xref: /linux/net/core/dev.c (revision 4e887471e8e3a513607495d18333c44f59a82c5a)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitmap.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <net/tcx.h>
111 #include <linux/highmem.h>
112 #include <linux/init.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/iw_handler.h>
118 #include <asm/current.h>
119 #include <linux/audit.h>
120 #include <linux/dmaengine.h>
121 #include <linux/err.h>
122 #include <linux/ctype.h>
123 #include <linux/if_arp.h>
124 #include <linux/if_vlan.h>
125 #include <linux/ip.h>
126 #include <net/ip.h>
127 #include <net/mpls.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <trace/events/net.h>
134 #include <trace/events/skb.h>
135 #include <trace/events/qdisc.h>
136 #include <trace/events/xdp.h>
137 #include <linux/inetdevice.h>
138 #include <linux/cpu_rmap.h>
139 #include <linux/static_key.h>
140 #include <linux/hashtable.h>
141 #include <linux/vmalloc.h>
142 #include <linux/if_macvlan.h>
143 #include <linux/errqueue.h>
144 #include <linux/hrtimer.h>
145 #include <linux/netfilter_netdev.h>
146 #include <linux/crash_dump.h>
147 #include <linux/sctp.h>
148 #include <net/udp_tunnel.h>
149 #include <linux/net_namespace.h>
150 #include <linux/indirect_call_wrapper.h>
151 #include <net/devlink.h>
152 #include <linux/pm_runtime.h>
153 #include <linux/prandom.h>
154 #include <linux/once_lite.h>
155 #include <net/netdev_rx_queue.h>
156 #include <net/page_pool/types.h>
157 #include <net/page_pool/helpers.h>
158 
159 #include "dev.h"
160 #include "net-sysfs.h"
161 
162 static DEFINE_SPINLOCK(ptype_lock);
163 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
164 struct list_head ptype_all __read_mostly;	/* Taps */
165 
166 static int netif_rx_internal(struct sk_buff *skb);
167 static int call_netdevice_notifiers_extack(unsigned long val,
168 					   struct net_device *dev,
169 					   struct netlink_ext_ack *extack);
170 
171 static DEFINE_MUTEX(ifalias_mutex);
172 
173 /* protects napi_hash addition/deletion and napi_gen_id */
174 static DEFINE_SPINLOCK(napi_hash_lock);
175 
176 static unsigned int napi_gen_id = NR_CPUS;
177 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
178 
179 static DECLARE_RWSEM(devnet_rename_sem);
180 
181 static inline void dev_base_seq_inc(struct net *net)
182 {
183 	unsigned int val = net->dev_base_seq + 1;
184 
185 	WRITE_ONCE(net->dev_base_seq, val ?: 1);
186 }
187 
188 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
189 {
190 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
191 
192 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
193 }
194 
195 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
196 {
197 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
198 }
199 
200 static inline void rps_lock_irqsave(struct softnet_data *sd,
201 				    unsigned long *flags)
202 {
203 	if (IS_ENABLED(CONFIG_RPS))
204 		spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
205 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
206 		local_irq_save(*flags);
207 }
208 
209 static inline void rps_lock_irq_disable(struct softnet_data *sd)
210 {
211 	if (IS_ENABLED(CONFIG_RPS))
212 		spin_lock_irq(&sd->input_pkt_queue.lock);
213 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
214 		local_irq_disable();
215 }
216 
217 static inline void rps_unlock_irq_restore(struct softnet_data *sd,
218 					  unsigned long *flags)
219 {
220 	if (IS_ENABLED(CONFIG_RPS))
221 		spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
222 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
223 		local_irq_restore(*flags);
224 }
225 
226 static inline void rps_unlock_irq_enable(struct softnet_data *sd)
227 {
228 	if (IS_ENABLED(CONFIG_RPS))
229 		spin_unlock_irq(&sd->input_pkt_queue.lock);
230 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
231 		local_irq_enable();
232 }
233 
234 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
235 						       const char *name)
236 {
237 	struct netdev_name_node *name_node;
238 
239 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
240 	if (!name_node)
241 		return NULL;
242 	INIT_HLIST_NODE(&name_node->hlist);
243 	name_node->dev = dev;
244 	name_node->name = name;
245 	return name_node;
246 }
247 
248 static struct netdev_name_node *
249 netdev_name_node_head_alloc(struct net_device *dev)
250 {
251 	struct netdev_name_node *name_node;
252 
253 	name_node = netdev_name_node_alloc(dev, dev->name);
254 	if (!name_node)
255 		return NULL;
256 	INIT_LIST_HEAD(&name_node->list);
257 	return name_node;
258 }
259 
260 static void netdev_name_node_free(struct netdev_name_node *name_node)
261 {
262 	kfree(name_node);
263 }
264 
265 static void netdev_name_node_add(struct net *net,
266 				 struct netdev_name_node *name_node)
267 {
268 	hlist_add_head_rcu(&name_node->hlist,
269 			   dev_name_hash(net, name_node->name));
270 }
271 
272 static void netdev_name_node_del(struct netdev_name_node *name_node)
273 {
274 	hlist_del_rcu(&name_node->hlist);
275 }
276 
277 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
278 							const char *name)
279 {
280 	struct hlist_head *head = dev_name_hash(net, name);
281 	struct netdev_name_node *name_node;
282 
283 	hlist_for_each_entry(name_node, head, hlist)
284 		if (!strcmp(name_node->name, name))
285 			return name_node;
286 	return NULL;
287 }
288 
289 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
290 							    const char *name)
291 {
292 	struct hlist_head *head = dev_name_hash(net, name);
293 	struct netdev_name_node *name_node;
294 
295 	hlist_for_each_entry_rcu(name_node, head, hlist)
296 		if (!strcmp(name_node->name, name))
297 			return name_node;
298 	return NULL;
299 }
300 
301 bool netdev_name_in_use(struct net *net, const char *name)
302 {
303 	return netdev_name_node_lookup(net, name);
304 }
305 EXPORT_SYMBOL(netdev_name_in_use);
306 
307 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
308 {
309 	struct netdev_name_node *name_node;
310 	struct net *net = dev_net(dev);
311 
312 	name_node = netdev_name_node_lookup(net, name);
313 	if (name_node)
314 		return -EEXIST;
315 	name_node = netdev_name_node_alloc(dev, name);
316 	if (!name_node)
317 		return -ENOMEM;
318 	netdev_name_node_add(net, name_node);
319 	/* The node that holds dev->name acts as a head of per-device list. */
320 	list_add_tail_rcu(&name_node->list, &dev->name_node->list);
321 
322 	return 0;
323 }
324 
325 static void netdev_name_node_alt_free(struct rcu_head *head)
326 {
327 	struct netdev_name_node *name_node =
328 		container_of(head, struct netdev_name_node, rcu);
329 
330 	kfree(name_node->name);
331 	netdev_name_node_free(name_node);
332 }
333 
334 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
335 {
336 	netdev_name_node_del(name_node);
337 	list_del(&name_node->list);
338 	call_rcu(&name_node->rcu, netdev_name_node_alt_free);
339 }
340 
341 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
342 {
343 	struct netdev_name_node *name_node;
344 	struct net *net = dev_net(dev);
345 
346 	name_node = netdev_name_node_lookup(net, name);
347 	if (!name_node)
348 		return -ENOENT;
349 	/* lookup might have found our primary name or a name belonging
350 	 * to another device.
351 	 */
352 	if (name_node == dev->name_node || name_node->dev != dev)
353 		return -EINVAL;
354 
355 	__netdev_name_node_alt_destroy(name_node);
356 	return 0;
357 }
358 
359 static void netdev_name_node_alt_flush(struct net_device *dev)
360 {
361 	struct netdev_name_node *name_node, *tmp;
362 
363 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) {
364 		list_del(&name_node->list);
365 		netdev_name_node_alt_free(&name_node->rcu);
366 	}
367 }
368 
369 /* Device list insertion */
370 static void list_netdevice(struct net_device *dev)
371 {
372 	struct netdev_name_node *name_node;
373 	struct net *net = dev_net(dev);
374 
375 	ASSERT_RTNL();
376 
377 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
378 	netdev_name_node_add(net, dev->name_node);
379 	hlist_add_head_rcu(&dev->index_hlist,
380 			   dev_index_hash(net, dev->ifindex));
381 
382 	netdev_for_each_altname(dev, name_node)
383 		netdev_name_node_add(net, name_node);
384 
385 	/* We reserved the ifindex, this can't fail */
386 	WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL));
387 
388 	dev_base_seq_inc(net);
389 }
390 
391 /* Device list removal
392  * caller must respect a RCU grace period before freeing/reusing dev
393  */
394 static void unlist_netdevice(struct net_device *dev)
395 {
396 	struct netdev_name_node *name_node;
397 	struct net *net = dev_net(dev);
398 
399 	ASSERT_RTNL();
400 
401 	xa_erase(&net->dev_by_index, dev->ifindex);
402 
403 	netdev_for_each_altname(dev, name_node)
404 		netdev_name_node_del(name_node);
405 
406 	/* Unlink dev from the device chain */
407 	list_del_rcu(&dev->dev_list);
408 	netdev_name_node_del(dev->name_node);
409 	hlist_del_rcu(&dev->index_hlist);
410 
411 	dev_base_seq_inc(dev_net(dev));
412 }
413 
414 /*
415  *	Our notifier list
416  */
417 
418 static RAW_NOTIFIER_HEAD(netdev_chain);
419 
420 /*
421  *	Device drivers call our routines to queue packets here. We empty the
422  *	queue in the local softnet handler.
423  */
424 
425 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
426 EXPORT_PER_CPU_SYMBOL(softnet_data);
427 
428 /* Page_pool has a lockless array/stack to alloc/recycle pages.
429  * PP consumers must pay attention to run APIs in the appropriate context
430  * (e.g. NAPI context).
431  */
432 static DEFINE_PER_CPU_ALIGNED(struct page_pool *, system_page_pool);
433 
434 #ifdef CONFIG_LOCKDEP
435 /*
436  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
437  * according to dev->type
438  */
439 static const unsigned short netdev_lock_type[] = {
440 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
441 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
442 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
443 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
444 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
445 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
446 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
447 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
448 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
449 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
450 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
451 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
452 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
453 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
454 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
455 
456 static const char *const netdev_lock_name[] = {
457 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
458 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
459 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
460 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
461 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
462 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
463 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
464 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
465 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
466 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
467 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
468 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
469 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
470 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
471 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
472 
473 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
474 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
475 
476 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
477 {
478 	int i;
479 
480 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
481 		if (netdev_lock_type[i] == dev_type)
482 			return i;
483 	/* the last key is used by default */
484 	return ARRAY_SIZE(netdev_lock_type) - 1;
485 }
486 
487 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
488 						 unsigned short dev_type)
489 {
490 	int i;
491 
492 	i = netdev_lock_pos(dev_type);
493 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
494 				   netdev_lock_name[i]);
495 }
496 
497 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
498 {
499 	int i;
500 
501 	i = netdev_lock_pos(dev->type);
502 	lockdep_set_class_and_name(&dev->addr_list_lock,
503 				   &netdev_addr_lock_key[i],
504 				   netdev_lock_name[i]);
505 }
506 #else
507 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
508 						 unsigned short dev_type)
509 {
510 }
511 
512 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
513 {
514 }
515 #endif
516 
517 /*******************************************************************************
518  *
519  *		Protocol management and registration routines
520  *
521  *******************************************************************************/
522 
523 
524 /*
525  *	Add a protocol ID to the list. Now that the input handler is
526  *	smarter we can dispense with all the messy stuff that used to be
527  *	here.
528  *
529  *	BEWARE!!! Protocol handlers, mangling input packets,
530  *	MUST BE last in hash buckets and checking protocol handlers
531  *	MUST start from promiscuous ptype_all chain in net_bh.
532  *	It is true now, do not change it.
533  *	Explanation follows: if protocol handler, mangling packet, will
534  *	be the first on list, it is not able to sense, that packet
535  *	is cloned and should be copied-on-write, so that it will
536  *	change it and subsequent readers will get broken packet.
537  *							--ANK (980803)
538  */
539 
540 static inline struct list_head *ptype_head(const struct packet_type *pt)
541 {
542 	if (pt->type == htons(ETH_P_ALL))
543 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
544 	else
545 		return pt->dev ? &pt->dev->ptype_specific :
546 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
547 }
548 
549 /**
550  *	dev_add_pack - add packet handler
551  *	@pt: packet type declaration
552  *
553  *	Add a protocol handler to the networking stack. The passed &packet_type
554  *	is linked into kernel lists and may not be freed until it has been
555  *	removed from the kernel lists.
556  *
557  *	This call does not sleep therefore it can not
558  *	guarantee all CPU's that are in middle of receiving packets
559  *	will see the new packet type (until the next received packet).
560  */
561 
562 void dev_add_pack(struct packet_type *pt)
563 {
564 	struct list_head *head = ptype_head(pt);
565 
566 	spin_lock(&ptype_lock);
567 	list_add_rcu(&pt->list, head);
568 	spin_unlock(&ptype_lock);
569 }
570 EXPORT_SYMBOL(dev_add_pack);
571 
572 /**
573  *	__dev_remove_pack	 - remove packet handler
574  *	@pt: packet type declaration
575  *
576  *	Remove a protocol handler that was previously added to the kernel
577  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
578  *	from the kernel lists and can be freed or reused once this function
579  *	returns.
580  *
581  *      The packet type might still be in use by receivers
582  *	and must not be freed until after all the CPU's have gone
583  *	through a quiescent state.
584  */
585 void __dev_remove_pack(struct packet_type *pt)
586 {
587 	struct list_head *head = ptype_head(pt);
588 	struct packet_type *pt1;
589 
590 	spin_lock(&ptype_lock);
591 
592 	list_for_each_entry(pt1, head, list) {
593 		if (pt == pt1) {
594 			list_del_rcu(&pt->list);
595 			goto out;
596 		}
597 	}
598 
599 	pr_warn("dev_remove_pack: %p not found\n", pt);
600 out:
601 	spin_unlock(&ptype_lock);
602 }
603 EXPORT_SYMBOL(__dev_remove_pack);
604 
605 /**
606  *	dev_remove_pack	 - remove packet handler
607  *	@pt: packet type declaration
608  *
609  *	Remove a protocol handler that was previously added to the kernel
610  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
611  *	from the kernel lists and can be freed or reused once this function
612  *	returns.
613  *
614  *	This call sleeps to guarantee that no CPU is looking at the packet
615  *	type after return.
616  */
617 void dev_remove_pack(struct packet_type *pt)
618 {
619 	__dev_remove_pack(pt);
620 
621 	synchronize_net();
622 }
623 EXPORT_SYMBOL(dev_remove_pack);
624 
625 
626 /*******************************************************************************
627  *
628  *			    Device Interface Subroutines
629  *
630  *******************************************************************************/
631 
632 /**
633  *	dev_get_iflink	- get 'iflink' value of a interface
634  *	@dev: targeted interface
635  *
636  *	Indicates the ifindex the interface is linked to.
637  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
638  */
639 
640 int dev_get_iflink(const struct net_device *dev)
641 {
642 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
643 		return dev->netdev_ops->ndo_get_iflink(dev);
644 
645 	return READ_ONCE(dev->ifindex);
646 }
647 EXPORT_SYMBOL(dev_get_iflink);
648 
649 /**
650  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
651  *	@dev: targeted interface
652  *	@skb: The packet.
653  *
654  *	For better visibility of tunnel traffic OVS needs to retrieve
655  *	egress tunnel information for a packet. Following API allows
656  *	user to get this info.
657  */
658 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
659 {
660 	struct ip_tunnel_info *info;
661 
662 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
663 		return -EINVAL;
664 
665 	info = skb_tunnel_info_unclone(skb);
666 	if (!info)
667 		return -ENOMEM;
668 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
669 		return -EINVAL;
670 
671 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
672 }
673 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
674 
675 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
676 {
677 	int k = stack->num_paths++;
678 
679 	if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
680 		return NULL;
681 
682 	return &stack->path[k];
683 }
684 
685 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
686 			  struct net_device_path_stack *stack)
687 {
688 	const struct net_device *last_dev;
689 	struct net_device_path_ctx ctx = {
690 		.dev	= dev,
691 	};
692 	struct net_device_path *path;
693 	int ret = 0;
694 
695 	memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
696 	stack->num_paths = 0;
697 	while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
698 		last_dev = ctx.dev;
699 		path = dev_fwd_path(stack);
700 		if (!path)
701 			return -1;
702 
703 		memset(path, 0, sizeof(struct net_device_path));
704 		ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
705 		if (ret < 0)
706 			return -1;
707 
708 		if (WARN_ON_ONCE(last_dev == ctx.dev))
709 			return -1;
710 	}
711 
712 	if (!ctx.dev)
713 		return ret;
714 
715 	path = dev_fwd_path(stack);
716 	if (!path)
717 		return -1;
718 	path->type = DEV_PATH_ETHERNET;
719 	path->dev = ctx.dev;
720 
721 	return ret;
722 }
723 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
724 
725 /**
726  *	__dev_get_by_name	- find a device by its name
727  *	@net: the applicable net namespace
728  *	@name: name to find
729  *
730  *	Find an interface by name. Must be called under RTNL semaphore.
731  *	If the name is found a pointer to the device is returned.
732  *	If the name is not found then %NULL is returned. The
733  *	reference counters are not incremented so the caller must be
734  *	careful with locks.
735  */
736 
737 struct net_device *__dev_get_by_name(struct net *net, const char *name)
738 {
739 	struct netdev_name_node *node_name;
740 
741 	node_name = netdev_name_node_lookup(net, name);
742 	return node_name ? node_name->dev : NULL;
743 }
744 EXPORT_SYMBOL(__dev_get_by_name);
745 
746 /**
747  * dev_get_by_name_rcu	- find a device by its name
748  * @net: the applicable net namespace
749  * @name: name to find
750  *
751  * Find an interface by name.
752  * If the name is found a pointer to the device is returned.
753  * If the name is not found then %NULL is returned.
754  * The reference counters are not incremented so the caller must be
755  * careful with locks. The caller must hold RCU lock.
756  */
757 
758 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
759 {
760 	struct netdev_name_node *node_name;
761 
762 	node_name = netdev_name_node_lookup_rcu(net, name);
763 	return node_name ? node_name->dev : NULL;
764 }
765 EXPORT_SYMBOL(dev_get_by_name_rcu);
766 
767 /* Deprecated for new users, call netdev_get_by_name() instead */
768 struct net_device *dev_get_by_name(struct net *net, const char *name)
769 {
770 	struct net_device *dev;
771 
772 	rcu_read_lock();
773 	dev = dev_get_by_name_rcu(net, name);
774 	dev_hold(dev);
775 	rcu_read_unlock();
776 	return dev;
777 }
778 EXPORT_SYMBOL(dev_get_by_name);
779 
780 /**
781  *	netdev_get_by_name() - find a device by its name
782  *	@net: the applicable net namespace
783  *	@name: name to find
784  *	@tracker: tracking object for the acquired reference
785  *	@gfp: allocation flags for the tracker
786  *
787  *	Find an interface by name. This can be called from any
788  *	context and does its own locking. The returned handle has
789  *	the usage count incremented and the caller must use netdev_put() to
790  *	release it when it is no longer needed. %NULL is returned if no
791  *	matching device is found.
792  */
793 struct net_device *netdev_get_by_name(struct net *net, const char *name,
794 				      netdevice_tracker *tracker, gfp_t gfp)
795 {
796 	struct net_device *dev;
797 
798 	dev = dev_get_by_name(net, name);
799 	if (dev)
800 		netdev_tracker_alloc(dev, tracker, gfp);
801 	return dev;
802 }
803 EXPORT_SYMBOL(netdev_get_by_name);
804 
805 /**
806  *	__dev_get_by_index - find a device by its ifindex
807  *	@net: the applicable net namespace
808  *	@ifindex: index of device
809  *
810  *	Search for an interface by index. Returns %NULL if the device
811  *	is not found or a pointer to the device. The device has not
812  *	had its reference counter increased so the caller must be careful
813  *	about locking. The caller must hold the RTNL semaphore.
814  */
815 
816 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
817 {
818 	struct net_device *dev;
819 	struct hlist_head *head = dev_index_hash(net, ifindex);
820 
821 	hlist_for_each_entry(dev, head, index_hlist)
822 		if (dev->ifindex == ifindex)
823 			return dev;
824 
825 	return NULL;
826 }
827 EXPORT_SYMBOL(__dev_get_by_index);
828 
829 /**
830  *	dev_get_by_index_rcu - find a device by its ifindex
831  *	@net: the applicable net namespace
832  *	@ifindex: index of device
833  *
834  *	Search for an interface by index. Returns %NULL if the device
835  *	is not found or a pointer to the device. The device has not
836  *	had its reference counter increased so the caller must be careful
837  *	about locking. The caller must hold RCU lock.
838  */
839 
840 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
841 {
842 	struct net_device *dev;
843 	struct hlist_head *head = dev_index_hash(net, ifindex);
844 
845 	hlist_for_each_entry_rcu(dev, head, index_hlist)
846 		if (dev->ifindex == ifindex)
847 			return dev;
848 
849 	return NULL;
850 }
851 EXPORT_SYMBOL(dev_get_by_index_rcu);
852 
853 /* Deprecated for new users, call netdev_get_by_index() instead */
854 struct net_device *dev_get_by_index(struct net *net, int ifindex)
855 {
856 	struct net_device *dev;
857 
858 	rcu_read_lock();
859 	dev = dev_get_by_index_rcu(net, ifindex);
860 	dev_hold(dev);
861 	rcu_read_unlock();
862 	return dev;
863 }
864 EXPORT_SYMBOL(dev_get_by_index);
865 
866 /**
867  *	netdev_get_by_index() - find a device by its ifindex
868  *	@net: the applicable net namespace
869  *	@ifindex: index of device
870  *	@tracker: tracking object for the acquired reference
871  *	@gfp: allocation flags for the tracker
872  *
873  *	Search for an interface by index. Returns NULL if the device
874  *	is not found or a pointer to the device. The device returned has
875  *	had a reference added and the pointer is safe until the user calls
876  *	netdev_put() to indicate they have finished with it.
877  */
878 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
879 				       netdevice_tracker *tracker, gfp_t gfp)
880 {
881 	struct net_device *dev;
882 
883 	dev = dev_get_by_index(net, ifindex);
884 	if (dev)
885 		netdev_tracker_alloc(dev, tracker, gfp);
886 	return dev;
887 }
888 EXPORT_SYMBOL(netdev_get_by_index);
889 
890 /**
891  *	dev_get_by_napi_id - find a device by napi_id
892  *	@napi_id: ID of the NAPI struct
893  *
894  *	Search for an interface by NAPI ID. Returns %NULL if the device
895  *	is not found or a pointer to the device. The device has not had
896  *	its reference counter increased so the caller must be careful
897  *	about locking. The caller must hold RCU lock.
898  */
899 
900 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
901 {
902 	struct napi_struct *napi;
903 
904 	WARN_ON_ONCE(!rcu_read_lock_held());
905 
906 	if (napi_id < MIN_NAPI_ID)
907 		return NULL;
908 
909 	napi = napi_by_id(napi_id);
910 
911 	return napi ? napi->dev : NULL;
912 }
913 EXPORT_SYMBOL(dev_get_by_napi_id);
914 
915 /**
916  *	netdev_get_name - get a netdevice name, knowing its ifindex.
917  *	@net: network namespace
918  *	@name: a pointer to the buffer where the name will be stored.
919  *	@ifindex: the ifindex of the interface to get the name from.
920  */
921 int netdev_get_name(struct net *net, char *name, int ifindex)
922 {
923 	struct net_device *dev;
924 	int ret;
925 
926 	down_read(&devnet_rename_sem);
927 	rcu_read_lock();
928 
929 	dev = dev_get_by_index_rcu(net, ifindex);
930 	if (!dev) {
931 		ret = -ENODEV;
932 		goto out;
933 	}
934 
935 	strcpy(name, dev->name);
936 
937 	ret = 0;
938 out:
939 	rcu_read_unlock();
940 	up_read(&devnet_rename_sem);
941 	return ret;
942 }
943 
944 /**
945  *	dev_getbyhwaddr_rcu - find a device by its hardware address
946  *	@net: the applicable net namespace
947  *	@type: media type of device
948  *	@ha: hardware address
949  *
950  *	Search for an interface by MAC address. Returns NULL if the device
951  *	is not found or a pointer to the device.
952  *	The caller must hold RCU or RTNL.
953  *	The returned device has not had its ref count increased
954  *	and the caller must therefore be careful about locking
955  *
956  */
957 
958 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
959 				       const char *ha)
960 {
961 	struct net_device *dev;
962 
963 	for_each_netdev_rcu(net, dev)
964 		if (dev->type == type &&
965 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
966 			return dev;
967 
968 	return NULL;
969 }
970 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
971 
972 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
973 {
974 	struct net_device *dev, *ret = NULL;
975 
976 	rcu_read_lock();
977 	for_each_netdev_rcu(net, dev)
978 		if (dev->type == type) {
979 			dev_hold(dev);
980 			ret = dev;
981 			break;
982 		}
983 	rcu_read_unlock();
984 	return ret;
985 }
986 EXPORT_SYMBOL(dev_getfirstbyhwtype);
987 
988 /**
989  *	__dev_get_by_flags - find any device with given flags
990  *	@net: the applicable net namespace
991  *	@if_flags: IFF_* values
992  *	@mask: bitmask of bits in if_flags to check
993  *
994  *	Search for any interface with the given flags. Returns NULL if a device
995  *	is not found or a pointer to the device. Must be called inside
996  *	rtnl_lock(), and result refcount is unchanged.
997  */
998 
999 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1000 				      unsigned short mask)
1001 {
1002 	struct net_device *dev, *ret;
1003 
1004 	ASSERT_RTNL();
1005 
1006 	ret = NULL;
1007 	for_each_netdev(net, dev) {
1008 		if (((dev->flags ^ if_flags) & mask) == 0) {
1009 			ret = dev;
1010 			break;
1011 		}
1012 	}
1013 	return ret;
1014 }
1015 EXPORT_SYMBOL(__dev_get_by_flags);
1016 
1017 /**
1018  *	dev_valid_name - check if name is okay for network device
1019  *	@name: name string
1020  *
1021  *	Network device names need to be valid file names to
1022  *	allow sysfs to work.  We also disallow any kind of
1023  *	whitespace.
1024  */
1025 bool dev_valid_name(const char *name)
1026 {
1027 	if (*name == '\0')
1028 		return false;
1029 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1030 		return false;
1031 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1032 		return false;
1033 
1034 	while (*name) {
1035 		if (*name == '/' || *name == ':' || isspace(*name))
1036 			return false;
1037 		name++;
1038 	}
1039 	return true;
1040 }
1041 EXPORT_SYMBOL(dev_valid_name);
1042 
1043 /**
1044  *	__dev_alloc_name - allocate a name for a device
1045  *	@net: network namespace to allocate the device name in
1046  *	@name: name format string
1047  *	@res: result name string
1048  *
1049  *	Passed a format string - eg "lt%d" it will try and find a suitable
1050  *	id. It scans list of devices to build up a free map, then chooses
1051  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1052  *	while allocating the name and adding the device in order to avoid
1053  *	duplicates.
1054  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1055  *	Returns the number of the unit assigned or a negative errno code.
1056  */
1057 
1058 static int __dev_alloc_name(struct net *net, const char *name, char *res)
1059 {
1060 	int i = 0;
1061 	const char *p;
1062 	const int max_netdevices = 8*PAGE_SIZE;
1063 	unsigned long *inuse;
1064 	struct net_device *d;
1065 	char buf[IFNAMSIZ];
1066 
1067 	/* Verify the string as this thing may have come from the user.
1068 	 * There must be one "%d" and no other "%" characters.
1069 	 */
1070 	p = strchr(name, '%');
1071 	if (!p || p[1] != 'd' || strchr(p + 2, '%'))
1072 		return -EINVAL;
1073 
1074 	/* Use one page as a bit array of possible slots */
1075 	inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC);
1076 	if (!inuse)
1077 		return -ENOMEM;
1078 
1079 	for_each_netdev(net, d) {
1080 		struct netdev_name_node *name_node;
1081 
1082 		netdev_for_each_altname(d, name_node) {
1083 			if (!sscanf(name_node->name, name, &i))
1084 				continue;
1085 			if (i < 0 || i >= max_netdevices)
1086 				continue;
1087 
1088 			/* avoid cases where sscanf is not exact inverse of printf */
1089 			snprintf(buf, IFNAMSIZ, name, i);
1090 			if (!strncmp(buf, name_node->name, IFNAMSIZ))
1091 				__set_bit(i, inuse);
1092 		}
1093 		if (!sscanf(d->name, name, &i))
1094 			continue;
1095 		if (i < 0 || i >= max_netdevices)
1096 			continue;
1097 
1098 		/* avoid cases where sscanf is not exact inverse of printf */
1099 		snprintf(buf, IFNAMSIZ, name, i);
1100 		if (!strncmp(buf, d->name, IFNAMSIZ))
1101 			__set_bit(i, inuse);
1102 	}
1103 
1104 	i = find_first_zero_bit(inuse, max_netdevices);
1105 	bitmap_free(inuse);
1106 	if (i == max_netdevices)
1107 		return -ENFILE;
1108 
1109 	/* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */
1110 	strscpy(buf, name, IFNAMSIZ);
1111 	snprintf(res, IFNAMSIZ, buf, i);
1112 	return i;
1113 }
1114 
1115 /* Returns negative errno or allocated unit id (see __dev_alloc_name()) */
1116 static int dev_prep_valid_name(struct net *net, struct net_device *dev,
1117 			       const char *want_name, char *out_name,
1118 			       int dup_errno)
1119 {
1120 	if (!dev_valid_name(want_name))
1121 		return -EINVAL;
1122 
1123 	if (strchr(want_name, '%'))
1124 		return __dev_alloc_name(net, want_name, out_name);
1125 
1126 	if (netdev_name_in_use(net, want_name))
1127 		return -dup_errno;
1128 	if (out_name != want_name)
1129 		strscpy(out_name, want_name, IFNAMSIZ);
1130 	return 0;
1131 }
1132 
1133 /**
1134  *	dev_alloc_name - allocate a name for a device
1135  *	@dev: device
1136  *	@name: name format string
1137  *
1138  *	Passed a format string - eg "lt%d" it will try and find a suitable
1139  *	id. It scans list of devices to build up a free map, then chooses
1140  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1141  *	while allocating the name and adding the device in order to avoid
1142  *	duplicates.
1143  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1144  *	Returns the number of the unit assigned or a negative errno code.
1145  */
1146 
1147 int dev_alloc_name(struct net_device *dev, const char *name)
1148 {
1149 	return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE);
1150 }
1151 EXPORT_SYMBOL(dev_alloc_name);
1152 
1153 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1154 			      const char *name)
1155 {
1156 	int ret;
1157 
1158 	ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST);
1159 	return ret < 0 ? ret : 0;
1160 }
1161 
1162 /**
1163  *	dev_change_name - change name of a device
1164  *	@dev: device
1165  *	@newname: name (or format string) must be at least IFNAMSIZ
1166  *
1167  *	Change name of a device, can pass format strings "eth%d".
1168  *	for wildcarding.
1169  */
1170 int dev_change_name(struct net_device *dev, const char *newname)
1171 {
1172 	unsigned char old_assign_type;
1173 	char oldname[IFNAMSIZ];
1174 	int err = 0;
1175 	int ret;
1176 	struct net *net;
1177 
1178 	ASSERT_RTNL();
1179 	BUG_ON(!dev_net(dev));
1180 
1181 	net = dev_net(dev);
1182 
1183 	down_write(&devnet_rename_sem);
1184 
1185 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1186 		up_write(&devnet_rename_sem);
1187 		return 0;
1188 	}
1189 
1190 	memcpy(oldname, dev->name, IFNAMSIZ);
1191 
1192 	err = dev_get_valid_name(net, dev, newname);
1193 	if (err < 0) {
1194 		up_write(&devnet_rename_sem);
1195 		return err;
1196 	}
1197 
1198 	if (oldname[0] && !strchr(oldname, '%'))
1199 		netdev_info(dev, "renamed from %s%s\n", oldname,
1200 			    dev->flags & IFF_UP ? " (while UP)" : "");
1201 
1202 	old_assign_type = dev->name_assign_type;
1203 	WRITE_ONCE(dev->name_assign_type, NET_NAME_RENAMED);
1204 
1205 rollback:
1206 	ret = device_rename(&dev->dev, dev->name);
1207 	if (ret) {
1208 		memcpy(dev->name, oldname, IFNAMSIZ);
1209 		WRITE_ONCE(dev->name_assign_type, old_assign_type);
1210 		up_write(&devnet_rename_sem);
1211 		return ret;
1212 	}
1213 
1214 	up_write(&devnet_rename_sem);
1215 
1216 	netdev_adjacent_rename_links(dev, oldname);
1217 
1218 	netdev_name_node_del(dev->name_node);
1219 
1220 	synchronize_net();
1221 
1222 	netdev_name_node_add(net, dev->name_node);
1223 
1224 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1225 	ret = notifier_to_errno(ret);
1226 
1227 	if (ret) {
1228 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1229 		if (err >= 0) {
1230 			err = ret;
1231 			down_write(&devnet_rename_sem);
1232 			memcpy(dev->name, oldname, IFNAMSIZ);
1233 			memcpy(oldname, newname, IFNAMSIZ);
1234 			WRITE_ONCE(dev->name_assign_type, old_assign_type);
1235 			old_assign_type = NET_NAME_RENAMED;
1236 			goto rollback;
1237 		} else {
1238 			netdev_err(dev, "name change rollback failed: %d\n",
1239 				   ret);
1240 		}
1241 	}
1242 
1243 	return err;
1244 }
1245 
1246 /**
1247  *	dev_set_alias - change ifalias of a device
1248  *	@dev: device
1249  *	@alias: name up to IFALIASZ
1250  *	@len: limit of bytes to copy from info
1251  *
1252  *	Set ifalias for a device,
1253  */
1254 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1255 {
1256 	struct dev_ifalias *new_alias = NULL;
1257 
1258 	if (len >= IFALIASZ)
1259 		return -EINVAL;
1260 
1261 	if (len) {
1262 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1263 		if (!new_alias)
1264 			return -ENOMEM;
1265 
1266 		memcpy(new_alias->ifalias, alias, len);
1267 		new_alias->ifalias[len] = 0;
1268 	}
1269 
1270 	mutex_lock(&ifalias_mutex);
1271 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1272 					mutex_is_locked(&ifalias_mutex));
1273 	mutex_unlock(&ifalias_mutex);
1274 
1275 	if (new_alias)
1276 		kfree_rcu(new_alias, rcuhead);
1277 
1278 	return len;
1279 }
1280 EXPORT_SYMBOL(dev_set_alias);
1281 
1282 /**
1283  *	dev_get_alias - get ifalias of a device
1284  *	@dev: device
1285  *	@name: buffer to store name of ifalias
1286  *	@len: size of buffer
1287  *
1288  *	get ifalias for a device.  Caller must make sure dev cannot go
1289  *	away,  e.g. rcu read lock or own a reference count to device.
1290  */
1291 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1292 {
1293 	const struct dev_ifalias *alias;
1294 	int ret = 0;
1295 
1296 	rcu_read_lock();
1297 	alias = rcu_dereference(dev->ifalias);
1298 	if (alias)
1299 		ret = snprintf(name, len, "%s", alias->ifalias);
1300 	rcu_read_unlock();
1301 
1302 	return ret;
1303 }
1304 
1305 /**
1306  *	netdev_features_change - device changes features
1307  *	@dev: device to cause notification
1308  *
1309  *	Called to indicate a device has changed features.
1310  */
1311 void netdev_features_change(struct net_device *dev)
1312 {
1313 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1314 }
1315 EXPORT_SYMBOL(netdev_features_change);
1316 
1317 /**
1318  *	netdev_state_change - device changes state
1319  *	@dev: device to cause notification
1320  *
1321  *	Called to indicate a device has changed state. This function calls
1322  *	the notifier chains for netdev_chain and sends a NEWLINK message
1323  *	to the routing socket.
1324  */
1325 void netdev_state_change(struct net_device *dev)
1326 {
1327 	if (dev->flags & IFF_UP) {
1328 		struct netdev_notifier_change_info change_info = {
1329 			.info.dev = dev,
1330 		};
1331 
1332 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1333 					      &change_info.info);
1334 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1335 	}
1336 }
1337 EXPORT_SYMBOL(netdev_state_change);
1338 
1339 /**
1340  * __netdev_notify_peers - notify network peers about existence of @dev,
1341  * to be called when rtnl lock is already held.
1342  * @dev: network device
1343  *
1344  * Generate traffic such that interested network peers are aware of
1345  * @dev, such as by generating a gratuitous ARP. This may be used when
1346  * a device wants to inform the rest of the network about some sort of
1347  * reconfiguration such as a failover event or virtual machine
1348  * migration.
1349  */
1350 void __netdev_notify_peers(struct net_device *dev)
1351 {
1352 	ASSERT_RTNL();
1353 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1354 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1355 }
1356 EXPORT_SYMBOL(__netdev_notify_peers);
1357 
1358 /**
1359  * netdev_notify_peers - notify network peers about existence of @dev
1360  * @dev: network device
1361  *
1362  * Generate traffic such that interested network peers are aware of
1363  * @dev, such as by generating a gratuitous ARP. This may be used when
1364  * a device wants to inform the rest of the network about some sort of
1365  * reconfiguration such as a failover event or virtual machine
1366  * migration.
1367  */
1368 void netdev_notify_peers(struct net_device *dev)
1369 {
1370 	rtnl_lock();
1371 	__netdev_notify_peers(dev);
1372 	rtnl_unlock();
1373 }
1374 EXPORT_SYMBOL(netdev_notify_peers);
1375 
1376 static int napi_threaded_poll(void *data);
1377 
1378 static int napi_kthread_create(struct napi_struct *n)
1379 {
1380 	int err = 0;
1381 
1382 	/* Create and wake up the kthread once to put it in
1383 	 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1384 	 * warning and work with loadavg.
1385 	 */
1386 	n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1387 				n->dev->name, n->napi_id);
1388 	if (IS_ERR(n->thread)) {
1389 		err = PTR_ERR(n->thread);
1390 		pr_err("kthread_run failed with err %d\n", err);
1391 		n->thread = NULL;
1392 	}
1393 
1394 	return err;
1395 }
1396 
1397 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1398 {
1399 	const struct net_device_ops *ops = dev->netdev_ops;
1400 	int ret;
1401 
1402 	ASSERT_RTNL();
1403 	dev_addr_check(dev);
1404 
1405 	if (!netif_device_present(dev)) {
1406 		/* may be detached because parent is runtime-suspended */
1407 		if (dev->dev.parent)
1408 			pm_runtime_resume(dev->dev.parent);
1409 		if (!netif_device_present(dev))
1410 			return -ENODEV;
1411 	}
1412 
1413 	/* Block netpoll from trying to do any rx path servicing.
1414 	 * If we don't do this there is a chance ndo_poll_controller
1415 	 * or ndo_poll may be running while we open the device
1416 	 */
1417 	netpoll_poll_disable(dev);
1418 
1419 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1420 	ret = notifier_to_errno(ret);
1421 	if (ret)
1422 		return ret;
1423 
1424 	set_bit(__LINK_STATE_START, &dev->state);
1425 
1426 	if (ops->ndo_validate_addr)
1427 		ret = ops->ndo_validate_addr(dev);
1428 
1429 	if (!ret && ops->ndo_open)
1430 		ret = ops->ndo_open(dev);
1431 
1432 	netpoll_poll_enable(dev);
1433 
1434 	if (ret)
1435 		clear_bit(__LINK_STATE_START, &dev->state);
1436 	else {
1437 		dev->flags |= IFF_UP;
1438 		dev_set_rx_mode(dev);
1439 		dev_activate(dev);
1440 		add_device_randomness(dev->dev_addr, dev->addr_len);
1441 	}
1442 
1443 	return ret;
1444 }
1445 
1446 /**
1447  *	dev_open	- prepare an interface for use.
1448  *	@dev: device to open
1449  *	@extack: netlink extended ack
1450  *
1451  *	Takes a device from down to up state. The device's private open
1452  *	function is invoked and then the multicast lists are loaded. Finally
1453  *	the device is moved into the up state and a %NETDEV_UP message is
1454  *	sent to the netdev notifier chain.
1455  *
1456  *	Calling this function on an active interface is a nop. On a failure
1457  *	a negative errno code is returned.
1458  */
1459 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1460 {
1461 	int ret;
1462 
1463 	if (dev->flags & IFF_UP)
1464 		return 0;
1465 
1466 	ret = __dev_open(dev, extack);
1467 	if (ret < 0)
1468 		return ret;
1469 
1470 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1471 	call_netdevice_notifiers(NETDEV_UP, dev);
1472 
1473 	return ret;
1474 }
1475 EXPORT_SYMBOL(dev_open);
1476 
1477 static void __dev_close_many(struct list_head *head)
1478 {
1479 	struct net_device *dev;
1480 
1481 	ASSERT_RTNL();
1482 	might_sleep();
1483 
1484 	list_for_each_entry(dev, head, close_list) {
1485 		/* Temporarily disable netpoll until the interface is down */
1486 		netpoll_poll_disable(dev);
1487 
1488 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1489 
1490 		clear_bit(__LINK_STATE_START, &dev->state);
1491 
1492 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1493 		 * can be even on different cpu. So just clear netif_running().
1494 		 *
1495 		 * dev->stop() will invoke napi_disable() on all of it's
1496 		 * napi_struct instances on this device.
1497 		 */
1498 		smp_mb__after_atomic(); /* Commit netif_running(). */
1499 	}
1500 
1501 	dev_deactivate_many(head);
1502 
1503 	list_for_each_entry(dev, head, close_list) {
1504 		const struct net_device_ops *ops = dev->netdev_ops;
1505 
1506 		/*
1507 		 *	Call the device specific close. This cannot fail.
1508 		 *	Only if device is UP
1509 		 *
1510 		 *	We allow it to be called even after a DETACH hot-plug
1511 		 *	event.
1512 		 */
1513 		if (ops->ndo_stop)
1514 			ops->ndo_stop(dev);
1515 
1516 		dev->flags &= ~IFF_UP;
1517 		netpoll_poll_enable(dev);
1518 	}
1519 }
1520 
1521 static void __dev_close(struct net_device *dev)
1522 {
1523 	LIST_HEAD(single);
1524 
1525 	list_add(&dev->close_list, &single);
1526 	__dev_close_many(&single);
1527 	list_del(&single);
1528 }
1529 
1530 void dev_close_many(struct list_head *head, bool unlink)
1531 {
1532 	struct net_device *dev, *tmp;
1533 
1534 	/* Remove the devices that don't need to be closed */
1535 	list_for_each_entry_safe(dev, tmp, head, close_list)
1536 		if (!(dev->flags & IFF_UP))
1537 			list_del_init(&dev->close_list);
1538 
1539 	__dev_close_many(head);
1540 
1541 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1542 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1543 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1544 		if (unlink)
1545 			list_del_init(&dev->close_list);
1546 	}
1547 }
1548 EXPORT_SYMBOL(dev_close_many);
1549 
1550 /**
1551  *	dev_close - shutdown an interface.
1552  *	@dev: device to shutdown
1553  *
1554  *	This function moves an active device into down state. A
1555  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1556  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1557  *	chain.
1558  */
1559 void dev_close(struct net_device *dev)
1560 {
1561 	if (dev->flags & IFF_UP) {
1562 		LIST_HEAD(single);
1563 
1564 		list_add(&dev->close_list, &single);
1565 		dev_close_many(&single, true);
1566 		list_del(&single);
1567 	}
1568 }
1569 EXPORT_SYMBOL(dev_close);
1570 
1571 
1572 /**
1573  *	dev_disable_lro - disable Large Receive Offload on a device
1574  *	@dev: device
1575  *
1576  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1577  *	called under RTNL.  This is needed if received packets may be
1578  *	forwarded to another interface.
1579  */
1580 void dev_disable_lro(struct net_device *dev)
1581 {
1582 	struct net_device *lower_dev;
1583 	struct list_head *iter;
1584 
1585 	dev->wanted_features &= ~NETIF_F_LRO;
1586 	netdev_update_features(dev);
1587 
1588 	if (unlikely(dev->features & NETIF_F_LRO))
1589 		netdev_WARN(dev, "failed to disable LRO!\n");
1590 
1591 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1592 		dev_disable_lro(lower_dev);
1593 }
1594 EXPORT_SYMBOL(dev_disable_lro);
1595 
1596 /**
1597  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1598  *	@dev: device
1599  *
1600  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1601  *	called under RTNL.  This is needed if Generic XDP is installed on
1602  *	the device.
