xref: /linux/net/core/dev.c (revision 436396f26d502ada54281958db0a9f6fc12ff256)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <trace/events/qdisc.h>
135 #include <linux/inetdevice.h>
136 #include <linux/cpu_rmap.h>
137 #include <linux/static_key.h>
138 #include <linux/hashtable.h>
139 #include <linux/vmalloc.h>
140 #include <linux/if_macvlan.h>
141 #include <linux/errqueue.h>
142 #include <linux/hrtimer.h>
143 #include <linux/netfilter_netdev.h>
144 #include <linux/crash_dump.h>
145 #include <linux/sctp.h>
146 #include <net/udp_tunnel.h>
147 #include <linux/net_namespace.h>
148 #include <linux/indirect_call_wrapper.h>
149 #include <net/devlink.h>
150 #include <linux/pm_runtime.h>
151 #include <linux/prandom.h>
152 #include <linux/once_lite.h>
153 
154 #include "dev.h"
155 #include "net-sysfs.h"
156 
157 
158 static DEFINE_SPINLOCK(ptype_lock);
159 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
160 struct list_head ptype_all __read_mostly;	/* Taps */
161 
162 static int netif_rx_internal(struct sk_buff *skb);
163 static int call_netdevice_notifiers_info(unsigned long val,
164 					 struct netdev_notifier_info *info);
165 static int call_netdevice_notifiers_extack(unsigned long val,
166 					   struct net_device *dev,
167 					   struct netlink_ext_ack *extack);
168 static struct napi_struct *napi_by_id(unsigned int napi_id);
169 
170 /*
171  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
172  * semaphore.
173  *
174  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
175  *
176  * Writers must hold the rtnl semaphore while they loop through the
177  * dev_base_head list, and hold dev_base_lock for writing when they do the
178  * actual updates.  This allows pure readers to access the list even
179  * while a writer is preparing to update it.
180  *
181  * To put it another way, dev_base_lock is held for writing only to
182  * protect against pure readers; the rtnl semaphore provides the
183  * protection against other writers.
184  *
185  * See, for example usages, register_netdevice() and
186  * unregister_netdevice(), which must be called with the rtnl
187  * semaphore held.
188  */
189 DEFINE_RWLOCK(dev_base_lock);
190 EXPORT_SYMBOL(dev_base_lock);
191 
192 static DEFINE_MUTEX(ifalias_mutex);
193 
194 /* protects napi_hash addition/deletion and napi_gen_id */
195 static DEFINE_SPINLOCK(napi_hash_lock);
196 
197 static unsigned int napi_gen_id = NR_CPUS;
198 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
199 
200 static DECLARE_RWSEM(devnet_rename_sem);
201 
202 static inline void dev_base_seq_inc(struct net *net)
203 {
204 	while (++net->dev_base_seq == 0)
205 		;
206 }
207 
208 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
209 {
210 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
211 
212 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
213 }
214 
215 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
216 {
217 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
218 }
219 
220 static inline void rps_lock_irqsave(struct softnet_data *sd,
221 				    unsigned long *flags)
222 {
223 	if (IS_ENABLED(CONFIG_RPS))
224 		spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
225 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
226 		local_irq_save(*flags);
227 }
228 
229 static inline void rps_lock_irq_disable(struct softnet_data *sd)
230 {
231 	if (IS_ENABLED(CONFIG_RPS))
232 		spin_lock_irq(&sd->input_pkt_queue.lock);
233 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
234 		local_irq_disable();
235 }
236 
237 static inline void rps_unlock_irq_restore(struct softnet_data *sd,
238 					  unsigned long *flags)
239 {
240 	if (IS_ENABLED(CONFIG_RPS))
241 		spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
242 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
243 		local_irq_restore(*flags);
244 }
245 
246 static inline void rps_unlock_irq_enable(struct softnet_data *sd)
247 {
248 	if (IS_ENABLED(CONFIG_RPS))
249 		spin_unlock_irq(&sd->input_pkt_queue.lock);
250 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
251 		local_irq_enable();
252 }
253 
254 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
255 						       const char *name)
256 {
257 	struct netdev_name_node *name_node;
258 
259 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
260 	if (!name_node)
261 		return NULL;
262 	INIT_HLIST_NODE(&name_node->hlist);
263 	name_node->dev = dev;
264 	name_node->name = name;
265 	return name_node;
266 }
267 
268 static struct netdev_name_node *
269 netdev_name_node_head_alloc(struct net_device *dev)
270 {
271 	struct netdev_name_node *name_node;
272 
273 	name_node = netdev_name_node_alloc(dev, dev->name);
274 	if (!name_node)
275 		return NULL;
276 	INIT_LIST_HEAD(&name_node->list);
277 	return name_node;
278 }
279 
280 static void netdev_name_node_free(struct netdev_name_node *name_node)
281 {
282 	kfree(name_node);
283 }
284 
285 static void netdev_name_node_add(struct net *net,
286 				 struct netdev_name_node *name_node)
287 {
288 	hlist_add_head_rcu(&name_node->hlist,
289 			   dev_name_hash(net, name_node->name));
290 }
291 
292 static void netdev_name_node_del(struct netdev_name_node *name_node)
293 {
294 	hlist_del_rcu(&name_node->hlist);
295 }
296 
297 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
298 							const char *name)
299 {
300 	struct hlist_head *head = dev_name_hash(net, name);
301 	struct netdev_name_node *name_node;
302 
303 	hlist_for_each_entry(name_node, head, hlist)
304 		if (!strcmp(name_node->name, name))
305 			return name_node;
306 	return NULL;
307 }
308 
309 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
310 							    const char *name)
311 {
312 	struct hlist_head *head = dev_name_hash(net, name);
313 	struct netdev_name_node *name_node;
314 
315 	hlist_for_each_entry_rcu(name_node, head, hlist)
316 		if (!strcmp(name_node->name, name))
317 			return name_node;
318 	return NULL;
319 }
320 
321 bool netdev_name_in_use(struct net *net, const char *name)
322 {
323 	return netdev_name_node_lookup(net, name);
324 }
325 EXPORT_SYMBOL(netdev_name_in_use);
326 
327 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
328 {
329 	struct netdev_name_node *name_node;
330 	struct net *net = dev_net(dev);
331 
332 	name_node = netdev_name_node_lookup(net, name);
333 	if (name_node)
334 		return -EEXIST;
335 	name_node = netdev_name_node_alloc(dev, name);
336 	if (!name_node)
337 		return -ENOMEM;
338 	netdev_name_node_add(net, name_node);
339 	/* The node that holds dev->name acts as a head of per-device list. */
340 	list_add_tail(&name_node->list, &dev->name_node->list);
341 
342 	return 0;
343 }
344 
345 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
346 {
347 	list_del(&name_node->list);
348 	netdev_name_node_del(name_node);
349 	kfree(name_node->name);
350 	netdev_name_node_free(name_node);
351 }
352 
353 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
354 {
355 	struct netdev_name_node *name_node;
356 	struct net *net = dev_net(dev);
357 
358 	name_node = netdev_name_node_lookup(net, name);
359 	if (!name_node)
360 		return -ENOENT;
361 	/* lookup might have found our primary name or a name belonging
362 	 * to another device.
363 	 */
364 	if (name_node == dev->name_node || name_node->dev != dev)
365 		return -EINVAL;
366 
367 	__netdev_name_node_alt_destroy(name_node);
368 
369 	return 0;
370 }
371 
372 static void netdev_name_node_alt_flush(struct net_device *dev)
373 {
374 	struct netdev_name_node *name_node, *tmp;
375 
376 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
377 		__netdev_name_node_alt_destroy(name_node);
378 }
379 
380 /* Device list insertion */
381 static void list_netdevice(struct net_device *dev)
382 {
383 	struct net *net = dev_net(dev);
384 
385 	ASSERT_RTNL();
386 
387 	write_lock(&dev_base_lock);
388 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
389 	netdev_name_node_add(net, dev->name_node);
390 	hlist_add_head_rcu(&dev->index_hlist,
391 			   dev_index_hash(net, dev->ifindex));
392 	write_unlock(&dev_base_lock);
393 
394 	dev_base_seq_inc(net);
395 }
396 
397 /* Device list removal
398  * caller must respect a RCU grace period before freeing/reusing dev
399  */
400 static void unlist_netdevice(struct net_device *dev, bool lock)
401 {
402 	ASSERT_RTNL();
403 
404 	/* Unlink dev from the device chain */
405 	if (lock)
406 		write_lock(&dev_base_lock);
407 	list_del_rcu(&dev->dev_list);
408 	netdev_name_node_del(dev->name_node);
409 	hlist_del_rcu(&dev->index_hlist);
410 	if (lock)
411 		write_unlock(&dev_base_lock);
412 
413 	dev_base_seq_inc(dev_net(dev));
414 }
415 
416 /*
417  *	Our notifier list
418  */
419 
420 static RAW_NOTIFIER_HEAD(netdev_chain);
421 
422 /*
423  *	Device drivers call our routines to queue packets here. We empty the
424  *	queue in the local softnet handler.
425  */
426 
427 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
428 EXPORT_PER_CPU_SYMBOL(softnet_data);
429 
430 #ifdef CONFIG_LOCKDEP
431 /*
432  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
433  * according to dev->type
434  */
435 static const unsigned short netdev_lock_type[] = {
436 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
437 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
438 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
439 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
440 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
441 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
442 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
443 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
444 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
445 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
446 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
447 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
448 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
449 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
450 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
451 
452 static const char *const netdev_lock_name[] = {
453 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
454 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
455 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
456 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
457 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
458 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
459 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
460 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
461 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
462 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
463 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
464 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
465 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
466 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
467 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
468 
469 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
470 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
471 
472 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
473 {
474 	int i;
475 
476 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
477 		if (netdev_lock_type[i] == dev_type)
478 			return i;
479 	/* the last key is used by default */
480 	return ARRAY_SIZE(netdev_lock_type) - 1;
481 }
482 
483 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
484 						 unsigned short dev_type)
485 {
486 	int i;
487 
488 	i = netdev_lock_pos(dev_type);
489 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
490 				   netdev_lock_name[i]);
491 }
492 
493 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
494 {
495 	int i;
496 
497 	i = netdev_lock_pos(dev->type);
498 	lockdep_set_class_and_name(&dev->addr_list_lock,
499 				   &netdev_addr_lock_key[i],
500 				   netdev_lock_name[i]);
501 }
502 #else
503 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
504 						 unsigned short dev_type)
505 {
506 }
507 
508 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
509 {
510 }
511 #endif
512 
513 /*******************************************************************************
514  *
515  *		Protocol management and registration routines
516  *
517  *******************************************************************************/
518 
519 
520 /*
521  *	Add a protocol ID to the list. Now that the input handler is
522  *	smarter we can dispense with all the messy stuff that used to be
523  *	here.
524  *
525  *	BEWARE!!! Protocol handlers, mangling input packets,
526  *	MUST BE last in hash buckets and checking protocol handlers
527  *	MUST start from promiscuous ptype_all chain in net_bh.
528  *	It is true now, do not change it.
529  *	Explanation follows: if protocol handler, mangling packet, will
530  *	be the first on list, it is not able to sense, that packet
531  *	is cloned and should be copied-on-write, so that it will
532  *	change it and subsequent readers will get broken packet.
533  *							--ANK (980803)
534  */
535 
536 static inline struct list_head *ptype_head(const struct packet_type *pt)
537 {
538 	if (pt->type == htons(ETH_P_ALL))
539 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
540 	else
541 		return pt->dev ? &pt->dev->ptype_specific :
542 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
543 }
544 
545 /**
546  *	dev_add_pack - add packet handler
547  *	@pt: packet type declaration
548  *
549  *	Add a protocol handler to the networking stack. The passed &packet_type
550  *	is linked into kernel lists and may not be freed until it has been
551  *	removed from the kernel lists.
552  *
553  *	This call does not sleep therefore it can not
554  *	guarantee all CPU's that are in middle of receiving packets
555  *	will see the new packet type (until the next received packet).
556  */
557 
558 void dev_add_pack(struct packet_type *pt)
559 {
560 	struct list_head *head = ptype_head(pt);
561 
562 	spin_lock(&ptype_lock);
563 	list_add_rcu(&pt->list, head);
564 	spin_unlock(&ptype_lock);
565 }
566 EXPORT_SYMBOL(dev_add_pack);
567 
568 /**
569  *	__dev_remove_pack	 - remove packet handler
570  *	@pt: packet type declaration
571  *
572  *	Remove a protocol handler that was previously added to the kernel
573  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
574  *	from the kernel lists and can be freed or reused once this function
575  *	returns.
576  *
577  *      The packet type might still be in use by receivers
578  *	and must not be freed until after all the CPU's have gone
579  *	through a quiescent state.
580  */
581 void __dev_remove_pack(struct packet_type *pt)
582 {
583 	struct list_head *head = ptype_head(pt);
584 	struct packet_type *pt1;
585 
586 	spin_lock(&ptype_lock);
587 
588 	list_for_each_entry(pt1, head, list) {
589 		if (pt == pt1) {
590 			list_del_rcu(&pt->list);
591 			goto out;
592 		}
593 	}
594 
595 	pr_warn("dev_remove_pack: %p not found\n", pt);
596 out:
597 	spin_unlock(&ptype_lock);
598 }
599 EXPORT_SYMBOL(__dev_remove_pack);
600 
601 /**
602  *	dev_remove_pack	 - remove packet handler
603  *	@pt: packet type declaration
604  *
605  *	Remove a protocol handler that was previously added to the kernel
606  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
607  *	from the kernel lists and can be freed or reused once this function
608  *	returns.
609  *
610  *	This call sleeps to guarantee that no CPU is looking at the packet
611  *	type after return.
612  */
613 void dev_remove_pack(struct packet_type *pt)
614 {
615 	__dev_remove_pack(pt);
616 
617 	synchronize_net();
618 }
619 EXPORT_SYMBOL(dev_remove_pack);
620 
621 
622 /*******************************************************************************
623  *
624  *			    Device Interface Subroutines
625  *
626  *******************************************************************************/
627 
628 /**
629  *	dev_get_iflink	- get 'iflink' value of a interface
630  *	@dev: targeted interface
631  *
632  *	Indicates the ifindex the interface is linked to.
633  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
634  */
635 
636 int dev_get_iflink(const struct net_device *dev)
637 {
638 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
639 		return dev->netdev_ops->ndo_get_iflink(dev);
640 
641 	return dev->ifindex;
642 }
643 EXPORT_SYMBOL(dev_get_iflink);
644 
645 /**
646  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
647  *	@dev: targeted interface
648  *	@skb: The packet.
649  *
650  *	For better visibility of tunnel traffic OVS needs to retrieve
651  *	egress tunnel information for a packet. Following API allows
652  *	user to get this info.
653  */
654 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
655 {
656 	struct ip_tunnel_info *info;
657 
658 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
659 		return -EINVAL;
660 
661 	info = skb_tunnel_info_unclone(skb);
662 	if (!info)
663 		return -ENOMEM;
664 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
665 		return -EINVAL;
666 
667 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
668 }
669 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
670 
671 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
672 {
673 	int k = stack->num_paths++;
674 
675 	if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
676 		return NULL;
677 
678 	return &stack->path[k];
679 }
680 
681 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
682 			  struct net_device_path_stack *stack)
683 {
684 	const struct net_device *last_dev;
685 	struct net_device_path_ctx ctx = {
686 		.dev	= dev,
687 	};
688 	struct net_device_path *path;
689 	int ret = 0;
690 
691 	memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
692 	stack->num_paths = 0;
693 	while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
694 		last_dev = ctx.dev;
695 		path = dev_fwd_path(stack);
696 		if (!path)
697 			return -1;
698 
699 		memset(path, 0, sizeof(struct net_device_path));
700 		ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
701 		if (ret < 0)
702 			return -1;
703 
704 		if (WARN_ON_ONCE(last_dev == ctx.dev))
705 			return -1;
706 	}
707 
708 	if (!ctx.dev)
709 		return ret;
710 
711 	path = dev_fwd_path(stack);
712 	if (!path)
713 		return -1;
714 	path->type = DEV_PATH_ETHERNET;
715 	path->dev = ctx.dev;
716 
717 	return ret;
718 }
719 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
720 
721 /**
722  *	__dev_get_by_name	- find a device by its name
723  *	@net: the applicable net namespace
724  *	@name: name to find
725  *
726  *	Find an interface by name. Must be called under RTNL semaphore
727  *	or @dev_base_lock. If the name is found a pointer to the device
728  *	is returned. If the name is not found then %NULL is returned. The
729  *	reference counters are not incremented so the caller must be
730  *	careful with locks.
731  */
732 
733 struct net_device *__dev_get_by_name(struct net *net, const char *name)
734 {
735 	struct netdev_name_node *node_name;
736 
737 	node_name = netdev_name_node_lookup(net, name);
738 	return node_name ? node_name->dev : NULL;
739 }
740 EXPORT_SYMBOL(__dev_get_by_name);
741 
742 /**
743  * dev_get_by_name_rcu	- find a device by its name
744  * @net: the applicable net namespace
745  * @name: name to find
746  *
747  * Find an interface by name.
748  * If the name is found a pointer to the device is returned.
749  * If the name is not found then %NULL is returned.
750  * The reference counters are not incremented so the caller must be
751  * careful with locks. The caller must hold RCU lock.
752  */
753 
754 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
755 {
756 	struct netdev_name_node *node_name;
757 
758 	node_name = netdev_name_node_lookup_rcu(net, name);
759 	return node_name ? node_name->dev : NULL;
760 }
761 EXPORT_SYMBOL(dev_get_by_name_rcu);
762 
763 /**
764  *	dev_get_by_name		- find a device by its name
765  *	@net: the applicable net namespace
766  *	@name: name to find
767  *
768  *	Find an interface by name. This can be called from any
769  *	context and does its own locking. The returned handle has
770  *	the usage count incremented and the caller must use dev_put() to
771  *	release it when it is no longer needed. %NULL is returned if no
772  *	matching device is found.
773  */
774 
775 struct net_device *dev_get_by_name(struct net *net, const char *name)
776 {
777 	struct net_device *dev;
778 
779 	rcu_read_lock();
780 	dev = dev_get_by_name_rcu(net, name);
781 	dev_hold(dev);
782 	rcu_read_unlock();
783 	return dev;
784 }
785 EXPORT_SYMBOL(dev_get_by_name);
786 
787 /**
788  *	__dev_get_by_index - find a device by its ifindex
789  *	@net: the applicable net namespace
790  *	@ifindex: index of device
791  *
792  *	Search for an interface by index. Returns %NULL if the device
793  *	is not found or a pointer to the device. The device has not
794  *	had its reference counter increased so the caller must be careful
795  *	about locking. The caller must hold either the RTNL semaphore
796  *	or @dev_base_lock.
797  */
798 
799 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
800 {
801 	struct net_device *dev;
802 	struct hlist_head *head = dev_index_hash(net, ifindex);
803 
804 	hlist_for_each_entry(dev, head, index_hlist)
805 		if (dev->ifindex == ifindex)
806 			return dev;
807 
808 	return NULL;
809 }
810 EXPORT_SYMBOL(__dev_get_by_index);
811 
812 /**
813  *	dev_get_by_index_rcu - find a device by its ifindex
814  *	@net: the applicable net namespace
815  *	@ifindex: index of device
816  *
817  *	Search for an interface by index. Returns %NULL if the device
818  *	is not found or a pointer to the device. The device has not
819  *	had its reference counter increased so the caller must be careful
820  *	about locking. The caller must hold RCU lock.
821  */
822 
823 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
824 {
825 	struct net_device *dev;
826 	struct hlist_head *head = dev_index_hash(net, ifindex);
827 
828 	hlist_for_each_entry_rcu(dev, head, index_hlist)
829 		if (dev->ifindex == ifindex)
830 			return dev;
831 
832 	return NULL;
833 }
834 EXPORT_SYMBOL(dev_get_by_index_rcu);
835 
836 
837 /**
838  *	dev_get_by_index - find a device by its ifindex
839  *	@net: the applicable net namespace
840  *	@ifindex: index of device
841  *
842  *	Search for an interface by index. Returns NULL if the device
843  *	is not found or a pointer to the device. The device returned has
844  *	had a reference added and the pointer is safe until the user calls
845  *	dev_put to indicate they have finished with it.
846  */
847 
848 struct net_device *dev_get_by_index(struct net *net, int ifindex)
849 {
850 	struct net_device *dev;
851 
852 	rcu_read_lock();
853 	dev = dev_get_by_index_rcu(net, ifindex);
854 	dev_hold(dev);
855 	rcu_read_unlock();
856 	return dev;
857 }
858 EXPORT_SYMBOL(dev_get_by_index);
859 
860 /**
861  *	dev_get_by_napi_id - find a device by napi_id
862  *	@napi_id: ID of the NAPI struct
863  *
864  *	Search for an interface by NAPI ID. Returns %NULL if the device
865  *	is not found or a pointer to the device. The device has not had
866  *	its reference counter increased so the caller must be careful
867  *	about locking. The caller must hold RCU lock.
868  */
869 
870 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
871 {
872 	struct napi_struct *napi;
873 
874 	WARN_ON_ONCE(!rcu_read_lock_held());
875 
876 	if (napi_id < MIN_NAPI_ID)
877 		return NULL;
878 
879 	napi = napi_by_id(napi_id);
880 
881 	return napi ? napi->dev : NULL;
882 }
883 EXPORT_SYMBOL(dev_get_by_napi_id);
884 
885 /**
886  *	netdev_get_name - get a netdevice name, knowing its ifindex.
887  *	@net: network namespace
888  *	@name: a pointer to the buffer where the name will be stored.
889  *	@ifindex: the ifindex of the interface to get the name from.
890  */
891 int netdev_get_name(struct net *net, char *name, int ifindex)
892 {
893 	struct net_device *dev;
894 	int ret;
895 
896 	down_read(&devnet_rename_sem);
897 	rcu_read_lock();
898 
899 	dev = dev_get_by_index_rcu(net, ifindex);
900 	if (!dev) {
901 		ret = -ENODEV;
902 		goto out;
903 	}
904 
905 	strcpy(name, dev->name);
906 
907 	ret = 0;
908 out:
909 	rcu_read_unlock();
910 	up_read(&devnet_rename_sem);
911 	return ret;
912 }
913 
914 /**
915  *	dev_getbyhwaddr_rcu - find a device by its hardware address
916  *	@net: the applicable net namespace
917  *	@type: media type of device
918  *	@ha: hardware address
919  *
920  *	Search for an interface by MAC address. Returns NULL if the device
921  *	is not found or a pointer to the device.
922  *	The caller must hold RCU or RTNL.
923  *	The returned device has not had its ref count increased
924  *	and the caller must therefore be careful about locking
925  *
926  */
927 
928 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
929 				       const char *ha)
930 {
931 	struct net_device *dev;
932 
933 	for_each_netdev_rcu(net, dev)
934 		if (dev->type == type &&
935 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
936 			return dev;
937 
938 	return NULL;
939 }
940 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
941 
942 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
943 {
944 	struct net_device *dev, *ret = NULL;
945 
946 	rcu_read_lock();
947 	for_each_netdev_rcu(net, dev)
948 		if (dev->type == type) {
949 			dev_hold(dev);
950 			ret = dev;
951 			break;
952 		}
953 	rcu_read_unlock();
954 	return ret;
955 }
956 EXPORT_SYMBOL(dev_getfirstbyhwtype);
957 
958 /**
959  *	__dev_get_by_flags - find any device with given flags
960  *	@net: the applicable net namespace
961  *	@if_flags: IFF_* values
962  *	@mask: bitmask of bits in if_flags to check
963  *
964  *	Search for any interface with the given flags. Returns NULL if a device
965  *	is not found or a pointer to the device. Must be called inside
966  *	rtnl_lock(), and result refcount is unchanged.
967  */
968 
969 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
970 				      unsigned short mask)
971 {
972 	struct net_device *dev, *ret;
973 
974 	ASSERT_RTNL();
975 
976 	ret = NULL;
977 	for_each_netdev(net, dev) {
978 		if (((dev->flags ^ if_flags) & mask) == 0) {
979 			ret = dev;
980 			break;
981 		}
982 	}
983 	return ret;
984 }
985 EXPORT_SYMBOL(__dev_get_by_flags);
986 
987 /**
988  *	dev_valid_name - check if name is okay for network device
989  *	@name: name string
990  *
991  *	Network device names need to be valid file names to
992  *	allow sysfs to work.  We also disallow any kind of
993  *	whitespace.
994  */
995 bool dev_valid_name(const char *name)
996 {
997 	if (*name == '\0')
998 		return false;
999 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1000 		return false;
1001 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1002 		return false;
1003 
1004 	while (*name) {
1005 		if (*name == '/' || *name == ':' || isspace(*name))
1006 			return false;
1007 		name++;
1008 	}
1009 	return true;
1010 }
1011 EXPORT_SYMBOL(dev_valid_name);
1012 
1013 /**
1014  *	__dev_alloc_name - allocate a name for a device
1015  *	@net: network namespace to allocate the device name in
1016  *	@name: name format string
1017  *	@buf:  scratch buffer and result name string
1018  *
1019  *	Passed a format string - eg "lt%d" it will try and find a suitable
1020  *	id. It scans list of devices to build up a free map, then chooses
1021  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1022  *	while allocating the name and adding the device in order to avoid
1023  *	duplicates.
1024  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1025  *	Returns the number of the unit assigned or a negative errno code.
1026  */
1027 
1028 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1029 {
1030 	int i = 0;
1031 	const char *p;
1032 	const int max_netdevices = 8*PAGE_SIZE;
1033 	unsigned long *inuse;
1034 	struct net_device *d;
1035 
1036 	if (!dev_valid_name(name))
1037 		return -EINVAL;
1038 
1039 	p = strchr(name, '%');
1040 	if (p) {
1041 		/*
1042 		 * Verify the string as this thing may have come from
1043 		 * the user.  There must be either one "%d" and no other "%"
1044 		 * characters.
1045 		 */
1046 		if (p[1] != 'd' || strchr(p + 2, '%'))
1047 			return -EINVAL;
1048 
1049 		/* Use one page as a bit array of possible slots */
1050 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1051 		if (!inuse)
1052 			return -ENOMEM;
1053 
1054 		for_each_netdev(net, d) {
1055 			struct netdev_name_node *name_node;
1056 			list_for_each_entry(name_node, &d->name_node->list, list) {
1057 				if (!sscanf(name_node->name, name, &i))
1058 					continue;
1059 				if (i < 0 || i >= max_netdevices)
1060 					continue;
1061 
1062 				/*  avoid cases where sscanf is not exact inverse of printf */
1063 				snprintf(buf, IFNAMSIZ, name, i);
1064 				if (!strncmp(buf, name_node->name, IFNAMSIZ))
1065 					__set_bit(i, inuse);
1066 			}
1067 			if (!sscanf(d->name, name, &i))
1068 				continue;
1069 			if (i < 0 || i >= max_netdevices)
1070 				continue;
1071 
1072 			/*  avoid cases where sscanf is not exact inverse of printf */
1073 			snprintf(buf, IFNAMSIZ, name, i);
1074 			if (!strncmp(buf, d->name, IFNAMSIZ))
1075 				__set_bit(i, inuse);
1076 		}
1077 
1078 		i = find_first_zero_bit(inuse, max_netdevices);
1079 		free_page((unsigned long) inuse);
1080 	}
1081 
1082 	snprintf(buf, IFNAMSIZ, name, i);
1083 	if (!netdev_name_in_use(net, buf))
1084 		return i;
1085 
1086 	/* It is possible to run out of possible slots
1087 	 * when the name is long and there isn't enough space left
1088 	 * for the digits, or if all bits are used.
1089 	 */
1090 	return -ENFILE;
1091 }
1092 
1093 static int dev_alloc_name_ns(struct net *net,
1094 			     struct net_device *dev,
1095 			     const char *name)
1096 {
1097 	char buf[IFNAMSIZ];
1098 	int ret;
1099 
1100 	BUG_ON(!net);
1101 	ret = __dev_alloc_name(net, name, buf);
1102 	if (ret >= 0)
1103 		strscpy(dev->name, buf, IFNAMSIZ);
1104 	return ret;
1105 }
1106 
1107 /**
1108  *	dev_alloc_name - allocate a name for a device
1109  *	@dev: device
1110  *	@name: name format string
1111  *
1112  *	Passed a format string - eg "lt%d" it will try and find a suitable
1113  *	id. It scans list of devices to build up a free map, then chooses
1114  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1115  *	while allocating the name and adding the device in order to avoid
1116  *	duplicates.
1117  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1118  *	Returns the number of the unit assigned or a negative errno code.
1119  */
1120 
1121 int dev_alloc_name(struct net_device *dev, const char *name)
1122 {
1123 	return dev_alloc_name_ns(dev_net(dev), dev, name);
1124 }
1125 EXPORT_SYMBOL(dev_alloc_name);
1126 
1127 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1128 			      const char *name)
1129 {
1130 	BUG_ON(!net);
1131 
1132 	if (!dev_valid_name(name))
1133 		return -EINVAL;
1134 
1135 	if (strchr(name, '%'))
1136 		return dev_alloc_name_ns(net, dev, name);
1137 	else if (netdev_name_in_use(net, name))
1138 		return -EEXIST;
1139 	else if (dev->name != name)
1140 		strscpy(dev->name, name, IFNAMSIZ);
1141 
1142 	return 0;
1143 }
1144 
1145 /**
1146  *	dev_change_name - change name of a device
1147  *	@dev: device
1148  *	@newname: name (or format string) must be at least IFNAMSIZ
1149  *
1150  *	Change name of a device, can pass format strings "eth%d".
1151  *	for wildcarding.
1152  */
1153 int dev_change_name(struct net_device *dev, const char *newname)
1154 {
1155 	unsigned char old_assign_type;
1156 	char oldname[IFNAMSIZ];
1157 	int err = 0;
1158 	int ret;
1159 	struct net *net;
1160 
1161 	ASSERT_RTNL();
1162 	BUG_ON(!dev_net(dev));
1163 
1164 	net = dev_net(dev);
1165 
1166 	down_write(&devnet_rename_sem);
1167 
1168 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1169 		up_write(&devnet_rename_sem);
1170 		return 0;
1171 	}
1172 
1173 	memcpy(oldname, dev->name, IFNAMSIZ);
1174 
1175 	err = dev_get_valid_name(net, dev, newname);
1176 	if (err < 0) {
1177 		up_write(&devnet_rename_sem);
1178 		return err;
1179 	}
1180 
1181 	if (oldname[0] && !strchr(oldname, '%'))
1182 		netdev_info(dev, "renamed from %s%s\n", oldname,
1183 			    dev->flags & IFF_UP ? " (while UP)" : "");
1184 
1185 	old_assign_type = dev->name_assign_type;
1186 	dev->name_assign_type = NET_NAME_RENAMED;
1187 
1188 rollback:
1189 	ret = device_rename(&dev->dev, dev->name);
1190 	if (ret) {
1191 		memcpy(dev->name, oldname, IFNAMSIZ);
1192 		dev->name_assign_type = old_assign_type;
1193 		up_write(&devnet_rename_sem);
1194 		return ret;
1195 	}
1196 
1197 	up_write(&devnet_rename_sem);
1198 
1199 	netdev_adjacent_rename_links(dev, oldname);
1200 
1201 	write_lock(&dev_base_lock);
1202 	netdev_name_node_del(dev->name_node);
1203 	write_unlock(&dev_base_lock);
1204 
1205 	synchronize_rcu();
1206 
1207 	write_lock(&dev_base_lock);
1208 	netdev_name_node_add(net, dev->name_node);
1209 	write_unlock(&dev_base_lock);
1210 
1211 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1212 	ret = notifier_to_errno(ret);
1213 
1214 	if (ret) {
1215 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1216 		if (err >= 0) {
1217 			err = ret;
1218 			down_write(&devnet_rename_sem);
1219 			memcpy(dev->name, oldname, IFNAMSIZ);
1220 			memcpy(oldname, newname, IFNAMSIZ);
1221 			dev->name_assign_type = old_assign_type;
1222 			old_assign_type = NET_NAME_RENAMED;
1223 			goto rollback;
1224 		} else {
1225 			netdev_err(dev, "name change rollback failed: %d\n",
1226 				   ret);
1227 		}
1228 	}
1229 
1230 	return err;
1231 }
1232 
1233 /**
1234  *	dev_set_alias - change ifalias of a device
1235  *	@dev: device
1236  *	@alias: name up to IFALIASZ
1237  *	@len: limit of bytes to copy from info
1238  *
1239  *	Set ifalias for a device,
1240  */
1241 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1242 {
1243 	struct dev_ifalias *new_alias = NULL;
1244 
1245 	if (len >= IFALIASZ)
1246 		return -EINVAL;
1247 
1248 	if (len) {
1249 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1250 		if (!new_alias)
1251 			return -ENOMEM;
1252 
1253 		memcpy(new_alias->ifalias, alias, len);
1254 		new_alias->ifalias[len] = 0;
1255 	}
1256 
1257 	mutex_lock(&ifalias_mutex);
1258 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1259 					mutex_is_locked(&ifalias_mutex));
1260 	mutex_unlock(&ifalias_mutex);
1261 
1262 	if (new_alias)
1263 		kfree_rcu(new_alias, rcuhead);
1264 
1265 	return len;
1266 }
1267 EXPORT_SYMBOL(dev_set_alias);
1268 
1269 /**
1270  *	dev_get_alias - get ifalias of a device
1271  *	@dev: device
1272  *	@name: buffer to store name of ifalias
1273  *	@len: size of buffer
1274  *
1275  *	get ifalias for a device.  Caller must make sure dev cannot go
1276  *	away,  e.g. rcu read lock or own a reference count to device.
1277  */
1278 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1279 {
1280 	const struct dev_ifalias *alias;
1281 	int ret = 0;
1282 
1283 	rcu_read_lock();
1284 	alias = rcu_dereference(dev->ifalias);
1285 	if (alias)
1286 		ret = snprintf(name, len, "%s", alias->ifalias);
1287 	rcu_read_unlock();
1288 
1289 	return ret;
1290 }
1291 
1292 /**
1293  *	netdev_features_change - device changes features
1294  *	@dev: device to cause notification
1295  *
1296  *	Called to indicate a device has changed features.
1297  */
1298 void netdev_features_change(struct net_device *dev)
1299 {
1300 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1301 }
1302 EXPORT_SYMBOL(netdev_features_change);
1303 
1304 /**
1305  *	netdev_state_change - device changes state
1306  *	@dev: device to cause notification
1307  *
1308  *	Called to indicate a device has changed state. This function calls
1309  *	the notifier chains for netdev_chain and sends a NEWLINK message
1310  *	to the routing socket.
1311  */
1312 void netdev_state_change(struct net_device *dev)
1313 {
1314 	if (dev->flags & IFF_UP) {
1315 		struct netdev_notifier_change_info change_info = {
1316 			.info.dev = dev,
1317 		};
1318 
1319 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1320 					      &change_info.info);
1321 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1322 	}
1323 }
1324 EXPORT_SYMBOL(netdev_state_change);
1325 
1326 /**
1327  * __netdev_notify_peers - notify network peers about existence of @dev,
1328  * to be called when rtnl lock is already held.
1329  * @dev: network device
1330  *
1331  * Generate traffic such that interested network peers are aware of
1332  * @dev, such as by generating a gratuitous ARP. This may be used when
1333  * a device wants to inform the rest of the network about some sort of
1334  * reconfiguration such as a failover event or virtual machine
1335  * migration.
1336  */
1337 void __netdev_notify_peers(struct net_device *dev)
1338 {
1339 	ASSERT_RTNL();
1340 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1341 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1342 }
1343 EXPORT_SYMBOL(__netdev_notify_peers);
1344 
1345 /**
1346  * netdev_notify_peers - notify network peers about existence of @dev
1347  * @dev: network device
1348  *
1349  * Generate traffic such that interested network peers are aware of
1350  * @dev, such as by generating a gratuitous ARP. This may be used when
1351  * a device wants to inform the rest of the network about some sort of
1352  * reconfiguration such as a failover event or virtual machine
1353  * migration.
1354  */
1355 void netdev_notify_peers(struct net_device *dev)
1356 {
1357 	rtnl_lock();
1358 	__netdev_notify_peers(dev);
1359 	rtnl_unlock();
1360 }
1361 EXPORT_SYMBOL(netdev_notify_peers);
1362 
1363 static int napi_threaded_poll(void *data);
1364 
1365 static int napi_kthread_create(struct napi_struct *n)
1366 {
1367 	int err = 0;
1368 
1369 	/* Create and wake up the kthread once to put it in
1370 	 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1371 	 * warning and work with loadavg.
1372 	 */
1373 	n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1374 				n->dev->name, n->napi_id);
1375 	if (IS_ERR(n->thread)) {
1376 		err = PTR_ERR(n->thread);
1377 		pr_err("kthread_run failed with err %d\n", err);
1378 		n->thread = NULL;
1379 	}
1380 
1381 	return err;
1382 }
1383 
1384 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1385 {
1386 	const struct net_device_ops *ops = dev->netdev_ops;
1387 	int ret;
1388 
1389 	ASSERT_RTNL();
1390 	dev_addr_check(dev);
1391 
1392 	if (!netif_device_present(dev)) {
1393 		/* may be detached because parent is runtime-suspended */
1394 		if (dev->dev.parent)
1395 			pm_runtime_resume(dev->dev.parent);
1396 		if (!netif_device_present(dev))
1397 			return -ENODEV;
1398 	}
1399 
1400 	/* Block netpoll from trying to do any rx path servicing.
1401 	 * If we don't do this there is a chance ndo_poll_controller
1402 	 * or ndo_poll may be running while we open the device
1403 	 */
1404 	netpoll_poll_disable(dev);
1405 
1406 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1407 	ret = notifier_to_errno(ret);
1408 	if (ret)
1409 		return ret;
1410 
1411 	set_bit(__LINK_STATE_START, &dev->state);
1412 
1413 	if (ops->ndo_validate_addr)
1414 		ret = ops->ndo_validate_addr(dev);
1415 
1416 	if (!ret && ops->ndo_open)
1417 		ret = ops->ndo_open(dev);
1418 
1419 	netpoll_poll_enable(dev);
1420 
1421 	if (ret)
1422 		clear_bit(__LINK_STATE_START, &dev->state);
1423 	else {
1424 		dev->flags |= IFF_UP;
1425 		dev_set_rx_mode(dev);
1426 		dev_activate(dev);
1427 		add_device_randomness(dev->dev_addr, dev->addr_len);
1428 	}
1429 
1430 	return ret;
1431 }
1432 
1433 /**
1434  *	dev_open	- prepare an interface for use.
1435  *	@dev: device to open
1436  *	@extack: netlink extended ack
1437  *
1438  *	Takes a device from down to up state. The device's private open
1439  *	function is invoked and then the multicast lists are loaded. Finally
1440  *	the device is moved into the up state and a %NETDEV_UP message is
1441  *	sent to the netdev notifier chain.
1442  *
1443  *	Calling this function on an active interface is a nop. On a failure
1444  *	a negative errno code is returned.
1445  */
1446 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1447 {
1448 	int ret;
1449 
1450 	if (dev->flags & IFF_UP)
1451 		return 0;
1452 
1453 	ret = __dev_open(dev, extack);
1454 	if (ret < 0)
1455 		return ret;
1456 
1457 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1458 	call_netdevice_notifiers(NETDEV_UP, dev);
1459 
1460 	return ret;
1461 }
1462 EXPORT_SYMBOL(dev_open);
1463 
1464 static void __dev_close_many(struct list_head *head)
1465 {
1466 	struct net_device *dev;
1467 
1468 	ASSERT_RTNL();
1469 	might_sleep();
1470 
1471 	list_for_each_entry(dev, head, close_list) {
1472 		/* Temporarily disable netpoll until the interface is down */
1473 		netpoll_poll_disable(dev);
1474 
1475 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1476 
1477 		clear_bit(__LINK_STATE_START, &dev->state);
1478 
1479 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1480 		 * can be even on different cpu. So just clear netif_running().
1481 		 *
1482 		 * dev->stop() will invoke napi_disable() on all of it's
1483 		 * napi_struct instances on this device.
1484 		 */
1485 		smp_mb__after_atomic(); /* Commit netif_running(). */
1486 	}
1487 
1488 	dev_deactivate_many(head);
1489 
1490 	list_for_each_entry(dev, head, close_list) {
1491 		const struct net_device_ops *ops = dev->netdev_ops;
1492 
1493 		/*
1494 		 *	Call the device specific close. This cannot fail.
1495 		 *	Only if device is UP
1496 		 *
1497 		 *	We allow it to be called even after a DETACH hot-plug
1498 		 *	event.
1499 		 */
1500 		if (ops->ndo_stop)
1501 			ops->ndo_stop(dev);
1502 
1503 		dev->flags &= ~IFF_UP;
1504 		netpoll_poll_enable(dev);
1505 	}
1506 }
1507 
1508 static void __dev_close(struct net_device *dev)
1509 {
1510 	LIST_HEAD(single);
1511 
1512 	list_add(&dev->close_list, &single);
1513 	__dev_close_many(&single);
1514 	list_del(&single);
1515 }
1516 
1517 void dev_close_many(struct list_head *head, bool unlink)
1518 {
1519 	struct net_device *dev, *tmp;
1520 
1521 	/* Remove the devices that don't need to be closed */
1522 	list_for_each_entry_safe(dev, tmp, head, close_list)
1523 		if (!(dev->flags & IFF_UP))
1524 			list_del_init(&dev->close_list);
1525 
1526 	__dev_close_many(head);
1527 
1528 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1529 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1530 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1531 		if (unlink)
1532 			list_del_init(&dev->close_list);
1533 	}
1534 }
1535 EXPORT_SYMBOL(dev_close_many);
1536 
1537 /**
1538  *	dev_close - shutdown an interface.
1539  *	@dev: device to shutdown
1540  *
1541  *	This function moves an active device into down state. A
1542  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1543  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1544  *	chain.
1545  */
1546 void dev_close(struct net_device *dev)
1547 {
1548 	if (dev->flags & IFF_UP) {
1549 		LIST_HEAD(single);
1550 
1551 		list_add(&dev->close_list, &single);
1552 		dev_close_many(&single, true);
1553 		list_del(&single);
1554 	}
1555 }
1556 EXPORT_SYMBOL(dev_close);
1557 
1558 
1559 /**
1560  *	dev_disable_lro - disable Large Receive Offload on a device
1561  *	@dev: device
1562  *
1563  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1564  *	called under RTNL.  This is needed if received packets may be
1565  *	forwarded to another interface.
1566  */
1567 void dev_disable_lro(struct net_device *dev)
1568 {
1569 	struct net_device *lower_dev;
1570 	struct list_head *iter;
1571 
1572 	dev->wanted_features &= ~NETIF_F_LRO;
1573 	netdev_update_features(dev);
1574 
1575 	if (unlikely(dev->features & NETIF_F_LRO))
1576 		netdev_WARN(dev, "failed to disable LRO!\n");
1577 
1578 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1579 		dev_disable_lro(lower_dev);
1580 }
1581 EXPORT_SYMBOL(dev_disable_lro);
1582 
1583 /**
1584  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1585  *	@dev: device
1586  *
1587  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1588  *	called under RTNL.  This is needed if Generic XDP is installed on
1589  *	the device.
