1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET3 Protocol independent device support routines. 4 * 5 * Derived from the non IP parts of dev.c 1.0.19 6 * Authors: Ross Biro 7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 8 * Mark Evans, <evansmp@uhura.aston.ac.uk> 9 * 10 * Additional Authors: 11 * Florian la Roche <rzsfl@rz.uni-sb.de> 12 * Alan Cox <gw4pts@gw4pts.ampr.org> 13 * David Hinds <dahinds@users.sourceforge.net> 14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 15 * Adam Sulmicki <adam@cfar.umd.edu> 16 * Pekka Riikonen <priikone@poesidon.pspt.fi> 17 * 18 * Changes: 19 * D.J. Barrow : Fixed bug where dev->refcnt gets set 20 * to 2 if register_netdev gets called 21 * before net_dev_init & also removed a 22 * few lines of code in the process. 23 * Alan Cox : device private ioctl copies fields back. 24 * Alan Cox : Transmit queue code does relevant 25 * stunts to keep the queue safe. 26 * Alan Cox : Fixed double lock. 27 * Alan Cox : Fixed promisc NULL pointer trap 28 * ???????? : Support the full private ioctl range 29 * Alan Cox : Moved ioctl permission check into 30 * drivers 31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 32 * Alan Cox : 100 backlog just doesn't cut it when 33 * you start doing multicast video 8) 34 * Alan Cox : Rewrote net_bh and list manager. 35 * Alan Cox : Fix ETH_P_ALL echoback lengths. 36 * Alan Cox : Took out transmit every packet pass 37 * Saved a few bytes in the ioctl handler 38 * Alan Cox : Network driver sets packet type before 39 * calling netif_rx. Saves a function 40 * call a packet. 41 * Alan Cox : Hashed net_bh() 42 * Richard Kooijman: Timestamp fixes. 43 * Alan Cox : Wrong field in SIOCGIFDSTADDR 44 * Alan Cox : Device lock protection. 45 * Alan Cox : Fixed nasty side effect of device close 46 * changes. 47 * Rudi Cilibrasi : Pass the right thing to 48 * set_mac_address() 49 * Dave Miller : 32bit quantity for the device lock to 50 * make it work out on a Sparc. 51 * Bjorn Ekwall : Added KERNELD hack. 52 * Alan Cox : Cleaned up the backlog initialise. 53 * Craig Metz : SIOCGIFCONF fix if space for under 54 * 1 device. 55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 56 * is no device open function. 57 * Andi Kleen : Fix error reporting for SIOCGIFCONF 58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 59 * Cyrus Durgin : Cleaned for KMOD 60 * Adam Sulmicki : Bug Fix : Network Device Unload 61 * A network device unload needs to purge 62 * the backlog queue. 63 * Paul Rusty Russell : SIOCSIFNAME 64 * Pekka Riikonen : Netdev boot-time settings code 65 * Andrew Morton : Make unregister_netdevice wait 66 * indefinitely on dev->refcnt 67 * J Hadi Salim : - Backlog queue sampling 68 * - netif_rx() feedback 69 */ 70 71 #include <linux/uaccess.h> 72 #include <linux/bitmap.h> 73 #include <linux/capability.h> 74 #include <linux/cpu.h> 75 #include <linux/types.h> 76 #include <linux/kernel.h> 77 #include <linux/hash.h> 78 #include <linux/slab.h> 79 #include <linux/sched.h> 80 #include <linux/sched/isolation.h> 81 #include <linux/sched/mm.h> 82 #include <linux/smpboot.h> 83 #include <linux/mutex.h> 84 #include <linux/rwsem.h> 85 #include <linux/string.h> 86 #include <linux/mm.h> 87 #include <linux/socket.h> 88 #include <linux/sockios.h> 89 #include <linux/errno.h> 90 #include <linux/interrupt.h> 91 #include <linux/if_ether.h> 92 #include <linux/netdevice.h> 93 #include <linux/etherdevice.h> 94 #include <linux/ethtool.h> 95 #include <linux/skbuff.h> 96 #include <linux/kthread.h> 97 #include <linux/bpf.h> 98 #include <linux/bpf_trace.h> 99 #include <net/net_namespace.h> 100 #include <net/sock.h> 101 #include <net/busy_poll.h> 102 #include <linux/rtnetlink.h> 103 #include <linux/stat.h> 104 #include <net/dsa.h> 105 #include <net/dst.h> 106 #include <net/dst_metadata.h> 107 #include <net/gro.h> 108 #include <net/pkt_sched.h> 109 #include <net/pkt_cls.h> 110 #include <net/checksum.h> 111 #include <net/xfrm.h> 112 #include <net/tcx.h> 113 #include <linux/highmem.h> 114 #include <linux/init.h> 115 #include <linux/module.h> 116 #include <linux/netpoll.h> 117 #include <linux/rcupdate.h> 118 #include <linux/delay.h> 119 #include <net/iw_handler.h> 120 #include <asm/current.h> 121 #include <linux/audit.h> 122 #include <linux/dmaengine.h> 123 #include <linux/err.h> 124 #include <linux/ctype.h> 125 #include <linux/if_arp.h> 126 #include <linux/if_vlan.h> 127 #include <linux/ip.h> 128 #include <net/ip.h> 129 #include <net/mpls.h> 130 #include <linux/ipv6.h> 131 #include <linux/in.h> 132 #include <linux/jhash.h> 133 #include <linux/random.h> 134 #include <trace/events/napi.h> 135 #include <trace/events/net.h> 136 #include <trace/events/skb.h> 137 #include <trace/events/qdisc.h> 138 #include <trace/events/xdp.h> 139 #include <linux/inetdevice.h> 140 #include <linux/cpu_rmap.h> 141 #include <linux/static_key.h> 142 #include <linux/hashtable.h> 143 #include <linux/vmalloc.h> 144 #include <linux/if_macvlan.h> 145 #include <linux/errqueue.h> 146 #include <linux/hrtimer.h> 147 #include <linux/netfilter_netdev.h> 148 #include <linux/crash_dump.h> 149 #include <linux/sctp.h> 150 #include <net/udp_tunnel.h> 151 #include <linux/net_namespace.h> 152 #include <linux/indirect_call_wrapper.h> 153 #include <net/devlink.h> 154 #include <linux/pm_runtime.h> 155 #include <linux/prandom.h> 156 #include <linux/once_lite.h> 157 #include <net/netdev_rx_queue.h> 158 #include <net/page_pool/types.h> 159 #include <net/page_pool/helpers.h> 160 #include <net/rps.h> 161 162 #include "dev.h" 163 #include "net-sysfs.h" 164 165 static DEFINE_SPINLOCK(ptype_lock); 166 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 167 168 static int netif_rx_internal(struct sk_buff *skb); 169 static int call_netdevice_notifiers_extack(unsigned long val, 170 struct net_device *dev, 171 struct netlink_ext_ack *extack); 172 173 static DEFINE_MUTEX(ifalias_mutex); 174 175 /* protects napi_hash addition/deletion and napi_gen_id */ 176 static DEFINE_SPINLOCK(napi_hash_lock); 177 178 static unsigned int napi_gen_id = NR_CPUS; 179 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8); 180 181 static DECLARE_RWSEM(devnet_rename_sem); 182 183 static inline void dev_base_seq_inc(struct net *net) 184 { 185 unsigned int val = net->dev_base_seq + 1; 186 187 WRITE_ONCE(net->dev_base_seq, val ?: 1); 188 } 189 190 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 191 { 192 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ)); 193 194 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 195 } 196 197 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 198 { 199 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 200 } 201 202 #ifndef CONFIG_PREEMPT_RT 203 204 static DEFINE_STATIC_KEY_FALSE(use_backlog_threads_key); 205 206 static int __init setup_backlog_napi_threads(char *arg) 207 { 208 static_branch_enable(&use_backlog_threads_key); 209 return 0; 210 } 211 early_param("thread_backlog_napi", setup_backlog_napi_threads); 212 213 static bool use_backlog_threads(void) 214 { 215 return static_branch_unlikely(&use_backlog_threads_key); 216 } 217 218 #else 219 220 static bool use_backlog_threads(void) 221 { 222 return true; 223 } 224 225 #endif 226 227 static inline void backlog_lock_irq_save(struct softnet_data *sd, 228 unsigned long *flags) 229 { 230 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads()) 231 spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags); 232 else if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 233 local_irq_save(*flags); 234 } 235 236 static inline void backlog_lock_irq_disable(struct softnet_data *sd) 237 { 238 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads()) 239 spin_lock_irq(&sd->input_pkt_queue.lock); 240 else if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 241 local_irq_disable(); 242 } 243 244 static inline void backlog_unlock_irq_restore(struct softnet_data *sd, 245 unsigned long *flags) 246 { 247 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads()) 248 spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags); 249 else if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 250 local_irq_restore(*flags); 251 } 252 253 static inline void backlog_unlock_irq_enable(struct softnet_data *sd) 254 { 255 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads()) 256 spin_unlock_irq(&sd->input_pkt_queue.lock); 257 else if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 258 local_irq_enable(); 259 } 260 261 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev, 262 const char *name) 263 { 264 struct netdev_name_node *name_node; 265 266 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL); 267 if (!name_node) 268 return NULL; 269 INIT_HLIST_NODE(&name_node->hlist); 270 name_node->dev = dev; 271 name_node->name = name; 272 return name_node; 273 } 274 275 static struct netdev_name_node * 276 netdev_name_node_head_alloc(struct net_device *dev) 277 { 278 struct netdev_name_node *name_node; 279 280 name_node = netdev_name_node_alloc(dev, dev->name); 281 if (!name_node) 282 return NULL; 283 INIT_LIST_HEAD(&name_node->list); 284 return name_node; 285 } 286 287 static void netdev_name_node_free(struct netdev_name_node *name_node) 288 { 289 kfree(name_node); 290 } 291 292 static void netdev_name_node_add(struct net *net, 293 struct netdev_name_node *name_node) 294 { 295 hlist_add_head_rcu(&name_node->hlist, 296 dev_name_hash(net, name_node->name)); 297 } 298 299 static void netdev_name_node_del(struct netdev_name_node *name_node) 300 { 301 hlist_del_rcu(&name_node->hlist); 302 } 303 304 static struct netdev_name_node *netdev_name_node_lookup(struct net *net, 305 const char *name) 306 { 307 struct hlist_head *head = dev_name_hash(net, name); 308 struct netdev_name_node *name_node; 309 310 hlist_for_each_entry(name_node, head, hlist) 311 if (!strcmp(name_node->name, name)) 312 return name_node; 313 return NULL; 314 } 315 316 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net, 317 const char *name) 318 { 319 struct hlist_head *head = dev_name_hash(net, name); 320 struct netdev_name_node *name_node; 321 322 hlist_for_each_entry_rcu(name_node, head, hlist) 323 if (!strcmp(name_node->name, name)) 324 return name_node; 325 return NULL; 326 } 327 328 bool netdev_name_in_use(struct net *net, const char *name) 329 { 330 return netdev_name_node_lookup(net, name); 331 } 332 EXPORT_SYMBOL(netdev_name_in_use); 333 334 int netdev_name_node_alt_create(struct net_device *dev, const char *name) 335 { 336 struct netdev_name_node *name_node; 337 struct net *net = dev_net(dev); 338 339 name_node = netdev_name_node_lookup(net, name); 340 if (name_node) 341 return -EEXIST; 342 name_node = netdev_name_node_alloc(dev, name); 343 if (!name_node) 344 return -ENOMEM; 345 netdev_name_node_add(net, name_node); 346 /* The node that holds dev->name acts as a head of per-device list. */ 347 list_add_tail_rcu(&name_node->list, &dev->name_node->list); 348 349 return 0; 350 } 351 352 static void netdev_name_node_alt_free(struct rcu_head *head) 353 { 354 struct netdev_name_node *name_node = 355 container_of(head, struct netdev_name_node, rcu); 356 357 kfree(name_node->name); 358 netdev_name_node_free(name_node); 359 } 360 361 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node) 362 { 363 netdev_name_node_del(name_node); 364 list_del(&name_node->list); 365 call_rcu(&name_node->rcu, netdev_name_node_alt_free); 366 } 367 368 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name) 369 { 370 struct netdev_name_node *name_node; 371 struct net *net = dev_net(dev); 372 373 name_node = netdev_name_node_lookup(net, name); 374 if (!name_node) 375 return -ENOENT; 376 /* lookup might have found our primary name or a name belonging 377 * to another device. 378 */ 379 if (name_node == dev->name_node || name_node->dev != dev) 380 return -EINVAL; 381 382 __netdev_name_node_alt_destroy(name_node); 383 return 0; 384 } 385 386 static void netdev_name_node_alt_flush(struct net_device *dev) 387 { 388 struct netdev_name_node *name_node, *tmp; 389 390 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) { 391 list_del(&name_node->list); 392 netdev_name_node_alt_free(&name_node->rcu); 393 } 394 } 395 396 /* Device list insertion */ 397 static void list_netdevice(struct net_device *dev) 398 { 399 struct netdev_name_node *name_node; 400 struct net *net = dev_net(dev); 401 402 ASSERT_RTNL(); 403 404 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 405 netdev_name_node_add(net, dev->name_node); 406 hlist_add_head_rcu(&dev->index_hlist, 407 dev_index_hash(net, dev->ifindex)); 408 409 netdev_for_each_altname(dev, name_node) 410 netdev_name_node_add(net, name_node); 411 412 /* We reserved the ifindex, this can't fail */ 413 WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL)); 414 415 dev_base_seq_inc(net); 416 } 417 418 /* Device list removal 419 * caller must respect a RCU grace period before freeing/reusing dev 420 */ 421 static void unlist_netdevice(struct net_device *dev) 422 { 423 struct netdev_name_node *name_node; 424 struct net *net = dev_net(dev); 425 426 ASSERT_RTNL(); 427 428 xa_erase(&net->dev_by_index, dev->ifindex); 429 430 netdev_for_each_altname(dev, name_node) 431 netdev_name_node_del(name_node); 432 433 /* Unlink dev from the device chain */ 434 list_del_rcu(&dev->dev_list); 435 netdev_name_node_del(dev->name_node); 436 hlist_del_rcu(&dev->index_hlist); 437 438 dev_base_seq_inc(dev_net(dev)); 439 } 440 441 /* 442 * Our notifier list 443 */ 444 445 static RAW_NOTIFIER_HEAD(netdev_chain); 446 447 /* 448 * Device drivers call our routines to queue packets here. We empty the 449 * queue in the local softnet handler. 450 */ 451 452 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 453 EXPORT_PER_CPU_SYMBOL(softnet_data); 454 455 /* Page_pool has a lockless array/stack to alloc/recycle pages. 456 * PP consumers must pay attention to run APIs in the appropriate context 457 * (e.g. NAPI context). 458 */ 459 static DEFINE_PER_CPU(struct page_pool *, system_page_pool); 460 461 #ifdef CONFIG_LOCKDEP 462 /* 463 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 464 * according to dev->type 465 */ 466 static const unsigned short netdev_lock_type[] = { 467 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 468 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 469 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 470 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 471 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 472 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 473 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 474 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 475 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 476 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 477 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 478 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 479 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 480 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 481 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 482 483 static const char *const netdev_lock_name[] = { 484 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 485 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 486 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 487 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 488 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 489 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 490 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 491 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 492 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 493 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 494 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 495 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 496 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 497 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 498 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 499 500 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 501 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 502 503 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 504 { 505 int i; 506 507 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 508 if (netdev_lock_type[i] == dev_type) 509 return i; 510 /* the last key is used by default */ 511 return ARRAY_SIZE(netdev_lock_type) - 1; 512 } 513 514 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 515 unsigned short dev_type) 516 { 517 int i; 518 519 i = netdev_lock_pos(dev_type); 520 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 521 netdev_lock_name[i]); 522 } 523 524 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 525 { 526 int i; 527 528 i = netdev_lock_pos(dev->type); 529 lockdep_set_class_and_name(&dev->addr_list_lock, 530 &netdev_addr_lock_key[i], 531 netdev_lock_name[i]); 532 } 533 #else 534 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 535 unsigned short dev_type) 536 { 537 } 538 539 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 540 { 541 } 542 #endif 543 544 /******************************************************************************* 545 * 546 * Protocol management and registration routines 547 * 548 *******************************************************************************/ 549 550 551 /* 552 * Add a protocol ID to the list. Now that the input handler is 553 * smarter we can dispense with all the messy stuff that used to be 554 * here. 555 * 556 * BEWARE!!! Protocol handlers, mangling input packets, 557 * MUST BE last in hash buckets and checking protocol handlers 558 * MUST start from promiscuous ptype_all chain in net_bh. 559 * It is true now, do not change it. 560 * Explanation follows: if protocol handler, mangling packet, will 561 * be the first on list, it is not able to sense, that packet 562 * is cloned and should be copied-on-write, so that it will 563 * change it and subsequent readers will get broken packet. 564 * --ANK (980803) 565 */ 566 567 static inline struct list_head *ptype_head(const struct packet_type *pt) 568 { 569 if (pt->type == htons(ETH_P_ALL)) 570 return pt->dev ? &pt->dev->ptype_all : &net_hotdata.ptype_all; 571 else 572 return pt->dev ? &pt->dev->ptype_specific : 573 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 574 } 575 576 /** 577 * dev_add_pack - add packet handler 578 * @pt: packet type declaration 579 * 580 * Add a protocol handler to the networking stack. The passed &packet_type 581 * is linked into kernel lists and may not be freed until it has been 582 * removed from the kernel lists. 583 * 584 * This call does not sleep therefore it can not 585 * guarantee all CPU's that are in middle of receiving packets 586 * will see the new packet type (until the next received packet). 587 */ 588 589 void dev_add_pack(struct packet_type *pt) 590 { 591 struct list_head *head = ptype_head(pt); 592 593 spin_lock(&ptype_lock); 594 list_add_rcu(&pt->list, head); 595 spin_unlock(&ptype_lock); 596 } 597 EXPORT_SYMBOL(dev_add_pack); 598 599 /** 600 * __dev_remove_pack - remove packet handler 601 * @pt: packet type declaration 602 * 603 * Remove a protocol handler that was previously added to the kernel 604 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 605 * from the kernel lists and can be freed or reused once this function 606 * returns. 607 * 608 * The packet type might still be in use by receivers 609 * and must not be freed until after all the CPU's have gone 610 * through a quiescent state. 611 */ 612 void __dev_remove_pack(struct packet_type *pt) 613 { 614 struct list_head *head = ptype_head(pt); 615 struct packet_type *pt1; 616 617 spin_lock(&ptype_lock); 618 619 list_for_each_entry(pt1, head, list) { 620 if (pt == pt1) { 621 list_del_rcu(&pt->list); 622 goto out; 623 } 624 } 625 626 pr_warn("dev_remove_pack: %p not found\n", pt); 627 out: 628 spin_unlock(&ptype_lock); 629 } 630 EXPORT_SYMBOL(__dev_remove_pack); 631 632 /** 633 * dev_remove_pack - remove packet handler 634 * @pt: packet type declaration 635 * 636 * Remove a protocol handler that was previously added to the kernel 637 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 638 * from the kernel lists and can be freed or reused once this function 639 * returns. 640 * 641 * This call sleeps to guarantee that no CPU is looking at the packet 642 * type after return. 643 */ 644 void dev_remove_pack(struct packet_type *pt) 645 { 646 __dev_remove_pack(pt); 647 648 synchronize_net(); 649 } 650 EXPORT_SYMBOL(dev_remove_pack); 651 652 653 /******************************************************************************* 654 * 655 * Device Interface Subroutines 656 * 657 *******************************************************************************/ 658 659 /** 660 * dev_get_iflink - get 'iflink' value of a interface 661 * @dev: targeted interface 662 * 663 * Indicates the ifindex the interface is linked to. 664 * Physical interfaces have the same 'ifindex' and 'iflink' values. 665 */ 666 667 int dev_get_iflink(const struct net_device *dev) 668 { 669 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 670 return dev->netdev_ops->ndo_get_iflink(dev); 671 672 return READ_ONCE(dev->ifindex); 673 } 674 EXPORT_SYMBOL(dev_get_iflink); 675 676 /** 677 * dev_fill_metadata_dst - Retrieve tunnel egress information. 678 * @dev: targeted interface 679 * @skb: The packet. 680 * 681 * For better visibility of tunnel traffic OVS needs to retrieve 682 * egress tunnel information for a packet. Following API allows 683 * user to get this info. 684 */ 685 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) 686 { 687 struct ip_tunnel_info *info; 688 689 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) 690 return -EINVAL; 691 692 info = skb_tunnel_info_unclone(skb); 693 if (!info) 694 return -ENOMEM; 695 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) 696 return -EINVAL; 697 698 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); 699 } 700 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); 701 702 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack) 703 { 704 int k = stack->num_paths++; 705 706 if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX)) 707 return NULL; 708 709 return &stack->path[k]; 710 } 711 712 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr, 713 struct net_device_path_stack *stack) 714 { 715 const struct net_device *last_dev; 716 struct net_device_path_ctx ctx = { 717 .dev = dev, 718 }; 719 struct net_device_path *path; 720 int ret = 0; 721 722 memcpy(ctx.daddr, daddr, sizeof(ctx.daddr)); 723 stack->num_paths = 0; 724 while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) { 725 last_dev = ctx.dev; 726 path = dev_fwd_path(stack); 727 if (!path) 728 return -1; 729 730 memset(path, 0, sizeof(struct net_device_path)); 731 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path); 732 if (ret < 0) 733 return -1; 734 735 if (WARN_ON_ONCE(last_dev == ctx.dev)) 736 return -1; 737 } 738 739 if (!ctx.dev) 740 return ret; 741 742 path = dev_fwd_path(stack); 743 if (!path) 744 return -1; 745 path->type = DEV_PATH_ETHERNET; 746 path->dev = ctx.dev; 747 748 return ret; 749 } 750 EXPORT_SYMBOL_GPL(dev_fill_forward_path); 751 752 /** 753 * __dev_get_by_name - find a device by its name 754 * @net: the applicable net namespace 755 * @name: name to find 756 * 757 * Find an interface by name. Must be called under RTNL semaphore. 758 * If the name is found a pointer to the device is returned. 759 * If the name is not found then %NULL is returned. The 760 * reference counters are not incremented so the caller must be 761 * careful with locks. 762 */ 763 764 struct net_device *__dev_get_by_name(struct net *net, const char *name) 765 { 766 struct netdev_name_node *node_name; 767 768 node_name = netdev_name_node_lookup(net, name); 769 return node_name ? node_name->dev : NULL; 770 } 771 EXPORT_SYMBOL(__dev_get_by_name); 772 773 /** 774 * dev_get_by_name_rcu - find a device by its name 775 * @net: the applicable net namespace 776 * @name: name to find 777 * 778 * Find an interface by name. 779 * If the name is found a pointer to the device is returned. 780 * If the name is not found then %NULL is returned. 781 * The reference counters are not incremented so the caller must be 782 * careful with locks. The caller must hold RCU lock. 783 */ 784 785 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 786 { 787 struct netdev_name_node *node_name; 788 789 node_name = netdev_name_node_lookup_rcu(net, name); 790 return node_name ? node_name->dev : NULL; 791 } 792 EXPORT_SYMBOL(dev_get_by_name_rcu); 793 794 /* Deprecated for new users, call netdev_get_by_name() instead */ 795 struct net_device *dev_get_by_name(struct net *net, const char *name) 796 { 797 struct net_device *dev; 798 799 rcu_read_lock(); 800 dev = dev_get_by_name_rcu(net, name); 801 dev_hold(dev); 802 rcu_read_unlock(); 803 return dev; 804 } 805 EXPORT_SYMBOL(dev_get_by_name); 806 807 /** 808 * netdev_get_by_name() - find a device by its name 809 * @net: the applicable net namespace 810 * @name: name to find 811 * @tracker: tracking object for the acquired reference 812 * @gfp: allocation flags for the tracker 813 * 814 * Find an interface by name. This can be called from any 815 * context and does its own locking. The returned handle has 816 * the usage count incremented and the caller must use netdev_put() to 817 * release it when it is no longer needed. %NULL is returned if no 818 * matching device is found. 819 */ 820 struct net_device *netdev_get_by_name(struct net *net, const char *name, 821 netdevice_tracker *tracker, gfp_t gfp) 822 { 823 struct net_device *dev; 824 825 dev = dev_get_by_name(net, name); 826 if (dev) 827 netdev_tracker_alloc(dev, tracker, gfp); 828 return dev; 829 } 830 EXPORT_SYMBOL(netdev_get_by_name); 831 832 /** 833 * __dev_get_by_index - find a device by its ifindex 834 * @net: the applicable net namespace 835 * @ifindex: index of device 836 * 837 * Search for an interface by index. Returns %NULL if the device 838 * is not found or a pointer to the device. The device has not 839 * had its reference counter increased so the caller must be careful 840 * about locking. The caller must hold the RTNL semaphore. 841 */ 842 843 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 844 { 845 struct net_device *dev; 846 struct hlist_head *head = dev_index_hash(net, ifindex); 847 848 hlist_for_each_entry(dev, head, index_hlist) 849 if (dev->ifindex == ifindex) 850 return dev; 851 852 return NULL; 853 } 854 EXPORT_SYMBOL(__dev_get_by_index); 855 856 /** 857 * dev_get_by_index_rcu - find a device by its ifindex 858 * @net: the applicable net namespace 859 * @ifindex: index of device 860 * 861 * Search for an interface by index. Returns %NULL if the device 862 * is not found or a pointer to the device. The device has not 863 * had its reference counter increased so the caller must be careful 864 * about locking. The caller must hold RCU lock. 865 */ 866 867 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 868 { 869 struct net_device *dev; 870 struct hlist_head *head = dev_index_hash(net, ifindex); 871 872 hlist_for_each_entry_rcu(dev, head, index_hlist) 873 if (dev->ifindex == ifindex) 874 return dev; 875 876 return NULL; 877 } 878 EXPORT_SYMBOL(dev_get_by_index_rcu); 879 880 /* Deprecated for new users, call netdev_get_by_index() instead */ 881 struct net_device *dev_get_by_index(struct net *net, int ifindex) 882 { 883 struct net_device *dev; 884 885 rcu_read_lock(); 886 dev = dev_get_by_index_rcu(net, ifindex); 887 dev_hold(dev); 888 rcu_read_unlock(); 889 return dev; 890 } 891 EXPORT_SYMBOL(dev_get_by_index); 892 893 /** 894 * netdev_get_by_index() - find a device by its ifindex 895 * @net: the applicable net namespace 896 * @ifindex: index of device 897 * @tracker: tracking object for the acquired reference 898 * @gfp: allocation flags for the tracker 899 * 900 * Search for an interface by index. Returns NULL if the device 901 * is not found or a pointer to the device. The device returned has 902 * had a reference added and the pointer is safe until the user calls 903 * netdev_put() to indicate they have finished with it. 904 */ 905 struct net_device *netdev_get_by_index(struct net *net, int ifindex, 906 netdevice_tracker *tracker, gfp_t gfp) 907 { 908 struct net_device *dev; 909 910 dev = dev_get_by_index(net, ifindex); 911 if (dev) 912 netdev_tracker_alloc(dev, tracker, gfp); 913 return dev; 914 } 915 EXPORT_SYMBOL(netdev_get_by_index); 916 917 /** 918 * dev_get_by_napi_id - find a device by napi_id 919 * @napi_id: ID of the NAPI struct 920 * 921 * Search for an interface by NAPI ID. Returns %NULL if the device 922 * is not found or a pointer to the device. The device has not had 923 * its reference counter increased so the caller must be careful 924 * about locking. The caller must hold RCU lock. 925 */ 926 927 struct net_device *dev_get_by_napi_id(unsigned int napi_id) 928 { 929 struct napi_struct *napi; 930 931 WARN_ON_ONCE(!rcu_read_lock_held()); 932 933 if (napi_id < MIN_NAPI_ID) 934 return NULL; 935 936 napi = napi_by_id(napi_id); 937 938 return napi ? napi->dev : NULL; 939 } 940 EXPORT_SYMBOL(dev_get_by_napi_id); 941 942 static DEFINE_SEQLOCK(netdev_rename_lock); 943 944 void netdev_copy_name(struct net_device *dev, char *name) 945 { 946 unsigned int seq; 947 948 do { 949 seq = read_seqbegin(&netdev_rename_lock); 950 strscpy(name, dev->name, IFNAMSIZ); 951 } while (read_seqretry(&netdev_rename_lock, seq)); 952 } 953 954 /** 955 * netdev_get_name - get a netdevice name, knowing its ifindex. 956 * @net: network namespace 957 * @name: a pointer to the buffer where the name will be stored. 958 * @ifindex: the ifindex of the interface to get the name from. 959 */ 960 int netdev_get_name(struct net *net, char *name, int ifindex) 961 { 962 struct net_device *dev; 963 int ret; 964 965 rcu_read_lock(); 966 967 dev = dev_get_by_index_rcu(net, ifindex); 968 if (!dev) { 969 ret = -ENODEV; 970 goto out; 971 } 972 973 netdev_copy_name(dev, name); 974 975 ret = 0; 976 out: 977 rcu_read_unlock(); 978 return ret; 979 } 980 981 /** 982 * dev_getbyhwaddr_rcu - find a device by its hardware address 983 * @net: the applicable net namespace 984 * @type: media type of device 985 * @ha: hardware address 986 * 987 * Search for an interface by MAC address. Returns NULL if the device 988 * is not found or a pointer to the device. 989 * The caller must hold RCU or RTNL. 990 * The returned device has not had its ref count increased 991 * and the caller must therefore be careful about locking 992 * 993 */ 994 995 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 996 const char *ha) 997 { 998 struct net_device *dev; 999 1000 for_each_netdev_rcu(net, dev) 1001 if (dev->type == type && 1002 !memcmp(dev->dev_addr, ha, dev->addr_len)) 1003 return dev; 1004 1005 return NULL; 1006 } 1007 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 1008 1009 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 1010 { 1011 struct net_device *dev, *ret = NULL; 1012 1013 rcu_read_lock(); 1014 for_each_netdev_rcu(net, dev) 1015 if (dev->type == type) { 1016 dev_hold(dev); 1017 ret = dev; 1018 break; 1019 } 1020 rcu_read_unlock(); 1021 return ret; 1022 } 1023 EXPORT_SYMBOL(dev_getfirstbyhwtype); 1024 1025 /** 1026 * __dev_get_by_flags - find any device with given flags 1027 * @net: the applicable net namespace 1028 * @if_flags: IFF_* values 1029 * @mask: bitmask of bits in if_flags to check 1030 * 1031 * Search for any interface with the given flags. Returns NULL if a device 1032 * is not found or a pointer to the device. Must be called inside 1033 * rtnl_lock(), and result refcount is unchanged. 1034 */ 1035 1036 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags, 1037 unsigned short mask) 1038 { 1039 struct net_device *dev, *ret; 1040 1041 ASSERT_RTNL(); 1042 1043 ret = NULL; 1044 for_each_netdev(net, dev) { 1045 if (((dev->flags ^ if_flags) & mask) == 0) { 1046 ret = dev; 1047 break; 1048 } 1049 } 1050 return ret; 1051 } 1052 EXPORT_SYMBOL(__dev_get_by_flags); 1053 1054 /** 1055 * dev_valid_name - check if name is okay for network device 1056 * @name: name string 1057 * 1058 * Network device names need to be valid file names to 1059 * allow sysfs to work. We also disallow any kind of 1060 * whitespace. 1061 */ 1062 bool dev_valid_name(const char *name) 1063 { 1064 if (*name == '\0') 1065 return false; 1066 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ) 1067 return false; 1068 if (!strcmp(name, ".") || !strcmp(name, "..")) 1069 return false; 1070 1071 while (*name) { 1072 if (*name == '/' || *name == ':' || isspace(*name)) 1073 return false; 1074 name++; 1075 } 1076 return true; 1077 } 1078 EXPORT_SYMBOL(dev_valid_name); 1079 1080 /** 1081 * __dev_alloc_name - allocate a name for a device 1082 * @net: network namespace to allocate the device name in 1083 * @name: name format string 1084 * @res: result name string 1085 * 1086 * Passed a format string - eg "lt%d" it will try and find a suitable 1087 * id. It scans list of devices to build up a free map, then chooses 1088 * the first empty slot. The caller must hold the dev_base or rtnl lock 1089 * while allocating the name and adding the device in order to avoid 1090 * duplicates. 1091 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1092 * Returns the number of the unit assigned or a negative errno code. 1093 */ 1094 1095 static int __dev_alloc_name(struct net *net, const char *name, char *res) 1096 { 1097 int i = 0; 1098 const char *p; 1099 const int max_netdevices = 8*PAGE_SIZE; 1100 unsigned long *inuse; 1101 struct net_device *d; 1102 char buf[IFNAMSIZ]; 1103 1104 /* Verify the string as this thing may have come from the user. 1105 * There must be one "%d" and no other "%" characters. 1106 */ 1107 p = strchr(name, '%'); 1108 if (!p || p[1] != 'd' || strchr(p + 2, '%')) 1109 return -EINVAL; 1110 1111 /* Use one page as a bit array of possible slots */ 1112 inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC); 1113 if (!inuse) 1114 return -ENOMEM; 1115 1116 for_each_netdev(net, d) { 1117 struct netdev_name_node *name_node; 1118 1119 netdev_for_each_altname(d, name_node) { 1120 if (!sscanf(name_node->name, name, &i)) 1121 continue; 1122 if (i < 0 || i >= max_netdevices) 1123 continue; 1124 1125 /* avoid cases where sscanf is not exact inverse of printf */ 1126 snprintf(buf, IFNAMSIZ, name, i); 1127 if (!strncmp(buf, name_node->name, IFNAMSIZ)) 1128 __set_bit(i, inuse); 1129 } 1130 if (!sscanf(d->name, name, &i)) 1131 continue; 1132 if (i < 0 || i >= max_netdevices) 1133 continue; 1134 1135 /* avoid cases where sscanf is not exact inverse of printf */ 1136 snprintf(buf, IFNAMSIZ, name, i); 1137 if (!strncmp(buf, d->name, IFNAMSIZ)) 1138 __set_bit(i, inuse); 1139 } 1140 1141 i = find_first_zero_bit(inuse, max_netdevices); 1142 bitmap_free(inuse); 1143 if (i == max_netdevices) 1144 return -ENFILE; 1145 1146 /* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */ 1147 strscpy(buf, name, IFNAMSIZ); 1148 snprintf(res, IFNAMSIZ, buf, i); 1149 return i; 1150 } 1151 1152 /* Returns negative errno or allocated unit id (see __dev_alloc_name()) */ 1153 static int dev_prep_valid_name(struct net *net, struct net_device *dev, 1154 const char *want_name, char *out_name, 1155 int dup_errno) 1156 { 1157 if (!dev_valid_name(want_name)) 1158 return -EINVAL; 1159 1160 if (strchr(want_name, '%')) 1161 return __dev_alloc_name(net, want_name, out_name); 1162 1163 if (netdev_name_in_use(net, want_name)) 1164 return -dup_errno; 1165 if (out_name != want_name) 1166 strscpy(out_name, want_name, IFNAMSIZ); 1167 return 0; 1168 } 1169 1170 /** 1171 * dev_alloc_name - allocate a name for a device 1172 * @dev: device 1173 * @name: name format string 1174 * 1175 * Passed a format string - eg "lt%d" it will try and find a suitable 1176 * id. It scans list of devices to build up a free map, then chooses 1177 * the first empty slot. The caller must hold the dev_base or rtnl lock 1178 * while allocating the name and adding the device in order to avoid 1179 * duplicates. 