1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <asm/uaccess.h> 76 #include <linux/bitops.h> 77 #include <linux/capability.h> 78 #include <linux/cpu.h> 79 #include <linux/types.h> 80 #include <linux/kernel.h> 81 #include <linux/hash.h> 82 #include <linux/slab.h> 83 #include <linux/sched.h> 84 #include <linux/mutex.h> 85 #include <linux/string.h> 86 #include <linux/mm.h> 87 #include <linux/socket.h> 88 #include <linux/sockios.h> 89 #include <linux/errno.h> 90 #include <linux/interrupt.h> 91 #include <linux/if_ether.h> 92 #include <linux/netdevice.h> 93 #include <linux/etherdevice.h> 94 #include <linux/ethtool.h> 95 #include <linux/notifier.h> 96 #include <linux/skbuff.h> 97 #include <linux/bpf.h> 98 #include <net/net_namespace.h> 99 #include <net/sock.h> 100 #include <net/busy_poll.h> 101 #include <linux/rtnetlink.h> 102 #include <linux/stat.h> 103 #include <net/dst.h> 104 #include <net/dst_metadata.h> 105 #include <net/pkt_sched.h> 106 #include <net/checksum.h> 107 #include <net/xfrm.h> 108 #include <linux/highmem.h> 109 #include <linux/init.h> 110 #include <linux/module.h> 111 #include <linux/netpoll.h> 112 #include <linux/rcupdate.h> 113 #include <linux/delay.h> 114 #include <net/iw_handler.h> 115 #include <asm/current.h> 116 #include <linux/audit.h> 117 #include <linux/dmaengine.h> 118 #include <linux/err.h> 119 #include <linux/ctype.h> 120 #include <linux/if_arp.h> 121 #include <linux/if_vlan.h> 122 #include <linux/ip.h> 123 #include <net/ip.h> 124 #include <net/mpls.h> 125 #include <linux/ipv6.h> 126 #include <linux/in.h> 127 #include <linux/jhash.h> 128 #include <linux/random.h> 129 #include <trace/events/napi.h> 130 #include <trace/events/net.h> 131 #include <trace/events/skb.h> 132 #include <linux/pci.h> 133 #include <linux/inetdevice.h> 134 #include <linux/cpu_rmap.h> 135 #include <linux/static_key.h> 136 #include <linux/hashtable.h> 137 #include <linux/vmalloc.h> 138 #include <linux/if_macvlan.h> 139 #include <linux/errqueue.h> 140 #include <linux/hrtimer.h> 141 #include <linux/netfilter_ingress.h> 142 #include <linux/crash_dump.h> 143 144 #include "net-sysfs.h" 145 146 /* Instead of increasing this, you should create a hash table. */ 147 #define MAX_GRO_SKBS 8 148 149 /* This should be increased if a protocol with a bigger head is added. */ 150 #define GRO_MAX_HEAD (MAX_HEADER + 128) 151 152 static DEFINE_SPINLOCK(ptype_lock); 153 static DEFINE_SPINLOCK(offload_lock); 154 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 155 struct list_head ptype_all __read_mostly; /* Taps */ 156 static struct list_head offload_base __read_mostly; 157 158 static int netif_rx_internal(struct sk_buff *skb); 159 static int call_netdevice_notifiers_info(unsigned long val, 160 struct net_device *dev, 161 struct netdev_notifier_info *info); 162 163 /* 164 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 165 * semaphore. 166 * 167 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 168 * 169 * Writers must hold the rtnl semaphore while they loop through the 170 * dev_base_head list, and hold dev_base_lock for writing when they do the 171 * actual updates. This allows pure readers to access the list even 172 * while a writer is preparing to update it. 173 * 174 * To put it another way, dev_base_lock is held for writing only to 175 * protect against pure readers; the rtnl semaphore provides the 176 * protection against other writers. 177 * 178 * See, for example usages, register_netdevice() and 179 * unregister_netdevice(), which must be called with the rtnl 180 * semaphore held. 181 */ 182 DEFINE_RWLOCK(dev_base_lock); 183 EXPORT_SYMBOL(dev_base_lock); 184 185 /* protects napi_hash addition/deletion and napi_gen_id */ 186 static DEFINE_SPINLOCK(napi_hash_lock); 187 188 static unsigned int napi_gen_id = NR_CPUS; 189 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8); 190 191 static seqcount_t devnet_rename_seq; 192 193 static inline void dev_base_seq_inc(struct net *net) 194 { 195 while (++net->dev_base_seq == 0); 196 } 197 198 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 199 { 200 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ)); 201 202 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 203 } 204 205 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 206 { 207 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 208 } 209 210 static inline void rps_lock(struct softnet_data *sd) 211 { 212 #ifdef CONFIG_RPS 213 spin_lock(&sd->input_pkt_queue.lock); 214 #endif 215 } 216 217 static inline void rps_unlock(struct softnet_data *sd) 218 { 219 #ifdef CONFIG_RPS 220 spin_unlock(&sd->input_pkt_queue.lock); 221 #endif 222 } 223 224 /* Device list insertion */ 225 static void list_netdevice(struct net_device *dev) 226 { 227 struct net *net = dev_net(dev); 228 229 ASSERT_RTNL(); 230 231 write_lock_bh(&dev_base_lock); 232 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 233 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 234 hlist_add_head_rcu(&dev->index_hlist, 235 dev_index_hash(net, dev->ifindex)); 236 write_unlock_bh(&dev_base_lock); 237 238 dev_base_seq_inc(net); 239 } 240 241 /* Device list removal 242 * caller must respect a RCU grace period before freeing/reusing dev 243 */ 244 static void unlist_netdevice(struct net_device *dev) 245 { 246 ASSERT_RTNL(); 247 248 /* Unlink dev from the device chain */ 249 write_lock_bh(&dev_base_lock); 250 list_del_rcu(&dev->dev_list); 251 hlist_del_rcu(&dev->name_hlist); 252 hlist_del_rcu(&dev->index_hlist); 253 write_unlock_bh(&dev_base_lock); 254 255 dev_base_seq_inc(dev_net(dev)); 256 } 257 258 /* 259 * Our notifier list 260 */ 261 262 static RAW_NOTIFIER_HEAD(netdev_chain); 263 264 /* 265 * Device drivers call our routines to queue packets here. We empty the 266 * queue in the local softnet handler. 267 */ 268 269 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 270 EXPORT_PER_CPU_SYMBOL(softnet_data); 271 272 #ifdef CONFIG_LOCKDEP 273 /* 274 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 275 * according to dev->type 276 */ 277 static const unsigned short netdev_lock_type[] = 278 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 279 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 280 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 281 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 282 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 283 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 284 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 285 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 286 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 287 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 288 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 289 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 290 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 291 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 292 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 293 294 static const char *const netdev_lock_name[] = 295 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 296 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 297 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 298 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 299 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 300 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 301 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 302 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 303 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 304 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 305 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 306 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 307 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 308 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 309 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 310 311 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 312 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 313 314 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 315 { 316 int i; 317 318 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 319 if (netdev_lock_type[i] == dev_type) 320 return i; 321 /* the last key is used by default */ 322 return ARRAY_SIZE(netdev_lock_type) - 1; 323 } 324 325 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 326 unsigned short dev_type) 327 { 328 int i; 329 330 i = netdev_lock_pos(dev_type); 331 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 332 netdev_lock_name[i]); 333 } 334 335 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 336 { 337 int i; 338 339 i = netdev_lock_pos(dev->type); 340 lockdep_set_class_and_name(&dev->addr_list_lock, 341 &netdev_addr_lock_key[i], 342 netdev_lock_name[i]); 343 } 344 #else 345 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 346 unsigned short dev_type) 347 { 348 } 349 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 350 { 351 } 352 #endif 353 354 /******************************************************************************* 355 356 Protocol management and registration routines 357 358 *******************************************************************************/ 359 360 /* 361 * Add a protocol ID to the list. Now that the input handler is 362 * smarter we can dispense with all the messy stuff that used to be 363 * here. 364 * 365 * BEWARE!!! Protocol handlers, mangling input packets, 366 * MUST BE last in hash buckets and checking protocol handlers 367 * MUST start from promiscuous ptype_all chain in net_bh. 368 * It is true now, do not change it. 369 * Explanation follows: if protocol handler, mangling packet, will 370 * be the first on list, it is not able to sense, that packet 371 * is cloned and should be copied-on-write, so that it will 372 * change it and subsequent readers will get broken packet. 373 * --ANK (980803) 374 */ 375 376 static inline struct list_head *ptype_head(const struct packet_type *pt) 377 { 378 if (pt->type == htons(ETH_P_ALL)) 379 return pt->dev ? &pt->dev->ptype_all : &ptype_all; 380 else 381 return pt->dev ? &pt->dev->ptype_specific : 382 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 383 } 384 385 /** 386 * dev_add_pack - add packet handler 387 * @pt: packet type declaration 388 * 389 * Add a protocol handler to the networking stack. The passed &packet_type 390 * is linked into kernel lists and may not be freed until it has been 391 * removed from the kernel lists. 392 * 393 * This call does not sleep therefore it can not 394 * guarantee all CPU's that are in middle of receiving packets 395 * will see the new packet type (until the next received packet). 396 */ 397 398 void dev_add_pack(struct packet_type *pt) 399 { 400 struct list_head *head = ptype_head(pt); 401 402 spin_lock(&ptype_lock); 403 list_add_rcu(&pt->list, head); 404 spin_unlock(&ptype_lock); 405 } 406 EXPORT_SYMBOL(dev_add_pack); 407 408 /** 409 * __dev_remove_pack - remove packet handler 410 * @pt: packet type declaration 411 * 412 * Remove a protocol handler that was previously added to the kernel 413 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 414 * from the kernel lists and can be freed or reused once this function 415 * returns. 416 * 417 * The packet type might still be in use by receivers 418 * and must not be freed until after all the CPU's have gone 419 * through a quiescent state. 420 */ 421 void __dev_remove_pack(struct packet_type *pt) 422 { 423 struct list_head *head = ptype_head(pt); 424 struct packet_type *pt1; 425 426 spin_lock(&ptype_lock); 427 428 list_for_each_entry(pt1, head, list) { 429 if (pt == pt1) { 430 list_del_rcu(&pt->list); 431 goto out; 432 } 433 } 434 435 pr_warn("dev_remove_pack: %p not found\n", pt); 436 out: 437 spin_unlock(&ptype_lock); 438 } 439 EXPORT_SYMBOL(__dev_remove_pack); 440 441 /** 442 * dev_remove_pack - remove packet handler 443 * @pt: packet type declaration 444 * 445 * Remove a protocol handler that was previously added to the kernel 446 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 447 * from the kernel lists and can be freed or reused once this function 448 * returns. 449 * 450 * This call sleeps to guarantee that no CPU is looking at the packet 451 * type after return. 452 */ 453 void dev_remove_pack(struct packet_type *pt) 454 { 455 __dev_remove_pack(pt); 456 457 synchronize_net(); 458 } 459 EXPORT_SYMBOL(dev_remove_pack); 460 461 462 /** 463 * dev_add_offload - register offload handlers 464 * @po: protocol offload declaration 465 * 466 * Add protocol offload handlers to the networking stack. The passed 467 * &proto_offload is linked into kernel lists and may not be freed until 468 * it has been removed from the kernel lists. 469 * 470 * This call does not sleep therefore it can not 471 * guarantee all CPU's that are in middle of receiving packets 472 * will see the new offload handlers (until the next received packet). 473 */ 474 void dev_add_offload(struct packet_offload *po) 475 { 476 struct packet_offload *elem; 477 478 spin_lock(&offload_lock); 479 list_for_each_entry(elem, &offload_base, list) { 480 if (po->priority < elem->priority) 481 break; 482 } 483 list_add_rcu(&po->list, elem->list.prev); 484 spin_unlock(&offload_lock); 485 } 486 EXPORT_SYMBOL(dev_add_offload); 487 488 /** 489 * __dev_remove_offload - remove offload handler 490 * @po: packet offload declaration 491 * 492 * Remove a protocol offload handler that was previously added to the 493 * kernel offload handlers by dev_add_offload(). The passed &offload_type 494 * is removed from the kernel lists and can be freed or reused once this 495 * function returns. 496 * 497 * The packet type might still be in use by receivers 498 * and must not be freed until after all the CPU's have gone 499 * through a quiescent state. 500 */ 501 static void __dev_remove_offload(struct packet_offload *po) 502 { 503 struct list_head *head = &offload_base; 504 struct packet_offload *po1; 505 506 spin_lock(&offload_lock); 507 508 list_for_each_entry(po1, head, list) { 509 if (po == po1) { 510 list_del_rcu(&po->list); 511 goto out; 512 } 513 } 514 515 pr_warn("dev_remove_offload: %p not found\n", po); 516 out: 517 spin_unlock(&offload_lock); 518 } 519 520 /** 521 * dev_remove_offload - remove packet offload handler 522 * @po: packet offload declaration 523 * 524 * Remove a packet offload handler that was previously added to the kernel 525 * offload handlers by dev_add_offload(). The passed &offload_type is 526 * removed from the kernel lists and can be freed or reused once this 527 * function returns. 528 * 529 * This call sleeps to guarantee that no CPU is looking at the packet 530 * type after return. 531 */ 532 void dev_remove_offload(struct packet_offload *po) 533 { 534 __dev_remove_offload(po); 535 536 synchronize_net(); 537 } 538 EXPORT_SYMBOL(dev_remove_offload); 539 540 /****************************************************************************** 541 542 Device Boot-time Settings Routines 543 544 *******************************************************************************/ 545 546 /* Boot time configuration table */ 547 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 548 549 /** 550 * netdev_boot_setup_add - add new setup entry 551 * @name: name of the device 552 * @map: configured settings for the device 553 * 554 * Adds new setup entry to the dev_boot_setup list. The function 555 * returns 0 on error and 1 on success. This is a generic routine to 556 * all netdevices. 557 */ 558 static int netdev_boot_setup_add(char *name, struct ifmap *map) 559 { 560 struct netdev_boot_setup *s; 561 int i; 562 563 s = dev_boot_setup; 564 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 565 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 566 memset(s[i].name, 0, sizeof(s[i].name)); 567 strlcpy(s[i].name, name, IFNAMSIZ); 568 memcpy(&s[i].map, map, sizeof(s[i].map)); 569 break; 570 } 571 } 572 573 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 574 } 575 576 /** 577 * netdev_boot_setup_check - check boot time settings 578 * @dev: the netdevice 579 * 580 * Check boot time settings for the device. 581 * The found settings are set for the device to be used 582 * later in the device probing. 583 * Returns 0 if no settings found, 1 if they are. 584 */ 585 int netdev_boot_setup_check(struct net_device *dev) 586 { 587 struct netdev_boot_setup *s = dev_boot_setup; 588 int i; 589 590 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 591 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 592 !strcmp(dev->name, s[i].name)) { 593 dev->irq = s[i].map.irq; 594 dev->base_addr = s[i].map.base_addr; 595 dev->mem_start = s[i].map.mem_start; 596 dev->mem_end = s[i].map.mem_end; 597 return 1; 598 } 599 } 600 return 0; 601 } 602 EXPORT_SYMBOL(netdev_boot_setup_check); 603 604 605 /** 606 * netdev_boot_base - get address from boot time settings 607 * @prefix: prefix for network device 608 * @unit: id for network device 609 * 610 * Check boot time settings for the base address of device. 611 * The found settings are set for the device to be used 612 * later in the device probing. 613 * Returns 0 if no settings found. 614 */ 615 unsigned long netdev_boot_base(const char *prefix, int unit) 616 { 617 const struct netdev_boot_setup *s = dev_boot_setup; 618 char name[IFNAMSIZ]; 619 int i; 620 621 sprintf(name, "%s%d", prefix, unit); 622 623 /* 624 * If device already registered then return base of 1 625 * to indicate not to probe for this interface 626 */ 627 if (__dev_get_by_name(&init_net, name)) 628 return 1; 629 630 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 631 if (!strcmp(name, s[i].name)) 632 return s[i].map.base_addr; 633 return 0; 634 } 635 636 /* 637 * Saves at boot time configured settings for any netdevice. 638 */ 639 int __init netdev_boot_setup(char *str) 640 { 641 int ints[5]; 642 struct ifmap map; 643 644 str = get_options(str, ARRAY_SIZE(ints), ints); 645 if (!str || !*str) 646 return 0; 647 648 /* Save settings */ 649 memset(&map, 0, sizeof(map)); 650 if (ints[0] > 0) 651 map.irq = ints[1]; 652 if (ints[0] > 1) 653 map.base_addr = ints[2]; 654 if (ints[0] > 2) 655 map.mem_start = ints[3]; 656 if (ints[0] > 3) 657 map.mem_end = ints[4]; 658 659 /* Add new entry to the list */ 660 return netdev_boot_setup_add(str, &map); 661 } 662 663 __setup("netdev=", netdev_boot_setup); 664 665 /******************************************************************************* 666 667 Device Interface Subroutines 668 669 *******************************************************************************/ 670 671 /** 672 * dev_get_iflink - get 'iflink' value of a interface 673 * @dev: targeted interface 674 * 675 * Indicates the ifindex the interface is linked to. 676 * Physical interfaces have the same 'ifindex' and 'iflink' values. 677 */ 678 679 int dev_get_iflink(const struct net_device *dev) 680 { 681 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 682 return dev->netdev_ops->ndo_get_iflink(dev); 683 684 return dev->ifindex; 685 } 686 EXPORT_SYMBOL(dev_get_iflink); 687 688 /** 689 * dev_fill_metadata_dst - Retrieve tunnel egress information. 690 * @dev: targeted interface 691 * @skb: The packet. 692 * 693 * For better visibility of tunnel traffic OVS needs to retrieve 694 * egress tunnel information for a packet. Following API allows 695 * user to get this info. 696 */ 697 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) 698 { 699 struct ip_tunnel_info *info; 700 701 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) 702 return -EINVAL; 703 704 info = skb_tunnel_info_unclone(skb); 705 if (!info) 706 return -ENOMEM; 707 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) 708 return -EINVAL; 709 710 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); 711 } 712 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); 713 714 /** 715 * __dev_get_by_name - find a device by its name 716 * @net: the applicable net namespace 717 * @name: name to find 718 * 719 * Find an interface by name. Must be called under RTNL semaphore 720 * or @dev_base_lock. If the name is found a pointer to the device 721 * is returned. If the name is not found then %NULL is returned. The 722 * reference counters are not incremented so the caller must be 723 * careful with locks. 724 */ 725 726 struct net_device *__dev_get_by_name(struct net *net, const char *name) 727 { 728 struct net_device *dev; 729 struct hlist_head *head = dev_name_hash(net, name); 730 731 hlist_for_each_entry(dev, head, name_hlist) 732 if (!strncmp(dev->name, name, IFNAMSIZ)) 733 return dev; 734 735 return NULL; 736 } 737 EXPORT_SYMBOL(__dev_get_by_name); 738 739 /** 740 * dev_get_by_name_rcu - find a device by its name 741 * @net: the applicable net namespace 742 * @name: name to find 743 * 744 * Find an interface by name. 745 * If the name is found a pointer to the device is returned. 746 * If the name is not found then %NULL is returned. 747 * The reference counters are not incremented so the caller must be 748 * careful with locks. The caller must hold RCU lock. 749 */ 750 751 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 752 { 753 struct net_device *dev; 754 struct hlist_head *head = dev_name_hash(net, name); 755 756 hlist_for_each_entry_rcu(dev, head, name_hlist) 757 if (!strncmp(dev->name, name, IFNAMSIZ)) 758 return dev; 759 760 return NULL; 761 } 762 EXPORT_SYMBOL(dev_get_by_name_rcu); 763 764 /** 765 * dev_get_by_name - find a device by its name 766 * @net: the applicable net namespace 767 * @name: name to find 768 * 769 * Find an interface by name. This can be called from any 770 * context and does its own locking. The returned handle has 771 * the usage count incremented and the caller must use dev_put() to 772 * release it when it is no longer needed. %NULL is returned if no 773 * matching device is found. 774 */ 775 776 struct net_device *dev_get_by_name(struct net *net, const char *name) 777 { 778 struct net_device *dev; 779 780 rcu_read_lock(); 781 dev = dev_get_by_name_rcu(net, name); 782 if (dev) 783 dev_hold(dev); 784 rcu_read_unlock(); 785 return dev; 786 } 787 EXPORT_SYMBOL(dev_get_by_name); 788 789 /** 790 * __dev_get_by_index - find a device by its ifindex 791 * @net: the applicable net namespace 792 * @ifindex: index of device 793 * 794 * Search for an interface by index. Returns %NULL if the device 795 * is not found or a pointer to the device. The device has not 796 * had its reference counter increased so the caller must be careful 797 * about locking. The caller must hold either the RTNL semaphore 798 * or @dev_base_lock. 799 */ 800 801 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 802 { 803 struct net_device *dev; 804 struct hlist_head *head = dev_index_hash(net, ifindex); 805 806 hlist_for_each_entry(dev, head, index_hlist) 807 if (dev->ifindex == ifindex) 808 return dev; 809 810 return NULL; 811 } 812 EXPORT_SYMBOL(__dev_get_by_index); 813 814 /** 815 * dev_get_by_index_rcu - find a device by its ifindex 816 * @net: the applicable net namespace 817 * @ifindex: index of device 818 * 819 * Search for an interface by index. Returns %NULL if the device 820 * is not found or a pointer to the device. The device has not 821 * had its reference counter increased so the caller must be careful 822 * about locking. The caller must hold RCU lock. 823 */ 824 825 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 826 { 827 struct net_device *dev; 828 struct hlist_head *head = dev_index_hash(net, ifindex); 829 830 hlist_for_each_entry_rcu(dev, head, index_hlist) 831 if (dev->ifindex == ifindex) 832 return dev; 833 834 return NULL; 835 } 836 EXPORT_SYMBOL(dev_get_by_index_rcu); 837 838 839 /** 840 * dev_get_by_index - find a device by its ifindex 841 * @net: the applicable net namespace 842 * @ifindex: index of device 843 * 844 * Search for an interface by index. Returns NULL if the device 845 * is not found or a pointer to the device. The device returned has 846 * had a reference added and the pointer is safe until the user calls 847 * dev_put to indicate they have finished with it. 848 */ 849 850 struct net_device *dev_get_by_index(struct net *net, int ifindex) 851 { 852 struct net_device *dev; 853 854 rcu_read_lock(); 855 dev = dev_get_by_index_rcu(net, ifindex); 856 if (dev) 857 dev_hold(dev); 858 rcu_read_unlock(); 859 return dev; 860 } 861 EXPORT_SYMBOL(dev_get_by_index); 862 863 /** 864 * netdev_get_name - get a netdevice name, knowing its ifindex. 865 * @net: network namespace 866 * @name: a pointer to the buffer where the name will be stored. 867 * @ifindex: the ifindex of the interface to get the name from. 868 * 869 * The use of raw_seqcount_begin() and cond_resched() before 870 * retrying is required as we want to give the writers a chance 871 * to complete when CONFIG_PREEMPT is not set. 872 */ 873 int netdev_get_name(struct net *net, char *name, int ifindex) 874 { 875 struct net_device *dev; 876 unsigned int seq; 877 878 retry: 879 seq = raw_seqcount_begin(&devnet_rename_seq); 880 rcu_read_lock(); 881 dev = dev_get_by_index_rcu(net, ifindex); 882 if (!dev) { 883 rcu_read_unlock(); 884 return -ENODEV; 885 } 886 887 strcpy(name, dev->name); 888 rcu_read_unlock(); 889 if (read_seqcount_retry(&devnet_rename_seq, seq)) { 890 cond_resched(); 891 goto retry; 892 } 893 894 return 0; 895 } 896 897 /** 898 * dev_getbyhwaddr_rcu - find a device by its hardware address 899 * @net: the applicable net namespace 900 * @type: media type of device 901 * @ha: hardware address 902 * 903 * Search for an interface by MAC address. Returns NULL if the device 904 * is not found or a pointer to the device. 905 * The caller must hold RCU or RTNL. 906 * The returned device has not had its ref count increased 907 * and the caller must therefore be careful about locking 908 * 909 */ 910 911 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 912 const char *ha) 913 { 914 struct net_device *dev; 915 916 for_each_netdev_rcu(net, dev) 917 if (dev->type == type && 918 !memcmp(dev->dev_addr, ha, dev->addr_len)) 919 return dev; 920 921 return NULL; 922 } 923 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 924 925 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 926 { 927 struct net_device *dev; 928 929 ASSERT_RTNL(); 930 for_each_netdev(net, dev) 931 if (dev->type == type) 932 return dev; 933 934 return NULL; 935 } 936 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 937 938 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 939 { 940 struct net_device *dev, *ret = NULL; 941 942 rcu_read_lock(); 943 for_each_netdev_rcu(net, dev) 944 if (dev->type == type) { 945 dev_hold(dev); 946 ret = dev; 947 break; 948 } 949 rcu_read_unlock(); 950 return ret; 951 } 952 EXPORT_SYMBOL(dev_getfirstbyhwtype); 953 954 /** 955 * __dev_get_by_flags - find any device with given flags 956 * @net: the applicable net namespace 957 * @if_flags: IFF_* values 958 * @mask: bitmask of bits in if_flags to check 959 * 960 * Search for any interface with the given flags. Returns NULL if a device 961 * is not found or a pointer to the device. Must be called inside 962 * rtnl_lock(), and result refcount is unchanged. 963 */ 964 965 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags, 966 unsigned short mask) 967 { 968 struct net_device *dev, *ret; 969 970 ASSERT_RTNL(); 971 972 ret = NULL; 973 for_each_netdev(net, dev) { 974 if (((dev->flags ^ if_flags) & mask) == 0) { 975 ret = dev; 976 break; 977 } 978 } 979 return ret; 980 } 981 EXPORT_SYMBOL(__dev_get_by_flags); 982 983 /** 984 * dev_valid_name - check if name is okay for network device 985 * @name: name string 986 * 987 * Network device names need to be valid file names to 988 * to allow sysfs to work. We also disallow any kind of 989 * whitespace. 990 */ 991 bool dev_valid_name(const char *name) 992 { 993 if (*name == '\0') 994 return false; 995 if (strlen(name) >= IFNAMSIZ) 996 return false; 997 if (!strcmp(name, ".") || !strcmp(name, "..")) 998 return false; 999 1000 while (*name) { 1001 if (*name == '/' || *name == ':' || isspace(*name)) 1002 return false; 1003 name++; 1004 } 1005 return true; 1006 } 1007 EXPORT_SYMBOL(dev_valid_name); 1008 1009 /** 1010 * __dev_alloc_name - allocate a name for a device 1011 * @net: network namespace to allocate the device name in 1012 * @name: name format string 1013 * @buf: scratch buffer and result name string 1014 * 1015 * Passed a format string - eg "lt%d" it will try and find a suitable 1016 * id. It scans list of devices to build up a free map, then chooses 1017 * the first empty slot. The caller must hold the dev_base or rtnl lock 1018 * while allocating the name and adding the device in order to avoid 1019 * duplicates. 1020 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1021 * Returns the number of the unit assigned or a negative errno code. 1022 */ 1023 1024 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 1025 { 1026 int i = 0; 1027 const char *p; 1028 const int max_netdevices = 8*PAGE_SIZE; 1029 unsigned long *inuse; 1030 struct net_device *d; 1031 1032 p = strnchr(name, IFNAMSIZ-1, '%'); 1033 if (p) { 1034 /* 1035 * Verify the string as this thing may have come from 1036 * the user. There must be either one "%d" and no other "%" 1037 * characters. 