xref: /linux/net/core/dev.c (revision 501834349e872ed4115eea3beef65ca9eeb5528e)
1 /*
2  * 	NET3	Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  * 		Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *              			to 2 if register_netdev gets called
25  *              			before net_dev_init & also removed a
26  *              			few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *		Alan Cox	: 	Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *		Alan Cox	: 	Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *              			indefinitely on dev->refcnt
71  * 		J Hadi Salim	:	- Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/hash.h>
83 #include <linux/slab.h>
84 #include <linux/sched.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/stat.h>
104 #include <net/dst.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/kmod.h>
111 #include <linux/module.h>
112 #include <linux/netpoll.h>
113 #include <linux/rcupdate.h>
114 #include <linux/delay.h>
115 #include <net/wext.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <linux/ipv6.h>
127 #include <linux/in.h>
128 #include <linux/jhash.h>
129 #include <linux/random.h>
130 #include <trace/events/napi.h>
131 #include <trace/events/net.h>
132 #include <trace/events/skb.h>
133 #include <linux/pci.h>
134 #include <linux/inetdevice.h>
135 
136 #include "net-sysfs.h"
137 
138 /* Instead of increasing this, you should create a hash table. */
139 #define MAX_GRO_SKBS 8
140 
141 /* This should be increased if a protocol with a bigger head is added. */
142 #define GRO_MAX_HEAD (MAX_HEADER + 128)
143 
144 /*
145  *	The list of packet types we will receive (as opposed to discard)
146  *	and the routines to invoke.
147  *
148  *	Why 16. Because with 16 the only overlap we get on a hash of the
149  *	low nibble of the protocol value is RARP/SNAP/X.25.
150  *
151  *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
152  *             sure which should go first, but I bet it won't make much
153  *             difference if we are running VLANs.  The good news is that
154  *             this protocol won't be in the list unless compiled in, so
155  *             the average user (w/out VLANs) will not be adversely affected.
156  *             --BLG
157  *
158  *		0800	IP
159  *		8100    802.1Q VLAN
160  *		0001	802.3
161  *		0002	AX.25
162  *		0004	802.2
163  *		8035	RARP
164  *		0005	SNAP
165  *		0805	X.25
166  *		0806	ARP
167  *		8137	IPX
168  *		0009	Localtalk
169  *		86DD	IPv6
170  */
171 
172 #define PTYPE_HASH_SIZE	(16)
173 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
174 
175 static DEFINE_SPINLOCK(ptype_lock);
176 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
177 static struct list_head ptype_all __read_mostly;	/* Taps */
178 
179 /*
180  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
181  * semaphore.
182  *
183  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
184  *
185  * Writers must hold the rtnl semaphore while they loop through the
186  * dev_base_head list, and hold dev_base_lock for writing when they do the
187  * actual updates.  This allows pure readers to access the list even
188  * while a writer is preparing to update it.
189  *
190  * To put it another way, dev_base_lock is held for writing only to
191  * protect against pure readers; the rtnl semaphore provides the
192  * protection against other writers.
193  *
194  * See, for example usages, register_netdevice() and
195  * unregister_netdevice(), which must be called with the rtnl
196  * semaphore held.
197  */
198 DEFINE_RWLOCK(dev_base_lock);
199 EXPORT_SYMBOL(dev_base_lock);
200 
201 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
202 {
203 	unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
204 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
205 }
206 
207 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
208 {
209 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
210 }
211 
212 static inline void rps_lock(struct softnet_data *sd)
213 {
214 #ifdef CONFIG_RPS
215 	spin_lock(&sd->input_pkt_queue.lock);
216 #endif
217 }
218 
219 static inline void rps_unlock(struct softnet_data *sd)
220 {
221 #ifdef CONFIG_RPS
222 	spin_unlock(&sd->input_pkt_queue.lock);
223 #endif
224 }
225 
226 /* Device list insertion */
227 static int list_netdevice(struct net_device *dev)
228 {
229 	struct net *net = dev_net(dev);
230 
231 	ASSERT_RTNL();
232 
233 	write_lock_bh(&dev_base_lock);
234 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
235 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
236 	hlist_add_head_rcu(&dev->index_hlist,
237 			   dev_index_hash(net, dev->ifindex));
238 	write_unlock_bh(&dev_base_lock);
239 	return 0;
240 }
241 
242 /* Device list removal
243  * caller must respect a RCU grace period before freeing/reusing dev
244  */
245 static void unlist_netdevice(struct net_device *dev)
246 {
247 	ASSERT_RTNL();
248 
249 	/* Unlink dev from the device chain */
250 	write_lock_bh(&dev_base_lock);
251 	list_del_rcu(&dev->dev_list);
252 	hlist_del_rcu(&dev->name_hlist);
253 	hlist_del_rcu(&dev->index_hlist);
254 	write_unlock_bh(&dev_base_lock);
255 }
256 
257 /*
258  *	Our notifier list
259  */
260 
261 static RAW_NOTIFIER_HEAD(netdev_chain);
262 
263 /*
264  *	Device drivers call our routines to queue packets here. We empty the
265  *	queue in the local softnet handler.
266  */
267 
268 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
269 EXPORT_PER_CPU_SYMBOL(softnet_data);
270 
271 #ifdef CONFIG_LOCKDEP
272 /*
273  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
274  * according to dev->type
275  */
276 static const unsigned short netdev_lock_type[] =
277 	{ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
278 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
279 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
280 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
281 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
282 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
283 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
284 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
285 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
286 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
287 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
288 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
289 	 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
290 	 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
291 	 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
292 	 ARPHRD_VOID, ARPHRD_NONE};
293 
294 static const char *const netdev_lock_name[] =
295 	{"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
296 	 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
297 	 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
298 	 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
299 	 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
300 	 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
301 	 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
302 	 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
303 	 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
304 	 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
305 	 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
306 	 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
307 	 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
308 	 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
309 	 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
310 	 "_xmit_VOID", "_xmit_NONE"};
311 
312 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
313 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
314 
315 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
316 {
317 	int i;
318 
319 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
320 		if (netdev_lock_type[i] == dev_type)
321 			return i;
322 	/* the last key is used by default */
323 	return ARRAY_SIZE(netdev_lock_type) - 1;
324 }
325 
326 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
327 						 unsigned short dev_type)
328 {
329 	int i;
330 
331 	i = netdev_lock_pos(dev_type);
332 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
333 				   netdev_lock_name[i]);
334 }
335 
336 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
337 {
338 	int i;
339 
340 	i = netdev_lock_pos(dev->type);
341 	lockdep_set_class_and_name(&dev->addr_list_lock,
342 				   &netdev_addr_lock_key[i],
343 				   netdev_lock_name[i]);
344 }
345 #else
346 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
347 						 unsigned short dev_type)
348 {
349 }
350 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
351 {
352 }
353 #endif
354 
355 /*******************************************************************************
356 
357 		Protocol management and registration routines
358 
359 *******************************************************************************/
360 
361 /*
362  *	Add a protocol ID to the list. Now that the input handler is
363  *	smarter we can dispense with all the messy stuff that used to be
364  *	here.
365  *
366  *	BEWARE!!! Protocol handlers, mangling input packets,
367  *	MUST BE last in hash buckets and checking protocol handlers
368  *	MUST start from promiscuous ptype_all chain in net_bh.
369  *	It is true now, do not change it.
370  *	Explanation follows: if protocol handler, mangling packet, will
371  *	be the first on list, it is not able to sense, that packet
372  *	is cloned and should be copied-on-write, so that it will
373  *	change it and subsequent readers will get broken packet.
374  *							--ANK (980803)
375  */
376 
377 static inline struct list_head *ptype_head(const struct packet_type *pt)
378 {
379 	if (pt->type == htons(ETH_P_ALL))
380 		return &ptype_all;
381 	else
382 		return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
383 }
384 
385 /**
386  *	dev_add_pack - add packet handler
387  *	@pt: packet type declaration
388  *
389  *	Add a protocol handler to the networking stack. The passed &packet_type
390  *	is linked into kernel lists and may not be freed until it has been
391  *	removed from the kernel lists.
392  *
393  *	This call does not sleep therefore it can not
394  *	guarantee all CPU's that are in middle of receiving packets
395  *	will see the new packet type (until the next received packet).
396  */
397 
398 void dev_add_pack(struct packet_type *pt)
399 {
400 	struct list_head *head = ptype_head(pt);
401 
402 	spin_lock(&ptype_lock);
403 	list_add_rcu(&pt->list, head);
404 	spin_unlock(&ptype_lock);
405 }
406 EXPORT_SYMBOL(dev_add_pack);
407 
408 /**
409  *	__dev_remove_pack	 - remove packet handler
410  *	@pt: packet type declaration
411  *
412  *	Remove a protocol handler that was previously added to the kernel
413  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
414  *	from the kernel lists and can be freed or reused once this function
415  *	returns.
416  *
417  *      The packet type might still be in use by receivers
418  *	and must not be freed until after all the CPU's have gone
419  *	through a quiescent state.
420  */
421 void __dev_remove_pack(struct packet_type *pt)
422 {
423 	struct list_head *head = ptype_head(pt);
424 	struct packet_type *pt1;
425 
426 	spin_lock(&ptype_lock);
427 
428 	list_for_each_entry(pt1, head, list) {
429 		if (pt == pt1) {
430 			list_del_rcu(&pt->list);
431 			goto out;
432 		}
433 	}
434 
435 	printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
436 out:
437 	spin_unlock(&ptype_lock);
438 }
439 EXPORT_SYMBOL(__dev_remove_pack);
440 
441 /**
442  *	dev_remove_pack	 - remove packet handler
443  *	@pt: packet type declaration
444  *
445  *	Remove a protocol handler that was previously added to the kernel
446  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
447  *	from the kernel lists and can be freed or reused once this function
448  *	returns.
449  *
450  *	This call sleeps to guarantee that no CPU is looking at the packet
451  *	type after return.
452  */
453 void dev_remove_pack(struct packet_type *pt)
454 {
455 	__dev_remove_pack(pt);
456 
457 	synchronize_net();
458 }
459 EXPORT_SYMBOL(dev_remove_pack);
460 
461 /******************************************************************************
462 
463 		      Device Boot-time Settings Routines
464 
465 *******************************************************************************/
466 
467 /* Boot time configuration table */
468 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
469 
470 /**
471  *	netdev_boot_setup_add	- add new setup entry
472  *	@name: name of the device
473  *	@map: configured settings for the device
474  *
475  *	Adds new setup entry to the dev_boot_setup list.  The function
476  *	returns 0 on error and 1 on success.  This is a generic routine to
477  *	all netdevices.
478  */
479 static int netdev_boot_setup_add(char *name, struct ifmap *map)
480 {
481 	struct netdev_boot_setup *s;
482 	int i;
483 
484 	s = dev_boot_setup;
485 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
486 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
487 			memset(s[i].name, 0, sizeof(s[i].name));
488 			strlcpy(s[i].name, name, IFNAMSIZ);
489 			memcpy(&s[i].map, map, sizeof(s[i].map));
490 			break;
491 		}
492 	}
493 
494 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
495 }
496 
497 /**
498  *	netdev_boot_setup_check	- check boot time settings
499  *	@dev: the netdevice
500  *
501  * 	Check boot time settings for the device.
502  *	The found settings are set for the device to be used
503  *	later in the device probing.
504  *	Returns 0 if no settings found, 1 if they are.
505  */
506 int netdev_boot_setup_check(struct net_device *dev)
507 {
508 	struct netdev_boot_setup *s = dev_boot_setup;
509 	int i;
510 
511 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
512 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
513 		    !strcmp(dev->name, s[i].name)) {
514 			dev->irq 	= s[i].map.irq;
515 			dev->base_addr 	= s[i].map.base_addr;
516 			dev->mem_start 	= s[i].map.mem_start;
517 			dev->mem_end 	= s[i].map.mem_end;
518 			return 1;
519 		}
520 	}
521 	return 0;
522 }
523 EXPORT_SYMBOL(netdev_boot_setup_check);
524 
525 
526 /**
527  *	netdev_boot_base	- get address from boot time settings
528  *	@prefix: prefix for network device
529  *	@unit: id for network device
530  *
531  * 	Check boot time settings for the base address of device.
532  *	The found settings are set for the device to be used
533  *	later in the device probing.
534  *	Returns 0 if no settings found.
535  */
536 unsigned long netdev_boot_base(const char *prefix, int unit)
537 {
538 	const struct netdev_boot_setup *s = dev_boot_setup;
539 	char name[IFNAMSIZ];
540 	int i;
541 
542 	sprintf(name, "%s%d", prefix, unit);
543 
544 	/*
545 	 * If device already registered then return base of 1
546 	 * to indicate not to probe for this interface
547 	 */
548 	if (__dev_get_by_name(&init_net, name))
549 		return 1;
550 
551 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
552 		if (!strcmp(name, s[i].name))
553 			return s[i].map.base_addr;
554 	return 0;
555 }
556 
557 /*
558  * Saves at boot time configured settings for any netdevice.
559  */
560 int __init netdev_boot_setup(char *str)
561 {
562 	int ints[5];
563 	struct ifmap map;
564 
565 	str = get_options(str, ARRAY_SIZE(ints), ints);
566 	if (!str || !*str)
567 		return 0;
568 
569 	/* Save settings */
570 	memset(&map, 0, sizeof(map));
571 	if (ints[0] > 0)
572 		map.irq = ints[1];
573 	if (ints[0] > 1)
574 		map.base_addr = ints[2];
575 	if (ints[0] > 2)
576 		map.mem_start = ints[3];
577 	if (ints[0] > 3)
578 		map.mem_end = ints[4];
579 
580 	/* Add new entry to the list */
581 	return netdev_boot_setup_add(str, &map);
582 }
583 
584 __setup("netdev=", netdev_boot_setup);
585 
586 /*******************************************************************************
587 
588 			    Device Interface Subroutines
589 
590 *******************************************************************************/
591 
592 /**
593  *	__dev_get_by_name	- find a device by its name
594  *	@net: the applicable net namespace
595  *	@name: name to find
596  *
597  *	Find an interface by name. Must be called under RTNL semaphore
598  *	or @dev_base_lock. If the name is found a pointer to the device
599  *	is returned. If the name is not found then %NULL is returned. The
600  *	reference counters are not incremented so the caller must be
601  *	careful with locks.
602  */
603 
604 struct net_device *__dev_get_by_name(struct net *net, const char *name)
605 {
606 	struct hlist_node *p;
607 	struct net_device *dev;
608 	struct hlist_head *head = dev_name_hash(net, name);
609 
610 	hlist_for_each_entry(dev, p, head, name_hlist)
611 		if (!strncmp(dev->name, name, IFNAMSIZ))
612 			return dev;
613 
614 	return NULL;
615 }
616 EXPORT_SYMBOL(__dev_get_by_name);
617 
618 /**
619  *	dev_get_by_name_rcu	- find a device by its name
620  *	@net: the applicable net namespace
621  *	@name: name to find
622  *
623  *	Find an interface by name.
624  *	If the name is found a pointer to the device is returned.
625  * 	If the name is not found then %NULL is returned.
626  *	The reference counters are not incremented so the caller must be
627  *	careful with locks. The caller must hold RCU lock.
628  */
629 
630 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
631 {
632 	struct hlist_node *p;
633 	struct net_device *dev;
634 	struct hlist_head *head = dev_name_hash(net, name);
635 
636 	hlist_for_each_entry_rcu(dev, p, head, name_hlist)
637 		if (!strncmp(dev->name, name, IFNAMSIZ))
638 			return dev;
639 
640 	return NULL;
641 }
642 EXPORT_SYMBOL(dev_get_by_name_rcu);
643 
644 /**
645  *	dev_get_by_name		- find a device by its name
646  *	@net: the applicable net namespace
647  *	@name: name to find
648  *
649  *	Find an interface by name. This can be called from any
650  *	context and does its own locking. The returned handle has
651  *	the usage count incremented and the caller must use dev_put() to
652  *	release it when it is no longer needed. %NULL is returned if no
653  *	matching device is found.
654  */
655 
656 struct net_device *dev_get_by_name(struct net *net, const char *name)
657 {
658 	struct net_device *dev;
659 
660 	rcu_read_lock();
661 	dev = dev_get_by_name_rcu(net, name);
662 	if (dev)
663 		dev_hold(dev);
664 	rcu_read_unlock();
665 	return dev;
666 }
667 EXPORT_SYMBOL(dev_get_by_name);
668 
669 /**
670  *	__dev_get_by_index - find a device by its ifindex
671  *	@net: the applicable net namespace
672  *	@ifindex: index of device
673  *
674  *	Search for an interface by index. Returns %NULL if the device
675  *	is not found or a pointer to the device. The device has not
676  *	had its reference counter increased so the caller must be careful
677  *	about locking. The caller must hold either the RTNL semaphore
678  *	or @dev_base_lock.
679  */
680 
681 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
682 {
683 	struct hlist_node *p;
684 	struct net_device *dev;
685 	struct hlist_head *head = dev_index_hash(net, ifindex);
686 
687 	hlist_for_each_entry(dev, p, head, index_hlist)
688 		if (dev->ifindex == ifindex)
689 			return dev;
690 
691 	return NULL;
692 }
693 EXPORT_SYMBOL(__dev_get_by_index);
694 
695 /**
696  *	dev_get_by_index_rcu - find a device by its ifindex
697  *	@net: the applicable net namespace
698  *	@ifindex: index of device
699  *
700  *	Search for an interface by index. Returns %NULL if the device
701  *	is not found or a pointer to the device. The device has not
702  *	had its reference counter increased so the caller must be careful
703  *	about locking. The caller must hold RCU lock.
704  */
705 
706 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
707 {
708 	struct hlist_node *p;
709 	struct net_device *dev;
710 	struct hlist_head *head = dev_index_hash(net, ifindex);
711 
712 	hlist_for_each_entry_rcu(dev, p, head, index_hlist)
713 		if (dev->ifindex == ifindex)
714 			return dev;
715 
716 	return NULL;
717 }
718 EXPORT_SYMBOL(dev_get_by_index_rcu);
719 
720 
721 /**
722  *	dev_get_by_index - find a device by its ifindex
723  *	@net: the applicable net namespace
724  *	@ifindex: index of device
725  *
726  *	Search for an interface by index. Returns NULL if the device
727  *	is not found or a pointer to the device. The device returned has
728  *	had a reference added and the pointer is safe until the user calls
729  *	dev_put to indicate they have finished with it.
730  */
731 
732 struct net_device *dev_get_by_index(struct net *net, int ifindex)
733 {
734 	struct net_device *dev;
735 
736 	rcu_read_lock();
737 	dev = dev_get_by_index_rcu(net, ifindex);
738 	if (dev)
739 		dev_hold(dev);
740 	rcu_read_unlock();
741 	return dev;
742 }
743 EXPORT_SYMBOL(dev_get_by_index);
744 
745 /**
746  *	dev_getbyhwaddr_rcu - find a device by its hardware address
747  *	@net: the applicable net namespace
748  *	@type: media type of device
749  *	@ha: hardware address
750  *
751  *	Search for an interface by MAC address. Returns NULL if the device
752  *	is not found or a pointer to the device.
753  *	The caller must hold RCU or RTNL.
754  *	The returned device has not had its ref count increased
755  *	and the caller must therefore be careful about locking
756  *
757  */
758 
759 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
760 				       const char *ha)
761 {
762 	struct net_device *dev;
763 
764 	for_each_netdev_rcu(net, dev)
765 		if (dev->type == type &&
766 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
767 			return dev;
768 
769 	return NULL;
770 }
771 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
772 
773 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
774 {
775 	struct net_device *dev;
776 
777 	ASSERT_RTNL();
778 	for_each_netdev(net, dev)
779 		if (dev->type == type)
780 			return dev;
781 
782 	return NULL;
783 }
784 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
785 
786 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
787 {
788 	struct net_device *dev, *ret = NULL;
789 
790 	rcu_read_lock();
791 	for_each_netdev_rcu(net, dev)
792 		if (dev->type == type) {
793 			dev_hold(dev);
794 			ret = dev;
795 			break;
796 		}
797 	rcu_read_unlock();
798 	return ret;
799 }
800 EXPORT_SYMBOL(dev_getfirstbyhwtype);
801 
802 /**
803  *	dev_get_by_flags_rcu - find any device with given flags
804  *	@net: the applicable net namespace
805  *	@if_flags: IFF_* values
806  *	@mask: bitmask of bits in if_flags to check
807  *
808  *	Search for any interface with the given flags. Returns NULL if a device
809  *	is not found or a pointer to the device. Must be called inside
810  *	rcu_read_lock(), and result refcount is unchanged.
811  */
812 
813 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
814 				    unsigned short mask)
815 {
816 	struct net_device *dev, *ret;
817 
818 	ret = NULL;
819 	for_each_netdev_rcu(net, dev) {
820 		if (((dev->flags ^ if_flags) & mask) == 0) {
821 			ret = dev;
822 			break;
823 		}
824 	}
825 	return ret;
826 }
827 EXPORT_SYMBOL(dev_get_by_flags_rcu);
828 
829 /**
830  *	dev_valid_name - check if name is okay for network device
831  *	@name: name string
832  *
833  *	Network device names need to be valid file names to
834  *	to allow sysfs to work.  We also disallow any kind of
835  *	whitespace.
836  */
837 int dev_valid_name(const char *name)
838 {
839 	if (*name == '\0')
840 		return 0;
841 	if (strlen(name) >= IFNAMSIZ)
842 		return 0;
843 	if (!strcmp(name, ".") || !strcmp(name, ".."))
844 		return 0;
845 
846 	while (*name) {
847 		if (*name == '/' || isspace(*name))
848 			return 0;
849 		name++;
850 	}
851 	return 1;
852 }
853 EXPORT_SYMBOL(dev_valid_name);
854 
855 /**
856  *	__dev_alloc_name - allocate a name for a device
857  *	@net: network namespace to allocate the device name in
858  *	@name: name format string
859  *	@buf:  scratch buffer and result name string
860  *
861  *	Passed a format string - eg "lt%d" it will try and find a suitable
862  *	id. It scans list of devices to build up a free map, then chooses
863  *	the first empty slot. The caller must hold the dev_base or rtnl lock
864  *	while allocating the name and adding the device in order to avoid
865  *	duplicates.
866  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
867  *	Returns the number of the unit assigned or a negative errno code.
868  */
869 
870 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
871 {
872 	int i = 0;
873 	const char *p;
874 	const int max_netdevices = 8*PAGE_SIZE;
875 	unsigned long *inuse;
876 	struct net_device *d;
877 
878 	p = strnchr(name, IFNAMSIZ-1, '%');
879 	if (p) {
880 		/*
881 		 * Verify the string as this thing may have come from
882 		 * the user.  There must be either one "%d" and no other "%"
883 		 * characters.
884 		 */
885 		if (p[1] != 'd' || strchr(p + 2, '%'))
886 			return -EINVAL;
887 
888 		/* Use one page as a bit array of possible slots */
889 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
890 		if (!inuse)
891 			return -ENOMEM;
892 
893 		for_each_netdev(net, d) {
894 			if (!sscanf(d->name, name, &i))
895 				continue;
896 			if (i < 0 || i >= max_netdevices)
897 				continue;
898 
899 			/*  avoid cases where sscanf is not exact inverse of printf */
900 			snprintf(buf, IFNAMSIZ, name, i);
901 			if (!strncmp(buf, d->name, IFNAMSIZ))
902 				set_bit(i, inuse);
903 		}
904 
905 		i = find_first_zero_bit(inuse, max_netdevices);
906 		free_page((unsigned long) inuse);
907 	}
908 
909 	if (buf != name)
910 		snprintf(buf, IFNAMSIZ, name, i);
911 	if (!__dev_get_by_name(net, buf))
912 		return i;
913 
914 	/* It is possible to run out of possible slots
915 	 * when the name is long and there isn't enough space left
916 	 * for the digits, or if all bits are used.
917 	 */
918 	return -ENFILE;
919 }
920 
921 /**
922  *	dev_alloc_name - allocate a name for a device
923  *	@dev: device
924  *	@name: name format string
925  *
926  *	Passed a format string - eg "lt%d" it will try and find a suitable
927  *	id. It scans list of devices to build up a free map, then chooses
928  *	the first empty slot. The caller must hold the dev_base or rtnl lock
929  *	while allocating the name and adding the device in order to avoid
930  *	duplicates.
931  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
932  *	Returns the number of the unit assigned or a negative errno code.
933  */
934 
935 int dev_alloc_name(struct net_device *dev, const char *name)
936 {
937 	char buf[IFNAMSIZ];
938 	struct net *net;
939 	int ret;
940 
941 	BUG_ON(!dev_net(dev));
942 	net = dev_net(dev);
943 	ret = __dev_alloc_name(net, name, buf);
944 	if (ret >= 0)
945 		strlcpy(dev->name, buf, IFNAMSIZ);
946 	return ret;
947 }
948 EXPORT_SYMBOL(dev_alloc_name);
949 
950 static int dev_get_valid_name(struct net_device *dev, const char *name, bool fmt)
951 {
952 	struct net *net;
953 
954 	BUG_ON(!dev_net(dev));
955 	net = dev_net(dev);
956 
957 	if (!dev_valid_name(name))
958 		return -EINVAL;
959 
960 	if (fmt && strchr(name, '%'))
961 		return dev_alloc_name(dev, name);
962 	else if (__dev_get_by_name(net, name))
963 		return -EEXIST;
964 	else if (dev->name != name)
965 		strlcpy(dev->name, name, IFNAMSIZ);
966 
967 	return 0;
968 }
969 
970 /**
971  *	dev_change_name - change name of a device
972  *	@dev: device
973  *	@newname: name (or format string) must be at least IFNAMSIZ
974  *
975  *	Change name of a device, can pass format strings "eth%d".
