1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <asm/uaccess.h> 76 #include <linux/bitops.h> 77 #include <linux/capability.h> 78 #include <linux/cpu.h> 79 #include <linux/types.h> 80 #include <linux/kernel.h> 81 #include <linux/hash.h> 82 #include <linux/slab.h> 83 #include <linux/sched.h> 84 #include <linux/mutex.h> 85 #include <linux/string.h> 86 #include <linux/mm.h> 87 #include <linux/socket.h> 88 #include <linux/sockios.h> 89 #include <linux/errno.h> 90 #include <linux/interrupt.h> 91 #include <linux/if_ether.h> 92 #include <linux/netdevice.h> 93 #include <linux/etherdevice.h> 94 #include <linux/ethtool.h> 95 #include <linux/notifier.h> 96 #include <linux/skbuff.h> 97 #include <net/net_namespace.h> 98 #include <net/sock.h> 99 #include <linux/rtnetlink.h> 100 #include <linux/stat.h> 101 #include <net/dst.h> 102 #include <net/pkt_sched.h> 103 #include <net/checksum.h> 104 #include <net/xfrm.h> 105 #include <linux/highmem.h> 106 #include <linux/init.h> 107 #include <linux/module.h> 108 #include <linux/netpoll.h> 109 #include <linux/rcupdate.h> 110 #include <linux/delay.h> 111 #include <net/iw_handler.h> 112 #include <asm/current.h> 113 #include <linux/audit.h> 114 #include <linux/dmaengine.h> 115 #include <linux/err.h> 116 #include <linux/ctype.h> 117 #include <linux/if_arp.h> 118 #include <linux/if_vlan.h> 119 #include <linux/ip.h> 120 #include <net/ip.h> 121 #include <net/mpls.h> 122 #include <linux/ipv6.h> 123 #include <linux/in.h> 124 #include <linux/jhash.h> 125 #include <linux/random.h> 126 #include <trace/events/napi.h> 127 #include <trace/events/net.h> 128 #include <trace/events/skb.h> 129 #include <linux/pci.h> 130 #include <linux/inetdevice.h> 131 #include <linux/cpu_rmap.h> 132 #include <linux/static_key.h> 133 #include <linux/hashtable.h> 134 #include <linux/vmalloc.h> 135 #include <linux/if_macvlan.h> 136 #include <linux/errqueue.h> 137 #include <linux/hrtimer.h> 138 139 #include "net-sysfs.h" 140 141 /* Instead of increasing this, you should create a hash table. */ 142 #define MAX_GRO_SKBS 8 143 144 /* This should be increased if a protocol with a bigger head is added. */ 145 #define GRO_MAX_HEAD (MAX_HEADER + 128) 146 147 static DEFINE_SPINLOCK(ptype_lock); 148 static DEFINE_SPINLOCK(offload_lock); 149 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 150 struct list_head ptype_all __read_mostly; /* Taps */ 151 static struct list_head offload_base __read_mostly; 152 153 static int netif_rx_internal(struct sk_buff *skb); 154 static int call_netdevice_notifiers_info(unsigned long val, 155 struct net_device *dev, 156 struct netdev_notifier_info *info); 157 158 /* 159 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 160 * semaphore. 161 * 162 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 163 * 164 * Writers must hold the rtnl semaphore while they loop through the 165 * dev_base_head list, and hold dev_base_lock for writing when they do the 166 * actual updates. This allows pure readers to access the list even 167 * while a writer is preparing to update it. 168 * 169 * To put it another way, dev_base_lock is held for writing only to 170 * protect against pure readers; the rtnl semaphore provides the 171 * protection against other writers. 172 * 173 * See, for example usages, register_netdevice() and 174 * unregister_netdevice(), which must be called with the rtnl 175 * semaphore held. 176 */ 177 DEFINE_RWLOCK(dev_base_lock); 178 EXPORT_SYMBOL(dev_base_lock); 179 180 /* protects napi_hash addition/deletion and napi_gen_id */ 181 static DEFINE_SPINLOCK(napi_hash_lock); 182 183 static unsigned int napi_gen_id; 184 static DEFINE_HASHTABLE(napi_hash, 8); 185 186 static seqcount_t devnet_rename_seq; 187 188 static inline void dev_base_seq_inc(struct net *net) 189 { 190 while (++net->dev_base_seq == 0); 191 } 192 193 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 194 { 195 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 196 197 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 198 } 199 200 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 201 { 202 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 203 } 204 205 static inline void rps_lock(struct softnet_data *sd) 206 { 207 #ifdef CONFIG_RPS 208 spin_lock(&sd->input_pkt_queue.lock); 209 #endif 210 } 211 212 static inline void rps_unlock(struct softnet_data *sd) 213 { 214 #ifdef CONFIG_RPS 215 spin_unlock(&sd->input_pkt_queue.lock); 216 #endif 217 } 218 219 /* Device list insertion */ 220 static void list_netdevice(struct net_device *dev) 221 { 222 struct net *net = dev_net(dev); 223 224 ASSERT_RTNL(); 225 226 write_lock_bh(&dev_base_lock); 227 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 228 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 229 hlist_add_head_rcu(&dev->index_hlist, 230 dev_index_hash(net, dev->ifindex)); 231 write_unlock_bh(&dev_base_lock); 232 233 dev_base_seq_inc(net); 234 } 235 236 /* Device list removal 237 * caller must respect a RCU grace period before freeing/reusing dev 238 */ 239 static void unlist_netdevice(struct net_device *dev) 240 { 241 ASSERT_RTNL(); 242 243 /* Unlink dev from the device chain */ 244 write_lock_bh(&dev_base_lock); 245 list_del_rcu(&dev->dev_list); 246 hlist_del_rcu(&dev->name_hlist); 247 hlist_del_rcu(&dev->index_hlist); 248 write_unlock_bh(&dev_base_lock); 249 250 dev_base_seq_inc(dev_net(dev)); 251 } 252 253 /* 254 * Our notifier list 255 */ 256 257 static RAW_NOTIFIER_HEAD(netdev_chain); 258 259 /* 260 * Device drivers call our routines to queue packets here. We empty the 261 * queue in the local softnet handler. 262 */ 263 264 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 265 EXPORT_PER_CPU_SYMBOL(softnet_data); 266 267 #ifdef CONFIG_LOCKDEP 268 /* 269 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 270 * according to dev->type 271 */ 272 static const unsigned short netdev_lock_type[] = 273 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 274 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 275 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 276 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 277 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 278 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 279 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 280 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 281 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 282 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 283 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 284 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 285 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 286 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 287 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 288 289 static const char *const netdev_lock_name[] = 290 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 291 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 292 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 293 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 294 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 295 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 296 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 297 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 298 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 299 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 300 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 301 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 302 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 303 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 304 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 305 306 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 307 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 308 309 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 310 { 311 int i; 312 313 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 314 if (netdev_lock_type[i] == dev_type) 315 return i; 316 /* the last key is used by default */ 317 return ARRAY_SIZE(netdev_lock_type) - 1; 318 } 319 320 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 321 unsigned short dev_type) 322 { 323 int i; 324 325 i = netdev_lock_pos(dev_type); 326 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 327 netdev_lock_name[i]); 328 } 329 330 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 331 { 332 int i; 333 334 i = netdev_lock_pos(dev->type); 335 lockdep_set_class_and_name(&dev->addr_list_lock, 336 &netdev_addr_lock_key[i], 337 netdev_lock_name[i]); 338 } 339 #else 340 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 341 unsigned short dev_type) 342 { 343 } 344 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 345 { 346 } 347 #endif 348 349 /******************************************************************************* 350 351 Protocol management and registration routines 352 353 *******************************************************************************/ 354 355 /* 356 * Add a protocol ID to the list. Now that the input handler is 357 * smarter we can dispense with all the messy stuff that used to be 358 * here. 359 * 360 * BEWARE!!! Protocol handlers, mangling input packets, 361 * MUST BE last in hash buckets and checking protocol handlers 362 * MUST start from promiscuous ptype_all chain in net_bh. 363 * It is true now, do not change it. 364 * Explanation follows: if protocol handler, mangling packet, will 365 * be the first on list, it is not able to sense, that packet 366 * is cloned and should be copied-on-write, so that it will 367 * change it and subsequent readers will get broken packet. 368 * --ANK (980803) 369 */ 370 371 static inline struct list_head *ptype_head(const struct packet_type *pt) 372 { 373 if (pt->type == htons(ETH_P_ALL)) 374 return &ptype_all; 375 else 376 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 377 } 378 379 /** 380 * dev_add_pack - add packet handler 381 * @pt: packet type declaration 382 * 383 * Add a protocol handler to the networking stack. The passed &packet_type 384 * is linked into kernel lists and may not be freed until it has been 385 * removed from the kernel lists. 386 * 387 * This call does not sleep therefore it can not 388 * guarantee all CPU's that are in middle of receiving packets 389 * will see the new packet type (until the next received packet). 390 */ 391 392 void dev_add_pack(struct packet_type *pt) 393 { 394 struct list_head *head = ptype_head(pt); 395 396 spin_lock(&ptype_lock); 397 list_add_rcu(&pt->list, head); 398 spin_unlock(&ptype_lock); 399 } 400 EXPORT_SYMBOL(dev_add_pack); 401 402 /** 403 * __dev_remove_pack - remove packet handler 404 * @pt: packet type declaration 405 * 406 * Remove a protocol handler that was previously added to the kernel 407 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 408 * from the kernel lists and can be freed or reused once this function 409 * returns. 410 * 411 * The packet type might still be in use by receivers 412 * and must not be freed until after all the CPU's have gone 413 * through a quiescent state. 414 */ 415 void __dev_remove_pack(struct packet_type *pt) 416 { 417 struct list_head *head = ptype_head(pt); 418 struct packet_type *pt1; 419 420 spin_lock(&ptype_lock); 421 422 list_for_each_entry(pt1, head, list) { 423 if (pt == pt1) { 424 list_del_rcu(&pt->list); 425 goto out; 426 } 427 } 428 429 pr_warn("dev_remove_pack: %p not found\n", pt); 430 out: 431 spin_unlock(&ptype_lock); 432 } 433 EXPORT_SYMBOL(__dev_remove_pack); 434 435 /** 436 * dev_remove_pack - remove packet handler 437 * @pt: packet type declaration 438 * 439 * Remove a protocol handler that was previously added to the kernel 440 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 441 * from the kernel lists and can be freed or reused once this function 442 * returns. 443 * 444 * This call sleeps to guarantee that no CPU is looking at the packet 445 * type after return. 446 */ 447 void dev_remove_pack(struct packet_type *pt) 448 { 449 __dev_remove_pack(pt); 450 451 synchronize_net(); 452 } 453 EXPORT_SYMBOL(dev_remove_pack); 454 455 456 /** 457 * dev_add_offload - register offload handlers 458 * @po: protocol offload declaration 459 * 460 * Add protocol offload handlers to the networking stack. The passed 461 * &proto_offload is linked into kernel lists and may not be freed until 462 * it has been removed from the kernel lists. 463 * 464 * This call does not sleep therefore it can not 465 * guarantee all CPU's that are in middle of receiving packets 466 * will see the new offload handlers (until the next received packet). 467 */ 468 void dev_add_offload(struct packet_offload *po) 469 { 470 struct list_head *head = &offload_base; 471 472 spin_lock(&offload_lock); 473 list_add_rcu(&po->list, head); 474 spin_unlock(&offload_lock); 475 } 476 EXPORT_SYMBOL(dev_add_offload); 477 478 /** 479 * __dev_remove_offload - remove offload handler 480 * @po: packet offload declaration 481 * 482 * Remove a protocol offload handler that was previously added to the 483 * kernel offload handlers by dev_add_offload(). The passed &offload_type 484 * is removed from the kernel lists and can be freed or reused once this 485 * function returns. 486 * 487 * The packet type might still be in use by receivers 488 * and must not be freed until after all the CPU's have gone 489 * through a quiescent state. 490 */ 491 static void __dev_remove_offload(struct packet_offload *po) 492 { 493 struct list_head *head = &offload_base; 494 struct packet_offload *po1; 495 496 spin_lock(&offload_lock); 497 498 list_for_each_entry(po1, head, list) { 499 if (po == po1) { 500 list_del_rcu(&po->list); 501 goto out; 502 } 503 } 504 505 pr_warn("dev_remove_offload: %p not found\n", po); 506 out: 507 spin_unlock(&offload_lock); 508 } 509 510 /** 511 * dev_remove_offload - remove packet offload handler 512 * @po: packet offload declaration 513 * 514 * Remove a packet offload handler that was previously added to the kernel 515 * offload handlers by dev_add_offload(). The passed &offload_type is 516 * removed from the kernel lists and can be freed or reused once this 517 * function returns. 518 * 519 * This call sleeps to guarantee that no CPU is looking at the packet 520 * type after return. 521 */ 522 void dev_remove_offload(struct packet_offload *po) 523 { 524 __dev_remove_offload(po); 525 526 synchronize_net(); 527 } 528 EXPORT_SYMBOL(dev_remove_offload); 529 530 /****************************************************************************** 531 532 Device Boot-time Settings Routines 533 534 *******************************************************************************/ 535 536 /* Boot time configuration table */ 537 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 538 539 /** 540 * netdev_boot_setup_add - add new setup entry 541 * @name: name of the device 542 * @map: configured settings for the device 543 * 544 * Adds new setup entry to the dev_boot_setup list. The function 545 * returns 0 on error and 1 on success. This is a generic routine to 546 * all netdevices. 547 */ 548 static int netdev_boot_setup_add(char *name, struct ifmap *map) 549 { 550 struct netdev_boot_setup *s; 551 int i; 552 553 s = dev_boot_setup; 554 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 555 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 556 memset(s[i].name, 0, sizeof(s[i].name)); 557 strlcpy(s[i].name, name, IFNAMSIZ); 558 memcpy(&s[i].map, map, sizeof(s[i].map)); 559 break; 560 } 561 } 562 563 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 564 } 565 566 /** 567 * netdev_boot_setup_check - check boot time settings 568 * @dev: the netdevice 569 * 570 * Check boot time settings for the device. 571 * The found settings are set for the device to be used 572 * later in the device probing. 573 * Returns 0 if no settings found, 1 if they are. 574 */ 575 int netdev_boot_setup_check(struct net_device *dev) 576 { 577 struct netdev_boot_setup *s = dev_boot_setup; 578 int i; 579 580 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 581 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 582 !strcmp(dev->name, s[i].name)) { 583 dev->irq = s[i].map.irq; 584 dev->base_addr = s[i].map.base_addr; 585 dev->mem_start = s[i].map.mem_start; 586 dev->mem_end = s[i].map.mem_end; 587 return 1; 588 } 589 } 590 return 0; 591 } 592 EXPORT_SYMBOL(netdev_boot_setup_check); 593 594 595 /** 596 * netdev_boot_base - get address from boot time settings 597 * @prefix: prefix for network device 598 * @unit: id for network device 599 * 600 * Check boot time settings for the base address of device. 601 * The found settings are set for the device to be used 602 * later in the device probing. 603 * Returns 0 if no settings found. 604 */ 605 unsigned long netdev_boot_base(const char *prefix, int unit) 606 { 607 const struct netdev_boot_setup *s = dev_boot_setup; 608 char name[IFNAMSIZ]; 609 int i; 610 611 sprintf(name, "%s%d", prefix, unit); 612 613 /* 614 * If device already registered then return base of 1 615 * to indicate not to probe for this interface 616 */ 617 if (__dev_get_by_name(&init_net, name)) 618 return 1; 619 620 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 621 if (!strcmp(name, s[i].name)) 622 return s[i].map.base_addr; 623 return 0; 624 } 625 626 /* 627 * Saves at boot time configured settings for any netdevice. 628 */ 629 int __init netdev_boot_setup(char *str) 630 { 631 int ints[5]; 632 struct ifmap map; 633 634 str = get_options(str, ARRAY_SIZE(ints), ints); 635 if (!str || !*str) 636 return 0; 637 638 /* Save settings */ 639 memset(&map, 0, sizeof(map)); 640 if (ints[0] > 0) 641 map.irq = ints[1]; 642 if (ints[0] > 1) 643 map.base_addr = ints[2]; 644 if (ints[0] > 2) 645 map.mem_start = ints[3]; 646 if (ints[0] > 3) 647 map.mem_end = ints[4]; 648 649 /* Add new entry to the list */ 650 return netdev_boot_setup_add(str, &map); 651 } 652 653 __setup("netdev=", netdev_boot_setup); 654 655 /******************************************************************************* 656 657 Device Interface Subroutines 658 659 *******************************************************************************/ 660 661 /** 662 * __dev_get_by_name - find a device by its name 663 * @net: the applicable net namespace 664 * @name: name to find 665 * 666 * Find an interface by name. Must be called under RTNL semaphore 667 * or @dev_base_lock. If the name is found a pointer to the device 668 * is returned. If the name is not found then %NULL is returned. The 669 * reference counters are not incremented so the caller must be 670 * careful with locks. 671 */ 672 673 struct net_device *__dev_get_by_name(struct net *net, const char *name) 674 { 675 struct net_device *dev; 676 struct hlist_head *head = dev_name_hash(net, name); 677 678 hlist_for_each_entry(dev, head, name_hlist) 679 if (!strncmp(dev->name, name, IFNAMSIZ)) 680 return dev; 681 682 return NULL; 683 } 684 EXPORT_SYMBOL(__dev_get_by_name); 685 686 /** 687 * dev_get_by_name_rcu - find a device by its name 688 * @net: the applicable net namespace 689 * @name: name to find 690 * 691 * Find an interface by name. 692 * If the name is found a pointer to the device is returned. 693 * If the name is not found then %NULL is returned. 694 * The reference counters are not incremented so the caller must be 695 * careful with locks. The caller must hold RCU lock. 696 */ 697 698 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 699 { 700 struct net_device *dev; 701 struct hlist_head *head = dev_name_hash(net, name); 702 703 hlist_for_each_entry_rcu(dev, head, name_hlist) 704 if (!strncmp(dev->name, name, IFNAMSIZ)) 705 return dev; 706 707 return NULL; 708 } 709 EXPORT_SYMBOL(dev_get_by_name_rcu); 710 711 /** 712 * dev_get_by_name - find a device by its name 713 * @net: the applicable net namespace 714 * @name: name to find 715 * 716 * Find an interface by name. This can be called from any 717 * context and does its own locking. The returned handle has 718 * the usage count incremented and the caller must use dev_put() to 719 * release it when it is no longer needed. %NULL is returned if no 720 * matching device is found. 721 */ 722 723 struct net_device *dev_get_by_name(struct net *net, const char *name) 724 { 725 struct net_device *dev; 726 727 rcu_read_lock(); 728 dev = dev_get_by_name_rcu(net, name); 729 if (dev) 730 dev_hold(dev); 731 rcu_read_unlock(); 732 return dev; 733 } 734 EXPORT_SYMBOL(dev_get_by_name); 735 736 /** 737 * __dev_get_by_index - find a device by its ifindex 738 * @net: the applicable net namespace 739 * @ifindex: index of device 740 * 741 * Search for an interface by index. Returns %NULL if the device 742 * is not found or a pointer to the device. The device has not 743 * had its reference counter increased so the caller must be careful 744 * about locking. The caller must hold either the RTNL semaphore 745 * or @dev_base_lock. 746 */ 747 748 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 749 { 750 struct net_device *dev; 751 struct hlist_head *head = dev_index_hash(net, ifindex); 752 753 hlist_for_each_entry(dev, head, index_hlist) 754 if (dev->ifindex == ifindex) 755 return dev; 756 757 return NULL; 758 } 759 EXPORT_SYMBOL(__dev_get_by_index); 760 761 /** 762 * dev_get_by_index_rcu - find a device by its ifindex 763 * @net: the applicable net namespace 764 * @ifindex: index of device 765 * 766 * Search for an interface by index. Returns %NULL if the device 767 * is not found or a pointer to the device. The device has not 768 * had its reference counter increased so the caller must be careful 769 * about locking. The caller must hold RCU lock. 770 */ 771 772 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 773 { 774 struct net_device *dev; 775 struct hlist_head *head = dev_index_hash(net, ifindex); 776 777 hlist_for_each_entry_rcu(dev, head, index_hlist) 778 if (dev->ifindex == ifindex) 779 return dev; 780 781 return NULL; 782 } 783 EXPORT_SYMBOL(dev_get_by_index_rcu); 784 785 786 /** 787 * dev_get_by_index - find a device by its ifindex 788 * @net: the applicable net namespace 789 * @ifindex: index of device 790 * 791 * Search for an interface by index. Returns NULL if the device 792 * is not found or a pointer to the device. The device returned has 793 * had a reference added and the pointer is safe until the user calls 794 * dev_put to indicate they have finished with it. 795 */ 796 797 struct net_device *dev_get_by_index(struct net *net, int ifindex) 798 { 799 struct net_device *dev; 800 801 rcu_read_lock(); 802 dev = dev_get_by_index_rcu(net, ifindex); 803 if (dev) 804 dev_hold(dev); 805 rcu_read_unlock(); 806 return dev; 807 } 808 EXPORT_SYMBOL(dev_get_by_index); 809 810 /** 811 * netdev_get_name - get a netdevice name, knowing its ifindex. 812 * @net: network namespace 813 * @name: a pointer to the buffer where the name will be stored. 814 * @ifindex: the ifindex of the interface to get the name from. 815 * 816 * The use of raw_seqcount_begin() and cond_resched() before 817 * retrying is required as we want to give the writers a chance 818 * to complete when CONFIG_PREEMPT is not set. 819 */ 820 int netdev_get_name(struct net *net, char *name, int ifindex) 821 { 822 struct net_device *dev; 823 unsigned int seq; 824 825 retry: 826 seq = raw_seqcount_begin(&devnet_rename_seq); 827 rcu_read_lock(); 828 dev = dev_get_by_index_rcu(net, ifindex); 829 if (!dev) { 830 rcu_read_unlock(); 831 return -ENODEV; 832 } 833 834 strcpy(name, dev->name); 835 rcu_read_unlock(); 836 if (read_seqcount_retry(&devnet_rename_seq, seq)) { 837 cond_resched(); 838 goto retry; 839 } 840 841 return 0; 842 } 843 844 /** 845 * dev_getbyhwaddr_rcu - find a device by its hardware address 846 * @net: the applicable net namespace 847 * @type: media type of device 848 * @ha: hardware address 849 * 850 * Search for an interface by MAC address. Returns NULL if the device 851 * is not found or a pointer to the device. 852 * The caller must hold RCU or RTNL. 853 * The returned device has not had its ref count increased 854 * and the caller must therefore be careful about locking 855 * 856 */ 857 858 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 859 const char *ha) 860 { 861 struct net_device *dev; 862 863 for_each_netdev_rcu(net, dev) 864 if (dev->type == type && 865 !memcmp(dev->dev_addr, ha, dev->addr_len)) 866 return dev; 867 868 return NULL; 869 } 870 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 871 872 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 873 { 874 struct net_device *dev; 875 876 ASSERT_RTNL(); 877 for_each_netdev(net, dev) 878 if (dev->type == type) 879 return dev; 880 881 return NULL; 882 } 883 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 884 885 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 886 { 887 struct net_device *dev, *ret = NULL; 888 889 rcu_read_lock(); 890 for_each_netdev_rcu(net, dev) 891 if (dev->type == type) { 892 dev_hold(dev); 893 ret = dev; 894 break; 895 } 896 rcu_read_unlock(); 897 return ret; 898 } 899 EXPORT_SYMBOL(dev_getfirstbyhwtype); 900 901 /** 902 * __dev_get_by_flags - find any device with given flags 903 * @net: the applicable net namespace 904 * @if_flags: IFF_* values 905 * @mask: bitmask of bits in if_flags to check 906 * 907 * Search for any interface with the given flags. Returns NULL if a device 908 * is not found or a pointer to the device. Must be called inside 909 * rtnl_lock(), and result refcount is unchanged. 910 */ 911 912 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags, 913 unsigned short mask) 914 { 915 struct net_device *dev, *ret; 916 917 ASSERT_RTNL(); 918 919 ret = NULL; 920 for_each_netdev(net, dev) { 921 if (((dev->flags ^ if_flags) & mask) == 0) { 922 ret = dev; 923 break; 924 } 925 } 926 return ret; 927 } 928 EXPORT_SYMBOL(__dev_get_by_flags); 929 930 /** 931 * dev_valid_name - check if name is okay for network device 932 * @name: name string 933 * 934 * Network device names need to be valid file names to 935 * to allow sysfs to work. We also disallow any kind of 936 * whitespace. 