1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <asm/uaccess.h> 76 #include <linux/bitops.h> 77 #include <linux/capability.h> 78 #include <linux/cpu.h> 79 #include <linux/types.h> 80 #include <linux/kernel.h> 81 #include <linux/hash.h> 82 #include <linux/slab.h> 83 #include <linux/sched.h> 84 #include <linux/mutex.h> 85 #include <linux/string.h> 86 #include <linux/mm.h> 87 #include <linux/socket.h> 88 #include <linux/sockios.h> 89 #include <linux/errno.h> 90 #include <linux/interrupt.h> 91 #include <linux/if_ether.h> 92 #include <linux/netdevice.h> 93 #include <linux/etherdevice.h> 94 #include <linux/ethtool.h> 95 #include <linux/notifier.h> 96 #include <linux/skbuff.h> 97 #include <net/net_namespace.h> 98 #include <net/sock.h> 99 #include <linux/rtnetlink.h> 100 #include <linux/stat.h> 101 #include <net/dst.h> 102 #include <net/pkt_sched.h> 103 #include <net/checksum.h> 104 #include <net/xfrm.h> 105 #include <linux/highmem.h> 106 #include <linux/init.h> 107 #include <linux/module.h> 108 #include <linux/netpoll.h> 109 #include <linux/rcupdate.h> 110 #include <linux/delay.h> 111 #include <net/iw_handler.h> 112 #include <asm/current.h> 113 #include <linux/audit.h> 114 #include <linux/dmaengine.h> 115 #include <linux/err.h> 116 #include <linux/ctype.h> 117 #include <linux/if_arp.h> 118 #include <linux/if_vlan.h> 119 #include <linux/ip.h> 120 #include <net/ip.h> 121 #include <linux/ipv6.h> 122 #include <linux/in.h> 123 #include <linux/jhash.h> 124 #include <linux/random.h> 125 #include <trace/events/napi.h> 126 #include <trace/events/net.h> 127 #include <trace/events/skb.h> 128 #include <linux/pci.h> 129 #include <linux/inetdevice.h> 130 #include <linux/cpu_rmap.h> 131 #include <linux/static_key.h> 132 #include <linux/hashtable.h> 133 #include <linux/vmalloc.h> 134 135 #include "net-sysfs.h" 136 137 /* Instead of increasing this, you should create a hash table. */ 138 #define MAX_GRO_SKBS 8 139 140 /* This should be increased if a protocol with a bigger head is added. */ 141 #define GRO_MAX_HEAD (MAX_HEADER + 128) 142 143 static DEFINE_SPINLOCK(ptype_lock); 144 static DEFINE_SPINLOCK(offload_lock); 145 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 146 struct list_head ptype_all __read_mostly; /* Taps */ 147 static struct list_head offload_base __read_mostly; 148 149 /* 150 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 151 * semaphore. 152 * 153 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 154 * 155 * Writers must hold the rtnl semaphore while they loop through the 156 * dev_base_head list, and hold dev_base_lock for writing when they do the 157 * actual updates. This allows pure readers to access the list even 158 * while a writer is preparing to update it. 159 * 160 * To put it another way, dev_base_lock is held for writing only to 161 * protect against pure readers; the rtnl semaphore provides the 162 * protection against other writers. 163 * 164 * See, for example usages, register_netdevice() and 165 * unregister_netdevice(), which must be called with the rtnl 166 * semaphore held. 167 */ 168 DEFINE_RWLOCK(dev_base_lock); 169 EXPORT_SYMBOL(dev_base_lock); 170 171 /* protects napi_hash addition/deletion and napi_gen_id */ 172 static DEFINE_SPINLOCK(napi_hash_lock); 173 174 static unsigned int napi_gen_id; 175 static DEFINE_HASHTABLE(napi_hash, 8); 176 177 static seqcount_t devnet_rename_seq; 178 179 static inline void dev_base_seq_inc(struct net *net) 180 { 181 while (++net->dev_base_seq == 0); 182 } 183 184 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 185 { 186 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 187 188 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 189 } 190 191 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 192 { 193 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 194 } 195 196 static inline void rps_lock(struct softnet_data *sd) 197 { 198 #ifdef CONFIG_RPS 199 spin_lock(&sd->input_pkt_queue.lock); 200 #endif 201 } 202 203 static inline void rps_unlock(struct softnet_data *sd) 204 { 205 #ifdef CONFIG_RPS 206 spin_unlock(&sd->input_pkt_queue.lock); 207 #endif 208 } 209 210 /* Device list insertion */ 211 static void list_netdevice(struct net_device *dev) 212 { 213 struct net *net = dev_net(dev); 214 215 ASSERT_RTNL(); 216 217 write_lock_bh(&dev_base_lock); 218 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 219 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 220 hlist_add_head_rcu(&dev->index_hlist, 221 dev_index_hash(net, dev->ifindex)); 222 write_unlock_bh(&dev_base_lock); 223 224 dev_base_seq_inc(net); 225 } 226 227 /* Device list removal 228 * caller must respect a RCU grace period before freeing/reusing dev 229 */ 230 static void unlist_netdevice(struct net_device *dev) 231 { 232 ASSERT_RTNL(); 233 234 /* Unlink dev from the device chain */ 235 write_lock_bh(&dev_base_lock); 236 list_del_rcu(&dev->dev_list); 237 hlist_del_rcu(&dev->name_hlist); 238 hlist_del_rcu(&dev->index_hlist); 239 write_unlock_bh(&dev_base_lock); 240 241 dev_base_seq_inc(dev_net(dev)); 242 } 243 244 /* 245 * Our notifier list 246 */ 247 248 static RAW_NOTIFIER_HEAD(netdev_chain); 249 250 /* 251 * Device drivers call our routines to queue packets here. We empty the 252 * queue in the local softnet handler. 253 */ 254 255 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 256 EXPORT_PER_CPU_SYMBOL(softnet_data); 257 258 #ifdef CONFIG_LOCKDEP 259 /* 260 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 261 * according to dev->type 262 */ 263 static const unsigned short netdev_lock_type[] = 264 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 265 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 266 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 267 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 268 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 269 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 270 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 271 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 272 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 273 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 274 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 275 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 276 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 277 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 278 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 279 280 static const char *const netdev_lock_name[] = 281 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 282 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 283 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 284 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 285 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 286 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 287 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 288 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 289 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 290 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 291 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 292 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 293 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 294 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 295 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 296 297 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 298 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 299 300 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 301 { 302 int i; 303 304 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 305 if (netdev_lock_type[i] == dev_type) 306 return i; 307 /* the last key is used by default */ 308 return ARRAY_SIZE(netdev_lock_type) - 1; 309 } 310 311 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 312 unsigned short dev_type) 313 { 314 int i; 315 316 i = netdev_lock_pos(dev_type); 317 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 318 netdev_lock_name[i]); 319 } 320 321 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 322 { 323 int i; 324 325 i = netdev_lock_pos(dev->type); 326 lockdep_set_class_and_name(&dev->addr_list_lock, 327 &netdev_addr_lock_key[i], 328 netdev_lock_name[i]); 329 } 330 #else 331 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 332 unsigned short dev_type) 333 { 334 } 335 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 336 { 337 } 338 #endif 339 340 /******************************************************************************* 341 342 Protocol management and registration routines 343 344 *******************************************************************************/ 345 346 /* 347 * Add a protocol ID to the list. Now that the input handler is 348 * smarter we can dispense with all the messy stuff that used to be 349 * here. 350 * 351 * BEWARE!!! Protocol handlers, mangling input packets, 352 * MUST BE last in hash buckets and checking protocol handlers 353 * MUST start from promiscuous ptype_all chain in net_bh. 354 * It is true now, do not change it. 355 * Explanation follows: if protocol handler, mangling packet, will 356 * be the first on list, it is not able to sense, that packet 357 * is cloned and should be copied-on-write, so that it will 358 * change it and subsequent readers will get broken packet. 359 * --ANK (980803) 360 */ 361 362 static inline struct list_head *ptype_head(const struct packet_type *pt) 363 { 364 if (pt->type == htons(ETH_P_ALL)) 365 return &ptype_all; 366 else 367 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 368 } 369 370 /** 371 * dev_add_pack - add packet handler 372 * @pt: packet type declaration 373 * 374 * Add a protocol handler to the networking stack. The passed &packet_type 375 * is linked into kernel lists and may not be freed until it has been 376 * removed from the kernel lists. 377 * 378 * This call does not sleep therefore it can not 379 * guarantee all CPU's that are in middle of receiving packets 380 * will see the new packet type (until the next received packet). 381 */ 382 383 void dev_add_pack(struct packet_type *pt) 384 { 385 struct list_head *head = ptype_head(pt); 386 387 spin_lock(&ptype_lock); 388 list_add_rcu(&pt->list, head); 389 spin_unlock(&ptype_lock); 390 } 391 EXPORT_SYMBOL(dev_add_pack); 392 393 /** 394 * __dev_remove_pack - remove packet handler 395 * @pt: packet type declaration 396 * 397 * Remove a protocol handler that was previously added to the kernel 398 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 399 * from the kernel lists and can be freed or reused once this function 400 * returns. 401 * 402 * The packet type might still be in use by receivers 403 * and must not be freed until after all the CPU's have gone 404 * through a quiescent state. 405 */ 406 void __dev_remove_pack(struct packet_type *pt) 407 { 408 struct list_head *head = ptype_head(pt); 409 struct packet_type *pt1; 410 411 spin_lock(&ptype_lock); 412 413 list_for_each_entry(pt1, head, list) { 414 if (pt == pt1) { 415 list_del_rcu(&pt->list); 416 goto out; 417 } 418 } 419 420 pr_warn("dev_remove_pack: %p not found\n", pt); 421 out: 422 spin_unlock(&ptype_lock); 423 } 424 EXPORT_SYMBOL(__dev_remove_pack); 425 426 /** 427 * dev_remove_pack - remove packet handler 428 * @pt: packet type declaration 429 * 430 * Remove a protocol handler that was previously added to the kernel 431 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 432 * from the kernel lists and can be freed or reused once this function 433 * returns. 434 * 435 * This call sleeps to guarantee that no CPU is looking at the packet 436 * type after return. 437 */ 438 void dev_remove_pack(struct packet_type *pt) 439 { 440 __dev_remove_pack(pt); 441 442 synchronize_net(); 443 } 444 EXPORT_SYMBOL(dev_remove_pack); 445 446 447 /** 448 * dev_add_offload - register offload handlers 449 * @po: protocol offload declaration 450 * 451 * Add protocol offload handlers to the networking stack. The passed 452 * &proto_offload is linked into kernel lists and may not be freed until 453 * it has been removed from the kernel lists. 454 * 455 * This call does not sleep therefore it can not 456 * guarantee all CPU's that are in middle of receiving packets 457 * will see the new offload handlers (until the next received packet). 458 */ 459 void dev_add_offload(struct packet_offload *po) 460 { 461 struct list_head *head = &offload_base; 462 463 spin_lock(&offload_lock); 464 list_add_rcu(&po->list, head); 465 spin_unlock(&offload_lock); 466 } 467 EXPORT_SYMBOL(dev_add_offload); 468 469 /** 470 * __dev_remove_offload - remove offload handler 471 * @po: packet offload declaration 472 * 473 * Remove a protocol offload handler that was previously added to the 474 * kernel offload handlers by dev_add_offload(). The passed &offload_type 475 * is removed from the kernel lists and can be freed or reused once this 476 * function returns. 477 * 478 * The packet type might still be in use by receivers 479 * and must not be freed until after all the CPU's have gone 480 * through a quiescent state. 481 */ 482 void __dev_remove_offload(struct packet_offload *po) 483 { 484 struct list_head *head = &offload_base; 485 struct packet_offload *po1; 486 487 spin_lock(&offload_lock); 488 489 list_for_each_entry(po1, head, list) { 490 if (po == po1) { 491 list_del_rcu(&po->list); 492 goto out; 493 } 494 } 495 496 pr_warn("dev_remove_offload: %p not found\n", po); 497 out: 498 spin_unlock(&offload_lock); 499 } 500 EXPORT_SYMBOL(__dev_remove_offload); 501 502 /** 503 * dev_remove_offload - remove packet offload handler 504 * @po: packet offload declaration 505 * 506 * Remove a packet offload handler that was previously added to the kernel 507 * offload handlers by dev_add_offload(). The passed &offload_type is 508 * removed from the kernel lists and can be freed or reused once this 509 * function returns. 510 * 511 * This call sleeps to guarantee that no CPU is looking at the packet 512 * type after return. 513 */ 514 void dev_remove_offload(struct packet_offload *po) 515 { 516 __dev_remove_offload(po); 517 518 synchronize_net(); 519 } 520 EXPORT_SYMBOL(dev_remove_offload); 521 522 /****************************************************************************** 523 524 Device Boot-time Settings Routines 525 526 *******************************************************************************/ 527 528 /* Boot time configuration table */ 529 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 530 531 /** 532 * netdev_boot_setup_add - add new setup entry 533 * @name: name of the device 534 * @map: configured settings for the device 535 * 536 * Adds new setup entry to the dev_boot_setup list. The function 537 * returns 0 on error and 1 on success. This is a generic routine to 538 * all netdevices. 539 */ 540 static int netdev_boot_setup_add(char *name, struct ifmap *map) 541 { 542 struct netdev_boot_setup *s; 543 int i; 544 545 s = dev_boot_setup; 546 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 547 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 548 memset(s[i].name, 0, sizeof(s[i].name)); 549 strlcpy(s[i].name, name, IFNAMSIZ); 550 memcpy(&s[i].map, map, sizeof(s[i].map)); 551 break; 552 } 553 } 554 555 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 556 } 557 558 /** 559 * netdev_boot_setup_check - check boot time settings 560 * @dev: the netdevice 561 * 562 * Check boot time settings for the device. 563 * The found settings are set for the device to be used 564 * later in the device probing. 565 * Returns 0 if no settings found, 1 if they are. 566 */ 567 int netdev_boot_setup_check(struct net_device *dev) 568 { 569 struct netdev_boot_setup *s = dev_boot_setup; 570 int i; 571 572 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 573 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 574 !strcmp(dev->name, s[i].name)) { 575 dev->irq = s[i].map.irq; 576 dev->base_addr = s[i].map.base_addr; 577 dev->mem_start = s[i].map.mem_start; 578 dev->mem_end = s[i].map.mem_end; 579 return 1; 580 } 581 } 582 return 0; 583 } 584 EXPORT_SYMBOL(netdev_boot_setup_check); 585 586 587 /** 588 * netdev_boot_base - get address from boot time settings 589 * @prefix: prefix for network device 590 * @unit: id for network device 591 * 592 * Check boot time settings for the base address of device. 593 * The found settings are set for the device to be used 594 * later in the device probing. 595 * Returns 0 if no settings found. 596 */ 597 unsigned long netdev_boot_base(const char *prefix, int unit) 598 { 599 const struct netdev_boot_setup *s = dev_boot_setup; 600 char name[IFNAMSIZ]; 601 int i; 602 603 sprintf(name, "%s%d", prefix, unit); 604 605 /* 606 * If device already registered then return base of 1 607 * to indicate not to probe for this interface 608 */ 609 if (__dev_get_by_name(&init_net, name)) 610 return 1; 611 612 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 613 if (!strcmp(name, s[i].name)) 614 return s[i].map.base_addr; 615 return 0; 616 } 617 618 /* 619 * Saves at boot time configured settings for any netdevice. 620 */ 621 int __init netdev_boot_setup(char *str) 622 { 623 int ints[5]; 624 struct ifmap map; 625 626 str = get_options(str, ARRAY_SIZE(ints), ints); 627 if (!str || !*str) 628 return 0; 629 630 /* Save settings */ 631 memset(&map, 0, sizeof(map)); 632 if (ints[0] > 0) 633 map.irq = ints[1]; 634 if (ints[0] > 1) 635 map.base_addr = ints[2]; 636 if (ints[0] > 2) 637 map.mem_start = ints[3]; 638 if (ints[0] > 3) 639 map.mem_end = ints[4]; 640 641 /* Add new entry to the list */ 642 return netdev_boot_setup_add(str, &map); 643 } 644 645 __setup("netdev=", netdev_boot_setup); 646 647 /******************************************************************************* 648 649 Device Interface Subroutines 650 651 *******************************************************************************/ 652 653 /** 654 * __dev_get_by_name - find a device by its name 655 * @net: the applicable net namespace 656 * @name: name to find 657 * 658 * Find an interface by name. Must be called under RTNL semaphore 659 * or @dev_base_lock. If the name is found a pointer to the device 660 * is returned. If the name is not found then %NULL is returned. The 661 * reference counters are not incremented so the caller must be 662 * careful with locks. 663 */ 664 665 struct net_device *__dev_get_by_name(struct net *net, const char *name) 666 { 667 struct net_device *dev; 668 struct hlist_head *head = dev_name_hash(net, name); 669 670 hlist_for_each_entry(dev, head, name_hlist) 671 if (!strncmp(dev->name, name, IFNAMSIZ)) 672 return dev; 673 674 return NULL; 675 } 676 EXPORT_SYMBOL(__dev_get_by_name); 677 678 /** 679 * dev_get_by_name_rcu - find a device by its name 680 * @net: the applicable net namespace 681 * @name: name to find 682 * 683 * Find an interface by name. 684 * If the name is found a pointer to the device is returned. 685 * If the name is not found then %NULL is returned. 686 * The reference counters are not incremented so the caller must be 687 * careful with locks. The caller must hold RCU lock. 688 */ 689 690 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 691 { 692 struct net_device *dev; 693 struct hlist_head *head = dev_name_hash(net, name); 694 695 hlist_for_each_entry_rcu(dev, head, name_hlist) 696 if (!strncmp(dev->name, name, IFNAMSIZ)) 697 return dev; 698 699 return NULL; 700 } 701 EXPORT_SYMBOL(dev_get_by_name_rcu); 702 703 /** 704 * dev_get_by_name - find a device by its name 705 * @net: the applicable net namespace 706 * @name: name to find 707 * 708 * Find an interface by name. This can be called from any 709 * context and does its own locking. The returned handle has 710 * the usage count incremented and the caller must use dev_put() to 711 * release it when it is no longer needed. %NULL is returned if no 712 * matching device is found. 713 */ 714 715 struct net_device *dev_get_by_name(struct net *net, const char *name) 716 { 717 struct net_device *dev; 718 719 rcu_read_lock(); 720 dev = dev_get_by_name_rcu(net, name); 721 if (dev) 722 dev_hold(dev); 723 rcu_read_unlock(); 724 return dev; 725 } 726 EXPORT_SYMBOL(dev_get_by_name); 727 728 /** 729 * __dev_get_by_index - find a device by its ifindex 730 * @net: the applicable net namespace 731 * @ifindex: index of device 732 * 733 * Search for an interface by index. Returns %NULL if the device 734 * is not found or a pointer to the device. The device has not 735 * had its reference counter increased so the caller must be careful 736 * about locking. The caller must hold either the RTNL semaphore 737 * or @dev_base_lock. 738 */ 739 740 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 741 { 742 struct net_device *dev; 743 struct hlist_head *head = dev_index_hash(net, ifindex); 744 745 hlist_for_each_entry(dev, head, index_hlist) 746 if (dev->ifindex == ifindex) 747 return dev; 748 749 return NULL; 750 } 751 EXPORT_SYMBOL(__dev_get_by_index); 752 753 /** 754 * dev_get_by_index_rcu - find a device by its ifindex 755 * @net: the applicable net namespace 756 * @ifindex: index of device 757 * 758 * Search for an interface by index. Returns %NULL if the device 759 * is not found or a pointer to the device. The device has not 760 * had its reference counter increased so the caller must be careful 761 * about locking. The caller must hold RCU lock. 762 */ 763 764 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 765 { 766 struct net_device *dev; 767 struct hlist_head *head = dev_index_hash(net, ifindex); 768 769 hlist_for_each_entry_rcu(dev, head, index_hlist) 770 if (dev->ifindex == ifindex) 771 return dev; 772 773 return NULL; 774 } 775 EXPORT_SYMBOL(dev_get_by_index_rcu); 776 777 778 /** 779 * dev_get_by_index - find a device by its ifindex 780 * @net: the applicable net namespace 781 * @ifindex: index of device 782 * 783 * Search for an interface by index. Returns NULL if the device 784 * is not found or a pointer to the device. The device returned has 785 * had a reference added and the pointer is safe until the user calls 786 * dev_put to indicate they have finished with it. 787 */ 788 789 struct net_device *dev_get_by_index(struct net *net, int ifindex) 790 { 791 struct net_device *dev; 792 793 rcu_read_lock(); 794 dev = dev_get_by_index_rcu(net, ifindex); 795 if (dev) 796 dev_hold(dev); 797 rcu_read_unlock(); 798 return dev; 799 } 800 EXPORT_SYMBOL(dev_get_by_index); 801 802 /** 803 * netdev_get_name - get a netdevice name, knowing its ifindex. 804 * @net: network namespace 805 * @name: a pointer to the buffer where the name will be stored. 806 * @ifindex: the ifindex of the interface to get the name from. 807 * 808 * The use of raw_seqcount_begin() and cond_resched() before 809 * retrying is required as we want to give the writers a chance 810 * to complete when CONFIG_PREEMPT is not set. 811 */ 812 int netdev_get_name(struct net *net, char *name, int ifindex) 813 { 814 struct net_device *dev; 815 unsigned int seq; 816 817 retry: 818 seq = raw_seqcount_begin(&devnet_rename_seq); 819 rcu_read_lock(); 820 dev = dev_get_by_index_rcu(net, ifindex); 821 if (!dev) { 822 rcu_read_unlock(); 823 return -ENODEV; 824 } 825 826 strcpy(name, dev->name); 827 rcu_read_unlock(); 828 if (read_seqcount_retry(&devnet_rename_seq, seq)) { 829 cond_resched(); 830 goto retry; 831 } 832 833 return 0; 834 } 835 836 /** 837 * dev_getbyhwaddr_rcu - find a device by its hardware address 838 * @net: the applicable net namespace 839 * @type: media type of device 840 * @ha: hardware address 841 * 842 * Search for an interface by MAC address. Returns NULL if the device 843 * is not found or a pointer to the device. 844 * The caller must hold RCU or RTNL. 845 * The returned device has not had its ref count increased 846 * and the caller must therefore be careful about locking 847 * 848 */ 849 850 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 851 const char *ha) 852 { 853 struct net_device *dev; 854 855 for_each_netdev_rcu(net, dev) 856 if (dev->type == type && 857 !memcmp(dev->dev_addr, ha, dev->addr_len)) 858 return dev; 859 860 return NULL; 861 } 862 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 863 864 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 865 { 866 struct net_device *dev; 867 868 ASSERT_RTNL(); 869 for_each_netdev(net, dev) 870 if (dev->type == type) 871 return dev; 872 873 return NULL; 874 } 875 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 876 877 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 878 { 879 struct net_device *dev, *ret = NULL; 880 881 rcu_read_lock(); 882 for_each_netdev_rcu(net, dev) 883 if (dev->type == type) { 884 dev_hold(dev); 885 ret = dev; 886 break; 887 } 888 rcu_read_unlock(); 889 return ret; 890 } 891 EXPORT_SYMBOL(dev_getfirstbyhwtype); 892 893 /** 894 * dev_get_by_flags_rcu - find any device with given flags 895 * @net: the applicable net namespace 896 * @if_flags: IFF_* values 897 * @mask: bitmask of bits in if_flags to check 898 * 899 * Search for any interface with the given flags. Returns NULL if a device 900 * is not found or a pointer to the device. Must be called inside 901 * rcu_read_lock(), and result refcount is unchanged. 