1038 */ 1039 if (p[1] != 'd' || strchr(p + 2, '%')) 1040 return -EINVAL; 1041 1042 /* Use one page as a bit array of possible slots */ 1043 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 1044 if (!inuse) 1045 return -ENOMEM; 1046 1047 for_each_netdev(net, d) { 1048 if (!sscanf(d->name, name, &i)) 1049 continue; 1050 if (i < 0 || i >= max_netdevices) 1051 continue; 1052 1053 /* avoid cases where sscanf is not exact inverse of printf */ 1054 snprintf(buf, IFNAMSIZ, name, i); 1055 if (!strncmp(buf, d->name, IFNAMSIZ)) 1056 set_bit(i, inuse); 1057 } 1058 1059 i = find_first_zero_bit(inuse, max_netdevices); 1060 free_page((unsigned long) inuse); 1061 } 1062 1063 if (buf != name) 1064 snprintf(buf, IFNAMSIZ, name, i); 1065 if (!__dev_get_by_name(net, buf)) 1066 return i; 1067 1068 /* It is possible to run out of possible slots 1069 * when the name is long and there isn't enough space left 1070 * for the digits, or if all bits are used. 1071 */ 1072 return -ENFILE; 1073 } 1074 1075 /** 1076 * dev_alloc_name - allocate a name for a device 1077 * @dev: device 1078 * @name: name format string 1079 * 1080 * Passed a format string - eg "lt%d" it will try and find a suitable 1081 * id. It scans list of devices to build up a free map, then chooses 1082 * the first empty slot. The caller must hold the dev_base or rtnl lock 1083 * while allocating the name and adding the device in order to avoid 1084 * duplicates. 1085 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1086 * Returns the number of the unit assigned or a negative errno code. 1087 */ 1088 1089 int dev_alloc_name(struct net_device *dev, const char *name) 1090 { 1091 char buf[IFNAMSIZ]; 1092 struct net *net; 1093 int ret; 1094 1095 BUG_ON(!dev_net(dev)); 1096 net = dev_net(dev); 1097 ret = __dev_alloc_name(net, name, buf); 1098 if (ret >= 0) 1099 strlcpy(dev->name, buf, IFNAMSIZ); 1100 return ret; 1101 } 1102 EXPORT_SYMBOL(dev_alloc_name); 1103 1104 static int dev_alloc_name_ns(struct net *net, 1105 struct net_device *dev, 1106 const char *name) 1107 { 1108 char buf[IFNAMSIZ]; 1109 int ret; 1110 1111 ret = __dev_alloc_name(net, name, buf); 1112 if (ret >= 0) 1113 strlcpy(dev->name, buf, IFNAMSIZ); 1114 return ret; 1115 } 1116 1117 static int dev_get_valid_name(struct net *net, 1118 struct net_device *dev, 1119 const char *name) 1120 { 1121 BUG_ON(!net); 1122 1123 if (!dev_valid_name(name)) 1124 return -EINVAL; 1125 1126 if (strchr(name, '%')) 1127 return dev_alloc_name_ns(net, dev, name); 1128 else if (__dev_get_by_name(net, name)) 1129 return -EEXIST; 1130 else if (dev->name != name) 1131 strlcpy(dev->name, name, IFNAMSIZ); 1132 1133 return 0; 1134 } 1135 1136 /** 1137 * dev_change_name - change name of a device 1138 * @dev: device 1139 * @newname: name (or format string) must be at least IFNAMSIZ 1140 * 1141 * Change name of a device, can pass format strings "eth%d". 1142 * for wildcarding. 1143 */ 1144 int dev_change_name(struct net_device *dev, const char *newname) 1145 { 1146 unsigned char old_assign_type; 1147 char oldname[IFNAMSIZ]; 1148 int err = 0; 1149 int ret; 1150 struct net *net; 1151 1152 ASSERT_RTNL(); 1153 BUG_ON(!dev_net(dev)); 1154 1155 net = dev_net(dev); 1156 if (dev->flags & IFF_UP) 1157 return -EBUSY; 1158 1159 write_seqcount_begin(&devnet_rename_seq); 1160 1161 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1162 write_seqcount_end(&devnet_rename_seq); 1163 return 0; 1164 } 1165 1166 memcpy(oldname, dev->name, IFNAMSIZ); 1167 1168 err = dev_get_valid_name(net, dev, newname); 1169 if (err < 0) { 1170 write_seqcount_end(&devnet_rename_seq); 1171 return err; 1172 } 1173 1174 if (oldname[0] && !strchr(oldname, '%')) 1175 netdev_info(dev, "renamed from %s\n", oldname); 1176 1177 old_assign_type = dev->name_assign_type; 1178 dev->name_assign_type = NET_NAME_RENAMED; 1179 1180 rollback: 1181 ret = device_rename(&dev->dev, dev->name); 1182 if (ret) { 1183 memcpy(dev->name, oldname, IFNAMSIZ); 1184 dev->name_assign_type = old_assign_type; 1185 write_seqcount_end(&devnet_rename_seq); 1186 return ret; 1187 } 1188 1189 write_seqcount_end(&devnet_rename_seq); 1190 1191 netdev_adjacent_rename_links(dev, oldname); 1192 1193 write_lock_bh(&dev_base_lock); 1194 hlist_del_rcu(&dev->name_hlist); 1195 write_unlock_bh(&dev_base_lock); 1196 1197 synchronize_rcu(); 1198 1199 write_lock_bh(&dev_base_lock); 1200 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1201 write_unlock_bh(&dev_base_lock); 1202 1203 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1204 ret = notifier_to_errno(ret); 1205 1206 if (ret) { 1207 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1208 if (err >= 0) { 1209 err = ret; 1210 write_seqcount_begin(&devnet_rename_seq); 1211 memcpy(dev->name, oldname, IFNAMSIZ); 1212 memcpy(oldname, newname, IFNAMSIZ); 1213 dev->name_assign_type = old_assign_type; 1214 old_assign_type = NET_NAME_RENAMED; 1215 goto rollback; 1216 } else { 1217 pr_err("%s: name change rollback failed: %d\n", 1218 dev->name, ret); 1219 } 1220 } 1221 1222 return err; 1223 } 1224 1225 /** 1226 * dev_set_alias - change ifalias of a device 1227 * @dev: device 1228 * @alias: name up to IFALIASZ 1229 * @len: limit of bytes to copy from info 1230 * 1231 * Set ifalias for a device, 1232 */ 1233 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1234 { 1235 char *new_ifalias; 1236 1237 ASSERT_RTNL(); 1238 1239 if (len >= IFALIASZ) 1240 return -EINVAL; 1241 1242 if (!len) { 1243 kfree(dev->ifalias); 1244 dev->ifalias = NULL; 1245 return 0; 1246 } 1247 1248 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL); 1249 if (!new_ifalias) 1250 return -ENOMEM; 1251 dev->ifalias = new_ifalias; 1252 1253 strlcpy(dev->ifalias, alias, len+1); 1254 return len; 1255 } 1256 1257 1258 /** 1259 * netdev_features_change - device changes features 1260 * @dev: device to cause notification 1261 * 1262 * Called to indicate a device has changed features. 1263 */ 1264 void netdev_features_change(struct net_device *dev) 1265 { 1266 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1267 } 1268 EXPORT_SYMBOL(netdev_features_change); 1269 1270 /** 1271 * netdev_state_change - device changes state 1272 * @dev: device to cause notification 1273 * 1274 * Called to indicate a device has changed state. This function calls 1275 * the notifier chains for netdev_chain and sends a NEWLINK message 1276 * to the routing socket. 1277 */ 1278 void netdev_state_change(struct net_device *dev) 1279 { 1280 if (dev->flags & IFF_UP) { 1281 struct netdev_notifier_change_info change_info; 1282 1283 change_info.flags_changed = 0; 1284 call_netdevice_notifiers_info(NETDEV_CHANGE, dev, 1285 &change_info.info); 1286 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL); 1287 } 1288 } 1289 EXPORT_SYMBOL(netdev_state_change); 1290 1291 /** 1292 * netdev_notify_peers - notify network peers about existence of @dev 1293 * @dev: network device 1294 * 1295 * Generate traffic such that interested network peers are aware of 1296 * @dev, such as by generating a gratuitous ARP. This may be used when 1297 * a device wants to inform the rest of the network about some sort of 1298 * reconfiguration such as a failover event or virtual machine 1299 * migration. 1300 */ 1301 void netdev_notify_peers(struct net_device *dev) 1302 { 1303 rtnl_lock(); 1304 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1305 rtnl_unlock(); 1306 } 1307 EXPORT_SYMBOL(netdev_notify_peers); 1308 1309 static int __dev_open(struct net_device *dev) 1310 { 1311 const struct net_device_ops *ops = dev->netdev_ops; 1312 int ret; 1313 1314 ASSERT_RTNL(); 1315 1316 if (!netif_device_present(dev)) 1317 return -ENODEV; 1318 1319 /* Block netpoll from trying to do any rx path servicing. 1320 * If we don't do this there is a chance ndo_poll_controller 1321 * or ndo_poll may be running while we open the device 1322 */ 1323 netpoll_poll_disable(dev); 1324 1325 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1326 ret = notifier_to_errno(ret); 1327 if (ret) 1328 return ret; 1329 1330 set_bit(__LINK_STATE_START, &dev->state); 1331 1332 if (ops->ndo_validate_addr) 1333 ret = ops->ndo_validate_addr(dev); 1334 1335 if (!ret && ops->ndo_open) 1336 ret = ops->ndo_open(dev); 1337 1338 netpoll_poll_enable(dev); 1339 1340 if (ret) 1341 clear_bit(__LINK_STATE_START, &dev->state); 1342 else { 1343 dev->flags |= IFF_UP; 1344 dev_set_rx_mode(dev); 1345 dev_activate(dev); 1346 add_device_randomness(dev->dev_addr, dev->addr_len); 1347 } 1348 1349 return ret; 1350 } 1351 1352 /** 1353 * dev_open - prepare an interface for use. 1354 * @dev: device to open 1355 * 1356 * Takes a device from down to up state. The device's private open 1357 * function is invoked and then the multicast lists are loaded. Finally 1358 * the device is moved into the up state and a %NETDEV_UP message is 1359 * sent to the netdev notifier chain. 1360 * 1361 * Calling this function on an active interface is a nop. On a failure 1362 * a negative errno code is returned. 1363 */ 1364 int dev_open(struct net_device *dev) 1365 { 1366 int ret; 1367 1368 if (dev->flags & IFF_UP) 1369 return 0; 1370 1371 ret = __dev_open(dev); 1372 if (ret < 0) 1373 return ret; 1374 1375 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1376 call_netdevice_notifiers(NETDEV_UP, dev); 1377 1378 return ret; 1379 } 1380 EXPORT_SYMBOL(dev_open); 1381 1382 static int __dev_close_many(struct list_head *head) 1383 { 1384 struct net_device *dev; 1385 1386 ASSERT_RTNL(); 1387 might_sleep(); 1388 1389 list_for_each_entry(dev, head, close_list) { 1390 /* Temporarily disable netpoll until the interface is down */ 1391 netpoll_poll_disable(dev); 1392 1393 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1394 1395 clear_bit(__LINK_STATE_START, &dev->state); 1396 1397 /* Synchronize to scheduled poll. We cannot touch poll list, it 1398 * can be even on different cpu. So just clear netif_running(). 1399 * 1400 * dev->stop() will invoke napi_disable() on all of it's 1401 * napi_struct instances on this device. 1402 */ 1403 smp_mb__after_atomic(); /* Commit netif_running(). */ 1404 } 1405 1406 dev_deactivate_many(head); 1407 1408 list_for_each_entry(dev, head, close_list) { 1409 const struct net_device_ops *ops = dev->netdev_ops; 1410 1411 /* 1412 * Call the device specific close. This cannot fail. 1413 * Only if device is UP 1414 * 1415 * We allow it to be called even after a DETACH hot-plug 1416 * event. 1417 */ 1418 if (ops->ndo_stop) 1419 ops->ndo_stop(dev); 1420 1421 dev->flags &= ~IFF_UP; 1422 netpoll_poll_enable(dev); 1423 } 1424 1425 return 0; 1426 } 1427 1428 static int __dev_close(struct net_device *dev) 1429 { 1430 int retval; 1431 LIST_HEAD(single); 1432 1433 list_add(&dev->close_list, &single); 1434 retval = __dev_close_many(&single); 1435 list_del(&single); 1436 1437 return retval; 1438 } 1439 1440 int dev_close_many(struct list_head *head, bool unlink) 1441 { 1442 struct net_device *dev, *tmp; 1443 1444 /* Remove the devices that don't need to be closed */ 1445 list_for_each_entry_safe(dev, tmp, head, close_list) 1446 if (!(dev->flags & IFF_UP)) 1447 list_del_init(&dev->close_list); 1448 1449 __dev_close_many(head); 1450 1451 list_for_each_entry_safe(dev, tmp, head, close_list) { 1452 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1453 call_netdevice_notifiers(NETDEV_DOWN, dev); 1454 if (unlink) 1455 list_del_init(&dev->close_list); 1456 } 1457 1458 return 0; 1459 } 1460 EXPORT_SYMBOL(dev_close_many); 1461 1462 /** 1463 * dev_close - shutdown an interface. 1464 * @dev: device to shutdown 1465 * 1466 * This function moves an active device into down state. A 1467 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1468 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1469 * chain. 1470 */ 1471 int dev_close(struct net_device *dev) 1472 { 1473 if (dev->flags & IFF_UP) { 1474 LIST_HEAD(single); 1475 1476 list_add(&dev->close_list, &single); 1477 dev_close_many(&single, true); 1478 list_del(&single); 1479 } 1480 return 0; 1481 } 1482 EXPORT_SYMBOL(dev_close); 1483 1484 1485 /** 1486 * dev_disable_lro - disable Large Receive Offload on a device 1487 * @dev: device 1488 * 1489 * Disable Large Receive Offload (LRO) on a net device. Must be 1490 * called under RTNL. This is needed if received packets may be 1491 * forwarded to another interface. 1492 */ 1493 void dev_disable_lro(struct net_device *dev) 1494 { 1495 struct net_device *lower_dev; 1496 struct list_head *iter; 1497 1498 dev->wanted_features &= ~NETIF_F_LRO; 1499 netdev_update_features(dev); 1500 1501 if (unlikely(dev->features & NETIF_F_LRO)) 1502 netdev_WARN(dev, "failed to disable LRO!\n"); 1503 1504 netdev_for_each_lower_dev(dev, lower_dev, iter) 1505 dev_disable_lro(lower_dev); 1506 } 1507 EXPORT_SYMBOL(dev_disable_lro); 1508 1509 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1510 struct net_device *dev) 1511 { 1512 struct netdev_notifier_info info; 1513 1514 netdev_notifier_info_init(&info, dev); 1515 return nb->notifier_call(nb, val, &info); 1516 } 1517 1518 static int dev_boot_phase = 1; 1519 1520 /** 1521 * register_netdevice_notifier - register a network notifier block 1522 * @nb: notifier 1523 * 1524 * Register a notifier to be called when network device events occur. 1525 * The notifier passed is linked into the kernel structures and must 1526 * not be reused until it has been unregistered. A negative errno code 1527 * is returned on a failure. 1528 * 1529 * When registered all registration and up events are replayed 1530 * to the new notifier to allow device to have a race free 1531 * view of the network device list. 1532 */ 1533 1534 int register_netdevice_notifier(struct notifier_block *nb) 1535 { 1536 struct net_device *dev; 1537 struct net_device *last; 1538 struct net *net; 1539 int err; 1540 1541 rtnl_lock(); 1542 err = raw_notifier_chain_register(&netdev_chain, nb); 1543 if (err) 1544 goto unlock; 1545 if (dev_boot_phase) 1546 goto unlock; 1547 for_each_net(net) { 1548 for_each_netdev(net, dev) { 1549 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1550 err = notifier_to_errno(err); 1551 if (err) 1552 goto rollback; 1553 1554 if (!(dev->flags & IFF_UP)) 1555 continue; 1556 1557 call_netdevice_notifier(nb, NETDEV_UP, dev); 1558 } 1559 } 1560 1561 unlock: 1562 rtnl_unlock(); 1563 return err; 1564 1565 rollback: 1566 last = dev; 1567 for_each_net(net) { 1568 for_each_netdev(net, dev) { 1569 if (dev == last) 1570 goto outroll; 1571 1572 if (dev->flags & IFF_UP) { 1573 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1574 dev); 1575 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1576 } 1577 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1578 } 1579 } 1580 1581 outroll: 1582 raw_notifier_chain_unregister(&netdev_chain, nb); 1583 goto unlock; 1584 } 1585 EXPORT_SYMBOL(register_netdevice_notifier); 1586 1587 /** 1588 * unregister_netdevice_notifier - unregister a network notifier block 1589 * @nb: notifier 1590 * 1591 * Unregister a notifier previously registered by 1592 * register_netdevice_notifier(). The notifier is unlinked into the 1593 * kernel structures and may then be reused. A negative errno code 1594 * is returned on a failure. 1595 * 1596 * After unregistering unregister and down device events are synthesized 1597 * for all devices on the device list to the removed notifier to remove 1598 * the need for special case cleanup code. 1599 */ 1600 1601 int unregister_netdevice_notifier(struct notifier_block *nb) 1602 { 1603 struct net_device *dev; 1604 struct net *net; 1605 int err; 1606 1607 rtnl_lock(); 1608 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1609 if (err) 1610 goto unlock; 1611 1612 for_each_net(net) { 1613 for_each_netdev(net, dev) { 1614 if (dev->flags & IFF_UP) { 1615 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1616 dev); 1617 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1618 } 1619 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1620 } 1621 } 1622 unlock: 1623 rtnl_unlock(); 1624 return err; 1625 } 1626 EXPORT_SYMBOL(unregister_netdevice_notifier); 1627 1628 /** 1629 * call_netdevice_notifiers_info - call all network notifier blocks 1630 * @val: value passed unmodified to notifier function 1631 * @dev: net_device pointer passed unmodified to notifier function 1632 * @info: notifier information data 1633 * 1634 * Call all network notifier blocks. Parameters and return value 1635 * are as for raw_notifier_call_chain(). 1636 */ 1637 1638 static int call_netdevice_notifiers_info(unsigned long val, 1639 struct net_device *dev, 1640 struct netdev_notifier_info *info) 1641 { 1642 ASSERT_RTNL(); 1643 netdev_notifier_info_init(info, dev); 1644 return raw_notifier_call_chain(&netdev_chain, val, info); 1645 } 1646 1647 /** 1648 * call_netdevice_notifiers - call all network notifier blocks 1649 * @val: value passed unmodified to notifier function 1650 * @dev: net_device pointer passed unmodified to notifier function 1651 * 1652 * Call all network notifier blocks. Parameters and return value 1653 * are as for raw_notifier_call_chain(). 1654 */ 1655 1656 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1657 { 1658 struct netdev_notifier_info info; 1659 1660 return call_netdevice_notifiers_info(val, dev, &info); 1661 } 1662 EXPORT_SYMBOL(call_netdevice_notifiers); 1663 1664 #ifdef CONFIG_NET_INGRESS 1665 static struct static_key ingress_needed __read_mostly; 1666 1667 void net_inc_ingress_queue(void) 1668 { 1669 static_key_slow_inc(&ingress_needed); 1670 } 1671 EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 1672 1673 void net_dec_ingress_queue(void) 1674 { 1675 static_key_slow_dec(&ingress_needed); 1676 } 1677 EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 1678 #endif 1679 1680 #ifdef CONFIG_NET_EGRESS 1681 static struct static_key egress_needed __read_mostly; 1682 1683 void net_inc_egress_queue(void) 1684 { 1685 static_key_slow_inc(&egress_needed); 1686 } 1687 EXPORT_SYMBOL_GPL(net_inc_egress_queue); 1688 1689 void net_dec_egress_queue(void) 1690 { 1691 static_key_slow_dec(&egress_needed); 1692 } 1693 EXPORT_SYMBOL_GPL(net_dec_egress_queue); 1694 #endif 1695 1696 static struct static_key netstamp_needed __read_mostly; 1697 #ifdef HAVE_JUMP_LABEL 1698 /* We are not allowed to call static_key_slow_dec() from irq context 1699 * If net_disable_timestamp() is called from irq context, defer the 1700 * static_key_slow_dec() calls. 1701 */ 1702 static atomic_t netstamp_needed_deferred; 1703 #endif 1704 1705 void net_enable_timestamp(void) 1706 { 1707 #ifdef HAVE_JUMP_LABEL 1708 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 1709 1710 if (deferred) { 1711 while (--deferred) 1712 static_key_slow_dec(&netstamp_needed); 1713 return; 1714 } 1715 #endif 1716 static_key_slow_inc(&netstamp_needed); 1717 } 1718 EXPORT_SYMBOL(net_enable_timestamp); 1719 1720 void net_disable_timestamp(void) 1721 { 1722 #ifdef HAVE_JUMP_LABEL 1723 if (in_interrupt()) { 1724 atomic_inc(&netstamp_needed_deferred); 1725 return; 1726 } 1727 #endif 1728 static_key_slow_dec(&netstamp_needed); 1729 } 1730 EXPORT_SYMBOL(net_disable_timestamp); 1731 1732 static inline void net_timestamp_set(struct sk_buff *skb) 1733 { 1734 skb->tstamp.tv64 = 0; 1735 if (static_key_false(&netstamp_needed)) 1736 __net_timestamp(skb); 1737 } 1738 1739 #define net_timestamp_check(COND, SKB) \ 1740 if (static_key_false(&netstamp_needed)) { \ 1741 if ((COND) && !(SKB)->tstamp.tv64) \ 1742 __net_timestamp(SKB); \ 1743 } \ 1744 1745 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb) 1746 { 1747 unsigned int len; 1748 1749 if (!(dev->flags & IFF_UP)) 1750 return false; 1751 1752 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 1753 if (skb->len <= len) 1754 return true; 1755 1756 /* if TSO is enabled, we don't care about the length as the packet 1757 * could be forwarded without being segmented before 1758 */ 1759 if (skb_is_gso(skb)) 1760 return true; 1761 1762 return false; 1763 } 1764 EXPORT_SYMBOL_GPL(is_skb_forwardable); 1765 1766 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1767 { 1768 if (skb_orphan_frags(skb, GFP_ATOMIC) || 1769 unlikely(!is_skb_forwardable(dev, skb))) { 1770 atomic_long_inc(&dev->rx_dropped); 1771 kfree_skb(skb); 1772 return NET_RX_DROP; 1773 } 1774 1775 skb_scrub_packet(skb, true); 1776 skb->priority = 0; 1777 skb->protocol = eth_type_trans(skb, dev); 1778 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 1779 1780 return 0; 1781 } 1782 EXPORT_SYMBOL_GPL(__dev_forward_skb); 1783 1784 /** 1785 * dev_forward_skb - loopback an skb to another netif 1786 * 1787 * @dev: destination network device 1788 * @skb: buffer to forward 1789 * 1790 * return values: 1791 * NET_RX_SUCCESS (no congestion) 1792 * NET_RX_DROP (packet was dropped, but freed) 1793 * 1794 * dev_forward_skb can be used for injecting an skb from the 1795 * start_xmit function of one device into the receive queue 1796 * of another device. 1797 * 1798 * The receiving device may be in another namespace, so 1799 * we have to clear all information in the skb that could 1800 * impact namespace isolation. 1801 */ 1802 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1803 { 1804 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 1805 } 1806 EXPORT_SYMBOL_GPL(dev_forward_skb); 1807 1808 static inline int deliver_skb(struct sk_buff *skb, 1809 struct packet_type *pt_prev, 1810 struct net_device *orig_dev) 1811 { 1812 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 1813 return -ENOMEM; 1814 atomic_inc(&skb->users); 1815 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1816 } 1817 1818 static inline void deliver_ptype_list_skb(struct sk_buff *skb, 1819 struct packet_type **pt, 1820 struct net_device *orig_dev, 1821 __be16 type, 1822 struct list_head *ptype_list) 1823 { 1824 struct packet_type *ptype, *pt_prev = *pt; 1825 1826 list_for_each_entry_rcu(ptype, ptype_list, list) { 1827 if (ptype->type != type) 1828 continue; 1829 if (pt_prev) 1830 deliver_skb(skb, pt_prev, orig_dev); 1831 pt_prev = ptype; 1832 } 1833 *pt = pt_prev; 1834 } 1835 1836 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 1837 { 1838 if (!ptype->af_packet_priv || !skb->sk) 1839 return false; 1840 1841 if (ptype->id_match) 1842 return ptype->id_match(ptype, skb->sk); 1843 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 1844 return true; 1845 1846 return false; 1847 } 1848 1849 /* 1850 * Support routine. Sends outgoing frames to any network 1851 * taps currently in use. 1852 */ 1853 1854 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1855 { 1856 struct packet_type *ptype; 1857 struct sk_buff *skb2 = NULL; 1858 struct packet_type *pt_prev = NULL; 1859 struct list_head *ptype_list = &ptype_all; 1860 1861 rcu_read_lock(); 1862 again: 1863 list_for_each_entry_rcu(ptype, ptype_list, list) { 1864 /* Never send packets back to the socket 1865 * they originated from - MvS (miquels@drinkel.ow.org) 1866 */ 1867 if (skb_loop_sk(ptype, skb)) 1868 continue; 1869 1870 if (pt_prev) { 1871 deliver_skb(skb2, pt_prev, skb->dev); 1872 pt_prev = ptype; 1873 continue; 1874 } 1875 1876 /* need to clone skb, done only once */ 1877 skb2 = skb_clone(skb, GFP_ATOMIC); 1878 if (!skb2) 1879 goto out_unlock; 1880 1881 net_timestamp_set(skb2); 1882 1883 /* skb->nh should be correctly 1884 * set by sender, so that the second statement is 1885 * just protection against buggy protocols. 1886 */ 1887 skb_reset_mac_header(skb2); 1888 1889 if (skb_network_header(skb2) < skb2->data || 1890 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 1891 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 1892 ntohs(skb2->protocol), 1893 dev->name); 1894 skb_reset_network_header(skb2); 1895 } 1896 1897 skb2->transport_header = skb2->network_header; 1898 skb2->pkt_type = PACKET_OUTGOING; 1899 pt_prev = ptype; 1900 } 1901 1902 if (ptype_list == &ptype_all) { 1903 ptype_list = &dev->ptype_all; 1904 goto again; 1905 } 1906 out_unlock: 1907 if (pt_prev) 1908 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 1909 rcu_read_unlock(); 1910 } 1911 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit); 1912 1913 /** 1914 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 1915 * @dev: Network device 1916 * @txq: number of queues available 1917 * 1918 * If real_num_tx_queues is changed the tc mappings may no longer be 1919 * valid. To resolve this verify the tc mapping remains valid and if 1920 * not NULL the mapping. With no priorities mapping to this 1921 * offset/count pair it will no longer be used. In the worst case TC0 1922 * is invalid nothing can be done so disable priority mappings. If is 1923 * expected that drivers will fix this mapping if they can before 1924 * calling netif_set_real_num_tx_queues. 1925 */ 1926 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 1927 { 1928 int i; 1929 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 1930 1931 /* If TC0 is invalidated disable TC mapping */ 1932 if (tc->offset + tc->count > txq) { 1933 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 1934 dev->num_tc = 0; 1935 return; 1936 } 1937 1938 /* Invalidated prio to tc mappings set to TC0 */ 1939 for (i = 1; i < TC_BITMASK + 1; i++) { 1940 int q = netdev_get_prio_tc_map(dev, i); 1941 1942 tc = &dev->tc_to_txq[q]; 1943 if (tc->offset + tc->count > txq) { 1944 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 1945 i, q); 1946 netdev_set_prio_tc_map(dev, i, 0); 1947 } 1948 } 1949 } 1950 1951 #ifdef CONFIG_XPS 1952 static DEFINE_MUTEX(xps_map_mutex); 1953 #define xmap_dereference(P) \ 1954 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 1955 1956 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps, 1957 int cpu, u16 index) 1958 { 1959 struct xps_map *map = NULL; 1960 int pos; 1961 1962 if (dev_maps) 1963 map = xmap_dereference(dev_maps->cpu_map[cpu]); 1964 1965 for (pos = 0; map && pos < map->len; pos++) { 1966 if (map->queues[pos] == index) { 1967 if (map->len > 1) { 1968 map->queues[pos] = map->queues[--map->len]; 1969 } else { 1970 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL); 1971 kfree_rcu(map, rcu); 1972 map = NULL; 1973 } 1974 break; 1975 } 1976 } 1977 1978 return map; 1979 } 1980 1981 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 1982 { 1983 struct xps_dev_maps *dev_maps; 1984 int cpu, i; 1985 bool active = false; 1986 1987 mutex_lock(&xps_map_mutex); 1988 dev_maps = xmap_dereference(dev->xps_maps); 1989 1990 if (!dev_maps) 1991 goto out_no_maps; 1992 1993 for_each_possible_cpu(cpu) { 1994 for (i = index; i < dev->num_tx_queues; i++) { 1995 if (!remove_xps_queue(dev_maps, cpu, i)) 1996 break; 1997 } 1998 if (i == dev->num_tx_queues) 1999 active = true; 2000 } 2001 2002 if (!active) { 2003 RCU_INIT_POINTER(dev->xps_maps, NULL); 2004 kfree_rcu(dev_maps, rcu); 2005 } 2006 2007 for (i = index; i < dev->num_tx_queues; i++) 2008 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i), 2009 NUMA_NO_NODE); 2010 2011 out_no_maps: 2012 mutex_unlock(&xps_map_mutex); 2013 } 2014 2015 static struct xps_map *expand_xps_map(struct xps_map *map, 2016 int cpu, u16 index) 2017 { 2018 struct xps_map *new_map; 2019 int alloc_len = XPS_MIN_MAP_ALLOC; 2020 int i, pos; 2021 2022 for (pos = 0; map && pos < map->len; pos++) { 2023 if (map->queues[pos] != index) 2024 continue; 2025 return map; 2026 } 2027 2028 /* Need to add queue to this CPU's existing map */ 2029 if (map) { 2030 if (pos < map->alloc_len) 2031 return map; 2032 2033 alloc_len = map->alloc_len * 2; 2034 } 2035 2036 /* Need to allocate new map to store queue on this CPU's map */ 2037 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 2038 cpu_to_node(cpu)); 2039 if (!new_map) 2040 return NULL; 2041 2042 for (i = 0; i < pos; i++) 2043 new_map->queues[i] = map->queues[i]; 2044 new_map->alloc_len = alloc_len; 2045 new_map->len = pos; 2046 2047 return new_map; 2048 } 2049 2050 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 2051 u16 index) 2052 { 2053 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL; 2054 struct xps_map *map, *new_map; 2055 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES); 2056 int cpu, numa_node_id = -2; 2057 bool active = false; 2058 2059 mutex_lock(&xps_map_mutex); 2060 2061 dev_maps = xmap_dereference(dev->xps_maps); 2062 2063 /* allocate memory for queue storage */ 2064 for_each_online_cpu(cpu) { 2065 if (!cpumask_test_cpu(cpu, mask)) 2066 continue; 2067 2068 if (!new_dev_maps) 2069 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2070 if (!new_dev_maps) { 2071 mutex_unlock(&xps_map_mutex); 2072 return -ENOMEM; 2073 } 2074 2075 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) : 2076 NULL; 2077 2078 map = expand_xps_map(map, cpu, index); 2079 if (!map) 2080 goto error; 2081 2082 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map); 2083 } 2084 2085 if (!new_dev_maps) 2086 goto out_no_new_maps; 2087 2088 for_each_possible_cpu(cpu) { 2089 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) { 2090 /* add queue to CPU maps */ 2091 int pos = 0; 2092 2093 map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 2094 while ((pos < map->len) && (map->queues[pos] != index)) 2095 pos++; 2096 2097 if (pos == map->len) 2098 map->queues[map->len++] = index; 2099 #ifdef CONFIG_NUMA 2100 if (numa_node_id == -2) 2101 numa_node_id = cpu_to_node(cpu); 2102 else if (numa_node_id != cpu_to_node(cpu)) 2103 numa_node_id = -1; 2104 #endif 2105 } else if (dev_maps) { 2106 /* fill in the new device map from the old device map */ 2107 map = xmap_dereference(dev_maps->cpu_map[cpu]); 2108 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map); 2109 } 2110 2111 } 2112 2113 rcu_assign_pointer(dev->xps_maps, new_dev_maps); 2114 2115 /* Cleanup old maps */ 2116 if (dev_maps) { 2117 for_each_possible_cpu(cpu) { 2118 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 2119 map = xmap_dereference(dev_maps->cpu_map[cpu]); 2120 if (map && map != new_map) 2121 kfree_rcu(map, rcu); 2122 } 2123 2124 kfree_rcu(dev_maps, rcu); 2125 } 2126 2127 dev_maps = new_dev_maps; 2128 active = true; 2129 2130 out_no_new_maps: 2131 /* update Tx queue numa node */ 2132 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2133 (numa_node_id >= 0) ? numa_node_id : 2134 NUMA_NO_NODE); 2135 2136 if (!dev_maps) 2137 goto out_no_maps; 2138 2139 /* removes queue from unused CPUs */ 2140 for_each_possible_cpu(cpu) { 2141 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) 2142 continue; 2143 2144 if (remove_xps_queue(dev_maps, cpu, index)) 2145 active = true; 2146 } 2147 2148 /* free map if not active */ 2149 if (!active) { 2150 RCU_INIT_POINTER(dev->xps_maps, NULL); 2151 kfree_rcu(dev_maps, rcu); 2152 } 2153 2154 out_no_maps: 2155 mutex_unlock(&xps_map_mutex); 2156 2157 return 0; 2158 error: 2159 /* remove any maps that we added */ 2160 for_each_possible_cpu(cpu) { 2161 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 2162 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) : 2163 NULL; 2164 if (new_map && new_map != map) 2165 kfree(new_map); 2166 } 2167 2168 mutex_unlock(&xps_map_mutex); 2169 2170 kfree(new_dev_maps); 2171 return -ENOMEM; 2172 } 2173 EXPORT_SYMBOL(netif_set_xps_queue); 2174 2175 #endif 2176 /* 2177 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2178 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed. 2179 */ 2180 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2181 { 2182 int rc; 2183 2184 if (txq < 1 || txq > dev->num_tx_queues) 2185 return -EINVAL; 2186 2187 if (dev->reg_state == NETREG_REGISTERED || 2188 dev->reg_state == NETREG_UNREGISTERING) { 2189 ASSERT_RTNL(); 2190 2191 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2192 txq); 2193 if (rc) 2194 return rc; 2195 2196 if (dev->num_tc) 2197 netif_setup_tc(dev, txq); 2198 2199 if (txq < dev->real_num_tx_queues) { 2200 qdisc_reset_all_tx_gt(dev, txq); 2201 #ifdef CONFIG_XPS 2202 netif_reset_xps_queues_gt(dev, txq); 2203 #endif 2204 } 2205 } 2206 2207 dev->real_num_tx_queues = txq; 2208 return 0; 2209 } 2210 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2211 2212 #ifdef CONFIG_SYSFS 2213 /** 2214 * netif_set_real_num_rx_queues - set actual number of RX queues used 2215 * @dev: Network device 2216 * @rxq: Actual number of RX queues 2217 * 2218 * This must be called either with the rtnl_lock held or before 2219 * registration of the net device. Returns 0 on success, or a 2220 * negative error code. If called before registration, it always 2221 * succeeds. 