1590  */
1591 static void dev_disable_gro_hw(struct net_device *dev)
1592 {
1593 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1594 	netdev_update_features(dev);
1595 
1596 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1597 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1598 }
1599 
1600 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1601 {
1602 #define N(val) 						\
1603 	case NETDEV_##val:				\
1604 		return "NETDEV_" __stringify(val);
1605 	switch (cmd) {
1606 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1607 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1608 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1609 	N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1610 	N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1611 	N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1612 	N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1613 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1614 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1615 	N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1616 	N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1617 	}
1618 #undef N
1619 	return "UNKNOWN_NETDEV_EVENT";
1620 }
1621 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1622 
1623 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1624 				   struct net_device *dev)
1625 {
1626 	struct netdev_notifier_info info = {
1627 		.dev = dev,
1628 	};
1629 
1630 	return nb->notifier_call(nb, val, &info);
1631 }
1632 
1633 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1634 					     struct net_device *dev)
1635 {
1636 	int err;
1637 
1638 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1639 	err = notifier_to_errno(err);
1640 	if (err)
1641 		return err;
1642 
1643 	if (!(dev->flags & IFF_UP))
1644 		return 0;
1645 
1646 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1647 	return 0;
1648 }
1649 
1650 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1651 						struct net_device *dev)
1652 {
1653 	if (dev->flags & IFF_UP) {
1654 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1655 					dev);
1656 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1657 	}
1658 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1659 }
1660 
1661 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1662 						 struct net *net)
1663 {
1664 	struct net_device *dev;
1665 	int err;
1666 
1667 	for_each_netdev(net, dev) {
1668 		err = call_netdevice_register_notifiers(nb, dev);
1669 		if (err)
1670 			goto rollback;
1671 	}
1672 	return 0;
1673 
1674 rollback:
1675 	for_each_netdev_continue_reverse(net, dev)
1676 		call_netdevice_unregister_notifiers(nb, dev);
1677 	return err;
1678 }
1679 
1680 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1681 						    struct net *net)
1682 {
1683 	struct net_device *dev;
1684 
1685 	for_each_netdev(net, dev)
1686 		call_netdevice_unregister_notifiers(nb, dev);
1687 }
1688 
1689 static int dev_boot_phase = 1;
1690 
1691 /**
1692  * register_netdevice_notifier - register a network notifier block
1693  * @nb: notifier
1694  *
1695  * Register a notifier to be called when network device events occur.
1696  * The notifier passed is linked into the kernel structures and must
1697  * not be reused until it has been unregistered. A negative errno code
1698  * is returned on a failure.
1699  *
1700  * When registered all registration and up events are replayed
1701  * to the new notifier to allow device to have a race free
1702  * view of the network device list.
1703  */
1704 
1705 int register_netdevice_notifier(struct notifier_block *nb)
1706 {
1707 	struct net *net;
1708 	int err;
1709 
1710 	/* Close race with setup_net() and cleanup_net() */
1711 	down_write(&pernet_ops_rwsem);
1712 	rtnl_lock();
1713 	err = raw_notifier_chain_register(&netdev_chain, nb);
1714 	if (err)
1715 		goto unlock;
1716 	if (dev_boot_phase)
1717 		goto unlock;
1718 	for_each_net(net) {
1719 		err = call_netdevice_register_net_notifiers(nb, net);
1720 		if (err)
1721 			goto rollback;
1722 	}
1723 
1724 unlock:
1725 	rtnl_unlock();
1726 	up_write(&pernet_ops_rwsem);
1727 	return err;
1728 
1729 rollback:
1730 	for_each_net_continue_reverse(net)
1731 		call_netdevice_unregister_net_notifiers(nb, net);
1732 
1733 	raw_notifier_chain_unregister(&netdev_chain, nb);
1734 	goto unlock;
1735 }
1736 EXPORT_SYMBOL(register_netdevice_notifier);
1737 
1738 /**
1739  * unregister_netdevice_notifier - unregister a network notifier block
1740  * @nb: notifier
1741  *
1742  * Unregister a notifier previously registered by
1743  * register_netdevice_notifier(). The notifier is unlinked into the
1744  * kernel structures and may then be reused. A negative errno code
1745  * is returned on a failure.
1746  *
1747  * After unregistering unregister and down device events are synthesized
1748  * for all devices on the device list to the removed notifier to remove
1749  * the need for special case cleanup code.
1750  */
1751 
1752 int unregister_netdevice_notifier(struct notifier_block *nb)
1753 {
1754 	struct net *net;
1755 	int err;
1756 
1757 	/* Close race with setup_net() and cleanup_net() */
1758 	down_write(&pernet_ops_rwsem);
1759 	rtnl_lock();
1760 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1761 	if (err)
1762 		goto unlock;
1763 
1764 	for_each_net(net)
1765 		call_netdevice_unregister_net_notifiers(nb, net);
1766 
1767 unlock:
1768 	rtnl_unlock();
1769 	up_write(&pernet_ops_rwsem);
1770 	return err;
1771 }
1772 EXPORT_SYMBOL(unregister_netdevice_notifier);
1773 
1774 static int __register_netdevice_notifier_net(struct net *net,
1775 					     struct notifier_block *nb,
1776 					     bool ignore_call_fail)
1777 {
1778 	int err;
1779 
1780 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
1781 	if (err)
1782 		return err;
1783 	if (dev_boot_phase)
1784 		return 0;
1785 
1786 	err = call_netdevice_register_net_notifiers(nb, net);
1787 	if (err && !ignore_call_fail)
1788 		goto chain_unregister;
1789 
1790 	return 0;
1791 
1792 chain_unregister:
1793 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
1794 	return err;
1795 }
1796 
1797 static int __unregister_netdevice_notifier_net(struct net *net,
1798 					       struct notifier_block *nb)
1799 {
1800 	int err;
1801 
1802 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1803 	if (err)
1804 		return err;
1805 
1806 	call_netdevice_unregister_net_notifiers(nb, net);
1807 	return 0;
1808 }
1809 
1810 /**
1811  * register_netdevice_notifier_net - register a per-netns network notifier block
1812  * @net: network namespace
1813  * @nb: notifier
1814  *
1815  * Register a notifier to be called when network device events occur.
1816  * The notifier passed is linked into the kernel structures and must
1817  * not be reused until it has been unregistered. A negative errno code
1818  * is returned on a failure.
1819  *
1820  * When registered all registration and up events are replayed
1821  * to the new notifier to allow device to have a race free
1822  * view of the network device list.
1823  */
1824 
1825 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1826 {
1827 	int err;
1828 
1829 	rtnl_lock();
1830 	err = __register_netdevice_notifier_net(net, nb, false);
1831 	rtnl_unlock();
1832 	return err;
1833 }
1834 EXPORT_SYMBOL(register_netdevice_notifier_net);
1835 
1836 /**
1837  * unregister_netdevice_notifier_net - unregister a per-netns
1838  *                                     network notifier block
1839  * @net: network namespace
1840  * @nb: notifier
1841  *
1842  * Unregister a notifier previously registered by
1843  * register_netdevice_notifier_net(). The notifier is unlinked from the
1844  * kernel structures and may then be reused. A negative errno code
1845  * is returned on a failure.
1846  *
1847  * After unregistering unregister and down device events are synthesized
1848  * for all devices on the device list to the removed notifier to remove
1849  * the need for special case cleanup code.
1850  */
1851 
1852 int unregister_netdevice_notifier_net(struct net *net,
1853 				      struct notifier_block *nb)
1854 {
1855 	int err;
1856 
1857 	rtnl_lock();
1858 	err = __unregister_netdevice_notifier_net(net, nb);
1859 	rtnl_unlock();
1860 	return err;
1861 }
1862 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1863 
1864 static void __move_netdevice_notifier_net(struct net *src_net,
1865 					  struct net *dst_net,
1866 					  struct notifier_block *nb)
1867 {
1868 	__unregister_netdevice_notifier_net(src_net, nb);
1869 	__register_netdevice_notifier_net(dst_net, nb, true);
1870 }
1871 
1872 void move_netdevice_notifier_net(struct net *src_net, struct net *dst_net,
1873 				 struct notifier_block *nb)
1874 {
1875 	rtnl_lock();
1876 	__move_netdevice_notifier_net(src_net, dst_net, nb);
1877 	rtnl_unlock();
1878 }
1879 
1880 int register_netdevice_notifier_dev_net(struct net_device *dev,
1881 					struct notifier_block *nb,
1882 					struct netdev_net_notifier *nn)
1883 {
1884 	int err;
1885 
1886 	rtnl_lock();
1887 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1888 	if (!err) {
1889 		nn->nb = nb;
1890 		list_add(&nn->list, &dev->net_notifier_list);
1891 	}
1892 	rtnl_unlock();
1893 	return err;
1894 }
1895 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1896 
1897 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1898 					  struct notifier_block *nb,
1899 					  struct netdev_net_notifier *nn)
1900 {
1901 	int err;
1902 
1903 	rtnl_lock();
1904 	list_del(&nn->list);
1905 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1906 	rtnl_unlock();
1907 	return err;
1908 }
1909 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1910 
1911 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1912 					     struct net *net)
1913 {
1914 	struct netdev_net_notifier *nn;
1915 
1916 	list_for_each_entry(nn, &dev->net_notifier_list, list)
1917 		__move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
1918 }
1919 
1920 /**
1921  *	call_netdevice_notifiers_info - call all network notifier blocks
1922  *	@val: value passed unmodified to notifier function
1923  *	@info: notifier information data
1924  *
1925  *	Call all network notifier blocks.  Parameters and return value
1926  *	are as for raw_notifier_call_chain().
1927  */
1928 
1929 static int call_netdevice_notifiers_info(unsigned long val,
1930 					 struct netdev_notifier_info *info)
1931 {
1932 	struct net *net = dev_net(info->dev);
1933 	int ret;
1934 
1935 	ASSERT_RTNL();
1936 
1937 	/* Run per-netns notifier block chain first, then run the global one.
1938 	 * Hopefully, one day, the global one is going to be removed after
1939 	 * all notifier block registrators get converted to be per-netns.
1940 	 */
1941 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1942 	if (ret & NOTIFY_STOP_MASK)
1943 		return ret;
1944 	return raw_notifier_call_chain(&netdev_chain, val, info);
1945 }
1946 
1947 /**
1948  *	call_netdevice_notifiers_info_robust - call per-netns notifier blocks
1949  *	                                       for and rollback on error
1950  *	@val_up: value passed unmodified to notifier function
1951  *	@val_down: value passed unmodified to the notifier function when
1952  *	           recovering from an error on @val_up
1953  *	@info: notifier information data
1954  *
1955  *	Call all per-netns network notifier blocks, but not notifier blocks on
1956  *	the global notifier chain. Parameters and return value are as for
1957  *	raw_notifier_call_chain_robust().
1958  */
1959 
1960 static int
1961 call_netdevice_notifiers_info_robust(unsigned long val_up,
1962 				     unsigned long val_down,
1963 				     struct netdev_notifier_info *info)
1964 {
1965 	struct net *net = dev_net(info->dev);
1966 
1967 	ASSERT_RTNL();
1968 
1969 	return raw_notifier_call_chain_robust(&net->netdev_chain,
1970 					      val_up, val_down, info);
1971 }
1972 
1973 static int call_netdevice_notifiers_extack(unsigned long val,
1974 					   struct net_device *dev,
1975 					   struct netlink_ext_ack *extack)
1976 {
1977 	struct netdev_notifier_info info = {
1978 		.dev = dev,
1979 		.extack = extack,
1980 	};
1981 
1982 	return call_netdevice_notifiers_info(val, &info);
1983 }
1984 
1985 /**
1986  *	call_netdevice_notifiers - call all network notifier blocks
1987  *      @val: value passed unmodified to notifier function
1988  *      @dev: net_device pointer passed unmodified to notifier function
1989  *
1990  *	Call all network notifier blocks.  Parameters and return value
1991  *	are as for raw_notifier_call_chain().
1992  */
1993 
1994 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1995 {
1996 	return call_netdevice_notifiers_extack(val, dev, NULL);
1997 }
1998 EXPORT_SYMBOL(call_netdevice_notifiers);
1999 
2000 /**
2001  *	call_netdevice_notifiers_mtu - call all network notifier blocks
2002  *	@val: value passed unmodified to notifier function
2003  *	@dev: net_device pointer passed unmodified to notifier function
2004  *	@arg: additional u32 argument passed to the notifier function
2005  *
2006  *	Call all network notifier blocks.  Parameters and return value
2007  *	are as for raw_notifier_call_chain().
2008  */
2009 static int call_netdevice_notifiers_mtu(unsigned long val,
2010 					struct net_device *dev, u32 arg)
2011 {
2012 	struct netdev_notifier_info_ext info = {
2013 		.info.dev = dev,
2014 		.ext.mtu = arg,
2015 	};
2016 
2017 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2018 
2019 	return call_netdevice_notifiers_info(val, &info.info);
2020 }
2021 
2022 #ifdef CONFIG_NET_INGRESS
2023 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2024 
2025 void net_inc_ingress_queue(void)
2026 {
2027 	static_branch_inc(&ingress_needed_key);
2028 }
2029 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2030 
2031 void net_dec_ingress_queue(void)
2032 {
2033 	static_branch_dec(&ingress_needed_key);
2034 }
2035 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2036 #endif
2037 
2038 #ifdef CONFIG_NET_EGRESS
2039 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2040 
2041 void net_inc_egress_queue(void)
2042 {
2043 	static_branch_inc(&egress_needed_key);
2044 }
2045 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2046 
2047 void net_dec_egress_queue(void)
2048 {
2049 	static_branch_dec(&egress_needed_key);
2050 }
2051 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2052 #endif
2053 
2054 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2055 EXPORT_SYMBOL(netstamp_needed_key);
2056 #ifdef CONFIG_JUMP_LABEL
2057 static atomic_t netstamp_needed_deferred;
2058 static atomic_t netstamp_wanted;
2059 static void netstamp_clear(struct work_struct *work)
2060 {
2061 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2062 	int wanted;
2063 
2064 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2065 	if (wanted > 0)
2066 		static_branch_enable(&netstamp_needed_key);
2067 	else
2068 		static_branch_disable(&netstamp_needed_key);
2069 }
2070 static DECLARE_WORK(netstamp_work, netstamp_clear);
2071 #endif
2072 
2073 void net_enable_timestamp(void)
2074 {
2075 #ifdef CONFIG_JUMP_LABEL
2076 	int wanted = atomic_read(&netstamp_wanted);
2077 
2078 	while (wanted > 0) {
2079 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2080 			return;
2081 	}
2082 	atomic_inc(&netstamp_needed_deferred);
2083 	schedule_work(&netstamp_work);
2084 #else
2085 	static_branch_inc(&netstamp_needed_key);
2086 #endif
2087 }
2088 EXPORT_SYMBOL(net_enable_timestamp);
2089 
2090 void net_disable_timestamp(void)
2091 {
2092 #ifdef CONFIG_JUMP_LABEL
2093 	int wanted = atomic_read(&netstamp_wanted);
2094 
2095 	while (wanted > 1) {
2096 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2097 			return;
2098 	}
2099 	atomic_dec(&netstamp_needed_deferred);
2100 	schedule_work(&netstamp_work);
2101 #else
2102 	static_branch_dec(&netstamp_needed_key);
2103 #endif
2104 }
2105 EXPORT_SYMBOL(net_disable_timestamp);
2106 
2107 static inline void net_timestamp_set(struct sk_buff *skb)
2108 {
2109 	skb->tstamp = 0;
2110 	skb->mono_delivery_time = 0;
2111 	if (static_branch_unlikely(&netstamp_needed_key))
2112 		skb->tstamp = ktime_get_real();
2113 }
2114 
2115 #define net_timestamp_check(COND, SKB)				\
2116 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2117 		if ((COND) && !(SKB)->tstamp)			\
2118 			(SKB)->tstamp = ktime_get_real();	\
2119 	}							\
2120 
2121 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2122 {
2123 	return __is_skb_forwardable(dev, skb, true);
2124 }
2125 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2126 
2127 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2128 			      bool check_mtu)
2129 {
2130 	int ret = ____dev_forward_skb(dev, skb, check_mtu);
2131 
2132 	if (likely(!ret)) {
2133 		skb->protocol = eth_type_trans(skb, dev);
2134 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2135 	}
2136 
2137 	return ret;
2138 }
2139 
2140 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2141 {
2142 	return __dev_forward_skb2(dev, skb, true);
2143 }
2144 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2145 
2146 /**
2147  * dev_forward_skb - loopback an skb to another netif
2148  *
2149  * @dev: destination network device
2150  * @skb: buffer to forward
2151  *
2152  * return values:
2153  *	NET_RX_SUCCESS	(no congestion)
2154  *	NET_RX_DROP     (packet was dropped, but freed)
2155  *
2156  * dev_forward_skb can be used for injecting an skb from the
2157  * start_xmit function of one device into the receive queue
2158  * of another device.
2159  *
2160  * The receiving device may be in another namespace, so
2161  * we have to clear all information in the skb that could
2162  * impact namespace isolation.
2163  */
2164 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2165 {
2166 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2167 }
2168 EXPORT_SYMBOL_GPL(dev_forward_skb);
2169 
2170 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2171 {
2172 	return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2173 }
2174 
2175 static inline int deliver_skb(struct sk_buff *skb,
2176 			      struct packet_type *pt_prev,
2177 			      struct net_device *orig_dev)
2178 {
2179 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2180 		return -ENOMEM;
2181 	refcount_inc(&skb->users);
2182 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2183 }
2184 
2185 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2186 					  struct packet_type **pt,
2187 					  struct net_device *orig_dev,
2188 					  __be16 type,
2189 					  struct list_head *ptype_list)
2190 {
2191 	struct packet_type *ptype, *pt_prev = *pt;
2192 
2193 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2194 		if (ptype->type != type)
2195 			continue;
2196 		if (pt_prev)
2197 			deliver_skb(skb, pt_prev, orig_dev);
2198 		pt_prev = ptype;
2199 	}
2200 	*pt = pt_prev;
2201 }
2202 
2203 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2204 {
2205 	if (!ptype->af_packet_priv || !skb->sk)
2206 		return false;
2207 
2208 	if (ptype->id_match)
2209 		return ptype->id_match(ptype, skb->sk);
2210 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2211 		return true;
2212 
2213 	return false;
2214 }
2215 
2216 /**
2217  * dev_nit_active - return true if any network interface taps are in use
2218  *
2219  * @dev: network device to check for the presence of taps
2220  */
2221 bool dev_nit_active(struct net_device *dev)
2222 {
2223 	return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2224 }
2225 EXPORT_SYMBOL_GPL(dev_nit_active);
2226 
2227 /*
2228  *	Support routine. Sends outgoing frames to any network
2229  *	taps currently in use.
2230  */
2231 
2232 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2233 {
2234 	struct packet_type *ptype;
2235 	struct sk_buff *skb2 = NULL;
2236 	struct packet_type *pt_prev = NULL;
2237 	struct list_head *ptype_list = &ptype_all;
2238 
2239 	rcu_read_lock();
2240 again:
2241 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2242 		if (ptype->ignore_outgoing)
2243 			continue;
2244 
2245 		/* Never send packets back to the socket
2246 		 * they originated from - MvS (miquels@drinkel.ow.org)
2247 		 */
2248 		if (skb_loop_sk(ptype, skb))
2249 			continue;
2250 
2251 		if (pt_prev) {
2252 			deliver_skb(skb2, pt_prev, skb->dev);
2253 			pt_prev = ptype;
2254 			continue;
2255 		}
2256 
2257 		/* need to clone skb, done only once */
2258 		skb2 = skb_clone(skb, GFP_ATOMIC);
2259 		if (!skb2)
2260 			goto out_unlock;
2261 
2262 		net_timestamp_set(skb2);
2263 
2264 		/* skb->nh should be correctly
2265 		 * set by sender, so that the second statement is
2266 		 * just protection against buggy protocols.
2267 		 */
2268 		skb_reset_mac_header(skb2);
2269 
2270 		if (skb_network_header(skb2) < skb2->data ||
2271 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2272 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2273 					     ntohs(skb2->protocol),
2274 					     dev->name);
2275 			skb_reset_network_header(skb2);
2276 		}
2277 
2278 		skb2->transport_header = skb2->network_header;
2279 		skb2->pkt_type = PACKET_OUTGOING;
2280 		pt_prev = ptype;
2281 	}
2282 
2283 	if (ptype_list == &ptype_all) {
2284 		ptype_list = &dev->ptype_all;
2285 		goto again;
2286 	}
2287 out_unlock:
2288 	if (pt_prev) {
2289 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2290 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2291 		else
2292 			kfree_skb(skb2);
2293 	}
2294 	rcu_read_unlock();
2295 }
2296 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2297 
2298 /**
2299  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2300  * @dev: Network device
2301  * @txq: number of queues available
2302  *
2303  * If real_num_tx_queues is changed the tc mappings may no longer be
2304  * valid. To resolve this verify the tc mapping remains valid and if
2305  * not NULL the mapping. With no priorities mapping to this
2306  * offset/count pair it will no longer be used. In the worst case TC0
2307  * is invalid nothing can be done so disable priority mappings. If is
2308  * expected that drivers will fix this mapping if they can before
2309  * calling netif_set_real_num_tx_queues.
2310  */
2311 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2312 {
2313 	int i;
2314 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2315 
2316 	/* If TC0 is invalidated disable TC mapping */
2317 	if (tc->offset + tc->count > txq) {
2318 		netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2319 		dev->num_tc = 0;
2320 		return;
2321 	}
2322 
2323 	/* Invalidated prio to tc mappings set to TC0 */
2324 	for (i = 1; i < TC_BITMASK + 1; i++) {
2325 		int q = netdev_get_prio_tc_map(dev, i);
2326 
2327 		tc = &dev->tc_to_txq[q];
2328 		if (tc->offset + tc->count > txq) {
2329 			netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2330 				    i, q);
2331 			netdev_set_prio_tc_map(dev, i, 0);
2332 		}
2333 	}
2334 }
2335 
2336 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2337 {
2338 	if (dev->num_tc) {
2339 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2340 		int i;
2341 
2342 		/* walk through the TCs and see if it falls into any of them */
2343 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2344 			if ((txq - tc->offset) < tc->count)
2345 				return i;
2346 		}
2347 
2348 		/* didn't find it, just return -1 to indicate no match */
2349 		return -1;
2350 	}
2351 
2352 	return 0;
2353 }
2354 EXPORT_SYMBOL(netdev_txq_to_tc);
2355 
2356 #ifdef CONFIG_XPS
2357 static struct static_key xps_needed __read_mostly;
2358 static struct static_key xps_rxqs_needed __read_mostly;
2359 static DEFINE_MUTEX(xps_map_mutex);
2360 #define xmap_dereference(P)		\
2361 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2362 
2363 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2364 			     struct xps_dev_maps *old_maps, int tci, u16 index)
2365 {
2366 	struct xps_map *map = NULL;
2367 	int pos;
2368 
2369 	if (dev_maps)
2370 		map = xmap_dereference(dev_maps->attr_map[tci]);
2371 	if (!map)
2372 		return false;
2373 
2374 	for (pos = map->len; pos--;) {
2375 		if (map->queues[pos] != index)
2376 			continue;
2377 
2378 		if (map->len > 1) {
2379 			map->queues[pos] = map->queues[--map->len];
2380 			break;
2381 		}
2382 
2383 		if (old_maps)
2384 			RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2385 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2386 		kfree_rcu(map, rcu);
2387 		return false;
2388 	}
2389 
2390 	return true;
2391 }
2392 
2393 static bool remove_xps_queue_cpu(struct net_device *dev,
2394 				 struct xps_dev_maps *dev_maps,
2395 				 int cpu, u16 offset, u16 count)
2396 {
2397 	int num_tc = dev_maps->num_tc;
2398 	bool active = false;
2399 	int tci;
2400 
2401 	for (tci = cpu * num_tc; num_tc--; tci++) {
2402 		int i, j;
2403 
2404 		for (i = count, j = offset; i--; j++) {
2405 			if (!remove_xps_queue(dev_maps, NULL, tci, j))
2406 				break;
2407 		}
2408 
2409 		active |= i < 0;
2410 	}
2411 
2412 	return active;
2413 }
2414 
2415 static void reset_xps_maps(struct net_device *dev,
2416 			   struct xps_dev_maps *dev_maps,
2417 			   enum xps_map_type type)
2418 {
2419 	static_key_slow_dec_cpuslocked(&xps_needed);
2420 	if (type == XPS_RXQS)
2421 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2422 
2423 	RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2424 
2425 	kfree_rcu(dev_maps, rcu);
2426 }
2427 
2428 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2429 			   u16 offset, u16 count)
2430 {
2431 	struct xps_dev_maps *dev_maps;
2432 	bool active = false;
2433 	int i, j;
2434 
2435 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2436 	if (!dev_maps)
2437 		return;
2438 
2439 	for (j = 0; j < dev_maps->nr_ids; j++)
2440 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2441 	if (!active)
2442 		reset_xps_maps(dev, dev_maps, type);
2443 
2444 	if (type == XPS_CPUS) {
2445 		for (i = offset + (count - 1); count--; i--)
2446 			netdev_queue_numa_node_write(
2447 				netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2448 	}
2449 }
2450 
2451 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2452 				   u16 count)
2453 {
2454 	if (!static_key_false(&xps_needed))
2455 		return;
2456 
2457 	cpus_read_lock();
2458 	mutex_lock(&xps_map_mutex);
2459 
2460 	if (static_key_false(&xps_rxqs_needed))
2461 		clean_xps_maps(dev, XPS_RXQS, offset, count);
2462 
2463 	clean_xps_maps(dev, XPS_CPUS, offset, count);
2464 
2465 	mutex_unlock(&xps_map_mutex);
2466 	cpus_read_unlock();
2467 }
2468 
2469 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2470 {
2471 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2472 }
2473 
2474 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2475 				      u16 index, bool is_rxqs_map)
2476 {
2477 	struct xps_map *new_map;
2478 	int alloc_len = XPS_MIN_MAP_ALLOC;
2479 	int i, pos;
2480 
2481 	for (pos = 0; map && pos < map->len; pos++) {
2482 		if (map->queues[pos] != index)
2483 			continue;
2484 		return map;
2485 	}
2486 
2487 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2488 	if (map) {
2489 		if (pos < map->alloc_len)
2490 			return map;
2491 
2492 		alloc_len = map->alloc_len * 2;
2493 	}
2494 
2495 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2496 	 *  map
2497 	 */
2498 	if (is_rxqs_map)
2499 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2500 	else
2501 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2502 				       cpu_to_node(attr_index));
2503 	if (!new_map)
2504 		return NULL;
2505 
2506 	for (i = 0; i < pos; i++)
2507 		new_map->queues[i] = map->queues[i];
2508 	new_map->alloc_len = alloc_len;
2509 	new_map->len = pos;
2510 
2511 	return new_map;
2512 }
2513 
2514 /* Copy xps maps at a given index */
2515 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2516 			      struct xps_dev_maps *new_dev_maps, int index,
2517 			      int tc, bool skip_tc)
2518 {
2519 	int i, tci = index * dev_maps->num_tc;
2520 	struct xps_map *map;
2521 
2522 	/* copy maps belonging to foreign traffic classes */
2523 	for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2524 		if (i == tc && skip_tc)
2525 			continue;
2526 
2527 		/* fill in the new device map from the old device map */
2528 		map = xmap_dereference(dev_maps->attr_map[tci]);
2529 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2530 	}
2531 }
2532 
2533 /* Must be called under cpus_read_lock */
2534 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2535 			  u16 index, enum xps_map_type type)
2536 {
2537 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2538 	const unsigned long *online_mask = NULL;
2539 	bool active = false, copy = false;
2540 	int i, j, tci, numa_node_id = -2;
2541 	int maps_sz, num_tc = 1, tc = 0;
2542 	struct xps_map *map, *new_map;
2543 	unsigned int nr_ids;
2544 
2545 	if (dev->num_tc) {
2546 		/* Do not allow XPS on subordinate device directly */
2547 		num_tc = dev->num_tc;
2548 		if (num_tc < 0)
2549 			return -EINVAL;
2550 
2551 		/* If queue belongs to subordinate dev use its map */
2552 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2553 
2554 		tc = netdev_txq_to_tc(dev, index);
2555 		if (tc < 0)
2556 			return -EINVAL;
2557 	}
2558 
2559 	mutex_lock(&xps_map_mutex);
2560 
2561 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2562 	if (type == XPS_RXQS) {
2563 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2564 		nr_ids = dev->num_rx_queues;
2565 	} else {
2566 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2567 		if (num_possible_cpus() > 1)
2568 			online_mask = cpumask_bits(cpu_online_mask);
2569 		nr_ids = nr_cpu_ids;
2570 	}
2571 
2572 	if (maps_sz < L1_CACHE_BYTES)
2573 		maps_sz = L1_CACHE_BYTES;
2574 
2575 	/* The old dev_maps could be larger or smaller than the one we're
2576 	 * setting up now, as dev->num_tc or nr_ids could have been updated in
2577 	 * between. We could try to be smart, but let's be safe instead and only
2578 	 * copy foreign traffic classes if the two map sizes match.
2579 	 */
2580 	if (dev_maps &&
2581 	    dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2582 		copy = true;
2583 
2584 	/* allocate memory for queue storage */
2585 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2586 	     j < nr_ids;) {
2587 		if (!new_dev_maps) {
2588 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2589 			if (!new_dev_maps) {
2590 				mutex_unlock(&xps_map_mutex);
2591 				return -ENOMEM;
2592 			}
2593 
2594 			new_dev_maps->nr_ids = nr_ids;
2595 			new_dev_maps->num_tc = num_tc;
2596 		}
2597 
2598 		tci = j * num_tc + tc;
2599 		map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2600 
2601 		map = expand_xps_map(map, j, index, type == XPS_RXQS);
2602 		if (!map)
2603 			goto error;
2604 
2605 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2606 	}
2607 
2608 	if (!new_dev_maps)
2609 		goto out_no_new_maps;
2610 
2611 	if (!dev_maps) {
2612 		/* Increment static keys at most once per type */
2613 		static_key_slow_inc_cpuslocked(&xps_needed);
2614 		if (type == XPS_RXQS)
2615 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2616 	}
2617 
2618 	for (j = 0; j < nr_ids; j++) {
2619 		bool skip_tc = false;
2620 
2621 		tci = j * num_tc + tc;
2622 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2623 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2624 			/* add tx-queue to CPU/rx-queue maps */
2625 			int pos = 0;
2626 
2627 			skip_tc = true;
2628 
2629 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2630 			while ((pos < map->len) && (map->queues[pos] != index))
2631 				pos++;
2632 
2633 			if (pos == map->len)
2634 				map->queues[map->len++] = index;
2635 #ifdef CONFIG_NUMA
2636 			if (type == XPS_CPUS) {
2637 				if (numa_node_id == -2)
2638 					numa_node_id = cpu_to_node(j);
2639 				else if (numa_node_id != cpu_to_node(j))
2640 					numa_node_id = -1;
2641 			}
2642 #endif
2643 		}
2644 
2645 		if (copy)
2646 			xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2647 					  skip_tc);
2648 	}
2649 
2650 	rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2651 
2652 	/* Cleanup old maps */
2653 	if (!dev_maps)
2654 		goto out_no_old_maps;
2655 
2656 	for (j = 0; j < dev_maps->nr_ids; j++) {
2657 		for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2658 			map = xmap_dereference(dev_maps->attr_map[tci]);
2659 			if (!map)
2660 				continue;
2661 
2662 			if (copy) {
2663 				new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2664 				if (map == new_map)
2665 					continue;
2666 			}
2667 
2668 			RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2669 			kfree_rcu(map, rcu);
2670 		}
2671 	}
2672 
2673 	old_dev_maps = dev_maps;
2674 
2675 out_no_old_maps:
2676 	dev_maps = new_dev_maps;
2677 	active = true;
2678 
2679 out_no_new_maps:
2680 	if (type == XPS_CPUS)
2681 		/* update Tx queue numa node */
2682 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2683 					     (numa_node_id >= 0) ?
2684 					     numa_node_id : NUMA_NO_NODE);
2685 
2686 	if (!dev_maps)
2687 		goto out_no_maps;
2688 
2689 	/* removes tx-queue from unused CPUs/rx-queues */
2690 	for (j = 0; j < dev_maps->nr_ids; j++) {
2691 		tci = j * dev_maps->num_tc;
2692 
2693 		for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2694 			if (i == tc &&
2695 			    netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2696 			    netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2697 				continue;
2698 
2699 			active |= remove_xps_queue(dev_maps,
2700 						   copy ? old_dev_maps : NULL,
2701 						   tci, index);
2702 		}
2703 	}
2704 
2705 	if (old_dev_maps)
2706 		kfree_rcu(old_dev_maps, rcu);
2707 
2708 	/* free map if not active */
2709 	if (!active)
2710 		reset_xps_maps(dev, dev_maps, type);
2711 
2712 out_no_maps:
2713 	mutex_unlock(&xps_map_mutex);
2714 
2715 	return 0;
2716 error:
2717 	/* remove any maps that we added */
2718 	for (j = 0; j < nr_ids; j++) {
2719 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2720 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2721 			map = copy ?
2722 			      xmap_dereference(dev_maps->attr_map[tci]) :
2723 			      NULL;
2724 			if (new_map && new_map != map)
2725 				kfree(new_map);
2726 		}
2727 	}
2728 
2729 	mutex_unlock(&xps_map_mutex);
2730 
2731 	kfree(new_dev_maps);
2732 	return -ENOMEM;
2733 }
2734 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2735 
2736 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2737 			u16 index)
2738 {
2739 	int ret;
2740 
2741 	cpus_read_lock();
2742 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2743 	cpus_read_unlock();
2744 
2745 	return ret;
2746 }
2747 EXPORT_SYMBOL(netif_set_xps_queue);
2748 
2749 #endif
2750 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2751 {
2752 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2753 
2754 	/* Unbind any subordinate channels */
2755 	while (txq-- != &dev->_tx[0]) {
2756 		if (txq->sb_dev)
2757 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2758 	}
2759 }
2760 
2761 void netdev_reset_tc(struct net_device *dev)
2762 {
2763 #ifdef CONFIG_XPS
2764 	netif_reset_xps_queues_gt(dev, 0);
2765 #endif
2766 	netdev_unbind_all_sb_channels(dev);
2767 
2768 	/* Reset TC configuration of device */
2769 	dev->num_tc = 0;
2770 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2771 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2772 }
2773 EXPORT_SYMBOL(netdev_reset_tc);
2774 
2775 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2776 {
2777 	if (tc >= dev->num_tc)
2778 		return -EINVAL;
2779 
2780 #ifdef CONFIG_XPS
2781 	netif_reset_xps_queues(dev, offset, count);
2782 #endif
2783 	dev->tc_to_txq[tc].count = count;
2784 	dev->tc_to_txq[tc].offset = offset;
2785 	return 0;
2786 }
2787 EXPORT_SYMBOL(netdev_set_tc_queue);
2788 
2789 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2790 {
2791 	if (num_tc > TC_MAX_QUEUE)
2792 		return -EINVAL;
2793 
2794 #ifdef CONFIG_XPS
2795 	netif_reset_xps_queues_gt(dev, 0);
2796 #endif
2797 	netdev_unbind_all_sb_channels(dev);
2798 
2799 	dev->num_tc = num_tc;
2800 	return 0;
2801 }
2802 EXPORT_SYMBOL(netdev_set_num_tc);
2803 
2804 void netdev_unbind_sb_channel(struct net_device *dev,
2805 			      struct net_device *sb_dev)
2806 {
2807 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2808 
2809 #ifdef CONFIG_XPS
2810 	netif_reset_xps_queues_gt(sb_dev, 0);
2811 #endif
2812 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2813 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2814 
2815 	while (txq-- != &dev->_tx[0]) {
2816 		if (txq->sb_dev == sb_dev)
2817 			txq->sb_dev = NULL;
2818 	}
2819 }
2820 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2821 
2822 int netdev_bind_sb_channel_queue(struct net_device *dev,
2823 				 struct net_device *sb_dev,
2824 				 u8 tc, u16 count, u16 offset)
2825 {
2826 	/* Make certain the sb_dev and dev are already configured */
2827 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2828 		return -EINVAL;
2829 
2830 	/* We cannot hand out queues we don't have */
2831 	if ((offset + count) > dev->real_num_tx_queues)
2832 		return -EINVAL;
2833 
2834 	/* Record the mapping */
2835 	sb_dev->tc_to_txq[tc].count = count;
2836 	sb_dev->tc_to_txq[tc].offset = offset;
2837 
2838 	/* Provide a way for Tx queue to find the tc_to_txq map or
2839 	 * XPS map for itself.
2840 	 */
2841 	while (count--)
2842 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2843 
2844 	return 0;
2845 }
2846 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2847 
2848 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2849 {
2850 	/* Do not use a multiqueue device to represent a subordinate channel */
2851 	if (netif_is_multiqueue(dev))
2852 		return -ENODEV;
2853 
2854 	/* We allow channels 1 - 32767 to be used for subordinate channels.
2855 	 * Channel 0 is meant to be "native" mode and used only to represent
2856 	 * the main root device. We allow writing 0 to reset the device back
2857 	 * to normal mode after being used as a subordinate channel.
2858 	 */
2859 	if (channel > S16_MAX)
2860 		return -EINVAL;
2861 
2862 	dev->num_tc = -channel;
2863 
2864 	return 0;
2865 }
2866 EXPORT_SYMBOL(netdev_set_sb_channel);
2867 
2868 /*
2869  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2870  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2871  */
2872 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2873 {
2874 	bool disabling;
2875 	int rc;
2876 
2877 	disabling = txq < dev->real_num_tx_queues;
2878 
2879 	if (txq < 1 || txq > dev->num_tx_queues)
2880 		return -EINVAL;
2881 
2882 	if (dev->reg_state == NETREG_REGISTERED ||
2883 	    dev->reg_state == NETREG_UNREGISTERING) {
2884 		ASSERT_RTNL();
2885 
2886 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2887 						  txq);
2888 		if (rc)
2889 			return rc;
2890 
2891 		if (dev->num_tc)
2892 			netif_setup_tc(dev, txq);
2893 
2894 		dev_qdisc_change_real_num_tx(dev, txq);
2895 
2896 		dev->real_num_tx_queues = txq;
2897 
2898 		if (disabling) {
2899 			synchronize_net();
2900 			qdisc_reset_all_tx_gt(dev, txq);
2901 #ifdef CONFIG_XPS
2902 			netif_reset_xps_queues_gt(dev, txq);
2903 #endif
2904 		}
2905 	} else {
2906 		dev->real_num_tx_queues = txq;
2907 	}
2908 
2909 	return 0;
2910 }
2911 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2912 
2913 #ifdef CONFIG_SYSFS
2914 /**
2915  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2916  *	@dev: Network device
2917  *	@rxq: Actual number of RX queues
2918  *
2919  *	This must be called either with the rtnl_lock held or before
2920  *	registration of the net device.  Returns 0 on success, or a
2921  *	negative error code.  If called before registration, it always
2922  *	succeeds.
2923  */
2924 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2925 {
2926 	int rc;
2927 
2928 	if (rxq < 1 || rxq > dev->num_rx_queues)
2929 		return -EINVAL;
2930 
2931 	if (dev->reg_state == NETREG_REGISTERED) {
2932 		ASSERT_RTNL();
2933 
2934 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2935 						  rxq);
2936 		if (rc)
2937 			return rc;
2938 	}
2939 
2940 	dev->real_num_rx_queues = rxq;
2941 	return 0;
2942 }
2943 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2944 #endif
2945 
2946 /**
2947  *	netif_set_real_num_queues - set actual number of RX and TX queues used
2948  *	@dev: Network device
2949  *	@txq: Actual number of TX queues
2950  *	@rxq: Actual number of RX queues
2951  *
2952  *	Set the real number of both TX and RX queues.
2953  *	Does nothing if the number of queues is already correct.
2954  */
2955 int netif_set_real_num_queues(struct net_device *dev,
2956 			      unsigned int txq, unsigned int rxq)
2957 {
2958 	unsigned int old_rxq = dev->real_num_rx_queues;
2959 	int err;
2960 
2961 	if (txq < 1 || txq > dev->num_tx_queues ||
2962 	    rxq < 1 || rxq > dev->num_rx_queues)
2963 		return -EINVAL;
2964 
2965 	/* Start from increases, so the error path only does decreases -
2966 	 * decreases can't fail.
2967 	 */
2968 	if (rxq > dev->real_num_rx_queues) {
2969 		err = netif_set_real_num_rx_queues(dev, rxq);
2970 		if (err)
2971 			return err;
2972 	}
2973 	if (txq > dev->real_num_tx_queues) {
2974 		err = netif_set_real_num_tx_queues(dev, txq);
2975 		if (err)
2976 			goto undo_rx;
2977 	}
2978 	if (rxq < dev->real_num_rx_queues)
2979 		WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
2980 	if (txq < dev->real_num_tx_queues)
2981 		WARN_ON(netif_set_real_num_tx_queues(dev, txq));
2982 
2983 	return 0;
2984 undo_rx:
2985 	WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
2986 	return err;
2987 }
2988 EXPORT_SYMBOL(netif_set_real_num_queues);
2989 
2990 /**
2991  * netif_set_tso_max_size() - set the max size of TSO frames supported
2992  * @dev:	netdev to update
2993  * @size:	max skb->len of a TSO frame
2994  *
2995  * Set the limit on the size of TSO super-frames the device can handle.
2996  * Unless explicitly set the stack will assume the value of
2997  * %GSO_LEGACY_MAX_SIZE.
2998  */
2999 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3000 {
3001 	dev->tso_max_size = min(GSO_MAX_SIZE, size);
3002 	if (size < READ_ONCE(dev->gso_max_size))
3003 		netif_set_gso_max_size(dev, size);
3004 	if (size < READ_ONCE(dev->gso_ipv4_max_size))
3005 		netif_set_gso_ipv4_max_size(dev, size);
3006 }
3007 EXPORT_SYMBOL(netif_set_tso_max_size);
3008 
3009 /**
3010  * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3011  * @dev:	netdev to update
3012  * @segs:	max number of TCP segments
3013  *
3014  * Set the limit on the number of TCP segments the device can generate from
3015  * a single TSO super-frame.
3016  * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3017  */
3018 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3019 {
3020 	dev->tso_max_segs = segs;
3021 	if (segs < READ_ONCE(dev->gso_max_segs))
3022 		netif_set_gso_max_segs(dev, segs);
3023 }
3024 EXPORT_SYMBOL(netif_set_tso_max_segs);
3025 
3026 /**
3027  * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3028  * @to:		netdev to update
3029  * @from:	netdev from which to copy the limits
3030  */
3031 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3032 {
3033 	netif_set_tso_max_size(to, from->tso_max_size);
3034 	netif_set_tso_max_segs(to, from->tso_max_segs);
3035 }
3036 EXPORT_SYMBOL(netif_inherit_tso_max);
3037 
3038 /**
3039  * netif_get_num_default_rss_queues - default number of RSS queues
3040  *
3041  * Default value is the number of physical cores if there are only 1 or 2, or
3042  * divided by 2 if there are more.
