 sd->completion_queue = NULL; 2789 local_irq_enable(); 2790 2791 while (clist) { 2792 struct sk_buff *skb = clist; 2793 clist = clist->next; 2794 2795 WARN_ON(atomic_read(&skb->users)); 2796 trace_kfree_skb(skb, net_tx_action); 2797 __kfree_skb(skb); 2798 } 2799 } 2800 2801 if (sd->output_queue) { 2802 struct Qdisc *head; 2803 2804 local_irq_disable(); 2805 head = sd->output_queue; 2806 sd->output_queue = NULL; 2807 sd->output_queue_tailp = &sd->output_queue; 2808 local_irq_enable(); 2809 2810 while (head) { 2811 struct Qdisc *q = head; 2812 spinlock_t *root_lock; 2813 2814 head = head->next_sched; 2815 2816 root_lock = qdisc_lock(q); 2817 if (spin_trylock(root_lock)) { 2818 smp_mb__before_clear_bit(); 2819 clear_bit(__QDISC_STATE_SCHED, 2820 &q->state); 2821 qdisc_run(q); 2822 spin_unlock(root_lock); 2823 } else { 2824 if (!test_bit(__QDISC_STATE_DEACTIVATED, 2825 &q->state)) { 2826 __netif_reschedule(q); 2827 } else { 2828 smp_mb__before_clear_bit(); 2829 clear_bit(__QDISC_STATE_SCHED, 2830 &q->state); 2831 } 2832 } 2833 } 2834 } 2835 } 2836 2837 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \ 2838 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)) 2839 /* This hook is defined here for ATM LANE */ 2840 int (*br_fdb_test_addr_hook)(struct net_device *dev, 2841 unsigned char *addr) __read_mostly; 2842 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 2843 #endif 2844 2845 #ifdef CONFIG_NET_CLS_ACT 2846 /* TODO: Maybe we should just force sch_ingress to be compiled in 2847 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions 2848 * a compare and 2 stores extra right now if we dont have it on 2849 * but have CONFIG_NET_CLS_ACT 2850 * NOTE: This doesnt stop any functionality; if you dont have 2851 * the ingress scheduler, you just cant add policies on ingress. 2852 * 2853 */ 2854 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq) 2855 { 2856 struct net_device *dev = skb->dev; 2857 u32 ttl = G_TC_RTTL(skb->tc_verd); 2858 int result = TC_ACT_OK; 2859 struct Qdisc *q; 2860 2861 if (unlikely(MAX_RED_LOOP < ttl++)) { 2862 if (net_ratelimit()) 2863 pr_warning( "Redir loop detected Dropping packet (%d->%d)\n", 2864 skb->skb_iif, dev->ifindex); 2865 return TC_ACT_SHOT; 2866 } 2867 2868 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl); 2869 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS); 2870 2871 q = rxq->qdisc; 2872 if (q != &noop_qdisc) { 2873 spin_lock(qdisc_lock(q)); 2874 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) 2875 result = qdisc_enqueue_root(skb, q); 2876 spin_unlock(qdisc_lock(q)); 2877 } 2878 2879 return result; 2880 } 2881 2882 static inline struct sk_buff *handle_ing(struct sk_buff *skb, 2883 struct packet_type **pt_prev, 2884 int *ret, struct net_device *orig_dev) 2885 { 2886 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue); 2887 2888 if (!rxq || rxq->qdisc == &noop_qdisc) 2889 goto out; 2890 2891 if (*pt_prev) { 2892 *ret = deliver_skb(skb, *pt_prev, orig_dev); 2893 *pt_prev = NULL; 2894 } 2895 2896 switch (ing_filter(skb, rxq)) { 2897 case TC_ACT_SHOT: 2898 case TC_ACT_STOLEN: 2899 kfree_skb(skb); 2900 return NULL; 2901 } 2902 2903 out: 2904 skb->tc_verd = 0; 2905 return skb; 2906 } 2907 #endif 2908 2909 /** 2910 * netdev_rx_handler_register - register receive handler 2911 * @dev: device to register a handler for 2912 * @rx_handler: receive handler to register 2913 * @rx_handler_data: data pointer that is used by rx handler 2914 * 2915 * Register a receive hander for a device. This handler will then be 2916 * called from __netif_receive_skb. A negative errno code is returned 2917 * on a failure. 2918 * 2919 * The caller must hold the rtnl_mutex. 2920 */ 2921 int netdev_rx_handler_register(struct net_device *dev, 2922 rx_handler_func_t *rx_handler, 2923 void *rx_handler_data) 2924 { 2925 ASSERT_RTNL(); 2926 2927 if (dev->rx_handler) 2928 return -EBUSY; 2929 2930 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 2931 rcu_assign_pointer(dev->rx_handler, rx_handler); 2932 2933 return 0; 2934 } 2935 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 2936 2937 /** 2938 * netdev_rx_handler_unregister - unregister receive handler 2939 * @dev: device to unregister a handler from 2940 * 2941 * Unregister a receive hander from a device. 2942 * 2943 * The caller must hold the rtnl_mutex. 2944 */ 2945 void netdev_rx_handler_unregister(struct net_device *dev) 2946 { 2947 2948 ASSERT_RTNL(); 2949 rcu_assign_pointer(dev->rx_handler, NULL); 2950 rcu_assign_pointer(dev->rx_handler_data, NULL); 2951 } 2952 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 2953 2954 static inline void skb_bond_set_mac_by_master(struct sk_buff *skb, 2955 struct net_device *master) 2956 { 2957 if (skb->pkt_type == PACKET_HOST) { 2958 u16 *dest = (u16 *) eth_hdr(skb)->h_dest; 2959 2960 memcpy(dest, master->dev_addr, ETH_ALEN); 2961 } 2962 } 2963 2964 /* On bonding slaves other than the currently active slave, suppress 2965 * duplicates except for 802.3ad ETH_P_SLOW, alb non-mcast/bcast, and 2966 * ARP on active-backup slaves with arp_validate enabled. 2967 */ 2968 int __skb_bond_should_drop(struct sk_buff *skb, struct net_device *master) 2969 { 2970 struct net_device *dev = skb->dev; 2971 2972 if (master->priv_flags & IFF_MASTER_ARPMON) 2973 dev->last_rx = jiffies; 2974 2975 if ((master->priv_flags & IFF_MASTER_ALB) && 2976 (master->priv_flags & IFF_BRIDGE_PORT)) { 2977 /* Do address unmangle. The local destination address 2978 * will be always the one master has. Provides the right 2979 * functionality in a bridge. 2980 */ 2981 skb_bond_set_mac_by_master(skb, master); 2982 } 2983 2984 if (dev->priv_flags & IFF_SLAVE_INACTIVE) { 2985 if ((dev->priv_flags & IFF_SLAVE_NEEDARP) && 2986 skb->protocol == __cpu_to_be16(ETH_P_ARP)) 2987 return 0; 2988 2989 if (master->priv_flags & IFF_MASTER_ALB) { 2990 if (skb->pkt_type != PACKET_BROADCAST && 2991 skb->pkt_type != PACKET_MULTICAST) 2992 return 0; 2993 } 2994 if (master->priv_flags & IFF_MASTER_8023AD && 2995 skb->protocol == __cpu_to_be16(ETH_P_SLOW)) 2996 return 0; 2997 2998 return 1; 2999 } 3000 return 0; 3001 } 3002 EXPORT_SYMBOL(__skb_bond_should_drop); 3003 3004 static int __netif_receive_skb(struct sk_buff *skb) 3005 { 3006 struct packet_type *ptype, *pt_prev; 3007 rx_handler_func_t *rx_handler; 3008 struct net_device *orig_dev; 3009 struct net_device *master; 3010 struct net_device *null_or_orig; 3011 struct net_device *orig_or_bond; 3012 int ret = NET_RX_DROP; 3013 __be16 type; 3014 3015 if (!netdev_tstamp_prequeue) 3016 net_timestamp_check(skb); 3017 3018 trace_netif_receive_skb(skb); 3019 3020 /* if we've gotten here through NAPI, check netpoll */ 3021 if (netpoll_receive_skb(skb)) 3022 return NET_RX_DROP; 3023 3024 if (!skb->skb_iif) 3025 skb->skb_iif = skb->dev->ifindex; 3026 3027 /* 3028 * bonding note: skbs received on inactive slaves should only 3029 * be delivered to pkt handlers that are exact matches. Also 3030 * the deliver_no_wcard flag will be set. If packet handlers 3031 * are sensitive to duplicate packets these skbs will need to 3032 * be dropped at the handler. 3033 */ 3034 null_or_orig = NULL; 3035 orig_dev = skb->dev; 3036 master = ACCESS_ONCE(orig_dev->master); 3037 if (skb->deliver_no_wcard) 3038 null_or_orig = orig_dev; 3039 else if (master) { 3040 if (skb_bond_should_drop(skb, master)) { 3041 skb->deliver_no_wcard = 1; 3042 null_or_orig = orig_dev; /* deliver only exact match */ 3043 } else 3044 skb->dev = master; 3045 } 3046 3047 __this_cpu_inc(softnet_data.processed); 3048 skb_reset_network_header(skb); 3049 skb_reset_transport_header(skb); 3050 skb->mac_len = skb->network_header - skb->mac_header; 3051 3052 pt_prev = NULL; 3053 3054 rcu_read_lock(); 3055 3056 #ifdef CONFIG_NET_CLS_ACT 3057 if (skb->tc_verd & TC_NCLS) { 3058 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 3059 goto ncls; 3060 } 3061 #endif 3062 3063 list_for_each_entry_rcu(ptype, &ptype_all, list) { 3064 if (ptype->dev == null_or_orig || ptype->dev == skb->dev || 3065 ptype->dev == orig_dev) { 3066 if (pt_prev) 3067 ret = deliver_skb(skb, pt_prev, orig_dev); 3068 pt_prev = ptype; 3069 } 3070 } 3071 3072 #ifdef CONFIG_NET_CLS_ACT 3073 skb = handle_ing(skb, &pt_prev, &ret, orig_dev); 3074 if (!skb) 3075 goto out; 3076 ncls: 3077 #endif 3078 3079 /* Handle special case of bridge or macvlan */ 3080 rx_handler = rcu_dereference(skb->dev->rx_handler); 3081 if (rx_handler) { 3082 if (pt_prev) { 3083 ret = deliver_skb(skb, pt_prev, orig_dev); 3084 pt_prev = NULL; 3085 } 3086 skb = rx_handler(skb); 3087 if (!skb) 3088 goto out; 3089 } 3090 3091 if (vlan_tx_tag_present(skb)) { 3092 if (pt_prev) { 3093 ret = deliver_skb(skb, pt_prev, orig_dev); 3094 pt_prev = NULL; 3095 } 3096 if (vlan_hwaccel_do_receive(&skb)) { 3097 ret = __netif_receive_skb(skb); 3098 goto out; 3099 } else if (unlikely(!skb)) 3100 goto out; 3101 } 3102 3103 /* 3104 * Make sure frames received on VLAN interfaces stacked on 3105 * bonding interfaces still make their way to any base bonding 3106 * device that may have registered for a specific ptype. The 3107 * handler may have to adjust skb->dev and orig_dev. 3108 */ 3109 orig_or_bond = orig_dev; 3110 if ((skb->dev->priv_flags & IFF_802_1Q_VLAN) && 3111 (vlan_dev_real_dev(skb->dev)->priv_flags & IFF_BONDING)) { 3112 orig_or_bond = vlan_dev_real_dev(skb->dev); 3113 } 3114 3115 type = skb->protocol; 3116 list_for_each_entry_rcu(ptype, 3117 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 3118 if (ptype->type == type && (ptype->dev == null_or_orig || 3119 ptype->dev == skb->dev || ptype->dev == orig_dev || 3120 ptype->dev == orig_or_bond)) { 3121 if (pt_prev) 3122 ret = deliver_skb(skb, pt_prev, orig_dev); 3123 pt_prev = ptype; 3124 } 3125 } 3126 3127 if (pt_prev) { 3128 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 3129 } else { 3130 atomic_long_inc(&skb->dev->rx_dropped); 3131 kfree_skb(skb); 3132 /* Jamal, now you will not able to escape explaining 3133 * me how you were going to use this. :-) 3134 */ 3135 ret = NET_RX_DROP; 3136 } 3137 3138 out: 3139 rcu_read_unlock(); 3140 return ret; 3141 } 3142 3143 /** 3144 * netif_receive_skb - process receive buffer from network 3145 * @skb: buffer to process 3146 * 3147 * netif_receive_skb() is the main receive data processing function. 3148 * It always succeeds. The buffer may be dropped during processing 3149 * for congestion control or by the protocol layers. 3150 * 3151 * This function may only be called from softirq context and interrupts 3152 * should be enabled. 3153 * 3154 * Return values (usually ignored): 3155 * NET_RX_SUCCESS: no congestion 3156 * NET_RX_DROP: packet was dropped 3157 */ 3158 int netif_receive_skb(struct sk_buff *skb) 3159 { 3160 if (netdev_tstamp_prequeue) 3161 net_timestamp_check(skb); 3162 3163 if (skb_defer_rx_timestamp(skb)) 3164 return NET_RX_SUCCESS; 3165 3166 #ifdef CONFIG_RPS 3167 { 3168 struct rps_dev_flow voidflow, *rflow = &voidflow; 3169 int cpu, ret; 3170 3171 rcu_read_lock(); 3172 3173 cpu = get_rps_cpu(skb->dev, skb, &rflow); 3174 3175 if (cpu >= 0) { 3176 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3177 rcu_read_unlock(); 3178 } else { 3179 rcu_read_unlock(); 3180 ret = __netif_receive_skb(skb); 3181 } 3182 3183 return ret; 3184 } 3185 #else 3186 return __netif_receive_skb(skb); 3187 #endif 3188 } 3189 EXPORT_SYMBOL(netif_receive_skb); 3190 3191 /* Network device is going away, flush any packets still pending 3192 * Called with irqs disabled. 