2222 */ 2223 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2224 { 2225 int rc; 2226 2227 if (rxq < 1 || rxq > dev->num_rx_queues) 2228 return -EINVAL; 2229 2230 if (dev->reg_state == NETREG_REGISTERED) { 2231 ASSERT_RTNL(); 2232 2233 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 2234 rxq); 2235 if (rc) 2236 return rc; 2237 } 2238 2239 dev->real_num_rx_queues = rxq; 2240 return 0; 2241 } 2242 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 2243 #endif 2244 2245 /** 2246 * netif_get_num_default_rss_queues - default number of RSS queues 2247 * 2248 * This routine should set an upper limit on the number of RSS queues 2249 * used by default by multiqueue devices. 2250 */ 2251 int netif_get_num_default_rss_queues(void) 2252 { 2253 return is_kdump_kernel() ? 2254 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 2255 } 2256 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 2257 2258 static void __netif_reschedule(struct Qdisc *q) 2259 { 2260 struct softnet_data *sd; 2261 unsigned long flags; 2262 2263 local_irq_save(flags); 2264 sd = this_cpu_ptr(&softnet_data); 2265 q->next_sched = NULL; 2266 *sd->output_queue_tailp = q; 2267 sd->output_queue_tailp = &q->next_sched; 2268 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2269 local_irq_restore(flags); 2270 } 2271 2272 void __netif_schedule(struct Qdisc *q) 2273 { 2274 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 2275 __netif_reschedule(q); 2276 } 2277 EXPORT_SYMBOL(__netif_schedule); 2278 2279 struct dev_kfree_skb_cb { 2280 enum skb_free_reason reason; 2281 }; 2282 2283 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 2284 { 2285 return (struct dev_kfree_skb_cb *)skb->cb; 2286 } 2287 2288 void netif_schedule_queue(struct netdev_queue *txq) 2289 { 2290 rcu_read_lock(); 2291 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) { 2292 struct Qdisc *q = rcu_dereference(txq->qdisc); 2293 2294 __netif_schedule(q); 2295 } 2296 rcu_read_unlock(); 2297 } 2298 EXPORT_SYMBOL(netif_schedule_queue); 2299 2300 /** 2301 * netif_wake_subqueue - allow sending packets on subqueue 2302 * @dev: network device 2303 * @queue_index: sub queue index 2304 * 2305 * Resume individual transmit queue of a device with multiple transmit queues. 2306 */ 2307 void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 2308 { 2309 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 2310 2311 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) { 2312 struct Qdisc *q; 2313 2314 rcu_read_lock(); 2315 q = rcu_dereference(txq->qdisc); 2316 __netif_schedule(q); 2317 rcu_read_unlock(); 2318 } 2319 } 2320 EXPORT_SYMBOL(netif_wake_subqueue); 2321 2322 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 2323 { 2324 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 2325 struct Qdisc *q; 2326 2327 rcu_read_lock(); 2328 q = rcu_dereference(dev_queue->qdisc); 2329 __netif_schedule(q); 2330 rcu_read_unlock(); 2331 } 2332 } 2333 EXPORT_SYMBOL(netif_tx_wake_queue); 2334 2335 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason) 2336 { 2337 unsigned long flags; 2338 2339 if (likely(atomic_read(&skb->users) == 1)) { 2340 smp_rmb(); 2341 atomic_set(&skb->users, 0); 2342 } else if (likely(!atomic_dec_and_test(&skb->users))) { 2343 return; 2344 } 2345 get_kfree_skb_cb(skb)->reason = reason; 2346 local_irq_save(flags); 2347 skb->next = __this_cpu_read(softnet_data.completion_queue); 2348 __this_cpu_write(softnet_data.completion_queue, skb); 2349 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2350 local_irq_restore(flags); 2351 } 2352 EXPORT_SYMBOL(__dev_kfree_skb_irq); 2353 2354 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason) 2355 { 2356 if (in_irq() || irqs_disabled()) 2357 __dev_kfree_skb_irq(skb, reason); 2358 else 2359 dev_kfree_skb(skb); 2360 } 2361 EXPORT_SYMBOL(__dev_kfree_skb_any); 2362 2363 2364 /** 2365 * netif_device_detach - mark device as removed 2366 * @dev: network device 2367 * 2368 * Mark device as removed from system and therefore no longer available. 2369 */ 2370 void netif_device_detach(struct net_device *dev) 2371 { 2372 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 2373 netif_running(dev)) { 2374 netif_tx_stop_all_queues(dev); 2375 } 2376 } 2377 EXPORT_SYMBOL(netif_device_detach); 2378 2379 /** 2380 * netif_device_attach - mark device as attached 2381 * @dev: network device 2382 * 2383 * Mark device as attached from system and restart if needed. 2384 */ 2385 void netif_device_attach(struct net_device *dev) 2386 { 2387 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 2388 netif_running(dev)) { 2389 netif_tx_wake_all_queues(dev); 2390 __netdev_watchdog_up(dev); 2391 } 2392 } 2393 EXPORT_SYMBOL(netif_device_attach); 2394 2395 /* 2396 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 2397 * to be used as a distribution range. 2398 */ 2399 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb, 2400 unsigned int num_tx_queues) 2401 { 2402 u32 hash; 2403 u16 qoffset = 0; 2404 u16 qcount = num_tx_queues; 2405 2406 if (skb_rx_queue_recorded(skb)) { 2407 hash = skb_get_rx_queue(skb); 2408 while (unlikely(hash >= num_tx_queues)) 2409 hash -= num_tx_queues; 2410 return hash; 2411 } 2412 2413 if (dev->num_tc) { 2414 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 2415 qoffset = dev->tc_to_txq[tc].offset; 2416 qcount = dev->tc_to_txq[tc].count; 2417 } 2418 2419 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; 2420 } 2421 EXPORT_SYMBOL(__skb_tx_hash); 2422 2423 static void skb_warn_bad_offload(const struct sk_buff *skb) 2424 { 2425 static const netdev_features_t null_features; 2426 struct net_device *dev = skb->dev; 2427 const char *name = ""; 2428 2429 if (!net_ratelimit()) 2430 return; 2431 2432 if (dev) { 2433 if (dev->dev.parent) 2434 name = dev_driver_string(dev->dev.parent); 2435 else 2436 name = netdev_name(dev); 2437 } 2438 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d " 2439 "gso_type=%d ip_summed=%d\n", 2440 name, dev ? &dev->features : &null_features, 2441 skb->sk ? &skb->sk->sk_route_caps : &null_features, 2442 skb->len, skb->data_len, skb_shinfo(skb)->gso_size, 2443 skb_shinfo(skb)->gso_type, skb->ip_summed); 2444 } 2445 2446 /* 2447 * Invalidate hardware checksum when packet is to be mangled, and 2448 * complete checksum manually on outgoing path. 2449 */ 2450 int skb_checksum_help(struct sk_buff *skb) 2451 { 2452 __wsum csum; 2453 int ret = 0, offset; 2454 2455 if (skb->ip_summed == CHECKSUM_COMPLETE) 2456 goto out_set_summed; 2457 2458 if (unlikely(skb_shinfo(skb)->gso_size)) { 2459 skb_warn_bad_offload(skb); 2460 return -EINVAL; 2461 } 2462 2463 /* Before computing a checksum, we should make sure no frag could 2464 * be modified by an external entity : checksum could be wrong. 2465 */ 2466 if (skb_has_shared_frag(skb)) { 2467 ret = __skb_linearize(skb); 2468 if (ret) 2469 goto out; 2470 } 2471 2472 offset = skb_checksum_start_offset(skb); 2473 BUG_ON(offset >= skb_headlen(skb)); 2474 csum = skb_checksum(skb, offset, skb->len - offset, 0); 2475 2476 offset += skb->csum_offset; 2477 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 2478 2479 if (skb_cloned(skb) && 2480 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 2481 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2482 if (ret) 2483 goto out; 2484 } 2485 2486 *(__sum16 *)(skb->data + offset) = csum_fold(csum); 2487 out_set_summed: 2488 skb->ip_summed = CHECKSUM_NONE; 2489 out: 2490 return ret; 2491 } 2492 EXPORT_SYMBOL(skb_checksum_help); 2493 2494 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 2495 { 2496 __be16 type = skb->protocol; 2497 2498 /* Tunnel gso handlers can set protocol to ethernet. */ 2499 if (type == htons(ETH_P_TEB)) { 2500 struct ethhdr *eth; 2501 2502 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 2503 return 0; 2504 2505 eth = (struct ethhdr *)skb_mac_header(skb); 2506 type = eth->h_proto; 2507 } 2508 2509 return __vlan_get_protocol(skb, type, depth); 2510 } 2511 2512 /** 2513 * skb_mac_gso_segment - mac layer segmentation handler. 2514 * @skb: buffer to segment 2515 * @features: features for the output path (see dev->features) 2516 */ 2517 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 2518 netdev_features_t features) 2519 { 2520 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 2521 struct packet_offload *ptype; 2522 int vlan_depth = skb->mac_len; 2523 __be16 type = skb_network_protocol(skb, &vlan_depth); 2524 2525 if (unlikely(!type)) 2526 return ERR_PTR(-EINVAL); 2527 2528 __skb_pull(skb, vlan_depth); 2529 2530 rcu_read_lock(); 2531 list_for_each_entry_rcu(ptype, &offload_base, list) { 2532 if (ptype->type == type && ptype->callbacks.gso_segment) { 2533 segs = ptype->callbacks.gso_segment(skb, features); 2534 break; 2535 } 2536 } 2537 rcu_read_unlock(); 2538 2539 __skb_push(skb, skb->data - skb_mac_header(skb)); 2540 2541 return segs; 2542 } 2543 EXPORT_SYMBOL(skb_mac_gso_segment); 2544 2545 2546 /* openvswitch calls this on rx path, so we need a different check. 2547 */ 2548 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) 2549 { 2550 if (tx_path) 2551 return skb->ip_summed != CHECKSUM_PARTIAL; 2552 else 2553 return skb->ip_summed == CHECKSUM_NONE; 2554 } 2555 2556 /** 2557 * __skb_gso_segment - Perform segmentation on skb. 2558 * @skb: buffer to segment 2559 * @features: features for the output path (see dev->features) 2560 * @tx_path: whether it is called in TX path 2561 * 2562 * This function segments the given skb and returns a list of segments. 2563 * 2564 * It may return NULL if the skb requires no segmentation. This is 2565 * only possible when GSO is used for verifying header integrity. 2566 * 2567 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb. 2568 */ 2569 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 2570 netdev_features_t features, bool tx_path) 2571 { 2572 if (unlikely(skb_needs_check(skb, tx_path))) { 2573 int err; 2574 2575 skb_warn_bad_offload(skb); 2576 2577 err = skb_cow_head(skb, 0); 2578 if (err < 0) 2579 return ERR_PTR(err); 2580 } 2581 2582 /* Only report GSO partial support if it will enable us to 2583 * support segmentation on this frame without needing additional 2584 * work. 2585 */ 2586 if (features & NETIF_F_GSO_PARTIAL) { 2587 netdev_features_t partial_features = NETIF_F_GSO_ROBUST; 2588 struct net_device *dev = skb->dev; 2589 2590 partial_features |= dev->features & dev->gso_partial_features; 2591 if (!skb_gso_ok(skb, features | partial_features)) 2592 features &= ~NETIF_F_GSO_PARTIAL; 2593 } 2594 2595 BUILD_BUG_ON(SKB_SGO_CB_OFFSET + 2596 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb)); 2597 2598 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); 2599 SKB_GSO_CB(skb)->encap_level = 0; 2600 2601 skb_reset_mac_header(skb); 2602 skb_reset_mac_len(skb); 2603 2604 return skb_mac_gso_segment(skb, features); 2605 } 2606 EXPORT_SYMBOL(__skb_gso_segment); 2607 2608 /* Take action when hardware reception checksum errors are detected. */ 2609 #ifdef CONFIG_BUG 2610 void netdev_rx_csum_fault(struct net_device *dev) 2611 { 2612 if (net_ratelimit()) { 2613 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 2614 dump_stack(); 2615 } 2616 } 2617 EXPORT_SYMBOL(netdev_rx_csum_fault); 2618 #endif 2619 2620 /* Actually, we should eliminate this check as soon as we know, that: 2621 * 1. IOMMU is present and allows to map all the memory. 2622 * 2. No high memory really exists on this machine. 2623 */ 2624 2625 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 2626 { 2627 #ifdef CONFIG_HIGHMEM 2628 int i; 2629 if (!(dev->features & NETIF_F_HIGHDMA)) { 2630 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2631 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2632 if (PageHighMem(skb_frag_page(frag))) 2633 return 1; 2634 } 2635 } 2636 2637 if (PCI_DMA_BUS_IS_PHYS) { 2638 struct device *pdev = dev->dev.parent; 2639 2640 if (!pdev) 2641 return 0; 2642 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2643 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2644 dma_addr_t addr = page_to_phys(skb_frag_page(frag)); 2645 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask) 2646 return 1; 2647 } 2648 } 2649 #endif 2650 return 0; 2651 } 2652 2653 /* If MPLS offload request, verify we are testing hardware MPLS features 2654 * instead of standard features for the netdev. 2655 */ 2656 #if IS_ENABLED(CONFIG_NET_MPLS_GSO) 2657 static netdev_features_t net_mpls_features(struct sk_buff *skb, 2658 netdev_features_t features, 2659 __be16 type) 2660 { 2661 if (eth_p_mpls(type)) 2662 features &= skb->dev->mpls_features; 2663 2664 return features; 2665 } 2666 #else 2667 static netdev_features_t net_mpls_features(struct sk_buff *skb, 2668 netdev_features_t features, 2669 __be16 type) 2670 { 2671 return features; 2672 } 2673 #endif 2674 2675 static netdev_features_t harmonize_features(struct sk_buff *skb, 2676 netdev_features_t features) 2677 { 2678 int tmp; 2679 __be16 type; 2680 2681 type = skb_network_protocol(skb, &tmp); 2682 features = net_mpls_features(skb, features, type); 2683 2684 if (skb->ip_summed != CHECKSUM_NONE && 2685 !can_checksum_protocol(features, type)) { 2686 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 2687 } else if (illegal_highdma(skb->dev, skb)) { 2688 features &= ~NETIF_F_SG; 2689 } 2690 2691 return features; 2692 } 2693 2694 netdev_features_t passthru_features_check(struct sk_buff *skb, 2695 struct net_device *dev, 2696 netdev_features_t features) 2697 { 2698 return features; 2699 } 2700 EXPORT_SYMBOL(passthru_features_check); 2701 2702 static netdev_features_t dflt_features_check(const struct sk_buff *skb, 2703 struct net_device *dev, 2704 netdev_features_t features) 2705 { 2706 return vlan_features_check(skb, features); 2707 } 2708 2709 static netdev_features_t gso_features_check(const struct sk_buff *skb, 2710 struct net_device *dev, 2711 netdev_features_t features) 2712 { 2713 u16 gso_segs = skb_shinfo(skb)->gso_segs; 2714 2715 if (gso_segs > dev->gso_max_segs) 2716 return features & ~NETIF_F_GSO_MASK; 2717 2718 /* Support for GSO partial features requires software 2719 * intervention before we can actually process the packets 2720 * so we need to strip support for any partial features now 2721 * and we can pull them back in after we have partially 2722 * segmented the frame. 2723 */ 2724 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL)) 2725 features &= ~dev->gso_partial_features; 2726 2727 /* Make sure to clear the IPv4 ID mangling feature if the 2728 * IPv4 header has the potential to be fragmented. 2729 */ 2730 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { 2731 struct iphdr *iph = skb->encapsulation ? 2732 inner_ip_hdr(skb) : ip_hdr(skb); 2733 2734 if (!(iph->frag_off & htons(IP_DF))) 2735 features &= ~NETIF_F_TSO_MANGLEID; 2736 } 2737 2738 return features; 2739 } 2740 2741 netdev_features_t netif_skb_features(struct sk_buff *skb) 2742 { 2743 struct net_device *dev = skb->dev; 2744 netdev_features_t features = dev->features; 2745 2746 if (skb_is_gso(skb)) 2747 features = gso_features_check(skb, dev, features); 2748 2749 /* If encapsulation offload request, verify we are testing 2750 * hardware encapsulation features instead of standard 2751 * features for the netdev 2752 */ 2753 if (skb->encapsulation) 2754 features &= dev->hw_enc_features; 2755 2756 if (skb_vlan_tagged(skb)) 2757 features = netdev_intersect_features(features, 2758 dev->vlan_features | 2759 NETIF_F_HW_VLAN_CTAG_TX | 2760 NETIF_F_HW_VLAN_STAG_TX); 2761 2762 if (dev->netdev_ops->ndo_features_check) 2763 features &= dev->netdev_ops->ndo_features_check(skb, dev, 2764 features); 2765 else 2766 features &= dflt_features_check(skb, dev, features); 2767 2768 return harmonize_features(skb, features); 2769 } 2770 EXPORT_SYMBOL(netif_skb_features); 2771 2772 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 2773 struct netdev_queue *txq, bool more) 2774 { 2775 unsigned int len; 2776 int rc; 2777 2778 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all)) 2779 dev_queue_xmit_nit(skb, dev); 2780 2781 len = skb->len; 2782 trace_net_dev_start_xmit(skb, dev); 2783 rc = netdev_start_xmit(skb, dev, txq, more); 2784 trace_net_dev_xmit(skb, rc, dev, len); 2785 2786 return rc; 2787 } 2788 2789 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 2790 struct netdev_queue *txq, int *ret) 2791 { 2792 struct sk_buff *skb = first; 2793 int rc = NETDEV_TX_OK; 2794 2795 while (skb) { 2796 struct sk_buff *next = skb->next; 2797 2798 skb->next = NULL; 2799 rc = xmit_one(skb, dev, txq, next != NULL); 2800 if (unlikely(!dev_xmit_complete(rc))) { 2801 skb->next = next; 2802 goto out; 2803 } 2804 2805 skb = next; 2806 if (netif_xmit_stopped(txq) && skb) { 2807 rc = NETDEV_TX_BUSY; 2808 break; 2809 } 2810 } 2811 2812 out: 2813 *ret = rc; 2814 return skb; 2815 } 2816 2817 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 2818 netdev_features_t features) 2819 { 2820 if (skb_vlan_tag_present(skb) && 2821 !vlan_hw_offload_capable(features, skb->vlan_proto)) 2822 skb = __vlan_hwaccel_push_inside(skb); 2823 return skb; 2824 } 2825 2826 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev) 2827 { 2828 netdev_features_t features; 2829 2830 features = netif_skb_features(skb); 2831 skb = validate_xmit_vlan(skb, features); 2832 if (unlikely(!skb)) 2833 goto out_null; 2834 2835 if (netif_needs_gso(skb, features)) { 2836 struct sk_buff *segs; 2837 2838 segs = skb_gso_segment(skb, features); 2839 if (IS_ERR(segs)) { 2840 goto out_kfree_skb; 2841 } else if (segs) { 2842 consume_skb(skb); 2843 skb = segs; 2844 } 2845 } else { 2846 if (skb_needs_linearize(skb, features) && 2847 __skb_linearize(skb)) 2848 goto out_kfree_skb; 2849 2850 /* If packet is not checksummed and device does not 2851 * support checksumming for this protocol, complete 2852 * checksumming here. 2853 */ 2854 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2855 if (skb->encapsulation) 2856 skb_set_inner_transport_header(skb, 2857 skb_checksum_start_offset(skb)); 2858 else 2859 skb_set_transport_header(skb, 2860 skb_checksum_start_offset(skb)); 2861 if (!(features & NETIF_F_CSUM_MASK) && 2862 skb_checksum_help(skb)) 2863 goto out_kfree_skb; 2864 } 2865 } 2866 2867 return skb; 2868 2869 out_kfree_skb: 2870 kfree_skb(skb); 2871 out_null: 2872 atomic_long_inc(&dev->tx_dropped); 2873 return NULL; 2874 } 2875 2876 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev) 2877 { 2878 struct sk_buff *next, *head = NULL, *tail; 2879 2880 for (; skb != NULL; skb = next) { 2881 next = skb->next; 2882 skb->next = NULL; 2883 2884 /* in case skb wont be segmented, point to itself */ 2885 skb->prev = skb; 2886 2887 skb = validate_xmit_skb(skb, dev); 2888 if (!skb) 2889 continue; 2890 2891 if (!head) 2892 head = skb; 2893 else 2894 tail->next = skb; 2895 /* If skb was segmented, skb->prev points to 2896 * the last segment. If not, it still contains skb. 2897 */ 2898 tail = skb->prev; 2899 } 2900 return head; 2901 } 2902 2903 static void qdisc_pkt_len_init(struct sk_buff *skb) 2904 { 2905 const struct skb_shared_info *shinfo = skb_shinfo(skb); 2906 2907 qdisc_skb_cb(skb)->pkt_len = skb->len; 2908 2909 /* To get more precise estimation of bytes sent on wire, 2910 * we add to pkt_len the headers size of all segments 2911 */ 2912 if (shinfo->gso_size) { 2913 unsigned int hdr_len; 2914 u16 gso_segs = shinfo->gso_segs; 2915 2916 /* mac layer + network layer */ 2917 hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 2918 2919 /* + transport layer */ 2920 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 2921 hdr_len += tcp_hdrlen(skb); 2922 else 2923 hdr_len += sizeof(struct udphdr); 2924 2925 if (shinfo->gso_type & SKB_GSO_DODGY) 2926 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 2927 shinfo->gso_size); 2928 2929 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 2930 } 2931 } 2932 2933 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 2934 struct net_device *dev, 2935 struct netdev_queue *txq) 2936 { 2937 spinlock_t *root_lock = qdisc_lock(q); 2938 struct sk_buff *to_free = NULL; 2939 bool contended; 2940 int rc; 2941 2942 qdisc_calculate_pkt_len(skb, q); 2943 /* 2944 * Heuristic to force contended enqueues to serialize on a 2945 * separate lock before trying to get qdisc main lock. 2946 * This permits qdisc->running owner to get the lock more 2947 * often and dequeue packets faster. 2948 */ 2949 contended = qdisc_is_running(q); 2950 if (unlikely(contended)) 2951 spin_lock(&q->busylock); 2952 2953 spin_lock(root_lock); 2954 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 2955 __qdisc_drop(skb, &to_free); 2956 rc = NET_XMIT_DROP; 2957 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 2958 qdisc_run_begin(q)) { 2959 /* 2960 * This is a work-conserving queue; there are no old skbs 2961 * waiting to be sent out; and the qdisc is not running - 2962 * xmit the skb directly. 2963 */ 2964 2965 qdisc_bstats_update(q, skb); 2966 2967 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 2968 if (unlikely(contended)) { 2969 spin_unlock(&q->busylock); 2970 contended = false; 2971 } 2972 __qdisc_run(q); 2973 } else 2974 qdisc_run_end(q); 2975 2976 rc = NET_XMIT_SUCCESS; 2977 } else { 2978 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 2979 if (qdisc_run_begin(q)) { 2980 if (unlikely(contended)) { 2981 spin_unlock(&q->busylock); 2982 contended = false; 2983 } 2984 __qdisc_run(q); 2985 } 2986 } 2987 spin_unlock(root_lock); 2988 if (unlikely(to_free)) 2989 kfree_skb_list(to_free); 2990 if (unlikely(contended)) 2991 spin_unlock(&q->busylock); 2992 return rc; 2993 } 2994 2995 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 2996 static void skb_update_prio(struct sk_buff *skb) 2997 { 2998 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap); 2999 3000 if (!skb->priority && skb->sk && map) { 3001 unsigned int prioidx = 3002 sock_cgroup_prioidx(&skb->sk->sk_cgrp_data); 3003 3004 if (prioidx < map->priomap_len) 3005 skb->priority = map->priomap[prioidx]; 3006 } 3007 } 3008 #else 3009 #define skb_update_prio(skb) 3010 #endif 3011 3012 DEFINE_PER_CPU(int, xmit_recursion); 3013 EXPORT_SYMBOL(xmit_recursion); 3014 3015 /** 3016 * dev_loopback_xmit - loop back @skb 3017 * @net: network namespace this loopback is happening in 3018 * @sk: sk needed to be a netfilter okfn 3019 * @skb: buffer to transmit 3020 */ 3021 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) 3022 { 3023 skb_reset_mac_header(skb); 3024 __skb_pull(skb, skb_network_offset(skb)); 3025 skb->pkt_type = PACKET_LOOPBACK; 3026 skb->ip_summed = CHECKSUM_UNNECESSARY; 3027 WARN_ON(!skb_dst(skb)); 3028 skb_dst_force(skb); 3029 netif_rx_ni(skb); 3030 return 0; 3031 } 3032 EXPORT_SYMBOL(dev_loopback_xmit); 3033 3034 #ifdef CONFIG_NET_EGRESS 3035 static struct sk_buff * 3036 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 3037 { 3038 struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list); 3039 struct tcf_result cl_res; 3040 3041 if (!cl) 3042 return skb; 3043 3044 /* skb->tc_verd and qdisc_skb_cb(skb)->pkt_len were already set 3045 * earlier by the caller. 3046 */ 3047 qdisc_bstats_cpu_update(cl->q, skb); 3048 3049 switch (tc_classify(skb, cl, &cl_res, false)) { 3050 case TC_ACT_OK: 3051 case TC_ACT_RECLASSIFY: 3052 skb->tc_index = TC_H_MIN(cl_res.classid); 3053 break; 3054 case TC_ACT_SHOT: 3055 qdisc_qstats_cpu_drop(cl->q); 3056 *ret = NET_XMIT_DROP; 3057 kfree_skb(skb); 3058 return NULL; 3059 case TC_ACT_STOLEN: 3060 case TC_ACT_QUEUED: 3061 *ret = NET_XMIT_SUCCESS; 3062 consume_skb(skb); 3063 return NULL; 3064 case TC_ACT_REDIRECT: 3065 /* No need to push/pop skb's mac_header here on egress! */ 3066 skb_do_redirect(skb); 3067 *ret = NET_XMIT_SUCCESS; 3068 return NULL; 3069 default: 3070 break; 3071 } 3072 3073 return skb; 3074 } 3075 #endif /* CONFIG_NET_EGRESS */ 3076 3077 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb) 3078 { 3079 #ifdef CONFIG_XPS 3080 struct xps_dev_maps *dev_maps; 3081 struct xps_map *map; 3082 int queue_index = -1; 3083 3084 rcu_read_lock(); 3085 dev_maps = rcu_dereference(dev->xps_maps); 3086 if (dev_maps) { 3087 map = rcu_dereference( 3088 dev_maps->cpu_map[skb->sender_cpu - 1]); 3089 if (map) { 3090 if (map->len == 1) 3091 queue_index = map->queues[0]; 3092 else 3093 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb), 3094 map->len)]; 3095 if (unlikely(queue_index >= dev->real_num_tx_queues)) 3096 queue_index = -1; 3097 } 3098 } 3099 rcu_read_unlock(); 3100 3101 return queue_index; 3102 #else 3103 return -1; 3104 #endif 3105 } 3106 3107 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb) 3108 { 3109 struct sock *sk = skb->sk; 3110 int queue_index = sk_tx_queue_get(sk); 3111 3112 if (queue_index < 0 || skb->ooo_okay || 3113 queue_index >= dev->real_num_tx_queues) { 3114 int new_index = get_xps_queue(dev, skb); 3115 if (new_index < 0) 3116 new_index = skb_tx_hash(dev, skb); 3117 3118 if (queue_index != new_index && sk && 3119 sk_fullsock(sk) && 3120 rcu_access_pointer(sk->sk_dst_cache)) 3121 sk_tx_queue_set(sk, new_index); 3122 3123 queue_index = new_index; 3124 } 3125 3126 return queue_index; 3127 } 3128 3129 struct netdev_queue *netdev_pick_tx(struct net_device *dev, 3130 struct sk_buff *skb, 3131 void *accel_priv) 3132 { 3133 int queue_index = 0; 3134 3135 #ifdef CONFIG_XPS 3136 u32 sender_cpu = skb->sender_cpu - 1; 3137 3138 if (sender_cpu >= (u32)NR_CPUS) 3139 skb->sender_cpu = raw_smp_processor_id() + 1; 3140 #endif 3141 3142 if (dev->real_num_tx_queues != 1) { 3143 const struct net_device_ops *ops = dev->netdev_ops; 3144 if (ops->ndo_select_queue) 3145 queue_index = ops->ndo_select_queue(dev, skb, accel_priv, 3146 __netdev_pick_tx); 3147 else 3148 queue_index = __netdev_pick_tx(dev, skb); 3149 3150 if (!accel_priv) 3151 queue_index = netdev_cap_txqueue(dev, queue_index); 3152 } 3153 3154 skb_set_queue_mapping(skb, queue_index); 3155 return netdev_get_tx_queue(dev, queue_index); 3156 } 3157 3158 /** 3159 * __dev_queue_xmit - transmit a buffer 3160 * @skb: buffer to transmit 3161 * @accel_priv: private data used for L2 forwarding offload 3162 * 3163 * Queue a buffer for transmission to a network device. The caller must 3164 * have set the device and priority and built the buffer before calling 3165 * this function. The function can be called from an interrupt. 