1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <linux/uaccess.h> 76 #include <linux/bitops.h> 77 #include <linux/capability.h> 78 #include <linux/cpu.h> 79 #include <linux/types.h> 80 #include <linux/kernel.h> 81 #include <linux/hash.h> 82 #include <linux/slab.h> 83 #include <linux/sched.h> 84 #include <linux/sched/mm.h> 85 #include <linux/mutex.h> 86 #include <linux/string.h> 87 #include <linux/mm.h> 88 #include <linux/socket.h> 89 #include <linux/sockios.h> 90 #include <linux/errno.h> 91 #include <linux/interrupt.h> 92 #include <linux/if_ether.h> 93 #include <linux/netdevice.h> 94 #include <linux/etherdevice.h> 95 #include <linux/ethtool.h> 96 #include <linux/skbuff.h> 97 #include <linux/bpf.h> 98 #include <linux/bpf_trace.h> 99 #include <net/net_namespace.h> 100 #include <net/sock.h> 101 #include <net/busy_poll.h> 102 #include <linux/rtnetlink.h> 103 #include <linux/stat.h> 104 #include <net/dst.h> 105 #include <net/dst_metadata.h> 106 #include <net/pkt_sched.h> 107 #include <net/pkt_cls.h> 108 #include <net/checksum.h> 109 #include <net/xfrm.h> 110 #include <linux/highmem.h> 111 #include <linux/init.h> 112 #include <linux/module.h> 113 #include <linux/netpoll.h> 114 #include <linux/rcupdate.h> 115 #include <linux/delay.h> 116 #include <net/iw_handler.h> 117 #include <asm/current.h> 118 #include <linux/audit.h> 119 #include <linux/dmaengine.h> 120 #include <linux/err.h> 121 #include <linux/ctype.h> 122 #include <linux/if_arp.h> 123 #include <linux/if_vlan.h> 124 #include <linux/ip.h> 125 #include <net/ip.h> 126 #include <net/mpls.h> 127 #include <linux/ipv6.h> 128 #include <linux/in.h> 129 #include <linux/jhash.h> 130 #include <linux/random.h> 131 #include <trace/events/napi.h> 132 #include <trace/events/net.h> 133 #include <trace/events/skb.h> 134 #include <linux/pci.h> 135 #include <linux/inetdevice.h> 136 #include <linux/cpu_rmap.h> 137 #include <linux/static_key.h> 138 #include <linux/hashtable.h> 139 #include <linux/vmalloc.h> 140 #include <linux/if_macvlan.h> 141 #include <linux/errqueue.h> 142 #include <linux/hrtimer.h> 143 #include <linux/netfilter_ingress.h> 144 #include <linux/crash_dump.h> 145 #include <linux/sctp.h> 146 #include <net/udp_tunnel.h> 147 #include <linux/net_namespace.h> 148 149 #include "net-sysfs.h" 150 151 #define MAX_GRO_SKBS 8 152 153 /* This should be increased if a protocol with a bigger head is added. */ 154 #define GRO_MAX_HEAD (MAX_HEADER + 128) 155 156 static DEFINE_SPINLOCK(ptype_lock); 157 static DEFINE_SPINLOCK(offload_lock); 158 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 159 struct list_head ptype_all __read_mostly; /* Taps */ 160 static struct list_head offload_base __read_mostly; 161 162 static int netif_rx_internal(struct sk_buff *skb); 163 static int call_netdevice_notifiers_info(unsigned long val, 164 struct netdev_notifier_info *info); 165 static struct napi_struct *napi_by_id(unsigned int napi_id); 166 167 /* 168 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 169 * semaphore. 170 * 171 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 172 * 173 * Writers must hold the rtnl semaphore while they loop through the 174 * dev_base_head list, and hold dev_base_lock for writing when they do the 175 * actual updates. This allows pure readers to access the list even 176 * while a writer is preparing to update it. 177 * 178 * To put it another way, dev_base_lock is held for writing only to 179 * protect against pure readers; the rtnl semaphore provides the 180 * protection against other writers. 181 * 182 * See, for example usages, register_netdevice() and 183 * unregister_netdevice(), which must be called with the rtnl 184 * semaphore held. 185 */ 186 DEFINE_RWLOCK(dev_base_lock); 187 EXPORT_SYMBOL(dev_base_lock); 188 189 static DEFINE_MUTEX(ifalias_mutex); 190 191 /* protects napi_hash addition/deletion and napi_gen_id */ 192 static DEFINE_SPINLOCK(napi_hash_lock); 193 194 static unsigned int napi_gen_id = NR_CPUS; 195 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8); 196 197 static seqcount_t devnet_rename_seq; 198 199 static inline void dev_base_seq_inc(struct net *net) 200 { 201 while (++net->dev_base_seq == 0) 202 ; 203 } 204 205 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 206 { 207 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ)); 208 209 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 210 } 211 212 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 213 { 214 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 215 } 216 217 static inline void rps_lock(struct softnet_data *sd) 218 { 219 #ifdef CONFIG_RPS 220 spin_lock(&sd->input_pkt_queue.lock); 221 #endif 222 } 223 224 static inline void rps_unlock(struct softnet_data *sd) 225 { 226 #ifdef CONFIG_RPS 227 spin_unlock(&sd->input_pkt_queue.lock); 228 #endif 229 } 230 231 /* Device list insertion */ 232 static void list_netdevice(struct net_device *dev) 233 { 234 struct net *net = dev_net(dev); 235 236 ASSERT_RTNL(); 237 238 write_lock_bh(&dev_base_lock); 239 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 240 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 241 hlist_add_head_rcu(&dev->index_hlist, 242 dev_index_hash(net, dev->ifindex)); 243 write_unlock_bh(&dev_base_lock); 244 245 dev_base_seq_inc(net); 246 } 247 248 /* Device list removal 249 * caller must respect a RCU grace period before freeing/reusing dev 250 */ 251 static void unlist_netdevice(struct net_device *dev) 252 { 253 ASSERT_RTNL(); 254 255 /* Unlink dev from the device chain */ 256 write_lock_bh(&dev_base_lock); 257 list_del_rcu(&dev->dev_list); 258 hlist_del_rcu(&dev->name_hlist); 259 hlist_del_rcu(&dev->index_hlist); 260 write_unlock_bh(&dev_base_lock); 261 262 dev_base_seq_inc(dev_net(dev)); 263 } 264 265 /* 266 * Our notifier list 267 */ 268 269 static RAW_NOTIFIER_HEAD(netdev_chain); 270 271 /* 272 * Device drivers call our routines to queue packets here. We empty the 273 * queue in the local softnet handler. 274 */ 275 276 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 277 EXPORT_PER_CPU_SYMBOL(softnet_data); 278 279 #ifdef CONFIG_LOCKDEP 280 /* 281 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 282 * according to dev->type 283 */ 284 static const unsigned short netdev_lock_type[] = { 285 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 286 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 287 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 288 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 289 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 290 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 291 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 292 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 293 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 294 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 295 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 296 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 297 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 298 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 299 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 300 301 static const char *const netdev_lock_name[] = { 302 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 303 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 304 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 305 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 306 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 307 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 308 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 309 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 310 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 311 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 312 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 313 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 314 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 315 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 316 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 317 318 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 319 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 320 321 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 322 { 323 int i; 324 325 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 326 if (netdev_lock_type[i] == dev_type) 327 return i; 328 /* the last key is used by default */ 329 return ARRAY_SIZE(netdev_lock_type) - 1; 330 } 331 332 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 333 unsigned short dev_type) 334 { 335 int i; 336 337 i = netdev_lock_pos(dev_type); 338 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 339 netdev_lock_name[i]); 340 } 341 342 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 343 { 344 int i; 345 346 i = netdev_lock_pos(dev->type); 347 lockdep_set_class_and_name(&dev->addr_list_lock, 348 &netdev_addr_lock_key[i], 349 netdev_lock_name[i]); 350 } 351 #else 352 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 353 unsigned short dev_type) 354 { 355 } 356 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 357 { 358 } 359 #endif 360 361 /******************************************************************************* 362 * 363 * Protocol management and registration routines 364 * 365 *******************************************************************************/ 366 367 368 /* 369 * Add a protocol ID to the list. Now that the input handler is 370 * smarter we can dispense with all the messy stuff that used to be 371 * here. 372 * 373 * BEWARE!!! Protocol handlers, mangling input packets, 374 * MUST BE last in hash buckets and checking protocol handlers 375 * MUST start from promiscuous ptype_all chain in net_bh. 376 * It is true now, do not change it. 377 * Explanation follows: if protocol handler, mangling packet, will 378 * be the first on list, it is not able to sense, that packet 379 * is cloned and should be copied-on-write, so that it will 380 * change it and subsequent readers will get broken packet. 381 * --ANK (980803) 382 */ 383 384 static inline struct list_head *ptype_head(const struct packet_type *pt) 385 { 386 if (pt->type == htons(ETH_P_ALL)) 387 return pt->dev ? &pt->dev->ptype_all : &ptype_all; 388 else 389 return pt->dev ? &pt->dev->ptype_specific : 390 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 391 } 392 393 /** 394 * dev_add_pack - add packet handler 395 * @pt: packet type declaration 396 * 397 * Add a protocol handler to the networking stack. The passed &packet_type 398 * is linked into kernel lists and may not be freed until it has been 399 * removed from the kernel lists. 400 * 401 * This call does not sleep therefore it can not 402 * guarantee all CPU's that are in middle of receiving packets 403 * will see the new packet type (until the next received packet). 404 */ 405 406 void dev_add_pack(struct packet_type *pt) 407 { 408 struct list_head *head = ptype_head(pt); 409 410 spin_lock(&ptype_lock); 411 list_add_rcu(&pt->list, head); 412 spin_unlock(&ptype_lock); 413 } 414 EXPORT_SYMBOL(dev_add_pack); 415 416 /** 417 * __dev_remove_pack - remove packet handler 418 * @pt: packet type declaration 419 * 420 * Remove a protocol handler that was previously added to the kernel 421 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 422 * from the kernel lists and can be freed or reused once this function 423 * returns. 424 * 425 * The packet type might still be in use by receivers 426 * and must not be freed until after all the CPU's have gone 427 * through a quiescent state. 428 */ 429 void __dev_remove_pack(struct packet_type *pt) 430 { 431 struct list_head *head = ptype_head(pt); 432 struct packet_type *pt1; 433 434 spin_lock(&ptype_lock); 435 436 list_for_each_entry(pt1, head, list) { 437 if (pt == pt1) { 438 list_del_rcu(&pt->list); 439 goto out; 440 } 441 } 442 443 pr_warn("dev_remove_pack: %p not found\n", pt); 444 out: 445 spin_unlock(&ptype_lock); 446 } 447 EXPORT_SYMBOL(__dev_remove_pack); 448 449 /** 450 * dev_remove_pack - remove packet handler 451 * @pt: packet type declaration 452 * 453 * Remove a protocol handler that was previously added to the kernel 454 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 455 * from the kernel lists and can be freed or reused once this function 456 * returns. 457 * 458 * This call sleeps to guarantee that no CPU is looking at the packet 459 * type after return. 460 */ 461 void dev_remove_pack(struct packet_type *pt) 462 { 463 __dev_remove_pack(pt); 464 465 synchronize_net(); 466 } 467 EXPORT_SYMBOL(dev_remove_pack); 468 469 470 /** 471 * dev_add_offload - register offload handlers 472 * @po: protocol offload declaration 473 * 474 * Add protocol offload handlers to the networking stack. The passed 475 * &proto_offload is linked into kernel lists and may not be freed until 476 * it has been removed from the kernel lists. 477 * 478 * This call does not sleep therefore it can not 479 * guarantee all CPU's that are in middle of receiving packets 480 * will see the new offload handlers (until the next received packet). 481 */ 482 void dev_add_offload(struct packet_offload *po) 483 { 484 struct packet_offload *elem; 485 486 spin_lock(&offload_lock); 487 list_for_each_entry(elem, &offload_base, list) { 488 if (po->priority < elem->priority) 489 break; 490 } 491 list_add_rcu(&po->list, elem->list.prev); 492 spin_unlock(&offload_lock); 493 } 494 EXPORT_SYMBOL(dev_add_offload); 495 496 /** 497 * __dev_remove_offload - remove offload handler 498 * @po: packet offload declaration 499 * 500 * Remove a protocol offload handler that was previously added to the 501 * kernel offload handlers by dev_add_offload(). The passed &offload_type 502 * is removed from the kernel lists and can be freed or reused once this 503 * function returns. 504 * 505 * The packet type might still be in use by receivers 506 * and must not be freed until after all the CPU's have gone 507 * through a quiescent state. 508 */ 509 static void __dev_remove_offload(struct packet_offload *po) 510 { 511 struct list_head *head = &offload_base; 512 struct packet_offload *po1; 513 514 spin_lock(&offload_lock); 515 516 list_for_each_entry(po1, head, list) { 517 if (po == po1) { 518 list_del_rcu(&po->list); 519 goto out; 520 } 521 } 522 523 pr_warn("dev_remove_offload: %p not found\n", po); 524 out: 525 spin_unlock(&offload_lock); 526 } 527 528 /** 529 * dev_remove_offload - remove packet offload handler 530 * @po: packet offload declaration 531 * 532 * Remove a packet offload handler that was previously added to the kernel 533 * offload handlers by dev_add_offload(). The passed &offload_type is 534 * removed from the kernel lists and can be freed or reused once this 535 * function returns. 536 * 537 * This call sleeps to guarantee that no CPU is looking at the packet 538 * type after return. 539 */ 540 void dev_remove_offload(struct packet_offload *po) 541 { 542 __dev_remove_offload(po); 543 544 synchronize_net(); 545 } 546 EXPORT_SYMBOL(dev_remove_offload); 547 548 /****************************************************************************** 549 * 550 * Device Boot-time Settings Routines 551 * 552 ******************************************************************************/ 553 554 /* Boot time configuration table */ 555 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 556 557 /** 558 * netdev_boot_setup_add - add new setup entry 559 * @name: name of the device 560 * @map: configured settings for the device 561 * 562 * Adds new setup entry to the dev_boot_setup list. The function 563 * returns 0 on error and 1 on success. This is a generic routine to 564 * all netdevices. 565 */ 566 static int netdev_boot_setup_add(char *name, struct ifmap *map) 567 { 568 struct netdev_boot_setup *s; 569 int i; 570 571 s = dev_boot_setup; 572 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 573 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 574 memset(s[i].name, 0, sizeof(s[i].name)); 575 strlcpy(s[i].name, name, IFNAMSIZ); 576 memcpy(&s[i].map, map, sizeof(s[i].map)); 577 break; 578 } 579 } 580 581 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 582 } 583 584 /** 585 * netdev_boot_setup_check - check boot time settings 586 * @dev: the netdevice 587 * 588 * Check boot time settings for the device. 589 * The found settings are set for the device to be used 590 * later in the device probing. 591 * Returns 0 if no settings found, 1 if they are. 592 */ 593 int netdev_boot_setup_check(struct net_device *dev) 594 { 595 struct netdev_boot_setup *s = dev_boot_setup; 596 int i; 597 598 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 599 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 600 !strcmp(dev->name, s[i].name)) { 601 dev->irq = s[i].map.irq; 602 dev->base_addr = s[i].map.base_addr; 603 dev->mem_start = s[i].map.mem_start; 604 dev->mem_end = s[i].map.mem_end; 605 return 1; 606 } 607 } 608 return 0; 609 } 610 EXPORT_SYMBOL(netdev_boot_setup_check); 611 612 613 /** 614 * netdev_boot_base - get address from boot time settings 615 * @prefix: prefix for network device 616 * @unit: id for network device 617 * 618 * Check boot time settings for the base address of device. 619 * The found settings are set for the device to be used 620 * later in the device probing. 621 * Returns 0 if no settings found. 622 */ 623 unsigned long netdev_boot_base(const char *prefix, int unit) 624 { 625 const struct netdev_boot_setup *s = dev_boot_setup; 626 char name[IFNAMSIZ]; 627 int i; 628 629 sprintf(name, "%s%d", prefix, unit); 630 631 /* 632 * If device already registered then return base of 1 633 * to indicate not to probe for this interface 634 */ 635 if (__dev_get_by_name(&init_net, name)) 636 return 1; 637 638 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 639 if (!strcmp(name, s[i].name)) 640 return s[i].map.base_addr; 641 return 0; 642 } 643 644 /* 645 * Saves at boot time configured settings for any netdevice. 646 */ 647 int __init netdev_boot_setup(char *str) 648 { 649 int ints[5]; 650 struct ifmap map; 651 652 str = get_options(str, ARRAY_SIZE(ints), ints); 653 if (!str || !*str) 654 return 0; 655 656 /* Save settings */ 657 memset(&map, 0, sizeof(map)); 658 if (ints[0] > 0) 659 map.irq = ints[1]; 660 if (ints[0] > 1) 661 map.base_addr = ints[2]; 662 if (ints[0] > 2) 663 map.mem_start = ints[3]; 664 if (ints[0] > 3) 665 map.mem_end = ints[4]; 666 667 /* Add new entry to the list */ 668 return netdev_boot_setup_add(str, &map); 669 } 670 671 __setup("netdev=", netdev_boot_setup); 672 673 /******************************************************************************* 674 * 675 * Device Interface Subroutines 676 * 677 *******************************************************************************/ 678 679 /** 680 * dev_get_iflink - get 'iflink' value of a interface 681 * @dev: targeted interface 682 * 683 * Indicates the ifindex the interface is linked to. 684 * Physical interfaces have the same 'ifindex' and 'iflink' values. 685 */ 686 687 int dev_get_iflink(const struct net_device *dev) 688 { 689 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 690 return dev->netdev_ops->ndo_get_iflink(dev); 691 692 return dev->ifindex; 693 } 694 EXPORT_SYMBOL(dev_get_iflink); 695 696 /** 697 * dev_fill_metadata_dst - Retrieve tunnel egress information. 698 * @dev: targeted interface 699 * @skb: The packet. 700 * 701 * For better visibility of tunnel traffic OVS needs to retrieve 702 * egress tunnel information for a packet. Following API allows 703 * user to get this info. 704 */ 705 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) 706 { 707 struct ip_tunnel_info *info; 708 709 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) 710 return -EINVAL; 711 712 info = skb_tunnel_info_unclone(skb); 713 if (!info) 714 return -ENOMEM; 715 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) 716 return -EINVAL; 717 718 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); 719 } 720 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); 721 722 /** 723 * __dev_get_by_name - find a device by its name 724 * @net: the applicable net namespace 725 * @name: name to find 726 * 727 * Find an interface by name. Must be called under RTNL semaphore 728 * or @dev_base_lock. If the name is found a pointer to the device 729 * is returned. If the name is not found then %NULL is returned. The 730 * reference counters are not incremented so the caller must be 731 * careful with locks. 732 */ 733 734 struct net_device *__dev_get_by_name(struct net *net, const char *name) 735 { 736 struct net_device *dev; 737 struct hlist_head *head = dev_name_hash(net, name); 738 739 hlist_for_each_entry(dev, head, name_hlist) 740 if (!strncmp(dev->name, name, IFNAMSIZ)) 741 return dev; 742 743 return NULL; 744 } 745 EXPORT_SYMBOL(__dev_get_by_name); 746 747 /** 748 * dev_get_by_name_rcu - find a device by its name 749 * @net: the applicable net namespace 750 * @name: name to find 751 * 752 * Find an interface by name. 753 * If the name is found a pointer to the device is returned. 754 * If the name is not found then %NULL is returned. 755 * The reference counters are not incremented so the caller must be 756 * careful with locks. The caller must hold RCU lock. 757 */ 758 759 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 760 { 761 struct net_device *dev; 762 struct hlist_head *head = dev_name_hash(net, name); 763 764 hlist_for_each_entry_rcu(dev, head, name_hlist) 765 if (!strncmp(dev->name, name, IFNAMSIZ)) 766 return dev; 767 768 return NULL; 769 } 770 EXPORT_SYMBOL(dev_get_by_name_rcu); 771 772 /** 773 * dev_get_by_name - find a device by its name 774 * @net: the applicable net namespace 775 * @name: name to find 776 * 777 * Find an interface by name. This can be called from any 778 * context and does its own locking. The returned handle has 779 * the usage count incremented and the caller must use dev_put() to 780 * release it when it is no longer needed. %NULL is returned if no 781 * matching device is found. 782 */ 783 784 struct net_device *dev_get_by_name(struct net *net, const char *name) 785 { 786 struct net_device *dev; 787 788 rcu_read_lock(); 789 dev = dev_get_by_name_rcu(net, name); 790 if (dev) 791 dev_hold(dev); 792 rcu_read_unlock(); 793 return dev; 794 } 795 EXPORT_SYMBOL(dev_get_by_name); 796 797 /** 798 * __dev_get_by_index - find a device by its ifindex 799 * @net: the applicable net namespace 800 * @ifindex: index of device 801 * 802 * Search for an interface by index. Returns %NULL if the device 803 * is not found or a pointer to the device. The device has not 804 * had its reference counter increased so the caller must be careful 805 * about locking. The caller must hold either the RTNL semaphore 806 * or @dev_base_lock. 807 */ 808 809 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 810 { 811 struct net_device *dev; 812 struct hlist_head *head = dev_index_hash(net, ifindex); 813 814 hlist_for_each_entry(dev, head, index_hlist) 815 if (dev->ifindex == ifindex) 816 return dev; 817 818 return NULL; 819 } 820 EXPORT_SYMBOL(__dev_get_by_index); 821 822 /** 823 * dev_get_by_index_rcu - find a device by its ifindex 824 * @net: the applicable net namespace 825 * @ifindex: index of device 826 * 827 * Search for an interface by index. Returns %NULL if the device 828 * is not found or a pointer to the device. The device has not 829 * had its reference counter increased so the caller must be careful 830 * about locking. The caller must hold RCU lock. 831 */ 832 833 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 834 { 835 struct net_device *dev; 836 struct hlist_head *head = dev_index_hash(net, ifindex); 837 838 hlist_for_each_entry_rcu(dev, head, index_hlist) 839 if (dev->ifindex == ifindex) 840 return dev; 841 842 return NULL; 843 } 844 EXPORT_SYMBOL(dev_get_by_index_rcu); 845 846 847 /** 848 * dev_get_by_index - find a device by its ifindex 849 * @net: the applicable net namespace 850 * @ifindex: index of device 851 * 852 * Search for an interface by index. Returns NULL if the device 853 * is not found or a pointer to the device. The device returned has 854 * had a reference added and the pointer is safe until the user calls 855 * dev_put to indicate they have finished with it. 856 */ 857 858 struct net_device *dev_get_by_index(struct net *net, int ifindex) 859 { 860 struct net_device *dev; 861 862 rcu_read_lock(); 863 dev = dev_get_by_index_rcu(net, ifindex); 864 if (dev) 865 dev_hold(dev); 866 rcu_read_unlock(); 867 return dev; 868 } 869 EXPORT_SYMBOL(dev_get_by_index); 870 871 /** 872 * dev_get_by_napi_id - find a device by napi_id 873 * @napi_id: ID of the NAPI struct 874 * 875 * Search for an interface by NAPI ID. Returns %NULL if the device 876 * is not found or a pointer to the device. The device has not had 877 * its reference counter increased so the caller must be careful 878 * about locking. The caller must hold RCU lock. 879 */ 880 881 struct net_device *dev_get_by_napi_id(unsigned int napi_id) 882 { 883 struct napi_struct *napi; 884 885 WARN_ON_ONCE(!rcu_read_lock_held()); 886 887 if (napi_id < MIN_NAPI_ID) 888 return NULL; 889 890 napi = napi_by_id(napi_id); 891 892 return napi ? napi->dev : NULL; 893 } 894 EXPORT_SYMBOL(dev_get_by_napi_id); 895 896 /** 897 * netdev_get_name - get a netdevice name, knowing its ifindex. 898 * @net: network namespace 899 * @name: a pointer to the buffer where the name will be stored. 900 * @ifindex: the ifindex of the interface to get the name from. 901 * 902 * The use of raw_seqcount_begin() and cond_resched() before 903 * retrying is required as we want to give the writers a chance 904 * to complete when CONFIG_PREEMPT is not set. 905 */ 906 int netdev_get_name(struct net *net, char *name, int ifindex) 907 { 908 struct net_device *dev; 909 unsigned int seq; 910 911 retry: 912 seq = raw_seqcount_begin(&devnet_rename_seq); 913 rcu_read_lock(); 914 dev = dev_get_by_index_rcu(net, ifindex); 915 if (!dev) { 916 rcu_read_unlock(); 917 return -ENODEV; 918 } 919 920 strcpy(name, dev->name); 921 rcu_read_unlock(); 922 if (read_seqcount_retry(&devnet_rename_seq, seq)) { 923 cond_resched(); 924 goto retry; 925 } 926 927 return 0; 928 } 929 930 /** 931 * dev_getbyhwaddr_rcu - find a device by its hardware address 932 * @net: the applicable net namespace 933 * @type: media type of device 934 * @ha: hardware address 935 * 936 * Search for an interface by MAC address. Returns NULL if the device 937 * is not found or a pointer to the device. 938 * The caller must hold RCU or RTNL. 939 * The returned device has not had its ref count increased 940 * and the caller must therefore be careful about locking 941 * 942 */ 943 944 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 945 const char *ha) 946 { 947 struct net_device *dev; 948 949 for_each_netdev_rcu(net, dev) 950 if (dev->type == type && 951 !memcmp(dev->dev_addr, ha, dev->addr_len)) 952 return dev; 953 954 return NULL; 955 } 956 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 957 958 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 959 { 960 struct net_device *dev; 961 962 ASSERT_RTNL(); 963 for_each_netdev(net, dev) 964 if (dev->type == type) 965 return dev; 966 967 return NULL; 968 } 969 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 970 971 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 972 { 973 struct net_device *dev, *ret = NULL; 974 975 rcu_read_lock(); 976 for_each_netdev_rcu(net, dev) 977 if (dev->type == type) { 978 dev_hold(dev); 979 ret = dev; 980 break; 981 } 982 rcu_read_unlock(); 983 return ret; 984 } 985 EXPORT_SYMBOL(dev_getfirstbyhwtype); 986 987 /** 988 * __dev_get_by_flags - find any device with given flags 989 * @net: the applicable net namespace 990 * @if_flags: IFF_* values 991 * @mask: bitmask of bits in if_flags to check 992 * 993 * Search for any interface with the given flags. Returns NULL if a device 994 * is not found or a pointer to the device. Must be called inside 995 * rtnl_lock(), and result refcount is unchanged. 996 */ 997 998 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags, 999 unsigned short mask) 1000 { 1001 struct net_device *dev, *ret; 1002 1003 ASSERT_RTNL(); 1004 1005 ret = NULL; 1006 for_each_netdev(net, dev) { 1007 if (((dev->flags ^ if_flags) & mask) == 0) { 1008 ret = dev; 1009 break; 1010 } 1011 } 1012 return ret; 1013 } 1014 EXPORT_SYMBOL(__dev_get_by_flags); 1015 1016 /** 1017 * dev_valid_name - check if name is okay for network device 1018 * @name: name string 1019 * 1020 * Network device names need to be valid file names to 1021 * to allow sysfs to work. We also disallow any kind of 1022 * whitespace. 1023 */ 1024 bool dev_valid_name(const char *name) 1025 { 1026 if (*name == '\0') 1027 return false; 1028 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ) 1029 return false; 1030 if (!strcmp(name, ".") || !strcmp(name, "..")) 1031 return false; 1032 1033 while (*name) { 1034 if (*name == '/' || *name == ':' || isspace(*name)) 1035 return false; 1036 name++; 1037 } 1038 return true; 1039 } 1040 EXPORT_SYMBOL(dev_valid_name); 1041 1042 /** 1043 * __dev_alloc_name - allocate a name for a device 1044 * @net: network namespace to allocate the device name in 1045 * @name: name format string 1046 * @buf: scratch buffer and result name string 1047 * 1048 * Passed a format string - eg "lt%d" it will try and find a suitable 1049 * id. It scans list of devices to build up a free map, then chooses 1050 * the first empty slot. The caller must hold the dev_base or rtnl lock 1051 * while allocating the name and adding the device in order to avoid 1052 * duplicates. 1053 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1054 * Returns the number of the unit assigned or a negative errno code. 1055 */ 1056 1057 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 1058 { 1059 int i = 0; 1060 const char *p; 1061 const int max_netdevices = 8*PAGE_SIZE; 1062 unsigned long *inuse; 1063 struct net_device *d; 1064 1065 if (!dev_valid_name(name)) 1066 return -EINVAL; 1067 1068 p = strchr(name, '%'); 1069 if (p) { 1070 /* 1071 * Verify the string as this thing may have come from 1072 * the user. There must be either one "%d" and no other "%" 1073 * characters. 1074 */ 1075 if (p[1] != 'd' || strchr(p + 2, '%')) 1076 return -EINVAL; 1077 1078 /* Use one page as a bit array of possible slots */ 1079 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 1080 if (!inuse) 1081 return -ENOMEM; 1082 1083 for_each_netdev(net, d) { 1084 if (!sscanf(d->name, name, &i)) 1085 continue; 1086 if (i < 0 || i >= max_netdevices) 1087 continue; 1088 1089 /* avoid cases where sscanf is not exact inverse of printf */ 1090 snprintf(buf, IFNAMSIZ, name, i); 1091 if (!strncmp(buf, d->name, IFNAMSIZ)) 1092 set_bit(i, inuse); 1093 } 1094 1095 i = find_first_zero_bit(inuse, max_netdevices); 1096 free_page((unsigned long) inuse); 1097 } 1098 1099 snprintf(buf, IFNAMSIZ, name, i); 1100 if (!__dev_get_by_name(net, buf)) 1101 return i; 1102 1103 /* It is possible to run out of possible slots 1104 * when the name is long and there isn't enough space left 1105 * for the digits, or if all bits are used. 1106 */ 1107 return -ENFILE; 1108 } 1109 1110 static int dev_alloc_name_ns(struct net *net, 1111 struct net_device *dev, 1112 const char *name) 1113 { 1114 char buf[IFNAMSIZ]; 1115 int ret; 1116 1117 BUG_ON(!net); 1118 ret = __dev_alloc_name(net, name, buf); 1119 if (ret >= 0) 1120 strlcpy(dev->name, buf, IFNAMSIZ); 1121 return ret; 1122 } 1123 1124 /** 1125 * dev_alloc_name - allocate a name for a device 1126 * @dev: device 1127 * @name: name format string 1128 * 1129 * Passed a format string - eg "lt%d" it will try and find a suitable 1130 * id. It scans list of devices to build up a free map, then chooses 1131 * the first empty slot. The caller must hold the dev_base or rtnl lock 1132 * while allocating the name and adding the device in order to avoid 1133 * duplicates. 1134 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1135 * Returns the number of the unit assigned or a negative errno code. 1136 */ 1137 1138 int dev_alloc_name(struct net_device *dev, const char *name) 1139 { 1140 return dev_alloc_name_ns(dev_net(dev), dev, name); 1141 } 1142 EXPORT_SYMBOL(dev_alloc_name); 1143 1144 int dev_get_valid_name(struct net *net, struct net_device *dev, 1145 const char *name) 1146 { 1147 BUG_ON(!net); 1148 1149 if (!dev_valid_name(name)) 1150 return -EINVAL; 1151 1152 if (strchr(name, '%')) 1153 return dev_alloc_name_ns(net, dev, name); 1154 else if (__dev_get_by_name(net, name)) 1155 return -EEXIST; 1156 else if (dev->name != name) 1157 strlcpy(dev->name, name, IFNAMSIZ); 1158 1159 return 0; 1160 } 1161 EXPORT_SYMBOL(dev_get_valid_name); 1162 1163 /** 1164 * dev_change_name - change name of a device 1165 * @dev: device 1166 * @newname: name (or format string) must be at least IFNAMSIZ 1167 * 1168 * Change name of a device, can pass format strings "eth%d". 1169 * for wildcarding. 