937 */ 938 bool dev_valid_name(const char *name) 939 { 940 if (*name == '\0') 941 return false; 942 if (strlen(name) >= IFNAMSIZ) 943 return false; 944 if (!strcmp(name, ".") || !strcmp(name, "..")) 945 return false; 946 947 while (*name) { 948 if (*name == '/' || isspace(*name)) 949 return false; 950 name++; 951 } 952 return true; 953 } 954 EXPORT_SYMBOL(dev_valid_name); 955 956 /** 957 * __dev_alloc_name - allocate a name for a device 958 * @net: network namespace to allocate the device name in 959 * @name: name format string 960 * @buf: scratch buffer and result name string 961 * 962 * Passed a format string - eg "lt%d" it will try and find a suitable 963 * id. It scans list of devices to build up a free map, then chooses 964 * the first empty slot. The caller must hold the dev_base or rtnl lock 965 * while allocating the name and adding the device in order to avoid 966 * duplicates. 967 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 968 * Returns the number of the unit assigned or a negative errno code. 969 */ 970 971 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 972 { 973 int i = 0; 974 const char *p; 975 const int max_netdevices = 8*PAGE_SIZE; 976 unsigned long *inuse; 977 struct net_device *d; 978 979 p = strnchr(name, IFNAMSIZ-1, '%'); 980 if (p) { 981 /* 982 * Verify the string as this thing may have come from 983 * the user. There must be either one "%d" and no other "%" 984 * characters. 985 */ 986 if (p[1] != 'd' || strchr(p + 2, '%')) 987 return -EINVAL; 988 989 /* Use one page as a bit array of possible slots */ 990 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 991 if (!inuse) 992 return -ENOMEM; 993 994 for_each_netdev(net, d) { 995 if (!sscanf(d->name, name, &i)) 996 continue; 997 if (i < 0 || i >= max_netdevices) 998 continue; 999 1000 /* avoid cases where sscanf is not exact inverse of printf */ 1001 snprintf(buf, IFNAMSIZ, name, i); 1002 if (!strncmp(buf, d->name, IFNAMSIZ)) 1003 set_bit(i, inuse); 1004 } 1005 1006 i = find_first_zero_bit(inuse, max_netdevices); 1007 free_page((unsigned long) inuse); 1008 } 1009 1010 if (buf != name) 1011 snprintf(buf, IFNAMSIZ, name, i); 1012 if (!__dev_get_by_name(net, buf)) 1013 return i; 1014 1015 /* It is possible to run out of possible slots 1016 * when the name is long and there isn't enough space left 1017 * for the digits, or if all bits are used. 1018 */ 1019 return -ENFILE; 1020 } 1021 1022 /** 1023 * dev_alloc_name - allocate a name for a device 1024 * @dev: device 1025 * @name: name format string 1026 * 1027 * Passed a format string - eg "lt%d" it will try and find a suitable 1028 * id. It scans list of devices to build up a free map, then chooses 1029 * the first empty slot. The caller must hold the dev_base or rtnl lock 1030 * while allocating the name and adding the device in order to avoid 1031 * duplicates. 1032 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1033 * Returns the number of the unit assigned or a negative errno code. 1034 */ 1035 1036 int dev_alloc_name(struct net_device *dev, const char *name) 1037 { 1038 char buf[IFNAMSIZ]; 1039 struct net *net; 1040 int ret; 1041 1042 BUG_ON(!dev_net(dev)); 1043 net = dev_net(dev); 1044 ret = __dev_alloc_name(net, name, buf); 1045 if (ret >= 0) 1046 strlcpy(dev->name, buf, IFNAMSIZ); 1047 return ret; 1048 } 1049 EXPORT_SYMBOL(dev_alloc_name); 1050 1051 static int dev_alloc_name_ns(struct net *net, 1052 struct net_device *dev, 1053 const char *name) 1054 { 1055 char buf[IFNAMSIZ]; 1056 int ret; 1057 1058 ret = __dev_alloc_name(net, name, buf); 1059 if (ret >= 0) 1060 strlcpy(dev->name, buf, IFNAMSIZ); 1061 return ret; 1062 } 1063 1064 static int dev_get_valid_name(struct net *net, 1065 struct net_device *dev, 1066 const char *name) 1067 { 1068 BUG_ON(!net); 1069 1070 if (!dev_valid_name(name)) 1071 return -EINVAL; 1072 1073 if (strchr(name, '%')) 1074 return dev_alloc_name_ns(net, dev, name); 1075 else if (__dev_get_by_name(net, name)) 1076 return -EEXIST; 1077 else if (dev->name != name) 1078 strlcpy(dev->name, name, IFNAMSIZ); 1079 1080 return 0; 1081 } 1082 1083 /** 1084 * dev_change_name - change name of a device 1085 * @dev: device 1086 * @newname: name (or format string) must be at least IFNAMSIZ 1087 * 1088 * Change name of a device, can pass format strings "eth%d". 1089 * for wildcarding. 1090 */ 1091 int dev_change_name(struct net_device *dev, const char *newname) 1092 { 1093 unsigned char old_assign_type; 1094 char oldname[IFNAMSIZ]; 1095 int err = 0; 1096 int ret; 1097 struct net *net; 1098 1099 ASSERT_RTNL(); 1100 BUG_ON(!dev_net(dev)); 1101 1102 net = dev_net(dev); 1103 if (dev->flags & IFF_UP) 1104 return -EBUSY; 1105 1106 write_seqcount_begin(&devnet_rename_seq); 1107 1108 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1109 write_seqcount_end(&devnet_rename_seq); 1110 return 0; 1111 } 1112 1113 memcpy(oldname, dev->name, IFNAMSIZ); 1114 1115 err = dev_get_valid_name(net, dev, newname); 1116 if (err < 0) { 1117 write_seqcount_end(&devnet_rename_seq); 1118 return err; 1119 } 1120 1121 if (oldname[0] && !strchr(oldname, '%')) 1122 netdev_info(dev, "renamed from %s\n", oldname); 1123 1124 old_assign_type = dev->name_assign_type; 1125 dev->name_assign_type = NET_NAME_RENAMED; 1126 1127 rollback: 1128 ret = device_rename(&dev->dev, dev->name); 1129 if (ret) { 1130 memcpy(dev->name, oldname, IFNAMSIZ); 1131 dev->name_assign_type = old_assign_type; 1132 write_seqcount_end(&devnet_rename_seq); 1133 return ret; 1134 } 1135 1136 write_seqcount_end(&devnet_rename_seq); 1137 1138 netdev_adjacent_rename_links(dev, oldname); 1139 1140 write_lock_bh(&dev_base_lock); 1141 hlist_del_rcu(&dev->name_hlist); 1142 write_unlock_bh(&dev_base_lock); 1143 1144 synchronize_rcu(); 1145 1146 write_lock_bh(&dev_base_lock); 1147 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1148 write_unlock_bh(&dev_base_lock); 1149 1150 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1151 ret = notifier_to_errno(ret); 1152 1153 if (ret) { 1154 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1155 if (err >= 0) { 1156 err = ret; 1157 write_seqcount_begin(&devnet_rename_seq); 1158 memcpy(dev->name, oldname, IFNAMSIZ); 1159 memcpy(oldname, newname, IFNAMSIZ); 1160 dev->name_assign_type = old_assign_type; 1161 old_assign_type = NET_NAME_RENAMED; 1162 goto rollback; 1163 } else { 1164 pr_err("%s: name change rollback failed: %d\n", 1165 dev->name, ret); 1166 } 1167 } 1168 1169 return err; 1170 } 1171 1172 /** 1173 * dev_set_alias - change ifalias of a device 1174 * @dev: device 1175 * @alias: name up to IFALIASZ 1176 * @len: limit of bytes to copy from info 1177 * 1178 * Set ifalias for a device, 1179 */ 1180 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1181 { 1182 char *new_ifalias; 1183 1184 ASSERT_RTNL(); 1185 1186 if (len >= IFALIASZ) 1187 return -EINVAL; 1188 1189 if (!len) { 1190 kfree(dev->ifalias); 1191 dev->ifalias = NULL; 1192 return 0; 1193 } 1194 1195 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL); 1196 if (!new_ifalias) 1197 return -ENOMEM; 1198 dev->ifalias = new_ifalias; 1199 1200 strlcpy(dev->ifalias, alias, len+1); 1201 return len; 1202 } 1203 1204 1205 /** 1206 * netdev_features_change - device changes features 1207 * @dev: device to cause notification 1208 * 1209 * Called to indicate a device has changed features. 1210 */ 1211 void netdev_features_change(struct net_device *dev) 1212 { 1213 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1214 } 1215 EXPORT_SYMBOL(netdev_features_change); 1216 1217 /** 1218 * netdev_state_change - device changes state 1219 * @dev: device to cause notification 1220 * 1221 * Called to indicate a device has changed state. This function calls 1222 * the notifier chains for netdev_chain and sends a NEWLINK message 1223 * to the routing socket. 1224 */ 1225 void netdev_state_change(struct net_device *dev) 1226 { 1227 if (dev->flags & IFF_UP) { 1228 struct netdev_notifier_change_info change_info; 1229 1230 change_info.flags_changed = 0; 1231 call_netdevice_notifiers_info(NETDEV_CHANGE, dev, 1232 &change_info.info); 1233 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL); 1234 } 1235 } 1236 EXPORT_SYMBOL(netdev_state_change); 1237 1238 /** 1239 * netdev_notify_peers - notify network peers about existence of @dev 1240 * @dev: network device 1241 * 1242 * Generate traffic such that interested network peers are aware of 1243 * @dev, such as by generating a gratuitous ARP. This may be used when 1244 * a device wants to inform the rest of the network about some sort of 1245 * reconfiguration such as a failover event or virtual machine 1246 * migration. 1247 */ 1248 void netdev_notify_peers(struct net_device *dev) 1249 { 1250 rtnl_lock(); 1251 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1252 rtnl_unlock(); 1253 } 1254 EXPORT_SYMBOL(netdev_notify_peers); 1255 1256 static int __dev_open(struct net_device *dev) 1257 { 1258 const struct net_device_ops *ops = dev->netdev_ops; 1259 int ret; 1260 1261 ASSERT_RTNL(); 1262 1263 if (!netif_device_present(dev)) 1264 return -ENODEV; 1265 1266 /* Block netpoll from trying to do any rx path servicing. 1267 * If we don't do this there is a chance ndo_poll_controller 1268 * or ndo_poll may be running while we open the device 1269 */ 1270 netpoll_poll_disable(dev); 1271 1272 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1273 ret = notifier_to_errno(ret); 1274 if (ret) 1275 return ret; 1276 1277 set_bit(__LINK_STATE_START, &dev->state); 1278 1279 if (ops->ndo_validate_addr) 1280 ret = ops->ndo_validate_addr(dev); 1281 1282 if (!ret && ops->ndo_open) 1283 ret = ops->ndo_open(dev); 1284 1285 netpoll_poll_enable(dev); 1286 1287 if (ret) 1288 clear_bit(__LINK_STATE_START, &dev->state); 1289 else { 1290 dev->flags |= IFF_UP; 1291 dev_set_rx_mode(dev); 1292 dev_activate(dev); 1293 add_device_randomness(dev->dev_addr, dev->addr_len); 1294 } 1295 1296 return ret; 1297 } 1298 1299 /** 1300 * dev_open - prepare an interface for use. 1301 * @dev: device to open 1302 * 1303 * Takes a device from down to up state. The device's private open 1304 * function is invoked and then the multicast lists are loaded. Finally 1305 * the device is moved into the up state and a %NETDEV_UP message is 1306 * sent to the netdev notifier chain. 1307 * 1308 * Calling this function on an active interface is a nop. On a failure 1309 * a negative errno code is returned. 1310 */ 1311 int dev_open(struct net_device *dev) 1312 { 1313 int ret; 1314 1315 if (dev->flags & IFF_UP) 1316 return 0; 1317 1318 ret = __dev_open(dev); 1319 if (ret < 0) 1320 return ret; 1321 1322 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1323 call_netdevice_notifiers(NETDEV_UP, dev); 1324 1325 return ret; 1326 } 1327 EXPORT_SYMBOL(dev_open); 1328 1329 static int __dev_close_many(struct list_head *head) 1330 { 1331 struct net_device *dev; 1332 1333 ASSERT_RTNL(); 1334 might_sleep(); 1335 1336 list_for_each_entry(dev, head, close_list) { 1337 /* Temporarily disable netpoll until the interface is down */ 1338 netpoll_poll_disable(dev); 1339 1340 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1341 1342 clear_bit(__LINK_STATE_START, &dev->state); 1343 1344 /* Synchronize to scheduled poll. We cannot touch poll list, it 1345 * can be even on different cpu. So just clear netif_running(). 1346 * 1347 * dev->stop() will invoke napi_disable() on all of it's 1348 * napi_struct instances on this device. 1349 */ 1350 smp_mb__after_atomic(); /* Commit netif_running(). */ 1351 } 1352 1353 dev_deactivate_many(head); 1354 1355 list_for_each_entry(dev, head, close_list) { 1356 const struct net_device_ops *ops = dev->netdev_ops; 1357 1358 /* 1359 * Call the device specific close. This cannot fail. 1360 * Only if device is UP 1361 * 1362 * We allow it to be called even after a DETACH hot-plug 1363 * event. 1364 */ 1365 if (ops->ndo_stop) 1366 ops->ndo_stop(dev); 1367 1368 dev->flags &= ~IFF_UP; 1369 netpoll_poll_enable(dev); 1370 } 1371 1372 return 0; 1373 } 1374 1375 static int __dev_close(struct net_device *dev) 1376 { 1377 int retval; 1378 LIST_HEAD(single); 1379 1380 list_add(&dev->close_list, &single); 1381 retval = __dev_close_many(&single); 1382 list_del(&single); 1383 1384 return retval; 1385 } 1386 1387 static int dev_close_many(struct list_head *head) 1388 { 1389 struct net_device *dev, *tmp; 1390 1391 /* Remove the devices that don't need to be closed */ 1392 list_for_each_entry_safe(dev, tmp, head, close_list) 1393 if (!(dev->flags & IFF_UP)) 1394 list_del_init(&dev->close_list); 1395 1396 __dev_close_many(head); 1397 1398 list_for_each_entry_safe(dev, tmp, head, close_list) { 1399 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1400 call_netdevice_notifiers(NETDEV_DOWN, dev); 1401 list_del_init(&dev->close_list); 1402 } 1403 1404 return 0; 1405 } 1406 1407 /** 1408 * dev_close - shutdown an interface. 1409 * @dev: device to shutdown 1410 * 1411 * This function moves an active device into down state. A 1412 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1413 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1414 * chain. 1415 */ 1416 int dev_close(struct net_device *dev) 1417 { 1418 if (dev->flags & IFF_UP) { 1419 LIST_HEAD(single); 1420 1421 list_add(&dev->close_list, &single); 1422 dev_close_many(&single); 1423 list_del(&single); 1424 } 1425 return 0; 1426 } 1427 EXPORT_SYMBOL(dev_close); 1428 1429 1430 /** 1431 * dev_disable_lro - disable Large Receive Offload on a device 1432 * @dev: device 1433 * 1434 * Disable Large Receive Offload (LRO) on a net device. Must be 1435 * called under RTNL. This is needed if received packets may be 1436 * forwarded to another interface. 1437 */ 1438 void dev_disable_lro(struct net_device *dev) 1439 { 1440 struct net_device *lower_dev; 1441 struct list_head *iter; 1442 1443 dev->wanted_features &= ~NETIF_F_LRO; 1444 netdev_update_features(dev); 1445 1446 if (unlikely(dev->features & NETIF_F_LRO)) 1447 netdev_WARN(dev, "failed to disable LRO!\n"); 1448 1449 netdev_for_each_lower_dev(dev, lower_dev, iter) 1450 dev_disable_lro(lower_dev); 1451 } 1452 EXPORT_SYMBOL(dev_disable_lro); 1453 1454 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1455 struct net_device *dev) 1456 { 1457 struct netdev_notifier_info info; 1458 1459 netdev_notifier_info_init(&info, dev); 1460 return nb->notifier_call(nb, val, &info); 1461 } 1462 1463 static int dev_boot_phase = 1; 1464 1465 /** 1466 * register_netdevice_notifier - register a network notifier block 1467 * @nb: notifier 1468 * 1469 * Register a notifier to be called when network device events occur. 1470 * The notifier passed is linked into the kernel structures and must 1471 * not be reused until it has been unregistered. A negative errno code 1472 * is returned on a failure. 1473 * 1474 * When registered all registration and up events are replayed 1475 * to the new notifier to allow device to have a race free 1476 * view of the network device list. 1477 */ 1478 1479 int register_netdevice_notifier(struct notifier_block *nb) 1480 { 1481 struct net_device *dev; 1482 struct net_device *last; 1483 struct net *net; 1484 int err; 1485 1486 rtnl_lock(); 1487 err = raw_notifier_chain_register(&netdev_chain, nb); 1488 if (err) 1489 goto unlock; 1490 if (dev_boot_phase) 1491 goto unlock; 1492 for_each_net(net) { 1493 for_each_netdev(net, dev) { 1494 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1495 err = notifier_to_errno(err); 1496 if (err) 1497 goto rollback; 1498 1499 if (!(dev->flags & IFF_UP)) 1500 continue; 1501 1502 call_netdevice_notifier(nb, NETDEV_UP, dev); 1503 } 1504 } 1505 1506 unlock: 1507 rtnl_unlock(); 1508 return err; 1509 1510 rollback: 1511 last = dev; 1512 for_each_net(net) { 1513 for_each_netdev(net, dev) { 1514 if (dev == last) 1515 goto outroll; 1516 1517 if (dev->flags & IFF_UP) { 1518 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1519 dev); 1520 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1521 } 1522 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1523 } 1524 } 1525 1526 outroll: 1527 raw_notifier_chain_unregister(&netdev_chain, nb); 1528 goto unlock; 1529 } 1530 EXPORT_SYMBOL(register_netdevice_notifier); 1531 1532 /** 1533 * unregister_netdevice_notifier - unregister a network notifier block 1534 * @nb: notifier 1535 * 1536 * Unregister a notifier previously registered by 1537 * register_netdevice_notifier(). The notifier is unlinked into the 1538 * kernel structures and may then be reused. A negative errno code 1539 * is returned on a failure. 1540 * 1541 * After unregistering unregister and down device events are synthesized 1542 * for all devices on the device list to the removed notifier to remove 1543 * the need for special case cleanup code. 1544 */ 1545 1546 int unregister_netdevice_notifier(struct notifier_block *nb) 1547 { 1548 struct net_device *dev; 1549 struct net *net; 1550 int err; 1551 1552 rtnl_lock(); 1553 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1554 if (err) 1555 goto unlock; 1556 1557 for_each_net(net) { 1558 for_each_netdev(net, dev) { 1559 if (dev->flags & IFF_UP) { 1560 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1561 dev); 1562 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1563 } 1564 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1565 } 1566 } 1567 unlock: 1568 rtnl_unlock(); 1569 return err; 1570 } 1571 EXPORT_SYMBOL(unregister_netdevice_notifier); 1572 1573 /** 1574 * call_netdevice_notifiers_info - call all network notifier blocks 1575 * @val: value passed unmodified to notifier function 1576 * @dev: net_device pointer passed unmodified to notifier function 1577 * @info: notifier information data 1578 * 1579 * Call all network notifier blocks. Parameters and return value 1580 * are as for raw_notifier_call_chain(). 1581 */ 1582 1583 static int call_netdevice_notifiers_info(unsigned long val, 1584 struct net_device *dev, 1585 struct netdev_notifier_info *info) 1586 { 1587 ASSERT_RTNL(); 1588 netdev_notifier_info_init(info, dev); 1589 return raw_notifier_call_chain(&netdev_chain, val, info); 1590 } 1591 1592 /** 1593 * call_netdevice_notifiers - call all network notifier blocks 1594 * @val: value passed unmodified to notifier function 1595 * @dev: net_device pointer passed unmodified to notifier function 1596 * 1597 * Call all network notifier blocks. Parameters and return value 1598 * are as for raw_notifier_call_chain(). 1599 */ 1600 1601 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1602 { 1603 struct netdev_notifier_info info; 1604 1605 return call_netdevice_notifiers_info(val, dev, &info); 1606 } 1607 EXPORT_SYMBOL(call_netdevice_notifiers); 1608 1609 static struct static_key netstamp_needed __read_mostly; 1610 #ifdef HAVE_JUMP_LABEL 1611 /* We are not allowed to call static_key_slow_dec() from irq context 1612 * If net_disable_timestamp() is called from irq context, defer the 1613 * static_key_slow_dec() calls. 1614 */ 1615 static atomic_t netstamp_needed_deferred; 1616 #endif 1617 1618 void net_enable_timestamp(void) 1619 { 1620 #ifdef HAVE_JUMP_LABEL 1621 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 1622 1623 if (deferred) { 1624 while (--deferred) 1625 static_key_slow_dec(&netstamp_needed); 1626 return; 1627 } 1628 #endif 1629 static_key_slow_inc(&netstamp_needed); 1630 } 1631 EXPORT_SYMBOL(net_enable_timestamp); 1632 1633 void net_disable_timestamp(void) 1634 { 1635 #ifdef HAVE_JUMP_LABEL 1636 if (in_interrupt()) { 1637 atomic_inc(&netstamp_needed_deferred); 1638 return; 1639 } 1640 #endif 1641 static_key_slow_dec(&netstamp_needed); 1642 } 1643 EXPORT_SYMBOL(net_disable_timestamp); 1644 1645 static inline void net_timestamp_set(struct sk_buff *skb) 1646 { 1647 skb->tstamp.tv64 = 0; 1648 if (static_key_false(&netstamp_needed)) 1649 __net_timestamp(skb); 1650 } 1651 1652 #define net_timestamp_check(COND, SKB) \ 1653 if (static_key_false(&netstamp_needed)) { \ 1654 if ((COND) && !(SKB)->tstamp.tv64) \ 1655 __net_timestamp(SKB); \ 1656 } \ 1657 1658 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb) 1659 { 1660 unsigned int len; 1661 1662 if (!(dev->flags & IFF_UP)) 1663 return false; 1664 1665 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 1666 if (skb->len <= len) 1667 return true; 1668 1669 /* if TSO is enabled, we don't care about the length as the packet 1670 * could be forwarded without being segmented before 1671 */ 1672 if (skb_is_gso(skb)) 1673 return true; 1674 1675 return false; 1676 } 1677 EXPORT_SYMBOL_GPL(is_skb_forwardable); 1678 1679 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1680 { 1681 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) { 1682 if (skb_copy_ubufs(skb, GFP_ATOMIC)) { 1683 atomic_long_inc(&dev->rx_dropped); 1684 kfree_skb(skb); 1685 return NET_RX_DROP; 1686 } 1687 } 1688 1689 if (unlikely(!is_skb_forwardable(dev, skb))) { 1690 atomic_long_inc(&dev->rx_dropped); 1691 kfree_skb(skb); 1692 return NET_RX_DROP; 1693 } 1694 1695 skb_scrub_packet(skb, true); 1696 skb->protocol = eth_type_trans(skb, dev); 1697 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 1698 1699 return 0; 1700 } 1701 EXPORT_SYMBOL_GPL(__dev_forward_skb); 1702 1703 /** 1704 * dev_forward_skb - loopback an skb to another netif 1705 * 1706 * @dev: destination network device 1707 * @skb: buffer to forward 1708 * 1709 * return values: 1710 * NET_RX_SUCCESS (no congestion) 1711 * NET_RX_DROP (packet was dropped, but freed) 1712 * 1713 * dev_forward_skb can be used for injecting an skb from the 1714 * start_xmit function of one device into the receive queue 1715 * of another device. 1716 * 1717 * The receiving device may be in another namespace, so 1718 * we have to clear all information in the skb that could 1719 * impact namespace isolation. 1720 */ 1721 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1722 { 1723 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 1724 } 1725 EXPORT_SYMBOL_GPL(dev_forward_skb); 1726 1727 static inline int deliver_skb(struct sk_buff *skb, 1728 struct packet_type *pt_prev, 1729 struct net_device *orig_dev) 1730 { 1731 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 1732 return -ENOMEM; 1733 atomic_inc(&skb->users); 1734 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1735 } 1736 1737 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 1738 { 1739 if (!ptype->af_packet_priv || !skb->sk) 1740 return false; 1741 1742 if (ptype->id_match) 1743 return ptype->id_match(ptype, skb->sk); 1744 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 1745 return true; 1746 1747 return false; 1748 } 1749 1750 /* 1751 * Support routine. Sends outgoing frames to any network 1752 * taps currently in use. 1753 */ 1754 1755 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1756 { 1757 struct packet_type *ptype; 1758 struct sk_buff *skb2 = NULL; 1759 struct packet_type *pt_prev = NULL; 1760 1761 rcu_read_lock(); 1762 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1763 /* Never send packets back to the socket 1764 * they originated from - MvS (miquels@drinkel.ow.org) 1765 */ 1766 if ((ptype->dev == dev || !ptype->dev) && 1767 (!skb_loop_sk(ptype, skb))) { 1768 if (pt_prev) { 1769 deliver_skb(skb2, pt_prev, skb->dev); 1770 pt_prev = ptype; 1771 continue; 1772 } 1773 1774 skb2 = skb_clone(skb, GFP_ATOMIC); 1775 if (!skb2) 1776 break; 1777 1778 net_timestamp_set(skb2); 1779 1780 /* skb->nh should be correctly 1781 set by sender, so that the second statement is 1782 just protection against buggy protocols. 1783 */ 1784 skb_reset_mac_header(skb2); 1785 1786 if (skb_network_header(skb2) < skb2->data || 1787 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 1788 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 1789 ntohs(skb2->protocol), 1790 dev->name); 1791 skb_reset_network_header(skb2); 1792 } 1793 1794 skb2->transport_header = skb2->network_header; 1795 skb2->pkt_type = PACKET_OUTGOING; 1796 pt_prev = ptype; 1797 } 1798 } 1799 if (pt_prev) 1800 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 1801 rcu_read_unlock(); 1802 } 1803 1804 /** 1805 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 1806 * @dev: Network device 1807 * @txq: number of queues available 1808 * 1809 * If real_num_tx_queues is changed the tc mappings may no longer be 1810 * valid. To resolve this verify the tc mapping remains valid and if 1811 * not NULL the mapping. With no priorities mapping to this 1812 * offset/count pair it will no longer be used. In the worst case TC0 1813 * is invalid nothing can be done so disable priority mappings. If is 1814 * expected that drivers will fix this mapping if they can before 1815 * calling netif_set_real_num_tx_queues. 