3166 * 3167 * A negative errno code is returned on a failure. A success does not 3168 * guarantee the frame will be transmitted as it may be dropped due 3169 * to congestion or traffic shaping. 3170 * 3171 * ----------------------------------------------------------------------------------- 3172 * I notice this method can also return errors from the queue disciplines, 3173 * including NET_XMIT_DROP, which is a positive value. So, errors can also 3174 * be positive. 3175 * 3176 * Regardless of the return value, the skb is consumed, so it is currently 3177 * difficult to retry a send to this method. (You can bump the ref count 3178 * before sending to hold a reference for retry if you are careful.) 3179 * 3180 * When calling this method, interrupts MUST be enabled. This is because 3181 * the BH enable code must have IRQs enabled so that it will not deadlock. 3182 * --BLG 3183 */ 3184 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv) 3185 { 3186 struct net_device *dev = skb->dev; 3187 struct netdev_queue *txq; 3188 struct Qdisc *q; 3189 int rc = -ENOMEM; 3190 3191 skb_reset_mac_header(skb); 3192 3193 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP)) 3194 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED); 3195 3196 /* Disable soft irqs for various locks below. Also 3197 * stops preemption for RCU. 3198 */ 3199 rcu_read_lock_bh(); 3200 3201 skb_update_prio(skb); 3202 3203 qdisc_pkt_len_init(skb); 3204 #ifdef CONFIG_NET_CLS_ACT 3205 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS); 3206 # ifdef CONFIG_NET_EGRESS 3207 if (static_key_false(&egress_needed)) { 3208 skb = sch_handle_egress(skb, &rc, dev); 3209 if (!skb) 3210 goto out; 3211 } 3212 # endif 3213 #endif 3214 /* If device/qdisc don't need skb->dst, release it right now while 3215 * its hot in this cpu cache. 3216 */ 3217 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 3218 skb_dst_drop(skb); 3219 else 3220 skb_dst_force(skb); 3221 3222 txq = netdev_pick_tx(dev, skb, accel_priv); 3223 q = rcu_dereference_bh(txq->qdisc); 3224 3225 trace_net_dev_queue(skb); 3226 if (q->enqueue) { 3227 rc = __dev_xmit_skb(skb, q, dev, txq); 3228 goto out; 3229 } 3230 3231 /* The device has no queue. Common case for software devices: 3232 loopback, all the sorts of tunnels... 3233 3234 Really, it is unlikely that netif_tx_lock protection is necessary 3235 here. (f.e. loopback and IP tunnels are clean ignoring statistics 3236 counters.) 3237 However, it is possible, that they rely on protection 3238 made by us here. 3239 3240 Check this and shot the lock. It is not prone from deadlocks. 3241 Either shot noqueue qdisc, it is even simpler 8) 3242 */ 3243 if (dev->flags & IFF_UP) { 3244 int cpu = smp_processor_id(); /* ok because BHs are off */ 3245 3246 if (txq->xmit_lock_owner != cpu) { 3247 if (unlikely(__this_cpu_read(xmit_recursion) > 3248 XMIT_RECURSION_LIMIT)) 3249 goto recursion_alert; 3250 3251 skb = validate_xmit_skb(skb, dev); 3252 if (!skb) 3253 goto out; 3254 3255 HARD_TX_LOCK(dev, txq, cpu); 3256 3257 if (!netif_xmit_stopped(txq)) { 3258 __this_cpu_inc(xmit_recursion); 3259 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 3260 __this_cpu_dec(xmit_recursion); 3261 if (dev_xmit_complete(rc)) { 3262 HARD_TX_UNLOCK(dev, txq); 3263 goto out; 3264 } 3265 } 3266 HARD_TX_UNLOCK(dev, txq); 3267 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 3268 dev->name); 3269 } else { 3270 /* Recursion is detected! It is possible, 3271 * unfortunately 3272 */ 3273 recursion_alert: 3274 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 3275 dev->name); 3276 } 3277 } 3278 3279 rc = -ENETDOWN; 3280 rcu_read_unlock_bh(); 3281 3282 atomic_long_inc(&dev->tx_dropped); 3283 kfree_skb_list(skb); 3284 return rc; 3285 out: 3286 rcu_read_unlock_bh(); 3287 return rc; 3288 } 3289 3290 int dev_queue_xmit(struct sk_buff *skb) 3291 { 3292 return __dev_queue_xmit(skb, NULL); 3293 } 3294 EXPORT_SYMBOL(dev_queue_xmit); 3295 3296 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv) 3297 { 3298 return __dev_queue_xmit(skb, accel_priv); 3299 } 3300 EXPORT_SYMBOL(dev_queue_xmit_accel); 3301 3302 3303 /*======================================================================= 3304 Receiver routines 3305 =======================================================================*/ 3306 3307 int netdev_max_backlog __read_mostly = 1000; 3308 EXPORT_SYMBOL(netdev_max_backlog); 3309 3310 int netdev_tstamp_prequeue __read_mostly = 1; 3311 int netdev_budget __read_mostly = 300; 3312 int weight_p __read_mostly = 64; /* old backlog weight */ 3313 3314 /* Called with irq disabled */ 3315 static inline void ____napi_schedule(struct softnet_data *sd, 3316 struct napi_struct *napi) 3317 { 3318 list_add_tail(&napi->poll_list, &sd->poll_list); 3319 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3320 } 3321 3322 #ifdef CONFIG_RPS 3323 3324 /* One global table that all flow-based protocols share. */ 3325 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 3326 EXPORT_SYMBOL(rps_sock_flow_table); 3327 u32 rps_cpu_mask __read_mostly; 3328 EXPORT_SYMBOL(rps_cpu_mask); 3329 3330 struct static_key rps_needed __read_mostly; 3331 EXPORT_SYMBOL(rps_needed); 3332 3333 static struct rps_dev_flow * 3334 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3335 struct rps_dev_flow *rflow, u16 next_cpu) 3336 { 3337 if (next_cpu < nr_cpu_ids) { 3338 #ifdef CONFIG_RFS_ACCEL 3339 struct netdev_rx_queue *rxqueue; 3340 struct rps_dev_flow_table *flow_table; 3341 struct rps_dev_flow *old_rflow; 3342 u32 flow_id; 3343 u16 rxq_index; 3344 int rc; 3345 3346 /* Should we steer this flow to a different hardware queue? */ 3347 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 3348 !(dev->features & NETIF_F_NTUPLE)) 3349 goto out; 3350 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 3351 if (rxq_index == skb_get_rx_queue(skb)) 3352 goto out; 3353 3354 rxqueue = dev->_rx + rxq_index; 3355 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3356 if (!flow_table) 3357 goto out; 3358 flow_id = skb_get_hash(skb) & flow_table->mask; 3359 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 3360 rxq_index, flow_id); 3361 if (rc < 0) 3362 goto out; 3363 old_rflow = rflow; 3364 rflow = &flow_table->flows[flow_id]; 3365 rflow->filter = rc; 3366 if (old_rflow->filter == rflow->filter) 3367 old_rflow->filter = RPS_NO_FILTER; 3368 out: 3369 #endif 3370 rflow->last_qtail = 3371 per_cpu(softnet_data, next_cpu).input_queue_head; 3372 } 3373 3374 rflow->cpu = next_cpu; 3375 return rflow; 3376 } 3377 3378 /* 3379 * get_rps_cpu is called from netif_receive_skb and returns the target 3380 * CPU from the RPS map of the receiving queue for a given skb. 3381 * rcu_read_lock must be held on entry. 3382 */ 3383 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3384 struct rps_dev_flow **rflowp) 3385 { 3386 const struct rps_sock_flow_table *sock_flow_table; 3387 struct netdev_rx_queue *rxqueue = dev->_rx; 3388 struct rps_dev_flow_table *flow_table; 3389 struct rps_map *map; 3390 int cpu = -1; 3391 u32 tcpu; 3392 u32 hash; 3393 3394 if (skb_rx_queue_recorded(skb)) { 3395 u16 index = skb_get_rx_queue(skb); 3396 3397 if (unlikely(index >= dev->real_num_rx_queues)) { 3398 WARN_ONCE(dev->real_num_rx_queues > 1, 3399 "%s received packet on queue %u, but number " 3400 "of RX queues is %u\n", 3401 dev->name, index, dev->real_num_rx_queues); 3402 goto done; 3403 } 3404 rxqueue += index; 3405 } 3406 3407 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 3408 3409 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3410 map = rcu_dereference(rxqueue->rps_map); 3411 if (!flow_table && !map) 3412 goto done; 3413 3414 skb_reset_network_header(skb); 3415 hash = skb_get_hash(skb); 3416 if (!hash) 3417 goto done; 3418 3419 sock_flow_table = rcu_dereference(rps_sock_flow_table); 3420 if (flow_table && sock_flow_table) { 3421 struct rps_dev_flow *rflow; 3422 u32 next_cpu; 3423 u32 ident; 3424 3425 /* First check into global flow table if there is a match */ 3426 ident = sock_flow_table->ents[hash & sock_flow_table->mask]; 3427 if ((ident ^ hash) & ~rps_cpu_mask) 3428 goto try_rps; 3429 3430 next_cpu = ident & rps_cpu_mask; 3431 3432 /* OK, now we know there is a match, 3433 * we can look at the local (per receive queue) flow table 3434 */ 3435 rflow = &flow_table->flows[hash & flow_table->mask]; 3436 tcpu = rflow->cpu; 3437 3438 /* 3439 * If the desired CPU (where last recvmsg was done) is 3440 * different from current CPU (one in the rx-queue flow 3441 * table entry), switch if one of the following holds: 3442 * - Current CPU is unset (>= nr_cpu_ids). 3443 * - Current CPU is offline. 3444 * - The current CPU's queue tail has advanced beyond the 3445 * last packet that was enqueued using this table entry. 3446 * This guarantees that all previous packets for the flow 3447 * have been dequeued, thus preserving in order delivery. 3448 */ 3449 if (unlikely(tcpu != next_cpu) && 3450 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 3451 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 3452 rflow->last_qtail)) >= 0)) { 3453 tcpu = next_cpu; 3454 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 3455 } 3456 3457 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 3458 *rflowp = rflow; 3459 cpu = tcpu; 3460 goto done; 3461 } 3462 } 3463 3464 try_rps: 3465 3466 if (map) { 3467 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 3468 if (cpu_online(tcpu)) { 3469 cpu = tcpu; 3470 goto done; 3471 } 3472 } 3473 3474 done: 3475 return cpu; 3476 } 3477 3478 #ifdef CONFIG_RFS_ACCEL 3479 3480 /** 3481 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 3482 * @dev: Device on which the filter was set 3483 * @rxq_index: RX queue index 3484 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 3485 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 3486 * 3487 * Drivers that implement ndo_rx_flow_steer() should periodically call 3488 * this function for each installed filter and remove the filters for 3489 * which it returns %true. 3490 */ 3491 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 3492 u32 flow_id, u16 filter_id) 3493 { 3494 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 3495 struct rps_dev_flow_table *flow_table; 3496 struct rps_dev_flow *rflow; 3497 bool expire = true; 3498 unsigned int cpu; 3499 3500 rcu_read_lock(); 3501 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3502 if (flow_table && flow_id <= flow_table->mask) { 3503 rflow = &flow_table->flows[flow_id]; 3504 cpu = ACCESS_ONCE(rflow->cpu); 3505 if (rflow->filter == filter_id && cpu < nr_cpu_ids && 3506 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 3507 rflow->last_qtail) < 3508 (int)(10 * flow_table->mask))) 3509 expire = false; 3510 } 3511 rcu_read_unlock(); 3512 return expire; 3513 } 3514 EXPORT_SYMBOL(rps_may_expire_flow); 3515 3516 #endif /* CONFIG_RFS_ACCEL */ 3517 3518 /* Called from hardirq (IPI) context */ 3519 static void rps_trigger_softirq(void *data) 3520 { 3521 struct softnet_data *sd = data; 3522 3523 ____napi_schedule(sd, &sd->backlog); 3524 sd->received_rps++; 3525 } 3526 3527 #endif /* CONFIG_RPS */ 3528 3529 /* 3530 * Check if this softnet_data structure is another cpu one 3531 * If yes, queue it to our IPI list and return 1 3532 * If no, return 0 3533 */ 3534 static int rps_ipi_queued(struct softnet_data *sd) 3535 { 3536 #ifdef CONFIG_RPS 3537 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 3538 3539 if (sd != mysd) { 3540 sd->rps_ipi_next = mysd->rps_ipi_list; 3541 mysd->rps_ipi_list = sd; 3542 3543 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3544 return 1; 3545 } 3546 #endif /* CONFIG_RPS */ 3547 return 0; 3548 } 3549 3550 #ifdef CONFIG_NET_FLOW_LIMIT 3551 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 3552 #endif 3553 3554 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 3555 { 3556 #ifdef CONFIG_NET_FLOW_LIMIT 3557 struct sd_flow_limit *fl; 3558 struct softnet_data *sd; 3559 unsigned int old_flow, new_flow; 3560 3561 if (qlen < (netdev_max_backlog >> 1)) 3562 return false; 3563 3564 sd = this_cpu_ptr(&softnet_data); 3565 3566 rcu_read_lock(); 3567 fl = rcu_dereference(sd->flow_limit); 3568 if (fl) { 3569 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); 3570 old_flow = fl->history[fl->history_head]; 3571 fl->history[fl->history_head] = new_flow; 3572 3573 fl->history_head++; 3574 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 3575 3576 if (likely(fl->buckets[old_flow])) 3577 fl->buckets[old_flow]--; 3578 3579 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 3580 fl->count++; 3581 rcu_read_unlock(); 3582 return true; 3583 } 3584 } 3585 rcu_read_unlock(); 3586 #endif 3587 return false; 3588 } 3589 3590 /* 3591 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 3592 * queue (may be a remote CPU queue). 3593 */ 3594 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 3595 unsigned int *qtail) 3596 { 3597 struct softnet_data *sd; 3598 unsigned long flags; 3599 unsigned int qlen; 3600 3601 sd = &per_cpu(softnet_data, cpu); 3602 3603 local_irq_save(flags); 3604 3605 rps_lock(sd); 3606 if (!netif_running(skb->dev)) 3607 goto drop; 3608 qlen = skb_queue_len(&sd->input_pkt_queue); 3609 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) { 3610 if (qlen) { 3611 enqueue: 3612 __skb_queue_tail(&sd->input_pkt_queue, skb); 3613 input_queue_tail_incr_save(sd, qtail); 3614 rps_unlock(sd); 3615 local_irq_restore(flags); 3616 return NET_RX_SUCCESS; 3617 } 3618 3619 /* Schedule NAPI for backlog device 3620 * We can use non atomic operation since we own the queue lock 3621 */ 3622 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 3623 if (!rps_ipi_queued(sd)) 3624 ____napi_schedule(sd, &sd->backlog); 3625 } 3626 goto enqueue; 3627 } 3628 3629 drop: 3630 sd->dropped++; 3631 rps_unlock(sd); 3632 3633 local_irq_restore(flags); 3634 3635 atomic_long_inc(&skb->dev->rx_dropped); 3636 kfree_skb(skb); 3637 return NET_RX_DROP; 3638 } 3639 3640 static int netif_rx_internal(struct sk_buff *skb) 3641 { 3642 int ret; 3643 3644 net_timestamp_check(netdev_tstamp_prequeue, skb); 3645 3646 trace_netif_rx(skb); 3647 #ifdef CONFIG_RPS 3648 if (static_key_false(&rps_needed)) { 3649 struct rps_dev_flow voidflow, *rflow = &voidflow; 3650 int cpu; 3651 3652 preempt_disable(); 3653 rcu_read_lock(); 3654 3655 cpu = get_rps_cpu(skb->dev, skb, &rflow); 3656 if (cpu < 0) 3657 cpu = smp_processor_id(); 3658 3659 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3660 3661 rcu_read_unlock(); 3662 preempt_enable(); 3663 } else 3664 #endif 3665 { 3666 unsigned int qtail; 3667 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 3668 put_cpu(); 3669 } 3670 return ret; 3671 } 3672 3673 /** 3674 * netif_rx - post buffer to the network code 3675 * @skb: buffer to post 3676 * 3677 * This function receives a packet from a device driver and queues it for 3678 * the upper (protocol) levels to process. It always succeeds. The buffer 3679 * may be dropped during processing for congestion control or by the 3680 * protocol layers. 3681 * 3682 * return values: 3683 * NET_RX_SUCCESS (no congestion) 3684 * NET_RX_DROP (packet was dropped) 3685 * 3686 */ 3687 3688 int netif_rx(struct sk_buff *skb) 3689 { 3690 trace_netif_rx_entry(skb); 3691 3692 return netif_rx_internal(skb); 3693 } 3694 EXPORT_SYMBOL(netif_rx); 3695 3696 int netif_rx_ni(struct sk_buff *skb) 3697 { 3698 int err; 3699 3700 trace_netif_rx_ni_entry(skb); 3701 3702 preempt_disable(); 3703 err = netif_rx_internal(skb); 3704 if (local_softirq_pending()) 3705 do_softirq(); 3706 preempt_enable(); 3707 3708 return err; 3709 } 3710 EXPORT_SYMBOL(netif_rx_ni); 3711 3712 static void net_tx_action(struct softirq_action *h) 3713 { 3714 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 3715 3716 if (sd->completion_queue) { 3717 struct sk_buff *clist; 3718 3719 local_irq_disable(); 3720 clist = sd->completion_queue; 3721 sd->completion_queue = NULL; 3722 local_irq_enable(); 3723 3724 while (clist) { 3725 struct sk_buff *skb = clist; 3726 clist = clist->next; 3727 3728 WARN_ON(atomic_read(&skb->users)); 3729 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED)) 3730 trace_consume_skb(skb); 3731 else 3732 trace_kfree_skb(skb, net_tx_action); 3733 3734 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) 3735 __kfree_skb(skb); 3736 else 3737 __kfree_skb_defer(skb); 3738 } 3739 3740 __kfree_skb_flush(); 3741 } 3742 3743 if (sd->output_queue) { 3744 struct Qdisc *head; 3745 3746 local_irq_disable(); 3747 head = sd->output_queue; 3748 sd->output_queue = NULL; 3749 sd->output_queue_tailp = &sd->output_queue; 3750 local_irq_enable(); 3751 3752 while (head) { 3753 struct Qdisc *q = head; 3754 spinlock_t *root_lock; 3755 3756 head = head->next_sched; 3757 3758 root_lock = qdisc_lock(q); 3759 spin_lock(root_lock); 3760 /* We need to make sure head->next_sched is read 3761 * before clearing __QDISC_STATE_SCHED 3762 */ 3763 smp_mb__before_atomic(); 3764 clear_bit(__QDISC_STATE_SCHED, &q->state); 3765 qdisc_run(q); 3766 spin_unlock(root_lock); 3767 } 3768 } 3769 } 3770 3771 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE) 3772 /* This hook is defined here for ATM LANE */ 3773 int (*br_fdb_test_addr_hook)(struct net_device *dev, 3774 unsigned char *addr) __read_mostly; 3775 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 3776 #endif 3777 3778 static inline struct sk_buff * 3779 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 3780 struct net_device *orig_dev) 3781 { 3782 #ifdef CONFIG_NET_CLS_ACT 3783 struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list); 3784 struct tcf_result cl_res; 3785 3786 /* If there's at least one ingress present somewhere (so 3787 * we get here via enabled static key), remaining devices 3788 * that are not configured with an ingress qdisc will bail 3789 * out here. 3790 */ 3791 if (!cl) 3792 return skb; 3793 if (*pt_prev) { 3794 *ret = deliver_skb(skb, *pt_prev, orig_dev); 3795 *pt_prev = NULL; 3796 } 3797 3798 qdisc_skb_cb(skb)->pkt_len = skb->len; 3799 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS); 3800 qdisc_bstats_cpu_update(cl->q, skb); 3801 3802 switch (tc_classify(skb, cl, &cl_res, false)) { 3803 case TC_ACT_OK: 3804 case TC_ACT_RECLASSIFY: 3805 skb->tc_index = TC_H_MIN(cl_res.classid); 3806 break; 3807 case TC_ACT_SHOT: 3808 qdisc_qstats_cpu_drop(cl->q); 3809 kfree_skb(skb); 3810 return NULL; 3811 case TC_ACT_STOLEN: 3812 case TC_ACT_QUEUED: 3813 consume_skb(skb); 3814 return NULL; 3815 case TC_ACT_REDIRECT: 3816 /* skb_mac_header check was done by cls/act_bpf, so 3817 * we can safely push the L2 header back before 3818 * redirecting to another netdev 3819 */ 3820 __skb_push(skb, skb->mac_len); 3821 skb_do_redirect(skb); 3822 return NULL; 3823 default: 3824 break; 3825 } 3826 #endif /* CONFIG_NET_CLS_ACT */ 3827 return skb; 3828 } 3829 3830 /** 3831 * netdev_is_rx_handler_busy - check if receive handler is registered 3832 * @dev: device to check 3833 * 3834 * Check if a receive handler is already registered for a given device. 3835 * Return true if there one. 3836 * 3837 * The caller must hold the rtnl_mutex. 3838 */ 3839 bool netdev_is_rx_handler_busy(struct net_device *dev) 3840 { 3841 ASSERT_RTNL(); 3842 return dev && rtnl_dereference(dev->rx_handler); 3843 } 3844 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy); 3845 3846 /** 3847 * netdev_rx_handler_register - register receive handler 3848 * @dev: device to register a handler for 3849 * @rx_handler: receive handler to register 3850 * @rx_handler_data: data pointer that is used by rx handler 3851 * 3852 * Register a receive handler for a device. This handler will then be 3853 * called from __netif_receive_skb. A negative errno code is returned 3854 * on a failure. 3855 * 3856 * The caller must hold the rtnl_mutex. 3857 * 3858 * For a general description of rx_handler, see enum rx_handler_result. 3859 */ 3860 int netdev_rx_handler_register(struct net_device *dev, 3861 rx_handler_func_t *rx_handler, 3862 void *rx_handler_data) 3863 { 3864 ASSERT_RTNL(); 3865 3866 if (dev->rx_handler) 3867 return -EBUSY; 3868 3869 /* Note: rx_handler_data must be set before rx_handler */ 3870 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 3871 rcu_assign_pointer(dev->rx_handler, rx_handler); 3872 3873 return 0; 3874 } 3875 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 3876 3877 /** 3878 * netdev_rx_handler_unregister - unregister receive handler 3879 * @dev: device to unregister a handler from 3880 * 3881 * Unregister a receive handler from a device. 3882 * 3883 * The caller must hold the rtnl_mutex. 3884 */ 3885 void netdev_rx_handler_unregister(struct net_device *dev) 3886 { 3887 3888 ASSERT_RTNL(); 3889 RCU_INIT_POINTER(dev->rx_handler, NULL); 3890 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 3891 * section has a guarantee to see a non NULL rx_handler_data 3892 * as well. 3893 */ 3894 synchronize_net(); 3895 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 3896 } 3897 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 3898 3899 /* 3900 * Limit the use of PFMEMALLOC reserves to those protocols that implement 3901 * the special handling of PFMEMALLOC skbs. 3902 */ 3903 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 3904 { 3905 switch (skb->protocol) { 3906 case htons(ETH_P_ARP): 3907 case htons(ETH_P_IP): 3908 case htons(ETH_P_IPV6): 3909 case htons(ETH_P_8021Q): 3910 case htons(ETH_P_8021AD): 3911 return true; 3912 default: 3913 return false; 3914 } 3915 } 3916 3917 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, 3918 int *ret, struct net_device *orig_dev) 3919 { 3920 #ifdef CONFIG_NETFILTER_INGRESS 3921 if (nf_hook_ingress_active(skb)) { 3922 int ingress_retval; 3923 3924 if (*pt_prev) { 3925 *ret = deliver_skb(skb, *pt_prev, orig_dev); 3926 *pt_prev = NULL; 3927 } 3928 3929 rcu_read_lock(); 3930 ingress_retval = nf_hook_ingress(skb); 3931 rcu_read_unlock(); 3932 return ingress_retval; 3933 } 3934 #endif /* CONFIG_NETFILTER_INGRESS */ 3935 return 0; 3936 } 3937 3938 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc) 3939 { 3940 struct packet_type *ptype, *pt_prev; 3941 rx_handler_func_t *rx_handler; 3942 struct net_device *orig_dev; 3943 bool deliver_exact = false; 3944 int ret = NET_RX_DROP; 3945 __be16 type; 3946 3947 net_timestamp_check(!netdev_tstamp_prequeue, skb); 3948 3949 trace_netif_receive_skb(skb); 3950 3951 orig_dev = skb->dev; 3952 3953 skb_reset_network_header(skb); 3954 if (!skb_transport_header_was_set(skb)) 3955 skb_reset_transport_header(skb); 3956 skb_reset_mac_len(skb); 3957 3958 pt_prev = NULL; 3959 3960 another_round: 3961 skb->skb_iif = skb->dev->ifindex; 3962 3963 __this_cpu_inc(softnet_data.processed); 3964 3965 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 3966 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 3967 skb = skb_vlan_untag(skb); 3968 if (unlikely(!skb)) 3969 goto out; 3970 } 3971 3972 #ifdef CONFIG_NET_CLS_ACT 3973 if (skb->tc_verd & TC_NCLS) { 3974 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 3975 goto ncls; 3976 } 3977 #endif 3978 3979 if (pfmemalloc) 3980 goto skip_taps; 3981 3982 list_for_each_entry_rcu(ptype, &ptype_all, list) { 3983 if (pt_prev) 3984 ret = deliver_skb(skb, pt_prev, orig_dev); 3985 pt_prev = ptype; 3986 } 3987 3988 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 3989 if (pt_prev) 3990 ret = deliver_skb(skb, pt_prev, orig_dev); 3991 pt_prev = ptype; 3992 } 3993 3994 skip_taps: 3995 #ifdef CONFIG_NET_INGRESS 3996 if (static_key_false(&ingress_needed)) { 3997 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev); 3998 if (!skb) 3999 goto out; 4000 4001 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) 4002 goto out; 4003 } 4004 #endif 4005 #ifdef CONFIG_NET_CLS_ACT 4006 skb->tc_verd = 0; 4007 ncls: 4008 #endif 4009 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 4010 goto drop; 4011 4012 if (skb_vlan_tag_present(skb)) { 4013 if (pt_prev) { 4014 ret = deliver_skb(skb, pt_prev, orig_dev); 4015 pt_prev = NULL; 4016 } 4017 if (vlan_do_receive(&skb)) 4018 goto another_round; 4019 else if (unlikely(!skb)) 4020 goto out; 4021 } 4022 4023 rx_handler = rcu_dereference(skb->dev->rx_handler); 4024 if (rx_handler) { 4025 if (pt_prev) { 4026 ret = deliver_skb(skb, pt_prev, orig_dev); 4027 pt_prev = NULL; 4028 } 4029 switch (rx_handler(&skb)) { 4030 case RX_HANDLER_CONSUMED: 4031 ret = NET_RX_SUCCESS; 4032 goto out; 4033 case RX_HANDLER_ANOTHER: 4034 goto another_round; 4035 case RX_HANDLER_EXACT: 4036 deliver_exact = true; 4037 case RX_HANDLER_PASS: 4038 break; 4039 default: 4040 BUG(); 4041 } 4042 } 4043 4044 if (unlikely(skb_vlan_tag_present(skb))) { 4045 if (skb_vlan_tag_get_id(skb)) 4046 skb->pkt_type = PACKET_OTHERHOST; 4047 /* Note: we might in the future use prio bits 4048 * and set skb->priority like in vlan_do_receive() 4049 * For the time being, just ignore Priority Code Point 4050 */ 4051 skb->vlan_tci = 0; 4052 } 4053 4054 type = skb->protocol; 4055 4056 /* deliver only exact match when indicated */ 4057 if (likely(!deliver_exact)) { 4058 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4059 &ptype_base[ntohs(type) & 4060 PTYPE_HASH_MASK]); 4061 } 4062 4063 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4064 &orig_dev->ptype_specific); 4065 4066 if (unlikely(skb->dev != orig_dev)) { 4067 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4068 &skb->dev->ptype_specific); 4069 } 4070 4071 if (pt_prev) { 4072 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 4073 goto drop; 4074 else 4075 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 4076 } else { 4077 drop: 4078 if (!deliver_exact) 4079 atomic_long_inc(&skb->dev->rx_dropped); 4080 else 4081 atomic_long_inc(&skb->dev->rx_nohandler); 4082 kfree_skb(skb); 4083 /* Jamal, now you will not able to escape explaining 4084 * me how you were going to use this. :-) 4085 */ 4086 ret = NET_RX_DROP; 4087 } 4088 4089 out: 4090 return ret; 4091 } 4092 4093 static int __netif_receive_skb(struct sk_buff *skb) 4094 { 4095 int ret; 4096 4097 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 4098 unsigned long pflags = current->flags; 4099 4100 /* 4101 * PFMEMALLOC skbs are special, they should 4102 * - be delivered to SOCK_MEMALLOC sockets only 4103 * - stay away from userspace 4104 * - have bounded memory usage 4105 * 4106 * Use PF_MEMALLOC as this saves us from propagating the allocation 4107 * context down to all allocation sites. 4108 */ 4109 current->flags |= PF_MEMALLOC; 4110 ret = __netif_receive_skb_core(skb, true); 4111 tsk_restore_flags(current, pflags, PF_MEMALLOC); 4112 } else 4113 ret = __netif_receive_skb_core(skb, false); 4114 4115 return ret; 4116 } 4117 4118 static int netif_receive_skb_internal(struct sk_buff *skb) 4119 { 4120 int ret; 4121 4122 net_timestamp_check(netdev_tstamp_prequeue, skb); 4123 4124 if (skb_defer_rx_timestamp(skb)) 4125 return NET_RX_SUCCESS; 4126 4127 rcu_read_lock(); 4128 4129 #ifdef CONFIG_RPS 4130 if (static_key_false(&rps_needed)) { 4131 struct rps_dev_flow voidflow, *rflow = &voidflow; 4132 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 4133 4134 if (cpu >= 0) { 4135 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 4136 rcu_read_unlock(); 4137 return ret; 4138 } 4139 } 4140 #endif 4141 ret = __netif_receive_skb(skb); 4142 rcu_read_unlock(); 4143 return ret; 4144 } 4145 4146 /** 4147 * netif_receive_skb - process receive buffer from network 4148 * @skb: buffer to process 4149 * 4150 * netif_receive_skb() is the main receive data processing function. 4151 * It always succeeds. The buffer may be dropped during processing 4152 * for congestion control or by the protocol layers. 4153 * 4154 * This function may only be called from softirq context and interrupts 4155 * should be enabled. 