1170 */ 1171 int dev_change_name(struct net_device *dev, const char *newname) 1172 { 1173 unsigned char old_assign_type; 1174 char oldname[IFNAMSIZ]; 1175 int err = 0; 1176 int ret; 1177 struct net *net; 1178 1179 ASSERT_RTNL(); 1180 BUG_ON(!dev_net(dev)); 1181 1182 net = dev_net(dev); 1183 if (dev->flags & IFF_UP) 1184 return -EBUSY; 1185 1186 write_seqcount_begin(&devnet_rename_seq); 1187 1188 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1189 write_seqcount_end(&devnet_rename_seq); 1190 return 0; 1191 } 1192 1193 memcpy(oldname, dev->name, IFNAMSIZ); 1194 1195 err = dev_get_valid_name(net, dev, newname); 1196 if (err < 0) { 1197 write_seqcount_end(&devnet_rename_seq); 1198 return err; 1199 } 1200 1201 if (oldname[0] && !strchr(oldname, '%')) 1202 netdev_info(dev, "renamed from %s\n", oldname); 1203 1204 old_assign_type = dev->name_assign_type; 1205 dev->name_assign_type = NET_NAME_RENAMED; 1206 1207 rollback: 1208 ret = device_rename(&dev->dev, dev->name); 1209 if (ret) { 1210 memcpy(dev->name, oldname, IFNAMSIZ); 1211 dev->name_assign_type = old_assign_type; 1212 write_seqcount_end(&devnet_rename_seq); 1213 return ret; 1214 } 1215 1216 write_seqcount_end(&devnet_rename_seq); 1217 1218 netdev_adjacent_rename_links(dev, oldname); 1219 1220 write_lock_bh(&dev_base_lock); 1221 hlist_del_rcu(&dev->name_hlist); 1222 write_unlock_bh(&dev_base_lock); 1223 1224 synchronize_rcu(); 1225 1226 write_lock_bh(&dev_base_lock); 1227 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1228 write_unlock_bh(&dev_base_lock); 1229 1230 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1231 ret = notifier_to_errno(ret); 1232 1233 if (ret) { 1234 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1235 if (err >= 0) { 1236 err = ret; 1237 write_seqcount_begin(&devnet_rename_seq); 1238 memcpy(dev->name, oldname, IFNAMSIZ); 1239 memcpy(oldname, newname, IFNAMSIZ); 1240 dev->name_assign_type = old_assign_type; 1241 old_assign_type = NET_NAME_RENAMED; 1242 goto rollback; 1243 } else { 1244 pr_err("%s: name change rollback failed: %d\n", 1245 dev->name, ret); 1246 } 1247 } 1248 1249 return err; 1250 } 1251 1252 /** 1253 * dev_set_alias - change ifalias of a device 1254 * @dev: device 1255 * @alias: name up to IFALIASZ 1256 * @len: limit of bytes to copy from info 1257 * 1258 * Set ifalias for a device, 1259 */ 1260 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1261 { 1262 struct dev_ifalias *new_alias = NULL; 1263 1264 if (len >= IFALIASZ) 1265 return -EINVAL; 1266 1267 if (len) { 1268 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL); 1269 if (!new_alias) 1270 return -ENOMEM; 1271 1272 memcpy(new_alias->ifalias, alias, len); 1273 new_alias->ifalias[len] = 0; 1274 } 1275 1276 mutex_lock(&ifalias_mutex); 1277 rcu_swap_protected(dev->ifalias, new_alias, 1278 mutex_is_locked(&ifalias_mutex)); 1279 mutex_unlock(&ifalias_mutex); 1280 1281 if (new_alias) 1282 kfree_rcu(new_alias, rcuhead); 1283 1284 return len; 1285 } 1286 EXPORT_SYMBOL(dev_set_alias); 1287 1288 /** 1289 * dev_get_alias - get ifalias of a device 1290 * @dev: device 1291 * @name: buffer to store name of ifalias 1292 * @len: size of buffer 1293 * 1294 * get ifalias for a device. Caller must make sure dev cannot go 1295 * away, e.g. rcu read lock or own a reference count to device. 1296 */ 1297 int dev_get_alias(const struct net_device *dev, char *name, size_t len) 1298 { 1299 const struct dev_ifalias *alias; 1300 int ret = 0; 1301 1302 rcu_read_lock(); 1303 alias = rcu_dereference(dev->ifalias); 1304 if (alias) 1305 ret = snprintf(name, len, "%s", alias->ifalias); 1306 rcu_read_unlock(); 1307 1308 return ret; 1309 } 1310 1311 /** 1312 * netdev_features_change - device changes features 1313 * @dev: device to cause notification 1314 * 1315 * Called to indicate a device has changed features. 1316 */ 1317 void netdev_features_change(struct net_device *dev) 1318 { 1319 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1320 } 1321 EXPORT_SYMBOL(netdev_features_change); 1322 1323 /** 1324 * netdev_state_change - device changes state 1325 * @dev: device to cause notification 1326 * 1327 * Called to indicate a device has changed state. This function calls 1328 * the notifier chains for netdev_chain and sends a NEWLINK message 1329 * to the routing socket. 1330 */ 1331 void netdev_state_change(struct net_device *dev) 1332 { 1333 if (dev->flags & IFF_UP) { 1334 struct netdev_notifier_change_info change_info = { 1335 .info.dev = dev, 1336 }; 1337 1338 call_netdevice_notifiers_info(NETDEV_CHANGE, 1339 &change_info.info); 1340 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL); 1341 } 1342 } 1343 EXPORT_SYMBOL(netdev_state_change); 1344 1345 /** 1346 * netdev_notify_peers - notify network peers about existence of @dev 1347 * @dev: network device 1348 * 1349 * Generate traffic such that interested network peers are aware of 1350 * @dev, such as by generating a gratuitous ARP. This may be used when 1351 * a device wants to inform the rest of the network about some sort of 1352 * reconfiguration such as a failover event or virtual machine 1353 * migration. 1354 */ 1355 void netdev_notify_peers(struct net_device *dev) 1356 { 1357 rtnl_lock(); 1358 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1359 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev); 1360 rtnl_unlock(); 1361 } 1362 EXPORT_SYMBOL(netdev_notify_peers); 1363 1364 static int __dev_open(struct net_device *dev) 1365 { 1366 const struct net_device_ops *ops = dev->netdev_ops; 1367 int ret; 1368 1369 ASSERT_RTNL(); 1370 1371 if (!netif_device_present(dev)) 1372 return -ENODEV; 1373 1374 /* Block netpoll from trying to do any rx path servicing. 1375 * If we don't do this there is a chance ndo_poll_controller 1376 * or ndo_poll may be running while we open the device 1377 */ 1378 netpoll_poll_disable(dev); 1379 1380 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1381 ret = notifier_to_errno(ret); 1382 if (ret) 1383 return ret; 1384 1385 set_bit(__LINK_STATE_START, &dev->state); 1386 1387 if (ops->ndo_validate_addr) 1388 ret = ops->ndo_validate_addr(dev); 1389 1390 if (!ret && ops->ndo_open) 1391 ret = ops->ndo_open(dev); 1392 1393 netpoll_poll_enable(dev); 1394 1395 if (ret) 1396 clear_bit(__LINK_STATE_START, &dev->state); 1397 else { 1398 dev->flags |= IFF_UP; 1399 dev_set_rx_mode(dev); 1400 dev_activate(dev); 1401 add_device_randomness(dev->dev_addr, dev->addr_len); 1402 } 1403 1404 return ret; 1405 } 1406 1407 /** 1408 * dev_open - prepare an interface for use. 1409 * @dev: device to open 1410 * 1411 * Takes a device from down to up state. The device's private open 1412 * function is invoked and then the multicast lists are loaded. Finally 1413 * the device is moved into the up state and a %NETDEV_UP message is 1414 * sent to the netdev notifier chain. 1415 * 1416 * Calling this function on an active interface is a nop. On a failure 1417 * a negative errno code is returned. 1418 */ 1419 int dev_open(struct net_device *dev) 1420 { 1421 int ret; 1422 1423 if (dev->flags & IFF_UP) 1424 return 0; 1425 1426 ret = __dev_open(dev); 1427 if (ret < 0) 1428 return ret; 1429 1430 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1431 call_netdevice_notifiers(NETDEV_UP, dev); 1432 1433 return ret; 1434 } 1435 EXPORT_SYMBOL(dev_open); 1436 1437 static void __dev_close_many(struct list_head *head) 1438 { 1439 struct net_device *dev; 1440 1441 ASSERT_RTNL(); 1442 might_sleep(); 1443 1444 list_for_each_entry(dev, head, close_list) { 1445 /* Temporarily disable netpoll until the interface is down */ 1446 netpoll_poll_disable(dev); 1447 1448 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1449 1450 clear_bit(__LINK_STATE_START, &dev->state); 1451 1452 /* Synchronize to scheduled poll. We cannot touch poll list, it 1453 * can be even on different cpu. So just clear netif_running(). 1454 * 1455 * dev->stop() will invoke napi_disable() on all of it's 1456 * napi_struct instances on this device. 1457 */ 1458 smp_mb__after_atomic(); /* Commit netif_running(). */ 1459 } 1460 1461 dev_deactivate_many(head); 1462 1463 list_for_each_entry(dev, head, close_list) { 1464 const struct net_device_ops *ops = dev->netdev_ops; 1465 1466 /* 1467 * Call the device specific close. This cannot fail. 1468 * Only if device is UP 1469 * 1470 * We allow it to be called even after a DETACH hot-plug 1471 * event. 1472 */ 1473 if (ops->ndo_stop) 1474 ops->ndo_stop(dev); 1475 1476 dev->flags &= ~IFF_UP; 1477 netpoll_poll_enable(dev); 1478 } 1479 } 1480 1481 static void __dev_close(struct net_device *dev) 1482 { 1483 LIST_HEAD(single); 1484 1485 list_add(&dev->close_list, &single); 1486 __dev_close_many(&single); 1487 list_del(&single); 1488 } 1489 1490 void dev_close_many(struct list_head *head, bool unlink) 1491 { 1492 struct net_device *dev, *tmp; 1493 1494 /* Remove the devices that don't need to be closed */ 1495 list_for_each_entry_safe(dev, tmp, head, close_list) 1496 if (!(dev->flags & IFF_UP)) 1497 list_del_init(&dev->close_list); 1498 1499 __dev_close_many(head); 1500 1501 list_for_each_entry_safe(dev, tmp, head, close_list) { 1502 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1503 call_netdevice_notifiers(NETDEV_DOWN, dev); 1504 if (unlink) 1505 list_del_init(&dev->close_list); 1506 } 1507 } 1508 EXPORT_SYMBOL(dev_close_many); 1509 1510 /** 1511 * dev_close - shutdown an interface. 1512 * @dev: device to shutdown 1513 * 1514 * This function moves an active device into down state. A 1515 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1516 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1517 * chain. 1518 */ 1519 void dev_close(struct net_device *dev) 1520 { 1521 if (dev->flags & IFF_UP) { 1522 LIST_HEAD(single); 1523 1524 list_add(&dev->close_list, &single); 1525 dev_close_many(&single, true); 1526 list_del(&single); 1527 } 1528 } 1529 EXPORT_SYMBOL(dev_close); 1530 1531 1532 /** 1533 * dev_disable_lro - disable Large Receive Offload on a device 1534 * @dev: device 1535 * 1536 * Disable Large Receive Offload (LRO) on a net device. Must be 1537 * called under RTNL. This is needed if received packets may be 1538 * forwarded to another interface. 1539 */ 1540 void dev_disable_lro(struct net_device *dev) 1541 { 1542 struct net_device *lower_dev; 1543 struct list_head *iter; 1544 1545 dev->wanted_features &= ~NETIF_F_LRO; 1546 netdev_update_features(dev); 1547 1548 if (unlikely(dev->features & NETIF_F_LRO)) 1549 netdev_WARN(dev, "failed to disable LRO!\n"); 1550 1551 netdev_for_each_lower_dev(dev, lower_dev, iter) 1552 dev_disable_lro(lower_dev); 1553 } 1554 EXPORT_SYMBOL(dev_disable_lro); 1555 1556 /** 1557 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device 1558 * @dev: device 1559 * 1560 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be 1561 * called under RTNL. This is needed if Generic XDP is installed on 1562 * the device. 1563 */ 1564 static void dev_disable_gro_hw(struct net_device *dev) 1565 { 1566 dev->wanted_features &= ~NETIF_F_GRO_HW; 1567 netdev_update_features(dev); 1568 1569 if (unlikely(dev->features & NETIF_F_GRO_HW)) 1570 netdev_WARN(dev, "failed to disable GRO_HW!\n"); 1571 } 1572 1573 const char *netdev_cmd_to_name(enum netdev_cmd cmd) 1574 { 1575 #define N(val) \ 1576 case NETDEV_##val: \ 1577 return "NETDEV_" __stringify(val); 1578 switch (cmd) { 1579 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER) 1580 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE) 1581 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE) 1582 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER) 1583 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO) 1584 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO) 1585 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN) 1586 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO) 1587 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO) 1588 } 1589 #undef N 1590 return "UNKNOWN_NETDEV_EVENT"; 1591 } 1592 EXPORT_SYMBOL_GPL(netdev_cmd_to_name); 1593 1594 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1595 struct net_device *dev) 1596 { 1597 struct netdev_notifier_info info = { 1598 .dev = dev, 1599 }; 1600 1601 return nb->notifier_call(nb, val, &info); 1602 } 1603 1604 static int dev_boot_phase = 1; 1605 1606 /** 1607 * register_netdevice_notifier - register a network notifier block 1608 * @nb: notifier 1609 * 1610 * Register a notifier to be called when network device events occur. 1611 * The notifier passed is linked into the kernel structures and must 1612 * not be reused until it has been unregistered. A negative errno code 1613 * is returned on a failure. 1614 * 1615 * When registered all registration and up events are replayed 1616 * to the new notifier to allow device to have a race free 1617 * view of the network device list. 1618 */ 1619 1620 int register_netdevice_notifier(struct notifier_block *nb) 1621 { 1622 struct net_device *dev; 1623 struct net_device *last; 1624 struct net *net; 1625 int err; 1626 1627 /* Close race with setup_net() and cleanup_net() */ 1628 down_write(&pernet_ops_rwsem); 1629 rtnl_lock(); 1630 err = raw_notifier_chain_register(&netdev_chain, nb); 1631 if (err) 1632 goto unlock; 1633 if (dev_boot_phase) 1634 goto unlock; 1635 for_each_net(net) { 1636 for_each_netdev(net, dev) { 1637 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1638 err = notifier_to_errno(err); 1639 if (err) 1640 goto rollback; 1641 1642 if (!(dev->flags & IFF_UP)) 1643 continue; 1644 1645 call_netdevice_notifier(nb, NETDEV_UP, dev); 1646 } 1647 } 1648 1649 unlock: 1650 rtnl_unlock(); 1651 up_write(&pernet_ops_rwsem); 1652 return err; 1653 1654 rollback: 1655 last = dev; 1656 for_each_net(net) { 1657 for_each_netdev(net, dev) { 1658 if (dev == last) 1659 goto outroll; 1660 1661 if (dev->flags & IFF_UP) { 1662 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1663 dev); 1664 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1665 } 1666 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1667 } 1668 } 1669 1670 outroll: 1671 raw_notifier_chain_unregister(&netdev_chain, nb); 1672 goto unlock; 1673 } 1674 EXPORT_SYMBOL(register_netdevice_notifier); 1675 1676 /** 1677 * unregister_netdevice_notifier - unregister a network notifier block 1678 * @nb: notifier 1679 * 1680 * Unregister a notifier previously registered by 1681 * register_netdevice_notifier(). The notifier is unlinked into the 1682 * kernel structures and may then be reused. A negative errno code 1683 * is returned on a failure. 1684 * 1685 * After unregistering unregister and down device events are synthesized 1686 * for all devices on the device list to the removed notifier to remove 1687 * the need for special case cleanup code. 1688 */ 1689 1690 int unregister_netdevice_notifier(struct notifier_block *nb) 1691 { 1692 struct net_device *dev; 1693 struct net *net; 1694 int err; 1695 1696 /* Close race with setup_net() and cleanup_net() */ 1697 down_write(&pernet_ops_rwsem); 1698 rtnl_lock(); 1699 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1700 if (err) 1701 goto unlock; 1702 1703 for_each_net(net) { 1704 for_each_netdev(net, dev) { 1705 if (dev->flags & IFF_UP) { 1706 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1707 dev); 1708 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1709 } 1710 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1711 } 1712 } 1713 unlock: 1714 rtnl_unlock(); 1715 up_write(&pernet_ops_rwsem); 1716 return err; 1717 } 1718 EXPORT_SYMBOL(unregister_netdevice_notifier); 1719 1720 /** 1721 * call_netdevice_notifiers_info - call all network notifier blocks 1722 * @val: value passed unmodified to notifier function 1723 * @info: notifier information data 1724 * 1725 * Call all network notifier blocks. Parameters and return value 1726 * are as for raw_notifier_call_chain(). 1727 */ 1728 1729 static int call_netdevice_notifiers_info(unsigned long val, 1730 struct netdev_notifier_info *info) 1731 { 1732 ASSERT_RTNL(); 1733 return raw_notifier_call_chain(&netdev_chain, val, info); 1734 } 1735 1736 /** 1737 * call_netdevice_notifiers - call all network notifier blocks 1738 * @val: value passed unmodified to notifier function 1739 * @dev: net_device pointer passed unmodified to notifier function 1740 * 1741 * Call all network notifier blocks. Parameters and return value 1742 * are as for raw_notifier_call_chain(). 1743 */ 1744 1745 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1746 { 1747 struct netdev_notifier_info info = { 1748 .dev = dev, 1749 }; 1750 1751 return call_netdevice_notifiers_info(val, &info); 1752 } 1753 EXPORT_SYMBOL(call_netdevice_notifiers); 1754 1755 /** 1756 * call_netdevice_notifiers_mtu - call all network notifier blocks 1757 * @val: value passed unmodified to notifier function 1758 * @dev: net_device pointer passed unmodified to notifier function 1759 * @arg: additional u32 argument passed to the notifier function 1760 * 1761 * Call all network notifier blocks. Parameters and return value 1762 * are as for raw_notifier_call_chain(). 1763 */ 1764 static int call_netdevice_notifiers_mtu(unsigned long val, 1765 struct net_device *dev, u32 arg) 1766 { 1767 struct netdev_notifier_info_ext info = { 1768 .info.dev = dev, 1769 .ext.mtu = arg, 1770 }; 1771 1772 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0); 1773 1774 return call_netdevice_notifiers_info(val, &info.info); 1775 } 1776 1777 #ifdef CONFIG_NET_INGRESS 1778 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key); 1779 1780 void net_inc_ingress_queue(void) 1781 { 1782 static_branch_inc(&ingress_needed_key); 1783 } 1784 EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 1785 1786 void net_dec_ingress_queue(void) 1787 { 1788 static_branch_dec(&ingress_needed_key); 1789 } 1790 EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 1791 #endif 1792 1793 #ifdef CONFIG_NET_EGRESS 1794 static DEFINE_STATIC_KEY_FALSE(egress_needed_key); 1795 1796 void net_inc_egress_queue(void) 1797 { 1798 static_branch_inc(&egress_needed_key); 1799 } 1800 EXPORT_SYMBOL_GPL(net_inc_egress_queue); 1801 1802 void net_dec_egress_queue(void) 1803 { 1804 static_branch_dec(&egress_needed_key); 1805 } 1806 EXPORT_SYMBOL_GPL(net_dec_egress_queue); 1807 #endif 1808 1809 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key); 1810 #ifdef HAVE_JUMP_LABEL 1811 static atomic_t netstamp_needed_deferred; 1812 static atomic_t netstamp_wanted; 1813 static void netstamp_clear(struct work_struct *work) 1814 { 1815 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 1816 int wanted; 1817 1818 wanted = atomic_add_return(deferred, &netstamp_wanted); 1819 if (wanted > 0) 1820 static_branch_enable(&netstamp_needed_key); 1821 else 1822 static_branch_disable(&netstamp_needed_key); 1823 } 1824 static DECLARE_WORK(netstamp_work, netstamp_clear); 1825 #endif 1826 1827 void net_enable_timestamp(void) 1828 { 1829 #ifdef HAVE_JUMP_LABEL 1830 int wanted; 1831 1832 while (1) { 1833 wanted = atomic_read(&netstamp_wanted); 1834 if (wanted <= 0) 1835 break; 1836 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted) 1837 return; 1838 } 1839 atomic_inc(&netstamp_needed_deferred); 1840 schedule_work(&netstamp_work); 1841 #else 1842 static_branch_inc(&netstamp_needed_key); 1843 #endif 1844 } 1845 EXPORT_SYMBOL(net_enable_timestamp); 1846 1847 void net_disable_timestamp(void) 1848 { 1849 #ifdef HAVE_JUMP_LABEL 1850 int wanted; 1851 1852 while (1) { 1853 wanted = atomic_read(&netstamp_wanted); 1854 if (wanted <= 1) 1855 break; 1856 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted) 1857 return; 1858 } 1859 atomic_dec(&netstamp_needed_deferred); 1860 schedule_work(&netstamp_work); 1861 #else 1862 static_branch_dec(&netstamp_needed_key); 1863 #endif 1864 } 1865 EXPORT_SYMBOL(net_disable_timestamp); 1866 1867 static inline void net_timestamp_set(struct sk_buff *skb) 1868 { 1869 skb->tstamp = 0; 1870 if (static_branch_unlikely(&netstamp_needed_key)) 1871 __net_timestamp(skb); 1872 } 1873 1874 #define net_timestamp_check(COND, SKB) \ 1875 if (static_branch_unlikely(&netstamp_needed_key)) { \ 1876 if ((COND) && !(SKB)->tstamp) \ 1877 __net_timestamp(SKB); \ 1878 } \ 1879 1880 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb) 1881 { 1882 unsigned int len; 1883 1884 if (!(dev->flags & IFF_UP)) 1885 return false; 1886 1887 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 1888 if (skb->len <= len) 1889 return true; 1890 1891 /* if TSO is enabled, we don't care about the length as the packet 1892 * could be forwarded without being segmented before 1893 */ 1894 if (skb_is_gso(skb)) 1895 return true; 1896 1897 return false; 1898 } 1899 EXPORT_SYMBOL_GPL(is_skb_forwardable); 1900 1901 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1902 { 1903 int ret = ____dev_forward_skb(dev, skb); 1904 1905 if (likely(!ret)) { 1906 skb->protocol = eth_type_trans(skb, dev); 1907 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 1908 } 1909 1910 return ret; 1911 } 1912 EXPORT_SYMBOL_GPL(__dev_forward_skb); 1913 1914 /** 1915 * dev_forward_skb - loopback an skb to another netif 1916 * 1917 * @dev: destination network device 1918 * @skb: buffer to forward 1919 * 1920 * return values: 1921 * NET_RX_SUCCESS (no congestion) 1922 * NET_RX_DROP (packet was dropped, but freed) 1923 * 1924 * dev_forward_skb can be used for injecting an skb from the 1925 * start_xmit function of one device into the receive queue 1926 * of another device. 1927 * 1928 * The receiving device may be in another namespace, so 1929 * we have to clear all information in the skb that could 1930 * impact namespace isolation. 1931 */ 1932 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1933 { 1934 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 1935 } 1936 EXPORT_SYMBOL_GPL(dev_forward_skb); 1937 1938 static inline int deliver_skb(struct sk_buff *skb, 1939 struct packet_type *pt_prev, 1940 struct net_device *orig_dev) 1941 { 1942 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 1943 return -ENOMEM; 1944 refcount_inc(&skb->users); 1945 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1946 } 1947 1948 static inline void deliver_ptype_list_skb(struct sk_buff *skb, 1949 struct packet_type **pt, 1950 struct net_device *orig_dev, 1951 __be16 type, 1952 struct list_head *ptype_list) 1953 { 1954 struct packet_type *ptype, *pt_prev = *pt; 1955 1956 list_for_each_entry_rcu(ptype, ptype_list, list) { 1957 if (ptype->type != type) 1958 continue; 1959 if (pt_prev) 1960 deliver_skb(skb, pt_prev, orig_dev); 1961 pt_prev = ptype; 1962 } 1963 *pt = pt_prev; 1964 } 1965 1966 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 1967 { 1968 if (!ptype->af_packet_priv || !skb->sk) 1969 return false; 1970 1971 if (ptype->id_match) 1972 return ptype->id_match(ptype, skb->sk); 1973 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 1974 return true; 1975 1976 return false; 1977 } 1978 1979 /** 1980 * dev_nit_active - return true if any network interface taps are in use 1981 * 1982 * @dev: network device to check for the presence of taps 1983 */ 1984 bool dev_nit_active(struct net_device *dev) 1985 { 1986 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all); 1987 } 1988 EXPORT_SYMBOL_GPL(dev_nit_active); 1989 1990 /* 1991 * Support routine. Sends outgoing frames to any network 1992 * taps currently in use. 1993 */ 1994 1995 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1996 { 1997 struct packet_type *ptype; 1998 struct sk_buff *skb2 = NULL; 1999 struct packet_type *pt_prev = NULL; 2000 struct list_head *ptype_list = &ptype_all; 2001 2002 rcu_read_lock(); 2003 again: 2004 list_for_each_entry_rcu(ptype, ptype_list, list) { 2005 if (ptype->ignore_outgoing) 2006 continue; 2007 2008 /* Never send packets back to the socket 2009 * they originated from - MvS (miquels@drinkel.ow.org) 2010 */ 2011 if (skb_loop_sk(ptype, skb)) 2012 continue; 2013 2014 if (pt_prev) { 2015 deliver_skb(skb2, pt_prev, skb->dev); 2016 pt_prev = ptype; 2017 continue; 2018 } 2019 2020 /* need to clone skb, done only once */ 2021 skb2 = skb_clone(skb, GFP_ATOMIC); 2022 if (!skb2) 2023 goto out_unlock; 2024 2025 net_timestamp_set(skb2); 2026 2027 /* skb->nh should be correctly 2028 * set by sender, so that the second statement is 2029 * just protection against buggy protocols. 2030 */ 2031 skb_reset_mac_header(skb2); 2032 2033 if (skb_network_header(skb2) < skb2->data || 2034 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 2035 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 2036 ntohs(skb2->protocol), 2037 dev->name); 2038 skb_reset_network_header(skb2); 2039 } 2040 2041 skb2->transport_header = skb2->network_header; 2042 skb2->pkt_type = PACKET_OUTGOING; 2043 pt_prev = ptype; 2044 } 2045 2046 if (ptype_list == &ptype_all) { 2047 ptype_list = &dev->ptype_all; 2048 goto again; 2049 } 2050 out_unlock: 2051 if (pt_prev) { 2052 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC)) 2053 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 2054 else 2055 kfree_skb(skb2); 2056 } 2057 rcu_read_unlock(); 2058 } 2059 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit); 2060 2061 /** 2062 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 2063 * @dev: Network device 2064 * @txq: number of queues available 2065 * 2066 * If real_num_tx_queues is changed the tc mappings may no longer be 2067 * valid. To resolve this verify the tc mapping remains valid and if 2068 * not NULL the mapping. With no priorities mapping to this 2069 * offset/count pair it will no longer be used. In the worst case TC0 2070 * is invalid nothing can be done so disable priority mappings. If is 2071 * expected that drivers will fix this mapping if they can before 2072 * calling netif_set_real_num_tx_queues. 2073 */ 2074 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 2075 { 2076 int i; 2077 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2078 2079 /* If TC0 is invalidated disable TC mapping */ 2080 if (tc->offset + tc->count > txq) { 2081 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 2082 dev->num_tc = 0; 2083 return; 2084 } 2085 2086 /* Invalidated prio to tc mappings set to TC0 */ 2087 for (i = 1; i < TC_BITMASK + 1; i++) { 2088 int q = netdev_get_prio_tc_map(dev, i); 2089 2090 tc = &dev->tc_to_txq[q]; 2091 if (tc->offset + tc->count > txq) { 2092 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 2093 i, q); 2094 netdev_set_prio_tc_map(dev, i, 0); 2095 } 2096 } 2097 } 2098 2099 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq) 2100 { 2101 if (dev->num_tc) { 2102 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2103 int i; 2104 2105 /* walk through the TCs and see if it falls into any of them */ 2106 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) { 2107 if ((txq - tc->offset) < tc->count) 2108 return i; 2109 } 2110 2111 /* didn't find it, just return -1 to indicate no match */ 2112 return -1; 2113 } 2114 2115 return 0; 2116 } 2117 EXPORT_SYMBOL(netdev_txq_to_tc); 2118 2119 #ifdef CONFIG_XPS 2120 struct static_key xps_needed __read_mostly; 2121 EXPORT_SYMBOL(xps_needed); 2122 struct static_key xps_rxqs_needed __read_mostly; 2123 EXPORT_SYMBOL(xps_rxqs_needed); 2124 static DEFINE_MUTEX(xps_map_mutex); 2125 #define xmap_dereference(P) \ 2126 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 2127 2128 static bool remove_xps_queue(struct xps_dev_maps *dev_maps, 2129 int tci, u16 index) 2130 { 2131 struct xps_map *map = NULL; 2132 int pos; 2133 2134 if (dev_maps) 2135 map = xmap_dereference(dev_maps->attr_map[tci]); 2136 if (!map) 2137 return false; 2138 2139 for (pos = map->len; pos--;) { 2140 if (map->queues[pos] != index) 2141 continue; 2142 2143 if (map->len > 1) { 2144 map->queues[pos] = map->queues[--map->len]; 2145 break; 2146 } 2147 2148 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); 2149 kfree_rcu(map, rcu); 2150 return false; 2151 } 2152 2153 return true; 2154 } 2155 2156 static bool remove_xps_queue_cpu(struct net_device *dev, 2157 struct xps_dev_maps *dev_maps, 2158 int cpu, u16 offset, u16 count) 2159 { 2160 int num_tc = dev->num_tc ? : 1; 2161 bool active = false; 2162 int tci; 2163 2164 for (tci = cpu * num_tc; num_tc--; tci++) { 2165 int i, j; 2166 2167 for (i = count, j = offset; i--; j++) { 2168 if (!remove_xps_queue(dev_maps, tci, j)) 2169 break; 2170 } 2171 2172 active |= i < 0; 2173 } 2174 2175 return active; 2176 } 2177 2178 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask, 2179 struct xps_dev_maps *dev_maps, unsigned int nr_ids, 2180 u16 offset, u16 count, bool is_rxqs_map) 2181 { 2182 bool active = false; 2183 int i, j; 2184 2185 for (j = -1; j = netif_attrmask_next(j, mask, nr_ids), 2186 j < nr_ids;) 2187 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, 2188 count); 2189 if (!active) { 2190 if (is_rxqs_map) { 2191 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL); 2192 } else { 2193 RCU_INIT_POINTER(dev->xps_cpus_map, NULL); 2194 2195 for (i = offset + (count - 1); count--; i--) 2196 netdev_queue_numa_node_write( 2197 netdev_get_tx_queue(dev, i), 2198 NUMA_NO_NODE); 2199 } 2200 kfree_rcu(dev_maps, rcu); 2201 } 2202 } 2203 2204 static void netif_reset_xps_queues(struct net_device *dev, u16 offset, 2205 u16 count) 2206 { 2207 const unsigned long *possible_mask = NULL; 2208 struct xps_dev_maps *dev_maps; 2209 unsigned int nr_ids; 2210 2211 if (!static_key_false(&xps_needed)) 2212 return; 2213 2214 cpus_read_lock(); 2215 mutex_lock(&xps_map_mutex); 2216 2217 if (static_key_false(&xps_rxqs_needed)) { 2218 dev_maps = xmap_dereference(dev->xps_rxqs_map); 2219 if (dev_maps) { 2220 nr_ids = dev->num_rx_queues; 2221 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, 2222 offset, count, true); 2223 } 2224 } 2225 2226 dev_maps = xmap_dereference(dev->xps_cpus_map); 2227 if (!dev_maps) 2228 goto out_no_maps; 2229 2230 if (num_possible_cpus() > 1) 2231 possible_mask = cpumask_bits(cpu_possible_mask); 2232 nr_ids = nr_cpu_ids; 2233 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count, 2234 false); 2235 2236 out_no_maps: 2237 if (static_key_enabled(&xps_rxqs_needed)) 2238 static_key_slow_dec_cpuslocked(&xps_rxqs_needed); 2239 2240 static_key_slow_dec_cpuslocked(&xps_needed); 2241 mutex_unlock(&xps_map_mutex); 2242 cpus_read_unlock(); 2243 } 2244 2245 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 2246 { 2247 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index); 2248 } 2249 2250 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index, 2251 u16 index, bool is_rxqs_map) 2252 { 2253 struct xps_map *new_map; 2254 int alloc_len = XPS_MIN_MAP_ALLOC; 2255 int i, pos; 2256 2257 for (pos = 0; map && pos < map->len; pos++) { 2258 if (map->queues[pos] != index) 2259 continue; 2260 return map; 2261 } 2262 2263 /* Need to add tx-queue to this CPU's/rx-queue's existing map */ 2264 if (map) { 2265 if (pos < map->alloc_len) 2266 return map; 2267 2268 alloc_len = map->alloc_len * 2; 2269 } 2270 2271 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's 2272 * map 2273 */ 2274 if (is_rxqs_map) 2275 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL); 2276 else 2277 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 2278 cpu_to_node(attr_index)); 2279 if (!new_map) 2280 return NULL; 2281 2282 for (i = 0; i < pos; i++) 2283 new_map->queues[i] = map->queues[i]; 2284 new_map->alloc_len = alloc_len; 2285 new_map->len = pos; 2286 2287 return new_map; 2288 } 2289 2290 /* Must be called under cpus_read_lock */ 2291 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 2292 u16 index, bool is_rxqs_map) 2293 { 2294 const unsigned long *online_mask = NULL, *possible_mask = NULL; 2295 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL; 2296 int i, j, tci, numa_node_id = -2; 2297 int maps_sz, num_tc = 1, tc = 0; 2298 struct xps_map *map, *new_map; 2299 bool active = false; 2300 unsigned int nr_ids; 2301 2302 if (dev->num_tc) { 2303 /* Do not allow XPS on subordinate device directly */ 2304 num_tc = dev->num_tc; 2305 if (num_tc < 0) 2306 return -EINVAL; 2307 2308 /* If queue belongs to subordinate dev use its map */ 2309 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev; 2310 2311 tc = netdev_txq_to_tc(dev, index); 2312 if (tc < 0) 2313 return -EINVAL; 2314 } 2315 2316 mutex_lock(&xps_map_mutex); 2317 if (is_rxqs_map) { 2318 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues); 2319 dev_maps = xmap_dereference(dev->xps_rxqs_map); 2320 nr_ids = dev->num_rx_queues; 2321 } else { 2322 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc); 2323 if (num_possible_cpus() > 1) { 2324 online_mask = cpumask_bits(cpu_online_mask); 2325 possible_mask = cpumask_bits(cpu_possible_mask); 2326 } 2327 dev_maps = xmap_dereference(dev->xps_cpus_map); 2328 nr_ids = nr_cpu_ids; 2329 } 2330 2331 if (maps_sz < L1_CACHE_BYTES) 2332 maps_sz = L1_CACHE_BYTES; 2333 2334 /* allocate memory for queue storage */ 2335 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids), 2336 j < nr_ids;) { 2337 if (!new_dev_maps) 2338 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2339 if (!new_dev_maps) { 2340 mutex_unlock(&xps_map_mutex); 2341 return -ENOMEM; 2342 } 2343 2344 tci = j * num_tc + tc; 2345 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) : 2346 NULL; 2347 2348 map = expand_xps_map(map, j, index, is_rxqs_map); 2349 if (!map) 2350 goto error; 2351 2352 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2353 } 2354 2355 if (!new_dev_maps) 2356 goto out_no_new_maps; 2357 2358 static_key_slow_inc_cpuslocked(&xps_needed); 2359 if (is_rxqs_map) 2360 static_key_slow_inc_cpuslocked(&xps_rxqs_needed); 2361 2362 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2363 j < nr_ids;) { 2364 /* copy maps belonging to foreign traffic classes */ 2365 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) { 2366 /* fill in the new device map from the old device map */ 2367 map = xmap_dereference(dev_maps->attr_map[tci]); 2368 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2369 } 2370 2371 /* We need to explicitly update tci as prevous loop 2372 * could break out early if dev_maps is NULL. 2373 */ 2374 tci = j * num_tc + tc; 2375 2376 if (netif_attr_test_mask(j, mask, nr_ids) && 2377 netif_attr_test_online(j, online_mask, nr_ids)) { 2378 /* add tx-queue to CPU/rx-queue maps */ 2379 int pos = 0; 2380 2381 map = xmap_dereference(new_dev_maps->attr_map[tci]); 2382 while ((pos < map->len) && (map->queues[pos] != index)) 2383 pos++; 2384 2385 if (pos == map->len) 2386 map->queues[map->len++] = index; 2387 #ifdef CONFIG_NUMA 2388 if (!is_rxqs_map) { 2389 if (numa_node_id == -2) 2390 numa_node_id = cpu_to_node(j); 2391 else if (numa_node_id != cpu_to_node(j)) 2392 numa_node_id = -1; 2393 } 2394 #endif 2395 } else if (dev_maps) { 2396 /* fill in the new device map from the old device map */ 2397 map = xmap_dereference(dev_maps->attr_map[tci]); 2398 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2399 } 2400 2401 /* copy maps belonging to foreign traffic classes */ 2402 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) { 2403 /* fill in the new device map from the old device map */ 2404 map = xmap_dereference(dev_maps->attr_map[tci]); 2405 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2406 } 2407 } 2408 2409 if (is_rxqs_map) 2410 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps); 2411 else 2412 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps); 2413 2414 /* Cleanup old maps */ 2415 if (!dev_maps) 2416 goto out_no_old_maps; 2417 2418 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2419 j < nr_ids;) { 2420 for (i = num_tc, tci = j * num_tc; i--; tci++) { 2421 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2422 map = xmap_dereference(dev_maps->attr_map[tci]); 2423 if (map && map != new_map) 2424 kfree_rcu(map, rcu); 2425 } 2426 } 2427 2428 kfree_rcu(dev_maps, rcu); 2429 2430 out_no_old_maps: 2431 dev_maps = new_dev_maps; 2432 active = true; 2433 2434 out_no_new_maps: 2435 if (!is_rxqs_map) { 2436 /* update Tx queue numa node */ 2437 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2438 (numa_node_id >= 0) ? 