xref: /linux/net/core/dev.c (revision 48c36c8f9a3e881953bb72deb55623a53795a684)
1 /*
2  * 	NET3	Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  * 		Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *              			to 2 if register_netdev gets called
25  *              			before net_dev_init & also removed a
26  *              			few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *		Alan Cox	: 	Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *		Alan Cox	: 	Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *              			indefinitely on dev->refcnt
71  * 		J Hadi Salim	:	- Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/hash.h>
83 #include <linux/slab.h>
84 #include <linux/sched.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/stat.h>
104 #include <net/dst.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/kmod.h>
111 #include <linux/module.h>
112 #include <linux/netpoll.h>
113 #include <linux/rcupdate.h>
114 #include <linux/delay.h>
115 #include <net/wext.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <linux/ipv6.h>
127 #include <linux/in.h>
128 #include <linux/jhash.h>
129 #include <linux/random.h>
130 #include <trace/events/napi.h>
131 #include <trace/events/net.h>
132 #include <trace/events/skb.h>
133 #include <linux/pci.h>
134 #include <linux/inetdevice.h>
135 
136 #include "net-sysfs.h"
137 
138 /* Instead of increasing this, you should create a hash table. */
139 #define MAX_GRO_SKBS 8
140 
141 /* This should be increased if a protocol with a bigger head is added. */
142 #define GRO_MAX_HEAD (MAX_HEADER + 128)
143 
144 /*
145  *	The list of packet types we will receive (as opposed to discard)
146  *	and the routines to invoke.
147  *
148  *	Why 16. Because with 16 the only overlap we get on a hash of the
149  *	low nibble of the protocol value is RARP/SNAP/X.25.
150  *
151  *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
152  *             sure which should go first, but I bet it won't make much
153  *             difference if we are running VLANs.  The good news is that
154  *             this protocol won't be in the list unless compiled in, so
155  *             the average user (w/out VLANs) will not be adversely affected.
156  *             --BLG
157  *
158  *		0800	IP
159  *		8100    802.1Q VLAN
160  *		0001	802.3
161  *		0002	AX.25
162  *		0004	802.2
163  *		8035	RARP
164  *		0005	SNAP
165  *		0805	X.25
166  *		0806	ARP
167  *		8137	IPX
168  *		0009	Localtalk
169  *		86DD	IPv6
170  */
171 
172 #define PTYPE_HASH_SIZE	(16)
173 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
174 
175 static DEFINE_SPINLOCK(ptype_lock);
176 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
177 static struct list_head ptype_all __read_mostly;	/* Taps */
178 
179 /*
180  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
181  * semaphore.
182  *
183  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
184  *
185  * Writers must hold the rtnl semaphore while they loop through the
186  * dev_base_head list, and hold dev_base_lock for writing when they do the
187  * actual updates.  This allows pure readers to access the list even
188  * while a writer is preparing to update it.
189  *
190  * To put it another way, dev_base_lock is held for writing only to
191  * protect against pure readers; the rtnl semaphore provides the
192  * protection against other writers.
193  *
194  * See, for example usages, register_netdevice() and
195  * unregister_netdevice(), which must be called with the rtnl
196  * semaphore held.
197  */
198 DEFINE_RWLOCK(dev_base_lock);
199 EXPORT_SYMBOL(dev_base_lock);
200 
201 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
202 {
203 	unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
204 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
205 }
206 
207 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
208 {
209 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
210 }
211 
212 static inline void rps_lock(struct softnet_data *sd)
213 {
214 #ifdef CONFIG_RPS
215 	spin_lock(&sd->input_pkt_queue.lock);
216 #endif
217 }
218 
219 static inline void rps_unlock(struct softnet_data *sd)
220 {
221 #ifdef CONFIG_RPS
222 	spin_unlock(&sd->input_pkt_queue.lock);
223 #endif
224 }
225 
226 /* Device list insertion */
227 static int list_netdevice(struct net_device *dev)
228 {
229 	struct net *net = dev_net(dev);
230 
231 	ASSERT_RTNL();
232 
233 	write_lock_bh(&dev_base_lock);
234 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
235 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
236 	hlist_add_head_rcu(&dev->index_hlist,
237 			   dev_index_hash(net, dev->ifindex));
238 	write_unlock_bh(&dev_base_lock);
239 	return 0;
240 }
241 
242 /* Device list removal
243  * caller must respect a RCU grace period before freeing/reusing dev
244  */
245 static void unlist_netdevice(struct net_device *dev)
246 {
247 	ASSERT_RTNL();
248 
249 	/* Unlink dev from the device chain */
250 	write_lock_bh(&dev_base_lock);
251 	list_del_rcu(&dev->dev_list);
252 	hlist_del_rcu(&dev->name_hlist);
253 	hlist_del_rcu(&dev->index_hlist);
254 	write_unlock_bh(&dev_base_lock);
255 }
256 
257 /*
258  *	Our notifier list
259  */
260 
261 static RAW_NOTIFIER_HEAD(netdev_chain);
262 
263 /*
264  *	Device drivers call our routines to queue packets here. We empty the
265  *	queue in the local softnet handler.
266  */
267 
268 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
269 EXPORT_PER_CPU_SYMBOL(softnet_data);
270 
271 #ifdef CONFIG_LOCKDEP
272 /*
273  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
274  * according to dev->type
275  */
276 static const unsigned short netdev_lock_type[] =
277 	{ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
278 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
279 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
280 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
281 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
282 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
283 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
284 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
285 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
286 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
287 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
288 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
289 	 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
290 	 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
291 	 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
292 	 ARPHRD_VOID, ARPHRD_NONE};
293 
294 static const char *const netdev_lock_name[] =
295 	{"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
296 	 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
297 	 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
298 	 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
299 	 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
300 	 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
301 	 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
302 	 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
303 	 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
304 	 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
305 	 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
306 	 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
307 	 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
308 	 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
309 	 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
310 	 "_xmit_VOID", "_xmit_NONE"};
311 
312 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
313 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
314 
315 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
316 {
317 	int i;
318 
319 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
320 		if (netdev_lock_type[i] == dev_type)
321 			return i;
322 	/* the last key is used by default */
323 	return ARRAY_SIZE(netdev_lock_type) - 1;
324 }
325 
326 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
327 						 unsigned short dev_type)
328 {
329 	int i;
330 
331 	i = netdev_lock_pos(dev_type);
332 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
333 				   netdev_lock_name[i]);
334 }
335 
336 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
337 {
338 	int i;
339 
340 	i = netdev_lock_pos(dev->type);
341 	lockdep_set_class_and_name(&dev->addr_list_lock,
342 				   &netdev_addr_lock_key[i],
343 				   netdev_lock_name[i]);
344 }
345 #else
346 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
347 						 unsigned short dev_type)
348 {
349 }
350 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
351 {
352 }
353 #endif
354 
355 /*******************************************************************************
356 
357 		Protocol management and registration routines
358 
359 *******************************************************************************/
360 
361 /*
362  *	Add a protocol ID to the list. Now that the input handler is
363  *	smarter we can dispense with all the messy stuff that used to be
364  *	here.
365  *
366  *	BEWARE!!! Protocol handlers, mangling input packets,
367  *	MUST BE last in hash buckets and checking protocol handlers
368  *	MUST start from promiscuous ptype_all chain in net_bh.
369  *	It is true now, do not change it.
370  *	Explanation follows: if protocol handler, mangling packet, will
371  *	be the first on list, it is not able to sense, that packet
372  *	is cloned and should be copied-on-write, so that it will
373  *	change it and subsequent readers will get broken packet.
374  *							--ANK (980803)
375  */
376 
377 static inline struct list_head *ptype_head(const struct packet_type *pt)
378 {
379 	if (pt->type == htons(ETH_P_ALL))
380 		return &ptype_all;
381 	else
382 		return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
383 }
384 
385 /**
386  *	dev_add_pack - add packet handler
387  *	@pt: packet type declaration
388  *
389  *	Add a protocol handler to the networking stack. The passed &packet_type
390  *	is linked into kernel lists and may not be freed until it has been
391  *	removed from the kernel lists.
392  *
393  *	This call does not sleep therefore it can not
394  *	guarantee all CPU's that are in middle of receiving packets
395  *	will see the new packet type (until the next received packet).
396  */
397 
398 void dev_add_pack(struct packet_type *pt)
399 {
400 	struct list_head *head = ptype_head(pt);
401 
402 	spin_lock(&ptype_lock);
403 	list_add_rcu(&pt->list, head);
404 	spin_unlock(&ptype_lock);
405 }
406 EXPORT_SYMBOL(dev_add_pack);
407 
408 /**
409  *	__dev_remove_pack	 - remove packet handler
410  *	@pt: packet type declaration
411  *
412  *	Remove a protocol handler that was previously added to the kernel
413  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
414  *	from the kernel lists and can be freed or reused once this function
415  *	returns.
416  *
417  *      The packet type might still be in use by receivers
418  *	and must not be freed until after all the CPU's have gone
419  *	through a quiescent state.
420  */
421 void __dev_remove_pack(struct packet_type *pt)
422 {
423 	struct list_head *head = ptype_head(pt);
424 	struct packet_type *pt1;
425 
426 	spin_lock(&ptype_lock);
427 
428 	list_for_each_entry(pt1, head, list) {
429 		if (pt == pt1) {
430 			list_del_rcu(&pt->list);
431 			goto out;
432 		}
433 	}
434 
435 	printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
436 out:
437 	spin_unlock(&ptype_lock);
438 }
439 EXPORT_SYMBOL(__dev_remove_pack);
440 
441 /**
442  *	dev_remove_pack	 - remove packet handler
443  *	@pt: packet type declaration
444  *
445  *	Remove a protocol handler that was previously added to the kernel
446  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
447  *	from the kernel lists and can be freed or reused once this function
448  *	returns.
449  *
450  *	This call sleeps to guarantee that no CPU is looking at the packet
451  *	type after return.
452  */
453 void dev_remove_pack(struct packet_type *pt)
454 {
455 	__dev_remove_pack(pt);
456 
457 	synchronize_net();
458 }
459 EXPORT_SYMBOL(dev_remove_pack);
460 
461 /******************************************************************************
462 
463 		      Device Boot-time Settings Routines
464 
465 *******************************************************************************/
466 
467 /* Boot time configuration table */
468 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
469 
470 /**
471  *	netdev_boot_setup_add	- add new setup entry
472  *	@name: name of the device
473  *	@map: configured settings for the device
474  *
475  *	Adds new setup entry to the dev_boot_setup list.  The function
476  *	returns 0 on error and 1 on success.  This is a generic routine to
477  *	all netdevices.
478  */
479 static int netdev_boot_setup_add(char *name, struct ifmap *map)
480 {
481 	struct netdev_boot_setup *s;
482 	int i;
483 
484 	s = dev_boot_setup;
485 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
486 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
487 			memset(s[i].name, 0, sizeof(s[i].name));
488 			strlcpy(s[i].name, name, IFNAMSIZ);
489 			memcpy(&s[i].map, map, sizeof(s[i].map));
490 			break;
491 		}
492 	}
493 
494 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
495 }
496 
497 /**
498  *	netdev_boot_setup_check	- check boot time settings
499  *	@dev: the netdevice
500  *
501  * 	Check boot time settings for the device.
502  *	The found settings are set for the device to be used
503  *	later in the device probing.
504  *	Returns 0 if no settings found, 1 if they are.
505  */
506 int netdev_boot_setup_check(struct net_device *dev)
507 {
508 	struct netdev_boot_setup *s = dev_boot_setup;
509 	int i;
510 
511 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
512 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
513 		    !strcmp(dev->name, s[i].name)) {
514 			dev->irq 	= s[i].map.irq;
515 			dev->base_addr 	= s[i].map.base_addr;
516 			dev->mem_start 	= s[i].map.mem_start;
517 			dev->mem_end 	= s[i].map.mem_end;
518 			return 1;
519 		}
520 	}
521 	return 0;
522 }
523 EXPORT_SYMBOL(netdev_boot_setup_check);
524 
525 
526 /**
527  *	netdev_boot_base	- get address from boot time settings
528  *	@prefix: prefix for network device
529  *	@unit: id for network device
530  *
531  * 	Check boot time settings for the base address of device.
532  *	The found settings are set for the device to be used
533  *	later in the device probing.
534  *	Returns 0 if no settings found.
535  */
536 unsigned long netdev_boot_base(const char *prefix, int unit)
537 {
538 	const struct netdev_boot_setup *s = dev_boot_setup;
539 	char name[IFNAMSIZ];
540 	int i;
541 
542 	sprintf(name, "%s%d", prefix, unit);
543 
544 	/*
545 	 * If device already registered then return base of 1
546 	 * to indicate not to probe for this interface
547 	 */
548 	if (__dev_get_by_name(&init_net, name))
549 		return 1;
550 
551 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
552 		if (!strcmp(name, s[i].name))
553 			return s[i].map.base_addr;
554 	return 0;
555 }
556 
557 /*
558  * Saves at boot time configured settings for any netdevice.
559  */
560 int __init netdev_boot_setup(char *str)
561 {
562 	int ints[5];
563 	struct ifmap map;
564 
565 	str = get_options(str, ARRAY_SIZE(ints), ints);
566 	if (!str || !*str)
567 		return 0;
568 
569 	/* Save settings */
570 	memset(&map, 0, sizeof(map));
571 	if (ints[0] > 0)
572 		map.irq = ints[1];
573 	if (ints[0] > 1)
574 		map.base_addr = ints[2];
575 	if (ints[0] > 2)
576 		map.mem_start = ints[3];
577 	if (ints[0] > 3)
578 		map.mem_end = ints[4];
579 
580 	/* Add new entry to the list */
581 	return netdev_boot_setup_add(str, &map);
582 }
583 
584 __setup("netdev=", netdev_boot_setup);
585 
586 /*******************************************************************************
587 
588 			    Device Interface Subroutines
589 
590 *******************************************************************************/
591 
592 /**
593  *	__dev_get_by_name	- find a device by its name
594  *	@net: the applicable net namespace
595  *	@name: name to find
596  *
597  *	Find an interface by name. Must be called under RTNL semaphore
598  *	or @dev_base_lock. If the name is found a pointer to the device
599  *	is returned. If the name is not found then %NULL is returned. The
600  *	reference counters are not incremented so the caller must be
601  *	careful with locks.
602  */
603 
604 struct net_device *__dev_get_by_name(struct net *net, const char *name)
605 {
606 	struct hlist_node *p;
607 	struct net_device *dev;
608 	struct hlist_head *head = dev_name_hash(net, name);
609 
610 	hlist_for_each_entry(dev, p, head, name_hlist)
611 		if (!strncmp(dev->name, name, IFNAMSIZ))
612 			return dev;
613 
614 	return NULL;
615 }
616 EXPORT_SYMBOL(__dev_get_by_name);
617 
618 /**
619  *	dev_get_by_name_rcu	- find a device by its name
620  *	@net: the applicable net namespace
621  *	@name: name to find
622  *
623  *	Find an interface by name.
624  *	If the name is found a pointer to the device is returned.
625  * 	If the name is not found then %NULL is returned.
626  *	The reference counters are not incremented so the caller must be
627  *	careful with locks. The caller must hold RCU lock.
628  */
629 
630 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
631 {
632 	struct hlist_node *p;
633 	struct net_device *dev;
634 	struct hlist_head *head = dev_name_hash(net, name);
635 
636 	hlist_for_each_entry_rcu(dev, p, head, name_hlist)
637 		if (!strncmp(dev->name, name, IFNAMSIZ))
638 			return dev;
639 
640 	return NULL;
641 }
642 EXPORT_SYMBOL(dev_get_by_name_rcu);
643 
644 /**
645  *	dev_get_by_name		- find a device by its name
646  *	@net: the applicable net namespace
647  *	@name: name to find
648  *
649  *	Find an interface by name. This can be called from any
650  *	context and does its own locking. The returned handle has
651  *	the usage count incremented and the caller must use dev_put() to
652  *	release it when it is no longer needed. %NULL is returned if no
653  *	matching device is found.
654  */
655 
656 struct net_device *dev_get_by_name(struct net *net, const char *name)
657 {
658 	struct net_device *dev;
659 
660 	rcu_read_lock();
661 	dev = dev_get_by_name_rcu(net, name);
662 	if (dev)
663 		dev_hold(dev);
664 	rcu_read_unlock();
665 	return dev;
666 }
667 EXPORT_SYMBOL(dev_get_by_name);
668 
669 /**
670  *	__dev_get_by_index - find a device by its ifindex
671  *	@net: the applicable net namespace
672  *	@ifindex: index of device
673  *
674  *	Search for an interface by index. Returns %NULL if the device
675  *	is not found or a pointer to the device. The device has not
676  *	had its reference counter increased so the caller must be careful
677  *	about locking. The caller must hold either the RTNL semaphore
678  *	or @dev_base_lock.
679  */
680 
681 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
682 {
683 	struct hlist_node *p;
684 	struct net_device *dev;
685 	struct hlist_head *head = dev_index_hash(net, ifindex);
686 
687 	hlist_for_each_entry(dev, p, head, index_hlist)
688 		if (dev->ifindex == ifindex)
689 			return dev;
690 
691 	return NULL;
692 }
693 EXPORT_SYMBOL(__dev_get_by_index);
694 
695 /**
696  *	dev_get_by_index_rcu - find a device by its ifindex
697  *	@net: the applicable net namespace
698  *	@ifindex: index of device
699  *
700  *	Search for an interface by index. Returns %NULL if the device
701  *	is not found or a pointer to the device. The device has not
702  *	had its reference counter increased so the caller must be careful
703  *	about locking. The caller must hold RCU lock.
704  */
705 
706 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
707 {
708 	struct hlist_node *p;
709 	struct net_device *dev;
710 	struct hlist_head *head = dev_index_hash(net, ifindex);
711 
712 	hlist_for_each_entry_rcu(dev, p, head, index_hlist)
713 		if (dev->ifindex == ifindex)
714 			return dev;
715 
716 	return NULL;
717 }
718 EXPORT_SYMBOL(dev_get_by_index_rcu);
719 
720 
721 /**
722  *	dev_get_by_index - find a device by its ifindex
723  *	@net: the applicable net namespace
724  *	@ifindex: index of device
725  *
726  *	Search for an interface by index. Returns NULL if the device
727  *	is not found or a pointer to the device. The device returned has
728  *	had a reference added and the pointer is safe until the user calls
729  *	dev_put to indicate they have finished with it.
730  */
731 
732 struct net_device *dev_get_by_index(struct net *net, int ifindex)
733 {
734 	struct net_device *dev;
735 
736 	rcu_read_lock();
737 	dev = dev_get_by_index_rcu(net, ifindex);
738 	if (dev)
739 		dev_hold(dev);
740 	rcu_read_unlock();
741 	return dev;
742 }
743 EXPORT_SYMBOL(dev_get_by_index);
744 
745 /**
746  *	dev_getbyhwaddr - find a device by its hardware address
747  *	@net: the applicable net namespace
748  *	@type: media type of device
749  *	@ha: hardware address
750  *
751  *	Search for an interface by MAC address. Returns NULL if the device
752  *	is not found or a pointer to the device. The caller must hold the
753  *	rtnl semaphore. The returned device has not had its ref count increased
754  *	and the caller must therefore be careful about locking
755  *
756  *	BUGS:
757  *	If the API was consistent this would be __dev_get_by_hwaddr
758  */
759 
760 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
761 {
762 	struct net_device *dev;
763 
764 	ASSERT_RTNL();
765 
766 	for_each_netdev(net, dev)
767 		if (dev->type == type &&
768 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
769 			return dev;
770 
771 	return NULL;
772 }
773 EXPORT_SYMBOL(dev_getbyhwaddr);
774 
775 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
776 {
777 	struct net_device *dev;
778 
779 	ASSERT_RTNL();
780 	for_each_netdev(net, dev)
781 		if (dev->type == type)
782 			return dev;
783 
784 	return NULL;
785 }
786 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
787 
788 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
789 {
790 	struct net_device *dev, *ret = NULL;
791 
792 	rcu_read_lock();
793 	for_each_netdev_rcu(net, dev)
794 		if (dev->type == type) {
795 			dev_hold(dev);
796 			ret = dev;
797 			break;
798 		}
799 	rcu_read_unlock();
800 	return ret;
801 }
802 EXPORT_SYMBOL(dev_getfirstbyhwtype);
803 
804 /**
805  *	dev_get_by_flags_rcu - find any device with given flags
806  *	@net: the applicable net namespace
807  *	@if_flags: IFF_* values
808  *	@mask: bitmask of bits in if_flags to check
809  *
810  *	Search for any interface with the given flags. Returns NULL if a device
811  *	is not found or a pointer to the device. Must be called inside
812  *	rcu_read_lock(), and result refcount is unchanged.
813  */
814 
815 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
816 				    unsigned short mask)
817 {
818 	struct net_device *dev, *ret;
819 
820 	ret = NULL;
821 	for_each_netdev_rcu(net, dev) {
822 		if (((dev->flags ^ if_flags) & mask) == 0) {
823 			ret = dev;
824 			break;
825 		}
826 	}
827 	return ret;
828 }
829 EXPORT_SYMBOL(dev_get_by_flags_rcu);
830 
831 /**
832  *	dev_valid_name - check if name is okay for network device
833  *	@name: name string
834  *
835  *	Network device names need to be valid file names to
836  *	to allow sysfs to work.  We also disallow any kind of
837  *	whitespace.
838  */
839 int dev_valid_name(const char *name)
840 {
841 	if (*name == '\0')
842 		return 0;
843 	if (strlen(name) >= IFNAMSIZ)
844 		return 0;
845 	if (!strcmp(name, ".") || !strcmp(name, ".."))
846 		return 0;
847 
848 	while (*name) {
849 		if (*name == '/' || isspace(*name))
850 			return 0;
851 		name++;
852 	}
853 	return 1;
854 }
855 EXPORT_SYMBOL(dev_valid_name);
856 
857 /**
858  *	__dev_alloc_name - allocate a name for a device
859  *	@net: network namespace to allocate the device name in
860  *	@name: name format string
861  *	@buf:  scratch buffer and result name string
862  *
863  *	Passed a format string - eg "lt%d" it will try and find a suitable
864  *	id. It scans list of devices to build up a free map, then chooses
865  *	the first empty slot. The caller must hold the dev_base or rtnl lock
866  *	while allocating the name and adding the device in order to avoid
867  *	duplicates.
868  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
869  *	Returns the number of the unit assigned or a negative errno code.
870  */
871 
872 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
873 {
874 	int i = 0;
875 	const char *p;
876 	const int max_netdevices = 8*PAGE_SIZE;
877 	unsigned long *inuse;
878 	struct net_device *d;
879 
880 	p = strnchr(name, IFNAMSIZ-1, '%');
881 	if (p) {
882 		/*
883 		 * Verify the string as this thing may have come from
884 		 * the user.  There must be either one "%d" and no other "%"
885 		 * characters.
886 		 */
887 		if (p[1] != 'd' || strchr(p + 2, '%'))
888 			return -EINVAL;
889 
890 		/* Use one page as a bit array of possible slots */
891 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
892 		if (!inuse)
893 			return -ENOMEM;
894 
895 		for_each_netdev(net, d) {
896 			if (!sscanf(d->name, name, &i))
897 				continue;
898 			if (i < 0 || i >= max_netdevices)
899 				continue;
900 
901 			/*  avoid cases where sscanf is not exact inverse of printf */
902 			snprintf(buf, IFNAMSIZ, name, i);
903 			if (!strncmp(buf, d->name, IFNAMSIZ))
904 				set_bit(i, inuse);
905 		}
906 
907 		i = find_first_zero_bit(inuse, max_netdevices);
908 		free_page((unsigned long) inuse);
909 	}
910 
911 	if (buf != name)
912 		snprintf(buf, IFNAMSIZ, name, i);
913 	if (!__dev_get_by_name(net, buf))
914 		return i;
915 
916 	/* It is possible to run out of possible slots
917 	 * when the name is long and there isn't enough space left
918 	 * for the digits, or if all bits are used.
919 	 */
920 	return -ENFILE;
921 }
922 
923 /**
924  *	dev_alloc_name - allocate a name for a device
925  *	@dev: device
926  *	@name: name format string
927  *
928  *	Passed a format string - eg "lt%d" it will try and find a suitable
929  *	id. It scans list of devices to build up a free map, then chooses
930  *	the first empty slot. The caller must hold the dev_base or rtnl lock
931  *	while allocating the name and adding the device in order to avoid
932  *	duplicates.
933  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
934  *	Returns the number of the unit assigned or a negative errno code.