4156 * 4157 * Return values (usually ignored): 4158 * NET_RX_SUCCESS: no congestion 4159 * NET_RX_DROP: packet was dropped 4160 */ 4161 int netif_receive_skb(struct sk_buff *skb) 4162 { 4163 trace_netif_receive_skb_entry(skb); 4164 4165 return netif_receive_skb_internal(skb); 4166 } 4167 EXPORT_SYMBOL(netif_receive_skb); 4168 4169 DEFINE_PER_CPU(struct work_struct, flush_works); 4170 4171 /* Network device is going away, flush any packets still pending */ 4172 static void flush_backlog(struct work_struct *work) 4173 { 4174 struct sk_buff *skb, *tmp; 4175 struct softnet_data *sd; 4176 4177 local_bh_disable(); 4178 sd = this_cpu_ptr(&softnet_data); 4179 4180 local_irq_disable(); 4181 rps_lock(sd); 4182 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 4183 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 4184 __skb_unlink(skb, &sd->input_pkt_queue); 4185 kfree_skb(skb); 4186 input_queue_head_incr(sd); 4187 } 4188 } 4189 rps_unlock(sd); 4190 local_irq_enable(); 4191 4192 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 4193 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 4194 __skb_unlink(skb, &sd->process_queue); 4195 kfree_skb(skb); 4196 input_queue_head_incr(sd); 4197 } 4198 } 4199 local_bh_enable(); 4200 } 4201 4202 static void flush_all_backlogs(void) 4203 { 4204 unsigned int cpu; 4205 4206 get_online_cpus(); 4207 4208 for_each_online_cpu(cpu) 4209 queue_work_on(cpu, system_highpri_wq, 4210 per_cpu_ptr(&flush_works, cpu)); 4211 4212 for_each_online_cpu(cpu) 4213 flush_work(per_cpu_ptr(&flush_works, cpu)); 4214 4215 put_online_cpus(); 4216 } 4217 4218 static int napi_gro_complete(struct sk_buff *skb) 4219 { 4220 struct packet_offload *ptype; 4221 __be16 type = skb->protocol; 4222 struct list_head *head = &offload_base; 4223 int err = -ENOENT; 4224 4225 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb)); 4226 4227 if (NAPI_GRO_CB(skb)->count == 1) { 4228 skb_shinfo(skb)->gso_size = 0; 4229 goto out; 4230 } 4231 4232 rcu_read_lock(); 4233 list_for_each_entry_rcu(ptype, head, list) { 4234 if (ptype->type != type || !ptype->callbacks.gro_complete) 4235 continue; 4236 4237 err = ptype->callbacks.gro_complete(skb, 0); 4238 break; 4239 } 4240 rcu_read_unlock(); 4241 4242 if (err) { 4243 WARN_ON(&ptype->list == head); 4244 kfree_skb(skb); 4245 return NET_RX_SUCCESS; 4246 } 4247 4248 out: 4249 return netif_receive_skb_internal(skb); 4250 } 4251 4252 /* napi->gro_list contains packets ordered by age. 4253 * youngest packets at the head of it. 4254 * Complete skbs in reverse order to reduce latencies. 4255 */ 4256 void napi_gro_flush(struct napi_struct *napi, bool flush_old) 4257 { 4258 struct sk_buff *skb, *prev = NULL; 4259 4260 /* scan list and build reverse chain */ 4261 for (skb = napi->gro_list; skb != NULL; skb = skb->next) { 4262 skb->prev = prev; 4263 prev = skb; 4264 } 4265 4266 for (skb = prev; skb; skb = prev) { 4267 skb->next = NULL; 4268 4269 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies) 4270 return; 4271 4272 prev = skb->prev; 4273 napi_gro_complete(skb); 4274 napi->gro_count--; 4275 } 4276 4277 napi->gro_list = NULL; 4278 } 4279 EXPORT_SYMBOL(napi_gro_flush); 4280 4281 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb) 4282 { 4283 struct sk_buff *p; 4284 unsigned int maclen = skb->dev->hard_header_len; 4285 u32 hash = skb_get_hash_raw(skb); 4286 4287 for (p = napi->gro_list; p; p = p->next) { 4288 unsigned long diffs; 4289 4290 NAPI_GRO_CB(p)->flush = 0; 4291 4292 if (hash != skb_get_hash_raw(p)) { 4293 NAPI_GRO_CB(p)->same_flow = 0; 4294 continue; 4295 } 4296 4297 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 4298 diffs |= p->vlan_tci ^ skb->vlan_tci; 4299 diffs |= skb_metadata_dst_cmp(p, skb); 4300 if (maclen == ETH_HLEN) 4301 diffs |= compare_ether_header(skb_mac_header(p), 4302 skb_mac_header(skb)); 4303 else if (!diffs) 4304 diffs = memcmp(skb_mac_header(p), 4305 skb_mac_header(skb), 4306 maclen); 4307 NAPI_GRO_CB(p)->same_flow = !diffs; 4308 } 4309 } 4310 4311 static void skb_gro_reset_offset(struct sk_buff *skb) 4312 { 4313 const struct skb_shared_info *pinfo = skb_shinfo(skb); 4314 const skb_frag_t *frag0 = &pinfo->frags[0]; 4315 4316 NAPI_GRO_CB(skb)->data_offset = 0; 4317 NAPI_GRO_CB(skb)->frag0 = NULL; 4318 NAPI_GRO_CB(skb)->frag0_len = 0; 4319 4320 if (skb_mac_header(skb) == skb_tail_pointer(skb) && 4321 pinfo->nr_frags && 4322 !PageHighMem(skb_frag_page(frag0))) { 4323 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0); 4324 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0); 4325 } 4326 } 4327 4328 static void gro_pull_from_frag0(struct sk_buff *skb, int grow) 4329 { 4330 struct skb_shared_info *pinfo = skb_shinfo(skb); 4331 4332 BUG_ON(skb->end - skb->tail < grow); 4333 4334 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 4335 4336 skb->data_len -= grow; 4337 skb->tail += grow; 4338 4339 pinfo->frags[0].page_offset += grow; 4340 skb_frag_size_sub(&pinfo->frags[0], grow); 4341 4342 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) { 4343 skb_frag_unref(skb, 0); 4344 memmove(pinfo->frags, pinfo->frags + 1, 4345 --pinfo->nr_frags * sizeof(pinfo->frags[0])); 4346 } 4347 } 4348 4349 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 4350 { 4351 struct sk_buff **pp = NULL; 4352 struct packet_offload *ptype; 4353 __be16 type = skb->protocol; 4354 struct list_head *head = &offload_base; 4355 int same_flow; 4356 enum gro_result ret; 4357 int grow; 4358 4359 if (!(skb->dev->features & NETIF_F_GRO)) 4360 goto normal; 4361 4362 if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad) 4363 goto normal; 4364 4365 gro_list_prepare(napi, skb); 4366 4367 rcu_read_lock(); 4368 list_for_each_entry_rcu(ptype, head, list) { 4369 if (ptype->type != type || !ptype->callbacks.gro_receive) 4370 continue; 4371 4372 skb_set_network_header(skb, skb_gro_offset(skb)); 4373 skb_reset_mac_len(skb); 4374 NAPI_GRO_CB(skb)->same_flow = 0; 4375 NAPI_GRO_CB(skb)->flush = 0; 4376 NAPI_GRO_CB(skb)->free = 0; 4377 NAPI_GRO_CB(skb)->encap_mark = 0; 4378 NAPI_GRO_CB(skb)->is_fou = 0; 4379 NAPI_GRO_CB(skb)->is_atomic = 1; 4380 NAPI_GRO_CB(skb)->gro_remcsum_start = 0; 4381 4382 /* Setup for GRO checksum validation */ 4383 switch (skb->ip_summed) { 4384 case CHECKSUM_COMPLETE: 4385 NAPI_GRO_CB(skb)->csum = skb->csum; 4386 NAPI_GRO_CB(skb)->csum_valid = 1; 4387 NAPI_GRO_CB(skb)->csum_cnt = 0; 4388 break; 4389 case CHECKSUM_UNNECESSARY: 4390 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1; 4391 NAPI_GRO_CB(skb)->csum_valid = 0; 4392 break; 4393 default: 4394 NAPI_GRO_CB(skb)->csum_cnt = 0; 4395 NAPI_GRO_CB(skb)->csum_valid = 0; 4396 } 4397 4398 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb); 4399 break; 4400 } 4401 rcu_read_unlock(); 4402 4403 if (&ptype->list == head) 4404 goto normal; 4405 4406 same_flow = NAPI_GRO_CB(skb)->same_flow; 4407 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 4408 4409 if (pp) { 4410 struct sk_buff *nskb = *pp; 4411 4412 *pp = nskb->next; 4413 nskb->next = NULL; 4414 napi_gro_complete(nskb); 4415 napi->gro_count--; 4416 } 4417 4418 if (same_flow) 4419 goto ok; 4420 4421 if (NAPI_GRO_CB(skb)->flush) 4422 goto normal; 4423 4424 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) { 4425 struct sk_buff *nskb = napi->gro_list; 4426 4427 /* locate the end of the list to select the 'oldest' flow */ 4428 while (nskb->next) { 4429 pp = &nskb->next; 4430 nskb = *pp; 4431 } 4432 *pp = NULL; 4433 nskb->next = NULL; 4434 napi_gro_complete(nskb); 4435 } else { 4436 napi->gro_count++; 4437 } 4438 NAPI_GRO_CB(skb)->count = 1; 4439 NAPI_GRO_CB(skb)->age = jiffies; 4440 NAPI_GRO_CB(skb)->last = skb; 4441 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 4442 skb->next = napi->gro_list; 4443 napi->gro_list = skb; 4444 ret = GRO_HELD; 4445 4446 pull: 4447 grow = skb_gro_offset(skb) - skb_headlen(skb); 4448 if (grow > 0) 4449 gro_pull_from_frag0(skb, grow); 4450 ok: 4451 return ret; 4452 4453 normal: 4454 ret = GRO_NORMAL; 4455 goto pull; 4456 } 4457 4458 struct packet_offload *gro_find_receive_by_type(__be16 type) 4459 { 4460 struct list_head *offload_head = &offload_base; 4461 struct packet_offload *ptype; 4462 4463 list_for_each_entry_rcu(ptype, offload_head, list) { 4464 if (ptype->type != type || !ptype->callbacks.gro_receive) 4465 continue; 4466 return ptype; 4467 } 4468 return NULL; 4469 } 4470 EXPORT_SYMBOL(gro_find_receive_by_type); 4471 4472 struct packet_offload *gro_find_complete_by_type(__be16 type) 4473 { 4474 struct list_head *offload_head = &offload_base; 4475 struct packet_offload *ptype; 4476 4477 list_for_each_entry_rcu(ptype, offload_head, list) { 4478 if (ptype->type != type || !ptype->callbacks.gro_complete) 4479 continue; 4480 return ptype; 4481 } 4482 return NULL; 4483 } 4484 EXPORT_SYMBOL(gro_find_complete_by_type); 4485 4486 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 4487 { 4488 switch (ret) { 4489 case GRO_NORMAL: 4490 if (netif_receive_skb_internal(skb)) 4491 ret = GRO_DROP; 4492 break; 4493 4494 case GRO_DROP: 4495 kfree_skb(skb); 4496 break; 4497 4498 case GRO_MERGED_FREE: 4499 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) { 4500 skb_dst_drop(skb); 4501 kmem_cache_free(skbuff_head_cache, skb); 4502 } else { 4503 __kfree_skb(skb); 4504 } 4505 break; 4506 4507 case GRO_HELD: 4508 case GRO_MERGED: 4509 break; 4510 } 4511 4512 return ret; 4513 } 4514 4515 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 4516 { 4517 skb_mark_napi_id(skb, napi); 4518 trace_napi_gro_receive_entry(skb); 4519 4520 skb_gro_reset_offset(skb); 4521 4522 return napi_skb_finish(dev_gro_receive(napi, skb), skb); 4523 } 4524 EXPORT_SYMBOL(napi_gro_receive); 4525 4526 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 4527 { 4528 if (unlikely(skb->pfmemalloc)) { 4529 consume_skb(skb); 4530 return; 4531 } 4532 __skb_pull(skb, skb_headlen(skb)); 4533 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 4534 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 4535 skb->vlan_tci = 0; 4536 skb->dev = napi->dev; 4537 skb->skb_iif = 0; 4538 skb->encapsulation = 0; 4539 skb_shinfo(skb)->gso_type = 0; 4540 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 4541 4542 napi->skb = skb; 4543 } 4544 4545 struct sk_buff *napi_get_frags(struct napi_struct *napi) 4546 { 4547 struct sk_buff *skb = napi->skb; 4548 4549 if (!skb) { 4550 skb = napi_alloc_skb(napi, GRO_MAX_HEAD); 4551 if (skb) { 4552 napi->skb = skb; 4553 skb_mark_napi_id(skb, napi); 4554 } 4555 } 4556 return skb; 4557 } 4558 EXPORT_SYMBOL(napi_get_frags); 4559 4560 static gro_result_t napi_frags_finish(struct napi_struct *napi, 4561 struct sk_buff *skb, 4562 gro_result_t ret) 4563 { 4564 switch (ret) { 4565 case GRO_NORMAL: 4566 case GRO_HELD: 4567 __skb_push(skb, ETH_HLEN); 4568 skb->protocol = eth_type_trans(skb, skb->dev); 4569 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb)) 4570 ret = GRO_DROP; 4571 break; 4572 4573 case GRO_DROP: 4574 case GRO_MERGED_FREE: 4575 napi_reuse_skb(napi, skb); 4576 break; 4577 4578 case GRO_MERGED: 4579 break; 4580 } 4581 4582 return ret; 4583 } 4584 4585 /* Upper GRO stack assumes network header starts at gro_offset=0 4586 * Drivers could call both napi_gro_frags() and napi_gro_receive() 4587 * We copy ethernet header into skb->data to have a common layout. 4588 */ 4589 static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 4590 { 4591 struct sk_buff *skb = napi->skb; 4592 const struct ethhdr *eth; 4593 unsigned int hlen = sizeof(*eth); 4594 4595 napi->skb = NULL; 4596 4597 skb_reset_mac_header(skb); 4598 skb_gro_reset_offset(skb); 4599 4600 eth = skb_gro_header_fast(skb, 0); 4601 if (unlikely(skb_gro_header_hard(skb, hlen))) { 4602 eth = skb_gro_header_slow(skb, hlen, 0); 4603 if (unlikely(!eth)) { 4604 net_warn_ratelimited("%s: dropping impossible skb from %s\n", 4605 __func__, napi->dev->name); 4606 napi_reuse_skb(napi, skb); 4607 return NULL; 4608 } 4609 } else { 4610 gro_pull_from_frag0(skb, hlen); 4611 NAPI_GRO_CB(skb)->frag0 += hlen; 4612 NAPI_GRO_CB(skb)->frag0_len -= hlen; 4613 } 4614 __skb_pull(skb, hlen); 4615 4616 /* 4617 * This works because the only protocols we care about don't require 4618 * special handling. 4619 * We'll fix it up properly in napi_frags_finish() 4620 */ 4621 skb->protocol = eth->h_proto; 4622 4623 return skb; 4624 } 4625 4626 gro_result_t napi_gro_frags(struct napi_struct *napi) 4627 { 4628 struct sk_buff *skb = napi_frags_skb(napi); 4629 4630 if (!skb) 4631 return GRO_DROP; 4632 4633 trace_napi_gro_frags_entry(skb); 4634 4635 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb)); 4636 } 4637 EXPORT_SYMBOL(napi_gro_frags); 4638 4639 /* Compute the checksum from gro_offset and return the folded value 4640 * after adding in any pseudo checksum. 4641 */ 4642 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb) 4643 { 4644 __wsum wsum; 4645 __sum16 sum; 4646 4647 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0); 4648 4649 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */ 4650 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum)); 4651 if (likely(!sum)) { 4652 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 4653 !skb->csum_complete_sw) 4654 netdev_rx_csum_fault(skb->dev); 4655 } 4656 4657 NAPI_GRO_CB(skb)->csum = wsum; 4658 NAPI_GRO_CB(skb)->csum_valid = 1; 4659 4660 return sum; 4661 } 4662 EXPORT_SYMBOL(__skb_gro_checksum_complete); 4663 4664 /* 4665 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 4666 * Note: called with local irq disabled, but exits with local irq enabled. 4667 */ 4668 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 4669 { 4670 #ifdef CONFIG_RPS 4671 struct softnet_data *remsd = sd->rps_ipi_list; 4672 4673 if (remsd) { 4674 sd->rps_ipi_list = NULL; 4675 4676 local_irq_enable(); 4677 4678 /* Send pending IPI's to kick RPS processing on remote cpus. */ 4679 while (remsd) { 4680 struct softnet_data *next = remsd->rps_ipi_next; 4681 4682 if (cpu_online(remsd->cpu)) 4683 smp_call_function_single_async(remsd->cpu, 4684 &remsd->csd); 4685 remsd = next; 4686 } 4687 } else 4688 #endif 4689 local_irq_enable(); 4690 } 4691 4692 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 4693 { 4694 #ifdef CONFIG_RPS 4695 return sd->rps_ipi_list != NULL; 4696 #else 4697 return false; 4698 #endif 4699 } 4700 4701 static int process_backlog(struct napi_struct *napi, int quota) 4702 { 4703 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 4704 bool again = true; 4705 int work = 0; 4706 4707 /* Check if we have pending ipi, its better to send them now, 4708 * not waiting net_rx_action() end. 4709 */ 4710 if (sd_has_rps_ipi_waiting(sd)) { 4711 local_irq_disable(); 4712 net_rps_action_and_irq_enable(sd); 4713 } 4714 4715 napi->weight = weight_p; 4716 while (again) { 4717 struct sk_buff *skb; 4718 4719 while ((skb = __skb_dequeue(&sd->process_queue))) { 4720 rcu_read_lock(); 4721 __netif_receive_skb(skb); 4722 rcu_read_unlock(); 4723 input_queue_head_incr(sd); 4724 if (++work >= quota) 4725 return work; 4726 4727 } 4728 4729 local_irq_disable(); 4730 rps_lock(sd); 4731 if (skb_queue_empty(&sd->input_pkt_queue)) { 4732 /* 4733 * Inline a custom version of __napi_complete(). 4734 * only current cpu owns and manipulates this napi, 4735 * and NAPI_STATE_SCHED is the only possible flag set 4736 * on backlog. 4737 * We can use a plain write instead of clear_bit(), 4738 * and we dont need an smp_mb() memory barrier. 4739 */ 4740 napi->state = 0; 4741 again = false; 4742 } else { 4743 skb_queue_splice_tail_init(&sd->input_pkt_queue, 4744 &sd->process_queue); 4745 } 4746 rps_unlock(sd); 4747 local_irq_enable(); 4748 } 4749 4750 return work; 4751 } 4752 4753 /** 4754 * __napi_schedule - schedule for receive 4755 * @n: entry to schedule 4756 * 4757 * The entry's receive function will be scheduled to run. 4758 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 4759 */ 4760 void __napi_schedule(struct napi_struct *n) 4761 { 4762 unsigned long flags; 4763 4764 local_irq_save(flags); 4765 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 4766 local_irq_restore(flags); 4767 } 4768 EXPORT_SYMBOL(__napi_schedule); 4769 4770 /** 4771 * __napi_schedule_irqoff - schedule for receive 4772 * @n: entry to schedule 4773 * 4774 * Variant of __napi_schedule() assuming hard irqs are masked 4775 */ 4776 void __napi_schedule_irqoff(struct napi_struct *n) 4777 { 4778 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 4779 } 4780 EXPORT_SYMBOL(__napi_schedule_irqoff); 4781 4782 void __napi_complete(struct napi_struct *n) 4783 { 4784 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 4785 4786 list_del_init(&n->poll_list); 4787 smp_mb__before_atomic(); 4788 clear_bit(NAPI_STATE_SCHED, &n->state); 4789 } 4790 EXPORT_SYMBOL(__napi_complete); 4791 4792 void napi_complete_done(struct napi_struct *n, int work_done) 4793 { 4794 unsigned long flags; 4795 4796 /* 4797 * don't let napi dequeue from the cpu poll list 4798 * just in case its running on a different cpu 4799 */ 4800 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state))) 4801 return; 4802 4803 if (n->gro_list) { 4804 unsigned long timeout = 0; 4805 4806 if (work_done) 4807 timeout = n->dev->gro_flush_timeout; 4808 4809 if (timeout) 4810 hrtimer_start(&n->timer, ns_to_ktime(timeout), 4811 HRTIMER_MODE_REL_PINNED); 4812 else 4813 napi_gro_flush(n, false); 4814 } 4815 if (likely(list_empty(&n->poll_list))) { 4816 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state)); 4817 } else { 4818 /* If n->poll_list is not empty, we need to mask irqs */ 4819 local_irq_save(flags); 4820 __napi_complete(n); 4821 local_irq_restore(flags); 4822 } 4823 } 4824 EXPORT_SYMBOL(napi_complete_done); 4825 4826 /* must be called under rcu_read_lock(), as we dont take a reference */ 4827 static struct napi_struct *napi_by_id(unsigned int napi_id) 4828 { 4829 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 4830 struct napi_struct *napi; 4831 4832 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 4833 if (napi->napi_id == napi_id) 4834 return napi; 4835 4836 return NULL; 4837 } 4838 4839 #if defined(CONFIG_NET_RX_BUSY_POLL) 4840 #define BUSY_POLL_BUDGET 8 4841 bool sk_busy_loop(struct sock *sk, int nonblock) 4842 { 4843 unsigned long end_time = !nonblock ? sk_busy_loop_end_time(sk) : 0; 4844 int (*busy_poll)(struct napi_struct *dev); 4845 struct napi_struct *napi; 4846 int rc = false; 4847 4848 rcu_read_lock(); 4849 4850 napi = napi_by_id(sk->sk_napi_id); 4851 if (!napi) 4852 goto out; 4853 4854 /* Note: ndo_busy_poll method is optional in linux-4.5 */ 4855 busy_poll = napi->dev->netdev_ops->ndo_busy_poll; 4856 4857 do { 4858 rc = 0; 4859 local_bh_disable(); 4860 if (busy_poll) { 4861 rc = busy_poll(napi); 4862 } else if (napi_schedule_prep(napi)) { 4863 void *have = netpoll_poll_lock(napi); 4864 4865 if (test_bit(NAPI_STATE_SCHED, &napi->state)) { 4866 rc = napi->poll(napi, BUSY_POLL_BUDGET); 4867 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET); 4868 if (rc == BUSY_POLL_BUDGET) { 4869 napi_complete_done(napi, rc); 4870 napi_schedule(napi); 4871 } 4872 } 4873 netpoll_poll_unlock(have); 4874 } 4875 if (rc > 0) 4876 __NET_ADD_STATS(sock_net(sk), 4877 LINUX_MIB_BUSYPOLLRXPACKETS, rc); 4878 local_bh_enable(); 4879 4880 if (rc == LL_FLUSH_FAILED) 4881 break; /* permanent failure */ 4882 4883 cpu_relax(); 4884 } while (!nonblock && skb_queue_empty(&sk->sk_receive_queue) && 4885 !need_resched() && !busy_loop_timeout(end_time)); 4886 4887 rc = !skb_queue_empty(&sk->sk_receive_queue); 4888 out: 4889 rcu_read_unlock(); 4890 return rc; 4891 } 4892 EXPORT_SYMBOL(sk_busy_loop); 4893 4894 #endif /* CONFIG_NET_RX_BUSY_POLL */ 4895 4896 void napi_hash_add(struct napi_struct *napi) 4897 { 4898 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) || 4899 test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) 4900 return; 4901 4902 spin_lock(&napi_hash_lock); 4903 4904 /* 0..NR_CPUS+1 range is reserved for sender_cpu use */ 4905 do { 4906 if (unlikely(++napi_gen_id < NR_CPUS + 1)) 4907 napi_gen_id = NR_CPUS + 1; 4908 } while (napi_by_id(napi_gen_id)); 4909 napi->napi_id = napi_gen_id; 4910 4911 hlist_add_head_rcu(&napi->napi_hash_node, 4912 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 4913 4914 spin_unlock(&napi_hash_lock); 4915 } 4916 EXPORT_SYMBOL_GPL(napi_hash_add); 4917 4918 /* Warning : caller is responsible to make sure rcu grace period 4919 * is respected before freeing memory containing @napi 4920 */ 4921 bool napi_hash_del(struct napi_struct *napi) 4922 { 4923 bool rcu_sync_needed = false; 4924 4925 spin_lock(&napi_hash_lock); 4926 4927 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) { 4928 rcu_sync_needed = true; 4929 hlist_del_rcu(&napi->napi_hash_node); 4930 } 4931 spin_unlock(&napi_hash_lock); 4932 return rcu_sync_needed; 4933 } 4934 EXPORT_SYMBOL_GPL(napi_hash_del); 4935 4936 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 4937 { 4938 struct napi_struct *napi; 4939 4940 napi = container_of(timer, struct napi_struct, timer); 4941 if (napi->gro_list) 4942 napi_schedule(napi); 4943 4944 return HRTIMER_NORESTART; 4945 } 4946 4947 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 4948 int (*poll)(struct napi_struct *, int), int weight) 4949 { 4950 INIT_LIST_HEAD(&napi->poll_list); 4951 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 4952 napi->timer.function = napi_watchdog; 4953 napi->gro_count = 0; 4954 napi->gro_list = NULL; 4955 napi->skb = NULL; 4956 napi->poll = poll; 4957 if (weight > NAPI_POLL_WEIGHT) 4958 pr_err_once("netif_napi_add() called with weight %d on device %s\n", 4959 weight, dev->name); 4960 napi->weight = weight; 4961 list_add(&napi->dev_list, &dev->napi_list); 4962 napi->dev = dev; 4963 #ifdef CONFIG_NETPOLL 4964 spin_lock_init(&napi->poll_lock); 4965 napi->poll_owner = -1; 4966 #endif 4967 set_bit(NAPI_STATE_SCHED, &napi->state); 4968 napi_hash_add(napi); 4969 } 4970 EXPORT_SYMBOL(netif_napi_add); 4971 4972 void napi_disable(struct napi_struct *n) 4973 { 4974 might_sleep(); 4975 set_bit(NAPI_STATE_DISABLE, &n->state); 4976 4977 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state)) 4978 msleep(1); 4979 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state)) 4980 msleep(1); 4981 4982 hrtimer_cancel(&n->timer); 4983 4984 clear_bit(NAPI_STATE_DISABLE, &n->state); 4985 } 4986 EXPORT_SYMBOL(napi_disable); 4987 4988 /* Must be called in process context */ 4989 void netif_napi_del(struct napi_struct *napi) 4990 { 4991 might_sleep(); 4992 if (napi_hash_del(napi)) 4993 synchronize_net(); 4994 list_del_init(&napi->dev_list); 4995 napi_free_frags(napi); 4996 4997 kfree_skb_list(napi->gro_list); 4998 napi->gro_list = NULL; 4999 napi->gro_count = 0; 5000 } 5001 EXPORT_SYMBOL(netif_napi_del); 5002 5003 static int napi_poll(struct napi_struct *n, struct list_head *repoll) 5004 { 5005 void *have; 5006 int work, weight; 5007 5008 list_del_init(&n->poll_list); 5009 5010 have = netpoll_poll_lock(n); 5011 5012 weight = n->weight; 5013 5014 /* This NAPI_STATE_SCHED test is for avoiding a race 5015 * with netpoll's poll_napi(). Only the entity which 5016 * obtains the lock and sees NAPI_STATE_SCHED set will 5017 * actually make the ->poll() call. Therefore we avoid 5018 * accidentally calling ->poll() when NAPI is not scheduled. 5019 */ 5020 work = 0; 5021 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 5022 work = n->poll(n, weight); 5023 trace_napi_poll(n, work, weight); 5024 } 5025 5026 WARN_ON_ONCE(work > weight); 5027 5028 if (likely(work < weight)) 5029 goto out_unlock; 5030 5031 /* Drivers must not modify the NAPI state if they 5032 * consume the entire weight. In such cases this code 5033 * still "owns" the NAPI instance and therefore can 5034 * move the instance around on the list at-will. 5035 */ 5036 if (unlikely(napi_disable_pending(n))) { 5037 napi_complete(n); 5038 goto out_unlock; 5039 } 5040 5041 if (n->gro_list) { 5042 /* flush too old packets 5043 * If HZ < 1000, flush all packets. 5044 */ 5045 napi_gro_flush(n, HZ >= 1000); 5046 } 5047 5048 /* Some drivers may have called napi_schedule 5049 * prior to exhausting their budget. 5050 */ 5051 if (unlikely(!list_empty(&n->poll_list))) { 5052 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 5053 n->dev ? n->dev->name : "backlog"); 5054 goto out_unlock; 5055 } 5056 5057 list_add_tail(&n->poll_list, repoll); 5058 5059 out_unlock: 5060 netpoll_poll_unlock(have); 5061 5062 return work; 5063 } 5064 5065 static void net_rx_action(struct softirq_action *h) 5066 { 5067 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 5068 unsigned long time_limit = jiffies + 2; 5069 int budget = netdev_budget; 5070 LIST_HEAD(list); 5071 LIST_HEAD(repoll); 5072 5073 local_irq_disable(); 5074 list_splice_init(&sd->poll_list, &list); 5075 local_irq_enable(); 5076 5077 for (;;) { 5078 struct napi_struct *n; 5079 5080 if (list_empty(&list)) { 5081 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll)) 5082 return; 5083 break; 5084 } 5085 5086 n = list_first_entry(&list, struct napi_struct, poll_list); 5087 budget -= napi_poll(n, &repoll); 5088 5089 /* If softirq window is exhausted then punt. 5090 * Allow this to run for 2 jiffies since which will allow 5091 * an average latency of 1.5/HZ. 5092 */ 5093 if (unlikely(budget <= 0 || 5094 time_after_eq(jiffies, time_limit))) { 5095 sd->time_squeeze++; 5096 break; 5097 } 5098 } 5099 5100 __kfree_skb_flush(); 5101 local_irq_disable(); 5102 5103 list_splice_tail_init(&sd->poll_list, &list); 5104 list_splice_tail(&repoll, &list); 5105 list_splice(&list, &sd->poll_list); 5106 if (!list_empty(&sd->poll_list)) 5107 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 5108 5109 net_rps_action_and_irq_enable(sd); 5110 } 5111 5112 struct netdev_adjacent { 5113 struct net_device *dev; 5114 5115 /* upper master flag, there can only be one master device per list */ 5116 bool master; 5117 5118 /* counter for the number of times this device was added to us */ 5119 u16 ref_nr; 5120 5121 /* private field for the users */ 5122 void *private; 5123 5124 struct list_head list; 5125 struct rcu_head rcu; 5126 }; 5127 5128 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, 5129 struct list_head *adj_list) 5130 { 5131 struct netdev_adjacent *adj; 5132 5133 list_for_each_entry(adj, adj_list, list) { 5134 if (adj->dev == adj_dev) 5135 return adj; 5136 } 5137 return NULL; 5138 } 5139 5140 /** 5141 * netdev_has_upper_dev - Check if device is linked to an upper device 5142 * @dev: device 5143 * @upper_dev: upper device to check 5144 * 5145 * Find out if a device is linked to specified upper device and return true 5146 * in case it is. Note that this checks only immediate upper device, 5147 * not through a complete stack of devices. The caller must hold the RTNL lock. 5148 */ 5149 bool netdev_has_upper_dev(struct net_device *dev, 5150 struct net_device *upper_dev) 5151 { 5152 ASSERT_RTNL(); 5153 5154 return __netdev_find_adj(upper_dev, &dev->all_adj_list.upper); 5155 } 5156 EXPORT_SYMBOL(netdev_has_upper_dev); 5157 5158 /** 5159 * netdev_has_any_upper_dev - Check if device is linked to some device 5160 * @dev: device 5161 * 5162 * Find out if a device is linked to an upper device and return true in case 5163 * it is. The caller must hold the RTNL lock. 5164 */ 5165 static bool netdev_has_any_upper_dev(struct net_device *dev) 5166 { 5167 ASSERT_RTNL(); 5168 5169 return !list_empty(&dev->all_adj_list.upper); 5170 } 5171 5172 /** 5173 * netdev_master_upper_dev_get - Get master upper device 5174 * @dev: device 5175 * 5176 * Find a master upper device and return pointer to it or NULL in case 5177 * it's not there. The caller must hold the RTNL lock. 5178 */ 5179 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 5180 { 5181 struct netdev_adjacent *upper; 5182 5183 ASSERT_RTNL(); 5184 5185 if (list_empty(&dev->adj_list.upper)) 5186 return NULL; 5187 5188 upper = list_first_entry(&dev->adj_list.upper, 5189 struct netdev_adjacent, list); 5190 if (likely(upper->master)) 5191 return upper->dev; 5192 return NULL; 5193 } 5194 EXPORT_SYMBOL(netdev_master_upper_dev_get); 5195 5196 void *netdev_adjacent_get_private(struct list_head *adj_list) 5197 { 5198 struct netdev_adjacent *adj; 5199 5200 adj = list_entry(adj_list, struct netdev_adjacent, list); 5201 5202 return adj->private; 5203 } 5204 EXPORT_SYMBOL(netdev_adjacent_get_private); 5205 5206 /** 5207 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 5208 * @dev: device 5209 * @iter: list_head ** of the current position 5210 * 5211 * Gets the next device from the dev's upper list, starting from iter 5212 * position. The caller must hold RCU read lock. 5213 */ 5214 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 5215 struct list_head **iter) 5216 { 5217 struct netdev_adjacent *upper; 5218 5219 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 5220 5221 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5222 5223 if (&upper->list == &dev->adj_list.upper) 5224 return NULL; 5225 5226 *iter = &upper->list; 5227 5228 return upper->dev; 5229 } 5230 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 5231 5232 /** 5233 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list 5234 * @dev: device 5235 * @iter: list_head ** of the current position 5236 * 5237 * Gets the next device from the dev's upper list, starting from iter 5238 * position. The caller must hold RCU read lock. 5239 */ 5240 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev, 5241 struct list_head **iter) 5242 { 5243 struct netdev_adjacent *upper; 5244 5245 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 5246 5247 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5248 5249 if (&upper->list == &dev->all_adj_list.upper) 5250 return NULL; 5251 5252 *iter = &upper->list; 5253 5254 return upper->dev; 5255 } 5256 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu); 5257 5258 /** 5259 * netdev_lower_get_next_private - Get the next ->private from the 5260 * lower neighbour list 5261 * @dev: device 5262 * @iter: list_head ** of the current position 5263 * 5264 * Gets the next netdev_adjacent->private from the dev's lower neighbour 5265 * list, starting from iter position. The caller must hold either hold the 5266 * RTNL lock or its own locking that guarantees that the neighbour lower 5267 * list will remain unchanged. 