2439 numa_node_id : NUMA_NO_NODE); 2440 } 2441 2442 if (!dev_maps) 2443 goto out_no_maps; 2444 2445 /* removes tx-queue from unused CPUs/rx-queues */ 2446 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2447 j < nr_ids;) { 2448 for (i = tc, tci = j * num_tc; i--; tci++) 2449 active |= remove_xps_queue(dev_maps, tci, index); 2450 if (!netif_attr_test_mask(j, mask, nr_ids) || 2451 !netif_attr_test_online(j, online_mask, nr_ids)) 2452 active |= remove_xps_queue(dev_maps, tci, index); 2453 for (i = num_tc - tc, tci++; --i; tci++) 2454 active |= remove_xps_queue(dev_maps, tci, index); 2455 } 2456 2457 /* free map if not active */ 2458 if (!active) { 2459 if (is_rxqs_map) 2460 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL); 2461 else 2462 RCU_INIT_POINTER(dev->xps_cpus_map, NULL); 2463 kfree_rcu(dev_maps, rcu); 2464 } 2465 2466 out_no_maps: 2467 mutex_unlock(&xps_map_mutex); 2468 2469 return 0; 2470 error: 2471 /* remove any maps that we added */ 2472 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2473 j < nr_ids;) { 2474 for (i = num_tc, tci = j * num_tc; i--; tci++) { 2475 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2476 map = dev_maps ? 2477 xmap_dereference(dev_maps->attr_map[tci]) : 2478 NULL; 2479 if (new_map && new_map != map) 2480 kfree(new_map); 2481 } 2482 } 2483 2484 mutex_unlock(&xps_map_mutex); 2485 2486 kfree(new_dev_maps); 2487 return -ENOMEM; 2488 } 2489 EXPORT_SYMBOL_GPL(__netif_set_xps_queue); 2490 2491 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 2492 u16 index) 2493 { 2494 int ret; 2495 2496 cpus_read_lock(); 2497 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, false); 2498 cpus_read_unlock(); 2499 2500 return ret; 2501 } 2502 EXPORT_SYMBOL(netif_set_xps_queue); 2503 2504 #endif 2505 static void netdev_unbind_all_sb_channels(struct net_device *dev) 2506 { 2507 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 2508 2509 /* Unbind any subordinate channels */ 2510 while (txq-- != &dev->_tx[0]) { 2511 if (txq->sb_dev) 2512 netdev_unbind_sb_channel(dev, txq->sb_dev); 2513 } 2514 } 2515 2516 void netdev_reset_tc(struct net_device *dev) 2517 { 2518 #ifdef CONFIG_XPS 2519 netif_reset_xps_queues_gt(dev, 0); 2520 #endif 2521 netdev_unbind_all_sb_channels(dev); 2522 2523 /* Reset TC configuration of device */ 2524 dev->num_tc = 0; 2525 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 2526 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 2527 } 2528 EXPORT_SYMBOL(netdev_reset_tc); 2529 2530 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 2531 { 2532 if (tc >= dev->num_tc) 2533 return -EINVAL; 2534 2535 #ifdef CONFIG_XPS 2536 netif_reset_xps_queues(dev, offset, count); 2537 #endif 2538 dev->tc_to_txq[tc].count = count; 2539 dev->tc_to_txq[tc].offset = offset; 2540 return 0; 2541 } 2542 EXPORT_SYMBOL(netdev_set_tc_queue); 2543 2544 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 2545 { 2546 if (num_tc > TC_MAX_QUEUE) 2547 return -EINVAL; 2548 2549 #ifdef CONFIG_XPS 2550 netif_reset_xps_queues_gt(dev, 0); 2551 #endif 2552 netdev_unbind_all_sb_channels(dev); 2553 2554 dev->num_tc = num_tc; 2555 return 0; 2556 } 2557 EXPORT_SYMBOL(netdev_set_num_tc); 2558 2559 void netdev_unbind_sb_channel(struct net_device *dev, 2560 struct net_device *sb_dev) 2561 { 2562 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 2563 2564 #ifdef CONFIG_XPS 2565 netif_reset_xps_queues_gt(sb_dev, 0); 2566 #endif 2567 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq)); 2568 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map)); 2569 2570 while (txq-- != &dev->_tx[0]) { 2571 if (txq->sb_dev == sb_dev) 2572 txq->sb_dev = NULL; 2573 } 2574 } 2575 EXPORT_SYMBOL(netdev_unbind_sb_channel); 2576 2577 int netdev_bind_sb_channel_queue(struct net_device *dev, 2578 struct net_device *sb_dev, 2579 u8 tc, u16 count, u16 offset) 2580 { 2581 /* Make certain the sb_dev and dev are already configured */ 2582 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc) 2583 return -EINVAL; 2584 2585 /* We cannot hand out queues we don't have */ 2586 if ((offset + count) > dev->real_num_tx_queues) 2587 return -EINVAL; 2588 2589 /* Record the mapping */ 2590 sb_dev->tc_to_txq[tc].count = count; 2591 sb_dev->tc_to_txq[tc].offset = offset; 2592 2593 /* Provide a way for Tx queue to find the tc_to_txq map or 2594 * XPS map for itself. 2595 */ 2596 while (count--) 2597 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev; 2598 2599 return 0; 2600 } 2601 EXPORT_SYMBOL(netdev_bind_sb_channel_queue); 2602 2603 int netdev_set_sb_channel(struct net_device *dev, u16 channel) 2604 { 2605 /* Do not use a multiqueue device to represent a subordinate channel */ 2606 if (netif_is_multiqueue(dev)) 2607 return -ENODEV; 2608 2609 /* We allow channels 1 - 32767 to be used for subordinate channels. 2610 * Channel 0 is meant to be "native" mode and used only to represent 2611 * the main root device. We allow writing 0 to reset the device back 2612 * to normal mode after being used as a subordinate channel. 2613 */ 2614 if (channel > S16_MAX) 2615 return -EINVAL; 2616 2617 dev->num_tc = -channel; 2618 2619 return 0; 2620 } 2621 EXPORT_SYMBOL(netdev_set_sb_channel); 2622 2623 /* 2624 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2625 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed. 2626 */ 2627 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2628 { 2629 bool disabling; 2630 int rc; 2631 2632 disabling = txq < dev->real_num_tx_queues; 2633 2634 if (txq < 1 || txq > dev->num_tx_queues) 2635 return -EINVAL; 2636 2637 if (dev->reg_state == NETREG_REGISTERED || 2638 dev->reg_state == NETREG_UNREGISTERING) { 2639 ASSERT_RTNL(); 2640 2641 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2642 txq); 2643 if (rc) 2644 return rc; 2645 2646 if (dev->num_tc) 2647 netif_setup_tc(dev, txq); 2648 2649 dev->real_num_tx_queues = txq; 2650 2651 if (disabling) { 2652 synchronize_net(); 2653 qdisc_reset_all_tx_gt(dev, txq); 2654 #ifdef CONFIG_XPS 2655 netif_reset_xps_queues_gt(dev, txq); 2656 #endif 2657 } 2658 } else { 2659 dev->real_num_tx_queues = txq; 2660 } 2661 2662 return 0; 2663 } 2664 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2665 2666 #ifdef CONFIG_SYSFS 2667 /** 2668 * netif_set_real_num_rx_queues - set actual number of RX queues used 2669 * @dev: Network device 2670 * @rxq: Actual number of RX queues 2671 * 2672 * This must be called either with the rtnl_lock held or before 2673 * registration of the net device. Returns 0 on success, or a 2674 * negative error code. If called before registration, it always 2675 * succeeds. 2676 */ 2677 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2678 { 2679 int rc; 2680 2681 if (rxq < 1 || rxq > dev->num_rx_queues) 2682 return -EINVAL; 2683 2684 if (dev->reg_state == NETREG_REGISTERED) { 2685 ASSERT_RTNL(); 2686 2687 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 2688 rxq); 2689 if (rc) 2690 return rc; 2691 } 2692 2693 dev->real_num_rx_queues = rxq; 2694 return 0; 2695 } 2696 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 2697 #endif 2698 2699 /** 2700 * netif_get_num_default_rss_queues - default number of RSS queues 2701 * 2702 * This routine should set an upper limit on the number of RSS queues 2703 * used by default by multiqueue devices. 2704 */ 2705 int netif_get_num_default_rss_queues(void) 2706 { 2707 return is_kdump_kernel() ? 2708 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 2709 } 2710 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 2711 2712 static void __netif_reschedule(struct Qdisc *q) 2713 { 2714 struct softnet_data *sd; 2715 unsigned long flags; 2716 2717 local_irq_save(flags); 2718 sd = this_cpu_ptr(&softnet_data); 2719 q->next_sched = NULL; 2720 *sd->output_queue_tailp = q; 2721 sd->output_queue_tailp = &q->next_sched; 2722 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2723 local_irq_restore(flags); 2724 } 2725 2726 void __netif_schedule(struct Qdisc *q) 2727 { 2728 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 2729 __netif_reschedule(q); 2730 } 2731 EXPORT_SYMBOL(__netif_schedule); 2732 2733 struct dev_kfree_skb_cb { 2734 enum skb_free_reason reason; 2735 }; 2736 2737 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 2738 { 2739 return (struct dev_kfree_skb_cb *)skb->cb; 2740 } 2741 2742 void netif_schedule_queue(struct netdev_queue *txq) 2743 { 2744 rcu_read_lock(); 2745 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) { 2746 struct Qdisc *q = rcu_dereference(txq->qdisc); 2747 2748 __netif_schedule(q); 2749 } 2750 rcu_read_unlock(); 2751 } 2752 EXPORT_SYMBOL(netif_schedule_queue); 2753 2754 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 2755 { 2756 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 2757 struct Qdisc *q; 2758 2759 rcu_read_lock(); 2760 q = rcu_dereference(dev_queue->qdisc); 2761 __netif_schedule(q); 2762 rcu_read_unlock(); 2763 } 2764 } 2765 EXPORT_SYMBOL(netif_tx_wake_queue); 2766 2767 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason) 2768 { 2769 unsigned long flags; 2770 2771 if (unlikely(!skb)) 2772 return; 2773 2774 if (likely(refcount_read(&skb->users) == 1)) { 2775 smp_rmb(); 2776 refcount_set(&skb->users, 0); 2777 } else if (likely(!refcount_dec_and_test(&skb->users))) { 2778 return; 2779 } 2780 get_kfree_skb_cb(skb)->reason = reason; 2781 local_irq_save(flags); 2782 skb->next = __this_cpu_read(softnet_data.completion_queue); 2783 __this_cpu_write(softnet_data.completion_queue, skb); 2784 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2785 local_irq_restore(flags); 2786 } 2787 EXPORT_SYMBOL(__dev_kfree_skb_irq); 2788 2789 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason) 2790 { 2791 if (in_irq() || irqs_disabled()) 2792 __dev_kfree_skb_irq(skb, reason); 2793 else 2794 dev_kfree_skb(skb); 2795 } 2796 EXPORT_SYMBOL(__dev_kfree_skb_any); 2797 2798 2799 /** 2800 * netif_device_detach - mark device as removed 2801 * @dev: network device 2802 * 2803 * Mark device as removed from system and therefore no longer available. 2804 */ 2805 void netif_device_detach(struct net_device *dev) 2806 { 2807 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 2808 netif_running(dev)) { 2809 netif_tx_stop_all_queues(dev); 2810 } 2811 } 2812 EXPORT_SYMBOL(netif_device_detach); 2813 2814 /** 2815 * netif_device_attach - mark device as attached 2816 * @dev: network device 2817 * 2818 * Mark device as attached from system and restart if needed. 2819 */ 2820 void netif_device_attach(struct net_device *dev) 2821 { 2822 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 2823 netif_running(dev)) { 2824 netif_tx_wake_all_queues(dev); 2825 __netdev_watchdog_up(dev); 2826 } 2827 } 2828 EXPORT_SYMBOL(netif_device_attach); 2829 2830 /* 2831 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 2832 * to be used as a distribution range. 2833 */ 2834 static u16 skb_tx_hash(const struct net_device *dev, 2835 const struct net_device *sb_dev, 2836 struct sk_buff *skb) 2837 { 2838 u32 hash; 2839 u16 qoffset = 0; 2840 u16 qcount = dev->real_num_tx_queues; 2841 2842 if (dev->num_tc) { 2843 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 2844 2845 qoffset = sb_dev->tc_to_txq[tc].offset; 2846 qcount = sb_dev->tc_to_txq[tc].count; 2847 } 2848 2849 if (skb_rx_queue_recorded(skb)) { 2850 hash = skb_get_rx_queue(skb); 2851 while (unlikely(hash >= qcount)) 2852 hash -= qcount; 2853 return hash + qoffset; 2854 } 2855 2856 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; 2857 } 2858 2859 static void skb_warn_bad_offload(const struct sk_buff *skb) 2860 { 2861 static const netdev_features_t null_features; 2862 struct net_device *dev = skb->dev; 2863 const char *name = ""; 2864 2865 if (!net_ratelimit()) 2866 return; 2867 2868 if (dev) { 2869 if (dev->dev.parent) 2870 name = dev_driver_string(dev->dev.parent); 2871 else 2872 name = netdev_name(dev); 2873 } 2874 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d " 2875 "gso_type=%d ip_summed=%d\n", 2876 name, dev ? &dev->features : &null_features, 2877 skb->sk ? &skb->sk->sk_route_caps : &null_features, 2878 skb->len, skb->data_len, skb_shinfo(skb)->gso_size, 2879 skb_shinfo(skb)->gso_type, skb->ip_summed); 2880 } 2881 2882 /* 2883 * Invalidate hardware checksum when packet is to be mangled, and 2884 * complete checksum manually on outgoing path. 2885 */ 2886 int skb_checksum_help(struct sk_buff *skb) 2887 { 2888 __wsum csum; 2889 int ret = 0, offset; 2890 2891 if (skb->ip_summed == CHECKSUM_COMPLETE) 2892 goto out_set_summed; 2893 2894 if (unlikely(skb_shinfo(skb)->gso_size)) { 2895 skb_warn_bad_offload(skb); 2896 return -EINVAL; 2897 } 2898 2899 /* Before computing a checksum, we should make sure no frag could 2900 * be modified by an external entity : checksum could be wrong. 2901 */ 2902 if (skb_has_shared_frag(skb)) { 2903 ret = __skb_linearize(skb); 2904 if (ret) 2905 goto out; 2906 } 2907 2908 offset = skb_checksum_start_offset(skb); 2909 BUG_ON(offset >= skb_headlen(skb)); 2910 csum = skb_checksum(skb, offset, skb->len - offset, 0); 2911 2912 offset += skb->csum_offset; 2913 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 2914 2915 if (skb_cloned(skb) && 2916 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 2917 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2918 if (ret) 2919 goto out; 2920 } 2921 2922 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0; 2923 out_set_summed: 2924 skb->ip_summed = CHECKSUM_NONE; 2925 out: 2926 return ret; 2927 } 2928 EXPORT_SYMBOL(skb_checksum_help); 2929 2930 int skb_crc32c_csum_help(struct sk_buff *skb) 2931 { 2932 __le32 crc32c_csum; 2933 int ret = 0, offset, start; 2934 2935 if (skb->ip_summed != CHECKSUM_PARTIAL) 2936 goto out; 2937 2938 if (unlikely(skb_is_gso(skb))) 2939 goto out; 2940 2941 /* Before computing a checksum, we should make sure no frag could 2942 * be modified by an external entity : checksum could be wrong. 2943 */ 2944 if (unlikely(skb_has_shared_frag(skb))) { 2945 ret = __skb_linearize(skb); 2946 if (ret) 2947 goto out; 2948 } 2949 start = skb_checksum_start_offset(skb); 2950 offset = start + offsetof(struct sctphdr, checksum); 2951 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) { 2952 ret = -EINVAL; 2953 goto out; 2954 } 2955 if (skb_cloned(skb) && 2956 !skb_clone_writable(skb, offset + sizeof(__le32))) { 2957 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2958 if (ret) 2959 goto out; 2960 } 2961 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start, 2962 skb->len - start, ~(__u32)0, 2963 crc32c_csum_stub)); 2964 *(__le32 *)(skb->data + offset) = crc32c_csum; 2965 skb->ip_summed = CHECKSUM_NONE; 2966 skb->csum_not_inet = 0; 2967 out: 2968 return ret; 2969 } 2970 2971 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 2972 { 2973 __be16 type = skb->protocol; 2974 2975 /* Tunnel gso handlers can set protocol to ethernet. */ 2976 if (type == htons(ETH_P_TEB)) { 2977 struct ethhdr *eth; 2978 2979 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 2980 return 0; 2981 2982 eth = (struct ethhdr *)skb->data; 2983 type = eth->h_proto; 2984 } 2985 2986 return __vlan_get_protocol(skb, type, depth); 2987 } 2988 2989 /** 2990 * skb_mac_gso_segment - mac layer segmentation handler. 2991 * @skb: buffer to segment 2992 * @features: features for the output path (see dev->features) 2993 */ 2994 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 2995 netdev_features_t features) 2996 { 2997 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 2998 struct packet_offload *ptype; 2999 int vlan_depth = skb->mac_len; 3000 __be16 type = skb_network_protocol(skb, &vlan_depth); 3001 3002 if (unlikely(!type)) 3003 return ERR_PTR(-EINVAL); 3004 3005 __skb_pull(skb, vlan_depth); 3006 3007 rcu_read_lock(); 3008 list_for_each_entry_rcu(ptype, &offload_base, list) { 3009 if (ptype->type == type && ptype->callbacks.gso_segment) { 3010 segs = ptype->callbacks.gso_segment(skb, features); 3011 break; 3012 } 3013 } 3014 rcu_read_unlock(); 3015 3016 __skb_push(skb, skb->data - skb_mac_header(skb)); 3017 3018 return segs; 3019 } 3020 EXPORT_SYMBOL(skb_mac_gso_segment); 3021 3022 3023 /* openvswitch calls this on rx path, so we need a different check. 3024 */ 3025 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) 3026 { 3027 if (tx_path) 3028 return skb->ip_summed != CHECKSUM_PARTIAL && 3029 skb->ip_summed != CHECKSUM_UNNECESSARY; 3030 3031 return skb->ip_summed == CHECKSUM_NONE; 3032 } 3033 3034 /** 3035 * __skb_gso_segment - Perform segmentation on skb. 3036 * @skb: buffer to segment 3037 * @features: features for the output path (see dev->features) 3038 * @tx_path: whether it is called in TX path 3039 * 3040 * This function segments the given skb and returns a list of segments. 3041 * 3042 * It may return NULL if the skb requires no segmentation. This is 3043 * only possible when GSO is used for verifying header integrity. 3044 * 3045 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb. 3046 */ 3047 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 3048 netdev_features_t features, bool tx_path) 3049 { 3050 struct sk_buff *segs; 3051 3052 if (unlikely(skb_needs_check(skb, tx_path))) { 3053 int err; 3054 3055 /* We're going to init ->check field in TCP or UDP header */ 3056 err = skb_cow_head(skb, 0); 3057 if (err < 0) 3058 return ERR_PTR(err); 3059 } 3060 3061 /* Only report GSO partial support if it will enable us to 3062 * support segmentation on this frame without needing additional 3063 * work. 3064 */ 3065 if (features & NETIF_F_GSO_PARTIAL) { 3066 netdev_features_t partial_features = NETIF_F_GSO_ROBUST; 3067 struct net_device *dev = skb->dev; 3068 3069 partial_features |= dev->features & dev->gso_partial_features; 3070 if (!skb_gso_ok(skb, features | partial_features)) 3071 features &= ~NETIF_F_GSO_PARTIAL; 3072 } 3073 3074 BUILD_BUG_ON(SKB_SGO_CB_OFFSET + 3075 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb)); 3076 3077 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); 3078 SKB_GSO_CB(skb)->encap_level = 0; 3079 3080 skb_reset_mac_header(skb); 3081 skb_reset_mac_len(skb); 3082 3083 segs = skb_mac_gso_segment(skb, features); 3084 3085 if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs))) 3086 skb_warn_bad_offload(skb); 3087 3088 return segs; 3089 } 3090 EXPORT_SYMBOL(__skb_gso_segment); 3091 3092 /* Take action when hardware reception checksum errors are detected. */ 3093 #ifdef CONFIG_BUG 3094 void netdev_rx_csum_fault(struct net_device *dev) 3095 { 3096 if (net_ratelimit()) { 3097 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 3098 dump_stack(); 3099 } 3100 } 3101 EXPORT_SYMBOL(netdev_rx_csum_fault); 3102 #endif 3103 3104 /* XXX: check that highmem exists at all on the given machine. */ 3105 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 3106 { 3107 #ifdef CONFIG_HIGHMEM 3108 int i; 3109 3110 if (!(dev->features & NETIF_F_HIGHDMA)) { 3111 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3112 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3113 3114 if (PageHighMem(skb_frag_page(frag))) 3115 return 1; 3116 } 3117 } 3118 #endif 3119 return 0; 3120 } 3121 3122 /* If MPLS offload request, verify we are testing hardware MPLS features 3123 * instead of standard features for the netdev. 3124 */ 3125 #if IS_ENABLED(CONFIG_NET_MPLS_GSO) 3126 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3127 netdev_features_t features, 3128 __be16 type) 3129 { 3130 if (eth_p_mpls(type)) 3131 features &= skb->dev->mpls_features; 3132 3133 return features; 3134 } 3135 #else 3136 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3137 netdev_features_t features, 3138 __be16 type) 3139 { 3140 return features; 3141 } 3142 #endif 3143 3144 static netdev_features_t harmonize_features(struct sk_buff *skb, 3145 netdev_features_t features) 3146 { 3147 int tmp; 3148 __be16 type; 3149 3150 type = skb_network_protocol(skb, &tmp); 3151 features = net_mpls_features(skb, features, type); 3152 3153 if (skb->ip_summed != CHECKSUM_NONE && 3154 !can_checksum_protocol(features, type)) { 3155 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3156 } 3157 if (illegal_highdma(skb->dev, skb)) 3158 features &= ~NETIF_F_SG; 3159 3160 return features; 3161 } 3162 3163 netdev_features_t passthru_features_check(struct sk_buff *skb, 3164 struct net_device *dev, 3165 netdev_features_t features) 3166 { 3167 return features; 3168 } 3169 EXPORT_SYMBOL(passthru_features_check); 3170 3171 static netdev_features_t dflt_features_check(struct sk_buff *skb, 3172 struct net_device *dev, 3173 netdev_features_t features) 3174 { 3175 return vlan_features_check(skb, features); 3176 } 3177 3178 static netdev_features_t gso_features_check(const struct sk_buff *skb, 3179 struct net_device *dev, 3180 netdev_features_t features) 3181 { 3182 u16 gso_segs = skb_shinfo(skb)->gso_segs; 3183 3184 if (gso_segs > dev->gso_max_segs) 3185 return features & ~NETIF_F_GSO_MASK; 3186 3187 /* Support for GSO partial features requires software 3188 * intervention before we can actually process the packets 3189 * so we need to strip support for any partial features now 3190 * and we can pull them back in after we have partially 3191 * segmented the frame. 3192 */ 3193 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL)) 3194 features &= ~dev->gso_partial_features; 3195 3196 /* Make sure to clear the IPv4 ID mangling feature if the 3197 * IPv4 header has the potential to be fragmented. 3198 */ 3199 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { 3200 struct iphdr *iph = skb->encapsulation ? 3201 inner_ip_hdr(skb) : ip_hdr(skb); 3202 3203 if (!(iph->frag_off & htons(IP_DF))) 3204 features &= ~NETIF_F_TSO_MANGLEID; 3205 } 3206 3207 return features; 3208 } 3209 3210 netdev_features_t netif_skb_features(struct sk_buff *skb) 3211 { 3212 struct net_device *dev = skb->dev; 3213 netdev_features_t features = dev->features; 3214 3215 if (skb_is_gso(skb)) 3216 features = gso_features_check(skb, dev, features); 3217 3218 /* If encapsulation offload request, verify we are testing 3219 * hardware encapsulation features instead of standard 3220 * features for the netdev 3221 */ 3222 if (skb->encapsulation) 3223 features &= dev->hw_enc_features; 3224 3225 if (skb_vlan_tagged(skb)) 3226 features = netdev_intersect_features(features, 3227 dev->vlan_features | 3228 NETIF_F_HW_VLAN_CTAG_TX | 3229 NETIF_F_HW_VLAN_STAG_TX); 3230 3231 if (dev->netdev_ops->ndo_features_check) 3232 features &= dev->netdev_ops->ndo_features_check(skb, dev, 3233 features); 3234 else 3235 features &= dflt_features_check(skb, dev, features); 3236 3237 return harmonize_features(skb, features); 3238 } 3239 EXPORT_SYMBOL(netif_skb_features); 3240 3241 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 3242 struct netdev_queue *txq, bool more) 3243 { 3244 unsigned int len; 3245 int rc; 3246 3247 if (dev_nit_active(dev)) 3248 dev_queue_xmit_nit(skb, dev); 3249 3250 len = skb->len; 3251 trace_net_dev_start_xmit(skb, dev); 3252 rc = netdev_start_xmit(skb, dev, txq, more); 3253 trace_net_dev_xmit(skb, rc, dev, len); 3254 3255 return rc; 3256 } 3257 3258 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 3259 struct netdev_queue *txq, int *ret) 3260 { 3261 struct sk_buff *skb = first; 3262 int rc = NETDEV_TX_OK; 3263 3264 while (skb) { 3265 struct sk_buff *next = skb->next; 3266 3267 skb_mark_not_on_list(skb); 3268 rc = xmit_one(skb, dev, txq, next != NULL); 3269 if (unlikely(!dev_xmit_complete(rc))) { 3270 skb->next = next; 3271 goto out; 3272 } 3273 3274 skb = next; 3275 if (netif_tx_queue_stopped(txq) && skb) { 3276 rc = NETDEV_TX_BUSY; 3277 break; 3278 } 3279 } 3280 3281 out: 3282 *ret = rc; 3283 return skb; 3284 } 3285 3286 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 3287 netdev_features_t features) 3288 { 3289 if (skb_vlan_tag_present(skb) && 3290 !vlan_hw_offload_capable(features, skb->vlan_proto)) 3291 skb = __vlan_hwaccel_push_inside(skb); 3292 return skb; 3293 } 3294 3295 int skb_csum_hwoffload_help(struct sk_buff *skb, 3296 const netdev_features_t features) 3297 { 3298 if (unlikely(skb->csum_not_inet)) 3299 return !!(features & NETIF_F_SCTP_CRC) ? 0 : 3300 skb_crc32c_csum_help(skb); 3301 3302 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb); 3303 } 3304 EXPORT_SYMBOL(skb_csum_hwoffload_help); 3305 3306 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again) 3307 { 3308 netdev_features_t features; 3309 3310 features = netif_skb_features(skb); 3311 skb = validate_xmit_vlan(skb, features); 3312 if (unlikely(!skb)) 3313 goto out_null; 3314 3315 skb = sk_validate_xmit_skb(skb, dev); 3316 if (unlikely(!skb)) 3317 goto out_null; 3318 3319 if (netif_needs_gso(skb, features)) { 3320 struct sk_buff *segs; 3321 3322 segs = skb_gso_segment(skb, features); 3323 if (IS_ERR(segs)) { 3324 goto out_kfree_skb; 3325 } else if (segs) { 3326 consume_skb(skb); 3327 skb = segs; 3328 } 3329 } else { 3330 if (skb_needs_linearize(skb, features) && 3331 __skb_linearize(skb)) 3332 goto out_kfree_skb; 3333 3334 /* If packet is not checksummed and device does not 3335 * support checksumming for this protocol, complete 3336 * checksumming here. 3337 */ 3338 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3339 if (skb->encapsulation) 3340 skb_set_inner_transport_header(skb, 3341 skb_checksum_start_offset(skb)); 3342 else 3343 skb_set_transport_header(skb, 3344 skb_checksum_start_offset(skb)); 3345 if (skb_csum_hwoffload_help(skb, features)) 3346 goto out_kfree_skb; 3347 } 3348 } 3349 3350 skb = validate_xmit_xfrm(skb, features, again); 3351 3352 return skb; 3353 3354 out_kfree_skb: 3355 kfree_skb(skb); 3356 out_null: 3357 atomic_long_inc(&dev->tx_dropped); 3358 return NULL; 3359 } 3360 3361 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again) 3362 { 3363 struct sk_buff *next, *head = NULL, *tail; 3364 3365 for (; skb != NULL; skb = next) { 3366 next = skb->next; 3367 skb_mark_not_on_list(skb); 3368 3369 /* in case skb wont be segmented, point to itself */ 3370 skb->prev = skb; 3371 3372 skb = validate_xmit_skb(skb, dev, again); 3373 if (!skb) 3374 continue; 3375 3376 if (!head) 3377 head = skb; 3378 else 3379 tail->next = skb; 3380 /* If skb was segmented, skb->prev points to 3381 * the last segment. If not, it still contains skb. 3382 */ 3383 tail = skb->prev; 3384 } 3385 return head; 3386 } 3387 EXPORT_SYMBOL_GPL(validate_xmit_skb_list); 3388 3389 static void qdisc_pkt_len_init(struct sk_buff *skb) 3390 { 3391 const struct skb_shared_info *shinfo = skb_shinfo(skb); 3392 3393 qdisc_skb_cb(skb)->pkt_len = skb->len; 3394 3395 /* To get more precise estimation of bytes sent on wire, 3396 * we add to pkt_len the headers size of all segments 3397 */ 3398 if (shinfo->gso_size) { 3399 unsigned int hdr_len; 3400 u16 gso_segs = shinfo->gso_segs; 3401 3402 /* mac layer + network layer */ 3403 hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 3404 3405 /* + transport layer */ 3406 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 3407 const struct tcphdr *th; 3408 struct tcphdr _tcphdr; 3409 3410 th = skb_header_pointer(skb, skb_transport_offset(skb), 3411 sizeof(_tcphdr), &_tcphdr); 3412 if (likely(th)) 3413 hdr_len += __tcp_hdrlen(th); 3414 } else { 3415 struct udphdr _udphdr; 3416 3417 if (skb_header_pointer(skb, skb_transport_offset(skb), 3418 sizeof(_udphdr), &_udphdr)) 3419 hdr_len += sizeof(struct udphdr); 3420 } 3421 3422 if (shinfo->gso_type & SKB_GSO_DODGY) 3423 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 3424 shinfo->gso_size); 3425 3426 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 3427 } 3428 } 3429 3430 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 3431 struct net_device *dev, 3432 struct netdev_queue *txq) 3433 { 3434 spinlock_t *root_lock = qdisc_lock(q); 3435 struct sk_buff *to_free = NULL; 3436 bool contended; 3437 int rc; 3438 3439 qdisc_calculate_pkt_len(skb, q); 3440 3441 if (q->flags & TCQ_F_NOLOCK) { 3442 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 3443 __qdisc_drop(skb, &to_free); 3444 rc = NET_XMIT_DROP; 3445 } else { 3446 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3447 qdisc_run(q); 3448 } 3449 3450 if (unlikely(to_free)) 3451 kfree_skb_list(to_free); 3452 return rc; 3453 } 3454 3455 /* 3456 * Heuristic to force contended enqueues to serialize on a 3457 * separate lock before trying to get qdisc main lock. 3458 * This permits qdisc->running owner to get the lock more 3459 * often and dequeue packets faster. 3460 */ 3461 contended = qdisc_is_running(q); 3462 if (unlikely(contended)) 3463 spin_lock(&q->busylock); 3464 3465 spin_lock(root_lock); 3466 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 3467 __qdisc_drop(skb, &to_free); 3468 rc = NET_XMIT_DROP; 3469 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 3470 qdisc_run_begin(q)) { 3471 /* 3472 * This is a work-conserving queue; there are no old skbs 3473 * waiting to be sent out; and the qdisc is not running - 3474 * xmit the skb directly. 3475 */ 3476 3477 qdisc_bstats_update(q, skb); 3478 3479 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 3480 if (unlikely(contended)) { 3481 spin_unlock(&q->busylock); 3482 contended = false; 3483 } 3484 __qdisc_run(q); 3485 } 3486 3487 qdisc_run_end(q); 3488 rc = NET_XMIT_SUCCESS; 3489 } else { 3490 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3491 if (qdisc_run_begin(q)) { 3492 if (unlikely(contended)) { 3493 spin_unlock(&q->busylock); 3494 contended = false; 3495 } 3496 __qdisc_run(q); 3497 qdisc_run_end(q); 3498 } 3499 } 3500 spin_unlock(root_lock); 3501 if (unlikely(to_free)) 3502 kfree_skb_list(to_free); 3503 if (unlikely(contended)) 3504 spin_unlock(&q->busylock); 3505 return rc; 3506 } 3507 3508 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 3509 static void skb_update_prio(struct sk_buff *skb) 3510 { 3511 const struct netprio_map *map; 3512 const struct sock *sk; 3513 unsigned int prioidx; 3514 3515 if (skb->priority) 3516 return; 3517 map = rcu_dereference_bh(skb->dev->priomap); 3518 if (!map) 3519 return; 3520 sk = skb_to_full_sk(skb); 3521 if (!sk) 3522 return; 3523 3524 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data); 3525 3526 if (prioidx < map->priomap_len) 3527 skb->priority = map->priomap[prioidx]; 3528 } 3529 #else 3530 #define skb_update_prio(skb) 3531 #endif 3532 3533 DEFINE_PER_CPU(int, xmit_recursion); 3534 EXPORT_SYMBOL(xmit_recursion); 3535 3536 /** 3537 * dev_loopback_xmit - loop back @skb 3538 * @net: network namespace this loopback is happening in 3539 * @sk: sk needed to be a netfilter okfn 3540 * @skb: buffer to transmit 3541 */ 3542 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) 3543 { 3544 skb_reset_mac_header(skb); 3545 __skb_pull(skb, skb_network_offset(skb)); 3546 skb->pkt_type = PACKET_LOOPBACK; 3547 skb->ip_summed = CHECKSUM_UNNECESSARY; 3548 WARN_ON(!skb_dst(skb)); 3549 skb_dst_force(skb); 3550 netif_rx_ni(skb); 3551 return 0; 3552 } 3553 EXPORT_SYMBOL(dev_loopback_xmit); 3554 3555 #ifdef CONFIG_NET_EGRESS 3556 static struct sk_buff * 3557 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 3558 { 3559 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress); 3560 struct tcf_result cl_res; 3561 3562 if (!miniq) 3563 return skb; 3564 3565 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */ 3566 mini_qdisc_bstats_cpu_update(miniq, skb); 3567 3568 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) { 3569 case TC_ACT_OK: 3570 case TC_ACT_RECLASSIFY: 3571 skb->tc_index = TC_H_MIN(cl_res.classid); 3572 break; 3573 case TC_ACT_SHOT: 3574 mini_qdisc_qstats_cpu_drop(miniq); 3575 *ret = NET_XMIT_DROP; 3576 kfree_skb(skb); 3577 return NULL; 3578 case TC_ACT_STOLEN: 3579 case TC_ACT_QUEUED: 3580 case TC_ACT_TRAP: 3581 *ret = NET_XMIT_SUCCESS; 3582 consume_skb(skb); 3583 return NULL; 3584 case TC_ACT_REDIRECT: 3585 /* No need to push/pop skb's mac_header here on egress! */ 3586 skb_do_redirect(skb); 3587 *ret = NET_XMIT_SUCCESS; 3588 return NULL; 3589 default: 3590 break; 3591 } 3592 3593 return skb; 3594 } 3595 #endif /* CONFIG_NET_EGRESS */ 3596 3597 #ifdef CONFIG_XPS 3598 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb, 3599 struct xps_dev_maps *dev_maps, unsigned int tci) 3600 { 3601 struct xps_map *map; 3602 int queue_index = -1; 3603 3604 if (dev->num_tc) { 3605 tci *= dev->num_tc; 3606 tci += netdev_get_prio_tc_map(dev, skb->priority); 3607 } 3608 3609 map = rcu_dereference(dev_maps->attr_map[tci]); 3610 if (map) { 3611 if (map->len == 1) 3612 queue_index = map->queues[0]; 3613 else 3614 queue_index = map->queues[reciprocal_scale( 3615 skb_get_hash(skb), map->len)]; 3616 if (unlikely(queue_index >= dev->real_num_tx_queues)) 3617 queue_index = -1; 3618 } 3619 return queue_index; 3620 } 3621 #endif 3622 3623 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev, 3624 struct sk_buff *skb) 3625 { 3626 #ifdef CONFIG_XPS 3627 struct xps_dev_maps *dev_maps; 3628 struct sock *sk = skb->sk; 3629 int queue_index = -1; 3630 3631 if (!static_key_false(&xps_needed)) 3632 return -1; 3633 3634 rcu_read_lock(); 3635 if (!static_key_false(&xps_rxqs_needed)) 3636 goto get_cpus_map; 3637 3638 dev_maps = rcu_dereference(sb_dev->xps_rxqs_map); 3639 if (dev_maps) { 3640 int tci = sk_rx_queue_get(sk); 3641 3642 if (tci >= 0 && tci < dev->num_rx_queues) 3643 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 3644 tci); 3645 } 3646 3647 get_cpus_map: 3648 if (queue_index < 0) { 3649 dev_maps = rcu_dereference(sb_dev->xps_cpus_map); 3650 if (dev_maps) { 3651 unsigned int tci = skb->sender_cpu - 1; 3652 3653 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 3654 tci); 3655 } 3656 } 3657 rcu_read_unlock(); 3658 3659 return queue_index; 3660 #else 3661 return -1; 3662 #endif 3663 } 3664 3665 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 3666 struct net_device *sb_dev, 3667 select_queue_fallback_t fallback) 3668 { 3669 return 0; 3670 } 3671 EXPORT_SYMBOL(dev_pick_tx_zero); 3672 3673 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb, 3674 struct net_device *sb_dev, 3675 select_queue_fallback_t fallback) 3676 { 3677 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues; 3678 } 3679 EXPORT_SYMBOL(dev_pick_tx_cpu_id); 3680 3681 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 3682 struct net_device *sb_dev) 3683 { 3684 struct sock *sk = skb->sk; 3685 int queue_index = sk_tx_queue_get(sk); 3686 3687 sb_dev = sb_dev ? : dev; 3688 3689 if (queue_index < 0 || skb->ooo_okay || 3690 queue_index >= dev->real_num_tx_queues) { 3691 int new_index = get_xps_queue(dev, sb_dev, skb); 3692 3693 if (new_index < 0) 3694 new_index = skb_tx_hash(dev, sb_dev, skb); 3695 3696 if (queue_index != new_index && sk && 3697 sk_fullsock(sk) && 3698 rcu_access_pointer(sk->sk_dst_cache)) 3699 sk_tx_queue_set(sk, new_index); 3700 3701 queue_index = new_index; 3702 } 3703 3704 return queue_index; 3705 } 3706 3707 struct netdev_queue *netdev_pick_tx(struct net_device *dev, 3708 struct sk_buff *skb, 3709 struct net_device *sb_dev) 3710 { 3711 int queue_index = 0; 3712 3713 #ifdef CONFIG_XPS 3714 u32 sender_cpu = skb->sender_cpu - 1; 3715 3716 if (sender_cpu >= (u32)NR_CPUS) 3717 skb->sender_cpu = raw_smp_processor_id() + 1; 3718 #endif 3719 3720 if (dev->real_num_tx_queues != 1) { 3721 const struct net_device_ops *ops = dev->netdev_ops; 3722 3723 if (ops->ndo_select_queue) 3724 queue_index = ops->ndo_select_queue(dev, skb, sb_dev, 3725 __netdev_pick_tx); 3726 else 3727 queue_index = __netdev_pick_tx(dev, skb, sb_dev); 3728 3729 queue_index = netdev_cap_txqueue(dev, queue_index); 3730 } 3731 3732 skb_set_queue_mapping(skb, queue_index); 3733 return netdev_get_tx_queue(dev, queue_index); 3734 } 3735 3736 /** 3737 * __dev_queue_xmit - transmit a buffer 3738 * @skb: buffer to transmit 3739 * @sb_dev: suboordinate device used for L2 forwarding offload 3740 * 3741 * Queue a buffer for transmission to a network device. The caller must 3742 * have set the device and priority and built the buffer before calling 3743 * this function. The function can be called from an interrupt. 