xref: /linux/net/core/dev.c (revision 40d3057ac036f2501c1930728a6179be4fca577b)
1 /*
2  * 	NET3	Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  * 		Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *              			to 2 if register_netdev gets called
25  *              			before net_dev_init & also removed a
26  *              			few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *		Alan Cox	: 	Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *		Alan Cox	: 	Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *              			indefinitely on dev->refcnt
71  * 		J Hadi Salim	:	- Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/sched.h>
83 #include <linux/mutex.h>
84 #include <linux/string.h>
85 #include <linux/mm.h>
86 #include <linux/socket.h>
87 #include <linux/sockios.h>
88 #include <linux/errno.h>
89 #include <linux/interrupt.h>
90 #include <linux/if_ether.h>
91 #include <linux/netdevice.h>
92 #include <linux/etherdevice.h>
93 #include <linux/ethtool.h>
94 #include <linux/notifier.h>
95 #include <linux/skbuff.h>
96 #include <net/net_namespace.h>
97 #include <net/sock.h>
98 #include <linux/rtnetlink.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/stat.h>
102 #include <linux/if_bridge.h>
103 #include <linux/if_macvlan.h>
104 #include <net/dst.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/kmod.h>
110 #include <linux/module.h>
111 #include <linux/kallsyms.h>
112 #include <linux/netpoll.h>
113 #include <linux/rcupdate.h>
114 #include <linux/delay.h>
115 #include <net/wext.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 
130 #include "net-sysfs.h"
131 
132 /*
133  *	The list of packet types we will receive (as opposed to discard)
134  *	and the routines to invoke.
135  *
136  *	Why 16. Because with 16 the only overlap we get on a hash of the
137  *	low nibble of the protocol value is RARP/SNAP/X.25.
138  *
139  *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
140  *             sure which should go first, but I bet it won't make much
141  *             difference if we are running VLANs.  The good news is that
142  *             this protocol won't be in the list unless compiled in, so
143  *             the average user (w/out VLANs) will not be adversely affected.
144  *             --BLG
145  *
146  *		0800	IP
147  *		8100    802.1Q VLAN
148  *		0001	802.3
149  *		0002	AX.25
150  *		0004	802.2
151  *		8035	RARP
152  *		0005	SNAP
153  *		0805	X.25
154  *		0806	ARP
155  *		8137	IPX
156  *		0009	Localtalk
157  *		86DD	IPv6
158  */
159 
160 #define PTYPE_HASH_SIZE	(16)
161 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
162 
163 static DEFINE_SPINLOCK(ptype_lock);
164 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
165 static struct list_head ptype_all __read_mostly;	/* Taps */
166 
167 #ifdef CONFIG_NET_DMA
168 struct net_dma {
169 	struct dma_client client;
170 	spinlock_t lock;
171 	cpumask_t channel_mask;
172 	struct dma_chan **channels;
173 };
174 
175 static enum dma_state_client
176 netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
177 	enum dma_state state);
178 
179 static struct net_dma net_dma = {
180 	.client = {
181 		.event_callback = netdev_dma_event,
182 	},
183 };
184 #endif
185 
186 /*
187  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
188  * semaphore.
189  *
190  * Pure readers hold dev_base_lock for reading.
191  *
192  * Writers must hold the rtnl semaphore while they loop through the
193  * dev_base_head list, and hold dev_base_lock for writing when they do the
194  * actual updates.  This allows pure readers to access the list even
195  * while a writer is preparing to update it.
196  *
197  * To put it another way, dev_base_lock is held for writing only to
198  * protect against pure readers; the rtnl semaphore provides the
199  * protection against other writers.
200  *
201  * See, for example usages, register_netdevice() and
202  * unregister_netdevice(), which must be called with the rtnl
203  * semaphore held.
204  */
205 DEFINE_RWLOCK(dev_base_lock);
206 
207 EXPORT_SYMBOL(dev_base_lock);
208 
209 #define NETDEV_HASHBITS	8
210 #define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS)
211 
212 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
213 {
214 	unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
215 	return &net->dev_name_head[hash & ((1 << NETDEV_HASHBITS) - 1)];
216 }
217 
218 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
219 {
220 	return &net->dev_index_head[ifindex & ((1 << NETDEV_HASHBITS) - 1)];
221 }
222 
223 /* Device list insertion */
224 static int list_netdevice(struct net_device *dev)
225 {
226 	struct net *net = dev_net(dev);
227 
228 	ASSERT_RTNL();
229 
230 	write_lock_bh(&dev_base_lock);
231 	list_add_tail(&dev->dev_list, &net->dev_base_head);
232 	hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
233 	hlist_add_head(&dev->index_hlist, dev_index_hash(net, dev->ifindex));
234 	write_unlock_bh(&dev_base_lock);
235 	return 0;
236 }
237 
238 /* Device list removal */
239 static void unlist_netdevice(struct net_device *dev)
240 {
241 	ASSERT_RTNL();
242 
243 	/* Unlink dev from the device chain */
244 	write_lock_bh(&dev_base_lock);
245 	list_del(&dev->dev_list);
246 	hlist_del(&dev->name_hlist);
247 	hlist_del(&dev->index_hlist);
248 	write_unlock_bh(&dev_base_lock);
249 }
250 
251 /*
252  *	Our notifier list
253  */
254 
255 static RAW_NOTIFIER_HEAD(netdev_chain);
256 
257 /*
258  *	Device drivers call our routines to queue packets here. We empty the
259  *	queue in the local softnet handler.
260  */
261 
262 DEFINE_PER_CPU(struct softnet_data, softnet_data);
263 
264 #ifdef CONFIG_LOCKDEP
265 /*
266  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
267  * according to dev->type
268  */
269 static const unsigned short netdev_lock_type[] =
270 	{ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
271 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
272 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
273 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
274 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
275 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
276 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
277 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
278 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
279 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
280 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
281 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
282 	 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
283 	 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_VOID,
284 	 ARPHRD_NONE};
285 
286 static const char *netdev_lock_name[] =
287 	{"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
288 	 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
289 	 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
290 	 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
291 	 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
292 	 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
293 	 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
294 	 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
295 	 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
296 	 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
297 	 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
298 	 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
299 	 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
300 	 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_VOID",
301 	 "_xmit_NONE"};
302 
303 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
304 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
305 
306 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
307 {
308 	int i;
309 
310 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
311 		if (netdev_lock_type[i] == dev_type)
312 			return i;
313 	/* the last key is used by default */
314 	return ARRAY_SIZE(netdev_lock_type) - 1;
315 }
316 
317 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
318 						 unsigned short dev_type)
319 {
320 	int i;
321 
322 	i = netdev_lock_pos(dev_type);
323 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
324 				   netdev_lock_name[i]);
325 }
326 
327 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
328 {
329 	int i;
330 
331 	i = netdev_lock_pos(dev->type);
332 	lockdep_set_class_and_name(&dev->addr_list_lock,
333 				   &netdev_addr_lock_key[i],
334 				   netdev_lock_name[i]);
335 }
336 #else
337 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
338 						 unsigned short dev_type)
339 {
340 }
341 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
342 {
343 }
344 #endif
345 
346 /*******************************************************************************
347 
348 		Protocol management and registration routines
349 
350 *******************************************************************************/
351 
352 /*
353  *	Add a protocol ID to the list. Now that the input handler is
354  *	smarter we can dispense with all the messy stuff that used to be
355  *	here.
356  *
357  *	BEWARE!!! Protocol handlers, mangling input packets,
358  *	MUST BE last in hash buckets and checking protocol handlers
359  *	MUST start from promiscuous ptype_all chain in net_bh.
360  *	It is true now, do not change it.
361  *	Explanation follows: if protocol handler, mangling packet, will
362  *	be the first on list, it is not able to sense, that packet
363  *	is cloned and should be copied-on-write, so that it will
364  *	change it and subsequent readers will get broken packet.
365  *							--ANK (980803)
366  */
367 
368 /**
369  *	dev_add_pack - add packet handler
370  *	@pt: packet type declaration
371  *
372  *	Add a protocol handler to the networking stack. The passed &packet_type
373  *	is linked into kernel lists and may not be freed until it has been
374  *	removed from the kernel lists.
375  *
376  *	This call does not sleep therefore it can not
377  *	guarantee all CPU's that are in middle of receiving packets
378  *	will see the new packet type (until the next received packet).
379  */
380 
381 void dev_add_pack(struct packet_type *pt)
382 {
383 	int hash;
384 
385 	spin_lock_bh(&ptype_lock);
386 	if (pt->type == htons(ETH_P_ALL))
387 		list_add_rcu(&pt->list, &ptype_all);
388 	else {
389 		hash = ntohs(pt->type) & PTYPE_HASH_MASK;
390 		list_add_rcu(&pt->list, &ptype_base[hash]);
391 	}
392 	spin_unlock_bh(&ptype_lock);
393 }
394 
395 /**
396  *	__dev_remove_pack	 - remove packet handler
397  *	@pt: packet type declaration
398  *
399  *	Remove a protocol handler that was previously added to the kernel
400  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
401  *	from the kernel lists and can be freed or reused once this function
402  *	returns.
403  *
404  *      The packet type might still be in use by receivers
405  *	and must not be freed until after all the CPU's have gone
406  *	through a quiescent state.
407  */
408 void __dev_remove_pack(struct packet_type *pt)
409 {
410 	struct list_head *head;
411 	struct packet_type *pt1;
412 
413 	spin_lock_bh(&ptype_lock);
414 
415 	if (pt->type == htons(ETH_P_ALL))
416 		head = &ptype_all;
417 	else
418 		head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
419 
420 	list_for_each_entry(pt1, head, list) {
421 		if (pt == pt1) {
422 			list_del_rcu(&pt->list);
423 			goto out;
424 		}
425 	}
426 
427 	printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
428 out:
429 	spin_unlock_bh(&ptype_lock);
430 }
431 /**
432  *	dev_remove_pack	 - remove packet handler
433  *	@pt: packet type declaration
434  *
435  *	Remove a protocol handler that was previously added to the kernel
436  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
437  *	from the kernel lists and can be freed or reused once this function
438  *	returns.
439  *
440  *	This call sleeps to guarantee that no CPU is looking at the packet
441  *	type after return.
442  */
443 void dev_remove_pack(struct packet_type *pt)
444 {
445 	__dev_remove_pack(pt);
446 
447 	synchronize_net();
448 }
449 
450 /******************************************************************************
451 
452 		      Device Boot-time Settings Routines
453 
454 *******************************************************************************/
455 
456 /* Boot time configuration table */
457 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
458 
459 /**
460  *	netdev_boot_setup_add	- add new setup entry
461  *	@name: name of the device
462  *	@map: configured settings for the device
463  *
464  *	Adds new setup entry to the dev_boot_setup list.  The function
465  *	returns 0 on error and 1 on success.  This is a generic routine to
466  *	all netdevices.
467  */
468 static int netdev_boot_setup_add(char *name, struct ifmap *map)
469 {
470 	struct netdev_boot_setup *s;
471 	int i;
472 
473 	s = dev_boot_setup;
474 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
475 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
476 			memset(s[i].name, 0, sizeof(s[i].name));
477 			strlcpy(s[i].name, name, IFNAMSIZ);
478 			memcpy(&s[i].map, map, sizeof(s[i].map));
479 			break;
480 		}
481 	}
482 
483 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
484 }
485 
486 /**
487  *	netdev_boot_setup_check	- check boot time settings
488  *	@dev: the netdevice
489  *
490  * 	Check boot time settings for the device.
491  *	The found settings are set for the device to be used
492  *	later in the device probing.
493  *	Returns 0 if no settings found, 1 if they are.
494  */
495 int netdev_boot_setup_check(struct net_device *dev)
496 {
497 	struct netdev_boot_setup *s = dev_boot_setup;
498 	int i;
499 
500 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
501 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
502 		    !strcmp(dev->name, s[i].name)) {
503 			dev->irq 	= s[i].map.irq;
504 			dev->base_addr 	= s[i].map.base_addr;
505 			dev->mem_start 	= s[i].map.mem_start;
506 			dev->mem_end 	= s[i].map.mem_end;
507 			return 1;
508 		}
509 	}
510 	return 0;
511 }
512 
513 
514 /**
515  *	netdev_boot_base	- get address from boot time settings
516  *	@prefix: prefix for network device
517  *	@unit: id for network device
518  *
519  * 	Check boot time settings for the base address of device.
520  *	The found settings are set for the device to be used
521  *	later in the device probing.
522  *	Returns 0 if no settings found.
523  */
524 unsigned long netdev_boot_base(const char *prefix, int unit)
525 {
526 	const struct netdev_boot_setup *s = dev_boot_setup;
527 	char name[IFNAMSIZ];
528 	int i;
529 
530 	sprintf(name, "%s%d", prefix, unit);
531 
532 	/*
533 	 * If device already registered then return base of 1
534 	 * to indicate not to probe for this interface
535 	 */
536 	if (__dev_get_by_name(&init_net, name))
537 		return 1;
538 
539 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
540 		if (!strcmp(name, s[i].name))
541 			return s[i].map.base_addr;
542 	return 0;
543 }
544 
545 /*
546  * Saves at boot time configured settings for any netdevice.
547  */
548 int __init netdev_boot_setup(char *str)
549 {
550 	int ints[5];
551 	struct ifmap map;
552 
553 	str = get_options(str, ARRAY_SIZE(ints), ints);
554 	if (!str || !*str)
555 		return 0;
556 
557 	/* Save settings */
558 	memset(&map, 0, sizeof(map));
559 	if (ints[0] > 0)
560 		map.irq = ints[1];
561 	if (ints[0] > 1)
562 		map.base_addr = ints[2];
563 	if (ints[0] > 2)
564 		map.mem_start = ints[3];
565 	if (ints[0] > 3)
566 		map.mem_end = ints[4];
567 
568 	/* Add new entry to the list */
569 	return netdev_boot_setup_add(str, &map);
570 }
571 
572 __setup("netdev=", netdev_boot_setup);
573 
574 /*******************************************************************************
575 
576 			    Device Interface Subroutines
577 
578 *******************************************************************************/
579 
580 /**
581  *	__dev_get_by_name	- find a device by its name
582  *	@net: the applicable net namespace
583  *	@name: name to find
584  *
585  *	Find an interface by name. Must be called under RTNL semaphore
586  *	or @dev_base_lock. If the name is found a pointer to the device
587  *	is returned. If the name is not found then %NULL is returned. The
588  *	reference counters are not incremented so the caller must be
589  *	careful with locks.
590  */
591 
592 struct net_device *__dev_get_by_name(struct net *net, const char *name)
593 {
594 	struct hlist_node *p;
595 
596 	hlist_for_each(p, dev_name_hash(net, name)) {
597 		struct net_device *dev
598 			= hlist_entry(p, struct net_device, name_hlist);
599 		if (!strncmp(dev->name, name, IFNAMSIZ))
600 			return dev;
601 	}
602 	return NULL;
603 }
604 
605 /**
606  *	dev_get_by_name		- find a device by its name
607  *	@net: the applicable net namespace
608  *	@name: name to find
609  *
610  *	Find an interface by name. This can be called from any
611  *	context and does its own locking. The returned handle has
612  *	the usage count incremented and the caller must use dev_put() to
613  *	release it when it is no longer needed. %NULL is returned if no
614  *	matching device is found.
615  */
616 
617 struct net_device *dev_get_by_name(struct net *net, const char *name)
618 {
619 	struct net_device *dev;
620 
621 	read_lock(&dev_base_lock);
622 	dev = __dev_get_by_name(net, name);
623 	if (dev)
624 		dev_hold(dev);
625 	read_unlock(&dev_base_lock);
626 	return dev;
627 }
628 
629 /**
630  *	__dev_get_by_index - find a device by its ifindex
631  *	@net: the applicable net namespace
632  *	@ifindex: index of device
633  *
634  *	Search for an interface by index. Returns %NULL if the device
635  *	is not found or a pointer to the device. The device has not
636  *	had its reference counter increased so the caller must be careful
637  *	about locking. The caller must hold either the RTNL semaphore
638  *	or @dev_base_lock.
639  */
640 
641 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
642 {
643 	struct hlist_node *p;
644 
645 	hlist_for_each(p, dev_index_hash(net, ifindex)) {
646 		struct net_device *dev
647 			= hlist_entry(p, struct net_device, index_hlist);
648 		if (dev->ifindex == ifindex)
649 			return dev;
650 	}
651 	return NULL;
652 }
653 
654 
655 /**
656  *	dev_get_by_index - find a device by its ifindex
657  *	@net: the applicable net namespace
658  *	@ifindex: index of device
659  *
660  *	Search for an interface by index. Returns NULL if the device
661  *	is not found or a pointer to the device. The device returned has
662  *	had a reference added and the pointer is safe until the user calls
663  *	dev_put to indicate they have finished with it.
664  */
665 
666 struct net_device *dev_get_by_index(struct net *net, int ifindex)
667 {
668 	struct net_device *dev;
669 
670 	read_lock(&dev_base_lock);
671 	dev = __dev_get_by_index(net, ifindex);
672 	if (dev)
673 		dev_hold(dev);
674 	read_unlock(&dev_base_lock);
675 	return dev;
676 }
677 
678 /**
679  *	dev_getbyhwaddr - find a device by its hardware address
680  *	@net: the applicable net namespace
681  *	@type: media type of device
682  *	@ha: hardware address
683  *
684  *	Search for an interface by MAC address. Returns NULL if the device
685  *	is not found or a pointer to the device. The caller must hold the
686  *	rtnl semaphore. The returned device has not had its ref count increased
687  *	and the caller must therefore be careful about locking
688  *
689  *	BUGS:
690  *	If the API was consistent this would be __dev_get_by_hwaddr
691  */
692 
693 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
694 {
695 	struct net_device *dev;
696 
697 	ASSERT_RTNL();
698 
699 	for_each_netdev(net, dev)
700 		if (dev->type == type &&
701 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
702 			return dev;
703 
704 	return NULL;
705 }
706 
707 EXPORT_SYMBOL(dev_getbyhwaddr);
708 
709 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
710 {
711 	struct net_device *dev;
712 
713 	ASSERT_RTNL();
714 	for_each_netdev(net, dev)
715 		if (dev->type == type)
716 			return dev;
717 
718 	return NULL;
719 }
720 
721 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
722 
723 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
724 {
725 	struct net_device *dev;
726 
727 	rtnl_lock();
728 	dev = __dev_getfirstbyhwtype(net, type);
729 	if (dev)
730 		dev_hold(dev);
731 	rtnl_unlock();
732 	return dev;
733 }
734 
735 EXPORT_SYMBOL(dev_getfirstbyhwtype);
736 
737 /**
738  *	dev_get_by_flags - find any device with given flags
739  *	@net: the applicable net namespace
740  *	@if_flags: IFF_* values
741  *	@mask: bitmask of bits in if_flags to check
742  *
743  *	Search for any interface with the given flags. Returns NULL if a device
744  *	is not found or a pointer to the device. The device returned has
745  *	had a reference added and the pointer is safe until the user calls
746  *	dev_put to indicate they have finished with it.
747  */
748 
749 struct net_device * dev_get_by_flags(struct net *net, unsigned short if_flags, unsigned short mask)
750 {
751 	struct net_device *dev, *ret;
752 
753 	ret = NULL;
754 	read_lock(&dev_base_lock);
755 	for_each_netdev(net, dev) {
756 		if (((dev->flags ^ if_flags) & mask) == 0) {
757 			dev_hold(dev);
758 			ret = dev;
759 			break;
760 		}
761 	}
762 	read_unlock(&dev_base_lock);
763 	return ret;
764 }
765 
766 /**
767  *	dev_valid_name - check if name is okay for network device
768  *	@name: name string
769  *
770  *	Network device names need to be valid file names to
771  *	to allow sysfs to work.  We also disallow any kind of
772  *	whitespace.