5268 */ 5269 void *netdev_lower_get_next_private(struct net_device *dev, 5270 struct list_head **iter) 5271 { 5272 struct netdev_adjacent *lower; 5273 5274 lower = list_entry(*iter, struct netdev_adjacent, list); 5275 5276 if (&lower->list == &dev->adj_list.lower) 5277 return NULL; 5278 5279 *iter = lower->list.next; 5280 5281 return lower->private; 5282 } 5283 EXPORT_SYMBOL(netdev_lower_get_next_private); 5284 5285 /** 5286 * netdev_lower_get_next_private_rcu - Get the next ->private from the 5287 * lower neighbour list, RCU 5288 * variant 5289 * @dev: device 5290 * @iter: list_head ** of the current position 5291 * 5292 * Gets the next netdev_adjacent->private from the dev's lower neighbour 5293 * list, starting from iter position. The caller must hold RCU read lock. 5294 */ 5295 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 5296 struct list_head **iter) 5297 { 5298 struct netdev_adjacent *lower; 5299 5300 WARN_ON_ONCE(!rcu_read_lock_held()); 5301 5302 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5303 5304 if (&lower->list == &dev->adj_list.lower) 5305 return NULL; 5306 5307 *iter = &lower->list; 5308 5309 return lower->private; 5310 } 5311 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 5312 5313 /** 5314 * netdev_lower_get_next - Get the next device from the lower neighbour 5315 * list 5316 * @dev: device 5317 * @iter: list_head ** of the current position 5318 * 5319 * Gets the next netdev_adjacent from the dev's lower neighbour 5320 * list, starting from iter position. The caller must hold RTNL lock or 5321 * its own locking that guarantees that the neighbour lower 5322 * list will remain unchanged. 5323 */ 5324 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 5325 { 5326 struct netdev_adjacent *lower; 5327 5328 lower = list_entry(*iter, struct netdev_adjacent, list); 5329 5330 if (&lower->list == &dev->adj_list.lower) 5331 return NULL; 5332 5333 *iter = lower->list.next; 5334 5335 return lower->dev; 5336 } 5337 EXPORT_SYMBOL(netdev_lower_get_next); 5338 5339 /** 5340 * netdev_all_lower_get_next - Get the next device from all lower neighbour list 5341 * @dev: device 5342 * @iter: list_head ** of the current position 5343 * 5344 * Gets the next netdev_adjacent from the dev's all lower neighbour 5345 * list, starting from iter position. The caller must hold RTNL lock or 5346 * its own locking that guarantees that the neighbour all lower 5347 * list will remain unchanged. 5348 */ 5349 struct net_device *netdev_all_lower_get_next(struct net_device *dev, struct list_head **iter) 5350 { 5351 struct netdev_adjacent *lower; 5352 5353 lower = list_entry(*iter, struct netdev_adjacent, list); 5354 5355 if (&lower->list == &dev->all_adj_list.lower) 5356 return NULL; 5357 5358 *iter = lower->list.next; 5359 5360 return lower->dev; 5361 } 5362 EXPORT_SYMBOL(netdev_all_lower_get_next); 5363 5364 /** 5365 * netdev_all_lower_get_next_rcu - Get the next device from all 5366 * lower neighbour list, RCU variant 5367 * @dev: device 5368 * @iter: list_head ** of the current position 5369 * 5370 * Gets the next netdev_adjacent from the dev's all lower neighbour 5371 * list, starting from iter position. The caller must hold RCU read lock. 5372 */ 5373 struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev, 5374 struct list_head **iter) 5375 { 5376 struct netdev_adjacent *lower; 5377 5378 lower = list_first_or_null_rcu(&dev->all_adj_list.lower, 5379 struct netdev_adjacent, list); 5380 5381 return lower ? lower->dev : NULL; 5382 } 5383 EXPORT_SYMBOL(netdev_all_lower_get_next_rcu); 5384 5385 /** 5386 * netdev_lower_get_first_private_rcu - Get the first ->private from the 5387 * lower neighbour list, RCU 5388 * variant 5389 * @dev: device 5390 * 5391 * Gets the first netdev_adjacent->private from the dev's lower neighbour 5392 * list. The caller must hold RCU read lock. 5393 */ 5394 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 5395 { 5396 struct netdev_adjacent *lower; 5397 5398 lower = list_first_or_null_rcu(&dev->adj_list.lower, 5399 struct netdev_adjacent, list); 5400 if (lower) 5401 return lower->private; 5402 return NULL; 5403 } 5404 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 5405 5406 /** 5407 * netdev_master_upper_dev_get_rcu - Get master upper device 5408 * @dev: device 5409 * 5410 * Find a master upper device and return pointer to it or NULL in case 5411 * it's not there. The caller must hold the RCU read lock. 5412 */ 5413 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 5414 { 5415 struct netdev_adjacent *upper; 5416 5417 upper = list_first_or_null_rcu(&dev->adj_list.upper, 5418 struct netdev_adjacent, list); 5419 if (upper && likely(upper->master)) 5420 return upper->dev; 5421 return NULL; 5422 } 5423 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 5424 5425 static int netdev_adjacent_sysfs_add(struct net_device *dev, 5426 struct net_device *adj_dev, 5427 struct list_head *dev_list) 5428 { 5429 char linkname[IFNAMSIZ+7]; 5430 sprintf(linkname, dev_list == &dev->adj_list.upper ? 5431 "upper_%s" : "lower_%s", adj_dev->name); 5432 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 5433 linkname); 5434 } 5435 static void netdev_adjacent_sysfs_del(struct net_device *dev, 5436 char *name, 5437 struct list_head *dev_list) 5438 { 5439 char linkname[IFNAMSIZ+7]; 5440 sprintf(linkname, dev_list == &dev->adj_list.upper ? 5441 "upper_%s" : "lower_%s", name); 5442 sysfs_remove_link(&(dev->dev.kobj), linkname); 5443 } 5444 5445 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 5446 struct net_device *adj_dev, 5447 struct list_head *dev_list) 5448 { 5449 return (dev_list == &dev->adj_list.upper || 5450 dev_list == &dev->adj_list.lower) && 5451 net_eq(dev_net(dev), dev_net(adj_dev)); 5452 } 5453 5454 static int __netdev_adjacent_dev_insert(struct net_device *dev, 5455 struct net_device *adj_dev, 5456 u16 ref_nr, 5457 struct list_head *dev_list, 5458 void *private, bool master) 5459 { 5460 struct netdev_adjacent *adj; 5461 int ret; 5462 5463 adj = __netdev_find_adj(adj_dev, dev_list); 5464 5465 if (adj) { 5466 adj->ref_nr += ref_nr; 5467 return 0; 5468 } 5469 5470 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 5471 if (!adj) 5472 return -ENOMEM; 5473 5474 adj->dev = adj_dev; 5475 adj->master = master; 5476 adj->ref_nr = ref_nr; 5477 adj->private = private; 5478 dev_hold(adj_dev); 5479 5480 pr_debug("dev_hold for %s, because of link added from %s to %s\n", 5481 adj_dev->name, dev->name, adj_dev->name); 5482 5483 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 5484 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 5485 if (ret) 5486 goto free_adj; 5487 } 5488 5489 /* Ensure that master link is always the first item in list. */ 5490 if (master) { 5491 ret = sysfs_create_link(&(dev->dev.kobj), 5492 &(adj_dev->dev.kobj), "master"); 5493 if (ret) 5494 goto remove_symlinks; 5495 5496 list_add_rcu(&adj->list, dev_list); 5497 } else { 5498 list_add_tail_rcu(&adj->list, dev_list); 5499 } 5500 5501 return 0; 5502 5503 remove_symlinks: 5504 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 5505 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 5506 free_adj: 5507 kfree(adj); 5508 dev_put(adj_dev); 5509 5510 return ret; 5511 } 5512 5513 static void __netdev_adjacent_dev_remove(struct net_device *dev, 5514 struct net_device *adj_dev, 5515 u16 ref_nr, 5516 struct list_head *dev_list) 5517 { 5518 struct netdev_adjacent *adj; 5519 5520 adj = __netdev_find_adj(adj_dev, dev_list); 5521 5522 if (!adj) { 5523 pr_err("tried to remove device %s from %s\n", 5524 dev->name, adj_dev->name); 5525 BUG(); 5526 } 5527 5528 if (adj->ref_nr > ref_nr) { 5529 pr_debug("%s to %s ref_nr-%d = %d\n", dev->name, adj_dev->name, 5530 ref_nr, adj->ref_nr-ref_nr); 5531 adj->ref_nr -= ref_nr; 5532 return; 5533 } 5534 5535 if (adj->master) 5536 sysfs_remove_link(&(dev->dev.kobj), "master"); 5537 5538 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 5539 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 5540 5541 list_del_rcu(&adj->list); 5542 pr_debug("dev_put for %s, because link removed from %s to %s\n", 5543 adj_dev->name, dev->name, adj_dev->name); 5544 dev_put(adj_dev); 5545 kfree_rcu(adj, rcu); 5546 } 5547 5548 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 5549 struct net_device *upper_dev, 5550 u16 ref_nr, 5551 struct list_head *up_list, 5552 struct list_head *down_list, 5553 void *private, bool master) 5554 { 5555 int ret; 5556 5557 ret = __netdev_adjacent_dev_insert(dev, upper_dev, ref_nr, up_list, 5558 private, master); 5559 if (ret) 5560 return ret; 5561 5562 ret = __netdev_adjacent_dev_insert(upper_dev, dev, ref_nr, down_list, 5563 private, false); 5564 if (ret) { 5565 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list); 5566 return ret; 5567 } 5568 5569 return 0; 5570 } 5571 5572 static int __netdev_adjacent_dev_link(struct net_device *dev, 5573 struct net_device *upper_dev, 5574 u16 ref_nr) 5575 { 5576 return __netdev_adjacent_dev_link_lists(dev, upper_dev, ref_nr, 5577 &dev->all_adj_list.upper, 5578 &upper_dev->all_adj_list.lower, 5579 NULL, false); 5580 } 5581 5582 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 5583 struct net_device *upper_dev, 5584 u16 ref_nr, 5585 struct list_head *up_list, 5586 struct list_head *down_list) 5587 { 5588 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list); 5589 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list); 5590 } 5591 5592 static void __netdev_adjacent_dev_unlink(struct net_device *dev, 5593 struct net_device *upper_dev, 5594 u16 ref_nr) 5595 { 5596 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, ref_nr, 5597 &dev->all_adj_list.upper, 5598 &upper_dev->all_adj_list.lower); 5599 } 5600 5601 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 5602 struct net_device *upper_dev, 5603 void *private, bool master) 5604 { 5605 int ret = __netdev_adjacent_dev_link(dev, upper_dev, 1); 5606 5607 if (ret) 5608 return ret; 5609 5610 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev, 1, 5611 &dev->adj_list.upper, 5612 &upper_dev->adj_list.lower, 5613 private, master); 5614 if (ret) { 5615 __netdev_adjacent_dev_unlink(dev, upper_dev, 1); 5616 return ret; 5617 } 5618 5619 return 0; 5620 } 5621 5622 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 5623 struct net_device *upper_dev) 5624 { 5625 __netdev_adjacent_dev_unlink(dev, upper_dev, 1); 5626 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1, 5627 &dev->adj_list.upper, 5628 &upper_dev->adj_list.lower); 5629 } 5630 5631 static int __netdev_upper_dev_link(struct net_device *dev, 5632 struct net_device *upper_dev, bool master, 5633 void *upper_priv, void *upper_info) 5634 { 5635 struct netdev_notifier_changeupper_info changeupper_info; 5636 struct netdev_adjacent *i, *j, *to_i, *to_j; 5637 int ret = 0; 5638 5639 ASSERT_RTNL(); 5640 5641 if (dev == upper_dev) 5642 return -EBUSY; 5643 5644 /* To prevent loops, check if dev is not upper device to upper_dev. */ 5645 if (__netdev_find_adj(dev, &upper_dev->all_adj_list.upper)) 5646 return -EBUSY; 5647 5648 if (__netdev_find_adj(upper_dev, &dev->adj_list.upper)) 5649 return -EEXIST; 5650 5651 if (master && netdev_master_upper_dev_get(dev)) 5652 return -EBUSY; 5653 5654 changeupper_info.upper_dev = upper_dev; 5655 changeupper_info.master = master; 5656 changeupper_info.linking = true; 5657 changeupper_info.upper_info = upper_info; 5658 5659 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev, 5660 &changeupper_info.info); 5661 ret = notifier_to_errno(ret); 5662 if (ret) 5663 return ret; 5664 5665 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv, 5666 master); 5667 if (ret) 5668 return ret; 5669 5670 /* Now that we linked these devs, make all the upper_dev's 5671 * all_adj_list.upper visible to every dev's all_adj_list.lower an 5672 * versa, and don't forget the devices itself. All of these 5673 * links are non-neighbours. 5674 */ 5675 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 5676 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) { 5677 pr_debug("Interlinking %s with %s, non-neighbour\n", 5678 i->dev->name, j->dev->name); 5679 ret = __netdev_adjacent_dev_link(i->dev, j->dev, i->ref_nr); 5680 if (ret) 5681 goto rollback_mesh; 5682 } 5683 } 5684 5685 /* add dev to every upper_dev's upper device */ 5686 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) { 5687 pr_debug("linking %s's upper device %s with %s\n", 5688 upper_dev->name, i->dev->name, dev->name); 5689 ret = __netdev_adjacent_dev_link(dev, i->dev, i->ref_nr); 5690 if (ret) 5691 goto rollback_upper_mesh; 5692 } 5693 5694 /* add upper_dev to every dev's lower device */ 5695 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 5696 pr_debug("linking %s's lower device %s with %s\n", dev->name, 5697 i->dev->name, upper_dev->name); 5698 ret = __netdev_adjacent_dev_link(i->dev, upper_dev, i->ref_nr); 5699 if (ret) 5700 goto rollback_lower_mesh; 5701 } 5702 5703 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev, 5704 &changeupper_info.info); 5705 ret = notifier_to_errno(ret); 5706 if (ret) 5707 goto rollback_lower_mesh; 5708 5709 return 0; 5710 5711 rollback_lower_mesh: 5712 to_i = i; 5713 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 5714 if (i == to_i) 5715 break; 5716 __netdev_adjacent_dev_unlink(i->dev, upper_dev, i->ref_nr); 5717 } 5718 5719 i = NULL; 5720 5721 rollback_upper_mesh: 5722 to_i = i; 5723 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) { 5724 if (i == to_i) 5725 break; 5726 __netdev_adjacent_dev_unlink(dev, i->dev, i->ref_nr); 5727 } 5728 5729 i = j = NULL; 5730 5731 rollback_mesh: 5732 to_i = i; 5733 to_j = j; 5734 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 5735 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) { 5736 if (i == to_i && j == to_j) 5737 break; 5738 __netdev_adjacent_dev_unlink(i->dev, j->dev, i->ref_nr); 5739 } 5740 if (i == to_i) 5741 break; 5742 } 5743 5744 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 5745 5746 return ret; 5747 } 5748 5749 /** 5750 * netdev_upper_dev_link - Add a link to the upper device 5751 * @dev: device 5752 * @upper_dev: new upper device 5753 * 5754 * Adds a link to device which is upper to this one. The caller must hold 5755 * the RTNL lock. On a failure a negative errno code is returned. 5756 * On success the reference counts are adjusted and the function 5757 * returns zero. 5758 */ 5759 int netdev_upper_dev_link(struct net_device *dev, 5760 struct net_device *upper_dev) 5761 { 5762 return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL); 5763 } 5764 EXPORT_SYMBOL(netdev_upper_dev_link); 5765 5766 /** 5767 * netdev_master_upper_dev_link - Add a master link to the upper device 5768 * @dev: device 5769 * @upper_dev: new upper device 5770 * @upper_priv: upper device private 5771 * @upper_info: upper info to be passed down via notifier 5772 * 5773 * Adds a link to device which is upper to this one. In this case, only 5774 * one master upper device can be linked, although other non-master devices 5775 * might be linked as well. The caller must hold the RTNL lock. 5776 * On a failure a negative errno code is returned. On success the reference 5777 * counts are adjusted and the function returns zero. 5778 */ 5779 int netdev_master_upper_dev_link(struct net_device *dev, 5780 struct net_device *upper_dev, 5781 void *upper_priv, void *upper_info) 5782 { 5783 return __netdev_upper_dev_link(dev, upper_dev, true, 5784 upper_priv, upper_info); 5785 } 5786 EXPORT_SYMBOL(netdev_master_upper_dev_link); 5787 5788 /** 5789 * netdev_upper_dev_unlink - Removes a link to upper device 5790 * @dev: device 5791 * @upper_dev: new upper device 5792 * 5793 * Removes a link to device which is upper to this one. The caller must hold 5794 * the RTNL lock. 5795 */ 5796 void netdev_upper_dev_unlink(struct net_device *dev, 5797 struct net_device *upper_dev) 5798 { 5799 struct netdev_notifier_changeupper_info changeupper_info; 5800 struct netdev_adjacent *i, *j; 5801 ASSERT_RTNL(); 5802 5803 changeupper_info.upper_dev = upper_dev; 5804 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; 5805 changeupper_info.linking = false; 5806 5807 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev, 5808 &changeupper_info.info); 5809 5810 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 5811 5812 /* Here is the tricky part. We must remove all dev's lower 5813 * devices from all upper_dev's upper devices and vice 5814 * versa, to maintain the graph relationship. 5815 */ 5816 list_for_each_entry(i, &dev->all_adj_list.lower, list) 5817 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) 5818 __netdev_adjacent_dev_unlink(i->dev, j->dev, i->ref_nr); 5819 5820 /* remove also the devices itself from lower/upper device 5821 * list 5822 */ 5823 list_for_each_entry(i, &dev->all_adj_list.lower, list) 5824 __netdev_adjacent_dev_unlink(i->dev, upper_dev, i->ref_nr); 5825 5826 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) 5827 __netdev_adjacent_dev_unlink(dev, i->dev, i->ref_nr); 5828 5829 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev, 5830 &changeupper_info.info); 5831 } 5832 EXPORT_SYMBOL(netdev_upper_dev_unlink); 5833 5834 /** 5835 * netdev_bonding_info_change - Dispatch event about slave change 5836 * @dev: device 5837 * @bonding_info: info to dispatch 5838 * 5839 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 5840 * The caller must hold the RTNL lock. 5841 */ 5842 void netdev_bonding_info_change(struct net_device *dev, 5843 struct netdev_bonding_info *bonding_info) 5844 { 5845 struct netdev_notifier_bonding_info info; 5846 5847 memcpy(&info.bonding_info, bonding_info, 5848 sizeof(struct netdev_bonding_info)); 5849 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev, 5850 &info.info); 5851 } 5852 EXPORT_SYMBOL(netdev_bonding_info_change); 5853 5854 static void netdev_adjacent_add_links(struct net_device *dev) 5855 { 5856 struct netdev_adjacent *iter; 5857 5858 struct net *net = dev_net(dev); 5859 5860 list_for_each_entry(iter, &dev->adj_list.upper, list) { 5861 if (!net_eq(net, dev_net(iter->dev))) 5862 continue; 5863 netdev_adjacent_sysfs_add(iter->dev, dev, 5864 &iter->dev->adj_list.lower); 5865 netdev_adjacent_sysfs_add(dev, iter->dev, 5866 &dev->adj_list.upper); 5867 } 5868 5869 list_for_each_entry(iter, &dev->adj_list.lower, list) { 5870 if (!net_eq(net, dev_net(iter->dev))) 5871 continue; 5872 netdev_adjacent_sysfs_add(iter->dev, dev, 5873 &iter->dev->adj_list.upper); 5874 netdev_adjacent_sysfs_add(dev, iter->dev, 5875 &dev->adj_list.lower); 5876 } 5877 } 5878 5879 static void netdev_adjacent_del_links(struct net_device *dev) 5880 { 5881 struct netdev_adjacent *iter; 5882 5883 struct net *net = dev_net(dev); 5884 5885 list_for_each_entry(iter, &dev->adj_list.upper, list) { 5886 if (!net_eq(net, dev_net(iter->dev))) 5887 continue; 5888 netdev_adjacent_sysfs_del(iter->dev, dev->name, 5889 &iter->dev->adj_list.lower); 5890 netdev_adjacent_sysfs_del(dev, iter->dev->name, 5891 &dev->adj_list.upper); 5892 } 5893 5894 list_for_each_entry(iter, &dev->adj_list.lower, list) { 5895 if (!net_eq(net, dev_net(iter->dev))) 5896 continue; 5897 netdev_adjacent_sysfs_del(iter->dev, dev->name, 5898 &iter->dev->adj_list.upper); 5899 netdev_adjacent_sysfs_del(dev, iter->dev->name, 5900 &dev->adj_list.lower); 5901 } 5902 } 5903 5904 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 5905 { 5906 struct netdev_adjacent *iter; 5907 5908 struct net *net = dev_net(dev); 5909 5910 list_for_each_entry(iter, &dev->adj_list.upper, list) { 5911 if (!net_eq(net, dev_net(iter->dev))) 5912 continue; 5913 netdev_adjacent_sysfs_del(iter->dev, oldname, 5914 &iter->dev->adj_list.lower); 5915 netdev_adjacent_sysfs_add(iter->dev, dev, 5916 &iter->dev->adj_list.lower); 5917 } 5918 5919 list_for_each_entry(iter, &dev->adj_list.lower, list) { 5920 if (!net_eq(net, dev_net(iter->dev))) 5921 continue; 5922 netdev_adjacent_sysfs_del(iter->dev, oldname, 5923 &iter->dev->adj_list.upper); 5924 netdev_adjacent_sysfs_add(iter->dev, dev, 5925 &iter->dev->adj_list.upper); 5926 } 5927 } 5928 5929 void *netdev_lower_dev_get_private(struct net_device *dev, 5930 struct net_device *lower_dev) 5931 { 5932 struct netdev_adjacent *lower; 5933 5934 if (!lower_dev) 5935 return NULL; 5936 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower); 5937 if (!lower) 5938 return NULL; 5939 5940 return lower->private; 5941 } 5942 EXPORT_SYMBOL(netdev_lower_dev_get_private); 5943 5944 5945 int dev_get_nest_level(struct net_device *dev) 5946 { 5947 struct net_device *lower = NULL; 5948 struct list_head *iter; 5949 int max_nest = -1; 5950 int nest; 5951 5952 ASSERT_RTNL(); 5953 5954 netdev_for_each_lower_dev(dev, lower, iter) { 5955 nest = dev_get_nest_level(lower); 5956 if (max_nest < nest) 5957 max_nest = nest; 5958 } 5959 5960 return max_nest + 1; 5961 } 5962 EXPORT_SYMBOL(dev_get_nest_level); 5963 5964 /** 5965 * netdev_lower_change - Dispatch event about lower device state change 5966 * @lower_dev: device 5967 * @lower_state_info: state to dispatch 5968 * 5969 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info. 5970 * The caller must hold the RTNL lock. 5971 */ 5972 void netdev_lower_state_changed(struct net_device *lower_dev, 5973 void *lower_state_info) 5974 { 5975 struct netdev_notifier_changelowerstate_info changelowerstate_info; 5976 5977 ASSERT_RTNL(); 5978 changelowerstate_info.lower_state_info = lower_state_info; 5979 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev, 5980 &changelowerstate_info.info); 5981 } 5982 EXPORT_SYMBOL(netdev_lower_state_changed); 5983 5984 int netdev_default_l2upper_neigh_construct(struct net_device *dev, 5985 struct neighbour *n) 5986 { 5987 struct net_device *lower_dev, *stop_dev; 5988 struct list_head *iter; 5989 int err; 5990 5991 netdev_for_each_lower_dev(dev, lower_dev, iter) { 5992 if (!lower_dev->netdev_ops->ndo_neigh_construct) 5993 continue; 5994 err = lower_dev->netdev_ops->ndo_neigh_construct(lower_dev, n); 5995 if (err) { 5996 stop_dev = lower_dev; 5997 goto rollback; 5998 } 5999 } 6000 return 0; 6001 6002 rollback: 6003 netdev_for_each_lower_dev(dev, lower_dev, iter) { 6004 if (lower_dev == stop_dev) 6005 break; 6006 if (!lower_dev->netdev_ops->ndo_neigh_destroy) 6007 continue; 6008 lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n); 6009 } 6010 return err; 6011 } 6012 EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_construct); 6013 6014 void netdev_default_l2upper_neigh_destroy(struct net_device *dev, 6015 struct neighbour *n) 6016 { 6017 struct net_device *lower_dev; 6018 struct list_head *iter; 6019 6020 netdev_for_each_lower_dev(dev, lower_dev, iter) { 6021 if (!lower_dev->netdev_ops->ndo_neigh_destroy) 6022 continue; 6023 lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n); 6024 } 6025 } 6026 EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_destroy); 6027 6028 static void dev_change_rx_flags(struct net_device *dev, int flags) 6029 { 6030 const struct net_device_ops *ops = dev->netdev_ops; 6031 6032 if (ops->ndo_change_rx_flags) 6033 ops->ndo_change_rx_flags(dev, flags); 6034 } 6035 6036 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 6037 { 6038 unsigned int old_flags = dev->flags; 6039 kuid_t uid; 6040 kgid_t gid; 6041 6042 ASSERT_RTNL(); 6043 6044 dev->flags |= IFF_PROMISC; 6045 dev->promiscuity += inc; 6046 if (dev->promiscuity == 0) { 6047 /* 6048 * Avoid overflow. 6049 * If inc causes overflow, untouch promisc and return error. 6050 */ 6051 if (inc < 0) 6052 dev->flags &= ~IFF_PROMISC; 6053 else { 6054 dev->promiscuity -= inc; 6055 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 6056 dev->name); 6057 return -EOVERFLOW; 6058 } 6059 } 6060 if (dev->flags != old_flags) { 6061 pr_info("device %s %s promiscuous mode\n", 6062 dev->name, 6063 dev->flags & IFF_PROMISC ? "entered" : "left"); 6064 if (audit_enabled) { 6065 current_uid_gid(&uid, &gid); 6066 audit_log(current->audit_context, GFP_ATOMIC, 6067 AUDIT_ANOM_PROMISCUOUS, 6068 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 6069 dev->name, (dev->flags & IFF_PROMISC), 6070 (old_flags & IFF_PROMISC), 6071 from_kuid(&init_user_ns, audit_get_loginuid(current)), 6072 from_kuid(&init_user_ns, uid), 6073 from_kgid(&init_user_ns, gid), 6074 audit_get_sessionid(current)); 6075 } 6076 6077 dev_change_rx_flags(dev, IFF_PROMISC); 6078 } 6079 if (notify) 6080 __dev_notify_flags(dev, old_flags, IFF_PROMISC); 6081 return 0; 6082 } 6083 6084 /** 6085 * dev_set_promiscuity - update promiscuity count on a device 6086 * @dev: device 6087 * @inc: modifier 6088 * 6089 * Add or remove promiscuity from a device. While the count in the device 6090 * remains above zero the interface remains promiscuous. Once it hits zero 6091 * the device reverts back to normal filtering operation. A negative inc 6092 * value is used to drop promiscuity on the device. 6093 * Return 0 if successful or a negative errno code on error. 6094 */ 6095 int dev_set_promiscuity(struct net_device *dev, int inc) 6096 { 6097 unsigned int old_flags = dev->flags; 6098 int err; 6099 6100 err = __dev_set_promiscuity(dev, inc, true); 6101 if (err < 0) 6102 return err; 6103 if (dev->flags != old_flags) 6104 dev_set_rx_mode(dev); 6105 return err; 6106 } 6107 EXPORT_SYMBOL(dev_set_promiscuity); 6108 6109 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 6110 { 6111 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 6112 6113 ASSERT_RTNL(); 6114 6115 dev->flags |= IFF_ALLMULTI; 6116 dev->allmulti += inc; 6117 if (dev->allmulti == 0) { 6118 /* 6119 * Avoid overflow. 6120 * If inc causes overflow, untouch allmulti and return error. 6121 */ 6122 if (inc < 0) 6123 dev->flags &= ~IFF_ALLMULTI; 6124 else { 6125 dev->allmulti -= inc; 6126 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 6127 dev->name); 6128 return -EOVERFLOW; 6129 } 6130 } 6131 if (dev->flags ^ old_flags) { 6132 dev_change_rx_flags(dev, IFF_ALLMULTI); 6133 dev_set_rx_mode(dev); 6134 if (notify) 6135 __dev_notify_flags(dev, old_flags, 6136 dev->gflags ^ old_gflags); 6137 } 6138 return 0; 6139 } 6140 6141 /** 6142 * dev_set_allmulti - update allmulti count on a device 6143 * @dev: device 6144 * @inc: modifier 6145 * 6146 * Add or remove reception of all multicast frames to a device. While the 6147 * count in the device remains above zero the interface remains listening 6148 * to all interfaces. Once it hits zero the device reverts back to normal 6149 * filtering operation. A negative @inc value is used to drop the counter 6150 * when releasing a resource needing all multicasts. 6151 * Return 0 if successful or a negative errno code on error. 6152 */ 6153 6154 int dev_set_allmulti(struct net_device *dev, int inc) 6155 { 6156 return __dev_set_allmulti(dev, inc, true); 6157 } 6158 EXPORT_SYMBOL(dev_set_allmulti); 6159 6160 /* 6161 * Upload unicast and multicast address lists to device and 6162 * configure RX filtering. When the device doesn't support unicast 6163 * filtering it is put in promiscuous mode while unicast addresses 6164 * are present. 6165 */ 6166 void __dev_set_rx_mode(struct net_device *dev) 6167 { 6168 const struct net_device_ops *ops = dev->netdev_ops; 6169 6170 /* dev_open will call this function so the list will stay sane. */ 6171 if (!(dev->flags&IFF_UP)) 6172 return; 6173 6174 if (!netif_device_present(dev)) 6175 return; 6176 6177 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 6178 /* Unicast addresses changes may only happen under the rtnl, 6179 * therefore calling __dev_set_promiscuity here is safe. 6180 */ 6181 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 6182 __dev_set_promiscuity(dev, 1, false); 6183 dev->uc_promisc = true; 6184 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 6185 __dev_set_promiscuity(dev, -1, false); 6186 dev->uc_promisc = false; 6187 } 6188 } 6189 6190 if (ops->ndo_set_rx_mode) 6191 ops->ndo_set_rx_mode(dev); 6192 } 6193 6194 void dev_set_rx_mode(struct net_device *dev) 6195 { 6196 netif_addr_lock_bh(dev); 6197 __dev_set_rx_mode(dev); 6198 netif_addr_unlock_bh(dev); 6199 } 6200 6201 /** 6202 * dev_get_flags - get flags reported to userspace 6203 * @dev: device 6204 * 6205 * Get the combination of flag bits exported through APIs to userspace. 6206 */ 6207 unsigned int dev_get_flags(const struct net_device *dev) 6208 { 6209 unsigned int flags; 6210 6211 flags = (dev->flags & ~(IFF_PROMISC | 6212 IFF_ALLMULTI | 6213 IFF_RUNNING | 6214 IFF_LOWER_UP | 6215 IFF_DORMANT)) | 6216 (dev->gflags & (IFF_PROMISC | 6217 IFF_ALLMULTI)); 6218 6219 if (netif_running(dev)) { 6220 if (netif_oper_up(dev)) 6221 flags |= IFF_RUNNING; 6222 if (netif_carrier_ok(dev)) 6223 flags |= IFF_LOWER_UP; 6224 if (netif_dormant(dev)) 6225 flags |= IFF_DORMANT; 6226 } 6227 6228 return flags; 6229 } 6230 EXPORT_SYMBOL(dev_get_flags); 6231 6232 int __dev_change_flags(struct net_device *dev, unsigned int flags) 6233 { 6234 unsigned int old_flags = dev->flags; 6235 int ret; 6236 6237 ASSERT_RTNL(); 6238 6239 /* 6240 * Set the flags on our device. 6241 */ 6242 6243 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 6244 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 6245 IFF_AUTOMEDIA)) | 6246 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 6247 IFF_ALLMULTI)); 6248 6249 /* 6250 * Load in the correct multicast list now the flags have changed. 