xref: /linux/net/core/dev.c (revision 498d319bb512992ef0784c278fa03679f2f5649d)
1 /*
2  * 	NET3	Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  * 		Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *              			to 2 if register_netdev gets called
25  *              			before net_dev_init & also removed a
26  *              			few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *		Alan Cox	: 	Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *		Alan Cox	: 	Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *              			indefinitely on dev->refcnt
71  * 		J Hadi Salim	:	- Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/pkt_sched.h>
103 #include <net/checksum.h>
104 #include <net/xfrm.h>
105 #include <linux/highmem.h>
106 #include <linux/init.h>
107 #include <linux/module.h>
108 #include <linux/netpoll.h>
109 #include <linux/rcupdate.h>
110 #include <linux/delay.h>
111 #include <net/iw_handler.h>
112 #include <asm/current.h>
113 #include <linux/audit.h>
114 #include <linux/dmaengine.h>
115 #include <linux/err.h>
116 #include <linux/ctype.h>
117 #include <linux/if_arp.h>
118 #include <linux/if_vlan.h>
119 #include <linux/ip.h>
120 #include <net/ip.h>
121 #include <linux/ipv6.h>
122 #include <linux/in.h>
123 #include <linux/jhash.h>
124 #include <linux/random.h>
125 #include <trace/events/napi.h>
126 #include <trace/events/net.h>
127 #include <trace/events/skb.h>
128 #include <linux/pci.h>
129 #include <linux/inetdevice.h>
130 #include <linux/cpu_rmap.h>
131 #include <linux/static_key.h>
132 #include <linux/hashtable.h>
133 #include <linux/vmalloc.h>
134 
135 #include "net-sysfs.h"
136 
137 /* Instead of increasing this, you should create a hash table. */
138 #define MAX_GRO_SKBS 8
139 
140 /* This should be increased if a protocol with a bigger head is added. */
141 #define GRO_MAX_HEAD (MAX_HEADER + 128)
142 
143 static DEFINE_SPINLOCK(ptype_lock);
144 static DEFINE_SPINLOCK(offload_lock);
145 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
146 struct list_head ptype_all __read_mostly;	/* Taps */
147 static struct list_head offload_base __read_mostly;
148 
149 /*
150  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
151  * semaphore.
152  *
153  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
154  *
155  * Writers must hold the rtnl semaphore while they loop through the
156  * dev_base_head list, and hold dev_base_lock for writing when they do the
157  * actual updates.  This allows pure readers to access the list even
158  * while a writer is preparing to update it.
159  *
160  * To put it another way, dev_base_lock is held for writing only to
161  * protect against pure readers; the rtnl semaphore provides the
162  * protection against other writers.
163  *
164  * See, for example usages, register_netdevice() and
165  * unregister_netdevice(), which must be called with the rtnl
166  * semaphore held.
167  */
168 DEFINE_RWLOCK(dev_base_lock);
169 EXPORT_SYMBOL(dev_base_lock);
170 
171 /* protects napi_hash addition/deletion and napi_gen_id */
172 static DEFINE_SPINLOCK(napi_hash_lock);
173 
174 static unsigned int napi_gen_id;
175 static DEFINE_HASHTABLE(napi_hash, 8);
176 
177 static seqcount_t devnet_rename_seq;
178 
179 static inline void dev_base_seq_inc(struct net *net)
180 {
181 	while (++net->dev_base_seq == 0);
182 }
183 
184 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
185 {
186 	unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
187 
188 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
189 }
190 
191 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
192 {
193 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
194 }
195 
196 static inline void rps_lock(struct softnet_data *sd)
197 {
198 #ifdef CONFIG_RPS
199 	spin_lock(&sd->input_pkt_queue.lock);
200 #endif
201 }
202 
203 static inline void rps_unlock(struct softnet_data *sd)
204 {
205 #ifdef CONFIG_RPS
206 	spin_unlock(&sd->input_pkt_queue.lock);
207 #endif
208 }
209 
210 /* Device list insertion */
211 static void list_netdevice(struct net_device *dev)
212 {
213 	struct net *net = dev_net(dev);
214 
215 	ASSERT_RTNL();
216 
217 	write_lock_bh(&dev_base_lock);
218 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
219 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
220 	hlist_add_head_rcu(&dev->index_hlist,
221 			   dev_index_hash(net, dev->ifindex));
222 	write_unlock_bh(&dev_base_lock);
223 
224 	dev_base_seq_inc(net);
225 }
226 
227 /* Device list removal
228  * caller must respect a RCU grace period before freeing/reusing dev
229  */
230 static void unlist_netdevice(struct net_device *dev)
231 {
232 	ASSERT_RTNL();
233 
234 	/* Unlink dev from the device chain */
235 	write_lock_bh(&dev_base_lock);
236 	list_del_rcu(&dev->dev_list);
237 	hlist_del_rcu(&dev->name_hlist);
238 	hlist_del_rcu(&dev->index_hlist);
239 	write_unlock_bh(&dev_base_lock);
240 
241 	dev_base_seq_inc(dev_net(dev));
242 }
243 
244 /*
245  *	Our notifier list
246  */
247 
248 static RAW_NOTIFIER_HEAD(netdev_chain);
249 
250 /*
251  *	Device drivers call our routines to queue packets here. We empty the
252  *	queue in the local softnet handler.
253  */
254 
255 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
256 EXPORT_PER_CPU_SYMBOL(softnet_data);
257 
258 #ifdef CONFIG_LOCKDEP
259 /*
260  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
261  * according to dev->type
262  */
263 static const unsigned short netdev_lock_type[] =
264 	{ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
265 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
266 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
267 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
268 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
269 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
270 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
271 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
272 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
273 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
274 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
275 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
276 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
277 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
278 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
279 
280 static const char *const netdev_lock_name[] =
281 	{"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
282 	 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
283 	 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
284 	 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
285 	 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
286 	 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
287 	 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
288 	 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
289 	 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
290 	 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
291 	 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
292 	 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
293 	 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
294 	 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
295 	 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
296 
297 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
298 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
299 
300 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
301 {
302 	int i;
303 
304 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
305 		if (netdev_lock_type[i] == dev_type)
306 			return i;
307 	/* the last key is used by default */
308 	return ARRAY_SIZE(netdev_lock_type) - 1;
309 }
310 
311 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
312 						 unsigned short dev_type)
313 {
314 	int i;
315 
316 	i = netdev_lock_pos(dev_type);
317 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
318 				   netdev_lock_name[i]);
319 }
320 
321 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
322 {
323 	int i;
324 
325 	i = netdev_lock_pos(dev->type);
326 	lockdep_set_class_and_name(&dev->addr_list_lock,
327 				   &netdev_addr_lock_key[i],
328 				   netdev_lock_name[i]);
329 }
330 #else
331 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
332 						 unsigned short dev_type)
333 {
334 }
335 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
336 {
337 }
338 #endif
339 
340 /*******************************************************************************
341 
342 		Protocol management and registration routines
343 
344 *******************************************************************************/
345 
346 /*
347  *	Add a protocol ID to the list. Now that the input handler is
348  *	smarter we can dispense with all the messy stuff that used to be
349  *	here.
350  *
351  *	BEWARE!!! Protocol handlers, mangling input packets,
352  *	MUST BE last in hash buckets and checking protocol handlers
353  *	MUST start from promiscuous ptype_all chain in net_bh.
354  *	It is true now, do not change it.
355  *	Explanation follows: if protocol handler, mangling packet, will
356  *	be the first on list, it is not able to sense, that packet
357  *	is cloned and should be copied-on-write, so that it will
358  *	change it and subsequent readers will get broken packet.
359  *							--ANK (980803)
360  */
361 
362 static inline struct list_head *ptype_head(const struct packet_type *pt)
363 {
364 	if (pt->type == htons(ETH_P_ALL))
365 		return &ptype_all;
366 	else
367 		return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
368 }
369 
370 /**
371  *	dev_add_pack - add packet handler
372  *	@pt: packet type declaration
373  *
374  *	Add a protocol handler to the networking stack. The passed &packet_type
375  *	is linked into kernel lists and may not be freed until it has been
376  *	removed from the kernel lists.
377  *
378  *	This call does not sleep therefore it can not
379  *	guarantee all CPU's that are in middle of receiving packets
380  *	will see the new packet type (until the next received packet).
381  */
382 
383 void dev_add_pack(struct packet_type *pt)
384 {
385 	struct list_head *head = ptype_head(pt);
386 
387 	spin_lock(&ptype_lock);
388 	list_add_rcu(&pt->list, head);
389 	spin_unlock(&ptype_lock);
390 }
391 EXPORT_SYMBOL(dev_add_pack);
392 
393 /**
394  *	__dev_remove_pack	 - remove packet handler
395  *	@pt: packet type declaration
396  *
397  *	Remove a protocol handler that was previously added to the kernel
398  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
399  *	from the kernel lists and can be freed or reused once this function
400  *	returns.
401  *
402  *      The packet type might still be in use by receivers
403  *	and must not be freed until after all the CPU's have gone
404  *	through a quiescent state.
405  */
406 void __dev_remove_pack(struct packet_type *pt)
407 {
408 	struct list_head *head = ptype_head(pt);
409 	struct packet_type *pt1;
410 
411 	spin_lock(&ptype_lock);
412 
413 	list_for_each_entry(pt1, head, list) {
414 		if (pt == pt1) {
415 			list_del_rcu(&pt->list);
416 			goto out;
417 		}
418 	}
419 
420 	pr_warn("dev_remove_pack: %p not found\n", pt);
421 out:
422 	spin_unlock(&ptype_lock);
423 }
424 EXPORT_SYMBOL(__dev_remove_pack);
425 
426 /**
427  *	dev_remove_pack	 - remove packet handler
428  *	@pt: packet type declaration
429  *
430  *	Remove a protocol handler that was previously added to the kernel
431  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
432  *	from the kernel lists and can be freed or reused once this function
433  *	returns.
434  *
435  *	This call sleeps to guarantee that no CPU is looking at the packet
436  *	type after return.
437  */
438 void dev_remove_pack(struct packet_type *pt)
439 {
440 	__dev_remove_pack(pt);
441 
442 	synchronize_net();
443 }
444 EXPORT_SYMBOL(dev_remove_pack);
445 
446 
447 /**
448  *	dev_add_offload - register offload handlers
449  *	@po: protocol offload declaration
450  *
451  *	Add protocol offload handlers to the networking stack. The passed
452  *	&proto_offload is linked into kernel lists and may not be freed until
453  *	it has been removed from the kernel lists.
454  *
455  *	This call does not sleep therefore it can not
456  *	guarantee all CPU's that are in middle of receiving packets
457  *	will see the new offload handlers (until the next received packet).
458  */
459 void dev_add_offload(struct packet_offload *po)
460 {
461 	struct list_head *head = &offload_base;
462 
463 	spin_lock(&offload_lock);
464 	list_add_rcu(&po->list, head);
465 	spin_unlock(&offload_lock);
466 }
467 EXPORT_SYMBOL(dev_add_offload);
468 
469 /**
470  *	__dev_remove_offload	 - remove offload handler
471  *	@po: packet offload declaration
472  *
473  *	Remove a protocol offload handler that was previously added to the
474  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
475  *	is removed from the kernel lists and can be freed or reused once this
476  *	function returns.
477  *
478  *      The packet type might still be in use by receivers
479  *	and must not be freed until after all the CPU's have gone
480  *	through a quiescent state.
481  */
482 void __dev_remove_offload(struct packet_offload *po)
483 {
484 	struct list_head *head = &offload_base;
485 	struct packet_offload *po1;
486 
487 	spin_lock(&offload_lock);
488 
489 	list_for_each_entry(po1, head, list) {
490 		if (po == po1) {
491 			list_del_rcu(&po->list);
492 			goto out;
493 		}
494 	}
495 
496 	pr_warn("dev_remove_offload: %p not found\n", po);
497 out:
498 	spin_unlock(&offload_lock);
499 }
500 EXPORT_SYMBOL(__dev_remove_offload);
501 
502 /**
503  *	dev_remove_offload	 - remove packet offload handler
504  *	@po: packet offload declaration
505  *
506  *	Remove a packet offload handler that was previously added to the kernel
507  *	offload handlers by dev_add_offload(). The passed &offload_type is
508  *	removed from the kernel lists and can be freed or reused once this
509  *	function returns.
510  *
511  *	This call sleeps to guarantee that no CPU is looking at the packet
512  *	type after return.
513  */
514 void dev_remove_offload(struct packet_offload *po)
515 {
516 	__dev_remove_offload(po);
517 
518 	synchronize_net();
519 }
520 EXPORT_SYMBOL(dev_remove_offload);
521 
522 /******************************************************************************
523 
524 		      Device Boot-time Settings Routines
525 
526 *******************************************************************************/
527 
528 /* Boot time configuration table */
529 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
530 
531 /**
532  *	netdev_boot_setup_add	- add new setup entry
533  *	@name: name of the device
534  *	@map: configured settings for the device
535  *
536  *	Adds new setup entry to the dev_boot_setup list.  The function
537  *	returns 0 on error and 1 on success.  This is a generic routine to
538  *	all netdevices.
539  */
540 static int netdev_boot_setup_add(char *name, struct ifmap *map)
541 {
542 	struct netdev_boot_setup *s;
543 	int i;
544 
545 	s = dev_boot_setup;
546 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
547 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
548 			memset(s[i].name, 0, sizeof(s[i].name));
549 			strlcpy(s[i].name, name, IFNAMSIZ);
550 			memcpy(&s[i].map, map, sizeof(s[i].map));
551 			break;
552 		}
553 	}
554 
555 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
556 }
557 
558 /**
559  *	netdev_boot_setup_check	- check boot time settings
560  *	@dev: the netdevice
561  *
562  * 	Check boot time settings for the device.
563  *	The found settings are set for the device to be used
564  *	later in the device probing.
565  *	Returns 0 if no settings found, 1 if they are.
566  */
567 int netdev_boot_setup_check(struct net_device *dev)
568 {
569 	struct netdev_boot_setup *s = dev_boot_setup;
570 	int i;
571 
572 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
573 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
574 		    !strcmp(dev->name, s[i].name)) {
575 			dev->irq 	= s[i].map.irq;
576 			dev->base_addr 	= s[i].map.base_addr;
577 			dev->mem_start 	= s[i].map.mem_start;
578 			dev->mem_end 	= s[i].map.mem_end;
579 			return 1;
580 		}
581 	}
582 	return 0;
583 }
584 EXPORT_SYMBOL(netdev_boot_setup_check);
585 
586 
587 /**
588  *	netdev_boot_base	- get address from boot time settings
589  *	@prefix: prefix for network device
590  *	@unit: id for network device
591  *
592  * 	Check boot time settings for the base address of device.
593  *	The found settings are set for the device to be used
594  *	later in the device probing.
595  *	Returns 0 if no settings found.
596  */
597 unsigned long netdev_boot_base(const char *prefix, int unit)
598 {
599 	const struct netdev_boot_setup *s = dev_boot_setup;
600 	char name[IFNAMSIZ];
601 	int i;
602 
603 	sprintf(name, "%s%d", prefix, unit);
604 
605 	/*
606 	 * If device already registered then return base of 1
607 	 * to indicate not to probe for this interface
608 	 */
609 	if (__dev_get_by_name(&init_net, name))
610 		return 1;
611 
612 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
613 		if (!strcmp(name, s[i].name))
614 			return s[i].map.base_addr;
615 	return 0;
616 }
617 
618 /*
619  * Saves at boot time configured settings for any netdevice.
620  */
621 int __init netdev_boot_setup(char *str)
622 {
623 	int ints[5];
624 	struct ifmap map;
625 
626 	str = get_options(str, ARRAY_SIZE(ints), ints);
627 	if (!str || !*str)
628 		return 0;
629 
630 	/* Save settings */
631 	memset(&map, 0, sizeof(map));
632 	if (ints[0] > 0)
633 		map.irq = ints[1];
634 	if (ints[0] > 1)
635 		map.base_addr = ints[2];
636 	if (ints[0] > 2)
637 		map.mem_start = ints[3];
638 	if (ints[0] > 3)
639 		map.mem_end = ints[4];
640 
641 	/* Add new entry to the list */
642 	return netdev_boot_setup_add(str, &map);
643 }
644 
645 __setup("netdev=", netdev_boot_setup);
646 
647 /*******************************************************************************
648 
649 			    Device Interface Subroutines
650 
651 *******************************************************************************/
652 
653 /**
654  *	__dev_get_by_name	- find a device by its name
655  *	@net: the applicable net namespace
656  *	@name: name to find
657  *
658  *	Find an interface by name. Must be called under RTNL semaphore
659  *	or @dev_base_lock. If the name is found a pointer to the device
660  *	is returned. If the name is not found then %NULL is returned. The
661  *	reference counters are not incremented so the caller must be
662  *	careful with locks.
663  */
664 
665 struct net_device *__dev_get_by_name(struct net *net, const char *name)
666 {
667 	struct net_device *dev;
668 	struct hlist_head *head = dev_name_hash(net, name);
669 
670 	hlist_for_each_entry(dev, head, name_hlist)
671 		if (!strncmp(dev->name, name, IFNAMSIZ))
672 			return dev;
673 
674 	return NULL;
675 }
676 EXPORT_SYMBOL(__dev_get_by_name);
677 
678 /**
679  *	dev_get_by_name_rcu	- find a device by its name
680  *	@net: the applicable net namespace
681  *	@name: name to find
682  *
683  *	Find an interface by name.
684  *	If the name is found a pointer to the device is returned.
685  * 	If the name is not found then %NULL is returned.
686  *	The reference counters are not incremented so the caller must be
687  *	careful with locks. The caller must hold RCU lock.
688  */
689 
690 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
691 {
692 	struct net_device *dev;
693 	struct hlist_head *head = dev_name_hash(net, name);
694 
695 	hlist_for_each_entry_rcu(dev, head, name_hlist)
696 		if (!strncmp(dev->name, name, IFNAMSIZ))
697 			return dev;
698 
699 	return NULL;
700 }
701 EXPORT_SYMBOL(dev_get_by_name_rcu);
702 
703 /**
704  *	dev_get_by_name		- find a device by its name
705  *	@net: the applicable net namespace
706  *	@name: name to find
707  *
708  *	Find an interface by name. This can be called from any
709  *	context and does its own locking. The returned handle has
710  *	the usage count incremented and the caller must use dev_put() to
711  *	release it when it is no longer needed. %NULL is returned if no
712  *	matching device is found.
713  */
714 
715 struct net_device *dev_get_by_name(struct net *net, const char *name)
716 {
717 	struct net_device *dev;
718 
719 	rcu_read_lock();
720 	dev = dev_get_by_name_rcu(net, name);
721 	if (dev)
722 		dev_hold(dev);
723 	rcu_read_unlock();
724 	return dev;
725 }
726 EXPORT_SYMBOL(dev_get_by_name);
727 
728 /**
729  *	__dev_get_by_index - find a device by its ifindex
730  *	@net: the applicable net namespace
731  *	@ifindex: index of device
732  *
733  *	Search for an interface by index. Returns %NULL if the device
734  *	is not found or a pointer to the device. The device has not
735  *	had its reference counter increased so the caller must be careful
736  *	about locking. The caller must hold either the RTNL semaphore
737  *	or @dev_base_lock.
738  */
739 
740 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
741 {
742 	struct net_device *dev;
743 	struct hlist_head *head = dev_index_hash(net, ifindex);
744 
745 	hlist_for_each_entry(dev, head, index_hlist)
746 		if (dev->ifindex == ifindex)
747 			return dev;
748 
749 	return NULL;
750 }
751 EXPORT_SYMBOL(__dev_get_by_index);
752 
753 /**
754  *	dev_get_by_index_rcu - find a device by its ifindex
755  *	@net: the applicable net namespace
756  *	@ifindex: index of device
757  *
758  *	Search for an interface by index. Returns %NULL if the device
759  *	is not found or a pointer to the device. The device has not
760  *	had its reference counter increased so the caller must be careful
761  *	about locking. The caller must hold RCU lock.
762  */
763 
764 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
765 {
766 	struct net_device *dev;
767 	struct hlist_head *head = dev_index_hash(net, ifindex);
768 
769 	hlist_for_each_entry_rcu(dev, head, index_hlist)
770 		if (dev->ifindex == ifindex)
771 			return dev;
772 
773 	return NULL;
774 }
775 EXPORT_SYMBOL(dev_get_by_index_rcu);
776 
777 
778 /**
779  *	dev_get_by_index - find a device by its ifindex
780  *	@net: the applicable net namespace
781  *	@ifindex: index of device
782  *
783  *	Search for an interface by index. Returns NULL if the device
784  *	is not found or a pointer to the device. The device returned has
785  *	had a reference added and the pointer is safe until the user calls
786  *	dev_put to indicate they have finished with it.
787  */
788 
789 struct net_device *dev_get_by_index(struct net *net, int ifindex)
790 {
791 	struct net_device *dev;
792 
793 	rcu_read_lock();
794 	dev = dev_get_by_index_rcu(net, ifindex);
795 	if (dev)
796 		dev_hold(dev);
797 	rcu_read_unlock();
798 	return dev;
799 }
800 EXPORT_SYMBOL(dev_get_by_index);
801 
802 /**
803  *	netdev_get_name - get a netdevice name, knowing its ifindex.
804  *	@net: network namespace
805  *	@name: a pointer to the buffer where the name will be stored.
806  *	@ifindex: the ifindex of the interface to get the name from.
807  *
808  *	The use of raw_seqcount_begin() and cond_resched() before
809  *	retrying is required as we want to give the writers a chance
810  *	to complete when CONFIG_PREEMPT is not set.
811  */
812 int netdev_get_name(struct net *net, char *name, int ifindex)
813 {
814 	struct net_device *dev;
815 	unsigned int seq;
816 
817 retry:
818 	seq = raw_seqcount_begin(&devnet_rename_seq);
819 	rcu_read_lock();
820 	dev = dev_get_by_index_rcu(net, ifindex);
821 	if (!dev) {
822 		rcu_read_unlock();
823 		return -ENODEV;
824 	}
825 
826 	strcpy(name, dev->name);
827 	rcu_read_unlock();
828 	if (read_seqcount_retry(&devnet_rename_seq, seq)) {
829 		cond_resched();
830 		goto retry;
831 	}
832 
833 	return 0;
834 }
835 
836 /**
837  *	dev_getbyhwaddr_rcu - find a device by its hardware address
838  *	@net: the applicable net namespace
839  *	@type: media type of device
840  *	@ha: hardware address
841  *
842  *	Search for an interface by MAC address. Returns NULL if the device
843  *	is not found or a pointer to the device.
844  *	The caller must hold RCU or RTNL.
845  *	The returned device has not had its ref count increased
846  *	and the caller must therefore be careful about locking
847  *
848  */
849 
850 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
851 				       const char *ha)
852 {
853 	struct net_device *dev;
854 
855 	for_each_netdev_rcu(net, dev)
856 		if (dev->type == type &&
857 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
858 			return dev;
859 
860 	return NULL;
861 }
862 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
863 
864 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
865 {
866 	struct net_device *dev;
867 
868 	ASSERT_RTNL();
869 	for_each_netdev(net, dev)
870 		if (dev->type == type)
871 			return dev;
872 
873 	return NULL;
874 }
875 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
876 
877 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
878 {
879 	struct net_device *dev, *ret = NULL;
880 
881 	rcu_read_lock();
882 	for_each_netdev_rcu(net, dev)
883 		if (dev->type == type) {
884 			dev_hold(dev);
885 			ret = dev;
886 			break;
887 		}
888 	rcu_read_unlock();
889 	return ret;
890 }
891 EXPORT_SYMBOL(dev_getfirstbyhwtype);
892 
893 /**
894  *	dev_get_by_flags_rcu - find any device with given flags
895  *	@net: the applicable net namespace
896  *	@if_flags: IFF_* values
897  *	@mask: bitmask of bits in if_flags to check
898  *
899  *	Search for any interface with the given flags. Returns NULL if a device
900  *	is not found or a pointer to the device. Must be called inside
901  *	rcu_read_lock(), and result refcount is unchanged.
902  */
903 
904 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
905 				    unsigned short mask)
906 {
907 	struct net_device *dev, *ret;
908 
909 	ret = NULL;
910 	for_each_netdev_rcu(net, dev) {
911 		if (((dev->flags ^ if_flags) & mask) == 0) {
912 			ret = dev;
913 			break;
914 		}
915 	}
916 	return ret;
917 }
918 EXPORT_SYMBOL(dev_get_by_flags_rcu);
919 
920 /**
921  *	dev_valid_name - check if name is okay for network device
922  *	@name: name string
923  *
924  *	Network device names need to be valid file names to
925  *	to allow sysfs to work.  We also disallow any kind of
926  *	whitespace.
927  */
928 bool dev_valid_name(const char *name)
929 {
930 	if (*name == '\0')
931 		return false;
932 	if (strlen(name) >= IFNAMSIZ)
933 		return false;
934 	if (!strcmp(name, ".") || !strcmp(name, ".."))
935 		return false;
936 
937 	while (*name) {
938 		if (*name == '/' || isspace(*name))
939 			return false;
940 		name++;
941 	}
942 	return true;
943 }
944 EXPORT_SYMBOL(dev_valid_name);
945 
946 /**
947  *	__dev_alloc_name - allocate a name for a device
948  *	@net: network namespace to allocate the device name in
949  *	@name: name format string
950  *	@buf:  scratch buffer and result name string
951  *
952  *	Passed a format string - eg "lt%d" it will try and find a suitable
953  *	id. It scans list of devices to build up a free map, then chooses
954  *	the first empty slot. The caller must hold the dev_base or rtnl lock
955  *	while allocating the name and adding the device in order to avoid
956  *	duplicates.
957  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
958  *	Returns the number of the unit assigned or a negative errno code.
959  */
960 
961 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
962 {
963 	int i = 0;
964 	const char *p;
965 	const int max_netdevices = 8*PAGE_SIZE;
966 	unsigned long *inuse;
967 	struct net_device *d;
968 
969 	p = strnchr(name, IFNAMSIZ-1, '%');
970 	if (p) {
971 		/*
972 		 * Verify the string as this thing may have come from
973 		 * the user.  There must be either one "%d" and no other "%"
974 		 * characters.
975 		 */
976 		if (p[1] != 'd' || strchr(p + 2, '%'))
977 			return -EINVAL;
978 
979 		/* Use one page as a bit array of possible slots */
980 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
981 		if (!inuse)
982 			return -ENOMEM;
983 
984 		for_each_netdev(net, d) {
985 			if (!sscanf(d->name, name, &i))
986 				continue;
987 			if (i < 0 || i >= max_netdevices)
988 				continue;
989 
990 			/*  avoid cases where sscanf is not exact inverse of printf */
991 			snprintf(buf, IFNAMSIZ, name, i);
992 			if (!strncmp(buf, d->name, IFNAMSIZ))
993 				set_bit(i, inuse);
994 		}
995 
996 		i = find_first_zero_bit(inuse, max_netdevices);
997 		free_page((unsigned long) inuse);
998 	}
999 
1000 	if (buf != name)
1001 		snprintf(buf, IFNAMSIZ, name, i);
1002 	if (!__dev_get_by_name(net, buf))
1003 		return i;
1004 
1005 	/* It is possible to run out of possible slots
1006 	 * when the name is long and there isn't enough space left
1007 	 * for the digits, or if all bits are used.