1180 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1181 * Returns the number of the unit assigned or a negative errno code. 1182 */ 1183 1184 int dev_alloc_name(struct net_device *dev, const char *name) 1185 { 1186 return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE); 1187 } 1188 EXPORT_SYMBOL(dev_alloc_name); 1189 1190 static int dev_get_valid_name(struct net *net, struct net_device *dev, 1191 const char *name) 1192 { 1193 int ret; 1194 1195 ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST); 1196 return ret < 0 ? ret : 0; 1197 } 1198 1199 /** 1200 * dev_change_name - change name of a device 1201 * @dev: device 1202 * @newname: name (or format string) must be at least IFNAMSIZ 1203 * 1204 * Change name of a device, can pass format strings "eth%d". 1205 * for wildcarding. 1206 */ 1207 int dev_change_name(struct net_device *dev, const char *newname) 1208 { 1209 unsigned char old_assign_type; 1210 char oldname[IFNAMSIZ]; 1211 int err = 0; 1212 int ret; 1213 struct net *net; 1214 1215 ASSERT_RTNL(); 1216 BUG_ON(!dev_net(dev)); 1217 1218 net = dev_net(dev); 1219 1220 down_write(&devnet_rename_sem); 1221 1222 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1223 up_write(&devnet_rename_sem); 1224 return 0; 1225 } 1226 1227 memcpy(oldname, dev->name, IFNAMSIZ); 1228 1229 write_seqlock(&netdev_rename_lock); 1230 err = dev_get_valid_name(net, dev, newname); 1231 write_sequnlock(&netdev_rename_lock); 1232 1233 if (err < 0) { 1234 up_write(&devnet_rename_sem); 1235 return err; 1236 } 1237 1238 if (oldname[0] && !strchr(oldname, '%')) 1239 netdev_info(dev, "renamed from %s%s\n", oldname, 1240 dev->flags & IFF_UP ? " (while UP)" : ""); 1241 1242 old_assign_type = dev->name_assign_type; 1243 WRITE_ONCE(dev->name_assign_type, NET_NAME_RENAMED); 1244 1245 rollback: 1246 ret = device_rename(&dev->dev, dev->name); 1247 if (ret) { 1248 memcpy(dev->name, oldname, IFNAMSIZ); 1249 WRITE_ONCE(dev->name_assign_type, old_assign_type); 1250 up_write(&devnet_rename_sem); 1251 return ret; 1252 } 1253 1254 up_write(&devnet_rename_sem); 1255 1256 netdev_adjacent_rename_links(dev, oldname); 1257 1258 netdev_name_node_del(dev->name_node); 1259 1260 synchronize_net(); 1261 1262 netdev_name_node_add(net, dev->name_node); 1263 1264 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1265 ret = notifier_to_errno(ret); 1266 1267 if (ret) { 1268 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1269 if (err >= 0) { 1270 err = ret; 1271 down_write(&devnet_rename_sem); 1272 write_seqlock(&netdev_rename_lock); 1273 memcpy(dev->name, oldname, IFNAMSIZ); 1274 write_sequnlock(&netdev_rename_lock); 1275 memcpy(oldname, newname, IFNAMSIZ); 1276 WRITE_ONCE(dev->name_assign_type, old_assign_type); 1277 old_assign_type = NET_NAME_RENAMED; 1278 goto rollback; 1279 } else { 1280 netdev_err(dev, "name change rollback failed: %d\n", 1281 ret); 1282 } 1283 } 1284 1285 return err; 1286 } 1287 1288 /** 1289 * dev_set_alias - change ifalias of a device 1290 * @dev: device 1291 * @alias: name up to IFALIASZ 1292 * @len: limit of bytes to copy from info 1293 * 1294 * Set ifalias for a device, 1295 */ 1296 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1297 { 1298 struct dev_ifalias *new_alias = NULL; 1299 1300 if (len >= IFALIASZ) 1301 return -EINVAL; 1302 1303 if (len) { 1304 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL); 1305 if (!new_alias) 1306 return -ENOMEM; 1307 1308 memcpy(new_alias->ifalias, alias, len); 1309 new_alias->ifalias[len] = 0; 1310 } 1311 1312 mutex_lock(&ifalias_mutex); 1313 new_alias = rcu_replace_pointer(dev->ifalias, new_alias, 1314 mutex_is_locked(&ifalias_mutex)); 1315 mutex_unlock(&ifalias_mutex); 1316 1317 if (new_alias) 1318 kfree_rcu(new_alias, rcuhead); 1319 1320 return len; 1321 } 1322 EXPORT_SYMBOL(dev_set_alias); 1323 1324 /** 1325 * dev_get_alias - get ifalias of a device 1326 * @dev: device 1327 * @name: buffer to store name of ifalias 1328 * @len: size of buffer 1329 * 1330 * get ifalias for a device. Caller must make sure dev cannot go 1331 * away, e.g. rcu read lock or own a reference count to device. 1332 */ 1333 int dev_get_alias(const struct net_device *dev, char *name, size_t len) 1334 { 1335 const struct dev_ifalias *alias; 1336 int ret = 0; 1337 1338 rcu_read_lock(); 1339 alias = rcu_dereference(dev->ifalias); 1340 if (alias) 1341 ret = snprintf(name, len, "%s", alias->ifalias); 1342 rcu_read_unlock(); 1343 1344 return ret; 1345 } 1346 1347 /** 1348 * netdev_features_change - device changes features 1349 * @dev: device to cause notification 1350 * 1351 * Called to indicate a device has changed features. 1352 */ 1353 void netdev_features_change(struct net_device *dev) 1354 { 1355 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1356 } 1357 EXPORT_SYMBOL(netdev_features_change); 1358 1359 /** 1360 * netdev_state_change - device changes state 1361 * @dev: device to cause notification 1362 * 1363 * Called to indicate a device has changed state. This function calls 1364 * the notifier chains for netdev_chain and sends a NEWLINK message 1365 * to the routing socket. 1366 */ 1367 void netdev_state_change(struct net_device *dev) 1368 { 1369 if (dev->flags & IFF_UP) { 1370 struct netdev_notifier_change_info change_info = { 1371 .info.dev = dev, 1372 }; 1373 1374 call_netdevice_notifiers_info(NETDEV_CHANGE, 1375 &change_info.info); 1376 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL); 1377 } 1378 } 1379 EXPORT_SYMBOL(netdev_state_change); 1380 1381 /** 1382 * __netdev_notify_peers - notify network peers about existence of @dev, 1383 * to be called when rtnl lock is already held. 1384 * @dev: network device 1385 * 1386 * Generate traffic such that interested network peers are aware of 1387 * @dev, such as by generating a gratuitous ARP. This may be used when 1388 * a device wants to inform the rest of the network about some sort of 1389 * reconfiguration such as a failover event or virtual machine 1390 * migration. 1391 */ 1392 void __netdev_notify_peers(struct net_device *dev) 1393 { 1394 ASSERT_RTNL(); 1395 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1396 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev); 1397 } 1398 EXPORT_SYMBOL(__netdev_notify_peers); 1399 1400 /** 1401 * netdev_notify_peers - notify network peers about existence of @dev 1402 * @dev: network device 1403 * 1404 * Generate traffic such that interested network peers are aware of 1405 * @dev, such as by generating a gratuitous ARP. This may be used when 1406 * a device wants to inform the rest of the network about some sort of 1407 * reconfiguration such as a failover event or virtual machine 1408 * migration. 1409 */ 1410 void netdev_notify_peers(struct net_device *dev) 1411 { 1412 rtnl_lock(); 1413 __netdev_notify_peers(dev); 1414 rtnl_unlock(); 1415 } 1416 EXPORT_SYMBOL(netdev_notify_peers); 1417 1418 static int napi_threaded_poll(void *data); 1419 1420 static int napi_kthread_create(struct napi_struct *n) 1421 { 1422 int err = 0; 1423 1424 /* Create and wake up the kthread once to put it in 1425 * TASK_INTERRUPTIBLE mode to avoid the blocked task 1426 * warning and work with loadavg. 1427 */ 1428 n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d", 1429 n->dev->name, n->napi_id); 1430 if (IS_ERR(n->thread)) { 1431 err = PTR_ERR(n->thread); 1432 pr_err("kthread_run failed with err %d\n", err); 1433 n->thread = NULL; 1434 } 1435 1436 return err; 1437 } 1438 1439 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack) 1440 { 1441 const struct net_device_ops *ops = dev->netdev_ops; 1442 int ret; 1443 1444 ASSERT_RTNL(); 1445 dev_addr_check(dev); 1446 1447 if (!netif_device_present(dev)) { 1448 /* may be detached because parent is runtime-suspended */ 1449 if (dev->dev.parent) 1450 pm_runtime_resume(dev->dev.parent); 1451 if (!netif_device_present(dev)) 1452 return -ENODEV; 1453 } 1454 1455 /* Block netpoll from trying to do any rx path servicing. 1456 * If we don't do this there is a chance ndo_poll_controller 1457 * or ndo_poll may be running while we open the device 1458 */ 1459 netpoll_poll_disable(dev); 1460 1461 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack); 1462 ret = notifier_to_errno(ret); 1463 if (ret) 1464 return ret; 1465 1466 set_bit(__LINK_STATE_START, &dev->state); 1467 1468 if (ops->ndo_validate_addr) 1469 ret = ops->ndo_validate_addr(dev); 1470 1471 if (!ret && ops->ndo_open) 1472 ret = ops->ndo_open(dev); 1473 1474 netpoll_poll_enable(dev); 1475 1476 if (ret) 1477 clear_bit(__LINK_STATE_START, &dev->state); 1478 else { 1479 dev->flags |= IFF_UP; 1480 dev_set_rx_mode(dev); 1481 dev_activate(dev); 1482 add_device_randomness(dev->dev_addr, dev->addr_len); 1483 } 1484 1485 return ret; 1486 } 1487 1488 /** 1489 * dev_open - prepare an interface for use. 1490 * @dev: device to open 1491 * @extack: netlink extended ack 1492 * 1493 * Takes a device from down to up state. The device's private open 1494 * function is invoked and then the multicast lists are loaded. Finally 1495 * the device is moved into the up state and a %NETDEV_UP message is 1496 * sent to the netdev notifier chain. 1497 * 1498 * Calling this function on an active interface is a nop. On a failure 1499 * a negative errno code is returned. 1500 */ 1501 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack) 1502 { 1503 int ret; 1504 1505 if (dev->flags & IFF_UP) 1506 return 0; 1507 1508 ret = __dev_open(dev, extack); 1509 if (ret < 0) 1510 return ret; 1511 1512 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL); 1513 call_netdevice_notifiers(NETDEV_UP, dev); 1514 1515 return ret; 1516 } 1517 EXPORT_SYMBOL(dev_open); 1518 1519 static void __dev_close_many(struct list_head *head) 1520 { 1521 struct net_device *dev; 1522 1523 ASSERT_RTNL(); 1524 might_sleep(); 1525 1526 list_for_each_entry(dev, head, close_list) { 1527 /* Temporarily disable netpoll until the interface is down */ 1528 netpoll_poll_disable(dev); 1529 1530 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1531 1532 clear_bit(__LINK_STATE_START, &dev->state); 1533 1534 /* Synchronize to scheduled poll. We cannot touch poll list, it 1535 * can be even on different cpu. So just clear netif_running(). 1536 * 1537 * dev->stop() will invoke napi_disable() on all of it's 1538 * napi_struct instances on this device. 1539 */ 1540 smp_mb__after_atomic(); /* Commit netif_running(). */ 1541 } 1542 1543 dev_deactivate_many(head); 1544 1545 list_for_each_entry(dev, head, close_list) { 1546 const struct net_device_ops *ops = dev->netdev_ops; 1547 1548 /* 1549 * Call the device specific close. This cannot fail. 1550 * Only if device is UP 1551 * 1552 * We allow it to be called even after a DETACH hot-plug 1553 * event. 1554 */ 1555 if (ops->ndo_stop) 1556 ops->ndo_stop(dev); 1557 1558 dev->flags &= ~IFF_UP; 1559 netpoll_poll_enable(dev); 1560 } 1561 } 1562 1563 static void __dev_close(struct net_device *dev) 1564 { 1565 LIST_HEAD(single); 1566 1567 list_add(&dev->close_list, &single); 1568 __dev_close_many(&single); 1569 list_del(&single); 1570 } 1571 1572 void dev_close_many(struct list_head *head, bool unlink) 1573 { 1574 struct net_device *dev, *tmp; 1575 1576 /* Remove the devices that don't need to be closed */ 1577 list_for_each_entry_safe(dev, tmp, head, close_list) 1578 if (!(dev->flags & IFF_UP)) 1579 list_del_init(&dev->close_list); 1580 1581 __dev_close_many(head); 1582 1583 list_for_each_entry_safe(dev, tmp, head, close_list) { 1584 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL); 1585 call_netdevice_notifiers(NETDEV_DOWN, dev); 1586 if (unlink) 1587 list_del_init(&dev->close_list); 1588 } 1589 } 1590 EXPORT_SYMBOL(dev_close_many); 1591 1592 /** 1593 * dev_close - shutdown an interface. 1594 * @dev: device to shutdown 1595 * 1596 * This function moves an active device into down state. A 1597 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1598 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1599 * chain. 1600 */ 1601 void dev_close(struct net_device *dev) 1602 { 1603 if (dev->flags & IFF_UP) { 1604 LIST_HEAD(single); 1605 1606 list_add(&dev->close_list, &single); 1607 dev_close_many(&single, true); 1608 list_del(&single); 1609 } 1610 } 1611 EXPORT_SYMBOL(dev_close); 1612 1613 1614 /** 1615 * dev_disable_lro - disable Large Receive Offload on a device 1616 * @dev: device 1617 * 1618 * Disable Large Receive Offload (LRO) on a net device. Must be 1619 * called under RTNL. This is needed if received packets may be 1620 * forwarded to another interface. 1621 */ 1622 void dev_disable_lro(struct net_device *dev) 1623 { 1624 struct net_device *lower_dev; 1625 struct list_head *iter; 1626 1627 dev->wanted_features &= ~NETIF_F_LRO; 1628 netdev_update_features(dev); 1629 1630 if (unlikely(dev->features & NETIF_F_LRO)) 1631 netdev_WARN(dev, "failed to disable LRO!\n"); 1632 1633 netdev_for_each_lower_dev(dev, lower_dev, iter) 1634 dev_disable_lro(lower_dev); 1635 } 1636 EXPORT_SYMBOL(dev_disable_lro); 1637 1638 /** 1639 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device 1640 * @dev: device 1641 * 1642 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be 1643 * called under RTNL. This is needed if Generic XDP is installed on 1644 * the device. 1645 */ 1646 static void dev_disable_gro_hw(struct net_device *dev) 1647 { 1648 dev->wanted_features &= ~NETIF_F_GRO_HW; 1649 netdev_update_features(dev); 1650 1651 if (unlikely(dev->features & NETIF_F_GRO_HW)) 1652 netdev_WARN(dev, "failed to disable GRO_HW!\n"); 1653 } 1654 1655 const char *netdev_cmd_to_name(enum netdev_cmd cmd) 1656 { 1657 #define N(val) \ 1658 case NETDEV_##val: \ 1659 return "NETDEV_" __stringify(val); 1660 switch (cmd) { 1661 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER) 1662 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE) 1663 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE) 1664 N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) 1665 N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) 1666 N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE) 1667 N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN) 1668 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO) 1669 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO) 1670 N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE) 1671 N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA) 1672 N(XDP_FEAT_CHANGE) 1673 } 1674 #undef N 1675 return "UNKNOWN_NETDEV_EVENT"; 1676 } 1677 EXPORT_SYMBOL_GPL(netdev_cmd_to_name); 1678 1679 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1680 struct net_device *dev) 1681 { 1682 struct netdev_notifier_info info = { 1683 .dev = dev, 1684 }; 1685 1686 return nb->notifier_call(nb, val, &info); 1687 } 1688 1689 static int call_netdevice_register_notifiers(struct notifier_block *nb, 1690 struct net_device *dev) 1691 { 1692 int err; 1693 1694 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1695 err = notifier_to_errno(err); 1696 if (err) 1697 return err; 1698 1699 if (!(dev->flags & IFF_UP)) 1700 return 0; 1701 1702 call_netdevice_notifier(nb, NETDEV_UP, dev); 1703 return 0; 1704 } 1705 1706 static void call_netdevice_unregister_notifiers(struct notifier_block *nb, 1707 struct net_device *dev) 1708 { 1709 if (dev->flags & IFF_UP) { 1710 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1711 dev); 1712 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1713 } 1714 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1715 } 1716 1717 static int call_netdevice_register_net_notifiers(struct notifier_block *nb, 1718 struct net *net) 1719 { 1720 struct net_device *dev; 1721 int err; 1722 1723 for_each_netdev(net, dev) { 1724 err = call_netdevice_register_notifiers(nb, dev); 1725 if (err) 1726 goto rollback; 1727 } 1728 return 0; 1729 1730 rollback: 1731 for_each_netdev_continue_reverse(net, dev) 1732 call_netdevice_unregister_notifiers(nb, dev); 1733 return err; 1734 } 1735 1736 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb, 1737 struct net *net) 1738 { 1739 struct net_device *dev; 1740 1741 for_each_netdev(net, dev) 1742 call_netdevice_unregister_notifiers(nb, dev); 1743 } 1744 1745 static int dev_boot_phase = 1; 1746 1747 /** 1748 * register_netdevice_notifier - register a network notifier block 1749 * @nb: notifier 1750 * 1751 * Register a notifier to be called when network device events occur. 1752 * The notifier passed is linked into the kernel structures and must 1753 * not be reused until it has been unregistered. A negative errno code 1754 * is returned on a failure. 1755 * 1756 * When registered all registration and up events are replayed 1757 * to the new notifier to allow device to have a race free 1758 * view of the network device list. 1759 */ 1760 1761 int register_netdevice_notifier(struct notifier_block *nb) 1762 { 1763 struct net *net; 1764 int err; 1765 1766 /* Close race with setup_net() and cleanup_net() */ 1767 down_write(&pernet_ops_rwsem); 1768 rtnl_lock(); 1769 err = raw_notifier_chain_register(&netdev_chain, nb); 1770 if (err) 1771 goto unlock; 1772 if (dev_boot_phase) 1773 goto unlock; 1774 for_each_net(net) { 1775 err = call_netdevice_register_net_notifiers(nb, net); 1776 if (err) 1777 goto rollback; 1778 } 1779 1780 unlock: 1781 rtnl_unlock(); 1782 up_write(&pernet_ops_rwsem); 1783 return err; 1784 1785 rollback: 1786 for_each_net_continue_reverse(net) 1787 call_netdevice_unregister_net_notifiers(nb, net); 1788 1789 raw_notifier_chain_unregister(&netdev_chain, nb); 1790 goto unlock; 1791 } 1792 EXPORT_SYMBOL(register_netdevice_notifier); 1793 1794 /** 1795 * unregister_netdevice_notifier - unregister a network notifier block 1796 * @nb: notifier 1797 * 1798 * Unregister a notifier previously registered by 1799 * register_netdevice_notifier(). The notifier is unlinked into the 1800 * kernel structures and may then be reused. A negative errno code 1801 * is returned on a failure. 1802 * 1803 * After unregistering unregister and down device events are synthesized 1804 * for all devices on the device list to the removed notifier to remove 1805 * the need for special case cleanup code. 1806 */ 1807 1808 int unregister_netdevice_notifier(struct notifier_block *nb) 1809 { 1810 struct net *net; 1811 int err; 1812 1813 /* Close race with setup_net() and cleanup_net() */ 1814 down_write(&pernet_ops_rwsem); 1815 rtnl_lock(); 1816 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1817 if (err) 1818 goto unlock; 1819 1820 for_each_net(net) 1821 call_netdevice_unregister_net_notifiers(nb, net); 1822 1823 unlock: 1824 rtnl_unlock(); 1825 up_write(&pernet_ops_rwsem); 1826 return err; 1827 } 1828 EXPORT_SYMBOL(unregister_netdevice_notifier); 1829 1830 static int __register_netdevice_notifier_net(struct net *net, 1831 struct notifier_block *nb, 1832 bool ignore_call_fail) 1833 { 1834 int err; 1835 1836 err = raw_notifier_chain_register(&net->netdev_chain, nb); 1837 if (err) 1838 return err; 1839 if (dev_boot_phase) 1840 return 0; 1841 1842 err = call_netdevice_register_net_notifiers(nb, net); 1843 if (err && !ignore_call_fail) 1844 goto chain_unregister; 1845 1846 return 0; 1847 1848 chain_unregister: 1849 raw_notifier_chain_unregister(&net->netdev_chain, nb); 1850 return err; 1851 } 1852 1853 static int __unregister_netdevice_notifier_net(struct net *net, 1854 struct notifier_block *nb) 1855 { 1856 int err; 1857 1858 err = raw_notifier_chain_unregister(&net->netdev_chain, nb); 1859 if (err) 1860 return err; 1861 1862 call_netdevice_unregister_net_notifiers(nb, net); 1863 return 0; 1864 } 1865 1866 /** 1867 * register_netdevice_notifier_net - register a per-netns network notifier block 1868 * @net: network namespace 1869 * @nb: notifier 1870 * 1871 * Register a notifier to be called when network device events occur. 1872 * The notifier passed is linked into the kernel structures and must 1873 * not be reused until it has been unregistered. A negative errno code 1874 * is returned on a failure. 1875 * 1876 * When registered all registration and up events are replayed 1877 * to the new notifier to allow device to have a race free 1878 * view of the network device list. 1879 */ 1880 1881 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb) 1882 { 1883 int err; 1884 1885 rtnl_lock(); 1886 err = __register_netdevice_notifier_net(net, nb, false); 1887 rtnl_unlock(); 1888 return err; 1889 } 1890 EXPORT_SYMBOL(register_netdevice_notifier_net); 1891 1892 /** 1893 * unregister_netdevice_notifier_net - unregister a per-netns 1894 * network notifier block 1895 * @net: network namespace 1896 * @nb: notifier 1897 * 1898 * Unregister a notifier previously registered by 1899 * register_netdevice_notifier_net(). The notifier is unlinked from the 1900 * kernel structures and may then be reused. A negative errno code 1901 * is returned on a failure. 1902 * 1903 * After unregistering unregister and down device events are synthesized 1904 * for all devices on the device list to the removed notifier to remove 1905 * the need for special case cleanup code. 1906 */ 1907 1908 int unregister_netdevice_notifier_net(struct net *net, 1909 struct notifier_block *nb) 1910 { 1911 int err; 1912 1913 rtnl_lock(); 1914 err = __unregister_netdevice_notifier_net(net, nb); 1915 rtnl_unlock(); 1916 return err; 1917 } 1918 EXPORT_SYMBOL(unregister_netdevice_notifier_net); 1919 1920 static void __move_netdevice_notifier_net(struct net *src_net, 1921 struct net *dst_net, 1922 struct notifier_block *nb) 1923 { 1924 __unregister_netdevice_notifier_net(src_net, nb); 1925 __register_netdevice_notifier_net(dst_net, nb, true); 1926 } 1927 1928 int register_netdevice_notifier_dev_net(struct net_device *dev, 1929 struct notifier_block *nb, 1930 struct netdev_net_notifier *nn) 1931 { 1932 int err; 1933 1934 rtnl_lock(); 1935 err = __register_netdevice_notifier_net(dev_net(dev), nb, false); 1936 if (!err) { 1937 nn->nb = nb; 1938 list_add(&nn->list, &dev->net_notifier_list); 1939 } 1940 rtnl_unlock(); 1941 return err; 1942 } 1943 EXPORT_SYMBOL(register_netdevice_notifier_dev_net); 1944 1945 int unregister_netdevice_notifier_dev_net(struct net_device *dev, 1946 struct notifier_block *nb, 1947 struct netdev_net_notifier *nn) 1948 { 1949 int err; 1950 1951 rtnl_lock(); 1952 list_del(&nn->list); 1953 err = __unregister_netdevice_notifier_net(dev_net(dev), nb); 1954 rtnl_unlock(); 1955 return err; 1956 } 1957 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net); 1958 1959 static void move_netdevice_notifiers_dev_net(struct net_device *dev, 1960 struct net *net) 1961 { 1962 struct netdev_net_notifier *nn; 1963 1964 list_for_each_entry(nn, &dev->net_notifier_list, list) 1965 __move_netdevice_notifier_net(dev_net(dev), net, nn->nb); 1966 } 1967 1968 /** 1969 * call_netdevice_notifiers_info - call all network notifier blocks 1970 * @val: value passed unmodified to notifier function 1971 * @info: notifier information data 1972 * 1973 * Call all network notifier blocks. Parameters and return value 1974 * are as for raw_notifier_call_chain(). 1975 */ 1976 1977 int call_netdevice_notifiers_info(unsigned long val, 1978 struct netdev_notifier_info *info) 1979 { 1980 struct net *net = dev_net(info->dev); 1981 int ret; 1982 1983 ASSERT_RTNL(); 1984 1985 /* Run per-netns notifier block chain first, then run the global one. 1986 * Hopefully, one day, the global one is going to be removed after 1987 * all notifier block registrators get converted to be per-netns. 1988 */ 1989 ret = raw_notifier_call_chain(&net->netdev_chain, val, info); 1990 if (ret & NOTIFY_STOP_MASK) 1991 return ret; 1992 return raw_notifier_call_chain(&netdev_chain, val, info); 1993 } 1994 1995 /** 1996 * call_netdevice_notifiers_info_robust - call per-netns notifier blocks 1997 * for and rollback on error 1998 * @val_up: value passed unmodified to notifier function 1999 * @val_down: value passed unmodified to the notifier function when 2000 * recovering from an error on @val_up 2001 * @info: notifier information data 2002 * 2003 * Call all per-netns network notifier blocks, but not notifier blocks on 2004 * the global notifier chain. Parameters and return value are as for 2005 * raw_notifier_call_chain_robust(). 2006 */ 2007 2008 static int 2009 call_netdevice_notifiers_info_robust(unsigned long val_up, 2010 unsigned long val_down, 2011 struct netdev_notifier_info *info) 2012 { 2013 struct net *net = dev_net(info->dev); 2014 2015 ASSERT_RTNL(); 2016 2017 return raw_notifier_call_chain_robust(&net->netdev_chain, 2018 val_up, val_down, info); 2019 } 2020 2021 static int call_netdevice_notifiers_extack(unsigned long val, 2022 struct net_device *dev, 2023 struct netlink_ext_ack *extack) 2024 { 2025 struct netdev_notifier_info info = { 2026 .dev = dev, 2027 .extack = extack, 2028 }; 2029 2030 return call_netdevice_notifiers_info(val, &info); 2031 } 2032 2033 /** 2034 * call_netdevice_notifiers - call all network notifier blocks 2035 * @val: value passed unmodified to notifier function 2036 * @dev: net_device pointer passed unmodified to notifier function 2037 * 2038 * Call all network notifier blocks. Parameters and return value 2039 * are as for raw_notifier_call_chain(). 2040 */ 2041 2042 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 2043 { 2044 return call_netdevice_notifiers_extack(val, dev, NULL); 2045 } 2046 EXPORT_SYMBOL(call_netdevice_notifiers); 2047 2048 /** 2049 * call_netdevice_notifiers_mtu - call all network notifier blocks 2050 * @val: value passed unmodified to notifier function 2051 * @dev: net_device pointer passed unmodified to notifier function 2052 * @arg: additional u32 argument passed to the notifier function 2053 * 2054 * Call all network notifier blocks. Parameters and return value 2055 * are as for raw_notifier_call_chain(). 2056 */ 2057 static int call_netdevice_notifiers_mtu(unsigned long val, 2058 struct net_device *dev, u32 arg) 2059 { 2060 struct netdev_notifier_info_ext info = { 2061 .info.dev = dev, 2062 .ext.mtu = arg, 2063 }; 2064 2065 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0); 2066 2067 return call_netdevice_notifiers_info(val, &info.info); 2068 } 2069 2070 #ifdef CONFIG_NET_INGRESS 2071 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key); 2072 2073 void net_inc_ingress_queue(void) 2074 { 2075 static_branch_inc(&ingress_needed_key); 2076 } 2077 EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 2078 2079 void net_dec_ingress_queue(void) 2080 { 2081 static_branch_dec(&ingress_needed_key); 2082 } 2083 EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 2084 #endif 2085 2086 #ifdef CONFIG_NET_EGRESS 2087 static DEFINE_STATIC_KEY_FALSE(egress_needed_key); 2088 2089 void net_inc_egress_queue(void) 2090 { 2091 static_branch_inc(&egress_needed_key); 2092 } 2093 EXPORT_SYMBOL_GPL(net_inc_egress_queue); 2094 2095 void net_dec_egress_queue(void) 2096 { 2097 static_branch_dec(&egress_needed_key); 2098 } 2099 EXPORT_SYMBOL_GPL(net_dec_egress_queue); 2100 #endif 2101 2102 #ifdef CONFIG_NET_CLS_ACT 2103 DEFINE_STATIC_KEY_FALSE(tcf_bypass_check_needed_key); 2104 EXPORT_SYMBOL(tcf_bypass_check_needed_key); 2105 #endif 2106 2107 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key); 2108 EXPORT_SYMBOL(netstamp_needed_key); 2109 #ifdef CONFIG_JUMP_LABEL 2110 static atomic_t netstamp_needed_deferred; 2111 static atomic_t netstamp_wanted; 2112 static void netstamp_clear(struct work_struct *work) 2113 { 2114 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 2115 int wanted; 2116 2117 wanted = atomic_add_return(deferred, &netstamp_wanted); 2118 if (wanted > 0) 2119 static_branch_enable(&netstamp_needed_key); 2120 else 2121 static_branch_disable(&netstamp_needed_key); 2122 } 2123 static DECLARE_WORK(netstamp_work, netstamp_clear); 2124 #endif 2125 2126 void net_enable_timestamp(void) 2127 { 2128 #ifdef CONFIG_JUMP_LABEL 2129 int wanted = atomic_read(&netstamp_wanted); 2130 2131 while (wanted > 0) { 2132 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1)) 2133 return; 2134 } 2135 atomic_inc(&netstamp_needed_deferred); 2136 schedule_work(&netstamp_work); 2137 #else 2138 static_branch_inc(&netstamp_needed_key); 2139 #endif 2140 } 2141 EXPORT_SYMBOL(net_enable_timestamp); 2142 2143 void net_disable_timestamp(void) 2144 { 2145 #ifdef CONFIG_JUMP_LABEL 2146 int wanted = atomic_read(&netstamp_wanted); 2147 2148 while (wanted > 1) { 2149 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1)) 2150 return; 2151 } 2152 atomic_dec(&netstamp_needed_deferred); 2153 schedule_work(&netstamp_work); 2154 #else 2155 static_branch_dec(&netstamp_needed_key); 2156 #endif 2157 } 2158 EXPORT_SYMBOL(net_disable_timestamp); 2159 2160 static inline void net_timestamp_set(struct sk_buff *skb) 2161 { 2162 skb->tstamp = 0; 2163 skb->mono_delivery_time = 0; 2164 if (static_branch_unlikely(&netstamp_needed_key)) 2165 skb->tstamp = ktime_get_real(); 2166 } 2167 2168 #define net_timestamp_check(COND, SKB) \ 2169 if (static_branch_unlikely(&netstamp_needed_key)) { \ 2170 if ((COND) && !(SKB)->tstamp) \ 2171 (SKB)->tstamp = ktime_get_real(); \ 2172 } \ 2173 2174 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb) 2175 { 2176 return __is_skb_forwardable(dev, skb, true); 2177 } 2178 EXPORT_SYMBOL_GPL(is_skb_forwardable); 2179 2180 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb, 2181 bool check_mtu) 2182 { 2183 int ret = ____dev_forward_skb(dev, skb, check_mtu); 2184 2185 if (likely(!ret)) { 2186 skb->protocol = eth_type_trans(skb, dev); 2187 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 2188 } 2189 2190 return ret; 2191 } 2192 2193 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 2194 { 2195 return __dev_forward_skb2(dev, skb, true); 2196 } 2197 EXPORT_SYMBOL_GPL(__dev_forward_skb); 2198 2199 /** 2200 * dev_forward_skb - loopback an skb to another netif 2201 * 2202 * @dev: destination network device 2203 * @skb: buffer to forward 2204 * 2205 * return values: 2206 * NET_RX_SUCCESS (no congestion) 2207 * NET_RX_DROP (packet was dropped, but freed) 2208 * 2209 * dev_forward_skb can be used for injecting an skb from the 2210 * start_xmit function of one device into the receive queue 2211 * of another device. 2212 * 2213 * The receiving device may be in another namespace, so 2214 * we have to clear all information in the skb that could 2215 * impact namespace isolation. 2216 */ 2217 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 2218 { 2219 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 2220 } 2221 EXPORT_SYMBOL_GPL(dev_forward_skb); 2222 2223 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb) 2224 { 2225 return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb); 2226 } 2227 2228 static inline int deliver_skb(struct sk_buff *skb, 2229 struct packet_type *pt_prev, 2230 struct net_device *orig_dev) 2231 { 2232 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 2233 return -ENOMEM; 2234 refcount_inc(&skb->users); 2235 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2236 } 2237 2238 static inline void deliver_ptype_list_skb(struct sk_buff *skb, 2239 struct packet_type **pt, 2240 struct net_device *orig_dev, 2241 __be16 type, 2242 struct list_head *ptype_list) 2243 { 2244 struct packet_type *ptype, *pt_prev = *pt; 2245 2246 list_for_each_entry_rcu(ptype, ptype_list, list) { 2247 if (ptype->type != type) 2248 continue; 2249 if (pt_prev) 2250 deliver_skb(skb, pt_prev, orig_dev); 2251 pt_prev = ptype; 2252 } 2253 *pt = pt_prev; 2254 } 2255 2256 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 2257 { 2258 if (!ptype->af_packet_priv || !skb->sk) 2259 return false; 2260 2261 if (ptype->id_match) 2262 return ptype->id_match(ptype, skb->sk); 2263 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 2264 return true; 2265 2266 return false; 2267 } 2268 2269 /** 2270 * dev_nit_active - return true if any network interface taps are in use 2271 * 2272 * @dev: network device to check for the presence of taps 2273 */ 2274 bool dev_nit_active(struct net_device *dev) 2275 { 2276 return !list_empty(&net_hotdata.ptype_all) || 2277 !list_empty(&dev->ptype_all); 2278 } 2279 EXPORT_SYMBOL_GPL(dev_nit_active); 2280 2281 /* 2282 * Support routine. Sends outgoing frames to any network 2283 * taps currently in use. 2284 */ 2285 2286 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 2287 { 2288 struct list_head *ptype_list = &net_hotdata.ptype_all; 2289 struct packet_type *ptype, *pt_prev = NULL; 2290 struct sk_buff *skb2 = NULL; 2291 2292 rcu_read_lock(); 2293 again: 2294 list_for_each_entry_rcu(ptype, ptype_list, list) { 2295 if (READ_ONCE(ptype->ignore_outgoing)) 2296 continue; 2297 2298 /* Never send packets back to the socket 2299 * they originated from - MvS (miquels@drinkel.ow.org) 2300 */ 2301 if (skb_loop_sk(ptype, skb)) 2302 continue; 2303 2304 if (pt_prev) { 2305 deliver_skb(skb2, pt_prev, skb->dev); 2306 pt_prev = ptype; 2307 continue; 2308 } 2309 2310 /* need to clone skb, done only once */ 2311 skb2 = skb_clone(skb, GFP_ATOMIC); 2312 if (!skb2) 2313 goto out_unlock; 2314 2315 net_timestamp_set(skb2); 2316 2317 /* skb->nh should be correctly 2318 * set by sender, so that the second statement is 2319 * just protection against buggy protocols. 2320 */ 2321 skb_reset_mac_header(skb2); 2322 2323 if (skb_network_header(skb2) < skb2->data || 2324 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 2325 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 2326 ntohs(skb2->protocol), 2327 dev->name); 2328 skb_reset_network_header(skb2); 2329 } 2330 2331 skb2->transport_header = skb2->network_header; 2332 skb2->pkt_type = PACKET_OUTGOING; 2333 pt_prev = ptype; 2334 } 2335 2336 if (ptype_list == &net_hotdata.ptype_all) { 2337 ptype_list = &dev->ptype_all; 2338 goto again; 2339 } 2340 out_unlock: 2341 if (pt_prev) { 2342 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC)) 2343 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 2344 else 2345 kfree_skb(skb2); 2346 } 2347 rcu_read_unlock(); 2348 } 2349 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit); 2350 2351 /** 2352 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 2353 * @dev: Network device 2354 * @txq: number of queues available 2355 * 2356 * If real_num_tx_queues is changed the tc mappings may no longer be 2357 * valid. To resolve this verify the tc mapping remains valid and if 2358 * not NULL the mapping. With no priorities mapping to this 2359 * offset/count pair it will no longer be used. In the worst case TC0 2360 * is invalid nothing can be done so disable priority mappings. If is 2361 * expected that drivers will fix this mapping if they can before 2362 * calling netif_set_real_num_tx_queues. 