935  */
936 
937 int dev_alloc_name(struct net_device *dev, const char *name)
938 {
939 	char buf[IFNAMSIZ];
940 	struct net *net;
941 	int ret;
942 
943 	BUG_ON(!dev_net(dev));
944 	net = dev_net(dev);
945 	ret = __dev_alloc_name(net, name, buf);
946 	if (ret >= 0)
947 		strlcpy(dev->name, buf, IFNAMSIZ);
948 	return ret;
949 }
950 EXPORT_SYMBOL(dev_alloc_name);
951 
952 static int dev_get_valid_name(struct net_device *dev, const char *name, bool fmt)
953 {
954 	struct net *net;
955 
956 	BUG_ON(!dev_net(dev));
957 	net = dev_net(dev);
958 
959 	if (!dev_valid_name(name))
960 		return -EINVAL;
961 
962 	if (fmt && strchr(name, '%'))
963 		return dev_alloc_name(dev, name);
964 	else if (__dev_get_by_name(net, name))
965 		return -EEXIST;
966 	else if (dev->name != name)
967 		strlcpy(dev->name, name, IFNAMSIZ);
968 
969 	return 0;
970 }
971 
972 /**
973  *	dev_change_name - change name of a device
974  *	@dev: device
975  *	@newname: name (or format string) must be at least IFNAMSIZ
976  *
977  *	Change name of a device, can pass format strings "eth%d".
978  *	for wildcarding.
979  */
980 int dev_change_name(struct net_device *dev, const char *newname)
981 {
982 	char oldname[IFNAMSIZ];
983 	int err = 0;
984 	int ret;
985 	struct net *net;
986 
987 	ASSERT_RTNL();
988 	BUG_ON(!dev_net(dev));
989 
990 	net = dev_net(dev);
991 	if (dev->flags & IFF_UP)
992 		return -EBUSY;
993 
994 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
995 		return 0;
996 
997 	memcpy(oldname, dev->name, IFNAMSIZ);
998 
999 	err = dev_get_valid_name(dev, newname, 1);
1000 	if (err < 0)
1001 		return err;
1002 
1003 rollback:
1004 	ret = device_rename(&dev->dev, dev->name);
1005 	if (ret) {
1006 		memcpy(dev->name, oldname, IFNAMSIZ);
1007 		return ret;
1008 	}
1009 
1010 	write_lock_bh(&dev_base_lock);
1011 	hlist_del(&dev->name_hlist);
1012 	write_unlock_bh(&dev_base_lock);
1013 
1014 	synchronize_rcu();
1015 
1016 	write_lock_bh(&dev_base_lock);
1017 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1018 	write_unlock_bh(&dev_base_lock);
1019 
1020 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1021 	ret = notifier_to_errno(ret);
1022 
1023 	if (ret) {
1024 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1025 		if (err >= 0) {
1026 			err = ret;
1027 			memcpy(dev->name, oldname, IFNAMSIZ);
1028 			goto rollback;
1029 		} else {
1030 			printk(KERN_ERR
1031 			       "%s: name change rollback failed: %d.\n",
1032 			       dev->name, ret);
1033 		}
1034 	}
1035 
1036 	return err;
1037 }
1038 
1039 /**
1040  *	dev_set_alias - change ifalias of a device
1041  *	@dev: device
1042  *	@alias: name up to IFALIASZ
1043  *	@len: limit of bytes to copy from info
1044  *
1045  *	Set ifalias for a device,
1046  */
1047 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1048 {
1049 	ASSERT_RTNL();
1050 
1051 	if (len >= IFALIASZ)
1052 		return -EINVAL;
1053 
1054 	if (!len) {
1055 		if (dev->ifalias) {
1056 			kfree(dev->ifalias);
1057 			dev->ifalias = NULL;
1058 		}
1059 		return 0;
1060 	}
1061 
1062 	dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1063 	if (!dev->ifalias)
1064 		return -ENOMEM;
1065 
1066 	strlcpy(dev->ifalias, alias, len+1);
1067 	return len;
1068 }
1069 
1070 
1071 /**
1072  *	netdev_features_change - device changes features
1073  *	@dev: device to cause notification
1074  *
1075  *	Called to indicate a device has changed features.
1076  */
1077 void netdev_features_change(struct net_device *dev)
1078 {
1079 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1080 }
1081 EXPORT_SYMBOL(netdev_features_change);
1082 
1083 /**
1084  *	netdev_state_change - device changes state
1085  *	@dev: device to cause notification
1086  *
1087  *	Called to indicate a device has changed state. This function calls
1088  *	the notifier chains for netdev_chain and sends a NEWLINK message
1089  *	to the routing socket.
1090  */
1091 void netdev_state_change(struct net_device *dev)
1092 {
1093 	if (dev->flags & IFF_UP) {
1094 		call_netdevice_notifiers(NETDEV_CHANGE, dev);
1095 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1096 	}
1097 }
1098 EXPORT_SYMBOL(netdev_state_change);
1099 
1100 int netdev_bonding_change(struct net_device *dev, unsigned long event)
1101 {
1102 	return call_netdevice_notifiers(event, dev);
1103 }
1104 EXPORT_SYMBOL(netdev_bonding_change);
1105 
1106 /**
1107  *	dev_load 	- load a network module
1108  *	@net: the applicable net namespace
1109  *	@name: name of interface
1110  *
1111  *	If a network interface is not present and the process has suitable
1112  *	privileges this function loads the module. If module loading is not
1113  *	available in this kernel then it becomes a nop.
1114  */
1115 
1116 void dev_load(struct net *net, const char *name)
1117 {
1118 	struct net_device *dev;
1119 
1120 	rcu_read_lock();
1121 	dev = dev_get_by_name_rcu(net, name);
1122 	rcu_read_unlock();
1123 
1124 	if (!dev && capable(CAP_NET_ADMIN))
1125 		request_module("%s", name);
1126 }
1127 EXPORT_SYMBOL(dev_load);
1128 
1129 static int __dev_open(struct net_device *dev)
1130 {
1131 	const struct net_device_ops *ops = dev->netdev_ops;
1132 	int ret;
1133 
1134 	ASSERT_RTNL();
1135 
1136 	/*
1137 	 *	Is it even present?
1138 	 */
1139 	if (!netif_device_present(dev))
1140 		return -ENODEV;
1141 
1142 	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1143 	ret = notifier_to_errno(ret);
1144 	if (ret)
1145 		return ret;
1146 
1147 	/*
1148 	 *	Call device private open method
1149 	 */
1150 	set_bit(__LINK_STATE_START, &dev->state);
1151 
1152 	if (ops->ndo_validate_addr)
1153 		ret = ops->ndo_validate_addr(dev);
1154 
1155 	if (!ret && ops->ndo_open)
1156 		ret = ops->ndo_open(dev);
1157 
1158 	/*
1159 	 *	If it went open OK then:
1160 	 */
1161 
1162 	if (ret)
1163 		clear_bit(__LINK_STATE_START, &dev->state);
1164 	else {
1165 		/*
1166 		 *	Set the flags.
1167 		 */
1168 		dev->flags |= IFF_UP;
1169 
1170 		/*
1171 		 *	Enable NET_DMA
1172 		 */
1173 		net_dmaengine_get();
1174 
1175 		/*
1176 		 *	Initialize multicasting status
1177 		 */
1178 		dev_set_rx_mode(dev);
1179 
1180 		/*
1181 		 *	Wakeup transmit queue engine
1182 		 */
1183 		dev_activate(dev);
1184 	}
1185 
1186 	return ret;
1187 }
1188 
1189 /**
1190  *	dev_open	- prepare an interface for use.
1191  *	@dev:	device to open
1192  *
1193  *	Takes a device from down to up state. The device's private open
1194  *	function is invoked and then the multicast lists are loaded. Finally
1195  *	the device is moved into the up state and a %NETDEV_UP message is
1196  *	sent to the netdev notifier chain.
1197  *
1198  *	Calling this function on an active interface is a nop. On a failure
1199  *	a negative errno code is returned.
1200  */
1201 int dev_open(struct net_device *dev)
1202 {
1203 	int ret;
1204 
1205 	/*
1206 	 *	Is it already up?
1207 	 */
1208 	if (dev->flags & IFF_UP)
1209 		return 0;
1210 
1211 	/*
1212 	 *	Open device
1213 	 */
1214 	ret = __dev_open(dev);
1215 	if (ret < 0)
1216 		return ret;
1217 
1218 	/*
1219 	 *	... and announce new interface.
1220 	 */
1221 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1222 	call_netdevice_notifiers(NETDEV_UP, dev);
1223 
1224 	return ret;
1225 }
1226 EXPORT_SYMBOL(dev_open);
1227 
1228 static int __dev_close(struct net_device *dev)
1229 {
1230 	const struct net_device_ops *ops = dev->netdev_ops;
1231 
1232 	ASSERT_RTNL();
1233 	might_sleep();
1234 
1235 	/*
1236 	 *	Tell people we are going down, so that they can
1237 	 *	prepare to death, when device is still operating.
1238 	 */
1239 	call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1240 
1241 	clear_bit(__LINK_STATE_START, &dev->state);
1242 
1243 	/* Synchronize to scheduled poll. We cannot touch poll list,
1244 	 * it can be even on different cpu. So just clear netif_running().
1245 	 *
1246 	 * dev->stop() will invoke napi_disable() on all of it's
1247 	 * napi_struct instances on this device.
1248 	 */
1249 	smp_mb__after_clear_bit(); /* Commit netif_running(). */
1250 
1251 	dev_deactivate(dev);
1252 
1253 	/*
1254 	 *	Call the device specific close. This cannot fail.
1255 	 *	Only if device is UP
1256 	 *
1257 	 *	We allow it to be called even after a DETACH hot-plug
1258 	 *	event.
1259 	 */
1260 	if (ops->ndo_stop)
1261 		ops->ndo_stop(dev);
1262 
1263 	/*
1264 	 *	Device is now down.
1265 	 */
1266 
1267 	dev->flags &= ~IFF_UP;
1268 
1269 	/*
1270 	 *	Shutdown NET_DMA
1271 	 */
1272 	net_dmaengine_put();
1273 
1274 	return 0;
1275 }
1276 
1277 /**
1278  *	dev_close - shutdown an interface.
1279  *	@dev: device to shutdown
1280  *
1281  *	This function moves an active device into down state. A
1282  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1283  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1284  *	chain.
1285  */
1286 int dev_close(struct net_device *dev)
1287 {
1288 	if (!(dev->flags & IFF_UP))
1289 		return 0;
1290 
1291 	__dev_close(dev);
1292 
1293 	/*
1294 	 * Tell people we are down
1295 	 */
1296 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1297 	call_netdevice_notifiers(NETDEV_DOWN, dev);
1298 
1299 	return 0;
1300 }
1301 EXPORT_SYMBOL(dev_close);
1302 
1303 
1304 /**
1305  *	dev_disable_lro - disable Large Receive Offload on a device
1306  *	@dev: device
1307  *
1308  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1309  *	called under RTNL.  This is needed if received packets may be
1310  *	forwarded to another interface.
1311  */
1312 void dev_disable_lro(struct net_device *dev)
1313 {
1314 	if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1315 	    dev->ethtool_ops->set_flags) {
1316 		u32 flags = dev->ethtool_ops->get_flags(dev);
1317 		if (flags & ETH_FLAG_LRO) {
1318 			flags &= ~ETH_FLAG_LRO;
1319 			dev->ethtool_ops->set_flags(dev, flags);
1320 		}
1321 	}
1322 	WARN_ON(dev->features & NETIF_F_LRO);
1323 }
1324 EXPORT_SYMBOL(dev_disable_lro);
1325 
1326 
1327 static int dev_boot_phase = 1;
1328 
1329 /*
1330  *	Device change register/unregister. These are not inline or static
1331  *	as we export them to the world.
1332  */
1333 
1334 /**
1335  *	register_netdevice_notifier - register a network notifier block
1336  *	@nb: notifier
1337  *
1338  *	Register a notifier to be called when network device events occur.
1339  *	The notifier passed is linked into the kernel structures and must
1340  *	not be reused until it has been unregistered. A negative errno code
1341  *	is returned on a failure.
1342  *
1343  * 	When registered all registration and up events are replayed
1344  *	to the new notifier to allow device to have a race free
1345  *	view of the network device list.
1346  */
1347 
1348 int register_netdevice_notifier(struct notifier_block *nb)
1349 {
1350 	struct net_device *dev;
1351 	struct net_device *last;
1352 	struct net *net;
1353 	int err;
1354 
1355 	rtnl_lock();
1356 	err = raw_notifier_chain_register(&netdev_chain, nb);
1357 	if (err)
1358 		goto unlock;
1359 	if (dev_boot_phase)
1360 		goto unlock;
1361 	for_each_net(net) {
1362 		for_each_netdev(net, dev) {
1363 			err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1364 			err = notifier_to_errno(err);
1365 			if (err)
1366 				goto rollback;
1367 
1368 			if (!(dev->flags & IFF_UP))
1369 				continue;
1370 
1371 			nb->notifier_call(nb, NETDEV_UP, dev);
1372 		}
1373 	}
1374 
1375 unlock:
1376 	rtnl_unlock();
1377 	return err;
1378 
1379 rollback:
1380 	last = dev;
1381 	for_each_net(net) {
1382 		for_each_netdev(net, dev) {
1383 			if (dev == last)
1384 				break;
1385 
1386 			if (dev->flags & IFF_UP) {
1387 				nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1388 				nb->notifier_call(nb, NETDEV_DOWN, dev);
1389 			}
1390 			nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1391 			nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1392 		}
1393 	}
1394 
1395 	raw_notifier_chain_unregister(&netdev_chain, nb);
1396 	goto unlock;
1397 }
1398 EXPORT_SYMBOL(register_netdevice_notifier);
1399 
1400 /**
1401  *	unregister_netdevice_notifier - unregister a network notifier block
1402  *	@nb: notifier
1403  *
1404  *	Unregister a notifier previously registered by
1405  *	register_netdevice_notifier(). The notifier is unlinked into the
1406  *	kernel structures and may then be reused. A negative errno code
1407  *	is returned on a failure.
1408  */
1409 
1410 int unregister_netdevice_notifier(struct notifier_block *nb)
1411 {
1412 	int err;
1413 
1414 	rtnl_lock();
1415 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1416 	rtnl_unlock();
1417 	return err;
1418 }
1419 EXPORT_SYMBOL(unregister_netdevice_notifier);
1420 
1421 /**
1422  *	call_netdevice_notifiers - call all network notifier blocks
1423  *      @val: value passed unmodified to notifier function
1424  *      @dev: net_device pointer passed unmodified to notifier function
1425  *
1426  *	Call all network notifier blocks.  Parameters and return value
1427  *	are as for raw_notifier_call_chain().
1428  */
1429 
1430 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1431 {
1432 	ASSERT_RTNL();
1433 	return raw_notifier_call_chain(&netdev_chain, val, dev);
1434 }
1435 
1436 /* When > 0 there are consumers of rx skb time stamps */
1437 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1438 
1439 void net_enable_timestamp(void)
1440 {
1441 	atomic_inc(&netstamp_needed);
1442 }
1443 EXPORT_SYMBOL(net_enable_timestamp);
1444 
1445 void net_disable_timestamp(void)
1446 {
1447 	atomic_dec(&netstamp_needed);
1448 }
1449 EXPORT_SYMBOL(net_disable_timestamp);
1450 
1451 static inline void net_timestamp_set(struct sk_buff *skb)
1452 {
1453 	if (atomic_read(&netstamp_needed))
1454 		__net_timestamp(skb);
1455 	else
1456 		skb->tstamp.tv64 = 0;
1457 }
1458 
1459 static inline void net_timestamp_check(struct sk_buff *skb)
1460 {
1461 	if (!skb->tstamp.tv64 && atomic_read(&netstamp_needed))
1462 		__net_timestamp(skb);
1463 }
1464 
1465 /**
1466  * dev_forward_skb - loopback an skb to another netif
1467  *
1468  * @dev: destination network device
1469  * @skb: buffer to forward
1470  *
1471  * return values:
1472  *	NET_RX_SUCCESS	(no congestion)
1473  *	NET_RX_DROP     (packet was dropped, but freed)
1474  *
1475  * dev_forward_skb can be used for injecting an skb from the
1476  * start_xmit function of one device into the receive queue
1477  * of another device.
1478  *
1479  * The receiving device may be in another namespace, so
1480  * we have to clear all information in the skb that could
1481  * impact namespace isolation.
1482  */
1483 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1484 {
1485 	skb_orphan(skb);
1486 	nf_reset(skb);
1487 
1488 	if (unlikely(!(dev->flags & IFF_UP) ||
1489 		     (skb->len > (dev->mtu + dev->hard_header_len + VLAN_HLEN)))) {
1490 		atomic_long_inc(&dev->rx_dropped);
1491 		kfree_skb(skb);
1492 		return NET_RX_DROP;
1493 	}
1494 	skb_set_dev(skb, dev);
1495 	skb->tstamp.tv64 = 0;
1496 	skb->pkt_type = PACKET_HOST;
1497 	skb->protocol = eth_type_trans(skb, dev);
1498 	return netif_rx(skb);
1499 }
1500 EXPORT_SYMBOL_GPL(dev_forward_skb);
1501 
1502 /*
1503  *	Support routine. Sends outgoing frames to any network
1504  *	taps currently in use.
1505  */
1506 
1507 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1508 {
1509 	struct packet_type *ptype;
1510 
1511 #ifdef CONFIG_NET_CLS_ACT
1512 	if (!(skb->tstamp.tv64 && (G_TC_FROM(skb->tc_verd) & AT_INGRESS)))
1513 		net_timestamp_set(skb);
1514 #else
1515 	net_timestamp_set(skb);
1516 #endif
1517 
1518 	rcu_read_lock();
1519 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
1520 		/* Never send packets back to the socket
1521 		 * they originated from - MvS (miquels@drinkel.ow.org)
1522 		 */
1523 		if ((ptype->dev == dev || !ptype->dev) &&
1524 		    (ptype->af_packet_priv == NULL ||
1525 		     (struct sock *)ptype->af_packet_priv != skb->sk)) {
1526 			struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1527 			if (!skb2)
1528 				break;
1529 
1530 			/* skb->nh should be correctly
1531 			   set by sender, so that the second statement is
1532 			   just protection against buggy protocols.
1533 			 */
1534 			skb_reset_mac_header(skb2);
1535 
1536 			if (skb_network_header(skb2) < skb2->data ||
1537 			    skb2->network_header > skb2->tail) {
1538 				if (net_ratelimit())
1539 					printk(KERN_CRIT "protocol %04x is "
1540 					       "buggy, dev %s\n",
1541 					       ntohs(skb2->protocol),
1542 					       dev->name);
1543 				skb_reset_network_header(skb2);
1544 			}
1545 
1546 			skb2->transport_header = skb2->network_header;
1547 			skb2->pkt_type = PACKET_OUTGOING;
1548 			ptype->func(skb2, skb->dev, ptype, skb->dev);
1549 		}
1550 	}
1551 	rcu_read_unlock();
1552 }
1553 
1554 /*
1555  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1556  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1557  */
1558 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1559 {
1560 	if (txq < 1 || txq > dev->num_tx_queues)
1561 		return -EINVAL;
1562 
1563 	if (dev->reg_state == NETREG_REGISTERED) {
1564 		ASSERT_RTNL();
1565 
1566 		if (txq < dev->real_num_tx_queues)
1567 			qdisc_reset_all_tx_gt(dev, txq);
1568 	}
1569 
1570 	dev->real_num_tx_queues = txq;
1571 	return 0;
1572 }
1573 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
1574 
1575 #ifdef CONFIG_RPS
1576 /**
1577  *	netif_set_real_num_rx_queues - set actual number of RX queues used
1578  *	@dev: Network device
1579  *	@rxq: Actual number of RX queues
1580  *
1581  *	This must be called either with the rtnl_lock held or before
1582  *	registration of the net device.  Returns 0 on success, or a
1583  *	negative error code.  If called before registration, it always
1584  *	succeeds.
1585  */
1586 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
1587 {
1588 	int rc;
1589 
1590 	if (rxq < 1 || rxq > dev->num_rx_queues)
1591 		return -EINVAL;
1592 
1593 	if (dev->reg_state == NETREG_REGISTERED) {
1594 		ASSERT_RTNL();
1595 
1596 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
1597 						  rxq);
1598 		if (rc)
1599 			return rc;
1600 	}
1601 
1602 	dev->real_num_rx_queues = rxq;
1603 	return 0;
1604 }
1605 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
1606 #endif
1607 
1608 static inline void __netif_reschedule(struct Qdisc *q)
1609 {
1610 	struct softnet_data *sd;
1611 	unsigned long flags;
1612 
1613 	local_irq_save(flags);
1614 	sd = &__get_cpu_var(softnet_data);
1615 	q->next_sched = NULL;
1616 	*sd->output_queue_tailp = q;
1617 	sd->output_queue_tailp = &q->next_sched;
1618 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
1619 	local_irq_restore(flags);
1620 }
1621 
1622 void __netif_schedule(struct Qdisc *q)
1623 {
1624 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1625 		__netif_reschedule(q);
1626 }
1627 EXPORT_SYMBOL(__netif_schedule);
1628 
1629 void dev_kfree_skb_irq(struct sk_buff *skb)
1630 {
1631 	if (atomic_dec_and_test(&skb->users)) {
1632 		struct softnet_data *sd;
1633 		unsigned long flags;
1634 
1635 		local_irq_save(flags);
1636 		sd = &__get_cpu_var(softnet_data);
1637 		skb->next = sd->completion_queue;
1638 		sd->completion_queue = skb;
1639 		raise_softirq_irqoff(NET_TX_SOFTIRQ);
1640 		local_irq_restore(flags);
1641 	}
1642 }
1643 EXPORT_SYMBOL(dev_kfree_skb_irq);
1644 
1645 void dev_kfree_skb_any(struct sk_buff *skb)
1646 {
1647 	if (in_irq() || irqs_disabled())
1648 		dev_kfree_skb_irq(skb);
1649 	else
1650 		dev_kfree_skb(skb);
1651 }
1652 EXPORT_SYMBOL(dev_kfree_skb_any);
1653 
1654 
1655 /**
1656  * netif_device_detach - mark device as removed
1657  * @dev: network device
1658  *
1659  * Mark device as removed from system and therefore no longer available.
1660  */
1661 void netif_device_detach(struct net_device *dev)
1662 {
1663 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1664 	    netif_running(dev)) {
1665 		netif_tx_stop_all_queues(dev);
1666 	}
1667 }
1668 EXPORT_SYMBOL(netif_device_detach);
1669 
1670 /**
1671  * netif_device_attach - mark device as attached
1672  * @dev: network device
1673  *
1674  * Mark device as attached from system and restart if needed.
1675  */
1676 void netif_device_attach(struct net_device *dev)
1677 {
1678 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1679 	    netif_running(dev)) {
1680 		netif_tx_wake_all_queues(dev);
1681 		__netdev_watchdog_up(dev);
1682 	}
1683 }
1684 EXPORT_SYMBOL(netif_device_attach);
1685 
1686 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1687 {
1688 	return ((features & NETIF_F_NO_CSUM) ||
1689 		((features & NETIF_F_V4_CSUM) &&
1690 		 protocol == htons(ETH_P_IP)) ||
1691 		((features & NETIF_F_V6_CSUM) &&
1692 		 protocol == htons(ETH_P_IPV6)) ||
1693 		((features & NETIF_F_FCOE_CRC) &&
1694 		 protocol == htons(ETH_P_FCOE)));
1695 }
1696 
1697 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1698 {
1699 	__be16 protocol = skb->protocol;
1700 	int features = dev->features;
1701 
1702 	if (vlan_tx_tag_present(skb)) {
1703 		features &= dev->vlan_features;
1704 	} else if (protocol == htons(ETH_P_8021Q)) {
1705 		struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1706 		protocol = veh->h_vlan_encapsulated_proto;
1707 		features &= dev->vlan_features;
1708 	}
1709 
1710 	return can_checksum_protocol(features, protocol);
1711 }
1712 
1713 /**
1714  * skb_dev_set -- assign a new device to a buffer
1715  * @skb: buffer for the new device
1716  * @dev: network device
1717  *
1718  * If an skb is owned by a device already, we have to reset
1719  * all data private to the namespace a device belongs to
1720  * before assigning it a new device.
1721  */
1722 #ifdef CONFIG_NET_NS
1723 void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1724 {
1725 	skb_dst_drop(skb);
1726 	if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) {
1727 		secpath_reset(skb);
1728 		nf_reset(skb);
1729 		skb_init_secmark(skb);
1730 		skb->mark = 0;
1731 		skb->priority = 0;
1732 		skb->nf_trace = 0;
1733 		skb->ipvs_property = 0;
1734 #ifdef CONFIG_NET_SCHED
1735 		skb->tc_index = 0;
1736 #endif
1737 	}
1738 	skb->dev = dev;
1739 }
1740 EXPORT_SYMBOL(skb_set_dev);
1741 #endif /* CONFIG_NET_NS */
1742 
1743 /*
1744  * Invalidate hardware checksum when packet is to be mangled, and
1745  * complete checksum manually on outgoing path.