3193 */ 3194 static void flush_backlog(void *arg) 3195 { 3196 struct net_device *dev = arg; 3197 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3198 struct sk_buff *skb, *tmp; 3199 3200 rps_lock(sd); 3201 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 3202 if (skb->dev == dev) { 3203 __skb_unlink(skb, &sd->input_pkt_queue); 3204 kfree_skb(skb); 3205 input_queue_head_incr(sd); 3206 } 3207 } 3208 rps_unlock(sd); 3209 3210 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 3211 if (skb->dev == dev) { 3212 __skb_unlink(skb, &sd->process_queue); 3213 kfree_skb(skb); 3214 input_queue_head_incr(sd); 3215 } 3216 } 3217 } 3218 3219 static int napi_gro_complete(struct sk_buff *skb) 3220 { 3221 struct packet_type *ptype; 3222 __be16 type = skb->protocol; 3223 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK]; 3224 int err = -ENOENT; 3225 3226 if (NAPI_GRO_CB(skb)->count == 1) { 3227 skb_shinfo(skb)->gso_size = 0; 3228 goto out; 3229 } 3230 3231 rcu_read_lock(); 3232 list_for_each_entry_rcu(ptype, head, list) { 3233 if (ptype->type != type || ptype->dev || !ptype->gro_complete) 3234 continue; 3235 3236 err = ptype->gro_complete(skb); 3237 break; 3238 } 3239 rcu_read_unlock(); 3240 3241 if (err) { 3242 WARN_ON(&ptype->list == head); 3243 kfree_skb(skb); 3244 return NET_RX_SUCCESS; 3245 } 3246 3247 out: 3248 return netif_receive_skb(skb); 3249 } 3250 3251 inline void napi_gro_flush(struct napi_struct *napi) 3252 { 3253 struct sk_buff *skb, *next; 3254 3255 for (skb = napi->gro_list; skb; skb = next) { 3256 next = skb->next; 3257 skb->next = NULL; 3258 napi_gro_complete(skb); 3259 } 3260 3261 napi->gro_count = 0; 3262 napi->gro_list = NULL; 3263 } 3264 EXPORT_SYMBOL(napi_gro_flush); 3265 3266 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3267 { 3268 struct sk_buff **pp = NULL; 3269 struct packet_type *ptype; 3270 __be16 type = skb->protocol; 3271 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK]; 3272 int same_flow; 3273 int mac_len; 3274 enum gro_result ret; 3275 3276 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb)) 3277 goto normal; 3278 3279 if (skb_is_gso(skb) || skb_has_frag_list(skb)) 3280 goto normal; 3281 3282 rcu_read_lock(); 3283 list_for_each_entry_rcu(ptype, head, list) { 3284 if (ptype->type != type || ptype->dev || !ptype->gro_receive) 3285 continue; 3286 3287 skb_set_network_header(skb, skb_gro_offset(skb)); 3288 mac_len = skb->network_header - skb->mac_header; 3289 skb->mac_len = mac_len; 3290 NAPI_GRO_CB(skb)->same_flow = 0; 3291 NAPI_GRO_CB(skb)->flush = 0; 3292 NAPI_GRO_CB(skb)->free = 0; 3293 3294 pp = ptype->gro_receive(&napi->gro_list, skb); 3295 break; 3296 } 3297 rcu_read_unlock(); 3298 3299 if (&ptype->list == head) 3300 goto normal; 3301 3302 same_flow = NAPI_GRO_CB(skb)->same_flow; 3303 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 3304 3305 if (pp) { 3306 struct sk_buff *nskb = *pp; 3307 3308 *pp = nskb->next; 3309 nskb->next = NULL; 3310 napi_gro_complete(nskb); 3311 napi->gro_count--; 3312 } 3313 3314 if (same_flow) 3315 goto ok; 3316 3317 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS) 3318 goto normal; 3319 3320 napi->gro_count++; 3321 NAPI_GRO_CB(skb)->count = 1; 3322 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 3323 skb->next = napi->gro_list; 3324 napi->gro_list = skb; 3325 ret = GRO_HELD; 3326 3327 pull: 3328 if (skb_headlen(skb) < skb_gro_offset(skb)) { 3329 int grow = skb_gro_offset(skb) - skb_headlen(skb); 3330 3331 BUG_ON(skb->end - skb->tail < grow); 3332 3333 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 3334 3335 skb->tail += grow; 3336 skb->data_len -= grow; 3337 3338 skb_shinfo(skb)->frags[0].page_offset += grow; 3339 skb_shinfo(skb)->frags[0].size -= grow; 3340 3341 if (unlikely(!skb_shinfo(skb)->frags[0].size)) { 3342 put_page(skb_shinfo(skb)->frags[0].page); 3343 memmove(skb_shinfo(skb)->frags, 3344 skb_shinfo(skb)->frags + 1, 3345 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t)); 3346 } 3347 } 3348 3349 ok: 3350 return ret; 3351 3352 normal: 3353 ret = GRO_NORMAL; 3354 goto pull; 3355 } 3356 EXPORT_SYMBOL(dev_gro_receive); 3357 3358 static inline gro_result_t 3359 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3360 { 3361 struct sk_buff *p; 3362 3363 for (p = napi->gro_list; p; p = p->next) { 3364 unsigned long diffs; 3365 3366 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 3367 diffs |= p->vlan_tci ^ skb->vlan_tci; 3368 diffs |= compare_ether_header(skb_mac_header(p), 3369 skb_gro_mac_header(skb)); 3370 NAPI_GRO_CB(p)->same_flow = !diffs; 3371 NAPI_GRO_CB(p)->flush = 0; 3372 } 3373 3374 return dev_gro_receive(napi, skb); 3375 } 3376 3377 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 3378 { 3379 switch (ret) { 3380 case GRO_NORMAL: 3381 if (netif_receive_skb(skb)) 3382 ret = GRO_DROP; 3383 break; 3384 3385 case GRO_DROP: 3386 case GRO_MERGED_FREE: 3387 kfree_skb(skb); 3388 break; 3389 3390 case GRO_HELD: 3391 case GRO_MERGED: 3392 break; 3393 } 3394 3395 return ret; 3396 } 3397 EXPORT_SYMBOL(napi_skb_finish); 3398 3399 void skb_gro_reset_offset(struct sk_buff *skb) 3400 { 3401 NAPI_GRO_CB(skb)->data_offset = 0; 3402 NAPI_GRO_CB(skb)->frag0 = NULL; 3403 NAPI_GRO_CB(skb)->frag0_len = 0; 3404 3405 if (skb->mac_header == skb->tail && 3406 !PageHighMem(skb_shinfo(skb)->frags[0].page)) { 3407 NAPI_GRO_CB(skb)->frag0 = 3408 page_address(skb_shinfo(skb)->frags[0].page) + 3409 skb_shinfo(skb)->frags[0].page_offset; 3410 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size; 3411 } 3412 } 3413 EXPORT_SYMBOL(skb_gro_reset_offset); 3414 3415 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3416 { 3417 skb_gro_reset_offset(skb); 3418 3419 return napi_skb_finish(__napi_gro_receive(napi, skb), skb); 3420 } 3421 EXPORT_SYMBOL(napi_gro_receive); 3422 3423 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 3424 { 3425 __skb_pull(skb, skb_headlen(skb)); 3426 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb)); 3427 skb->vlan_tci = 0; 3428 skb->dev = napi->dev; 3429 skb->skb_iif = 0; 3430 3431 napi->skb = skb; 3432 } 3433 3434 struct sk_buff *napi_get_frags(struct napi_struct *napi) 3435 { 3436 struct sk_buff *skb = napi->skb; 3437 3438 if (!skb) { 3439 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD); 3440 if (skb) 3441 napi->skb = skb; 3442 } 3443 return skb; 3444 } 3445 EXPORT_SYMBOL(napi_get_frags); 3446 3447 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb, 3448 gro_result_t ret) 3449 { 3450 switch (ret) { 3451 case GRO_NORMAL: 3452 case GRO_HELD: 3453 skb->protocol = eth_type_trans(skb, skb->dev); 3454 3455 if (ret == GRO_HELD) 3456 skb_gro_pull(skb, -ETH_HLEN); 3457 else if (netif_receive_skb(skb)) 3458 ret = GRO_DROP; 3459 break; 3460 3461 case GRO_DROP: 3462 case GRO_MERGED_FREE: 3463 napi_reuse_skb(napi, skb); 3464 break; 3465 3466 case GRO_MERGED: 3467 break; 3468 } 3469 3470 return ret; 3471 } 3472 EXPORT_SYMBOL(napi_frags_finish); 3473 3474 struct sk_buff *napi_frags_skb(struct napi_struct *napi) 3475 { 3476 struct sk_buff *skb = napi->skb; 3477 struct ethhdr *eth; 3478 unsigned int hlen; 3479 unsigned int off; 3480 3481 napi->skb = NULL; 3482 3483 skb_reset_mac_header(skb); 3484 skb_gro_reset_offset(skb); 3485 3486 off = skb_gro_offset(skb); 3487 hlen = off + sizeof(*eth); 3488 eth = skb_gro_header_fast(skb, off); 3489 if (skb_gro_header_hard(skb, hlen)) { 3490 eth = skb_gro_header_slow(skb, hlen, off); 3491 if (unlikely(!eth)) { 3492 napi_reuse_skb(napi, skb); 3493 skb = NULL; 3494 goto out; 3495 } 3496 } 3497 3498 skb_gro_pull(skb, sizeof(*eth)); 3499 3500 /* 3501 * This works because the only protocols we care about don't require 3502 * special handling. We'll fix it up properly at the end. 3503 */ 3504 skb->protocol = eth->h_proto; 3505 3506 out: 3507 return skb; 3508 } 3509 EXPORT_SYMBOL(napi_frags_skb); 3510 3511 gro_result_t napi_gro_frags(struct napi_struct *napi) 3512 { 3513 struct sk_buff *skb = napi_frags_skb(napi); 3514 3515 if (!skb) 3516 return GRO_DROP; 3517 3518 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb)); 3519 } 3520 EXPORT_SYMBOL(napi_gro_frags); 3521 3522 /* 3523 * net_rps_action sends any pending IPI's for rps. 3524 * Note: called with local irq disabled, but exits with local irq enabled. 3525 */ 3526 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 3527 { 3528 #ifdef CONFIG_RPS 3529 struct softnet_data *remsd = sd->rps_ipi_list; 3530 3531 if (remsd) { 3532 sd->rps_ipi_list = NULL; 3533 3534 local_irq_enable(); 3535 3536 /* Send pending IPI's to kick RPS processing on remote cpus. */ 3537 while (remsd) { 3538 struct softnet_data *next = remsd->rps_ipi_next; 3539 3540 if (cpu_online(remsd->cpu)) 3541 __smp_call_function_single(remsd->cpu, 3542 &remsd->csd, 0); 3543 remsd = next; 3544 } 3545 } else 3546 #endif 3547 local_irq_enable(); 3548 } 3549 3550 static int process_backlog(struct napi_struct *napi, int quota) 3551 { 3552 int work = 0; 3553 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 3554 3555 #ifdef CONFIG_RPS 3556 /* Check if we have pending ipi, its better to send them now, 3557 * not waiting net_rx_action() end. 3558 */ 3559 if (sd->rps_ipi_list) { 3560 local_irq_disable(); 3561 net_rps_action_and_irq_enable(sd); 3562 } 3563 #endif 3564 napi->weight = weight_p; 3565 local_irq_disable(); 3566 while (work < quota) { 3567 struct sk_buff *skb; 3568 unsigned int qlen; 3569 3570 while ((skb = __skb_dequeue(&sd->process_queue))) { 3571 local_irq_enable(); 3572 __netif_receive_skb(skb); 3573 local_irq_disable(); 3574 input_queue_head_incr(sd); 3575 if (++work >= quota) { 3576 local_irq_enable(); 3577 return work; 3578 } 3579 } 3580 3581 rps_lock(sd); 3582 qlen = skb_queue_len(&sd->input_pkt_queue); 3583 if (qlen) 3584 skb_queue_splice_tail_init(&sd->input_pkt_queue, 3585 &sd->process_queue); 3586 3587 if (qlen < quota - work) { 3588 /* 3589 * Inline a custom version of __napi_complete(). 3590 * only current cpu owns and manipulates this napi, 3591 * and NAPI_STATE_SCHED is the only possible flag set on backlog. 3592 * we can use a plain write instead of clear_bit(), 3593 * and we dont need an smp_mb() memory barrier. 3594 */ 3595 list_del(&napi->poll_list); 3596 napi->state = 0; 3597 3598 quota = work + qlen; 3599 } 3600 rps_unlock(sd); 3601 } 3602 local_irq_enable(); 3603 3604 return work; 3605 } 3606 3607 /** 3608 * __napi_schedule - schedule for receive 3609 * @n: entry to schedule 3610 * 3611 * The entry's receive function will be scheduled to run 3612 */ 3613 void __napi_schedule(struct napi_struct *n) 3614 { 3615 unsigned long flags; 3616 3617 local_irq_save(flags); 3618 ____napi_schedule(&__get_cpu_var(softnet_data), n); 3619 local_irq_restore(flags); 3620 } 3621 EXPORT_SYMBOL(__napi_schedule); 3622 3623 void __napi_complete(struct napi_struct *n) 3624 { 3625 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 3626 BUG_ON(n->gro_list); 3627 3628 list_del(&n->poll_list); 3629 smp_mb__before_clear_bit(); 3630 clear_bit(NAPI_STATE_SCHED, &n->state); 3631 } 3632 EXPORT_SYMBOL(__napi_complete); 3633 3634 void napi_complete(struct napi_struct *n) 3635 { 3636 unsigned long flags; 3637 3638 /* 3639 * don't let napi dequeue from the cpu poll list 3640 * just in case its running on a different cpu 3641 */ 3642 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state))) 3643 return; 3644 3645 napi_gro_flush(n); 3646 local_irq_save(flags); 3647 __napi_complete(n); 3648 local_irq_restore(flags); 3649 } 3650 EXPORT_SYMBOL(napi_complete); 3651 3652 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 3653 int (*poll)(struct napi_struct *, int), int weight) 3654 { 3655 INIT_LIST_HEAD(&napi->poll_list); 3656 napi->gro_count = 0; 3657 napi->gro_list = NULL; 3658 napi->skb = NULL; 3659 napi->poll = poll; 3660 napi->weight = weight; 3661 list_add(&napi->dev_list, &dev->napi_list); 3662 napi->dev = dev; 3663 #ifdef CONFIG_NETPOLL 3664 spin_lock_init(&napi->poll_lock); 3665 napi->poll_owner = -1; 3666 #endif 3667 set_bit(NAPI_STATE_SCHED, &napi->state); 3668 } 3669 EXPORT_SYMBOL(netif_napi_add); 3670 3671 void netif_napi_del(struct napi_struct *napi) 3672 { 3673 struct sk_buff *skb, *next; 3674 3675 list_del_init(&napi->dev_list); 3676 napi_free_frags(napi); 3677 3678 for (skb = napi->gro_list; skb; skb = next) { 3679 next = skb->next; 3680 skb->next = NULL; 3681 kfree_skb(skb); 3682 } 3683 3684 napi->gro_list = NULL; 3685 napi->gro_count = 0; 3686 } 3687 EXPORT_SYMBOL(netif_napi_del); 3688 3689 static void net_rx_action(struct softirq_action *h) 3690 { 3691 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3692 unsigned long time_limit = jiffies + 2; 3693 int budget = netdev_budget; 3694 void *have; 3695 3696 local_irq_disable(); 3697 3698 while (!list_empty(&sd->poll_list)) { 3699 struct napi_struct *n; 3700 int work, weight; 3701 3702 /* If softirq window is exhuasted then punt. 3703 * Allow this to run for 2 jiffies since which will allow 3704 * an average latency of 1.5/HZ. 3705 */ 3706 if (unlikely(budget <= 0 || time_after(jiffies, time_limit))) 3707 goto softnet_break; 3708 3709 local_irq_enable(); 3710 3711 /* Even though interrupts have been re-enabled, this 3712 * access is safe because interrupts can only add new 3713 * entries to the tail of this list, and only ->poll() 3714 * calls can remove this head entry from the list. 3715 */ 3716 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list); 3717 3718 have = netpoll_poll_lock(n); 3719 3720 weight = n->weight; 3721 3722 /* This NAPI_STATE_SCHED test is for avoiding a race 3723 * with netpoll's poll_napi(). Only the entity which 3724 * obtains the lock and sees NAPI_STATE_SCHED set will 3725 * actually make the ->poll() call. Therefore we avoid 3726 * accidently calling ->poll() when NAPI is not scheduled. 