1816 */ 1817 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 1818 { 1819 int i; 1820 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 1821 1822 /* If TC0 is invalidated disable TC mapping */ 1823 if (tc->offset + tc->count > txq) { 1824 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 1825 dev->num_tc = 0; 1826 return; 1827 } 1828 1829 /* Invalidated prio to tc mappings set to TC0 */ 1830 for (i = 1; i < TC_BITMASK + 1; i++) { 1831 int q = netdev_get_prio_tc_map(dev, i); 1832 1833 tc = &dev->tc_to_txq[q]; 1834 if (tc->offset + tc->count > txq) { 1835 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 1836 i, q); 1837 netdev_set_prio_tc_map(dev, i, 0); 1838 } 1839 } 1840 } 1841 1842 #ifdef CONFIG_XPS 1843 static DEFINE_MUTEX(xps_map_mutex); 1844 #define xmap_dereference(P) \ 1845 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 1846 1847 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps, 1848 int cpu, u16 index) 1849 { 1850 struct xps_map *map = NULL; 1851 int pos; 1852 1853 if (dev_maps) 1854 map = xmap_dereference(dev_maps->cpu_map[cpu]); 1855 1856 for (pos = 0; map && pos < map->len; pos++) { 1857 if (map->queues[pos] == index) { 1858 if (map->len > 1) { 1859 map->queues[pos] = map->queues[--map->len]; 1860 } else { 1861 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL); 1862 kfree_rcu(map, rcu); 1863 map = NULL; 1864 } 1865 break; 1866 } 1867 } 1868 1869 return map; 1870 } 1871 1872 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 1873 { 1874 struct xps_dev_maps *dev_maps; 1875 int cpu, i; 1876 bool active = false; 1877 1878 mutex_lock(&xps_map_mutex); 1879 dev_maps = xmap_dereference(dev->xps_maps); 1880 1881 if (!dev_maps) 1882 goto out_no_maps; 1883 1884 for_each_possible_cpu(cpu) { 1885 for (i = index; i < dev->num_tx_queues; i++) { 1886 if (!remove_xps_queue(dev_maps, cpu, i)) 1887 break; 1888 } 1889 if (i == dev->num_tx_queues) 1890 active = true; 1891 } 1892 1893 if (!active) { 1894 RCU_INIT_POINTER(dev->xps_maps, NULL); 1895 kfree_rcu(dev_maps, rcu); 1896 } 1897 1898 for (i = index; i < dev->num_tx_queues; i++) 1899 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i), 1900 NUMA_NO_NODE); 1901 1902 out_no_maps: 1903 mutex_unlock(&xps_map_mutex); 1904 } 1905 1906 static struct xps_map *expand_xps_map(struct xps_map *map, 1907 int cpu, u16 index) 1908 { 1909 struct xps_map *new_map; 1910 int alloc_len = XPS_MIN_MAP_ALLOC; 1911 int i, pos; 1912 1913 for (pos = 0; map && pos < map->len; pos++) { 1914 if (map->queues[pos] != index) 1915 continue; 1916 return map; 1917 } 1918 1919 /* Need to add queue to this CPU's existing map */ 1920 if (map) { 1921 if (pos < map->alloc_len) 1922 return map; 1923 1924 alloc_len = map->alloc_len * 2; 1925 } 1926 1927 /* Need to allocate new map to store queue on this CPU's map */ 1928 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 1929 cpu_to_node(cpu)); 1930 if (!new_map) 1931 return NULL; 1932 1933 for (i = 0; i < pos; i++) 1934 new_map->queues[i] = map->queues[i]; 1935 new_map->alloc_len = alloc_len; 1936 new_map->len = pos; 1937 1938 return new_map; 1939 } 1940 1941 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 1942 u16 index) 1943 { 1944 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL; 1945 struct xps_map *map, *new_map; 1946 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES); 1947 int cpu, numa_node_id = -2; 1948 bool active = false; 1949 1950 mutex_lock(&xps_map_mutex); 1951 1952 dev_maps = xmap_dereference(dev->xps_maps); 1953 1954 /* allocate memory for queue storage */ 1955 for_each_online_cpu(cpu) { 1956 if (!cpumask_test_cpu(cpu, mask)) 1957 continue; 1958 1959 if (!new_dev_maps) 1960 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 1961 if (!new_dev_maps) { 1962 mutex_unlock(&xps_map_mutex); 1963 return -ENOMEM; 1964 } 1965 1966 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) : 1967 NULL; 1968 1969 map = expand_xps_map(map, cpu, index); 1970 if (!map) 1971 goto error; 1972 1973 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map); 1974 } 1975 1976 if (!new_dev_maps) 1977 goto out_no_new_maps; 1978 1979 for_each_possible_cpu(cpu) { 1980 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) { 1981 /* add queue to CPU maps */ 1982 int pos = 0; 1983 1984 map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 1985 while ((pos < map->len) && (map->queues[pos] != index)) 1986 pos++; 1987 1988 if (pos == map->len) 1989 map->queues[map->len++] = index; 1990 #ifdef CONFIG_NUMA 1991 if (numa_node_id == -2) 1992 numa_node_id = cpu_to_node(cpu); 1993 else if (numa_node_id != cpu_to_node(cpu)) 1994 numa_node_id = -1; 1995 #endif 1996 } else if (dev_maps) { 1997 /* fill in the new device map from the old device map */ 1998 map = xmap_dereference(dev_maps->cpu_map[cpu]); 1999 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map); 2000 } 2001 2002 } 2003 2004 rcu_assign_pointer(dev->xps_maps, new_dev_maps); 2005 2006 /* Cleanup old maps */ 2007 if (dev_maps) { 2008 for_each_possible_cpu(cpu) { 2009 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 2010 map = xmap_dereference(dev_maps->cpu_map[cpu]); 2011 if (map && map != new_map) 2012 kfree_rcu(map, rcu); 2013 } 2014 2015 kfree_rcu(dev_maps, rcu); 2016 } 2017 2018 dev_maps = new_dev_maps; 2019 active = true; 2020 2021 out_no_new_maps: 2022 /* update Tx queue numa node */ 2023 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2024 (numa_node_id >= 0) ? numa_node_id : 2025 NUMA_NO_NODE); 2026 2027 if (!dev_maps) 2028 goto out_no_maps; 2029 2030 /* removes queue from unused CPUs */ 2031 for_each_possible_cpu(cpu) { 2032 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) 2033 continue; 2034 2035 if (remove_xps_queue(dev_maps, cpu, index)) 2036 active = true; 2037 } 2038 2039 /* free map if not active */ 2040 if (!active) { 2041 RCU_INIT_POINTER(dev->xps_maps, NULL); 2042 kfree_rcu(dev_maps, rcu); 2043 } 2044 2045 out_no_maps: 2046 mutex_unlock(&xps_map_mutex); 2047 2048 return 0; 2049 error: 2050 /* remove any maps that we added */ 2051 for_each_possible_cpu(cpu) { 2052 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 2053 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) : 2054 NULL; 2055 if (new_map && new_map != map) 2056 kfree(new_map); 2057 } 2058 2059 mutex_unlock(&xps_map_mutex); 2060 2061 kfree(new_dev_maps); 2062 return -ENOMEM; 2063 } 2064 EXPORT_SYMBOL(netif_set_xps_queue); 2065 2066 #endif 2067 /* 2068 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2069 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed. 2070 */ 2071 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2072 { 2073 int rc; 2074 2075 if (txq < 1 || txq > dev->num_tx_queues) 2076 return -EINVAL; 2077 2078 if (dev->reg_state == NETREG_REGISTERED || 2079 dev->reg_state == NETREG_UNREGISTERING) { 2080 ASSERT_RTNL(); 2081 2082 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2083 txq); 2084 if (rc) 2085 return rc; 2086 2087 if (dev->num_tc) 2088 netif_setup_tc(dev, txq); 2089 2090 if (txq < dev->real_num_tx_queues) { 2091 qdisc_reset_all_tx_gt(dev, txq); 2092 #ifdef CONFIG_XPS 2093 netif_reset_xps_queues_gt(dev, txq); 2094 #endif 2095 } 2096 } 2097 2098 dev->real_num_tx_queues = txq; 2099 return 0; 2100 } 2101 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2102 2103 #ifdef CONFIG_SYSFS 2104 /** 2105 * netif_set_real_num_rx_queues - set actual number of RX queues used 2106 * @dev: Network device 2107 * @rxq: Actual number of RX queues 2108 * 2109 * This must be called either with the rtnl_lock held or before 2110 * registration of the net device. Returns 0 on success, or a 2111 * negative error code. If called before registration, it always 2112 * succeeds. 2113 */ 2114 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2115 { 2116 int rc; 2117 2118 if (rxq < 1 || rxq > dev->num_rx_queues) 2119 return -EINVAL; 2120 2121 if (dev->reg_state == NETREG_REGISTERED) { 2122 ASSERT_RTNL(); 2123 2124 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 2125 rxq); 2126 if (rc) 2127 return rc; 2128 } 2129 2130 dev->real_num_rx_queues = rxq; 2131 return 0; 2132 } 2133 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 2134 #endif 2135 2136 /** 2137 * netif_get_num_default_rss_queues - default number of RSS queues 2138 * 2139 * This routine should set an upper limit on the number of RSS queues 2140 * used by default by multiqueue devices. 2141 */ 2142 int netif_get_num_default_rss_queues(void) 2143 { 2144 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 2145 } 2146 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 2147 2148 static inline void __netif_reschedule(struct Qdisc *q) 2149 { 2150 struct softnet_data *sd; 2151 unsigned long flags; 2152 2153 local_irq_save(flags); 2154 sd = this_cpu_ptr(&softnet_data); 2155 q->next_sched = NULL; 2156 *sd->output_queue_tailp = q; 2157 sd->output_queue_tailp = &q->next_sched; 2158 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2159 local_irq_restore(flags); 2160 } 2161 2162 void __netif_schedule(struct Qdisc *q) 2163 { 2164 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 2165 __netif_reschedule(q); 2166 } 2167 EXPORT_SYMBOL(__netif_schedule); 2168 2169 struct dev_kfree_skb_cb { 2170 enum skb_free_reason reason; 2171 }; 2172 2173 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 2174 { 2175 return (struct dev_kfree_skb_cb *)skb->cb; 2176 } 2177 2178 void netif_schedule_queue(struct netdev_queue *txq) 2179 { 2180 rcu_read_lock(); 2181 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) { 2182 struct Qdisc *q = rcu_dereference(txq->qdisc); 2183 2184 __netif_schedule(q); 2185 } 2186 rcu_read_unlock(); 2187 } 2188 EXPORT_SYMBOL(netif_schedule_queue); 2189 2190 /** 2191 * netif_wake_subqueue - allow sending packets on subqueue 2192 * @dev: network device 2193 * @queue_index: sub queue index 2194 * 2195 * Resume individual transmit queue of a device with multiple transmit queues. 2196 */ 2197 void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 2198 { 2199 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 2200 2201 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) { 2202 struct Qdisc *q; 2203 2204 rcu_read_lock(); 2205 q = rcu_dereference(txq->qdisc); 2206 __netif_schedule(q); 2207 rcu_read_unlock(); 2208 } 2209 } 2210 EXPORT_SYMBOL(netif_wake_subqueue); 2211 2212 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 2213 { 2214 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 2215 struct Qdisc *q; 2216 2217 rcu_read_lock(); 2218 q = rcu_dereference(dev_queue->qdisc); 2219 __netif_schedule(q); 2220 rcu_read_unlock(); 2221 } 2222 } 2223 EXPORT_SYMBOL(netif_tx_wake_queue); 2224 2225 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason) 2226 { 2227 unsigned long flags; 2228 2229 if (likely(atomic_read(&skb->users) == 1)) { 2230 smp_rmb(); 2231 atomic_set(&skb->users, 0); 2232 } else if (likely(!atomic_dec_and_test(&skb->users))) { 2233 return; 2234 } 2235 get_kfree_skb_cb(skb)->reason = reason; 2236 local_irq_save(flags); 2237 skb->next = __this_cpu_read(softnet_data.completion_queue); 2238 __this_cpu_write(softnet_data.completion_queue, skb); 2239 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2240 local_irq_restore(flags); 2241 } 2242 EXPORT_SYMBOL(__dev_kfree_skb_irq); 2243 2244 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason) 2245 { 2246 if (in_irq() || irqs_disabled()) 2247 __dev_kfree_skb_irq(skb, reason); 2248 else 2249 dev_kfree_skb(skb); 2250 } 2251 EXPORT_SYMBOL(__dev_kfree_skb_any); 2252 2253 2254 /** 2255 * netif_device_detach - mark device as removed 2256 * @dev: network device 2257 * 2258 * Mark device as removed from system and therefore no longer available. 2259 */ 2260 void netif_device_detach(struct net_device *dev) 2261 { 2262 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 2263 netif_running(dev)) { 2264 netif_tx_stop_all_queues(dev); 2265 } 2266 } 2267 EXPORT_SYMBOL(netif_device_detach); 2268 2269 /** 2270 * netif_device_attach - mark device as attached 2271 * @dev: network device 2272 * 2273 * Mark device as attached from system and restart if needed. 2274 */ 2275 void netif_device_attach(struct net_device *dev) 2276 { 2277 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 2278 netif_running(dev)) { 2279 netif_tx_wake_all_queues(dev); 2280 __netdev_watchdog_up(dev); 2281 } 2282 } 2283 EXPORT_SYMBOL(netif_device_attach); 2284 2285 static void skb_warn_bad_offload(const struct sk_buff *skb) 2286 { 2287 static const netdev_features_t null_features = 0; 2288 struct net_device *dev = skb->dev; 2289 const char *driver = ""; 2290 2291 if (!net_ratelimit()) 2292 return; 2293 2294 if (dev && dev->dev.parent) 2295 driver = dev_driver_string(dev->dev.parent); 2296 2297 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d " 2298 "gso_type=%d ip_summed=%d\n", 2299 driver, dev ? &dev->features : &null_features, 2300 skb->sk ? &skb->sk->sk_route_caps : &null_features, 2301 skb->len, skb->data_len, skb_shinfo(skb)->gso_size, 2302 skb_shinfo(skb)->gso_type, skb->ip_summed); 2303 } 2304 2305 /* 2306 * Invalidate hardware checksum when packet is to be mangled, and 2307 * complete checksum manually on outgoing path. 2308 */ 2309 int skb_checksum_help(struct sk_buff *skb) 2310 { 2311 __wsum csum; 2312 int ret = 0, offset; 2313 2314 if (skb->ip_summed == CHECKSUM_COMPLETE) 2315 goto out_set_summed; 2316 2317 if (unlikely(skb_shinfo(skb)->gso_size)) { 2318 skb_warn_bad_offload(skb); 2319 return -EINVAL; 2320 } 2321 2322 /* Before computing a checksum, we should make sure no frag could 2323 * be modified by an external entity : checksum could be wrong. 2324 */ 2325 if (skb_has_shared_frag(skb)) { 2326 ret = __skb_linearize(skb); 2327 if (ret) 2328 goto out; 2329 } 2330 2331 offset = skb_checksum_start_offset(skb); 2332 BUG_ON(offset >= skb_headlen(skb)); 2333 csum = skb_checksum(skb, offset, skb->len - offset, 0); 2334 2335 offset += skb->csum_offset; 2336 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 2337 2338 if (skb_cloned(skb) && 2339 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 2340 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2341 if (ret) 2342 goto out; 2343 } 2344 2345 *(__sum16 *)(skb->data + offset) = csum_fold(csum); 2346 out_set_summed: 2347 skb->ip_summed = CHECKSUM_NONE; 2348 out: 2349 return ret; 2350 } 2351 EXPORT_SYMBOL(skb_checksum_help); 2352 2353 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 2354 { 2355 __be16 type = skb->protocol; 2356 2357 /* Tunnel gso handlers can set protocol to ethernet. */ 2358 if (type == htons(ETH_P_TEB)) { 2359 struct ethhdr *eth; 2360 2361 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 2362 return 0; 2363 2364 eth = (struct ethhdr *)skb_mac_header(skb); 2365 type = eth->h_proto; 2366 } 2367 2368 return __vlan_get_protocol(skb, type, depth); 2369 } 2370 2371 /** 2372 * skb_mac_gso_segment - mac layer segmentation handler. 2373 * @skb: buffer to segment 2374 * @features: features for the output path (see dev->features) 2375 */ 2376 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 2377 netdev_features_t features) 2378 { 2379 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 2380 struct packet_offload *ptype; 2381 int vlan_depth = skb->mac_len; 2382 __be16 type = skb_network_protocol(skb, &vlan_depth); 2383 2384 if (unlikely(!type)) 2385 return ERR_PTR(-EINVAL); 2386 2387 __skb_pull(skb, vlan_depth); 2388 2389 rcu_read_lock(); 2390 list_for_each_entry_rcu(ptype, &offload_base, list) { 2391 if (ptype->type == type && ptype->callbacks.gso_segment) { 2392 segs = ptype->callbacks.gso_segment(skb, features); 2393 break; 2394 } 2395 } 2396 rcu_read_unlock(); 2397 2398 __skb_push(skb, skb->data - skb_mac_header(skb)); 2399 2400 return segs; 2401 } 2402 EXPORT_SYMBOL(skb_mac_gso_segment); 2403 2404 2405 /* openvswitch calls this on rx path, so we need a different check. 2406 */ 2407 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) 2408 { 2409 if (tx_path) 2410 return skb->ip_summed != CHECKSUM_PARTIAL; 2411 else 2412 return skb->ip_summed == CHECKSUM_NONE; 2413 } 2414 2415 /** 2416 * __skb_gso_segment - Perform segmentation on skb. 2417 * @skb: buffer to segment 2418 * @features: features for the output path (see dev->features) 2419 * @tx_path: whether it is called in TX path 2420 * 2421 * This function segments the given skb and returns a list of segments. 2422 * 2423 * It may return NULL if the skb requires no segmentation. This is 2424 * only possible when GSO is used for verifying header integrity. 2425 */ 2426 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 2427 netdev_features_t features, bool tx_path) 2428 { 2429 if (unlikely(skb_needs_check(skb, tx_path))) { 2430 int err; 2431 2432 skb_warn_bad_offload(skb); 2433 2434 err = skb_cow_head(skb, 0); 2435 if (err < 0) 2436 return ERR_PTR(err); 2437 } 2438 2439 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); 2440 SKB_GSO_CB(skb)->encap_level = 0; 2441 2442 skb_reset_mac_header(skb); 2443 skb_reset_mac_len(skb); 2444 2445 return skb_mac_gso_segment(skb, features); 2446 } 2447 EXPORT_SYMBOL(__skb_gso_segment); 2448 2449 /* Take action when hardware reception checksum errors are detected. */ 2450 #ifdef CONFIG_BUG 2451 void netdev_rx_csum_fault(struct net_device *dev) 2452 { 2453 if (net_ratelimit()) { 2454 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 2455 dump_stack(); 2456 } 2457 } 2458 EXPORT_SYMBOL(netdev_rx_csum_fault); 2459 #endif 2460 2461 /* Actually, we should eliminate this check as soon as we know, that: 2462 * 1. IOMMU is present and allows to map all the memory. 2463 * 2. No high memory really exists on this machine. 2464 */ 2465 2466 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 2467 { 2468 #ifdef CONFIG_HIGHMEM 2469 int i; 2470 if (!(dev->features & NETIF_F_HIGHDMA)) { 2471 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2472 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2473 if (PageHighMem(skb_frag_page(frag))) 2474 return 1; 2475 } 2476 } 2477 2478 if (PCI_DMA_BUS_IS_PHYS) { 2479 struct device *pdev = dev->dev.parent; 2480 2481 if (!pdev) 2482 return 0; 2483 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2484 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2485 dma_addr_t addr = page_to_phys(skb_frag_page(frag)); 2486 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask) 2487 return 1; 2488 } 2489 } 2490 #endif 2491 return 0; 2492 } 2493 2494 /* If MPLS offload request, verify we are testing hardware MPLS features 2495 * instead of standard features for the netdev. 2496 */ 2497 #if IS_ENABLED(CONFIG_NET_MPLS_GSO) 2498 static netdev_features_t net_mpls_features(struct sk_buff *skb, 2499 netdev_features_t features, 2500 __be16 type) 2501 { 2502 if (eth_p_mpls(type)) 2503 features &= skb->dev->mpls_features; 2504 2505 return features; 2506 } 2507 #else 2508 static netdev_features_t net_mpls_features(struct sk_buff *skb, 2509 netdev_features_t features, 2510 __be16 type) 2511 { 2512 return features; 2513 } 2514 #endif 2515 2516 static netdev_features_t harmonize_features(struct sk_buff *skb, 2517 netdev_features_t features) 2518 { 2519 int tmp; 2520 __be16 type; 2521 2522 type = skb_network_protocol(skb, &tmp); 2523 features = net_mpls_features(skb, features, type); 2524 2525 if (skb->ip_summed != CHECKSUM_NONE && 2526 !can_checksum_protocol(features, type)) { 2527 features &= ~NETIF_F_ALL_CSUM; 2528 } else if (illegal_highdma(skb->dev, skb)) { 2529 features &= ~NETIF_F_SG; 2530 } 2531 2532 return features; 2533 } 2534 2535 netdev_features_t netif_skb_features(struct sk_buff *skb) 2536 { 2537 struct net_device *dev = skb->dev; 2538 netdev_features_t features = dev->features; 2539 u16 gso_segs = skb_shinfo(skb)->gso_segs; 2540 __be16 protocol = skb->protocol; 2541 2542 if (gso_segs > dev->gso_max_segs || gso_segs < dev->gso_min_segs) 2543 features &= ~NETIF_F_GSO_MASK; 2544 2545 /* If encapsulation offload request, verify we are testing 2546 * hardware encapsulation features instead of standard 2547 * features for the netdev 2548 */ 2549 if (skb->encapsulation) 2550 features &= dev->hw_enc_features; 2551 2552 if (!vlan_tx_tag_present(skb)) { 2553 if (unlikely(protocol == htons(ETH_P_8021Q) || 2554 protocol == htons(ETH_P_8021AD))) { 2555 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data; 2556 protocol = veh->h_vlan_encapsulated_proto; 2557 } else { 2558 goto finalize; 2559 } 2560 } 2561 2562 features = netdev_intersect_features(features, 2563 dev->vlan_features | 2564 NETIF_F_HW_VLAN_CTAG_TX | 2565 NETIF_F_HW_VLAN_STAG_TX); 2566 2567 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD)) 2568 features = netdev_intersect_features(features, 2569 NETIF_F_SG | 2570 NETIF_F_HIGHDMA | 2571 NETIF_F_FRAGLIST | 2572 NETIF_F_GEN_CSUM | 2573 NETIF_F_HW_VLAN_CTAG_TX | 2574 NETIF_F_HW_VLAN_STAG_TX); 2575 2576 finalize: 2577 if (dev->netdev_ops->ndo_features_check) 2578 features &= dev->netdev_ops->ndo_features_check(skb, dev, 2579 features); 2580 2581 return harmonize_features(skb, features); 2582 } 2583 EXPORT_SYMBOL(netif_skb_features); 2584 2585 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 2586 struct netdev_queue *txq, bool more) 2587 { 2588 unsigned int len; 2589 int rc; 2590 2591 if (!list_empty(&ptype_all)) 2592 dev_queue_xmit_nit(skb, dev); 2593 2594 len = skb->len; 2595 trace_net_dev_start_xmit(skb, dev); 2596 rc = netdev_start_xmit(skb, dev, txq, more); 2597 trace_net_dev_xmit(skb, rc, dev, len); 2598 2599 return rc; 2600 } 2601 2602 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 2603 struct netdev_queue *txq, int *ret) 2604 { 2605 struct sk_buff *skb = first; 2606 int rc = NETDEV_TX_OK; 2607 2608 while (skb) { 2609 struct sk_buff *next = skb->next; 2610 2611 skb->next = NULL; 2612 rc = xmit_one(skb, dev, txq, next != NULL); 2613 if (unlikely(!dev_xmit_complete(rc))) { 2614 skb->next = next; 2615 goto out; 2616 } 2617 2618 skb = next; 2619 if (netif_xmit_stopped(txq) && skb) { 2620 rc = NETDEV_TX_BUSY; 2621 break; 2622 } 2623 } 2624 2625 out: 2626 *ret = rc; 2627 return skb; 2628 } 2629 2630 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 2631 netdev_features_t features) 2632 { 2633 if (vlan_tx_tag_present(skb) && 2634 !vlan_hw_offload_capable(features, skb->vlan_proto)) 2635 skb = __vlan_hwaccel_push_inside(skb); 2636 return skb; 2637 } 2638 2639 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev) 2640 { 2641 netdev_features_t features; 2642 2643 if (skb->next) 2644 return skb; 2645 2646 features = netif_skb_features(skb); 2647 skb = validate_xmit_vlan(skb, features); 2648 if (unlikely(!skb)) 2649 goto out_null; 2650 2651 if (netif_needs_gso(dev, skb, features)) { 2652 struct sk_buff *segs; 2653 2654 segs = skb_gso_segment(skb, features); 2655 if (IS_ERR(segs)) { 2656 goto out_kfree_skb; 2657 } else if (segs) { 2658 consume_skb(skb); 2659 skb = segs; 2660 } 2661 } else { 2662 if (skb_needs_linearize(skb, features) && 2663 __skb_linearize(skb)) 2664 goto out_kfree_skb; 2665 2666 /* If packet is not checksummed and device does not 2667 * support checksumming for this protocol, complete 2668 * checksumming here. 2669 */ 2670 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2671 if (skb->encapsulation) 2672 skb_set_inner_transport_header(skb, 2673 skb_checksum_start_offset(skb)); 2674 else 2675 skb_set_transport_header(skb, 2676 skb_checksum_start_offset(skb)); 2677 if (!(features & NETIF_F_ALL_CSUM) && 2678 skb_checksum_help(skb)) 2679 goto out_kfree_skb; 2680 } 2681 } 2682 2683 return skb; 2684 2685 out_kfree_skb: 2686 kfree_skb(skb); 2687 out_null: 2688 return NULL; 2689 } 2690 2691 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev) 2692 { 2693 struct sk_buff *next, *head = NULL, *tail; 2694 2695 for (; skb != NULL; skb = next) { 2696 next = skb->next; 2697 skb->next = NULL; 2698 2699 /* in case skb wont be segmented, point to itself */ 2700 skb->prev = skb; 2701 2702 skb = validate_xmit_skb(skb, dev); 2703 if (!skb) 2704 continue; 2705 2706 if (!head) 2707 head = skb; 2708 else 2709 tail->next = skb; 2710 /* If skb was segmented, skb->prev points to 2711 * the last segment. If not, it still contains skb. 2712 */ 2713 tail = skb->prev; 2714 } 2715 return head; 2716 } 2717 2718 static void qdisc_pkt_len_init(struct sk_buff *skb) 2719 { 2720 const struct skb_shared_info *shinfo = skb_shinfo(skb); 2721 2722 qdisc_skb_cb(skb)->pkt_len = skb->len; 2723 2724 /* To get more precise estimation of bytes sent on wire, 2725 * we add to pkt_len the headers size of all segments 2726 */ 2727 if (shinfo->gso_size) { 2728 unsigned int hdr_len; 2729 u16 gso_segs = shinfo->gso_segs; 2730 2731 /* mac layer + network layer */ 2732 hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 2733 2734 /* + transport layer */ 2735 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 2736 hdr_len += tcp_hdrlen(skb); 2737 else 2738 hdr_len += sizeof(struct udphdr); 2739 2740 if (shinfo->gso_type & SKB_GSO_DODGY) 2741 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 2742 shinfo->gso_size); 2743 2744 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 2745 } 2746 } 2747 2748 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 2749 struct net_device *dev, 2750 struct netdev_queue *txq) 2751 { 2752 spinlock_t *root_lock = qdisc_lock(q); 2753 bool contended; 2754 int rc; 2755 2756 qdisc_pkt_len_init(skb); 2757 qdisc_calculate_pkt_len(skb, q); 2758 /* 2759 * Heuristic to force contended enqueues to serialize on a 2760 * separate lock before trying to get qdisc main lock. 2761 * This permits __QDISC___STATE_RUNNING owner to get the lock more 2762 * often and dequeue packets faster. 2763 */ 2764 contended = qdisc_is_running(q); 2765 if (unlikely(contended)) 2766 spin_lock(&q->busylock); 2767 2768 spin_lock(root_lock); 2769 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 2770 kfree_skb(skb); 2771 rc = NET_XMIT_DROP; 2772 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 2773 qdisc_run_begin(q)) { 2774 /* 2775 * This is a work-conserving queue; there are no old skbs 2776 * waiting to be sent out; and the qdisc is not running - 2777 * xmit the skb directly. 2778 */ 2779 2780 qdisc_bstats_update(q, skb); 2781 2782 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 2783 if (unlikely(contended)) { 2784 spin_unlock(&q->busylock); 2785 contended = false; 2786 } 2787 __qdisc_run(q); 2788 } else 2789 qdisc_run_end(q); 2790 2791 rc = NET_XMIT_SUCCESS; 2792 } else { 2793 rc = q->enqueue(skb, q) & NET_XMIT_MASK; 2794 if (qdisc_run_begin(q)) { 2795 if (unlikely(contended)) { 2796 spin_unlock(&q->busylock); 2797 contended = false; 2798 } 2799 __qdisc_run(q); 2800 } 2801 } 2802 spin_unlock(root_lock); 2803 if (unlikely(contended)) 2804 spin_unlock(&q->busylock); 2805 return rc; 2806 } 2807 2808 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 2809 static void skb_update_prio(struct sk_buff *skb) 2810 { 2811 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap); 2812 2813 if (!skb->priority && skb->sk && map) { 2814 unsigned int prioidx = skb->sk->sk_cgrp_prioidx; 2815 2816 if (prioidx < map->priomap_len) 2817 skb->priority = map->priomap[prioidx]; 2818 } 2819 } 2820 #else 2821 #define skb_update_prio(skb) 2822 #endif 2823 2824 static DEFINE_PER_CPU(int, xmit_recursion); 2825 #define RECURSION_LIMIT 10 2826 2827 /** 2828 * dev_loopback_xmit - loop back @skb 2829 * @skb: buffer to transmit 2830 */ 2831 int dev_loopback_xmit(struct sk_buff *skb) 2832 { 2833 skb_reset_mac_header(skb); 2834 __skb_pull(skb, skb_network_offset(skb)); 2835 skb->pkt_type = PACKET_LOOPBACK; 2836 skb->ip_summed = CHECKSUM_UNNECESSARY; 2837 WARN_ON(!skb_dst(skb)); 2838 skb_dst_force(skb); 2839 netif_rx_ni(skb); 2840 return 0; 2841 } 2842 EXPORT_SYMBOL(dev_loopback_xmit); 2843 2844 /** 2845 * __dev_queue_xmit - transmit a buffer 2846 * @skb: buffer to transmit 2847 * @accel_priv: private data used for L2 forwarding offload 2848 * 2849 * Queue a buffer for transmission to a network device. The caller must 2850 * have set the device and priority and built the buffer before calling 2851 * this function. The function can be called from an interrupt. 