1603  */
1604 static void dev_disable_gro_hw(struct net_device *dev)
1605 {
1606 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1607 	netdev_update_features(dev);
1608 
1609 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1610 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1611 }
1612 
1613 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1614 {
1615 #define N(val) 						\
1616 	case NETDEV_##val:				\
1617 		return "NETDEV_" __stringify(val);
1618 	switch (cmd) {
1619 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1620 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1621 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1622 	N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1623 	N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1624 	N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1625 	N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1626 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1627 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1628 	N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1629 	N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1630 	N(XDP_FEAT_CHANGE)
1631 	}
1632 #undef N
1633 	return "UNKNOWN_NETDEV_EVENT";
1634 }
1635 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1636 
1637 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1638 				   struct net_device *dev)
1639 {
1640 	struct netdev_notifier_info info = {
1641 		.dev = dev,
1642 	};
1643 
1644 	return nb->notifier_call(nb, val, &info);
1645 }
1646 
1647 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1648 					     struct net_device *dev)
1649 {
1650 	int err;
1651 
1652 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1653 	err = notifier_to_errno(err);
1654 	if (err)
1655 		return err;
1656 
1657 	if (!(dev->flags & IFF_UP))
1658 		return 0;
1659 
1660 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1661 	return 0;
1662 }
1663 
1664 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1665 						struct net_device *dev)
1666 {
1667 	if (dev->flags & IFF_UP) {
1668 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1669 					dev);
1670 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1671 	}
1672 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1673 }
1674 
1675 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1676 						 struct net *net)
1677 {
1678 	struct net_device *dev;
1679 	int err;
1680 
1681 	for_each_netdev(net, dev) {
1682 		err = call_netdevice_register_notifiers(nb, dev);
1683 		if (err)
1684 			goto rollback;
1685 	}
1686 	return 0;
1687 
1688 rollback:
1689 	for_each_netdev_continue_reverse(net, dev)
1690 		call_netdevice_unregister_notifiers(nb, dev);
1691 	return err;
1692 }
1693 
1694 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1695 						    struct net *net)
1696 {
1697 	struct net_device *dev;
1698 
1699 	for_each_netdev(net, dev)
1700 		call_netdevice_unregister_notifiers(nb, dev);
1701 }
1702 
1703 static int dev_boot_phase = 1;
1704 
1705 /**
1706  * register_netdevice_notifier - register a network notifier block
1707  * @nb: notifier
1708  *
1709  * Register a notifier to be called when network device events occur.
1710  * The notifier passed is linked into the kernel structures and must
1711  * not be reused until it has been unregistered. A negative errno code
1712  * is returned on a failure.
1713  *
1714  * When registered all registration and up events are replayed
1715  * to the new notifier to allow device to have a race free
1716  * view of the network device list.
1717  */
1718 
1719 int register_netdevice_notifier(struct notifier_block *nb)
1720 {
1721 	struct net *net;
1722 	int err;
1723 
1724 	/* Close race with setup_net() and cleanup_net() */
1725 	down_write(&pernet_ops_rwsem);
1726 	rtnl_lock();
1727 	err = raw_notifier_chain_register(&netdev_chain, nb);
1728 	if (err)
1729 		goto unlock;
1730 	if (dev_boot_phase)
1731 		goto unlock;
1732 	for_each_net(net) {
1733 		err = call_netdevice_register_net_notifiers(nb, net);
1734 		if (err)
1735 			goto rollback;
1736 	}
1737 
1738 unlock:
1739 	rtnl_unlock();
1740 	up_write(&pernet_ops_rwsem);
1741 	return err;
1742 
1743 rollback:
1744 	for_each_net_continue_reverse(net)
1745 		call_netdevice_unregister_net_notifiers(nb, net);
1746 
1747 	raw_notifier_chain_unregister(&netdev_chain, nb);
1748 	goto unlock;
1749 }
1750 EXPORT_SYMBOL(register_netdevice_notifier);
1751 
1752 /**
1753  * unregister_netdevice_notifier - unregister a network notifier block
1754  * @nb: notifier
1755  *
1756  * Unregister a notifier previously registered by
1757  * register_netdevice_notifier(). The notifier is unlinked into the
1758  * kernel structures and may then be reused. A negative errno code
1759  * is returned on a failure.
1760  *
1761  * After unregistering unregister and down device events are synthesized
1762  * for all devices on the device list to the removed notifier to remove
1763  * the need for special case cleanup code.
1764  */
1765 
1766 int unregister_netdevice_notifier(struct notifier_block *nb)
1767 {
1768 	struct net *net;
1769 	int err;
1770 
1771 	/* Close race with setup_net() and cleanup_net() */
1772 	down_write(&pernet_ops_rwsem);
1773 	rtnl_lock();
1774 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1775 	if (err)
1776 		goto unlock;
1777 
1778 	for_each_net(net)
1779 		call_netdevice_unregister_net_notifiers(nb, net);
1780 
1781 unlock:
1782 	rtnl_unlock();
1783 	up_write(&pernet_ops_rwsem);
1784 	return err;
1785 }
1786 EXPORT_SYMBOL(unregister_netdevice_notifier);
1787 
1788 static int __register_netdevice_notifier_net(struct net *net,
1789 					     struct notifier_block *nb,
1790 					     bool ignore_call_fail)
1791 {
1792 	int err;
1793 
1794 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
1795 	if (err)
1796 		return err;
1797 	if (dev_boot_phase)
1798 		return 0;
1799 
1800 	err = call_netdevice_register_net_notifiers(nb, net);
1801 	if (err && !ignore_call_fail)
1802 		goto chain_unregister;
1803 
1804 	return 0;
1805 
1806 chain_unregister:
1807 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
1808 	return err;
1809 }
1810 
1811 static int __unregister_netdevice_notifier_net(struct net *net,
1812 					       struct notifier_block *nb)
1813 {
1814 	int err;
1815 
1816 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1817 	if (err)
1818 		return err;
1819 
1820 	call_netdevice_unregister_net_notifiers(nb, net);
1821 	return 0;
1822 }
1823 
1824 /**
1825  * register_netdevice_notifier_net - register a per-netns network notifier block
1826  * @net: network namespace
1827  * @nb: notifier
1828  *
1829  * Register a notifier to be called when network device events occur.
1830  * The notifier passed is linked into the kernel structures and must
1831  * not be reused until it has been unregistered. A negative errno code
1832  * is returned on a failure.
1833  *
1834  * When registered all registration and up events are replayed
1835  * to the new notifier to allow device to have a race free
1836  * view of the network device list.
1837  */
1838 
1839 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1840 {
1841 	int err;
1842 
1843 	rtnl_lock();
1844 	err = __register_netdevice_notifier_net(net, nb, false);
1845 	rtnl_unlock();
1846 	return err;
1847 }
1848 EXPORT_SYMBOL(register_netdevice_notifier_net);
1849 
1850 /**
1851  * unregister_netdevice_notifier_net - unregister a per-netns
1852  *                                     network notifier block
1853  * @net: network namespace
1854  * @nb: notifier
1855  *
1856  * Unregister a notifier previously registered by
1857  * register_netdevice_notifier_net(). The notifier is unlinked from the
1858  * kernel structures and may then be reused. A negative errno code
1859  * is returned on a failure.
1860  *
1861  * After unregistering unregister and down device events are synthesized
1862  * for all devices on the device list to the removed notifier to remove
1863  * the need for special case cleanup code.
1864  */
1865 
1866 int unregister_netdevice_notifier_net(struct net *net,
1867 				      struct notifier_block *nb)
1868 {
1869 	int err;
1870 
1871 	rtnl_lock();
1872 	err = __unregister_netdevice_notifier_net(net, nb);
1873 	rtnl_unlock();
1874 	return err;
1875 }
1876 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1877 
1878 static void __move_netdevice_notifier_net(struct net *src_net,
1879 					  struct net *dst_net,
1880 					  struct notifier_block *nb)
1881 {
1882 	__unregister_netdevice_notifier_net(src_net, nb);
1883 	__register_netdevice_notifier_net(dst_net, nb, true);
1884 }
1885 
1886 int register_netdevice_notifier_dev_net(struct net_device *dev,
1887 					struct notifier_block *nb,
1888 					struct netdev_net_notifier *nn)
1889 {
1890 	int err;
1891 
1892 	rtnl_lock();
1893 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1894 	if (!err) {
1895 		nn->nb = nb;
1896 		list_add(&nn->list, &dev->net_notifier_list);
1897 	}
1898 	rtnl_unlock();
1899 	return err;
1900 }
1901 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1902 
1903 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1904 					  struct notifier_block *nb,
1905 					  struct netdev_net_notifier *nn)
1906 {
1907 	int err;
1908 
1909 	rtnl_lock();
1910 	list_del(&nn->list);
1911 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1912 	rtnl_unlock();
1913 	return err;
1914 }
1915 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1916 
1917 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1918 					     struct net *net)
1919 {
1920 	struct netdev_net_notifier *nn;
1921 
1922 	list_for_each_entry(nn, &dev->net_notifier_list, list)
1923 		__move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
1924 }
1925 
1926 /**
1927  *	call_netdevice_notifiers_info - call all network notifier blocks
1928  *	@val: value passed unmodified to notifier function
1929  *	@info: notifier information data
1930  *
1931  *	Call all network notifier blocks.  Parameters and return value
1932  *	are as for raw_notifier_call_chain().
1933  */
1934 
1935 int call_netdevice_notifiers_info(unsigned long val,
1936 				  struct netdev_notifier_info *info)
1937 {
1938 	struct net *net = dev_net(info->dev);
1939 	int ret;
1940 
1941 	ASSERT_RTNL();
1942 
1943 	/* Run per-netns notifier block chain first, then run the global one.
1944 	 * Hopefully, one day, the global one is going to be removed after
1945 	 * all notifier block registrators get converted to be per-netns.
1946 	 */
1947 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1948 	if (ret & NOTIFY_STOP_MASK)
1949 		return ret;
1950 	return raw_notifier_call_chain(&netdev_chain, val, info);
1951 }
1952 
1953 /**
1954  *	call_netdevice_notifiers_info_robust - call per-netns notifier blocks
1955  *	                                       for and rollback on error
1956  *	@val_up: value passed unmodified to notifier function
1957  *	@val_down: value passed unmodified to the notifier function when
1958  *	           recovering from an error on @val_up
1959  *	@info: notifier information data
1960  *
1961  *	Call all per-netns network notifier blocks, but not notifier blocks on
1962  *	the global notifier chain. Parameters and return value are as for
1963  *	raw_notifier_call_chain_robust().
1964  */
1965 
1966 static int
1967 call_netdevice_notifiers_info_robust(unsigned long val_up,
1968 				     unsigned long val_down,
1969 				     struct netdev_notifier_info *info)
1970 {
1971 	struct net *net = dev_net(info->dev);
1972 
1973 	ASSERT_RTNL();
1974 
1975 	return raw_notifier_call_chain_robust(&net->netdev_chain,
1976 					      val_up, val_down, info);
1977 }
1978 
1979 static int call_netdevice_notifiers_extack(unsigned long val,
1980 					   struct net_device *dev,
1981 					   struct netlink_ext_ack *extack)
1982 {
1983 	struct netdev_notifier_info info = {
1984 		.dev = dev,
1985 		.extack = extack,
1986 	};
1987 
1988 	return call_netdevice_notifiers_info(val, &info);
1989 }
1990 
1991 /**
1992  *	call_netdevice_notifiers - call all network notifier blocks
1993  *      @val: value passed unmodified to notifier function
1994  *      @dev: net_device pointer passed unmodified to notifier function
1995  *
1996  *	Call all network notifier blocks.  Parameters and return value
1997  *	are as for raw_notifier_call_chain().
1998  */
1999 
2000 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2001 {
2002 	return call_netdevice_notifiers_extack(val, dev, NULL);
2003 }
2004 EXPORT_SYMBOL(call_netdevice_notifiers);
2005 
2006 /**
2007  *	call_netdevice_notifiers_mtu - call all network notifier blocks
2008  *	@val: value passed unmodified to notifier function
2009  *	@dev: net_device pointer passed unmodified to notifier function
2010  *	@arg: additional u32 argument passed to the notifier function
2011  *
2012  *	Call all network notifier blocks.  Parameters and return value
2013  *	are as for raw_notifier_call_chain().
2014  */
2015 static int call_netdevice_notifiers_mtu(unsigned long val,
2016 					struct net_device *dev, u32 arg)
2017 {
2018 	struct netdev_notifier_info_ext info = {
2019 		.info.dev = dev,
2020 		.ext.mtu = arg,
2021 	};
2022 
2023 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2024 
2025 	return call_netdevice_notifiers_info(val, &info.info);
2026 }
2027 
2028 #ifdef CONFIG_NET_INGRESS
2029 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2030 
2031 void net_inc_ingress_queue(void)
2032 {
2033 	static_branch_inc(&ingress_needed_key);
2034 }
2035 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2036 
2037 void net_dec_ingress_queue(void)
2038 {
2039 	static_branch_dec(&ingress_needed_key);
2040 }
2041 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2042 #endif
2043 
2044 #ifdef CONFIG_NET_EGRESS
2045 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2046 
2047 void net_inc_egress_queue(void)
2048 {
2049 	static_branch_inc(&egress_needed_key);
2050 }
2051 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2052 
2053 void net_dec_egress_queue(void)
2054 {
2055 	static_branch_dec(&egress_needed_key);
2056 }
2057 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2058 #endif
2059 
2060 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2061 EXPORT_SYMBOL(netstamp_needed_key);
2062 #ifdef CONFIG_JUMP_LABEL
2063 static atomic_t netstamp_needed_deferred;
2064 static atomic_t netstamp_wanted;
2065 static void netstamp_clear(struct work_struct *work)
2066 {
2067 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2068 	int wanted;
2069 
2070 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2071 	if (wanted > 0)
2072 		static_branch_enable(&netstamp_needed_key);
2073 	else
2074 		static_branch_disable(&netstamp_needed_key);
2075 }
2076 static DECLARE_WORK(netstamp_work, netstamp_clear);
2077 #endif
2078 
2079 void net_enable_timestamp(void)
2080 {
2081 #ifdef CONFIG_JUMP_LABEL
2082 	int wanted = atomic_read(&netstamp_wanted);
2083 
2084 	while (wanted > 0) {
2085 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2086 			return;
2087 	}
2088 	atomic_inc(&netstamp_needed_deferred);
2089 	schedule_work(&netstamp_work);
2090 #else
2091 	static_branch_inc(&netstamp_needed_key);
2092 #endif
2093 }
2094 EXPORT_SYMBOL(net_enable_timestamp);
2095 
2096 void net_disable_timestamp(void)
2097 {
2098 #ifdef CONFIG_JUMP_LABEL
2099 	int wanted = atomic_read(&netstamp_wanted);
2100 
2101 	while (wanted > 1) {
2102 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2103 			return;
2104 	}
2105 	atomic_dec(&netstamp_needed_deferred);
2106 	schedule_work(&netstamp_work);
2107 #else
2108 	static_branch_dec(&netstamp_needed_key);
2109 #endif
2110 }
2111 EXPORT_SYMBOL(net_disable_timestamp);
2112 
2113 static inline void net_timestamp_set(struct sk_buff *skb)
2114 {
2115 	skb->tstamp = 0;
2116 	skb->mono_delivery_time = 0;
2117 	if (static_branch_unlikely(&netstamp_needed_key))
2118 		skb->tstamp = ktime_get_real();
2119 }
2120 
2121 #define net_timestamp_check(COND, SKB)				\
2122 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2123 		if ((COND) && !(SKB)->tstamp)			\
2124 			(SKB)->tstamp = ktime_get_real();	\
2125 	}							\
2126 
2127 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2128 {
2129 	return __is_skb_forwardable(dev, skb, true);
2130 }
2131 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2132 
2133 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2134 			      bool check_mtu)
2135 {
2136 	int ret = ____dev_forward_skb(dev, skb, check_mtu);
2137 
2138 	if (likely(!ret)) {
2139 		skb->protocol = eth_type_trans(skb, dev);
2140 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2141 	}
2142 
2143 	return ret;
2144 }
2145 
2146 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2147 {
2148 	return __dev_forward_skb2(dev, skb, true);
2149 }
2150 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2151 
2152 /**
2153  * dev_forward_skb - loopback an skb to another netif
2154  *
2155  * @dev: destination network device
2156  * @skb: buffer to forward
2157  *
2158  * return values:
2159  *	NET_RX_SUCCESS	(no congestion)
2160  *	NET_RX_DROP     (packet was dropped, but freed)
2161  *
2162  * dev_forward_skb can be used for injecting an skb from the
2163  * start_xmit function of one device into the receive queue
2164  * of another device.
2165  *
2166  * The receiving device may be in another namespace, so
2167  * we have to clear all information in the skb that could
2168  * impact namespace isolation.
2169  */
2170 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2171 {
2172 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2173 }
2174 EXPORT_SYMBOL_GPL(dev_forward_skb);
2175 
2176 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2177 {
2178 	return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2179 }
2180 
2181 static inline int deliver_skb(struct sk_buff *skb,
2182 			      struct packet_type *pt_prev,
2183 			      struct net_device *orig_dev)
2184 {
2185 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2186 		return -ENOMEM;
2187 	refcount_inc(&skb->users);
2188 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2189 }
2190 
2191 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2192 					  struct packet_type **pt,
2193 					  struct net_device *orig_dev,
2194 					  __be16 type,
2195 					  struct list_head *ptype_list)
2196 {
2197 	struct packet_type *ptype, *pt_prev = *pt;
2198 
2199 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2200 		if (ptype->type != type)
2201 			continue;
2202 		if (pt_prev)
2203 			deliver_skb(skb, pt_prev, orig_dev);
2204 		pt_prev = ptype;
2205 	}
2206 	*pt = pt_prev;
2207 }
2208 
2209 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2210 {
2211 	if (!ptype->af_packet_priv || !skb->sk)
2212 		return false;
2213 
2214 	if (ptype->id_match)
2215 		return ptype->id_match(ptype, skb->sk);
2216 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2217 		return true;
2218 
2219 	return false;
2220 }
2221 
2222 /**
2223  * dev_nit_active - return true if any network interface taps are in use
2224  *
2225  * @dev: network device to check for the presence of taps
2226  */
2227 bool dev_nit_active(struct net_device *dev)
2228 {
2229 	return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2230 }
2231 EXPORT_SYMBOL_GPL(dev_nit_active);
2232 
2233 /*
2234  *	Support routine. Sends outgoing frames to any network
2235  *	taps currently in use.
2236  */
2237 
2238 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2239 {
2240 	struct packet_type *ptype;
2241 	struct sk_buff *skb2 = NULL;
2242 	struct packet_type *pt_prev = NULL;
2243 	struct list_head *ptype_list = &ptype_all;
2244 
2245 	rcu_read_lock();
2246 again:
2247 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2248 		if (ptype->ignore_outgoing)
2249 			continue;
2250 
2251 		/* Never send packets back to the socket
2252 		 * they originated from - MvS (miquels@drinkel.ow.org)
2253 		 */
2254 		if (skb_loop_sk(ptype, skb))
2255 			continue;
2256 
2257 		if (pt_prev) {
2258 			deliver_skb(skb2, pt_prev, skb->dev);
2259 			pt_prev = ptype;
2260 			continue;
2261 		}
2262 
2263 		/* need to clone skb, done only once */
2264 		skb2 = skb_clone(skb, GFP_ATOMIC);
2265 		if (!skb2)
2266 			goto out_unlock;
2267 
2268 		net_timestamp_set(skb2);
2269 
2270 		/* skb->nh should be correctly
2271 		 * set by sender, so that the second statement is
2272 		 * just protection against buggy protocols.
2273 		 */
2274 		skb_reset_mac_header(skb2);
2275 
2276 		if (skb_network_header(skb2) < skb2->data ||
2277 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2278 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2279 					     ntohs(skb2->protocol),
2280 					     dev->name);
2281 			skb_reset_network_header(skb2);
2282 		}
2283 
2284 		skb2->transport_header = skb2->network_header;
2285 		skb2->pkt_type = PACKET_OUTGOING;
2286 		pt_prev = ptype;
2287 	}
2288 
2289 	if (ptype_list == &ptype_all) {
2290 		ptype_list = &dev->ptype_all;
2291 		goto again;
2292 	}
2293 out_unlock:
2294 	if (pt_prev) {
2295 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2296 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2297 		else
2298 			kfree_skb(skb2);
2299 	}
2300 	rcu_read_unlock();
2301 }
2302 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2303 
2304 /**
2305  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2306  * @dev: Network device
2307  * @txq: number of queues available
2308  *
2309  * If real_num_tx_queues is changed the tc mappings may no longer be
2310  * valid. To resolve this verify the tc mapping remains valid and if
2311  * not NULL the mapping. With no priorities mapping to this
2312  * offset/count pair it will no longer be used. In the worst case TC0
2313  * is invalid nothing can be done so disable priority mappings. If is
2314  * expected that drivers will fix this mapping if they can before
2315  * calling netif_set_real_num_tx_queues.
2316  */
2317 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2318 {
2319 	int i;
2320 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2321 
2322 	/* If TC0 is invalidated disable TC mapping */
2323 	if (tc->offset + tc->count > txq) {
2324 		netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2325 		dev->num_tc = 0;
2326 		return;
2327 	}
2328 
2329 	/* Invalidated prio to tc mappings set to TC0 */
2330 	for (i = 1; i < TC_BITMASK + 1; i++) {
2331 		int q = netdev_get_prio_tc_map(dev, i);
2332 
2333 		tc = &dev->tc_to_txq[q];
2334 		if (tc->offset + tc->count > txq) {
2335 			netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2336 				    i, q);
2337 			netdev_set_prio_tc_map(dev, i, 0);
2338 		}
2339 	}
2340 }
2341 
2342 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2343 {
2344 	if (dev->num_tc) {
2345 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2346 		int i;
2347 
2348 		/* walk through the TCs and see if it falls into any of them */
2349 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2350 			if ((txq - tc->offset) < tc->count)
2351 				return i;
2352 		}
2353 
2354 		/* didn't find it, just return -1 to indicate no match */
2355 		return -1;
2356 	}
2357 
2358 	return 0;
2359 }
2360 EXPORT_SYMBOL(netdev_txq_to_tc);
2361 
2362 #ifdef CONFIG_XPS
2363 static struct static_key xps_needed __read_mostly;
2364 static struct static_key xps_rxqs_needed __read_mostly;
2365 static DEFINE_MUTEX(xps_map_mutex);
2366 #define xmap_dereference(P)		\
2367 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2368 
2369 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2370 			     struct xps_dev_maps *old_maps, int tci, u16 index)
2371 {
2372 	struct xps_map *map = NULL;
2373 	int pos;
2374 
2375 	map = xmap_dereference(dev_maps->attr_map[tci]);
2376 	if (!map)
2377 		return false;
2378 
2379 	for (pos = map->len; pos--;) {
2380 		if (map->queues[pos] != index)
2381 			continue;
2382 
2383 		if (map->len > 1) {
2384 			map->queues[pos] = map->queues[--map->len];
2385 			break;
2386 		}
2387 
2388 		if (old_maps)
2389 			RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2390 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2391 		kfree_rcu(map, rcu);
2392 		return false;
2393 	}
2394 
2395 	return true;
2396 }
2397 
2398 static bool remove_xps_queue_cpu(struct net_device *dev,
2399 				 struct xps_dev_maps *dev_maps,
2400 				 int cpu, u16 offset, u16 count)
2401 {
2402 	int num_tc = dev_maps->num_tc;
2403 	bool active = false;
2404 	int tci;
2405 
2406 	for (tci = cpu * num_tc; num_tc--; tci++) {
2407 		int i, j;
2408 
2409 		for (i = count, j = offset; i--; j++) {
2410 			if (!remove_xps_queue(dev_maps, NULL, tci, j))
2411 				break;
2412 		}
2413 
2414 		active |= i < 0;
2415 	}
2416 
2417 	return active;
2418 }
2419 
2420 static void reset_xps_maps(struct net_device *dev,
2421 			   struct xps_dev_maps *dev_maps,
2422 			   enum xps_map_type type)
2423 {
2424 	static_key_slow_dec_cpuslocked(&xps_needed);
2425 	if (type == XPS_RXQS)
2426 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2427 
2428 	RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2429 
2430 	kfree_rcu(dev_maps, rcu);
2431 }
2432 
2433 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2434 			   u16 offset, u16 count)
2435 {
2436 	struct xps_dev_maps *dev_maps;
2437 	bool active = false;
2438 	int i, j;
2439 
2440 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2441 	if (!dev_maps)
2442 		return;
2443 
2444 	for (j = 0; j < dev_maps->nr_ids; j++)
2445 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2446 	if (!active)
2447 		reset_xps_maps(dev, dev_maps, type);
2448 
2449 	if (type == XPS_CPUS) {
2450 		for (i = offset + (count - 1); count--; i--)
2451 			netdev_queue_numa_node_write(
2452 				netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2453 	}
2454 }
2455 
2456 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2457 				   u16 count)
2458 {
2459 	if (!static_key_false(&xps_needed))
2460 		return;
2461 
2462 	cpus_read_lock();
2463 	mutex_lock(&xps_map_mutex);
2464 
2465 	if (static_key_false(&xps_rxqs_needed))
2466 		clean_xps_maps(dev, XPS_RXQS, offset, count);
2467 
2468 	clean_xps_maps(dev, XPS_CPUS, offset, count);
2469 
2470 	mutex_unlock(&xps_map_mutex);
2471 	cpus_read_unlock();
2472 }
2473 
2474 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2475 {
2476 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2477 }
2478 
2479 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2480 				      u16 index, bool is_rxqs_map)
2481 {
2482 	struct xps_map *new_map;
2483 	int alloc_len = XPS_MIN_MAP_ALLOC;
2484 	int i, pos;
2485 
2486 	for (pos = 0; map && pos < map->len; pos++) {
2487 		if (map->queues[pos] != index)
2488 			continue;
2489 		return map;
2490 	}
2491 
2492 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2493 	if (map) {
2494 		if (pos < map->alloc_len)
2495 			return map;
2496 
2497 		alloc_len = map->alloc_len * 2;
2498 	}
2499 
2500 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2501 	 *  map
2502 	 */
2503 	if (is_rxqs_map)
2504 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2505 	else
2506 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2507 				       cpu_to_node(attr_index));
2508 	if (!new_map)
2509 		return NULL;
2510 
2511 	for (i = 0; i < pos; i++)
2512 		new_map->queues[i] = map->queues[i];
2513 	new_map->alloc_len = alloc_len;
2514 	new_map->len = pos;
2515 
2516 	return new_map;
2517 }
2518 
2519 /* Copy xps maps at a given index */
2520 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2521 			      struct xps_dev_maps *new_dev_maps, int index,
2522 			      int tc, bool skip_tc)
2523 {
2524 	int i, tci = index * dev_maps->num_tc;
2525 	struct xps_map *map;
2526 
2527 	/* copy maps belonging to foreign traffic classes */
2528 	for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2529 		if (i == tc && skip_tc)
2530 			continue;
2531 
2532 		/* fill in the new device map from the old device map */
2533 		map = xmap_dereference(dev_maps->attr_map[tci]);
2534 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2535 	}
2536 }
2537 
2538 /* Must be called under cpus_read_lock */
2539 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2540 			  u16 index, enum xps_map_type type)
2541 {
2542 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2543 	const unsigned long *online_mask = NULL;
2544 	bool active = false, copy = false;
2545 	int i, j, tci, numa_node_id = -2;
2546 	int maps_sz, num_tc = 1, tc = 0;
2547 	struct xps_map *map, *new_map;
2548 	unsigned int nr_ids;
2549 
2550 	WARN_ON_ONCE(index >= dev->num_tx_queues);
2551 
2552 	if (dev->num_tc) {
2553 		/* Do not allow XPS on subordinate device directly */
2554 		num_tc = dev->num_tc;
2555 		if (num_tc < 0)
2556 			return -EINVAL;
2557 
2558 		/* If queue belongs to subordinate dev use its map */
2559 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2560 
2561 		tc = netdev_txq_to_tc(dev, index);
2562 		if (tc < 0)
2563 			return -EINVAL;
2564 	}
2565 
2566 	mutex_lock(&xps_map_mutex);
2567 
2568 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2569 	if (type == XPS_RXQS) {
2570 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2571 		nr_ids = dev->num_rx_queues;
2572 	} else {
2573 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2574 		if (num_possible_cpus() > 1)
2575 			online_mask = cpumask_bits(cpu_online_mask);
2576 		nr_ids = nr_cpu_ids;
2577 	}
2578 
2579 	if (maps_sz < L1_CACHE_BYTES)
2580 		maps_sz = L1_CACHE_BYTES;
2581 
2582 	/* The old dev_maps could be larger or smaller than the one we're
2583 	 * setting up now, as dev->num_tc or nr_ids could have been updated in
2584 	 * between. We could try to be smart, but let's be safe instead and only
2585 	 * copy foreign traffic classes if the two map sizes match.
2586 	 */
2587 	if (dev_maps &&
2588 	    dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2589 		copy = true;
2590 
2591 	/* allocate memory for queue storage */
2592 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2593 	     j < nr_ids;) {
2594 		if (!new_dev_maps) {
2595 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2596 			if (!new_dev_maps) {
2597 				mutex_unlock(&xps_map_mutex);
2598 				return -ENOMEM;
2599 			}
2600 
2601 			new_dev_maps->nr_ids = nr_ids;
2602 			new_dev_maps->num_tc = num_tc;
2603 		}
2604 
2605 		tci = j * num_tc + tc;
2606 		map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2607 
2608 		map = expand_xps_map(map, j, index, type == XPS_RXQS);
2609 		if (!map)
2610 			goto error;
2611 
2612 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2613 	}
2614 
2615 	if (!new_dev_maps)
2616 		goto out_no_new_maps;
2617 
2618 	if (!dev_maps) {
2619 		/* Increment static keys at most once per type */
2620 		static_key_slow_inc_cpuslocked(&xps_needed);
2621 		if (type == XPS_RXQS)
2622 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2623 	}
2624 
2625 	for (j = 0; j < nr_ids; j++) {
2626 		bool skip_tc = false;
2627 
2628 		tci = j * num_tc + tc;
2629 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2630 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2631 			/* add tx-queue to CPU/rx-queue maps */
2632 			int pos = 0;
2633 
2634 			skip_tc = true;
2635 
2636 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2637 			while ((pos < map->len) && (map->queues[pos] != index))
2638 				pos++;
2639 
2640 			if (pos == map->len)
2641 				map->queues[map->len++] = index;
2642 #ifdef CONFIG_NUMA
2643 			if (type == XPS_CPUS) {
2644 				if (numa_node_id == -2)
2645 					numa_node_id = cpu_to_node(j);
2646 				else if (numa_node_id != cpu_to_node(j))
2647 					numa_node_id = -1;
2648 			}
2649 #endif
2650 		}
2651 
2652 		if (copy)
2653 			xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2654 					  skip_tc);
2655 	}
2656 
2657 	rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2658 
2659 	/* Cleanup old maps */
2660 	if (!dev_maps)
2661 		goto out_no_old_maps;
2662 
2663 	for (j = 0; j < dev_maps->nr_ids; j++) {
2664 		for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2665 			map = xmap_dereference(dev_maps->attr_map[tci]);
2666 			if (!map)
2667 				continue;
2668 
2669 			if (copy) {
2670 				new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2671 				if (map == new_map)
2672 					continue;
2673 			}
2674 
2675 			RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2676 			kfree_rcu(map, rcu);
2677 		}
2678 	}
2679 
2680 	old_dev_maps = dev_maps;
2681 
2682 out_no_old_maps:
2683 	dev_maps = new_dev_maps;
2684 	active = true;
2685 
2686 out_no_new_maps:
2687 	if (type == XPS_CPUS)
2688 		/* update Tx queue numa node */
2689 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2690 					     (numa_node_id >= 0) ?
2691 					     numa_node_id : NUMA_NO_NODE);
2692 
2693 	if (!dev_maps)
2694 		goto out_no_maps;
2695 
2696 	/* removes tx-queue from unused CPUs/rx-queues */
2697 	for (j = 0; j < dev_maps->nr_ids; j++) {
2698 		tci = j * dev_maps->num_tc;
2699 
2700 		for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2701 			if (i == tc &&
2702 			    netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2703 			    netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2704 				continue;
2705 
2706 			active |= remove_xps_queue(dev_maps,
2707 						   copy ? old_dev_maps : NULL,
2708 						   tci, index);
2709 		}
2710 	}
2711 
2712 	if (old_dev_maps)
2713 		kfree_rcu(old_dev_maps, rcu);
2714 
2715 	/* free map if not active */
2716 	if (!active)
2717 		reset_xps_maps(dev, dev_maps, type);
2718 
2719 out_no_maps:
2720 	mutex_unlock(&xps_map_mutex);
2721 
2722 	return 0;
2723 error:
2724 	/* remove any maps that we added */
2725 	for (j = 0; j < nr_ids; j++) {
2726 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2727 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2728 			map = copy ?
2729 			      xmap_dereference(dev_maps->attr_map[tci]) :
2730 			      NULL;
2731 			if (new_map && new_map != map)
2732 				kfree(new_map);
2733 		}
2734 	}
2735 
2736 	mutex_unlock(&xps_map_mutex);
2737 
2738 	kfree(new_dev_maps);
2739 	return -ENOMEM;
2740 }
2741 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2742 
2743 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2744 			u16 index)
2745 {
2746 	int ret;
2747 
2748 	cpus_read_lock();
2749 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2750 	cpus_read_unlock();
2751 
2752 	return ret;
2753 }
2754 EXPORT_SYMBOL(netif_set_xps_queue);
2755 
2756 #endif
2757 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2758 {
2759 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2760 
2761 	/* Unbind any subordinate channels */
2762 	while (txq-- != &dev->_tx[0]) {
2763 		if (txq->sb_dev)
2764 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2765 	}
2766 }
2767 
2768 void netdev_reset_tc(struct net_device *dev)
2769 {
2770 #ifdef CONFIG_XPS
2771 	netif_reset_xps_queues_gt(dev, 0);
2772 #endif
2773 	netdev_unbind_all_sb_channels(dev);
2774 
2775 	/* Reset TC configuration of device */
2776 	dev->num_tc = 0;
2777 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2778 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2779 }
2780 EXPORT_SYMBOL(netdev_reset_tc);
2781 
2782 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2783 {
2784 	if (tc >= dev->num_tc)
2785 		return -EINVAL;
2786 
2787 #ifdef CONFIG_XPS
2788 	netif_reset_xps_queues(dev, offset, count);
2789 #endif
2790 	dev->tc_to_txq[tc].count = count;
2791 	dev->tc_to_txq[tc].offset = offset;
2792 	return 0;
2793 }
2794 EXPORT_SYMBOL(netdev_set_tc_queue);
2795 
2796 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2797 {
2798 	if (num_tc > TC_MAX_QUEUE)
2799 		return -EINVAL;
2800 
2801 #ifdef CONFIG_XPS
2802 	netif_reset_xps_queues_gt(dev, 0);
2803 #endif
2804 	netdev_unbind_all_sb_channels(dev);
2805 
2806 	dev->num_tc = num_tc;
2807 	return 0;
2808 }
2809 EXPORT_SYMBOL(netdev_set_num_tc);
2810 
2811 void netdev_unbind_sb_channel(struct net_device *dev,
2812 			      struct net_device *sb_dev)
2813 {
2814 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2815 
2816 #ifdef CONFIG_XPS
2817 	netif_reset_xps_queues_gt(sb_dev, 0);
2818 #endif
2819 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2820 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2821 
2822 	while (txq-- != &dev->_tx[0]) {
2823 		if (txq->sb_dev == sb_dev)
2824 			txq->sb_dev = NULL;
2825 	}
2826 }
2827 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2828 
2829 int netdev_bind_sb_channel_queue(struct net_device *dev,
2830 				 struct net_device *sb_dev,
2831 				 u8 tc, u16 count, u16 offset)
2832 {
2833 	/* Make certain the sb_dev and dev are already configured */
2834 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2835 		return -EINVAL;
2836 
2837 	/* We cannot hand out queues we don't have */
2838 	if ((offset + count) > dev->real_num_tx_queues)
2839 		return -EINVAL;
2840 
2841 	/* Record the mapping */
2842 	sb_dev->tc_to_txq[tc].count = count;
2843 	sb_dev->tc_to_txq[tc].offset = offset;
2844 
2845 	/* Provide a way for Tx queue to find the tc_to_txq map or
2846 	 * XPS map for itself.
2847 	 */
2848 	while (count--)
2849 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2850 
2851 	return 0;
2852 }
2853 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2854 
2855 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2856 {
2857 	/* Do not use a multiqueue device to represent a subordinate channel */
2858 	if (netif_is_multiqueue(dev))
2859 		return -ENODEV;
2860 
2861 	/* We allow channels 1 - 32767 to be used for subordinate channels.
2862 	 * Channel 0 is meant to be "native" mode and used only to represent
2863 	 * the main root device. We allow writing 0 to reset the device back
2864 	 * to normal mode after being used as a subordinate channel.
2865 	 */
2866 	if (channel > S16_MAX)
2867 		return -EINVAL;
2868 
2869 	dev->num_tc = -channel;
2870 
2871 	return 0;
2872 }
2873 EXPORT_SYMBOL(netdev_set_sb_channel);
2874 
2875 /*
2876  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2877  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2878  */
2879 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2880 {
2881 	bool disabling;
2882 	int rc;
2883 
2884 	disabling = txq < dev->real_num_tx_queues;
2885 
2886 	if (txq < 1 || txq > dev->num_tx_queues)
2887 		return -EINVAL;
2888 
2889 	if (dev->reg_state == NETREG_REGISTERED ||
2890 	    dev->reg_state == NETREG_UNREGISTERING) {
2891 		ASSERT_RTNL();
2892 
2893 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2894 						  txq);
2895 		if (rc)
2896 			return rc;
2897 
2898 		if (dev->num_tc)
2899 			netif_setup_tc(dev, txq);
2900 
2901 		dev_qdisc_change_real_num_tx(dev, txq);
2902 
2903 		dev->real_num_tx_queues = txq;
2904 
2905 		if (disabling) {
2906 			synchronize_net();
2907 			qdisc_reset_all_tx_gt(dev, txq);
2908 #ifdef CONFIG_XPS
2909 			netif_reset_xps_queues_gt(dev, txq);
2910 #endif
2911 		}
2912 	} else {
2913 		dev->real_num_tx_queues = txq;
2914 	}
2915 
2916 	return 0;
2917 }
2918 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2919 
2920 #ifdef CONFIG_SYSFS
2921 /**
2922  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2923  *	@dev: Network device
2924  *	@rxq: Actual number of RX queues
2925  *
2926  *	This must be called either with the rtnl_lock held or before
2927  *	registration of the net device.  Returns 0 on success, or a
2928  *	negative error code.  If called before registration, it always
2929  *	succeeds.
2930  */
2931 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2932 {
2933 	int rc;
2934 
2935 	if (rxq < 1 || rxq > dev->num_rx_queues)
2936 		return -EINVAL;
2937 
2938 	if (dev->reg_state == NETREG_REGISTERED) {
2939 		ASSERT_RTNL();
2940 
2941 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2942 						  rxq);
2943 		if (rc)
2944 			return rc;
2945 	}
2946 
2947 	dev->real_num_rx_queues = rxq;
2948 	return 0;
2949 }
2950 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2951 #endif
2952 
2953 /**
2954  *	netif_set_real_num_queues - set actual number of RX and TX queues used
2955  *	@dev: Network device
2956  *	@txq: Actual number of TX queues
2957  *	@rxq: Actual number of RX queues
2958  *
2959  *	Set the real number of both TX and RX queues.
2960  *	Does nothing if the number of queues is already correct.
2961  */
2962 int netif_set_real_num_queues(struct net_device *dev,
2963 			      unsigned int txq, unsigned int rxq)
2964 {
2965 	unsigned int old_rxq = dev->real_num_rx_queues;
2966 	int err;
2967 
2968 	if (txq < 1 || txq > dev->num_tx_queues ||
2969 	    rxq < 1 || rxq > dev->num_rx_queues)
2970 		return -EINVAL;
2971 
2972 	/* Start from increases, so the error path only does decreases -
2973 	 * decreases can't fail.
2974 	 */
2975 	if (rxq > dev->real_num_rx_queues) {
2976 		err = netif_set_real_num_rx_queues(dev, rxq);
2977 		if (err)
2978 			return err;
2979 	}
2980 	if (txq > dev->real_num_tx_queues) {
2981 		err = netif_set_real_num_tx_queues(dev, txq);
2982 		if (err)
2983 			goto undo_rx;
2984 	}
2985 	if (rxq < dev->real_num_rx_queues)
2986 		WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
2987 	if (txq < dev->real_num_tx_queues)
2988 		WARN_ON(netif_set_real_num_tx_queues(dev, txq));
2989 
2990 	return 0;
2991 undo_rx:
2992 	WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
2993 	return err;
2994 }
2995 EXPORT_SYMBOL(netif_set_real_num_queues);
2996 
2997 /**
2998  * netif_set_tso_max_size() - set the max size of TSO frames supported
2999  * @dev:	netdev to update
3000  * @size:	max skb->len of a TSO frame
3001  *
3002  * Set the limit on the size of TSO super-frames the device can handle.
3003  * Unless explicitly set the stack will assume the value of
3004  * %GSO_LEGACY_MAX_SIZE.
3005  */
3006 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3007 {
3008 	dev->tso_max_size = min(GSO_MAX_SIZE, size);
3009 	if (size < READ_ONCE(dev->gso_max_size))
3010 		netif_set_gso_max_size(dev, size);
3011 	if (size < READ_ONCE(dev->gso_ipv4_max_size))
3012 		netif_set_gso_ipv4_max_size(dev, size);
3013 }
3014 EXPORT_SYMBOL(netif_set_tso_max_size);
3015 
3016 /**
3017  * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3018  * @dev:	netdev to update
3019  * @segs:	max number of TCP segments
3020  *
3021  * Set the limit on the number of TCP segments the device can generate from
3022  * a single TSO super-frame.
3023  * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3024  */
3025 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3026 {
3027 	dev->tso_max_segs = segs;
3028 	if (segs < READ_ONCE(dev->gso_max_segs))
3029 		netif_set_gso_max_segs(dev, segs);
3030 }
3031 EXPORT_SYMBOL(netif_set_tso_max_segs);
3032 
3033 /**
3034  * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3035  * @to:		netdev to update
3036  * @from:	netdev from which to copy the limits
3037  */
3038 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3039 {
3040 	netif_set_tso_max_size(to, from->tso_max_size);
3041 	netif_set_tso_max_segs(to, from->tso_max_segs);
3042 }
3043 EXPORT_SYMBOL(netif_inherit_tso_max);
3044 
3045 /**
3046  * netif_get_num_default_rss_queues - default number of RSS queues
3047  *
3048  * Default value is the number of physical cores if there are only 1 or 2, or
3049  * divided by 2 if there are more.
3050  */
3051 int netif_get_num_default_rss_queues(void)
3052 {
3053 	cpumask_var_t cpus;
3054 	int cpu, count = 0;
3055 
3056 	if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3057 		return 1;
3058 
3059 	cpumask_copy(cpus, cpu_online_mask);
3060 	for_each_cpu(cpu, cpus) {
3061 		++count;
3062 		cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3063 	}
3064 	free_cpumask_var(cpus);
3065 
3066 	return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3067 }
3068 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3069 
3070 static void __netif_reschedule(struct Qdisc *q)
3071 {
3072 	struct softnet_data *sd;
3073 	unsigned long flags;
3074 
3075 	local_irq_save(flags);
3076 	sd = this_cpu_ptr(&softnet_data);
3077 	q->next_sched = NULL;
3078 	*sd->output_queue_tailp = q;
3079 	sd->output_queue_tailp = &q->next_sched;
3080 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3081 	local_irq_restore(flags);
3082 }
3083 
3084 void __netif_schedule(struct Qdisc *q)
3085 {
3086 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3087 		__netif_reschedule(q);
3088 }
3089 EXPORT_SYMBOL(__netif_schedule);
3090 
3091 struct dev_kfree_skb_cb {
3092 	enum skb_drop_reason reason;
3093 };
3094 
3095 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3096 {
3097 	return (struct dev_kfree_skb_cb *)skb->cb;
3098 }
3099 
3100 void netif_schedule_queue(struct netdev_queue *txq)
3101 {
3102 	rcu_read_lock();
3103 	if (!netif_xmit_stopped(txq)) {
3104 		struct Qdisc *q = rcu_dereference(txq->qdisc);
3105 
3106 		__netif_schedule(q);
3107 	}
3108 	rcu_read_unlock();
3109 }
3110 EXPORT_SYMBOL(netif_schedule_queue);
3111 
3112 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3113 {
3114 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3115 		struct Qdisc *q;
3116 
3117 		rcu_read_lock();
3118 		q = rcu_dereference(dev_queue->qdisc);
3119 		__netif_schedule(q);
3120 		rcu_read_unlock();
3121 	}
3122 }
3123 EXPORT_SYMBOL(netif_tx_wake_queue);
3124 
3125 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3126 {
3127 	unsigned long flags;
3128 
3129 	if (unlikely(!skb))
3130 		return;
3131 
3132 	if (likely(refcount_read(&skb->users) == 1)) {
3133 		smp_rmb();
3134 		refcount_set(&skb->users, 0);
3135 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3136 		return;
3137 	}
3138 	get_kfree_skb_cb(skb)->reason = reason;
3139 	local_irq_save(flags);
3140 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3141 	__this_cpu_write(softnet_data.completion_queue, skb);
3142 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3143 	local_irq_restore(flags);
3144 }
3145 EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
3146 
3147 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3148 {
3149 	if (in_hardirq() || irqs_disabled())
3150 		dev_kfree_skb_irq_reason(skb, reason);
3151 	else
3152 		kfree_skb_reason(skb, reason);
3153 }
3154 EXPORT_SYMBOL(dev_kfree_skb_any_reason);
3155 
3156 
3157 /**
3158  * netif_device_detach - mark device as removed
3159  * @dev: network device
3160  *
3161  * Mark device as removed from system and therefore no longer available.