3727 */ 3728 work = 0; 3729 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 3730 work = n->poll(n, weight); 3731 trace_napi_poll(n); 3732 } 3733 3734 WARN_ON_ONCE(work > weight); 3735 3736 budget -= work; 3737 3738 local_irq_disable(); 3739 3740 /* Drivers must not modify the NAPI state if they 3741 * consume the entire weight. In such cases this code 3742 * still "owns" the NAPI instance and therefore can 3743 * move the instance around on the list at-will. 3744 */ 3745 if (unlikely(work == weight)) { 3746 if (unlikely(napi_disable_pending(n))) { 3747 local_irq_enable(); 3748 napi_complete(n); 3749 local_irq_disable(); 3750 } else 3751 list_move_tail(&n->poll_list, &sd->poll_list); 3752 } 3753 3754 netpoll_poll_unlock(have); 3755 } 3756 out: 3757 net_rps_action_and_irq_enable(sd); 3758 3759 #ifdef CONFIG_NET_DMA 3760 /* 3761 * There may not be any more sk_buffs coming right now, so push 3762 * any pending DMA copies to hardware 3763 */ 3764 dma_issue_pending_all(); 3765 #endif 3766 3767 return; 3768 3769 softnet_break: 3770 sd->time_squeeze++; 3771 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3772 goto out; 3773 } 3774 3775 static gifconf_func_t *gifconf_list[NPROTO]; 3776 3777 /** 3778 * register_gifconf - register a SIOCGIF handler 3779 * @family: Address family 3780 * @gifconf: Function handler 3781 * 3782 * Register protocol dependent address dumping routines. The handler 3783 * that is passed must not be freed or reused until it has been replaced 3784 * by another handler. 3785 */ 3786 int register_gifconf(unsigned int family, gifconf_func_t *gifconf) 3787 { 3788 if (family >= NPROTO) 3789 return -EINVAL; 3790 gifconf_list[family] = gifconf; 3791 return 0; 3792 } 3793 EXPORT_SYMBOL(register_gifconf); 3794 3795 3796 /* 3797 * Map an interface index to its name (SIOCGIFNAME) 3798 */ 3799 3800 /* 3801 * We need this ioctl for efficient implementation of the 3802 * if_indextoname() function required by the IPv6 API. Without 3803 * it, we would have to search all the interfaces to find a 3804 * match. --pb 3805 */ 3806 3807 static int dev_ifname(struct net *net, struct ifreq __user *arg) 3808 { 3809 struct net_device *dev; 3810 struct ifreq ifr; 3811 3812 /* 3813 * Fetch the caller's info block. 3814 */ 3815 3816 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 3817 return -EFAULT; 3818 3819 rcu_read_lock(); 3820 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex); 3821 if (!dev) { 3822 rcu_read_unlock(); 3823 return -ENODEV; 3824 } 3825 3826 strcpy(ifr.ifr_name, dev->name); 3827 rcu_read_unlock(); 3828 3829 if (copy_to_user(arg, &ifr, sizeof(struct ifreq))) 3830 return -EFAULT; 3831 return 0; 3832 } 3833 3834 /* 3835 * Perform a SIOCGIFCONF call. This structure will change 3836 * size eventually, and there is nothing I can do about it. 3837 * Thus we will need a 'compatibility mode'. 3838 */ 3839 3840 static int dev_ifconf(struct net *net, char __user *arg) 3841 { 3842 struct ifconf ifc; 3843 struct net_device *dev; 3844 char __user *pos; 3845 int len; 3846 int total; 3847 int i; 3848 3849 /* 3850 * Fetch the caller's info block. 3851 */ 3852 3853 if (copy_from_user(&ifc, arg, sizeof(struct ifconf))) 3854 return -EFAULT; 3855 3856 pos = ifc.ifc_buf; 3857 len = ifc.ifc_len; 3858 3859 /* 3860 * Loop over the interfaces, and write an info block for each. 3861 */ 3862 3863 total = 0; 3864 for_each_netdev(net, dev) { 3865 for (i = 0; i < NPROTO; i++) { 3866 if (gifconf_list[i]) { 3867 int done; 3868 if (!pos) 3869 done = gifconf_list[i](dev, NULL, 0); 3870 else 3871 done = gifconf_list[i](dev, pos + total, 3872 len - total); 3873 if (done < 0) 3874 return -EFAULT; 3875 total += done; 3876 } 3877 } 3878 } 3879 3880 /* 3881 * All done. Write the updated control block back to the caller. 3882 */ 3883 ifc.ifc_len = total; 3884 3885 /* 3886 * Both BSD and Solaris return 0 here, so we do too. 3887 */ 3888 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0; 3889 } 3890 3891 #ifdef CONFIG_PROC_FS 3892 /* 3893 * This is invoked by the /proc filesystem handler to display a device 3894 * in detail. 3895 */ 3896 void *dev_seq_start(struct seq_file *seq, loff_t *pos) 3897 __acquires(RCU) 3898 { 3899 struct net *net = seq_file_net(seq); 3900 loff_t off; 3901 struct net_device *dev; 3902 3903 rcu_read_lock(); 3904 if (!*pos) 3905 return SEQ_START_TOKEN; 3906 3907 off = 1; 3908 for_each_netdev_rcu(net, dev) 3909 if (off++ == *pos) 3910 return dev; 3911 3912 return NULL; 3913 } 3914 3915 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3916 { 3917 struct net_device *dev = (v == SEQ_START_TOKEN) ? 3918 first_net_device(seq_file_net(seq)) : 3919 next_net_device((struct net_device *)v); 3920 3921 ++*pos; 3922 return rcu_dereference(dev); 3923 } 3924 3925 void dev_seq_stop(struct seq_file *seq, void *v) 3926 __releases(RCU) 3927 { 3928 rcu_read_unlock(); 3929 } 3930 3931 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev) 3932 { 3933 struct rtnl_link_stats64 temp; 3934 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp); 3935 3936 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu " 3937 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n", 3938 dev->name, stats->rx_bytes, stats->rx_packets, 3939 stats->rx_errors, 3940 stats->rx_dropped + stats->rx_missed_errors, 3941 stats->rx_fifo_errors, 3942 stats->rx_length_errors + stats->rx_over_errors + 3943 stats->rx_crc_errors + stats->rx_frame_errors, 3944 stats->rx_compressed, stats->multicast, 3945 stats->tx_bytes, stats->tx_packets, 3946 stats->tx_errors, stats->tx_dropped, 3947 stats->tx_fifo_errors, stats->collisions, 3948 stats->tx_carrier_errors + 3949 stats->tx_aborted_errors + 3950 stats->tx_window_errors + 3951 stats->tx_heartbeat_errors, 3952 stats->tx_compressed); 3953 } 3954 3955 /* 3956 * Called from the PROCfs module. This now uses the new arbitrary sized 3957 * /proc/net interface to create /proc/net/dev 3958 */ 3959 static int dev_seq_show(struct seq_file *seq, void *v) 3960 { 3961 if (v == SEQ_START_TOKEN) 3962 seq_puts(seq, "Inter-| Receive " 3963 " | Transmit\n" 3964 " face |bytes packets errs drop fifo frame " 3965 "compressed multicast|bytes packets errs " 3966 "drop fifo colls carrier compressed\n"); 3967 else 3968 dev_seq_printf_stats(seq, v); 3969 return 0; 3970 } 3971 3972 static struct softnet_data *softnet_get_online(loff_t *pos) 3973 { 3974 struct softnet_data *sd = NULL; 3975 3976 while (*pos < nr_cpu_ids) 3977 if (cpu_online(*pos)) { 3978 sd = &per_cpu(softnet_data, *pos); 3979 break; 3980 } else 3981 ++*pos; 3982 return sd; 3983 } 3984 3985 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos) 3986 { 3987 return softnet_get_online(pos); 3988 } 3989 3990 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3991 { 3992 ++*pos; 3993 return softnet_get_online(pos); 3994 } 3995 3996 static void softnet_seq_stop(struct seq_file *seq, void *v) 3997 { 3998 } 3999 4000 static int softnet_seq_show(struct seq_file *seq, void *v) 4001 { 4002 struct softnet_data *sd = v; 4003 4004 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n", 4005 sd->processed, sd->dropped, sd->time_squeeze, 0, 4006 0, 0, 0, 0, /* was fastroute */ 4007 sd->cpu_collision, sd->received_rps); 4008 return 0; 4009 } 4010 4011 static const struct seq_operations dev_seq_ops = { 4012 .start = dev_seq_start, 4013 .next = dev_seq_next, 4014 .stop = dev_seq_stop, 4015 .show = dev_seq_show, 4016 }; 4017 4018 static int dev_seq_open(struct inode *inode, struct file *file) 4019 { 4020 return seq_open_net(inode, file, &dev_seq_ops, 4021 sizeof(struct seq_net_private)); 4022 } 4023 4024 static const struct file_operations dev_seq_fops = { 4025 .owner = THIS_MODULE, 4026 .open = dev_seq_open, 4027 .read = seq_read, 4028 .llseek = seq_lseek, 4029 .release = seq_release_net, 4030 }; 4031 4032 static const struct seq_operations softnet_seq_ops = { 4033 .start = softnet_seq_start, 4034 .next = softnet_seq_next, 4035 .stop = softnet_seq_stop, 4036 .show = softnet_seq_show, 4037 }; 4038 4039 static int softnet_seq_open(struct inode *inode, struct file *file) 4040 { 4041 return seq_open(file, &softnet_seq_ops); 4042 } 4043 4044 static const struct file_operations softnet_seq_fops = { 4045 .owner = THIS_MODULE, 4046 .open = softnet_seq_open, 4047 .read = seq_read, 4048 .llseek = seq_lseek, 4049 .release = seq_release, 4050 }; 4051 4052 static void *ptype_get_idx(loff_t pos) 4053 { 4054 struct packet_type *pt = NULL; 4055 loff_t i = 0; 4056 int t; 4057 4058 list_for_each_entry_rcu(pt, &ptype_all, list) { 4059 if (i == pos) 4060 return pt; 4061 ++i; 4062 } 4063 4064 for (t = 0; t < PTYPE_HASH_SIZE; t++) { 4065 list_for_each_entry_rcu(pt, &ptype_base[t], list) { 4066 if (i == pos) 4067 return pt; 4068 ++i; 4069 } 4070 } 4071 return NULL; 4072 } 4073 4074 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos) 4075 __acquires(RCU) 4076 { 4077 rcu_read_lock(); 4078 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN; 4079 } 4080 4081 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos) 4082 { 4083 struct packet_type *pt; 4084 struct list_head *nxt; 4085 int hash; 4086 4087 ++*pos; 4088 if (v == SEQ_START_TOKEN) 4089 return ptype_get_idx(0); 4090 4091 pt = v; 4092 nxt = pt->list.next; 4093 if (pt->type == htons(ETH_P_ALL)) { 4094 if (nxt != &ptype_all) 4095 goto found; 4096 hash = 0; 4097 nxt = ptype_base[0].next; 4098 } else 4099 hash = ntohs(pt->type) & PTYPE_HASH_MASK; 4100 4101 while (nxt == &ptype_base[hash]) { 4102 if (++hash >= PTYPE_HASH_SIZE) 4103 return NULL; 4104 nxt = ptype_base[hash].next; 4105 } 4106 found: 4107 return list_entry(nxt, struct packet_type, list); 4108 } 4109 4110 static void ptype_seq_stop(struct seq_file *seq, void *v) 4111 __releases(RCU) 4112 { 4113 rcu_read_unlock(); 4114 } 4115 4116 static int ptype_seq_show(struct seq_file *seq, void *v) 4117 { 4118 struct packet_type *pt = v; 4119 4120 if (v == SEQ_START_TOKEN) 4121 seq_puts(seq, "Type Device Function\n"); 4122 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) { 4123 if (pt->type == htons(ETH_P_ALL)) 4124 seq_puts(seq, "ALL "); 4125 else 4126 seq_printf(seq, "%04x", ntohs(pt->type)); 4127 4128 seq_printf(seq, " %-8s %pF\n", 4129 pt->dev ? pt->dev->name : "", pt->func); 4130 } 4131 4132 return 0; 4133 } 4134 4135 static const struct seq_operations ptype_seq_ops = { 4136 .start = ptype_seq_start, 4137 .next = ptype_seq_next, 4138 .stop = ptype_seq_stop, 4139 .show = ptype_seq_show, 4140 }; 4141 4142 static int ptype_seq_open(struct inode *inode, struct file *file) 4143 { 4144 return seq_open_net(inode, file, &ptype_seq_ops, 4145 sizeof(struct seq_net_private)); 4146 } 4147 4148 static const struct file_operations ptype_seq_fops = { 4149 .owner = THIS_MODULE, 4150 .open = ptype_seq_open, 4151 .read = seq_read, 4152 .llseek = seq_lseek, 4153 .release = seq_release_net, 4154 }; 4155 4156 4157 static int __net_init dev_proc_net_init(struct net *net) 4158 { 4159 int rc = -ENOMEM; 4160 4161 