976  *	for wildcarding.
977  */
978 int dev_change_name(struct net_device *dev, const char *newname)
979 {
980 	char oldname[IFNAMSIZ];
981 	int err = 0;
982 	int ret;
983 	struct net *net;
984 
985 	ASSERT_RTNL();
986 	BUG_ON(!dev_net(dev));
987 
988 	net = dev_net(dev);
989 	if (dev->flags & IFF_UP)
990 		return -EBUSY;
991 
992 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
993 		return 0;
994 
995 	memcpy(oldname, dev->name, IFNAMSIZ);
996 
997 	err = dev_get_valid_name(dev, newname, 1);
998 	if (err < 0)
999 		return err;
1000 
1001 rollback:
1002 	ret = device_rename(&dev->dev, dev->name);
1003 	if (ret) {
1004 		memcpy(dev->name, oldname, IFNAMSIZ);
1005 		return ret;
1006 	}
1007 
1008 	write_lock_bh(&dev_base_lock);
1009 	hlist_del(&dev->name_hlist);
1010 	write_unlock_bh(&dev_base_lock);
1011 
1012 	synchronize_rcu();
1013 
1014 	write_lock_bh(&dev_base_lock);
1015 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1016 	write_unlock_bh(&dev_base_lock);
1017 
1018 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1019 	ret = notifier_to_errno(ret);
1020 
1021 	if (ret) {
1022 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1023 		if (err >= 0) {
1024 			err = ret;
1025 			memcpy(dev->name, oldname, IFNAMSIZ);
1026 			goto rollback;
1027 		} else {
1028 			printk(KERN_ERR
1029 			       "%s: name change rollback failed: %d.\n",
1030 			       dev->name, ret);
1031 		}
1032 	}
1033 
1034 	return err;
1035 }
1036 
1037 /**
1038  *	dev_set_alias - change ifalias of a device
1039  *	@dev: device
1040  *	@alias: name up to IFALIASZ
1041  *	@len: limit of bytes to copy from info
1042  *
1043  *	Set ifalias for a device,
1044  */
1045 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1046 {
1047 	ASSERT_RTNL();
1048 
1049 	if (len >= IFALIASZ)
1050 		return -EINVAL;
1051 
1052 	if (!len) {
1053 		if (dev->ifalias) {
1054 			kfree(dev->ifalias);
1055 			dev->ifalias = NULL;
1056 		}
1057 		return 0;
1058 	}
1059 
1060 	dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1061 	if (!dev->ifalias)
1062 		return -ENOMEM;
1063 
1064 	strlcpy(dev->ifalias, alias, len+1);
1065 	return len;
1066 }
1067 
1068 
1069 /**
1070  *	netdev_features_change - device changes features
1071  *	@dev: device to cause notification
1072  *
1073  *	Called to indicate a device has changed features.
1074  */
1075 void netdev_features_change(struct net_device *dev)
1076 {
1077 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1078 }
1079 EXPORT_SYMBOL(netdev_features_change);
1080 
1081 /**
1082  *	netdev_state_change - device changes state
1083  *	@dev: device to cause notification
1084  *
1085  *	Called to indicate a device has changed state. This function calls
1086  *	the notifier chains for netdev_chain and sends a NEWLINK message
1087  *	to the routing socket.
1088  */
1089 void netdev_state_change(struct net_device *dev)
1090 {
1091 	if (dev->flags & IFF_UP) {
1092 		call_netdevice_notifiers(NETDEV_CHANGE, dev);
1093 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1094 	}
1095 }
1096 EXPORT_SYMBOL(netdev_state_change);
1097 
1098 int netdev_bonding_change(struct net_device *dev, unsigned long event)
1099 {
1100 	return call_netdevice_notifiers(event, dev);
1101 }
1102 EXPORT_SYMBOL(netdev_bonding_change);
1103 
1104 /**
1105  *	dev_load 	- load a network module
1106  *	@net: the applicable net namespace
1107  *	@name: name of interface
1108  *
1109  *	If a network interface is not present and the process has suitable
1110  *	privileges this function loads the module. If module loading is not
1111  *	available in this kernel then it becomes a nop.
1112  */
1113 
1114 void dev_load(struct net *net, const char *name)
1115 {
1116 	struct net_device *dev;
1117 
1118 	rcu_read_lock();
1119 	dev = dev_get_by_name_rcu(net, name);
1120 	rcu_read_unlock();
1121 
1122 	if (!dev && capable(CAP_NET_ADMIN))
1123 		request_module("%s", name);
1124 }
1125 EXPORT_SYMBOL(dev_load);
1126 
1127 static int __dev_open(struct net_device *dev)
1128 {
1129 	const struct net_device_ops *ops = dev->netdev_ops;
1130 	int ret;
1131 
1132 	ASSERT_RTNL();
1133 
1134 	/*
1135 	 *	Is it even present?
1136 	 */
1137 	if (!netif_device_present(dev))
1138 		return -ENODEV;
1139 
1140 	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1141 	ret = notifier_to_errno(ret);
1142 	if (ret)
1143 		return ret;
1144 
1145 	/*
1146 	 *	Call device private open method
1147 	 */
1148 	set_bit(__LINK_STATE_START, &dev->state);
1149 
1150 	if (ops->ndo_validate_addr)
1151 		ret = ops->ndo_validate_addr(dev);
1152 
1153 	if (!ret && ops->ndo_open)
1154 		ret = ops->ndo_open(dev);
1155 
1156 	/*
1157 	 *	If it went open OK then:
1158 	 */
1159 
1160 	if (ret)
1161 		clear_bit(__LINK_STATE_START, &dev->state);
1162 	else {
1163 		/*
1164 		 *	Set the flags.
1165 		 */
1166 		dev->flags |= IFF_UP;
1167 
1168 		/*
1169 		 *	Enable NET_DMA
1170 		 */
1171 		net_dmaengine_get();
1172 
1173 		/*
1174 		 *	Initialize multicasting status
1175 		 */
1176 		dev_set_rx_mode(dev);
1177 
1178 		/*
1179 		 *	Wakeup transmit queue engine
1180 		 */
1181 		dev_activate(dev);
1182 	}
1183 
1184 	return ret;
1185 }
1186 
1187 /**
1188  *	dev_open	- prepare an interface for use.
1189  *	@dev:	device to open
1190  *
1191  *	Takes a device from down to up state. The device's private open
1192  *	function is invoked and then the multicast lists are loaded. Finally
1193  *	the device is moved into the up state and a %NETDEV_UP message is
1194  *	sent to the netdev notifier chain.
1195  *
1196  *	Calling this function on an active interface is a nop. On a failure
1197  *	a negative errno code is returned.
1198  */
1199 int dev_open(struct net_device *dev)
1200 {
1201 	int ret;
1202 
1203 	/*
1204 	 *	Is it already up?
1205 	 */
1206 	if (dev->flags & IFF_UP)
1207 		return 0;
1208 
1209 	/*
1210 	 *	Open device
1211 	 */
1212 	ret = __dev_open(dev);
1213 	if (ret < 0)
1214 		return ret;
1215 
1216 	/*
1217 	 *	... and announce new interface.
1218 	 */
1219 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1220 	call_netdevice_notifiers(NETDEV_UP, dev);
1221 
1222 	return ret;
1223 }
1224 EXPORT_SYMBOL(dev_open);
1225 
1226 static int __dev_close_many(struct list_head *head)
1227 {
1228 	struct net_device *dev;
1229 
1230 	ASSERT_RTNL();
1231 	might_sleep();
1232 
1233 	list_for_each_entry(dev, head, unreg_list) {
1234 		/*
1235 		 *	Tell people we are going down, so that they can
1236 		 *	prepare to death, when device is still operating.
1237 		 */
1238 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1239 
1240 		clear_bit(__LINK_STATE_START, &dev->state);
1241 
1242 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1243 		 * can be even on different cpu. So just clear netif_running().
1244 		 *
1245 		 * dev->stop() will invoke napi_disable() on all of it's
1246 		 * napi_struct instances on this device.
1247 		 */
1248 		smp_mb__after_clear_bit(); /* Commit netif_running(). */
1249 	}
1250 
1251 	dev_deactivate_many(head);
1252 
1253 	list_for_each_entry(dev, head, unreg_list) {
1254 		const struct net_device_ops *ops = dev->netdev_ops;
1255 
1256 		/*
1257 		 *	Call the device specific close. This cannot fail.
1258 		 *	Only if device is UP
1259 		 *
1260 		 *	We allow it to be called even after a DETACH hot-plug
1261 		 *	event.
1262 		 */
1263 		if (ops->ndo_stop)
1264 			ops->ndo_stop(dev);
1265 
1266 		/*
1267 		 *	Device is now down.
1268 		 */
1269 
1270 		dev->flags &= ~IFF_UP;
1271 
1272 		/*
1273 		 *	Shutdown NET_DMA
1274 		 */
1275 		net_dmaengine_put();
1276 	}
1277 
1278 	return 0;
1279 }
1280 
1281 static int __dev_close(struct net_device *dev)
1282 {
1283 	LIST_HEAD(single);
1284 
1285 	list_add(&dev->unreg_list, &single);
1286 	return __dev_close_many(&single);
1287 }
1288 
1289 int dev_close_many(struct list_head *head)
1290 {
1291 	struct net_device *dev, *tmp;
1292 	LIST_HEAD(tmp_list);
1293 
1294 	list_for_each_entry_safe(dev, tmp, head, unreg_list)
1295 		if (!(dev->flags & IFF_UP))
1296 			list_move(&dev->unreg_list, &tmp_list);
1297 
1298 	__dev_close_many(head);
1299 
1300 	/*
1301 	 * Tell people we are down
1302 	 */
1303 	list_for_each_entry(dev, head, unreg_list) {
1304 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1305 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1306 	}
1307 
1308 	/* rollback_registered_many needs the complete original list */
1309 	list_splice(&tmp_list, head);
1310 	return 0;
1311 }
1312 
1313 /**
1314  *	dev_close - shutdown an interface.
1315  *	@dev: device to shutdown
1316  *
1317  *	This function moves an active device into down state. A
1318  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1319  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1320  *	chain.
1321  */
1322 int dev_close(struct net_device *dev)
1323 {
1324 	LIST_HEAD(single);
1325 
1326 	list_add(&dev->unreg_list, &single);
1327 	dev_close_many(&single);
1328 
1329 	return 0;
1330 }
1331 EXPORT_SYMBOL(dev_close);
1332 
1333 
1334 /**
1335  *	dev_disable_lro - disable Large Receive Offload on a device
1336  *	@dev: device
1337  *
1338  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1339  *	called under RTNL.  This is needed if received packets may be
1340  *	forwarded to another interface.
1341  */
1342 void dev_disable_lro(struct net_device *dev)
1343 {
1344 	if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1345 	    dev->ethtool_ops->set_flags) {
1346 		u32 flags = dev->ethtool_ops->get_flags(dev);
1347 		if (flags & ETH_FLAG_LRO) {
1348 			flags &= ~ETH_FLAG_LRO;
1349 			dev->ethtool_ops->set_flags(dev, flags);
1350 		}
1351 	}
1352 	WARN_ON(dev->features & NETIF_F_LRO);
1353 }
1354 EXPORT_SYMBOL(dev_disable_lro);
1355 
1356 
1357 static int dev_boot_phase = 1;
1358 
1359 /*
1360  *	Device change register/unregister. These are not inline or static
1361  *	as we export them to the world.
1362  */
1363 
1364 /**
1365  *	register_netdevice_notifier - register a network notifier block
1366  *	@nb: notifier
1367  *
1368  *	Register a notifier to be called when network device events occur.
1369  *	The notifier passed is linked into the kernel structures and must
1370  *	not be reused until it has been unregistered. A negative errno code
1371  *	is returned on a failure.
1372  *
1373  * 	When registered all registration and up events are replayed
1374  *	to the new notifier to allow device to have a race free
1375  *	view of the network device list.
1376  */
1377 
1378 int register_netdevice_notifier(struct notifier_block *nb)
1379 {
1380 	struct net_device *dev;
1381 	struct net_device *last;
1382 	struct net *net;
1383 	int err;
1384 
1385 	rtnl_lock();
1386 	err = raw_notifier_chain_register(&netdev_chain, nb);
1387 	if (err)
1388 		goto unlock;
1389 	if (dev_boot_phase)
1390 		goto unlock;
1391 	for_each_net(net) {
1392 		for_each_netdev(net, dev) {
1393 			err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1394 			err = notifier_to_errno(err);
1395 			if (err)
1396 				goto rollback;
1397 
1398 			if (!(dev->flags & IFF_UP))
1399 				continue;
1400 
1401 			nb->notifier_call(nb, NETDEV_UP, dev);
1402 		}
1403 	}
1404 
1405 unlock:
1406 	rtnl_unlock();
1407 	return err;
1408 
1409 rollback:
1410 	last = dev;
1411 	for_each_net(net) {
1412 		for_each_netdev(net, dev) {
1413 			if (dev == last)
1414 				break;
1415 
1416 			if (dev->flags & IFF_UP) {
1417 				nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1418 				nb->notifier_call(nb, NETDEV_DOWN, dev);
1419 			}
1420 			nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1421 			nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1422 		}
1423 	}
1424 
1425 	raw_notifier_chain_unregister(&netdev_chain, nb);
1426 	goto unlock;
1427 }
1428 EXPORT_SYMBOL(register_netdevice_notifier);
1429 
1430 /**
1431  *	unregister_netdevice_notifier - unregister a network notifier block
1432  *	@nb: notifier
1433  *
1434  *	Unregister a notifier previously registered by
1435  *	register_netdevice_notifier(). The notifier is unlinked into the
1436  *	kernel structures and may then be reused. A negative errno code
1437  *	is returned on a failure.
1438  */
1439 
1440 int unregister_netdevice_notifier(struct notifier_block *nb)
1441 {
1442 	int err;
1443 
1444 	rtnl_lock();
1445 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1446 	rtnl_unlock();
1447 	return err;
1448 }
1449 EXPORT_SYMBOL(unregister_netdevice_notifier);
1450 
1451 /**
1452  *	call_netdevice_notifiers - call all network notifier blocks
1453  *      @val: value passed unmodified to notifier function
1454  *      @dev: net_device pointer passed unmodified to notifier function
1455  *
1456  *	Call all network notifier blocks.  Parameters and return value
1457  *	are as for raw_notifier_call_chain().
1458  */
1459 
1460 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1461 {
1462 	ASSERT_RTNL();
1463 	return raw_notifier_call_chain(&netdev_chain, val, dev);
1464 }
1465 
1466 /* When > 0 there are consumers of rx skb time stamps */
1467 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1468 
1469 void net_enable_timestamp(void)
1470 {
1471 	atomic_inc(&netstamp_needed);
1472 }
1473 EXPORT_SYMBOL(net_enable_timestamp);
1474 
1475 void net_disable_timestamp(void)
1476 {
1477 	atomic_dec(&netstamp_needed);
1478 }
1479 EXPORT_SYMBOL(net_disable_timestamp);
1480 
1481 static inline void net_timestamp_set(struct sk_buff *skb)
1482 {
1483 	if (atomic_read(&netstamp_needed))
1484 		__net_timestamp(skb);
1485 	else
1486 		skb->tstamp.tv64 = 0;
1487 }
1488 
1489 static inline void net_timestamp_check(struct sk_buff *skb)
1490 {
1491 	if (!skb->tstamp.tv64 && atomic_read(&netstamp_needed))
1492 		__net_timestamp(skb);
1493 }
1494 
1495 /**
1496  * dev_forward_skb - loopback an skb to another netif
1497  *
1498  * @dev: destination network device
1499  * @skb: buffer to forward
1500  *
1501  * return values:
1502  *	NET_RX_SUCCESS	(no congestion)
1503  *	NET_RX_DROP     (packet was dropped, but freed)
1504  *
1505  * dev_forward_skb can be used for injecting an skb from the
1506  * start_xmit function of one device into the receive queue
1507  * of another device.
1508  *
1509  * The receiving device may be in another namespace, so
1510  * we have to clear all information in the skb that could
1511  * impact namespace isolation.
1512  */
1513 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1514 {
1515 	skb_orphan(skb);
1516 	nf_reset(skb);
1517 
1518 	if (unlikely(!(dev->flags & IFF_UP) ||
1519 		     (skb->len > (dev->mtu + dev->hard_header_len + VLAN_HLEN)))) {
1520 		atomic_long_inc(&dev->rx_dropped);
1521 		kfree_skb(skb);
1522 		return NET_RX_DROP;
1523 	}
1524 	skb_set_dev(skb, dev);
1525 	skb->tstamp.tv64 = 0;
1526 	skb->pkt_type = PACKET_HOST;
1527 	skb->protocol = eth_type_trans(skb, dev);
1528 	return netif_rx(skb);
1529 }
1530 EXPORT_SYMBOL_GPL(dev_forward_skb);
1531 
1532 static inline int deliver_skb(struct sk_buff *skb,
1533 			      struct packet_type *pt_prev,
1534 			      struct net_device *orig_dev)
1535 {
1536 	atomic_inc(&skb->users);
1537 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1538 }
1539 
1540 /*
1541  *	Support routine. Sends outgoing frames to any network
1542  *	taps currently in use.
1543  */
1544 
1545 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1546 {
1547 	struct packet_type *ptype;
1548 	struct sk_buff *skb2 = NULL;
1549 	struct packet_type *pt_prev = NULL;
1550 
1551 	rcu_read_lock();
1552 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
1553 		/* Never send packets back to the socket
1554 		 * they originated from - MvS (miquels@drinkel.ow.org)
1555 		 */
1556 		if ((ptype->dev == dev || !ptype->dev) &&
1557 		    (ptype->af_packet_priv == NULL ||
1558 		     (struct sock *)ptype->af_packet_priv != skb->sk)) {
1559 			if (pt_prev) {
1560 				deliver_skb(skb2, pt_prev, skb->dev);
1561 				pt_prev = ptype;
1562 				continue;
1563 			}
1564 
1565 			skb2 = skb_clone(skb, GFP_ATOMIC);
1566 			if (!skb2)
1567 				break;
1568 
1569 			net_timestamp_set(skb2);
1570 
1571 			/* skb->nh should be correctly
1572 			   set by sender, so that the second statement is
1573 			   just protection against buggy protocols.
1574 			 */
1575 			skb_reset_mac_header(skb2);
1576 
1577 			if (skb_network_header(skb2) < skb2->data ||
1578 			    skb2->network_header > skb2->tail) {
1579 				if (net_ratelimit())
1580 					printk(KERN_CRIT "protocol %04x is "
1581 					       "buggy, dev %s\n",
1582 					       ntohs(skb2->protocol),
1583 					       dev->name);
1584 				skb_reset_network_header(skb2);
1585 			}
1586 
1587 			skb2->transport_header = skb2->network_header;
1588 			skb2->pkt_type = PACKET_OUTGOING;
1589 			pt_prev = ptype;
1590 		}
1591 	}
1592 	if (pt_prev)
1593 		pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1594 	rcu_read_unlock();
1595 }
1596 
1597 /*
1598  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1599  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1600  */
1601 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1602 {
1603 	int rc;
1604 
1605 	if (txq < 1 || txq > dev->num_tx_queues)
1606 		return -EINVAL;
1607 
1608 	if (dev->reg_state == NETREG_REGISTERED) {
1609 		ASSERT_RTNL();
1610 
1611 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
1612 						  txq);
1613 		if (rc)
1614 			return rc;
1615 
1616 		if (txq < dev->real_num_tx_queues)
1617 			qdisc_reset_all_tx_gt(dev, txq);
1618 	}
1619 
1620 	dev->real_num_tx_queues = txq;
1621 	return 0;
1622 }
1623 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
1624 
1625 #ifdef CONFIG_RPS
1626 /**
1627  *	netif_set_real_num_rx_queues - set actual number of RX queues used
1628  *	@dev: Network device
1629  *	@rxq: Actual number of RX queues
1630  *
1631  *	This must be called either with the rtnl_lock held or before
1632  *	registration of the net device.  Returns 0 on success, or a
1633  *	negative error code.  If called before registration, it always
1634  *	succeeds.
1635  */
1636 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
1637 {
1638 	int rc;
1639 
1640 	if (rxq < 1 || rxq > dev->num_rx_queues)
1641 		return -EINVAL;
1642 
1643 	if (dev->reg_state == NETREG_REGISTERED) {
1644 		ASSERT_RTNL();
1645 
1646 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
1647 						  rxq);
1648 		if (rc)
1649 			return rc;
1650 	}
1651 
1652 	dev->real_num_rx_queues = rxq;
1653 	return 0;
1654 }
1655 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
1656 #endif
1657 
1658 static inline void __netif_reschedule(struct Qdisc *q)
1659 {
1660 	struct softnet_data *sd;
1661 	unsigned long flags;
1662 
1663 	local_irq_save(flags);
1664 	sd = &__get_cpu_var(softnet_data);
1665 	q->next_sched = NULL;
1666 	*sd->output_queue_tailp = q;
1667 	sd->output_queue_tailp = &q->next_sched;
1668 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
1669 	local_irq_restore(flags);
1670 }
1671 
1672 void __netif_schedule(struct Qdisc *q)
1673 {
1674 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1675 		__netif_reschedule(q);
1676 }
1677 EXPORT_SYMBOL(__netif_schedule);
1678 
1679 void dev_kfree_skb_irq(struct sk_buff *skb)
1680 {
1681 	if (atomic_dec_and_test(&skb->users)) {
1682 		struct softnet_data *sd;
1683 		unsigned long flags;
1684 
1685 		local_irq_save(flags);
1686 		sd = &__get_cpu_var(softnet_data);
1687 		skb->next = sd->completion_queue;
1688 		sd->completion_queue = skb;
1689 		raise_softirq_irqoff(NET_TX_SOFTIRQ);
1690 		local_irq_restore(flags);
1691 	}
1692 }
1693 EXPORT_SYMBOL(dev_kfree_skb_irq);
1694 
1695 void dev_kfree_skb_any(struct sk_buff *skb)
1696 {
1697 	if (in_irq() || irqs_disabled())
1698 		dev_kfree_skb_irq(skb);
1699 	else
1700 		dev_kfree_skb(skb);
1701 }
1702 EXPORT_SYMBOL(dev_kfree_skb_any);
1703 
1704 
1705 /**
1706  * netif_device_detach - mark device as removed
1707  * @dev: network device
1708  *
1709  * Mark device as removed from system and therefore no longer available.
1710  */
1711 void netif_device_detach(struct net_device *dev)
1712 {
1713 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1714 	    netif_running(dev)) {
1715 		netif_tx_stop_all_queues(dev);
1716 	}
1717 }
1718 EXPORT_SYMBOL(netif_device_detach);
1719 
1720 /**
1721  * netif_device_attach - mark device as attached
1722  * @dev: network device
1723  *
1724  * Mark device as attached from system and restart if needed.
1725  */
1726 void netif_device_attach(struct net_device *dev)
1727 {
1728 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1729 	    netif_running(dev)) {
1730 		netif_tx_wake_all_queues(dev);
1731 		__netdev_watchdog_up(dev);
1732 	}
1733 }
1734 EXPORT_SYMBOL(netif_device_attach);
1735 
1736 /**
1737  * skb_dev_set -- assign a new device to a buffer
1738  * @skb: buffer for the new device
1739  * @dev: network device
1740  *
1741  * If an skb is owned by a device already, we have to reset
1742  * all data private to the namespace a device belongs to
1743  * before assigning it a new device.
1744  */
1745 #ifdef CONFIG_NET_NS
1746 void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1747 {
1748 	skb_dst_drop(skb);
1749 	if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) {
1750 		secpath_reset(skb);
1751 		nf_reset(skb);
1752 		skb_init_secmark(skb);
1753 		skb->mark = 0;
1754 		skb->priority = 0;
1755 		skb->nf_trace = 0;
1756 		skb->ipvs_property = 0;
1757 #ifdef CONFIG_NET_SCHED
1758 		skb->tc_index = 0;
1759 #endif
1760 	}
1761 	skb->dev = dev;
1762 }
1763 EXPORT_SYMBOL(skb_set_dev);
1764 #endif /* CONFIG_NET_NS */
1765 
1766 /*
1767  * Invalidate hardware checksum when packet is to be mangled, and
1768  * complete checksum manually on outgoing path.