3162  */
3163 void netif_device_detach(struct net_device *dev)
3164 {
3165 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3166 	    netif_running(dev)) {
3167 		netif_tx_stop_all_queues(dev);
3168 	}
3169 }
3170 EXPORT_SYMBOL(netif_device_detach);
3171 
3172 /**
3173  * netif_device_attach - mark device as attached
3174  * @dev: network device
3175  *
3176  * Mark device as attached from system and restart if needed.
3177  */
3178 void netif_device_attach(struct net_device *dev)
3179 {
3180 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3181 	    netif_running(dev)) {
3182 		netif_tx_wake_all_queues(dev);
3183 		__netdev_watchdog_up(dev);
3184 	}
3185 }
3186 EXPORT_SYMBOL(netif_device_attach);
3187 
3188 /*
3189  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3190  * to be used as a distribution range.
3191  */
3192 static u16 skb_tx_hash(const struct net_device *dev,
3193 		       const struct net_device *sb_dev,
3194 		       struct sk_buff *skb)
3195 {
3196 	u32 hash;
3197 	u16 qoffset = 0;
3198 	u16 qcount = dev->real_num_tx_queues;
3199 
3200 	if (dev->num_tc) {
3201 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3202 
3203 		qoffset = sb_dev->tc_to_txq[tc].offset;
3204 		qcount = sb_dev->tc_to_txq[tc].count;
3205 		if (unlikely(!qcount)) {
3206 			net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3207 					     sb_dev->name, qoffset, tc);
3208 			qoffset = 0;
3209 			qcount = dev->real_num_tx_queues;
3210 		}
3211 	}
3212 
3213 	if (skb_rx_queue_recorded(skb)) {
3214 		DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3215 		hash = skb_get_rx_queue(skb);
3216 		if (hash >= qoffset)
3217 			hash -= qoffset;
3218 		while (unlikely(hash >= qcount))
3219 			hash -= qcount;
3220 		return hash + qoffset;
3221 	}
3222 
3223 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3224 }
3225 
3226 void skb_warn_bad_offload(const struct sk_buff *skb)
3227 {
3228 	static const netdev_features_t null_features;
3229 	struct net_device *dev = skb->dev;
3230 	const char *name = "";
3231 
3232 	if (!net_ratelimit())
3233 		return;
3234 
3235 	if (dev) {
3236 		if (dev->dev.parent)
3237 			name = dev_driver_string(dev->dev.parent);
3238 		else
3239 			name = netdev_name(dev);
3240 	}
3241 	skb_dump(KERN_WARNING, skb, false);
3242 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3243 	     name, dev ? &dev->features : &null_features,
3244 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3245 }
3246 
3247 /*
3248  * Invalidate hardware checksum when packet is to be mangled, and
3249  * complete checksum manually on outgoing path.
3250  */
3251 int skb_checksum_help(struct sk_buff *skb)
3252 {
3253 	__wsum csum;
3254 	int ret = 0, offset;
3255 
3256 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3257 		goto out_set_summed;
3258 
3259 	if (unlikely(skb_is_gso(skb))) {
3260 		skb_warn_bad_offload(skb);
3261 		return -EINVAL;
3262 	}
3263 
3264 	/* Before computing a checksum, we should make sure no frag could
3265 	 * be modified by an external entity : checksum could be wrong.
3266 	 */
3267 	if (skb_has_shared_frag(skb)) {
3268 		ret = __skb_linearize(skb);
3269 		if (ret)
3270 			goto out;
3271 	}
3272 
3273 	offset = skb_checksum_start_offset(skb);
3274 	ret = -EINVAL;
3275 	if (unlikely(offset >= skb_headlen(skb))) {
3276 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3277 		WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n",
3278 			  offset, skb_headlen(skb));
3279 		goto out;
3280 	}
3281 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3282 
3283 	offset += skb->csum_offset;
3284 	if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) {
3285 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3286 		WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n",
3287 			  offset + sizeof(__sum16), skb_headlen(skb));
3288 		goto out;
3289 	}
3290 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3291 	if (ret)
3292 		goto out;
3293 
3294 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3295 out_set_summed:
3296 	skb->ip_summed = CHECKSUM_NONE;
3297 out:
3298 	return ret;
3299 }
3300 EXPORT_SYMBOL(skb_checksum_help);
3301 
3302 int skb_crc32c_csum_help(struct sk_buff *skb)
3303 {
3304 	__le32 crc32c_csum;
3305 	int ret = 0, offset, start;
3306 
3307 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3308 		goto out;
3309 
3310 	if (unlikely(skb_is_gso(skb)))
3311 		goto out;
3312 
3313 	/* Before computing a checksum, we should make sure no frag could
3314 	 * be modified by an external entity : checksum could be wrong.
3315 	 */
3316 	if (unlikely(skb_has_shared_frag(skb))) {
3317 		ret = __skb_linearize(skb);
3318 		if (ret)
3319 			goto out;
3320 	}
3321 	start = skb_checksum_start_offset(skb);
3322 	offset = start + offsetof(struct sctphdr, checksum);
3323 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3324 		ret = -EINVAL;
3325 		goto out;
3326 	}
3327 
3328 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3329 	if (ret)
3330 		goto out;
3331 
3332 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3333 						  skb->len - start, ~(__u32)0,
3334 						  crc32c_csum_stub));
3335 	*(__le32 *)(skb->data + offset) = crc32c_csum;
3336 	skb_reset_csum_not_inet(skb);
3337 out:
3338 	return ret;
3339 }
3340 
3341 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3342 {
3343 	__be16 type = skb->protocol;
3344 
3345 	/* Tunnel gso handlers can set protocol to ethernet. */
3346 	if (type == htons(ETH_P_TEB)) {
3347 		struct ethhdr *eth;
3348 
3349 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3350 			return 0;
3351 
3352 		eth = (struct ethhdr *)skb->data;
3353 		type = eth->h_proto;
3354 	}
3355 
3356 	return vlan_get_protocol_and_depth(skb, type, depth);
3357 }
3358 
3359 
3360 /* Take action when hardware reception checksum errors are detected. */
3361 #ifdef CONFIG_BUG
3362 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3363 {
3364 	netdev_err(dev, "hw csum failure\n");
3365 	skb_dump(KERN_ERR, skb, true);
3366 	dump_stack();
3367 }
3368 
3369 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3370 {
3371 	DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3372 }
3373 EXPORT_SYMBOL(netdev_rx_csum_fault);
3374 #endif
3375 
3376 /* XXX: check that highmem exists at all on the given machine. */
3377 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3378 {
3379 #ifdef CONFIG_HIGHMEM
3380 	int i;
3381 
3382 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3383 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3384 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3385 
3386 			if (PageHighMem(skb_frag_page(frag)))
3387 				return 1;
3388 		}
3389 	}
3390 #endif
3391 	return 0;
3392 }
3393 
3394 /* If MPLS offload request, verify we are testing hardware MPLS features
3395  * instead of standard features for the netdev.
3396  */
3397 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3398 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3399 					   netdev_features_t features,
3400 					   __be16 type)
3401 {
3402 	if (eth_p_mpls(type))
3403 		features &= skb->dev->mpls_features;
3404 
3405 	return features;
3406 }
3407 #else
3408 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3409 					   netdev_features_t features,
3410 					   __be16 type)
3411 {
3412 	return features;
3413 }
3414 #endif
3415 
3416 static netdev_features_t harmonize_features(struct sk_buff *skb,
3417 	netdev_features_t features)
3418 {
3419 	__be16 type;
3420 
3421 	type = skb_network_protocol(skb, NULL);
3422 	features = net_mpls_features(skb, features, type);
3423 
3424 	if (skb->ip_summed != CHECKSUM_NONE &&
3425 	    !can_checksum_protocol(features, type)) {
3426 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3427 	}
3428 	if (illegal_highdma(skb->dev, skb))
3429 		features &= ~NETIF_F_SG;
3430 
3431 	return features;
3432 }
3433 
3434 netdev_features_t passthru_features_check(struct sk_buff *skb,
3435 					  struct net_device *dev,
3436 					  netdev_features_t features)
3437 {
3438 	return features;
3439 }
3440 EXPORT_SYMBOL(passthru_features_check);
3441 
3442 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3443 					     struct net_device *dev,
3444 					     netdev_features_t features)
3445 {
3446 	return vlan_features_check(skb, features);
3447 }
3448 
3449 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3450 					    struct net_device *dev,
3451 					    netdev_features_t features)
3452 {
3453 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3454 
3455 	if (gso_segs > READ_ONCE(dev->gso_max_segs))
3456 		return features & ~NETIF_F_GSO_MASK;
3457 
3458 	if (unlikely(skb->len >= READ_ONCE(dev->gso_max_size)))
3459 		return features & ~NETIF_F_GSO_MASK;
3460 
3461 	if (!skb_shinfo(skb)->gso_type) {
3462 		skb_warn_bad_offload(skb);
3463 		return features & ~NETIF_F_GSO_MASK;
3464 	}
3465 
3466 	/* Support for GSO partial features requires software
3467 	 * intervention before we can actually process the packets
3468 	 * so we need to strip support for any partial features now
3469 	 * and we can pull them back in after we have partially
3470 	 * segmented the frame.
3471 	 */
3472 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3473 		features &= ~dev->gso_partial_features;
3474 
3475 	/* Make sure to clear the IPv4 ID mangling feature if the
3476 	 * IPv4 header has the potential to be fragmented.
3477 	 */
3478 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3479 		struct iphdr *iph = skb->encapsulation ?
3480 				    inner_ip_hdr(skb) : ip_hdr(skb);
3481 
3482 		if (!(iph->frag_off & htons(IP_DF)))
3483 			features &= ~NETIF_F_TSO_MANGLEID;
3484 	}
3485 
3486 	return features;
3487 }
3488 
3489 netdev_features_t netif_skb_features(struct sk_buff *skb)
3490 {
3491 	struct net_device *dev = skb->dev;
3492 	netdev_features_t features = dev->features;
3493 
3494 	if (skb_is_gso(skb))
3495 		features = gso_features_check(skb, dev, features);
3496 
3497 	/* If encapsulation offload request, verify we are testing
3498 	 * hardware encapsulation features instead of standard
3499 	 * features for the netdev
3500 	 */
3501 	if (skb->encapsulation)
3502 		features &= dev->hw_enc_features;
3503 
3504 	if (skb_vlan_tagged(skb))
3505 		features = netdev_intersect_features(features,
3506 						     dev->vlan_features |
3507 						     NETIF_F_HW_VLAN_CTAG_TX |
3508 						     NETIF_F_HW_VLAN_STAG_TX);
3509 
3510 	if (dev->netdev_ops->ndo_features_check)
3511 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3512 								features);
3513 	else
3514 		features &= dflt_features_check(skb, dev, features);
3515 
3516 	return harmonize_features(skb, features);
3517 }
3518 EXPORT_SYMBOL(netif_skb_features);
3519 
3520 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3521 		    struct netdev_queue *txq, bool more)
3522 {
3523 	unsigned int len;
3524 	int rc;
3525 
3526 	if (dev_nit_active(dev))
3527 		dev_queue_xmit_nit(skb, dev);
3528 
3529 	len = skb->len;
3530 	trace_net_dev_start_xmit(skb, dev);
3531 	rc = netdev_start_xmit(skb, dev, txq, more);
3532 	trace_net_dev_xmit(skb, rc, dev, len);
3533 
3534 	return rc;
3535 }
3536 
3537 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3538 				    struct netdev_queue *txq, int *ret)
3539 {
3540 	struct sk_buff *skb = first;
3541 	int rc = NETDEV_TX_OK;
3542 
3543 	while (skb) {
3544 		struct sk_buff *next = skb->next;
3545 
3546 		skb_mark_not_on_list(skb);
3547 		rc = xmit_one(skb, dev, txq, next != NULL);
3548 		if (unlikely(!dev_xmit_complete(rc))) {
3549 			skb->next = next;
3550 			goto out;
3551 		}
3552 
3553 		skb = next;
3554 		if (netif_tx_queue_stopped(txq) && skb) {
3555 			rc = NETDEV_TX_BUSY;
3556 			break;
3557 		}
3558 	}
3559 
3560 out:
3561 	*ret = rc;
3562 	return skb;
3563 }
3564 
3565 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3566 					  netdev_features_t features)
3567 {
3568 	if (skb_vlan_tag_present(skb) &&
3569 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3570 		skb = __vlan_hwaccel_push_inside(skb);
3571 	return skb;
3572 }
3573 
3574 int skb_csum_hwoffload_help(struct sk_buff *skb,
3575 			    const netdev_features_t features)
3576 {
3577 	if (unlikely(skb_csum_is_sctp(skb)))
3578 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3579 			skb_crc32c_csum_help(skb);
3580 
3581 	if (features & NETIF_F_HW_CSUM)
3582 		return 0;
3583 
3584 	if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3585 		switch (skb->csum_offset) {
3586 		case offsetof(struct tcphdr, check):
3587 		case offsetof(struct udphdr, check):
3588 			return 0;
3589 		}
3590 	}
3591 
3592 	return skb_checksum_help(skb);
3593 }
3594 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3595 
3596 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3597 {
3598 	netdev_features_t features;
3599 
3600 	features = netif_skb_features(skb);
3601 	skb = validate_xmit_vlan(skb, features);
3602 	if (unlikely(!skb))
3603 		goto out_null;
3604 
3605 	skb = sk_validate_xmit_skb(skb, dev);
3606 	if (unlikely(!skb))
3607 		goto out_null;
3608 
3609 	if (netif_needs_gso(skb, features)) {
3610 		struct sk_buff *segs;
3611 
3612 		segs = skb_gso_segment(skb, features);
3613 		if (IS_ERR(segs)) {
3614 			goto out_kfree_skb;
3615 		} else if (segs) {
3616 			consume_skb(skb);
3617 			skb = segs;
3618 		}
3619 	} else {
3620 		if (skb_needs_linearize(skb, features) &&
3621 		    __skb_linearize(skb))
3622 			goto out_kfree_skb;
3623 
3624 		/* If packet is not checksummed and device does not
3625 		 * support checksumming for this protocol, complete
3626 		 * checksumming here.
3627 		 */
3628 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3629 			if (skb->encapsulation)
3630 				skb_set_inner_transport_header(skb,
3631 							       skb_checksum_start_offset(skb));
3632 			else
3633 				skb_set_transport_header(skb,
3634 							 skb_checksum_start_offset(skb));
3635 			if (skb_csum_hwoffload_help(skb, features))
3636 				goto out_kfree_skb;
3637 		}
3638 	}
3639 
3640 	skb = validate_xmit_xfrm(skb, features, again);
3641 
3642 	return skb;
3643 
3644 out_kfree_skb:
3645 	kfree_skb(skb);
3646 out_null:
3647 	dev_core_stats_tx_dropped_inc(dev);
3648 	return NULL;
3649 }
3650 
3651 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3652 {
3653 	struct sk_buff *next, *head = NULL, *tail;
3654 
3655 	for (; skb != NULL; skb = next) {
3656 		next = skb->next;
3657 		skb_mark_not_on_list(skb);
3658 
3659 		/* in case skb wont be segmented, point to itself */
3660 		skb->prev = skb;
3661 
3662 		skb = validate_xmit_skb(skb, dev, again);
3663 		if (!skb)
3664 			continue;
3665 
3666 		if (!head)
3667 			head = skb;
3668 		else
3669 			tail->next = skb;
3670 		/* If skb was segmented, skb->prev points to
3671 		 * the last segment. If not, it still contains skb.
3672 		 */
3673 		tail = skb->prev;
3674 	}
3675 	return head;
3676 }
3677 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3678 
3679 static void qdisc_pkt_len_init(struct sk_buff *skb)
3680 {
3681 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3682 
3683 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3684 
3685 	/* To get more precise estimation of bytes sent on wire,
3686 	 * we add to pkt_len the headers size of all segments
3687 	 */
3688 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3689 		u16 gso_segs = shinfo->gso_segs;
3690 		unsigned int hdr_len;
3691 
3692 		/* mac layer + network layer */
3693 		hdr_len = skb_transport_offset(skb);
3694 
3695 		/* + transport layer */
3696 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3697 			const struct tcphdr *th;
3698 			struct tcphdr _tcphdr;
3699 
3700 			th = skb_header_pointer(skb, hdr_len,
3701 						sizeof(_tcphdr), &_tcphdr);
3702 			if (likely(th))
3703 				hdr_len += __tcp_hdrlen(th);
3704 		} else {
3705 			struct udphdr _udphdr;
3706 
3707 			if (skb_header_pointer(skb, hdr_len,
3708 					       sizeof(_udphdr), &_udphdr))
3709 				hdr_len += sizeof(struct udphdr);
3710 		}
3711 
3712 		if (shinfo->gso_type & SKB_GSO_DODGY)
3713 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3714 						shinfo->gso_size);
3715 
3716 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3717 	}
3718 }
3719 
3720 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3721 			     struct sk_buff **to_free,
3722 			     struct netdev_queue *txq)
3723 {
3724 	int rc;
3725 
3726 	rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3727 	if (rc == NET_XMIT_SUCCESS)
3728 		trace_qdisc_enqueue(q, txq, skb);
3729 	return rc;
3730 }
3731 
3732 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3733 				 struct net_device *dev,
3734 				 struct netdev_queue *txq)
3735 {
3736 	spinlock_t *root_lock = qdisc_lock(q);
3737 	struct sk_buff *to_free = NULL;
3738 	bool contended;
3739 	int rc;
3740 
3741 	qdisc_calculate_pkt_len(skb, q);
3742 
3743 	tcf_set_drop_reason(skb, SKB_DROP_REASON_QDISC_DROP);
3744 
3745 	if (q->flags & TCQ_F_NOLOCK) {
3746 		if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3747 		    qdisc_run_begin(q)) {
3748 			/* Retest nolock_qdisc_is_empty() within the protection
3749 			 * of q->seqlock to protect from racing with requeuing.
3750 			 */
3751 			if (unlikely(!nolock_qdisc_is_empty(q))) {
3752 				rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3753 				__qdisc_run(q);
3754 				qdisc_run_end(q);
3755 
3756 				goto no_lock_out;
3757 			}
3758 
3759 			qdisc_bstats_cpu_update(q, skb);
3760 			if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3761 			    !nolock_qdisc_is_empty(q))
3762 				__qdisc_run(q);
3763 
3764 			qdisc_run_end(q);
3765 			return NET_XMIT_SUCCESS;
3766 		}
3767 
3768 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3769 		qdisc_run(q);
3770 
3771 no_lock_out:
3772 		if (unlikely(to_free))
3773 			kfree_skb_list_reason(to_free,
3774 					      tcf_get_drop_reason(to_free));
3775 		return rc;
3776 	}
3777 
3778 	/*
3779 	 * Heuristic to force contended enqueues to serialize on a
3780 	 * separate lock before trying to get qdisc main lock.
3781 	 * This permits qdisc->running owner to get the lock more
3782 	 * often and dequeue packets faster.
3783 	 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3784 	 * and then other tasks will only enqueue packets. The packets will be
3785 	 * sent after the qdisc owner is scheduled again. To prevent this
3786 	 * scenario the task always serialize on the lock.
3787 	 */
3788 	contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
3789 	if (unlikely(contended))
3790 		spin_lock(&q->busylock);
3791 
3792 	spin_lock(root_lock);
3793 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3794 		__qdisc_drop(skb, &to_free);
3795 		rc = NET_XMIT_DROP;
3796 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3797 		   qdisc_run_begin(q)) {
3798 		/*
3799 		 * This is a work-conserving queue; there are no old skbs
3800 		 * waiting to be sent out; and the qdisc is not running -
3801 		 * xmit the skb directly.
3802 		 */
3803 
3804 		qdisc_bstats_update(q, skb);
3805 
3806 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3807 			if (unlikely(contended)) {
3808 				spin_unlock(&q->busylock);
3809 				contended = false;
3810 			}
3811 			__qdisc_run(q);
3812 		}
3813 
3814 		qdisc_run_end(q);
3815 		rc = NET_XMIT_SUCCESS;
3816 	} else {
3817 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3818 		if (qdisc_run_begin(q)) {
3819 			if (unlikely(contended)) {
3820 				spin_unlock(&q->busylock);
3821 				contended = false;
3822 			}
3823 			__qdisc_run(q);
3824 			qdisc_run_end(q);
3825 		}
3826 	}
3827 	spin_unlock(root_lock);
3828 	if (unlikely(to_free))
3829 		kfree_skb_list_reason(to_free,
3830 				      tcf_get_drop_reason(to_free));
3831 	if (unlikely(contended))
3832 		spin_unlock(&q->busylock);
3833 	return rc;
3834 }
3835 
3836 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3837 static void skb_update_prio(struct sk_buff *skb)
3838 {
3839 	const struct netprio_map *map;
3840 	const struct sock *sk;
3841 	unsigned int prioidx;
3842 
3843 	if (skb->priority)
3844 		return;
3845 	map = rcu_dereference_bh(skb->dev->priomap);
3846 	if (!map)
3847 		return;
3848 	sk = skb_to_full_sk(skb);
3849 	if (!sk)
3850 		return;
3851 
3852 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3853 
3854 	if (prioidx < map->priomap_len)
3855 		skb->priority = map->priomap[prioidx];
3856 }
3857 #else
3858 #define skb_update_prio(skb)
3859 #endif
3860 
3861 /**
3862  *	dev_loopback_xmit - loop back @skb
3863  *	@net: network namespace this loopback is happening in
3864  *	@sk:  sk needed to be a netfilter okfn
3865  *	@skb: buffer to transmit
3866  */
3867 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3868 {
3869 	skb_reset_mac_header(skb);
3870 	__skb_pull(skb, skb_network_offset(skb));
3871 	skb->pkt_type = PACKET_LOOPBACK;
3872 	if (skb->ip_summed == CHECKSUM_NONE)
3873 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3874 	DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
3875 	skb_dst_force(skb);
3876 	netif_rx(skb);
3877 	return 0;
3878 }
3879 EXPORT_SYMBOL(dev_loopback_xmit);
3880 
3881 #ifdef CONFIG_NET_EGRESS
3882 static struct netdev_queue *
3883 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
3884 {
3885 	int qm = skb_get_queue_mapping(skb);
3886 
3887 	return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
3888 }
3889 
3890 static bool netdev_xmit_txqueue_skipped(void)
3891 {
3892 	return __this_cpu_read(softnet_data.xmit.skip_txqueue);
3893 }
3894 
3895 void netdev_xmit_skip_txqueue(bool skip)
3896 {
3897 	__this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
3898 }
3899 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
3900 #endif /* CONFIG_NET_EGRESS */
3901 
3902 #ifdef CONFIG_NET_XGRESS
3903 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb,
3904 		  enum skb_drop_reason *drop_reason)
3905 {
3906 	int ret = TC_ACT_UNSPEC;
3907 #ifdef CONFIG_NET_CLS_ACT
3908 	struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq);
3909 	struct tcf_result res;
3910 
3911 	if (!miniq)
3912 		return ret;
3913 
3914 	tc_skb_cb(skb)->mru = 0;
3915 	tc_skb_cb(skb)->post_ct = false;
3916 	tcf_set_drop_reason(skb, *drop_reason);
3917 
3918 	mini_qdisc_bstats_cpu_update(miniq, skb);
3919 	ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false);
3920 	/* Only tcf related quirks below. */
3921 	switch (ret) {
3922 	case TC_ACT_SHOT:
3923 		*drop_reason = tcf_get_drop_reason(skb);
3924 		mini_qdisc_qstats_cpu_drop(miniq);
3925 		break;
3926 	case TC_ACT_OK:
3927 	case TC_ACT_RECLASSIFY:
3928 		skb->tc_index = TC_H_MIN(res.classid);
3929 		break;
3930 	}
3931 #endif /* CONFIG_NET_CLS_ACT */
3932 	return ret;
3933 }
3934 
3935 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key);
3936 
3937 void tcx_inc(void)
3938 {
3939 	static_branch_inc(&tcx_needed_key);
3940 }
3941 
3942 void tcx_dec(void)
3943 {
3944 	static_branch_dec(&tcx_needed_key);
3945 }
3946 
3947 static __always_inline enum tcx_action_base
3948 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb,
3949 	const bool needs_mac)
3950 {
3951 	const struct bpf_mprog_fp *fp;
3952 	const struct bpf_prog *prog;
3953 	int ret = TCX_NEXT;
3954 
3955 	if (needs_mac)
3956 		__skb_push(skb, skb->mac_len);
3957 	bpf_mprog_foreach_prog(entry, fp, prog) {
3958 		bpf_compute_data_pointers(skb);
3959 		ret = bpf_prog_run(prog, skb);
3960 		if (ret != TCX_NEXT)
3961 			break;
3962 	}
3963 	if (needs_mac)
3964 		__skb_pull(skb, skb->mac_len);
3965 	return tcx_action_code(skb, ret);
3966 }
3967 
3968 static __always_inline struct sk_buff *
3969 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3970 		   struct net_device *orig_dev, bool *another)
3971 {
3972 	struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress);
3973 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS;
3974 	int sch_ret;
3975 
3976 	if (!entry)
3977 		return skb;
3978 	if (*pt_prev) {
3979 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
3980 		*pt_prev = NULL;
3981 	}
3982 
3983 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3984 	tcx_set_ingress(skb, true);
3985 
3986 	if (static_branch_unlikely(&tcx_needed_key)) {
3987 		sch_ret = tcx_run(entry, skb, true);
3988 		if (sch_ret != TC_ACT_UNSPEC)
3989 			goto ingress_verdict;
3990 	}
3991 	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
3992 ingress_verdict:
3993 	switch (sch_ret) {
3994 	case TC_ACT_REDIRECT:
3995 		/* skb_mac_header check was done by BPF, so we can safely
3996 		 * push the L2 header back before redirecting to another
3997 		 * netdev.
3998 		 */
3999 		__skb_push(skb, skb->mac_len);
4000 		if (skb_do_redirect(skb) == -EAGAIN) {
4001 			__skb_pull(skb, skb->mac_len);
4002 			*another = true;
4003 			break;
4004 		}
4005 		*ret = NET_RX_SUCCESS;
4006 		return NULL;
4007 	case TC_ACT_SHOT:
4008 		kfree_skb_reason(skb, drop_reason);
4009 		*ret = NET_RX_DROP;
4010 		return NULL;
4011 	/* used by tc_run */
4012 	case TC_ACT_STOLEN:
4013 	case TC_ACT_QUEUED:
4014 	case TC_ACT_TRAP:
4015 		consume_skb(skb);
4016 		fallthrough;
4017 	case TC_ACT_CONSUMED:
4018 		*ret = NET_RX_SUCCESS;
4019 		return NULL;
4020 	}
4021 
4022 	return skb;
4023 }
4024 
4025 static __always_inline struct sk_buff *
4026 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4027 {
4028 	struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress);
4029 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS;
4030 	int sch_ret;
4031 
4032 	if (!entry)
4033 		return skb;
4034 
4035 	/* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
4036 	 * already set by the caller.
4037 	 */
4038 	if (static_branch_unlikely(&tcx_needed_key)) {
4039 		sch_ret = tcx_run(entry, skb, false);
4040 		if (sch_ret != TC_ACT_UNSPEC)
4041 			goto egress_verdict;
4042 	}
4043 	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4044 egress_verdict:
4045 	switch (sch_ret) {
4046 	case TC_ACT_REDIRECT:
4047 		/* No need to push/pop skb's mac_header here on egress! */
4048 		skb_do_redirect(skb);
4049 		*ret = NET_XMIT_SUCCESS;
4050 		return NULL;
4051 	case TC_ACT_SHOT:
4052 		kfree_skb_reason(skb, drop_reason);
4053 		*ret = NET_XMIT_DROP;
4054 		return NULL;
4055 	/* used by tc_run */
4056 	case TC_ACT_STOLEN:
4057 	case TC_ACT_QUEUED:
4058 	case TC_ACT_TRAP:
4059 		consume_skb(skb);
4060 		fallthrough;
4061 	case TC_ACT_CONSUMED:
4062 		*ret = NET_XMIT_SUCCESS;
4063 		return NULL;
4064 	}
4065 
4066 	return skb;
4067 }
4068 #else
4069 static __always_inline struct sk_buff *
4070 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4071 		   struct net_device *orig_dev, bool *another)
4072 {
4073 	return skb;
4074 }
4075 
4076 static __always_inline struct sk_buff *
4077 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4078 {
4079 	return skb;
4080 }
4081 #endif /* CONFIG_NET_XGRESS */
4082 
4083 #ifdef CONFIG_XPS
4084 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4085 			       struct xps_dev_maps *dev_maps, unsigned int tci)
4086 {
4087 	int tc = netdev_get_prio_tc_map(dev, skb->priority);
4088 	struct xps_map *map;
4089 	int queue_index = -1;
4090 
4091 	if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4092 		return queue_index;
4093 
4094 	tci *= dev_maps->num_tc;
4095 	tci += tc;
4096 
4097 	map = rcu_dereference(dev_maps->attr_map[tci]);
4098 	if (map) {
4099 		if (map->len == 1)
4100 			queue_index = map->queues[0];
4101 		else
4102 			queue_index = map->queues[reciprocal_scale(
4103 						skb_get_hash(skb), map->len)];
4104 		if (unlikely(queue_index >= dev->real_num_tx_queues))
4105 			queue_index = -1;
4106 	}
4107 	return queue_index;
4108 }
4109 #endif
4110 
4111 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4112 			 struct sk_buff *skb)
4113 {
4114 #ifdef CONFIG_XPS
4115 	struct xps_dev_maps *dev_maps;
4116 	struct sock *sk = skb->sk;
4117 	int queue_index = -1;
4118 
4119 	if (!static_key_false(&xps_needed))
4120 		return -1;
4121 
4122 	rcu_read_lock();
4123 	if (!static_key_false(&xps_rxqs_needed))
4124 		goto get_cpus_map;
4125 
4126 	dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4127 	if (dev_maps) {
4128 		int tci = sk_rx_queue_get(sk);
4129 
4130 		if (tci >= 0)
4131 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4132 							  tci);
4133 	}
4134 
4135 get_cpus_map:
4136 	if (queue_index < 0) {
4137 		dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4138 		if (dev_maps) {
4139 			unsigned int tci = skb->sender_cpu - 1;
4140 
4141 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4142 							  tci);
4143 		}
4144 	}
4145 	rcu_read_unlock();
4146 
4147 	return queue_index;
4148 #else
4149 	return -1;
4150 #endif
4151 }
4152 
4153 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4154 		     struct net_device *sb_dev)
4155 {
4156 	return 0;
4157 }
4158 EXPORT_SYMBOL(dev_pick_tx_zero);
4159 
4160 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4161 		       struct net_device *sb_dev)
4162 {
4163 	return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4164 }
4165 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4166 
4167 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4168 		     struct net_device *sb_dev)
4169 {
4170 	struct sock *sk = skb->sk;
4171 	int queue_index = sk_tx_queue_get(sk);
4172 
4173 	sb_dev = sb_dev ? : dev;
4174 
4175 	if (queue_index < 0 || skb->ooo_okay ||
4176 	    queue_index >= dev->real_num_tx_queues) {
4177 		int new_index = get_xps_queue(dev, sb_dev, skb);
4178 
4179 		if (new_index < 0)
4180 			new_index = skb_tx_hash(dev, sb_dev, skb);
4181 
4182 		if (queue_index != new_index && sk &&
4183 		    sk_fullsock(sk) &&
4184 		    rcu_access_pointer(sk->sk_dst_cache))
4185 			sk_tx_queue_set(sk, new_index);
4186 
4187 		queue_index = new_index;
4188 	}
4189 
4190 	return queue_index;
4191 }
4192 EXPORT_SYMBOL(netdev_pick_tx);
4193 
4194 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4195 					 struct sk_buff *skb,
4196 					 struct net_device *sb_dev)
4197 {
4198 	int queue_index = 0;
4199 
4200 #ifdef CONFIG_XPS
4201 	u32 sender_cpu = skb->sender_cpu - 1;
4202 
4203 	if (sender_cpu >= (u32)NR_CPUS)
4204 		skb->sender_cpu = raw_smp_processor_id() + 1;
4205 #endif
4206 
4207 	if (dev->real_num_tx_queues != 1) {
4208 		const struct net_device_ops *ops = dev->netdev_ops;
4209 
4210 		if (ops->ndo_select_queue)
4211 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4212 		else
4213 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4214 
4215 		queue_index = netdev_cap_txqueue(dev, queue_index);
4216 	}
4217 
4218 	skb_set_queue_mapping(skb, queue_index);
4219 	return netdev_get_tx_queue(dev, queue_index);
4220 }
4221 
4222 /**
4223  * __dev_queue_xmit() - transmit a buffer
4224  * @skb:	buffer to transmit
4225  * @sb_dev:	suboordinate device used for L2 forwarding offload
4226  *
4227  * Queue a buffer for transmission to a network device. The caller must
4228  * have set the device and priority and built the buffer before calling
4229  * this function. The function can be called from an interrupt.
4230  *
4231  * When calling this method, interrupts MUST be enabled. This is because
4232  * the BH enable code must have IRQs enabled so that it will not deadlock.
4233  *
4234  * Regardless of the return value, the skb is consumed, so it is currently
4235  * difficult to retry a send to this method. (You can bump the ref count
4236  * before sending to hold a reference for retry if you are careful.)
4237  *
4238  * Return:
4239  * * 0				- buffer successfully transmitted
4240  * * positive qdisc return code	- NET_XMIT_DROP etc.
4241  * * negative errno		- other errors
4242  */
4243 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4244 {
4245 	struct net_device *dev = skb->dev;
4246 	struct netdev_queue *txq = NULL;
4247 	struct Qdisc *q;
4248 	int rc = -ENOMEM;
4249 	bool again = false;
4250 
4251 	skb_reset_mac_header(skb);
4252 	skb_assert_len(skb);
4253 
4254 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4255 		__skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4256 
4257 	/* Disable soft irqs for various locks below. Also
4258 	 * stops preemption for RCU.
4259 	 */
4260 	rcu_read_lock_bh();
4261 
4262 	skb_update_prio(skb);
4263 
4264 	qdisc_pkt_len_init(skb);
4265 	tcx_set_ingress(skb, false);
4266 #ifdef CONFIG_NET_EGRESS
4267 	if (static_branch_unlikely(&egress_needed_key)) {
4268 		if (nf_hook_egress_active()) {
4269 			skb = nf_hook_egress(skb, &rc, dev);
4270 			if (!skb)
4271 				goto out;
4272 		}
4273 
4274 		netdev_xmit_skip_txqueue(false);
4275 
4276 		nf_skip_egress(skb, true);
4277 		skb = sch_handle_egress(skb, &rc, dev);
4278 		if (!skb)
4279 			goto out;
4280 		nf_skip_egress(skb, false);
4281 
4282 		if (netdev_xmit_txqueue_skipped())
4283 			txq = netdev_tx_queue_mapping(dev, skb);
4284 	}
4285 #endif
4286 	/* If device/qdisc don't need skb->dst, release it right now while
4287 	 * its hot in this cpu cache.
4288 	 */
4289 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4290 		skb_dst_drop(skb);
4291 	else
4292 		skb_dst_force(skb);
4293 
4294 	if (!txq)
4295 		txq = netdev_core_pick_tx(dev, skb, sb_dev);
4296 
4297 	q = rcu_dereference_bh(txq->qdisc);
4298 
4299 	trace_net_dev_queue(skb);
4300 	if (q->enqueue) {
4301 		rc = __dev_xmit_skb(skb, q, dev, txq);
4302 		goto out;
4303 	}
4304 
4305 	/* The device has no queue. Common case for software devices:
4306 	 * loopback, all the sorts of tunnels...
4307 
4308 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4309 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4310 	 * counters.)
4311 	 * However, it is possible, that they rely on protection
4312 	 * made by us here.
4313 
4314 	 * Check this and shot the lock. It is not prone from deadlocks.
4315 	 *Either shot noqueue qdisc, it is even simpler 8)
4316 	 */
4317 	if (dev->flags & IFF_UP) {
4318 		int cpu = smp_processor_id(); /* ok because BHs are off */
4319 
4320 		/* Other cpus might concurrently change txq->xmit_lock_owner
4321 		 * to -1 or to their cpu id, but not to our id.
4322 		 */
4323 		if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4324 			if (dev_xmit_recursion())
4325 				goto recursion_alert;
4326 
4327 			skb = validate_xmit_skb(skb, dev, &again);
4328 			if (!skb)
4329 				goto out;
4330 
4331 			HARD_TX_LOCK(dev, txq, cpu);
4332 
4333 			if (!netif_xmit_stopped(txq)) {
4334 				dev_xmit_recursion_inc();
4335 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4336 				dev_xmit_recursion_dec();
4337 				if (dev_xmit_complete(rc)) {
4338 					HARD_TX_UNLOCK(dev, txq);
4339 					goto out;
4340 				}
4341 			}
4342 			HARD_TX_UNLOCK(dev, txq);
4343 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4344 					     dev->name);
4345 		} else {
4346 			/* Recursion is detected! It is possible,
4347 			 * unfortunately
4348 			 */
4349 recursion_alert:
4350 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4351 					     dev->name);
4352 		}
4353 	}
4354 
4355 	rc = -ENETDOWN;
4356 	rcu_read_unlock_bh();
4357 
4358 	dev_core_stats_tx_dropped_inc(dev);
4359 	kfree_skb_list(skb);
4360 	return rc;
4361 out:
4362 	rcu_read_unlock_bh();
4363 	return rc;
4364 }
4365 EXPORT_SYMBOL(__dev_queue_xmit);
4366 
4367 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4368 {
4369 	struct net_device *dev = skb->dev;
4370 	struct sk_buff *orig_skb = skb;
4371 	struct netdev_queue *txq;
4372 	int ret = NETDEV_TX_BUSY;
4373 	bool again = false;
4374 
4375 	if (unlikely(!netif_running(dev) ||
4376 		     !netif_carrier_ok(dev)))
4377 		goto drop;
4378 
4379 	skb = validate_xmit_skb_list(skb, dev, &again);
4380 	if (skb != orig_skb)
4381 		goto drop;
4382 
4383 	skb_set_queue_mapping(skb, queue_id);
4384 	txq = skb_get_tx_queue(dev, skb);
4385 
4386 	local_bh_disable();
4387 
4388 	dev_xmit_recursion_inc();
4389 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4390 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4391 		ret = netdev_start_xmit(skb, dev, txq, false);
4392 	HARD_TX_UNLOCK(dev, txq);
4393 	dev_xmit_recursion_dec();
4394 
4395 	local_bh_enable();
4396 	return ret;
4397 drop:
4398 	dev_core_stats_tx_dropped_inc(dev);
4399 	kfree_skb_list(skb);
4400 	return NET_XMIT_DROP;
4401 }
4402 EXPORT_SYMBOL(__dev_direct_xmit);
4403 
4404 /*************************************************************************
4405  *			Receiver routines
4406  *************************************************************************/
4407 
4408 int netdev_max_backlog __read_mostly = 1000;
4409 EXPORT_SYMBOL(netdev_max_backlog);
4410 
4411 int netdev_tstamp_prequeue __read_mostly = 1;
4412 unsigned int sysctl_skb_defer_max __read_mostly = 64;
4413 int netdev_budget __read_mostly = 300;
4414 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4415 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4416 int weight_p __read_mostly = 64;           /* old backlog weight */
4417 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4418 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4419 int dev_rx_weight __read_mostly = 64;
4420 int dev_tx_weight __read_mostly = 64;
4421 
4422 /* Called with irq disabled */
4423 static inline void ____napi_schedule(struct softnet_data *sd,
4424 				     struct napi_struct *napi)
4425 {
4426 	struct task_struct *thread;
4427 
4428 	lockdep_assert_irqs_disabled();
4429 
4430 	if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4431 		/* Paired with smp_mb__before_atomic() in
4432 		 * napi_enable()/dev_set_threaded().
4433 		 * Use READ_ONCE() to guarantee a complete
4434 		 * read on napi->thread. Only call
4435 		 * wake_up_process() when it's not NULL.
4436 		 */
4437 		thread = READ_ONCE(napi->thread);
4438 		if (thread) {
4439 			/* Avoid doing set_bit() if the thread is in
4440 			 * INTERRUPTIBLE state, cause napi_thread_wait()
4441 			 * makes sure to proceed with napi polling
4442 			 * if the thread is explicitly woken from here.
4443 			 */
4444 			if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4445 				set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4446 			wake_up_process(thread);
4447 			return;
4448 		}
4449 	}
4450 
4451 	list_add_tail(&napi->poll_list, &sd->poll_list);
4452 	WRITE_ONCE(napi->list_owner, smp_processor_id());
4453 	/* If not called from net_rx_action()
4454 	 * we have to raise NET_RX_SOFTIRQ.
4455 	 */
4456 	if (!sd->in_net_rx_action)
4457 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4458 }
4459 
4460 #ifdef CONFIG_RPS
4461 
4462 /* One global table that all flow-based protocols share. */
4463 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4464 EXPORT_SYMBOL(rps_sock_flow_table);
4465 u32 rps_cpu_mask __read_mostly;
4466 EXPORT_SYMBOL(rps_cpu_mask);
4467 
4468 struct static_key_false rps_needed __read_mostly;
4469 EXPORT_SYMBOL(rps_needed);
4470 struct static_key_false rfs_needed __read_mostly;
4471 EXPORT_SYMBOL(rfs_needed);
4472 
4473 static struct rps_dev_flow *
4474 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4475 	    struct rps_dev_flow *rflow, u16 next_cpu)
4476 {
4477 	if (next_cpu < nr_cpu_ids) {
4478 #ifdef CONFIG_RFS_ACCEL
4479 		struct netdev_rx_queue *rxqueue;
4480 		struct rps_dev_flow_table *flow_table;
4481 		struct rps_dev_flow *old_rflow;
4482 		u32 flow_id;
4483 		u16 rxq_index;
4484 		int rc;
4485 
4486 		/* Should we steer this flow to a different hardware queue? */
4487 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4488 		    !(dev->features & NETIF_F_NTUPLE))
4489 			goto out;
4490 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4491 		if (rxq_index == skb_get_rx_queue(skb))
4492 			goto out;
4493 
4494 		rxqueue = dev->_rx + rxq_index;
4495 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4496 		if (!flow_table)
4497 			goto out;
4498 		flow_id = skb_get_hash(skb) & flow_table->mask;
4499 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4500 							rxq_index, flow_id);
4501 		if (rc < 0)
4502 			goto out;
4503 		old_rflow = rflow;
4504 		rflow = &flow_table->flows[flow_id];
4505 		rflow->filter = rc;
4506 		if (old_rflow->filter == rflow->filter)
4507 			old_rflow->filter = RPS_NO_FILTER;
4508 	out:
4509 #endif
4510 		rflow->last_qtail =
4511 			per_cpu(softnet_data, next_cpu).input_queue_head;
4512 	}
4513 
4514 	rflow->cpu = next_cpu;
4515 	return rflow;
4516 }
4517 
4518 /*
4519  * get_rps_cpu is called from netif_receive_skb and returns the target
4520  * CPU from the RPS map of the receiving queue for a given skb.
4521  * rcu_read_lock must be held on entry.
4522  */
4523 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4524 		       struct rps_dev_flow **rflowp)
4525 {
4526 	const struct rps_sock_flow_table *sock_flow_table;
4527 	struct netdev_rx_queue *rxqueue = dev->_rx;
4528 	struct rps_dev_flow_table *flow_table;
4529 	struct rps_map *map;
4530 	int cpu = -1;
4531 	u32 tcpu;
4532 	u32 hash;
4533 
4534 	if (skb_rx_queue_recorded(skb)) {
4535 		u16 index = skb_get_rx_queue(skb);
4536 
4537 		if (unlikely(index >= dev->real_num_rx_queues)) {
4538 			WARN_ONCE(dev->real_num_rx_queues > 1,
4539 				  "%s received packet on queue %u, but number "
4540 				  "of RX queues is %u\n",
4541 				  dev->name, index, dev->real_num_rx_queues);
4542 			goto done;
4543 		}
4544 		rxqueue += index;
4545 	}
4546 
4547 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4548 
4549 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4550 	map = rcu_dereference(rxqueue->rps_map);
4551 	if (!flow_table && !map)
4552 		goto done;
4553 
4554 	skb_reset_network_header(skb);
4555 	hash = skb_get_hash(skb);
4556 	if (!hash)
4557 		goto done;
4558 
4559 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
4560 	if (flow_table && sock_flow_table) {
4561 		struct rps_dev_flow *rflow;
4562 		u32 next_cpu;
4563 		u32 ident;
4564 
4565 		/* First check into global flow table if there is a match.
4566 		 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
4567 		 */
4568 		ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
4569 		if ((ident ^ hash) & ~rps_cpu_mask)
4570 			goto try_rps;
4571 
4572 		next_cpu = ident & rps_cpu_mask;
4573 
4574 		/* OK, now we know there is a match,
4575 		 * we can look at the local (per receive queue) flow table
4576 		 */
4577 		rflow = &flow_table->flows[hash & flow_table->mask];
4578 		tcpu = rflow->cpu;
4579 
4580 		/*
4581 		 * If the desired CPU (where last recvmsg was done) is
4582 		 * different from current CPU (one in the rx-queue flow
4583 		 * table entry), switch if one of the following holds:
4584 		 *   - Current CPU is unset (>= nr_cpu_ids).
4585 		 *   - Current CPU is offline.
4586 		 *   - The current CPU's queue tail has advanced beyond the
4587 		 *     last packet that was enqueued using this table entry.