2852 * 2853 * A negative errno code is returned on a failure. A success does not 2854 * guarantee the frame will be transmitted as it may be dropped due 2855 * to congestion or traffic shaping. 2856 * 2857 * ----------------------------------------------------------------------------------- 2858 * I notice this method can also return errors from the queue disciplines, 2859 * including NET_XMIT_DROP, which is a positive value. So, errors can also 2860 * be positive. 2861 * 2862 * Regardless of the return value, the skb is consumed, so it is currently 2863 * difficult to retry a send to this method. (You can bump the ref count 2864 * before sending to hold a reference for retry if you are careful.) 2865 * 2866 * When calling this method, interrupts MUST be enabled. This is because 2867 * the BH enable code must have IRQs enabled so that it will not deadlock. 2868 * --BLG 2869 */ 2870 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv) 2871 { 2872 struct net_device *dev = skb->dev; 2873 struct netdev_queue *txq; 2874 struct Qdisc *q; 2875 int rc = -ENOMEM; 2876 2877 skb_reset_mac_header(skb); 2878 2879 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP)) 2880 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED); 2881 2882 /* Disable soft irqs for various locks below. Also 2883 * stops preemption for RCU. 2884 */ 2885 rcu_read_lock_bh(); 2886 2887 skb_update_prio(skb); 2888 2889 /* If device/qdisc don't need skb->dst, release it right now while 2890 * its hot in this cpu cache. 2891 */ 2892 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 2893 skb_dst_drop(skb); 2894 else 2895 skb_dst_force(skb); 2896 2897 txq = netdev_pick_tx(dev, skb, accel_priv); 2898 q = rcu_dereference_bh(txq->qdisc); 2899 2900 #ifdef CONFIG_NET_CLS_ACT 2901 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS); 2902 #endif 2903 trace_net_dev_queue(skb); 2904 if (q->enqueue) { 2905 rc = __dev_xmit_skb(skb, q, dev, txq); 2906 goto out; 2907 } 2908 2909 /* The device has no queue. Common case for software devices: 2910 loopback, all the sorts of tunnels... 2911 2912 Really, it is unlikely that netif_tx_lock protection is necessary 2913 here. (f.e. loopback and IP tunnels are clean ignoring statistics 2914 counters.) 2915 However, it is possible, that they rely on protection 2916 made by us here. 2917 2918 Check this and shot the lock. It is not prone from deadlocks. 2919 Either shot noqueue qdisc, it is even simpler 8) 2920 */ 2921 if (dev->flags & IFF_UP) { 2922 int cpu = smp_processor_id(); /* ok because BHs are off */ 2923 2924 if (txq->xmit_lock_owner != cpu) { 2925 2926 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT) 2927 goto recursion_alert; 2928 2929 skb = validate_xmit_skb(skb, dev); 2930 if (!skb) 2931 goto drop; 2932 2933 HARD_TX_LOCK(dev, txq, cpu); 2934 2935 if (!netif_xmit_stopped(txq)) { 2936 __this_cpu_inc(xmit_recursion); 2937 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 2938 __this_cpu_dec(xmit_recursion); 2939 if (dev_xmit_complete(rc)) { 2940 HARD_TX_UNLOCK(dev, txq); 2941 goto out; 2942 } 2943 } 2944 HARD_TX_UNLOCK(dev, txq); 2945 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 2946 dev->name); 2947 } else { 2948 /* Recursion is detected! It is possible, 2949 * unfortunately 2950 */ 2951 recursion_alert: 2952 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 2953 dev->name); 2954 } 2955 } 2956 2957 rc = -ENETDOWN; 2958 drop: 2959 rcu_read_unlock_bh(); 2960 2961 atomic_long_inc(&dev->tx_dropped); 2962 kfree_skb_list(skb); 2963 return rc; 2964 out: 2965 rcu_read_unlock_bh(); 2966 return rc; 2967 } 2968 2969 int dev_queue_xmit(struct sk_buff *skb) 2970 { 2971 return __dev_queue_xmit(skb, NULL); 2972 } 2973 EXPORT_SYMBOL(dev_queue_xmit); 2974 2975 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv) 2976 { 2977 return __dev_queue_xmit(skb, accel_priv); 2978 } 2979 EXPORT_SYMBOL(dev_queue_xmit_accel); 2980 2981 2982 /*======================================================================= 2983 Receiver routines 2984 =======================================================================*/ 2985 2986 int netdev_max_backlog __read_mostly = 1000; 2987 EXPORT_SYMBOL(netdev_max_backlog); 2988 2989 int netdev_tstamp_prequeue __read_mostly = 1; 2990 int netdev_budget __read_mostly = 300; 2991 int weight_p __read_mostly = 64; /* old backlog weight */ 2992 2993 /* Called with irq disabled */ 2994 static inline void ____napi_schedule(struct softnet_data *sd, 2995 struct napi_struct *napi) 2996 { 2997 list_add_tail(&napi->poll_list, &sd->poll_list); 2998 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2999 } 3000 3001 #ifdef CONFIG_RPS 3002 3003 /* One global table that all flow-based protocols share. */ 3004 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 3005 EXPORT_SYMBOL(rps_sock_flow_table); 3006 3007 struct static_key rps_needed __read_mostly; 3008 3009 static struct rps_dev_flow * 3010 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3011 struct rps_dev_flow *rflow, u16 next_cpu) 3012 { 3013 if (next_cpu != RPS_NO_CPU) { 3014 #ifdef CONFIG_RFS_ACCEL 3015 struct netdev_rx_queue *rxqueue; 3016 struct rps_dev_flow_table *flow_table; 3017 struct rps_dev_flow *old_rflow; 3018 u32 flow_id; 3019 u16 rxq_index; 3020 int rc; 3021 3022 /* Should we steer this flow to a different hardware queue? */ 3023 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 3024 !(dev->features & NETIF_F_NTUPLE)) 3025 goto out; 3026 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 3027 if (rxq_index == skb_get_rx_queue(skb)) 3028 goto out; 3029 3030 rxqueue = dev->_rx + rxq_index; 3031 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3032 if (!flow_table) 3033 goto out; 3034 flow_id = skb_get_hash(skb) & flow_table->mask; 3035 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 3036 rxq_index, flow_id); 3037 if (rc < 0) 3038 goto out; 3039 old_rflow = rflow; 3040 rflow = &flow_table->flows[flow_id]; 3041 rflow->filter = rc; 3042 if (old_rflow->filter == rflow->filter) 3043 old_rflow->filter = RPS_NO_FILTER; 3044 out: 3045 #endif 3046 rflow->last_qtail = 3047 per_cpu(softnet_data, next_cpu).input_queue_head; 3048 } 3049 3050 rflow->cpu = next_cpu; 3051 return rflow; 3052 } 3053 3054 /* 3055 * get_rps_cpu is called from netif_receive_skb and returns the target 3056 * CPU from the RPS map of the receiving queue for a given skb. 3057 * rcu_read_lock must be held on entry. 3058 */ 3059 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3060 struct rps_dev_flow **rflowp) 3061 { 3062 struct netdev_rx_queue *rxqueue; 3063 struct rps_map *map; 3064 struct rps_dev_flow_table *flow_table; 3065 struct rps_sock_flow_table *sock_flow_table; 3066 int cpu = -1; 3067 u16 tcpu; 3068 u32 hash; 3069 3070 if (skb_rx_queue_recorded(skb)) { 3071 u16 index = skb_get_rx_queue(skb); 3072 if (unlikely(index >= dev->real_num_rx_queues)) { 3073 WARN_ONCE(dev->real_num_rx_queues > 1, 3074 "%s received packet on queue %u, but number " 3075 "of RX queues is %u\n", 3076 dev->name, index, dev->real_num_rx_queues); 3077 goto done; 3078 } 3079 rxqueue = dev->_rx + index; 3080 } else 3081 rxqueue = dev->_rx; 3082 3083 map = rcu_dereference(rxqueue->rps_map); 3084 if (map) { 3085 if (map->len == 1 && 3086 !rcu_access_pointer(rxqueue->rps_flow_table)) { 3087 tcpu = map->cpus[0]; 3088 if (cpu_online(tcpu)) 3089 cpu = tcpu; 3090 goto done; 3091 } 3092 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) { 3093 goto done; 3094 } 3095 3096 skb_reset_network_header(skb); 3097 hash = skb_get_hash(skb); 3098 if (!hash) 3099 goto done; 3100 3101 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3102 sock_flow_table = rcu_dereference(rps_sock_flow_table); 3103 if (flow_table && sock_flow_table) { 3104 u16 next_cpu; 3105 struct rps_dev_flow *rflow; 3106 3107 rflow = &flow_table->flows[hash & flow_table->mask]; 3108 tcpu = rflow->cpu; 3109 3110 next_cpu = sock_flow_table->ents[hash & sock_flow_table->mask]; 3111 3112 /* 3113 * If the desired CPU (where last recvmsg was done) is 3114 * different from current CPU (one in the rx-queue flow 3115 * table entry), switch if one of the following holds: 3116 * - Current CPU is unset (equal to RPS_NO_CPU). 3117 * - Current CPU is offline. 3118 * - The current CPU's queue tail has advanced beyond the 3119 * last packet that was enqueued using this table entry. 3120 * This guarantees that all previous packets for the flow 3121 * have been dequeued, thus preserving in order delivery. 3122 */ 3123 if (unlikely(tcpu != next_cpu) && 3124 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) || 3125 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 3126 rflow->last_qtail)) >= 0)) { 3127 tcpu = next_cpu; 3128 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 3129 } 3130 3131 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) { 3132 *rflowp = rflow; 3133 cpu = tcpu; 3134 goto done; 3135 } 3136 } 3137 3138 if (map) { 3139 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 3140 if (cpu_online(tcpu)) { 3141 cpu = tcpu; 3142 goto done; 3143 } 3144 } 3145 3146 done: 3147 return cpu; 3148 } 3149 3150 #ifdef CONFIG_RFS_ACCEL 3151 3152 /** 3153 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 3154 * @dev: Device on which the filter was set 3155 * @rxq_index: RX queue index 3156 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 3157 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 3158 * 3159 * Drivers that implement ndo_rx_flow_steer() should periodically call 3160 * this function for each installed filter and remove the filters for 3161 * which it returns %true. 3162 */ 3163 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 3164 u32 flow_id, u16 filter_id) 3165 { 3166 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 3167 struct rps_dev_flow_table *flow_table; 3168 struct rps_dev_flow *rflow; 3169 bool expire = true; 3170 int cpu; 3171 3172 rcu_read_lock(); 3173 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3174 if (flow_table && flow_id <= flow_table->mask) { 3175 rflow = &flow_table->flows[flow_id]; 3176 cpu = ACCESS_ONCE(rflow->cpu); 3177 if (rflow->filter == filter_id && cpu != RPS_NO_CPU && 3178 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 3179 rflow->last_qtail) < 3180 (int)(10 * flow_table->mask))) 3181 expire = false; 3182 } 3183 rcu_read_unlock(); 3184 return expire; 3185 } 3186 EXPORT_SYMBOL(rps_may_expire_flow); 3187 3188 #endif /* CONFIG_RFS_ACCEL */ 3189 3190 /* Called from hardirq (IPI) context */ 3191 static void rps_trigger_softirq(void *data) 3192 { 3193 struct softnet_data *sd = data; 3194 3195 ____napi_schedule(sd, &sd->backlog); 3196 sd->received_rps++; 3197 } 3198 3199 #endif /* CONFIG_RPS */ 3200 3201 /* 3202 * Check if this softnet_data structure is another cpu one 3203 * If yes, queue it to our IPI list and return 1 3204 * If no, return 0 3205 */ 3206 static int rps_ipi_queued(struct softnet_data *sd) 3207 { 3208 #ifdef CONFIG_RPS 3209 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 3210 3211 if (sd != mysd) { 3212 sd->rps_ipi_next = mysd->rps_ipi_list; 3213 mysd->rps_ipi_list = sd; 3214 3215 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3216 return 1; 3217 } 3218 #endif /* CONFIG_RPS */ 3219 return 0; 3220 } 3221 3222 #ifdef CONFIG_NET_FLOW_LIMIT 3223 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 3224 #endif 3225 3226 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 3227 { 3228 #ifdef CONFIG_NET_FLOW_LIMIT 3229 struct sd_flow_limit *fl; 3230 struct softnet_data *sd; 3231 unsigned int old_flow, new_flow; 3232 3233 if (qlen < (netdev_max_backlog >> 1)) 3234 return false; 3235 3236 sd = this_cpu_ptr(&softnet_data); 3237 3238 rcu_read_lock(); 3239 fl = rcu_dereference(sd->flow_limit); 3240 if (fl) { 3241 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); 3242 old_flow = fl->history[fl->history_head]; 3243 fl->history[fl->history_head] = new_flow; 3244 3245 fl->history_head++; 3246 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 3247 3248 if (likely(fl->buckets[old_flow])) 3249 fl->buckets[old_flow]--; 3250 3251 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 3252 fl->count++; 3253 rcu_read_unlock(); 3254 return true; 3255 } 3256 } 3257 rcu_read_unlock(); 3258 #endif 3259 return false; 3260 } 3261 3262 /* 3263 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 3264 * queue (may be a remote CPU queue). 3265 */ 3266 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 3267 unsigned int *qtail) 3268 { 3269 struct softnet_data *sd; 3270 unsigned long flags; 3271 unsigned int qlen; 3272 3273 sd = &per_cpu(softnet_data, cpu); 3274 3275 local_irq_save(flags); 3276 3277 rps_lock(sd); 3278 qlen = skb_queue_len(&sd->input_pkt_queue); 3279 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) { 3280 if (qlen) { 3281 enqueue: 3282 __skb_queue_tail(&sd->input_pkt_queue, skb); 3283 input_queue_tail_incr_save(sd, qtail); 3284 rps_unlock(sd); 3285 local_irq_restore(flags); 3286 return NET_RX_SUCCESS; 3287 } 3288 3289 /* Schedule NAPI for backlog device 3290 * We can use non atomic operation since we own the queue lock 3291 */ 3292 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 3293 if (!rps_ipi_queued(sd)) 3294 ____napi_schedule(sd, &sd->backlog); 3295 } 3296 goto enqueue; 3297 } 3298 3299 sd->dropped++; 3300 rps_unlock(sd); 3301 3302 local_irq_restore(flags); 3303 3304 atomic_long_inc(&skb->dev->rx_dropped); 3305 kfree_skb(skb); 3306 return NET_RX_DROP; 3307 } 3308 3309 static int netif_rx_internal(struct sk_buff *skb) 3310 { 3311 int ret; 3312 3313 net_timestamp_check(netdev_tstamp_prequeue, skb); 3314 3315 trace_netif_rx(skb); 3316 #ifdef CONFIG_RPS 3317 if (static_key_false(&rps_needed)) { 3318 struct rps_dev_flow voidflow, *rflow = &voidflow; 3319 int cpu; 3320 3321 preempt_disable(); 3322 rcu_read_lock(); 3323 3324 cpu = get_rps_cpu(skb->dev, skb, &rflow); 3325 if (cpu < 0) 3326 cpu = smp_processor_id(); 3327 3328 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3329 3330 rcu_read_unlock(); 3331 preempt_enable(); 3332 } else 3333 #endif 3334 { 3335 unsigned int qtail; 3336 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 3337 put_cpu(); 3338 } 3339 return ret; 3340 } 3341 3342 /** 3343 * netif_rx - post buffer to the network code 3344 * @skb: buffer to post 3345 * 3346 * This function receives a packet from a device driver and queues it for 3347 * the upper (protocol) levels to process. It always succeeds. The buffer 3348 * may be dropped during processing for congestion control or by the 3349 * protocol layers. 3350 * 3351 * return values: 3352 * NET_RX_SUCCESS (no congestion) 3353 * NET_RX_DROP (packet was dropped) 3354 * 3355 */ 3356 3357 int netif_rx(struct sk_buff *skb) 3358 { 3359 trace_netif_rx_entry(skb); 3360 3361 return netif_rx_internal(skb); 3362 } 3363 EXPORT_SYMBOL(netif_rx); 3364 3365 int netif_rx_ni(struct sk_buff *skb) 3366 { 3367 int err; 3368 3369 trace_netif_rx_ni_entry(skb); 3370 3371 preempt_disable(); 3372 err = netif_rx_internal(skb); 3373 if (local_softirq_pending()) 3374 do_softirq(); 3375 preempt_enable(); 3376 3377 return err; 3378 } 3379 EXPORT_SYMBOL(netif_rx_ni); 3380 3381 static void net_tx_action(struct softirq_action *h) 3382 { 3383 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 3384 3385 if (sd->completion_queue) { 3386 struct sk_buff *clist; 3387 3388 local_irq_disable(); 3389 clist = sd->completion_queue; 3390 sd->completion_queue = NULL; 3391 local_irq_enable(); 3392 3393 while (clist) { 3394 struct sk_buff *skb = clist; 3395 clist = clist->next; 3396 3397 WARN_ON(atomic_read(&skb->users)); 3398 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED)) 3399 trace_consume_skb(skb); 3400 else 3401 trace_kfree_skb(skb, net_tx_action); 3402 __kfree_skb(skb); 3403 } 3404 } 3405 3406 if (sd->output_queue) { 3407 struct Qdisc *head; 3408 3409 local_irq_disable(); 3410 head = sd->output_queue; 3411 sd->output_queue = NULL; 3412 sd->output_queue_tailp = &sd->output_queue; 3413 local_irq_enable(); 3414 3415 while (head) { 3416 struct Qdisc *q = head; 3417 spinlock_t *root_lock; 3418 3419 head = head->next_sched; 3420 3421 root_lock = qdisc_lock(q); 3422 if (spin_trylock(root_lock)) { 3423 smp_mb__before_atomic(); 3424 clear_bit(__QDISC_STATE_SCHED, 3425 &q->state); 3426 qdisc_run(q); 3427 spin_unlock(root_lock); 3428 } else { 3429 if (!test_bit(__QDISC_STATE_DEACTIVATED, 3430 &q->state)) { 3431 __netif_reschedule(q); 3432 } else { 3433 smp_mb__before_atomic(); 3434 clear_bit(__QDISC_STATE_SCHED, 3435 &q->state); 3436 } 3437 } 3438 } 3439 } 3440 } 3441 3442 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \ 3443 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)) 3444 /* This hook is defined here for ATM LANE */ 3445 int (*br_fdb_test_addr_hook)(struct net_device *dev, 3446 unsigned char *addr) __read_mostly; 3447 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 3448 #endif 3449 3450 #ifdef CONFIG_NET_CLS_ACT 3451 /* TODO: Maybe we should just force sch_ingress to be compiled in 3452 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions 3453 * a compare and 2 stores extra right now if we dont have it on 3454 * but have CONFIG_NET_CLS_ACT 3455 * NOTE: This doesn't stop any functionality; if you dont have 3456 * the ingress scheduler, you just can't add policies on ingress. 3457 * 3458 */ 3459 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq) 3460 { 3461 struct net_device *dev = skb->dev; 3462 u32 ttl = G_TC_RTTL(skb->tc_verd); 3463 int result = TC_ACT_OK; 3464 struct Qdisc *q; 3465 3466 if (unlikely(MAX_RED_LOOP < ttl++)) { 3467 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n", 3468 skb->skb_iif, dev->ifindex); 3469 return TC_ACT_SHOT; 3470 } 3471 3472 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl); 3473 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS); 3474 3475 q = rcu_dereference(rxq->qdisc); 3476 if (q != &noop_qdisc) { 3477 spin_lock(qdisc_lock(q)); 3478 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) 3479 result = qdisc_enqueue_root(skb, q); 3480 spin_unlock(qdisc_lock(q)); 3481 } 3482 3483 return result; 3484 } 3485 3486 static inline struct sk_buff *handle_ing(struct sk_buff *skb, 3487 struct packet_type **pt_prev, 3488 int *ret, struct net_device *orig_dev) 3489 { 3490 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue); 3491 3492 if (!rxq || rcu_access_pointer(rxq->qdisc) == &noop_qdisc) 3493 goto out; 3494 3495 if (*pt_prev) { 3496 *ret = deliver_skb(skb, *pt_prev, orig_dev); 3497 *pt_prev = NULL; 3498 } 3499 3500 switch (ing_filter(skb, rxq)) { 3501 case TC_ACT_SHOT: 3502 case TC_ACT_STOLEN: 3503 kfree_skb(skb); 3504 return NULL; 3505 } 3506 3507 out: 3508 skb->tc_verd = 0; 3509 return skb; 3510 } 3511 #endif 3512 3513 /** 3514 * netdev_rx_handler_register - register receive handler 3515 * @dev: device to register a handler for 3516 * @rx_handler: receive handler to register 3517 * @rx_handler_data: data pointer that is used by rx handler 3518 * 3519 * Register a receive handler for a device. This handler will then be 3520 * called from __netif_receive_skb. A negative errno code is returned 3521 * on a failure. 3522 * 3523 * The caller must hold the rtnl_mutex. 3524 * 3525 * For a general description of rx_handler, see enum rx_handler_result. 3526 */ 3527 int netdev_rx_handler_register(struct net_device *dev, 3528 rx_handler_func_t *rx_handler, 3529 void *rx_handler_data) 3530 { 3531 ASSERT_RTNL(); 3532 3533 if (dev->rx_handler) 3534 return -EBUSY; 3535 3536 /* Note: rx_handler_data must be set before rx_handler */ 3537 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 3538 rcu_assign_pointer(dev->rx_handler, rx_handler); 3539 3540 return 0; 3541 } 3542 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 3543 3544 /** 3545 * netdev_rx_handler_unregister - unregister receive handler 3546 * @dev: device to unregister a handler from 3547 * 3548 * Unregister a receive handler from a device. 3549 * 3550 * The caller must hold the rtnl_mutex. 3551 */ 3552 void netdev_rx_handler_unregister(struct net_device *dev) 3553 { 3554 3555 ASSERT_RTNL(); 3556 RCU_INIT_POINTER(dev->rx_handler, NULL); 3557 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 3558 * section has a guarantee to see a non NULL rx_handler_data 3559 * as well. 3560 */ 3561 synchronize_net(); 3562 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 3563 } 3564 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 3565 3566 /* 3567 * Limit the use of PFMEMALLOC reserves to those protocols that implement 3568 * the special handling of PFMEMALLOC skbs. 3569 */ 3570 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 3571 { 3572 switch (skb->protocol) { 3573 case htons(ETH_P_ARP): 3574 case htons(ETH_P_IP): 3575 case htons(ETH_P_IPV6): 3576 case htons(ETH_P_8021Q): 3577 case htons(ETH_P_8021AD): 3578 return true; 3579 default: 3580 return false; 3581 } 3582 } 3583 3584 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc) 3585 { 3586 struct packet_type *ptype, *pt_prev; 3587 rx_handler_func_t *rx_handler; 3588 struct net_device *orig_dev; 3589 struct net_device *null_or_dev; 3590 bool deliver_exact = false; 3591 int ret = NET_RX_DROP; 3592 __be16 type; 3593 3594 net_timestamp_check(!netdev_tstamp_prequeue, skb); 3595 3596 trace_netif_receive_skb(skb); 3597 3598 orig_dev = skb->dev; 3599 3600 skb_reset_network_header(skb); 3601 if (!skb_transport_header_was_set(skb)) 3602 skb_reset_transport_header(skb); 3603 skb_reset_mac_len(skb); 3604 3605 pt_prev = NULL; 3606 3607 rcu_read_lock(); 3608 3609 another_round: 3610 skb->skb_iif = skb->dev->ifindex; 3611 3612 __this_cpu_inc(softnet_data.processed); 3613 3614 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 3615 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 3616 skb = skb_vlan_untag(skb); 3617 if (unlikely(!skb)) 3618 goto unlock; 3619 } 3620 3621 #ifdef CONFIG_NET_CLS_ACT 3622 if (skb->tc_verd & TC_NCLS) { 3623 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 3624 goto ncls; 3625 } 3626 #endif 3627 3628 if (pfmemalloc) 3629 goto skip_taps; 3630 3631 list_for_each_entry_rcu(ptype, &ptype_all, list) { 3632 if (!ptype->dev || ptype->dev == skb->dev) { 3633 if (pt_prev) 3634 ret = deliver_skb(skb, pt_prev, orig_dev); 3635 pt_prev = ptype; 3636 } 3637 } 3638 3639 skip_taps: 3640 #ifdef CONFIG_NET_CLS_ACT 3641 skb = handle_ing(skb, &pt_prev, &ret, orig_dev); 3642 if (!skb) 3643 goto unlock; 3644 ncls: 3645 #endif 3646 3647 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 3648 goto drop; 3649 3650 if (vlan_tx_tag_present(skb)) { 3651 if (pt_prev) { 3652 ret = deliver_skb(skb, pt_prev, orig_dev); 3653 pt_prev = NULL; 3654 } 3655 if (vlan_do_receive(&skb)) 3656 goto another_round; 3657 else if (unlikely(!skb)) 3658 goto unlock; 3659 } 3660 3661 rx_handler = rcu_dereference(skb->dev->rx_handler); 3662 if (rx_handler) { 3663 if (pt_prev) { 3664 ret = deliver_skb(skb, pt_prev, orig_dev); 3665 pt_prev = NULL; 3666 } 3667 switch (rx_handler(&skb)) { 3668 case RX_HANDLER_CONSUMED: 3669 ret = NET_RX_SUCCESS; 3670 goto unlock; 3671 case RX_HANDLER_ANOTHER: 3672 goto another_round; 3673 case RX_HANDLER_EXACT: 3674 deliver_exact = true; 3675 case RX_HANDLER_PASS: 3676 break; 3677 default: 3678 BUG(); 3679 } 3680 } 3681 3682 if (unlikely(vlan_tx_tag_present(skb))) { 3683 if (vlan_tx_tag_get_id(skb)) 3684 skb->pkt_type = PACKET_OTHERHOST; 3685 /* Note: we might in the future use prio bits 3686 * and set skb->priority like in vlan_do_receive() 3687 * For the time being, just ignore Priority Code Point 3688 */ 3689 skb->vlan_tci = 0; 3690 } 3691 3692 /* deliver only exact match when indicated */ 3693 null_or_dev = deliver_exact ? skb->dev : NULL; 3694 3695 type = skb->protocol; 3696 list_for_each_entry_rcu(ptype, 3697 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 3698 if (ptype->type == type && 3699 (ptype->dev == null_or_dev || ptype->dev == skb->dev || 3700 ptype->dev == orig_dev)) { 3701 if (pt_prev) 3702 ret = deliver_skb(skb, pt_prev, orig_dev); 3703 pt_prev = ptype; 3704 } 3705 } 3706 3707 if (pt_prev) { 3708 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 3709 goto drop; 3710 else 3711 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 3712 } else { 3713 drop: 3714 atomic_long_inc(&skb->dev->rx_dropped); 3715 kfree_skb(skb); 3716 /* Jamal, now you will not able to escape explaining 3717 * me how you were going to use this. :-) 3718 */ 3719 ret = NET_RX_DROP; 3720 } 3721 3722 unlock: 3723 rcu_read_unlock(); 3724 return ret; 3725 } 3726 3727 static int __netif_receive_skb(struct sk_buff *skb) 3728 { 3729 int ret; 3730 3731 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 3732 unsigned long pflags = current->flags; 3733 3734 /* 3735 * PFMEMALLOC skbs are special, they should 3736 * - be delivered to SOCK_MEMALLOC sockets only 3737 * - stay away from userspace 3738 * - have bounded memory usage 3739 * 3740 * Use PF_MEMALLOC as this saves us from propagating the allocation 3741 * context down to all allocation sites. 