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops)) 4162 goto out; 4163 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops)) 4164 goto out_dev; 4165 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops)) 4166 goto out_softnet; 4167 4168 if (wext_proc_init(net)) 4169 goto out_ptype; 4170 rc = 0; 4171 out: 4172 return rc; 4173 out_ptype: 4174 proc_net_remove(net, "ptype"); 4175 out_softnet: 4176 proc_net_remove(net, "softnet_stat"); 4177 out_dev: 4178 proc_net_remove(net, "dev"); 4179 goto out; 4180 } 4181 4182 static void __net_exit dev_proc_net_exit(struct net *net) 4183 { 4184 wext_proc_exit(net); 4185 4186 proc_net_remove(net, "ptype"); 4187 proc_net_remove(net, "softnet_stat"); 4188 proc_net_remove(net, "dev"); 4189 } 4190 4191 static struct pernet_operations __net_initdata dev_proc_ops = { 4192 .init = dev_proc_net_init, 4193 .exit = dev_proc_net_exit, 4194 }; 4195 4196 static int __init dev_proc_init(void) 4197 { 4198 return register_pernet_subsys(&dev_proc_ops); 4199 } 4200 #else 4201 #define dev_proc_init() 0 4202 #endif /* CONFIG_PROC_FS */ 4203 4204 4205 /** 4206 * netdev_set_master - set up master/slave pair 4207 * @slave: slave device 4208 * @master: new master device 4209 * 4210 * Changes the master device of the slave. Pass %NULL to break the 4211 * bonding. The caller must hold the RTNL semaphore. On a failure 4212 * a negative errno code is returned. On success the reference counts 4213 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the 4214 * function returns zero. 4215 */ 4216 int netdev_set_master(struct net_device *slave, struct net_device *master) 4217 { 4218 struct net_device *old = slave->master; 4219 4220 ASSERT_RTNL(); 4221 4222 if (master) { 4223 if (old) 4224 return -EBUSY; 4225 dev_hold(master); 4226 } 4227 4228 slave->master = master; 4229 4230 if (old) { 4231 synchronize_net(); 4232 dev_put(old); 4233 } 4234 if (master) 4235 slave->flags |= IFF_SLAVE; 4236 else 4237 slave->flags &= ~IFF_SLAVE; 4238 4239 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE); 4240 return 0; 4241 } 4242 EXPORT_SYMBOL(netdev_set_master); 4243 4244 static void dev_change_rx_flags(struct net_device *dev, int flags) 4245 { 4246 const struct net_device_ops *ops = dev->netdev_ops; 4247 4248 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags) 4249 ops->ndo_change_rx_flags(dev, flags); 4250 } 4251 4252 static int __dev_set_promiscuity(struct net_device *dev, int inc) 4253 { 4254 unsigned short old_flags = dev->flags; 4255 uid_t uid; 4256 gid_t gid; 4257 4258 ASSERT_RTNL(); 4259 4260 dev->flags |= IFF_PROMISC; 4261 dev->promiscuity += inc; 4262 if (dev->promiscuity == 0) { 4263 /* 4264 * Avoid overflow. 4265 * If inc causes overflow, untouch promisc and return error. 4266 */ 4267 if (inc < 0) 4268 dev->flags &= ~IFF_PROMISC; 4269 else { 4270 dev->promiscuity -= inc; 4271 printk(KERN_WARNING "%s: promiscuity touches roof, " 4272 "set promiscuity failed, promiscuity feature " 4273 "of device might be broken.\n", dev->name); 4274 return -EOVERFLOW; 4275 } 4276 } 4277 if (dev->flags != old_flags) { 4278 printk(KERN_INFO "device %s %s promiscuous mode\n", 4279 dev->name, (dev->flags & IFF_PROMISC) ? "entered" : 4280 "left"); 4281 if (audit_enabled) { 4282 current_uid_gid(&uid, &gid); 4283 audit_log(current->audit_context, GFP_ATOMIC, 4284 AUDIT_ANOM_PROMISCUOUS, 4285 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 4286 dev->name, (dev->flags & IFF_PROMISC), 4287 (old_flags & IFF_PROMISC), 4288 audit_get_loginuid(current), 4289 uid, gid, 4290 audit_get_sessionid(current)); 4291 } 4292 4293 dev_change_rx_flags(dev, IFF_PROMISC); 4294 } 4295 return 0; 4296 } 4297 4298 /** 4299 * dev_set_promiscuity - update promiscuity count on a device 4300 * @dev: device 4301 * @inc: modifier 4302 * 4303 * Add or remove promiscuity from a device. While the count in the device 4304 * remains above zero the interface remains promiscuous. Once it hits zero 4305 * the device reverts back to normal filtering operation. A negative inc 4306 * value is used to drop promiscuity on the device. 4307 * Return 0 if successful or a negative errno code on error. 4308 */ 4309 int dev_set_promiscuity(struct net_device *dev, int inc) 4310 { 4311 unsigned short old_flags = dev->flags; 4312 int err; 4313 4314 err = __dev_set_promiscuity(dev, inc); 4315 if (err < 0) 4316 return err; 4317 if (dev->flags != old_flags) 4318 dev_set_rx_mode(dev); 4319 return err; 4320 } 4321 EXPORT_SYMBOL(dev_set_promiscuity); 4322 4323 /** 4324 * dev_set_allmulti - update allmulti count on a device 4325 * @dev: device 4326 * @inc: modifier 4327 * 4328 * Add or remove reception of all multicast frames to a device. While the 4329 * count in the device remains above zero the interface remains listening 4330 * to all interfaces. Once it hits zero the device reverts back to normal 4331 * filtering operation. A negative @inc value is used to drop the counter 4332 * when releasing a resource needing all multicasts. 4333 * Return 0 if successful or a negative errno code on error. 4334 */ 4335 4336 int dev_set_allmulti(struct net_device *dev, int inc) 4337 { 4338 unsigned short old_flags = dev->flags; 4339 4340 ASSERT_RTNL(); 4341 4342 dev->flags |= IFF_ALLMULTI; 4343 dev->allmulti += inc; 4344 if (dev->allmulti == 0) { 4345 /* 4346 * Avoid overflow. 4347 * If inc causes overflow, untouch allmulti and return error. 4348 */ 4349 if (inc < 0) 4350 dev->flags &= ~IFF_ALLMULTI; 4351 else { 4352 dev->allmulti -= inc; 4353 printk(KERN_WARNING "%s: allmulti touches roof, " 4354 "set allmulti failed, allmulti feature of " 4355 "device might be broken.\n", dev->name); 4356 return -EOVERFLOW; 4357 } 4358 } 4359 if (dev->flags ^ old_flags) { 4360 dev_change_rx_flags(dev, IFF_ALLMULTI); 4361 dev_set_rx_mode(dev); 4362 } 4363 return 0; 4364 } 4365 EXPORT_SYMBOL(dev_set_allmulti); 4366 4367 /* 4368 * Upload unicast and multicast address lists to device and 4369 * configure RX filtering. When the device doesn't support unicast 4370 * filtering it is put in promiscuous mode while unicast addresses 4371 * are present. 4372 */ 4373 void __dev_set_rx_mode(struct net_device *dev) 4374 { 4375 const struct net_device_ops *ops = dev->netdev_ops; 4376 4377 /* dev_open will call this function so the list will stay sane. */ 4378 if (!(dev->flags&IFF_UP)) 4379 return; 4380 4381 if (!netif_device_present(dev)) 4382 return; 4383 4384 if (ops->ndo_set_rx_mode) 4385 ops->ndo_set_rx_mode(dev); 4386 else { 4387 /* Unicast addresses changes may only happen under the rtnl, 4388 * therefore calling __dev_set_promiscuity here is safe. 4389 */ 4390 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 4391 __dev_set_promiscuity(dev, 1); 4392 dev->uc_promisc = 1; 4393 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 4394 __dev_set_promiscuity(dev, -1); 4395 dev->uc_promisc = 0; 4396 } 4397 4398 if (ops->ndo_set_multicast_list) 4399 ops->ndo_set_multicast_list(dev); 4400 } 4401 } 4402 4403 void dev_set_rx_mode(struct net_device *dev) 4404 { 4405 netif_addr_lock_bh(dev); 4406 __dev_set_rx_mode(dev); 4407 netif_addr_unlock_bh(dev); 4408 } 4409 4410 /** 4411 * dev_get_flags - get flags reported to userspace 4412 * @dev: device 4413 * 4414 * Get the combination of flag bits exported through APIs to userspace. 4415 */ 4416 unsigned dev_get_flags(const struct net_device *dev) 4417 { 4418 unsigned flags; 4419 4420 flags = (dev->flags & ~(IFF_PROMISC | 4421 IFF_ALLMULTI | 4422 IFF_RUNNING | 4423 IFF_LOWER_UP | 4424 IFF_DORMANT)) | 4425 (dev->gflags & (IFF_PROMISC | 4426 IFF_ALLMULTI)); 4427 4428 if (netif_running(dev)) { 4429 if (netif_oper_up(dev)) 4430 flags |= IFF_RUNNING; 4431 if (netif_carrier_ok(dev)) 4432 flags |= IFF_LOWER_UP; 4433 if (netif_dormant(dev)) 4434 flags |= IFF_DORMANT; 4435 } 4436 4437 return flags; 4438 } 4439 EXPORT_SYMBOL(dev_get_flags); 4440 4441 int __dev_change_flags(struct net_device *dev, unsigned int flags) 4442 { 4443 int old_flags = dev->flags; 4444 int ret; 4445 4446 ASSERT_RTNL(); 4447 4448 /* 4449 * Set the flags on our device. 4450 */ 4451 4452 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 4453 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 4454 IFF_AUTOMEDIA)) | 4455 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 4456 IFF_ALLMULTI)); 4457 4458 /* 4459 * Load in the correct multicast list now the flags have changed. 4460 */ 4461 4462 if ((old_flags ^ flags) & IFF_MULTICAST) 4463 dev_change_rx_flags(dev, IFF_MULTICAST); 4464 4465 dev_set_rx_mode(dev); 4466 4467 /* 4468 * Have we downed the interface. We handle IFF_UP ourselves 4469 * according to user attempts to set it, rather than blindly 4470 * setting it. 4471 */ 4472 4473 ret = 0; 4474 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */ 4475 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev); 4476 4477 if (!ret) 4478 dev_set_rx_mode(dev); 4479 } 4480 4481 if ((flags ^ dev->gflags) & IFF_PROMISC) { 4482 int inc = (flags & IFF_PROMISC) ? 1 : -1; 4483 4484 dev->gflags ^= IFF_PROMISC; 4485 dev_set_promiscuity(dev, inc); 4486 } 4487 4488 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 4489 is important. Some (broken) drivers set IFF_PROMISC, when 4490 IFF_ALLMULTI is requested not asking us and not reporting. 4491 */ 4492 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 4493 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 4494 4495 dev->gflags ^= IFF_ALLMULTI; 4496 dev_set_allmulti(dev, inc); 4497 } 4498 4499 return ret; 4500 } 4501 4502 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags) 4503 { 4504 unsigned int changes = dev->flags ^ old_flags; 4505 4506 if (changes & IFF_UP) { 4507 if (dev->flags & IFF_UP) 4508 call_netdevice_notifiers(NETDEV_UP, dev); 4509 else 4510 call_netdevice_notifiers(NETDEV_DOWN, dev); 4511 } 4512 4513 if (dev->flags & IFF_UP && 4514 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) 4515 call_netdevice_notifiers(NETDEV_CHANGE, dev); 4516 } 4517 4518 /** 4519 * dev_change_flags - change device settings 4520 * @dev: device 4521 * @flags: device state flags 4522 * 4523 * Change settings on device based state flags. The flags are 4524 * in the userspace exported format. 4525 */ 4526 int dev_change_flags(struct net_device *dev, unsigned flags) 4527 { 4528 int ret, changes; 4529 int old_flags = dev->flags; 4530 4531 ret = __dev_change_flags(dev, flags); 4532 if (ret < 0) 4533 return ret; 4534 4535 changes = old_flags ^ dev->flags; 4536 if (changes) 4537 rtmsg_ifinfo(RTM_NEWLINK, dev, changes); 4538 4539 __dev_notify_flags(dev, old_flags); 4540 return ret; 4541 } 4542 EXPORT_SYMBOL(dev_change_flags); 4543 4544 /** 4545 * dev_set_mtu - Change maximum transfer unit 4546 * @dev: device 4547 * @new_mtu: new transfer unit 4548 * 4549 * Change the maximum transfer size of the network device. 