1769  */
1770 int skb_checksum_help(struct sk_buff *skb)
1771 {
1772 	__wsum csum;
1773 	int ret = 0, offset;
1774 
1775 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1776 		goto out_set_summed;
1777 
1778 	if (unlikely(skb_shinfo(skb)->gso_size)) {
1779 		/* Let GSO fix up the checksum. */
1780 		goto out_set_summed;
1781 	}
1782 
1783 	offset = skb_checksum_start_offset(skb);
1784 	BUG_ON(offset >= skb_headlen(skb));
1785 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
1786 
1787 	offset += skb->csum_offset;
1788 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1789 
1790 	if (skb_cloned(skb) &&
1791 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1792 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1793 		if (ret)
1794 			goto out;
1795 	}
1796 
1797 	*(__sum16 *)(skb->data + offset) = csum_fold(csum);
1798 out_set_summed:
1799 	skb->ip_summed = CHECKSUM_NONE;
1800 out:
1801 	return ret;
1802 }
1803 EXPORT_SYMBOL(skb_checksum_help);
1804 
1805 /**
1806  *	skb_gso_segment - Perform segmentation on skb.
1807  *	@skb: buffer to segment
1808  *	@features: features for the output path (see dev->features)
1809  *
1810  *	This function segments the given skb and returns a list of segments.
1811  *
1812  *	It may return NULL if the skb requires no segmentation.  This is
1813  *	only possible when GSO is used for verifying header integrity.
1814  */
1815 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1816 {
1817 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1818 	struct packet_type *ptype;
1819 	__be16 type = skb->protocol;
1820 	int vlan_depth = ETH_HLEN;
1821 	int err;
1822 
1823 	while (type == htons(ETH_P_8021Q)) {
1824 		struct vlan_hdr *vh;
1825 
1826 		if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
1827 			return ERR_PTR(-EINVAL);
1828 
1829 		vh = (struct vlan_hdr *)(skb->data + vlan_depth);
1830 		type = vh->h_vlan_encapsulated_proto;
1831 		vlan_depth += VLAN_HLEN;
1832 	}
1833 
1834 	skb_reset_mac_header(skb);
1835 	skb->mac_len = skb->network_header - skb->mac_header;
1836 	__skb_pull(skb, skb->mac_len);
1837 
1838 	if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1839 		struct net_device *dev = skb->dev;
1840 		struct ethtool_drvinfo info = {};
1841 
1842 		if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1843 			dev->ethtool_ops->get_drvinfo(dev, &info);
1844 
1845 		WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d ip_summed=%d\n",
1846 		     info.driver, dev ? dev->features : 0L,
1847 		     skb->sk ? skb->sk->sk_route_caps : 0L,
1848 		     skb->len, skb->data_len, skb->ip_summed);
1849 
1850 		if (skb_header_cloned(skb) &&
1851 		    (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1852 			return ERR_PTR(err);
1853 	}
1854 
1855 	rcu_read_lock();
1856 	list_for_each_entry_rcu(ptype,
1857 			&ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1858 		if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1859 			if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1860 				err = ptype->gso_send_check(skb);
1861 				segs = ERR_PTR(err);
1862 				if (err || skb_gso_ok(skb, features))
1863 					break;
1864 				__skb_push(skb, (skb->data -
1865 						 skb_network_header(skb)));
1866 			}
1867 			segs = ptype->gso_segment(skb, features);
1868 			break;
1869 		}
1870 	}
1871 	rcu_read_unlock();
1872 
1873 	__skb_push(skb, skb->data - skb_mac_header(skb));
1874 
1875 	return segs;
1876 }
1877 EXPORT_SYMBOL(skb_gso_segment);
1878 
1879 /* Take action when hardware reception checksum errors are detected. */
1880 #ifdef CONFIG_BUG
1881 void netdev_rx_csum_fault(struct net_device *dev)
1882 {
1883 	if (net_ratelimit()) {
1884 		printk(KERN_ERR "%s: hw csum failure.\n",
1885 			dev ? dev->name : "<unknown>");
1886 		dump_stack();
1887 	}
1888 }
1889 EXPORT_SYMBOL(netdev_rx_csum_fault);
1890 #endif
1891 
1892 /* Actually, we should eliminate this check as soon as we know, that:
1893  * 1. IOMMU is present and allows to map all the memory.
1894  * 2. No high memory really exists on this machine.
1895  */
1896 
1897 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1898 {
1899 #ifdef CONFIG_HIGHMEM
1900 	int i;
1901 	if (!(dev->features & NETIF_F_HIGHDMA)) {
1902 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1903 			if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1904 				return 1;
1905 	}
1906 
1907 	if (PCI_DMA_BUS_IS_PHYS) {
1908 		struct device *pdev = dev->dev.parent;
1909 
1910 		if (!pdev)
1911 			return 0;
1912 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1913 			dma_addr_t addr = page_to_phys(skb_shinfo(skb)->frags[i].page);
1914 			if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
1915 				return 1;
1916 		}
1917 	}
1918 #endif
1919 	return 0;
1920 }
1921 
1922 struct dev_gso_cb {
1923 	void (*destructor)(struct sk_buff *skb);
1924 };
1925 
1926 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1927 
1928 static void dev_gso_skb_destructor(struct sk_buff *skb)
1929 {
1930 	struct dev_gso_cb *cb;
1931 
1932 	do {
1933 		struct sk_buff *nskb = skb->next;
1934 
1935 		skb->next = nskb->next;
1936 		nskb->next = NULL;
1937 		kfree_skb(nskb);
1938 	} while (skb->next);
1939 
1940 	cb = DEV_GSO_CB(skb);
1941 	if (cb->destructor)
1942 		cb->destructor(skb);
1943 }
1944 
1945 /**
1946  *	dev_gso_segment - Perform emulated hardware segmentation on skb.
1947  *	@skb: buffer to segment
1948  *	@features: device features as applicable to this skb
1949  *
1950  *	This function segments the given skb and stores the list of segments
1951  *	in skb->next.
1952  */
1953 static int dev_gso_segment(struct sk_buff *skb, int features)
1954 {
1955 	struct sk_buff *segs;
1956 
1957 	segs = skb_gso_segment(skb, features);
1958 
1959 	/* Verifying header integrity only. */
1960 	if (!segs)
1961 		return 0;
1962 
1963 	if (IS_ERR(segs))
1964 		return PTR_ERR(segs);
1965 
1966 	skb->next = segs;
1967 	DEV_GSO_CB(skb)->destructor = skb->destructor;
1968 	skb->destructor = dev_gso_skb_destructor;
1969 
1970 	return 0;
1971 }
1972 
1973 /*
1974  * Try to orphan skb early, right before transmission by the device.
1975  * We cannot orphan skb if tx timestamp is requested or the sk-reference
1976  * is needed on driver level for other reasons, e.g. see net/can/raw.c
1977  */
1978 static inline void skb_orphan_try(struct sk_buff *skb)
1979 {
1980 	struct sock *sk = skb->sk;
1981 
1982 	if (sk && !skb_shinfo(skb)->tx_flags) {
1983 		/* skb_tx_hash() wont be able to get sk.
1984 		 * We copy sk_hash into skb->rxhash
1985 		 */
1986 		if (!skb->rxhash)
1987 			skb->rxhash = sk->sk_hash;
1988 		skb_orphan(skb);
1989 	}
1990 }
1991 
1992 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1993 {
1994 	return ((features & NETIF_F_GEN_CSUM) ||
1995 		((features & NETIF_F_V4_CSUM) &&
1996 		 protocol == htons(ETH_P_IP)) ||
1997 		((features & NETIF_F_V6_CSUM) &&
1998 		 protocol == htons(ETH_P_IPV6)) ||
1999 		((features & NETIF_F_FCOE_CRC) &&
2000 		 protocol == htons(ETH_P_FCOE)));
2001 }
2002 
2003 static int harmonize_features(struct sk_buff *skb, __be16 protocol, int features)
2004 {
2005 	if (!can_checksum_protocol(features, protocol)) {
2006 		features &= ~NETIF_F_ALL_CSUM;
2007 		features &= ~NETIF_F_SG;
2008 	} else if (illegal_highdma(skb->dev, skb)) {
2009 		features &= ~NETIF_F_SG;
2010 	}
2011 
2012 	return features;
2013 }
2014 
2015 int netif_skb_features(struct sk_buff *skb)
2016 {
2017 	__be16 protocol = skb->protocol;
2018 	int features = skb->dev->features;
2019 
2020 	if (protocol == htons(ETH_P_8021Q)) {
2021 		struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2022 		protocol = veh->h_vlan_encapsulated_proto;
2023 	} else if (!vlan_tx_tag_present(skb)) {
2024 		return harmonize_features(skb, protocol, features);
2025 	}
2026 
2027 	features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX);
2028 
2029 	if (protocol != htons(ETH_P_8021Q)) {
2030 		return harmonize_features(skb, protocol, features);
2031 	} else {
2032 		features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2033 				NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX;
2034 		return harmonize_features(skb, protocol, features);
2035 	}
2036 }
2037 EXPORT_SYMBOL(netif_skb_features);
2038 
2039 /*
2040  * Returns true if either:
2041  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
2042  *	2. skb is fragmented and the device does not support SG, or if
2043  *	   at least one of fragments is in highmem and device does not
2044  *	   support DMA from it.
2045  */
2046 static inline int skb_needs_linearize(struct sk_buff *skb,
2047 				      int features)
2048 {
2049 	return skb_is_nonlinear(skb) &&
2050 			((skb_has_frag_list(skb) &&
2051 				!(features & NETIF_F_FRAGLIST)) ||
2052 			(skb_shinfo(skb)->nr_frags &&
2053 				!(features & NETIF_F_SG)));
2054 }
2055 
2056 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2057 			struct netdev_queue *txq)
2058 {
2059 	const struct net_device_ops *ops = dev->netdev_ops;
2060 	int rc = NETDEV_TX_OK;
2061 
2062 	if (likely(!skb->next)) {
2063 		int features;
2064 
2065 		/*
2066 		 * If device doesnt need skb->dst, release it right now while
2067 		 * its hot in this cpu cache
2068 		 */
2069 		if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2070 			skb_dst_drop(skb);
2071 
2072 		if (!list_empty(&ptype_all))
2073 			dev_queue_xmit_nit(skb, dev);
2074 
2075 		skb_orphan_try(skb);
2076 
2077 		features = netif_skb_features(skb);
2078 
2079 		if (vlan_tx_tag_present(skb) &&
2080 		    !(features & NETIF_F_HW_VLAN_TX)) {
2081 			skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb));
2082 			if (unlikely(!skb))
2083 				goto out;
2084 
2085 			skb->vlan_tci = 0;
2086 		}
2087 
2088 		if (netif_needs_gso(skb, features)) {
2089 			if (unlikely(dev_gso_segment(skb, features)))
2090 				goto out_kfree_skb;
2091 			if (skb->next)
2092 				goto gso;
2093 		} else {
2094 			if (skb_needs_linearize(skb, features) &&
2095 			    __skb_linearize(skb))
2096 				goto out_kfree_skb;
2097 
2098 			/* If packet is not checksummed and device does not
2099 			 * support checksumming for this protocol, complete
2100 			 * checksumming here.
2101 			 */
2102 			if (skb->ip_summed == CHECKSUM_PARTIAL) {
2103 				skb_set_transport_header(skb,
2104 					skb_checksum_start_offset(skb));
2105 				if (!(features & NETIF_F_ALL_CSUM) &&
2106 				     skb_checksum_help(skb))
2107 					goto out_kfree_skb;
2108 			}
2109 		}
2110 
2111 		rc = ops->ndo_start_xmit(skb, dev);
2112 		trace_net_dev_xmit(skb, rc);
2113 		if (rc == NETDEV_TX_OK)
2114 			txq_trans_update(txq);
2115 		return rc;
2116 	}
2117 
2118 gso:
2119 	do {
2120 		struct sk_buff *nskb = skb->next;
2121 
2122 		skb->next = nskb->next;
2123 		nskb->next = NULL;
2124 
2125 		/*
2126 		 * If device doesnt need nskb->dst, release it right now while
2127 		 * its hot in this cpu cache
2128 		 */
2129 		if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2130 			skb_dst_drop(nskb);
2131 
2132 		rc = ops->ndo_start_xmit(nskb, dev);
2133 		trace_net_dev_xmit(nskb, rc);
2134 		if (unlikely(rc != NETDEV_TX_OK)) {
2135 			if (rc & ~NETDEV_TX_MASK)
2136 				goto out_kfree_gso_skb;
2137 			nskb->next = skb->next;
2138 			skb->next = nskb;
2139 			return rc;
2140 		}
2141 		txq_trans_update(txq);
2142 		if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
2143 			return NETDEV_TX_BUSY;
2144 	} while (skb->next);
2145 
2146 out_kfree_gso_skb:
2147 	if (likely(skb->next == NULL))
2148 		skb->destructor = DEV_GSO_CB(skb)->destructor;
2149 out_kfree_skb:
2150 	kfree_skb(skb);
2151 out:
2152 	return rc;
2153 }
2154 
2155 static u32 hashrnd __read_mostly;
2156 
2157 /*
2158  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2159  * to be used as a distribution range.
2160  */
2161 u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb,
2162 		  unsigned int num_tx_queues)
2163 {
2164 	u32 hash;
2165 
2166 	if (skb_rx_queue_recorded(skb)) {
2167 		hash = skb_get_rx_queue(skb);
2168 		while (unlikely(hash >= num_tx_queues))
2169 			hash -= num_tx_queues;
2170 		return hash;
2171 	}
2172 
2173 	if (skb->sk && skb->sk->sk_hash)
2174 		hash = skb->sk->sk_hash;
2175 	else
2176 		hash = (__force u16) skb->protocol ^ skb->rxhash;
2177 	hash = jhash_1word(hash, hashrnd);
2178 
2179 	return (u16) (((u64) hash * num_tx_queues) >> 32);
2180 }
2181 EXPORT_SYMBOL(__skb_tx_hash);
2182 
2183 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
2184 {
2185 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2186 		if (net_ratelimit()) {
2187 			pr_warning("%s selects TX queue %d, but "
2188 				"real number of TX queues is %d\n",
2189 				dev->name, queue_index, dev->real_num_tx_queues);
2190 		}
2191 		return 0;
2192 	}
2193 	return queue_index;
2194 }
2195 
2196 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2197 {
2198 #ifdef CONFIG_XPS
2199 	struct xps_dev_maps *dev_maps;
2200 	struct xps_map *map;
2201 	int queue_index = -1;
2202 
2203 	rcu_read_lock();
2204 	dev_maps = rcu_dereference(dev->xps_maps);
2205 	if (dev_maps) {
2206 		map = rcu_dereference(
2207 		    dev_maps->cpu_map[raw_smp_processor_id()]);
2208 		if (map) {
2209 			if (map->len == 1)
2210 				queue_index = map->queues[0];
2211 			else {
2212 				u32 hash;
2213 				if (skb->sk && skb->sk->sk_hash)
2214 					hash = skb->sk->sk_hash;
2215 				else
2216 					hash = (__force u16) skb->protocol ^
2217 					    skb->rxhash;
2218 				hash = jhash_1word(hash, hashrnd);
2219 				queue_index = map->queues[
2220 				    ((u64)hash * map->len) >> 32];
2221 			}
2222 			if (unlikely(queue_index >= dev->real_num_tx_queues))
2223 				queue_index = -1;
2224 		}
2225 	}
2226 	rcu_read_unlock();
2227 
2228 	return queue_index;
2229 #else
2230 	return -1;
2231 #endif
2232 }
2233 
2234 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
2235 					struct sk_buff *skb)
2236 {
2237 	int queue_index;
2238 	const struct net_device_ops *ops = dev->netdev_ops;
2239 
2240 	if (dev->real_num_tx_queues == 1)
2241 		queue_index = 0;
2242 	else if (ops->ndo_select_queue) {
2243 		queue_index = ops->ndo_select_queue(dev, skb);
2244 		queue_index = dev_cap_txqueue(dev, queue_index);
2245 	} else {
2246 		struct sock *sk = skb->sk;
2247 		queue_index = sk_tx_queue_get(sk);
2248 
2249 		if (queue_index < 0 || skb->ooo_okay ||
2250 		    queue_index >= dev->real_num_tx_queues) {
2251 			int old_index = queue_index;
2252 
2253 			queue_index = get_xps_queue(dev, skb);
2254 			if (queue_index < 0)
2255 				queue_index = skb_tx_hash(dev, skb);
2256 
2257 			if (queue_index != old_index && sk) {
2258 				struct dst_entry *dst =
2259 				    rcu_dereference_check(sk->sk_dst_cache, 1);
2260 
2261 				if (dst && skb_dst(skb) == dst)
2262 					sk_tx_queue_set(sk, queue_index);
2263 			}
2264 		}
2265 	}
2266 
2267 	skb_set_queue_mapping(skb, queue_index);
2268 	return netdev_get_tx_queue(dev, queue_index);
2269 }
2270 
2271 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2272 				 struct net_device *dev,
2273 				 struct netdev_queue *txq)
2274 {
2275 	spinlock_t *root_lock = qdisc_lock(q);
2276 	bool contended = qdisc_is_running(q);
2277 	int rc;
2278 
2279 	/*
2280 	 * Heuristic to force contended enqueues to serialize on a
2281 	 * separate lock before trying to get qdisc main lock.
2282 	 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2283 	 * and dequeue packets faster.
2284 	 */
2285 	if (unlikely(contended))
2286 		spin_lock(&q->busylock);
2287 
2288 	spin_lock(root_lock);
2289 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2290 		kfree_skb(skb);
2291 		rc = NET_XMIT_DROP;
2292 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2293 		   qdisc_run_begin(q)) {
2294 		/*
2295 		 * This is a work-conserving queue; there are no old skbs
2296 		 * waiting to be sent out; and the qdisc is not running -
2297 		 * xmit the skb directly.
2298 		 */
2299 		if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2300 			skb_dst_force(skb);
2301 
2302 		qdisc_skb_cb(skb)->pkt_len = skb->len;
2303 		qdisc_bstats_update(q, skb);
2304 
2305 		if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2306 			if (unlikely(contended)) {
2307 				spin_unlock(&q->busylock);
2308 				contended = false;
2309 			}
2310 			__qdisc_run(q);
2311 		} else
2312 			qdisc_run_end(q);
2313 
2314 		rc = NET_XMIT_SUCCESS;
2315 	} else {
2316 		skb_dst_force(skb);
2317 		rc = qdisc_enqueue_root(skb, q);
2318 		if (qdisc_run_begin(q)) {
2319 			if (unlikely(contended)) {
2320 				spin_unlock(&q->busylock);
2321 				contended = false;
2322 			}
2323 			__qdisc_run(q);
2324 		}
2325 	}
2326 	spin_unlock(root_lock);
2327 	if (unlikely(contended))
2328 		spin_unlock(&q->busylock);
2329 	return rc;
2330 }
2331 
2332 static DEFINE_PER_CPU(int, xmit_recursion);
2333 #define RECURSION_LIMIT 10
2334 
2335 /**
2336  *	dev_queue_xmit - transmit a buffer
2337  *	@skb: buffer to transmit
2338  *
2339  *	Queue a buffer for transmission to a network device. The caller must
2340  *	have set the device and priority and built the buffer before calling
2341  *	this function. The function can be called from an interrupt.
2342  *
2343  *	A negative errno code is returned on a failure. A success does not
2344  *	guarantee the frame will be transmitted as it may be dropped due
2345  *	to congestion or traffic shaping.
2346  *
2347  * -----------------------------------------------------------------------------------
2348  *      I notice this method can also return errors from the queue disciplines,
2349  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
2350  *      be positive.
2351  *
2352  *      Regardless of the return value, the skb is consumed, so it is currently
2353  *      difficult to retry a send to this method.  (You can bump the ref count
2354  *      before sending to hold a reference for retry if you are careful.)
2355  *
2356  *      When calling this method, interrupts MUST be enabled.  This is because
2357  *      the BH enable code must have IRQs enabled so that it will not deadlock.
2358  *          --BLG
2359  */
2360 int dev_queue_xmit(struct sk_buff *skb)
2361 {
2362 	struct net_device *dev = skb->dev;
2363 	struct netdev_queue *txq;
2364 	struct Qdisc *q;
2365 	int rc = -ENOMEM;
2366 
2367 	/* Disable soft irqs for various locks below. Also
2368 	 * stops preemption for RCU.
2369 	 */
2370 	rcu_read_lock_bh();
2371 
2372 	txq = dev_pick_tx(dev, skb);
2373 	q = rcu_dereference_bh(txq->qdisc);
2374 
2375 #ifdef CONFIG_NET_CLS_ACT
2376 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2377 #endif
2378 	trace_net_dev_queue(skb);
2379 	if (q->enqueue) {
2380 		rc = __dev_xmit_skb(skb, q, dev, txq);
2381 		goto out;
2382 	}
2383 
2384 	/* The device has no queue. Common case for software devices:
2385 	   loopback, all the sorts of tunnels...
2386 
2387 	   Really, it is unlikely that netif_tx_lock protection is necessary
2388 	   here.  (f.e. loopback and IP tunnels are clean ignoring statistics
2389 	   counters.)
2390 	   However, it is possible, that they rely on protection
2391 	   made by us here.
2392 
2393 	   Check this and shot the lock. It is not prone from deadlocks.
2394 	   Either shot noqueue qdisc, it is even simpler 8)
2395 	 */
2396 	if (dev->flags & IFF_UP) {
2397 		int cpu = smp_processor_id(); /* ok because BHs are off */
2398 
2399 		if (txq->xmit_lock_owner != cpu) {
2400 
2401 			if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2402 				goto recursion_alert;
2403 
2404 			HARD_TX_LOCK(dev, txq, cpu);
2405 
2406 			if (!netif_tx_queue_stopped(txq)) {
2407 				__this_cpu_inc(xmit_recursion);
2408 				rc = dev_hard_start_xmit(skb, dev, txq);
2409 				__this_cpu_dec(xmit_recursion);
2410 				if (dev_xmit_complete(rc)) {
2411 					HARD_TX_UNLOCK(dev, txq);
2412 					goto out;
2413 				}
2414 			}
2415 			HARD_TX_UNLOCK(dev, txq);
2416 			if (net_ratelimit())
2417 				printk(KERN_CRIT "Virtual device %s asks to "
2418 				       "queue packet!\n", dev->name);
2419 		} else {
2420 			/* Recursion is detected! It is possible,
2421 			 * unfortunately
2422 			 */
2423 recursion_alert:
2424 			if (net_ratelimit())
2425 				printk(KERN_CRIT "Dead loop on virtual device "
2426 				       "%s, fix it urgently!\n", dev->name);
2427 		}
2428 	}
2429 
2430 	rc = -ENETDOWN;
2431 	rcu_read_unlock_bh();
2432 
2433 	kfree_skb(skb);
2434 	return rc;
2435 out:
2436 	rcu_read_unlock_bh();
2437 	return rc;
2438 }
2439 EXPORT_SYMBOL(dev_queue_xmit);
2440 
2441 
2442 /*=======================================================================
2443 			Receiver routines
2444   =======================================================================*/
2445 
2446 int netdev_max_backlog __read_mostly = 1000;
2447 int netdev_tstamp_prequeue __read_mostly = 1;
2448 int netdev_budget __read_mostly = 300;
2449 int weight_p __read_mostly = 64;            /* old backlog weight */
2450 
2451 /* Called with irq disabled */
2452 static inline void ____napi_schedule(struct softnet_data *sd,
2453 				     struct napi_struct *napi)
2454 {
2455 	list_add_tail(&napi->poll_list, &sd->poll_list);
2456 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
2457 }
2458 
2459 /*
2460  * __skb_get_rxhash: calculate a flow hash based on src/dst addresses
2461  * and src/dst port numbers. Returns a non-zero hash number on success
2462  * and 0 on failure.