3043  */
3044 int netif_get_num_default_rss_queues(void)
3045 {
3046 	cpumask_var_t cpus;
3047 	int cpu, count = 0;
3048 
3049 	if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3050 		return 1;
3051 
3052 	cpumask_copy(cpus, cpu_online_mask);
3053 	for_each_cpu(cpu, cpus) {
3054 		++count;
3055 		cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3056 	}
3057 	free_cpumask_var(cpus);
3058 
3059 	return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3060 }
3061 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3062 
3063 static void __netif_reschedule(struct Qdisc *q)
3064 {
3065 	struct softnet_data *sd;
3066 	unsigned long flags;
3067 
3068 	local_irq_save(flags);
3069 	sd = this_cpu_ptr(&softnet_data);
3070 	q->next_sched = NULL;
3071 	*sd->output_queue_tailp = q;
3072 	sd->output_queue_tailp = &q->next_sched;
3073 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3074 	local_irq_restore(flags);
3075 }
3076 
3077 void __netif_schedule(struct Qdisc *q)
3078 {
3079 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3080 		__netif_reschedule(q);
3081 }
3082 EXPORT_SYMBOL(__netif_schedule);
3083 
3084 struct dev_kfree_skb_cb {
3085 	enum skb_free_reason reason;
3086 };
3087 
3088 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3089 {
3090 	return (struct dev_kfree_skb_cb *)skb->cb;
3091 }
3092 
3093 void netif_schedule_queue(struct netdev_queue *txq)
3094 {
3095 	rcu_read_lock();
3096 	if (!netif_xmit_stopped(txq)) {
3097 		struct Qdisc *q = rcu_dereference(txq->qdisc);
3098 
3099 		__netif_schedule(q);
3100 	}
3101 	rcu_read_unlock();
3102 }
3103 EXPORT_SYMBOL(netif_schedule_queue);
3104 
3105 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3106 {
3107 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3108 		struct Qdisc *q;
3109 
3110 		rcu_read_lock();
3111 		q = rcu_dereference(dev_queue->qdisc);
3112 		__netif_schedule(q);
3113 		rcu_read_unlock();
3114 	}
3115 }
3116 EXPORT_SYMBOL(netif_tx_wake_queue);
3117 
3118 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3119 {
3120 	unsigned long flags;
3121 
3122 	if (unlikely(!skb))
3123 		return;
3124 
3125 	if (likely(refcount_read(&skb->users) == 1)) {
3126 		smp_rmb();
3127 		refcount_set(&skb->users, 0);
3128 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3129 		return;
3130 	}
3131 	get_kfree_skb_cb(skb)->reason = reason;
3132 	local_irq_save(flags);
3133 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3134 	__this_cpu_write(softnet_data.completion_queue, skb);
3135 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3136 	local_irq_restore(flags);
3137 }
3138 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3139 
3140 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3141 {
3142 	if (in_hardirq() || irqs_disabled())
3143 		__dev_kfree_skb_irq(skb, reason);
3144 	else
3145 		dev_kfree_skb(skb);
3146 }
3147 EXPORT_SYMBOL(__dev_kfree_skb_any);
3148 
3149 
3150 /**
3151  * netif_device_detach - mark device as removed
3152  * @dev: network device
3153  *
3154  * Mark device as removed from system and therefore no longer available.
3155  */
3156 void netif_device_detach(struct net_device *dev)
3157 {
3158 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3159 	    netif_running(dev)) {
3160 		netif_tx_stop_all_queues(dev);
3161 	}
3162 }
3163 EXPORT_SYMBOL(netif_device_detach);
3164 
3165 /**
3166  * netif_device_attach - mark device as attached
3167  * @dev: network device
3168  *
3169  * Mark device as attached from system and restart if needed.
3170  */
3171 void netif_device_attach(struct net_device *dev)
3172 {
3173 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3174 	    netif_running(dev)) {
3175 		netif_tx_wake_all_queues(dev);
3176 		__netdev_watchdog_up(dev);
3177 	}
3178 }
3179 EXPORT_SYMBOL(netif_device_attach);
3180 
3181 /*
3182  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3183  * to be used as a distribution range.
3184  */
3185 static u16 skb_tx_hash(const struct net_device *dev,
3186 		       const struct net_device *sb_dev,
3187 		       struct sk_buff *skb)
3188 {
3189 	u32 hash;
3190 	u16 qoffset = 0;
3191 	u16 qcount = dev->real_num_tx_queues;
3192 
3193 	if (dev->num_tc) {
3194 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3195 
3196 		qoffset = sb_dev->tc_to_txq[tc].offset;
3197 		qcount = sb_dev->tc_to_txq[tc].count;
3198 		if (unlikely(!qcount)) {
3199 			net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3200 					     sb_dev->name, qoffset, tc);
3201 			qoffset = 0;
3202 			qcount = dev->real_num_tx_queues;
3203 		}
3204 	}
3205 
3206 	if (skb_rx_queue_recorded(skb)) {
3207 		hash = skb_get_rx_queue(skb);
3208 		if (hash >= qoffset)
3209 			hash -= qoffset;
3210 		while (unlikely(hash >= qcount))
3211 			hash -= qcount;
3212 		return hash + qoffset;
3213 	}
3214 
3215 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3216 }
3217 
3218 static void skb_warn_bad_offload(const struct sk_buff *skb)
3219 {
3220 	static const netdev_features_t null_features;
3221 	struct net_device *dev = skb->dev;
3222 	const char *name = "";
3223 
3224 	if (!net_ratelimit())
3225 		return;
3226 
3227 	if (dev) {
3228 		if (dev->dev.parent)
3229 			name = dev_driver_string(dev->dev.parent);
3230 		else
3231 			name = netdev_name(dev);
3232 	}
3233 	skb_dump(KERN_WARNING, skb, false);
3234 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3235 	     name, dev ? &dev->features : &null_features,
3236 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3237 }
3238 
3239 /*
3240  * Invalidate hardware checksum when packet is to be mangled, and
3241  * complete checksum manually on outgoing path.
3242  */
3243 int skb_checksum_help(struct sk_buff *skb)
3244 {
3245 	__wsum csum;
3246 	int ret = 0, offset;
3247 
3248 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3249 		goto out_set_summed;
3250 
3251 	if (unlikely(skb_is_gso(skb))) {
3252 		skb_warn_bad_offload(skb);
3253 		return -EINVAL;
3254 	}
3255 
3256 	/* Before computing a checksum, we should make sure no frag could
3257 	 * be modified by an external entity : checksum could be wrong.
3258 	 */
3259 	if (skb_has_shared_frag(skb)) {
3260 		ret = __skb_linearize(skb);
3261 		if (ret)
3262 			goto out;
3263 	}
3264 
3265 	offset = skb_checksum_start_offset(skb);
3266 	ret = -EINVAL;
3267 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3268 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3269 		goto out;
3270 	}
3271 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3272 
3273 	offset += skb->csum_offset;
3274 	if (WARN_ON_ONCE(offset + sizeof(__sum16) > skb_headlen(skb))) {
3275 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3276 		goto out;
3277 	}
3278 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3279 	if (ret)
3280 		goto out;
3281 
3282 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3283 out_set_summed:
3284 	skb->ip_summed = CHECKSUM_NONE;
3285 out:
3286 	return ret;
3287 }
3288 EXPORT_SYMBOL(skb_checksum_help);
3289 
3290 int skb_crc32c_csum_help(struct sk_buff *skb)
3291 {
3292 	__le32 crc32c_csum;
3293 	int ret = 0, offset, start;
3294 
3295 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3296 		goto out;
3297 
3298 	if (unlikely(skb_is_gso(skb)))
3299 		goto out;
3300 
3301 	/* Before computing a checksum, we should make sure no frag could
3302 	 * be modified by an external entity : checksum could be wrong.
3303 	 */
3304 	if (unlikely(skb_has_shared_frag(skb))) {
3305 		ret = __skb_linearize(skb);
3306 		if (ret)
3307 			goto out;
3308 	}
3309 	start = skb_checksum_start_offset(skb);
3310 	offset = start + offsetof(struct sctphdr, checksum);
3311 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3312 		ret = -EINVAL;
3313 		goto out;
3314 	}
3315 
3316 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3317 	if (ret)
3318 		goto out;
3319 
3320 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3321 						  skb->len - start, ~(__u32)0,
3322 						  crc32c_csum_stub));
3323 	*(__le32 *)(skb->data + offset) = crc32c_csum;
3324 	skb->ip_summed = CHECKSUM_NONE;
3325 	skb->csum_not_inet = 0;
3326 out:
3327 	return ret;
3328 }
3329 
3330 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3331 {
3332 	__be16 type = skb->protocol;
3333 
3334 	/* Tunnel gso handlers can set protocol to ethernet. */
3335 	if (type == htons(ETH_P_TEB)) {
3336 		struct ethhdr *eth;
3337 
3338 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3339 			return 0;
3340 
3341 		eth = (struct ethhdr *)skb->data;
3342 		type = eth->h_proto;
3343 	}
3344 
3345 	return __vlan_get_protocol(skb, type, depth);
3346 }
3347 
3348 /* openvswitch calls this on rx path, so we need a different check.
3349  */
3350 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3351 {
3352 	if (tx_path)
3353 		return skb->ip_summed != CHECKSUM_PARTIAL &&
3354 		       skb->ip_summed != CHECKSUM_UNNECESSARY;
3355 
3356 	return skb->ip_summed == CHECKSUM_NONE;
3357 }
3358 
3359 /**
3360  *	__skb_gso_segment - Perform segmentation on skb.
3361  *	@skb: buffer to segment
3362  *	@features: features for the output path (see dev->features)
3363  *	@tx_path: whether it is called in TX path
3364  *
3365  *	This function segments the given skb and returns a list of segments.
3366  *
3367  *	It may return NULL if the skb requires no segmentation.  This is
3368  *	only possible when GSO is used for verifying header integrity.
3369  *
3370  *	Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3371  */
3372 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3373 				  netdev_features_t features, bool tx_path)
3374 {
3375 	struct sk_buff *segs;
3376 
3377 	if (unlikely(skb_needs_check(skb, tx_path))) {
3378 		int err;
3379 
3380 		/* We're going to init ->check field in TCP or UDP header */
3381 		err = skb_cow_head(skb, 0);
3382 		if (err < 0)
3383 			return ERR_PTR(err);
3384 	}
3385 
3386 	/* Only report GSO partial support if it will enable us to
3387 	 * support segmentation on this frame without needing additional
3388 	 * work.
3389 	 */
3390 	if (features & NETIF_F_GSO_PARTIAL) {
3391 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3392 		struct net_device *dev = skb->dev;
3393 
3394 		partial_features |= dev->features & dev->gso_partial_features;
3395 		if (!skb_gso_ok(skb, features | partial_features))
3396 			features &= ~NETIF_F_GSO_PARTIAL;
3397 	}
3398 
3399 	BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3400 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3401 
3402 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3403 	SKB_GSO_CB(skb)->encap_level = 0;
3404 
3405 	skb_reset_mac_header(skb);
3406 	skb_reset_mac_len(skb);
3407 
3408 	segs = skb_mac_gso_segment(skb, features);
3409 
3410 	if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3411 		skb_warn_bad_offload(skb);
3412 
3413 	return segs;
3414 }
3415 EXPORT_SYMBOL(__skb_gso_segment);
3416 
3417 /* Take action when hardware reception checksum errors are detected. */
3418 #ifdef CONFIG_BUG
3419 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3420 {
3421 	netdev_err(dev, "hw csum failure\n");
3422 	skb_dump(KERN_ERR, skb, true);
3423 	dump_stack();
3424 }
3425 
3426 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3427 {
3428 	DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3429 }
3430 EXPORT_SYMBOL(netdev_rx_csum_fault);
3431 #endif
3432 
3433 /* XXX: check that highmem exists at all on the given machine. */
3434 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3435 {
3436 #ifdef CONFIG_HIGHMEM
3437 	int i;
3438 
3439 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3440 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3441 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3442 
3443 			if (PageHighMem(skb_frag_page(frag)))
3444 				return 1;
3445 		}
3446 	}
3447 #endif
3448 	return 0;
3449 }
3450 
3451 /* If MPLS offload request, verify we are testing hardware MPLS features
3452  * instead of standard features for the netdev.
3453  */
3454 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3455 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3456 					   netdev_features_t features,
3457 					   __be16 type)
3458 {
3459 	if (eth_p_mpls(type))
3460 		features &= skb->dev->mpls_features;
3461 
3462 	return features;
3463 }
3464 #else
3465 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3466 					   netdev_features_t features,
3467 					   __be16 type)
3468 {
3469 	return features;
3470 }
3471 #endif
3472 
3473 static netdev_features_t harmonize_features(struct sk_buff *skb,
3474 	netdev_features_t features)
3475 {
3476 	__be16 type;
3477 
3478 	type = skb_network_protocol(skb, NULL);
3479 	features = net_mpls_features(skb, features, type);
3480 
3481 	if (skb->ip_summed != CHECKSUM_NONE &&
3482 	    !can_checksum_protocol(features, type)) {
3483 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3484 	}
3485 	if (illegal_highdma(skb->dev, skb))
3486 		features &= ~NETIF_F_SG;
3487 
3488 	return features;
3489 }
3490 
3491 netdev_features_t passthru_features_check(struct sk_buff *skb,
3492 					  struct net_device *dev,
3493 					  netdev_features_t features)
3494 {
3495 	return features;
3496 }
3497 EXPORT_SYMBOL(passthru_features_check);
3498 
3499 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3500 					     struct net_device *dev,
3501 					     netdev_features_t features)
3502 {
3503 	return vlan_features_check(skb, features);
3504 }
3505 
3506 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3507 					    struct net_device *dev,
3508 					    netdev_features_t features)
3509 {
3510 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3511 
3512 	if (gso_segs > READ_ONCE(dev->gso_max_segs))
3513 		return features & ~NETIF_F_GSO_MASK;
3514 
3515 	if (!skb_shinfo(skb)->gso_type) {
3516 		skb_warn_bad_offload(skb);
3517 		return features & ~NETIF_F_GSO_MASK;
3518 	}
3519 
3520 	/* Support for GSO partial features requires software
3521 	 * intervention before we can actually process the packets
3522 	 * so we need to strip support for any partial features now
3523 	 * and we can pull them back in after we have partially
3524 	 * segmented the frame.
3525 	 */
3526 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3527 		features &= ~dev->gso_partial_features;
3528 
3529 	/* Make sure to clear the IPv4 ID mangling feature if the
3530 	 * IPv4 header has the potential to be fragmented.
3531 	 */
3532 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3533 		struct iphdr *iph = skb->encapsulation ?
3534 				    inner_ip_hdr(skb) : ip_hdr(skb);
3535 
3536 		if (!(iph->frag_off & htons(IP_DF)))
3537 			features &= ~NETIF_F_TSO_MANGLEID;
3538 	}
3539 
3540 	return features;
3541 }
3542 
3543 netdev_features_t netif_skb_features(struct sk_buff *skb)
3544 {
3545 	struct net_device *dev = skb->dev;
3546 	netdev_features_t features = dev->features;
3547 
3548 	if (skb_is_gso(skb))
3549 		features = gso_features_check(skb, dev, features);
3550 
3551 	/* If encapsulation offload request, verify we are testing
3552 	 * hardware encapsulation features instead of standard
3553 	 * features for the netdev
3554 	 */
3555 	if (skb->encapsulation)
3556 		features &= dev->hw_enc_features;
3557 
3558 	if (skb_vlan_tagged(skb))
3559 		features = netdev_intersect_features(features,
3560 						     dev->vlan_features |
3561 						     NETIF_F_HW_VLAN_CTAG_TX |
3562 						     NETIF_F_HW_VLAN_STAG_TX);
3563 
3564 	if (dev->netdev_ops->ndo_features_check)
3565 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3566 								features);
3567 	else
3568 		features &= dflt_features_check(skb, dev, features);
3569 
3570 	return harmonize_features(skb, features);
3571 }
3572 EXPORT_SYMBOL(netif_skb_features);
3573 
3574 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3575 		    struct netdev_queue *txq, bool more)
3576 {
3577 	unsigned int len;
3578 	int rc;
3579 
3580 	if (dev_nit_active(dev))
3581 		dev_queue_xmit_nit(skb, dev);
3582 
3583 	len = skb->len;
3584 	trace_net_dev_start_xmit(skb, dev);
3585 	rc = netdev_start_xmit(skb, dev, txq, more);
3586 	trace_net_dev_xmit(skb, rc, dev, len);
3587 
3588 	return rc;
3589 }
3590 
3591 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3592 				    struct netdev_queue *txq, int *ret)
3593 {
3594 	struct sk_buff *skb = first;
3595 	int rc = NETDEV_TX_OK;
3596 
3597 	while (skb) {
3598 		struct sk_buff *next = skb->next;
3599 
3600 		skb_mark_not_on_list(skb);
3601 		rc = xmit_one(skb, dev, txq, next != NULL);
3602 		if (unlikely(!dev_xmit_complete(rc))) {
3603 			skb->next = next;
3604 			goto out;
3605 		}
3606 
3607 		skb = next;
3608 		if (netif_tx_queue_stopped(txq) && skb) {
3609 			rc = NETDEV_TX_BUSY;
3610 			break;
3611 		}
3612 	}
3613 
3614 out:
3615 	*ret = rc;
3616 	return skb;
3617 }
3618 
3619 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3620 					  netdev_features_t features)
3621 {
3622 	if (skb_vlan_tag_present(skb) &&
3623 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3624 		skb = __vlan_hwaccel_push_inside(skb);
3625 	return skb;
3626 }
3627 
3628 int skb_csum_hwoffload_help(struct sk_buff *skb,
3629 			    const netdev_features_t features)
3630 {
3631 	if (unlikely(skb_csum_is_sctp(skb)))
3632 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3633 			skb_crc32c_csum_help(skb);
3634 
3635 	if (features & NETIF_F_HW_CSUM)
3636 		return 0;
3637 
3638 	if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3639 		switch (skb->csum_offset) {
3640 		case offsetof(struct tcphdr, check):
3641 		case offsetof(struct udphdr, check):
3642 			return 0;
3643 		}
3644 	}
3645 
3646 	return skb_checksum_help(skb);
3647 }
3648 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3649 
3650 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3651 {
3652 	netdev_features_t features;
3653 
3654 	features = netif_skb_features(skb);
3655 	skb = validate_xmit_vlan(skb, features);
3656 	if (unlikely(!skb))
3657 		goto out_null;
3658 
3659 	skb = sk_validate_xmit_skb(skb, dev);
3660 	if (unlikely(!skb))
3661 		goto out_null;
3662 
3663 	if (netif_needs_gso(skb, features)) {
3664 		struct sk_buff *segs;
3665 
3666 		segs = skb_gso_segment(skb, features);
3667 		if (IS_ERR(segs)) {
3668 			goto out_kfree_skb;
3669 		} else if (segs) {
3670 			consume_skb(skb);
3671 			skb = segs;
3672 		}
3673 	} else {
3674 		if (skb_needs_linearize(skb, features) &&
3675 		    __skb_linearize(skb))
3676 			goto out_kfree_skb;
3677 
3678 		/* If packet is not checksummed and device does not
3679 		 * support checksumming for this protocol, complete
3680 		 * checksumming here.
3681 		 */
3682 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3683 			if (skb->encapsulation)
3684 				skb_set_inner_transport_header(skb,
3685 							       skb_checksum_start_offset(skb));
3686 			else
3687 				skb_set_transport_header(skb,
3688 							 skb_checksum_start_offset(skb));
3689 			if (skb_csum_hwoffload_help(skb, features))
3690 				goto out_kfree_skb;
3691 		}
3692 	}
3693 
3694 	skb = validate_xmit_xfrm(skb, features, again);
3695 
3696 	return skb;
3697 
3698 out_kfree_skb:
3699 	kfree_skb(skb);
3700 out_null:
3701 	dev_core_stats_tx_dropped_inc(dev);
3702 	return NULL;
3703 }
3704 
3705 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3706 {
3707 	struct sk_buff *next, *head = NULL, *tail;
3708 
3709 	for (; skb != NULL; skb = next) {
3710 		next = skb->next;
3711 		skb_mark_not_on_list(skb);
3712 
3713 		/* in case skb wont be segmented, point to itself */
3714 		skb->prev = skb;
3715 
3716 		skb = validate_xmit_skb(skb, dev, again);
3717 		if (!skb)
3718 			continue;
3719 
3720 		if (!head)
3721 			head = skb;
3722 		else
3723 			tail->next = skb;
3724 		/* If skb was segmented, skb->prev points to
3725 		 * the last segment. If not, it still contains skb.
3726 		 */
3727 		tail = skb->prev;
3728 	}
3729 	return head;
3730 }
3731 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3732 
3733 static void qdisc_pkt_len_init(struct sk_buff *skb)
3734 {
3735 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3736 
3737 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3738 
3739 	/* To get more precise estimation of bytes sent on wire,
3740 	 * we add to pkt_len the headers size of all segments
3741 	 */
3742 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3743 		unsigned int hdr_len;
3744 		u16 gso_segs = shinfo->gso_segs;
3745 
3746 		/* mac layer + network layer */
3747 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3748 
3749 		/* + transport layer */
3750 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3751 			const struct tcphdr *th;
3752 			struct tcphdr _tcphdr;
3753 
3754 			th = skb_header_pointer(skb, skb_transport_offset(skb),
3755 						sizeof(_tcphdr), &_tcphdr);
3756 			if (likely(th))
3757 				hdr_len += __tcp_hdrlen(th);
3758 		} else {
3759 			struct udphdr _udphdr;
3760 
3761 			if (skb_header_pointer(skb, skb_transport_offset(skb),
3762 					       sizeof(_udphdr), &_udphdr))
3763 				hdr_len += sizeof(struct udphdr);
3764 		}
3765 
3766 		if (shinfo->gso_type & SKB_GSO_DODGY)
3767 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3768 						shinfo->gso_size);
3769 
3770 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3771 	}
3772 }
3773 
3774 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3775 			     struct sk_buff **to_free,
3776 			     struct netdev_queue *txq)
3777 {
3778 	int rc;
3779 
3780 	rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3781 	if (rc == NET_XMIT_SUCCESS)
3782 		trace_qdisc_enqueue(q, txq, skb);
3783 	return rc;
3784 }
3785 
3786 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3787 				 struct net_device *dev,
3788 				 struct netdev_queue *txq)
3789 {
3790 	spinlock_t *root_lock = qdisc_lock(q);
3791 	struct sk_buff *to_free = NULL;
3792 	bool contended;
3793 	int rc;
3794 
3795 	qdisc_calculate_pkt_len(skb, q);
3796 
3797 	if (q->flags & TCQ_F_NOLOCK) {
3798 		if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3799 		    qdisc_run_begin(q)) {
3800 			/* Retest nolock_qdisc_is_empty() within the protection
3801 			 * of q->seqlock to protect from racing with requeuing.
3802 			 */
3803 			if (unlikely(!nolock_qdisc_is_empty(q))) {
3804 				rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3805 				__qdisc_run(q);
3806 				qdisc_run_end(q);
3807 
3808 				goto no_lock_out;
3809 			}
3810 
3811 			qdisc_bstats_cpu_update(q, skb);
3812 			if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3813 			    !nolock_qdisc_is_empty(q))
3814 				__qdisc_run(q);
3815 
3816 			qdisc_run_end(q);
3817 			return NET_XMIT_SUCCESS;
3818 		}
3819 
3820 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3821 		qdisc_run(q);
3822 
3823 no_lock_out:
3824 		if (unlikely(to_free))
3825 			kfree_skb_list_reason(to_free,
3826 					      SKB_DROP_REASON_QDISC_DROP);
3827 		return rc;
3828 	}
3829 
3830 	/*
3831 	 * Heuristic to force contended enqueues to serialize on a
3832 	 * separate lock before trying to get qdisc main lock.
3833 	 * This permits qdisc->running owner to get the lock more
3834 	 * often and dequeue packets faster.
3835 	 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3836 	 * and then other tasks will only enqueue packets. The packets will be
3837 	 * sent after the qdisc owner is scheduled again. To prevent this
3838 	 * scenario the task always serialize on the lock.
3839 	 */
3840 	contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
3841 	if (unlikely(contended))
3842 		spin_lock(&q->busylock);
3843 
3844 	spin_lock(root_lock);
3845 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3846 		__qdisc_drop(skb, &to_free);
3847 		rc = NET_XMIT_DROP;
3848 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3849 		   qdisc_run_begin(q)) {
3850 		/*
3851 		 * This is a work-conserving queue; there are no old skbs
3852 		 * waiting to be sent out; and the qdisc is not running -
3853 		 * xmit the skb directly.
3854 		 */
3855 
3856 		qdisc_bstats_update(q, skb);
3857 
3858 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3859 			if (unlikely(contended)) {
3860 				spin_unlock(&q->busylock);
3861 				contended = false;
3862 			}
3863 			__qdisc_run(q);
3864 		}
3865 
3866 		qdisc_run_end(q);
3867 		rc = NET_XMIT_SUCCESS;
3868 	} else {
3869 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3870 		if (qdisc_run_begin(q)) {
3871 			if (unlikely(contended)) {
3872 				spin_unlock(&q->busylock);
3873 				contended = false;
3874 			}
3875 			__qdisc_run(q);
3876 			qdisc_run_end(q);
3877 		}
3878 	}
3879 	spin_unlock(root_lock);
3880 	if (unlikely(to_free))
3881 		kfree_skb_list_reason(to_free, SKB_DROP_REASON_QDISC_DROP);
3882 	if (unlikely(contended))
3883 		spin_unlock(&q->busylock);
3884 	return rc;
3885 }
3886 
3887 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3888 static void skb_update_prio(struct sk_buff *skb)
3889 {
3890 	const struct netprio_map *map;
3891 	const struct sock *sk;
3892 	unsigned int prioidx;
3893 
3894 	if (skb->priority)
3895 		return;
3896 	map = rcu_dereference_bh(skb->dev->priomap);
3897 	if (!map)
3898 		return;
3899 	sk = skb_to_full_sk(skb);
3900 	if (!sk)
3901 		return;
3902 
3903 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3904 
3905 	if (prioidx < map->priomap_len)
3906 		skb->priority = map->priomap[prioidx];
3907 }
3908 #else
3909 #define skb_update_prio(skb)
3910 #endif
3911 
3912 /**
3913  *	dev_loopback_xmit - loop back @skb
3914  *	@net: network namespace this loopback is happening in
3915  *	@sk:  sk needed to be a netfilter okfn
3916  *	@skb: buffer to transmit
3917  */
3918 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3919 {
3920 	skb_reset_mac_header(skb);
3921 	__skb_pull(skb, skb_network_offset(skb));
3922 	skb->pkt_type = PACKET_LOOPBACK;
3923 	if (skb->ip_summed == CHECKSUM_NONE)
3924 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3925 	DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
3926 	skb_dst_force(skb);
3927 	netif_rx(skb);
3928 	return 0;
3929 }
3930 EXPORT_SYMBOL(dev_loopback_xmit);
3931 
3932 #ifdef CONFIG_NET_EGRESS
3933 static struct sk_buff *
3934 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3935 {
3936 #ifdef CONFIG_NET_CLS_ACT
3937 	struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3938 	struct tcf_result cl_res;
3939 
3940 	if (!miniq)
3941 		return skb;
3942 
3943 	/* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3944 	tc_skb_cb(skb)->mru = 0;
3945 	tc_skb_cb(skb)->post_ct = false;
3946 	mini_qdisc_bstats_cpu_update(miniq, skb);
3947 
3948 	switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
3949 	case TC_ACT_OK:
3950 	case TC_ACT_RECLASSIFY:
3951 		skb->tc_index = TC_H_MIN(cl_res.classid);
3952 		break;
3953 	case TC_ACT_SHOT:
3954 		mini_qdisc_qstats_cpu_drop(miniq);
3955 		*ret = NET_XMIT_DROP;
3956 		kfree_skb_reason(skb, SKB_DROP_REASON_TC_EGRESS);
3957 		return NULL;
3958 	case TC_ACT_STOLEN:
3959 	case TC_ACT_QUEUED:
3960 	case TC_ACT_TRAP:
3961 		*ret = NET_XMIT_SUCCESS;
3962 		consume_skb(skb);
3963 		return NULL;
3964 	case TC_ACT_REDIRECT:
3965 		/* No need to push/pop skb's mac_header here on egress! */
3966 		skb_do_redirect(skb);
3967 		*ret = NET_XMIT_SUCCESS;
3968 		return NULL;
3969 	default:
3970 		break;
3971 	}
3972 #endif /* CONFIG_NET_CLS_ACT */
3973 
3974 	return skb;
3975 }
3976 
3977 static struct netdev_queue *
3978 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
3979 {
3980 	int qm = skb_get_queue_mapping(skb);
3981 
3982 	return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
3983 }
3984 
3985 static bool netdev_xmit_txqueue_skipped(void)
3986 {
3987 	return __this_cpu_read(softnet_data.xmit.skip_txqueue);
3988 }
3989 
3990 void netdev_xmit_skip_txqueue(bool skip)
3991 {
3992 	__this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
3993 }
3994 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
3995 #endif /* CONFIG_NET_EGRESS */
3996 
3997 #ifdef CONFIG_XPS
3998 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3999 			       struct xps_dev_maps *dev_maps, unsigned int tci)
4000 {
4001 	int tc = netdev_get_prio_tc_map(dev, skb->priority);
4002 	struct xps_map *map;
4003 	int queue_index = -1;
4004 
4005 	if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4006 		return queue_index;
4007 
4008 	tci *= dev_maps->num_tc;
4009 	tci += tc;
4010 
4011 	map = rcu_dereference(dev_maps->attr_map[tci]);
4012 	if (map) {
4013 		if (map->len == 1)
4014 			queue_index = map->queues[0];
4015 		else
4016 			queue_index = map->queues[reciprocal_scale(
4017 						skb_get_hash(skb), map->len)];
4018 		if (unlikely(queue_index >= dev->real_num_tx_queues))
4019 			queue_index = -1;
4020 	}
4021 	return queue_index;
4022 }
4023 #endif
4024 
4025 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4026 			 struct sk_buff *skb)
4027 {
4028 #ifdef CONFIG_XPS
4029 	struct xps_dev_maps *dev_maps;
4030 	struct sock *sk = skb->sk;
4031 	int queue_index = -1;
4032 
4033 	if (!static_key_false(&xps_needed))
4034 		return -1;
4035 
4036 	rcu_read_lock();
4037 	if (!static_key_false(&xps_rxqs_needed))
4038 		goto get_cpus_map;
4039 
4040 	dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4041 	if (dev_maps) {
4042 		int tci = sk_rx_queue_get(sk);
4043 
4044 		if (tci >= 0)
4045 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4046 							  tci);
4047 	}
4048 
4049 get_cpus_map:
4050 	if (queue_index < 0) {
4051 		dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4052 		if (dev_maps) {
4053 			unsigned int tci = skb->sender_cpu - 1;
4054 
4055 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4056 							  tci);
4057 		}
4058 	}
4059 	rcu_read_unlock();
4060 
4061 	return queue_index;
4062 #else
4063 	return -1;
4064 #endif
4065 }
4066 
4067 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4068 		     struct net_device *sb_dev)
4069 {
4070 	return 0;
4071 }
4072 EXPORT_SYMBOL(dev_pick_tx_zero);
4073 
4074 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4075 		       struct net_device *sb_dev)
4076 {
4077 	return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4078 }
4079 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4080 
4081 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4082 		     struct net_device *sb_dev)
4083 {
4084 	struct sock *sk = skb->sk;
4085 	int queue_index = sk_tx_queue_get(sk);
4086 
4087 	sb_dev = sb_dev ? : dev;
4088 
4089 	if (queue_index < 0 || skb->ooo_okay ||
4090 	    queue_index >= dev->real_num_tx_queues) {
4091 		int new_index = get_xps_queue(dev, sb_dev, skb);
4092 
4093 		if (new_index < 0)
4094 			new_index = skb_tx_hash(dev, sb_dev, skb);
4095 
4096 		if (queue_index != new_index && sk &&
4097 		    sk_fullsock(sk) &&
4098 		    rcu_access_pointer(sk->sk_dst_cache))
4099 			sk_tx_queue_set(sk, new_index);
4100 
4101 		queue_index = new_index;
4102 	}
4103 
4104 	return queue_index;
4105 }
4106 EXPORT_SYMBOL(netdev_pick_tx);
4107 
4108 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4109 					 struct sk_buff *skb,
4110 					 struct net_device *sb_dev)
4111 {
4112 	int queue_index = 0;
4113 
4114 #ifdef CONFIG_XPS
4115 	u32 sender_cpu = skb->sender_cpu - 1;
4116 
4117 	if (sender_cpu >= (u32)NR_CPUS)
4118 		skb->sender_cpu = raw_smp_processor_id() + 1;
4119 #endif
4120 
4121 	if (dev->real_num_tx_queues != 1) {
4122 		const struct net_device_ops *ops = dev->netdev_ops;
4123 
4124 		if (ops->ndo_select_queue)
4125 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4126 		else
4127 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4128 
4129 		queue_index = netdev_cap_txqueue(dev, queue_index);
4130 	}
4131 
4132 	skb_set_queue_mapping(skb, queue_index);
4133 	return netdev_get_tx_queue(dev, queue_index);
4134 }
4135 
4136 /**
4137  * __dev_queue_xmit() - transmit a buffer
4138  * @skb:	buffer to transmit
4139  * @sb_dev:	suboordinate device used for L2 forwarding offload
4140  *
4141  * Queue a buffer for transmission to a network device. The caller must
4142  * have set the device and priority and built the buffer before calling
4143  * this function. The function can be called from an interrupt.
4144  *
4145  * When calling this method, interrupts MUST be enabled. This is because
4146  * the BH enable code must have IRQs enabled so that it will not deadlock.
4147  *
4148  * Regardless of the return value, the skb is consumed, so it is currently
4149  * difficult to retry a send to this method. (You can bump the ref count
4150  * before sending to hold a reference for retry if you are careful.)
4151  *
4152  * Return:
4153  * * 0				- buffer successfully transmitted
4154  * * positive qdisc return code	- NET_XMIT_DROP etc.
4155  * * negative errno		- other errors
4156  */
4157 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4158 {
4159 	struct net_device *dev = skb->dev;
4160 	struct netdev_queue *txq = NULL;
4161 	struct Qdisc *q;
4162 	int rc = -ENOMEM;
4163 	bool again = false;
4164 
4165 	skb_reset_mac_header(skb);
4166 	skb_assert_len(skb);
4167 
4168 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4169 		__skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4170 
4171 	/* Disable soft irqs for various locks below. Also
4172 	 * stops preemption for RCU.
4173 	 */
4174 	rcu_read_lock_bh();
4175 
4176 	skb_update_prio(skb);
4177 
4178 	qdisc_pkt_len_init(skb);
4179 #ifdef CONFIG_NET_CLS_ACT
4180 	skb->tc_at_ingress = 0;
4181 #endif
4182 #ifdef CONFIG_NET_EGRESS
4183 	if (static_branch_unlikely(&egress_needed_key)) {
4184 		if (nf_hook_egress_active()) {
4185 			skb = nf_hook_egress(skb, &rc, dev);
4186 			if (!skb)
4187 				goto out;
4188 		}
4189 
4190 		netdev_xmit_skip_txqueue(false);
4191 
4192 		nf_skip_egress(skb, true);
4193 		skb = sch_handle_egress(skb, &rc, dev);
4194 		if (!skb)
4195 			goto out;
4196 		nf_skip_egress(skb, false);
4197 
4198 		if (netdev_xmit_txqueue_skipped())
4199 			txq = netdev_tx_queue_mapping(dev, skb);
4200 	}
4201 #endif
4202 	/* If device/qdisc don't need skb->dst, release it right now while
4203 	 * its hot in this cpu cache.
4204 	 */
4205 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4206 		skb_dst_drop(skb);
4207 	else
4208 		skb_dst_force(skb);
4209 
4210 	if (!txq)
4211 		txq = netdev_core_pick_tx(dev, skb, sb_dev);
4212 
4213 	q = rcu_dereference_bh(txq->qdisc);
4214 
4215 	trace_net_dev_queue(skb);
4216 	if (q->enqueue) {
4217 		rc = __dev_xmit_skb(skb, q, dev, txq);
4218 		goto out;
4219 	}
4220 
4221 	/* The device has no queue. Common case for software devices:
4222 	 * loopback, all the sorts of tunnels...
4223 
4224 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4225 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4226 	 * counters.)
4227 	 * However, it is possible, that they rely on protection
4228 	 * made by us here.
4229 
4230 	 * Check this and shot the lock. It is not prone from deadlocks.
4231 	 *Either shot noqueue qdisc, it is even simpler 8)
4232 	 */
4233 	if (dev->flags & IFF_UP) {
4234 		int cpu = smp_processor_id(); /* ok because BHs are off */
4235 
4236 		/* Other cpus might concurrently change txq->xmit_lock_owner
4237 		 * to -1 or to their cpu id, but not to our id.
4238 		 */
4239 		if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4240 			if (dev_xmit_recursion())
4241 				goto recursion_alert;
4242 
4243 			skb = validate_xmit_skb(skb, dev, &again);
4244 			if (!skb)
4245 				goto out;
4246 
4247 			HARD_TX_LOCK(dev, txq, cpu);
4248 
4249 			if (!netif_xmit_stopped(txq)) {
4250 				dev_xmit_recursion_inc();
4251 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4252 				dev_xmit_recursion_dec();
4253 				if (dev_xmit_complete(rc)) {
4254 					HARD_TX_UNLOCK(dev, txq);
4255 					goto out;
4256 				}
4257 			}
4258 			HARD_TX_UNLOCK(dev, txq);
4259 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4260 					     dev->name);
4261 		} else {
4262 			/* Recursion is detected! It is possible,
4263 			 * unfortunately
4264 			 */
4265 recursion_alert:
4266 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4267 					     dev->name);
4268 		}
4269 	}
4270 
4271 	rc = -ENETDOWN;
4272 	rcu_read_unlock_bh();
4273 
4274 	dev_core_stats_tx_dropped_inc(dev);
4275 	kfree_skb_list(skb);
4276 	return rc;
4277 out:
4278 	rcu_read_unlock_bh();
4279 	return rc;
4280 }
4281 EXPORT_SYMBOL(__dev_queue_xmit);
4282 
4283 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4284 {
4285 	struct net_device *dev = skb->dev;
4286 	struct sk_buff *orig_skb = skb;
4287 	struct netdev_queue *txq;
4288 	int ret = NETDEV_TX_BUSY;
4289 	bool again = false;
4290 
4291 	if (unlikely(!netif_running(dev) ||
4292 		     !netif_carrier_ok(dev)))
4293 		goto drop;
4294 
4295 	skb = validate_xmit_skb_list(skb, dev, &again);
4296 	if (skb != orig_skb)
4297 		goto drop;
4298 
4299 	skb_set_queue_mapping(skb, queue_id);
4300 	txq = skb_get_tx_queue(dev, skb);
4301 
4302 	local_bh_disable();
4303 
4304 	dev_xmit_recursion_inc();
4305 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4306 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4307 		ret = netdev_start_xmit(skb, dev, txq, false);
4308 	HARD_TX_UNLOCK(dev, txq);
4309 	dev_xmit_recursion_dec();
4310 
4311 	local_bh_enable();
4312 	return ret;
4313 drop:
4314 	dev_core_stats_tx_dropped_inc(dev);
4315 	kfree_skb_list(skb);
4316 	return NET_XMIT_DROP;
4317 }
4318 EXPORT_SYMBOL(__dev_direct_xmit);
4319 
4320 /*************************************************************************
4321  *			Receiver routines
4322  *************************************************************************/
4323 
4324 int netdev_max_backlog __read_mostly = 1000;
4325 EXPORT_SYMBOL(netdev_max_backlog);
4326 
4327 int netdev_tstamp_prequeue __read_mostly = 1;
4328 unsigned int sysctl_skb_defer_max __read_mostly = 64;
4329 int netdev_budget __read_mostly = 300;
4330 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4331 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4332 int weight_p __read_mostly = 64;           /* old backlog weight */
4333 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4334 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4335 int dev_rx_weight __read_mostly = 64;
4336 int dev_tx_weight __read_mostly = 64;
4337 
4338 /* Called with irq disabled */
4339 static inline void ____napi_schedule(struct softnet_data *sd,
4340 				     struct napi_struct *napi)
4341 {
4342 	struct task_struct *thread;
4343 
4344 	lockdep_assert_irqs_disabled();
4345 
4346 	if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4347 		/* Paired with smp_mb__before_atomic() in
4348 		 * napi_enable()/dev_set_threaded().
4349 		 * Use READ_ONCE() to guarantee a complete
4350 		 * read on napi->thread. Only call
4351 		 * wake_up_process() when it's not NULL.
4352 		 */
4353 		thread = READ_ONCE(napi->thread);
4354 		if (thread) {
4355 			/* Avoid doing set_bit() if the thread is in
4356 			 * INTERRUPTIBLE state, cause napi_thread_wait()
4357 			 * makes sure to proceed with napi polling
4358 			 * if the thread is explicitly woken from here.
4359 			 */
4360 			if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4361 				set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4362 			wake_up_process(thread);
4363 			return;
4364 		}
4365 	}
4366 
4367 	list_add_tail(&napi->poll_list, &sd->poll_list);
4368 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4369 }
4370 
4371 #ifdef CONFIG_RPS
4372 
4373 /* One global table that all flow-based protocols share. */
4374 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4375 EXPORT_SYMBOL(rps_sock_flow_table);
4376 u32 rps_cpu_mask __read_mostly;
4377 EXPORT_SYMBOL(rps_cpu_mask);
4378 
4379 struct static_key_false rps_needed __read_mostly;
4380 EXPORT_SYMBOL(rps_needed);
4381 struct static_key_false rfs_needed __read_mostly;
4382 EXPORT_SYMBOL(rfs_needed);
4383 
4384 static struct rps_dev_flow *
4385 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4386 	    struct rps_dev_flow *rflow, u16 next_cpu)
4387 {
4388 	if (next_cpu < nr_cpu_ids) {
4389 #ifdef CONFIG_RFS_ACCEL
4390 		struct netdev_rx_queue *rxqueue;
4391 		struct rps_dev_flow_table *flow_table;
4392 		struct rps_dev_flow *old_rflow;
4393 		u32 flow_id;
4394 		u16 rxq_index;
4395 		int rc;
4396 
4397 		/* Should we steer this flow to a different hardware queue? */
4398 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4399 		    !(dev->features & NETIF_F_NTUPLE))
4400 			goto out;
4401 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4402 		if (rxq_index == skb_get_rx_queue(skb))
4403 			goto out;
4404 
4405 		rxqueue = dev->_rx + rxq_index;
4406 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4407 		if (!flow_table)
4408 			goto out;
4409 		flow_id = skb_get_hash(skb) & flow_table->mask;
4410 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4411 							rxq_index, flow_id);
4412 		if (rc < 0)
4413 			goto out;
4414 		old_rflow = rflow;
4415 		rflow = &flow_table->flows[flow_id];
4416 		rflow->filter = rc;
4417 		if (old_rflow->filter == rflow->filter)
4418 			old_rflow->filter = RPS_NO_FILTER;
4419 	out:
4420 #endif
4421 		rflow->last_qtail =
4422 			per_cpu(softnet_data, next_cpu).input_queue_head;
4423 	}
4424 
4425 	rflow->cpu = next_cpu;
4426 	return rflow;
4427 }
4428 
4429 /*
4430  * get_rps_cpu is called from netif_receive_skb and returns the target
4431  * CPU from the RPS map of the receiving queue for a given skb.
4432  * rcu_read_lock must be held on entry.