6251 */ 6252 6253 if ((old_flags ^ flags) & IFF_MULTICAST) 6254 dev_change_rx_flags(dev, IFF_MULTICAST); 6255 6256 dev_set_rx_mode(dev); 6257 6258 /* 6259 * Have we downed the interface. We handle IFF_UP ourselves 6260 * according to user attempts to set it, rather than blindly 6261 * setting it. 6262 */ 6263 6264 ret = 0; 6265 if ((old_flags ^ flags) & IFF_UP) 6266 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev); 6267 6268 if ((flags ^ dev->gflags) & IFF_PROMISC) { 6269 int inc = (flags & IFF_PROMISC) ? 1 : -1; 6270 unsigned int old_flags = dev->flags; 6271 6272 dev->gflags ^= IFF_PROMISC; 6273 6274 if (__dev_set_promiscuity(dev, inc, false) >= 0) 6275 if (dev->flags != old_flags) 6276 dev_set_rx_mode(dev); 6277 } 6278 6279 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 6280 is important. Some (broken) drivers set IFF_PROMISC, when 6281 IFF_ALLMULTI is requested not asking us and not reporting. 6282 */ 6283 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 6284 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 6285 6286 dev->gflags ^= IFF_ALLMULTI; 6287 __dev_set_allmulti(dev, inc, false); 6288 } 6289 6290 return ret; 6291 } 6292 6293 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 6294 unsigned int gchanges) 6295 { 6296 unsigned int changes = dev->flags ^ old_flags; 6297 6298 if (gchanges) 6299 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC); 6300 6301 if (changes & IFF_UP) { 6302 if (dev->flags & IFF_UP) 6303 call_netdevice_notifiers(NETDEV_UP, dev); 6304 else 6305 call_netdevice_notifiers(NETDEV_DOWN, dev); 6306 } 6307 6308 if (dev->flags & IFF_UP && 6309 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 6310 struct netdev_notifier_change_info change_info; 6311 6312 change_info.flags_changed = changes; 6313 call_netdevice_notifiers_info(NETDEV_CHANGE, dev, 6314 &change_info.info); 6315 } 6316 } 6317 6318 /** 6319 * dev_change_flags - change device settings 6320 * @dev: device 6321 * @flags: device state flags 6322 * 6323 * Change settings on device based state flags. The flags are 6324 * in the userspace exported format. 6325 */ 6326 int dev_change_flags(struct net_device *dev, unsigned int flags) 6327 { 6328 int ret; 6329 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 6330 6331 ret = __dev_change_flags(dev, flags); 6332 if (ret < 0) 6333 return ret; 6334 6335 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 6336 __dev_notify_flags(dev, old_flags, changes); 6337 return ret; 6338 } 6339 EXPORT_SYMBOL(dev_change_flags); 6340 6341 static int __dev_set_mtu(struct net_device *dev, int new_mtu) 6342 { 6343 const struct net_device_ops *ops = dev->netdev_ops; 6344 6345 if (ops->ndo_change_mtu) 6346 return ops->ndo_change_mtu(dev, new_mtu); 6347 6348 dev->mtu = new_mtu; 6349 return 0; 6350 } 6351 6352 /** 6353 * dev_set_mtu - Change maximum transfer unit 6354 * @dev: device 6355 * @new_mtu: new transfer unit 6356 * 6357 * Change the maximum transfer size of the network device. 6358 */ 6359 int dev_set_mtu(struct net_device *dev, int new_mtu) 6360 { 6361 int err, orig_mtu; 6362 6363 if (new_mtu == dev->mtu) 6364 return 0; 6365 6366 /* MTU must be positive, and in range */ 6367 if (new_mtu < 0 || new_mtu < dev->min_mtu) { 6368 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n", 6369 dev->name, new_mtu, dev->min_mtu); 6370 return -EINVAL; 6371 } 6372 6373 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) { 6374 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n", 6375 dev->name, new_mtu, dev->min_mtu); 6376 return -EINVAL; 6377 } 6378 6379 if (!netif_device_present(dev)) 6380 return -ENODEV; 6381 6382 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 6383 err = notifier_to_errno(err); 6384 if (err) 6385 return err; 6386 6387 orig_mtu = dev->mtu; 6388 err = __dev_set_mtu(dev, new_mtu); 6389 6390 if (!err) { 6391 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 6392 err = notifier_to_errno(err); 6393 if (err) { 6394 /* setting mtu back and notifying everyone again, 6395 * so that they have a chance to revert changes. 6396 */ 6397 __dev_set_mtu(dev, orig_mtu); 6398 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 6399 } 6400 } 6401 return err; 6402 } 6403 EXPORT_SYMBOL(dev_set_mtu); 6404 6405 /** 6406 * dev_set_group - Change group this device belongs to 6407 * @dev: device 6408 * @new_group: group this device should belong to 6409 */ 6410 void dev_set_group(struct net_device *dev, int new_group) 6411 { 6412 dev->group = new_group; 6413 } 6414 EXPORT_SYMBOL(dev_set_group); 6415 6416 /** 6417 * dev_set_mac_address - Change Media Access Control Address 6418 * @dev: device 6419 * @sa: new address 6420 * 6421 * Change the hardware (MAC) address of the device 6422 */ 6423 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 6424 { 6425 const struct net_device_ops *ops = dev->netdev_ops; 6426 int err; 6427 6428 if (!ops->ndo_set_mac_address) 6429 return -EOPNOTSUPP; 6430 if (sa->sa_family != dev->type) 6431 return -EINVAL; 6432 if (!netif_device_present(dev)) 6433 return -ENODEV; 6434 err = ops->ndo_set_mac_address(dev, sa); 6435 if (err) 6436 return err; 6437 dev->addr_assign_type = NET_ADDR_SET; 6438 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 6439 add_device_randomness(dev->dev_addr, dev->addr_len); 6440 return 0; 6441 } 6442 EXPORT_SYMBOL(dev_set_mac_address); 6443 6444 /** 6445 * dev_change_carrier - Change device carrier 6446 * @dev: device 6447 * @new_carrier: new value 6448 * 6449 * Change device carrier 6450 */ 6451 int dev_change_carrier(struct net_device *dev, bool new_carrier) 6452 { 6453 const struct net_device_ops *ops = dev->netdev_ops; 6454 6455 if (!ops->ndo_change_carrier) 6456 return -EOPNOTSUPP; 6457 if (!netif_device_present(dev)) 6458 return -ENODEV; 6459 return ops->ndo_change_carrier(dev, new_carrier); 6460 } 6461 EXPORT_SYMBOL(dev_change_carrier); 6462 6463 /** 6464 * dev_get_phys_port_id - Get device physical port ID 6465 * @dev: device 6466 * @ppid: port ID 6467 * 6468 * Get device physical port ID 6469 */ 6470 int dev_get_phys_port_id(struct net_device *dev, 6471 struct netdev_phys_item_id *ppid) 6472 { 6473 const struct net_device_ops *ops = dev->netdev_ops; 6474 6475 if (!ops->ndo_get_phys_port_id) 6476 return -EOPNOTSUPP; 6477 return ops->ndo_get_phys_port_id(dev, ppid); 6478 } 6479 EXPORT_SYMBOL(dev_get_phys_port_id); 6480 6481 /** 6482 * dev_get_phys_port_name - Get device physical port name 6483 * @dev: device 6484 * @name: port name 6485 * @len: limit of bytes to copy to name 6486 * 6487 * Get device physical port name 6488 */ 6489 int dev_get_phys_port_name(struct net_device *dev, 6490 char *name, size_t len) 6491 { 6492 const struct net_device_ops *ops = dev->netdev_ops; 6493 6494 if (!ops->ndo_get_phys_port_name) 6495 return -EOPNOTSUPP; 6496 return ops->ndo_get_phys_port_name(dev, name, len); 6497 } 6498 EXPORT_SYMBOL(dev_get_phys_port_name); 6499 6500 /** 6501 * dev_change_proto_down - update protocol port state information 6502 * @dev: device 6503 * @proto_down: new value 6504 * 6505 * This info can be used by switch drivers to set the phys state of the 6506 * port. 6507 */ 6508 int dev_change_proto_down(struct net_device *dev, bool proto_down) 6509 { 6510 const struct net_device_ops *ops = dev->netdev_ops; 6511 6512 if (!ops->ndo_change_proto_down) 6513 return -EOPNOTSUPP; 6514 if (!netif_device_present(dev)) 6515 return -ENODEV; 6516 return ops->ndo_change_proto_down(dev, proto_down); 6517 } 6518 EXPORT_SYMBOL(dev_change_proto_down); 6519 6520 /** 6521 * dev_change_xdp_fd - set or clear a bpf program for a device rx path 6522 * @dev: device 6523 * @fd: new program fd or negative value to clear 6524 * 6525 * Set or clear a bpf program for a device 6526 */ 6527 int dev_change_xdp_fd(struct net_device *dev, int fd) 6528 { 6529 const struct net_device_ops *ops = dev->netdev_ops; 6530 struct bpf_prog *prog = NULL; 6531 struct netdev_xdp xdp = {}; 6532 int err; 6533 6534 if (!ops->ndo_xdp) 6535 return -EOPNOTSUPP; 6536 if (fd >= 0) { 6537 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP); 6538 if (IS_ERR(prog)) 6539 return PTR_ERR(prog); 6540 } 6541 6542 xdp.command = XDP_SETUP_PROG; 6543 xdp.prog = prog; 6544 err = ops->ndo_xdp(dev, &xdp); 6545 if (err < 0 && prog) 6546 bpf_prog_put(prog); 6547 6548 return err; 6549 } 6550 EXPORT_SYMBOL(dev_change_xdp_fd); 6551 6552 /** 6553 * dev_new_index - allocate an ifindex 6554 * @net: the applicable net namespace 6555 * 6556 * Returns a suitable unique value for a new device interface 6557 * number. The caller must hold the rtnl semaphore or the 6558 * dev_base_lock to be sure it remains unique. 6559 */ 6560 static int dev_new_index(struct net *net) 6561 { 6562 int ifindex = net->ifindex; 6563 for (;;) { 6564 if (++ifindex <= 0) 6565 ifindex = 1; 6566 if (!__dev_get_by_index(net, ifindex)) 6567 return net->ifindex = ifindex; 6568 } 6569 } 6570 6571 /* Delayed registration/unregisteration */ 6572 static LIST_HEAD(net_todo_list); 6573 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 6574 6575 static void net_set_todo(struct net_device *dev) 6576 { 6577 list_add_tail(&dev->todo_list, &net_todo_list); 6578 dev_net(dev)->dev_unreg_count++; 6579 } 6580 6581 static void rollback_registered_many(struct list_head *head) 6582 { 6583 struct net_device *dev, *tmp; 6584 LIST_HEAD(close_head); 6585 6586 BUG_ON(dev_boot_phase); 6587 ASSERT_RTNL(); 6588 6589 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 6590 /* Some devices call without registering 6591 * for initialization unwind. Remove those 6592 * devices and proceed with the remaining. 6593 */ 6594 if (dev->reg_state == NETREG_UNINITIALIZED) { 6595 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 6596 dev->name, dev); 6597 6598 WARN_ON(1); 6599 list_del(&dev->unreg_list); 6600 continue; 6601 } 6602 dev->dismantle = true; 6603 BUG_ON(dev->reg_state != NETREG_REGISTERED); 6604 } 6605 6606 /* If device is running, close it first. */ 6607 list_for_each_entry(dev, head, unreg_list) 6608 list_add_tail(&dev->close_list, &close_head); 6609 dev_close_many(&close_head, true); 6610 6611 list_for_each_entry(dev, head, unreg_list) { 6612 /* And unlink it from device chain. */ 6613 unlist_netdevice(dev); 6614 6615 dev->reg_state = NETREG_UNREGISTERING; 6616 } 6617 flush_all_backlogs(); 6618 6619 synchronize_net(); 6620 6621 list_for_each_entry(dev, head, unreg_list) { 6622 struct sk_buff *skb = NULL; 6623 6624 /* Shutdown queueing discipline. */ 6625 dev_shutdown(dev); 6626 6627 6628 /* Notify protocols, that we are about to destroy 6629 this device. They should clean all the things. 6630 */ 6631 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 6632 6633 if (!dev->rtnl_link_ops || 6634 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 6635 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 6636 GFP_KERNEL); 6637 6638 /* 6639 * Flush the unicast and multicast chains 6640 */ 6641 dev_uc_flush(dev); 6642 dev_mc_flush(dev); 6643 6644 if (dev->netdev_ops->ndo_uninit) 6645 dev->netdev_ops->ndo_uninit(dev); 6646 6647 if (skb) 6648 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL); 6649 6650 /* Notifier chain MUST detach us all upper devices. */ 6651 WARN_ON(netdev_has_any_upper_dev(dev)); 6652 6653 /* Remove entries from kobject tree */ 6654 netdev_unregister_kobject(dev); 6655 #ifdef CONFIG_XPS 6656 /* Remove XPS queueing entries */ 6657 netif_reset_xps_queues_gt(dev, 0); 6658 #endif 6659 } 6660 6661 synchronize_net(); 6662 6663 list_for_each_entry(dev, head, unreg_list) 6664 dev_put(dev); 6665 } 6666 6667 static void rollback_registered(struct net_device *dev) 6668 { 6669 LIST_HEAD(single); 6670 6671 list_add(&dev->unreg_list, &single); 6672 rollback_registered_many(&single); 6673 list_del(&single); 6674 } 6675 6676 static netdev_features_t netdev_sync_upper_features(struct net_device *lower, 6677 struct net_device *upper, netdev_features_t features) 6678 { 6679 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 6680 netdev_features_t feature; 6681 int feature_bit; 6682 6683 for_each_netdev_feature(&upper_disables, feature_bit) { 6684 feature = __NETIF_F_BIT(feature_bit); 6685 if (!(upper->wanted_features & feature) 6686 && (features & feature)) { 6687 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n", 6688 &feature, upper->name); 6689 features &= ~feature; 6690 } 6691 } 6692 6693 return features; 6694 } 6695 6696 static void netdev_sync_lower_features(struct net_device *upper, 6697 struct net_device *lower, netdev_features_t features) 6698 { 6699 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 6700 netdev_features_t feature; 6701 int feature_bit; 6702 6703 for_each_netdev_feature(&upper_disables, feature_bit) { 6704 feature = __NETIF_F_BIT(feature_bit); 6705 if (!(features & feature) && (lower->features & feature)) { 6706 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n", 6707 &feature, lower->name); 6708 lower->wanted_features &= ~feature; 6709 netdev_update_features(lower); 6710 6711 if (unlikely(lower->features & feature)) 6712 netdev_WARN(upper, "failed to disable %pNF on %s!\n", 6713 &feature, lower->name); 6714 } 6715 } 6716 } 6717 6718 static netdev_features_t netdev_fix_features(struct net_device *dev, 6719 netdev_features_t features) 6720 { 6721 /* Fix illegal checksum combinations */ 6722 if ((features & NETIF_F_HW_CSUM) && 6723 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 6724 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 6725 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 6726 } 6727 6728 /* TSO requires that SG is present as well. */ 6729 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 6730 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 6731 features &= ~NETIF_F_ALL_TSO; 6732 } 6733 6734 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 6735 !(features & NETIF_F_IP_CSUM)) { 6736 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 6737 features &= ~NETIF_F_TSO; 6738 features &= ~NETIF_F_TSO_ECN; 6739 } 6740 6741 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 6742 !(features & NETIF_F_IPV6_CSUM)) { 6743 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 6744 features &= ~NETIF_F_TSO6; 6745 } 6746 6747 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */ 6748 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO)) 6749 features &= ~NETIF_F_TSO_MANGLEID; 6750 6751 /* TSO ECN requires that TSO is present as well. */ 6752 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 6753 features &= ~NETIF_F_TSO_ECN; 6754 6755 /* Software GSO depends on SG. */ 6756 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 6757 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 6758 features &= ~NETIF_F_GSO; 6759 } 6760 6761 /* UFO needs SG and checksumming */ 6762 if (features & NETIF_F_UFO) { 6763 /* maybe split UFO into V4 and V6? */ 6764 if (!(features & NETIF_F_HW_CSUM) && 6765 ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) != 6766 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) { 6767 netdev_dbg(dev, 6768 "Dropping NETIF_F_UFO since no checksum offload features.\n"); 6769 features &= ~NETIF_F_UFO; 6770 } 6771 6772 if (!(features & NETIF_F_SG)) { 6773 netdev_dbg(dev, 6774 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n"); 6775 features &= ~NETIF_F_UFO; 6776 } 6777 } 6778 6779 /* GSO partial features require GSO partial be set */ 6780 if ((features & dev->gso_partial_features) && 6781 !(features & NETIF_F_GSO_PARTIAL)) { 6782 netdev_dbg(dev, 6783 "Dropping partially supported GSO features since no GSO partial.\n"); 6784 features &= ~dev->gso_partial_features; 6785 } 6786 6787 #ifdef CONFIG_NET_RX_BUSY_POLL 6788 if (dev->netdev_ops->ndo_busy_poll) 6789 features |= NETIF_F_BUSY_POLL; 6790 else 6791 #endif 6792 features &= ~NETIF_F_BUSY_POLL; 6793 6794 return features; 6795 } 6796 6797 int __netdev_update_features(struct net_device *dev) 6798 { 6799 struct net_device *upper, *lower; 6800 netdev_features_t features; 6801 struct list_head *iter; 6802 int err = -1; 6803 6804 ASSERT_RTNL(); 6805 6806 features = netdev_get_wanted_features(dev); 6807 6808 if (dev->netdev_ops->ndo_fix_features) 6809 features = dev->netdev_ops->ndo_fix_features(dev, features); 6810 6811 /* driver might be less strict about feature dependencies */ 6812 features = netdev_fix_features(dev, features); 6813 6814 /* some features can't be enabled if they're off an an upper device */ 6815 netdev_for_each_upper_dev_rcu(dev, upper, iter) 6816 features = netdev_sync_upper_features(dev, upper, features); 6817 6818 if (dev->features == features) 6819 goto sync_lower; 6820 6821 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 6822 &dev->features, &features); 6823 6824 if (dev->netdev_ops->ndo_set_features) 6825 err = dev->netdev_ops->ndo_set_features(dev, features); 6826 else 6827 err = 0; 6828 6829 if (unlikely(err < 0)) { 6830 netdev_err(dev, 6831 "set_features() failed (%d); wanted %pNF, left %pNF\n", 6832 err, &features, &dev->features); 6833 /* return non-0 since some features might have changed and 6834 * it's better to fire a spurious notification than miss it 6835 */ 6836 return -1; 6837 } 6838 6839 sync_lower: 6840 /* some features must be disabled on lower devices when disabled 6841 * on an upper device (think: bonding master or bridge) 6842 */ 6843 netdev_for_each_lower_dev(dev, lower, iter) 6844 netdev_sync_lower_features(dev, lower, features); 6845 6846 if (!err) 6847 dev->features = features; 6848 6849 return err < 0 ? 0 : 1; 6850 } 6851 6852 /** 6853 * netdev_update_features - recalculate device features 6854 * @dev: the device to check 6855 * 6856 * Recalculate dev->features set and send notifications if it 6857 * has changed. Should be called after driver or hardware dependent 6858 * conditions might have changed that influence the features. 6859 */ 6860 void netdev_update_features(struct net_device *dev) 6861 { 6862 if (__netdev_update_features(dev)) 6863 netdev_features_change(dev); 6864 } 6865 EXPORT_SYMBOL(netdev_update_features); 6866 6867 /** 6868 * netdev_change_features - recalculate device features 6869 * @dev: the device to check 6870 * 6871 * Recalculate dev->features set and send notifications even 6872 * if they have not changed. Should be called instead of 6873 * netdev_update_features() if also dev->vlan_features might 6874 * have changed to allow the changes to be propagated to stacked 6875 * VLAN devices. 6876 */ 6877 void netdev_change_features(struct net_device *dev) 6878 { 6879 __netdev_update_features(dev); 6880 netdev_features_change(dev); 6881 } 6882 EXPORT_SYMBOL(netdev_change_features); 6883 6884 /** 6885 * netif_stacked_transfer_operstate - transfer operstate 6886 * @rootdev: the root or lower level device to transfer state from 6887 * @dev: the device to transfer operstate to 6888 * 6889 * Transfer operational state from root to device. This is normally 6890 * called when a stacking relationship exists between the root 6891 * device and the device(a leaf device). 6892 */ 6893 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 6894 struct net_device *dev) 6895 { 6896 if (rootdev->operstate == IF_OPER_DORMANT) 6897 netif_dormant_on(dev); 6898 else 6899 netif_dormant_off(dev); 6900 6901 if (netif_carrier_ok(rootdev)) { 6902 if (!netif_carrier_ok(dev)) 6903 netif_carrier_on(dev); 6904 } else { 6905 if (netif_carrier_ok(dev)) 6906 netif_carrier_off(dev); 6907 } 6908 } 6909 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 6910 6911 #ifdef CONFIG_SYSFS 6912 static int netif_alloc_rx_queues(struct net_device *dev) 6913 { 6914 unsigned int i, count = dev->num_rx_queues; 6915 struct netdev_rx_queue *rx; 6916 size_t sz = count * sizeof(*rx); 6917 6918 BUG_ON(count < 1); 6919 6920 rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 6921 if (!rx) { 6922 rx = vzalloc(sz); 6923 if (!rx) 6924 return -ENOMEM; 6925 } 6926 dev->_rx = rx; 6927 6928 for (i = 0; i < count; i++) 6929 rx[i].dev = dev; 6930 return 0; 6931 } 6932 #endif 6933 6934 static void netdev_init_one_queue(struct net_device *dev, 6935 struct netdev_queue *queue, void *_unused) 6936 { 6937 /* Initialize queue lock */ 6938 spin_lock_init(&queue->_xmit_lock); 6939 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 6940 queue->xmit_lock_owner = -1; 6941 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 6942 queue->dev = dev; 6943 #ifdef CONFIG_BQL 6944 dql_init(&queue->dql, HZ); 6945 #endif 6946 } 6947 6948 static void netif_free_tx_queues(struct net_device *dev) 6949 { 6950 kvfree(dev->_tx); 6951 } 6952 6953 static int netif_alloc_netdev_queues(struct net_device *dev) 6954 { 6955 unsigned int count = dev->num_tx_queues; 6956 struct netdev_queue *tx; 6957 size_t sz = count * sizeof(*tx); 6958 6959 if (count < 1 || count > 0xffff) 6960 return -EINVAL; 6961 6962 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 6963 if (!tx) { 6964 tx = vzalloc(sz); 6965 if (!tx) 6966 return -ENOMEM; 6967 } 6968 dev->_tx = tx; 6969 6970 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 6971 spin_lock_init(&dev->tx_global_lock); 6972 6973 return 0; 6974 } 6975 6976 void netif_tx_stop_all_queues(struct net_device *dev) 6977 { 6978 unsigned int i; 6979 6980 for (i = 0; i < dev->num_tx_queues; i++) { 6981 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 6982 netif_tx_stop_queue(txq); 6983 } 6984 } 6985 EXPORT_SYMBOL(netif_tx_stop_all_queues); 6986 6987 /** 6988 * register_netdevice - register a network device 6989 * @dev: device to register 6990 * 6991 * Take a completed network device structure and add it to the kernel 6992 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 6993 * chain. 0 is returned on success. A negative errno code is returned 6994 * on a failure to set up the device, or if the name is a duplicate. 6995 * 6996 * Callers must hold the rtnl semaphore. You may want 6997 * register_netdev() instead of this. 6998 * 6999 * BUGS: 7000 * The locking appears insufficient to guarantee two parallel registers 7001 * will not get the same name. 7002 */ 7003 7004 int register_netdevice(struct net_device *dev) 7005 { 7006 int ret; 7007 struct net *net = dev_net(dev); 7008 7009 BUG_ON(dev_boot_phase); 7010 ASSERT_RTNL(); 7011 7012 might_sleep(); 7013 7014 /* When net_device's are persistent, this will be fatal. */ 7015 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 7016 BUG_ON(!net); 7017 7018 spin_lock_init(&dev->addr_list_lock); 7019 netdev_set_addr_lockdep_class(dev); 7020 7021 ret = dev_get_valid_name(net, dev, dev->name); 7022 if (ret < 0) 7023 goto out; 7024 7025 /* Init, if this function is available */ 7026 if (dev->netdev_ops->ndo_init) { 7027 ret = dev->netdev_ops->ndo_init(dev); 7028 if (ret) { 7029 if (ret > 0) 7030 ret = -EIO; 7031 goto out; 7032 } 7033 } 7034 7035 if (((dev->hw_features | dev->features) & 7036 NETIF_F_HW_VLAN_CTAG_FILTER) && 7037 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 7038 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 7039 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 7040 ret = -EINVAL; 7041 goto err_uninit; 7042 } 7043 7044 ret = -EBUSY; 7045 if (!dev->ifindex) 7046 dev->ifindex = dev_new_index(net); 7047 else if (__dev_get_by_index(net, dev->ifindex)) 7048 goto err_uninit; 7049 7050 /* Transfer changeable features to wanted_features and enable 7051 * software offloads (GSO and GRO). 7052 */ 7053 dev->hw_features |= NETIF_F_SOFT_FEATURES; 7054 dev->features |= NETIF_F_SOFT_FEATURES; 7055 dev->wanted_features = dev->features & dev->hw_features; 7056 7057 if (!(dev->flags & IFF_LOOPBACK)) 7058 dev->hw_features |= NETIF_F_NOCACHE_COPY; 7059 7060 /* If IPv4 TCP segmentation offload is supported we should also 7061 * allow the device to enable segmenting the frame with the option 7062 * of ignoring a static IP ID value. This doesn't enable the 7063 * feature itself but allows the user to enable it later. 7064 */ 7065 if (dev->hw_features & NETIF_F_TSO) 7066 dev->hw_features |= NETIF_F_TSO_MANGLEID; 7067 if (dev->vlan_features & NETIF_F_TSO) 7068 dev->vlan_features |= NETIF_F_TSO_MANGLEID; 7069 if (dev->mpls_features & NETIF_F_TSO) 7070 dev->mpls_features |= NETIF_F_TSO_MANGLEID; 7071 if (dev->hw_enc_features & NETIF_F_TSO) 7072 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 7073 7074 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 7075 */ 7076 dev->vlan_features |= NETIF_F_HIGHDMA; 7077 7078 /* Make NETIF_F_SG inheritable to tunnel devices. 7079 */ 7080 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL; 7081 7082 /* Make NETIF_F_SG inheritable to MPLS. 7083 */ 7084 dev->mpls_features |= NETIF_F_SG; 7085 7086 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 7087 ret = notifier_to_errno(ret); 7088 if (ret) 7089 goto err_uninit; 7090 7091 ret = netdev_register_kobject(dev); 7092 if (ret) 7093 goto err_uninit; 7094 dev->reg_state = NETREG_REGISTERED; 7095 7096 __netdev_update_features(dev); 7097 7098 /* 7099 * Default initial state at registry is that the 7100 * device is present. 7101 */ 7102 7103 set_bit(__LINK_STATE_PRESENT, &dev->state); 7104 7105 linkwatch_init_dev(dev); 7106 7107 dev_init_scheduler(dev); 7108 dev_hold(dev); 7109 list_netdevice(dev); 7110 add_device_randomness(dev->dev_addr, dev->addr_len); 7111 7112 /* If the device has permanent device address, driver should 7113 * set dev_addr and also addr_assign_type should be set to 7114 * NET_ADDR_PERM (default value). 7115 */ 7116 if (dev->addr_assign_type == NET_ADDR_PERM) 7117 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 7118 7119 /* Notify protocols, that a new device appeared. */ 7120 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 7121 ret = notifier_to_errno(ret); 7122 if (ret) { 7123 rollback_registered(dev); 7124 dev->reg_state = NETREG_UNREGISTERED; 7125 } 7126 /* 7127 * Prevent userspace races by waiting until the network 7128 * device is fully setup before sending notifications. 7129 */ 7130 if (!dev->rtnl_link_ops || 7131 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 7132 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 7133 7134 out: 7135 return ret; 7136 7137 err_uninit: 7138 if (dev->netdev_ops->ndo_uninit) 7139 dev->netdev_ops->ndo_uninit(dev); 7140 goto out; 7141 } 7142 EXPORT_SYMBOL(register_netdevice); 7143 7144 /** 7145 * init_dummy_netdev - init a dummy network device for NAPI 7146 * @dev: device to init 7147 * 7148 * This takes a network device structure and initialize the minimum 7149 * amount of fields so it can be used to schedule NAPI polls without 7150 * registering a full blown interface. This is to be used by drivers 7151 * that need to tie several hardware interfaces to a single NAPI 7152 * poll scheduler due to HW limitations. 7153 */ 7154 int init_dummy_netdev(struct net_device *dev) 7155 { 7156 /* Clear everything. Note we don't initialize spinlocks 7157 * are they aren't supposed to be taken by any of the 7158 * NAPI code and this dummy netdev is supposed to be 7159 * only ever used for NAPI polls 7160 */ 7161 memset(dev, 0, sizeof(struct net_device)); 7162 7163 /* make sure we BUG if trying to hit standard 7164 * register/unregister code path 7165 */ 7166 dev->reg_state = NETREG_DUMMY; 7167 7168 /* NAPI wants this */ 7169 INIT_LIST_HEAD(&dev->napi_list); 7170 7171 /* a dummy interface is started by default */ 7172 set_bit(__LINK_STATE_PRESENT, &dev->state); 7173 set_bit(__LINK_STATE_START, &dev->state); 7174 7175 /* Note : We dont allocate pcpu_refcnt for dummy devices, 7176 * because users of this 'device' dont need to change 7177 * its refcount. 7178 */ 7179 7180 return 0; 7181 } 7182 EXPORT_SYMBOL_GPL(init_dummy_netdev); 7183 7184 7185 /** 7186 * register_netdev - register a network device 7187 * @dev: device to register 7188 * 7189 * Take a completed network device structure and add it to the kernel 7190 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 7191 * chain. 0 is returned on success. A negative errno code is returned 7192 * on a failure to set up the device, or if the name is a duplicate. 7193 * 7194 * This is a wrapper around register_netdevice that takes the rtnl semaphore 7195 * and expands the device name if you passed a format string to 7196 * alloc_netdev. 7197 */ 7198 int register_netdev(struct net_device *dev) 7199 { 7200 int err; 7201 7202 rtnl_lock(); 7203 err = register_netdevice(dev); 7204 rtnl_unlock(); 7205 return err; 7206 } 7207 EXPORT_SYMBOL(register_netdev); 7208 7209 int netdev_refcnt_read(const struct net_device *dev) 7210 { 7211 int i, refcnt = 0; 7212 7213 for_each_possible_cpu(i) 7214 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 7215 return refcnt; 7216 } 7217 EXPORT_SYMBOL(netdev_refcnt_read); 7218 7219 /** 7220 * netdev_wait_allrefs - wait until all references are gone. 7221 * @dev: target net_device 7222 * 7223 * This is called when unregistering network devices. 7224 * 7225 * Any protocol or device that holds a reference should register 7226 * for netdevice notification, and cleanup and put back the 7227 * reference if they receive an UNREGISTER event. 