2463  */
2464 __u32 __skb_get_rxhash(struct sk_buff *skb)
2465 {
2466 	int nhoff, hash = 0, poff;
2467 	struct ipv6hdr *ip6;
2468 	struct iphdr *ip;
2469 	u8 ip_proto;
2470 	u32 addr1, addr2, ihl;
2471 	union {
2472 		u32 v32;
2473 		u16 v16[2];
2474 	} ports;
2475 
2476 	nhoff = skb_network_offset(skb);
2477 
2478 	switch (skb->protocol) {
2479 	case __constant_htons(ETH_P_IP):
2480 		if (!pskb_may_pull(skb, sizeof(*ip) + nhoff))
2481 			goto done;
2482 
2483 		ip = (struct iphdr *) (skb->data + nhoff);
2484 		if (ip->frag_off & htons(IP_MF | IP_OFFSET))
2485 			ip_proto = 0;
2486 		else
2487 			ip_proto = ip->protocol;
2488 		addr1 = (__force u32) ip->saddr;
2489 		addr2 = (__force u32) ip->daddr;
2490 		ihl = ip->ihl;
2491 		break;
2492 	case __constant_htons(ETH_P_IPV6):
2493 		if (!pskb_may_pull(skb, sizeof(*ip6) + nhoff))
2494 			goto done;
2495 
2496 		ip6 = (struct ipv6hdr *) (skb->data + nhoff);
2497 		ip_proto = ip6->nexthdr;
2498 		addr1 = (__force u32) ip6->saddr.s6_addr32[3];
2499 		addr2 = (__force u32) ip6->daddr.s6_addr32[3];
2500 		ihl = (40 >> 2);
2501 		break;
2502 	default:
2503 		goto done;
2504 	}
2505 
2506 	ports.v32 = 0;
2507 	poff = proto_ports_offset(ip_proto);
2508 	if (poff >= 0) {
2509 		nhoff += ihl * 4 + poff;
2510 		if (pskb_may_pull(skb, nhoff + 4)) {
2511 			ports.v32 = * (__force u32 *) (skb->data + nhoff);
2512 			if (ports.v16[1] < ports.v16[0])
2513 				swap(ports.v16[0], ports.v16[1]);
2514 		}
2515 	}
2516 
2517 	/* get a consistent hash (same value on both flow directions) */
2518 	if (addr2 < addr1)
2519 		swap(addr1, addr2);
2520 
2521 	hash = jhash_3words(addr1, addr2, ports.v32, hashrnd);
2522 	if (!hash)
2523 		hash = 1;
2524 
2525 done:
2526 	return hash;
2527 }
2528 EXPORT_SYMBOL(__skb_get_rxhash);
2529 
2530 #ifdef CONFIG_RPS
2531 
2532 /* One global table that all flow-based protocols share. */
2533 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2534 EXPORT_SYMBOL(rps_sock_flow_table);
2535 
2536 /*
2537  * get_rps_cpu is called from netif_receive_skb and returns the target
2538  * CPU from the RPS map of the receiving queue for a given skb.
2539  * rcu_read_lock must be held on entry.
2540  */
2541 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2542 		       struct rps_dev_flow **rflowp)
2543 {
2544 	struct netdev_rx_queue *rxqueue;
2545 	struct rps_map *map;
2546 	struct rps_dev_flow_table *flow_table;
2547 	struct rps_sock_flow_table *sock_flow_table;
2548 	int cpu = -1;
2549 	u16 tcpu;
2550 
2551 	if (skb_rx_queue_recorded(skb)) {
2552 		u16 index = skb_get_rx_queue(skb);
2553 		if (unlikely(index >= dev->real_num_rx_queues)) {
2554 			WARN_ONCE(dev->real_num_rx_queues > 1,
2555 				  "%s received packet on queue %u, but number "
2556 				  "of RX queues is %u\n",
2557 				  dev->name, index, dev->real_num_rx_queues);
2558 			goto done;
2559 		}
2560 		rxqueue = dev->_rx + index;
2561 	} else
2562 		rxqueue = dev->_rx;
2563 
2564 	map = rcu_dereference(rxqueue->rps_map);
2565 	if (map) {
2566 		if (map->len == 1 &&
2567 		    !rcu_dereference_raw(rxqueue->rps_flow_table)) {
2568 			tcpu = map->cpus[0];
2569 			if (cpu_online(tcpu))
2570 				cpu = tcpu;
2571 			goto done;
2572 		}
2573 	} else if (!rcu_dereference_raw(rxqueue->rps_flow_table)) {
2574 		goto done;
2575 	}
2576 
2577 	skb_reset_network_header(skb);
2578 	if (!skb_get_rxhash(skb))
2579 		goto done;
2580 
2581 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
2582 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
2583 	if (flow_table && sock_flow_table) {
2584 		u16 next_cpu;
2585 		struct rps_dev_flow *rflow;
2586 
2587 		rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2588 		tcpu = rflow->cpu;
2589 
2590 		next_cpu = sock_flow_table->ents[skb->rxhash &
2591 		    sock_flow_table->mask];
2592 
2593 		/*
2594 		 * If the desired CPU (where last recvmsg was done) is
2595 		 * different from current CPU (one in the rx-queue flow
2596 		 * table entry), switch if one of the following holds:
2597 		 *   - Current CPU is unset (equal to RPS_NO_CPU).
2598 		 *   - Current CPU is offline.
2599 		 *   - The current CPU's queue tail has advanced beyond the
2600 		 *     last packet that was enqueued using this table entry.
2601 		 *     This guarantees that all previous packets for the flow
2602 		 *     have been dequeued, thus preserving in order delivery.
2603 		 */
2604 		if (unlikely(tcpu != next_cpu) &&
2605 		    (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2606 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2607 		      rflow->last_qtail)) >= 0)) {
2608 			tcpu = rflow->cpu = next_cpu;
2609 			if (tcpu != RPS_NO_CPU)
2610 				rflow->last_qtail = per_cpu(softnet_data,
2611 				    tcpu).input_queue_head;
2612 		}
2613 		if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2614 			*rflowp = rflow;
2615 			cpu = tcpu;
2616 			goto done;
2617 		}
2618 	}
2619 
2620 	if (map) {
2621 		tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2622 
2623 		if (cpu_online(tcpu)) {
2624 			cpu = tcpu;
2625 			goto done;
2626 		}
2627 	}
2628 
2629 done:
2630 	return cpu;
2631 }
2632 
2633 /* Called from hardirq (IPI) context */
2634 static void rps_trigger_softirq(void *data)
2635 {
2636 	struct softnet_data *sd = data;
2637 
2638 	____napi_schedule(sd, &sd->backlog);
2639 	sd->received_rps++;
2640 }
2641 
2642 #endif /* CONFIG_RPS */
2643 
2644 /*
2645  * Check if this softnet_data structure is another cpu one
2646  * If yes, queue it to our IPI list and return 1
2647  * If no, return 0
2648  */
2649 static int rps_ipi_queued(struct softnet_data *sd)
2650 {
2651 #ifdef CONFIG_RPS
2652 	struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2653 
2654 	if (sd != mysd) {
2655 		sd->rps_ipi_next = mysd->rps_ipi_list;
2656 		mysd->rps_ipi_list = sd;
2657 
2658 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
2659 		return 1;
2660 	}
2661 #endif /* CONFIG_RPS */
2662 	return 0;
2663 }
2664 
2665 /*
2666  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2667  * queue (may be a remote CPU queue).
2668  */
2669 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2670 			      unsigned int *qtail)
2671 {
2672 	struct softnet_data *sd;
2673 	unsigned long flags;
2674 
2675 	sd = &per_cpu(softnet_data, cpu);
2676 
2677 	local_irq_save(flags);
2678 
2679 	rps_lock(sd);
2680 	if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2681 		if (skb_queue_len(&sd->input_pkt_queue)) {
2682 enqueue:
2683 			__skb_queue_tail(&sd->input_pkt_queue, skb);
2684 			input_queue_tail_incr_save(sd, qtail);
2685 			rps_unlock(sd);
2686 			local_irq_restore(flags);
2687 			return NET_RX_SUCCESS;
2688 		}
2689 
2690 		/* Schedule NAPI for backlog device
2691 		 * We can use non atomic operation since we own the queue lock
2692 		 */
2693 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2694 			if (!rps_ipi_queued(sd))
2695 				____napi_schedule(sd, &sd->backlog);
2696 		}
2697 		goto enqueue;
2698 	}
2699 
2700 	sd->dropped++;
2701 	rps_unlock(sd);
2702 
2703 	local_irq_restore(flags);
2704 
2705 	atomic_long_inc(&skb->dev->rx_dropped);
2706 	kfree_skb(skb);
2707 	return NET_RX_DROP;
2708 }
2709 
2710 /**
2711  *	netif_rx	-	post buffer to the network code
2712  *	@skb: buffer to post
2713  *
2714  *	This function receives a packet from a device driver and queues it for
2715  *	the upper (protocol) levels to process.  It always succeeds. The buffer
2716  *	may be dropped during processing for congestion control or by the
2717  *	protocol layers.
2718  *
2719  *	return values:
2720  *	NET_RX_SUCCESS	(no congestion)
2721  *	NET_RX_DROP     (packet was dropped)
2722  *
2723  */
2724 
2725 int netif_rx(struct sk_buff *skb)
2726 {
2727 	int ret;
2728 
2729 	/* if netpoll wants it, pretend we never saw it */
2730 	if (netpoll_rx(skb))
2731 		return NET_RX_DROP;
2732 
2733 	if (netdev_tstamp_prequeue)
2734 		net_timestamp_check(skb);
2735 
2736 	trace_netif_rx(skb);
2737 #ifdef CONFIG_RPS
2738 	{
2739 		struct rps_dev_flow voidflow, *rflow = &voidflow;
2740 		int cpu;
2741 
2742 		preempt_disable();
2743 		rcu_read_lock();
2744 
2745 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
2746 		if (cpu < 0)
2747 			cpu = smp_processor_id();
2748 
2749 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2750 
2751 		rcu_read_unlock();
2752 		preempt_enable();
2753 	}
2754 #else
2755 	{
2756 		unsigned int qtail;
2757 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
2758 		put_cpu();
2759 	}
2760 #endif
2761 	return ret;
2762 }
2763 EXPORT_SYMBOL(netif_rx);
2764 
2765 int netif_rx_ni(struct sk_buff *skb)
2766 {
2767 	int err;
2768 
2769 	preempt_disable();
2770 	err = netif_rx(skb);
2771 	if (local_softirq_pending())
2772 		do_softirq();
2773 	preempt_enable();
2774 
2775 	return err;
2776 }
2777 EXPORT_SYMBOL(netif_rx_ni);
2778 
2779 static void net_tx_action(struct softirq_action *h)
2780 {
2781 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
2782 
2783 	if (sd->completion_queue) {
2784 		struct sk_buff *clist;
2785 
2786 		local_irq_disable();
2787 		clist = sd->completion_queue;
2788 		sd->completion_queue = NULL;
2789 		local_irq_enable();
2790 
2791 		while (clist) {
2792 			struct sk_buff *skb = clist;
2793 			clist = clist->next;
2794 
2795 			WARN_ON(atomic_read(&skb->users));
2796 			trace_kfree_skb(skb, net_tx_action);
2797 			__kfree_skb(skb);
2798 		}
2799 	}
2800 
2801 	if (sd->output_queue) {
2802 		struct Qdisc *head;
2803 
2804 		local_irq_disable();
2805 		head = sd->output_queue;
2806 		sd->output_queue = NULL;
2807 		sd->output_queue_tailp = &sd->output_queue;
2808 		local_irq_enable();
2809 
2810 		while (head) {
2811 			struct Qdisc *q = head;
2812 			spinlock_t *root_lock;
2813 
2814 			head = head->next_sched;
2815 
2816 			root_lock = qdisc_lock(q);
2817 			if (spin_trylock(root_lock)) {
2818 				smp_mb__before_clear_bit();
2819 				clear_bit(__QDISC_STATE_SCHED,
2820 					  &q->state);
2821 				qdisc_run(q);
2822 				spin_unlock(root_lock);
2823 			} else {
2824 				if (!test_bit(__QDISC_STATE_DEACTIVATED,
2825 					      &q->state)) {
2826 					__netif_reschedule(q);
2827 				} else {
2828 					smp_mb__before_clear_bit();
2829 					clear_bit(__QDISC_STATE_SCHED,
2830 						  &q->state);
2831 				}
2832 			}
2833 		}
2834 	}
2835 }
2836 
2837 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
2838     (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
2839 /* This hook is defined here for ATM LANE */
2840 int (*br_fdb_test_addr_hook)(struct net_device *dev,
2841 			     unsigned char *addr) __read_mostly;
2842 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
2843 #endif
2844 
2845 #ifdef CONFIG_NET_CLS_ACT
2846 /* TODO: Maybe we should just force sch_ingress to be compiled in
2847  * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2848  * a compare and 2 stores extra right now if we dont have it on
2849  * but have CONFIG_NET_CLS_ACT
2850  * NOTE: This doesnt stop any functionality; if you dont have
2851  * the ingress scheduler, you just cant add policies on ingress.
2852  *
2853  */
2854 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
2855 {
2856 	struct net_device *dev = skb->dev;
2857 	u32 ttl = G_TC_RTTL(skb->tc_verd);
2858 	int result = TC_ACT_OK;
2859 	struct Qdisc *q;
2860 
2861 	if (unlikely(MAX_RED_LOOP < ttl++)) {
2862 		if (net_ratelimit())
2863 			pr_warning( "Redir loop detected Dropping packet (%d->%d)\n",
2864 			       skb->skb_iif, dev->ifindex);
2865 		return TC_ACT_SHOT;
2866 	}
2867 
2868 	skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2869 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2870 
2871 	q = rxq->qdisc;
2872 	if (q != &noop_qdisc) {
2873 		spin_lock(qdisc_lock(q));
2874 		if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2875 			result = qdisc_enqueue_root(skb, q);
2876 		spin_unlock(qdisc_lock(q));
2877 	}
2878 
2879 	return result;
2880 }
2881 
2882 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2883 					 struct packet_type **pt_prev,
2884 					 int *ret, struct net_device *orig_dev)
2885 {
2886 	struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
2887 
2888 	if (!rxq || rxq->qdisc == &noop_qdisc)
2889 		goto out;
2890 
2891 	if (*pt_prev) {
2892 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
2893 		*pt_prev = NULL;
2894 	}
2895 
2896 	switch (ing_filter(skb, rxq)) {
2897 	case TC_ACT_SHOT:
2898 	case TC_ACT_STOLEN:
2899 		kfree_skb(skb);
2900 		return NULL;
2901 	}
2902 
2903 out:
2904 	skb->tc_verd = 0;
2905 	return skb;
2906 }
2907 #endif
2908 
2909 /**
2910  *	netdev_rx_handler_register - register receive handler
2911  *	@dev: device to register a handler for
2912  *	@rx_handler: receive handler to register
2913  *	@rx_handler_data: data pointer that is used by rx handler
2914  *
2915  *	Register a receive hander for a device. This handler will then be
2916  *	called from __netif_receive_skb. A negative errno code is returned
2917  *	on a failure.
2918  *
2919  *	The caller must hold the rtnl_mutex.
2920  */
2921 int netdev_rx_handler_register(struct net_device *dev,
2922 			       rx_handler_func_t *rx_handler,
2923 			       void *rx_handler_data)
2924 {
2925 	ASSERT_RTNL();
2926 
2927 	if (dev->rx_handler)
2928 		return -EBUSY;
2929 
2930 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
2931 	rcu_assign_pointer(dev->rx_handler, rx_handler);
2932 
2933 	return 0;
2934 }
2935 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
2936 
2937 /**
2938  *	netdev_rx_handler_unregister - unregister receive handler
2939  *	@dev: device to unregister a handler from
2940  *
2941  *	Unregister a receive hander from a device.
2942  *
2943  *	The caller must hold the rtnl_mutex.
2944  */
2945 void netdev_rx_handler_unregister(struct net_device *dev)
2946 {
2947 
2948 	ASSERT_RTNL();
2949 	rcu_assign_pointer(dev->rx_handler, NULL);
2950 	rcu_assign_pointer(dev->rx_handler_data, NULL);
2951 }
2952 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
2953 
2954 static inline void skb_bond_set_mac_by_master(struct sk_buff *skb,
2955 					      struct net_device *master)
2956 {
2957 	if (skb->pkt_type == PACKET_HOST) {
2958 		u16 *dest = (u16 *) eth_hdr(skb)->h_dest;
2959 
2960 		memcpy(dest, master->dev_addr, ETH_ALEN);
2961 	}
2962 }
2963 
2964 /* On bonding slaves other than the currently active slave, suppress
2965  * duplicates except for 802.3ad ETH_P_SLOW, alb non-mcast/bcast, and
2966  * ARP on active-backup slaves with arp_validate enabled.
2967  */
2968 int __skb_bond_should_drop(struct sk_buff *skb, struct net_device *master)
2969 {
2970 	struct net_device *dev = skb->dev;
2971 
2972 	if (master->priv_flags & IFF_MASTER_ARPMON)
2973 		dev->last_rx = jiffies;
2974 
2975 	if ((master->priv_flags & IFF_MASTER_ALB) &&
2976 	    (master->priv_flags & IFF_BRIDGE_PORT)) {
2977 		/* Do address unmangle. The local destination address
2978 		 * will be always the one master has. Provides the right
2979 		 * functionality in a bridge.
2980 		 */
2981 		skb_bond_set_mac_by_master(skb, master);
2982 	}
2983 
2984 	if (dev->priv_flags & IFF_SLAVE_INACTIVE) {
2985 		if ((dev->priv_flags & IFF_SLAVE_NEEDARP) &&
2986 		    skb->protocol == __cpu_to_be16(ETH_P_ARP))
2987 			return 0;
2988 
2989 		if (master->priv_flags & IFF_MASTER_ALB) {
2990 			if (skb->pkt_type != PACKET_BROADCAST &&
2991 			    skb->pkt_type != PACKET_MULTICAST)
2992 				return 0;
2993 		}
2994 		if (master->priv_flags & IFF_MASTER_8023AD &&
2995 		    skb->protocol == __cpu_to_be16(ETH_P_SLOW))
2996 			return 0;
2997 
2998 		return 1;
2999 	}
3000 	return 0;
3001 }
3002 EXPORT_SYMBOL(__skb_bond_should_drop);
3003 
3004 static int __netif_receive_skb(struct sk_buff *skb)
3005 {
3006 	struct packet_type *ptype, *pt_prev;
3007 	rx_handler_func_t *rx_handler;
3008 	struct net_device *orig_dev;
3009 	struct net_device *master;
3010 	struct net_device *null_or_orig;
3011 	struct net_device *orig_or_bond;
3012 	int ret = NET_RX_DROP;
3013 	__be16 type;
3014 
3015 	if (!netdev_tstamp_prequeue)
3016 		net_timestamp_check(skb);
3017 
3018 	trace_netif_receive_skb(skb);
3019 
3020 	/* if we've gotten here through NAPI, check netpoll */
3021 	if (netpoll_receive_skb(skb))
3022 		return NET_RX_DROP;
3023 
3024 	if (!skb->skb_iif)
3025 		skb->skb_iif = skb->dev->ifindex;
3026 
3027 	/*
3028 	 * bonding note: skbs received on inactive slaves should only
3029 	 * be delivered to pkt handlers that are exact matches.  Also
3030 	 * the deliver_no_wcard flag will be set.  If packet handlers
3031 	 * are sensitive to duplicate packets these skbs will need to
3032 	 * be dropped at the handler.
3033 	 */
3034 	null_or_orig = NULL;
3035 	orig_dev = skb->dev;
3036 	master = ACCESS_ONCE(orig_dev->master);
3037 	if (skb->deliver_no_wcard)
3038 		null_or_orig = orig_dev;
3039 	else if (master) {
3040 		if (skb_bond_should_drop(skb, master)) {
3041 			skb->deliver_no_wcard = 1;
3042 			null_or_orig = orig_dev; /* deliver only exact match */
3043 		} else
3044 			skb->dev = master;
3045 	}
3046 
3047 	__this_cpu_inc(softnet_data.processed);
3048 	skb_reset_network_header(skb);
3049 	skb_reset_transport_header(skb);
3050 	skb->mac_len = skb->network_header - skb->mac_header;
3051 
3052 	pt_prev = NULL;
3053 
3054 	rcu_read_lock();
3055 
3056 #ifdef CONFIG_NET_CLS_ACT
3057 	if (skb->tc_verd & TC_NCLS) {
3058 		skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3059 		goto ncls;
3060 	}
3061 #endif
3062 
3063 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
3064 		if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
3065 		    ptype->dev == orig_dev) {
3066 			if (pt_prev)
3067 				ret = deliver_skb(skb, pt_prev, orig_dev);
3068 			pt_prev = ptype;
3069 		}
3070 	}
3071 
3072 #ifdef CONFIG_NET_CLS_ACT
3073 	skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3074 	if (!skb)
3075 		goto out;
3076 ncls:
3077 #endif
3078 
3079 	/* Handle special case of bridge or macvlan */
3080 	rx_handler = rcu_dereference(skb->dev->rx_handler);
3081 	if (rx_handler) {
3082 		if (pt_prev) {
3083 			ret = deliver_skb(skb, pt_prev, orig_dev);
3084 			pt_prev = NULL;
3085 		}
3086 		skb = rx_handler(skb);
3087 		if (!skb)
3088 			goto out;
3089 	}
3090 
3091 	if (vlan_tx_tag_present(skb)) {
3092 		if (pt_prev) {
3093 			ret = deliver_skb(skb, pt_prev, orig_dev);
3094 			pt_prev = NULL;
3095 		}
3096 		if (vlan_hwaccel_do_receive(&skb)) {
3097 			ret = __netif_receive_skb(skb);
3098 			goto out;
3099 		} else if (unlikely(!skb))
3100 			goto out;
3101 	}
3102 
3103 	/*
3104 	 * Make sure frames received on VLAN interfaces stacked on
3105 	 * bonding interfaces still make their way to any base bonding
3106 	 * device that may have registered for a specific ptype.  The
3107 	 * handler may have to adjust skb->dev and orig_dev.
3108 	 */
3109 	orig_or_bond = orig_dev;
3110 	if ((skb->dev->priv_flags & IFF_802_1Q_VLAN) &&
3111 	    (vlan_dev_real_dev(skb->dev)->priv_flags & IFF_BONDING)) {
3112 		orig_or_bond = vlan_dev_real_dev(skb->dev);
3113 	}
3114 
3115 	type = skb->protocol;
3116 	list_for_each_entry_rcu(ptype,
3117 			&ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3118 		if (ptype->type == type && (ptype->dev == null_or_orig ||
3119 		     ptype->dev == skb->dev || ptype->dev == orig_dev ||
3120 		     ptype->dev == orig_or_bond)) {
3121 			if (pt_prev)
3122 				ret = deliver_skb(skb, pt_prev, orig_dev);
3123 			pt_prev = ptype;
3124 		}
3125 	}
3126 
3127 	if (pt_prev) {
3128 		ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3129 	} else {
3130 		atomic_long_inc(&skb->dev->rx_dropped);
3131 		kfree_skb(skb);
3132 		/* Jamal, now you will not able to escape explaining
3133 		 * me how you were going to use this. :-)
3134 		 */
3135 		ret = NET_RX_DROP;
3136 	}
3137 
3138 out:
3139 	rcu_read_unlock();
3140 	return ret;
3141 }
3142 
3143 /**
3144  *	netif_receive_skb - process receive buffer from network
3145  *	@skb: buffer to process
3146  *
3147  *	netif_receive_skb() is the main receive data processing function.
3148  *	It always succeeds. The buffer may be dropped during processing
3149  *	for congestion control or by the protocol layers.
3150  *
3151  *	This function may only be called from softirq context and interrupts
3152  *	should be enabled.
3153  *
3154  *	Return values (usually ignored):
3155  *	NET_RX_SUCCESS: no congestion
3156  *	NET_RX_DROP: packet was dropped
3157  */
3158 int netif_receive_skb(struct sk_buff *skb)
3159 {
3160 	if (netdev_tstamp_prequeue)
3161 		net_timestamp_check(skb);
3162 
3163 	if (skb_defer_rx_timestamp(skb))
3164 		return NET_RX_SUCCESS;
3165 
3166 #ifdef CONFIG_RPS
3167 	{
3168 		struct rps_dev_flow voidflow, *rflow = &voidflow;
3169 		int cpu, ret;
3170 
3171 		rcu_read_lock();
3172 
3173 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
3174 
3175 		if (cpu >= 0) {
3176 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3177 			rcu_read_unlock();
3178 		} else {
3179 			rcu_read_unlock();
3180 			ret = __netif_receive_skb(skb);
3181 		}
3182 
3183 		return ret;
3184 	}
3185 #else
3186 	return __netif_receive_skb(skb);
3187 #endif
3188 }
3189 EXPORT_SYMBOL(netif_receive_skb);
3190 
3191 /* Network device is going away, flush any packets still pending
3192  * Called with irqs disabled.