1746  */
1747 int skb_checksum_help(struct sk_buff *skb)
1748 {
1749 	__wsum csum;
1750 	int ret = 0, offset;
1751 
1752 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1753 		goto out_set_summed;
1754 
1755 	if (unlikely(skb_shinfo(skb)->gso_size)) {
1756 		/* Let GSO fix up the checksum. */
1757 		goto out_set_summed;
1758 	}
1759 
1760 	offset = skb->csum_start - skb_headroom(skb);
1761 	BUG_ON(offset >= skb_headlen(skb));
1762 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
1763 
1764 	offset += skb->csum_offset;
1765 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1766 
1767 	if (skb_cloned(skb) &&
1768 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1769 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1770 		if (ret)
1771 			goto out;
1772 	}
1773 
1774 	*(__sum16 *)(skb->data + offset) = csum_fold(csum);
1775 out_set_summed:
1776 	skb->ip_summed = CHECKSUM_NONE;
1777 out:
1778 	return ret;
1779 }
1780 EXPORT_SYMBOL(skb_checksum_help);
1781 
1782 /**
1783  *	skb_gso_segment - Perform segmentation on skb.
1784  *	@skb: buffer to segment
1785  *	@features: features for the output path (see dev->features)
1786  *
1787  *	This function segments the given skb and returns a list of segments.
1788  *
1789  *	It may return NULL if the skb requires no segmentation.  This is
1790  *	only possible when GSO is used for verifying header integrity.
1791  */
1792 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1793 {
1794 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1795 	struct packet_type *ptype;
1796 	__be16 type = skb->protocol;
1797 	int err;
1798 
1799 	if (type == htons(ETH_P_8021Q)) {
1800 		struct vlan_ethhdr *veh;
1801 
1802 		if (unlikely(!pskb_may_pull(skb, VLAN_ETH_HLEN)))
1803 			return ERR_PTR(-EINVAL);
1804 
1805 		veh = (struct vlan_ethhdr *)skb->data;
1806 		type = veh->h_vlan_encapsulated_proto;
1807 	}
1808 
1809 	skb_reset_mac_header(skb);
1810 	skb->mac_len = skb->network_header - skb->mac_header;
1811 	__skb_pull(skb, skb->mac_len);
1812 
1813 	if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1814 		struct net_device *dev = skb->dev;
1815 		struct ethtool_drvinfo info = {};
1816 
1817 		if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1818 			dev->ethtool_ops->get_drvinfo(dev, &info);
1819 
1820 		WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d "
1821 			"ip_summed=%d",
1822 		     info.driver, dev ? dev->features : 0L,
1823 		     skb->sk ? skb->sk->sk_route_caps : 0L,
1824 		     skb->len, skb->data_len, skb->ip_summed);
1825 
1826 		if (skb_header_cloned(skb) &&
1827 		    (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1828 			return ERR_PTR(err);
1829 	}
1830 
1831 	rcu_read_lock();
1832 	list_for_each_entry_rcu(ptype,
1833 			&ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1834 		if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1835 			if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1836 				err = ptype->gso_send_check(skb);
1837 				segs = ERR_PTR(err);
1838 				if (err || skb_gso_ok(skb, features))
1839 					break;
1840 				__skb_push(skb, (skb->data -
1841 						 skb_network_header(skb)));
1842 			}
1843 			segs = ptype->gso_segment(skb, features);
1844 			break;
1845 		}
1846 	}
1847 	rcu_read_unlock();
1848 
1849 	__skb_push(skb, skb->data - skb_mac_header(skb));
1850 
1851 	return segs;
1852 }
1853 EXPORT_SYMBOL(skb_gso_segment);
1854 
1855 /* Take action when hardware reception checksum errors are detected. */
1856 #ifdef CONFIG_BUG
1857 void netdev_rx_csum_fault(struct net_device *dev)
1858 {
1859 	if (net_ratelimit()) {
1860 		printk(KERN_ERR "%s: hw csum failure.\n",
1861 			dev ? dev->name : "<unknown>");
1862 		dump_stack();
1863 	}
1864 }
1865 EXPORT_SYMBOL(netdev_rx_csum_fault);
1866 #endif
1867 
1868 /* Actually, we should eliminate this check as soon as we know, that:
1869  * 1. IOMMU is present and allows to map all the memory.
1870  * 2. No high memory really exists on this machine.
1871  */
1872 
1873 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1874 {
1875 #ifdef CONFIG_HIGHMEM
1876 	int i;
1877 	if (!(dev->features & NETIF_F_HIGHDMA)) {
1878 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1879 			if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1880 				return 1;
1881 	}
1882 
1883 	if (PCI_DMA_BUS_IS_PHYS) {
1884 		struct device *pdev = dev->dev.parent;
1885 
1886 		if (!pdev)
1887 			return 0;
1888 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1889 			dma_addr_t addr = page_to_phys(skb_shinfo(skb)->frags[i].page);
1890 			if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
1891 				return 1;
1892 		}
1893 	}
1894 #endif
1895 	return 0;
1896 }
1897 
1898 struct dev_gso_cb {
1899 	void (*destructor)(struct sk_buff *skb);
1900 };
1901 
1902 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1903 
1904 static void dev_gso_skb_destructor(struct sk_buff *skb)
1905 {
1906 	struct dev_gso_cb *cb;
1907 
1908 	do {
1909 		struct sk_buff *nskb = skb->next;
1910 
1911 		skb->next = nskb->next;
1912 		nskb->next = NULL;
1913 		kfree_skb(nskb);
1914 	} while (skb->next);
1915 
1916 	cb = DEV_GSO_CB(skb);
1917 	if (cb->destructor)
1918 		cb->destructor(skb);
1919 }
1920 
1921 /**
1922  *	dev_gso_segment - Perform emulated hardware segmentation on skb.
1923  *	@skb: buffer to segment
1924  *
1925  *	This function segments the given skb and stores the list of segments
1926  *	in skb->next.
1927  */
1928 static int dev_gso_segment(struct sk_buff *skb)
1929 {
1930 	struct net_device *dev = skb->dev;
1931 	struct sk_buff *segs;
1932 	int features = dev->features & ~(illegal_highdma(dev, skb) ?
1933 					 NETIF_F_SG : 0);
1934 
1935 	segs = skb_gso_segment(skb, features);
1936 
1937 	/* Verifying header integrity only. */
1938 	if (!segs)
1939 		return 0;
1940 
1941 	if (IS_ERR(segs))
1942 		return PTR_ERR(segs);
1943 
1944 	skb->next = segs;
1945 	DEV_GSO_CB(skb)->destructor = skb->destructor;
1946 	skb->destructor = dev_gso_skb_destructor;
1947 
1948 	return 0;
1949 }
1950 
1951 /*
1952  * Try to orphan skb early, right before transmission by the device.
1953  * We cannot orphan skb if tx timestamp is requested or the sk-reference
1954  * is needed on driver level for other reasons, e.g. see net/can/raw.c
1955  */
1956 static inline void skb_orphan_try(struct sk_buff *skb)
1957 {
1958 	struct sock *sk = skb->sk;
1959 
1960 	if (sk && !skb_shinfo(skb)->tx_flags) {
1961 		/* skb_tx_hash() wont be able to get sk.
1962 		 * We copy sk_hash into skb->rxhash
1963 		 */
1964 		if (!skb->rxhash)
1965 			skb->rxhash = sk->sk_hash;
1966 		skb_orphan(skb);
1967 	}
1968 }
1969 
1970 /*
1971  * Returns true if either:
1972  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
1973  *	2. skb is fragmented and the device does not support SG, or if
1974  *	   at least one of fragments is in highmem and device does not
1975  *	   support DMA from it.
1976  */
1977 static inline int skb_needs_linearize(struct sk_buff *skb,
1978 				      struct net_device *dev)
1979 {
1980 	int features = dev->features;
1981 
1982 	if (skb->protocol == htons(ETH_P_8021Q) || vlan_tx_tag_present(skb))
1983 		features &= dev->vlan_features;
1984 
1985 	return skb_is_nonlinear(skb) &&
1986 	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
1987 		(skb_shinfo(skb)->nr_frags && (!(features & NETIF_F_SG) ||
1988 					      illegal_highdma(dev, skb))));
1989 }
1990 
1991 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1992 			struct netdev_queue *txq)
1993 {
1994 	const struct net_device_ops *ops = dev->netdev_ops;
1995 	int rc = NETDEV_TX_OK;
1996 
1997 	if (likely(!skb->next)) {
1998 		if (!list_empty(&ptype_all))
1999 			dev_queue_xmit_nit(skb, dev);
2000 
2001 		/*
2002 		 * If device doesnt need skb->dst, release it right now while
2003 		 * its hot in this cpu cache
2004 		 */
2005 		if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2006 			skb_dst_drop(skb);
2007 
2008 		skb_orphan_try(skb);
2009 
2010 		if (vlan_tx_tag_present(skb) &&
2011 		    !(dev->features & NETIF_F_HW_VLAN_TX)) {
2012 			skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb));
2013 			if (unlikely(!skb))
2014 				goto out;
2015 
2016 			skb->vlan_tci = 0;
2017 		}
2018 
2019 		if (netif_needs_gso(dev, skb)) {
2020 			if (unlikely(dev_gso_segment(skb)))
2021 				goto out_kfree_skb;
2022 			if (skb->next)
2023 				goto gso;
2024 		} else {
2025 			if (skb_needs_linearize(skb, dev) &&
2026 			    __skb_linearize(skb))
2027 				goto out_kfree_skb;
2028 
2029 			/* If packet is not checksummed and device does not
2030 			 * support checksumming for this protocol, complete
2031 			 * checksumming here.
2032 			 */
2033 			if (skb->ip_summed == CHECKSUM_PARTIAL) {
2034 				skb_set_transport_header(skb, skb->csum_start -
2035 					      skb_headroom(skb));
2036 				if (!dev_can_checksum(dev, skb) &&
2037 				     skb_checksum_help(skb))
2038 					goto out_kfree_skb;
2039 			}
2040 		}
2041 
2042 		rc = ops->ndo_start_xmit(skb, dev);
2043 		trace_net_dev_xmit(skb, rc);
2044 		if (rc == NETDEV_TX_OK)
2045 			txq_trans_update(txq);
2046 		return rc;
2047 	}
2048 
2049 gso:
2050 	do {
2051 		struct sk_buff *nskb = skb->next;
2052 
2053 		skb->next = nskb->next;
2054 		nskb->next = NULL;
2055 
2056 		/*
2057 		 * If device doesnt need nskb->dst, release it right now while
2058 		 * its hot in this cpu cache
2059 		 */
2060 		if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2061 			skb_dst_drop(nskb);
2062 
2063 		rc = ops->ndo_start_xmit(nskb, dev);
2064 		trace_net_dev_xmit(nskb, rc);
2065 		if (unlikely(rc != NETDEV_TX_OK)) {
2066 			if (rc & ~NETDEV_TX_MASK)
2067 				goto out_kfree_gso_skb;
2068 			nskb->next = skb->next;
2069 			skb->next = nskb;
2070 			return rc;
2071 		}
2072 		txq_trans_update(txq);
2073 		if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
2074 			return NETDEV_TX_BUSY;
2075 	} while (skb->next);
2076 
2077 out_kfree_gso_skb:
2078 	if (likely(skb->next == NULL))
2079 		skb->destructor = DEV_GSO_CB(skb)->destructor;
2080 out_kfree_skb:
2081 	kfree_skb(skb);
2082 out:
2083 	return rc;
2084 }
2085 
2086 static u32 hashrnd __read_mostly;
2087 
2088 u16 skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb)
2089 {
2090 	u32 hash;
2091 
2092 	if (skb_rx_queue_recorded(skb)) {
2093 		hash = skb_get_rx_queue(skb);
2094 		while (unlikely(hash >= dev->real_num_tx_queues))
2095 			hash -= dev->real_num_tx_queues;
2096 		return hash;
2097 	}
2098 
2099 	if (skb->sk && skb->sk->sk_hash)
2100 		hash = skb->sk->sk_hash;
2101 	else
2102 		hash = (__force u16) skb->protocol ^ skb->rxhash;
2103 	hash = jhash_1word(hash, hashrnd);
2104 
2105 	return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
2106 }
2107 EXPORT_SYMBOL(skb_tx_hash);
2108 
2109 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
2110 {
2111 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2112 		if (net_ratelimit()) {
2113 			pr_warning("%s selects TX queue %d, but "
2114 				"real number of TX queues is %d\n",
2115 				dev->name, queue_index, dev->real_num_tx_queues);
2116 		}
2117 		return 0;
2118 	}
2119 	return queue_index;
2120 }
2121 
2122 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
2123 					struct sk_buff *skb)
2124 {
2125 	int queue_index;
2126 	const struct net_device_ops *ops = dev->netdev_ops;
2127 
2128 	if (ops->ndo_select_queue) {
2129 		queue_index = ops->ndo_select_queue(dev, skb);
2130 		queue_index = dev_cap_txqueue(dev, queue_index);
2131 	} else {
2132 		struct sock *sk = skb->sk;
2133 		queue_index = sk_tx_queue_get(sk);
2134 		if (queue_index < 0 || queue_index >= dev->real_num_tx_queues) {
2135 
2136 			queue_index = 0;
2137 			if (dev->real_num_tx_queues > 1)
2138 				queue_index = skb_tx_hash(dev, skb);
2139 
2140 			if (sk) {
2141 				struct dst_entry *dst = rcu_dereference_check(sk->sk_dst_cache, 1);
2142 
2143 				if (dst && skb_dst(skb) == dst)
2144 					sk_tx_queue_set(sk, queue_index);
2145 			}
2146 		}
2147 	}
2148 
2149 	skb_set_queue_mapping(skb, queue_index);
2150 	return netdev_get_tx_queue(dev, queue_index);
2151 }
2152 
2153 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2154 				 struct net_device *dev,
2155 				 struct netdev_queue *txq)
2156 {
2157 	spinlock_t *root_lock = qdisc_lock(q);
2158 	bool contended = qdisc_is_running(q);
2159 	int rc;
2160 
2161 	/*
2162 	 * Heuristic to force contended enqueues to serialize on a
2163 	 * separate lock before trying to get qdisc main lock.
2164 	 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2165 	 * and dequeue packets faster.
2166 	 */
2167 	if (unlikely(contended))
2168 		spin_lock(&q->busylock);
2169 
2170 	spin_lock(root_lock);
2171 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2172 		kfree_skb(skb);
2173 		rc = NET_XMIT_DROP;
2174 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2175 		   qdisc_run_begin(q)) {
2176 		/*
2177 		 * This is a work-conserving queue; there are no old skbs
2178 		 * waiting to be sent out; and the qdisc is not running -
2179 		 * xmit the skb directly.
2180 		 */
2181 		if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2182 			skb_dst_force(skb);
2183 		__qdisc_update_bstats(q, skb->len);
2184 		if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2185 			if (unlikely(contended)) {
2186 				spin_unlock(&q->busylock);
2187 				contended = false;
2188 			}
2189 			__qdisc_run(q);
2190 		} else
2191 			qdisc_run_end(q);
2192 
2193 		rc = NET_XMIT_SUCCESS;
2194 	} else {
2195 		skb_dst_force(skb);
2196 		rc = qdisc_enqueue_root(skb, q);
2197 		if (qdisc_run_begin(q)) {
2198 			if (unlikely(contended)) {
2199 				spin_unlock(&q->busylock);
2200 				contended = false;
2201 			}
2202 			__qdisc_run(q);
2203 		}
2204 	}
2205 	spin_unlock(root_lock);
2206 	if (unlikely(contended))
2207 		spin_unlock(&q->busylock);
2208 	return rc;
2209 }
2210 
2211 static DEFINE_PER_CPU(int, xmit_recursion);
2212 #define RECURSION_LIMIT 10
2213 
2214 /**
2215  *	dev_queue_xmit - transmit a buffer
2216  *	@skb: buffer to transmit
2217  *
2218  *	Queue a buffer for transmission to a network device. The caller must
2219  *	have set the device and priority and built the buffer before calling
2220  *	this function. The function can be called from an interrupt.
2221  *
2222  *	A negative errno code is returned on a failure. A success does not
2223  *	guarantee the frame will be transmitted as it may be dropped due
2224  *	to congestion or traffic shaping.
2225  *
2226  * -----------------------------------------------------------------------------------
2227  *      I notice this method can also return errors from the queue disciplines,
2228  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
2229  *      be positive.
2230  *
2231  *      Regardless of the return value, the skb is consumed, so it is currently
2232  *      difficult to retry a send to this method.  (You can bump the ref count
2233  *      before sending to hold a reference for retry if you are careful.)
2234  *
2235  *      When calling this method, interrupts MUST be enabled.  This is because
2236  *      the BH enable code must have IRQs enabled so that it will not deadlock.
2237  *          --BLG
2238  */
2239 int dev_queue_xmit(struct sk_buff *skb)
2240 {
2241 	struct net_device *dev = skb->dev;
2242 	struct netdev_queue *txq;
2243 	struct Qdisc *q;
2244 	int rc = -ENOMEM;
2245 
2246 	/* Disable soft irqs for various locks below. Also
2247 	 * stops preemption for RCU.
2248 	 */
2249 	rcu_read_lock_bh();
2250 
2251 	txq = dev_pick_tx(dev, skb);
2252 	q = rcu_dereference_bh(txq->qdisc);
2253 
2254 #ifdef CONFIG_NET_CLS_ACT
2255 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2256 #endif
2257 	trace_net_dev_queue(skb);
2258 	if (q->enqueue) {
2259 		rc = __dev_xmit_skb(skb, q, dev, txq);
2260 		goto out;
2261 	}
2262 
2263 	/* The device has no queue. Common case for software devices:
2264 	   loopback, all the sorts of tunnels...
2265 
2266 	   Really, it is unlikely that netif_tx_lock protection is necessary
2267 	   here.  (f.e. loopback and IP tunnels are clean ignoring statistics
2268 	   counters.)
2269 	   However, it is possible, that they rely on protection
2270 	   made by us here.
2271 
2272 	   Check this and shot the lock. It is not prone from deadlocks.
2273 	   Either shot noqueue qdisc, it is even simpler 8)
2274 	 */
2275 	if (dev->flags & IFF_UP) {
2276 		int cpu = smp_processor_id(); /* ok because BHs are off */
2277 
2278 		if (txq->xmit_lock_owner != cpu) {
2279 
2280 			if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2281 				goto recursion_alert;
2282 
2283 			HARD_TX_LOCK(dev, txq, cpu);
2284 
2285 			if (!netif_tx_queue_stopped(txq)) {
2286 				__this_cpu_inc(xmit_recursion);
2287 				rc = dev_hard_start_xmit(skb, dev, txq);
2288 				__this_cpu_dec(xmit_recursion);
2289 				if (dev_xmit_complete(rc)) {
2290 					HARD_TX_UNLOCK(dev, txq);
2291 					goto out;
2292 				}
2293 			}
2294 			HARD_TX_UNLOCK(dev, txq);
2295 			if (net_ratelimit())
2296 				printk(KERN_CRIT "Virtual device %s asks to "
2297 				       "queue packet!\n", dev->name);
2298 		} else {
2299 			/* Recursion is detected! It is possible,
2300 			 * unfortunately
2301 			 */
2302 recursion_alert:
2303 			if (net_ratelimit())
2304 				printk(KERN_CRIT "Dead loop on virtual device "
2305 				       "%s, fix it urgently!\n", dev->name);
2306 		}
2307 	}
2308 
2309 	rc = -ENETDOWN;
2310 	rcu_read_unlock_bh();
2311 
2312 	kfree_skb(skb);
2313 	return rc;
2314 out:
2315 	rcu_read_unlock_bh();
2316 	return rc;
2317 }
2318 EXPORT_SYMBOL(dev_queue_xmit);
2319 
2320 
2321 /*=======================================================================
2322 			Receiver routines
2323   =======================================================================*/
2324 
2325 int netdev_max_backlog __read_mostly = 1000;
2326 int netdev_tstamp_prequeue __read_mostly = 1;
2327 int netdev_budget __read_mostly = 300;
2328 int weight_p __read_mostly = 64;            /* old backlog weight */
2329 
2330 /* Called with irq disabled */
2331 static inline void ____napi_schedule(struct softnet_data *sd,
2332 				     struct napi_struct *napi)
2333 {
2334 	list_add_tail(&napi->poll_list, &sd->poll_list);
2335 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
2336 }
2337 
2338 /*
2339  * __skb_get_rxhash: calculate a flow hash based on src/dst addresses
2340  * and src/dst port numbers. Returns a non-zero hash number on success
2341  * and 0 on failure.
2342  */
2343 __u32 __skb_get_rxhash(struct sk_buff *skb)
2344 {
2345 	int nhoff, hash = 0, poff;
2346 	struct ipv6hdr *ip6;
2347 	struct iphdr *ip;
2348 	u8 ip_proto;
2349 	u32 addr1, addr2, ihl;
2350 	union {
2351 		u32 v32;
2352 		u16 v16[2];
2353 	} ports;
2354 
2355 	nhoff = skb_network_offset(skb);
2356 
2357 	switch (skb->protocol) {
2358 	case __constant_htons(ETH_P_IP):
2359 		if (!pskb_may_pull(skb, sizeof(*ip) + nhoff))
2360 			goto done;
2361 
2362 		ip = (struct iphdr *) (skb->data + nhoff);
2363 		if (ip->frag_off & htons(IP_MF | IP_OFFSET))
2364 			ip_proto = 0;
2365 		else
2366 			ip_proto = ip->protocol;
2367 		addr1 = (__force u32) ip->saddr;
2368 		addr2 = (__force u32) ip->daddr;
2369 		ihl = ip->ihl;
2370 		break;
2371 	case __constant_htons(ETH_P_IPV6):
2372 		if (!pskb_may_pull(skb, sizeof(*ip6) + nhoff))
2373 			goto done;
2374 
2375 		ip6 = (struct ipv6hdr *) (skb->data + nhoff);
2376 		ip_proto = ip6->nexthdr;
2377 		addr1 = (__force u32) ip6->saddr.s6_addr32[3];
2378 		addr2 = (__force u32) ip6->daddr.s6_addr32[3];
2379 		ihl = (40 >> 2);
2380 		break;
2381 	default:
2382 		goto done;
2383 	}
2384 
2385 	ports.v32 = 0;
2386 	poff = proto_ports_offset(ip_proto);
2387 	if (poff >= 0) {
2388 		nhoff += ihl * 4 + poff;
2389 		if (pskb_may_pull(skb, nhoff + 4)) {
2390 			ports.v32 = * (__force u32 *) (skb->data + nhoff);
2391 			if (ports.v16[1] < ports.v16[0])
2392 				swap(ports.v16[0], ports.v16[1]);
2393 		}
2394 	}
2395 
2396 	/* get a consistent hash (same value on both flow directions) */
2397 	if (addr2 < addr1)
2398 		swap(addr1, addr2);
2399 
2400 	hash = jhash_3words(addr1, addr2, ports.v32, hashrnd);
2401 	if (!hash)
2402 		hash = 1;
2403 
2404 done:
2405 	return hash;
2406 }
2407 EXPORT_SYMBOL(__skb_get_rxhash);
2408 
2409 #ifdef CONFIG_RPS
2410 
2411 /* One global table that all flow-based protocols share. */
2412 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2413 EXPORT_SYMBOL(rps_sock_flow_table);
2414 
2415 /*
2416  * get_rps_cpu is called from netif_receive_skb and returns the target
2417  * CPU from the RPS map of the receiving queue for a given skb.
2418  * rcu_read_lock must be held on entry.