902 */ 903 904 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags, 905 unsigned short mask) 906 { 907 struct net_device *dev, *ret; 908 909 ret = NULL; 910 for_each_netdev_rcu(net, dev) { 911 if (((dev->flags ^ if_flags) & mask) == 0) { 912 ret = dev; 913 break; 914 } 915 } 916 return ret; 917 } 918 EXPORT_SYMBOL(dev_get_by_flags_rcu); 919 920 /** 921 * dev_valid_name - check if name is okay for network device 922 * @name: name string 923 * 924 * Network device names need to be valid file names to 925 * to allow sysfs to work. We also disallow any kind of 926 * whitespace. 927 */ 928 bool dev_valid_name(const char *name) 929 { 930 if (*name == '\0') 931 return false; 932 if (strlen(name) >= IFNAMSIZ) 933 return false; 934 if (!strcmp(name, ".") || !strcmp(name, "..")) 935 return false; 936 937 while (*name) { 938 if (*name == '/' || isspace(*name)) 939 return false; 940 name++; 941 } 942 return true; 943 } 944 EXPORT_SYMBOL(dev_valid_name); 945 946 /** 947 * __dev_alloc_name - allocate a name for a device 948 * @net: network namespace to allocate the device name in 949 * @name: name format string 950 * @buf: scratch buffer and result name string 951 * 952 * Passed a format string - eg "lt%d" it will try and find a suitable 953 * id. It scans list of devices to build up a free map, then chooses 954 * the first empty slot. The caller must hold the dev_base or rtnl lock 955 * while allocating the name and adding the device in order to avoid 956 * duplicates. 957 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 958 * Returns the number of the unit assigned or a negative errno code. 959 */ 960 961 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 962 { 963 int i = 0; 964 const char *p; 965 const int max_netdevices = 8*PAGE_SIZE; 966 unsigned long *inuse; 967 struct net_device *d; 968 969 p = strnchr(name, IFNAMSIZ-1, '%'); 970 if (p) { 971 /* 972 * Verify the string as this thing may have come from 973 * the user. There must be either one "%d" and no other "%" 974 * characters. 975 */ 976 if (p[1] != 'd' || strchr(p + 2, '%')) 977 return -EINVAL; 978 979 /* Use one page as a bit array of possible slots */ 980 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 981 if (!inuse) 982 return -ENOMEM; 983 984 for_each_netdev(net, d) { 985 if (!sscanf(d->name, name, &i)) 986 continue; 987 if (i < 0 || i >= max_netdevices) 988 continue; 989 990 /* avoid cases where sscanf is not exact inverse of printf */ 991 snprintf(buf, IFNAMSIZ, name, i); 992 if (!strncmp(buf, d->name, IFNAMSIZ)) 993 set_bit(i, inuse); 994 } 995 996 i = find_first_zero_bit(inuse, max_netdevices); 997 free_page((unsigned long) inuse); 998 } 999 1000 if (buf != name) 1001 snprintf(buf, IFNAMSIZ, name, i); 1002 if (!__dev_get_by_name(net, buf)) 1003 return i; 1004 1005 /* It is possible to run out of possible slots 1006 * when the name is long and there isn't enough space left 1007 * for the digits, or if all bits are used. 1008 */ 1009 return -ENFILE; 1010 } 1011 1012 /** 1013 * dev_alloc_name - allocate a name for a device 1014 * @dev: device 1015 * @name: name format string 1016 * 1017 * Passed a format string - eg "lt%d" it will try and find a suitable 1018 * id. It scans list of devices to build up a free map, then chooses 1019 * the first empty slot. The caller must hold the dev_base or rtnl lock 1020 * while allocating the name and adding the device in order to avoid 1021 * duplicates. 1022 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1023 * Returns the number of the unit assigned or a negative errno code. 1024 */ 1025 1026 int dev_alloc_name(struct net_device *dev, const char *name) 1027 { 1028 char buf[IFNAMSIZ]; 1029 struct net *net; 1030 int ret; 1031 1032 BUG_ON(!dev_net(dev)); 1033 net = dev_net(dev); 1034 ret = __dev_alloc_name(net, name, buf); 1035 if (ret >= 0) 1036 strlcpy(dev->name, buf, IFNAMSIZ); 1037 return ret; 1038 } 1039 EXPORT_SYMBOL(dev_alloc_name); 1040 1041 static int dev_alloc_name_ns(struct net *net, 1042 struct net_device *dev, 1043 const char *name) 1044 { 1045 char buf[IFNAMSIZ]; 1046 int ret; 1047 1048 ret = __dev_alloc_name(net, name, buf); 1049 if (ret >= 0) 1050 strlcpy(dev->name, buf, IFNAMSIZ); 1051 return ret; 1052 } 1053 1054 static int dev_get_valid_name(struct net *net, 1055 struct net_device *dev, 1056 const char *name) 1057 { 1058 BUG_ON(!net); 1059 1060 if (!dev_valid_name(name)) 1061 return -EINVAL; 1062 1063 if (strchr(name, '%')) 1064 return dev_alloc_name_ns(net, dev, name); 1065 else if (__dev_get_by_name(net, name)) 1066 return -EEXIST; 1067 else if (dev->name != name) 1068 strlcpy(dev->name, name, IFNAMSIZ); 1069 1070 return 0; 1071 } 1072 1073 /** 1074 * dev_change_name - change name of a device 1075 * @dev: device 1076 * @newname: name (or format string) must be at least IFNAMSIZ 1077 * 1078 * Change name of a device, can pass format strings "eth%d". 1079 * for wildcarding. 1080 */ 1081 int dev_change_name(struct net_device *dev, const char *newname) 1082 { 1083 char oldname[IFNAMSIZ]; 1084 int err = 0; 1085 int ret; 1086 struct net *net; 1087 1088 ASSERT_RTNL(); 1089 BUG_ON(!dev_net(dev)); 1090 1091 net = dev_net(dev); 1092 if (dev->flags & IFF_UP) 1093 return -EBUSY; 1094 1095 write_seqcount_begin(&devnet_rename_seq); 1096 1097 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1098 write_seqcount_end(&devnet_rename_seq); 1099 return 0; 1100 } 1101 1102 memcpy(oldname, dev->name, IFNAMSIZ); 1103 1104 err = dev_get_valid_name(net, dev, newname); 1105 if (err < 0) { 1106 write_seqcount_end(&devnet_rename_seq); 1107 return err; 1108 } 1109 1110 rollback: 1111 ret = device_rename(&dev->dev, dev->name); 1112 if (ret) { 1113 memcpy(dev->name, oldname, IFNAMSIZ); 1114 write_seqcount_end(&devnet_rename_seq); 1115 return ret; 1116 } 1117 1118 write_seqcount_end(&devnet_rename_seq); 1119 1120 write_lock_bh(&dev_base_lock); 1121 hlist_del_rcu(&dev->name_hlist); 1122 write_unlock_bh(&dev_base_lock); 1123 1124 synchronize_rcu(); 1125 1126 write_lock_bh(&dev_base_lock); 1127 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1128 write_unlock_bh(&dev_base_lock); 1129 1130 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1131 ret = notifier_to_errno(ret); 1132 1133 if (ret) { 1134 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1135 if (err >= 0) { 1136 err = ret; 1137 write_seqcount_begin(&devnet_rename_seq); 1138 memcpy(dev->name, oldname, IFNAMSIZ); 1139 goto rollback; 1140 } else { 1141 pr_err("%s: name change rollback failed: %d\n", 1142 dev->name, ret); 1143 } 1144 } 1145 1146 return err; 1147 } 1148 1149 /** 1150 * dev_set_alias - change ifalias of a device 1151 * @dev: device 1152 * @alias: name up to IFALIASZ 1153 * @len: limit of bytes to copy from info 1154 * 1155 * Set ifalias for a device, 1156 */ 1157 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1158 { 1159 char *new_ifalias; 1160 1161 ASSERT_RTNL(); 1162 1163 if (len >= IFALIASZ) 1164 return -EINVAL; 1165 1166 if (!len) { 1167 kfree(dev->ifalias); 1168 dev->ifalias = NULL; 1169 return 0; 1170 } 1171 1172 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL); 1173 if (!new_ifalias) 1174 return -ENOMEM; 1175 dev->ifalias = new_ifalias; 1176 1177 strlcpy(dev->ifalias, alias, len+1); 1178 return len; 1179 } 1180 1181 1182 /** 1183 * netdev_features_change - device changes features 1184 * @dev: device to cause notification 1185 * 1186 * Called to indicate a device has changed features. 1187 */ 1188 void netdev_features_change(struct net_device *dev) 1189 { 1190 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1191 } 1192 EXPORT_SYMBOL(netdev_features_change); 1193 1194 /** 1195 * netdev_state_change - device changes state 1196 * @dev: device to cause notification 1197 * 1198 * Called to indicate a device has changed state. This function calls 1199 * the notifier chains for netdev_chain and sends a NEWLINK message 1200 * to the routing socket. 1201 */ 1202 void netdev_state_change(struct net_device *dev) 1203 { 1204 if (dev->flags & IFF_UP) { 1205 call_netdevice_notifiers(NETDEV_CHANGE, dev); 1206 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL); 1207 } 1208 } 1209 EXPORT_SYMBOL(netdev_state_change); 1210 1211 /** 1212 * netdev_notify_peers - notify network peers about existence of @dev 1213 * @dev: network device 1214 * 1215 * Generate traffic such that interested network peers are aware of 1216 * @dev, such as by generating a gratuitous ARP. This may be used when 1217 * a device wants to inform the rest of the network about some sort of 1218 * reconfiguration such as a failover event or virtual machine 1219 * migration. 1220 */ 1221 void netdev_notify_peers(struct net_device *dev) 1222 { 1223 rtnl_lock(); 1224 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1225 rtnl_unlock(); 1226 } 1227 EXPORT_SYMBOL(netdev_notify_peers); 1228 1229 static int __dev_open(struct net_device *dev) 1230 { 1231 const struct net_device_ops *ops = dev->netdev_ops; 1232 int ret; 1233 1234 ASSERT_RTNL(); 1235 1236 if (!netif_device_present(dev)) 1237 return -ENODEV; 1238 1239 /* Block netpoll from trying to do any rx path servicing. 1240 * If we don't do this there is a chance ndo_poll_controller 1241 * or ndo_poll may be running while we open the device 1242 */ 1243 netpoll_rx_disable(dev); 1244 1245 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1246 ret = notifier_to_errno(ret); 1247 if (ret) 1248 return ret; 1249 1250 set_bit(__LINK_STATE_START, &dev->state); 1251 1252 if (ops->ndo_validate_addr) 1253 ret = ops->ndo_validate_addr(dev); 1254 1255 if (!ret && ops->ndo_open) 1256 ret = ops->ndo_open(dev); 1257 1258 netpoll_rx_enable(dev); 1259 1260 if (ret) 1261 clear_bit(__LINK_STATE_START, &dev->state); 1262 else { 1263 dev->flags |= IFF_UP; 1264 net_dmaengine_get(); 1265 dev_set_rx_mode(dev); 1266 dev_activate(dev); 1267 add_device_randomness(dev->dev_addr, dev->addr_len); 1268 } 1269 1270 return ret; 1271 } 1272 1273 /** 1274 * dev_open - prepare an interface for use. 1275 * @dev: device to open 1276 * 1277 * Takes a device from down to up state. The device's private open 1278 * function is invoked and then the multicast lists are loaded. Finally 1279 * the device is moved into the up state and a %NETDEV_UP message is 1280 * sent to the netdev notifier chain. 1281 * 1282 * Calling this function on an active interface is a nop. On a failure 1283 * a negative errno code is returned. 1284 */ 1285 int dev_open(struct net_device *dev) 1286 { 1287 int ret; 1288 1289 if (dev->flags & IFF_UP) 1290 return 0; 1291 1292 ret = __dev_open(dev); 1293 if (ret < 0) 1294 return ret; 1295 1296 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1297 call_netdevice_notifiers(NETDEV_UP, dev); 1298 1299 return ret; 1300 } 1301 EXPORT_SYMBOL(dev_open); 1302 1303 static int __dev_close_many(struct list_head *head) 1304 { 1305 struct net_device *dev; 1306 1307 ASSERT_RTNL(); 1308 might_sleep(); 1309 1310 list_for_each_entry(dev, head, close_list) { 1311 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1312 1313 clear_bit(__LINK_STATE_START, &dev->state); 1314 1315 /* Synchronize to scheduled poll. We cannot touch poll list, it 1316 * can be even on different cpu. So just clear netif_running(). 1317 * 1318 * dev->stop() will invoke napi_disable() on all of it's 1319 * napi_struct instances on this device. 1320 */ 1321 smp_mb__after_clear_bit(); /* Commit netif_running(). */ 1322 } 1323 1324 dev_deactivate_many(head); 1325 1326 list_for_each_entry(dev, head, close_list) { 1327 const struct net_device_ops *ops = dev->netdev_ops; 1328 1329 /* 1330 * Call the device specific close. This cannot fail. 1331 * Only if device is UP 1332 * 1333 * We allow it to be called even after a DETACH hot-plug 1334 * event. 1335 */ 1336 if (ops->ndo_stop) 1337 ops->ndo_stop(dev); 1338 1339 dev->flags &= ~IFF_UP; 1340 net_dmaengine_put(); 1341 } 1342 1343 return 0; 1344 } 1345 1346 static int __dev_close(struct net_device *dev) 1347 { 1348 int retval; 1349 LIST_HEAD(single); 1350 1351 /* Temporarily disable netpoll until the interface is down */ 1352 netpoll_rx_disable(dev); 1353 1354 list_add(&dev->close_list, &single); 1355 retval = __dev_close_many(&single); 1356 list_del(&single); 1357 1358 netpoll_rx_enable(dev); 1359 return retval; 1360 } 1361 1362 static int dev_close_many(struct list_head *head) 1363 { 1364 struct net_device *dev, *tmp; 1365 1366 /* Remove the devices that don't need to be closed */ 1367 list_for_each_entry_safe(dev, tmp, head, close_list) 1368 if (!(dev->flags & IFF_UP)) 1369 list_del_init(&dev->close_list); 1370 1371 __dev_close_many(head); 1372 1373 list_for_each_entry_safe(dev, tmp, head, close_list) { 1374 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1375 call_netdevice_notifiers(NETDEV_DOWN, dev); 1376 list_del_init(&dev->close_list); 1377 } 1378 1379 return 0; 1380 } 1381 1382 /** 1383 * dev_close - shutdown an interface. 1384 * @dev: device to shutdown 1385 * 1386 * This function moves an active device into down state. A 1387 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1388 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1389 * chain. 1390 */ 1391 int dev_close(struct net_device *dev) 1392 { 1393 if (dev->flags & IFF_UP) { 1394 LIST_HEAD(single); 1395 1396 /* Block netpoll rx while the interface is going down */ 1397 netpoll_rx_disable(dev); 1398 1399 list_add(&dev->close_list, &single); 1400 dev_close_many(&single); 1401 list_del(&single); 1402 1403 netpoll_rx_enable(dev); 1404 } 1405 return 0; 1406 } 1407 EXPORT_SYMBOL(dev_close); 1408 1409 1410 /** 1411 * dev_disable_lro - disable Large Receive Offload on a device 1412 * @dev: device 1413 * 1414 * Disable Large Receive Offload (LRO) on a net device. Must be 1415 * called under RTNL. This is needed if received packets may be 1416 * forwarded to another interface. 1417 */ 1418 void dev_disable_lro(struct net_device *dev) 1419 { 1420 /* 1421 * If we're trying to disable lro on a vlan device 1422 * use the underlying physical device instead 1423 */ 1424 if (is_vlan_dev(dev)) 1425 dev = vlan_dev_real_dev(dev); 1426 1427 dev->wanted_features &= ~NETIF_F_LRO; 1428 netdev_update_features(dev); 1429 1430 if (unlikely(dev->features & NETIF_F_LRO)) 1431 netdev_WARN(dev, "failed to disable LRO!\n"); 1432 } 1433 EXPORT_SYMBOL(dev_disable_lro); 1434 1435 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1436 struct net_device *dev) 1437 { 1438 struct netdev_notifier_info info; 1439 1440 netdev_notifier_info_init(&info, dev); 1441 return nb->notifier_call(nb, val, &info); 1442 } 1443 1444 static int dev_boot_phase = 1; 1445 1446 /** 1447 * register_netdevice_notifier - register a network notifier block 1448 * @nb: notifier 1449 * 1450 * Register a notifier to be called when network device events occur. 1451 * The notifier passed is linked into the kernel structures and must 1452 * not be reused until it has been unregistered. A negative errno code 1453 * is returned on a failure. 1454 * 1455 * When registered all registration and up events are replayed 1456 * to the new notifier to allow device to have a race free 1457 * view of the network device list. 1458 */ 1459 1460 int register_netdevice_notifier(struct notifier_block *nb) 1461 { 1462 struct net_device *dev; 1463 struct net_device *last; 1464 struct net *net; 1465 int err; 1466 1467 rtnl_lock(); 1468 err = raw_notifier_chain_register(&netdev_chain, nb); 1469 if (err) 1470 goto unlock; 1471 if (dev_boot_phase) 1472 goto unlock; 1473 for_each_net(net) { 1474 for_each_netdev(net, dev) { 1475 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1476 err = notifier_to_errno(err); 1477 if (err) 1478 goto rollback; 1479 1480 if (!(dev->flags & IFF_UP)) 1481 continue; 1482 1483 call_netdevice_notifier(nb, NETDEV_UP, dev); 1484 } 1485 } 1486 1487 unlock: 1488 rtnl_unlock(); 1489 return err; 1490 1491 rollback: 1492 last = dev; 1493 for_each_net(net) { 1494 for_each_netdev(net, dev) { 1495 if (dev == last) 1496 goto outroll; 1497 1498 if (dev->flags & IFF_UP) { 1499 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1500 dev); 1501 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1502 } 1503 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1504 } 1505 } 1506 1507 outroll: 1508 raw_notifier_chain_unregister(&netdev_chain, nb); 1509 goto unlock; 1510 } 1511 EXPORT_SYMBOL(register_netdevice_notifier); 1512 1513 /** 1514 * unregister_netdevice_notifier - unregister a network notifier block 1515 * @nb: notifier 1516 * 1517 * Unregister a notifier previously registered by 1518 * register_netdevice_notifier(). The notifier is unlinked into the 1519 * kernel structures and may then be reused. A negative errno code 1520 * is returned on a failure. 1521 * 1522 * After unregistering unregister and down device events are synthesized 1523 * for all devices on the device list to the removed notifier to remove 1524 * the need for special case cleanup code. 1525 */ 1526 1527 int unregister_netdevice_notifier(struct notifier_block *nb) 1528 { 1529 struct net_device *dev; 1530 struct net *net; 1531 int err; 1532 1533 rtnl_lock(); 1534 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1535 if (err) 1536 goto unlock; 1537 1538 for_each_net(net) { 1539 for_each_netdev(net, dev) { 1540 if (dev->flags & IFF_UP) { 1541 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1542 dev); 1543 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1544 } 1545 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1546 } 1547 } 1548 unlock: 1549 rtnl_unlock(); 1550 return err; 1551 } 1552 EXPORT_SYMBOL(unregister_netdevice_notifier); 1553 1554 /** 1555 * call_netdevice_notifiers_info - call all network notifier blocks 1556 * @val: value passed unmodified to notifier function 1557 * @dev: net_device pointer passed unmodified to notifier function 1558 * @info: notifier information data 1559 * 1560 * Call all network notifier blocks. Parameters and return value 1561 * are as for raw_notifier_call_chain(). 1562 */ 1563 1564 int call_netdevice_notifiers_info(unsigned long val, struct net_device *dev, 1565 struct netdev_notifier_info *info) 1566 { 1567 ASSERT_RTNL(); 1568 netdev_notifier_info_init(info, dev); 1569 return raw_notifier_call_chain(&netdev_chain, val, info); 1570 } 1571 EXPORT_SYMBOL(call_netdevice_notifiers_info); 1572 1573 /** 1574 * call_netdevice_notifiers - call all network notifier blocks 1575 * @val: value passed unmodified to notifier function 1576 * @dev: net_device pointer passed unmodified to notifier function 1577 * 1578 * Call all network notifier blocks. Parameters and return value 1579 * are as for raw_notifier_call_chain(). 1580 */ 1581 1582 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1583 { 1584 struct netdev_notifier_info info; 1585 1586 return call_netdevice_notifiers_info(val, dev, &info); 1587 } 1588 EXPORT_SYMBOL(call_netdevice_notifiers); 1589 1590 static struct static_key netstamp_needed __read_mostly; 1591 #ifdef HAVE_JUMP_LABEL 1592 /* We are not allowed to call static_key_slow_dec() from irq context 1593 * If net_disable_timestamp() is called from irq context, defer the 1594 * static_key_slow_dec() calls. 1595 */ 1596 static atomic_t netstamp_needed_deferred; 1597 #endif 1598 1599 void net_enable_timestamp(void) 1600 { 1601 #ifdef HAVE_JUMP_LABEL 1602 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 1603 1604 if (deferred) { 1605 while (--deferred) 1606 static_key_slow_dec(&netstamp_needed); 1607 return; 1608 } 1609 #endif 1610 static_key_slow_inc(&netstamp_needed); 1611 } 1612 EXPORT_SYMBOL(net_enable_timestamp); 1613 1614 void net_disable_timestamp(void) 1615 { 1616 #ifdef HAVE_JUMP_LABEL 1617 if (in_interrupt()) { 1618 atomic_inc(&netstamp_needed_deferred); 1619 return; 1620 } 1621 #endif 1622 static_key_slow_dec(&netstamp_needed); 1623 } 1624 EXPORT_SYMBOL(net_disable_timestamp); 1625 1626 static inline void net_timestamp_set(struct sk_buff *skb) 1627 { 1628 skb->tstamp.tv64 = 0; 1629 if (static_key_false(&netstamp_needed)) 1630 __net_timestamp(skb); 1631 } 1632 1633 #define net_timestamp_check(COND, SKB) \ 1634 if (static_key_false(&netstamp_needed)) { \ 1635 if ((COND) && !(SKB)->tstamp.tv64) \ 1636 __net_timestamp(SKB); \ 1637 } \ 1638 1639 static inline bool is_skb_forwardable(struct net_device *dev, 1640 struct sk_buff *skb) 1641 { 1642 unsigned int len; 1643 1644 if (!(dev->flags & IFF_UP)) 1645 return false; 1646 1647 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 1648 if (skb->len <= len) 1649 return true; 1650 1651 /* if TSO is enabled, we don't care about the length as the packet 1652 * could be forwarded without being segmented before 1653 */ 1654 if (skb_is_gso(skb)) 1655 return true; 1656 1657 return false; 1658 } 1659 1660 /** 1661 * dev_forward_skb - loopback an skb to another netif 1662 * 1663 * @dev: destination network device 1664 * @skb: buffer to forward 1665 * 1666 * return values: 1667 * NET_RX_SUCCESS (no congestion) 1668 * NET_RX_DROP (packet was dropped, but freed) 1669 * 1670 * dev_forward_skb can be used for injecting an skb from the 1671 * start_xmit function of one device into the receive queue 1672 * of another device. 1673 * 1674 * The receiving device may be in another namespace, so 1675 * we have to clear all information in the skb that could 1676 * impact namespace isolation. 1677 */ 1678 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1679 { 1680 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) { 1681 if (skb_copy_ubufs(skb, GFP_ATOMIC)) { 1682 atomic_long_inc(&dev->rx_dropped); 1683 kfree_skb(skb); 1684 return NET_RX_DROP; 1685 } 1686 } 1687 1688 if (unlikely(!is_skb_forwardable(dev, skb))) { 1689 atomic_long_inc(&dev->rx_dropped); 1690 kfree_skb(skb); 1691 return NET_RX_DROP; 1692 } 1693 skb->protocol = eth_type_trans(skb, dev); 1694 1695 /* eth_type_trans() can set pkt_type. 1696 * call skb_scrub_packet() after it to clear pkt_type _after_ calling 1697 * eth_type_trans(). 1698 */ 1699 skb_scrub_packet(skb, true); 1700 1701 return netif_rx(skb); 1702 } 1703 EXPORT_SYMBOL_GPL(dev_forward_skb); 1704 1705 static inline int deliver_skb(struct sk_buff *skb, 1706 struct packet_type *pt_prev, 1707 struct net_device *orig_dev) 1708 { 1709 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 1710 return -ENOMEM; 1711 atomic_inc(&skb->users); 1712 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1713 } 1714 1715 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 1716 { 1717 if (!ptype->af_packet_priv || !skb->sk) 1718 return false; 1719 1720 if (ptype->id_match) 1721 return ptype->id_match(ptype, skb->sk); 1722 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 1723 return true; 1724 1725 return false; 1726 } 1727 1728 /* 1729 * Support routine. Sends outgoing frames to any network 1730 * taps currently in use. 1731 */ 1732 1733 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1734 { 1735 struct packet_type *ptype; 1736 struct sk_buff *skb2 = NULL; 1737 struct packet_type *pt_prev = NULL; 1738 1739 rcu_read_lock(); 1740 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1741 /* Never send packets back to the socket 1742 * they originated from - MvS (miquels@drinkel.ow.org) 1743 */ 1744 if ((ptype->dev == dev || !ptype->dev) && 1745 (!skb_loop_sk(ptype, skb))) { 1746 if (pt_prev) { 1747 deliver_skb(skb2, pt_prev, skb->dev); 1748 pt_prev = ptype; 1749 continue; 1750 } 1751 1752 skb2 = skb_clone(skb, GFP_ATOMIC); 1753 if (!skb2) 1754 break; 1755 1756 net_timestamp_set(skb2); 1757 1758 /* skb->nh should be correctly 1759 set by sender, so that the second statement is 1760 just protection against buggy protocols. 