3193  */
3194 static void flush_backlog(void *arg)
3195 {
3196 	struct net_device *dev = arg;
3197 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
3198 	struct sk_buff *skb, *tmp;
3199 
3200 	rps_lock(sd);
3201 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3202 		if (skb->dev == dev) {
3203 			__skb_unlink(skb, &sd->input_pkt_queue);
3204 			kfree_skb(skb);
3205 			input_queue_head_incr(sd);
3206 		}
3207 	}
3208 	rps_unlock(sd);
3209 
3210 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3211 		if (skb->dev == dev) {
3212 			__skb_unlink(skb, &sd->process_queue);
3213 			kfree_skb(skb);
3214 			input_queue_head_incr(sd);
3215 		}
3216 	}
3217 }
3218 
3219 static int napi_gro_complete(struct sk_buff *skb)
3220 {
3221 	struct packet_type *ptype;
3222 	__be16 type = skb->protocol;
3223 	struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3224 	int err = -ENOENT;
3225 
3226 	if (NAPI_GRO_CB(skb)->count == 1) {
3227 		skb_shinfo(skb)->gso_size = 0;
3228 		goto out;
3229 	}
3230 
3231 	rcu_read_lock();
3232 	list_for_each_entry_rcu(ptype, head, list) {
3233 		if (ptype->type != type || ptype->dev || !ptype->gro_complete)
3234 			continue;
3235 
3236 		err = ptype->gro_complete(skb);
3237 		break;
3238 	}
3239 	rcu_read_unlock();
3240 
3241 	if (err) {
3242 		WARN_ON(&ptype->list == head);
3243 		kfree_skb(skb);
3244 		return NET_RX_SUCCESS;
3245 	}
3246 
3247 out:
3248 	return netif_receive_skb(skb);
3249 }
3250 
3251 inline void napi_gro_flush(struct napi_struct *napi)
3252 {
3253 	struct sk_buff *skb, *next;
3254 
3255 	for (skb = napi->gro_list; skb; skb = next) {
3256 		next = skb->next;
3257 		skb->next = NULL;
3258 		napi_gro_complete(skb);
3259 	}
3260 
3261 	napi->gro_count = 0;
3262 	napi->gro_list = NULL;
3263 }
3264 EXPORT_SYMBOL(napi_gro_flush);
3265 
3266 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3267 {
3268 	struct sk_buff **pp = NULL;
3269 	struct packet_type *ptype;
3270 	__be16 type = skb->protocol;
3271 	struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3272 	int same_flow;
3273 	int mac_len;
3274 	enum gro_result ret;
3275 
3276 	if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3277 		goto normal;
3278 
3279 	if (skb_is_gso(skb) || skb_has_frag_list(skb))
3280 		goto normal;
3281 
3282 	rcu_read_lock();
3283 	list_for_each_entry_rcu(ptype, head, list) {
3284 		if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3285 			continue;
3286 
3287 		skb_set_network_header(skb, skb_gro_offset(skb));
3288 		mac_len = skb->network_header - skb->mac_header;
3289 		skb->mac_len = mac_len;
3290 		NAPI_GRO_CB(skb)->same_flow = 0;
3291 		NAPI_GRO_CB(skb)->flush = 0;
3292 		NAPI_GRO_CB(skb)->free = 0;
3293 
3294 		pp = ptype->gro_receive(&napi->gro_list, skb);
3295 		break;
3296 	}
3297 	rcu_read_unlock();
3298 
3299 	if (&ptype->list == head)
3300 		goto normal;
3301 
3302 	same_flow = NAPI_GRO_CB(skb)->same_flow;
3303 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3304 
3305 	if (pp) {
3306 		struct sk_buff *nskb = *pp;
3307 
3308 		*pp = nskb->next;
3309 		nskb->next = NULL;
3310 		napi_gro_complete(nskb);
3311 		napi->gro_count--;
3312 	}
3313 
3314 	if (same_flow)
3315 		goto ok;
3316 
3317 	if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3318 		goto normal;
3319 
3320 	napi->gro_count++;
3321 	NAPI_GRO_CB(skb)->count = 1;
3322 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3323 	skb->next = napi->gro_list;
3324 	napi->gro_list = skb;
3325 	ret = GRO_HELD;
3326 
3327 pull:
3328 	if (skb_headlen(skb) < skb_gro_offset(skb)) {
3329 		int grow = skb_gro_offset(skb) - skb_headlen(skb);
3330 
3331 		BUG_ON(skb->end - skb->tail < grow);
3332 
3333 		memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3334 
3335 		skb->tail += grow;
3336 		skb->data_len -= grow;
3337 
3338 		skb_shinfo(skb)->frags[0].page_offset += grow;
3339 		skb_shinfo(skb)->frags[0].size -= grow;
3340 
3341 		if (unlikely(!skb_shinfo(skb)->frags[0].size)) {
3342 			put_page(skb_shinfo(skb)->frags[0].page);
3343 			memmove(skb_shinfo(skb)->frags,
3344 				skb_shinfo(skb)->frags + 1,
3345 				--skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3346 		}
3347 	}
3348 
3349 ok:
3350 	return ret;
3351 
3352 normal:
3353 	ret = GRO_NORMAL;
3354 	goto pull;
3355 }
3356 EXPORT_SYMBOL(dev_gro_receive);
3357 
3358 static inline gro_result_t
3359 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3360 {
3361 	struct sk_buff *p;
3362 
3363 	for (p = napi->gro_list; p; p = p->next) {
3364 		unsigned long diffs;
3365 
3366 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3367 		diffs |= p->vlan_tci ^ skb->vlan_tci;
3368 		diffs |= compare_ether_header(skb_mac_header(p),
3369 					      skb_gro_mac_header(skb));
3370 		NAPI_GRO_CB(p)->same_flow = !diffs;
3371 		NAPI_GRO_CB(p)->flush = 0;
3372 	}
3373 
3374 	return dev_gro_receive(napi, skb);
3375 }
3376 
3377 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3378 {
3379 	switch (ret) {
3380 	case GRO_NORMAL:
3381 		if (netif_receive_skb(skb))
3382 			ret = GRO_DROP;
3383 		break;
3384 
3385 	case GRO_DROP:
3386 	case GRO_MERGED_FREE:
3387 		kfree_skb(skb);
3388 		break;
3389 
3390 	case GRO_HELD:
3391 	case GRO_MERGED:
3392 		break;
3393 	}
3394 
3395 	return ret;
3396 }
3397 EXPORT_SYMBOL(napi_skb_finish);
3398 
3399 void skb_gro_reset_offset(struct sk_buff *skb)
3400 {
3401 	NAPI_GRO_CB(skb)->data_offset = 0;
3402 	NAPI_GRO_CB(skb)->frag0 = NULL;
3403 	NAPI_GRO_CB(skb)->frag0_len = 0;
3404 
3405 	if (skb->mac_header == skb->tail &&
3406 	    !PageHighMem(skb_shinfo(skb)->frags[0].page)) {
3407 		NAPI_GRO_CB(skb)->frag0 =
3408 			page_address(skb_shinfo(skb)->frags[0].page) +
3409 			skb_shinfo(skb)->frags[0].page_offset;
3410 		NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size;
3411 	}
3412 }
3413 EXPORT_SYMBOL(skb_gro_reset_offset);
3414 
3415 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3416 {
3417 	skb_gro_reset_offset(skb);
3418 
3419 	return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3420 }
3421 EXPORT_SYMBOL(napi_gro_receive);
3422 
3423 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3424 {
3425 	__skb_pull(skb, skb_headlen(skb));
3426 	skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
3427 	skb->vlan_tci = 0;
3428 	skb->dev = napi->dev;
3429 	skb->skb_iif = 0;
3430 
3431 	napi->skb = skb;
3432 }
3433 
3434 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3435 {
3436 	struct sk_buff *skb = napi->skb;
3437 
3438 	if (!skb) {
3439 		skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3440 		if (skb)
3441 			napi->skb = skb;
3442 	}
3443 	return skb;
3444 }
3445 EXPORT_SYMBOL(napi_get_frags);
3446 
3447 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3448 			       gro_result_t ret)
3449 {
3450 	switch (ret) {
3451 	case GRO_NORMAL:
3452 	case GRO_HELD:
3453 		skb->protocol = eth_type_trans(skb, skb->dev);
3454 
3455 		if (ret == GRO_HELD)
3456 			skb_gro_pull(skb, -ETH_HLEN);
3457 		else if (netif_receive_skb(skb))
3458 			ret = GRO_DROP;
3459 		break;
3460 
3461 	case GRO_DROP:
3462 	case GRO_MERGED_FREE:
3463 		napi_reuse_skb(napi, skb);
3464 		break;
3465 
3466 	case GRO_MERGED:
3467 		break;
3468 	}
3469 
3470 	return ret;
3471 }
3472 EXPORT_SYMBOL(napi_frags_finish);
3473 
3474 struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3475 {
3476 	struct sk_buff *skb = napi->skb;
3477 	struct ethhdr *eth;
3478 	unsigned int hlen;
3479 	unsigned int off;
3480 
3481 	napi->skb = NULL;
3482 
3483 	skb_reset_mac_header(skb);
3484 	skb_gro_reset_offset(skb);
3485 
3486 	off = skb_gro_offset(skb);
3487 	hlen = off + sizeof(*eth);
3488 	eth = skb_gro_header_fast(skb, off);
3489 	if (skb_gro_header_hard(skb, hlen)) {
3490 		eth = skb_gro_header_slow(skb, hlen, off);
3491 		if (unlikely(!eth)) {
3492 			napi_reuse_skb(napi, skb);
3493 			skb = NULL;
3494 			goto out;
3495 		}
3496 	}
3497 
3498 	skb_gro_pull(skb, sizeof(*eth));
3499 
3500 	/*
3501 	 * This works because the only protocols we care about don't require
3502 	 * special handling.  We'll fix it up properly at the end.
3503 	 */
3504 	skb->protocol = eth->h_proto;
3505 
3506 out:
3507 	return skb;
3508 }
3509 EXPORT_SYMBOL(napi_frags_skb);
3510 
3511 gro_result_t napi_gro_frags(struct napi_struct *napi)
3512 {
3513 	struct sk_buff *skb = napi_frags_skb(napi);
3514 
3515 	if (!skb)
3516 		return GRO_DROP;
3517 
3518 	return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3519 }
3520 EXPORT_SYMBOL(napi_gro_frags);
3521 
3522 /*
3523  * net_rps_action sends any pending IPI's for rps.
3524  * Note: called with local irq disabled, but exits with local irq enabled.
3525  */
3526 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3527 {
3528 #ifdef CONFIG_RPS
3529 	struct softnet_data *remsd = sd->rps_ipi_list;
3530 
3531 	if (remsd) {
3532 		sd->rps_ipi_list = NULL;
3533 
3534 		local_irq_enable();
3535 
3536 		/* Send pending IPI's to kick RPS processing on remote cpus. */
3537 		while (remsd) {
3538 			struct softnet_data *next = remsd->rps_ipi_next;
3539 
3540 			if (cpu_online(remsd->cpu))
3541 				__smp_call_function_single(remsd->cpu,
3542 							   &remsd->csd, 0);
3543 			remsd = next;
3544 		}
3545 	} else
3546 #endif
3547 		local_irq_enable();
3548 }
3549 
3550 static int process_backlog(struct napi_struct *napi, int quota)
3551 {
3552 	int work = 0;
3553 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3554 
3555 #ifdef CONFIG_RPS
3556 	/* Check if we have pending ipi, its better to send them now,
3557 	 * not waiting net_rx_action() end.
3558 	 */
3559 	if (sd->rps_ipi_list) {
3560 		local_irq_disable();
3561 		net_rps_action_and_irq_enable(sd);
3562 	}
3563 #endif
3564 	napi->weight = weight_p;
3565 	local_irq_disable();
3566 	while (work < quota) {
3567 		struct sk_buff *skb;
3568 		unsigned int qlen;
3569 
3570 		while ((skb = __skb_dequeue(&sd->process_queue))) {
3571 			local_irq_enable();
3572 			__netif_receive_skb(skb);
3573 			local_irq_disable();
3574 			input_queue_head_incr(sd);
3575 			if (++work >= quota) {
3576 				local_irq_enable();
3577 				return work;
3578 			}
3579 		}
3580 
3581 		rps_lock(sd);
3582 		qlen = skb_queue_len(&sd->input_pkt_queue);
3583 		if (qlen)
3584 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
3585 						   &sd->process_queue);
3586 
3587 		if (qlen < quota - work) {
3588 			/*
3589 			 * Inline a custom version of __napi_complete().
3590 			 * only current cpu owns and manipulates this napi,
3591 			 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3592 			 * we can use a plain write instead of clear_bit(),
3593 			 * and we dont need an smp_mb() memory barrier.
3594 			 */
3595 			list_del(&napi->poll_list);
3596 			napi->state = 0;
3597 
3598 			quota = work + qlen;
3599 		}
3600 		rps_unlock(sd);
3601 	}
3602 	local_irq_enable();
3603 
3604 	return work;
3605 }
3606 
3607 /**
3608  * __napi_schedule - schedule for receive
3609  * @n: entry to schedule
3610  *
3611  * The entry's receive function will be scheduled to run
3612  */
3613 void __napi_schedule(struct napi_struct *n)
3614 {
3615 	unsigned long flags;
3616 
3617 	local_irq_save(flags);
3618 	____napi_schedule(&__get_cpu_var(softnet_data), n);
3619 	local_irq_restore(flags);
3620 }
3621 EXPORT_SYMBOL(__napi_schedule);
3622 
3623 void __napi_complete(struct napi_struct *n)
3624 {
3625 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3626 	BUG_ON(n->gro_list);
3627 
3628 	list_del(&n->poll_list);
3629 	smp_mb__before_clear_bit();
3630 	clear_bit(NAPI_STATE_SCHED, &n->state);
3631 }
3632 EXPORT_SYMBOL(__napi_complete);
3633 
3634 void napi_complete(struct napi_struct *n)
3635 {
3636 	unsigned long flags;
3637 
3638 	/*
3639 	 * don't let napi dequeue from the cpu poll list
3640 	 * just in case its running on a different cpu
3641 	 */
3642 	if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3643 		return;
3644 
3645 	napi_gro_flush(n);
3646 	local_irq_save(flags);
3647 	__napi_complete(n);
3648 	local_irq_restore(flags);
3649 }
3650 EXPORT_SYMBOL(napi_complete);
3651 
3652 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3653 		    int (*poll)(struct napi_struct *, int), int weight)
3654 {
3655 	INIT_LIST_HEAD(&napi->poll_list);
3656 	napi->gro_count = 0;
3657 	napi->gro_list = NULL;
3658 	napi->skb = NULL;
3659 	napi->poll = poll;
3660 	napi->weight = weight;
3661 	list_add(&napi->dev_list, &dev->napi_list);
3662 	napi->dev = dev;
3663 #ifdef CONFIG_NETPOLL
3664 	spin_lock_init(&napi->poll_lock);
3665 	napi->poll_owner = -1;
3666 #endif
3667 	set_bit(NAPI_STATE_SCHED, &napi->state);
3668 }
3669 EXPORT_SYMBOL(netif_napi_add);
3670 
3671 void netif_napi_del(struct napi_struct *napi)
3672 {
3673 	struct sk_buff *skb, *next;
3674 
3675 	list_del_init(&napi->dev_list);
3676 	napi_free_frags(napi);
3677 
3678 	for (skb = napi->gro_list; skb; skb = next) {
3679 		next = skb->next;
3680 		skb->next = NULL;
3681 		kfree_skb(skb);
3682 	}
3683 
3684 	napi->gro_list = NULL;
3685 	napi->gro_count = 0;
3686 }
3687 EXPORT_SYMBOL(netif_napi_del);
3688 
3689 static void net_rx_action(struct softirq_action *h)
3690 {
3691 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
3692 	unsigned long time_limit = jiffies + 2;
3693 	int budget = netdev_budget;
3694 	void *have;
3695 
3696 	local_irq_disable();
3697 
3698 	while (!list_empty(&sd->poll_list)) {
3699 		struct napi_struct *n;
3700 		int work, weight;
3701 
3702 		/* If softirq window is exhuasted then punt.
3703 		 * Allow this to run for 2 jiffies since which will allow
3704 		 * an average latency of 1.5/HZ.
3705 		 */
3706 		if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3707 			goto softnet_break;
3708 
3709 		local_irq_enable();
3710 
3711 		/* Even though interrupts have been re-enabled, this
3712 		 * access is safe because interrupts can only add new
3713 		 * entries to the tail of this list, and only ->poll()
3714 		 * calls can remove this head entry from the list.
3715 		 */
3716 		n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3717 
3718 		have = netpoll_poll_lock(n);
3719 
3720 		weight = n->weight;
3721 
3722 		/* This NAPI_STATE_SCHED test is for avoiding a race
3723 		 * with netpoll's poll_napi().  Only the entity which
3724 		 * obtains the lock and sees NAPI_STATE_SCHED set will
3725 		 * actually make the ->poll() call.  Therefore we avoid
3726 		 * accidently calling ->poll() when NAPI is not scheduled.
3727 		 */
3728 		work = 0;
3729 		if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3730 			work = n->poll(n, weight);
3731 			trace_napi_poll(n);
3732 		}
3733 
3734 		WARN_ON_ONCE(work > weight);
3735 
3736 		budget -= work;
3737 
3738 		local_irq_disable();
3739 
3740 		/* Drivers must not modify the NAPI state if they
3741 		 * consume the entire weight.  In such cases this code
3742 		 * still "owns" the NAPI instance and therefore can
3743 		 * move the instance around on the list at-will.
3744 		 */
3745 		if (unlikely(work == weight)) {
3746 			if (unlikely(napi_disable_pending(n))) {
3747 				local_irq_enable();
3748 				napi_complete(n);
3749 				local_irq_disable();
3750 			} else
3751 				list_move_tail(&n->poll_list, &sd->poll_list);
3752 		}
3753 
3754 		netpoll_poll_unlock(have);
3755 	}
3756 out:
3757 	net_rps_action_and_irq_enable(sd);
3758 
3759 #ifdef CONFIG_NET_DMA
3760 	/*
3761 	 * There may not be any more sk_buffs coming right now, so push
3762 	 * any pending DMA copies to hardware
3763 	 */
3764 	dma_issue_pending_all();
3765 #endif
3766 
3767 	return;
3768 
3769 softnet_break:
3770 	sd->time_squeeze++;
3771 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3772 	goto out;
3773 }
3774 
3775 static gifconf_func_t *gifconf_list[NPROTO];
3776 
3777 /**
3778  *	register_gifconf	-	register a SIOCGIF handler
3779  *	@family: Address family
3780  *	@gifconf: Function handler
3781  *
3782  *	Register protocol dependent address dumping routines. The handler
3783  *	that is passed must not be freed or reused until it has been replaced
3784  *	by another handler.
3785  */
3786 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3787 {
3788 	if (family >= NPROTO)
3789 		return -EINVAL;
3790 	gifconf_list[family] = gifconf;
3791 	return 0;
3792 }
3793 EXPORT_SYMBOL(register_gifconf);
3794 
3795 
3796 /*
3797  *	Map an interface index to its name (SIOCGIFNAME)
3798  */
3799 
3800 /*
3801  *	We need this ioctl for efficient implementation of the
3802  *	if_indextoname() function required by the IPv6 API.  Without
3803  *	it, we would have to search all the interfaces to find a
3804  *	match.  --pb
3805  */
3806 
3807 static int dev_ifname(struct net *net, struct ifreq __user *arg)
3808 {
3809 	struct net_device *dev;
3810 	struct ifreq ifr;
3811 
3812 	/*
3813 	 *	Fetch the caller's info block.
3814 	 */
3815 
3816 	if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3817 		return -EFAULT;
3818 
3819 	rcu_read_lock();
3820 	dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3821 	if (!dev) {
3822 		rcu_read_unlock();
3823 		return -ENODEV;
3824 	}
3825 
3826 	strcpy(ifr.ifr_name, dev->name);
3827 	rcu_read_unlock();
3828 
3829 	if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3830 		return -EFAULT;
3831 	return 0;
3832 }
3833 
3834 /*
3835  *	Perform a SIOCGIFCONF call. This structure will change
3836  *	size eventually, and there is nothing I can do about it.
3837  *	Thus we will need a 'compatibility mode'.
3838  */
3839 
3840 static int dev_ifconf(struct net *net, char __user *arg)
3841 {
3842 	struct ifconf ifc;
3843 	struct net_device *dev;
3844 	char __user *pos;
3845 	int len;
3846 	int total;
3847 	int i;
3848 
3849 	/*
3850 	 *	Fetch the caller's info block.
3851 	 */
3852 
3853 	if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3854 		return -EFAULT;
3855 
3856 	pos = ifc.ifc_buf;
3857 	len = ifc.ifc_len;
3858 
3859 	/*
3860 	 *	Loop over the interfaces, and write an info block for each.
3861 	 */
3862 
3863 	total = 0;
3864 	for_each_netdev(net, dev) {
3865 		for (i = 0; i < NPROTO; i++) {
3866 			if (gifconf_list[i]) {
3867 				int done;
3868 				if (!pos)
3869 					done = gifconf_list[i](dev, NULL, 0);
3870 				else
3871 					done = gifconf_list[i](dev, pos + total,
3872 							       len - total);
3873 				if (done < 0)
3874 					return -EFAULT;
3875 				total += done;
3876 			}
3877 		}
3878 	}
3879 
3880 	/*
3881 	 *	All done.  Write the updated control block back to the caller.
3882 	 */
3883 	ifc.ifc_len = total;
3884 
3885 	/*
3886 	 * 	Both BSD and Solaris return 0 here, so we do too.
3887 	 */
3888 	return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
3889 }
3890 
3891 #ifdef CONFIG_PROC_FS
3892 /*
3893  *	This is invoked by the /proc filesystem handler to display a device
3894  *	in detail.
3895  */
3896 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
3897 	__acquires(RCU)
3898 {
3899 	struct net *net = seq_file_net(seq);
3900 	loff_t off;
3901 	struct net_device *dev;
3902 
3903 	rcu_read_lock();
3904 	if (!*pos)
3905 		return SEQ_START_TOKEN;
3906 
3907 	off = 1;
3908 	for_each_netdev_rcu(net, dev)
3909 		if (off++ == *pos)
3910 			return dev;
3911 
3912 	return NULL;
3913 }
3914 
3915 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3916 {
3917 	struct net_device *dev = (v == SEQ_START_TOKEN) ?