2419  */
2420 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2421 		       struct rps_dev_flow **rflowp)
2422 {
2423 	struct netdev_rx_queue *rxqueue;
2424 	struct rps_map *map;
2425 	struct rps_dev_flow_table *flow_table;
2426 	struct rps_sock_flow_table *sock_flow_table;
2427 	int cpu = -1;
2428 	u16 tcpu;
2429 
2430 	if (skb_rx_queue_recorded(skb)) {
2431 		u16 index = skb_get_rx_queue(skb);
2432 		if (unlikely(index >= dev->real_num_rx_queues)) {
2433 			WARN_ONCE(dev->real_num_rx_queues > 1,
2434 				  "%s received packet on queue %u, but number "
2435 				  "of RX queues is %u\n",
2436 				  dev->name, index, dev->real_num_rx_queues);
2437 			goto done;
2438 		}
2439 		rxqueue = dev->_rx + index;
2440 	} else
2441 		rxqueue = dev->_rx;
2442 
2443 	map = rcu_dereference(rxqueue->rps_map);
2444 	if (map) {
2445 		if (map->len == 1) {
2446 			tcpu = map->cpus[0];
2447 			if (cpu_online(tcpu))
2448 				cpu = tcpu;
2449 			goto done;
2450 		}
2451 	} else if (!rcu_dereference_raw(rxqueue->rps_flow_table)) {
2452 		goto done;
2453 	}
2454 
2455 	skb_reset_network_header(skb);
2456 	if (!skb_get_rxhash(skb))
2457 		goto done;
2458 
2459 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
2460 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
2461 	if (flow_table && sock_flow_table) {
2462 		u16 next_cpu;
2463 		struct rps_dev_flow *rflow;
2464 
2465 		rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2466 		tcpu = rflow->cpu;
2467 
2468 		next_cpu = sock_flow_table->ents[skb->rxhash &
2469 		    sock_flow_table->mask];
2470 
2471 		/*
2472 		 * If the desired CPU (where last recvmsg was done) is
2473 		 * different from current CPU (one in the rx-queue flow
2474 		 * table entry), switch if one of the following holds:
2475 		 *   - Current CPU is unset (equal to RPS_NO_CPU).
2476 		 *   - Current CPU is offline.
2477 		 *   - The current CPU's queue tail has advanced beyond the
2478 		 *     last packet that was enqueued using this table entry.
2479 		 *     This guarantees that all previous packets for the flow
2480 		 *     have been dequeued, thus preserving in order delivery.
2481 		 */
2482 		if (unlikely(tcpu != next_cpu) &&
2483 		    (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2484 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2485 		      rflow->last_qtail)) >= 0)) {
2486 			tcpu = rflow->cpu = next_cpu;
2487 			if (tcpu != RPS_NO_CPU)
2488 				rflow->last_qtail = per_cpu(softnet_data,
2489 				    tcpu).input_queue_head;
2490 		}
2491 		if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2492 			*rflowp = rflow;
2493 			cpu = tcpu;
2494 			goto done;
2495 		}
2496 	}
2497 
2498 	if (map) {
2499 		tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2500 
2501 		if (cpu_online(tcpu)) {
2502 			cpu = tcpu;
2503 			goto done;
2504 		}
2505 	}
2506 
2507 done:
2508 	return cpu;
2509 }
2510 
2511 /* Called from hardirq (IPI) context */
2512 static void rps_trigger_softirq(void *data)
2513 {
2514 	struct softnet_data *sd = data;
2515 
2516 	____napi_schedule(sd, &sd->backlog);
2517 	sd->received_rps++;
2518 }
2519 
2520 #endif /* CONFIG_RPS */
2521 
2522 /*
2523  * Check if this softnet_data structure is another cpu one
2524  * If yes, queue it to our IPI list and return 1
2525  * If no, return 0
2526  */
2527 static int rps_ipi_queued(struct softnet_data *sd)
2528 {
2529 #ifdef CONFIG_RPS
2530 	struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2531 
2532 	if (sd != mysd) {
2533 		sd->rps_ipi_next = mysd->rps_ipi_list;
2534 		mysd->rps_ipi_list = sd;
2535 
2536 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
2537 		return 1;
2538 	}
2539 #endif /* CONFIG_RPS */
2540 	return 0;
2541 }
2542 
2543 /*
2544  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2545  * queue (may be a remote CPU queue).
2546  */
2547 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2548 			      unsigned int *qtail)
2549 {
2550 	struct softnet_data *sd;
2551 	unsigned long flags;
2552 
2553 	sd = &per_cpu(softnet_data, cpu);
2554 
2555 	local_irq_save(flags);
2556 
2557 	rps_lock(sd);
2558 	if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2559 		if (skb_queue_len(&sd->input_pkt_queue)) {
2560 enqueue:
2561 			__skb_queue_tail(&sd->input_pkt_queue, skb);
2562 			input_queue_tail_incr_save(sd, qtail);
2563 			rps_unlock(sd);
2564 			local_irq_restore(flags);
2565 			return NET_RX_SUCCESS;
2566 		}
2567 
2568 		/* Schedule NAPI for backlog device
2569 		 * We can use non atomic operation since we own the queue lock
2570 		 */
2571 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2572 			if (!rps_ipi_queued(sd))
2573 				____napi_schedule(sd, &sd->backlog);
2574 		}
2575 		goto enqueue;
2576 	}
2577 
2578 	sd->dropped++;
2579 	rps_unlock(sd);
2580 
2581 	local_irq_restore(flags);
2582 
2583 	atomic_long_inc(&skb->dev->rx_dropped);
2584 	kfree_skb(skb);
2585 	return NET_RX_DROP;
2586 }
2587 
2588 /**
2589  *	netif_rx	-	post buffer to the network code
2590  *	@skb: buffer to post
2591  *
2592  *	This function receives a packet from a device driver and queues it for
2593  *	the upper (protocol) levels to process.  It always succeeds. The buffer
2594  *	may be dropped during processing for congestion control or by the
2595  *	protocol layers.
2596  *
2597  *	return values:
2598  *	NET_RX_SUCCESS	(no congestion)
2599  *	NET_RX_DROP     (packet was dropped)
2600  *
2601  */
2602 
2603 int netif_rx(struct sk_buff *skb)
2604 {
2605 	int ret;
2606 
2607 	/* if netpoll wants it, pretend we never saw it */
2608 	if (netpoll_rx(skb))
2609 		return NET_RX_DROP;
2610 
2611 	if (netdev_tstamp_prequeue)
2612 		net_timestamp_check(skb);
2613 
2614 	trace_netif_rx(skb);
2615 #ifdef CONFIG_RPS
2616 	{
2617 		struct rps_dev_flow voidflow, *rflow = &voidflow;
2618 		int cpu;
2619 
2620 		preempt_disable();
2621 		rcu_read_lock();
2622 
2623 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
2624 		if (cpu < 0)
2625 			cpu = smp_processor_id();
2626 
2627 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2628 
2629 		rcu_read_unlock();
2630 		preempt_enable();
2631 	}
2632 #else
2633 	{
2634 		unsigned int qtail;
2635 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
2636 		put_cpu();
2637 	}
2638 #endif
2639 	return ret;
2640 }
2641 EXPORT_SYMBOL(netif_rx);
2642 
2643 int netif_rx_ni(struct sk_buff *skb)
2644 {
2645 	int err;
2646 
2647 	preempt_disable();
2648 	err = netif_rx(skb);
2649 	if (local_softirq_pending())
2650 		do_softirq();
2651 	preempt_enable();
2652 
2653 	return err;
2654 }
2655 EXPORT_SYMBOL(netif_rx_ni);
2656 
2657 static void net_tx_action(struct softirq_action *h)
2658 {
2659 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
2660 
2661 	if (sd->completion_queue) {
2662 		struct sk_buff *clist;
2663 
2664 		local_irq_disable();
2665 		clist = sd->completion_queue;
2666 		sd->completion_queue = NULL;
2667 		local_irq_enable();
2668 
2669 		while (clist) {
2670 			struct sk_buff *skb = clist;
2671 			clist = clist->next;
2672 
2673 			WARN_ON(atomic_read(&skb->users));
2674 			trace_kfree_skb(skb, net_tx_action);
2675 			__kfree_skb(skb);
2676 		}
2677 	}
2678 
2679 	if (sd->output_queue) {
2680 		struct Qdisc *head;
2681 
2682 		local_irq_disable();
2683 		head = sd->output_queue;
2684 		sd->output_queue = NULL;
2685 		sd->output_queue_tailp = &sd->output_queue;
2686 		local_irq_enable();
2687 
2688 		while (head) {
2689 			struct Qdisc *q = head;
2690 			spinlock_t *root_lock;
2691 
2692 			head = head->next_sched;
2693 
2694 			root_lock = qdisc_lock(q);
2695 			if (spin_trylock(root_lock)) {
2696 				smp_mb__before_clear_bit();
2697 				clear_bit(__QDISC_STATE_SCHED,
2698 					  &q->state);
2699 				qdisc_run(q);
2700 				spin_unlock(root_lock);
2701 			} else {
2702 				if (!test_bit(__QDISC_STATE_DEACTIVATED,
2703 					      &q->state)) {
2704 					__netif_reschedule(q);
2705 				} else {
2706 					smp_mb__before_clear_bit();
2707 					clear_bit(__QDISC_STATE_SCHED,
2708 						  &q->state);
2709 				}
2710 			}
2711 		}
2712 	}
2713 }
2714 
2715 static inline int deliver_skb(struct sk_buff *skb,
2716 			      struct packet_type *pt_prev,
2717 			      struct net_device *orig_dev)
2718 {
2719 	atomic_inc(&skb->users);
2720 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2721 }
2722 
2723 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
2724     (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
2725 /* This hook is defined here for ATM LANE */
2726 int (*br_fdb_test_addr_hook)(struct net_device *dev,
2727 			     unsigned char *addr) __read_mostly;
2728 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
2729 #endif
2730 
2731 #ifdef CONFIG_NET_CLS_ACT
2732 /* TODO: Maybe we should just force sch_ingress to be compiled in
2733  * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2734  * a compare and 2 stores extra right now if we dont have it on
2735  * but have CONFIG_NET_CLS_ACT
2736  * NOTE: This doesnt stop any functionality; if you dont have
2737  * the ingress scheduler, you just cant add policies on ingress.
2738  *
2739  */
2740 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
2741 {
2742 	struct net_device *dev = skb->dev;
2743 	u32 ttl = G_TC_RTTL(skb->tc_verd);
2744 	int result = TC_ACT_OK;
2745 	struct Qdisc *q;
2746 
2747 	if (unlikely(MAX_RED_LOOP < ttl++)) {
2748 		if (net_ratelimit())
2749 			pr_warning( "Redir loop detected Dropping packet (%d->%d)\n",
2750 			       skb->skb_iif, dev->ifindex);
2751 		return TC_ACT_SHOT;
2752 	}
2753 
2754 	skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2755 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2756 
2757 	q = rxq->qdisc;
2758 	if (q != &noop_qdisc) {
2759 		spin_lock(qdisc_lock(q));
2760 		if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2761 			result = qdisc_enqueue_root(skb, q);
2762 		spin_unlock(qdisc_lock(q));
2763 	}
2764 
2765 	return result;
2766 }
2767 
2768 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2769 					 struct packet_type **pt_prev,
2770 					 int *ret, struct net_device *orig_dev)
2771 {
2772 	struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
2773 
2774 	if (!rxq || rxq->qdisc == &noop_qdisc)
2775 		goto out;
2776 
2777 	if (*pt_prev) {
2778 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
2779 		*pt_prev = NULL;
2780 	}
2781 
2782 	switch (ing_filter(skb, rxq)) {
2783 	case TC_ACT_SHOT:
2784 	case TC_ACT_STOLEN:
2785 		kfree_skb(skb);
2786 		return NULL;
2787 	}
2788 
2789 out:
2790 	skb->tc_verd = 0;
2791 	return skb;
2792 }
2793 #endif
2794 
2795 /**
2796  *	netdev_rx_handler_register - register receive handler
2797  *	@dev: device to register a handler for
2798  *	@rx_handler: receive handler to register
2799  *	@rx_handler_data: data pointer that is used by rx handler
2800  *
2801  *	Register a receive hander for a device. This handler will then be
2802  *	called from __netif_receive_skb. A negative errno code is returned
2803  *	on a failure.
2804  *
2805  *	The caller must hold the rtnl_mutex.
2806  */
2807 int netdev_rx_handler_register(struct net_device *dev,
2808 			       rx_handler_func_t *rx_handler,
2809 			       void *rx_handler_data)
2810 {
2811 	ASSERT_RTNL();
2812 
2813 	if (dev->rx_handler)
2814 		return -EBUSY;
2815 
2816 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
2817 	rcu_assign_pointer(dev->rx_handler, rx_handler);
2818 
2819 	return 0;
2820 }
2821 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
2822 
2823 /**
2824  *	netdev_rx_handler_unregister - unregister receive handler
2825  *	@dev: device to unregister a handler from
2826  *
2827  *	Unregister a receive hander from a device.
2828  *
2829  *	The caller must hold the rtnl_mutex.
2830  */
2831 void netdev_rx_handler_unregister(struct net_device *dev)
2832 {
2833 
2834 	ASSERT_RTNL();
2835 	rcu_assign_pointer(dev->rx_handler, NULL);
2836 	rcu_assign_pointer(dev->rx_handler_data, NULL);
2837 }
2838 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
2839 
2840 static inline void skb_bond_set_mac_by_master(struct sk_buff *skb,
2841 					      struct net_device *master)
2842 {
2843 	if (skb->pkt_type == PACKET_HOST) {
2844 		u16 *dest = (u16 *) eth_hdr(skb)->h_dest;
2845 
2846 		memcpy(dest, master->dev_addr, ETH_ALEN);
2847 	}
2848 }
2849 
2850 /* On bonding slaves other than the currently active slave, suppress
2851  * duplicates except for 802.3ad ETH_P_SLOW, alb non-mcast/bcast, and
2852  * ARP on active-backup slaves with arp_validate enabled.
2853  */
2854 int __skb_bond_should_drop(struct sk_buff *skb, struct net_device *master)
2855 {
2856 	struct net_device *dev = skb->dev;
2857 
2858 	if (master->priv_flags & IFF_MASTER_ARPMON)
2859 		dev->last_rx = jiffies;
2860 
2861 	if ((master->priv_flags & IFF_MASTER_ALB) &&
2862 	    (master->priv_flags & IFF_BRIDGE_PORT)) {
2863 		/* Do address unmangle. The local destination address
2864 		 * will be always the one master has. Provides the right
2865 		 * functionality in a bridge.
2866 		 */
2867 		skb_bond_set_mac_by_master(skb, master);
2868 	}
2869 
2870 	if (dev->priv_flags & IFF_SLAVE_INACTIVE) {
2871 		if ((dev->priv_flags & IFF_SLAVE_NEEDARP) &&
2872 		    skb->protocol == __cpu_to_be16(ETH_P_ARP))
2873 			return 0;
2874 
2875 		if (master->priv_flags & IFF_MASTER_ALB) {
2876 			if (skb->pkt_type != PACKET_BROADCAST &&
2877 			    skb->pkt_type != PACKET_MULTICAST)
2878 				return 0;
2879 		}
2880 		if (master->priv_flags & IFF_MASTER_8023AD &&
2881 		    skb->protocol == __cpu_to_be16(ETH_P_SLOW))
2882 			return 0;
2883 
2884 		return 1;
2885 	}
2886 	return 0;
2887 }
2888 EXPORT_SYMBOL(__skb_bond_should_drop);
2889 
2890 static int __netif_receive_skb(struct sk_buff *skb)
2891 {
2892 	struct packet_type *ptype, *pt_prev;
2893 	rx_handler_func_t *rx_handler;
2894 	struct net_device *orig_dev;
2895 	struct net_device *master;
2896 	struct net_device *null_or_orig;
2897 	struct net_device *orig_or_bond;
2898 	int ret = NET_RX_DROP;
2899 	__be16 type;
2900 
2901 	if (!netdev_tstamp_prequeue)
2902 		net_timestamp_check(skb);
2903 
2904 	trace_netif_receive_skb(skb);
2905 
2906 	/* if we've gotten here through NAPI, check netpoll */
2907 	if (netpoll_receive_skb(skb))
2908 		return NET_RX_DROP;
2909 
2910 	if (!skb->skb_iif)
2911 		skb->skb_iif = skb->dev->ifindex;
2912 
2913 	/*
2914 	 * bonding note: skbs received on inactive slaves should only
2915 	 * be delivered to pkt handlers that are exact matches.  Also
2916 	 * the deliver_no_wcard flag will be set.  If packet handlers
2917 	 * are sensitive to duplicate packets these skbs will need to
2918 	 * be dropped at the handler.
2919 	 */
2920 	null_or_orig = NULL;
2921 	orig_dev = skb->dev;
2922 	master = ACCESS_ONCE(orig_dev->master);
2923 	if (skb->deliver_no_wcard)
2924 		null_or_orig = orig_dev;
2925 	else if (master) {
2926 		if (skb_bond_should_drop(skb, master)) {
2927 			skb->deliver_no_wcard = 1;
2928 			null_or_orig = orig_dev; /* deliver only exact match */
2929 		} else
2930 			skb->dev = master;
2931 	}
2932 
2933 	__this_cpu_inc(softnet_data.processed);
2934 	skb_reset_network_header(skb);
2935 	skb_reset_transport_header(skb);
2936 	skb->mac_len = skb->network_header - skb->mac_header;
2937 
2938 	pt_prev = NULL;
2939 
2940 	rcu_read_lock();
2941 
2942 #ifdef CONFIG_NET_CLS_ACT
2943 	if (skb->tc_verd & TC_NCLS) {
2944 		skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2945 		goto ncls;
2946 	}
2947 #endif
2948 
2949 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
2950 		if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2951 		    ptype->dev == orig_dev) {
2952 			if (pt_prev)
2953 				ret = deliver_skb(skb, pt_prev, orig_dev);
2954 			pt_prev = ptype;
2955 		}
2956 	}
2957 
2958 #ifdef CONFIG_NET_CLS_ACT
2959 	skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2960 	if (!skb)
2961 		goto out;
2962 ncls:
2963 #endif
2964 
2965 	/* Handle special case of bridge or macvlan */
2966 	rx_handler = rcu_dereference(skb->dev->rx_handler);
2967 	if (rx_handler) {
2968 		if (pt_prev) {
2969 			ret = deliver_skb(skb, pt_prev, orig_dev);
2970 			pt_prev = NULL;
2971 		}
2972 		skb = rx_handler(skb);
2973 		if (!skb)
2974 			goto out;
2975 	}
2976 
2977 	if (vlan_tx_tag_present(skb)) {
2978 		if (pt_prev) {
2979 			ret = deliver_skb(skb, pt_prev, orig_dev);
2980 			pt_prev = NULL;
2981 		}
2982 		if (vlan_hwaccel_do_receive(&skb)) {
2983 			ret = __netif_receive_skb(skb);
2984 			goto out;
2985 		} else if (unlikely(!skb))
2986 			goto out;
2987 	}
2988 
2989 	/*
2990 	 * Make sure frames received on VLAN interfaces stacked on
2991 	 * bonding interfaces still make their way to any base bonding
2992 	 * device that may have registered for a specific ptype.  The
2993 	 * handler may have to adjust skb->dev and orig_dev.
2994 	 */
2995 	orig_or_bond = orig_dev;
2996 	if ((skb->dev->priv_flags & IFF_802_1Q_VLAN) &&
2997 	    (vlan_dev_real_dev(skb->dev)->priv_flags & IFF_BONDING)) {
2998 		orig_or_bond = vlan_dev_real_dev(skb->dev);
2999 	}
3000 
3001 	type = skb->protocol;
3002 	list_for_each_entry_rcu(ptype,
3003 			&ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3004 		if (ptype->type == type && (ptype->dev == null_or_orig ||
3005 		     ptype->dev == skb->dev || ptype->dev == orig_dev ||
3006 		     ptype->dev == orig_or_bond)) {
3007 			if (pt_prev)
3008 				ret = deliver_skb(skb, pt_prev, orig_dev);
3009 			pt_prev = ptype;
3010 		}
3011 	}
3012 
3013 	if (pt_prev) {
3014 		ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3015 	} else {
3016 		atomic_long_inc(&skb->dev->rx_dropped);
3017 		kfree_skb(skb);
3018 		/* Jamal, now you will not able to escape explaining
3019 		 * me how you were going to use this. :-)
3020 		 */
3021 		ret = NET_RX_DROP;
3022 	}
3023 
3024 out:
3025 	rcu_read_unlock();
3026 	return ret;
3027 }
3028 
3029 /**
3030  *	netif_receive_skb - process receive buffer from network
3031  *	@skb: buffer to process
3032  *
3033  *	netif_receive_skb() is the main receive data processing function.
3034  *	It always succeeds. The buffer may be dropped during processing
3035  *	for congestion control or by the protocol layers.
3036  *
3037  *	This function may only be called from softirq context and interrupts
3038  *	should be enabled.
3039  *
3040  *	Return values (usually ignored):
3041  *	NET_RX_SUCCESS: no congestion
3042  *	NET_RX_DROP: packet was dropped
3043  */
3044 int netif_receive_skb(struct sk_buff *skb)
3045 {
3046 	if (netdev_tstamp_prequeue)
3047 		net_timestamp_check(skb);
3048 
3049 	if (skb_defer_rx_timestamp(skb))
3050 		return NET_RX_SUCCESS;
3051 
3052 #ifdef CONFIG_RPS
3053 	{
3054 		struct rps_dev_flow voidflow, *rflow = &voidflow;
3055 		int cpu, ret;
3056 
3057 		rcu_read_lock();
3058 
3059 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
3060 
3061 		if (cpu >= 0) {
3062 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3063 			rcu_read_unlock();
3064 		} else {
3065 			rcu_read_unlock();
3066 			ret = __netif_receive_skb(skb);
3067 		}
3068 
3069 		return ret;
3070 	}
3071 #else
3072 	return __netif_receive_skb(skb);
3073 #endif
3074 }
3075 EXPORT_SYMBOL(netif_receive_skb);
3076 
3077 /* Network device is going away, flush any packets still pending
3078  * Called with irqs disabled.