3744 * 3745 * A negative errno code is returned on a failure. A success does not 3746 * guarantee the frame will be transmitted as it may be dropped due 3747 * to congestion or traffic shaping. 3748 * 3749 * ----------------------------------------------------------------------------------- 3750 * I notice this method can also return errors from the queue disciplines, 3751 * including NET_XMIT_DROP, which is a positive value. So, errors can also 3752 * be positive. 3753 * 3754 * Regardless of the return value, the skb is consumed, so it is currently 3755 * difficult to retry a send to this method. (You can bump the ref count 3756 * before sending to hold a reference for retry if you are careful.) 3757 * 3758 * When calling this method, interrupts MUST be enabled. This is because 3759 * the BH enable code must have IRQs enabled so that it will not deadlock. 3760 * --BLG 3761 */ 3762 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev) 3763 { 3764 struct net_device *dev = skb->dev; 3765 struct netdev_queue *txq; 3766 struct Qdisc *q; 3767 int rc = -ENOMEM; 3768 bool again = false; 3769 3770 skb_reset_mac_header(skb); 3771 3772 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP)) 3773 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED); 3774 3775 /* Disable soft irqs for various locks below. Also 3776 * stops preemption for RCU. 3777 */ 3778 rcu_read_lock_bh(); 3779 3780 skb_update_prio(skb); 3781 3782 qdisc_pkt_len_init(skb); 3783 #ifdef CONFIG_NET_CLS_ACT 3784 skb->tc_at_ingress = 0; 3785 # ifdef CONFIG_NET_EGRESS 3786 if (static_branch_unlikely(&egress_needed_key)) { 3787 skb = sch_handle_egress(skb, &rc, dev); 3788 if (!skb) 3789 goto out; 3790 } 3791 # endif 3792 #endif 3793 /* If device/qdisc don't need skb->dst, release it right now while 3794 * its hot in this cpu cache. 3795 */ 3796 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 3797 skb_dst_drop(skb); 3798 else 3799 skb_dst_force(skb); 3800 3801 txq = netdev_pick_tx(dev, skb, sb_dev); 3802 q = rcu_dereference_bh(txq->qdisc); 3803 3804 trace_net_dev_queue(skb); 3805 if (q->enqueue) { 3806 rc = __dev_xmit_skb(skb, q, dev, txq); 3807 goto out; 3808 } 3809 3810 /* The device has no queue. Common case for software devices: 3811 * loopback, all the sorts of tunnels... 3812 3813 * Really, it is unlikely that netif_tx_lock protection is necessary 3814 * here. (f.e. loopback and IP tunnels are clean ignoring statistics 3815 * counters.) 3816 * However, it is possible, that they rely on protection 3817 * made by us here. 3818 3819 * Check this and shot the lock. It is not prone from deadlocks. 3820 *Either shot noqueue qdisc, it is even simpler 8) 3821 */ 3822 if (dev->flags & IFF_UP) { 3823 int cpu = smp_processor_id(); /* ok because BHs are off */ 3824 3825 if (txq->xmit_lock_owner != cpu) { 3826 if (unlikely(__this_cpu_read(xmit_recursion) > 3827 XMIT_RECURSION_LIMIT)) 3828 goto recursion_alert; 3829 3830 skb = validate_xmit_skb(skb, dev, &again); 3831 if (!skb) 3832 goto out; 3833 3834 HARD_TX_LOCK(dev, txq, cpu); 3835 3836 if (!netif_xmit_stopped(txq)) { 3837 __this_cpu_inc(xmit_recursion); 3838 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 3839 __this_cpu_dec(xmit_recursion); 3840 if (dev_xmit_complete(rc)) { 3841 HARD_TX_UNLOCK(dev, txq); 3842 goto out; 3843 } 3844 } 3845 HARD_TX_UNLOCK(dev, txq); 3846 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 3847 dev->name); 3848 } else { 3849 /* Recursion is detected! It is possible, 3850 * unfortunately 3851 */ 3852 recursion_alert: 3853 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 3854 dev->name); 3855 } 3856 } 3857 3858 rc = -ENETDOWN; 3859 rcu_read_unlock_bh(); 3860 3861 atomic_long_inc(&dev->tx_dropped); 3862 kfree_skb_list(skb); 3863 return rc; 3864 out: 3865 rcu_read_unlock_bh(); 3866 return rc; 3867 } 3868 3869 int dev_queue_xmit(struct sk_buff *skb) 3870 { 3871 return __dev_queue_xmit(skb, NULL); 3872 } 3873 EXPORT_SYMBOL(dev_queue_xmit); 3874 3875 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev) 3876 { 3877 return __dev_queue_xmit(skb, sb_dev); 3878 } 3879 EXPORT_SYMBOL(dev_queue_xmit_accel); 3880 3881 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id) 3882 { 3883 struct net_device *dev = skb->dev; 3884 struct sk_buff *orig_skb = skb; 3885 struct netdev_queue *txq; 3886 int ret = NETDEV_TX_BUSY; 3887 bool again = false; 3888 3889 if (unlikely(!netif_running(dev) || 3890 !netif_carrier_ok(dev))) 3891 goto drop; 3892 3893 skb = validate_xmit_skb_list(skb, dev, &again); 3894 if (skb != orig_skb) 3895 goto drop; 3896 3897 skb_set_queue_mapping(skb, queue_id); 3898 txq = skb_get_tx_queue(dev, skb); 3899 3900 local_bh_disable(); 3901 3902 HARD_TX_LOCK(dev, txq, smp_processor_id()); 3903 if (!netif_xmit_frozen_or_drv_stopped(txq)) 3904 ret = netdev_start_xmit(skb, dev, txq, false); 3905 HARD_TX_UNLOCK(dev, txq); 3906 3907 local_bh_enable(); 3908 3909 if (!dev_xmit_complete(ret)) 3910 kfree_skb(skb); 3911 3912 return ret; 3913 drop: 3914 atomic_long_inc(&dev->tx_dropped); 3915 kfree_skb_list(skb); 3916 return NET_XMIT_DROP; 3917 } 3918 EXPORT_SYMBOL(dev_direct_xmit); 3919 3920 /************************************************************************* 3921 * Receiver routines 3922 *************************************************************************/ 3923 3924 int netdev_max_backlog __read_mostly = 1000; 3925 EXPORT_SYMBOL(netdev_max_backlog); 3926 3927 int netdev_tstamp_prequeue __read_mostly = 1; 3928 int netdev_budget __read_mostly = 300; 3929 unsigned int __read_mostly netdev_budget_usecs = 2000; 3930 int weight_p __read_mostly = 64; /* old backlog weight */ 3931 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */ 3932 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */ 3933 int dev_rx_weight __read_mostly = 64; 3934 int dev_tx_weight __read_mostly = 64; 3935 3936 /* Called with irq disabled */ 3937 static inline void ____napi_schedule(struct softnet_data *sd, 3938 struct napi_struct *napi) 3939 { 3940 list_add_tail(&napi->poll_list, &sd->poll_list); 3941 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3942 } 3943 3944 #ifdef CONFIG_RPS 3945 3946 /* One global table that all flow-based protocols share. */ 3947 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 3948 EXPORT_SYMBOL(rps_sock_flow_table); 3949 u32 rps_cpu_mask __read_mostly; 3950 EXPORT_SYMBOL(rps_cpu_mask); 3951 3952 struct static_key rps_needed __read_mostly; 3953 EXPORT_SYMBOL(rps_needed); 3954 struct static_key rfs_needed __read_mostly; 3955 EXPORT_SYMBOL(rfs_needed); 3956 3957 static struct rps_dev_flow * 3958 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3959 struct rps_dev_flow *rflow, u16 next_cpu) 3960 { 3961 if (next_cpu < nr_cpu_ids) { 3962 #ifdef CONFIG_RFS_ACCEL 3963 struct netdev_rx_queue *rxqueue; 3964 struct rps_dev_flow_table *flow_table; 3965 struct rps_dev_flow *old_rflow; 3966 u32 flow_id; 3967 u16 rxq_index; 3968 int rc; 3969 3970 /* Should we steer this flow to a different hardware queue? */ 3971 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 3972 !(dev->features & NETIF_F_NTUPLE)) 3973 goto out; 3974 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 3975 if (rxq_index == skb_get_rx_queue(skb)) 3976 goto out; 3977 3978 rxqueue = dev->_rx + rxq_index; 3979 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3980 if (!flow_table) 3981 goto out; 3982 flow_id = skb_get_hash(skb) & flow_table->mask; 3983 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 3984 rxq_index, flow_id); 3985 if (rc < 0) 3986 goto out; 3987 old_rflow = rflow; 3988 rflow = &flow_table->flows[flow_id]; 3989 rflow->filter = rc; 3990 if (old_rflow->filter == rflow->filter) 3991 old_rflow->filter = RPS_NO_FILTER; 3992 out: 3993 #endif 3994 rflow->last_qtail = 3995 per_cpu(softnet_data, next_cpu).input_queue_head; 3996 } 3997 3998 rflow->cpu = next_cpu; 3999 return rflow; 4000 } 4001 4002 /* 4003 * get_rps_cpu is called from netif_receive_skb and returns the target 4004 * CPU from the RPS map of the receiving queue for a given skb. 4005 * rcu_read_lock must be held on entry. 4006 */ 4007 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4008 struct rps_dev_flow **rflowp) 4009 { 4010 const struct rps_sock_flow_table *sock_flow_table; 4011 struct netdev_rx_queue *rxqueue = dev->_rx; 4012 struct rps_dev_flow_table *flow_table; 4013 struct rps_map *map; 4014 int cpu = -1; 4015 u32 tcpu; 4016 u32 hash; 4017 4018 if (skb_rx_queue_recorded(skb)) { 4019 u16 index = skb_get_rx_queue(skb); 4020 4021 if (unlikely(index >= dev->real_num_rx_queues)) { 4022 WARN_ONCE(dev->real_num_rx_queues > 1, 4023 "%s received packet on queue %u, but number " 4024 "of RX queues is %u\n", 4025 dev->name, index, dev->real_num_rx_queues); 4026 goto done; 4027 } 4028 rxqueue += index; 4029 } 4030 4031 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 4032 4033 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4034 map = rcu_dereference(rxqueue->rps_map); 4035 if (!flow_table && !map) 4036 goto done; 4037 4038 skb_reset_network_header(skb); 4039 hash = skb_get_hash(skb); 4040 if (!hash) 4041 goto done; 4042 4043 sock_flow_table = rcu_dereference(rps_sock_flow_table); 4044 if (flow_table && sock_flow_table) { 4045 struct rps_dev_flow *rflow; 4046 u32 next_cpu; 4047 u32 ident; 4048 4049 /* First check into global flow table if there is a match */ 4050 ident = sock_flow_table->ents[hash & sock_flow_table->mask]; 4051 if ((ident ^ hash) & ~rps_cpu_mask) 4052 goto try_rps; 4053 4054 next_cpu = ident & rps_cpu_mask; 4055 4056 /* OK, now we know there is a match, 4057 * we can look at the local (per receive queue) flow table 4058 */ 4059 rflow = &flow_table->flows[hash & flow_table->mask]; 4060 tcpu = rflow->cpu; 4061 4062 /* 4063 * If the desired CPU (where last recvmsg was done) is 4064 * different from current CPU (one in the rx-queue flow 4065 * table entry), switch if one of the following holds: 4066 * - Current CPU is unset (>= nr_cpu_ids). 4067 * - Current CPU is offline. 4068 * - The current CPU's queue tail has advanced beyond the 4069 * last packet that was enqueued using this table entry. 4070 * This guarantees that all previous packets for the flow 4071 * have been dequeued, thus preserving in order delivery. 4072 */ 4073 if (unlikely(tcpu != next_cpu) && 4074 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 4075 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 4076 rflow->last_qtail)) >= 0)) { 4077 tcpu = next_cpu; 4078 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 4079 } 4080 4081 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 4082 *rflowp = rflow; 4083 cpu = tcpu; 4084 goto done; 4085 } 4086 } 4087 4088 try_rps: 4089 4090 if (map) { 4091 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 4092 if (cpu_online(tcpu)) { 4093 cpu = tcpu; 4094 goto done; 4095 } 4096 } 4097 4098 done: 4099 return cpu; 4100 } 4101 4102 #ifdef CONFIG_RFS_ACCEL 4103 4104 /** 4105 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 4106 * @dev: Device on which the filter was set 4107 * @rxq_index: RX queue index 4108 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 4109 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 4110 * 4111 * Drivers that implement ndo_rx_flow_steer() should periodically call 4112 * this function for each installed filter and remove the filters for 4113 * which it returns %true. 4114 */ 4115 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 4116 u32 flow_id, u16 filter_id) 4117 { 4118 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 4119 struct rps_dev_flow_table *flow_table; 4120 struct rps_dev_flow *rflow; 4121 bool expire = true; 4122 unsigned int cpu; 4123 4124 rcu_read_lock(); 4125 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4126 if (flow_table && flow_id <= flow_table->mask) { 4127 rflow = &flow_table->flows[flow_id]; 4128 cpu = READ_ONCE(rflow->cpu); 4129 if (rflow->filter == filter_id && cpu < nr_cpu_ids && 4130 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 4131 rflow->last_qtail) < 4132 (int)(10 * flow_table->mask))) 4133 expire = false; 4134 } 4135 rcu_read_unlock(); 4136 return expire; 4137 } 4138 EXPORT_SYMBOL(rps_may_expire_flow); 4139 4140 #endif /* CONFIG_RFS_ACCEL */ 4141 4142 /* Called from hardirq (IPI) context */ 4143 static void rps_trigger_softirq(void *data) 4144 { 4145 struct softnet_data *sd = data; 4146 4147 ____napi_schedule(sd, &sd->backlog); 4148 sd->received_rps++; 4149 } 4150 4151 #endif /* CONFIG_RPS */ 4152 4153 /* 4154 * Check if this softnet_data structure is another cpu one 4155 * If yes, queue it to our IPI list and return 1 4156 * If no, return 0 4157 */ 4158 static int rps_ipi_queued(struct softnet_data *sd) 4159 { 4160 #ifdef CONFIG_RPS 4161 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 4162 4163 if (sd != mysd) { 4164 sd->rps_ipi_next = mysd->rps_ipi_list; 4165 mysd->rps_ipi_list = sd; 4166 4167 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4168 return 1; 4169 } 4170 #endif /* CONFIG_RPS */ 4171 return 0; 4172 } 4173 4174 #ifdef CONFIG_NET_FLOW_LIMIT 4175 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 4176 #endif 4177 4178 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 4179 { 4180 #ifdef CONFIG_NET_FLOW_LIMIT 4181 struct sd_flow_limit *fl; 4182 struct softnet_data *sd; 4183 unsigned int old_flow, new_flow; 4184 4185 if (qlen < (netdev_max_backlog >> 1)) 4186 return false; 4187 4188 sd = this_cpu_ptr(&softnet_data); 4189 4190 rcu_read_lock(); 4191 fl = rcu_dereference(sd->flow_limit); 4192 if (fl) { 4193 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); 4194 old_flow = fl->history[fl->history_head]; 4195 fl->history[fl->history_head] = new_flow; 4196 4197 fl->history_head++; 4198 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 4199 4200 if (likely(fl->buckets[old_flow])) 4201 fl->buckets[old_flow]--; 4202 4203 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 4204 fl->count++; 4205 rcu_read_unlock(); 4206 return true; 4207 } 4208 } 4209 rcu_read_unlock(); 4210 #endif 4211 return false; 4212 } 4213 4214 /* 4215 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 4216 * queue (may be a remote CPU queue). 4217 */ 4218 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 4219 unsigned int *qtail) 4220 { 4221 struct softnet_data *sd; 4222 unsigned long flags; 4223 unsigned int qlen; 4224 4225 sd = &per_cpu(softnet_data, cpu); 4226 4227 local_irq_save(flags); 4228 4229 rps_lock(sd); 4230 if (!netif_running(skb->dev)) 4231 goto drop; 4232 qlen = skb_queue_len(&sd->input_pkt_queue); 4233 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) { 4234 if (qlen) { 4235 enqueue: 4236 __skb_queue_tail(&sd->input_pkt_queue, skb); 4237 input_queue_tail_incr_save(sd, qtail); 4238 rps_unlock(sd); 4239 local_irq_restore(flags); 4240 return NET_RX_SUCCESS; 4241 } 4242 4243 /* Schedule NAPI for backlog device 4244 * We can use non atomic operation since we own the queue lock 4245 */ 4246 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 4247 if (!rps_ipi_queued(sd)) 4248 ____napi_schedule(sd, &sd->backlog); 4249 } 4250 goto enqueue; 4251 } 4252 4253 drop: 4254 sd->dropped++; 4255 rps_unlock(sd); 4256 4257 local_irq_restore(flags); 4258 4259 atomic_long_inc(&skb->dev->rx_dropped); 4260 kfree_skb(skb); 4261 return NET_RX_DROP; 4262 } 4263 4264 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb) 4265 { 4266 struct net_device *dev = skb->dev; 4267 struct netdev_rx_queue *rxqueue; 4268 4269 rxqueue = dev->_rx; 4270 4271 if (skb_rx_queue_recorded(skb)) { 4272 u16 index = skb_get_rx_queue(skb); 4273 4274 if (unlikely(index >= dev->real_num_rx_queues)) { 4275 WARN_ONCE(dev->real_num_rx_queues > 1, 4276 "%s received packet on queue %u, but number " 4277 "of RX queues is %u\n", 4278 dev->name, index, dev->real_num_rx_queues); 4279 4280 return rxqueue; /* Return first rxqueue */ 4281 } 4282 rxqueue += index; 4283 } 4284 return rxqueue; 4285 } 4286 4287 static u32 netif_receive_generic_xdp(struct sk_buff *skb, 4288 struct xdp_buff *xdp, 4289 struct bpf_prog *xdp_prog) 4290 { 4291 struct netdev_rx_queue *rxqueue; 4292 void *orig_data, *orig_data_end; 4293 u32 metalen, act = XDP_DROP; 4294 __be16 orig_eth_type; 4295 struct ethhdr *eth; 4296 bool orig_bcast; 4297 int hlen, off; 4298 u32 mac_len; 4299 4300 /* Reinjected packets coming from act_mirred or similar should 4301 * not get XDP generic processing. 4302 */ 4303 if (skb_cloned(skb) || skb_is_tc_redirected(skb)) 4304 return XDP_PASS; 4305 4306 /* XDP packets must be linear and must have sufficient headroom 4307 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also 4308 * native XDP provides, thus we need to do it here as well. 4309 */ 4310 if (skb_is_nonlinear(skb) || 4311 skb_headroom(skb) < XDP_PACKET_HEADROOM) { 4312 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb); 4313 int troom = skb->tail + skb->data_len - skb->end; 4314 4315 /* In case we have to go down the path and also linearize, 4316 * then lets do the pskb_expand_head() work just once here. 4317 */ 4318 if (pskb_expand_head(skb, 4319 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0, 4320 troom > 0 ? troom + 128 : 0, GFP_ATOMIC)) 4321 goto do_drop; 4322 if (skb_linearize(skb)) 4323 goto do_drop; 4324 } 4325 4326 /* The XDP program wants to see the packet starting at the MAC 4327 * header. 4328 */ 4329 mac_len = skb->data - skb_mac_header(skb); 4330 hlen = skb_headlen(skb) + mac_len; 4331 xdp->data = skb->data - mac_len; 4332 xdp->data_meta = xdp->data; 4333 xdp->data_end = xdp->data + hlen; 4334 xdp->data_hard_start = skb->data - skb_headroom(skb); 4335 orig_data_end = xdp->data_end; 4336 orig_data = xdp->data; 4337 eth = (struct ethhdr *)xdp->data; 4338 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest); 4339 orig_eth_type = eth->h_proto; 4340 4341 rxqueue = netif_get_rxqueue(skb); 4342 xdp->rxq = &rxqueue->xdp_rxq; 4343 4344 act = bpf_prog_run_xdp(xdp_prog, xdp); 4345 4346 off = xdp->data - orig_data; 4347 if (off > 0) 4348 __skb_pull(skb, off); 4349 else if (off < 0) 4350 __skb_push(skb, -off); 4351 skb->mac_header += off; 4352 4353 /* check if bpf_xdp_adjust_tail was used. it can only "shrink" 4354 * pckt. 4355 */ 4356 off = orig_data_end - xdp->data_end; 4357 if (off != 0) { 4358 skb_set_tail_pointer(skb, xdp->data_end - xdp->data); 4359 skb->len -= off; 4360 4361 } 4362 4363 /* check if XDP changed eth hdr such SKB needs update */ 4364 eth = (struct ethhdr *)xdp->data; 4365 if ((orig_eth_type != eth->h_proto) || 4366 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) { 4367 __skb_push(skb, ETH_HLEN); 4368 skb->protocol = eth_type_trans(skb, skb->dev); 4369 } 4370 4371 switch (act) { 4372 case XDP_REDIRECT: 4373 case XDP_TX: 4374 __skb_push(skb, mac_len); 4375 break; 4376 case XDP_PASS: 4377 metalen = xdp->data - xdp->data_meta; 4378 if (metalen) 4379 skb_metadata_set(skb, metalen); 4380 break; 4381 default: 4382 bpf_warn_invalid_xdp_action(act); 4383 /* fall through */ 4384 case XDP_ABORTED: 4385 trace_xdp_exception(skb->dev, xdp_prog, act); 4386 /* fall through */ 4387 case XDP_DROP: 4388 do_drop: 4389 kfree_skb(skb); 4390 break; 4391 } 4392 4393 return act; 4394 } 4395 4396 /* When doing generic XDP we have to bypass the qdisc layer and the 4397 * network taps in order to match in-driver-XDP behavior. 4398 */ 4399 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog) 4400 { 4401 struct net_device *dev = skb->dev; 4402 struct netdev_queue *txq; 4403 bool free_skb = true; 4404 int cpu, rc; 4405 4406 txq = netdev_pick_tx(dev, skb, NULL); 4407 cpu = smp_processor_id(); 4408 HARD_TX_LOCK(dev, txq, cpu); 4409 if (!netif_xmit_stopped(txq)) { 4410 rc = netdev_start_xmit(skb, dev, txq, 0); 4411 if (dev_xmit_complete(rc)) 4412 free_skb = false; 4413 } 4414 HARD_TX_UNLOCK(dev, txq); 4415 if (free_skb) { 4416 trace_xdp_exception(dev, xdp_prog, XDP_TX); 4417 kfree_skb(skb); 4418 } 4419 } 4420 EXPORT_SYMBOL_GPL(generic_xdp_tx); 4421 4422 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key); 4423 4424 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb) 4425 { 4426 if (xdp_prog) { 4427 struct xdp_buff xdp; 4428 u32 act; 4429 int err; 4430 4431 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog); 4432 if (act != XDP_PASS) { 4433 switch (act) { 4434 case XDP_REDIRECT: 4435 err = xdp_do_generic_redirect(skb->dev, skb, 4436 &xdp, xdp_prog); 4437 if (err) 4438 goto out_redir; 4439 break; 4440 case XDP_TX: 4441 generic_xdp_tx(skb, xdp_prog); 4442 break; 4443 } 4444 return XDP_DROP; 4445 } 4446 } 4447 return XDP_PASS; 4448 out_redir: 4449 kfree_skb(skb); 4450 return XDP_DROP; 4451 } 4452 EXPORT_SYMBOL_GPL(do_xdp_generic); 4453 4454 static int netif_rx_internal(struct sk_buff *skb) 4455 { 4456 int ret; 4457 4458 net_timestamp_check(netdev_tstamp_prequeue, skb); 4459 4460 trace_netif_rx(skb); 4461 4462 if (static_branch_unlikely(&generic_xdp_needed_key)) { 4463 int ret; 4464 4465 preempt_disable(); 4466 rcu_read_lock(); 4467 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb); 4468 rcu_read_unlock(); 4469 preempt_enable(); 4470 4471 /* Consider XDP consuming the packet a success from 4472 * the netdev point of view we do not want to count 4473 * this as an error. 4474 */ 4475 if (ret != XDP_PASS) 4476 return NET_RX_SUCCESS; 4477 } 4478 4479 #ifdef CONFIG_RPS 4480 if (static_key_false(&rps_needed)) { 4481 struct rps_dev_flow voidflow, *rflow = &voidflow; 4482 int cpu; 4483 4484 preempt_disable(); 4485 rcu_read_lock(); 4486 4487 cpu = get_rps_cpu(skb->dev, skb, &rflow); 4488 if (cpu < 0) 4489 cpu = smp_processor_id(); 4490 4491 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 4492 4493 rcu_read_unlock(); 4494 preempt_enable(); 4495 } else 4496 #endif 4497 { 4498 unsigned int qtail; 4499 4500 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 4501 put_cpu(); 4502 } 4503 return ret; 4504 } 4505 4506 /** 4507 * netif_rx - post buffer to the network code 4508 * @skb: buffer to post 4509 * 4510 * This function receives a packet from a device driver and queues it for 4511 * the upper (protocol) levels to process. It always succeeds. The buffer 4512 * may be dropped during processing for congestion control or by the 4513 * protocol layers. 4514 * 4515 * return values: 4516 * NET_RX_SUCCESS (no congestion) 4517 * NET_RX_DROP (packet was dropped) 4518 * 4519 */ 4520 4521 int netif_rx(struct sk_buff *skb) 4522 { 4523 trace_netif_rx_entry(skb); 4524 4525 return netif_rx_internal(skb); 4526 } 4527 EXPORT_SYMBOL(netif_rx); 4528 4529 int netif_rx_ni(struct sk_buff *skb) 4530 { 4531 int err; 4532 4533 trace_netif_rx_ni_entry(skb); 4534 4535 preempt_disable(); 4536 err = netif_rx_internal(skb); 4537 if (local_softirq_pending()) 4538 do_softirq(); 4539 preempt_enable(); 4540 4541 return err; 4542 } 4543 EXPORT_SYMBOL(netif_rx_ni); 4544 4545 static __latent_entropy void net_tx_action(struct softirq_action *h) 4546 { 4547 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 4548 4549 if (sd->completion_queue) { 4550 struct sk_buff *clist; 4551 4552 local_irq_disable(); 4553 clist = sd->completion_queue; 4554 sd->completion_queue = NULL; 4555 local_irq_enable(); 4556 4557 while (clist) { 4558 struct sk_buff *skb = clist; 4559 4560 clist = clist->next; 4561 4562 WARN_ON(refcount_read(&skb->users)); 4563 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED)) 4564 trace_consume_skb(skb); 4565 else 4566 trace_kfree_skb(skb, net_tx_action); 4567 4568 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) 4569 __kfree_skb(skb); 4570 else 4571 __kfree_skb_defer(skb); 4572 } 4573 4574 __kfree_skb_flush(); 4575 } 4576 4577 if (sd->output_queue) { 4578 struct Qdisc *head; 4579 4580 local_irq_disable(); 4581 head = sd->output_queue; 4582 sd->output_queue = NULL; 4583 sd->output_queue_tailp = &sd->output_queue; 4584 local_irq_enable(); 4585 4586 while (head) { 4587 struct Qdisc *q = head; 4588 spinlock_t *root_lock = NULL; 4589 4590 head = head->next_sched; 4591 4592 if (!(q->flags & TCQ_F_NOLOCK)) { 4593 root_lock = qdisc_lock(q); 4594 spin_lock(root_lock); 4595 } 4596 /* We need to make sure head->next_sched is read 4597 * before clearing __QDISC_STATE_SCHED 4598 */ 4599 smp_mb__before_atomic(); 4600 clear_bit(__QDISC_STATE_SCHED, &q->state); 4601 qdisc_run(q); 4602 if (root_lock) 4603 spin_unlock(root_lock); 4604 } 4605 } 4606 4607 xfrm_dev_backlog(sd); 4608 } 4609 4610 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE) 4611 /* This hook is defined here for ATM LANE */ 4612 int (*br_fdb_test_addr_hook)(struct net_device *dev, 4613 unsigned char *addr) __read_mostly; 4614 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 4615 #endif 4616 4617 static inline struct sk_buff * 4618 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 4619 struct net_device *orig_dev) 4620 { 4621 #ifdef CONFIG_NET_CLS_ACT 4622 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress); 4623 struct tcf_result cl_res; 4624 4625 /* If there's at least one ingress present somewhere (so 4626 * we get here via enabled static key), remaining devices 4627 * that are not configured with an ingress qdisc will bail 4628 * out here. 4629 */ 4630 if (!miniq) 4631 return skb; 4632 4633 if (*pt_prev) { 4634 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4635 *pt_prev = NULL; 4636 } 4637 4638 qdisc_skb_cb(skb)->pkt_len = skb->len; 4639 skb->tc_at_ingress = 1; 4640 mini_qdisc_bstats_cpu_update(miniq, skb); 4641 4642 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) { 4643 case TC_ACT_OK: 4644 case TC_ACT_RECLASSIFY: 4645 skb->tc_index = TC_H_MIN(cl_res.classid); 4646 break; 4647 case TC_ACT_SHOT: 4648 mini_qdisc_qstats_cpu_drop(miniq); 4649 kfree_skb(skb); 4650 return NULL; 4651 case TC_ACT_STOLEN: 4652 case TC_ACT_QUEUED: 4653 case TC_ACT_TRAP: 4654 consume_skb(skb); 4655 return NULL; 4656 case TC_ACT_REDIRECT: 4657 /* skb_mac_header check was done by cls/act_bpf, so 4658 * we can safely push the L2 header back before 4659 * redirecting to another netdev 4660 */ 4661 __skb_push(skb, skb->mac_len); 4662 skb_do_redirect(skb); 4663 return NULL; 4664 case TC_ACT_REINSERT: 4665 /* this does not scrub the packet, and updates stats on error */ 4666 skb_tc_reinsert(skb, &cl_res); 4667 return NULL; 4668 default: 4669 break; 4670 } 4671 #endif /* CONFIG_NET_CLS_ACT */ 4672 return skb; 4673 } 4674 4675 /** 4676 * netdev_is_rx_handler_busy - check if receive handler is registered 4677 * @dev: device to check 4678 * 4679 * Check if a receive handler is already registered for a given device. 4680 * Return true if there one. 4681 * 4682 * The caller must hold the rtnl_mutex. 4683 */ 4684 bool netdev_is_rx_handler_busy(struct net_device *dev) 4685 { 4686 ASSERT_RTNL(); 4687 return dev && rtnl_dereference(dev->rx_handler); 4688 } 4689 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy); 4690 4691 /** 4692 * netdev_rx_handler_register - register receive handler 4693 * @dev: device to register a handler for 4694 * @rx_handler: receive handler to register 4695 * @rx_handler_data: data pointer that is used by rx handler 4696 * 4697 * Register a receive handler for a device. This handler will then be 4698 * called from __netif_receive_skb. A negative errno code is returned 4699 * on a failure. 4700 * 4701 * The caller must hold the rtnl_mutex. 4702 * 4703 * For a general description of rx_handler, see enum rx_handler_result. 4704 */ 4705 int netdev_rx_handler_register(struct net_device *dev, 4706 rx_handler_func_t *rx_handler, 4707 void *rx_handler_data) 4708 { 4709 if (netdev_is_rx_handler_busy(dev)) 4710 return -EBUSY; 4711 4712 if (dev->priv_flags & IFF_NO_RX_HANDLER) 4713 return -EINVAL; 4714 4715 /* Note: rx_handler_data must be set before rx_handler */ 4716 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 4717 rcu_assign_pointer(dev->rx_handler, rx_handler); 4718 4719 return 0; 4720 } 4721 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 4722 4723 /** 4724 * netdev_rx_handler_unregister - unregister receive handler 4725 * @dev: device to unregister a handler from 4726 * 4727 * Unregister a receive handler from a device. 4728 * 4729 * The caller must hold the rtnl_mutex. 4730 */ 4731 void netdev_rx_handler_unregister(struct net_device *dev) 4732 { 4733 4734 ASSERT_RTNL(); 4735 RCU_INIT_POINTER(dev->rx_handler, NULL); 4736 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 4737 * section has a guarantee to see a non NULL rx_handler_data 4738 * as well. 4739 */ 4740 synchronize_net(); 4741 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 4742 } 4743 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 4744 4745 /* 4746 * Limit the use of PFMEMALLOC reserves to those protocols that implement 4747 * the special handling of PFMEMALLOC skbs. 4748 */ 4749 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 4750 { 4751 switch (skb->protocol) { 4752 case htons(ETH_P_ARP): 4753 case htons(ETH_P_IP): 4754 case htons(ETH_P_IPV6): 4755 case htons(ETH_P_8021Q): 4756 case htons(ETH_P_8021AD): 4757 return true; 4758 default: 4759 return false; 4760 } 4761 } 4762 4763 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, 4764 int *ret, struct net_device *orig_dev) 4765 { 4766 #ifdef CONFIG_NETFILTER_INGRESS 4767 if (nf_hook_ingress_active(skb)) { 4768 int ingress_retval; 4769 4770 if (*pt_prev) { 4771 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4772 *pt_prev = NULL; 4773 } 4774 4775 rcu_read_lock(); 4776 ingress_retval = nf_hook_ingress(skb); 4777 rcu_read_unlock(); 4778 return ingress_retval; 4779 } 4780 #endif /* CONFIG_NETFILTER_INGRESS */ 4781 return 0; 4782 } 4783 4784 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc, 4785 struct packet_type **ppt_prev) 4786 { 4787 struct packet_type *ptype, *pt_prev; 4788 rx_handler_func_t *rx_handler; 4789 struct net_device *orig_dev; 4790 bool deliver_exact = false; 4791 int ret = NET_RX_DROP; 4792 __be16 type; 4793 4794 net_timestamp_check(!netdev_tstamp_prequeue, skb); 4795 4796 trace_netif_receive_skb(skb); 4797 4798 orig_dev = skb->dev; 4799 4800 skb_reset_network_header(skb); 4801 if (!skb_transport_header_was_set(skb)) 4802 skb_reset_transport_header(skb); 4803 skb_reset_mac_len(skb); 4804 4805 pt_prev = NULL; 4806 4807 another_round: 4808 skb->skb_iif = skb->dev->ifindex; 4809 4810 __this_cpu_inc(softnet_data.processed); 4811 4812 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 4813 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 4814 skb = skb_vlan_untag(skb); 4815 if (unlikely(!skb)) 4816 goto out; 4817 } 4818 4819 if (skb_skip_tc_classify(skb)) 4820 goto skip_classify; 4821 4822 if (pfmemalloc) 4823 goto skip_taps; 4824 4825 list_for_each_entry_rcu(ptype, &ptype_all, list) { 4826 if (pt_prev) 4827 ret = deliver_skb(skb, pt_prev, orig_dev); 4828 pt_prev = ptype; 4829 } 4830 4831 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 4832 if (pt_prev) 4833 ret = deliver_skb(skb, pt_prev, orig_dev); 4834 pt_prev = ptype; 4835 } 4836 4837 skip_taps: 4838 #ifdef CONFIG_NET_INGRESS 4839 if (static_branch_unlikely(&ingress_needed_key)) { 4840 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev); 4841 if (!skb) 4842 goto out; 4843 4844 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) 4845 goto out; 4846 } 4847 #endif 4848 skb_reset_tc(skb); 4849 skip_classify: 4850 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 4851 goto drop; 4852 4853 if (skb_vlan_tag_present(skb)) { 4854 if (pt_prev) { 4855 ret = deliver_skb(skb, pt_prev, orig_dev); 4856 pt_prev = NULL; 4857 } 4858 if (vlan_do_receive(&skb)) 4859 goto another_round; 4860 else if (unlikely(!skb)) 4861 goto out; 4862 } 4863 4864 rx_handler = rcu_dereference(skb->dev->rx_handler); 4865 if (rx_handler) { 4866 if (pt_prev) { 4867 ret = deliver_skb(skb, pt_prev, orig_dev); 4868 pt_prev = NULL; 4869 } 4870 switch (rx_handler(&skb)) { 4871 case RX_HANDLER_CONSUMED: 4872 ret = NET_RX_SUCCESS; 4873 goto out; 4874 case RX_HANDLER_ANOTHER: 4875 goto another_round; 4876 case RX_HANDLER_EXACT: 4877 deliver_exact = true; 4878 case RX_HANDLER_PASS: 4879 break; 4880 default: 4881 BUG(); 4882 } 4883 } 4884 4885 if (unlikely(skb_vlan_tag_present(skb))) { 4886 if (skb_vlan_tag_get_id(skb)) 4887 skb->pkt_type = PACKET_OTHERHOST; 4888 /* Note: we might in the future use prio bits 4889 * and set skb->priority like in vlan_do_receive() 4890 * For the time being, just ignore Priority Code Point 4891 */ 4892 __vlan_hwaccel_clear_tag(skb); 4893 } 4894 4895 type = skb->protocol; 4896 4897 /* deliver only exact match when indicated */ 4898 if (likely(!deliver_exact)) { 4899 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4900 &ptype_base[ntohs(type) & 4901 PTYPE_HASH_MASK]); 4902 } 4903 4904 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4905 &orig_dev->ptype_specific); 4906 4907 if (unlikely(skb->dev != orig_dev)) { 4908 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4909 &skb->dev->ptype_specific); 4910 } 4911 4912 if (pt_prev) { 4913 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 4914 goto drop; 4915 *ppt_prev = pt_prev; 4916 } else { 4917 drop: 4918 if (!deliver_exact) 4919 atomic_long_inc(&skb->dev->rx_dropped); 4920 else 4921 atomic_long_inc(&skb->dev->rx_nohandler); 4922 kfree_skb(skb); 4923 /* Jamal, now you will not able to escape explaining 4924 * me how you were going to use this. :-) 4925 */ 4926 ret = NET_RX_DROP; 4927 } 4928 4929 out: 4930 return ret; 4931 } 4932 4933 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc) 4934 { 4935 struct net_device *orig_dev = skb->dev; 4936 struct packet_type *pt_prev = NULL; 4937 int ret; 4938 4939 ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev); 4940 if (pt_prev) 4941 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 4942 return ret; 4943 } 4944 4945 /** 4946 * netif_receive_skb_core - special purpose version of netif_receive_skb 4947 * @skb: buffer to process 4948 * 4949 * More direct receive version of netif_receive_skb(). It should 4950 * only be used by callers that have a need to skip RPS and Generic XDP. 4951 * Caller must also take care of handling if (page_is_)pfmemalloc. 