3742 */ 3743 current->flags |= PF_MEMALLOC; 3744 ret = __netif_receive_skb_core(skb, true); 3745 tsk_restore_flags(current, pflags, PF_MEMALLOC); 3746 } else 3747 ret = __netif_receive_skb_core(skb, false); 3748 3749 return ret; 3750 } 3751 3752 static int netif_receive_skb_internal(struct sk_buff *skb) 3753 { 3754 net_timestamp_check(netdev_tstamp_prequeue, skb); 3755 3756 if (skb_defer_rx_timestamp(skb)) 3757 return NET_RX_SUCCESS; 3758 3759 #ifdef CONFIG_RPS 3760 if (static_key_false(&rps_needed)) { 3761 struct rps_dev_flow voidflow, *rflow = &voidflow; 3762 int cpu, ret; 3763 3764 rcu_read_lock(); 3765 3766 cpu = get_rps_cpu(skb->dev, skb, &rflow); 3767 3768 if (cpu >= 0) { 3769 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3770 rcu_read_unlock(); 3771 return ret; 3772 } 3773 rcu_read_unlock(); 3774 } 3775 #endif 3776 return __netif_receive_skb(skb); 3777 } 3778 3779 /** 3780 * netif_receive_skb - process receive buffer from network 3781 * @skb: buffer to process 3782 * 3783 * netif_receive_skb() is the main receive data processing function. 3784 * It always succeeds. The buffer may be dropped during processing 3785 * for congestion control or by the protocol layers. 3786 * 3787 * This function may only be called from softirq context and interrupts 3788 * should be enabled. 3789 * 3790 * Return values (usually ignored): 3791 * NET_RX_SUCCESS: no congestion 3792 * NET_RX_DROP: packet was dropped 3793 */ 3794 int netif_receive_skb(struct sk_buff *skb) 3795 { 3796 trace_netif_receive_skb_entry(skb); 3797 3798 return netif_receive_skb_internal(skb); 3799 } 3800 EXPORT_SYMBOL(netif_receive_skb); 3801 3802 /* Network device is going away, flush any packets still pending 3803 * Called with irqs disabled. 3804 */ 3805 static void flush_backlog(void *arg) 3806 { 3807 struct net_device *dev = arg; 3808 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 3809 struct sk_buff *skb, *tmp; 3810 3811 rps_lock(sd); 3812 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 3813 if (skb->dev == dev) { 3814 __skb_unlink(skb, &sd->input_pkt_queue); 3815 kfree_skb(skb); 3816 input_queue_head_incr(sd); 3817 } 3818 } 3819 rps_unlock(sd); 3820 3821 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 3822 if (skb->dev == dev) { 3823 __skb_unlink(skb, &sd->process_queue); 3824 kfree_skb(skb); 3825 input_queue_head_incr(sd); 3826 } 3827 } 3828 } 3829 3830 static int napi_gro_complete(struct sk_buff *skb) 3831 { 3832 struct packet_offload *ptype; 3833 __be16 type = skb->protocol; 3834 struct list_head *head = &offload_base; 3835 int err = -ENOENT; 3836 3837 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb)); 3838 3839 if (NAPI_GRO_CB(skb)->count == 1) { 3840 skb_shinfo(skb)->gso_size = 0; 3841 goto out; 3842 } 3843 3844 rcu_read_lock(); 3845 list_for_each_entry_rcu(ptype, head, list) { 3846 if (ptype->type != type || !ptype->callbacks.gro_complete) 3847 continue; 3848 3849 err = ptype->callbacks.gro_complete(skb, 0); 3850 break; 3851 } 3852 rcu_read_unlock(); 3853 3854 if (err) { 3855 WARN_ON(&ptype->list == head); 3856 kfree_skb(skb); 3857 return NET_RX_SUCCESS; 3858 } 3859 3860 out: 3861 return netif_receive_skb_internal(skb); 3862 } 3863 3864 /* napi->gro_list contains packets ordered by age. 3865 * youngest packets at the head of it. 3866 * Complete skbs in reverse order to reduce latencies. 3867 */ 3868 void napi_gro_flush(struct napi_struct *napi, bool flush_old) 3869 { 3870 struct sk_buff *skb, *prev = NULL; 3871 3872 /* scan list and build reverse chain */ 3873 for (skb = napi->gro_list; skb != NULL; skb = skb->next) { 3874 skb->prev = prev; 3875 prev = skb; 3876 } 3877 3878 for (skb = prev; skb; skb = prev) { 3879 skb->next = NULL; 3880 3881 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies) 3882 return; 3883 3884 prev = skb->prev; 3885 napi_gro_complete(skb); 3886 napi->gro_count--; 3887 } 3888 3889 napi->gro_list = NULL; 3890 } 3891 EXPORT_SYMBOL(napi_gro_flush); 3892 3893 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb) 3894 { 3895 struct sk_buff *p; 3896 unsigned int maclen = skb->dev->hard_header_len; 3897 u32 hash = skb_get_hash_raw(skb); 3898 3899 for (p = napi->gro_list; p; p = p->next) { 3900 unsigned long diffs; 3901 3902 NAPI_GRO_CB(p)->flush = 0; 3903 3904 if (hash != skb_get_hash_raw(p)) { 3905 NAPI_GRO_CB(p)->same_flow = 0; 3906 continue; 3907 } 3908 3909 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 3910 diffs |= p->vlan_tci ^ skb->vlan_tci; 3911 if (maclen == ETH_HLEN) 3912 diffs |= compare_ether_header(skb_mac_header(p), 3913 skb_mac_header(skb)); 3914 else if (!diffs) 3915 diffs = memcmp(skb_mac_header(p), 3916 skb_mac_header(skb), 3917 maclen); 3918 NAPI_GRO_CB(p)->same_flow = !diffs; 3919 } 3920 } 3921 3922 static void skb_gro_reset_offset(struct sk_buff *skb) 3923 { 3924 const struct skb_shared_info *pinfo = skb_shinfo(skb); 3925 const skb_frag_t *frag0 = &pinfo->frags[0]; 3926 3927 NAPI_GRO_CB(skb)->data_offset = 0; 3928 NAPI_GRO_CB(skb)->frag0 = NULL; 3929 NAPI_GRO_CB(skb)->frag0_len = 0; 3930 3931 if (skb_mac_header(skb) == skb_tail_pointer(skb) && 3932 pinfo->nr_frags && 3933 !PageHighMem(skb_frag_page(frag0))) { 3934 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0); 3935 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0); 3936 } 3937 } 3938 3939 static void gro_pull_from_frag0(struct sk_buff *skb, int grow) 3940 { 3941 struct skb_shared_info *pinfo = skb_shinfo(skb); 3942 3943 BUG_ON(skb->end - skb->tail < grow); 3944 3945 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 3946 3947 skb->data_len -= grow; 3948 skb->tail += grow; 3949 3950 pinfo->frags[0].page_offset += grow; 3951 skb_frag_size_sub(&pinfo->frags[0], grow); 3952 3953 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) { 3954 skb_frag_unref(skb, 0); 3955 memmove(pinfo->frags, pinfo->frags + 1, 3956 --pinfo->nr_frags * sizeof(pinfo->frags[0])); 3957 } 3958 } 3959 3960 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3961 { 3962 struct sk_buff **pp = NULL; 3963 struct packet_offload *ptype; 3964 __be16 type = skb->protocol; 3965 struct list_head *head = &offload_base; 3966 int same_flow; 3967 enum gro_result ret; 3968 int grow; 3969 3970 if (!(skb->dev->features & NETIF_F_GRO)) 3971 goto normal; 3972 3973 if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad) 3974 goto normal; 3975 3976 gro_list_prepare(napi, skb); 3977 3978 rcu_read_lock(); 3979 list_for_each_entry_rcu(ptype, head, list) { 3980 if (ptype->type != type || !ptype->callbacks.gro_receive) 3981 continue; 3982 3983 skb_set_network_header(skb, skb_gro_offset(skb)); 3984 skb_reset_mac_len(skb); 3985 NAPI_GRO_CB(skb)->same_flow = 0; 3986 NAPI_GRO_CB(skb)->flush = 0; 3987 NAPI_GRO_CB(skb)->free = 0; 3988 NAPI_GRO_CB(skb)->udp_mark = 0; 3989 3990 /* Setup for GRO checksum validation */ 3991 switch (skb->ip_summed) { 3992 case CHECKSUM_COMPLETE: 3993 NAPI_GRO_CB(skb)->csum = skb->csum; 3994 NAPI_GRO_CB(skb)->csum_valid = 1; 3995 NAPI_GRO_CB(skb)->csum_cnt = 0; 3996 break; 3997 case CHECKSUM_UNNECESSARY: 3998 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1; 3999 NAPI_GRO_CB(skb)->csum_valid = 0; 4000 break; 4001 default: 4002 NAPI_GRO_CB(skb)->csum_cnt = 0; 4003 NAPI_GRO_CB(skb)->csum_valid = 0; 4004 } 4005 4006 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb); 4007 break; 4008 } 4009 rcu_read_unlock(); 4010 4011 if (&ptype->list == head) 4012 goto normal; 4013 4014 same_flow = NAPI_GRO_CB(skb)->same_flow; 4015 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 4016 4017 if (pp) { 4018 struct sk_buff *nskb = *pp; 4019 4020 *pp = nskb->next; 4021 nskb->next = NULL; 4022 napi_gro_complete(nskb); 4023 napi->gro_count--; 4024 } 4025 4026 if (same_flow) 4027 goto ok; 4028 4029 if (NAPI_GRO_CB(skb)->flush) 4030 goto normal; 4031 4032 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) { 4033 struct sk_buff *nskb = napi->gro_list; 4034 4035 /* locate the end of the list to select the 'oldest' flow */ 4036 while (nskb->next) { 4037 pp = &nskb->next; 4038 nskb = *pp; 4039 } 4040 *pp = NULL; 4041 nskb->next = NULL; 4042 napi_gro_complete(nskb); 4043 } else { 4044 napi->gro_count++; 4045 } 4046 NAPI_GRO_CB(skb)->count = 1; 4047 NAPI_GRO_CB(skb)->age = jiffies; 4048 NAPI_GRO_CB(skb)->last = skb; 4049 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 4050 skb->next = napi->gro_list; 4051 napi->gro_list = skb; 4052 ret = GRO_HELD; 4053 4054 pull: 4055 grow = skb_gro_offset(skb) - skb_headlen(skb); 4056 if (grow > 0) 4057 gro_pull_from_frag0(skb, grow); 4058 ok: 4059 return ret; 4060 4061 normal: 4062 ret = GRO_NORMAL; 4063 goto pull; 4064 } 4065 4066 struct packet_offload *gro_find_receive_by_type(__be16 type) 4067 { 4068 struct list_head *offload_head = &offload_base; 4069 struct packet_offload *ptype; 4070 4071 list_for_each_entry_rcu(ptype, offload_head, list) { 4072 if (ptype->type != type || !ptype->callbacks.gro_receive) 4073 continue; 4074 return ptype; 4075 } 4076 return NULL; 4077 } 4078 EXPORT_SYMBOL(gro_find_receive_by_type); 4079 4080 struct packet_offload *gro_find_complete_by_type(__be16 type) 4081 { 4082 struct list_head *offload_head = &offload_base; 4083 struct packet_offload *ptype; 4084 4085 list_for_each_entry_rcu(ptype, offload_head, list) { 4086 if (ptype->type != type || !ptype->callbacks.gro_complete) 4087 continue; 4088 return ptype; 4089 } 4090 return NULL; 4091 } 4092 EXPORT_SYMBOL(gro_find_complete_by_type); 4093 4094 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 4095 { 4096 switch (ret) { 4097 case GRO_NORMAL: 4098 if (netif_receive_skb_internal(skb)) 4099 ret = GRO_DROP; 4100 break; 4101 4102 case GRO_DROP: 4103 kfree_skb(skb); 4104 break; 4105 4106 case GRO_MERGED_FREE: 4107 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 4108 kmem_cache_free(skbuff_head_cache, skb); 4109 else 4110 __kfree_skb(skb); 4111 break; 4112 4113 case GRO_HELD: 4114 case GRO_MERGED: 4115 break; 4116 } 4117 4118 return ret; 4119 } 4120 4121 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 4122 { 4123 trace_napi_gro_receive_entry(skb); 4124 4125 skb_gro_reset_offset(skb); 4126 4127 return napi_skb_finish(dev_gro_receive(napi, skb), skb); 4128 } 4129 EXPORT_SYMBOL(napi_gro_receive); 4130 4131 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 4132 { 4133 if (unlikely(skb->pfmemalloc)) { 4134 consume_skb(skb); 4135 return; 4136 } 4137 __skb_pull(skb, skb_headlen(skb)); 4138 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 4139 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 4140 skb->vlan_tci = 0; 4141 skb->dev = napi->dev; 4142 skb->skb_iif = 0; 4143 skb->encapsulation = 0; 4144 skb_shinfo(skb)->gso_type = 0; 4145 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 4146 4147 napi->skb = skb; 4148 } 4149 4150 struct sk_buff *napi_get_frags(struct napi_struct *napi) 4151 { 4152 struct sk_buff *skb = napi->skb; 4153 4154 if (!skb) { 4155 skb = napi_alloc_skb(napi, GRO_MAX_HEAD); 4156 napi->skb = skb; 4157 } 4158 return skb; 4159 } 4160 EXPORT_SYMBOL(napi_get_frags); 4161 4162 static gro_result_t napi_frags_finish(struct napi_struct *napi, 4163 struct sk_buff *skb, 4164 gro_result_t ret) 4165 { 4166 switch (ret) { 4167 case GRO_NORMAL: 4168 case GRO_HELD: 4169 __skb_push(skb, ETH_HLEN); 4170 skb->protocol = eth_type_trans(skb, skb->dev); 4171 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb)) 4172 ret = GRO_DROP; 4173 break; 4174 4175 case GRO_DROP: 4176 case GRO_MERGED_FREE: 4177 napi_reuse_skb(napi, skb); 4178 break; 4179 4180 case GRO_MERGED: 4181 break; 4182 } 4183 4184 return ret; 4185 } 4186 4187 /* Upper GRO stack assumes network header starts at gro_offset=0 4188 * Drivers could call both napi_gro_frags() and napi_gro_receive() 4189 * We copy ethernet header into skb->data to have a common layout. 4190 */ 4191 static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 4192 { 4193 struct sk_buff *skb = napi->skb; 4194 const struct ethhdr *eth; 4195 unsigned int hlen = sizeof(*eth); 4196 4197 napi->skb = NULL; 4198 4199 skb_reset_mac_header(skb); 4200 skb_gro_reset_offset(skb); 4201 4202 eth = skb_gro_header_fast(skb, 0); 4203 if (unlikely(skb_gro_header_hard(skb, hlen))) { 4204 eth = skb_gro_header_slow(skb, hlen, 0); 4205 if (unlikely(!eth)) { 4206 napi_reuse_skb(napi, skb); 4207 return NULL; 4208 } 4209 } else { 4210 gro_pull_from_frag0(skb, hlen); 4211 NAPI_GRO_CB(skb)->frag0 += hlen; 4212 NAPI_GRO_CB(skb)->frag0_len -= hlen; 4213 } 4214 __skb_pull(skb, hlen); 4215 4216 /* 4217 * This works because the only protocols we care about don't require 4218 * special handling. 4219 * We'll fix it up properly in napi_frags_finish() 4220 */ 4221 skb->protocol = eth->h_proto; 4222 4223 return skb; 4224 } 4225 4226 gro_result_t napi_gro_frags(struct napi_struct *napi) 4227 { 4228 struct sk_buff *skb = napi_frags_skb(napi); 4229 4230 if (!skb) 4231 return GRO_DROP; 4232 4233 trace_napi_gro_frags_entry(skb); 4234 4235 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb)); 4236 } 4237 EXPORT_SYMBOL(napi_gro_frags); 4238 4239 /* Compute the checksum from gro_offset and return the folded value 4240 * after adding in any pseudo checksum. 4241 */ 4242 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb) 4243 { 4244 __wsum wsum; 4245 __sum16 sum; 4246 4247 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0); 4248 4249 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */ 4250 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum)); 4251 if (likely(!sum)) { 4252 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 4253 !skb->csum_complete_sw) 4254 netdev_rx_csum_fault(skb->dev); 4255 } 4256 4257 NAPI_GRO_CB(skb)->csum = wsum; 4258 NAPI_GRO_CB(skb)->csum_valid = 1; 4259 4260 return sum; 4261 } 4262 EXPORT_SYMBOL(__skb_gro_checksum_complete); 4263 4264 /* 4265 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 4266 * Note: called with local irq disabled, but exits with local irq enabled. 4267 */ 4268 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 4269 { 4270 #ifdef CONFIG_RPS 4271 struct softnet_data *remsd = sd->rps_ipi_list; 4272 4273 if (remsd) { 4274 sd->rps_ipi_list = NULL; 4275 4276 local_irq_enable(); 4277 4278 /* Send pending IPI's to kick RPS processing on remote cpus. */ 4279 while (remsd) { 4280 struct softnet_data *next = remsd->rps_ipi_next; 4281 4282 if (cpu_online(remsd->cpu)) 4283 smp_call_function_single_async(remsd->cpu, 4284 &remsd->csd); 4285 remsd = next; 4286 } 4287 } else 4288 #endif 4289 local_irq_enable(); 4290 } 4291 4292 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 4293 { 4294 #ifdef CONFIG_RPS 4295 return sd->rps_ipi_list != NULL; 4296 #else 4297 return false; 4298 #endif 4299 } 4300 4301 static int process_backlog(struct napi_struct *napi, int quota) 4302 { 4303 int work = 0; 4304 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 4305 4306 /* Check if we have pending ipi, its better to send them now, 4307 * not waiting net_rx_action() end. 4308 */ 4309 if (sd_has_rps_ipi_waiting(sd)) { 4310 local_irq_disable(); 4311 net_rps_action_and_irq_enable(sd); 4312 } 4313 4314 napi->weight = weight_p; 4315 local_irq_disable(); 4316 while (1) { 4317 struct sk_buff *skb; 4318 4319 while ((skb = __skb_dequeue(&sd->process_queue))) { 4320 local_irq_enable(); 4321 __netif_receive_skb(skb); 4322 local_irq_disable(); 4323 input_queue_head_incr(sd); 4324 if (++work >= quota) { 4325 local_irq_enable(); 4326 return work; 4327 } 4328 } 4329 4330 rps_lock(sd); 4331 if (skb_queue_empty(&sd->input_pkt_queue)) { 4332 /* 4333 * Inline a custom version of __napi_complete(). 4334 * only current cpu owns and manipulates this napi, 4335 * and NAPI_STATE_SCHED is the only possible flag set 4336 * on backlog. 4337 * We can use a plain write instead of clear_bit(), 4338 * and we dont need an smp_mb() memory barrier. 4339 */ 4340 napi->state = 0; 4341 rps_unlock(sd); 4342 4343 break; 4344 } 4345 4346 skb_queue_splice_tail_init(&sd->input_pkt_queue, 4347 &sd->process_queue); 4348 rps_unlock(sd); 4349 } 4350 local_irq_enable(); 4351 4352 return work; 4353 } 4354 4355 /** 4356 * __napi_schedule - schedule for receive 4357 * @n: entry to schedule 4358 * 4359 * The entry's receive function will be scheduled to run. 4360 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 4361 */ 4362 void __napi_schedule(struct napi_struct *n) 4363 { 4364 unsigned long flags; 4365 4366 local_irq_save(flags); 4367 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 4368 local_irq_restore(flags); 4369 } 4370 EXPORT_SYMBOL(__napi_schedule); 4371 4372 /** 4373 * __napi_schedule_irqoff - schedule for receive 4374 * @n: entry to schedule 4375 * 4376 * Variant of __napi_schedule() assuming hard irqs are masked 4377 */ 4378 void __napi_schedule_irqoff(struct napi_struct *n) 4379 { 4380 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 4381 } 4382 EXPORT_SYMBOL(__napi_schedule_irqoff); 4383 4384 void __napi_complete(struct napi_struct *n) 4385 { 4386 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 4387 4388 list_del_init(&n->poll_list); 4389 smp_mb__before_atomic(); 4390 clear_bit(NAPI_STATE_SCHED, &n->state); 4391 } 4392 EXPORT_SYMBOL(__napi_complete); 4393 4394 void napi_complete_done(struct napi_struct *n, int work_done) 4395 { 4396 unsigned long flags; 4397 4398 /* 4399 * don't let napi dequeue from the cpu poll list 4400 * just in case its running on a different cpu 4401 */ 4402 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state))) 4403 return; 4404 4405 if (n->gro_list) { 4406 unsigned long timeout = 0; 4407 4408 if (work_done) 4409 timeout = n->dev->gro_flush_timeout; 4410 4411 if (timeout) 4412 hrtimer_start(&n->timer, ns_to_ktime(timeout), 4413 HRTIMER_MODE_REL_PINNED); 4414 else 4415 napi_gro_flush(n, false); 4416 } 4417 if (likely(list_empty(&n->poll_list))) { 4418 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state)); 4419 } else { 4420 /* If n->poll_list is not empty, we need to mask irqs */ 4421 local_irq_save(flags); 4422 __napi_complete(n); 4423 local_irq_restore(flags); 4424 } 4425 } 4426 EXPORT_SYMBOL(napi_complete_done); 4427 4428 /* must be called under rcu_read_lock(), as we dont take a reference */ 4429 struct napi_struct *napi_by_id(unsigned int napi_id) 4430 { 4431 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 4432 struct napi_struct *napi; 4433 4434 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 4435 if (napi->napi_id == napi_id) 4436 return napi; 4437 4438 return NULL; 4439 } 4440 EXPORT_SYMBOL_GPL(napi_by_id); 4441 4442 void napi_hash_add(struct napi_struct *napi) 4443 { 4444 if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) { 4445 4446 spin_lock(&napi_hash_lock); 4447 4448 /* 0 is not a valid id, we also skip an id that is taken 4449 * we expect both events to be extremely rare 4450 */ 4451 napi->napi_id = 0; 4452 while (!napi->napi_id) { 4453 napi->napi_id = ++napi_gen_id; 4454 if (napi_by_id(napi->napi_id)) 4455 napi->napi_id = 0; 4456 } 4457 4458 hlist_add_head_rcu(&napi->napi_hash_node, 4459 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 4460 4461 spin_unlock(&napi_hash_lock); 4462 } 4463 } 4464 EXPORT_SYMBOL_GPL(napi_hash_add); 4465 4466 /* Warning : caller is responsible to make sure rcu grace period 4467 * is respected before freeing memory containing @napi 4468 */ 4469 void napi_hash_del(struct napi_struct *napi) 4470 { 4471 spin_lock(&napi_hash_lock); 4472 4473 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) 4474 hlist_del_rcu(&napi->napi_hash_node); 4475 4476 spin_unlock(&napi_hash_lock); 4477 } 4478 EXPORT_SYMBOL_GPL(napi_hash_del); 4479 4480 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 4481 { 4482 struct napi_struct *napi; 4483 4484 napi = container_of(timer, struct napi_struct, timer); 4485 if (napi->gro_list) 4486 napi_schedule(napi); 4487 4488 return HRTIMER_NORESTART; 4489 } 4490 4491 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 4492 int (*poll)(struct napi_struct *, int), int weight) 4493 { 4494 INIT_LIST_HEAD(&napi->poll_list); 4495 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 4496 napi->timer.function = napi_watchdog; 4497 napi->gro_count = 0; 4498 napi->gro_list = NULL; 4499 napi->skb = NULL; 4500 napi->poll = poll; 4501 if (weight > NAPI_POLL_WEIGHT) 4502 pr_err_once("netif_napi_add() called with weight %d on device %s\n", 4503 weight, dev->name); 4504 napi->weight = weight; 4505 list_add(&napi->dev_list, &dev->napi_list); 4506 napi->dev = dev; 4507 #ifdef CONFIG_NETPOLL 4508 spin_lock_init(&napi->poll_lock); 4509 napi->poll_owner = -1; 4510 #endif 4511 set_bit(NAPI_STATE_SCHED, &napi->state); 4512 } 4513 EXPORT_SYMBOL(netif_napi_add); 4514 4515 void napi_disable(struct napi_struct *n) 4516 { 4517 might_sleep(); 4518 set_bit(NAPI_STATE_DISABLE, &n->state); 4519 4520 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state)) 4521 msleep(1); 4522 4523 hrtimer_cancel(&n->timer); 4524 4525 clear_bit(NAPI_STATE_DISABLE, &n->state); 4526 } 4527 EXPORT_SYMBOL(napi_disable); 4528 4529 void netif_napi_del(struct napi_struct *napi) 4530 { 4531 list_del_init(&napi->dev_list); 4532 napi_free_frags(napi); 4533 4534 kfree_skb_list(napi->gro_list); 4535 napi->gro_list = NULL; 4536 napi->gro_count = 0; 4537 } 4538 EXPORT_SYMBOL(netif_napi_del); 4539 4540 static int napi_poll(struct napi_struct *n, struct list_head *repoll) 4541 { 4542 void *have; 4543 int work, weight; 4544 4545 list_del_init(&n->poll_list); 4546 4547 have = netpoll_poll_lock(n); 4548 4549 weight = n->weight; 4550 4551 /* This NAPI_STATE_SCHED test is for avoiding a race 4552 * with netpoll's poll_napi(). Only the entity which 4553 * obtains the lock and sees NAPI_STATE_SCHED set will 4554 * actually make the ->poll() call. Therefore we avoid 4555 * accidentally calling ->poll() when NAPI is not scheduled. 4556 */ 4557 work = 0; 4558 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 4559 work = n->poll(n, weight); 4560 trace_napi_poll(n); 4561 } 4562 4563 WARN_ON_ONCE(work > weight); 4564 4565 if (likely(work < weight)) 4566 goto out_unlock; 4567 4568 /* Drivers must not modify the NAPI state if they 4569 * consume the entire weight. In such cases this code 4570 * still "owns" the NAPI instance and therefore can 4571 * move the instance around on the list at-will. 4572 */ 4573 if (unlikely(napi_disable_pending(n))) { 4574 napi_complete(n); 4575 goto out_unlock; 4576 } 4577 4578 if (n->gro_list) { 4579 /* flush too old packets 4580 * If HZ < 1000, flush all packets. 4581 */ 4582 napi_gro_flush(n, HZ >= 1000); 4583 } 4584 4585 /* Some drivers may have called napi_schedule 4586 * prior to exhausting their budget. 4587 */ 4588 if (unlikely(!list_empty(&n->poll_list))) { 4589 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 4590 n->dev ? n->dev->name : "backlog"); 4591 goto out_unlock; 4592 } 4593 4594 list_add_tail(&n->poll_list, repoll); 4595 4596 out_unlock: 4597 netpoll_poll_unlock(have); 4598 4599 return work; 4600 } 4601 4602 static void net_rx_action(struct softirq_action *h) 4603 { 4604 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 4605 unsigned long time_limit = jiffies + 2; 4606 int budget = netdev_budget; 4607 LIST_HEAD(list); 4608 LIST_HEAD(repoll); 4609 4610 local_irq_disable(); 4611 list_splice_init(&sd->poll_list, &list); 4612 local_irq_enable(); 4613 4614 for (;;) { 4615 struct napi_struct *n; 4616 4617 if (list_empty(&list)) { 4618 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll)) 4619 return; 4620 break; 4621 } 4622 4623 n = list_first_entry(&list, struct napi_struct, poll_list); 4624 budget -= napi_poll(n, &repoll); 4625 4626 /* If softirq window is exhausted then punt. 4627 * Allow this to run for 2 jiffies since which will allow 4628 * an average latency of 1.5/HZ. 4629 */ 4630 if (unlikely(budget <= 0 || 4631 time_after_eq(jiffies, time_limit))) { 4632 sd->time_squeeze++; 4633 break; 4634 } 4635 } 4636 4637 local_irq_disable(); 4638 4639 list_splice_tail_init(&sd->poll_list, &list); 4640 list_splice_tail(&repoll, &list); 4641 list_splice(&list, &sd->poll_list); 4642 if (!list_empty(&sd->poll_list)) 4643 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4644 4645 net_rps_action_and_irq_enable(sd); 4646 } 4647 4648 struct netdev_adjacent { 4649 struct net_device *dev; 4650 4651 /* upper master flag, there can only be one master device per list */ 4652 bool master; 4653 4654 /* counter for the number of times this device was added to us */ 4655 u16 ref_nr; 4656 4657 /* private field for the users */ 4658 void *private; 4659 4660 struct list_head list; 4661 struct rcu_head rcu; 4662 }; 4663 4664 static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev, 4665 struct net_device *adj_dev, 4666 struct list_head *adj_list) 4667 { 4668 struct netdev_adjacent *adj; 4669 4670 list_for_each_entry(adj, adj_list, list) { 4671 if (adj->dev == adj_dev) 4672 return adj; 4673 } 4674 return NULL; 4675 } 4676 4677 /** 4678 * netdev_has_upper_dev - Check if device is linked to an upper device 4679 * @dev: device 4680 * @upper_dev: upper device to check 4681 * 4682 * Find out if a device is linked to specified upper device and return true 4683 * in case it is. Note that this checks only immediate upper device, 4684 * not through a complete stack of devices. The caller must hold the RTNL lock. 4685 */ 4686 bool netdev_has_upper_dev(struct net_device *dev, 4687 struct net_device *upper_dev) 4688 { 4689 ASSERT_RTNL(); 4690 4691 return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper); 4692 } 4693 EXPORT_SYMBOL(netdev_has_upper_dev); 4694 4695 /** 4696 * netdev_has_any_upper_dev - Check if device is linked to some device 4697 * @dev: device 4698 * 4699 * Find out if a device is linked to an upper device and return true in case 4700 * it is. The caller must hold the RTNL lock. 4701 */ 4702 static bool netdev_has_any_upper_dev(struct net_device *dev) 4703 { 4704 ASSERT_RTNL(); 4705 4706 return !list_empty(&dev->all_adj_list.upper); 4707 } 4708 4709 /** 4710 * netdev_master_upper_dev_get - Get master upper device 4711 * @dev: device 4712 * 4713 * Find a master upper device and return pointer to it or NULL in case 4714 * it's not there. The caller must hold the RTNL lock. 4715 */ 4716 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 4717 { 4718 struct netdev_adjacent *upper; 4719 4720 ASSERT_RTNL(); 4721 4722 if (list_empty(&dev->adj_list.upper)) 4723 return NULL; 4724 4725 upper = list_first_entry(&dev->adj_list.upper, 4726 struct netdev_adjacent, list); 4727 if (likely(upper->master)) 4728 return upper->dev; 4729 return NULL; 4730 } 4731 EXPORT_SYMBOL(netdev_master_upper_dev_get); 4732 4733 void *netdev_adjacent_get_private(struct list_head *adj_list) 4734 { 4735 struct netdev_adjacent *adj; 4736 4737 adj = list_entry(adj_list, struct netdev_adjacent, list); 4738 4739 return adj->private; 4740 } 4741 EXPORT_SYMBOL(netdev_adjacent_get_private); 4742 4743 /** 4744 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 4745 * @dev: device 4746 * @iter: list_head ** of the current position 4747 * 4748 * Gets the next device from the dev's upper list, starting from iter 4749 * position. The caller must hold RCU read lock. 4750 */ 4751 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 4752 struct list_head **iter) 4753 { 4754 struct netdev_adjacent *upper; 4755 4756 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 4757 4758 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 4759 4760 if (&upper->list == &dev->adj_list.upper) 4761 return NULL; 4762 4763 *iter = &upper->list; 4764 4765 return upper->dev; 4766 } 4767 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 4768 4769 /** 4770 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list 4771 * @dev: device 4772 * @iter: list_head ** of the current position 4773 * 4774 * Gets the next device from the dev's upper list, starting from iter 4775 * position. The caller must hold RCU read lock. 4776 */ 4777 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev, 4778 struct list_head **iter) 4779 { 4780 struct netdev_adjacent *upper; 4781 4782 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 4783 4784 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 4785 4786 if (&upper->list == &dev->all_adj_list.upper) 4787 return NULL; 4788 4789 *iter = &upper->list; 4790 4791 return upper->dev; 4792 } 4793 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu); 4794 4795 /** 4796 * netdev_lower_get_next_private - Get the next ->private from the 4797 * lower neighbour list 4798 * @dev: device 4799 * @iter: list_head ** of the current position 4800 * 4801 * Gets the next netdev_adjacent->private from the dev's lower neighbour 4802 * list, starting from iter position. The caller must hold either hold the 4803 * RTNL lock or its own locking that guarantees that the neighbour lower 4804 * list will remain unchainged. 