1761 */ 1762 skb_reset_mac_header(skb2); 1763 1764 if (skb_network_header(skb2) < skb2->data || 1765 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 1766 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 1767 ntohs(skb2->protocol), 1768 dev->name); 1769 skb_reset_network_header(skb2); 1770 } 1771 1772 skb2->transport_header = skb2->network_header; 1773 skb2->pkt_type = PACKET_OUTGOING; 1774 pt_prev = ptype; 1775 } 1776 } 1777 if (pt_prev) 1778 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 1779 rcu_read_unlock(); 1780 } 1781 1782 /** 1783 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 1784 * @dev: Network device 1785 * @txq: number of queues available 1786 * 1787 * If real_num_tx_queues is changed the tc mappings may no longer be 1788 * valid. To resolve this verify the tc mapping remains valid and if 1789 * not NULL the mapping. With no priorities mapping to this 1790 * offset/count pair it will no longer be used. In the worst case TC0 1791 * is invalid nothing can be done so disable priority mappings. If is 1792 * expected that drivers will fix this mapping if they can before 1793 * calling netif_set_real_num_tx_queues. 1794 */ 1795 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 1796 { 1797 int i; 1798 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 1799 1800 /* If TC0 is invalidated disable TC mapping */ 1801 if (tc->offset + tc->count > txq) { 1802 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 1803 dev->num_tc = 0; 1804 return; 1805 } 1806 1807 /* Invalidated prio to tc mappings set to TC0 */ 1808 for (i = 1; i < TC_BITMASK + 1; i++) { 1809 int q = netdev_get_prio_tc_map(dev, i); 1810 1811 tc = &dev->tc_to_txq[q]; 1812 if (tc->offset + tc->count > txq) { 1813 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 1814 i, q); 1815 netdev_set_prio_tc_map(dev, i, 0); 1816 } 1817 } 1818 } 1819 1820 #ifdef CONFIG_XPS 1821 static DEFINE_MUTEX(xps_map_mutex); 1822 #define xmap_dereference(P) \ 1823 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 1824 1825 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps, 1826 int cpu, u16 index) 1827 { 1828 struct xps_map *map = NULL; 1829 int pos; 1830 1831 if (dev_maps) 1832 map = xmap_dereference(dev_maps->cpu_map[cpu]); 1833 1834 for (pos = 0; map && pos < map->len; pos++) { 1835 if (map->queues[pos] == index) { 1836 if (map->len > 1) { 1837 map->queues[pos] = map->queues[--map->len]; 1838 } else { 1839 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL); 1840 kfree_rcu(map, rcu); 1841 map = NULL; 1842 } 1843 break; 1844 } 1845 } 1846 1847 return map; 1848 } 1849 1850 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 1851 { 1852 struct xps_dev_maps *dev_maps; 1853 int cpu, i; 1854 bool active = false; 1855 1856 mutex_lock(&xps_map_mutex); 1857 dev_maps = xmap_dereference(dev->xps_maps); 1858 1859 if (!dev_maps) 1860 goto out_no_maps; 1861 1862 for_each_possible_cpu(cpu) { 1863 for (i = index; i < dev->num_tx_queues; i++) { 1864 if (!remove_xps_queue(dev_maps, cpu, i)) 1865 break; 1866 } 1867 if (i == dev->num_tx_queues) 1868 active = true; 1869 } 1870 1871 if (!active) { 1872 RCU_INIT_POINTER(dev->xps_maps, NULL); 1873 kfree_rcu(dev_maps, rcu); 1874 } 1875 1876 for (i = index; i < dev->num_tx_queues; i++) 1877 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i), 1878 NUMA_NO_NODE); 1879 1880 out_no_maps: 1881 mutex_unlock(&xps_map_mutex); 1882 } 1883 1884 static struct xps_map *expand_xps_map(struct xps_map *map, 1885 int cpu, u16 index) 1886 { 1887 struct xps_map *new_map; 1888 int alloc_len = XPS_MIN_MAP_ALLOC; 1889 int i, pos; 1890 1891 for (pos = 0; map && pos < map->len; pos++) { 1892 if (map->queues[pos] != index) 1893 continue; 1894 return map; 1895 } 1896 1897 /* Need to add queue to this CPU's existing map */ 1898 if (map) { 1899 if (pos < map->alloc_len) 1900 return map; 1901 1902 alloc_len = map->alloc_len * 2; 1903 } 1904 1905 /* Need to allocate new map to store queue on this CPU's map */ 1906 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 1907 cpu_to_node(cpu)); 1908 if (!new_map) 1909 return NULL; 1910 1911 for (i = 0; i < pos; i++) 1912 new_map->queues[i] = map->queues[i]; 1913 new_map->alloc_len = alloc_len; 1914 new_map->len = pos; 1915 1916 return new_map; 1917 } 1918 1919 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 1920 u16 index) 1921 { 1922 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL; 1923 struct xps_map *map, *new_map; 1924 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES); 1925 int cpu, numa_node_id = -2; 1926 bool active = false; 1927 1928 mutex_lock(&xps_map_mutex); 1929 1930 dev_maps = xmap_dereference(dev->xps_maps); 1931 1932 /* allocate memory for queue storage */ 1933 for_each_online_cpu(cpu) { 1934 if (!cpumask_test_cpu(cpu, mask)) 1935 continue; 1936 1937 if (!new_dev_maps) 1938 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 1939 if (!new_dev_maps) { 1940 mutex_unlock(&xps_map_mutex); 1941 return -ENOMEM; 1942 } 1943 1944 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) : 1945 NULL; 1946 1947 map = expand_xps_map(map, cpu, index); 1948 if (!map) 1949 goto error; 1950 1951 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map); 1952 } 1953 1954 if (!new_dev_maps) 1955 goto out_no_new_maps; 1956 1957 for_each_possible_cpu(cpu) { 1958 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) { 1959 /* add queue to CPU maps */ 1960 int pos = 0; 1961 1962 map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 1963 while ((pos < map->len) && (map->queues[pos] != index)) 1964 pos++; 1965 1966 if (pos == map->len) 1967 map->queues[map->len++] = index; 1968 #ifdef CONFIG_NUMA 1969 if (numa_node_id == -2) 1970 numa_node_id = cpu_to_node(cpu); 1971 else if (numa_node_id != cpu_to_node(cpu)) 1972 numa_node_id = -1; 1973 #endif 1974 } else if (dev_maps) { 1975 /* fill in the new device map from the old device map */ 1976 map = xmap_dereference(dev_maps->cpu_map[cpu]); 1977 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map); 1978 } 1979 1980 } 1981 1982 rcu_assign_pointer(dev->xps_maps, new_dev_maps); 1983 1984 /* Cleanup old maps */ 1985 if (dev_maps) { 1986 for_each_possible_cpu(cpu) { 1987 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 1988 map = xmap_dereference(dev_maps->cpu_map[cpu]); 1989 if (map && map != new_map) 1990 kfree_rcu(map, rcu); 1991 } 1992 1993 kfree_rcu(dev_maps, rcu); 1994 } 1995 1996 dev_maps = new_dev_maps; 1997 active = true; 1998 1999 out_no_new_maps: 2000 /* update Tx queue numa node */ 2001 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2002 (numa_node_id >= 0) ? numa_node_id : 2003 NUMA_NO_NODE); 2004 2005 if (!dev_maps) 2006 goto out_no_maps; 2007 2008 /* removes queue from unused CPUs */ 2009 for_each_possible_cpu(cpu) { 2010 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) 2011 continue; 2012 2013 if (remove_xps_queue(dev_maps, cpu, index)) 2014 active = true; 2015 } 2016 2017 /* free map if not active */ 2018 if (!active) { 2019 RCU_INIT_POINTER(dev->xps_maps, NULL); 2020 kfree_rcu(dev_maps, rcu); 2021 } 2022 2023 out_no_maps: 2024 mutex_unlock(&xps_map_mutex); 2025 2026 return 0; 2027 error: 2028 /* remove any maps that we added */ 2029 for_each_possible_cpu(cpu) { 2030 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 2031 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) : 2032 NULL; 2033 if (new_map && new_map != map) 2034 kfree(new_map); 2035 } 2036 2037 mutex_unlock(&xps_map_mutex); 2038 2039 kfree(new_dev_maps); 2040 return -ENOMEM; 2041 } 2042 EXPORT_SYMBOL(netif_set_xps_queue); 2043 2044 #endif 2045 /* 2046 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2047 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed. 2048 */ 2049 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2050 { 2051 int rc; 2052 2053 if (txq < 1 || txq > dev->num_tx_queues) 2054 return -EINVAL; 2055 2056 if (dev->reg_state == NETREG_REGISTERED || 2057 dev->reg_state == NETREG_UNREGISTERING) { 2058 ASSERT_RTNL(); 2059 2060 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2061 txq); 2062 if (rc) 2063 return rc; 2064 2065 if (dev->num_tc) 2066 netif_setup_tc(dev, txq); 2067 2068 if (txq < dev->real_num_tx_queues) { 2069 qdisc_reset_all_tx_gt(dev, txq); 2070 #ifdef CONFIG_XPS 2071 netif_reset_xps_queues_gt(dev, txq); 2072 #endif 2073 } 2074 } 2075 2076 dev->real_num_tx_queues = txq; 2077 return 0; 2078 } 2079 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2080 2081 #ifdef CONFIG_RPS 2082 /** 2083 * netif_set_real_num_rx_queues - set actual number of RX queues used 2084 * @dev: Network device 2085 * @rxq: Actual number of RX queues 2086 * 2087 * This must be called either with the rtnl_lock held or before 2088 * registration of the net device. Returns 0 on success, or a 2089 * negative error code. If called before registration, it always 2090 * succeeds. 2091 */ 2092 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2093 { 2094 int rc; 2095 2096 if (rxq < 1 || rxq > dev->num_rx_queues) 2097 return -EINVAL; 2098 2099 if (dev->reg_state == NETREG_REGISTERED) { 2100 ASSERT_RTNL(); 2101 2102 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 2103 rxq); 2104 if (rc) 2105 return rc; 2106 } 2107 2108 dev->real_num_rx_queues = rxq; 2109 return 0; 2110 } 2111 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 2112 #endif 2113 2114 /** 2115 * netif_get_num_default_rss_queues - default number of RSS queues 2116 * 2117 * This routine should set an upper limit on the number of RSS queues 2118 * used by default by multiqueue devices. 2119 */ 2120 int netif_get_num_default_rss_queues(void) 2121 { 2122 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 2123 } 2124 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 2125 2126 static inline void __netif_reschedule(struct Qdisc *q) 2127 { 2128 struct softnet_data *sd; 2129 unsigned long flags; 2130 2131 local_irq_save(flags); 2132 sd = &__get_cpu_var(softnet_data); 2133 q->next_sched = NULL; 2134 *sd->output_queue_tailp = q; 2135 sd->output_queue_tailp = &q->next_sched; 2136 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2137 local_irq_restore(flags); 2138 } 2139 2140 void __netif_schedule(struct Qdisc *q) 2141 { 2142 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 2143 __netif_reschedule(q); 2144 } 2145 EXPORT_SYMBOL(__netif_schedule); 2146 2147 void dev_kfree_skb_irq(struct sk_buff *skb) 2148 { 2149 if (atomic_dec_and_test(&skb->users)) { 2150 struct softnet_data *sd; 2151 unsigned long flags; 2152 2153 local_irq_save(flags); 2154 sd = &__get_cpu_var(softnet_data); 2155 skb->next = sd->completion_queue; 2156 sd->completion_queue = skb; 2157 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2158 local_irq_restore(flags); 2159 } 2160 } 2161 EXPORT_SYMBOL(dev_kfree_skb_irq); 2162 2163 void dev_kfree_skb_any(struct sk_buff *skb) 2164 { 2165 if (in_irq() || irqs_disabled()) 2166 dev_kfree_skb_irq(skb); 2167 else 2168 dev_kfree_skb(skb); 2169 } 2170 EXPORT_SYMBOL(dev_kfree_skb_any); 2171 2172 2173 /** 2174 * netif_device_detach - mark device as removed 2175 * @dev: network device 2176 * 2177 * Mark device as removed from system and therefore no longer available. 2178 */ 2179 void netif_device_detach(struct net_device *dev) 2180 { 2181 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 2182 netif_running(dev)) { 2183 netif_tx_stop_all_queues(dev); 2184 } 2185 } 2186 EXPORT_SYMBOL(netif_device_detach); 2187 2188 /** 2189 * netif_device_attach - mark device as attached 2190 * @dev: network device 2191 * 2192 * Mark device as attached from system and restart if needed. 2193 */ 2194 void netif_device_attach(struct net_device *dev) 2195 { 2196 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 2197 netif_running(dev)) { 2198 netif_tx_wake_all_queues(dev); 2199 __netdev_watchdog_up(dev); 2200 } 2201 } 2202 EXPORT_SYMBOL(netif_device_attach); 2203 2204 static void skb_warn_bad_offload(const struct sk_buff *skb) 2205 { 2206 static const netdev_features_t null_features = 0; 2207 struct net_device *dev = skb->dev; 2208 const char *driver = ""; 2209 2210 if (!net_ratelimit()) 2211 return; 2212 2213 if (dev && dev->dev.parent) 2214 driver = dev_driver_string(dev->dev.parent); 2215 2216 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d " 2217 "gso_type=%d ip_summed=%d\n", 2218 driver, dev ? &dev->features : &null_features, 2219 skb->sk ? &skb->sk->sk_route_caps : &null_features, 2220 skb->len, skb->data_len, skb_shinfo(skb)->gso_size, 2221 skb_shinfo(skb)->gso_type, skb->ip_summed); 2222 } 2223 2224 /* 2225 * Invalidate hardware checksum when packet is to be mangled, and 2226 * complete checksum manually on outgoing path. 2227 */ 2228 int skb_checksum_help(struct sk_buff *skb) 2229 { 2230 __wsum csum; 2231 int ret = 0, offset; 2232 2233 if (skb->ip_summed == CHECKSUM_COMPLETE) 2234 goto out_set_summed; 2235 2236 if (unlikely(skb_shinfo(skb)->gso_size)) { 2237 skb_warn_bad_offload(skb); 2238 return -EINVAL; 2239 } 2240 2241 /* Before computing a checksum, we should make sure no frag could 2242 * be modified by an external entity : checksum could be wrong. 2243 */ 2244 if (skb_has_shared_frag(skb)) { 2245 ret = __skb_linearize(skb); 2246 if (ret) 2247 goto out; 2248 } 2249 2250 offset = skb_checksum_start_offset(skb); 2251 BUG_ON(offset >= skb_headlen(skb)); 2252 csum = skb_checksum(skb, offset, skb->len - offset, 0); 2253 2254 offset += skb->csum_offset; 2255 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 2256 2257 if (skb_cloned(skb) && 2258 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 2259 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2260 if (ret) 2261 goto out; 2262 } 2263 2264 *(__sum16 *)(skb->data + offset) = csum_fold(csum); 2265 out_set_summed: 2266 skb->ip_summed = CHECKSUM_NONE; 2267 out: 2268 return ret; 2269 } 2270 EXPORT_SYMBOL(skb_checksum_help); 2271 2272 __be16 skb_network_protocol(struct sk_buff *skb) 2273 { 2274 __be16 type = skb->protocol; 2275 int vlan_depth = ETH_HLEN; 2276 2277 /* Tunnel gso handlers can set protocol to ethernet. */ 2278 if (type == htons(ETH_P_TEB)) { 2279 struct ethhdr *eth; 2280 2281 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 2282 return 0; 2283 2284 eth = (struct ethhdr *)skb_mac_header(skb); 2285 type = eth->h_proto; 2286 } 2287 2288 while (type == htons(ETH_P_8021Q) || type == htons(ETH_P_8021AD)) { 2289 struct vlan_hdr *vh; 2290 2291 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN))) 2292 return 0; 2293 2294 vh = (struct vlan_hdr *)(skb->data + vlan_depth); 2295 type = vh->h_vlan_encapsulated_proto; 2296 vlan_depth += VLAN_HLEN; 2297 } 2298 2299 return type; 2300 } 2301 2302 /** 2303 * skb_mac_gso_segment - mac layer segmentation handler. 2304 * @skb: buffer to segment 2305 * @features: features for the output path (see dev->features) 2306 */ 2307 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 2308 netdev_features_t features) 2309 { 2310 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 2311 struct packet_offload *ptype; 2312 __be16 type = skb_network_protocol(skb); 2313 2314 if (unlikely(!type)) 2315 return ERR_PTR(-EINVAL); 2316 2317 __skb_pull(skb, skb->mac_len); 2318 2319 rcu_read_lock(); 2320 list_for_each_entry_rcu(ptype, &offload_base, list) { 2321 if (ptype->type == type && ptype->callbacks.gso_segment) { 2322 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 2323 int err; 2324 2325 err = ptype->callbacks.gso_send_check(skb); 2326 segs = ERR_PTR(err); 2327 if (err || skb_gso_ok(skb, features)) 2328 break; 2329 __skb_push(skb, (skb->data - 2330 skb_network_header(skb))); 2331 } 2332 segs = ptype->callbacks.gso_segment(skb, features); 2333 break; 2334 } 2335 } 2336 rcu_read_unlock(); 2337 2338 __skb_push(skb, skb->data - skb_mac_header(skb)); 2339 2340 return segs; 2341 } 2342 EXPORT_SYMBOL(skb_mac_gso_segment); 2343 2344 2345 /* openvswitch calls this on rx path, so we need a different check. 2346 */ 2347 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) 2348 { 2349 if (tx_path) 2350 return skb->ip_summed != CHECKSUM_PARTIAL; 2351 else 2352 return skb->ip_summed == CHECKSUM_NONE; 2353 } 2354 2355 /** 2356 * __skb_gso_segment - Perform segmentation on skb. 2357 * @skb: buffer to segment 2358 * @features: features for the output path (see dev->features) 2359 * @tx_path: whether it is called in TX path 2360 * 2361 * This function segments the given skb and returns a list of segments. 2362 * 2363 * It may return NULL if the skb requires no segmentation. This is 2364 * only possible when GSO is used for verifying header integrity. 2365 */ 2366 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 2367 netdev_features_t features, bool tx_path) 2368 { 2369 if (unlikely(skb_needs_check(skb, tx_path))) { 2370 int err; 2371 2372 skb_warn_bad_offload(skb); 2373 2374 if (skb_header_cloned(skb) && 2375 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))) 2376 return ERR_PTR(err); 2377 } 2378 2379 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); 2380 SKB_GSO_CB(skb)->encap_level = 0; 2381 2382 skb_reset_mac_header(skb); 2383 skb_reset_mac_len(skb); 2384 2385 return skb_mac_gso_segment(skb, features); 2386 } 2387 EXPORT_SYMBOL(__skb_gso_segment); 2388 2389 /* Take action when hardware reception checksum errors are detected. */ 2390 #ifdef CONFIG_BUG 2391 void netdev_rx_csum_fault(struct net_device *dev) 2392 { 2393 if (net_ratelimit()) { 2394 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 2395 dump_stack(); 2396 } 2397 } 2398 EXPORT_SYMBOL(netdev_rx_csum_fault); 2399 #endif 2400 2401 /* Actually, we should eliminate this check as soon as we know, that: 2402 * 1. IOMMU is present and allows to map all the memory. 2403 * 2. No high memory really exists on this machine. 2404 */ 2405 2406 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 2407 { 2408 #ifdef CONFIG_HIGHMEM 2409 int i; 2410 if (!(dev->features & NETIF_F_HIGHDMA)) { 2411 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2412 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2413 if (PageHighMem(skb_frag_page(frag))) 2414 return 1; 2415 } 2416 } 2417 2418 if (PCI_DMA_BUS_IS_PHYS) { 2419 struct device *pdev = dev->dev.parent; 2420 2421 if (!pdev) 2422 return 0; 2423 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2424 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2425 dma_addr_t addr = page_to_phys(skb_frag_page(frag)); 2426 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask) 2427 return 1; 2428 } 2429 } 2430 #endif 2431 return 0; 2432 } 2433 2434 struct dev_gso_cb { 2435 void (*destructor)(struct sk_buff *skb); 2436 }; 2437 2438 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb) 2439 2440 static void dev_gso_skb_destructor(struct sk_buff *skb) 2441 { 2442 struct dev_gso_cb *cb; 2443 2444 do { 2445 struct sk_buff *nskb = skb->next; 2446 2447 skb->next = nskb->next; 2448 nskb->next = NULL; 2449 kfree_skb(nskb); 2450 } while (skb->next); 2451 2452 cb = DEV_GSO_CB(skb); 2453 if (cb->destructor) 2454 cb->destructor(skb); 2455 } 2456 2457 /** 2458 * dev_gso_segment - Perform emulated hardware segmentation on skb. 2459 * @skb: buffer to segment 2460 * @features: device features as applicable to this skb 2461 * 2462 * This function segments the given skb and stores the list of segments 2463 * in skb->next. 2464 */ 2465 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features) 2466 { 2467 struct sk_buff *segs; 2468 2469 segs = skb_gso_segment(skb, features); 2470 2471 /* Verifying header integrity only. */ 2472 if (!segs) 2473 return 0; 2474 2475 if (IS_ERR(segs)) 2476 return PTR_ERR(segs); 2477 2478 skb->next = segs; 2479 DEV_GSO_CB(skb)->destructor = skb->destructor; 2480 skb->destructor = dev_gso_skb_destructor; 2481 2482 return 0; 2483 } 2484 2485 static netdev_features_t harmonize_features(struct sk_buff *skb, 2486 netdev_features_t features) 2487 { 2488 if (skb->ip_summed != CHECKSUM_NONE && 2489 !can_checksum_protocol(features, skb_network_protocol(skb))) { 2490 features &= ~NETIF_F_ALL_CSUM; 2491 } else if (illegal_highdma(skb->dev, skb)) { 2492 features &= ~NETIF_F_SG; 2493 } 2494 2495 return features; 2496 } 2497 2498 netdev_features_t netif_skb_features(struct sk_buff *skb) 2499 { 2500 __be16 protocol = skb->protocol; 2501 netdev_features_t features = skb->dev->features; 2502 2503 if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs) 2504 features &= ~NETIF_F_GSO_MASK; 2505 2506 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD)) { 2507 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data; 2508 protocol = veh->h_vlan_encapsulated_proto; 2509 } else if (!vlan_tx_tag_present(skb)) { 2510 return harmonize_features(skb, features); 2511 } 2512 2513 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_CTAG_TX | 2514 NETIF_F_HW_VLAN_STAG_TX); 2515 2516 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD)) 2517 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST | 2518 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_CTAG_TX | 2519 NETIF_F_HW_VLAN_STAG_TX; 2520 2521 return harmonize_features(skb, features); 2522 } 2523 EXPORT_SYMBOL(netif_skb_features); 2524 2525 /* 2526 * Returns true if either: 2527 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 2528 * 2. skb is fragmented and the device does not support SG. 2529 */ 2530 static inline int skb_needs_linearize(struct sk_buff *skb, 2531 netdev_features_t features) 2532 { 2533 return skb_is_nonlinear(skb) && 2534 ((skb_has_frag_list(skb) && 2535 !(features & NETIF_F_FRAGLIST)) || 2536 (skb_shinfo(skb)->nr_frags && 2537 !(features & NETIF_F_SG))); 2538 } 2539 2540 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 2541 struct netdev_queue *txq, void *accel_priv) 2542 { 2543 const struct net_device_ops *ops = dev->netdev_ops; 2544 int rc = NETDEV_TX_OK; 2545 unsigned int skb_len; 2546 2547 if (likely(!skb->next)) { 2548 netdev_features_t features; 2549 2550 /* 2551 * If device doesn't need skb->dst, release it right now while 2552 * its hot in this cpu cache 2553 */ 2554 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 2555 skb_dst_drop(skb); 2556 2557 features = netif_skb_features(skb); 2558 2559 if (vlan_tx_tag_present(skb) && 2560 !vlan_hw_offload_capable(features, skb->vlan_proto)) { 2561 skb = __vlan_put_tag(skb, skb->vlan_proto, 2562 vlan_tx_tag_get(skb)); 2563 if (unlikely(!skb)) 2564 goto out; 2565 2566 skb->vlan_tci = 0; 2567 } 2568 2569 /* If encapsulation offload request, verify we are testing 2570 * hardware encapsulation features instead of standard 2571 * features for the netdev 2572 */ 2573 if (skb->encapsulation) 2574 features &= dev->hw_enc_features; 2575 2576 if (netif_needs_gso(skb, features)) { 2577 if (unlikely(dev_gso_segment(skb, features))) 2578 goto out_kfree_skb; 2579 if (skb->next) 2580 goto gso; 2581 } else { 2582 if (skb_needs_linearize(skb, features) && 2583 __skb_linearize(skb)) 2584 goto out_kfree_skb; 2585 2586 /* If packet is not checksummed and device does not 2587 * support checksumming for this protocol, complete 2588 * checksumming here. 2589 */ 2590 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2591 if (skb->encapsulation) 2592 skb_set_inner_transport_header(skb, 2593 skb_checksum_start_offset(skb)); 2594 else 2595 skb_set_transport_header(skb, 2596 skb_checksum_start_offset(skb)); 2597 if (!