3918 				  first_net_device(seq_file_net(seq)) :
3919 				  next_net_device((struct net_device *)v);
3920 
3921 	++*pos;
3922 	return rcu_dereference(dev);
3923 }
3924 
3925 void dev_seq_stop(struct seq_file *seq, void *v)
3926 	__releases(RCU)
3927 {
3928 	rcu_read_unlock();
3929 }
3930 
3931 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
3932 {
3933 	struct rtnl_link_stats64 temp;
3934 	const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
3935 
3936 	seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu "
3937 		   "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n",
3938 		   dev->name, stats->rx_bytes, stats->rx_packets,
3939 		   stats->rx_errors,
3940 		   stats->rx_dropped + stats->rx_missed_errors,
3941 		   stats->rx_fifo_errors,
3942 		   stats->rx_length_errors + stats->rx_over_errors +
3943 		    stats->rx_crc_errors + stats->rx_frame_errors,
3944 		   stats->rx_compressed, stats->multicast,
3945 		   stats->tx_bytes, stats->tx_packets,
3946 		   stats->tx_errors, stats->tx_dropped,
3947 		   stats->tx_fifo_errors, stats->collisions,
3948 		   stats->tx_carrier_errors +
3949 		    stats->tx_aborted_errors +
3950 		    stats->tx_window_errors +
3951 		    stats->tx_heartbeat_errors,
3952 		   stats->tx_compressed);
3953 }
3954 
3955 /*
3956  *	Called from the PROCfs module. This now uses the new arbitrary sized
3957  *	/proc/net interface to create /proc/net/dev
3958  */
3959 static int dev_seq_show(struct seq_file *seq, void *v)
3960 {
3961 	if (v == SEQ_START_TOKEN)
3962 		seq_puts(seq, "Inter-|   Receive                            "
3963 			      "                    |  Transmit\n"
3964 			      " face |bytes    packets errs drop fifo frame "
3965 			      "compressed multicast|bytes    packets errs "
3966 			      "drop fifo colls carrier compressed\n");
3967 	else
3968 		dev_seq_printf_stats(seq, v);
3969 	return 0;
3970 }
3971 
3972 static struct softnet_data *softnet_get_online(loff_t *pos)
3973 {
3974 	struct softnet_data *sd = NULL;
3975 
3976 	while (*pos < nr_cpu_ids)
3977 		if (cpu_online(*pos)) {
3978 			sd = &per_cpu(softnet_data, *pos);
3979 			break;
3980 		} else
3981 			++*pos;
3982 	return sd;
3983 }
3984 
3985 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
3986 {
3987 	return softnet_get_online(pos);
3988 }
3989 
3990 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3991 {
3992 	++*pos;
3993 	return softnet_get_online(pos);
3994 }
3995 
3996 static void softnet_seq_stop(struct seq_file *seq, void *v)
3997 {
3998 }
3999 
4000 static int softnet_seq_show(struct seq_file *seq, void *v)
4001 {
4002 	struct softnet_data *sd = v;
4003 
4004 	seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
4005 		   sd->processed, sd->dropped, sd->time_squeeze, 0,
4006 		   0, 0, 0, 0, /* was fastroute */
4007 		   sd->cpu_collision, sd->received_rps);
4008 	return 0;
4009 }
4010 
4011 static const struct seq_operations dev_seq_ops = {
4012 	.start = dev_seq_start,
4013 	.next  = dev_seq_next,
4014 	.stop  = dev_seq_stop,
4015 	.show  = dev_seq_show,
4016 };
4017 
4018 static int dev_seq_open(struct inode *inode, struct file *file)
4019 {
4020 	return seq_open_net(inode, file, &dev_seq_ops,
4021 			    sizeof(struct seq_net_private));
4022 }
4023 
4024 static const struct file_operations dev_seq_fops = {
4025 	.owner	 = THIS_MODULE,
4026 	.open    = dev_seq_open,
4027 	.read    = seq_read,
4028 	.llseek  = seq_lseek,
4029 	.release = seq_release_net,
4030 };
4031 
4032 static const struct seq_operations softnet_seq_ops = {
4033 	.start = softnet_seq_start,
4034 	.next  = softnet_seq_next,
4035 	.stop  = softnet_seq_stop,
4036 	.show  = softnet_seq_show,
4037 };
4038 
4039 static int softnet_seq_open(struct inode *inode, struct file *file)
4040 {
4041 	return seq_open(file, &softnet_seq_ops);
4042 }
4043 
4044 static const struct file_operations softnet_seq_fops = {
4045 	.owner	 = THIS_MODULE,
4046 	.open    = softnet_seq_open,
4047 	.read    = seq_read,
4048 	.llseek  = seq_lseek,
4049 	.release = seq_release,
4050 };
4051 
4052 static void *ptype_get_idx(loff_t pos)
4053 {
4054 	struct packet_type *pt = NULL;
4055 	loff_t i = 0;
4056 	int t;
4057 
4058 	list_for_each_entry_rcu(pt, &ptype_all, list) {
4059 		if (i == pos)
4060 			return pt;
4061 		++i;
4062 	}
4063 
4064 	for (t = 0; t < PTYPE_HASH_SIZE; t++) {
4065 		list_for_each_entry_rcu(pt, &ptype_base[t], list) {
4066 			if (i == pos)
4067 				return pt;
4068 			++i;
4069 		}
4070 	}
4071 	return NULL;
4072 }
4073 
4074 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
4075 	__acquires(RCU)
4076 {
4077 	rcu_read_lock();
4078 	return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
4079 }
4080 
4081 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4082 {
4083 	struct packet_type *pt;
4084 	struct list_head *nxt;
4085 	int hash;
4086 
4087 	++*pos;
4088 	if (v == SEQ_START_TOKEN)
4089 		return ptype_get_idx(0);
4090 
4091 	pt = v;
4092 	nxt = pt->list.next;
4093 	if (pt->type == htons(ETH_P_ALL)) {
4094 		if (nxt != &ptype_all)
4095 			goto found;
4096 		hash = 0;
4097 		nxt = ptype_base[0].next;
4098 	} else
4099 		hash = ntohs(pt->type) & PTYPE_HASH_MASK;
4100 
4101 	while (nxt == &ptype_base[hash]) {
4102 		if (++hash >= PTYPE_HASH_SIZE)
4103 			return NULL;
4104 		nxt = ptype_base[hash].next;
4105 	}
4106 found:
4107 	return list_entry(nxt, struct packet_type, list);
4108 }
4109 
4110 static void ptype_seq_stop(struct seq_file *seq, void *v)
4111 	__releases(RCU)
4112 {
4113 	rcu_read_unlock();
4114 }
4115 
4116 static int ptype_seq_show(struct seq_file *seq, void *v)
4117 {
4118 	struct packet_type *pt = v;
4119 
4120 	if (v == SEQ_START_TOKEN)
4121 		seq_puts(seq, "Type Device      Function\n");
4122 	else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
4123 		if (pt->type == htons(ETH_P_ALL))
4124 			seq_puts(seq, "ALL ");
4125 		else
4126 			seq_printf(seq, "%04x", ntohs(pt->type));
4127 
4128 		seq_printf(seq, " %-8s %pF\n",
4129 			   pt->dev ? pt->dev->name : "", pt->func);
4130 	}
4131 
4132 	return 0;
4133 }
4134 
4135 static const struct seq_operations ptype_seq_ops = {
4136 	.start = ptype_seq_start,
4137 	.next  = ptype_seq_next,
4138 	.stop  = ptype_seq_stop,
4139 	.show  = ptype_seq_show,
4140 };
4141 
4142 static int ptype_seq_open(struct inode *inode, struct file *file)
4143 {
4144 	return seq_open_net(inode, file, &ptype_seq_ops,
4145 			sizeof(struct seq_net_private));
4146 }
4147 
4148 static const struct file_operations ptype_seq_fops = {
4149 	.owner	 = THIS_MODULE,
4150 	.open    = ptype_seq_open,
4151 	.read    = seq_read,
4152 	.llseek  = seq_lseek,
4153 	.release = seq_release_net,
4154 };
4155 
4156 
4157 static int __net_init dev_proc_net_init(struct net *net)
4158 {
4159 	int rc = -ENOMEM;
4160 
4161 	if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
4162 		goto out;
4163 	if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
4164 		goto out_dev;
4165 	if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
4166 		goto out_softnet;
4167 
4168 	if (wext_proc_init(net))
4169 		goto out_ptype;
4170 	rc = 0;
4171 out:
4172 	return rc;
4173 out_ptype:
4174 	proc_net_remove(net, "ptype");
4175 out_softnet:
4176 	proc_net_remove(net, "softnet_stat");
4177 out_dev:
4178 	proc_net_remove(net, "dev");
4179 	goto out;
4180 }
4181 
4182 static void __net_exit dev_proc_net_exit(struct net *net)
4183 {
4184 	wext_proc_exit(net);
4185 
4186 	proc_net_remove(net, "ptype");
4187 	proc_net_remove(net, "softnet_stat");
4188 	proc_net_remove(net, "dev");
4189 }
4190 
4191 static struct pernet_operations __net_initdata dev_proc_ops = {
4192 	.init = dev_proc_net_init,
4193 	.exit = dev_proc_net_exit,
4194 };
4195 
4196 static int __init dev_proc_init(void)
4197 {
4198 	return register_pernet_subsys(&dev_proc_ops);
4199 }
4200 #else
4201 #define dev_proc_init() 0
4202 #endif	/* CONFIG_PROC_FS */
4203 
4204 
4205 /**
4206  *	netdev_set_master	-	set up master/slave pair
4207  *	@slave: slave device
4208  *	@master: new master device
4209  *
4210  *	Changes the master device of the slave. Pass %NULL to break the
4211  *	bonding. The caller must hold the RTNL semaphore. On a failure
4212  *	a negative errno code is returned. On success the reference counts
4213  *	are adjusted, %RTM_NEWLINK is sent to the routing socket and the
4214  *	function returns zero.
4215  */
4216 int netdev_set_master(struct net_device *slave, struct net_device *master)
4217 {
4218 	struct net_device *old = slave->master;
4219 
4220 	ASSERT_RTNL();
4221 
4222 	if (master) {
4223 		if (old)
4224 			return -EBUSY;
4225 		dev_hold(master);
4226 	}
4227 
4228 	slave->master = master;
4229 
4230 	if (old) {
4231 		synchronize_net();
4232 		dev_put(old);
4233 	}
4234 	if (master)
4235 		slave->flags |= IFF_SLAVE;
4236 	else
4237 		slave->flags &= ~IFF_SLAVE;
4238 
4239 	rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
4240 	return 0;
4241 }
4242 EXPORT_SYMBOL(netdev_set_master);
4243 
4244 static void dev_change_rx_flags(struct net_device *dev, int flags)
4245 {
4246 	const struct net_device_ops *ops = dev->netdev_ops;
4247 
4248 	if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4249 		ops->ndo_change_rx_flags(dev, flags);
4250 }
4251 
4252 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4253 {
4254 	unsigned short old_flags = dev->flags;
4255 	uid_t uid;
4256 	gid_t gid;
4257 
4258 	ASSERT_RTNL();
4259 
4260 	dev->flags |= IFF_PROMISC;
4261 	dev->promiscuity += inc;
4262 	if (dev->promiscuity == 0) {
4263 		/*
4264 		 * Avoid overflow.
4265 		 * If inc causes overflow, untouch promisc and return error.
4266 		 */
4267 		if (inc < 0)
4268 			dev->flags &= ~IFF_PROMISC;
4269 		else {
4270 			dev->promiscuity -= inc;
4271 			printk(KERN_WARNING "%s: promiscuity touches roof, "
4272 				"set promiscuity failed, promiscuity feature "
4273 				"of device might be broken.\n", dev->name);
4274 			return -EOVERFLOW;
4275 		}
4276 	}
4277 	if (dev->flags != old_flags) {
4278 		printk(KERN_INFO "device %s %s promiscuous mode\n",
4279 		       dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
4280 							       "left");
4281 		if (audit_enabled) {
4282 			current_uid_gid(&uid, &gid);
4283 			audit_log(current->audit_context, GFP_ATOMIC,
4284 				AUDIT_ANOM_PROMISCUOUS,
4285 				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4286 				dev->name, (dev->flags & IFF_PROMISC),
4287 				(old_flags & IFF_PROMISC),
4288 				audit_get_loginuid(current),
4289 				uid, gid,
4290 				audit_get_sessionid(current));
4291 		}
4292 
4293 		dev_change_rx_flags(dev, IFF_PROMISC);
4294 	}
4295 	return 0;
4296 }
4297 
4298 /**
4299  *	dev_set_promiscuity	- update promiscuity count on a device
4300  *	@dev: device
4301  *	@inc: modifier
4302  *
4303  *	Add or remove promiscuity from a device. While the count in the device
4304  *	remains above zero the interface remains promiscuous. Once it hits zero
4305  *	the device reverts back to normal filtering operation. A negative inc
4306  *	value is used to drop promiscuity on the device.
4307  *	Return 0 if successful or a negative errno code on error.
4308  */
4309 int dev_set_promiscuity(struct net_device *dev, int inc)
4310 {
4311 	unsigned short old_flags = dev->flags;
4312 	int err;
4313 
4314 	err = __dev_set_promiscuity(dev, inc);
4315 	if (err < 0)
4316 		return err;
4317 	if (dev->flags != old_flags)
4318 		dev_set_rx_mode(dev);
4319 	return err;
4320 }
4321 EXPORT_SYMBOL(dev_set_promiscuity);
4322 
4323 /**
4324  *	dev_set_allmulti	- update allmulti count on a device
4325  *	@dev: device
4326  *	@inc: modifier
4327  *
4328  *	Add or remove reception of all multicast frames to a device. While the
4329  *	count in the device remains above zero the interface remains listening
4330  *	to all interfaces. Once it hits zero the device reverts back to normal
4331  *	filtering operation. A negative @inc value is used to drop the counter
4332  *	when releasing a resource needing all multicasts.
4333  *	Return 0 if successful or a negative errno code on error.
4334  */
4335 
4336 int dev_set_allmulti(struct net_device *dev, int inc)
4337 {
4338 	unsigned short old_flags = dev->flags;
4339 
4340 	ASSERT_RTNL();
4341 
4342 	dev->flags |= IFF_ALLMULTI;
4343 	dev->allmulti += inc;
4344 	if (dev->allmulti == 0) {
4345 		/*
4346 		 * Avoid overflow.
4347 		 * If inc causes overflow, untouch allmulti and return error.
4348 		 */
4349 		if (inc < 0)
4350 			dev->flags &= ~IFF_ALLMULTI;
4351 		else {
4352 			dev->allmulti -= inc;
4353 			printk(KERN_WARNING "%s: allmulti touches roof, "
4354 				"set allmulti failed, allmulti feature of "
4355 				"device might be broken.\n", dev->name);
4356 			return -EOVERFLOW;
4357 		}
4358 	}
4359 	if (dev->flags ^ old_flags) {
4360 		dev_change_rx_flags(dev, IFF_ALLMULTI);
4361 		dev_set_rx_mode(dev);
4362 	}
4363 	return 0;
4364 }
4365 EXPORT_SYMBOL(dev_set_allmulti);
4366 
4367 /*
4368  *	Upload unicast and multicast address lists to device and
4369  *	configure RX filtering. When the device doesn't support unicast
4370  *	filtering it is put in promiscuous mode while unicast addresses
4371  *	are present.
4372  */
4373 void __dev_set_rx_mode(struct net_device *dev)
4374 {
4375 	const struct net_device_ops *ops = dev->netdev_ops;
4376 
4377 	/* dev_open will call this function so the list will stay sane. */
4378 	if (!(dev->flags&IFF_UP))
4379 		return;
4380 
4381 	if (!netif_device_present(dev))
4382 		return;
4383 
4384 	if (ops->ndo_set_rx_mode)
4385 		ops->ndo_set_rx_mode(dev);
4386 	else {
4387 		/* Unicast addresses changes may only happen under the rtnl,
4388 		 * therefore calling __dev_set_promiscuity here is safe.
4389 		 */
4390 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4391 			__dev_set_promiscuity(dev, 1);
4392 			dev->uc_promisc = 1;
4393 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4394 			__dev_set_promiscuity(dev, -1);
4395 			dev->uc_promisc = 0;
4396 		}
4397 
4398 		if (ops->ndo_set_multicast_list)
4399 			ops->ndo_set_multicast_list(dev);
4400 	}
4401 }
4402 
4403 void dev_set_rx_mode(struct net_device *dev)
4404 {
4405 	netif_addr_lock_bh(dev);
4406 	__dev_set_rx_mode(dev);
4407 	netif_addr_unlock_bh(dev);
4408 }
4409 
4410 /**
4411  *	dev_get_flags - get flags reported to userspace
4412  *	@dev: device
4413  *
4414  *	Get the combination of flag bits exported through APIs to userspace.
4415  */
4416 unsigned dev_get_flags(const struct net_device *dev)
4417 {
4418 	unsigned flags;
4419 
4420 	flags = (dev->flags & ~(IFF_PROMISC |
4421 				IFF_ALLMULTI |
4422 				IFF_RUNNING |
4423 				IFF_LOWER_UP |
4424 				IFF_DORMANT)) |
4425 		(dev->gflags & (IFF_PROMISC |
4426 				IFF_ALLMULTI));
4427 
4428 	if (netif_running(dev)) {
4429 		if (netif_oper_up(dev))
4430 			flags |= IFF_RUNNING;
4431 		if (netif_carrier_ok(dev))
4432 			flags |= IFF_LOWER_UP;
4433 		if (netif_dormant(dev))
4434 			flags |= IFF_DORMANT;
4435 	}
4436 
4437 	return flags;
4438 }
4439 EXPORT_SYMBOL(dev_get_flags);
4440 
4441 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4442 {
4443 	int old_flags = dev->flags;
4444 	int ret;
4445 
4446 	ASSERT_RTNL();
4447 
4448 	/*
4449 	 *	Set the flags on our device.
4450 	 */
4451 
4452 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4453 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4454 			       IFF_AUTOMEDIA)) |
4455 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4456 				    IFF_ALLMULTI));
4457 
4458 	/*
4459 	 *	Load in the correct multicast list now the flags have changed.
4460 	 */
4461 
4462 	if ((old_flags ^ flags) & IFF_MULTICAST)
4463 		dev_change_rx_flags(dev, IFF_MULTICAST);
4464 
4465 	dev_set_rx_mode(dev);
4466 
4467 	/*
4468 	 *	Have we downed the interface. We handle IFF_UP ourselves
4469 	 *	according to user attempts to set it, rather than blindly
4470 	 *	setting it.
4471 	 */
4472 
4473 	ret = 0;
4474 	if ((old_flags ^ flags) & IFF_UP) {	/* Bit is different  ? */
4475 		ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4476 
4477 		if (!ret)
4478 			dev_set_rx_mode(dev);
4479 	}
4480 
4481 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
4482 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
4483 
4484 		dev->gflags ^= IFF_PROMISC;
4485 		dev_set_promiscuity(dev, inc);
4486 	}
4487 
4488 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4489 	   is important. Some (broken) drivers set IFF_PROMISC, when
4490 	   IFF_ALLMULTI is requested not asking us and not reporting.
4491 	 */
4492 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4493 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4494 
4495 		dev->gflags ^= IFF_ALLMULTI;
4496 		dev_set_allmulti(dev, inc);
4497 	}
4498 
4499 	return ret;
4500 }
4501 
4502 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4503 {
4504 	unsigned int changes = dev->flags ^ old_flags;
4505 
4506 	if (changes & IFF_UP) {
4507 		if (dev->flags & IFF_UP)
4508 			call_netdevice_notifiers(NETDEV_UP, dev);
4509 		else
4510 			call_netdevice_notifiers(NETDEV_DOWN, dev);
4511 	}
4512 
4513 	if (dev->flags & IFF_UP &&
4514 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4515 		call_netdevice_notifiers(NETDEV_CHANGE, dev);
4516 }
4517 
4518 /**
4519  *	dev_change_flags - change device settings
4520  *	@dev: device
4521  *	@flags: device state flags
4522  *
4523  *	Change settings on device based state flags. The flags are
4524  *	in the userspace exported format.
4525  */
4526 int dev_change_flags(struct net_device *dev, unsigned flags)
4527 {
4528 	int ret, changes;
4529 	int old_flags = dev->flags;
4530 
4531 	ret = __dev_change_flags(dev, flags);
4532 	if (ret < 0)
4533 		return ret;
4534 
4535 	changes = old_flags ^ dev->flags;
4536 	if (changes)
4537 		rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4538 
4539 	__dev_notify_flags(dev, old_flags);
4540 	return ret;
4541 }
4542 EXPORT_SYMBOL(dev_change_flags);
4543 
4544 /**
4545  *	dev_set_mtu - Change maximum transfer unit
4546  *	@dev: device
4547  *	@new_mtu: new transfer unit
4548  *
4549  *	Change the maximum transfer size of the network device.
4550  */
4551 int dev_set_mtu(struct net_device *dev, int new_mtu)
4552 {
4553 	const struct net_device_ops *ops = dev->netdev_ops;
4554 	int err;
4555 
4556 	if (new_mtu == dev->mtu)
4557 		return 0;
4558 
4559 	/*	MTU must be positive.	 */
4560 	if (new_mtu < 0)
4561 		return -EINVAL;
4562 
4563 	if (!netif_device_present(dev))
4564 		return -ENODEV;
4565 
4566 	err = 0;
4567 	if (ops->ndo_change_mtu)
4568 		err = ops->ndo_change_mtu(dev, new_mtu);
4569 	else
4570 		dev->mtu = new_mtu;
4571 
4572 	if (!err && dev->flags & IFF_UP)
4573 		call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4574 	return err;
4575 }
4576 EXPORT_SYMBOL(dev_set_mtu);
4577 
4578 /**
4579  *	dev_set_mac_address - Change Media Access Control Address
4580  *	@dev: device
4581  *	@sa: new address
4582  *
4583  *	Change the hardware (MAC) address of the device
4584  */
4585 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4586 {
4587 	const struct net_device_ops *ops = dev->netdev_ops;
4588 	int err;
4589 
4590 	if (!ops->ndo_set_mac_address)
4591 		return -EOPNOTSUPP;
4592 	if (sa->sa_family != dev->type)
4593 		return -EINVAL;
4594 	if (!netif_device_present(dev))
4595 		return -ENODEV;
4596 	err = ops->ndo_set_mac_address(dev, sa);
4597 	if (!err)
4598 		call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4599 	return err;
4600 }
4601 EXPORT_SYMBOL(dev_set_mac_address);
4602 
4603 /*
4604  *	Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4605  */
4606 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4607 {
4608 	int err;
4609 	struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4610 
4611 	if (!dev)
4612 		return -ENODEV;
4613 
4614 	switch (cmd) {
4615 	case SIOCGIFFLAGS:	/* Get interface flags */
4616 		ifr->ifr_flags = (short) dev_get_flags(dev);
4617 		return 0;
4618 
4619 	case SIOCGIFMETRIC:	/* Get the metric on the interface
4620 				   (currently unused) */
4621 		ifr->ifr_metric = 0;
4622 		return 0;
4623 
4624 	case SIOCGIFMTU:	/* Get the MTU of a device */
4625 		ifr->ifr_mtu = dev->mtu;
4626 		return 0;
4627 
4628 	case SIOCGIFHWADDR:
4629 		if (!dev->addr_len)
4630 			memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4631 		else
4632 			memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4633 			       min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4634 		ifr->ifr_hwaddr.sa_family = dev->type;
4635 		return 0;
4636 
4637 	case SIOCGIFSLAVE:
4638 		err = -EINVAL;
4639 		break;
4640 
4641 	case SIOCGIFMAP:
4642 		ifr->ifr_map.mem_start = dev->mem_start;
4643 		ifr->ifr_map.mem_end   = dev->mem_end;
4644 		ifr->ifr_map.base_addr = dev->base_addr;
4645 		ifr->ifr_map.irq       = dev->irq;
4646 		ifr->ifr_map.dma       = dev->dma;
4647 		ifr->ifr_map.port      = dev->if_port;
4648 		return 0;
4649 
4650 	case SIOCGIFINDEX:
4651 		ifr->ifr_ifindex = dev->ifindex;
4652 		return 0;
4653 
4654 	case SIOCGIFTXQLEN:
4655 		ifr->ifr_qlen = dev->tx_queue_len;
4656 		return 0;
4657 
4658 	default:
4659 		/* dev_ioctl() should ensure this case
4660 		 * is never reached
4661 		 */
4662 		WARN_ON(1);
4663 		err = -EINVAL;
4664 		break;
4665 
4666 	}
4667 	return err;
4668 }
4669 
4670 /*
4671  *	Perform the SIOCxIFxxx calls, inside rtnl_lock()
4672  */
4673 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4674 {
4675 	int err;
4676 	struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4677 	const struct net_device_ops *ops;
4678 
4679 	if (!dev)
4680 		return -ENODEV;
4681 
4682 	ops = dev->netdev_ops;
4683 
4684 	switch (cmd) {
4685 	case SIOCSIFFLAGS:	/* Set interface flags */
4686 		return dev_change_flags(dev, ifr->ifr_flags);
4687 
4688 	case SIOCSIFMETRIC:	/* Set the metric on the interface
4689 				   (currently unused) */
4690 		return -EOPNOTSUPP;
4691 
4692 	case SIOCSIFMTU:	/* Set the MTU of a device */
4693 		return dev_set_mtu(dev, ifr->ifr_mtu);
4694 
4695 	case SIOCSIFHWADDR:
4696 		return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4697 
4698 	case SIOCSIFHWBROADCAST:
4699 		if (ifr->ifr_hwaddr.sa_family != dev->type)
4700 			return -EINVAL;
4701 		memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4702 		       min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4703 		call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4704 		return 0;
4705 
4706 	case SIOCSIFMAP:
4707 		if (ops->ndo_set_config) {
4708 			if (!netif_device_present(dev))
4709 				return -ENODEV;
4710 			return ops->ndo_set_config(dev, &ifr->ifr_map);
4711 		}
4712 		return -EOPNOTSUPP;
4713 
4714 	case SIOCADDMULTI:
4715 		if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4716 		    ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4717 			return -EINVAL;
4718 		if (!netif_device_present(dev))
4719 			return -ENODEV;
4720 		return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
4721 
4722 	case SIOCDELMULTI:
4723 		if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4724 		    ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4725 			return -EINVAL;
4726 		if (!netif_device_present(dev))
4727 			return -ENODEV;
4728 		return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
4729 
4730 	case SIOCSIFTXQLEN:
4731 		if (ifr->ifr_qlen < 0)
4732 			return -EINVAL;
4733 		dev->tx_queue_len = ifr->ifr_qlen;
4734 		return 0;
4735 
4736 	case SIOCSIFNAME:
4737 		ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4738 		return dev_change_name(dev, ifr->ifr_newname);
4739 
4740 	/*
4741 	 *	Unknown or private ioctl
4742 	 */
4743 	default:
4744 		if ((cmd >= SIOCDEVPRIVATE &&
4745 		    cmd <= SIOCDEVPRIVATE + 15) ||
4746 		    cmd == SIOCBONDENSLAVE ||
4747 		    cmd == SIOCBONDRELEASE ||
4748 		    cmd == SIOCBONDSETHWADDR ||
4749 		    cmd == SIOCBONDSLAVEINFOQUERY ||
4750 		    cmd == SIOCBONDINFOQUERY ||
4751 		    cmd == SIOCBONDCHANGEACTIVE ||
4752 		    cmd == SIOCGMIIPHY ||
4753 		    cmd == SIOCGMIIREG ||
4754 		    cmd == SIOCSMIIREG ||
4755 		    cmd == SIOCBRADDIF ||
4756 		    cmd == SIOCBRDELIF ||
4757 		    cmd == SIOCSHWTSTAMP ||
4758 		    cmd == SIOCWANDEV) {
4759 			err = -EOPNOTSUPP;
4760 			if (ops->ndo_do_ioctl) {
4761 				if (netif_device_present(dev))
4762 					err = ops->ndo_do_ioctl(dev, ifr, cmd);
4763 				else
4764 					err = -ENODEV;
4765 			}
4766 		} else
4767 			err = -EINVAL;
4768 
4769 	}
4770 	return err;
4771 }
4772 
4773 /*
4774  *	This function handles all "interface"-type I/O control requests. The actual
4775  *	'doing' part of this is dev_ifsioc above.
4776  */
4777 
4778 /**
4779  *	dev_ioctl	-	network device ioctl
4780  *	@net: the applicable net namespace
4781  *	@cmd: command to issue
4782  *	@arg: pointer to a struct ifreq in user space
4783  *
4784  *	Issue ioctl functions to devices. This is normally called by the
4785  *	user space syscall interfaces but can sometimes be useful for
4786  *	other purposes. The return value is the return from the syscall if
4787  *	positive or a negative errno code on error.
4788  */
4789 
4790 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4791 {
4792 	struct ifreq ifr;
4793 	int ret;
4794 	char *colon;
4795 
4796 	/* One special case: SIOCGIFCONF takes ifconf argument
4797 	   and requires shared lock, because it sleeps writing
4798 	   to user space.