1008 	 */
1009 	return -ENFILE;
1010 }
1011 
1012 /**
1013  *	dev_alloc_name - allocate a name for a device
1014  *	@dev: device
1015  *	@name: name format string
1016  *
1017  *	Passed a format string - eg "lt%d" it will try and find a suitable
1018  *	id. It scans list of devices to build up a free map, then chooses
1019  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1020  *	while allocating the name and adding the device in order to avoid
1021  *	duplicates.
1022  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1023  *	Returns the number of the unit assigned or a negative errno code.
1024  */
1025 
1026 int dev_alloc_name(struct net_device *dev, const char *name)
1027 {
1028 	char buf[IFNAMSIZ];
1029 	struct net *net;
1030 	int ret;
1031 
1032 	BUG_ON(!dev_net(dev));
1033 	net = dev_net(dev);
1034 	ret = __dev_alloc_name(net, name, buf);
1035 	if (ret >= 0)
1036 		strlcpy(dev->name, buf, IFNAMSIZ);
1037 	return ret;
1038 }
1039 EXPORT_SYMBOL(dev_alloc_name);
1040 
1041 static int dev_alloc_name_ns(struct net *net,
1042 			     struct net_device *dev,
1043 			     const char *name)
1044 {
1045 	char buf[IFNAMSIZ];
1046 	int ret;
1047 
1048 	ret = __dev_alloc_name(net, name, buf);
1049 	if (ret >= 0)
1050 		strlcpy(dev->name, buf, IFNAMSIZ);
1051 	return ret;
1052 }
1053 
1054 static int dev_get_valid_name(struct net *net,
1055 			      struct net_device *dev,
1056 			      const char *name)
1057 {
1058 	BUG_ON(!net);
1059 
1060 	if (!dev_valid_name(name))
1061 		return -EINVAL;
1062 
1063 	if (strchr(name, '%'))
1064 		return dev_alloc_name_ns(net, dev, name);
1065 	else if (__dev_get_by_name(net, name))
1066 		return -EEXIST;
1067 	else if (dev->name != name)
1068 		strlcpy(dev->name, name, IFNAMSIZ);
1069 
1070 	return 0;
1071 }
1072 
1073 /**
1074  *	dev_change_name - change name of a device
1075  *	@dev: device
1076  *	@newname: name (or format string) must be at least IFNAMSIZ
1077  *
1078  *	Change name of a device, can pass format strings "eth%d".
1079  *	for wildcarding.
1080  */
1081 int dev_change_name(struct net_device *dev, const char *newname)
1082 {
1083 	char oldname[IFNAMSIZ];
1084 	int err = 0;
1085 	int ret;
1086 	struct net *net;
1087 
1088 	ASSERT_RTNL();
1089 	BUG_ON(!dev_net(dev));
1090 
1091 	net = dev_net(dev);
1092 	if (dev->flags & IFF_UP)
1093 		return -EBUSY;
1094 
1095 	write_seqcount_begin(&devnet_rename_seq);
1096 
1097 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1098 		write_seqcount_end(&devnet_rename_seq);
1099 		return 0;
1100 	}
1101 
1102 	memcpy(oldname, dev->name, IFNAMSIZ);
1103 
1104 	err = dev_get_valid_name(net, dev, newname);
1105 	if (err < 0) {
1106 		write_seqcount_end(&devnet_rename_seq);
1107 		return err;
1108 	}
1109 
1110 rollback:
1111 	ret = device_rename(&dev->dev, dev->name);
1112 	if (ret) {
1113 		memcpy(dev->name, oldname, IFNAMSIZ);
1114 		write_seqcount_end(&devnet_rename_seq);
1115 		return ret;
1116 	}
1117 
1118 	write_seqcount_end(&devnet_rename_seq);
1119 
1120 	write_lock_bh(&dev_base_lock);
1121 	hlist_del_rcu(&dev->name_hlist);
1122 	write_unlock_bh(&dev_base_lock);
1123 
1124 	synchronize_rcu();
1125 
1126 	write_lock_bh(&dev_base_lock);
1127 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1128 	write_unlock_bh(&dev_base_lock);
1129 
1130 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1131 	ret = notifier_to_errno(ret);
1132 
1133 	if (ret) {
1134 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1135 		if (err >= 0) {
1136 			err = ret;
1137 			write_seqcount_begin(&devnet_rename_seq);
1138 			memcpy(dev->name, oldname, IFNAMSIZ);
1139 			goto rollback;
1140 		} else {
1141 			pr_err("%s: name change rollback failed: %d\n",
1142 			       dev->name, ret);
1143 		}
1144 	}
1145 
1146 	return err;
1147 }
1148 
1149 /**
1150  *	dev_set_alias - change ifalias of a device
1151  *	@dev: device
1152  *	@alias: name up to IFALIASZ
1153  *	@len: limit of bytes to copy from info
1154  *
1155  *	Set ifalias for a device,
1156  */
1157 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1158 {
1159 	char *new_ifalias;
1160 
1161 	ASSERT_RTNL();
1162 
1163 	if (len >= IFALIASZ)
1164 		return -EINVAL;
1165 
1166 	if (!len) {
1167 		kfree(dev->ifalias);
1168 		dev->ifalias = NULL;
1169 		return 0;
1170 	}
1171 
1172 	new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1173 	if (!new_ifalias)
1174 		return -ENOMEM;
1175 	dev->ifalias = new_ifalias;
1176 
1177 	strlcpy(dev->ifalias, alias, len+1);
1178 	return len;
1179 }
1180 
1181 
1182 /**
1183  *	netdev_features_change - device changes features
1184  *	@dev: device to cause notification
1185  *
1186  *	Called to indicate a device has changed features.
1187  */
1188 void netdev_features_change(struct net_device *dev)
1189 {
1190 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1191 }
1192 EXPORT_SYMBOL(netdev_features_change);
1193 
1194 /**
1195  *	netdev_state_change - device changes state
1196  *	@dev: device to cause notification
1197  *
1198  *	Called to indicate a device has changed state. This function calls
1199  *	the notifier chains for netdev_chain and sends a NEWLINK message
1200  *	to the routing socket.
1201  */
1202 void netdev_state_change(struct net_device *dev)
1203 {
1204 	if (dev->flags & IFF_UP) {
1205 		call_netdevice_notifiers(NETDEV_CHANGE, dev);
1206 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1207 	}
1208 }
1209 EXPORT_SYMBOL(netdev_state_change);
1210 
1211 /**
1212  * 	netdev_notify_peers - notify network peers about existence of @dev
1213  * 	@dev: network device
1214  *
1215  * Generate traffic such that interested network peers are aware of
1216  * @dev, such as by generating a gratuitous ARP. This may be used when
1217  * a device wants to inform the rest of the network about some sort of
1218  * reconfiguration such as a failover event or virtual machine
1219  * migration.
1220  */
1221 void netdev_notify_peers(struct net_device *dev)
1222 {
1223 	rtnl_lock();
1224 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1225 	rtnl_unlock();
1226 }
1227 EXPORT_SYMBOL(netdev_notify_peers);
1228 
1229 static int __dev_open(struct net_device *dev)
1230 {
1231 	const struct net_device_ops *ops = dev->netdev_ops;
1232 	int ret;
1233 
1234 	ASSERT_RTNL();
1235 
1236 	if (!netif_device_present(dev))
1237 		return -ENODEV;
1238 
1239 	/* Block netpoll from trying to do any rx path servicing.
1240 	 * If we don't do this there is a chance ndo_poll_controller
1241 	 * or ndo_poll may be running while we open the device
1242 	 */
1243 	netpoll_rx_disable(dev);
1244 
1245 	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1246 	ret = notifier_to_errno(ret);
1247 	if (ret)
1248 		return ret;
1249 
1250 	set_bit(__LINK_STATE_START, &dev->state);
1251 
1252 	if (ops->ndo_validate_addr)
1253 		ret = ops->ndo_validate_addr(dev);
1254 
1255 	if (!ret && ops->ndo_open)
1256 		ret = ops->ndo_open(dev);
1257 
1258 	netpoll_rx_enable(dev);
1259 
1260 	if (ret)
1261 		clear_bit(__LINK_STATE_START, &dev->state);
1262 	else {
1263 		dev->flags |= IFF_UP;
1264 		net_dmaengine_get();
1265 		dev_set_rx_mode(dev);
1266 		dev_activate(dev);
1267 		add_device_randomness(dev->dev_addr, dev->addr_len);
1268 	}
1269 
1270 	return ret;
1271 }
1272 
1273 /**
1274  *	dev_open	- prepare an interface for use.
1275  *	@dev:	device to open
1276  *
1277  *	Takes a device from down to up state. The device's private open
1278  *	function is invoked and then the multicast lists are loaded. Finally
1279  *	the device is moved into the up state and a %NETDEV_UP message is
1280  *	sent to the netdev notifier chain.
1281  *
1282  *	Calling this function on an active interface is a nop. On a failure
1283  *	a negative errno code is returned.
1284  */
1285 int dev_open(struct net_device *dev)
1286 {
1287 	int ret;
1288 
1289 	if (dev->flags & IFF_UP)
1290 		return 0;
1291 
1292 	ret = __dev_open(dev);
1293 	if (ret < 0)
1294 		return ret;
1295 
1296 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1297 	call_netdevice_notifiers(NETDEV_UP, dev);
1298 
1299 	return ret;
1300 }
1301 EXPORT_SYMBOL(dev_open);
1302 
1303 static int __dev_close_many(struct list_head *head)
1304 {
1305 	struct net_device *dev;
1306 
1307 	ASSERT_RTNL();
1308 	might_sleep();
1309 
1310 	list_for_each_entry(dev, head, close_list) {
1311 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1312 
1313 		clear_bit(__LINK_STATE_START, &dev->state);
1314 
1315 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1316 		 * can be even on different cpu. So just clear netif_running().
1317 		 *
1318 		 * dev->stop() will invoke napi_disable() on all of it's
1319 		 * napi_struct instances on this device.
1320 		 */
1321 		smp_mb__after_clear_bit(); /* Commit netif_running(). */
1322 	}
1323 
1324 	dev_deactivate_many(head);
1325 
1326 	list_for_each_entry(dev, head, close_list) {
1327 		const struct net_device_ops *ops = dev->netdev_ops;
1328 
1329 		/*
1330 		 *	Call the device specific close. This cannot fail.
1331 		 *	Only if device is UP
1332 		 *
1333 		 *	We allow it to be called even after a DETACH hot-plug
1334 		 *	event.
1335 		 */
1336 		if (ops->ndo_stop)
1337 			ops->ndo_stop(dev);
1338 
1339 		dev->flags &= ~IFF_UP;
1340 		net_dmaengine_put();
1341 	}
1342 
1343 	return 0;
1344 }
1345 
1346 static int __dev_close(struct net_device *dev)
1347 {
1348 	int retval;
1349 	LIST_HEAD(single);
1350 
1351 	/* Temporarily disable netpoll until the interface is down */
1352 	netpoll_rx_disable(dev);
1353 
1354 	list_add(&dev->close_list, &single);
1355 	retval = __dev_close_many(&single);
1356 	list_del(&single);
1357 
1358 	netpoll_rx_enable(dev);
1359 	return retval;
1360 }
1361 
1362 static int dev_close_many(struct list_head *head)
1363 {
1364 	struct net_device *dev, *tmp;
1365 
1366 	/* Remove the devices that don't need to be closed */
1367 	list_for_each_entry_safe(dev, tmp, head, close_list)
1368 		if (!(dev->flags & IFF_UP))
1369 			list_del_init(&dev->close_list);
1370 
1371 	__dev_close_many(head);
1372 
1373 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1374 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1375 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1376 		list_del_init(&dev->close_list);
1377 	}
1378 
1379 	return 0;
1380 }
1381 
1382 /**
1383  *	dev_close - shutdown an interface.
1384  *	@dev: device to shutdown
1385  *
1386  *	This function moves an active device into down state. A
1387  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1388  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1389  *	chain.
1390  */
1391 int dev_close(struct net_device *dev)
1392 {
1393 	if (dev->flags & IFF_UP) {
1394 		LIST_HEAD(single);
1395 
1396 		/* Block netpoll rx while the interface is going down */
1397 		netpoll_rx_disable(dev);
1398 
1399 		list_add(&dev->close_list, &single);
1400 		dev_close_many(&single);
1401 		list_del(&single);
1402 
1403 		netpoll_rx_enable(dev);
1404 	}
1405 	return 0;
1406 }
1407 EXPORT_SYMBOL(dev_close);
1408 
1409 
1410 /**
1411  *	dev_disable_lro - disable Large Receive Offload on a device
1412  *	@dev: device
1413  *
1414  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1415  *	called under RTNL.  This is needed if received packets may be
1416  *	forwarded to another interface.
1417  */
1418 void dev_disable_lro(struct net_device *dev)
1419 {
1420 	/*
1421 	 * If we're trying to disable lro on a vlan device
1422 	 * use the underlying physical device instead
1423 	 */
1424 	if (is_vlan_dev(dev))
1425 		dev = vlan_dev_real_dev(dev);
1426 
1427 	dev->wanted_features &= ~NETIF_F_LRO;
1428 	netdev_update_features(dev);
1429 
1430 	if (unlikely(dev->features & NETIF_F_LRO))
1431 		netdev_WARN(dev, "failed to disable LRO!\n");
1432 }
1433 EXPORT_SYMBOL(dev_disable_lro);
1434 
1435 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1436 				   struct net_device *dev)
1437 {
1438 	struct netdev_notifier_info info;
1439 
1440 	netdev_notifier_info_init(&info, dev);
1441 	return nb->notifier_call(nb, val, &info);
1442 }
1443 
1444 static int dev_boot_phase = 1;
1445 
1446 /**
1447  *	register_netdevice_notifier - register a network notifier block
1448  *	@nb: notifier
1449  *
1450  *	Register a notifier to be called when network device events occur.
1451  *	The notifier passed is linked into the kernel structures and must
1452  *	not be reused until it has been unregistered. A negative errno code
1453  *	is returned on a failure.
1454  *
1455  * 	When registered all registration and up events are replayed
1456  *	to the new notifier to allow device to have a race free
1457  *	view of the network device list.
1458  */
1459 
1460 int register_netdevice_notifier(struct notifier_block *nb)
1461 {
1462 	struct net_device *dev;
1463 	struct net_device *last;
1464 	struct net *net;
1465 	int err;
1466 
1467 	rtnl_lock();
1468 	err = raw_notifier_chain_register(&netdev_chain, nb);
1469 	if (err)
1470 		goto unlock;
1471 	if (dev_boot_phase)
1472 		goto unlock;
1473 	for_each_net(net) {
1474 		for_each_netdev(net, dev) {
1475 			err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1476 			err = notifier_to_errno(err);
1477 			if (err)
1478 				goto rollback;
1479 
1480 			if (!(dev->flags & IFF_UP))
1481 				continue;
1482 
1483 			call_netdevice_notifier(nb, NETDEV_UP, dev);
1484 		}
1485 	}
1486 
1487 unlock:
1488 	rtnl_unlock();
1489 	return err;
1490 
1491 rollback:
1492 	last = dev;
1493 	for_each_net(net) {
1494 		for_each_netdev(net, dev) {
1495 			if (dev == last)
1496 				goto outroll;
1497 
1498 			if (dev->flags & IFF_UP) {
1499 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1500 							dev);
1501 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1502 			}
1503 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1504 		}
1505 	}
1506 
1507 outroll:
1508 	raw_notifier_chain_unregister(&netdev_chain, nb);
1509 	goto unlock;
1510 }
1511 EXPORT_SYMBOL(register_netdevice_notifier);
1512 
1513 /**
1514  *	unregister_netdevice_notifier - unregister a network notifier block
1515  *	@nb: notifier
1516  *
1517  *	Unregister a notifier previously registered by
1518  *	register_netdevice_notifier(). The notifier is unlinked into the
1519  *	kernel structures and may then be reused. A negative errno code
1520  *	is returned on a failure.
1521  *
1522  * 	After unregistering unregister and down device events are synthesized
1523  *	for all devices on the device list to the removed notifier to remove
1524  *	the need for special case cleanup code.
1525  */
1526 
1527 int unregister_netdevice_notifier(struct notifier_block *nb)
1528 {
1529 	struct net_device *dev;
1530 	struct net *net;
1531 	int err;
1532 
1533 	rtnl_lock();
1534 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1535 	if (err)
1536 		goto unlock;
1537 
1538 	for_each_net(net) {
1539 		for_each_netdev(net, dev) {
1540 			if (dev->flags & IFF_UP) {
1541 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1542 							dev);
1543 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1544 			}
1545 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1546 		}
1547 	}
1548 unlock:
1549 	rtnl_unlock();
1550 	return err;
1551 }
1552 EXPORT_SYMBOL(unregister_netdevice_notifier);
1553 
1554 /**
1555  *	call_netdevice_notifiers_info - call all network notifier blocks
1556  *	@val: value passed unmodified to notifier function
1557  *	@dev: net_device pointer passed unmodified to notifier function
1558  *	@info: notifier information data
1559  *
1560  *	Call all network notifier blocks.  Parameters and return value
1561  *	are as for raw_notifier_call_chain().
1562  */
1563 
1564 int call_netdevice_notifiers_info(unsigned long val, struct net_device *dev,
1565 				  struct netdev_notifier_info *info)
1566 {
1567 	ASSERT_RTNL();
1568 	netdev_notifier_info_init(info, dev);
1569 	return raw_notifier_call_chain(&netdev_chain, val, info);
1570 }
1571 EXPORT_SYMBOL(call_netdevice_notifiers_info);
1572 
1573 /**
1574  *	call_netdevice_notifiers - call all network notifier blocks
1575  *      @val: value passed unmodified to notifier function
1576  *      @dev: net_device pointer passed unmodified to notifier function
1577  *
1578  *	Call all network notifier blocks.  Parameters and return value
1579  *	are as for raw_notifier_call_chain().
1580  */
1581 
1582 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1583 {
1584 	struct netdev_notifier_info info;
1585 
1586 	return call_netdevice_notifiers_info(val, dev, &info);
1587 }
1588 EXPORT_SYMBOL(call_netdevice_notifiers);
1589 
1590 static struct static_key netstamp_needed __read_mostly;
1591 #ifdef HAVE_JUMP_LABEL
1592 /* We are not allowed to call static_key_slow_dec() from irq context
1593  * If net_disable_timestamp() is called from irq context, defer the
1594  * static_key_slow_dec() calls.
1595  */
1596 static atomic_t netstamp_needed_deferred;
1597 #endif
1598 
1599 void net_enable_timestamp(void)
1600 {
1601 #ifdef HAVE_JUMP_LABEL
1602 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1603 
1604 	if (deferred) {
1605 		while (--deferred)
1606 			static_key_slow_dec(&netstamp_needed);
1607 		return;
1608 	}
1609 #endif
1610 	static_key_slow_inc(&netstamp_needed);
1611 }
1612 EXPORT_SYMBOL(net_enable_timestamp);
1613 
1614 void net_disable_timestamp(void)
1615 {
1616 #ifdef HAVE_JUMP_LABEL
1617 	if (in_interrupt()) {
1618 		atomic_inc(&netstamp_needed_deferred);
1619 		return;
1620 	}
1621 #endif
1622 	static_key_slow_dec(&netstamp_needed);
1623 }
1624 EXPORT_SYMBOL(net_disable_timestamp);
1625 
1626 static inline void net_timestamp_set(struct sk_buff *skb)
1627 {
1628 	skb->tstamp.tv64 = 0;
1629 	if (static_key_false(&netstamp_needed))
1630 		__net_timestamp(skb);
1631 }
1632 
1633 #define net_timestamp_check(COND, SKB)			\
1634 	if (static_key_false(&netstamp_needed)) {		\
1635 		if ((COND) && !(SKB)->tstamp.tv64)	\
1636 			__net_timestamp(SKB);		\
1637 	}						\
1638 
1639 static inline bool is_skb_forwardable(struct net_device *dev,
1640 				      struct sk_buff *skb)
1641 {
1642 	unsigned int len;
1643 
1644 	if (!(dev->flags & IFF_UP))
1645 		return false;
1646 
1647 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1648 	if (skb->len <= len)
1649 		return true;
1650 
1651 	/* if TSO is enabled, we don't care about the length as the packet
1652 	 * could be forwarded without being segmented before
1653 	 */
1654 	if (skb_is_gso(skb))
1655 		return true;
1656 
1657 	return false;
1658 }
1659 
1660 /**
1661  * dev_forward_skb - loopback an skb to another netif
1662  *
1663  * @dev: destination network device
1664  * @skb: buffer to forward
1665  *
1666  * return values:
1667  *	NET_RX_SUCCESS	(no congestion)
1668  *	NET_RX_DROP     (packet was dropped, but freed)
1669  *
1670  * dev_forward_skb can be used for injecting an skb from the
1671  * start_xmit function of one device into the receive queue
1672  * of another device.
1673  *
1674  * The receiving device may be in another namespace, so
1675  * we have to clear all information in the skb that could
1676  * impact namespace isolation.
1677  */
1678 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1679 {
1680 	if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1681 		if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1682 			atomic_long_inc(&dev->rx_dropped);
1683 			kfree_skb(skb);
1684 			return NET_RX_DROP;
1685 		}
1686 	}
1687 
1688 	if (unlikely(!is_skb_forwardable(dev, skb))) {
1689 		atomic_long_inc(&dev->rx_dropped);
1690 		kfree_skb(skb);
1691 		return NET_RX_DROP;
1692 	}
1693 	skb->protocol = eth_type_trans(skb, dev);
1694 
1695 	/* eth_type_trans() can set pkt_type.
1696 	 * call skb_scrub_packet() after it to clear pkt_type _after_ calling
1697 	 * eth_type_trans().
1698 	 */
1699 	skb_scrub_packet(skb, true);
1700 
1701 	return netif_rx(skb);
1702 }
1703 EXPORT_SYMBOL_GPL(dev_forward_skb);
1704 
1705 static inline int deliver_skb(struct sk_buff *skb,
1706 			      struct packet_type *pt_prev,
1707 			      struct net_device *orig_dev)
1708 {
1709 	if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1710 		return -ENOMEM;
1711 	atomic_inc(&skb->users);
1712 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1713 }
1714 
1715 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1716 {
1717 	if (!ptype->af_packet_priv || !skb->sk)
1718 		return false;
1719 
1720 	if (ptype->id_match)
1721 		return ptype->id_match(ptype, skb->sk);
1722 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1723 		return true;
1724 
1725 	return false;
1726 }
1727 
1728 /*
1729  *	Support routine. Sends outgoing frames to any network
1730  *	taps currently in use.
1731  */
1732 
1733 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1734 {
1735 	struct packet_type *ptype;
1736 	struct sk_buff *skb2 = NULL;
1737 	struct packet_type *pt_prev = NULL;
1738 
1739 	rcu_read_lock();
1740 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
1741 		/* Never send packets back to the socket
1742 		 * they originated from - MvS (miquels@drinkel.ow.org)
1743 		 */
1744 		if ((ptype->dev == dev || !ptype->dev) &&
1745 		    (!skb_loop_sk(ptype, skb))) {
1746 			if (pt_prev) {
1747 				deliver_skb(skb2, pt_prev, skb->dev);
1748 				pt_prev = ptype;
1749 				continue;
1750 			}
1751 
1752 			skb2 = skb_clone(skb, GFP_ATOMIC);
1753 			if (!skb2)
1754 				break;
1755 
1756 			net_timestamp_set(skb2);
1757 
1758 			/* skb->nh should be correctly
1759 			   set by sender, so that the second statement is
1760 			   just protection against buggy protocols.
1761 			 */
1762 			skb_reset_mac_header(skb2);
1763 
1764 			if (skb_network_header(skb2) < skb2->data ||
1765 			    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1766 				net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1767 						     ntohs(skb2->protocol),
1768 						     dev->name);
1769 				skb_reset_network_header(skb2);
1770 			}
1771 
1772 			skb2->transport_header = skb2->network_header;
1773 			skb2->pkt_type = PACKET_OUTGOING;
1774 			pt_prev = ptype;
1775 		}
1776 	}
1777 	if (pt_prev)
1778 		pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1779 	rcu_read_unlock();
1780 }
1781 
1782 /**
1783  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1784  * @dev: Network device
1785  * @txq: number of queues available
1786  *
1787  * If real_num_tx_queues is changed the tc mappings may no longer be
1788  * valid. To resolve this verify the tc mapping remains valid and if
1789  * not NULL the mapping. With no priorities mapping to this
1790  * offset/count pair it will no longer be used. In the worst case TC0
1791  * is invalid nothing can be done so disable priority mappings. If is
1792  * expected that drivers will fix this mapping if they can before
1793  * calling netif_set_real_num_tx_queues.