(features & NETIF_F_ALL_CSUM) && 2598 skb_checksum_help(skb)) 2599 goto out_kfree_skb; 2600 } 2601 } 2602 2603 if (!list_empty(&ptype_all)) 2604 dev_queue_xmit_nit(skb, dev); 2605 2606 skb_len = skb->len; 2607 if (accel_priv) 2608 rc = ops->ndo_dfwd_start_xmit(skb, dev, accel_priv); 2609 else 2610 rc = ops->ndo_start_xmit(skb, dev); 2611 2612 trace_net_dev_xmit(skb, rc, dev, skb_len); 2613 if (rc == NETDEV_TX_OK && txq) 2614 txq_trans_update(txq); 2615 return rc; 2616 } 2617 2618 gso: 2619 do { 2620 struct sk_buff *nskb = skb->next; 2621 2622 skb->next = nskb->next; 2623 nskb->next = NULL; 2624 2625 if (!list_empty(&ptype_all)) 2626 dev_queue_xmit_nit(nskb, dev); 2627 2628 skb_len = nskb->len; 2629 if (accel_priv) 2630 rc = ops->ndo_dfwd_start_xmit(nskb, dev, accel_priv); 2631 else 2632 rc = ops->ndo_start_xmit(nskb, dev); 2633 trace_net_dev_xmit(nskb, rc, dev, skb_len); 2634 if (unlikely(rc != NETDEV_TX_OK)) { 2635 if (rc & ~NETDEV_TX_MASK) 2636 goto out_kfree_gso_skb; 2637 nskb->next = skb->next; 2638 skb->next = nskb; 2639 return rc; 2640 } 2641 txq_trans_update(txq); 2642 if (unlikely(netif_xmit_stopped(txq) && skb->next)) 2643 return NETDEV_TX_BUSY; 2644 } while (skb->next); 2645 2646 out_kfree_gso_skb: 2647 if (likely(skb->next == NULL)) { 2648 skb->destructor = DEV_GSO_CB(skb)->destructor; 2649 consume_skb(skb); 2650 return rc; 2651 } 2652 out_kfree_skb: 2653 kfree_skb(skb); 2654 out: 2655 return rc; 2656 } 2657 EXPORT_SYMBOL_GPL(dev_hard_start_xmit); 2658 2659 static void qdisc_pkt_len_init(struct sk_buff *skb) 2660 { 2661 const struct skb_shared_info *shinfo = skb_shinfo(skb); 2662 2663 qdisc_skb_cb(skb)->pkt_len = skb->len; 2664 2665 /* To get more precise estimation of bytes sent on wire, 2666 * we add to pkt_len the headers size of all segments 2667 */ 2668 if (shinfo->gso_size) { 2669 unsigned int hdr_len; 2670 u16 gso_segs = shinfo->gso_segs; 2671 2672 /* mac layer + network layer */ 2673 hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 2674 2675 /* + transport layer */ 2676 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 2677 hdr_len += tcp_hdrlen(skb); 2678 else 2679 hdr_len += sizeof(struct udphdr); 2680 2681 if (shinfo->gso_type & SKB_GSO_DODGY) 2682 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 2683 shinfo->gso_size); 2684 2685 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 2686 } 2687 } 2688 2689 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 2690 struct net_device *dev, 2691 struct netdev_queue *txq) 2692 { 2693 spinlock_t *root_lock = qdisc_lock(q); 2694 bool contended; 2695 int rc; 2696 2697 qdisc_pkt_len_init(skb); 2698 qdisc_calculate_pkt_len(skb, q); 2699 /* 2700 * Heuristic to force contended enqueues to serialize on a 2701 * separate lock before trying to get qdisc main lock. 2702 * This permits __QDISC_STATE_RUNNING owner to get the lock more often 2703 * and dequeue packets faster. 2704 */ 2705 contended = qdisc_is_running(q); 2706 if (unlikely(contended)) 2707 spin_lock(&q->busylock); 2708 2709 spin_lock(root_lock); 2710 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 2711 kfree_skb(skb); 2712 rc = NET_XMIT_DROP; 2713 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 2714 qdisc_run_begin(q)) { 2715 /* 2716 * This is a work-conserving queue; there are no old skbs 2717 * waiting to be sent out; and the qdisc is not running - 2718 * xmit the skb directly. 2719 */ 2720 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE)) 2721 skb_dst_force(skb); 2722 2723 qdisc_bstats_update(q, skb); 2724 2725 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) { 2726 if (unlikely(contended)) { 2727 spin_unlock(&q->busylock); 2728 contended = false; 2729 } 2730 __qdisc_run(q); 2731 } else 2732 qdisc_run_end(q); 2733 2734 rc = NET_XMIT_SUCCESS; 2735 } else { 2736 skb_dst_force(skb); 2737 rc = q->enqueue(skb, q) & NET_XMIT_MASK; 2738 if (qdisc_run_begin(q)) { 2739 if (unlikely(contended)) { 2740 spin_unlock(&q->busylock); 2741 contended = false; 2742 } 2743 __qdisc_run(q); 2744 } 2745 } 2746 spin_unlock(root_lock); 2747 if (unlikely(contended)) 2748 spin_unlock(&q->busylock); 2749 return rc; 2750 } 2751 2752 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP) 2753 static void skb_update_prio(struct sk_buff *skb) 2754 { 2755 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap); 2756 2757 if (!skb->priority && skb->sk && map) { 2758 unsigned int prioidx = skb->sk->sk_cgrp_prioidx; 2759 2760 if (prioidx < map->priomap_len) 2761 skb->priority = map->priomap[prioidx]; 2762 } 2763 } 2764 #else 2765 #define skb_update_prio(skb) 2766 #endif 2767 2768 static DEFINE_PER_CPU(int, xmit_recursion); 2769 #define RECURSION_LIMIT 10 2770 2771 /** 2772 * dev_loopback_xmit - loop back @skb 2773 * @skb: buffer to transmit 2774 */ 2775 int dev_loopback_xmit(struct sk_buff *skb) 2776 { 2777 skb_reset_mac_header(skb); 2778 __skb_pull(skb, skb_network_offset(skb)); 2779 skb->pkt_type = PACKET_LOOPBACK; 2780 skb->ip_summed = CHECKSUM_UNNECESSARY; 2781 WARN_ON(!skb_dst(skb)); 2782 skb_dst_force(skb); 2783 netif_rx_ni(skb); 2784 return 0; 2785 } 2786 EXPORT_SYMBOL(dev_loopback_xmit); 2787 2788 /** 2789 * dev_queue_xmit - transmit a buffer 2790 * @skb: buffer to transmit 2791 * 2792 * Queue a buffer for transmission to a network device. The caller must 2793 * have set the device and priority and built the buffer before calling 2794 * this function. The function can be called from an interrupt. 2795 * 2796 * A negative errno code is returned on a failure. A success does not 2797 * guarantee the frame will be transmitted as it may be dropped due 2798 * to congestion or traffic shaping. 2799 * 2800 * ----------------------------------------------------------------------------------- 2801 * I notice this method can also return errors from the queue disciplines, 2802 * including NET_XMIT_DROP, which is a positive value. So, errors can also 2803 * be positive. 2804 * 2805 * Regardless of the return value, the skb is consumed, so it is currently 2806 * difficult to retry a send to this method. (You can bump the ref count 2807 * before sending to hold a reference for retry if you are careful.) 2808 * 2809 * When calling this method, interrupts MUST be enabled. This is because 2810 * the BH enable code must have IRQs enabled so that it will not deadlock. 2811 * --BLG 2812 */ 2813 int dev_queue_xmit(struct sk_buff *skb) 2814 { 2815 struct net_device *dev = skb->dev; 2816 struct netdev_queue *txq; 2817 struct Qdisc *q; 2818 int rc = -ENOMEM; 2819 2820 skb_reset_mac_header(skb); 2821 2822 /* Disable soft irqs for various locks below. Also 2823 * stops preemption for RCU. 2824 */ 2825 rcu_read_lock_bh(); 2826 2827 skb_update_prio(skb); 2828 2829 txq = netdev_pick_tx(dev, skb); 2830 q = rcu_dereference_bh(txq->qdisc); 2831 2832 #ifdef CONFIG_NET_CLS_ACT 2833 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS); 2834 #endif 2835 trace_net_dev_queue(skb); 2836 if (q->enqueue) { 2837 rc = __dev_xmit_skb(skb, q, dev, txq); 2838 goto out; 2839 } 2840 2841 /* The device has no queue. Common case for software devices: 2842 loopback, all the sorts of tunnels... 2843 2844 Really, it is unlikely that netif_tx_lock protection is necessary 2845 here. (f.e. loopback and IP tunnels are clean ignoring statistics 2846 counters.) 2847 However, it is possible, that they rely on protection 2848 made by us here. 2849 2850 Check this and shot the lock. It is not prone from deadlocks. 2851 Either shot noqueue qdisc, it is even simpler 8) 2852 */ 2853 if (dev->flags & IFF_UP) { 2854 int cpu = smp_processor_id(); /* ok because BHs are off */ 2855 2856 if (txq->xmit_lock_owner != cpu) { 2857 2858 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT) 2859 goto recursion_alert; 2860 2861 HARD_TX_LOCK(dev, txq, cpu); 2862 2863 if (!netif_xmit_stopped(txq)) { 2864 __this_cpu_inc(xmit_recursion); 2865 rc = dev_hard_start_xmit(skb, dev, txq, NULL); 2866 __this_cpu_dec(xmit_recursion); 2867 if (dev_xmit_complete(rc)) { 2868 HARD_TX_UNLOCK(dev, txq); 2869 goto out; 2870 } 2871 } 2872 HARD_TX_UNLOCK(dev, txq); 2873 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 2874 dev->name); 2875 } else { 2876 /* Recursion is detected! It is possible, 2877 * unfortunately 2878 */ 2879 recursion_alert: 2880 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 2881 dev->name); 2882 } 2883 } 2884 2885 rc = -ENETDOWN; 2886 rcu_read_unlock_bh(); 2887 2888 kfree_skb(skb); 2889 return rc; 2890 out: 2891 rcu_read_unlock_bh(); 2892 return rc; 2893 } 2894 EXPORT_SYMBOL(dev_queue_xmit); 2895 2896 2897 /*======================================================================= 2898 Receiver routines 2899 =======================================================================*/ 2900 2901 int netdev_max_backlog __read_mostly = 1000; 2902 EXPORT_SYMBOL(netdev_max_backlog); 2903 2904 int netdev_tstamp_prequeue __read_mostly = 1; 2905 int netdev_budget __read_mostly = 300; 2906 int weight_p __read_mostly = 64; /* old backlog weight */ 2907 2908 /* Called with irq disabled */ 2909 static inline void ____napi_schedule(struct softnet_data *sd, 2910 struct napi_struct *napi) 2911 { 2912 list_add_tail(&napi->poll_list, &sd->poll_list); 2913 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2914 } 2915 2916 #ifdef CONFIG_RPS 2917 2918 /* One global table that all flow-based protocols share. */ 2919 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 2920 EXPORT_SYMBOL(rps_sock_flow_table); 2921 2922 struct static_key rps_needed __read_mostly; 2923 2924 static struct rps_dev_flow * 2925 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 2926 struct rps_dev_flow *rflow, u16 next_cpu) 2927 { 2928 if (next_cpu != RPS_NO_CPU) { 2929 #ifdef CONFIG_RFS_ACCEL 2930 struct netdev_rx_queue *rxqueue; 2931 struct rps_dev_flow_table *flow_table; 2932 struct rps_dev_flow *old_rflow; 2933 u32 flow_id; 2934 u16 rxq_index; 2935 int rc; 2936 2937 /* Should we steer this flow to a different hardware queue? */ 2938 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 2939 !(dev->features & NETIF_F_NTUPLE)) 2940 goto out; 2941 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 2942 if (rxq_index == skb_get_rx_queue(skb)) 2943 goto out; 2944 2945 rxqueue = dev->_rx + rxq_index; 2946 flow_table = rcu_dereference(rxqueue->rps_flow_table); 2947 if (!flow_table) 2948 goto out; 2949 flow_id = skb->rxhash & flow_table->mask; 2950 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 2951 rxq_index, flow_id); 2952 if (rc < 0) 2953 goto out; 2954 old_rflow = rflow; 2955 rflow = &flow_table->flows[flow_id]; 2956 rflow->filter = rc; 2957 if (old_rflow->filter == rflow->filter) 2958 old_rflow->filter = RPS_NO_FILTER; 2959 out: 2960 #endif 2961 rflow->last_qtail = 2962 per_cpu(softnet_data, next_cpu).input_queue_head; 2963 } 2964 2965 rflow->cpu = next_cpu; 2966 return rflow; 2967 } 2968 2969 /* 2970 * get_rps_cpu is called from netif_receive_skb and returns the target 2971 * CPU from the RPS map of the receiving queue for a given skb. 2972 * rcu_read_lock must be held on entry. 2973 */ 2974 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 2975 struct rps_dev_flow **rflowp) 2976 { 2977 struct netdev_rx_queue *rxqueue; 2978 struct rps_map *map; 2979 struct rps_dev_flow_table *flow_table; 2980 struct rps_sock_flow_table *sock_flow_table; 2981 int cpu = -1; 2982 u16 tcpu; 2983 2984 if (skb_rx_queue_recorded(skb)) { 2985 u16 index = skb_get_rx_queue(skb); 2986 if (unlikely(index >= dev->real_num_rx_queues)) { 2987 WARN_ONCE(dev->real_num_rx_queues > 1, 2988 "%s received packet on queue %u, but number " 2989 "of RX queues is %u\n", 2990 dev->name, index, dev->real_num_rx_queues); 2991 goto done; 2992 } 2993 rxqueue = dev->_rx + index; 2994 } else 2995 rxqueue = dev->_rx; 2996 2997 map = rcu_dereference(rxqueue->rps_map); 2998 if (map) { 2999 if (map->len == 1 && 3000 !rcu_access_pointer(rxqueue->rps_flow_table)) { 3001 tcpu = map->cpus[0]; 3002 if (cpu_online(tcpu)) 3003 cpu = tcpu; 3004 goto done; 3005 } 3006 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) { 3007 goto done; 3008 } 3009 3010 skb_reset_network_header(skb); 3011 if (!skb_get_rxhash(skb)) 3012 goto done; 3013 3014 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3015 sock_flow_table = rcu_dereference(rps_sock_flow_table); 3016 if (flow_table && sock_flow_table) { 3017 u16 next_cpu; 3018 struct rps_dev_flow *rflow; 3019 3020 rflow = &flow_table->flows[skb->rxhash & flow_table->mask]; 3021 tcpu = rflow->cpu; 3022 3023 next_cpu = sock_flow_table->ents[skb->rxhash & 3024 sock_flow_table->mask]; 3025 3026 /* 3027 * If the desired CPU (where last recvmsg was done) is 3028 * different from current CPU (one in the rx-queue flow 3029 * table entry), switch if one of the following holds: 3030 * - Current CPU is unset (equal to RPS_NO_CPU). 3031 * - Current CPU is offline. 3032 * - The current CPU's queue tail has advanced beyond the 3033 * last packet that was enqueued using this table entry. 3034 * This guarantees that all previous packets for the flow 3035 * have been dequeued, thus preserving in order delivery. 3036 */ 3037 if (unlikely(tcpu != next_cpu) && 3038 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) || 3039 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 3040 rflow->last_qtail)) >= 0)) { 3041 tcpu = next_cpu; 3042 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 3043 } 3044 3045 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) { 3046 *rflowp = rflow; 3047 cpu = tcpu; 3048 goto done; 3049 } 3050 } 3051 3052 if (map) { 3053 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32]; 3054 3055 if (cpu_online(tcpu)) { 3056 cpu = tcpu; 3057 goto done; 3058 } 3059 } 3060 3061 done: 3062 return cpu; 3063 } 3064 3065 #ifdef CONFIG_RFS_ACCEL 3066 3067 /** 3068 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 3069 * @dev: Device on which the filter was set 3070 * @rxq_index: RX queue index 3071 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 3072 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 3073 * 3074 * Drivers that implement ndo_rx_flow_steer() should periodically call 3075 * this function for each installed filter and remove the filters for 3076 * which it returns %true. 3077 */ 3078 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 3079 u32 flow_id, u16 filter_id) 3080 { 3081 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 3082 struct rps_dev_flow_table *flow_table; 3083 struct rps_dev_flow *rflow; 3084 bool expire = true; 3085 int cpu; 3086 3087 rcu_read_lock(); 3088 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3089 if (flow_table && flow_id <= flow_table->mask) { 3090 rflow = &flow_table->flows[flow_id]; 3091 cpu = ACCESS_ONCE(rflow->cpu); 3092 if (rflow->filter == filter_id && cpu != RPS_NO_CPU && 3093 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 3094 rflow->last_qtail) < 3095 (int)(10 * flow_table->mask))) 3096 expire = false; 3097 } 3098 rcu_read_unlock(); 3099 return expire; 3100 } 3101 EXPORT_SYMBOL(rps_may_expire_flow); 3102 3103 #endif /* CONFIG_RFS_ACCEL */ 3104 3105 /* Called from hardirq (IPI) context */ 3106 static void rps_trigger_softirq(void *data) 3107 { 3108 struct softnet_data *sd = data; 3109 3110 ____napi_schedule(sd, &sd->backlog); 3111 sd->received_rps++; 3112 } 3113 3114 #endif /* CONFIG_RPS */ 3115 3116 /* 3117 * Check if this softnet_data structure is another cpu one 3118 * If yes, queue it to our IPI list and return 1 3119 * If no, return 0 3120 */ 3121 static int rps_ipi_queued(struct softnet_data *sd) 3122 { 3123 #ifdef CONFIG_RPS 3124 struct softnet_data *mysd = &__get_cpu_var(softnet_data); 3125 3126 if (sd != mysd) { 3127 sd->rps_ipi_next = mysd->rps_ipi_list; 3128 mysd->rps_ipi_list = sd; 3129 3130 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3131 return 1; 3132 } 3133 #endif /* CONFIG_RPS */ 3134 return 0; 3135 } 3136 3137 #ifdef CONFIG_NET_FLOW_LIMIT 3138 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 3139 #endif 3140 3141 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 3142 { 3143 #ifdef CONFIG_NET_FLOW_LIMIT 3144 struct sd_flow_limit *fl; 3145 struct softnet_data *sd; 3146 unsigned int old_flow, new_flow; 3147 3148 if (qlen < (netdev_max_backlog >> 1)) 3149 return false; 3150 3151 sd = &__get_cpu_var(softnet_data); 3152 3153 rcu_read_lock(); 3154 fl = rcu_dereference(sd->flow_limit); 3155 if (fl) { 3156 new_flow = skb_get_rxhash(skb) & (fl->num_buckets - 1); 3157 old_flow = fl->history[fl->history_head]; 3158 fl->history[fl->history_head] = new_flow; 3159 3160 fl->history_head++; 3161 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 3162 3163 if (likely(fl->buckets[old_flow])) 3164 fl->buckets[old_flow]--; 3165 3166 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 3167 fl->count++; 3168 rcu_read_unlock(); 3169 return true; 3170 } 3171 } 3172 rcu_read_unlock(); 3173 #endif 3174 return false; 3175 } 3176 3177 /* 3178 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 3179 * queue (may be a remote CPU queue). 3180 */ 3181 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 3182 unsigned int *qtail) 3183 { 3184 struct softnet_data *sd; 3185 unsigned long flags; 3186 unsigned int qlen; 3187 3188 sd = &per_cpu(softnet_data, cpu); 3189 3190 local_irq_save(flags); 3191 3192 rps_lock(sd); 3193 qlen = skb_queue_len(&sd->input_pkt_queue); 3194 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) { 3195 if (skb_queue_len(&sd->input_pkt_queue)) { 3196 enqueue: 3197 __skb_queue_tail(&sd->input_pkt_queue, skb); 3198 input_queue_tail_incr_save(sd, qtail); 3199 rps_unlock(sd); 3200 local_irq_restore(flags); 3201 return NET_RX_SUCCESS; 3202 } 3203 3204 /* Schedule NAPI for backlog device 3205 * We can use non atomic operation since we own the queue lock 3206 */ 3207 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 3208 if (!rps_ipi_queued(sd)) 3209 ____napi_schedule(sd, &sd->backlog); 3210 } 3211 goto enqueue; 3212 } 3213 3214 sd->dropped++; 3215 rps_unlock(sd); 3216 3217 local_irq_restore(flags); 3218 3219 atomic_long_inc(&skb->dev->rx_dropped); 3220 kfree_skb(skb); 3221 return NET_RX_DROP; 3222 } 3223 3224 /** 3225 * netif_rx - post buffer to the network code 3226 * @skb: buffer to post 3227 * 3228 * This function receives a packet from a device driver and queues it for 3229 * the upper (protocol) levels to process. It always succeeds. The buffer 3230 * may be dropped during processing for congestion control or by the 3231 * protocol layers. 3232 * 3233 * return values: 3234 * NET_RX_SUCCESS (no congestion) 3235 * NET_RX_DROP (packet was dropped) 3236 * 3237 */ 3238 3239 int netif_rx(struct sk_buff *skb) 3240 { 3241 int ret; 3242 3243 /* if netpoll wants it, pretend we never saw it */ 3244 if (netpoll_rx(skb)) 3245 return NET_RX_DROP; 3246 3247 net_timestamp_check(netdev_tstamp_prequeue, skb); 3248 3249 trace_netif_rx(skb); 3250 #ifdef CONFIG_RPS 3251 if (static_key_false(&rps_needed)) { 3252 struct rps_dev_flow voidflow, *rflow = &voidflow; 3253 int cpu; 3254 3255 preempt_disable(); 3256 rcu_read_lock(); 3257 3258 cpu = get_rps_cpu(skb->dev, skb, &rflow); 3259 if (cpu < 0) 3260 cpu = smp_processor_id(); 3261 3262 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3263 3264 rcu_read_unlock(); 3265 preempt_enable(); 3266 } else 3267 #endif 3268 { 3269 unsigned int qtail; 3270 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 3271 put_cpu(); 3272 } 3273 return ret; 3274 } 3275 EXPORT_SYMBOL(netif_rx); 3276 3277 int netif_rx_ni(struct sk_buff *skb) 3278 { 3279 int err; 3280 3281 preempt_disable(); 3282 err = netif_rx(skb); 3283 if (local_softirq_pending()) 3284 do_softirq(); 3285 preempt_enable(); 3286 3287 return err; 3288 } 3289 EXPORT_SYMBOL(netif_rx_ni); 3290 3291 static void net_tx_action(struct softirq_action *h) 3292 { 3293 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3294 3295 if (sd->completion_queue) { 3296 struct sk_buff *clist; 3297 3298 local_irq_disable(); 3299 clist = sd->completion_queue; 3300 sd->completion_queue = NULL; 3301 local_irq_enable(); 3302 3303 while (clist) { 3304 struct sk_buff *skb = clist; 3305 clist = clist->next; 3306 3307 WARN_ON(atomic_read(&skb->users)); 3308 trace_kfree_skb(skb, net_tx_action); 3309 __kfree_skb(skb); 3310 } 3311 } 3312 3313 if (sd->output_queue) { 3314 struct Qdisc *head; 3315 3316 local_irq_disable(); 3317 head = sd->output_queue; 3318 sd->output_queue = NULL; 3319 sd->output_queue_tailp = &sd->output_queue; 3320 local_irq_enable(); 3321 3322 while (head) { 3323 struct Qdisc *q = head; 3324 spinlock_t *root_lock; 3325 3326 head = head->next_sched; 3327 3328 root_lock = qdisc_lock(q); 3329 if (spin_trylock(root_lock)) { 3330 smp_mb__before_clear_bit(); 3331 clear_bit(__QDISC_STATE_SCHED, 3332 &q->state); 3333 qdisc_run(q); 3334 spin_unlock(root_lock); 3335 } else { 3336 if (!test_bit(__QDISC_STATE_DEACTIVATED, 3337 &q->state)) { 3338 __netif_reschedule(q); 3339 } else { 3340 smp_mb__before_clear_bit(); 3341 clear_bit(__QDISC_STATE_SCHED, 3342 &q->state); 3343 } 3344 } 3345 } 3346 } 3347 } 3348 3349 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \ 3350 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)) 3351 /* This hook is defined here for ATM LANE */ 3352 int (*br_fdb_test_addr_hook)(struct net_device *dev, 3353 unsigned char *addr) __read_mostly; 3354 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 3355 #endif 3356 3357 #ifdef CONFIG_NET_CLS_ACT 3358 /* TODO: Maybe we should just force sch_ingress to be compiled in 3359 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions 3360 * a compare and 2 stores extra right now if we dont have it on 3361 * but have CONFIG_NET_CLS_ACT 3362 * NOTE: This doesn't stop any functionality; if you dont have 3363 * the ingress scheduler, you just can't add policies on ingress. 3364 * 3365 */ 3366 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq) 3367 { 3368 struct net_device *dev = skb->dev; 3369 u32 ttl = G_TC_RTTL(skb->tc_verd); 3370 int result = TC_ACT_OK; 3371 struct Qdisc *q; 3372 3373 if (unlikely(MAX_RED_LOOP < ttl++)) { 3374 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n", 3375 skb->skb_iif, dev->ifindex); 3376 return TC_ACT_SHOT; 3377 } 3378 3379 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl); 3380 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS); 3381 3382 q = rxq->qdisc; 3383 if (q != &noop_qdisc) { 3384 spin_lock(qdisc_lock(q)); 3385 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) 3386 result = qdisc_enqueue_root(skb, q); 3387 spin_unlock(qdisc_lock(q)); 3388 } 3389 3390 return result; 3391 } 3392 3393 static inline struct sk_buff *handle_ing(struct sk_buff *skb, 3394 struct packet_type **pt_prev, 3395 int *ret, struct net_device *orig_dev) 3396 { 3397 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue); 3398 3399 if (!rxq || rxq->qdisc == &noop_qdisc) 3400 goto out; 3401 3402 if (*pt_prev) { 3403 *ret = deliver_skb(skb, *pt_prev, orig_dev); 3404 *pt_prev = NULL; 3405 } 3406 3407 switch (ing_filter(skb, rxq)) { 3408 case TC_ACT_SHOT: 3409 case TC_ACT_STOLEN: 3410 kfree_skb(skb); 3411 return NULL; 3412 } 3413 3414 out: 3415 skb->tc_verd = 0; 3416 return skb; 3417 } 3418 #endif 3419 3420 /** 3421 * netdev_rx_handler_register - register receive handler 3422 * @dev: device to register a handler for 3423 * @rx_handler: receive handler to register 3424 * @rx_handler_data: data pointer that is used by rx handler 3425 * 3426 * Register a receive hander for a device. This handler will then be 3427 * called from __netif_receive_skb. A negative errno code is returned 3428 * on a failure. 3429 * 3430 * The caller must hold the rtnl_mutex. 3431 * 3432 * For a general description of rx_handler, see enum rx_handler_result. 3433 */ 3434 int netdev_rx_handler_register(struct net_device *dev, 3435 rx_handler_func_t *rx_handler, 3436 void *rx_handler_data) 3437 { 3438 ASSERT_RTNL(); 3439 3440 if (dev->rx_handler) 3441 return -EBUSY; 3442 3443 /* Note: rx_handler_data must be set before rx_handler */ 3444 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 3445 rcu_assign_pointer(dev->rx_handler, rx_handler); 3446 3447 return 0; 3448 } 3449 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 3450 3451 /** 3452 * netdev_rx_handler_unregister - unregister receive handler 3453 * @dev: device to unregister a handler from 3454 * 3455 * Unregister a receive handler from a device. 3456 * 3457 * The caller must hold the rtnl_mutex. 