773  */
774 int dev_valid_name(const char *name)
775 {
776 	if (*name == '\0')
777 		return 0;
778 	if (strlen(name) >= IFNAMSIZ)
779 		return 0;
780 	if (!strcmp(name, ".") || !strcmp(name, ".."))
781 		return 0;
782 
783 	while (*name) {
784 		if (*name == '/' || isspace(*name))
785 			return 0;
786 		name++;
787 	}
788 	return 1;
789 }
790 
791 /**
792  *	__dev_alloc_name - allocate a name for a device
793  *	@net: network namespace to allocate the device name in
794  *	@name: name format string
795  *	@buf:  scratch buffer and result name string
796  *
797  *	Passed a format string - eg "lt%d" it will try and find a suitable
798  *	id. It scans list of devices to build up a free map, then chooses
799  *	the first empty slot. The caller must hold the dev_base or rtnl lock
800  *	while allocating the name and adding the device in order to avoid
801  *	duplicates.
802  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
803  *	Returns the number of the unit assigned or a negative errno code.
804  */
805 
806 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
807 {
808 	int i = 0;
809 	const char *p;
810 	const int max_netdevices = 8*PAGE_SIZE;
811 	unsigned long *inuse;
812 	struct net_device *d;
813 
814 	p = strnchr(name, IFNAMSIZ-1, '%');
815 	if (p) {
816 		/*
817 		 * Verify the string as this thing may have come from
818 		 * the user.  There must be either one "%d" and no other "%"
819 		 * characters.
820 		 */
821 		if (p[1] != 'd' || strchr(p + 2, '%'))
822 			return -EINVAL;
823 
824 		/* Use one page as a bit array of possible slots */
825 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
826 		if (!inuse)
827 			return -ENOMEM;
828 
829 		for_each_netdev(net, d) {
830 			if (!sscanf(d->name, name, &i))
831 				continue;
832 			if (i < 0 || i >= max_netdevices)
833 				continue;
834 
835 			/*  avoid cases where sscanf is not exact inverse of printf */
836 			snprintf(buf, IFNAMSIZ, name, i);
837 			if (!strncmp(buf, d->name, IFNAMSIZ))
838 				set_bit(i, inuse);
839 		}
840 
841 		i = find_first_zero_bit(inuse, max_netdevices);
842 		free_page((unsigned long) inuse);
843 	}
844 
845 	snprintf(buf, IFNAMSIZ, name, i);
846 	if (!__dev_get_by_name(net, buf))
847 		return i;
848 
849 	/* It is possible to run out of possible slots
850 	 * when the name is long and there isn't enough space left
851 	 * for the digits, or if all bits are used.
852 	 */
853 	return -ENFILE;
854 }
855 
856 /**
857  *	dev_alloc_name - allocate a name for a device
858  *	@dev: device
859  *	@name: name format string
860  *
861  *	Passed a format string - eg "lt%d" it will try and find a suitable
862  *	id. It scans list of devices to build up a free map, then chooses
863  *	the first empty slot. The caller must hold the dev_base or rtnl lock
864  *	while allocating the name and adding the device in order to avoid
865  *	duplicates.
866  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
867  *	Returns the number of the unit assigned or a negative errno code.
868  */
869 
870 int dev_alloc_name(struct net_device *dev, const char *name)
871 {
872 	char buf[IFNAMSIZ];
873 	struct net *net;
874 	int ret;
875 
876 	BUG_ON(!dev_net(dev));
877 	net = dev_net(dev);
878 	ret = __dev_alloc_name(net, name, buf);
879 	if (ret >= 0)
880 		strlcpy(dev->name, buf, IFNAMSIZ);
881 	return ret;
882 }
883 
884 
885 /**
886  *	dev_change_name - change name of a device
887  *	@dev: device
888  *	@newname: name (or format string) must be at least IFNAMSIZ
889  *
890  *	Change name of a device, can pass format strings "eth%d".
891  *	for wildcarding.
892  */
893 int dev_change_name(struct net_device *dev, char *newname)
894 {
895 	char oldname[IFNAMSIZ];
896 	int err = 0;
897 	int ret;
898 	struct net *net;
899 
900 	ASSERT_RTNL();
901 	BUG_ON(!dev_net(dev));
902 
903 	net = dev_net(dev);
904 	if (dev->flags & IFF_UP)
905 		return -EBUSY;
906 
907 	if (!dev_valid_name(newname))
908 		return -EINVAL;
909 
910 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
911 		return 0;
912 
913 	memcpy(oldname, dev->name, IFNAMSIZ);
914 
915 	if (strchr(newname, '%')) {
916 		err = dev_alloc_name(dev, newname);
917 		if (err < 0)
918 			return err;
919 		strcpy(newname, dev->name);
920 	}
921 	else if (__dev_get_by_name(net, newname))
922 		return -EEXIST;
923 	else
924 		strlcpy(dev->name, newname, IFNAMSIZ);
925 
926 rollback:
927 	err = device_rename(&dev->dev, dev->name);
928 	if (err) {
929 		memcpy(dev->name, oldname, IFNAMSIZ);
930 		return err;
931 	}
932 
933 	write_lock_bh(&dev_base_lock);
934 	hlist_del(&dev->name_hlist);
935 	hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
936 	write_unlock_bh(&dev_base_lock);
937 
938 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
939 	ret = notifier_to_errno(ret);
940 
941 	if (ret) {
942 		if (err) {
943 			printk(KERN_ERR
944 			       "%s: name change rollback failed: %d.\n",
945 			       dev->name, ret);
946 		} else {
947 			err = ret;
948 			memcpy(dev->name, oldname, IFNAMSIZ);
949 			goto rollback;
950 		}
951 	}
952 
953 	return err;
954 }
955 
956 /**
957  *	netdev_features_change - device changes features
958  *	@dev: device to cause notification
959  *
960  *	Called to indicate a device has changed features.
961  */
962 void netdev_features_change(struct net_device *dev)
963 {
964 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
965 }
966 EXPORT_SYMBOL(netdev_features_change);
967 
968 /**
969  *	netdev_state_change - device changes state
970  *	@dev: device to cause notification
971  *
972  *	Called to indicate a device has changed state. This function calls
973  *	the notifier chains for netdev_chain and sends a NEWLINK message
974  *	to the routing socket.
975  */
976 void netdev_state_change(struct net_device *dev)
977 {
978 	if (dev->flags & IFF_UP) {
979 		call_netdevice_notifiers(NETDEV_CHANGE, dev);
980 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
981 	}
982 }
983 
984 void netdev_bonding_change(struct net_device *dev)
985 {
986 	call_netdevice_notifiers(NETDEV_BONDING_FAILOVER, dev);
987 }
988 EXPORT_SYMBOL(netdev_bonding_change);
989 
990 /**
991  *	dev_load 	- load a network module
992  *	@net: the applicable net namespace
993  *	@name: name of interface
994  *
995  *	If a network interface is not present and the process has suitable
996  *	privileges this function loads the module. If module loading is not
997  *	available in this kernel then it becomes a nop.
998  */
999 
1000 void dev_load(struct net *net, const char *name)
1001 {
1002 	struct net_device *dev;
1003 
1004 	read_lock(&dev_base_lock);
1005 	dev = __dev_get_by_name(net, name);
1006 	read_unlock(&dev_base_lock);
1007 
1008 	if (!dev && capable(CAP_SYS_MODULE))
1009 		request_module("%s", name);
1010 }
1011 
1012 /**
1013  *	dev_open	- prepare an interface for use.
1014  *	@dev:	device to open
1015  *
1016  *	Takes a device from down to up state. The device's private open
1017  *	function is invoked and then the multicast lists are loaded. Finally
1018  *	the device is moved into the up state and a %NETDEV_UP message is
1019  *	sent to the netdev notifier chain.
1020  *
1021  *	Calling this function on an active interface is a nop. On a failure
1022  *	a negative errno code is returned.
1023  */
1024 int dev_open(struct net_device *dev)
1025 {
1026 	int ret = 0;
1027 
1028 	ASSERT_RTNL();
1029 
1030 	/*
1031 	 *	Is it already up?
1032 	 */
1033 
1034 	if (dev->flags & IFF_UP)
1035 		return 0;
1036 
1037 	/*
1038 	 *	Is it even present?
1039 	 */
1040 	if (!netif_device_present(dev))
1041 		return -ENODEV;
1042 
1043 	/*
1044 	 *	Call device private open method
1045 	 */
1046 	set_bit(__LINK_STATE_START, &dev->state);
1047 
1048 	if (dev->validate_addr)
1049 		ret = dev->validate_addr(dev);
1050 
1051 	if (!ret && dev->open)
1052 		ret = dev->open(dev);
1053 
1054 	/*
1055 	 *	If it went open OK then:
1056 	 */
1057 
1058 	if (ret)
1059 		clear_bit(__LINK_STATE_START, &dev->state);
1060 	else {
1061 		/*
1062 		 *	Set the flags.
1063 		 */
1064 		dev->flags |= IFF_UP;
1065 
1066 		/*
1067 		 *	Initialize multicasting status
1068 		 */
1069 		dev_set_rx_mode(dev);
1070 
1071 		/*
1072 		 *	Wakeup transmit queue engine
1073 		 */
1074 		dev_activate(dev);
1075 
1076 		/*
1077 		 *	... and announce new interface.
1078 		 */
1079 		call_netdevice_notifiers(NETDEV_UP, dev);
1080 	}
1081 
1082 	return ret;
1083 }
1084 
1085 /**
1086  *	dev_close - shutdown an interface.
1087  *	@dev: device to shutdown
1088  *
1089  *	This function moves an active device into down state. A
1090  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1091  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1092  *	chain.
1093  */
1094 int dev_close(struct net_device *dev)
1095 {
1096 	ASSERT_RTNL();
1097 
1098 	might_sleep();
1099 
1100 	if (!(dev->flags & IFF_UP))
1101 		return 0;
1102 
1103 	/*
1104 	 *	Tell people we are going down, so that they can
1105 	 *	prepare to death, when device is still operating.
1106 	 */
1107 	call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1108 
1109 	clear_bit(__LINK_STATE_START, &dev->state);
1110 
1111 	/* Synchronize to scheduled poll. We cannot touch poll list,
1112 	 * it can be even on different cpu. So just clear netif_running().
1113 	 *
1114 	 * dev->stop() will invoke napi_disable() on all of it's
1115 	 * napi_struct instances on this device.
1116 	 */
1117 	smp_mb__after_clear_bit(); /* Commit netif_running(). */
1118 
1119 	dev_deactivate(dev);
1120 
1121 	/*
1122 	 *	Call the device specific close. This cannot fail.
1123 	 *	Only if device is UP
1124 	 *
1125 	 *	We allow it to be called even after a DETACH hot-plug
1126 	 *	event.
1127 	 */
1128 	if (dev->stop)
1129 		dev->stop(dev);
1130 
1131 	/*
1132 	 *	Device is now down.
1133 	 */
1134 
1135 	dev->flags &= ~IFF_UP;
1136 
1137 	/*
1138 	 * Tell people we are down
1139 	 */
1140 	call_netdevice_notifiers(NETDEV_DOWN, dev);
1141 
1142 	return 0;
1143 }
1144 
1145 
1146 /**
1147  *	dev_disable_lro - disable Large Receive Offload on a device
1148  *	@dev: device
1149  *
1150  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1151  *	called under RTNL.  This is needed if received packets may be
1152  *	forwarded to another interface.
1153  */
1154 void dev_disable_lro(struct net_device *dev)
1155 {
1156 	if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1157 	    dev->ethtool_ops->set_flags) {
1158 		u32 flags = dev->ethtool_ops->get_flags(dev);
1159 		if (flags & ETH_FLAG_LRO) {
1160 			flags &= ~ETH_FLAG_LRO;
1161 			dev->ethtool_ops->set_flags(dev, flags);
1162 		}
1163 	}
1164 	WARN_ON(dev->features & NETIF_F_LRO);
1165 }
1166 EXPORT_SYMBOL(dev_disable_lro);
1167 
1168 
1169 static int dev_boot_phase = 1;
1170 
1171 /*
1172  *	Device change register/unregister. These are not inline or static
1173  *	as we export them to the world.
1174  */
1175 
1176 /**
1177  *	register_netdevice_notifier - register a network notifier block
1178  *	@nb: notifier
1179  *
1180  *	Register a notifier to be called when network device events occur.
1181  *	The notifier passed is linked into the kernel structures and must
1182  *	not be reused until it has been unregistered. A negative errno code
1183  *	is returned on a failure.
1184  *
1185  * 	When registered all registration and up events are replayed
1186  *	to the new notifier to allow device to have a race free
1187  *	view of the network device list.
1188  */
1189 
1190 int register_netdevice_notifier(struct notifier_block *nb)
1191 {
1192 	struct net_device *dev;
1193 	struct net_device *last;
1194 	struct net *net;
1195 	int err;
1196 
1197 	rtnl_lock();
1198 	err = raw_notifier_chain_register(&netdev_chain, nb);
1199 	if (err)
1200 		goto unlock;
1201 	if (dev_boot_phase)
1202 		goto unlock;
1203 	for_each_net(net) {
1204 		for_each_netdev(net, dev) {
1205 			err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1206 			err = notifier_to_errno(err);
1207 			if (err)
1208 				goto rollback;
1209 
1210 			if (!(dev->flags & IFF_UP))
1211 				continue;
1212 
1213 			nb->notifier_call(nb, NETDEV_UP, dev);
1214 		}
1215 	}
1216 
1217 unlock:
1218 	rtnl_unlock();
1219 	return err;
1220 
1221 rollback:
1222 	last = dev;
1223 	for_each_net(net) {
1224 		for_each_netdev(net, dev) {
1225 			if (dev == last)
1226 				break;
1227 
1228 			if (dev->flags & IFF_UP) {
1229 				nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1230 				nb->notifier_call(nb, NETDEV_DOWN, dev);
1231 			}
1232 			nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1233 		}
1234 	}
1235 
1236 	raw_notifier_chain_unregister(&netdev_chain, nb);
1237 	goto unlock;
1238 }
1239 
1240 /**
1241  *	unregister_netdevice_notifier - unregister a network notifier block
1242  *	@nb: notifier
1243  *
1244  *	Unregister a notifier previously registered by
1245  *	register_netdevice_notifier(). The notifier is unlinked into the
1246  *	kernel structures and may then be reused. A negative errno code
1247  *	is returned on a failure.
1248  */
1249 
1250 int unregister_netdevice_notifier(struct notifier_block *nb)
1251 {
1252 	int err;
1253 
1254 	rtnl_lock();
1255 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1256 	rtnl_unlock();
1257 	return err;
1258 }
1259 
1260 /**
1261  *	call_netdevice_notifiers - call all network notifier blocks
1262  *      @val: value passed unmodified to notifier function
1263  *      @dev: net_device pointer passed unmodified to notifier function
1264  *
1265  *	Call all network notifier blocks.  Parameters and return value
1266  *	are as for raw_notifier_call_chain().
1267  */
1268 
1269 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1270 {
1271 	return raw_notifier_call_chain(&netdev_chain, val, dev);
1272 }
1273 
1274 /* When > 0 there are consumers of rx skb time stamps */
1275 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1276 
1277 void net_enable_timestamp(void)
1278 {
1279 	atomic_inc(&netstamp_needed);
1280 }
1281 
1282 void net_disable_timestamp(void)
1283 {
1284 	atomic_dec(&netstamp_needed);
1285 }
1286 
1287 static inline void net_timestamp(struct sk_buff *skb)
1288 {
1289 	if (atomic_read(&netstamp_needed))
1290 		__net_timestamp(skb);
1291 	else
1292 		skb->tstamp.tv64 = 0;
1293 }
1294 
1295 /*
1296  *	Support routine. Sends outgoing frames to any network
1297  *	taps currently in use.
1298  */
1299 
1300 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1301 {
1302 	struct packet_type *ptype;
1303 
1304 	net_timestamp(skb);
1305 
1306 	rcu_read_lock();
1307 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
1308 		/* Never send packets back to the socket
1309 		 * they originated from - MvS (miquels@drinkel.ow.org)
1310 		 */
1311 		if ((ptype->dev == dev || !ptype->dev) &&
1312 		    (ptype->af_packet_priv == NULL ||
1313 		     (struct sock *)ptype->af_packet_priv != skb->sk)) {
1314 			struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC);
1315 			if (!skb2)
1316 				break;
1317 
1318 			/* skb->nh should be correctly
1319 			   set by sender, so that the second statement is
1320 			   just protection against buggy protocols.
1321 			 */
1322 			skb_reset_mac_header(skb2);
1323 
1324 			if (skb_network_header(skb2) < skb2->data ||
1325 			    skb2->network_header > skb2->tail) {
1326 				if (net_ratelimit())
1327 					printk(KERN_CRIT "protocol %04x is "
1328 					       "buggy, dev %s\n",
1329 					       skb2->protocol, dev->name);
1330 				skb_reset_network_header(skb2);
1331 			}
1332 
1333 			skb2->transport_header = skb2->network_header;
1334 			skb2->pkt_type = PACKET_OUTGOING;
1335 			ptype->func(skb2, skb->dev, ptype, skb->dev);
1336 		}
1337 	}
1338 	rcu_read_unlock();
1339 }
1340 
1341 
1342 static inline void __netif_reschedule(struct Qdisc *q)
1343 {
1344 	struct softnet_data *sd;
1345 	unsigned long flags;
1346 
1347 	local_irq_save(flags);
1348 	sd = &__get_cpu_var(softnet_data);
1349 	q->next_sched = sd->output_queue;
1350 	sd->output_queue = q;
1351 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
1352 	local_irq_restore(flags);
1353 }
1354 
1355 void __netif_schedule(struct Qdisc *q)
1356 {
1357 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1358 		__netif_reschedule(q);
1359 }
1360 EXPORT_SYMBOL(__netif_schedule);
1361 
1362 void dev_kfree_skb_irq(struct sk_buff *skb)
1363 {
1364 	if (atomic_dec_and_test(&skb->users)) {
1365 		struct softnet_data *sd;
1366 		unsigned long flags;
1367 
1368 		local_irq_save(flags);
1369 		sd = &__get_cpu_var(softnet_data);
1370 		skb->next = sd->completion_queue;
1371 		sd->completion_queue = skb;
1372 		raise_softirq_irqoff(NET_TX_SOFTIRQ);
1373 		local_irq_restore(flags);
1374 	}
1375 }
1376 EXPORT_SYMBOL(dev_kfree_skb_irq);
1377 
1378 void dev_kfree_skb_any(struct sk_buff *skb)
1379 {
1380 	if (in_irq() || irqs_disabled())
1381 		dev_kfree_skb_irq(skb);
1382 	else
1383 		dev_kfree_skb(skb);
1384 }
1385 EXPORT_SYMBOL(dev_kfree_skb_any);
1386 
1387 
1388 /**
1389  * netif_device_detach - mark device as removed
1390  * @dev: network device
1391  *
1392  * Mark device as removed from system and therefore no longer available.
1393  */
1394 void netif_device_detach(struct net_device *dev)
1395 {
1396 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1397 	    netif_running(dev)) {
1398 		netif_stop_queue(dev);
1399 	}
1400 }
1401 EXPORT_SYMBOL(netif_device_detach);
1402 
1403 /**
1404  * netif_device_attach - mark device as attached
1405  * @dev: network device
1406  *
1407  * Mark device as attached from system and restart if needed.