4588 		 *     This guarantees that all previous packets for the flow
4589 		 *     have been dequeued, thus preserving in order delivery.
4590 		 */
4591 		if (unlikely(tcpu != next_cpu) &&
4592 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4593 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4594 		      rflow->last_qtail)) >= 0)) {
4595 			tcpu = next_cpu;
4596 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4597 		}
4598 
4599 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4600 			*rflowp = rflow;
4601 			cpu = tcpu;
4602 			goto done;
4603 		}
4604 	}
4605 
4606 try_rps:
4607 
4608 	if (map) {
4609 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4610 		if (cpu_online(tcpu)) {
4611 			cpu = tcpu;
4612 			goto done;
4613 		}
4614 	}
4615 
4616 done:
4617 	return cpu;
4618 }
4619 
4620 #ifdef CONFIG_RFS_ACCEL
4621 
4622 /**
4623  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4624  * @dev: Device on which the filter was set
4625  * @rxq_index: RX queue index
4626  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4627  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4628  *
4629  * Drivers that implement ndo_rx_flow_steer() should periodically call
4630  * this function for each installed filter and remove the filters for
4631  * which it returns %true.
4632  */
4633 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4634 			 u32 flow_id, u16 filter_id)
4635 {
4636 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4637 	struct rps_dev_flow_table *flow_table;
4638 	struct rps_dev_flow *rflow;
4639 	bool expire = true;
4640 	unsigned int cpu;
4641 
4642 	rcu_read_lock();
4643 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4644 	if (flow_table && flow_id <= flow_table->mask) {
4645 		rflow = &flow_table->flows[flow_id];
4646 		cpu = READ_ONCE(rflow->cpu);
4647 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4648 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4649 			   rflow->last_qtail) <
4650 		     (int)(10 * flow_table->mask)))
4651 			expire = false;
4652 	}
4653 	rcu_read_unlock();
4654 	return expire;
4655 }
4656 EXPORT_SYMBOL(rps_may_expire_flow);
4657 
4658 #endif /* CONFIG_RFS_ACCEL */
4659 
4660 /* Called from hardirq (IPI) context */
4661 static void rps_trigger_softirq(void *data)
4662 {
4663 	struct softnet_data *sd = data;
4664 
4665 	____napi_schedule(sd, &sd->backlog);
4666 	sd->received_rps++;
4667 }
4668 
4669 #endif /* CONFIG_RPS */
4670 
4671 /* Called from hardirq (IPI) context */
4672 static void trigger_rx_softirq(void *data)
4673 {
4674 	struct softnet_data *sd = data;
4675 
4676 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4677 	smp_store_release(&sd->defer_ipi_scheduled, 0);
4678 }
4679 
4680 /*
4681  * After we queued a packet into sd->input_pkt_queue,
4682  * we need to make sure this queue is serviced soon.
4683  *
4684  * - If this is another cpu queue, link it to our rps_ipi_list,
4685  *   and make sure we will process rps_ipi_list from net_rx_action().
4686  *
4687  * - If this is our own queue, NAPI schedule our backlog.
4688  *   Note that this also raises NET_RX_SOFTIRQ.
4689  */
4690 static void napi_schedule_rps(struct softnet_data *sd)
4691 {
4692 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4693 
4694 #ifdef CONFIG_RPS
4695 	if (sd != mysd) {
4696 		sd->rps_ipi_next = mysd->rps_ipi_list;
4697 		mysd->rps_ipi_list = sd;
4698 
4699 		/* If not called from net_rx_action() or napi_threaded_poll()
4700 		 * we have to raise NET_RX_SOFTIRQ.
4701 		 */
4702 		if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
4703 			__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4704 		return;
4705 	}
4706 #endif /* CONFIG_RPS */
4707 	__napi_schedule_irqoff(&mysd->backlog);
4708 }
4709 
4710 #ifdef CONFIG_NET_FLOW_LIMIT
4711 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4712 #endif
4713 
4714 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4715 {
4716 #ifdef CONFIG_NET_FLOW_LIMIT
4717 	struct sd_flow_limit *fl;
4718 	struct softnet_data *sd;
4719 	unsigned int old_flow, new_flow;
4720 
4721 	if (qlen < (READ_ONCE(netdev_max_backlog) >> 1))
4722 		return false;
4723 
4724 	sd = this_cpu_ptr(&softnet_data);
4725 
4726 	rcu_read_lock();
4727 	fl = rcu_dereference(sd->flow_limit);
4728 	if (fl) {
4729 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4730 		old_flow = fl->history[fl->history_head];
4731 		fl->history[fl->history_head] = new_flow;
4732 
4733 		fl->history_head++;
4734 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4735 
4736 		if (likely(fl->buckets[old_flow]))
4737 			fl->buckets[old_flow]--;
4738 
4739 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4740 			fl->count++;
4741 			rcu_read_unlock();
4742 			return true;
4743 		}
4744 	}
4745 	rcu_read_unlock();
4746 #endif
4747 	return false;
4748 }
4749 
4750 /*
4751  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4752  * queue (may be a remote CPU queue).
4753  */
4754 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4755 			      unsigned int *qtail)
4756 {
4757 	enum skb_drop_reason reason;
4758 	struct softnet_data *sd;
4759 	unsigned long flags;
4760 	unsigned int qlen;
4761 
4762 	reason = SKB_DROP_REASON_NOT_SPECIFIED;
4763 	sd = &per_cpu(softnet_data, cpu);
4764 
4765 	rps_lock_irqsave(sd, &flags);
4766 	if (!netif_running(skb->dev))
4767 		goto drop;
4768 	qlen = skb_queue_len(&sd->input_pkt_queue);
4769 	if (qlen <= READ_ONCE(netdev_max_backlog) && !skb_flow_limit(skb, qlen)) {
4770 		if (qlen) {
4771 enqueue:
4772 			__skb_queue_tail(&sd->input_pkt_queue, skb);
4773 			input_queue_tail_incr_save(sd, qtail);
4774 			rps_unlock_irq_restore(sd, &flags);
4775 			return NET_RX_SUCCESS;
4776 		}
4777 
4778 		/* Schedule NAPI for backlog device
4779 		 * We can use non atomic operation since we own the queue lock
4780 		 */
4781 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4782 			napi_schedule_rps(sd);
4783 		goto enqueue;
4784 	}
4785 	reason = SKB_DROP_REASON_CPU_BACKLOG;
4786 
4787 drop:
4788 	sd->dropped++;
4789 	rps_unlock_irq_restore(sd, &flags);
4790 
4791 	dev_core_stats_rx_dropped_inc(skb->dev);
4792 	kfree_skb_reason(skb, reason);
4793 	return NET_RX_DROP;
4794 }
4795 
4796 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4797 {
4798 	struct net_device *dev = skb->dev;
4799 	struct netdev_rx_queue *rxqueue;
4800 
4801 	rxqueue = dev->_rx;
4802 
4803 	if (skb_rx_queue_recorded(skb)) {
4804 		u16 index = skb_get_rx_queue(skb);
4805 
4806 		if (unlikely(index >= dev->real_num_rx_queues)) {
4807 			WARN_ONCE(dev->real_num_rx_queues > 1,
4808 				  "%s received packet on queue %u, but number "
4809 				  "of RX queues is %u\n",
4810 				  dev->name, index, dev->real_num_rx_queues);
4811 
4812 			return rxqueue; /* Return first rxqueue */
4813 		}
4814 		rxqueue += index;
4815 	}
4816 	return rxqueue;
4817 }
4818 
4819 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4820 			     struct bpf_prog *xdp_prog)
4821 {
4822 	void *orig_data, *orig_data_end, *hard_start;
4823 	struct netdev_rx_queue *rxqueue;
4824 	bool orig_bcast, orig_host;
4825 	u32 mac_len, frame_sz;
4826 	__be16 orig_eth_type;
4827 	struct ethhdr *eth;
4828 	u32 metalen, act;
4829 	int off;
4830 
4831 	/* The XDP program wants to see the packet starting at the MAC
4832 	 * header.
4833 	 */
4834 	mac_len = skb->data - skb_mac_header(skb);
4835 	hard_start = skb->data - skb_headroom(skb);
4836 
4837 	/* SKB "head" area always have tailroom for skb_shared_info */
4838 	frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4839 	frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4840 
4841 	rxqueue = netif_get_rxqueue(skb);
4842 	xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4843 	xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4844 			 skb_headlen(skb) + mac_len, true);
4845 	if (skb_is_nonlinear(skb)) {
4846 		skb_shinfo(skb)->xdp_frags_size = skb->data_len;
4847 		xdp_buff_set_frags_flag(xdp);
4848 	} else {
4849 		xdp_buff_clear_frags_flag(xdp);
4850 	}
4851 
4852 	orig_data_end = xdp->data_end;
4853 	orig_data = xdp->data;
4854 	eth = (struct ethhdr *)xdp->data;
4855 	orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4856 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4857 	orig_eth_type = eth->h_proto;
4858 
4859 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4860 
4861 	/* check if bpf_xdp_adjust_head was used */
4862 	off = xdp->data - orig_data;
4863 	if (off) {
4864 		if (off > 0)
4865 			__skb_pull(skb, off);
4866 		else if (off < 0)
4867 			__skb_push(skb, -off);
4868 
4869 		skb->mac_header += off;
4870 		skb_reset_network_header(skb);
4871 	}
4872 
4873 	/* check if bpf_xdp_adjust_tail was used */
4874 	off = xdp->data_end - orig_data_end;
4875 	if (off != 0) {
4876 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4877 		skb->len += off; /* positive on grow, negative on shrink */
4878 	}
4879 
4880 	/* XDP frag metadata (e.g. nr_frags) are updated in eBPF helpers
4881 	 * (e.g. bpf_xdp_adjust_tail), we need to update data_len here.
4882 	 */
4883 	if (xdp_buff_has_frags(xdp))
4884 		skb->data_len = skb_shinfo(skb)->xdp_frags_size;
4885 	else
4886 		skb->data_len = 0;
4887 
4888 	/* check if XDP changed eth hdr such SKB needs update */
4889 	eth = (struct ethhdr *)xdp->data;
4890 	if ((orig_eth_type != eth->h_proto) ||
4891 	    (orig_host != ether_addr_equal_64bits(eth->h_dest,
4892 						  skb->dev->dev_addr)) ||
4893 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4894 		__skb_push(skb, ETH_HLEN);
4895 		skb->pkt_type = PACKET_HOST;
4896 		skb->protocol = eth_type_trans(skb, skb->dev);
4897 	}
4898 
4899 	/* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4900 	 * before calling us again on redirect path. We do not call do_redirect
4901 	 * as we leave that up to the caller.
4902 	 *
4903 	 * Caller is responsible for managing lifetime of skb (i.e. calling
4904 	 * kfree_skb in response to actions it cannot handle/XDP_DROP).
4905 	 */
4906 	switch (act) {
4907 	case XDP_REDIRECT:
4908 	case XDP_TX:
4909 		__skb_push(skb, mac_len);
4910 		break;
4911 	case XDP_PASS:
4912 		metalen = xdp->data - xdp->data_meta;
4913 		if (metalen)
4914 			skb_metadata_set(skb, metalen);
4915 		break;
4916 	}
4917 
4918 	return act;
4919 }
4920 
4921 static int
4922 netif_skb_check_for_xdp(struct sk_buff **pskb, struct bpf_prog *prog)
4923 {
4924 	struct sk_buff *skb = *pskb;
4925 	int err, hroom, troom;
4926 
4927 	if (!skb_cow_data_for_xdp(this_cpu_read(system_page_pool), pskb, prog))
4928 		return 0;
4929 
4930 	/* In case we have to go down the path and also linearize,
4931 	 * then lets do the pskb_expand_head() work just once here.
4932 	 */
4933 	hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4934 	troom = skb->tail + skb->data_len - skb->end;
4935 	err = pskb_expand_head(skb,
4936 			       hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4937 			       troom > 0 ? troom + 128 : 0, GFP_ATOMIC);
4938 	if (err)
4939 		return err;
4940 
4941 	return skb_linearize(skb);
4942 }
4943 
4944 static u32 netif_receive_generic_xdp(struct sk_buff **pskb,
4945 				     struct xdp_buff *xdp,
4946 				     struct bpf_prog *xdp_prog)
4947 {
4948 	struct sk_buff *skb = *pskb;
4949 	u32 mac_len, act = XDP_DROP;
4950 
4951 	/* Reinjected packets coming from act_mirred or similar should
4952 	 * not get XDP generic processing.
4953 	 */
4954 	if (skb_is_redirected(skb))
4955 		return XDP_PASS;
4956 
4957 	/* XDP packets must have sufficient headroom of XDP_PACKET_HEADROOM
4958 	 * bytes. This is the guarantee that also native XDP provides,
4959 	 * thus we need to do it here as well.
4960 	 */
4961 	mac_len = skb->data - skb_mac_header(skb);
4962 	__skb_push(skb, mac_len);
4963 
4964 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4965 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4966 		if (netif_skb_check_for_xdp(pskb, xdp_prog))
4967 			goto do_drop;
4968 	}
4969 
4970 	__skb_pull(*pskb, mac_len);
4971 
4972 	act = bpf_prog_run_generic_xdp(*pskb, xdp, xdp_prog);
4973 	switch (act) {
4974 	case XDP_REDIRECT:
4975 	case XDP_TX:
4976 	case XDP_PASS:
4977 		break;
4978 	default:
4979 		bpf_warn_invalid_xdp_action((*pskb)->dev, xdp_prog, act);
4980 		fallthrough;
4981 	case XDP_ABORTED:
4982 		trace_xdp_exception((*pskb)->dev, xdp_prog, act);
4983 		fallthrough;
4984 	case XDP_DROP:
4985 	do_drop:
4986 		kfree_skb(*pskb);
4987 		break;
4988 	}
4989 
4990 	return act;
4991 }
4992 
4993 /* When doing generic XDP we have to bypass the qdisc layer and the
4994  * network taps in order to match in-driver-XDP behavior. This also means
4995  * that XDP packets are able to starve other packets going through a qdisc,
4996  * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
4997  * queues, so they do not have this starvation issue.
4998  */
4999 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
5000 {
5001 	struct net_device *dev = skb->dev;
5002 	struct netdev_queue *txq;
5003 	bool free_skb = true;
5004 	int cpu, rc;
5005 
5006 	txq = netdev_core_pick_tx(dev, skb, NULL);
5007 	cpu = smp_processor_id();
5008 	HARD_TX_LOCK(dev, txq, cpu);
5009 	if (!netif_xmit_frozen_or_drv_stopped(txq)) {
5010 		rc = netdev_start_xmit(skb, dev, txq, 0);
5011 		if (dev_xmit_complete(rc))
5012 			free_skb = false;
5013 	}
5014 	HARD_TX_UNLOCK(dev, txq);
5015 	if (free_skb) {
5016 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
5017 		dev_core_stats_tx_dropped_inc(dev);
5018 		kfree_skb(skb);
5019 	}
5020 }
5021 
5022 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
5023 
5024 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff **pskb)
5025 {
5026 	if (xdp_prog) {
5027 		struct xdp_buff xdp;
5028 		u32 act;
5029 		int err;
5030 
5031 		act = netif_receive_generic_xdp(pskb, &xdp, xdp_prog);
5032 		if (act != XDP_PASS) {
5033 			switch (act) {
5034 			case XDP_REDIRECT:
5035 				err = xdp_do_generic_redirect((*pskb)->dev, *pskb,
5036 							      &xdp, xdp_prog);
5037 				if (err)
5038 					goto out_redir;
5039 				break;
5040 			case XDP_TX:
5041 				generic_xdp_tx(*pskb, xdp_prog);
5042 				break;
5043 			}
5044 			return XDP_DROP;
5045 		}
5046 	}
5047 	return XDP_PASS;
5048 out_redir:
5049 	kfree_skb_reason(*pskb, SKB_DROP_REASON_XDP);
5050 	return XDP_DROP;
5051 }
5052 EXPORT_SYMBOL_GPL(do_xdp_generic);
5053 
5054 static int netif_rx_internal(struct sk_buff *skb)
5055 {
5056 	int ret;
5057 
5058 	net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5059 
5060 	trace_netif_rx(skb);
5061 
5062 #ifdef CONFIG_RPS
5063 	if (static_branch_unlikely(&rps_needed)) {
5064 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5065 		int cpu;
5066 
5067 		rcu_read_lock();
5068 
5069 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
5070 		if (cpu < 0)
5071 			cpu = smp_processor_id();
5072 
5073 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5074 
5075 		rcu_read_unlock();
5076 	} else
5077 #endif
5078 	{
5079 		unsigned int qtail;
5080 
5081 		ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
5082 	}
5083 	return ret;
5084 }
5085 
5086 /**
5087  *	__netif_rx	-	Slightly optimized version of netif_rx
5088  *	@skb: buffer to post
5089  *
5090  *	This behaves as netif_rx except that it does not disable bottom halves.
5091  *	As a result this function may only be invoked from the interrupt context
5092  *	(either hard or soft interrupt).
5093  */
5094 int __netif_rx(struct sk_buff *skb)
5095 {
5096 	int ret;
5097 
5098 	lockdep_assert_once(hardirq_count() | softirq_count());
5099 
5100 	trace_netif_rx_entry(skb);
5101 	ret = netif_rx_internal(skb);
5102 	trace_netif_rx_exit(ret);
5103 	return ret;
5104 }
5105 EXPORT_SYMBOL(__netif_rx);
5106 
5107 /**
5108  *	netif_rx	-	post buffer to the network code
5109  *	@skb: buffer to post
5110  *
5111  *	This function receives a packet from a device driver and queues it for
5112  *	the upper (protocol) levels to process via the backlog NAPI device. It
5113  *	always succeeds. The buffer may be dropped during processing for
5114  *	congestion control or by the protocol layers.
5115  *	The network buffer is passed via the backlog NAPI device. Modern NIC
5116  *	driver should use NAPI and GRO.
5117  *	This function can used from interrupt and from process context. The
5118  *	caller from process context must not disable interrupts before invoking
5119  *	this function.
5120  *
5121  *	return values:
5122  *	NET_RX_SUCCESS	(no congestion)
5123  *	NET_RX_DROP     (packet was dropped)
5124  *
5125  */
5126 int netif_rx(struct sk_buff *skb)
5127 {
5128 	bool need_bh_off = !(hardirq_count() | softirq_count());
5129 	int ret;
5130 
5131 	if (need_bh_off)
5132 		local_bh_disable();
5133 	trace_netif_rx_entry(skb);
5134 	ret = netif_rx_internal(skb);
5135 	trace_netif_rx_exit(ret);
5136 	if (need_bh_off)
5137 		local_bh_enable();
5138 	return ret;
5139 }
5140 EXPORT_SYMBOL(netif_rx);
5141 
5142 static __latent_entropy void net_tx_action(struct softirq_action *h)
5143 {
5144 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5145 
5146 	if (sd->completion_queue) {
5147 		struct sk_buff *clist;
5148 
5149 		local_irq_disable();
5150 		clist = sd->completion_queue;
5151 		sd->completion_queue = NULL;
5152 		local_irq_enable();
5153 
5154 		while (clist) {
5155 			struct sk_buff *skb = clist;
5156 
5157 			clist = clist->next;
5158 
5159 			WARN_ON(refcount_read(&skb->users));
5160 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
5161 				trace_consume_skb(skb, net_tx_action);
5162 			else
5163 				trace_kfree_skb(skb, net_tx_action,
5164 						get_kfree_skb_cb(skb)->reason);
5165 
5166 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5167 				__kfree_skb(skb);
5168 			else
5169 				__napi_kfree_skb(skb,
5170 						 get_kfree_skb_cb(skb)->reason);
5171 		}
5172 	}
5173 
5174 	if (sd->output_queue) {
5175 		struct Qdisc *head;
5176 
5177 		local_irq_disable();
5178 		head = sd->output_queue;
5179 		sd->output_queue = NULL;
5180 		sd->output_queue_tailp = &sd->output_queue;
5181 		local_irq_enable();
5182 
5183 		rcu_read_lock();
5184 
5185 		while (head) {
5186 			struct Qdisc *q = head;
5187 			spinlock_t *root_lock = NULL;
5188 
5189 			head = head->next_sched;
5190 
5191 			/* We need to make sure head->next_sched is read
5192 			 * before clearing __QDISC_STATE_SCHED
5193 			 */
5194 			smp_mb__before_atomic();
5195 
5196 			if (!(q->flags & TCQ_F_NOLOCK)) {
5197 				root_lock = qdisc_lock(q);
5198 				spin_lock(root_lock);
5199 			} else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5200 						     &q->state))) {
5201 				/* There is a synchronize_net() between
5202 				 * STATE_DEACTIVATED flag being set and
5203 				 * qdisc_reset()/some_qdisc_is_busy() in
5204 				 * dev_deactivate(), so we can safely bail out
5205 				 * early here to avoid data race between
5206 				 * qdisc_deactivate() and some_qdisc_is_busy()
5207 				 * for lockless qdisc.
5208 				 */
5209 				clear_bit(__QDISC_STATE_SCHED, &q->state);
5210 				continue;
5211 			}
5212 
5213 			clear_bit(__QDISC_STATE_SCHED, &q->state);
5214 			qdisc_run(q);
5215 			if (root_lock)
5216 				spin_unlock(root_lock);
5217 		}
5218 
5219 		rcu_read_unlock();
5220 	}
5221 
5222 	xfrm_dev_backlog(sd);
5223 }
5224 
5225 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5226 /* This hook is defined here for ATM LANE */
5227 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5228 			     unsigned char *addr) __read_mostly;
5229 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5230 #endif
5231 
5232 /**
5233  *	netdev_is_rx_handler_busy - check if receive handler is registered
5234  *	@dev: device to check
5235  *
5236  *	Check if a receive handler is already registered for a given device.
5237  *	Return true if there one.
5238  *
5239  *	The caller must hold the rtnl_mutex.
5240  */
5241 bool netdev_is_rx_handler_busy(struct net_device *dev)
5242 {
5243 	ASSERT_RTNL();
5244 	return dev && rtnl_dereference(dev->rx_handler);
5245 }
5246 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5247 
5248 /**
5249  *	netdev_rx_handler_register - register receive handler
5250  *	@dev: device to register a handler for
5251  *	@rx_handler: receive handler to register
5252  *	@rx_handler_data: data pointer that is used by rx handler
5253  *
5254  *	Register a receive handler for a device. This handler will then be
5255  *	called from __netif_receive_skb. A negative errno code is returned
5256  *	on a failure.
5257  *
5258  *	The caller must hold the rtnl_mutex.
5259  *
5260  *	For a general description of rx_handler, see enum rx_handler_result.
5261  */
5262 int netdev_rx_handler_register(struct net_device *dev,
5263 			       rx_handler_func_t *rx_handler,
5264 			       void *rx_handler_data)
5265 {
5266 	if (netdev_is_rx_handler_busy(dev))
5267 		return -EBUSY;
5268 
5269 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
5270 		return -EINVAL;
5271 
5272 	/* Note: rx_handler_data must be set before rx_handler */
5273 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5274 	rcu_assign_pointer(dev->rx_handler, rx_handler);
5275 
5276 	return 0;
5277 }
5278 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5279 
5280 /**
5281  *	netdev_rx_handler_unregister - unregister receive handler
5282  *	@dev: device to unregister a handler from
5283  *
5284  *	Unregister a receive handler from a device.
5285  *
5286  *	The caller must hold the rtnl_mutex.
5287  */
5288 void netdev_rx_handler_unregister(struct net_device *dev)
5289 {
5290 
5291 	ASSERT_RTNL();
5292 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5293 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5294 	 * section has a guarantee to see a non NULL rx_handler_data
5295 	 * as well.
5296 	 */
5297 	synchronize_net();
5298 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5299 }
5300 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5301 
5302 /*
5303  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5304  * the special handling of PFMEMALLOC skbs.
5305  */
5306 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5307 {
5308 	switch (skb->protocol) {
5309 	case htons(ETH_P_ARP):
5310 	case htons(ETH_P_IP):
5311 	case htons(ETH_P_IPV6):
5312 	case htons(ETH_P_8021Q):
5313 	case htons(ETH_P_8021AD):
5314 		return true;
5315 	default:
5316 		return false;
5317 	}
5318 }
5319 
5320 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5321 			     int *ret, struct net_device *orig_dev)
5322 {
5323 	if (nf_hook_ingress_active(skb)) {
5324 		int ingress_retval;
5325 
5326 		if (*pt_prev) {
5327 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5328 			*pt_prev = NULL;
5329 		}
5330 
5331 		rcu_read_lock();
5332 		ingress_retval = nf_hook_ingress(skb);
5333 		rcu_read_unlock();
5334 		return ingress_retval;
5335 	}
5336 	return 0;
5337 }
5338 
5339 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5340 				    struct packet_type **ppt_prev)
5341 {
5342 	struct packet_type *ptype, *pt_prev;
5343 	rx_handler_func_t *rx_handler;
5344 	struct sk_buff *skb = *pskb;
5345 	struct net_device *orig_dev;
5346 	bool deliver_exact = false;
5347 	int ret = NET_RX_DROP;
5348 	__be16 type;
5349 
5350 	net_timestamp_check(!READ_ONCE(netdev_tstamp_prequeue), skb);
5351 
5352 	trace_netif_receive_skb(skb);
5353 
5354 	orig_dev = skb->dev;
5355 
5356 	skb_reset_network_header(skb);
5357 	if (!skb_transport_header_was_set(skb))
5358 		skb_reset_transport_header(skb);
5359 	skb_reset_mac_len(skb);
5360 
5361 	pt_prev = NULL;
5362 
5363 another_round:
5364 	skb->skb_iif = skb->dev->ifindex;
5365 
5366 	__this_cpu_inc(softnet_data.processed);
5367 
5368 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5369 		int ret2;
5370 
5371 		migrate_disable();
5372 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog),
5373 				      &skb);
5374 		migrate_enable();
5375 
5376 		if (ret2 != XDP_PASS) {
5377 			ret = NET_RX_DROP;
5378 			goto out;
5379 		}
5380 	}
5381 
5382 	if (eth_type_vlan(skb->protocol)) {
5383 		skb = skb_vlan_untag(skb);
5384 		if (unlikely(!skb))
5385 			goto out;
5386 	}
5387 
5388 	if (skb_skip_tc_classify(skb))
5389 		goto skip_classify;
5390 
5391 	if (pfmemalloc)
5392 		goto skip_taps;
5393 
5394 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
5395 		if (pt_prev)
5396 			ret = deliver_skb(skb, pt_prev, orig_dev);
5397 		pt_prev = ptype;
5398 	}
5399 
5400 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5401 		if (pt_prev)
5402 			ret = deliver_skb(skb, pt_prev, orig_dev);
5403 		pt_prev = ptype;
5404 	}
5405 
5406 skip_taps:
5407 #ifdef CONFIG_NET_INGRESS
5408 	if (static_branch_unlikely(&ingress_needed_key)) {
5409 		bool another = false;
5410 
5411 		nf_skip_egress(skb, true);
5412 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5413 					 &another);
5414 		if (another)
5415 			goto another_round;
5416 		if (!skb)
5417 			goto out;
5418 
5419 		nf_skip_egress(skb, false);
5420 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5421 			goto out;
5422 	}
5423 #endif
5424 	skb_reset_redirect(skb);
5425 skip_classify:
5426 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5427 		goto drop;
5428 
5429 	if (skb_vlan_tag_present(skb)) {
5430 		if (pt_prev) {
5431 			ret = deliver_skb(skb, pt_prev, orig_dev);
5432 			pt_prev = NULL;
5433 		}
5434 		if (vlan_do_receive(&skb))
5435 			goto another_round;
5436 		else if (unlikely(!skb))
5437 			goto out;
5438 	}
5439 
5440 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5441 	if (rx_handler) {
5442 		if (pt_prev) {
5443 			ret = deliver_skb(skb, pt_prev, orig_dev);
5444 			pt_prev = NULL;
5445 		}
5446 		switch (rx_handler(&skb)) {
5447 		case RX_HANDLER_CONSUMED:
5448 			ret = NET_RX_SUCCESS;
5449 			goto out;
5450 		case RX_HANDLER_ANOTHER:
5451 			goto another_round;
5452 		case RX_HANDLER_EXACT:
5453 			deliver_exact = true;
5454 			break;
5455 		case RX_HANDLER_PASS:
5456 			break;
5457 		default:
5458 			BUG();
5459 		}
5460 	}
5461 
5462 	if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5463 check_vlan_id:
5464 		if (skb_vlan_tag_get_id(skb)) {
5465 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5466 			 * find vlan device.
5467 			 */
5468 			skb->pkt_type = PACKET_OTHERHOST;
5469 		} else if (eth_type_vlan(skb->protocol)) {
5470 			/* Outer header is 802.1P with vlan 0, inner header is
5471 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5472 			 * not find vlan dev for vlan id 0.
5473 			 */
5474 			__vlan_hwaccel_clear_tag(skb);
5475 			skb = skb_vlan_untag(skb);
5476 			if (unlikely(!skb))
5477 				goto out;
5478 			if (vlan_do_receive(&skb))
5479 				/* After stripping off 802.1P header with vlan 0
5480 				 * vlan dev is found for inner header.
5481 				 */
5482 				goto another_round;
5483 			else if (unlikely(!skb))
5484 				goto out;
5485 			else
5486 				/* We have stripped outer 802.1P vlan 0 header.
5487 				 * But could not find vlan dev.
5488 				 * check again for vlan id to set OTHERHOST.
5489 				 */
5490 				goto check_vlan_id;
5491 		}
5492 		/* Note: we might in the future use prio bits
5493 		 * and set skb->priority like in vlan_do_receive()
5494 		 * For the time being, just ignore Priority Code Point
5495 		 */
5496 		__vlan_hwaccel_clear_tag(skb);
5497 	}
5498 
5499 	type = skb->protocol;
5500 
5501 	/* deliver only exact match when indicated */
5502 	if (likely(!deliver_exact)) {
5503 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5504 				       &ptype_base[ntohs(type) &
5505 						   PTYPE_HASH_MASK]);
5506 	}
5507 
5508 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5509 			       &orig_dev->ptype_specific);
5510 
5511 	if (unlikely(skb->dev != orig_dev)) {
5512 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5513 				       &skb->dev->ptype_specific);
5514 	}
5515 
5516 	if (pt_prev) {
5517 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5518 			goto drop;
5519 		*ppt_prev = pt_prev;
5520 	} else {
5521 drop:
5522 		if (!deliver_exact)
5523 			dev_core_stats_rx_dropped_inc(skb->dev);
5524 		else
5525 			dev_core_stats_rx_nohandler_inc(skb->dev);
5526 		kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5527 		/* Jamal, now you will not able to escape explaining
5528 		 * me how you were going to use this. :-)
5529 		 */
5530 		ret = NET_RX_DROP;
5531 	}
5532 
5533 out:
5534 	/* The invariant here is that if *ppt_prev is not NULL
5535 	 * then skb should also be non-NULL.
5536 	 *
5537 	 * Apparently *ppt_prev assignment above holds this invariant due to
5538 	 * skb dereferencing near it.
5539 	 */
5540 	*pskb = skb;
5541 	return ret;
5542 }
5543 
5544 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5545 {
5546 	struct net_device *orig_dev = skb->dev;
5547 	struct packet_type *pt_prev = NULL;
5548 	int ret;
5549 
5550 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5551 	if (pt_prev)
5552 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5553 					 skb->dev, pt_prev, orig_dev);
5554 	return ret;
5555 }
5556 
5557 /**
5558  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5559  *	@skb: buffer to process
5560  *
5561  *	More direct receive version of netif_receive_skb().  It should
5562  *	only be used by callers that have a need to skip RPS and Generic XDP.
5563  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5564  *
5565  *	This function may only be called from softirq context and interrupts
5566  *	should be enabled.
5567  *
5568  *	Return values (usually ignored):
5569  *	NET_RX_SUCCESS: no congestion
5570  *	NET_RX_DROP: packet was dropped
5571  */
5572 int netif_receive_skb_core(struct sk_buff *skb)
5573 {
5574 	int ret;
5575 
5576 	rcu_read_lock();
5577 	ret = __netif_receive_skb_one_core(skb, false);
5578 	rcu_read_unlock();
5579 
5580 	return ret;
5581 }
5582 EXPORT_SYMBOL(netif_receive_skb_core);
5583 
5584 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5585 						  struct packet_type *pt_prev,
5586 						  struct net_device *orig_dev)
5587 {
5588 	struct sk_buff *skb, *next;
5589 
5590 	if (!pt_prev)
5591 		return;
5592 	if (list_empty(head))
5593 		return;
5594 	if (pt_prev->list_func != NULL)
5595 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5596 				   ip_list_rcv, head, pt_prev, orig_dev);
5597 	else
5598 		list_for_each_entry_safe(skb, next, head, list) {
5599 			skb_list_del_init(skb);
5600 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5601 		}
5602 }
5603 
5604 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5605 {
5606 	/* Fast-path assumptions:
5607 	 * - There is no RX handler.
5608 	 * - Only one packet_type matches.
5609 	 * If either of these fails, we will end up doing some per-packet
5610 	 * processing in-line, then handling the 'last ptype' for the whole
5611 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5612 	 * because the 'last ptype' must be constant across the sublist, and all
5613 	 * other ptypes are handled per-packet.
5614 	 */
5615 	/* Current (common) ptype of sublist */
5616 	struct packet_type *pt_curr = NULL;
5617 	/* Current (common) orig_dev of sublist */
5618 	struct net_device *od_curr = NULL;
5619 	struct list_head sublist;
5620 	struct sk_buff *skb, *next;
5621 
5622 	INIT_LIST_HEAD(&sublist);
5623 	list_for_each_entry_safe(skb, next, head, list) {
5624 		struct net_device *orig_dev = skb->dev;
5625 		struct packet_type *pt_prev = NULL;
5626 
5627 		skb_list_del_init(skb);
5628 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5629 		if (!pt_prev)
5630 			continue;
5631 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5632 			/* dispatch old sublist */
5633 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5634 			/* start new sublist */
5635 			INIT_LIST_HEAD(&sublist);
5636 			pt_curr = pt_prev;
5637 			od_curr = orig_dev;
5638 		}
5639 		list_add_tail(&skb->list, &sublist);
5640 	}
5641 
5642 	/* dispatch final sublist */
5643 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5644 }
5645 
5646 static int __netif_receive_skb(struct sk_buff *skb)
5647 {
5648 	int ret;
5649 
5650 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5651 		unsigned int noreclaim_flag;
5652 
5653 		/*
5654 		 * PFMEMALLOC skbs are special, they should
5655 		 * - be delivered to SOCK_MEMALLOC sockets only
5656 		 * - stay away from userspace
5657 		 * - have bounded memory usage
5658 		 *
5659 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5660 		 * context down to all allocation sites.
5661 		 */
5662 		noreclaim_flag = memalloc_noreclaim_save();
5663 		ret = __netif_receive_skb_one_core(skb, true);
5664 		memalloc_noreclaim_restore(noreclaim_flag);
5665 	} else
5666 		ret = __netif_receive_skb_one_core(skb, false);
5667 
5668 	return ret;
5669 }
5670 
5671 static void __netif_receive_skb_list(struct list_head *head)
5672 {
5673 	unsigned long noreclaim_flag = 0;
5674 	struct sk_buff *skb, *next;
5675 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5676 
5677 	list_for_each_entry_safe(skb, next, head, list) {
5678 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5679 			struct list_head sublist;
5680 
5681 			/* Handle the previous sublist */
5682 			list_cut_before(&sublist, head, &skb->list);
5683 			if (!list_empty(&sublist))
5684 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5685 			pfmemalloc = !pfmemalloc;
5686 			/* See comments in __netif_receive_skb */
5687 			if (pfmemalloc)
5688 				noreclaim_flag = memalloc_noreclaim_save();
5689 			else
5690 				memalloc_noreclaim_restore(noreclaim_flag);
5691 		}
5692 	}
5693 	/* Handle the remaining sublist */
5694 	if (!list_empty(head))
5695 		__netif_receive_skb_list_core(head, pfmemalloc);
5696 	/* Restore pflags */
5697 	if (pfmemalloc)
5698 		memalloc_noreclaim_restore(noreclaim_flag);
5699 }
5700 
5701 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5702 {
5703 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5704 	struct bpf_prog *new = xdp->prog;
5705 	int ret = 0;
5706 
5707 	switch (xdp->command) {
5708 	case XDP_SETUP_PROG:
5709 		rcu_assign_pointer(dev->xdp_prog, new);
5710 		if (old)
5711 			bpf_prog_put(old);
5712 
5713 		if (old && !new) {
5714 			static_branch_dec(&generic_xdp_needed_key);
5715 		} else if (new && !old) {
5716 			static_branch_inc(&generic_xdp_needed_key);
5717 			dev_disable_lro(dev);
5718 			dev_disable_gro_hw(dev);
5719 		}
5720 		break;
5721 
5722 	default:
5723 		ret = -EINVAL;
5724 		break;
5725 	}
5726 
5727 	return ret;
5728 }
5729 
5730 static int netif_receive_skb_internal(struct sk_buff *skb)
5731 {
5732 	int ret;
5733 
5734 	net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5735 
5736 	if (skb_defer_rx_timestamp(skb))
5737 		return NET_RX_SUCCESS;
5738 
5739 	rcu_read_lock();
5740 #ifdef CONFIG_RPS
5741 	if (static_branch_unlikely(&rps_needed)) {
5742 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5743 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5744 
5745 		if (cpu >= 0) {
5746 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5747 			rcu_read_unlock();
5748 			return ret;
5749 		}
5750 	}
5751 #endif
5752 	ret = __netif_receive_skb(skb);
5753 	rcu_read_unlock();
5754 	return ret;
5755 }
5756 
5757 void netif_receive_skb_list_internal(struct list_head *head)
5758 {
5759 	struct sk_buff *skb, *next;
5760 	struct list_head sublist;
5761 
5762 	INIT_LIST_HEAD(&sublist);
5763 	list_for_each_entry_safe(skb, next, head, list) {
5764 		net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5765 		skb_list_del_init(skb);
5766 		if (!skb_defer_rx_timestamp(skb))
5767 			list_add_tail(&skb->list, &sublist);
5768 	}
5769 	list_splice_init(&sublist, head);
5770 
5771 	rcu_read_lock();
5772 #ifdef CONFIG_RPS
5773 	if (static_branch_unlikely(&rps_needed)) {
5774 		list_for_each_entry_safe(skb, next, head, list) {
5775 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5776 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5777 
5778 			if (cpu >= 0) {
5779 				/* Will be handled, remove from list */
5780 				skb_list_del_init(skb);
5781 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5782 			}
5783 		}
5784 	}
5785 #endif
5786 	__netif_receive_skb_list(head);
5787 	rcu_read_unlock();
5788 }
5789 
5790 /**
5791  *	netif_receive_skb - process receive buffer from network
5792  *	@skb: buffer to process
5793  *
5794  *	netif_receive_skb() is the main receive data processing function.
5795  *	It always succeeds. The buffer may be dropped during processing
5796  *	for congestion control or by the protocol layers.
5797  *
5798  *	This function may only be called from softirq context and interrupts
5799  *	should be enabled.
5800  *
5801  *	Return values (usually ignored):
5802  *	NET_RX_SUCCESS: no congestion
5803  *	NET_RX_DROP: packet was dropped
5804  */
5805 int netif_receive_skb(struct sk_buff *skb)
5806 {
5807 	int ret;
5808 
5809 	trace_netif_receive_skb_entry(skb);
5810 
5811 	ret = netif_receive_skb_internal(skb);
5812 	trace_netif_receive_skb_exit(ret);
5813 
5814 	return ret;
5815 }
5816 EXPORT_SYMBOL(netif_receive_skb);
5817 
5818 /**
5819  *	netif_receive_skb_list - process many receive buffers from network
5820  *	@head: list of skbs to process.
5821  *
5822  *	Since return value of netif_receive_skb() is normally ignored, and
5823  *	wouldn't be meaningful for a list, this function returns void.
5824  *
5825  *	This function may only be called from softirq context and interrupts
5826  *	should be enabled.
5827  */
5828 void netif_receive_skb_list(struct list_head *head)
5829 {
5830 	struct sk_buff *skb;
5831 
5832 	if (list_empty(head))
5833 		return;
5834 	if (trace_netif_receive_skb_list_entry_enabled()) {
5835 		list_for_each_entry(skb, head, list)
5836 			trace_netif_receive_skb_list_entry(skb);
5837 	}
5838 	netif_receive_skb_list_internal(head);
5839 	trace_netif_receive_skb_list_exit(0);
5840 }
5841 EXPORT_SYMBOL(netif_receive_skb_list);
5842 
5843 static DEFINE_PER_CPU(struct work_struct, flush_works);
5844 
5845 /* Network device is going away, flush any packets still pending */
5846 static void flush_backlog(struct work_struct *work)
5847 {
5848 	struct sk_buff *skb, *tmp;
5849 	struct softnet_data *sd;
5850 
5851 	local_bh_disable();
5852 	sd = this_cpu_ptr(&softnet_data);
5853 
5854 	rps_lock_irq_disable(sd);
5855 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5856 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5857 			__skb_unlink(skb, &sd->input_pkt_queue);
5858 			dev_kfree_skb_irq(skb);
5859 			input_queue_head_incr(sd);
5860 		}
5861 	}
5862 	rps_unlock_irq_enable(sd);
5863 
5864 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5865 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5866 			__skb_unlink(skb, &sd->process_queue);
5867 			kfree_skb(skb);
5868 			input_queue_head_incr(sd);
5869 		}
5870 	}
5871 	local_bh_enable();
5872 }
5873 
5874 static bool flush_required(int cpu)
5875 {
5876 #if IS_ENABLED(CONFIG_RPS)
5877 	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5878 	bool do_flush;
5879 
5880 	rps_lock_irq_disable(sd);
5881 
5882 	/* as insertion into process_queue happens with the rps lock held,
5883 	 * process_queue access may race only with dequeue
5884 	 */
5885 	do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5886 		   !skb_queue_empty_lockless(&sd->process_queue);
5887 	rps_unlock_irq_enable(sd);
5888 
5889 	return do_flush;
5890 #endif
5891 	/* without RPS we can't safely check input_pkt_queue: during a
5892 	 * concurrent remote skb_queue_splice() we can detect as empty both
5893 	 * input_pkt_queue and process_queue even if the latter could end-up
5894 	 * containing a lot of packets.
5895 	 */
5896 	return true;
5897 }
5898 
5899 static void flush_all_backlogs(void)
5900 {
5901 	static cpumask_t flush_cpus;
5902 	unsigned int cpu;
5903 
5904 	/* since we are under rtnl lock protection we can use static data
5905 	 * for the cpumask and avoid allocating on stack the possibly
5906 	 * large mask
5907 	 */
5908 	ASSERT_RTNL();
5909 
5910 	cpus_read_lock();
5911 
5912 	cpumask_clear(&flush_cpus);
5913 	for_each_online_cpu(cpu) {
5914 		if (flush_required(cpu)) {
5915 			queue_work_on(cpu, system_highpri_wq,
5916 				      per_cpu_ptr(&flush_works, cpu));
5917 			cpumask_set_cpu(cpu, &flush_cpus);
5918 		}
5919 	}
5920 
5921 	/* we can have in flight packet[s] on the cpus we are not flushing,
5922 	 * synchronize_net() in unregister_netdevice_many() will take care of
5923 	 * them
5924 	 */
5925 	for_each_cpu(cpu, &flush_cpus)
5926 		flush_work(per_cpu_ptr(&flush_works, cpu));
5927 
5928 	cpus_read_unlock();
5929 }
5930 
5931 static void net_rps_send_ipi(struct softnet_data *remsd)
5932 {
5933 #ifdef CONFIG_RPS
5934 	while (remsd) {
5935 		struct softnet_data *next = remsd->rps_ipi_next;
5936 
5937 		if (cpu_online(remsd->cpu))
5938 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
5939 		remsd = next;
5940 	}
5941 #endif
5942 }
5943 
5944 /*
5945  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5946  * Note: called with local irq disabled, but exits with local irq enabled.
5947  */
5948 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5949 {
5950 #ifdef CONFIG_RPS
5951 	struct softnet_data *remsd = sd->rps_ipi_list;
5952 
5953 	if (remsd) {
5954 		sd->rps_ipi_list = NULL;
5955 
5956 		local_irq_enable();
5957 
5958 		/* Send pending IPI's to kick RPS processing on remote cpus. */
5959 		net_rps_send_ipi(remsd);
5960 	} else
5961 #endif
5962 		local_irq_enable();
5963 }
5964 
5965 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5966 {
5967 #ifdef CONFIG_RPS
5968 	return sd->rps_ipi_list != NULL;
5969 #else
5970 	return false;
5971 #endif
5972 }
5973 
5974 static int process_backlog(struct napi_struct *napi, int quota)
5975 {
5976 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5977 	bool again = true;
5978 	int work = 0;
5979 
5980 	/* Check if we have pending ipi, its better to send them now,
5981 	 * not waiting net_rx_action() end.
5982 	 */
5983 	if (sd_has_rps_ipi_waiting(sd)) {
5984 		local_irq_disable();
5985 		net_rps_action_and_irq_enable(sd);
5986 	}
5987 
5988 	napi->weight = READ_ONCE(dev_rx_weight);
5989 	while (again) {
5990 		struct sk_buff *skb;
5991 
5992 		while ((skb = __skb_dequeue(&sd->process_queue))) {
5993 			rcu_read_lock();
5994 			__netif_receive_skb(skb);
5995 			rcu_read_unlock();
5996 			input_queue_head_incr(sd);
5997 			if (++work >= quota)
5998 				return work;
5999 
6000 		}
6001 
6002 		rps_lock_irq_disable(sd);
6003 		if (skb_queue_empty(&sd->input_pkt_queue)) {
6004 			/*
6005 			 * Inline a custom version of __napi_complete().