4799 	 */
4800 
4801 	if (cmd == SIOCGIFCONF) {
4802 		rtnl_lock();
4803 		ret = dev_ifconf(net, (char __user *) arg);
4804 		rtnl_unlock();
4805 		return ret;
4806 	}
4807 	if (cmd == SIOCGIFNAME)
4808 		return dev_ifname(net, (struct ifreq __user *)arg);
4809 
4810 	if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4811 		return -EFAULT;
4812 
4813 	ifr.ifr_name[IFNAMSIZ-1] = 0;
4814 
4815 	colon = strchr(ifr.ifr_name, ':');
4816 	if (colon)
4817 		*colon = 0;
4818 
4819 	/*
4820 	 *	See which interface the caller is talking about.
4821 	 */
4822 
4823 	switch (cmd) {
4824 	/*
4825 	 *	These ioctl calls:
4826 	 *	- can be done by all.
4827 	 *	- atomic and do not require locking.
4828 	 *	- return a value
4829 	 */
4830 	case SIOCGIFFLAGS:
4831 	case SIOCGIFMETRIC:
4832 	case SIOCGIFMTU:
4833 	case SIOCGIFHWADDR:
4834 	case SIOCGIFSLAVE:
4835 	case SIOCGIFMAP:
4836 	case SIOCGIFINDEX:
4837 	case SIOCGIFTXQLEN:
4838 		dev_load(net, ifr.ifr_name);
4839 		rcu_read_lock();
4840 		ret = dev_ifsioc_locked(net, &ifr, cmd);
4841 		rcu_read_unlock();
4842 		if (!ret) {
4843 			if (colon)
4844 				*colon = ':';
4845 			if (copy_to_user(arg, &ifr,
4846 					 sizeof(struct ifreq)))
4847 				ret = -EFAULT;
4848 		}
4849 		return ret;
4850 
4851 	case SIOCETHTOOL:
4852 		dev_load(net, ifr.ifr_name);
4853 		rtnl_lock();
4854 		ret = dev_ethtool(net, &ifr);
4855 		rtnl_unlock();
4856 		if (!ret) {
4857 			if (colon)
4858 				*colon = ':';
4859 			if (copy_to_user(arg, &ifr,
4860 					 sizeof(struct ifreq)))
4861 				ret = -EFAULT;
4862 		}
4863 		return ret;
4864 
4865 	/*
4866 	 *	These ioctl calls:
4867 	 *	- require superuser power.
4868 	 *	- require strict serialization.
4869 	 *	- return a value
4870 	 */
4871 	case SIOCGMIIPHY:
4872 	case SIOCGMIIREG:
4873 	case SIOCSIFNAME:
4874 		if (!capable(CAP_NET_ADMIN))
4875 			return -EPERM;
4876 		dev_load(net, ifr.ifr_name);
4877 		rtnl_lock();
4878 		ret = dev_ifsioc(net, &ifr, cmd);
4879 		rtnl_unlock();
4880 		if (!ret) {
4881 			if (colon)
4882 				*colon = ':';
4883 			if (copy_to_user(arg, &ifr,
4884 					 sizeof(struct ifreq)))
4885 				ret = -EFAULT;
4886 		}
4887 		return ret;
4888 
4889 	/*
4890 	 *	These ioctl calls:
4891 	 *	- require superuser power.
4892 	 *	- require strict serialization.
4893 	 *	- do not return a value
4894 	 */
4895 	case SIOCSIFFLAGS:
4896 	case SIOCSIFMETRIC:
4897 	case SIOCSIFMTU:
4898 	case SIOCSIFMAP:
4899 	case SIOCSIFHWADDR:
4900 	case SIOCSIFSLAVE:
4901 	case SIOCADDMULTI:
4902 	case SIOCDELMULTI:
4903 	case SIOCSIFHWBROADCAST:
4904 	case SIOCSIFTXQLEN:
4905 	case SIOCSMIIREG:
4906 	case SIOCBONDENSLAVE:
4907 	case SIOCBONDRELEASE:
4908 	case SIOCBONDSETHWADDR:
4909 	case SIOCBONDCHANGEACTIVE:
4910 	case SIOCBRADDIF:
4911 	case SIOCBRDELIF:
4912 	case SIOCSHWTSTAMP:
4913 		if (!capable(CAP_NET_ADMIN))
4914 			return -EPERM;
4915 		/* fall through */
4916 	case SIOCBONDSLAVEINFOQUERY:
4917 	case SIOCBONDINFOQUERY:
4918 		dev_load(net, ifr.ifr_name);
4919 		rtnl_lock();
4920 		ret = dev_ifsioc(net, &ifr, cmd);
4921 		rtnl_unlock();
4922 		return ret;
4923 
4924 	case SIOCGIFMEM:
4925 		/* Get the per device memory space. We can add this but
4926 		 * currently do not support it */
4927 	case SIOCSIFMEM:
4928 		/* Set the per device memory buffer space.
4929 		 * Not applicable in our case */
4930 	case SIOCSIFLINK:
4931 		return -EINVAL;
4932 
4933 	/*
4934 	 *	Unknown or private ioctl.
4935 	 */
4936 	default:
4937 		if (cmd == SIOCWANDEV ||
4938 		    (cmd >= SIOCDEVPRIVATE &&
4939 		     cmd <= SIOCDEVPRIVATE + 15)) {
4940 			dev_load(net, ifr.ifr_name);
4941 			rtnl_lock();
4942 			ret = dev_ifsioc(net, &ifr, cmd);
4943 			rtnl_unlock();
4944 			if (!ret && copy_to_user(arg, &ifr,
4945 						 sizeof(struct ifreq)))
4946 				ret = -EFAULT;
4947 			return ret;
4948 		}
4949 		/* Take care of Wireless Extensions */
4950 		if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
4951 			return wext_handle_ioctl(net, &ifr, cmd, arg);
4952 		return -EINVAL;
4953 	}
4954 }
4955 
4956 
4957 /**
4958  *	dev_new_index	-	allocate an ifindex
4959  *	@net: the applicable net namespace
4960  *
4961  *	Returns a suitable unique value for a new device interface
4962  *	number.  The caller must hold the rtnl semaphore or the
4963  *	dev_base_lock to be sure it remains unique.
4964  */
4965 static int dev_new_index(struct net *net)
4966 {
4967 	static int ifindex;
4968 	for (;;) {
4969 		if (++ifindex <= 0)
4970 			ifindex = 1;
4971 		if (!__dev_get_by_index(net, ifindex))
4972 			return ifindex;
4973 	}
4974 }
4975 
4976 /* Delayed registration/unregisteration */
4977 static LIST_HEAD(net_todo_list);
4978 
4979 static void net_set_todo(struct net_device *dev)
4980 {
4981 	list_add_tail(&dev->todo_list, &net_todo_list);
4982 }
4983 
4984 static void rollback_registered_many(struct list_head *head)
4985 {
4986 	struct net_device *dev, *tmp;
4987 
4988 	BUG_ON(dev_boot_phase);
4989 	ASSERT_RTNL();
4990 
4991 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
4992 		/* Some devices call without registering
4993 		 * for initialization unwind. Remove those
4994 		 * devices and proceed with the remaining.
4995 		 */
4996 		if (dev->reg_state == NETREG_UNINITIALIZED) {
4997 			pr_debug("unregister_netdevice: device %s/%p never "
4998 				 "was registered\n", dev->name, dev);
4999 
5000 			WARN_ON(1);
5001 			list_del(&dev->unreg_list);
5002 			continue;
5003 		}
5004 
5005 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
5006 	}
5007 
5008 	/* If device is running, close it first. */
5009 	dev_close_many(head);
5010 
5011 	list_for_each_entry(dev, head, unreg_list) {
5012 		/* And unlink it from device chain. */
5013 		unlist_netdevice(dev);
5014 
5015 		dev->reg_state = NETREG_UNREGISTERING;
5016 	}
5017 
5018 	synchronize_net();
5019 
5020 	list_for_each_entry(dev, head, unreg_list) {
5021 		/* Shutdown queueing discipline. */
5022 		dev_shutdown(dev);
5023 
5024 
5025 		/* Notify protocols, that we are about to destroy
5026 		   this device. They should clean all the things.
5027 		*/
5028 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5029 
5030 		if (!dev->rtnl_link_ops ||
5031 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5032 			rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5033 
5034 		/*
5035 		 *	Flush the unicast and multicast chains
5036 		 */
5037 		dev_uc_flush(dev);
5038 		dev_mc_flush(dev);
5039 
5040 		if (dev->netdev_ops->ndo_uninit)
5041 			dev->netdev_ops->ndo_uninit(dev);
5042 
5043 		/* Notifier chain MUST detach us from master device. */
5044 		WARN_ON(dev->master);
5045 
5046 		/* Remove entries from kobject tree */
5047 		netdev_unregister_kobject(dev);
5048 	}
5049 
5050 	/* Process any work delayed until the end of the batch */
5051 	dev = list_first_entry(head, struct net_device, unreg_list);
5052 	call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5053 
5054 	rcu_barrier();
5055 
5056 	list_for_each_entry(dev, head, unreg_list)
5057 		dev_put(dev);
5058 }
5059 
5060 static void rollback_registered(struct net_device *dev)
5061 {
5062 	LIST_HEAD(single);
5063 
5064 	list_add(&dev->unreg_list, &single);
5065 	rollback_registered_many(&single);
5066 }
5067 
5068 unsigned long netdev_fix_features(unsigned long features, const char *name)
5069 {
5070 	/* Fix illegal SG+CSUM combinations. */
5071 	if ((features & NETIF_F_SG) &&
5072 	    !(features & NETIF_F_ALL_CSUM)) {
5073 		if (name)
5074 			printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
5075 			       "checksum feature.\n", name);
5076 		features &= ~NETIF_F_SG;
5077 	}
5078 
5079 	/* TSO requires that SG is present as well. */
5080 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
5081 		if (name)
5082 			printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
5083 			       "SG feature.\n", name);
5084 		features &= ~NETIF_F_TSO;
5085 	}
5086 
5087 	if (features & NETIF_F_UFO) {
5088 		/* maybe split UFO into V4 and V6? */
5089 		if (!((features & NETIF_F_GEN_CSUM) ||
5090 		    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5091 			    == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5092 			if (name)
5093 				printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
5094 				       "since no checksum offload features.\n",
5095 				       name);
5096 			features &= ~NETIF_F_UFO;
5097 		}
5098 
5099 		if (!(features & NETIF_F_SG)) {
5100 			if (name)
5101 				printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
5102 				       "since no NETIF_F_SG feature.\n", name);
5103 			features &= ~NETIF_F_UFO;
5104 		}
5105 	}
5106 
5107 	return features;
5108 }
5109 EXPORT_SYMBOL(netdev_fix_features);
5110 
5111 /**
5112  *	netif_stacked_transfer_operstate -	transfer operstate
5113  *	@rootdev: the root or lower level device to transfer state from
5114  *	@dev: the device to transfer operstate to
5115  *
5116  *	Transfer operational state from root to device. This is normally
5117  *	called when a stacking relationship exists between the root
5118  *	device and the device(a leaf device).
5119  */
5120 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5121 					struct net_device *dev)
5122 {
5123 	if (rootdev->operstate == IF_OPER_DORMANT)
5124 		netif_dormant_on(dev);
5125 	else
5126 		netif_dormant_off(dev);
5127 
5128 	if (netif_carrier_ok(rootdev)) {
5129 		if (!netif_carrier_ok(dev))
5130 			netif_carrier_on(dev);
5131 	} else {
5132 		if (netif_carrier_ok(dev))
5133 			netif_carrier_off(dev);
5134 	}
5135 }
5136 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5137 
5138 #ifdef CONFIG_RPS
5139 static int netif_alloc_rx_queues(struct net_device *dev)
5140 {
5141 	unsigned int i, count = dev->num_rx_queues;
5142 	struct netdev_rx_queue *rx;
5143 
5144 	BUG_ON(count < 1);
5145 
5146 	rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5147 	if (!rx) {
5148 		pr_err("netdev: Unable to allocate %u rx queues.\n", count);
5149 		return -ENOMEM;
5150 	}
5151 	dev->_rx = rx;
5152 
5153 	for (i = 0; i < count; i++)
5154 		rx[i].dev = dev;
5155 	return 0;
5156 }
5157 #endif
5158 
5159 static void netdev_init_one_queue(struct net_device *dev,
5160 				  struct netdev_queue *queue, void *_unused)
5161 {
5162 	/* Initialize queue lock */
5163 	spin_lock_init(&queue->_xmit_lock);
5164 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5165 	queue->xmit_lock_owner = -1;
5166 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5167 	queue->dev = dev;
5168 }
5169 
5170 static int netif_alloc_netdev_queues(struct net_device *dev)
5171 {
5172 	unsigned int count = dev->num_tx_queues;
5173 	struct netdev_queue *tx;
5174 
5175 	BUG_ON(count < 1);
5176 
5177 	tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL);
5178 	if (!tx) {
5179 		pr_err("netdev: Unable to allocate %u tx queues.\n",
5180 		       count);
5181 		return -ENOMEM;
5182 	}
5183 	dev->_tx = tx;
5184 
5185 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5186 	spin_lock_init(&dev->tx_global_lock);
5187 
5188 	return 0;
5189 }
5190 
5191 /**
5192  *	register_netdevice	- register a network device
5193  *	@dev: device to register
5194  *
5195  *	Take a completed network device structure and add it to the kernel
5196  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5197  *	chain. 0 is returned on success. A negative errno code is returned
5198  *	on a failure to set up the device, or if the name is a duplicate.
5199  *
5200  *	Callers must hold the rtnl semaphore. You may want
5201  *	register_netdev() instead of this.
5202  *
5203  *	BUGS:
5204  *	The locking appears insufficient to guarantee two parallel registers
5205  *	will not get the same name.
5206  */
5207 
5208 int register_netdevice(struct net_device *dev)
5209 {
5210 	int ret;
5211 	struct net *net = dev_net(dev);
5212 
5213 	BUG_ON(dev_boot_phase);
5214 	ASSERT_RTNL();
5215 
5216 	might_sleep();
5217 
5218 	/* When net_device's are persistent, this will be fatal. */
5219 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5220 	BUG_ON(!net);
5221 
5222 	spin_lock_init(&dev->addr_list_lock);
5223 	netdev_set_addr_lockdep_class(dev);
5224 
5225 	dev->iflink = -1;
5226 
5227 	/* Init, if this function is available */
5228 	if (dev->netdev_ops->ndo_init) {
5229 		ret = dev->netdev_ops->ndo_init(dev);
5230 		if (ret) {
5231 			if (ret > 0)
5232 				ret = -EIO;
5233 			goto out;
5234 		}
5235 	}
5236 
5237 	ret = dev_get_valid_name(dev, dev->name, 0);
5238 	if (ret)
5239 		goto err_uninit;
5240 
5241 	dev->ifindex = dev_new_index(net);
5242 	if (dev->iflink == -1)
5243 		dev->iflink = dev->ifindex;
5244 
5245 	/* Fix illegal checksum combinations */
5246 	if ((dev->features & NETIF_F_HW_CSUM) &&
5247 	    (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5248 		printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
5249 		       dev->name);
5250 		dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5251 	}
5252 
5253 	if ((dev->features & NETIF_F_NO_CSUM) &&
5254 	    (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5255 		printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
5256 		       dev->name);
5257 		dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
5258 	}
5259 
5260 	dev->features = netdev_fix_features(dev->features, dev->name);
5261 
5262 	/* Enable software GSO if SG is supported. */
5263 	if (dev->features & NETIF_F_SG)
5264 		dev->features |= NETIF_F_GSO;
5265 
5266 	/* Enable GRO and NETIF_F_HIGHDMA for vlans by default,
5267 	 * vlan_dev_init() will do the dev->features check, so these features
5268 	 * are enabled only if supported by underlying device.
5269 	 */
5270 	dev->vlan_features |= (NETIF_F_GRO | NETIF_F_HIGHDMA);
5271 
5272 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5273 	ret = notifier_to_errno(ret);
5274 	if (ret)
5275 		goto err_uninit;
5276 
5277 	ret = netdev_register_kobject(dev);
5278 	if (ret)
5279 		goto err_uninit;
5280 	dev->reg_state = NETREG_REGISTERED;
5281 
5282 	/*
5283 	 *	Default initial state at registry is that the
5284 	 *	device is present.
5285 	 */
5286 
5287 	set_bit(__LINK_STATE_PRESENT, &dev->state);
5288 
5289 	dev_init_scheduler(dev);
5290 	dev_hold(dev);
5291 	list_netdevice(dev);
5292 
5293 	/* Notify protocols, that a new device appeared. */
5294 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5295 	ret = notifier_to_errno(ret);
5296 	if (ret) {
5297 		rollback_registered(dev);
5298 		dev->reg_state = NETREG_UNREGISTERED;
5299 	}
5300 	/*
5301 	 *	Prevent userspace races by waiting until the network
5302 	 *	device is fully setup before sending notifications.
5303 	 */
5304 	if (!dev->rtnl_link_ops ||
5305 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5306 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5307 
5308 out:
5309 	return ret;
5310 
5311 err_uninit:
5312 	if (dev->netdev_ops->ndo_uninit)
5313 		dev->netdev_ops->ndo_uninit(dev);
5314 	goto out;
5315 }
5316 EXPORT_SYMBOL(register_netdevice);
5317 
5318 /**
5319  *	init_dummy_netdev	- init a dummy network device for NAPI
5320  *	@dev: device to init
5321  *
5322  *	This takes a network device structure and initialize the minimum
5323  *	amount of fields so it can be used to schedule NAPI polls without
5324  *	registering a full blown interface. This is to be used by drivers
5325  *	that need to tie several hardware interfaces to a single NAPI
5326  *	poll scheduler due to HW limitations.
5327  */
5328 int init_dummy_netdev(struct net_device *dev)
5329 {
5330 	/* Clear everything. Note we don't initialize spinlocks
5331 	 * are they aren't supposed to be taken by any of the
5332 	 * NAPI code and this dummy netdev is supposed to be
5333 	 * only ever used for NAPI polls
5334 	 */
5335 	memset(dev, 0, sizeof(struct net_device));
5336 
5337 	/* make sure we BUG if trying to hit standard
5338 	 * register/unregister code path
5339 	 */
5340 	dev->reg_state = NETREG_DUMMY;
5341 
5342 	/* NAPI wants this */
5343 	INIT_LIST_HEAD(&dev->napi_list);
5344 
5345 	/* a dummy interface is started by default */
5346 	set_bit(__LINK_STATE_PRESENT, &dev->state);
5347 	set_bit(__LINK_STATE_START, &dev->state);
5348 
5349 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
5350 	 * because users of this 'device' dont need to change
5351 	 * its refcount.
5352 	 */
5353 
5354 	return 0;
5355 }
5356 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5357 
5358 
5359 /**
5360  *	register_netdev	- register a network device
5361  *	@dev: device to register
5362  *
5363  *	Take a completed network device structure and add it to the kernel
5364  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5365  *	chain. 0 is returned on success. A negative errno code is returned
5366  *	on a failure to set up the device, or if the name is a duplicate.
5367  *
5368  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
5369  *	and expands the device name if you passed a format string to
5370  *	alloc_netdev.
5371  */
5372 int register_netdev(struct net_device *dev)
5373 {
5374 	int err;
5375 
5376 	rtnl_lock();
5377 
5378 	/*
5379 	 * If the name is a format string the caller wants us to do a
5380 	 * name allocation.
5381 	 */
5382 	if (strchr(dev->name, '%')) {
5383 		err = dev_alloc_name(dev, dev->name);
5384 		if (err < 0)
5385 			goto out;
5386 	}
5387 
5388 	err = register_netdevice(dev);
5389 out:
5390 	rtnl_unlock();
5391 	return err;
5392 }
5393 EXPORT_SYMBOL(register_netdev);
5394 
5395 int netdev_refcnt_read(const struct net_device *dev)
5396 {
5397 	int i, refcnt = 0;
5398 
5399 	for_each_possible_cpu(i)
5400 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5401 	return refcnt;
5402 }
5403 EXPORT_SYMBOL(netdev_refcnt_read);
5404 
5405 /*
5406  * netdev_wait_allrefs - wait until all references are gone.
5407  *
5408  * This is called when unregistering network devices.
5409  *
5410  * Any protocol or device that holds a reference should register
5411  * for netdevice notification, and cleanup and put back the
5412  * reference if they receive an UNREGISTER event.
5413  * We can get stuck here if buggy protocols don't correctly
5414  * call dev_put.
5415  */
5416 static void netdev_wait_allrefs(struct net_device *dev)
5417 {
5418 	unsigned long rebroadcast_time, warning_time;
5419 	int refcnt;
5420 
5421 	linkwatch_forget_dev(dev);
5422 
5423 	rebroadcast_time = warning_time = jiffies;
5424 	refcnt = netdev_refcnt_read(dev);
5425 
5426 	while (refcnt != 0) {
5427 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5428 			rtnl_lock();
5429 
5430 			/* Rebroadcast unregister notification */
5431 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5432 			/* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5433 			 * should have already handle it the first time */
5434 
5435 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5436 				     &dev->state)) {
5437 				/* We must not have linkwatch events
5438 				 * pending on unregister. If this
5439 				 * happens, we simply run the queue
5440 				 * unscheduled, resulting in a noop
5441 				 * for this device.
5442 				 */
5443 				linkwatch_run_queue();
5444 			}
5445 
5446 			__rtnl_unlock();
5447 
5448 			rebroadcast_time = jiffies;
5449 		}
5450 
5451 		msleep(250);
5452 
5453 		refcnt = netdev_refcnt_read(dev);
5454 
5455 		if (time_after(jiffies, warning_time + 10 * HZ)) {
5456 			printk(KERN_EMERG "unregister_netdevice: "
5457 			       "waiting for %s to become free. Usage "
5458 			       "count = %d\n",
5459 			       dev->name, refcnt);
5460 			warning_time = jiffies;
5461 		}
5462 	}
5463 }
5464 
5465 /* The sequence is:
5466  *
5467  *	rtnl_lock();
5468  *	...
5469  *	register_netdevice(x1);
5470  *	register_netdevice(x2);
5471  *	...
5472  *	unregister_netdevice(y1);
5473  *	unregister_netdevice(y2);
5474  *      ...
5475  *	rtnl_unlock();
5476  *	free_netdev(y1);
5477  *	free_netdev(y2);
5478  *
5479  * We are invoked by rtnl_unlock().
5480  * This allows us to deal with problems:
5481  * 1) We can delete sysfs objects which invoke hotplug
5482  *    without deadlocking with linkwatch via keventd.
5483  * 2) Since we run with the RTNL semaphore not held, we can sleep
5484  *    safely in order to wait for the netdev refcnt to drop to zero.
5485  *
5486  * We must not return until all unregister events added during
5487  * the interval the lock was held have been completed.
5488  */
5489 void netdev_run_todo(void)
5490 {
5491 	struct list_head list;
5492 
5493 	/* Snapshot list, allow later requests */
5494 	list_replace_init(&net_todo_list, &list);
5495 
5496 	__rtnl_unlock();
5497 
5498 	while (!list_empty(&list)) {
5499 		struct net_device *dev
5500 			= list_first_entry(&list, struct net_device, todo_list);
5501 		list_del(&dev->todo_list);
5502 
5503 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5504 			printk(KERN_ERR "network todo '%s' but state %d\n",
5505 			       dev->name, dev->reg_state);
5506 			dump_stack();
5507 			continue;
5508 		}
5509 
5510 		dev->reg_state = NETREG_UNREGISTERED;
5511 
5512 		on_each_cpu(flush_backlog, dev, 1);
5513 
5514 		netdev_wait_allrefs(dev);
5515 
5516 		/* paranoia */
5517 		BUG_ON(netdev_refcnt_read(dev));
5518 		WARN_ON(rcu_dereference_raw(dev->ip_ptr));
5519 		WARN_ON(rcu_dereference_raw(dev->ip6_ptr));
5520 		WARN_ON(dev->dn_ptr);
5521 
5522 		if (dev->destructor)
5523 			dev->destructor(dev);
5524 
5525 		/* Free network device */
5526 		kobject_put(&dev->dev.kobj);
5527 	}
5528 }
5529 
5530 /* Convert net_device_stats to rtnl_link_stats64.  They have the same
5531  * fields in the same order, with only the type differing.
5532  */
5533 static void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5534 				    const struct net_device_stats *netdev_stats)
5535 {
5536 #if BITS_PER_LONG == 64
5537         BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5538         memcpy(stats64, netdev_stats, sizeof(*stats64));
5539 #else
5540 	size_t i, n = sizeof(*stats64) / sizeof(u64);
5541 	const unsigned long *src = (const unsigned long *)netdev_stats;
5542 	u64 *dst = (u64 *)stats64;
5543 
5544 	BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5545 		     sizeof(*stats64) / sizeof(u64));
5546 	for (i = 0; i < n; i++)
5547 		dst[i] = src[i];
5548 #endif
5549 }
5550 
5551 /**
5552  *	dev_get_stats	- get network device statistics
5553  *	@dev: device to get statistics from
5554  *	@storage: place to store stats
5555  *
5556  *	Get network statistics from device. Return @storage.