1408  */
1409 void netif_device_attach(struct net_device *dev)
1410 {
1411 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1412 	    netif_running(dev)) {
1413 		netif_wake_queue(dev);
1414 		__netdev_watchdog_up(dev);
1415 	}
1416 }
1417 EXPORT_SYMBOL(netif_device_attach);
1418 
1419 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1420 {
1421 	return ((features & NETIF_F_GEN_CSUM) ||
1422 		((features & NETIF_F_IP_CSUM) &&
1423 		 protocol == htons(ETH_P_IP)) ||
1424 		((features & NETIF_F_IPV6_CSUM) &&
1425 		 protocol == htons(ETH_P_IPV6)));
1426 }
1427 
1428 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1429 {
1430 	if (can_checksum_protocol(dev->features, skb->protocol))
1431 		return true;
1432 
1433 	if (skb->protocol == htons(ETH_P_8021Q)) {
1434 		struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1435 		if (can_checksum_protocol(dev->features & dev->vlan_features,
1436 					  veh->h_vlan_encapsulated_proto))
1437 			return true;
1438 	}
1439 
1440 	return false;
1441 }
1442 
1443 /*
1444  * Invalidate hardware checksum when packet is to be mangled, and
1445  * complete checksum manually on outgoing path.
1446  */
1447 int skb_checksum_help(struct sk_buff *skb)
1448 {
1449 	__wsum csum;
1450 	int ret = 0, offset;
1451 
1452 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1453 		goto out_set_summed;
1454 
1455 	if (unlikely(skb_shinfo(skb)->gso_size)) {
1456 		/* Let GSO fix up the checksum. */
1457 		goto out_set_summed;
1458 	}
1459 
1460 	offset = skb->csum_start - skb_headroom(skb);
1461 	BUG_ON(offset >= skb_headlen(skb));
1462 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
1463 
1464 	offset += skb->csum_offset;
1465 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1466 
1467 	if (skb_cloned(skb) &&
1468 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1469 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1470 		if (ret)
1471 			goto out;
1472 	}
1473 
1474 	*(__sum16 *)(skb->data + offset) = csum_fold(csum);
1475 out_set_summed:
1476 	skb->ip_summed = CHECKSUM_NONE;
1477 out:
1478 	return ret;
1479 }
1480 
1481 /**
1482  *	skb_gso_segment - Perform segmentation on skb.
1483  *	@skb: buffer to segment
1484  *	@features: features for the output path (see dev->features)
1485  *
1486  *	This function segments the given skb and returns a list of segments.
1487  *
1488  *	It may return NULL if the skb requires no segmentation.  This is
1489  *	only possible when GSO is used for verifying header integrity.
1490  */
1491 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1492 {
1493 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1494 	struct packet_type *ptype;
1495 	__be16 type = skb->protocol;
1496 	int err;
1497 
1498 	BUG_ON(skb_shinfo(skb)->frag_list);
1499 
1500 	skb_reset_mac_header(skb);
1501 	skb->mac_len = skb->network_header - skb->mac_header;
1502 	__skb_pull(skb, skb->mac_len);
1503 
1504 	if (WARN_ON(skb->ip_summed != CHECKSUM_PARTIAL)) {
1505 		if (skb_header_cloned(skb) &&
1506 		    (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1507 			return ERR_PTR(err);
1508 	}
1509 
1510 	rcu_read_lock();
1511 	list_for_each_entry_rcu(ptype,
1512 			&ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1513 		if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1514 			if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1515 				err = ptype->gso_send_check(skb);
1516 				segs = ERR_PTR(err);
1517 				if (err || skb_gso_ok(skb, features))
1518 					break;
1519 				__skb_push(skb, (skb->data -
1520 						 skb_network_header(skb)));
1521 			}
1522 			segs = ptype->gso_segment(skb, features);
1523 			break;
1524 		}
1525 	}
1526 	rcu_read_unlock();
1527 
1528 	__skb_push(skb, skb->data - skb_mac_header(skb));
1529 
1530 	return segs;
1531 }
1532 
1533 EXPORT_SYMBOL(skb_gso_segment);
1534 
1535 /* Take action when hardware reception checksum errors are detected. */
1536 #ifdef CONFIG_BUG
1537 void netdev_rx_csum_fault(struct net_device *dev)
1538 {
1539 	if (net_ratelimit()) {
1540 		printk(KERN_ERR "%s: hw csum failure.\n",
1541 			dev ? dev->name : "<unknown>");
1542 		dump_stack();
1543 	}
1544 }
1545 EXPORT_SYMBOL(netdev_rx_csum_fault);
1546 #endif
1547 
1548 /* Actually, we should eliminate this check as soon as we know, that:
1549  * 1. IOMMU is present and allows to map all the memory.
1550  * 2. No high memory really exists on this machine.
1551  */
1552 
1553 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1554 {
1555 #ifdef CONFIG_HIGHMEM
1556 	int i;
1557 
1558 	if (dev->features & NETIF_F_HIGHDMA)
1559 		return 0;
1560 
1561 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1562 		if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1563 			return 1;
1564 
1565 #endif
1566 	return 0;
1567 }
1568 
1569 struct dev_gso_cb {
1570 	void (*destructor)(struct sk_buff *skb);
1571 };
1572 
1573 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1574 
1575 static void dev_gso_skb_destructor(struct sk_buff *skb)
1576 {
1577 	struct dev_gso_cb *cb;
1578 
1579 	do {
1580 		struct sk_buff *nskb = skb->next;
1581 
1582 		skb->next = nskb->next;
1583 		nskb->next = NULL;
1584 		kfree_skb(nskb);
1585 	} while (skb->next);
1586 
1587 	cb = DEV_GSO_CB(skb);
1588 	if (cb->destructor)
1589 		cb->destructor(skb);
1590 }
1591 
1592 /**
1593  *	dev_gso_segment - Perform emulated hardware segmentation on skb.
1594  *	@skb: buffer to segment
1595  *
1596  *	This function segments the given skb and stores the list of segments
1597  *	in skb->next.
1598  */
1599 static int dev_gso_segment(struct sk_buff *skb)
1600 {
1601 	struct net_device *dev = skb->dev;
1602 	struct sk_buff *segs;
1603 	int features = dev->features & ~(illegal_highdma(dev, skb) ?
1604 					 NETIF_F_SG : 0);
1605 
1606 	segs = skb_gso_segment(skb, features);
1607 
1608 	/* Verifying header integrity only. */
1609 	if (!segs)
1610 		return 0;
1611 
1612 	if (IS_ERR(segs))
1613 		return PTR_ERR(segs);
1614 
1615 	skb->next = segs;
1616 	DEV_GSO_CB(skb)->destructor = skb->destructor;
1617 	skb->destructor = dev_gso_skb_destructor;
1618 
1619 	return 0;
1620 }
1621 
1622 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1623 			struct netdev_queue *txq)
1624 {
1625 	if (likely(!skb->next)) {
1626 		if (!list_empty(&ptype_all))
1627 			dev_queue_xmit_nit(skb, dev);
1628 
1629 		if (netif_needs_gso(dev, skb)) {
1630 			if (unlikely(dev_gso_segment(skb)))
1631 				goto out_kfree_skb;
1632 			if (skb->next)
1633 				goto gso;
1634 		}
1635 
1636 		return dev->hard_start_xmit(skb, dev);
1637 	}
1638 
1639 gso:
1640 	do {
1641 		struct sk_buff *nskb = skb->next;
1642 		int rc;
1643 
1644 		skb->next = nskb->next;
1645 		nskb->next = NULL;
1646 		rc = dev->hard_start_xmit(nskb, dev);
1647 		if (unlikely(rc)) {
1648 			nskb->next = skb->next;
1649 			skb->next = nskb;
1650 			return rc;
1651 		}
1652 		if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
1653 			return NETDEV_TX_BUSY;
1654 	} while (skb->next);
1655 
1656 	skb->destructor = DEV_GSO_CB(skb)->destructor;
1657 
1658 out_kfree_skb:
1659 	kfree_skb(skb);
1660 	return 0;
1661 }
1662 
1663 static u32 simple_tx_hashrnd;
1664 static int simple_tx_hashrnd_initialized = 0;
1665 
1666 static u16 simple_tx_hash(struct net_device *dev, struct sk_buff *skb)
1667 {
1668 	u32 addr1, addr2, ports;
1669 	u32 hash, ihl;
1670 	u8 ip_proto;
1671 
1672 	if (unlikely(!simple_tx_hashrnd_initialized)) {
1673 		get_random_bytes(&simple_tx_hashrnd, 4);
1674 		simple_tx_hashrnd_initialized = 1;
1675 	}
1676 
1677 	switch (skb->protocol) {
1678 	case __constant_htons(ETH_P_IP):
1679 		ip_proto = ip_hdr(skb)->protocol;
1680 		addr1 = ip_hdr(skb)->saddr;
1681 		addr2 = ip_hdr(skb)->daddr;
1682 		ihl = ip_hdr(skb)->ihl;
1683 		break;
1684 	case __constant_htons(ETH_P_IPV6):
1685 		ip_proto = ipv6_hdr(skb)->nexthdr;
1686 		addr1 = ipv6_hdr(skb)->saddr.s6_addr32[3];
1687 		addr2 = ipv6_hdr(skb)->daddr.s6_addr32[3];
1688 		ihl = (40 >> 2);
1689 		break;
1690 	default:
1691 		return 0;
1692 	}
1693 
1694 
1695 	switch (ip_proto) {
1696 	case IPPROTO_TCP:
1697 	case IPPROTO_UDP:
1698 	case IPPROTO_DCCP:
1699 	case IPPROTO_ESP:
1700 	case IPPROTO_AH:
1701 	case IPPROTO_SCTP:
1702 	case IPPROTO_UDPLITE:
1703 		ports = *((u32 *) (skb_network_header(skb) + (ihl * 4)));
1704 		break;
1705 
1706 	default:
1707 		ports = 0;
1708 		break;
1709 	}
1710 
1711 	hash = jhash_3words(addr1, addr2, ports, simple_tx_hashrnd);
1712 
1713 	return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
1714 }
1715 
1716 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
1717 					struct sk_buff *skb)
1718 {
1719 	u16 queue_index = 0;
1720 
1721 	if (dev->select_queue)
1722 		queue_index = dev->select_queue(dev, skb);
1723 	else if (dev->real_num_tx_queues > 1)
1724 		queue_index = simple_tx_hash(dev, skb);
1725 
1726 	skb_set_queue_mapping(skb, queue_index);
1727 	return netdev_get_tx_queue(dev, queue_index);
1728 }
1729 
1730 /**
1731  *	dev_queue_xmit - transmit a buffer
1732  *	@skb: buffer to transmit
1733  *
1734  *	Queue a buffer for transmission to a network device. The caller must
1735  *	have set the device and priority and built the buffer before calling
1736  *	this function. The function can be called from an interrupt.
1737  *
1738  *	A negative errno code is returned on a failure. A success does not
1739  *	guarantee the frame will be transmitted as it may be dropped due
1740  *	to congestion or traffic shaping.
1741  *
1742  * -----------------------------------------------------------------------------------
1743  *      I notice this method can also return errors from the queue disciplines,
1744  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
1745  *      be positive.
1746  *
1747  *      Regardless of the return value, the skb is consumed, so it is currently
1748  *      difficult to retry a send to this method.  (You can bump the ref count
1749  *      before sending to hold a reference for retry if you are careful.)
1750  *
1751  *      When calling this method, interrupts MUST be enabled.  This is because
1752  *      the BH enable code must have IRQs enabled so that it will not deadlock.
1753  *          --BLG
1754  */
1755 int dev_queue_xmit(struct sk_buff *skb)
1756 {
1757 	struct net_device *dev = skb->dev;
1758 	struct netdev_queue *txq;
1759 	struct Qdisc *q;
1760 	int rc = -ENOMEM;
1761 
1762 	/* GSO will handle the following emulations directly. */
1763 	if (netif_needs_gso(dev, skb))
1764 		goto gso;
1765 
1766 	if (skb_shinfo(skb)->frag_list &&
1767 	    !(dev->features & NETIF_F_FRAGLIST) &&
1768 	    __skb_linearize(skb))
1769 		goto out_kfree_skb;
1770 
1771 	/* Fragmented skb is linearized if device does not support SG,
1772 	 * or if at least one of fragments is in highmem and device
1773 	 * does not support DMA from it.
1774 	 */
1775 	if (skb_shinfo(skb)->nr_frags &&
1776 	    (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) &&
1777 	    __skb_linearize(skb))
1778 		goto out_kfree_skb;
1779 
1780 	/* If packet is not checksummed and device does not support
1781 	 * checksumming for this protocol, complete checksumming here.
1782 	 */
1783 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1784 		skb_set_transport_header(skb, skb->csum_start -
1785 					      skb_headroom(skb));
1786 		if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb))
1787 			goto out_kfree_skb;
1788 	}
1789 
1790 gso:
1791 	/* Disable soft irqs for various locks below. Also
1792 	 * stops preemption for RCU.
1793 	 */
1794 	rcu_read_lock_bh();
1795 
1796 	txq = dev_pick_tx(dev, skb);
1797 	q = rcu_dereference(txq->qdisc);
1798 
1799 #ifdef CONFIG_NET_CLS_ACT
1800 	skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS);
1801 #endif
1802 	if (q->enqueue) {
1803 		spinlock_t *root_lock = qdisc_lock(q);
1804 
1805 		spin_lock(root_lock);
1806 
1807 		if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
1808 			kfree_skb(skb);
1809 			rc = NET_XMIT_DROP;
1810 		} else {
1811 			rc = qdisc_enqueue_root(skb, q);
1812 			qdisc_run(q);
1813 		}
1814 		spin_unlock(root_lock);
1815 
1816 		goto out;
1817 	}
1818 
1819 	/* The device has no queue. Common case for software devices:
1820 	   loopback, all the sorts of tunnels...
1821 
1822 	   Really, it is unlikely that netif_tx_lock protection is necessary
1823 	   here.  (f.e. loopback and IP tunnels are clean ignoring statistics
1824 	   counters.)
1825 	   However, it is possible, that they rely on protection
1826 	   made by us here.
1827 
1828 	   Check this and shot the lock. It is not prone from deadlocks.
1829 	   Either shot noqueue qdisc, it is even simpler 8)
1830 	 */
1831 	if (dev->flags & IFF_UP) {
1832 		int cpu = smp_processor_id(); /* ok because BHs are off */
1833 
1834 		if (txq->xmit_lock_owner != cpu) {
1835 
1836 			HARD_TX_LOCK(dev, txq, cpu);
1837 
1838 			if (!netif_tx_queue_stopped(txq)) {
1839 				rc = 0;
1840 				if (!dev_hard_start_xmit(skb, dev, txq)) {
1841 					HARD_TX_UNLOCK(dev, txq);
1842 					goto out;
1843 				}
1844 			}
1845 			HARD_TX_UNLOCK(dev, txq);
1846 			if (net_ratelimit())
1847 				printk(KERN_CRIT "Virtual device %s asks to "
1848 				       "queue packet!\n", dev->name);
1849 		} else {
1850 			/* Recursion is detected! It is possible,
1851 			 * unfortunately */
1852 			if (net_ratelimit())
1853 				printk(KERN_CRIT "Dead loop on virtual device "
1854 				       "%s, fix it urgently!\n", dev->name);
1855 		}
1856 	}
1857 
1858 	rc = -ENETDOWN;
1859 	rcu_read_unlock_bh();
1860 
1861 out_kfree_skb:
1862 	kfree_skb(skb);
1863 	return rc;
1864 out:
1865 	rcu_read_unlock_bh();
1866 	return rc;
1867 }
1868 
1869 
1870 /*=======================================================================
1871 			Receiver routines
1872   =======================================================================*/
1873 
1874 int netdev_max_backlog __read_mostly = 1000;
1875 int netdev_budget __read_mostly = 300;
1876 int weight_p __read_mostly = 64;            /* old backlog weight */
1877 
1878 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
1879 
1880 
1881 /**
1882  *	netif_rx	-	post buffer to the network code
1883  *	@skb: buffer to post
1884  *
1885  *	This function receives a packet from a device driver and queues it for
1886  *	the upper (protocol) levels to process.  It always succeeds. The buffer
1887  *	may be dropped during processing for congestion control or by the
1888  *	protocol layers.
1889  *
1890  *	return values:
1891  *	NET_RX_SUCCESS	(no congestion)
1892  *	NET_RX_DROP     (packet was dropped)
1893  *
1894  */
1895 
1896 int netif_rx(struct sk_buff *skb)
1897 {
1898 	struct softnet_data *queue;
1899 	unsigned long flags;
1900 
1901 	/* if netpoll wants it, pretend we never saw it */
1902 	if (netpoll_rx(skb))
1903 		return NET_RX_DROP;
1904 
1905 	if (!skb->tstamp.tv64)
1906 		net_timestamp(skb);
1907 
1908 	/*
1909 	 * The code is rearranged so that the path is the most
1910 	 * short when CPU is congested, but is still operating.
1911 	 */
1912 	local_irq_save(flags);
1913 	queue = &__get_cpu_var(softnet_data);
1914 
1915 	__get_cpu_var(netdev_rx_stat).total++;
1916 	if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
1917 		if (queue->input_pkt_queue.qlen) {
1918 enqueue:
1919 			__skb_queue_tail(&queue->input_pkt_queue, skb);
1920 			local_irq_restore(flags);
1921 			return NET_RX_SUCCESS;
1922 		}
1923 
1924 		napi_schedule(&queue->backlog);
1925 		goto enqueue;
1926 	}
1927 
1928 	__get_cpu_var(netdev_rx_stat).dropped++;
1929 	local_irq_restore(flags);
1930 
1931 	kfree_skb(skb);
1932 	return NET_RX_DROP;
1933 }
1934 
1935 int netif_rx_ni(struct sk_buff *skb)
1936 {
1937 	int err;
1938 
1939 	preempt_disable();
1940 	err = netif_rx(skb);
1941 	if (local_softirq_pending())
1942 		do_softirq();
1943 	preempt_enable();
1944 
1945 	return err;
1946 }
1947 
1948 EXPORT_SYMBOL(netif_rx_ni);
1949 
1950 static void net_tx_action(struct softirq_action *h)
1951 {
1952 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
1953 
1954 	if (sd->completion_queue) {
1955 		struct sk_buff *clist;
1956 
1957 		local_irq_disable();
1958 		clist = sd->completion_queue;
1959 		sd->completion_queue = NULL;
1960 		local_irq_enable();
1961 
1962 		while (clist) {
1963 			struct sk_buff *skb = clist;
1964 			clist = clist->next;
1965 
1966 			WARN_ON(atomic_read(&skb->users));
1967 			__kfree_skb(skb);
1968 		}
1969 	}
1970 
1971 	if (sd->output_queue) {
1972 		struct Qdisc *head;
1973 
1974 		local_irq_disable();
1975 		head = sd->output_queue;
1976 		sd->output_queue = NULL;
1977 		local_irq_enable();
1978 
1979 		while (head) {
1980 			struct Qdisc *q = head;
1981 			spinlock_t *root_lock;
1982 
1983 			head = head->next_sched;
1984 
1985 			root_lock = qdisc_lock(q);
1986 			if (spin_trylock(root_lock)) {
1987 				smp_mb__before_clear_bit();
1988 				clear_bit(__QDISC_STATE_SCHED,
1989 					  &q->state);
1990 				qdisc_run(q);
1991 				spin_unlock(root_lock);
1992 			} else {
1993 				if (!test_bit(__QDISC_STATE_DEACTIVATED,
1994 					      &q->state)) {
1995 					__netif_reschedule(q);
1996 				} else {
1997 					smp_mb__before_clear_bit();
1998 					clear_bit(__QDISC_STATE_SCHED,
1999 						  &q->state);
2000 				}
2001 			}
2002 		}
2003 	}
2004 }
2005 
2006 static inline int deliver_skb(struct sk_buff *skb,
2007 			      struct packet_type *pt_prev,
2008 			      struct net_device *orig_dev)
2009 {
2010 	atomic_inc(&skb->users);
2011 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2012 }
2013 
2014 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
2015 /* These hooks defined here for ATM */
2016 struct net_bridge;
2017 struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br,
2018 						unsigned char *addr);
2019 void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent) __read_mostly;
2020 
2021 /*
2022  * If bridge module is loaded call bridging hook.