2363 */ 2364 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 2365 { 2366 int i; 2367 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2368 2369 /* If TC0 is invalidated disable TC mapping */ 2370 if (tc->offset + tc->count > txq) { 2371 netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 2372 dev->num_tc = 0; 2373 return; 2374 } 2375 2376 /* Invalidated prio to tc mappings set to TC0 */ 2377 for (i = 1; i < TC_BITMASK + 1; i++) { 2378 int q = netdev_get_prio_tc_map(dev, i); 2379 2380 tc = &dev->tc_to_txq[q]; 2381 if (tc->offset + tc->count > txq) { 2382 netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 2383 i, q); 2384 netdev_set_prio_tc_map(dev, i, 0); 2385 } 2386 } 2387 } 2388 2389 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq) 2390 { 2391 if (dev->num_tc) { 2392 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2393 int i; 2394 2395 /* walk through the TCs and see if it falls into any of them */ 2396 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) { 2397 if ((txq - tc->offset) < tc->count) 2398 return i; 2399 } 2400 2401 /* didn't find it, just return -1 to indicate no match */ 2402 return -1; 2403 } 2404 2405 return 0; 2406 } 2407 EXPORT_SYMBOL(netdev_txq_to_tc); 2408 2409 #ifdef CONFIG_XPS 2410 static struct static_key xps_needed __read_mostly; 2411 static struct static_key xps_rxqs_needed __read_mostly; 2412 static DEFINE_MUTEX(xps_map_mutex); 2413 #define xmap_dereference(P) \ 2414 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 2415 2416 static bool remove_xps_queue(struct xps_dev_maps *dev_maps, 2417 struct xps_dev_maps *old_maps, int tci, u16 index) 2418 { 2419 struct xps_map *map = NULL; 2420 int pos; 2421 2422 map = xmap_dereference(dev_maps->attr_map[tci]); 2423 if (!map) 2424 return false; 2425 2426 for (pos = map->len; pos--;) { 2427 if (map->queues[pos] != index) 2428 continue; 2429 2430 if (map->len > 1) { 2431 map->queues[pos] = map->queues[--map->len]; 2432 break; 2433 } 2434 2435 if (old_maps) 2436 RCU_INIT_POINTER(old_maps->attr_map[tci], NULL); 2437 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); 2438 kfree_rcu(map, rcu); 2439 return false; 2440 } 2441 2442 return true; 2443 } 2444 2445 static bool remove_xps_queue_cpu(struct net_device *dev, 2446 struct xps_dev_maps *dev_maps, 2447 int cpu, u16 offset, u16 count) 2448 { 2449 int num_tc = dev_maps->num_tc; 2450 bool active = false; 2451 int tci; 2452 2453 for (tci = cpu * num_tc; num_tc--; tci++) { 2454 int i, j; 2455 2456 for (i = count, j = offset; i--; j++) { 2457 if (!remove_xps_queue(dev_maps, NULL, tci, j)) 2458 break; 2459 } 2460 2461 active |= i < 0; 2462 } 2463 2464 return active; 2465 } 2466 2467 static void reset_xps_maps(struct net_device *dev, 2468 struct xps_dev_maps *dev_maps, 2469 enum xps_map_type type) 2470 { 2471 static_key_slow_dec_cpuslocked(&xps_needed); 2472 if (type == XPS_RXQS) 2473 static_key_slow_dec_cpuslocked(&xps_rxqs_needed); 2474 2475 RCU_INIT_POINTER(dev->xps_maps[type], NULL); 2476 2477 kfree_rcu(dev_maps, rcu); 2478 } 2479 2480 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type, 2481 u16 offset, u16 count) 2482 { 2483 struct xps_dev_maps *dev_maps; 2484 bool active = false; 2485 int i, j; 2486 2487 dev_maps = xmap_dereference(dev->xps_maps[type]); 2488 if (!dev_maps) 2489 return; 2490 2491 for (j = 0; j < dev_maps->nr_ids; j++) 2492 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count); 2493 if (!active) 2494 reset_xps_maps(dev, dev_maps, type); 2495 2496 if (type == XPS_CPUS) { 2497 for (i = offset + (count - 1); count--; i--) 2498 netdev_queue_numa_node_write( 2499 netdev_get_tx_queue(dev, i), NUMA_NO_NODE); 2500 } 2501 } 2502 2503 static void netif_reset_xps_queues(struct net_device *dev, u16 offset, 2504 u16 count) 2505 { 2506 if (!static_key_false(&xps_needed)) 2507 return; 2508 2509 cpus_read_lock(); 2510 mutex_lock(&xps_map_mutex); 2511 2512 if (static_key_false(&xps_rxqs_needed)) 2513 clean_xps_maps(dev, XPS_RXQS, offset, count); 2514 2515 clean_xps_maps(dev, XPS_CPUS, offset, count); 2516 2517 mutex_unlock(&xps_map_mutex); 2518 cpus_read_unlock(); 2519 } 2520 2521 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 2522 { 2523 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index); 2524 } 2525 2526 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index, 2527 u16 index, bool is_rxqs_map) 2528 { 2529 struct xps_map *new_map; 2530 int alloc_len = XPS_MIN_MAP_ALLOC; 2531 int i, pos; 2532 2533 for (pos = 0; map && pos < map->len; pos++) { 2534 if (map->queues[pos] != index) 2535 continue; 2536 return map; 2537 } 2538 2539 /* Need to add tx-queue to this CPU's/rx-queue's existing map */ 2540 if (map) { 2541 if (pos < map->alloc_len) 2542 return map; 2543 2544 alloc_len = map->alloc_len * 2; 2545 } 2546 2547 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's 2548 * map 2549 */ 2550 if (is_rxqs_map) 2551 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL); 2552 else 2553 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 2554 cpu_to_node(attr_index)); 2555 if (!new_map) 2556 return NULL; 2557 2558 for (i = 0; i < pos; i++) 2559 new_map->queues[i] = map->queues[i]; 2560 new_map->alloc_len = alloc_len; 2561 new_map->len = pos; 2562 2563 return new_map; 2564 } 2565 2566 /* Copy xps maps at a given index */ 2567 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps, 2568 struct xps_dev_maps *new_dev_maps, int index, 2569 int tc, bool skip_tc) 2570 { 2571 int i, tci = index * dev_maps->num_tc; 2572 struct xps_map *map; 2573 2574 /* copy maps belonging to foreign traffic classes */ 2575 for (i = 0; i < dev_maps->num_tc; i++, tci++) { 2576 if (i == tc && skip_tc) 2577 continue; 2578 2579 /* fill in the new device map from the old device map */ 2580 map = xmap_dereference(dev_maps->attr_map[tci]); 2581 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2582 } 2583 } 2584 2585 /* Must be called under cpus_read_lock */ 2586 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 2587 u16 index, enum xps_map_type type) 2588 { 2589 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL; 2590 const unsigned long *online_mask = NULL; 2591 bool active = false, copy = false; 2592 int i, j, tci, numa_node_id = -2; 2593 int maps_sz, num_tc = 1, tc = 0; 2594 struct xps_map *map, *new_map; 2595 unsigned int nr_ids; 2596 2597 WARN_ON_ONCE(index >= dev->num_tx_queues); 2598 2599 if (dev->num_tc) { 2600 /* Do not allow XPS on subordinate device directly */ 2601 num_tc = dev->num_tc; 2602 if (num_tc < 0) 2603 return -EINVAL; 2604 2605 /* If queue belongs to subordinate dev use its map */ 2606 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev; 2607 2608 tc = netdev_txq_to_tc(dev, index); 2609 if (tc < 0) 2610 return -EINVAL; 2611 } 2612 2613 mutex_lock(&xps_map_mutex); 2614 2615 dev_maps = xmap_dereference(dev->xps_maps[type]); 2616 if (type == XPS_RXQS) { 2617 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues); 2618 nr_ids = dev->num_rx_queues; 2619 } else { 2620 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc); 2621 if (num_possible_cpus() > 1) 2622 online_mask = cpumask_bits(cpu_online_mask); 2623 nr_ids = nr_cpu_ids; 2624 } 2625 2626 if (maps_sz < L1_CACHE_BYTES) 2627 maps_sz = L1_CACHE_BYTES; 2628 2629 /* The old dev_maps could be larger or smaller than the one we're 2630 * setting up now, as dev->num_tc or nr_ids could have been updated in 2631 * between. We could try to be smart, but let's be safe instead and only 2632 * copy foreign traffic classes if the two map sizes match. 2633 */ 2634 if (dev_maps && 2635 dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids) 2636 copy = true; 2637 2638 /* allocate memory for queue storage */ 2639 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids), 2640 j < nr_ids;) { 2641 if (!new_dev_maps) { 2642 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2643 if (!new_dev_maps) { 2644 mutex_unlock(&xps_map_mutex); 2645 return -ENOMEM; 2646 } 2647 2648 new_dev_maps->nr_ids = nr_ids; 2649 new_dev_maps->num_tc = num_tc; 2650 } 2651 2652 tci = j * num_tc + tc; 2653 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL; 2654 2655 map = expand_xps_map(map, j, index, type == XPS_RXQS); 2656 if (!map) 2657 goto error; 2658 2659 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2660 } 2661 2662 if (!new_dev_maps) 2663 goto out_no_new_maps; 2664 2665 if (!dev_maps) { 2666 /* Increment static keys at most once per type */ 2667 static_key_slow_inc_cpuslocked(&xps_needed); 2668 if (type == XPS_RXQS) 2669 static_key_slow_inc_cpuslocked(&xps_rxqs_needed); 2670 } 2671 2672 for (j = 0; j < nr_ids; j++) { 2673 bool skip_tc = false; 2674 2675 tci = j * num_tc + tc; 2676 if (netif_attr_test_mask(j, mask, nr_ids) && 2677 netif_attr_test_online(j, online_mask, nr_ids)) { 2678 /* add tx-queue to CPU/rx-queue maps */ 2679 int pos = 0; 2680 2681 skip_tc = true; 2682 2683 map = xmap_dereference(new_dev_maps->attr_map[tci]); 2684 while ((pos < map->len) && (map->queues[pos] != index)) 2685 pos++; 2686 2687 if (pos == map->len) 2688 map->queues[map->len++] = index; 2689 #ifdef CONFIG_NUMA 2690 if (type == XPS_CPUS) { 2691 if (numa_node_id == -2) 2692 numa_node_id = cpu_to_node(j); 2693 else if (numa_node_id != cpu_to_node(j)) 2694 numa_node_id = -1; 2695 } 2696 #endif 2697 } 2698 2699 if (copy) 2700 xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc, 2701 skip_tc); 2702 } 2703 2704 rcu_assign_pointer(dev->xps_maps[type], new_dev_maps); 2705 2706 /* Cleanup old maps */ 2707 if (!dev_maps) 2708 goto out_no_old_maps; 2709 2710 for (j = 0; j < dev_maps->nr_ids; j++) { 2711 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) { 2712 map = xmap_dereference(dev_maps->attr_map[tci]); 2713 if (!map) 2714 continue; 2715 2716 if (copy) { 2717 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2718 if (map == new_map) 2719 continue; 2720 } 2721 2722 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); 2723 kfree_rcu(map, rcu); 2724 } 2725 } 2726 2727 old_dev_maps = dev_maps; 2728 2729 out_no_old_maps: 2730 dev_maps = new_dev_maps; 2731 active = true; 2732 2733 out_no_new_maps: 2734 if (type == XPS_CPUS) 2735 /* update Tx queue numa node */ 2736 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2737 (numa_node_id >= 0) ? 2738 numa_node_id : NUMA_NO_NODE); 2739 2740 if (!dev_maps) 2741 goto out_no_maps; 2742 2743 /* removes tx-queue from unused CPUs/rx-queues */ 2744 for (j = 0; j < dev_maps->nr_ids; j++) { 2745 tci = j * dev_maps->num_tc; 2746 2747 for (i = 0; i < dev_maps->num_tc; i++, tci++) { 2748 if (i == tc && 2749 netif_attr_test_mask(j, mask, dev_maps->nr_ids) && 2750 netif_attr_test_online(j, online_mask, dev_maps->nr_ids)) 2751 continue; 2752 2753 active |= remove_xps_queue(dev_maps, 2754 copy ? old_dev_maps : NULL, 2755 tci, index); 2756 } 2757 } 2758 2759 if (old_dev_maps) 2760 kfree_rcu(old_dev_maps, rcu); 2761 2762 /* free map if not active */ 2763 if (!active) 2764 reset_xps_maps(dev, dev_maps, type); 2765 2766 out_no_maps: 2767 mutex_unlock(&xps_map_mutex); 2768 2769 return 0; 2770 error: 2771 /* remove any maps that we added */ 2772 for (j = 0; j < nr_ids; j++) { 2773 for (i = num_tc, tci = j * num_tc; i--; tci++) { 2774 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2775 map = copy ? 2776 xmap_dereference(dev_maps->attr_map[tci]) : 2777 NULL; 2778 if (new_map && new_map != map) 2779 kfree(new_map); 2780 } 2781 } 2782 2783 mutex_unlock(&xps_map_mutex); 2784 2785 kfree(new_dev_maps); 2786 return -ENOMEM; 2787 } 2788 EXPORT_SYMBOL_GPL(__netif_set_xps_queue); 2789 2790 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 2791 u16 index) 2792 { 2793 int ret; 2794 2795 cpus_read_lock(); 2796 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS); 2797 cpus_read_unlock(); 2798 2799 return ret; 2800 } 2801 EXPORT_SYMBOL(netif_set_xps_queue); 2802 2803 #endif 2804 static void netdev_unbind_all_sb_channels(struct net_device *dev) 2805 { 2806 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 2807 2808 /* Unbind any subordinate channels */ 2809 while (txq-- != &dev->_tx[0]) { 2810 if (txq->sb_dev) 2811 netdev_unbind_sb_channel(dev, txq->sb_dev); 2812 } 2813 } 2814 2815 void netdev_reset_tc(struct net_device *dev) 2816 { 2817 #ifdef CONFIG_XPS 2818 netif_reset_xps_queues_gt(dev, 0); 2819 #endif 2820 netdev_unbind_all_sb_channels(dev); 2821 2822 /* Reset TC configuration of device */ 2823 dev->num_tc = 0; 2824 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 2825 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 2826 } 2827 EXPORT_SYMBOL(netdev_reset_tc); 2828 2829 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 2830 { 2831 if (tc >= dev->num_tc) 2832 return -EINVAL; 2833 2834 #ifdef CONFIG_XPS 2835 netif_reset_xps_queues(dev, offset, count); 2836 #endif 2837 dev->tc_to_txq[tc].count = count; 2838 dev->tc_to_txq[tc].offset = offset; 2839 return 0; 2840 } 2841 EXPORT_SYMBOL(netdev_set_tc_queue); 2842 2843 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 2844 { 2845 if (num_tc > TC_MAX_QUEUE) 2846 return -EINVAL; 2847 2848 #ifdef CONFIG_XPS 2849 netif_reset_xps_queues_gt(dev, 0); 2850 #endif 2851 netdev_unbind_all_sb_channels(dev); 2852 2853 dev->num_tc = num_tc; 2854 return 0; 2855 } 2856 EXPORT_SYMBOL(netdev_set_num_tc); 2857 2858 void netdev_unbind_sb_channel(struct net_device *dev, 2859 struct net_device *sb_dev) 2860 { 2861 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 2862 2863 #ifdef CONFIG_XPS 2864 netif_reset_xps_queues_gt(sb_dev, 0); 2865 #endif 2866 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq)); 2867 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map)); 2868 2869 while (txq-- != &dev->_tx[0]) { 2870 if (txq->sb_dev == sb_dev) 2871 txq->sb_dev = NULL; 2872 } 2873 } 2874 EXPORT_SYMBOL(netdev_unbind_sb_channel); 2875 2876 int netdev_bind_sb_channel_queue(struct net_device *dev, 2877 struct net_device *sb_dev, 2878 u8 tc, u16 count, u16 offset) 2879 { 2880 /* Make certain the sb_dev and dev are already configured */ 2881 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc) 2882 return -EINVAL; 2883 2884 /* We cannot hand out queues we don't have */ 2885 if ((offset + count) > dev->real_num_tx_queues) 2886 return -EINVAL; 2887 2888 /* Record the mapping */ 2889 sb_dev->tc_to_txq[tc].count = count; 2890 sb_dev->tc_to_txq[tc].offset = offset; 2891 2892 /* Provide a way for Tx queue to find the tc_to_txq map or 2893 * XPS map for itself. 2894 */ 2895 while (count--) 2896 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev; 2897 2898 return 0; 2899 } 2900 EXPORT_SYMBOL(netdev_bind_sb_channel_queue); 2901 2902 int netdev_set_sb_channel(struct net_device *dev, u16 channel) 2903 { 2904 /* Do not use a multiqueue device to represent a subordinate channel */ 2905 if (netif_is_multiqueue(dev)) 2906 return -ENODEV; 2907 2908 /* We allow channels 1 - 32767 to be used for subordinate channels. 2909 * Channel 0 is meant to be "native" mode and used only to represent 2910 * the main root device. We allow writing 0 to reset the device back 2911 * to normal mode after being used as a subordinate channel. 2912 */ 2913 if (channel > S16_MAX) 2914 return -EINVAL; 2915 2916 dev->num_tc = -channel; 2917 2918 return 0; 2919 } 2920 EXPORT_SYMBOL(netdev_set_sb_channel); 2921 2922 /* 2923 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2924 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed. 2925 */ 2926 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2927 { 2928 bool disabling; 2929 int rc; 2930 2931 disabling = txq < dev->real_num_tx_queues; 2932 2933 if (txq < 1 || txq > dev->num_tx_queues) 2934 return -EINVAL; 2935 2936 if (dev->reg_state == NETREG_REGISTERED || 2937 dev->reg_state == NETREG_UNREGISTERING) { 2938 ASSERT_RTNL(); 2939 2940 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2941 txq); 2942 if (rc) 2943 return rc; 2944 2945 if (dev->num_tc) 2946 netif_setup_tc(dev, txq); 2947 2948 dev_qdisc_change_real_num_tx(dev, txq); 2949 2950 dev->real_num_tx_queues = txq; 2951 2952 if (disabling) { 2953 synchronize_net(); 2954 qdisc_reset_all_tx_gt(dev, txq); 2955 #ifdef CONFIG_XPS 2956 netif_reset_xps_queues_gt(dev, txq); 2957 #endif 2958 } 2959 } else { 2960 dev->real_num_tx_queues = txq; 2961 } 2962 2963 return 0; 2964 } 2965 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2966 2967 #ifdef CONFIG_SYSFS 2968 /** 2969 * netif_set_real_num_rx_queues - set actual number of RX queues used 2970 * @dev: Network device 2971 * @rxq: Actual number of RX queues 2972 * 2973 * This must be called either with the rtnl_lock held or before 2974 * registration of the net device. Returns 0 on success, or a 2975 * negative error code. If called before registration, it always 2976 * succeeds. 2977 */ 2978 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2979 { 2980 int rc; 2981 2982 if (rxq < 1 || rxq > dev->num_rx_queues) 2983 return -EINVAL; 2984 2985 if (dev->reg_state == NETREG_REGISTERED) { 2986 ASSERT_RTNL(); 2987 2988 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 2989 rxq); 2990 if (rc) 2991 return rc; 2992 } 2993 2994 dev->real_num_rx_queues = rxq; 2995 return 0; 2996 } 2997 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 2998 #endif 2999 3000 /** 3001 * netif_set_real_num_queues - set actual number of RX and TX queues used 3002 * @dev: Network device 3003 * @txq: Actual number of TX queues 3004 * @rxq: Actual number of RX queues 3005 * 3006 * Set the real number of both TX and RX queues. 3007 * Does nothing if the number of queues is already correct. 3008 */ 3009 int netif_set_real_num_queues(struct net_device *dev, 3010 unsigned int txq, unsigned int rxq) 3011 { 3012 unsigned int old_rxq = dev->real_num_rx_queues; 3013 int err; 3014 3015 if (txq < 1 || txq > dev->num_tx_queues || 3016 rxq < 1 || rxq > dev->num_rx_queues) 3017 return -EINVAL; 3018 3019 /* Start from increases, so the error path only does decreases - 3020 * decreases can't fail. 3021 */ 3022 if (rxq > dev->real_num_rx_queues) { 3023 err = netif_set_real_num_rx_queues(dev, rxq); 3024 if (err) 3025 return err; 3026 } 3027 if (txq > dev->real_num_tx_queues) { 3028 err = netif_set_real_num_tx_queues(dev, txq); 3029 if (err) 3030 goto undo_rx; 3031 } 3032 if (rxq < dev->real_num_rx_queues) 3033 WARN_ON(netif_set_real_num_rx_queues(dev, rxq)); 3034 if (txq < dev->real_num_tx_queues) 3035 WARN_ON(netif_set_real_num_tx_queues(dev, txq)); 3036 3037 return 0; 3038 undo_rx: 3039 WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq)); 3040 return err; 3041 } 3042 EXPORT_SYMBOL(netif_set_real_num_queues); 3043 3044 /** 3045 * netif_set_tso_max_size() - set the max size of TSO frames supported 3046 * @dev: netdev to update 3047 * @size: max skb->len of a TSO frame 3048 * 3049 * Set the limit on the size of TSO super-frames the device can handle. 3050 * Unless explicitly set the stack will assume the value of 3051 * %GSO_LEGACY_MAX_SIZE. 3052 */ 3053 void netif_set_tso_max_size(struct net_device *dev, unsigned int size) 3054 { 3055 dev->tso_max_size = min(GSO_MAX_SIZE, size); 3056 if (size < READ_ONCE(dev->gso_max_size)) 3057 netif_set_gso_max_size(dev, size); 3058 if (size < READ_ONCE(dev->gso_ipv4_max_size)) 3059 netif_set_gso_ipv4_max_size(dev, size); 3060 } 3061 EXPORT_SYMBOL(netif_set_tso_max_size); 3062 3063 /** 3064 * netif_set_tso_max_segs() - set the max number of segs supported for TSO 3065 * @dev: netdev to update 3066 * @segs: max number of TCP segments 3067 * 3068 * Set the limit on the number of TCP segments the device can generate from 3069 * a single TSO super-frame. 3070 * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS. 3071 */ 3072 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs) 3073 { 3074 dev->tso_max_segs = segs; 3075 if (segs < READ_ONCE(dev->gso_max_segs)) 3076 netif_set_gso_max_segs(dev, segs); 3077 } 3078 EXPORT_SYMBOL(netif_set_tso_max_segs); 3079 3080 /** 3081 * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper 3082 * @to: netdev to update 3083 * @from: netdev from which to copy the limits 3084 */ 3085 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from) 3086 { 3087 netif_set_tso_max_size(to, from->tso_max_size); 3088 netif_set_tso_max_segs(to, from->tso_max_segs); 3089 } 3090 EXPORT_SYMBOL(netif_inherit_tso_max); 3091 3092 /** 3093 * netif_get_num_default_rss_queues - default number of RSS queues 3094 * 3095 * Default value is the number of physical cores if there are only 1 or 2, or 3096 * divided by 2 if there are more. 3097 */ 3098 int netif_get_num_default_rss_queues(void) 3099 { 3100 cpumask_var_t cpus; 3101 int cpu, count = 0; 3102 3103 if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL))) 3104 return 1; 3105 3106 cpumask_copy(cpus, cpu_online_mask); 3107 for_each_cpu(cpu, cpus) { 3108 ++count; 3109 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu)); 3110 } 3111 free_cpumask_var(cpus); 3112 3113 return count > 2 ? DIV_ROUND_UP(count, 2) : count; 3114 } 3115 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 3116 3117 static void __netif_reschedule(struct Qdisc *q) 3118 { 3119 struct softnet_data *sd; 3120 unsigned long flags; 3121 3122 local_irq_save(flags); 3123 sd = this_cpu_ptr(&softnet_data); 3124 q->next_sched = NULL; 3125 *sd->output_queue_tailp = q; 3126 sd->output_queue_tailp = &q->next_sched; 3127 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3128 local_irq_restore(flags); 3129 } 3130 3131 void __netif_schedule(struct Qdisc *q) 3132 { 3133 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 3134 __netif_reschedule(q); 3135 } 3136 EXPORT_SYMBOL(__netif_schedule); 3137 3138 struct dev_kfree_skb_cb { 3139 enum skb_drop_reason reason; 3140 }; 3141 3142 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 3143 { 3144 return (struct dev_kfree_skb_cb *)skb->cb; 3145 } 3146 3147 void netif_schedule_queue(struct netdev_queue *txq) 3148 { 3149 rcu_read_lock(); 3150 if (!netif_xmit_stopped(txq)) { 3151 struct Qdisc *q = rcu_dereference(txq->qdisc); 3152 3153 __netif_schedule(q); 3154 } 3155 rcu_read_unlock(); 3156 } 3157 EXPORT_SYMBOL(netif_schedule_queue); 3158 3159 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 3160 { 3161 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 3162 struct Qdisc *q; 3163 3164 rcu_read_lock(); 3165 q = rcu_dereference(dev_queue->qdisc); 3166 __netif_schedule(q); 3167 rcu_read_unlock(); 3168 } 3169 } 3170 EXPORT_SYMBOL(netif_tx_wake_queue); 3171 3172 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason) 3173 { 3174 unsigned long flags; 3175 3176 if (unlikely(!skb)) 3177 return; 3178 3179 if (likely(refcount_read(&skb->users) == 1)) { 3180 smp_rmb(); 3181 refcount_set(&skb->users, 0); 3182 } else if (likely(!refcount_dec_and_test(&skb->users))) { 3183 return; 3184 } 3185 get_kfree_skb_cb(skb)->reason = reason; 3186 local_irq_save(flags); 3187 skb->next = __this_cpu_read(softnet_data.completion_queue); 3188 __this_cpu_write(softnet_data.completion_queue, skb); 3189 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3190 local_irq_restore(flags); 3191 } 3192 EXPORT_SYMBOL(dev_kfree_skb_irq_reason); 3193 3194 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason) 3195 { 3196 if (in_hardirq() || irqs_disabled()) 3197 dev_kfree_skb_irq_reason(skb, reason); 3198 else 3199 kfree_skb_reason(skb, reason); 3200 } 3201 EXPORT_SYMBOL(dev_kfree_skb_any_reason); 3202 3203 3204 /** 3205 * netif_device_detach - mark device as removed 3206 * @dev: network device 3207 * 3208 * Mark device as removed from system and therefore no longer available. 3209 */ 3210 void netif_device_detach(struct net_device *dev) 3211 { 3212 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 3213 netif_running(dev)) { 3214 netif_tx_stop_all_queues(dev); 3215 } 3216 } 3217 EXPORT_SYMBOL(netif_device_detach); 3218 3219 /** 3220 * netif_device_attach - mark device as attached 3221 * @dev: network device 3222 * 3223 * Mark device as attached from system and restart if needed. 3224 */ 3225 void netif_device_attach(struct net_device *dev) 3226 { 3227 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 3228 netif_running(dev)) { 3229 netif_tx_wake_all_queues(dev); 3230 __netdev_watchdog_up(dev); 3231 } 3232 } 3233 EXPORT_SYMBOL(netif_device_attach); 3234 3235 /* 3236 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 3237 * to be used as a distribution range. 3238 */ 3239 static u16 skb_tx_hash(const struct net_device *dev, 3240 const struct net_device *sb_dev, 3241 struct sk_buff *skb) 3242 { 3243 u32 hash; 3244 u16 qoffset = 0; 3245 u16 qcount = dev->real_num_tx_queues; 3246 3247 if (dev->num_tc) { 3248 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 3249 3250 qoffset = sb_dev->tc_to_txq[tc].offset; 3251 qcount = sb_dev->tc_to_txq[tc].count; 3252 if (unlikely(!qcount)) { 3253 net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n", 3254 sb_dev->name, qoffset, tc); 3255 qoffset = 0; 3256 qcount = dev->real_num_tx_queues; 3257 } 3258 } 3259 3260 if (skb_rx_queue_recorded(skb)) { 3261 DEBUG_NET_WARN_ON_ONCE(qcount == 0); 3262 hash = skb_get_rx_queue(skb); 3263 if (hash >= qoffset) 3264 hash -= qoffset; 3265 while (unlikely(hash >= qcount)) 3266 hash -= qcount; 3267 return hash + qoffset; 3268 } 3269 3270 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; 3271 } 3272 3273 void skb_warn_bad_offload(const struct sk_buff *skb) 3274 { 3275 static const netdev_features_t null_features; 3276 struct net_device *dev = skb->dev; 3277 const char *name = ""; 3278 3279 if (!net_ratelimit()) 3280 return; 3281 3282 if (dev) { 3283 if (dev->dev.parent) 3284 name = dev_driver_string(dev->dev.parent); 3285 else 3286 name = netdev_name(dev); 3287 } 3288 skb_dump(KERN_WARNING, skb, false); 3289 WARN(1, "%s: caps=(%pNF, %pNF)\n", 3290 name, dev ? &dev->features : &null_features, 3291 skb->sk ? &skb->sk->sk_route_caps : &null_features); 3292 } 3293 3294 /* 3295 * Invalidate hardware checksum when packet is to be mangled, and 3296 * complete checksum manually on outgoing path. 3297 */ 3298 int skb_checksum_help(struct sk_buff *skb) 3299 { 3300 __wsum csum; 3301 int ret = 0, offset; 3302 3303 if (skb->ip_summed == CHECKSUM_COMPLETE) 3304 goto out_set_summed; 3305 3306 if (unlikely(skb_is_gso(skb))) { 3307 skb_warn_bad_offload(skb); 3308 return -EINVAL; 3309 } 3310 3311 /* Before computing a checksum, we should make sure no frag could 3312 * be modified by an external entity : checksum could be wrong. 3313 */ 3314 if (skb_has_shared_frag(skb)) { 3315 ret = __skb_linearize(skb); 3316 if (ret) 3317 goto out; 3318 } 3319 3320 offset = skb_checksum_start_offset(skb); 3321 ret = -EINVAL; 3322 if (unlikely(offset >= skb_headlen(skb))) { 3323 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false); 3324 WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n", 3325 offset, skb_headlen(skb)); 3326 goto out; 3327 } 3328 csum = skb_checksum(skb, offset, skb->len - offset, 0); 3329 3330 offset += skb->csum_offset; 3331 if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) { 3332 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false); 3333 WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n", 3334 offset + sizeof(__sum16), skb_headlen(skb)); 3335 goto out; 3336 } 3337 ret = skb_ensure_writable(skb, offset + sizeof(__sum16)); 3338 if (ret) 3339 goto out; 3340 3341 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0; 3342 out_set_summed: 3343 skb->ip_summed = CHECKSUM_NONE; 3344 out: 3345 return ret; 3346 } 3347 EXPORT_SYMBOL(skb_checksum_help); 3348 3349 int skb_crc32c_csum_help(struct sk_buff *skb) 3350 { 3351 __le32 crc32c_csum; 3352 int ret = 0, offset, start; 3353 3354 if (skb->ip_summed != CHECKSUM_PARTIAL) 3355 goto out; 3356 3357 if (unlikely(skb_is_gso(skb))) 3358 goto out; 3359 3360 /* Before computing a checksum, we should make sure no frag could 3361 * be modified by an external entity : checksum could be wrong. 3362 */ 3363 if (unlikely(skb_has_shared_frag(skb))) { 3364 ret = __skb_linearize(skb); 3365 if (ret) 3366 goto out; 3367 } 3368 start = skb_checksum_start_offset(skb); 3369 offset = start + offsetof(struct sctphdr, checksum); 3370 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) { 3371 ret = -EINVAL; 3372 goto out; 3373 } 3374 3375 ret = skb_ensure_writable(skb, offset + sizeof(__le32)); 3376 if (ret) 3377 goto out; 3378 3379 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start, 3380 skb->len - start, ~(__u32)0, 3381 crc32c_csum_stub)); 3382 *(__le32 *)(skb->data + offset) = crc32c_csum; 3383 skb_reset_csum_not_inet(skb); 3384 out: 3385 return ret; 3386 } 3387 3388 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 3389 { 3390 __be16 type = skb->protocol; 3391 3392 /* Tunnel gso handlers can set protocol to ethernet. */ 3393 if (type == htons(ETH_P_TEB)) { 3394 struct ethhdr *eth; 3395 3396 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 3397 return 0; 3398 3399 eth = (struct ethhdr *)skb->data; 3400 type = eth->h_proto; 3401 } 3402 3403 return vlan_get_protocol_and_depth(skb, type, depth); 3404 } 3405 3406 3407 /* Take action when hardware reception checksum errors are detected. */ 3408 #ifdef CONFIG_BUG 3409 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb) 3410 { 3411 netdev_err(dev, "hw csum failure\n"); 3412 skb_dump(KERN_ERR, skb, true); 3413 dump_stack(); 3414 } 3415 3416 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb) 3417 { 3418 DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb); 3419 } 3420 EXPORT_SYMBOL(netdev_rx_csum_fault); 3421 #endif 3422 3423 /* XXX: check that highmem exists at all on the given machine. */ 3424 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 3425 { 3426 #ifdef CONFIG_HIGHMEM 3427 int i; 3428 3429 if (!(dev->features & NETIF_F_HIGHDMA)) { 3430 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3431 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3432 3433 if (PageHighMem(skb_frag_page(frag))) 3434 return 1; 3435 } 3436 } 3437 #endif 3438 return 0; 3439 } 3440 3441 /* If MPLS offload request, verify we are testing hardware MPLS features 3442 * instead of standard features for the netdev. 3443 */ 3444 #if IS_ENABLED(CONFIG_NET_MPLS_GSO) 3445 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3446 netdev_features_t features, 3447 __be16 type) 3448 { 3449 if (eth_p_mpls(type)) 3450 features &= skb->dev->mpls_features; 3451 3452 return features; 3453 } 3454 #else 3455 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3456 netdev_features_t features, 3457 __be16 type) 3458 { 3459 return features; 3460 } 3461 #endif 3462 3463 static netdev_features_t harmonize_features(struct sk_buff *skb, 3464 netdev_features_t features) 3465 { 3466 __be16 type; 3467 3468 type = skb_network_protocol(skb, NULL); 3469 features = net_mpls_features(skb, features, type); 3470 3471 if (skb->ip_summed != CHECKSUM_NONE && 3472 !can_checksum_protocol(features, type)) { 3473 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3474 } 3475 if (illegal_highdma(skb->dev, skb)) 3476 features &= ~NETIF_F_SG; 3477 3478 return features; 3479 } 3480 3481 netdev_features_t passthru_features_check(struct sk_buff *skb, 3482 struct net_device *dev, 3483 netdev_features_t features) 3484 { 3485 return features; 3486 } 3487 EXPORT_SYMBOL(passthru_features_check); 3488 3489 static netdev_features_t dflt_features_check(struct sk_buff *skb, 3490 struct net_device *dev, 3491 netdev_features_t features) 3492 { 3493 return vlan_features_check(skb, features); 3494 } 3495 3496 static netdev_features_t gso_features_check(const struct sk_buff *skb, 3497 struct net_device *dev, 3498 netdev_features_t features) 3499 { 3500 u16 gso_segs = skb_shinfo(skb)->gso_segs; 3501 3502 if (gso_segs > READ_ONCE(dev->gso_max_segs)) 3503 return features & ~NETIF_F_GSO_MASK; 3504 3505 if (unlikely(skb->len >= READ_ONCE(dev->gso_max_size))) 3506 return features & ~NETIF_F_GSO_MASK; 3507 3508 if (!skb_shinfo(skb)->gso_type) { 3509 skb_warn_bad_offload(skb); 3510 return features & ~NETIF_F_GSO_MASK; 3511 } 3512 3513 /* Support for GSO partial features requires software 3514 * intervention before we can actually process the packets 3515 * so we need to strip support for any partial features now 3516 * and we can pull them back in after we have partially 3517 * segmented the frame. 3518 */ 3519 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL)) 3520 features &= ~dev->gso_partial_features; 3521 3522 /* Make sure to clear the IPv4 ID mangling feature if the 3523 * IPv4 header has the potential to be fragmented. 3524 */ 3525 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { 3526 struct iphdr *iph = skb->encapsulation ? 3527 inner_ip_hdr(skb) : ip_hdr(skb); 3528 3529 if (!(iph->frag_off & htons(IP_DF))) 3530 features &= ~NETIF_F_TSO_MANGLEID; 3531 } 3532 3533 return features; 3534 } 3535 3536 netdev_features_t netif_skb_features(struct sk_buff *skb) 3537 { 3538 struct net_device *dev = skb->dev; 3539 netdev_features_t features = dev->features; 3540 3541 if (skb_is_gso(skb)) 3542 features = gso_features_check(skb, dev, features); 3543 3544 /* If encapsulation offload request, verify we are testing 3545 * hardware encapsulation features instead of standard 3546 * features for the netdev 3547 */ 3548 if (skb->encapsulation) 3549 features &= dev->hw_enc_features; 3550 3551 if (skb_vlan_tagged(skb)) 3552 features = netdev_intersect_features(features, 3553 dev->vlan_features | 3554 NETIF_F_HW_VLAN_CTAG_TX | 3555 NETIF_F_HW_VLAN_STAG_TX); 3556 3557 if (dev->netdev_ops->ndo_features_check) 3558 features &= dev->netdev_ops->ndo_features_check(skb, dev, 3559 features); 3560 else 3561 features &= dflt_features_check(skb, dev, features); 3562 3563 return harmonize_features(skb, features); 3564 } 3565 EXPORT_SYMBOL(netif_skb_features); 3566 3567 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 3568 struct netdev_queue *txq, bool more) 3569 { 3570 unsigned int len; 3571 int rc; 3572 3573 if (dev_nit_active(dev)) 3574 dev_queue_xmit_nit(skb, dev); 3575 3576 len = skb->len; 3577 trace_net_dev_start_xmit(skb, dev); 3578 rc = netdev_start_xmit(skb, dev, txq, more); 3579 trace_net_dev_xmit(skb, rc, dev, len); 3580 3581 return rc; 3582 } 3583 3584 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 3585 struct netdev_queue *txq, int *ret) 3586 { 3587 struct sk_buff *skb = first; 3588 int rc = NETDEV_TX_OK; 3589 3590 while (skb) { 3591 struct sk_buff *next = skb->next; 3592 3593 skb_mark_not_on_list(skb); 3594 rc = xmit_one(skb, dev, txq, next != NULL); 3595 if (unlikely(!dev_xmit_complete(rc))) { 3596 skb->next = next; 3597 goto out; 3598 } 3599 3600 skb = next; 3601 if (netif_tx_queue_stopped(txq) && skb) { 3602 rc = NETDEV_TX_BUSY; 3603 break; 3604 } 3605 } 3606 3607 out: 3608 *ret = rc; 3609 return skb; 3610 } 3611 3612 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 3613 netdev_features_t features) 3614 { 3615 if (skb_vlan_tag_present(skb) && 3616 !vlan_hw_offload_capable(features, skb->vlan_proto)) 3617 skb = __vlan_hwaccel_push_inside(skb); 3618 return skb; 3619 } 3620 3621 int skb_csum_hwoffload_help(struct sk_buff *skb, 3622 const netdev_features_t features) 3623 { 3624 if (unlikely(skb_csum_is_sctp(skb))) 3625 return !!(features & NETIF_F_SCTP_CRC) ? 0 : 3626 skb_crc32c_csum_help(skb); 3627 3628 if (features & NETIF_F_HW_CSUM) 3629 return 0; 3630 3631 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) { 3632 switch (skb->csum_offset) { 3633 case offsetof(struct tcphdr, check): 3634 case offsetof(struct udphdr, check): 3635 return 0; 3636 } 3637 } 3638 3639 return skb_checksum_help(skb); 3640 } 3641 EXPORT_SYMBOL(skb_csum_hwoffload_help); 3642 3643 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again) 3644 { 3645 netdev_features_t features; 3646 3647 features = netif_skb_features(skb); 3648 skb = validate_xmit_vlan(skb, features); 3649 if (unlikely(!skb)) 3650 goto out_null; 3651 3652 skb = sk_validate_xmit_skb(skb, dev); 3653 if (unlikely(!skb)) 3654 goto out_null; 3655 3656 if (netif_needs_gso(skb, features)) { 3657 struct sk_buff *segs; 3658 3659 segs = skb_gso_segment(skb, features); 3660 if (IS_ERR(segs)) { 3661 goto out_kfree_skb; 3662 } else if (segs) { 3663 consume_skb(skb); 3664 skb = segs; 3665 } 3666 } else { 3667 if (skb_needs_linearize(skb, features) && 3668 __skb_linearize(skb)) 3669 goto out_kfree_skb; 3670 3671 /* If packet is not checksummed and device does not 3672 * support checksumming for this protocol, complete 3673 * checksumming here. 3674 */ 3675 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3676 if (skb->encapsulation) 3677 skb_set_inner_transport_header(skb, 3678 skb_checksum_start_offset(skb)); 3679 else 3680 skb_set_transport_header(skb, 3681 skb_checksum_start_offset(skb)); 3682 if (skb_csum_hwoffload_help(skb, features)) 3683 goto out_kfree_skb; 3684 } 3685 } 3686 3687 skb = validate_xmit_xfrm(skb, features, again); 3688 3689 return skb; 3690 3691 out_kfree_skb: 3692 kfree_skb(skb); 3693 out_null: 3694 dev_core_stats_tx_dropped_inc(dev); 3695 return NULL; 3696 } 3697 3698 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again) 3699 { 3700 struct sk_buff *next, *head = NULL, *tail; 3701 3702 for (; skb != NULL; skb = next) { 3703 next = skb->next; 3704 skb_mark_not_on_list(skb); 3705 3706 /* in case skb wont be segmented, point to itself */ 3707 skb->prev = skb; 3708 3709 skb = validate_xmit_skb(skb, dev, again); 3710 if (!skb) 3711 continue; 3712 3713 if (!head) 3714 head = skb; 3715 else 3716 tail->next = skb; 3717 /* If skb was segmented, skb->prev points to 3718 * the last segment. If not, it still contains skb. 3719 */ 3720 tail = skb->prev; 3721 } 3722 return head; 3723 } 3724 EXPORT_SYMBOL_GPL(validate_xmit_skb_list); 3725 3726 static void qdisc_pkt_len_init(struct sk_buff *skb) 3727 { 3728 const struct skb_shared_info *shinfo = skb_shinfo(skb); 3729 3730 qdisc_skb_cb(skb)->pkt_len = skb->len; 3731 3732 /* To get more precise estimation of bytes sent on wire, 3733 * we add to pkt_len the headers size of all segments 3734 */ 3735 if (shinfo->gso_size && skb_transport_header_was_set(skb)) { 3736 u16 gso_segs = shinfo->gso_segs; 3737 unsigned int hdr_len; 3738 3739 /* mac layer + network layer */ 3740 hdr_len = skb_transport_offset(skb); 3741 3742 /* + transport layer */ 3743 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 3744 const struct tcphdr *th; 3745 struct tcphdr _tcphdr; 3746 3747 th = skb_header_pointer(skb, hdr_len, 3748 sizeof(_tcphdr), &_tcphdr); 3749 if (likely(th)) 3750 hdr_len += __tcp_hdrlen(th); 3751 } else { 3752 struct udphdr _udphdr; 3753 3754 if (skb_header_pointer(skb, hdr_len, 3755 sizeof(_udphdr), &_udphdr)) 3756 hdr_len += sizeof(struct udphdr); 3757 } 3758 3759 if (shinfo->gso_type & SKB_GSO_DODGY) 3760 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 3761 shinfo->gso_size); 3762 3763 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 3764 } 3765 } 3766 3767 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q, 3768 struct sk_buff **to_free, 3769 struct netdev_queue *txq) 3770 { 3771 int rc; 3772 3773 rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK; 3774 if (rc == NET_XMIT_SUCCESS) 3775 trace_qdisc_enqueue(q, txq, skb); 3776 return rc; 3777 } 3778 3779 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 3780 struct net_device *dev, 3781 struct netdev_queue *txq) 3782 { 3783 spinlock_t *root_lock = qdisc_lock(q); 3784 struct sk_buff *to_free = NULL; 3785 bool contended; 3786 int rc; 3787 3788 qdisc_calculate_pkt_len(skb, q); 3789 3790 tcf_set_drop_reason(skb, SKB_DROP_REASON_QDISC_DROP); 3791 3792 if (q->flags & TCQ_F_NOLOCK) { 3793 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) && 3794 qdisc_run_begin(q)) { 3795 /* Retest nolock_qdisc_is_empty() within the protection 3796 * of q->seqlock to protect from racing with requeuing. 