5557  *	The device driver may provide its own method by setting
5558  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5559  *	otherwise the internal statistics structure is used.
5560  */
5561 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5562 					struct rtnl_link_stats64 *storage)
5563 {
5564 	const struct net_device_ops *ops = dev->netdev_ops;
5565 
5566 	if (ops->ndo_get_stats64) {
5567 		memset(storage, 0, sizeof(*storage));
5568 		ops->ndo_get_stats64(dev, storage);
5569 	} else if (ops->ndo_get_stats) {
5570 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5571 	} else {
5572 		netdev_stats_to_stats64(storage, &dev->stats);
5573 	}
5574 	storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
5575 	return storage;
5576 }
5577 EXPORT_SYMBOL(dev_get_stats);
5578 
5579 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5580 {
5581 	struct netdev_queue *queue = dev_ingress_queue(dev);
5582 
5583 #ifdef CONFIG_NET_CLS_ACT
5584 	if (queue)
5585 		return queue;
5586 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
5587 	if (!queue)
5588 		return NULL;
5589 	netdev_init_one_queue(dev, queue, NULL);
5590 	queue->qdisc = &noop_qdisc;
5591 	queue->qdisc_sleeping = &noop_qdisc;
5592 	rcu_assign_pointer(dev->ingress_queue, queue);
5593 #endif
5594 	return queue;
5595 }
5596 
5597 /**
5598  *	alloc_netdev_mqs - allocate network device
5599  *	@sizeof_priv:	size of private data to allocate space for
5600  *	@name:		device name format string
5601  *	@setup:		callback to initialize device
5602  *	@txqs:		the number of TX subqueues to allocate
5603  *	@rxqs:		the number of RX subqueues to allocate
5604  *
5605  *	Allocates a struct net_device with private data area for driver use
5606  *	and performs basic initialization.  Also allocates subquue structs
5607  *	for each queue on the device.
5608  */
5609 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
5610 		void (*setup)(struct net_device *),
5611 		unsigned int txqs, unsigned int rxqs)
5612 {
5613 	struct net_device *dev;
5614 	size_t alloc_size;
5615 	struct net_device *p;
5616 
5617 	BUG_ON(strlen(name) >= sizeof(dev->name));
5618 
5619 	if (txqs < 1) {
5620 		pr_err("alloc_netdev: Unable to allocate device "
5621 		       "with zero queues.\n");
5622 		return NULL;
5623 	}
5624 
5625 #ifdef CONFIG_RPS
5626 	if (rxqs < 1) {
5627 		pr_err("alloc_netdev: Unable to allocate device "
5628 		       "with zero RX queues.\n");
5629 		return NULL;
5630 	}
5631 #endif
5632 
5633 	alloc_size = sizeof(struct net_device);
5634 	if (sizeof_priv) {
5635 		/* ensure 32-byte alignment of private area */
5636 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5637 		alloc_size += sizeof_priv;
5638 	}
5639 	/* ensure 32-byte alignment of whole construct */
5640 	alloc_size += NETDEV_ALIGN - 1;
5641 
5642 	p = kzalloc(alloc_size, GFP_KERNEL);
5643 	if (!p) {
5644 		printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
5645 		return NULL;
5646 	}
5647 
5648 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
5649 	dev->padded = (char *)dev - (char *)p;
5650 
5651 	dev->pcpu_refcnt = alloc_percpu(int);
5652 	if (!dev->pcpu_refcnt)
5653 		goto free_p;
5654 
5655 	if (dev_addr_init(dev))
5656 		goto free_pcpu;
5657 
5658 	dev_mc_init(dev);
5659 	dev_uc_init(dev);
5660 
5661 	dev_net_set(dev, &init_net);
5662 
5663 	dev->gso_max_size = GSO_MAX_SIZE;
5664 
5665 	INIT_LIST_HEAD(&dev->ethtool_ntuple_list.list);
5666 	dev->ethtool_ntuple_list.count = 0;
5667 	INIT_LIST_HEAD(&dev->napi_list);
5668 	INIT_LIST_HEAD(&dev->unreg_list);
5669 	INIT_LIST_HEAD(&dev->link_watch_list);
5670 	dev->priv_flags = IFF_XMIT_DST_RELEASE;
5671 	setup(dev);
5672 
5673 	dev->num_tx_queues = txqs;
5674 	dev->real_num_tx_queues = txqs;
5675 	if (netif_alloc_netdev_queues(dev))
5676 		goto free_all;
5677 
5678 #ifdef CONFIG_RPS
5679 	dev->num_rx_queues = rxqs;
5680 	dev->real_num_rx_queues = rxqs;
5681 	if (netif_alloc_rx_queues(dev))
5682 		goto free_all;
5683 #endif
5684 
5685 	strcpy(dev->name, name);
5686 	return dev;
5687 
5688 free_all:
5689 	free_netdev(dev);
5690 	return NULL;
5691 
5692 free_pcpu:
5693 	free_percpu(dev->pcpu_refcnt);
5694 	kfree(dev->_tx);
5695 #ifdef CONFIG_RPS
5696 	kfree(dev->_rx);
5697 #endif
5698 
5699 free_p:
5700 	kfree(p);
5701 	return NULL;
5702 }
5703 EXPORT_SYMBOL(alloc_netdev_mqs);
5704 
5705 /**
5706  *	free_netdev - free network device
5707  *	@dev: device
5708  *
5709  *	This function does the last stage of destroying an allocated device
5710  * 	interface. The reference to the device object is released.
5711  *	If this is the last reference then it will be freed.
5712  */
5713 void free_netdev(struct net_device *dev)
5714 {
5715 	struct napi_struct *p, *n;
5716 
5717 	release_net(dev_net(dev));
5718 
5719 	kfree(dev->_tx);
5720 #ifdef CONFIG_RPS
5721 	kfree(dev->_rx);
5722 #endif
5723 
5724 	kfree(rcu_dereference_raw(dev->ingress_queue));
5725 
5726 	/* Flush device addresses */
5727 	dev_addr_flush(dev);
5728 
5729 	/* Clear ethtool n-tuple list */
5730 	ethtool_ntuple_flush(dev);
5731 
5732 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5733 		netif_napi_del(p);
5734 
5735 	free_percpu(dev->pcpu_refcnt);
5736 	dev->pcpu_refcnt = NULL;
5737 
5738 	/*  Compatibility with error handling in drivers */
5739 	if (dev->reg_state == NETREG_UNINITIALIZED) {
5740 		kfree((char *)dev - dev->padded);
5741 		return;
5742 	}
5743 
5744 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5745 	dev->reg_state = NETREG_RELEASED;
5746 
5747 	/* will free via device release */
5748 	put_device(&dev->dev);
5749 }
5750 EXPORT_SYMBOL(free_netdev);
5751 
5752 /**
5753  *	synchronize_net -  Synchronize with packet receive processing
5754  *
5755  *	Wait for packets currently being received to be done.
5756  *	Does not block later packets from starting.
5757  */
5758 void synchronize_net(void)
5759 {
5760 	might_sleep();
5761 	synchronize_rcu();
5762 }
5763 EXPORT_SYMBOL(synchronize_net);
5764 
5765 /**
5766  *	unregister_netdevice_queue - remove device from the kernel
5767  *	@dev: device
5768  *	@head: list
5769  *
5770  *	This function shuts down a device interface and removes it
5771  *	from the kernel tables.
5772  *	If head not NULL, device is queued to be unregistered later.
5773  *
5774  *	Callers must hold the rtnl semaphore.  You may want
5775  *	unregister_netdev() instead of this.
5776  */
5777 
5778 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
5779 {
5780 	ASSERT_RTNL();
5781 
5782 	if (head) {
5783 		list_move_tail(&dev->unreg_list, head);
5784 	} else {
5785 		rollback_registered(dev);
5786 		/* Finish processing unregister after unlock */
5787 		net_set_todo(dev);
5788 	}
5789 }
5790 EXPORT_SYMBOL(unregister_netdevice_queue);
5791 
5792 /**
5793  *	unregister_netdevice_many - unregister many devices
5794  *	@head: list of devices
5795  */
5796 void unregister_netdevice_many(struct list_head *head)
5797 {
5798 	struct net_device *dev;
5799 
5800 	if (!list_empty(head)) {
5801 		rollback_registered_many(head);
5802 		list_for_each_entry(dev, head, unreg_list)
5803 			net_set_todo(dev);
5804 	}
5805 }
5806 EXPORT_SYMBOL(unregister_netdevice_many);
5807 
5808 /**
5809  *	unregister_netdev - remove device from the kernel
5810  *	@dev: device
5811  *
5812  *	This function shuts down a device interface and removes it
5813  *	from the kernel tables.
5814  *
5815  *	This is just a wrapper for unregister_netdevice that takes
5816  *	the rtnl semaphore.  In general you want to use this and not
5817  *	unregister_netdevice.
5818  */
5819 void unregister_netdev(struct net_device *dev)
5820 {
5821 	rtnl_lock();
5822 	unregister_netdevice(dev);
5823 	rtnl_unlock();
5824 }
5825 EXPORT_SYMBOL(unregister_netdev);
5826 
5827 /**
5828  *	dev_change_net_namespace - move device to different nethost namespace
5829  *	@dev: device
5830  *	@net: network namespace
5831  *	@pat: If not NULL name pattern to try if the current device name
5832  *	      is already taken in the destination network namespace.
5833  *
5834  *	This function shuts down a device interface and moves it
5835  *	to a new network namespace. On success 0 is returned, on
5836  *	a failure a netagive errno code is returned.
5837  *
5838  *	Callers must hold the rtnl semaphore.
5839  */
5840 
5841 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5842 {
5843 	int err;
5844 
5845 	ASSERT_RTNL();
5846 
5847 	/* Don't allow namespace local devices to be moved. */
5848 	err = -EINVAL;
5849 	if (dev->features & NETIF_F_NETNS_LOCAL)
5850 		goto out;
5851 
5852 	/* Ensure the device has been registrered */
5853 	err = -EINVAL;
5854 	if (dev->reg_state != NETREG_REGISTERED)
5855 		goto out;
5856 
5857 	/* Get out if there is nothing todo */
5858 	err = 0;
5859 	if (net_eq(dev_net(dev), net))
5860 		goto out;
5861 
5862 	/* Pick the destination device name, and ensure
5863 	 * we can use it in the destination network namespace.
5864 	 */
5865 	err = -EEXIST;
5866 	if (__dev_get_by_name(net, dev->name)) {
5867 		/* We get here if we can't use the current device name */
5868 		if (!pat)
5869 			goto out;
5870 		if (dev_get_valid_name(dev, pat, 1))
5871 			goto out;
5872 	}
5873 
5874 	/*
5875 	 * And now a mini version of register_netdevice unregister_netdevice.
5876 	 */
5877 
5878 	/* If device is running close it first. */
5879 	dev_close(dev);
5880 
5881 	/* And unlink it from device chain */
5882 	err = -ENODEV;
5883 	unlist_netdevice(dev);
5884 
5885 	synchronize_net();
5886 
5887 	/* Shutdown queueing discipline. */
5888 	dev_shutdown(dev);
5889 
5890 	/* Notify protocols, that we are about to destroy
5891 	   this device. They should clean all the things.
5892 
5893 	   Note that dev->reg_state stays at NETREG_REGISTERED.
5894 	   This is wanted because this way 8021q and macvlan know
5895 	   the device is just moving and can keep their slaves up.
5896 	*/
5897 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5898 	call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5899 
5900 	/*
5901 	 *	Flush the unicast and multicast chains
5902 	 */
5903 	dev_uc_flush(dev);
5904 	dev_mc_flush(dev);
5905 
5906 	/* Actually switch the network namespace */
5907 	dev_net_set(dev, net);
5908 
5909 	/* If there is an ifindex conflict assign a new one */
5910 	if (__dev_get_by_index(net, dev->ifindex)) {
5911 		int iflink = (dev->iflink == dev->ifindex);
5912 		dev->ifindex = dev_new_index(net);
5913 		if (iflink)
5914 			dev->iflink = dev->ifindex;
5915 	}
5916 
5917 	/* Fixup kobjects */
5918 	err = device_rename(&dev->dev, dev->name);
5919 	WARN_ON(err);
5920 
5921 	/* Add the device back in the hashes */
5922 	list_netdevice(dev);
5923 
5924 	/* Notify protocols, that a new device appeared. */
5925 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
5926 
5927 	/*
5928 	 *	Prevent userspace races by waiting until the network
5929 	 *	device is fully setup before sending notifications.
5930 	 */
5931 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5932 
5933 	synchronize_net();
5934 	err = 0;
5935 out:
5936 	return err;
5937 }
5938 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
5939 
5940 static int dev_cpu_callback(struct notifier_block *nfb,
5941 			    unsigned long action,
5942 			    void *ocpu)
5943 {
5944 	struct sk_buff **list_skb;
5945 	struct sk_buff *skb;
5946 	unsigned int cpu, oldcpu = (unsigned long)ocpu;
5947 	struct softnet_data *sd, *oldsd;
5948 
5949 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5950 		return NOTIFY_OK;
5951 
5952 	local_irq_disable();
5953 	cpu = smp_processor_id();
5954 	sd = &per_cpu(softnet_data, cpu);
5955 	oldsd = &per_cpu(softnet_data, oldcpu);
5956 
5957 	/* Find end of our completion_queue. */
5958 	list_skb = &sd->completion_queue;
5959 	while (*list_skb)
5960 		list_skb = &(*list_skb)->next;
5961 	/* Append completion queue from offline CPU. */
5962 	*list_skb = oldsd->completion_queue;
5963 	oldsd->completion_queue = NULL;
5964 
5965 	/* Append output queue from offline CPU. */
5966 	if (oldsd->output_queue) {
5967 		*sd->output_queue_tailp = oldsd->output_queue;
5968 		sd->output_queue_tailp = oldsd->output_queue_tailp;
5969 		oldsd->output_queue = NULL;
5970 		oldsd->output_queue_tailp = &oldsd->output_queue;
5971 	}
5972 
5973 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
5974 	local_irq_enable();
5975 
5976 	/* Process offline CPU's input_pkt_queue */
5977 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
5978 		netif_rx(skb);
5979 		input_queue_head_incr(oldsd);
5980 	}
5981 	while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
5982 		netif_rx(skb);
5983 		input_queue_head_incr(oldsd);
5984 	}
5985 
5986 	return NOTIFY_OK;
5987 }
5988 
5989 
5990 /**
5991  *	netdev_increment_features - increment feature set by one
5992  *	@all: current feature set
5993  *	@one: new feature set
5994  *	@mask: mask feature set
5995  *
5996  *	Computes a new feature set after adding a device with feature set
5997  *	@one to the master device with current feature set @all.  Will not
5998  *	enable anything that is off in @mask. Returns the new feature set.
5999  */
6000 unsigned long netdev_increment_features(unsigned long all, unsigned long one,
6001 					unsigned long mask)
6002 {
6003 	/* If device needs checksumming, downgrade to it. */
6004 	if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
6005 		all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
6006 	else if (mask & NETIF_F_ALL_CSUM) {
6007 		/* If one device supports v4/v6 checksumming, set for all. */
6008 		if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
6009 		    !(all & NETIF_F_GEN_CSUM)) {
6010 			all &= ~NETIF_F_ALL_CSUM;
6011 			all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
6012 		}
6013 
6014 		/* If one device supports hw checksumming, set for all. */
6015 		if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
6016 			all &= ~NETIF_F_ALL_CSUM;
6017 			all |= NETIF_F_HW_CSUM;
6018 		}
6019 	}
6020 
6021 	one |= NETIF_F_ALL_CSUM;
6022 
6023 	one |= all & NETIF_F_ONE_FOR_ALL;
6024 	all &= one | NETIF_F_LLTX | NETIF_F_GSO | NETIF_F_UFO;
6025 	all |= one & mask & NETIF_F_ONE_FOR_ALL;
6026 
6027 	return all;
6028 }
6029 EXPORT_SYMBOL(netdev_increment_features);
6030 
6031 static struct hlist_head *netdev_create_hash(void)
6032 {
6033 	int i;
6034 	struct hlist_head *hash;
6035 
6036 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6037 	if (hash != NULL)
6038 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
6039 			INIT_HLIST_HEAD(&hash[i]);
6040 
6041 	return hash;
6042 }
6043 
6044 /* Initialize per network namespace state */
6045 static int __net_init netdev_init(struct net *net)
6046 {
6047 	INIT_LIST_HEAD(&net->dev_base_head);
6048 
6049 	net->dev_name_head = netdev_create_hash();
6050 	if (net->dev_name_head == NULL)
6051 		goto err_name;
6052 
6053 	net->dev_index_head = netdev_create_hash();
6054 	if (net->dev_index_head == NULL)
6055 		goto err_idx;
6056 
6057 	return 0;
6058 
6059 err_idx:
6060 	kfree(net->dev_name_head);
6061 err_name:
6062 	return -ENOMEM;
6063 }
6064 
6065 /**
6066  *	netdev_drivername - network driver for the device
6067  *	@dev: network device
6068  *	@buffer: buffer for resulting name
6069  *	@len: size of buffer
6070  *
6071  *	Determine network driver for device.
6072  */
6073 char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
6074 {
6075 	const struct device_driver *driver;
6076 	const struct device *parent;
6077 
6078 	if (len <= 0 || !buffer)
6079 		return buffer;
6080 	buffer[0] = 0;
6081 
6082 	parent = dev->dev.parent;
6083 
6084 	if (!parent)
6085 		return buffer;
6086 
6087 	driver = parent->driver;
6088 	if (driver && driver->name)
6089 		strlcpy(buffer, driver->name, len);
6090 	return buffer;
6091 }
6092 
6093 static int __netdev_printk(const char *level, const struct net_device *dev,
6094 			   struct va_format *vaf)
6095 {
6096 	int r;
6097 
6098 	if (dev && dev->dev.parent)
6099 		r = dev_printk(level, dev->dev.parent, "%s: %pV",
6100 			       netdev_name(dev), vaf);
6101 	else if (dev)
6102 		r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6103 	else
6104 		r = printk("%s(NULL net_device): %pV", level, vaf);
6105 
6106 	return r;
6107 }
6108 
6109 int netdev_printk(const char *level, const struct net_device *dev,
6110 		  const char *format, ...)
6111 {
6112 	struct va_format vaf;
6113 	va_list args;
6114 	int r;
6115 
6116 	va_start(args, format);
6117 
6118 	vaf.fmt = format;
6119 	vaf.va = &args;
6120 
6121 	r = __netdev_printk(level, dev, &vaf);
6122 	va_end(args);
6123 
6124 	return r;
6125 }
6126 EXPORT_SYMBOL(netdev_printk);
6127 
6128 #define define_netdev_printk_level(func, level)			\
6129 int func(const struct net_device *dev, const char *fmt, ...)	\
6130 {								\
6131 	int r;							\
6132 	struct va_format vaf;					\
6133 	va_list args;						\
6134 								\
6135 	va_start(args, fmt);					\
6136 								\
6137 	vaf.fmt = fmt;						\
6138 	vaf.va = &args;						\
6139 								\
6140 	r = __netdev_printk(level, dev, &vaf);			\
6141 	va_end(args);						\
6142 								\
6143 	return r;						\
6144 }								\
6145 EXPORT_SYMBOL(func);
6146 
6147 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6148 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6149 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6150 define_netdev_printk_level(netdev_err, KERN_ERR);
6151 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6152 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6153 define_netdev_printk_level(netdev_info, KERN_INFO);
6154 
6155 static void __net_exit netdev_exit(struct net *net)
6156 {
6157 	kfree(net->dev_name_head);
6158 	kfree(net->dev_index_head);
6159 }
6160 
6161 static struct pernet_operations __net_initdata netdev_net_ops = {
6162 	.init = netdev_init,
6163 	.exit = netdev_exit,
6164 };
6165 
6166 static void __net_exit default_device_exit(struct net *net)
6167 {
6168 	struct net_device *dev, *aux;
6169 	/*
6170 	 * Push all migratable network devices back to the
6171 	 * initial network namespace
6172 	 */
6173 	rtnl_lock();
6174 	for_each_netdev_safe(net, dev, aux) {
6175 		int err;
6176 		char fb_name[IFNAMSIZ];
6177 
6178 		/* Ignore unmoveable devices (i.e. loopback) */
6179 		if (dev->features & NETIF_F_NETNS_LOCAL)
6180 			continue;
6181 
6182 		/* Leave virtual devices for the generic cleanup */
6183 		if (dev->rtnl_link_ops)
6184 			continue;
6185 
6186 		/* Push remaing network devices to init_net */
6187 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6188 		err = dev_change_net_namespace(dev, &init_net, fb_name);
6189 		if (err) {
6190 			printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
6191 				__func__, dev->name, err);
6192 			BUG();
6193 		}
6194 	}
6195 	rtnl_unlock();
6196 }
6197 
6198 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6199 {
6200 	/* At exit all network devices most be removed from a network
6201 	 * namespace.  Do this in the reverse order of registration.
6202 	 * Do this across as many network namespaces as possible to
6203 	 * improve batching efficiency.
6204 	 */
6205 	struct net_device *dev;
6206 	struct net *net;
6207 	LIST_HEAD(dev_kill_list);
6208 
6209 	rtnl_lock();
6210 	list_for_each_entry(net, net_list, exit_list) {
6211 		for_each_netdev_reverse(net, dev) {
6212 			if (dev->rtnl_link_ops)
6213 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6214 			else
6215 				unregister_netdevice_queue(dev, &dev_kill_list);
6216 		}
6217 	}
6218 	unregister_netdevice_many(&dev_kill_list);
6219 	rtnl_unlock();
6220 }
6221 
6222 static struct pernet_operations __net_initdata default_device_ops = {
6223 	.exit = default_device_exit,
6224 	.exit_batch = default_device_exit_batch,
6225 };
6226 
6227 /*
6228  *	Initialize the DEV module. At boot time this walks the device list and
6229  *	unhooks any devices that fail to initialise (normally hardware not
6230  *	present) and leaves us with a valid list of present and active devices.
6231  *
6232  */
6233 
6234 /*
6235  *       This is called single threaded during boot, so no need
6236  *       to take the rtnl semaphore.
6237  */
6238 static int __init net_dev_init(void)
6239 {
6240 	int i, rc = -ENOMEM;
6241 
6242 	BUG_ON(!dev_boot_phase);
6243 
6244 	if (dev_proc_init())
6245 		goto out;
6246 
6247 	if (netdev_kobject_init())
6248 		goto out;
6249 
6250 	INIT_LIST_HEAD(&ptype_all);
6251 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
6252 		INIT_LIST_HEAD(&ptype_base[i]);
6253 
6254 	if (register_pernet_subsys(&netdev_net_ops))
6255 		goto out;
6256 
6257 	/*
6258 	 *	Initialise the packet receive queues.
6259 	 */
6260 
6261 	for_each_possible_cpu(i) {
6262 		struct softnet_data *sd = &per_cpu(softnet_data, i);
6263 
6264 		memset(sd, 0, sizeof(*sd));
6265 		skb_queue_head_init(&sd->input_pkt_queue);
6266 		skb_queue_head_init(&sd->process_queue);
6267 		sd->completion_queue = NULL;
6268 		INIT_LIST_HEAD(&sd->poll_list);
6269 		sd->output_queue = NULL;
6270 		sd->output_queue_tailp = &sd->output_queue;
6271 #ifdef CONFIG_RPS
6272 		sd->csd.func = rps_trigger_softirq;
6273 		sd->csd.info = sd;
6274 		sd->csd.flags = 0;
6275 		sd->cpu = i;
6276 #endif
6277 
6278 		sd->backlog.poll = process_backlog;
6279 		sd->backlog.weight = weight_p;
6280 		sd->backlog.gro_list = NULL;
6281 		sd->backlog.gro_count = 0;
6282 	}
6283 
6284 	dev_boot_phase = 0;
6285 
6286 	/* The loopback device is special if any other network devices
6287 	 * is present in a network namespace the loopback device must
6288 	 * be present. Since we now dynamically allocate and free the
6289 	 * loopback device ensure this invariant is maintained by
6290 	 * keeping the loopback device as the first device on the
6291 	 * list of network devices.  Ensuring the loopback devices
6292 	 * is the first device that appears and the last network device
6293 	 * that disappears.
6294 	 */
6295 	if (register_pernet_device(&loopback_net_ops))
6296 		goto out;
6297 
6298 	if (register_pernet_device(&default_device_ops))
6299 		goto out;
6300 
6301 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6302 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6303 
6304 	hotcpu_notifier(dev_cpu_callback, 0);
6305 	dst_init();
6306 	dev_mcast_init();
6307 	rc = 0;
6308 out:
6309 	return rc;
6310 }
6311 
6312 subsys_initcall(net_dev_init);
6313 
6314 static int __init initialize_hashrnd(void)
6315 {
6316 	get_random_bytes(&hashrnd, sizeof(hashrnd));
6317 	return 0;
6318 }
6319 
6320 late_initcall_sync(initialize_hashrnd);
6321 
6322