2023  *  returns NULL if packet was consumed.
2024  */
2025 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
2026 					struct sk_buff *skb) __read_mostly;
2027 static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
2028 					    struct packet_type **pt_prev, int *ret,
2029 					    struct net_device *orig_dev)
2030 {
2031 	struct net_bridge_port *port;
2032 
2033 	if (skb->pkt_type == PACKET_LOOPBACK ||
2034 	    (port = rcu_dereference(skb->dev->br_port)) == NULL)
2035 		return skb;
2036 
2037 	if (*pt_prev) {
2038 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
2039 		*pt_prev = NULL;
2040 	}
2041 
2042 	return br_handle_frame_hook(port, skb);
2043 }
2044 #else
2045 #define handle_bridge(skb, pt_prev, ret, orig_dev)	(skb)
2046 #endif
2047 
2048 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
2049 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
2050 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
2051 
2052 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
2053 					     struct packet_type **pt_prev,
2054 					     int *ret,
2055 					     struct net_device *orig_dev)
2056 {
2057 	if (skb->dev->macvlan_port == NULL)
2058 		return skb;
2059 
2060 	if (*pt_prev) {
2061 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
2062 		*pt_prev = NULL;
2063 	}
2064 	return macvlan_handle_frame_hook(skb);
2065 }
2066 #else
2067 #define handle_macvlan(skb, pt_prev, ret, orig_dev)	(skb)
2068 #endif
2069 
2070 #ifdef CONFIG_NET_CLS_ACT
2071 /* TODO: Maybe we should just force sch_ingress to be compiled in
2072  * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2073  * a compare and 2 stores extra right now if we dont have it on
2074  * but have CONFIG_NET_CLS_ACT
2075  * NOTE: This doesnt stop any functionality; if you dont have
2076  * the ingress scheduler, you just cant add policies on ingress.
2077  *
2078  */
2079 static int ing_filter(struct sk_buff *skb)
2080 {
2081 	struct net_device *dev = skb->dev;
2082 	u32 ttl = G_TC_RTTL(skb->tc_verd);
2083 	struct netdev_queue *rxq;
2084 	int result = TC_ACT_OK;
2085 	struct Qdisc *q;
2086 
2087 	if (MAX_RED_LOOP < ttl++) {
2088 		printk(KERN_WARNING
2089 		       "Redir loop detected Dropping packet (%d->%d)\n",
2090 		       skb->iif, dev->ifindex);
2091 		return TC_ACT_SHOT;
2092 	}
2093 
2094 	skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2095 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2096 
2097 	rxq = &dev->rx_queue;
2098 
2099 	q = rxq->qdisc;
2100 	if (q != &noop_qdisc) {
2101 		spin_lock(qdisc_lock(q));
2102 		if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2103 			result = qdisc_enqueue_root(skb, q);
2104 		spin_unlock(qdisc_lock(q));
2105 	}
2106 
2107 	return result;
2108 }
2109 
2110 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2111 					 struct packet_type **pt_prev,
2112 					 int *ret, struct net_device *orig_dev)
2113 {
2114 	if (skb->dev->rx_queue.qdisc == &noop_qdisc)
2115 		goto out;
2116 
2117 	if (*pt_prev) {
2118 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
2119 		*pt_prev = NULL;
2120 	} else {
2121 		/* Huh? Why does turning on AF_PACKET affect this? */
2122 		skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
2123 	}
2124 
2125 	switch (ing_filter(skb)) {
2126 	case TC_ACT_SHOT:
2127 	case TC_ACT_STOLEN:
2128 		kfree_skb(skb);
2129 		return NULL;
2130 	}
2131 
2132 out:
2133 	skb->tc_verd = 0;
2134 	return skb;
2135 }
2136 #endif
2137 
2138 /*
2139  * 	netif_nit_deliver - deliver received packets to network taps
2140  * 	@skb: buffer
2141  *
2142  * 	This function is used to deliver incoming packets to network
2143  * 	taps. It should be used when the normal netif_receive_skb path
2144  * 	is bypassed, for example because of VLAN acceleration.
2145  */
2146 void netif_nit_deliver(struct sk_buff *skb)
2147 {
2148 	struct packet_type *ptype;
2149 
2150 	if (list_empty(&ptype_all))
2151 		return;
2152 
2153 	skb_reset_network_header(skb);
2154 	skb_reset_transport_header(skb);
2155 	skb->mac_len = skb->network_header - skb->mac_header;
2156 
2157 	rcu_read_lock();
2158 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
2159 		if (!ptype->dev || ptype->dev == skb->dev)
2160 			deliver_skb(skb, ptype, skb->dev);
2161 	}
2162 	rcu_read_unlock();
2163 }
2164 
2165 /**
2166  *	netif_receive_skb - process receive buffer from network
2167  *	@skb: buffer to process
2168  *
2169  *	netif_receive_skb() is the main receive data processing function.
2170  *	It always succeeds. The buffer may be dropped during processing
2171  *	for congestion control or by the protocol layers.
2172  *
2173  *	This function may only be called from softirq context and interrupts
2174  *	should be enabled.
2175  *
2176  *	Return values (usually ignored):
2177  *	NET_RX_SUCCESS: no congestion
2178  *	NET_RX_DROP: packet was dropped
2179  */
2180 int netif_receive_skb(struct sk_buff *skb)
2181 {
2182 	struct packet_type *ptype, *pt_prev;
2183 	struct net_device *orig_dev;
2184 	struct net_device *null_or_orig;
2185 	int ret = NET_RX_DROP;
2186 	__be16 type;
2187 
2188 	/* if we've gotten here through NAPI, check netpoll */
2189 	if (netpoll_receive_skb(skb))
2190 		return NET_RX_DROP;
2191 
2192 	if (!skb->tstamp.tv64)
2193 		net_timestamp(skb);
2194 
2195 	if (!skb->iif)
2196 		skb->iif = skb->dev->ifindex;
2197 
2198 	null_or_orig = NULL;
2199 	orig_dev = skb->dev;
2200 	if (orig_dev->master) {
2201 		if (skb_bond_should_drop(skb))
2202 			null_or_orig = orig_dev; /* deliver only exact match */
2203 		else
2204 			skb->dev = orig_dev->master;
2205 	}
2206 
2207 	__get_cpu_var(netdev_rx_stat).total++;
2208 
2209 	skb_reset_network_header(skb);
2210 	skb_reset_transport_header(skb);
2211 	skb->mac_len = skb->network_header - skb->mac_header;
2212 
2213 	pt_prev = NULL;
2214 
2215 	rcu_read_lock();
2216 
2217 	/* Don't receive packets in an exiting network namespace */
2218 	if (!net_alive(dev_net(skb->dev)))
2219 		goto out;
2220 
2221 #ifdef CONFIG_NET_CLS_ACT
2222 	if (skb->tc_verd & TC_NCLS) {
2223 		skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2224 		goto ncls;
2225 	}
2226 #endif
2227 
2228 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
2229 		if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2230 		    ptype->dev == orig_dev) {
2231 			if (pt_prev)
2232 				ret = deliver_skb(skb, pt_prev, orig_dev);
2233 			pt_prev = ptype;
2234 		}
2235 	}
2236 
2237 #ifdef CONFIG_NET_CLS_ACT
2238 	skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2239 	if (!skb)
2240 		goto out;
2241 ncls:
2242 #endif
2243 
2244 	skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2245 	if (!skb)
2246 		goto out;
2247 	skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2248 	if (!skb)
2249 		goto out;
2250 
2251 	type = skb->protocol;
2252 	list_for_each_entry_rcu(ptype,
2253 			&ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2254 		if (ptype->type == type &&
2255 		    (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2256 		     ptype->dev == orig_dev)) {
2257 			if (pt_prev)
2258 				ret = deliver_skb(skb, pt_prev, orig_dev);
2259 			pt_prev = ptype;
2260 		}
2261 	}
2262 
2263 	if (pt_prev) {
2264 		ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2265 	} else {
2266 		kfree_skb(skb);
2267 		/* Jamal, now you will not able to escape explaining
2268 		 * me how you were going to use this. :-)
2269 		 */
2270 		ret = NET_RX_DROP;
2271 	}
2272 
2273 out:
2274 	rcu_read_unlock();
2275 	return ret;
2276 }
2277 
2278 /* Network device is going away, flush any packets still pending  */
2279 static void flush_backlog(void *arg)
2280 {
2281 	struct net_device *dev = arg;
2282 	struct softnet_data *queue = &__get_cpu_var(softnet_data);
2283 	struct sk_buff *skb, *tmp;
2284 
2285 	skb_queue_walk_safe(&queue->input_pkt_queue, skb, tmp)
2286 		if (skb->dev == dev) {
2287 			__skb_unlink(skb, &queue->input_pkt_queue);
2288 			kfree_skb(skb);
2289 		}
2290 }
2291 
2292 static int process_backlog(struct napi_struct *napi, int quota)
2293 {
2294 	int work = 0;
2295 	struct softnet_data *queue = &__get_cpu_var(softnet_data);
2296 	unsigned long start_time = jiffies;
2297 
2298 	napi->weight = weight_p;
2299 	do {
2300 		struct sk_buff *skb;
2301 
2302 		local_irq_disable();
2303 		skb = __skb_dequeue(&queue->input_pkt_queue);
2304 		if (!skb) {
2305 			__napi_complete(napi);
2306 			local_irq_enable();
2307 			break;
2308 		}
2309 		local_irq_enable();
2310 
2311 		netif_receive_skb(skb);
2312 	} while (++work < quota && jiffies == start_time);
2313 
2314 	return work;
2315 }
2316 
2317 /**
2318  * __napi_schedule - schedule for receive
2319  * @n: entry to schedule
2320  *
2321  * The entry's receive function will be scheduled to run
2322  */
2323 void __napi_schedule(struct napi_struct *n)
2324 {
2325 	unsigned long flags;
2326 
2327 	local_irq_save(flags);
2328 	list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
2329 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
2330 	local_irq_restore(flags);
2331 }
2332 EXPORT_SYMBOL(__napi_schedule);
2333 
2334 
2335 static void net_rx_action(struct softirq_action *h)
2336 {
2337 	struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
2338 	unsigned long start_time = jiffies;
2339 	int budget = netdev_budget;
2340 	void *have;
2341 
2342 	local_irq_disable();
2343 
2344 	while (!list_empty(list)) {
2345 		struct napi_struct *n;
2346 		int work, weight;
2347 
2348 		/* If softirq window is exhuasted then punt.
2349 		 *
2350 		 * Note that this is a slight policy change from the
2351 		 * previous NAPI code, which would allow up to 2
2352 		 * jiffies to pass before breaking out.  The test
2353 		 * used to be "jiffies - start_time > 1".
2354 		 */
2355 		if (unlikely(budget <= 0 || jiffies != start_time))
2356 			goto softnet_break;
2357 
2358 		local_irq_enable();
2359 
2360 		/* Even though interrupts have been re-enabled, this
2361 		 * access is safe because interrupts can only add new
2362 		 * entries to the tail of this list, and only ->poll()
2363 		 * calls can remove this head entry from the list.
2364 		 */
2365 		n = list_entry(list->next, struct napi_struct, poll_list);
2366 
2367 		have = netpoll_poll_lock(n);
2368 
2369 		weight = n->weight;
2370 
2371 		/* This NAPI_STATE_SCHED test is for avoiding a race
2372 		 * with netpoll's poll_napi().  Only the entity which
2373 		 * obtains the lock and sees NAPI_STATE_SCHED set will
2374 		 * actually make the ->poll() call.  Therefore we avoid
2375 		 * accidently calling ->poll() when NAPI is not scheduled.
2376 		 */
2377 		work = 0;
2378 		if (test_bit(NAPI_STATE_SCHED, &n->state))
2379 			work = n->poll(n, weight);
2380 
2381 		WARN_ON_ONCE(work > weight);
2382 
2383 		budget -= work;
2384 
2385 		local_irq_disable();
2386 
2387 		/* Drivers must not modify the NAPI state if they
2388 		 * consume the entire weight.  In such cases this code
2389 		 * still "owns" the NAPI instance and therefore can
2390 		 * move the instance around on the list at-will.
2391 		 */
2392 		if (unlikely(work == weight)) {
2393 			if (unlikely(napi_disable_pending(n)))
2394 				__napi_complete(n);
2395 			else
2396 				list_move_tail(&n->poll_list, list);
2397 		}
2398 
2399 		netpoll_poll_unlock(have);
2400 	}
2401 out:
2402 	local_irq_enable();
2403 
2404 #ifdef CONFIG_NET_DMA
2405 	/*
2406 	 * There may not be any more sk_buffs coming right now, so push
2407 	 * any pending DMA copies to hardware
2408 	 */
2409 	if (!cpus_empty(net_dma.channel_mask)) {
2410 		int chan_idx;
2411 		for_each_cpu_mask_nr(chan_idx, net_dma.channel_mask) {
2412 			struct dma_chan *chan = net_dma.channels[chan_idx];
2413 			if (chan)
2414 				dma_async_memcpy_issue_pending(chan);
2415 		}
2416 	}
2417 #endif
2418 
2419 	return;
2420 
2421 softnet_break:
2422 	__get_cpu_var(netdev_rx_stat).time_squeeze++;
2423 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
2424 	goto out;
2425 }
2426 
2427 static gifconf_func_t * gifconf_list [NPROTO];
2428 
2429 /**
2430  *	register_gifconf	-	register a SIOCGIF handler
2431  *	@family: Address family
2432  *	@gifconf: Function handler
2433  *
2434  *	Register protocol dependent address dumping routines. The handler
2435  *	that is passed must not be freed or reused until it has been replaced
2436  *	by another handler.
2437  */
2438 int register_gifconf(unsigned int family, gifconf_func_t * gifconf)
2439 {
2440 	if (family >= NPROTO)
2441 		return -EINVAL;
2442 	gifconf_list[family] = gifconf;
2443 	return 0;
2444 }
2445 
2446 
2447 /*
2448  *	Map an interface index to its name (SIOCGIFNAME)
2449  */
2450 
2451 /*
2452  *	We need this ioctl for efficient implementation of the
2453  *	if_indextoname() function required by the IPv6 API.  Without
2454  *	it, we would have to search all the interfaces to find a
2455  *	match.  --pb
2456  */
2457 
2458 static int dev_ifname(struct net *net, struct ifreq __user *arg)
2459 {
2460 	struct net_device *dev;
2461 	struct ifreq ifr;
2462 
2463 	/*
2464 	 *	Fetch the caller's info block.
2465 	 */
2466 
2467 	if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
2468 		return -EFAULT;
2469 
2470 	read_lock(&dev_base_lock);
2471 	dev = __dev_get_by_index(net, ifr.ifr_ifindex);
2472 	if (!dev) {
2473 		read_unlock(&dev_base_lock);
2474 		return -ENODEV;
2475 	}
2476 
2477 	strcpy(ifr.ifr_name, dev->name);
2478 	read_unlock(&dev_base_lock);
2479 
2480 	if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
2481 		return -EFAULT;
2482 	return 0;
2483 }
2484 
2485 /*
2486  *	Perform a SIOCGIFCONF call. This structure will change
2487  *	size eventually, and there is nothing I can do about it.
2488  *	Thus we will need a 'compatibility mode'.
2489  */
2490 
2491 static int dev_ifconf(struct net *net, char __user *arg)
2492 {
2493 	struct ifconf ifc;
2494 	struct net_device *dev;
2495 	char __user *pos;
2496 	int len;
2497 	int total;
2498 	int i;
2499 
2500 	/*
2501 	 *	Fetch the caller's info block.
2502 	 */
2503 
2504 	if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
2505 		return -EFAULT;
2506 
2507 	pos = ifc.ifc_buf;
2508 	len = ifc.ifc_len;
2509 
2510 	/*
2511 	 *	Loop over the interfaces, and write an info block for each.
2512 	 */
2513 
2514 	total = 0;
2515 	for_each_netdev(net, dev) {
2516 		for (i = 0; i < NPROTO; i++) {
2517 			if (gifconf_list[i]) {
2518 				int done;
2519 				if (!pos)
2520 					done = gifconf_list[i](dev, NULL, 0);
2521 				else
2522 					done = gifconf_list[i](dev, pos + total,
2523 							       len - total);
2524 				if (done < 0)
2525 					return -EFAULT;
2526 				total += done;
2527 			}
2528 		}
2529 	}
2530 
2531 	/*
2532 	 *	All done.  Write the updated control block back to the caller.
2533 	 */
2534 	ifc.ifc_len = total;
2535 
2536 	/*
2537 	 * 	Both BSD and Solaris return 0 here, so we do too.
2538 	 */
2539 	return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
2540 }
2541 
2542 #ifdef CONFIG_PROC_FS
2543 /*
2544  *	This is invoked by the /proc filesystem handler to display a device
2545  *	in detail.
2546  */
2547 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
2548 	__acquires(dev_base_lock)
2549 {
2550 	struct net *net = seq_file_net(seq);
2551 	loff_t off;
2552 	struct net_device *dev;
2553 
2554 	read_lock(&dev_base_lock);
2555 	if (!*pos)
2556 		return SEQ_START_TOKEN;
2557 
2558 	off = 1;
2559 	for_each_netdev(net, dev)
2560 		if (off++ == *pos)
2561 			return dev;
2562 
2563 	return NULL;
2564 }
2565 
2566 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2567 {
2568 	struct net *net = seq_file_net(seq);
2569 	++*pos;
2570 	return v == SEQ_START_TOKEN ?