1794  */
1795 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1796 {
1797 	int i;
1798 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1799 
1800 	/* If TC0 is invalidated disable TC mapping */
1801 	if (tc->offset + tc->count > txq) {
1802 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1803 		dev->num_tc = 0;
1804 		return;
1805 	}
1806 
1807 	/* Invalidated prio to tc mappings set to TC0 */
1808 	for (i = 1; i < TC_BITMASK + 1; i++) {
1809 		int q = netdev_get_prio_tc_map(dev, i);
1810 
1811 		tc = &dev->tc_to_txq[q];
1812 		if (tc->offset + tc->count > txq) {
1813 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1814 				i, q);
1815 			netdev_set_prio_tc_map(dev, i, 0);
1816 		}
1817 	}
1818 }
1819 
1820 #ifdef CONFIG_XPS
1821 static DEFINE_MUTEX(xps_map_mutex);
1822 #define xmap_dereference(P)		\
1823 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1824 
1825 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1826 					int cpu, u16 index)
1827 {
1828 	struct xps_map *map = NULL;
1829 	int pos;
1830 
1831 	if (dev_maps)
1832 		map = xmap_dereference(dev_maps->cpu_map[cpu]);
1833 
1834 	for (pos = 0; map && pos < map->len; pos++) {
1835 		if (map->queues[pos] == index) {
1836 			if (map->len > 1) {
1837 				map->queues[pos] = map->queues[--map->len];
1838 			} else {
1839 				RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1840 				kfree_rcu(map, rcu);
1841 				map = NULL;
1842 			}
1843 			break;
1844 		}
1845 	}
1846 
1847 	return map;
1848 }
1849 
1850 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1851 {
1852 	struct xps_dev_maps *dev_maps;
1853 	int cpu, i;
1854 	bool active = false;
1855 
1856 	mutex_lock(&xps_map_mutex);
1857 	dev_maps = xmap_dereference(dev->xps_maps);
1858 
1859 	if (!dev_maps)
1860 		goto out_no_maps;
1861 
1862 	for_each_possible_cpu(cpu) {
1863 		for (i = index; i < dev->num_tx_queues; i++) {
1864 			if (!remove_xps_queue(dev_maps, cpu, i))
1865 				break;
1866 		}
1867 		if (i == dev->num_tx_queues)
1868 			active = true;
1869 	}
1870 
1871 	if (!active) {
1872 		RCU_INIT_POINTER(dev->xps_maps, NULL);
1873 		kfree_rcu(dev_maps, rcu);
1874 	}
1875 
1876 	for (i = index; i < dev->num_tx_queues; i++)
1877 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1878 					     NUMA_NO_NODE);
1879 
1880 out_no_maps:
1881 	mutex_unlock(&xps_map_mutex);
1882 }
1883 
1884 static struct xps_map *expand_xps_map(struct xps_map *map,
1885 				      int cpu, u16 index)
1886 {
1887 	struct xps_map *new_map;
1888 	int alloc_len = XPS_MIN_MAP_ALLOC;
1889 	int i, pos;
1890 
1891 	for (pos = 0; map && pos < map->len; pos++) {
1892 		if (map->queues[pos] != index)
1893 			continue;
1894 		return map;
1895 	}
1896 
1897 	/* Need to add queue to this CPU's existing map */
1898 	if (map) {
1899 		if (pos < map->alloc_len)
1900 			return map;
1901 
1902 		alloc_len = map->alloc_len * 2;
1903 	}
1904 
1905 	/* Need to allocate new map to store queue on this CPU's map */
1906 	new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1907 			       cpu_to_node(cpu));
1908 	if (!new_map)
1909 		return NULL;
1910 
1911 	for (i = 0; i < pos; i++)
1912 		new_map->queues[i] = map->queues[i];
1913 	new_map->alloc_len = alloc_len;
1914 	new_map->len = pos;
1915 
1916 	return new_map;
1917 }
1918 
1919 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
1920 			u16 index)
1921 {
1922 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
1923 	struct xps_map *map, *new_map;
1924 	int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
1925 	int cpu, numa_node_id = -2;
1926 	bool active = false;
1927 
1928 	mutex_lock(&xps_map_mutex);
1929 
1930 	dev_maps = xmap_dereference(dev->xps_maps);
1931 
1932 	/* allocate memory for queue storage */
1933 	for_each_online_cpu(cpu) {
1934 		if (!cpumask_test_cpu(cpu, mask))
1935 			continue;
1936 
1937 		if (!new_dev_maps)
1938 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
1939 		if (!new_dev_maps) {
1940 			mutex_unlock(&xps_map_mutex);
1941 			return -ENOMEM;
1942 		}
1943 
1944 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1945 				 NULL;
1946 
1947 		map = expand_xps_map(map, cpu, index);
1948 		if (!map)
1949 			goto error;
1950 
1951 		RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1952 	}
1953 
1954 	if (!new_dev_maps)
1955 		goto out_no_new_maps;
1956 
1957 	for_each_possible_cpu(cpu) {
1958 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
1959 			/* add queue to CPU maps */
1960 			int pos = 0;
1961 
1962 			map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1963 			while ((pos < map->len) && (map->queues[pos] != index))
1964 				pos++;
1965 
1966 			if (pos == map->len)
1967 				map->queues[map->len++] = index;
1968 #ifdef CONFIG_NUMA
1969 			if (numa_node_id == -2)
1970 				numa_node_id = cpu_to_node(cpu);
1971 			else if (numa_node_id != cpu_to_node(cpu))
1972 				numa_node_id = -1;
1973 #endif
1974 		} else if (dev_maps) {
1975 			/* fill in the new device map from the old device map */
1976 			map = xmap_dereference(dev_maps->cpu_map[cpu]);
1977 			RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1978 		}
1979 
1980 	}
1981 
1982 	rcu_assign_pointer(dev->xps_maps, new_dev_maps);
1983 
1984 	/* Cleanup old maps */
1985 	if (dev_maps) {
1986 		for_each_possible_cpu(cpu) {
1987 			new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1988 			map = xmap_dereference(dev_maps->cpu_map[cpu]);
1989 			if (map && map != new_map)
1990 				kfree_rcu(map, rcu);
1991 		}
1992 
1993 		kfree_rcu(dev_maps, rcu);
1994 	}
1995 
1996 	dev_maps = new_dev_maps;
1997 	active = true;
1998 
1999 out_no_new_maps:
2000 	/* update Tx queue numa node */
2001 	netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2002 				     (numa_node_id >= 0) ? numa_node_id :
2003 				     NUMA_NO_NODE);
2004 
2005 	if (!dev_maps)
2006 		goto out_no_maps;
2007 
2008 	/* removes queue from unused CPUs */
2009 	for_each_possible_cpu(cpu) {
2010 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2011 			continue;
2012 
2013 		if (remove_xps_queue(dev_maps, cpu, index))
2014 			active = true;
2015 	}
2016 
2017 	/* free map if not active */
2018 	if (!active) {
2019 		RCU_INIT_POINTER(dev->xps_maps, NULL);
2020 		kfree_rcu(dev_maps, rcu);
2021 	}
2022 
2023 out_no_maps:
2024 	mutex_unlock(&xps_map_mutex);
2025 
2026 	return 0;
2027 error:
2028 	/* remove any maps that we added */
2029 	for_each_possible_cpu(cpu) {
2030 		new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2031 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2032 				 NULL;
2033 		if (new_map && new_map != map)
2034 			kfree(new_map);
2035 	}
2036 
2037 	mutex_unlock(&xps_map_mutex);
2038 
2039 	kfree(new_dev_maps);
2040 	return -ENOMEM;
2041 }
2042 EXPORT_SYMBOL(netif_set_xps_queue);
2043 
2044 #endif
2045 /*
2046  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2047  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2048  */
2049 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2050 {
2051 	int rc;
2052 
2053 	if (txq < 1 || txq > dev->num_tx_queues)
2054 		return -EINVAL;
2055 
2056 	if (dev->reg_state == NETREG_REGISTERED ||
2057 	    dev->reg_state == NETREG_UNREGISTERING) {
2058 		ASSERT_RTNL();
2059 
2060 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2061 						  txq);
2062 		if (rc)
2063 			return rc;
2064 
2065 		if (dev->num_tc)
2066 			netif_setup_tc(dev, txq);
2067 
2068 		if (txq < dev->real_num_tx_queues) {
2069 			qdisc_reset_all_tx_gt(dev, txq);
2070 #ifdef CONFIG_XPS
2071 			netif_reset_xps_queues_gt(dev, txq);
2072 #endif
2073 		}
2074 	}
2075 
2076 	dev->real_num_tx_queues = txq;
2077 	return 0;
2078 }
2079 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2080 
2081 #ifdef CONFIG_RPS
2082 /**
2083  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2084  *	@dev: Network device
2085  *	@rxq: Actual number of RX queues
2086  *
2087  *	This must be called either with the rtnl_lock held or before
2088  *	registration of the net device.  Returns 0 on success, or a
2089  *	negative error code.  If called before registration, it always
2090  *	succeeds.
2091  */
2092 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2093 {
2094 	int rc;
2095 
2096 	if (rxq < 1 || rxq > dev->num_rx_queues)
2097 		return -EINVAL;
2098 
2099 	if (dev->reg_state == NETREG_REGISTERED) {
2100 		ASSERT_RTNL();
2101 
2102 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2103 						  rxq);
2104 		if (rc)
2105 			return rc;
2106 	}
2107 
2108 	dev->real_num_rx_queues = rxq;
2109 	return 0;
2110 }
2111 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2112 #endif
2113 
2114 /**
2115  * netif_get_num_default_rss_queues - default number of RSS queues
2116  *
2117  * This routine should set an upper limit on the number of RSS queues
2118  * used by default by multiqueue devices.
2119  */
2120 int netif_get_num_default_rss_queues(void)
2121 {
2122 	return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2123 }
2124 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2125 
2126 static inline void __netif_reschedule(struct Qdisc *q)
2127 {
2128 	struct softnet_data *sd;
2129 	unsigned long flags;
2130 
2131 	local_irq_save(flags);
2132 	sd = &__get_cpu_var(softnet_data);
2133 	q->next_sched = NULL;
2134 	*sd->output_queue_tailp = q;
2135 	sd->output_queue_tailp = &q->next_sched;
2136 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2137 	local_irq_restore(flags);
2138 }
2139 
2140 void __netif_schedule(struct Qdisc *q)
2141 {
2142 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2143 		__netif_reschedule(q);
2144 }
2145 EXPORT_SYMBOL(__netif_schedule);
2146 
2147 void dev_kfree_skb_irq(struct sk_buff *skb)
2148 {
2149 	if (atomic_dec_and_test(&skb->users)) {
2150 		struct softnet_data *sd;
2151 		unsigned long flags;
2152 
2153 		local_irq_save(flags);
2154 		sd = &__get_cpu_var(softnet_data);
2155 		skb->next = sd->completion_queue;
2156 		sd->completion_queue = skb;
2157 		raise_softirq_irqoff(NET_TX_SOFTIRQ);
2158 		local_irq_restore(flags);
2159 	}
2160 }
2161 EXPORT_SYMBOL(dev_kfree_skb_irq);
2162 
2163 void dev_kfree_skb_any(struct sk_buff *skb)
2164 {
2165 	if (in_irq() || irqs_disabled())
2166 		dev_kfree_skb_irq(skb);
2167 	else
2168 		dev_kfree_skb(skb);
2169 }
2170 EXPORT_SYMBOL(dev_kfree_skb_any);
2171 
2172 
2173 /**
2174  * netif_device_detach - mark device as removed
2175  * @dev: network device
2176  *
2177  * Mark device as removed from system and therefore no longer available.
2178  */
2179 void netif_device_detach(struct net_device *dev)
2180 {
2181 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2182 	    netif_running(dev)) {
2183 		netif_tx_stop_all_queues(dev);
2184 	}
2185 }
2186 EXPORT_SYMBOL(netif_device_detach);
2187 
2188 /**
2189  * netif_device_attach - mark device as attached
2190  * @dev: network device
2191  *
2192  * Mark device as attached from system and restart if needed.
2193  */
2194 void netif_device_attach(struct net_device *dev)
2195 {
2196 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2197 	    netif_running(dev)) {
2198 		netif_tx_wake_all_queues(dev);
2199 		__netdev_watchdog_up(dev);
2200 	}
2201 }
2202 EXPORT_SYMBOL(netif_device_attach);
2203 
2204 static void skb_warn_bad_offload(const struct sk_buff *skb)
2205 {
2206 	static const netdev_features_t null_features = 0;
2207 	struct net_device *dev = skb->dev;
2208 	const char *driver = "";
2209 
2210 	if (!net_ratelimit())
2211 		return;
2212 
2213 	if (dev && dev->dev.parent)
2214 		driver = dev_driver_string(dev->dev.parent);
2215 
2216 	WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2217 	     "gso_type=%d ip_summed=%d\n",
2218 	     driver, dev ? &dev->features : &null_features,
2219 	     skb->sk ? &skb->sk->sk_route_caps : &null_features,
2220 	     skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2221 	     skb_shinfo(skb)->gso_type, skb->ip_summed);
2222 }
2223 
2224 /*
2225  * Invalidate hardware checksum when packet is to be mangled, and
2226  * complete checksum manually on outgoing path.
2227  */
2228 int skb_checksum_help(struct sk_buff *skb)
2229 {
2230 	__wsum csum;
2231 	int ret = 0, offset;
2232 
2233 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2234 		goto out_set_summed;
2235 
2236 	if (unlikely(skb_shinfo(skb)->gso_size)) {
2237 		skb_warn_bad_offload(skb);
2238 		return -EINVAL;
2239 	}
2240 
2241 	/* Before computing a checksum, we should make sure no frag could
2242 	 * be modified by an external entity : checksum could be wrong.
2243 	 */
2244 	if (skb_has_shared_frag(skb)) {
2245 		ret = __skb_linearize(skb);
2246 		if (ret)
2247 			goto out;
2248 	}
2249 
2250 	offset = skb_checksum_start_offset(skb);
2251 	BUG_ON(offset >= skb_headlen(skb));
2252 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
2253 
2254 	offset += skb->csum_offset;
2255 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2256 
2257 	if (skb_cloned(skb) &&
2258 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2259 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2260 		if (ret)
2261 			goto out;
2262 	}
2263 
2264 	*(__sum16 *)(skb->data + offset) = csum_fold(csum);
2265 out_set_summed:
2266 	skb->ip_summed = CHECKSUM_NONE;
2267 out:
2268 	return ret;
2269 }
2270 EXPORT_SYMBOL(skb_checksum_help);
2271 
2272 __be16 skb_network_protocol(struct sk_buff *skb)
2273 {
2274 	__be16 type = skb->protocol;
2275 	int vlan_depth = ETH_HLEN;
2276 
2277 	/* Tunnel gso handlers can set protocol to ethernet. */
2278 	if (type == htons(ETH_P_TEB)) {
2279 		struct ethhdr *eth;
2280 
2281 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2282 			return 0;
2283 
2284 		eth = (struct ethhdr *)skb_mac_header(skb);
2285 		type = eth->h_proto;
2286 	}
2287 
2288 	while (type == htons(ETH_P_8021Q) || type == htons(ETH_P_8021AD)) {
2289 		struct vlan_hdr *vh;
2290 
2291 		if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
2292 			return 0;
2293 
2294 		vh = (struct vlan_hdr *)(skb->data + vlan_depth);
2295 		type = vh->h_vlan_encapsulated_proto;
2296 		vlan_depth += VLAN_HLEN;
2297 	}
2298 
2299 	return type;
2300 }
2301 
2302 /**
2303  *	skb_mac_gso_segment - mac layer segmentation handler.
2304  *	@skb: buffer to segment
2305  *	@features: features for the output path (see dev->features)
2306  */
2307 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2308 				    netdev_features_t features)
2309 {
2310 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2311 	struct packet_offload *ptype;
2312 	__be16 type = skb_network_protocol(skb);
2313 
2314 	if (unlikely(!type))
2315 		return ERR_PTR(-EINVAL);
2316 
2317 	__skb_pull(skb, skb->mac_len);
2318 
2319 	rcu_read_lock();
2320 	list_for_each_entry_rcu(ptype, &offload_base, list) {
2321 		if (ptype->type == type && ptype->callbacks.gso_segment) {
2322 			if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
2323 				int err;
2324 
2325 				err = ptype->callbacks.gso_send_check(skb);
2326 				segs = ERR_PTR(err);
2327 				if (err || skb_gso_ok(skb, features))
2328 					break;
2329 				__skb_push(skb, (skb->data -
2330 						 skb_network_header(skb)));
2331 			}
2332 			segs = ptype->callbacks.gso_segment(skb, features);
2333 			break;
2334 		}
2335 	}
2336 	rcu_read_unlock();
2337 
2338 	__skb_push(skb, skb->data - skb_mac_header(skb));
2339 
2340 	return segs;
2341 }
2342 EXPORT_SYMBOL(skb_mac_gso_segment);
2343 
2344 
2345 /* openvswitch calls this on rx path, so we need a different check.
2346  */
2347 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2348 {
2349 	if (tx_path)
2350 		return skb->ip_summed != CHECKSUM_PARTIAL;
2351 	else
2352 		return skb->ip_summed == CHECKSUM_NONE;
2353 }
2354 
2355 /**
2356  *	__skb_gso_segment - Perform segmentation on skb.
2357  *	@skb: buffer to segment
2358  *	@features: features for the output path (see dev->features)
2359  *	@tx_path: whether it is called in TX path
2360  *
2361  *	This function segments the given skb and returns a list of segments.
2362  *
2363  *	It may return NULL if the skb requires no segmentation.  This is
2364  *	only possible when GSO is used for verifying header integrity.
2365  */
2366 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2367 				  netdev_features_t features, bool tx_path)
2368 {
2369 	if (unlikely(skb_needs_check(skb, tx_path))) {
2370 		int err;
2371 
2372 		skb_warn_bad_offload(skb);
2373 
2374 		if (skb_header_cloned(skb) &&
2375 		    (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
2376 			return ERR_PTR(err);
2377 	}
2378 
2379 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2380 	SKB_GSO_CB(skb)->encap_level = 0;
2381 
2382 	skb_reset_mac_header(skb);
2383 	skb_reset_mac_len(skb);
2384 
2385 	return skb_mac_gso_segment(skb, features);
2386 }
2387 EXPORT_SYMBOL(__skb_gso_segment);
2388 
2389 /* Take action when hardware reception checksum errors are detected. */
2390 #ifdef CONFIG_BUG
2391 void netdev_rx_csum_fault(struct net_device *dev)
2392 {
2393 	if (net_ratelimit()) {
2394 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2395 		dump_stack();
2396 	}
2397 }
2398 EXPORT_SYMBOL(netdev_rx_csum_fault);
2399 #endif
2400 
2401 /* Actually, we should eliminate this check as soon as we know, that:
2402  * 1. IOMMU is present and allows to map all the memory.
2403  * 2. No high memory really exists on this machine.
2404  */
2405 
2406 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2407 {
2408 #ifdef CONFIG_HIGHMEM
2409 	int i;
2410 	if (!(dev->features & NETIF_F_HIGHDMA)) {
2411 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2412 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2413 			if (PageHighMem(skb_frag_page(frag)))
2414 				return 1;
2415 		}
2416 	}
2417 
2418 	if (PCI_DMA_BUS_IS_PHYS) {
2419 		struct device *pdev = dev->dev.parent;
2420 
2421 		if (!pdev)
2422 			return 0;
2423 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2424 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2425 			dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2426 			if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2427 				return 1;
2428 		}
2429 	}
2430 #endif
2431 	return 0;
2432 }
2433 
2434 struct dev_gso_cb {
2435 	void (*destructor)(struct sk_buff *skb);
2436 };
2437 
2438 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2439 
2440 static void dev_gso_skb_destructor(struct sk_buff *skb)
2441 {
2442 	struct dev_gso_cb *cb;
2443 
2444 	do {
2445 		struct sk_buff *nskb = skb->next;
2446 
2447 		skb->next = nskb->next;
2448 		nskb->next = NULL;
2449 		kfree_skb(nskb);
2450 	} while (skb->next);
2451 
2452 	cb = DEV_GSO_CB(skb);
2453 	if (cb->destructor)
2454 		cb->destructor(skb);
2455 }
2456 
2457 /**
2458  *	dev_gso_segment - Perform emulated hardware segmentation on skb.
2459  *	@skb: buffer to segment
2460  *	@features: device features as applicable to this skb
2461  *
2462  *	This function segments the given skb and stores the list of segments
2463  *	in skb->next.
2464  */
2465 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
2466 {
2467 	struct sk_buff *segs;
2468 
2469 	segs = skb_gso_segment(skb, features);
2470 
2471 	/* Verifying header integrity only. */
2472 	if (!segs)
2473 		return 0;
2474 
2475 	if (IS_ERR(segs))
2476 		return PTR_ERR(segs);
2477 
2478 	skb->next = segs;
2479 	DEV_GSO_CB(skb)->destructor = skb->destructor;
2480 	skb->destructor = dev_gso_skb_destructor;
2481 
2482 	return 0;
2483 }
2484 
2485 static netdev_features_t harmonize_features(struct sk_buff *skb,
2486 	netdev_features_t features)
2487 {
2488 	if (skb->ip_summed != CHECKSUM_NONE &&
2489 	    !can_checksum_protocol(features, skb_network_protocol(skb))) {
2490 		features &= ~NETIF_F_ALL_CSUM;
2491 	} else if (illegal_highdma(skb->dev, skb)) {
2492 		features &= ~NETIF_F_SG;
2493 	}
2494 
2495 	return features;
2496 }
2497 
2498 netdev_features_t netif_skb_features(struct sk_buff *skb)
2499 {
2500 	__be16 protocol = skb->protocol;
2501 	netdev_features_t features = skb->dev->features;
2502 
2503 	if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs)
2504 		features &= ~NETIF_F_GSO_MASK;
2505 
2506 	if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD)) {
2507 		struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2508 		protocol = veh->h_vlan_encapsulated_proto;
2509 	} else if (!vlan_tx_tag_present(skb)) {
2510 		return harmonize_features(skb, features);
2511 	}
2512 
2513 	features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_CTAG_TX |
2514 					       NETIF_F_HW_VLAN_STAG_TX);
2515 
2516 	if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD))
2517 		features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2518 				NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_CTAG_TX |
2519 				NETIF_F_HW_VLAN_STAG_TX;
2520 
2521 	return harmonize_features(skb, features);
2522 }
2523 EXPORT_SYMBOL(netif_skb_features);
2524 
2525 /*
2526  * Returns true if either:
2527  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
2528  *	2. skb is fragmented and the device does not support SG.
2529  */
2530 static inline int skb_needs_linearize(struct sk_buff *skb,
2531 				      netdev_features_t features)
2532 {
2533 	return skb_is_nonlinear(skb) &&
2534 			((skb_has_frag_list(skb) &&
2535 				!(features & NETIF_F_FRAGLIST)) ||
2536 			(skb_shinfo(skb)->nr_frags &&
2537 				!(features & NETIF_F_SG)));
2538 }
2539 
2540 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2541 			struct netdev_queue *txq, void *accel_priv)
2542 {
2543 	const struct net_device_ops *ops = dev->netdev_ops;
2544 	int rc = NETDEV_TX_OK;
2545 	unsigned int skb_len;
2546 
2547 	if (likely(!skb->next)) {
2548 		netdev_features_t features;
2549 
2550 		/*
2551 		 * If device doesn't need skb->dst, release it right now while
2552 		 * its hot in this cpu cache
2553 		 */
2554 		if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2555 			skb_dst_drop(skb);
2556 
2557 		features = netif_skb_features(skb);
2558 
2559 		if (vlan_tx_tag_present(skb) &&
2560 		    !vlan_hw_offload_capable(features, skb->vlan_proto)) {
2561 			skb = __vlan_put_tag(skb, skb->vlan_proto,
2562 					     vlan_tx_tag_get(skb));
2563 			if (unlikely(!skb))
2564 				goto out;
2565 
2566 			skb->vlan_tci = 0;
2567 		}
2568 
2569 		/* If encapsulation offload request, verify we are testing
2570 		 * hardware encapsulation features instead of standard
2571 		 * features for the netdev
2572 		 */
2573 		if (skb->encapsulation)
2574 			features &= dev->hw_enc_features;
2575 
2576 		if (netif_needs_gso(skb, features)) {
2577 			if (unlikely(dev_gso_segment(skb, features)))
2578 				goto out_kfree_skb;
2579 			if (skb->next)
2580 				goto gso;
2581 		} else {
2582 			if (skb_needs_linearize(skb, features) &&
2583 			    __skb_linearize(skb))
2584 				goto out_kfree_skb;
2585 
2586 			/* If packet is not checksummed and device does not
2587 			 * support checksumming for this protocol, complete
2588 			 * checksumming here.
2589 			 */
2590 			if (skb->ip_summed == CHECKSUM_PARTIAL) {
2591 				if (skb->encapsulation)
2592 					skb_set_inner_transport_header(skb,
2593 						skb_checksum_start_offset(skb));
2594 				else
2595 					skb_set_transport_header(skb,
2596 						skb_checksum_start_offset(skb));
2597 				if (!(features & NETIF_F_ALL_CSUM) &&
2598 				     skb_checksum_help(skb))
2599 					goto out_kfree_skb;
2600 			}
2601 		}
2602 
2603 		if (!list_empty(&ptype_all))
2604 			dev_queue_xmit_nit(skb, dev);
2605 
2606 		skb_len = skb->len;
2607 		if (accel_priv)
2608 			rc = ops->ndo_dfwd_start_xmit(skb, dev, accel_priv);
2609 		else
2610 			rc = ops->ndo_start_xmit(skb, dev);
2611 
2612 		trace_net_dev_xmit(skb, rc, dev, skb_len);
2613 		if (rc == NETDEV_TX_OK && txq)
2614 			txq_trans_update(txq);
2615 		return rc;
2616 	}
2617 
2618 gso:
2619 	do {
2620 		struct sk_buff *nskb = skb->next;
2621 
2622 		skb->next = nskb->next;
2623 		nskb->next = NULL;
2624 
2625 		if (!list_empty(&ptype_all))
2626 			dev_queue_xmit_nit(nskb, dev);
2627 
2628 		skb_len = nskb->len;
2629 		if (accel_priv)
2630 			rc = ops->ndo_dfwd_start_xmit(nskb, dev, accel_priv);
2631 		else
2632 			rc = ops->ndo_start_xmit(nskb, dev);
2633 		trace_net_dev_xmit(nskb, rc, dev, skb_len);
2634 		if (unlikely(rc != NETDEV_TX_OK)) {
2635 			if (rc & ~NETDEV_TX_MASK)
2636 				goto out_kfree_gso_skb;
2637 			nskb->next = skb->next;
2638 			skb->next = nskb;
2639 			return rc;
2640 		}
2641 		txq_trans_update(txq);
2642 		if (unlikely(netif_xmit_stopped(txq) && skb->next))
2643 			return NETDEV_TX_BUSY;
2644 	} while (skb->next);
2645 
2646 out_kfree_gso_skb:
2647 	if (likely(skb->next == NULL)) {
2648 		skb->destructor = DEV_GSO_CB(skb)->destructor;
2649 		consume_skb(skb);
2650 		return rc;
2651 	}
2652 out_kfree_skb:
2653 	kfree_skb(skb);
2654 out:
2655 	return rc;
2656 }
2657 EXPORT_SYMBOL_GPL(dev_hard_start_xmit);
2658 
2659 static void qdisc_pkt_len_init(struct sk_buff *skb)
2660 {
2661 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
2662 
2663 	qdisc_skb_cb(skb)->pkt_len = skb->len;
2664 
2665 	/* To get more precise estimation of bytes sent on wire,
2666 	 * we add to pkt_len the headers size of all segments
2667 	 */
2668 	if (shinfo->gso_size)  {
2669 		unsigned int hdr_len;
2670 		u16 gso_segs = shinfo->gso_segs;
2671 
2672 		/* mac layer + network layer */
2673 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2674 
2675 		/* + transport layer */
2676 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2677 			hdr_len += tcp_hdrlen(skb);
2678 		else
2679 			hdr_len += sizeof(struct udphdr);
2680 
2681 		if (shinfo->gso_type & SKB_GSO_DODGY)
2682 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2683 						shinfo->gso_size);
2684 
2685 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2686 	}
2687 }
2688 
2689 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2690 				 struct net_device *dev,
2691 				 struct netdev_queue *txq)
2692 {
2693 	spinlock_t *root_lock = qdisc_lock(q);
2694 	bool contended;
2695 	int rc;
2696 
2697 	qdisc_pkt_len_init(skb);
2698 	qdisc_calculate_pkt_len(skb, q);
2699 	/*
2700 	 * Heuristic to force contended enqueues to serialize on a
2701 	 * separate lock before trying to get qdisc main lock.
2702 	 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2703 	 * and dequeue packets faster.
2704 	 */
2705 	contended = qdisc_is_running(q);
2706 	if (unlikely(contended))
2707 		spin_lock(&q->busylock);
2708 
2709 	spin_lock(root_lock);
2710 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2711 		kfree_skb(skb);
2712 		rc = NET_XMIT_DROP;
2713 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2714 		   qdisc_run_begin(q)) {
2715 		/*
2716 		 * This is a work-conserving queue; there are no old skbs
2717 		 * waiting to be sent out; and the qdisc is not running -
2718 		 * xmit the skb directly.