4433  */
4434 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4435 		       struct rps_dev_flow **rflowp)
4436 {
4437 	const struct rps_sock_flow_table *sock_flow_table;
4438 	struct netdev_rx_queue *rxqueue = dev->_rx;
4439 	struct rps_dev_flow_table *flow_table;
4440 	struct rps_map *map;
4441 	int cpu = -1;
4442 	u32 tcpu;
4443 	u32 hash;
4444 
4445 	if (skb_rx_queue_recorded(skb)) {
4446 		u16 index = skb_get_rx_queue(skb);
4447 
4448 		if (unlikely(index >= dev->real_num_rx_queues)) {
4449 			WARN_ONCE(dev->real_num_rx_queues > 1,
4450 				  "%s received packet on queue %u, but number "
4451 				  "of RX queues is %u\n",
4452 				  dev->name, index, dev->real_num_rx_queues);
4453 			goto done;
4454 		}
4455 		rxqueue += index;
4456 	}
4457 
4458 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4459 
4460 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4461 	map = rcu_dereference(rxqueue->rps_map);
4462 	if (!flow_table && !map)
4463 		goto done;
4464 
4465 	skb_reset_network_header(skb);
4466 	hash = skb_get_hash(skb);
4467 	if (!hash)
4468 		goto done;
4469 
4470 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
4471 	if (flow_table && sock_flow_table) {
4472 		struct rps_dev_flow *rflow;
4473 		u32 next_cpu;
4474 		u32 ident;
4475 
4476 		/* First check into global flow table if there is a match */
4477 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4478 		if ((ident ^ hash) & ~rps_cpu_mask)
4479 			goto try_rps;
4480 
4481 		next_cpu = ident & rps_cpu_mask;
4482 
4483 		/* OK, now we know there is a match,
4484 		 * we can look at the local (per receive queue) flow table
4485 		 */
4486 		rflow = &flow_table->flows[hash & flow_table->mask];
4487 		tcpu = rflow->cpu;
4488 
4489 		/*
4490 		 * If the desired CPU (where last recvmsg was done) is
4491 		 * different from current CPU (one in the rx-queue flow
4492 		 * table entry), switch if one of the following holds:
4493 		 *   - Current CPU is unset (>= nr_cpu_ids).
4494 		 *   - Current CPU is offline.
4495 		 *   - The current CPU's queue tail has advanced beyond the
4496 		 *     last packet that was enqueued using this table entry.
4497 		 *     This guarantees that all previous packets for the flow
4498 		 *     have been dequeued, thus preserving in order delivery.
4499 		 */
4500 		if (unlikely(tcpu != next_cpu) &&
4501 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4502 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4503 		      rflow->last_qtail)) >= 0)) {
4504 			tcpu = next_cpu;
4505 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4506 		}
4507 
4508 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4509 			*rflowp = rflow;
4510 			cpu = tcpu;
4511 			goto done;
4512 		}
4513 	}
4514 
4515 try_rps:
4516 
4517 	if (map) {
4518 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4519 		if (cpu_online(tcpu)) {
4520 			cpu = tcpu;
4521 			goto done;
4522 		}
4523 	}
4524 
4525 done:
4526 	return cpu;
4527 }
4528 
4529 #ifdef CONFIG_RFS_ACCEL
4530 
4531 /**
4532  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4533  * @dev: Device on which the filter was set
4534  * @rxq_index: RX queue index
4535  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4536  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4537  *
4538  * Drivers that implement ndo_rx_flow_steer() should periodically call
4539  * this function for each installed filter and remove the filters for
4540  * which it returns %true.
4541  */
4542 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4543 			 u32 flow_id, u16 filter_id)
4544 {
4545 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4546 	struct rps_dev_flow_table *flow_table;
4547 	struct rps_dev_flow *rflow;
4548 	bool expire = true;
4549 	unsigned int cpu;
4550 
4551 	rcu_read_lock();
4552 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4553 	if (flow_table && flow_id <= flow_table->mask) {
4554 		rflow = &flow_table->flows[flow_id];
4555 		cpu = READ_ONCE(rflow->cpu);
4556 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4557 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4558 			   rflow->last_qtail) <
4559 		     (int)(10 * flow_table->mask)))
4560 			expire = false;
4561 	}
4562 	rcu_read_unlock();
4563 	return expire;
4564 }
4565 EXPORT_SYMBOL(rps_may_expire_flow);
4566 
4567 #endif /* CONFIG_RFS_ACCEL */
4568 
4569 /* Called from hardirq (IPI) context */
4570 static void rps_trigger_softirq(void *data)
4571 {
4572 	struct softnet_data *sd = data;
4573 
4574 	____napi_schedule(sd, &sd->backlog);
4575 	sd->received_rps++;
4576 }
4577 
4578 #endif /* CONFIG_RPS */
4579 
4580 /* Called from hardirq (IPI) context */
4581 static void trigger_rx_softirq(void *data)
4582 {
4583 	struct softnet_data *sd = data;
4584 
4585 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4586 	smp_store_release(&sd->defer_ipi_scheduled, 0);
4587 }
4588 
4589 /*
4590  * Check if this softnet_data structure is another cpu one
4591  * If yes, queue it to our IPI list and return 1
4592  * If no, return 0
4593  */
4594 static int napi_schedule_rps(struct softnet_data *sd)
4595 {
4596 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4597 
4598 #ifdef CONFIG_RPS
4599 	if (sd != mysd) {
4600 		sd->rps_ipi_next = mysd->rps_ipi_list;
4601 		mysd->rps_ipi_list = sd;
4602 
4603 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4604 		return 1;
4605 	}
4606 #endif /* CONFIG_RPS */
4607 	__napi_schedule_irqoff(&mysd->backlog);
4608 	return 0;
4609 }
4610 
4611 #ifdef CONFIG_NET_FLOW_LIMIT
4612 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4613 #endif
4614 
4615 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4616 {
4617 #ifdef CONFIG_NET_FLOW_LIMIT
4618 	struct sd_flow_limit *fl;
4619 	struct softnet_data *sd;
4620 	unsigned int old_flow, new_flow;
4621 
4622 	if (qlen < (READ_ONCE(netdev_max_backlog) >> 1))
4623 		return false;
4624 
4625 	sd = this_cpu_ptr(&softnet_data);
4626 
4627 	rcu_read_lock();
4628 	fl = rcu_dereference(sd->flow_limit);
4629 	if (fl) {
4630 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4631 		old_flow = fl->history[fl->history_head];
4632 		fl->history[fl->history_head] = new_flow;
4633 
4634 		fl->history_head++;
4635 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4636 
4637 		if (likely(fl->buckets[old_flow]))
4638 			fl->buckets[old_flow]--;
4639 
4640 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4641 			fl->count++;
4642 			rcu_read_unlock();
4643 			return true;
4644 		}
4645 	}
4646 	rcu_read_unlock();
4647 #endif
4648 	return false;
4649 }
4650 
4651 /*
4652  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4653  * queue (may be a remote CPU queue).
4654  */
4655 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4656 			      unsigned int *qtail)
4657 {
4658 	enum skb_drop_reason reason;
4659 	struct softnet_data *sd;
4660 	unsigned long flags;
4661 	unsigned int qlen;
4662 
4663 	reason = SKB_DROP_REASON_NOT_SPECIFIED;
4664 	sd = &per_cpu(softnet_data, cpu);
4665 
4666 	rps_lock_irqsave(sd, &flags);
4667 	if (!netif_running(skb->dev))
4668 		goto drop;
4669 	qlen = skb_queue_len(&sd->input_pkt_queue);
4670 	if (qlen <= READ_ONCE(netdev_max_backlog) && !skb_flow_limit(skb, qlen)) {
4671 		if (qlen) {
4672 enqueue:
4673 			__skb_queue_tail(&sd->input_pkt_queue, skb);
4674 			input_queue_tail_incr_save(sd, qtail);
4675 			rps_unlock_irq_restore(sd, &flags);
4676 			return NET_RX_SUCCESS;
4677 		}
4678 
4679 		/* Schedule NAPI for backlog device
4680 		 * We can use non atomic operation since we own the queue lock
4681 		 */
4682 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4683 			napi_schedule_rps(sd);
4684 		goto enqueue;
4685 	}
4686 	reason = SKB_DROP_REASON_CPU_BACKLOG;
4687 
4688 drop:
4689 	sd->dropped++;
4690 	rps_unlock_irq_restore(sd, &flags);
4691 
4692 	dev_core_stats_rx_dropped_inc(skb->dev);
4693 	kfree_skb_reason(skb, reason);
4694 	return NET_RX_DROP;
4695 }
4696 
4697 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4698 {
4699 	struct net_device *dev = skb->dev;
4700 	struct netdev_rx_queue *rxqueue;
4701 
4702 	rxqueue = dev->_rx;
4703 
4704 	if (skb_rx_queue_recorded(skb)) {
4705 		u16 index = skb_get_rx_queue(skb);
4706 
4707 		if (unlikely(index >= dev->real_num_rx_queues)) {
4708 			WARN_ONCE(dev->real_num_rx_queues > 1,
4709 				  "%s received packet on queue %u, but number "
4710 				  "of RX queues is %u\n",
4711 				  dev->name, index, dev->real_num_rx_queues);
4712 
4713 			return rxqueue; /* Return first rxqueue */
4714 		}
4715 		rxqueue += index;
4716 	}
4717 	return rxqueue;
4718 }
4719 
4720 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4721 			     struct bpf_prog *xdp_prog)
4722 {
4723 	void *orig_data, *orig_data_end, *hard_start;
4724 	struct netdev_rx_queue *rxqueue;
4725 	bool orig_bcast, orig_host;
4726 	u32 mac_len, frame_sz;
4727 	__be16 orig_eth_type;
4728 	struct ethhdr *eth;
4729 	u32 metalen, act;
4730 	int off;
4731 
4732 	/* The XDP program wants to see the packet starting at the MAC
4733 	 * header.
4734 	 */
4735 	mac_len = skb->data - skb_mac_header(skb);
4736 	hard_start = skb->data - skb_headroom(skb);
4737 
4738 	/* SKB "head" area always have tailroom for skb_shared_info */
4739 	frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4740 	frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4741 
4742 	rxqueue = netif_get_rxqueue(skb);
4743 	xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4744 	xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4745 			 skb_headlen(skb) + mac_len, true);
4746 
4747 	orig_data_end = xdp->data_end;
4748 	orig_data = xdp->data;
4749 	eth = (struct ethhdr *)xdp->data;
4750 	orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4751 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4752 	orig_eth_type = eth->h_proto;
4753 
4754 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4755 
4756 	/* check if bpf_xdp_adjust_head was used */
4757 	off = xdp->data - orig_data;
4758 	if (off) {
4759 		if (off > 0)
4760 			__skb_pull(skb, off);
4761 		else if (off < 0)
4762 			__skb_push(skb, -off);
4763 
4764 		skb->mac_header += off;
4765 		skb_reset_network_header(skb);
4766 	}
4767 
4768 	/* check if bpf_xdp_adjust_tail was used */
4769 	off = xdp->data_end - orig_data_end;
4770 	if (off != 0) {
4771 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4772 		skb->len += off; /* positive on grow, negative on shrink */
4773 	}
4774 
4775 	/* check if XDP changed eth hdr such SKB needs update */
4776 	eth = (struct ethhdr *)xdp->data;
4777 	if ((orig_eth_type != eth->h_proto) ||
4778 	    (orig_host != ether_addr_equal_64bits(eth->h_dest,
4779 						  skb->dev->dev_addr)) ||
4780 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4781 		__skb_push(skb, ETH_HLEN);
4782 		skb->pkt_type = PACKET_HOST;
4783 		skb->protocol = eth_type_trans(skb, skb->dev);
4784 	}
4785 
4786 	/* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4787 	 * before calling us again on redirect path. We do not call do_redirect
4788 	 * as we leave that up to the caller.
4789 	 *
4790 	 * Caller is responsible for managing lifetime of skb (i.e. calling
4791 	 * kfree_skb in response to actions it cannot handle/XDP_DROP).
4792 	 */
4793 	switch (act) {
4794 	case XDP_REDIRECT:
4795 	case XDP_TX:
4796 		__skb_push(skb, mac_len);
4797 		break;
4798 	case XDP_PASS:
4799 		metalen = xdp->data - xdp->data_meta;
4800 		if (metalen)
4801 			skb_metadata_set(skb, metalen);
4802 		break;
4803 	}
4804 
4805 	return act;
4806 }
4807 
4808 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4809 				     struct xdp_buff *xdp,
4810 				     struct bpf_prog *xdp_prog)
4811 {
4812 	u32 act = XDP_DROP;
4813 
4814 	/* Reinjected packets coming from act_mirred or similar should
4815 	 * not get XDP generic processing.
4816 	 */
4817 	if (skb_is_redirected(skb))
4818 		return XDP_PASS;
4819 
4820 	/* XDP packets must be linear and must have sufficient headroom
4821 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4822 	 * native XDP provides, thus we need to do it here as well.
4823 	 */
4824 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4825 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4826 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4827 		int troom = skb->tail + skb->data_len - skb->end;
4828 
4829 		/* In case we have to go down the path and also linearize,
4830 		 * then lets do the pskb_expand_head() work just once here.
4831 		 */
4832 		if (pskb_expand_head(skb,
4833 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4834 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4835 			goto do_drop;
4836 		if (skb_linearize(skb))
4837 			goto do_drop;
4838 	}
4839 
4840 	act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4841 	switch (act) {
4842 	case XDP_REDIRECT:
4843 	case XDP_TX:
4844 	case XDP_PASS:
4845 		break;
4846 	default:
4847 		bpf_warn_invalid_xdp_action(skb->dev, xdp_prog, act);
4848 		fallthrough;
4849 	case XDP_ABORTED:
4850 		trace_xdp_exception(skb->dev, xdp_prog, act);
4851 		fallthrough;
4852 	case XDP_DROP:
4853 	do_drop:
4854 		kfree_skb(skb);
4855 		break;
4856 	}
4857 
4858 	return act;
4859 }
4860 
4861 /* When doing generic XDP we have to bypass the qdisc layer and the
4862  * network taps in order to match in-driver-XDP behavior. This also means
4863  * that XDP packets are able to starve other packets going through a qdisc,
4864  * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
4865  * queues, so they do not have this starvation issue.
4866  */
4867 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4868 {
4869 	struct net_device *dev = skb->dev;
4870 	struct netdev_queue *txq;
4871 	bool free_skb = true;
4872 	int cpu, rc;
4873 
4874 	txq = netdev_core_pick_tx(dev, skb, NULL);
4875 	cpu = smp_processor_id();
4876 	HARD_TX_LOCK(dev, txq, cpu);
4877 	if (!netif_xmit_frozen_or_drv_stopped(txq)) {
4878 		rc = netdev_start_xmit(skb, dev, txq, 0);
4879 		if (dev_xmit_complete(rc))
4880 			free_skb = false;
4881 	}
4882 	HARD_TX_UNLOCK(dev, txq);
4883 	if (free_skb) {
4884 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
4885 		dev_core_stats_tx_dropped_inc(dev);
4886 		kfree_skb(skb);
4887 	}
4888 }
4889 
4890 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4891 
4892 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4893 {
4894 	if (xdp_prog) {
4895 		struct xdp_buff xdp;
4896 		u32 act;
4897 		int err;
4898 
4899 		act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4900 		if (act != XDP_PASS) {
4901 			switch (act) {
4902 			case XDP_REDIRECT:
4903 				err = xdp_do_generic_redirect(skb->dev, skb,
4904 							      &xdp, xdp_prog);
4905 				if (err)
4906 					goto out_redir;
4907 				break;
4908 			case XDP_TX:
4909 				generic_xdp_tx(skb, xdp_prog);
4910 				break;
4911 			}
4912 			return XDP_DROP;
4913 		}
4914 	}
4915 	return XDP_PASS;
4916 out_redir:
4917 	kfree_skb_reason(skb, SKB_DROP_REASON_XDP);
4918 	return XDP_DROP;
4919 }
4920 EXPORT_SYMBOL_GPL(do_xdp_generic);
4921 
4922 static int netif_rx_internal(struct sk_buff *skb)
4923 {
4924 	int ret;
4925 
4926 	net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
4927 
4928 	trace_netif_rx(skb);
4929 
4930 #ifdef CONFIG_RPS
4931 	if (static_branch_unlikely(&rps_needed)) {
4932 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4933 		int cpu;
4934 
4935 		rcu_read_lock();
4936 
4937 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
4938 		if (cpu < 0)
4939 			cpu = smp_processor_id();
4940 
4941 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4942 
4943 		rcu_read_unlock();
4944 	} else
4945 #endif
4946 	{
4947 		unsigned int qtail;
4948 
4949 		ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
4950 	}
4951 	return ret;
4952 }
4953 
4954 /**
4955  *	__netif_rx	-	Slightly optimized version of netif_rx
4956  *	@skb: buffer to post
4957  *
4958  *	This behaves as netif_rx except that it does not disable bottom halves.
4959  *	As a result this function may only be invoked from the interrupt context
4960  *	(either hard or soft interrupt).
4961  */
4962 int __netif_rx(struct sk_buff *skb)
4963 {
4964 	int ret;
4965 
4966 	lockdep_assert_once(hardirq_count() | softirq_count());
4967 
4968 	trace_netif_rx_entry(skb);
4969 	ret = netif_rx_internal(skb);
4970 	trace_netif_rx_exit(ret);
4971 	return ret;
4972 }
4973 EXPORT_SYMBOL(__netif_rx);
4974 
4975 /**
4976  *	netif_rx	-	post buffer to the network code
4977  *	@skb: buffer to post
4978  *
4979  *	This function receives a packet from a device driver and queues it for
4980  *	the upper (protocol) levels to process via the backlog NAPI device. It
4981  *	always succeeds. The buffer may be dropped during processing for
4982  *	congestion control or by the protocol layers.
4983  *	The network buffer is passed via the backlog NAPI device. Modern NIC
4984  *	driver should use NAPI and GRO.
4985  *	This function can used from interrupt and from process context. The
4986  *	caller from process context must not disable interrupts before invoking
4987  *	this function.
4988  *
4989  *	return values:
4990  *	NET_RX_SUCCESS	(no congestion)
4991  *	NET_RX_DROP     (packet was dropped)
4992  *
4993  */
4994 int netif_rx(struct sk_buff *skb)
4995 {
4996 	bool need_bh_off = !(hardirq_count() | softirq_count());
4997 	int ret;
4998 
4999 	if (need_bh_off)
5000 		local_bh_disable();
5001 	trace_netif_rx_entry(skb);
5002 	ret = netif_rx_internal(skb);
5003 	trace_netif_rx_exit(ret);
5004 	if (need_bh_off)
5005 		local_bh_enable();
5006 	return ret;
5007 }
5008 EXPORT_SYMBOL(netif_rx);
5009 
5010 static __latent_entropy void net_tx_action(struct softirq_action *h)
5011 {
5012 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5013 
5014 	if (sd->completion_queue) {
5015 		struct sk_buff *clist;
5016 
5017 		local_irq_disable();
5018 		clist = sd->completion_queue;
5019 		sd->completion_queue = NULL;
5020 		local_irq_enable();
5021 
5022 		while (clist) {
5023 			struct sk_buff *skb = clist;
5024 
5025 			clist = clist->next;
5026 
5027 			WARN_ON(refcount_read(&skb->users));
5028 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
5029 				trace_consume_skb(skb);
5030 			else
5031 				trace_kfree_skb(skb, net_tx_action,
5032 						SKB_DROP_REASON_NOT_SPECIFIED);
5033 
5034 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5035 				__kfree_skb(skb);
5036 			else
5037 				__kfree_skb_defer(skb);
5038 		}
5039 	}
5040 
5041 	if (sd->output_queue) {
5042 		struct Qdisc *head;
5043 
5044 		local_irq_disable();
5045 		head = sd->output_queue;
5046 		sd->output_queue = NULL;
5047 		sd->output_queue_tailp = &sd->output_queue;
5048 		local_irq_enable();
5049 
5050 		rcu_read_lock();
5051 
5052 		while (head) {
5053 			struct Qdisc *q = head;
5054 			spinlock_t *root_lock = NULL;
5055 
5056 			head = head->next_sched;
5057 
5058 			/* We need to make sure head->next_sched is read
5059 			 * before clearing __QDISC_STATE_SCHED
5060 			 */
5061 			smp_mb__before_atomic();
5062 
5063 			if (!(q->flags & TCQ_F_NOLOCK)) {
5064 				root_lock = qdisc_lock(q);
5065 				spin_lock(root_lock);
5066 			} else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5067 						     &q->state))) {
5068 				/* There is a synchronize_net() between
5069 				 * STATE_DEACTIVATED flag being set and
5070 				 * qdisc_reset()/some_qdisc_is_busy() in
5071 				 * dev_deactivate(), so we can safely bail out
5072 				 * early here to avoid data race between
5073 				 * qdisc_deactivate() and some_qdisc_is_busy()
5074 				 * for lockless qdisc.
5075 				 */
5076 				clear_bit(__QDISC_STATE_SCHED, &q->state);
5077 				continue;
5078 			}
5079 
5080 			clear_bit(__QDISC_STATE_SCHED, &q->state);
5081 			qdisc_run(q);
5082 			if (root_lock)
5083 				spin_unlock(root_lock);
5084 		}
5085 
5086 		rcu_read_unlock();
5087 	}
5088 
5089 	xfrm_dev_backlog(sd);
5090 }
5091 
5092 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5093 /* This hook is defined here for ATM LANE */
5094 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5095 			     unsigned char *addr) __read_mostly;
5096 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5097 #endif
5098 
5099 static inline struct sk_buff *
5100 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
5101 		   struct net_device *orig_dev, bool *another)
5102 {
5103 #ifdef CONFIG_NET_CLS_ACT
5104 	struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
5105 	struct tcf_result cl_res;
5106 
5107 	/* If there's at least one ingress present somewhere (so
5108 	 * we get here via enabled static key), remaining devices
5109 	 * that are not configured with an ingress qdisc will bail
5110 	 * out here.
5111 	 */
5112 	if (!miniq)
5113 		return skb;
5114 
5115 	if (*pt_prev) {
5116 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
5117 		*pt_prev = NULL;
5118 	}
5119 
5120 	qdisc_skb_cb(skb)->pkt_len = skb->len;
5121 	tc_skb_cb(skb)->mru = 0;
5122 	tc_skb_cb(skb)->post_ct = false;
5123 	skb->tc_at_ingress = 1;
5124 	mini_qdisc_bstats_cpu_update(miniq, skb);
5125 
5126 	switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
5127 	case TC_ACT_OK:
5128 	case TC_ACT_RECLASSIFY:
5129 		skb->tc_index = TC_H_MIN(cl_res.classid);
5130 		break;
5131 	case TC_ACT_SHOT:
5132 		mini_qdisc_qstats_cpu_drop(miniq);
5133 		kfree_skb_reason(skb, SKB_DROP_REASON_TC_INGRESS);
5134 		*ret = NET_RX_DROP;
5135 		return NULL;
5136 	case TC_ACT_STOLEN:
5137 	case TC_ACT_QUEUED:
5138 	case TC_ACT_TRAP:
5139 		consume_skb(skb);
5140 		*ret = NET_RX_SUCCESS;
5141 		return NULL;
5142 	case TC_ACT_REDIRECT:
5143 		/* skb_mac_header check was done by cls/act_bpf, so
5144 		 * we can safely push the L2 header back before
5145 		 * redirecting to another netdev
5146 		 */
5147 		__skb_push(skb, skb->mac_len);
5148 		if (skb_do_redirect(skb) == -EAGAIN) {
5149 			__skb_pull(skb, skb->mac_len);
5150 			*another = true;
5151 			break;
5152 		}
5153 		*ret = NET_RX_SUCCESS;
5154 		return NULL;
5155 	case TC_ACT_CONSUMED:
5156 		*ret = NET_RX_SUCCESS;
5157 		return NULL;
5158 	default:
5159 		break;
5160 	}
5161 #endif /* CONFIG_NET_CLS_ACT */
5162 	return skb;
5163 }
5164 
5165 /**
5166  *	netdev_is_rx_handler_busy - check if receive handler is registered
5167  *	@dev: device to check
5168  *
5169  *	Check if a receive handler is already registered for a given device.
5170  *	Return true if there one.
5171  *
5172  *	The caller must hold the rtnl_mutex.
5173  */
5174 bool netdev_is_rx_handler_busy(struct net_device *dev)
5175 {
5176 	ASSERT_RTNL();
5177 	return dev && rtnl_dereference(dev->rx_handler);
5178 }
5179 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5180 
5181 /**
5182  *	netdev_rx_handler_register - register receive handler
5183  *	@dev: device to register a handler for
5184  *	@rx_handler: receive handler to register
5185  *	@rx_handler_data: data pointer that is used by rx handler
5186  *
5187  *	Register a receive handler for a device. This handler will then be
5188  *	called from __netif_receive_skb. A negative errno code is returned
5189  *	on a failure.
5190  *
5191  *	The caller must hold the rtnl_mutex.
5192  *
5193  *	For a general description of rx_handler, see enum rx_handler_result.
5194  */
5195 int netdev_rx_handler_register(struct net_device *dev,
5196 			       rx_handler_func_t *rx_handler,
5197 			       void *rx_handler_data)
5198 {
5199 	if (netdev_is_rx_handler_busy(dev))
5200 		return -EBUSY;
5201 
5202 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
5203 		return -EINVAL;
5204 
5205 	/* Note: rx_handler_data must be set before rx_handler */
5206 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5207 	rcu_assign_pointer(dev->rx_handler, rx_handler);
5208 
5209 	return 0;
5210 }
5211 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5212 
5213 /**
5214  *	netdev_rx_handler_unregister - unregister receive handler
5215  *	@dev: device to unregister a handler from
5216  *
5217  *	Unregister a receive handler from a device.
5218  *
5219  *	The caller must hold the rtnl_mutex.
5220  */
5221 void netdev_rx_handler_unregister(struct net_device *dev)
5222 {
5223 
5224 	ASSERT_RTNL();
5225 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5226 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5227 	 * section has a guarantee to see a non NULL rx_handler_data
5228 	 * as well.
5229 	 */
5230 	synchronize_net();
5231 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5232 }
5233 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5234 
5235 /*
5236  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5237  * the special handling of PFMEMALLOC skbs.
5238  */
5239 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5240 {
5241 	switch (skb->protocol) {
5242 	case htons(ETH_P_ARP):
5243 	case htons(ETH_P_IP):
5244 	case htons(ETH_P_IPV6):
5245 	case htons(ETH_P_8021Q):
5246 	case htons(ETH_P_8021AD):
5247 		return true;
5248 	default:
5249 		return false;
5250 	}
5251 }
5252 
5253 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5254 			     int *ret, struct net_device *orig_dev)
5255 {
5256 	if (nf_hook_ingress_active(skb)) {
5257 		int ingress_retval;
5258 
5259 		if (*pt_prev) {
5260 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5261 			*pt_prev = NULL;
5262 		}
5263 
5264 		rcu_read_lock();
5265 		ingress_retval = nf_hook_ingress(skb);
5266 		rcu_read_unlock();
5267 		return ingress_retval;
5268 	}
5269 	return 0;
5270 }
5271 
5272 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5273 				    struct packet_type **ppt_prev)
5274 {
5275 	struct packet_type *ptype, *pt_prev;
5276 	rx_handler_func_t *rx_handler;
5277 	struct sk_buff *skb = *pskb;
5278 	struct net_device *orig_dev;
5279 	bool deliver_exact = false;
5280 	int ret = NET_RX_DROP;
5281 	__be16 type;
5282 
5283 	net_timestamp_check(!READ_ONCE(netdev_tstamp_prequeue), skb);
5284 
5285 	trace_netif_receive_skb(skb);
5286 
5287 	orig_dev = skb->dev;
5288 
5289 	skb_reset_network_header(skb);
5290 	if (!skb_transport_header_was_set(skb))
5291 		skb_reset_transport_header(skb);
5292 	skb_reset_mac_len(skb);
5293 
5294 	pt_prev = NULL;
5295 
5296 another_round:
5297 	skb->skb_iif = skb->dev->ifindex;
5298 
5299 	__this_cpu_inc(softnet_data.processed);
5300 
5301 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5302 		int ret2;
5303 
5304 		migrate_disable();
5305 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5306 		migrate_enable();
5307 
5308 		if (ret2 != XDP_PASS) {
5309 			ret = NET_RX_DROP;
5310 			goto out;
5311 		}
5312 	}
5313 
5314 	if (eth_type_vlan(skb->protocol)) {
5315 		skb = skb_vlan_untag(skb);
5316 		if (unlikely(!skb))
5317 			goto out;
5318 	}
5319 
5320 	if (skb_skip_tc_classify(skb))
5321 		goto skip_classify;
5322 
5323 	if (pfmemalloc)
5324 		goto skip_taps;
5325 
5326 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
5327 		if (pt_prev)
5328 			ret = deliver_skb(skb, pt_prev, orig_dev);
5329 		pt_prev = ptype;
5330 	}
5331 
5332 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5333 		if (pt_prev)
5334 			ret = deliver_skb(skb, pt_prev, orig_dev);
5335 		pt_prev = ptype;
5336 	}
5337 
5338 skip_taps:
5339 #ifdef CONFIG_NET_INGRESS
5340 	if (static_branch_unlikely(&ingress_needed_key)) {
5341 		bool another = false;
5342 
5343 		nf_skip_egress(skb, true);
5344 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5345 					 &another);
5346 		if (another)
5347 			goto another_round;
5348 		if (!skb)
5349 			goto out;
5350 
5351 		nf_skip_egress(skb, false);
5352 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5353 			goto out;
5354 	}
5355 #endif
5356 	skb_reset_redirect(skb);
5357 skip_classify:
5358 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5359 		goto drop;
5360 
5361 	if (skb_vlan_tag_present(skb)) {
5362 		if (pt_prev) {
5363 			ret = deliver_skb(skb, pt_prev, orig_dev);
5364 			pt_prev = NULL;
5365 		}
5366 		if (vlan_do_receive(&skb))
5367 			goto another_round;
5368 		else if (unlikely(!skb))
5369 			goto out;
5370 	}
5371 
5372 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5373 	if (rx_handler) {
5374 		if (pt_prev) {
5375 			ret = deliver_skb(skb, pt_prev, orig_dev);
5376 			pt_prev = NULL;
5377 		}
5378 		switch (rx_handler(&skb)) {
5379 		case RX_HANDLER_CONSUMED:
5380 			ret = NET_RX_SUCCESS;
5381 			goto out;
5382 		case RX_HANDLER_ANOTHER:
5383 			goto another_round;
5384 		case RX_HANDLER_EXACT:
5385 			deliver_exact = true;
5386 			break;
5387 		case RX_HANDLER_PASS:
5388 			break;
5389 		default:
5390 			BUG();
5391 		}
5392 	}
5393 
5394 	if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5395 check_vlan_id:
5396 		if (skb_vlan_tag_get_id(skb)) {
5397 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5398 			 * find vlan device.
5399 			 */
5400 			skb->pkt_type = PACKET_OTHERHOST;
5401 		} else if (eth_type_vlan(skb->protocol)) {
5402 			/* Outer header is 802.1P with vlan 0, inner header is
5403 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5404 			 * not find vlan dev for vlan id 0.
5405 			 */
5406 			__vlan_hwaccel_clear_tag(skb);
5407 			skb = skb_vlan_untag(skb);
5408 			if (unlikely(!skb))
5409 				goto out;
5410 			if (vlan_do_receive(&skb))
5411 				/* After stripping off 802.1P header with vlan 0
5412 				 * vlan dev is found for inner header.
5413 				 */
5414 				goto another_round;
5415 			else if (unlikely(!skb))
5416 				goto out;
5417 			else
5418 				/* We have stripped outer 802.1P vlan 0 header.
5419 				 * But could not find vlan dev.
5420 				 * check again for vlan id to set OTHERHOST.
5421 				 */
5422 				goto check_vlan_id;
5423 		}
5424 		/* Note: we might in the future use prio bits
5425 		 * and set skb->priority like in vlan_do_receive()
5426 		 * For the time being, just ignore Priority Code Point
5427 		 */
5428 		__vlan_hwaccel_clear_tag(skb);
5429 	}
5430 
5431 	type = skb->protocol;
5432 
5433 	/* deliver only exact match when indicated */
5434 	if (likely(!deliver_exact)) {
5435 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5436 				       &ptype_base[ntohs(type) &
5437 						   PTYPE_HASH_MASK]);
5438 	}
5439 
5440 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5441 			       &orig_dev->ptype_specific);
5442 
5443 	if (unlikely(skb->dev != orig_dev)) {
5444 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5445 				       &skb->dev->ptype_specific);
5446 	}
5447 
5448 	if (pt_prev) {
5449 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5450 			goto drop;
5451 		*ppt_prev = pt_prev;
5452 	} else {
5453 drop:
5454 		if (!deliver_exact)
5455 			dev_core_stats_rx_dropped_inc(skb->dev);
5456 		else
5457 			dev_core_stats_rx_nohandler_inc(skb->dev);
5458 		kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5459 		/* Jamal, now you will not able to escape explaining
5460 		 * me how you were going to use this. :-)
5461 		 */
5462 		ret = NET_RX_DROP;
5463 	}
5464 
5465 out:
5466 	/* The invariant here is that if *ppt_prev is not NULL
5467 	 * then skb should also be non-NULL.
5468 	 *
5469 	 * Apparently *ppt_prev assignment above holds this invariant due to
5470 	 * skb dereferencing near it.
5471 	 */
5472 	*pskb = skb;
5473 	return ret;
5474 }
5475 
5476 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5477 {
5478 	struct net_device *orig_dev = skb->dev;
5479 	struct packet_type *pt_prev = NULL;
5480 	int ret;
5481 
5482 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5483 	if (pt_prev)
5484 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5485 					 skb->dev, pt_prev, orig_dev);
5486 	return ret;
5487 }
5488 
5489 /**
5490  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5491  *	@skb: buffer to process
5492  *
5493  *	More direct receive version of netif_receive_skb().  It should
5494  *	only be used by callers that have a need to skip RPS and Generic XDP.
5495  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5496  *
5497  *	This function may only be called from softirq context and interrupts
5498  *	should be enabled.
5499  *
5500  *	Return values (usually ignored):
5501  *	NET_RX_SUCCESS: no congestion
5502  *	NET_RX_DROP: packet was dropped
5503  */
5504 int netif_receive_skb_core(struct sk_buff *skb)
5505 {
5506 	int ret;
5507 
5508 	rcu_read_lock();
5509 	ret = __netif_receive_skb_one_core(skb, false);
5510 	rcu_read_unlock();
5511 
5512 	return ret;
5513 }
5514 EXPORT_SYMBOL(netif_receive_skb_core);
5515 
5516 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5517 						  struct packet_type *pt_prev,
5518 						  struct net_device *orig_dev)
5519 {
5520 	struct sk_buff *skb, *next;
5521 
5522 	if (!pt_prev)
5523 		return;
5524 	if (list_empty(head))
5525 		return;
5526 	if (pt_prev->list_func != NULL)
5527 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5528 				   ip_list_rcv, head, pt_prev, orig_dev);
5529 	else
5530 		list_for_each_entry_safe(skb, next, head, list) {
5531 			skb_list_del_init(skb);
5532 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5533 		}
5534 }
5535 
5536 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5537 {
5538 	/* Fast-path assumptions:
5539 	 * - There is no RX handler.
5540 	 * - Only one packet_type matches.
5541 	 * If either of these fails, we will end up doing some per-packet
5542 	 * processing in-line, then handling the 'last ptype' for the whole
5543 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5544 	 * because the 'last ptype' must be constant across the sublist, and all
5545 	 * other ptypes are handled per-packet.
5546 	 */
5547 	/* Current (common) ptype of sublist */
5548 	struct packet_type *pt_curr = NULL;
5549 	/* Current (common) orig_dev of sublist */
5550 	struct net_device *od_curr = NULL;
5551 	struct list_head sublist;
5552 	struct sk_buff *skb, *next;
5553 
5554 	INIT_LIST_HEAD(&sublist);
5555 	list_for_each_entry_safe(skb, next, head, list) {
5556 		struct net_device *orig_dev = skb->dev;
5557 		struct packet_type *pt_prev = NULL;
5558 
5559 		skb_list_del_init(skb);
5560 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5561 		if (!pt_prev)
5562 			continue;
5563 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5564 			/* dispatch old sublist */
5565 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5566 			/* start new sublist */
5567 			INIT_LIST_HEAD(&sublist);
5568 			pt_curr = pt_prev;
5569 			od_curr = orig_dev;
5570 		}
5571 		list_add_tail(&skb->list, &sublist);
5572 	}
5573 
5574 	/* dispatch final sublist */
5575 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5576 }
5577 
5578 static int __netif_receive_skb(struct sk_buff *skb)
5579 {
5580 	int ret;
5581 
5582 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5583 		unsigned int noreclaim_flag;
5584 
5585 		/*
5586 		 * PFMEMALLOC skbs are special, they should
5587 		 * - be delivered to SOCK_MEMALLOC sockets only
5588 		 * - stay away from userspace
5589 		 * - have bounded memory usage
5590 		 *
5591 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5592 		 * context down to all allocation sites.
5593 		 */
5594 		noreclaim_flag = memalloc_noreclaim_save();
5595 		ret = __netif_receive_skb_one_core(skb, true);
5596 		memalloc_noreclaim_restore(noreclaim_flag);
5597 	} else
5598 		ret = __netif_receive_skb_one_core(skb, false);
5599 
5600 	return ret;
5601 }
5602 
5603 static void __netif_receive_skb_list(struct list_head *head)
5604 {
5605 	unsigned long noreclaim_flag = 0;
5606 	struct sk_buff *skb, *next;
5607 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5608 
5609 	list_for_each_entry_safe(skb, next, head, list) {
5610 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5611 			struct list_head sublist;
5612 
5613 			/* Handle the previous sublist */
5614 			list_cut_before(&sublist, head, &skb->list);
5615 			if (!list_empty(&sublist))
5616 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5617 			pfmemalloc = !pfmemalloc;
5618 			/* See comments in __netif_receive_skb */
5619 			if (pfmemalloc)
5620 				noreclaim_flag = memalloc_noreclaim_save();
5621 			else
5622 				memalloc_noreclaim_restore(noreclaim_flag);
5623 		}
5624 	}
5625 	/* Handle the remaining sublist */
5626 	if (!list_empty(head))
5627 		__netif_receive_skb_list_core(head, pfmemalloc);
5628 	/* Restore pflags */
5629 	if (pfmemalloc)
5630 		memalloc_noreclaim_restore(noreclaim_flag);
5631 }
5632 
5633 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5634 {
5635 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5636 	struct bpf_prog *new = xdp->prog;
5637 	int ret = 0;
5638 
5639 	switch (xdp->command) {
5640 	case XDP_SETUP_PROG:
5641 		rcu_assign_pointer(dev->xdp_prog, new);
5642 		if (old)
5643 			bpf_prog_put(old);
5644 
5645 		if (old && !new) {
5646 			static_branch_dec(&generic_xdp_needed_key);
5647 		} else if (new && !old) {
5648 			static_branch_inc(&generic_xdp_needed_key);
5649 			dev_disable_lro(dev);
5650 			dev_disable_gro_hw(dev);
5651 		}
5652 		break;
5653 
5654 	default:
5655 		ret = -EINVAL;
5656 		break;
5657 	}
5658 
5659 	return ret;
5660 }
5661 
5662 static int netif_receive_skb_internal(struct sk_buff *skb)
5663 {
5664 	int ret;
5665 
5666 	net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5667 
5668 	if (skb_defer_rx_timestamp(skb))
5669 		return NET_RX_SUCCESS;
5670 
5671 	rcu_read_lock();
5672 #ifdef CONFIG_RPS
5673 	if (static_branch_unlikely(&rps_needed)) {
5674 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5675 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5676 
5677 		if (cpu >= 0) {
5678 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5679 			rcu_read_unlock();
5680 			return ret;
5681 		}
5682 	}
5683 #endif
5684 	ret = __netif_receive_skb(skb);
5685 	rcu_read_unlock();
5686 	return ret;
5687 }
5688 
5689 void netif_receive_skb_list_internal(struct list_head *head)
5690 {
5691 	struct sk_buff *skb, *next;
5692 	struct list_head sublist;
5693 
5694 	INIT_LIST_HEAD(&sublist);
5695 	list_for_each_entry_safe(skb, next, head, list) {
5696 		net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5697 		skb_list_del_init(skb);
5698 		if (!skb_defer_rx_timestamp(skb))
5699 			list_add_tail(&skb->list, &sublist);
5700 	}
5701 	list_splice_init(&sublist, head);
5702 
5703 	rcu_read_lock();
5704 #ifdef CONFIG_RPS
5705 	if (static_branch_unlikely(&rps_needed)) {
5706 		list_for_each_entry_safe(skb, next, head, list) {
5707 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5708 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5709 
5710 			if (cpu >= 0) {
5711 				/* Will be handled, remove from list */
5712 				skb_list_del_init(skb);
5713 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5714 			}
5715 		}
5716 	}
5717 #endif
5718 	__netif_receive_skb_list(head);
5719 	rcu_read_unlock();
5720 }
5721 
5722 /**
5723  *	netif_receive_skb - process receive buffer from network
5724  *	@skb: buffer to process
5725  *
5726  *	netif_receive_skb() is the main receive data processing function.
5727  *	It always succeeds. The buffer may be dropped during processing
5728  *	for congestion control or by the protocol layers.
5729  *
5730  *	This function may only be called from softirq context and interrupts
5731  *	should be enabled.
5732  *
5733  *	Return values (usually ignored):
5734  *	NET_RX_SUCCESS: no congestion
5735  *	NET_RX_DROP: packet was dropped
5736  */
5737 int netif_receive_skb(struct sk_buff *skb)
5738 {
5739 	int ret;
5740 
5741 	trace_netif_receive_skb_entry(skb);
5742 
5743 	ret = netif_receive_skb_internal(skb);
5744 	trace_netif_receive_skb_exit(ret);
5745 
5746 	return ret;
5747 }
5748 EXPORT_SYMBOL(netif_receive_skb);
5749 
5750 /**
5751  *	netif_receive_skb_list - process many receive buffers from network
5752  *	@head: list of skbs to process.
5753  *
5754  *	Since return value of netif_receive_skb() is normally ignored, and
5755  *	wouldn't be meaningful for a list, this function returns void.
5756  *
5757  *	This function may only be called from softirq context and interrupts
5758  *	should be enabled.
5759  */
5760 void netif_receive_skb_list(struct list_head *head)
5761 {
5762 	struct sk_buff *skb;
5763 
5764 	if (list_empty(head))
5765 		return;
5766 	if (trace_netif_receive_skb_list_entry_enabled()) {
5767 		list_for_each_entry(skb, head, list)
5768 			trace_netif_receive_skb_list_entry(skb);
5769 	}
5770 	netif_receive_skb_list_internal(head);
5771 	trace_netif_receive_skb_list_exit(0);
5772 }
5773 EXPORT_SYMBOL(netif_receive_skb_list);
5774 
5775 static DEFINE_PER_CPU(struct work_struct, flush_works);
5776 
5777 /* Network device is going away, flush any packets still pending */
5778 static void flush_backlog(struct work_struct *work)
5779 {
5780 	struct sk_buff *skb, *tmp;
5781 	struct softnet_data *sd;
5782 
5783 	local_bh_disable();
5784 	sd = this_cpu_ptr(&softnet_data);
5785 
5786 	rps_lock_irq_disable(sd);
5787 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5788 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5789 			__skb_unlink(skb, &sd->input_pkt_queue);
5790 			dev_kfree_skb_irq(skb);
5791 			input_queue_head_incr(sd);
5792 		}
5793 	}
5794 	rps_unlock_irq_enable(sd);
5795 
5796 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5797 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5798 			__skb_unlink(skb, &sd->process_queue);
5799 			kfree_skb(skb);
5800 			input_queue_head_incr(sd);
5801 		}
5802 	}
5803 	local_bh_enable();
5804 }
5805 
5806 static bool flush_required(int cpu)
5807 {
5808 #if IS_ENABLED(CONFIG_RPS)
5809 	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5810 	bool do_flush;
5811 
5812 	rps_lock_irq_disable(sd);
5813 
5814 	/* as insertion into process_queue happens with the rps lock held,
5815 	 * process_queue access may race only with dequeue
5816 	 */
5817 	do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5818 		   !skb_queue_empty_lockless(&sd->process_queue);
5819 	rps_unlock_irq_enable(sd);
5820 
5821 	return do_flush;
5822 #endif
5823 	/* without RPS we can't safely check input_pkt_queue: during a
5824 	 * concurrent remote skb_queue_splice() we can detect as empty both
5825 	 * input_pkt_queue and process_queue even if the latter could end-up
5826 	 * containing a lot of packets.