4952 * 4953 * This function may only be called from softirq context and interrupts 4954 * should be enabled. 4955 * 4956 * Return values (usually ignored): 4957 * NET_RX_SUCCESS: no congestion 4958 * NET_RX_DROP: packet was dropped 4959 */ 4960 int netif_receive_skb_core(struct sk_buff *skb) 4961 { 4962 int ret; 4963 4964 rcu_read_lock(); 4965 ret = __netif_receive_skb_one_core(skb, false); 4966 rcu_read_unlock(); 4967 4968 return ret; 4969 } 4970 EXPORT_SYMBOL(netif_receive_skb_core); 4971 4972 static inline void __netif_receive_skb_list_ptype(struct list_head *head, 4973 struct packet_type *pt_prev, 4974 struct net_device *orig_dev) 4975 { 4976 struct sk_buff *skb, *next; 4977 4978 if (!pt_prev) 4979 return; 4980 if (list_empty(head)) 4981 return; 4982 if (pt_prev->list_func != NULL) 4983 pt_prev->list_func(head, pt_prev, orig_dev); 4984 else 4985 list_for_each_entry_safe(skb, next, head, list) 4986 pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 4987 } 4988 4989 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc) 4990 { 4991 /* Fast-path assumptions: 4992 * - There is no RX handler. 4993 * - Only one packet_type matches. 4994 * If either of these fails, we will end up doing some per-packet 4995 * processing in-line, then handling the 'last ptype' for the whole 4996 * sublist. This can't cause out-of-order delivery to any single ptype, 4997 * because the 'last ptype' must be constant across the sublist, and all 4998 * other ptypes are handled per-packet. 4999 */ 5000 /* Current (common) ptype of sublist */ 5001 struct packet_type *pt_curr = NULL; 5002 /* Current (common) orig_dev of sublist */ 5003 struct net_device *od_curr = NULL; 5004 struct list_head sublist; 5005 struct sk_buff *skb, *next; 5006 5007 INIT_LIST_HEAD(&sublist); 5008 list_for_each_entry_safe(skb, next, head, list) { 5009 struct net_device *orig_dev = skb->dev; 5010 struct packet_type *pt_prev = NULL; 5011 5012 list_del(&skb->list); 5013 __netif_receive_skb_core(skb, pfmemalloc, &pt_prev); 5014 if (!pt_prev) 5015 continue; 5016 if (pt_curr != pt_prev || od_curr != orig_dev) { 5017 /* dispatch old sublist */ 5018 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 5019 /* start new sublist */ 5020 INIT_LIST_HEAD(&sublist); 5021 pt_curr = pt_prev; 5022 od_curr = orig_dev; 5023 } 5024 list_add_tail(&skb->list, &sublist); 5025 } 5026 5027 /* dispatch final sublist */ 5028 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 5029 } 5030 5031 static int __netif_receive_skb(struct sk_buff *skb) 5032 { 5033 int ret; 5034 5035 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 5036 unsigned int noreclaim_flag; 5037 5038 /* 5039 * PFMEMALLOC skbs are special, they should 5040 * - be delivered to SOCK_MEMALLOC sockets only 5041 * - stay away from userspace 5042 * - have bounded memory usage 5043 * 5044 * Use PF_MEMALLOC as this saves us from propagating the allocation 5045 * context down to all allocation sites. 5046 */ 5047 noreclaim_flag = memalloc_noreclaim_save(); 5048 ret = __netif_receive_skb_one_core(skb, true); 5049 memalloc_noreclaim_restore(noreclaim_flag); 5050 } else 5051 ret = __netif_receive_skb_one_core(skb, false); 5052 5053 return ret; 5054 } 5055 5056 static void __netif_receive_skb_list(struct list_head *head) 5057 { 5058 unsigned long noreclaim_flag = 0; 5059 struct sk_buff *skb, *next; 5060 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */ 5061 5062 list_for_each_entry_safe(skb, next, head, list) { 5063 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) { 5064 struct list_head sublist; 5065 5066 /* Handle the previous sublist */ 5067 list_cut_before(&sublist, head, &skb->list); 5068 if (!list_empty(&sublist)) 5069 __netif_receive_skb_list_core(&sublist, pfmemalloc); 5070 pfmemalloc = !pfmemalloc; 5071 /* See comments in __netif_receive_skb */ 5072 if (pfmemalloc) 5073 noreclaim_flag = memalloc_noreclaim_save(); 5074 else 5075 memalloc_noreclaim_restore(noreclaim_flag); 5076 } 5077 } 5078 /* Handle the remaining sublist */ 5079 if (!list_empty(head)) 5080 __netif_receive_skb_list_core(head, pfmemalloc); 5081 /* Restore pflags */ 5082 if (pfmemalloc) 5083 memalloc_noreclaim_restore(noreclaim_flag); 5084 } 5085 5086 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp) 5087 { 5088 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog); 5089 struct bpf_prog *new = xdp->prog; 5090 int ret = 0; 5091 5092 switch (xdp->command) { 5093 case XDP_SETUP_PROG: 5094 rcu_assign_pointer(dev->xdp_prog, new); 5095 if (old) 5096 bpf_prog_put(old); 5097 5098 if (old && !new) { 5099 static_branch_dec(&generic_xdp_needed_key); 5100 } else if (new && !old) { 5101 static_branch_inc(&generic_xdp_needed_key); 5102 dev_disable_lro(dev); 5103 dev_disable_gro_hw(dev); 5104 } 5105 break; 5106 5107 case XDP_QUERY_PROG: 5108 xdp->prog_id = old ? old->aux->id : 0; 5109 break; 5110 5111 default: 5112 ret = -EINVAL; 5113 break; 5114 } 5115 5116 return ret; 5117 } 5118 5119 static int netif_receive_skb_internal(struct sk_buff *skb) 5120 { 5121 int ret; 5122 5123 net_timestamp_check(netdev_tstamp_prequeue, skb); 5124 5125 if (skb_defer_rx_timestamp(skb)) 5126 return NET_RX_SUCCESS; 5127 5128 if (static_branch_unlikely(&generic_xdp_needed_key)) { 5129 int ret; 5130 5131 preempt_disable(); 5132 rcu_read_lock(); 5133 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb); 5134 rcu_read_unlock(); 5135 preempt_enable(); 5136 5137 if (ret != XDP_PASS) 5138 return NET_RX_DROP; 5139 } 5140 5141 rcu_read_lock(); 5142 #ifdef CONFIG_RPS 5143 if (static_key_false(&rps_needed)) { 5144 struct rps_dev_flow voidflow, *rflow = &voidflow; 5145 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 5146 5147 if (cpu >= 0) { 5148 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5149 rcu_read_unlock(); 5150 return ret; 5151 } 5152 } 5153 #endif 5154 ret = __netif_receive_skb(skb); 5155 rcu_read_unlock(); 5156 return ret; 5157 } 5158 5159 static void netif_receive_skb_list_internal(struct list_head *head) 5160 { 5161 struct bpf_prog *xdp_prog = NULL; 5162 struct sk_buff *skb, *next; 5163 struct list_head sublist; 5164 5165 INIT_LIST_HEAD(&sublist); 5166 list_for_each_entry_safe(skb, next, head, list) { 5167 net_timestamp_check(netdev_tstamp_prequeue, skb); 5168 list_del(&skb->list); 5169 if (!skb_defer_rx_timestamp(skb)) 5170 list_add_tail(&skb->list, &sublist); 5171 } 5172 list_splice_init(&sublist, head); 5173 5174 if (static_branch_unlikely(&generic_xdp_needed_key)) { 5175 preempt_disable(); 5176 rcu_read_lock(); 5177 list_for_each_entry_safe(skb, next, head, list) { 5178 xdp_prog = rcu_dereference(skb->dev->xdp_prog); 5179 list_del(&skb->list); 5180 if (do_xdp_generic(xdp_prog, skb) == XDP_PASS) 5181 list_add_tail(&skb->list, &sublist); 5182 } 5183 rcu_read_unlock(); 5184 preempt_enable(); 5185 /* Put passed packets back on main list */ 5186 list_splice_init(&sublist, head); 5187 } 5188 5189 rcu_read_lock(); 5190 #ifdef CONFIG_RPS 5191 if (static_key_false(&rps_needed)) { 5192 list_for_each_entry_safe(skb, next, head, list) { 5193 struct rps_dev_flow voidflow, *rflow = &voidflow; 5194 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 5195 5196 if (cpu >= 0) { 5197 /* Will be handled, remove from list */ 5198 list_del(&skb->list); 5199 enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5200 } 5201 } 5202 } 5203 #endif 5204 __netif_receive_skb_list(head); 5205 rcu_read_unlock(); 5206 } 5207 5208 /** 5209 * netif_receive_skb - process receive buffer from network 5210 * @skb: buffer to process 5211 * 5212 * netif_receive_skb() is the main receive data processing function. 5213 * It always succeeds. The buffer may be dropped during processing 5214 * for congestion control or by the protocol layers. 5215 * 5216 * This function may only be called from softirq context and interrupts 5217 * should be enabled. 5218 * 5219 * Return values (usually ignored): 5220 * NET_RX_SUCCESS: no congestion 5221 * NET_RX_DROP: packet was dropped 5222 */ 5223 int netif_receive_skb(struct sk_buff *skb) 5224 { 5225 trace_netif_receive_skb_entry(skb); 5226 5227 return netif_receive_skb_internal(skb); 5228 } 5229 EXPORT_SYMBOL(netif_receive_skb); 5230 5231 /** 5232 * netif_receive_skb_list - process many receive buffers from network 5233 * @head: list of skbs to process. 5234 * 5235 * Since return value of netif_receive_skb() is normally ignored, and 5236 * wouldn't be meaningful for a list, this function returns void. 5237 * 5238 * This function may only be called from softirq context and interrupts 5239 * should be enabled. 5240 */ 5241 void netif_receive_skb_list(struct list_head *head) 5242 { 5243 struct sk_buff *skb; 5244 5245 if (list_empty(head)) 5246 return; 5247 list_for_each_entry(skb, head, list) 5248 trace_netif_receive_skb_list_entry(skb); 5249 netif_receive_skb_list_internal(head); 5250 } 5251 EXPORT_SYMBOL(netif_receive_skb_list); 5252 5253 DEFINE_PER_CPU(struct work_struct, flush_works); 5254 5255 /* Network device is going away, flush any packets still pending */ 5256 static void flush_backlog(struct work_struct *work) 5257 { 5258 struct sk_buff *skb, *tmp; 5259 struct softnet_data *sd; 5260 5261 local_bh_disable(); 5262 sd = this_cpu_ptr(&softnet_data); 5263 5264 local_irq_disable(); 5265 rps_lock(sd); 5266 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 5267 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 5268 __skb_unlink(skb, &sd->input_pkt_queue); 5269 kfree_skb(skb); 5270 input_queue_head_incr(sd); 5271 } 5272 } 5273 rps_unlock(sd); 5274 local_irq_enable(); 5275 5276 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 5277 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 5278 __skb_unlink(skb, &sd->process_queue); 5279 kfree_skb(skb); 5280 input_queue_head_incr(sd); 5281 } 5282 } 5283 local_bh_enable(); 5284 } 5285 5286 static void flush_all_backlogs(void) 5287 { 5288 unsigned int cpu; 5289 5290 get_online_cpus(); 5291 5292 for_each_online_cpu(cpu) 5293 queue_work_on(cpu, system_highpri_wq, 5294 per_cpu_ptr(&flush_works, cpu)); 5295 5296 for_each_online_cpu(cpu) 5297 flush_work(per_cpu_ptr(&flush_works, cpu)); 5298 5299 put_online_cpus(); 5300 } 5301 5302 static int napi_gro_complete(struct sk_buff *skb) 5303 { 5304 struct packet_offload *ptype; 5305 __be16 type = skb->protocol; 5306 struct list_head *head = &offload_base; 5307 int err = -ENOENT; 5308 5309 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb)); 5310 5311 if (NAPI_GRO_CB(skb)->count == 1) { 5312 skb_shinfo(skb)->gso_size = 0; 5313 goto out; 5314 } 5315 5316 rcu_read_lock(); 5317 list_for_each_entry_rcu(ptype, head, list) { 5318 if (ptype->type != type || !ptype->callbacks.gro_complete) 5319 continue; 5320 5321 err = ptype->callbacks.gro_complete(skb, 0); 5322 break; 5323 } 5324 rcu_read_unlock(); 5325 5326 if (err) { 5327 WARN_ON(&ptype->list == head); 5328 kfree_skb(skb); 5329 return NET_RX_SUCCESS; 5330 } 5331 5332 out: 5333 return netif_receive_skb_internal(skb); 5334 } 5335 5336 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index, 5337 bool flush_old) 5338 { 5339 struct list_head *head = &napi->gro_hash[index].list; 5340 struct sk_buff *skb, *p; 5341 5342 list_for_each_entry_safe_reverse(skb, p, head, list) { 5343 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies) 5344 return; 5345 skb_list_del_init(skb); 5346 napi_gro_complete(skb); 5347 napi->gro_hash[index].count--; 5348 } 5349 5350 if (!napi->gro_hash[index].count) 5351 __clear_bit(index, &napi->gro_bitmask); 5352 } 5353 5354 /* napi->gro_hash[].list contains packets ordered by age. 5355 * youngest packets at the head of it. 5356 * Complete skbs in reverse order to reduce latencies. 5357 */ 5358 void napi_gro_flush(struct napi_struct *napi, bool flush_old) 5359 { 5360 u32 i; 5361 5362 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 5363 if (test_bit(i, &napi->gro_bitmask)) 5364 __napi_gro_flush_chain(napi, i, flush_old); 5365 } 5366 } 5367 EXPORT_SYMBOL(napi_gro_flush); 5368 5369 static struct list_head *gro_list_prepare(struct napi_struct *napi, 5370 struct sk_buff *skb) 5371 { 5372 unsigned int maclen = skb->dev->hard_header_len; 5373 u32 hash = skb_get_hash_raw(skb); 5374 struct list_head *head; 5375 struct sk_buff *p; 5376 5377 head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list; 5378 list_for_each_entry(p, head, list) { 5379 unsigned long diffs; 5380 5381 NAPI_GRO_CB(p)->flush = 0; 5382 5383 if (hash != skb_get_hash_raw(p)) { 5384 NAPI_GRO_CB(p)->same_flow = 0; 5385 continue; 5386 } 5387 5388 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 5389 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb); 5390 if (skb_vlan_tag_present(p)) 5391 diffs |= p->vlan_tci ^ skb->vlan_tci; 5392 diffs |= skb_metadata_dst_cmp(p, skb); 5393 diffs |= skb_metadata_differs(p, skb); 5394 if (maclen == ETH_HLEN) 5395 diffs |= compare_ether_header(skb_mac_header(p), 5396 skb_mac_header(skb)); 5397 else if (!diffs) 5398 diffs = memcmp(skb_mac_header(p), 5399 skb_mac_header(skb), 5400 maclen); 5401 NAPI_GRO_CB(p)->same_flow = !diffs; 5402 } 5403 5404 return head; 5405 } 5406 5407 static void skb_gro_reset_offset(struct sk_buff *skb) 5408 { 5409 const struct skb_shared_info *pinfo = skb_shinfo(skb); 5410 const skb_frag_t *frag0 = &pinfo->frags[0]; 5411 5412 NAPI_GRO_CB(skb)->data_offset = 0; 5413 NAPI_GRO_CB(skb)->frag0 = NULL; 5414 NAPI_GRO_CB(skb)->frag0_len = 0; 5415 5416 if (skb_mac_header(skb) == skb_tail_pointer(skb) && 5417 pinfo->nr_frags && 5418 !PageHighMem(skb_frag_page(frag0))) { 5419 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0); 5420 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int, 5421 skb_frag_size(frag0), 5422 skb->end - skb->tail); 5423 } 5424 } 5425 5426 static void gro_pull_from_frag0(struct sk_buff *skb, int grow) 5427 { 5428 struct skb_shared_info *pinfo = skb_shinfo(skb); 5429 5430 BUG_ON(skb->end - skb->tail < grow); 5431 5432 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 5433 5434 skb->data_len -= grow; 5435 skb->tail += grow; 5436 5437 pinfo->frags[0].page_offset += grow; 5438 skb_frag_size_sub(&pinfo->frags[0], grow); 5439 5440 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) { 5441 skb_frag_unref(skb, 0); 5442 memmove(pinfo->frags, pinfo->frags + 1, 5443 --pinfo->nr_frags * sizeof(pinfo->frags[0])); 5444 } 5445 } 5446 5447 static void gro_flush_oldest(struct list_head *head) 5448 { 5449 struct sk_buff *oldest; 5450 5451 oldest = list_last_entry(head, struct sk_buff, list); 5452 5453 /* We are called with head length >= MAX_GRO_SKBS, so this is 5454 * impossible. 5455 */ 5456 if (WARN_ON_ONCE(!oldest)) 5457 return; 5458 5459 /* Do not adjust napi->gro_hash[].count, caller is adding a new 5460 * SKB to the chain. 5461 */ 5462 skb_list_del_init(oldest); 5463 napi_gro_complete(oldest); 5464 } 5465 5466 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 5467 { 5468 u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1); 5469 struct list_head *head = &offload_base; 5470 struct packet_offload *ptype; 5471 __be16 type = skb->protocol; 5472 struct list_head *gro_head; 5473 struct sk_buff *pp = NULL; 5474 enum gro_result ret; 5475 int same_flow; 5476 int grow; 5477 5478 if (netif_elide_gro(skb->dev)) 5479 goto normal; 5480 5481 gro_head = gro_list_prepare(napi, skb); 5482 5483 rcu_read_lock(); 5484 list_for_each_entry_rcu(ptype, head, list) { 5485 if (ptype->type != type || !ptype->callbacks.gro_receive) 5486 continue; 5487 5488 skb_set_network_header(skb, skb_gro_offset(skb)); 5489 skb_reset_mac_len(skb); 5490 NAPI_GRO_CB(skb)->same_flow = 0; 5491 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb); 5492 NAPI_GRO_CB(skb)->free = 0; 5493 NAPI_GRO_CB(skb)->encap_mark = 0; 5494 NAPI_GRO_CB(skb)->recursion_counter = 0; 5495 NAPI_GRO_CB(skb)->is_fou = 0; 5496 NAPI_GRO_CB(skb)->is_atomic = 1; 5497 NAPI_GRO_CB(skb)->gro_remcsum_start = 0; 5498 5499 /* Setup for GRO checksum validation */ 5500 switch (skb->ip_summed) { 5501 case CHECKSUM_COMPLETE: 5502 NAPI_GRO_CB(skb)->csum = skb->csum; 5503 NAPI_GRO_CB(skb)->csum_valid = 1; 5504 NAPI_GRO_CB(skb)->csum_cnt = 0; 5505 break; 5506 case CHECKSUM_UNNECESSARY: 5507 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1; 5508 NAPI_GRO_CB(skb)->csum_valid = 0; 5509 break; 5510 default: 5511 NAPI_GRO_CB(skb)->csum_cnt = 0; 5512 NAPI_GRO_CB(skb)->csum_valid = 0; 5513 } 5514 5515 pp = ptype->callbacks.gro_receive(gro_head, skb); 5516 break; 5517 } 5518 rcu_read_unlock(); 5519 5520 if (&ptype->list == head) 5521 goto normal; 5522 5523 if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) { 5524 ret = GRO_CONSUMED; 5525 goto ok; 5526 } 5527 5528 same_flow = NAPI_GRO_CB(skb)->same_flow; 5529 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 5530 5531 if (pp) { 5532 skb_list_del_init(pp); 5533 napi_gro_complete(pp); 5534 napi->gro_hash[hash].count--; 5535 } 5536 5537 if (same_flow) 5538 goto ok; 5539 5540 if (NAPI_GRO_CB(skb)->flush) 5541 goto normal; 5542 5543 if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) { 5544 gro_flush_oldest(gro_head); 5545 } else { 5546 napi->gro_hash[hash].count++; 5547 } 5548 NAPI_GRO_CB(skb)->count = 1; 5549 NAPI_GRO_CB(skb)->age = jiffies; 5550 NAPI_GRO_CB(skb)->last = skb; 5551 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 5552 list_add(&skb->list, gro_head); 5553 ret = GRO_HELD; 5554 5555 pull: 5556 grow = skb_gro_offset(skb) - skb_headlen(skb); 5557 if (grow > 0) 5558 gro_pull_from_frag0(skb, grow); 5559 ok: 5560 if (napi->gro_hash[hash].count) { 5561 if (!test_bit(hash, &napi->gro_bitmask)) 5562 __set_bit(hash, &napi->gro_bitmask); 5563 } else if (test_bit(hash, &napi->gro_bitmask)) { 5564 __clear_bit(hash, &napi->gro_bitmask); 5565 } 5566 5567 return ret; 5568 5569 normal: 5570 ret = GRO_NORMAL; 5571 goto pull; 5572 } 5573 5574 struct packet_offload *gro_find_receive_by_type(__be16 type) 5575 { 5576 struct list_head *offload_head = &offload_base; 5577 struct packet_offload *ptype; 5578 5579 list_for_each_entry_rcu(ptype, offload_head, list) { 5580 if (ptype->type != type || !ptype->callbacks.gro_receive) 5581 continue; 5582 return ptype; 5583 } 5584 return NULL; 5585 } 5586 EXPORT_SYMBOL(gro_find_receive_by_type); 5587 5588 struct packet_offload *gro_find_complete_by_type(__be16 type) 5589 { 5590 struct list_head *offload_head = &offload_base; 5591 struct packet_offload *ptype; 5592 5593 list_for_each_entry_rcu(ptype, offload_head, list) { 5594 if (ptype->type != type || !ptype->callbacks.gro_complete) 5595 continue; 5596 return ptype; 5597 } 5598 return NULL; 5599 } 5600 EXPORT_SYMBOL(gro_find_complete_by_type); 5601 5602 static void napi_skb_free_stolen_head(struct sk_buff *skb) 5603 { 5604 skb_dst_drop(skb); 5605 secpath_reset(skb); 5606 kmem_cache_free(skbuff_head_cache, skb); 5607 } 5608 5609 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 5610 { 5611 switch (ret) { 5612 case GRO_NORMAL: 5613 if (netif_receive_skb_internal(skb)) 5614 ret = GRO_DROP; 5615 break; 5616 5617 case GRO_DROP: 5618 kfree_skb(skb); 5619 break; 5620 5621 case GRO_MERGED_FREE: 5622 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 5623 napi_skb_free_stolen_head(skb); 5624 else 5625 __kfree_skb(skb); 5626 break; 5627 5628 case GRO_HELD: 5629 case GRO_MERGED: 5630 case GRO_CONSUMED: 5631 break; 5632 } 5633 5634 return ret; 5635 } 5636 5637 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 5638 { 5639 skb_mark_napi_id(skb, napi); 5640 trace_napi_gro_receive_entry(skb); 5641 5642 skb_gro_reset_offset(skb); 5643 5644 return napi_skb_finish(dev_gro_receive(napi, skb), skb); 5645 } 5646 EXPORT_SYMBOL(napi_gro_receive); 5647 5648 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 5649 { 5650 if (unlikely(skb->pfmemalloc)) { 5651 consume_skb(skb); 5652 return; 5653 } 5654 __skb_pull(skb, skb_headlen(skb)); 5655 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 5656 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 5657 __vlan_hwaccel_clear_tag(skb); 5658 skb->dev = napi->dev; 5659 skb->skb_iif = 0; 5660 skb->encapsulation = 0; 5661 skb_shinfo(skb)->gso_type = 0; 5662 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 5663 secpath_reset(skb); 5664 5665 napi->skb = skb; 5666 } 5667 5668 struct sk_buff *napi_get_frags(struct napi_struct *napi) 5669 { 5670 struct sk_buff *skb = napi->skb; 5671 5672 if (!skb) { 5673 skb = napi_alloc_skb(napi, GRO_MAX_HEAD); 5674 if (skb) { 5675 napi->skb = skb; 5676 skb_mark_napi_id(skb, napi); 5677 } 5678 } 5679 return skb; 5680 } 5681 EXPORT_SYMBOL(napi_get_frags); 5682 5683 static gro_result_t napi_frags_finish(struct napi_struct *napi, 5684 struct sk_buff *skb, 5685 gro_result_t ret) 5686 { 5687 switch (ret) { 5688 case GRO_NORMAL: 5689 case GRO_HELD: 5690 __skb_push(skb, ETH_HLEN); 5691 skb->protocol = eth_type_trans(skb, skb->dev); 5692 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb)) 5693 ret = GRO_DROP; 5694 break; 5695 5696 case GRO_DROP: 5697 napi_reuse_skb(napi, skb); 5698 break; 5699 5700 case GRO_MERGED_FREE: 5701 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 5702 napi_skb_free_stolen_head(skb); 5703 else 5704 napi_reuse_skb(napi, skb); 5705 break; 5706 5707 case GRO_MERGED: 5708 case GRO_CONSUMED: 5709 break; 5710 } 5711 5712 return ret; 5713 } 5714 5715 /* Upper GRO stack assumes network header starts at gro_offset=0 5716 * Drivers could call both napi_gro_frags() and napi_gro_receive() 5717 * We copy ethernet header into skb->data to have a common layout. 5718 */ 5719 static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 5720 { 5721 struct sk_buff *skb = napi->skb; 5722 const struct ethhdr *eth; 5723 unsigned int hlen = sizeof(*eth); 5724 5725 napi->skb = NULL; 5726 5727 skb_reset_mac_header(skb); 5728 skb_gro_reset_offset(skb); 5729 5730 eth = skb_gro_header_fast(skb, 0); 5731 if (unlikely(skb_gro_header_hard(skb, hlen))) { 5732 eth = skb_gro_header_slow(skb, hlen, 0); 5733 if (unlikely(!eth)) { 5734 net_warn_ratelimited("%s: dropping impossible skb from %s\n", 5735 __func__, napi->dev->name); 5736 napi_reuse_skb(napi, skb); 5737 return NULL; 5738 } 5739 } else { 5740 gro_pull_from_frag0(skb, hlen); 5741 NAPI_GRO_CB(skb)->frag0 += hlen; 5742 NAPI_GRO_CB(skb)->frag0_len -= hlen; 5743 } 5744 __skb_pull(skb, hlen); 5745 5746 /* 5747 * This works because the only protocols we care about don't require 5748 * special handling. 5749 * We'll fix it up properly in napi_frags_finish() 5750 */ 5751 skb->protocol = eth->h_proto; 5752 5753 return skb; 5754 } 5755 5756 gro_result_t napi_gro_frags(struct napi_struct *napi) 5757 { 5758 struct sk_buff *skb = napi_frags_skb(napi); 5759 5760 if (!skb) 5761 return GRO_DROP; 5762 5763 trace_napi_gro_frags_entry(skb); 5764 5765 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb)); 5766 } 5767 EXPORT_SYMBOL(napi_gro_frags); 5768 5769 /* Compute the checksum from gro_offset and return the folded value 5770 * after adding in any pseudo checksum. 5771 */ 5772 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb) 5773 { 5774 __wsum wsum; 5775 __sum16 sum; 5776 5777 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0); 5778 5779 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */ 5780 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum)); 5781 if (likely(!sum)) { 5782 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 5783 !skb->csum_complete_sw) 5784 netdev_rx_csum_fault(skb->dev); 5785 } 5786 5787 NAPI_GRO_CB(skb)->csum = wsum; 5788 NAPI_GRO_CB(skb)->csum_valid = 1; 5789 5790 return sum; 5791 } 5792 EXPORT_SYMBOL(__skb_gro_checksum_complete); 5793 5794 static void net_rps_send_ipi(struct softnet_data *remsd) 5795 { 5796 #ifdef CONFIG_RPS 5797 while (remsd) { 5798 struct softnet_data *next = remsd->rps_ipi_next; 5799 5800 if (cpu_online(remsd->cpu)) 5801 smp_call_function_single_async(remsd->cpu, &remsd->csd); 5802 remsd = next; 5803 } 5804 #endif 5805 } 5806 5807 /* 5808 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 5809 * Note: called with local irq disabled, but exits with local irq enabled. 5810 */ 5811 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 5812 { 5813 #ifdef CONFIG_RPS 5814 struct softnet_data *remsd = sd->rps_ipi_list; 5815 5816 if (remsd) { 5817 sd->rps_ipi_list = NULL; 5818 5819 local_irq_enable(); 5820 5821 /* Send pending IPI's to kick RPS processing on remote cpus. */ 5822 net_rps_send_ipi(remsd); 5823 } else 5824 #endif 5825 local_irq_enable(); 5826 } 5827 5828 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 5829 { 5830 #ifdef CONFIG_RPS 5831 return sd->rps_ipi_list != NULL; 5832 #else 5833 return false; 5834 #endif 5835 } 5836 5837 static int process_backlog(struct napi_struct *napi, int quota) 5838 { 5839 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 5840 bool again = true; 5841 int work = 0; 5842 5843 /* Check if we have pending ipi, its better to send them now, 5844 * not waiting net_rx_action() end. 5845 */ 5846 if (sd_has_rps_ipi_waiting(sd)) { 5847 local_irq_disable(); 5848 net_rps_action_and_irq_enable(sd); 5849 } 5850 5851 napi->weight = dev_rx_weight; 5852 while (again) { 5853 struct sk_buff *skb; 5854 5855 while ((skb = __skb_dequeue(&sd->process_queue))) { 5856 rcu_read_lock(); 5857 __netif_receive_skb(skb); 5858 rcu_read_unlock(); 5859 input_queue_head_incr(sd); 5860 if (++work >= quota) 5861 return work; 5862 5863 } 5864 5865 local_irq_disable(); 5866 rps_lock(sd); 5867 if (skb_queue_empty(&sd->input_pkt_queue)) { 5868 /* 5869 * Inline a custom version of __napi_complete(). 5870 * only current cpu owns and manipulates this napi, 5871 * and NAPI_STATE_SCHED is the only possible flag set 5872 * on backlog. 5873 * We can use a plain write instead of clear_bit(), 5874 * and we dont need an smp_mb() memory barrier. 5875 */ 5876 napi->state = 0; 5877 again = false; 5878 } else { 5879 skb_queue_splice_tail_init(&sd->input_pkt_queue, 5880 &sd->process_queue); 5881 } 5882 rps_unlock(sd); 5883 local_irq_enable(); 5884 } 5885 5886 return work; 5887 } 5888 5889 /** 5890 * __napi_schedule - schedule for receive 5891 * @n: entry to schedule 5892 * 5893 * The entry's receive function will be scheduled to run. 5894 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 5895 */ 5896 void __napi_schedule(struct napi_struct *n) 5897 { 5898 unsigned long flags; 5899 5900 local_irq_save(flags); 5901 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 5902 local_irq_restore(flags); 5903 } 5904 EXPORT_SYMBOL(__napi_schedule); 5905 5906 /** 5907 * napi_schedule_prep - check if napi can be scheduled 5908 * @n: napi context 5909 * 5910 * Test if NAPI routine is already running, and if not mark 5911 * it as running. This is used as a condition variable 5912 * insure only one NAPI poll instance runs. We also make 5913 * sure there is no pending NAPI disable. 5914 */ 5915 bool napi_schedule_prep(struct napi_struct *n) 5916 { 5917 unsigned long val, new; 5918 5919 do { 5920 val = READ_ONCE(n->state); 5921 if (unlikely(val & NAPIF_STATE_DISABLE)) 5922 return false; 5923 new = val | NAPIF_STATE_SCHED; 5924 5925 /* Sets STATE_MISSED bit if STATE_SCHED was already set 5926 * This was suggested by Alexander Duyck, as compiler 5927 * emits better code than : 5928 * if (val & NAPIF_STATE_SCHED) 5929 * new |= NAPIF_STATE_MISSED; 5930 */ 5931 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED * 5932 NAPIF_STATE_MISSED; 5933 } while (cmpxchg(&n->state, val, new) != val); 5934 5935 return !(val & NAPIF_STATE_SCHED); 5936 } 5937 EXPORT_SYMBOL(napi_schedule_prep); 5938 5939 /** 5940 * __napi_schedule_irqoff - schedule for receive 5941 * @n: entry to schedule 5942 * 5943 * Variant of __napi_schedule() assuming hard irqs are masked 5944 */ 5945 void __napi_schedule_irqoff(struct napi_struct *n) 5946 { 5947 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 5948 } 5949 EXPORT_SYMBOL(__napi_schedule_irqoff); 5950 5951 bool napi_complete_done(struct napi_struct *n, int work_done) 5952 { 5953 unsigned long flags, val, new; 5954 5955 /* 5956 * 1) Don't let napi dequeue from the cpu poll list 5957 * just in case its running on a different cpu. 5958 * 2) If we are busy polling, do nothing here, we have 5959 * the guarantee we will be called later. 5960 */ 5961 if (unlikely(n->state & (NAPIF_STATE_NPSVC | 5962 NAPIF_STATE_IN_BUSY_POLL))) 5963 return false; 5964 5965 if (n->gro_bitmask) { 5966 unsigned long timeout = 0; 5967 5968 if (work_done) 5969 timeout = n->dev->gro_flush_timeout; 5970 5971 if (timeout) 5972 hrtimer_start(&n->timer, ns_to_ktime(timeout), 5973 HRTIMER_MODE_REL_PINNED); 5974 else 5975 napi_gro_flush(n, false); 5976 } 5977 if (unlikely(!list_empty(&n->poll_list))) { 5978 /* If n->poll_list is not empty, we need to mask irqs */ 5979 local_irq_save(flags); 5980 list_del_init(&n->poll_list); 5981 local_irq_restore(flags); 5982 } 5983 5984 do { 5985 val = READ_ONCE(n->state); 5986 5987 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED)); 5988 5989 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED); 5990 5991 /* If STATE_MISSED was set, leave STATE_SCHED set, 5992 * because we will call napi->poll() one more time. 5993 * This C code was suggested by Alexander Duyck to help gcc. 5994 */ 5995 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED * 5996 NAPIF_STATE_SCHED; 5997 } while (cmpxchg(&n->state, val, new) != val); 5998 5999 if (unlikely(val & NAPIF_STATE_MISSED)) { 6000 __napi_schedule(n); 6001 return false; 6002 } 6003 6004 return true; 6005 } 6006 EXPORT_SYMBOL(napi_complete_done); 6007 6008 /* must be called under rcu_read_lock(), as we dont take a reference */ 6009 static struct napi_struct *napi_by_id(unsigned int napi_id) 6010 { 6011 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 6012 struct napi_struct *napi; 6013 6014 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 6015 if (napi->napi_id == napi_id) 6016 return napi; 6017 6018 return NULL; 6019 } 6020 6021 #if defined(CONFIG_NET_RX_BUSY_POLL) 6022 6023 #define BUSY_POLL_BUDGET 8 6024 6025 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock) 6026 { 6027 int rc; 6028 6029 /* Busy polling means there is a high chance device driver hard irq 6030 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was 6031 * set in napi_schedule_prep(). 6032 * Since we are about to call napi->poll() once more, we can safely 6033 * clear NAPI_STATE_MISSED. 6034 * 6035 * Note: x86 could use a single "lock and ..." instruction 6036 * to perform these two clear_bit() 6037 */ 6038 clear_bit(NAPI_STATE_MISSED, &napi->state); 6039 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state); 6040 6041 local_bh_disable(); 6042 6043 /* All we really want here is to re-enable device interrupts. 6044 * Ideally, a new ndo_busy_poll_stop() could avoid another round. 