3797 */ 3798 if (unlikely(!nolock_qdisc_is_empty(q))) { 3799 rc = dev_qdisc_enqueue(skb, q, &to_free, txq); 3800 __qdisc_run(q); 3801 qdisc_run_end(q); 3802 3803 goto no_lock_out; 3804 } 3805 3806 qdisc_bstats_cpu_update(q, skb); 3807 if (sch_direct_xmit(skb, q, dev, txq, NULL, true) && 3808 !nolock_qdisc_is_empty(q)) 3809 __qdisc_run(q); 3810 3811 qdisc_run_end(q); 3812 return NET_XMIT_SUCCESS; 3813 } 3814 3815 rc = dev_qdisc_enqueue(skb, q, &to_free, txq); 3816 qdisc_run(q); 3817 3818 no_lock_out: 3819 if (unlikely(to_free)) 3820 kfree_skb_list_reason(to_free, 3821 tcf_get_drop_reason(to_free)); 3822 return rc; 3823 } 3824 3825 if (unlikely(READ_ONCE(q->owner) == smp_processor_id())) { 3826 kfree_skb_reason(skb, SKB_DROP_REASON_TC_RECLASSIFY_LOOP); 3827 return NET_XMIT_DROP; 3828 } 3829 /* 3830 * Heuristic to force contended enqueues to serialize on a 3831 * separate lock before trying to get qdisc main lock. 3832 * This permits qdisc->running owner to get the lock more 3833 * often and dequeue packets faster. 3834 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit 3835 * and then other tasks will only enqueue packets. The packets will be 3836 * sent after the qdisc owner is scheduled again. To prevent this 3837 * scenario the task always serialize on the lock. 3838 */ 3839 contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT); 3840 if (unlikely(contended)) 3841 spin_lock(&q->busylock); 3842 3843 spin_lock(root_lock); 3844 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 3845 __qdisc_drop(skb, &to_free); 3846 rc = NET_XMIT_DROP; 3847 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 3848 qdisc_run_begin(q)) { 3849 /* 3850 * This is a work-conserving queue; there are no old skbs 3851 * waiting to be sent out; and the qdisc is not running - 3852 * xmit the skb directly. 3853 */ 3854 3855 qdisc_bstats_update(q, skb); 3856 3857 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 3858 if (unlikely(contended)) { 3859 spin_unlock(&q->busylock); 3860 contended = false; 3861 } 3862 __qdisc_run(q); 3863 } 3864 3865 qdisc_run_end(q); 3866 rc = NET_XMIT_SUCCESS; 3867 } else { 3868 WRITE_ONCE(q->owner, smp_processor_id()); 3869 rc = dev_qdisc_enqueue(skb, q, &to_free, txq); 3870 WRITE_ONCE(q->owner, -1); 3871 if (qdisc_run_begin(q)) { 3872 if (unlikely(contended)) { 3873 spin_unlock(&q->busylock); 3874 contended = false; 3875 } 3876 __qdisc_run(q); 3877 qdisc_run_end(q); 3878 } 3879 } 3880 spin_unlock(root_lock); 3881 if (unlikely(to_free)) 3882 kfree_skb_list_reason(to_free, 3883 tcf_get_drop_reason(to_free)); 3884 if (unlikely(contended)) 3885 spin_unlock(&q->busylock); 3886 return rc; 3887 } 3888 3889 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 3890 static void skb_update_prio(struct sk_buff *skb) 3891 { 3892 const struct netprio_map *map; 3893 const struct sock *sk; 3894 unsigned int prioidx; 3895 3896 if (skb->priority) 3897 return; 3898 map = rcu_dereference_bh(skb->dev->priomap); 3899 if (!map) 3900 return; 3901 sk = skb_to_full_sk(skb); 3902 if (!sk) 3903 return; 3904 3905 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data); 3906 3907 if (prioidx < map->priomap_len) 3908 skb->priority = map->priomap[prioidx]; 3909 } 3910 #else 3911 #define skb_update_prio(skb) 3912 #endif 3913 3914 /** 3915 * dev_loopback_xmit - loop back @skb 3916 * @net: network namespace this loopback is happening in 3917 * @sk: sk needed to be a netfilter okfn 3918 * @skb: buffer to transmit 3919 */ 3920 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) 3921 { 3922 skb_reset_mac_header(skb); 3923 __skb_pull(skb, skb_network_offset(skb)); 3924 skb->pkt_type = PACKET_LOOPBACK; 3925 if (skb->ip_summed == CHECKSUM_NONE) 3926 skb->ip_summed = CHECKSUM_UNNECESSARY; 3927 DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb)); 3928 skb_dst_force(skb); 3929 netif_rx(skb); 3930 return 0; 3931 } 3932 EXPORT_SYMBOL(dev_loopback_xmit); 3933 3934 #ifdef CONFIG_NET_EGRESS 3935 static struct netdev_queue * 3936 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb) 3937 { 3938 int qm = skb_get_queue_mapping(skb); 3939 3940 return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm)); 3941 } 3942 3943 static bool netdev_xmit_txqueue_skipped(void) 3944 { 3945 return __this_cpu_read(softnet_data.xmit.skip_txqueue); 3946 } 3947 3948 void netdev_xmit_skip_txqueue(bool skip) 3949 { 3950 __this_cpu_write(softnet_data.xmit.skip_txqueue, skip); 3951 } 3952 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue); 3953 #endif /* CONFIG_NET_EGRESS */ 3954 3955 #ifdef CONFIG_NET_XGRESS 3956 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb, 3957 enum skb_drop_reason *drop_reason) 3958 { 3959 int ret = TC_ACT_UNSPEC; 3960 #ifdef CONFIG_NET_CLS_ACT 3961 struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq); 3962 struct tcf_result res; 3963 3964 if (!miniq) 3965 return ret; 3966 3967 if (static_branch_unlikely(&tcf_bypass_check_needed_key)) { 3968 if (tcf_block_bypass_sw(miniq->block)) 3969 return ret; 3970 } 3971 3972 tc_skb_cb(skb)->mru = 0; 3973 tc_skb_cb(skb)->post_ct = false; 3974 tcf_set_drop_reason(skb, *drop_reason); 3975 3976 mini_qdisc_bstats_cpu_update(miniq, skb); 3977 ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false); 3978 /* Only tcf related quirks below. */ 3979 switch (ret) { 3980 case TC_ACT_SHOT: 3981 *drop_reason = tcf_get_drop_reason(skb); 3982 mini_qdisc_qstats_cpu_drop(miniq); 3983 break; 3984 case TC_ACT_OK: 3985 case TC_ACT_RECLASSIFY: 3986 skb->tc_index = TC_H_MIN(res.classid); 3987 break; 3988 } 3989 #endif /* CONFIG_NET_CLS_ACT */ 3990 return ret; 3991 } 3992 3993 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key); 3994 3995 void tcx_inc(void) 3996 { 3997 static_branch_inc(&tcx_needed_key); 3998 } 3999 4000 void tcx_dec(void) 4001 { 4002 static_branch_dec(&tcx_needed_key); 4003 } 4004 4005 static __always_inline enum tcx_action_base 4006 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb, 4007 const bool needs_mac) 4008 { 4009 const struct bpf_mprog_fp *fp; 4010 const struct bpf_prog *prog; 4011 int ret = TCX_NEXT; 4012 4013 if (needs_mac) 4014 __skb_push(skb, skb->mac_len); 4015 bpf_mprog_foreach_prog(entry, fp, prog) { 4016 bpf_compute_data_pointers(skb); 4017 ret = bpf_prog_run(prog, skb); 4018 if (ret != TCX_NEXT) 4019 break; 4020 } 4021 if (needs_mac) 4022 __skb_pull(skb, skb->mac_len); 4023 return tcx_action_code(skb, ret); 4024 } 4025 4026 static __always_inline struct sk_buff * 4027 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 4028 struct net_device *orig_dev, bool *another) 4029 { 4030 struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress); 4031 enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS; 4032 int sch_ret; 4033 4034 if (!entry) 4035 return skb; 4036 if (*pt_prev) { 4037 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4038 *pt_prev = NULL; 4039 } 4040 4041 qdisc_skb_cb(skb)->pkt_len = skb->len; 4042 tcx_set_ingress(skb, true); 4043 4044 if (static_branch_unlikely(&tcx_needed_key)) { 4045 sch_ret = tcx_run(entry, skb, true); 4046 if (sch_ret != TC_ACT_UNSPEC) 4047 goto ingress_verdict; 4048 } 4049 sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason); 4050 ingress_verdict: 4051 switch (sch_ret) { 4052 case TC_ACT_REDIRECT: 4053 /* skb_mac_header check was done by BPF, so we can safely 4054 * push the L2 header back before redirecting to another 4055 * netdev. 4056 */ 4057 __skb_push(skb, skb->mac_len); 4058 if (skb_do_redirect(skb) == -EAGAIN) { 4059 __skb_pull(skb, skb->mac_len); 4060 *another = true; 4061 break; 4062 } 4063 *ret = NET_RX_SUCCESS; 4064 return NULL; 4065 case TC_ACT_SHOT: 4066 kfree_skb_reason(skb, drop_reason); 4067 *ret = NET_RX_DROP; 4068 return NULL; 4069 /* used by tc_run */ 4070 case TC_ACT_STOLEN: 4071 case TC_ACT_QUEUED: 4072 case TC_ACT_TRAP: 4073 consume_skb(skb); 4074 fallthrough; 4075 case TC_ACT_CONSUMED: 4076 *ret = NET_RX_SUCCESS; 4077 return NULL; 4078 } 4079 4080 return skb; 4081 } 4082 4083 static __always_inline struct sk_buff * 4084 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 4085 { 4086 struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress); 4087 enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS; 4088 int sch_ret; 4089 4090 if (!entry) 4091 return skb; 4092 4093 /* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was 4094 * already set by the caller. 4095 */ 4096 if (static_branch_unlikely(&tcx_needed_key)) { 4097 sch_ret = tcx_run(entry, skb, false); 4098 if (sch_ret != TC_ACT_UNSPEC) 4099 goto egress_verdict; 4100 } 4101 sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason); 4102 egress_verdict: 4103 switch (sch_ret) { 4104 case TC_ACT_REDIRECT: 4105 /* No need to push/pop skb's mac_header here on egress! */ 4106 skb_do_redirect(skb); 4107 *ret = NET_XMIT_SUCCESS; 4108 return NULL; 4109 case TC_ACT_SHOT: 4110 kfree_skb_reason(skb, drop_reason); 4111 *ret = NET_XMIT_DROP; 4112 return NULL; 4113 /* used by tc_run */ 4114 case TC_ACT_STOLEN: 4115 case TC_ACT_QUEUED: 4116 case TC_ACT_TRAP: 4117 consume_skb(skb); 4118 fallthrough; 4119 case TC_ACT_CONSUMED: 4120 *ret = NET_XMIT_SUCCESS; 4121 return NULL; 4122 } 4123 4124 return skb; 4125 } 4126 #else 4127 static __always_inline struct sk_buff * 4128 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 4129 struct net_device *orig_dev, bool *another) 4130 { 4131 return skb; 4132 } 4133 4134 static __always_inline struct sk_buff * 4135 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 4136 { 4137 return skb; 4138 } 4139 #endif /* CONFIG_NET_XGRESS */ 4140 4141 #ifdef CONFIG_XPS 4142 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb, 4143 struct xps_dev_maps *dev_maps, unsigned int tci) 4144 { 4145 int tc = netdev_get_prio_tc_map(dev, skb->priority); 4146 struct xps_map *map; 4147 int queue_index = -1; 4148 4149 if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids) 4150 return queue_index; 4151 4152 tci *= dev_maps->num_tc; 4153 tci += tc; 4154 4155 map = rcu_dereference(dev_maps->attr_map[tci]); 4156 if (map) { 4157 if (map->len == 1) 4158 queue_index = map->queues[0]; 4159 else 4160 queue_index = map->queues[reciprocal_scale( 4161 skb_get_hash(skb), map->len)]; 4162 if (unlikely(queue_index >= dev->real_num_tx_queues)) 4163 queue_index = -1; 4164 } 4165 return queue_index; 4166 } 4167 #endif 4168 4169 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev, 4170 struct sk_buff *skb) 4171 { 4172 #ifdef CONFIG_XPS 4173 struct xps_dev_maps *dev_maps; 4174 struct sock *sk = skb->sk; 4175 int queue_index = -1; 4176 4177 if (!static_key_false(&xps_needed)) 4178 return -1; 4179 4180 rcu_read_lock(); 4181 if (!static_key_false(&xps_rxqs_needed)) 4182 goto get_cpus_map; 4183 4184 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]); 4185 if (dev_maps) { 4186 int tci = sk_rx_queue_get(sk); 4187 4188 if (tci >= 0) 4189 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 4190 tci); 4191 } 4192 4193 get_cpus_map: 4194 if (queue_index < 0) { 4195 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]); 4196 if (dev_maps) { 4197 unsigned int tci = skb->sender_cpu - 1; 4198 4199 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 4200 tci); 4201 } 4202 } 4203 rcu_read_unlock(); 4204 4205 return queue_index; 4206 #else 4207 return -1; 4208 #endif 4209 } 4210 4211 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 4212 struct net_device *sb_dev) 4213 { 4214 return 0; 4215 } 4216 EXPORT_SYMBOL(dev_pick_tx_zero); 4217 4218 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb, 4219 struct net_device *sb_dev) 4220 { 4221 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues; 4222 } 4223 EXPORT_SYMBOL(dev_pick_tx_cpu_id); 4224 4225 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 4226 struct net_device *sb_dev) 4227 { 4228 struct sock *sk = skb->sk; 4229 int queue_index = sk_tx_queue_get(sk); 4230 4231 sb_dev = sb_dev ? : dev; 4232 4233 if (queue_index < 0 || skb->ooo_okay || 4234 queue_index >= dev->real_num_tx_queues) { 4235 int new_index = get_xps_queue(dev, sb_dev, skb); 4236 4237 if (new_index < 0) 4238 new_index = skb_tx_hash(dev, sb_dev, skb); 4239 4240 if (queue_index != new_index && sk && 4241 sk_fullsock(sk) && 4242 rcu_access_pointer(sk->sk_dst_cache)) 4243 sk_tx_queue_set(sk, new_index); 4244 4245 queue_index = new_index; 4246 } 4247 4248 return queue_index; 4249 } 4250 EXPORT_SYMBOL(netdev_pick_tx); 4251 4252 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, 4253 struct sk_buff *skb, 4254 struct net_device *sb_dev) 4255 { 4256 int queue_index = 0; 4257 4258 #ifdef CONFIG_XPS 4259 u32 sender_cpu = skb->sender_cpu - 1; 4260 4261 if (sender_cpu >= (u32)NR_CPUS) 4262 skb->sender_cpu = raw_smp_processor_id() + 1; 4263 #endif 4264 4265 if (dev->real_num_tx_queues != 1) { 4266 const struct net_device_ops *ops = dev->netdev_ops; 4267 4268 if (ops->ndo_select_queue) 4269 queue_index = ops->ndo_select_queue(dev, skb, sb_dev); 4270 else 4271 queue_index = netdev_pick_tx(dev, skb, sb_dev); 4272 4273 queue_index = netdev_cap_txqueue(dev, queue_index); 4274 } 4275 4276 skb_set_queue_mapping(skb, queue_index); 4277 return netdev_get_tx_queue(dev, queue_index); 4278 } 4279 4280 /** 4281 * __dev_queue_xmit() - transmit a buffer 4282 * @skb: buffer to transmit 4283 * @sb_dev: suboordinate device used for L2 forwarding offload 4284 * 4285 * Queue a buffer for transmission to a network device. The caller must 4286 * have set the device and priority and built the buffer before calling 4287 * this function. The function can be called from an interrupt. 4288 * 4289 * When calling this method, interrupts MUST be enabled. This is because 4290 * the BH enable code must have IRQs enabled so that it will not deadlock. 4291 * 4292 * Regardless of the return value, the skb is consumed, so it is currently 4293 * difficult to retry a send to this method. (You can bump the ref count 4294 * before sending to hold a reference for retry if you are careful.) 4295 * 4296 * Return: 4297 * * 0 - buffer successfully transmitted 4298 * * positive qdisc return code - NET_XMIT_DROP etc. 4299 * * negative errno - other errors 4300 */ 4301 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev) 4302 { 4303 struct net_device *dev = skb->dev; 4304 struct netdev_queue *txq = NULL; 4305 struct Qdisc *q; 4306 int rc = -ENOMEM; 4307 bool again = false; 4308 4309 skb_reset_mac_header(skb); 4310 skb_assert_len(skb); 4311 4312 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP)) 4313 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED); 4314 4315 /* Disable soft irqs for various locks below. Also 4316 * stops preemption for RCU. 4317 */ 4318 rcu_read_lock_bh(); 4319 4320 skb_update_prio(skb); 4321 4322 qdisc_pkt_len_init(skb); 4323 tcx_set_ingress(skb, false); 4324 #ifdef CONFIG_NET_EGRESS 4325 if (static_branch_unlikely(&egress_needed_key)) { 4326 if (nf_hook_egress_active()) { 4327 skb = nf_hook_egress(skb, &rc, dev); 4328 if (!skb) 4329 goto out; 4330 } 4331 4332 netdev_xmit_skip_txqueue(false); 4333 4334 nf_skip_egress(skb, true); 4335 skb = sch_handle_egress(skb, &rc, dev); 4336 if (!skb) 4337 goto out; 4338 nf_skip_egress(skb, false); 4339 4340 if (netdev_xmit_txqueue_skipped()) 4341 txq = netdev_tx_queue_mapping(dev, skb); 4342 } 4343 #endif 4344 /* If device/qdisc don't need skb->dst, release it right now while 4345 * its hot in this cpu cache. 4346 */ 4347 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 4348 skb_dst_drop(skb); 4349 else 4350 skb_dst_force(skb); 4351 4352 if (!txq) 4353 txq = netdev_core_pick_tx(dev, skb, sb_dev); 4354 4355 q = rcu_dereference_bh(txq->qdisc); 4356 4357 trace_net_dev_queue(skb); 4358 if (q->enqueue) { 4359 rc = __dev_xmit_skb(skb, q, dev, txq); 4360 goto out; 4361 } 4362 4363 /* The device has no queue. Common case for software devices: 4364 * loopback, all the sorts of tunnels... 4365 4366 * Really, it is unlikely that netif_tx_lock protection is necessary 4367 * here. (f.e. loopback and IP tunnels are clean ignoring statistics 4368 * counters.) 4369 * However, it is possible, that they rely on protection 4370 * made by us here. 4371 4372 * Check this and shot the lock. It is not prone from deadlocks. 4373 *Either shot noqueue qdisc, it is even simpler 8) 4374 */ 4375 if (dev->flags & IFF_UP) { 4376 int cpu = smp_processor_id(); /* ok because BHs are off */ 4377 4378 /* Other cpus might concurrently change txq->xmit_lock_owner 4379 * to -1 or to their cpu id, but not to our id. 4380 */ 4381 if (READ_ONCE(txq->xmit_lock_owner) != cpu) { 4382 if (dev_xmit_recursion()) 4383 goto recursion_alert; 4384 4385 skb = validate_xmit_skb(skb, dev, &again); 4386 if (!skb) 4387 goto out; 4388 4389 HARD_TX_LOCK(dev, txq, cpu); 4390 4391 if (!netif_xmit_stopped(txq)) { 4392 dev_xmit_recursion_inc(); 4393 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 4394 dev_xmit_recursion_dec(); 4395 if (dev_xmit_complete(rc)) { 4396 HARD_TX_UNLOCK(dev, txq); 4397 goto out; 4398 } 4399 } 4400 HARD_TX_UNLOCK(dev, txq); 4401 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 4402 dev->name); 4403 } else { 4404 /* Recursion is detected! It is possible, 4405 * unfortunately 4406 */ 4407 recursion_alert: 4408 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 4409 dev->name); 4410 } 4411 } 4412 4413 rc = -ENETDOWN; 4414 rcu_read_unlock_bh(); 4415 4416 dev_core_stats_tx_dropped_inc(dev); 4417 kfree_skb_list(skb); 4418 return rc; 4419 out: 4420 rcu_read_unlock_bh(); 4421 return rc; 4422 } 4423 EXPORT_SYMBOL(__dev_queue_xmit); 4424 4425 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id) 4426 { 4427 struct net_device *dev = skb->dev; 4428 struct sk_buff *orig_skb = skb; 4429 struct netdev_queue *txq; 4430 int ret = NETDEV_TX_BUSY; 4431 bool again = false; 4432 4433 if (unlikely(!netif_running(dev) || 4434 !netif_carrier_ok(dev))) 4435 goto drop; 4436 4437 skb = validate_xmit_skb_list(skb, dev, &again); 4438 if (skb != orig_skb) 4439 goto drop; 4440 4441 skb_set_queue_mapping(skb, queue_id); 4442 txq = skb_get_tx_queue(dev, skb); 4443 4444 local_bh_disable(); 4445 4446 dev_xmit_recursion_inc(); 4447 HARD_TX_LOCK(dev, txq, smp_processor_id()); 4448 if (!netif_xmit_frozen_or_drv_stopped(txq)) 4449 ret = netdev_start_xmit(skb, dev, txq, false); 4450 HARD_TX_UNLOCK(dev, txq); 4451 dev_xmit_recursion_dec(); 4452 4453 local_bh_enable(); 4454 return ret; 4455 drop: 4456 dev_core_stats_tx_dropped_inc(dev); 4457 kfree_skb_list(skb); 4458 return NET_XMIT_DROP; 4459 } 4460 EXPORT_SYMBOL(__dev_direct_xmit); 4461 4462 /************************************************************************* 4463 * Receiver routines 4464 *************************************************************************/ 4465 static DEFINE_PER_CPU(struct task_struct *, backlog_napi); 4466 4467 int weight_p __read_mostly = 64; /* old backlog weight */ 4468 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */ 4469 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */ 4470 4471 /* Called with irq disabled */ 4472 static inline void ____napi_schedule(struct softnet_data *sd, 4473 struct napi_struct *napi) 4474 { 4475 struct task_struct *thread; 4476 4477 lockdep_assert_irqs_disabled(); 4478 4479 if (test_bit(NAPI_STATE_THREADED, &napi->state)) { 4480 /* Paired with smp_mb__before_atomic() in 4481 * napi_enable()/dev_set_threaded(). 4482 * Use READ_ONCE() to guarantee a complete 4483 * read on napi->thread. Only call 4484 * wake_up_process() when it's not NULL. 4485 */ 4486 thread = READ_ONCE(napi->thread); 4487 if (thread) { 4488 if (use_backlog_threads() && thread == raw_cpu_read(backlog_napi)) 4489 goto use_local_napi; 4490 4491 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state); 4492 wake_up_process(thread); 4493 return; 4494 } 4495 } 4496 4497 use_local_napi: 4498 list_add_tail(&napi->poll_list, &sd->poll_list); 4499 WRITE_ONCE(napi->list_owner, smp_processor_id()); 4500 /* If not called from net_rx_action() 4501 * we have to raise NET_RX_SOFTIRQ. 4502 */ 4503 if (!sd->in_net_rx_action) 4504 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4505 } 4506 4507 #ifdef CONFIG_RPS 4508 4509 struct static_key_false rps_needed __read_mostly; 4510 EXPORT_SYMBOL(rps_needed); 4511 struct static_key_false rfs_needed __read_mostly; 4512 EXPORT_SYMBOL(rfs_needed); 4513 4514 static struct rps_dev_flow * 4515 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4516 struct rps_dev_flow *rflow, u16 next_cpu) 4517 { 4518 if (next_cpu < nr_cpu_ids) { 4519 #ifdef CONFIG_RFS_ACCEL 4520 struct netdev_rx_queue *rxqueue; 4521 struct rps_dev_flow_table *flow_table; 4522 struct rps_dev_flow *old_rflow; 4523 u32 flow_id, head; 4524 u16 rxq_index; 4525 int rc; 4526 4527 /* Should we steer this flow to a different hardware queue? */ 4528 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 4529 !(dev->features & NETIF_F_NTUPLE)) 4530 goto out; 4531 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 4532 if (rxq_index == skb_get_rx_queue(skb)) 4533 goto out; 4534 4535 rxqueue = dev->_rx + rxq_index; 4536 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4537 if (!flow_table) 4538 goto out; 4539 flow_id = skb_get_hash(skb) & flow_table->mask; 4540 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 4541 rxq_index, flow_id); 4542 if (rc < 0) 4543 goto out; 4544 old_rflow = rflow; 4545 rflow = &flow_table->flows[flow_id]; 4546 WRITE_ONCE(rflow->filter, rc); 4547 if (old_rflow->filter == rc) 4548 WRITE_ONCE(old_rflow->filter, RPS_NO_FILTER); 4549 out: 4550 #endif 4551 head = READ_ONCE(per_cpu(softnet_data, next_cpu).input_queue_head); 4552 rps_input_queue_tail_save(&rflow->last_qtail, head); 4553 } 4554 4555 WRITE_ONCE(rflow->cpu, next_cpu); 4556 return rflow; 4557 } 4558 4559 /* 4560 * get_rps_cpu is called from netif_receive_skb and returns the target 4561 * CPU from the RPS map of the receiving queue for a given skb. 4562 * rcu_read_lock must be held on entry. 4563 */ 4564 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4565 struct rps_dev_flow **rflowp) 4566 { 4567 const struct rps_sock_flow_table *sock_flow_table; 4568 struct netdev_rx_queue *rxqueue = dev->_rx; 4569 struct rps_dev_flow_table *flow_table; 4570 struct rps_map *map; 4571 int cpu = -1; 4572 u32 tcpu; 4573 u32 hash; 4574 4575 if (skb_rx_queue_recorded(skb)) { 4576 u16 index = skb_get_rx_queue(skb); 4577 4578 if (unlikely(index >= dev->real_num_rx_queues)) { 4579 WARN_ONCE(dev->real_num_rx_queues > 1, 4580 "%s received packet on queue %u, but number " 4581 "of RX queues is %u\n", 4582 dev->name, index, dev->real_num_rx_queues); 4583 goto done; 4584 } 4585 rxqueue += index; 4586 } 4587 4588 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 4589 4590 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4591 map = rcu_dereference(rxqueue->rps_map); 4592 if (!flow_table && !map) 4593 goto done; 4594 4595 skb_reset_network_header(skb); 4596 hash = skb_get_hash(skb); 4597 if (!hash) 4598 goto done; 4599 4600 sock_flow_table = rcu_dereference(net_hotdata.rps_sock_flow_table); 4601 if (flow_table && sock_flow_table) { 4602 struct rps_dev_flow *rflow; 4603 u32 next_cpu; 4604 u32 ident; 4605 4606 /* First check into global flow table if there is a match. 4607 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow(). 4608 */ 4609 ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]); 4610 if ((ident ^ hash) & ~net_hotdata.rps_cpu_mask) 4611 goto try_rps; 4612 4613 next_cpu = ident & net_hotdata.rps_cpu_mask; 4614 4615 /* OK, now we know there is a match, 4616 * we can look at the local (per receive queue) flow table 4617 */ 4618 rflow = &flow_table->flows[hash & flow_table->mask]; 4619 tcpu = rflow->cpu; 4620 4621 /* 4622 * If the desired CPU (where last recvmsg was done) is 4623 * different from current CPU (one in the rx-queue flow 4624 * table entry), switch if one of the following holds: 4625 * - Current CPU is unset (>= nr_cpu_ids). 4626 * - Current CPU is offline. 4627 * - The current CPU's queue tail has advanced beyond the 4628 * last packet that was enqueued using this table entry. 4629 * This guarantees that all previous packets for the flow 4630 * have been dequeued, thus preserving in order delivery. 4631 */ 4632 if (unlikely(tcpu != next_cpu) && 4633 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 4634 ((int)(READ_ONCE(per_cpu(softnet_data, tcpu).input_queue_head) - 4635 rflow->last_qtail)) >= 0)) { 4636 tcpu = next_cpu; 4637 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 4638 } 4639 4640 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 4641 *rflowp = rflow; 4642 cpu = tcpu; 4643 goto done; 4644 } 4645 } 4646 4647 try_rps: 4648 4649 if (map) { 4650 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 4651 if (cpu_online(tcpu)) { 4652 cpu = tcpu; 4653 goto done; 4654 } 4655 } 4656 4657 done: 4658 return cpu; 4659 } 4660 4661 #ifdef CONFIG_RFS_ACCEL 4662 4663 /** 4664 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 4665 * @dev: Device on which the filter was set 4666 * @rxq_index: RX queue index 4667 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 4668 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 4669 * 4670 * Drivers that implement ndo_rx_flow_steer() should periodically call 4671 * this function for each installed filter and remove the filters for 4672 * which it returns %true. 4673 */ 4674 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 4675 u32 flow_id, u16 filter_id) 4676 { 4677 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 4678 struct rps_dev_flow_table *flow_table; 4679 struct rps_dev_flow *rflow; 4680 bool expire = true; 4681 unsigned int cpu; 4682 4683 rcu_read_lock(); 4684 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4685 if (flow_table && flow_id <= flow_table->mask) { 4686 rflow = &flow_table->flows[flow_id]; 4687 cpu = READ_ONCE(rflow->cpu); 4688 if (READ_ONCE(rflow->filter) == filter_id && cpu < nr_cpu_ids && 4689 ((int)(READ_ONCE(per_cpu(softnet_data, cpu).input_queue_head) - 4690 READ_ONCE(rflow->last_qtail)) < 4691 (int)(10 * flow_table->mask))) 4692 expire = false; 4693 } 4694 rcu_read_unlock(); 4695 return expire; 4696 } 4697 EXPORT_SYMBOL(rps_may_expire_flow); 4698 4699 #endif /* CONFIG_RFS_ACCEL */ 4700 4701 /* Called from hardirq (IPI) context */ 4702 static void rps_trigger_softirq(void *data) 4703 { 4704 struct softnet_data *sd = data; 4705 4706 ____napi_schedule(sd, &sd->backlog); 4707 sd->received_rps++; 4708 } 4709 4710 #endif /* CONFIG_RPS */ 4711 4712 /* Called from hardirq (IPI) context */ 4713 static void trigger_rx_softirq(void *data) 4714 { 4715 struct softnet_data *sd = data; 4716 4717 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4718 smp_store_release(&sd->defer_ipi_scheduled, 0); 4719 } 4720 4721 /* 4722 * After we queued a packet into sd->input_pkt_queue, 4723 * we need to make sure this queue is serviced soon. 4724 * 4725 * - If this is another cpu queue, link it to our rps_ipi_list, 4726 * and make sure we will process rps_ipi_list from net_rx_action(). 4727 * 4728 * - If this is our own queue, NAPI schedule our backlog. 4729 * Note that this also raises NET_RX_SOFTIRQ. 4730 */ 4731 static void napi_schedule_rps(struct softnet_data *sd) 4732 { 4733 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 4734 4735 #ifdef CONFIG_RPS 4736 if (sd != mysd) { 4737 if (use_backlog_threads()) { 4738 __napi_schedule_irqoff(&sd->backlog); 4739 return; 4740 } 4741 4742 sd->rps_ipi_next = mysd->rps_ipi_list; 4743 mysd->rps_ipi_list = sd; 4744 4745 /* If not called from net_rx_action() or napi_threaded_poll() 4746 * we have to raise NET_RX_SOFTIRQ. 4747 */ 4748 if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll) 4749 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4750 return; 4751 } 4752 #endif /* CONFIG_RPS */ 4753 __napi_schedule_irqoff(&mysd->backlog); 4754 } 4755 4756 void kick_defer_list_purge(struct softnet_data *sd, unsigned int cpu) 4757 { 4758 unsigned long flags; 4759 4760 if (use_backlog_threads()) { 4761 backlog_lock_irq_save(sd, &flags); 4762 4763 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) 4764 __napi_schedule_irqoff(&sd->backlog); 4765 4766 backlog_unlock_irq_restore(sd, &flags); 4767 4768 } else if (!cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) { 4769 smp_call_function_single_async(cpu, &sd->defer_csd); 4770 } 4771 } 4772 4773 #ifdef CONFIG_NET_FLOW_LIMIT 4774 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 4775 #endif 4776 4777 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 4778 { 4779 #ifdef CONFIG_NET_FLOW_LIMIT 4780 struct sd_flow_limit *fl; 4781 struct softnet_data *sd; 4782 unsigned int old_flow, new_flow; 4783 4784 if (qlen < (READ_ONCE(net_hotdata.max_backlog) >> 1)) 4785 return false; 4786 4787 sd = this_cpu_ptr(&softnet_data); 4788 4789 rcu_read_lock(); 4790 fl = rcu_dereference(sd->flow_limit); 4791 if (fl) { 4792 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); 4793 old_flow = fl->history[fl->history_head]; 4794 fl->history[fl->history_head] = new_flow; 4795 4796 fl->history_head++; 4797 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 4798 4799 if (likely(fl->buckets[old_flow])) 4800 fl->buckets[old_flow]--; 4801 4802 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 4803 fl->count++; 4804 rcu_read_unlock(); 4805 return true; 4806 } 4807 } 4808 rcu_read_unlock(); 4809 #endif 4810 return false; 4811 } 4812 4813 /* 4814 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 4815 * queue (may be a remote CPU queue). 4816 */ 4817 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 4818 unsigned int *qtail) 4819 { 4820 enum skb_drop_reason reason; 4821 struct softnet_data *sd; 4822 unsigned long flags; 4823 unsigned int qlen; 4824 int max_backlog; 4825 u32 tail; 4826 4827 reason = SKB_DROP_REASON_DEV_READY; 4828 if (!netif_running(skb->dev)) 4829 goto bad_dev; 4830 4831 reason = SKB_DROP_REASON_CPU_BACKLOG; 4832 sd = &per_cpu(softnet_data, cpu); 4833 4834 qlen = skb_queue_len_lockless(&sd->input_pkt_queue); 4835 max_backlog = READ_ONCE(net_hotdata.max_backlog); 4836 if (unlikely(qlen > max_backlog)) 4837 goto cpu_backlog_drop; 4838 backlog_lock_irq_save(sd, &flags); 4839 qlen = skb_queue_len(&sd->input_pkt_queue); 4840 if (qlen <= max_backlog && !skb_flow_limit(skb, qlen)) { 4841 if (!qlen) { 4842 /* Schedule NAPI for backlog device. We can use 4843 * non atomic operation as we own the queue lock. 4844 */ 4845 if (!__test_and_set_bit(NAPI_STATE_SCHED, 4846 &sd->backlog.state)) 4847 napi_schedule_rps(sd); 4848 } 4849 __skb_queue_tail(&sd->input_pkt_queue, skb); 4850 tail = rps_input_queue_tail_incr(sd); 4851 backlog_unlock_irq_restore(sd, &flags); 4852 4853 /* save the tail outside of the critical section */ 4854 rps_input_queue_tail_save(qtail, tail); 4855 return NET_RX_SUCCESS; 4856 } 4857 4858 backlog_unlock_irq_restore(sd, &flags); 4859 4860 cpu_backlog_drop: 4861 atomic_inc(&sd->dropped); 4862 bad_dev: 4863 dev_core_stats_rx_dropped_inc(skb->dev); 4864 kfree_skb_reason(skb, reason); 4865 return NET_RX_DROP; 4866 } 4867 4868 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb) 4869 { 4870 struct net_device *dev = skb->dev; 4871 struct netdev_rx_queue *rxqueue; 4872 4873 rxqueue = dev->_rx; 4874 4875 if (skb_rx_queue_recorded(skb)) { 4876 u16 index = skb_get_rx_queue(skb); 4877 4878 if (unlikely(index >= dev->real_num_rx_queues)) { 4879 WARN_ONCE(dev->real_num_rx_queues > 1, 4880 "%s received packet on queue %u, but number " 4881 "of RX queues is %u\n", 4882 dev->name, index, dev->real_num_rx_queues); 4883 4884 return rxqueue; /* Return first rxqueue */ 4885 } 4886 rxqueue += index; 4887 } 4888 return rxqueue; 4889 } 4890 4891 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp, 4892 struct bpf_prog *xdp_prog) 4893 { 4894 void *orig_data, *orig_data_end, *hard_start; 4895 struct netdev_rx_queue *rxqueue; 4896 bool orig_bcast, orig_host; 4897 u32 mac_len, frame_sz; 4898 __be16 orig_eth_type; 4899 struct ethhdr *eth; 4900 u32 metalen, act; 4901 int off; 4902 4903 /* The XDP program wants to see the packet starting at the MAC 4904 * header. 4905 */ 4906 mac_len = skb->data - skb_mac_header(skb); 4907 hard_start = skb->data - skb_headroom(skb); 4908 4909 /* SKB "head" area always have tailroom for skb_shared_info */ 4910 frame_sz = (void *)skb_end_pointer(skb) - hard_start; 4911 frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 4912 4913 rxqueue = netif_get_rxqueue(skb); 4914 xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq); 4915 xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len, 4916 skb_headlen(skb) + mac_len, true); 4917 if (skb_is_nonlinear(skb)) { 4918 skb_shinfo(skb)->xdp_frags_size = skb->data_len; 4919 xdp_buff_set_frags_flag(xdp); 4920 } else { 4921 xdp_buff_clear_frags_flag(xdp); 4922 } 4923 4924 orig_data_end = xdp->data_end; 4925 orig_data = xdp->data; 4926 eth = (struct ethhdr *)xdp->data; 4927 orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr); 4928 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest); 4929 orig_eth_type = eth->h_proto; 4930 4931 act = bpf_prog_run_xdp(xdp_prog, xdp); 4932 4933 /* check if bpf_xdp_adjust_head was used */ 4934 off = xdp->data - orig_data; 4935 if (off) { 4936 if (off > 0) 4937 __skb_pull(skb, off); 4938 else if (off < 0) 4939 __skb_push(skb, -off); 4940 4941 skb->mac_header += off; 4942 skb_reset_network_header(skb); 4943 } 4944 4945 /* check if bpf_xdp_adjust_tail was used */ 4946 off = xdp->data_end - orig_data_end; 4947 if (off != 0) { 4948 skb_set_tail_pointer(skb, xdp->data_end - xdp->data); 4949 skb->len += off; /* positive on grow, negative on shrink */ 4950 } 4951 4952 /* XDP frag metadata (e.g. nr_frags) are updated in eBPF helpers 4953 * (e.g. bpf_xdp_adjust_tail), we need to update data_len here. 4954 */ 4955 if (xdp_buff_has_frags(xdp)) 4956 skb->data_len = skb_shinfo(skb)->xdp_frags_size; 4957 else 4958 skb->data_len = 0; 4959 4960 /* check if XDP changed eth hdr such SKB needs update */ 4961 eth = (struct ethhdr *)xdp->data; 4962 if ((orig_eth_type != eth->h_proto) || 4963 (orig_host != ether_addr_equal_64bits(eth->h_dest, 4964 skb->dev->dev_addr)) || 4965 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) { 4966 __skb_push(skb, ETH_HLEN); 4967 skb->pkt_type = PACKET_HOST; 4968 skb->protocol = eth_type_trans(skb, skb->dev); 4969 } 4970 4971 /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull 4972 * before calling us again on redirect path. We do not call do_redirect 4973 * as we leave that up to the caller. 4974 * 4975 * Caller is responsible for managing lifetime of skb (i.e. calling 4976 * kfree_skb in response to actions it cannot handle/XDP_DROP). 