4550 */ 4551 int dev_set_mtu(struct net_device *dev, int new_mtu) 4552 { 4553 const struct net_device_ops *ops = dev->netdev_ops; 4554 int err; 4555 4556 if (new_mtu == dev->mtu) 4557 return 0; 4558 4559 /* MTU must be positive. */ 4560 if (new_mtu < 0) 4561 return -EINVAL; 4562 4563 if (!netif_device_present(dev)) 4564 return -ENODEV; 4565 4566 err = 0; 4567 if (ops->ndo_change_mtu) 4568 err = ops->ndo_change_mtu(dev, new_mtu); 4569 else 4570 dev->mtu = new_mtu; 4571 4572 if (!err && dev->flags & IFF_UP) 4573 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 4574 return err; 4575 } 4576 EXPORT_SYMBOL(dev_set_mtu); 4577 4578 /** 4579 * dev_set_mac_address - Change Media Access Control Address 4580 * @dev: device 4581 * @sa: new address 4582 * 4583 * Change the hardware (MAC) address of the device 4584 */ 4585 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 4586 { 4587 const struct net_device_ops *ops = dev->netdev_ops; 4588 int err; 4589 4590 if (!ops->ndo_set_mac_address) 4591 return -EOPNOTSUPP; 4592 if (sa->sa_family != dev->type) 4593 return -EINVAL; 4594 if (!netif_device_present(dev)) 4595 return -ENODEV; 4596 err = ops->ndo_set_mac_address(dev, sa); 4597 if (!err) 4598 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 4599 return err; 4600 } 4601 EXPORT_SYMBOL(dev_set_mac_address); 4602 4603 /* 4604 * Perform the SIOCxIFxxx calls, inside rcu_read_lock() 4605 */ 4606 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd) 4607 { 4608 int err; 4609 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name); 4610 4611 if (!dev) 4612 return -ENODEV; 4613 4614 switch (cmd) { 4615 case SIOCGIFFLAGS: /* Get interface flags */ 4616 ifr->ifr_flags = (short) dev_get_flags(dev); 4617 return 0; 4618 4619 case SIOCGIFMETRIC: /* Get the metric on the interface 4620 (currently unused) */ 4621 ifr->ifr_metric = 0; 4622 return 0; 4623 4624 case SIOCGIFMTU: /* Get the MTU of a device */ 4625 ifr->ifr_mtu = dev->mtu; 4626 return 0; 4627 4628 case SIOCGIFHWADDR: 4629 if (!dev->addr_len) 4630 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data); 4631 else 4632 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr, 4633 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 4634 ifr->ifr_hwaddr.sa_family = dev->type; 4635 return 0; 4636 4637 case SIOCGIFSLAVE: 4638 err = -EINVAL; 4639 break; 4640 4641 case SIOCGIFMAP: 4642 ifr->ifr_map.mem_start = dev->mem_start; 4643 ifr->ifr_map.mem_end = dev->mem_end; 4644 ifr->ifr_map.base_addr = dev->base_addr; 4645 ifr->ifr_map.irq = dev->irq; 4646 ifr->ifr_map.dma = dev->dma; 4647 ifr->ifr_map.port = dev->if_port; 4648 return 0; 4649 4650 case SIOCGIFINDEX: 4651 ifr->ifr_ifindex = dev->ifindex; 4652 return 0; 4653 4654 case SIOCGIFTXQLEN: 4655 ifr->ifr_qlen = dev->tx_queue_len; 4656 return 0; 4657 4658 default: 4659 /* dev_ioctl() should ensure this case 4660 * is never reached 4661 */ 4662 WARN_ON(1); 4663 err = -EINVAL; 4664 break; 4665 4666 } 4667 return err; 4668 } 4669 4670 /* 4671 * Perform the SIOCxIFxxx calls, inside rtnl_lock() 4672 */ 4673 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd) 4674 { 4675 int err; 4676 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name); 4677 const struct net_device_ops *ops; 4678 4679 if (!dev) 4680 return -ENODEV; 4681 4682 ops = dev->netdev_ops; 4683 4684 switch (cmd) { 4685 case SIOCSIFFLAGS: /* Set interface flags */ 4686 return dev_change_flags(dev, ifr->ifr_flags); 4687 4688 case SIOCSIFMETRIC: /* Set the metric on the interface 4689 (currently unused) */ 4690 return -EOPNOTSUPP; 4691 4692 case SIOCSIFMTU: /* Set the MTU of a device */ 4693 return dev_set_mtu(dev, ifr->ifr_mtu); 4694 4695 case SIOCSIFHWADDR: 4696 return dev_set_mac_address(dev, &ifr->ifr_hwaddr); 4697 4698 case SIOCSIFHWBROADCAST: 4699 if (ifr->ifr_hwaddr.sa_family != dev->type) 4700 return -EINVAL; 4701 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data, 4702 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 4703 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 4704 return 0; 4705 4706 case SIOCSIFMAP: 4707 if (ops->ndo_set_config) { 4708 if (!netif_device_present(dev)) 4709 return -ENODEV; 4710 return ops->ndo_set_config(dev, &ifr->ifr_map); 4711 } 4712 return -EOPNOTSUPP; 4713 4714 case SIOCADDMULTI: 4715 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) || 4716 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 4717 return -EINVAL; 4718 if (!netif_device_present(dev)) 4719 return -ENODEV; 4720 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data); 4721 4722 case SIOCDELMULTI: 4723 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) || 4724 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 4725 return -EINVAL; 4726 if (!netif_device_present(dev)) 4727 return -ENODEV; 4728 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data); 4729 4730 case SIOCSIFTXQLEN: 4731 if (ifr->ifr_qlen < 0) 4732 return -EINVAL; 4733 dev->tx_queue_len = ifr->ifr_qlen; 4734 return 0; 4735 4736 case SIOCSIFNAME: 4737 ifr->ifr_newname[IFNAMSIZ-1] = '\0'; 4738 return dev_change_name(dev, ifr->ifr_newname); 4739 4740 /* 4741 * Unknown or private ioctl 4742 */ 4743 default: 4744 if ((cmd >= SIOCDEVPRIVATE && 4745 cmd <= SIOCDEVPRIVATE + 15) || 4746 cmd == SIOCBONDENSLAVE || 4747 cmd == SIOCBONDRELEASE || 4748 cmd == SIOCBONDSETHWADDR || 4749 cmd == SIOCBONDSLAVEINFOQUERY || 4750 cmd == SIOCBONDINFOQUERY || 4751 cmd == SIOCBONDCHANGEACTIVE || 4752 cmd == SIOCGMIIPHY || 4753 cmd == SIOCGMIIREG || 4754 cmd == SIOCSMIIREG || 4755 cmd == SIOCBRADDIF || 4756 cmd == SIOCBRDELIF || 4757 cmd == SIOCSHWTSTAMP || 4758 cmd == SIOCWANDEV) { 4759 err = -EOPNOTSUPP; 4760 if (ops->ndo_do_ioctl) { 4761 if (netif_device_present(dev)) 4762 err = ops->ndo_do_ioctl(dev, ifr, cmd); 4763 else 4764 err = -ENODEV; 4765 } 4766 } else 4767 err = -EINVAL; 4768 4769 } 4770 return err; 4771 } 4772 4773 /* 4774 * This function handles all "interface"-type I/O control requests. The actual 4775 * 'doing' part of this is dev_ifsioc above. 4776 */ 4777 4778 /** 4779 * dev_ioctl - network device ioctl 4780 * @net: the applicable net namespace 4781 * @cmd: command to issue 4782 * @arg: pointer to a struct ifreq in user space 4783 * 4784 * Issue ioctl functions to devices. This is normally called by the 4785 * user space syscall interfaces but can sometimes be useful for 4786 * other purposes. The return value is the return from the syscall if 4787 * positive or a negative errno code on error. 4788 */ 4789 4790 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg) 4791 { 4792 struct ifreq ifr; 4793 int ret; 4794 char *colon; 4795 4796 /* One special case: SIOCGIFCONF takes ifconf argument 4797 and requires shared lock, because it sleeps writing 4798 to user space. 4799 */ 4800 4801 if (cmd == SIOCGIFCONF) { 4802 rtnl_lock(); 4803 ret = dev_ifconf(net, (char __user *) arg); 4804 rtnl_unlock(); 4805 return ret; 4806 } 4807 if (cmd == SIOCGIFNAME) 4808 return dev_ifname(net, (struct ifreq __user *)arg); 4809 4810 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 4811 return -EFAULT; 4812 4813 ifr.ifr_name[IFNAMSIZ-1] = 0; 4814 4815 colon = strchr(ifr.ifr_name, ':'); 4816 if (colon) 4817 *colon = 0; 4818 4819 /* 4820 * See which interface the caller is talking about. 4821 */ 4822 4823 switch (cmd) { 4824 /* 4825 * These ioctl calls: 4826 * - can be done by all. 4827 * - atomic and do not require locking. 4828 * - return a value 4829 */ 4830 case SIOCGIFFLAGS: 4831 case SIOCGIFMETRIC: 4832 case SIOCGIFMTU: 4833 case SIOCGIFHWADDR: 4834 case SIOCGIFSLAVE: 4835 case SIOCGIFMAP: 4836 case SIOCGIFINDEX: 4837 case SIOCGIFTXQLEN: 4838 dev_load(net, ifr.ifr_name); 4839 rcu_read_lock(); 4840 ret = dev_ifsioc_locked(net, &ifr, cmd); 4841 rcu_read_unlock(); 4842 if (!ret) { 4843 if (colon) 4844 *colon = ':'; 4845 if (copy_to_user(arg, &ifr, 4846 sizeof(struct ifreq))) 4847 ret = -EFAULT; 4848 } 4849 return ret; 4850 4851 case SIOCETHTOOL: 4852 dev_load(net, ifr.ifr_name); 4853 rtnl_lock(); 4854 ret = dev_ethtool(net, &ifr); 4855 rtnl_unlock(); 4856 if (!ret) { 4857 if (colon) 4858 *colon = ':'; 4859 if (copy_to_user(arg, &ifr, 4860 sizeof(struct ifreq))) 4861 ret = -EFAULT; 4862 } 4863 return ret; 4864 4865 /* 4866 * These ioctl calls: 4867 * - require superuser power. 4868 * - require strict serialization. 4869 * - return a value 4870 */ 4871 case SIOCGMIIPHY: 4872 case SIOCGMIIREG: 4873 case SIOCSIFNAME: 4874 if (!capable(CAP_NET_ADMIN)) 4875 return -EPERM; 4876 dev_load(net, ifr.ifr_name); 4877 rtnl_lock(); 4878 ret = dev_ifsioc(net, &ifr, cmd); 4879 rtnl_unlock(); 4880 if (!ret) { 4881 if (colon) 4882 *colon = ':'; 4883 if (copy_to_user(arg, &ifr, 4884 sizeof(struct ifreq))) 4885 ret = -EFAULT; 4886 } 4887 return ret; 4888 4889 /* 4890 * These ioctl calls: 4891 * - require superuser power. 4892 * - require strict serialization. 4893 * - do not return a value 4894 */ 4895 case SIOCSIFFLAGS: 4896 case SIOCSIFMETRIC: 4897 case SIOCSIFMTU: 4898 case SIOCSIFMAP: 4899 case SIOCSIFHWADDR: 4900 case SIOCSIFSLAVE: 4901 case SIOCADDMULTI: 4902 case SIOCDELMULTI: 4903 case SIOCSIFHWBROADCAST: 4904 case SIOCSIFTXQLEN: 4905 case SIOCSMIIREG: 4906 case SIOCBONDENSLAVE: 4907 case SIOCBONDRELEASE: 4908 case SIOCBONDSETHWADDR: 4909 case SIOCBONDCHANGEACTIVE: 4910 case SIOCBRADDIF: 4911 case SIOCBRDELIF: 4912 case SIOCSHWTSTAMP: 4913 if (!capable(CAP_NET_ADMIN)) 4914 return -EPERM; 4915 /* fall through */ 4916 case SIOCBONDSLAVEINFOQUERY: 4917 case SIOCBONDINFOQUERY: 4918 dev_load(net, ifr.ifr_name); 4919 rtnl_lock(); 4920 ret = dev_ifsioc(net, &ifr, cmd); 4921 rtnl_unlock(); 4922 return ret; 4923 4924 case SIOCGIFMEM: 4925 /* Get the per device memory space. We can add this but 4926 * currently do not support it */ 4927 case SIOCSIFMEM: 4928 /* Set the per device memory buffer space. 4929 * Not applicable in our case */ 4930 case SIOCSIFLINK: 4931 return -EINVAL; 4932 4933 /* 4934 * Unknown or private ioctl. 4935 */ 4936 default: 4937 if (cmd == SIOCWANDEV || 4938 (cmd >= SIOCDEVPRIVATE && 4939 cmd <= SIOCDEVPRIVATE + 15)) { 4940 dev_load(net, ifr.ifr_name); 4941 rtnl_lock(); 4942 ret = dev_ifsioc(net, &ifr, cmd); 4943 rtnl_unlock(); 4944 if (!ret && copy_to_user(arg, &ifr, 4945 sizeof(struct ifreq))) 4946 ret = -EFAULT; 4947 return ret; 4948 } 4949 /* Take care of Wireless Extensions */ 4950 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) 4951 return wext_handle_ioctl(net, &ifr, cmd, arg); 4952 return -EINVAL; 4953 } 4954 } 4955 4956 4957 /** 4958 * dev_new_index - allocate an ifindex 4959 * @net: the applicable net namespace 4960 * 4961 * Returns a suitable unique value for a new device interface 4962 * number. The caller must hold the rtnl semaphore or the 4963 * dev_base_lock to be sure it remains unique. 4964 */ 4965 static int dev_new_index(struct net *net) 4966 { 4967 static int ifindex; 4968 for (;;) { 4969 if (++ifindex <= 0) 4970 ifindex = 1; 4971 if (!__dev_get_by_index(net, ifindex)) 4972 return ifindex; 4973 } 4974 } 4975 4976 /* Delayed registration/unregisteration */ 4977 static LIST_HEAD(net_todo_list); 4978 4979 static void net_set_todo(struct net_device *dev) 4980 { 4981 list_add_tail(&dev->todo_list, &net_todo_list); 4982 } 4983 4984 static void rollback_registered_many(struct list_head *head) 4985 { 4986 struct net_device *dev, *tmp; 4987 4988 BUG_ON(dev_boot_phase); 4989 ASSERT_RTNL(); 4990 4991 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 4992 /* Some devices call without registering 4993 * for initialization unwind. Remove those 4994 * devices and proceed with the remaining. 4995 */ 4996 if (dev->reg_state == NETREG_UNINITIALIZED) { 4997 pr_debug("unregister_netdevice: device %s/%p never " 4998 "was registered\n", dev->name, dev); 4999 5000 WARN_ON(1); 5001 list_del(&dev->unreg_list); 5002 continue; 5003 } 5004 5005 BUG_ON(dev->reg_state != NETREG_REGISTERED); 5006 } 5007 5008 /* If device is running, close it first. */ 5009 dev_close_many(head); 5010 5011 list_for_each_entry(dev, head, unreg_list) { 5012 /* And unlink it from device chain. */ 5013 unlist_netdevice(dev); 5014 5015 dev->reg_state = NETREG_UNREGISTERING; 5016 } 5017 5018 synchronize_net(); 5019 5020 list_for_each_entry(dev, head, unreg_list) { 5021 /* Shutdown queueing discipline. */ 5022 dev_shutdown(dev); 5023 5024 5025 /* Notify protocols, that we are about to destroy 5026 this device. They should clean all the things. 5027 */ 5028 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5029 5030 if (!dev->rtnl_link_ops || 5031 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 5032 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U); 5033 5034 /* 5035 * Flush the unicast and multicast chains 5036 */ 5037 dev_uc_flush(dev); 5038 dev_mc_flush(dev); 5039 5040 if (dev->netdev_ops->ndo_uninit) 5041 dev->netdev_ops->ndo_uninit(dev); 5042 5043 /* Notifier chain MUST detach us from master device. */ 5044 WARN_ON(dev->master); 5045 5046 /* Remove entries from kobject tree */ 5047 netdev_unregister_kobject(dev); 5048 } 5049 5050 /* Process any work delayed until the end of the batch */ 5051 dev = list_first_entry(head, struct net_device, unreg_list); 5052 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev); 5053 5054 rcu_barrier(); 5055 5056 list_for_each_entry(dev, head, unreg_list) 5057 dev_put(dev); 5058 } 5059 5060 static void rollback_registered(struct net_device *dev) 5061 { 5062 LIST_HEAD(single); 5063 5064 list_add(&dev->unreg_list, &single); 5065 rollback_registered_many(&single); 5066 } 5067 5068 unsigned long netdev_fix_features(unsigned long features, const char *name) 5069 { 5070 /* Fix illegal SG+CSUM combinations. */ 5071 if ((features & NETIF_F_SG) && 5072 !