2719 		 */
2720 		if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2721 			skb_dst_force(skb);
2722 
2723 		qdisc_bstats_update(q, skb);
2724 
2725 		if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2726 			if (unlikely(contended)) {
2727 				spin_unlock(&q->busylock);
2728 				contended = false;
2729 			}
2730 			__qdisc_run(q);
2731 		} else
2732 			qdisc_run_end(q);
2733 
2734 		rc = NET_XMIT_SUCCESS;
2735 	} else {
2736 		skb_dst_force(skb);
2737 		rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2738 		if (qdisc_run_begin(q)) {
2739 			if (unlikely(contended)) {
2740 				spin_unlock(&q->busylock);
2741 				contended = false;
2742 			}
2743 			__qdisc_run(q);
2744 		}
2745 	}
2746 	spin_unlock(root_lock);
2747 	if (unlikely(contended))
2748 		spin_unlock(&q->busylock);
2749 	return rc;
2750 }
2751 
2752 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
2753 static void skb_update_prio(struct sk_buff *skb)
2754 {
2755 	struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2756 
2757 	if (!skb->priority && skb->sk && map) {
2758 		unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2759 
2760 		if (prioidx < map->priomap_len)
2761 			skb->priority = map->priomap[prioidx];
2762 	}
2763 }
2764 #else
2765 #define skb_update_prio(skb)
2766 #endif
2767 
2768 static DEFINE_PER_CPU(int, xmit_recursion);
2769 #define RECURSION_LIMIT 10
2770 
2771 /**
2772  *	dev_loopback_xmit - loop back @skb
2773  *	@skb: buffer to transmit
2774  */
2775 int dev_loopback_xmit(struct sk_buff *skb)
2776 {
2777 	skb_reset_mac_header(skb);
2778 	__skb_pull(skb, skb_network_offset(skb));
2779 	skb->pkt_type = PACKET_LOOPBACK;
2780 	skb->ip_summed = CHECKSUM_UNNECESSARY;
2781 	WARN_ON(!skb_dst(skb));
2782 	skb_dst_force(skb);
2783 	netif_rx_ni(skb);
2784 	return 0;
2785 }
2786 EXPORT_SYMBOL(dev_loopback_xmit);
2787 
2788 /**
2789  *	dev_queue_xmit - transmit a buffer
2790  *	@skb: buffer to transmit
2791  *
2792  *	Queue a buffer for transmission to a network device. The caller must
2793  *	have set the device and priority and built the buffer before calling
2794  *	this function. The function can be called from an interrupt.
2795  *
2796  *	A negative errno code is returned on a failure. A success does not
2797  *	guarantee the frame will be transmitted as it may be dropped due
2798  *	to congestion or traffic shaping.
2799  *
2800  * -----------------------------------------------------------------------------------
2801  *      I notice this method can also return errors from the queue disciplines,
2802  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
2803  *      be positive.
2804  *
2805  *      Regardless of the return value, the skb is consumed, so it is currently
2806  *      difficult to retry a send to this method.  (You can bump the ref count
2807  *      before sending to hold a reference for retry if you are careful.)
2808  *
2809  *      When calling this method, interrupts MUST be enabled.  This is because
2810  *      the BH enable code must have IRQs enabled so that it will not deadlock.
2811  *          --BLG
2812  */
2813 int dev_queue_xmit(struct sk_buff *skb)
2814 {
2815 	struct net_device *dev = skb->dev;
2816 	struct netdev_queue *txq;
2817 	struct Qdisc *q;
2818 	int rc = -ENOMEM;
2819 
2820 	skb_reset_mac_header(skb);
2821 
2822 	/* Disable soft irqs for various locks below. Also
2823 	 * stops preemption for RCU.
2824 	 */
2825 	rcu_read_lock_bh();
2826 
2827 	skb_update_prio(skb);
2828 
2829 	txq = netdev_pick_tx(dev, skb);
2830 	q = rcu_dereference_bh(txq->qdisc);
2831 
2832 #ifdef CONFIG_NET_CLS_ACT
2833 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2834 #endif
2835 	trace_net_dev_queue(skb);
2836 	if (q->enqueue) {
2837 		rc = __dev_xmit_skb(skb, q, dev, txq);
2838 		goto out;
2839 	}
2840 
2841 	/* The device has no queue. Common case for software devices:
2842 	   loopback, all the sorts of tunnels...
2843 
2844 	   Really, it is unlikely that netif_tx_lock protection is necessary
2845 	   here.  (f.e. loopback and IP tunnels are clean ignoring statistics
2846 	   counters.)
2847 	   However, it is possible, that they rely on protection
2848 	   made by us here.
2849 
2850 	   Check this and shot the lock. It is not prone from deadlocks.
2851 	   Either shot noqueue qdisc, it is even simpler 8)
2852 	 */
2853 	if (dev->flags & IFF_UP) {
2854 		int cpu = smp_processor_id(); /* ok because BHs are off */
2855 
2856 		if (txq->xmit_lock_owner != cpu) {
2857 
2858 			if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2859 				goto recursion_alert;
2860 
2861 			HARD_TX_LOCK(dev, txq, cpu);
2862 
2863 			if (!netif_xmit_stopped(txq)) {
2864 				__this_cpu_inc(xmit_recursion);
2865 				rc = dev_hard_start_xmit(skb, dev, txq, NULL);
2866 				__this_cpu_dec(xmit_recursion);
2867 				if (dev_xmit_complete(rc)) {
2868 					HARD_TX_UNLOCK(dev, txq);
2869 					goto out;
2870 				}
2871 			}
2872 			HARD_TX_UNLOCK(dev, txq);
2873 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2874 					     dev->name);
2875 		} else {
2876 			/* Recursion is detected! It is possible,
2877 			 * unfortunately
2878 			 */
2879 recursion_alert:
2880 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2881 					     dev->name);
2882 		}
2883 	}
2884 
2885 	rc = -ENETDOWN;
2886 	rcu_read_unlock_bh();
2887 
2888 	kfree_skb(skb);
2889 	return rc;
2890 out:
2891 	rcu_read_unlock_bh();
2892 	return rc;
2893 }
2894 EXPORT_SYMBOL(dev_queue_xmit);
2895 
2896 
2897 /*=======================================================================
2898 			Receiver routines
2899   =======================================================================*/
2900 
2901 int netdev_max_backlog __read_mostly = 1000;
2902 EXPORT_SYMBOL(netdev_max_backlog);
2903 
2904 int netdev_tstamp_prequeue __read_mostly = 1;
2905 int netdev_budget __read_mostly = 300;
2906 int weight_p __read_mostly = 64;            /* old backlog weight */
2907 
2908 /* Called with irq disabled */
2909 static inline void ____napi_schedule(struct softnet_data *sd,
2910 				     struct napi_struct *napi)
2911 {
2912 	list_add_tail(&napi->poll_list, &sd->poll_list);
2913 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
2914 }
2915 
2916 #ifdef CONFIG_RPS
2917 
2918 /* One global table that all flow-based protocols share. */
2919 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2920 EXPORT_SYMBOL(rps_sock_flow_table);
2921 
2922 struct static_key rps_needed __read_mostly;
2923 
2924 static struct rps_dev_flow *
2925 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2926 	    struct rps_dev_flow *rflow, u16 next_cpu)
2927 {
2928 	if (next_cpu != RPS_NO_CPU) {
2929 #ifdef CONFIG_RFS_ACCEL
2930 		struct netdev_rx_queue *rxqueue;
2931 		struct rps_dev_flow_table *flow_table;
2932 		struct rps_dev_flow *old_rflow;
2933 		u32 flow_id;
2934 		u16 rxq_index;
2935 		int rc;
2936 
2937 		/* Should we steer this flow to a different hardware queue? */
2938 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2939 		    !(dev->features & NETIF_F_NTUPLE))
2940 			goto out;
2941 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2942 		if (rxq_index == skb_get_rx_queue(skb))
2943 			goto out;
2944 
2945 		rxqueue = dev->_rx + rxq_index;
2946 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
2947 		if (!flow_table)
2948 			goto out;
2949 		flow_id = skb->rxhash & flow_table->mask;
2950 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2951 							rxq_index, flow_id);
2952 		if (rc < 0)
2953 			goto out;
2954 		old_rflow = rflow;
2955 		rflow = &flow_table->flows[flow_id];
2956 		rflow->filter = rc;
2957 		if (old_rflow->filter == rflow->filter)
2958 			old_rflow->filter = RPS_NO_FILTER;
2959 	out:
2960 #endif
2961 		rflow->last_qtail =
2962 			per_cpu(softnet_data, next_cpu).input_queue_head;
2963 	}
2964 
2965 	rflow->cpu = next_cpu;
2966 	return rflow;
2967 }
2968 
2969 /*
2970  * get_rps_cpu is called from netif_receive_skb and returns the target
2971  * CPU from the RPS map of the receiving queue for a given skb.
2972  * rcu_read_lock must be held on entry.
2973  */
2974 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2975 		       struct rps_dev_flow **rflowp)
2976 {
2977 	struct netdev_rx_queue *rxqueue;
2978 	struct rps_map *map;
2979 	struct rps_dev_flow_table *flow_table;
2980 	struct rps_sock_flow_table *sock_flow_table;
2981 	int cpu = -1;
2982 	u16 tcpu;
2983 
2984 	if (skb_rx_queue_recorded(skb)) {
2985 		u16 index = skb_get_rx_queue(skb);
2986 		if (unlikely(index >= dev->real_num_rx_queues)) {
2987 			WARN_ONCE(dev->real_num_rx_queues > 1,
2988 				  "%s received packet on queue %u, but number "
2989 				  "of RX queues is %u\n",
2990 				  dev->name, index, dev->real_num_rx_queues);
2991 			goto done;
2992 		}
2993 		rxqueue = dev->_rx + index;
2994 	} else
2995 		rxqueue = dev->_rx;
2996 
2997 	map = rcu_dereference(rxqueue->rps_map);
2998 	if (map) {
2999 		if (map->len == 1 &&
3000 		    !rcu_access_pointer(rxqueue->rps_flow_table)) {
3001 			tcpu = map->cpus[0];
3002 			if (cpu_online(tcpu))
3003 				cpu = tcpu;
3004 			goto done;
3005 		}
3006 	} else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
3007 		goto done;
3008 	}
3009 
3010 	skb_reset_network_header(skb);
3011 	if (!skb_get_rxhash(skb))
3012 		goto done;
3013 
3014 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3015 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
3016 	if (flow_table && sock_flow_table) {
3017 		u16 next_cpu;
3018 		struct rps_dev_flow *rflow;
3019 
3020 		rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
3021 		tcpu = rflow->cpu;
3022 
3023 		next_cpu = sock_flow_table->ents[skb->rxhash &
3024 		    sock_flow_table->mask];
3025 
3026 		/*
3027 		 * If the desired CPU (where last recvmsg was done) is
3028 		 * different from current CPU (one in the rx-queue flow
3029 		 * table entry), switch if one of the following holds:
3030 		 *   - Current CPU is unset (equal to RPS_NO_CPU).
3031 		 *   - Current CPU is offline.
3032 		 *   - The current CPU's queue tail has advanced beyond the
3033 		 *     last packet that was enqueued using this table entry.
3034 		 *     This guarantees that all previous packets for the flow
3035 		 *     have been dequeued, thus preserving in order delivery.
3036 		 */
3037 		if (unlikely(tcpu != next_cpu) &&
3038 		    (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
3039 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3040 		      rflow->last_qtail)) >= 0)) {
3041 			tcpu = next_cpu;
3042 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3043 		}
3044 
3045 		if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
3046 			*rflowp = rflow;
3047 			cpu = tcpu;
3048 			goto done;
3049 		}
3050 	}
3051 
3052 	if (map) {
3053 		tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
3054 
3055 		if (cpu_online(tcpu)) {
3056 			cpu = tcpu;
3057 			goto done;
3058 		}
3059 	}
3060 
3061 done:
3062 	return cpu;
3063 }
3064 
3065 #ifdef CONFIG_RFS_ACCEL
3066 
3067 /**
3068  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3069  * @dev: Device on which the filter was set
3070  * @rxq_index: RX queue index
3071  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3072  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3073  *
3074  * Drivers that implement ndo_rx_flow_steer() should periodically call
3075  * this function for each installed filter and remove the filters for
3076  * which it returns %true.
3077  */
3078 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3079 			 u32 flow_id, u16 filter_id)
3080 {
3081 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3082 	struct rps_dev_flow_table *flow_table;
3083 	struct rps_dev_flow *rflow;
3084 	bool expire = true;
3085 	int cpu;
3086 
3087 	rcu_read_lock();
3088 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3089 	if (flow_table && flow_id <= flow_table->mask) {
3090 		rflow = &flow_table->flows[flow_id];
3091 		cpu = ACCESS_ONCE(rflow->cpu);
3092 		if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
3093 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3094 			   rflow->last_qtail) <
3095 		     (int)(10 * flow_table->mask)))
3096 			expire = false;
3097 	}
3098 	rcu_read_unlock();
3099 	return expire;
3100 }
3101 EXPORT_SYMBOL(rps_may_expire_flow);
3102 
3103 #endif /* CONFIG_RFS_ACCEL */
3104 
3105 /* Called from hardirq (IPI) context */
3106 static void rps_trigger_softirq(void *data)
3107 {
3108 	struct softnet_data *sd = data;
3109 
3110 	____napi_schedule(sd, &sd->backlog);
3111 	sd->received_rps++;
3112 }
3113 
3114 #endif /* CONFIG_RPS */
3115 
3116 /*
3117  * Check if this softnet_data structure is another cpu one
3118  * If yes, queue it to our IPI list and return 1
3119  * If no, return 0
3120  */
3121 static int rps_ipi_queued(struct softnet_data *sd)
3122 {
3123 #ifdef CONFIG_RPS
3124 	struct softnet_data *mysd = &__get_cpu_var(softnet_data);
3125 
3126 	if (sd != mysd) {
3127 		sd->rps_ipi_next = mysd->rps_ipi_list;
3128 		mysd->rps_ipi_list = sd;
3129 
3130 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3131 		return 1;
3132 	}
3133 #endif /* CONFIG_RPS */
3134 	return 0;
3135 }
3136 
3137 #ifdef CONFIG_NET_FLOW_LIMIT
3138 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3139 #endif
3140 
3141 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3142 {
3143 #ifdef CONFIG_NET_FLOW_LIMIT
3144 	struct sd_flow_limit *fl;
3145 	struct softnet_data *sd;
3146 	unsigned int old_flow, new_flow;
3147 
3148 	if (qlen < (netdev_max_backlog >> 1))
3149 		return false;
3150 
3151 	sd = &__get_cpu_var(softnet_data);
3152 
3153 	rcu_read_lock();
3154 	fl = rcu_dereference(sd->flow_limit);
3155 	if (fl) {
3156 		new_flow = skb_get_rxhash(skb) & (fl->num_buckets - 1);
3157 		old_flow = fl->history[fl->history_head];
3158 		fl->history[fl->history_head] = new_flow;
3159 
3160 		fl->history_head++;
3161 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3162 
3163 		if (likely(fl->buckets[old_flow]))
3164 			fl->buckets[old_flow]--;
3165 
3166 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3167 			fl->count++;
3168 			rcu_read_unlock();
3169 			return true;
3170 		}
3171 	}
3172 	rcu_read_unlock();
3173 #endif
3174 	return false;
3175 }
3176 
3177 /*
3178  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3179  * queue (may be a remote CPU queue).
3180  */
3181 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3182 			      unsigned int *qtail)
3183 {
3184 	struct softnet_data *sd;
3185 	unsigned long flags;
3186 	unsigned int qlen;
3187 
3188 	sd = &per_cpu(softnet_data, cpu);
3189 
3190 	local_irq_save(flags);
3191 
3192 	rps_lock(sd);
3193 	qlen = skb_queue_len(&sd->input_pkt_queue);
3194 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3195 		if (skb_queue_len(&sd->input_pkt_queue)) {
3196 enqueue:
3197 			__skb_queue_tail(&sd->input_pkt_queue, skb);
3198 			input_queue_tail_incr_save(sd, qtail);
3199 			rps_unlock(sd);
3200 			local_irq_restore(flags);
3201 			return NET_RX_SUCCESS;
3202 		}
3203 
3204 		/* Schedule NAPI for backlog device
3205 		 * We can use non atomic operation since we own the queue lock
3206 		 */
3207 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3208 			if (!rps_ipi_queued(sd))
3209 				____napi_schedule(sd, &sd->backlog);
3210 		}
3211 		goto enqueue;
3212 	}
3213 
3214 	sd->dropped++;
3215 	rps_unlock(sd);
3216 
3217 	local_irq_restore(flags);
3218 
3219 	atomic_long_inc(&skb->dev->rx_dropped);
3220 	kfree_skb(skb);
3221 	return NET_RX_DROP;
3222 }
3223 
3224 /**
3225  *	netif_rx	-	post buffer to the network code
3226  *	@skb: buffer to post
3227  *
3228  *	This function receives a packet from a device driver and queues it for
3229  *	the upper (protocol) levels to process.  It always succeeds. The buffer
3230  *	may be dropped during processing for congestion control or by the
3231  *	protocol layers.
3232  *
3233  *	return values:
3234  *	NET_RX_SUCCESS	(no congestion)
3235  *	NET_RX_DROP     (packet was dropped)
3236  *
3237  */
3238 
3239 int netif_rx(struct sk_buff *skb)
3240 {
3241 	int ret;
3242 
3243 	/* if netpoll wants it, pretend we never saw it */
3244 	if (netpoll_rx(skb))
3245 		return NET_RX_DROP;
3246 
3247 	net_timestamp_check(netdev_tstamp_prequeue, skb);
3248 
3249 	trace_netif_rx(skb);
3250 #ifdef CONFIG_RPS
3251 	if (static_key_false(&rps_needed)) {
3252 		struct rps_dev_flow voidflow, *rflow = &voidflow;
3253 		int cpu;
3254 
3255 		preempt_disable();
3256 		rcu_read_lock();
3257 
3258 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
3259 		if (cpu < 0)
3260 			cpu = smp_processor_id();
3261 
3262 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3263 
3264 		rcu_read_unlock();
3265 		preempt_enable();
3266 	} else
3267 #endif
3268 	{
3269 		unsigned int qtail;
3270 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3271 		put_cpu();
3272 	}
3273 	return ret;
3274 }
3275 EXPORT_SYMBOL(netif_rx);
3276 
3277 int netif_rx_ni(struct sk_buff *skb)
3278 {
3279 	int err;
3280 
3281 	preempt_disable();
3282 	err = netif_rx(skb);
3283 	if (local_softirq_pending())
3284 		do_softirq();
3285 	preempt_enable();
3286 
3287 	return err;
3288 }
3289 EXPORT_SYMBOL(netif_rx_ni);
3290 
3291 static void net_tx_action(struct softirq_action *h)
3292 {
3293 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
3294 
3295 	if (sd->completion_queue) {
3296 		struct sk_buff *clist;
3297 
3298 		local_irq_disable();
3299 		clist = sd->completion_queue;
3300 		sd->completion_queue = NULL;
3301 		local_irq_enable();
3302 
3303 		while (clist) {
3304 			struct sk_buff *skb = clist;
3305 			clist = clist->next;
3306 
3307 			WARN_ON(atomic_read(&skb->users));
3308 			trace_kfree_skb(skb, net_tx_action);
3309 			__kfree_skb(skb);
3310 		}
3311 	}
3312 
3313 	if (sd->output_queue) {
3314 		struct Qdisc *head;
3315 
3316 		local_irq_disable();
3317 		head = sd->output_queue;
3318 		sd->output_queue = NULL;
3319 		sd->output_queue_tailp = &sd->output_queue;
3320 		local_irq_enable();
3321 
3322 		while (head) {
3323 			struct Qdisc *q = head;
3324 			spinlock_t *root_lock;
3325 
3326 			head = head->next_sched;
3327 
3328 			root_lock = qdisc_lock(q);
3329 			if (spin_trylock(root_lock)) {
3330 				smp_mb__before_clear_bit();
3331 				clear_bit(__QDISC_STATE_SCHED,
3332 					  &q->state);
3333 				qdisc_run(q);
3334 				spin_unlock(root_lock);
3335 			} else {
3336 				if (!test_bit(__QDISC_STATE_DEACTIVATED,
3337 					      &q->state)) {
3338 					__netif_reschedule(q);
3339 				} else {
3340 					smp_mb__before_clear_bit();
3341 					clear_bit(__QDISC_STATE_SCHED,
3342 						  &q->state);
3343 				}
3344 			}
3345 		}
3346 	}
3347 }
3348 
3349 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3350     (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3351 /* This hook is defined here for ATM LANE */
3352 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3353 			     unsigned char *addr) __read_mostly;
3354 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3355 #endif
3356 
3357 #ifdef CONFIG_NET_CLS_ACT
3358 /* TODO: Maybe we should just force sch_ingress to be compiled in
3359  * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3360  * a compare and 2 stores extra right now if we dont have it on
3361  * but have CONFIG_NET_CLS_ACT
3362  * NOTE: This doesn't stop any functionality; if you dont have
3363  * the ingress scheduler, you just can't add policies on ingress.
3364  *
3365  */
3366 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3367 {
3368 	struct net_device *dev = skb->dev;
3369 	u32 ttl = G_TC_RTTL(skb->tc_verd);
3370 	int result = TC_ACT_OK;
3371 	struct Qdisc *q;
3372 
3373 	if (unlikely(MAX_RED_LOOP < ttl++)) {
3374 		net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3375 				     skb->skb_iif, dev->ifindex);
3376 		return TC_ACT_SHOT;
3377 	}
3378 
3379 	skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3380 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3381 
3382 	q = rxq->qdisc;
3383 	if (q != &noop_qdisc) {
3384 		spin_lock(qdisc_lock(q));
3385 		if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3386 			result = qdisc_enqueue_root(skb, q);
3387 		spin_unlock(qdisc_lock(q));
3388 	}
3389 
3390 	return result;
3391 }
3392 
3393 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3394 					 struct packet_type **pt_prev,
3395 					 int *ret, struct net_device *orig_dev)
3396 {
3397 	struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3398 
3399 	if (!rxq || rxq->qdisc == &noop_qdisc)
3400 		goto out;
3401 
3402 	if (*pt_prev) {
3403 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
3404 		*pt_prev = NULL;
3405 	}
3406 
3407 	switch (ing_filter(skb, rxq)) {
3408 	case TC_ACT_SHOT:
3409 	case TC_ACT_STOLEN:
3410 		kfree_skb(skb);
3411 		return NULL;
3412 	}
3413 
3414 out:
3415 	skb->tc_verd = 0;
3416 	return skb;
3417 }
3418 #endif
3419 
3420 /**
3421  *	netdev_rx_handler_register - register receive handler
3422  *	@dev: device to register a handler for
3423  *	@rx_handler: receive handler to register
3424  *	@rx_handler_data: data pointer that is used by rx handler
3425  *
3426  *	Register a receive hander for a device. This handler will then be
3427  *	called from __netif_receive_skb. A negative errno code is returned
3428  *	on a failure.
3429  *
3430  *	The caller must hold the rtnl_mutex.
3431  *
3432  *	For a general description of rx_handler, see enum rx_handler_result.
3433  */
3434 int netdev_rx_handler_register(struct net_device *dev,
3435 			       rx_handler_func_t *rx_handler,
3436 			       void *rx_handler_data)
3437 {
3438 	ASSERT_RTNL();
3439 
3440 	if (dev->rx_handler)
3441 		return -EBUSY;
3442 
3443 	/* Note: rx_handler_data must be set before rx_handler */
3444 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3445 	rcu_assign_pointer(dev->rx_handler, rx_handler);
3446 
3447 	return 0;
3448 }
3449 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3450 
3451 /**
3452  *	netdev_rx_handler_unregister - unregister receive handler
3453  *	@dev: device to unregister a handler from
3454  *
3455  *	Unregister a receive handler from a device.
3456  *
3457  *	The caller must hold the rtnl_mutex.
3458  */
3459 void netdev_rx_handler_unregister(struct net_device *dev)
3460 {
3461 
3462 	ASSERT_RTNL();
3463 	RCU_INIT_POINTER(dev->rx_handler, NULL);
3464 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3465 	 * section has a guarantee to see a non NULL rx_handler_data
3466 	 * as well.
3467 	 */
3468 	synchronize_net();
3469 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3470 }
3471 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3472 
3473 /*
3474  * Limit the use of PFMEMALLOC reserves to those protocols that implement
3475  * the special handling of PFMEMALLOC skbs.
3476  */
3477 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3478 {
3479 	switch (skb->protocol) {
3480 	case __constant_htons(ETH_P_ARP):
3481 	case __constant_htons(ETH_P_IP):
3482 	case __constant_htons(ETH_P_IPV6):
3483 	case __constant_htons(ETH_P_8021Q):
3484 	case __constant_htons(ETH_P_8021AD):
3485 		return true;
3486 	default:
3487 		return false;
3488 	}
3489 }
3490 
3491 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3492 {
3493 	struct packet_type *ptype, *pt_prev;
3494 	rx_handler_func_t *rx_handler;
3495 	struct net_device *orig_dev;
3496 	struct net_device *null_or_dev;
3497 	bool deliver_exact = false;
3498 	int ret = NET_RX_DROP;
3499 	__be16 type;
3500 
3501 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
3502 
3503 	trace_netif_receive_skb(skb);
3504 
3505 	/* if we've gotten here through NAPI, check netpoll */
3506 	if (netpoll_receive_skb(skb))
3507 		goto out;
3508 
3509 	orig_dev = skb->dev;
3510 
3511 	skb_reset_network_header(skb);
3512 	if (!skb_transport_header_was_set(skb))
3513 		skb_reset_transport_header(skb);
3514 	skb_reset_mac_len(skb);
3515 
3516 	pt_prev = NULL;
3517 
3518 	rcu_read_lock();
3519 
3520 another_round:
3521 	skb->skb_iif = skb->dev->ifindex;
3522 
3523 	__this_cpu_inc(softnet_data.processed);
3524 
3525 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3526 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3527 		skb = vlan_untag(skb);
3528 		if (unlikely(!skb))
3529 			goto unlock;
3530 	}
3531 
3532 #ifdef CONFIG_NET_CLS_ACT
3533 	if (skb->tc_verd & TC_NCLS) {
3534 		skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3535 		goto ncls;
3536 	}
3537 #endif
3538 
3539 	if (pfmemalloc)
3540 		goto skip_taps;
3541 
3542 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
3543 		if (!ptype->dev || ptype->dev == skb->dev) {
3544 			if (pt_prev)
3545 				ret = deliver_skb(skb, pt_prev, orig_dev);
3546 			pt_prev = ptype;
3547 		}
3548 	}
3549 
3550 skip_taps:
3551 #ifdef CONFIG_NET_CLS_ACT
3552 	skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3553 	if (!skb)
3554 		goto unlock;
3555 ncls:
3556 #endif
3557 
3558 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3559 		goto drop;
3560 
3561 	if (vlan_tx_tag_present(skb)) {
3562 		if (pt_prev) {
3563 			ret = deliver_skb(skb, pt_prev, orig_dev);
3564 			pt_prev = NULL;
3565 		}
3566 		if (vlan_do_receive(&skb))
3567 			goto another_round;
3568 		else if (unlikely(!skb))
3569 			goto unlock;
3570 	}
3571 
3572 	rx_handler = rcu_dereference(skb->dev->rx_handler);
3573 	if (rx_handler) {
3574 		if (pt_prev) {
3575 			ret = deliver_skb(skb, pt_prev, orig_dev);
3576 			pt_prev = NULL;
3577 		}
3578 		switch (rx_handler(&skb)) {
3579 		case RX_HANDLER_CONSUMED:
3580 			ret = NET_RX_SUCCESS;
3581 			goto unlock;
3582 		case RX_HANDLER_ANOTHER:
3583 			goto another_round;
3584 		case RX_HANDLER_EXACT:
3585 			deliver_exact = true;
3586 		case RX_HANDLER_PASS:
3587 			break;
3588 		default:
3589 			BUG();
3590 		}
3591 	}
3592 
3593 	if (unlikely(vlan_tx_tag_present(skb))) {
3594 		if (vlan_tx_tag_get_id(skb))
3595 			skb->pkt_type = PACKET_OTHERHOST;
3596 		/* Note: we might in the future use prio bits
3597 		 * and set skb->priority like in vlan_do_receive()
3598 		 * For the time being, just ignore Priority Code Point
3599 		 */
3600 		skb->vlan_tci = 0;
3601 	}
3602 
3603 	/* deliver only exact match when indicated */
3604 	null_or_dev = deliver_exact ? skb->dev : NULL;
3605 
3606 	type = skb->protocol;
3607 	list_for_each_entry_rcu(ptype,
3608 			&ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3609 		if (ptype->type == type &&
3610 		    (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3611 		     ptype->dev == orig_dev)) {
3612 			if (pt_prev)
3613 				ret = deliver_skb(skb, pt_prev, orig_dev);
3614 			pt_prev = ptype;
3615 		}
3616 	}
3617 
3618 	if (pt_prev) {
3619 		if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3620 			goto drop;
3621 		else
3622 			ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3623 	} else {
3624 drop:
3625 		atomic_long_inc(&skb->dev->rx_dropped);
3626 		kfree_skb(skb);
3627 		/* Jamal, now you will not able to escape explaining
3628 		 * me how you were going to use this. :-)
3629 		 */
3630 		ret = NET_RX_DROP;
3631 	}
3632 
3633 unlock:
3634 	rcu_read_unlock();
3635 out:
3636 	return ret;
3637 }
3638 
3639 static int __netif_receive_skb(struct sk_buff *skb)
3640 {
3641 	int ret;
3642 
3643 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3644 		unsigned long pflags = current->flags;
3645 
3646 		/*
3647 		 * PFMEMALLOC skbs are special, they should
3648 		 * - be delivered to SOCK_MEMALLOC sockets only
3649 		 * - stay away from userspace
3650 		 * - have bounded memory usage
3651 		 *
3652 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
3653 		 * context down to all allocation sites.