6006 			 * only current cpu owns and manipulates this napi,
6007 			 * and NAPI_STATE_SCHED is the only possible flag set
6008 			 * on backlog.
6009 			 * We can use a plain write instead of clear_bit(),
6010 			 * and we dont need an smp_mb() memory barrier.
6011 			 */
6012 			napi->state = 0;
6013 			again = false;
6014 		} else {
6015 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
6016 						   &sd->process_queue);
6017 		}
6018 		rps_unlock_irq_enable(sd);
6019 	}
6020 
6021 	return work;
6022 }
6023 
6024 /**
6025  * __napi_schedule - schedule for receive
6026  * @n: entry to schedule
6027  *
6028  * The entry's receive function will be scheduled to run.
6029  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6030  */
6031 void __napi_schedule(struct napi_struct *n)
6032 {
6033 	unsigned long flags;
6034 
6035 	local_irq_save(flags);
6036 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6037 	local_irq_restore(flags);
6038 }
6039 EXPORT_SYMBOL(__napi_schedule);
6040 
6041 /**
6042  *	napi_schedule_prep - check if napi can be scheduled
6043  *	@n: napi context
6044  *
6045  * Test if NAPI routine is already running, and if not mark
6046  * it as running.  This is used as a condition variable to
6047  * insure only one NAPI poll instance runs.  We also make
6048  * sure there is no pending NAPI disable.
6049  */
6050 bool napi_schedule_prep(struct napi_struct *n)
6051 {
6052 	unsigned long new, val = READ_ONCE(n->state);
6053 
6054 	do {
6055 		if (unlikely(val & NAPIF_STATE_DISABLE))
6056 			return false;
6057 		new = val | NAPIF_STATE_SCHED;
6058 
6059 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
6060 		 * This was suggested by Alexander Duyck, as compiler
6061 		 * emits better code than :
6062 		 * if (val & NAPIF_STATE_SCHED)
6063 		 *     new |= NAPIF_STATE_MISSED;
6064 		 */
6065 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6066 						   NAPIF_STATE_MISSED;
6067 	} while (!try_cmpxchg(&n->state, &val, new));
6068 
6069 	return !(val & NAPIF_STATE_SCHED);
6070 }
6071 EXPORT_SYMBOL(napi_schedule_prep);
6072 
6073 /**
6074  * __napi_schedule_irqoff - schedule for receive
6075  * @n: entry to schedule
6076  *
6077  * Variant of __napi_schedule() assuming hard irqs are masked.
6078  *
6079  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6080  * because the interrupt disabled assumption might not be true
6081  * due to force-threaded interrupts and spinlock substitution.
6082  */
6083 void __napi_schedule_irqoff(struct napi_struct *n)
6084 {
6085 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6086 		____napi_schedule(this_cpu_ptr(&softnet_data), n);
6087 	else
6088 		__napi_schedule(n);
6089 }
6090 EXPORT_SYMBOL(__napi_schedule_irqoff);
6091 
6092 bool napi_complete_done(struct napi_struct *n, int work_done)
6093 {
6094 	unsigned long flags, val, new, timeout = 0;
6095 	bool ret = true;
6096 
6097 	/*
6098 	 * 1) Don't let napi dequeue from the cpu poll list
6099 	 *    just in case its running on a different cpu.
6100 	 * 2) If we are busy polling, do nothing here, we have
6101 	 *    the guarantee we will be called later.
6102 	 */
6103 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6104 				 NAPIF_STATE_IN_BUSY_POLL)))
6105 		return false;
6106 
6107 	if (work_done) {
6108 		if (n->gro_bitmask)
6109 			timeout = READ_ONCE(n->dev->gro_flush_timeout);
6110 		n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6111 	}
6112 	if (n->defer_hard_irqs_count > 0) {
6113 		n->defer_hard_irqs_count--;
6114 		timeout = READ_ONCE(n->dev->gro_flush_timeout);
6115 		if (timeout)
6116 			ret = false;
6117 	}
6118 	if (n->gro_bitmask) {
6119 		/* When the NAPI instance uses a timeout and keeps postponing
6120 		 * it, we need to bound somehow the time packets are kept in
6121 		 * the GRO layer
6122 		 */
6123 		napi_gro_flush(n, !!timeout);
6124 	}
6125 
6126 	gro_normal_list(n);
6127 
6128 	if (unlikely(!list_empty(&n->poll_list))) {
6129 		/* If n->poll_list is not empty, we need to mask irqs */
6130 		local_irq_save(flags);
6131 		list_del_init(&n->poll_list);
6132 		local_irq_restore(flags);
6133 	}
6134 	WRITE_ONCE(n->list_owner, -1);
6135 
6136 	val = READ_ONCE(n->state);
6137 	do {
6138 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6139 
6140 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6141 			      NAPIF_STATE_SCHED_THREADED |
6142 			      NAPIF_STATE_PREFER_BUSY_POLL);
6143 
6144 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6145 		 * because we will call napi->poll() one more time.
6146 		 * This C code was suggested by Alexander Duyck to help gcc.
6147 		 */
6148 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6149 						    NAPIF_STATE_SCHED;
6150 	} while (!try_cmpxchg(&n->state, &val, new));
6151 
6152 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6153 		__napi_schedule(n);
6154 		return false;
6155 	}
6156 
6157 	if (timeout)
6158 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
6159 			      HRTIMER_MODE_REL_PINNED);
6160 	return ret;
6161 }
6162 EXPORT_SYMBOL(napi_complete_done);
6163 
6164 /* must be called under rcu_read_lock(), as we dont take a reference */
6165 struct napi_struct *napi_by_id(unsigned int napi_id)
6166 {
6167 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6168 	struct napi_struct *napi;
6169 
6170 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6171 		if (napi->napi_id == napi_id)
6172 			return napi;
6173 
6174 	return NULL;
6175 }
6176 
6177 static void skb_defer_free_flush(struct softnet_data *sd)
6178 {
6179 	struct sk_buff *skb, *next;
6180 
6181 	/* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6182 	if (!READ_ONCE(sd->defer_list))
6183 		return;
6184 
6185 	spin_lock(&sd->defer_lock);
6186 	skb = sd->defer_list;
6187 	sd->defer_list = NULL;
6188 	sd->defer_count = 0;
6189 	spin_unlock(&sd->defer_lock);
6190 
6191 	while (skb != NULL) {
6192 		next = skb->next;
6193 		napi_consume_skb(skb, 1);
6194 		skb = next;
6195 	}
6196 }
6197 
6198 #if defined(CONFIG_NET_RX_BUSY_POLL)
6199 
6200 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6201 {
6202 	if (!skip_schedule) {
6203 		gro_normal_list(napi);
6204 		__napi_schedule(napi);
6205 		return;
6206 	}
6207 
6208 	if (napi->gro_bitmask) {
6209 		/* flush too old packets
6210 		 * If HZ < 1000, flush all packets.
6211 		 */
6212 		napi_gro_flush(napi, HZ >= 1000);
6213 	}
6214 
6215 	gro_normal_list(napi);
6216 	clear_bit(NAPI_STATE_SCHED, &napi->state);
6217 }
6218 
6219 enum {
6220 	NAPI_F_PREFER_BUSY_POLL	= 1,
6221 	NAPI_F_END_ON_RESCHED	= 2,
6222 };
6223 
6224 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock,
6225 			   unsigned flags, u16 budget)
6226 {
6227 	bool skip_schedule = false;
6228 	unsigned long timeout;
6229 	int rc;
6230 
6231 	/* Busy polling means there is a high chance device driver hard irq
6232 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6233 	 * set in napi_schedule_prep().
6234 	 * Since we are about to call napi->poll() once more, we can safely
6235 	 * clear NAPI_STATE_MISSED.
6236 	 *
6237 	 * Note: x86 could use a single "lock and ..." instruction
6238 	 * to perform these two clear_bit()
6239 	 */
6240 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6241 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6242 
6243 	local_bh_disable();
6244 
6245 	if (flags & NAPI_F_PREFER_BUSY_POLL) {
6246 		napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6247 		timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6248 		if (napi->defer_hard_irqs_count && timeout) {
6249 			hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6250 			skip_schedule = true;
6251 		}
6252 	}
6253 
6254 	/* All we really want here is to re-enable device interrupts.
6255 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6256 	 */
6257 	rc = napi->poll(napi, budget);
6258 	/* We can't gro_normal_list() here, because napi->poll() might have
6259 	 * rearmed the napi (napi_complete_done()) in which case it could
6260 	 * already be running on another CPU.
6261 	 */
6262 	trace_napi_poll(napi, rc, budget);
6263 	netpoll_poll_unlock(have_poll_lock);
6264 	if (rc == budget)
6265 		__busy_poll_stop(napi, skip_schedule);
6266 	local_bh_enable();
6267 }
6268 
6269 static void __napi_busy_loop(unsigned int napi_id,
6270 		      bool (*loop_end)(void *, unsigned long),
6271 		      void *loop_end_arg, unsigned flags, u16 budget)
6272 {
6273 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6274 	int (*napi_poll)(struct napi_struct *napi, int budget);
6275 	void *have_poll_lock = NULL;
6276 	struct napi_struct *napi;
6277 
6278 	WARN_ON_ONCE(!rcu_read_lock_held());
6279 
6280 restart:
6281 	napi_poll = NULL;
6282 
6283 	napi = napi_by_id(napi_id);
6284 	if (!napi)
6285 		return;
6286 
6287 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6288 		preempt_disable();
6289 	for (;;) {
6290 		int work = 0;
6291 
6292 		local_bh_disable();
6293 		if (!napi_poll) {
6294 			unsigned long val = READ_ONCE(napi->state);
6295 
6296 			/* If multiple threads are competing for this napi,
6297 			 * we avoid dirtying napi->state as much as we can.
6298 			 */
6299 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6300 				   NAPIF_STATE_IN_BUSY_POLL)) {
6301 				if (flags & NAPI_F_PREFER_BUSY_POLL)
6302 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6303 				goto count;
6304 			}
6305 			if (cmpxchg(&napi->state, val,
6306 				    val | NAPIF_STATE_IN_BUSY_POLL |
6307 					  NAPIF_STATE_SCHED) != val) {
6308 				if (flags & NAPI_F_PREFER_BUSY_POLL)
6309 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6310 				goto count;
6311 			}
6312 			have_poll_lock = netpoll_poll_lock(napi);
6313 			napi_poll = napi->poll;
6314 		}
6315 		work = napi_poll(napi, budget);
6316 		trace_napi_poll(napi, work, budget);
6317 		gro_normal_list(napi);
6318 count:
6319 		if (work > 0)
6320 			__NET_ADD_STATS(dev_net(napi->dev),
6321 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6322 		skb_defer_free_flush(this_cpu_ptr(&softnet_data));
6323 		local_bh_enable();
6324 
6325 		if (!loop_end || loop_end(loop_end_arg, start_time))
6326 			break;
6327 
6328 		if (unlikely(need_resched())) {
6329 			if (flags & NAPI_F_END_ON_RESCHED)
6330 				break;
6331 			if (napi_poll)
6332 				busy_poll_stop(napi, have_poll_lock, flags, budget);
6333 			if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6334 				preempt_enable();
6335 			rcu_read_unlock();
6336 			cond_resched();
6337 			rcu_read_lock();
6338 			if (loop_end(loop_end_arg, start_time))
6339 				return;
6340 			goto restart;
6341 		}
6342 		cpu_relax();
6343 	}
6344 	if (napi_poll)
6345 		busy_poll_stop(napi, have_poll_lock, flags, budget);
6346 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6347 		preempt_enable();
6348 }
6349 
6350 void napi_busy_loop_rcu(unsigned int napi_id,
6351 			bool (*loop_end)(void *, unsigned long),
6352 			void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6353 {
6354 	unsigned flags = NAPI_F_END_ON_RESCHED;
6355 
6356 	if (prefer_busy_poll)
6357 		flags |= NAPI_F_PREFER_BUSY_POLL;
6358 
6359 	__napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6360 }
6361 
6362 void napi_busy_loop(unsigned int napi_id,
6363 		    bool (*loop_end)(void *, unsigned long),
6364 		    void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6365 {
6366 	unsigned flags = prefer_busy_poll ? NAPI_F_PREFER_BUSY_POLL : 0;
6367 
6368 	rcu_read_lock();
6369 	__napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6370 	rcu_read_unlock();
6371 }
6372 EXPORT_SYMBOL(napi_busy_loop);
6373 
6374 #endif /* CONFIG_NET_RX_BUSY_POLL */
6375 
6376 static void napi_hash_add(struct napi_struct *napi)
6377 {
6378 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6379 		return;
6380 
6381 	spin_lock(&napi_hash_lock);
6382 
6383 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6384 	do {
6385 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6386 			napi_gen_id = MIN_NAPI_ID;
6387 	} while (napi_by_id(napi_gen_id));
6388 	napi->napi_id = napi_gen_id;
6389 
6390 	hlist_add_head_rcu(&napi->napi_hash_node,
6391 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6392 
6393 	spin_unlock(&napi_hash_lock);
6394 }
6395 
6396 /* Warning : caller is responsible to make sure rcu grace period
6397  * is respected before freeing memory containing @napi
6398  */
6399 static void napi_hash_del(struct napi_struct *napi)
6400 {
6401 	spin_lock(&napi_hash_lock);
6402 
6403 	hlist_del_init_rcu(&napi->napi_hash_node);
6404 
6405 	spin_unlock(&napi_hash_lock);
6406 }
6407 
6408 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6409 {
6410 	struct napi_struct *napi;
6411 
6412 	napi = container_of(timer, struct napi_struct, timer);
6413 
6414 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6415 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6416 	 */
6417 	if (!napi_disable_pending(napi) &&
6418 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6419 		clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6420 		__napi_schedule_irqoff(napi);
6421 	}
6422 
6423 	return HRTIMER_NORESTART;
6424 }
6425 
6426 static void init_gro_hash(struct napi_struct *napi)
6427 {
6428 	int i;
6429 
6430 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6431 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6432 		napi->gro_hash[i].count = 0;
6433 	}
6434 	napi->gro_bitmask = 0;
6435 }
6436 
6437 int dev_set_threaded(struct net_device *dev, bool threaded)
6438 {
6439 	struct napi_struct *napi;
6440 	int err = 0;
6441 
6442 	if (dev->threaded == threaded)
6443 		return 0;
6444 
6445 	if (threaded) {
6446 		list_for_each_entry(napi, &dev->napi_list, dev_list) {
6447 			if (!napi->thread) {
6448 				err = napi_kthread_create(napi);
6449 				if (err) {
6450 					threaded = false;
6451 					break;
6452 				}
6453 			}
6454 		}
6455 	}
6456 
6457 	dev->threaded = threaded;
6458 
6459 	/* Make sure kthread is created before THREADED bit
6460 	 * is set.
6461 	 */
6462 	smp_mb__before_atomic();
6463 
6464 	/* Setting/unsetting threaded mode on a napi might not immediately
6465 	 * take effect, if the current napi instance is actively being
6466 	 * polled. In this case, the switch between threaded mode and
6467 	 * softirq mode will happen in the next round of napi_schedule().
6468 	 * This should not cause hiccups/stalls to the live traffic.
6469 	 */
6470 	list_for_each_entry(napi, &dev->napi_list, dev_list)
6471 		assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
6472 
6473 	return err;
6474 }
6475 EXPORT_SYMBOL(dev_set_threaded);
6476 
6477 /**
6478  * netif_queue_set_napi - Associate queue with the napi
6479  * @dev: device to which NAPI and queue belong
6480  * @queue_index: Index of queue
6481  * @type: queue type as RX or TX
6482  * @napi: NAPI context, pass NULL to clear previously set NAPI
6483  *
6484  * Set queue with its corresponding napi context. This should be done after
6485  * registering the NAPI handler for the queue-vector and the queues have been
6486  * mapped to the corresponding interrupt vector.
6487  */
6488 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index,
6489 			  enum netdev_queue_type type, struct napi_struct *napi)
6490 {
6491 	struct netdev_rx_queue *rxq;
6492 	struct netdev_queue *txq;
6493 
6494 	if (WARN_ON_ONCE(napi && !napi->dev))
6495 		return;
6496 	if (dev->reg_state >= NETREG_REGISTERED)
6497 		ASSERT_RTNL();
6498 
6499 	switch (type) {
6500 	case NETDEV_QUEUE_TYPE_RX:
6501 		rxq = __netif_get_rx_queue(dev, queue_index);
6502 		rxq->napi = napi;
6503 		return;
6504 	case NETDEV_QUEUE_TYPE_TX:
6505 		txq = netdev_get_tx_queue(dev, queue_index);
6506 		txq->napi = napi;
6507 		return;
6508 	default:
6509 		return;
6510 	}
6511 }
6512 EXPORT_SYMBOL(netif_queue_set_napi);
6513 
6514 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
6515 			   int (*poll)(struct napi_struct *, int), int weight)
6516 {
6517 	if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6518 		return;
6519 
6520 	INIT_LIST_HEAD(&napi->poll_list);
6521 	INIT_HLIST_NODE(&napi->napi_hash_node);
6522 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6523 	napi->timer.function = napi_watchdog;
6524 	init_gro_hash(napi);
6525 	napi->skb = NULL;
6526 	INIT_LIST_HEAD(&napi->rx_list);
6527 	napi->rx_count = 0;
6528 	napi->poll = poll;
6529 	if (weight > NAPI_POLL_WEIGHT)
6530 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6531 				weight);
6532 	napi->weight = weight;
6533 	napi->dev = dev;
6534 #ifdef CONFIG_NETPOLL
6535 	napi->poll_owner = -1;
6536 #endif
6537 	napi->list_owner = -1;
6538 	set_bit(NAPI_STATE_SCHED, &napi->state);
6539 	set_bit(NAPI_STATE_NPSVC, &napi->state);
6540 	list_add_rcu(&napi->dev_list, &dev->napi_list);
6541 	napi_hash_add(napi);
6542 	napi_get_frags_check(napi);
6543 	/* Create kthread for this napi if dev->threaded is set.
6544 	 * Clear dev->threaded if kthread creation failed so that
6545 	 * threaded mode will not be enabled in napi_enable().
6546 	 */
6547 	if (dev->threaded && napi_kthread_create(napi))
6548 		dev->threaded = 0;
6549 	netif_napi_set_irq(napi, -1);
6550 }
6551 EXPORT_SYMBOL(netif_napi_add_weight);
6552 
6553 void napi_disable(struct napi_struct *n)
6554 {
6555 	unsigned long val, new;
6556 
6557 	might_sleep();
6558 	set_bit(NAPI_STATE_DISABLE, &n->state);
6559 
6560 	val = READ_ONCE(n->state);
6561 	do {
6562 		while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6563 			usleep_range(20, 200);
6564 			val = READ_ONCE(n->state);
6565 		}
6566 
6567 		new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6568 		new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6569 	} while (!try_cmpxchg(&n->state, &val, new));
6570 
6571 	hrtimer_cancel(&n->timer);
6572 
6573 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6574 }
6575 EXPORT_SYMBOL(napi_disable);
6576 
6577 /**
6578  *	napi_enable - enable NAPI scheduling
6579  *	@n: NAPI context
6580  *
6581  * Resume NAPI from being scheduled on this context.
6582  * Must be paired with napi_disable.
6583  */
6584 void napi_enable(struct napi_struct *n)
6585 {
6586 	unsigned long new, val = READ_ONCE(n->state);
6587 
6588 	do {
6589 		BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6590 
6591 		new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6592 		if (n->dev->threaded && n->thread)
6593 			new |= NAPIF_STATE_THREADED;
6594 	} while (!try_cmpxchg(&n->state, &val, new));
6595 }
6596 EXPORT_SYMBOL(napi_enable);
6597 
6598 static void flush_gro_hash(struct napi_struct *napi)
6599 {
6600 	int i;
6601 
6602 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6603 		struct sk_buff *skb, *n;
6604 
6605 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6606 			kfree_skb(skb);
6607 		napi->gro_hash[i].count = 0;
6608 	}
6609 }
6610 
6611 /* Must be called in process context */
6612 void __netif_napi_del(struct napi_struct *napi)
6613 {
6614 	if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6615 		return;
6616 
6617 	napi_hash_del(napi);
6618 	list_del_rcu(&napi->dev_list);
6619 	napi_free_frags(napi);
6620 
6621 	flush_gro_hash(napi);
6622 	napi->gro_bitmask = 0;
6623 
6624 	if (napi->thread) {
6625 		kthread_stop(napi->thread);
6626 		napi->thread = NULL;
6627 	}
6628 }
6629 EXPORT_SYMBOL(__netif_napi_del);
6630 
6631 static int __napi_poll(struct napi_struct *n, bool *repoll)
6632 {
6633 	int work, weight;
6634 
6635 	weight = n->weight;
6636 
6637 	/* This NAPI_STATE_SCHED test is for avoiding a race
6638 	 * with netpoll's poll_napi().  Only the entity which
6639 	 * obtains the lock and sees NAPI_STATE_SCHED set will
6640 	 * actually make the ->poll() call.  Therefore we avoid
6641 	 * accidentally calling ->poll() when NAPI is not scheduled.
6642 	 */
6643 	work = 0;
6644 	if (napi_is_scheduled(n)) {
6645 		work = n->poll(n, weight);
6646 		trace_napi_poll(n, work, weight);
6647 
6648 		xdp_do_check_flushed(n);
6649 	}
6650 
6651 	if (unlikely(work > weight))
6652 		netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6653 				n->poll, work, weight);
6654 
6655 	if (likely(work < weight))
6656 		return work;
6657 
6658 	/* Drivers must not modify the NAPI state if they
6659 	 * consume the entire weight.  In such cases this code
6660 	 * still "owns" the NAPI instance and therefore can
6661 	 * move the instance around on the list at-will.
6662 	 */
6663 	if (unlikely(napi_disable_pending(n))) {
6664 		napi_complete(n);
6665 		return work;
6666 	}
6667 
6668 	/* The NAPI context has more processing work, but busy-polling
6669 	 * is preferred. Exit early.
6670 	 */
6671 	if (napi_prefer_busy_poll(n)) {
6672 		if (napi_complete_done(n, work)) {
6673 			/* If timeout is not set, we need to make sure
6674 			 * that the NAPI is re-scheduled.
6675 			 */
6676 			napi_schedule(n);
6677 		}
6678 		return work;
6679 	}
6680 
6681 	if (n->gro_bitmask) {
6682 		/* flush too old packets
6683 		 * If HZ < 1000, flush all packets.
6684 		 */
6685 		napi_gro_flush(n, HZ >= 1000);
6686 	}
6687 
6688 	gro_normal_list(n);
6689 
6690 	/* Some drivers may have called napi_schedule
6691 	 * prior to exhausting their budget.
6692 	 */
6693 	if (unlikely(!list_empty(&n->poll_list))) {
6694 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6695 			     n->dev ? n->dev->name : "backlog");
6696 		return work;
6697 	}
6698 
6699 	*repoll = true;
6700 
6701 	return work;
6702 }
6703 
6704 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6705 {
6706 	bool do_repoll = false;
6707 	void *have;
6708 	int work;
6709 
6710 	list_del_init(&n->poll_list);
6711 
6712 	have = netpoll_poll_lock(n);
6713 
6714 	work = __napi_poll(n, &do_repoll);
6715 
6716 	if (do_repoll)
6717 		list_add_tail(&n->poll_list, repoll);
6718 
6719 	netpoll_poll_unlock(have);
6720 
6721 	return work;
6722 }
6723 
6724 static int napi_thread_wait(struct napi_struct *napi)
6725 {
6726 	bool woken = false;
6727 
6728 	set_current_state(TASK_INTERRUPTIBLE);
6729 
6730 	while (!kthread_should_stop()) {
6731 		/* Testing SCHED_THREADED bit here to make sure the current
6732 		 * kthread owns this napi and could poll on this napi.
6733 		 * Testing SCHED bit is not enough because SCHED bit might be
6734 		 * set by some other busy poll thread or by napi_disable().
6735 		 */
6736 		if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
6737 			WARN_ON(!list_empty(&napi->poll_list));
6738 			__set_current_state(TASK_RUNNING);
6739 			return 0;
6740 		}
6741 
6742 		schedule();
6743 		/* woken being true indicates this thread owns this napi. */
6744 		woken = true;
6745 		set_current_state(TASK_INTERRUPTIBLE);
6746 	}
6747 	__set_current_state(TASK_RUNNING);
6748 
6749 	return -1;
6750 }
6751 
6752 static int napi_threaded_poll(void *data)
6753 {
6754 	struct napi_struct *napi = data;
6755 	struct softnet_data *sd;
6756 	void *have;
6757 
6758 	while (!napi_thread_wait(napi)) {
6759 		for (;;) {
6760 			bool repoll = false;
6761 
6762 			local_bh_disable();
6763 			sd = this_cpu_ptr(&softnet_data);
6764 			sd->in_napi_threaded_poll = true;
6765 
6766 			have = netpoll_poll_lock(napi);
6767 			__napi_poll(napi, &repoll);
6768 			netpoll_poll_unlock(have);
6769 
6770 			sd->in_napi_threaded_poll = false;
6771 			barrier();
6772 
6773 			if (sd_has_rps_ipi_waiting(sd)) {
6774 				local_irq_disable();
6775 				net_rps_action_and_irq_enable(sd);
6776 			}
6777 			skb_defer_free_flush(sd);
6778 			local_bh_enable();
6779 
6780 			if (!repoll)
6781 				break;
6782 
6783 			cond_resched();
6784 		}
6785 	}
6786 	return 0;
6787 }
6788 
6789 static __latent_entropy void net_rx_action(struct softirq_action *h)
6790 {
6791 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6792 	unsigned long time_limit = jiffies +
6793 		usecs_to_jiffies(READ_ONCE(netdev_budget_usecs));
6794 	int budget = READ_ONCE(netdev_budget);
6795 	LIST_HEAD(list);
6796 	LIST_HEAD(repoll);
6797 
6798 start:
6799 	sd->in_net_rx_action = true;
6800 	local_irq_disable();
6801 	list_splice_init(&sd->poll_list, &list);
6802 	local_irq_enable();
6803 
6804 	for (;;) {
6805 		struct napi_struct *n;
6806 
6807 		skb_defer_free_flush(sd);
6808 
6809 		if (list_empty(&list)) {
6810 			if (list_empty(&repoll)) {
6811 				sd->in_net_rx_action = false;
6812 				barrier();
6813 				/* We need to check if ____napi_schedule()
6814 				 * had refilled poll_list while
6815 				 * sd->in_net_rx_action was true.
6816 				 */
6817 				if (!list_empty(&sd->poll_list))
6818 					goto start;
6819 				if (!sd_has_rps_ipi_waiting(sd))
6820 					goto end;
6821 			}
6822 			break;
6823 		}
6824 
6825 		n = list_first_entry(&list, struct napi_struct, poll_list);
6826 		budget -= napi_poll(n, &repoll);
6827 
6828 		/* If softirq window is exhausted then punt.
6829 		 * Allow this to run for 2 jiffies since which will allow
6830 		 * an average latency of 1.5/HZ.
6831 		 */
6832 		if (unlikely(budget <= 0 ||
6833 			     time_after_eq(jiffies, time_limit))) {
6834 			sd->time_squeeze++;
6835 			break;
6836 		}
6837 	}
6838 
6839 	local_irq_disable();
6840 
6841 	list_splice_tail_init(&sd->poll_list, &list);
6842 	list_splice_tail(&repoll, &list);
6843 	list_splice(&list, &sd->poll_list);
6844 	if (!list_empty(&sd->poll_list))
6845 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
6846 	else
6847 		sd->in_net_rx_action = false;
6848 
6849 	net_rps_action_and_irq_enable(sd);
6850 end:;
6851 }
6852 
6853 struct netdev_adjacent {
6854 	struct net_device *dev;
6855 	netdevice_tracker dev_tracker;
6856 
6857 	/* upper master flag, there can only be one master device per list */
6858 	bool master;
6859 
6860 	/* lookup ignore flag */
6861 	bool ignore;
6862 
6863 	/* counter for the number of times this device was added to us */
6864 	u16 ref_nr;
6865 
6866 	/* private field for the users */
6867 	void *private;
6868 
6869 	struct list_head list;
6870 	struct rcu_head rcu;
6871 };
6872 
6873 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6874 						 struct list_head *adj_list)
6875 {
6876 	struct netdev_adjacent *adj;
6877 
6878 	list_for_each_entry(adj, adj_list, list) {
6879 		if (adj->dev == adj_dev)
6880 			return adj;
6881 	}
6882 	return NULL;
6883 }
6884 
6885 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6886 				    struct netdev_nested_priv *priv)
6887 {
6888 	struct net_device *dev = (struct net_device *)priv->data;
6889 
6890 	return upper_dev == dev;
6891 }
6892 
6893 /**
6894  * netdev_has_upper_dev - Check if device is linked to an upper device
6895  * @dev: device
6896  * @upper_dev: upper device to check
6897  *
6898  * Find out if a device is linked to specified upper device and return true
6899  * in case it is. Note that this checks only immediate upper device,
6900  * not through a complete stack of devices. The caller must hold the RTNL lock.
6901  */
6902 bool netdev_has_upper_dev(struct net_device *dev,
6903 			  struct net_device *upper_dev)
6904 {
6905 	struct netdev_nested_priv priv = {
6906 		.data = (void *)upper_dev,
6907 	};
6908 
6909 	ASSERT_RTNL();
6910 
6911 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6912 					     &priv);
6913 }
6914 EXPORT_SYMBOL(netdev_has_upper_dev);
6915 
6916 /**
6917  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
6918  * @dev: device
6919  * @upper_dev: upper device to check
6920  *
6921  * Find out if a device is linked to specified upper device and return true
6922  * in case it is. Note that this checks the entire upper device chain.
6923  * The caller must hold rcu lock.
6924  */
6925 
6926 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6927 				  struct net_device *upper_dev)
6928 {
6929 	struct netdev_nested_priv priv = {
6930 		.data = (void *)upper_dev,
6931 	};
6932 
6933 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6934 					       &priv);
6935 }
6936 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6937 
6938 /**
6939  * netdev_has_any_upper_dev - Check if device is linked to some device
6940  * @dev: device
6941  *
6942  * Find out if a device is linked to an upper device and return true in case
6943  * it is. The caller must hold the RTNL lock.
6944  */
6945 bool netdev_has_any_upper_dev(struct net_device *dev)
6946 {
6947 	ASSERT_RTNL();
6948 
6949 	return !list_empty(&dev->adj_list.upper);
6950 }
6951 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6952 
6953 /**
6954  * netdev_master_upper_dev_get - Get master upper device
6955  * @dev: device
6956  *
6957  * Find a master upper device and return pointer to it or NULL in case
6958  * it's not there. The caller must hold the RTNL lock.
6959  */
6960 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6961 {
6962 	struct netdev_adjacent *upper;
6963 
6964 	ASSERT_RTNL();
6965 
6966 	if (list_empty(&dev->adj_list.upper))
6967 		return NULL;
6968 
6969 	upper = list_first_entry(&dev->adj_list.upper,
6970 				 struct netdev_adjacent, list);
6971 	if (likely(upper->master))
6972 		return upper->dev;
6973 	return NULL;
6974 }
6975 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6976 
6977 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6978 {
6979 	struct netdev_adjacent *upper;
6980 
6981 	ASSERT_RTNL();
6982 
6983 	if (list_empty(&dev->adj_list.upper))
6984 		return NULL;
6985 
6986 	upper = list_first_entry(&dev->adj_list.upper,
6987 				 struct netdev_adjacent, list);
6988 	if (likely(upper->master) && !upper->ignore)
6989 		return upper->dev;
6990 	return NULL;
6991 }
6992 
6993 /**
6994  * netdev_has_any_lower_dev - Check if device is linked to some device
6995  * @dev: device
6996  *
6997  * Find out if a device is linked to a lower device and return true in case
6998  * it is. The caller must hold the RTNL lock.
6999  */
7000 static bool netdev_has_any_lower_dev(struct net_device *dev)
7001 {
7002 	ASSERT_RTNL();
7003 
7004 	return !list_empty(&dev->adj_list.lower);
7005 }
7006 
7007 void *netdev_adjacent_get_private(struct list_head *adj_list)
7008 {
7009 	struct netdev_adjacent *adj;
7010 
7011 	adj = list_entry(adj_list, struct netdev_adjacent, list);
7012 
7013 	return adj->private;
7014 }
7015 EXPORT_SYMBOL(netdev_adjacent_get_private);
7016 
7017 /**
7018  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7019  * @dev: device
7020  * @iter: list_head ** of the current position
7021  *
7022  * Gets the next device from the dev's upper list, starting from iter
7023  * position. The caller must hold RCU read lock.
7024  */
7025 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7026 						 struct list_head **iter)
7027 {
7028 	struct netdev_adjacent *upper;
7029 
7030 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7031 
7032 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7033 
7034 	if (&upper->list == &dev->adj_list.upper)
7035 		return NULL;
7036 
7037 	*iter = &upper->list;
7038 
7039 	return upper->dev;
7040 }
7041 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7042 
7043 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7044 						  struct list_head **iter,
7045 						  bool *ignore)
7046 {
7047 	struct netdev_adjacent *upper;
7048 
7049 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7050 
7051 	if (&upper->list == &dev->adj_list.upper)
7052 		return NULL;
7053 
7054 	*iter = &upper->list;
7055 	*ignore = upper->ignore;
7056 
7057 	return upper->dev;
7058 }
7059 
7060 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7061 						    struct list_head **iter)
7062 {
7063 	struct netdev_adjacent *upper;
7064 
7065 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7066 
7067 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7068 
7069 	if (&upper->list == &dev->adj_list.upper)
7070 		return NULL;
7071 
7072 	*iter = &upper->list;
7073 
7074 	return upper->dev;
7075 }
7076 
7077 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7078 				       int (*fn)(struct net_device *dev,
7079 					 struct netdev_nested_priv *priv),
7080 				       struct netdev_nested_priv *priv)
7081 {
7082 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7083 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7084 	int ret, cur = 0;
7085 	bool ignore;
7086 
7087 	now = dev;
7088 	iter = &dev->adj_list.upper;
7089 
7090 	while (1) {
7091 		if (now != dev) {
7092 			ret = fn(now, priv);
7093 			if (ret)
7094 				return ret;
7095 		}
7096 
7097 		next = NULL;
7098 		while (1) {
7099 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
7100 			if (!udev)
7101 				break;
7102 			if (ignore)
7103 				continue;
7104 
7105 			next = udev;
7106 			niter = &udev->adj_list.upper;
7107 			dev_stack[cur] = now;
7108 			iter_stack[cur++] = iter;
7109 			break;
7110 		}
7111 
7112 		if (!next) {
7113 			if (!cur)
7114 				return 0;
7115 			next = dev_stack[--cur];
7116 			niter = iter_stack[cur];
7117 		}
7118 
7119 		now = next;
7120 		iter = niter;
7121 	}
7122 
7123 	return 0;
7124 }
7125 
7126 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7127 				  int (*fn)(struct net_device *dev,
7128 					    struct netdev_nested_priv *priv),
7129 				  struct netdev_nested_priv *priv)
7130 {
7131 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7132 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7133 	int ret, cur = 0;
7134 
7135 	now = dev;
7136 	iter = &dev->adj_list.upper;
7137 
7138 	while (1) {
7139 		if (now != dev) {
7140 			ret = fn(now, priv);
7141 			if (ret)
7142 				return ret;
7143 		}
7144 
7145 		next = NULL;
7146 		while (1) {
7147 			udev = netdev_next_upper_dev_rcu(now, &iter);
7148 			if (!udev)
7149 				break;
7150 
7151 			next = udev;
7152 			niter = &udev->adj_list.upper;
7153 			dev_stack[cur] = now;
7154 			iter_stack[cur++] = iter;
7155 			break;
7156 		}
7157 
7158 		if (!next) {
7159 			if (!cur)
7160 				return 0;
7161 			next = dev_stack[--cur];
7162 			niter = iter_stack[cur];
7163 		}
7164 
7165 		now = next;
7166 		iter = niter;
7167 	}
7168 
7169 	return 0;
7170 }
7171 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7172 
7173 static bool __netdev_has_upper_dev(struct net_device *dev,
7174 				   struct net_device *upper_dev)
7175 {
7176 	struct netdev_nested_priv priv = {
7177 		.flags = 0,
7178 		.data = (void *)upper_dev,
7179 	};
7180 
7181 	ASSERT_RTNL();
7182 
7183 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7184 					   &priv);
7185 }
7186 
7187 /**
7188  * netdev_lower_get_next_private - Get the next ->private from the
7189  *				   lower neighbour list
7190  * @dev: device
7191  * @iter: list_head ** of the current position
7192  *
7193  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7194  * list, starting from iter position. The caller must hold either hold the
7195  * RTNL lock or its own locking that guarantees that the neighbour lower
7196  * list will remain unchanged.
7197  */
7198 void *netdev_lower_get_next_private(struct net_device *dev,
7199 				    struct list_head **iter)
7200 {
7201 	struct netdev_adjacent *lower;
7202 
7203 	lower = list_entry(*iter, struct netdev_adjacent, list);
7204 
7205 	if (&lower->list == &dev->adj_list.lower)
7206 		return NULL;
7207 
7208 	*iter = lower->list.next;
7209 
7210 	return lower->private;
7211 }
7212 EXPORT_SYMBOL(netdev_lower_get_next_private);
7213 
7214 /**
7215  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7216  *				       lower neighbour list, RCU
7217  *				       variant
7218  * @dev: device
7219  * @iter: list_head ** of the current position
7220  *
7221  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7222  * list, starting from iter position. The caller must hold RCU read lock.
7223  */
7224 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7225 					struct list_head **iter)
7226 {
7227 	struct netdev_adjacent *lower;
7228 
7229 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7230 
7231 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7232 
7233 	if (&lower->list == &dev->adj_list.lower)
7234 		return NULL;
7235 
7236 	*iter = &lower->list;
7237 
7238 	return lower->private;
7239 }
7240 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7241 
7242 /**
7243  * netdev_lower_get_next - Get the next device from the lower neighbour
7244  *                         list
7245  * @dev: device
7246  * @iter: list_head ** of the current position
7247  *
7248  * Gets the next netdev_adjacent from the dev's lower neighbour
7249  * list, starting from iter position. The caller must hold RTNL lock or
7250  * its own locking that guarantees that the neighbour lower
7251  * list will remain unchanged.
7252  */
7253 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7254 {
7255 	struct netdev_adjacent *lower;
7256 
7257 	lower = list_entry(*iter, struct netdev_adjacent, list);
7258 
7259 	if (&lower->list == &dev->adj_list.lower)
7260 		return NULL;
7261 
7262 	*iter = lower->list.next;
7263 
7264 	return lower->dev;
7265 }
7266 EXPORT_SYMBOL(netdev_lower_get_next);
7267 
7268 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7269 						struct list_head **iter)
7270 {
7271 	struct netdev_adjacent *lower;
7272 
7273 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7274 
7275 	if (&lower->list == &dev->adj_list.lower)
7276 		return NULL;
7277 
7278 	*iter = &lower->list;
7279 
7280 	return lower->dev;
7281 }
7282 
7283 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7284 						  struct list_head **iter,
7285 						  bool *ignore)
7286 {
7287 	struct netdev_adjacent *lower;
7288 
7289 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7290 
7291 	if (&lower->list == &dev->adj_list.lower)
7292 		return NULL;
7293 
7294 	*iter = &lower->list;
7295 	*ignore = lower->ignore;
7296 
7297 	return lower->dev;
7298 }
7299 
7300 int netdev_walk_all_lower_dev(struct net_device *dev,
7301 			      int (*fn)(struct net_device *dev,
7302 					struct netdev_nested_priv *priv),
7303 			      struct netdev_nested_priv *priv)
7304 {
7305 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7306 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7307 	int ret, cur = 0;
7308 
7309 	now = dev;
7310 	iter = &dev->adj_list.lower;
7311 
7312 	while (1) {
7313 		if (now != dev) {
7314 			ret = fn(now, priv);
7315 			if (ret)
7316 				return ret;
7317 		}
7318 
7319 		next = NULL;
7320 		while (1) {
7321 			ldev = netdev_next_lower_dev(now, &iter);
7322 			if (!ldev)
7323 				break;
7324 
7325 			next = ldev;
7326 			niter = &ldev->adj_list.lower;
7327 			dev_stack[cur] = now;
7328 			iter_stack[cur++] = iter;
7329 			break;
7330 		}
7331 
7332 		if (!next) {
7333 			if (!cur)
7334 				return 0;
7335 			next = dev_stack[--cur];
7336 			niter = iter_stack[cur];
7337 		}
7338 
7339 		now = next;
7340 		iter = niter;
7341 	}
7342 
7343 	return 0;
7344 }
7345 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7346 
7347 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7348 				       int (*fn)(struct net_device *dev,
7349 					 struct netdev_nested_priv *priv),
7350 				       struct netdev_nested_priv *priv)
7351 {
7352 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7353 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7354 	int ret, cur = 0;
7355 	bool ignore;
7356 
7357 	now = dev;
7358 	iter = &dev->adj_list.lower;
7359 
7360 	while (1) {
7361 		if (now != dev) {
7362 			ret = fn(now, priv);
7363 			if (ret)
7364 				return ret;
7365 		}
7366 
7367 		next = NULL;
7368 		while (1) {
7369 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7370 			if (!ldev)
7371 				break;
7372 			if (ignore)
7373 				continue;
7374 
7375 			next = ldev;
7376 			niter = &ldev->adj_list.lower;
7377 			dev_stack[cur] = now;
7378 			iter_stack[cur++] = iter;
7379 			break;
7380 		}
7381 
7382 		if (!next) {
7383 			if (!cur)
7384 				return 0;
7385 			next = dev_stack[--cur];
7386 			niter = iter_stack[cur];
7387 		}
7388 
7389 		now = next;
7390 		iter = niter;
7391 	}
7392 
7393 	return 0;
7394 }
7395 
7396 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7397 					     struct list_head **iter)
7398 {
7399 	struct netdev_adjacent *lower;
7400 
7401 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7402 	if (&lower->list == &dev->adj_list.lower)
7403 		return NULL;
7404 
7405 	*iter = &lower->list;
7406 
7407 	return lower->dev;
7408 }
7409 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7410 
7411 static u8 __netdev_upper_depth(struct net_device *dev)
7412 {
7413 	struct net_device *udev;
7414 	struct list_head *iter;
7415 	u8 max_depth = 0;
7416 	bool ignore;
7417 
7418 	for (iter = &dev->adj_list.upper,
7419 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7420 	     udev;
7421 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7422 		if (ignore)
7423 			continue;
7424 		if (max_depth < udev->upper_level)
7425 			max_depth = udev->upper_level;
7426 	}
7427 
7428 	return max_depth;
7429 }
7430 
7431 static u8 __netdev_lower_depth(struct net_device *dev)
7432 {
7433 	struct net_device *ldev;
7434 	struct list_head *iter;
7435 	u8 max_depth = 0;
7436 	bool ignore;
7437 
7438 	for (iter = &dev->adj_list.lower,
7439 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7440 	     ldev;
7441 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7442 		if (ignore)
7443 			continue;
7444 		if (max_depth < ldev->lower_level)
7445 			max_depth = ldev->lower_level;
7446 	}
7447 
7448 	return max_depth;
7449 }
7450 
7451 static int __netdev_update_upper_level(struct net_device *dev,
7452 				       struct netdev_nested_priv *__unused)
7453 {
7454 	dev->upper_level = __netdev_upper_depth(dev) + 1;
7455 	return 0;
7456 }
7457 
7458 #ifdef CONFIG_LOCKDEP
7459 static LIST_HEAD(net_unlink_list);
7460 
7461 static void net_unlink_todo(struct net_device *dev)
7462 {
7463 	if (list_empty(&dev->unlink_list))
7464 		list_add_tail(&dev->unlink_list, &net_unlink_list);
7465 }
7466 #endif
7467 
7468 static int __netdev_update_lower_level(struct net_device *dev,
7469 				       struct netdev_nested_priv *priv)
7470 {
7471 	dev->lower_level = __netdev_lower_depth(dev) + 1;
7472 
7473 #ifdef CONFIG_LOCKDEP
7474 	if (!priv)
7475 		return 0;
7476 
7477 	if (priv->flags & NESTED_SYNC_IMM)
7478 		dev->nested_level = dev->lower_level - 1;
7479 	if (priv->flags & NESTED_SYNC_TODO)
7480 		net_unlink_todo(dev);
7481 #endif
7482 	return 0;
7483 }
7484 
7485 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7486 				  int (*fn)(struct net_device *dev,
7487 					    struct netdev_nested_priv *priv),
7488 				  struct netdev_nested_priv *priv)
7489 {
7490 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7491 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7492 	int ret, cur = 0;
7493 
7494 	now = dev;
7495 	iter = &dev->adj_list.lower;
7496 
7497 	while (1) {
7498 		if (now != dev) {
7499 			ret = fn(now, priv);
7500 			if (ret)
7501 				return ret;
7502 		}
7503 
7504 		next = NULL;
7505 		while (1) {
7506 			ldev = netdev_next_lower_dev_rcu(now, &iter);
7507 			if (!ldev)
7508 				break;
7509 
7510 			next = ldev;
7511 			niter = &ldev->adj_list.lower;
7512 			dev_stack[cur] = now;
7513 			iter_stack[cur++] = iter;
7514 			break;
7515 		}
7516 
7517 		if (!next) {
7518 			if (!cur)
7519 				return 0;
7520 			next = dev_stack[--cur];
7521 			niter = iter_stack[cur];
7522 		}
7523 
7524 		now = next;
7525 		iter = niter;
7526 	}
7527 
7528 	return 0;
7529 }
7530 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7531 
7532 /**
7533  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7534  *				       lower neighbour list, RCU
7535  *				       variant
7536  * @dev: device
7537  *
7538  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7539  * list. The caller must hold RCU read lock.