5827 	 */
5828 	return true;
5829 }
5830 
5831 static void flush_all_backlogs(void)
5832 {
5833 	static cpumask_t flush_cpus;
5834 	unsigned int cpu;
5835 
5836 	/* since we are under rtnl lock protection we can use static data
5837 	 * for the cpumask and avoid allocating on stack the possibly
5838 	 * large mask
5839 	 */
5840 	ASSERT_RTNL();
5841 
5842 	cpus_read_lock();
5843 
5844 	cpumask_clear(&flush_cpus);
5845 	for_each_online_cpu(cpu) {
5846 		if (flush_required(cpu)) {
5847 			queue_work_on(cpu, system_highpri_wq,
5848 				      per_cpu_ptr(&flush_works, cpu));
5849 			cpumask_set_cpu(cpu, &flush_cpus);
5850 		}
5851 	}
5852 
5853 	/* we can have in flight packet[s] on the cpus we are not flushing,
5854 	 * synchronize_net() in unregister_netdevice_many() will take care of
5855 	 * them
5856 	 */
5857 	for_each_cpu(cpu, &flush_cpus)
5858 		flush_work(per_cpu_ptr(&flush_works, cpu));
5859 
5860 	cpus_read_unlock();
5861 }
5862 
5863 static void net_rps_send_ipi(struct softnet_data *remsd)
5864 {
5865 #ifdef CONFIG_RPS
5866 	while (remsd) {
5867 		struct softnet_data *next = remsd->rps_ipi_next;
5868 
5869 		if (cpu_online(remsd->cpu))
5870 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
5871 		remsd = next;
5872 	}
5873 #endif
5874 }
5875 
5876 /*
5877  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5878  * Note: called with local irq disabled, but exits with local irq enabled.
5879  */
5880 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5881 {
5882 #ifdef CONFIG_RPS
5883 	struct softnet_data *remsd = sd->rps_ipi_list;
5884 
5885 	if (remsd) {
5886 		sd->rps_ipi_list = NULL;
5887 
5888 		local_irq_enable();
5889 
5890 		/* Send pending IPI's to kick RPS processing on remote cpus. */
5891 		net_rps_send_ipi(remsd);
5892 	} else
5893 #endif
5894 		local_irq_enable();
5895 }
5896 
5897 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5898 {
5899 #ifdef CONFIG_RPS
5900 	return sd->rps_ipi_list != NULL;
5901 #else
5902 	return false;
5903 #endif
5904 }
5905 
5906 static int process_backlog(struct napi_struct *napi, int quota)
5907 {
5908 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5909 	bool again = true;
5910 	int work = 0;
5911 
5912 	/* Check if we have pending ipi, its better to send them now,
5913 	 * not waiting net_rx_action() end.
5914 	 */
5915 	if (sd_has_rps_ipi_waiting(sd)) {
5916 		local_irq_disable();
5917 		net_rps_action_and_irq_enable(sd);
5918 	}
5919 
5920 	napi->weight = READ_ONCE(dev_rx_weight);
5921 	while (again) {
5922 		struct sk_buff *skb;
5923 
5924 		while ((skb = __skb_dequeue(&sd->process_queue))) {
5925 			rcu_read_lock();
5926 			__netif_receive_skb(skb);
5927 			rcu_read_unlock();
5928 			input_queue_head_incr(sd);
5929 			if (++work >= quota)
5930 				return work;
5931 
5932 		}
5933 
5934 		rps_lock_irq_disable(sd);
5935 		if (skb_queue_empty(&sd->input_pkt_queue)) {
5936 			/*
5937 			 * Inline a custom version of __napi_complete().
5938 			 * only current cpu owns and manipulates this napi,
5939 			 * and NAPI_STATE_SCHED is the only possible flag set
5940 			 * on backlog.
5941 			 * We can use a plain write instead of clear_bit(),
5942 			 * and we dont need an smp_mb() memory barrier.
5943 			 */
5944 			napi->state = 0;
5945 			again = false;
5946 		} else {
5947 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
5948 						   &sd->process_queue);
5949 		}
5950 		rps_unlock_irq_enable(sd);
5951 	}
5952 
5953 	return work;
5954 }
5955 
5956 /**
5957  * __napi_schedule - schedule for receive
5958  * @n: entry to schedule
5959  *
5960  * The entry's receive function will be scheduled to run.
5961  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5962  */
5963 void __napi_schedule(struct napi_struct *n)
5964 {
5965 	unsigned long flags;
5966 
5967 	local_irq_save(flags);
5968 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
5969 	local_irq_restore(flags);
5970 }
5971 EXPORT_SYMBOL(__napi_schedule);
5972 
5973 /**
5974  *	napi_schedule_prep - check if napi can be scheduled
5975  *	@n: napi context
5976  *
5977  * Test if NAPI routine is already running, and if not mark
5978  * it as running.  This is used as a condition variable to
5979  * insure only one NAPI poll instance runs.  We also make
5980  * sure there is no pending NAPI disable.
5981  */
5982 bool napi_schedule_prep(struct napi_struct *n)
5983 {
5984 	unsigned long new, val = READ_ONCE(n->state);
5985 
5986 	do {
5987 		if (unlikely(val & NAPIF_STATE_DISABLE))
5988 			return false;
5989 		new = val | NAPIF_STATE_SCHED;
5990 
5991 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
5992 		 * This was suggested by Alexander Duyck, as compiler
5993 		 * emits better code than :
5994 		 * if (val & NAPIF_STATE_SCHED)
5995 		 *     new |= NAPIF_STATE_MISSED;
5996 		 */
5997 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5998 						   NAPIF_STATE_MISSED;
5999 	} while (!try_cmpxchg(&n->state, &val, new));
6000 
6001 	return !(val & NAPIF_STATE_SCHED);
6002 }
6003 EXPORT_SYMBOL(napi_schedule_prep);
6004 
6005 /**
6006  * __napi_schedule_irqoff - schedule for receive
6007  * @n: entry to schedule
6008  *
6009  * Variant of __napi_schedule() assuming hard irqs are masked.
6010  *
6011  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6012  * because the interrupt disabled assumption might not be true
6013  * due to force-threaded interrupts and spinlock substitution.
6014  */
6015 void __napi_schedule_irqoff(struct napi_struct *n)
6016 {
6017 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6018 		____napi_schedule(this_cpu_ptr(&softnet_data), n);
6019 	else
6020 		__napi_schedule(n);
6021 }
6022 EXPORT_SYMBOL(__napi_schedule_irqoff);
6023 
6024 bool napi_complete_done(struct napi_struct *n, int work_done)
6025 {
6026 	unsigned long flags, val, new, timeout = 0;
6027 	bool ret = true;
6028 
6029 	/*
6030 	 * 1) Don't let napi dequeue from the cpu poll list
6031 	 *    just in case its running on a different cpu.
6032 	 * 2) If we are busy polling, do nothing here, we have
6033 	 *    the guarantee we will be called later.
6034 	 */
6035 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6036 				 NAPIF_STATE_IN_BUSY_POLL)))
6037 		return false;
6038 
6039 	if (work_done) {
6040 		if (n->gro_bitmask)
6041 			timeout = READ_ONCE(n->dev->gro_flush_timeout);
6042 		n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6043 	}
6044 	if (n->defer_hard_irqs_count > 0) {
6045 		n->defer_hard_irqs_count--;
6046 		timeout = READ_ONCE(n->dev->gro_flush_timeout);
6047 		if (timeout)
6048 			ret = false;
6049 	}
6050 	if (n->gro_bitmask) {
6051 		/* When the NAPI instance uses a timeout and keeps postponing
6052 		 * it, we need to bound somehow the time packets are kept in
6053 		 * the GRO layer
6054 		 */
6055 		napi_gro_flush(n, !!timeout);
6056 	}
6057 
6058 	gro_normal_list(n);
6059 
6060 	if (unlikely(!list_empty(&n->poll_list))) {
6061 		/* If n->poll_list is not empty, we need to mask irqs */
6062 		local_irq_save(flags);
6063 		list_del_init(&n->poll_list);
6064 		local_irq_restore(flags);
6065 	}
6066 
6067 	val = READ_ONCE(n->state);
6068 	do {
6069 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6070 
6071 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6072 			      NAPIF_STATE_SCHED_THREADED |
6073 			      NAPIF_STATE_PREFER_BUSY_POLL);
6074 
6075 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6076 		 * because we will call napi->poll() one more time.
6077 		 * This C code was suggested by Alexander Duyck to help gcc.
6078 		 */
6079 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6080 						    NAPIF_STATE_SCHED;
6081 	} while (!try_cmpxchg(&n->state, &val, new));
6082 
6083 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6084 		__napi_schedule(n);
6085 		return false;
6086 	}
6087 
6088 	if (timeout)
6089 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
6090 			      HRTIMER_MODE_REL_PINNED);
6091 	return ret;
6092 }
6093 EXPORT_SYMBOL(napi_complete_done);
6094 
6095 /* must be called under rcu_read_lock(), as we dont take a reference */
6096 static struct napi_struct *napi_by_id(unsigned int napi_id)
6097 {
6098 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6099 	struct napi_struct *napi;
6100 
6101 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6102 		if (napi->napi_id == napi_id)
6103 			return napi;
6104 
6105 	return NULL;
6106 }
6107 
6108 #if defined(CONFIG_NET_RX_BUSY_POLL)
6109 
6110 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6111 {
6112 	if (!skip_schedule) {
6113 		gro_normal_list(napi);
6114 		__napi_schedule(napi);
6115 		return;
6116 	}
6117 
6118 	if (napi->gro_bitmask) {
6119 		/* flush too old packets
6120 		 * If HZ < 1000, flush all packets.
6121 		 */
6122 		napi_gro_flush(napi, HZ >= 1000);
6123 	}
6124 
6125 	gro_normal_list(napi);
6126 	clear_bit(NAPI_STATE_SCHED, &napi->state);
6127 }
6128 
6129 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6130 			   u16 budget)
6131 {
6132 	bool skip_schedule = false;
6133 	unsigned long timeout;
6134 	int rc;
6135 
6136 	/* Busy polling means there is a high chance device driver hard irq
6137 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6138 	 * set in napi_schedule_prep().
6139 	 * Since we are about to call napi->poll() once more, we can safely
6140 	 * clear NAPI_STATE_MISSED.
6141 	 *
6142 	 * Note: x86 could use a single "lock and ..." instruction
6143 	 * to perform these two clear_bit()
6144 	 */
6145 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6146 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6147 
6148 	local_bh_disable();
6149 
6150 	if (prefer_busy_poll) {
6151 		napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6152 		timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6153 		if (napi->defer_hard_irqs_count && timeout) {
6154 			hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6155 			skip_schedule = true;
6156 		}
6157 	}
6158 
6159 	/* All we really want here is to re-enable device interrupts.
6160 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6161 	 */
6162 	rc = napi->poll(napi, budget);
6163 	/* We can't gro_normal_list() here, because napi->poll() might have
6164 	 * rearmed the napi (napi_complete_done()) in which case it could
6165 	 * already be running on another CPU.
6166 	 */
6167 	trace_napi_poll(napi, rc, budget);
6168 	netpoll_poll_unlock(have_poll_lock);
6169 	if (rc == budget)
6170 		__busy_poll_stop(napi, skip_schedule);
6171 	local_bh_enable();
6172 }
6173 
6174 void napi_busy_loop(unsigned int napi_id,
6175 		    bool (*loop_end)(void *, unsigned long),
6176 		    void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6177 {
6178 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6179 	int (*napi_poll)(struct napi_struct *napi, int budget);
6180 	void *have_poll_lock = NULL;
6181 	struct napi_struct *napi;
6182 
6183 restart:
6184 	napi_poll = NULL;
6185 
6186 	rcu_read_lock();
6187 
6188 	napi = napi_by_id(napi_id);
6189 	if (!napi)
6190 		goto out;
6191 
6192 	preempt_disable();
6193 	for (;;) {
6194 		int work = 0;
6195 
6196 		local_bh_disable();
6197 		if (!napi_poll) {
6198 			unsigned long val = READ_ONCE(napi->state);
6199 
6200 			/* If multiple threads are competing for this napi,
6201 			 * we avoid dirtying napi->state as much as we can.
6202 			 */
6203 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6204 				   NAPIF_STATE_IN_BUSY_POLL)) {
6205 				if (prefer_busy_poll)
6206 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6207 				goto count;
6208 			}
6209 			if (cmpxchg(&napi->state, val,
6210 				    val | NAPIF_STATE_IN_BUSY_POLL |
6211 					  NAPIF_STATE_SCHED) != val) {
6212 				if (prefer_busy_poll)
6213 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6214 				goto count;
6215 			}
6216 			have_poll_lock = netpoll_poll_lock(napi);
6217 			napi_poll = napi->poll;
6218 		}
6219 		work = napi_poll(napi, budget);
6220 		trace_napi_poll(napi, work, budget);
6221 		gro_normal_list(napi);
6222 count:
6223 		if (work > 0)
6224 			__NET_ADD_STATS(dev_net(napi->dev),
6225 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6226 		local_bh_enable();
6227 
6228 		if (!loop_end || loop_end(loop_end_arg, start_time))
6229 			break;
6230 
6231 		if (unlikely(need_resched())) {
6232 			if (napi_poll)
6233 				busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6234 			preempt_enable();
6235 			rcu_read_unlock();
6236 			cond_resched();
6237 			if (loop_end(loop_end_arg, start_time))
6238 				return;
6239 			goto restart;
6240 		}
6241 		cpu_relax();
6242 	}
6243 	if (napi_poll)
6244 		busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6245 	preempt_enable();
6246 out:
6247 	rcu_read_unlock();
6248 }
6249 EXPORT_SYMBOL(napi_busy_loop);
6250 
6251 #endif /* CONFIG_NET_RX_BUSY_POLL */
6252 
6253 static void napi_hash_add(struct napi_struct *napi)
6254 {
6255 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6256 		return;
6257 
6258 	spin_lock(&napi_hash_lock);
6259 
6260 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6261 	do {
6262 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6263 			napi_gen_id = MIN_NAPI_ID;
6264 	} while (napi_by_id(napi_gen_id));
6265 	napi->napi_id = napi_gen_id;
6266 
6267 	hlist_add_head_rcu(&napi->napi_hash_node,
6268 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6269 
6270 	spin_unlock(&napi_hash_lock);
6271 }
6272 
6273 /* Warning : caller is responsible to make sure rcu grace period
6274  * is respected before freeing memory containing @napi
6275  */
6276 static void napi_hash_del(struct napi_struct *napi)
6277 {
6278 	spin_lock(&napi_hash_lock);
6279 
6280 	hlist_del_init_rcu(&napi->napi_hash_node);
6281 
6282 	spin_unlock(&napi_hash_lock);
6283 }
6284 
6285 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6286 {
6287 	struct napi_struct *napi;
6288 
6289 	napi = container_of(timer, struct napi_struct, timer);
6290 
6291 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6292 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6293 	 */
6294 	if (!napi_disable_pending(napi) &&
6295 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6296 		clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6297 		__napi_schedule_irqoff(napi);
6298 	}
6299 
6300 	return HRTIMER_NORESTART;
6301 }
6302 
6303 static void init_gro_hash(struct napi_struct *napi)
6304 {
6305 	int i;
6306 
6307 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6308 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6309 		napi->gro_hash[i].count = 0;
6310 	}
6311 	napi->gro_bitmask = 0;
6312 }
6313 
6314 int dev_set_threaded(struct net_device *dev, bool threaded)
6315 {
6316 	struct napi_struct *napi;
6317 	int err = 0;
6318 
6319 	if (dev->threaded == threaded)
6320 		return 0;
6321 
6322 	if (threaded) {
6323 		list_for_each_entry(napi, &dev->napi_list, dev_list) {
6324 			if (!napi->thread) {
6325 				err = napi_kthread_create(napi);
6326 				if (err) {
6327 					threaded = false;
6328 					break;
6329 				}
6330 			}
6331 		}
6332 	}
6333 
6334 	dev->threaded = threaded;
6335 
6336 	/* Make sure kthread is created before THREADED bit
6337 	 * is set.
6338 	 */
6339 	smp_mb__before_atomic();
6340 
6341 	/* Setting/unsetting threaded mode on a napi might not immediately
6342 	 * take effect, if the current napi instance is actively being
6343 	 * polled. In this case, the switch between threaded mode and
6344 	 * softirq mode will happen in the next round of napi_schedule().
6345 	 * This should not cause hiccups/stalls to the live traffic.
6346 	 */
6347 	list_for_each_entry(napi, &dev->napi_list, dev_list) {
6348 		if (threaded)
6349 			set_bit(NAPI_STATE_THREADED, &napi->state);
6350 		else
6351 			clear_bit(NAPI_STATE_THREADED, &napi->state);
6352 	}
6353 
6354 	return err;
6355 }
6356 EXPORT_SYMBOL(dev_set_threaded);
6357 
6358 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
6359 			   int (*poll)(struct napi_struct *, int), int weight)
6360 {
6361 	if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6362 		return;
6363 
6364 	INIT_LIST_HEAD(&napi->poll_list);
6365 	INIT_HLIST_NODE(&napi->napi_hash_node);
6366 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6367 	napi->timer.function = napi_watchdog;
6368 	init_gro_hash(napi);
6369 	napi->skb = NULL;
6370 	INIT_LIST_HEAD(&napi->rx_list);
6371 	napi->rx_count = 0;
6372 	napi->poll = poll;
6373 	if (weight > NAPI_POLL_WEIGHT)
6374 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6375 				weight);
6376 	napi->weight = weight;
6377 	napi->dev = dev;
6378 #ifdef CONFIG_NETPOLL
6379 	napi->poll_owner = -1;
6380 #endif
6381 	set_bit(NAPI_STATE_SCHED, &napi->state);
6382 	set_bit(NAPI_STATE_NPSVC, &napi->state);
6383 	list_add_rcu(&napi->dev_list, &dev->napi_list);
6384 	napi_hash_add(napi);
6385 	napi_get_frags_check(napi);
6386 	/* Create kthread for this napi if dev->threaded is set.
6387 	 * Clear dev->threaded if kthread creation failed so that
6388 	 * threaded mode will not be enabled in napi_enable().
6389 	 */
6390 	if (dev->threaded && napi_kthread_create(napi))
6391 		dev->threaded = 0;
6392 }
6393 EXPORT_SYMBOL(netif_napi_add_weight);
6394 
6395 void napi_disable(struct napi_struct *n)
6396 {
6397 	unsigned long val, new;
6398 
6399 	might_sleep();
6400 	set_bit(NAPI_STATE_DISABLE, &n->state);
6401 
6402 	val = READ_ONCE(n->state);
6403 	do {
6404 		while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6405 			usleep_range(20, 200);
6406 			val = READ_ONCE(n->state);
6407 		}
6408 
6409 		new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6410 		new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6411 	} while (!try_cmpxchg(&n->state, &val, new));
6412 
6413 	hrtimer_cancel(&n->timer);
6414 
6415 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6416 }
6417 EXPORT_SYMBOL(napi_disable);
6418 
6419 /**
6420  *	napi_enable - enable NAPI scheduling
6421  *	@n: NAPI context
6422  *
6423  * Resume NAPI from being scheduled on this context.
6424  * Must be paired with napi_disable.
6425  */
6426 void napi_enable(struct napi_struct *n)
6427 {
6428 	unsigned long new, val = READ_ONCE(n->state);
6429 
6430 	do {
6431 		BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6432 
6433 		new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6434 		if (n->dev->threaded && n->thread)
6435 			new |= NAPIF_STATE_THREADED;
6436 	} while (!try_cmpxchg(&n->state, &val, new));
6437 }
6438 EXPORT_SYMBOL(napi_enable);
6439 
6440 static void flush_gro_hash(struct napi_struct *napi)
6441 {
6442 	int i;
6443 
6444 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6445 		struct sk_buff *skb, *n;
6446 
6447 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6448 			kfree_skb(skb);
6449 		napi->gro_hash[i].count = 0;
6450 	}
6451 }
6452 
6453 /* Must be called in process context */
6454 void __netif_napi_del(struct napi_struct *napi)
6455 {
6456 	if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6457 		return;
6458 
6459 	napi_hash_del(napi);
6460 	list_del_rcu(&napi->dev_list);
6461 	napi_free_frags(napi);
6462 
6463 	flush_gro_hash(napi);
6464 	napi->gro_bitmask = 0;
6465 
6466 	if (napi->thread) {
6467 		kthread_stop(napi->thread);
6468 		napi->thread = NULL;
6469 	}
6470 }
6471 EXPORT_SYMBOL(__netif_napi_del);
6472 
6473 static int __napi_poll(struct napi_struct *n, bool *repoll)
6474 {
6475 	int work, weight;
6476 
6477 	weight = n->weight;
6478 
6479 	/* This NAPI_STATE_SCHED test is for avoiding a race
6480 	 * with netpoll's poll_napi().  Only the entity which
6481 	 * obtains the lock and sees NAPI_STATE_SCHED set will
6482 	 * actually make the ->poll() call.  Therefore we avoid
6483 	 * accidentally calling ->poll() when NAPI is not scheduled.
6484 	 */
6485 	work = 0;
6486 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6487 		work = n->poll(n, weight);
6488 		trace_napi_poll(n, work, weight);
6489 	}
6490 
6491 	if (unlikely(work > weight))
6492 		netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6493 				n->poll, work, weight);
6494 
6495 	if (likely(work < weight))
6496 		return work;
6497 
6498 	/* Drivers must not modify the NAPI state if they
6499 	 * consume the entire weight.  In such cases this code
6500 	 * still "owns" the NAPI instance and therefore can
6501 	 * move the instance around on the list at-will.
6502 	 */
6503 	if (unlikely(napi_disable_pending(n))) {
6504 		napi_complete(n);
6505 		return work;
6506 	}
6507 
6508 	/* The NAPI context has more processing work, but busy-polling
6509 	 * is preferred. Exit early.
6510 	 */
6511 	if (napi_prefer_busy_poll(n)) {
6512 		if (napi_complete_done(n, work)) {
6513 			/* If timeout is not set, we need to make sure
6514 			 * that the NAPI is re-scheduled.
6515 			 */
6516 			napi_schedule(n);
6517 		}
6518 		return work;
6519 	}
6520 
6521 	if (n->gro_bitmask) {
6522 		/* flush too old packets
6523 		 * If HZ < 1000, flush all packets.
6524 		 */
6525 		napi_gro_flush(n, HZ >= 1000);
6526 	}
6527 
6528 	gro_normal_list(n);
6529 
6530 	/* Some drivers may have called napi_schedule
6531 	 * prior to exhausting their budget.
6532 	 */
6533 	if (unlikely(!list_empty(&n->poll_list))) {
6534 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6535 			     n->dev ? n->dev->name : "backlog");
6536 		return work;
6537 	}
6538 
6539 	*repoll = true;
6540 
6541 	return work;
6542 }
6543 
6544 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6545 {
6546 	bool do_repoll = false;
6547 	void *have;
6548 	int work;
6549 
6550 	list_del_init(&n->poll_list);
6551 
6552 	have = netpoll_poll_lock(n);
6553 
6554 	work = __napi_poll(n, &do_repoll);
6555 
6556 	if (do_repoll)
6557 		list_add_tail(&n->poll_list, repoll);
6558 
6559 	netpoll_poll_unlock(have);
6560 
6561 	return work;
6562 }
6563 
6564 static int napi_thread_wait(struct napi_struct *napi)
6565 {
6566 	bool woken = false;
6567 
6568 	set_current_state(TASK_INTERRUPTIBLE);
6569 
6570 	while (!kthread_should_stop()) {
6571 		/* Testing SCHED_THREADED bit here to make sure the current
6572 		 * kthread owns this napi and could poll on this napi.
6573 		 * Testing SCHED bit is not enough because SCHED bit might be
6574 		 * set by some other busy poll thread or by napi_disable().
6575 		 */
6576 		if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
6577 			WARN_ON(!list_empty(&napi->poll_list));
6578 			__set_current_state(TASK_RUNNING);
6579 			return 0;
6580 		}
6581 
6582 		schedule();
6583 		/* woken being true indicates this thread owns this napi. */
6584 		woken = true;
6585 		set_current_state(TASK_INTERRUPTIBLE);
6586 	}
6587 	__set_current_state(TASK_RUNNING);
6588 
6589 	return -1;
6590 }
6591 
6592 static int napi_threaded_poll(void *data)
6593 {
6594 	struct napi_struct *napi = data;
6595 	void *have;
6596 
6597 	while (!napi_thread_wait(napi)) {
6598 		for (;;) {
6599 			bool repoll = false;
6600 
6601 			local_bh_disable();
6602 
6603 			have = netpoll_poll_lock(napi);
6604 			__napi_poll(napi, &repoll);
6605 			netpoll_poll_unlock(have);
6606 
6607 			local_bh_enable();
6608 
6609 			if (!repoll)
6610 				break;
6611 
6612 			cond_resched();
6613 		}
6614 	}
6615 	return 0;
6616 }
6617 
6618 static void skb_defer_free_flush(struct softnet_data *sd)
6619 {
6620 	struct sk_buff *skb, *next;
6621 
6622 	/* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6623 	if (!READ_ONCE(sd->defer_list))
6624 		return;
6625 
6626 	spin_lock_irq(&sd->defer_lock);
6627 	skb = sd->defer_list;
6628 	sd->defer_list = NULL;
6629 	sd->defer_count = 0;
6630 	spin_unlock_irq(&sd->defer_lock);
6631 
6632 	while (skb != NULL) {
6633 		next = skb->next;
6634 		napi_consume_skb(skb, 1);
6635 		skb = next;
6636 	}
6637 }
6638 
6639 static __latent_entropy void net_rx_action(struct softirq_action *h)
6640 {
6641 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6642 	unsigned long time_limit = jiffies +
6643 		usecs_to_jiffies(READ_ONCE(netdev_budget_usecs));
6644 	int budget = READ_ONCE(netdev_budget);
6645 	LIST_HEAD(list);
6646 	LIST_HEAD(repoll);
6647 
6648 	local_irq_disable();
6649 	list_splice_init(&sd->poll_list, &list);
6650 	local_irq_enable();
6651 
6652 	for (;;) {
6653 		struct napi_struct *n;
6654 
6655 		skb_defer_free_flush(sd);
6656 
6657 		if (list_empty(&list)) {
6658 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6659 				goto end;
6660 			break;
6661 		}
6662 
6663 		n = list_first_entry(&list, struct napi_struct, poll_list);
6664 		budget -= napi_poll(n, &repoll);
6665 
6666 		/* If softirq window is exhausted then punt.
6667 		 * Allow this to run for 2 jiffies since which will allow
6668 		 * an average latency of 1.5/HZ.
6669 		 */
6670 		if (unlikely(budget <= 0 ||
6671 			     time_after_eq(jiffies, time_limit))) {
6672 			sd->time_squeeze++;
6673 			break;
6674 		}
6675 	}
6676 
6677 	local_irq_disable();
6678 
6679 	list_splice_tail_init(&sd->poll_list, &list);
6680 	list_splice_tail(&repoll, &list);
6681 	list_splice(&list, &sd->poll_list);
6682 	if (!list_empty(&sd->poll_list))
6683 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
6684 
6685 	net_rps_action_and_irq_enable(sd);
6686 end:;
6687 }
6688 
6689 struct netdev_adjacent {
6690 	struct net_device *dev;
6691 	netdevice_tracker dev_tracker;
6692 
6693 	/* upper master flag, there can only be one master device per list */
6694 	bool master;
6695 
6696 	/* lookup ignore flag */
6697 	bool ignore;
6698 
6699 	/* counter for the number of times this device was added to us */
6700 	u16 ref_nr;
6701 
6702 	/* private field for the users */
6703 	void *private;
6704 
6705 	struct list_head list;
6706 	struct rcu_head rcu;
6707 };
6708 
6709 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6710 						 struct list_head *adj_list)
6711 {
6712 	struct netdev_adjacent *adj;
6713 
6714 	list_for_each_entry(adj, adj_list, list) {
6715 		if (adj->dev == adj_dev)
6716 			return adj;
6717 	}
6718 	return NULL;
6719 }
6720 
6721 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6722 				    struct netdev_nested_priv *priv)
6723 {
6724 	struct net_device *dev = (struct net_device *)priv->data;
6725 
6726 	return upper_dev == dev;
6727 }
6728 
6729 /**
6730  * netdev_has_upper_dev - Check if device is linked to an upper device
6731  * @dev: device
6732  * @upper_dev: upper device to check
6733  *
6734  * Find out if a device is linked to specified upper device and return true
6735  * in case it is. Note that this checks only immediate upper device,
6736  * not through a complete stack of devices. The caller must hold the RTNL lock.
6737  */
6738 bool netdev_has_upper_dev(struct net_device *dev,
6739 			  struct net_device *upper_dev)
6740 {
6741 	struct netdev_nested_priv priv = {
6742 		.data = (void *)upper_dev,
6743 	};
6744 
6745 	ASSERT_RTNL();
6746 
6747 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6748 					     &priv);
6749 }
6750 EXPORT_SYMBOL(netdev_has_upper_dev);
6751 
6752 /**
6753  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
6754  * @dev: device
6755  * @upper_dev: upper device to check
6756  *
6757  * Find out if a device is linked to specified upper device and return true
6758  * in case it is. Note that this checks the entire upper device chain.
6759  * The caller must hold rcu lock.
6760  */
6761 
6762 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6763 				  struct net_device *upper_dev)
6764 {
6765 	struct netdev_nested_priv priv = {
6766 		.data = (void *)upper_dev,
6767 	};
6768 
6769 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6770 					       &priv);
6771 }
6772 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6773 
6774 /**
6775  * netdev_has_any_upper_dev - Check if device is linked to some device
6776  * @dev: device
6777  *
6778  * Find out if a device is linked to an upper device and return true in case
6779  * it is. The caller must hold the RTNL lock.
6780  */
6781 bool netdev_has_any_upper_dev(struct net_device *dev)
6782 {
6783 	ASSERT_RTNL();
6784 
6785 	return !list_empty(&dev->adj_list.upper);
6786 }
6787 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6788 
6789 /**
6790  * netdev_master_upper_dev_get - Get master upper device
6791  * @dev: device
6792  *
6793  * Find a master upper device and return pointer to it or NULL in case
6794  * it's not there. The caller must hold the RTNL lock.
6795  */
6796 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6797 {
6798 	struct netdev_adjacent *upper;
6799 
6800 	ASSERT_RTNL();
6801 
6802 	if (list_empty(&dev->adj_list.upper))
6803 		return NULL;
6804 
6805 	upper = list_first_entry(&dev->adj_list.upper,
6806 				 struct netdev_adjacent, list);
6807 	if (likely(upper->master))
6808 		return upper->dev;
6809 	return NULL;
6810 }
6811 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6812 
6813 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6814 {
6815 	struct netdev_adjacent *upper;
6816 
6817 	ASSERT_RTNL();
6818 
6819 	if (list_empty(&dev->adj_list.upper))
6820 		return NULL;
6821 
6822 	upper = list_first_entry(&dev->adj_list.upper,
6823 				 struct netdev_adjacent, list);
6824 	if (likely(upper->master) && !upper->ignore)
6825 		return upper->dev;
6826 	return NULL;
6827 }
6828 
6829 /**
6830  * netdev_has_any_lower_dev - Check if device is linked to some device
6831  * @dev: device
6832  *
6833  * Find out if a device is linked to a lower device and return true in case
6834  * it is. The caller must hold the RTNL lock.
6835  */
6836 static bool netdev_has_any_lower_dev(struct net_device *dev)
6837 {
6838 	ASSERT_RTNL();
6839 
6840 	return !list_empty(&dev->adj_list.lower);
6841 }
6842 
6843 void *netdev_adjacent_get_private(struct list_head *adj_list)
6844 {
6845 	struct netdev_adjacent *adj;
6846 
6847 	adj = list_entry(adj_list, struct netdev_adjacent, list);
6848 
6849 	return adj->private;
6850 }
6851 EXPORT_SYMBOL(netdev_adjacent_get_private);
6852 
6853 /**
6854  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6855  * @dev: device
6856  * @iter: list_head ** of the current position
6857  *
6858  * Gets the next device from the dev's upper list, starting from iter
6859  * position. The caller must hold RCU read lock.
6860  */
6861 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6862 						 struct list_head **iter)
6863 {
6864 	struct netdev_adjacent *upper;
6865 
6866 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6867 
6868 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6869 
6870 	if (&upper->list == &dev->adj_list.upper)
6871 		return NULL;
6872 
6873 	*iter = &upper->list;
6874 
6875 	return upper->dev;
6876 }
6877 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6878 
6879 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6880 						  struct list_head **iter,
6881 						  bool *ignore)
6882 {
6883 	struct netdev_adjacent *upper;
6884 
6885 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6886 
6887 	if (&upper->list == &dev->adj_list.upper)
6888 		return NULL;
6889 
6890 	*iter = &upper->list;
6891 	*ignore = upper->ignore;
6892 
6893 	return upper->dev;
6894 }
6895 
6896 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6897 						    struct list_head **iter)
6898 {
6899 	struct netdev_adjacent *upper;
6900 
6901 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6902 
6903 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6904 
6905 	if (&upper->list == &dev->adj_list.upper)
6906 		return NULL;
6907 
6908 	*iter = &upper->list;
6909 
6910 	return upper->dev;
6911 }
6912 
6913 static int __netdev_walk_all_upper_dev(struct net_device *dev,
6914 				       int (*fn)(struct net_device *dev,
6915 					 struct netdev_nested_priv *priv),
6916 				       struct netdev_nested_priv *priv)
6917 {
6918 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6919 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6920 	int ret, cur = 0;
6921 	bool ignore;
6922 
6923 	now = dev;
6924 	iter = &dev->adj_list.upper;
6925 
6926 	while (1) {
6927 		if (now != dev) {
6928 			ret = fn(now, priv);
6929 			if (ret)
6930 				return ret;
6931 		}
6932 
6933 		next = NULL;
6934 		while (1) {
6935 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
6936 			if (!udev)
6937 				break;
6938 			if (ignore)
6939 				continue;
6940 
6941 			next = udev;
6942 			niter = &udev->adj_list.upper;
6943 			dev_stack[cur] = now;
6944 			iter_stack[cur++] = iter;
6945 			break;
6946 		}
6947 
6948 		if (!next) {
6949 			if (!cur)
6950 				return 0;
6951 			next = dev_stack[--cur];
6952 			niter = iter_stack[cur];
6953 		}
6954 
6955 		now = next;
6956 		iter = niter;
6957 	}
6958 
6959 	return 0;
6960 }
6961 
6962 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6963 				  int (*fn)(struct net_device *dev,
6964 					    struct netdev_nested_priv *priv),
6965 				  struct netdev_nested_priv *priv)
6966 {
6967 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6968 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6969 	int ret, cur = 0;
6970 
6971 	now = dev;
6972 	iter = &dev->adj_list.upper;
6973 
6974 	while (1) {
6975 		if (now != dev) {
6976 			ret = fn(now, priv);
6977 			if (ret)
6978 				return ret;
6979 		}
6980 
6981 		next = NULL;
6982 		while (1) {
6983 			udev = netdev_next_upper_dev_rcu(now, &iter);
6984 			if (!udev)
6985 				break;
6986 
6987 			next = udev;
6988 			niter = &udev->adj_list.upper;
6989 			dev_stack[cur] = now;
6990 			iter_stack[cur++] = iter;
6991 			break;
6992 		}
6993 
6994 		if (!next) {
6995 			if (!cur)
6996 				return 0;
6997 			next = dev_stack[--cur];
6998 			niter = iter_stack[cur];
6999 		}
7000 
7001 		now = next;
7002 		iter = niter;
7003 	}
7004 
7005 	return 0;
7006 }
7007 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7008 
7009 static bool __netdev_has_upper_dev(struct net_device *dev,
7010 				   struct net_device *upper_dev)
7011 {
7012 	struct netdev_nested_priv priv = {
7013 		.flags = 0,
7014 		.data = (void *)upper_dev,
7015 	};
7016 
7017 	ASSERT_RTNL();
7018 
7019 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7020 					   &priv);
7021 }
7022 
7023 /**
7024  * netdev_lower_get_next_private - Get the next ->private from the
7025  *				   lower neighbour list
7026  * @dev: device
7027  * @iter: list_head ** of the current position
7028  *
7029  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7030  * list, starting from iter position. The caller must hold either hold the
7031  * RTNL lock or its own locking that guarantees that the neighbour lower
7032  * list will remain unchanged.
7033  */
7034 void *netdev_lower_get_next_private(struct net_device *dev,
7035 				    struct list_head **iter)
7036 {
7037 	struct netdev_adjacent *lower;
7038 
7039 	lower = list_entry(*iter, struct netdev_adjacent, list);
7040 
7041 	if (&lower->list == &dev->adj_list.lower)
7042 		return NULL;
7043 
7044 	*iter = lower->list.next;
7045 
7046 	return lower->private;
7047 }
7048 EXPORT_SYMBOL(netdev_lower_get_next_private);
7049 
7050 /**
7051  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7052  *				       lower neighbour list, RCU
7053  *				       variant
7054  * @dev: device
7055  * @iter: list_head ** of the current position
7056  *
7057  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7058  * list, starting from iter position. The caller must hold RCU read lock.
7059  */
7060 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7061 					struct list_head **iter)
7062 {
7063 	struct netdev_adjacent *lower;
7064 
7065 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7066 
7067 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7068 
7069 	if (&lower->list == &dev->adj_list.lower)
7070 		return NULL;
7071 
7072 	*iter = &lower->list;
7073 
7074 	return lower->private;
7075 }
7076 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7077 
7078 /**
7079  * netdev_lower_get_next - Get the next device from the lower neighbour
7080  *                         list
7081  * @dev: device
7082  * @iter: list_head ** of the current position
7083  *
7084  * Gets the next netdev_adjacent from the dev's lower neighbour
7085  * list, starting from iter position. The caller must hold RTNL lock or
7086  * its own locking that guarantees that the neighbour lower
7087  * list will remain unchanged.
7088  */
7089 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7090 {
7091 	struct netdev_adjacent *lower;
7092 
7093 	lower = list_entry(*iter, struct netdev_adjacent, list);
7094 
7095 	if (&lower->list == &dev->adj_list.lower)
7096 		return NULL;
7097 
7098 	*iter = lower->list.next;
7099 
7100 	return lower->dev;
7101 }
7102 EXPORT_SYMBOL(netdev_lower_get_next);
7103 
7104 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7105 						struct list_head **iter)
7106 {
7107 	struct netdev_adjacent *lower;
7108 
7109 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7110 
7111 	if (&lower->list == &dev->adj_list.lower)
7112 		return NULL;
7113 
7114 	*iter = &lower->list;
7115 
7116 	return lower->dev;
7117 }
7118 
7119 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7120 						  struct list_head **iter,
7121 						  bool *ignore)
7122 {
7123 	struct netdev_adjacent *lower;
7124 
7125 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7126 
7127 	if (&lower->list == &dev->adj_list.lower)
7128 		return NULL;
7129 
7130 	*iter = &lower->list;
7131 	*ignore = lower->ignore;
7132 
7133 	return lower->dev;
7134 }
7135 
7136 int netdev_walk_all_lower_dev(struct net_device *dev,
7137 			      int (*fn)(struct net_device *dev,
7138 					struct netdev_nested_priv *priv),
7139 			      struct netdev_nested_priv *priv)
7140 {
7141 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7142 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7143 	int ret, cur = 0;
7144 
7145 	now = dev;
7146 	iter = &dev->adj_list.lower;
7147 
7148 	while (1) {
7149 		if (now != dev) {
7150 			ret = fn(now, priv);
7151 			if (ret)
7152 				return ret;
7153 		}
7154 
7155 		next = NULL;
7156 		while (1) {
7157 			ldev = netdev_next_lower_dev(now, &iter);
7158 			if (!ldev)
7159 				break;
7160 
7161 			next = ldev;
7162 			niter = &ldev->adj_list.lower;
7163 			dev_stack[cur] = now;
7164 			iter_stack[cur++] = iter;
7165 			break;
7166 		}
7167 
7168 		if (!next) {
7169 			if (!cur)
7170 				return 0;
7171 			next = dev_stack[--cur];
7172 			niter = iter_stack[cur];
7173 		}
7174 
7175 		now = next;
7176 		iter = niter;
7177 	}
7178 
7179 	return 0;
7180 }
7181 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7182 
7183 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7184 				       int (*fn)(struct net_device *dev,
7185 					 struct netdev_nested_priv *priv),
7186 				       struct netdev_nested_priv *priv)
7187 {
7188 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7189 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7190 	int ret, cur = 0;
7191 	bool ignore;
7192 
7193 	now = dev;
7194 	iter = &dev->adj_list.lower;
7195 
7196 	while (1) {
7197 		if (now != dev) {
7198 			ret = fn(now, priv);
7199 			if (ret)
7200 				return ret;
7201 		}
7202 
7203 		next = NULL;
7204 		while (1) {
7205 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7206 			if (!ldev)
7207 				break;
7208 			if (ignore)
7209 				continue;
7210 
7211 			next = ldev;
7212 			niter = &ldev->adj_list.lower;
7213 			dev_stack[cur] = now;
7214 			iter_stack[cur++] = iter;
7215 			break;
7216 		}
7217 
7218 		if (!next) {
7219 			if (!cur)
7220 				return 0;
7221 			next = dev_stack[--cur];
7222 			niter = iter_stack[cur];
7223 		}
7224 
7225 		now = next;
7226 		iter = niter;
7227 	}
7228 
7229 	return 0;
7230 }
7231 
7232 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7233 					     struct list_head **iter)
7234 {
7235 	struct netdev_adjacent *lower;
7236 
7237 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7238 	if (&lower->list == &dev->adj_list.lower)
7239 		return NULL;
7240 
7241 	*iter = &lower->list;
7242 
7243 	return lower->dev;
7244 }
7245 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7246 
7247 static u8 __netdev_upper_depth(struct net_device *dev)
7248 {
7249 	struct net_device *udev;
7250 	struct list_head *iter;
7251 	u8 max_depth = 0;
7252 	bool ignore;
7253 
7254 	for (iter = &dev->adj_list.upper,
7255 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7256 	     udev;
7257 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7258 		if (ignore)
7259 			continue;
7260 		if (max_depth < udev->upper_level)
7261 			max_depth = udev->upper_level;
7262 	}
7263 
7264 	return max_depth;
7265 }
7266 
7267 static u8 __netdev_lower_depth(struct net_device *dev)
7268 {
7269 	struct net_device *ldev;
7270 	struct list_head *iter;
7271 	u8 max_depth = 0;
7272 	bool ignore;
7273 
7274 	for (iter = &dev->adj_list.lower,
7275 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7276 	     ldev;
7277 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7278 		if (ignore)
7279 			continue;
7280 		if (max_depth < ldev->lower_level)
7281 			max_depth = ldev->lower_level;
7282 	}
7283 
7284 	return max_depth;
7285 }
7286 
7287 static int __netdev_update_upper_level(struct net_device *dev,
7288 				       struct netdev_nested_priv *__unused)
7289 {
7290 	dev->upper_level = __netdev_upper_depth(dev) + 1;
7291 	return 0;
7292 }
7293 
7294 #ifdef CONFIG_LOCKDEP
7295 static LIST_HEAD(net_unlink_list);
7296 
7297 static void net_unlink_todo(struct net_device *dev)
7298 {
7299 	if (list_empty(&dev->unlink_list))
7300 		list_add_tail(&dev->unlink_list, &net_unlink_list);
7301 }
7302 #endif
7303 
7304 static int __netdev_update_lower_level(struct net_device *dev,
7305 				       struct netdev_nested_priv *priv)
7306 {
7307 	dev->lower_level = __netdev_lower_depth(dev) + 1;
7308 
7309 #ifdef CONFIG_LOCKDEP
7310 	if (!priv)
7311 		return 0;
7312 
7313 	if (priv->flags & NESTED_SYNC_IMM)
7314 		dev->nested_level = dev->lower_level - 1;
7315 	if (priv->flags & NESTED_SYNC_TODO)
7316 		net_unlink_todo(dev);
7317 #endif
7318 	return 0;
7319 }
7320 
7321 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7322 				  int (*fn)(struct net_device *dev,
7323 					    struct netdev_nested_priv *priv),
7324 				  struct netdev_nested_priv *priv)
7325 {
7326 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7327 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7328 	int ret, cur = 0;
7329 
7330 	now = dev;
7331 	iter = &dev->adj_list.lower;
7332 
7333 	while (1) {
7334 		if (now != dev) {
7335 			ret = fn(now, priv);
7336 			if (ret)
7337 				return ret;
7338 		}
7339 
7340 		next = NULL;
7341 		while (1) {
7342 			ldev = netdev_next_lower_dev_rcu(now, &iter);
7343 			if (!ldev)
7344 				break;
7345 
7346 			next = ldev;
7347 			niter = &ldev->adj_list.lower;
7348 			dev_stack[cur] = now;
7349 			iter_stack[cur++] = iter;
7350 			break;
7351 		}
7352 
7353 		if (!next) {
7354 			if (!cur)
7355 				return 0;
7356 			next = dev_stack[--cur];
7357 			niter = iter_stack[cur];
7358 		}
7359 
7360 		now = next;
7361 		iter = niter;
7362 	}
7363 
7364 	return 0;
7365 }
7366 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7367 
7368 /**
7369  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7370  *				       lower neighbour list, RCU
7371  *				       variant
7372  * @dev: device
7373  *
7374  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7375  * list. The caller must hold RCU read lock.