3654 		 */
3655 		current->flags |= PF_MEMALLOC;
3656 		ret = __netif_receive_skb_core(skb, true);
3657 		tsk_restore_flags(current, pflags, PF_MEMALLOC);
3658 	} else
3659 		ret = __netif_receive_skb_core(skb, false);
3660 
3661 	return ret;
3662 }
3663 
3664 /**
3665  *	netif_receive_skb - process receive buffer from network
3666  *	@skb: buffer to process
3667  *
3668  *	netif_receive_skb() is the main receive data processing function.
3669  *	It always succeeds. The buffer may be dropped during processing
3670  *	for congestion control or by the protocol layers.
3671  *
3672  *	This function may only be called from softirq context and interrupts
3673  *	should be enabled.
3674  *
3675  *	Return values (usually ignored):
3676  *	NET_RX_SUCCESS: no congestion
3677  *	NET_RX_DROP: packet was dropped
3678  */
3679 int netif_receive_skb(struct sk_buff *skb)
3680 {
3681 	net_timestamp_check(netdev_tstamp_prequeue, skb);
3682 
3683 	if (skb_defer_rx_timestamp(skb))
3684 		return NET_RX_SUCCESS;
3685 
3686 #ifdef CONFIG_RPS
3687 	if (static_key_false(&rps_needed)) {
3688 		struct rps_dev_flow voidflow, *rflow = &voidflow;
3689 		int cpu, ret;
3690 
3691 		rcu_read_lock();
3692 
3693 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
3694 
3695 		if (cpu >= 0) {
3696 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3697 			rcu_read_unlock();
3698 			return ret;
3699 		}
3700 		rcu_read_unlock();
3701 	}
3702 #endif
3703 	return __netif_receive_skb(skb);
3704 }
3705 EXPORT_SYMBOL(netif_receive_skb);
3706 
3707 /* Network device is going away, flush any packets still pending
3708  * Called with irqs disabled.
3709  */
3710 static void flush_backlog(void *arg)
3711 {
3712 	struct net_device *dev = arg;
3713 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
3714 	struct sk_buff *skb, *tmp;
3715 
3716 	rps_lock(sd);
3717 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3718 		if (skb->dev == dev) {
3719 			__skb_unlink(skb, &sd->input_pkt_queue);
3720 			kfree_skb(skb);
3721 			input_queue_head_incr(sd);
3722 		}
3723 	}
3724 	rps_unlock(sd);
3725 
3726 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3727 		if (skb->dev == dev) {
3728 			__skb_unlink(skb, &sd->process_queue);
3729 			kfree_skb(skb);
3730 			input_queue_head_incr(sd);
3731 		}
3732 	}
3733 }
3734 
3735 static int napi_gro_complete(struct sk_buff *skb)
3736 {
3737 	struct packet_offload *ptype;
3738 	__be16 type = skb->protocol;
3739 	struct list_head *head = &offload_base;
3740 	int err = -ENOENT;
3741 
3742 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3743 
3744 	if (NAPI_GRO_CB(skb)->count == 1) {
3745 		skb_shinfo(skb)->gso_size = 0;
3746 		goto out;
3747 	}
3748 
3749 	rcu_read_lock();
3750 	list_for_each_entry_rcu(ptype, head, list) {
3751 		if (ptype->type != type || !ptype->callbacks.gro_complete)
3752 			continue;
3753 
3754 		err = ptype->callbacks.gro_complete(skb);
3755 		break;
3756 	}
3757 	rcu_read_unlock();
3758 
3759 	if (err) {
3760 		WARN_ON(&ptype->list == head);
3761 		kfree_skb(skb);
3762 		return NET_RX_SUCCESS;
3763 	}
3764 
3765 out:
3766 	return netif_receive_skb(skb);
3767 }
3768 
3769 /* napi->gro_list contains packets ordered by age.
3770  * youngest packets at the head of it.
3771  * Complete skbs in reverse order to reduce latencies.
3772  */
3773 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3774 {
3775 	struct sk_buff *skb, *prev = NULL;
3776 
3777 	/* scan list and build reverse chain */
3778 	for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3779 		skb->prev = prev;
3780 		prev = skb;
3781 	}
3782 
3783 	for (skb = prev; skb; skb = prev) {
3784 		skb->next = NULL;
3785 
3786 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3787 			return;
3788 
3789 		prev = skb->prev;
3790 		napi_gro_complete(skb);
3791 		napi->gro_count--;
3792 	}
3793 
3794 	napi->gro_list = NULL;
3795 }
3796 EXPORT_SYMBOL(napi_gro_flush);
3797 
3798 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3799 {
3800 	struct sk_buff *p;
3801 	unsigned int maclen = skb->dev->hard_header_len;
3802 
3803 	for (p = napi->gro_list; p; p = p->next) {
3804 		unsigned long diffs;
3805 
3806 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3807 		diffs |= p->vlan_tci ^ skb->vlan_tci;
3808 		if (maclen == ETH_HLEN)
3809 			diffs |= compare_ether_header(skb_mac_header(p),
3810 						      skb_gro_mac_header(skb));
3811 		else if (!diffs)
3812 			diffs = memcmp(skb_mac_header(p),
3813 				       skb_gro_mac_header(skb),
3814 				       maclen);
3815 		NAPI_GRO_CB(p)->same_flow = !diffs;
3816 		NAPI_GRO_CB(p)->flush = 0;
3817 	}
3818 }
3819 
3820 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3821 {
3822 	struct sk_buff **pp = NULL;
3823 	struct packet_offload *ptype;
3824 	__be16 type = skb->protocol;
3825 	struct list_head *head = &offload_base;
3826 	int same_flow;
3827 	enum gro_result ret;
3828 
3829 	if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3830 		goto normal;
3831 
3832 	if (skb_is_gso(skb) || skb_has_frag_list(skb))
3833 		goto normal;
3834 
3835 	gro_list_prepare(napi, skb);
3836 
3837 	rcu_read_lock();
3838 	list_for_each_entry_rcu(ptype, head, list) {
3839 		if (ptype->type != type || !ptype->callbacks.gro_receive)
3840 			continue;
3841 
3842 		skb_set_network_header(skb, skb_gro_offset(skb));
3843 		skb_reset_mac_len(skb);
3844 		NAPI_GRO_CB(skb)->same_flow = 0;
3845 		NAPI_GRO_CB(skb)->flush = 0;
3846 		NAPI_GRO_CB(skb)->free = 0;
3847 
3848 		pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
3849 		break;
3850 	}
3851 	rcu_read_unlock();
3852 
3853 	if (&ptype->list == head)
3854 		goto normal;
3855 
3856 	same_flow = NAPI_GRO_CB(skb)->same_flow;
3857 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3858 
3859 	if (pp) {
3860 		struct sk_buff *nskb = *pp;
3861 
3862 		*pp = nskb->next;
3863 		nskb->next = NULL;
3864 		napi_gro_complete(nskb);
3865 		napi->gro_count--;
3866 	}
3867 
3868 	if (same_flow)
3869 		goto ok;
3870 
3871 	if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3872 		goto normal;
3873 
3874 	napi->gro_count++;
3875 	NAPI_GRO_CB(skb)->count = 1;
3876 	NAPI_GRO_CB(skb)->age = jiffies;
3877 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3878 	skb->next = napi->gro_list;
3879 	napi->gro_list = skb;
3880 	ret = GRO_HELD;
3881 
3882 pull:
3883 	if (skb_headlen(skb) < skb_gro_offset(skb)) {
3884 		int grow = skb_gro_offset(skb) - skb_headlen(skb);
3885 
3886 		BUG_ON(skb->end - skb->tail < grow);
3887 
3888 		memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3889 
3890 		skb->tail += grow;
3891 		skb->data_len -= grow;
3892 
3893 		skb_shinfo(skb)->frags[0].page_offset += grow;
3894 		skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow);
3895 
3896 		if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) {
3897 			skb_frag_unref(skb, 0);
3898 			memmove(skb_shinfo(skb)->frags,
3899 				skb_shinfo(skb)->frags + 1,
3900 				--skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3901 		}
3902 	}
3903 
3904 ok:
3905 	return ret;
3906 
3907 normal:
3908 	ret = GRO_NORMAL;
3909 	goto pull;
3910 }
3911 
3912 
3913 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3914 {
3915 	switch (ret) {
3916 	case GRO_NORMAL:
3917 		if (netif_receive_skb(skb))
3918 			ret = GRO_DROP;
3919 		break;
3920 
3921 	case GRO_DROP:
3922 		kfree_skb(skb);
3923 		break;
3924 
3925 	case GRO_MERGED_FREE:
3926 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
3927 			kmem_cache_free(skbuff_head_cache, skb);
3928 		else
3929 			__kfree_skb(skb);
3930 		break;
3931 
3932 	case GRO_HELD:
3933 	case GRO_MERGED:
3934 		break;
3935 	}
3936 
3937 	return ret;
3938 }
3939 
3940 static void skb_gro_reset_offset(struct sk_buff *skb)
3941 {
3942 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
3943 	const skb_frag_t *frag0 = &pinfo->frags[0];
3944 
3945 	NAPI_GRO_CB(skb)->data_offset = 0;
3946 	NAPI_GRO_CB(skb)->frag0 = NULL;
3947 	NAPI_GRO_CB(skb)->frag0_len = 0;
3948 
3949 	if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
3950 	    pinfo->nr_frags &&
3951 	    !PageHighMem(skb_frag_page(frag0))) {
3952 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3953 		NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
3954 	}
3955 }
3956 
3957 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3958 {
3959 	skb_gro_reset_offset(skb);
3960 
3961 	return napi_skb_finish(dev_gro_receive(napi, skb), skb);
3962 }
3963 EXPORT_SYMBOL(napi_gro_receive);
3964 
3965 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3966 {
3967 	__skb_pull(skb, skb_headlen(skb));
3968 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
3969 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3970 	skb->vlan_tci = 0;
3971 	skb->dev = napi->dev;
3972 	skb->skb_iif = 0;
3973 
3974 	napi->skb = skb;
3975 }
3976 
3977 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3978 {
3979 	struct sk_buff *skb = napi->skb;
3980 
3981 	if (!skb) {
3982 		skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3983 		if (skb)
3984 			napi->skb = skb;
3985 	}
3986 	return skb;
3987 }
3988 EXPORT_SYMBOL(napi_get_frags);
3989 
3990 static gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3991 			       gro_result_t ret)
3992 {
3993 	switch (ret) {
3994 	case GRO_NORMAL:
3995 	case GRO_HELD:
3996 		skb->protocol = eth_type_trans(skb, skb->dev);
3997 
3998 		if (ret == GRO_HELD)
3999 			skb_gro_pull(skb, -ETH_HLEN);
4000 		else if (netif_receive_skb(skb))
4001 			ret = GRO_DROP;
4002 		break;
4003 
4004 	case GRO_DROP:
4005 	case GRO_MERGED_FREE:
4006 		napi_reuse_skb(napi, skb);
4007 		break;
4008 
4009 	case GRO_MERGED:
4010 		break;
4011 	}
4012 
4013 	return ret;
4014 }
4015 
4016 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4017 {
4018 	struct sk_buff *skb = napi->skb;
4019 	struct ethhdr *eth;
4020 	unsigned int hlen;
4021 	unsigned int off;
4022 
4023 	napi->skb = NULL;
4024 
4025 	skb_reset_mac_header(skb);
4026 	skb_gro_reset_offset(skb);
4027 
4028 	off = skb_gro_offset(skb);
4029 	hlen = off + sizeof(*eth);
4030 	eth = skb_gro_header_fast(skb, off);
4031 	if (skb_gro_header_hard(skb, hlen)) {
4032 		eth = skb_gro_header_slow(skb, hlen, off);
4033 		if (unlikely(!eth)) {
4034 			napi_reuse_skb(napi, skb);
4035 			skb = NULL;
4036 			goto out;
4037 		}
4038 	}
4039 
4040 	skb_gro_pull(skb, sizeof(*eth));
4041 
4042 	/*
4043 	 * This works because the only protocols we care about don't require
4044 	 * special handling.  We'll fix it up properly at the end.
4045 	 */
4046 	skb->protocol = eth->h_proto;
4047 
4048 out:
4049 	return skb;
4050 }
4051 
4052 gro_result_t napi_gro_frags(struct napi_struct *napi)
4053 {
4054 	struct sk_buff *skb = napi_frags_skb(napi);
4055 
4056 	if (!skb)
4057 		return GRO_DROP;
4058 
4059 	return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4060 }
4061 EXPORT_SYMBOL(napi_gro_frags);
4062 
4063 /*
4064  * net_rps_action sends any pending IPI's for rps.
4065  * Note: called with local irq disabled, but exits with local irq enabled.
4066  */
4067 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4068 {
4069 #ifdef CONFIG_RPS
4070 	struct softnet_data *remsd = sd->rps_ipi_list;
4071 
4072 	if (remsd) {
4073 		sd->rps_ipi_list = NULL;
4074 
4075 		local_irq_enable();
4076 
4077 		/* Send pending IPI's to kick RPS processing on remote cpus. */
4078 		while (remsd) {
4079 			struct softnet_data *next = remsd->rps_ipi_next;
4080 
4081 			if (cpu_online(remsd->cpu))
4082 				__smp_call_function_single(remsd->cpu,
4083 							   &remsd->csd, 0);
4084 			remsd = next;
4085 		}
4086 	} else
4087 #endif
4088 		local_irq_enable();
4089 }
4090 
4091 static int process_backlog(struct napi_struct *napi, int quota)
4092 {
4093 	int work = 0;
4094 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4095 
4096 #ifdef CONFIG_RPS
4097 	/* Check if we have pending ipi, its better to send them now,
4098 	 * not waiting net_rx_action() end.
4099 	 */
4100 	if (sd->rps_ipi_list) {
4101 		local_irq_disable();
4102 		net_rps_action_and_irq_enable(sd);
4103 	}
4104 #endif
4105 	napi->weight = weight_p;
4106 	local_irq_disable();
4107 	while (work < quota) {
4108 		struct sk_buff *skb;
4109 		unsigned int qlen;
4110 
4111 		while ((skb = __skb_dequeue(&sd->process_queue))) {
4112 			local_irq_enable();
4113 			__netif_receive_skb(skb);
4114 			local_irq_disable();
4115 			input_queue_head_incr(sd);
4116 			if (++work >= quota) {
4117 				local_irq_enable();
4118 				return work;
4119 			}
4120 		}
4121 
4122 		rps_lock(sd);
4123 		qlen = skb_queue_len(&sd->input_pkt_queue);
4124 		if (qlen)
4125 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
4126 						   &sd->process_queue);
4127 
4128 		if (qlen < quota - work) {
4129 			/*
4130 			 * Inline a custom version of __napi_complete().
4131 			 * only current cpu owns and manipulates this napi,
4132 			 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
4133 			 * we can use a plain write instead of clear_bit(),
4134 			 * and we dont need an smp_mb() memory barrier.
4135 			 */
4136 			list_del(&napi->poll_list);
4137 			napi->state = 0;
4138 
4139 			quota = work + qlen;
4140 		}
4141 		rps_unlock(sd);
4142 	}
4143 	local_irq_enable();
4144 
4145 	return work;
4146 }
4147 
4148 /**
4149  * __napi_schedule - schedule for receive
4150  * @n: entry to schedule
4151  *
4152  * The entry's receive function will be scheduled to run
4153  */
4154 void __napi_schedule(struct napi_struct *n)
4155 {
4156 	unsigned long flags;
4157 
4158 	local_irq_save(flags);
4159 	____napi_schedule(&__get_cpu_var(softnet_data), n);
4160 	local_irq_restore(flags);
4161 }
4162 EXPORT_SYMBOL(__napi_schedule);
4163 
4164 void __napi_complete(struct napi_struct *n)
4165 {
4166 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4167 	BUG_ON(n->gro_list);
4168 
4169 	list_del(&n->poll_list);
4170 	smp_mb__before_clear_bit();
4171 	clear_bit(NAPI_STATE_SCHED, &n->state);
4172 }
4173 EXPORT_SYMBOL(__napi_complete);
4174 
4175 void napi_complete(struct napi_struct *n)
4176 {
4177 	unsigned long flags;
4178 
4179 	/*
4180 	 * don't let napi dequeue from the cpu poll list
4181 	 * just in case its running on a different cpu
4182 	 */
4183 	if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4184 		return;
4185 
4186 	napi_gro_flush(n, false);
4187 	local_irq_save(flags);
4188 	__napi_complete(n);
4189 	local_irq_restore(flags);
4190 }
4191 EXPORT_SYMBOL(napi_complete);
4192 
4193 /* must be called under rcu_read_lock(), as we dont take a reference */
4194 struct napi_struct *napi_by_id(unsigned int napi_id)
4195 {
4196 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4197 	struct napi_struct *napi;
4198 
4199 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4200 		if (napi->napi_id == napi_id)
4201 			return napi;
4202 
4203 	return NULL;
4204 }
4205 EXPORT_SYMBOL_GPL(napi_by_id);
4206 
4207 void napi_hash_add(struct napi_struct *napi)
4208 {
4209 	if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4210 
4211 		spin_lock(&napi_hash_lock);
4212 
4213 		/* 0 is not a valid id, we also skip an id that is taken
4214 		 * we expect both events to be extremely rare
4215 		 */
4216 		napi->napi_id = 0;
4217 		while (!napi->napi_id) {
4218 			napi->napi_id = ++napi_gen_id;
4219 			if (napi_by_id(napi->napi_id))
4220 				napi->napi_id = 0;
4221 		}
4222 
4223 		hlist_add_head_rcu(&napi->napi_hash_node,
4224 			&napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4225 
4226 		spin_unlock(&napi_hash_lock);
4227 	}
4228 }
4229 EXPORT_SYMBOL_GPL(napi_hash_add);
4230 
4231 /* Warning : caller is responsible to make sure rcu grace period
4232  * is respected before freeing memory containing @napi
4233  */
4234 void napi_hash_del(struct napi_struct *napi)
4235 {
4236 	spin_lock(&napi_hash_lock);
4237 
4238 	if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4239 		hlist_del_rcu(&napi->napi_hash_node);
4240 
4241 	spin_unlock(&napi_hash_lock);
4242 }
4243 EXPORT_SYMBOL_GPL(napi_hash_del);
4244 
4245 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4246 		    int (*poll)(struct napi_struct *, int), int weight)
4247 {
4248 	INIT_LIST_HEAD(&napi->poll_list);
4249 	napi->gro_count = 0;
4250 	napi->gro_list = NULL;
4251 	napi->skb = NULL;
4252 	napi->poll = poll;
4253 	if (weight > NAPI_POLL_WEIGHT)
4254 		pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4255 			    weight, dev->name);
4256 	napi->weight = weight;
4257 	list_add(&napi->dev_list, &dev->napi_list);
4258 	napi->dev = dev;
4259 #ifdef CONFIG_NETPOLL
4260 	spin_lock_init(&napi->poll_lock);
4261 	napi->poll_owner = -1;
4262 #endif
4263 	set_bit(NAPI_STATE_SCHED, &napi->state);
4264 }
4265 EXPORT_SYMBOL(netif_napi_add);
4266 
4267 void netif_napi_del(struct napi_struct *napi)
4268 {
4269 	struct sk_buff *skb, *next;
4270 
4271 	list_del_init(&napi->dev_list);
4272 	napi_free_frags(napi);
4273 
4274 	for (skb = napi->gro_list; skb; skb = next) {
4275 		next = skb->next;
4276 		skb->next = NULL;
4277 		kfree_skb(skb);
4278 	}
4279 
4280 	napi->gro_list = NULL;
4281 	napi->gro_count = 0;
4282 }
4283 EXPORT_SYMBOL(netif_napi_del);
4284 
4285 static void net_rx_action(struct softirq_action *h)
4286 {
4287 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
4288 	unsigned long time_limit = jiffies + 2;
4289 	int budget = netdev_budget;
4290 	void *have;
4291 
4292 	local_irq_disable();
4293 
4294 	while (!list_empty(&sd->poll_list)) {
4295 		struct napi_struct *n;
4296 		int work, weight;
4297 
4298 		/* If softirq window is exhuasted then punt.
4299 		 * Allow this to run for 2 jiffies since which will allow
4300 		 * an average latency of 1.5/HZ.
4301 		 */
4302 		if (unlikely(budget <= 0 || time_after_eq(jiffies, time_limit)))
4303 			goto softnet_break;
4304 
4305 		local_irq_enable();
4306 
4307 		/* Even though interrupts have been re-enabled, this
4308 		 * access is safe because interrupts can only add new
4309 		 * entries to the tail of this list, and only ->poll()
4310 		 * calls can remove this head entry from the list.
4311 		 */
4312 		n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
4313 
4314 		have = netpoll_poll_lock(n);
4315 
4316 		weight = n->weight;
4317 
4318 		/* This NAPI_STATE_SCHED test is for avoiding a race
4319 		 * with netpoll's poll_napi().  Only the entity which
4320 		 * obtains the lock and sees NAPI_STATE_SCHED set will
4321 		 * actually make the ->poll() call.  Therefore we avoid
4322 		 * accidentally calling ->poll() when NAPI is not scheduled.
4323 		 */
4324 		work = 0;
4325 		if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4326 			work = n->poll(n, weight);
4327 			trace_napi_poll(n);
4328 		}
4329 
4330 		WARN_ON_ONCE(work > weight);
4331 
4332 		budget -= work;
4333 
4334 		local_irq_disable();
4335 
4336 		/* Drivers must not modify the NAPI state if they
4337 		 * consume the entire weight.  In such cases this code
4338 		 * still "owns" the NAPI instance and therefore can
4339 		 * move the instance around on the list at-will.
4340 		 */
4341 		if (unlikely(work == weight)) {
4342 			if (unlikely(napi_disable_pending(n))) {
4343 				local_irq_enable();
4344 				napi_complete(n);
4345 				local_irq_disable();
4346 			} else {
4347 				if (n->gro_list) {
4348 					/* flush too old packets
4349 					 * If HZ < 1000, flush all packets.
4350 					 */
4351 					local_irq_enable();
4352 					napi_gro_flush(n, HZ >= 1000);
4353 					local_irq_disable();
4354 				}
4355 				list_move_tail(&n->poll_list, &sd->poll_list);
4356 			}
4357 		}
4358 
4359 		netpoll_poll_unlock(have);
4360 	}
4361 out:
4362 	net_rps_action_and_irq_enable(sd);
4363 
4364 #ifdef CONFIG_NET_DMA
4365 	/*
4366 	 * There may not be any more sk_buffs coming right now, so push
4367 	 * any pending DMA copies to hardware
4368 	 */
4369 	dma_issue_pending_all();
4370 #endif
4371 
4372 	return;
4373 
4374 softnet_break:
4375 	sd->time_squeeze++;
4376 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4377 	goto out;
4378 }
4379 
4380 struct netdev_adjacent {
4381 	struct net_device *dev;
4382 
4383 	/* upper master flag, there can only be one master device per list */
4384 	bool master;
4385 
4386 	/* counter for the number of times this device was added to us */
4387 	u16 ref_nr;
4388 
4389 	/* private field for the users */
4390 	void *private;
4391 
4392 	struct list_head list;
4393 	struct rcu_head rcu;
4394 };
4395 
4396 static struct netdev_adjacent *__netdev_find_adj_rcu(struct net_device *dev,
4397 						     struct net_device *adj_dev,
4398 						     struct list_head *adj_list)
4399 {
4400 	struct netdev_adjacent *adj;
4401 
4402 	list_for_each_entry_rcu(adj, adj_list, list) {
4403 		if (adj->dev == adj_dev)
4404 			return adj;
4405 	}
4406 	return NULL;
4407 }
4408 
4409 static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev,
4410 						 struct net_device *adj_dev,
4411 						 struct list_head *adj_list)
4412 {
4413 	struct netdev_adjacent *adj;
4414 
4415 	list_for_each_entry(adj, adj_list, list) {
4416 		if (adj->dev == adj_dev)
4417 			return adj;
4418 	}
4419 	return NULL;
4420 }
4421 
4422 /**
4423  * netdev_has_upper_dev - Check if device is linked to an upper device
4424  * @dev: device
4425  * @upper_dev: upper device to check
4426  *
4427  * Find out if a device is linked to specified upper device and return true
4428  * in case it is. Note that this checks only immediate upper device,
4429  * not through a complete stack of devices. The caller must hold the RTNL lock.
4430  */
4431 bool netdev_has_upper_dev(struct net_device *dev,
4432 			  struct net_device *upper_dev)
4433 {
4434 	ASSERT_RTNL();
4435 
4436 	return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper);
4437 }
4438 EXPORT_SYMBOL(netdev_has_upper_dev);
4439 
4440 /**
4441  * netdev_has_any_upper_dev - Check if device is linked to some device
4442  * @dev: device
4443  *
4444  * Find out if a device is linked to an upper device and return true in case
4445  * it is. The caller must hold the RTNL lock.
4446  */
4447 bool netdev_has_any_upper_dev(struct net_device *dev)
4448 {
4449 	ASSERT_RTNL();
4450 
4451 	return !list_empty(&dev->all_adj_list.upper);
4452 }
4453 EXPORT_SYMBOL(netdev_has_any_upper_dev);
4454 
4455 /**
4456  * netdev_master_upper_dev_get - Get master upper device
4457  * @dev: device
4458  *
4459  * Find a master upper device and return pointer to it or NULL in case
4460  * it's not there. The caller must hold the RTNL lock.