7540  */
7541 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7542 {
7543 	struct netdev_adjacent *lower;
7544 
7545 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
7546 			struct netdev_adjacent, list);
7547 	if (lower)
7548 		return lower->private;
7549 	return NULL;
7550 }
7551 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7552 
7553 /**
7554  * netdev_master_upper_dev_get_rcu - Get master upper device
7555  * @dev: device
7556  *
7557  * Find a master upper device and return pointer to it or NULL in case
7558  * it's not there. The caller must hold the RCU read lock.
7559  */
7560 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7561 {
7562 	struct netdev_adjacent *upper;
7563 
7564 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
7565 				       struct netdev_adjacent, list);
7566 	if (upper && likely(upper->master))
7567 		return upper->dev;
7568 	return NULL;
7569 }
7570 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7571 
7572 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7573 			      struct net_device *adj_dev,
7574 			      struct list_head *dev_list)
7575 {
7576 	char linkname[IFNAMSIZ+7];
7577 
7578 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7579 		"upper_%s" : "lower_%s", adj_dev->name);
7580 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7581 				 linkname);
7582 }
7583 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7584 			       char *name,
7585 			       struct list_head *dev_list)
7586 {
7587 	char linkname[IFNAMSIZ+7];
7588 
7589 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7590 		"upper_%s" : "lower_%s", name);
7591 	sysfs_remove_link(&(dev->dev.kobj), linkname);
7592 }
7593 
7594 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7595 						 struct net_device *adj_dev,
7596 						 struct list_head *dev_list)
7597 {
7598 	return (dev_list == &dev->adj_list.upper ||
7599 		dev_list == &dev->adj_list.lower) &&
7600 		net_eq(dev_net(dev), dev_net(adj_dev));
7601 }
7602 
7603 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7604 					struct net_device *adj_dev,
7605 					struct list_head *dev_list,
7606 					void *private, bool master)
7607 {
7608 	struct netdev_adjacent *adj;
7609 	int ret;
7610 
7611 	adj = __netdev_find_adj(adj_dev, dev_list);
7612 
7613 	if (adj) {
7614 		adj->ref_nr += 1;
7615 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7616 			 dev->name, adj_dev->name, adj->ref_nr);
7617 
7618 		return 0;
7619 	}
7620 
7621 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7622 	if (!adj)
7623 		return -ENOMEM;
7624 
7625 	adj->dev = adj_dev;
7626 	adj->master = master;
7627 	adj->ref_nr = 1;
7628 	adj->private = private;
7629 	adj->ignore = false;
7630 	netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
7631 
7632 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7633 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7634 
7635 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7636 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7637 		if (ret)
7638 			goto free_adj;
7639 	}
7640 
7641 	/* Ensure that master link is always the first item in list. */
7642 	if (master) {
7643 		ret = sysfs_create_link(&(dev->dev.kobj),
7644 					&(adj_dev->dev.kobj), "master");
7645 		if (ret)
7646 			goto remove_symlinks;
7647 
7648 		list_add_rcu(&adj->list, dev_list);
7649 	} else {
7650 		list_add_tail_rcu(&adj->list, dev_list);
7651 	}
7652 
7653 	return 0;
7654 
7655 remove_symlinks:
7656 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7657 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7658 free_adj:
7659 	netdev_put(adj_dev, &adj->dev_tracker);
7660 	kfree(adj);
7661 
7662 	return ret;
7663 }
7664 
7665 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7666 					 struct net_device *adj_dev,
7667 					 u16 ref_nr,
7668 					 struct list_head *dev_list)
7669 {
7670 	struct netdev_adjacent *adj;
7671 
7672 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7673 		 dev->name, adj_dev->name, ref_nr);
7674 
7675 	adj = __netdev_find_adj(adj_dev, dev_list);
7676 
7677 	if (!adj) {
7678 		pr_err("Adjacency does not exist for device %s from %s\n",
7679 		       dev->name, adj_dev->name);
7680 		WARN_ON(1);
7681 		return;
7682 	}
7683 
7684 	if (adj->ref_nr > ref_nr) {
7685 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7686 			 dev->name, adj_dev->name, ref_nr,
7687 			 adj->ref_nr - ref_nr);
7688 		adj->ref_nr -= ref_nr;
7689 		return;
7690 	}
7691 
7692 	if (adj->master)
7693 		sysfs_remove_link(&(dev->dev.kobj), "master");
7694 
7695 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7696 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7697 
7698 	list_del_rcu(&adj->list);
7699 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7700 		 adj_dev->name, dev->name, adj_dev->name);
7701 	netdev_put(adj_dev, &adj->dev_tracker);
7702 	kfree_rcu(adj, rcu);
7703 }
7704 
7705 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7706 					    struct net_device *upper_dev,
7707 					    struct list_head *up_list,
7708 					    struct list_head *down_list,
7709 					    void *private, bool master)
7710 {
7711 	int ret;
7712 
7713 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7714 					   private, master);
7715 	if (ret)
7716 		return ret;
7717 
7718 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7719 					   private, false);
7720 	if (ret) {
7721 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7722 		return ret;
7723 	}
7724 
7725 	return 0;
7726 }
7727 
7728 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7729 					       struct net_device *upper_dev,
7730 					       u16 ref_nr,
7731 					       struct list_head *up_list,
7732 					       struct list_head *down_list)
7733 {
7734 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7735 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7736 }
7737 
7738 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7739 						struct net_device *upper_dev,
7740 						void *private, bool master)
7741 {
7742 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7743 						&dev->adj_list.upper,
7744 						&upper_dev->adj_list.lower,
7745 						private, master);
7746 }
7747 
7748 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7749 						   struct net_device *upper_dev)
7750 {
7751 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7752 					   &dev->adj_list.upper,
7753 					   &upper_dev->adj_list.lower);
7754 }
7755 
7756 static int __netdev_upper_dev_link(struct net_device *dev,
7757 				   struct net_device *upper_dev, bool master,
7758 				   void *upper_priv, void *upper_info,
7759 				   struct netdev_nested_priv *priv,
7760 				   struct netlink_ext_ack *extack)
7761 {
7762 	struct netdev_notifier_changeupper_info changeupper_info = {
7763 		.info = {
7764 			.dev = dev,
7765 			.extack = extack,
7766 		},
7767 		.upper_dev = upper_dev,
7768 		.master = master,
7769 		.linking = true,
7770 		.upper_info = upper_info,
7771 	};
7772 	struct net_device *master_dev;
7773 	int ret = 0;
7774 
7775 	ASSERT_RTNL();
7776 
7777 	if (dev == upper_dev)
7778 		return -EBUSY;
7779 
7780 	/* To prevent loops, check if dev is not upper device to upper_dev. */
7781 	if (__netdev_has_upper_dev(upper_dev, dev))
7782 		return -EBUSY;
7783 
7784 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7785 		return -EMLINK;
7786 
7787 	if (!master) {
7788 		if (__netdev_has_upper_dev(dev, upper_dev))
7789 			return -EEXIST;
7790 	} else {
7791 		master_dev = __netdev_master_upper_dev_get(dev);
7792 		if (master_dev)
7793 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
7794 	}
7795 
7796 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7797 					    &changeupper_info.info);
7798 	ret = notifier_to_errno(ret);
7799 	if (ret)
7800 		return ret;
7801 
7802 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7803 						   master);
7804 	if (ret)
7805 		return ret;
7806 
7807 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7808 					    &changeupper_info.info);
7809 	ret = notifier_to_errno(ret);
7810 	if (ret)
7811 		goto rollback;
7812 
7813 	__netdev_update_upper_level(dev, NULL);
7814 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7815 
7816 	__netdev_update_lower_level(upper_dev, priv);
7817 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7818 				    priv);
7819 
7820 	return 0;
7821 
7822 rollback:
7823 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7824 
7825 	return ret;
7826 }
7827 
7828 /**
7829  * netdev_upper_dev_link - Add a link to the upper device
7830  * @dev: device
7831  * @upper_dev: new upper device
7832  * @extack: netlink extended ack
7833  *
7834  * Adds a link to device which is upper to this one. The caller must hold
7835  * the RTNL lock. On a failure a negative errno code is returned.
7836  * On success the reference counts are adjusted and the function
7837  * returns zero.
7838  */
7839 int netdev_upper_dev_link(struct net_device *dev,
7840 			  struct net_device *upper_dev,
7841 			  struct netlink_ext_ack *extack)
7842 {
7843 	struct netdev_nested_priv priv = {
7844 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7845 		.data = NULL,
7846 	};
7847 
7848 	return __netdev_upper_dev_link(dev, upper_dev, false,
7849 				       NULL, NULL, &priv, extack);
7850 }
7851 EXPORT_SYMBOL(netdev_upper_dev_link);
7852 
7853 /**
7854  * netdev_master_upper_dev_link - Add a master link to the upper device
7855  * @dev: device
7856  * @upper_dev: new upper device
7857  * @upper_priv: upper device private
7858  * @upper_info: upper info to be passed down via notifier
7859  * @extack: netlink extended ack
7860  *
7861  * Adds a link to device which is upper to this one. In this case, only
7862  * one master upper device can be linked, although other non-master devices
7863  * might be linked as well. The caller must hold the RTNL lock.
7864  * On a failure a negative errno code is returned. On success the reference
7865  * counts are adjusted and the function returns zero.
7866  */
7867 int netdev_master_upper_dev_link(struct net_device *dev,
7868 				 struct net_device *upper_dev,
7869 				 void *upper_priv, void *upper_info,
7870 				 struct netlink_ext_ack *extack)
7871 {
7872 	struct netdev_nested_priv priv = {
7873 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7874 		.data = NULL,
7875 	};
7876 
7877 	return __netdev_upper_dev_link(dev, upper_dev, true,
7878 				       upper_priv, upper_info, &priv, extack);
7879 }
7880 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7881 
7882 static void __netdev_upper_dev_unlink(struct net_device *dev,
7883 				      struct net_device *upper_dev,
7884 				      struct netdev_nested_priv *priv)
7885 {
7886 	struct netdev_notifier_changeupper_info changeupper_info = {
7887 		.info = {
7888 			.dev = dev,
7889 		},
7890 		.upper_dev = upper_dev,
7891 		.linking = false,
7892 	};
7893 
7894 	ASSERT_RTNL();
7895 
7896 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7897 
7898 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7899 				      &changeupper_info.info);
7900 
7901 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7902 
7903 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7904 				      &changeupper_info.info);
7905 
7906 	__netdev_update_upper_level(dev, NULL);
7907 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7908 
7909 	__netdev_update_lower_level(upper_dev, priv);
7910 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7911 				    priv);
7912 }
7913 
7914 /**
7915  * netdev_upper_dev_unlink - Removes a link to upper device
7916  * @dev: device
7917  * @upper_dev: new upper device
7918  *
7919  * Removes a link to device which is upper to this one. The caller must hold
7920  * the RTNL lock.
7921  */
7922 void netdev_upper_dev_unlink(struct net_device *dev,
7923 			     struct net_device *upper_dev)
7924 {
7925 	struct netdev_nested_priv priv = {
7926 		.flags = NESTED_SYNC_TODO,
7927 		.data = NULL,
7928 	};
7929 
7930 	__netdev_upper_dev_unlink(dev, upper_dev, &priv);
7931 }
7932 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7933 
7934 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7935 				      struct net_device *lower_dev,
7936 				      bool val)
7937 {
7938 	struct netdev_adjacent *adj;
7939 
7940 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7941 	if (adj)
7942 		adj->ignore = val;
7943 
7944 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7945 	if (adj)
7946 		adj->ignore = val;
7947 }
7948 
7949 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7950 					struct net_device *lower_dev)
7951 {
7952 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7953 }
7954 
7955 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7956 				       struct net_device *lower_dev)
7957 {
7958 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7959 }
7960 
7961 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7962 				   struct net_device *new_dev,
7963 				   struct net_device *dev,
7964 				   struct netlink_ext_ack *extack)
7965 {
7966 	struct netdev_nested_priv priv = {
7967 		.flags = 0,
7968 		.data = NULL,
7969 	};
7970 	int err;
7971 
7972 	if (!new_dev)
7973 		return 0;
7974 
7975 	if (old_dev && new_dev != old_dev)
7976 		netdev_adjacent_dev_disable(dev, old_dev);
7977 	err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
7978 				      extack);
7979 	if (err) {
7980 		if (old_dev && new_dev != old_dev)
7981 			netdev_adjacent_dev_enable(dev, old_dev);
7982 		return err;
7983 	}
7984 
7985 	return 0;
7986 }
7987 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7988 
7989 void netdev_adjacent_change_commit(struct net_device *old_dev,
7990 				   struct net_device *new_dev,
7991 				   struct net_device *dev)
7992 {
7993 	struct netdev_nested_priv priv = {
7994 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7995 		.data = NULL,
7996 	};
7997 
7998 	if (!new_dev || !old_dev)
7999 		return;
8000 
8001 	if (new_dev == old_dev)
8002 		return;
8003 
8004 	netdev_adjacent_dev_enable(dev, old_dev);
8005 	__netdev_upper_dev_unlink(old_dev, dev, &priv);
8006 }
8007 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8008 
8009 void netdev_adjacent_change_abort(struct net_device *old_dev,
8010 				  struct net_device *new_dev,
8011 				  struct net_device *dev)
8012 {
8013 	struct netdev_nested_priv priv = {
8014 		.flags = 0,
8015 		.data = NULL,
8016 	};
8017 
8018 	if (!new_dev)
8019 		return;
8020 
8021 	if (old_dev && new_dev != old_dev)
8022 		netdev_adjacent_dev_enable(dev, old_dev);
8023 
8024 	__netdev_upper_dev_unlink(new_dev, dev, &priv);
8025 }
8026 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8027 
8028 /**
8029  * netdev_bonding_info_change - Dispatch event about slave change
8030  * @dev: device
8031  * @bonding_info: info to dispatch
8032  *
8033  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8034  * The caller must hold the RTNL lock.
8035  */
8036 void netdev_bonding_info_change(struct net_device *dev,
8037 				struct netdev_bonding_info *bonding_info)
8038 {
8039 	struct netdev_notifier_bonding_info info = {
8040 		.info.dev = dev,
8041 	};
8042 
8043 	memcpy(&info.bonding_info, bonding_info,
8044 	       sizeof(struct netdev_bonding_info));
8045 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8046 				      &info.info);
8047 }
8048 EXPORT_SYMBOL(netdev_bonding_info_change);
8049 
8050 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
8051 					   struct netlink_ext_ack *extack)
8052 {
8053 	struct netdev_notifier_offload_xstats_info info = {
8054 		.info.dev = dev,
8055 		.info.extack = extack,
8056 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8057 	};
8058 	int err;
8059 	int rc;
8060 
8061 	dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
8062 					 GFP_KERNEL);
8063 	if (!dev->offload_xstats_l3)
8064 		return -ENOMEM;
8065 
8066 	rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
8067 						  NETDEV_OFFLOAD_XSTATS_DISABLE,
8068 						  &info.info);
8069 	err = notifier_to_errno(rc);
8070 	if (err)
8071 		goto free_stats;
8072 
8073 	return 0;
8074 
8075 free_stats:
8076 	kfree(dev->offload_xstats_l3);
8077 	dev->offload_xstats_l3 = NULL;
8078 	return err;
8079 }
8080 
8081 int netdev_offload_xstats_enable(struct net_device *dev,
8082 				 enum netdev_offload_xstats_type type,
8083 				 struct netlink_ext_ack *extack)
8084 {
8085 	ASSERT_RTNL();
8086 
8087 	if (netdev_offload_xstats_enabled(dev, type))
8088 		return -EALREADY;
8089 
8090 	switch (type) {
8091 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8092 		return netdev_offload_xstats_enable_l3(dev, extack);
8093 	}
8094 
8095 	WARN_ON(1);
8096 	return -EINVAL;
8097 }
8098 EXPORT_SYMBOL(netdev_offload_xstats_enable);
8099 
8100 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
8101 {
8102 	struct netdev_notifier_offload_xstats_info info = {
8103 		.info.dev = dev,
8104 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8105 	};
8106 
8107 	call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
8108 				      &info.info);
8109 	kfree(dev->offload_xstats_l3);
8110 	dev->offload_xstats_l3 = NULL;
8111 }
8112 
8113 int netdev_offload_xstats_disable(struct net_device *dev,
8114 				  enum netdev_offload_xstats_type type)
8115 {
8116 	ASSERT_RTNL();
8117 
8118 	if (!netdev_offload_xstats_enabled(dev, type))
8119 		return -EALREADY;
8120 
8121 	switch (type) {
8122 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8123 		netdev_offload_xstats_disable_l3(dev);
8124 		return 0;
8125 	}
8126 
8127 	WARN_ON(1);
8128 	return -EINVAL;
8129 }
8130 EXPORT_SYMBOL(netdev_offload_xstats_disable);
8131 
8132 static void netdev_offload_xstats_disable_all(struct net_device *dev)
8133 {
8134 	netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
8135 }
8136 
8137 static struct rtnl_hw_stats64 *
8138 netdev_offload_xstats_get_ptr(const struct net_device *dev,
8139 			      enum netdev_offload_xstats_type type)
8140 {
8141 	switch (type) {
8142 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8143 		return dev->offload_xstats_l3;
8144 	}
8145 
8146 	WARN_ON(1);
8147 	return NULL;
8148 }
8149 
8150 bool netdev_offload_xstats_enabled(const struct net_device *dev,
8151 				   enum netdev_offload_xstats_type type)
8152 {
8153 	ASSERT_RTNL();
8154 
8155 	return netdev_offload_xstats_get_ptr(dev, type);
8156 }
8157 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
8158 
8159 struct netdev_notifier_offload_xstats_ru {
8160 	bool used;
8161 };
8162 
8163 struct netdev_notifier_offload_xstats_rd {
8164 	struct rtnl_hw_stats64 stats;
8165 	bool used;
8166 };
8167 
8168 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8169 				  const struct rtnl_hw_stats64 *src)
8170 {
8171 	dest->rx_packets	  += src->rx_packets;
8172 	dest->tx_packets	  += src->tx_packets;
8173 	dest->rx_bytes		  += src->rx_bytes;
8174 	dest->tx_bytes		  += src->tx_bytes;
8175 	dest->rx_errors		  += src->rx_errors;
8176 	dest->tx_errors		  += src->tx_errors;
8177 	dest->rx_dropped	  += src->rx_dropped;
8178 	dest->tx_dropped	  += src->tx_dropped;
8179 	dest->multicast		  += src->multicast;
8180 }
8181 
8182 static int netdev_offload_xstats_get_used(struct net_device *dev,
8183 					  enum netdev_offload_xstats_type type,
8184 					  bool *p_used,
8185 					  struct netlink_ext_ack *extack)
8186 {
8187 	struct netdev_notifier_offload_xstats_ru report_used = {};
8188 	struct netdev_notifier_offload_xstats_info info = {
8189 		.info.dev = dev,
8190 		.info.extack = extack,
8191 		.type = type,
8192 		.report_used = &report_used,
8193 	};
8194 	int rc;
8195 
8196 	WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8197 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8198 					   &info.info);
8199 	*p_used = report_used.used;
8200 	return notifier_to_errno(rc);
8201 }
8202 
8203 static int netdev_offload_xstats_get_stats(struct net_device *dev,
8204 					   enum netdev_offload_xstats_type type,
8205 					   struct rtnl_hw_stats64 *p_stats,
8206 					   bool *p_used,
8207 					   struct netlink_ext_ack *extack)
8208 {
8209 	struct netdev_notifier_offload_xstats_rd report_delta = {};
8210 	struct netdev_notifier_offload_xstats_info info = {
8211 		.info.dev = dev,
8212 		.info.extack = extack,
8213 		.type = type,
8214 		.report_delta = &report_delta,
8215 	};
8216 	struct rtnl_hw_stats64 *stats;
8217 	int rc;
8218 
8219 	stats = netdev_offload_xstats_get_ptr(dev, type);
8220 	if (WARN_ON(!stats))
8221 		return -EINVAL;
8222 
8223 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8224 					   &info.info);
8225 
8226 	/* Cache whatever we got, even if there was an error, otherwise the
8227 	 * successful stats retrievals would get lost.
8228 	 */
8229 	netdev_hw_stats64_add(stats, &report_delta.stats);
8230 
8231 	if (p_stats)
8232 		*p_stats = *stats;
8233 	*p_used = report_delta.used;
8234 
8235 	return notifier_to_errno(rc);
8236 }
8237 
8238 int netdev_offload_xstats_get(struct net_device *dev,
8239 			      enum netdev_offload_xstats_type type,
8240 			      struct rtnl_hw_stats64 *p_stats, bool *p_used,
8241 			      struct netlink_ext_ack *extack)
8242 {
8243 	ASSERT_RTNL();
8244 
8245 	if (p_stats)
8246 		return netdev_offload_xstats_get_stats(dev, type, p_stats,
8247 						       p_used, extack);
8248 	else
8249 		return netdev_offload_xstats_get_used(dev, type, p_used,
8250 						      extack);
8251 }
8252 EXPORT_SYMBOL(netdev_offload_xstats_get);
8253 
8254 void
8255 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8256 				   const struct rtnl_hw_stats64 *stats)
8257 {
8258 	report_delta->used = true;
8259 	netdev_hw_stats64_add(&report_delta->stats, stats);
8260 }
8261 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8262 
8263 void
8264 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8265 {
8266 	report_used->used = true;
8267 }
8268 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8269 
8270 void netdev_offload_xstats_push_delta(struct net_device *dev,
8271 				      enum netdev_offload_xstats_type type,
8272 				      const struct rtnl_hw_stats64 *p_stats)
8273 {
8274 	struct rtnl_hw_stats64 *stats;
8275 
8276 	ASSERT_RTNL();
8277 
8278 	stats = netdev_offload_xstats_get_ptr(dev, type);
8279 	if (WARN_ON(!stats))
8280 		return;
8281 
8282 	netdev_hw_stats64_add(stats, p_stats);
8283 }
8284 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8285 
8286 /**
8287  * netdev_get_xmit_slave - Get the xmit slave of master device
8288  * @dev: device
8289  * @skb: The packet
8290  * @all_slaves: assume all the slaves are active
8291  *
8292  * The reference counters are not incremented so the caller must be
8293  * careful with locks. The caller must hold RCU lock.
8294  * %NULL is returned if no slave is found.
8295  */
8296 
8297 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8298 					 struct sk_buff *skb,
8299 					 bool all_slaves)
8300 {
8301 	const struct net_device_ops *ops = dev->netdev_ops;
8302 
8303 	if (!ops->ndo_get_xmit_slave)
8304 		return NULL;
8305 	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8306 }
8307 EXPORT_SYMBOL(netdev_get_xmit_slave);
8308 
8309 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8310 						  struct sock *sk)
8311 {
8312 	const struct net_device_ops *ops = dev->netdev_ops;
8313 
8314 	if (!ops->ndo_sk_get_lower_dev)
8315 		return NULL;
8316 	return ops->ndo_sk_get_lower_dev(dev, sk);
8317 }
8318 
8319 /**
8320  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8321  * @dev: device
8322  * @sk: the socket
8323  *
8324  * %NULL is returned if no lower device is found.
8325  */
8326 
8327 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8328 					    struct sock *sk)
8329 {
8330 	struct net_device *lower;
8331 
8332 	lower = netdev_sk_get_lower_dev(dev, sk);
8333 	while (lower) {
8334 		dev = lower;
8335 		lower = netdev_sk_get_lower_dev(dev, sk);
8336 	}
8337 
8338 	return dev;
8339 }
8340 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8341 
8342 static void netdev_adjacent_add_links(struct net_device *dev)
8343 {
8344 	struct netdev_adjacent *iter;
8345 
8346 	struct net *net = dev_net(dev);
8347 
8348 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8349 		if (!net_eq(net, dev_net(iter->dev)))
8350 			continue;
8351 		netdev_adjacent_sysfs_add(iter->dev, dev,
8352 					  &iter->dev->adj_list.lower);
8353 		netdev_adjacent_sysfs_add(dev, iter->dev,
8354 					  &dev->adj_list.upper);
8355 	}
8356 
8357 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8358 		if (!net_eq(net, dev_net(iter->dev)))
8359 			continue;
8360 		netdev_adjacent_sysfs_add(iter->dev, dev,
8361 					  &iter->dev->adj_list.upper);
8362 		netdev_adjacent_sysfs_add(dev, iter->dev,
8363 					  &dev->adj_list.lower);
8364 	}
8365 }
8366 
8367 static void netdev_adjacent_del_links(struct net_device *dev)
8368 {
8369 	struct netdev_adjacent *iter;
8370 
8371 	struct net *net = dev_net(dev);
8372 
8373 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8374 		if (!net_eq(net, dev_net(iter->dev)))
8375 			continue;
8376 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8377 					  &iter->dev->adj_list.lower);
8378 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8379 					  &dev->adj_list.upper);
8380 	}
8381 
8382 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8383 		if (!net_eq(net, dev_net(iter->dev)))
8384 			continue;
8385 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8386 					  &iter->dev->adj_list.upper);
8387 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8388 					  &dev->adj_list.lower);
8389 	}
8390 }
8391 
8392 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8393 {
8394 	struct netdev_adjacent *iter;
8395 
8396 	struct net *net = dev_net(dev);
8397 
8398 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8399 		if (!net_eq(net, dev_net(iter->dev)))
8400 			continue;
8401 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8402 					  &iter->dev->adj_list.lower);
8403 		netdev_adjacent_sysfs_add(iter->dev, dev,
8404 					  &iter->dev->adj_list.lower);
8405 	}
8406 
8407 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8408 		if (!net_eq(net, dev_net(iter->dev)))
8409 			continue;
8410 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8411 					  &iter->dev->adj_list.upper);
8412 		netdev_adjacent_sysfs_add(iter->dev, dev,
8413 					  &iter->dev->adj_list.upper);
8414 	}
8415 }
8416 
8417 void *netdev_lower_dev_get_private(struct net_device *dev,
8418 				   struct net_device *lower_dev)
8419 {
8420 	struct netdev_adjacent *lower;
8421 
8422 	if (!lower_dev)
8423 		return NULL;
8424 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8425 	if (!lower)
8426 		return NULL;
8427 
8428 	return lower->private;
8429 }
8430 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8431 
8432 
8433 /**
8434  * netdev_lower_state_changed - Dispatch event about lower device state change
8435  * @lower_dev: device
8436  * @lower_state_info: state to dispatch
8437  *
8438  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8439  * The caller must hold the RTNL lock.
8440  */
8441 void netdev_lower_state_changed(struct net_device *lower_dev,
8442 				void *lower_state_info)
8443 {
8444 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8445 		.info.dev = lower_dev,
8446 	};
8447 
8448 	ASSERT_RTNL();
8449 	changelowerstate_info.lower_state_info = lower_state_info;
8450 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8451 				      &changelowerstate_info.info);
8452 }
8453 EXPORT_SYMBOL(netdev_lower_state_changed);
8454 
8455 static void dev_change_rx_flags(struct net_device *dev, int flags)
8456 {
8457 	const struct net_device_ops *ops = dev->netdev_ops;
8458 
8459 	if (ops->ndo_change_rx_flags)
8460 		ops->ndo_change_rx_flags(dev, flags);
8461 }
8462 
8463 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8464 {
8465 	unsigned int old_flags = dev->flags;
8466 	kuid_t uid;
8467 	kgid_t gid;
8468 
8469 	ASSERT_RTNL();
8470 
8471 	dev->flags |= IFF_PROMISC;
8472 	dev->promiscuity += inc;
8473 	if (dev->promiscuity == 0) {
8474 		/*
8475 		 * Avoid overflow.
8476 		 * If inc causes overflow, untouch promisc and return error.
8477 		 */
8478 		if (inc < 0)
8479 			dev->flags &= ~IFF_PROMISC;
8480 		else {
8481 			dev->promiscuity -= inc;
8482 			netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8483 			return -EOVERFLOW;
8484 		}
8485 	}
8486 	if (dev->flags != old_flags) {
8487 		netdev_info(dev, "%s promiscuous mode\n",
8488 			    dev->flags & IFF_PROMISC ? "entered" : "left");
8489 		if (audit_enabled) {
8490 			current_uid_gid(&uid, &gid);
8491 			audit_log(audit_context(), GFP_ATOMIC,
8492 				  AUDIT_ANOM_PROMISCUOUS,
8493 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8494 				  dev->name, (dev->flags & IFF_PROMISC),
8495 				  (old_flags & IFF_PROMISC),
8496 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
8497 				  from_kuid(&init_user_ns, uid),
8498 				  from_kgid(&init_user_ns, gid),
8499 				  audit_get_sessionid(current));
8500 		}
8501 
8502 		dev_change_rx_flags(dev, IFF_PROMISC);
8503 	}
8504 	if (notify)
8505 		__dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
8506 	return 0;
8507 }
8508 
8509 /**
8510  *	dev_set_promiscuity	- update promiscuity count on a device
8511  *	@dev: device
8512  *	@inc: modifier
8513  *
8514  *	Add or remove promiscuity from a device. While the count in the device
8515  *	remains above zero the interface remains promiscuous. Once it hits zero
8516  *	the device reverts back to normal filtering operation. A negative inc
8517  *	value is used to drop promiscuity on the device.
8518  *	Return 0 if successful or a negative errno code on error.
8519  */
8520 int dev_set_promiscuity(struct net_device *dev, int inc)
8521 {
8522 	unsigned int old_flags = dev->flags;
8523 	int err;
8524 
8525 	err = __dev_set_promiscuity(dev, inc, true);
8526 	if (err < 0)
8527 		return err;
8528 	if (dev->flags != old_flags)
8529 		dev_set_rx_mode(dev);
8530 	return err;
8531 }
8532 EXPORT_SYMBOL(dev_set_promiscuity);
8533 
8534 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8535 {
8536 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8537 
8538 	ASSERT_RTNL();
8539 
8540 	dev->flags |= IFF_ALLMULTI;
8541 	dev->allmulti += inc;
8542 	if (dev->allmulti == 0) {
8543 		/*
8544 		 * Avoid overflow.
8545 		 * If inc causes overflow, untouch allmulti and return error.
8546 		 */
8547 		if (inc < 0)
8548 			dev->flags &= ~IFF_ALLMULTI;
8549 		else {
8550 			dev->allmulti -= inc;
8551 			netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8552 			return -EOVERFLOW;
8553 		}
8554 	}
8555 	if (dev->flags ^ old_flags) {
8556 		netdev_info(dev, "%s allmulticast mode\n",
8557 			    dev->flags & IFF_ALLMULTI ? "entered" : "left");
8558 		dev_change_rx_flags(dev, IFF_ALLMULTI);
8559 		dev_set_rx_mode(dev);
8560 		if (notify)
8561 			__dev_notify_flags(dev, old_flags,
8562 					   dev->gflags ^ old_gflags, 0, NULL);
8563 	}
8564 	return 0;
8565 }
8566 
8567 /**
8568  *	dev_set_allmulti	- update allmulti count on a device
8569  *	@dev: device
8570  *	@inc: modifier
8571  *
8572  *	Add or remove reception of all multicast frames to a device. While the
8573  *	count in the device remains above zero the interface remains listening
8574  *	to all interfaces. Once it hits zero the device reverts back to normal
8575  *	filtering operation. A negative @inc value is used to drop the counter
8576  *	when releasing a resource needing all multicasts.
8577  *	Return 0 if successful or a negative errno code on error.
8578  */
8579 
8580 int dev_set_allmulti(struct net_device *dev, int inc)
8581 {
8582 	return __dev_set_allmulti(dev, inc, true);
8583 }
8584 EXPORT_SYMBOL(dev_set_allmulti);
8585 
8586 /*
8587  *	Upload unicast and multicast address lists to device and
8588  *	configure RX filtering. When the device doesn't support unicast
8589  *	filtering it is put in promiscuous mode while unicast addresses
8590  *	are present.
8591  */
8592 void __dev_set_rx_mode(struct net_device *dev)
8593 {
8594 	const struct net_device_ops *ops = dev->netdev_ops;
8595 
8596 	/* dev_open will call this function so the list will stay sane. */
8597 	if (!(dev->flags&IFF_UP))
8598 		return;
8599 
8600 	if (!netif_device_present(dev))
8601 		return;
8602 
8603 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8604 		/* Unicast addresses changes may only happen under the rtnl,
8605 		 * therefore calling __dev_set_promiscuity here is safe.
8606 		 */
8607 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8608 			__dev_set_promiscuity(dev, 1, false);
8609 			dev->uc_promisc = true;
8610 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8611 			__dev_set_promiscuity(dev, -1, false);
8612 			dev->uc_promisc = false;
8613 		}
8614 	}
8615 
8616 	if (ops->ndo_set_rx_mode)
8617 		ops->ndo_set_rx_mode(dev);
8618 }
8619 
8620 void dev_set_rx_mode(struct net_device *dev)
8621 {
8622 	netif_addr_lock_bh(dev);
8623 	__dev_set_rx_mode(dev);
8624 	netif_addr_unlock_bh(dev);
8625 }
8626 
8627 /**
8628  *	dev_get_flags - get flags reported to userspace
8629  *	@dev: device
8630  *
8631  *	Get the combination of flag bits exported through APIs to userspace.
8632  */
8633 unsigned int dev_get_flags(const struct net_device *dev)
8634 {
8635 	unsigned int flags;
8636 
8637 	flags = (READ_ONCE(dev->flags) & ~(IFF_PROMISC |
8638 				IFF_ALLMULTI |
8639 				IFF_RUNNING |
8640 				IFF_LOWER_UP |
8641 				IFF_DORMANT)) |
8642 		(READ_ONCE(dev->gflags) & (IFF_PROMISC |
8643 				IFF_ALLMULTI));
8644 
8645 	if (netif_running(dev)) {
8646 		if (netif_oper_up(dev))
8647 			flags |= IFF_RUNNING;
8648 		if (netif_carrier_ok(dev))
8649 			flags |= IFF_LOWER_UP;
8650 		if (netif_dormant(dev))
8651 			flags |= IFF_DORMANT;
8652 	}
8653 
8654 	return flags;
8655 }
8656 EXPORT_SYMBOL(dev_get_flags);
8657 
8658 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8659 		       struct netlink_ext_ack *extack)
8660 {
8661 	unsigned int old_flags = dev->flags;
8662 	int ret;
8663 
8664 	ASSERT_RTNL();
8665 
8666 	/*
8667 	 *	Set the flags on our device.
8668 	 */
8669 
8670 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8671 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8672 			       IFF_AUTOMEDIA)) |
8673 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8674 				    IFF_ALLMULTI));
8675 
8676 	/*
8677 	 *	Load in the correct multicast list now the flags have changed.
8678 	 */
8679 
8680 	if ((old_flags ^ flags) & IFF_MULTICAST)
8681 		dev_change_rx_flags(dev, IFF_MULTICAST);
8682 
8683 	dev_set_rx_mode(dev);
8684 
8685 	/*
8686 	 *	Have we downed the interface. We handle IFF_UP ourselves
8687 	 *	according to user attempts to set it, rather than blindly
8688 	 *	setting it.
8689 	 */
8690 
8691 	ret = 0;
8692 	if ((old_flags ^ flags) & IFF_UP) {
8693 		if (old_flags & IFF_UP)
8694 			__dev_close(dev);
8695 		else
8696 			ret = __dev_open(dev, extack);
8697 	}
8698 
8699 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
8700 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
8701 		unsigned int old_flags = dev->flags;
8702 
8703 		dev->gflags ^= IFF_PROMISC;
8704 
8705 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
8706 			if (dev->flags != old_flags)
8707 				dev_set_rx_mode(dev);
8708 	}
8709 
8710 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8711 	 * is important. Some (broken) drivers set IFF_PROMISC, when
8712 	 * IFF_ALLMULTI is requested not asking us and not reporting.
8713 	 */
8714 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8715 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8716 
8717 		dev->gflags ^= IFF_ALLMULTI;
8718 		__dev_set_allmulti(dev, inc, false);
8719 	}
8720 
8721 	return ret;
8722 }
8723 
8724 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8725 			unsigned int gchanges, u32 portid,
8726 			const struct nlmsghdr *nlh)
8727 {
8728 	unsigned int changes = dev->flags ^ old_flags;
8729 
8730 	if (gchanges)
8731 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
8732 
8733 	if (changes & IFF_UP) {
8734 		if (dev->flags & IFF_UP)
8735 			call_netdevice_notifiers(NETDEV_UP, dev);
8736 		else
8737 			call_netdevice_notifiers(NETDEV_DOWN, dev);
8738 	}
8739 
8740 	if (dev->flags & IFF_UP &&
8741 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8742 		struct netdev_notifier_change_info change_info = {
8743 			.info = {
8744 				.dev = dev,
8745 			},
8746 			.flags_changed = changes,
8747 		};
8748 
8749 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8750 	}
8751 }
8752 
8753 /**
8754  *	dev_change_flags - change device settings
8755  *	@dev: device
8756  *	@flags: device state flags
8757  *	@extack: netlink extended ack
8758  *
8759  *	Change settings on device based state flags. The flags are
8760  *	in the userspace exported format.
8761  */
8762 int dev_change_flags(struct net_device *dev, unsigned int flags,
8763 		     struct netlink_ext_ack *extack)
8764 {
8765 	int ret;
8766 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8767 
8768 	ret = __dev_change_flags(dev, flags, extack);
8769 	if (ret < 0)
8770 		return ret;
8771 
8772 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8773 	__dev_notify_flags(dev, old_flags, changes, 0, NULL);
8774 	return ret;
8775 }
8776 EXPORT_SYMBOL(dev_change_flags);
8777 
8778 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8779 {
8780 	const struct net_device_ops *ops = dev->netdev_ops;
8781 
8782 	if (ops->ndo_change_mtu)
8783 		return ops->ndo_change_mtu(dev, new_mtu);
8784 
8785 	/* Pairs with all the lockless reads of dev->mtu in the stack */
8786 	WRITE_ONCE(dev->mtu, new_mtu);
8787 	return 0;
8788 }
8789 EXPORT_SYMBOL(__dev_set_mtu);
8790 
8791 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8792 		     struct netlink_ext_ack *extack)
8793 {
8794 	/* MTU must be positive, and in range */
8795 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8796 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8797 		return -EINVAL;
8798 	}
8799 
8800 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8801 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8802 		return -EINVAL;
8803 	}
8804 	return 0;
8805 }
8806 
8807 /**
8808  *	dev_set_mtu_ext - Change maximum transfer unit
8809  *	@dev: device
8810  *	@new_mtu: new transfer unit
8811  *	@extack: netlink extended ack
8812  *
8813  *	Change the maximum transfer size of the network device.
8814  */
8815 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8816 		    struct netlink_ext_ack *extack)
8817 {
8818 	int err, orig_mtu;
8819 
8820 	if (new_mtu == dev->mtu)
8821 		return 0;
8822 
8823 	err = dev_validate_mtu(dev, new_mtu, extack);
8824 	if (err)
8825 		return err;
8826 
8827 	if (!netif_device_present(dev))
8828 		return -ENODEV;
8829 
8830 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8831 	err = notifier_to_errno(err);
8832 	if (err)
8833 		return err;
8834 
8835 	orig_mtu = dev->mtu;
8836 	err = __dev_set_mtu(dev, new_mtu);
8837 
8838 	if (!err) {
8839 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8840 						   orig_mtu);
8841 		err = notifier_to_errno(err);
8842 		if (err) {
8843 			/* setting mtu back and notifying everyone again,
8844 			 * so that they have a chance to revert changes.
8845 			 */
8846 			__dev_set_mtu(dev, orig_mtu);
8847 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8848 						     new_mtu);
8849 		}
8850 	}
8851 	return err;
8852 }
8853 
8854 int dev_set_mtu(struct net_device *dev, int new_mtu)
8855 {
8856 	struct netlink_ext_ack extack;
8857 	int err;
8858 
8859 	memset(&extack, 0, sizeof(extack));
8860 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
8861 	if (err && extack._msg)
8862 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8863 	return err;
8864 }
8865 EXPORT_SYMBOL(dev_set_mtu);
8866 
8867 /**
8868  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
8869  *	@dev: device
8870  *	@new_len: new tx queue length
8871  */
8872 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8873 {
8874 	unsigned int orig_len = dev->tx_queue_len;
8875 	int res;
8876 
8877 	if (new_len != (unsigned int)new_len)
8878 		return -ERANGE;
8879 
8880 	if (new_len != orig_len) {
8881 		dev->tx_queue_len = new_len;
8882 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8883 		res = notifier_to_errno(res);
8884 		if (res)
8885 			goto err_rollback;
8886 		res = dev_qdisc_change_tx_queue_len(dev);
8887 		if (res)
8888 			goto err_rollback;
8889 	}
8890 
8891 	return 0;
8892 
8893 err_rollback:
8894 	netdev_err(dev, "refused to change device tx_queue_len\n");
8895 	dev->tx_queue_len = orig_len;
8896 	return res;
8897 }
8898 
8899 /**
8900  *	dev_set_group - Change group this device belongs to
8901  *	@dev: device
8902  *	@new_group: group this device should belong to
8903  */
8904 void dev_set_group(struct net_device *dev, int new_group)
8905 {
8906 	dev->group = new_group;
8907 }
8908 
8909 /**
8910  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8911  *	@dev: device
8912  *	@addr: new address
8913  *	@extack: netlink extended ack
8914  */
8915 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8916 			      struct netlink_ext_ack *extack)
8917 {
8918 	struct netdev_notifier_pre_changeaddr_info info = {
8919 		.info.dev = dev,
8920 		.info.extack = extack,
8921 		.dev_addr = addr,
8922 	};
8923 	int rc;
8924 
8925 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8926 	return notifier_to_errno(rc);
8927 }
8928 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8929 
8930 /**
8931  *	dev_set_mac_address - Change Media Access Control Address
8932  *	@dev: device
8933  *	@sa: new address
8934  *	@extack: netlink extended ack
8935  *
8936  *	Change the hardware (MAC) address of the device
8937  */
8938 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8939 			struct netlink_ext_ack *extack)
8940 {
8941 	const struct net_device_ops *ops = dev->netdev_ops;
8942 	int err;
8943 
8944 	if (!ops->ndo_set_mac_address)
8945 		return -EOPNOTSUPP;
8946 	if (sa->sa_family != dev->type)
8947 		return -EINVAL;
8948 	if (!netif_device_present(dev))
8949 		return -ENODEV;
8950 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8951 	if (err)
8952 		return err;
8953 	if (memcmp(dev->dev_addr, sa->sa_data, dev->addr_len)) {
8954 		err = ops->ndo_set_mac_address(dev, sa);
8955 		if (err)
8956 			return err;
8957 	}
8958 	dev->addr_assign_type = NET_ADDR_SET;
8959 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8960 	add_device_randomness(dev->dev_addr, dev->addr_len);
8961 	return 0;
8962 }
8963 EXPORT_SYMBOL(dev_set_mac_address);
8964 
8965 DECLARE_RWSEM(dev_addr_sem);
8966 
8967 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8968 			     struct netlink_ext_ack *extack)
8969 {
8970 	int ret;
8971 
8972 	down_write(&dev_addr_sem);
8973 	ret = dev_set_mac_address(dev, sa, extack);
8974 	up_write(&dev_addr_sem);
8975 	return ret;
8976 }
8977 EXPORT_SYMBOL(dev_set_mac_address_user);
8978 
8979 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8980 {
8981 	size_t size = sizeof(sa->sa_data_min);
8982 	struct net_device *dev;
8983 	int ret = 0;
8984 
8985 	down_read(&dev_addr_sem);
8986 	rcu_read_lock();
8987 
8988 	dev = dev_get_by_name_rcu(net, dev_name);
8989 	if (!dev) {
8990 		ret = -ENODEV;
8991 		goto unlock;
8992 	}
8993 	if (!dev->addr_len)
8994 		memset(sa->sa_data, 0, size);
8995 	else
8996 		memcpy(sa->sa_data, dev->dev_addr,
8997 		       min_t(size_t, size, dev->addr_len));
8998 	sa->sa_family = dev->type;
8999 
9000 unlock:
9001 	rcu_read_unlock();
9002 	up_read(&dev_addr_sem);
9003 	return ret;
9004 }
9005 EXPORT_SYMBOL(dev_get_mac_address);
9006 
9007 /**
9008  *	dev_change_carrier - Change device carrier
9009  *	@dev: device
9010  *	@new_carrier: new value
9011  *
9012  *	Change device carrier
9013  */
9014 int dev_change_carrier(struct net_device *dev, bool new_carrier)
9015 {
9016 	const struct net_device_ops *ops = dev->netdev_ops;
9017 
9018 	if (!ops->ndo_change_carrier)
9019 		return -EOPNOTSUPP;
9020 	if (!netif_device_present(dev))
9021 		return -ENODEV;
9022 	return ops->ndo_change_carrier(dev, new_carrier);
9023 }
9024 
9025 /**
9026  *	dev_get_phys_port_id - Get device physical port ID
9027  *	@dev: device
9028  *	@ppid: port ID
9029  *
9030  *	Get device physical port ID
9031  */
9032 int dev_get_phys_port_id(struct net_device *dev,
9033 			 struct netdev_phys_item_id *ppid)
9034 {
9035 	const struct net_device_ops *ops = dev->netdev_ops;
9036 
9037 	if (!ops->ndo_get_phys_port_id)
9038 		return -EOPNOTSUPP;
9039 	return ops->ndo_get_phys_port_id(dev, ppid);
9040 }
9041 
9042 /**
9043  *	dev_get_phys_port_name - Get device physical port name
9044  *	@dev: device
9045  *	@name: port name
9046  *	@len: limit of bytes to copy to name
9047  *
9048  *	Get device physical port name
9049  */
9050 int dev_get_phys_port_name(struct net_device *dev,
9051 			   char *name, size_t len)
9052 {
9053 	const struct net_device_ops *ops = dev->netdev_ops;
9054 	int err;
9055 
9056 	if (ops->ndo_get_phys_port_name) {
9057 		err = ops->ndo_get_phys_port_name(dev, name, len);
9058 		if (err != -EOPNOTSUPP)
9059 			return err;
9060 	}
9061 	return devlink_compat_phys_port_name_get(dev, name, len);
9062 }
9063 
9064 /**
9065  *	dev_get_port_parent_id - Get the device's port parent identifier
9066  *	@dev: network device
9067  *	@ppid: pointer to a storage for the port's parent identifier
9068  *	@recurse: allow/disallow recursion to lower devices
9069  *
9070  *	Get the devices's port parent identifier
9071  */
9072 int dev_get_port_parent_id(struct net_device *dev,
9073 			   struct netdev_phys_item_id *ppid,
9074 			   bool recurse)
9075 {
9076 	const struct net_device_ops *ops = dev->netdev_ops;
9077 	struct netdev_phys_item_id first = { };
9078 	struct net_device *lower_dev;
9079 	struct list_head *iter;
9080 	int err;
9081 
9082 	if (ops->ndo_get_port_parent_id) {
9083 		err = ops->ndo_get_port_parent_id(dev, ppid);
9084 		if (err != -EOPNOTSUPP)
9085 			return err;
9086 	}
9087 
9088 	err = devlink_compat_switch_id_get(dev, ppid);
9089 	if (!recurse || err != -EOPNOTSUPP)
9090 		return err;
9091 
9092 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
9093 		err = dev_get_port_parent_id(lower_dev, ppid, true);
9094 		if (err)
9095 			break;
9096 		if (!first.id_len)
9097 			first = *ppid;
9098 		else if (memcmp(&first, ppid, sizeof(*ppid)))
9099 			return -EOPNOTSUPP;
9100 	}
9101 
9102 	return err;
9103 }
9104 EXPORT_SYMBOL(dev_get_port_parent_id);
9105 
9106 /**
9107  *	netdev_port_same_parent_id - Indicate if two network devices have
9108  *	the same port parent identifier
9109  *	@a: first network device
9110  *	@b: second network device
9111  */
9112 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9113 {
9114 	struct netdev_phys_item_id a_id = { };
9115 	struct netdev_phys_item_id b_id = { };
9116 
9117 	if (dev_get_port_parent_id(a, &a_id, true) ||
9118 	    dev_get_port_parent_id(b, &b_id, true))
9119 		return false;
9120 
9121 	return netdev_phys_item_id_same(&a_id, &b_id);
9122 }
9123 EXPORT_SYMBOL(netdev_port_same_parent_id);
9124 
9125 static void netdev_dpll_pin_assign(struct net_device *dev, struct dpll_pin *dpll_pin)
9126 {
9127 #if IS_ENABLED(CONFIG_DPLL)
9128 	rtnl_lock();
9129 	rcu_assign_pointer(dev->dpll_pin, dpll_pin);
9130 	rtnl_unlock();
9131 #endif
9132 }
9133 
9134 void netdev_dpll_pin_set(struct net_device *dev, struct dpll_pin *dpll_pin)
9135 {
9136 	WARN_ON(!dpll_pin);
9137 	netdev_dpll_pin_assign(dev, dpll_pin);
9138 }
9139 EXPORT_SYMBOL(netdev_dpll_pin_set);
9140 
9141 void netdev_dpll_pin_clear(struct net_device *dev)
9142 {
9143 	netdev_dpll_pin_assign(dev, NULL);
9144 }
9145 EXPORT_SYMBOL(netdev_dpll_pin_clear);
9146 
9147 /**
9148  *	dev_change_proto_down - set carrier according to proto_down.