7376  */
7377 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7378 {
7379 	struct netdev_adjacent *lower;
7380 
7381 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
7382 			struct netdev_adjacent, list);
7383 	if (lower)
7384 		return lower->private;
7385 	return NULL;
7386 }
7387 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7388 
7389 /**
7390  * netdev_master_upper_dev_get_rcu - Get master upper device
7391  * @dev: device
7392  *
7393  * Find a master upper device and return pointer to it or NULL in case
7394  * it's not there. The caller must hold the RCU read lock.
7395  */
7396 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7397 {
7398 	struct netdev_adjacent *upper;
7399 
7400 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
7401 				       struct netdev_adjacent, list);
7402 	if (upper && likely(upper->master))
7403 		return upper->dev;
7404 	return NULL;
7405 }
7406 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7407 
7408 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7409 			      struct net_device *adj_dev,
7410 			      struct list_head *dev_list)
7411 {
7412 	char linkname[IFNAMSIZ+7];
7413 
7414 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7415 		"upper_%s" : "lower_%s", adj_dev->name);
7416 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7417 				 linkname);
7418 }
7419 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7420 			       char *name,
7421 			       struct list_head *dev_list)
7422 {
7423 	char linkname[IFNAMSIZ+7];
7424 
7425 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7426 		"upper_%s" : "lower_%s", name);
7427 	sysfs_remove_link(&(dev->dev.kobj), linkname);
7428 }
7429 
7430 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7431 						 struct net_device *adj_dev,
7432 						 struct list_head *dev_list)
7433 {
7434 	return (dev_list == &dev->adj_list.upper ||
7435 		dev_list == &dev->adj_list.lower) &&
7436 		net_eq(dev_net(dev), dev_net(adj_dev));
7437 }
7438 
7439 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7440 					struct net_device *adj_dev,
7441 					struct list_head *dev_list,
7442 					void *private, bool master)
7443 {
7444 	struct netdev_adjacent *adj;
7445 	int ret;
7446 
7447 	adj = __netdev_find_adj(adj_dev, dev_list);
7448 
7449 	if (adj) {
7450 		adj->ref_nr += 1;
7451 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7452 			 dev->name, adj_dev->name, adj->ref_nr);
7453 
7454 		return 0;
7455 	}
7456 
7457 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7458 	if (!adj)
7459 		return -ENOMEM;
7460 
7461 	adj->dev = adj_dev;
7462 	adj->master = master;
7463 	adj->ref_nr = 1;
7464 	adj->private = private;
7465 	adj->ignore = false;
7466 	netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
7467 
7468 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7469 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7470 
7471 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7472 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7473 		if (ret)
7474 			goto free_adj;
7475 	}
7476 
7477 	/* Ensure that master link is always the first item in list. */
7478 	if (master) {
7479 		ret = sysfs_create_link(&(dev->dev.kobj),
7480 					&(adj_dev->dev.kobj), "master");
7481 		if (ret)
7482 			goto remove_symlinks;
7483 
7484 		list_add_rcu(&adj->list, dev_list);
7485 	} else {
7486 		list_add_tail_rcu(&adj->list, dev_list);
7487 	}
7488 
7489 	return 0;
7490 
7491 remove_symlinks:
7492 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7493 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7494 free_adj:
7495 	netdev_put(adj_dev, &adj->dev_tracker);
7496 	kfree(adj);
7497 
7498 	return ret;
7499 }
7500 
7501 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7502 					 struct net_device *adj_dev,
7503 					 u16 ref_nr,
7504 					 struct list_head *dev_list)
7505 {
7506 	struct netdev_adjacent *adj;
7507 
7508 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7509 		 dev->name, adj_dev->name, ref_nr);
7510 
7511 	adj = __netdev_find_adj(adj_dev, dev_list);
7512 
7513 	if (!adj) {
7514 		pr_err("Adjacency does not exist for device %s from %s\n",
7515 		       dev->name, adj_dev->name);
7516 		WARN_ON(1);
7517 		return;
7518 	}
7519 
7520 	if (adj->ref_nr > ref_nr) {
7521 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7522 			 dev->name, adj_dev->name, ref_nr,
7523 			 adj->ref_nr - ref_nr);
7524 		adj->ref_nr -= ref_nr;
7525 		return;
7526 	}
7527 
7528 	if (adj->master)
7529 		sysfs_remove_link(&(dev->dev.kobj), "master");
7530 
7531 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7532 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7533 
7534 	list_del_rcu(&adj->list);
7535 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7536 		 adj_dev->name, dev->name, adj_dev->name);
7537 	netdev_put(adj_dev, &adj->dev_tracker);
7538 	kfree_rcu(adj, rcu);
7539 }
7540 
7541 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7542 					    struct net_device *upper_dev,
7543 					    struct list_head *up_list,
7544 					    struct list_head *down_list,
7545 					    void *private, bool master)
7546 {
7547 	int ret;
7548 
7549 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7550 					   private, master);
7551 	if (ret)
7552 		return ret;
7553 
7554 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7555 					   private, false);
7556 	if (ret) {
7557 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7558 		return ret;
7559 	}
7560 
7561 	return 0;
7562 }
7563 
7564 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7565 					       struct net_device *upper_dev,
7566 					       u16 ref_nr,
7567 					       struct list_head *up_list,
7568 					       struct list_head *down_list)
7569 {
7570 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7571 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7572 }
7573 
7574 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7575 						struct net_device *upper_dev,
7576 						void *private, bool master)
7577 {
7578 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7579 						&dev->adj_list.upper,
7580 						&upper_dev->adj_list.lower,
7581 						private, master);
7582 }
7583 
7584 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7585 						   struct net_device *upper_dev)
7586 {
7587 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7588 					   &dev->adj_list.upper,
7589 					   &upper_dev->adj_list.lower);
7590 }
7591 
7592 static int __netdev_upper_dev_link(struct net_device *dev,
7593 				   struct net_device *upper_dev, bool master,
7594 				   void *upper_priv, void *upper_info,
7595 				   struct netdev_nested_priv *priv,
7596 				   struct netlink_ext_ack *extack)
7597 {
7598 	struct netdev_notifier_changeupper_info changeupper_info = {
7599 		.info = {
7600 			.dev = dev,
7601 			.extack = extack,
7602 		},
7603 		.upper_dev = upper_dev,
7604 		.master = master,
7605 		.linking = true,
7606 		.upper_info = upper_info,
7607 	};
7608 	struct net_device *master_dev;
7609 	int ret = 0;
7610 
7611 	ASSERT_RTNL();
7612 
7613 	if (dev == upper_dev)
7614 		return -EBUSY;
7615 
7616 	/* To prevent loops, check if dev is not upper device to upper_dev. */
7617 	if (__netdev_has_upper_dev(upper_dev, dev))
7618 		return -EBUSY;
7619 
7620 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7621 		return -EMLINK;
7622 
7623 	if (!master) {
7624 		if (__netdev_has_upper_dev(dev, upper_dev))
7625 			return -EEXIST;
7626 	} else {
7627 		master_dev = __netdev_master_upper_dev_get(dev);
7628 		if (master_dev)
7629 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
7630 	}
7631 
7632 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7633 					    &changeupper_info.info);
7634 	ret = notifier_to_errno(ret);
7635 	if (ret)
7636 		return ret;
7637 
7638 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7639 						   master);
7640 	if (ret)
7641 		return ret;
7642 
7643 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7644 					    &changeupper_info.info);
7645 	ret = notifier_to_errno(ret);
7646 	if (ret)
7647 		goto rollback;
7648 
7649 	__netdev_update_upper_level(dev, NULL);
7650 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7651 
7652 	__netdev_update_lower_level(upper_dev, priv);
7653 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7654 				    priv);
7655 
7656 	return 0;
7657 
7658 rollback:
7659 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7660 
7661 	return ret;
7662 }
7663 
7664 /**
7665  * netdev_upper_dev_link - Add a link to the upper device
7666  * @dev: device
7667  * @upper_dev: new upper device
7668  * @extack: netlink extended ack
7669  *
7670  * Adds a link to device which is upper to this one. The caller must hold
7671  * the RTNL lock. On a failure a negative errno code is returned.
7672  * On success the reference counts are adjusted and the function
7673  * returns zero.
7674  */
7675 int netdev_upper_dev_link(struct net_device *dev,
7676 			  struct net_device *upper_dev,
7677 			  struct netlink_ext_ack *extack)
7678 {
7679 	struct netdev_nested_priv priv = {
7680 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7681 		.data = NULL,
7682 	};
7683 
7684 	return __netdev_upper_dev_link(dev, upper_dev, false,
7685 				       NULL, NULL, &priv, extack);
7686 }
7687 EXPORT_SYMBOL(netdev_upper_dev_link);
7688 
7689 /**
7690  * netdev_master_upper_dev_link - Add a master link to the upper device
7691  * @dev: device
7692  * @upper_dev: new upper device
7693  * @upper_priv: upper device private
7694  * @upper_info: upper info to be passed down via notifier
7695  * @extack: netlink extended ack
7696  *
7697  * Adds a link to device which is upper to this one. In this case, only
7698  * one master upper device can be linked, although other non-master devices
7699  * might be linked as well. The caller must hold the RTNL lock.
7700  * On a failure a negative errno code is returned. On success the reference
7701  * counts are adjusted and the function returns zero.
7702  */
7703 int netdev_master_upper_dev_link(struct net_device *dev,
7704 				 struct net_device *upper_dev,
7705 				 void *upper_priv, void *upper_info,
7706 				 struct netlink_ext_ack *extack)
7707 {
7708 	struct netdev_nested_priv priv = {
7709 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7710 		.data = NULL,
7711 	};
7712 
7713 	return __netdev_upper_dev_link(dev, upper_dev, true,
7714 				       upper_priv, upper_info, &priv, extack);
7715 }
7716 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7717 
7718 static void __netdev_upper_dev_unlink(struct net_device *dev,
7719 				      struct net_device *upper_dev,
7720 				      struct netdev_nested_priv *priv)
7721 {
7722 	struct netdev_notifier_changeupper_info changeupper_info = {
7723 		.info = {
7724 			.dev = dev,
7725 		},
7726 		.upper_dev = upper_dev,
7727 		.linking = false,
7728 	};
7729 
7730 	ASSERT_RTNL();
7731 
7732 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7733 
7734 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7735 				      &changeupper_info.info);
7736 
7737 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7738 
7739 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7740 				      &changeupper_info.info);
7741 
7742 	__netdev_update_upper_level(dev, NULL);
7743 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7744 
7745 	__netdev_update_lower_level(upper_dev, priv);
7746 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7747 				    priv);
7748 }
7749 
7750 /**
7751  * netdev_upper_dev_unlink - Removes a link to upper device
7752  * @dev: device
7753  * @upper_dev: new upper device
7754  *
7755  * Removes a link to device which is upper to this one. The caller must hold
7756  * the RTNL lock.
7757  */
7758 void netdev_upper_dev_unlink(struct net_device *dev,
7759 			     struct net_device *upper_dev)
7760 {
7761 	struct netdev_nested_priv priv = {
7762 		.flags = NESTED_SYNC_TODO,
7763 		.data = NULL,
7764 	};
7765 
7766 	__netdev_upper_dev_unlink(dev, upper_dev, &priv);
7767 }
7768 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7769 
7770 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7771 				      struct net_device *lower_dev,
7772 				      bool val)
7773 {
7774 	struct netdev_adjacent *adj;
7775 
7776 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7777 	if (adj)
7778 		adj->ignore = val;
7779 
7780 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7781 	if (adj)
7782 		adj->ignore = val;
7783 }
7784 
7785 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7786 					struct net_device *lower_dev)
7787 {
7788 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7789 }
7790 
7791 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7792 				       struct net_device *lower_dev)
7793 {
7794 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7795 }
7796 
7797 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7798 				   struct net_device *new_dev,
7799 				   struct net_device *dev,
7800 				   struct netlink_ext_ack *extack)
7801 {
7802 	struct netdev_nested_priv priv = {
7803 		.flags = 0,
7804 		.data = NULL,
7805 	};
7806 	int err;
7807 
7808 	if (!new_dev)
7809 		return 0;
7810 
7811 	if (old_dev && new_dev != old_dev)
7812 		netdev_adjacent_dev_disable(dev, old_dev);
7813 	err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
7814 				      extack);
7815 	if (err) {
7816 		if (old_dev && new_dev != old_dev)
7817 			netdev_adjacent_dev_enable(dev, old_dev);
7818 		return err;
7819 	}
7820 
7821 	return 0;
7822 }
7823 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7824 
7825 void netdev_adjacent_change_commit(struct net_device *old_dev,
7826 				   struct net_device *new_dev,
7827 				   struct net_device *dev)
7828 {
7829 	struct netdev_nested_priv priv = {
7830 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7831 		.data = NULL,
7832 	};
7833 
7834 	if (!new_dev || !old_dev)
7835 		return;
7836 
7837 	if (new_dev == old_dev)
7838 		return;
7839 
7840 	netdev_adjacent_dev_enable(dev, old_dev);
7841 	__netdev_upper_dev_unlink(old_dev, dev, &priv);
7842 }
7843 EXPORT_SYMBOL(netdev_adjacent_change_commit);
7844 
7845 void netdev_adjacent_change_abort(struct net_device *old_dev,
7846 				  struct net_device *new_dev,
7847 				  struct net_device *dev)
7848 {
7849 	struct netdev_nested_priv priv = {
7850 		.flags = 0,
7851 		.data = NULL,
7852 	};
7853 
7854 	if (!new_dev)
7855 		return;
7856 
7857 	if (old_dev && new_dev != old_dev)
7858 		netdev_adjacent_dev_enable(dev, old_dev);
7859 
7860 	__netdev_upper_dev_unlink(new_dev, dev, &priv);
7861 }
7862 EXPORT_SYMBOL(netdev_adjacent_change_abort);
7863 
7864 /**
7865  * netdev_bonding_info_change - Dispatch event about slave change
7866  * @dev: device
7867  * @bonding_info: info to dispatch
7868  *
7869  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7870  * The caller must hold the RTNL lock.
7871  */
7872 void netdev_bonding_info_change(struct net_device *dev,
7873 				struct netdev_bonding_info *bonding_info)
7874 {
7875 	struct netdev_notifier_bonding_info info = {
7876 		.info.dev = dev,
7877 	};
7878 
7879 	memcpy(&info.bonding_info, bonding_info,
7880 	       sizeof(struct netdev_bonding_info));
7881 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7882 				      &info.info);
7883 }
7884 EXPORT_SYMBOL(netdev_bonding_info_change);
7885 
7886 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
7887 					   struct netlink_ext_ack *extack)
7888 {
7889 	struct netdev_notifier_offload_xstats_info info = {
7890 		.info.dev = dev,
7891 		.info.extack = extack,
7892 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
7893 	};
7894 	int err;
7895 	int rc;
7896 
7897 	dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
7898 					 GFP_KERNEL);
7899 	if (!dev->offload_xstats_l3)
7900 		return -ENOMEM;
7901 
7902 	rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
7903 						  NETDEV_OFFLOAD_XSTATS_DISABLE,
7904 						  &info.info);
7905 	err = notifier_to_errno(rc);
7906 	if (err)
7907 		goto free_stats;
7908 
7909 	return 0;
7910 
7911 free_stats:
7912 	kfree(dev->offload_xstats_l3);
7913 	dev->offload_xstats_l3 = NULL;
7914 	return err;
7915 }
7916 
7917 int netdev_offload_xstats_enable(struct net_device *dev,
7918 				 enum netdev_offload_xstats_type type,
7919 				 struct netlink_ext_ack *extack)
7920 {
7921 	ASSERT_RTNL();
7922 
7923 	if (netdev_offload_xstats_enabled(dev, type))
7924 		return -EALREADY;
7925 
7926 	switch (type) {
7927 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7928 		return netdev_offload_xstats_enable_l3(dev, extack);
7929 	}
7930 
7931 	WARN_ON(1);
7932 	return -EINVAL;
7933 }
7934 EXPORT_SYMBOL(netdev_offload_xstats_enable);
7935 
7936 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
7937 {
7938 	struct netdev_notifier_offload_xstats_info info = {
7939 		.info.dev = dev,
7940 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
7941 	};
7942 
7943 	call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
7944 				      &info.info);
7945 	kfree(dev->offload_xstats_l3);
7946 	dev->offload_xstats_l3 = NULL;
7947 }
7948 
7949 int netdev_offload_xstats_disable(struct net_device *dev,
7950 				  enum netdev_offload_xstats_type type)
7951 {
7952 	ASSERT_RTNL();
7953 
7954 	if (!netdev_offload_xstats_enabled(dev, type))
7955 		return -EALREADY;
7956 
7957 	switch (type) {
7958 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7959 		netdev_offload_xstats_disable_l3(dev);
7960 		return 0;
7961 	}
7962 
7963 	WARN_ON(1);
7964 	return -EINVAL;
7965 }
7966 EXPORT_SYMBOL(netdev_offload_xstats_disable);
7967 
7968 static void netdev_offload_xstats_disable_all(struct net_device *dev)
7969 {
7970 	netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
7971 }
7972 
7973 static struct rtnl_hw_stats64 *
7974 netdev_offload_xstats_get_ptr(const struct net_device *dev,
7975 			      enum netdev_offload_xstats_type type)
7976 {
7977 	switch (type) {
7978 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7979 		return dev->offload_xstats_l3;
7980 	}
7981 
7982 	WARN_ON(1);
7983 	return NULL;
7984 }
7985 
7986 bool netdev_offload_xstats_enabled(const struct net_device *dev,
7987 				   enum netdev_offload_xstats_type type)
7988 {
7989 	ASSERT_RTNL();
7990 
7991 	return netdev_offload_xstats_get_ptr(dev, type);
7992 }
7993 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
7994 
7995 struct netdev_notifier_offload_xstats_ru {
7996 	bool used;
7997 };
7998 
7999 struct netdev_notifier_offload_xstats_rd {
8000 	struct rtnl_hw_stats64 stats;
8001 	bool used;
8002 };
8003 
8004 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8005 				  const struct rtnl_hw_stats64 *src)
8006 {
8007 	dest->rx_packets	  += src->rx_packets;
8008 	dest->tx_packets	  += src->tx_packets;
8009 	dest->rx_bytes		  += src->rx_bytes;
8010 	dest->tx_bytes		  += src->tx_bytes;
8011 	dest->rx_errors		  += src->rx_errors;
8012 	dest->tx_errors		  += src->tx_errors;
8013 	dest->rx_dropped	  += src->rx_dropped;
8014 	dest->tx_dropped	  += src->tx_dropped;
8015 	dest->multicast		  += src->multicast;
8016 }
8017 
8018 static int netdev_offload_xstats_get_used(struct net_device *dev,
8019 					  enum netdev_offload_xstats_type type,
8020 					  bool *p_used,
8021 					  struct netlink_ext_ack *extack)
8022 {
8023 	struct netdev_notifier_offload_xstats_ru report_used = {};
8024 	struct netdev_notifier_offload_xstats_info info = {
8025 		.info.dev = dev,
8026 		.info.extack = extack,
8027 		.type = type,
8028 		.report_used = &report_used,
8029 	};
8030 	int rc;
8031 
8032 	WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8033 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8034 					   &info.info);
8035 	*p_used = report_used.used;
8036 	return notifier_to_errno(rc);
8037 }
8038 
8039 static int netdev_offload_xstats_get_stats(struct net_device *dev,
8040 					   enum netdev_offload_xstats_type type,
8041 					   struct rtnl_hw_stats64 *p_stats,
8042 					   bool *p_used,
8043 					   struct netlink_ext_ack *extack)
8044 {
8045 	struct netdev_notifier_offload_xstats_rd report_delta = {};
8046 	struct netdev_notifier_offload_xstats_info info = {
8047 		.info.dev = dev,
8048 		.info.extack = extack,
8049 		.type = type,
8050 		.report_delta = &report_delta,
8051 	};
8052 	struct rtnl_hw_stats64 *stats;
8053 	int rc;
8054 
8055 	stats = netdev_offload_xstats_get_ptr(dev, type);
8056 	if (WARN_ON(!stats))
8057 		return -EINVAL;
8058 
8059 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8060 					   &info.info);
8061 
8062 	/* Cache whatever we got, even if there was an error, otherwise the
8063 	 * successful stats retrievals would get lost.
8064 	 */
8065 	netdev_hw_stats64_add(stats, &report_delta.stats);
8066 
8067 	if (p_stats)
8068 		*p_stats = *stats;
8069 	*p_used = report_delta.used;
8070 
8071 	return notifier_to_errno(rc);
8072 }
8073 
8074 int netdev_offload_xstats_get(struct net_device *dev,
8075 			      enum netdev_offload_xstats_type type,
8076 			      struct rtnl_hw_stats64 *p_stats, bool *p_used,
8077 			      struct netlink_ext_ack *extack)
8078 {
8079 	ASSERT_RTNL();
8080 
8081 	if (p_stats)
8082 		return netdev_offload_xstats_get_stats(dev, type, p_stats,
8083 						       p_used, extack);
8084 	else
8085 		return netdev_offload_xstats_get_used(dev, type, p_used,
8086 						      extack);
8087 }
8088 EXPORT_SYMBOL(netdev_offload_xstats_get);
8089 
8090 void
8091 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8092 				   const struct rtnl_hw_stats64 *stats)
8093 {
8094 	report_delta->used = true;
8095 	netdev_hw_stats64_add(&report_delta->stats, stats);
8096 }
8097 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8098 
8099 void
8100 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8101 {
8102 	report_used->used = true;
8103 }
8104 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8105 
8106 void netdev_offload_xstats_push_delta(struct net_device *dev,
8107 				      enum netdev_offload_xstats_type type,
8108 				      const struct rtnl_hw_stats64 *p_stats)
8109 {
8110 	struct rtnl_hw_stats64 *stats;
8111 
8112 	ASSERT_RTNL();
8113 
8114 	stats = netdev_offload_xstats_get_ptr(dev, type);
8115 	if (WARN_ON(!stats))
8116 		return;
8117 
8118 	netdev_hw_stats64_add(stats, p_stats);
8119 }
8120 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8121 
8122 /**
8123  * netdev_get_xmit_slave - Get the xmit slave of master device
8124  * @dev: device
8125  * @skb: The packet
8126  * @all_slaves: assume all the slaves are active
8127  *
8128  * The reference counters are not incremented so the caller must be
8129  * careful with locks. The caller must hold RCU lock.
8130  * %NULL is returned if no slave is found.
8131  */
8132 
8133 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8134 					 struct sk_buff *skb,
8135 					 bool all_slaves)
8136 {
8137 	const struct net_device_ops *ops = dev->netdev_ops;
8138 
8139 	if (!ops->ndo_get_xmit_slave)
8140 		return NULL;
8141 	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8142 }
8143 EXPORT_SYMBOL(netdev_get_xmit_slave);
8144 
8145 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8146 						  struct sock *sk)
8147 {
8148 	const struct net_device_ops *ops = dev->netdev_ops;
8149 
8150 	if (!ops->ndo_sk_get_lower_dev)
8151 		return NULL;
8152 	return ops->ndo_sk_get_lower_dev(dev, sk);
8153 }
8154 
8155 /**
8156  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8157  * @dev: device
8158  * @sk: the socket
8159  *
8160  * %NULL is returned if no lower device is found.
8161  */
8162 
8163 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8164 					    struct sock *sk)
8165 {
8166 	struct net_device *lower;
8167 
8168 	lower = netdev_sk_get_lower_dev(dev, sk);
8169 	while (lower) {
8170 		dev = lower;
8171 		lower = netdev_sk_get_lower_dev(dev, sk);
8172 	}
8173 
8174 	return dev;
8175 }
8176 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8177 
8178 static void netdev_adjacent_add_links(struct net_device *dev)
8179 {
8180 	struct netdev_adjacent *iter;
8181 
8182 	struct net *net = dev_net(dev);
8183 
8184 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8185 		if (!net_eq(net, dev_net(iter->dev)))
8186 			continue;
8187 		netdev_adjacent_sysfs_add(iter->dev, dev,
8188 					  &iter->dev->adj_list.lower);
8189 		netdev_adjacent_sysfs_add(dev, iter->dev,
8190 					  &dev->adj_list.upper);
8191 	}
8192 
8193 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8194 		if (!net_eq(net, dev_net(iter->dev)))
8195 			continue;
8196 		netdev_adjacent_sysfs_add(iter->dev, dev,
8197 					  &iter->dev->adj_list.upper);
8198 		netdev_adjacent_sysfs_add(dev, iter->dev,
8199 					  &dev->adj_list.lower);
8200 	}
8201 }
8202 
8203 static void netdev_adjacent_del_links(struct net_device *dev)
8204 {
8205 	struct netdev_adjacent *iter;
8206 
8207 	struct net *net = dev_net(dev);
8208 
8209 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8210 		if (!net_eq(net, dev_net(iter->dev)))
8211 			continue;
8212 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8213 					  &iter->dev->adj_list.lower);
8214 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8215 					  &dev->adj_list.upper);
8216 	}
8217 
8218 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8219 		if (!net_eq(net, dev_net(iter->dev)))
8220 			continue;
8221 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8222 					  &iter->dev->adj_list.upper);
8223 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8224 					  &dev->adj_list.lower);
8225 	}
8226 }
8227 
8228 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8229 {
8230 	struct netdev_adjacent *iter;
8231 
8232 	struct net *net = dev_net(dev);
8233 
8234 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8235 		if (!net_eq(net, dev_net(iter->dev)))
8236 			continue;
8237 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8238 					  &iter->dev->adj_list.lower);
8239 		netdev_adjacent_sysfs_add(iter->dev, dev,
8240 					  &iter->dev->adj_list.lower);
8241 	}
8242 
8243 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8244 		if (!net_eq(net, dev_net(iter->dev)))
8245 			continue;
8246 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8247 					  &iter->dev->adj_list.upper);
8248 		netdev_adjacent_sysfs_add(iter->dev, dev,
8249 					  &iter->dev->adj_list.upper);
8250 	}
8251 }
8252 
8253 void *netdev_lower_dev_get_private(struct net_device *dev,
8254 				   struct net_device *lower_dev)
8255 {
8256 	struct netdev_adjacent *lower;
8257 
8258 	if (!lower_dev)
8259 		return NULL;
8260 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8261 	if (!lower)
8262 		return NULL;
8263 
8264 	return lower->private;
8265 }
8266 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8267 
8268 
8269 /**
8270  * netdev_lower_state_changed - Dispatch event about lower device state change
8271  * @lower_dev: device
8272  * @lower_state_info: state to dispatch
8273  *
8274  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8275  * The caller must hold the RTNL lock.
8276  */
8277 void netdev_lower_state_changed(struct net_device *lower_dev,
8278 				void *lower_state_info)
8279 {
8280 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8281 		.info.dev = lower_dev,
8282 	};
8283 
8284 	ASSERT_RTNL();
8285 	changelowerstate_info.lower_state_info = lower_state_info;
8286 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8287 				      &changelowerstate_info.info);
8288 }
8289 EXPORT_SYMBOL(netdev_lower_state_changed);
8290 
8291 static void dev_change_rx_flags(struct net_device *dev, int flags)
8292 {
8293 	const struct net_device_ops *ops = dev->netdev_ops;
8294 
8295 	if (ops->ndo_change_rx_flags)
8296 		ops->ndo_change_rx_flags(dev, flags);
8297 }
8298 
8299 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8300 {
8301 	unsigned int old_flags = dev->flags;
8302 	kuid_t uid;
8303 	kgid_t gid;
8304 
8305 	ASSERT_RTNL();
8306 
8307 	dev->flags |= IFF_PROMISC;
8308 	dev->promiscuity += inc;
8309 	if (dev->promiscuity == 0) {
8310 		/*
8311 		 * Avoid overflow.
8312 		 * If inc causes overflow, untouch promisc and return error.
8313 		 */
8314 		if (inc < 0)
8315 			dev->flags &= ~IFF_PROMISC;
8316 		else {
8317 			dev->promiscuity -= inc;
8318 			netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8319 			return -EOVERFLOW;
8320 		}
8321 	}
8322 	if (dev->flags != old_flags) {
8323 		pr_info("device %s %s promiscuous mode\n",
8324 			dev->name,
8325 			dev->flags & IFF_PROMISC ? "entered" : "left");
8326 		if (audit_enabled) {
8327 			current_uid_gid(&uid, &gid);
8328 			audit_log(audit_context(), GFP_ATOMIC,
8329 				  AUDIT_ANOM_PROMISCUOUS,
8330 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8331 				  dev->name, (dev->flags & IFF_PROMISC),
8332 				  (old_flags & IFF_PROMISC),
8333 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
8334 				  from_kuid(&init_user_ns, uid),
8335 				  from_kgid(&init_user_ns, gid),
8336 				  audit_get_sessionid(current));
8337 		}
8338 
8339 		dev_change_rx_flags(dev, IFF_PROMISC);
8340 	}
8341 	if (notify)
8342 		__dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
8343 	return 0;
8344 }
8345 
8346 /**
8347  *	dev_set_promiscuity	- update promiscuity count on a device
8348  *	@dev: device
8349  *	@inc: modifier
8350  *
8351  *	Add or remove promiscuity from a device. While the count in the device
8352  *	remains above zero the interface remains promiscuous. Once it hits zero
8353  *	the device reverts back to normal filtering operation. A negative inc
8354  *	value is used to drop promiscuity on the device.
8355  *	Return 0 if successful or a negative errno code on error.
8356  */
8357 int dev_set_promiscuity(struct net_device *dev, int inc)
8358 {
8359 	unsigned int old_flags = dev->flags;
8360 	int err;
8361 
8362 	err = __dev_set_promiscuity(dev, inc, true);
8363 	if (err < 0)
8364 		return err;
8365 	if (dev->flags != old_flags)
8366 		dev_set_rx_mode(dev);
8367 	return err;
8368 }
8369 EXPORT_SYMBOL(dev_set_promiscuity);
8370 
8371 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8372 {
8373 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8374 
8375 	ASSERT_RTNL();
8376 
8377 	dev->flags |= IFF_ALLMULTI;
8378 	dev->allmulti += inc;
8379 	if (dev->allmulti == 0) {
8380 		/*
8381 		 * Avoid overflow.
8382 		 * If inc causes overflow, untouch allmulti and return error.
8383 		 */
8384 		if (inc < 0)
8385 			dev->flags &= ~IFF_ALLMULTI;
8386 		else {
8387 			dev->allmulti -= inc;
8388 			netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8389 			return -EOVERFLOW;
8390 		}
8391 	}
8392 	if (dev->flags ^ old_flags) {
8393 		dev_change_rx_flags(dev, IFF_ALLMULTI);
8394 		dev_set_rx_mode(dev);
8395 		if (notify)
8396 			__dev_notify_flags(dev, old_flags,
8397 					   dev->gflags ^ old_gflags, 0, NULL);
8398 	}
8399 	return 0;
8400 }
8401 
8402 /**
8403  *	dev_set_allmulti	- update allmulti count on a device
8404  *	@dev: device
8405  *	@inc: modifier
8406  *
8407  *	Add or remove reception of all multicast frames to a device. While the
8408  *	count in the device remains above zero the interface remains listening
8409  *	to all interfaces. Once it hits zero the device reverts back to normal
8410  *	filtering operation. A negative @inc value is used to drop the counter
8411  *	when releasing a resource needing all multicasts.
8412  *	Return 0 if successful or a negative errno code on error.
8413  */
8414 
8415 int dev_set_allmulti(struct net_device *dev, int inc)
8416 {
8417 	return __dev_set_allmulti(dev, inc, true);
8418 }
8419 EXPORT_SYMBOL(dev_set_allmulti);
8420 
8421 /*
8422  *	Upload unicast and multicast address lists to device and
8423  *	configure RX filtering. When the device doesn't support unicast
8424  *	filtering it is put in promiscuous mode while unicast addresses
8425  *	are present.
8426  */
8427 void __dev_set_rx_mode(struct net_device *dev)
8428 {
8429 	const struct net_device_ops *ops = dev->netdev_ops;
8430 
8431 	/* dev_open will call this function so the list will stay sane. */
8432 	if (!(dev->flags&IFF_UP))
8433 		return;
8434 
8435 	if (!netif_device_present(dev))
8436 		return;
8437 
8438 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8439 		/* Unicast addresses changes may only happen under the rtnl,
8440 		 * therefore calling __dev_set_promiscuity here is safe.
8441 		 */
8442 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8443 			__dev_set_promiscuity(dev, 1, false);
8444 			dev->uc_promisc = true;
8445 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8446 			__dev_set_promiscuity(dev, -1, false);
8447 			dev->uc_promisc = false;
8448 		}
8449 	}
8450 
8451 	if (ops->ndo_set_rx_mode)
8452 		ops->ndo_set_rx_mode(dev);
8453 }
8454 
8455 void dev_set_rx_mode(struct net_device *dev)
8456 {
8457 	netif_addr_lock_bh(dev);
8458 	__dev_set_rx_mode(dev);
8459 	netif_addr_unlock_bh(dev);
8460 }
8461 
8462 /**
8463  *	dev_get_flags - get flags reported to userspace
8464  *	@dev: device
8465  *
8466  *	Get the combination of flag bits exported through APIs to userspace.
8467  */
8468 unsigned int dev_get_flags(const struct net_device *dev)
8469 {
8470 	unsigned int flags;
8471 
8472 	flags = (dev->flags & ~(IFF_PROMISC |
8473 				IFF_ALLMULTI |
8474 				IFF_RUNNING |
8475 				IFF_LOWER_UP |
8476 				IFF_DORMANT)) |
8477 		(dev->gflags & (IFF_PROMISC |
8478 				IFF_ALLMULTI));
8479 
8480 	if (netif_running(dev)) {
8481 		if (netif_oper_up(dev))
8482 			flags |= IFF_RUNNING;
8483 		if (netif_carrier_ok(dev))
8484 			flags |= IFF_LOWER_UP;
8485 		if (netif_dormant(dev))
8486 			flags |= IFF_DORMANT;
8487 	}
8488 
8489 	return flags;
8490 }
8491 EXPORT_SYMBOL(dev_get_flags);
8492 
8493 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8494 		       struct netlink_ext_ack *extack)
8495 {
8496 	unsigned int old_flags = dev->flags;
8497 	int ret;
8498 
8499 	ASSERT_RTNL();
8500 
8501 	/*
8502 	 *	Set the flags on our device.
8503 	 */
8504 
8505 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8506 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8507 			       IFF_AUTOMEDIA)) |
8508 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8509 				    IFF_ALLMULTI));
8510 
8511 	/*
8512 	 *	Load in the correct multicast list now the flags have changed.
8513 	 */
8514 
8515 	if ((old_flags ^ flags) & IFF_MULTICAST)
8516 		dev_change_rx_flags(dev, IFF_MULTICAST);
8517 
8518 	dev_set_rx_mode(dev);
8519 
8520 	/*
8521 	 *	Have we downed the interface. We handle IFF_UP ourselves
8522 	 *	according to user attempts to set it, rather than blindly
8523 	 *	setting it.
8524 	 */
8525 
8526 	ret = 0;
8527 	if ((old_flags ^ flags) & IFF_UP) {
8528 		if (old_flags & IFF_UP)
8529 			__dev_close(dev);
8530 		else
8531 			ret = __dev_open(dev, extack);
8532 	}
8533 
8534 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
8535 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
8536 		unsigned int old_flags = dev->flags;
8537 
8538 		dev->gflags ^= IFF_PROMISC;
8539 
8540 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
8541 			if (dev->flags != old_flags)
8542 				dev_set_rx_mode(dev);
8543 	}
8544 
8545 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8546 	 * is important. Some (broken) drivers set IFF_PROMISC, when
8547 	 * IFF_ALLMULTI is requested not asking us and not reporting.
8548 	 */
8549 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8550 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8551 
8552 		dev->gflags ^= IFF_ALLMULTI;
8553 		__dev_set_allmulti(dev, inc, false);
8554 	}
8555 
8556 	return ret;
8557 }
8558 
8559 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8560 			unsigned int gchanges, u32 portid,
8561 			const struct nlmsghdr *nlh)
8562 {
8563 	unsigned int changes = dev->flags ^ old_flags;
8564 
8565 	if (gchanges)
8566 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
8567 
8568 	if (changes & IFF_UP) {
8569 		if (dev->flags & IFF_UP)
8570 			call_netdevice_notifiers(NETDEV_UP, dev);
8571 		else
8572 			call_netdevice_notifiers(NETDEV_DOWN, dev);
8573 	}
8574 
8575 	if (dev->flags & IFF_UP &&
8576 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8577 		struct netdev_notifier_change_info change_info = {
8578 			.info = {
8579 				.dev = dev,
8580 			},
8581 			.flags_changed = changes,
8582 		};
8583 
8584 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8585 	}
8586 }
8587 
8588 /**
8589  *	dev_change_flags - change device settings
8590  *	@dev: device
8591  *	@flags: device state flags
8592  *	@extack: netlink extended ack
8593  *
8594  *	Change settings on device based state flags. The flags are
8595  *	in the userspace exported format.
8596  */
8597 int dev_change_flags(struct net_device *dev, unsigned int flags,
8598 		     struct netlink_ext_ack *extack)
8599 {
8600 	int ret;
8601 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8602 
8603 	ret = __dev_change_flags(dev, flags, extack);
8604 	if (ret < 0)
8605 		return ret;
8606 
8607 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8608 	__dev_notify_flags(dev, old_flags, changes, 0, NULL);
8609 	return ret;
8610 }
8611 EXPORT_SYMBOL(dev_change_flags);
8612 
8613 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8614 {
8615 	const struct net_device_ops *ops = dev->netdev_ops;
8616 
8617 	if (ops->ndo_change_mtu)
8618 		return ops->ndo_change_mtu(dev, new_mtu);
8619 
8620 	/* Pairs with all the lockless reads of dev->mtu in the stack */
8621 	WRITE_ONCE(dev->mtu, new_mtu);
8622 	return 0;
8623 }
8624 EXPORT_SYMBOL(__dev_set_mtu);
8625 
8626 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8627 		     struct netlink_ext_ack *extack)
8628 {
8629 	/* MTU must be positive, and in range */
8630 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8631 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8632 		return -EINVAL;
8633 	}
8634 
8635 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8636 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8637 		return -EINVAL;
8638 	}
8639 	return 0;
8640 }
8641 
8642 /**
8643  *	dev_set_mtu_ext - Change maximum transfer unit
8644  *	@dev: device
8645  *	@new_mtu: new transfer unit
8646  *	@extack: netlink extended ack
8647  *
8648  *	Change the maximum transfer size of the network device.
8649  */
8650 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8651 		    struct netlink_ext_ack *extack)
8652 {
8653 	int err, orig_mtu;
8654 
8655 	if (new_mtu == dev->mtu)
8656 		return 0;
8657 
8658 	err = dev_validate_mtu(dev, new_mtu, extack);
8659 	if (err)
8660 		return err;
8661 
8662 	if (!netif_device_present(dev))
8663 		return -ENODEV;
8664 
8665 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8666 	err = notifier_to_errno(err);
8667 	if (err)
8668 		return err;
8669 
8670 	orig_mtu = dev->mtu;
8671 	err = __dev_set_mtu(dev, new_mtu);
8672 
8673 	if (!err) {
8674 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8675 						   orig_mtu);
8676 		err = notifier_to_errno(err);
8677 		if (err) {
8678 			/* setting mtu back and notifying everyone again,
8679 			 * so that they have a chance to revert changes.