4461  */
4462 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4463 {
4464 	struct netdev_adjacent *upper;
4465 
4466 	ASSERT_RTNL();
4467 
4468 	if (list_empty(&dev->adj_list.upper))
4469 		return NULL;
4470 
4471 	upper = list_first_entry(&dev->adj_list.upper,
4472 				 struct netdev_adjacent, list);
4473 	if (likely(upper->master))
4474 		return upper->dev;
4475 	return NULL;
4476 }
4477 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4478 
4479 void *netdev_adjacent_get_private(struct list_head *adj_list)
4480 {
4481 	struct netdev_adjacent *adj;
4482 
4483 	adj = list_entry(adj_list, struct netdev_adjacent, list);
4484 
4485 	return adj->private;
4486 }
4487 EXPORT_SYMBOL(netdev_adjacent_get_private);
4488 
4489 /**
4490  * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
4491  * @dev: device
4492  * @iter: list_head ** of the current position
4493  *
4494  * Gets the next device from the dev's upper list, starting from iter
4495  * position. The caller must hold RCU read lock.
4496  */
4497 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4498 						     struct list_head **iter)
4499 {
4500 	struct netdev_adjacent *upper;
4501 
4502 	WARN_ON_ONCE(!rcu_read_lock_held());
4503 
4504 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4505 
4506 	if (&upper->list == &dev->all_adj_list.upper)
4507 		return NULL;
4508 
4509 	*iter = &upper->list;
4510 
4511 	return upper->dev;
4512 }
4513 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
4514 
4515 /**
4516  * netdev_lower_get_next_private - Get the next ->private from the
4517  *				   lower neighbour list
4518  * @dev: device
4519  * @iter: list_head ** of the current position
4520  *
4521  * Gets the next netdev_adjacent->private from the dev's lower neighbour
4522  * list, starting from iter position. The caller must hold either hold the
4523  * RTNL lock or its own locking that guarantees that the neighbour lower
4524  * list will remain unchainged.
4525  */
4526 void *netdev_lower_get_next_private(struct net_device *dev,
4527 				    struct list_head **iter)
4528 {
4529 	struct netdev_adjacent *lower;
4530 
4531 	lower = list_entry(*iter, struct netdev_adjacent, list);
4532 
4533 	if (&lower->list == &dev->adj_list.lower)
4534 		return NULL;
4535 
4536 	if (iter)
4537 		*iter = lower->list.next;
4538 
4539 	return lower->private;
4540 }
4541 EXPORT_SYMBOL(netdev_lower_get_next_private);
4542 
4543 /**
4544  * netdev_lower_get_next_private_rcu - Get the next ->private from the
4545  *				       lower neighbour list, RCU
4546  *				       variant
4547  * @dev: device
4548  * @iter: list_head ** of the current position
4549  *
4550  * Gets the next netdev_adjacent->private from the dev's lower neighbour
4551  * list, starting from iter position. The caller must hold RCU read lock.
4552  */
4553 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4554 					struct list_head **iter)
4555 {
4556 	struct netdev_adjacent *lower;
4557 
4558 	WARN_ON_ONCE(!rcu_read_lock_held());
4559 
4560 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4561 
4562 	if (&lower->list == &dev->adj_list.lower)
4563 		return NULL;
4564 
4565 	if (iter)
4566 		*iter = &lower->list;
4567 
4568 	return lower->private;
4569 }
4570 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
4571 
4572 /**
4573  * netdev_master_upper_dev_get_rcu - Get master upper device
4574  * @dev: device
4575  *
4576  * Find a master upper device and return pointer to it or NULL in case
4577  * it's not there. The caller must hold the RCU read lock.
4578  */
4579 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4580 {
4581 	struct netdev_adjacent *upper;
4582 
4583 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
4584 				       struct netdev_adjacent, list);
4585 	if (upper && likely(upper->master))
4586 		return upper->dev;
4587 	return NULL;
4588 }
4589 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4590 
4591 static int __netdev_adjacent_dev_insert(struct net_device *dev,
4592 					struct net_device *adj_dev,
4593 					struct list_head *dev_list,
4594 					void *private, bool master)
4595 {
4596 	struct netdev_adjacent *adj;
4597 	char linkname[IFNAMSIZ+7];
4598 	int ret;
4599 
4600 	adj = __netdev_find_adj(dev, adj_dev, dev_list);
4601 
4602 	if (adj) {
4603 		adj->ref_nr++;
4604 		return 0;
4605 	}
4606 
4607 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
4608 	if (!adj)
4609 		return -ENOMEM;
4610 
4611 	adj->dev = adj_dev;
4612 	adj->master = master;
4613 	adj->ref_nr = 1;
4614 	adj->private = private;
4615 	dev_hold(adj_dev);
4616 
4617 	pr_debug("dev_hold for %s, because of link added from %s to %s\n",
4618 		 adj_dev->name, dev->name, adj_dev->name);
4619 
4620 	if (dev_list == &dev->adj_list.lower) {
4621 		sprintf(linkname, "lower_%s", adj_dev->name);
4622 		ret = sysfs_create_link(&(dev->dev.kobj),
4623 					&(adj_dev->dev.kobj), linkname);
4624 		if (ret)
4625 			goto free_adj;
4626 	} else if (dev_list == &dev->adj_list.upper) {
4627 		sprintf(linkname, "upper_%s", adj_dev->name);
4628 		ret = sysfs_create_link(&(dev->dev.kobj),
4629 					&(adj_dev->dev.kobj), linkname);
4630 		if (ret)
4631 			goto free_adj;
4632 	}
4633 
4634 	/* Ensure that master link is always the first item in list. */
4635 	if (master) {
4636 		ret = sysfs_create_link(&(dev->dev.kobj),
4637 					&(adj_dev->dev.kobj), "master");
4638 		if (ret)
4639 			goto remove_symlinks;
4640 
4641 		list_add_rcu(&adj->list, dev_list);
4642 	} else {
4643 		list_add_tail_rcu(&adj->list, dev_list);
4644 	}
4645 
4646 	return 0;
4647 
4648 remove_symlinks:
4649 	if (dev_list == &dev->adj_list.lower) {
4650 		sprintf(linkname, "lower_%s", adj_dev->name);
4651 		sysfs_remove_link(&(dev->dev.kobj), linkname);
4652 	} else if (dev_list == &dev->adj_list.upper) {
4653 		sprintf(linkname, "upper_%s", adj_dev->name);
4654 		sysfs_remove_link(&(dev->dev.kobj), linkname);
4655 	}
4656 
4657 free_adj:
4658 	kfree(adj);
4659 	dev_put(adj_dev);
4660 
4661 	return ret;
4662 }
4663 
4664 void __netdev_adjacent_dev_remove(struct net_device *dev,
4665 				  struct net_device *adj_dev,
4666 				  struct list_head *dev_list)
4667 {
4668 	struct netdev_adjacent *adj;
4669 	char linkname[IFNAMSIZ+7];
4670 
4671 	adj = __netdev_find_adj(dev, adj_dev, dev_list);
4672 
4673 	if (!adj) {
4674 		pr_err("tried to remove device %s from %s\n",
4675 		       dev->name, adj_dev->name);
4676 		BUG();
4677 	}
4678 
4679 	if (adj->ref_nr > 1) {
4680 		pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
4681 			 adj->ref_nr-1);
4682 		adj->ref_nr--;
4683 		return;
4684 	}
4685 
4686 	if (adj->master)
4687 		sysfs_remove_link(&(dev->dev.kobj), "master");
4688 
4689 	if (dev_list == &dev->adj_list.lower) {
4690 		sprintf(linkname, "lower_%s", adj_dev->name);
4691 		sysfs_remove_link(&(dev->dev.kobj), linkname);
4692 	} else if (dev_list == &dev->adj_list.upper) {
4693 		sprintf(linkname, "upper_%s", adj_dev->name);
4694 		sysfs_remove_link(&(dev->dev.kobj), linkname);
4695 	}
4696 
4697 	list_del_rcu(&adj->list);
4698 	pr_debug("dev_put for %s, because link removed from %s to %s\n",
4699 		 adj_dev->name, dev->name, adj_dev->name);
4700 	dev_put(adj_dev);
4701 	kfree_rcu(adj, rcu);
4702 }
4703 
4704 int __netdev_adjacent_dev_link_lists(struct net_device *dev,
4705 				     struct net_device *upper_dev,
4706 				     struct list_head *up_list,
4707 				     struct list_head *down_list,
4708 				     void *private, bool master)
4709 {
4710 	int ret;
4711 
4712 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
4713 					   master);
4714 	if (ret)
4715 		return ret;
4716 
4717 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
4718 					   false);
4719 	if (ret) {
4720 		__netdev_adjacent_dev_remove(dev, upper_dev, up_list);
4721 		return ret;
4722 	}
4723 
4724 	return 0;
4725 }
4726 
4727 int __netdev_adjacent_dev_link(struct net_device *dev,
4728 			       struct net_device *upper_dev)
4729 {
4730 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
4731 						&dev->all_adj_list.upper,
4732 						&upper_dev->all_adj_list.lower,
4733 						NULL, false);
4734 }
4735 
4736 void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
4737 					struct net_device *upper_dev,
4738 					struct list_head *up_list,
4739 					struct list_head *down_list)
4740 {
4741 	__netdev_adjacent_dev_remove(dev, upper_dev, up_list);
4742 	__netdev_adjacent_dev_remove(upper_dev, dev, down_list);
4743 }
4744 
4745 void __netdev_adjacent_dev_unlink(struct net_device *dev,
4746 				  struct net_device *upper_dev)
4747 {
4748 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev,
4749 					   &dev->all_adj_list.upper,
4750 					   &upper_dev->all_adj_list.lower);
4751 }
4752 
4753 int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
4754 					 struct net_device *upper_dev,
4755 					 void *private, bool master)
4756 {
4757 	int ret = __netdev_adjacent_dev_link(dev, upper_dev);
4758 
4759 	if (ret)
4760 		return ret;
4761 
4762 	ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
4763 					       &dev->adj_list.upper,
4764 					       &upper_dev->adj_list.lower,
4765 					       private, master);
4766 	if (ret) {
4767 		__netdev_adjacent_dev_unlink(dev, upper_dev);
4768 		return ret;
4769 	}
4770 
4771 	return 0;
4772 }
4773 
4774 void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
4775 					    struct net_device *upper_dev)
4776 {
4777 	__netdev_adjacent_dev_unlink(dev, upper_dev);
4778 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev,
4779 					   &dev->adj_list.upper,
4780 					   &upper_dev->adj_list.lower);
4781 }
4782 
4783 static int __netdev_upper_dev_link(struct net_device *dev,
4784 				   struct net_device *upper_dev, bool master,
4785 				   void *private)
4786 {
4787 	struct netdev_adjacent *i, *j, *to_i, *to_j;
4788 	int ret = 0;
4789 
4790 	ASSERT_RTNL();
4791 
4792 	if (dev == upper_dev)
4793 		return -EBUSY;
4794 
4795 	/* To prevent loops, check if dev is not upper device to upper_dev. */
4796 	if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper))
4797 		return -EBUSY;
4798 
4799 	if (__netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper))
4800 		return -EEXIST;
4801 
4802 	if (master && netdev_master_upper_dev_get(dev))
4803 		return -EBUSY;
4804 
4805 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
4806 						   master);
4807 	if (ret)
4808 		return ret;
4809 
4810 	/* Now that we linked these devs, make all the upper_dev's
4811 	 * all_adj_list.upper visible to every dev's all_adj_list.lower an
4812 	 * versa, and don't forget the devices itself. All of these
4813 	 * links are non-neighbours.
4814 	 */
4815 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
4816 		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
4817 			pr_debug("Interlinking %s with %s, non-neighbour\n",
4818 				 i->dev->name, j->dev->name);
4819 			ret = __netdev_adjacent_dev_link(i->dev, j->dev);
4820 			if (ret)
4821 				goto rollback_mesh;
4822 		}
4823 	}
4824 
4825 	/* add dev to every upper_dev's upper device */
4826 	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
4827 		pr_debug("linking %s's upper device %s with %s\n",
4828 			 upper_dev->name, i->dev->name, dev->name);
4829 		ret = __netdev_adjacent_dev_link(dev, i->dev);
4830 		if (ret)
4831 			goto rollback_upper_mesh;
4832 	}
4833 
4834 	/* add upper_dev to every dev's lower device */
4835 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
4836 		pr_debug("linking %s's lower device %s with %s\n", dev->name,
4837 			 i->dev->name, upper_dev->name);
4838 		ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
4839 		if (ret)
4840 			goto rollback_lower_mesh;
4841 	}
4842 
4843 	call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
4844 	return 0;
4845 
4846 rollback_lower_mesh:
4847 	to_i = i;
4848 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
4849 		if (i == to_i)
4850 			break;
4851 		__netdev_adjacent_dev_unlink(i->dev, upper_dev);
4852 	}
4853 
4854 	i = NULL;
4855 
4856 rollback_upper_mesh:
4857 	to_i = i;
4858 	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
4859 		if (i == to_i)
4860 			break;
4861 		__netdev_adjacent_dev_unlink(dev, i->dev);
4862 	}
4863 
4864 	i = j = NULL;
4865 
4866 rollback_mesh:
4867 	to_i = i;
4868 	to_j = j;
4869 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
4870 		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
4871 			if (i == to_i && j == to_j)
4872 				break;
4873 			__netdev_adjacent_dev_unlink(i->dev, j->dev);
4874 		}
4875 		if (i == to_i)
4876 			break;
4877 	}
4878 
4879 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
4880 
4881 	return ret;
4882 }
4883 
4884 /**
4885  * netdev_upper_dev_link - Add a link to the upper device
4886  * @dev: device
4887  * @upper_dev: new upper device
4888  *
4889  * Adds a link to device which is upper to this one. The caller must hold
4890  * the RTNL lock. On a failure a negative errno code is returned.
4891  * On success the reference counts are adjusted and the function
4892  * returns zero.
4893  */
4894 int netdev_upper_dev_link(struct net_device *dev,
4895 			  struct net_device *upper_dev)
4896 {
4897 	return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
4898 }
4899 EXPORT_SYMBOL(netdev_upper_dev_link);
4900 
4901 /**
4902  * netdev_master_upper_dev_link - Add a master link to the upper device
4903  * @dev: device
4904  * @upper_dev: new upper device
4905  *
4906  * Adds a link to device which is upper to this one. In this case, only
4907  * one master upper device can be linked, although other non-master devices
4908  * might be linked as well. The caller must hold the RTNL lock.
4909  * On a failure a negative errno code is returned. On success the reference
4910  * counts are adjusted and the function returns zero.
4911  */
4912 int netdev_master_upper_dev_link(struct net_device *dev,
4913 				 struct net_device *upper_dev)
4914 {
4915 	return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
4916 }
4917 EXPORT_SYMBOL(netdev_master_upper_dev_link);
4918 
4919 int netdev_master_upper_dev_link_private(struct net_device *dev,
4920 					 struct net_device *upper_dev,
4921 					 void *private)
4922 {
4923 	return __netdev_upper_dev_link(dev, upper_dev, true, private);
4924 }
4925 EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
4926 
4927 /**
4928  * netdev_upper_dev_unlink - Removes a link to upper device
4929  * @dev: device
4930  * @upper_dev: new upper device
4931  *
4932  * Removes a link to device which is upper to this one. The caller must hold
4933  * the RTNL lock.
4934  */
4935 void netdev_upper_dev_unlink(struct net_device *dev,
4936 			     struct net_device *upper_dev)
4937 {
4938 	struct netdev_adjacent *i, *j;
4939 	ASSERT_RTNL();
4940 
4941 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
4942 
4943 	/* Here is the tricky part. We must remove all dev's lower
4944 	 * devices from all upper_dev's upper devices and vice
4945 	 * versa, to maintain the graph relationship.
4946 	 */
4947 	list_for_each_entry(i, &dev->all_adj_list.lower, list)
4948 		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
4949 			__netdev_adjacent_dev_unlink(i->dev, j->dev);
4950 
4951 	/* remove also the devices itself from lower/upper device
4952 	 * list
4953 	 */
4954 	list_for_each_entry(i, &dev->all_adj_list.lower, list)
4955 		__netdev_adjacent_dev_unlink(i->dev, upper_dev);
4956 
4957 	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
4958 		__netdev_adjacent_dev_unlink(dev, i->dev);
4959 
4960 	call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
4961 }
4962 EXPORT_SYMBOL(netdev_upper_dev_unlink);
4963 
4964 void *netdev_lower_dev_get_private_rcu(struct net_device *dev,
4965 				       struct net_device *lower_dev)
4966 {
4967 	struct netdev_adjacent *lower;
4968 
4969 	if (!lower_dev)
4970 		return NULL;
4971 	lower = __netdev_find_adj_rcu(dev, lower_dev, &dev->adj_list.lower);
4972 	if (!lower)
4973 		return NULL;
4974 
4975 	return lower->private;
4976 }
4977 EXPORT_SYMBOL(netdev_lower_dev_get_private_rcu);
4978 
4979 void *netdev_lower_dev_get_private(struct net_device *dev,
4980 				   struct net_device *lower_dev)
4981 {
4982 	struct netdev_adjacent *lower;
4983 
4984 	if (!lower_dev)
4985 		return NULL;
4986 	lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower);
4987 	if (!lower)
4988 		return NULL;
4989 
4990 	return lower->private;
4991 }
4992 EXPORT_SYMBOL(netdev_lower_dev_get_private);
4993 
4994 static void dev_change_rx_flags(struct net_device *dev, int flags)
4995 {
4996 	const struct net_device_ops *ops = dev->netdev_ops;
4997 
4998 	if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4999 		ops->ndo_change_rx_flags(dev, flags);
5000 }
5001 
5002 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
5003 {
5004 	unsigned int old_flags = dev->flags;
5005 	kuid_t uid;
5006 	kgid_t gid;
5007 
5008 	ASSERT_RTNL();
5009 
5010 	dev->flags |= IFF_PROMISC;
5011 	dev->promiscuity += inc;
5012 	if (dev->promiscuity == 0) {
5013 		/*
5014 		 * Avoid overflow.
5015 		 * If inc causes overflow, untouch promisc and return error.
5016 		 */
5017 		if (inc < 0)
5018 			dev->flags &= ~IFF_PROMISC;
5019 		else {
5020 			dev->promiscuity -= inc;
5021 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5022 				dev->name);
5023 			return -EOVERFLOW;
5024 		}
5025 	}
5026 	if (dev->flags != old_flags) {
5027 		pr_info("device %s %s promiscuous mode\n",
5028 			dev->name,
5029 			dev->flags & IFF_PROMISC ? "entered" : "left");
5030 		if (audit_enabled) {
5031 			current_uid_gid(&uid, &gid);
5032 			audit_log(current->audit_context, GFP_ATOMIC,
5033 				AUDIT_ANOM_PROMISCUOUS,
5034 				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5035 				dev->name, (dev->flags & IFF_PROMISC),
5036 				(old_flags & IFF_PROMISC),
5037 				from_kuid(&init_user_ns, audit_get_loginuid(current)),
5038 				from_kuid(&init_user_ns, uid),
5039 				from_kgid(&init_user_ns, gid),
5040 				audit_get_sessionid(current));
5041 		}
5042 
5043 		dev_change_rx_flags(dev, IFF_PROMISC);
5044 	}
5045 	if (notify)
5046 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
5047 	return 0;
5048 }
5049 
5050 /**
5051  *	dev_set_promiscuity	- update promiscuity count on a device
5052  *	@dev: device
5053  *	@inc: modifier
5054  *
5055  *	Add or remove promiscuity from a device. While the count in the device
5056  *	remains above zero the interface remains promiscuous. Once it hits zero
5057  *	the device reverts back to normal filtering operation. A negative inc
5058  *	value is used to drop promiscuity on the device.
5059  *	Return 0 if successful or a negative errno code on error.
5060  */
5061 int dev_set_promiscuity(struct net_device *dev, int inc)
5062 {
5063 	unsigned int old_flags = dev->flags;
5064 	int err;
5065 
5066 	err = __dev_set_promiscuity(dev, inc, true);
5067 	if (err < 0)
5068 		return err;
5069 	if (dev->flags != old_flags)
5070 		dev_set_rx_mode(dev);
5071 	return err;
5072 }
5073 EXPORT_SYMBOL(dev_set_promiscuity);
5074 
5075 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
5076 {
5077 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
5078 
5079 	ASSERT_RTNL();
5080 
5081 	dev->flags |= IFF_ALLMULTI;
5082 	dev->allmulti += inc;
5083 	if (dev->allmulti == 0) {
5084 		/*
5085 		 * Avoid overflow.
5086 		 * If inc causes overflow, untouch allmulti and return error.
5087 		 */
5088 		if (inc < 0)
5089 			dev->flags &= ~IFF_ALLMULTI;
5090 		else {
5091 			dev->allmulti -= inc;
5092 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5093 				dev->name);
5094 			return -EOVERFLOW;
5095 		}
5096 	}
5097 	if (dev->flags ^ old_flags) {
5098 		dev_change_rx_flags(dev, IFF_ALLMULTI);
5099 		dev_set_rx_mode(dev);
5100 		if (notify)
5101 			__dev_notify_flags(dev, old_flags,
5102 					   dev->gflags ^ old_gflags);
5103 	}
5104 	return 0;
5105 }
5106 
5107 /**
5108  *	dev_set_allmulti	- update allmulti count on a device
5109  *	@dev: device
5110  *	@inc: modifier
5111  *
5112  *	Add or remove reception of all multicast frames to a device. While the
5113  *	count in the device remains above zero the interface remains listening
5114  *	to all interfaces. Once it hits zero the device reverts back to normal
5115  *	filtering operation. A negative @inc value is used to drop the counter
5116  *	when releasing a resource needing all multicasts.
5117  *	Return 0 if successful or a negative errno code on error.
5118  */
5119 
5120 int dev_set_allmulti(struct net_device *dev, int inc)
5121 {
5122 	return __dev_set_allmulti(dev, inc, true);
5123 }
5124 EXPORT_SYMBOL(dev_set_allmulti);
5125 
5126 /*
5127  *	Upload unicast and multicast address lists to device and
5128  *	configure RX filtering. When the device doesn't support unicast
5129  *	filtering it is put in promiscuous mode while unicast addresses
5130  *	are present.
5131  */
5132 void __dev_set_rx_mode(struct net_device *dev)
5133 {
5134 	const struct net_device_ops *ops = dev->netdev_ops;
5135 
5136 	/* dev_open will call this function so the list will stay sane. */
5137 	if (!(dev->flags&IFF_UP))
5138 		return;
5139 
5140 	if (!netif_device_present(dev))
5141 		return;
5142 
5143 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
5144 		/* Unicast addresses changes may only happen under the rtnl,
5145 		 * therefore calling __dev_set_promiscuity here is safe.
5146 		 */
5147 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
5148 			__dev_set_promiscuity(dev, 1, false);
5149 			dev->uc_promisc = true;
5150 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
5151 			__dev_set_promiscuity(dev, -1, false);
5152 			dev->uc_promisc = false;
5153 		}
5154 	}
5155 
5156 	if (ops->ndo_set_rx_mode)
5157 		ops->ndo_set_rx_mode(dev);
5158 }
5159 
5160 void dev_set_rx_mode(struct net_device *dev)
5161 {
5162 	netif_addr_lock_bh(dev);
5163 	__dev_set_rx_mode(dev);
5164 	netif_addr_unlock_bh(dev);
5165 }
5166 
5167 /**
5168  *	dev_get_flags - get flags reported to userspace
5169  *	@dev: device
5170  *
5171  *	Get the combination of flag bits exported through APIs to userspace.
5172  */
5173 unsigned int dev_get_flags(const struct net_device *dev)
5174 {
5175 	unsigned int flags;
5176 
5177 	flags = (dev->flags & ~(IFF_PROMISC |
5178 				IFF_ALLMULTI |
5179 				IFF_RUNNING |
5180 				IFF_LOWER_UP |
5181 				IFF_DORMANT)) |
5182 		(dev->gflags & (IFF_PROMISC |
5183 				IFF_ALLMULTI));
5184 
5185 	if (netif_running(dev)) {
5186 		if (netif_oper_up(dev))
5187 			flags |= IFF_RUNNING;
5188 		if (netif_carrier_ok(dev))
5189 			flags |= IFF_LOWER_UP;
5190 		if (netif_dormant(dev))
5191 			flags |= IFF_DORMANT;
5192 	}
5193 
5194 	return flags;
5195 }
5196 EXPORT_SYMBOL(dev_get_flags);
5197 
5198 int __dev_change_flags(struct net_device *dev, unsigned int flags)
5199 {
5200 	unsigned int old_flags = dev->flags;
5201 	int ret;
5202 
5203 	ASSERT_RTNL();
5204 
5205 	/*
5206 	 *	Set the flags on our device.
5207 	 */
5208 
5209 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5210 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5211 			       IFF_AUTOMEDIA)) |
5212 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5213 				    IFF_ALLMULTI));
5214 
5215 	/*
5216 	 *	Load in the correct multicast list now the flags have changed.
5217 	 */
5218 
5219 	if ((old_flags ^ flags) & IFF_MULTICAST)
5220 		dev_change_rx_flags(dev, IFF_MULTICAST);
5221 
5222 	dev_set_rx_mode(dev);
5223 
5224 	/*
5225 	 *	Have we downed the interface. We handle IFF_UP ourselves
5226 	 *	according to user attempts to set it, rather than blindly
5227 	 *	setting it.
5228 	 */
5229 
5230 	ret = 0;
5231 	if ((old_flags ^ flags) & IFF_UP) {	/* Bit is different  ? */
5232 		ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
5233 
5234 		if (!ret)
5235 			dev_set_rx_mode(dev);
5236 	}
5237 
5238 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
5239 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
5240 		unsigned int old_flags = dev->flags;
5241 
5242 		dev->gflags ^= IFF_PROMISC;
5243 
5244 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
5245 			if (dev->flags != old_flags)
5246 				dev_set_rx_mode(dev);
5247 	}
5248 
5249 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5250 	   is important. Some (broken) drivers set IFF_PROMISC, when
5251 	   IFF_ALLMULTI is requested not asking us and not reporting.
5252 	 */
5253 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
5254 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5255 
5256 		dev->gflags ^= IFF_ALLMULTI;
5257 		__dev_set_allmulti(dev, inc, false);
5258 	}
5259 
5260 	return ret;
5261 }
5262 
5263 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5264 			unsigned int gchanges)
5265 {
5266 	unsigned int changes = dev->flags ^ old_flags;
5267 
5268 	if (gchanges)
5269 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
5270 
5271 	if (changes & IFF_UP) {
5272 		if (dev->flags & IFF_UP)
5273 			call_netdevice_notifiers(NETDEV_UP, dev);
5274 		else
5275 			call_netdevice_notifiers(NETDEV_DOWN, dev);
5276 	}
5277 
5278 	if (dev->flags & IFF_UP &&
5279 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5280 		struct netdev_notifier_change_info change_info;
5281 
5282 		change_info.flags_changed = changes;
5283 		call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5284 					      &change_info.info);
5285 	}
5286 }
5287 
5288 /**
5289  *	dev_change_flags - change device settings
5290  *	@dev: device
5291  *	@flags: device state flags
5292  *
5293  *	Change settings on device based state flags. The flags are
5294  *	in the userspace exported format.