9149  *
9150  *	@dev: device
9151  *	@proto_down: new value
9152  */
9153 int dev_change_proto_down(struct net_device *dev, bool proto_down)
9154 {
9155 	if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN))
9156 		return -EOPNOTSUPP;
9157 	if (!netif_device_present(dev))
9158 		return -ENODEV;
9159 	if (proto_down)
9160 		netif_carrier_off(dev);
9161 	else
9162 		netif_carrier_on(dev);
9163 	dev->proto_down = proto_down;
9164 	return 0;
9165 }
9166 
9167 /**
9168  *	dev_change_proto_down_reason - proto down reason
9169  *
9170  *	@dev: device
9171  *	@mask: proto down mask
9172  *	@value: proto down value
9173  */
9174 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9175 				  u32 value)
9176 {
9177 	int b;
9178 
9179 	if (!mask) {
9180 		dev->proto_down_reason = value;
9181 	} else {
9182 		for_each_set_bit(b, &mask, 32) {
9183 			if (value & (1 << b))
9184 				dev->proto_down_reason |= BIT(b);
9185 			else
9186 				dev->proto_down_reason &= ~BIT(b);
9187 		}
9188 	}
9189 }
9190 
9191 struct bpf_xdp_link {
9192 	struct bpf_link link;
9193 	struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9194 	int flags;
9195 };
9196 
9197 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9198 {
9199 	if (flags & XDP_FLAGS_HW_MODE)
9200 		return XDP_MODE_HW;
9201 	if (flags & XDP_FLAGS_DRV_MODE)
9202 		return XDP_MODE_DRV;
9203 	if (flags & XDP_FLAGS_SKB_MODE)
9204 		return XDP_MODE_SKB;
9205 	return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9206 }
9207 
9208 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9209 {
9210 	switch (mode) {
9211 	case XDP_MODE_SKB:
9212 		return generic_xdp_install;
9213 	case XDP_MODE_DRV:
9214 	case XDP_MODE_HW:
9215 		return dev->netdev_ops->ndo_bpf;
9216 	default:
9217 		return NULL;
9218 	}
9219 }
9220 
9221 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9222 					 enum bpf_xdp_mode mode)
9223 {
9224 	return dev->xdp_state[mode].link;
9225 }
9226 
9227 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9228 				     enum bpf_xdp_mode mode)
9229 {
9230 	struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9231 
9232 	if (link)
9233 		return link->link.prog;
9234 	return dev->xdp_state[mode].prog;
9235 }
9236 
9237 u8 dev_xdp_prog_count(struct net_device *dev)
9238 {
9239 	u8 count = 0;
9240 	int i;
9241 
9242 	for (i = 0; i < __MAX_XDP_MODE; i++)
9243 		if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9244 			count++;
9245 	return count;
9246 }
9247 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9248 
9249 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9250 {
9251 	struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9252 
9253 	return prog ? prog->aux->id : 0;
9254 }
9255 
9256 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9257 			     struct bpf_xdp_link *link)
9258 {
9259 	dev->xdp_state[mode].link = link;
9260 	dev->xdp_state[mode].prog = NULL;
9261 }
9262 
9263 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9264 			     struct bpf_prog *prog)
9265 {
9266 	dev->xdp_state[mode].link = NULL;
9267 	dev->xdp_state[mode].prog = prog;
9268 }
9269 
9270 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9271 			   bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9272 			   u32 flags, struct bpf_prog *prog)
9273 {
9274 	struct netdev_bpf xdp;
9275 	int err;
9276 
9277 	memset(&xdp, 0, sizeof(xdp));
9278 	xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9279 	xdp.extack = extack;
9280 	xdp.flags = flags;
9281 	xdp.prog = prog;
9282 
9283 	/* Drivers assume refcnt is already incremented (i.e, prog pointer is
9284 	 * "moved" into driver), so they don't increment it on their own, but
9285 	 * they do decrement refcnt when program is detached or replaced.
9286 	 * Given net_device also owns link/prog, we need to bump refcnt here
9287 	 * to prevent drivers from underflowing it.
9288 	 */
9289 	if (prog)
9290 		bpf_prog_inc(prog);
9291 	err = bpf_op(dev, &xdp);
9292 	if (err) {
9293 		if (prog)
9294 			bpf_prog_put(prog);
9295 		return err;
9296 	}
9297 
9298 	if (mode != XDP_MODE_HW)
9299 		bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9300 
9301 	return 0;
9302 }
9303 
9304 static void dev_xdp_uninstall(struct net_device *dev)
9305 {
9306 	struct bpf_xdp_link *link;
9307 	struct bpf_prog *prog;
9308 	enum bpf_xdp_mode mode;
9309 	bpf_op_t bpf_op;
9310 
9311 	ASSERT_RTNL();
9312 
9313 	for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9314 		prog = dev_xdp_prog(dev, mode);
9315 		if (!prog)
9316 			continue;
9317 
9318 		bpf_op = dev_xdp_bpf_op(dev, mode);
9319 		if (!bpf_op)
9320 			continue;
9321 
9322 		WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9323 
9324 		/* auto-detach link from net device */
9325 		link = dev_xdp_link(dev, mode);
9326 		if (link)
9327 			link->dev = NULL;
9328 		else
9329 			bpf_prog_put(prog);
9330 
9331 		dev_xdp_set_link(dev, mode, NULL);
9332 	}
9333 }
9334 
9335 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9336 			  struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9337 			  struct bpf_prog *old_prog, u32 flags)
9338 {
9339 	unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9340 	struct bpf_prog *cur_prog;
9341 	struct net_device *upper;
9342 	struct list_head *iter;
9343 	enum bpf_xdp_mode mode;
9344 	bpf_op_t bpf_op;
9345 	int err;
9346 
9347 	ASSERT_RTNL();
9348 
9349 	/* either link or prog attachment, never both */
9350 	if (link && (new_prog || old_prog))
9351 		return -EINVAL;
9352 	/* link supports only XDP mode flags */
9353 	if (link && (flags & ~XDP_FLAGS_MODES)) {
9354 		NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9355 		return -EINVAL;
9356 	}
9357 	/* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9358 	if (num_modes > 1) {
9359 		NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9360 		return -EINVAL;
9361 	}
9362 	/* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9363 	if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9364 		NL_SET_ERR_MSG(extack,
9365 			       "More than one program loaded, unset mode is ambiguous");
9366 		return -EINVAL;
9367 	}
9368 	/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9369 	if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9370 		NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9371 		return -EINVAL;
9372 	}
9373 
9374 	mode = dev_xdp_mode(dev, flags);
9375 	/* can't replace attached link */
9376 	if (dev_xdp_link(dev, mode)) {
9377 		NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9378 		return -EBUSY;
9379 	}
9380 
9381 	/* don't allow if an upper device already has a program */
9382 	netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9383 		if (dev_xdp_prog_count(upper) > 0) {
9384 			NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9385 			return -EEXIST;
9386 		}
9387 	}
9388 
9389 	cur_prog = dev_xdp_prog(dev, mode);
9390 	/* can't replace attached prog with link */
9391 	if (link && cur_prog) {
9392 		NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9393 		return -EBUSY;
9394 	}
9395 	if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9396 		NL_SET_ERR_MSG(extack, "Active program does not match expected");
9397 		return -EEXIST;
9398 	}
9399 
9400 	/* put effective new program into new_prog */
9401 	if (link)
9402 		new_prog = link->link.prog;
9403 
9404 	if (new_prog) {
9405 		bool offload = mode == XDP_MODE_HW;
9406 		enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9407 					       ? XDP_MODE_DRV : XDP_MODE_SKB;
9408 
9409 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9410 			NL_SET_ERR_MSG(extack, "XDP program already attached");
9411 			return -EBUSY;
9412 		}
9413 		if (!offload && dev_xdp_prog(dev, other_mode)) {
9414 			NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9415 			return -EEXIST;
9416 		}
9417 		if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
9418 			NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
9419 			return -EINVAL;
9420 		}
9421 		if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
9422 			NL_SET_ERR_MSG(extack, "Program bound to different device");
9423 			return -EINVAL;
9424 		}
9425 		if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9426 			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9427 			return -EINVAL;
9428 		}
9429 		if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9430 			NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9431 			return -EINVAL;
9432 		}
9433 	}
9434 
9435 	/* don't call drivers if the effective program didn't change */
9436 	if (new_prog != cur_prog) {
9437 		bpf_op = dev_xdp_bpf_op(dev, mode);
9438 		if (!bpf_op) {
9439 			NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9440 			return -EOPNOTSUPP;
9441 		}
9442 
9443 		err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9444 		if (err)
9445 			return err;
9446 	}
9447 
9448 	if (link)
9449 		dev_xdp_set_link(dev, mode, link);
9450 	else
9451 		dev_xdp_set_prog(dev, mode, new_prog);
9452 	if (cur_prog)
9453 		bpf_prog_put(cur_prog);
9454 
9455 	return 0;
9456 }
9457 
9458 static int dev_xdp_attach_link(struct net_device *dev,
9459 			       struct netlink_ext_ack *extack,
9460 			       struct bpf_xdp_link *link)
9461 {
9462 	return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9463 }
9464 
9465 static int dev_xdp_detach_link(struct net_device *dev,
9466 			       struct netlink_ext_ack *extack,
9467 			       struct bpf_xdp_link *link)
9468 {
9469 	enum bpf_xdp_mode mode;
9470 	bpf_op_t bpf_op;
9471 
9472 	ASSERT_RTNL();
9473 
9474 	mode = dev_xdp_mode(dev, link->flags);
9475 	if (dev_xdp_link(dev, mode) != link)
9476 		return -EINVAL;
9477 
9478 	bpf_op = dev_xdp_bpf_op(dev, mode);
9479 	WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9480 	dev_xdp_set_link(dev, mode, NULL);
9481 	return 0;
9482 }
9483 
9484 static void bpf_xdp_link_release(struct bpf_link *link)
9485 {
9486 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9487 
9488 	rtnl_lock();
9489 
9490 	/* if racing with net_device's tear down, xdp_link->dev might be
9491 	 * already NULL, in which case link was already auto-detached
9492 	 */
9493 	if (xdp_link->dev) {
9494 		WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9495 		xdp_link->dev = NULL;
9496 	}
9497 
9498 	rtnl_unlock();
9499 }
9500 
9501 static int bpf_xdp_link_detach(struct bpf_link *link)
9502 {
9503 	bpf_xdp_link_release(link);
9504 	return 0;
9505 }
9506 
9507 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9508 {
9509 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9510 
9511 	kfree(xdp_link);
9512 }
9513 
9514 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9515 				     struct seq_file *seq)
9516 {
9517 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9518 	u32 ifindex = 0;
9519 
9520 	rtnl_lock();
9521 	if (xdp_link->dev)
9522 		ifindex = xdp_link->dev->ifindex;
9523 	rtnl_unlock();
9524 
9525 	seq_printf(seq, "ifindex:\t%u\n", ifindex);
9526 }
9527 
9528 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9529 				       struct bpf_link_info *info)
9530 {
9531 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9532 	u32 ifindex = 0;
9533 
9534 	rtnl_lock();
9535 	if (xdp_link->dev)
9536 		ifindex = xdp_link->dev->ifindex;
9537 	rtnl_unlock();
9538 
9539 	info->xdp.ifindex = ifindex;
9540 	return 0;
9541 }
9542 
9543 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9544 			       struct bpf_prog *old_prog)
9545 {
9546 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9547 	enum bpf_xdp_mode mode;
9548 	bpf_op_t bpf_op;
9549 	int err = 0;
9550 
9551 	rtnl_lock();
9552 
9553 	/* link might have been auto-released already, so fail */
9554 	if (!xdp_link->dev) {
9555 		err = -ENOLINK;
9556 		goto out_unlock;
9557 	}
9558 
9559 	if (old_prog && link->prog != old_prog) {
9560 		err = -EPERM;
9561 		goto out_unlock;
9562 	}
9563 	old_prog = link->prog;
9564 	if (old_prog->type != new_prog->type ||
9565 	    old_prog->expected_attach_type != new_prog->expected_attach_type) {
9566 		err = -EINVAL;
9567 		goto out_unlock;
9568 	}
9569 
9570 	if (old_prog == new_prog) {
9571 		/* no-op, don't disturb drivers */
9572 		bpf_prog_put(new_prog);
9573 		goto out_unlock;
9574 	}
9575 
9576 	mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9577 	bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9578 	err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9579 			      xdp_link->flags, new_prog);
9580 	if (err)
9581 		goto out_unlock;
9582 
9583 	old_prog = xchg(&link->prog, new_prog);
9584 	bpf_prog_put(old_prog);
9585 
9586 out_unlock:
9587 	rtnl_unlock();
9588 	return err;
9589 }
9590 
9591 static const struct bpf_link_ops bpf_xdp_link_lops = {
9592 	.release = bpf_xdp_link_release,
9593 	.dealloc = bpf_xdp_link_dealloc,
9594 	.detach = bpf_xdp_link_detach,
9595 	.show_fdinfo = bpf_xdp_link_show_fdinfo,
9596 	.fill_link_info = bpf_xdp_link_fill_link_info,
9597 	.update_prog = bpf_xdp_link_update,
9598 };
9599 
9600 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9601 {
9602 	struct net *net = current->nsproxy->net_ns;
9603 	struct bpf_link_primer link_primer;
9604 	struct netlink_ext_ack extack = {};
9605 	struct bpf_xdp_link *link;
9606 	struct net_device *dev;
9607 	int err, fd;
9608 
9609 	rtnl_lock();
9610 	dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9611 	if (!dev) {
9612 		rtnl_unlock();
9613 		return -EINVAL;
9614 	}
9615 
9616 	link = kzalloc(sizeof(*link), GFP_USER);
9617 	if (!link) {
9618 		err = -ENOMEM;
9619 		goto unlock;
9620 	}
9621 
9622 	bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9623 	link->dev = dev;
9624 	link->flags = attr->link_create.flags;
9625 
9626 	err = bpf_link_prime(&link->link, &link_primer);
9627 	if (err) {
9628 		kfree(link);
9629 		goto unlock;
9630 	}
9631 
9632 	err = dev_xdp_attach_link(dev, &extack, link);
9633 	rtnl_unlock();
9634 
9635 	if (err) {
9636 		link->dev = NULL;
9637 		bpf_link_cleanup(&link_primer);
9638 		trace_bpf_xdp_link_attach_failed(extack._msg);
9639 		goto out_put_dev;
9640 	}
9641 
9642 	fd = bpf_link_settle(&link_primer);
9643 	/* link itself doesn't hold dev's refcnt to not complicate shutdown */
9644 	dev_put(dev);
9645 	return fd;
9646 
9647 unlock:
9648 	rtnl_unlock();
9649 
9650 out_put_dev:
9651 	dev_put(dev);
9652 	return err;
9653 }
9654 
9655 /**
9656  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
9657  *	@dev: device
9658  *	@extack: netlink extended ack
9659  *	@fd: new program fd or negative value to clear
9660  *	@expected_fd: old program fd that userspace expects to replace or clear
9661  *	@flags: xdp-related flags
9662  *
9663  *	Set or clear a bpf program for a device
9664  */
9665 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9666 		      int fd, int expected_fd, u32 flags)
9667 {
9668 	enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9669 	struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9670 	int err;
9671 
9672 	ASSERT_RTNL();
9673 
9674 	if (fd >= 0) {
9675 		new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9676 						 mode != XDP_MODE_SKB);
9677 		if (IS_ERR(new_prog))
9678 			return PTR_ERR(new_prog);
9679 	}
9680 
9681 	if (expected_fd >= 0) {
9682 		old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9683 						 mode != XDP_MODE_SKB);
9684 		if (IS_ERR(old_prog)) {
9685 			err = PTR_ERR(old_prog);
9686 			old_prog = NULL;
9687 			goto err_out;
9688 		}
9689 	}
9690 
9691 	err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9692 
9693 err_out:
9694 	if (err && new_prog)
9695 		bpf_prog_put(new_prog);
9696 	if (old_prog)
9697 		bpf_prog_put(old_prog);
9698 	return err;
9699 }
9700 
9701 /**
9702  * dev_index_reserve() - allocate an ifindex in a namespace
9703  * @net: the applicable net namespace
9704  * @ifindex: requested ifindex, pass %0 to get one allocated
9705  *
9706  * Allocate a ifindex for a new device. Caller must either use the ifindex
9707  * to store the device (via list_netdevice()) or call dev_index_release()
9708  * to give the index up.
9709  *
9710  * Return: a suitable unique value for a new device interface number or -errno.
9711  */
9712 static int dev_index_reserve(struct net *net, u32 ifindex)
9713 {
9714 	int err;
9715 
9716 	if (ifindex > INT_MAX) {
9717 		DEBUG_NET_WARN_ON_ONCE(1);
9718 		return -EINVAL;
9719 	}
9720 
9721 	if (!ifindex)
9722 		err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL,
9723 				      xa_limit_31b, &net->ifindex, GFP_KERNEL);
9724 	else
9725 		err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL);
9726 	if (err < 0)
9727 		return err;
9728 
9729 	return ifindex;
9730 }
9731 
9732 static void dev_index_release(struct net *net, int ifindex)
9733 {
9734 	/* Expect only unused indexes, unlist_netdevice() removes the used */
9735 	WARN_ON(xa_erase(&net->dev_by_index, ifindex));
9736 }
9737 
9738 /* Delayed registration/unregisteration */
9739 LIST_HEAD(net_todo_list);
9740 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9741 atomic_t dev_unreg_count = ATOMIC_INIT(0);
9742 
9743 static void net_set_todo(struct net_device *dev)
9744 {
9745 	list_add_tail(&dev->todo_list, &net_todo_list);
9746 }
9747 
9748 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9749 	struct net_device *upper, netdev_features_t features)
9750 {
9751 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9752 	netdev_features_t feature;
9753 	int feature_bit;
9754 
9755 	for_each_netdev_feature(upper_disables, feature_bit) {
9756 		feature = __NETIF_F_BIT(feature_bit);
9757 		if (!(upper->wanted_features & feature)
9758 		    && (features & feature)) {
9759 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9760 				   &feature, upper->name);
9761 			features &= ~feature;
9762 		}
9763 	}
9764 
9765 	return features;
9766 }
9767 
9768 static void netdev_sync_lower_features(struct net_device *upper,
9769 	struct net_device *lower, netdev_features_t features)
9770 {
9771 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9772 	netdev_features_t feature;
9773 	int feature_bit;
9774 
9775 	for_each_netdev_feature(upper_disables, feature_bit) {
9776 		feature = __NETIF_F_BIT(feature_bit);
9777 		if (!(features & feature) && (lower->features & feature)) {
9778 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9779 				   &feature, lower->name);
9780 			lower->wanted_features &= ~feature;
9781 			__netdev_update_features(lower);
9782 
9783 			if (unlikely(lower->features & feature))
9784 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9785 					    &feature, lower->name);
9786 			else
9787 				netdev_features_change(lower);
9788 		}
9789 	}
9790 }
9791 
9792 static netdev_features_t netdev_fix_features(struct net_device *dev,
9793 	netdev_features_t features)
9794 {
9795 	/* Fix illegal checksum combinations */
9796 	if ((features & NETIF_F_HW_CSUM) &&
9797 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9798 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9799 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9800 	}
9801 
9802 	/* TSO requires that SG is present as well. */
9803 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9804 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9805 		features &= ~NETIF_F_ALL_TSO;
9806 	}
9807 
9808 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9809 					!(features & NETIF_F_IP_CSUM)) {
9810 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9811 		features &= ~NETIF_F_TSO;
9812 		features &= ~NETIF_F_TSO_ECN;
9813 	}
9814 
9815 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9816 					 !(features & NETIF_F_IPV6_CSUM)) {
9817 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9818 		features &= ~NETIF_F_TSO6;
9819 	}
9820 
9821 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9822 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9823 		features &= ~NETIF_F_TSO_MANGLEID;
9824 
9825 	/* TSO ECN requires that TSO is present as well. */
9826 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9827 		features &= ~NETIF_F_TSO_ECN;
9828 
9829 	/* Software GSO depends on SG. */
9830 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9831 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9832 		features &= ~NETIF_F_GSO;
9833 	}
9834 
9835 	/* GSO partial features require GSO partial be set */
9836 	if ((features & dev->gso_partial_features) &&
9837 	    !(features & NETIF_F_GSO_PARTIAL)) {
9838 		netdev_dbg(dev,
9839 			   "Dropping partially supported GSO features since no GSO partial.\n");
9840 		features &= ~dev->gso_partial_features;
9841 	}
9842 
9843 	if (!(features & NETIF_F_RXCSUM)) {
9844 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9845 		 * successfully merged by hardware must also have the
9846 		 * checksum verified by hardware.  If the user does not
9847 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
9848 		 */
9849 		if (features & NETIF_F_GRO_HW) {
9850 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9851 			features &= ~NETIF_F_GRO_HW;
9852 		}
9853 	}
9854 
9855 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
9856 	if (features & NETIF_F_RXFCS) {
9857 		if (features & NETIF_F_LRO) {
9858 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9859 			features &= ~NETIF_F_LRO;
9860 		}
9861 
9862 		if (features & NETIF_F_GRO_HW) {
9863 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9864 			features &= ~NETIF_F_GRO_HW;
9865 		}
9866 	}
9867 
9868 	if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
9869 		netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
9870 		features &= ~NETIF_F_LRO;
9871 	}
9872 
9873 	if (features & NETIF_F_HW_TLS_TX) {
9874 		bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9875 			(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9876 		bool hw_csum = features & NETIF_F_HW_CSUM;
9877 
9878 		if (!ip_csum && !hw_csum) {
9879 			netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9880 			features &= ~NETIF_F_HW_TLS_TX;
9881 		}
9882 	}
9883 
9884 	if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9885 		netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9886 		features &= ~NETIF_F_HW_TLS_RX;
9887 	}
9888 
9889 	return features;
9890 }
9891 
9892 int __netdev_update_features(struct net_device *dev)
9893 {
9894 	struct net_device *upper, *lower;
9895 	netdev_features_t features;
9896 	struct list_head *iter;
9897 	int err = -1;
9898 
9899 	ASSERT_RTNL();
9900 
9901 	features = netdev_get_wanted_features(dev);
9902 
9903 	if (dev->netdev_ops->ndo_fix_features)
9904 		features = dev->netdev_ops->ndo_fix_features(dev, features);
9905 
9906 	/* driver might be less strict about feature dependencies */
9907 	features = netdev_fix_features(dev, features);
9908 
9909 	/* some features can't be enabled if they're off on an upper device */
9910 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
9911 		features = netdev_sync_upper_features(dev, upper, features);
9912 
9913 	if (dev->features == features)
9914 		goto sync_lower;
9915 
9916 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9917 		&dev->features, &features);
9918 
9919 	if (dev->netdev_ops->ndo_set_features)
9920 		err = dev->netdev_ops->ndo_set_features(dev, features);
9921 	else
9922 		err = 0;
9923 
9924 	if (unlikely(err < 0)) {
9925 		netdev_err(dev,
9926 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
9927 			err, &features, &dev->features);
9928 		/* return non-0 since some features might have changed and
9929 		 * it's better to fire a spurious notification than miss it
9930 		 */
9931 		return -1;
9932 	}
9933 
9934 sync_lower:
9935 	/* some features must be disabled on lower devices when disabled
9936 	 * on an upper device (think: bonding master or bridge)
9937 	 */
9938 	netdev_for_each_lower_dev(dev, lower, iter)
9939 		netdev_sync_lower_features(dev, lower, features);
9940 
9941 	if (!err) {
9942 		netdev_features_t diff = features ^ dev->features;
9943 
9944 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9945 			/* udp_tunnel_{get,drop}_rx_info both need
9946 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9947 			 * device, or they won't do anything.
9948 			 * Thus we need to update dev->features
9949 			 * *before* calling udp_tunnel_get_rx_info,
9950 			 * but *after* calling udp_tunnel_drop_rx_info.
9951 			 */
9952 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9953 				dev->features = features;
9954 				udp_tunnel_get_rx_info(dev);
9955 			} else {
9956 				udp_tunnel_drop_rx_info(dev);
9957 			}
9958 		}
9959 
9960 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9961 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9962 				dev->features = features;
9963 				err |= vlan_get_rx_ctag_filter_info(dev);
9964 			} else {
9965 				vlan_drop_rx_ctag_filter_info(dev);
9966 			}
9967 		}
9968 
9969 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9970 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9971 				dev->features = features;
9972 				err |= vlan_get_rx_stag_filter_info(dev);
9973 			} else {
9974 				vlan_drop_rx_stag_filter_info(dev);
9975 			}
9976 		}
9977 
9978 		dev->features = features;
9979 	}
9980 
9981 	return err < 0 ? 0 : 1;
9982 }
9983 
9984 /**
9985  *	netdev_update_features - recalculate device features
9986  *	@dev: the device to check
9987  *
9988  *	Recalculate dev->features set and send notifications if it
9989  *	has changed. Should be called after driver or hardware dependent
9990  *	conditions might have changed that influence the features.
9991  */
9992 void netdev_update_features(struct net_device *dev)
9993 {
9994 	if (__netdev_update_features(dev))
9995 		netdev_features_change(dev);
9996 }
9997 EXPORT_SYMBOL(netdev_update_features);
9998 
9999 /**
10000  *	netdev_change_features - recalculate device features
10001  *	@dev: the device to check
10002  *
10003  *	Recalculate dev->features set and send notifications even
10004  *	if they have not changed. Should be called instead of
10005  *	netdev_update_features() if also dev->vlan_features might
10006  *	have changed to allow the changes to be propagated to stacked
10007  *	VLAN devices.
10008  */
10009 void netdev_change_features(struct net_device *dev)
10010 {
10011 	__netdev_update_features(dev);
10012 	netdev_features_change(dev);
10013 }
10014 EXPORT_SYMBOL(netdev_change_features);
10015 
10016 /**
10017  *	netif_stacked_transfer_operstate -	transfer operstate
10018  *	@rootdev: the root or lower level device to transfer state from
10019  *	@dev: the device to transfer operstate to
10020  *
10021  *	Transfer operational state from root to device. This is normally
10022  *	called when a stacking relationship exists between the root
10023  *	device and the device(a leaf device).
10024  */
10025 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
10026 					struct net_device *dev)
10027 {
10028 	if (rootdev->operstate == IF_OPER_DORMANT)
10029 		netif_dormant_on(dev);
10030 	else
10031 		netif_dormant_off(dev);
10032 
10033 	if (rootdev->operstate == IF_OPER_TESTING)
10034 		netif_testing_on(dev);
10035 	else
10036 		netif_testing_off(dev);
10037 
10038 	if (netif_carrier_ok(rootdev))
10039 		netif_carrier_on(dev);
10040 	else
10041 		netif_carrier_off(dev);
10042 }
10043 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
10044 
10045 static int netif_alloc_rx_queues(struct net_device *dev)
10046 {
10047 	unsigned int i, count = dev->num_rx_queues;
10048 	struct netdev_rx_queue *rx;
10049 	size_t sz = count * sizeof(*rx);
10050 	int err = 0;
10051 
10052 	BUG_ON(count < 1);
10053 
10054 	rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10055 	if (!rx)
10056 		return -ENOMEM;
10057 
10058 	dev->_rx = rx;
10059 
10060 	for (i = 0; i < count; i++) {
10061 		rx[i].dev = dev;
10062 
10063 		/* XDP RX-queue setup */
10064 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10065 		if (err < 0)
10066 			goto err_rxq_info;
10067 	}
10068 	return 0;
10069 
10070 err_rxq_info:
10071 	/* Rollback successful reg's and free other resources */
10072 	while (i--)
10073 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10074 	kvfree(dev->_rx);
10075 	dev->_rx = NULL;
10076 	return err;
10077 }
10078 
10079 static void netif_free_rx_queues(struct net_device *dev)
10080 {
10081 	unsigned int i, count = dev->num_rx_queues;
10082 
10083 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10084 	if (!dev->_rx)
10085 		return;
10086 
10087 	for (i = 0; i < count; i++)
10088 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10089 
10090 	kvfree(dev->_rx);
10091 }
10092 
10093 static void netdev_init_one_queue(struct net_device *dev,
10094 				  struct netdev_queue *queue, void *_unused)
10095 {
10096 	/* Initialize queue lock */
10097 	spin_lock_init(&queue->_xmit_lock);
10098 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10099 	queue->xmit_lock_owner = -1;
10100 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10101 	queue->dev = dev;
10102 #ifdef CONFIG_BQL
10103 	dql_init(&queue->dql, HZ);
10104 #endif
10105 }
10106 
10107 static void netif_free_tx_queues(struct net_device *dev)
10108 {
10109 	kvfree(dev->_tx);
10110 }
10111 
10112 static int netif_alloc_netdev_queues(struct net_device *dev)
10113 {
10114 	unsigned int count = dev->num_tx_queues;
10115 	struct netdev_queue *tx;
10116 	size_t sz = count * sizeof(*tx);
10117 
10118 	if (count < 1 || count > 0xffff)
10119 		return -EINVAL;
10120 
10121 	tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10122 	if (!tx)
10123 		return -ENOMEM;
10124 
10125 	dev->_tx = tx;
10126 
10127 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10128 	spin_lock_init(&dev->tx_global_lock);
10129 
10130 	return 0;
10131 }
10132 
10133 void netif_tx_stop_all_queues(struct net_device *dev)
10134 {
10135 	unsigned int i;
10136 
10137 	for (i = 0; i < dev->num_tx_queues; i++) {
10138 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10139 
10140 		netif_tx_stop_queue(txq);
10141 	}
10142 }
10143 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10144 
10145 static int netdev_do_alloc_pcpu_stats(struct net_device *dev)
10146 {
10147 	void __percpu *v;
10148 
10149 	/* Drivers implementing ndo_get_peer_dev must support tstat
10150 	 * accounting, so that skb_do_redirect() can bump the dev's
10151 	 * RX stats upon network namespace switch.
10152 	 */
10153 	if (dev->netdev_ops->ndo_get_peer_dev &&
10154 	    dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS)
10155 		return -EOPNOTSUPP;
10156 
10157 	switch (dev->pcpu_stat_type) {
10158 	case NETDEV_PCPU_STAT_NONE:
10159 		return 0;
10160 	case NETDEV_PCPU_STAT_LSTATS:
10161 		v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats);
10162 		break;
10163 	case NETDEV_PCPU_STAT_TSTATS:
10164 		v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats);
10165 		break;
10166 	case NETDEV_PCPU_STAT_DSTATS:
10167 		v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
10168 		break;
10169 	default:
10170 		return -EINVAL;
10171 	}
10172 
10173 	return v ? 0 : -ENOMEM;
10174 }
10175 
10176 static void netdev_do_free_pcpu_stats(struct net_device *dev)
10177 {
10178 	switch (dev->pcpu_stat_type) {
10179 	case NETDEV_PCPU_STAT_NONE:
10180 		return;
10181 	case NETDEV_PCPU_STAT_LSTATS:
10182 		free_percpu(dev->lstats);
10183 		break;
10184 	case NETDEV_PCPU_STAT_TSTATS:
10185 		free_percpu(dev->tstats);
10186 		break;
10187 	case NETDEV_PCPU_STAT_DSTATS:
10188 		free_percpu(dev->dstats);
10189 		break;
10190 	}
10191 }
10192 
10193 /**
10194  * register_netdevice() - register a network device
10195  * @dev: device to register
10196  *
10197  * Take a prepared network device structure and make it externally accessible.
10198  * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
10199  * Callers must hold the rtnl lock - you may want register_netdev()
10200  * instead of this.
10201  */
10202 int register_netdevice(struct net_device *dev)
10203 {
10204 	int ret;
10205 	struct net *net = dev_net(dev);
10206 
10207 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10208 		     NETDEV_FEATURE_COUNT);
10209 	BUG_ON(dev_boot_phase);
10210 	ASSERT_RTNL();
10211 
10212 	might_sleep();
10213 
10214 	/* When net_device's are persistent, this will be fatal. */
10215 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10216 	BUG_ON(!net);
10217 
10218 	ret = ethtool_check_ops(dev->ethtool_ops);
10219 	if (ret)
10220 		return ret;
10221 
10222 	spin_lock_init(&dev->addr_list_lock);
10223 	netdev_set_addr_lockdep_class(dev);
10224 
10225 	ret = dev_get_valid_name(net, dev, dev->name);
10226 	if (ret < 0)
10227 		goto out;
10228 
10229 	ret = -ENOMEM;
10230 	dev->name_node = netdev_name_node_head_alloc(dev);
10231 	if (!dev->name_node)
10232 		goto out;
10233 
10234 	/* Init, if this function is available */
10235 	if (dev->netdev_ops->ndo_init) {
10236 		ret = dev->netdev_ops->ndo_init(dev);
10237 		if (ret) {
10238 			if (ret > 0)
10239 				ret = -EIO;
10240 			goto err_free_name;
10241 		}
10242 	}
10243 
10244 	if (((dev->hw_features | dev->features) &
10245 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
10246 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10247 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10248 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10249 		ret = -EINVAL;
10250 		goto err_uninit;
10251 	}
10252 
10253 	ret = netdev_do_alloc_pcpu_stats(dev);
10254 	if (ret)
10255 		goto err_uninit;
10256 
10257 	ret = dev_index_reserve(net, dev->ifindex);
10258 	if (ret < 0)
10259 		goto err_free_pcpu;
10260 	dev->ifindex = ret;
10261 
10262 	/* Transfer changeable features to wanted_features and enable
10263 	 * software offloads (GSO and GRO).
10264 	 */
10265 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10266 	dev->features |= NETIF_F_SOFT_FEATURES;
10267 
10268 	if (dev->udp_tunnel_nic_info) {
10269 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10270 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10271 	}
10272 
10273 	dev->wanted_features = dev->features & dev->hw_features;
10274 
10275 	if (!(dev->flags & IFF_LOOPBACK))
10276 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
10277 
10278 	/* If IPv4 TCP segmentation offload is supported we should also
10279 	 * allow the device to enable segmenting the frame with the option
10280 	 * of ignoring a static IP ID value.  This doesn't enable the
10281 	 * feature itself but allows the user to enable it later.
10282 	 */
10283 	if (dev->hw_features & NETIF_F_TSO)
10284 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
10285 	if (dev->vlan_features & NETIF_F_TSO)
10286 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10287 	if (dev->mpls_features & NETIF_F_TSO)
10288 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10289 	if (dev->hw_enc_features & NETIF_F_TSO)
10290 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10291 
10292 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10293 	 */
10294 	dev->vlan_features |= NETIF_F_HIGHDMA;
10295 
10296 	/* Make NETIF_F_SG inheritable to tunnel devices.
10297 	 */
10298 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10299 
10300 	/* Make NETIF_F_SG inheritable to MPLS.
10301 	 */
10302 	dev->mpls_features |= NETIF_F_SG;
10303 
10304 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10305 	ret = notifier_to_errno(ret);
10306 	if (ret)
10307 		goto err_ifindex_release;
10308 
10309 	ret = netdev_register_kobject(dev);
10310 
10311 	WRITE_ONCE(dev->reg_state, ret ? NETREG_UNREGISTERED : NETREG_REGISTERED);
10312 
10313 	if (ret)
10314 		goto err_uninit_notify;
10315 
10316 	__netdev_update_features(dev);
10317 
10318 	/*
10319 	 *	Default initial state at registry is that the
10320 	 *	device is present.
10321 	 */
10322 
10323 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10324 
10325 	linkwatch_init_dev(dev);
10326 
10327 	dev_init_scheduler(dev);
10328 
10329 	netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
10330 	list_netdevice(dev);
10331 
10332 	add_device_randomness(dev->dev_addr, dev->addr_len);
10333 
10334 	/* If the device has permanent device address, driver should
10335 	 * set dev_addr and also addr_assign_type should be set to
10336 	 * NET_ADDR_PERM (default value).
10337 	 */
10338 	if (dev->addr_assign_type == NET_ADDR_PERM)
10339 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10340 
10341 	/* Notify protocols, that a new device appeared. */
10342 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10343 	ret = notifier_to_errno(ret);
10344 	if (ret) {
10345 		/* Expect explicit free_netdev() on failure */
10346 		dev->needs_free_netdev = false;
10347 		unregister_netdevice_queue(dev, NULL);
10348 		goto out;
10349 	}
10350 	/*
10351 	 *	Prevent userspace races by waiting until the network
10352 	 *	device is fully setup before sending notifications.
10353 	 */
10354 	if (!dev->rtnl_link_ops ||
10355 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10356 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
10357 
10358 out:
10359 	return ret;
10360 
10361 err_uninit_notify:
10362 	call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10363 err_ifindex_release:
10364 	dev_index_release(net, dev->ifindex);
10365 err_free_pcpu:
10366 	netdev_do_free_pcpu_stats(dev);
10367 err_uninit:
10368 	if (dev->netdev_ops->ndo_uninit)
10369 		dev->netdev_ops->ndo_uninit(dev);
10370 	if (dev->priv_destructor)
10371 		dev->priv_destructor(dev);
10372 err_free_name:
10373 	netdev_name_node_free(dev->name_node);
10374 	goto out;
10375 }
10376 EXPORT_SYMBOL(register_netdevice);
10377 
10378 /**
10379  *	init_dummy_netdev	- init a dummy network device for NAPI
10380  *	@dev: device to init
10381  *
10382  *	This takes a network device structure and initialize the minimum
10383  *	amount of fields so it can be used to schedule NAPI polls without
10384  *	registering a full blown interface. This is to be used by drivers
10385  *	that need to tie several hardware interfaces to a single NAPI
10386  *	poll scheduler due to HW limitations.
10387  */
10388 void init_dummy_netdev(struct net_device *dev)
10389 {
10390 	/* Clear everything. Note we don't initialize spinlocks
10391 	 * are they aren't supposed to be taken by any of the
10392 	 * NAPI code and this dummy netdev is supposed to be
10393 	 * only ever used for NAPI polls
10394 	 */
10395 	memset(dev, 0, sizeof(struct net_device));
10396 
10397 	/* make sure we BUG if trying to hit standard
10398 	 * register/unregister code path
10399 	 */
10400 	dev->reg_state = NETREG_DUMMY;
10401 
10402 	/* NAPI wants this */
10403 	INIT_LIST_HEAD(&dev->napi_list);
10404 
10405 	/* a dummy interface is started by default */
10406 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10407 	set_bit(__LINK_STATE_START, &dev->state);
10408 
10409 	/* napi_busy_loop stats accounting wants this */
10410 	dev_net_set(dev, &init_net);
10411 
10412 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
10413 	 * because users of this 'device' dont need to change
10414 	 * its refcount.
10415 	 */
10416 }
10417 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10418 
10419 
10420 /**
10421  *	register_netdev	- register a network device
10422  *	@dev: device to register
10423  *
10424  *	Take a completed network device structure and add it to the kernel
10425  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10426  *	chain. 0 is returned on success. A negative errno code is returned
10427  *	on a failure to set up the device, or if the name is a duplicate.
10428  *
10429  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
10430  *	and expands the device name if you passed a format string to
10431  *	alloc_netdev.
10432  */
10433 int register_netdev(struct net_device *dev)
10434 {
10435 	int err;
10436 
10437 	if (rtnl_lock_killable())
10438 		return -EINTR;
10439 	err = register_netdevice(dev);
10440 	rtnl_unlock();
10441 	return err;
10442 }
10443 EXPORT_SYMBOL(register_netdev);
10444 
10445 int netdev_refcnt_read(const struct net_device *dev)
10446 {
10447 #ifdef CONFIG_PCPU_DEV_REFCNT
10448 	int i, refcnt = 0;
10449 
10450 	for_each_possible_cpu(i)
10451 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10452 	return refcnt;
10453 #else
10454 	return refcount_read(&dev->dev_refcnt);
10455 #endif
10456 }
10457 EXPORT_SYMBOL(netdev_refcnt_read);
10458 
10459 int netdev_unregister_timeout_secs __read_mostly = 10;
10460 
10461 #define WAIT_REFS_MIN_MSECS 1
10462 #define WAIT_REFS_MAX_MSECS 250
10463 /**
10464  * netdev_wait_allrefs_any - wait until all references are gone.
10465  * @list: list of net_devices to wait on
10466  *
10467  * This is called when unregistering network devices.
10468  *
10469  * Any protocol or device that holds a reference should register
10470  * for netdevice notification, and cleanup and put back the
10471  * reference if they receive an UNREGISTER event.
10472  * We can get stuck here if buggy protocols don't correctly
10473  * call dev_put.