6045 */ 6046 rc = napi->poll(napi, BUSY_POLL_BUDGET); 6047 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET); 6048 netpoll_poll_unlock(have_poll_lock); 6049 if (rc == BUSY_POLL_BUDGET) 6050 __napi_schedule(napi); 6051 local_bh_enable(); 6052 } 6053 6054 void napi_busy_loop(unsigned int napi_id, 6055 bool (*loop_end)(void *, unsigned long), 6056 void *loop_end_arg) 6057 { 6058 unsigned long start_time = loop_end ? busy_loop_current_time() : 0; 6059 int (*napi_poll)(struct napi_struct *napi, int budget); 6060 void *have_poll_lock = NULL; 6061 struct napi_struct *napi; 6062 6063 restart: 6064 napi_poll = NULL; 6065 6066 rcu_read_lock(); 6067 6068 napi = napi_by_id(napi_id); 6069 if (!napi) 6070 goto out; 6071 6072 preempt_disable(); 6073 for (;;) { 6074 int work = 0; 6075 6076 local_bh_disable(); 6077 if (!napi_poll) { 6078 unsigned long val = READ_ONCE(napi->state); 6079 6080 /* If multiple threads are competing for this napi, 6081 * we avoid dirtying napi->state as much as we can. 6082 */ 6083 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED | 6084 NAPIF_STATE_IN_BUSY_POLL)) 6085 goto count; 6086 if (cmpxchg(&napi->state, val, 6087 val | NAPIF_STATE_IN_BUSY_POLL | 6088 NAPIF_STATE_SCHED) != val) 6089 goto count; 6090 have_poll_lock = netpoll_poll_lock(napi); 6091 napi_poll = napi->poll; 6092 } 6093 work = napi_poll(napi, BUSY_POLL_BUDGET); 6094 trace_napi_poll(napi, work, BUSY_POLL_BUDGET); 6095 count: 6096 if (work > 0) 6097 __NET_ADD_STATS(dev_net(napi->dev), 6098 LINUX_MIB_BUSYPOLLRXPACKETS, work); 6099 local_bh_enable(); 6100 6101 if (!loop_end || loop_end(loop_end_arg, start_time)) 6102 break; 6103 6104 if (unlikely(need_resched())) { 6105 if (napi_poll) 6106 busy_poll_stop(napi, have_poll_lock); 6107 preempt_enable(); 6108 rcu_read_unlock(); 6109 cond_resched(); 6110 if (loop_end(loop_end_arg, start_time)) 6111 return; 6112 goto restart; 6113 } 6114 cpu_relax(); 6115 } 6116 if (napi_poll) 6117 busy_poll_stop(napi, have_poll_lock); 6118 preempt_enable(); 6119 out: 6120 rcu_read_unlock(); 6121 } 6122 EXPORT_SYMBOL(napi_busy_loop); 6123 6124 #endif /* CONFIG_NET_RX_BUSY_POLL */ 6125 6126 static void napi_hash_add(struct napi_struct *napi) 6127 { 6128 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) || 6129 test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) 6130 return; 6131 6132 spin_lock(&napi_hash_lock); 6133 6134 /* 0..NR_CPUS range is reserved for sender_cpu use */ 6135 do { 6136 if (unlikely(++napi_gen_id < MIN_NAPI_ID)) 6137 napi_gen_id = MIN_NAPI_ID; 6138 } while (napi_by_id(napi_gen_id)); 6139 napi->napi_id = napi_gen_id; 6140 6141 hlist_add_head_rcu(&napi->napi_hash_node, 6142 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 6143 6144 spin_unlock(&napi_hash_lock); 6145 } 6146 6147 /* Warning : caller is responsible to make sure rcu grace period 6148 * is respected before freeing memory containing @napi 6149 */ 6150 bool napi_hash_del(struct napi_struct *napi) 6151 { 6152 bool rcu_sync_needed = false; 6153 6154 spin_lock(&napi_hash_lock); 6155 6156 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) { 6157 rcu_sync_needed = true; 6158 hlist_del_rcu(&napi->napi_hash_node); 6159 } 6160 spin_unlock(&napi_hash_lock); 6161 return rcu_sync_needed; 6162 } 6163 EXPORT_SYMBOL_GPL(napi_hash_del); 6164 6165 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 6166 { 6167 struct napi_struct *napi; 6168 6169 napi = container_of(timer, struct napi_struct, timer); 6170 6171 /* Note : we use a relaxed variant of napi_schedule_prep() not setting 6172 * NAPI_STATE_MISSED, since we do not react to a device IRQ. 6173 */ 6174 if (napi->gro_bitmask && !napi_disable_pending(napi) && 6175 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) 6176 __napi_schedule_irqoff(napi); 6177 6178 return HRTIMER_NORESTART; 6179 } 6180 6181 static void init_gro_hash(struct napi_struct *napi) 6182 { 6183 int i; 6184 6185 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 6186 INIT_LIST_HEAD(&napi->gro_hash[i].list); 6187 napi->gro_hash[i].count = 0; 6188 } 6189 napi->gro_bitmask = 0; 6190 } 6191 6192 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 6193 int (*poll)(struct napi_struct *, int), int weight) 6194 { 6195 INIT_LIST_HEAD(&napi->poll_list); 6196 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 6197 napi->timer.function = napi_watchdog; 6198 init_gro_hash(napi); 6199 napi->skb = NULL; 6200 napi->poll = poll; 6201 if (weight > NAPI_POLL_WEIGHT) 6202 pr_err_once("netif_napi_add() called with weight %d on device %s\n", 6203 weight, dev->name); 6204 napi->weight = weight; 6205 list_add(&napi->dev_list, &dev->napi_list); 6206 napi->dev = dev; 6207 #ifdef CONFIG_NETPOLL 6208 napi->poll_owner = -1; 6209 #endif 6210 set_bit(NAPI_STATE_SCHED, &napi->state); 6211 napi_hash_add(napi); 6212 } 6213 EXPORT_SYMBOL(netif_napi_add); 6214 6215 void napi_disable(struct napi_struct *n) 6216 { 6217 might_sleep(); 6218 set_bit(NAPI_STATE_DISABLE, &n->state); 6219 6220 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state)) 6221 msleep(1); 6222 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state)) 6223 msleep(1); 6224 6225 hrtimer_cancel(&n->timer); 6226 6227 clear_bit(NAPI_STATE_DISABLE, &n->state); 6228 } 6229 EXPORT_SYMBOL(napi_disable); 6230 6231 static void flush_gro_hash(struct napi_struct *napi) 6232 { 6233 int i; 6234 6235 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 6236 struct sk_buff *skb, *n; 6237 6238 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list) 6239 kfree_skb(skb); 6240 napi->gro_hash[i].count = 0; 6241 } 6242 } 6243 6244 /* Must be called in process context */ 6245 void netif_napi_del(struct napi_struct *napi) 6246 { 6247 might_sleep(); 6248 if (napi_hash_del(napi)) 6249 synchronize_net(); 6250 list_del_init(&napi->dev_list); 6251 napi_free_frags(napi); 6252 6253 flush_gro_hash(napi); 6254 napi->gro_bitmask = 0; 6255 } 6256 EXPORT_SYMBOL(netif_napi_del); 6257 6258 static int napi_poll(struct napi_struct *n, struct list_head *repoll) 6259 { 6260 void *have; 6261 int work, weight; 6262 6263 list_del_init(&n->poll_list); 6264 6265 have = netpoll_poll_lock(n); 6266 6267 weight = n->weight; 6268 6269 /* This NAPI_STATE_SCHED test is for avoiding a race 6270 * with netpoll's poll_napi(). Only the entity which 6271 * obtains the lock and sees NAPI_STATE_SCHED set will 6272 * actually make the ->poll() call. Therefore we avoid 6273 * accidentally calling ->poll() when NAPI is not scheduled. 6274 */ 6275 work = 0; 6276 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 6277 work = n->poll(n, weight); 6278 trace_napi_poll(n, work, weight); 6279 } 6280 6281 WARN_ON_ONCE(work > weight); 6282 6283 if (likely(work < weight)) 6284 goto out_unlock; 6285 6286 /* Drivers must not modify the NAPI state if they 6287 * consume the entire weight. In such cases this code 6288 * still "owns" the NAPI instance and therefore can 6289 * move the instance around on the list at-will. 6290 */ 6291 if (unlikely(napi_disable_pending(n))) { 6292 napi_complete(n); 6293 goto out_unlock; 6294 } 6295 6296 if (n->gro_bitmask) { 6297 /* flush too old packets 6298 * If HZ < 1000, flush all packets. 6299 */ 6300 napi_gro_flush(n, HZ >= 1000); 6301 } 6302 6303 /* Some drivers may have called napi_schedule 6304 * prior to exhausting their budget. 6305 */ 6306 if (unlikely(!list_empty(&n->poll_list))) { 6307 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 6308 n->dev ? n->dev->name : "backlog"); 6309 goto out_unlock; 6310 } 6311 6312 list_add_tail(&n->poll_list, repoll); 6313 6314 out_unlock: 6315 netpoll_poll_unlock(have); 6316 6317 return work; 6318 } 6319 6320 static __latent_entropy void net_rx_action(struct softirq_action *h) 6321 { 6322 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 6323 unsigned long time_limit = jiffies + 6324 usecs_to_jiffies(netdev_budget_usecs); 6325 int budget = netdev_budget; 6326 LIST_HEAD(list); 6327 LIST_HEAD(repoll); 6328 6329 local_irq_disable(); 6330 list_splice_init(&sd->poll_list, &list); 6331 local_irq_enable(); 6332 6333 for (;;) { 6334 struct napi_struct *n; 6335 6336 if (list_empty(&list)) { 6337 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll)) 6338 goto out; 6339 break; 6340 } 6341 6342 n = list_first_entry(&list, struct napi_struct, poll_list); 6343 budget -= napi_poll(n, &repoll); 6344 6345 /* If softirq window is exhausted then punt. 6346 * Allow this to run for 2 jiffies since which will allow 6347 * an average latency of 1.5/HZ. 6348 */ 6349 if (unlikely(budget <= 0 || 6350 time_after_eq(jiffies, time_limit))) { 6351 sd->time_squeeze++; 6352 break; 6353 } 6354 } 6355 6356 local_irq_disable(); 6357 6358 list_splice_tail_init(&sd->poll_list, &list); 6359 list_splice_tail(&repoll, &list); 6360 list_splice(&list, &sd->poll_list); 6361 if (!list_empty(&sd->poll_list)) 6362 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 6363 6364 net_rps_action_and_irq_enable(sd); 6365 out: 6366 __kfree_skb_flush(); 6367 } 6368 6369 struct netdev_adjacent { 6370 struct net_device *dev; 6371 6372 /* upper master flag, there can only be one master device per list */ 6373 bool master; 6374 6375 /* counter for the number of times this device was added to us */ 6376 u16 ref_nr; 6377 6378 /* private field for the users */ 6379 void *private; 6380 6381 struct list_head list; 6382 struct rcu_head rcu; 6383 }; 6384 6385 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, 6386 struct list_head *adj_list) 6387 { 6388 struct netdev_adjacent *adj; 6389 6390 list_for_each_entry(adj, adj_list, list) { 6391 if (adj->dev == adj_dev) 6392 return adj; 6393 } 6394 return NULL; 6395 } 6396 6397 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data) 6398 { 6399 struct net_device *dev = data; 6400 6401 return upper_dev == dev; 6402 } 6403 6404 /** 6405 * netdev_has_upper_dev - Check if device is linked to an upper device 6406 * @dev: device 6407 * @upper_dev: upper device to check 6408 * 6409 * Find out if a device is linked to specified upper device and return true 6410 * in case it is. Note that this checks only immediate upper device, 6411 * not through a complete stack of devices. The caller must hold the RTNL lock. 6412 */ 6413 bool netdev_has_upper_dev(struct net_device *dev, 6414 struct net_device *upper_dev) 6415 { 6416 ASSERT_RTNL(); 6417 6418 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev, 6419 upper_dev); 6420 } 6421 EXPORT_SYMBOL(netdev_has_upper_dev); 6422 6423 /** 6424 * netdev_has_upper_dev_all - Check if device is linked to an upper device 6425 * @dev: device 6426 * @upper_dev: upper device to check 6427 * 6428 * Find out if a device is linked to specified upper device and return true 6429 * in case it is. Note that this checks the entire upper device chain. 6430 * The caller must hold rcu lock. 6431 */ 6432 6433 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 6434 struct net_device *upper_dev) 6435 { 6436 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev, 6437 upper_dev); 6438 } 6439 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu); 6440 6441 /** 6442 * netdev_has_any_upper_dev - Check if device is linked to some device 6443 * @dev: device 6444 * 6445 * Find out if a device is linked to an upper device and return true in case 6446 * it is. The caller must hold the RTNL lock. 6447 */ 6448 bool netdev_has_any_upper_dev(struct net_device *dev) 6449 { 6450 ASSERT_RTNL(); 6451 6452 return !list_empty(&dev->adj_list.upper); 6453 } 6454 EXPORT_SYMBOL(netdev_has_any_upper_dev); 6455 6456 /** 6457 * netdev_master_upper_dev_get - Get master upper device 6458 * @dev: device 6459 * 6460 * Find a master upper device and return pointer to it or NULL in case 6461 * it's not there. The caller must hold the RTNL lock. 6462 */ 6463 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 6464 { 6465 struct netdev_adjacent *upper; 6466 6467 ASSERT_RTNL(); 6468 6469 if (list_empty(&dev->adj_list.upper)) 6470 return NULL; 6471 6472 upper = list_first_entry(&dev->adj_list.upper, 6473 struct netdev_adjacent, list); 6474 if (likely(upper->master)) 6475 return upper->dev; 6476 return NULL; 6477 } 6478 EXPORT_SYMBOL(netdev_master_upper_dev_get); 6479 6480 /** 6481 * netdev_has_any_lower_dev - Check if device is linked to some device 6482 * @dev: device 6483 * 6484 * Find out if a device is linked to a lower device and return true in case 6485 * it is. The caller must hold the RTNL lock. 6486 */ 6487 static bool netdev_has_any_lower_dev(struct net_device *dev) 6488 { 6489 ASSERT_RTNL(); 6490 6491 return !list_empty(&dev->adj_list.lower); 6492 } 6493 6494 void *netdev_adjacent_get_private(struct list_head *adj_list) 6495 { 6496 struct netdev_adjacent *adj; 6497 6498 adj = list_entry(adj_list, struct netdev_adjacent, list); 6499 6500 return adj->private; 6501 } 6502 EXPORT_SYMBOL(netdev_adjacent_get_private); 6503 6504 /** 6505 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 6506 * @dev: device 6507 * @iter: list_head ** of the current position 6508 * 6509 * Gets the next device from the dev's upper list, starting from iter 6510 * position. The caller must hold RCU read lock. 6511 */ 6512 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 6513 struct list_head **iter) 6514 { 6515 struct netdev_adjacent *upper; 6516 6517 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 6518 6519 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6520 6521 if (&upper->list == &dev->adj_list.upper) 6522 return NULL; 6523 6524 *iter = &upper->list; 6525 6526 return upper->dev; 6527 } 6528 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 6529 6530 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev, 6531 struct list_head **iter) 6532 { 6533 struct netdev_adjacent *upper; 6534 6535 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 6536 6537 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6538 6539 if (&upper->list == &dev->adj_list.upper) 6540 return NULL; 6541 6542 *iter = &upper->list; 6543 6544 return upper->dev; 6545 } 6546 6547 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 6548 int (*fn)(struct net_device *dev, 6549 void *data), 6550 void *data) 6551 { 6552 struct net_device *udev; 6553 struct list_head *iter; 6554 int ret; 6555 6556 for (iter = &dev->adj_list.upper, 6557 udev = netdev_next_upper_dev_rcu(dev, &iter); 6558 udev; 6559 udev = netdev_next_upper_dev_rcu(dev, &iter)) { 6560 /* first is the upper device itself */ 6561 ret = fn(udev, data); 6562 if (ret) 6563 return ret; 6564 6565 /* then look at all of its upper devices */ 6566 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data); 6567 if (ret) 6568 return ret; 6569 } 6570 6571 return 0; 6572 } 6573 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu); 6574 6575 /** 6576 * netdev_lower_get_next_private - Get the next ->private from the 6577 * lower neighbour list 6578 * @dev: device 6579 * @iter: list_head ** of the current position 6580 * 6581 * Gets the next netdev_adjacent->private from the dev's lower neighbour 6582 * list, starting from iter position. The caller must hold either hold the 6583 * RTNL lock or its own locking that guarantees that the neighbour lower 6584 * list will remain unchanged. 6585 */ 6586 void *netdev_lower_get_next_private(struct net_device *dev, 6587 struct list_head **iter) 6588 { 6589 struct netdev_adjacent *lower; 6590 6591 lower = list_entry(*iter, struct netdev_adjacent, list); 6592 6593 if (&lower->list == &dev->adj_list.lower) 6594 return NULL; 6595 6596 *iter = lower->list.next; 6597 6598 return lower->private; 6599 } 6600 EXPORT_SYMBOL(netdev_lower_get_next_private); 6601 6602 /** 6603 * netdev_lower_get_next_private_rcu - Get the next ->private from the 6604 * lower neighbour list, RCU 6605 * variant 6606 * @dev: device 6607 * @iter: list_head ** of the current position 6608 * 6609 * Gets the next netdev_adjacent->private from the dev's lower neighbour 6610 * list, starting from iter position. The caller must hold RCU read lock. 6611 */ 6612 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 6613 struct list_head **iter) 6614 { 6615 struct netdev_adjacent *lower; 6616 6617 WARN_ON_ONCE(!rcu_read_lock_held()); 6618 6619 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6620 6621 if (&lower->list == &dev->adj_list.lower) 6622 return NULL; 6623 6624 *iter = &lower->list; 6625 6626 return lower->private; 6627 } 6628 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 6629 6630 /** 6631 * netdev_lower_get_next - Get the next device from the lower neighbour 6632 * list 6633 * @dev: device 6634 * @iter: list_head ** of the current position 6635 * 6636 * Gets the next netdev_adjacent from the dev's lower neighbour 6637 * list, starting from iter position. The caller must hold RTNL lock or 6638 * its own locking that guarantees that the neighbour lower 6639 * list will remain unchanged. 6640 */ 6641 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 6642 { 6643 struct netdev_adjacent *lower; 6644 6645 lower = list_entry(*iter, struct netdev_adjacent, list); 6646 6647 if (&lower->list == &dev->adj_list.lower) 6648 return NULL; 6649 6650 *iter = lower->list.next; 6651 6652 return lower->dev; 6653 } 6654 EXPORT_SYMBOL(netdev_lower_get_next); 6655 6656 static struct net_device *netdev_next_lower_dev(struct net_device *dev, 6657 struct list_head **iter) 6658 { 6659 struct netdev_adjacent *lower; 6660 6661 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 6662 6663 if (&lower->list == &dev->adj_list.lower) 6664 return NULL; 6665 6666 *iter = &lower->list; 6667 6668 return lower->dev; 6669 } 6670 6671 int netdev_walk_all_lower_dev(struct net_device *dev, 6672 int (*fn)(struct net_device *dev, 6673 void *data), 6674 void *data) 6675 { 6676 struct net_device *ldev; 6677 struct list_head *iter; 6678 int ret; 6679 6680 for (iter = &dev->adj_list.lower, 6681 ldev = netdev_next_lower_dev(dev, &iter); 6682 ldev; 6683 ldev = netdev_next_lower_dev(dev, &iter)) { 6684 /* first is the lower device itself */ 6685 ret = fn(ldev, data); 6686 if (ret) 6687 return ret; 6688 6689 /* then look at all of its lower devices */ 6690 ret = netdev_walk_all_lower_dev(ldev, fn, data); 6691 if (ret) 6692 return ret; 6693 } 6694 6695 return 0; 6696 } 6697 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev); 6698 6699 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 6700 struct list_head **iter) 6701 { 6702 struct netdev_adjacent *lower; 6703 6704 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6705 if (&lower->list == &dev->adj_list.lower) 6706 return NULL; 6707 6708 *iter = &lower->list; 6709 6710 return lower->dev; 6711 } 6712 6713 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 6714 int (*fn)(struct net_device *dev, 6715 void *data), 6716 void *data) 6717 { 6718 struct net_device *ldev; 6719 struct list_head *iter; 6720 int ret; 6721 6722 for (iter = &dev->adj_list.lower, 6723 ldev = netdev_next_lower_dev_rcu(dev, &iter); 6724 ldev; 6725 ldev = netdev_next_lower_dev_rcu(dev, &iter)) { 6726 /* first is the lower device itself */ 6727 ret = fn(ldev, data); 6728 if (ret) 6729 return ret; 6730 6731 /* then look at all of its lower devices */ 6732 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data); 6733 if (ret) 6734 return ret; 6735 } 6736 6737 return 0; 6738 } 6739 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu); 6740 6741 /** 6742 * netdev_lower_get_first_private_rcu - Get the first ->private from the 6743 * lower neighbour list, RCU 6744 * variant 6745 * @dev: device 6746 * 6747 * Gets the first netdev_adjacent->private from the dev's lower neighbour 6748 * list. The caller must hold RCU read lock. 6749 */ 6750 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 6751 { 6752 struct netdev_adjacent *lower; 6753 6754 lower = list_first_or_null_rcu(&dev->adj_list.lower, 6755 struct netdev_adjacent, list); 6756 if (lower) 6757 return lower->private; 6758 return NULL; 6759 } 6760 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 6761 6762 /** 6763 * netdev_master_upper_dev_get_rcu - Get master upper device 6764 * @dev: device 6765 * 6766 * Find a master upper device and return pointer to it or NULL in case 6767 * it's not there. The caller must hold the RCU read lock. 6768 */ 6769 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 6770 { 6771 struct netdev_adjacent *upper; 6772 6773 upper = list_first_or_null_rcu(&dev->adj_list.upper, 6774 struct netdev_adjacent, list); 6775 if (upper && likely(upper->master)) 6776 return upper->dev; 6777 return NULL; 6778 } 6779 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 6780 6781 static int netdev_adjacent_sysfs_add(struct net_device *dev, 6782 struct net_device *adj_dev, 6783 struct list_head *dev_list) 6784 { 6785 char linkname[IFNAMSIZ+7]; 6786 6787 sprintf(linkname, dev_list == &dev->adj_list.upper ? 6788 "upper_%s" : "lower_%s", adj_dev->name); 6789 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 6790 linkname); 6791 } 6792 static void netdev_adjacent_sysfs_del(struct net_device *dev, 6793 char *name, 6794 struct list_head *dev_list) 6795 { 6796 char linkname[IFNAMSIZ+7]; 6797 6798 sprintf(linkname, dev_list == &dev->adj_list.upper ? 6799 "upper_%s" : "lower_%s", name); 6800 sysfs_remove_link(&(dev->dev.kobj), linkname); 6801 } 6802 6803 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 6804 struct net_device *adj_dev, 6805 struct list_head *dev_list) 6806 { 6807 return (dev_list == &dev->adj_list.upper || 6808 dev_list == &dev->adj_list.lower) && 6809 net_eq(dev_net(dev), dev_net(adj_dev)); 6810 } 6811 6812 static int __netdev_adjacent_dev_insert(struct net_device *dev, 6813 struct net_device *adj_dev, 6814 struct list_head *dev_list, 6815 void *private, bool master) 6816 { 6817 struct netdev_adjacent *adj; 6818 int ret; 6819 6820 adj = __netdev_find_adj(adj_dev, dev_list); 6821 6822 if (adj) { 6823 adj->ref_nr += 1; 6824 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n", 6825 dev->name, adj_dev->name, adj->ref_nr); 6826 6827 return 0; 6828 } 6829 6830 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 6831 if (!adj) 6832 return -ENOMEM; 6833 6834 adj->dev = adj_dev; 6835 adj->master = master; 6836 adj->ref_nr = 1; 6837 adj->private = private; 6838 dev_hold(adj_dev); 6839 6840 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n", 6841 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name); 6842 6843 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 6844 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 6845 if (ret) 6846 goto free_adj; 6847 } 6848 6849 /* Ensure that master link is always the first item in list. */ 6850 if (master) { 6851 ret = sysfs_create_link(&(dev->dev.kobj), 6852 &(adj_dev->dev.kobj), "master"); 6853 if (ret) 6854 goto remove_symlinks; 6855 6856 list_add_rcu(&adj->list, dev_list); 6857 } else { 6858 list_add_tail_rcu(&adj->list, dev_list); 6859 } 6860 6861 return 0; 6862 6863 remove_symlinks: 6864 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 6865 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 6866 free_adj: 6867 kfree(adj); 6868 dev_put(adj_dev); 6869 6870 return ret; 6871 } 6872 6873 static void __netdev_adjacent_dev_remove(struct net_device *dev, 6874 struct net_device *adj_dev, 6875 u16 ref_nr, 6876 struct list_head *dev_list) 6877 { 6878 struct netdev_adjacent *adj; 6879 6880 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n", 6881 dev->name, adj_dev->name, ref_nr); 6882 6883 adj = __netdev_find_adj(adj_dev, dev_list); 6884 6885 if (!adj) { 6886 pr_err("Adjacency does not exist for device %s from %s\n", 6887 dev->name, adj_dev->name); 6888 WARN_ON(1); 6889 return; 6890 } 6891 6892 if (adj->ref_nr > ref_nr) { 6893 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n", 6894 dev->name, adj_dev->name, ref_nr, 6895 adj->ref_nr - ref_nr); 6896 adj->ref_nr -= ref_nr; 6897 return; 6898 } 6899 6900 if (adj->master) 6901 sysfs_remove_link(&(dev->dev.kobj), "master"); 6902 6903 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 6904 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 6905 6906 list_del_rcu(&adj->list); 6907 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n", 6908 adj_dev->name, dev->name, adj_dev->name); 6909 dev_put(adj_dev); 6910 kfree_rcu(adj, rcu); 6911 } 6912 6913 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 6914 struct net_device *upper_dev, 6915 struct list_head *up_list, 6916 struct list_head *down_list, 6917 void *private, bool master) 6918 { 6919 int ret; 6920 6921 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, 6922 private, master); 6923 if (ret) 6924 return ret; 6925 6926 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, 6927 private, false); 6928 if (ret) { 6929 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list); 6930 return ret; 6931 } 6932 6933 return 0; 6934 } 6935 6936 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 6937 struct net_device *upper_dev, 6938 u16 ref_nr, 6939 struct list_head *up_list, 6940 struct list_head *down_list) 6941 { 6942 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list); 6943 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list); 6944 } 6945 6946 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 6947 struct net_device *upper_dev, 6948 void *private, bool master) 6949 { 6950 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 6951 &dev->adj_list.upper, 6952 &upper_dev->adj_list.lower, 6953 private, master); 6954 } 6955 6956 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 6957 struct net_device *upper_dev) 6958 { 6959 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1, 6960 &dev->adj_list.upper, 6961 &upper_dev->adj_list.lower); 6962 } 6963 6964 static int __netdev_upper_dev_link(struct net_device *dev, 6965 struct net_device *upper_dev, bool master, 6966 void *upper_priv, void *upper_info, 6967 struct netlink_ext_ack *extack) 6968 { 6969 struct netdev_notifier_changeupper_info changeupper_info = { 6970 .info = { 6971 .dev = dev, 6972 .extack = extack, 6973 }, 6974 .upper_dev = upper_dev, 6975 .master = master, 6976 .linking = true, 6977 .upper_info = upper_info, 6978 }; 6979 struct net_device *master_dev; 6980 int ret = 0; 6981 6982 ASSERT_RTNL(); 6983 6984 if (dev == upper_dev) 6985 return -EBUSY; 6986 6987 /* To prevent loops, check if dev is not upper device to upper_dev. */ 6988 if (netdev_has_upper_dev(upper_dev, dev)) 6989 return -EBUSY; 6990 6991 if (!master) { 6992 if (netdev_has_upper_dev(dev, upper_dev)) 6993 return -EEXIST; 6994 } else { 6995 master_dev = netdev_master_upper_dev_get(dev); 6996 if (master_dev) 6997 return master_dev == upper_dev ? -EEXIST : -EBUSY; 6998 } 6999 7000 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 7001 &changeupper_info.info); 7002 ret = notifier_to_errno(ret); 7003 if (ret) 7004 return ret; 7005 7006 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv, 7007 master); 7008 if (ret) 7009 return ret; 7010 7011 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 7012 &changeupper_info.info); 7013 ret = notifier_to_errno(ret); 7014 if (ret) 7015 goto rollback; 7016 7017 return 0; 7018 7019 rollback: 7020 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 7021 7022 return ret; 7023 } 7024 7025 /** 7026 * netdev_upper_dev_link - Add a link to the upper device 7027 * @dev: device 7028 * @upper_dev: new upper device 7029 * @extack: netlink extended ack 7030 * 7031 * Adds a link to device which is upper to this one. The caller must hold 7032 * the RTNL lock. On a failure a negative errno code is returned. 7033 * On success the reference counts are adjusted and the function 7034 * returns zero. 7035 */ 7036 int netdev_upper_dev_link(struct net_device *dev, 7037 struct net_device *upper_dev, 7038 struct netlink_ext_ack *extack) 7039 { 7040 return __netdev_upper_dev_link(dev, upper_dev, false, 7041 NULL, NULL, extack); 7042 } 7043 EXPORT_SYMBOL(netdev_upper_dev_link); 7044 7045 /** 7046 * netdev_master_upper_dev_link - Add a master link to the upper device 7047 * @dev: device 7048 * @upper_dev: new upper device 7049 * @upper_priv: upper device private 7050 * @upper_info: upper info to be passed down via notifier 7051 * @extack: netlink extended ack 7052 * 7053 * Adds a link to device which is upper to this one. In this case, only 7054 * one master upper device can be linked, although other non-master devices 7055 * might be linked as well. The caller must hold the RTNL lock. 7056 * On a failure a negative errno code is returned. On success the reference 7057 * counts are adjusted and the function returns zero. 7058 */ 7059 int netdev_master_upper_dev_link(struct net_device *dev, 7060 struct net_device *upper_dev, 7061 void *upper_priv, void *upper_info, 7062 struct netlink_ext_ack *extack) 7063 { 7064 return __netdev_upper_dev_link(dev, upper_dev, true, 7065 upper_priv, upper_info, extack); 7066 } 7067 EXPORT_SYMBOL(netdev_master_upper_dev_link); 7068 7069 /** 7070 * netdev_upper_dev_unlink - Removes a link to upper device 7071 * @dev: device 7072 * @upper_dev: new upper device 7073 * 7074 * Removes a link to device which is upper to this one. The caller must hold 7075 * the RTNL lock. 7076 */ 7077 void netdev_upper_dev_unlink(struct net_device *dev, 7078 struct net_device *upper_dev) 7079 { 7080 struct netdev_notifier_changeupper_info changeupper_info = { 7081 .info = { 7082 .dev = dev, 7083 }, 7084 .upper_dev = upper_dev, 7085 .linking = false, 7086 }; 7087 7088 ASSERT_RTNL(); 7089 7090 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; 7091 7092 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 7093 &changeupper_info.info); 7094 7095 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 7096 7097 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 7098 &changeupper_info.info); 7099 } 7100 EXPORT_SYMBOL(netdev_upper_dev_unlink); 7101 7102 /** 7103 * netdev_bonding_info_change - Dispatch event about slave change 7104 * @dev: device 7105 * @bonding_info: info to dispatch 7106 * 7107 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 7108 * The caller must hold the RTNL lock. 7109 */ 7110 void netdev_bonding_info_change(struct net_device *dev, 7111 struct netdev_bonding_info *bonding_info) 7112 { 7113 struct netdev_notifier_bonding_info info = { 7114 .info.dev = dev, 7115 }; 7116 7117 memcpy(&info.bonding_info, bonding_info, 7118 sizeof(struct netdev_bonding_info)); 7119 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, 7120 &info.info); 7121 } 7122 EXPORT_SYMBOL(netdev_bonding_info_change); 7123 7124 static void netdev_adjacent_add_links(struct net_device *dev) 7125 { 7126 struct netdev_adjacent *iter; 7127 7128 struct net *net = dev_net(dev); 7129 7130 list_for_each_entry(iter, &dev->adj_list.upper, list) { 7131 if (!net_eq(net, dev_net(iter->dev))) 7132 continue; 7133 netdev_adjacent_sysfs_add(iter->dev, dev, 7134 &iter->dev->adj_list.lower); 7135 netdev_adjacent_sysfs_add(dev, iter->dev, 7136 &dev->adj_list.upper); 7137 } 7138 7139 list_for_each_entry(iter, &dev->adj_list.lower, list) { 7140 if (!net_eq(net, dev_net(iter->dev))) 7141 continue; 7142 netdev_adjacent_sysfs_add(iter->dev, dev, 7143 &iter->dev->adj_list.upper); 7144 netdev_adjacent_sysfs_add(dev, iter->dev, 7145 &dev->adj_list.lower); 7146 } 7147 } 7148 7149 static void netdev_adjacent_del_links(struct net_device *dev) 7150 { 7151 struct netdev_adjacent *iter; 7152 7153 struct net *net = dev_net(dev); 7154 7155 list_for_each_entry(iter, &dev->adj_list.upper, list) { 7156 if (!net_eq(net, dev_net(iter->dev))) 7157 continue; 7158 netdev_adjacent_sysfs_del(iter->dev, dev->name, 7159 &iter->dev->adj_list.lower); 7160 netdev_adjacent_sysfs_del(dev, iter->dev->name, 7161 &dev->adj_list.upper); 7162 } 7163 7164 list_for_each_entry(iter, &dev->adj_list.lower, list) { 7165 if (!net_eq(net, dev_net(iter->dev))) 7166 continue; 7167 netdev_adjacent_sysfs_del(iter->dev, dev->name, 7168 &iter->dev->adj_list.upper); 7169 netdev_adjacent_sysfs_del(dev, iter->dev->name, 7170 &dev->adj_list.lower); 7171 } 7172 } 7173 7174 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 7175 { 7176 struct netdev_adjacent *iter; 7177 7178 struct net *net = dev_net(dev); 7179 7180 list_for_each_entry(iter, &dev->adj_list.upper, list) { 7181 if (!net_eq(net, dev_net(iter->dev))) 7182 continue; 7183 netdev_adjacent_sysfs_del(iter->dev, oldname, 7184 &iter->dev->adj_list.lower); 7185 netdev_adjacent_sysfs_add(iter->dev, dev, 7186 &iter->dev->adj_list.lower); 7187 } 7188 7189 list_for_each_entry(iter, &dev->adj_list.lower, list) { 7190 if (!net_eq(net, dev_net(iter->dev))) 7191 continue; 7192 netdev_adjacent_sysfs_del(iter->dev, oldname, 7193 &iter->dev->adj_list.upper); 7194 netdev_adjacent_sysfs_add(iter->dev, dev, 7195 &iter->dev->adj_list.upper); 7196 } 7197 } 7198 7199 void *netdev_lower_dev_get_private(struct net_device *dev, 7200 struct net_device *lower_dev) 7201 { 7202 struct netdev_adjacent *lower; 7203 7204 if (!lower_dev) 7205 return NULL; 7206 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower); 7207 if (!lower) 7208 return NULL; 7209 7210 return lower->private; 7211 } 7212 EXPORT_SYMBOL(netdev_lower_dev_get_private); 7213 7214 7215 int dev_get_nest_level(struct net_device *dev) 7216 { 7217 struct net_device *lower = NULL; 7218 struct list_head *iter; 7219 int max_nest = -1; 7220 int nest; 7221 7222 ASSERT_RTNL(); 7223 7224 netdev_for_each_lower_dev(dev, lower, iter) { 7225 nest = dev_get_nest_level(lower); 7226 if (max_nest < nest) 7227 max_nest = nest; 7228 } 7229 7230 return max_nest + 1; 7231 } 7232 EXPORT_SYMBOL(dev_get_nest_level); 7233 7234 /** 7235 * netdev_lower_change - Dispatch event about lower device state change 7236 * @lower_dev: device 7237 * @lower_state_info: state to dispatch 7238 * 7239 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info. 7240 * The caller must hold the RTNL lock. 7241 */ 7242 void netdev_lower_state_changed(struct net_device *lower_dev, 7243 void *lower_state_info) 7244 { 7245 struct netdev_notifier_changelowerstate_info changelowerstate_info = { 7246 .info.dev = lower_dev, 7247 }; 7248 7249 ASSERT_RTNL(); 7250 changelowerstate_info.lower_state_info = lower_state_info; 7251 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, 7252 &changelowerstate_info.info); 7253 } 7254 EXPORT_SYMBOL(netdev_lower_state_changed); 7255 7256 static void dev_change_rx_flags(struct net_device *dev, int flags) 7257 { 7258 const struct net_device_ops *ops = dev->netdev_ops; 7259 7260 if (ops->ndo_change_rx_flags) 7261 ops->ndo_change_rx_flags(dev, flags); 7262 } 7263 7264 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 7265 { 7266 unsigned int old_flags = dev->flags; 7267 kuid_t uid; 7268 kgid_t gid; 7269 7270 ASSERT_RTNL(); 7271 7272 dev->flags |= IFF_PROMISC; 7273 dev->promiscuity += inc; 7274 if (dev->promiscuity == 0) { 7275 /* 7276 * Avoid overflow. 7277 * If inc causes overflow, untouch promisc and return error. 7278 */ 7279 if (inc < 0) 7280 dev->flags &= ~IFF_PROMISC; 7281 else { 7282 dev->promiscuity -= inc; 7283 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 7284 dev->name); 7285 return -EOVERFLOW; 7286 } 7287 } 7288 if (dev->flags != old_flags) { 7289 pr_info("device %s %s promiscuous mode\n", 7290 dev->name, 7291 dev->flags & IFF_PROMISC ? "entered" : "left"); 7292 if (audit_enabled) { 7293 current_uid_gid(&uid, &gid); 7294 audit_log(audit_context(), GFP_ATOMIC, 7295 AUDIT_ANOM_PROMISCUOUS, 7296 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 7297 dev->name, (dev->flags & IFF_PROMISC), 7298 (old_flags & IFF_PROMISC), 7299 from_kuid(&init_user_ns, audit_get_loginuid(current)), 7300 from_kuid(&init_user_ns, uid), 7301 from_kgid(&init_user_ns, gid), 7302 audit_get_sessionid(current)); 7303 } 7304 7305 dev_change_rx_flags(dev, IFF_PROMISC); 7306 } 7307 if (notify) 7308 __dev_notify_flags(dev, old_flags, IFF_PROMISC); 7309 return 0; 7310 } 7311 7312 /** 7313 * dev_set_promiscuity - update promiscuity count on a device 7314 * @dev: device 7315 * @inc: modifier 7316 * 7317 * Add or remove promiscuity from a device. While the count in the device 7318 * remains above zero the interface remains promiscuous. Once it hits zero 7319 * the device reverts back to normal filtering operation. A negative inc 7320 * value is used to drop promiscuity on the device. 7321 * Return 0 if successful or a negative errno code on error. 7322 */ 7323 int dev_set_promiscuity(struct net_device *dev, int inc) 7324 { 7325 unsigned int old_flags = dev->flags; 7326 int err; 7327 7328 err = __dev_set_promiscuity(dev, inc, true); 7329 if (err < 0) 7330 return err; 7331 if (dev->flags != old_flags) 7332 dev_set_rx_mode(dev); 7333 return err; 7334 } 7335 EXPORT_SYMBOL(dev_set_promiscuity); 7336 7337 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 7338 { 7339 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 7340 7341 ASSERT_RTNL(); 7342 7343 dev->flags |= IFF_ALLMULTI; 7344 dev->allmulti += inc; 7345 if (dev->allmulti == 0) { 7346 /* 7347 * Avoid overflow. 