4805 */ 4806 void *netdev_lower_get_next_private(struct net_device *dev, 4807 struct list_head **iter) 4808 { 4809 struct netdev_adjacent *lower; 4810 4811 lower = list_entry(*iter, struct netdev_adjacent, list); 4812 4813 if (&lower->list == &dev->adj_list.lower) 4814 return NULL; 4815 4816 *iter = lower->list.next; 4817 4818 return lower->private; 4819 } 4820 EXPORT_SYMBOL(netdev_lower_get_next_private); 4821 4822 /** 4823 * netdev_lower_get_next_private_rcu - Get the next ->private from the 4824 * lower neighbour list, RCU 4825 * variant 4826 * @dev: device 4827 * @iter: list_head ** of the current position 4828 * 4829 * Gets the next netdev_adjacent->private from the dev's lower neighbour 4830 * list, starting from iter position. The caller must hold RCU read lock. 4831 */ 4832 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 4833 struct list_head **iter) 4834 { 4835 struct netdev_adjacent *lower; 4836 4837 WARN_ON_ONCE(!rcu_read_lock_held()); 4838 4839 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 4840 4841 if (&lower->list == &dev->adj_list.lower) 4842 return NULL; 4843 4844 *iter = &lower->list; 4845 4846 return lower->private; 4847 } 4848 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 4849 4850 /** 4851 * netdev_lower_get_next - Get the next device from the lower neighbour 4852 * list 4853 * @dev: device 4854 * @iter: list_head ** of the current position 4855 * 4856 * Gets the next netdev_adjacent from the dev's lower neighbour 4857 * list, starting from iter position. The caller must hold RTNL lock or 4858 * its own locking that guarantees that the neighbour lower 4859 * list will remain unchainged. 4860 */ 4861 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 4862 { 4863 struct netdev_adjacent *lower; 4864 4865 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 4866 4867 if (&lower->list == &dev->adj_list.lower) 4868 return NULL; 4869 4870 *iter = &lower->list; 4871 4872 return lower->dev; 4873 } 4874 EXPORT_SYMBOL(netdev_lower_get_next); 4875 4876 /** 4877 * netdev_lower_get_first_private_rcu - Get the first ->private from the 4878 * lower neighbour list, RCU 4879 * variant 4880 * @dev: device 4881 * 4882 * Gets the first netdev_adjacent->private from the dev's lower neighbour 4883 * list. The caller must hold RCU read lock. 4884 */ 4885 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 4886 { 4887 struct netdev_adjacent *lower; 4888 4889 lower = list_first_or_null_rcu(&dev->adj_list.lower, 4890 struct netdev_adjacent, list); 4891 if (lower) 4892 return lower->private; 4893 return NULL; 4894 } 4895 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 4896 4897 /** 4898 * netdev_master_upper_dev_get_rcu - Get master upper device 4899 * @dev: device 4900 * 4901 * Find a master upper device and return pointer to it or NULL in case 4902 * it's not there. The caller must hold the RCU read lock. 4903 */ 4904 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 4905 { 4906 struct netdev_adjacent *upper; 4907 4908 upper = list_first_or_null_rcu(&dev->adj_list.upper, 4909 struct netdev_adjacent, list); 4910 if (upper && likely(upper->master)) 4911 return upper->dev; 4912 return NULL; 4913 } 4914 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 4915 4916 static int netdev_adjacent_sysfs_add(struct net_device *dev, 4917 struct net_device *adj_dev, 4918 struct list_head *dev_list) 4919 { 4920 char linkname[IFNAMSIZ+7]; 4921 sprintf(linkname, dev_list == &dev->adj_list.upper ? 4922 "upper_%s" : "lower_%s", adj_dev->name); 4923 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 4924 linkname); 4925 } 4926 static void netdev_adjacent_sysfs_del(struct net_device *dev, 4927 char *name, 4928 struct list_head *dev_list) 4929 { 4930 char linkname[IFNAMSIZ+7]; 4931 sprintf(linkname, dev_list == &dev->adj_list.upper ? 4932 "upper_%s" : "lower_%s", name); 4933 sysfs_remove_link(&(dev->dev.kobj), linkname); 4934 } 4935 4936 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 4937 struct net_device *adj_dev, 4938 struct list_head *dev_list) 4939 { 4940 return (dev_list == &dev->adj_list.upper || 4941 dev_list == &dev->adj_list.lower) && 4942 net_eq(dev_net(dev), dev_net(adj_dev)); 4943 } 4944 4945 static int __netdev_adjacent_dev_insert(struct net_device *dev, 4946 struct net_device *adj_dev, 4947 struct list_head *dev_list, 4948 void *private, bool master) 4949 { 4950 struct netdev_adjacent *adj; 4951 int ret; 4952 4953 adj = __netdev_find_adj(dev, adj_dev, dev_list); 4954 4955 if (adj) { 4956 adj->ref_nr++; 4957 return 0; 4958 } 4959 4960 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 4961 if (!adj) 4962 return -ENOMEM; 4963 4964 adj->dev = adj_dev; 4965 adj->master = master; 4966 adj->ref_nr = 1; 4967 adj->private = private; 4968 dev_hold(adj_dev); 4969 4970 pr_debug("dev_hold for %s, because of link added from %s to %s\n", 4971 adj_dev->name, dev->name, adj_dev->name); 4972 4973 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 4974 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 4975 if (ret) 4976 goto free_adj; 4977 } 4978 4979 /* Ensure that master link is always the first item in list. */ 4980 if (master) { 4981 ret = sysfs_create_link(&(dev->dev.kobj), 4982 &(adj_dev->dev.kobj), "master"); 4983 if (ret) 4984 goto remove_symlinks; 4985 4986 list_add_rcu(&adj->list, dev_list); 4987 } else { 4988 list_add_tail_rcu(&adj->list, dev_list); 4989 } 4990 4991 return 0; 4992 4993 remove_symlinks: 4994 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 4995 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 4996 free_adj: 4997 kfree(adj); 4998 dev_put(adj_dev); 4999 5000 return ret; 5001 } 5002 5003 static void __netdev_adjacent_dev_remove(struct net_device *dev, 5004 struct net_device *adj_dev, 5005 struct list_head *dev_list) 5006 { 5007 struct netdev_adjacent *adj; 5008 5009 adj = __netdev_find_adj(dev, adj_dev, dev_list); 5010 5011 if (!adj) { 5012 pr_err("tried to remove device %s from %s\n", 5013 dev->name, adj_dev->name); 5014 BUG(); 5015 } 5016 5017 if (adj->ref_nr > 1) { 5018 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name, 5019 adj->ref_nr-1); 5020 adj->ref_nr--; 5021 return; 5022 } 5023 5024 if (adj->master) 5025 sysfs_remove_link(&(dev->dev.kobj), "master"); 5026 5027 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 5028 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 5029 5030 list_del_rcu(&adj->list); 5031 pr_debug("dev_put for %s, because link removed from %s to %s\n", 5032 adj_dev->name, dev->name, adj_dev->name); 5033 dev_put(adj_dev); 5034 kfree_rcu(adj, rcu); 5035 } 5036 5037 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 5038 struct net_device *upper_dev, 5039 struct list_head *up_list, 5040 struct list_head *down_list, 5041 void *private, bool master) 5042 { 5043 int ret; 5044 5045 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private, 5046 master); 5047 if (ret) 5048 return ret; 5049 5050 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private, 5051 false); 5052 if (ret) { 5053 __netdev_adjacent_dev_remove(dev, upper_dev, up_list); 5054 return ret; 5055 } 5056 5057 return 0; 5058 } 5059 5060 static int __netdev_adjacent_dev_link(struct net_device *dev, 5061 struct net_device *upper_dev) 5062 { 5063 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 5064 &dev->all_adj_list.upper, 5065 &upper_dev->all_adj_list.lower, 5066 NULL, false); 5067 } 5068 5069 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 5070 struct net_device *upper_dev, 5071 struct list_head *up_list, 5072 struct list_head *down_list) 5073 { 5074 __netdev_adjacent_dev_remove(dev, upper_dev, up_list); 5075 __netdev_adjacent_dev_remove(upper_dev, dev, down_list); 5076 } 5077 5078 static void __netdev_adjacent_dev_unlink(struct net_device *dev, 5079 struct net_device *upper_dev) 5080 { 5081 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 5082 &dev->all_adj_list.upper, 5083 &upper_dev->all_adj_list.lower); 5084 } 5085 5086 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 5087 struct net_device *upper_dev, 5088 void *private, bool master) 5089 { 5090 int ret = __netdev_adjacent_dev_link(dev, upper_dev); 5091 5092 if (ret) 5093 return ret; 5094 5095 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev, 5096 &dev->adj_list.upper, 5097 &upper_dev->adj_list.lower, 5098 private, master); 5099 if (ret) { 5100 __netdev_adjacent_dev_unlink(dev, upper_dev); 5101 return ret; 5102 } 5103 5104 return 0; 5105 } 5106 5107 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 5108 struct net_device *upper_dev) 5109 { 5110 __netdev_adjacent_dev_unlink(dev, upper_dev); 5111 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 5112 &dev->adj_list.upper, 5113 &upper_dev->adj_list.lower); 5114 } 5115 5116 static int __netdev_upper_dev_link(struct net_device *dev, 5117 struct net_device *upper_dev, bool master, 5118 void *private) 5119 { 5120 struct netdev_adjacent *i, *j, *to_i, *to_j; 5121 int ret = 0; 5122 5123 ASSERT_RTNL(); 5124 5125 if (dev == upper_dev) 5126 return -EBUSY; 5127 5128 /* To prevent loops, check if dev is not upper device to upper_dev. */ 5129 if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper)) 5130 return -EBUSY; 5131 5132 if (__netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper)) 5133 return -EEXIST; 5134 5135 if (master && netdev_master_upper_dev_get(dev)) 5136 return -EBUSY; 5137 5138 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private, 5139 master); 5140 if (ret) 5141 return ret; 5142 5143 /* Now that we linked these devs, make all the upper_dev's 5144 * all_adj_list.upper visible to every dev's all_adj_list.lower an 5145 * versa, and don't forget the devices itself. All of these 5146 * links are non-neighbours. 5147 */ 5148 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 5149 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) { 5150 pr_debug("Interlinking %s with %s, non-neighbour\n", 5151 i->dev->name, j->dev->name); 5152 ret = __netdev_adjacent_dev_link(i->dev, j->dev); 5153 if (ret) 5154 goto rollback_mesh; 5155 } 5156 } 5157 5158 /* add dev to every upper_dev's upper device */ 5159 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) { 5160 pr_debug("linking %s's upper device %s with %s\n", 5161 upper_dev->name, i->dev->name, dev->name); 5162 ret = __netdev_adjacent_dev_link(dev, i->dev); 5163 if (ret) 5164 goto rollback_upper_mesh; 5165 } 5166 5167 /* add upper_dev to every dev's lower device */ 5168 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 5169 pr_debug("linking %s's lower device %s with %s\n", dev->name, 5170 i->dev->name, upper_dev->name); 5171 ret = __netdev_adjacent_dev_link(i->dev, upper_dev); 5172 if (ret) 5173 goto rollback_lower_mesh; 5174 } 5175 5176 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev); 5177 return 0; 5178 5179 rollback_lower_mesh: 5180 to_i = i; 5181 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 5182 if (i == to_i) 5183 break; 5184 __netdev_adjacent_dev_unlink(i->dev, upper_dev); 5185 } 5186 5187 i = NULL; 5188 5189 rollback_upper_mesh: 5190 to_i = i; 5191 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) { 5192 if (i == to_i) 5193 break; 5194 __netdev_adjacent_dev_unlink(dev, i->dev); 5195 } 5196 5197 i = j = NULL; 5198 5199 rollback_mesh: 5200 to_i = i; 5201 to_j = j; 5202 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 5203 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) { 5204 if (i == to_i && j == to_j) 5205 break; 5206 __netdev_adjacent_dev_unlink(i->dev, j->dev); 5207 } 5208 if (i == to_i) 5209 break; 5210 } 5211 5212 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 5213 5214 return ret; 5215 } 5216 5217 /** 5218 * netdev_upper_dev_link - Add a link to the upper device 5219 * @dev: device 5220 * @upper_dev: new upper device 5221 * 5222 * Adds a link to device which is upper to this one. The caller must hold 5223 * the RTNL lock. On a failure a negative errno code is returned. 5224 * On success the reference counts are adjusted and the function 5225 * returns zero. 5226 */ 5227 int netdev_upper_dev_link(struct net_device *dev, 5228 struct net_device *upper_dev) 5229 { 5230 return __netdev_upper_dev_link(dev, upper_dev, false, NULL); 5231 } 5232 EXPORT_SYMBOL(netdev_upper_dev_link); 5233 5234 /** 5235 * netdev_master_upper_dev_link - Add a master link to the upper device 5236 * @dev: device 5237 * @upper_dev: new upper device 5238 * 5239 * Adds a link to device which is upper to this one. In this case, only 5240 * one master upper device can be linked, although other non-master devices 5241 * might be linked as well. The caller must hold the RTNL lock. 5242 * On a failure a negative errno code is returned. On success the reference 5243 * counts are adjusted and the function returns zero. 5244 */ 5245 int netdev_master_upper_dev_link(struct net_device *dev, 5246 struct net_device *upper_dev) 5247 { 5248 return __netdev_upper_dev_link(dev, upper_dev, true, NULL); 5249 } 5250 EXPORT_SYMBOL(netdev_master_upper_dev_link); 5251 5252 int netdev_master_upper_dev_link_private(struct net_device *dev, 5253 struct net_device *upper_dev, 5254 void *private) 5255 { 5256 return __netdev_upper_dev_link(dev, upper_dev, true, private); 5257 } 5258 EXPORT_SYMBOL(netdev_master_upper_dev_link_private); 5259 5260 /** 5261 * netdev_upper_dev_unlink - Removes a link to upper device 5262 * @dev: device 5263 * @upper_dev: new upper device 5264 * 5265 * Removes a link to device which is upper to this one. The caller must hold 5266 * the RTNL lock. 5267 */ 5268 void netdev_upper_dev_unlink(struct net_device *dev, 5269 struct net_device *upper_dev) 5270 { 5271 struct netdev_adjacent *i, *j; 5272 ASSERT_RTNL(); 5273 5274 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 5275 5276 /* Here is the tricky part. We must remove all dev's lower 5277 * devices from all upper_dev's upper devices and vice 5278 * versa, to maintain the graph relationship. 5279 */ 5280 list_for_each_entry(i, &dev->all_adj_list.lower, list) 5281 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) 5282 __netdev_adjacent_dev_unlink(i->dev, j->dev); 5283 5284 /* remove also the devices itself from lower/upper device 5285 * list 5286 */ 5287 list_for_each_entry(i, &dev->all_adj_list.lower, list) 5288 __netdev_adjacent_dev_unlink(i->dev, upper_dev); 5289 5290 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) 5291 __netdev_adjacent_dev_unlink(dev, i->dev); 5292 5293 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev); 5294 } 5295 EXPORT_SYMBOL(netdev_upper_dev_unlink); 5296 5297 static void netdev_adjacent_add_links(struct net_device *dev) 5298 { 5299 struct netdev_adjacent *iter; 5300 5301 struct net *net = dev_net(dev); 5302 5303 list_for_each_entry(iter, &dev->adj_list.upper, list) { 5304 if (!net_eq(net,dev_net(iter->dev))) 5305 continue; 5306 netdev_adjacent_sysfs_add(iter->dev, dev, 5307 &iter->dev->adj_list.lower); 5308 netdev_adjacent_sysfs_add(dev, iter->dev, 5309 &dev->adj_list.upper); 5310 } 5311 5312 list_for_each_entry(iter, &dev->adj_list.lower, list) { 5313 if (!net_eq(net,dev_net(iter->dev))) 5314 continue; 5315 netdev_adjacent_sysfs_add(iter->dev, dev, 5316 &iter->dev->adj_list.upper); 5317 netdev_adjacent_sysfs_add(dev, iter->dev, 5318 &dev->adj_list.lower); 5319 } 5320 } 5321 5322 static void netdev_adjacent_del_links(struct net_device *dev) 5323 { 5324 struct netdev_adjacent *iter; 5325 5326 struct net *net = dev_net(dev); 5327 5328 list_for_each_entry(iter, &dev->adj_list.upper, list) { 5329 if (!net_eq(net,dev_net(iter->dev))) 5330 continue; 5331 netdev_adjacent_sysfs_del(iter->dev, dev->name, 5332 &iter->dev->adj_list.lower); 5333 netdev_adjacent_sysfs_del(dev, iter->dev->name, 5334 &dev->adj_list.upper); 5335 } 5336 5337 list_for_each_entry(iter, &dev->adj_list.lower, list) { 5338 if (!net_eq(net,dev_net(iter->dev))) 5339 continue; 5340 netdev_adjacent_sysfs_del(iter->dev, dev->name, 5341 &iter->dev->adj_list.upper); 5342 netdev_adjacent_sysfs_del(dev, iter->dev->name, 5343 &dev->adj_list.lower); 5344 } 5345 } 5346 5347 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 5348 { 5349 struct netdev_adjacent *iter; 5350 5351 struct net *net = dev_net(dev); 5352 5353 list_for_each_entry(iter, &dev->adj_list.upper, list) { 5354 if (!net_eq(net,dev_net(iter->dev))) 5355 continue; 5356 netdev_adjacent_sysfs_del(iter->dev, oldname, 5357 &iter->dev->adj_list.lower); 5358 netdev_adjacent_sysfs_add(iter->dev, dev, 5359 &iter->dev->adj_list.lower); 5360 } 5361 5362 list_for_each_entry(iter, &dev->adj_list.lower, list) { 5363 if (!net_eq(net,dev_net(iter->dev))) 5364 continue; 5365 netdev_adjacent_sysfs_del(iter->dev, oldname, 5366 &iter->dev->adj_list.upper); 5367 netdev_adjacent_sysfs_add(iter->dev, dev, 5368 &iter->dev->adj_list.upper); 5369 } 5370 } 5371 5372 void *netdev_lower_dev_get_private(struct net_device *dev, 5373 struct net_device *lower_dev) 5374 { 5375 struct netdev_adjacent *lower; 5376 5377 if (!lower_dev) 5378 return NULL; 5379 lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower); 5380 if (!lower) 5381 return NULL; 5382 5383 return lower->private; 5384 } 5385 EXPORT_SYMBOL(netdev_lower_dev_get_private); 5386 5387 5388 int dev_get_nest_level(struct net_device *dev, 5389 bool (*type_check)(struct net_device *dev)) 5390 { 5391 struct net_device *lower = NULL; 5392 struct list_head *iter; 5393 int max_nest = -1; 5394 int nest; 5395 5396 ASSERT_RTNL(); 5397 5398 netdev_for_each_lower_dev(dev, lower, iter) { 5399 nest = dev_get_nest_level(lower, type_check); 5400 if (max_nest < nest) 5401 max_nest = nest; 5402 } 5403 5404 if (type_check(dev)) 5405 max_nest++; 5406 5407 return max_nest; 5408 } 5409 EXPORT_SYMBOL(dev_get_nest_level); 5410 5411 static void dev_change_rx_flags(struct net_device *dev, int flags) 5412 { 5413 const struct net_device_ops *ops = dev->netdev_ops; 5414 5415 if (ops->ndo_change_rx_flags) 5416 ops->ndo_change_rx_flags(dev, flags); 5417 } 5418 5419 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 5420 { 5421 unsigned int old_flags = dev->flags; 5422 kuid_t uid; 5423 kgid_t gid; 5424 5425 ASSERT_RTNL(); 5426 5427 dev->flags |= IFF_PROMISC; 5428 dev->promiscuity += inc; 5429 if (dev->promiscuity == 0) { 5430 /* 5431 * Avoid overflow. 5432 * If inc causes overflow, untouch promisc and return error. 5433 */ 5434 if (inc < 0) 5435 dev->flags &= ~IFF_PROMISC; 5436 else { 5437 dev->promiscuity -= inc; 5438 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 5439 dev->name); 5440 return -EOVERFLOW; 5441 } 5442 } 5443 if (dev->flags != old_flags) { 5444 pr_info("device %s %s promiscuous mode\n", 5445 dev->name, 5446 dev->flags & IFF_PROMISC ? "entered" : "left"); 5447 if (audit_enabled) { 5448 current_uid_gid(&uid, &gid); 5449 audit_log(current->audit_context, GFP_ATOMIC, 5450 AUDIT_ANOM_PROMISCUOUS, 5451 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 5452 dev->name, (dev->flags & IFF_PROMISC), 5453 (old_flags & IFF_PROMISC), 5454 from_kuid(&init_user_ns, audit_get_loginuid(current)), 5455 from_kuid(&init_user_ns, uid), 5456 from_kgid(&init_user_ns, gid), 5457 audit_get_sessionid(current)); 5458 } 5459 5460 dev_change_rx_flags(dev, IFF_PROMISC); 5461 } 5462 if (notify) 5463 __dev_notify_flags(dev, old_flags, IFF_PROMISC); 5464 return 0; 5465 } 5466 5467 /** 5468 * dev_set_promiscuity - update promiscuity count on a device 5469 * @dev: device 5470 * @inc: modifier 5471 * 5472 * Add or remove promiscuity from a device. While the count in the device 5473 * remains above zero the interface remains promiscuous. Once it hits zero 5474 * the device reverts back to normal filtering operation. A negative inc 5475 * value is used to drop promiscuity on the device. 5476 * Return 0 if successful or a negative errno code on error. 5477 */ 5478 int dev_set_promiscuity(struct net_device *dev, int inc) 5479 { 5480 unsigned int old_flags = dev->flags; 5481 int err; 5482 5483 err = __dev_set_promiscuity(dev, inc, true); 5484 if (err < 0) 5485 return err; 5486 if (dev->flags != old_flags) 5487 dev_set_rx_mode(dev); 5488 return err; 5489 } 5490 EXPORT_SYMBOL(dev_set_promiscuity); 5491 5492 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 5493 { 5494 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 5495 5496 ASSERT_RTNL(); 5497 5498 dev->flags |= IFF_ALLMULTI; 5499 dev->allmulti += inc; 5500 if (dev->allmulti == 0) { 5501 /* 5502 * Avoid overflow. 5503 * If inc causes overflow, untouch allmulti and return error. 5504 */ 5505 if (inc < 0) 5506 dev->flags &= ~IFF_ALLMULTI; 5507 else { 5508 dev->allmulti -= inc; 5509 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 5510 dev->name); 5511 return -EOVERFLOW; 5512 } 5513 } 5514 if (dev->flags ^ old_flags) { 5515 dev_change_rx_flags(dev, IFF_ALLMULTI); 5516 dev_set_rx_mode(dev); 5517 if (notify) 5518 __dev_notify_flags(dev, old_flags, 5519 dev->gflags ^ old_gflags); 5520 } 5521 return 0; 5522 } 5523 5524 /** 5525 * dev_set_allmulti - update allmulti count on a device 5526 * @dev: device 5527 * @inc: modifier 5528 * 5529 * Add or remove reception of all multicast frames to a device. While the 5530 * count in the device remains above zero the interface remains listening 5531 * to all interfaces. Once it hits zero the device reverts back to normal 5532 * filtering operation. A negative @inc value is used to drop the counter 5533 * when releasing a resource needing all multicasts. 5534 * Return 0 if successful or a negative errno code on error. 5535 */ 5536 5537 int dev_set_allmulti(struct net_device *dev, int inc) 5538 { 5539 return __dev_set_allmulti(dev, inc, true); 5540 } 5541 EXPORT_SYMBOL(dev_set_allmulti); 5542 5543 /* 5544 * Upload unicast and multicast address lists to device and 5545 * configure RX filtering. When the device doesn't support unicast 5546 * filtering it is put in promiscuous mode while unicast addresses 5547 * are present. 5548 */ 5549 void __dev_set_rx_mode(struct net_device *dev) 5550 { 5551 const struct net_device_ops *ops = dev->netdev_ops; 5552 5553 /* dev_open will call this function so the list will stay sane. */ 5554 if (!(dev->flags&IFF_UP)) 5555 return; 5556 5557 if (!netif_device_present(dev)) 5558 return; 5559 5560 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 5561 /* Unicast addresses changes may only happen under the rtnl, 5562 * therefore calling __dev_set_promiscuity here is safe. 5563 */ 5564 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 5565 __dev_set_promiscuity(dev, 1, false); 5566 dev->uc_promisc = true; 5567 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 5568 __dev_set_promiscuity(dev, -1, false); 5569 dev->uc_promisc = false; 5570 } 5571 } 5572 5573 if (ops->ndo_set_rx_mode) 5574 ops->ndo_set_rx_mode(dev); 5575 } 5576 5577 void dev_set_rx_mode(struct net_device *dev) 5578 { 5579 netif_addr_lock_bh(dev); 5580 __dev_set_rx_mode(dev); 5581 netif_addr_unlock_bh(dev); 5582 } 5583 5584 /** 5585 * dev_get_flags - get flags reported to userspace 5586 * @dev: device 5587 * 5588 * Get the combination of flag bits exported through APIs to userspace. 5589 */ 5590 unsigned int dev_get_flags(const struct net_device *dev) 5591 { 5592 unsigned int flags; 5593 5594 flags = (dev->flags & ~(IFF_PROMISC | 5595 IFF_ALLMULTI | 5596 IFF_RUNNING | 5597 IFF_LOWER_UP | 5598 IFF_DORMANT)) | 5599 (dev->gflags & (IFF_PROMISC | 5600 IFF_ALLMULTI)); 5601 5602 if (netif_running(dev)) { 5603 if (netif_oper_up(dev)) 5604 flags |= IFF_RUNNING; 5605 if (netif_carrier_ok(dev)) 5606 flags |= IFF_LOWER_UP; 5607 if (netif_dormant(dev)) 5608 flags |= IFF_DORMANT; 5609 } 5610 5611 return flags; 5612 } 5613 EXPORT_SYMBOL(dev_get_flags); 5614 5615 int __dev_change_flags(struct net_device *dev, unsigned int flags) 5616 { 5617 unsigned int old_flags = dev->flags; 5618 int ret; 5619 5620 ASSERT_RTNL(); 5621 5622 /* 5623 * Set the flags on our device. 