8680 			 */
8681 			__dev_set_mtu(dev, orig_mtu);
8682 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8683 						     new_mtu);
8684 		}
8685 	}
8686 	return err;
8687 }
8688 
8689 int dev_set_mtu(struct net_device *dev, int new_mtu)
8690 {
8691 	struct netlink_ext_ack extack;
8692 	int err;
8693 
8694 	memset(&extack, 0, sizeof(extack));
8695 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
8696 	if (err && extack._msg)
8697 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8698 	return err;
8699 }
8700 EXPORT_SYMBOL(dev_set_mtu);
8701 
8702 /**
8703  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
8704  *	@dev: device
8705  *	@new_len: new tx queue length
8706  */
8707 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8708 {
8709 	unsigned int orig_len = dev->tx_queue_len;
8710 	int res;
8711 
8712 	if (new_len != (unsigned int)new_len)
8713 		return -ERANGE;
8714 
8715 	if (new_len != orig_len) {
8716 		dev->tx_queue_len = new_len;
8717 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8718 		res = notifier_to_errno(res);
8719 		if (res)
8720 			goto err_rollback;
8721 		res = dev_qdisc_change_tx_queue_len(dev);
8722 		if (res)
8723 			goto err_rollback;
8724 	}
8725 
8726 	return 0;
8727 
8728 err_rollback:
8729 	netdev_err(dev, "refused to change device tx_queue_len\n");
8730 	dev->tx_queue_len = orig_len;
8731 	return res;
8732 }
8733 
8734 /**
8735  *	dev_set_group - Change group this device belongs to
8736  *	@dev: device
8737  *	@new_group: group this device should belong to
8738  */
8739 void dev_set_group(struct net_device *dev, int new_group)
8740 {
8741 	dev->group = new_group;
8742 }
8743 
8744 /**
8745  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8746  *	@dev: device
8747  *	@addr: new address
8748  *	@extack: netlink extended ack
8749  */
8750 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8751 			      struct netlink_ext_ack *extack)
8752 {
8753 	struct netdev_notifier_pre_changeaddr_info info = {
8754 		.info.dev = dev,
8755 		.info.extack = extack,
8756 		.dev_addr = addr,
8757 	};
8758 	int rc;
8759 
8760 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8761 	return notifier_to_errno(rc);
8762 }
8763 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8764 
8765 /**
8766  *	dev_set_mac_address - Change Media Access Control Address
8767  *	@dev: device
8768  *	@sa: new address
8769  *	@extack: netlink extended ack
8770  *
8771  *	Change the hardware (MAC) address of the device
8772  */
8773 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8774 			struct netlink_ext_ack *extack)
8775 {
8776 	const struct net_device_ops *ops = dev->netdev_ops;
8777 	int err;
8778 
8779 	if (!ops->ndo_set_mac_address)
8780 		return -EOPNOTSUPP;
8781 	if (sa->sa_family != dev->type)
8782 		return -EINVAL;
8783 	if (!netif_device_present(dev))
8784 		return -ENODEV;
8785 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8786 	if (err)
8787 		return err;
8788 	err = ops->ndo_set_mac_address(dev, sa);
8789 	if (err)
8790 		return err;
8791 	dev->addr_assign_type = NET_ADDR_SET;
8792 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8793 	add_device_randomness(dev->dev_addr, dev->addr_len);
8794 	return 0;
8795 }
8796 EXPORT_SYMBOL(dev_set_mac_address);
8797 
8798 static DECLARE_RWSEM(dev_addr_sem);
8799 
8800 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8801 			     struct netlink_ext_ack *extack)
8802 {
8803 	int ret;
8804 
8805 	down_write(&dev_addr_sem);
8806 	ret = dev_set_mac_address(dev, sa, extack);
8807 	up_write(&dev_addr_sem);
8808 	return ret;
8809 }
8810 EXPORT_SYMBOL(dev_set_mac_address_user);
8811 
8812 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8813 {
8814 	size_t size = sizeof(sa->sa_data_min);
8815 	struct net_device *dev;
8816 	int ret = 0;
8817 
8818 	down_read(&dev_addr_sem);
8819 	rcu_read_lock();
8820 
8821 	dev = dev_get_by_name_rcu(net, dev_name);
8822 	if (!dev) {
8823 		ret = -ENODEV;
8824 		goto unlock;
8825 	}
8826 	if (!dev->addr_len)
8827 		memset(sa->sa_data, 0, size);
8828 	else
8829 		memcpy(sa->sa_data, dev->dev_addr,
8830 		       min_t(size_t, size, dev->addr_len));
8831 	sa->sa_family = dev->type;
8832 
8833 unlock:
8834 	rcu_read_unlock();
8835 	up_read(&dev_addr_sem);
8836 	return ret;
8837 }
8838 EXPORT_SYMBOL(dev_get_mac_address);
8839 
8840 /**
8841  *	dev_change_carrier - Change device carrier
8842  *	@dev: device
8843  *	@new_carrier: new value
8844  *
8845  *	Change device carrier
8846  */
8847 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8848 {
8849 	const struct net_device_ops *ops = dev->netdev_ops;
8850 
8851 	if (!ops->ndo_change_carrier)
8852 		return -EOPNOTSUPP;
8853 	if (!netif_device_present(dev))
8854 		return -ENODEV;
8855 	return ops->ndo_change_carrier(dev, new_carrier);
8856 }
8857 
8858 /**
8859  *	dev_get_phys_port_id - Get device physical port ID
8860  *	@dev: device
8861  *	@ppid: port ID
8862  *
8863  *	Get device physical port ID
8864  */
8865 int dev_get_phys_port_id(struct net_device *dev,
8866 			 struct netdev_phys_item_id *ppid)
8867 {
8868 	const struct net_device_ops *ops = dev->netdev_ops;
8869 
8870 	if (!ops->ndo_get_phys_port_id)
8871 		return -EOPNOTSUPP;
8872 	return ops->ndo_get_phys_port_id(dev, ppid);
8873 }
8874 
8875 /**
8876  *	dev_get_phys_port_name - Get device physical port name
8877  *	@dev: device
8878  *	@name: port name
8879  *	@len: limit of bytes to copy to name
8880  *
8881  *	Get device physical port name
8882  */
8883 int dev_get_phys_port_name(struct net_device *dev,
8884 			   char *name, size_t len)
8885 {
8886 	const struct net_device_ops *ops = dev->netdev_ops;
8887 	int err;
8888 
8889 	if (ops->ndo_get_phys_port_name) {
8890 		err = ops->ndo_get_phys_port_name(dev, name, len);
8891 		if (err != -EOPNOTSUPP)
8892 			return err;
8893 	}
8894 	return devlink_compat_phys_port_name_get(dev, name, len);
8895 }
8896 
8897 /**
8898  *	dev_get_port_parent_id - Get the device's port parent identifier
8899  *	@dev: network device
8900  *	@ppid: pointer to a storage for the port's parent identifier
8901  *	@recurse: allow/disallow recursion to lower devices
8902  *
8903  *	Get the devices's port parent identifier
8904  */
8905 int dev_get_port_parent_id(struct net_device *dev,
8906 			   struct netdev_phys_item_id *ppid,
8907 			   bool recurse)
8908 {
8909 	const struct net_device_ops *ops = dev->netdev_ops;
8910 	struct netdev_phys_item_id first = { };
8911 	struct net_device *lower_dev;
8912 	struct list_head *iter;
8913 	int err;
8914 
8915 	if (ops->ndo_get_port_parent_id) {
8916 		err = ops->ndo_get_port_parent_id(dev, ppid);
8917 		if (err != -EOPNOTSUPP)
8918 			return err;
8919 	}
8920 
8921 	err = devlink_compat_switch_id_get(dev, ppid);
8922 	if (!recurse || err != -EOPNOTSUPP)
8923 		return err;
8924 
8925 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
8926 		err = dev_get_port_parent_id(lower_dev, ppid, true);
8927 		if (err)
8928 			break;
8929 		if (!first.id_len)
8930 			first = *ppid;
8931 		else if (memcmp(&first, ppid, sizeof(*ppid)))
8932 			return -EOPNOTSUPP;
8933 	}
8934 
8935 	return err;
8936 }
8937 EXPORT_SYMBOL(dev_get_port_parent_id);
8938 
8939 /**
8940  *	netdev_port_same_parent_id - Indicate if two network devices have
8941  *	the same port parent identifier
8942  *	@a: first network device
8943  *	@b: second network device
8944  */
8945 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8946 {
8947 	struct netdev_phys_item_id a_id = { };
8948 	struct netdev_phys_item_id b_id = { };
8949 
8950 	if (dev_get_port_parent_id(a, &a_id, true) ||
8951 	    dev_get_port_parent_id(b, &b_id, true))
8952 		return false;
8953 
8954 	return netdev_phys_item_id_same(&a_id, &b_id);
8955 }
8956 EXPORT_SYMBOL(netdev_port_same_parent_id);
8957 
8958 /**
8959  *	dev_change_proto_down - set carrier according to proto_down.
8960  *
8961  *	@dev: device
8962  *	@proto_down: new value
8963  */
8964 int dev_change_proto_down(struct net_device *dev, bool proto_down)
8965 {
8966 	if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN))
8967 		return -EOPNOTSUPP;
8968 	if (!netif_device_present(dev))
8969 		return -ENODEV;
8970 	if (proto_down)
8971 		netif_carrier_off(dev);
8972 	else
8973 		netif_carrier_on(dev);
8974 	dev->proto_down = proto_down;
8975 	return 0;
8976 }
8977 
8978 /**
8979  *	dev_change_proto_down_reason - proto down reason
8980  *
8981  *	@dev: device
8982  *	@mask: proto down mask
8983  *	@value: proto down value
8984  */
8985 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
8986 				  u32 value)
8987 {
8988 	int b;
8989 
8990 	if (!mask) {
8991 		dev->proto_down_reason = value;
8992 	} else {
8993 		for_each_set_bit(b, &mask, 32) {
8994 			if (value & (1 << b))
8995 				dev->proto_down_reason |= BIT(b);
8996 			else
8997 				dev->proto_down_reason &= ~BIT(b);
8998 		}
8999 	}
9000 }
9001 
9002 struct bpf_xdp_link {
9003 	struct bpf_link link;
9004 	struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9005 	int flags;
9006 };
9007 
9008 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9009 {
9010 	if (flags & XDP_FLAGS_HW_MODE)
9011 		return XDP_MODE_HW;
9012 	if (flags & XDP_FLAGS_DRV_MODE)
9013 		return XDP_MODE_DRV;
9014 	if (flags & XDP_FLAGS_SKB_MODE)
9015 		return XDP_MODE_SKB;
9016 	return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9017 }
9018 
9019 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9020 {
9021 	switch (mode) {
9022 	case XDP_MODE_SKB:
9023 		return generic_xdp_install;
9024 	case XDP_MODE_DRV:
9025 	case XDP_MODE_HW:
9026 		return dev->netdev_ops->ndo_bpf;
9027 	default:
9028 		return NULL;
9029 	}
9030 }
9031 
9032 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9033 					 enum bpf_xdp_mode mode)
9034 {
9035 	return dev->xdp_state[mode].link;
9036 }
9037 
9038 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9039 				     enum bpf_xdp_mode mode)
9040 {
9041 	struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9042 
9043 	if (link)
9044 		return link->link.prog;
9045 	return dev->xdp_state[mode].prog;
9046 }
9047 
9048 u8 dev_xdp_prog_count(struct net_device *dev)
9049 {
9050 	u8 count = 0;
9051 	int i;
9052 
9053 	for (i = 0; i < __MAX_XDP_MODE; i++)
9054 		if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9055 			count++;
9056 	return count;
9057 }
9058 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9059 
9060 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9061 {
9062 	struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9063 
9064 	return prog ? prog->aux->id : 0;
9065 }
9066 
9067 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9068 			     struct bpf_xdp_link *link)
9069 {
9070 	dev->xdp_state[mode].link = link;
9071 	dev->xdp_state[mode].prog = NULL;
9072 }
9073 
9074 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9075 			     struct bpf_prog *prog)
9076 {
9077 	dev->xdp_state[mode].link = NULL;
9078 	dev->xdp_state[mode].prog = prog;
9079 }
9080 
9081 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9082 			   bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9083 			   u32 flags, struct bpf_prog *prog)
9084 {
9085 	struct netdev_bpf xdp;
9086 	int err;
9087 
9088 	memset(&xdp, 0, sizeof(xdp));
9089 	xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9090 	xdp.extack = extack;
9091 	xdp.flags = flags;
9092 	xdp.prog = prog;
9093 
9094 	/* Drivers assume refcnt is already incremented (i.e, prog pointer is
9095 	 * "moved" into driver), so they don't increment it on their own, but
9096 	 * they do decrement refcnt when program is detached or replaced.
9097 	 * Given net_device also owns link/prog, we need to bump refcnt here
9098 	 * to prevent drivers from underflowing it.
9099 	 */
9100 	if (prog)
9101 		bpf_prog_inc(prog);
9102 	err = bpf_op(dev, &xdp);
9103 	if (err) {
9104 		if (prog)
9105 			bpf_prog_put(prog);
9106 		return err;
9107 	}
9108 
9109 	if (mode != XDP_MODE_HW)
9110 		bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9111 
9112 	return 0;
9113 }
9114 
9115 static void dev_xdp_uninstall(struct net_device *dev)
9116 {
9117 	struct bpf_xdp_link *link;
9118 	struct bpf_prog *prog;
9119 	enum bpf_xdp_mode mode;
9120 	bpf_op_t bpf_op;
9121 
9122 	ASSERT_RTNL();
9123 
9124 	for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9125 		prog = dev_xdp_prog(dev, mode);
9126 		if (!prog)
9127 			continue;
9128 
9129 		bpf_op = dev_xdp_bpf_op(dev, mode);
9130 		if (!bpf_op)
9131 			continue;
9132 
9133 		WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9134 
9135 		/* auto-detach link from net device */
9136 		link = dev_xdp_link(dev, mode);
9137 		if (link)
9138 			link->dev = NULL;
9139 		else
9140 			bpf_prog_put(prog);
9141 
9142 		dev_xdp_set_link(dev, mode, NULL);
9143 	}
9144 }
9145 
9146 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9147 			  struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9148 			  struct bpf_prog *old_prog, u32 flags)
9149 {
9150 	unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9151 	struct bpf_prog *cur_prog;
9152 	struct net_device *upper;
9153 	struct list_head *iter;
9154 	enum bpf_xdp_mode mode;
9155 	bpf_op_t bpf_op;
9156 	int err;
9157 
9158 	ASSERT_RTNL();
9159 
9160 	/* either link or prog attachment, never both */
9161 	if (link && (new_prog || old_prog))
9162 		return -EINVAL;
9163 	/* link supports only XDP mode flags */
9164 	if (link && (flags & ~XDP_FLAGS_MODES)) {
9165 		NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9166 		return -EINVAL;
9167 	}
9168 	/* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9169 	if (num_modes > 1) {
9170 		NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9171 		return -EINVAL;
9172 	}
9173 	/* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9174 	if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9175 		NL_SET_ERR_MSG(extack,
9176 			       "More than one program loaded, unset mode is ambiguous");
9177 		return -EINVAL;
9178 	}
9179 	/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9180 	if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9181 		NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9182 		return -EINVAL;
9183 	}
9184 
9185 	mode = dev_xdp_mode(dev, flags);
9186 	/* can't replace attached link */
9187 	if (dev_xdp_link(dev, mode)) {
9188 		NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9189 		return -EBUSY;
9190 	}
9191 
9192 	/* don't allow if an upper device already has a program */
9193 	netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9194 		if (dev_xdp_prog_count(upper) > 0) {
9195 			NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9196 			return -EEXIST;
9197 		}
9198 	}
9199 
9200 	cur_prog = dev_xdp_prog(dev, mode);
9201 	/* can't replace attached prog with link */
9202 	if (link && cur_prog) {
9203 		NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9204 		return -EBUSY;
9205 	}
9206 	if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9207 		NL_SET_ERR_MSG(extack, "Active program does not match expected");
9208 		return -EEXIST;
9209 	}
9210 
9211 	/* put effective new program into new_prog */
9212 	if (link)
9213 		new_prog = link->link.prog;
9214 
9215 	if (new_prog) {
9216 		bool offload = mode == XDP_MODE_HW;
9217 		enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9218 					       ? XDP_MODE_DRV : XDP_MODE_SKB;
9219 
9220 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9221 			NL_SET_ERR_MSG(extack, "XDP program already attached");
9222 			return -EBUSY;
9223 		}
9224 		if (!offload && dev_xdp_prog(dev, other_mode)) {
9225 			NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9226 			return -EEXIST;
9227 		}
9228 		if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
9229 			NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
9230 			return -EINVAL;
9231 		}
9232 		if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
9233 			NL_SET_ERR_MSG(extack, "Program bound to different device");
9234 			return -EINVAL;
9235 		}
9236 		if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9237 			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9238 			return -EINVAL;
9239 		}
9240 		if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9241 			NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9242 			return -EINVAL;
9243 		}
9244 	}
9245 
9246 	/* don't call drivers if the effective program didn't change */
9247 	if (new_prog != cur_prog) {
9248 		bpf_op = dev_xdp_bpf_op(dev, mode);
9249 		if (!bpf_op) {
9250 			NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9251 			return -EOPNOTSUPP;
9252 		}
9253 
9254 		err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9255 		if (err)
9256 			return err;
9257 	}
9258 
9259 	if (link)
9260 		dev_xdp_set_link(dev, mode, link);
9261 	else
9262 		dev_xdp_set_prog(dev, mode, new_prog);
9263 	if (cur_prog)
9264 		bpf_prog_put(cur_prog);
9265 
9266 	return 0;
9267 }
9268 
9269 static int dev_xdp_attach_link(struct net_device *dev,
9270 			       struct netlink_ext_ack *extack,
9271 			       struct bpf_xdp_link *link)
9272 {
9273 	return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9274 }
9275 
9276 static int dev_xdp_detach_link(struct net_device *dev,
9277 			       struct netlink_ext_ack *extack,
9278 			       struct bpf_xdp_link *link)
9279 {
9280 	enum bpf_xdp_mode mode;
9281 	bpf_op_t bpf_op;
9282 
9283 	ASSERT_RTNL();
9284 
9285 	mode = dev_xdp_mode(dev, link->flags);
9286 	if (dev_xdp_link(dev, mode) != link)
9287 		return -EINVAL;
9288 
9289 	bpf_op = dev_xdp_bpf_op(dev, mode);
9290 	WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9291 	dev_xdp_set_link(dev, mode, NULL);
9292 	return 0;
9293 }
9294 
9295 static void bpf_xdp_link_release(struct bpf_link *link)
9296 {
9297 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9298 
9299 	rtnl_lock();
9300 
9301 	/* if racing with net_device's tear down, xdp_link->dev might be
9302 	 * already NULL, in which case link was already auto-detached
9303 	 */
9304 	if (xdp_link->dev) {
9305 		WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9306 		xdp_link->dev = NULL;
9307 	}
9308 
9309 	rtnl_unlock();
9310 }
9311 
9312 static int bpf_xdp_link_detach(struct bpf_link *link)
9313 {
9314 	bpf_xdp_link_release(link);
9315 	return 0;
9316 }
9317 
9318 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9319 {
9320 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9321 
9322 	kfree(xdp_link);
9323 }
9324 
9325 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9326 				     struct seq_file *seq)
9327 {
9328 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9329 	u32 ifindex = 0;
9330 
9331 	rtnl_lock();
9332 	if (xdp_link->dev)
9333 		ifindex = xdp_link->dev->ifindex;
9334 	rtnl_unlock();
9335 
9336 	seq_printf(seq, "ifindex:\t%u\n", ifindex);
9337 }
9338 
9339 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9340 				       struct bpf_link_info *info)
9341 {
9342 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9343 	u32 ifindex = 0;
9344 
9345 	rtnl_lock();
9346 	if (xdp_link->dev)
9347 		ifindex = xdp_link->dev->ifindex;
9348 	rtnl_unlock();
9349 
9350 	info->xdp.ifindex = ifindex;
9351 	return 0;
9352 }
9353 
9354 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9355 			       struct bpf_prog *old_prog)
9356 {
9357 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9358 	enum bpf_xdp_mode mode;
9359 	bpf_op_t bpf_op;
9360 	int err = 0;
9361 
9362 	rtnl_lock();
9363 
9364 	/* link might have been auto-released already, so fail */
9365 	if (!xdp_link->dev) {
9366 		err = -ENOLINK;
9367 		goto out_unlock;
9368 	}
9369 
9370 	if (old_prog && link->prog != old_prog) {
9371 		err = -EPERM;
9372 		goto out_unlock;
9373 	}
9374 	old_prog = link->prog;
9375 	if (old_prog->type != new_prog->type ||
9376 	    old_prog->expected_attach_type != new_prog->expected_attach_type) {
9377 		err = -EINVAL;
9378 		goto out_unlock;
9379 	}
9380 
9381 	if (old_prog == new_prog) {
9382 		/* no-op, don't disturb drivers */
9383 		bpf_prog_put(new_prog);
9384 		goto out_unlock;
9385 	}
9386 
9387 	mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9388 	bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9389 	err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9390 			      xdp_link->flags, new_prog);
9391 	if (err)
9392 		goto out_unlock;
9393 
9394 	old_prog = xchg(&link->prog, new_prog);
9395 	bpf_prog_put(old_prog);
9396 
9397 out_unlock:
9398 	rtnl_unlock();
9399 	return err;
9400 }
9401 
9402 static const struct bpf_link_ops bpf_xdp_link_lops = {
9403 	.release = bpf_xdp_link_release,
9404 	.dealloc = bpf_xdp_link_dealloc,
9405 	.detach = bpf_xdp_link_detach,
9406 	.show_fdinfo = bpf_xdp_link_show_fdinfo,
9407 	.fill_link_info = bpf_xdp_link_fill_link_info,
9408 	.update_prog = bpf_xdp_link_update,
9409 };
9410 
9411 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9412 {
9413 	struct net *net = current->nsproxy->net_ns;
9414 	struct bpf_link_primer link_primer;
9415 	struct bpf_xdp_link *link;
9416 	struct net_device *dev;
9417 	int err, fd;
9418 
9419 	rtnl_lock();
9420 	dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9421 	if (!dev) {
9422 		rtnl_unlock();
9423 		return -EINVAL;
9424 	}
9425 
9426 	link = kzalloc(sizeof(*link), GFP_USER);
9427 	if (!link) {
9428 		err = -ENOMEM;
9429 		goto unlock;
9430 	}
9431 
9432 	bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9433 	link->dev = dev;
9434 	link->flags = attr->link_create.flags;
9435 
9436 	err = bpf_link_prime(&link->link, &link_primer);
9437 	if (err) {
9438 		kfree(link);
9439 		goto unlock;
9440 	}
9441 
9442 	err = dev_xdp_attach_link(dev, NULL, link);
9443 	rtnl_unlock();
9444 
9445 	if (err) {
9446 		link->dev = NULL;
9447 		bpf_link_cleanup(&link_primer);
9448 		goto out_put_dev;
9449 	}
9450 
9451 	fd = bpf_link_settle(&link_primer);
9452 	/* link itself doesn't hold dev's refcnt to not complicate shutdown */
9453 	dev_put(dev);
9454 	return fd;
9455 
9456 unlock:
9457 	rtnl_unlock();
9458 
9459 out_put_dev:
9460 	dev_put(dev);
9461 	return err;
9462 }
9463 
9464 /**
9465  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
9466  *	@dev: device
9467  *	@extack: netlink extended ack
9468  *	@fd: new program fd or negative value to clear
9469  *	@expected_fd: old program fd that userspace expects to replace or clear
9470  *	@flags: xdp-related flags
9471  *
9472  *	Set or clear a bpf program for a device
9473  */
9474 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9475 		      int fd, int expected_fd, u32 flags)
9476 {
9477 	enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9478 	struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9479 	int err;
9480 
9481 	ASSERT_RTNL();
9482 
9483 	if (fd >= 0) {
9484 		new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9485 						 mode != XDP_MODE_SKB);
9486 		if (IS_ERR(new_prog))
9487 			return PTR_ERR(new_prog);
9488 	}
9489 
9490 	if (expected_fd >= 0) {
9491 		old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9492 						 mode != XDP_MODE_SKB);
9493 		if (IS_ERR(old_prog)) {
9494 			err = PTR_ERR(old_prog);
9495 			old_prog = NULL;
9496 			goto err_out;
9497 		}
9498 	}
9499 
9500 	err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9501 
9502 err_out:
9503 	if (err && new_prog)
9504 		bpf_prog_put(new_prog);
9505 	if (old_prog)
9506 		bpf_prog_put(old_prog);
9507 	return err;
9508 }
9509 
9510 /**
9511  *	dev_new_index	-	allocate an ifindex
9512  *	@net: the applicable net namespace
9513  *
9514  *	Returns a suitable unique value for a new device interface
9515  *	number.  The caller must hold the rtnl semaphore or the
9516  *	dev_base_lock to be sure it remains unique.
9517  */
9518 static int dev_new_index(struct net *net)
9519 {
9520 	int ifindex = net->ifindex;
9521 
9522 	for (;;) {
9523 		if (++ifindex <= 0)
9524 			ifindex = 1;
9525 		if (!__dev_get_by_index(net, ifindex))
9526 			return net->ifindex = ifindex;
9527 	}
9528 }
9529 
9530 /* Delayed registration/unregisteration */
9531 LIST_HEAD(net_todo_list);
9532 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9533 
9534 static void net_set_todo(struct net_device *dev)
9535 {
9536 	list_add_tail(&dev->todo_list, &net_todo_list);
9537 	atomic_inc(&dev_net(dev)->dev_unreg_count);
9538 }
9539 
9540 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9541 	struct net_device *upper, netdev_features_t features)
9542 {
9543 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9544 	netdev_features_t feature;
9545 	int feature_bit;
9546 
9547 	for_each_netdev_feature(upper_disables, feature_bit) {
9548 		feature = __NETIF_F_BIT(feature_bit);
9549 		if (!(upper->wanted_features & feature)
9550 		    && (features & feature)) {
9551 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9552 				   &feature, upper->name);
9553 			features &= ~feature;
9554 		}
9555 	}
9556 
9557 	return features;
9558 }
9559 
9560 static void netdev_sync_lower_features(struct net_device *upper,
9561 	struct net_device *lower, netdev_features_t features)
9562 {
9563 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9564 	netdev_features_t feature;
9565 	int feature_bit;
9566 
9567 	for_each_netdev_feature(upper_disables, feature_bit) {
9568 		feature = __NETIF_F_BIT(feature_bit);
9569 		if (!(features & feature) && (lower->features & feature)) {
9570 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9571 				   &feature, lower->name);
9572 			lower->wanted_features &= ~feature;
9573 			__netdev_update_features(lower);
9574 
9575 			if (unlikely(lower->features & feature))
9576 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9577 					    &feature, lower->name);
9578 			else
9579 				netdev_features_change(lower);
9580 		}
9581 	}
9582 }
9583 
9584 static netdev_features_t netdev_fix_features(struct net_device *dev,
9585 	netdev_features_t features)
9586 {
9587 	/* Fix illegal checksum combinations */
9588 	if ((features & NETIF_F_HW_CSUM) &&
9589 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9590 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9591 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9592 	}
9593 
9594 	/* TSO requires that SG is present as well. */
9595 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9596 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9597 		features &= ~NETIF_F_ALL_TSO;
9598 	}
9599 
9600 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9601 					!(features & NETIF_F_IP_CSUM)) {
9602 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9603 		features &= ~NETIF_F_TSO;
9604 		features &= ~NETIF_F_TSO_ECN;
9605 	}
9606 
9607 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9608 					 !(features & NETIF_F_IPV6_CSUM)) {
9609 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9610 		features &= ~NETIF_F_TSO6;
9611 	}
9612 
9613 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9614 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9615 		features &= ~NETIF_F_TSO_MANGLEID;
9616 
9617 	/* TSO ECN requires that TSO is present as well. */
9618 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9619 		features &= ~NETIF_F_TSO_ECN;
9620 
9621 	/* Software GSO depends on SG. */
9622 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9623 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9624 		features &= ~NETIF_F_GSO;
9625 	}
9626 
9627 	/* GSO partial features require GSO partial be set */
9628 	if ((features & dev->gso_partial_features) &&
9629 	    !(features & NETIF_F_GSO_PARTIAL)) {
9630 		netdev_dbg(dev,
9631 			   "Dropping partially supported GSO features since no GSO partial.\n");
9632 		features &= ~dev->gso_partial_features;
9633 	}
9634 
9635 	if (!(features & NETIF_F_RXCSUM)) {
9636 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9637 		 * successfully merged by hardware must also have the
9638 		 * checksum verified by hardware.  If the user does not
9639 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
9640 		 */
9641 		if (features & NETIF_F_GRO_HW) {
9642 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9643 			features &= ~NETIF_F_GRO_HW;
9644 		}
9645 	}
9646 
9647 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
9648 	if (features & NETIF_F_RXFCS) {
9649 		if (features & NETIF_F_LRO) {
9650 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9651 			features &= ~NETIF_F_LRO;
9652 		}
9653 
9654 		if (features & NETIF_F_GRO_HW) {
9655 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9656 			features &= ~NETIF_F_GRO_HW;
9657 		}
9658 	}
9659 
9660 	if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
9661 		netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
9662 		features &= ~NETIF_F_LRO;
9663 	}
9664 
9665 	if (features & NETIF_F_HW_TLS_TX) {
9666 		bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9667 			(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9668 		bool hw_csum = features & NETIF_F_HW_CSUM;
9669 
9670 		if (!ip_csum && !hw_csum) {
9671 			netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9672 			features &= ~NETIF_F_HW_TLS_TX;
9673 		}
9674 	}
9675 
9676 	if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9677 		netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9678 		features &= ~NETIF_F_HW_TLS_RX;
9679 	}
9680 
9681 	return features;
9682 }
9683 
9684 int __netdev_update_features(struct net_device *dev)
9685 {
9686 	struct net_device *upper, *lower;
9687 	netdev_features_t features;
9688 	struct list_head *iter;
9689 	int err = -1;
9690 
9691 	ASSERT_RTNL();
9692 
9693 	features = netdev_get_wanted_features(dev);
9694 
9695 	if (dev->netdev_ops->ndo_fix_features)
9696 		features = dev->netdev_ops->ndo_fix_features(dev, features);
9697 
9698 	/* driver might be less strict about feature dependencies */
9699 	features = netdev_fix_features(dev, features);
9700 
9701 	/* some features can't be enabled if they're off on an upper device */
9702 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
9703 		features = netdev_sync_upper_features(dev, upper, features);
9704 
9705 	if (dev->features == features)
9706 		goto sync_lower;
9707 
9708 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9709 		&dev->features, &features);
9710 
9711 	if (dev->netdev_ops->ndo_set_features)
9712 		err = dev->netdev_ops->ndo_set_features(dev, features);
9713 	else
9714 		err = 0;
9715 
9716 	if (unlikely(err < 0)) {
9717 		netdev_err(dev,
9718 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
9719 			err, &features, &dev->features);
9720 		/* return non-0 since some features might have changed and
9721 		 * it's better to fire a spurious notification than miss it
9722 		 */
9723 		return -1;
9724 	}
9725 
9726 sync_lower:
9727 	/* some features must be disabled on lower devices when disabled
9728 	 * on an upper device (think: bonding master or bridge)
9729 	 */
9730 	netdev_for_each_lower_dev(dev, lower, iter)
9731 		netdev_sync_lower_features(dev, lower, features);
9732 
9733 	if (!err) {
9734 		netdev_features_t diff = features ^ dev->features;
9735 
9736 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9737 			/* udp_tunnel_{get,drop}_rx_info both need
9738 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9739 			 * device, or they won't do anything.
9740 			 * Thus we need to update dev->features
9741 			 * *before* calling udp_tunnel_get_rx_info,
9742 			 * but *after* calling udp_tunnel_drop_rx_info.
9743 			 */
9744 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9745 				dev->features = features;
9746 				udp_tunnel_get_rx_info(dev);
9747 			} else {
9748 				udp_tunnel_drop_rx_info(dev);
9749 			}
9750 		}
9751 
9752 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9753 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9754 				dev->features = features;
9755 				err |= vlan_get_rx_ctag_filter_info(dev);
9756 			} else {
9757 				vlan_drop_rx_ctag_filter_info(dev);
9758 			}
9759 		}
9760 
9761 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9762 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9763 				dev->features = features;
9764 				err |= vlan_get_rx_stag_filter_info(dev);
9765 			} else {
9766 				vlan_drop_rx_stag_filter_info(dev);
9767 			}
9768 		}
9769 
9770 		dev->features = features;
9771 	}
9772 
9773 	return err < 0 ? 0 : 1;
9774 }
9775 
9776 /**
9777  *	netdev_update_features - recalculate device features
9778  *	@dev: the device to check
9779  *
9780  *	Recalculate dev->features set and send notifications if it
9781  *	has changed. Should be called after driver or hardware dependent
9782  *	conditions might have changed that influence the features.
9783  */
9784 void netdev_update_features(struct net_device *dev)
9785 {
9786 	if (__netdev_update_features(dev))
9787 		netdev_features_change(dev);
9788 }
9789 EXPORT_SYMBOL(netdev_update_features);
9790 
9791 /**
9792  *	netdev_change_features - recalculate device features
9793  *	@dev: the device to check
9794  *
9795  *	Recalculate dev->features set and send notifications even
9796  *	if they have not changed. Should be called instead of
9797  *	netdev_update_features() if also dev->vlan_features might
9798  *	have changed to allow the changes to be propagated to stacked
9799  *	VLAN devices.
9800  */
9801 void netdev_change_features(struct net_device *dev)
9802 {
9803 	__netdev_update_features(dev);
9804 	netdev_features_change(dev);
9805 }
9806 EXPORT_SYMBOL(netdev_change_features);
9807 
9808 /**
9809  *	netif_stacked_transfer_operstate -	transfer operstate
9810  *	@rootdev: the root or lower level device to transfer state from
9811  *	@dev: the device to transfer operstate to
9812  *
9813  *	Transfer operational state from root to device. This is normally
9814  *	called when a stacking relationship exists between the root
9815  *	device and the device(a leaf device).
9816  */
9817 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9818 					struct net_device *dev)
9819 {
9820 	if (rootdev->operstate == IF_OPER_DORMANT)
9821 		netif_dormant_on(dev);
9822 	else
9823 		netif_dormant_off(dev);
9824 
9825 	if (rootdev->operstate == IF_OPER_TESTING)
9826 		netif_testing_on(dev);
9827 	else
9828 		netif_testing_off(dev);
9829 
9830 	if (netif_carrier_ok(rootdev))
9831 		netif_carrier_on(dev);
9832 	else
9833 		netif_carrier_off(dev);
9834 }
9835 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9836 
9837 static int netif_alloc_rx_queues(struct net_device *dev)
9838 {
9839 	unsigned int i, count = dev->num_rx_queues;
9840 	struct netdev_rx_queue *rx;
9841 	size_t sz = count * sizeof(*rx);
9842 	int err = 0;
9843 
9844 	BUG_ON(count < 1);
9845 
9846 	rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9847 	if (!rx)
9848 		return -ENOMEM;
9849 
9850 	dev->_rx = rx;
9851 
9852 	for (i = 0; i < count; i++) {
9853 		rx[i].dev = dev;
9854 
9855 		/* XDP RX-queue setup */
9856 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
9857 		if (err < 0)
9858 			goto err_rxq_info;
9859 	}
9860 	return 0;
9861 
9862 err_rxq_info:
9863 	/* Rollback successful reg's and free other resources */
9864 	while (i--)
9865 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9866 	kvfree(dev->_rx);
9867 	dev->_rx = NULL;
9868 	return err;
9869 }
9870 
9871 static void netif_free_rx_queues(struct net_device *dev)
9872 {
9873 	unsigned int i, count = dev->num_rx_queues;
9874 
9875 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9876 	if (!dev->_rx)
9877 		return;
9878 
9879 	for (i = 0; i < count; i++)
9880 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9881 
9882 	kvfree(dev->_rx);
9883 }
9884 
9885 static void netdev_init_one_queue(struct net_device *dev,
9886 				  struct netdev_queue *queue, void *_unused)
9887 {
9888 	/* Initialize queue lock */
9889 	spin_lock_init(&queue->_xmit_lock);
9890 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
9891 	queue->xmit_lock_owner = -1;
9892 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9893 	queue->dev = dev;
9894 #ifdef CONFIG_BQL
9895 	dql_init(&queue->dql, HZ);
9896 #endif
9897 }
9898 
9899 static void netif_free_tx_queues(struct net_device *dev)
9900 {
9901 	kvfree(dev->_tx);
9902 }
9903 
9904 static int netif_alloc_netdev_queues(struct net_device *dev)
9905 {
9906 	unsigned int count = dev->num_tx_queues;
9907 	struct netdev_queue *tx;
9908 	size_t sz = count * sizeof(*tx);
9909 
9910 	if (count < 1 || count > 0xffff)
9911 		return -EINVAL;
9912 
9913 	tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9914 	if (!tx)
9915 		return -ENOMEM;
9916 
9917 	dev->_tx = tx;
9918 
9919 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9920 	spin_lock_init(&dev->tx_global_lock);
9921 
9922 	return 0;
9923 }
9924 
9925 void netif_tx_stop_all_queues(struct net_device *dev)
9926 {
9927 	unsigned int i;
9928 
9929 	for (i = 0; i < dev->num_tx_queues; i++) {
9930 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9931 
9932 		netif_tx_stop_queue(txq);
9933 	}
9934 }
9935 EXPORT_SYMBOL(netif_tx_stop_all_queues);
9936 
9937 /**
9938  * register_netdevice() - register a network device
9939  * @dev: device to register
9940  *
9941  * Take a prepared network device structure and make it externally accessible.
9942  * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
9943  * Callers must hold the rtnl lock - you may want register_netdev()
9944  * instead of this.
9945  */
9946 int register_netdevice(struct net_device *dev)
9947 {
9948 	int ret;
9949 	struct net *net = dev_net(dev);
9950 
9951 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9952 		     NETDEV_FEATURE_COUNT);
9953 	BUG_ON(dev_boot_phase);
9954 	ASSERT_RTNL();
9955 
9956 	might_sleep();
9957 
9958 	/* When net_device's are persistent, this will be fatal. */
9959 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
9960 	BUG_ON(!net);
9961 
9962 	ret = ethtool_check_ops(dev->ethtool_ops);
9963 	if (ret)
9964 		return ret;
9965 
9966 	spin_lock_init(&dev->addr_list_lock);
9967 	netdev_set_addr_lockdep_class(dev);
9968 
9969 	ret = dev_get_valid_name(net, dev, dev->name);
9970 	if (ret < 0)
9971 		goto out;
9972 
9973 	ret = -ENOMEM;
9974 	dev->name_node = netdev_name_node_head_alloc(dev);
9975 	if (!dev->name_node)
9976 		goto out;
9977 
9978 	/* Init, if this function is available */
9979 	if (dev->netdev_ops->ndo_init) {
9980 		ret = dev->netdev_ops->ndo_init(dev);
9981 		if (ret) {
9982 			if (ret > 0)
9983 				ret = -EIO;
9984 			goto err_free_name;
9985 		}
9986 	}
9987 
9988 	if (((dev->hw_features | dev->features) &
9989 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
9990 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9991 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
9992 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
9993 		ret = -EINVAL;
9994 		goto err_uninit;
9995 	}
9996 
9997 	ret = -EBUSY;
9998 	if (!dev->ifindex)
9999 		dev->ifindex = dev_new_index(net);
10000 	else if (__dev_get_by_index(net, dev->ifindex))
10001 		goto err_uninit;
10002 
10003 	/* Transfer changeable features to wanted_features and enable
10004 	 * software offloads (GSO and GRO).
10005 	 */
10006 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10007 	dev->features |= NETIF_F_SOFT_FEATURES;
10008 
10009 	if (dev->udp_tunnel_nic_info) {
10010 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10011 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10012 	}
10013 
10014 	dev->wanted_features = dev->features & dev->hw_features;
10015 
10016 	if (!(dev->flags & IFF_LOOPBACK))
10017 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
10018 
10019 	/* If IPv4 TCP segmentation offload is supported we should also
10020 	 * allow the device to enable segmenting the frame with the option
10021 	 * of ignoring a static IP ID value.  This doesn't enable the
10022 	 * feature itself but allows the user to enable it later.
10023 	 */
10024 	if (dev->hw_features & NETIF_F_TSO)
10025 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
10026 	if (dev->vlan_features & NETIF_F_TSO)
10027 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10028 	if (dev->mpls_features & NETIF_F_TSO)
10029 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10030 	if (dev->hw_enc_features & NETIF_F_TSO)
10031 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10032 
10033 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10034 	 */
10035 	dev->vlan_features |= NETIF_F_HIGHDMA;
10036 
10037 	/* Make NETIF_F_SG inheritable to tunnel devices.
10038 	 */
10039 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10040 
10041 	/* Make NETIF_F_SG inheritable to MPLS.
10042 	 */
10043 	dev->mpls_features |= NETIF_F_SG;
10044 
10045 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10046 	ret = notifier_to_errno(ret);
10047 	if (ret)
10048 		goto err_uninit;
10049 
10050 	ret = netdev_register_kobject(dev);
10051 	write_lock(&dev_base_lock);
10052 	dev->reg_state = ret ? NETREG_UNREGISTERED : NETREG_REGISTERED;
10053 	write_unlock(&dev_base_lock);
10054 	if (ret)
10055 		goto err_uninit_notify;
10056 
10057 	__netdev_update_features(dev);
10058 
10059 	/*
10060 	 *	Default initial state at registry is that the
10061 	 *	device is present.
10062 	 */
10063 
10064 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10065 
10066 	linkwatch_init_dev(dev);
10067 
10068 	dev_init_scheduler(dev);
10069 
10070 	netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
10071 	list_netdevice(dev);
10072 
10073 	add_device_randomness(dev->dev_addr, dev->addr_len);
10074 
10075 	/* If the device has permanent device address, driver should
10076 	 * set dev_addr and also addr_assign_type should be set to
10077 	 * NET_ADDR_PERM (default value).
10078 	 */
10079 	if (dev->addr_assign_type == NET_ADDR_PERM)
10080 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10081 
10082 	/* Notify protocols, that a new device appeared. */
10083 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10084 	ret = notifier_to_errno(ret);
10085 	if (ret) {
10086 		/* Expect explicit free_netdev() on failure */
10087 		dev->needs_free_netdev = false;
10088 		unregister_netdevice_queue(dev, NULL);
10089 		goto out;
10090 	}
10091 	/*
10092 	 *	Prevent userspace races by waiting until the network
10093 	 *	device is fully setup before sending notifications.
10094 	 */
10095 	if (!dev->rtnl_link_ops ||
10096 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10097 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
10098 
10099 out:
10100 	return ret;
10101 
10102 err_uninit_notify:
10103 	call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10104 err_uninit:
10105 	if (dev->netdev_ops->ndo_uninit)
10106 		dev->netdev_ops->ndo_uninit(dev);
10107 	if (dev->priv_destructor)
10108 		dev->priv_destructor(dev);
10109 err_free_name:
10110 	netdev_name_node_free(dev->name_node);
10111 	goto out;
10112 }
10113 EXPORT_SYMBOL(register_netdevice);
10114 
10115 /**
10116  *	init_dummy_netdev	- init a dummy network device for NAPI
10117  *	@dev: device to init
10118  *
10119  *	This takes a network device structure and initialize the minimum
10120  *	amount of fields so it can be used to schedule NAPI polls without
10121  *	registering a full blown interface. This is to be used by drivers
10122  *	that need to tie several hardware interfaces to a single NAPI
10123  *	poll scheduler due to HW limitations.
10124  */
10125 int init_dummy_netdev(struct net_device *dev)
10126 {
10127 	/* Clear everything. Note we don't initialize spinlocks
10128 	 * are they aren't supposed to be taken by any of the
10129 	 * NAPI code and this dummy netdev is supposed to be
10130 	 * only ever used for NAPI polls
10131 	 */
10132 	memset(dev, 0, sizeof(struct net_device));
10133 
10134 	/* make sure we BUG if trying to hit standard
10135 	 * register/unregister code path
10136 	 */
10137 	dev->reg_state = NETREG_DUMMY;
10138 
10139 	/* NAPI wants this */
10140 	INIT_LIST_HEAD(&dev->napi_list);
10141 
10142 	/* a dummy interface is started by default */
10143 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10144 	set_bit(__LINK_STATE_START, &dev->state);
10145 
10146 	/* napi_busy_loop stats accounting wants this */
10147 	dev_net_set(dev, &init_net);
10148 
10149 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
10150 	 * because users of this 'device' dont need to change
10151 	 * its refcount.