3458 */ 3459 void netdev_rx_handler_unregister(struct net_device *dev) 3460 { 3461 3462 ASSERT_RTNL(); 3463 RCU_INIT_POINTER(dev->rx_handler, NULL); 3464 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 3465 * section has a guarantee to see a non NULL rx_handler_data 3466 * as well. 3467 */ 3468 synchronize_net(); 3469 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 3470 } 3471 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 3472 3473 /* 3474 * Limit the use of PFMEMALLOC reserves to those protocols that implement 3475 * the special handling of PFMEMALLOC skbs. 3476 */ 3477 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 3478 { 3479 switch (skb->protocol) { 3480 case __constant_htons(ETH_P_ARP): 3481 case __constant_htons(ETH_P_IP): 3482 case __constant_htons(ETH_P_IPV6): 3483 case __constant_htons(ETH_P_8021Q): 3484 case __constant_htons(ETH_P_8021AD): 3485 return true; 3486 default: 3487 return false; 3488 } 3489 } 3490 3491 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc) 3492 { 3493 struct packet_type *ptype, *pt_prev; 3494 rx_handler_func_t *rx_handler; 3495 struct net_device *orig_dev; 3496 struct net_device *null_or_dev; 3497 bool deliver_exact = false; 3498 int ret = NET_RX_DROP; 3499 __be16 type; 3500 3501 net_timestamp_check(!netdev_tstamp_prequeue, skb); 3502 3503 trace_netif_receive_skb(skb); 3504 3505 /* if we've gotten here through NAPI, check netpoll */ 3506 if (netpoll_receive_skb(skb)) 3507 goto out; 3508 3509 orig_dev = skb->dev; 3510 3511 skb_reset_network_header(skb); 3512 if (!skb_transport_header_was_set(skb)) 3513 skb_reset_transport_header(skb); 3514 skb_reset_mac_len(skb); 3515 3516 pt_prev = NULL; 3517 3518 rcu_read_lock(); 3519 3520 another_round: 3521 skb->skb_iif = skb->dev->ifindex; 3522 3523 __this_cpu_inc(softnet_data.processed); 3524 3525 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 3526 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 3527 skb = vlan_untag(skb); 3528 if (unlikely(!skb)) 3529 goto unlock; 3530 } 3531 3532 #ifdef CONFIG_NET_CLS_ACT 3533 if (skb->tc_verd & TC_NCLS) { 3534 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 3535 goto ncls; 3536 } 3537 #endif 3538 3539 if (pfmemalloc) 3540 goto skip_taps; 3541 3542 list_for_each_entry_rcu(ptype, &ptype_all, list) { 3543 if (!ptype->dev || ptype->dev == skb->dev) { 3544 if (pt_prev) 3545 ret = deliver_skb(skb, pt_prev, orig_dev); 3546 pt_prev = ptype; 3547 } 3548 } 3549 3550 skip_taps: 3551 #ifdef CONFIG_NET_CLS_ACT 3552 skb = handle_ing(skb, &pt_prev, &ret, orig_dev); 3553 if (!skb) 3554 goto unlock; 3555 ncls: 3556 #endif 3557 3558 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 3559 goto drop; 3560 3561 if (vlan_tx_tag_present(skb)) { 3562 if (pt_prev) { 3563 ret = deliver_skb(skb, pt_prev, orig_dev); 3564 pt_prev = NULL; 3565 } 3566 if (vlan_do_receive(&skb)) 3567 goto another_round; 3568 else if (unlikely(!skb)) 3569 goto unlock; 3570 } 3571 3572 rx_handler = rcu_dereference(skb->dev->rx_handler); 3573 if (rx_handler) { 3574 if (pt_prev) { 3575 ret = deliver_skb(skb, pt_prev, orig_dev); 3576 pt_prev = NULL; 3577 } 3578 switch (rx_handler(&skb)) { 3579 case RX_HANDLER_CONSUMED: 3580 ret = NET_RX_SUCCESS; 3581 goto unlock; 3582 case RX_HANDLER_ANOTHER: 3583 goto another_round; 3584 case RX_HANDLER_EXACT: 3585 deliver_exact = true; 3586 case RX_HANDLER_PASS: 3587 break; 3588 default: 3589 BUG(); 3590 } 3591 } 3592 3593 if (unlikely(vlan_tx_tag_present(skb))) { 3594 if (vlan_tx_tag_get_id(skb)) 3595 skb->pkt_type = PACKET_OTHERHOST; 3596 /* Note: we might in the future use prio bits 3597 * and set skb->priority like in vlan_do_receive() 3598 * For the time being, just ignore Priority Code Point 3599 */ 3600 skb->vlan_tci = 0; 3601 } 3602 3603 /* deliver only exact match when indicated */ 3604 null_or_dev = deliver_exact ? skb->dev : NULL; 3605 3606 type = skb->protocol; 3607 list_for_each_entry_rcu(ptype, 3608 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 3609 if (ptype->type == type && 3610 (ptype->dev == null_or_dev || ptype->dev == skb->dev || 3611 ptype->dev == orig_dev)) { 3612 if (pt_prev) 3613 ret = deliver_skb(skb, pt_prev, orig_dev); 3614 pt_prev = ptype; 3615 } 3616 } 3617 3618 if (pt_prev) { 3619 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 3620 goto drop; 3621 else 3622 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 3623 } else { 3624 drop: 3625 atomic_long_inc(&skb->dev->rx_dropped); 3626 kfree_skb(skb); 3627 /* Jamal, now you will not able to escape explaining 3628 * me how you were going to use this. :-) 3629 */ 3630 ret = NET_RX_DROP; 3631 } 3632 3633 unlock: 3634 rcu_read_unlock(); 3635 out: 3636 return ret; 3637 } 3638 3639 static int __netif_receive_skb(struct sk_buff *skb) 3640 { 3641 int ret; 3642 3643 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 3644 unsigned long pflags = current->flags; 3645 3646 /* 3647 * PFMEMALLOC skbs are special, they should 3648 * - be delivered to SOCK_MEMALLOC sockets only 3649 * - stay away from userspace 3650 * - have bounded memory usage 3651 * 3652 * Use PF_MEMALLOC as this saves us from propagating the allocation 3653 * context down to all allocation sites. 3654 */ 3655 current->flags |= PF_MEMALLOC; 3656 ret = __netif_receive_skb_core(skb, true); 3657 tsk_restore_flags(current, pflags, PF_MEMALLOC); 3658 } else 3659 ret = __netif_receive_skb_core(skb, false); 3660 3661 return ret; 3662 } 3663 3664 /** 3665 * netif_receive_skb - process receive buffer from network 3666 * @skb: buffer to process 3667 * 3668 * netif_receive_skb() is the main receive data processing function. 3669 * It always succeeds. The buffer may be dropped during processing 3670 * for congestion control or by the protocol layers. 3671 * 3672 * This function may only be called from softirq context and interrupts 3673 * should be enabled. 3674 * 3675 * Return values (usually ignored): 3676 * NET_RX_SUCCESS: no congestion 3677 * NET_RX_DROP: packet was dropped 3678 */ 3679 int netif_receive_skb(struct sk_buff *skb) 3680 { 3681 net_timestamp_check(netdev_tstamp_prequeue, skb); 3682 3683 if (skb_defer_rx_timestamp(skb)) 3684 return NET_RX_SUCCESS; 3685 3686 #ifdef CONFIG_RPS 3687 if (static_key_false(&rps_needed)) { 3688 struct rps_dev_flow voidflow, *rflow = &voidflow; 3689 int cpu, ret; 3690 3691 rcu_read_lock(); 3692 3693 cpu = get_rps_cpu(skb->dev, skb, &rflow); 3694 3695 if (cpu >= 0) { 3696 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3697 rcu_read_unlock(); 3698 return ret; 3699 } 3700 rcu_read_unlock(); 3701 } 3702 #endif 3703 return __netif_receive_skb(skb); 3704 } 3705 EXPORT_SYMBOL(netif_receive_skb); 3706 3707 /* Network device is going away, flush any packets still pending 3708 * Called with irqs disabled. 3709 */ 3710 static void flush_backlog(void *arg) 3711 { 3712 struct net_device *dev = arg; 3713 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3714 struct sk_buff *skb, *tmp; 3715 3716 rps_lock(sd); 3717 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 3718 if (skb->dev == dev) { 3719 __skb_unlink(skb, &sd->input_pkt_queue); 3720 kfree_skb(skb); 3721 input_queue_head_incr(sd); 3722 } 3723 } 3724 rps_unlock(sd); 3725 3726 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 3727 if (skb->dev == dev) { 3728 __skb_unlink(skb, &sd->process_queue); 3729 kfree_skb(skb); 3730 input_queue_head_incr(sd); 3731 } 3732 } 3733 } 3734 3735 static int napi_gro_complete(struct sk_buff *skb) 3736 { 3737 struct packet_offload *ptype; 3738 __be16 type = skb->protocol; 3739 struct list_head *head = &offload_base; 3740 int err = -ENOENT; 3741 3742 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb)); 3743 3744 if (NAPI_GRO_CB(skb)->count == 1) { 3745 skb_shinfo(skb)->gso_size = 0; 3746 goto out; 3747 } 3748 3749 rcu_read_lock(); 3750 list_for_each_entry_rcu(ptype, head, list) { 3751 if (ptype->type != type || !ptype->callbacks.gro_complete) 3752 continue; 3753 3754 err = ptype->callbacks.gro_complete(skb); 3755 break; 3756 } 3757 rcu_read_unlock(); 3758 3759 if (err) { 3760 WARN_ON(&ptype->list == head); 3761 kfree_skb(skb); 3762 return NET_RX_SUCCESS; 3763 } 3764 3765 out: 3766 return netif_receive_skb(skb); 3767 } 3768 3769 /* napi->gro_list contains packets ordered by age. 3770 * youngest packets at the head of it. 3771 * Complete skbs in reverse order to reduce latencies. 3772 */ 3773 void napi_gro_flush(struct napi_struct *napi, bool flush_old) 3774 { 3775 struct sk_buff *skb, *prev = NULL; 3776 3777 /* scan list and build reverse chain */ 3778 for (skb = napi->gro_list; skb != NULL; skb = skb->next) { 3779 skb->prev = prev; 3780 prev = skb; 3781 } 3782 3783 for (skb = prev; skb; skb = prev) { 3784 skb->next = NULL; 3785 3786 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies) 3787 return; 3788 3789 prev = skb->prev; 3790 napi_gro_complete(skb); 3791 napi->gro_count--; 3792 } 3793 3794 napi->gro_list = NULL; 3795 } 3796 EXPORT_SYMBOL(napi_gro_flush); 3797 3798 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb) 3799 { 3800 struct sk_buff *p; 3801 unsigned int maclen = skb->dev->hard_header_len; 3802 3803 for (p = napi->gro_list; p; p = p->next) { 3804 unsigned long diffs; 3805 3806 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 3807 diffs |= p->vlan_tci ^ skb->vlan_tci; 3808 if (maclen == ETH_HLEN) 3809 diffs |= compare_ether_header(skb_mac_header(p), 3810 skb_gro_mac_header(skb)); 3811 else if (!diffs) 3812 diffs = memcmp(skb_mac_header(p), 3813 skb_gro_mac_header(skb), 3814 maclen); 3815 NAPI_GRO_CB(p)->same_flow = !diffs; 3816 NAPI_GRO_CB(p)->flush = 0; 3817 } 3818 } 3819 3820 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3821 { 3822 struct sk_buff **pp = NULL; 3823 struct packet_offload *ptype; 3824 __be16 type = skb->protocol; 3825 struct list_head *head = &offload_base; 3826 int same_flow; 3827 enum gro_result ret; 3828 3829 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb)) 3830 goto normal; 3831 3832 if (skb_is_gso(skb) || skb_has_frag_list(skb)) 3833 goto normal; 3834 3835 gro_list_prepare(napi, skb); 3836 3837 rcu_read_lock(); 3838 list_for_each_entry_rcu(ptype, head, list) { 3839 if (ptype->type != type || !ptype->callbacks.gro_receive) 3840 continue; 3841 3842 skb_set_network_header(skb, skb_gro_offset(skb)); 3843 skb_reset_mac_len(skb); 3844 NAPI_GRO_CB(skb)->same_flow = 0; 3845 NAPI_GRO_CB(skb)->flush = 0; 3846 NAPI_GRO_CB(skb)->free = 0; 3847 3848 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb); 3849 break; 3850 } 3851 rcu_read_unlock(); 3852 3853 if (&ptype->list == head) 3854 goto normal; 3855 3856 same_flow = NAPI_GRO_CB(skb)->same_flow; 3857 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 3858 3859 if (pp) { 3860 struct sk_buff *nskb = *pp; 3861 3862 *pp = nskb->next; 3863 nskb->next = NULL; 3864 napi_gro_complete(nskb); 3865 napi->gro_count--; 3866 } 3867 3868 if (same_flow) 3869 goto ok; 3870 3871 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS) 3872 goto normal; 3873 3874 napi->gro_count++; 3875 NAPI_GRO_CB(skb)->count = 1; 3876 NAPI_GRO_CB(skb)->age = jiffies; 3877 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 3878 skb->next = napi->gro_list; 3879 napi->gro_list = skb; 3880 ret = GRO_HELD; 3881 3882 pull: 3883 if (skb_headlen(skb) < skb_gro_offset(skb)) { 3884 int grow = skb_gro_offset(skb) - skb_headlen(skb); 3885 3886 BUG_ON(skb->end - skb->tail < grow); 3887 3888 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 3889 3890 skb->tail += grow; 3891 skb->data_len -= grow; 3892 3893 skb_shinfo(skb)->frags[0].page_offset += grow; 3894 skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow); 3895 3896 if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) { 3897 skb_frag_unref(skb, 0); 3898 memmove(skb_shinfo(skb)->frags, 3899 skb_shinfo(skb)->frags + 1, 3900 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t)); 3901 } 3902 } 3903 3904 ok: 3905 return ret; 3906 3907 normal: 3908 ret = GRO_NORMAL; 3909 goto pull; 3910 } 3911 3912 3913 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 3914 { 3915 switch (ret) { 3916 case GRO_NORMAL: 3917 if (netif_receive_skb(skb)) 3918 ret = GRO_DROP; 3919 break; 3920 3921 case GRO_DROP: 3922 kfree_skb(skb); 3923 break; 3924 3925 case GRO_MERGED_FREE: 3926 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 3927 kmem_cache_free(skbuff_head_cache, skb); 3928 else 3929 __kfree_skb(skb); 3930 break; 3931 3932 case GRO_HELD: 3933 case GRO_MERGED: 3934 break; 3935 } 3936 3937 return ret; 3938 } 3939 3940 static void skb_gro_reset_offset(struct sk_buff *skb) 3941 { 3942 const struct skb_shared_info *pinfo = skb_shinfo(skb); 3943 const skb_frag_t *frag0 = &pinfo->frags[0]; 3944 3945 NAPI_GRO_CB(skb)->data_offset = 0; 3946 NAPI_GRO_CB(skb)->frag0 = NULL; 3947 NAPI_GRO_CB(skb)->frag0_len = 0; 3948 3949 if (skb_mac_header(skb) == skb_tail_pointer(skb) && 3950 pinfo->nr_frags && 3951 !PageHighMem(skb_frag_page(frag0))) { 3952 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0); 3953 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0); 3954 } 3955 } 3956 3957 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3958 { 3959 skb_gro_reset_offset(skb); 3960 3961 return napi_skb_finish(dev_gro_receive(napi, skb), skb); 3962 } 3963 EXPORT_SYMBOL(napi_gro_receive); 3964 3965 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 3966 { 3967 __skb_pull(skb, skb_headlen(skb)); 3968 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 3969 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 3970 skb->vlan_tci = 0; 3971 skb->dev = napi->dev; 3972 skb->skb_iif = 0; 3973 3974 napi->skb = skb; 3975 } 3976 3977 struct sk_buff *napi_get_frags(struct napi_struct *napi) 3978 { 3979 struct sk_buff *skb = napi->skb; 3980 3981 if (!skb) { 3982 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD); 3983 if (skb) 3984 napi->skb = skb; 3985 } 3986 return skb; 3987 } 3988 EXPORT_SYMBOL(napi_get_frags); 3989 3990 static gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb, 3991 gro_result_t ret) 3992 { 3993 switch (ret) { 3994 case GRO_NORMAL: 3995 case GRO_HELD: 3996 skb->protocol = eth_type_trans(skb, skb->dev); 3997 3998 if (ret == GRO_HELD) 3999 skb_gro_pull(skb, -ETH_HLEN); 4000 else if (netif_receive_skb(skb)) 4001 ret = GRO_DROP; 4002 break; 4003 4004 case GRO_DROP: 4005 case GRO_MERGED_FREE: 4006 napi_reuse_skb(napi, skb); 4007 break; 4008 4009 case GRO_MERGED: 4010 break; 4011 } 4012 4013 return ret; 4014 } 4015 4016 static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 4017 { 4018 struct sk_buff *skb = napi->skb; 4019 struct ethhdr *eth; 4020 unsigned int hlen; 4021 unsigned int off; 4022 4023 napi->skb = NULL; 4024 4025 skb_reset_mac_header(skb); 4026 skb_gro_reset_offset(skb); 4027 4028 off = skb_gro_offset(skb); 4029 hlen = off + sizeof(*eth); 4030 eth = skb_gro_header_fast(skb, off); 4031 if (skb_gro_header_hard(skb, hlen)) { 4032 eth = skb_gro_header_slow(skb, hlen, off); 4033 if (unlikely(!eth)) { 4034 napi_reuse_skb(napi, skb); 4035 skb = NULL; 4036 goto out; 4037 } 4038 } 4039 4040 skb_gro_pull(skb, sizeof(*eth)); 4041 4042 /* 4043 * This works because the only protocols we care about don't require 4044 * special handling. We'll fix it up properly at the end. 4045 */ 4046 skb->protocol = eth->h_proto; 4047 4048 out: 4049 return skb; 4050 } 4051 4052 gro_result_t napi_gro_frags(struct napi_struct *napi) 4053 { 4054 struct sk_buff *skb = napi_frags_skb(napi); 4055 4056 if (!skb) 4057 return GRO_DROP; 4058 4059 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb)); 4060 } 4061 EXPORT_SYMBOL(napi_gro_frags); 4062 4063 /* 4064 * net_rps_action sends any pending IPI's for rps. 4065 * Note: called with local irq disabled, but exits with local irq enabled. 4066 */ 4067 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 4068 { 4069 #ifdef CONFIG_RPS 4070 struct softnet_data *remsd = sd->rps_ipi_list; 4071 4072 if (remsd) { 4073 sd->rps_ipi_list = NULL; 4074 4075 local_irq_enable(); 4076 4077 /* Send pending IPI's to kick RPS processing on remote cpus. */ 4078 while (remsd) { 4079 struct softnet_data *next = remsd->rps_ipi_next; 4080 4081 if (cpu_online(remsd->cpu)) 4082 __smp_call_function_single(remsd->cpu, 4083 &remsd->csd, 0); 4084 remsd = next; 4085 } 4086 } else 4087 #endif 4088 local_irq_enable(); 4089 } 4090 4091 static int process_backlog(struct napi_struct *napi, int quota) 4092 { 4093 int work = 0; 4094 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 4095 4096 #ifdef CONFIG_RPS 4097 /* Check if we have pending ipi, its better to send them now, 4098 * not waiting net_rx_action() end. 4099 */ 4100 if (sd->rps_ipi_list) { 4101 local_irq_disable(); 4102 net_rps_action_and_irq_enable(sd); 4103 } 4104 #endif 4105 napi->weight = weight_p; 4106 local_irq_disable(); 4107 while (work < quota) { 4108 struct sk_buff *skb; 4109 unsigned int qlen; 4110 4111 while ((skb = __skb_dequeue(&sd->process_queue))) { 4112 local_irq_enable(); 4113 __netif_receive_skb(skb); 4114 local_irq_disable(); 4115 input_queue_head_incr(sd); 4116 if (++work >= quota) { 4117 local_irq_enable(); 4118 return work; 4119 } 4120 } 4121 4122 rps_lock(sd); 4123 qlen = skb_queue_len(&sd->input_pkt_queue); 4124 if (qlen) 4125 skb_queue_splice_tail_init(&sd->input_pkt_queue, 4126 &sd->process_queue); 4127 4128 if (qlen < quota - work) { 4129 /* 4130 * Inline a custom version of __napi_complete(). 4131 * only current cpu owns and manipulates this napi, 4132 * and NAPI_STATE_SCHED is the only possible flag set on backlog. 4133 * we can use a plain write instead of clear_bit(), 4134 * and we dont need an smp_mb() memory barrier. 4135 */ 4136 list_del(&napi->poll_list); 4137 napi->state = 0; 4138 4139 quota = work + qlen; 4140 } 4141 rps_unlock(sd); 4142 } 4143 local_irq_enable(); 4144 4145 return work; 4146 } 4147 4148 /** 4149 * __napi_schedule - schedule for receive 4150 * @n: entry to schedule 4151 * 4152 * The entry's receive function will be scheduled to run 4153 */ 4154 void __napi_schedule(struct napi_struct *n) 4155 { 4156 unsigned long flags; 4157 4158 local_irq_save(flags); 4159 ____napi_schedule(&__get_cpu_var(softnet_data), n); 4160 local_irq_restore(flags); 4161 } 4162 EXPORT_SYMBOL(__napi_schedule); 4163 4164 void __napi_complete(struct napi_struct *n) 4165 { 4166 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 4167 BUG_ON(n->gro_list); 4168 4169 list_del(&n->poll_list); 4170 smp_mb__before_clear_bit(); 4171 clear_bit(NAPI_STATE_SCHED, &n->state); 4172 } 4173 EXPORT_SYMBOL(__napi_complete); 4174 4175 void napi_complete(struct napi_struct *n) 4176 { 4177 unsigned long flags; 4178 4179 /* 4180 * don't let napi dequeue from the cpu poll list 4181 * just in case its running on a different cpu 4182 */ 4183 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state))) 4184 return; 4185 4186 napi_gro_flush(n, false); 4187 local_irq_save(flags); 4188 __napi_complete(n); 4189 local_irq_restore(flags); 4190 } 4191 EXPORT_SYMBOL(napi_complete); 4192 4193 /* must be called under rcu_read_lock(), as we dont take a reference */ 4194 struct napi_struct *napi_by_id(unsigned int napi_id) 4195 { 4196 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 4197 struct napi_struct *napi; 4198 4199 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 4200 if (napi->napi_id == napi_id) 4201 return napi; 4202 4203 return NULL; 4204 } 4205 EXPORT_SYMBOL_GPL(napi_by_id); 4206 4207 void napi_hash_add(struct napi_struct *napi) 4208 { 4209 if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) { 4210 4211 spin_lock(&napi_hash_lock); 4212 4213 /* 0 is not a valid id, we also skip an id that is taken 4214 * we expect both events to be extremely rare 4215 */ 4216 napi->napi_id = 0; 4217 while (!napi->napi_id) { 4218 napi->napi_id = ++napi_gen_id; 4219 if (napi_by_id(napi->napi_id)) 4220 napi->napi_id = 0; 4221 } 4222 4223 hlist_add_head_rcu(&napi->napi_hash_node, 4224 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 4225 4226 spin_unlock(&napi_hash_lock); 4227 } 4228 } 4229 EXPORT_SYMBOL_GPL(napi_hash_add); 4230 4231 /* Warning : caller is responsible to make sure rcu grace period 4232 * is respected before freeing memory containing @napi 4233 */ 4234 void napi_hash_del(struct napi_struct *napi) 4235 { 4236 spin_lock(&napi_hash_lock); 4237 4238 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) 4239 hlist_del_rcu(&napi->napi_hash_node); 4240 4241 spin_unlock(&napi_hash_lock); 4242 } 4243 EXPORT_SYMBOL_GPL(napi_hash_del); 4244 4245 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 4246 int (*poll)(struct napi_struct *, int), int weight) 4247 { 4248 INIT_LIST_HEAD(&napi->poll_list); 4249 napi->gro_count = 0; 4250 napi->gro_list = NULL; 4251 napi->skb = NULL; 4252 napi->poll = poll; 4253 if (weight > NAPI_POLL_WEIGHT) 4254 pr_err_once("netif_napi_add() called with weight %d on device %s\n", 4255 weight, dev->name); 4256 napi->weight = weight; 4257 list_add(&napi->dev_list, &dev->napi_list); 4258 napi->dev = dev; 4259 #ifdef CONFIG_NETPOLL 4260 spin_lock_init(&napi->poll_lock); 4261 napi->poll_owner = -1; 4262 #endif 4263 set_bit(NAPI_STATE_SCHED, &napi->state); 4264 } 4265 EXPORT_SYMBOL(netif_napi_add); 4266 4267 void netif_napi_del(struct napi_struct *napi) 4268 { 4269 struct sk_buff *skb, *next; 4270 4271 list_del_init(&napi->dev_list); 4272 napi_free_frags(napi); 4273 4274 for (skb = napi->gro_list; skb; skb = next) { 4275 next = skb->next; 4276 skb->next = NULL; 4277 kfree_skb(skb); 4278 } 4279 4280 napi->gro_list = NULL; 4281 napi->gro_count = 0; 4282 } 4283 EXPORT_SYMBOL(netif_napi_del); 4284 4285 static void net_rx_action(struct softirq_action *h) 4286 { 4287 struct softnet_data *sd = &__get_cpu_var(softnet_data); 4288 unsigned long time_limit = jiffies + 2; 4289 int budget = netdev_budget; 4290 void *have; 4291 4292 local_irq_disable(); 4293 4294 while (!list_empty(&sd->poll_list)) { 4295 struct napi_struct *n; 4296 int work, weight; 4297 4298 /* If softirq window is exhuasted then punt. 4299 * Allow this to run for 2 jiffies since which will allow 4300 * an average latency of 1.5/HZ. 4301 */ 4302 if (unlikely(budget <= 0 || time_after_eq(jiffies, time_limit))) 4303 goto softnet_break; 4304 4305 local_irq_enable(); 4306 4307 /* Even though interrupts have been re-enabled, this 4308 * access is safe because interrupts can only add new 4309 * entries to the tail of this list, and only ->poll() 4310 * calls can remove this head entry from the list. 4311 */ 4312 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list); 4313 4314 have = netpoll_poll_lock(n); 4315 4316 weight = n->weight; 4317 4318 /* This NAPI_STATE_SCHED test is for avoiding a race 4319 * with netpoll's poll_napi(). Only the entity which 4320 * obtains the lock and sees NAPI_STATE_SCHED set will 4321 * actually make the ->poll() call. Therefore we avoid 4322 * accidentally calling ->poll() when NAPI is not scheduled. 4323 */ 4324 work = 0; 4325 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 4326 work = n->poll(n, weight); 4327 trace_napi_poll(n); 4328 } 4329 4330 WARN_ON_ONCE(work > weight); 4331 4332 budget -= work; 4333 4334 local_irq_disable(); 4335 4336 /* Drivers must not modify the NAPI state if they 4337 * consume the entire weight. In such cases this code 4338 * still "owns" the NAPI instance and therefore can 4339 * move the instance around on the list at-will. 4340 */ 4341 if (unlikely(work == weight)) { 4342 if (unlikely(napi_disable_pending(n))) { 4343 local_irq_enable(); 4344 napi_complete(n); 4345 local_irq_disable(); 4346 } else { 4347 if (n->gro_list) { 4348 /* flush too old packets 4349 * If HZ < 1000, flush all packets. 