7228 * We can get stuck here if buggy protocols don't correctly 7229 * call dev_put. 7230 */ 7231 static void netdev_wait_allrefs(struct net_device *dev) 7232 { 7233 unsigned long rebroadcast_time, warning_time; 7234 int refcnt; 7235 7236 linkwatch_forget_dev(dev); 7237 7238 rebroadcast_time = warning_time = jiffies; 7239 refcnt = netdev_refcnt_read(dev); 7240 7241 while (refcnt != 0) { 7242 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 7243 rtnl_lock(); 7244 7245 /* Rebroadcast unregister notification */ 7246 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 7247 7248 __rtnl_unlock(); 7249 rcu_barrier(); 7250 rtnl_lock(); 7251 7252 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 7253 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 7254 &dev->state)) { 7255 /* We must not have linkwatch events 7256 * pending on unregister. If this 7257 * happens, we simply run the queue 7258 * unscheduled, resulting in a noop 7259 * for this device. 7260 */ 7261 linkwatch_run_queue(); 7262 } 7263 7264 __rtnl_unlock(); 7265 7266 rebroadcast_time = jiffies; 7267 } 7268 7269 msleep(250); 7270 7271 refcnt = netdev_refcnt_read(dev); 7272 7273 if (time_after(jiffies, warning_time + 10 * HZ)) { 7274 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 7275 dev->name, refcnt); 7276 warning_time = jiffies; 7277 } 7278 } 7279 } 7280 7281 /* The sequence is: 7282 * 7283 * rtnl_lock(); 7284 * ... 7285 * register_netdevice(x1); 7286 * register_netdevice(x2); 7287 * ... 7288 * unregister_netdevice(y1); 7289 * unregister_netdevice(y2); 7290 * ... 7291 * rtnl_unlock(); 7292 * free_netdev(y1); 7293 * free_netdev(y2); 7294 * 7295 * We are invoked by rtnl_unlock(). 7296 * This allows us to deal with problems: 7297 * 1) We can delete sysfs objects which invoke hotplug 7298 * without deadlocking with linkwatch via keventd. 7299 * 2) Since we run with the RTNL semaphore not held, we can sleep 7300 * safely in order to wait for the netdev refcnt to drop to zero. 7301 * 7302 * We must not return until all unregister events added during 7303 * the interval the lock was held have been completed. 7304 */ 7305 void netdev_run_todo(void) 7306 { 7307 struct list_head list; 7308 7309 /* Snapshot list, allow later requests */ 7310 list_replace_init(&net_todo_list, &list); 7311 7312 __rtnl_unlock(); 7313 7314 7315 /* Wait for rcu callbacks to finish before next phase */ 7316 if (!list_empty(&list)) 7317 rcu_barrier(); 7318 7319 while (!list_empty(&list)) { 7320 struct net_device *dev 7321 = list_first_entry(&list, struct net_device, todo_list); 7322 list_del(&dev->todo_list); 7323 7324 rtnl_lock(); 7325 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 7326 __rtnl_unlock(); 7327 7328 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 7329 pr_err("network todo '%s' but state %d\n", 7330 dev->name, dev->reg_state); 7331 dump_stack(); 7332 continue; 7333 } 7334 7335 dev->reg_state = NETREG_UNREGISTERED; 7336 7337 netdev_wait_allrefs(dev); 7338 7339 /* paranoia */ 7340 BUG_ON(netdev_refcnt_read(dev)); 7341 BUG_ON(!list_empty(&dev->ptype_all)); 7342 BUG_ON(!list_empty(&dev->ptype_specific)); 7343 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 7344 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 7345 WARN_ON(dev->dn_ptr); 7346 7347 if (dev->destructor) 7348 dev->destructor(dev); 7349 7350 /* Report a network device has been unregistered */ 7351 rtnl_lock(); 7352 dev_net(dev)->dev_unreg_count--; 7353 __rtnl_unlock(); 7354 wake_up(&netdev_unregistering_wq); 7355 7356 /* Free network device */ 7357 kobject_put(&dev->dev.kobj); 7358 } 7359 } 7360 7361 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has 7362 * all the same fields in the same order as net_device_stats, with only 7363 * the type differing, but rtnl_link_stats64 may have additional fields 7364 * at the end for newer counters. 7365 */ 7366 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 7367 const struct net_device_stats *netdev_stats) 7368 { 7369 #if BITS_PER_LONG == 64 7370 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats)); 7371 memcpy(stats64, netdev_stats, sizeof(*stats64)); 7372 /* zero out counters that only exist in rtnl_link_stats64 */ 7373 memset((char *)stats64 + sizeof(*netdev_stats), 0, 7374 sizeof(*stats64) - sizeof(*netdev_stats)); 7375 #else 7376 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long); 7377 const unsigned long *src = (const unsigned long *)netdev_stats; 7378 u64 *dst = (u64 *)stats64; 7379 7380 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64)); 7381 for (i = 0; i < n; i++) 7382 dst[i] = src[i]; 7383 /* zero out counters that only exist in rtnl_link_stats64 */ 7384 memset((char *)stats64 + n * sizeof(u64), 0, 7385 sizeof(*stats64) - n * sizeof(u64)); 7386 #endif 7387 } 7388 EXPORT_SYMBOL(netdev_stats_to_stats64); 7389 7390 /** 7391 * dev_get_stats - get network device statistics 7392 * @dev: device to get statistics from 7393 * @storage: place to store stats 7394 * 7395 * Get network statistics from device. Return @storage. 7396 * The device driver may provide its own method by setting 7397 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 7398 * otherwise the internal statistics structure is used. 7399 */ 7400 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 7401 struct rtnl_link_stats64 *storage) 7402 { 7403 const struct net_device_ops *ops = dev->netdev_ops; 7404 7405 if (ops->ndo_get_stats64) { 7406 memset(storage, 0, sizeof(*storage)); 7407 ops->ndo_get_stats64(dev, storage); 7408 } else if (ops->ndo_get_stats) { 7409 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 7410 } else { 7411 netdev_stats_to_stats64(storage, &dev->stats); 7412 } 7413 storage->rx_dropped += atomic_long_read(&dev->rx_dropped); 7414 storage->tx_dropped += atomic_long_read(&dev->tx_dropped); 7415 storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler); 7416 return storage; 7417 } 7418 EXPORT_SYMBOL(dev_get_stats); 7419 7420 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 7421 { 7422 struct netdev_queue *queue = dev_ingress_queue(dev); 7423 7424 #ifdef CONFIG_NET_CLS_ACT 7425 if (queue) 7426 return queue; 7427 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 7428 if (!queue) 7429 return NULL; 7430 netdev_init_one_queue(dev, queue, NULL); 7431 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 7432 queue->qdisc_sleeping = &noop_qdisc; 7433 rcu_assign_pointer(dev->ingress_queue, queue); 7434 #endif 7435 return queue; 7436 } 7437 7438 static const struct ethtool_ops default_ethtool_ops; 7439 7440 void netdev_set_default_ethtool_ops(struct net_device *dev, 7441 const struct ethtool_ops *ops) 7442 { 7443 if (dev->ethtool_ops == &default_ethtool_ops) 7444 dev->ethtool_ops = ops; 7445 } 7446 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 7447 7448 void netdev_freemem(struct net_device *dev) 7449 { 7450 char *addr = (char *)dev - dev->padded; 7451 7452 kvfree(addr); 7453 } 7454 7455 /** 7456 * alloc_netdev_mqs - allocate network device 7457 * @sizeof_priv: size of private data to allocate space for 7458 * @name: device name format string 7459 * @name_assign_type: origin of device name 7460 * @setup: callback to initialize device 7461 * @txqs: the number of TX subqueues to allocate 7462 * @rxqs: the number of RX subqueues to allocate 7463 * 7464 * Allocates a struct net_device with private data area for driver use 7465 * and performs basic initialization. Also allocates subqueue structs 7466 * for each queue on the device. 7467 */ 7468 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 7469 unsigned char name_assign_type, 7470 void (*setup)(struct net_device *), 7471 unsigned int txqs, unsigned int rxqs) 7472 { 7473 struct net_device *dev; 7474 size_t alloc_size; 7475 struct net_device *p; 7476 7477 BUG_ON(strlen(name) >= sizeof(dev->name)); 7478 7479 if (txqs < 1) { 7480 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 7481 return NULL; 7482 } 7483 7484 #ifdef CONFIG_SYSFS 7485 if (rxqs < 1) { 7486 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 7487 return NULL; 7488 } 7489 #endif 7490 7491 alloc_size = sizeof(struct net_device); 7492 if (sizeof_priv) { 7493 /* ensure 32-byte alignment of private area */ 7494 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 7495 alloc_size += sizeof_priv; 7496 } 7497 /* ensure 32-byte alignment of whole construct */ 7498 alloc_size += NETDEV_ALIGN - 1; 7499 7500 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 7501 if (!p) 7502 p = vzalloc(alloc_size); 7503 if (!p) 7504 return NULL; 7505 7506 dev = PTR_ALIGN(p, NETDEV_ALIGN); 7507 dev->padded = (char *)dev - (char *)p; 7508 7509 dev->pcpu_refcnt = alloc_percpu(int); 7510 if (!dev->pcpu_refcnt) 7511 goto free_dev; 7512 7513 if (dev_addr_init(dev)) 7514 goto free_pcpu; 7515 7516 dev_mc_init(dev); 7517 dev_uc_init(dev); 7518 7519 dev_net_set(dev, &init_net); 7520 7521 dev->gso_max_size = GSO_MAX_SIZE; 7522 dev->gso_max_segs = GSO_MAX_SEGS; 7523 7524 INIT_LIST_HEAD(&dev->napi_list); 7525 INIT_LIST_HEAD(&dev->unreg_list); 7526 INIT_LIST_HEAD(&dev->close_list); 7527 INIT_LIST_HEAD(&dev->link_watch_list); 7528 INIT_LIST_HEAD(&dev->adj_list.upper); 7529 INIT_LIST_HEAD(&dev->adj_list.lower); 7530 INIT_LIST_HEAD(&dev->all_adj_list.upper); 7531 INIT_LIST_HEAD(&dev->all_adj_list.lower); 7532 INIT_LIST_HEAD(&dev->ptype_all); 7533 INIT_LIST_HEAD(&dev->ptype_specific); 7534 #ifdef CONFIG_NET_SCHED 7535 hash_init(dev->qdisc_hash); 7536 #endif 7537 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 7538 setup(dev); 7539 7540 if (!dev->tx_queue_len) { 7541 dev->priv_flags |= IFF_NO_QUEUE; 7542 dev->tx_queue_len = 1; 7543 } 7544 7545 dev->num_tx_queues = txqs; 7546 dev->real_num_tx_queues = txqs; 7547 if (netif_alloc_netdev_queues(dev)) 7548 goto free_all; 7549 7550 #ifdef CONFIG_SYSFS 7551 dev->num_rx_queues = rxqs; 7552 dev->real_num_rx_queues = rxqs; 7553 if (netif_alloc_rx_queues(dev)) 7554 goto free_all; 7555 #endif 7556 7557 strcpy(dev->name, name); 7558 dev->name_assign_type = name_assign_type; 7559 dev->group = INIT_NETDEV_GROUP; 7560 if (!dev->ethtool_ops) 7561 dev->ethtool_ops = &default_ethtool_ops; 7562 7563 nf_hook_ingress_init(dev); 7564 7565 return dev; 7566 7567 free_all: 7568 free_netdev(dev); 7569 return NULL; 7570 7571 free_pcpu: 7572 free_percpu(dev->pcpu_refcnt); 7573 free_dev: 7574 netdev_freemem(dev); 7575 return NULL; 7576 } 7577 EXPORT_SYMBOL(alloc_netdev_mqs); 7578 7579 /** 7580 * free_netdev - free network device 7581 * @dev: device 7582 * 7583 * This function does the last stage of destroying an allocated device 7584 * interface. The reference to the device object is released. 7585 * If this is the last reference then it will be freed. 7586 * Must be called in process context. 7587 */ 7588 void free_netdev(struct net_device *dev) 7589 { 7590 struct napi_struct *p, *n; 7591 7592 might_sleep(); 7593 netif_free_tx_queues(dev); 7594 #ifdef CONFIG_SYSFS 7595 kvfree(dev->_rx); 7596 #endif 7597 7598 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 7599 7600 /* Flush device addresses */ 7601 dev_addr_flush(dev); 7602 7603 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 7604 netif_napi_del(p); 7605 7606 free_percpu(dev->pcpu_refcnt); 7607 dev->pcpu_refcnt = NULL; 7608 7609 /* Compatibility with error handling in drivers */ 7610 if (dev->reg_state == NETREG_UNINITIALIZED) { 7611 netdev_freemem(dev); 7612 return; 7613 } 7614 7615 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 7616 dev->reg_state = NETREG_RELEASED; 7617 7618 /* will free via device release */ 7619 put_device(&dev->dev); 7620 } 7621 EXPORT_SYMBOL(free_netdev); 7622 7623 /** 7624 * synchronize_net - Synchronize with packet receive processing 7625 * 7626 * Wait for packets currently being received to be done. 7627 * Does not block later packets from starting. 7628 */ 7629 void synchronize_net(void) 7630 { 7631 might_sleep(); 7632 if (rtnl_is_locked()) 7633 synchronize_rcu_expedited(); 7634 else 7635 synchronize_rcu(); 7636 } 7637 EXPORT_SYMBOL(synchronize_net); 7638 7639 /** 7640 * unregister_netdevice_queue - remove device from the kernel 7641 * @dev: device 7642 * @head: list 7643 * 7644 * This function shuts down a device interface and removes it 7645 * from the kernel tables. 7646 * If head not NULL, device is queued to be unregistered later. 7647 * 7648 * Callers must hold the rtnl semaphore. You may want 7649 * unregister_netdev() instead of this. 7650 */ 7651 7652 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 7653 { 7654 ASSERT_RTNL(); 7655 7656 if (head) { 7657 list_move_tail(&dev->unreg_list, head); 7658 } else { 7659 rollback_registered(dev); 7660 /* Finish processing unregister after unlock */ 7661 net_set_todo(dev); 7662 } 7663 } 7664 EXPORT_SYMBOL(unregister_netdevice_queue); 7665 7666 /** 7667 * unregister_netdevice_many - unregister many devices 7668 * @head: list of devices 7669 * 7670 * Note: As most callers use a stack allocated list_head, 7671 * we force a list_del() to make sure stack wont be corrupted later. 7672 */ 7673 void unregister_netdevice_many(struct list_head *head) 7674 { 7675 struct net_device *dev; 7676 7677 if (!list_empty(head)) { 7678 rollback_registered_many(head); 7679 list_for_each_entry(dev, head, unreg_list) 7680 net_set_todo(dev); 7681 list_del(head); 7682 } 7683 } 7684 EXPORT_SYMBOL(unregister_netdevice_many); 7685 7686 /** 7687 * unregister_netdev - remove device from the kernel 7688 * @dev: device 7689 * 7690 * This function shuts down a device interface and removes it 7691 * from the kernel tables. 7692 * 7693 * This is just a wrapper for unregister_netdevice that takes 7694 * the rtnl semaphore. In general you want to use this and not 7695 * unregister_netdevice. 7696 */ 7697 void unregister_netdev(struct net_device *dev) 7698 { 7699 rtnl_lock(); 7700 unregister_netdevice(dev); 7701 rtnl_unlock(); 7702 } 7703 EXPORT_SYMBOL(unregister_netdev); 7704 7705 /** 7706 * dev_change_net_namespace - move device to different nethost namespace 7707 * @dev: device 7708 * @net: network namespace 7709 * @pat: If not NULL name pattern to try if the current device name 7710 * is already taken in the destination network namespace. 7711 * 7712 * This function shuts down a device interface and moves it 7713 * to a new network namespace. On success 0 is returned, on 7714 * a failure a netagive errno code is returned. 7715 * 7716 * Callers must hold the rtnl semaphore. 7717 */ 7718 7719 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 7720 { 7721 int err; 7722 7723 ASSERT_RTNL(); 7724 7725 /* Don't allow namespace local devices to be moved. */ 7726 err = -EINVAL; 7727 if (dev->features & NETIF_F_NETNS_LOCAL) 7728 goto out; 7729 7730 /* Ensure the device has been registrered */ 7731 if (dev->reg_state != NETREG_REGISTERED) 7732 goto out; 7733 7734 /* Get out if there is nothing todo */ 7735 err = 0; 7736 if (net_eq(dev_net(dev), net)) 7737 goto out; 7738 7739 /* Pick the destination device name, and ensure 7740 * we can use it in the destination network namespace. 7741 */ 7742 err = -EEXIST; 7743 if (__dev_get_by_name(net, dev->name)) { 7744 /* We get here if we can't use the current device name */ 7745 if (!pat) 7746 goto out; 7747 if (dev_get_valid_name(net, dev, pat) < 0) 7748 goto out; 7749 } 7750 7751 /* 7752 * And now a mini version of register_netdevice unregister_netdevice. 7753 */ 7754 7755 /* If device is running close it first. */ 7756 dev_close(dev); 7757 7758 /* And unlink it from device chain */ 7759 err = -ENODEV; 7760 unlist_netdevice(dev); 7761 7762 synchronize_net(); 7763 7764 /* Shutdown queueing discipline. */ 7765 dev_shutdown(dev); 7766 7767 /* Notify protocols, that we are about to destroy 7768 this device. They should clean all the things. 7769 7770 Note that dev->reg_state stays at NETREG_REGISTERED. 7771 This is wanted because this way 8021q and macvlan know 7772 the device is just moving and can keep their slaves up. 7773 */ 7774 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 7775 rcu_barrier(); 7776 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 7777 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL); 7778 7779 /* 7780 * Flush the unicast and multicast chains 7781 */ 7782 dev_uc_flush(dev); 7783 dev_mc_flush(dev); 7784 7785 /* Send a netdev-removed uevent to the old namespace */ 7786 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 7787 netdev_adjacent_del_links(dev); 7788 7789 /* Actually switch the network namespace */ 7790 dev_net_set(dev, net); 7791 7792 /* If there is an ifindex conflict assign a new one */ 7793 if (__dev_get_by_index(net, dev->ifindex)) 7794 dev->ifindex = dev_new_index(net); 7795 7796 /* Send a netdev-add uevent to the new namespace */ 7797 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 7798 netdev_adjacent_add_links(dev); 7799 7800 /* Fixup kobjects */ 7801 err = device_rename(&dev->dev, dev->name); 7802 WARN_ON(err); 7803 7804 /* Add the device back in the hashes */ 7805 list_netdevice(dev); 7806 7807 /* Notify protocols, that a new device appeared. */ 7808 call_netdevice_notifiers(NETDEV_REGISTER, dev); 7809 7810 /* 7811 * Prevent userspace races by waiting until the network 7812 * device is fully setup before sending notifications. 7813 */ 7814 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 7815 7816 synchronize_net(); 7817 err = 0; 7818 out: 7819 return err; 7820 } 7821 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 7822 7823 static int dev_cpu_callback(struct notifier_block *nfb, 7824 unsigned long action, 7825 void *ocpu) 7826 { 7827 struct sk_buff **list_skb; 7828 struct sk_buff *skb; 7829 unsigned int cpu, oldcpu = (unsigned long)ocpu; 7830 struct softnet_data *sd, *oldsd; 7831 7832 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 7833 return NOTIFY_OK; 7834 7835 local_irq_disable(); 7836 cpu = smp_processor_id(); 7837 sd = &per_cpu(softnet_data, cpu); 7838 oldsd = &per_cpu(softnet_data, oldcpu); 7839 7840 /* Find end of our completion_queue. */ 7841 list_skb = &sd->completion_queue; 7842 while (*list_skb) 7843 list_skb = &(*list_skb)->next; 7844 /* Append completion queue from offline CPU. */ 7845 *list_skb = oldsd->completion_queue; 7846 oldsd->completion_queue = NULL; 7847 7848 /* Append output queue from offline CPU. */ 7849 if (oldsd->output_queue) { 7850 *sd->output_queue_tailp = oldsd->output_queue; 7851 sd->output_queue_tailp = oldsd->output_queue_tailp; 7852 oldsd->output_queue = NULL; 7853 oldsd->output_queue_tailp = &oldsd->output_queue; 7854 } 7855 /* Append NAPI poll list from offline CPU, with one exception : 7856 * process_backlog() must be called by cpu owning percpu backlog. 7857 * We properly handle process_queue & input_pkt_queue later. 7858 */ 7859 while (!list_empty(&oldsd->poll_list)) { 7860 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 7861 struct napi_struct, 7862 poll_list); 7863 7864 list_del_init(&napi->poll_list); 7865 if (napi->poll == process_backlog) 7866 napi->state = 0; 7867 else 7868 ____napi_schedule(sd, napi); 7869 } 7870 7871 raise_softirq_irqoff(NET_TX_SOFTIRQ); 7872 local_irq_enable(); 7873 7874 /* Process offline CPU's input_pkt_queue */ 7875 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 7876 netif_rx_ni(skb); 7877 input_queue_head_incr(oldsd); 7878 } 7879 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 7880 netif_rx_ni(skb); 7881 input_queue_head_incr(oldsd); 7882 } 7883 7884 return NOTIFY_OK; 7885 } 7886 7887 7888 /** 7889 * netdev_increment_features - increment feature set by one 7890 * @all: current feature set 7891 * @one: new feature set 7892 * @mask: mask feature set 7893 * 7894 * Computes a new feature set after adding a device with feature set 7895 * @one to the master device with current feature set @all. Will not 7896 * enable anything that is off in @mask. Returns the new feature set. 7897 */ 7898 netdev_features_t netdev_increment_features(netdev_features_t all, 7899 netdev_features_t one, netdev_features_t mask) 7900 { 7901 if (mask & NETIF_F_HW_CSUM) 7902 mask |= NETIF_F_CSUM_MASK; 7903 mask |= NETIF_F_VLAN_CHALLENGED; 7904 7905 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask; 7906 all &= one | ~NETIF_F_ALL_FOR_ALL; 7907 7908 /* If one device supports hw checksumming, set for all. */ 7909 if (all & NETIF_F_HW_CSUM) 7910 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM); 7911 7912 return all; 7913 } 7914 EXPORT_SYMBOL(netdev_increment_features); 7915 7916 static struct hlist_head * __net_init netdev_create_hash(void) 7917 { 7918 int i; 7919 struct hlist_head *hash; 7920 7921 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 7922 if (hash != NULL) 7923 for (i = 0; i < NETDEV_HASHENTRIES; i++) 7924 INIT_HLIST_HEAD(&hash[i]); 7925 7926 return hash; 7927 } 7928 7929 /* Initialize per network namespace state */ 7930 static int __net_init netdev_init(struct net *net) 7931 { 7932 if (net != &init_net) 7933 INIT_LIST_HEAD(&net->dev_base_head); 7934 7935 net->dev_name_head = netdev_create_hash(); 7936 if (net->dev_name_head == NULL) 7937 goto err_name; 7938 7939 net->dev_index_head = netdev_create_hash(); 7940 if (net->dev_index_head == NULL) 7941 goto err_idx; 7942 7943 return 0; 7944 7945 err_idx: 7946 kfree(net->dev_name_head); 7947 err_name: 7948 return -ENOMEM; 7949 } 7950 7951 /** 7952 * netdev_drivername - network driver for the device 7953 * @dev: network device 7954 * 7955 * Determine network driver for device. 7956 */ 7957 const char *netdev_drivername(const struct net_device *dev) 7958 { 7959 const struct device_driver *driver; 7960 const struct device *parent; 7961 const char *empty = ""; 7962 7963 parent = dev->dev.parent; 7964 if (!parent) 7965 return empty; 7966 7967 driver = parent->driver; 7968 if (driver && driver->name) 7969 return driver->name; 7970 return empty; 7971 } 7972 7973 static void __netdev_printk(const char *level, const struct net_device *dev, 7974 struct va_format *vaf) 7975 { 7976 if (dev && dev->dev.parent) { 7977 dev_printk_emit(level[1] - '0', 7978 dev->dev.parent, 7979 "%s %s %s%s: %pV", 7980 dev_driver_string(dev->dev.parent), 7981 dev_name(dev->dev.parent), 7982 netdev_name(dev), netdev_reg_state(dev), 7983 vaf); 7984 } else if (dev) { 7985 printk("%s%s%s: %pV", 7986 level, netdev_name(dev), netdev_reg_state(dev), vaf); 7987 } else { 7988 printk("%s(NULL net_device): %pV", level, vaf); 7989 } 7990 } 7991 7992 void netdev_printk(const char *level, const struct net_device *dev, 7993 const char *format, ...) 7994 { 7995 struct va_format vaf; 7996 va_list args; 7997 7998 va_start(args, format); 7999 8000 vaf.fmt = format; 8001 vaf.va = &args; 8002 8003 __netdev_printk(level, dev, &vaf); 8004 8005 va_end(args); 8006 } 8007 EXPORT_SYMBOL(netdev_printk); 8008 8009 #define define_netdev_printk_level(func, level) \ 8010 void func(const struct net_device *dev, const char *fmt, ...) \ 8011 { \ 8012 struct va_format vaf; \ 8013 va_list args; \ 8014 \ 8015 va_start(args, fmt); \ 8016 \ 8017 vaf.fmt = fmt; \ 8018 vaf.va = &args; \ 8019 \ 8020 __netdev_printk(level, dev, &vaf); \ 8021 \ 8022 va_end(args); \ 8023 } \ 8024 EXPORT_SYMBOL(func); 8025 8026 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 8027 define_netdev_printk_level(netdev_alert, KERN_ALERT); 8028 define_netdev_printk_level(netdev_crit, KERN_CRIT); 8029 define_netdev_printk_level(netdev_err, KERN_ERR); 8030 define_netdev_printk_level(netdev_warn, KERN_WARNING); 8031 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 8032 define_netdev_printk_level(netdev_info, KERN_INFO); 8033 8034 static void __net_exit netdev_exit(struct net *net) 8035 { 8036 kfree(net->dev_name_head); 8037 kfree(net->dev_index_head); 8038 } 8039 8040 static struct pernet_operations __net_initdata netdev_net_ops = { 8041 .init = netdev_init, 8042 .exit = netdev_exit, 8043 }; 8044 8045 static void __net_exit default_device_exit(struct net *net) 8046 { 8047 struct net_device *dev, *aux; 8048 /* 8049 * Push all migratable network devices back to the 8050 * initial network namespace 8051 */ 8052 rtnl_lock(); 8053 for_each_netdev_safe(net, dev, aux) { 8054 int err; 8055 char fb_name[IFNAMSIZ]; 8056 8057 /* Ignore unmoveable devices (i.e. loopback) */ 8058 if (dev->features & NETIF_F_NETNS_LOCAL) 8059 continue; 8060 8061 /* Leave virtual devices for the generic cleanup */ 8062 if (dev->rtnl_link_ops) 8063 continue; 8064 8065 /* Push remaining network devices to init_net */ 8066 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 8067 err = dev_change_net_namespace(dev, &init_net, fb_name); 8068 if (err) { 8069 pr_emerg("%s: failed to move %s to init_net: %d\n", 8070 __func__, dev->name, err); 8071 BUG(); 8072 } 8073 } 8074 rtnl_unlock(); 8075 } 8076 8077 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list) 8078 { 8079 /* Return with the rtnl_lock held when there are no network 8080 * devices unregistering in any network namespace in net_list. 8081 */ 8082 struct net *net; 8083 bool unregistering; 8084 DEFINE_WAIT_FUNC(wait, woken_wake_function); 8085 8086 add_wait_queue(&netdev_unregistering_wq, &wait); 8087 for (;;) { 8088 unregistering = false; 8089 rtnl_lock(); 8090 list_for_each_entry(net, net_list, exit_list) { 8091 if (net->dev_unreg_count > 0) { 8092 unregistering = true; 8093 break; 8094 } 8095 } 8096 if (!unregistering) 8097 break; 8098 __rtnl_unlock(); 8099 8100 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 8101 } 8102 remove_wait_queue(&netdev_unregistering_wq, &wait); 8103 } 8104 8105 static void __net_exit default_device_exit_batch(struct list_head *net_list) 8106 { 8107 /* At exit all network devices most be removed from a network 8108 * namespace. Do this in the reverse order of registration. 8109 * Do this across as many network namespaces as possible to 8110 * improve batching efficiency. 8111 */ 8112 struct net_device *dev; 8113 struct net *net; 8114 LIST_HEAD(dev_kill_list); 8115 8116 /* To prevent network device cleanup code from dereferencing 8117 * loopback devices or network devices that have been freed 8118 * wait here for all pending unregistrations to complete, 8119 * before unregistring the loopback device and allowing the 8120 * network namespace be freed. 8121 * 8122 * The netdev todo list containing all network devices 8123 * unregistrations that happen in default_device_exit_batch 8124 * will run in the rtnl_unlock() at the end of 8125 * default_device_exit_batch. 8126 */ 8127 rtnl_lock_unregistering(net_list); 8128 list_for_each_entry(net, net_list, exit_list) { 8129 for_each_netdev_reverse(net, dev) { 8130 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 8131 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 8132 else 8133 unregister_netdevice_queue(dev, &dev_kill_list); 8134 } 8135 } 8136 unregister_netdevice_many(&dev_kill_list); 8137 rtnl_unlock(); 8138 } 8139 8140 static struct pernet_operations __net_initdata default_device_ops = { 8141 .exit = default_device_exit, 8142 .exit_batch = default_device_exit_batch, 8143 }; 8144 8145 /* 8146 * Initialize the DEV module. At boot time this walks the device list and 8147 * unhooks any devices that fail to initialise (normally hardware not 8148 * present) and leaves us with a valid list of present and active devices. 8149 * 8150 */ 8151 8152 /* 8153 * This is called single threaded during boot, so no need 8154 * to take the rtnl semaphore. 8155 */ 8156 static int __init net_dev_init(void) 8157 { 8158 int i, rc = -ENOMEM; 8159 8160 BUG_ON(!dev_boot_phase); 8161 8162 if (dev_proc_init()) 8163 goto out; 8164 8165 if (netdev_kobject_init()) 8166 goto out; 8167 8168 INIT_LIST_HEAD(&ptype_all); 8169 for (i = 0; i < PTYPE_HASH_SIZE; i++) 8170 INIT_LIST_HEAD(&ptype_base[i]); 8171 8172 INIT_LIST_HEAD(&offload_base); 8173 8174 if (register_pernet_subsys(&netdev_net_ops)) 8175 goto out; 8176 8177 /* 8178 * Initialise the packet receive queues. 8179 */ 8180 8181 for_each_possible_cpu(i) { 8182 struct work_struct *flush = per_cpu_ptr(&flush_works, i); 8183 struct softnet_data *sd = &per_cpu(softnet_data, i); 8184 8185 INIT_WORK(flush, flush_backlog); 8186 8187 skb_queue_head_init(&sd->input_pkt_queue); 8188 skb_queue_head_init(&sd->process_queue); 8189 INIT_LIST_HEAD(&sd->poll_list); 8190 sd->output_queue_tailp = &sd->output_queue; 8191 #ifdef CONFIG_RPS 8192 sd->csd.func = rps_trigger_softirq; 8193 sd->csd.info = sd; 8194 sd->cpu = i; 8195 #endif 8196 8197 sd->backlog.poll = process_backlog; 8198 sd->backlog.weight = weight_p; 8199 } 8200 8201 dev_boot_phase = 0; 8202 8203 /* The loopback device is special if any other network devices 8204 * is present in a network namespace the loopback device must 8205 * be present. Since we now dynamically allocate and free the 8206 * loopback device ensure this invariant is maintained by 8207 * keeping the loopback device as the first device on the 8208 * list of network devices. Ensuring the loopback devices 8209 * is the first device that appears and the last network device 8210 * that disappears. 8211 */ 8212 if (register_pernet_device(&loopback_net_ops)) 8213 goto out; 8214 8215 if (register_pernet_device(&default_device_ops)) 8216 goto out; 8217 8218 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 8219 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 8220 8221 hotcpu_notifier(dev_cpu_callback, 0); 8222 dst_subsys_init(); 8223 rc = 0; 8224 out: 8225 return rc; 8226 } 8227 8228 subsys_initcall(net_dev_init); 8229