(features & NETIF_F_ALL_CSUM)) { 5073 if (name) 5074 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no " 5075 "checksum feature.\n", name); 5076 features &= ~NETIF_F_SG; 5077 } 5078 5079 /* TSO requires that SG is present as well. */ 5080 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) { 5081 if (name) 5082 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no " 5083 "SG feature.\n", name); 5084 features &= ~NETIF_F_TSO; 5085 } 5086 5087 if (features & NETIF_F_UFO) { 5088 /* maybe split UFO into V4 and V6? */ 5089 if (!((features & NETIF_F_GEN_CSUM) || 5090 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM)) 5091 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5092 if (name) 5093 printk(KERN_ERR "%s: Dropping NETIF_F_UFO " 5094 "since no checksum offload features.\n", 5095 name); 5096 features &= ~NETIF_F_UFO; 5097 } 5098 5099 if (!(features & NETIF_F_SG)) { 5100 if (name) 5101 printk(KERN_ERR "%s: Dropping NETIF_F_UFO " 5102 "since no NETIF_F_SG feature.\n", name); 5103 features &= ~NETIF_F_UFO; 5104 } 5105 } 5106 5107 return features; 5108 } 5109 EXPORT_SYMBOL(netdev_fix_features); 5110 5111 /** 5112 * netif_stacked_transfer_operstate - transfer operstate 5113 * @rootdev: the root or lower level device to transfer state from 5114 * @dev: the device to transfer operstate to 5115 * 5116 * Transfer operational state from root to device. This is normally 5117 * called when a stacking relationship exists between the root 5118 * device and the device(a leaf device). 5119 */ 5120 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 5121 struct net_device *dev) 5122 { 5123 if (rootdev->operstate == IF_OPER_DORMANT) 5124 netif_dormant_on(dev); 5125 else 5126 netif_dormant_off(dev); 5127 5128 if (netif_carrier_ok(rootdev)) { 5129 if (!netif_carrier_ok(dev)) 5130 netif_carrier_on(dev); 5131 } else { 5132 if (netif_carrier_ok(dev)) 5133 netif_carrier_off(dev); 5134 } 5135 } 5136 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 5137 5138 #ifdef CONFIG_RPS 5139 static int netif_alloc_rx_queues(struct net_device *dev) 5140 { 5141 unsigned int i, count = dev->num_rx_queues; 5142 struct netdev_rx_queue *rx; 5143 5144 BUG_ON(count < 1); 5145 5146 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL); 5147 if (!rx) { 5148 pr_err("netdev: Unable to allocate %u rx queues.\n", count); 5149 return -ENOMEM; 5150 } 5151 dev->_rx = rx; 5152 5153 for (i = 0; i < count; i++) 5154 rx[i].dev = dev; 5155 return 0; 5156 } 5157 #endif 5158 5159 static void netdev_init_one_queue(struct net_device *dev, 5160 struct netdev_queue *queue, void *_unused) 5161 { 5162 /* Initialize queue lock */ 5163 spin_lock_init(&queue->_xmit_lock); 5164 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 5165 queue->xmit_lock_owner = -1; 5166 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 5167 queue->dev = dev; 5168 } 5169 5170 static int netif_alloc_netdev_queues(struct net_device *dev) 5171 { 5172 unsigned int count = dev->num_tx_queues; 5173 struct netdev_queue *tx; 5174 5175 BUG_ON(count < 1); 5176 5177 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL); 5178 if (!tx) { 5179 pr_err("netdev: Unable to allocate %u tx queues.\n", 5180 count); 5181 return -ENOMEM; 5182 } 5183 dev->_tx = tx; 5184 5185 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 5186 spin_lock_init(&dev->tx_global_lock); 5187 5188 return 0; 5189 } 5190 5191 /** 5192 * register_netdevice - register a network device 5193 * @dev: device to register 5194 * 5195 * Take a completed network device structure and add it to the kernel 5196 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 5197 * chain. 0 is returned on success. A negative errno code is returned 5198 * on a failure to set up the device, or if the name is a duplicate. 5199 * 5200 * Callers must hold the rtnl semaphore. You may want 5201 * register_netdev() instead of this. 5202 * 5203 * BUGS: 5204 * The locking appears insufficient to guarantee two parallel registers 5205 * will not get the same name. 5206 */ 5207 5208 int register_netdevice(struct net_device *dev) 5209 { 5210 int ret; 5211 struct net *net = dev_net(dev); 5212 5213 BUG_ON(dev_boot_phase); 5214 ASSERT_RTNL(); 5215 5216 might_sleep(); 5217 5218 /* When net_device's are persistent, this will be fatal. */ 5219 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 5220 BUG_ON(!net); 5221 5222 spin_lock_init(&dev->addr_list_lock); 5223 netdev_set_addr_lockdep_class(dev); 5224 5225 dev->iflink = -1; 5226 5227 /* Init, if this function is available */ 5228 if (dev->netdev_ops->ndo_init) { 5229 ret = dev->netdev_ops->ndo_init(dev); 5230 if (ret) { 5231 if (ret > 0) 5232 ret = -EIO; 5233 goto out; 5234 } 5235 } 5236 5237 ret = dev_get_valid_name(dev, dev->name, 0); 5238 if (ret) 5239 goto err_uninit; 5240 5241 dev->ifindex = dev_new_index(net); 5242 if (dev->iflink == -1) 5243 dev->iflink = dev->ifindex; 5244 5245 /* Fix illegal checksum combinations */ 5246 if ((dev->features & NETIF_F_HW_CSUM) && 5247 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5248 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n", 5249 dev->name); 5250 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 5251 } 5252 5253 if ((dev->features & NETIF_F_NO_CSUM) && 5254 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5255 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n", 5256 dev->name); 5257 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM); 5258 } 5259 5260 dev->features = netdev_fix_features(dev->features, dev->name); 5261 5262 /* Enable software GSO if SG is supported. */ 5263 if (dev->features & NETIF_F_SG) 5264 dev->features |= NETIF_F_GSO; 5265 5266 /* Enable GRO and NETIF_F_HIGHDMA for vlans by default, 5267 * vlan_dev_init() will do the dev->features check, so these features 5268 * are enabled only if supported by underlying device. 5269 */ 5270 dev->vlan_features |= (NETIF_F_GRO | NETIF_F_HIGHDMA); 5271 5272 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 5273 ret = notifier_to_errno(ret); 5274 if (ret) 5275 goto err_uninit; 5276 5277 ret = netdev_register_kobject(dev); 5278 if (ret) 5279 goto err_uninit; 5280 dev->reg_state = NETREG_REGISTERED; 5281 5282 /* 5283 * Default initial state at registry is that the 5284 * device is present. 5285 */ 5286 5287 set_bit(__LINK_STATE_PRESENT, &dev->state); 5288 5289 dev_init_scheduler(dev); 5290 dev_hold(dev); 5291 list_netdevice(dev); 5292 5293 /* Notify protocols, that a new device appeared. */ 5294 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 5295 ret = notifier_to_errno(ret); 5296 if (ret) { 5297 rollback_registered(dev); 5298 dev->reg_state = NETREG_UNREGISTERED; 5299 } 5300 /* 5301 * Prevent userspace races by waiting until the network 5302 * device is fully setup before sending notifications. 5303 */ 5304 if (!dev->rtnl_link_ops || 5305 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 5306 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U); 5307 5308 out: 5309 return ret; 5310 5311 err_uninit: 5312 if (dev->netdev_ops->ndo_uninit) 5313 dev->netdev_ops->ndo_uninit(dev); 5314 goto out; 5315 } 5316 EXPORT_SYMBOL(register_netdevice); 5317 5318 /** 5319 * init_dummy_netdev - init a dummy network device for NAPI 5320 * @dev: device to init 5321 * 5322 * This takes a network device structure and initialize the minimum 5323 * amount of fields so it can be used to schedule NAPI polls without 5324 * registering a full blown interface. This is to be used by drivers 5325 * that need to tie several hardware interfaces to a single NAPI 5326 * poll scheduler due to HW limitations. 5327 */ 5328 int init_dummy_netdev(struct net_device *dev) 5329 { 5330 /* Clear everything. Note we don't initialize spinlocks 5331 * are they aren't supposed to be taken by any of the 5332 * NAPI code and this dummy netdev is supposed to be 5333 * only ever used for NAPI polls 5334 */ 5335 memset(dev, 0, sizeof(struct net_device)); 5336 5337 /* make sure we BUG if trying to hit standard 5338 * register/unregister code path 5339 */ 5340 dev->reg_state = NETREG_DUMMY; 5341 5342 /* NAPI wants this */ 5343 INIT_LIST_HEAD(&dev->napi_list); 5344 5345 /* a dummy interface is started by default */ 5346 set_bit(__LINK_STATE_PRESENT, &dev->state); 5347 set_bit(__LINK_STATE_START, &dev->state); 5348 5349 /* Note : We dont allocate pcpu_refcnt for dummy devices, 5350 * because users of this 'device' dont need to change 5351 * its refcount. 5352 */ 5353 5354 return 0; 5355 } 5356 EXPORT_SYMBOL_GPL(init_dummy_netdev); 5357 5358 5359 /** 5360 * register_netdev - register a network device 5361 * @dev: device to register 5362 * 5363 * Take a completed network device structure and add it to the kernel 5364 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 5365 * chain. 0 is returned on success. A negative errno code is returned 5366 * on a failure to set up the device, or if the name is a duplicate. 5367 * 5368 * This is a wrapper around register_netdevice that takes the rtnl semaphore 5369 * and expands the device name if you passed a format string to 5370 * alloc_netdev. 5371 */ 5372 int register_netdev(struct net_device *dev) 5373 { 5374 int err; 5375 5376 rtnl_lock(); 5377 5378 /* 5379 * If the name is a format string the caller wants us to do a 5380 * name allocation. 5381 */ 5382 if (strchr(dev->name, '%')) { 5383 err = dev_alloc_name(dev, dev->name); 5384 if (err < 0) 5385 goto out; 5386 } 5387 5388 err = register_netdevice(dev); 5389 out: 5390 rtnl_unlock(); 5391 return err; 5392 } 5393 EXPORT_SYMBOL(register_netdev); 5394 5395 int netdev_refcnt_read(const struct net_device *dev) 5396 { 5397 int i, refcnt = 0; 5398 5399 for_each_possible_cpu(i) 5400 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 5401 return refcnt; 5402 } 5403 EXPORT_SYMBOL(netdev_refcnt_read); 5404 5405 /* 5406 * netdev_wait_allrefs - wait until all references are gone. 5407 * 5408 * This is called when unregistering network devices. 5409 * 5410 * Any protocol or device that holds a reference should register 5411 * for netdevice notification, and cleanup and put back the 5412 * reference if they receive an UNREGISTER event. 5413 * We can get stuck here if buggy protocols don't correctly 5414 * call dev_put. 5415 */ 5416 static void netdev_wait_allrefs(struct net_device *dev) 5417 { 5418 unsigned long rebroadcast_time, warning_time; 5419 int refcnt; 5420 5421 linkwatch_forget_dev(dev); 5422 5423 rebroadcast_time = warning_time = jiffies; 5424 refcnt = netdev_refcnt_read(dev); 5425 5426 while (refcnt != 0) { 5427 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 5428 rtnl_lock(); 5429 5430 /* Rebroadcast unregister notification */ 5431 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5432 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users 5433 * should have already handle it the first time */ 5434 5435 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 5436 &dev->state)) { 5437 /* We must not have linkwatch events 5438 * pending on unregister. If this 5439 * happens, we simply run the queue 5440 * unscheduled, resulting in a noop 5441 * for this device. 5442 */ 5443 linkwatch_run_queue(); 5444 } 5445 5446 __rtnl_unlock(); 5447 5448 rebroadcast_time = jiffies; 5449 } 5450 5451 msleep(250); 5452 5453 refcnt = netdev_refcnt_read(dev); 5454 5455 if (time_after(jiffies, warning_time + 10 * HZ)) { 5456 printk(KERN_EMERG "unregister_netdevice: " 5457 "waiting for %s to become free. Usage " 5458 "count = %d\n", 5459 dev->name, refcnt); 5460 warning_time = jiffies; 5461 } 5462 } 5463 } 5464 5465 /* The sequence is: 5466 * 5467 * rtnl_lock(); 5468 * ... 5469 * register_netdevice(x1); 5470 * register_netdevice(x2); 5471 * ... 5472 * unregister_netdevice(y1); 5473 * unregister_netdevice(y2); 5474 * ... 