4350 */ 4351 local_irq_enable(); 4352 napi_gro_flush(n, HZ >= 1000); 4353 local_irq_disable(); 4354 } 4355 list_move_tail(&n->poll_list, &sd->poll_list); 4356 } 4357 } 4358 4359 netpoll_poll_unlock(have); 4360 } 4361 out: 4362 net_rps_action_and_irq_enable(sd); 4363 4364 #ifdef CONFIG_NET_DMA 4365 /* 4366 * There may not be any more sk_buffs coming right now, so push 4367 * any pending DMA copies to hardware 4368 */ 4369 dma_issue_pending_all(); 4370 #endif 4371 4372 return; 4373 4374 softnet_break: 4375 sd->time_squeeze++; 4376 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4377 goto out; 4378 } 4379 4380 struct netdev_adjacent { 4381 struct net_device *dev; 4382 4383 /* upper master flag, there can only be one master device per list */ 4384 bool master; 4385 4386 /* counter for the number of times this device was added to us */ 4387 u16 ref_nr; 4388 4389 /* private field for the users */ 4390 void *private; 4391 4392 struct list_head list; 4393 struct rcu_head rcu; 4394 }; 4395 4396 static struct netdev_adjacent *__netdev_find_adj_rcu(struct net_device *dev, 4397 struct net_device *adj_dev, 4398 struct list_head *adj_list) 4399 { 4400 struct netdev_adjacent *adj; 4401 4402 list_for_each_entry_rcu(adj, adj_list, list) { 4403 if (adj->dev == adj_dev) 4404 return adj; 4405 } 4406 return NULL; 4407 } 4408 4409 static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev, 4410 struct net_device *adj_dev, 4411 struct list_head *adj_list) 4412 { 4413 struct netdev_adjacent *adj; 4414 4415 list_for_each_entry(adj, adj_list, list) { 4416 if (adj->dev == adj_dev) 4417 return adj; 4418 } 4419 return NULL; 4420 } 4421 4422 /** 4423 * netdev_has_upper_dev - Check if device is linked to an upper device 4424 * @dev: device 4425 * @upper_dev: upper device to check 4426 * 4427 * Find out if a device is linked to specified upper device and return true 4428 * in case it is. Note that this checks only immediate upper device, 4429 * not through a complete stack of devices. The caller must hold the RTNL lock. 4430 */ 4431 bool netdev_has_upper_dev(struct net_device *dev, 4432 struct net_device *upper_dev) 4433 { 4434 ASSERT_RTNL(); 4435 4436 return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper); 4437 } 4438 EXPORT_SYMBOL(netdev_has_upper_dev); 4439 4440 /** 4441 * netdev_has_any_upper_dev - Check if device is linked to some device 4442 * @dev: device 4443 * 4444 * Find out if a device is linked to an upper device and return true in case 4445 * it is. The caller must hold the RTNL lock. 4446 */ 4447 bool netdev_has_any_upper_dev(struct net_device *dev) 4448 { 4449 ASSERT_RTNL(); 4450 4451 return !list_empty(&dev->all_adj_list.upper); 4452 } 4453 EXPORT_SYMBOL(netdev_has_any_upper_dev); 4454 4455 /** 4456 * netdev_master_upper_dev_get - Get master upper device 4457 * @dev: device 4458 * 4459 * Find a master upper device and return pointer to it or NULL in case 4460 * it's not there. The caller must hold the RTNL lock. 4461 */ 4462 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 4463 { 4464 struct netdev_adjacent *upper; 4465 4466 ASSERT_RTNL(); 4467 4468 if (list_empty(&dev->adj_list.upper)) 4469 return NULL; 4470 4471 upper = list_first_entry(&dev->adj_list.upper, 4472 struct netdev_adjacent, list); 4473 if (likely(upper->master)) 4474 return upper->dev; 4475 return NULL; 4476 } 4477 EXPORT_SYMBOL(netdev_master_upper_dev_get); 4478 4479 void *netdev_adjacent_get_private(struct list_head *adj_list) 4480 { 4481 struct netdev_adjacent *adj; 4482 4483 adj = list_entry(adj_list, struct netdev_adjacent, list); 4484 4485 return adj->private; 4486 } 4487 EXPORT_SYMBOL(netdev_adjacent_get_private); 4488 4489 /** 4490 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list 4491 * @dev: device 4492 * @iter: list_head ** of the current position 4493 * 4494 * Gets the next device from the dev's upper list, starting from iter 4495 * position. The caller must hold RCU read lock. 4496 */ 4497 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev, 4498 struct list_head **iter) 4499 { 4500 struct netdev_adjacent *upper; 4501 4502 WARN_ON_ONCE(!rcu_read_lock_held()); 4503 4504 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 4505 4506 if (&upper->list == &dev->all_adj_list.upper) 4507 return NULL; 4508 4509 *iter = &upper->list; 4510 4511 return upper->dev; 4512 } 4513 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu); 4514 4515 /** 4516 * netdev_lower_get_next_private - Get the next ->private from the 4517 * lower neighbour list 4518 * @dev: device 4519 * @iter: list_head ** of the current position 4520 * 4521 * Gets the next netdev_adjacent->private from the dev's lower neighbour 4522 * list, starting from iter position. The caller must hold either hold the 4523 * RTNL lock or its own locking that guarantees that the neighbour lower 4524 * list will remain unchainged. 4525 */ 4526 void *netdev_lower_get_next_private(struct net_device *dev, 4527 struct list_head **iter) 4528 { 4529 struct netdev_adjacent *lower; 4530 4531 lower = list_entry(*iter, struct netdev_adjacent, list); 4532 4533 if (&lower->list == &dev->adj_list.lower) 4534 return NULL; 4535 4536 if (iter) 4537 *iter = lower->list.next; 4538 4539 return lower->private; 4540 } 4541 EXPORT_SYMBOL(netdev_lower_get_next_private); 4542 4543 /** 4544 * netdev_lower_get_next_private_rcu - Get the next ->private from the 4545 * lower neighbour list, RCU 4546 * variant 4547 * @dev: device 4548 * @iter: list_head ** of the current position 4549 * 4550 * Gets the next netdev_adjacent->private from the dev's lower neighbour 4551 * list, starting from iter position. The caller must hold RCU read lock. 4552 */ 4553 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 4554 struct list_head **iter) 4555 { 4556 struct netdev_adjacent *lower; 4557 4558 WARN_ON_ONCE(!rcu_read_lock_held()); 4559 4560 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 4561 4562 if (&lower->list == &dev->adj_list.lower) 4563 return NULL; 4564 4565 if (iter) 4566 *iter = &lower->list; 4567 4568 return lower->private; 4569 } 4570 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 4571 4572 /** 4573 * netdev_master_upper_dev_get_rcu - Get master upper device 4574 * @dev: device 4575 * 4576 * Find a master upper device and return pointer to it or NULL in case 4577 * it's not there. The caller must hold the RCU read lock. 4578 */ 4579 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 4580 { 4581 struct netdev_adjacent *upper; 4582 4583 upper = list_first_or_null_rcu(&dev->adj_list.upper, 4584 struct netdev_adjacent, list); 4585 if (upper && likely(upper->master)) 4586 return upper->dev; 4587 return NULL; 4588 } 4589 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 4590 4591 static int __netdev_adjacent_dev_insert(struct net_device *dev, 4592 struct net_device *adj_dev, 4593 struct list_head *dev_list, 4594 void *private, bool master) 4595 { 4596 struct netdev_adjacent *adj; 4597 char linkname[IFNAMSIZ+7]; 4598 int ret; 4599 4600 adj = __netdev_find_adj(dev, adj_dev, dev_list); 4601 4602 if (adj) { 4603 adj->ref_nr++; 4604 return 0; 4605 } 4606 4607 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 4608 if (!adj) 4609 return -ENOMEM; 4610 4611 adj->dev = adj_dev; 4612 adj->master = master; 4613 adj->ref_nr = 1; 4614 adj->private = private; 4615 dev_hold(adj_dev); 4616 4617 pr_debug("dev_hold for %s, because of link added from %s to %s\n", 4618 adj_dev->name, dev->name, adj_dev->name); 4619 4620 if (dev_list == &dev->adj_list.lower) { 4621 sprintf(linkname, "lower_%s", adj_dev->name); 4622 ret = sysfs_create_link(&(dev->dev.kobj), 4623 &(adj_dev->dev.kobj), linkname); 4624 if (ret) 4625 goto free_adj; 4626 } else if (dev_list == &dev->adj_list.upper) { 4627 sprintf(linkname, "upper_%s", adj_dev->name); 4628 ret = sysfs_create_link(&(dev->dev.kobj), 4629 &(adj_dev->dev.kobj), linkname); 4630 if (ret) 4631 goto free_adj; 4632 } 4633 4634 /* Ensure that master link is always the first item in list. */ 4635 if (master) { 4636 ret = sysfs_create_link(&(dev->dev.kobj), 4637 &(adj_dev->dev.kobj), "master"); 4638 if (ret) 4639 goto remove_symlinks; 4640 4641 list_add_rcu(&adj->list, dev_list); 4642 } else { 4643 list_add_tail_rcu(&adj->list, dev_list); 4644 } 4645 4646 return 0; 4647 4648 remove_symlinks: 4649 if (dev_list == &dev->adj_list.lower) { 4650 sprintf(linkname, "lower_%s", adj_dev->name); 4651 sysfs_remove_link(&(dev->dev.kobj), linkname); 4652 } else if (dev_list == &dev->adj_list.upper) { 4653 sprintf(linkname, "upper_%s", adj_dev->name); 4654 sysfs_remove_link(&(dev->dev.kobj), linkname); 4655 } 4656 4657 free_adj: 4658 kfree(adj); 4659 dev_put(adj_dev); 4660 4661 return ret; 4662 } 4663 4664 void __netdev_adjacent_dev_remove(struct net_device *dev, 4665 struct net_device *adj_dev, 4666 struct list_head *dev_list) 4667 { 4668 struct netdev_adjacent *adj; 4669 char linkname[IFNAMSIZ+7]; 4670 4671 adj = __netdev_find_adj(dev, adj_dev, dev_list); 4672 4673 if (!adj) { 4674 pr_err("tried to remove device %s from %s\n", 4675 dev->name, adj_dev->name); 4676 BUG(); 4677 } 4678 4679 if (adj->ref_nr > 1) { 4680 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name, 4681 adj->ref_nr-1); 4682 adj->ref_nr--; 4683 return; 4684 } 4685 4686 if (adj->master) 4687 sysfs_remove_link(&(dev->dev.kobj), "master"); 4688 4689 if (dev_list == &dev->adj_list.lower) { 4690 sprintf(linkname, "lower_%s", adj_dev->name); 4691 sysfs_remove_link(&(dev->dev.kobj), linkname); 4692 } else if (dev_list == &dev->adj_list.upper) { 4693 sprintf(linkname, "upper_%s", adj_dev->name); 4694 sysfs_remove_link(&(dev->dev.kobj), linkname); 4695 } 4696 4697 list_del_rcu(&adj->list); 4698 pr_debug("dev_put for %s, because link removed from %s to %s\n", 4699 adj_dev->name, dev->name, adj_dev->name); 4700 dev_put(adj_dev); 4701 kfree_rcu(adj, rcu); 4702 } 4703 4704 int __netdev_adjacent_dev_link_lists(struct net_device *dev, 4705 struct net_device *upper_dev, 4706 struct list_head *up_list, 4707 struct list_head *down_list, 4708 void *private, bool master) 4709 { 4710 int ret; 4711 4712 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private, 4713 master); 4714 if (ret) 4715 return ret; 4716 4717 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private, 4718 false); 4719 if (ret) { 4720 __netdev_adjacent_dev_remove(dev, upper_dev, up_list); 4721 return ret; 4722 } 4723 4724 return 0; 4725 } 4726 4727 int __netdev_adjacent_dev_link(struct net_device *dev, 4728 struct net_device *upper_dev) 4729 { 4730 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 4731 &dev->all_adj_list.upper, 4732 &upper_dev->all_adj_list.lower, 4733 NULL, false); 4734 } 4735 4736 void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 4737 struct net_device *upper_dev, 4738 struct list_head *up_list, 4739 struct list_head *down_list) 4740 { 4741 __netdev_adjacent_dev_remove(dev, upper_dev, up_list); 4742 __netdev_adjacent_dev_remove(upper_dev, dev, down_list); 4743 } 4744 4745 void __netdev_adjacent_dev_unlink(struct net_device *dev, 4746 struct net_device *upper_dev) 4747 { 4748 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 4749 &dev->all_adj_list.upper, 4750 &upper_dev->all_adj_list.lower); 4751 } 4752 4753 int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 4754 struct net_device *upper_dev, 4755 void *private, bool master) 4756 { 4757 int ret = __netdev_adjacent_dev_link(dev, upper_dev); 4758 4759 if (ret) 4760 return ret; 4761 4762 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev, 4763 &dev->adj_list.upper, 4764 &upper_dev->adj_list.lower, 4765 private, master); 4766 if (ret) { 4767 __netdev_adjacent_dev_unlink(dev, upper_dev); 4768 return ret; 4769 } 4770 4771 return 0; 4772 } 4773 4774 void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 4775 struct net_device *upper_dev) 4776 { 4777 __netdev_adjacent_dev_unlink(dev, upper_dev); 4778 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 4779 &dev->adj_list.upper, 4780 &upper_dev->adj_list.lower); 4781 } 4782 4783 static int __netdev_upper_dev_link(struct net_device *dev, 4784 struct net_device *upper_dev, bool master, 4785 void *private) 4786 { 4787 struct netdev_adjacent *i, *j, *to_i, *to_j; 4788 int ret = 0; 4789 4790 ASSERT_RTNL(); 4791 4792 if (dev == upper_dev) 4793 return -EBUSY; 4794 4795 /* To prevent loops, check if dev is not upper device to upper_dev. */ 4796 if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper)) 4797 return -EBUSY; 4798 4799 if (__netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper)) 4800 return -EEXIST; 4801 4802 if (master && netdev_master_upper_dev_get(dev)) 4803 return -EBUSY; 4804 4805 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private, 4806 master); 4807 if (ret) 4808 return ret; 4809 4810 /* Now that we linked these devs, make all the upper_dev's 4811 * all_adj_list.upper visible to every dev's all_adj_list.lower an 4812 * versa, and don't forget the devices itself. All of these 4813 * links are non-neighbours. 4814 */ 4815 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 4816 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) { 4817 pr_debug("Interlinking %s with %s, non-neighbour\n", 4818 i->dev->name, j->dev->name); 4819 ret = __netdev_adjacent_dev_link(i->dev, j->dev); 4820 if (ret) 4821 goto rollback_mesh; 4822 } 4823 } 4824 4825 /* add dev to every upper_dev's upper device */ 4826 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) { 4827 pr_debug("linking %s's upper device %s with %s\n", 4828 upper_dev->name, i->dev->name, dev->name); 4829 ret = __netdev_adjacent_dev_link(dev, i->dev); 4830 if (ret) 4831 goto rollback_upper_mesh; 4832 } 4833 4834 /* add upper_dev to every dev's lower device */ 4835 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 4836 pr_debug("linking %s's lower device %s with %s\n", dev->name, 4837 i->dev->name, upper_dev->name); 4838 ret = __netdev_adjacent_dev_link(i->dev, upper_dev); 4839 if (ret) 4840 goto rollback_lower_mesh; 4841 } 4842 4843 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev); 4844 return 0; 4845 4846 rollback_lower_mesh: 4847 to_i = i; 4848 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 4849 if (i == to_i) 4850 break; 4851 __netdev_adjacent_dev_unlink(i->dev, upper_dev); 4852 } 4853 4854 i = NULL; 4855 4856 rollback_upper_mesh: 4857 to_i = i; 4858 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) { 4859 if (i == to_i) 4860 break; 4861 __netdev_adjacent_dev_unlink(dev, i->dev); 4862 } 4863 4864 i = j = NULL; 4865 4866 rollback_mesh: 4867 to_i = i; 4868 to_j = j; 4869 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 4870 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) { 4871 if (i == to_i && j == to_j) 4872 break; 4873 __netdev_adjacent_dev_unlink(i->dev, j->dev); 4874 } 4875 if (i == to_i) 4876 break; 4877 } 4878 4879 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 4880 4881 return ret; 4882 } 4883 4884 /** 4885 * netdev_upper_dev_link - Add a link to the upper device 4886 * @dev: device 4887 * @upper_dev: new upper device 4888 * 4889 * Adds a link to device which is upper to this one. The caller must hold 4890 * the RTNL lock. On a failure a negative errno code is returned. 4891 * On success the reference counts are adjusted and the function 4892 * returns zero. 4893 */ 4894 int netdev_upper_dev_link(struct net_device *dev, 4895 struct net_device *upper_dev) 4896 { 4897 return __netdev_upper_dev_link(dev, upper_dev, false, NULL); 4898 } 4899 EXPORT_SYMBOL(netdev_upper_dev_link); 4900 4901 /** 4902 * netdev_master_upper_dev_link - Add a master link to the upper device 4903 * @dev: device 4904 * @upper_dev: new upper device 4905 * 4906 * Adds a link to device which is upper to this one. In this case, only 4907 * one master upper device can be linked, although other non-master devices 4908 * might be linked as well. The caller must hold the RTNL lock. 4909 * On a failure a negative errno code is returned. On success the reference 4910 * counts are adjusted and the function returns zero. 4911 */ 4912 int netdev_master_upper_dev_link(struct net_device *dev, 4913 struct net_device *upper_dev) 4914 { 4915 return __netdev_upper_dev_link(dev, upper_dev, true, NULL); 4916 } 4917 EXPORT_SYMBOL(netdev_master_upper_dev_link); 4918 4919 int netdev_master_upper_dev_link_private(struct net_device *dev, 4920 struct net_device *upper_dev, 4921 void *private) 4922 { 4923 return __netdev_upper_dev_link(dev, upper_dev, true, private); 4924 } 4925 EXPORT_SYMBOL(netdev_master_upper_dev_link_private); 4926 4927 /** 4928 * netdev_upper_dev_unlink - Removes a link to upper device 4929 * @dev: device 4930 * @upper_dev: new upper device 4931 * 4932 * Removes a link to device which is upper to this one. The caller must hold 4933 * the RTNL lock. 4934 */ 4935 void netdev_upper_dev_unlink(struct net_device *dev, 4936 struct net_device *upper_dev) 4937 { 4938 struct netdev_adjacent *i, *j; 4939 ASSERT_RTNL(); 4940 4941 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 4942 4943 /* Here is the tricky part. We must remove all dev's lower 4944 * devices from all upper_dev's upper devices and vice 4945 * versa, to maintain the graph relationship. 4946 */ 4947 list_for_each_entry(i, &dev->all_adj_list.lower, list) 4948 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) 4949 __netdev_adjacent_dev_unlink(i->dev, j->dev); 4950 4951 /* remove also the devices itself from lower/upper device 4952 * list 4953 */ 4954 list_for_each_entry(i, &dev->all_adj_list.lower, list) 4955 __netdev_adjacent_dev_unlink(i->dev, upper_dev); 4956 4957 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) 4958 __netdev_adjacent_dev_unlink(dev, i->dev); 4959 4960 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev); 4961 } 4962 EXPORT_SYMBOL(netdev_upper_dev_unlink); 4963 4964 void *netdev_lower_dev_get_private_rcu(struct net_device *dev, 4965 struct net_device *lower_dev) 4966 { 4967 struct netdev_adjacent *lower; 4968 4969 if (!lower_dev) 4970 return NULL; 4971 lower = __netdev_find_adj_rcu(dev, lower_dev, &dev->adj_list.lower); 4972 if (!lower) 4973 return NULL; 4974 4975 return lower->private; 4976 } 4977 EXPORT_SYMBOL(netdev_lower_dev_get_private_rcu); 4978 4979 void *netdev_lower_dev_get_private(struct net_device *dev, 4980 struct net_device *lower_dev) 4981 { 4982 struct netdev_adjacent *lower; 4983 4984 if (!lower_dev) 4985 return NULL; 4986 lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower); 4987 if (!lower) 4988 return NULL; 4989 4990 return lower->private; 4991 } 4992 EXPORT_SYMBOL(netdev_lower_dev_get_private); 4993 4994 static void dev_change_rx_flags(struct net_device *dev, int flags) 4995 { 4996 const struct net_device_ops *ops = dev->netdev_ops; 4997 4998 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags) 4999 ops->ndo_change_rx_flags(dev, flags); 5000 } 5001 5002 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 5003 { 5004 unsigned int old_flags = dev->flags; 5005 kuid_t uid; 5006 kgid_t gid; 5007 5008 ASSERT_RTNL(); 5009 5010 dev->flags |= IFF_PROMISC; 5011 dev->promiscuity += inc; 5012 if (dev->promiscuity == 0) { 5013 /* 5014 * Avoid overflow. 5015 * If inc causes overflow, untouch promisc and return error. 5016 */ 5017 if (inc < 0) 5018 dev->flags &= ~IFF_PROMISC; 5019 else { 5020 dev->promiscuity -= inc; 5021 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 5022 dev->name); 5023 return -EOVERFLOW; 5024 } 5025 } 5026 if (dev->flags != old_flags) { 5027 pr_info("device %s %s promiscuous mode\n", 5028 dev->name, 5029 dev->flags & IFF_PROMISC ? "entered" : "left"); 5030 if (audit_enabled) { 5031 current_uid_gid(&uid, &gid); 5032 audit_log(current->audit_context, GFP_ATOMIC, 5033 AUDIT_ANOM_PROMISCUOUS, 5034 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 5035 dev->name, (dev->flags & IFF_PROMISC), 5036 (old_flags & IFF_PROMISC), 5037 from_kuid(&init_user_ns, audit_get_loginuid(current)), 5038 from_kuid(&init_user_ns, uid), 5039 from_kgid(&init_user_ns, gid), 5040 audit_get_sessionid(current)); 5041 } 5042 5043 dev_change_rx_flags(dev, IFF_PROMISC); 5044 } 5045 if (notify) 5046 __dev_notify_flags(dev, old_flags, IFF_PROMISC); 5047 return 0; 5048 } 5049 5050 /** 5051 * dev_set_promiscuity - update promiscuity count on a device 5052 * @dev: device 5053 * @inc: modifier 5054 * 5055 * Add or remove promiscuity from a device. While the count in the device 5056 * remains above zero the interface remains promiscuous. Once it hits zero 5057 * the device reverts back to normal filtering operation. A negative inc 5058 * value is used to drop promiscuity on the device. 5059 * Return 0 if successful or a negative errno code on error. 5060 */ 5061 int dev_set_promiscuity(struct net_device *dev, int inc) 5062 { 5063 unsigned int old_flags = dev->flags; 5064 int err; 5065 5066 err = __dev_set_promiscuity(dev, inc, true); 5067 if (err < 0) 5068 return err; 5069 if (dev->flags != old_flags) 5070 dev_set_rx_mode(dev); 5071 return err; 5072 } 5073 EXPORT_SYMBOL(dev_set_promiscuity); 5074 5075 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 5076 { 5077 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 5078 5079 ASSERT_RTNL(); 5080 5081 dev->flags |= IFF_ALLMULTI; 5082 dev->allmulti += inc; 5083 if (dev->allmulti == 0) { 5084 /* 5085 * Avoid overflow. 5086 * If inc causes overflow, untouch allmulti and return error. 5087 */ 5088 if (inc < 0) 5089 dev->flags &= ~IFF_ALLMULTI; 5090 else { 5091 dev->allmulti -= inc; 5092 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 5093 dev->name); 5094 return -EOVERFLOW; 5095 } 5096 } 5097 if (dev->flags ^ old_flags) { 5098 dev_change_rx_flags(dev, IFF_ALLMULTI); 5099 dev_set_rx_mode(dev); 5100 if (notify) 5101 __dev_notify_flags(dev, old_flags, 5102 dev->gflags ^ old_gflags); 5103 } 5104 return 0; 5105 } 5106 5107 /** 5108 * dev_set_allmulti - update allmulti count on a device 5109 * @dev: device 5110 * @inc: modifier 5111 * 5112 * Add or remove reception of all multicast frames to a device. While the 5113 * count in the device remains above zero the interface remains listening 5114 * to all interfaces. Once it hits zero the device reverts back to normal 5115 * filtering operation. A negative @inc value is used to drop the counter 5116 * when releasing a resource needing all multicasts. 5117 * Return 0 if successful or a negative errno code on error. 5118 */ 5119 5120 int dev_set_allmulti(struct net_device *dev, int inc) 5121 { 5122 return __dev_set_allmulti(dev, inc, true); 5123 } 5124 EXPORT_SYMBOL(dev_set_allmulti); 5125 5126 /* 5127 * Upload unicast and multicast address lists to device and 5128 * configure RX filtering. When the device doesn't support unicast 5129 * filtering it is put in promiscuous mode while unicast addresses 5130 * are present. 5131 */ 5132 void __dev_set_rx_mode(struct net_device *dev) 5133 { 5134 const struct net_device_ops *ops = dev->netdev_ops; 5135 5136 /* dev_open will call this function so the list will stay sane. */ 5137 if (!(dev->flags&IFF_UP)) 5138 return; 5139 5140 if (!netif_device_present(dev)) 5141 return; 5142 5143 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 5144 /* Unicast addresses changes may only happen under the rtnl, 5145 * therefore calling __dev_set_promiscuity here is safe. 5146 */ 5147 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 5148 __dev_set_promiscuity(dev, 1, false); 5149 dev->uc_promisc = true; 5150 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 5151 __dev_set_promiscuity(dev, -1, false); 5152 dev->uc_promisc = false; 5153 } 5154 } 5155 5156 if (ops->ndo_set_rx_mode) 5157 ops->ndo_set_rx_mode(dev); 5158 } 5159 5160 void dev_set_rx_mode(struct net_device *dev) 5161 { 5162 netif_addr_lock_bh(dev); 5163 __dev_set_rx_mode(dev); 5164 netif_addr_unlock_bh(dev); 5165 } 5166 5167 /** 5168 * dev_get_flags - get flags reported to userspace 5169 * @dev: device 5170 * 5171 * Get the combination of flag bits exported through APIs to userspace. 5172 */ 5173 unsigned int dev_get_flags(const struct net_device *dev) 5174 { 5175 unsigned int flags; 5176 5177 flags = (dev->flags & ~(IFF_PROMISC | 5178 IFF_ALLMULTI | 5179 IFF_RUNNING | 5180 IFF_LOWER_UP | 5181 IFF_DORMANT)) | 5182 (dev->gflags & (IFF_PROMISC | 5183 IFF_ALLMULTI)); 5184 5185 if (netif_running(dev)) { 5186 if (netif_oper_up(dev)) 5187 flags |= IFF_RUNNING; 5188 if (netif_carrier_ok(dev)) 5189 flags |= IFF_LOWER_UP; 5190 if (netif_dormant(dev)) 5191 flags |= IFF_DORMANT; 5192 } 5193 5194 return flags; 5195 } 5196 EXPORT_SYMBOL(dev_get_flags); 5197 5198 int __dev_change_flags(struct net_device *dev, unsigned int flags) 5199 { 5200 unsigned int old_flags = dev->flags; 5201 int ret; 5202 5203 ASSERT_RTNL(); 5204 5205 /* 5206 * Set the flags on our device. 5207 */ 5208 5209 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 5210 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 5211 IFF_AUTOMEDIA)) | 5212 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 5213 IFF_ALLMULTI)); 5214 5215 /* 5216 * Load in the correct multicast list now the flags have changed. 5217 */ 5218 5219 if ((old_flags ^ flags) & IFF_MULTICAST) 5220 dev_change_rx_flags(dev, IFF_MULTICAST); 5221 5222 dev_set_rx_mode(dev); 5223 5224 /* 5225 * Have we downed the interface. We handle IFF_UP ourselves 5226 * according to user attempts to set it, rather than blindly 5227 * setting it. 5228 */ 5229 5230 ret = 0; 5231 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */ 5232 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev); 5233 5234 if (!ret) 5235 dev_set_rx_mode(dev); 5236 } 5237 5238 if ((flags ^ dev->gflags) & IFF_PROMISC) { 5239 int inc = (flags & IFF_PROMISC) ? 1 : -1; 5240 unsigned int old_flags = dev->flags; 5241 5242 dev->gflags ^= IFF_PROMISC; 5243 5244 if (__dev_set_promiscuity(dev, inc, false) >= 0) 5245 if (dev->flags != old_flags) 5246 dev_set_rx_mode(dev); 5247 } 5248 5249 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 5250 is important. Some (broken) drivers set IFF_PROMISC, when 5251 IFF_ALLMULTI is requested not asking us and not reporting. 5252 */ 5253 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 5254 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 5255 5256 dev->gflags ^= IFF_ALLMULTI; 5257 __dev_set_allmulti(dev, inc, false); 5258 } 5259 5260 return ret; 5261 } 5262 5263 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 5264 unsigned int gchanges) 5265 { 5266 unsigned int changes = dev->flags ^ old_flags; 5267 5268 if (gchanges) 5269 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC); 5270 5271 if (changes & IFF_UP) { 5272 if (dev->flags & IFF_UP) 5273 call_netdevice_notifiers(NETDEV_UP, dev); 5274 else 5275 call_netdevice_notifiers(NETDEV_DOWN, dev); 5276 } 5277 5278 if (dev->flags & IFF_UP && 5279 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 5280 struct netdev_notifier_change_info change_info; 5281 5282 change_info.flags_changed = changes; 5283 call_netdevice_notifiers_info(NETDEV_CHANGE, dev, 5284 &change_info.info); 5285 } 5286 } 5287 5288 /** 5289 * dev_change_flags - change device settings 5290 * @dev: device 5291 * @flags: device state flags 5292 * 5293 * Change settings on device based state flags. The flags are 5294 * in the userspace exported format. 