2571 		first_net_device(net) : next_net_device((struct net_device *)v);
2572 }
2573 
2574 void dev_seq_stop(struct seq_file *seq, void *v)
2575 	__releases(dev_base_lock)
2576 {
2577 	read_unlock(&dev_base_lock);
2578 }
2579 
2580 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
2581 {
2582 	struct net_device_stats *stats = dev->get_stats(dev);
2583 
2584 	seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
2585 		   "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
2586 		   dev->name, stats->rx_bytes, stats->rx_packets,
2587 		   stats->rx_errors,
2588 		   stats->rx_dropped + stats->rx_missed_errors,
2589 		   stats->rx_fifo_errors,
2590 		   stats->rx_length_errors + stats->rx_over_errors +
2591 		    stats->rx_crc_errors + stats->rx_frame_errors,
2592 		   stats->rx_compressed, stats->multicast,
2593 		   stats->tx_bytes, stats->tx_packets,
2594 		   stats->tx_errors, stats->tx_dropped,
2595 		   stats->tx_fifo_errors, stats->collisions,
2596 		   stats->tx_carrier_errors +
2597 		    stats->tx_aborted_errors +
2598 		    stats->tx_window_errors +
2599 		    stats->tx_heartbeat_errors,
2600 		   stats->tx_compressed);
2601 }
2602 
2603 /*
2604  *	Called from the PROCfs module. This now uses the new arbitrary sized
2605  *	/proc/net interface to create /proc/net/dev
2606  */
2607 static int dev_seq_show(struct seq_file *seq, void *v)
2608 {
2609 	if (v == SEQ_START_TOKEN)
2610 		seq_puts(seq, "Inter-|   Receive                            "
2611 			      "                    |  Transmit\n"
2612 			      " face |bytes    packets errs drop fifo frame "
2613 			      "compressed multicast|bytes    packets errs "
2614 			      "drop fifo colls carrier compressed\n");
2615 	else
2616 		dev_seq_printf_stats(seq, v);
2617 	return 0;
2618 }
2619 
2620 static struct netif_rx_stats *softnet_get_online(loff_t *pos)
2621 {
2622 	struct netif_rx_stats *rc = NULL;
2623 
2624 	while (*pos < nr_cpu_ids)
2625 		if (cpu_online(*pos)) {
2626 			rc = &per_cpu(netdev_rx_stat, *pos);
2627 			break;
2628 		} else
2629 			++*pos;
2630 	return rc;
2631 }
2632 
2633 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
2634 {
2635 	return softnet_get_online(pos);
2636 }
2637 
2638 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2639 {
2640 	++*pos;
2641 	return softnet_get_online(pos);
2642 }
2643 
2644 static void softnet_seq_stop(struct seq_file *seq, void *v)
2645 {
2646 }
2647 
2648 static int softnet_seq_show(struct seq_file *seq, void *v)
2649 {
2650 	struct netif_rx_stats *s = v;
2651 
2652 	seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
2653 		   s->total, s->dropped, s->time_squeeze, 0,
2654 		   0, 0, 0, 0, /* was fastroute */
2655 		   s->cpu_collision );
2656 	return 0;
2657 }
2658 
2659 static const struct seq_operations dev_seq_ops = {
2660 	.start = dev_seq_start,
2661 	.next  = dev_seq_next,
2662 	.stop  = dev_seq_stop,
2663 	.show  = dev_seq_show,
2664 };
2665 
2666 static int dev_seq_open(struct inode *inode, struct file *file)
2667 {
2668 	return seq_open_net(inode, file, &dev_seq_ops,
2669 			    sizeof(struct seq_net_private));
2670 }
2671 
2672 static const struct file_operations dev_seq_fops = {
2673 	.owner	 = THIS_MODULE,
2674 	.open    = dev_seq_open,
2675 	.read    = seq_read,
2676 	.llseek  = seq_lseek,
2677 	.release = seq_release_net,
2678 };
2679 
2680 static const struct seq_operations softnet_seq_ops = {
2681 	.start = softnet_seq_start,
2682 	.next  = softnet_seq_next,
2683 	.stop  = softnet_seq_stop,
2684 	.show  = softnet_seq_show,
2685 };
2686 
2687 static int softnet_seq_open(struct inode *inode, struct file *file)
2688 {
2689 	return seq_open(file, &softnet_seq_ops);
2690 }
2691 
2692 static const struct file_operations softnet_seq_fops = {
2693 	.owner	 = THIS_MODULE,
2694 	.open    = softnet_seq_open,
2695 	.read    = seq_read,
2696 	.llseek  = seq_lseek,
2697 	.release = seq_release,
2698 };
2699 
2700 static void *ptype_get_idx(loff_t pos)
2701 {
2702 	struct packet_type *pt = NULL;
2703 	loff_t i = 0;
2704 	int t;
2705 
2706 	list_for_each_entry_rcu(pt, &ptype_all, list) {
2707 		if (i == pos)
2708 			return pt;
2709 		++i;
2710 	}
2711 
2712 	for (t = 0; t < PTYPE_HASH_SIZE; t++) {
2713 		list_for_each_entry_rcu(pt, &ptype_base[t], list) {
2714 			if (i == pos)
2715 				return pt;
2716 			++i;
2717 		}
2718 	}
2719 	return NULL;
2720 }
2721 
2722 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
2723 	__acquires(RCU)
2724 {
2725 	rcu_read_lock();
2726 	return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
2727 }
2728 
2729 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2730 {
2731 	struct packet_type *pt;
2732 	struct list_head *nxt;
2733 	int hash;
2734 
2735 	++*pos;
2736 	if (v == SEQ_START_TOKEN)
2737 		return ptype_get_idx(0);
2738 
2739 	pt = v;
2740 	nxt = pt->list.next;
2741 	if (pt->type == htons(ETH_P_ALL)) {
2742 		if (nxt != &ptype_all)
2743 			goto found;
2744 		hash = 0;
2745 		nxt = ptype_base[0].next;
2746 	} else
2747 		hash = ntohs(pt->type) & PTYPE_HASH_MASK;
2748 
2749 	while (nxt == &ptype_base[hash]) {
2750 		if (++hash >= PTYPE_HASH_SIZE)
2751 			return NULL;
2752 		nxt = ptype_base[hash].next;
2753 	}
2754 found:
2755 	return list_entry(nxt, struct packet_type, list);
2756 }
2757 
2758 static void ptype_seq_stop(struct seq_file *seq, void *v)
2759 	__releases(RCU)
2760 {
2761 	rcu_read_unlock();
2762 }
2763 
2764 static void ptype_seq_decode(struct seq_file *seq, void *sym)
2765 {
2766 #ifdef CONFIG_KALLSYMS
2767 	unsigned long offset = 0, symsize;
2768 	const char *symname;
2769 	char *modname;
2770 	char namebuf[128];
2771 
2772 	symname = kallsyms_lookup((unsigned long)sym, &symsize, &offset,
2773 				  &modname, namebuf);
2774 
2775 	if (symname) {
2776 		char *delim = ":";
2777 
2778 		if (!modname)
2779 			modname = delim = "";
2780 		seq_printf(seq, "%s%s%s%s+0x%lx", delim, modname, delim,
2781 			   symname, offset);
2782 		return;
2783 	}
2784 #endif
2785 
2786 	seq_printf(seq, "[%p]", sym);
2787 }
2788 
2789 static int ptype_seq_show(struct seq_file *seq, void *v)
2790 {
2791 	struct packet_type *pt = v;
2792 
2793 	if (v == SEQ_START_TOKEN)
2794 		seq_puts(seq, "Type Device      Function\n");
2795 	else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
2796 		if (pt->type == htons(ETH_P_ALL))
2797 			seq_puts(seq, "ALL ");
2798 		else
2799 			seq_printf(seq, "%04x", ntohs(pt->type));
2800 
2801 		seq_printf(seq, " %-8s ",
2802 			   pt->dev ? pt->dev->name : "");
2803 		ptype_seq_decode(seq,  pt->func);
2804 		seq_putc(seq, '\n');
2805 	}
2806 
2807 	return 0;
2808 }
2809 
2810 static const struct seq_operations ptype_seq_ops = {
2811 	.start = ptype_seq_start,
2812 	.next  = ptype_seq_next,
2813 	.stop  = ptype_seq_stop,
2814 	.show  = ptype_seq_show,
2815 };
2816 
2817 static int ptype_seq_open(struct inode *inode, struct file *file)
2818 {
2819 	return seq_open_net(inode, file, &ptype_seq_ops,
2820 			sizeof(struct seq_net_private));
2821 }
2822 
2823 static const struct file_operations ptype_seq_fops = {
2824 	.owner	 = THIS_MODULE,
2825 	.open    = ptype_seq_open,
2826 	.read    = seq_read,
2827 	.llseek  = seq_lseek,
2828 	.release = seq_release_net,
2829 };
2830 
2831 
2832 static int __net_init dev_proc_net_init(struct net *net)
2833 {
2834 	int rc = -ENOMEM;
2835 
2836 	if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
2837 		goto out;
2838 	if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
2839 		goto out_dev;
2840 	if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
2841 		goto out_softnet;
2842 
2843 	if (wext_proc_init(net))
2844 		goto out_ptype;
2845 	rc = 0;
2846 out:
2847 	return rc;
2848 out_ptype:
2849 	proc_net_remove(net, "ptype");
2850 out_softnet:
2851 	proc_net_remove(net, "softnet_stat");
2852 out_dev:
2853 	proc_net_remove(net, "dev");
2854 	goto out;
2855 }
2856 
2857 static void __net_exit dev_proc_net_exit(struct net *net)
2858 {
2859 	wext_proc_exit(net);
2860 
2861 	proc_net_remove(net, "ptype");
2862 	proc_net_remove(net, "softnet_stat");
2863 	proc_net_remove(net, "dev");
2864 }
2865 
2866 static struct pernet_operations __net_initdata dev_proc_ops = {
2867 	.init = dev_proc_net_init,
2868 	.exit = dev_proc_net_exit,
2869 };
2870 
2871 static int __init dev_proc_init(void)
2872 {
2873 	return register_pernet_subsys(&dev_proc_ops);
2874 }
2875 #else
2876 #define dev_proc_init() 0
2877 #endif	/* CONFIG_PROC_FS */
2878 
2879 
2880 /**
2881  *	netdev_set_master	-	set up master/slave pair
2882  *	@slave: slave device
2883  *	@master: new master device
2884  *
2885  *	Changes the master device of the slave. Pass %NULL to break the
2886  *	bonding. The caller must hold the RTNL semaphore. On a failure
2887  *	a negative errno code is returned. On success the reference counts
2888  *	are adjusted, %RTM_NEWLINK is sent to the routing socket and the
2889  *	function returns zero.
2890  */
2891 int netdev_set_master(struct net_device *slave, struct net_device *master)
2892 {
2893 	struct net_device *old = slave->master;
2894 
2895 	ASSERT_RTNL();
2896 
2897 	if (master) {
2898 		if (old)
2899 			return -EBUSY;
2900 		dev_hold(master);
2901 	}
2902 
2903 	slave->master = master;
2904 
2905 	synchronize_net();
2906 
2907 	if (old)
2908 		dev_put(old);
2909 
2910 	if (master)
2911 		slave->flags |= IFF_SLAVE;
2912 	else
2913 		slave->flags &= ~IFF_SLAVE;
2914 
2915 	rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
2916 	return 0;
2917 }
2918 
2919 static int __dev_set_promiscuity(struct net_device *dev, int inc)
2920 {
2921 	unsigned short old_flags = dev->flags;
2922 
2923 	ASSERT_RTNL();
2924 
2925 	dev->flags |= IFF_PROMISC;
2926 	dev->promiscuity += inc;
2927 	if (dev->promiscuity == 0) {
2928 		/*
2929 		 * Avoid overflow.
2930 		 * If inc causes overflow, untouch promisc and return error.
2931 		 */
2932 		if (inc < 0)
2933 			dev->flags &= ~IFF_PROMISC;
2934 		else {
2935 			dev->promiscuity -= inc;
2936 			printk(KERN_WARNING "%s: promiscuity touches roof, "
2937 				"set promiscuity failed, promiscuity feature "
2938 				"of device might be broken.\n", dev->name);
2939 			return -EOVERFLOW;
2940 		}
2941 	}
2942 	if (dev->flags != old_flags) {
2943 		printk(KERN_INFO "device %s %s promiscuous mode\n",
2944 		       dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
2945 							       "left");
2946 		if (audit_enabled)
2947 			audit_log(current->audit_context, GFP_ATOMIC,
2948 				AUDIT_ANOM_PROMISCUOUS,
2949 				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
2950 				dev->name, (dev->flags & IFF_PROMISC),
2951 				(old_flags & IFF_PROMISC),
2952 				audit_get_loginuid(current),
2953 				current->uid, current->gid,
2954 				audit_get_sessionid(current));
2955 
2956 		if (dev->change_rx_flags)
2957 			dev->change_rx_flags(dev, IFF_PROMISC);
2958 	}
2959 	return 0;
2960 }
2961 
2962 /**
2963  *	dev_set_promiscuity	- update promiscuity count on a device
2964  *	@dev: device
2965  *	@inc: modifier
2966  *
2967  *	Add or remove promiscuity from a device. While the count in the device
2968  *	remains above zero the interface remains promiscuous. Once it hits zero
2969  *	the device reverts back to normal filtering operation. A negative inc
2970  *	value is used to drop promiscuity on the device.
2971  *	Return 0 if successful or a negative errno code on error.
2972  */
2973 int dev_set_promiscuity(struct net_device *dev, int inc)
2974 {
2975 	unsigned short old_flags = dev->flags;
2976 	int err;
2977 
2978 	err = __dev_set_promiscuity(dev, inc);
2979 	if (err < 0)
2980 		return err;
2981 	if (dev->flags != old_flags)
2982 		dev_set_rx_mode(dev);
2983 	return err;
2984 }
2985 
2986 /**
2987  *	dev_set_allmulti	- update allmulti count on a device
2988  *	@dev: device
2989  *	@inc: modifier
2990  *
2991  *	Add or remove reception of all multicast frames to a device. While the
2992  *	count in the device remains above zero the interface remains listening
2993  *	to all interfaces. Once it hits zero the device reverts back to normal
2994  *	filtering operation. A negative @inc value is used to drop the counter
2995  *	when releasing a resource needing all multicasts.
2996  *	Return 0 if successful or a negative errno code on error.
2997  */
2998 
2999 int dev_set_allmulti(struct net_device *dev, int inc)
3000 {
3001 	unsigned short old_flags = dev->flags;
3002 
3003 	ASSERT_RTNL();
3004 
3005 	dev->flags |= IFF_ALLMULTI;
3006 	dev->allmulti += inc;
3007 	if (dev->allmulti == 0) {
3008 		/*
3009 		 * Avoid overflow.
3010 		 * If inc causes overflow, untouch allmulti and return error.
3011 		 */
3012 		if (inc < 0)
3013 			dev->flags &= ~IFF_ALLMULTI;
3014 		else {
3015 			dev->allmulti -= inc;
3016 			printk(KERN_WARNING "%s: allmulti touches roof, "
3017 				"set allmulti failed, allmulti feature of "
3018 				"device might be broken.\n", dev->name);
3019 			return -EOVERFLOW;
3020 		}
3021 	}
3022 	if (dev->flags ^ old_flags) {
3023 		if (dev->change_rx_flags)
3024 			dev->change_rx_flags(dev, IFF_ALLMULTI);
3025 		dev_set_rx_mode(dev);
3026 	}
3027 	return 0;
3028 }
3029 
3030 /*
3031  *	Upload unicast and multicast address lists to device and
3032  *	configure RX filtering. When the device doesn't support unicast
3033  *	filtering it is put in promiscuous mode while unicast addresses
3034  *	are present.
3035  */
3036 void __dev_set_rx_mode(struct net_device *dev)
3037 {
3038 	/* dev_open will call this function so the list will stay sane. */
3039 	if (!(dev->flags&IFF_UP))
3040 		return;
3041 
3042 	if (!netif_device_present(dev))
3043 		return;
3044 
3045 	if (dev->set_rx_mode)
3046 		dev->set_rx_mode(dev);
3047 	else {
3048 		/* Unicast addresses changes may only happen under the rtnl,
3049 		 * therefore calling __dev_set_promiscuity here is safe.
3050 		 */
3051 		if (dev->uc_count > 0 && !dev->uc_promisc) {
3052 			__dev_set_promiscuity(dev, 1);
3053 			dev->uc_promisc = 1;
3054 		} else if (dev->uc_count == 0 && dev->uc_promisc) {
3055 			__dev_set_promiscuity(dev, -1);
3056 			dev->uc_promisc = 0;
3057 		}
3058 
3059 		if (dev->set_multicast_list)
3060 			dev->set_multicast_list(dev);
3061 	}
3062 }
3063 
3064 void dev_set_rx_mode(struct net_device *dev)
3065 {
3066 	netif_addr_lock_bh(dev);
3067 	__dev_set_rx_mode(dev);
3068 	netif_addr_unlock_bh(dev);
3069 }
3070 
3071 int __dev_addr_delete(struct dev_addr_list **list, int *count,
3072 		      void *addr, int alen, int glbl)
3073 {
3074 	struct dev_addr_list *da;
3075 
3076 	for (; (da = *list) != NULL; list = &da->next) {
3077 		if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3078 		    alen == da->da_addrlen) {
3079 			if (glbl) {
3080 				int old_glbl = da->da_gusers;
3081 				da->da_gusers = 0;
3082 				if (old_glbl == 0)
3083 					break;
3084 			}
3085 			if (--da->da_users)
3086 				return 0;
3087 
3088 			*list = da->next;
3089 			kfree(da);
3090 			(*count)--;
3091 			return 0;
3092 		}
3093 	}
3094 	return -ENOENT;
3095 }
3096 
3097 int __dev_addr_add(struct dev_addr_list **list, int *count,
3098 		   void *addr, int alen, int glbl)
3099 {
3100 	struct dev_addr_list *da;
3101 
3102 	for (da = *list; da != NULL; da = da->next) {
3103 		if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3104 		    da->da_addrlen == alen) {
3105 			if (glbl) {
3106 				int old_glbl = da->da_gusers;
3107 				da->da_gusers = 1;
3108 				if (old_glbl)
3109 					return 0;
3110 			}
3111 			da->da_users++;
3112 			return 0;
3113 		}
3114 	}
3115 
3116 	da = kzalloc(sizeof(*da), GFP_ATOMIC);
3117 	if (da == NULL)
3118 		return -ENOMEM;
3119 	memcpy(da->da_addr, addr, alen);
3120 	da->da_addrlen = alen;
3121 	da->da_users = 1;
3122 	da->da_gusers = glbl ? 1 : 0;
3123 	da->next = *list;
3124 	*list = da;
3125 	(*count)++;
3126 	return 0;
3127 }
3128 
3129 /**
3130  *	dev_unicast_delete	- Release secondary unicast address.
3131  *	@dev: device
3132  *	@addr: address to delete
3133  *	@alen: length of @addr
3134  *
3135  *	Release reference to a secondary unicast address and remove it
3136  *	from the device if the reference count drops to zero.
3137  *
3138  * 	The caller must hold the rtnl_mutex.
3139  */
3140 int dev_unicast_delete(struct net_device *dev, void *addr, int alen)
3141 {
3142 	int err;
3143 
3144 	ASSERT_RTNL();
3145 
3146 	netif_addr_lock_bh(dev);
3147 	err = __dev_addr_delete(&dev->uc_list, &dev->uc_count, addr, alen, 0);
3148 	if (!err)
3149 		__dev_set_rx_mode(dev);
3150 	netif_addr_unlock_bh(dev);
3151 	return err;
3152 }
3153 EXPORT_SYMBOL(dev_unicast_delete);
3154 
3155 /**
3156  *	dev_unicast_add		- add a secondary unicast address
3157  *	@dev: device
3158  *	@addr: address to add
3159  *	@alen: length of @addr
3160  *
3161  *	Add a secondary unicast address to the device or increase
3162  *	the reference count if it already exists.
3163  *
3164  *	The caller must hold the rtnl_mutex.