10474  */
10475 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
10476 {
10477 	unsigned long rebroadcast_time, warning_time;
10478 	struct net_device *dev;
10479 	int wait = 0;
10480 
10481 	rebroadcast_time = warning_time = jiffies;
10482 
10483 	list_for_each_entry(dev, list, todo_list)
10484 		if (netdev_refcnt_read(dev) == 1)
10485 			return dev;
10486 
10487 	while (true) {
10488 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10489 			rtnl_lock();
10490 
10491 			/* Rebroadcast unregister notification */
10492 			list_for_each_entry(dev, list, todo_list)
10493 				call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10494 
10495 			__rtnl_unlock();
10496 			rcu_barrier();
10497 			rtnl_lock();
10498 
10499 			list_for_each_entry(dev, list, todo_list)
10500 				if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10501 					     &dev->state)) {
10502 					/* We must not have linkwatch events
10503 					 * pending on unregister. If this
10504 					 * happens, we simply run the queue
10505 					 * unscheduled, resulting in a noop
10506 					 * for this device.
10507 					 */
10508 					linkwatch_run_queue();
10509 					break;
10510 				}
10511 
10512 			__rtnl_unlock();
10513 
10514 			rebroadcast_time = jiffies;
10515 		}
10516 
10517 		if (!wait) {
10518 			rcu_barrier();
10519 			wait = WAIT_REFS_MIN_MSECS;
10520 		} else {
10521 			msleep(wait);
10522 			wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10523 		}
10524 
10525 		list_for_each_entry(dev, list, todo_list)
10526 			if (netdev_refcnt_read(dev) == 1)
10527 				return dev;
10528 
10529 		if (time_after(jiffies, warning_time +
10530 			       READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
10531 			list_for_each_entry(dev, list, todo_list) {
10532 				pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10533 					 dev->name, netdev_refcnt_read(dev));
10534 				ref_tracker_dir_print(&dev->refcnt_tracker, 10);
10535 			}
10536 
10537 			warning_time = jiffies;
10538 		}
10539 	}
10540 }
10541 
10542 /* The sequence is:
10543  *
10544  *	rtnl_lock();
10545  *	...
10546  *	register_netdevice(x1);
10547  *	register_netdevice(x2);
10548  *	...
10549  *	unregister_netdevice(y1);
10550  *	unregister_netdevice(y2);
10551  *      ...
10552  *	rtnl_unlock();
10553  *	free_netdev(y1);
10554  *	free_netdev(y2);
10555  *
10556  * We are invoked by rtnl_unlock().
10557  * This allows us to deal with problems:
10558  * 1) We can delete sysfs objects which invoke hotplug
10559  *    without deadlocking with linkwatch via keventd.
10560  * 2) Since we run with the RTNL semaphore not held, we can sleep
10561  *    safely in order to wait for the netdev refcnt to drop to zero.
10562  *
10563  * We must not return until all unregister events added during
10564  * the interval the lock was held have been completed.
10565  */
10566 void netdev_run_todo(void)
10567 {
10568 	struct net_device *dev, *tmp;
10569 	struct list_head list;
10570 	int cnt;
10571 #ifdef CONFIG_LOCKDEP
10572 	struct list_head unlink_list;
10573 
10574 	list_replace_init(&net_unlink_list, &unlink_list);
10575 
10576 	while (!list_empty(&unlink_list)) {
10577 		struct net_device *dev = list_first_entry(&unlink_list,
10578 							  struct net_device,
10579 							  unlink_list);
10580 		list_del_init(&dev->unlink_list);
10581 		dev->nested_level = dev->lower_level - 1;
10582 	}
10583 #endif
10584 
10585 	/* Snapshot list, allow later requests */
10586 	list_replace_init(&net_todo_list, &list);
10587 
10588 	__rtnl_unlock();
10589 
10590 	/* Wait for rcu callbacks to finish before next phase */
10591 	if (!list_empty(&list))
10592 		rcu_barrier();
10593 
10594 	list_for_each_entry_safe(dev, tmp, &list, todo_list) {
10595 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10596 			netdev_WARN(dev, "run_todo but not unregistering\n");
10597 			list_del(&dev->todo_list);
10598 			continue;
10599 		}
10600 
10601 		WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERED);
10602 		linkwatch_sync_dev(dev);
10603 	}
10604 
10605 	cnt = 0;
10606 	while (!list_empty(&list)) {
10607 		dev = netdev_wait_allrefs_any(&list);
10608 		list_del(&dev->todo_list);
10609 
10610 		/* paranoia */
10611 		BUG_ON(netdev_refcnt_read(dev) != 1);
10612 		BUG_ON(!list_empty(&dev->ptype_all));
10613 		BUG_ON(!list_empty(&dev->ptype_specific));
10614 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
10615 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10616 
10617 		netdev_do_free_pcpu_stats(dev);
10618 		if (dev->priv_destructor)
10619 			dev->priv_destructor(dev);
10620 		if (dev->needs_free_netdev)
10621 			free_netdev(dev);
10622 
10623 		cnt++;
10624 
10625 		/* Free network device */
10626 		kobject_put(&dev->dev.kobj);
10627 	}
10628 	if (cnt && atomic_sub_and_test(cnt, &dev_unreg_count))
10629 		wake_up(&netdev_unregistering_wq);
10630 }
10631 
10632 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10633  * all the same fields in the same order as net_device_stats, with only
10634  * the type differing, but rtnl_link_stats64 may have additional fields
10635  * at the end for newer counters.
10636  */
10637 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10638 			     const struct net_device_stats *netdev_stats)
10639 {
10640 	size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
10641 	const atomic_long_t *src = (atomic_long_t *)netdev_stats;
10642 	u64 *dst = (u64 *)stats64;
10643 
10644 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10645 	for (i = 0; i < n; i++)
10646 		dst[i] = (unsigned long)atomic_long_read(&src[i]);
10647 	/* zero out counters that only exist in rtnl_link_stats64 */
10648 	memset((char *)stats64 + n * sizeof(u64), 0,
10649 	       sizeof(*stats64) - n * sizeof(u64));
10650 }
10651 EXPORT_SYMBOL(netdev_stats_to_stats64);
10652 
10653 static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc(
10654 		struct net_device *dev)
10655 {
10656 	struct net_device_core_stats __percpu *p;
10657 
10658 	p = alloc_percpu_gfp(struct net_device_core_stats,
10659 			     GFP_ATOMIC | __GFP_NOWARN);
10660 
10661 	if (p && cmpxchg(&dev->core_stats, NULL, p))
10662 		free_percpu(p);
10663 
10664 	/* This READ_ONCE() pairs with the cmpxchg() above */
10665 	return READ_ONCE(dev->core_stats);
10666 }
10667 
10668 noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset)
10669 {
10670 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10671 	struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
10672 	unsigned long __percpu *field;
10673 
10674 	if (unlikely(!p)) {
10675 		p = netdev_core_stats_alloc(dev);
10676 		if (!p)
10677 			return;
10678 	}
10679 
10680 	field = (__force unsigned long __percpu *)((__force void *)p + offset);
10681 	this_cpu_inc(*field);
10682 }
10683 EXPORT_SYMBOL_GPL(netdev_core_stats_inc);
10684 
10685 /**
10686  *	dev_get_stats	- get network device statistics
10687  *	@dev: device to get statistics from
10688  *	@storage: place to store stats
10689  *
10690  *	Get network statistics from device. Return @storage.
10691  *	The device driver may provide its own method by setting
10692  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10693  *	otherwise the internal statistics structure is used.
10694  */
10695 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10696 					struct rtnl_link_stats64 *storage)
10697 {
10698 	const struct net_device_ops *ops = dev->netdev_ops;
10699 	const struct net_device_core_stats __percpu *p;
10700 
10701 	if (ops->ndo_get_stats64) {
10702 		memset(storage, 0, sizeof(*storage));
10703 		ops->ndo_get_stats64(dev, storage);
10704 	} else if (ops->ndo_get_stats) {
10705 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10706 	} else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_TSTATS) {
10707 		dev_get_tstats64(dev, storage);
10708 	} else {
10709 		netdev_stats_to_stats64(storage, &dev->stats);
10710 	}
10711 
10712 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10713 	p = READ_ONCE(dev->core_stats);
10714 	if (p) {
10715 		const struct net_device_core_stats *core_stats;
10716 		int i;
10717 
10718 		for_each_possible_cpu(i) {
10719 			core_stats = per_cpu_ptr(p, i);
10720 			storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
10721 			storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
10722 			storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
10723 			storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
10724 		}
10725 	}
10726 	return storage;
10727 }
10728 EXPORT_SYMBOL(dev_get_stats);
10729 
10730 /**
10731  *	dev_fetch_sw_netstats - get per-cpu network device statistics
10732  *	@s: place to store stats
10733  *	@netstats: per-cpu network stats to read from
10734  *
10735  *	Read per-cpu network statistics and populate the related fields in @s.
10736  */
10737 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10738 			   const struct pcpu_sw_netstats __percpu *netstats)
10739 {
10740 	int cpu;
10741 
10742 	for_each_possible_cpu(cpu) {
10743 		u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
10744 		const struct pcpu_sw_netstats *stats;
10745 		unsigned int start;
10746 
10747 		stats = per_cpu_ptr(netstats, cpu);
10748 		do {
10749 			start = u64_stats_fetch_begin(&stats->syncp);
10750 			rx_packets = u64_stats_read(&stats->rx_packets);
10751 			rx_bytes   = u64_stats_read(&stats->rx_bytes);
10752 			tx_packets = u64_stats_read(&stats->tx_packets);
10753 			tx_bytes   = u64_stats_read(&stats->tx_bytes);
10754 		} while (u64_stats_fetch_retry(&stats->syncp, start));
10755 
10756 		s->rx_packets += rx_packets;
10757 		s->rx_bytes   += rx_bytes;
10758 		s->tx_packets += tx_packets;
10759 		s->tx_bytes   += tx_bytes;
10760 	}
10761 }
10762 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10763 
10764 /**
10765  *	dev_get_tstats64 - ndo_get_stats64 implementation
10766  *	@dev: device to get statistics from
10767  *	@s: place to store stats
10768  *
10769  *	Populate @s from dev->stats and dev->tstats. Can be used as
10770  *	ndo_get_stats64() callback.
10771  */
10772 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10773 {
10774 	netdev_stats_to_stats64(s, &dev->stats);
10775 	dev_fetch_sw_netstats(s, dev->tstats);
10776 }
10777 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10778 
10779 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10780 {
10781 	struct netdev_queue *queue = dev_ingress_queue(dev);
10782 
10783 #ifdef CONFIG_NET_CLS_ACT
10784 	if (queue)
10785 		return queue;
10786 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10787 	if (!queue)
10788 		return NULL;
10789 	netdev_init_one_queue(dev, queue, NULL);
10790 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10791 	RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
10792 	rcu_assign_pointer(dev->ingress_queue, queue);
10793 #endif
10794 	return queue;
10795 }
10796 
10797 static const struct ethtool_ops default_ethtool_ops;
10798 
10799 void netdev_set_default_ethtool_ops(struct net_device *dev,
10800 				    const struct ethtool_ops *ops)
10801 {
10802 	if (dev->ethtool_ops == &default_ethtool_ops)
10803 		dev->ethtool_ops = ops;
10804 }
10805 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10806 
10807 /**
10808  * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
10809  * @dev: netdev to enable the IRQ coalescing on
10810  *
10811  * Sets a conservative default for SW IRQ coalescing. Users can use
10812  * sysfs attributes to override the default values.
10813  */
10814 void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
10815 {
10816 	WARN_ON(dev->reg_state == NETREG_REGISTERED);
10817 
10818 	if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
10819 		dev->gro_flush_timeout = 20000;
10820 		dev->napi_defer_hard_irqs = 1;
10821 	}
10822 }
10823 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
10824 
10825 void netdev_freemem(struct net_device *dev)
10826 {
10827 	char *addr = (char *)dev - dev->padded;
10828 
10829 	kvfree(addr);
10830 }
10831 
10832 /**
10833  * alloc_netdev_mqs - allocate network device
10834  * @sizeof_priv: size of private data to allocate space for
10835  * @name: device name format string
10836  * @name_assign_type: origin of device name
10837  * @setup: callback to initialize device
10838  * @txqs: the number of TX subqueues to allocate
10839  * @rxqs: the number of RX subqueues to allocate
10840  *
10841  * Allocates a struct net_device with private data area for driver use
10842  * and performs basic initialization.  Also allocates subqueue structs
10843  * for each queue on the device.
10844  */
10845 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10846 		unsigned char name_assign_type,
10847 		void (*setup)(struct net_device *),
10848 		unsigned int txqs, unsigned int rxqs)
10849 {
10850 	struct net_device *dev;
10851 	unsigned int alloc_size;
10852 	struct net_device *p;
10853 
10854 	BUG_ON(strlen(name) >= sizeof(dev->name));
10855 
10856 	if (txqs < 1) {
10857 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10858 		return NULL;
10859 	}
10860 
10861 	if (rxqs < 1) {
10862 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10863 		return NULL;
10864 	}
10865 
10866 	alloc_size = sizeof(struct net_device);
10867 	if (sizeof_priv) {
10868 		/* ensure 32-byte alignment of private area */
10869 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10870 		alloc_size += sizeof_priv;
10871 	}
10872 	/* ensure 32-byte alignment of whole construct */
10873 	alloc_size += NETDEV_ALIGN - 1;
10874 
10875 	p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10876 	if (!p)
10877 		return NULL;
10878 
10879 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
10880 	dev->padded = (char *)dev - (char *)p;
10881 
10882 	ref_tracker_dir_init(&dev->refcnt_tracker, 128, name);
10883 #ifdef CONFIG_PCPU_DEV_REFCNT
10884 	dev->pcpu_refcnt = alloc_percpu(int);
10885 	if (!dev->pcpu_refcnt)
10886 		goto free_dev;
10887 	__dev_hold(dev);
10888 #else
10889 	refcount_set(&dev->dev_refcnt, 1);
10890 #endif
10891 
10892 	if (dev_addr_init(dev))
10893 		goto free_pcpu;
10894 
10895 	dev_mc_init(dev);
10896 	dev_uc_init(dev);
10897 
10898 	dev_net_set(dev, &init_net);
10899 
10900 	dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
10901 	dev->xdp_zc_max_segs = 1;
10902 	dev->gso_max_segs = GSO_MAX_SEGS;
10903 	dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
10904 	dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
10905 	dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
10906 	dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
10907 	dev->tso_max_segs = TSO_MAX_SEGS;
10908 	dev->upper_level = 1;
10909 	dev->lower_level = 1;
10910 #ifdef CONFIG_LOCKDEP
10911 	dev->nested_level = 0;
10912 	INIT_LIST_HEAD(&dev->unlink_list);
10913 #endif
10914 
10915 	INIT_LIST_HEAD(&dev->napi_list);
10916 	INIT_LIST_HEAD(&dev->unreg_list);
10917 	INIT_LIST_HEAD(&dev->close_list);
10918 	INIT_LIST_HEAD(&dev->link_watch_list);
10919 	INIT_LIST_HEAD(&dev->adj_list.upper);
10920 	INIT_LIST_HEAD(&dev->adj_list.lower);
10921 	INIT_LIST_HEAD(&dev->ptype_all);
10922 	INIT_LIST_HEAD(&dev->ptype_specific);
10923 	INIT_LIST_HEAD(&dev->net_notifier_list);
10924 #ifdef CONFIG_NET_SCHED
10925 	hash_init(dev->qdisc_hash);
10926 #endif
10927 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10928 	setup(dev);
10929 
10930 	if (!dev->tx_queue_len) {
10931 		dev->priv_flags |= IFF_NO_QUEUE;
10932 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10933 	}
10934 
10935 	dev->num_tx_queues = txqs;
10936 	dev->real_num_tx_queues = txqs;
10937 	if (netif_alloc_netdev_queues(dev))
10938 		goto free_all;
10939 
10940 	dev->num_rx_queues = rxqs;
10941 	dev->real_num_rx_queues = rxqs;
10942 	if (netif_alloc_rx_queues(dev))
10943 		goto free_all;
10944 
10945 	strcpy(dev->name, name);
10946 	dev->name_assign_type = name_assign_type;
10947 	dev->group = INIT_NETDEV_GROUP;
10948 	if (!dev->ethtool_ops)
10949 		dev->ethtool_ops = &default_ethtool_ops;
10950 
10951 	nf_hook_netdev_init(dev);
10952 
10953 	return dev;
10954 
10955 free_all:
10956 	free_netdev(dev);
10957 	return NULL;
10958 
10959 free_pcpu:
10960 #ifdef CONFIG_PCPU_DEV_REFCNT
10961 	free_percpu(dev->pcpu_refcnt);
10962 free_dev:
10963 #endif
10964 	netdev_freemem(dev);
10965 	return NULL;
10966 }
10967 EXPORT_SYMBOL(alloc_netdev_mqs);
10968 
10969 /**
10970  * free_netdev - free network device
10971  * @dev: device
10972  *
10973  * This function does the last stage of destroying an allocated device
10974  * interface. The reference to the device object is released. If this
10975  * is the last reference then it will be freed.Must be called in process
10976  * context.
10977  */
10978 void free_netdev(struct net_device *dev)
10979 {
10980 	struct napi_struct *p, *n;
10981 
10982 	might_sleep();
10983 
10984 	/* When called immediately after register_netdevice() failed the unwind
10985 	 * handling may still be dismantling the device. Handle that case by
10986 	 * deferring the free.
10987 	 */
10988 	if (dev->reg_state == NETREG_UNREGISTERING) {
10989 		ASSERT_RTNL();
10990 		dev->needs_free_netdev = true;
10991 		return;
10992 	}
10993 
10994 	netif_free_tx_queues(dev);
10995 	netif_free_rx_queues(dev);
10996 
10997 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10998 
10999 	/* Flush device addresses */
11000 	dev_addr_flush(dev);
11001 
11002 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
11003 		netif_napi_del(p);
11004 
11005 	ref_tracker_dir_exit(&dev->refcnt_tracker);
11006 #ifdef CONFIG_PCPU_DEV_REFCNT
11007 	free_percpu(dev->pcpu_refcnt);
11008 	dev->pcpu_refcnt = NULL;
11009 #endif
11010 	free_percpu(dev->core_stats);
11011 	dev->core_stats = NULL;
11012 	free_percpu(dev->xdp_bulkq);
11013 	dev->xdp_bulkq = NULL;
11014 
11015 	/*  Compatibility with error handling in drivers */
11016 	if (dev->reg_state == NETREG_UNINITIALIZED) {
11017 		netdev_freemem(dev);
11018 		return;
11019 	}
11020 
11021 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
11022 	WRITE_ONCE(dev->reg_state, NETREG_RELEASED);
11023 
11024 	/* will free via device release */
11025 	put_device(&dev->dev);
11026 }
11027 EXPORT_SYMBOL(free_netdev);
11028 
11029 /**
11030  *	synchronize_net -  Synchronize with packet receive processing
11031  *
11032  *	Wait for packets currently being received to be done.
11033  *	Does not block later packets from starting.
11034  */
11035 void synchronize_net(void)
11036 {
11037 	might_sleep();
11038 	if (rtnl_is_locked())
11039 		synchronize_rcu_expedited();
11040 	else
11041 		synchronize_rcu();
11042 }
11043 EXPORT_SYMBOL(synchronize_net);
11044 
11045 /**
11046  *	unregister_netdevice_queue - remove device from the kernel
11047  *	@dev: device
11048  *	@head: list
11049  *
11050  *	This function shuts down a device interface and removes it
11051  *	from the kernel tables.
11052  *	If head not NULL, device is queued to be unregistered later.
11053  *
11054  *	Callers must hold the rtnl semaphore.  You may want
11055  *	unregister_netdev() instead of this.
11056  */
11057 
11058 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
11059 {
11060 	ASSERT_RTNL();
11061 
11062 	if (head) {
11063 		list_move_tail(&dev->unreg_list, head);
11064 	} else {
11065 		LIST_HEAD(single);
11066 
11067 		list_add(&dev->unreg_list, &single);
11068 		unregister_netdevice_many(&single);
11069 	}
11070 }
11071 EXPORT_SYMBOL(unregister_netdevice_queue);
11072 
11073 void unregister_netdevice_many_notify(struct list_head *head,
11074 				      u32 portid, const struct nlmsghdr *nlh)
11075 {
11076 	struct net_device *dev, *tmp;
11077 	LIST_HEAD(close_head);
11078 	int cnt = 0;
11079 
11080 	BUG_ON(dev_boot_phase);
11081 	ASSERT_RTNL();
11082 
11083 	if (list_empty(head))
11084 		return;
11085 
11086 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
11087 		/* Some devices call without registering
11088 		 * for initialization unwind. Remove those
11089 		 * devices and proceed with the remaining.
11090 		 */
11091 		if (dev->reg_state == NETREG_UNINITIALIZED) {
11092 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
11093 				 dev->name, dev);
11094 
11095 			WARN_ON(1);
11096 			list_del(&dev->unreg_list);
11097 			continue;
11098 		}
11099 		dev->dismantle = true;
11100 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
11101 	}
11102 
11103 	/* If device is running, close it first. */
11104 	list_for_each_entry(dev, head, unreg_list)
11105 		list_add_tail(&dev->close_list, &close_head);
11106 	dev_close_many(&close_head, true);
11107 
11108 	list_for_each_entry(dev, head, unreg_list) {
11109 		/* And unlink it from device chain. */
11110 		unlist_netdevice(dev);
11111 		WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERING);
11112 	}
11113 	flush_all_backlogs();
11114 
11115 	synchronize_net();
11116 
11117 	list_for_each_entry(dev, head, unreg_list) {
11118 		struct sk_buff *skb = NULL;
11119 
11120 		/* Shutdown queueing discipline. */
11121 		dev_shutdown(dev);
11122 		dev_tcx_uninstall(dev);
11123 		dev_xdp_uninstall(dev);
11124 		bpf_dev_bound_netdev_unregister(dev);
11125 
11126 		netdev_offload_xstats_disable_all(dev);
11127 
11128 		/* Notify protocols, that we are about to destroy
11129 		 * this device. They should clean all the things.
11130 		 */
11131 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11132 
11133 		if (!dev->rtnl_link_ops ||
11134 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11135 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11136 						     GFP_KERNEL, NULL, 0,
11137 						     portid, nlh);
11138 
11139 		/*
11140 		 *	Flush the unicast and multicast chains
11141 		 */
11142 		dev_uc_flush(dev);
11143 		dev_mc_flush(dev);
11144 
11145 		netdev_name_node_alt_flush(dev);
11146 		netdev_name_node_free(dev->name_node);
11147 
11148 		call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
11149 
11150 		if (dev->netdev_ops->ndo_uninit)
11151 			dev->netdev_ops->ndo_uninit(dev);
11152 
11153 		if (skb)
11154 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
11155 
11156 		/* Notifier chain MUST detach us all upper devices. */
11157 		WARN_ON(netdev_has_any_upper_dev(dev));
11158 		WARN_ON(netdev_has_any_lower_dev(dev));
11159 
11160 		/* Remove entries from kobject tree */
11161 		netdev_unregister_kobject(dev);
11162 #ifdef CONFIG_XPS
11163 		/* Remove XPS queueing entries */
11164 		netif_reset_xps_queues_gt(dev, 0);
11165 #endif
11166 	}
11167 
11168 	synchronize_net();
11169 
11170 	list_for_each_entry(dev, head, unreg_list) {
11171 		netdev_put(dev, &dev->dev_registered_tracker);
11172 		net_set_todo(dev);
11173 		cnt++;
11174 	}
11175 	atomic_add(cnt, &dev_unreg_count);
11176 
11177 	list_del(head);
11178 }
11179 
11180 /**
11181  *	unregister_netdevice_many - unregister many devices
11182  *	@head: list of devices
11183  *
11184  *  Note: As most callers use a stack allocated list_head,
11185  *  we force a list_del() to make sure stack wont be corrupted later.
11186  */
11187 void unregister_netdevice_many(struct list_head *head)
11188 {
11189 	unregister_netdevice_many_notify(head, 0, NULL);
11190 }
11191 EXPORT_SYMBOL(unregister_netdevice_many);
11192 
11193 /**
11194  *	unregister_netdev - remove device from the kernel
11195  *	@dev: device
11196  *
11197  *	This function shuts down a device interface and removes it
11198  *	from the kernel tables.
11199  *
11200  *	This is just a wrapper for unregister_netdevice that takes
11201  *	the rtnl semaphore.  In general you want to use this and not
11202  *	unregister_netdevice.
11203  */
11204 void unregister_netdev(struct net_device *dev)
11205 {
11206 	rtnl_lock();
11207 	unregister_netdevice(dev);
11208 	rtnl_unlock();
11209 }
11210 EXPORT_SYMBOL(unregister_netdev);
11211 
11212 /**
11213  *	__dev_change_net_namespace - move device to different nethost namespace
11214  *	@dev: device
11215  *	@net: network namespace
11216  *	@pat: If not NULL name pattern to try if the current device name
11217  *	      is already taken in the destination network namespace.
11218  *	@new_ifindex: If not zero, specifies device index in the target
11219  *	              namespace.
11220  *
11221  *	This function shuts down a device interface and moves it
11222  *	to a new network namespace. On success 0 is returned, on
11223  *	a failure a netagive errno code is returned.
11224  *
11225  *	Callers must hold the rtnl semaphore.
11226  */
11227 
11228 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11229 			       const char *pat, int new_ifindex)
11230 {
11231 	struct netdev_name_node *name_node;
11232 	struct net *net_old = dev_net(dev);
11233 	char new_name[IFNAMSIZ] = {};
11234 	int err, new_nsid;
11235 
11236 	ASSERT_RTNL();
11237 
11238 	/* Don't allow namespace local devices to be moved. */
11239 	err = -EINVAL;
11240 	if (dev->features & NETIF_F_NETNS_LOCAL)
11241 		goto out;
11242 
11243 	/* Ensure the device has been registrered */
11244 	if (dev->reg_state != NETREG_REGISTERED)
11245 		goto out;
11246 
11247 	/* Get out if there is nothing todo */
11248 	err = 0;
11249 	if (net_eq(net_old, net))
11250 		goto out;
11251 
11252 	/* Pick the destination device name, and ensure
11253 	 * we can use it in the destination network namespace.
11254 	 */
11255 	err = -EEXIST;
11256 	if (netdev_name_in_use(net, dev->name)) {
11257 		/* We get here if we can't use the current device name */
11258 		if (!pat)
11259 			goto out;
11260 		err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST);
11261 		if (err < 0)
11262 			goto out;
11263 	}
11264 	/* Check that none of the altnames conflicts. */
11265 	err = -EEXIST;
11266 	netdev_for_each_altname(dev, name_node)
11267 		if (netdev_name_in_use(net, name_node->name))
11268 			goto out;
11269 
11270 	/* Check that new_ifindex isn't used yet. */
11271 	if (new_ifindex) {
11272 		err = dev_index_reserve(net, new_ifindex);
11273 		if (err < 0)
11274 			goto out;
11275 	} else {
11276 		/* If there is an ifindex conflict assign a new one */
11277 		err = dev_index_reserve(net, dev->ifindex);
11278 		if (err == -EBUSY)
11279 			err = dev_index_reserve(net, 0);
11280 		if (err < 0)
11281 			goto out;
11282 		new_ifindex = err;
11283 	}
11284 
11285 	/*
11286 	 * And now a mini version of register_netdevice unregister_netdevice.
11287 	 */
11288 
11289 	/* If device is running close it first. */
11290 	dev_close(dev);
11291 
11292 	/* And unlink it from device chain */
11293 	unlist_netdevice(dev);
11294 
11295 	synchronize_net();
11296 
11297 	/* Shutdown queueing discipline. */
11298 	dev_shutdown(dev);
11299 
11300 	/* Notify protocols, that we are about to destroy
11301 	 * this device. They should clean all the things.
11302 	 *
11303 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
11304 	 * This is wanted because this way 8021q and macvlan know
11305 	 * the device is just moving and can keep their slaves up.
11306 	 */
11307 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11308 	rcu_barrier();
11309 
11310 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11311 
11312 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11313 			    new_ifindex);
11314 
11315 	/*
11316 	 *	Flush the unicast and multicast chains
11317 	 */
11318 	dev_uc_flush(dev);
11319 	dev_mc_flush(dev);
11320 
11321 	/* Send a netdev-removed uevent to the old namespace */
11322 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11323 	netdev_adjacent_del_links(dev);
11324 
11325 	/* Move per-net netdevice notifiers that are following the netdevice */
11326 	move_netdevice_notifiers_dev_net(dev, net);
11327 
11328 	/* Actually switch the network namespace */
11329 	dev_net_set(dev, net);
11330 	dev->ifindex = new_ifindex;
11331 
11332 	if (new_name[0]) /* Rename the netdev to prepared name */
11333 		strscpy(dev->name, new_name, IFNAMSIZ);
11334 
11335 	/* Fixup kobjects */
11336 	dev_set_uevent_suppress(&dev->dev, 1);
11337 	err = device_rename(&dev->dev, dev->name);
11338 	dev_set_uevent_suppress(&dev->dev, 0);
11339 	WARN_ON(err);
11340 
11341 	/* Send a netdev-add uevent to the new namespace */
11342 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11343 	netdev_adjacent_add_links(dev);
11344 
11345 	/* Adapt owner in case owning user namespace of target network
11346 	 * namespace is different from the original one.
11347 	 */
11348 	err = netdev_change_owner(dev, net_old, net);
11349 	WARN_ON(err);
11350 
11351 	/* Add the device back in the hashes */
11352 	list_netdevice(dev);
11353 
11354 	/* Notify protocols, that a new device appeared. */
11355 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
11356 
11357 	/*
11358 	 *	Prevent userspace races by waiting until the network
11359 	 *	device is fully setup before sending notifications.
11360 	 */
11361 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11362 
11363 	synchronize_net();
11364 	err = 0;
11365 out:
11366 	return err;
11367 }
11368 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11369 
11370 static int dev_cpu_dead(unsigned int oldcpu)
11371 {
11372 	struct sk_buff **list_skb;
11373 	struct sk_buff *skb;
11374 	unsigned int cpu;
11375 	struct softnet_data *sd, *oldsd, *remsd = NULL;
11376 
11377 	local_irq_disable();
11378 	cpu = smp_processor_id();
11379 	sd = &per_cpu(softnet_data, cpu);
11380 	oldsd = &per_cpu(softnet_data, oldcpu);
11381 
11382 	/* Find end of our completion_queue. */
11383 	list_skb = &sd->completion_queue;
11384 	while (*list_skb)
11385 		list_skb = &(*list_skb)->next;
11386 	/* Append completion queue from offline CPU. */
11387 	*list_skb = oldsd->completion_queue;
11388 	oldsd->completion_queue = NULL;
11389 
11390 	/* Append output queue from offline CPU. */
11391 	if (oldsd->output_queue) {
11392 		*sd->output_queue_tailp = oldsd->output_queue;
11393 		sd->output_queue_tailp = oldsd->output_queue_tailp;
11394 		oldsd->output_queue = NULL;
11395 		oldsd->output_queue_tailp = &oldsd->output_queue;
11396 	}
11397 	/* Append NAPI poll list from offline CPU, with one exception :
11398 	 * process_backlog() must be called by cpu owning percpu backlog.
11399 	 * We properly handle process_queue & input_pkt_queue later.
11400 	 */
11401 	while (!list_empty(&oldsd->poll_list)) {
11402 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11403 							    struct napi_struct,
11404 							    poll_list);
11405 
11406 		list_del_init(&napi->poll_list);
11407 		if (napi->poll == process_backlog)
11408 			napi->state = 0;
11409 		else
11410 			____napi_schedule(sd, napi);
11411 	}
11412 
11413 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
11414 	local_irq_enable();
11415 
11416 #ifdef CONFIG_RPS
11417 	remsd = oldsd->rps_ipi_list;
11418 	oldsd->rps_ipi_list = NULL;
11419 #endif
11420 	/* send out pending IPI's on offline CPU */
11421 	net_rps_send_ipi(remsd);
11422 
11423 	/* Process offline CPU's input_pkt_queue */
11424 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11425 		netif_rx(skb);
11426 		input_queue_head_incr(oldsd);
11427 	}
11428 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11429 		netif_rx(skb);
11430 		input_queue_head_incr(oldsd);
11431 	}
11432 
11433 	return 0;
11434 }
11435 
11436 /**
11437  *	netdev_increment_features - increment feature set by one
11438  *	@all: current feature set
11439  *	@one: new feature set
11440  *	@mask: mask feature set
11441  *
11442  *	Computes a new feature set after adding a device with feature set
11443  *	@one to the master device with current feature set @all.  Will not
11444  *	enable anything that is off in @mask. Returns the new feature set.
11445  */
11446 netdev_features_t netdev_increment_features(netdev_features_t all,
11447 	netdev_features_t one, netdev_features_t mask)
11448 {
11449 	if (mask & NETIF_F_HW_CSUM)
11450 		mask |= NETIF_F_CSUM_MASK;
11451 	mask |= NETIF_F_VLAN_CHALLENGED;
11452 
11453 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11454 	all &= one | ~NETIF_F_ALL_FOR_ALL;
11455 
11456 	/* If one device supports hw checksumming, set for all. */
11457 	if (all & NETIF_F_HW_CSUM)
11458 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11459 
11460 	return all;
11461 }
11462 EXPORT_SYMBOL(netdev_increment_features);
11463 
11464 static struct hlist_head * __net_init netdev_create_hash(void)
11465 {
11466 	int i;
11467 	struct hlist_head *hash;
11468 
11469 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11470 	if (hash != NULL)
11471 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
11472 			INIT_HLIST_HEAD(&hash[i]);
11473 
11474 	return hash;
11475 }
11476 
11477 /* Initialize per network namespace state */
11478 static int __net_init netdev_init(struct net *net)
11479 {
11480 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
11481 		     8 * sizeof_field(struct napi_struct, gro_bitmask));
11482 
11483 	INIT_LIST_HEAD(&net->dev_base_head);
11484 
11485 	net->dev_name_head = netdev_create_hash();
11486 	if (net->dev_name_head == NULL)
11487 		goto err_name;
11488 
11489 	net->dev_index_head = netdev_create_hash();
11490 	if (net->dev_index_head == NULL)
11491 		goto err_idx;
11492 
11493 	xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1);
11494 
11495 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11496 
11497 	return 0;
11498 
11499 err_idx:
11500 	kfree(net->dev_name_head);
11501 err_name:
11502 	return -ENOMEM;
11503 }
11504 
11505 /**
11506  *	netdev_drivername - network driver for the device
11507  *	@dev: network device
11508  *
11509  *	Determine network driver for device.
11510  */
11511 const char *netdev_drivername(const struct net_device *dev)
11512 {
11513 	const struct device_driver *driver;
11514 	const struct device *parent;
11515 	const char *empty = "";
11516 
11517 	parent = dev->dev.parent;
11518 	if (!parent)
11519 		return empty;
11520 
11521 	driver = parent->driver;
11522 	if (driver && driver->name)
11523 		return driver->name;
11524 	return empty;
11525 }
11526 
11527 static void __netdev_printk(const char *level, const struct net_device *dev,
11528 			    struct va_format *vaf)
11529 {
11530 	if (dev && dev->dev.parent) {
11531 		dev_printk_emit(level[1] - '0',
11532 				dev->dev.parent,
11533 				"%s %s %s%s: %pV",
11534 				dev_driver_string(dev->dev.parent),
11535 				dev_name(dev->dev.parent),
11536 				netdev_name(dev), netdev_reg_state(dev),
11537 				vaf);
11538 	} else if (dev) {
11539 		printk("%s%s%s: %pV",
11540 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
11541 	} else {
11542 		printk("%s(NULL net_device): %pV", level, vaf);
11543 	}
11544 }
11545 
11546 void netdev_printk(const char *level, const struct net_device *dev,
11547 		   const char *format, ...)
11548 {
11549 	struct va_format vaf;
11550 	va_list args;
11551 
11552 	va_start(args, format);
11553 
11554 	vaf.fmt = format;
11555 	vaf.va = &args;
11556 
11557 	__netdev_printk(level, dev, &vaf);
11558 
11559 	va_end(args);
11560 }
11561 EXPORT_SYMBOL(netdev_printk);
11562 
11563 #define define_netdev_printk_level(func, level)			\
11564 void func(const struct net_device *dev, const char *fmt, ...)	\
11565 {								\
11566 	struct va_format vaf;					\
11567 	va_list args;						\
11568 								\
11569 	va_start(args, fmt);					\
11570 								\
11571 	vaf.fmt = fmt;						\
11572 	vaf.va = &args;						\
11573 								\
11574 	__netdev_printk(level, dev, &vaf);			\
11575 								\
11576 	va_end(args);						\
11577 }								\
11578 EXPORT_SYMBOL(func);
11579 
11580 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11581 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11582 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11583 define_netdev_printk_level(netdev_err, KERN_ERR);
11584 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11585 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11586 define_netdev_printk_level(netdev_info, KERN_INFO);
11587 
11588 static void __net_exit netdev_exit(struct net *net)
11589 {
11590 	kfree(net->dev_name_head);
11591 	kfree(net->dev_index_head);
11592 	xa_destroy(&net->dev_by_index);
11593 	if (net != &init_net)
11594 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11595 }
11596 
11597 static struct pernet_operations __net_initdata netdev_net_ops = {
11598 	.init = netdev_init,
11599 	.exit = netdev_exit,
11600 };
11601 
11602 static void __net_exit default_device_exit_net(struct net *net)
11603 {
11604 	struct netdev_name_node *name_node, *tmp;
11605 	struct net_device *dev, *aux;
11606 	/*
11607 	 * Push all migratable network devices back to the
11608 	 * initial network namespace
11609 	 */
11610 	ASSERT_RTNL();
11611 	for_each_netdev_safe(net, dev, aux) {
11612 		int err;
11613 		char fb_name[IFNAMSIZ];
11614 
11615 		/* Ignore unmoveable devices (i.e. loopback) */
11616 		if (dev->features & NETIF_F_NETNS_LOCAL)
11617 			continue;
11618 
11619 		/* Leave virtual devices for the generic cleanup */
11620 		if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11621 			continue;
11622 
11623 		/* Push remaining network devices to init_net */
11624 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11625 		if (netdev_name_in_use(&init_net, fb_name))
11626 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
11627 
11628 		netdev_for_each_altname_safe(dev, name_node, tmp)
11629 			if (netdev_name_in_use(&init_net, name_node->name))
11630 				__netdev_name_node_alt_destroy(name_node);
11631 
11632 		err = dev_change_net_namespace(dev, &init_net, fb_name);
11633 		if (err) {
11634 			pr_emerg("%s: failed to move %s to init_net: %d\n",
11635 				 __func__, dev->name, err);
11636 			BUG();
11637 		}
11638 	}
11639 }
11640 
11641 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11642 {
11643 	/* At exit all network devices most be removed from a network
11644 	 * namespace.  Do this in the reverse order of registration.
11645 	 * Do this across as many network namespaces as possible to
11646 	 * improve batching efficiency.
11647 	 */
11648 	struct net_device *dev;
11649 	struct net *net;
11650 	LIST_HEAD(dev_kill_list);
11651 
11652 	rtnl_lock();
11653 	list_for_each_entry(net, net_list, exit_list) {
11654 		default_device_exit_net(net);
11655 		cond_resched();
11656 	}
11657 
11658 	list_for_each_entry(net, net_list, exit_list) {
11659 		for_each_netdev_reverse(net, dev) {
11660 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11661 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11662 			else
11663 				unregister_netdevice_queue(dev, &dev_kill_list);
11664 		}
11665 	}
11666 	unregister_netdevice_many(&dev_kill_list);
11667 	rtnl_unlock();
11668 }
11669 
11670 static struct pernet_operations __net_initdata default_device_ops = {
11671 	.exit_batch = default_device_exit_batch,
11672 };
11673 
11674 static void __init net_dev_struct_check(void)
11675 {
11676 	/* TX read-mostly hotpath */
11677 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, priv_flags);
11678 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, netdev_ops);
11679 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, header_ops);
11680 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, _tx);
11681 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, real_num_tx_queues);
11682 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_size);
11683 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_ipv4_max_size);
11684 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_segs);
11685 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_partial_features);
11686 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, num_tc);
11687 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, mtu);
11688 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, needed_headroom);
11689 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tc_to_txq);
11690 #ifdef CONFIG_XPS
11691 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, xps_maps);
11692 #endif
11693 #ifdef CONFIG_NETFILTER_EGRESS
11694 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, nf_hooks_egress);
11695 #endif
11696 #ifdef CONFIG_NET_XGRESS
11697 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tcx_egress);
11698 #endif
11699 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_tx, 160);
11700 
11701 	/* TXRX read-mostly hotpath */
11702 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, lstats);
11703 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, flags);
11704 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, hard_header_len);
11705 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, features);
11706 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, ip6_ptr);
11707 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_txrx, 38);
11708 
11709 	/* RX read-mostly hotpath */
11710 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ptype_specific);
11711 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ifindex);
11712 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, real_num_rx_queues);
11713 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, _rx);
11714 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_flush_timeout);
11715 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, napi_defer_hard_irqs);
11716 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_max_size);
11717 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_ipv4_max_size);
11718 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler);
11719 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler_data);
11720 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, nd_net);
11721 #ifdef CONFIG_NETPOLL
11722 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, npinfo);
11723 #endif
11724 #ifdef CONFIG_NET_XGRESS
11725 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, tcx_ingress);
11726 #endif
11727 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_rx, 104);
11728 }
11729 
11730 /*
11731  *	Initialize the DEV module. At boot time this walks the device list and
11732  *	unhooks any devices that fail to initialise (normally hardware not
11733  *	present) and leaves us with a valid list of present and active devices.
11734  *
11735  */
11736 
11737 /* We allocate 256 pages for each CPU if PAGE_SHIFT is 12 */
11738 #define SYSTEM_PERCPU_PAGE_POOL_SIZE	((1 << 20) / PAGE_SIZE)
11739 
11740 static int net_page_pool_create(int cpuid)
11741 {
11742 #if IS_ENABLED(CONFIG_PAGE_POOL)
11743 	struct page_pool_params page_pool_params = {
11744 		.pool_size = SYSTEM_PERCPU_PAGE_POOL_SIZE,
11745 		.flags = PP_FLAG_SYSTEM_POOL,
11746 		.nid = NUMA_NO_NODE,
11747 	};
11748 	struct page_pool *pp_ptr;
11749 
11750 	pp_ptr = page_pool_create_percpu(&page_pool_params, cpuid);
11751 	if (IS_ERR(pp_ptr))
11752 		return -ENOMEM;
11753 
11754 	per_cpu(system_page_pool, cpuid) = pp_ptr;
11755 #endif
11756 	return 0;
11757 }
11758 
11759 /*
11760  *       This is called single threaded during boot, so no need
11761  *       to take the rtnl semaphore.
11762  */
11763 static int __init net_dev_init(void)
11764 {
11765 	int i, rc = -ENOMEM;
11766 
11767 	BUG_ON(!dev_boot_phase);
11768 
11769 	net_dev_struct_check();
11770 
11771 	if (dev_proc_init())
11772 		goto out;
11773 
11774 	if (netdev_kobject_init())
11775 		goto out;
11776 
11777 	INIT_LIST_HEAD(&ptype_all);
11778 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
11779 		INIT_LIST_HEAD(&ptype_base[i]);
11780 
11781 	if (register_pernet_subsys(&netdev_net_ops))
11782 		goto out;
11783 
11784 	/*
11785 	 *	Initialise the packet receive queues.
11786 	 */
11787 
11788 	for_each_possible_cpu(i) {
11789 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11790 		struct softnet_data *sd = &per_cpu(softnet_data, i);
11791 
11792 		INIT_WORK(flush, flush_backlog);
11793 
11794 		skb_queue_head_init(&sd->input_pkt_queue);
11795 		skb_queue_head_init(&sd->process_queue);
11796 #ifdef CONFIG_XFRM_OFFLOAD
11797 		skb_queue_head_init(&sd->xfrm_backlog);
11798 #endif
11799 		INIT_LIST_HEAD(&sd->poll_list);
11800 		sd->output_queue_tailp = &sd->output_queue;
11801 #ifdef CONFIG_RPS
11802 		INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11803 		sd->cpu = i;
11804 #endif
11805 		INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
11806 		spin_lock_init(&sd->defer_lock);
11807 
11808 		init_gro_hash(&sd->backlog);
11809 		sd->backlog.poll = process_backlog;
11810 		sd->backlog.weight = weight_p;
11811 
11812 		if (net_page_pool_create(i))
11813 			goto out;
11814 	}
11815 
11816 	dev_boot_phase = 0;
11817 
11818 	/* The loopback device is special if any other network devices
11819 	 * is present in a network namespace the loopback device must
11820 	 * be present. Since we now dynamically allocate and free the
11821 	 * loopback device ensure this invariant is maintained by
11822 	 * keeping the loopback device as the first device on the
11823 	 * list of network devices.  Ensuring the loopback devices
11824 	 * is the first device that appears and the last network device
11825 	 * that disappears.
11826 	 */
11827 	if (register_pernet_device(&loopback_net_ops))
11828 		goto out;
11829 
11830 	if (register_pernet_device(&default_device_ops))
11831 		goto out;
11832 
11833 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11834 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11835 
11836 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11837 				       NULL, dev_cpu_dead);
11838 	WARN_ON(rc < 0);
11839 	rc = 0;
11840 out:
11841 	if (rc < 0) {
11842 		for_each_possible_cpu(i) {
11843 			struct page_pool *pp_ptr;
11844 
11845 			pp_ptr = per_cpu(system_page_pool, i);
11846 			if (!pp_ptr)
11847 				continue;
11848 
11849 			page_pool_destroy(pp_ptr);
11850 			per_cpu(system_page_pool, i) = NULL;
11851 		}
11852 	}
11853 
11854 	return rc;
11855 }
11856 
11857 subsys_initcall(net_dev_init);
11858