5295 */ 5296 int dev_change_flags(struct net_device *dev, unsigned int flags) 5297 { 5298 int ret; 5299 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 5300 5301 ret = __dev_change_flags(dev, flags); 5302 if (ret < 0) 5303 return ret; 5304 5305 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 5306 __dev_notify_flags(dev, old_flags, changes); 5307 return ret; 5308 } 5309 EXPORT_SYMBOL(dev_change_flags); 5310 5311 /** 5312 * dev_set_mtu - Change maximum transfer unit 5313 * @dev: device 5314 * @new_mtu: new transfer unit 5315 * 5316 * Change the maximum transfer size of the network device. 5317 */ 5318 int dev_set_mtu(struct net_device *dev, int new_mtu) 5319 { 5320 const struct net_device_ops *ops = dev->netdev_ops; 5321 int err; 5322 5323 if (new_mtu == dev->mtu) 5324 return 0; 5325 5326 /* MTU must be positive. */ 5327 if (new_mtu < 0) 5328 return -EINVAL; 5329 5330 if (!netif_device_present(dev)) 5331 return -ENODEV; 5332 5333 err = 0; 5334 if (ops->ndo_change_mtu) 5335 err = ops->ndo_change_mtu(dev, new_mtu); 5336 else 5337 dev->mtu = new_mtu; 5338 5339 if (!err) 5340 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 5341 return err; 5342 } 5343 EXPORT_SYMBOL(dev_set_mtu); 5344 5345 /** 5346 * dev_set_group - Change group this device belongs to 5347 * @dev: device 5348 * @new_group: group this device should belong to 5349 */ 5350 void dev_set_group(struct net_device *dev, int new_group) 5351 { 5352 dev->group = new_group; 5353 } 5354 EXPORT_SYMBOL(dev_set_group); 5355 5356 /** 5357 * dev_set_mac_address - Change Media Access Control Address 5358 * @dev: device 5359 * @sa: new address 5360 * 5361 * Change the hardware (MAC) address of the device 5362 */ 5363 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 5364 { 5365 const struct net_device_ops *ops = dev->netdev_ops; 5366 int err; 5367 5368 if (!ops->ndo_set_mac_address) 5369 return -EOPNOTSUPP; 5370 if (sa->sa_family != dev->type) 5371 return -EINVAL; 5372 if (!netif_device_present(dev)) 5373 return -ENODEV; 5374 err = ops->ndo_set_mac_address(dev, sa); 5375 if (err) 5376 return err; 5377 dev->addr_assign_type = NET_ADDR_SET; 5378 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 5379 add_device_randomness(dev->dev_addr, dev->addr_len); 5380 return 0; 5381 } 5382 EXPORT_SYMBOL(dev_set_mac_address); 5383 5384 /** 5385 * dev_change_carrier - Change device carrier 5386 * @dev: device 5387 * @new_carrier: new value 5388 * 5389 * Change device carrier 5390 */ 5391 int dev_change_carrier(struct net_device *dev, bool new_carrier) 5392 { 5393 const struct net_device_ops *ops = dev->netdev_ops; 5394 5395 if (!ops->ndo_change_carrier) 5396 return -EOPNOTSUPP; 5397 if (!netif_device_present(dev)) 5398 return -ENODEV; 5399 return ops->ndo_change_carrier(dev, new_carrier); 5400 } 5401 EXPORT_SYMBOL(dev_change_carrier); 5402 5403 /** 5404 * dev_get_phys_port_id - Get device physical port ID 5405 * @dev: device 5406 * @ppid: port ID 5407 * 5408 * Get device physical port ID 5409 */ 5410 int dev_get_phys_port_id(struct net_device *dev, 5411 struct netdev_phys_port_id *ppid) 5412 { 5413 const struct net_device_ops *ops = dev->netdev_ops; 5414 5415 if (!ops->ndo_get_phys_port_id) 5416 return -EOPNOTSUPP; 5417 return ops->ndo_get_phys_port_id(dev, ppid); 5418 } 5419 EXPORT_SYMBOL(dev_get_phys_port_id); 5420 5421 /** 5422 * dev_new_index - allocate an ifindex 5423 * @net: the applicable net namespace 5424 * 5425 * Returns a suitable unique value for a new device interface 5426 * number. The caller must hold the rtnl semaphore or the 5427 * dev_base_lock to be sure it remains unique. 5428 */ 5429 static int dev_new_index(struct net *net) 5430 { 5431 int ifindex = net->ifindex; 5432 for (;;) { 5433 if (++ifindex <= 0) 5434 ifindex = 1; 5435 if (!__dev_get_by_index(net, ifindex)) 5436 return net->ifindex = ifindex; 5437 } 5438 } 5439 5440 /* Delayed registration/unregisteration */ 5441 static LIST_HEAD(net_todo_list); 5442 static DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 5443 5444 static void net_set_todo(struct net_device *dev) 5445 { 5446 list_add_tail(&dev->todo_list, &net_todo_list); 5447 dev_net(dev)->dev_unreg_count++; 5448 } 5449 5450 static void rollback_registered_many(struct list_head *head) 5451 { 5452 struct net_device *dev, *tmp; 5453 LIST_HEAD(close_head); 5454 5455 BUG_ON(dev_boot_phase); 5456 ASSERT_RTNL(); 5457 5458 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 5459 /* Some devices call without registering 5460 * for initialization unwind. Remove those 5461 * devices and proceed with the remaining. 5462 */ 5463 if (dev->reg_state == NETREG_UNINITIALIZED) { 5464 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 5465 dev->name, dev); 5466 5467 WARN_ON(1); 5468 list_del(&dev->unreg_list); 5469 continue; 5470 } 5471 dev->dismantle = true; 5472 BUG_ON(dev->reg_state != NETREG_REGISTERED); 5473 } 5474 5475 /* If device is running, close it first. */ 5476 list_for_each_entry(dev, head, unreg_list) 5477 list_add_tail(&dev->close_list, &close_head); 5478 dev_close_many(&close_head); 5479 5480 list_for_each_entry(dev, head, unreg_list) { 5481 /* And unlink it from device chain. */ 5482 unlist_netdevice(dev); 5483 5484 dev->reg_state = NETREG_UNREGISTERING; 5485 } 5486 5487 synchronize_net(); 5488 5489 list_for_each_entry(dev, head, unreg_list) { 5490 /* Shutdown queueing discipline. */ 5491 dev_shutdown(dev); 5492 5493 5494 /* Notify protocols, that we are about to destroy 5495 this device. They should clean all the things. 5496 */ 5497 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5498 5499 if (!dev->rtnl_link_ops || 5500 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 5501 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL); 5502 5503 /* 5504 * Flush the unicast and multicast chains 5505 */ 5506 dev_uc_flush(dev); 5507 dev_mc_flush(dev); 5508 5509 if (dev->netdev_ops->ndo_uninit) 5510 dev->netdev_ops->ndo_uninit(dev); 5511 5512 /* Notifier chain MUST detach us all upper devices. */ 5513 WARN_ON(netdev_has_any_upper_dev(dev)); 5514 5515 /* Remove entries from kobject tree */ 5516 netdev_unregister_kobject(dev); 5517 #ifdef CONFIG_XPS 5518 /* Remove XPS queueing entries */ 5519 netif_reset_xps_queues_gt(dev, 0); 5520 #endif 5521 } 5522 5523 synchronize_net(); 5524 5525 list_for_each_entry(dev, head, unreg_list) 5526 dev_put(dev); 5527 } 5528 5529 static void rollback_registered(struct net_device *dev) 5530 { 5531 LIST_HEAD(single); 5532 5533 list_add(&dev->unreg_list, &single); 5534 rollback_registered_many(&single); 5535 list_del(&single); 5536 } 5537 5538 static netdev_features_t netdev_fix_features(struct net_device *dev, 5539 netdev_features_t features) 5540 { 5541 /* Fix illegal checksum combinations */ 5542 if ((features & NETIF_F_HW_CSUM) && 5543 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5544 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 5545 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 5546 } 5547 5548 /* TSO requires that SG is present as well. */ 5549 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 5550 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 5551 features &= ~NETIF_F_ALL_TSO; 5552 } 5553 5554 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 5555 !(features & NETIF_F_IP_CSUM)) { 5556 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 5557 features &= ~NETIF_F_TSO; 5558 features &= ~NETIF_F_TSO_ECN; 5559 } 5560 5561 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 5562 !(features & NETIF_F_IPV6_CSUM)) { 5563 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 5564 features &= ~NETIF_F_TSO6; 5565 } 5566 5567 /* TSO ECN requires that TSO is present as well. */ 5568 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 5569 features &= ~NETIF_F_TSO_ECN; 5570 5571 /* Software GSO depends on SG. */ 5572 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 5573 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 5574 features &= ~NETIF_F_GSO; 5575 } 5576 5577 /* UFO needs SG and checksumming */ 5578 if (features & NETIF_F_UFO) { 5579 /* maybe split UFO into V4 and V6? */ 5580 if (!((features & NETIF_F_GEN_CSUM) || 5581 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM)) 5582 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5583 netdev_dbg(dev, 5584 "Dropping NETIF_F_UFO since no checksum offload features.\n"); 5585 features &= ~NETIF_F_UFO; 5586 } 5587 5588 if (!(features & NETIF_F_SG)) { 5589 netdev_dbg(dev, 5590 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n"); 5591 features &= ~NETIF_F_UFO; 5592 } 5593 } 5594 5595 return features; 5596 } 5597 5598 int __netdev_update_features(struct net_device *dev) 5599 { 5600 netdev_features_t features; 5601 int err = 0; 5602 5603 ASSERT_RTNL(); 5604 5605 features = netdev_get_wanted_features(dev); 5606 5607 if (dev->netdev_ops->ndo_fix_features) 5608 features = dev->netdev_ops->ndo_fix_features(dev, features); 5609 5610 /* driver might be less strict about feature dependencies */ 5611 features = netdev_fix_features(dev, features); 5612 5613 if (dev->features == features) 5614 return 0; 5615 5616 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 5617 &dev->features, &features); 5618 5619 if (dev->netdev_ops->ndo_set_features) 5620 err = dev->netdev_ops->ndo_set_features(dev, features); 5621 5622 if (unlikely(err < 0)) { 5623 netdev_err(dev, 5624 "set_features() failed (%d); wanted %pNF, left %pNF\n", 5625 err, &features, &dev->features); 5626 return -1; 5627 } 5628 5629 if (!err) 5630 dev->features = features; 5631 5632 return 1; 5633 } 5634 5635 /** 5636 * netdev_update_features - recalculate device features 5637 * @dev: the device to check 5638 * 5639 * Recalculate dev->features set and send notifications if it 5640 * has changed. Should be called after driver or hardware dependent 5641 * conditions might have changed that influence the features. 5642 */ 5643 void netdev_update_features(struct net_device *dev) 5644 { 5645 if (__netdev_update_features(dev)) 5646 netdev_features_change(dev); 5647 } 5648 EXPORT_SYMBOL(netdev_update_features); 5649 5650 /** 5651 * netdev_change_features - recalculate device features 5652 * @dev: the device to check 5653 * 5654 * Recalculate dev->features set and send notifications even 5655 * if they have not changed. Should be called instead of 5656 * netdev_update_features() if also dev->vlan_features might 5657 * have changed to allow the changes to be propagated to stacked 5658 * VLAN devices. 5659 */ 5660 void netdev_change_features(struct net_device *dev) 5661 { 5662 __netdev_update_features(dev); 5663 netdev_features_change(dev); 5664 } 5665 EXPORT_SYMBOL(netdev_change_features); 5666 5667 /** 5668 * netif_stacked_transfer_operstate - transfer operstate 5669 * @rootdev: the root or lower level device to transfer state from 5670 * @dev: the device to transfer operstate to 5671 * 5672 * Transfer operational state from root to device. This is normally 5673 * called when a stacking relationship exists between the root 5674 * device and the device(a leaf device). 5675 */ 5676 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 5677 struct net_device *dev) 5678 { 5679 if (rootdev->operstate == IF_OPER_DORMANT) 5680 netif_dormant_on(dev); 5681 else 5682 netif_dormant_off(dev); 5683 5684 if (netif_carrier_ok(rootdev)) { 5685 if (!netif_carrier_ok(dev)) 5686 netif_carrier_on(dev); 5687 } else { 5688 if (netif_carrier_ok(dev)) 5689 netif_carrier_off(dev); 5690 } 5691 } 5692 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 5693 5694 #ifdef CONFIG_RPS 5695 static int netif_alloc_rx_queues(struct net_device *dev) 5696 { 5697 unsigned int i, count = dev->num_rx_queues; 5698 struct netdev_rx_queue *rx; 5699 5700 BUG_ON(count < 1); 5701 5702 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL); 5703 if (!rx) 5704 return -ENOMEM; 5705 5706 dev->_rx = rx; 5707 5708 for (i = 0; i < count; i++) 5709 rx[i].dev = dev; 5710 return 0; 5711 } 5712 #endif 5713 5714 static void netdev_init_one_queue(struct net_device *dev, 5715 struct netdev_queue *queue, void *_unused) 5716 { 5717 /* Initialize queue lock */ 5718 spin_lock_init(&queue->_xmit_lock); 5719 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 5720 queue->xmit_lock_owner = -1; 5721 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 5722 queue->dev = dev; 5723 #ifdef CONFIG_BQL 5724 dql_init(&queue->dql, HZ); 5725 #endif 5726 } 5727 5728 static void netif_free_tx_queues(struct net_device *dev) 5729 { 5730 if (is_vmalloc_addr(dev->_tx)) 5731 vfree(dev->_tx); 5732 else 5733 kfree(dev->_tx); 5734 } 5735 5736 static int netif_alloc_netdev_queues(struct net_device *dev) 5737 { 5738 unsigned int count = dev->num_tx_queues; 5739 struct netdev_queue *tx; 5740 size_t sz = count * sizeof(*tx); 5741 5742 BUG_ON(count < 1 || count > 0xffff); 5743 5744 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 5745 if (!tx) { 5746 tx = vzalloc(sz); 5747 if (!tx) 5748 return -ENOMEM; 5749 } 5750 dev->_tx = tx; 5751 5752 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 5753 spin_lock_init(&dev->tx_global_lock); 5754 5755 return 0; 5756 } 5757 5758 /** 5759 * register_netdevice - register a network device 5760 * @dev: device to register 5761 * 5762 * Take a completed network device structure and add it to the kernel 5763 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 5764 * chain. 0 is returned on success. A negative errno code is returned 5765 * on a failure to set up the device, or if the name is a duplicate. 5766 * 5767 * Callers must hold the rtnl semaphore. You may want 5768 * register_netdev() instead of this. 5769 * 5770 * BUGS: 5771 * The locking appears insufficient to guarantee two parallel registers 5772 * will not get the same name. 5773 */ 5774 5775 int register_netdevice(struct net_device *dev) 5776 { 5777 int ret; 5778 struct net *net = dev_net(dev); 5779 5780 BUG_ON(dev_boot_phase); 5781 ASSERT_RTNL(); 5782 5783 might_sleep(); 5784 5785 /* When net_device's are persistent, this will be fatal. */ 5786 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 5787 BUG_ON(!net); 5788 5789 spin_lock_init(&dev->addr_list_lock); 5790 netdev_set_addr_lockdep_class(dev); 5791 5792 dev->iflink = -1; 5793 5794 ret = dev_get_valid_name(net, dev, dev->name); 5795 if (ret < 0) 5796 goto out; 5797 5798 /* Init, if this function is available */ 5799 if (dev->netdev_ops->ndo_init) { 5800 ret = dev->netdev_ops->ndo_init(dev); 5801 if (ret) { 5802 if (ret > 0) 5803 ret = -EIO; 5804 goto out; 5805 } 5806 } 5807 5808 if (((dev->hw_features | dev->features) & 5809 NETIF_F_HW_VLAN_CTAG_FILTER) && 5810 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 5811 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 5812 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 5813 ret = -EINVAL; 5814 goto err_uninit; 5815 } 5816 5817 ret = -EBUSY; 5818 if (!dev->ifindex) 5819 dev->ifindex = dev_new_index(net); 5820 else if (__dev_get_by_index(net, dev->ifindex)) 5821 goto err_uninit; 5822 5823 if (dev->iflink == -1) 5824 dev->iflink = dev->ifindex; 5825 5826 /* Transfer changeable features to wanted_features and enable 5827 * software offloads (GSO and GRO). 5828 */ 5829 dev->hw_features |= NETIF_F_SOFT_FEATURES; 5830 dev->features |= NETIF_F_SOFT_FEATURES; 5831 dev->wanted_features = dev->features & dev->hw_features; 5832 5833 /* Turn on no cache copy if HW is doing checksum */ 5834 if (!(dev->flags & IFF_LOOPBACK)) { 5835 dev->hw_features |= NETIF_F_NOCACHE_COPY; 5836 if (dev->features & NETIF_F_ALL_CSUM) { 5837 dev->wanted_features |= NETIF_F_NOCACHE_COPY; 5838 dev->features |= NETIF_F_NOCACHE_COPY; 5839 } 5840 } 5841 5842 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 5843 */ 5844 dev->vlan_features |= NETIF_F_HIGHDMA; 5845 5846 /* Make NETIF_F_SG inheritable to tunnel devices. 5847 */ 5848 dev->hw_enc_features |= NETIF_F_SG; 5849 5850 /* Make NETIF_F_SG inheritable to MPLS. 5851 */ 5852 dev->mpls_features |= NETIF_F_SG; 5853 5854 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 5855 ret = notifier_to_errno(ret); 5856 if (ret) 5857 goto err_uninit; 5858 5859 ret = netdev_register_kobject(dev); 5860 if (ret) 5861 goto err_uninit; 5862 dev->reg_state = NETREG_REGISTERED; 5863 5864 __netdev_update_features(dev); 5865 5866 /* 5867 * Default initial state at registry is that the 5868 * device is present. 5869 */ 5870 5871 set_bit(__LINK_STATE_PRESENT, &dev->state); 5872 5873 linkwatch_init_dev(dev); 5874 5875 dev_init_scheduler(dev); 5876 dev_hold(dev); 5877 list_netdevice(dev); 5878 add_device_randomness(dev->dev_addr, dev->addr_len); 5879 5880 /* If the device has permanent device address, driver should 5881 * set dev_addr and also addr_assign_type should be set to 5882 * NET_ADDR_PERM (default value). 5883 */ 5884 if (dev->addr_assign_type == NET_ADDR_PERM) 5885 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 5886 5887 /* Notify protocols, that a new device appeared. */ 5888 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 5889 ret = notifier_to_errno(ret); 5890 if (ret) { 5891 rollback_registered(dev); 5892 dev->reg_state = NETREG_UNREGISTERED; 5893 } 5894 /* 5895 * Prevent userspace races by waiting until the network 5896 * device is fully setup before sending notifications. 5897 */ 5898 if (!dev->rtnl_link_ops || 5899 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 5900 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 5901 5902 out: 5903 return ret; 5904 5905 err_uninit: 5906 if (dev->netdev_ops->ndo_uninit) 5907 dev->netdev_ops->ndo_uninit(dev); 5908 goto out; 5909 } 5910 EXPORT_SYMBOL(register_netdevice); 5911 5912 /** 5913 * init_dummy_netdev - init a dummy network device for NAPI 5914 * @dev: device to init 5915 * 5916 * This takes a network device structure and initialize the minimum 5917 * amount of fields so it can be used to schedule NAPI polls without 5918 * registering a full blown interface. This is to be used by drivers 5919 * that need to tie several hardware interfaces to a single NAPI 5920 * poll scheduler due to HW limitations. 5921 */ 5922 int init_dummy_netdev(struct net_device *dev) 5923 { 5924 /* Clear everything. Note we don't initialize spinlocks 5925 * are they aren't supposed to be taken by any of the 5926 * NAPI code and this dummy netdev is supposed to be 5927 * only ever used for NAPI polls 5928 */ 5929 memset(dev, 0, sizeof(struct net_device)); 5930 5931 /* make sure we BUG if trying to hit standard 5932 * register/unregister code path 5933 */ 5934 dev->reg_state = NETREG_DUMMY; 5935 5936 /* NAPI wants this */ 5937 INIT_LIST_HEAD(&dev->napi_list); 5938 5939 /* a dummy interface is started by default */ 5940 set_bit(__LINK_STATE_PRESENT, &dev->state); 5941 set_bit(__LINK_STATE_START, &dev->state); 5942 5943 /* Note : We dont allocate pcpu_refcnt for dummy devices, 5944 * because users of this 'device' dont need to change 5945 * its refcount. 5946 */ 5947 5948 return 0; 5949 } 5950 EXPORT_SYMBOL_GPL(init_dummy_netdev); 5951 5952 5953 /** 5954 * register_netdev - register a network device 5955 * @dev: device to register 5956 * 5957 * Take a completed network device structure and add it to the kernel 5958 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 5959 * chain. 0 is returned on success. A negative errno code is returned 5960 * on a failure to set up the device, or if the name is a duplicate. 5961 * 5962 * This is a wrapper around register_netdevice that takes the rtnl semaphore 5963 * and expands the device name if you passed a format string to 5964 * alloc_netdev. 5965 */ 5966 int register_netdev(struct net_device *dev) 5967 { 5968 int err; 5969 5970 rtnl_lock(); 5971 err = register_netdevice(dev); 5972 rtnl_unlock(); 5973 return err; 5974 } 5975 EXPORT_SYMBOL(register_netdev); 5976 5977 int netdev_refcnt_read(const struct net_device *dev) 5978 { 5979 int i, refcnt = 0; 5980 5981 for_each_possible_cpu(i) 5982 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 5983 return refcnt; 5984 } 5985 EXPORT_SYMBOL(netdev_refcnt_read); 5986 5987 /** 5988 * netdev_wait_allrefs - wait until all references are gone. 5989 * @dev: target net_device 5990 * 5991 * This is called when unregistering network devices. 5992 * 5993 * Any protocol or device that holds a reference should register 5994 * for netdevice notification, and cleanup and put back the 5995 * reference if they receive an UNREGISTER event. 5996 * We can get stuck here if buggy protocols don't correctly 5997 * call dev_put. 5998 */ 5999 static void netdev_wait_allrefs(struct net_device *dev) 6000 { 6001 unsigned long rebroadcast_time, warning_time; 6002 int refcnt; 6003 6004 linkwatch_forget_dev(dev); 6005 6006 rebroadcast_time = warning_time = jiffies; 6007 refcnt = netdev_refcnt_read(dev); 6008 6009 while (refcnt != 0) { 6010 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 6011 rtnl_lock(); 6012 6013 /* Rebroadcast unregister notification */ 6014 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 6015 6016 __rtnl_unlock(); 6017 rcu_barrier(); 6018 rtnl_lock(); 6019 6020 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 6021 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 6022 &dev->state)) { 6023 /* We must not have linkwatch events 6024 * pending on unregister. If this 6025 * happens, we simply run the queue 6026 * unscheduled, resulting in a noop 6027 * for this device. 6028 */ 6029 linkwatch_run_queue(); 6030 } 6031 6032 __rtnl_unlock(); 6033 6034 rebroadcast_time = jiffies; 6035 } 6036 6037 msleep(250); 6038 6039 refcnt = netdev_refcnt_read(dev); 6040 6041 if (time_after(jiffies, warning_time + 10 * HZ)) { 6042 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 6043 dev->name, refcnt); 6044 warning_time = jiffies; 6045 } 6046 } 6047 } 6048 6049 /* The sequence is: 6050 * 6051 * rtnl_lock(); 6052 * ... 6053 * register_netdevice(x1); 6054 * register_netdevice(x2); 6055 * ... 6056 * unregister_netdevice(y1); 6057 * unregister_netdevice(y2); 6058 * ... 6059 * rtnl_unlock(); 6060 * free_netdev(y1); 6061 * free_netdev(y2); 6062 * 6063 * We are invoked by rtnl_unlock(). 6064 * This allows us to deal with problems: 6065 * 1) We can delete sysfs objects which invoke hotplug 6066 * without deadlocking with linkwatch via keventd. 6067 * 2) Since we run with the RTNL semaphore not held, we can sleep 6068 * safely in order to wait for the netdev refcnt to drop to zero. 6069 * 6070 * We must not return until all unregister events added during 6071 * the interval the lock was held have been completed. 6072 */ 6073 void netdev_run_todo(void) 6074 { 6075 struct list_head list; 6076 6077 /* Snapshot list, allow later requests */ 6078 list_replace_init(&net_todo_list, &list); 6079 6080 __rtnl_unlock(); 6081 6082 6083 /* Wait for rcu callbacks to finish before next phase */ 6084 if (!list_empty(&list)) 6085 rcu_barrier(); 6086 6087 while (!list_empty(&list)) { 6088 struct net_device *dev 6089 = list_first_entry(&list, struct net_device, todo_list); 6090 list_del(&dev->todo_list); 6091 6092 rtnl_lock(); 6093 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 6094 __rtnl_unlock(); 6095 6096 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 6097 pr_err("network todo '%s' but state %d\n", 6098 dev->name, dev->reg_state); 6099 dump_stack(); 6100 continue; 6101 } 6102 6103 dev->reg_state = NETREG_UNREGISTERED; 6104 6105 on_each_cpu(flush_backlog, dev, 1); 6106 6107 netdev_wait_allrefs(dev); 6108 6109 /* paranoia */ 6110 BUG_ON(netdev_refcnt_read(dev)); 6111 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 6112 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 6113 WARN_ON(dev->dn_ptr); 6114 6115 if (dev->destructor) 6116 dev->destructor(dev); 6117 6118 /* Report a network device has been unregistered */ 6119 rtnl_lock(); 6120 dev_net(dev)->dev_unreg_count--; 6121 __rtnl_unlock(); 6122 wake_up(&netdev_unregistering_wq); 6123 6124 /* Free network device */ 6125 kobject_put(&dev->dev.kobj); 6126 } 6127 } 6128 6129 /* Convert net_device_stats to rtnl_link_stats64. They have the same 6130 * fields in the same order, with only the type differing. 