5624 */ 5625 5626 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 5627 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 5628 IFF_AUTOMEDIA)) | 5629 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 5630 IFF_ALLMULTI)); 5631 5632 /* 5633 * Load in the correct multicast list now the flags have changed. 5634 */ 5635 5636 if ((old_flags ^ flags) & IFF_MULTICAST) 5637 dev_change_rx_flags(dev, IFF_MULTICAST); 5638 5639 dev_set_rx_mode(dev); 5640 5641 /* 5642 * Have we downed the interface. We handle IFF_UP ourselves 5643 * according to user attempts to set it, rather than blindly 5644 * setting it. 5645 */ 5646 5647 ret = 0; 5648 if ((old_flags ^ flags) & IFF_UP) 5649 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev); 5650 5651 if ((flags ^ dev->gflags) & IFF_PROMISC) { 5652 int inc = (flags & IFF_PROMISC) ? 1 : -1; 5653 unsigned int old_flags = dev->flags; 5654 5655 dev->gflags ^= IFF_PROMISC; 5656 5657 if (__dev_set_promiscuity(dev, inc, false) >= 0) 5658 if (dev->flags != old_flags) 5659 dev_set_rx_mode(dev); 5660 } 5661 5662 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 5663 is important. Some (broken) drivers set IFF_PROMISC, when 5664 IFF_ALLMULTI is requested not asking us and not reporting. 5665 */ 5666 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 5667 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 5668 5669 dev->gflags ^= IFF_ALLMULTI; 5670 __dev_set_allmulti(dev, inc, false); 5671 } 5672 5673 return ret; 5674 } 5675 5676 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 5677 unsigned int gchanges) 5678 { 5679 unsigned int changes = dev->flags ^ old_flags; 5680 5681 if (gchanges) 5682 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC); 5683 5684 if (changes & IFF_UP) { 5685 if (dev->flags & IFF_UP) 5686 call_netdevice_notifiers(NETDEV_UP, dev); 5687 else 5688 call_netdevice_notifiers(NETDEV_DOWN, dev); 5689 } 5690 5691 if (dev->flags & IFF_UP && 5692 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 5693 struct netdev_notifier_change_info change_info; 5694 5695 change_info.flags_changed = changes; 5696 call_netdevice_notifiers_info(NETDEV_CHANGE, dev, 5697 &change_info.info); 5698 } 5699 } 5700 5701 /** 5702 * dev_change_flags - change device settings 5703 * @dev: device 5704 * @flags: device state flags 5705 * 5706 * Change settings on device based state flags. The flags are 5707 * in the userspace exported format. 5708 */ 5709 int dev_change_flags(struct net_device *dev, unsigned int flags) 5710 { 5711 int ret; 5712 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 5713 5714 ret = __dev_change_flags(dev, flags); 5715 if (ret < 0) 5716 return ret; 5717 5718 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 5719 __dev_notify_flags(dev, old_flags, changes); 5720 return ret; 5721 } 5722 EXPORT_SYMBOL(dev_change_flags); 5723 5724 static int __dev_set_mtu(struct net_device *dev, int new_mtu) 5725 { 5726 const struct net_device_ops *ops = dev->netdev_ops; 5727 5728 if (ops->ndo_change_mtu) 5729 return ops->ndo_change_mtu(dev, new_mtu); 5730 5731 dev->mtu = new_mtu; 5732 return 0; 5733 } 5734 5735 /** 5736 * dev_set_mtu - Change maximum transfer unit 5737 * @dev: device 5738 * @new_mtu: new transfer unit 5739 * 5740 * Change the maximum transfer size of the network device. 5741 */ 5742 int dev_set_mtu(struct net_device *dev, int new_mtu) 5743 { 5744 int err, orig_mtu; 5745 5746 if (new_mtu == dev->mtu) 5747 return 0; 5748 5749 /* MTU must be positive. */ 5750 if (new_mtu < 0) 5751 return -EINVAL; 5752 5753 if (!netif_device_present(dev)) 5754 return -ENODEV; 5755 5756 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 5757 err = notifier_to_errno(err); 5758 if (err) 5759 return err; 5760 5761 orig_mtu = dev->mtu; 5762 err = __dev_set_mtu(dev, new_mtu); 5763 5764 if (!err) { 5765 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 5766 err = notifier_to_errno(err); 5767 if (err) { 5768 /* setting mtu back and notifying everyone again, 5769 * so that they have a chance to revert changes. 5770 */ 5771 __dev_set_mtu(dev, orig_mtu); 5772 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 5773 } 5774 } 5775 return err; 5776 } 5777 EXPORT_SYMBOL(dev_set_mtu); 5778 5779 /** 5780 * dev_set_group - Change group this device belongs to 5781 * @dev: device 5782 * @new_group: group this device should belong to 5783 */ 5784 void dev_set_group(struct net_device *dev, int new_group) 5785 { 5786 dev->group = new_group; 5787 } 5788 EXPORT_SYMBOL(dev_set_group); 5789 5790 /** 5791 * dev_set_mac_address - Change Media Access Control Address 5792 * @dev: device 5793 * @sa: new address 5794 * 5795 * Change the hardware (MAC) address of the device 5796 */ 5797 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 5798 { 5799 const struct net_device_ops *ops = dev->netdev_ops; 5800 int err; 5801 5802 if (!ops->ndo_set_mac_address) 5803 return -EOPNOTSUPP; 5804 if (sa->sa_family != dev->type) 5805 return -EINVAL; 5806 if (!netif_device_present(dev)) 5807 return -ENODEV; 5808 err = ops->ndo_set_mac_address(dev, sa); 5809 if (err) 5810 return err; 5811 dev->addr_assign_type = NET_ADDR_SET; 5812 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 5813 add_device_randomness(dev->dev_addr, dev->addr_len); 5814 return 0; 5815 } 5816 EXPORT_SYMBOL(dev_set_mac_address); 5817 5818 /** 5819 * dev_change_carrier - Change device carrier 5820 * @dev: device 5821 * @new_carrier: new value 5822 * 5823 * Change device carrier 5824 */ 5825 int dev_change_carrier(struct net_device *dev, bool new_carrier) 5826 { 5827 const struct net_device_ops *ops = dev->netdev_ops; 5828 5829 if (!ops->ndo_change_carrier) 5830 return -EOPNOTSUPP; 5831 if (!netif_device_present(dev)) 5832 return -ENODEV; 5833 return ops->ndo_change_carrier(dev, new_carrier); 5834 } 5835 EXPORT_SYMBOL(dev_change_carrier); 5836 5837 /** 5838 * dev_get_phys_port_id - Get device physical port ID 5839 * @dev: device 5840 * @ppid: port ID 5841 * 5842 * Get device physical port ID 5843 */ 5844 int dev_get_phys_port_id(struct net_device *dev, 5845 struct netdev_phys_item_id *ppid) 5846 { 5847 const struct net_device_ops *ops = dev->netdev_ops; 5848 5849 if (!ops->ndo_get_phys_port_id) 5850 return -EOPNOTSUPP; 5851 return ops->ndo_get_phys_port_id(dev, ppid); 5852 } 5853 EXPORT_SYMBOL(dev_get_phys_port_id); 5854 5855 /** 5856 * dev_new_index - allocate an ifindex 5857 * @net: the applicable net namespace 5858 * 5859 * Returns a suitable unique value for a new device interface 5860 * number. The caller must hold the rtnl semaphore or the 5861 * dev_base_lock to be sure it remains unique. 5862 */ 5863 static int dev_new_index(struct net *net) 5864 { 5865 int ifindex = net->ifindex; 5866 for (;;) { 5867 if (++ifindex <= 0) 5868 ifindex = 1; 5869 if (!__dev_get_by_index(net, ifindex)) 5870 return net->ifindex = ifindex; 5871 } 5872 } 5873 5874 /* Delayed registration/unregisteration */ 5875 static LIST_HEAD(net_todo_list); 5876 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 5877 5878 static void net_set_todo(struct net_device *dev) 5879 { 5880 list_add_tail(&dev->todo_list, &net_todo_list); 5881 dev_net(dev)->dev_unreg_count++; 5882 } 5883 5884 static void rollback_registered_many(struct list_head *head) 5885 { 5886 struct net_device *dev, *tmp; 5887 LIST_HEAD(close_head); 5888 5889 BUG_ON(dev_boot_phase); 5890 ASSERT_RTNL(); 5891 5892 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 5893 /* Some devices call without registering 5894 * for initialization unwind. Remove those 5895 * devices and proceed with the remaining. 5896 */ 5897 if (dev->reg_state == NETREG_UNINITIALIZED) { 5898 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 5899 dev->name, dev); 5900 5901 WARN_ON(1); 5902 list_del(&dev->unreg_list); 5903 continue; 5904 } 5905 dev->dismantle = true; 5906 BUG_ON(dev->reg_state != NETREG_REGISTERED); 5907 } 5908 5909 /* If device is running, close it first. */ 5910 list_for_each_entry(dev, head, unreg_list) 5911 list_add_tail(&dev->close_list, &close_head); 5912 dev_close_many(&close_head); 5913 5914 list_for_each_entry(dev, head, unreg_list) { 5915 /* And unlink it from device chain. */ 5916 unlist_netdevice(dev); 5917 5918 dev->reg_state = NETREG_UNREGISTERING; 5919 } 5920 5921 synchronize_net(); 5922 5923 list_for_each_entry(dev, head, unreg_list) { 5924 struct sk_buff *skb = NULL; 5925 5926 /* Shutdown queueing discipline. */ 5927 dev_shutdown(dev); 5928 5929 5930 /* Notify protocols, that we are about to destroy 5931 this device. They should clean all the things. 5932 */ 5933 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5934 5935 if (!dev->rtnl_link_ops || 5936 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 5937 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 5938 GFP_KERNEL); 5939 5940 /* 5941 * Flush the unicast and multicast chains 5942 */ 5943 dev_uc_flush(dev); 5944 dev_mc_flush(dev); 5945 5946 if (dev->netdev_ops->ndo_uninit) 5947 dev->netdev_ops->ndo_uninit(dev); 5948 5949 if (skb) 5950 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL); 5951 5952 /* Notifier chain MUST detach us all upper devices. */ 5953 WARN_ON(netdev_has_any_upper_dev(dev)); 5954 5955 /* Remove entries from kobject tree */ 5956 netdev_unregister_kobject(dev); 5957 #ifdef CONFIG_XPS 5958 /* Remove XPS queueing entries */ 5959 netif_reset_xps_queues_gt(dev, 0); 5960 #endif 5961 } 5962 5963 synchronize_net(); 5964 5965 list_for_each_entry(dev, head, unreg_list) 5966 dev_put(dev); 5967 } 5968 5969 static void rollback_registered(struct net_device *dev) 5970 { 5971 LIST_HEAD(single); 5972 5973 list_add(&dev->unreg_list, &single); 5974 rollback_registered_many(&single); 5975 list_del(&single); 5976 } 5977 5978 static netdev_features_t netdev_fix_features(struct net_device *dev, 5979 netdev_features_t features) 5980 { 5981 /* Fix illegal checksum combinations */ 5982 if ((features & NETIF_F_HW_CSUM) && 5983 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5984 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 5985 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 5986 } 5987 5988 /* TSO requires that SG is present as well. */ 5989 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 5990 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 5991 features &= ~NETIF_F_ALL_TSO; 5992 } 5993 5994 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 5995 !(features & NETIF_F_IP_CSUM)) { 5996 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 5997 features &= ~NETIF_F_TSO; 5998 features &= ~NETIF_F_TSO_ECN; 5999 } 6000 6001 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 6002 !(features & NETIF_F_IPV6_CSUM)) { 6003 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 6004 features &= ~NETIF_F_TSO6; 6005 } 6006 6007 /* TSO ECN requires that TSO is present as well. */ 6008 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 6009 features &= ~NETIF_F_TSO_ECN; 6010 6011 /* Software GSO depends on SG. */ 6012 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 6013 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 6014 features &= ~NETIF_F_GSO; 6015 } 6016 6017 /* UFO needs SG and checksumming */ 6018 if (features & NETIF_F_UFO) { 6019 /* maybe split UFO into V4 and V6? */ 6020 if (!((features & NETIF_F_GEN_CSUM) || 6021 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM)) 6022 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 6023 netdev_dbg(dev, 6024 "Dropping NETIF_F_UFO since no checksum offload features.\n"); 6025 features &= ~NETIF_F_UFO; 6026 } 6027 6028 if (!(features & NETIF_F_SG)) { 6029 netdev_dbg(dev, 6030 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n"); 6031 features &= ~NETIF_F_UFO; 6032 } 6033 } 6034 6035 #ifdef CONFIG_NET_RX_BUSY_POLL 6036 if (dev->netdev_ops->ndo_busy_poll) 6037 features |= NETIF_F_BUSY_POLL; 6038 else 6039 #endif 6040 features &= ~NETIF_F_BUSY_POLL; 6041 6042 return features; 6043 } 6044 6045 int __netdev_update_features(struct net_device *dev) 6046 { 6047 netdev_features_t features; 6048 int err = 0; 6049 6050 ASSERT_RTNL(); 6051 6052 features = netdev_get_wanted_features(dev); 6053 6054 if (dev->netdev_ops->ndo_fix_features) 6055 features = dev->netdev_ops->ndo_fix_features(dev, features); 6056 6057 /* driver might be less strict about feature dependencies */ 6058 features = netdev_fix_features(dev, features); 6059 6060 if (dev->features == features) 6061 return 0; 6062 6063 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 6064 &dev->features, &features); 6065 6066 if (dev->netdev_ops->ndo_set_features) 6067 err = dev->netdev_ops->ndo_set_features(dev, features); 6068 6069 if (unlikely(err < 0)) { 6070 netdev_err(dev, 6071 "set_features() failed (%d); wanted %pNF, left %pNF\n", 6072 err, &features, &dev->features); 6073 return -1; 6074 } 6075 6076 if (!err) 6077 dev->features = features; 6078 6079 return 1; 6080 } 6081 6082 /** 6083 * netdev_update_features - recalculate device features 6084 * @dev: the device to check 6085 * 6086 * Recalculate dev->features set and send notifications if it 6087 * has changed. Should be called after driver or hardware dependent 6088 * conditions might have changed that influence the features. 6089 */ 6090 void netdev_update_features(struct net_device *dev) 6091 { 6092 if (__netdev_update_features(dev)) 6093 netdev_features_change(dev); 6094 } 6095 EXPORT_SYMBOL(netdev_update_features); 6096 6097 /** 6098 * netdev_change_features - recalculate device features 6099 * @dev: the device to check 6100 * 6101 * Recalculate dev->features set and send notifications even 6102 * if they have not changed. Should be called instead of 6103 * netdev_update_features() if also dev->vlan_features might 6104 * have changed to allow the changes to be propagated to stacked 6105 * VLAN devices. 6106 */ 6107 void netdev_change_features(struct net_device *dev) 6108 { 6109 __netdev_update_features(dev); 6110 netdev_features_change(dev); 6111 } 6112 EXPORT_SYMBOL(netdev_change_features); 6113 6114 /** 6115 * netif_stacked_transfer_operstate - transfer operstate 6116 * @rootdev: the root or lower level device to transfer state from 6117 * @dev: the device to transfer operstate to 6118 * 6119 * Transfer operational state from root to device. This is normally 6120 * called when a stacking relationship exists between the root 6121 * device and the device(a leaf device). 6122 */ 6123 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 6124 struct net_device *dev) 6125 { 6126 if (rootdev->operstate == IF_OPER_DORMANT) 6127 netif_dormant_on(dev); 6128 else 6129 netif_dormant_off(dev); 6130 6131 if (netif_carrier_ok(rootdev)) { 6132 if (!netif_carrier_ok(dev)) 6133 netif_carrier_on(dev); 6134 } else { 6135 if (netif_carrier_ok(dev)) 6136 netif_carrier_off(dev); 6137 } 6138 } 6139 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 6140 6141 #ifdef CONFIG_SYSFS 6142 static int netif_alloc_rx_queues(struct net_device *dev) 6143 { 6144 unsigned int i, count = dev->num_rx_queues; 6145 struct netdev_rx_queue *rx; 6146 6147 BUG_ON(count < 1); 6148 6149 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL); 6150 if (!rx) 6151 return -ENOMEM; 6152 6153 dev->_rx = rx; 6154 6155 for (i = 0; i < count; i++) 6156 rx[i].dev = dev; 6157 return 0; 6158 } 6159 #endif 6160 6161 static void netdev_init_one_queue(struct net_device *dev, 6162 struct netdev_queue *queue, void *_unused) 6163 { 6164 /* Initialize queue lock */ 6165 spin_lock_init(&queue->_xmit_lock); 6166 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 6167 queue->xmit_lock_owner = -1; 6168 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 6169 queue->dev = dev; 6170 #ifdef CONFIG_BQL 6171 dql_init(&queue->dql, HZ); 6172 #endif 6173 } 6174 6175 static void netif_free_tx_queues(struct net_device *dev) 6176 { 6177 kvfree(dev->_tx); 6178 } 6179 6180 static int netif_alloc_netdev_queues(struct net_device *dev) 6181 { 6182 unsigned int count = dev->num_tx_queues; 6183 struct netdev_queue *tx; 6184 size_t sz = count * sizeof(*tx); 6185 6186 BUG_ON(count < 1 || count > 0xffff); 6187 6188 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 6189 if (!tx) { 6190 tx = vzalloc(sz); 6191 if (!tx) 6192 return -ENOMEM; 6193 } 6194 dev->_tx = tx; 6195 6196 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 6197 spin_lock_init(&dev->tx_global_lock); 6198 6199 return 0; 6200 } 6201 6202 /** 6203 * register_netdevice - register a network device 6204 * @dev: device to register 6205 * 6206 * Take a completed network device structure and add it to the kernel 6207 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 6208 * chain. 0 is returned on success. A negative errno code is returned 6209 * on a failure to set up the device, or if the name is a duplicate. 6210 * 6211 * Callers must hold the rtnl semaphore. You may want 6212 * register_netdev() instead of this. 6213 * 6214 * BUGS: 6215 * The locking appears insufficient to guarantee two parallel registers 6216 * will not get the same name. 6217 */ 6218 6219 int register_netdevice(struct net_device *dev) 6220 { 6221 int ret; 6222 struct net *net = dev_net(dev); 6223 6224 BUG_ON(dev_boot_phase); 6225 ASSERT_RTNL(); 6226 6227 might_sleep(); 6228 6229 /* When net_device's are persistent, this will be fatal. */ 6230 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 6231 BUG_ON(!net); 6232 6233 spin_lock_init(&dev->addr_list_lock); 6234 netdev_set_addr_lockdep_class(dev); 6235 6236 dev->iflink = -1; 6237 6238 ret = dev_get_valid_name(net, dev, dev->name); 6239 if (ret < 0) 6240 goto out; 6241 6242 /* Init, if this function is available */ 6243 if (dev->netdev_ops->ndo_init) { 6244 ret = dev->netdev_ops->ndo_init(dev); 6245 if (ret) { 6246 if (ret > 0) 6247 ret = -EIO; 6248 goto out; 6249 } 6250 } 6251 6252 if (((dev->hw_features | dev->features) & 6253 NETIF_F_HW_VLAN_CTAG_FILTER) && 6254 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 6255 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 6256 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 6257 ret = -EINVAL; 6258 goto err_uninit; 6259 } 6260 6261 ret = -EBUSY; 6262 if (!dev->ifindex) 6263 dev->ifindex = dev_new_index(net); 6264 else if (__dev_get_by_index(net, dev->ifindex)) 6265 goto err_uninit; 6266 6267 if (dev->iflink == -1) 6268 dev->iflink = dev->ifindex; 6269 6270 /* Transfer changeable features to wanted_features and enable 6271 * software offloads (GSO and GRO). 6272 */ 6273 dev->hw_features |= NETIF_F_SOFT_FEATURES; 6274 dev->features |= NETIF_F_SOFT_FEATURES; 6275 dev->wanted_features = dev->features & dev->hw_features; 6276 6277 if (!(dev->flags & IFF_LOOPBACK)) { 6278 dev->hw_features |= NETIF_F_NOCACHE_COPY; 6279 } 6280 6281 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 6282 */ 6283 dev->vlan_features |= NETIF_F_HIGHDMA; 6284 6285 /* Make NETIF_F_SG inheritable to tunnel devices. 6286 */ 6287 dev->hw_enc_features |= NETIF_F_SG; 6288 6289 /* Make NETIF_F_SG inheritable to MPLS. 6290 */ 6291 dev->mpls_features |= NETIF_F_SG; 6292 6293 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 6294 ret = notifier_to_errno(ret); 6295 if (ret) 6296 goto err_uninit; 6297 6298 ret = netdev_register_kobject(dev); 6299 if (ret) 6300 goto err_uninit; 6301 dev->reg_state = NETREG_REGISTERED; 6302 6303 __netdev_update_features(dev); 6304 6305 /* 6306 * Default initial state at registry is that the 6307 * device is present. 6308 */ 6309 6310 set_bit(__LINK_STATE_PRESENT, &dev->state); 6311 6312 linkwatch_init_dev(dev); 6313 6314 dev_init_scheduler(dev); 6315 dev_hold(dev); 6316 list_netdevice(dev); 6317 add_device_randomness(dev->dev_addr, dev->addr_len); 6318 6319 /* If the device has permanent device address, driver should 6320 * set dev_addr and also addr_assign_type should be set to 6321 * NET_ADDR_PERM (default value). 6322 */ 6323 if (dev->addr_assign_type == NET_ADDR_PERM) 6324 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 6325 6326 /* Notify protocols, that a new device appeared. */ 6327 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 6328 ret = notifier_to_errno(ret); 6329 if (ret) { 6330 rollback_registered(dev); 6331 dev->reg_state = NETREG_UNREGISTERED; 6332 } 6333 /* 6334 * Prevent userspace races by waiting until the network 6335 * device is fully setup before sending notifications. 6336 */ 6337 if (!dev->rtnl_link_ops || 6338 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 6339 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 6340 6341 out: 6342 return ret; 6343 6344 err_uninit: 6345 if (dev->netdev_ops->ndo_uninit) 6346 dev->netdev_ops->ndo_uninit(dev); 6347 goto out; 6348 } 6349 EXPORT_SYMBOL(register_netdevice); 6350 6351 /** 6352 * init_dummy_netdev - init a dummy network device for NAPI 6353 * @dev: device to init 6354 * 6355 * This takes a network device structure and initialize the minimum 6356 * amount of fields so it can be used to schedule NAPI polls without 6357 * registering a full blown interface. This is to be used by drivers 6358 * that need to tie several hardware interfaces to a single NAPI 6359 * poll scheduler due to HW limitations. 6360 */ 6361 int init_dummy_netdev(struct net_device *dev) 6362 { 6363 /* Clear everything. Note we don't initialize spinlocks 6364 * are they aren't supposed to be taken by any of the 6365 * NAPI code and this dummy netdev is supposed to be 6366 * only ever used for NAPI polls 6367 */ 6368 memset(dev, 0, sizeof(struct net_device)); 6369 6370 /* make sure we BUG if trying to hit standard 6371 * register/unregister code path 6372 */ 6373 dev->reg_state = NETREG_DUMMY; 6374 6375 /* NAPI wants this */ 6376 INIT_LIST_HEAD(&dev->napi_list); 6377 6378 /* a dummy interface is started by default */ 6379 set_bit(__LINK_STATE_PRESENT, &dev->state); 6380 set_bit(__LINK_STATE_START, &dev->state); 6381 6382 /* Note : We dont allocate pcpu_refcnt for dummy devices, 6383 * because users of this 'device' dont need to change 6384 * its refcount. 6385 */ 6386 6387 return 0; 6388 } 6389 EXPORT_SYMBOL_GPL(init_dummy_netdev); 6390 6391 6392 /** 6393 * register_netdev - register a network device 6394 * @dev: device to register 6395 * 6396 * Take a completed network device structure and add it to the kernel 6397 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 6398 * chain. 0 is returned on success. A negative errno code is returned 6399 * on a failure to set up the device, or if the name is a duplicate. 6400 * 6401 * This is a wrapper around register_netdevice that takes the rtnl semaphore 6402 * and expands the device name if you passed a format string to 6403 * alloc_netdev. 6404 */ 6405 int register_netdev(struct net_device *dev) 6406 { 6407 int err; 6408 6409 rtnl_lock(); 6410 err = register_netdevice(dev); 6411 rtnl_unlock(); 6412 return err; 6413 } 6414 EXPORT_SYMBOL(register_netdev); 6415 6416 int netdev_refcnt_read(const struct net_device *dev) 6417 { 6418 int i, refcnt = 0; 6419 6420 for_each_possible_cpu(i) 6421 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 6422 return refcnt; 6423 } 6424 EXPORT_SYMBOL(netdev_refcnt_read); 6425 6426 /** 6427 * netdev_wait_allrefs - wait until all references are gone. 6428 * @dev: target net_device 6429 * 6430 * This is called when unregistering network devices. 6431 * 6432 * Any protocol or device that holds a reference should register 6433 * for netdevice notification, and cleanup and put back the 6434 * reference if they receive an UNREGISTER event. 6435 * We can get stuck here if buggy protocols don't correctly 6436 * call dev_put. 6437 */ 6438 static void netdev_wait_allrefs(struct net_device *dev) 6439 { 6440 unsigned long rebroadcast_time, warning_time; 6441 int refcnt; 6442 6443 linkwatch_forget_dev(dev); 6444 6445 rebroadcast_time = warning_time = jiffies; 6446 refcnt = netdev_refcnt_read(dev); 6447 6448 while (refcnt != 0) { 6449 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 6450 rtnl_lock(); 6451 6452 /* Rebroadcast unregister notification */ 6453 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 6454 6455 __rtnl_unlock(); 6456 rcu_barrier(); 6457 rtnl_lock(); 6458 6459 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 6460 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 6461 &dev->state)) { 6462 /* We must not have linkwatch events 6463 * pending on unregister. If this 6464 * happens, we simply run the queue 6465 * unscheduled, resulting in a noop 6466 * for this device. 6467 */ 6468 linkwatch_run_queue(); 6469 } 6470 6471 __rtnl_unlock(); 6472 6473 rebroadcast_time = jiffies; 6474 } 6475 6476 msleep(250); 6477 6478 refcnt = netdev_refcnt_read(dev); 6479 6480 if (time_after(jiffies, warning_time + 10 * HZ)) { 6481 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 6482 dev->name, refcnt); 6483 warning_time = jiffies; 6484 } 6485 } 6486 } 6487 6488 /* The sequence is: 6489 * 6490 * rtnl_lock(); 6491 * ... 6492 * register_netdevice(x1); 6493 * register_netdevice(x2); 6494 * ... 6495 * unregister_netdevice(y1); 6496 * unregister_netdevice(y2); 6497 * ... 6498 * rtnl_unlock(); 6499 * free_netdev(y1); 6500 * free_netdev(y2); 6501 * 6502 * We are invoked by rtnl_unlock(). 6503 * This allows us to deal with problems: 6504 * 1) We can delete sysfs objects which invoke hotplug 6505 * without deadlocking with linkwatch via keventd. 6506 * 2) Since we run with the RTNL semaphore not held, we can sleep 6507 * safely in order to wait for the netdev refcnt to drop to zero. 6508 * 6509 * We must not return until all unregister events added during 6510 * the interval the lock was held have been completed. 