3079  */
3080 static void flush_backlog(void *arg)
3081 {
3082 	struct net_device *dev = arg;
3083 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
3084 	struct sk_buff *skb, *tmp;
3085 
3086 	rps_lock(sd);
3087 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3088 		if (skb->dev == dev) {
3089 			__skb_unlink(skb, &sd->input_pkt_queue);
3090 			kfree_skb(skb);
3091 			input_queue_head_incr(sd);
3092 		}
3093 	}
3094 	rps_unlock(sd);
3095 
3096 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3097 		if (skb->dev == dev) {
3098 			__skb_unlink(skb, &sd->process_queue);
3099 			kfree_skb(skb);
3100 			input_queue_head_incr(sd);
3101 		}
3102 	}
3103 }
3104 
3105 static int napi_gro_complete(struct sk_buff *skb)
3106 {
3107 	struct packet_type *ptype;
3108 	__be16 type = skb->protocol;
3109 	struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3110 	int err = -ENOENT;
3111 
3112 	if (NAPI_GRO_CB(skb)->count == 1) {
3113 		skb_shinfo(skb)->gso_size = 0;
3114 		goto out;
3115 	}
3116 
3117 	rcu_read_lock();
3118 	list_for_each_entry_rcu(ptype, head, list) {
3119 		if (ptype->type != type || ptype->dev || !ptype->gro_complete)
3120 			continue;
3121 
3122 		err = ptype->gro_complete(skb);
3123 		break;
3124 	}
3125 	rcu_read_unlock();
3126 
3127 	if (err) {
3128 		WARN_ON(&ptype->list == head);
3129 		kfree_skb(skb);
3130 		return NET_RX_SUCCESS;
3131 	}
3132 
3133 out:
3134 	return netif_receive_skb(skb);
3135 }
3136 
3137 inline void napi_gro_flush(struct napi_struct *napi)
3138 {
3139 	struct sk_buff *skb, *next;
3140 
3141 	for (skb = napi->gro_list; skb; skb = next) {
3142 		next = skb->next;
3143 		skb->next = NULL;
3144 		napi_gro_complete(skb);
3145 	}
3146 
3147 	napi->gro_count = 0;
3148 	napi->gro_list = NULL;
3149 }
3150 EXPORT_SYMBOL(napi_gro_flush);
3151 
3152 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3153 {
3154 	struct sk_buff **pp = NULL;
3155 	struct packet_type *ptype;
3156 	__be16 type = skb->protocol;
3157 	struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3158 	int same_flow;
3159 	int mac_len;
3160 	enum gro_result ret;
3161 
3162 	if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3163 		goto normal;
3164 
3165 	if (skb_is_gso(skb) || skb_has_frag_list(skb))
3166 		goto normal;
3167 
3168 	rcu_read_lock();
3169 	list_for_each_entry_rcu(ptype, head, list) {
3170 		if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3171 			continue;
3172 
3173 		skb_set_network_header(skb, skb_gro_offset(skb));
3174 		mac_len = skb->network_header - skb->mac_header;
3175 		skb->mac_len = mac_len;
3176 		NAPI_GRO_CB(skb)->same_flow = 0;
3177 		NAPI_GRO_CB(skb)->flush = 0;
3178 		NAPI_GRO_CB(skb)->free = 0;
3179 
3180 		pp = ptype->gro_receive(&napi->gro_list, skb);
3181 		break;
3182 	}
3183 	rcu_read_unlock();
3184 
3185 	if (&ptype->list == head)
3186 		goto normal;
3187 
3188 	same_flow = NAPI_GRO_CB(skb)->same_flow;
3189 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3190 
3191 	if (pp) {
3192 		struct sk_buff *nskb = *pp;
3193 
3194 		*pp = nskb->next;
3195 		nskb->next = NULL;
3196 		napi_gro_complete(nskb);
3197 		napi->gro_count--;
3198 	}
3199 
3200 	if (same_flow)
3201 		goto ok;
3202 
3203 	if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3204 		goto normal;
3205 
3206 	napi->gro_count++;
3207 	NAPI_GRO_CB(skb)->count = 1;
3208 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3209 	skb->next = napi->gro_list;
3210 	napi->gro_list = skb;
3211 	ret = GRO_HELD;
3212 
3213 pull:
3214 	if (skb_headlen(skb) < skb_gro_offset(skb)) {
3215 		int grow = skb_gro_offset(skb) - skb_headlen(skb);
3216 
3217 		BUG_ON(skb->end - skb->tail < grow);
3218 
3219 		memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3220 
3221 		skb->tail += grow;
3222 		skb->data_len -= grow;
3223 
3224 		skb_shinfo(skb)->frags[0].page_offset += grow;
3225 		skb_shinfo(skb)->frags[0].size -= grow;
3226 
3227 		if (unlikely(!skb_shinfo(skb)->frags[0].size)) {
3228 			put_page(skb_shinfo(skb)->frags[0].page);
3229 			memmove(skb_shinfo(skb)->frags,
3230 				skb_shinfo(skb)->frags + 1,
3231 				--skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3232 		}
3233 	}
3234 
3235 ok:
3236 	return ret;
3237 
3238 normal:
3239 	ret = GRO_NORMAL;
3240 	goto pull;
3241 }
3242 EXPORT_SYMBOL(dev_gro_receive);
3243 
3244 static inline gro_result_t
3245 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3246 {
3247 	struct sk_buff *p;
3248 
3249 	for (p = napi->gro_list; p; p = p->next) {
3250 		unsigned long diffs;
3251 
3252 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3253 		diffs |= p->vlan_tci ^ skb->vlan_tci;
3254 		diffs |= compare_ether_header(skb_mac_header(p),
3255 					      skb_gro_mac_header(skb));
3256 		NAPI_GRO_CB(p)->same_flow = !diffs;
3257 		NAPI_GRO_CB(p)->flush = 0;
3258 	}
3259 
3260 	return dev_gro_receive(napi, skb);
3261 }
3262 
3263 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3264 {
3265 	switch (ret) {
3266 	case GRO_NORMAL:
3267 		if (netif_receive_skb(skb))
3268 			ret = GRO_DROP;
3269 		break;
3270 
3271 	case GRO_DROP:
3272 	case GRO_MERGED_FREE:
3273 		kfree_skb(skb);
3274 		break;
3275 
3276 	case GRO_HELD:
3277 	case GRO_MERGED:
3278 		break;
3279 	}
3280 
3281 	return ret;
3282 }
3283 EXPORT_SYMBOL(napi_skb_finish);
3284 
3285 void skb_gro_reset_offset(struct sk_buff *skb)
3286 {
3287 	NAPI_GRO_CB(skb)->data_offset = 0;
3288 	NAPI_GRO_CB(skb)->frag0 = NULL;
3289 	NAPI_GRO_CB(skb)->frag0_len = 0;
3290 
3291 	if (skb->mac_header == skb->tail &&
3292 	    !PageHighMem(skb_shinfo(skb)->frags[0].page)) {
3293 		NAPI_GRO_CB(skb)->frag0 =
3294 			page_address(skb_shinfo(skb)->frags[0].page) +
3295 			skb_shinfo(skb)->frags[0].page_offset;
3296 		NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size;
3297 	}
3298 }
3299 EXPORT_SYMBOL(skb_gro_reset_offset);
3300 
3301 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3302 {
3303 	skb_gro_reset_offset(skb);
3304 
3305 	return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3306 }
3307 EXPORT_SYMBOL(napi_gro_receive);
3308 
3309 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3310 {
3311 	__skb_pull(skb, skb_headlen(skb));
3312 	skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
3313 	skb->vlan_tci = 0;
3314 
3315 	napi->skb = skb;
3316 }
3317 
3318 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3319 {
3320 	struct sk_buff *skb = napi->skb;
3321 
3322 	if (!skb) {
3323 		skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3324 		if (skb)
3325 			napi->skb = skb;
3326 	}
3327 	return skb;
3328 }
3329 EXPORT_SYMBOL(napi_get_frags);
3330 
3331 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3332 			       gro_result_t ret)
3333 {
3334 	switch (ret) {
3335 	case GRO_NORMAL:
3336 	case GRO_HELD:
3337 		skb->protocol = eth_type_trans(skb, skb->dev);
3338 
3339 		if (ret == GRO_HELD)
3340 			skb_gro_pull(skb, -ETH_HLEN);
3341 		else if (netif_receive_skb(skb))
3342 			ret = GRO_DROP;
3343 		break;
3344 
3345 	case GRO_DROP:
3346 	case GRO_MERGED_FREE:
3347 		napi_reuse_skb(napi, skb);
3348 		break;
3349 
3350 	case GRO_MERGED:
3351 		break;
3352 	}
3353 
3354 	return ret;
3355 }
3356 EXPORT_SYMBOL(napi_frags_finish);
3357 
3358 struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3359 {
3360 	struct sk_buff *skb = napi->skb;
3361 	struct ethhdr *eth;
3362 	unsigned int hlen;
3363 	unsigned int off;
3364 
3365 	napi->skb = NULL;
3366 
3367 	skb_reset_mac_header(skb);
3368 	skb_gro_reset_offset(skb);
3369 
3370 	off = skb_gro_offset(skb);
3371 	hlen = off + sizeof(*eth);
3372 	eth = skb_gro_header_fast(skb, off);
3373 	if (skb_gro_header_hard(skb, hlen)) {
3374 		eth = skb_gro_header_slow(skb, hlen, off);
3375 		if (unlikely(!eth)) {
3376 			napi_reuse_skb(napi, skb);
3377 			skb = NULL;
3378 			goto out;
3379 		}
3380 	}
3381 
3382 	skb_gro_pull(skb, sizeof(*eth));
3383 
3384 	/*
3385 	 * This works because the only protocols we care about don't require
3386 	 * special handling.  We'll fix it up properly at the end.
3387 	 */
3388 	skb->protocol = eth->h_proto;
3389 
3390 out:
3391 	return skb;
3392 }
3393 EXPORT_SYMBOL(napi_frags_skb);
3394 
3395 gro_result_t napi_gro_frags(struct napi_struct *napi)
3396 {
3397 	struct sk_buff *skb = napi_frags_skb(napi);
3398 
3399 	if (!skb)
3400 		return GRO_DROP;
3401 
3402 	return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3403 }
3404 EXPORT_SYMBOL(napi_gro_frags);
3405 
3406 /*
3407  * net_rps_action sends any pending IPI's for rps.
3408  * Note: called with local irq disabled, but exits with local irq enabled.
3409  */
3410 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3411 {
3412 #ifdef CONFIG_RPS
3413 	struct softnet_data *remsd = sd->rps_ipi_list;
3414 
3415 	if (remsd) {
3416 		sd->rps_ipi_list = NULL;
3417 
3418 		local_irq_enable();
3419 
3420 		/* Send pending IPI's to kick RPS processing on remote cpus. */
3421 		while (remsd) {
3422 			struct softnet_data *next = remsd->rps_ipi_next;
3423 
3424 			if (cpu_online(remsd->cpu))
3425 				__smp_call_function_single(remsd->cpu,
3426 							   &remsd->csd, 0);
3427 			remsd = next;
3428 		}
3429 	} else
3430 #endif
3431 		local_irq_enable();
3432 }
3433 
3434 static int process_backlog(struct napi_struct *napi, int quota)
3435 {
3436 	int work = 0;
3437 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3438 
3439 #ifdef CONFIG_RPS
3440 	/* Check if we have pending ipi, its better to send them now,
3441 	 * not waiting net_rx_action() end.
3442 	 */
3443 	if (sd->rps_ipi_list) {
3444 		local_irq_disable();
3445 		net_rps_action_and_irq_enable(sd);
3446 	}
3447 #endif
3448 	napi->weight = weight_p;
3449 	local_irq_disable();
3450 	while (work < quota) {
3451 		struct sk_buff *skb;
3452 		unsigned int qlen;
3453 
3454 		while ((skb = __skb_dequeue(&sd->process_queue))) {
3455 			local_irq_enable();
3456 			__netif_receive_skb(skb);
3457 			local_irq_disable();
3458 			input_queue_head_incr(sd);
3459 			if (++work >= quota) {
3460 				local_irq_enable();
3461 				return work;
3462 			}
3463 		}
3464 
3465 		rps_lock(sd);
3466 		qlen = skb_queue_len(&sd->input_pkt_queue);
3467 		if (qlen)
3468 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
3469 						   &sd->process_queue);
3470 
3471 		if (qlen < quota - work) {
3472 			/*
3473 			 * Inline a custom version of __napi_complete().
3474 			 * only current cpu owns and manipulates this napi,
3475 			 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3476 			 * we can use a plain write instead of clear_bit(),
3477 			 * and we dont need an smp_mb() memory barrier.
3478 			 */
3479 			list_del(&napi->poll_list);
3480 			napi->state = 0;
3481 
3482 			quota = work + qlen;
3483 		}
3484 		rps_unlock(sd);
3485 	}
3486 	local_irq_enable();
3487 
3488 	return work;
3489 }
3490 
3491 /**
3492  * __napi_schedule - schedule for receive
3493  * @n: entry to schedule
3494  *
3495  * The entry's receive function will be scheduled to run
3496  */
3497 void __napi_schedule(struct napi_struct *n)
3498 {
3499 	unsigned long flags;
3500 
3501 	local_irq_save(flags);
3502 	____napi_schedule(&__get_cpu_var(softnet_data), n);
3503 	local_irq_restore(flags);
3504 }
3505 EXPORT_SYMBOL(__napi_schedule);
3506 
3507 void __napi_complete(struct napi_struct *n)
3508 {
3509 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3510 	BUG_ON(n->gro_list);
3511 
3512 	list_del(&n->poll_list);
3513 	smp_mb__before_clear_bit();
3514 	clear_bit(NAPI_STATE_SCHED, &n->state);
3515 }
3516 EXPORT_SYMBOL(__napi_complete);
3517 
3518 void napi_complete(struct napi_struct *n)
3519 {
3520 	unsigned long flags;
3521 
3522 	/*
3523 	 * don't let napi dequeue from the cpu poll list
3524 	 * just in case its running on a different cpu
3525 	 */
3526 	if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3527 		return;
3528 
3529 	napi_gro_flush(n);
3530 	local_irq_save(flags);
3531 	__napi_complete(n);
3532 	local_irq_restore(flags);
3533 }
3534 EXPORT_SYMBOL(napi_complete);
3535 
3536 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3537 		    int (*poll)(struct napi_struct *, int), int weight)
3538 {
3539 	INIT_LIST_HEAD(&napi->poll_list);
3540 	napi->gro_count = 0;
3541 	napi->gro_list = NULL;
3542 	napi->skb = NULL;
3543 	napi->poll = poll;
3544 	napi->weight = weight;
3545 	list_add(&napi->dev_list, &dev->napi_list);
3546 	napi->dev = dev;
3547 #ifdef CONFIG_NETPOLL
3548 	spin_lock_init(&napi->poll_lock);
3549 	napi->poll_owner = -1;
3550 #endif
3551 	set_bit(NAPI_STATE_SCHED, &napi->state);
3552 }
3553 EXPORT_SYMBOL(netif_napi_add);
3554 
3555 void netif_napi_del(struct napi_struct *napi)
3556 {
3557 	struct sk_buff *skb, *next;
3558 
3559 	list_del_init(&napi->dev_list);
3560 	napi_free_frags(napi);
3561 
3562 	for (skb = napi->gro_list; skb; skb = next) {
3563 		next = skb->next;
3564 		skb->next = NULL;
3565 		kfree_skb(skb);
3566 	}
3567 
3568 	napi->gro_list = NULL;
3569 	napi->gro_count = 0;
3570 }
3571 EXPORT_SYMBOL(netif_napi_del);
3572 
3573 static void net_rx_action(struct softirq_action *h)
3574 {
3575 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
3576 	unsigned long time_limit = jiffies + 2;
3577 	int budget = netdev_budget;
3578 	void *have;
3579 
3580 	local_irq_disable();
3581 
3582 	while (!list_empty(&sd->poll_list)) {
3583 		struct napi_struct *n;
3584 		int work, weight;
3585 
3586 		/* If softirq window is exhuasted then punt.
3587 		 * Allow this to run for 2 jiffies since which will allow
3588 		 * an average latency of 1.5/HZ.
3589 		 */
3590 		if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3591 			goto softnet_break;
3592 
3593 		local_irq_enable();
3594 
3595 		/* Even though interrupts have been re-enabled, this
3596 		 * access is safe because interrupts can only add new
3597 		 * entries to the tail of this list, and only ->poll()
3598 		 * calls can remove this head entry from the list.
3599 		 */
3600 		n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3601 
3602 		have = netpoll_poll_lock(n);
3603 
3604 		weight = n->weight;
3605 
3606 		/* This NAPI_STATE_SCHED test is for avoiding a race
3607 		 * with netpoll's poll_napi().  Only the entity which
3608 		 * obtains the lock and sees NAPI_STATE_SCHED set will
3609 		 * actually make the ->poll() call.  Therefore we avoid
3610 		 * accidently calling ->poll() when NAPI is not scheduled.
3611 		 */
3612 		work = 0;
3613 		if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3614 			work = n->poll(n, weight);
3615 			trace_napi_poll(n);
3616 		}
3617 
3618 		WARN_ON_ONCE(work > weight);
3619 
3620 		budget -= work;
3621 
3622 		local_irq_disable();
3623 
3624 		/* Drivers must not modify the NAPI state if they
3625 		 * consume the entire weight.  In such cases this code
3626 		 * still "owns" the NAPI instance and therefore can
3627 		 * move the instance around on the list at-will.
3628 		 */
3629 		if (unlikely(work == weight)) {
3630 			if (unlikely(napi_disable_pending(n))) {
3631 				local_irq_enable();
3632 				napi_complete(n);
3633 				local_irq_disable();
3634 			} else
3635 				list_move_tail(&n->poll_list, &sd->poll_list);
3636 		}
3637 
3638 		netpoll_poll_unlock(have);
3639 	}
3640 out:
3641 	net_rps_action_and_irq_enable(sd);
3642 
3643 #ifdef CONFIG_NET_DMA
3644 	/*
3645 	 * There may not be any more sk_buffs coming right now, so push
3646 	 * any pending DMA copies to hardware
3647 	 */
3648 	dma_issue_pending_all();
3649 #endif
3650 
3651 	return;
3652 
3653 softnet_break:
3654 	sd->time_squeeze++;
3655 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3656 	goto out;
3657 }
3658 
3659 static gifconf_func_t *gifconf_list[NPROTO];
3660 
3661 /**
3662  *	register_gifconf	-	register a SIOCGIF handler
3663  *	@family: Address family
3664  *	@gifconf: Function handler
3665  *
3666  *	Register protocol dependent address dumping routines. The handler
3667  *	that is passed must not be freed or reused until it has been replaced
3668  *	by another handler.
3669  */
3670 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3671 {
3672 	if (family >= NPROTO)
3673 		return -EINVAL;
3674 	gifconf_list[family] = gifconf;
3675 	return 0;
3676 }
3677 EXPORT_SYMBOL(register_gifconf);
3678 
3679 
3680 /*
3681  *	Map an interface index to its name (SIOCGIFNAME)
3682  */
3683 
3684 /*
3685  *	We need this ioctl for efficient implementation of the
3686  *	if_indextoname() function required by the IPv6 API.  Without
3687  *	it, we would have to search all the interfaces to find a
3688  *	match.  --pb
3689  */
3690 
3691 static int dev_ifname(struct net *net, struct ifreq __user *arg)
3692 {
3693 	struct net_device *dev;
3694 	struct ifreq ifr;
3695 
3696 	/*
3697 	 *	Fetch the caller's info block.
3698 	 */
3699 
3700 	if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3701 		return -EFAULT;
3702 
3703 	rcu_read_lock();
3704 	dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3705 	if (!dev) {
3706 		rcu_read_unlock();
3707 		return -ENODEV;
3708 	}
3709 
3710 	strcpy(ifr.ifr_name, dev->name);
3711 	rcu_read_unlock();
3712 
3713 	if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3714 		return -EFAULT;
3715 	return 0;
3716 }
3717 
3718 /*
3719  *	Perform a SIOCGIFCONF call. This structure will change
3720  *	size eventually, and there is nothing I can do about it.
3721  *	Thus we will need a 'compatibility mode'.
3722  */
3723 
3724 static int dev_ifconf(struct net *net, char __user *arg)
3725 {
3726 	struct ifconf ifc;
3727 	struct net_device *dev;
3728 	char __user *pos;
3729 	int len;
3730 	int total;
3731 	int i;
3732 
3733 	/*
3734 	 *	Fetch the caller's info block.
3735 	 */
3736 
3737 	if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3738 		return -EFAULT;
3739 
3740 	pos = ifc.ifc_buf;
3741 	len = ifc.ifc_len;
3742 
3743 	/*
3744 	 *	Loop over the interfaces, and write an info block for each.
3745 	 */
3746 
3747 	total = 0;
3748 	for_each_netdev(net, dev) {
3749 		for (i = 0; i < NPROTO; i++) {
3750 			if (gifconf_list[i]) {
3751 				int done;
3752 				if (!pos)
3753 					done = gifconf_list[i](dev, NULL, 0);
3754 				else
3755 					done = gifconf_list[i](dev, pos + total,
3756 							       len - total);
3757 				if (done < 0)
3758 					return -EFAULT;
3759 				total += done;
3760 			}
3761 		}
3762 	}
3763 
3764 	/*
3765 	 *	All done.  Write the updated control block back to the caller.
3766 	 */
3767 	ifc.ifc_len = total;
3768 
3769 	/*
3770 	 * 	Both BSD and Solaris return 0 here, so we do too.
3771 	 */
3772 	return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
3773 }
3774 
3775 #ifdef CONFIG_PROC_FS
3776 /*
3777  *	This is invoked by the /proc filesystem handler to display a device
3778  *	in detail.
3779  */
3780 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
3781 	__acquires(RCU)
3782 {
3783 	struct net *net = seq_file_net(seq);
3784 	loff_t off;
3785 	struct net_device *dev;
3786 
3787 	rcu_read_lock();
3788 	if (!*pos)
3789 		return SEQ_START_TOKEN;
3790 
3791 	off = 1;
3792 	for_each_netdev_rcu(net, dev)
3793 		if (off++ == *pos)
3794 			return dev;
3795 
3796 	return NULL;
3797 }
3798 
3799 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3800 {
3801 	struct net_device *dev = (v == SEQ_START_TOKEN) ?
3802 				  first_net_device(seq_file_net(seq)) :
3803 				  next_net_device((struct net_device *)v);
3804 
3805 	++*pos;
3806 	return rcu_dereference(dev);
3807 }
3808 
3809 void dev_seq_stop(struct seq_file *seq, void *v)
3810 	__releases(RCU)
3811 {
3812 	rcu_read_unlock();
3813 }
3814 
3815 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
3816 {
3817 	struct rtnl_link_stats64 temp;
3818 	const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
3819 
3820 	seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu "
3821 		   "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n",
3822 		   dev->name, stats->rx_bytes, stats->rx_packets,
3823 		   stats->rx_errors,
3824 		   stats->rx_dropped + stats->rx_missed_errors,
3825 		   stats->rx_fifo_errors,
3826 		   stats->rx_length_errors + stats->rx_over_errors +
3827 		    stats->rx_crc_errors + stats->rx_frame_errors,
3828 		   stats->rx_compressed, stats->multicast,
3829 		   stats->tx_bytes, stats->tx_packets,
3830 		   stats->tx_errors, stats->tx_dropped,
3831 		   stats->tx_fifo_errors, stats->collisions,
3832 		   stats->tx_carrier_errors +
3833 		    stats->tx_aborted_errors +
3834 		    stats->tx_window_errors +
3835 		    stats->tx_heartbeat_errors,
3836 		   stats->tx_compressed);
3837 }
3838 
3839 /*
3840  *	Called from the PROCfs module. This now uses the new arbitrary sized
3841  *	/proc/net interface to create /proc/net/dev
3842  */
3843 static int dev_seq_show(struct seq_file *seq, void *v)
3844 {
3845 	if (v == SEQ_START_TOKEN)
3846 		seq_puts(seq, "Inter-|   Receive                            "
3847 			      "                    |  Transmit\n"
3848 			      " face |bytes    packets errs drop fifo frame "
3849 			      "compressed multicast|bytes    packets errs "
3850 			      "drop fifo colls carrier compressed\n");
3851 	else
3852 		dev_seq_printf_stats(seq, v);
3853 	return 0;
3854 }
3855 
3856 static struct softnet_data *softnet_get_online(loff_t *pos)
3857 {
3858 	struct softnet_data *sd = NULL;
3859 
3860 	while (*pos < nr_cpu_ids)
3861 		if (cpu_online(*pos)) {
3862 			sd = &per_cpu(softnet_data, *pos);
3863 			break;
3864 		} else
3865 			++*pos;
3866 	return sd;
3867 }
3868 
3869 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
3870 {
3871 	return softnet_get_online(pos);
3872 }
3873 
3874 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3875 {
3876 	++*pos;
3877 	return softnet_get_online(pos);
3878 }
3879 
3880 static void softnet_seq_stop(struct seq_file *seq, void *v)
3881 {
3882 }
3883 
3884 static int softnet_seq_show(struct seq_file *seq, void *v)
3885 {
3886 	struct softnet_data *sd = v;
3887 
3888 	seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
3889 		   sd->processed, sd->dropped, sd->time_squeeze, 0,
3890 		   0, 0, 0, 0, /* was fastroute */
3891 		   sd->cpu_collision, sd->received_rps);
3892 	return 0;
3893 }
3894 
3895 static const struct seq_operations dev_seq_ops = {
3896 	.start = dev_seq_start,
3897 	.next  = dev_seq_next,
3898 	.stop  = dev_seq_stop,
3899 	.show  = dev_seq_show,
3900 };
3901 
3902 static int dev_seq_open(struct inode *inode, struct file *file)
3903 {
3904 	return seq_open_net(inode, file, &dev_seq_ops,
3905 			    sizeof(struct seq_net_private));
3906 }
3907 
3908 static const struct file_operations dev_seq_fops = {
3909 	.owner	 = THIS_MODULE,
3910 	.open    = dev_seq_open,
3911 	.read    = seq_read,
3912 	.llseek  = seq_lseek,
3913 	.release = seq_release_net,
3914 };
3915 
3916 static const struct seq_operations softnet_seq_ops = {
3917 	.start = softnet_seq_start,
3918 	.next  = softnet_seq_next,
3919 	.stop  = softnet_seq_stop,
3920 	.show  = softnet_seq_show,
3921 };
3922 
3923 static int softnet_seq_open(struct inode *inode, struct file *file)
3924 {
3925 	return seq_open(file, &softnet_seq_ops);
3926 }
3927 
3928 static const struct file_operations softnet_seq_fops = {
3929 	.owner	 = THIS_MODULE,
3930 	.open    = softnet_seq_open,
3931 	.read    = seq_read,
3932 	.llseek  = seq_lseek,
3933 	.release = seq_release,
3934 };
3935 
3936 static void *ptype_get_idx(loff_t pos)
3937 {
3938 	struct packet_type *pt = NULL;
3939 	loff_t i = 0;
3940 	int t;
3941 
3942 	list_for_each_entry_rcu(pt, &ptype_all, list) {
3943 		if (i == pos)
3944 			return pt;
3945 		++i;
3946 	}
3947 
3948 	for (t = 0; t < PTYPE_HASH_SIZE; t++) {
3949 		list_for_each_entry_rcu(pt, &ptype_base[t], list) {
3950 			if (i == pos)
3951 				return pt;
3952 			++i;
3953 		}
3954 	}
3955 	return NULL;
3956 }
3957 
3958 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
3959 	__acquires(RCU)
3960 {
3961 	rcu_read_lock();
3962 	return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
3963 }
3964 
3965 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3966 {
3967 	struct packet_type *pt;
3968 	struct list_head *nxt;
3969 	int hash;
3970 
3971 	++*pos;
3972 	if (v == SEQ_START_TOKEN)
3973 		return ptype_get_idx(0);
3974 
3975 	pt = v;
3976 	nxt = pt->list.next;
3977 	if (pt->type == htons(ETH_P_ALL)) {
3978 		if (nxt != &ptype_all)
3979 			goto found;
3980 		hash = 0;
3981 		nxt = ptype_base[0].next;
3982 	} else
3983 		hash = ntohs(pt->type) & PTYPE_HASH_MASK;
3984 
3985 	while (nxt == &ptype_base[hash]) {
3986 		if (++hash >= PTYPE_HASH_SIZE)
3987 			return NULL;
3988 		nxt = ptype_base[hash].next;
3989 	}
3990 found:
3991 	return list_entry(nxt, struct packet_type, list);
3992 }
3993 
3994 static void ptype_seq_stop(struct seq_file *seq, void *v)
3995 	__releases(RCU)
3996 {
3997 	rcu_read_unlock();
3998 }
3999 
4000 static int ptype_seq_show(struct seq_file *seq, void *v)
4001 {
4002 	struct packet_type *pt = v;
4003 
4004 	if (v == SEQ_START_TOKEN)
4005 		seq_puts(seq, "Type Device      Function\n");
4006 	else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
4007 		if (pt->type == htons(ETH_P_ALL))
4008 			seq_puts(seq, "ALL ");
4009 		else
4010 			seq_printf(seq, "%04x", ntohs(pt->type));
4011 
4012 		seq_printf(seq, " %-8s %pF\n",
4013 			   pt->dev ? pt->dev->name : "", pt->func);
4014 	}
4015 
4016 	return 0;
4017 }
4018 
4019 static const struct seq_operations ptype_seq_ops = {
4020 	.start = ptype_seq_start,
4021 	.next  = ptype_seq_next,
4022 	.stop  = ptype_seq_stop,
4023 	.show  = ptype_seq_show,
4024 };
4025 
4026 static int ptype_seq_open(struct inode *inode, struct file *file)
4027 {
4028 	return seq_open_net(inode, file, &ptype_seq_ops,
4029 			sizeof(struct seq_net_private));
4030 }
4031 
4032 static const struct file_operations ptype_seq_fops = {
4033 	.owner	 = THIS_MODULE,
4034 	.open    = ptype_seq_open,
4035 	.read    = seq_read,
4036 	.llseek  = seq_lseek,
4037 	.release = seq_release_net,
4038 };
4039 
4040 
4041 static int __net_init dev_proc_net_init(struct net *net)
4042 {
4043 	int rc = -ENOMEM;
4044 
4045 	if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
4046 		goto out;
4047 	if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
4048 		goto out_dev;
4049 	if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
4050 		goto out_softnet;
4051 
4052 	if (wext_proc_init(net))
4053 		goto out_ptype;
4054 	rc = 0;
4055 out:
4056 	return rc;
4057 out_ptype:
4058 	proc_net_remove(net, "ptype");
4059 out_softnet:
4060 	proc_net_remove(net, "softnet_stat");
4061 out_dev:
4062 	proc_net_remove(net, "dev");
4063 	goto out;
4064 }
4065 
4066 static void __net_exit dev_proc_net_exit(struct net *net)
4067 {
4068 	wext_proc_exit(net);
4069 
4070 	proc_net_remove(net, "ptype");
4071 	proc_net_remove(net, "softnet_stat");
4072 	proc_net_remove(net, "dev");
4073 }
4074 
4075 static struct pernet_operations __net_initdata dev_proc_ops = {
4076 	.init = dev_proc_net_init,
4077 	.exit = dev_proc_net_exit,
4078 };
4079 
4080 static int __init dev_proc_init(void)
4081 {
4082 	return register_pernet_subsys(&dev_proc_ops);
4083 }
4084 #else
4085 #define dev_proc_init() 0
4086 #endif	/* CONFIG_PROC_FS */
4087 
4088 
4089 /**
4090  *	netdev_set_master	-	set up master/slave pair
4091  *	@slave: slave device
4092  *	@master: new master device
4093  *
4094  *	Changes the master device of the slave. Pass %NULL to break the
4095  *	bonding. The caller must hold the RTNL semaphore. On a failure
4096  *	a negative errno code is returned. On success the reference counts
4097  *	are adjusted, %RTM_NEWLINK is sent to the routing socket and the
4098  *	function returns zero.