6131 */ 6132 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 6133 const struct net_device_stats *netdev_stats) 6134 { 6135 #if BITS_PER_LONG == 64 6136 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats)); 6137 memcpy(stats64, netdev_stats, sizeof(*stats64)); 6138 #else 6139 size_t i, n = sizeof(*stats64) / sizeof(u64); 6140 const unsigned long *src = (const unsigned long *)netdev_stats; 6141 u64 *dst = (u64 *)stats64; 6142 6143 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) != 6144 sizeof(*stats64) / sizeof(u64)); 6145 for (i = 0; i < n; i++) 6146 dst[i] = src[i]; 6147 #endif 6148 } 6149 EXPORT_SYMBOL(netdev_stats_to_stats64); 6150 6151 /** 6152 * dev_get_stats - get network device statistics 6153 * @dev: device to get statistics from 6154 * @storage: place to store stats 6155 * 6156 * Get network statistics from device. Return @storage. 6157 * The device driver may provide its own method by setting 6158 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 6159 * otherwise the internal statistics structure is used. 6160 */ 6161 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 6162 struct rtnl_link_stats64 *storage) 6163 { 6164 const struct net_device_ops *ops = dev->netdev_ops; 6165 6166 if (ops->ndo_get_stats64) { 6167 memset(storage, 0, sizeof(*storage)); 6168 ops->ndo_get_stats64(dev, storage); 6169 } else if (ops->ndo_get_stats) { 6170 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 6171 } else { 6172 netdev_stats_to_stats64(storage, &dev->stats); 6173 } 6174 storage->rx_dropped += atomic_long_read(&dev->rx_dropped); 6175 return storage; 6176 } 6177 EXPORT_SYMBOL(dev_get_stats); 6178 6179 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 6180 { 6181 struct netdev_queue *queue = dev_ingress_queue(dev); 6182 6183 #ifdef CONFIG_NET_CLS_ACT 6184 if (queue) 6185 return queue; 6186 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 6187 if (!queue) 6188 return NULL; 6189 netdev_init_one_queue(dev, queue, NULL); 6190 queue->qdisc = &noop_qdisc; 6191 queue->qdisc_sleeping = &noop_qdisc; 6192 rcu_assign_pointer(dev->ingress_queue, queue); 6193 #endif 6194 return queue; 6195 } 6196 6197 static const struct ethtool_ops default_ethtool_ops; 6198 6199 void netdev_set_default_ethtool_ops(struct net_device *dev, 6200 const struct ethtool_ops *ops) 6201 { 6202 if (dev->ethtool_ops == &default_ethtool_ops) 6203 dev->ethtool_ops = ops; 6204 } 6205 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 6206 6207 void netdev_freemem(struct net_device *dev) 6208 { 6209 char *addr = (char *)dev - dev->padded; 6210 6211 if (is_vmalloc_addr(addr)) 6212 vfree(addr); 6213 else 6214 kfree(addr); 6215 } 6216 6217 /** 6218 * alloc_netdev_mqs - allocate network device 6219 * @sizeof_priv: size of private data to allocate space for 6220 * @name: device name format string 6221 * @setup: callback to initialize device 6222 * @txqs: the number of TX subqueues to allocate 6223 * @rxqs: the number of RX subqueues to allocate 6224 * 6225 * Allocates a struct net_device with private data area for driver use 6226 * and performs basic initialization. Also allocates subquue structs 6227 * for each queue on the device. 6228 */ 6229 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 6230 void (*setup)(struct net_device *), 6231 unsigned int txqs, unsigned int rxqs) 6232 { 6233 struct net_device *dev; 6234 size_t alloc_size; 6235 struct net_device *p; 6236 6237 BUG_ON(strlen(name) >= sizeof(dev->name)); 6238 6239 if (txqs < 1) { 6240 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 6241 return NULL; 6242 } 6243 6244 #ifdef CONFIG_RPS 6245 if (rxqs < 1) { 6246 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 6247 return NULL; 6248 } 6249 #endif 6250 6251 alloc_size = sizeof(struct net_device); 6252 if (sizeof_priv) { 6253 /* ensure 32-byte alignment of private area */ 6254 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 6255 alloc_size += sizeof_priv; 6256 } 6257 /* ensure 32-byte alignment of whole construct */ 6258 alloc_size += NETDEV_ALIGN - 1; 6259 6260 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 6261 if (!p) 6262 p = vzalloc(alloc_size); 6263 if (!p) 6264 return NULL; 6265 6266 dev = PTR_ALIGN(p, NETDEV_ALIGN); 6267 dev->padded = (char *)dev - (char *)p; 6268 6269 dev->pcpu_refcnt = alloc_percpu(int); 6270 if (!dev->pcpu_refcnt) 6271 goto free_dev; 6272 6273 if (dev_addr_init(dev)) 6274 goto free_pcpu; 6275 6276 dev_mc_init(dev); 6277 dev_uc_init(dev); 6278 6279 dev_net_set(dev, &init_net); 6280 6281 dev->gso_max_size = GSO_MAX_SIZE; 6282 dev->gso_max_segs = GSO_MAX_SEGS; 6283 6284 INIT_LIST_HEAD(&dev->napi_list); 6285 INIT_LIST_HEAD(&dev->unreg_list); 6286 INIT_LIST_HEAD(&dev->close_list); 6287 INIT_LIST_HEAD(&dev->link_watch_list); 6288 INIT_LIST_HEAD(&dev->adj_list.upper); 6289 INIT_LIST_HEAD(&dev->adj_list.lower); 6290 INIT_LIST_HEAD(&dev->all_adj_list.upper); 6291 INIT_LIST_HEAD(&dev->all_adj_list.lower); 6292 dev->priv_flags = IFF_XMIT_DST_RELEASE; 6293 setup(dev); 6294 6295 dev->num_tx_queues = txqs; 6296 dev->real_num_tx_queues = txqs; 6297 if (netif_alloc_netdev_queues(dev)) 6298 goto free_all; 6299 6300 #ifdef CONFIG_RPS 6301 dev->num_rx_queues = rxqs; 6302 dev->real_num_rx_queues = rxqs; 6303 if (netif_alloc_rx_queues(dev)) 6304 goto free_all; 6305 #endif 6306 6307 strcpy(dev->name, name); 6308 dev->group = INIT_NETDEV_GROUP; 6309 if (!dev->ethtool_ops) 6310 dev->ethtool_ops = &default_ethtool_ops; 6311 return dev; 6312 6313 free_all: 6314 free_netdev(dev); 6315 return NULL; 6316 6317 free_pcpu: 6318 free_percpu(dev->pcpu_refcnt); 6319 netif_free_tx_queues(dev); 6320 #ifdef CONFIG_RPS 6321 kfree(dev->_rx); 6322 #endif 6323 6324 free_dev: 6325 netdev_freemem(dev); 6326 return NULL; 6327 } 6328 EXPORT_SYMBOL(alloc_netdev_mqs); 6329 6330 /** 6331 * free_netdev - free network device 6332 * @dev: device 6333 * 6334 * This function does the last stage of destroying an allocated device 6335 * interface. The reference to the device object is released. 6336 * If this is the last reference then it will be freed. 6337 */ 6338 void free_netdev(struct net_device *dev) 6339 { 6340 struct napi_struct *p, *n; 6341 6342 release_net(dev_net(dev)); 6343 6344 netif_free_tx_queues(dev); 6345 #ifdef CONFIG_RPS 6346 kfree(dev->_rx); 6347 #endif 6348 6349 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 6350 6351 /* Flush device addresses */ 6352 dev_addr_flush(dev); 6353 6354 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 6355 netif_napi_del(p); 6356 6357 free_percpu(dev->pcpu_refcnt); 6358 dev->pcpu_refcnt = NULL; 6359 6360 /* Compatibility with error handling in drivers */ 6361 if (dev->reg_state == NETREG_UNINITIALIZED) { 6362 netdev_freemem(dev); 6363 return; 6364 } 6365 6366 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 6367 dev->reg_state = NETREG_RELEASED; 6368 6369 /* will free via device release */ 6370 put_device(&dev->dev); 6371 } 6372 EXPORT_SYMBOL(free_netdev); 6373 6374 /** 6375 * synchronize_net - Synchronize with packet receive processing 6376 * 6377 * Wait for packets currently being received to be done. 6378 * Does not block later packets from starting. 6379 */ 6380 void synchronize_net(void) 6381 { 6382 might_sleep(); 6383 if (rtnl_is_locked()) 6384 synchronize_rcu_expedited(); 6385 else 6386 synchronize_rcu(); 6387 } 6388 EXPORT_SYMBOL(synchronize_net); 6389 6390 /** 6391 * unregister_netdevice_queue - remove device from the kernel 6392 * @dev: device 6393 * @head: list 6394 * 6395 * This function shuts down a device interface and removes it 6396 * from the kernel tables. 6397 * If head not NULL, device is queued to be unregistered later. 6398 * 6399 * Callers must hold the rtnl semaphore. You may want 6400 * unregister_netdev() instead of this. 6401 */ 6402 6403 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 6404 { 6405 ASSERT_RTNL(); 6406 6407 if (head) { 6408 list_move_tail(&dev->unreg_list, head); 6409 } else { 6410 rollback_registered(dev); 6411 /* Finish processing unregister after unlock */ 6412 net_set_todo(dev); 6413 } 6414 } 6415 EXPORT_SYMBOL(unregister_netdevice_queue); 6416 6417 /** 6418 * unregister_netdevice_many - unregister many devices 6419 * @head: list of devices 6420 */ 6421 void unregister_netdevice_many(struct list_head *head) 6422 { 6423 struct net_device *dev; 6424 6425 if (!list_empty(head)) { 6426 rollback_registered_many(head); 6427 list_for_each_entry(dev, head, unreg_list) 6428 net_set_todo(dev); 6429 } 6430 } 6431 EXPORT_SYMBOL(unregister_netdevice_many); 6432 6433 /** 6434 * unregister_netdev - remove device from the kernel 6435 * @dev: device 6436 * 6437 * This function shuts down a device interface and removes it 6438 * from the kernel tables. 6439 * 6440 * This is just a wrapper for unregister_netdevice that takes 6441 * the rtnl semaphore. In general you want to use this and not 6442 * unregister_netdevice. 6443 */ 6444 void unregister_netdev(struct net_device *dev) 6445 { 6446 rtnl_lock(); 6447 unregister_netdevice(dev); 6448 rtnl_unlock(); 6449 } 6450 EXPORT_SYMBOL(unregister_netdev); 6451 6452 /** 6453 * dev_change_net_namespace - move device to different nethost namespace 6454 * @dev: device 6455 * @net: network namespace 6456 * @pat: If not NULL name pattern to try if the current device name 6457 * is already taken in the destination network namespace. 6458 * 6459 * This function shuts down a device interface and moves it 6460 * to a new network namespace. On success 0 is returned, on 6461 * a failure a netagive errno code is returned. 6462 * 6463 * Callers must hold the rtnl semaphore. 6464 */ 6465 6466 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 6467 { 6468 int err; 6469 6470 ASSERT_RTNL(); 6471 6472 /* Don't allow namespace local devices to be moved. */ 6473 err = -EINVAL; 6474 if (dev->features & NETIF_F_NETNS_LOCAL) 6475 goto out; 6476 6477 /* Ensure the device has been registrered */ 6478 if (dev->reg_state != NETREG_REGISTERED) 6479 goto out; 6480 6481 /* Get out if there is nothing todo */ 6482 err = 0; 6483 if (net_eq(dev_net(dev), net)) 6484 goto out; 6485 6486 /* Pick the destination device name, and ensure 6487 * we can use it in the destination network namespace. 6488 */ 6489 err = -EEXIST; 6490 if (__dev_get_by_name(net, dev->name)) { 6491 /* We get here if we can't use the current device name */ 6492 if (!pat) 6493 goto out; 6494 if (dev_get_valid_name(net, dev, pat) < 0) 6495 goto out; 6496 } 6497 6498 /* 6499 * And now a mini version of register_netdevice unregister_netdevice. 6500 */ 6501 6502 /* If device is running close it first. */ 6503 dev_close(dev); 6504 6505 /* And unlink it from device chain */ 6506 err = -ENODEV; 6507 unlist_netdevice(dev); 6508 6509 synchronize_net(); 6510 6511 /* Shutdown queueing discipline. */ 6512 dev_shutdown(dev); 6513 6514 /* Notify protocols, that we are about to destroy 6515 this device. They should clean all the things. 6516 6517 Note that dev->reg_state stays at NETREG_REGISTERED. 6518 This is wanted because this way 8021q and macvlan know 6519 the device is just moving and can keep their slaves up. 6520 */ 6521 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 6522 rcu_barrier(); 6523 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 6524 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL); 6525 6526 /* 6527 * Flush the unicast and multicast chains 6528 */ 6529 dev_uc_flush(dev); 6530 dev_mc_flush(dev); 6531 6532 /* Send a netdev-removed uevent to the old namespace */ 6533 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 6534 6535 /* Actually switch the network namespace */ 6536 dev_net_set(dev, net); 6537 6538 /* If there is an ifindex conflict assign a new one */ 6539 if (__dev_get_by_index(net, dev->ifindex)) { 6540 int iflink = (dev->iflink == dev->ifindex); 6541 dev->ifindex = dev_new_index(net); 6542 if (iflink) 6543 dev->iflink = dev->ifindex; 6544 } 6545 6546 /* Send a netdev-add uevent to the new namespace */ 6547 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 6548 6549 /* Fixup kobjects */ 6550 err = device_rename(&dev->dev, dev->name); 6551 WARN_ON(err); 6552 6553 /* Add the device back in the hashes */ 6554 list_netdevice(dev); 6555 6556 /* Notify protocols, that a new device appeared. */ 6557 call_netdevice_notifiers(NETDEV_REGISTER, dev); 6558 6559 /* 6560 * Prevent userspace races by waiting until the network 6561 * device is fully setup before sending notifications. 6562 */ 6563 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 6564 6565 synchronize_net(); 6566 err = 0; 6567 out: 6568 return err; 6569 } 6570 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 6571 6572 static int dev_cpu_callback(struct notifier_block *nfb, 6573 unsigned long action, 6574 void *ocpu) 6575 { 6576 struct sk_buff **list_skb; 6577 struct sk_buff *skb; 6578 unsigned int cpu, oldcpu = (unsigned long)ocpu; 6579 struct softnet_data *sd, *oldsd; 6580 6581 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 6582 return NOTIFY_OK; 6583 6584 local_irq_disable(); 6585 cpu = smp_processor_id(); 6586 sd = &per_cpu(softnet_data, cpu); 6587 oldsd = &per_cpu(softnet_data, oldcpu); 6588 6589 /* Find end of our completion_queue. */ 6590 list_skb = &sd->completion_queue; 6591 while (*list_skb) 6592 list_skb = &(*list_skb)->next; 6593 /* Append completion queue from offline CPU. */ 6594 *list_skb = oldsd->completion_queue; 6595 oldsd->completion_queue = NULL; 6596 6597 /* Append output queue from offline CPU. */ 6598 if (oldsd->output_queue) { 6599 *sd->output_queue_tailp = oldsd->output_queue; 6600 sd->output_queue_tailp = oldsd->output_queue_tailp; 6601 oldsd->output_queue = NULL; 6602 oldsd->output_queue_tailp = &oldsd->output_queue; 6603 } 6604 /* Append NAPI poll list from offline CPU. */ 6605 if (!list_empty(&oldsd->poll_list)) { 6606 list_splice_init(&oldsd->poll_list, &sd->poll_list); 6607 raise_softirq_irqoff(NET_RX_SOFTIRQ); 6608 } 6609 6610 raise_softirq_irqoff(NET_TX_SOFTIRQ); 6611 local_irq_enable(); 6612 6613 /* Process offline CPU's input_pkt_queue */ 6614 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 6615 netif_rx(skb); 6616 input_queue_head_incr(oldsd); 6617 } 6618 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) { 6619 netif_rx(skb); 6620 input_queue_head_incr(oldsd); 6621 } 6622 6623 return NOTIFY_OK; 6624 } 6625 6626 6627 /** 6628 * netdev_increment_features - increment feature set by one 6629 * @all: current feature set 6630 * @one: new feature set 6631 * @mask: mask feature set 6632 * 6633 * Computes a new feature set after adding a device with feature set 6634 * @one to the master device with current feature set @all. Will not 6635 * enable anything that is off in @mask. Returns the new feature set. 6636 */ 6637 netdev_features_t netdev_increment_features(netdev_features_t all, 6638 netdev_features_t one, netdev_features_t mask) 6639 { 6640 if (mask & NETIF_F_GEN_CSUM) 6641 mask |= NETIF_F_ALL_CSUM; 6642 mask |= NETIF_F_VLAN_CHALLENGED; 6643 6644 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask; 6645 all &= one | ~NETIF_F_ALL_FOR_ALL; 6646 6647 /* If one device supports hw checksumming, set for all. */ 6648 if (all & NETIF_F_GEN_CSUM) 6649 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM); 6650 6651 return all; 6652 } 6653 EXPORT_SYMBOL(netdev_increment_features); 6654 6655 static struct hlist_head * __net_init netdev_create_hash(void) 6656 { 6657 int i; 6658 struct hlist_head *hash; 6659 6660 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 6661 if (hash != NULL) 6662 for (i = 0; i < NETDEV_HASHENTRIES; i++) 6663 INIT_HLIST_HEAD(&hash[i]); 6664 6665 return hash; 6666 } 6667 6668 /* Initialize per network namespace state */ 6669 static int __net_init netdev_init(struct net *net) 6670 { 6671 if (net != &init_net) 6672 INIT_LIST_HEAD(&net->dev_base_head); 6673 6674 net->dev_name_head = netdev_create_hash(); 6675 if (net->dev_name_head == NULL) 6676 goto err_name; 6677 6678 net->dev_index_head = netdev_create_hash(); 6679 if (net->dev_index_head == NULL) 6680 goto err_idx; 6681 6682 return 0; 6683 6684 err_idx: 6685 kfree(net->dev_name_head); 6686 err_name: 6687 return -ENOMEM; 6688 } 6689 6690 /** 6691 * netdev_drivername - network driver for the device 6692 * @dev: network device 6693 * 6694 * Determine network driver for device. 6695 */ 6696 const char *netdev_drivername(const struct net_device *dev) 6697 { 6698 const struct device_driver *driver; 6699 const struct device *parent; 6700 const char *empty = ""; 6701 6702 parent = dev->dev.parent; 6703 if (!parent) 6704 return empty; 6705 6706 driver = parent->driver; 6707 if (driver && driver->name) 6708 return driver->name; 6709 return empty; 6710 } 6711 6712 static int __netdev_printk(const char *level, const struct net_device *dev, 6713 struct va_format *vaf) 6714 { 6715 int r; 6716 6717 if (dev && dev->dev.parent) { 6718 r = dev_printk_emit(level[1] - '0', 6719 dev->dev.parent, 6720 "%s %s %s: %pV", 6721 dev_driver_string(dev->dev.parent), 6722 dev_name(dev->dev.parent), 6723 netdev_name(dev), vaf); 6724 } else if (dev) { 6725 r = printk("%s%s: %pV", level, netdev_name(dev), vaf); 6726 } else { 6727 r = printk("%s(NULL net_device): %pV", level, vaf); 6728 } 6729 6730 return r; 6731 } 6732 6733 int netdev_printk(const char *level, const struct net_device *dev, 6734 const char *format, ...) 6735 { 6736 struct va_format vaf; 6737 va_list args; 6738 int r; 6739 6740 va_start(args, format); 6741 6742 vaf.fmt = format; 6743 vaf.va = &args; 6744 6745 r = __netdev_printk(level, dev, &vaf); 6746 6747 va_end(args); 6748 6749 return r; 6750 } 6751 EXPORT_SYMBOL(netdev_printk); 6752 6753 #define define_netdev_printk_level(func, level) \ 6754 int func(const struct net_device *dev, const char *fmt, ...) \ 6755 { \ 6756 int r; \ 6757 struct va_format vaf; \ 6758 va_list args; \ 6759 \ 6760 va_start(args, fmt); \ 6761 \ 6762 vaf.fmt = fmt; \ 6763 vaf.va = &args; \ 6764 \ 6765 r = __netdev_printk(level, dev, &vaf); \ 6766 \ 6767 va_end(args); \ 6768 \ 6769 return r; \ 6770 } \ 6771 EXPORT_SYMBOL(func); 6772 6773 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 6774 define_netdev_printk_level(netdev_alert, KERN_ALERT); 6775 define_netdev_printk_level(netdev_crit, KERN_CRIT); 6776 define_netdev_printk_level(netdev_err, KERN_ERR); 6777 define_netdev_printk_level(netdev_warn, KERN_WARNING); 6778 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 6779 define_netdev_printk_level(netdev_info, KERN_INFO); 6780 6781 static void __net_exit netdev_exit(struct net *net) 6782 { 6783 kfree(net->dev_name_head); 6784 kfree(net->dev_index_head); 6785 } 6786 6787 static struct pernet_operations __net_initdata netdev_net_ops = { 6788 .init = netdev_init, 6789 .exit = netdev_exit, 6790 }; 6791 6792 static void __net_exit default_device_exit(struct net *net) 6793 { 6794 struct net_device *dev, *aux; 6795 /* 6796 * Push all migratable network devices back to the 6797 * initial network namespace 6798 */ 6799 rtnl_lock(); 6800 for_each_netdev_safe(net, dev, aux) { 6801 int err; 6802 char fb_name[IFNAMSIZ]; 6803 6804 /* Ignore unmoveable devices (i.e. loopback) */ 6805 if (dev->features & NETIF_F_NETNS_LOCAL) 6806 continue; 6807 6808 /* Leave virtual devices for the generic cleanup */ 6809 if (dev->rtnl_link_ops) 6810 continue; 6811 6812 /* Push remaining network devices to init_net */ 6813 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 6814 err = dev_change_net_namespace(dev, &init_net, fb_name); 6815 if (err) { 6816 pr_emerg("%s: failed to move %s to init_net: %d\n", 6817 __func__, dev->name, err); 6818 BUG(); 6819 } 6820 } 6821 rtnl_unlock(); 6822 } 6823 6824 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list) 6825 { 6826 /* Return with the rtnl_lock held when there are no network 6827 * devices unregistering in any network namespace in net_list. 6828 */ 6829 struct net *net; 6830 bool unregistering; 6831 DEFINE_WAIT(wait); 6832 6833 for (;;) { 6834 prepare_to_wait(&netdev_unregistering_wq, &wait, 6835 TASK_UNINTERRUPTIBLE); 6836 unregistering = false; 6837 rtnl_lock(); 6838 list_for_each_entry(net, net_list, exit_list) { 6839 if (net->dev_unreg_count > 0) { 6840 unregistering = true; 6841 break; 6842 } 6843 } 6844 if (!unregistering) 6845 break; 6846 __rtnl_unlock(); 6847 schedule(); 6848 } 6849 finish_wait(&netdev_unregistering_wq, &wait); 6850 } 6851 6852 static void __net_exit default_device_exit_batch(struct list_head *net_list) 6853 { 6854 /* At exit all network devices most be removed from a network 6855 * namespace. Do this in the reverse order of registration. 6856 * Do this across as many network namespaces as possible to 6857 * improve batching efficiency. 6858 */ 6859 struct net_device *dev; 6860 struct net *net; 6861 LIST_HEAD(dev_kill_list); 6862 6863 /* To prevent network device cleanup code from dereferencing 6864 * loopback devices or network devices that have been freed 6865 * wait here for all pending unregistrations to complete, 6866 * before unregistring the loopback device and allowing the 6867 * network namespace be freed. 6868 * 6869 * The netdev todo list containing all network devices 6870 * unregistrations that happen in default_device_exit_batch 6871 * will run in the rtnl_unlock() at the end of 6872 * default_device_exit_batch. 6873 */ 6874 rtnl_lock_unregistering(net_list); 6875 list_for_each_entry(net, net_list, exit_list) { 6876 for_each_netdev_reverse(net, dev) { 6877 if (dev->rtnl_link_ops) 6878 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 6879 else 6880 unregister_netdevice_queue(dev, &dev_kill_list); 6881 } 6882 } 6883 unregister_netdevice_many(&dev_kill_list); 6884 list_del(&dev_kill_list); 6885 rtnl_unlock(); 6886 } 6887 6888 static struct pernet_operations __net_initdata default_device_ops = { 6889 .exit = default_device_exit, 6890 .exit_batch = default_device_exit_batch, 6891 }; 6892 6893 /* 6894 * Initialize the DEV module. At boot time this walks the device list and 6895 * unhooks any devices that fail to initialise (normally hardware not 6896 * present) and leaves us with a valid list of present and active devices. 6897 * 6898 */ 6899 6900 /* 6901 * This is called single threaded during boot, so no need 6902 * to take the rtnl semaphore. 6903 */ 6904 static int __init net_dev_init(void) 6905 { 6906 int i, rc = -ENOMEM; 6907 6908 BUG_ON(!dev_boot_phase); 6909 6910 if (dev_proc_init()) 6911 goto out; 6912 6913 if (netdev_kobject_init()) 6914 goto out; 6915 6916 INIT_LIST_HEAD(&ptype_all); 6917 for (i = 0; i < PTYPE_HASH_SIZE; i++) 6918 INIT_LIST_HEAD(&ptype_base[i]); 6919 6920 INIT_LIST_HEAD(&offload_base); 6921 6922 if (register_pernet_subsys(&netdev_net_ops)) 6923 goto out; 6924 6925 /* 6926 * Initialise the packet receive queues. 6927 */ 6928 6929 for_each_possible_cpu(i) { 6930 struct softnet_data *sd = &per_cpu(softnet_data, i); 6931 6932 memset(sd, 0, sizeof(*sd)); 6933 skb_queue_head_init(&sd->input_pkt_queue); 6934 skb_queue_head_init(&sd->process_queue); 6935 sd->completion_queue = NULL; 6936 INIT_LIST_HEAD(&sd->poll_list); 6937 sd->output_queue = NULL; 6938 sd->output_queue_tailp = &sd->output_queue; 6939 #ifdef CONFIG_RPS 6940 sd->csd.func = rps_trigger_softirq; 6941 sd->csd.info = sd; 6942 sd->csd.flags = 0; 6943 sd->cpu = i; 6944 #endif 6945 6946 sd->backlog.poll = process_backlog; 6947 sd->backlog.weight = weight_p; 6948 sd->backlog.gro_list = NULL; 6949 sd->backlog.gro_count = 0; 6950 6951 #ifdef CONFIG_NET_FLOW_LIMIT 6952 sd->flow_limit = NULL; 6953 #endif 6954 } 6955 6956 dev_boot_phase = 0; 6957 6958 /* The loopback device is special if any other network devices 6959 * is present in a network namespace the loopback device must 6960 * be present. Since we now dynamically allocate and free the 6961 * loopback device ensure this invariant is maintained by 6962 * keeping the loopback device as the first device on the 6963 * list of network devices. Ensuring the loopback devices 6964 * is the first device that appears and the last network device 6965 * that disappears. 6966 */ 6967 if (register_pernet_device(&loopback_net_ops)) 6968 goto out; 6969 6970 if (register_pernet_device(&default_device_ops)) 6971 goto out; 6972 6973 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 6974 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 6975 6976 hotcpu_notifier(dev_cpu_callback, 0); 6977 dst_init(); 6978 rc = 0; 6979 out: 6980 return rc; 6981 } 6982 6983 subsys_initcall(net_dev_init); 6984