4977 */ 4978 switch (act) { 4979 case XDP_REDIRECT: 4980 case XDP_TX: 4981 __skb_push(skb, mac_len); 4982 break; 4983 case XDP_PASS: 4984 metalen = xdp->data - xdp->data_meta; 4985 if (metalen) 4986 skb_metadata_set(skb, metalen); 4987 break; 4988 } 4989 4990 return act; 4991 } 4992 4993 static int 4994 netif_skb_check_for_xdp(struct sk_buff **pskb, struct bpf_prog *prog) 4995 { 4996 struct sk_buff *skb = *pskb; 4997 int err, hroom, troom; 4998 4999 if (!skb_cow_data_for_xdp(this_cpu_read(system_page_pool), pskb, prog)) 5000 return 0; 5001 5002 /* In case we have to go down the path and also linearize, 5003 * then lets do the pskb_expand_head() work just once here. 5004 */ 5005 hroom = XDP_PACKET_HEADROOM - skb_headroom(skb); 5006 troom = skb->tail + skb->data_len - skb->end; 5007 err = pskb_expand_head(skb, 5008 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0, 5009 troom > 0 ? troom + 128 : 0, GFP_ATOMIC); 5010 if (err) 5011 return err; 5012 5013 return skb_linearize(skb); 5014 } 5015 5016 static u32 netif_receive_generic_xdp(struct sk_buff **pskb, 5017 struct xdp_buff *xdp, 5018 struct bpf_prog *xdp_prog) 5019 { 5020 struct sk_buff *skb = *pskb; 5021 u32 mac_len, act = XDP_DROP; 5022 5023 /* Reinjected packets coming from act_mirred or similar should 5024 * not get XDP generic processing. 5025 */ 5026 if (skb_is_redirected(skb)) 5027 return XDP_PASS; 5028 5029 /* XDP packets must have sufficient headroom of XDP_PACKET_HEADROOM 5030 * bytes. This is the guarantee that also native XDP provides, 5031 * thus we need to do it here as well. 5032 */ 5033 mac_len = skb->data - skb_mac_header(skb); 5034 __skb_push(skb, mac_len); 5035 5036 if (skb_cloned(skb) || skb_is_nonlinear(skb) || 5037 skb_headroom(skb) < XDP_PACKET_HEADROOM) { 5038 if (netif_skb_check_for_xdp(pskb, xdp_prog)) 5039 goto do_drop; 5040 } 5041 5042 __skb_pull(*pskb, mac_len); 5043 5044 act = bpf_prog_run_generic_xdp(*pskb, xdp, xdp_prog); 5045 switch (act) { 5046 case XDP_REDIRECT: 5047 case XDP_TX: 5048 case XDP_PASS: 5049 break; 5050 default: 5051 bpf_warn_invalid_xdp_action((*pskb)->dev, xdp_prog, act); 5052 fallthrough; 5053 case XDP_ABORTED: 5054 trace_xdp_exception((*pskb)->dev, xdp_prog, act); 5055 fallthrough; 5056 case XDP_DROP: 5057 do_drop: 5058 kfree_skb(*pskb); 5059 break; 5060 } 5061 5062 return act; 5063 } 5064 5065 /* When doing generic XDP we have to bypass the qdisc layer and the 5066 * network taps in order to match in-driver-XDP behavior. This also means 5067 * that XDP packets are able to starve other packets going through a qdisc, 5068 * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX 5069 * queues, so they do not have this starvation issue. 5070 */ 5071 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog) 5072 { 5073 struct net_device *dev = skb->dev; 5074 struct netdev_queue *txq; 5075 bool free_skb = true; 5076 int cpu, rc; 5077 5078 txq = netdev_core_pick_tx(dev, skb, NULL); 5079 cpu = smp_processor_id(); 5080 HARD_TX_LOCK(dev, txq, cpu); 5081 if (!netif_xmit_frozen_or_drv_stopped(txq)) { 5082 rc = netdev_start_xmit(skb, dev, txq, 0); 5083 if (dev_xmit_complete(rc)) 5084 free_skb = false; 5085 } 5086 HARD_TX_UNLOCK(dev, txq); 5087 if (free_skb) { 5088 trace_xdp_exception(dev, xdp_prog, XDP_TX); 5089 dev_core_stats_tx_dropped_inc(dev); 5090 kfree_skb(skb); 5091 } 5092 } 5093 5094 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key); 5095 5096 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff **pskb) 5097 { 5098 if (xdp_prog) { 5099 struct xdp_buff xdp; 5100 u32 act; 5101 int err; 5102 5103 act = netif_receive_generic_xdp(pskb, &xdp, xdp_prog); 5104 if (act != XDP_PASS) { 5105 switch (act) { 5106 case XDP_REDIRECT: 5107 err = xdp_do_generic_redirect((*pskb)->dev, *pskb, 5108 &xdp, xdp_prog); 5109 if (err) 5110 goto out_redir; 5111 break; 5112 case XDP_TX: 5113 generic_xdp_tx(*pskb, xdp_prog); 5114 break; 5115 } 5116 return XDP_DROP; 5117 } 5118 } 5119 return XDP_PASS; 5120 out_redir: 5121 kfree_skb_reason(*pskb, SKB_DROP_REASON_XDP); 5122 return XDP_DROP; 5123 } 5124 EXPORT_SYMBOL_GPL(do_xdp_generic); 5125 5126 static int netif_rx_internal(struct sk_buff *skb) 5127 { 5128 int ret; 5129 5130 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb); 5131 5132 trace_netif_rx(skb); 5133 5134 #ifdef CONFIG_RPS 5135 if (static_branch_unlikely(&rps_needed)) { 5136 struct rps_dev_flow voidflow, *rflow = &voidflow; 5137 int cpu; 5138 5139 rcu_read_lock(); 5140 5141 cpu = get_rps_cpu(skb->dev, skb, &rflow); 5142 if (cpu < 0) 5143 cpu = smp_processor_id(); 5144 5145 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5146 5147 rcu_read_unlock(); 5148 } else 5149 #endif 5150 { 5151 unsigned int qtail; 5152 5153 ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail); 5154 } 5155 return ret; 5156 } 5157 5158 /** 5159 * __netif_rx - Slightly optimized version of netif_rx 5160 * @skb: buffer to post 5161 * 5162 * This behaves as netif_rx except that it does not disable bottom halves. 5163 * As a result this function may only be invoked from the interrupt context 5164 * (either hard or soft interrupt). 5165 */ 5166 int __netif_rx(struct sk_buff *skb) 5167 { 5168 int ret; 5169 5170 lockdep_assert_once(hardirq_count() | softirq_count()); 5171 5172 trace_netif_rx_entry(skb); 5173 ret = netif_rx_internal(skb); 5174 trace_netif_rx_exit(ret); 5175 return ret; 5176 } 5177 EXPORT_SYMBOL(__netif_rx); 5178 5179 /** 5180 * netif_rx - post buffer to the network code 5181 * @skb: buffer to post 5182 * 5183 * This function receives a packet from a device driver and queues it for 5184 * the upper (protocol) levels to process via the backlog NAPI device. It 5185 * always succeeds. The buffer may be dropped during processing for 5186 * congestion control or by the protocol layers. 5187 * The network buffer is passed via the backlog NAPI device. Modern NIC 5188 * driver should use NAPI and GRO. 5189 * This function can used from interrupt and from process context. The 5190 * caller from process context must not disable interrupts before invoking 5191 * this function. 5192 * 5193 * return values: 5194 * NET_RX_SUCCESS (no congestion) 5195 * NET_RX_DROP (packet was dropped) 5196 * 5197 */ 5198 int netif_rx(struct sk_buff *skb) 5199 { 5200 bool need_bh_off = !(hardirq_count() | softirq_count()); 5201 int ret; 5202 5203 if (need_bh_off) 5204 local_bh_disable(); 5205 trace_netif_rx_entry(skb); 5206 ret = netif_rx_internal(skb); 5207 trace_netif_rx_exit(ret); 5208 if (need_bh_off) 5209 local_bh_enable(); 5210 return ret; 5211 } 5212 EXPORT_SYMBOL(netif_rx); 5213 5214 static __latent_entropy void net_tx_action(struct softirq_action *h) 5215 { 5216 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 5217 5218 if (sd->completion_queue) { 5219 struct sk_buff *clist; 5220 5221 local_irq_disable(); 5222 clist = sd->completion_queue; 5223 sd->completion_queue = NULL; 5224 local_irq_enable(); 5225 5226 while (clist) { 5227 struct sk_buff *skb = clist; 5228 5229 clist = clist->next; 5230 5231 WARN_ON(refcount_read(&skb->users)); 5232 if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED)) 5233 trace_consume_skb(skb, net_tx_action); 5234 else 5235 trace_kfree_skb(skb, net_tx_action, 5236 get_kfree_skb_cb(skb)->reason); 5237 5238 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) 5239 __kfree_skb(skb); 5240 else 5241 __napi_kfree_skb(skb, 5242 get_kfree_skb_cb(skb)->reason); 5243 } 5244 } 5245 5246 if (sd->output_queue) { 5247 struct Qdisc *head; 5248 5249 local_irq_disable(); 5250 head = sd->output_queue; 5251 sd->output_queue = NULL; 5252 sd->output_queue_tailp = &sd->output_queue; 5253 local_irq_enable(); 5254 5255 rcu_read_lock(); 5256 5257 while (head) { 5258 struct Qdisc *q = head; 5259 spinlock_t *root_lock = NULL; 5260 5261 head = head->next_sched; 5262 5263 /* We need to make sure head->next_sched is read 5264 * before clearing __QDISC_STATE_SCHED 5265 */ 5266 smp_mb__before_atomic(); 5267 5268 if (!(q->flags & TCQ_F_NOLOCK)) { 5269 root_lock = qdisc_lock(q); 5270 spin_lock(root_lock); 5271 } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, 5272 &q->state))) { 5273 /* There is a synchronize_net() between 5274 * STATE_DEACTIVATED flag being set and 5275 * qdisc_reset()/some_qdisc_is_busy() in 5276 * dev_deactivate(), so we can safely bail out 5277 * early here to avoid data race between 5278 * qdisc_deactivate() and some_qdisc_is_busy() 5279 * for lockless qdisc. 5280 */ 5281 clear_bit(__QDISC_STATE_SCHED, &q->state); 5282 continue; 5283 } 5284 5285 clear_bit(__QDISC_STATE_SCHED, &q->state); 5286 qdisc_run(q); 5287 if (root_lock) 5288 spin_unlock(root_lock); 5289 } 5290 5291 rcu_read_unlock(); 5292 } 5293 5294 xfrm_dev_backlog(sd); 5295 } 5296 5297 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE) 5298 /* This hook is defined here for ATM LANE */ 5299 int (*br_fdb_test_addr_hook)(struct net_device *dev, 5300 unsigned char *addr) __read_mostly; 5301 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 5302 #endif 5303 5304 /** 5305 * netdev_is_rx_handler_busy - check if receive handler is registered 5306 * @dev: device to check 5307 * 5308 * Check if a receive handler is already registered for a given device. 5309 * Return true if there one. 5310 * 5311 * The caller must hold the rtnl_mutex. 5312 */ 5313 bool netdev_is_rx_handler_busy(struct net_device *dev) 5314 { 5315 ASSERT_RTNL(); 5316 return dev && rtnl_dereference(dev->rx_handler); 5317 } 5318 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy); 5319 5320 /** 5321 * netdev_rx_handler_register - register receive handler 5322 * @dev: device to register a handler for 5323 * @rx_handler: receive handler to register 5324 * @rx_handler_data: data pointer that is used by rx handler 5325 * 5326 * Register a receive handler for a device. This handler will then be 5327 * called from __netif_receive_skb. A negative errno code is returned 5328 * on a failure. 5329 * 5330 * The caller must hold the rtnl_mutex. 5331 * 5332 * For a general description of rx_handler, see enum rx_handler_result. 5333 */ 5334 int netdev_rx_handler_register(struct net_device *dev, 5335 rx_handler_func_t *rx_handler, 5336 void *rx_handler_data) 5337 { 5338 if (netdev_is_rx_handler_busy(dev)) 5339 return -EBUSY; 5340 5341 if (dev->priv_flags & IFF_NO_RX_HANDLER) 5342 return -EINVAL; 5343 5344 /* Note: rx_handler_data must be set before rx_handler */ 5345 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 5346 rcu_assign_pointer(dev->rx_handler, rx_handler); 5347 5348 return 0; 5349 } 5350 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 5351 5352 /** 5353 * netdev_rx_handler_unregister - unregister receive handler 5354 * @dev: device to unregister a handler from 5355 * 5356 * Unregister a receive handler from a device. 5357 * 5358 * The caller must hold the rtnl_mutex. 5359 */ 5360 void netdev_rx_handler_unregister(struct net_device *dev) 5361 { 5362 5363 ASSERT_RTNL(); 5364 RCU_INIT_POINTER(dev->rx_handler, NULL); 5365 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 5366 * section has a guarantee to see a non NULL rx_handler_data 5367 * as well. 5368 */ 5369 synchronize_net(); 5370 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 5371 } 5372 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 5373 5374 /* 5375 * Limit the use of PFMEMALLOC reserves to those protocols that implement 5376 * the special handling of PFMEMALLOC skbs. 5377 */ 5378 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 5379 { 5380 switch (skb->protocol) { 5381 case htons(ETH_P_ARP): 5382 case htons(ETH_P_IP): 5383 case htons(ETH_P_IPV6): 5384 case htons(ETH_P_8021Q): 5385 case htons(ETH_P_8021AD): 5386 return true; 5387 default: 5388 return false; 5389 } 5390 } 5391 5392 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, 5393 int *ret, struct net_device *orig_dev) 5394 { 5395 if (nf_hook_ingress_active(skb)) { 5396 int ingress_retval; 5397 5398 if (*pt_prev) { 5399 *ret = deliver_skb(skb, *pt_prev, orig_dev); 5400 *pt_prev = NULL; 5401 } 5402 5403 rcu_read_lock(); 5404 ingress_retval = nf_hook_ingress(skb); 5405 rcu_read_unlock(); 5406 return ingress_retval; 5407 } 5408 return 0; 5409 } 5410 5411 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc, 5412 struct packet_type **ppt_prev) 5413 { 5414 struct packet_type *ptype, *pt_prev; 5415 rx_handler_func_t *rx_handler; 5416 struct sk_buff *skb = *pskb; 5417 struct net_device *orig_dev; 5418 bool deliver_exact = false; 5419 int ret = NET_RX_DROP; 5420 __be16 type; 5421 5422 net_timestamp_check(!READ_ONCE(net_hotdata.tstamp_prequeue), skb); 5423 5424 trace_netif_receive_skb(skb); 5425 5426 orig_dev = skb->dev; 5427 5428 skb_reset_network_header(skb); 5429 if (!skb_transport_header_was_set(skb)) 5430 skb_reset_transport_header(skb); 5431 skb_reset_mac_len(skb); 5432 5433 pt_prev = NULL; 5434 5435 another_round: 5436 skb->skb_iif = skb->dev->ifindex; 5437 5438 __this_cpu_inc(softnet_data.processed); 5439 5440 if (static_branch_unlikely(&generic_xdp_needed_key)) { 5441 int ret2; 5442 5443 migrate_disable(); 5444 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), 5445 &skb); 5446 migrate_enable(); 5447 5448 if (ret2 != XDP_PASS) { 5449 ret = NET_RX_DROP; 5450 goto out; 5451 } 5452 } 5453 5454 if (eth_type_vlan(skb->protocol)) { 5455 skb = skb_vlan_untag(skb); 5456 if (unlikely(!skb)) 5457 goto out; 5458 } 5459 5460 if (skb_skip_tc_classify(skb)) 5461 goto skip_classify; 5462 5463 if (pfmemalloc) 5464 goto skip_taps; 5465 5466 list_for_each_entry_rcu(ptype, &net_hotdata.ptype_all, list) { 5467 if (pt_prev) 5468 ret = deliver_skb(skb, pt_prev, orig_dev); 5469 pt_prev = ptype; 5470 } 5471 5472 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 5473 if (pt_prev) 5474 ret = deliver_skb(skb, pt_prev, orig_dev); 5475 pt_prev = ptype; 5476 } 5477 5478 skip_taps: 5479 #ifdef CONFIG_NET_INGRESS 5480 if (static_branch_unlikely(&ingress_needed_key)) { 5481 bool another = false; 5482 5483 nf_skip_egress(skb, true); 5484 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev, 5485 &another); 5486 if (another) 5487 goto another_round; 5488 if (!skb) 5489 goto out; 5490 5491 nf_skip_egress(skb, false); 5492 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) 5493 goto out; 5494 } 5495 #endif 5496 skb_reset_redirect(skb); 5497 skip_classify: 5498 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 5499 goto drop; 5500 5501 if (skb_vlan_tag_present(skb)) { 5502 if (pt_prev) { 5503 ret = deliver_skb(skb, pt_prev, orig_dev); 5504 pt_prev = NULL; 5505 } 5506 if (vlan_do_receive(&skb)) 5507 goto another_round; 5508 else if (unlikely(!skb)) 5509 goto out; 5510 } 5511 5512 rx_handler = rcu_dereference(skb->dev->rx_handler); 5513 if (rx_handler) { 5514 if (pt_prev) { 5515 ret = deliver_skb(skb, pt_prev, orig_dev); 5516 pt_prev = NULL; 5517 } 5518 switch (rx_handler(&skb)) { 5519 case RX_HANDLER_CONSUMED: 5520 ret = NET_RX_SUCCESS; 5521 goto out; 5522 case RX_HANDLER_ANOTHER: 5523 goto another_round; 5524 case RX_HANDLER_EXACT: 5525 deliver_exact = true; 5526 break; 5527 case RX_HANDLER_PASS: 5528 break; 5529 default: 5530 BUG(); 5531 } 5532 } 5533 5534 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) { 5535 check_vlan_id: 5536 if (skb_vlan_tag_get_id(skb)) { 5537 /* Vlan id is non 0 and vlan_do_receive() above couldn't 5538 * find vlan device. 5539 */ 5540 skb->pkt_type = PACKET_OTHERHOST; 5541 } else if (eth_type_vlan(skb->protocol)) { 5542 /* Outer header is 802.1P with vlan 0, inner header is 5543 * 802.1Q or 802.1AD and vlan_do_receive() above could 5544 * not find vlan dev for vlan id 0. 5545 */ 5546 __vlan_hwaccel_clear_tag(skb); 5547 skb = skb_vlan_untag(skb); 5548 if (unlikely(!skb)) 5549 goto out; 5550 if (vlan_do_receive(&skb)) 5551 /* After stripping off 802.1P header with vlan 0 5552 * vlan dev is found for inner header. 5553 */ 5554 goto another_round; 5555 else if (unlikely(!skb)) 5556 goto out; 5557 else 5558 /* We have stripped outer 802.1P vlan 0 header. 5559 * But could not find vlan dev. 5560 * check again for vlan id to set OTHERHOST. 5561 */ 5562 goto check_vlan_id; 5563 } 5564 /* Note: we might in the future use prio bits 5565 * and set skb->priority like in vlan_do_receive() 5566 * For the time being, just ignore Priority Code Point 5567 */ 5568 __vlan_hwaccel_clear_tag(skb); 5569 } 5570 5571 type = skb->protocol; 5572 5573 /* deliver only exact match when indicated */ 5574 if (likely(!deliver_exact)) { 5575 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5576 &ptype_base[ntohs(type) & 5577 PTYPE_HASH_MASK]); 5578 } 5579 5580 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5581 &orig_dev->ptype_specific); 5582 5583 if (unlikely(skb->dev != orig_dev)) { 5584 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5585 &skb->dev->ptype_specific); 5586 } 5587 5588 if (pt_prev) { 5589 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 5590 goto drop; 5591 *ppt_prev = pt_prev; 5592 } else { 5593 drop: 5594 if (!deliver_exact) 5595 dev_core_stats_rx_dropped_inc(skb->dev); 5596 else 5597 dev_core_stats_rx_nohandler_inc(skb->dev); 5598 kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO); 5599 /* Jamal, now you will not able to escape explaining 5600 * me how you were going to use this. :-) 5601 */ 5602 ret = NET_RX_DROP; 5603 } 5604 5605 out: 5606 /* The invariant here is that if *ppt_prev is not NULL 5607 * then skb should also be non-NULL. 5608 * 5609 * Apparently *ppt_prev assignment above holds this invariant due to 5610 * skb dereferencing near it. 5611 */ 5612 *pskb = skb; 5613 return ret; 5614 } 5615 5616 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc) 5617 { 5618 struct net_device *orig_dev = skb->dev; 5619 struct packet_type *pt_prev = NULL; 5620 int ret; 5621 5622 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev); 5623 if (pt_prev) 5624 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb, 5625 skb->dev, pt_prev, orig_dev); 5626 return ret; 5627 } 5628 5629 /** 5630 * netif_receive_skb_core - special purpose version of netif_receive_skb 5631 * @skb: buffer to process 5632 * 5633 * More direct receive version of netif_receive_skb(). It should 5634 * only be used by callers that have a need to skip RPS and Generic XDP. 5635 * Caller must also take care of handling if ``(page_is_)pfmemalloc``. 5636 * 5637 * This function may only be called from softirq context and interrupts 5638 * should be enabled. 5639 * 5640 * Return values (usually ignored): 5641 * NET_RX_SUCCESS: no congestion 5642 * NET_RX_DROP: packet was dropped 5643 */ 5644 int netif_receive_skb_core(struct sk_buff *skb) 5645 { 5646 int ret; 5647 5648 rcu_read_lock(); 5649 ret = __netif_receive_skb_one_core(skb, false); 5650 rcu_read_unlock(); 5651 5652 return ret; 5653 } 5654 EXPORT_SYMBOL(netif_receive_skb_core); 5655 5656 static inline void __netif_receive_skb_list_ptype(struct list_head *head, 5657 struct packet_type *pt_prev, 5658 struct net_device *orig_dev) 5659 { 5660 struct sk_buff *skb, *next; 5661 5662 if (!pt_prev) 5663 return; 5664 if (list_empty(head)) 5665 return; 5666 if (pt_prev->list_func != NULL) 5667 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv, 5668 ip_list_rcv, head, pt_prev, orig_dev); 5669 else 5670 list_for_each_entry_safe(skb, next, head, list) { 5671 skb_list_del_init(skb); 5672 pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 5673 } 5674 } 5675 5676 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc) 5677 { 5678 /* Fast-path assumptions: 5679 * - There is no RX handler. 5680 * - Only one packet_type matches. 5681 * If either of these fails, we will end up doing some per-packet 5682 * processing in-line, then handling the 'last ptype' for the whole 5683 * sublist. This can't cause out-of-order delivery to any single ptype, 5684 * because the 'last ptype' must be constant across the sublist, and all 5685 * other ptypes are handled per-packet. 5686 */ 5687 /* Current (common) ptype of sublist */ 5688 struct packet_type *pt_curr = NULL; 5689 /* Current (common) orig_dev of sublist */ 5690 struct net_device *od_curr = NULL; 5691 struct list_head sublist; 5692 struct sk_buff *skb, *next; 5693 5694 INIT_LIST_HEAD(&sublist); 5695 list_for_each_entry_safe(skb, next, head, list) { 5696 struct net_device *orig_dev = skb->dev; 5697 struct packet_type *pt_prev = NULL; 5698 5699 skb_list_del_init(skb); 5700 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev); 5701 if (!pt_prev) 5702 continue; 5703 if (pt_curr != pt_prev || od_curr != orig_dev) { 5704 /* dispatch old sublist */ 5705 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 5706 /* start new sublist */ 5707 INIT_LIST_HEAD(&sublist); 5708 pt_curr = pt_prev; 5709 od_curr = orig_dev; 5710 } 5711 list_add_tail(&skb->list, &sublist); 5712 } 5713 5714 /* dispatch final sublist */ 5715 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 5716 } 5717 5718 static int __netif_receive_skb(struct sk_buff *skb) 5719 { 5720 int ret; 5721 5722 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 5723 unsigned int noreclaim_flag; 5724 5725 /* 5726 * PFMEMALLOC skbs are special, they should 5727 * - be delivered to SOCK_MEMALLOC sockets only 5728 * - stay away from userspace 5729 * - have bounded memory usage 5730 * 5731 * Use PF_MEMALLOC as this saves us from propagating the allocation 5732 * context down to all allocation sites. 5733 */ 5734 noreclaim_flag = memalloc_noreclaim_save(); 5735 ret = __netif_receive_skb_one_core(skb, true); 5736 memalloc_noreclaim_restore(noreclaim_flag); 5737 } else 5738 ret = __netif_receive_skb_one_core(skb, false); 5739 5740 return ret; 5741 } 5742 5743 static void __netif_receive_skb_list(struct list_head *head) 5744 { 5745 unsigned long noreclaim_flag = 0; 5746 struct sk_buff *skb, *next; 5747 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */ 5748 5749 list_for_each_entry_safe(skb, next, head, list) { 5750 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) { 5751 struct list_head sublist; 5752 5753 /* Handle the previous sublist */ 5754 list_cut_before(&sublist, head, &skb->list); 5755 if (!list_empty(&sublist)) 5756 __netif_receive_skb_list_core(&sublist, pfmemalloc); 5757 pfmemalloc = !pfmemalloc; 5758 /* See comments in __netif_receive_skb */ 5759 if (pfmemalloc) 5760 noreclaim_flag = memalloc_noreclaim_save(); 5761 else 5762 memalloc_noreclaim_restore(noreclaim_flag); 5763 } 5764 } 5765 /* Handle the remaining sublist */ 5766 if (!list_empty(head)) 5767 __netif_receive_skb_list_core(head, pfmemalloc); 5768 /* Restore pflags */ 5769 if (pfmemalloc) 5770 memalloc_noreclaim_restore(noreclaim_flag); 5771 } 5772 5773 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp) 5774 { 5775 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog); 5776 struct bpf_prog *new = xdp->prog; 5777 int ret = 0; 5778 5779 switch (xdp->command) { 5780 case XDP_SETUP_PROG: 5781 rcu_assign_pointer(dev->xdp_prog, new); 5782 if (old) 5783 bpf_prog_put(old); 5784 5785 if (old && !new) { 5786 static_branch_dec(&generic_xdp_needed_key); 5787 } else if (new && !old) { 5788 static_branch_inc(&generic_xdp_needed_key); 5789 dev_disable_lro(dev); 5790 dev_disable_gro_hw(dev); 5791 } 5792 break; 5793 5794 default: 5795 ret = -EINVAL; 5796 break; 5797 } 5798 5799 return ret; 5800 } 5801 5802 static int netif_receive_skb_internal(struct sk_buff *skb) 5803 { 5804 int ret; 5805 5806 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb); 5807 5808 if (skb_defer_rx_timestamp(skb)) 5809 return NET_RX_SUCCESS; 5810 5811 rcu_read_lock(); 5812 #ifdef CONFIG_RPS 5813 if (static_branch_unlikely(&rps_needed)) { 5814 struct rps_dev_flow voidflow, *rflow = &voidflow; 5815 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 5816 5817 if (cpu >= 0) { 5818 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5819 rcu_read_unlock(); 5820 return ret; 5821 } 5822 } 5823 #endif 5824 ret = __netif_receive_skb(skb); 5825 rcu_read_unlock(); 5826 return ret; 5827 } 5828 5829 void netif_receive_skb_list_internal(struct list_head *head) 5830 { 5831 struct sk_buff *skb, *next; 5832 struct list_head sublist; 5833 5834 INIT_LIST_HEAD(&sublist); 5835 list_for_each_entry_safe(skb, next, head, list) { 5836 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), 5837 skb); 5838 skb_list_del_init(skb); 5839 if (!skb_defer_rx_timestamp(skb)) 5840 list_add_tail(&skb->list, &sublist); 5841 } 5842 list_splice_init(&sublist, head); 5843 5844 rcu_read_lock(); 5845 #ifdef CONFIG_RPS 5846 if (static_branch_unlikely(&rps_needed)) { 5847 list_for_each_entry_safe(skb, next, head, list) { 5848 struct rps_dev_flow voidflow, *rflow = &voidflow; 5849 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 5850 5851 if (cpu >= 0) { 5852 /* Will be handled, remove from list */ 5853 skb_list_del_init(skb); 5854 enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5855 } 5856 } 5857 } 5858 #endif 5859 __netif_receive_skb_list(head); 5860 rcu_read_unlock(); 5861 } 5862 5863 /** 5864 * netif_receive_skb - process receive buffer from network 5865 * @skb: buffer to process 5866 * 5867 * netif_receive_skb() is the main receive data processing function. 5868 * It always succeeds. The buffer may be dropped during processing 5869 * for congestion control or by the protocol layers. 5870 * 5871 * This function may only be called from softirq context and interrupts 5872 * should be enabled. 5873 * 5874 * Return values (usually ignored): 5875 * NET_RX_SUCCESS: no congestion 5876 * NET_RX_DROP: packet was dropped 5877 */ 5878 int netif_receive_skb(struct sk_buff *skb) 5879 { 5880 int ret; 5881 5882 trace_netif_receive_skb_entry(skb); 5883 5884 ret = netif_receive_skb_internal(skb); 5885 trace_netif_receive_skb_exit(ret); 5886 5887 return ret; 5888 } 5889 EXPORT_SYMBOL(netif_receive_skb); 5890 5891 /** 5892 * netif_receive_skb_list - process many receive buffers from network 5893 * @head: list of skbs to process. 5894 * 5895 * Since return value of netif_receive_skb() is normally ignored, and 5896 * wouldn't be meaningful for a list, this function returns void. 5897 * 5898 * This function may only be called from softirq context and interrupts 5899 * should be enabled. 5900 */ 5901 void netif_receive_skb_list(struct list_head *head) 5902 { 5903 struct sk_buff *skb; 5904 5905 if (list_empty(head)) 5906 return; 5907 if (trace_netif_receive_skb_list_entry_enabled()) { 5908 list_for_each_entry(skb, head, list) 5909 trace_netif_receive_skb_list_entry(skb); 5910 } 5911 netif_receive_skb_list_internal(head); 5912 trace_netif_receive_skb_list_exit(0); 5913 } 5914 EXPORT_SYMBOL(netif_receive_skb_list); 5915 5916 static DEFINE_PER_CPU(struct work_struct, flush_works); 5917 5918 /* Network device is going away, flush any packets still pending */ 5919 static void flush_backlog(struct work_struct *work) 5920 { 5921 struct sk_buff *skb, *tmp; 5922 struct softnet_data *sd; 5923 5924 local_bh_disable(); 5925 sd = this_cpu_ptr(&softnet_data); 5926 5927 backlog_lock_irq_disable(sd); 5928 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 5929 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 5930 __skb_unlink(skb, &sd->input_pkt_queue); 5931 dev_kfree_skb_irq(skb); 5932 rps_input_queue_head_incr(sd); 5933 } 5934 } 5935 backlog_unlock_irq_enable(sd); 5936 5937 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 5938 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 5939 __skb_unlink(skb, &sd->process_queue); 5940 kfree_skb(skb); 5941 rps_input_queue_head_incr(sd); 5942 } 5943 } 5944 local_bh_enable(); 5945 } 5946 5947 static bool flush_required(int cpu) 5948 { 5949 #if IS_ENABLED(CONFIG_RPS) 5950 struct softnet_data *sd = &per_cpu(softnet_data, cpu); 5951 bool do_flush; 5952 5953 backlog_lock_irq_disable(sd); 5954 5955 /* as insertion into process_queue happens with the rps lock held, 5956 * process_queue access may race only with dequeue 5957 */ 5958 do_flush = !skb_queue_empty(&sd->input_pkt_queue) || 5959 !skb_queue_empty_lockless(&sd->process_queue); 5960 backlog_unlock_irq_enable(sd); 5961 5962 return do_flush; 5963 #endif 5964 /* without RPS we can't safely check input_pkt_queue: during a 5965 * concurrent remote skb_queue_splice() we can detect as empty both 5966 * input_pkt_queue and process_queue even if the latter could end-up 5967 * containing a lot of packets. 5968 */ 5969 return true; 5970 } 5971 5972 static void flush_all_backlogs(void) 5973 { 5974 static cpumask_t flush_cpus; 5975 unsigned int cpu; 5976 5977 /* since we are under rtnl lock protection we can use static data 5978 * for the cpumask and avoid allocating on stack the possibly 5979 * large mask 5980 */ 5981 ASSERT_RTNL(); 5982 5983 cpus_read_lock(); 5984 5985 cpumask_clear(&flush_cpus); 5986 for_each_online_cpu(cpu) { 5987 if (flush_required(cpu)) { 5988 queue_work_on(cpu, system_highpri_wq, 5989 per_cpu_ptr(&flush_works, cpu)); 5990 cpumask_set_cpu(cpu, &flush_cpus); 5991 } 5992 } 5993 5994 /* we can have in flight packet[s] on the cpus we are not flushing, 5995 * synchronize_net() in unregister_netdevice_many() will take care of 5996 * them 5997 */ 5998 for_each_cpu(cpu, &flush_cpus) 5999 flush_work(per_cpu_ptr(&flush_works, cpu)); 6000 6001 cpus_read_unlock(); 6002 } 6003 6004 static void net_rps_send_ipi(struct softnet_data *remsd) 6005 { 6006 #ifdef CONFIG_RPS 6007 while (remsd) { 6008 struct softnet_data *next = remsd->rps_ipi_next; 6009 6010 if (cpu_online(remsd->cpu)) 6011 smp_call_function_single_async(remsd->cpu, &remsd->csd); 6012 remsd = next; 6013 } 6014 #endif 6015 } 6016 6017 /* 6018 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 6019 * Note: called with local irq disabled, but exits with local irq enabled. 6020 */ 6021 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 6022 { 6023 #ifdef CONFIG_RPS 6024 struct softnet_data *remsd = sd->rps_ipi_list; 6025 6026 if (!use_backlog_threads() && remsd) { 6027 sd->rps_ipi_list = NULL; 6028 6029 local_irq_enable(); 6030 6031 /* Send pending IPI's to kick RPS processing on remote cpus. */ 6032 net_rps_send_ipi(remsd); 6033 } else 6034 #endif 6035 local_irq_enable(); 6036 } 6037 6038 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 6039 { 6040 #ifdef CONFIG_RPS 6041 return !use_backlog_threads() && sd->rps_ipi_list; 6042 #else 6043 return false; 6044 #endif 6045 } 6046 6047 static int process_backlog(struct napi_struct *napi, int quota) 6048 { 6049 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 6050 bool again = true; 6051 int work = 0; 6052 6053 /* Check if we have pending ipi, its better to send them now, 6054 * not waiting net_rx_action() end. 6055 */ 6056 if (sd_has_rps_ipi_waiting(sd)) { 6057 local_irq_disable(); 6058 net_rps_action_and_irq_enable(sd); 6059 } 6060 6061 napi->weight = READ_ONCE(net_hotdata.dev_rx_weight); 6062 while (again) { 6063 struct sk_buff *skb; 6064 6065 while ((skb = __skb_dequeue(&sd->process_queue))) { 6066 rcu_read_lock(); 6067 __netif_receive_skb(skb); 6068 rcu_read_unlock(); 6069 if (++work >= quota) { 6070 rps_input_queue_head_add(sd, work); 6071 return work; 6072 } 6073 6074 } 6075 6076 backlog_lock_irq_disable(sd); 6077 if (skb_queue_empty(&sd->input_pkt_queue)) { 6078 /* 6079 * Inline a custom version of __napi_complete(). 6080 * only current cpu owns and manipulates this napi, 6081 * and NAPI_STATE_SCHED is the only possible flag set 6082 * on backlog. 6083 * We can use a plain write instead of clear_bit(), 6084 * and we dont need an smp_mb() memory barrier. 6085 */ 6086 napi->state &= NAPIF_STATE_THREADED; 6087 again = false; 6088 } else { 6089 skb_queue_splice_tail_init(&sd->input_pkt_queue, 6090 &sd->process_queue); 6091 } 6092 backlog_unlock_irq_enable(sd); 6093 } 6094 6095 if (work) 6096 rps_input_queue_head_add(sd, work); 6097 return work; 6098 } 6099 6100 /** 6101 * __napi_schedule - schedule for receive 6102 * @n: entry to schedule 6103 * 6104 * The entry's receive function will be scheduled to run. 6105 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 6106 */ 6107 void __napi_schedule(struct napi_struct *n) 6108 { 6109 unsigned long flags; 6110 6111 local_irq_save(flags); 6112 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 6113 local_irq_restore(flags); 6114 } 6115 EXPORT_SYMBOL(__napi_schedule); 6116 6117 /** 6118 * napi_schedule_prep - check if napi can be scheduled 6119 * @n: napi context 6120 * 6121 * Test if NAPI routine is already running, and if not mark 6122 * it as running. This is used as a condition variable to 6123 * insure only one NAPI poll instance runs. We also make 6124 * sure there is no pending NAPI disable. 6125 */ 6126 bool napi_schedule_prep(struct napi_struct *n) 6127 { 6128 unsigned long new, val = READ_ONCE(n->state); 6129 6130 do { 6131 if (unlikely(val & NAPIF_STATE_DISABLE)) 6132 return false; 6133 new = val | NAPIF_STATE_SCHED; 6134 6135 /* Sets STATE_MISSED bit if STATE_SCHED was already set 6136 * This was suggested by Alexander Duyck, as compiler 6137 * emits better code than : 6138 * if (val & NAPIF_STATE_SCHED) 6139 * new |= NAPIF_STATE_MISSED; 6140 */ 6141 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED * 6142 NAPIF_STATE_MISSED; 6143 } while (!try_cmpxchg(&n->state, &val, new)); 6144 6145 return !(val & NAPIF_STATE_SCHED); 6146 } 6147 EXPORT_SYMBOL(napi_schedule_prep); 6148 6149 /** 6150 * __napi_schedule_irqoff - schedule for receive 6151 * @n: entry to schedule 6152 * 6153 * Variant of __napi_schedule() assuming hard irqs are masked. 6154 * 6155 * On PREEMPT_RT enabled kernels this maps to __napi_schedule() 6156 * because the interrupt disabled assumption might not be true 6157 * due to force-threaded interrupts and spinlock substitution. 6158 */ 6159 void __napi_schedule_irqoff(struct napi_struct *n) 6160 { 6161 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6162 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 6163 else 6164 __napi_schedule(n); 6165 } 6166 EXPORT_SYMBOL(__napi_schedule_irqoff); 6167 6168 bool napi_complete_done(struct napi_struct *n, int work_done) 6169 { 6170 unsigned long flags, val, new, timeout = 0; 6171 bool ret = true; 6172 6173 /* 6174 * 1) Don't let napi dequeue from the cpu poll list 6175 * just in case its running on a different cpu. 6176 * 2) If we are busy polling, do nothing here, we have 6177 * the guarantee we will be called later. 6178 */ 6179 if (unlikely(n->state & (NAPIF_STATE_NPSVC | 6180 NAPIF_STATE_IN_BUSY_POLL))) 6181 return false; 6182 6183 if (work_done) { 6184 if (n->gro_bitmask) 6185 timeout = READ_ONCE(n->dev->gro_flush_timeout); 6186 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs); 6187 } 6188 if (n->defer_hard_irqs_count > 0) { 6189 n->defer_hard_irqs_count--; 6190 timeout = READ_ONCE(n->dev->gro_flush_timeout); 6191 if (timeout) 6192 ret = false; 6193 } 6194 if (n->gro_bitmask) { 6195 /* When the NAPI instance uses a timeout and keeps postponing 6196 * it, we need to bound somehow the time packets are kept in 6197 * the GRO layer 6198 */ 6199 napi_gro_flush(n, !!timeout); 6200 } 6201 6202 gro_normal_list(n); 6203 6204 if (unlikely(!list_empty(&n->poll_list))) { 6205 /* If n->poll_list is not empty, we need to mask irqs */ 6206 local_irq_save(flags); 6207 list_del_init(&n->poll_list); 6208 local_irq_restore(flags); 6209 } 6210 WRITE_ONCE(n->list_owner, -1); 6211 6212 val = READ_ONCE(n->state); 6213 do { 6214 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED)); 6215 6216 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED | 6217 NAPIF_STATE_SCHED_THREADED | 6218 NAPIF_STATE_PREFER_BUSY_POLL); 6219 6220 /* If STATE_MISSED was set, leave STATE_SCHED set, 6221 * because we will call napi->poll() one more time. 6222 * This C code was suggested by Alexander Duyck to help gcc. 6223 */ 6224 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED * 6225 NAPIF_STATE_SCHED; 6226 } while (!try_cmpxchg(&n->state, &val, new)); 6227 6228 if (unlikely(val & NAPIF_STATE_MISSED)) { 6229 __napi_schedule(n); 6230 return false; 6231 } 6232 6233 if (timeout) 6234 hrtimer_start(&n->timer, ns_to_ktime(timeout), 6235 HRTIMER_MODE_REL_PINNED); 6236 return ret; 6237 } 6238 EXPORT_SYMBOL(napi_complete_done); 6239 6240 /* must be called under rcu_read_lock(), as we dont take a reference */ 6241 struct napi_struct *napi_by_id(unsigned int napi_id) 6242 { 6243 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 6244 struct napi_struct *napi; 6245 6246 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 6247 if (napi->napi_id == napi_id) 6248 return napi; 6249 6250 return NULL; 6251 } 6252 6253 static void skb_defer_free_flush(struct softnet_data *sd) 6254 { 6255 struct sk_buff *skb, *next; 6256 6257 /* Paired with WRITE_ONCE() in skb_attempt_defer_free() */ 6258 if (!READ_ONCE(sd->defer_list)) 6259 return; 6260 6261 spin_lock(&sd->defer_lock); 6262 skb = sd->defer_list; 6263 sd->defer_list = NULL; 6264 sd->defer_count = 0; 6265 spin_unlock(&sd->defer_lock); 6266 6267 while (skb != NULL) { 6268 next = skb->next; 6269 napi_consume_skb(skb, 1); 6270 skb = next; 6271 } 6272 } 6273 6274 #if defined(CONFIG_NET_RX_BUSY_POLL) 6275 6276 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule) 6277 { 6278 if (!skip_schedule) { 6279 gro_normal_list(napi); 6280 __napi_schedule(napi); 6281 return; 6282 } 6283 6284 if (napi->gro_bitmask) { 6285 /* flush too old packets 6286 * If HZ < 1000, flush all packets. 