4099  */
4100 int netdev_set_master(struct net_device *slave, struct net_device *master)
4101 {
4102 	struct net_device *old = slave->master;
4103 
4104 	ASSERT_RTNL();
4105 
4106 	if (master) {
4107 		if (old)
4108 			return -EBUSY;
4109 		dev_hold(master);
4110 	}
4111 
4112 	slave->master = master;
4113 
4114 	if (old) {
4115 		synchronize_net();
4116 		dev_put(old);
4117 	}
4118 	if (master)
4119 		slave->flags |= IFF_SLAVE;
4120 	else
4121 		slave->flags &= ~IFF_SLAVE;
4122 
4123 	rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
4124 	return 0;
4125 }
4126 EXPORT_SYMBOL(netdev_set_master);
4127 
4128 static void dev_change_rx_flags(struct net_device *dev, int flags)
4129 {
4130 	const struct net_device_ops *ops = dev->netdev_ops;
4131 
4132 	if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4133 		ops->ndo_change_rx_flags(dev, flags);
4134 }
4135 
4136 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4137 {
4138 	unsigned short old_flags = dev->flags;
4139 	uid_t uid;
4140 	gid_t gid;
4141 
4142 	ASSERT_RTNL();
4143 
4144 	dev->flags |= IFF_PROMISC;
4145 	dev->promiscuity += inc;
4146 	if (dev->promiscuity == 0) {
4147 		/*
4148 		 * Avoid overflow.
4149 		 * If inc causes overflow, untouch promisc and return error.
4150 		 */
4151 		if (inc < 0)
4152 			dev->flags &= ~IFF_PROMISC;
4153 		else {
4154 			dev->promiscuity -= inc;
4155 			printk(KERN_WARNING "%s: promiscuity touches roof, "
4156 				"set promiscuity failed, promiscuity feature "
4157 				"of device might be broken.\n", dev->name);
4158 			return -EOVERFLOW;
4159 		}
4160 	}
4161 	if (dev->flags != old_flags) {
4162 		printk(KERN_INFO "device %s %s promiscuous mode\n",
4163 		       dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
4164 							       "left");
4165 		if (audit_enabled) {
4166 			current_uid_gid(&uid, &gid);
4167 			audit_log(current->audit_context, GFP_ATOMIC,
4168 				AUDIT_ANOM_PROMISCUOUS,
4169 				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4170 				dev->name, (dev->flags & IFF_PROMISC),
4171 				(old_flags & IFF_PROMISC),
4172 				audit_get_loginuid(current),
4173 				uid, gid,
4174 				audit_get_sessionid(current));
4175 		}
4176 
4177 		dev_change_rx_flags(dev, IFF_PROMISC);
4178 	}
4179 	return 0;
4180 }
4181 
4182 /**
4183  *	dev_set_promiscuity	- update promiscuity count on a device
4184  *	@dev: device
4185  *	@inc: modifier
4186  *
4187  *	Add or remove promiscuity from a device. While the count in the device
4188  *	remains above zero the interface remains promiscuous. Once it hits zero
4189  *	the device reverts back to normal filtering operation. A negative inc
4190  *	value is used to drop promiscuity on the device.
4191  *	Return 0 if successful or a negative errno code on error.
4192  */
4193 int dev_set_promiscuity(struct net_device *dev, int inc)
4194 {
4195 	unsigned short old_flags = dev->flags;
4196 	int err;
4197 
4198 	err = __dev_set_promiscuity(dev, inc);
4199 	if (err < 0)
4200 		return err;
4201 	if (dev->flags != old_flags)
4202 		dev_set_rx_mode(dev);
4203 	return err;
4204 }
4205 EXPORT_SYMBOL(dev_set_promiscuity);
4206 
4207 /**
4208  *	dev_set_allmulti	- update allmulti count on a device
4209  *	@dev: device
4210  *	@inc: modifier
4211  *
4212  *	Add or remove reception of all multicast frames to a device. While the
4213  *	count in the device remains above zero the interface remains listening
4214  *	to all interfaces. Once it hits zero the device reverts back to normal
4215  *	filtering operation. A negative @inc value is used to drop the counter
4216  *	when releasing a resource needing all multicasts.
4217  *	Return 0 if successful or a negative errno code on error.
4218  */
4219 
4220 int dev_set_allmulti(struct net_device *dev, int inc)
4221 {
4222 	unsigned short old_flags = dev->flags;
4223 
4224 	ASSERT_RTNL();
4225 
4226 	dev->flags |= IFF_ALLMULTI;
4227 	dev->allmulti += inc;
4228 	if (dev->allmulti == 0) {
4229 		/*
4230 		 * Avoid overflow.
4231 		 * If inc causes overflow, untouch allmulti and return error.
4232 		 */
4233 		if (inc < 0)
4234 			dev->flags &= ~IFF_ALLMULTI;
4235 		else {
4236 			dev->allmulti -= inc;
4237 			printk(KERN_WARNING "%s: allmulti touches roof, "
4238 				"set allmulti failed, allmulti feature of "
4239 				"device might be broken.\n", dev->name);
4240 			return -EOVERFLOW;
4241 		}
4242 	}
4243 	if (dev->flags ^ old_flags) {
4244 		dev_change_rx_flags(dev, IFF_ALLMULTI);
4245 		dev_set_rx_mode(dev);
4246 	}
4247 	return 0;
4248 }
4249 EXPORT_SYMBOL(dev_set_allmulti);
4250 
4251 /*
4252  *	Upload unicast and multicast address lists to device and
4253  *	configure RX filtering. When the device doesn't support unicast
4254  *	filtering it is put in promiscuous mode while unicast addresses
4255  *	are present.
4256  */
4257 void __dev_set_rx_mode(struct net_device *dev)
4258 {
4259 	const struct net_device_ops *ops = dev->netdev_ops;
4260 
4261 	/* dev_open will call this function so the list will stay sane. */
4262 	if (!(dev->flags&IFF_UP))
4263 		return;
4264 
4265 	if (!netif_device_present(dev))
4266 		return;
4267 
4268 	if (ops->ndo_set_rx_mode)
4269 		ops->ndo_set_rx_mode(dev);
4270 	else {
4271 		/* Unicast addresses changes may only happen under the rtnl,
4272 		 * therefore calling __dev_set_promiscuity here is safe.
4273 		 */
4274 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4275 			__dev_set_promiscuity(dev, 1);
4276 			dev->uc_promisc = 1;
4277 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4278 			__dev_set_promiscuity(dev, -1);
4279 			dev->uc_promisc = 0;
4280 		}
4281 
4282 		if (ops->ndo_set_multicast_list)
4283 			ops->ndo_set_multicast_list(dev);
4284 	}
4285 }
4286 
4287 void dev_set_rx_mode(struct net_device *dev)
4288 {
4289 	netif_addr_lock_bh(dev);
4290 	__dev_set_rx_mode(dev);
4291 	netif_addr_unlock_bh(dev);
4292 }
4293 
4294 /**
4295  *	dev_get_flags - get flags reported to userspace
4296  *	@dev: device
4297  *
4298  *	Get the combination of flag bits exported through APIs to userspace.
4299  */
4300 unsigned dev_get_flags(const struct net_device *dev)
4301 {
4302 	unsigned flags;
4303 
4304 	flags = (dev->flags & ~(IFF_PROMISC |
4305 				IFF_ALLMULTI |
4306 				IFF_RUNNING |
4307 				IFF_LOWER_UP |
4308 				IFF_DORMANT)) |
4309 		(dev->gflags & (IFF_PROMISC |
4310 				IFF_ALLMULTI));
4311 
4312 	if (netif_running(dev)) {
4313 		if (netif_oper_up(dev))
4314 			flags |= IFF_RUNNING;
4315 		if (netif_carrier_ok(dev))
4316 			flags |= IFF_LOWER_UP;
4317 		if (netif_dormant(dev))
4318 			flags |= IFF_DORMANT;
4319 	}
4320 
4321 	return flags;
4322 }
4323 EXPORT_SYMBOL(dev_get_flags);
4324 
4325 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4326 {
4327 	int old_flags = dev->flags;
4328 	int ret;
4329 
4330 	ASSERT_RTNL();
4331 
4332 	/*
4333 	 *	Set the flags on our device.
4334 	 */
4335 
4336 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4337 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4338 			       IFF_AUTOMEDIA)) |
4339 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4340 				    IFF_ALLMULTI));
4341 
4342 	/*
4343 	 *	Load in the correct multicast list now the flags have changed.
4344 	 */
4345 
4346 	if ((old_flags ^ flags) & IFF_MULTICAST)
4347 		dev_change_rx_flags(dev, IFF_MULTICAST);
4348 
4349 	dev_set_rx_mode(dev);
4350 
4351 	/*
4352 	 *	Have we downed the interface. We handle IFF_UP ourselves
4353 	 *	according to user attempts to set it, rather than blindly
4354 	 *	setting it.
4355 	 */
4356 
4357 	ret = 0;
4358 	if ((old_flags ^ flags) & IFF_UP) {	/* Bit is different  ? */
4359 		ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4360 
4361 		if (!ret)
4362 			dev_set_rx_mode(dev);
4363 	}
4364 
4365 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
4366 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
4367 
4368 		dev->gflags ^= IFF_PROMISC;
4369 		dev_set_promiscuity(dev, inc);
4370 	}
4371 
4372 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4373 	   is important. Some (broken) drivers set IFF_PROMISC, when
4374 	   IFF_ALLMULTI is requested not asking us and not reporting.
4375 	 */
4376 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4377 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4378 
4379 		dev->gflags ^= IFF_ALLMULTI;
4380 		dev_set_allmulti(dev, inc);
4381 	}
4382 
4383 	return ret;
4384 }
4385 
4386 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4387 {
4388 	unsigned int changes = dev->flags ^ old_flags;
4389 
4390 	if (changes & IFF_UP) {
4391 		if (dev->flags & IFF_UP)
4392 			call_netdevice_notifiers(NETDEV_UP, dev);
4393 		else
4394 			call_netdevice_notifiers(NETDEV_DOWN, dev);
4395 	}
4396 
4397 	if (dev->flags & IFF_UP &&
4398 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4399 		call_netdevice_notifiers(NETDEV_CHANGE, dev);
4400 }
4401 
4402 /**
4403  *	dev_change_flags - change device settings
4404  *	@dev: device
4405  *	@flags: device state flags
4406  *
4407  *	Change settings on device based state flags. The flags are
4408  *	in the userspace exported format.
4409  */
4410 int dev_change_flags(struct net_device *dev, unsigned flags)
4411 {
4412 	int ret, changes;
4413 	int old_flags = dev->flags;
4414 
4415 	ret = __dev_change_flags(dev, flags);
4416 	if (ret < 0)
4417 		return ret;
4418 
4419 	changes = old_flags ^ dev->flags;
4420 	if (changes)
4421 		rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4422 
4423 	__dev_notify_flags(dev, old_flags);
4424 	return ret;
4425 }
4426 EXPORT_SYMBOL(dev_change_flags);
4427 
4428 /**
4429  *	dev_set_mtu - Change maximum transfer unit
4430  *	@dev: device
4431  *	@new_mtu: new transfer unit
4432  *
4433  *	Change the maximum transfer size of the network device.
4434  */
4435 int dev_set_mtu(struct net_device *dev, int new_mtu)
4436 {
4437 	const struct net_device_ops *ops = dev->netdev_ops;
4438 	int err;
4439 
4440 	if (new_mtu == dev->mtu)
4441 		return 0;
4442 
4443 	/*	MTU must be positive.	 */
4444 	if (new_mtu < 0)
4445 		return -EINVAL;
4446 
4447 	if (!netif_device_present(dev))
4448 		return -ENODEV;
4449 
4450 	err = 0;
4451 	if (ops->ndo_change_mtu)
4452 		err = ops->ndo_change_mtu(dev, new_mtu);
4453 	else
4454 		dev->mtu = new_mtu;
4455 
4456 	if (!err && dev->flags & IFF_UP)
4457 		call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4458 	return err;
4459 }
4460 EXPORT_SYMBOL(dev_set_mtu);
4461 
4462 /**
4463  *	dev_set_mac_address - Change Media Access Control Address
4464  *	@dev: device
4465  *	@sa: new address
4466  *
4467  *	Change the hardware (MAC) address of the device
4468  */
4469 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4470 {
4471 	const struct net_device_ops *ops = dev->netdev_ops;
4472 	int err;
4473 
4474 	if (!ops->ndo_set_mac_address)
4475 		return -EOPNOTSUPP;
4476 	if (sa->sa_family != dev->type)
4477 		return -EINVAL;
4478 	if (!netif_device_present(dev))
4479 		return -ENODEV;
4480 	err = ops->ndo_set_mac_address(dev, sa);
4481 	if (!err)
4482 		call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4483 	return err;
4484 }
4485 EXPORT_SYMBOL(dev_set_mac_address);
4486 
4487 /*
4488  *	Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4489  */
4490 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4491 {
4492 	int err;
4493 	struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4494 
4495 	if (!dev)
4496 		return -ENODEV;
4497 
4498 	switch (cmd) {
4499 	case SIOCGIFFLAGS:	/* Get interface flags */
4500 		ifr->ifr_flags = (short) dev_get_flags(dev);
4501 		return 0;
4502 
4503 	case SIOCGIFMETRIC:	/* Get the metric on the interface
4504 				   (currently unused) */
4505 		ifr->ifr_metric = 0;
4506 		return 0;
4507 
4508 	case SIOCGIFMTU:	/* Get the MTU of a device */
4509 		ifr->ifr_mtu = dev->mtu;
4510 		return 0;
4511 
4512 	case SIOCGIFHWADDR:
4513 		if (!dev->addr_len)
4514 			memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4515 		else
4516 			memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4517 			       min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4518 		ifr->ifr_hwaddr.sa_family = dev->type;
4519 		return 0;
4520 
4521 	case SIOCGIFSLAVE:
4522 		err = -EINVAL;
4523 		break;
4524 
4525 	case SIOCGIFMAP:
4526 		ifr->ifr_map.mem_start = dev->mem_start;
4527 		ifr->ifr_map.mem_end   = dev->mem_end;
4528 		ifr->ifr_map.base_addr = dev->base_addr;
4529 		ifr->ifr_map.irq       = dev->irq;
4530 		ifr->ifr_map.dma       = dev->dma;
4531 		ifr->ifr_map.port      = dev->if_port;
4532 		return 0;
4533 
4534 	case SIOCGIFINDEX:
4535 		ifr->ifr_ifindex = dev->ifindex;
4536 		return 0;
4537 
4538 	case SIOCGIFTXQLEN:
4539 		ifr->ifr_qlen = dev->tx_queue_len;
4540 		return 0;
4541 
4542 	default:
4543 		/* dev_ioctl() should ensure this case
4544 		 * is never reached
4545 		 */
4546 		WARN_ON(1);
4547 		err = -EINVAL;
4548 		break;
4549 
4550 	}
4551 	return err;
4552 }
4553 
4554 /*
4555  *	Perform the SIOCxIFxxx calls, inside rtnl_lock()
4556  */
4557 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4558 {
4559 	int err;
4560 	struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4561 	const struct net_device_ops *ops;
4562 
4563 	if (!dev)
4564 		return -ENODEV;
4565 
4566 	ops = dev->netdev_ops;
4567 
4568 	switch (cmd) {
4569 	case SIOCSIFFLAGS:	/* Set interface flags */
4570 		return dev_change_flags(dev, ifr->ifr_flags);
4571 
4572 	case SIOCSIFMETRIC:	/* Set the metric on the interface
4573 				   (currently unused) */
4574 		return -EOPNOTSUPP;
4575 
4576 	case SIOCSIFMTU:	/* Set the MTU of a device */
4577 		return dev_set_mtu(dev, ifr->ifr_mtu);
4578 
4579 	case SIOCSIFHWADDR:
4580 		return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4581 
4582 	case SIOCSIFHWBROADCAST:
4583 		if (ifr->ifr_hwaddr.sa_family != dev->type)
4584 			return -EINVAL;
4585 		memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4586 		       min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4587 		call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4588 		return 0;
4589 
4590 	case SIOCSIFMAP:
4591 		if (ops->ndo_set_config) {
4592 			if (!netif_device_present(dev))
4593 				return -ENODEV;
4594 			return ops->ndo_set_config(dev, &ifr->ifr_map);
4595 		}
4596 		return -EOPNOTSUPP;
4597 
4598 	case SIOCADDMULTI:
4599 		if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4600 		    ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4601 			return -EINVAL;
4602 		if (!netif_device_present(dev))
4603 			return -ENODEV;
4604 		return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
4605 
4606 	case SIOCDELMULTI:
4607 		if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4608 		    ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4609 			return -EINVAL;
4610 		if (!netif_device_present(dev))
4611 			return -ENODEV;
4612 		return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
4613 
4614 	case SIOCSIFTXQLEN:
4615 		if (ifr->ifr_qlen < 0)
4616 			return -EINVAL;
4617 		dev->tx_queue_len = ifr->ifr_qlen;
4618 		return 0;
4619 
4620 	case SIOCSIFNAME:
4621 		ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4622 		return dev_change_name(dev, ifr->ifr_newname);
4623 
4624 	/*
4625 	 *	Unknown or private ioctl
4626 	 */
4627 	default:
4628 		if ((cmd >= SIOCDEVPRIVATE &&
4629 		    cmd <= SIOCDEVPRIVATE + 15) ||
4630 		    cmd == SIOCBONDENSLAVE ||
4631 		    cmd == SIOCBONDRELEASE ||
4632 		    cmd == SIOCBONDSETHWADDR ||
4633 		    cmd == SIOCBONDSLAVEINFOQUERY ||
4634 		    cmd == SIOCBONDINFOQUERY ||
4635 		    cmd == SIOCBONDCHANGEACTIVE ||
4636 		    cmd == SIOCGMIIPHY ||
4637 		    cmd == SIOCGMIIREG ||
4638 		    cmd == SIOCSMIIREG ||
4639 		    cmd == SIOCBRADDIF ||
4640 		    cmd == SIOCBRDELIF ||
4641 		    cmd == SIOCSHWTSTAMP ||
4642 		    cmd == SIOCWANDEV) {
4643 			err = -EOPNOTSUPP;
4644 			if (ops->ndo_do_ioctl) {
4645 				if (netif_device_present(dev))
4646 					err = ops->ndo_do_ioctl(dev, ifr, cmd);
4647 				else
4648 					err = -ENODEV;
4649 			}
4650 		} else
4651 			err = -EINVAL;
4652 
4653 	}
4654 	return err;
4655 }
4656 
4657 /*
4658  *	This function handles all "interface"-type I/O control requests. The actual
4659  *	'doing' part of this is dev_ifsioc above.
4660  */
4661 
4662 /**
4663  *	dev_ioctl	-	network device ioctl
4664  *	@net: the applicable net namespace
4665  *	@cmd: command to issue
4666  *	@arg: pointer to a struct ifreq in user space
4667  *
4668  *	Issue ioctl functions to devices. This is normally called by the
4669  *	user space syscall interfaces but can sometimes be useful for
4670  *	other purposes. The return value is the return from the syscall if
4671  *	positive or a negative errno code on error.
4672  */
4673 
4674 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4675 {
4676 	struct ifreq ifr;
4677 	int ret;
4678 	char *colon;
4679 
4680 	/* One special case: SIOCGIFCONF takes ifconf argument
4681 	   and requires shared lock, because it sleeps writing
4682 	   to user space.
4683 	 */
4684 
4685 	if (cmd == SIOCGIFCONF) {
4686 		rtnl_lock();
4687 		ret = dev_ifconf(net, (char __user *) arg);
4688 		rtnl_unlock();
4689 		return ret;
4690 	}
4691 	if (cmd == SIOCGIFNAME)
4692 		return dev_ifname(net, (struct ifreq __user *)arg);
4693 
4694 	if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4695 		return -EFAULT;
4696 
4697 	ifr.ifr_name[IFNAMSIZ-1] = 0;
4698 
4699 	colon = strchr(ifr.ifr_name, ':');
4700 	if (colon)
4701 		*colon = 0;
4702 
4703 	/*
4704 	 *	See which interface the caller is talking about.
4705 	 */
4706 
4707 	switch (cmd) {
4708 	/*
4709 	 *	These ioctl calls:
4710 	 *	- can be done by all.
4711 	 *	- atomic and do not require locking.