5295  */
5296 int dev_change_flags(struct net_device *dev, unsigned int flags)
5297 {
5298 	int ret;
5299 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
5300 
5301 	ret = __dev_change_flags(dev, flags);
5302 	if (ret < 0)
5303 		return ret;
5304 
5305 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
5306 	__dev_notify_flags(dev, old_flags, changes);
5307 	return ret;
5308 }
5309 EXPORT_SYMBOL(dev_change_flags);
5310 
5311 /**
5312  *	dev_set_mtu - Change maximum transfer unit
5313  *	@dev: device
5314  *	@new_mtu: new transfer unit
5315  *
5316  *	Change the maximum transfer size of the network device.
5317  */
5318 int dev_set_mtu(struct net_device *dev, int new_mtu)
5319 {
5320 	const struct net_device_ops *ops = dev->netdev_ops;
5321 	int err;
5322 
5323 	if (new_mtu == dev->mtu)
5324 		return 0;
5325 
5326 	/*	MTU must be positive.	 */
5327 	if (new_mtu < 0)
5328 		return -EINVAL;
5329 
5330 	if (!netif_device_present(dev))
5331 		return -ENODEV;
5332 
5333 	err = 0;
5334 	if (ops->ndo_change_mtu)
5335 		err = ops->ndo_change_mtu(dev, new_mtu);
5336 	else
5337 		dev->mtu = new_mtu;
5338 
5339 	if (!err)
5340 		call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5341 	return err;
5342 }
5343 EXPORT_SYMBOL(dev_set_mtu);
5344 
5345 /**
5346  *	dev_set_group - Change group this device belongs to
5347  *	@dev: device
5348  *	@new_group: group this device should belong to
5349  */
5350 void dev_set_group(struct net_device *dev, int new_group)
5351 {
5352 	dev->group = new_group;
5353 }
5354 EXPORT_SYMBOL(dev_set_group);
5355 
5356 /**
5357  *	dev_set_mac_address - Change Media Access Control Address
5358  *	@dev: device
5359  *	@sa: new address
5360  *
5361  *	Change the hardware (MAC) address of the device
5362  */
5363 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
5364 {
5365 	const struct net_device_ops *ops = dev->netdev_ops;
5366 	int err;
5367 
5368 	if (!ops->ndo_set_mac_address)
5369 		return -EOPNOTSUPP;
5370 	if (sa->sa_family != dev->type)
5371 		return -EINVAL;
5372 	if (!netif_device_present(dev))
5373 		return -ENODEV;
5374 	err = ops->ndo_set_mac_address(dev, sa);
5375 	if (err)
5376 		return err;
5377 	dev->addr_assign_type = NET_ADDR_SET;
5378 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
5379 	add_device_randomness(dev->dev_addr, dev->addr_len);
5380 	return 0;
5381 }
5382 EXPORT_SYMBOL(dev_set_mac_address);
5383 
5384 /**
5385  *	dev_change_carrier - Change device carrier
5386  *	@dev: device
5387  *	@new_carrier: new value
5388  *
5389  *	Change device carrier
5390  */
5391 int dev_change_carrier(struct net_device *dev, bool new_carrier)
5392 {
5393 	const struct net_device_ops *ops = dev->netdev_ops;
5394 
5395 	if (!ops->ndo_change_carrier)
5396 		return -EOPNOTSUPP;
5397 	if (!netif_device_present(dev))
5398 		return -ENODEV;
5399 	return ops->ndo_change_carrier(dev, new_carrier);
5400 }
5401 EXPORT_SYMBOL(dev_change_carrier);
5402 
5403 /**
5404  *	dev_get_phys_port_id - Get device physical port ID
5405  *	@dev: device
5406  *	@ppid: port ID
5407  *
5408  *	Get device physical port ID
5409  */
5410 int dev_get_phys_port_id(struct net_device *dev,
5411 			 struct netdev_phys_port_id *ppid)
5412 {
5413 	const struct net_device_ops *ops = dev->netdev_ops;
5414 
5415 	if (!ops->ndo_get_phys_port_id)
5416 		return -EOPNOTSUPP;
5417 	return ops->ndo_get_phys_port_id(dev, ppid);
5418 }
5419 EXPORT_SYMBOL(dev_get_phys_port_id);
5420 
5421 /**
5422  *	dev_new_index	-	allocate an ifindex
5423  *	@net: the applicable net namespace
5424  *
5425  *	Returns a suitable unique value for a new device interface
5426  *	number.  The caller must hold the rtnl semaphore or the
5427  *	dev_base_lock to be sure it remains unique.
5428  */
5429 static int dev_new_index(struct net *net)
5430 {
5431 	int ifindex = net->ifindex;
5432 	for (;;) {
5433 		if (++ifindex <= 0)
5434 			ifindex = 1;
5435 		if (!__dev_get_by_index(net, ifindex))
5436 			return net->ifindex = ifindex;
5437 	}
5438 }
5439 
5440 /* Delayed registration/unregisteration */
5441 static LIST_HEAD(net_todo_list);
5442 static DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
5443 
5444 static void net_set_todo(struct net_device *dev)
5445 {
5446 	list_add_tail(&dev->todo_list, &net_todo_list);
5447 	dev_net(dev)->dev_unreg_count++;
5448 }
5449 
5450 static void rollback_registered_many(struct list_head *head)
5451 {
5452 	struct net_device *dev, *tmp;
5453 	LIST_HEAD(close_head);
5454 
5455 	BUG_ON(dev_boot_phase);
5456 	ASSERT_RTNL();
5457 
5458 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5459 		/* Some devices call without registering
5460 		 * for initialization unwind. Remove those
5461 		 * devices and proceed with the remaining.
5462 		 */
5463 		if (dev->reg_state == NETREG_UNINITIALIZED) {
5464 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5465 				 dev->name, dev);
5466 
5467 			WARN_ON(1);
5468 			list_del(&dev->unreg_list);
5469 			continue;
5470 		}
5471 		dev->dismantle = true;
5472 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
5473 	}
5474 
5475 	/* If device is running, close it first. */
5476 	list_for_each_entry(dev, head, unreg_list)
5477 		list_add_tail(&dev->close_list, &close_head);
5478 	dev_close_many(&close_head);
5479 
5480 	list_for_each_entry(dev, head, unreg_list) {
5481 		/* And unlink it from device chain. */
5482 		unlist_netdevice(dev);
5483 
5484 		dev->reg_state = NETREG_UNREGISTERING;
5485 	}
5486 
5487 	synchronize_net();
5488 
5489 	list_for_each_entry(dev, head, unreg_list) {
5490 		/* Shutdown queueing discipline. */
5491 		dev_shutdown(dev);
5492 
5493 
5494 		/* Notify protocols, that we are about to destroy
5495 		   this device. They should clean all the things.
5496 		*/
5497 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5498 
5499 		if (!dev->rtnl_link_ops ||
5500 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5501 			rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
5502 
5503 		/*
5504 		 *	Flush the unicast and multicast chains
5505 		 */
5506 		dev_uc_flush(dev);
5507 		dev_mc_flush(dev);
5508 
5509 		if (dev->netdev_ops->ndo_uninit)
5510 			dev->netdev_ops->ndo_uninit(dev);
5511 
5512 		/* Notifier chain MUST detach us all upper devices. */
5513 		WARN_ON(netdev_has_any_upper_dev(dev));
5514 
5515 		/* Remove entries from kobject tree */
5516 		netdev_unregister_kobject(dev);
5517 #ifdef CONFIG_XPS
5518 		/* Remove XPS queueing entries */
5519 		netif_reset_xps_queues_gt(dev, 0);
5520 #endif
5521 	}
5522 
5523 	synchronize_net();
5524 
5525 	list_for_each_entry(dev, head, unreg_list)
5526 		dev_put(dev);
5527 }
5528 
5529 static void rollback_registered(struct net_device *dev)
5530 {
5531 	LIST_HEAD(single);
5532 
5533 	list_add(&dev->unreg_list, &single);
5534 	rollback_registered_many(&single);
5535 	list_del(&single);
5536 }
5537 
5538 static netdev_features_t netdev_fix_features(struct net_device *dev,
5539 	netdev_features_t features)
5540 {
5541 	/* Fix illegal checksum combinations */
5542 	if ((features & NETIF_F_HW_CSUM) &&
5543 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5544 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5545 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5546 	}
5547 
5548 	/* TSO requires that SG is present as well. */
5549 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5550 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5551 		features &= ~NETIF_F_ALL_TSO;
5552 	}
5553 
5554 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
5555 					!(features & NETIF_F_IP_CSUM)) {
5556 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
5557 		features &= ~NETIF_F_TSO;
5558 		features &= ~NETIF_F_TSO_ECN;
5559 	}
5560 
5561 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
5562 					 !(features & NETIF_F_IPV6_CSUM)) {
5563 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
5564 		features &= ~NETIF_F_TSO6;
5565 	}
5566 
5567 	/* TSO ECN requires that TSO is present as well. */
5568 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5569 		features &= ~NETIF_F_TSO_ECN;
5570 
5571 	/* Software GSO depends on SG. */
5572 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5573 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5574 		features &= ~NETIF_F_GSO;
5575 	}
5576 
5577 	/* UFO needs SG and checksumming */
5578 	if (features & NETIF_F_UFO) {
5579 		/* maybe split UFO into V4 and V6? */
5580 		if (!((features & NETIF_F_GEN_CSUM) ||
5581 		    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5582 			    == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5583 			netdev_dbg(dev,
5584 				"Dropping NETIF_F_UFO since no checksum offload features.\n");
5585 			features &= ~NETIF_F_UFO;
5586 		}
5587 
5588 		if (!(features & NETIF_F_SG)) {
5589 			netdev_dbg(dev,
5590 				"Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5591 			features &= ~NETIF_F_UFO;
5592 		}
5593 	}
5594 
5595 	return features;
5596 }
5597 
5598 int __netdev_update_features(struct net_device *dev)
5599 {
5600 	netdev_features_t features;
5601 	int err = 0;
5602 
5603 	ASSERT_RTNL();
5604 
5605 	features = netdev_get_wanted_features(dev);
5606 
5607 	if (dev->netdev_ops->ndo_fix_features)
5608 		features = dev->netdev_ops->ndo_fix_features(dev, features);
5609 
5610 	/* driver might be less strict about feature dependencies */
5611 	features = netdev_fix_features(dev, features);
5612 
5613 	if (dev->features == features)
5614 		return 0;
5615 
5616 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
5617 		&dev->features, &features);
5618 
5619 	if (dev->netdev_ops->ndo_set_features)
5620 		err = dev->netdev_ops->ndo_set_features(dev, features);
5621 
5622 	if (unlikely(err < 0)) {
5623 		netdev_err(dev,
5624 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
5625 			err, &features, &dev->features);
5626 		return -1;
5627 	}
5628 
5629 	if (!err)
5630 		dev->features = features;
5631 
5632 	return 1;
5633 }
5634 
5635 /**
5636  *	netdev_update_features - recalculate device features
5637  *	@dev: the device to check
5638  *
5639  *	Recalculate dev->features set and send notifications if it
5640  *	has changed. Should be called after driver or hardware dependent
5641  *	conditions might have changed that influence the features.
5642  */
5643 void netdev_update_features(struct net_device *dev)
5644 {
5645 	if (__netdev_update_features(dev))
5646 		netdev_features_change(dev);
5647 }
5648 EXPORT_SYMBOL(netdev_update_features);
5649 
5650 /**
5651  *	netdev_change_features - recalculate device features
5652  *	@dev: the device to check
5653  *
5654  *	Recalculate dev->features set and send notifications even
5655  *	if they have not changed. Should be called instead of
5656  *	netdev_update_features() if also dev->vlan_features might
5657  *	have changed to allow the changes to be propagated to stacked
5658  *	VLAN devices.
5659  */
5660 void netdev_change_features(struct net_device *dev)
5661 {
5662 	__netdev_update_features(dev);
5663 	netdev_features_change(dev);
5664 }
5665 EXPORT_SYMBOL(netdev_change_features);
5666 
5667 /**
5668  *	netif_stacked_transfer_operstate -	transfer operstate
5669  *	@rootdev: the root or lower level device to transfer state from
5670  *	@dev: the device to transfer operstate to
5671  *
5672  *	Transfer operational state from root to device. This is normally
5673  *	called when a stacking relationship exists between the root
5674  *	device and the device(a leaf device).
5675  */
5676 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5677 					struct net_device *dev)
5678 {
5679 	if (rootdev->operstate == IF_OPER_DORMANT)
5680 		netif_dormant_on(dev);
5681 	else
5682 		netif_dormant_off(dev);
5683 
5684 	if (netif_carrier_ok(rootdev)) {
5685 		if (!netif_carrier_ok(dev))
5686 			netif_carrier_on(dev);
5687 	} else {
5688 		if (netif_carrier_ok(dev))
5689 			netif_carrier_off(dev);
5690 	}
5691 }
5692 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5693 
5694 #ifdef CONFIG_RPS
5695 static int netif_alloc_rx_queues(struct net_device *dev)
5696 {
5697 	unsigned int i, count = dev->num_rx_queues;
5698 	struct netdev_rx_queue *rx;
5699 
5700 	BUG_ON(count < 1);
5701 
5702 	rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5703 	if (!rx)
5704 		return -ENOMEM;
5705 
5706 	dev->_rx = rx;
5707 
5708 	for (i = 0; i < count; i++)
5709 		rx[i].dev = dev;
5710 	return 0;
5711 }
5712 #endif
5713 
5714 static void netdev_init_one_queue(struct net_device *dev,
5715 				  struct netdev_queue *queue, void *_unused)
5716 {
5717 	/* Initialize queue lock */
5718 	spin_lock_init(&queue->_xmit_lock);
5719 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5720 	queue->xmit_lock_owner = -1;
5721 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5722 	queue->dev = dev;
5723 #ifdef CONFIG_BQL
5724 	dql_init(&queue->dql, HZ);
5725 #endif
5726 }
5727 
5728 static void netif_free_tx_queues(struct net_device *dev)
5729 {
5730 	if (is_vmalloc_addr(dev->_tx))
5731 		vfree(dev->_tx);
5732 	else
5733 		kfree(dev->_tx);
5734 }
5735 
5736 static int netif_alloc_netdev_queues(struct net_device *dev)
5737 {
5738 	unsigned int count = dev->num_tx_queues;
5739 	struct netdev_queue *tx;
5740 	size_t sz = count * sizeof(*tx);
5741 
5742 	BUG_ON(count < 1 || count > 0xffff);
5743 
5744 	tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
5745 	if (!tx) {
5746 		tx = vzalloc(sz);
5747 		if (!tx)
5748 			return -ENOMEM;
5749 	}
5750 	dev->_tx = tx;
5751 
5752 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5753 	spin_lock_init(&dev->tx_global_lock);
5754 
5755 	return 0;
5756 }
5757 
5758 /**
5759  *	register_netdevice	- register a network device
5760  *	@dev: device to register
5761  *
5762  *	Take a completed network device structure and add it to the kernel
5763  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5764  *	chain. 0 is returned on success. A negative errno code is returned
5765  *	on a failure to set up the device, or if the name is a duplicate.
5766  *
5767  *	Callers must hold the rtnl semaphore. You may want
5768  *	register_netdev() instead of this.
5769  *
5770  *	BUGS:
5771  *	The locking appears insufficient to guarantee two parallel registers
5772  *	will not get the same name.
5773  */
5774 
5775 int register_netdevice(struct net_device *dev)
5776 {
5777 	int ret;
5778 	struct net *net = dev_net(dev);
5779 
5780 	BUG_ON(dev_boot_phase);
5781 	ASSERT_RTNL();
5782 
5783 	might_sleep();
5784 
5785 	/* When net_device's are persistent, this will be fatal. */
5786 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5787 	BUG_ON(!net);
5788 
5789 	spin_lock_init(&dev->addr_list_lock);
5790 	netdev_set_addr_lockdep_class(dev);
5791 
5792 	dev->iflink = -1;
5793 
5794 	ret = dev_get_valid_name(net, dev, dev->name);
5795 	if (ret < 0)
5796 		goto out;
5797 
5798 	/* Init, if this function is available */
5799 	if (dev->netdev_ops->ndo_init) {
5800 		ret = dev->netdev_ops->ndo_init(dev);
5801 		if (ret) {
5802 			if (ret > 0)
5803 				ret = -EIO;
5804 			goto out;
5805 		}
5806 	}
5807 
5808 	if (((dev->hw_features | dev->features) &
5809 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
5810 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
5811 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
5812 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
5813 		ret = -EINVAL;
5814 		goto err_uninit;
5815 	}
5816 
5817 	ret = -EBUSY;
5818 	if (!dev->ifindex)
5819 		dev->ifindex = dev_new_index(net);
5820 	else if (__dev_get_by_index(net, dev->ifindex))
5821 		goto err_uninit;
5822 
5823 	if (dev->iflink == -1)
5824 		dev->iflink = dev->ifindex;
5825 
5826 	/* Transfer changeable features to wanted_features and enable
5827 	 * software offloads (GSO and GRO).
5828 	 */
5829 	dev->hw_features |= NETIF_F_SOFT_FEATURES;
5830 	dev->features |= NETIF_F_SOFT_FEATURES;
5831 	dev->wanted_features = dev->features & dev->hw_features;
5832 
5833 	/* Turn on no cache copy if HW is doing checksum */
5834 	if (!(dev->flags & IFF_LOOPBACK)) {
5835 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
5836 		if (dev->features & NETIF_F_ALL_CSUM) {
5837 			dev->wanted_features |= NETIF_F_NOCACHE_COPY;
5838 			dev->features |= NETIF_F_NOCACHE_COPY;
5839 		}
5840 	}
5841 
5842 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
5843 	 */
5844 	dev->vlan_features |= NETIF_F_HIGHDMA;
5845 
5846 	/* Make NETIF_F_SG inheritable to tunnel devices.
5847 	 */
5848 	dev->hw_enc_features |= NETIF_F_SG;
5849 
5850 	/* Make NETIF_F_SG inheritable to MPLS.
5851 	 */
5852 	dev->mpls_features |= NETIF_F_SG;
5853 
5854 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5855 	ret = notifier_to_errno(ret);
5856 	if (ret)
5857 		goto err_uninit;
5858 
5859 	ret = netdev_register_kobject(dev);
5860 	if (ret)
5861 		goto err_uninit;
5862 	dev->reg_state = NETREG_REGISTERED;
5863 
5864 	__netdev_update_features(dev);
5865 
5866 	/*
5867 	 *	Default initial state at registry is that the
5868 	 *	device is present.
5869 	 */
5870 
5871 	set_bit(__LINK_STATE_PRESENT, &dev->state);
5872 
5873 	linkwatch_init_dev(dev);
5874 
5875 	dev_init_scheduler(dev);
5876 	dev_hold(dev);
5877 	list_netdevice(dev);
5878 	add_device_randomness(dev->dev_addr, dev->addr_len);
5879 
5880 	/* If the device has permanent device address, driver should
5881 	 * set dev_addr and also addr_assign_type should be set to
5882 	 * NET_ADDR_PERM (default value).
5883 	 */
5884 	if (dev->addr_assign_type == NET_ADDR_PERM)
5885 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
5886 
5887 	/* Notify protocols, that a new device appeared. */
5888 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5889 	ret = notifier_to_errno(ret);
5890 	if (ret) {
5891 		rollback_registered(dev);
5892 		dev->reg_state = NETREG_UNREGISTERED;
5893 	}
5894 	/*
5895 	 *	Prevent userspace races by waiting until the network
5896 	 *	device is fully setup before sending notifications.
5897 	 */
5898 	if (!dev->rtnl_link_ops ||
5899 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5900 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
5901 
5902 out:
5903 	return ret;
5904 
5905 err_uninit:
5906 	if (dev->netdev_ops->ndo_uninit)
5907 		dev->netdev_ops->ndo_uninit(dev);
5908 	goto out;
5909 }
5910 EXPORT_SYMBOL(register_netdevice);
5911 
5912 /**
5913  *	init_dummy_netdev	- init a dummy network device for NAPI
5914  *	@dev: device to init
5915  *
5916  *	This takes a network device structure and initialize the minimum
5917  *	amount of fields so it can be used to schedule NAPI polls without
5918  *	registering a full blown interface. This is to be used by drivers
5919  *	that need to tie several hardware interfaces to a single NAPI
5920  *	poll scheduler due to HW limitations.
5921  */
5922 int init_dummy_netdev(struct net_device *dev)
5923 {
5924 	/* Clear everything. Note we don't initialize spinlocks
5925 	 * are they aren't supposed to be taken by any of the
5926 	 * NAPI code and this dummy netdev is supposed to be
5927 	 * only ever used for NAPI polls
5928 	 */
5929 	memset(dev, 0, sizeof(struct net_device));
5930 
5931 	/* make sure we BUG if trying to hit standard
5932 	 * register/unregister code path
5933 	 */
5934 	dev->reg_state = NETREG_DUMMY;
5935 
5936 	/* NAPI wants this */
5937 	INIT_LIST_HEAD(&dev->napi_list);
5938 
5939 	/* a dummy interface is started by default */
5940 	set_bit(__LINK_STATE_PRESENT, &dev->state);
5941 	set_bit(__LINK_STATE_START, &dev->state);
5942 
5943 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
5944 	 * because users of this 'device' dont need to change
5945 	 * its refcount.
5946 	 */
5947 
5948 	return 0;
5949 }
5950 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5951 
5952 
5953 /**
5954  *	register_netdev	- register a network device
5955  *	@dev: device to register
5956  *
5957  *	Take a completed network device structure and add it to the kernel
5958  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5959  *	chain. 0 is returned on success. A negative errno code is returned
5960  *	on a failure to set up the device, or if the name is a duplicate.
5961  *
5962  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
5963  *	and expands the device name if you passed a format string to
5964  *	alloc_netdev.
5965  */
5966 int register_netdev(struct net_device *dev)
5967 {
5968 	int err;
5969 
5970 	rtnl_lock();
5971 	err = register_netdevice(dev);
5972 	rtnl_unlock();
5973 	return err;
5974 }
5975 EXPORT_SYMBOL(register_netdev);
5976 
5977 int netdev_refcnt_read(const struct net_device *dev)
5978 {
5979 	int i, refcnt = 0;
5980 
5981 	for_each_possible_cpu(i)
5982 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5983 	return refcnt;
5984 }
5985 EXPORT_SYMBOL(netdev_refcnt_read);
5986 
5987 /**
5988  * netdev_wait_allrefs - wait until all references are gone.
5989  * @dev: target net_device
5990  *
5991  * This is called when unregistering network devices.
5992  *
5993  * Any protocol or device that holds a reference should register
5994  * for netdevice notification, and cleanup and put back the
5995  * reference if they receive an UNREGISTER event.
5996  * We can get stuck here if buggy protocols don't correctly
5997  * call dev_put.
5998  */
5999 static void netdev_wait_allrefs(struct net_device *dev)
6000 {
6001 	unsigned long rebroadcast_time, warning_time;
6002 	int refcnt;
6003 
6004 	linkwatch_forget_dev(dev);
6005 
6006 	rebroadcast_time = warning_time = jiffies;
6007 	refcnt = netdev_refcnt_read(dev);
6008 
6009 	while (refcnt != 0) {
6010 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6011 			rtnl_lock();
6012 
6013 			/* Rebroadcast unregister notification */
6014 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6015 
6016 			__rtnl_unlock();
6017 			rcu_barrier();
6018 			rtnl_lock();
6019 
6020 			call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6021 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6022 				     &dev->state)) {
6023 				/* We must not have linkwatch events
6024 				 * pending on unregister. If this
6025 				 * happens, we simply run the queue
6026 				 * unscheduled, resulting in a noop
6027 				 * for this device.
6028 				 */
6029 				linkwatch_run_queue();
6030 			}
6031 
6032 			__rtnl_unlock();
6033 
6034 			rebroadcast_time = jiffies;
6035 		}
6036 
6037 		msleep(250);
6038 
6039 		refcnt = netdev_refcnt_read(dev);
6040 
6041 		if (time_after(jiffies, warning_time + 10 * HZ)) {
6042 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6043 				 dev->name, refcnt);
6044 			warning_time = jiffies;
6045 		}
6046 	}
6047 }
6048 
6049 /* The sequence is:
6050  *
6051  *	rtnl_lock();
6052  *	...
6053  *	register_netdevice(x1);
6054  *	register_netdevice(x2);
6055  *	...
6056  *	unregister_netdevice(y1);
6057  *	unregister_netdevice(y2);
6058  *      ...
6059  *	rtnl_unlock();
6060  *	free_netdev(y1);
6061  *	free_netdev(y2);
6062  *
6063  * We are invoked by rtnl_unlock().
6064  * This allows us to deal with problems:
6065  * 1) We can delete sysfs objects which invoke hotplug
6066  *    without deadlocking with linkwatch via keventd.
6067  * 2) Since we run with the RTNL semaphore not held, we can sleep
6068  *    safely in order to wait for the netdev refcnt to drop to zero.
6069  *
6070  * We must not return until all unregister events added during
6071  * the interval the lock was held have been completed.
6072  */
6073 void netdev_run_todo(void)
6074 {
6075 	struct list_head list;
6076 
6077 	/* Snapshot list, allow later requests */
6078 	list_replace_init(&net_todo_list, &list);
6079 
6080 	__rtnl_unlock();
6081 
6082 
6083 	/* Wait for rcu callbacks to finish before next phase */
6084 	if (!list_empty(&list))
6085 		rcu_barrier();
6086 
6087 	while (!list_empty(&list)) {
6088 		struct net_device *dev
6089 			= list_first_entry(&list, struct net_device, todo_list);
6090 		list_del(&dev->todo_list);
6091 
6092 		rtnl_lock();
6093 		call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6094 		__rtnl_unlock();
6095 
6096 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
6097 			pr_err("network todo '%s' but state %d\n",
6098 			       dev->name, dev->reg_state);
6099 			dump_stack();
6100 			continue;
6101 		}
6102 
6103 		dev->reg_state = NETREG_UNREGISTERED;
6104 
6105 		on_each_cpu(flush_backlog, dev, 1);
6106 
6107 		netdev_wait_allrefs(dev);
6108 
6109 		/* paranoia */
6110 		BUG_ON(netdev_refcnt_read(dev));
6111 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
6112 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
6113 		WARN_ON(dev->dn_ptr);
6114 
6115 		if (dev->destructor)
6116 			dev->destructor(dev);
6117 
6118 		/* Report a network device has been unregistered */
6119 		rtnl_lock();
6120 		dev_net(dev)->dev_unreg_count--;
6121 		__rtnl_unlock();
6122 		wake_up(&netdev_unregistering_wq);
6123 
6124 		/* Free network device */
6125 		kobject_put(&dev->dev.kobj);
6126 	}
6127 }
6128 
6129 /* Convert net_device_stats to rtnl_link_stats64.  They have the same
6130  * fields in the same order, with only the type differing.
6131  */
6132 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6133 			     const struct net_device_stats *netdev_stats)
6134 {
6135 #if BITS_PER_LONG == 64
6136 	BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6137 	memcpy(stats64, netdev_stats, sizeof(*stats64));
6138 #else
6139 	size_t i, n = sizeof(*stats64) / sizeof(u64);
6140 	const unsigned long *src = (const unsigned long *)netdev_stats;
6141 	u64 *dst = (u64 *)stats64;
6142 
6143 	BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6144 		     sizeof(*stats64) / sizeof(u64));
6145 	for (i = 0; i < n; i++)
6146 		dst[i] = src[i];
6147 #endif
6148 }
6149 EXPORT_SYMBOL(netdev_stats_to_stats64);
6150 
6151 /**
6152  *	dev_get_stats	- get network device statistics
6153  *	@dev: device to get statistics from
6154  *	@storage: place to store stats
6155  *
6156  *	Get network statistics from device. Return @storage.