5475 * rtnl_unlock(); 5476 * free_netdev(y1); 5477 * free_netdev(y2); 5478 * 5479 * We are invoked by rtnl_unlock(). 5480 * This allows us to deal with problems: 5481 * 1) We can delete sysfs objects which invoke hotplug 5482 * without deadlocking with linkwatch via keventd. 5483 * 2) Since we run with the RTNL semaphore not held, we can sleep 5484 * safely in order to wait for the netdev refcnt to drop to zero. 5485 * 5486 * We must not return until all unregister events added during 5487 * the interval the lock was held have been completed. 5488 */ 5489 void netdev_run_todo(void) 5490 { 5491 struct list_head list; 5492 5493 /* Snapshot list, allow later requests */ 5494 list_replace_init(&net_todo_list, &list); 5495 5496 __rtnl_unlock(); 5497 5498 while (!list_empty(&list)) { 5499 struct net_device *dev 5500 = list_first_entry(&list, struct net_device, todo_list); 5501 list_del(&dev->todo_list); 5502 5503 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 5504 printk(KERN_ERR "network todo '%s' but state %d\n", 5505 dev->name, dev->reg_state); 5506 dump_stack(); 5507 continue; 5508 } 5509 5510 dev->reg_state = NETREG_UNREGISTERED; 5511 5512 on_each_cpu(flush_backlog, dev, 1); 5513 5514 netdev_wait_allrefs(dev); 5515 5516 /* paranoia */ 5517 BUG_ON(netdev_refcnt_read(dev)); 5518 WARN_ON(rcu_dereference_raw(dev->ip_ptr)); 5519 WARN_ON(rcu_dereference_raw(dev->ip6_ptr)); 5520 WARN_ON(dev->dn_ptr); 5521 5522 if (dev->destructor) 5523 dev->destructor(dev); 5524 5525 /* Free network device */ 5526 kobject_put(&dev->dev.kobj); 5527 } 5528 } 5529 5530 /* Convert net_device_stats to rtnl_link_stats64. They have the same 5531 * fields in the same order, with only the type differing. 5532 */ 5533 static void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 5534 const struct net_device_stats *netdev_stats) 5535 { 5536 #if BITS_PER_LONG == 64 5537 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats)); 5538 memcpy(stats64, netdev_stats, sizeof(*stats64)); 5539 #else 5540 size_t i, n = sizeof(*stats64) / sizeof(u64); 5541 const unsigned long *src = (const unsigned long *)netdev_stats; 5542 u64 *dst = (u64 *)stats64; 5543 5544 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) != 5545 sizeof(*stats64) / sizeof(u64)); 5546 for (i = 0; i < n; i++) 5547 dst[i] = src[i]; 5548 #endif 5549 } 5550 5551 /** 5552 * dev_get_stats - get network device statistics 5553 * @dev: device to get statistics from 5554 * @storage: place to store stats 5555 * 5556 * Get network statistics from device. Return @storage. 5557 * The device driver may provide its own method by setting 5558 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 5559 * otherwise the internal statistics structure is used. 5560 */ 5561 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 5562 struct rtnl_link_stats64 *storage) 5563 { 5564 const struct net_device_ops *ops = dev->netdev_ops; 5565 5566 if (ops->ndo_get_stats64) { 5567 memset(storage, 0, sizeof(*storage)); 5568 ops->ndo_get_stats64(dev, storage); 5569 } else if (ops->ndo_get_stats) { 5570 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 5571 } else { 5572 netdev_stats_to_stats64(storage, &dev->stats); 5573 } 5574 storage->rx_dropped += atomic_long_read(&dev->rx_dropped); 5575 return storage; 5576 } 5577 EXPORT_SYMBOL(dev_get_stats); 5578 5579 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 5580 { 5581 struct netdev_queue *queue = dev_ingress_queue(dev); 5582 5583 #ifdef CONFIG_NET_CLS_ACT 5584 if (queue) 5585 return queue; 5586 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 5587 if (!queue) 5588 return NULL; 5589 netdev_init_one_queue(dev, queue, NULL); 5590 queue->qdisc = &noop_qdisc; 5591 queue->qdisc_sleeping = &noop_qdisc; 5592 rcu_assign_pointer(dev->ingress_queue, queue); 5593 #endif 5594 return queue; 5595 } 5596 5597 /** 5598 * alloc_netdev_mqs - allocate network device 5599 * @sizeof_priv: size of private data to allocate space for 5600 * @name: device name format string 5601 * @setup: callback to initialize device 5602 * @txqs: the number of TX subqueues to allocate 5603 * @rxqs: the number of RX subqueues to allocate 5604 * 5605 * Allocates a struct net_device with private data area for driver use 5606 * and performs basic initialization. Also allocates subquue structs 5607 * for each queue on the device. 5608 */ 5609 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 5610 void (*setup)(struct net_device *), 5611 unsigned int txqs, unsigned int rxqs) 5612 { 5613 struct net_device *dev; 5614 size_t alloc_size; 5615 struct net_device *p; 5616 5617 BUG_ON(strlen(name) >= sizeof(dev->name)); 5618 5619 if (txqs < 1) { 5620 pr_err("alloc_netdev: Unable to allocate device " 5621 "with zero queues.\n"); 5622 return NULL; 5623 } 5624 5625 #ifdef CONFIG_RPS 5626 if (rxqs < 1) { 5627 pr_err("alloc_netdev: Unable to allocate device " 5628 "with zero RX queues.\n"); 5629 return NULL; 5630 } 5631 #endif 5632 5633 alloc_size = sizeof(struct net_device); 5634 if (sizeof_priv) { 5635 /* ensure 32-byte alignment of private area */ 5636 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 5637 alloc_size += sizeof_priv; 5638 } 5639 /* ensure 32-byte alignment of whole construct */ 5640 alloc_size += NETDEV_ALIGN - 1; 5641 5642 p = kzalloc(alloc_size, GFP_KERNEL); 5643 if (!p) { 5644 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n"); 5645 return NULL; 5646 } 5647 5648 dev = PTR_ALIGN(p, NETDEV_ALIGN); 5649 dev->padded = (char *)dev - (char *)p; 5650 5651 dev->pcpu_refcnt = alloc_percpu(int); 5652 if (!dev->pcpu_refcnt) 5653 goto free_p; 5654 5655 if (dev_addr_init(dev)) 5656 goto free_pcpu; 5657 5658 dev_mc_init(dev); 5659 dev_uc_init(dev); 5660 5661 dev_net_set(dev, &init_net); 5662 5663 dev->gso_max_size = GSO_MAX_SIZE; 5664 5665 INIT_LIST_HEAD(&dev->ethtool_ntuple_list.list); 5666 dev->ethtool_ntuple_list.count = 0; 5667 INIT_LIST_HEAD(&dev->napi_list); 5668 INIT_LIST_HEAD(&dev->unreg_list); 5669 INIT_LIST_HEAD(&dev->link_watch_list); 5670 dev->priv_flags = IFF_XMIT_DST_RELEASE; 5671 setup(dev); 5672 5673 dev->num_tx_queues = txqs; 5674 dev->real_num_tx_queues = txqs; 5675 if (netif_alloc_netdev_queues(dev)) 5676 goto free_all; 5677 5678 #ifdef CONFIG_RPS 5679 dev->num_rx_queues = rxqs; 5680 dev->real_num_rx_queues = rxqs; 5681 if (netif_alloc_rx_queues(dev)) 5682 goto free_all; 5683 #endif 5684 5685 strcpy(dev->name, name); 5686 return dev; 5687 5688 free_all: 5689 free_netdev(dev); 5690 return NULL; 5691 5692 free_pcpu: 5693 free_percpu(dev->pcpu_refcnt); 5694 kfree(dev->_tx); 5695 #ifdef CONFIG_RPS 5696 kfree(dev->_rx); 5697 #endif 5698 5699 free_p: 5700 kfree(p); 5701 return NULL; 5702 } 5703 EXPORT_SYMBOL(alloc_netdev_mqs); 5704 5705 /** 5706 * free_netdev - free network device 5707 * @dev: device 5708 * 5709 * This function does the last stage of destroying an allocated device 5710 * interface. The reference to the device object is released. 5711 * If this is the last reference then it will be freed. 5712 */ 5713 void free_netdev(struct net_device *dev) 5714 { 5715 struct napi_struct *p, *n; 5716 5717 release_net(dev_net(dev)); 5718 5719 kfree(dev->_tx); 5720 #ifdef CONFIG_RPS 5721 kfree(dev->_rx); 5722 #endif 5723 5724 kfree(rcu_dereference_raw(dev->ingress_queue)); 5725 5726 /* Flush device addresses */ 5727 dev_addr_flush(dev); 5728 5729 /* Clear ethtool n-tuple list */ 5730 ethtool_ntuple_flush(dev); 5731 5732 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 5733 netif_napi_del(p); 5734 5735 free_percpu(dev->pcpu_refcnt); 5736 dev->pcpu_refcnt = NULL; 5737 5738 /* Compatibility with error handling in drivers */ 5739 if (dev->reg_state == NETREG_UNINITIALIZED) { 5740 kfree((char *)dev - dev->padded); 5741 return; 5742 } 5743 5744 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 5745 dev->reg_state = NETREG_RELEASED; 5746 5747 /* will free via device release */ 5748 put_device(&dev->dev); 5749 } 5750 EXPORT_SYMBOL(free_netdev); 5751 5752 /** 5753 * synchronize_net - Synchronize with packet receive processing 5754 * 5755 * Wait for packets currently being received to be done. 5756 * Does not block later packets from starting. 5757 */ 5758 void synchronize_net(void) 5759 { 5760 might_sleep(); 5761 synchronize_rcu(); 5762 } 5763 EXPORT_SYMBOL(synchronize_net); 5764 5765 /** 5766 * unregister_netdevice_queue - remove device from the kernel 5767 * @dev: device 5768 * @head: list 5769 * 5770 * This function shuts down a device interface and removes it 5771 * from the kernel tables. 5772 * If head not NULL, device is queued to be unregistered later. 5773 * 5774 * Callers must hold the rtnl semaphore. You may want 5775 * unregister_netdev() instead of this. 5776 */ 5777 5778 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 5779 { 5780 ASSERT_RTNL(); 5781 5782 if (head) { 5783 list_move_tail(&dev->unreg_list, head); 5784 } else { 5785 rollback_registered(dev); 5786 /* Finish processing unregister after unlock */ 5787 net_set_todo(dev); 5788 } 5789 } 5790 EXPORT_SYMBOL(unregister_netdevice_queue); 5791 5792 /** 5793 * unregister_netdevice_many - unregister many devices 5794 * @head: list of devices 5795 */ 5796 void unregister_netdevice_many(struct list_head *head) 5797 { 5798 struct net_device *dev; 5799 5800 if (!list_empty(head)) { 5801 rollback_registered_many(head); 5802 list_for_each_entry(dev, head, unreg_list) 5803 net_set_todo(dev); 5804 } 5805 } 5806 EXPORT_SYMBOL(unregister_netdevice_many); 5807 5808 /** 5809 * unregister_netdev - remove device from the kernel 5810 * @dev: device 5811 * 5812 * This function shuts down a device interface and removes it 5813 * from the kernel tables. 5814 * 5815 * This is just a wrapper for unregister_netdevice that takes 5816 * the rtnl semaphore. In general you want to use this and not 5817 * unregister_netdevice. 5818 */ 5819 void unregister_netdev(struct net_device *dev) 5820 { 5821 rtnl_lock(); 5822 unregister_netdevice(dev); 5823 rtnl_unlock(); 5824 } 5825 EXPORT_SYMBOL(unregister_netdev); 5826 5827 /** 5828 * dev_change_net_namespace - move device to different nethost namespace 5829 * @dev: device 5830 * @net: network namespace 5831 * @pat: If not NULL name pattern to try if the current device name 5832 * is already taken in the destination network namespace. 5833 * 5834 * This function shuts down a device interface and moves it 5835 * to a new network namespace. On success 0 is returned, on 5836 * a failure a netagive errno code is returned. 5837 * 5838 * Callers must hold the rtnl semaphore. 5839 */ 5840 5841 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 5842 { 5843 int err; 5844 5845 ASSERT_RTNL(); 5846 5847 /* Don't allow namespace local devices to be moved. */ 5848 err = -EINVAL; 5849 if (dev->features & NETIF_F_NETNS_LOCAL) 5850 goto out; 5851 5852 /* Ensure the device has been registrered */ 5853 err = -EINVAL; 5854 if (dev->reg_state != NETREG_REGISTERED) 5855 goto out; 5856 5857 /* Get out if there is nothing todo */ 5858 err = 0; 5859 if (net_eq(dev_net(dev), net)) 5860 goto out; 5861 5862 /* Pick the destination device name, and ensure 5863 * we can use it in the destination network namespace. 5864 */ 5865 err = -EEXIST; 5866 if (__dev_get_by_name(net, dev->name)) { 5867 /* We get here if we can't use the current device name */ 5868 if (!pat) 5869 goto out; 5870 if (dev_get_valid_name(dev, pat, 1)) 5871 goto out; 5872 } 5873 5874 /* 5875 * And now a mini version of register_netdevice unregister_netdevice. 5876 */ 5877 5878 /* If device is running close it first. */ 5879 dev_close(dev); 5880 5881 /* And unlink it from device chain */ 5882 err = -ENODEV; 5883 unlist_netdevice(dev); 5884 5885 synchronize_net(); 5886 5887 /* Shutdown queueing discipline. */ 5888 dev_shutdown(dev); 5889 5890 /* Notify protocols, that we are about to destroy 5891 this device. They should clean all the things. 5892 5893 Note that dev->reg_state stays at NETREG_REGISTERED. 