4712 	 *	- return a value
4713 	 */
4714 	case SIOCGIFFLAGS:
4715 	case SIOCGIFMETRIC:
4716 	case SIOCGIFMTU:
4717 	case SIOCGIFHWADDR:
4718 	case SIOCGIFSLAVE:
4719 	case SIOCGIFMAP:
4720 	case SIOCGIFINDEX:
4721 	case SIOCGIFTXQLEN:
4722 		dev_load(net, ifr.ifr_name);
4723 		rcu_read_lock();
4724 		ret = dev_ifsioc_locked(net, &ifr, cmd);
4725 		rcu_read_unlock();
4726 		if (!ret) {
4727 			if (colon)
4728 				*colon = ':';
4729 			if (copy_to_user(arg, &ifr,
4730 					 sizeof(struct ifreq)))
4731 				ret = -EFAULT;
4732 		}
4733 		return ret;
4734 
4735 	case SIOCETHTOOL:
4736 		dev_load(net, ifr.ifr_name);
4737 		rtnl_lock();
4738 		ret = dev_ethtool(net, &ifr);
4739 		rtnl_unlock();
4740 		if (!ret) {
4741 			if (colon)
4742 				*colon = ':';
4743 			if (copy_to_user(arg, &ifr,
4744 					 sizeof(struct ifreq)))
4745 				ret = -EFAULT;
4746 		}
4747 		return ret;
4748 
4749 	/*
4750 	 *	These ioctl calls:
4751 	 *	- require superuser power.
4752 	 *	- require strict serialization.
4753 	 *	- return a value
4754 	 */
4755 	case SIOCGMIIPHY:
4756 	case SIOCGMIIREG:
4757 	case SIOCSIFNAME:
4758 		if (!capable(CAP_NET_ADMIN))
4759 			return -EPERM;
4760 		dev_load(net, ifr.ifr_name);
4761 		rtnl_lock();
4762 		ret = dev_ifsioc(net, &ifr, cmd);
4763 		rtnl_unlock();
4764 		if (!ret) {
4765 			if (colon)
4766 				*colon = ':';
4767 			if (copy_to_user(arg, &ifr,
4768 					 sizeof(struct ifreq)))
4769 				ret = -EFAULT;
4770 		}
4771 		return ret;
4772 
4773 	/*
4774 	 *	These ioctl calls:
4775 	 *	- require superuser power.
4776 	 *	- require strict serialization.
4777 	 *	- do not return a value
4778 	 */
4779 	case SIOCSIFFLAGS:
4780 	case SIOCSIFMETRIC:
4781 	case SIOCSIFMTU:
4782 	case SIOCSIFMAP:
4783 	case SIOCSIFHWADDR:
4784 	case SIOCSIFSLAVE:
4785 	case SIOCADDMULTI:
4786 	case SIOCDELMULTI:
4787 	case SIOCSIFHWBROADCAST:
4788 	case SIOCSIFTXQLEN:
4789 	case SIOCSMIIREG:
4790 	case SIOCBONDENSLAVE:
4791 	case SIOCBONDRELEASE:
4792 	case SIOCBONDSETHWADDR:
4793 	case SIOCBONDCHANGEACTIVE:
4794 	case SIOCBRADDIF:
4795 	case SIOCBRDELIF:
4796 	case SIOCSHWTSTAMP:
4797 		if (!capable(CAP_NET_ADMIN))
4798 			return -EPERM;
4799 		/* fall through */
4800 	case SIOCBONDSLAVEINFOQUERY:
4801 	case SIOCBONDINFOQUERY:
4802 		dev_load(net, ifr.ifr_name);
4803 		rtnl_lock();
4804 		ret = dev_ifsioc(net, &ifr, cmd);
4805 		rtnl_unlock();
4806 		return ret;
4807 
4808 	case SIOCGIFMEM:
4809 		/* Get the per device memory space. We can add this but
4810 		 * currently do not support it */
4811 	case SIOCSIFMEM:
4812 		/* Set the per device memory buffer space.
4813 		 * Not applicable in our case */
4814 	case SIOCSIFLINK:
4815 		return -EINVAL;
4816 
4817 	/*
4818 	 *	Unknown or private ioctl.
4819 	 */
4820 	default:
4821 		if (cmd == SIOCWANDEV ||
4822 		    (cmd >= SIOCDEVPRIVATE &&
4823 		     cmd <= SIOCDEVPRIVATE + 15)) {
4824 			dev_load(net, ifr.ifr_name);
4825 			rtnl_lock();
4826 			ret = dev_ifsioc(net, &ifr, cmd);
4827 			rtnl_unlock();
4828 			if (!ret && copy_to_user(arg, &ifr,
4829 						 sizeof(struct ifreq)))
4830 				ret = -EFAULT;
4831 			return ret;
4832 		}
4833 		/* Take care of Wireless Extensions */
4834 		if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
4835 			return wext_handle_ioctl(net, &ifr, cmd, arg);
4836 		return -EINVAL;
4837 	}
4838 }
4839 
4840 
4841 /**
4842  *	dev_new_index	-	allocate an ifindex
4843  *	@net: the applicable net namespace
4844  *
4845  *	Returns a suitable unique value for a new device interface
4846  *	number.  The caller must hold the rtnl semaphore or the
4847  *	dev_base_lock to be sure it remains unique.
4848  */
4849 static int dev_new_index(struct net *net)
4850 {
4851 	static int ifindex;
4852 	for (;;) {
4853 		if (++ifindex <= 0)
4854 			ifindex = 1;
4855 		if (!__dev_get_by_index(net, ifindex))
4856 			return ifindex;
4857 	}
4858 }
4859 
4860 /* Delayed registration/unregisteration */
4861 static LIST_HEAD(net_todo_list);
4862 
4863 static void net_set_todo(struct net_device *dev)
4864 {
4865 	list_add_tail(&dev->todo_list, &net_todo_list);
4866 }
4867 
4868 static void rollback_registered_many(struct list_head *head)
4869 {
4870 	struct net_device *dev, *tmp;
4871 
4872 	BUG_ON(dev_boot_phase);
4873 	ASSERT_RTNL();
4874 
4875 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
4876 		/* Some devices call without registering
4877 		 * for initialization unwind. Remove those
4878 		 * devices and proceed with the remaining.
4879 		 */
4880 		if (dev->reg_state == NETREG_UNINITIALIZED) {
4881 			pr_debug("unregister_netdevice: device %s/%p never "
4882 				 "was registered\n", dev->name, dev);
4883 
4884 			WARN_ON(1);
4885 			list_del(&dev->unreg_list);
4886 			continue;
4887 		}
4888 
4889 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
4890 
4891 		/* If device is running, close it first. */
4892 		dev_close(dev);
4893 
4894 		/* And unlink it from device chain. */
4895 		unlist_netdevice(dev);
4896 
4897 		dev->reg_state = NETREG_UNREGISTERING;
4898 	}
4899 
4900 	synchronize_net();
4901 
4902 	list_for_each_entry(dev, head, unreg_list) {
4903 		/* Shutdown queueing discipline. */
4904 		dev_shutdown(dev);
4905 
4906 
4907 		/* Notify protocols, that we are about to destroy
4908 		   this device. They should clean all the things.
4909 		*/
4910 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4911 
4912 		if (!dev->rtnl_link_ops ||
4913 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
4914 			rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
4915 
4916 		/*
4917 		 *	Flush the unicast and multicast chains
4918 		 */
4919 		dev_uc_flush(dev);
4920 		dev_mc_flush(dev);
4921 
4922 		if (dev->netdev_ops->ndo_uninit)
4923 			dev->netdev_ops->ndo_uninit(dev);
4924 
4925 		/* Notifier chain MUST detach us from master device. */
4926 		WARN_ON(dev->master);
4927 
4928 		/* Remove entries from kobject tree */
4929 		netdev_unregister_kobject(dev);
4930 	}
4931 
4932 	/* Process any work delayed until the end of the batch */
4933 	dev = list_first_entry(head, struct net_device, unreg_list);
4934 	call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
4935 
4936 	rcu_barrier();
4937 
4938 	list_for_each_entry(dev, head, unreg_list)
4939 		dev_put(dev);
4940 }
4941 
4942 static void rollback_registered(struct net_device *dev)
4943 {
4944 	LIST_HEAD(single);
4945 
4946 	list_add(&dev->unreg_list, &single);
4947 	rollback_registered_many(&single);
4948 }
4949 
4950 unsigned long netdev_fix_features(unsigned long features, const char *name)
4951 {
4952 	/* Fix illegal SG+CSUM combinations. */
4953 	if ((features & NETIF_F_SG) &&
4954 	    !(features & NETIF_F_ALL_CSUM)) {
4955 		if (name)
4956 			printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
4957 			       "checksum feature.\n", name);
4958 		features &= ~NETIF_F_SG;
4959 	}
4960 
4961 	/* TSO requires that SG is present as well. */
4962 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
4963 		if (name)
4964 			printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
4965 			       "SG feature.\n", name);
4966 		features &= ~NETIF_F_TSO;
4967 	}
4968 
4969 	if (features & NETIF_F_UFO) {
4970 		if (!(features & NETIF_F_GEN_CSUM)) {
4971 			if (name)
4972 				printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4973 				       "since no NETIF_F_HW_CSUM feature.\n",
4974 				       name);
4975 			features &= ~NETIF_F_UFO;
4976 		}
4977 
4978 		if (!(features & NETIF_F_SG)) {
4979 			if (name)
4980 				printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4981 				       "since no NETIF_F_SG feature.\n", name);
4982 			features &= ~NETIF_F_UFO;
4983 		}
4984 	}
4985 
4986 	return features;
4987 }
4988 EXPORT_SYMBOL(netdev_fix_features);
4989 
4990 /**
4991  *	netif_stacked_transfer_operstate -	transfer operstate
4992  *	@rootdev: the root or lower level device to transfer state from
4993  *	@dev: the device to transfer operstate to
4994  *
4995  *	Transfer operational state from root to device. This is normally
4996  *	called when a stacking relationship exists between the root
4997  *	device and the device(a leaf device).
4998  */
4999 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5000 					struct net_device *dev)
5001 {
5002 	if (rootdev->operstate == IF_OPER_DORMANT)
5003 		netif_dormant_on(dev);
5004 	else
5005 		netif_dormant_off(dev);
5006 
5007 	if (netif_carrier_ok(rootdev)) {
5008 		if (!netif_carrier_ok(dev))
5009 			netif_carrier_on(dev);
5010 	} else {
5011 		if (netif_carrier_ok(dev))
5012 			netif_carrier_off(dev);
5013 	}
5014 }
5015 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5016 
5017 static int netif_alloc_rx_queues(struct net_device *dev)
5018 {
5019 #ifdef CONFIG_RPS
5020 	unsigned int i, count = dev->num_rx_queues;
5021 	struct netdev_rx_queue *rx;
5022 
5023 	BUG_ON(count < 1);
5024 
5025 	rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5026 	if (!rx) {
5027 		pr_err("netdev: Unable to allocate %u rx queues.\n", count);
5028 		return -ENOMEM;
5029 	}
5030 	dev->_rx = rx;
5031 
5032 	/*
5033 	 * Set a pointer to first element in the array which holds the
5034 	 * reference count.
5035 	 */
5036 	for (i = 0; i < count; i++)
5037 		rx[i].first = rx;
5038 #endif
5039 	return 0;
5040 }
5041 
5042 static int netif_alloc_netdev_queues(struct net_device *dev)
5043 {
5044 	unsigned int count = dev->num_tx_queues;
5045 	struct netdev_queue *tx;
5046 
5047 	BUG_ON(count < 1);
5048 
5049 	tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL);
5050 	if (!tx) {
5051 		pr_err("netdev: Unable to allocate %u tx queues.\n",
5052 		       count);
5053 		return -ENOMEM;
5054 	}
5055 	dev->_tx = tx;
5056 	return 0;
5057 }
5058 
5059 static void netdev_init_one_queue(struct net_device *dev,
5060 				  struct netdev_queue *queue,
5061 				  void *_unused)
5062 {
5063 	queue->dev = dev;
5064 
5065 	/* Initialize queue lock */
5066 	spin_lock_init(&queue->_xmit_lock);
5067 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5068 	queue->xmit_lock_owner = -1;
5069 }
5070 
5071 static void netdev_init_queues(struct net_device *dev)
5072 {
5073 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5074 	spin_lock_init(&dev->tx_global_lock);
5075 }
5076 
5077 /**
5078  *	register_netdevice	- register a network device
5079  *	@dev: device to register
5080  *
5081  *	Take a completed network device structure and add it to the kernel
5082  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5083  *	chain. 0 is returned on success. A negative errno code is returned
5084  *	on a failure to set up the device, or if the name is a duplicate.
5085  *
5086  *	Callers must hold the rtnl semaphore. You may want
5087  *	register_netdev() instead of this.
5088  *
5089  *	BUGS:
5090  *	The locking appears insufficient to guarantee two parallel registers
5091  *	will not get the same name.
5092  */
5093 
5094 int register_netdevice(struct net_device *dev)
5095 {
5096 	int ret;
5097 	struct net *net = dev_net(dev);
5098 
5099 	BUG_ON(dev_boot_phase);
5100 	ASSERT_RTNL();
5101 
5102 	might_sleep();
5103 
5104 	/* When net_device's are persistent, this will be fatal. */
5105 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5106 	BUG_ON(!net);
5107 
5108 	spin_lock_init(&dev->addr_list_lock);
5109 	netdev_set_addr_lockdep_class(dev);
5110 
5111 	dev->iflink = -1;
5112 
5113 	ret = netif_alloc_rx_queues(dev);
5114 	if (ret)
5115 		goto out;
5116 
5117 	ret = netif_alloc_netdev_queues(dev);
5118 	if (ret)
5119 		goto out;
5120 
5121 	netdev_init_queues(dev);
5122 
5123 	/* Init, if this function is available */
5124 	if (dev->netdev_ops->ndo_init) {
5125 		ret = dev->netdev_ops->ndo_init(dev);
5126 		if (ret) {
5127 			if (ret > 0)
5128 				ret = -EIO;
5129 			goto out;
5130 		}
5131 	}
5132 
5133 	ret = dev_get_valid_name(dev, dev->name, 0);
5134 	if (ret)
5135 		goto err_uninit;
5136 
5137 	dev->ifindex = dev_new_index(net);
5138 	if (dev->iflink == -1)
5139 		dev->iflink = dev->ifindex;
5140 
5141 	/* Fix illegal checksum combinations */
5142 	if ((dev->features & NETIF_F_HW_CSUM) &&
5143 	    (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5144 		printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
5145 		       dev->name);
5146 		dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5147 	}
5148 
5149 	if ((dev->features & NETIF_F_NO_CSUM) &&
5150 	    (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5151 		printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
5152 		       dev->name);
5153 		dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
5154 	}
5155 
5156 	dev->features = netdev_fix_features(dev->features, dev->name);
5157 
5158 	/* Enable software GSO if SG is supported. */
5159 	if (dev->features & NETIF_F_SG)
5160 		dev->features |= NETIF_F_GSO;
5161 
5162 	/* Enable GRO and NETIF_F_HIGHDMA for vlans by default,
5163 	 * vlan_dev_init() will do the dev->features check, so these features
5164 	 * are enabled only if supported by underlying device.
5165 	 */
5166 	dev->vlan_features |= (NETIF_F_GRO | NETIF_F_HIGHDMA);
5167 
5168 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5169 	ret = notifier_to_errno(ret);
5170 	if (ret)
5171 		goto err_uninit;
5172 
5173 	ret = netdev_register_kobject(dev);
5174 	if (ret)
5175 		goto err_uninit;
5176 	dev->reg_state = NETREG_REGISTERED;
5177 
5178 	/*
5179 	 *	Default initial state at registry is that the
5180 	 *	device is present.
5181 	 */
5182 
5183 	set_bit(__LINK_STATE_PRESENT, &dev->state);
5184 
5185 	dev_init_scheduler(dev);
5186 	dev_hold(dev);
5187 	list_netdevice(dev);
5188 
5189 	/* Notify protocols, that a new device appeared. */
5190 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5191 	ret = notifier_to_errno(ret);
5192 	if (ret) {
5193 		rollback_registered(dev);
5194 		dev->reg_state = NETREG_UNREGISTERED;
5195 	}
5196 	/*
5197 	 *	Prevent userspace races by waiting until the network
5198 	 *	device is fully setup before sending notifications.
5199 	 */
5200 	if (!dev->rtnl_link_ops ||
5201 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5202 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5203 
5204 out:
5205 	return ret;
5206 
5207 err_uninit:
5208 	if (dev->netdev_ops->ndo_uninit)
5209 		dev->netdev_ops->ndo_uninit(dev);
5210 	goto out;
5211 }
5212 EXPORT_SYMBOL(register_netdevice);
5213 
5214 /**
5215  *	init_dummy_netdev	- init a dummy network device for NAPI
5216  *	@dev: device to init
5217  *
5218  *	This takes a network device structure and initialize the minimum
5219  *	amount of fields so it can be used to schedule NAPI polls without
5220  *	registering a full blown interface. This is to be used by drivers
5221  *	that need to tie several hardware interfaces to a single NAPI
5222  *	poll scheduler due to HW limitations.
5223  */
5224 int init_dummy_netdev(struct net_device *dev)
5225 {
5226 	/* Clear everything. Note we don't initialize spinlocks
5227 	 * are they aren't supposed to be taken by any of the
5228 	 * NAPI code and this dummy netdev is supposed to be
5229 	 * only ever used for NAPI polls
5230 	 */
5231 	memset(dev, 0, sizeof(struct net_device));
5232 
5233 	/* make sure we BUG if trying to hit standard
5234 	 * register/unregister code path
5235 	 */
5236 	dev->reg_state = NETREG_DUMMY;
5237 
5238 	/* NAPI wants this */
5239 	INIT_LIST_HEAD(&dev->napi_list);
5240 
5241 	/* a dummy interface is started by default */
5242 	set_bit(__LINK_STATE_PRESENT, &dev->state);
5243 	set_bit(__LINK_STATE_START, &dev->state);
5244 
5245 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
5246 	 * because users of this 'device' dont need to change
5247 	 * its refcount.
5248 	 */
5249 
5250 	return 0;
5251 }
5252 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5253 
5254 
5255 /**
5256  *	register_netdev	- register a network device
5257  *	@dev: device to register
5258  *
5259  *	Take a completed network device structure and add it to the kernel
5260  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5261  *	chain. 0 is returned on success. A negative errno code is returned
5262  *	on a failure to set up the device, or if the name is a duplicate.
5263  *
5264  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
5265  *	and expands the device name if you passed a format string to
5266  *	alloc_netdev.
5267  */
5268 int register_netdev(struct net_device *dev)
5269 {
5270 	int err;
5271 
5272 	rtnl_lock();
5273 
5274 	/*
5275 	 * If the name is a format string the caller wants us to do a
5276 	 * name allocation.
5277 	 */
5278 	if (strchr(dev->name, '%')) {
5279 		err = dev_alloc_name(dev, dev->name);
5280 		if (err < 0)
5281 			goto out;
5282 	}
5283 
5284 	err = register_netdevice(dev);
5285 out:
5286 	rtnl_unlock();
5287 	return err;
5288 }
5289 EXPORT_SYMBOL(register_netdev);
5290 
5291 int netdev_refcnt_read(const struct net_device *dev)
5292 {
5293 	int i, refcnt = 0;
5294 
5295 	for_each_possible_cpu(i)
5296 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5297 	return refcnt;
5298 }
5299 EXPORT_SYMBOL(netdev_refcnt_read);
5300 
5301 /*
5302  * netdev_wait_allrefs - wait until all references are gone.
5303  *
5304  * This is called when unregistering network devices.
5305  *
5306  * Any protocol or device that holds a reference should register
5307  * for netdevice notification, and cleanup and put back the
5308  * reference if they receive an UNREGISTER event.
5309  * We can get stuck here if buggy protocols don't correctly
5310  * call dev_put.
5311  */
5312 static void netdev_wait_allrefs(struct net_device *dev)
5313 {
5314 	unsigned long rebroadcast_time, warning_time;
5315 	int refcnt;
5316 
5317 	linkwatch_forget_dev(dev);
5318 
5319 	rebroadcast_time = warning_time = jiffies;
5320 	refcnt = netdev_refcnt_read(dev);
5321 
5322 	while (refcnt != 0) {
5323 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5324 			rtnl_lock();
5325 
5326 			/* Rebroadcast unregister notification */
5327 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5328 			/* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5329 			 * should have already handle it the first time */
5330 
5331 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5332 				     &dev->state)) {
5333 				/* We must not have linkwatch events
5334 				 * pending on unregister. If this
5335 				 * happens, we simply run the queue
5336 				 * unscheduled, resulting in a noop
5337 				 * for this device.
5338 				 */
5339 				linkwatch_run_queue();
5340 			}
5341 
5342 			__rtnl_unlock();
5343 
5344 			rebroadcast_time = jiffies;
5345 		}
5346 
5347 		msleep(250);
5348 
5349 		refcnt = netdev_refcnt_read(dev);
5350 
5351 		if (time_after(jiffies, warning_time + 10 * HZ)) {
5352 			printk(KERN_EMERG "unregister_netdevice: "
5353 			       "waiting for %s to become free. Usage "
5354 			       "count = %d\n",
5355 			       dev->name, refcnt);
5356 			warning_time = jiffies;
5357 		}
5358 	}
5359 }
5360 
5361 /* The sequence is:
5362  *
5363  *	rtnl_lock();
5364  *	...
5365  *	register_netdevice(x1);
5366  *	register_netdevice(x2);
5367  *	...
5368  *	unregister_netdevice(y1);
5369  *	unregister_netdevice(y2);
5370  *      ...
5371  *	rtnl_unlock();
5372  *	free_netdev(y1);
5373  *	free_netdev(y2);
5374  *
5375  * We are invoked by rtnl_unlock().
5376  * This allows us to deal with problems:
5377  * 1) We can delete sysfs objects which invoke hotplug
5378  *    without deadlocking with linkwatch via keventd.
5379  * 2) Since we run with the RTNL semaphore not held, we can sleep
5380  *    safely in order to wait for the netdev refcnt to drop to zero.
5381  *
5382  * We must not return until all unregister events added during
5383  * the interval the lock was held have been completed.
5384  */
5385 void netdev_run_todo(void)
5386 {
5387 	struct list_head list;
5388 
5389 	/* Snapshot list, allow later requests */
5390 	list_replace_init(&net_todo_list, &list);
5391 
5392 	__rtnl_unlock();
5393 
5394 	while (!list_empty(&list)) {
5395 		struct net_device *dev
5396 			= list_first_entry(&list, struct net_device, todo_list);
5397 		list_del(&dev->todo_list);
5398 
5399 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5400 			printk(KERN_ERR "network todo '%s' but state %d\n",
5401 			       dev->name, dev->reg_state);
5402 			dump_stack();
5403 			continue;
5404 		}
5405 
5406 		dev->reg_state = NETREG_UNREGISTERED;
5407 
5408 		on_each_cpu(flush_backlog, dev, 1);
5409 
5410 		netdev_wait_allrefs(dev);
5411 
5412 		/* paranoia */
5413 		BUG_ON(netdev_refcnt_read(dev));
5414 		WARN_ON(rcu_dereference_raw(dev->ip_ptr));
5415 		WARN_ON(rcu_dereference_raw(dev->ip6_ptr));
5416 		WARN_ON(dev->dn_ptr);
5417 
5418 		if (dev->destructor)
5419 			dev->destructor(dev);
5420 
5421 		/* Free network device */
5422 		kobject_put(&dev->dev.kobj);
5423 	}
5424 }
5425 
5426 /**
5427  *	dev_txq_stats_fold - fold tx_queues stats
5428  *	@dev: device to get statistics from
5429  *	@stats: struct rtnl_link_stats64 to hold results
5430  */
5431 void dev_txq_stats_fold(const struct net_device *dev,
5432 			struct rtnl_link_stats64 *stats)
5433 {
5434 	u64 tx_bytes = 0, tx_packets = 0, tx_dropped = 0;
5435 	unsigned int i;
5436 	struct netdev_queue *txq;
5437 
5438 	for (i = 0; i < dev->num_tx_queues; i++) {
5439 		txq = netdev_get_tx_queue(dev, i);
5440 		spin_lock_bh(&txq->_xmit_lock);
5441 		tx_bytes   += txq->tx_bytes;
5442 		tx_packets += txq->tx_packets;
5443 		tx_dropped += txq->tx_dropped;
5444 		spin_unlock_bh(&txq->_xmit_lock);
5445 	}
5446 	if (tx_bytes || tx_packets || tx_dropped) {
5447 		stats->tx_bytes   = tx_bytes;
5448 		stats->tx_packets = tx_packets;
5449 		stats->tx_dropped = tx_dropped;
5450 	}
5451 }
5452 EXPORT_SYMBOL(dev_txq_stats_fold);
5453 
5454 /* Convert net_device_stats to rtnl_link_stats64.  They have the same
5455  * fields in the same order, with only the type differing.