6157  *	The device driver may provide its own method by setting
6158  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6159  *	otherwise the internal statistics structure is used.
6160  */
6161 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6162 					struct rtnl_link_stats64 *storage)
6163 {
6164 	const struct net_device_ops *ops = dev->netdev_ops;
6165 
6166 	if (ops->ndo_get_stats64) {
6167 		memset(storage, 0, sizeof(*storage));
6168 		ops->ndo_get_stats64(dev, storage);
6169 	} else if (ops->ndo_get_stats) {
6170 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
6171 	} else {
6172 		netdev_stats_to_stats64(storage, &dev->stats);
6173 	}
6174 	storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
6175 	return storage;
6176 }
6177 EXPORT_SYMBOL(dev_get_stats);
6178 
6179 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
6180 {
6181 	struct netdev_queue *queue = dev_ingress_queue(dev);
6182 
6183 #ifdef CONFIG_NET_CLS_ACT
6184 	if (queue)
6185 		return queue;
6186 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6187 	if (!queue)
6188 		return NULL;
6189 	netdev_init_one_queue(dev, queue, NULL);
6190 	queue->qdisc = &noop_qdisc;
6191 	queue->qdisc_sleeping = &noop_qdisc;
6192 	rcu_assign_pointer(dev->ingress_queue, queue);
6193 #endif
6194 	return queue;
6195 }
6196 
6197 static const struct ethtool_ops default_ethtool_ops;
6198 
6199 void netdev_set_default_ethtool_ops(struct net_device *dev,
6200 				    const struct ethtool_ops *ops)
6201 {
6202 	if (dev->ethtool_ops == &default_ethtool_ops)
6203 		dev->ethtool_ops = ops;
6204 }
6205 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6206 
6207 void netdev_freemem(struct net_device *dev)
6208 {
6209 	char *addr = (char *)dev - dev->padded;
6210 
6211 	if (is_vmalloc_addr(addr))
6212 		vfree(addr);
6213 	else
6214 		kfree(addr);
6215 }
6216 
6217 /**
6218  *	alloc_netdev_mqs - allocate network device
6219  *	@sizeof_priv:	size of private data to allocate space for
6220  *	@name:		device name format string
6221  *	@setup:		callback to initialize device
6222  *	@txqs:		the number of TX subqueues to allocate
6223  *	@rxqs:		the number of RX subqueues to allocate
6224  *
6225  *	Allocates a struct net_device with private data area for driver use
6226  *	and performs basic initialization.  Also allocates subquue structs
6227  *	for each queue on the device.
6228  */
6229 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
6230 		void (*setup)(struct net_device *),
6231 		unsigned int txqs, unsigned int rxqs)
6232 {
6233 	struct net_device *dev;
6234 	size_t alloc_size;
6235 	struct net_device *p;
6236 
6237 	BUG_ON(strlen(name) >= sizeof(dev->name));
6238 
6239 	if (txqs < 1) {
6240 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
6241 		return NULL;
6242 	}
6243 
6244 #ifdef CONFIG_RPS
6245 	if (rxqs < 1) {
6246 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
6247 		return NULL;
6248 	}
6249 #endif
6250 
6251 	alloc_size = sizeof(struct net_device);
6252 	if (sizeof_priv) {
6253 		/* ensure 32-byte alignment of private area */
6254 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
6255 		alloc_size += sizeof_priv;
6256 	}
6257 	/* ensure 32-byte alignment of whole construct */
6258 	alloc_size += NETDEV_ALIGN - 1;
6259 
6260 	p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6261 	if (!p)
6262 		p = vzalloc(alloc_size);
6263 	if (!p)
6264 		return NULL;
6265 
6266 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
6267 	dev->padded = (char *)dev - (char *)p;
6268 
6269 	dev->pcpu_refcnt = alloc_percpu(int);
6270 	if (!dev->pcpu_refcnt)
6271 		goto free_dev;
6272 
6273 	if (dev_addr_init(dev))
6274 		goto free_pcpu;
6275 
6276 	dev_mc_init(dev);
6277 	dev_uc_init(dev);
6278 
6279 	dev_net_set(dev, &init_net);
6280 
6281 	dev->gso_max_size = GSO_MAX_SIZE;
6282 	dev->gso_max_segs = GSO_MAX_SEGS;
6283 
6284 	INIT_LIST_HEAD(&dev->napi_list);
6285 	INIT_LIST_HEAD(&dev->unreg_list);
6286 	INIT_LIST_HEAD(&dev->close_list);
6287 	INIT_LIST_HEAD(&dev->link_watch_list);
6288 	INIT_LIST_HEAD(&dev->adj_list.upper);
6289 	INIT_LIST_HEAD(&dev->adj_list.lower);
6290 	INIT_LIST_HEAD(&dev->all_adj_list.upper);
6291 	INIT_LIST_HEAD(&dev->all_adj_list.lower);
6292 	dev->priv_flags = IFF_XMIT_DST_RELEASE;
6293 	setup(dev);
6294 
6295 	dev->num_tx_queues = txqs;
6296 	dev->real_num_tx_queues = txqs;
6297 	if (netif_alloc_netdev_queues(dev))
6298 		goto free_all;
6299 
6300 #ifdef CONFIG_RPS
6301 	dev->num_rx_queues = rxqs;
6302 	dev->real_num_rx_queues = rxqs;
6303 	if (netif_alloc_rx_queues(dev))
6304 		goto free_all;
6305 #endif
6306 
6307 	strcpy(dev->name, name);
6308 	dev->group = INIT_NETDEV_GROUP;
6309 	if (!dev->ethtool_ops)
6310 		dev->ethtool_ops = &default_ethtool_ops;
6311 	return dev;
6312 
6313 free_all:
6314 	free_netdev(dev);
6315 	return NULL;
6316 
6317 free_pcpu:
6318 	free_percpu(dev->pcpu_refcnt);
6319 	netif_free_tx_queues(dev);
6320 #ifdef CONFIG_RPS
6321 	kfree(dev->_rx);
6322 #endif
6323 
6324 free_dev:
6325 	netdev_freemem(dev);
6326 	return NULL;
6327 }
6328 EXPORT_SYMBOL(alloc_netdev_mqs);
6329 
6330 /**
6331  *	free_netdev - free network device
6332  *	@dev: device
6333  *
6334  *	This function does the last stage of destroying an allocated device
6335  * 	interface. The reference to the device object is released.
6336  *	If this is the last reference then it will be freed.
6337  */
6338 void free_netdev(struct net_device *dev)
6339 {
6340 	struct napi_struct *p, *n;
6341 
6342 	release_net(dev_net(dev));
6343 
6344 	netif_free_tx_queues(dev);
6345 #ifdef CONFIG_RPS
6346 	kfree(dev->_rx);
6347 #endif
6348 
6349 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6350 
6351 	/* Flush device addresses */
6352 	dev_addr_flush(dev);
6353 
6354 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6355 		netif_napi_del(p);
6356 
6357 	free_percpu(dev->pcpu_refcnt);
6358 	dev->pcpu_refcnt = NULL;
6359 
6360 	/*  Compatibility with error handling in drivers */
6361 	if (dev->reg_state == NETREG_UNINITIALIZED) {
6362 		netdev_freemem(dev);
6363 		return;
6364 	}
6365 
6366 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6367 	dev->reg_state = NETREG_RELEASED;
6368 
6369 	/* will free via device release */
6370 	put_device(&dev->dev);
6371 }
6372 EXPORT_SYMBOL(free_netdev);
6373 
6374 /**
6375  *	synchronize_net -  Synchronize with packet receive processing
6376  *
6377  *	Wait for packets currently being received to be done.
6378  *	Does not block later packets from starting.
6379  */
6380 void synchronize_net(void)
6381 {
6382 	might_sleep();
6383 	if (rtnl_is_locked())
6384 		synchronize_rcu_expedited();
6385 	else
6386 		synchronize_rcu();
6387 }
6388 EXPORT_SYMBOL(synchronize_net);
6389 
6390 /**
6391  *	unregister_netdevice_queue - remove device from the kernel
6392  *	@dev: device
6393  *	@head: list
6394  *
6395  *	This function shuts down a device interface and removes it
6396  *	from the kernel tables.
6397  *	If head not NULL, device is queued to be unregistered later.
6398  *
6399  *	Callers must hold the rtnl semaphore.  You may want
6400  *	unregister_netdev() instead of this.
6401  */
6402 
6403 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6404 {
6405 	ASSERT_RTNL();
6406 
6407 	if (head) {
6408 		list_move_tail(&dev->unreg_list, head);
6409 	} else {
6410 		rollback_registered(dev);
6411 		/* Finish processing unregister after unlock */
6412 		net_set_todo(dev);
6413 	}
6414 }
6415 EXPORT_SYMBOL(unregister_netdevice_queue);
6416 
6417 /**
6418  *	unregister_netdevice_many - unregister many devices
6419  *	@head: list of devices
6420  */
6421 void unregister_netdevice_many(struct list_head *head)
6422 {
6423 	struct net_device *dev;
6424 
6425 	if (!list_empty(head)) {
6426 		rollback_registered_many(head);
6427 		list_for_each_entry(dev, head, unreg_list)
6428 			net_set_todo(dev);
6429 	}
6430 }
6431 EXPORT_SYMBOL(unregister_netdevice_many);
6432 
6433 /**
6434  *	unregister_netdev - remove device from the kernel
6435  *	@dev: device
6436  *
6437  *	This function shuts down a device interface and removes it
6438  *	from the kernel tables.
6439  *
6440  *	This is just a wrapper for unregister_netdevice that takes
6441  *	the rtnl semaphore.  In general you want to use this and not
6442  *	unregister_netdevice.
6443  */
6444 void unregister_netdev(struct net_device *dev)
6445 {
6446 	rtnl_lock();
6447 	unregister_netdevice(dev);
6448 	rtnl_unlock();
6449 }
6450 EXPORT_SYMBOL(unregister_netdev);
6451 
6452 /**
6453  *	dev_change_net_namespace - move device to different nethost namespace
6454  *	@dev: device
6455  *	@net: network namespace
6456  *	@pat: If not NULL name pattern to try if the current device name
6457  *	      is already taken in the destination network namespace.
6458  *
6459  *	This function shuts down a device interface and moves it
6460  *	to a new network namespace. On success 0 is returned, on
6461  *	a failure a netagive errno code is returned.
6462  *
6463  *	Callers must hold the rtnl semaphore.
6464  */
6465 
6466 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6467 {
6468 	int err;
6469 
6470 	ASSERT_RTNL();
6471 
6472 	/* Don't allow namespace local devices to be moved. */
6473 	err = -EINVAL;
6474 	if (dev->features & NETIF_F_NETNS_LOCAL)
6475 		goto out;
6476 
6477 	/* Ensure the device has been registrered */
6478 	if (dev->reg_state != NETREG_REGISTERED)
6479 		goto out;
6480 
6481 	/* Get out if there is nothing todo */
6482 	err = 0;
6483 	if (net_eq(dev_net(dev), net))
6484 		goto out;
6485 
6486 	/* Pick the destination device name, and ensure
6487 	 * we can use it in the destination network namespace.
6488 	 */
6489 	err = -EEXIST;
6490 	if (__dev_get_by_name(net, dev->name)) {
6491 		/* We get here if we can't use the current device name */
6492 		if (!pat)
6493 			goto out;
6494 		if (dev_get_valid_name(net, dev, pat) < 0)
6495 			goto out;
6496 	}
6497 
6498 	/*
6499 	 * And now a mini version of register_netdevice unregister_netdevice.
6500 	 */
6501 
6502 	/* If device is running close it first. */
6503 	dev_close(dev);
6504 
6505 	/* And unlink it from device chain */
6506 	err = -ENODEV;
6507 	unlist_netdevice(dev);
6508 
6509 	synchronize_net();
6510 
6511 	/* Shutdown queueing discipline. */
6512 	dev_shutdown(dev);
6513 
6514 	/* Notify protocols, that we are about to destroy
6515 	   this device. They should clean all the things.
6516 
6517 	   Note that dev->reg_state stays at NETREG_REGISTERED.
6518 	   This is wanted because this way 8021q and macvlan know
6519 	   the device is just moving and can keep their slaves up.
6520 	*/
6521 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6522 	rcu_barrier();
6523 	call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6524 	rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
6525 
6526 	/*
6527 	 *	Flush the unicast and multicast chains
6528 	 */
6529 	dev_uc_flush(dev);
6530 	dev_mc_flush(dev);
6531 
6532 	/* Send a netdev-removed uevent to the old namespace */
6533 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
6534 
6535 	/* Actually switch the network namespace */
6536 	dev_net_set(dev, net);
6537 
6538 	/* If there is an ifindex conflict assign a new one */
6539 	if (__dev_get_by_index(net, dev->ifindex)) {
6540 		int iflink = (dev->iflink == dev->ifindex);
6541 		dev->ifindex = dev_new_index(net);
6542 		if (iflink)
6543 			dev->iflink = dev->ifindex;
6544 	}
6545 
6546 	/* Send a netdev-add uevent to the new namespace */
6547 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
6548 
6549 	/* Fixup kobjects */
6550 	err = device_rename(&dev->dev, dev->name);
6551 	WARN_ON(err);
6552 
6553 	/* Add the device back in the hashes */
6554 	list_netdevice(dev);
6555 
6556 	/* Notify protocols, that a new device appeared. */
6557 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
6558 
6559 	/*
6560 	 *	Prevent userspace races by waiting until the network
6561 	 *	device is fully setup before sending notifications.
6562 	 */
6563 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6564 
6565 	synchronize_net();
6566 	err = 0;
6567 out:
6568 	return err;
6569 }
6570 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6571 
6572 static int dev_cpu_callback(struct notifier_block *nfb,
6573 			    unsigned long action,
6574 			    void *ocpu)
6575 {
6576 	struct sk_buff **list_skb;
6577 	struct sk_buff *skb;
6578 	unsigned int cpu, oldcpu = (unsigned long)ocpu;
6579 	struct softnet_data *sd, *oldsd;
6580 
6581 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6582 		return NOTIFY_OK;
6583 
6584 	local_irq_disable();
6585 	cpu = smp_processor_id();
6586 	sd = &per_cpu(softnet_data, cpu);
6587 	oldsd = &per_cpu(softnet_data, oldcpu);
6588 
6589 	/* Find end of our completion_queue. */
6590 	list_skb = &sd->completion_queue;
6591 	while (*list_skb)
6592 		list_skb = &(*list_skb)->next;
6593 	/* Append completion queue from offline CPU. */
6594 	*list_skb = oldsd->completion_queue;
6595 	oldsd->completion_queue = NULL;
6596 
6597 	/* Append output queue from offline CPU. */
6598 	if (oldsd->output_queue) {
6599 		*sd->output_queue_tailp = oldsd->output_queue;
6600 		sd->output_queue_tailp = oldsd->output_queue_tailp;
6601 		oldsd->output_queue = NULL;
6602 		oldsd->output_queue_tailp = &oldsd->output_queue;
6603 	}
6604 	/* Append NAPI poll list from offline CPU. */
6605 	if (!list_empty(&oldsd->poll_list)) {
6606 		list_splice_init(&oldsd->poll_list, &sd->poll_list);
6607 		raise_softirq_irqoff(NET_RX_SOFTIRQ);
6608 	}
6609 
6610 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
6611 	local_irq_enable();
6612 
6613 	/* Process offline CPU's input_pkt_queue */
6614 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6615 		netif_rx(skb);
6616 		input_queue_head_incr(oldsd);
6617 	}
6618 	while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6619 		netif_rx(skb);
6620 		input_queue_head_incr(oldsd);
6621 	}
6622 
6623 	return NOTIFY_OK;
6624 }
6625 
6626 
6627 /**
6628  *	netdev_increment_features - increment feature set by one
6629  *	@all: current feature set
6630  *	@one: new feature set
6631  *	@mask: mask feature set
6632  *
6633  *	Computes a new feature set after adding a device with feature set
6634  *	@one to the master device with current feature set @all.  Will not
6635  *	enable anything that is off in @mask. Returns the new feature set.
6636  */
6637 netdev_features_t netdev_increment_features(netdev_features_t all,
6638 	netdev_features_t one, netdev_features_t mask)
6639 {
6640 	if (mask & NETIF_F_GEN_CSUM)
6641 		mask |= NETIF_F_ALL_CSUM;
6642 	mask |= NETIF_F_VLAN_CHALLENGED;
6643 
6644 	all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
6645 	all &= one | ~NETIF_F_ALL_FOR_ALL;
6646 
6647 	/* If one device supports hw checksumming, set for all. */
6648 	if (all & NETIF_F_GEN_CSUM)
6649 		all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
6650 
6651 	return all;
6652 }
6653 EXPORT_SYMBOL(netdev_increment_features);
6654 
6655 static struct hlist_head * __net_init netdev_create_hash(void)
6656 {
6657 	int i;
6658 	struct hlist_head *hash;
6659 
6660 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6661 	if (hash != NULL)
6662 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
6663 			INIT_HLIST_HEAD(&hash[i]);
6664 
6665 	return hash;
6666 }
6667 
6668 /* Initialize per network namespace state */
6669 static int __net_init netdev_init(struct net *net)
6670 {
6671 	if (net != &init_net)
6672 		INIT_LIST_HEAD(&net->dev_base_head);
6673 
6674 	net->dev_name_head = netdev_create_hash();
6675 	if (net->dev_name_head == NULL)
6676 		goto err_name;
6677 
6678 	net->dev_index_head = netdev_create_hash();
6679 	if (net->dev_index_head == NULL)
6680 		goto err_idx;
6681 
6682 	return 0;
6683 
6684 err_idx:
6685 	kfree(net->dev_name_head);
6686 err_name:
6687 	return -ENOMEM;
6688 }
6689 
6690 /**
6691  *	netdev_drivername - network driver for the device
6692  *	@dev: network device
6693  *
6694  *	Determine network driver for device.
6695  */
6696 const char *netdev_drivername(const struct net_device *dev)
6697 {
6698 	const struct device_driver *driver;
6699 	const struct device *parent;
6700 	const char *empty = "";
6701 
6702 	parent = dev->dev.parent;
6703 	if (!parent)
6704 		return empty;
6705 
6706 	driver = parent->driver;
6707 	if (driver && driver->name)
6708 		return driver->name;
6709 	return empty;
6710 }
6711 
6712 static int __netdev_printk(const char *level, const struct net_device *dev,
6713 			   struct va_format *vaf)
6714 {
6715 	int r;
6716 
6717 	if (dev && dev->dev.parent) {
6718 		r = dev_printk_emit(level[1] - '0',
6719 				    dev->dev.parent,
6720 				    "%s %s %s: %pV",
6721 				    dev_driver_string(dev->dev.parent),
6722 				    dev_name(dev->dev.parent),
6723 				    netdev_name(dev), vaf);
6724 	} else if (dev) {
6725 		r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6726 	} else {
6727 		r = printk("%s(NULL net_device): %pV", level, vaf);
6728 	}
6729 
6730 	return r;
6731 }
6732 
6733 int netdev_printk(const char *level, const struct net_device *dev,
6734 		  const char *format, ...)
6735 {
6736 	struct va_format vaf;
6737 	va_list args;
6738 	int r;
6739 
6740 	va_start(args, format);
6741 
6742 	vaf.fmt = format;
6743 	vaf.va = &args;
6744 
6745 	r = __netdev_printk(level, dev, &vaf);
6746 
6747 	va_end(args);
6748 
6749 	return r;
6750 }
6751 EXPORT_SYMBOL(netdev_printk);
6752 
6753 #define define_netdev_printk_level(func, level)			\
6754 int func(const struct net_device *dev, const char *fmt, ...)	\
6755 {								\
6756 	int r;							\
6757 	struct va_format vaf;					\
6758 	va_list args;						\
6759 								\
6760 	va_start(args, fmt);					\
6761 								\
6762 	vaf.fmt = fmt;						\
6763 	vaf.va = &args;						\
6764 								\
6765 	r = __netdev_printk(level, dev, &vaf);			\
6766 								\
6767 	va_end(args);						\
6768 								\
6769 	return r;						\
6770 }								\
6771 EXPORT_SYMBOL(func);
6772 
6773 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6774 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6775 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6776 define_netdev_printk_level(netdev_err, KERN_ERR);
6777 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6778 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6779 define_netdev_printk_level(netdev_info, KERN_INFO);
6780 
6781 static void __net_exit netdev_exit(struct net *net)
6782 {
6783 	kfree(net->dev_name_head);
6784 	kfree(net->dev_index_head);
6785 }
6786 
6787 static struct pernet_operations __net_initdata netdev_net_ops = {
6788 	.init = netdev_init,
6789 	.exit = netdev_exit,
6790 };
6791 
6792 static void __net_exit default_device_exit(struct net *net)
6793 {
6794 	struct net_device *dev, *aux;
6795 	/*
6796 	 * Push all migratable network devices back to the
6797 	 * initial network namespace
6798 	 */
6799 	rtnl_lock();
6800 	for_each_netdev_safe(net, dev, aux) {
6801 		int err;
6802 		char fb_name[IFNAMSIZ];
6803 
6804 		/* Ignore unmoveable devices (i.e. loopback) */
6805 		if (dev->features & NETIF_F_NETNS_LOCAL)
6806 			continue;
6807 
6808 		/* Leave virtual devices for the generic cleanup */
6809 		if (dev->rtnl_link_ops)
6810 			continue;
6811 
6812 		/* Push remaining network devices to init_net */
6813 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6814 		err = dev_change_net_namespace(dev, &init_net, fb_name);
6815 		if (err) {
6816 			pr_emerg("%s: failed to move %s to init_net: %d\n",
6817 				 __func__, dev->name, err);
6818 			BUG();
6819 		}
6820 	}
6821 	rtnl_unlock();
6822 }
6823 
6824 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
6825 {
6826 	/* Return with the rtnl_lock held when there are no network
6827 	 * devices unregistering in any network namespace in net_list.
6828 	 */
6829 	struct net *net;
6830 	bool unregistering;
6831 	DEFINE_WAIT(wait);
6832 
6833 	for (;;) {
6834 		prepare_to_wait(&netdev_unregistering_wq, &wait,
6835 				TASK_UNINTERRUPTIBLE);
6836 		unregistering = false;
6837 		rtnl_lock();
6838 		list_for_each_entry(net, net_list, exit_list) {
6839 			if (net->dev_unreg_count > 0) {
6840 				unregistering = true;
6841 				break;
6842 			}
6843 		}
6844 		if (!unregistering)
6845 			break;
6846 		__rtnl_unlock();
6847 		schedule();
6848 	}
6849 	finish_wait(&netdev_unregistering_wq, &wait);
6850 }
6851 
6852 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6853 {
6854 	/* At exit all network devices most be removed from a network
6855 	 * namespace.  Do this in the reverse order of registration.
6856 	 * Do this across as many network namespaces as possible to
6857 	 * improve batching efficiency.
6858 	 */
6859 	struct net_device *dev;
6860 	struct net *net;
6861 	LIST_HEAD(dev_kill_list);
6862 
6863 	/* To prevent network device cleanup code from dereferencing
6864 	 * loopback devices or network devices that have been freed
6865 	 * wait here for all pending unregistrations to complete,
6866 	 * before unregistring the loopback device and allowing the
6867 	 * network namespace be freed.
6868 	 *
6869 	 * The netdev todo list containing all network devices
6870 	 * unregistrations that happen in default_device_exit_batch
6871 	 * will run in the rtnl_unlock() at the end of
6872 	 * default_device_exit_batch.
6873 	 */
6874 	rtnl_lock_unregistering(net_list);
6875 	list_for_each_entry(net, net_list, exit_list) {
6876 		for_each_netdev_reverse(net, dev) {
6877 			if (dev->rtnl_link_ops)
6878 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6879 			else
6880 				unregister_netdevice_queue(dev, &dev_kill_list);
6881 		}
6882 	}
6883 	unregister_netdevice_many(&dev_kill_list);
6884 	list_del(&dev_kill_list);
6885 	rtnl_unlock();
6886 }
6887 
6888 static struct pernet_operations __net_initdata default_device_ops = {
6889 	.exit = default_device_exit,
6890 	.exit_batch = default_device_exit_batch,
6891 };
6892 
6893 /*
6894  *	Initialize the DEV module. At boot time this walks the device list and
6895  *	unhooks any devices that fail to initialise (normally hardware not
6896  *	present) and leaves us with a valid list of present and active devices.
6897  *
6898  */
6899 
6900 /*
6901  *       This is called single threaded during boot, so no need
6902  *       to take the rtnl semaphore.
6903  */
6904 static int __init net_dev_init(void)
6905 {
6906 	int i, rc = -ENOMEM;
6907 
6908 	BUG_ON(!dev_boot_phase);
6909 
6910 	if (dev_proc_init())
6911 		goto out;
6912 
6913 	if (netdev_kobject_init())
6914 		goto out;
6915 
6916 	INIT_LIST_HEAD(&ptype_all);
6917 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
6918 		INIT_LIST_HEAD(&ptype_base[i]);
6919 
6920 	INIT_LIST_HEAD(&offload_base);
6921 
6922 	if (register_pernet_subsys(&netdev_net_ops))
6923 		goto out;
6924 
6925 	/*
6926 	 *	Initialise the packet receive queues.
6927 	 */
6928 
6929 	for_each_possible_cpu(i) {
6930 		struct softnet_data *sd = &per_cpu(softnet_data, i);
6931 
6932 		memset(sd, 0, sizeof(*sd));
6933 		skb_queue_head_init(&sd->input_pkt_queue);
6934 		skb_queue_head_init(&sd->process_queue);
6935 		sd->completion_queue = NULL;
6936 		INIT_LIST_HEAD(&sd->poll_list);
6937 		sd->output_queue = NULL;
6938 		sd->output_queue_tailp = &sd->output_queue;
6939 #ifdef CONFIG_RPS
6940 		sd->csd.func = rps_trigger_softirq;
6941 		sd->csd.info = sd;
6942 		sd->csd.flags = 0;
6943 		sd->cpu = i;
6944 #endif
6945 
6946 		sd->backlog.poll = process_backlog;
6947 		sd->backlog.weight = weight_p;
6948 		sd->backlog.gro_list = NULL;
6949 		sd->backlog.gro_count = 0;
6950 
6951 #ifdef CONFIG_NET_FLOW_LIMIT
6952 		sd->flow_limit = NULL;
6953 #endif
6954 	}
6955 
6956 	dev_boot_phase = 0;
6957 
6958 	/* The loopback device is special if any other network devices
6959 	 * is present in a network namespace the loopback device must
6960 	 * be present. Since we now dynamically allocate and free the
6961 	 * loopback device ensure this invariant is maintained by
6962 	 * keeping the loopback device as the first device on the
6963 	 * list of network devices.  Ensuring the loopback devices
6964 	 * is the first device that appears and the last network device
6965 	 * that disappears.
6966 	 */
6967 	if (register_pernet_device(&loopback_net_ops))
6968 		goto out;
6969 
6970 	if (register_pernet_device(&default_device_ops))
6971 		goto out;
6972 
6973 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6974 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6975 
6976 	hotcpu_notifier(dev_cpu_callback, 0);
6977 	dst_init();
6978 	rc = 0;
6979 out:
6980 	return rc;
6981 }
6982 
6983 subsys_initcall(net_dev_init);
6984