10152 	 */
10153 
10154 	return 0;
10155 }
10156 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10157 
10158 
10159 /**
10160  *	register_netdev	- register a network device
10161  *	@dev: device to register
10162  *
10163  *	Take a completed network device structure and add it to the kernel
10164  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10165  *	chain. 0 is returned on success. A negative errno code is returned
10166  *	on a failure to set up the device, or if the name is a duplicate.
10167  *
10168  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
10169  *	and expands the device name if you passed a format string to
10170  *	alloc_netdev.
10171  */
10172 int register_netdev(struct net_device *dev)
10173 {
10174 	int err;
10175 
10176 	if (rtnl_lock_killable())
10177 		return -EINTR;
10178 	err = register_netdevice(dev);
10179 	rtnl_unlock();
10180 	return err;
10181 }
10182 EXPORT_SYMBOL(register_netdev);
10183 
10184 int netdev_refcnt_read(const struct net_device *dev)
10185 {
10186 #ifdef CONFIG_PCPU_DEV_REFCNT
10187 	int i, refcnt = 0;
10188 
10189 	for_each_possible_cpu(i)
10190 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10191 	return refcnt;
10192 #else
10193 	return refcount_read(&dev->dev_refcnt);
10194 #endif
10195 }
10196 EXPORT_SYMBOL(netdev_refcnt_read);
10197 
10198 int netdev_unregister_timeout_secs __read_mostly = 10;
10199 
10200 #define WAIT_REFS_MIN_MSECS 1
10201 #define WAIT_REFS_MAX_MSECS 250
10202 /**
10203  * netdev_wait_allrefs_any - wait until all references are gone.
10204  * @list: list of net_devices to wait on
10205  *
10206  * This is called when unregistering network devices.
10207  *
10208  * Any protocol or device that holds a reference should register
10209  * for netdevice notification, and cleanup and put back the
10210  * reference if they receive an UNREGISTER event.
10211  * We can get stuck here if buggy protocols don't correctly
10212  * call dev_put.
10213  */
10214 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
10215 {
10216 	unsigned long rebroadcast_time, warning_time;
10217 	struct net_device *dev;
10218 	int wait = 0;
10219 
10220 	rebroadcast_time = warning_time = jiffies;
10221 
10222 	list_for_each_entry(dev, list, todo_list)
10223 		if (netdev_refcnt_read(dev) == 1)
10224 			return dev;
10225 
10226 	while (true) {
10227 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10228 			rtnl_lock();
10229 
10230 			/* Rebroadcast unregister notification */
10231 			list_for_each_entry(dev, list, todo_list)
10232 				call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10233 
10234 			__rtnl_unlock();
10235 			rcu_barrier();
10236 			rtnl_lock();
10237 
10238 			list_for_each_entry(dev, list, todo_list)
10239 				if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10240 					     &dev->state)) {
10241 					/* We must not have linkwatch events
10242 					 * pending on unregister. If this
10243 					 * happens, we simply run the queue
10244 					 * unscheduled, resulting in a noop
10245 					 * for this device.
10246 					 */
10247 					linkwatch_run_queue();
10248 					break;
10249 				}
10250 
10251 			__rtnl_unlock();
10252 
10253 			rebroadcast_time = jiffies;
10254 		}
10255 
10256 		if (!wait) {
10257 			rcu_barrier();
10258 			wait = WAIT_REFS_MIN_MSECS;
10259 		} else {
10260 			msleep(wait);
10261 			wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10262 		}
10263 
10264 		list_for_each_entry(dev, list, todo_list)
10265 			if (netdev_refcnt_read(dev) == 1)
10266 				return dev;
10267 
10268 		if (time_after(jiffies, warning_time +
10269 			       READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
10270 			list_for_each_entry(dev, list, todo_list) {
10271 				pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10272 					 dev->name, netdev_refcnt_read(dev));
10273 				ref_tracker_dir_print(&dev->refcnt_tracker, 10);
10274 			}
10275 
10276 			warning_time = jiffies;
10277 		}
10278 	}
10279 }
10280 
10281 /* The sequence is:
10282  *
10283  *	rtnl_lock();
10284  *	...
10285  *	register_netdevice(x1);
10286  *	register_netdevice(x2);
10287  *	...
10288  *	unregister_netdevice(y1);
10289  *	unregister_netdevice(y2);
10290  *      ...
10291  *	rtnl_unlock();
10292  *	free_netdev(y1);
10293  *	free_netdev(y2);
10294  *
10295  * We are invoked by rtnl_unlock().
10296  * This allows us to deal with problems:
10297  * 1) We can delete sysfs objects which invoke hotplug
10298  *    without deadlocking with linkwatch via keventd.
10299  * 2) Since we run with the RTNL semaphore not held, we can sleep
10300  *    safely in order to wait for the netdev refcnt to drop to zero.
10301  *
10302  * We must not return until all unregister events added during
10303  * the interval the lock was held have been completed.
10304  */
10305 void netdev_run_todo(void)
10306 {
10307 	struct net_device *dev, *tmp;
10308 	struct list_head list;
10309 #ifdef CONFIG_LOCKDEP
10310 	struct list_head unlink_list;
10311 
10312 	list_replace_init(&net_unlink_list, &unlink_list);
10313 
10314 	while (!list_empty(&unlink_list)) {
10315 		struct net_device *dev = list_first_entry(&unlink_list,
10316 							  struct net_device,
10317 							  unlink_list);
10318 		list_del_init(&dev->unlink_list);
10319 		dev->nested_level = dev->lower_level - 1;
10320 	}
10321 #endif
10322 
10323 	/* Snapshot list, allow later requests */
10324 	list_replace_init(&net_todo_list, &list);
10325 
10326 	__rtnl_unlock();
10327 
10328 	/* Wait for rcu callbacks to finish before next phase */
10329 	if (!list_empty(&list))
10330 		rcu_barrier();
10331 
10332 	list_for_each_entry_safe(dev, tmp, &list, todo_list) {
10333 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10334 			netdev_WARN(dev, "run_todo but not unregistering\n");
10335 			list_del(&dev->todo_list);
10336 			continue;
10337 		}
10338 
10339 		write_lock(&dev_base_lock);
10340 		dev->reg_state = NETREG_UNREGISTERED;
10341 		write_unlock(&dev_base_lock);
10342 		linkwatch_forget_dev(dev);
10343 	}
10344 
10345 	while (!list_empty(&list)) {
10346 		dev = netdev_wait_allrefs_any(&list);
10347 		list_del(&dev->todo_list);
10348 
10349 		/* paranoia */
10350 		BUG_ON(netdev_refcnt_read(dev) != 1);
10351 		BUG_ON(!list_empty(&dev->ptype_all));
10352 		BUG_ON(!list_empty(&dev->ptype_specific));
10353 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
10354 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10355 
10356 		if (dev->priv_destructor)
10357 			dev->priv_destructor(dev);
10358 		if (dev->needs_free_netdev)
10359 			free_netdev(dev);
10360 
10361 		if (atomic_dec_and_test(&dev_net(dev)->dev_unreg_count))
10362 			wake_up(&netdev_unregistering_wq);
10363 
10364 		/* Free network device */
10365 		kobject_put(&dev->dev.kobj);
10366 	}
10367 }
10368 
10369 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10370  * all the same fields in the same order as net_device_stats, with only
10371  * the type differing, but rtnl_link_stats64 may have additional fields
10372  * at the end for newer counters.
10373  */
10374 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10375 			     const struct net_device_stats *netdev_stats)
10376 {
10377 	size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
10378 	const atomic_long_t *src = (atomic_long_t *)netdev_stats;
10379 	u64 *dst = (u64 *)stats64;
10380 
10381 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10382 	for (i = 0; i < n; i++)
10383 		dst[i] = atomic_long_read(&src[i]);
10384 	/* zero out counters that only exist in rtnl_link_stats64 */
10385 	memset((char *)stats64 + n * sizeof(u64), 0,
10386 	       sizeof(*stats64) - n * sizeof(u64));
10387 }
10388 EXPORT_SYMBOL(netdev_stats_to_stats64);
10389 
10390 struct net_device_core_stats __percpu *netdev_core_stats_alloc(struct net_device *dev)
10391 {
10392 	struct net_device_core_stats __percpu *p;
10393 
10394 	p = alloc_percpu_gfp(struct net_device_core_stats,
10395 			     GFP_ATOMIC | __GFP_NOWARN);
10396 
10397 	if (p && cmpxchg(&dev->core_stats, NULL, p))
10398 		free_percpu(p);
10399 
10400 	/* This READ_ONCE() pairs with the cmpxchg() above */
10401 	return READ_ONCE(dev->core_stats);
10402 }
10403 EXPORT_SYMBOL(netdev_core_stats_alloc);
10404 
10405 /**
10406  *	dev_get_stats	- get network device statistics
10407  *	@dev: device to get statistics from
10408  *	@storage: place to store stats
10409  *
10410  *	Get network statistics from device. Return @storage.
10411  *	The device driver may provide its own method by setting
10412  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10413  *	otherwise the internal statistics structure is used.
10414  */
10415 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10416 					struct rtnl_link_stats64 *storage)
10417 {
10418 	const struct net_device_ops *ops = dev->netdev_ops;
10419 	const struct net_device_core_stats __percpu *p;
10420 
10421 	if (ops->ndo_get_stats64) {
10422 		memset(storage, 0, sizeof(*storage));
10423 		ops->ndo_get_stats64(dev, storage);
10424 	} else if (ops->ndo_get_stats) {
10425 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10426 	} else {
10427 		netdev_stats_to_stats64(storage, &dev->stats);
10428 	}
10429 
10430 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10431 	p = READ_ONCE(dev->core_stats);
10432 	if (p) {
10433 		const struct net_device_core_stats *core_stats;
10434 		int i;
10435 
10436 		for_each_possible_cpu(i) {
10437 			core_stats = per_cpu_ptr(p, i);
10438 			storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
10439 			storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
10440 			storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
10441 			storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
10442 		}
10443 	}
10444 	return storage;
10445 }
10446 EXPORT_SYMBOL(dev_get_stats);
10447 
10448 /**
10449  *	dev_fetch_sw_netstats - get per-cpu network device statistics
10450  *	@s: place to store stats
10451  *	@netstats: per-cpu network stats to read from
10452  *
10453  *	Read per-cpu network statistics and populate the related fields in @s.
10454  */
10455 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10456 			   const struct pcpu_sw_netstats __percpu *netstats)
10457 {
10458 	int cpu;
10459 
10460 	for_each_possible_cpu(cpu) {
10461 		u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
10462 		const struct pcpu_sw_netstats *stats;
10463 		unsigned int start;
10464 
10465 		stats = per_cpu_ptr(netstats, cpu);
10466 		do {
10467 			start = u64_stats_fetch_begin(&stats->syncp);
10468 			rx_packets = u64_stats_read(&stats->rx_packets);
10469 			rx_bytes   = u64_stats_read(&stats->rx_bytes);
10470 			tx_packets = u64_stats_read(&stats->tx_packets);
10471 			tx_bytes   = u64_stats_read(&stats->tx_bytes);
10472 		} while (u64_stats_fetch_retry(&stats->syncp, start));
10473 
10474 		s->rx_packets += rx_packets;
10475 		s->rx_bytes   += rx_bytes;
10476 		s->tx_packets += tx_packets;
10477 		s->tx_bytes   += tx_bytes;
10478 	}
10479 }
10480 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10481 
10482 /**
10483  *	dev_get_tstats64 - ndo_get_stats64 implementation
10484  *	@dev: device to get statistics from
10485  *	@s: place to store stats
10486  *
10487  *	Populate @s from dev->stats and dev->tstats. Can be used as
10488  *	ndo_get_stats64() callback.
10489  */
10490 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10491 {
10492 	netdev_stats_to_stats64(s, &dev->stats);
10493 	dev_fetch_sw_netstats(s, dev->tstats);
10494 }
10495 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10496 
10497 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10498 {
10499 	struct netdev_queue *queue = dev_ingress_queue(dev);
10500 
10501 #ifdef CONFIG_NET_CLS_ACT
10502 	if (queue)
10503 		return queue;
10504 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10505 	if (!queue)
10506 		return NULL;
10507 	netdev_init_one_queue(dev, queue, NULL);
10508 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10509 	queue->qdisc_sleeping = &noop_qdisc;
10510 	rcu_assign_pointer(dev->ingress_queue, queue);
10511 #endif
10512 	return queue;
10513 }
10514 
10515 static const struct ethtool_ops default_ethtool_ops;
10516 
10517 void netdev_set_default_ethtool_ops(struct net_device *dev,
10518 				    const struct ethtool_ops *ops)
10519 {
10520 	if (dev->ethtool_ops == &default_ethtool_ops)
10521 		dev->ethtool_ops = ops;
10522 }
10523 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10524 
10525 /**
10526  * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
10527  * @dev: netdev to enable the IRQ coalescing on
10528  *
10529  * Sets a conservative default for SW IRQ coalescing. Users can use
10530  * sysfs attributes to override the default values.
10531  */
10532 void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
10533 {
10534 	WARN_ON(dev->reg_state == NETREG_REGISTERED);
10535 
10536 	dev->gro_flush_timeout = 20000;
10537 	dev->napi_defer_hard_irqs = 1;
10538 }
10539 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
10540 
10541 void netdev_freemem(struct net_device *dev)
10542 {
10543 	char *addr = (char *)dev - dev->padded;
10544 
10545 	kvfree(addr);
10546 }
10547 
10548 /**
10549  * alloc_netdev_mqs - allocate network device
10550  * @sizeof_priv: size of private data to allocate space for
10551  * @name: device name format string
10552  * @name_assign_type: origin of device name
10553  * @setup: callback to initialize device
10554  * @txqs: the number of TX subqueues to allocate
10555  * @rxqs: the number of RX subqueues to allocate
10556  *
10557  * Allocates a struct net_device with private data area for driver use
10558  * and performs basic initialization.  Also allocates subqueue structs
10559  * for each queue on the device.
10560  */
10561 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10562 		unsigned char name_assign_type,
10563 		void (*setup)(struct net_device *),
10564 		unsigned int txqs, unsigned int rxqs)
10565 {
10566 	struct net_device *dev;
10567 	unsigned int alloc_size;
10568 	struct net_device *p;
10569 
10570 	BUG_ON(strlen(name) >= sizeof(dev->name));
10571 
10572 	if (txqs < 1) {
10573 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10574 		return NULL;
10575 	}
10576 
10577 	if (rxqs < 1) {
10578 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10579 		return NULL;
10580 	}
10581 
10582 	alloc_size = sizeof(struct net_device);
10583 	if (sizeof_priv) {
10584 		/* ensure 32-byte alignment of private area */
10585 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10586 		alloc_size += sizeof_priv;
10587 	}
10588 	/* ensure 32-byte alignment of whole construct */
10589 	alloc_size += NETDEV_ALIGN - 1;
10590 
10591 	p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10592 	if (!p)
10593 		return NULL;
10594 
10595 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
10596 	dev->padded = (char *)dev - (char *)p;
10597 
10598 	ref_tracker_dir_init(&dev->refcnt_tracker, 128);
10599 #ifdef CONFIG_PCPU_DEV_REFCNT
10600 	dev->pcpu_refcnt = alloc_percpu(int);
10601 	if (!dev->pcpu_refcnt)
10602 		goto free_dev;
10603 	__dev_hold(dev);
10604 #else
10605 	refcount_set(&dev->dev_refcnt, 1);
10606 #endif
10607 
10608 	if (dev_addr_init(dev))
10609 		goto free_pcpu;
10610 
10611 	dev_mc_init(dev);
10612 	dev_uc_init(dev);
10613 
10614 	dev_net_set(dev, &init_net);
10615 
10616 	dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
10617 	dev->gso_max_segs = GSO_MAX_SEGS;
10618 	dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
10619 	dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
10620 	dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
10621 	dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
10622 	dev->tso_max_segs = TSO_MAX_SEGS;
10623 	dev->upper_level = 1;
10624 	dev->lower_level = 1;
10625 #ifdef CONFIG_LOCKDEP
10626 	dev->nested_level = 0;
10627 	INIT_LIST_HEAD(&dev->unlink_list);
10628 #endif
10629 
10630 	INIT_LIST_HEAD(&dev->napi_list);
10631 	INIT_LIST_HEAD(&dev->unreg_list);
10632 	INIT_LIST_HEAD(&dev->close_list);
10633 	INIT_LIST_HEAD(&dev->link_watch_list);
10634 	INIT_LIST_HEAD(&dev->adj_list.upper);
10635 	INIT_LIST_HEAD(&dev->adj_list.lower);
10636 	INIT_LIST_HEAD(&dev->ptype_all);
10637 	INIT_LIST_HEAD(&dev->ptype_specific);
10638 	INIT_LIST_HEAD(&dev->net_notifier_list);
10639 #ifdef CONFIG_NET_SCHED
10640 	hash_init(dev->qdisc_hash);
10641 #endif
10642 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10643 	setup(dev);
10644 
10645 	if (!dev->tx_queue_len) {
10646 		dev->priv_flags |= IFF_NO_QUEUE;
10647 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10648 	}
10649 
10650 	dev->num_tx_queues = txqs;
10651 	dev->real_num_tx_queues = txqs;
10652 	if (netif_alloc_netdev_queues(dev))
10653 		goto free_all;
10654 
10655 	dev->num_rx_queues = rxqs;
10656 	dev->real_num_rx_queues = rxqs;
10657 	if (netif_alloc_rx_queues(dev))
10658 		goto free_all;
10659 
10660 	strcpy(dev->name, name);
10661 	dev->name_assign_type = name_assign_type;
10662 	dev->group = INIT_NETDEV_GROUP;
10663 	if (!dev->ethtool_ops)
10664 		dev->ethtool_ops = &default_ethtool_ops;
10665 
10666 	nf_hook_netdev_init(dev);
10667 
10668 	return dev;
10669 
10670 free_all:
10671 	free_netdev(dev);
10672 	return NULL;
10673 
10674 free_pcpu:
10675 #ifdef CONFIG_PCPU_DEV_REFCNT
10676 	free_percpu(dev->pcpu_refcnt);
10677 free_dev:
10678 #endif
10679 	netdev_freemem(dev);
10680 	return NULL;
10681 }
10682 EXPORT_SYMBOL(alloc_netdev_mqs);
10683 
10684 /**
10685  * free_netdev - free network device
10686  * @dev: device
10687  *
10688  * This function does the last stage of destroying an allocated device
10689  * interface. The reference to the device object is released. If this
10690  * is the last reference then it will be freed.Must be called in process
10691  * context.
10692  */
10693 void free_netdev(struct net_device *dev)
10694 {
10695 	struct napi_struct *p, *n;
10696 
10697 	might_sleep();
10698 
10699 	/* When called immediately after register_netdevice() failed the unwind
10700 	 * handling may still be dismantling the device. Handle that case by
10701 	 * deferring the free.
10702 	 */
10703 	if (dev->reg_state == NETREG_UNREGISTERING) {
10704 		ASSERT_RTNL();
10705 		dev->needs_free_netdev = true;
10706 		return;
10707 	}
10708 
10709 	netif_free_tx_queues(dev);
10710 	netif_free_rx_queues(dev);
10711 
10712 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10713 
10714 	/* Flush device addresses */
10715 	dev_addr_flush(dev);
10716 
10717 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10718 		netif_napi_del(p);
10719 
10720 	ref_tracker_dir_exit(&dev->refcnt_tracker);
10721 #ifdef CONFIG_PCPU_DEV_REFCNT
10722 	free_percpu(dev->pcpu_refcnt);
10723 	dev->pcpu_refcnt = NULL;
10724 #endif
10725 	free_percpu(dev->core_stats);
10726 	dev->core_stats = NULL;
10727 	free_percpu(dev->xdp_bulkq);
10728 	dev->xdp_bulkq = NULL;
10729 
10730 	/*  Compatibility with error handling in drivers */
10731 	if (dev->reg_state == NETREG_UNINITIALIZED) {
10732 		netdev_freemem(dev);
10733 		return;
10734 	}
10735 
10736 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10737 	dev->reg_state = NETREG_RELEASED;
10738 
10739 	/* will free via device release */
10740 	put_device(&dev->dev);
10741 }
10742 EXPORT_SYMBOL(free_netdev);
10743 
10744 /**
10745  *	synchronize_net -  Synchronize with packet receive processing
10746  *
10747  *	Wait for packets currently being received to be done.
10748  *	Does not block later packets from starting.
10749  */
10750 void synchronize_net(void)
10751 {
10752 	might_sleep();
10753 	if (rtnl_is_locked())
10754 		synchronize_rcu_expedited();
10755 	else
10756 		synchronize_rcu();
10757 }
10758 EXPORT_SYMBOL(synchronize_net);
10759 
10760 /**
10761  *	unregister_netdevice_queue - remove device from the kernel
10762  *	@dev: device
10763  *	@head: list
10764  *
10765  *	This function shuts down a device interface and removes it
10766  *	from the kernel tables.
10767  *	If head not NULL, device is queued to be unregistered later.
10768  *
10769  *	Callers must hold the rtnl semaphore.  You may want
10770  *	unregister_netdev() instead of this.
10771  */
10772 
10773 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10774 {
10775 	ASSERT_RTNL();
10776 
10777 	if (head) {
10778 		list_move_tail(&dev->unreg_list, head);
10779 	} else {
10780 		LIST_HEAD(single);
10781 
10782 		list_add(&dev->unreg_list, &single);
10783 		unregister_netdevice_many(&single);
10784 	}
10785 }
10786 EXPORT_SYMBOL(unregister_netdevice_queue);
10787 
10788 void unregister_netdevice_many_notify(struct list_head *head,
10789 				      u32 portid, const struct nlmsghdr *nlh)
10790 {
10791 	struct net_device *dev, *tmp;
10792 	LIST_HEAD(close_head);
10793 
10794 	BUG_ON(dev_boot_phase);
10795 	ASSERT_RTNL();
10796 
10797 	if (list_empty(head))
10798 		return;
10799 
10800 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
10801 		/* Some devices call without registering
10802 		 * for initialization unwind. Remove those
10803 		 * devices and proceed with the remaining.
10804 		 */
10805 		if (dev->reg_state == NETREG_UNINITIALIZED) {
10806 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
10807 				 dev->name, dev);
10808 
10809 			WARN_ON(1);
10810 			list_del(&dev->unreg_list);
10811 			continue;
10812 		}
10813 		dev->dismantle = true;
10814 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
10815 	}
10816 
10817 	/* If device is running, close it first. */
10818 	list_for_each_entry(dev, head, unreg_list)
10819 		list_add_tail(&dev->close_list, &close_head);
10820 	dev_close_many(&close_head, true);
10821 
10822 	list_for_each_entry(dev, head, unreg_list) {
10823 		/* And unlink it from device chain. */
10824 		write_lock(&dev_base_lock);
10825 		unlist_netdevice(dev, false);
10826 		dev->reg_state = NETREG_UNREGISTERING;
10827 		write_unlock(&dev_base_lock);
10828 	}
10829 	flush_all_backlogs();
10830 
10831 	synchronize_net();
10832 
10833 	list_for_each_entry(dev, head, unreg_list) {
10834 		struct sk_buff *skb = NULL;
10835 
10836 		/* Shutdown queueing discipline. */
10837 		dev_shutdown(dev);
10838 
10839 		dev_xdp_uninstall(dev);
10840 		bpf_dev_bound_netdev_unregister(dev);
10841 
10842 		netdev_offload_xstats_disable_all(dev);
10843 
10844 		/* Notify protocols, that we are about to destroy
10845 		 * this device. They should clean all the things.
10846 		 */
10847 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10848 
10849 		if (!dev->rtnl_link_ops ||
10850 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10851 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
10852 						     GFP_KERNEL, NULL, 0,
10853 						     portid, nlmsg_seq(nlh));
10854 
10855 		/*
10856 		 *	Flush the unicast and multicast chains
10857 		 */
10858 		dev_uc_flush(dev);
10859 		dev_mc_flush(dev);
10860 
10861 		netdev_name_node_alt_flush(dev);
10862 		netdev_name_node_free(dev->name_node);
10863 
10864 		call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10865 
10866 		if (dev->netdev_ops->ndo_uninit)
10867 			dev->netdev_ops->ndo_uninit(dev);
10868 
10869 		if (skb)
10870 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
10871 
10872 		/* Notifier chain MUST detach us all upper devices. */
10873 		WARN_ON(netdev_has_any_upper_dev(dev));
10874 		WARN_ON(netdev_has_any_lower_dev(dev));
10875 
10876 		/* Remove entries from kobject tree */
10877 		netdev_unregister_kobject(dev);
10878 #ifdef CONFIG_XPS
10879 		/* Remove XPS queueing entries */
10880 		netif_reset_xps_queues_gt(dev, 0);
10881 #endif
10882 	}
10883 
10884 	synchronize_net();
10885 
10886 	list_for_each_entry(dev, head, unreg_list) {
10887 		netdev_put(dev, &dev->dev_registered_tracker);
10888 		net_set_todo(dev);
10889 	}
10890 
10891 	list_del(head);
10892 }
10893 
10894 /**
10895  *	unregister_netdevice_many - unregister many devices
10896  *	@head: list of devices
10897  *
10898  *  Note: As most callers use a stack allocated list_head,
10899  *  we force a list_del() to make sure stack wont be corrupted later.
10900  */
10901 void unregister_netdevice_many(struct list_head *head)
10902 {
10903 	unregister_netdevice_many_notify(head, 0, NULL);
10904 }
10905 EXPORT_SYMBOL(unregister_netdevice_many);
10906 
10907 /**
10908  *	unregister_netdev - remove device from the kernel
10909  *	@dev: device
10910  *
10911  *	This function shuts down a device interface and removes it
10912  *	from the kernel tables.
10913  *
10914  *	This is just a wrapper for unregister_netdevice that takes
10915  *	the rtnl semaphore.  In general you want to use this and not
10916  *	unregister_netdevice.
10917  */
10918 void unregister_netdev(struct net_device *dev)
10919 {
10920 	rtnl_lock();
10921 	unregister_netdevice(dev);
10922 	rtnl_unlock();
10923 }
10924 EXPORT_SYMBOL(unregister_netdev);
10925 
10926 /**
10927  *	__dev_change_net_namespace - move device to different nethost namespace
10928  *	@dev: device
10929  *	@net: network namespace
10930  *	@pat: If not NULL name pattern to try if the current device name
10931  *	      is already taken in the destination network namespace.
10932  *	@new_ifindex: If not zero, specifies device index in the target
10933  *	              namespace.
10934  *
10935  *	This function shuts down a device interface and moves it
10936  *	to a new network namespace. On success 0 is returned, on
10937  *	a failure a netagive errno code is returned.
10938  *
10939  *	Callers must hold the rtnl semaphore.
10940  */
10941 
10942 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
10943 			       const char *pat, int new_ifindex)
10944 {
10945 	struct net *net_old = dev_net(dev);
10946 	int err, new_nsid;
10947 
10948 	ASSERT_RTNL();
10949 
10950 	/* Don't allow namespace local devices to be moved. */
10951 	err = -EINVAL;
10952 	if (dev->features & NETIF_F_NETNS_LOCAL)
10953 		goto out;
10954 
10955 	/* Ensure the device has been registrered */
10956 	if (dev->reg_state != NETREG_REGISTERED)
10957 		goto out;
10958 
10959 	/* Get out if there is nothing todo */
10960 	err = 0;
10961 	if (net_eq(net_old, net))
10962 		goto out;
10963 
10964 	/* Pick the destination device name, and ensure
10965 	 * we can use it in the destination network namespace.
10966 	 */
10967 	err = -EEXIST;
10968 	if (netdev_name_in_use(net, dev->name)) {
10969 		/* We get here if we can't use the current device name */
10970 		if (!pat)
10971 			goto out;
10972 		err = dev_get_valid_name(net, dev, pat);
10973 		if (err < 0)
10974 			goto out;
10975 	}
10976 
10977 	/* Check that new_ifindex isn't used yet. */
10978 	err = -EBUSY;
10979 	if (new_ifindex && __dev_get_by_index(net, new_ifindex))
10980 		goto out;
10981 
10982 	/*
10983 	 * And now a mini version of register_netdevice unregister_netdevice.
10984 	 */
10985 
10986 	/* If device is running close it first. */
10987 	dev_close(dev);
10988 
10989 	/* And unlink it from device chain */
10990 	unlist_netdevice(dev, true);
10991 
10992 	synchronize_net();
10993 
10994 	/* Shutdown queueing discipline. */
10995 	dev_shutdown(dev);
10996 
10997 	/* Notify protocols, that we are about to destroy
10998 	 * this device. They should clean all the things.
10999 	 *
11000 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
11001 	 * This is wanted because this way 8021q and macvlan know
11002 	 * the device is just moving and can keep their slaves up.
11003 	 */
11004 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11005 	rcu_barrier();
11006 
11007 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11008 	/* If there is an ifindex conflict assign a new one */
11009 	if (!new_ifindex) {
11010 		if (__dev_get_by_index(net, dev->ifindex))
11011 			new_ifindex = dev_new_index(net);
11012 		else
11013 			new_ifindex = dev->ifindex;
11014 	}
11015 
11016 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11017 			    new_ifindex);
11018 
11019 	/*
11020 	 *	Flush the unicast and multicast chains
11021 	 */
11022 	dev_uc_flush(dev);
11023 	dev_mc_flush(dev);
11024 
11025 	/* Send a netdev-removed uevent to the old namespace */
11026 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11027 	netdev_adjacent_del_links(dev);
11028 
11029 	/* Move per-net netdevice notifiers that are following the netdevice */
11030 	move_netdevice_notifiers_dev_net(dev, net);
11031 
11032 	/* Actually switch the network namespace */
11033 	dev_net_set(dev, net);
11034 	dev->ifindex = new_ifindex;
11035 
11036 	/* Send a netdev-add uevent to the new namespace */
11037 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11038 	netdev_adjacent_add_links(dev);
11039 
11040 	/* Fixup kobjects */
11041 	err = device_rename(&dev->dev, dev->name);
11042 	WARN_ON(err);
11043 
11044 	/* Adapt owner in case owning user namespace of target network
11045 	 * namespace is different from the original one.
11046 	 */
11047 	err = netdev_change_owner(dev, net_old, net);
11048 	WARN_ON(err);
11049 
11050 	/* Add the device back in the hashes */
11051 	list_netdevice(dev);
11052 
11053 	/* Notify protocols, that a new device appeared. */
11054 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
11055 
11056 	/*
11057 	 *	Prevent userspace races by waiting until the network
11058 	 *	device is fully setup before sending notifications.
11059 	 */
11060 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11061 
11062 	synchronize_net();
11063 	err = 0;
11064 out:
11065 	return err;
11066 }
11067 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11068 
11069 static int dev_cpu_dead(unsigned int oldcpu)
11070 {
11071 	struct sk_buff **list_skb;
11072 	struct sk_buff *skb;
11073 	unsigned int cpu;
11074 	struct softnet_data *sd, *oldsd, *remsd = NULL;
11075 
11076 	local_irq_disable();
11077 	cpu = smp_processor_id();
11078 	sd = &per_cpu(softnet_data, cpu);
11079 	oldsd = &per_cpu(softnet_data, oldcpu);
11080 
11081 	/* Find end of our completion_queue. */
11082 	list_skb = &sd->completion_queue;
11083 	while (*list_skb)
11084 		list_skb = &(*list_skb)->next;
11085 	/* Append completion queue from offline CPU. */
11086 	*list_skb = oldsd->completion_queue;
11087 	oldsd->completion_queue = NULL;
11088 
11089 	/* Append output queue from offline CPU. */
11090 	if (oldsd->output_queue) {
11091 		*sd->output_queue_tailp = oldsd->output_queue;
11092 		sd->output_queue_tailp = oldsd->output_queue_tailp;
11093 		oldsd->output_queue = NULL;
11094 		oldsd->output_queue_tailp = &oldsd->output_queue;
11095 	}
11096 	/* Append NAPI poll list from offline CPU, with one exception :
11097 	 * process_backlog() must be called by cpu owning percpu backlog.
11098 	 * We properly handle process_queue & input_pkt_queue later.
11099 	 */
11100 	while (!list_empty(&oldsd->poll_list)) {
11101 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11102 							    struct napi_struct,
11103 							    poll_list);
11104 
11105 		list_del_init(&napi->poll_list);
11106 		if (napi->poll == process_backlog)
11107 			napi->state = 0;
11108 		else
11109 			____napi_schedule(sd, napi);
11110 	}
11111 
11112 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
11113 	local_irq_enable();
11114 
11115 #ifdef CONFIG_RPS
11116 	remsd = oldsd->rps_ipi_list;
11117 	oldsd->rps_ipi_list = NULL;
11118 #endif
11119 	/* send out pending IPI's on offline CPU */
11120 	net_rps_send_ipi(remsd);
11121 
11122 	/* Process offline CPU's input_pkt_queue */
11123 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11124 		netif_rx(skb);
11125 		input_queue_head_incr(oldsd);
11126 	}
11127 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11128 		netif_rx(skb);
11129 		input_queue_head_incr(oldsd);
11130 	}
11131 
11132 	return 0;
11133 }
11134 
11135 /**
11136  *	netdev_increment_features - increment feature set by one
11137  *	@all: current feature set
11138  *	@one: new feature set
11139  *	@mask: mask feature set
11140  *
11141  *	Computes a new feature set after adding a device with feature set
11142  *	@one to the master device with current feature set @all.  Will not
11143  *	enable anything that is off in @mask. Returns the new feature set.
11144  */
11145 netdev_features_t netdev_increment_features(netdev_features_t all,
11146 	netdev_features_t one, netdev_features_t mask)
11147 {
11148 	if (mask & NETIF_F_HW_CSUM)
11149 		mask |= NETIF_F_CSUM_MASK;
11150 	mask |= NETIF_F_VLAN_CHALLENGED;
11151 
11152 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11153 	all &= one | ~NETIF_F_ALL_FOR_ALL;
11154 
11155 	/* If one device supports hw checksumming, set for all. */
11156 	if (all & NETIF_F_HW_CSUM)
11157 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11158 
11159 	return all;
11160 }
11161 EXPORT_SYMBOL(netdev_increment_features);
11162 
11163 static struct hlist_head * __net_init netdev_create_hash(void)
11164 {
11165 	int i;
11166 	struct hlist_head *hash;
11167 
11168 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11169 	if (hash != NULL)
11170 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
11171 			INIT_HLIST_HEAD(&hash[i]);
11172 
11173 	return hash;
11174 }
11175 
11176 /* Initialize per network namespace state */
11177 static int __net_init netdev_init(struct net *net)
11178 {
11179 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
11180 		     8 * sizeof_field(struct napi_struct, gro_bitmask));
11181 
11182 	INIT_LIST_HEAD(&net->dev_base_head);
11183 
11184 	net->dev_name_head = netdev_create_hash();
11185 	if (net->dev_name_head == NULL)
11186 		goto err_name;
11187 
11188 	net->dev_index_head = netdev_create_hash();
11189 	if (net->dev_index_head == NULL)
11190 		goto err_idx;
11191 
11192 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11193 
11194 	return 0;
11195 
11196 err_idx:
11197 	kfree(net->dev_name_head);
11198 err_name:
11199 	return -ENOMEM;
11200 }
11201 
11202 /**
11203  *	netdev_drivername - network driver for the device
11204  *	@dev: network device
11205  *
11206  *	Determine network driver for device.
11207  */
11208 const char *netdev_drivername(const struct net_device *dev)
11209 {
11210 	const struct device_driver *driver;
11211 	const struct device *parent;
11212 	const char *empty = "";
11213 
11214 	parent = dev->dev.parent;
11215 	if (!parent)
11216 		return empty;
11217 
11218 	driver = parent->driver;
11219 	if (driver && driver->name)
11220 		return driver->name;
11221 	return empty;
11222 }
11223 
11224 static void __netdev_printk(const char *level, const struct net_device *dev,
11225 			    struct va_format *vaf)
11226 {
11227 	if (dev && dev->dev.parent) {
11228 		dev_printk_emit(level[1] - '0',
11229 				dev->dev.parent,
11230 				"%s %s %s%s: %pV",
11231 				dev_driver_string(dev->dev.parent),
11232 				dev_name(dev->dev.parent),
11233 				netdev_name(dev), netdev_reg_state(dev),
11234 				vaf);
11235 	} else if (dev) {
11236 		printk("%s%s%s: %pV",
11237 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
11238 	} else {
11239 		printk("%s(NULL net_device): %pV", level, vaf);
11240 	}
11241 }
11242 
11243 void netdev_printk(const char *level, const struct net_device *dev,
11244 		   const char *format, ...)
11245 {
11246 	struct va_format vaf;
11247 	va_list args;
11248 
11249 	va_start(args, format);
11250 
11251 	vaf.fmt = format;
11252 	vaf.va = &args;
11253 
11254 	__netdev_printk(level, dev, &vaf);
11255 
11256 	va_end(args);
11257 }
11258 EXPORT_SYMBOL(netdev_printk);
11259 
11260 #define define_netdev_printk_level(func, level)			\
11261 void func(const struct net_device *dev, const char *fmt, ...)	\
11262 {								\
11263 	struct va_format vaf;					\
11264 	va_list args;						\
11265 								\
11266 	va_start(args, fmt);					\
11267 								\
11268 	vaf.fmt = fmt;						\
11269 	vaf.va = &args;						\
11270 								\
11271 	__netdev_printk(level, dev, &vaf);			\
11272 								\
11273 	va_end(args);						\
11274 }								\
11275 EXPORT_SYMBOL(func);
11276 
11277 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11278 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11279 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11280 define_netdev_printk_level(netdev_err, KERN_ERR);
11281 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11282 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11283 define_netdev_printk_level(netdev_info, KERN_INFO);
11284 
11285 static void __net_exit netdev_exit(struct net *net)
11286 {
11287 	kfree(net->dev_name_head);
11288 	kfree(net->dev_index_head);
11289 	if (net != &init_net)
11290 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11291 }
11292 
11293 static struct pernet_operations __net_initdata netdev_net_ops = {
11294 	.init = netdev_init,
11295 	.exit = netdev_exit,
11296 };
11297 
11298 static void __net_exit default_device_exit_net(struct net *net)
11299 {
11300 	struct net_device *dev, *aux;
11301 	/*
11302 	 * Push all migratable network devices back to the
11303 	 * initial network namespace
11304 	 */
11305 	ASSERT_RTNL();
11306 	for_each_netdev_safe(net, dev, aux) {
11307 		int err;
11308 		char fb_name[IFNAMSIZ];
11309 
11310 		/* Ignore unmoveable devices (i.e. loopback) */
11311 		if (dev->features & NETIF_F_NETNS_LOCAL)
11312 			continue;
11313 
11314 		/* Leave virtual devices for the generic cleanup */
11315 		if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11316 			continue;
11317 
11318 		/* Push remaining network devices to init_net */
11319 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11320 		if (netdev_name_in_use(&init_net, fb_name))
11321 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
11322 		err = dev_change_net_namespace(dev, &init_net, fb_name);
11323 		if (err) {
11324 			pr_emerg("%s: failed to move %s to init_net: %d\n",
11325 				 __func__, dev->name, err);
11326 			BUG();
11327 		}
11328 	}
11329 }
11330 
11331 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11332 {
11333 	/* At exit all network devices most be removed from a network
11334 	 * namespace.  Do this in the reverse order of registration.
11335 	 * Do this across as many network namespaces as possible to
11336 	 * improve batching efficiency.
11337 	 */
11338 	struct net_device *dev;
11339 	struct net *net;
11340 	LIST_HEAD(dev_kill_list);
11341 
11342 	rtnl_lock();
11343 	list_for_each_entry(net, net_list, exit_list) {
11344 		default_device_exit_net(net);
11345 		cond_resched();
11346 	}
11347 
11348 	list_for_each_entry(net, net_list, exit_list) {
11349 		for_each_netdev_reverse(net, dev) {
11350 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11351 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11352 			else
11353 				unregister_netdevice_queue(dev, &dev_kill_list);
11354 		}
11355 	}
11356 	unregister_netdevice_many(&dev_kill_list);
11357 	rtnl_unlock();
11358 }
11359 
11360 static struct pernet_operations __net_initdata default_device_ops = {
11361 	.exit_batch = default_device_exit_batch,
11362 };
11363 
11364 /*
11365  *	Initialize the DEV module. At boot time this walks the device list and
11366  *	unhooks any devices that fail to initialise (normally hardware not
11367  *	present) and leaves us with a valid list of present and active devices.
11368  *
11369  */
11370 
11371 /*
11372  *       This is called single threaded during boot, so no need
11373  *       to take the rtnl semaphore.
11374  */
11375 static int __init net_dev_init(void)
11376 {
11377 	int i, rc = -ENOMEM;
11378 
11379 	BUG_ON(!dev_boot_phase);
11380 
11381 	if (dev_proc_init())
11382 		goto out;
11383 
11384 	if (netdev_kobject_init())
11385 		goto out;
11386 
11387 	INIT_LIST_HEAD(&ptype_all);
11388 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
11389 		INIT_LIST_HEAD(&ptype_base[i]);
11390 
11391 	if (register_pernet_subsys(&netdev_net_ops))
11392 		goto out;
11393 
11394 	/*
11395 	 *	Initialise the packet receive queues.
11396 	 */
11397 
11398 	for_each_possible_cpu(i) {
11399 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11400 		struct softnet_data *sd = &per_cpu(softnet_data, i);
11401 
11402 		INIT_WORK(flush, flush_backlog);
11403 
11404 		skb_queue_head_init(&sd->input_pkt_queue);
11405 		skb_queue_head_init(&sd->process_queue);
11406 #ifdef CONFIG_XFRM_OFFLOAD
11407 		skb_queue_head_init(&sd->xfrm_backlog);
11408 #endif
11409 		INIT_LIST_HEAD(&sd->poll_list);
11410 		sd->output_queue_tailp = &sd->output_queue;
11411 #ifdef CONFIG_RPS
11412 		INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11413 		sd->cpu = i;
11414 #endif
11415 		INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
11416 		spin_lock_init(&sd->defer_lock);
11417 
11418 		init_gro_hash(&sd->backlog);
11419 		sd->backlog.poll = process_backlog;
11420 		sd->backlog.weight = weight_p;
11421 	}
11422 
11423 	dev_boot_phase = 0;
11424 
11425 	/* The loopback device is special if any other network devices
11426 	 * is present in a network namespace the loopback device must
11427 	 * be present. Since we now dynamically allocate and free the
11428 	 * loopback device ensure this invariant is maintained by
11429 	 * keeping the loopback device as the first device on the
11430 	 * list of network devices.  Ensuring the loopback devices
11431 	 * is the first device that appears and the last network device
11432 	 * that disappears.
11433 	 */
11434 	if (register_pernet_device(&loopback_net_ops))
11435 		goto out;
11436 
11437 	if (register_pernet_device(&default_device_ops))
11438 		goto out;
11439 
11440 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11441 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11442 
11443 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11444 				       NULL, dev_cpu_dead);
11445 	WARN_ON(rc < 0);
11446 	rc = 0;
11447 out:
11448 	return rc;
11449 }
11450 
11451 subsys_initcall(net_dev_init);
11452