6287 */ 6288 napi_gro_flush(napi, HZ >= 1000); 6289 } 6290 6291 gro_normal_list(napi); 6292 clear_bit(NAPI_STATE_SCHED, &napi->state); 6293 } 6294 6295 enum { 6296 NAPI_F_PREFER_BUSY_POLL = 1, 6297 NAPI_F_END_ON_RESCHED = 2, 6298 }; 6299 6300 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, 6301 unsigned flags, u16 budget) 6302 { 6303 bool skip_schedule = false; 6304 unsigned long timeout; 6305 int rc; 6306 6307 /* Busy polling means there is a high chance device driver hard irq 6308 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was 6309 * set in napi_schedule_prep(). 6310 * Since we are about to call napi->poll() once more, we can safely 6311 * clear NAPI_STATE_MISSED. 6312 * 6313 * Note: x86 could use a single "lock and ..." instruction 6314 * to perform these two clear_bit() 6315 */ 6316 clear_bit(NAPI_STATE_MISSED, &napi->state); 6317 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state); 6318 6319 local_bh_disable(); 6320 6321 if (flags & NAPI_F_PREFER_BUSY_POLL) { 6322 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs); 6323 timeout = READ_ONCE(napi->dev->gro_flush_timeout); 6324 if (napi->defer_hard_irqs_count && timeout) { 6325 hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED); 6326 skip_schedule = true; 6327 } 6328 } 6329 6330 /* All we really want here is to re-enable device interrupts. 6331 * Ideally, a new ndo_busy_poll_stop() could avoid another round. 6332 */ 6333 rc = napi->poll(napi, budget); 6334 /* We can't gro_normal_list() here, because napi->poll() might have 6335 * rearmed the napi (napi_complete_done()) in which case it could 6336 * already be running on another CPU. 6337 */ 6338 trace_napi_poll(napi, rc, budget); 6339 netpoll_poll_unlock(have_poll_lock); 6340 if (rc == budget) 6341 __busy_poll_stop(napi, skip_schedule); 6342 local_bh_enable(); 6343 } 6344 6345 static void __napi_busy_loop(unsigned int napi_id, 6346 bool (*loop_end)(void *, unsigned long), 6347 void *loop_end_arg, unsigned flags, u16 budget) 6348 { 6349 unsigned long start_time = loop_end ? busy_loop_current_time() : 0; 6350 int (*napi_poll)(struct napi_struct *napi, int budget); 6351 void *have_poll_lock = NULL; 6352 struct napi_struct *napi; 6353 6354 WARN_ON_ONCE(!rcu_read_lock_held()); 6355 6356 restart: 6357 napi_poll = NULL; 6358 6359 napi = napi_by_id(napi_id); 6360 if (!napi) 6361 return; 6362 6363 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6364 preempt_disable(); 6365 for (;;) { 6366 int work = 0; 6367 6368 local_bh_disable(); 6369 if (!napi_poll) { 6370 unsigned long val = READ_ONCE(napi->state); 6371 6372 /* If multiple threads are competing for this napi, 6373 * we avoid dirtying napi->state as much as we can. 6374 */ 6375 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED | 6376 NAPIF_STATE_IN_BUSY_POLL)) { 6377 if (flags & NAPI_F_PREFER_BUSY_POLL) 6378 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6379 goto count; 6380 } 6381 if (cmpxchg(&napi->state, val, 6382 val | NAPIF_STATE_IN_BUSY_POLL | 6383 NAPIF_STATE_SCHED) != val) { 6384 if (flags & NAPI_F_PREFER_BUSY_POLL) 6385 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6386 goto count; 6387 } 6388 have_poll_lock = netpoll_poll_lock(napi); 6389 napi_poll = napi->poll; 6390 } 6391 work = napi_poll(napi, budget); 6392 trace_napi_poll(napi, work, budget); 6393 gro_normal_list(napi); 6394 count: 6395 if (work > 0) 6396 __NET_ADD_STATS(dev_net(napi->dev), 6397 LINUX_MIB_BUSYPOLLRXPACKETS, work); 6398 skb_defer_free_flush(this_cpu_ptr(&softnet_data)); 6399 local_bh_enable(); 6400 6401 if (!loop_end || loop_end(loop_end_arg, start_time)) 6402 break; 6403 6404 if (unlikely(need_resched())) { 6405 if (flags & NAPI_F_END_ON_RESCHED) 6406 break; 6407 if (napi_poll) 6408 busy_poll_stop(napi, have_poll_lock, flags, budget); 6409 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6410 preempt_enable(); 6411 rcu_read_unlock(); 6412 cond_resched(); 6413 rcu_read_lock(); 6414 if (loop_end(loop_end_arg, start_time)) 6415 return; 6416 goto restart; 6417 } 6418 cpu_relax(); 6419 } 6420 if (napi_poll) 6421 busy_poll_stop(napi, have_poll_lock, flags, budget); 6422 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6423 preempt_enable(); 6424 } 6425 6426 void napi_busy_loop_rcu(unsigned int napi_id, 6427 bool (*loop_end)(void *, unsigned long), 6428 void *loop_end_arg, bool prefer_busy_poll, u16 budget) 6429 { 6430 unsigned flags = NAPI_F_END_ON_RESCHED; 6431 6432 if (prefer_busy_poll) 6433 flags |= NAPI_F_PREFER_BUSY_POLL; 6434 6435 __napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget); 6436 } 6437 6438 void napi_busy_loop(unsigned int napi_id, 6439 bool (*loop_end)(void *, unsigned long), 6440 void *loop_end_arg, bool prefer_busy_poll, u16 budget) 6441 { 6442 unsigned flags = prefer_busy_poll ? NAPI_F_PREFER_BUSY_POLL : 0; 6443 6444 rcu_read_lock(); 6445 __napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget); 6446 rcu_read_unlock(); 6447 } 6448 EXPORT_SYMBOL(napi_busy_loop); 6449 6450 #endif /* CONFIG_NET_RX_BUSY_POLL */ 6451 6452 static void napi_hash_add(struct napi_struct *napi) 6453 { 6454 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state)) 6455 return; 6456 6457 spin_lock(&napi_hash_lock); 6458 6459 /* 0..NR_CPUS range is reserved for sender_cpu use */ 6460 do { 6461 if (unlikely(++napi_gen_id < MIN_NAPI_ID)) 6462 napi_gen_id = MIN_NAPI_ID; 6463 } while (napi_by_id(napi_gen_id)); 6464 napi->napi_id = napi_gen_id; 6465 6466 hlist_add_head_rcu(&napi->napi_hash_node, 6467 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 6468 6469 spin_unlock(&napi_hash_lock); 6470 } 6471 6472 /* Warning : caller is responsible to make sure rcu grace period 6473 * is respected before freeing memory containing @napi 6474 */ 6475 static void napi_hash_del(struct napi_struct *napi) 6476 { 6477 spin_lock(&napi_hash_lock); 6478 6479 hlist_del_init_rcu(&napi->napi_hash_node); 6480 6481 spin_unlock(&napi_hash_lock); 6482 } 6483 6484 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 6485 { 6486 struct napi_struct *napi; 6487 6488 napi = container_of(timer, struct napi_struct, timer); 6489 6490 /* Note : we use a relaxed variant of napi_schedule_prep() not setting 6491 * NAPI_STATE_MISSED, since we do not react to a device IRQ. 6492 */ 6493 if (!napi_disable_pending(napi) && 6494 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) { 6495 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6496 __napi_schedule_irqoff(napi); 6497 } 6498 6499 return HRTIMER_NORESTART; 6500 } 6501 6502 static void init_gro_hash(struct napi_struct *napi) 6503 { 6504 int i; 6505 6506 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 6507 INIT_LIST_HEAD(&napi->gro_hash[i].list); 6508 napi->gro_hash[i].count = 0; 6509 } 6510 napi->gro_bitmask = 0; 6511 } 6512 6513 int dev_set_threaded(struct net_device *dev, bool threaded) 6514 { 6515 struct napi_struct *napi; 6516 int err = 0; 6517 6518 if (dev->threaded == threaded) 6519 return 0; 6520 6521 if (threaded) { 6522 list_for_each_entry(napi, &dev->napi_list, dev_list) { 6523 if (!napi->thread) { 6524 err = napi_kthread_create(napi); 6525 if (err) { 6526 threaded = false; 6527 break; 6528 } 6529 } 6530 } 6531 } 6532 6533 WRITE_ONCE(dev->threaded, threaded); 6534 6535 /* Make sure kthread is created before THREADED bit 6536 * is set. 6537 */ 6538 smp_mb__before_atomic(); 6539 6540 /* Setting/unsetting threaded mode on a napi might not immediately 6541 * take effect, if the current napi instance is actively being 6542 * polled. In this case, the switch between threaded mode and 6543 * softirq mode will happen in the next round of napi_schedule(). 6544 * This should not cause hiccups/stalls to the live traffic. 6545 */ 6546 list_for_each_entry(napi, &dev->napi_list, dev_list) 6547 assign_bit(NAPI_STATE_THREADED, &napi->state, threaded); 6548 6549 return err; 6550 } 6551 EXPORT_SYMBOL(dev_set_threaded); 6552 6553 /** 6554 * netif_queue_set_napi - Associate queue with the napi 6555 * @dev: device to which NAPI and queue belong 6556 * @queue_index: Index of queue 6557 * @type: queue type as RX or TX 6558 * @napi: NAPI context, pass NULL to clear previously set NAPI 6559 * 6560 * Set queue with its corresponding napi context. This should be done after 6561 * registering the NAPI handler for the queue-vector and the queues have been 6562 * mapped to the corresponding interrupt vector. 6563 */ 6564 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index, 6565 enum netdev_queue_type type, struct napi_struct *napi) 6566 { 6567 struct netdev_rx_queue *rxq; 6568 struct netdev_queue *txq; 6569 6570 if (WARN_ON_ONCE(napi && !napi->dev)) 6571 return; 6572 if (dev->reg_state >= NETREG_REGISTERED) 6573 ASSERT_RTNL(); 6574 6575 switch (type) { 6576 case NETDEV_QUEUE_TYPE_RX: 6577 rxq = __netif_get_rx_queue(dev, queue_index); 6578 rxq->napi = napi; 6579 return; 6580 case NETDEV_QUEUE_TYPE_TX: 6581 txq = netdev_get_tx_queue(dev, queue_index); 6582 txq->napi = napi; 6583 return; 6584 default: 6585 return; 6586 } 6587 } 6588 EXPORT_SYMBOL(netif_queue_set_napi); 6589 6590 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi, 6591 int (*poll)(struct napi_struct *, int), int weight) 6592 { 6593 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state))) 6594 return; 6595 6596 INIT_LIST_HEAD(&napi->poll_list); 6597 INIT_HLIST_NODE(&napi->napi_hash_node); 6598 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 6599 napi->timer.function = napi_watchdog; 6600 init_gro_hash(napi); 6601 napi->skb = NULL; 6602 INIT_LIST_HEAD(&napi->rx_list); 6603 napi->rx_count = 0; 6604 napi->poll = poll; 6605 if (weight > NAPI_POLL_WEIGHT) 6606 netdev_err_once(dev, "%s() called with weight %d\n", __func__, 6607 weight); 6608 napi->weight = weight; 6609 napi->dev = dev; 6610 #ifdef CONFIG_NETPOLL 6611 napi->poll_owner = -1; 6612 #endif 6613 napi->list_owner = -1; 6614 set_bit(NAPI_STATE_SCHED, &napi->state); 6615 set_bit(NAPI_STATE_NPSVC, &napi->state); 6616 list_add_rcu(&napi->dev_list, &dev->napi_list); 6617 napi_hash_add(napi); 6618 napi_get_frags_check(napi); 6619 /* Create kthread for this napi if dev->threaded is set. 6620 * Clear dev->threaded if kthread creation failed so that 6621 * threaded mode will not be enabled in napi_enable(). 6622 */ 6623 if (dev->threaded && napi_kthread_create(napi)) 6624 dev->threaded = false; 6625 netif_napi_set_irq(napi, -1); 6626 } 6627 EXPORT_SYMBOL(netif_napi_add_weight); 6628 6629 void napi_disable(struct napi_struct *n) 6630 { 6631 unsigned long val, new; 6632 6633 might_sleep(); 6634 set_bit(NAPI_STATE_DISABLE, &n->state); 6635 6636 val = READ_ONCE(n->state); 6637 do { 6638 while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) { 6639 usleep_range(20, 200); 6640 val = READ_ONCE(n->state); 6641 } 6642 6643 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC; 6644 new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL); 6645 } while (!try_cmpxchg(&n->state, &val, new)); 6646 6647 hrtimer_cancel(&n->timer); 6648 6649 clear_bit(NAPI_STATE_DISABLE, &n->state); 6650 } 6651 EXPORT_SYMBOL(napi_disable); 6652 6653 /** 6654 * napi_enable - enable NAPI scheduling 6655 * @n: NAPI context 6656 * 6657 * Resume NAPI from being scheduled on this context. 6658 * Must be paired with napi_disable. 6659 */ 6660 void napi_enable(struct napi_struct *n) 6661 { 6662 unsigned long new, val = READ_ONCE(n->state); 6663 6664 do { 6665 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val)); 6666 6667 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC); 6668 if (n->dev->threaded && n->thread) 6669 new |= NAPIF_STATE_THREADED; 6670 } while (!try_cmpxchg(&n->state, &val, new)); 6671 } 6672 EXPORT_SYMBOL(napi_enable); 6673 6674 static void flush_gro_hash(struct napi_struct *napi) 6675 { 6676 int i; 6677 6678 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 6679 struct sk_buff *skb, *n; 6680 6681 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list) 6682 kfree_skb(skb); 6683 napi->gro_hash[i].count = 0; 6684 } 6685 } 6686 6687 /* Must be called in process context */ 6688 void __netif_napi_del(struct napi_struct *napi) 6689 { 6690 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state)) 6691 return; 6692 6693 napi_hash_del(napi); 6694 list_del_rcu(&napi->dev_list); 6695 napi_free_frags(napi); 6696 6697 flush_gro_hash(napi); 6698 napi->gro_bitmask = 0; 6699 6700 if (napi->thread) { 6701 kthread_stop(napi->thread); 6702 napi->thread = NULL; 6703 } 6704 } 6705 EXPORT_SYMBOL(__netif_napi_del); 6706 6707 static int __napi_poll(struct napi_struct *n, bool *repoll) 6708 { 6709 int work, weight; 6710 6711 weight = n->weight; 6712 6713 /* This NAPI_STATE_SCHED test is for avoiding a race 6714 * with netpoll's poll_napi(). Only the entity which 6715 * obtains the lock and sees NAPI_STATE_SCHED set will 6716 * actually make the ->poll() call. Therefore we avoid 6717 * accidentally calling ->poll() when NAPI is not scheduled. 6718 */ 6719 work = 0; 6720 if (napi_is_scheduled(n)) { 6721 work = n->poll(n, weight); 6722 trace_napi_poll(n, work, weight); 6723 6724 xdp_do_check_flushed(n); 6725 } 6726 6727 if (unlikely(work > weight)) 6728 netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n", 6729 n->poll, work, weight); 6730 6731 if (likely(work < weight)) 6732 return work; 6733 6734 /* Drivers must not modify the NAPI state if they 6735 * consume the entire weight. In such cases this code 6736 * still "owns" the NAPI instance and therefore can 6737 * move the instance around on the list at-will. 6738 */ 6739 if (unlikely(napi_disable_pending(n))) { 6740 napi_complete(n); 6741 return work; 6742 } 6743 6744 /* The NAPI context has more processing work, but busy-polling 6745 * is preferred. Exit early. 6746 */ 6747 if (napi_prefer_busy_poll(n)) { 6748 if (napi_complete_done(n, work)) { 6749 /* If timeout is not set, we need to make sure 6750 * that the NAPI is re-scheduled. 6751 */ 6752 napi_schedule(n); 6753 } 6754 return work; 6755 } 6756 6757 if (n->gro_bitmask) { 6758 /* flush too old packets 6759 * If HZ < 1000, flush all packets. 6760 */ 6761 napi_gro_flush(n, HZ >= 1000); 6762 } 6763 6764 gro_normal_list(n); 6765 6766 /* Some drivers may have called napi_schedule 6767 * prior to exhausting their budget. 6768 */ 6769 if (unlikely(!list_empty(&n->poll_list))) { 6770 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 6771 n->dev ? n->dev->name : "backlog"); 6772 return work; 6773 } 6774 6775 *repoll = true; 6776 6777 return work; 6778 } 6779 6780 static int napi_poll(struct napi_struct *n, struct list_head *repoll) 6781 { 6782 bool do_repoll = false; 6783 void *have; 6784 int work; 6785 6786 list_del_init(&n->poll_list); 6787 6788 have = netpoll_poll_lock(n); 6789 6790 work = __napi_poll(n, &do_repoll); 6791 6792 if (do_repoll) 6793 list_add_tail(&n->poll_list, repoll); 6794 6795 netpoll_poll_unlock(have); 6796 6797 return work; 6798 } 6799 6800 static int napi_thread_wait(struct napi_struct *napi) 6801 { 6802 set_current_state(TASK_INTERRUPTIBLE); 6803 6804 while (!kthread_should_stop()) { 6805 /* Testing SCHED_THREADED bit here to make sure the current 6806 * kthread owns this napi and could poll on this napi. 6807 * Testing SCHED bit is not enough because SCHED bit might be 6808 * set by some other busy poll thread or by napi_disable(). 6809 */ 6810 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state)) { 6811 WARN_ON(!list_empty(&napi->poll_list)); 6812 __set_current_state(TASK_RUNNING); 6813 return 0; 6814 } 6815 6816 schedule(); 6817 set_current_state(TASK_INTERRUPTIBLE); 6818 } 6819 __set_current_state(TASK_RUNNING); 6820 6821 return -1; 6822 } 6823 6824 static void napi_threaded_poll_loop(struct napi_struct *napi) 6825 { 6826 struct softnet_data *sd; 6827 unsigned long last_qs = jiffies; 6828 6829 for (;;) { 6830 bool repoll = false; 6831 void *have; 6832 6833 local_bh_disable(); 6834 sd = this_cpu_ptr(&softnet_data); 6835 sd->in_napi_threaded_poll = true; 6836 6837 have = netpoll_poll_lock(napi); 6838 __napi_poll(napi, &repoll); 6839 netpoll_poll_unlock(have); 6840 6841 sd->in_napi_threaded_poll = false; 6842 barrier(); 6843 6844 if (sd_has_rps_ipi_waiting(sd)) { 6845 local_irq_disable(); 6846 net_rps_action_and_irq_enable(sd); 6847 } 6848 skb_defer_free_flush(sd); 6849 local_bh_enable(); 6850 6851 if (!repoll) 6852 break; 6853 6854 rcu_softirq_qs_periodic(last_qs); 6855 cond_resched(); 6856 } 6857 } 6858 6859 static int napi_threaded_poll(void *data) 6860 { 6861 struct napi_struct *napi = data; 6862 6863 while (!napi_thread_wait(napi)) 6864 napi_threaded_poll_loop(napi); 6865 6866 return 0; 6867 } 6868 6869 static __latent_entropy void net_rx_action(struct softirq_action *h) 6870 { 6871 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 6872 unsigned long time_limit = jiffies + 6873 usecs_to_jiffies(READ_ONCE(net_hotdata.netdev_budget_usecs)); 6874 int budget = READ_ONCE(net_hotdata.netdev_budget); 6875 LIST_HEAD(list); 6876 LIST_HEAD(repoll); 6877 6878 start: 6879 sd->in_net_rx_action = true; 6880 local_irq_disable(); 6881 list_splice_init(&sd->poll_list, &list); 6882 local_irq_enable(); 6883 6884 for (;;) { 6885 struct napi_struct *n; 6886 6887 skb_defer_free_flush(sd); 6888 6889 if (list_empty(&list)) { 6890 if (list_empty(&repoll)) { 6891 sd->in_net_rx_action = false; 6892 barrier(); 6893 /* We need to check if ____napi_schedule() 6894 * had refilled poll_list while 6895 * sd->in_net_rx_action was true. 6896 */ 6897 if (!list_empty(&sd->poll_list)) 6898 goto start; 6899 if (!sd_has_rps_ipi_waiting(sd)) 6900 goto end; 6901 } 6902 break; 6903 } 6904 6905 n = list_first_entry(&list, struct napi_struct, poll_list); 6906 budget -= napi_poll(n, &repoll); 6907 6908 /* If softirq window is exhausted then punt. 6909 * Allow this to run for 2 jiffies since which will allow 6910 * an average latency of 1.5/HZ. 6911 */ 6912 if (unlikely(budget <= 0 || 6913 time_after_eq(jiffies, time_limit))) { 6914 sd->time_squeeze++; 6915 break; 6916 } 6917 } 6918 6919 local_irq_disable(); 6920 6921 list_splice_tail_init(&sd->poll_list, &list); 6922 list_splice_tail(&repoll, &list); 6923 list_splice(&list, &sd->poll_list); 6924 if (!list_empty(&sd->poll_list)) 6925 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 6926 else 6927 sd->in_net_rx_action = false; 6928 6929 net_rps_action_and_irq_enable(sd); 6930 end:; 6931 } 6932 6933 struct netdev_adjacent { 6934 struct net_device *dev; 6935 netdevice_tracker dev_tracker; 6936 6937 /* upper master flag, there can only be one master device per list */ 6938 bool master; 6939 6940 /* lookup ignore flag */ 6941 bool ignore; 6942 6943 /* counter for the number of times this device was added to us */ 6944 u16 ref_nr; 6945 6946 /* private field for the users */ 6947 void *private; 6948 6949 struct list_head list; 6950 struct rcu_head rcu; 6951 }; 6952 6953 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, 6954 struct list_head *adj_list) 6955 { 6956 struct netdev_adjacent *adj; 6957 6958 list_for_each_entry(adj, adj_list, list) { 6959 if (adj->dev == adj_dev) 6960 return adj; 6961 } 6962 return NULL; 6963 } 6964 6965 static int ____netdev_has_upper_dev(struct net_device *upper_dev, 6966 struct netdev_nested_priv *priv) 6967 { 6968 struct net_device *dev = (struct net_device *)priv->data; 6969 6970 return upper_dev == dev; 6971 } 6972 6973 /** 6974 * netdev_has_upper_dev - Check if device is linked to an upper device 6975 * @dev: device 6976 * @upper_dev: upper device to check 6977 * 6978 * Find out if a device is linked to specified upper device and return true 6979 * in case it is. Note that this checks only immediate upper device, 6980 * not through a complete stack of devices. The caller must hold the RTNL lock. 6981 */ 6982 bool netdev_has_upper_dev(struct net_device *dev, 6983 struct net_device *upper_dev) 6984 { 6985 struct netdev_nested_priv priv = { 6986 .data = (void *)upper_dev, 6987 }; 6988 6989 ASSERT_RTNL(); 6990 6991 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev, 6992 &priv); 6993 } 6994 EXPORT_SYMBOL(netdev_has_upper_dev); 6995 6996 /** 6997 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device 6998 * @dev: device 6999 * @upper_dev: upper device to check 7000 * 7001 * Find out if a device is linked to specified upper device and return true 7002 * in case it is. Note that this checks the entire upper device chain. 7003 * The caller must hold rcu lock. 7004 */ 7005 7006 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 7007 struct net_device *upper_dev) 7008 { 7009 struct netdev_nested_priv priv = { 7010 .data = (void *)upper_dev, 7011 }; 7012 7013 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev, 7014 &priv); 7015 } 7016 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu); 7017 7018 /** 7019 * netdev_has_any_upper_dev - Check if device is linked to some device 7020 * @dev: device 7021 * 7022 * Find out if a device is linked to an upper device and return true in case 7023 * it is. The caller must hold the RTNL lock. 7024 */ 7025 bool netdev_has_any_upper_dev(struct net_device *dev) 7026 { 7027 ASSERT_RTNL(); 7028 7029 return !list_empty(&dev->adj_list.upper); 7030 } 7031 EXPORT_SYMBOL(netdev_has_any_upper_dev); 7032 7033 /** 7034 * netdev_master_upper_dev_get - Get master upper device 7035 * @dev: device 7036 * 7037 * Find a master upper device and return pointer to it or NULL in case 7038 * it's not there. The caller must hold the RTNL lock. 7039 */ 7040 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 7041 { 7042 struct netdev_adjacent *upper; 7043 7044 ASSERT_RTNL(); 7045 7046 if (list_empty(&dev->adj_list.upper)) 7047 return NULL; 7048 7049 upper = list_first_entry(&dev->adj_list.upper, 7050 struct netdev_adjacent, list); 7051 if (likely(upper->master)) 7052 return upper->dev; 7053 return NULL; 7054 } 7055 EXPORT_SYMBOL(netdev_master_upper_dev_get); 7056 7057 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev) 7058 { 7059 struct netdev_adjacent *upper; 7060 7061 ASSERT_RTNL(); 7062 7063 if (list_empty(&dev->adj_list.upper)) 7064 return NULL; 7065 7066 upper = list_first_entry(&dev->adj_list.upper, 7067 struct netdev_adjacent, list); 7068 if (likely(upper->master) && !upper->ignore) 7069 return upper->dev; 7070 return NULL; 7071 } 7072 7073 /** 7074 * netdev_has_any_lower_dev - Check if device is linked to some device 7075 * @dev: device 7076 * 7077 * Find out if a device is linked to a lower device and return true in case 7078 * it is. The caller must hold the RTNL lock. 7079 */ 7080 static bool netdev_has_any_lower_dev(struct net_device *dev) 7081 { 7082 ASSERT_RTNL(); 7083 7084 return !list_empty(&dev->adj_list.lower); 7085 } 7086 7087 void *netdev_adjacent_get_private(struct list_head *adj_list) 7088 { 7089 struct netdev_adjacent *adj; 7090 7091 adj = list_entry(adj_list, struct netdev_adjacent, list); 7092 7093 return adj->private; 7094 } 7095 EXPORT_SYMBOL(netdev_adjacent_get_private); 7096 7097 /** 7098 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 7099 * @dev: device 7100 * @iter: list_head ** of the current position 7101 * 7102 * Gets the next device from the dev's upper list, starting from iter 7103 * position. The caller must hold RCU read lock. 7104 */ 7105 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 7106 struct list_head **iter) 7107 { 7108 struct netdev_adjacent *upper; 7109 7110 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 7111 7112 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7113 7114 if (&upper->list == &dev->adj_list.upper) 7115 return NULL; 7116 7117 *iter = &upper->list; 7118 7119 return upper->dev; 7120 } 7121 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 7122 7123 static struct net_device *__netdev_next_upper_dev(struct net_device *dev, 7124 struct list_head **iter, 7125 bool *ignore) 7126 { 7127 struct netdev_adjacent *upper; 7128 7129 upper = list_entry((*iter)->next, struct netdev_adjacent, list); 7130 7131 if (&upper->list == &dev->adj_list.upper) 7132 return NULL; 7133 7134 *iter = &upper->list; 7135 *ignore = upper->ignore; 7136 7137 return upper->dev; 7138 } 7139 7140 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev, 7141 struct list_head **iter) 7142 { 7143 struct netdev_adjacent *upper; 7144 7145 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 7146 7147 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7148 7149 if (&upper->list == &dev->adj_list.upper) 7150 return NULL; 7151 7152 *iter = &upper->list; 7153 7154 return upper->dev; 7155 } 7156 7157 static int __netdev_walk_all_upper_dev(struct net_device *dev, 7158 int (*fn)(struct net_device *dev, 7159 struct netdev_nested_priv *priv), 7160 struct netdev_nested_priv *priv) 7161 { 7162 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7163 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7164 int ret, cur = 0; 7165 bool ignore; 7166 7167 now = dev; 7168 iter = &dev->adj_list.upper; 7169 7170 while (1) { 7171 if (now != dev) { 7172 ret = fn(now, priv); 7173 if (ret) 7174 return ret; 7175 } 7176 7177 next = NULL; 7178 while (1) { 7179 udev = __netdev_next_upper_dev(now, &iter, &ignore); 7180 if (!udev) 7181 break; 7182 if (ignore) 7183 continue; 7184 7185 next = udev; 7186 niter = &udev->adj_list.upper; 7187 dev_stack[cur] = now; 7188 iter_stack[cur++] = iter; 7189 break; 7190 } 7191 7192 if (!next) { 7193 if (!cur) 7194 return 0; 7195 next = dev_stack[--cur]; 7196 niter = iter_stack[cur]; 7197 } 7198 7199 now = next; 7200 iter = niter; 7201 } 7202 7203 return 0; 7204 } 7205 7206 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 7207 int (*fn)(struct net_device *dev, 7208 struct netdev_nested_priv *priv), 7209 struct netdev_nested_priv *priv) 7210 { 7211 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7212 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7213 int ret, cur = 0; 7214 7215 now = dev; 7216 iter = &dev->adj_list.upper; 7217 7218 while (1) { 7219 if (now != dev) { 7220 ret = fn(now, priv); 7221 if (ret) 7222 return ret; 7223 } 7224 7225 next = NULL; 7226 while (1) { 7227 udev = netdev_next_upper_dev_rcu(now, &iter); 7228 if (!udev) 7229 break; 7230 7231 next = udev; 7232 niter = &udev->adj_list.upper; 7233 dev_stack[cur] = now; 7234 iter_stack[cur++] = iter; 7235 break; 7236 } 7237 7238 if (!next) { 7239 if (!cur) 7240 return 0; 7241 next = dev_stack[--cur]; 7242 niter = iter_stack[cur]; 7243 } 7244 7245 now = next; 7246 iter = niter; 7247 } 7248 7249 return 0; 7250 } 7251 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu); 7252 7253 static bool __netdev_has_upper_dev(struct net_device *dev, 7254 struct net_device *upper_dev) 7255 { 7256 struct netdev_nested_priv priv = { 7257 .flags = 0, 7258 .data = (void *)upper_dev, 7259 }; 7260 7261 ASSERT_RTNL(); 7262 7263 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev, 7264 &priv); 7265 } 7266 7267 /** 7268 * netdev_lower_get_next_private - Get the next ->private from the 7269 * lower neighbour list 7270 * @dev: device 7271 * @iter: list_head ** of the current position 7272 * 7273 * Gets the next netdev_adjacent->private from the dev's lower neighbour 7274 * list, starting from iter position. The caller must hold either hold the 7275 * RTNL lock or its own locking that guarantees that the neighbour lower 7276 * list will remain unchanged. 7277 */ 7278 void *netdev_lower_get_next_private(struct net_device *dev, 7279 struct list_head **iter) 7280 { 7281 struct netdev_adjacent *lower; 7282 7283 lower = list_entry(*iter, struct netdev_adjacent, list); 7284 7285 if (&lower->list == &dev->adj_list.lower) 7286 return NULL; 7287 7288 *iter = lower->list.next; 7289 7290 return lower->private; 7291 } 7292 EXPORT_SYMBOL(netdev_lower_get_next_private); 7293 7294 /** 7295 * netdev_lower_get_next_private_rcu - Get the next ->private from the 7296 * lower neighbour list, RCU 7297 * variant 7298 * @dev: device 7299 * @iter: list_head ** of the current position 7300 * 7301 * Gets the next netdev_adjacent->private from the dev's lower neighbour 7302 * list, starting from iter position. The caller must hold RCU read lock. 7303 */ 7304 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 7305 struct list_head **iter) 7306 { 7307 struct netdev_adjacent *lower; 7308 7309 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 7310 7311 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7312 7313 if (&lower->list == &dev->adj_list.lower) 7314 return NULL; 7315 7316 *iter = &lower->list; 7317 7318 return lower->private; 7319 } 7320 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 7321 7322 /** 7323 * netdev_lower_get_next - Get the next device from the lower neighbour 7324 * list 7325 * @dev: device 7326 * @iter: list_head ** of the current position 7327 * 7328 * Gets the next netdev_adjacent from the dev's lower neighbour 7329 * list, starting from iter position. The caller must hold RTNL lock or 7330 * its own locking that guarantees that the neighbour lower 7331 * list will remain unchanged. 7332 */ 7333 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 7334 { 7335 struct netdev_adjacent *lower; 7336 7337 lower = list_entry(*iter, struct netdev_adjacent, list); 7338 7339 if (&lower->list == &dev->adj_list.lower) 7340 return NULL; 7341 7342 *iter = lower->list.next; 7343 7344 return lower->dev; 7345 } 7346 EXPORT_SYMBOL(netdev_lower_get_next); 7347 7348 static struct net_device *netdev_next_lower_dev(struct net_device *dev, 7349 struct list_head **iter) 7350 { 7351 struct netdev_adjacent *lower; 7352 7353 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 7354 7355 if (&lower->list == &dev->adj_list.lower) 7356 return NULL; 7357 7358 *iter = &lower->list; 7359 7360 return lower->dev; 7361 } 7362 7363 static struct net_device *__netdev_next_lower_dev(struct net_device *dev, 7364 struct list_head **iter, 7365 bool *ignore) 7366 { 7367 struct netdev_adjacent *lower; 7368 7369 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 7370 7371 if (&lower->list == &dev->adj_list.lower) 7372 return NULL; 7373 7374 *iter = &lower->list; 7375 *ignore = lower->ignore; 7376 7377 return lower->dev; 7378 } 7379 7380 int netdev_walk_all_lower_dev(struct net_device *dev, 7381 int (*fn)(struct net_device *dev, 7382 struct netdev_nested_priv *priv), 7383 struct netdev_nested_priv *priv) 7384 { 7385 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7386 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7387 int ret, cur = 0; 7388 7389 now = dev; 7390 iter = &dev->adj_list.lower; 7391 7392 while (1) { 7393 if (now != dev) { 7394 ret = fn(now, priv); 7395 if (ret) 7396 return ret; 7397 } 7398 7399 next = NULL; 7400 while (1) { 7401 ldev = netdev_next_lower_dev(now, &iter); 7402 if (!ldev) 7403 break; 7404 7405 next = ldev; 7406 niter = &ldev->adj_list.lower; 7407 dev_stack[cur] = now; 7408 iter_stack[cur++] = iter; 7409 break; 7410 } 7411 7412 if (!next) { 7413 if (!cur) 7414 return 0; 7415 next = dev_stack[--cur]; 7416 niter = iter_stack[cur]; 7417 } 7418 7419 now = next; 7420 iter = niter; 7421 } 7422 7423 return 0; 7424 } 7425 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev); 7426 7427 static int __netdev_walk_all_lower_dev(struct net_device *dev, 7428 int (*fn)(struct net_device *dev, 7429 struct netdev_nested_priv *priv), 7430 struct netdev_nested_priv *priv) 7431 { 7432 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7433 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7434 int ret, cur = 0; 7435 bool ignore; 7436 7437 now = dev; 7438 iter = &dev->adj_list.lower; 7439 7440 while (1) { 7441 if (now != dev) { 7442 ret = fn(now, priv); 7443 if (ret) 7444 return ret; 7445 } 7446 7447 next = NULL; 7448 while (1) { 7449 ldev = __netdev_next_lower_dev(now, &iter, &ignore); 7450 if (!ldev) 7451 break; 7452 if (ignore) 7453 continue; 7454 7455 next = ldev; 7456 niter = &ldev->adj_list.lower; 7457 dev_stack[cur] = now; 7458 iter_stack[cur++] = iter; 7459 break; 7460 } 7461 7462 if (!next) { 7463 if (!cur) 7464 return 0; 7465 next = dev_stack[--cur]; 7466 niter = iter_stack[cur]; 7467 } 7468 7469 now = next; 7470 iter = niter; 7471 } 7472 7473 return 0; 7474 } 7475 7476 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 7477 struct list_head **iter) 7478 { 7479 struct netdev_adjacent *lower; 7480 7481 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7482 if (&lower->list == &dev->adj_list.lower) 7483 return NULL; 7484 7485 *iter = &lower->list; 7486 7487 return lower->dev; 7488 } 7489 EXPORT_SYMBOL(netdev_next_lower_dev_rcu); 7490 7491 static u8 __netdev_upper_depth(struct net_device *dev) 7492 { 7493 struct net_device *udev; 7494 struct list_head *iter; 7495 u8 max_depth = 0; 7496 bool ignore; 7497 7498 for (iter = &dev->adj_list.upper, 7499 udev = __netdev_next_upper_dev(dev, &iter, &ignore); 7500 udev; 7501 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) { 7502 if (ignore) 7503 continue; 7504 if (max_depth < udev->upper_level) 7505 max_depth = udev->upper_level; 7506 } 7507 7508 return max_depth; 7509 } 7510 7511 static u8 __netdev_lower_depth(struct net_device *dev) 7512 { 7513 struct net_device *ldev; 7514 struct list_head *iter; 7515 u8 max_depth = 0; 7516 bool ignore; 7517 7518 for (iter = &dev->adj_list.lower, 7519 ldev = __netdev_next_lower_dev(dev, &iter, &ignore); 7520 ldev; 7521 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) { 7522 if (ignore) 7523 continue; 7524 if (max_depth < ldev->lower_level) 7525 max_depth = ldev->lower_level; 7526 } 7527 7528 return max_depth; 7529 } 7530 7531 static int __netdev_update_upper_level(struct net_device *dev, 7532 struct netdev_nested_priv *__unused) 7533 { 7534 dev->upper_level = __netdev_upper_depth(dev) + 1; 7535 return 0; 7536 } 7537 7538 #ifdef CONFIG_LOCKDEP 7539 static LIST_HEAD(net_unlink_list); 7540 7541 static void net_unlink_todo(struct net_device *dev) 7542 { 7543 if (list_empty(&dev->unlink_list)) 7544 list_add_tail(&dev->unlink_list, &net_unlink_list); 7545 } 7546 #endif 7547 7548 static int __netdev_update_lower_level(struct net_device *dev, 7549 struct netdev_nested_priv *priv) 7550 { 7551 dev->lower_level = __netdev_lower_depth(dev) + 1; 7552 7553 #ifdef CONFIG_LOCKDEP 7554 if (!priv) 7555 return 0; 7556 7557 if (priv->flags & NESTED_SYNC_IMM) 7558 dev->nested_level = dev->lower_level - 1; 7559 if (priv->flags & NESTED_SYNC_TODO) 7560 net_unlink_todo(dev); 7561 #endif 7562 return 0; 7563 } 7564 7565 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 7566 int (*fn)(struct net_device *dev, 7567 struct netdev_nested_priv *priv), 7568 struct netdev_nested_priv *priv) 7569 { 7570 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7571 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7572 int ret, cur = 0; 7573 7574 now = dev; 7575 iter = &dev->adj_list.lower; 7576 7577 while (1) { 7578 if (now != dev) { 7579 ret = fn(now, priv); 7580 if (ret) 7581 return ret; 7582 } 7583 7584 next = NULL; 7585 while (1) { 7586 ldev = netdev_next_lower_dev_rcu(now, &iter); 7587 if (!ldev) 7588 break; 7589 7590 next = ldev; 7591 niter = &ldev->adj_list.lower; 7592 dev_stack[cur] = now; 7593 iter_stack[cur++] = iter; 7594 break; 7595 } 7596 7597 if (!next) { 7598 if (!cur) 7599 return 0; 7600 next = dev_stack[--cur]; 7601 niter = iter_stack[cur]; 7602 } 7603 7604 now = next; 7605 iter = niter; 7606 } 7607 7608 return 0; 7609 } 7610 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu); 7611 7612 /** 7613 * netdev_lower_get_first_private_rcu - Get the first ->private from the 7614 * lower neighbour list, RCU 7615 * variant 7616 * @dev: device 7617 * 7618 * Gets the first netdev_adjacent->private from the dev's lower neighbour 7619 * list. The caller must hold RCU read lock. 7620 */ 7621 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 7622 { 7623 struct netdev_adjacent *lower; 7624 7625 lower = list_first_or_null_rcu(&dev->adj_list.lower, 7626 struct netdev_adjacent, list); 7627 if (lower) 7628 return lower->private; 7629 return NULL; 7630 } 7631 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 7632 7633 /** 7634 * netdev_master_upper_dev_get_rcu - Get master upper device 7635 * @dev: device 7636 * 7637 * Find a master upper device and return pointer to it or NULL in case 7638 * it's not there. The caller must hold the RCU read lock. 7639 */ 7640 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 7641 { 7642 struct netdev_adjacent *upper; 7643 7644 upper = list_first_or_null_rcu(&dev->adj_list.upper, 7645 struct netdev_adjacent, list); 7646 if (upper && likely(upper->master)) 7647 return upper->dev; 7648 return NULL; 7649 } 7650 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 7651 7652 static int netdev_adjacent_sysfs_add(struct net_device *dev, 7653 struct net_device *adj_dev, 7654 struct list_head *dev_list) 7655 { 7656 char linkname[IFNAMSIZ+7]; 7657 7658 sprintf(linkname, dev_list == &dev->adj_list.upper ? 