3165  */
3166 int dev_unicast_add(struct net_device *dev, void *addr, int alen)
3167 {
3168 	int err;
3169 
3170 	ASSERT_RTNL();
3171 
3172 	netif_addr_lock_bh(dev);
3173 	err = __dev_addr_add(&dev->uc_list, &dev->uc_count, addr, alen, 0);
3174 	if (!err)
3175 		__dev_set_rx_mode(dev);
3176 	netif_addr_unlock_bh(dev);
3177 	return err;
3178 }
3179 EXPORT_SYMBOL(dev_unicast_add);
3180 
3181 int __dev_addr_sync(struct dev_addr_list **to, int *to_count,
3182 		    struct dev_addr_list **from, int *from_count)
3183 {
3184 	struct dev_addr_list *da, *next;
3185 	int err = 0;
3186 
3187 	da = *from;
3188 	while (da != NULL) {
3189 		next = da->next;
3190 		if (!da->da_synced) {
3191 			err = __dev_addr_add(to, to_count,
3192 					     da->da_addr, da->da_addrlen, 0);
3193 			if (err < 0)
3194 				break;
3195 			da->da_synced = 1;
3196 			da->da_users++;
3197 		} else if (da->da_users == 1) {
3198 			__dev_addr_delete(to, to_count,
3199 					  da->da_addr, da->da_addrlen, 0);
3200 			__dev_addr_delete(from, from_count,
3201 					  da->da_addr, da->da_addrlen, 0);
3202 		}
3203 		da = next;
3204 	}
3205 	return err;
3206 }
3207 
3208 void __dev_addr_unsync(struct dev_addr_list **to, int *to_count,
3209 		       struct dev_addr_list **from, int *from_count)
3210 {
3211 	struct dev_addr_list *da, *next;
3212 
3213 	da = *from;
3214 	while (da != NULL) {
3215 		next = da->next;
3216 		if (da->da_synced) {
3217 			__dev_addr_delete(to, to_count,
3218 					  da->da_addr, da->da_addrlen, 0);
3219 			da->da_synced = 0;
3220 			__dev_addr_delete(from, from_count,
3221 					  da->da_addr, da->da_addrlen, 0);
3222 		}
3223 		da = next;
3224 	}
3225 }
3226 
3227 /**
3228  *	dev_unicast_sync - Synchronize device's unicast list to another device
3229  *	@to: destination device
3230  *	@from: source device
3231  *
3232  *	Add newly added addresses to the destination device and release
3233  *	addresses that have no users left. The source device must be
3234  *	locked by netif_tx_lock_bh.
3235  *
3236  *	This function is intended to be called from the dev->set_rx_mode
3237  *	function of layered software devices.
3238  */
3239 int dev_unicast_sync(struct net_device *to, struct net_device *from)
3240 {
3241 	int err = 0;
3242 
3243 	netif_addr_lock_bh(to);
3244 	err = __dev_addr_sync(&to->uc_list, &to->uc_count,
3245 			      &from->uc_list, &from->uc_count);
3246 	if (!err)
3247 		__dev_set_rx_mode(to);
3248 	netif_addr_unlock_bh(to);
3249 	return err;
3250 }
3251 EXPORT_SYMBOL(dev_unicast_sync);
3252 
3253 /**
3254  *	dev_unicast_unsync - Remove synchronized addresses from the destination device
3255  *	@to: destination device
3256  *	@from: source device
3257  *
3258  *	Remove all addresses that were added to the destination device by
3259  *	dev_unicast_sync(). This function is intended to be called from the
3260  *	dev->stop function of layered software devices.
3261  */
3262 void dev_unicast_unsync(struct net_device *to, struct net_device *from)
3263 {
3264 	netif_addr_lock_bh(from);
3265 	netif_addr_lock(to);
3266 
3267 	__dev_addr_unsync(&to->uc_list, &to->uc_count,
3268 			  &from->uc_list, &from->uc_count);
3269 	__dev_set_rx_mode(to);
3270 
3271 	netif_addr_unlock(to);
3272 	netif_addr_unlock_bh(from);
3273 }
3274 EXPORT_SYMBOL(dev_unicast_unsync);
3275 
3276 static void __dev_addr_discard(struct dev_addr_list **list)
3277 {
3278 	struct dev_addr_list *tmp;
3279 
3280 	while (*list != NULL) {
3281 		tmp = *list;
3282 		*list = tmp->next;
3283 		if (tmp->da_users > tmp->da_gusers)
3284 			printk("__dev_addr_discard: address leakage! "
3285 			       "da_users=%d\n", tmp->da_users);
3286 		kfree(tmp);
3287 	}
3288 }
3289 
3290 static void dev_addr_discard(struct net_device *dev)
3291 {
3292 	netif_addr_lock_bh(dev);
3293 
3294 	__dev_addr_discard(&dev->uc_list);
3295 	dev->uc_count = 0;
3296 
3297 	__dev_addr_discard(&dev->mc_list);
3298 	dev->mc_count = 0;
3299 
3300 	netif_addr_unlock_bh(dev);
3301 }
3302 
3303 unsigned dev_get_flags(const struct net_device *dev)
3304 {
3305 	unsigned flags;
3306 
3307 	flags = (dev->flags & ~(IFF_PROMISC |
3308 				IFF_ALLMULTI |
3309 				IFF_RUNNING |
3310 				IFF_LOWER_UP |
3311 				IFF_DORMANT)) |
3312 		(dev->gflags & (IFF_PROMISC |
3313 				IFF_ALLMULTI));
3314 
3315 	if (netif_running(dev)) {
3316 		if (netif_oper_up(dev))
3317 			flags |= IFF_RUNNING;
3318 		if (netif_carrier_ok(dev))
3319 			flags |= IFF_LOWER_UP;
3320 		if (netif_dormant(dev))
3321 			flags |= IFF_DORMANT;
3322 	}
3323 
3324 	return flags;
3325 }
3326 
3327 int dev_change_flags(struct net_device *dev, unsigned flags)
3328 {
3329 	int ret, changes;
3330 	int old_flags = dev->flags;
3331 
3332 	ASSERT_RTNL();
3333 
3334 	/*
3335 	 *	Set the flags on our device.
3336 	 */
3337 
3338 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
3339 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
3340 			       IFF_AUTOMEDIA)) |
3341 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
3342 				    IFF_ALLMULTI));
3343 
3344 	/*
3345 	 *	Load in the correct multicast list now the flags have changed.
3346 	 */
3347 
3348 	if (dev->change_rx_flags && (old_flags ^ flags) & IFF_MULTICAST)
3349 		dev->change_rx_flags(dev, IFF_MULTICAST);
3350 
3351 	dev_set_rx_mode(dev);
3352 
3353 	/*
3354 	 *	Have we downed the interface. We handle IFF_UP ourselves
3355 	 *	according to user attempts to set it, rather than blindly
3356 	 *	setting it.
3357 	 */
3358 
3359 	ret = 0;
3360 	if ((old_flags ^ flags) & IFF_UP) {	/* Bit is different  ? */
3361 		ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev);
3362 
3363 		if (!ret)
3364 			dev_set_rx_mode(dev);
3365 	}
3366 
3367 	if (dev->flags & IFF_UP &&
3368 	    ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI |
3369 					  IFF_VOLATILE)))
3370 		call_netdevice_notifiers(NETDEV_CHANGE, dev);
3371 
3372 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
3373 		int inc = (flags & IFF_PROMISC) ? +1 : -1;
3374 		dev->gflags ^= IFF_PROMISC;
3375 		dev_set_promiscuity(dev, inc);
3376 	}
3377 
3378 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
3379 	   is important. Some (broken) drivers set IFF_PROMISC, when
3380 	   IFF_ALLMULTI is requested not asking us and not reporting.
3381 	 */
3382 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
3383 		int inc = (flags & IFF_ALLMULTI) ? +1 : -1;
3384 		dev->gflags ^= IFF_ALLMULTI;
3385 		dev_set_allmulti(dev, inc);
3386 	}
3387 
3388 	/* Exclude state transition flags, already notified */
3389 	changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING);
3390 	if (changes)
3391 		rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
3392 
3393 	return ret;
3394 }
3395 
3396 int dev_set_mtu(struct net_device *dev, int new_mtu)
3397 {
3398 	int err;
3399 
3400 	if (new_mtu == dev->mtu)
3401 		return 0;
3402 
3403 	/*	MTU must be positive.	 */
3404 	if (new_mtu < 0)
3405 		return -EINVAL;
3406 
3407 	if (!netif_device_present(dev))
3408 		return -ENODEV;
3409 
3410 	err = 0;
3411 	if (dev->change_mtu)
3412 		err = dev->change_mtu(dev, new_mtu);
3413 	else
3414 		dev->mtu = new_mtu;
3415 	if (!err && dev->flags & IFF_UP)
3416 		call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
3417 	return err;
3418 }
3419 
3420 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
3421 {
3422 	int err;
3423 
3424 	if (!dev->set_mac_address)
3425 		return -EOPNOTSUPP;
3426 	if (sa->sa_family != dev->type)
3427 		return -EINVAL;
3428 	if (!netif_device_present(dev))
3429 		return -ENODEV;
3430 	err = dev->set_mac_address(dev, sa);
3431 	if (!err)
3432 		call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3433 	return err;
3434 }
3435 
3436 /*
3437  *	Perform the SIOCxIFxxx calls, inside read_lock(dev_base_lock)
3438  */
3439 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
3440 {
3441 	int err;
3442 	struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3443 
3444 	if (!dev)
3445 		return -ENODEV;
3446 
3447 	switch (cmd) {
3448 		case SIOCGIFFLAGS:	/* Get interface flags */
3449 			ifr->ifr_flags = dev_get_flags(dev);
3450 			return 0;
3451 
3452 		case SIOCGIFMETRIC:	/* Get the metric on the interface
3453 					   (currently unused) */
3454 			ifr->ifr_metric = 0;
3455 			return 0;
3456 
3457 		case SIOCGIFMTU:	/* Get the MTU of a device */
3458 			ifr->ifr_mtu = dev->mtu;
3459 			return 0;
3460 
3461 		case SIOCGIFHWADDR:
3462 			if (!dev->addr_len)
3463 				memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
3464 			else
3465 				memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
3466 				       min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3467 			ifr->ifr_hwaddr.sa_family = dev->type;
3468 			return 0;
3469 
3470 		case SIOCGIFSLAVE:
3471 			err = -EINVAL;
3472 			break;
3473 
3474 		case SIOCGIFMAP:
3475 			ifr->ifr_map.mem_start = dev->mem_start;
3476 			ifr->ifr_map.mem_end   = dev->mem_end;
3477 			ifr->ifr_map.base_addr = dev->base_addr;
3478 			ifr->ifr_map.irq       = dev->irq;
3479 			ifr->ifr_map.dma       = dev->dma;
3480 			ifr->ifr_map.port      = dev->if_port;
3481 			return 0;
3482 
3483 		case SIOCGIFINDEX:
3484 			ifr->ifr_ifindex = dev->ifindex;
3485 			return 0;
3486 
3487 		case SIOCGIFTXQLEN:
3488 			ifr->ifr_qlen = dev->tx_queue_len;
3489 			return 0;
3490 
3491 		default:
3492 			/* dev_ioctl() should ensure this case
3493 			 * is never reached
3494 			 */
3495 			WARN_ON(1);
3496 			err = -EINVAL;
3497 			break;
3498 
3499 	}
3500 	return err;
3501 }
3502 
3503 /*
3504  *	Perform the SIOCxIFxxx calls, inside rtnl_lock()
3505  */
3506 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
3507 {
3508 	int err;
3509 	struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3510 
3511 	if (!dev)
3512 		return -ENODEV;
3513 
3514 	switch (cmd) {
3515 		case SIOCSIFFLAGS:	/* Set interface flags */
3516 			return dev_change_flags(dev, ifr->ifr_flags);
3517 
3518 		case SIOCSIFMETRIC:	/* Set the metric on the interface
3519 					   (currently unused) */
3520 			return -EOPNOTSUPP;
3521 
3522 		case SIOCSIFMTU:	/* Set the MTU of a device */
3523 			return dev_set_mtu(dev, ifr->ifr_mtu);
3524 
3525 		case SIOCSIFHWADDR:
3526 			return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
3527 
3528 		case SIOCSIFHWBROADCAST:
3529 			if (ifr->ifr_hwaddr.sa_family != dev->type)
3530 				return -EINVAL;
3531 			memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
3532 			       min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3533 			call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3534 			return 0;
3535 
3536 		case SIOCSIFMAP:
3537 			if (dev->set_config) {
3538 				if (!netif_device_present(dev))
3539 					return -ENODEV;
3540 				return dev->set_config(dev, &ifr->ifr_map);
3541 			}
3542 			return -EOPNOTSUPP;
3543 
3544 		case SIOCADDMULTI:
3545 			if ((!dev->set_multicast_list && !dev->set_rx_mode) ||
3546 			    ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3547 				return -EINVAL;
3548 			if (!netif_device_present(dev))
3549 				return -ENODEV;
3550 			return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
3551 					  dev->addr_len, 1);
3552 
3553 		case SIOCDELMULTI:
3554 			if ((!dev->set_multicast_list && !dev->set_rx_mode) ||
3555 			    ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3556 				return -EINVAL;
3557 			if (!netif_device_present(dev))
3558 				return -ENODEV;
3559 			return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
3560 					     dev->addr_len, 1);
3561 
3562 		case SIOCSIFTXQLEN:
3563 			if (ifr->ifr_qlen < 0)
3564 				return -EINVAL;
3565 			dev->tx_queue_len = ifr->ifr_qlen;
3566 			return 0;
3567 
3568 		case SIOCSIFNAME:
3569 			ifr->ifr_newname[IFNAMSIZ-1] = '\0';
3570 			return dev_change_name(dev, ifr->ifr_newname);
3571 
3572 		/*
3573 		 *	Unknown or private ioctl
3574 		 */
3575 
3576 		default:
3577 			if ((cmd >= SIOCDEVPRIVATE &&
3578 			    cmd <= SIOCDEVPRIVATE + 15) ||
3579 			    cmd == SIOCBONDENSLAVE ||
3580 			    cmd == SIOCBONDRELEASE ||
3581 			    cmd == SIOCBONDSETHWADDR ||
3582 			    cmd == SIOCBONDSLAVEINFOQUERY ||
3583 			    cmd == SIOCBONDINFOQUERY ||
3584 			    cmd == SIOCBONDCHANGEACTIVE ||
3585 			    cmd == SIOCGMIIPHY ||
3586 			    cmd == SIOCGMIIREG ||
3587 			    cmd == SIOCSMIIREG ||
3588 			    cmd == SIOCBRADDIF ||
3589 			    cmd == SIOCBRDELIF ||
3590 			    cmd == SIOCWANDEV) {
3591 				err = -EOPNOTSUPP;
3592 				if (dev->do_ioctl) {
3593 					if (netif_device_present(dev))
3594 						err = dev->do_ioctl(dev, ifr,
3595 								    cmd);
3596 					else
3597 						err = -ENODEV;
3598 				}
3599 			} else
3600 				err = -EINVAL;
3601 
3602 	}
3603 	return err;
3604 }
3605 
3606 /*
3607  *	This function handles all "interface"-type I/O control requests. The actual
3608  *	'doing' part of this is dev_ifsioc above.
3609  */
3610 
3611 /**
3612  *	dev_ioctl	-	network device ioctl
3613  *	@net: the applicable net namespace
3614  *	@cmd: command to issue
3615  *	@arg: pointer to a struct ifreq in user space
3616  *
3617  *	Issue ioctl functions to devices. This is normally called by the
3618  *	user space syscall interfaces but can sometimes be useful for
3619  *	other purposes. The return value is the return from the syscall if
3620  *	positive or a negative errno code on error.
3621  */
3622 
3623 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
3624 {
3625 	struct ifreq ifr;
3626 	int ret;
3627 	char *colon;
3628 
3629 	/* One special case: SIOCGIFCONF takes ifconf argument
3630 	   and requires shared lock, because it sleeps writing
3631 	   to user space.
3632 	 */
3633 
3634 	if (cmd == SIOCGIFCONF) {
3635 		rtnl_lock();
3636 		ret = dev_ifconf(net, (char __user *) arg);
3637 		rtnl_unlock();
3638 		return ret;
3639 	}
3640 	if (cmd == SIOCGIFNAME)
3641 		return dev_ifname(net, (struct ifreq __user *)arg);
3642 
3643 	if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3644 		return -EFAULT;
3645 
3646 	ifr.ifr_name[IFNAMSIZ-1] = 0;
3647 
3648 	colon = strchr(ifr.ifr_name, ':');
3649 	if (colon)
3650 		*colon = 0;
3651 
3652 	/*
3653 	 *	See which interface the caller is talking about.
3654 	 */
3655 
3656 	switch (cmd) {
3657 		/*
3658 		 *	These ioctl calls:
3659 		 *	- can be done by all.
3660 		 *	- atomic and do not require locking.
3661 		 *	- return a value
3662 		 */
3663 		case SIOCGIFFLAGS:
3664 		case SIOCGIFMETRIC:
3665 		case SIOCGIFMTU:
3666 		case SIOCGIFHWADDR:
3667 		case SIOCGIFSLAVE:
3668 		case SIOCGIFMAP:
3669 		case SIOCGIFINDEX:
3670 		case SIOCGIFTXQLEN:
3671 			dev_load(net, ifr.ifr_name);
3672 			read_lock(&dev_base_lock);
3673 			ret = dev_ifsioc_locked(net, &ifr, cmd);
3674 			read_unlock(&dev_base_lock);
3675 			if (!ret) {
3676 				if (colon)
3677 					*colon = ':';
3678 				if (copy_to_user(arg, &ifr,
3679 						 sizeof(struct ifreq)))
3680 					ret = -EFAULT;
3681 			}
3682 			return ret;
3683 
3684 		case SIOCETHTOOL:
3685 			dev_load(net, ifr.ifr_name);
3686 			rtnl_lock();
3687 			ret = dev_ethtool(net, &ifr);
3688 			rtnl_unlock();
3689 			if (!ret) {
3690 				if (colon)
3691 					*colon = ':';
3692 				if (copy_to_user(arg, &ifr,
3693 						 sizeof(struct ifreq)))
3694 					ret = -EFAULT;
3695 			}
3696 			return ret;
3697 
3698 		/*
3699 		 *	These ioctl calls:
3700 		 *	- require superuser power.
3701 		 *	- require strict serialization.
3702 		 *	- return a value
3703 		 */
3704 		case SIOCGMIIPHY:
3705 		case SIOCGMIIREG:
3706 		case SIOCSIFNAME:
3707 			if (!capable(CAP_NET_ADMIN))
3708 				return -EPERM;
3709 			dev_load(net, ifr.ifr_name);
3710 			rtnl_lock();
3711 			ret = dev_ifsioc(net, &ifr, cmd);
3712 			rtnl_unlock();
3713 			if (!ret) {
3714 				if (colon)
3715 					*colon = ':';
3716 				if (copy_to_user(arg, &ifr,
3717 						 sizeof(struct ifreq)))
3718 					ret = -EFAULT;
3719 			}
3720 			return ret;
3721 
3722 		/*
3723 		 *	These ioctl calls:
3724 		 *	- require superuser power.
3725 		 *	- require strict serialization.
3726 		 *	- do not return a value
3727 		 */
3728 		case SIOCSIFFLAGS:
3729 		case SIOCSIFMETRIC:
3730 		case SIOCSIFMTU:
3731 		case SIOCSIFMAP:
3732 		case SIOCSIFHWADDR:
3733 		case SIOCSIFSLAVE:
3734 		case SIOCADDMULTI:
3735 		case SIOCDELMULTI:
3736 		case SIOCSIFHWBROADCAST:
3737 		case SIOCSIFTXQLEN:
3738 		case SIOCSMIIREG:
3739 		case SIOCBONDENSLAVE:
3740 		case SIOCBONDRELEASE:
3741 		case SIOCBONDSETHWADDR:
3742 		case SIOCBONDCHANGEACTIVE:
3743 		case SIOCBRADDIF:
3744 		case SIOCBRDELIF:
3745 			if (!capable(CAP_NET_ADMIN))
3746 				return -EPERM;
3747 			/* fall through */
3748 		case SIOCBONDSLAVEINFOQUERY:
3749 		case SIOCBONDINFOQUERY:
3750 			dev_load(net, ifr.ifr_name);
3751 			rtnl_lock();
3752 			ret = dev_ifsioc(net, &ifr, cmd);
3753 			rtnl_unlock();
3754 			return ret;
3755 
3756 		case SIOCGIFMEM:
3757 			/* Get the per device memory space. We can add this but
3758 			 * currently do not support it */
3759 		case SIOCSIFMEM:
3760 			/* Set the per device memory buffer space.