6511 */ 6512 void netdev_run_todo(void) 6513 { 6514 struct list_head list; 6515 6516 /* Snapshot list, allow later requests */ 6517 list_replace_init(&net_todo_list, &list); 6518 6519 __rtnl_unlock(); 6520 6521 6522 /* Wait for rcu callbacks to finish before next phase */ 6523 if (!list_empty(&list)) 6524 rcu_barrier(); 6525 6526 while (!list_empty(&list)) { 6527 struct net_device *dev 6528 = list_first_entry(&list, struct net_device, todo_list); 6529 list_del(&dev->todo_list); 6530 6531 rtnl_lock(); 6532 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 6533 __rtnl_unlock(); 6534 6535 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 6536 pr_err("network todo '%s' but state %d\n", 6537 dev->name, dev->reg_state); 6538 dump_stack(); 6539 continue; 6540 } 6541 6542 dev->reg_state = NETREG_UNREGISTERED; 6543 6544 on_each_cpu(flush_backlog, dev, 1); 6545 6546 netdev_wait_allrefs(dev); 6547 6548 /* paranoia */ 6549 BUG_ON(netdev_refcnt_read(dev)); 6550 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 6551 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 6552 WARN_ON(dev->dn_ptr); 6553 6554 if (dev->destructor) 6555 dev->destructor(dev); 6556 6557 /* Report a network device has been unregistered */ 6558 rtnl_lock(); 6559 dev_net(dev)->dev_unreg_count--; 6560 __rtnl_unlock(); 6561 wake_up(&netdev_unregistering_wq); 6562 6563 /* Free network device */ 6564 kobject_put(&dev->dev.kobj); 6565 } 6566 } 6567 6568 /* Convert net_device_stats to rtnl_link_stats64. They have the same 6569 * fields in the same order, with only the type differing. 6570 */ 6571 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 6572 const struct net_device_stats *netdev_stats) 6573 { 6574 #if BITS_PER_LONG == 64 6575 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats)); 6576 memcpy(stats64, netdev_stats, sizeof(*stats64)); 6577 #else 6578 size_t i, n = sizeof(*stats64) / sizeof(u64); 6579 const unsigned long *src = (const unsigned long *)netdev_stats; 6580 u64 *dst = (u64 *)stats64; 6581 6582 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) != 6583 sizeof(*stats64) / sizeof(u64)); 6584 for (i = 0; i < n; i++) 6585 dst[i] = src[i]; 6586 #endif 6587 } 6588 EXPORT_SYMBOL(netdev_stats_to_stats64); 6589 6590 /** 6591 * dev_get_stats - get network device statistics 6592 * @dev: device to get statistics from 6593 * @storage: place to store stats 6594 * 6595 * Get network statistics from device. Return @storage. 6596 * The device driver may provide its own method by setting 6597 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 6598 * otherwise the internal statistics structure is used. 6599 */ 6600 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 6601 struct rtnl_link_stats64 *storage) 6602 { 6603 const struct net_device_ops *ops = dev->netdev_ops; 6604 6605 if (ops->ndo_get_stats64) { 6606 memset(storage, 0, sizeof(*storage)); 6607 ops->ndo_get_stats64(dev, storage); 6608 } else if (ops->ndo_get_stats) { 6609 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 6610 } else { 6611 netdev_stats_to_stats64(storage, &dev->stats); 6612 } 6613 storage->rx_dropped += atomic_long_read(&dev->rx_dropped); 6614 storage->tx_dropped += atomic_long_read(&dev->tx_dropped); 6615 return storage; 6616 } 6617 EXPORT_SYMBOL(dev_get_stats); 6618 6619 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 6620 { 6621 struct netdev_queue *queue = dev_ingress_queue(dev); 6622 6623 #ifdef CONFIG_NET_CLS_ACT 6624 if (queue) 6625 return queue; 6626 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 6627 if (!queue) 6628 return NULL; 6629 netdev_init_one_queue(dev, queue, NULL); 6630 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 6631 queue->qdisc_sleeping = &noop_qdisc; 6632 rcu_assign_pointer(dev->ingress_queue, queue); 6633 #endif 6634 return queue; 6635 } 6636 6637 static const struct ethtool_ops default_ethtool_ops; 6638 6639 void netdev_set_default_ethtool_ops(struct net_device *dev, 6640 const struct ethtool_ops *ops) 6641 { 6642 if (dev->ethtool_ops == &default_ethtool_ops) 6643 dev->ethtool_ops = ops; 6644 } 6645 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 6646 6647 void netdev_freemem(struct net_device *dev) 6648 { 6649 char *addr = (char *)dev - dev->padded; 6650 6651 kvfree(addr); 6652 } 6653 6654 /** 6655 * alloc_netdev_mqs - allocate network device 6656 * @sizeof_priv: size of private data to allocate space for 6657 * @name: device name format string 6658 * @name_assign_type: origin of device name 6659 * @setup: callback to initialize device 6660 * @txqs: the number of TX subqueues to allocate 6661 * @rxqs: the number of RX subqueues to allocate 6662 * 6663 * Allocates a struct net_device with private data area for driver use 6664 * and performs basic initialization. Also allocates subqueue structs 6665 * for each queue on the device. 6666 */ 6667 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 6668 unsigned char name_assign_type, 6669 void (*setup)(struct net_device *), 6670 unsigned int txqs, unsigned int rxqs) 6671 { 6672 struct net_device *dev; 6673 size_t alloc_size; 6674 struct net_device *p; 6675 6676 BUG_ON(strlen(name) >= sizeof(dev->name)); 6677 6678 if (txqs < 1) { 6679 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 6680 return NULL; 6681 } 6682 6683 #ifdef CONFIG_SYSFS 6684 if (rxqs < 1) { 6685 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 6686 return NULL; 6687 } 6688 #endif 6689 6690 alloc_size = sizeof(struct net_device); 6691 if (sizeof_priv) { 6692 /* ensure 32-byte alignment of private area */ 6693 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 6694 alloc_size += sizeof_priv; 6695 } 6696 /* ensure 32-byte alignment of whole construct */ 6697 alloc_size += NETDEV_ALIGN - 1; 6698 6699 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 6700 if (!p) 6701 p = vzalloc(alloc_size); 6702 if (!p) 6703 return NULL; 6704 6705 dev = PTR_ALIGN(p, NETDEV_ALIGN); 6706 dev->padded = (char *)dev - (char *)p; 6707 6708 dev->pcpu_refcnt = alloc_percpu(int); 6709 if (!dev->pcpu_refcnt) 6710 goto free_dev; 6711 6712 if (dev_addr_init(dev)) 6713 goto free_pcpu; 6714 6715 dev_mc_init(dev); 6716 dev_uc_init(dev); 6717 6718 dev_net_set(dev, &init_net); 6719 6720 dev->gso_max_size = GSO_MAX_SIZE; 6721 dev->gso_max_segs = GSO_MAX_SEGS; 6722 dev->gso_min_segs = 0; 6723 6724 INIT_LIST_HEAD(&dev->napi_list); 6725 INIT_LIST_HEAD(&dev->unreg_list); 6726 INIT_LIST_HEAD(&dev->close_list); 6727 INIT_LIST_HEAD(&dev->link_watch_list); 6728 INIT_LIST_HEAD(&dev->adj_list.upper); 6729 INIT_LIST_HEAD(&dev->adj_list.lower); 6730 INIT_LIST_HEAD(&dev->all_adj_list.upper); 6731 INIT_LIST_HEAD(&dev->all_adj_list.lower); 6732 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 6733 setup(dev); 6734 6735 dev->num_tx_queues = txqs; 6736 dev->real_num_tx_queues = txqs; 6737 if (netif_alloc_netdev_queues(dev)) 6738 goto free_all; 6739 6740 #ifdef CONFIG_SYSFS 6741 dev->num_rx_queues = rxqs; 6742 dev->real_num_rx_queues = rxqs; 6743 if (netif_alloc_rx_queues(dev)) 6744 goto free_all; 6745 #endif 6746 6747 strcpy(dev->name, name); 6748 dev->name_assign_type = name_assign_type; 6749 dev->group = INIT_NETDEV_GROUP; 6750 if (!dev->ethtool_ops) 6751 dev->ethtool_ops = &default_ethtool_ops; 6752 return dev; 6753 6754 free_all: 6755 free_netdev(dev); 6756 return NULL; 6757 6758 free_pcpu: 6759 free_percpu(dev->pcpu_refcnt); 6760 free_dev: 6761 netdev_freemem(dev); 6762 return NULL; 6763 } 6764 EXPORT_SYMBOL(alloc_netdev_mqs); 6765 6766 /** 6767 * free_netdev - free network device 6768 * @dev: device 6769 * 6770 * This function does the last stage of destroying an allocated device 6771 * interface. The reference to the device object is released. 6772 * If this is the last reference then it will be freed. 6773 */ 6774 void free_netdev(struct net_device *dev) 6775 { 6776 struct napi_struct *p, *n; 6777 6778 release_net(dev_net(dev)); 6779 6780 netif_free_tx_queues(dev); 6781 #ifdef CONFIG_SYSFS 6782 kfree(dev->_rx); 6783 #endif 6784 6785 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 6786 6787 /* Flush device addresses */ 6788 dev_addr_flush(dev); 6789 6790 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 6791 netif_napi_del(p); 6792 6793 free_percpu(dev->pcpu_refcnt); 6794 dev->pcpu_refcnt = NULL; 6795 6796 /* Compatibility with error handling in drivers */ 6797 if (dev->reg_state == NETREG_UNINITIALIZED) { 6798 netdev_freemem(dev); 6799 return; 6800 } 6801 6802 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 6803 dev->reg_state = NETREG_RELEASED; 6804 6805 /* will free via device release */ 6806 put_device(&dev->dev); 6807 } 6808 EXPORT_SYMBOL(free_netdev); 6809 6810 /** 6811 * synchronize_net - Synchronize with packet receive processing 6812 * 6813 * Wait for packets currently being received to be done. 6814 * Does not block later packets from starting. 6815 */ 6816 void synchronize_net(void) 6817 { 6818 might_sleep(); 6819 if (rtnl_is_locked()) 6820 synchronize_rcu_expedited(); 6821 else 6822 synchronize_rcu(); 6823 } 6824 EXPORT_SYMBOL(synchronize_net); 6825 6826 /** 6827 * unregister_netdevice_queue - remove device from the kernel 6828 * @dev: device 6829 * @head: list 6830 * 6831 * This function shuts down a device interface and removes it 6832 * from the kernel tables. 6833 * If head not NULL, device is queued to be unregistered later. 6834 * 6835 * Callers must hold the rtnl semaphore. You may want 6836 * unregister_netdev() instead of this. 6837 */ 6838 6839 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 6840 { 6841 ASSERT_RTNL(); 6842 6843 if (head) { 6844 list_move_tail(&dev->unreg_list, head); 6845 } else { 6846 rollback_registered(dev); 6847 /* Finish processing unregister after unlock */ 6848 net_set_todo(dev); 6849 } 6850 } 6851 EXPORT_SYMBOL(unregister_netdevice_queue); 6852 6853 /** 6854 * unregister_netdevice_many - unregister many devices 6855 * @head: list of devices 6856 * 6857 * Note: As most callers use a stack allocated list_head, 6858 * we force a list_del() to make sure stack wont be corrupted later. 6859 */ 6860 void unregister_netdevice_many(struct list_head *head) 6861 { 6862 struct net_device *dev; 6863 6864 if (!list_empty(head)) { 6865 rollback_registered_many(head); 6866 list_for_each_entry(dev, head, unreg_list) 6867 net_set_todo(dev); 6868 list_del(head); 6869 } 6870 } 6871 EXPORT_SYMBOL(unregister_netdevice_many); 6872 6873 /** 6874 * unregister_netdev - remove device from the kernel 6875 * @dev: device 6876 * 6877 * This function shuts down a device interface and removes it 6878 * from the kernel tables. 6879 * 6880 * This is just a wrapper for unregister_netdevice that takes 6881 * the rtnl semaphore. In general you want to use this and not 6882 * unregister_netdevice. 6883 */ 6884 void unregister_netdev(struct net_device *dev) 6885 { 6886 rtnl_lock(); 6887 unregister_netdevice(dev); 6888 rtnl_unlock(); 6889 } 6890 EXPORT_SYMBOL(unregister_netdev); 6891 6892 /** 6893 * dev_change_net_namespace - move device to different nethost namespace 6894 * @dev: device 6895 * @net: network namespace 6896 * @pat: If not NULL name pattern to try if the current device name 6897 * is already taken in the destination network namespace. 6898 * 6899 * This function shuts down a device interface and moves it 6900 * to a new network namespace. On success 0 is returned, on 6901 * a failure a netagive errno code is returned. 6902 * 6903 * Callers must hold the rtnl semaphore. 6904 */ 6905 6906 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 6907 { 6908 int err; 6909 6910 ASSERT_RTNL(); 6911 6912 /* Don't allow namespace local devices to be moved. */ 6913 err = -EINVAL; 6914 if (dev->features & NETIF_F_NETNS_LOCAL) 6915 goto out; 6916 6917 /* Ensure the device has been registrered */ 6918 if (dev->reg_state != NETREG_REGISTERED) 6919 goto out; 6920 6921 /* Get out if there is nothing todo */ 6922 err = 0; 6923 if (net_eq(dev_net(dev), net)) 6924 goto out; 6925 6926 /* Pick the destination device name, and ensure 6927 * we can use it in the destination network namespace. 6928 */ 6929 err = -EEXIST; 6930 if (__dev_get_by_name(net, dev->name)) { 6931 /* We get here if we can't use the current device name */ 6932 if (!pat) 6933 goto out; 6934 if (dev_get_valid_name(net, dev, pat) < 0) 6935 goto out; 6936 } 6937 6938 /* 6939 * And now a mini version of register_netdevice unregister_netdevice. 6940 */ 6941 6942 /* If device is running close it first. */ 6943 dev_close(dev); 6944 6945 /* And unlink it from device chain */ 6946 err = -ENODEV; 6947 unlist_netdevice(dev); 6948 6949 synchronize_net(); 6950 6951 /* Shutdown queueing discipline. */ 6952 dev_shutdown(dev); 6953 6954 /* Notify protocols, that we are about to destroy 6955 this device. They should clean all the things. 6956 6957 Note that dev->reg_state stays at NETREG_REGISTERED. 6958 This is wanted because this way 8021q and macvlan know 6959 the device is just moving and can keep their slaves up. 6960 */ 6961 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 6962 rcu_barrier(); 6963 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 6964 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL); 6965 6966 /* 6967 * Flush the unicast and multicast chains 6968 */ 6969 dev_uc_flush(dev); 6970 dev_mc_flush(dev); 6971 6972 /* Send a netdev-removed uevent to the old namespace */ 6973 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 6974 netdev_adjacent_del_links(dev); 6975 6976 /* Actually switch the network namespace */ 6977 dev_net_set(dev, net); 6978 6979 /* If there is an ifindex conflict assign a new one */ 6980 if (__dev_get_by_index(net, dev->ifindex)) { 6981 int iflink = (dev->iflink == dev->ifindex); 6982 dev->ifindex = dev_new_index(net); 6983 if (iflink) 6984 dev->iflink = dev->ifindex; 6985 } 6986 6987 /* Send a netdev-add uevent to the new namespace */ 6988 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 6989 netdev_adjacent_add_links(dev); 6990 6991 /* Fixup kobjects */ 6992 err = device_rename(&dev->dev, dev->name); 6993 WARN_ON(err); 6994 6995 /* Add the device back in the hashes */ 6996 list_netdevice(dev); 6997 6998 /* Notify protocols, that a new device appeared. */ 6999 call_netdevice_notifiers(NETDEV_REGISTER, dev); 7000 7001 /* 7002 * Prevent userspace races by waiting until the network 7003 * device is fully setup before sending notifications. 7004 */ 7005 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 7006 7007 synchronize_net(); 7008 err = 0; 7009 out: 7010 return err; 7011 } 7012 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 7013 7014 static int dev_cpu_callback(struct notifier_block *nfb, 7015 unsigned long action, 7016 void *ocpu) 7017 { 7018 struct sk_buff **list_skb; 7019 struct sk_buff *skb; 7020 unsigned int cpu, oldcpu = (unsigned long)ocpu; 7021 struct softnet_data *sd, *oldsd; 7022 7023 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 7024 return NOTIFY_OK; 7025 7026 local_irq_disable(); 7027 cpu = smp_processor_id(); 7028 sd = &per_cpu(softnet_data, cpu); 7029 oldsd = &per_cpu(softnet_data, oldcpu); 7030 7031 /* Find end of our completion_queue. */ 7032 list_skb = &sd->completion_queue; 7033 while (*list_skb) 7034 list_skb = &(*list_skb)->next; 7035 /* Append completion queue from offline CPU. */ 7036 *list_skb = oldsd->completion_queue; 7037 oldsd->completion_queue = NULL; 7038 7039 /* Append output queue from offline CPU. */ 7040 if (oldsd->output_queue) { 7041 *sd->output_queue_tailp = oldsd->output_queue; 7042 sd->output_queue_tailp = oldsd->output_queue_tailp; 7043 oldsd->output_queue = NULL; 7044 oldsd->output_queue_tailp = &oldsd->output_queue; 7045 } 7046 /* Append NAPI poll list from offline CPU, with one exception : 7047 * process_backlog() must be called by cpu owning percpu backlog. 7048 * We properly handle process_queue & input_pkt_queue later. 7049 */ 7050 while (!list_empty(&oldsd->poll_list)) { 7051 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 7052 struct napi_struct, 7053 poll_list); 7054 7055 list_del_init(&napi->poll_list); 7056 if (napi->poll == process_backlog) 7057 napi->state = 0; 7058 else 7059 ____napi_schedule(sd, napi); 7060 } 7061 7062 raise_softirq_irqoff(NET_TX_SOFTIRQ); 7063 local_irq_enable(); 7064 7065 /* Process offline CPU's input_pkt_queue */ 7066 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 7067 netif_rx_internal(skb); 7068 input_queue_head_incr(oldsd); 7069 } 7070 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 7071 netif_rx_internal(skb); 7072 input_queue_head_incr(oldsd); 7073 } 7074 7075 return NOTIFY_OK; 7076 } 7077 7078 7079 /** 7080 * netdev_increment_features - increment feature set by one 7081 * @all: current feature set 7082 * @one: new feature set 7083 * @mask: mask feature set 7084 * 7085 * Computes a new feature set after adding a device with feature set 7086 * @one to the master device with current feature set @all. Will not 7087 * enable anything that is off in @mask. Returns the new feature set. 7088 */ 7089 netdev_features_t netdev_increment_features(netdev_features_t all, 7090 netdev_features_t one, netdev_features_t mask) 7091 { 7092 if (mask & NETIF_F_GEN_CSUM) 7093 mask |= NETIF_F_ALL_CSUM; 7094 mask |= NETIF_F_VLAN_CHALLENGED; 7095 7096 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask; 7097 all &= one | ~NETIF_F_ALL_FOR_ALL; 7098 7099 /* If one device supports hw checksumming, set for all. */ 7100 if (all & NETIF_F_GEN_CSUM) 7101 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM); 7102 7103 return all; 7104 } 7105 EXPORT_SYMBOL(netdev_increment_features); 7106 7107 static struct hlist_head * __net_init netdev_create_hash(void) 7108 { 7109 int i; 7110 struct hlist_head *hash; 7111 7112 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 7113 if (hash != NULL) 7114 for (i = 0; i < NETDEV_HASHENTRIES; i++) 7115 INIT_HLIST_HEAD(&hash[i]); 7116 7117 return hash; 7118 } 7119 7120 /* Initialize per network namespace state */ 7121 static int __net_init netdev_init(struct net *net) 7122 { 7123 if (net != &init_net) 7124 INIT_LIST_HEAD(&net->dev_base_head); 7125 7126 net->dev_name_head = netdev_create_hash(); 7127 if (net->dev_name_head == NULL) 7128 goto err_name; 7129 7130 net->dev_index_head = netdev_create_hash(); 7131 if (net->dev_index_head == NULL) 7132 goto err_idx; 7133 7134 return 0; 7135 7136 err_idx: 7137 kfree(net->dev_name_head); 7138 err_name: 7139 return -ENOMEM; 7140 } 7141 7142 /** 7143 * netdev_drivername - network driver for the device 7144 * @dev: network device 7145 * 7146 * Determine network driver for device. 7147 */ 7148 const char *netdev_drivername(const struct net_device *dev) 7149 { 7150 const struct device_driver *driver; 7151 const struct device *parent; 7152 const char *empty = ""; 7153 7154 parent = dev->dev.parent; 7155 if (!parent) 7156 return empty; 7157 7158 driver = parent->driver; 7159 if (driver && driver->name) 7160 return driver->name; 7161 return empty; 7162 } 7163 7164 static void __netdev_printk(const char *level, const struct net_device *dev, 7165 struct va_format *vaf) 7166 { 7167 if (dev && dev->dev.parent) { 7168 dev_printk_emit(level[1] - '0', 7169 dev->dev.parent, 7170 "%s %s %s%s: %pV", 7171 dev_driver_string(dev->dev.parent), 7172 dev_name(dev->dev.parent), 7173 netdev_name(dev), netdev_reg_state(dev), 7174 vaf); 7175 } else if (dev) { 7176 printk("%s%s%s: %pV", 7177 level, netdev_name(dev), netdev_reg_state(dev), vaf); 7178 } else { 7179 printk("%s(NULL net_device): %pV", level, vaf); 7180 } 7181 } 7182 7183 void netdev_printk(const char *level, const struct net_device *dev, 7184 const char *format, ...) 7185 { 7186 struct va_format vaf; 7187 va_list args; 7188 7189 va_start(args, format); 7190 7191 vaf.fmt = format; 7192 vaf.va = &args; 7193 7194 __netdev_printk(level, dev, &vaf); 7195 7196 va_end(args); 7197 } 7198 EXPORT_SYMBOL(netdev_printk); 7199 7200 #define define_netdev_printk_level(func, level) \ 7201 void func(const struct net_device *dev, const char *fmt, ...) \ 7202 { \ 7203 struct va_format vaf; \ 7204 va_list args; \ 7205 \ 7206 va_start(args, fmt); \ 7207 \ 7208 vaf.fmt = fmt; \ 7209 vaf.va = &args; \ 7210 \ 7211 __netdev_printk(level, dev, &vaf); \ 7212 \ 7213 va_end(args); \ 7214 } \ 7215 EXPORT_SYMBOL(func); 7216 7217 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 7218 define_netdev_printk_level(netdev_alert, KERN_ALERT); 7219 define_netdev_printk_level(netdev_crit, KERN_CRIT); 7220 define_netdev_printk_level(netdev_err, KERN_ERR); 7221 define_netdev_printk_level(netdev_warn, KERN_WARNING); 7222 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 7223 define_netdev_printk_level(netdev_info, KERN_INFO); 7224 7225 static void __net_exit netdev_exit(struct net *net) 7226 { 7227 kfree(net->dev_name_head); 7228 kfree(net->dev_index_head); 7229 } 7230 7231 static struct pernet_operations __net_initdata netdev_net_ops = { 7232 .init = netdev_init, 7233 .exit = netdev_exit, 7234 }; 7235 7236 static void __net_exit default_device_exit(struct net *net) 7237 { 7238 struct net_device *dev, *aux; 7239 /* 7240 * Push all migratable network devices back to the 7241 * initial network namespace 7242 */ 7243 rtnl_lock(); 7244 for_each_netdev_safe(net, dev, aux) { 7245 int err; 7246 char fb_name[IFNAMSIZ]; 7247 7248 /* Ignore unmoveable devices (i.e. loopback) */ 7249 if (dev->features & NETIF_F_NETNS_LOCAL) 7250 continue; 7251 7252 /* Leave virtual devices for the generic cleanup */ 7253 if (dev->rtnl_link_ops) 7254 continue; 7255 7256 /* Push remaining network devices to init_net */ 7257 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 7258 err = dev_change_net_namespace(dev, &init_net, fb_name); 7259 if (err) { 7260 pr_emerg("%s: failed to move %s to init_net: %d\n", 7261 __func__, dev->name, err); 7262 BUG(); 7263 } 7264 } 7265 rtnl_unlock(); 7266 } 7267 7268 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list) 7269 { 7270 /* Return with the rtnl_lock held when there are no network 7271 * devices unregistering in any network namespace in net_list. 7272 */ 7273 struct net *net; 7274 bool unregistering; 7275 DEFINE_WAIT_FUNC(wait, woken_wake_function); 7276 7277 add_wait_queue(&netdev_unregistering_wq, &wait); 7278 for (;;) { 7279 unregistering = false; 7280 rtnl_lock(); 7281 list_for_each_entry(net, net_list, exit_list) { 7282 if (net->dev_unreg_count > 0) { 7283 unregistering = true; 7284 break; 7285 } 7286 } 7287 if (!unregistering) 7288 break; 7289 __rtnl_unlock(); 7290 7291 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 7292 } 7293 remove_wait_queue(&netdev_unregistering_wq, &wait); 7294 } 7295 7296 static void __net_exit default_device_exit_batch(struct list_head *net_list) 7297 { 7298 /* At exit all network devices most be removed from a network 7299 * namespace. Do this in the reverse order of registration. 7300 * Do this across as many network namespaces as possible to 7301 * improve batching efficiency. 7302 */ 7303 struct net_device *dev; 7304 struct net *net; 7305 LIST_HEAD(dev_kill_list); 7306 7307 /* To prevent network device cleanup code from dereferencing 7308 * loopback devices or network devices that have been freed 7309 * wait here for all pending unregistrations to complete, 7310 * before unregistring the loopback device and allowing the 7311 * network namespace be freed. 7312 * 7313 * The netdev todo list containing all network devices 7314 * unregistrations that happen in default_device_exit_batch 7315 * will run in the rtnl_unlock() at the end of 7316 * default_device_exit_batch. 7317 */ 7318 rtnl_lock_unregistering(net_list); 7319 list_for_each_entry(net, net_list, exit_list) { 7320 for_each_netdev_reverse(net, dev) { 7321 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 7322 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 7323 else 7324 unregister_netdevice_queue(dev, &dev_kill_list); 7325 } 7326 } 7327 unregister_netdevice_many(&dev_kill_list); 7328 rtnl_unlock(); 7329 } 7330 7331 static struct pernet_operations __net_initdata default_device_ops = { 7332 .exit = default_device_exit, 7333 .exit_batch = default_device_exit_batch, 7334 }; 7335 7336 /* 7337 * Initialize the DEV module. At boot time this walks the device list and 7338 * unhooks any devices that fail to initialise (normally hardware not 7339 * present) and leaves us with a valid list of present and active devices. 7340 * 7341 */ 7342 7343 /* 7344 * This is called single threaded during boot, so no need 7345 * to take the rtnl semaphore. 7346 */ 7347 static int __init net_dev_init(void) 7348 { 7349 int i, rc = -ENOMEM; 7350 7351 BUG_ON(!dev_boot_phase); 7352 7353 if (dev_proc_init()) 7354 goto out; 7355 7356 if (netdev_kobject_init()) 7357 goto out; 7358 7359 INIT_LIST_HEAD(&ptype_all); 7360 for (i = 0; i < PTYPE_HASH_SIZE; i++) 7361 INIT_LIST_HEAD(&ptype_base[i]); 7362 7363 INIT_LIST_HEAD(&offload_base); 7364 7365 if (register_pernet_subsys(&netdev_net_ops)) 7366 goto out; 7367 7368 /* 7369 * Initialise the packet receive queues. 7370 */ 7371 7372 for_each_possible_cpu(i) { 7373 struct softnet_data *sd = &per_cpu(softnet_data, i); 7374 7375 skb_queue_head_init(&sd->input_pkt_queue); 7376 skb_queue_head_init(&sd->process_queue); 7377 INIT_LIST_HEAD(&sd->poll_list); 7378 sd->output_queue_tailp = &sd->output_queue; 7379 #ifdef CONFIG_RPS 7380 sd->csd.func = rps_trigger_softirq; 7381 sd->csd.info = sd; 7382 sd->cpu = i; 7383 #endif 7384 7385 sd->backlog.poll = process_backlog; 7386 sd->backlog.weight = weight_p; 7387 } 7388 7389 dev_boot_phase = 0; 7390 7391 /* The loopback device is special if any other network devices 7392 * is present in a network namespace the loopback device must 7393 * be present. Since we now dynamically allocate and free the 7394 * loopback device ensure this invariant is maintained by 7395 * keeping the loopback device as the first device on the 7396 * list of network devices. Ensuring the loopback devices 7397 * is the first device that appears and the last network device 7398 * that disappears. 7399 */ 7400 if (register_pernet_device(&loopback_net_ops)) 7401 goto out; 7402 7403 if (register_pernet_device(&default_device_ops)) 7404 goto out; 7405 7406 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 7407 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 7408 7409 hotcpu_notifier(dev_cpu_callback, 0); 7410 dst_init(); 7411 rc = 0; 7412 out: 7413 return rc; 7414 } 7415 7416 subsys_initcall(net_dev_init); 7417