7659 "upper_%s" : "lower_%s", adj_dev->name); 7660 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 7661 linkname); 7662 } 7663 static void netdev_adjacent_sysfs_del(struct net_device *dev, 7664 char *name, 7665 struct list_head *dev_list) 7666 { 7667 char linkname[IFNAMSIZ+7]; 7668 7669 sprintf(linkname, dev_list == &dev->adj_list.upper ? 7670 "upper_%s" : "lower_%s", name); 7671 sysfs_remove_link(&(dev->dev.kobj), linkname); 7672 } 7673 7674 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 7675 struct net_device *adj_dev, 7676 struct list_head *dev_list) 7677 { 7678 return (dev_list == &dev->adj_list.upper || 7679 dev_list == &dev->adj_list.lower) && 7680 net_eq(dev_net(dev), dev_net(adj_dev)); 7681 } 7682 7683 static int __netdev_adjacent_dev_insert(struct net_device *dev, 7684 struct net_device *adj_dev, 7685 struct list_head *dev_list, 7686 void *private, bool master) 7687 { 7688 struct netdev_adjacent *adj; 7689 int ret; 7690 7691 adj = __netdev_find_adj(adj_dev, dev_list); 7692 7693 if (adj) { 7694 adj->ref_nr += 1; 7695 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n", 7696 dev->name, adj_dev->name, adj->ref_nr); 7697 7698 return 0; 7699 } 7700 7701 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 7702 if (!adj) 7703 return -ENOMEM; 7704 7705 adj->dev = adj_dev; 7706 adj->master = master; 7707 adj->ref_nr = 1; 7708 adj->private = private; 7709 adj->ignore = false; 7710 netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL); 7711 7712 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n", 7713 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name); 7714 7715 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 7716 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 7717 if (ret) 7718 goto free_adj; 7719 } 7720 7721 /* Ensure that master link is always the first item in list. */ 7722 if (master) { 7723 ret = sysfs_create_link(&(dev->dev.kobj), 7724 &(adj_dev->dev.kobj), "master"); 7725 if (ret) 7726 goto remove_symlinks; 7727 7728 list_add_rcu(&adj->list, dev_list); 7729 } else { 7730 list_add_tail_rcu(&adj->list, dev_list); 7731 } 7732 7733 return 0; 7734 7735 remove_symlinks: 7736 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 7737 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 7738 free_adj: 7739 netdev_put(adj_dev, &adj->dev_tracker); 7740 kfree(adj); 7741 7742 return ret; 7743 } 7744 7745 static void __netdev_adjacent_dev_remove(struct net_device *dev, 7746 struct net_device *adj_dev, 7747 u16 ref_nr, 7748 struct list_head *dev_list) 7749 { 7750 struct netdev_adjacent *adj; 7751 7752 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n", 7753 dev->name, adj_dev->name, ref_nr); 7754 7755 adj = __netdev_find_adj(adj_dev, dev_list); 7756 7757 if (!adj) { 7758 pr_err("Adjacency does not exist for device %s from %s\n", 7759 dev->name, adj_dev->name); 7760 WARN_ON(1); 7761 return; 7762 } 7763 7764 if (adj->ref_nr > ref_nr) { 7765 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n", 7766 dev->name, adj_dev->name, ref_nr, 7767 adj->ref_nr - ref_nr); 7768 adj->ref_nr -= ref_nr; 7769 return; 7770 } 7771 7772 if (adj->master) 7773 sysfs_remove_link(&(dev->dev.kobj), "master"); 7774 7775 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 7776 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 7777 7778 list_del_rcu(&adj->list); 7779 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n", 7780 adj_dev->name, dev->name, adj_dev->name); 7781 netdev_put(adj_dev, &adj->dev_tracker); 7782 kfree_rcu(adj, rcu); 7783 } 7784 7785 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 7786 struct net_device *upper_dev, 7787 struct list_head *up_list, 7788 struct list_head *down_list, 7789 void *private, bool master) 7790 { 7791 int ret; 7792 7793 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, 7794 private, master); 7795 if (ret) 7796 return ret; 7797 7798 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, 7799 private, false); 7800 if (ret) { 7801 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list); 7802 return ret; 7803 } 7804 7805 return 0; 7806 } 7807 7808 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 7809 struct net_device *upper_dev, 7810 u16 ref_nr, 7811 struct list_head *up_list, 7812 struct list_head *down_list) 7813 { 7814 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list); 7815 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list); 7816 } 7817 7818 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 7819 struct net_device *upper_dev, 7820 void *private, bool master) 7821 { 7822 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 7823 &dev->adj_list.upper, 7824 &upper_dev->adj_list.lower, 7825 private, master); 7826 } 7827 7828 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 7829 struct net_device *upper_dev) 7830 { 7831 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1, 7832 &dev->adj_list.upper, 7833 &upper_dev->adj_list.lower); 7834 } 7835 7836 static int __netdev_upper_dev_link(struct net_device *dev, 7837 struct net_device *upper_dev, bool master, 7838 void *upper_priv, void *upper_info, 7839 struct netdev_nested_priv *priv, 7840 struct netlink_ext_ack *extack) 7841 { 7842 struct netdev_notifier_changeupper_info changeupper_info = { 7843 .info = { 7844 .dev = dev, 7845 .extack = extack, 7846 }, 7847 .upper_dev = upper_dev, 7848 .master = master, 7849 .linking = true, 7850 .upper_info = upper_info, 7851 }; 7852 struct net_device *master_dev; 7853 int ret = 0; 7854 7855 ASSERT_RTNL(); 7856 7857 if (dev == upper_dev) 7858 return -EBUSY; 7859 7860 /* To prevent loops, check if dev is not upper device to upper_dev. */ 7861 if (__netdev_has_upper_dev(upper_dev, dev)) 7862 return -EBUSY; 7863 7864 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV) 7865 return -EMLINK; 7866 7867 if (!master) { 7868 if (__netdev_has_upper_dev(dev, upper_dev)) 7869 return -EEXIST; 7870 } else { 7871 master_dev = __netdev_master_upper_dev_get(dev); 7872 if (master_dev) 7873 return master_dev == upper_dev ? -EEXIST : -EBUSY; 7874 } 7875 7876 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 7877 &changeupper_info.info); 7878 ret = notifier_to_errno(ret); 7879 if (ret) 7880 return ret; 7881 7882 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv, 7883 master); 7884 if (ret) 7885 return ret; 7886 7887 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 7888 &changeupper_info.info); 7889 ret = notifier_to_errno(ret); 7890 if (ret) 7891 goto rollback; 7892 7893 __netdev_update_upper_level(dev, NULL); 7894 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 7895 7896 __netdev_update_lower_level(upper_dev, priv); 7897 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, 7898 priv); 7899 7900 return 0; 7901 7902 rollback: 7903 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 7904 7905 return ret; 7906 } 7907 7908 /** 7909 * netdev_upper_dev_link - Add a link to the upper device 7910 * @dev: device 7911 * @upper_dev: new upper device 7912 * @extack: netlink extended ack 7913 * 7914 * Adds a link to device which is upper to this one. The caller must hold 7915 * the RTNL lock. On a failure a negative errno code is returned. 7916 * On success the reference counts are adjusted and the function 7917 * returns zero. 7918 */ 7919 int netdev_upper_dev_link(struct net_device *dev, 7920 struct net_device *upper_dev, 7921 struct netlink_ext_ack *extack) 7922 { 7923 struct netdev_nested_priv priv = { 7924 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 7925 .data = NULL, 7926 }; 7927 7928 return __netdev_upper_dev_link(dev, upper_dev, false, 7929 NULL, NULL, &priv, extack); 7930 } 7931 EXPORT_SYMBOL(netdev_upper_dev_link); 7932 7933 /** 7934 * netdev_master_upper_dev_link - Add a master link to the upper device 7935 * @dev: device 7936 * @upper_dev: new upper device 7937 * @upper_priv: upper device private 7938 * @upper_info: upper info to be passed down via notifier 7939 * @extack: netlink extended ack 7940 * 7941 * Adds a link to device which is upper to this one. In this case, only 7942 * one master upper device can be linked, although other non-master devices 7943 * might be linked as well. The caller must hold the RTNL lock. 7944 * On a failure a negative errno code is returned. On success the reference 7945 * counts are adjusted and the function returns zero. 7946 */ 7947 int netdev_master_upper_dev_link(struct net_device *dev, 7948 struct net_device *upper_dev, 7949 void *upper_priv, void *upper_info, 7950 struct netlink_ext_ack *extack) 7951 { 7952 struct netdev_nested_priv priv = { 7953 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 7954 .data = NULL, 7955 }; 7956 7957 return __netdev_upper_dev_link(dev, upper_dev, true, 7958 upper_priv, upper_info, &priv, extack); 7959 } 7960 EXPORT_SYMBOL(netdev_master_upper_dev_link); 7961 7962 static void __netdev_upper_dev_unlink(struct net_device *dev, 7963 struct net_device *upper_dev, 7964 struct netdev_nested_priv *priv) 7965 { 7966 struct netdev_notifier_changeupper_info changeupper_info = { 7967 .info = { 7968 .dev = dev, 7969 }, 7970 .upper_dev = upper_dev, 7971 .linking = false, 7972 }; 7973 7974 ASSERT_RTNL(); 7975 7976 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; 7977 7978 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 7979 &changeupper_info.info); 7980 7981 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 7982 7983 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 7984 &changeupper_info.info); 7985 7986 __netdev_update_upper_level(dev, NULL); 7987 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 7988 7989 __netdev_update_lower_level(upper_dev, priv); 7990 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, 7991 priv); 7992 } 7993 7994 /** 7995 * netdev_upper_dev_unlink - Removes a link to upper device 7996 * @dev: device 7997 * @upper_dev: new upper device 7998 * 7999 * Removes a link to device which is upper to this one. The caller must hold 8000 * the RTNL lock. 8001 */ 8002 void netdev_upper_dev_unlink(struct net_device *dev, 8003 struct net_device *upper_dev) 8004 { 8005 struct netdev_nested_priv priv = { 8006 .flags = NESTED_SYNC_TODO, 8007 .data = NULL, 8008 }; 8009 8010 __netdev_upper_dev_unlink(dev, upper_dev, &priv); 8011 } 8012 EXPORT_SYMBOL(netdev_upper_dev_unlink); 8013 8014 static void __netdev_adjacent_dev_set(struct net_device *upper_dev, 8015 struct net_device *lower_dev, 8016 bool val) 8017 { 8018 struct netdev_adjacent *adj; 8019 8020 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower); 8021 if (adj) 8022 adj->ignore = val; 8023 8024 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper); 8025 if (adj) 8026 adj->ignore = val; 8027 } 8028 8029 static void netdev_adjacent_dev_disable(struct net_device *upper_dev, 8030 struct net_device *lower_dev) 8031 { 8032 __netdev_adjacent_dev_set(upper_dev, lower_dev, true); 8033 } 8034 8035 static void netdev_adjacent_dev_enable(struct net_device *upper_dev, 8036 struct net_device *lower_dev) 8037 { 8038 __netdev_adjacent_dev_set(upper_dev, lower_dev, false); 8039 } 8040 8041 int netdev_adjacent_change_prepare(struct net_device *old_dev, 8042 struct net_device *new_dev, 8043 struct net_device *dev, 8044 struct netlink_ext_ack *extack) 8045 { 8046 struct netdev_nested_priv priv = { 8047 .flags = 0, 8048 .data = NULL, 8049 }; 8050 int err; 8051 8052 if (!new_dev) 8053 return 0; 8054 8055 if (old_dev && new_dev != old_dev) 8056 netdev_adjacent_dev_disable(dev, old_dev); 8057 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv, 8058 extack); 8059 if (err) { 8060 if (old_dev && new_dev != old_dev) 8061 netdev_adjacent_dev_enable(dev, old_dev); 8062 return err; 8063 } 8064 8065 return 0; 8066 } 8067 EXPORT_SYMBOL(netdev_adjacent_change_prepare); 8068 8069 void netdev_adjacent_change_commit(struct net_device *old_dev, 8070 struct net_device *new_dev, 8071 struct net_device *dev) 8072 { 8073 struct netdev_nested_priv priv = { 8074 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 8075 .data = NULL, 8076 }; 8077 8078 if (!new_dev || !old_dev) 8079 return; 8080 8081 if (new_dev == old_dev) 8082 return; 8083 8084 netdev_adjacent_dev_enable(dev, old_dev); 8085 __netdev_upper_dev_unlink(old_dev, dev, &priv); 8086 } 8087 EXPORT_SYMBOL(netdev_adjacent_change_commit); 8088 8089 void netdev_adjacent_change_abort(struct net_device *old_dev, 8090 struct net_device *new_dev, 8091 struct net_device *dev) 8092 { 8093 struct netdev_nested_priv priv = { 8094 .flags = 0, 8095 .data = NULL, 8096 }; 8097 8098 if (!new_dev) 8099 return; 8100 8101 if (old_dev && new_dev != old_dev) 8102 netdev_adjacent_dev_enable(dev, old_dev); 8103 8104 __netdev_upper_dev_unlink(new_dev, dev, &priv); 8105 } 8106 EXPORT_SYMBOL(netdev_adjacent_change_abort); 8107 8108 /** 8109 * netdev_bonding_info_change - Dispatch event about slave change 8110 * @dev: device 8111 * @bonding_info: info to dispatch 8112 * 8113 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 8114 * The caller must hold the RTNL lock. 8115 */ 8116 void netdev_bonding_info_change(struct net_device *dev, 8117 struct netdev_bonding_info *bonding_info) 8118 { 8119 struct netdev_notifier_bonding_info info = { 8120 .info.dev = dev, 8121 }; 8122 8123 memcpy(&info.bonding_info, bonding_info, 8124 sizeof(struct netdev_bonding_info)); 8125 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, 8126 &info.info); 8127 } 8128 EXPORT_SYMBOL(netdev_bonding_info_change); 8129 8130 static int netdev_offload_xstats_enable_l3(struct net_device *dev, 8131 struct netlink_ext_ack *extack) 8132 { 8133 struct netdev_notifier_offload_xstats_info info = { 8134 .info.dev = dev, 8135 .info.extack = extack, 8136 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3, 8137 }; 8138 int err; 8139 int rc; 8140 8141 dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3), 8142 GFP_KERNEL); 8143 if (!dev->offload_xstats_l3) 8144 return -ENOMEM; 8145 8146 rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE, 8147 NETDEV_OFFLOAD_XSTATS_DISABLE, 8148 &info.info); 8149 err = notifier_to_errno(rc); 8150 if (err) 8151 goto free_stats; 8152 8153 return 0; 8154 8155 free_stats: 8156 kfree(dev->offload_xstats_l3); 8157 dev->offload_xstats_l3 = NULL; 8158 return err; 8159 } 8160 8161 int netdev_offload_xstats_enable(struct net_device *dev, 8162 enum netdev_offload_xstats_type type, 8163 struct netlink_ext_ack *extack) 8164 { 8165 ASSERT_RTNL(); 8166 8167 if (netdev_offload_xstats_enabled(dev, type)) 8168 return -EALREADY; 8169 8170 switch (type) { 8171 case NETDEV_OFFLOAD_XSTATS_TYPE_L3: 8172 return netdev_offload_xstats_enable_l3(dev, extack); 8173 } 8174 8175 WARN_ON(1); 8176 return -EINVAL; 8177 } 8178 EXPORT_SYMBOL(netdev_offload_xstats_enable); 8179 8180 static void netdev_offload_xstats_disable_l3(struct net_device *dev) 8181 { 8182 struct netdev_notifier_offload_xstats_info info = { 8183 .info.dev = dev, 8184 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3, 8185 }; 8186 8187 call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE, 8188 &info.info); 8189 kfree(dev->offload_xstats_l3); 8190 dev->offload_xstats_l3 = NULL; 8191 } 8192 8193 int netdev_offload_xstats_disable(struct net_device *dev, 8194 enum netdev_offload_xstats_type type) 8195 { 8196 ASSERT_RTNL(); 8197 8198 if (!netdev_offload_xstats_enabled(dev, type)) 8199 return -EALREADY; 8200 8201 switch (type) { 8202 case NETDEV_OFFLOAD_XSTATS_TYPE_L3: 8203 netdev_offload_xstats_disable_l3(dev); 8204 return 0; 8205 } 8206 8207 WARN_ON(1); 8208 return -EINVAL; 8209 } 8210 EXPORT_SYMBOL(netdev_offload_xstats_disable); 8211 8212 static void netdev_offload_xstats_disable_all(struct net_device *dev) 8213 { 8214 netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3); 8215 } 8216 8217 static struct rtnl_hw_stats64 * 8218 netdev_offload_xstats_get_ptr(const struct net_device *dev, 8219 enum netdev_offload_xstats_type type) 8220 { 8221 switch (type) { 8222 case NETDEV_OFFLOAD_XSTATS_TYPE_L3: 8223 return dev->offload_xstats_l3; 8224 } 8225 8226 WARN_ON(1); 8227 return NULL; 8228 } 8229 8230 bool netdev_offload_xstats_enabled(const struct net_device *dev, 8231 enum netdev_offload_xstats_type type) 8232 { 8233 ASSERT_RTNL(); 8234 8235 return netdev_offload_xstats_get_ptr(dev, type); 8236 } 8237 EXPORT_SYMBOL(netdev_offload_xstats_enabled); 8238 8239 struct netdev_notifier_offload_xstats_ru { 8240 bool used; 8241 }; 8242 8243 struct netdev_notifier_offload_xstats_rd { 8244 struct rtnl_hw_stats64 stats; 8245 bool used; 8246 }; 8247 8248 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest, 8249 const struct rtnl_hw_stats64 *src) 8250 { 8251 dest->rx_packets += src->rx_packets; 8252 dest->tx_packets += src->tx_packets; 8253 dest->rx_bytes += src->rx_bytes; 8254 dest->tx_bytes += src->tx_bytes; 8255 dest->rx_errors += src->rx_errors; 8256 dest->tx_errors += src->tx_errors; 8257 dest->rx_dropped += src->rx_dropped; 8258 dest->tx_dropped += src->tx_dropped; 8259 dest->multicast += src->multicast; 8260 } 8261 8262 static int netdev_offload_xstats_get_used(struct net_device *dev, 8263 enum netdev_offload_xstats_type type, 8264 bool *p_used, 8265 struct netlink_ext_ack *extack) 8266 { 8267 struct netdev_notifier_offload_xstats_ru report_used = {}; 8268 struct netdev_notifier_offload_xstats_info info = { 8269 .info.dev = dev, 8270 .info.extack = extack, 8271 .type = type, 8272 .report_used = &report_used, 8273 }; 8274 int rc; 8275 8276 WARN_ON(!netdev_offload_xstats_enabled(dev, type)); 8277 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED, 8278 &info.info); 8279 *p_used = report_used.used; 8280 return notifier_to_errno(rc); 8281 } 8282 8283 static int netdev_offload_xstats_get_stats(struct net_device *dev, 8284 enum netdev_offload_xstats_type type, 8285 struct rtnl_hw_stats64 *p_stats, 8286 bool *p_used, 8287 struct netlink_ext_ack *extack) 8288 { 8289 struct netdev_notifier_offload_xstats_rd report_delta = {}; 8290 struct netdev_notifier_offload_xstats_info info = { 8291 .info.dev = dev, 8292 .info.extack = extack, 8293 .type = type, 8294 .report_delta = &report_delta, 8295 }; 8296 struct rtnl_hw_stats64 *stats; 8297 int rc; 8298 8299 stats = netdev_offload_xstats_get_ptr(dev, type); 8300 if (WARN_ON(!stats)) 8301 return -EINVAL; 8302 8303 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA, 8304 &info.info); 8305 8306 /* Cache whatever we got, even if there was an error, otherwise the 8307 * successful stats retrievals would get lost. 8308 */ 8309 netdev_hw_stats64_add(stats, &report_delta.stats); 8310 8311 if (p_stats) 8312 *p_stats = *stats; 8313 *p_used = report_delta.used; 8314 8315 return notifier_to_errno(rc); 8316 } 8317 8318 int netdev_offload_xstats_get(struct net_device *dev, 8319 enum netdev_offload_xstats_type type, 8320 struct rtnl_hw_stats64 *p_stats, bool *p_used, 8321 struct netlink_ext_ack *extack) 8322 { 8323 ASSERT_RTNL(); 8324 8325 if (p_stats) 8326 return netdev_offload_xstats_get_stats(dev, type, p_stats, 8327 p_used, extack); 8328 else 8329 return netdev_offload_xstats_get_used(dev, type, p_used, 8330 extack); 8331 } 8332 EXPORT_SYMBOL(netdev_offload_xstats_get); 8333 8334 void 8335 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta, 8336 const struct rtnl_hw_stats64 *stats) 8337 { 8338 report_delta->used = true; 8339 netdev_hw_stats64_add(&report_delta->stats, stats); 8340 } 8341 EXPORT_SYMBOL(netdev_offload_xstats_report_delta); 8342 8343 void 8344 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used) 8345 { 8346 report_used->used = true; 8347 } 8348 EXPORT_SYMBOL(netdev_offload_xstats_report_used); 8349 8350 void netdev_offload_xstats_push_delta(struct net_device *dev, 8351 enum netdev_offload_xstats_type type, 8352 const struct rtnl_hw_stats64 *p_stats) 8353 { 8354 struct rtnl_hw_stats64 *stats; 8355 8356 ASSERT_RTNL(); 8357 8358 stats = netdev_offload_xstats_get_ptr(dev, type); 8359 if (WARN_ON(!stats)) 8360 return; 8361 8362 netdev_hw_stats64_add(stats, p_stats); 8363 } 8364 EXPORT_SYMBOL(netdev_offload_xstats_push_delta); 8365 8366 /** 8367 * netdev_get_xmit_slave - Get the xmit slave of master device 8368 * @dev: device 8369 * @skb: The packet 8370 * @all_slaves: assume all the slaves are active 8371 * 8372 * The reference counters are not incremented so the caller must be 8373 * careful with locks. The caller must hold RCU lock. 8374 * %NULL is returned if no slave is found. 8375 */ 8376 8377 struct net_device *netdev_get_xmit_slave(struct net_device *dev, 8378 struct sk_buff *skb, 8379 bool all_slaves) 8380 { 8381 const struct net_device_ops *ops = dev->netdev_ops; 8382 8383 if (!ops->ndo_get_xmit_slave) 8384 return NULL; 8385 return ops->ndo_get_xmit_slave(dev, skb, all_slaves); 8386 } 8387 EXPORT_SYMBOL(netdev_get_xmit_slave); 8388 8389 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev, 8390 struct sock *sk) 8391 { 8392 const struct net_device_ops *ops = dev->netdev_ops; 8393 8394 if (!ops->ndo_sk_get_lower_dev) 8395 return NULL; 8396 return ops->ndo_sk_get_lower_dev(dev, sk); 8397 } 8398 8399 /** 8400 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket 8401 * @dev: device 8402 * @sk: the socket 8403 * 8404 * %NULL is returned if no lower device is found. 8405 */ 8406 8407 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev, 8408 struct sock *sk) 8409 { 8410 struct net_device *lower; 8411 8412 lower = netdev_sk_get_lower_dev(dev, sk); 8413 while (lower) { 8414 dev = lower; 8415 lower = netdev_sk_get_lower_dev(dev, sk); 8416 } 8417 8418 return dev; 8419 } 8420 EXPORT_SYMBOL(netdev_sk_get_lowest_dev); 8421 8422 static void netdev_adjacent_add_links(struct net_device *dev) 8423 { 8424 struct netdev_adjacent *iter; 8425 8426 struct net *net = dev_net(dev); 8427 8428 list_for_each_entry(iter, &dev->adj_list.upper, list) { 8429 if (!net_eq(net, dev_net(iter->dev))) 8430 continue; 8431 netdev_adjacent_sysfs_add(iter->dev, dev, 8432 &iter->dev->adj_list.lower); 8433 netdev_adjacent_sysfs_add(dev, iter->dev, 8434 &dev->adj_list.upper); 8435 } 8436 8437 list_for_each_entry(iter, &dev->adj_list.lower, list) { 8438 if (!net_eq(net, dev_net(iter->dev))) 8439 continue; 8440 netdev_adjacent_sysfs_add(iter->dev, dev, 8441 &iter->dev->adj_list.upper); 8442 netdev_adjacent_sysfs_add(dev, iter->dev, 8443 &dev->adj_list.lower); 8444 } 8445 } 8446 8447 static void netdev_adjacent_del_links(struct net_device *dev) 8448 { 8449 struct netdev_adjacent *iter; 8450 8451 struct net *net = dev_net(dev); 8452 8453 list_for_each_entry(iter, &dev->adj_list.upper, list) { 8454 if (!net_eq(net, dev_net(iter->dev))) 8455 continue; 8456 netdev_adjacent_sysfs_del(iter->dev, dev->name, 8457 &iter->dev->adj_list.lower); 8458 netdev_adjacent_sysfs_del(dev, iter->dev->name, 8459 &dev->adj_list.upper); 8460 } 8461 8462 list_for_each_entry(iter, &dev->adj_list.lower, list) { 8463 if (!net_eq(net, dev_net(iter->dev))) 8464 continue; 8465 netdev_adjacent_sysfs_del(iter->dev, dev->name, 8466 &iter->dev->adj_list.upper); 8467 netdev_adjacent_sysfs_del(dev, iter->dev->name, 8468 &dev->adj_list.lower); 8469 } 8470 } 8471 8472 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 8473 { 8474 struct netdev_adjacent *iter; 8475 8476 struct net *net = dev_net(dev); 8477 8478 list_for_each_entry(iter, &dev->adj_list.upper, list) { 8479 if (!net_eq(net, dev_net(iter->dev))) 8480 continue; 8481 netdev_adjacent_sysfs_del(iter->dev, oldname, 8482 &iter->dev->adj_list.lower); 8483 netdev_adjacent_sysfs_add(iter->dev, dev, 8484 &iter->dev->adj_list.lower); 8485 } 8486 8487 list_for_each_entry(iter, &dev->adj_list.lower, list) { 8488 if (!net_eq(net, dev_net(iter->dev))) 8489 continue; 8490 netdev_adjacent_sysfs_del(iter->dev, oldname, 8491 &iter->dev->adj_list.upper); 8492 netdev_adjacent_sysfs_add(iter->dev, dev, 8493 &iter->dev->adj_list.upper); 8494 } 8495 } 8496 8497 void *netdev_lower_dev_get_private(struct net_device *dev, 8498 struct net_device *lower_dev) 8499 { 8500 struct netdev_adjacent *lower; 8501 8502 if (!lower_dev) 8503 return NULL; 8504 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower); 8505 if (!lower) 8506 return NULL; 8507 8508 return lower->private; 8509 } 8510 EXPORT_SYMBOL(netdev_lower_dev_get_private); 8511 8512 8513 /** 8514 * netdev_lower_state_changed - Dispatch event about lower device state change 8515 * @lower_dev: device 8516 * @lower_state_info: state to dispatch 8517 * 8518 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info. 8519 * The caller must hold the RTNL lock. 8520 */ 8521 void netdev_lower_state_changed(struct net_device *lower_dev, 8522 void *lower_state_info) 8523 { 8524 struct netdev_notifier_changelowerstate_info changelowerstate_info = { 8525 .info.dev = lower_dev, 8526 }; 8527 8528 ASSERT_RTNL(); 8529 changelowerstate_info.lower_state_info = lower_state_info; 8530 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, 8531 &changelowerstate_info.info); 8532 } 8533 EXPORT_SYMBOL(netdev_lower_state_changed); 8534 8535 static void dev_change_rx_flags(struct net_device *dev, int flags) 8536 { 8537 const struct net_device_ops *ops = dev->netdev_ops; 8538 8539 if (ops->ndo_change_rx_flags) 8540 ops->ndo_change_rx_flags(dev, flags); 8541 } 8542 8543 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 8544 { 8545 unsigned int old_flags = dev->flags; 8546 unsigned int promiscuity, flags; 8547 kuid_t uid; 8548 kgid_t gid; 8549 8550 ASSERT_RTNL(); 8551 8552 promiscuity = dev->promiscuity + inc; 8553 if (promiscuity == 0) { 8554 /* 8555 * Avoid overflow. 8556 * If inc causes overflow, untouch promisc and return error. 8557 */ 8558 if (unlikely(inc > 0)) { 8559 netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n"); 8560 return -EOVERFLOW; 8561 } 8562 flags = old_flags & ~IFF_PROMISC; 8563 } else { 8564 flags = old_flags | IFF_PROMISC; 8565 } 8566 WRITE_ONCE(dev->promiscuity, promiscuity); 8567 if (flags != old_flags) { 8568 WRITE_ONCE(dev->flags, flags); 8569 netdev_info(dev, "%s promiscuous mode\n", 8570 dev->flags & IFF_PROMISC ? "entered" : "left"); 8571 if (audit_enabled) { 8572 current_uid_gid(&uid, &gid); 8573 audit_log(audit_context(), GFP_ATOMIC, 8574 AUDIT_ANOM_PROMISCUOUS, 8575 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 8576 dev->name, (dev->flags & IFF_PROMISC), 8577 (old_flags & IFF_PROMISC), 8578 from_kuid(&init_user_ns, audit_get_loginuid(current)), 8579 from_kuid(&init_user_ns, uid), 8580 from_kgid(&init_user_ns, gid), 8581 audit_get_sessionid(current)); 8582 } 8583 8584 dev_change_rx_flags(dev, IFF_PROMISC); 8585 } 8586 if (notify) 8587 __dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL); 8588 return 0; 8589 } 8590 8591 /** 8592 * dev_set_promiscuity - update promiscuity count on a device 8593 * @dev: device 8594 * @inc: modifier 8595 * 8596 * Add or remove promiscuity from a device. While the count in the device 8597 * remains above zero the interface remains promiscuous. Once it hits zero 8598 * the device reverts back to normal filtering operation. A negative inc 8599 * value is used to drop promiscuity on the device. 8600 * Return 0 if successful or a negative errno code on error. 8601 */ 8602 int dev_set_promiscuity(struct net_device *dev, int inc) 8603 { 8604 unsigned int old_flags = dev->flags; 8605 int err; 8606 8607 err = __dev_set_promiscuity(dev, inc, true); 8608 if (err < 0) 8609 return err; 8610 if (dev->flags != old_flags) 8611 dev_set_rx_mode(dev); 8612 return err; 8613 } 8614 EXPORT_SYMBOL(dev_set_promiscuity); 8615 8616 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 8617 { 8618 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 8619 unsigned int allmulti, flags; 8620 8621 ASSERT_RTNL(); 8622 8623 allmulti = dev->allmulti + inc; 8624 if (allmulti == 0) { 8625 /* 8626 * Avoid overflow. 8627 * If inc causes overflow, untouch allmulti and return error. 8628 */ 8629 if (unlikely(inc > 0)) { 8630 netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n"); 8631 return -EOVERFLOW; 8632 } 8633 flags = old_flags & ~IFF_ALLMULTI; 8634 } else { 8635 flags = old_flags | IFF_ALLMULTI; 8636 } 8637 WRITE_ONCE(dev->allmulti, allmulti); 8638 if (flags != old_flags) { 8639 WRITE_ONCE(dev->flags, flags); 8640 netdev_info(dev, "%s allmulticast mode\n", 8641 dev->flags & IFF_ALLMULTI ? "entered" : "left"); 8642 dev_change_rx_flags(dev, IFF_ALLMULTI); 8643 dev_set_rx_mode(dev); 8644 if (notify) 8645 __dev_notify_flags(dev, old_flags, 8646 dev->gflags ^ old_gflags, 0, NULL); 8647 } 8648 return 0; 8649 } 8650 8651 /** 8652 * dev_set_allmulti - update allmulti count on a device 8653 * @dev: device 8654 * @inc: modifier 8655 * 8656 * Add or remove reception of all multicast frames to a device. While the 8657 * count in the device remains above zero the interface remains listening 8658 * to all interfaces. Once it hits zero the device reverts back to normal 8659 * filtering operation. A negative @inc value is used to drop the counter 8660 * when releasing a resource needing all multicasts. 8661 * Return 0 if successful or a negative errno code on error. 8662 */ 8663 8664 int dev_set_allmulti(struct net_device *dev, int inc) 8665 { 8666 return __dev_set_allmulti(dev, inc, true); 8667 } 8668 EXPORT_SYMBOL(dev_set_allmulti); 8669 8670 /* 8671 * Upload unicast and multicast address lists to device and 8672 * configure RX filtering. When the device doesn't support unicast 8673 * filtering it is put in promiscuous mode while unicast addresses 8674 * are present. 8675 */ 8676 void __dev_set_rx_mode(struct net_device *dev) 8677 { 8678 const struct net_device_ops *ops = dev->netdev_ops; 8679 8680 /* dev_open will call this function so the list will stay sane. */ 8681 if (!(dev->flags&IFF_UP)) 8682 return; 8683 8684 if (!netif_device_present(dev)) 8685 return; 8686 8687 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 8688 /* Unicast addresses changes may only happen under the rtnl, 8689 * therefore calling __dev_set_promiscuity here is safe. 8690 */ 8691 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 8692 __dev_set_promiscuity(dev, 1, false); 8693 dev->uc_promisc = true; 8694 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 8695 __dev_set_promiscuity(dev, -1, false); 8696 dev->uc_promisc = false; 8697 } 8698 } 8699 8700 if (ops->ndo_set_rx_mode) 8701 ops->ndo_set_rx_mode(dev); 8702 } 8703 8704 void dev_set_rx_mode(struct net_device *dev) 8705 { 8706 netif_addr_lock_bh(dev); 8707 __dev_set_rx_mode(dev); 8708 netif_addr_unlock_bh(dev); 8709 } 8710 8711 /** 8712 * dev_get_flags - get flags reported to userspace 8713 * @dev: device 8714 * 8715 * Get the combination of flag bits exported through APIs to userspace. 8716 */ 8717 unsigned int dev_get_flags(const struct net_device *dev) 8718 { 8719 unsigned int flags; 8720 8721 flags = (READ_ONCE(dev->flags) & ~(IFF_PROMISC | 8722 IFF_ALLMULTI | 8723 IFF_RUNNING | 8724 IFF_LOWER_UP | 8725 IFF_DORMANT)) | 8726 (READ_ONCE(dev->gflags) & (IFF_PROMISC | 8727 IFF_ALLMULTI)); 8728 8729 if (netif_running(dev)) { 8730 if (netif_oper_up(dev)) 8731 flags |= IFF_RUNNING; 8732 if (netif_carrier_ok(dev)) 8733 flags |= IFF_LOWER_UP; 8734 if (netif_dormant(dev)) 8735 flags |= IFF_DORMANT; 8736 } 8737 8738 return flags; 8739 } 8740 EXPORT_SYMBOL(dev_get_flags); 8741 8742 int __dev_change_flags(struct net_device *dev, unsigned int flags, 8743 struct netlink_ext_ack *extack) 8744 { 8745 unsigned int old_flags = dev->flags; 8746 int ret; 8747 8748 ASSERT_RTNL(); 8749 8750 /* 8751 * Set the flags on our device. 8752 */ 8753 8754 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 8755 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 8756 IFF_AUTOMEDIA)) | 8757 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 8758 IFF_ALLMULTI)); 8759 8760 /* 8761 * Load in the correct multicast list now the flags have changed. 8762 */ 8763 8764 if ((old_flags ^ flags) & IFF_MULTICAST) 8765 dev_change_rx_flags(dev, IFF_MULTICAST); 8766 8767 dev_set_rx_mode(dev); 8768 8769 /* 8770 * Have we downed the interface. We handle IFF_UP ourselves 8771 * according to user attempts to set it, rather than blindly 8772 * setting it. 8773 */ 8774 8775 ret = 0; 8776 if ((old_flags ^ flags) & IFF_UP) { 8777 if (old_flags & IFF_UP) 8778 __dev_close(dev); 8779 else 8780 ret = __dev_open(dev, extack); 8781 } 8782 8783 if ((flags ^ dev->gflags) & IFF_PROMISC) { 8784 int inc = (flags & IFF_PROMISC) ? 1 : -1; 8785 unsigned int old_flags = dev->flags; 8786 8787 dev->gflags ^= IFF_PROMISC; 8788 8789 if (__dev_set_promiscuity(dev, inc, false) >= 0) 8790 if (dev->flags != old_flags) 8791 dev_set_rx_mode(dev); 8792 } 8793 8794 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 8795 * is important. Some (broken) drivers set IFF_PROMISC, when 8796 * IFF_ALLMULTI is requested not asking us and not reporting. 8797 */ 8798 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 8799 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 8800 8801 dev->gflags ^= IFF_ALLMULTI; 8802 __dev_set_allmulti(dev, inc, false); 8803 } 8804 8805 return ret; 8806 } 8807 8808 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 8809 unsigned int gchanges, u32 portid, 8810 const struct nlmsghdr *nlh) 8811 { 8812 unsigned int changes = dev->flags ^ old_flags; 8813 8814 if (gchanges) 8815 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh); 8816 8817 if (changes & IFF_UP) { 8818 if (dev->flags & IFF_UP) 8819 call_netdevice_notifiers(NETDEV_UP, dev); 8820 else 8821 call_netdevice_notifiers(NETDEV_DOWN, dev); 8822 } 8823 8824 if (dev->flags & IFF_UP && 8825 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 8826 struct netdev_notifier_change_info change_info = { 8827 .info = { 8828 .dev = dev, 8829 }, 8830 .flags_changed = changes, 8831 }; 8832 8833 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info); 8834 } 8835 } 8836 8837 /** 8838 * dev_change_flags - change device settings 8839 * @dev: device 8840 * @flags: device state flags 8841 * @extack: netlink extended ack 8842 * 8843 * Change settings on device based state flags. The flags are 8844 * in the userspace exported format. 8845 */ 8846 int dev_change_flags(struct net_device *dev, unsigned int flags, 8847 struct netlink_ext_ack *extack) 8848 { 8849 int ret; 8850 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 8851 8852 ret = __dev_change_flags(dev, flags, extack); 8853 if (ret < 0) 8854 return ret; 8855 8856 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 8857 __dev_notify_flags(dev, old_flags, changes, 0, NULL); 8858 return ret; 8859 } 8860 EXPORT_SYMBOL(dev_change_flags); 8861 8862 int __dev_set_mtu(struct net_device *dev, int new_mtu) 8863 { 8864 const struct net_device_ops *ops = dev->netdev_ops; 8865 8866 if (ops->ndo_change_mtu) 8867 return ops->ndo_change_mtu(dev, new_mtu); 8868 8869 /* Pairs with all the lockless reads of dev->mtu in the stack */ 8870 WRITE_ONCE(dev->mtu, new_mtu); 8871 return 0; 8872 } 8873 EXPORT_SYMBOL(__dev_set_mtu); 8874 8875 int dev_validate_mtu(struct net_device *dev, int new_mtu, 8876 struct netlink_ext_ack *extack) 8877 { 8878 /* MTU must be positive, and in range */ 8879 if (new_mtu < 0 || new_mtu < dev->min_mtu) { 8880 NL_SET_ERR_MSG(extack, "mtu less than device minimum"); 8881 return -EINVAL; 8882 } 8883 8884 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) { 8885 NL_SET_ERR_MSG(extack, "mtu greater than device maximum"); 8886 return -EINVAL; 8887 } 8888 return 0; 8889 } 8890 8891 /** 8892 * dev_set_mtu_ext - Change maximum transfer unit 8893 * @dev: device 8894 * @new_mtu: new transfer unit 8895 * @extack: netlink extended ack 8896 * 8897 * Change the maximum transfer size of the network device. 