5894 This is wanted because this way 8021q and macvlan know 5895 the device is just moving and can keep their slaves up. 5896 */ 5897 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5898 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev); 5899 5900 /* 5901 * Flush the unicast and multicast chains 5902 */ 5903 dev_uc_flush(dev); 5904 dev_mc_flush(dev); 5905 5906 /* Actually switch the network namespace */ 5907 dev_net_set(dev, net); 5908 5909 /* If there is an ifindex conflict assign a new one */ 5910 if (__dev_get_by_index(net, dev->ifindex)) { 5911 int iflink = (dev->iflink == dev->ifindex); 5912 dev->ifindex = dev_new_index(net); 5913 if (iflink) 5914 dev->iflink = dev->ifindex; 5915 } 5916 5917 /* Fixup kobjects */ 5918 err = device_rename(&dev->dev, dev->name); 5919 WARN_ON(err); 5920 5921 /* Add the device back in the hashes */ 5922 list_netdevice(dev); 5923 5924 /* Notify protocols, that a new device appeared. */ 5925 call_netdevice_notifiers(NETDEV_REGISTER, dev); 5926 5927 /* 5928 * Prevent userspace races by waiting until the network 5929 * device is fully setup before sending notifications. 5930 */ 5931 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U); 5932 5933 synchronize_net(); 5934 err = 0; 5935 out: 5936 return err; 5937 } 5938 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 5939 5940 static int dev_cpu_callback(struct notifier_block *nfb, 5941 unsigned long action, 5942 void *ocpu) 5943 { 5944 struct sk_buff **list_skb; 5945 struct sk_buff *skb; 5946 unsigned int cpu, oldcpu = (unsigned long)ocpu; 5947 struct softnet_data *sd, *oldsd; 5948 5949 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 5950 return NOTIFY_OK; 5951 5952 local_irq_disable(); 5953 cpu = smp_processor_id(); 5954 sd = &per_cpu(softnet_data, cpu); 5955 oldsd = &per_cpu(softnet_data, oldcpu); 5956 5957 /* Find end of our completion_queue. */ 5958 list_skb = &sd->completion_queue; 5959 while (*list_skb) 5960 list_skb = &(*list_skb)->next; 5961 /* Append completion queue from offline CPU. */ 5962 *list_skb = oldsd->completion_queue; 5963 oldsd->completion_queue = NULL; 5964 5965 /* Append output queue from offline CPU. */ 5966 if (oldsd->output_queue) { 5967 *sd->output_queue_tailp = oldsd->output_queue; 5968 sd->output_queue_tailp = oldsd->output_queue_tailp; 5969 oldsd->output_queue = NULL; 5970 oldsd->output_queue_tailp = &oldsd->output_queue; 5971 } 5972 5973 raise_softirq_irqoff(NET_TX_SOFTIRQ); 5974 local_irq_enable(); 5975 5976 /* Process offline CPU's input_pkt_queue */ 5977 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 5978 netif_rx(skb); 5979 input_queue_head_incr(oldsd); 5980 } 5981 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) { 5982 netif_rx(skb); 5983 input_queue_head_incr(oldsd); 5984 } 5985 5986 return NOTIFY_OK; 5987 } 5988 5989 5990 /** 5991 * netdev_increment_features - increment feature set by one 5992 * @all: current feature set 5993 * @one: new feature set 5994 * @mask: mask feature set 5995 * 5996 * Computes a new feature set after adding a device with feature set 5997 * @one to the master device with current feature set @all. Will not 5998 * enable anything that is off in @mask. Returns the new feature set. 5999 */ 6000 unsigned long netdev_increment_features(unsigned long all, unsigned long one, 6001 unsigned long mask) 6002 { 6003 /* If device needs checksumming, downgrade to it. */ 6004 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM)) 6005 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM); 6006 else if (mask & NETIF_F_ALL_CSUM) { 6007 /* If one device supports v4/v6 checksumming, set for all. */ 6008 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) && 6009 !(all & NETIF_F_GEN_CSUM)) { 6010 all &= ~NETIF_F_ALL_CSUM; 6011 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM); 6012 } 6013 6014 /* If one device supports hw checksumming, set for all. */ 6015 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) { 6016 all &= ~NETIF_F_ALL_CSUM; 6017 all |= NETIF_F_HW_CSUM; 6018 } 6019 } 6020 6021 one |= NETIF_F_ALL_CSUM; 6022 6023 one |= all & NETIF_F_ONE_FOR_ALL; 6024 all &= one | NETIF_F_LLTX | NETIF_F_GSO | NETIF_F_UFO; 6025 all |= one & mask & NETIF_F_ONE_FOR_ALL; 6026 6027 return all; 6028 } 6029 EXPORT_SYMBOL(netdev_increment_features); 6030 6031 static struct hlist_head *netdev_create_hash(void) 6032 { 6033 int i; 6034 struct hlist_head *hash; 6035 6036 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 6037 if (hash != NULL) 6038 for (i = 0; i < NETDEV_HASHENTRIES; i++) 6039 INIT_HLIST_HEAD(&hash[i]); 6040 6041 return hash; 6042 } 6043 6044 /* Initialize per network namespace state */ 6045 static int __net_init netdev_init(struct net *net) 6046 { 6047 INIT_LIST_HEAD(&net->dev_base_head); 6048 6049 net->dev_name_head = netdev_create_hash(); 6050 if (net->dev_name_head == NULL) 6051 goto err_name; 6052 6053 net->dev_index_head = netdev_create_hash(); 6054 if (net->dev_index_head == NULL) 6055 goto err_idx; 6056 6057 return 0; 6058 6059 err_idx: 6060 kfree(net->dev_name_head); 6061 err_name: 6062 return -ENOMEM; 6063 } 6064 6065 /** 6066 * netdev_drivername - network driver for the device 6067 * @dev: network device 6068 * @buffer: buffer for resulting name 6069 * @len: size of buffer 6070 * 6071 * Determine network driver for device. 6072 */ 6073 char *netdev_drivername(const struct net_device *dev, char *buffer, int len) 6074 { 6075 const struct device_driver *driver; 6076 const struct device *parent; 6077 6078 if (len <= 0 || !buffer) 6079 return buffer; 6080 buffer[0] = 0; 6081 6082 parent = dev->dev.parent; 6083 6084 if (!parent) 6085 return buffer; 6086 6087 driver = parent->driver; 6088 if (driver && driver->name) 6089 strlcpy(buffer, driver->name, len); 6090 return buffer; 6091 } 6092 6093 static int __netdev_printk(const char *level, const struct net_device *dev, 6094 struct va_format *vaf) 6095 { 6096 int r; 6097 6098 if (dev && dev->dev.parent) 6099 r = dev_printk(level, dev->dev.parent, "%s: %pV", 6100 netdev_name(dev), vaf); 6101 else if (dev) 6102 r = printk("%s%s: %pV", level, netdev_name(dev), vaf); 6103 else 6104 r = printk("%s(NULL net_device): %pV", level, vaf); 6105 6106 return r; 6107 } 6108 6109 int netdev_printk(const char *level, const struct net_device *dev, 6110 const char *format, ...) 6111 { 6112 struct va_format vaf; 6113 va_list args; 6114 int r; 6115 6116 va_start(args, format); 6117 6118 vaf.fmt = format; 6119 vaf.va = &args; 6120 6121 r = __netdev_printk(level, dev, &vaf); 6122 va_end(args); 6123 6124 return r; 6125 } 6126 EXPORT_SYMBOL(netdev_printk); 6127 6128 #define define_netdev_printk_level(func, level) \ 6129 int func(const struct net_device *dev, const char *fmt, ...) \ 6130 { \ 6131 int r; \ 6132 struct va_format vaf; \ 6133 va_list args; \ 6134 \ 6135 va_start(args, fmt); \ 6136 \ 6137 vaf.fmt = fmt; \ 6138 vaf.va = &args; \ 6139 \ 6140 r = __netdev_printk(level, dev, &vaf); \ 6141 va_end(args); \ 6142 \ 6143 return r; \ 6144 } \ 6145 EXPORT_SYMBOL(func); 6146 6147 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 6148 define_netdev_printk_level(netdev_alert, KERN_ALERT); 6149 define_netdev_printk_level(netdev_crit, KERN_CRIT); 6150 define_netdev_printk_level(netdev_err, KERN_ERR); 6151 define_netdev_printk_level(netdev_warn, KERN_WARNING); 6152 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 6153 define_netdev_printk_level(netdev_info, KERN_INFO); 6154 6155 static void __net_exit netdev_exit(struct net *net) 6156 { 6157 kfree(net->dev_name_head); 6158 kfree(net->dev_index_head); 6159 } 6160 6161 static struct pernet_operations __net_initdata netdev_net_ops = { 6162 .init = netdev_init, 6163 .exit = netdev_exit, 6164 }; 6165 6166 static void __net_exit default_device_exit(struct net *net) 6167 { 6168 struct net_device *dev, *aux; 6169 /* 6170 * Push all migratable network devices back to the 6171 * initial network namespace 6172 */ 6173 rtnl_lock(); 6174 for_each_netdev_safe(net, dev, aux) { 6175 int err; 6176 char fb_name[IFNAMSIZ]; 6177 6178 /* Ignore unmoveable devices (i.e. loopback) */ 6179 if (dev->features & NETIF_F_NETNS_LOCAL) 6180 continue; 6181 6182 /* Leave virtual devices for the generic cleanup */ 6183 if (dev->rtnl_link_ops) 6184 continue; 6185 6186 /* Push remaing network devices to init_net */ 6187 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 6188 err = dev_change_net_namespace(dev, &init_net, fb_name); 6189 if (err) { 6190 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n", 6191 __func__, dev->name, err); 6192 BUG(); 6193 } 6194 } 6195 rtnl_unlock(); 6196 } 6197 6198 static void __net_exit default_device_exit_batch(struct list_head *net_list) 6199 { 6200 /* At exit all network devices most be removed from a network 6201 * namespace. Do this in the reverse order of registration. 6202 * Do this across as many network namespaces as possible to 6203 * improve batching efficiency. 6204 */ 6205 struct net_device *dev; 6206 struct net *net; 6207 LIST_HEAD(dev_kill_list); 6208 6209 rtnl_lock(); 6210 list_for_each_entry(net, net_list, exit_list) { 6211 for_each_netdev_reverse(net, dev) { 6212 if (dev->rtnl_link_ops) 6213 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 6214 else 6215 unregister_netdevice_queue(dev, &dev_kill_list); 6216 } 6217 } 6218 unregister_netdevice_many(&dev_kill_list); 6219 rtnl_unlock(); 6220 } 6221 6222 static struct pernet_operations __net_initdata default_device_ops = { 6223 .exit = default_device_exit, 6224 .exit_batch = default_device_exit_batch, 6225 }; 6226 6227 /* 6228 * Initialize the DEV module. At boot time this walks the device list and 6229 * unhooks any devices that fail to initialise (normally hardware not 6230 * present) and leaves us with a valid list of present and active devices. 6231 * 6232 */ 6233 6234 /* 6235 * This is called single threaded during boot, so no need 6236 * to take the rtnl semaphore. 6237 */ 6238 static int __init net_dev_init(void) 6239 { 6240 int i, rc = -ENOMEM; 6241 6242 BUG_ON(!dev_boot_phase); 6243 6244 if (dev_proc_init()) 6245 goto out; 6246 6247 if (netdev_kobject_init()) 6248 goto out; 6249 6250 INIT_LIST_HEAD(&ptype_all); 6251 for (i = 0; i < PTYPE_HASH_SIZE; i++) 6252 INIT_LIST_HEAD(&ptype_base[i]); 6253 6254 if (register_pernet_subsys(&netdev_net_ops)) 6255 goto out; 6256 6257 /* 6258 * Initialise the packet receive queues. 6259 */ 6260 6261 for_each_possible_cpu(i) { 6262 struct softnet_data *sd = &per_cpu(softnet_data, i); 6263 6264 memset(sd, 0, sizeof(*sd)); 6265 skb_queue_head_init(&sd->input_pkt_queue); 6266 skb_queue_head_init(&sd->process_queue); 6267 sd->completion_queue = NULL; 6268 INIT_LIST_HEAD(&sd->poll_list); 6269 sd->output_queue = NULL; 6270 sd->output_queue_tailp = &sd->output_queue; 6271 #ifdef CONFIG_RPS 6272 sd->csd.func = rps_trigger_softirq; 6273 sd->csd.info = sd; 6274 sd->csd.flags = 0; 6275 sd->cpu = i; 6276 #endif 6277 6278 sd->backlog.poll = process_backlog; 6279 sd->backlog.weight = weight_p; 6280 sd->backlog.gro_list = NULL; 6281 sd->backlog.gro_count = 0; 6282 } 6283 6284 dev_boot_phase = 0; 6285 6286 /* The loopback device is special if any other network devices 6287 * is present in a network namespace the loopback device must 6288 * be present. Since we now dynamically allocate and free the 6289 * loopback device ensure this invariant is maintained by 6290 * keeping the loopback device as the first device on the 6291 * list of network devices. Ensuring the loopback devices 6292 * is the first device that appears and the last network device 6293 * that disappears. 6294 */ 6295 if (register_pernet_device(&loopback_net_ops)) 6296 goto out; 6297 6298 if (register_pernet_device(&default_device_ops)) 6299 goto out; 6300 6301 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 6302 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 6303 6304 hotcpu_notifier(dev_cpu_callback, 0); 6305 dst_init(); 6306 dev_mcast_init(); 6307 rc = 0; 6308 out: 6309 return rc; 6310 } 6311 6312 subsys_initcall(net_dev_init); 6313 6314 static int __init initialize_hashrnd(void) 6315 { 6316 get_random_bytes(&hashrnd, sizeof(hashrnd)); 6317 return 0; 6318 } 6319 6320 late_initcall_sync(initialize_hashrnd); 6321 6322