3761 			 * Not applicable in our case */
3762 		case SIOCSIFLINK:
3763 			return -EINVAL;
3764 
3765 		/*
3766 		 *	Unknown or private ioctl.
3767 		 */
3768 		default:
3769 			if (cmd == SIOCWANDEV ||
3770 			    (cmd >= SIOCDEVPRIVATE &&
3771 			     cmd <= SIOCDEVPRIVATE + 15)) {
3772 				dev_load(net, ifr.ifr_name);
3773 				rtnl_lock();
3774 				ret = dev_ifsioc(net, &ifr, cmd);
3775 				rtnl_unlock();
3776 				if (!ret && copy_to_user(arg, &ifr,
3777 							 sizeof(struct ifreq)))
3778 					ret = -EFAULT;
3779 				return ret;
3780 			}
3781 			/* Take care of Wireless Extensions */
3782 			if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
3783 				return wext_handle_ioctl(net, &ifr, cmd, arg);
3784 			return -EINVAL;
3785 	}
3786 }
3787 
3788 
3789 /**
3790  *	dev_new_index	-	allocate an ifindex
3791  *	@net: the applicable net namespace
3792  *
3793  *	Returns a suitable unique value for a new device interface
3794  *	number.  The caller must hold the rtnl semaphore or the
3795  *	dev_base_lock to be sure it remains unique.
3796  */
3797 static int dev_new_index(struct net *net)
3798 {
3799 	static int ifindex;
3800 	for (;;) {
3801 		if (++ifindex <= 0)
3802 			ifindex = 1;
3803 		if (!__dev_get_by_index(net, ifindex))
3804 			return ifindex;
3805 	}
3806 }
3807 
3808 /* Delayed registration/unregisteration */
3809 static DEFINE_SPINLOCK(net_todo_list_lock);
3810 static LIST_HEAD(net_todo_list);
3811 
3812 static void net_set_todo(struct net_device *dev)
3813 {
3814 	spin_lock(&net_todo_list_lock);
3815 	list_add_tail(&dev->todo_list, &net_todo_list);
3816 	spin_unlock(&net_todo_list_lock);
3817 }
3818 
3819 static void rollback_registered(struct net_device *dev)
3820 {
3821 	BUG_ON(dev_boot_phase);
3822 	ASSERT_RTNL();
3823 
3824 	/* Some devices call without registering for initialization unwind. */
3825 	if (dev->reg_state == NETREG_UNINITIALIZED) {
3826 		printk(KERN_DEBUG "unregister_netdevice: device %s/%p never "
3827 				  "was registered\n", dev->name, dev);
3828 
3829 		WARN_ON(1);
3830 		return;
3831 	}
3832 
3833 	BUG_ON(dev->reg_state != NETREG_REGISTERED);
3834 
3835 	/* If device is running, close it first. */
3836 	dev_close(dev);
3837 
3838 	/* And unlink it from device chain. */
3839 	unlist_netdevice(dev);
3840 
3841 	dev->reg_state = NETREG_UNREGISTERING;
3842 
3843 	synchronize_net();
3844 
3845 	/* Shutdown queueing discipline. */
3846 	dev_shutdown(dev);
3847 
3848 
3849 	/* Notify protocols, that we are about to destroy
3850 	   this device. They should clean all the things.
3851 	*/
3852 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
3853 
3854 	/*
3855 	 *	Flush the unicast and multicast chains
3856 	 */
3857 	dev_addr_discard(dev);
3858 
3859 	if (dev->uninit)
3860 		dev->uninit(dev);
3861 
3862 	/* Notifier chain MUST detach us from master device. */
3863 	WARN_ON(dev->master);
3864 
3865 	/* Remove entries from kobject tree */
3866 	netdev_unregister_kobject(dev);
3867 
3868 	synchronize_net();
3869 
3870 	dev_put(dev);
3871 }
3872 
3873 static void __netdev_init_queue_locks_one(struct net_device *dev,
3874 					  struct netdev_queue *dev_queue,
3875 					  void *_unused)
3876 {
3877 	spin_lock_init(&dev_queue->_xmit_lock);
3878 	netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type);
3879 	dev_queue->xmit_lock_owner = -1;
3880 }
3881 
3882 static void netdev_init_queue_locks(struct net_device *dev)
3883 {
3884 	netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL);
3885 	__netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL);
3886 }
3887 
3888 /**
3889  *	register_netdevice	- register a network device
3890  *	@dev: device to register
3891  *
3892  *	Take a completed network device structure and add it to the kernel
3893  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
3894  *	chain. 0 is returned on success. A negative errno code is returned
3895  *	on a failure to set up the device, or if the name is a duplicate.
3896  *
3897  *	Callers must hold the rtnl semaphore. You may want
3898  *	register_netdev() instead of this.
3899  *
3900  *	BUGS:
3901  *	The locking appears insufficient to guarantee two parallel registers
3902  *	will not get the same name.
3903  */
3904 
3905 int register_netdevice(struct net_device *dev)
3906 {
3907 	struct hlist_head *head;
3908 	struct hlist_node *p;
3909 	int ret;
3910 	struct net *net;
3911 
3912 	BUG_ON(dev_boot_phase);
3913 	ASSERT_RTNL();
3914 
3915 	might_sleep();
3916 
3917 	/* When net_device's are persistent, this will be fatal. */
3918 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
3919 	BUG_ON(!dev_net(dev));
3920 	net = dev_net(dev);
3921 
3922 	spin_lock_init(&dev->addr_list_lock);
3923 	netdev_set_addr_lockdep_class(dev);
3924 	netdev_init_queue_locks(dev);
3925 
3926 	dev->iflink = -1;
3927 
3928 	/* Init, if this function is available */
3929 	if (dev->init) {
3930 		ret = dev->init(dev);
3931 		if (ret) {
3932 			if (ret > 0)
3933 				ret = -EIO;
3934 			goto out;
3935 		}
3936 	}
3937 
3938 	if (!dev_valid_name(dev->name)) {
3939 		ret = -EINVAL;
3940 		goto err_uninit;
3941 	}
3942 
3943 	dev->ifindex = dev_new_index(net);
3944 	if (dev->iflink == -1)
3945 		dev->iflink = dev->ifindex;
3946 
3947 	/* Check for existence of name */
3948 	head = dev_name_hash(net, dev->name);
3949 	hlist_for_each(p, head) {
3950 		struct net_device *d
3951 			= hlist_entry(p, struct net_device, name_hlist);
3952 		if (!strncmp(d->name, dev->name, IFNAMSIZ)) {
3953 			ret = -EEXIST;
3954 			goto err_uninit;
3955 		}
3956 	}
3957 
3958 	/* Fix illegal checksum combinations */
3959 	if ((dev->features & NETIF_F_HW_CSUM) &&
3960 	    (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
3961 		printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
3962 		       dev->name);
3963 		dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
3964 	}
3965 
3966 	if ((dev->features & NETIF_F_NO_CSUM) &&
3967 	    (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
3968 		printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
3969 		       dev->name);
3970 		dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
3971 	}
3972 
3973 
3974 	/* Fix illegal SG+CSUM combinations. */
3975 	if ((dev->features & NETIF_F_SG) &&
3976 	    !(dev->features & NETIF_F_ALL_CSUM)) {
3977 		printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no checksum feature.\n",
3978 		       dev->name);
3979 		dev->features &= ~NETIF_F_SG;
3980 	}
3981 
3982 	/* TSO requires that SG is present as well. */
3983 	if ((dev->features & NETIF_F_TSO) &&
3984 	    !(dev->features & NETIF_F_SG)) {
3985 		printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no SG feature.\n",
3986 		       dev->name);
3987 		dev->features &= ~NETIF_F_TSO;
3988 	}
3989 	if (dev->features & NETIF_F_UFO) {
3990 		if (!(dev->features & NETIF_F_HW_CSUM)) {
3991 			printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no "
3992 					"NETIF_F_HW_CSUM feature.\n",
3993 							dev->name);
3994 			dev->features &= ~NETIF_F_UFO;
3995 		}
3996 		if (!(dev->features & NETIF_F_SG)) {
3997 			printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no "
3998 					"NETIF_F_SG feature.\n",
3999 					dev->name);
4000 			dev->features &= ~NETIF_F_UFO;
4001 		}
4002 	}
4003 
4004 	/* Enable software GSO if SG is supported. */
4005 	if (dev->features & NETIF_F_SG)
4006 		dev->features |= NETIF_F_GSO;
4007 
4008 	netdev_initialize_kobject(dev);
4009 	ret = netdev_register_kobject(dev);
4010 	if (ret)
4011 		goto err_uninit;
4012 	dev->reg_state = NETREG_REGISTERED;
4013 
4014 	/*
4015 	 *	Default initial state at registry is that the
4016 	 *	device is present.
4017 	 */
4018 
4019 	set_bit(__LINK_STATE_PRESENT, &dev->state);
4020 
4021 	dev_init_scheduler(dev);
4022 	dev_hold(dev);
4023 	list_netdevice(dev);
4024 
4025 	/* Notify protocols, that a new device appeared. */
4026 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
4027 	ret = notifier_to_errno(ret);
4028 	if (ret) {
4029 		rollback_registered(dev);
4030 		dev->reg_state = NETREG_UNREGISTERED;
4031 	}
4032 
4033 out:
4034 	return ret;
4035 
4036 err_uninit:
4037 	if (dev->uninit)
4038 		dev->uninit(dev);
4039 	goto out;
4040 }
4041 
4042 /**
4043  *	register_netdev	- register a network device
4044  *	@dev: device to register
4045  *
4046  *	Take a completed network device structure and add it to the kernel
4047  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4048  *	chain. 0 is returned on success. A negative errno code is returned
4049  *	on a failure to set up the device, or if the name is a duplicate.
4050  *
4051  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
4052  *	and expands the device name if you passed a format string to
4053  *	alloc_netdev.
4054  */
4055 int register_netdev(struct net_device *dev)
4056 {
4057 	int err;
4058 
4059 	rtnl_lock();
4060 
4061 	/*
4062 	 * If the name is a format string the caller wants us to do a
4063 	 * name allocation.
4064 	 */
4065 	if (strchr(dev->name, '%')) {
4066 		err = dev_alloc_name(dev, dev->name);
4067 		if (err < 0)
4068 			goto out;
4069 	}
4070 
4071 	err = register_netdevice(dev);
4072 out:
4073 	rtnl_unlock();
4074 	return err;
4075 }
4076 EXPORT_SYMBOL(register_netdev);
4077 
4078 /*
4079  * netdev_wait_allrefs - wait until all references are gone.
4080  *
4081  * This is called when unregistering network devices.
4082  *
4083  * Any protocol or device that holds a reference should register
4084  * for netdevice notification, and cleanup and put back the
4085  * reference if they receive an UNREGISTER event.
4086  * We can get stuck here if buggy protocols don't correctly
4087  * call dev_put.
4088  */
4089 static void netdev_wait_allrefs(struct net_device *dev)
4090 {
4091 	unsigned long rebroadcast_time, warning_time;
4092 
4093 	rebroadcast_time = warning_time = jiffies;
4094 	while (atomic_read(&dev->refcnt) != 0) {
4095 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
4096 			rtnl_lock();
4097 
4098 			/* Rebroadcast unregister notification */
4099 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4100 
4101 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
4102 				     &dev->state)) {
4103 				/* We must not have linkwatch events
4104 				 * pending on unregister. If this
4105 				 * happens, we simply run the queue
4106 				 * unscheduled, resulting in a noop
4107 				 * for this device.
4108 				 */
4109 				linkwatch_run_queue();
4110 			}
4111 
4112 			__rtnl_unlock();
4113 
4114 			rebroadcast_time = jiffies;
4115 		}
4116 
4117 		msleep(250);
4118 
4119 		if (time_after(jiffies, warning_time + 10 * HZ)) {
4120 			printk(KERN_EMERG "unregister_netdevice: "
4121 			       "waiting for %s to become free. Usage "
4122 			       "count = %d\n",
4123 			       dev->name, atomic_read(&dev->refcnt));
4124 			warning_time = jiffies;
4125 		}
4126 	}
4127 }
4128 
4129 /* The sequence is:
4130  *
4131  *	rtnl_lock();
4132  *	...
4133  *	register_netdevice(x1);
4134  *	register_netdevice(x2);
4135  *	...
4136  *	unregister_netdevice(y1);
4137  *	unregister_netdevice(y2);
4138  *      ...
4139  *	rtnl_unlock();
4140  *	free_netdev(y1);
4141  *	free_netdev(y2);
4142  *
4143  * We are invoked by rtnl_unlock() after it drops the semaphore.
4144  * This allows us to deal with problems:
4145  * 1) We can delete sysfs objects which invoke hotplug
4146  *    without deadlocking with linkwatch via keventd.
4147  * 2) Since we run with the RTNL semaphore not held, we can sleep
4148  *    safely in order to wait for the netdev refcnt to drop to zero.
4149  */
4150 static DEFINE_MUTEX(net_todo_run_mutex);
4151 void netdev_run_todo(void)
4152 {
4153 	struct list_head list;
4154 
4155 	/* Need to guard against multiple cpu's getting out of order. */
4156 	mutex_lock(&net_todo_run_mutex);
4157 
4158 	/* Not safe to do outside the semaphore.  We must not return
4159 	 * until all unregister events invoked by the local processor
4160 	 * have been completed (either by this todo run, or one on
4161 	 * another cpu).
4162 	 */
4163 	if (list_empty(&net_todo_list))
4164 		goto out;
4165 
4166 	/* Snapshot list, allow later requests */
4167 	spin_lock(&net_todo_list_lock);
4168 	list_replace_init(&net_todo_list, &list);
4169 	spin_unlock(&net_todo_list_lock);
4170 
4171 	while (!list_empty(&list)) {
4172 		struct net_device *dev
4173 			= list_entry(list.next, struct net_device, todo_list);
4174 		list_del(&dev->todo_list);
4175 
4176 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
4177 			printk(KERN_ERR "network todo '%s' but state %d\n",
4178 			       dev->name, dev->reg_state);
4179 			dump_stack();
4180 			continue;
4181 		}
4182 
4183 		dev->reg_state = NETREG_UNREGISTERED;
4184 
4185 		on_each_cpu(flush_backlog, dev, 1);
4186 
4187 		netdev_wait_allrefs(dev);
4188 
4189 		/* paranoia */
4190 		BUG_ON(atomic_read(&dev->refcnt));
4191 		WARN_ON(dev->ip_ptr);
4192 		WARN_ON(dev->ip6_ptr);
4193 		WARN_ON(dev->dn_ptr);
4194 
4195 		if (dev->destructor)
4196 			dev->destructor(dev);
4197 
4198 		/* Free network device */
4199 		kobject_put(&dev->dev.kobj);
4200 	}
4201 
4202 out:
4203 	mutex_unlock(&net_todo_run_mutex);
4204 }
4205 
4206 static struct net_device_stats *internal_stats(struct net_device *dev)
4207 {
4208 	return &dev->stats;
4209 }
4210 
4211 static void netdev_init_one_queue(struct net_device *dev,
4212 				  struct netdev_queue *queue,
4213 				  void *_unused)
4214 {
4215 	queue->dev = dev;
4216 }
4217 
4218 static void netdev_init_queues(struct net_device *dev)
4219 {
4220 	netdev_init_one_queue(dev, &dev->rx_queue, NULL);
4221 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
4222 	spin_lock_init(&dev->tx_global_lock);
4223 }
4224 
4225 /**
4226  *	alloc_netdev_mq - allocate network device
4227  *	@sizeof_priv:	size of private data to allocate space for
4228  *	@name:		device name format string
4229  *	@setup:		callback to initialize device
4230  *	@queue_count:	the number of subqueues to allocate
4231  *
4232  *	Allocates a struct net_device with private data area for driver use
4233  *	and performs basic initialization.  Also allocates subquue structs
4234  *	for each queue on the device at the end of the netdevice.
4235  */
4236 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
4237 		void (*setup)(struct net_device *), unsigned int queue_count)
4238 {
4239 	struct netdev_queue *tx;
4240 	struct net_device *dev;
4241 	size_t alloc_size;
4242 	void *p;
4243 
4244 	BUG_ON(strlen(name) >= sizeof(dev->name));
4245 
4246 	alloc_size = sizeof(struct net_device);
4247 	if (sizeof_priv) {
4248 		/* ensure 32-byte alignment of private area */
4249 		alloc_size = (alloc_size + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST;
4250 		alloc_size += sizeof_priv;
4251 	}
4252 	/* ensure 32-byte alignment of whole construct */
4253 	alloc_size += NETDEV_ALIGN_CONST;
4254 
4255 	p = kzalloc(alloc_size, GFP_KERNEL);
4256 	if (!p) {
4257 		printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
4258 		return NULL;
4259 	}
4260 
4261 	tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL);
4262 	if (!tx) {
4263 		printk(KERN_ERR "alloc_netdev: Unable to allocate "
4264 		       "tx qdiscs.\n");
4265 		kfree(p);
4266 		return NULL;
4267 	}
4268 
4269 	dev = (struct net_device *)
4270 		(((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST);
4271 	dev->padded = (char *)dev - (char *)p;
4272 	dev_net_set(dev, &init_net);
4273 
4274 	dev->_tx = tx;
4275 	dev->num_tx_queues = queue_count;
4276 	dev->real_num_tx_queues = queue_count;
4277 
4278 	if (sizeof_priv) {
4279 		dev->priv = ((char *)dev +
4280 			     ((sizeof(struct net_device) + NETDEV_ALIGN_CONST)
4281 			      & ~NETDEV_ALIGN_CONST));
4282 	}
4283 
4284 	dev->gso_max_size = GSO_MAX_SIZE;
4285 
4286 	netdev_init_queues(dev);
4287 
4288 	dev->get_stats = internal_stats;
4289 	netpoll_netdev_init(dev);
4290 	setup(dev);
4291 	strcpy(dev->name, name);
4292 	return dev;
4293 }
4294 EXPORT_SYMBOL(alloc_netdev_mq);
4295 
4296 /**
4297  *	free_netdev - free network device
4298  *	@dev: device
4299  *
4300  *	This function does the last stage of destroying an allocated device
4301  * 	interface. The reference to the device object is released.
4302  *	If this is the last reference then it will be freed.
4303  */
4304 void free_netdev(struct net_device *dev)
4305 {
4306 	release_net(dev_net(dev));
4307 
4308 	kfree(dev->_tx);
4309 
4310 	/*  Compatibility with error handling in drivers */
4311 	if (dev->reg_state == NETREG_UNINITIALIZED) {
4312 		kfree((char *)dev - dev->padded);
4313 		return;
4314 	}
4315 
4316 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
4317 	dev->reg_state = NETREG_RELEASED;
4318 
4319 	/* will free via device release */
4320 	put_device(&dev->dev);
4321 }
4322 
4323 /* Synchronize with packet receive processing. */
4324 void synchronize_net(void)
4325 {
4326 	might_sleep();
4327 	synchronize_rcu();
4328 }
4329 
4330 /**
4331  *	unregister_netdevice - remove device from the kernel
4332  *	@dev: device
4333  *
4334  *	This function shuts down a device interface and removes it
4335  *	from the kernel tables.
4336  *
4337  *	Callers must hold the rtnl semaphore.  You may want
4338  *	unregister_netdev() instead of this.