7348 * If inc causes overflow, untouch allmulti and return error. 7349 */ 7350 if (inc < 0) 7351 dev->flags &= ~IFF_ALLMULTI; 7352 else { 7353 dev->allmulti -= inc; 7354 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 7355 dev->name); 7356 return -EOVERFLOW; 7357 } 7358 } 7359 if (dev->flags ^ old_flags) { 7360 dev_change_rx_flags(dev, IFF_ALLMULTI); 7361 dev_set_rx_mode(dev); 7362 if (notify) 7363 __dev_notify_flags(dev, old_flags, 7364 dev->gflags ^ old_gflags); 7365 } 7366 return 0; 7367 } 7368 7369 /** 7370 * dev_set_allmulti - update allmulti count on a device 7371 * @dev: device 7372 * @inc: modifier 7373 * 7374 * Add or remove reception of all multicast frames to a device. While the 7375 * count in the device remains above zero the interface remains listening 7376 * to all interfaces. Once it hits zero the device reverts back to normal 7377 * filtering operation. A negative @inc value is used to drop the counter 7378 * when releasing a resource needing all multicasts. 7379 * Return 0 if successful or a negative errno code on error. 7380 */ 7381 7382 int dev_set_allmulti(struct net_device *dev, int inc) 7383 { 7384 return __dev_set_allmulti(dev, inc, true); 7385 } 7386 EXPORT_SYMBOL(dev_set_allmulti); 7387 7388 /* 7389 * Upload unicast and multicast address lists to device and 7390 * configure RX filtering. When the device doesn't support unicast 7391 * filtering it is put in promiscuous mode while unicast addresses 7392 * are present. 7393 */ 7394 void __dev_set_rx_mode(struct net_device *dev) 7395 { 7396 const struct net_device_ops *ops = dev->netdev_ops; 7397 7398 /* dev_open will call this function so the list will stay sane. */ 7399 if (!(dev->flags&IFF_UP)) 7400 return; 7401 7402 if (!netif_device_present(dev)) 7403 return; 7404 7405 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 7406 /* Unicast addresses changes may only happen under the rtnl, 7407 * therefore calling __dev_set_promiscuity here is safe. 7408 */ 7409 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 7410 __dev_set_promiscuity(dev, 1, false); 7411 dev->uc_promisc = true; 7412 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 7413 __dev_set_promiscuity(dev, -1, false); 7414 dev->uc_promisc = false; 7415 } 7416 } 7417 7418 if (ops->ndo_set_rx_mode) 7419 ops->ndo_set_rx_mode(dev); 7420 } 7421 7422 void dev_set_rx_mode(struct net_device *dev) 7423 { 7424 netif_addr_lock_bh(dev); 7425 __dev_set_rx_mode(dev); 7426 netif_addr_unlock_bh(dev); 7427 } 7428 7429 /** 7430 * dev_get_flags - get flags reported to userspace 7431 * @dev: device 7432 * 7433 * Get the combination of flag bits exported through APIs to userspace. 7434 */ 7435 unsigned int dev_get_flags(const struct net_device *dev) 7436 { 7437 unsigned int flags; 7438 7439 flags = (dev->flags & ~(IFF_PROMISC | 7440 IFF_ALLMULTI | 7441 IFF_RUNNING | 7442 IFF_LOWER_UP | 7443 IFF_DORMANT)) | 7444 (dev->gflags & (IFF_PROMISC | 7445 IFF_ALLMULTI)); 7446 7447 if (netif_running(dev)) { 7448 if (netif_oper_up(dev)) 7449 flags |= IFF_RUNNING; 7450 if (netif_carrier_ok(dev)) 7451 flags |= IFF_LOWER_UP; 7452 if (netif_dormant(dev)) 7453 flags |= IFF_DORMANT; 7454 } 7455 7456 return flags; 7457 } 7458 EXPORT_SYMBOL(dev_get_flags); 7459 7460 int __dev_change_flags(struct net_device *dev, unsigned int flags) 7461 { 7462 unsigned int old_flags = dev->flags; 7463 int ret; 7464 7465 ASSERT_RTNL(); 7466 7467 /* 7468 * Set the flags on our device. 7469 */ 7470 7471 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 7472 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 7473 IFF_AUTOMEDIA)) | 7474 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 7475 IFF_ALLMULTI)); 7476 7477 /* 7478 * Load in the correct multicast list now the flags have changed. 7479 */ 7480 7481 if ((old_flags ^ flags) & IFF_MULTICAST) 7482 dev_change_rx_flags(dev, IFF_MULTICAST); 7483 7484 dev_set_rx_mode(dev); 7485 7486 /* 7487 * Have we downed the interface. We handle IFF_UP ourselves 7488 * according to user attempts to set it, rather than blindly 7489 * setting it. 7490 */ 7491 7492 ret = 0; 7493 if ((old_flags ^ flags) & IFF_UP) { 7494 if (old_flags & IFF_UP) 7495 __dev_close(dev); 7496 else 7497 ret = __dev_open(dev); 7498 } 7499 7500 if ((flags ^ dev->gflags) & IFF_PROMISC) { 7501 int inc = (flags & IFF_PROMISC) ? 1 : -1; 7502 unsigned int old_flags = dev->flags; 7503 7504 dev->gflags ^= IFF_PROMISC; 7505 7506 if (__dev_set_promiscuity(dev, inc, false) >= 0) 7507 if (dev->flags != old_flags) 7508 dev_set_rx_mode(dev); 7509 } 7510 7511 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 7512 * is important. Some (broken) drivers set IFF_PROMISC, when 7513 * IFF_ALLMULTI is requested not asking us and not reporting. 7514 */ 7515 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 7516 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 7517 7518 dev->gflags ^= IFF_ALLMULTI; 7519 __dev_set_allmulti(dev, inc, false); 7520 } 7521 7522 return ret; 7523 } 7524 7525 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 7526 unsigned int gchanges) 7527 { 7528 unsigned int changes = dev->flags ^ old_flags; 7529 7530 if (gchanges) 7531 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC); 7532 7533 if (changes & IFF_UP) { 7534 if (dev->flags & IFF_UP) 7535 call_netdevice_notifiers(NETDEV_UP, dev); 7536 else 7537 call_netdevice_notifiers(NETDEV_DOWN, dev); 7538 } 7539 7540 if (dev->flags & IFF_UP && 7541 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 7542 struct netdev_notifier_change_info change_info = { 7543 .info = { 7544 .dev = dev, 7545 }, 7546 .flags_changed = changes, 7547 }; 7548 7549 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info); 7550 } 7551 } 7552 7553 /** 7554 * dev_change_flags - change device settings 7555 * @dev: device 7556 * @flags: device state flags 7557 * 7558 * Change settings on device based state flags. The flags are 7559 * in the userspace exported format. 7560 */ 7561 int dev_change_flags(struct net_device *dev, unsigned int flags) 7562 { 7563 int ret; 7564 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 7565 7566 ret = __dev_change_flags(dev, flags); 7567 if (ret < 0) 7568 return ret; 7569 7570 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 7571 __dev_notify_flags(dev, old_flags, changes); 7572 return ret; 7573 } 7574 EXPORT_SYMBOL(dev_change_flags); 7575 7576 int __dev_set_mtu(struct net_device *dev, int new_mtu) 7577 { 7578 const struct net_device_ops *ops = dev->netdev_ops; 7579 7580 if (ops->ndo_change_mtu) 7581 return ops->ndo_change_mtu(dev, new_mtu); 7582 7583 dev->mtu = new_mtu; 7584 return 0; 7585 } 7586 EXPORT_SYMBOL(__dev_set_mtu); 7587 7588 /** 7589 * dev_set_mtu_ext - Change maximum transfer unit 7590 * @dev: device 7591 * @new_mtu: new transfer unit 7592 * @extack: netlink extended ack 7593 * 7594 * Change the maximum transfer size of the network device. 7595 */ 7596 int dev_set_mtu_ext(struct net_device *dev, int new_mtu, 7597 struct netlink_ext_ack *extack) 7598 { 7599 int err, orig_mtu; 7600 7601 if (new_mtu == dev->mtu) 7602 return 0; 7603 7604 /* MTU must be positive, and in range */ 7605 if (new_mtu < 0 || new_mtu < dev->min_mtu) { 7606 NL_SET_ERR_MSG(extack, "mtu less than device minimum"); 7607 return -EINVAL; 7608 } 7609 7610 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) { 7611 NL_SET_ERR_MSG(extack, "mtu greater than device maximum"); 7612 return -EINVAL; 7613 } 7614 7615 if (!netif_device_present(dev)) 7616 return -ENODEV; 7617 7618 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 7619 err = notifier_to_errno(err); 7620 if (err) 7621 return err; 7622 7623 orig_mtu = dev->mtu; 7624 err = __dev_set_mtu(dev, new_mtu); 7625 7626 if (!err) { 7627 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 7628 orig_mtu); 7629 err = notifier_to_errno(err); 7630 if (err) { 7631 /* setting mtu back and notifying everyone again, 7632 * so that they have a chance to revert changes. 7633 */ 7634 __dev_set_mtu(dev, orig_mtu); 7635 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 7636 new_mtu); 7637 } 7638 } 7639 return err; 7640 } 7641 7642 int dev_set_mtu(struct net_device *dev, int new_mtu) 7643 { 7644 struct netlink_ext_ack extack; 7645 int err; 7646 7647 memset(&extack, 0, sizeof(extack)); 7648 err = dev_set_mtu_ext(dev, new_mtu, &extack); 7649 if (err && extack._msg) 7650 net_err_ratelimited("%s: %s\n", dev->name, extack._msg); 7651 return err; 7652 } 7653 EXPORT_SYMBOL(dev_set_mtu); 7654 7655 /** 7656 * dev_change_tx_queue_len - Change TX queue length of a netdevice 7657 * @dev: device 7658 * @new_len: new tx queue length 7659 */ 7660 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len) 7661 { 7662 unsigned int orig_len = dev->tx_queue_len; 7663 int res; 7664 7665 if (new_len != (unsigned int)new_len) 7666 return -ERANGE; 7667 7668 if (new_len != orig_len) { 7669 dev->tx_queue_len = new_len; 7670 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev); 7671 res = notifier_to_errno(res); 7672 if (res) 7673 goto err_rollback; 7674 res = dev_qdisc_change_tx_queue_len(dev); 7675 if (res) 7676 goto err_rollback; 7677 } 7678 7679 return 0; 7680 7681 err_rollback: 7682 netdev_err(dev, "refused to change device tx_queue_len\n"); 7683 dev->tx_queue_len = orig_len; 7684 return res; 7685 } 7686 7687 /** 7688 * dev_set_group - Change group this device belongs to 7689 * @dev: device 7690 * @new_group: group this device should belong to 7691 */ 7692 void dev_set_group(struct net_device *dev, int new_group) 7693 { 7694 dev->group = new_group; 7695 } 7696 EXPORT_SYMBOL(dev_set_group); 7697 7698 /** 7699 * dev_set_mac_address - Change Media Access Control Address 7700 * @dev: device 7701 * @sa: new address 7702 * 7703 * Change the hardware (MAC) address of the device 7704 */ 7705 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 7706 { 7707 const struct net_device_ops *ops = dev->netdev_ops; 7708 int err; 7709 7710 if (!ops->ndo_set_mac_address) 7711 return -EOPNOTSUPP; 7712 if (sa->sa_family != dev->type) 7713 return -EINVAL; 7714 if (!netif_device_present(dev)) 7715 return -ENODEV; 7716 err = ops->ndo_set_mac_address(dev, sa); 7717 if (err) 7718 return err; 7719 dev->addr_assign_type = NET_ADDR_SET; 7720 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 7721 add_device_randomness(dev->dev_addr, dev->addr_len); 7722 return 0; 7723 } 7724 EXPORT_SYMBOL(dev_set_mac_address); 7725 7726 /** 7727 * dev_change_carrier - Change device carrier 7728 * @dev: device 7729 * @new_carrier: new value 7730 * 7731 * Change device carrier 7732 */ 7733 int dev_change_carrier(struct net_device *dev, bool new_carrier) 7734 { 7735 const struct net_device_ops *ops = dev->netdev_ops; 7736 7737 if (!ops->ndo_change_carrier) 7738 return -EOPNOTSUPP; 7739 if (!netif_device_present(dev)) 7740 return -ENODEV; 7741 return ops->ndo_change_carrier(dev, new_carrier); 7742 } 7743 EXPORT_SYMBOL(dev_change_carrier); 7744 7745 /** 7746 * dev_get_phys_port_id - Get device physical port ID 7747 * @dev: device 7748 * @ppid: port ID 7749 * 7750 * Get device physical port ID 7751 */ 7752 int dev_get_phys_port_id(struct net_device *dev, 7753 struct netdev_phys_item_id *ppid) 7754 { 7755 const struct net_device_ops *ops = dev->netdev_ops; 7756 7757 if (!ops->ndo_get_phys_port_id) 7758 return -EOPNOTSUPP; 7759 return ops->ndo_get_phys_port_id(dev, ppid); 7760 } 7761 EXPORT_SYMBOL(dev_get_phys_port_id); 7762 7763 /** 7764 * dev_get_phys_port_name - Get device physical port name 7765 * @dev: device 7766 * @name: port name 7767 * @len: limit of bytes to copy to name 7768 * 7769 * Get device physical port name 7770 */ 7771 int dev_get_phys_port_name(struct net_device *dev, 7772 char *name, size_t len) 7773 { 7774 const struct net_device_ops *ops = dev->netdev_ops; 7775 7776 if (!ops->ndo_get_phys_port_name) 7777 return -EOPNOTSUPP; 7778 return ops->ndo_get_phys_port_name(dev, name, len); 7779 } 7780 EXPORT_SYMBOL(dev_get_phys_port_name); 7781 7782 /** 7783 * dev_change_proto_down - update protocol port state information 7784 * @dev: device 7785 * @proto_down: new value 7786 * 7787 * This info can be used by switch drivers to set the phys state of the 7788 * port. 7789 */ 7790 int dev_change_proto_down(struct net_device *dev, bool proto_down) 7791 { 7792 const struct net_device_ops *ops = dev->netdev_ops; 7793 7794 if (!ops->ndo_change_proto_down) 7795 return -EOPNOTSUPP; 7796 if (!netif_device_present(dev)) 7797 return -ENODEV; 7798 return ops->ndo_change_proto_down(dev, proto_down); 7799 } 7800 EXPORT_SYMBOL(dev_change_proto_down); 7801 7802 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op, 7803 enum bpf_netdev_command cmd) 7804 { 7805 struct netdev_bpf xdp; 7806 7807 if (!bpf_op) 7808 return 0; 7809 7810 memset(&xdp, 0, sizeof(xdp)); 7811 xdp.command = cmd; 7812 7813 /* Query must always succeed. */ 7814 WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG); 7815 7816 return xdp.prog_id; 7817 } 7818 7819 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op, 7820 struct netlink_ext_ack *extack, u32 flags, 7821 struct bpf_prog *prog) 7822 { 7823 struct netdev_bpf xdp; 7824 7825 memset(&xdp, 0, sizeof(xdp)); 7826 if (flags & XDP_FLAGS_HW_MODE) 7827 xdp.command = XDP_SETUP_PROG_HW; 7828 else 7829 xdp.command = XDP_SETUP_PROG; 7830 xdp.extack = extack; 7831 xdp.flags = flags; 7832 xdp.prog = prog; 7833 7834 return bpf_op(dev, &xdp); 7835 } 7836 7837 static void dev_xdp_uninstall(struct net_device *dev) 7838 { 7839 struct netdev_bpf xdp; 7840 bpf_op_t ndo_bpf; 7841 7842 /* Remove generic XDP */ 7843 WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL)); 7844 7845 /* Remove from the driver */ 7846 ndo_bpf = dev->netdev_ops->ndo_bpf; 7847 if (!ndo_bpf) 7848 return; 7849 7850 memset(&xdp, 0, sizeof(xdp)); 7851 xdp.command = XDP_QUERY_PROG; 7852 WARN_ON(ndo_bpf(dev, &xdp)); 7853 if (xdp.prog_id) 7854 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags, 7855 NULL)); 7856 7857 /* Remove HW offload */ 7858 memset(&xdp, 0, sizeof(xdp)); 7859 xdp.command = XDP_QUERY_PROG_HW; 7860 if (!ndo_bpf(dev, &xdp) && xdp.prog_id) 7861 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags, 7862 NULL)); 7863 } 7864 7865 /** 7866 * dev_change_xdp_fd - set or clear a bpf program for a device rx path 7867 * @dev: device 7868 * @extack: netlink extended ack 7869 * @fd: new program fd or negative value to clear 7870 * @flags: xdp-related flags 7871 * 7872 * Set or clear a bpf program for a device 7873 */ 7874 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 7875 int fd, u32 flags) 7876 { 7877 const struct net_device_ops *ops = dev->netdev_ops; 7878 enum bpf_netdev_command query; 7879 struct bpf_prog *prog = NULL; 7880 bpf_op_t bpf_op, bpf_chk; 7881 int err; 7882 7883 ASSERT_RTNL(); 7884 7885 query = flags & XDP_FLAGS_HW_MODE ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG; 7886 7887 bpf_op = bpf_chk = ops->ndo_bpf; 7888 if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) 7889 return -EOPNOTSUPP; 7890 if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE)) 7891 bpf_op = generic_xdp_install; 7892 if (bpf_op == bpf_chk) 7893 bpf_chk = generic_xdp_install; 7894 7895 if (fd >= 0) { 7896 if (__dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG) || 7897 __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG_HW)) 7898 return -EEXIST; 7899 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && 7900 __dev_xdp_query(dev, bpf_op, query)) 7901 return -EBUSY; 7902 7903 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP, 7904 bpf_op == ops->ndo_bpf); 7905 if (IS_ERR(prog)) 7906 return PTR_ERR(prog); 7907 7908 if (!(flags & XDP_FLAGS_HW_MODE) && 7909 bpf_prog_is_dev_bound(prog->aux)) { 7910 NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported"); 7911 bpf_prog_put(prog); 7912 return -EINVAL; 7913 } 7914 } 7915 7916 err = dev_xdp_install(dev, bpf_op, extack, flags, prog); 7917 if (err < 0 && prog) 7918 bpf_prog_put(prog); 7919 7920 return err; 7921 } 7922 7923 /** 7924 * dev_new_index - allocate an ifindex 7925 * @net: the applicable net namespace 7926 * 7927 * Returns a suitable unique value for a new device interface 7928 * number. The caller must hold the rtnl semaphore or the 7929 * dev_base_lock to be sure it remains unique. 7930 */ 7931 static int dev_new_index(struct net *net) 7932 { 7933 int ifindex = net->ifindex; 7934 7935 for (;;) { 7936 if (++ifindex <= 0) 7937 ifindex = 1; 7938 if (!__dev_get_by_index(net, ifindex)) 7939 return net->ifindex = ifindex; 7940 } 7941 } 7942 7943 /* Delayed registration/unregisteration */ 7944 static LIST_HEAD(net_todo_list); 7945 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 7946 7947 static void net_set_todo(struct net_device *dev) 7948 { 7949 list_add_tail(&dev->todo_list, &net_todo_list); 7950 dev_net(dev)->dev_unreg_count++; 7951 } 7952 7953 static void rollback_registered_many(struct list_head *head) 7954 { 7955 struct net_device *dev, *tmp; 7956 LIST_HEAD(close_head); 7957 7958 BUG_ON(dev_boot_phase); 7959 ASSERT_RTNL(); 7960 7961 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 7962 /* Some devices call without registering 7963 * for initialization unwind. Remove those 7964 * devices and proceed with the remaining. 7965 */ 7966 if (dev->reg_state == NETREG_UNINITIALIZED) { 7967 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 7968 dev->name, dev); 7969 7970 WARN_ON(1); 7971 list_del(&dev->unreg_list); 7972 continue; 7973 } 7974 dev->dismantle = true; 7975 BUG_ON(dev->reg_state != NETREG_REGISTERED); 7976 } 7977 7978 /* If device is running, close it first. */ 7979 list_for_each_entry(dev, head, unreg_list) 7980 list_add_tail(&dev->close_list, &close_head); 7981 dev_close_many(&close_head, true); 7982 7983 list_for_each_entry(dev, head, unreg_list) { 7984 /* And unlink it from device chain. */ 7985 unlist_netdevice(dev); 7986 7987 dev->reg_state = NETREG_UNREGISTERING; 7988 } 7989 flush_all_backlogs(); 7990 7991 synchronize_net(); 7992 7993 list_for_each_entry(dev, head, unreg_list) { 7994 struct sk_buff *skb = NULL; 7995 7996 /* Shutdown queueing discipline. */ 7997 dev_shutdown(dev); 7998 7999 dev_xdp_uninstall(dev); 8000 8001 /* Notify protocols, that we are about to destroy 8002 * this device. They should clean all the things. 8003 */ 8004 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 8005 8006 if (!dev->rtnl_link_ops || 8007 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 8008 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0, 8009 GFP_KERNEL, NULL, 0); 8010 8011 /* 8012 * Flush the unicast and multicast chains 8013 */ 8014 dev_uc_flush(dev); 8015 dev_mc_flush(dev); 8016 8017 if (dev->netdev_ops->ndo_uninit) 8018 dev->netdev_ops->ndo_uninit(dev); 8019 8020 if (skb) 8021 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL); 8022 8023 /* Notifier chain MUST detach us all upper devices. */ 8024 WARN_ON(netdev_has_any_upper_dev(dev)); 8025 WARN_ON(netdev_has_any_lower_dev(dev)); 8026 8027 /* Remove entries from kobject tree */ 8028 netdev_unregister_kobject(dev); 8029 #ifdef CONFIG_XPS 8030 /* Remove XPS queueing entries */ 8031 netif_reset_xps_queues_gt(dev, 0); 8032 #endif 8033 } 8034 8035 synchronize_net(); 8036 8037 list_for_each_entry(dev, head, unreg_list) 8038 dev_put(dev); 8039 } 8040 8041 static void rollback_registered(struct net_device *dev) 8042 { 8043 LIST_HEAD(single); 8044 8045 list_add(&dev->unreg_list, &single); 8046 rollback_registered_many(&single); 8047 list_del(&single); 8048 } 8049 8050 static netdev_features_t netdev_sync_upper_features(struct net_device *lower, 8051 struct net_device *upper, netdev_features_t features) 8052 { 8053 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 8054 netdev_features_t feature; 8055 int feature_bit; 8056 8057 for_each_netdev_feature(&upper_disables, feature_bit) { 8058 feature = __NETIF_F_BIT(feature_bit); 8059 if (!(upper->wanted_features & feature) 8060 && (features & feature)) { 8061 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n", 8062 &feature, upper->name); 8063 features &= ~feature; 8064 } 8065 } 8066 8067 return features; 8068 } 8069 8070 static void netdev_sync_lower_features(struct net_device *upper, 8071 struct net_device *lower, netdev_features_t features) 8072 { 8073 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 8074 netdev_features_t feature; 8075 int feature_bit; 8076 8077 for_each_netdev_feature(&upper_disables, feature_bit) { 8078 feature = __NETIF_F_BIT(feature_bit); 8079 if (!(features & feature) && (lower->features & feature)) { 8080 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n", 8081 &feature, lower->name); 8082 lower->wanted_features &= ~feature; 8083 netdev_update_features(lower); 8084 8085 if (unlikely(lower->features & feature)) 8086 netdev_WARN(upper, "failed to disable %pNF on %s!\n", 8087 &feature, lower->name); 8088 } 8089 } 8090 } 8091 8092 static netdev_features_t netdev_fix_features(struct net_device *dev, 8093 netdev_features_t features) 8094 { 8095 /* Fix illegal checksum combinations */ 8096 if ((features & NETIF_F_HW_CSUM) && 8097 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 8098 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 8099 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 8100 } 8101 8102 /* TSO requires that SG is present as well. */ 8103 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 8104 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 8105 features &= ~NETIF_F_ALL_TSO; 8106 } 8107 8108 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 8109 !(features & NETIF_F_IP_CSUM)) { 8110 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 8111 features &= ~NETIF_F_TSO; 8112 features &= ~NETIF_F_TSO_ECN; 8113 } 8114 8115 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 8116 !(features & NETIF_F_IPV6_CSUM)) { 8117 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 8118 features &= ~NETIF_F_TSO6; 8119 } 8120 8121 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */ 8122 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO)) 8123 features &= ~NETIF_F_TSO_MANGLEID; 8124 8125 /* TSO ECN requires that TSO is present as well. */ 8126 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 8127 features &= ~NETIF_F_TSO_ECN; 8128 8129 /* Software GSO depends on SG. */ 8130 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 8131 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 8132 features &= ~NETIF_F_GSO; 8133 } 8134 8135 /* GSO partial features require GSO partial be set */ 8136 if ((features & dev->gso_partial_features) && 8137 !(features & NETIF_F_GSO_PARTIAL)) { 8138 netdev_dbg(dev, 8139 "Dropping partially supported GSO features since no GSO partial.\n"); 8140 features &= ~dev->gso_partial_features; 8141 } 8142 8143 if (!(features & NETIF_F_RXCSUM)) { 8144 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet 8145 * successfully merged by hardware must also have the 8146 * checksum verified by hardware. If the user does not 8147 * want to enable RXCSUM, logically, we should disable GRO_HW. 8148 */ 8149 if (features & NETIF_F_GRO_HW) { 8150 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n"); 8151 features &= ~NETIF_F_GRO_HW; 8152 } 8153 } 8154 8155 /* LRO/HW-GRO features cannot be combined with RX-FCS */ 8156 if (features & NETIF_F_RXFCS) { 8157 if (features & NETIF_F_LRO) { 8158 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n"); 8159 features &= ~NETIF_F_LRO; 8160 } 8161 8162 if (features & NETIF_F_GRO_HW) { 8163 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n"); 8164 features &= ~NETIF_F_GRO_HW; 8165 } 8166 } 8167 8168 return features; 8169 } 8170 8171 int __netdev_update_features(struct net_device *dev) 8172 { 8173 struct net_device *upper, *lower; 8174 netdev_features_t features; 8175 struct list_head *iter; 8176 int err = -1; 8177 8178 ASSERT_RTNL(); 8179 8180 features = netdev_get_wanted_features(dev); 8181 8182 if (dev->netdev_ops->ndo_fix_features) 8183 features = dev->netdev_ops->ndo_fix_features(dev, features); 8184 8185 /* driver might be less strict about feature dependencies */ 8186 features = netdev_fix_features(dev, features); 8187 8188 /* some features can't be enabled if they're off an an upper device */ 8189 netdev_for_each_upper_dev_rcu(dev, upper, iter) 8190 features = netdev_sync_upper_features(dev, upper, features); 8191 8192 if (dev->features == features) 8193 goto sync_lower; 8194 8195 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 8196 &dev->features, &features); 8197 8198 if (dev->netdev_ops->ndo_set_features) 8199 err = dev->netdev_ops->ndo_set_features(dev, features); 8200 else 8201 err = 0; 8202 8203 if (unlikely(err < 0)) { 8204 netdev_err(dev, 8205 "set_features() failed (%d); wanted %pNF, left %pNF\n", 8206 err, &features, &dev->features); 8207 /* return non-0 since some features might have changed and 8208 * it's better to fire a spurious notification than miss it 8209 */ 8210 return -1; 8211 } 8212 8213 sync_lower: 8214 /* some features must be disabled on lower devices when disabled 8215 * on an upper device (think: bonding master or bridge) 8216 */ 8217 netdev_for_each_lower_dev(dev, lower, iter) 8218 netdev_sync_lower_features(dev, lower, features); 8219 8220 if (!err) { 8221 netdev_features_t diff = features ^ dev->features; 8222 8223 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) { 8224 /* udp_tunnel_{get,drop}_rx_info both need 8225 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the 8226 * device, or they won't do anything. 8227 * Thus we need to update dev->features 8228 * *before* calling udp_tunnel_get_rx_info, 8229 * but *after* calling udp_tunnel_drop_rx_info. 8230 */ 8231 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) { 8232 dev->features = features; 8233 udp_tunnel_get_rx_info(dev); 8234 } else { 8235 udp_tunnel_drop_rx_info(dev); 8236 } 8237 } 8238 8239 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) { 8240 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) { 8241 dev->features = features; 8242 err |= vlan_get_rx_ctag_filter_info(dev); 8243 } else { 8244 vlan_drop_rx_ctag_filter_info(dev); 8245 } 8246 } 8247 8248 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) { 8249 if (features & NETIF_F_HW_VLAN_STAG_FILTER) { 8250 dev->features = features; 8251 err |= vlan_get_rx_stag_filter_info(dev); 8252 } else { 8253 vlan_drop_rx_stag_filter_info(dev); 8254 } 8255 } 8256 8257 dev->features = features; 8258 } 8259 8260 return err < 0 ? 0 : 1; 8261 } 8262 8263 /** 8264 * netdev_update_features - recalculate device features 8265 * @dev: the device to check 8266 * 8267 * Recalculate dev->features set and send notifications if it 8268 * has changed. Should be called after driver or hardware dependent 8269 * conditions might have changed that influence the features. 8270 */ 8271 void netdev_update_features(struct net_device *dev) 8272 { 8273 if (__netdev_update_features(dev)) 8274 netdev_features_change(dev); 8275 } 8276 EXPORT_SYMBOL(netdev_update_features); 8277 8278 /** 8279 * netdev_change_features - recalculate device features 8280 * @dev: the device to check 8281 * 8282 * Recalculate dev->features set and send notifications even 8283 * if they have not changed. Should be called instead of 8284 * netdev_update_features() if also dev->vlan_features might 8285 * have changed to allow the changes to be propagated to stacked 8286 * VLAN devices. 8287 */ 8288 void netdev_change_features(struct net_device *dev) 8289 { 8290 __netdev_update_features(dev); 8291 netdev_features_change(dev); 8292 } 8293 EXPORT_SYMBOL(netdev_change_features); 8294 8295 /** 8296 * netif_stacked_transfer_operstate - transfer operstate 8297 * @rootdev: the root or lower level device to transfer state from 8298 * @dev: the device to transfer operstate to 8299 * 8300 * Transfer operational state from root to device. This is normally 8301 * called when a stacking relationship exists between the root 8302 * device and the device(a leaf device). 8303 */ 8304 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 8305 struct net_device *dev) 8306 { 8307 if (rootdev->operstate == IF_OPER_DORMANT) 8308 netif_dormant_on(dev); 8309 else 8310 netif_dormant_off(dev); 8311 8312 if (netif_carrier_ok(rootdev)) 8313 netif_carrier_on(dev); 8314 else 8315 netif_carrier_off(dev); 8316 } 8317 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 8318 8319 static int netif_alloc_rx_queues(struct net_device *dev) 8320 { 8321 unsigned int i, count = dev->num_rx_queues; 8322 struct netdev_rx_queue *rx; 8323 size_t sz = count * sizeof(*rx); 8324 int err = 0; 8325 8326 BUG_ON(count < 1); 8327 8328 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 8329 if (!rx) 8330 return -ENOMEM; 8331 8332 dev->_rx = rx; 8333 8334 for (i = 0; i < count; i++) { 8335 rx[i].dev = dev; 8336 8337 /* XDP RX-queue setup */ 8338 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i); 8339 if (err < 0) 8340 goto err_rxq_info; 8341 } 8342 return 0; 8343 8344 err_rxq_info: 8345 /* Rollback successful reg's and free other resources */ 8346 while (i--) 8347 xdp_rxq_info_unreg(&rx[i].xdp_rxq); 8348 kvfree(dev->_rx); 8349 dev->_rx = NULL; 8350 return err; 8351 } 8352 8353 static void netif_free_rx_queues(struct net_device *dev) 8354 { 8355 unsigned int i, count = dev->num_rx_queues; 8356 8357 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */ 8358 if (!dev->_rx) 8359 return; 8360 8361 for (i = 0; i < count; i++) 8362 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq); 8363 8364 kvfree(dev->_rx); 8365 } 8366 8367 static void netdev_init_one_queue(struct net_device *dev, 8368 struct netdev_queue *queue, void *_unused) 8369 { 8370 /* Initialize queue lock */ 8371 spin_lock_init(&queue->_xmit_lock); 8372 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 8373 queue->xmit_lock_owner = -1; 8374 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 8375 queue->dev = dev; 8376 #ifdef CONFIG_BQL 8377 dql_init(&queue->dql, HZ); 8378 #endif 8379 } 8380 8381 static void netif_free_tx_queues(struct net_device *dev) 8382 { 8383 kvfree(dev->_tx); 8384 } 8385 8386 static int netif_alloc_netdev_queues(struct net_device *dev) 8387 { 8388 unsigned int count = dev->num_tx_queues; 8389 struct netdev_queue *tx; 8390 size_t sz = count * sizeof(*tx); 8391 8392 if (count < 1 || count > 0xffff) 8393 return -EINVAL; 8394 8395 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 8396 if (!tx) 8397 return -ENOMEM; 8398 8399 dev->_tx = tx; 8400 8401 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 8402 spin_lock_init(&dev->tx_global_lock); 8403 8404 return 0; 8405 } 8406 8407 void netif_tx_stop_all_queues(struct net_device *dev) 8408 { 8409 unsigned int i; 8410 8411 for (i = 0; i < dev->num_tx_queues; i++) { 8412 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 8413 8414 netif_tx_stop_queue(txq); 8415 } 8416 } 8417 EXPORT_SYMBOL(netif_tx_stop_all_queues); 8418 8419 /** 8420 * register_netdevice - register a network device 8421 * @dev: device to register 8422 * 8423 * Take a completed network device structure and add it to the kernel 8424 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 8425 * chain. 0 is returned on success. A negative errno code is returned 8426 * on a failure to set up the device, or if the name is a duplicate. 8427 * 8428 * Callers must hold the rtnl semaphore. You may want 8429 * register_netdev() instead of this. 8430 * 8431 * BUGS: 8432 * The locking appears insufficient to guarantee two parallel registers 8433 * will not get the same name. 8434 */ 8435 8436 int register_netdevice(struct net_device *dev) 8437 { 8438 int ret; 8439 struct net *net = dev_net(dev); 8440 8441 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE < 8442 NETDEV_FEATURE_COUNT); 8443 BUG_ON(dev_boot_phase); 8444 ASSERT_RTNL(); 8445 8446 might_sleep(); 8447 8448 /* When net_device's are persistent, this will be fatal. */ 8449 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 8450 BUG_ON(!net); 8451 8452 spin_lock_init(&dev->addr_list_lock); 8453 netdev_set_addr_lockdep_class(dev); 8454 8455 ret = dev_get_valid_name(net, dev, dev->name); 8456 if (ret < 0) 8457 goto out; 8458 8459 /* Init, if this function is available */ 8460 if (dev->netdev_ops->ndo_init) { 8461 ret = dev->netdev_ops->ndo_init(dev); 8462 if (ret) { 8463 if (ret > 0) 8464 ret = -EIO; 8465 goto out; 8466 } 8467 } 8468 8469 if (((dev->hw_features | dev->features) & 8470 NETIF_F_HW_VLAN_CTAG_FILTER) && 8471 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 8472 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 8473 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 8474 ret = -EINVAL; 8475 goto err_uninit; 8476 } 8477 8478 ret = -EBUSY; 8479 if (!dev->ifindex) 8480 dev->ifindex = dev_new_index(net); 8481 else if (__dev_get_by_index(net, dev->ifindex)) 8482 goto err_uninit; 8483 8484 /* Transfer changeable features to wanted_features and enable 8485 * software offloads (GSO and GRO). 8486 */ 8487 dev->hw_features |= NETIF_F_SOFT_FEATURES; 8488 dev->features |= NETIF_F_SOFT_FEATURES; 8489 8490 if (dev->netdev_ops->ndo_udp_tunnel_add) { 8491 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT; 8492 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT; 8493 } 8494 8495 dev->wanted_features = dev->features & dev->hw_features; 8496 8497 if (!(dev->flags & IFF_LOOPBACK)) 8498 dev->hw_features |= NETIF_F_NOCACHE_COPY; 8499 8500 /* If IPv4 TCP segmentation offload is supported we should also 8501 * allow the device to enable segmenting the frame with the option 8502 * of ignoring a static IP ID value. This doesn't enable the 8503 * feature itself but allows the user to enable it later. 8504 */ 8505 if (dev->hw_features & NETIF_F_TSO) 8506 dev->hw_features |= NETIF_F_TSO_MANGLEID; 8507 if (dev->vlan_features & NETIF_F_TSO) 8508 dev->vlan_features |= NETIF_F_TSO_MANGLEID; 8509 if (dev->mpls_features & NETIF_F_TSO) 8510 dev->mpls_features |= NETIF_F_TSO_MANGLEID; 8511 if (dev->hw_enc_features & NETIF_F_TSO) 8512 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 8513 8514 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 8515 */ 8516 dev->vlan_features |= NETIF_F_HIGHDMA; 8517 8518 /* Make NETIF_F_SG inheritable to tunnel devices. 