5456  */
5457 static void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5458 				    const struct net_device_stats *netdev_stats)
5459 {
5460 #if BITS_PER_LONG == 64
5461         BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5462         memcpy(stats64, netdev_stats, sizeof(*stats64));
5463 #else
5464 	size_t i, n = sizeof(*stats64) / sizeof(u64);
5465 	const unsigned long *src = (const unsigned long *)netdev_stats;
5466 	u64 *dst = (u64 *)stats64;
5467 
5468 	BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5469 		     sizeof(*stats64) / sizeof(u64));
5470 	for (i = 0; i < n; i++)
5471 		dst[i] = src[i];
5472 #endif
5473 }
5474 
5475 /**
5476  *	dev_get_stats	- get network device statistics
5477  *	@dev: device to get statistics from
5478  *	@storage: place to store stats
5479  *
5480  *	Get network statistics from device. Return @storage.
5481  *	The device driver may provide its own method by setting
5482  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5483  *	otherwise the internal statistics structure is used.
5484  */
5485 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5486 					struct rtnl_link_stats64 *storage)
5487 {
5488 	const struct net_device_ops *ops = dev->netdev_ops;
5489 
5490 	if (ops->ndo_get_stats64) {
5491 		memset(storage, 0, sizeof(*storage));
5492 		ops->ndo_get_stats64(dev, storage);
5493 	} else if (ops->ndo_get_stats) {
5494 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5495 	} else {
5496 		netdev_stats_to_stats64(storage, &dev->stats);
5497 		dev_txq_stats_fold(dev, storage);
5498 	}
5499 	storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
5500 	return storage;
5501 }
5502 EXPORT_SYMBOL(dev_get_stats);
5503 
5504 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5505 {
5506 	struct netdev_queue *queue = dev_ingress_queue(dev);
5507 
5508 #ifdef CONFIG_NET_CLS_ACT
5509 	if (queue)
5510 		return queue;
5511 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
5512 	if (!queue)
5513 		return NULL;
5514 	netdev_init_one_queue(dev, queue, NULL);
5515 	queue->qdisc = &noop_qdisc;
5516 	queue->qdisc_sleeping = &noop_qdisc;
5517 	rcu_assign_pointer(dev->ingress_queue, queue);
5518 #endif
5519 	return queue;
5520 }
5521 
5522 /**
5523  *	alloc_netdev_mq - allocate network device
5524  *	@sizeof_priv:	size of private data to allocate space for
5525  *	@name:		device name format string
5526  *	@setup:		callback to initialize device
5527  *	@queue_count:	the number of subqueues to allocate
5528  *
5529  *	Allocates a struct net_device with private data area for driver use
5530  *	and performs basic initialization.  Also allocates subquue structs
5531  *	for each queue on the device at the end of the netdevice.
5532  */
5533 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
5534 		void (*setup)(struct net_device *), unsigned int queue_count)
5535 {
5536 	struct net_device *dev;
5537 	size_t alloc_size;
5538 	struct net_device *p;
5539 
5540 	BUG_ON(strlen(name) >= sizeof(dev->name));
5541 
5542 	if (queue_count < 1) {
5543 		pr_err("alloc_netdev: Unable to allocate device "
5544 		       "with zero queues.\n");
5545 		return NULL;
5546 	}
5547 
5548 	alloc_size = sizeof(struct net_device);
5549 	if (sizeof_priv) {
5550 		/* ensure 32-byte alignment of private area */
5551 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5552 		alloc_size += sizeof_priv;
5553 	}
5554 	/* ensure 32-byte alignment of whole construct */
5555 	alloc_size += NETDEV_ALIGN - 1;
5556 
5557 	p = kzalloc(alloc_size, GFP_KERNEL);
5558 	if (!p) {
5559 		printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
5560 		return NULL;
5561 	}
5562 
5563 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
5564 	dev->padded = (char *)dev - (char *)p;
5565 
5566 	dev->pcpu_refcnt = alloc_percpu(int);
5567 	if (!dev->pcpu_refcnt)
5568 		goto free_p;
5569 
5570 	if (dev_addr_init(dev))
5571 		goto free_pcpu;
5572 
5573 	dev_mc_init(dev);
5574 	dev_uc_init(dev);
5575 
5576 	dev_net_set(dev, &init_net);
5577 
5578 	dev->num_tx_queues = queue_count;
5579 	dev->real_num_tx_queues = queue_count;
5580 
5581 #ifdef CONFIG_RPS
5582 	dev->num_rx_queues = queue_count;
5583 	dev->real_num_rx_queues = queue_count;
5584 #endif
5585 
5586 	dev->gso_max_size = GSO_MAX_SIZE;
5587 
5588 	INIT_LIST_HEAD(&dev->ethtool_ntuple_list.list);
5589 	dev->ethtool_ntuple_list.count = 0;
5590 	INIT_LIST_HEAD(&dev->napi_list);
5591 	INIT_LIST_HEAD(&dev->unreg_list);
5592 	INIT_LIST_HEAD(&dev->link_watch_list);
5593 	dev->priv_flags = IFF_XMIT_DST_RELEASE;
5594 	setup(dev);
5595 	strcpy(dev->name, name);
5596 	return dev;
5597 
5598 free_pcpu:
5599 	free_percpu(dev->pcpu_refcnt);
5600 free_p:
5601 	kfree(p);
5602 	return NULL;
5603 }
5604 EXPORT_SYMBOL(alloc_netdev_mq);
5605 
5606 /**
5607  *	free_netdev - free network device
5608  *	@dev: device
5609  *
5610  *	This function does the last stage of destroying an allocated device
5611  * 	interface. The reference to the device object is released.
5612  *	If this is the last reference then it will be freed.
5613  */
5614 void free_netdev(struct net_device *dev)
5615 {
5616 	struct napi_struct *p, *n;
5617 
5618 	release_net(dev_net(dev));
5619 
5620 	kfree(dev->_tx);
5621 
5622 	kfree(rcu_dereference_raw(dev->ingress_queue));
5623 
5624 	/* Flush device addresses */
5625 	dev_addr_flush(dev);
5626 
5627 	/* Clear ethtool n-tuple list */
5628 	ethtool_ntuple_flush(dev);
5629 
5630 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5631 		netif_napi_del(p);
5632 
5633 	free_percpu(dev->pcpu_refcnt);
5634 	dev->pcpu_refcnt = NULL;
5635 
5636 	/*  Compatibility with error handling in drivers */
5637 	if (dev->reg_state == NETREG_UNINITIALIZED) {
5638 		kfree((char *)dev - dev->padded);
5639 		return;
5640 	}
5641 
5642 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5643 	dev->reg_state = NETREG_RELEASED;
5644 
5645 	/* will free via device release */
5646 	put_device(&dev->dev);
5647 }
5648 EXPORT_SYMBOL(free_netdev);
5649 
5650 /**
5651  *	synchronize_net -  Synchronize with packet receive processing
5652  *
5653  *	Wait for packets currently being received to be done.
5654  *	Does not block later packets from starting.
5655  */
5656 void synchronize_net(void)
5657 {
5658 	might_sleep();
5659 	synchronize_rcu();
5660 }
5661 EXPORT_SYMBOL(synchronize_net);
5662 
5663 /**
5664  *	unregister_netdevice_queue - remove device from the kernel
5665  *	@dev: device
5666  *	@head: list
5667  *
5668  *	This function shuts down a device interface and removes it
5669  *	from the kernel tables.
5670  *	If head not NULL, device is queued to be unregistered later.
5671  *
5672  *	Callers must hold the rtnl semaphore.  You may want
5673  *	unregister_netdev() instead of this.
5674  */
5675 
5676 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
5677 {
5678 	ASSERT_RTNL();
5679 
5680 	if (head) {
5681 		list_move_tail(&dev->unreg_list, head);
5682 	} else {
5683 		rollback_registered(dev);
5684 		/* Finish processing unregister after unlock */
5685 		net_set_todo(dev);
5686 	}
5687 }
5688 EXPORT_SYMBOL(unregister_netdevice_queue);
5689 
5690 /**
5691  *	unregister_netdevice_many - unregister many devices
5692  *	@head: list of devices
5693  */
5694 void unregister_netdevice_many(struct list_head *head)
5695 {
5696 	struct net_device *dev;
5697 
5698 	if (!list_empty(head)) {
5699 		rollback_registered_many(head);
5700 		list_for_each_entry(dev, head, unreg_list)
5701 			net_set_todo(dev);
5702 	}
5703 }
5704 EXPORT_SYMBOL(unregister_netdevice_many);
5705 
5706 /**
5707  *	unregister_netdev - remove device from the kernel
5708  *	@dev: device
5709  *
5710  *	This function shuts down a device interface and removes it
5711  *	from the kernel tables.
5712  *
5713  *	This is just a wrapper for unregister_netdevice that takes
5714  *	the rtnl semaphore.  In general you want to use this and not
5715  *	unregister_netdevice.
5716  */
5717 void unregister_netdev(struct net_device *dev)
5718 {
5719 	rtnl_lock();
5720 	unregister_netdevice(dev);
5721 	rtnl_unlock();
5722 }
5723 EXPORT_SYMBOL(unregister_netdev);
5724 
5725 /**
5726  *	dev_change_net_namespace - move device to different nethost namespace
5727  *	@dev: device
5728  *	@net: network namespace
5729  *	@pat: If not NULL name pattern to try if the current device name
5730  *	      is already taken in the destination network namespace.
5731  *
5732  *	This function shuts down a device interface and moves it
5733  *	to a new network namespace. On success 0 is returned, on
5734  *	a failure a netagive errno code is returned.
5735  *
5736  *	Callers must hold the rtnl semaphore.
5737  */
5738 
5739 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5740 {
5741 	int err;
5742 
5743 	ASSERT_RTNL();
5744 
5745 	/* Don't allow namespace local devices to be moved. */
5746 	err = -EINVAL;
5747 	if (dev->features & NETIF_F_NETNS_LOCAL)
5748 		goto out;
5749 
5750 	/* Ensure the device has been registrered */
5751 	err = -EINVAL;
5752 	if (dev->reg_state != NETREG_REGISTERED)
5753 		goto out;
5754 
5755 	/* Get out if there is nothing todo */
5756 	err = 0;
5757 	if (net_eq(dev_net(dev), net))
5758 		goto out;
5759 
5760 	/* Pick the destination device name, and ensure
5761 	 * we can use it in the destination network namespace.
5762 	 */
5763 	err = -EEXIST;
5764 	if (__dev_get_by_name(net, dev->name)) {
5765 		/* We get here if we can't use the current device name */
5766 		if (!pat)
5767 			goto out;
5768 		if (dev_get_valid_name(dev, pat, 1))
5769 			goto out;
5770 	}
5771 
5772 	/*
5773 	 * And now a mini version of register_netdevice unregister_netdevice.
5774 	 */
5775 
5776 	/* If device is running close it first. */
5777 	dev_close(dev);
5778 
5779 	/* And unlink it from device chain */
5780 	err = -ENODEV;
5781 	unlist_netdevice(dev);
5782 
5783 	synchronize_net();
5784 
5785 	/* Shutdown queueing discipline. */
5786 	dev_shutdown(dev);
5787 
5788 	/* Notify protocols, that we are about to destroy
5789 	   this device. They should clean all the things.
5790 
5791 	   Note that dev->reg_state stays at NETREG_REGISTERED.
5792 	   This is wanted because this way 8021q and macvlan know
5793 	   the device is just moving and can keep their slaves up.
5794 	*/
5795 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5796 	call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5797 
5798 	/*
5799 	 *	Flush the unicast and multicast chains
5800 	 */
5801 	dev_uc_flush(dev);
5802 	dev_mc_flush(dev);
5803 
5804 	/* Actually switch the network namespace */
5805 	dev_net_set(dev, net);
5806 
5807 	/* If there is an ifindex conflict assign a new one */
5808 	if (__dev_get_by_index(net, dev->ifindex)) {
5809 		int iflink = (dev->iflink == dev->ifindex);
5810 		dev->ifindex = dev_new_index(net);
5811 		if (iflink)
5812 			dev->iflink = dev->ifindex;
5813 	}
5814 
5815 	/* Fixup kobjects */
5816 	err = device_rename(&dev->dev, dev->name);
5817 	WARN_ON(err);
5818 
5819 	/* Add the device back in the hashes */
5820 	list_netdevice(dev);
5821 
5822 	/* Notify protocols, that a new device appeared. */
5823 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
5824 
5825 	/*
5826 	 *	Prevent userspace races by waiting until the network
5827 	 *	device is fully setup before sending notifications.
5828 	 */
5829 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5830 
5831 	synchronize_net();
5832 	err = 0;
5833 out:
5834 	return err;
5835 }
5836 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
5837 
5838 static int dev_cpu_callback(struct notifier_block *nfb,
5839 			    unsigned long action,
5840 			    void *ocpu)
5841 {
5842 	struct sk_buff **list_skb;
5843 	struct sk_buff *skb;
5844 	unsigned int cpu, oldcpu = (unsigned long)ocpu;
5845 	struct softnet_data *sd, *oldsd;
5846 
5847 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5848 		return NOTIFY_OK;
5849 
5850 	local_irq_disable();
5851 	cpu = smp_processor_id();
5852 	sd = &per_cpu(softnet_data, cpu);
5853 	oldsd = &per_cpu(softnet_data, oldcpu);
5854 
5855 	/* Find end of our completion_queue. */
5856 	list_skb = &sd->completion_queue;
5857 	while (*list_skb)
5858 		list_skb = &(*list_skb)->next;
5859 	/* Append completion queue from offline CPU. */
5860 	*list_skb = oldsd->completion_queue;
5861 	oldsd->completion_queue = NULL;
5862 
5863 	/* Append output queue from offline CPU. */
5864 	if (oldsd->output_queue) {
5865 		*sd->output_queue_tailp = oldsd->output_queue;
5866 		sd->output_queue_tailp = oldsd->output_queue_tailp;
5867 		oldsd->output_queue = NULL;
5868 		oldsd->output_queue_tailp = &oldsd->output_queue;
5869 	}
5870 
5871 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
5872 	local_irq_enable();
5873 
5874 	/* Process offline CPU's input_pkt_queue */
5875 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
5876 		netif_rx(skb);
5877 		input_queue_head_incr(oldsd);
5878 	}
5879 	while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
5880 		netif_rx(skb);
5881 		input_queue_head_incr(oldsd);
5882 	}
5883 
5884 	return NOTIFY_OK;
5885 }
5886 
5887 
5888 /**
5889  *	netdev_increment_features - increment feature set by one
5890  *	@all: current feature set
5891  *	@one: new feature set
5892  *	@mask: mask feature set
5893  *
5894  *	Computes a new feature set after adding a device with feature set
5895  *	@one to the master device with current feature set @all.  Will not
5896  *	enable anything that is off in @mask. Returns the new feature set.
5897  */
5898 unsigned long netdev_increment_features(unsigned long all, unsigned long one,
5899 					unsigned long mask)
5900 {
5901 	/* If device needs checksumming, downgrade to it. */
5902 	if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
5903 		all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
5904 	else if (mask & NETIF_F_ALL_CSUM) {
5905 		/* If one device supports v4/v6 checksumming, set for all. */
5906 		if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
5907 		    !(all & NETIF_F_GEN_CSUM)) {
5908 			all &= ~NETIF_F_ALL_CSUM;
5909 			all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
5910 		}
5911 
5912 		/* If one device supports hw checksumming, set for all. */
5913 		if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
5914 			all &= ~NETIF_F_ALL_CSUM;
5915 			all |= NETIF_F_HW_CSUM;
5916 		}
5917 	}
5918 
5919 	one |= NETIF_F_ALL_CSUM;
5920 
5921 	one |= all & NETIF_F_ONE_FOR_ALL;
5922 	all &= one | NETIF_F_LLTX | NETIF_F_GSO | NETIF_F_UFO;
5923 	all |= one & mask & NETIF_F_ONE_FOR_ALL;
5924 
5925 	return all;
5926 }
5927 EXPORT_SYMBOL(netdev_increment_features);
5928 
5929 static struct hlist_head *netdev_create_hash(void)
5930 {
5931 	int i;
5932 	struct hlist_head *hash;
5933 
5934 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
5935 	if (hash != NULL)
5936 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
5937 			INIT_HLIST_HEAD(&hash[i]);
5938 
5939 	return hash;
5940 }
5941 
5942 /* Initialize per network namespace state */
5943 static int __net_init netdev_init(struct net *net)
5944 {
5945 	INIT_LIST_HEAD(&net->dev_base_head);
5946 
5947 	net->dev_name_head = netdev_create_hash();
5948 	if (net->dev_name_head == NULL)
5949 		goto err_name;
5950 
5951 	net->dev_index_head = netdev_create_hash();
5952 	if (net->dev_index_head == NULL)
5953 		goto err_idx;
5954 
5955 	return 0;
5956 
5957 err_idx:
5958 	kfree(net->dev_name_head);
5959 err_name:
5960 	return -ENOMEM;
5961 }
5962 
5963 /**
5964  *	netdev_drivername - network driver for the device
5965  *	@dev: network device
5966  *	@buffer: buffer for resulting name
5967  *	@len: size of buffer
5968  *
5969  *	Determine network driver for device.
5970  */
5971 char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
5972 {
5973 	const struct device_driver *driver;
5974 	const struct device *parent;
5975 
5976 	if (len <= 0 || !buffer)
5977 		return buffer;
5978 	buffer[0] = 0;
5979 
5980 	parent = dev->dev.parent;
5981 
5982 	if (!parent)
5983 		return buffer;
5984 
5985 	driver = parent->driver;
5986 	if (driver && driver->name)
5987 		strlcpy(buffer, driver->name, len);
5988 	return buffer;
5989 }
5990 
5991 static int __netdev_printk(const char *level, const struct net_device *dev,
5992 			   struct va_format *vaf)
5993 {
5994 	int r;
5995 
5996 	if (dev && dev->dev.parent)
5997 		r = dev_printk(level, dev->dev.parent, "%s: %pV",
5998 			       netdev_name(dev), vaf);
5999 	else if (dev)
6000 		r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6001 	else
6002 		r = printk("%s(NULL net_device): %pV", level, vaf);
6003 
6004 	return r;
6005 }
6006 
6007 int netdev_printk(const char *level, const struct net_device *dev,
6008 		  const char *format, ...)
6009 {
6010 	struct va_format vaf;
6011 	va_list args;
6012 	int r;
6013 
6014 	va_start(args, format);
6015 
6016 	vaf.fmt = format;
6017 	vaf.va = &args;
6018 
6019 	r = __netdev_printk(level, dev, &vaf);
6020 	va_end(args);
6021 
6022 	return r;
6023 }
6024 EXPORT_SYMBOL(netdev_printk);
6025 
6026 #define define_netdev_printk_level(func, level)			\
6027 int func(const struct net_device *dev, const char *fmt, ...)	\
6028 {								\
6029 	int r;							\
6030 	struct va_format vaf;					\
6031 	va_list args;						\
6032 								\
6033 	va_start(args, fmt);					\
6034 								\
6035 	vaf.fmt = fmt;						\
6036 	vaf.va = &args;						\
6037 								\
6038 	r = __netdev_printk(level, dev, &vaf);			\
6039 	va_end(args);						\
6040 								\
6041 	return r;						\
6042 }								\
6043 EXPORT_SYMBOL(func);
6044 
6045 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6046 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6047 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6048 define_netdev_printk_level(netdev_err, KERN_ERR);
6049 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6050 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6051 define_netdev_printk_level(netdev_info, KERN_INFO);
6052 
6053 static void __net_exit netdev_exit(struct net *net)
6054 {
6055 	kfree(net->dev_name_head);
6056 	kfree(net->dev_index_head);
6057 }
6058 
6059 static struct pernet_operations __net_initdata netdev_net_ops = {
6060 	.init = netdev_init,
6061 	.exit = netdev_exit,
6062 };
6063 
6064 static void __net_exit default_device_exit(struct net *net)
6065 {
6066 	struct net_device *dev, *aux;
6067 	/*
6068 	 * Push all migratable network devices back to the
6069 	 * initial network namespace
6070 	 */
6071 	rtnl_lock();
6072 	for_each_netdev_safe(net, dev, aux) {
6073 		int err;
6074 		char fb_name[IFNAMSIZ];
6075 
6076 		/* Ignore unmoveable devices (i.e. loopback) */
6077 		if (dev->features & NETIF_F_NETNS_LOCAL)
6078 			continue;
6079 
6080 		/* Leave virtual devices for the generic cleanup */
6081 		if (dev->rtnl_link_ops)
6082 			continue;
6083 
6084 		/* Push remaing network devices to init_net */
6085 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6086 		err = dev_change_net_namespace(dev, &init_net, fb_name);
6087 		if (err) {
6088 			printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
6089 				__func__, dev->name, err);
6090 			BUG();
6091 		}
6092 	}
6093 	rtnl_unlock();
6094 }
6095 
6096 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6097 {
6098 	/* At exit all network devices most be removed from a network
6099 	 * namespace.  Do this in the reverse order of registeration.
6100 	 * Do this across as many network namespaces as possible to
6101 	 * improve batching efficiency.
6102 	 */
6103 	struct net_device *dev;
6104 	struct net *net;
6105 	LIST_HEAD(dev_kill_list);
6106 
6107 	rtnl_lock();
6108 	list_for_each_entry(net, net_list, exit_list) {
6109 		for_each_netdev_reverse(net, dev) {
6110 			if (dev->rtnl_link_ops)
6111 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6112 			else
6113 				unregister_netdevice_queue(dev, &dev_kill_list);
6114 		}
6115 	}
6116 	unregister_netdevice_many(&dev_kill_list);
6117 	rtnl_unlock();
6118 }
6119 
6120 static struct pernet_operations __net_initdata default_device_ops = {
6121 	.exit = default_device_exit,
6122 	.exit_batch = default_device_exit_batch,
6123 };
6124 
6125 /*
6126  *	Initialize the DEV module. At boot time this walks the device list and
6127  *	unhooks any devices that fail to initialise (normally hardware not
6128  *	present) and leaves us with a valid list of present and active devices.
6129  *
6130  */
6131 
6132 /*
6133  *       This is called single threaded during boot, so no need
6134  *       to take the rtnl semaphore.
6135  */
6136 static int __init net_dev_init(void)
6137 {
6138 	int i, rc = -ENOMEM;
6139 
6140 	BUG_ON(!dev_boot_phase);
6141 
6142 	if (dev_proc_init())
6143 		goto out;
6144 
6145 	if (netdev_kobject_init())
6146 		goto out;
6147 
6148 	INIT_LIST_HEAD(&ptype_all);
6149 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
6150 		INIT_LIST_HEAD(&ptype_base[i]);
6151 
6152 	if (register_pernet_subsys(&netdev_net_ops))
6153 		goto out;
6154 
6155 	/*
6156 	 *	Initialise the packet receive queues.
6157 	 */
6158 
6159 	for_each_possible_cpu(i) {
6160 		struct softnet_data *sd = &per_cpu(softnet_data, i);
6161 
6162 		memset(sd, 0, sizeof(*sd));
6163 		skb_queue_head_init(&sd->input_pkt_queue);
6164 		skb_queue_head_init(&sd->process_queue);
6165 		sd->completion_queue = NULL;
6166 		INIT_LIST_HEAD(&sd->poll_list);
6167 		sd->output_queue = NULL;
6168 		sd->output_queue_tailp = &sd->output_queue;
6169 #ifdef CONFIG_RPS
6170 		sd->csd.func = rps_trigger_softirq;
6171 		sd->csd.info = sd;
6172 		sd->csd.flags = 0;
6173 		sd->cpu = i;
6174 #endif
6175 
6176 		sd->backlog.poll = process_backlog;
6177 		sd->backlog.weight = weight_p;
6178 		sd->backlog.gro_list = NULL;
6179 		sd->backlog.gro_count = 0;
6180 	}
6181 
6182 	dev_boot_phase = 0;
6183 
6184 	/* The loopback device is special if any other network devices
6185 	 * is present in a network namespace the loopback device must
6186 	 * be present. Since we now dynamically allocate and free the
6187 	 * loopback device ensure this invariant is maintained by
6188 	 * keeping the loopback device as the first device on the
6189 	 * list of network devices.  Ensuring the loopback devices
6190 	 * is the first device that appears and the last network device
6191 	 * that disappears.
6192 	 */
6193 	if (register_pernet_device(&loopback_net_ops))
6194 		goto out;
6195 
6196 	if (register_pernet_device(&default_device_ops))
6197 		goto out;
6198 
6199 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6200 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6201 
6202 	hotcpu_notifier(dev_cpu_callback, 0);
6203 	dst_init();
6204 	dev_mcast_init();
6205 	rc = 0;
6206 out:
6207 	return rc;
6208 }
6209 
6210 subsys_initcall(net_dev_init);
6211 
6212 static int __init initialize_hashrnd(void)
6213 {
6214 	get_random_bytes(&hashrnd, sizeof(hashrnd));
6215 	return 0;
6216 }
6217 
6218 late_initcall_sync(initialize_hashrnd);
6219 
6220