4339  */
4340 
4341 void unregister_netdevice(struct net_device *dev)
4342 {
4343 	ASSERT_RTNL();
4344 
4345 	rollback_registered(dev);
4346 	/* Finish processing unregister after unlock */
4347 	net_set_todo(dev);
4348 }
4349 
4350 /**
4351  *	unregister_netdev - remove device from the kernel
4352  *	@dev: device
4353  *
4354  *	This function shuts down a device interface and removes it
4355  *	from the kernel tables.
4356  *
4357  *	This is just a wrapper for unregister_netdevice that takes
4358  *	the rtnl semaphore.  In general you want to use this and not
4359  *	unregister_netdevice.
4360  */
4361 void unregister_netdev(struct net_device *dev)
4362 {
4363 	rtnl_lock();
4364 	unregister_netdevice(dev);
4365 	rtnl_unlock();
4366 }
4367 
4368 EXPORT_SYMBOL(unregister_netdev);
4369 
4370 /**
4371  *	dev_change_net_namespace - move device to different nethost namespace
4372  *	@dev: device
4373  *	@net: network namespace
4374  *	@pat: If not NULL name pattern to try if the current device name
4375  *	      is already taken in the destination network namespace.
4376  *
4377  *	This function shuts down a device interface and moves it
4378  *	to a new network namespace. On success 0 is returned, on
4379  *	a failure a netagive errno code is returned.
4380  *
4381  *	Callers must hold the rtnl semaphore.
4382  */
4383 
4384 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
4385 {
4386 	char buf[IFNAMSIZ];
4387 	const char *destname;
4388 	int err;
4389 
4390 	ASSERT_RTNL();
4391 
4392 	/* Don't allow namespace local devices to be moved. */
4393 	err = -EINVAL;
4394 	if (dev->features & NETIF_F_NETNS_LOCAL)
4395 		goto out;
4396 
4397 	/* Ensure the device has been registrered */
4398 	err = -EINVAL;
4399 	if (dev->reg_state != NETREG_REGISTERED)
4400 		goto out;
4401 
4402 	/* Get out if there is nothing todo */
4403 	err = 0;
4404 	if (net_eq(dev_net(dev), net))
4405 		goto out;
4406 
4407 	/* Pick the destination device name, and ensure
4408 	 * we can use it in the destination network namespace.
4409 	 */
4410 	err = -EEXIST;
4411 	destname = dev->name;
4412 	if (__dev_get_by_name(net, destname)) {
4413 		/* We get here if we can't use the current device name */
4414 		if (!pat)
4415 			goto out;
4416 		if (!dev_valid_name(pat))
4417 			goto out;
4418 		if (strchr(pat, '%')) {
4419 			if (__dev_alloc_name(net, pat, buf) < 0)
4420 				goto out;
4421 			destname = buf;
4422 		} else
4423 			destname = pat;
4424 		if (__dev_get_by_name(net, destname))
4425 			goto out;
4426 	}
4427 
4428 	/*
4429 	 * And now a mini version of register_netdevice unregister_netdevice.
4430 	 */
4431 
4432 	/* If device is running close it first. */
4433 	dev_close(dev);
4434 
4435 	/* And unlink it from device chain */
4436 	err = -ENODEV;
4437 	unlist_netdevice(dev);
4438 
4439 	synchronize_net();
4440 
4441 	/* Shutdown queueing discipline. */
4442 	dev_shutdown(dev);
4443 
4444 	/* Notify protocols, that we are about to destroy
4445 	   this device. They should clean all the things.
4446 	*/
4447 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4448 
4449 	/*
4450 	 *	Flush the unicast and multicast chains
4451 	 */
4452 	dev_addr_discard(dev);
4453 
4454 	/* Actually switch the network namespace */
4455 	dev_net_set(dev, net);
4456 
4457 	/* Assign the new device name */
4458 	if (destname != dev->name)
4459 		strcpy(dev->name, destname);
4460 
4461 	/* If there is an ifindex conflict assign a new one */
4462 	if (__dev_get_by_index(net, dev->ifindex)) {
4463 		int iflink = (dev->iflink == dev->ifindex);
4464 		dev->ifindex = dev_new_index(net);
4465 		if (iflink)
4466 			dev->iflink = dev->ifindex;
4467 	}
4468 
4469 	/* Fixup kobjects */
4470 	netdev_unregister_kobject(dev);
4471 	err = netdev_register_kobject(dev);
4472 	WARN_ON(err);
4473 
4474 	/* Add the device back in the hashes */
4475 	list_netdevice(dev);
4476 
4477 	/* Notify protocols, that a new device appeared. */
4478 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
4479 
4480 	synchronize_net();
4481 	err = 0;
4482 out:
4483 	return err;
4484 }
4485 
4486 static int dev_cpu_callback(struct notifier_block *nfb,
4487 			    unsigned long action,
4488 			    void *ocpu)
4489 {
4490 	struct sk_buff **list_skb;
4491 	struct Qdisc **list_net;
4492 	struct sk_buff *skb;
4493 	unsigned int cpu, oldcpu = (unsigned long)ocpu;
4494 	struct softnet_data *sd, *oldsd;
4495 
4496 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
4497 		return NOTIFY_OK;
4498 
4499 	local_irq_disable();
4500 	cpu = smp_processor_id();
4501 	sd = &per_cpu(softnet_data, cpu);
4502 	oldsd = &per_cpu(softnet_data, oldcpu);
4503 
4504 	/* Find end of our completion_queue. */
4505 	list_skb = &sd->completion_queue;
4506 	while (*list_skb)
4507 		list_skb = &(*list_skb)->next;
4508 	/* Append completion queue from offline CPU. */
4509 	*list_skb = oldsd->completion_queue;
4510 	oldsd->completion_queue = NULL;
4511 
4512 	/* Find end of our output_queue. */
4513 	list_net = &sd->output_queue;
4514 	while (*list_net)
4515 		list_net = &(*list_net)->next_sched;
4516 	/* Append output queue from offline CPU. */
4517 	*list_net = oldsd->output_queue;
4518 	oldsd->output_queue = NULL;
4519 
4520 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
4521 	local_irq_enable();
4522 
4523 	/* Process offline CPU's input_pkt_queue */
4524 	while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
4525 		netif_rx(skb);
4526 
4527 	return NOTIFY_OK;
4528 }
4529 
4530 #ifdef CONFIG_NET_DMA
4531 /**
4532  * net_dma_rebalance - try to maintain one DMA channel per CPU
4533  * @net_dma: DMA client and associated data (lock, channels, channel_mask)
4534  *
4535  * This is called when the number of channels allocated to the net_dma client
4536  * changes.  The net_dma client tries to have one DMA channel per CPU.
4537  */
4538 
4539 static void net_dma_rebalance(struct net_dma *net_dma)
4540 {
4541 	unsigned int cpu, i, n, chan_idx;
4542 	struct dma_chan *chan;
4543 
4544 	if (cpus_empty(net_dma->channel_mask)) {
4545 		for_each_online_cpu(cpu)
4546 			rcu_assign_pointer(per_cpu(softnet_data, cpu).net_dma, NULL);
4547 		return;
4548 	}
4549 
4550 	i = 0;
4551 	cpu = first_cpu(cpu_online_map);
4552 
4553 	for_each_cpu_mask_nr(chan_idx, net_dma->channel_mask) {
4554 		chan = net_dma->channels[chan_idx];
4555 
4556 		n = ((num_online_cpus() / cpus_weight(net_dma->channel_mask))
4557 		   + (i < (num_online_cpus() %
4558 			cpus_weight(net_dma->channel_mask)) ? 1 : 0));
4559 
4560 		while(n) {
4561 			per_cpu(softnet_data, cpu).net_dma = chan;
4562 			cpu = next_cpu(cpu, cpu_online_map);
4563 			n--;
4564 		}
4565 		i++;
4566 	}
4567 }
4568 
4569 /**
4570  * netdev_dma_event - event callback for the net_dma_client
4571  * @client: should always be net_dma_client
4572  * @chan: DMA channel for the event
4573  * @state: DMA state to be handled
4574  */
4575 static enum dma_state_client
4576 netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
4577 	enum dma_state state)
4578 {
4579 	int i, found = 0, pos = -1;
4580 	struct net_dma *net_dma =
4581 		container_of(client, struct net_dma, client);
4582 	enum dma_state_client ack = DMA_DUP; /* default: take no action */
4583 
4584 	spin_lock(&net_dma->lock);
4585 	switch (state) {
4586 	case DMA_RESOURCE_AVAILABLE:
4587 		for (i = 0; i < nr_cpu_ids; i++)
4588 			if (net_dma->channels[i] == chan) {
4589 				found = 1;
4590 				break;
4591 			} else if (net_dma->channels[i] == NULL && pos < 0)
4592 				pos = i;
4593 
4594 		if (!found && pos >= 0) {
4595 			ack = DMA_ACK;
4596 			net_dma->channels[pos] = chan;
4597 			cpu_set(pos, net_dma->channel_mask);
4598 			net_dma_rebalance(net_dma);
4599 		}
4600 		break;
4601 	case DMA_RESOURCE_REMOVED:
4602 		for (i = 0; i < nr_cpu_ids; i++)
4603 			if (net_dma->channels[i] == chan) {
4604 				found = 1;
4605 				pos = i;
4606 				break;
4607 			}
4608 
4609 		if (found) {
4610 			ack = DMA_ACK;
4611 			cpu_clear(pos, net_dma->channel_mask);
4612 			net_dma->channels[i] = NULL;
4613 			net_dma_rebalance(net_dma);
4614 		}
4615 		break;
4616 	default:
4617 		break;
4618 	}
4619 	spin_unlock(&net_dma->lock);
4620 
4621 	return ack;
4622 }
4623 
4624 /**
4625  * netdev_dma_regiser - register the networking subsystem as a DMA client
4626  */
4627 static int __init netdev_dma_register(void)
4628 {
4629 	net_dma.channels = kzalloc(nr_cpu_ids * sizeof(struct net_dma),
4630 								GFP_KERNEL);
4631 	if (unlikely(!net_dma.channels)) {
4632 		printk(KERN_NOTICE
4633 				"netdev_dma: no memory for net_dma.channels\n");
4634 		return -ENOMEM;
4635 	}
4636 	spin_lock_init(&net_dma.lock);
4637 	dma_cap_set(DMA_MEMCPY, net_dma.client.cap_mask);
4638 	dma_async_client_register(&net_dma.client);
4639 	dma_async_client_chan_request(&net_dma.client);
4640 	return 0;
4641 }
4642 
4643 #else
4644 static int __init netdev_dma_register(void) { return -ENODEV; }
4645 #endif /* CONFIG_NET_DMA */
4646 
4647 /**
4648  *	netdev_compute_feature - compute conjunction of two feature sets
4649  *	@all: first feature set
4650  *	@one: second feature set
4651  *
4652  *	Computes a new feature set after adding a device with feature set
4653  *	@one to the master device with current feature set @all.  Returns
4654  *	the new feature set.
4655  */
4656 int netdev_compute_features(unsigned long all, unsigned long one)
4657 {
4658 	/* if device needs checksumming, downgrade to hw checksumming */
4659 	if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
4660 		all ^= NETIF_F_NO_CSUM | NETIF_F_HW_CSUM;
4661 
4662 	/* if device can't do all checksum, downgrade to ipv4/ipv6 */
4663 	if (all & NETIF_F_HW_CSUM && !(one & NETIF_F_HW_CSUM))
4664 		all ^= NETIF_F_HW_CSUM
4665 			| NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
4666 
4667 	if (one & NETIF_F_GSO)
4668 		one |= NETIF_F_GSO_SOFTWARE;
4669 	one |= NETIF_F_GSO;
4670 
4671 	/* If even one device supports robust GSO, enable it for all. */
4672 	if (one & NETIF_F_GSO_ROBUST)
4673 		all |= NETIF_F_GSO_ROBUST;
4674 
4675 	all &= one | NETIF_F_LLTX;
4676 
4677 	if (!(all & NETIF_F_ALL_CSUM))
4678 		all &= ~NETIF_F_SG;
4679 	if (!(all & NETIF_F_SG))
4680 		all &= ~NETIF_F_GSO_MASK;
4681 
4682 	return all;
4683 }
4684 EXPORT_SYMBOL(netdev_compute_features);
4685 
4686 static struct hlist_head *netdev_create_hash(void)
4687 {
4688 	int i;
4689 	struct hlist_head *hash;
4690 
4691 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
4692 	if (hash != NULL)
4693 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
4694 			INIT_HLIST_HEAD(&hash[i]);
4695 
4696 	return hash;
4697 }
4698 
4699 /* Initialize per network namespace state */
4700 static int __net_init netdev_init(struct net *net)
4701 {
4702 	INIT_LIST_HEAD(&net->dev_base_head);
4703 
4704 	net->dev_name_head = netdev_create_hash();
4705 	if (net->dev_name_head == NULL)
4706 		goto err_name;
4707 
4708 	net->dev_index_head = netdev_create_hash();
4709 	if (net->dev_index_head == NULL)
4710 		goto err_idx;
4711 
4712 	return 0;
4713 
4714 err_idx:
4715 	kfree(net->dev_name_head);
4716 err_name:
4717 	return -ENOMEM;
4718 }
4719 
4720 char *netdev_drivername(struct net_device *dev, char *buffer, int len)
4721 {
4722 	struct device_driver *driver;
4723 	struct device *parent;
4724 
4725 	if (len <= 0 || !buffer)
4726 		return buffer;
4727 	buffer[0] = 0;
4728 
4729 	parent = dev->dev.parent;
4730 
4731 	if (!parent)
4732 		return buffer;
4733 
4734 	driver = parent->driver;
4735 	if (driver && driver->name)
4736 		strlcpy(buffer, driver->name, len);
4737 	return buffer;
4738 }
4739 
4740 static void __net_exit netdev_exit(struct net *net)
4741 {
4742 	kfree(net->dev_name_head);
4743 	kfree(net->dev_index_head);
4744 }
4745 
4746 static struct pernet_operations __net_initdata netdev_net_ops = {
4747 	.init = netdev_init,
4748 	.exit = netdev_exit,
4749 };
4750 
4751 static void __net_exit default_device_exit(struct net *net)
4752 {
4753 	struct net_device *dev, *next;
4754 	/*
4755 	 * Push all migratable of the network devices back to the
4756 	 * initial network namespace
4757 	 */
4758 	rtnl_lock();
4759 	for_each_netdev_safe(net, dev, next) {
4760 		int err;
4761 		char fb_name[IFNAMSIZ];
4762 
4763 		/* Ignore unmoveable devices (i.e. loopback) */
4764 		if (dev->features & NETIF_F_NETNS_LOCAL)
4765 			continue;
4766 
4767 		/* Push remaing network devices to init_net */
4768 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
4769 		err = dev_change_net_namespace(dev, &init_net, fb_name);
4770 		if (err) {
4771 			printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
4772 				__func__, dev->name, err);
4773 			BUG();
4774 		}
4775 	}
4776 	rtnl_unlock();
4777 }
4778 
4779 static struct pernet_operations __net_initdata default_device_ops = {
4780 	.exit = default_device_exit,
4781 };
4782 
4783 /*
4784  *	Initialize the DEV module. At boot time this walks the device list and
4785  *	unhooks any devices that fail to initialise (normally hardware not
4786  *	present) and leaves us with a valid list of present and active devices.
4787  *
4788  */
4789 
4790 /*
4791  *       This is called single threaded during boot, so no need
4792  *       to take the rtnl semaphore.
4793  */
4794 static int __init net_dev_init(void)
4795 {
4796 	int i, rc = -ENOMEM;
4797 
4798 	BUG_ON(!dev_boot_phase);
4799 
4800 	if (dev_proc_init())
4801 		goto out;
4802 
4803 	if (netdev_kobject_init())
4804 		goto out;
4805 
4806 	INIT_LIST_HEAD(&ptype_all);
4807 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
4808 		INIT_LIST_HEAD(&ptype_base[i]);
4809 
4810 	if (register_pernet_subsys(&netdev_net_ops))
4811 		goto out;
4812 
4813 	if (register_pernet_device(&default_device_ops))
4814 		goto out;
4815 
4816 	/*
4817 	 *	Initialise the packet receive queues.
4818 	 */
4819 
4820 	for_each_possible_cpu(i) {
4821 		struct softnet_data *queue;
4822 
4823 		queue = &per_cpu(softnet_data, i);
4824 		skb_queue_head_init(&queue->input_pkt_queue);
4825 		queue->completion_queue = NULL;
4826 		INIT_LIST_HEAD(&queue->poll_list);
4827 
4828 		queue->backlog.poll = process_backlog;
4829 		queue->backlog.weight = weight_p;
4830 	}
4831 
4832 	netdev_dma_register();
4833 
4834 	dev_boot_phase = 0;
4835 
4836 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
4837 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
4838 
4839 	hotcpu_notifier(dev_cpu_callback, 0);
4840 	dst_init();
4841 	dev_mcast_init();
4842 	rc = 0;
4843 out:
4844 	return rc;
4845 }
4846 
4847 subsys_initcall(net_dev_init);
4848 
4849 EXPORT_SYMBOL(__dev_get_by_index);
4850 EXPORT_SYMBOL(__dev_get_by_name);
4851 EXPORT_SYMBOL(__dev_remove_pack);
4852 EXPORT_SYMBOL(dev_valid_name);
4853 EXPORT_SYMBOL(dev_add_pack);
4854 EXPORT_SYMBOL(dev_alloc_name);
4855 EXPORT_SYMBOL(dev_close);
4856 EXPORT_SYMBOL(dev_get_by_flags);
4857 EXPORT_SYMBOL(dev_get_by_index);
4858 EXPORT_SYMBOL(dev_get_by_name);
4859 EXPORT_SYMBOL(dev_open);
4860 EXPORT_SYMBOL(dev_queue_xmit);
4861 EXPORT_SYMBOL(dev_remove_pack);
4862 EXPORT_SYMBOL(dev_set_allmulti);
4863 EXPORT_SYMBOL(dev_set_promiscuity);
4864 EXPORT_SYMBOL(dev_change_flags);
4865 EXPORT_SYMBOL(dev_set_mtu);
4866 EXPORT_SYMBOL(dev_set_mac_address);
4867 EXPORT_SYMBOL(free_netdev);
4868 EXPORT_SYMBOL(netdev_boot_setup_check);
4869 EXPORT_SYMBOL(netdev_set_master);
4870 EXPORT_SYMBOL(netdev_state_change);
4871 EXPORT_SYMBOL(netif_receive_skb);
4872 EXPORT_SYMBOL(netif_rx);
4873 EXPORT_SYMBOL(register_gifconf);
4874 EXPORT_SYMBOL(register_netdevice);
4875 EXPORT_SYMBOL(register_netdevice_notifier);
4876 EXPORT_SYMBOL(skb_checksum_help);
4877 EXPORT_SYMBOL(synchronize_net);
4878 EXPORT_SYMBOL(unregister_netdevice);
4879 EXPORT_SYMBOL(unregister_netdevice_notifier);
4880 EXPORT_SYMBOL(net_enable_timestamp);
4881 EXPORT_SYMBOL(net_disable_timestamp);
4882 EXPORT_SYMBOL(dev_get_flags);
4883 
4884 #if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)
4885 EXPORT_SYMBOL(br_handle_frame_hook);
4886 EXPORT_SYMBOL(br_fdb_get_hook);
4887 EXPORT_SYMBOL(br_fdb_put_hook);
4888 #endif
4889 
4890 #ifdef CONFIG_KMOD
4891 EXPORT_SYMBOL(dev_load);
4892 #endif
4893 
4894 EXPORT_PER_CPU_SYMBOL(softnet_data);
4895