8519 */ 8520 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL; 8521 8522 /* Make NETIF_F_SG inheritable to MPLS. 8523 */ 8524 dev->mpls_features |= NETIF_F_SG; 8525 8526 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 8527 ret = notifier_to_errno(ret); 8528 if (ret) 8529 goto err_uninit; 8530 8531 ret = netdev_register_kobject(dev); 8532 if (ret) 8533 goto err_uninit; 8534 dev->reg_state = NETREG_REGISTERED; 8535 8536 __netdev_update_features(dev); 8537 8538 /* 8539 * Default initial state at registry is that the 8540 * device is present. 8541 */ 8542 8543 set_bit(__LINK_STATE_PRESENT, &dev->state); 8544 8545 linkwatch_init_dev(dev); 8546 8547 dev_init_scheduler(dev); 8548 dev_hold(dev); 8549 list_netdevice(dev); 8550 add_device_randomness(dev->dev_addr, dev->addr_len); 8551 8552 /* If the device has permanent device address, driver should 8553 * set dev_addr and also addr_assign_type should be set to 8554 * NET_ADDR_PERM (default value). 8555 */ 8556 if (dev->addr_assign_type == NET_ADDR_PERM) 8557 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 8558 8559 /* Notify protocols, that a new device appeared. */ 8560 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 8561 ret = notifier_to_errno(ret); 8562 if (ret) { 8563 rollback_registered(dev); 8564 dev->reg_state = NETREG_UNREGISTERED; 8565 } 8566 /* 8567 * Prevent userspace races by waiting until the network 8568 * device is fully setup before sending notifications. 8569 */ 8570 if (!dev->rtnl_link_ops || 8571 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 8572 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 8573 8574 out: 8575 return ret; 8576 8577 err_uninit: 8578 if (dev->netdev_ops->ndo_uninit) 8579 dev->netdev_ops->ndo_uninit(dev); 8580 if (dev->priv_destructor) 8581 dev->priv_destructor(dev); 8582 goto out; 8583 } 8584 EXPORT_SYMBOL(register_netdevice); 8585 8586 /** 8587 * init_dummy_netdev - init a dummy network device for NAPI 8588 * @dev: device to init 8589 * 8590 * This takes a network device structure and initialize the minimum 8591 * amount of fields so it can be used to schedule NAPI polls without 8592 * registering a full blown interface. This is to be used by drivers 8593 * that need to tie several hardware interfaces to a single NAPI 8594 * poll scheduler due to HW limitations. 8595 */ 8596 int init_dummy_netdev(struct net_device *dev) 8597 { 8598 /* Clear everything. Note we don't initialize spinlocks 8599 * are they aren't supposed to be taken by any of the 8600 * NAPI code and this dummy netdev is supposed to be 8601 * only ever used for NAPI polls 8602 */ 8603 memset(dev, 0, sizeof(struct net_device)); 8604 8605 /* make sure we BUG if trying to hit standard 8606 * register/unregister code path 8607 */ 8608 dev->reg_state = NETREG_DUMMY; 8609 8610 /* NAPI wants this */ 8611 INIT_LIST_HEAD(&dev->napi_list); 8612 8613 /* a dummy interface is started by default */ 8614 set_bit(__LINK_STATE_PRESENT, &dev->state); 8615 set_bit(__LINK_STATE_START, &dev->state); 8616 8617 /* Note : We dont allocate pcpu_refcnt for dummy devices, 8618 * because users of this 'device' dont need to change 8619 * its refcount. 8620 */ 8621 8622 return 0; 8623 } 8624 EXPORT_SYMBOL_GPL(init_dummy_netdev); 8625 8626 8627 /** 8628 * register_netdev - register a network device 8629 * @dev: device to register 8630 * 8631 * Take a completed network device structure and add it to the kernel 8632 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 8633 * chain. 0 is returned on success. A negative errno code is returned 8634 * on a failure to set up the device, or if the name is a duplicate. 8635 * 8636 * This is a wrapper around register_netdevice that takes the rtnl semaphore 8637 * and expands the device name if you passed a format string to 8638 * alloc_netdev. 8639 */ 8640 int register_netdev(struct net_device *dev) 8641 { 8642 int err; 8643 8644 if (rtnl_lock_killable()) 8645 return -EINTR; 8646 err = register_netdevice(dev); 8647 rtnl_unlock(); 8648 return err; 8649 } 8650 EXPORT_SYMBOL(register_netdev); 8651 8652 int netdev_refcnt_read(const struct net_device *dev) 8653 { 8654 int i, refcnt = 0; 8655 8656 for_each_possible_cpu(i) 8657 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 8658 return refcnt; 8659 } 8660 EXPORT_SYMBOL(netdev_refcnt_read); 8661 8662 /** 8663 * netdev_wait_allrefs - wait until all references are gone. 8664 * @dev: target net_device 8665 * 8666 * This is called when unregistering network devices. 8667 * 8668 * Any protocol or device that holds a reference should register 8669 * for netdevice notification, and cleanup and put back the 8670 * reference if they receive an UNREGISTER event. 8671 * We can get stuck here if buggy protocols don't correctly 8672 * call dev_put. 8673 */ 8674 static void netdev_wait_allrefs(struct net_device *dev) 8675 { 8676 unsigned long rebroadcast_time, warning_time; 8677 int refcnt; 8678 8679 linkwatch_forget_dev(dev); 8680 8681 rebroadcast_time = warning_time = jiffies; 8682 refcnt = netdev_refcnt_read(dev); 8683 8684 while (refcnt != 0) { 8685 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 8686 rtnl_lock(); 8687 8688 /* Rebroadcast unregister notification */ 8689 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 8690 8691 __rtnl_unlock(); 8692 rcu_barrier(); 8693 rtnl_lock(); 8694 8695 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 8696 &dev->state)) { 8697 /* We must not have linkwatch events 8698 * pending on unregister. If this 8699 * happens, we simply run the queue 8700 * unscheduled, resulting in a noop 8701 * for this device. 8702 */ 8703 linkwatch_run_queue(); 8704 } 8705 8706 __rtnl_unlock(); 8707 8708 rebroadcast_time = jiffies; 8709 } 8710 8711 msleep(250); 8712 8713 refcnt = netdev_refcnt_read(dev); 8714 8715 if (time_after(jiffies, warning_time + 10 * HZ)) { 8716 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 8717 dev->name, refcnt); 8718 warning_time = jiffies; 8719 } 8720 } 8721 } 8722 8723 /* The sequence is: 8724 * 8725 * rtnl_lock(); 8726 * ... 8727 * register_netdevice(x1); 8728 * register_netdevice(x2); 8729 * ... 8730 * unregister_netdevice(y1); 8731 * unregister_netdevice(y2); 8732 * ... 8733 * rtnl_unlock(); 8734 * free_netdev(y1); 8735 * free_netdev(y2); 8736 * 8737 * We are invoked by rtnl_unlock(). 8738 * This allows us to deal with problems: 8739 * 1) We can delete sysfs objects which invoke hotplug 8740 * without deadlocking with linkwatch via keventd. 8741 * 2) Since we run with the RTNL semaphore not held, we can sleep 8742 * safely in order to wait for the netdev refcnt to drop to zero. 8743 * 8744 * We must not return until all unregister events added during 8745 * the interval the lock was held have been completed. 8746 */ 8747 void netdev_run_todo(void) 8748 { 8749 struct list_head list; 8750 8751 /* Snapshot list, allow later requests */ 8752 list_replace_init(&net_todo_list, &list); 8753 8754 __rtnl_unlock(); 8755 8756 8757 /* Wait for rcu callbacks to finish before next phase */ 8758 if (!list_empty(&list)) 8759 rcu_barrier(); 8760 8761 while (!list_empty(&list)) { 8762 struct net_device *dev 8763 = list_first_entry(&list, struct net_device, todo_list); 8764 list_del(&dev->todo_list); 8765 8766 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 8767 pr_err("network todo '%s' but state %d\n", 8768 dev->name, dev->reg_state); 8769 dump_stack(); 8770 continue; 8771 } 8772 8773 dev->reg_state = NETREG_UNREGISTERED; 8774 8775 netdev_wait_allrefs(dev); 8776 8777 /* paranoia */ 8778 BUG_ON(netdev_refcnt_read(dev)); 8779 BUG_ON(!list_empty(&dev->ptype_all)); 8780 BUG_ON(!list_empty(&dev->ptype_specific)); 8781 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 8782 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 8783 #if IS_ENABLED(CONFIG_DECNET) 8784 WARN_ON(dev->dn_ptr); 8785 #endif 8786 if (dev->priv_destructor) 8787 dev->priv_destructor(dev); 8788 if (dev->needs_free_netdev) 8789 free_netdev(dev); 8790 8791 /* Report a network device has been unregistered */ 8792 rtnl_lock(); 8793 dev_net(dev)->dev_unreg_count--; 8794 __rtnl_unlock(); 8795 wake_up(&netdev_unregistering_wq); 8796 8797 /* Free network device */ 8798 kobject_put(&dev->dev.kobj); 8799 } 8800 } 8801 8802 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has 8803 * all the same fields in the same order as net_device_stats, with only 8804 * the type differing, but rtnl_link_stats64 may have additional fields 8805 * at the end for newer counters. 8806 */ 8807 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 8808 const struct net_device_stats *netdev_stats) 8809 { 8810 #if BITS_PER_LONG == 64 8811 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats)); 8812 memcpy(stats64, netdev_stats, sizeof(*netdev_stats)); 8813 /* zero out counters that only exist in rtnl_link_stats64 */ 8814 memset((char *)stats64 + sizeof(*netdev_stats), 0, 8815 sizeof(*stats64) - sizeof(*netdev_stats)); 8816 #else 8817 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long); 8818 const unsigned long *src = (const unsigned long *)netdev_stats; 8819 u64 *dst = (u64 *)stats64; 8820 8821 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64)); 8822 for (i = 0; i < n; i++) 8823 dst[i] = src[i]; 8824 /* zero out counters that only exist in rtnl_link_stats64 */ 8825 memset((char *)stats64 + n * sizeof(u64), 0, 8826 sizeof(*stats64) - n * sizeof(u64)); 8827 #endif 8828 } 8829 EXPORT_SYMBOL(netdev_stats_to_stats64); 8830 8831 /** 8832 * dev_get_stats - get network device statistics 8833 * @dev: device to get statistics from 8834 * @storage: place to store stats 8835 * 8836 * Get network statistics from device. Return @storage. 8837 * The device driver may provide its own method by setting 8838 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 8839 * otherwise the internal statistics structure is used. 8840 */ 8841 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 8842 struct rtnl_link_stats64 *storage) 8843 { 8844 const struct net_device_ops *ops = dev->netdev_ops; 8845 8846 if (ops->ndo_get_stats64) { 8847 memset(storage, 0, sizeof(*storage)); 8848 ops->ndo_get_stats64(dev, storage); 8849 } else if (ops->ndo_get_stats) { 8850 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 8851 } else { 8852 netdev_stats_to_stats64(storage, &dev->stats); 8853 } 8854 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped); 8855 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped); 8856 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler); 8857 return storage; 8858 } 8859 EXPORT_SYMBOL(dev_get_stats); 8860 8861 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 8862 { 8863 struct netdev_queue *queue = dev_ingress_queue(dev); 8864 8865 #ifdef CONFIG_NET_CLS_ACT 8866 if (queue) 8867 return queue; 8868 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 8869 if (!queue) 8870 return NULL; 8871 netdev_init_one_queue(dev, queue, NULL); 8872 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 8873 queue->qdisc_sleeping = &noop_qdisc; 8874 rcu_assign_pointer(dev->ingress_queue, queue); 8875 #endif 8876 return queue; 8877 } 8878 8879 static const struct ethtool_ops default_ethtool_ops; 8880 8881 void netdev_set_default_ethtool_ops(struct net_device *dev, 8882 const struct ethtool_ops *ops) 8883 { 8884 if (dev->ethtool_ops == &default_ethtool_ops) 8885 dev->ethtool_ops = ops; 8886 } 8887 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 8888 8889 void netdev_freemem(struct net_device *dev) 8890 { 8891 char *addr = (char *)dev - dev->padded; 8892 8893 kvfree(addr); 8894 } 8895 8896 /** 8897 * alloc_netdev_mqs - allocate network device 8898 * @sizeof_priv: size of private data to allocate space for 8899 * @name: device name format string 8900 * @name_assign_type: origin of device name 8901 * @setup: callback to initialize device 8902 * @txqs: the number of TX subqueues to allocate 8903 * @rxqs: the number of RX subqueues to allocate 8904 * 8905 * Allocates a struct net_device with private data area for driver use 8906 * and performs basic initialization. Also allocates subqueue structs 8907 * for each queue on the device. 8908 */ 8909 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 8910 unsigned char name_assign_type, 8911 void (*setup)(struct net_device *), 8912 unsigned int txqs, unsigned int rxqs) 8913 { 8914 struct net_device *dev; 8915 unsigned int alloc_size; 8916 struct net_device *p; 8917 8918 BUG_ON(strlen(name) >= sizeof(dev->name)); 8919 8920 if (txqs < 1) { 8921 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 8922 return NULL; 8923 } 8924 8925 if (rxqs < 1) { 8926 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 8927 return NULL; 8928 } 8929 8930 alloc_size = sizeof(struct net_device); 8931 if (sizeof_priv) { 8932 /* ensure 32-byte alignment of private area */ 8933 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 8934 alloc_size += sizeof_priv; 8935 } 8936 /* ensure 32-byte alignment of whole construct */ 8937 alloc_size += NETDEV_ALIGN - 1; 8938 8939 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 8940 if (!p) 8941 return NULL; 8942 8943 dev = PTR_ALIGN(p, NETDEV_ALIGN); 8944 dev->padded = (char *)dev - (char *)p; 8945 8946 dev->pcpu_refcnt = alloc_percpu(int); 8947 if (!dev->pcpu_refcnt) 8948 goto free_dev; 8949 8950 if (dev_addr_init(dev)) 8951 goto free_pcpu; 8952 8953 dev_mc_init(dev); 8954 dev_uc_init(dev); 8955 8956 dev_net_set(dev, &init_net); 8957 8958 dev->gso_max_size = GSO_MAX_SIZE; 8959 dev->gso_max_segs = GSO_MAX_SEGS; 8960 8961 INIT_LIST_HEAD(&dev->napi_list); 8962 INIT_LIST_HEAD(&dev->unreg_list); 8963 INIT_LIST_HEAD(&dev->close_list); 8964 INIT_LIST_HEAD(&dev->link_watch_list); 8965 INIT_LIST_HEAD(&dev->adj_list.upper); 8966 INIT_LIST_HEAD(&dev->adj_list.lower); 8967 INIT_LIST_HEAD(&dev->ptype_all); 8968 INIT_LIST_HEAD(&dev->ptype_specific); 8969 #ifdef CONFIG_NET_SCHED 8970 hash_init(dev->qdisc_hash); 8971 #endif 8972 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 8973 setup(dev); 8974 8975 if (!dev->tx_queue_len) { 8976 dev->priv_flags |= IFF_NO_QUEUE; 8977 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; 8978 } 8979 8980 dev->num_tx_queues = txqs; 8981 dev->real_num_tx_queues = txqs; 8982 if (netif_alloc_netdev_queues(dev)) 8983 goto free_all; 8984 8985 dev->num_rx_queues = rxqs; 8986 dev->real_num_rx_queues = rxqs; 8987 if (netif_alloc_rx_queues(dev)) 8988 goto free_all; 8989 8990 strcpy(dev->name, name); 8991 dev->name_assign_type = name_assign_type; 8992 dev->group = INIT_NETDEV_GROUP; 8993 if (!dev->ethtool_ops) 8994 dev->ethtool_ops = &default_ethtool_ops; 8995 8996 nf_hook_ingress_init(dev); 8997 8998 return dev; 8999 9000 free_all: 9001 free_netdev(dev); 9002 return NULL; 9003 9004 free_pcpu: 9005 free_percpu(dev->pcpu_refcnt); 9006 free_dev: 9007 netdev_freemem(dev); 9008 return NULL; 9009 } 9010 EXPORT_SYMBOL(alloc_netdev_mqs); 9011 9012 /** 9013 * free_netdev - free network device 9014 * @dev: device 9015 * 9016 * This function does the last stage of destroying an allocated device 9017 * interface. The reference to the device object is released. If this 9018 * is the last reference then it will be freed.Must be called in process 9019 * context. 9020 */ 9021 void free_netdev(struct net_device *dev) 9022 { 9023 struct napi_struct *p, *n; 9024 9025 might_sleep(); 9026 netif_free_tx_queues(dev); 9027 netif_free_rx_queues(dev); 9028 9029 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 9030 9031 /* Flush device addresses */ 9032 dev_addr_flush(dev); 9033 9034 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 9035 netif_napi_del(p); 9036 9037 free_percpu(dev->pcpu_refcnt); 9038 dev->pcpu_refcnt = NULL; 9039 9040 /* Compatibility with error handling in drivers */ 9041 if (dev->reg_state == NETREG_UNINITIALIZED) { 9042 netdev_freemem(dev); 9043 return; 9044 } 9045 9046 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 9047 dev->reg_state = NETREG_RELEASED; 9048 9049 /* will free via device release */ 9050 put_device(&dev->dev); 9051 } 9052 EXPORT_SYMBOL(free_netdev); 9053 9054 /** 9055 * synchronize_net - Synchronize with packet receive processing 9056 * 9057 * Wait for packets currently being received to be done. 9058 * Does not block later packets from starting. 9059 */ 9060 void synchronize_net(void) 9061 { 9062 might_sleep(); 9063 if (rtnl_is_locked()) 9064 synchronize_rcu_expedited(); 9065 else 9066 synchronize_rcu(); 9067 } 9068 EXPORT_SYMBOL(synchronize_net); 9069 9070 /** 9071 * unregister_netdevice_queue - remove device from the kernel 9072 * @dev: device 9073 * @head: list 9074 * 9075 * This function shuts down a device interface and removes it 9076 * from the kernel tables. 9077 * If head not NULL, device is queued to be unregistered later. 9078 * 9079 * Callers must hold the rtnl semaphore. You may want 9080 * unregister_netdev() instead of this. 9081 */ 9082 9083 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 9084 { 9085 ASSERT_RTNL(); 9086 9087 if (head) { 9088 list_move_tail(&dev->unreg_list, head); 9089 } else { 9090 rollback_registered(dev); 9091 /* Finish processing unregister after unlock */ 9092 net_set_todo(dev); 9093 } 9094 } 9095 EXPORT_SYMBOL(unregister_netdevice_queue); 9096 9097 /** 9098 * unregister_netdevice_many - unregister many devices 9099 * @head: list of devices 9100 * 9101 * Note: As most callers use a stack allocated list_head, 9102 * we force a list_del() to make sure stack wont be corrupted later. 9103 */ 9104 void unregister_netdevice_many(struct list_head *head) 9105 { 9106 struct net_device *dev; 9107 9108 if (!list_empty(head)) { 9109 rollback_registered_many(head); 9110 list_for_each_entry(dev, head, unreg_list) 9111 net_set_todo(dev); 9112 list_del(head); 9113 } 9114 } 9115 EXPORT_SYMBOL(unregister_netdevice_many); 9116 9117 /** 9118 * unregister_netdev - remove device from the kernel 9119 * @dev: device 9120 * 9121 * This function shuts down a device interface and removes it 9122 * from the kernel tables. 9123 * 9124 * This is just a wrapper for unregister_netdevice that takes 9125 * the rtnl semaphore. In general you want to use this and not 9126 * unregister_netdevice. 9127 */ 9128 void unregister_netdev(struct net_device *dev) 9129 { 9130 rtnl_lock(); 9131 unregister_netdevice(dev); 9132 rtnl_unlock(); 9133 } 9134 EXPORT_SYMBOL(unregister_netdev); 9135 9136 /** 9137 * dev_change_net_namespace - move device to different nethost namespace 9138 * @dev: device 9139 * @net: network namespace 9140 * @pat: If not NULL name pattern to try if the current device name 9141 * is already taken in the destination network namespace. 9142 * 9143 * This function shuts down a device interface and moves it 9144 * to a new network namespace. On success 0 is returned, on 9145 * a failure a netagive errno code is returned. 9146 * 9147 * Callers must hold the rtnl semaphore. 9148 */ 9149 9150 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 9151 { 9152 int err, new_nsid, new_ifindex; 9153 9154 ASSERT_RTNL(); 9155 9156 /* Don't allow namespace local devices to be moved. */ 9157 err = -EINVAL; 9158 if (dev->features & NETIF_F_NETNS_LOCAL) 9159 goto out; 9160 9161 /* Ensure the device has been registrered */ 9162 if (dev->reg_state != NETREG_REGISTERED) 9163 goto out; 9164 9165 /* Get out if there is nothing todo */ 9166 err = 0; 9167 if (net_eq(dev_net(dev), net)) 9168 goto out; 9169 9170 /* Pick the destination device name, and ensure 9171 * we can use it in the destination network namespace. 9172 */ 9173 err = -EEXIST; 9174 if (__dev_get_by_name(net, dev->name)) { 9175 /* We get here if we can't use the current device name */ 9176 if (!pat) 9177 goto out; 9178 err = dev_get_valid_name(net, dev, pat); 9179 if (err < 0) 9180 goto out; 9181 } 9182 9183 /* 9184 * And now a mini version of register_netdevice unregister_netdevice. 9185 */ 9186 9187 /* If device is running close it first. */ 9188 dev_close(dev); 9189 9190 /* And unlink it from device chain */ 9191 unlist_netdevice(dev); 9192 9193 synchronize_net(); 9194 9195 /* Shutdown queueing discipline. */ 9196 dev_shutdown(dev); 9197 9198 /* Notify protocols, that we are about to destroy 9199 * this device. They should clean all the things. 9200 * 9201 * Note that dev->reg_state stays at NETREG_REGISTERED. 9202 * This is wanted because this way 8021q and macvlan know 9203 * the device is just moving and can keep their slaves up. 9204 */ 9205 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 9206 rcu_barrier(); 9207 9208 new_nsid = peernet2id_alloc(dev_net(dev), net); 9209 /* If there is an ifindex conflict assign a new one */ 9210 if (__dev_get_by_index(net, dev->ifindex)) 9211 new_ifindex = dev_new_index(net); 9212 else 9213 new_ifindex = dev->ifindex; 9214 9215 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid, 9216 new_ifindex); 9217 9218 /* 9219 * Flush the unicast and multicast chains 9220 */ 9221 dev_uc_flush(dev); 9222 dev_mc_flush(dev); 9223 9224 /* Send a netdev-removed uevent to the old namespace */ 9225 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 9226 netdev_adjacent_del_links(dev); 9227 9228 /* Actually switch the network namespace */ 9229 dev_net_set(dev, net); 9230 dev->ifindex = new_ifindex; 9231 9232 /* Send a netdev-add uevent to the new namespace */ 9233 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 9234 netdev_adjacent_add_links(dev); 9235 9236 /* Fixup kobjects */ 9237 err = device_rename(&dev->dev, dev->name); 9238 WARN_ON(err); 9239 9240 /* Add the device back in the hashes */ 9241 list_netdevice(dev); 9242 9243 /* Notify protocols, that a new device appeared. */ 9244 call_netdevice_notifiers(NETDEV_REGISTER, dev); 9245 9246 /* 9247 * Prevent userspace races by waiting until the network 9248 * device is fully setup before sending notifications. 9249 */ 9250 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 9251 9252 synchronize_net(); 9253 err = 0; 9254 out: 9255 return err; 9256 } 9257 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 9258 9259 static int dev_cpu_dead(unsigned int oldcpu) 9260 { 9261 struct sk_buff **list_skb; 9262 struct sk_buff *skb; 9263 unsigned int cpu; 9264 struct softnet_data *sd, *oldsd, *remsd = NULL; 9265 9266 local_irq_disable(); 9267 cpu = smp_processor_id(); 9268 sd = &per_cpu(softnet_data, cpu); 9269 oldsd = &per_cpu(softnet_data, oldcpu); 9270 9271 /* Find end of our completion_queue. */ 9272 list_skb = &sd->completion_queue; 9273 while (*list_skb) 9274 list_skb = &(*list_skb)->next; 9275 /* Append completion queue from offline CPU. */ 9276 *list_skb = oldsd->completion_queue; 9277 oldsd->completion_queue = NULL; 9278 9279 /* Append output queue from offline CPU. */ 9280 if (oldsd->output_queue) { 9281 *sd->output_queue_tailp = oldsd->output_queue; 9282 sd->output_queue_tailp = oldsd->output_queue_tailp; 9283 oldsd->output_queue = NULL; 9284 oldsd->output_queue_tailp = &oldsd->output_queue; 9285 } 9286 /* Append NAPI poll list from offline CPU, with one exception : 9287 * process_backlog() must be called by cpu owning percpu backlog. 9288 * We properly handle process_queue & input_pkt_queue later. 9289 */ 9290 while (!list_empty(&oldsd->poll_list)) { 9291 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 9292 struct napi_struct, 9293 poll_list); 9294 9295 list_del_init(&napi->poll_list); 9296 if (napi->poll == process_backlog) 9297 napi->state = 0; 9298 else 9299 ____napi_schedule(sd, napi); 9300 } 9301 9302 raise_softirq_irqoff(NET_TX_SOFTIRQ); 9303 local_irq_enable(); 9304 9305 #ifdef CONFIG_RPS 9306 remsd = oldsd->rps_ipi_list; 9307 oldsd->rps_ipi_list = NULL; 9308 #endif 9309 /* send out pending IPI's on offline CPU */ 9310 net_rps_send_ipi(remsd); 9311 9312 /* Process offline CPU's input_pkt_queue */ 9313 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 9314 netif_rx_ni(skb); 9315 input_queue_head_incr(oldsd); 9316 } 9317 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 9318 netif_rx_ni(skb); 9319 input_queue_head_incr(oldsd); 9320 } 9321 9322 return 0; 9323 } 9324 9325 /** 9326 * netdev_increment_features - increment feature set by one 9327 * @all: current feature set 9328 * @one: new feature set 9329 * @mask: mask feature set 9330 * 9331 * Computes a new feature set after adding a device with feature set 9332 * @one to the master device with current feature set @all. Will not 9333 * enable anything that is off in @mask. Returns the new feature set. 9334 */ 9335 netdev_features_t netdev_increment_features(netdev_features_t all, 9336 netdev_features_t one, netdev_features_t mask) 9337 { 9338 if (mask & NETIF_F_HW_CSUM) 9339 mask |= NETIF_F_CSUM_MASK; 9340 mask |= NETIF_F_VLAN_CHALLENGED; 9341 9342 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask; 9343 all &= one | ~NETIF_F_ALL_FOR_ALL; 9344 9345 /* If one device supports hw checksumming, set for all. */ 9346 if (all & NETIF_F_HW_CSUM) 9347 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM); 9348 9349 return all; 9350 } 9351 EXPORT_SYMBOL(netdev_increment_features); 9352 9353 static struct hlist_head * __net_init netdev_create_hash(void) 9354 { 9355 int i; 9356 struct hlist_head *hash; 9357 9358 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL); 9359 if (hash != NULL) 9360 for (i = 0; i < NETDEV_HASHENTRIES; i++) 9361 INIT_HLIST_HEAD(&hash[i]); 9362 9363 return hash; 9364 } 9365 9366 /* Initialize per network namespace state */ 9367 static int __net_init netdev_init(struct net *net) 9368 { 9369 BUILD_BUG_ON(GRO_HASH_BUCKETS > 9370 8 * FIELD_SIZEOF(struct napi_struct, gro_bitmask)); 9371 9372 if (net != &init_net) 9373 INIT_LIST_HEAD(&net->dev_base_head); 9374 9375 net->dev_name_head = netdev_create_hash(); 9376 if (net->dev_name_head == NULL) 9377 goto err_name; 9378 9379 net->dev_index_head = netdev_create_hash(); 9380 if (net->dev_index_head == NULL) 9381 goto err_idx; 9382 9383 return 0; 9384 9385 err_idx: 9386 kfree(net->dev_name_head); 9387 err_name: 9388 return -ENOMEM; 9389 } 9390 9391 /** 9392 * netdev_drivername - network driver for the device 9393 * @dev: network device 9394 * 9395 * Determine network driver for device. 9396 */ 9397 const char *netdev_drivername(const struct net_device *dev) 9398 { 9399 const struct device_driver *driver; 9400 const struct device *parent; 9401 const char *empty = ""; 9402 9403 parent = dev->dev.parent; 9404 if (!parent) 9405 return empty; 9406 9407 driver = parent->driver; 9408 if (driver && driver->name) 9409 return driver->name; 9410 return empty; 9411 } 9412 9413 static void __netdev_printk(const char *level, const struct net_device *dev, 9414 struct va_format *vaf) 9415 { 9416 if (dev && dev->dev.parent) { 9417 dev_printk_emit(level[1] - '0', 9418 dev->dev.parent, 9419 "%s %s %s%s: %pV", 9420 dev_driver_string(dev->dev.parent), 9421 dev_name(dev->dev.parent), 9422 netdev_name(dev), netdev_reg_state(dev), 9423 vaf); 9424 } else if (dev) { 9425 printk("%s%s%s: %pV", 9426 level, netdev_name(dev), netdev_reg_state(dev), vaf); 9427 } else { 9428 printk("%s(NULL net_device): %pV", level, vaf); 9429 } 9430 } 9431 9432 void netdev_printk(const char *level, const struct net_device *dev, 9433 const char *format, ...) 9434 { 9435 struct va_format vaf; 9436 va_list args; 9437 9438 va_start(args, format); 9439 9440 vaf.fmt = format; 9441 vaf.va = &args; 9442 9443 __netdev_printk(level, dev, &vaf); 9444 9445 va_end(args); 9446 } 9447 EXPORT_SYMBOL(netdev_printk); 9448 9449 #define define_netdev_printk_level(func, level) \ 9450 void func(const struct net_device *dev, const char *fmt, ...) \ 9451 { \ 9452 struct va_format vaf; \ 9453 va_list args; \ 9454 \ 9455 va_start(args, fmt); \ 9456 \ 9457 vaf.fmt = fmt; \ 9458 vaf.va = &args; \ 9459 \ 9460 __netdev_printk(level, dev, &vaf); \ 9461 \ 9462 va_end(args); \ 9463 } \ 9464 EXPORT_SYMBOL(func); 9465 9466 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 9467 define_netdev_printk_level(netdev_alert, KERN_ALERT); 9468 define_netdev_printk_level(netdev_crit, KERN_CRIT); 9469 define_netdev_printk_level(netdev_err, KERN_ERR); 9470 define_netdev_printk_level(netdev_warn, KERN_WARNING); 9471 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 9472 define_netdev_printk_level(netdev_info, KERN_INFO); 9473 9474 static void __net_exit netdev_exit(struct net *net) 9475 { 9476 kfree(net->dev_name_head); 9477 kfree(net->dev_index_head); 9478 if (net != &init_net) 9479 WARN_ON_ONCE(!list_empty(&net->dev_base_head)); 9480 } 9481 9482 static struct pernet_operations __net_initdata netdev_net_ops = { 9483 .init = netdev_init, 9484 .exit = netdev_exit, 9485 }; 9486 9487 static void __net_exit default_device_exit(struct net *net) 9488 { 9489 struct net_device *dev, *aux; 9490 /* 9491 * Push all migratable network devices back to the 9492 * initial network namespace 9493 */ 9494 rtnl_lock(); 9495 for_each_netdev_safe(net, dev, aux) { 9496 int err; 9497 char fb_name[IFNAMSIZ]; 9498 9499 /* Ignore unmoveable devices (i.e. loopback) */ 9500 if (dev->features & NETIF_F_NETNS_LOCAL) 9501 continue; 9502 9503 /* Leave virtual devices for the generic cleanup */ 9504 if (dev->rtnl_link_ops) 9505 continue; 9506 9507 /* Push remaining network devices to init_net */ 9508 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 9509 err = dev_change_net_namespace(dev, &init_net, fb_name); 9510 if (err) { 9511 pr_emerg("%s: failed to move %s to init_net: %d\n", 9512 __func__, dev->name, err); 9513 BUG(); 9514 } 9515 } 9516 rtnl_unlock(); 9517 } 9518 9519 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list) 9520 { 9521 /* Return with the rtnl_lock held when there are no network 9522 * devices unregistering in any network namespace in net_list. 9523 */ 9524 struct net *net; 9525 bool unregistering; 9526 DEFINE_WAIT_FUNC(wait, woken_wake_function); 9527 9528 add_wait_queue(&netdev_unregistering_wq, &wait); 9529 for (;;) { 9530 unregistering = false; 9531 rtnl_lock(); 9532 list_for_each_entry(net, net_list, exit_list) { 9533 if (net->dev_unreg_count > 0) { 9534 unregistering = true; 9535 break; 9536 } 9537 } 9538 if (!unregistering) 9539 break; 9540 __rtnl_unlock(); 9541 9542 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 9543 } 9544 remove_wait_queue(&netdev_unregistering_wq, &wait); 9545 } 9546 9547 static void __net_exit default_device_exit_batch(struct list_head *net_list) 9548 { 9549 /* At exit all network devices most be removed from a network 9550 * namespace. Do this in the reverse order of registration. 9551 * Do this across as many network namespaces as possible to 9552 * improve batching efficiency. 9553 */ 9554 struct net_device *dev; 9555 struct net *net; 9556 LIST_HEAD(dev_kill_list); 9557 9558 /* To prevent network device cleanup code from dereferencing 9559 * loopback devices or network devices that have been freed 9560 * wait here for all pending unregistrations to complete, 9561 * before unregistring the loopback device and allowing the 9562 * network namespace be freed. 9563 * 9564 * The netdev todo list containing all network devices 9565 * unregistrations that happen in default_device_exit_batch 9566 * will run in the rtnl_unlock() at the end of 9567 * default_device_exit_batch. 9568 */ 9569 rtnl_lock_unregistering(net_list); 9570 list_for_each_entry(net, net_list, exit_list) { 9571 for_each_netdev_reverse(net, dev) { 9572 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 9573 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 9574 else 9575 unregister_netdevice_queue(dev, &dev_kill_list); 9576 } 9577 } 9578 unregister_netdevice_many(&dev_kill_list); 9579 rtnl_unlock(); 9580 } 9581 9582 static struct pernet_operations __net_initdata default_device_ops = { 9583 .exit = default_device_exit, 9584 .exit_batch = default_device_exit_batch, 9585 }; 9586 9587 /* 9588 * Initialize the DEV module. At boot time this walks the device list and 9589 * unhooks any devices that fail to initialise (normally hardware not 9590 * present) and leaves us with a valid list of present and active devices. 9591 * 9592 */ 9593 9594 /* 9595 * This is called single threaded during boot, so no need 9596 * to take the rtnl semaphore. 9597 */ 9598 static int __init net_dev_init(void) 9599 { 9600 int i, rc = -ENOMEM; 9601 9602 BUG_ON(!dev_boot_phase); 9603 9604 if (dev_proc_init()) 9605 goto out; 9606 9607 if (netdev_kobject_init()) 9608 goto out; 9609 9610 INIT_LIST_HEAD(&ptype_all); 9611 for (i = 0; i < PTYPE_HASH_SIZE; i++) 9612 INIT_LIST_HEAD(&ptype_base[i]); 9613 9614 INIT_LIST_HEAD(&offload_base); 9615 9616 if (register_pernet_subsys(&netdev_net_ops)) 9617 goto out; 9618 9619 /* 9620 * Initialise the packet receive queues. 9621 */ 9622 9623 for_each_possible_cpu(i) { 9624 struct work_struct *flush = per_cpu_ptr(&flush_works, i); 9625 struct softnet_data *sd = &per_cpu(softnet_data, i); 9626 9627 INIT_WORK(flush, flush_backlog); 9628 9629 skb_queue_head_init(&sd->input_pkt_queue); 9630 skb_queue_head_init(&sd->process_queue); 9631 #ifdef CONFIG_XFRM_OFFLOAD 9632 skb_queue_head_init(&sd->xfrm_backlog); 9633 #endif 9634 INIT_LIST_HEAD(&sd->poll_list); 9635 sd->output_queue_tailp = &sd->output_queue; 9636 #ifdef CONFIG_RPS 9637 sd->csd.func = rps_trigger_softirq; 9638 sd->csd.info = sd; 9639 sd->cpu = i; 9640 #endif 9641 9642 init_gro_hash(&sd->backlog); 9643 sd->backlog.poll = process_backlog; 9644 sd->backlog.weight = weight_p; 9645 } 9646 9647 dev_boot_phase = 0; 9648 9649 /* The loopback device is special if any other network devices 9650 * is present in a network namespace the loopback device must 9651 * be present. Since we now dynamically allocate and free the 9652 * loopback device ensure this invariant is maintained by 9653 * keeping the loopback device as the first device on the 9654 * list of network devices. Ensuring the loopback devices 9655 * is the first device that appears and the last network device 9656 * that disappears. 9657 */ 9658 if (register_pernet_device(&loopback_net_ops)) 9659 goto out; 9660 9661 if (register_pernet_device(&default_device_ops)) 9662 goto out; 9663 9664 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 9665 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 9666 9667 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead", 9668 NULL, dev_cpu_dead); 9669 WARN_ON(rc < 0); 9670 rc = 0; 9671 out: 9672 return rc; 9673 } 9674 9675 subsys_initcall(net_dev_init); 9676