8898 */ 8899 int dev_set_mtu_ext(struct net_device *dev, int new_mtu, 8900 struct netlink_ext_ack *extack) 8901 { 8902 int err, orig_mtu; 8903 8904 if (new_mtu == dev->mtu) 8905 return 0; 8906 8907 err = dev_validate_mtu(dev, new_mtu, extack); 8908 if (err) 8909 return err; 8910 8911 if (!netif_device_present(dev)) 8912 return -ENODEV; 8913 8914 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 8915 err = notifier_to_errno(err); 8916 if (err) 8917 return err; 8918 8919 orig_mtu = dev->mtu; 8920 err = __dev_set_mtu(dev, new_mtu); 8921 8922 if (!err) { 8923 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 8924 orig_mtu); 8925 err = notifier_to_errno(err); 8926 if (err) { 8927 /* setting mtu back and notifying everyone again, 8928 * so that they have a chance to revert changes. 8929 */ 8930 __dev_set_mtu(dev, orig_mtu); 8931 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 8932 new_mtu); 8933 } 8934 } 8935 return err; 8936 } 8937 8938 int dev_set_mtu(struct net_device *dev, int new_mtu) 8939 { 8940 struct netlink_ext_ack extack; 8941 int err; 8942 8943 memset(&extack, 0, sizeof(extack)); 8944 err = dev_set_mtu_ext(dev, new_mtu, &extack); 8945 if (err && extack._msg) 8946 net_err_ratelimited("%s: %s\n", dev->name, extack._msg); 8947 return err; 8948 } 8949 EXPORT_SYMBOL(dev_set_mtu); 8950 8951 /** 8952 * dev_change_tx_queue_len - Change TX queue length of a netdevice 8953 * @dev: device 8954 * @new_len: new tx queue length 8955 */ 8956 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len) 8957 { 8958 unsigned int orig_len = dev->tx_queue_len; 8959 int res; 8960 8961 if (new_len != (unsigned int)new_len) 8962 return -ERANGE; 8963 8964 if (new_len != orig_len) { 8965 WRITE_ONCE(dev->tx_queue_len, new_len); 8966 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev); 8967 res = notifier_to_errno(res); 8968 if (res) 8969 goto err_rollback; 8970 res = dev_qdisc_change_tx_queue_len(dev); 8971 if (res) 8972 goto err_rollback; 8973 } 8974 8975 return 0; 8976 8977 err_rollback: 8978 netdev_err(dev, "refused to change device tx_queue_len\n"); 8979 WRITE_ONCE(dev->tx_queue_len, orig_len); 8980 return res; 8981 } 8982 8983 /** 8984 * dev_set_group - Change group this device belongs to 8985 * @dev: device 8986 * @new_group: group this device should belong to 8987 */ 8988 void dev_set_group(struct net_device *dev, int new_group) 8989 { 8990 dev->group = new_group; 8991 } 8992 8993 /** 8994 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR. 8995 * @dev: device 8996 * @addr: new address 8997 * @extack: netlink extended ack 8998 */ 8999 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr, 9000 struct netlink_ext_ack *extack) 9001 { 9002 struct netdev_notifier_pre_changeaddr_info info = { 9003 .info.dev = dev, 9004 .info.extack = extack, 9005 .dev_addr = addr, 9006 }; 9007 int rc; 9008 9009 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info); 9010 return notifier_to_errno(rc); 9011 } 9012 EXPORT_SYMBOL(dev_pre_changeaddr_notify); 9013 9014 /** 9015 * dev_set_mac_address - Change Media Access Control Address 9016 * @dev: device 9017 * @sa: new address 9018 * @extack: netlink extended ack 9019 * 9020 * Change the hardware (MAC) address of the device 9021 */ 9022 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa, 9023 struct netlink_ext_ack *extack) 9024 { 9025 const struct net_device_ops *ops = dev->netdev_ops; 9026 int err; 9027 9028 if (!ops->ndo_set_mac_address) 9029 return -EOPNOTSUPP; 9030 if (sa->sa_family != dev->type) 9031 return -EINVAL; 9032 if (!netif_device_present(dev)) 9033 return -ENODEV; 9034 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack); 9035 if (err) 9036 return err; 9037 if (memcmp(dev->dev_addr, sa->sa_data, dev->addr_len)) { 9038 err = ops->ndo_set_mac_address(dev, sa); 9039 if (err) 9040 return err; 9041 } 9042 dev->addr_assign_type = NET_ADDR_SET; 9043 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 9044 add_device_randomness(dev->dev_addr, dev->addr_len); 9045 return 0; 9046 } 9047 EXPORT_SYMBOL(dev_set_mac_address); 9048 9049 DECLARE_RWSEM(dev_addr_sem); 9050 9051 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa, 9052 struct netlink_ext_ack *extack) 9053 { 9054 int ret; 9055 9056 down_write(&dev_addr_sem); 9057 ret = dev_set_mac_address(dev, sa, extack); 9058 up_write(&dev_addr_sem); 9059 return ret; 9060 } 9061 EXPORT_SYMBOL(dev_set_mac_address_user); 9062 9063 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name) 9064 { 9065 size_t size = sizeof(sa->sa_data_min); 9066 struct net_device *dev; 9067 int ret = 0; 9068 9069 down_read(&dev_addr_sem); 9070 rcu_read_lock(); 9071 9072 dev = dev_get_by_name_rcu(net, dev_name); 9073 if (!dev) { 9074 ret = -ENODEV; 9075 goto unlock; 9076 } 9077 if (!dev->addr_len) 9078 memset(sa->sa_data, 0, size); 9079 else 9080 memcpy(sa->sa_data, dev->dev_addr, 9081 min_t(size_t, size, dev->addr_len)); 9082 sa->sa_family = dev->type; 9083 9084 unlock: 9085 rcu_read_unlock(); 9086 up_read(&dev_addr_sem); 9087 return ret; 9088 } 9089 EXPORT_SYMBOL(dev_get_mac_address); 9090 9091 /** 9092 * dev_change_carrier - Change device carrier 9093 * @dev: device 9094 * @new_carrier: new value 9095 * 9096 * Change device carrier 9097 */ 9098 int dev_change_carrier(struct net_device *dev, bool new_carrier) 9099 { 9100 const struct net_device_ops *ops = dev->netdev_ops; 9101 9102 if (!ops->ndo_change_carrier) 9103 return -EOPNOTSUPP; 9104 if (!netif_device_present(dev)) 9105 return -ENODEV; 9106 return ops->ndo_change_carrier(dev, new_carrier); 9107 } 9108 9109 /** 9110 * dev_get_phys_port_id - Get device physical port ID 9111 * @dev: device 9112 * @ppid: port ID 9113 * 9114 * Get device physical port ID 9115 */ 9116 int dev_get_phys_port_id(struct net_device *dev, 9117 struct netdev_phys_item_id *ppid) 9118 { 9119 const struct net_device_ops *ops = dev->netdev_ops; 9120 9121 if (!ops->ndo_get_phys_port_id) 9122 return -EOPNOTSUPP; 9123 return ops->ndo_get_phys_port_id(dev, ppid); 9124 } 9125 9126 /** 9127 * dev_get_phys_port_name - Get device physical port name 9128 * @dev: device 9129 * @name: port name 9130 * @len: limit of bytes to copy to name 9131 * 9132 * Get device physical port name 9133 */ 9134 int dev_get_phys_port_name(struct net_device *dev, 9135 char *name, size_t len) 9136 { 9137 const struct net_device_ops *ops = dev->netdev_ops; 9138 int err; 9139 9140 if (ops->ndo_get_phys_port_name) { 9141 err = ops->ndo_get_phys_port_name(dev, name, len); 9142 if (err != -EOPNOTSUPP) 9143 return err; 9144 } 9145 return devlink_compat_phys_port_name_get(dev, name, len); 9146 } 9147 9148 /** 9149 * dev_get_port_parent_id - Get the device's port parent identifier 9150 * @dev: network device 9151 * @ppid: pointer to a storage for the port's parent identifier 9152 * @recurse: allow/disallow recursion to lower devices 9153 * 9154 * Get the devices's port parent identifier 9155 */ 9156 int dev_get_port_parent_id(struct net_device *dev, 9157 struct netdev_phys_item_id *ppid, 9158 bool recurse) 9159 { 9160 const struct net_device_ops *ops = dev->netdev_ops; 9161 struct netdev_phys_item_id first = { }; 9162 struct net_device *lower_dev; 9163 struct list_head *iter; 9164 int err; 9165 9166 if (ops->ndo_get_port_parent_id) { 9167 err = ops->ndo_get_port_parent_id(dev, ppid); 9168 if (err != -EOPNOTSUPP) 9169 return err; 9170 } 9171 9172 err = devlink_compat_switch_id_get(dev, ppid); 9173 if (!recurse || err != -EOPNOTSUPP) 9174 return err; 9175 9176 netdev_for_each_lower_dev(dev, lower_dev, iter) { 9177 err = dev_get_port_parent_id(lower_dev, ppid, true); 9178 if (err) 9179 break; 9180 if (!first.id_len) 9181 first = *ppid; 9182 else if (memcmp(&first, ppid, sizeof(*ppid))) 9183 return -EOPNOTSUPP; 9184 } 9185 9186 return err; 9187 } 9188 EXPORT_SYMBOL(dev_get_port_parent_id); 9189 9190 /** 9191 * netdev_port_same_parent_id - Indicate if two network devices have 9192 * the same port parent identifier 9193 * @a: first network device 9194 * @b: second network device 9195 */ 9196 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b) 9197 { 9198 struct netdev_phys_item_id a_id = { }; 9199 struct netdev_phys_item_id b_id = { }; 9200 9201 if (dev_get_port_parent_id(a, &a_id, true) || 9202 dev_get_port_parent_id(b, &b_id, true)) 9203 return false; 9204 9205 return netdev_phys_item_id_same(&a_id, &b_id); 9206 } 9207 EXPORT_SYMBOL(netdev_port_same_parent_id); 9208 9209 /** 9210 * dev_change_proto_down - set carrier according to proto_down. 9211 * 9212 * @dev: device 9213 * @proto_down: new value 9214 */ 9215 int dev_change_proto_down(struct net_device *dev, bool proto_down) 9216 { 9217 if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN)) 9218 return -EOPNOTSUPP; 9219 if (!netif_device_present(dev)) 9220 return -ENODEV; 9221 if (proto_down) 9222 netif_carrier_off(dev); 9223 else 9224 netif_carrier_on(dev); 9225 WRITE_ONCE(dev->proto_down, proto_down); 9226 return 0; 9227 } 9228 9229 /** 9230 * dev_change_proto_down_reason - proto down reason 9231 * 9232 * @dev: device 9233 * @mask: proto down mask 9234 * @value: proto down value 9235 */ 9236 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask, 9237 u32 value) 9238 { 9239 u32 proto_down_reason; 9240 int b; 9241 9242 if (!mask) { 9243 proto_down_reason = value; 9244 } else { 9245 proto_down_reason = dev->proto_down_reason; 9246 for_each_set_bit(b, &mask, 32) { 9247 if (value & (1 << b)) 9248 proto_down_reason |= BIT(b); 9249 else 9250 proto_down_reason &= ~BIT(b); 9251 } 9252 } 9253 WRITE_ONCE(dev->proto_down_reason, proto_down_reason); 9254 } 9255 9256 struct bpf_xdp_link { 9257 struct bpf_link link; 9258 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */ 9259 int flags; 9260 }; 9261 9262 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags) 9263 { 9264 if (flags & XDP_FLAGS_HW_MODE) 9265 return XDP_MODE_HW; 9266 if (flags & XDP_FLAGS_DRV_MODE) 9267 return XDP_MODE_DRV; 9268 if (flags & XDP_FLAGS_SKB_MODE) 9269 return XDP_MODE_SKB; 9270 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB; 9271 } 9272 9273 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode) 9274 { 9275 switch (mode) { 9276 case XDP_MODE_SKB: 9277 return generic_xdp_install; 9278 case XDP_MODE_DRV: 9279 case XDP_MODE_HW: 9280 return dev->netdev_ops->ndo_bpf; 9281 default: 9282 return NULL; 9283 } 9284 } 9285 9286 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev, 9287 enum bpf_xdp_mode mode) 9288 { 9289 return dev->xdp_state[mode].link; 9290 } 9291 9292 static struct bpf_prog *dev_xdp_prog(struct net_device *dev, 9293 enum bpf_xdp_mode mode) 9294 { 9295 struct bpf_xdp_link *link = dev_xdp_link(dev, mode); 9296 9297 if (link) 9298 return link->link.prog; 9299 return dev->xdp_state[mode].prog; 9300 } 9301 9302 u8 dev_xdp_prog_count(struct net_device *dev) 9303 { 9304 u8 count = 0; 9305 int i; 9306 9307 for (i = 0; i < __MAX_XDP_MODE; i++) 9308 if (dev->xdp_state[i].prog || dev->xdp_state[i].link) 9309 count++; 9310 return count; 9311 } 9312 EXPORT_SYMBOL_GPL(dev_xdp_prog_count); 9313 9314 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode) 9315 { 9316 struct bpf_prog *prog = dev_xdp_prog(dev, mode); 9317 9318 return prog ? prog->aux->id : 0; 9319 } 9320 9321 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode, 9322 struct bpf_xdp_link *link) 9323 { 9324 dev->xdp_state[mode].link = link; 9325 dev->xdp_state[mode].prog = NULL; 9326 } 9327 9328 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode, 9329 struct bpf_prog *prog) 9330 { 9331 dev->xdp_state[mode].link = NULL; 9332 dev->xdp_state[mode].prog = prog; 9333 } 9334 9335 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode, 9336 bpf_op_t bpf_op, struct netlink_ext_ack *extack, 9337 u32 flags, struct bpf_prog *prog) 9338 { 9339 struct netdev_bpf xdp; 9340 int err; 9341 9342 memset(&xdp, 0, sizeof(xdp)); 9343 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG; 9344 xdp.extack = extack; 9345 xdp.flags = flags; 9346 xdp.prog = prog; 9347 9348 /* Drivers assume refcnt is already incremented (i.e, prog pointer is 9349 * "moved" into driver), so they don't increment it on their own, but 9350 * they do decrement refcnt when program is detached or replaced. 9351 * Given net_device also owns link/prog, we need to bump refcnt here 9352 * to prevent drivers from underflowing it. 9353 */ 9354 if (prog) 9355 bpf_prog_inc(prog); 9356 err = bpf_op(dev, &xdp); 9357 if (err) { 9358 if (prog) 9359 bpf_prog_put(prog); 9360 return err; 9361 } 9362 9363 if (mode != XDP_MODE_HW) 9364 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog); 9365 9366 return 0; 9367 } 9368 9369 static void dev_xdp_uninstall(struct net_device *dev) 9370 { 9371 struct bpf_xdp_link *link; 9372 struct bpf_prog *prog; 9373 enum bpf_xdp_mode mode; 9374 bpf_op_t bpf_op; 9375 9376 ASSERT_RTNL(); 9377 9378 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) { 9379 prog = dev_xdp_prog(dev, mode); 9380 if (!prog) 9381 continue; 9382 9383 bpf_op = dev_xdp_bpf_op(dev, mode); 9384 if (!bpf_op) 9385 continue; 9386 9387 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL)); 9388 9389 /* auto-detach link from net device */ 9390 link = dev_xdp_link(dev, mode); 9391 if (link) 9392 link->dev = NULL; 9393 else 9394 bpf_prog_put(prog); 9395 9396 dev_xdp_set_link(dev, mode, NULL); 9397 } 9398 } 9399 9400 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack, 9401 struct bpf_xdp_link *link, struct bpf_prog *new_prog, 9402 struct bpf_prog *old_prog, u32 flags) 9403 { 9404 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES); 9405 struct bpf_prog *cur_prog; 9406 struct net_device *upper; 9407 struct list_head *iter; 9408 enum bpf_xdp_mode mode; 9409 bpf_op_t bpf_op; 9410 int err; 9411 9412 ASSERT_RTNL(); 9413 9414 /* either link or prog attachment, never both */ 9415 if (link && (new_prog || old_prog)) 9416 return -EINVAL; 9417 /* link supports only XDP mode flags */ 9418 if (link && (flags & ~XDP_FLAGS_MODES)) { 9419 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment"); 9420 return -EINVAL; 9421 } 9422 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */ 9423 if (num_modes > 1) { 9424 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set"); 9425 return -EINVAL; 9426 } 9427 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */ 9428 if (!num_modes && dev_xdp_prog_count(dev) > 1) { 9429 NL_SET_ERR_MSG(extack, 9430 "More than one program loaded, unset mode is ambiguous"); 9431 return -EINVAL; 9432 } 9433 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */ 9434 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) { 9435 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified"); 9436 return -EINVAL; 9437 } 9438 9439 mode = dev_xdp_mode(dev, flags); 9440 /* can't replace attached link */ 9441 if (dev_xdp_link(dev, mode)) { 9442 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link"); 9443 return -EBUSY; 9444 } 9445 9446 /* don't allow if an upper device already has a program */ 9447 netdev_for_each_upper_dev_rcu(dev, upper, iter) { 9448 if (dev_xdp_prog_count(upper) > 0) { 9449 NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program"); 9450 return -EEXIST; 9451 } 9452 } 9453 9454 cur_prog = dev_xdp_prog(dev, mode); 9455 /* can't replace attached prog with link */ 9456 if (link && cur_prog) { 9457 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link"); 9458 return -EBUSY; 9459 } 9460 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) { 9461 NL_SET_ERR_MSG(extack, "Active program does not match expected"); 9462 return -EEXIST; 9463 } 9464 9465 /* put effective new program into new_prog */ 9466 if (link) 9467 new_prog = link->link.prog; 9468 9469 if (new_prog) { 9470 bool offload = mode == XDP_MODE_HW; 9471 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB 9472 ? XDP_MODE_DRV : XDP_MODE_SKB; 9473 9474 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) { 9475 NL_SET_ERR_MSG(extack, "XDP program already attached"); 9476 return -EBUSY; 9477 } 9478 if (!offload && dev_xdp_prog(dev, other_mode)) { 9479 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time"); 9480 return -EEXIST; 9481 } 9482 if (!offload && bpf_prog_is_offloaded(new_prog->aux)) { 9483 NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported"); 9484 return -EINVAL; 9485 } 9486 if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) { 9487 NL_SET_ERR_MSG(extack, "Program bound to different device"); 9488 return -EINVAL; 9489 } 9490 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) { 9491 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device"); 9492 return -EINVAL; 9493 } 9494 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) { 9495 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device"); 9496 return -EINVAL; 9497 } 9498 } 9499 9500 /* don't call drivers if the effective program didn't change */ 9501 if (new_prog != cur_prog) { 9502 bpf_op = dev_xdp_bpf_op(dev, mode); 9503 if (!bpf_op) { 9504 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode"); 9505 return -EOPNOTSUPP; 9506 } 9507 9508 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog); 9509 if (err) 9510 return err; 9511 } 9512 9513 if (link) 9514 dev_xdp_set_link(dev, mode, link); 9515 else 9516 dev_xdp_set_prog(dev, mode, new_prog); 9517 if (cur_prog) 9518 bpf_prog_put(cur_prog); 9519 9520 return 0; 9521 } 9522 9523 static int dev_xdp_attach_link(struct net_device *dev, 9524 struct netlink_ext_ack *extack, 9525 struct bpf_xdp_link *link) 9526 { 9527 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags); 9528 } 9529 9530 static int dev_xdp_detach_link(struct net_device *dev, 9531 struct netlink_ext_ack *extack, 9532 struct bpf_xdp_link *link) 9533 { 9534 enum bpf_xdp_mode mode; 9535 bpf_op_t bpf_op; 9536 9537 ASSERT_RTNL(); 9538 9539 mode = dev_xdp_mode(dev, link->flags); 9540 if (dev_xdp_link(dev, mode) != link) 9541 return -EINVAL; 9542 9543 bpf_op = dev_xdp_bpf_op(dev, mode); 9544 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL)); 9545 dev_xdp_set_link(dev, mode, NULL); 9546 return 0; 9547 } 9548 9549 static void bpf_xdp_link_release(struct bpf_link *link) 9550 { 9551 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9552 9553 rtnl_lock(); 9554 9555 /* if racing with net_device's tear down, xdp_link->dev might be 9556 * already NULL, in which case link was already auto-detached 9557 */ 9558 if (xdp_link->dev) { 9559 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link)); 9560 xdp_link->dev = NULL; 9561 } 9562 9563 rtnl_unlock(); 9564 } 9565 9566 static int bpf_xdp_link_detach(struct bpf_link *link) 9567 { 9568 bpf_xdp_link_release(link); 9569 return 0; 9570 } 9571 9572 static void bpf_xdp_link_dealloc(struct bpf_link *link) 9573 { 9574 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9575 9576 kfree(xdp_link); 9577 } 9578 9579 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link, 9580 struct seq_file *seq) 9581 { 9582 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9583 u32 ifindex = 0; 9584 9585 rtnl_lock(); 9586 if (xdp_link->dev) 9587 ifindex = xdp_link->dev->ifindex; 9588 rtnl_unlock(); 9589 9590 seq_printf(seq, "ifindex:\t%u\n", ifindex); 9591 } 9592 9593 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link, 9594 struct bpf_link_info *info) 9595 { 9596 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9597 u32 ifindex = 0; 9598 9599 rtnl_lock(); 9600 if (xdp_link->dev) 9601 ifindex = xdp_link->dev->ifindex; 9602 rtnl_unlock(); 9603 9604 info->xdp.ifindex = ifindex; 9605 return 0; 9606 } 9607 9608 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog, 9609 struct bpf_prog *old_prog) 9610 { 9611 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9612 enum bpf_xdp_mode mode; 9613 bpf_op_t bpf_op; 9614 int err = 0; 9615 9616 rtnl_lock(); 9617 9618 /* link might have been auto-released already, so fail */ 9619 if (!xdp_link->dev) { 9620 err = -ENOLINK; 9621 goto out_unlock; 9622 } 9623 9624 if (old_prog && link->prog != old_prog) { 9625 err = -EPERM; 9626 goto out_unlock; 9627 } 9628 old_prog = link->prog; 9629 if (old_prog->type != new_prog->type || 9630 old_prog->expected_attach_type != new_prog->expected_attach_type) { 9631 err = -EINVAL; 9632 goto out_unlock; 9633 } 9634 9635 if (old_prog == new_prog) { 9636 /* no-op, don't disturb drivers */ 9637 bpf_prog_put(new_prog); 9638 goto out_unlock; 9639 } 9640 9641 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags); 9642 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode); 9643 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL, 9644 xdp_link->flags, new_prog); 9645 if (err) 9646 goto out_unlock; 9647 9648 old_prog = xchg(&link->prog, new_prog); 9649 bpf_prog_put(old_prog); 9650 9651 out_unlock: 9652 rtnl_unlock(); 9653 return err; 9654 } 9655 9656 static const struct bpf_link_ops bpf_xdp_link_lops = { 9657 .release = bpf_xdp_link_release, 9658 .dealloc = bpf_xdp_link_dealloc, 9659 .detach = bpf_xdp_link_detach, 9660 .show_fdinfo = bpf_xdp_link_show_fdinfo, 9661 .fill_link_info = bpf_xdp_link_fill_link_info, 9662 .update_prog = bpf_xdp_link_update, 9663 }; 9664 9665 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog) 9666 { 9667 struct net *net = current->nsproxy->net_ns; 9668 struct bpf_link_primer link_primer; 9669 struct netlink_ext_ack extack = {}; 9670 struct bpf_xdp_link *link; 9671 struct net_device *dev; 9672 int err, fd; 9673 9674 rtnl_lock(); 9675 dev = dev_get_by_index(net, attr->link_create.target_ifindex); 9676 if (!dev) { 9677 rtnl_unlock(); 9678 return -EINVAL; 9679 } 9680 9681 link = kzalloc(sizeof(*link), GFP_USER); 9682 if (!link) { 9683 err = -ENOMEM; 9684 goto unlock; 9685 } 9686 9687 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog); 9688 link->dev = dev; 9689 link->flags = attr->link_create.flags; 9690 9691 err = bpf_link_prime(&link->link, &link_primer); 9692 if (err) { 9693 kfree(link); 9694 goto unlock; 9695 } 9696 9697 err = dev_xdp_attach_link(dev, &extack, link); 9698 rtnl_unlock(); 9699 9700 if (err) { 9701 link->dev = NULL; 9702 bpf_link_cleanup(&link_primer); 9703 trace_bpf_xdp_link_attach_failed(extack._msg); 9704 goto out_put_dev; 9705 } 9706 9707 fd = bpf_link_settle(&link_primer); 9708 /* link itself doesn't hold dev's refcnt to not complicate shutdown */ 9709 dev_put(dev); 9710 return fd; 9711 9712 unlock: 9713 rtnl_unlock(); 9714 9715 out_put_dev: 9716 dev_put(dev); 9717 return err; 9718 } 9719 9720 /** 9721 * dev_change_xdp_fd - set or clear a bpf program for a device rx path 9722 * @dev: device 9723 * @extack: netlink extended ack 9724 * @fd: new program fd or negative value to clear 9725 * @expected_fd: old program fd that userspace expects to replace or clear 9726 * @flags: xdp-related flags 9727 * 9728 * Set or clear a bpf program for a device 9729 */ 9730 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 9731 int fd, int expected_fd, u32 flags) 9732 { 9733 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags); 9734 struct bpf_prog *new_prog = NULL, *old_prog = NULL; 9735 int err; 9736 9737 ASSERT_RTNL(); 9738 9739 if (fd >= 0) { 9740 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP, 9741 mode != XDP_MODE_SKB); 9742 if (IS_ERR(new_prog)) 9743 return PTR_ERR(new_prog); 9744 } 9745 9746 if (expected_fd >= 0) { 9747 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP, 9748 mode != XDP_MODE_SKB); 9749 if (IS_ERR(old_prog)) { 9750 err = PTR_ERR(old_prog); 9751 old_prog = NULL; 9752 goto err_out; 9753 } 9754 } 9755 9756 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags); 9757 9758 err_out: 9759 if (err && new_prog) 9760 bpf_prog_put(new_prog); 9761 if (old_prog) 9762 bpf_prog_put(old_prog); 9763 return err; 9764 } 9765 9766 /** 9767 * dev_index_reserve() - allocate an ifindex in a namespace 9768 * @net: the applicable net namespace 9769 * @ifindex: requested ifindex, pass %0 to get one allocated 9770 * 9771 * Allocate a ifindex for a new device. Caller must either use the ifindex 9772 * to store the device (via list_netdevice()) or call dev_index_release() 9773 * to give the index up. 9774 * 9775 * Return: a suitable unique value for a new device interface number or -errno. 9776 */ 9777 static int dev_index_reserve(struct net *net, u32 ifindex) 9778 { 9779 int err; 9780 9781 if (ifindex > INT_MAX) { 9782 DEBUG_NET_WARN_ON_ONCE(1); 9783 return -EINVAL; 9784 } 9785 9786 if (!ifindex) 9787 err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL, 9788 xa_limit_31b, &net->ifindex, GFP_KERNEL); 9789 else 9790 err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL); 9791 if (err < 0) 9792 return err; 9793 9794 return ifindex; 9795 } 9796 9797 static void dev_index_release(struct net *net, int ifindex) 9798 { 9799 /* Expect only unused indexes, unlist_netdevice() removes the used */ 9800 WARN_ON(xa_erase(&net->dev_by_index, ifindex)); 9801 } 9802 9803 /* Delayed registration/unregisteration */ 9804 LIST_HEAD(net_todo_list); 9805 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 9806 atomic_t dev_unreg_count = ATOMIC_INIT(0); 9807 9808 static void net_set_todo(struct net_device *dev) 9809 { 9810 list_add_tail(&dev->todo_list, &net_todo_list); 9811 } 9812 9813 static netdev_features_t netdev_sync_upper_features(struct net_device *lower, 9814 struct net_device *upper, netdev_features_t features) 9815 { 9816 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 9817 netdev_features_t feature; 9818 int feature_bit; 9819 9820 for_each_netdev_feature(upper_disables, feature_bit) { 9821 feature = __NETIF_F_BIT(feature_bit); 9822 if (!(upper->wanted_features & feature) 9823 && (features & feature)) { 9824 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n", 9825 &feature, upper->name); 9826 features &= ~feature; 9827 } 9828 } 9829 9830 return features; 9831 } 9832 9833 static void netdev_sync_lower_features(struct net_device *upper, 9834 struct net_device *lower, netdev_features_t features) 9835 { 9836 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 9837 netdev_features_t feature; 9838 int feature_bit; 9839 9840 for_each_netdev_feature(upper_disables, feature_bit) { 9841 feature = __NETIF_F_BIT(feature_bit); 9842 if (!(features & feature) && (lower->features & feature)) { 9843 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n", 9844 &feature, lower->name); 9845 lower->wanted_features &= ~feature; 9846 __netdev_update_features(lower); 9847 9848 if (unlikely(lower->features & feature)) 9849 netdev_WARN(upper, "failed to disable %pNF on %s!\n", 9850 &feature, lower->name); 9851 else 9852 netdev_features_change(lower); 9853 } 9854 } 9855 } 9856 9857 static netdev_features_t netdev_fix_features(struct net_device *dev, 9858 netdev_features_t features) 9859 { 9860 /* Fix illegal checksum combinations */ 9861 if ((features & NETIF_F_HW_CSUM) && 9862 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 9863 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 9864 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 9865 } 9866 9867 /* TSO requires that SG is present as well. */ 9868 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 9869 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 9870 features &= ~NETIF_F_ALL_TSO; 9871 } 9872 9873 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 9874 !(features & NETIF_F_IP_CSUM)) { 9875 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 9876 features &= ~NETIF_F_TSO; 9877 features &= ~NETIF_F_TSO_ECN; 9878 } 9879 9880 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 9881 !(features & NETIF_F_IPV6_CSUM)) { 9882 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 9883 features &= ~NETIF_F_TSO6; 9884 } 9885 9886 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */ 9887 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO)) 9888 features &= ~NETIF_F_TSO_MANGLEID; 9889 9890 /* TSO ECN requires that TSO is present as well. */ 9891 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 9892 features &= ~NETIF_F_TSO_ECN; 9893 9894 /* Software GSO depends on SG. */ 9895 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 9896 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 9897 features &= ~NETIF_F_GSO; 9898 } 9899 9900 /* GSO partial features require GSO partial be set */ 9901 if ((features & dev->gso_partial_features) && 9902 !(features & NETIF_F_GSO_PARTIAL)) { 9903 netdev_dbg(dev, 9904 "Dropping partially supported GSO features since no GSO partial.\n"); 9905 features &= ~dev->gso_partial_features; 9906 } 9907 9908 if (!(features & NETIF_F_RXCSUM)) { 9909 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet 9910 * successfully merged by hardware must also have the 9911 * checksum verified by hardware. If the user does not 9912 * want to enable RXCSUM, logically, we should disable GRO_HW. 9913 */ 9914 if (features & NETIF_F_GRO_HW) { 9915 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n"); 9916 features &= ~NETIF_F_GRO_HW; 9917 } 9918 } 9919 9920 /* LRO/HW-GRO features cannot be combined with RX-FCS */ 9921 if (features & NETIF_F_RXFCS) { 9922 if (features & NETIF_F_LRO) { 9923 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n"); 9924 features &= ~NETIF_F_LRO; 9925 } 9926 9927 if (features & NETIF_F_GRO_HW) { 9928 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n"); 9929 features &= ~NETIF_F_GRO_HW; 9930 } 9931 } 9932 9933 if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) { 9934 netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n"); 9935 features &= ~NETIF_F_LRO; 9936 } 9937 9938 if (features & NETIF_F_HW_TLS_TX) { 9939 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) == 9940 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM); 9941 bool hw_csum = features & NETIF_F_HW_CSUM; 9942 9943 if (!ip_csum && !hw_csum) { 9944 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n"); 9945 features &= ~NETIF_F_HW_TLS_TX; 9946 } 9947 } 9948 9949 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) { 9950 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n"); 9951 features &= ~NETIF_F_HW_TLS_RX; 9952 } 9953 9954 return features; 9955 } 9956 9957 int __netdev_update_features(struct net_device *dev) 9958 { 9959 struct net_device *upper, *lower; 9960 netdev_features_t features; 9961 struct list_head *iter; 9962 int err = -1; 9963 9964 ASSERT_RTNL(); 9965 9966 features = netdev_get_wanted_features(dev); 9967 9968 if (dev->netdev_ops->ndo_fix_features) 9969 features = dev->netdev_ops->ndo_fix_features(dev, features); 9970 9971 /* driver might be less strict about feature dependencies */ 9972 features = netdev_fix_features(dev, features); 9973 9974 /* some features can't be enabled if they're off on an upper device */ 9975 netdev_for_each_upper_dev_rcu(dev, upper, iter) 9976 features = netdev_sync_upper_features(dev, upper, features); 9977 9978 if (dev->features == features) 9979 goto sync_lower; 9980 9981 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 9982 &dev->features, &features); 9983 9984 if (dev->netdev_ops->ndo_set_features) 9985 err = dev->netdev_ops->ndo_set_features(dev, features); 9986 else 9987 err = 0; 9988 9989 if (unlikely(err < 0)) { 9990 netdev_err(dev, 9991 "set_features() failed (%d); wanted %pNF, left %pNF\n", 9992 err, &features, &dev->features); 9993 /* return non-0 since some features might have changed and 9994 * it's better to fire a spurious notification than miss it 9995 */ 9996 return -1; 9997 } 9998 9999 sync_lower: 10000 /* some features must be disabled on lower devices when disabled 10001 * on an upper device (think: bonding master or bridge) 10002 */ 10003 netdev_for_each_lower_dev(dev, lower, iter) 10004 netdev_sync_lower_features(dev, lower, features); 10005 10006 if (!err) { 10007 netdev_features_t diff = features ^ dev->features; 10008 10009 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) { 10010 /* udp_tunnel_{get,drop}_rx_info both need 10011 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the 10012 * device, or they won't do anything. 10013 * Thus we need to update dev->features 10014 * *before* calling udp_tunnel_get_rx_info, 10015 * but *after* calling udp_tunnel_drop_rx_info. 10016 */ 10017 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) { 10018 dev->features = features; 10019 udp_tunnel_get_rx_info(dev); 10020 } else { 10021 udp_tunnel_drop_rx_info(dev); 10022 } 10023 } 10024 10025 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) { 10026 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) { 10027 dev->features = features; 10028 err |= vlan_get_rx_ctag_filter_info(dev); 10029 } else { 10030 vlan_drop_rx_ctag_filter_info(dev); 10031 } 10032 } 10033 10034 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) { 10035 if (features & NETIF_F_HW_VLAN_STAG_FILTER) { 10036 dev->features = features; 10037 err |= vlan_get_rx_stag_filter_info(dev); 10038 } else { 10039 vlan_drop_rx_stag_filter_info(dev); 10040 } 10041 } 10042 10043 dev->features = features; 10044 } 10045 10046 return err < 0 ? 0 : 1; 10047 } 10048 10049 /** 10050 * netdev_update_features - recalculate device features 10051 * @dev: the device to check 10052 * 10053 * Recalculate dev->features set and send notifications if it 10054 * has changed. Should be called after driver or hardware dependent 10055 * conditions might have changed that influence the features. 10056 */ 10057 void netdev_update_features(struct net_device *dev) 10058 { 10059 if (__netdev_update_features(dev)) 10060 netdev_features_change(dev); 10061 } 10062 EXPORT_SYMBOL(netdev_update_features); 10063 10064 /** 10065 * netdev_change_features - recalculate device features 10066 * @dev: the device to check 10067 * 10068 * Recalculate dev->features set and send notifications even 10069 * if they have not changed. Should be called instead of 10070 * netdev_update_features() if also dev->vlan_features might 10071 * have changed to allow the changes to be propagated to stacked 10072 * VLAN devices. 10073 */ 10074 void netdev_change_features(struct net_device *dev) 10075 { 10076 __netdev_update_features(dev); 10077 netdev_features_change(dev); 10078 } 10079 EXPORT_SYMBOL(netdev_change_features); 10080 10081 /** 10082 * netif_stacked_transfer_operstate - transfer operstate 10083 * @rootdev: the root or lower level device to transfer state from 10084 * @dev: the device to transfer operstate to 10085 * 10086 * Transfer operational state from root to device. This is normally 10087 * called when a stacking relationship exists between the root 10088 * device and the device(a leaf device). 10089 */ 10090 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 10091 struct net_device *dev) 10092 { 10093 if (rootdev->operstate == IF_OPER_DORMANT) 10094 netif_dormant_on(dev); 10095 else 10096 netif_dormant_off(dev); 10097 10098 if (rootdev->operstate == IF_OPER_TESTING) 10099 netif_testing_on(dev); 10100 else 10101 netif_testing_off(dev); 10102 10103 if (netif_carrier_ok(rootdev)) 10104 netif_carrier_on(dev); 10105 else 10106 netif_carrier_off(dev); 10107 } 10108 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 10109 10110 static int netif_alloc_rx_queues(struct net_device *dev) 10111 { 10112 unsigned int i, count = dev->num_rx_queues; 10113 struct netdev_rx_queue *rx; 10114 size_t sz = count * sizeof(*rx); 10115 int err = 0; 10116 10117 BUG_ON(count < 1); 10118 10119 rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); 10120 if (!rx) 10121 return -ENOMEM; 10122 10123 dev->_rx = rx; 10124 10125 for (i = 0; i < count; i++) { 10126 rx[i].dev = dev; 10127 10128 /* XDP RX-queue setup */ 10129 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0); 10130 if (err < 0) 10131 goto err_rxq_info; 10132 } 10133 return 0; 10134 10135 err_rxq_info: 10136 /* Rollback successful reg's and free other resources */ 10137 while (i--) 10138 xdp_rxq_info_unreg(&rx[i].xdp_rxq); 10139 kvfree(dev->_rx); 10140 dev->_rx = NULL; 10141 return err; 10142 } 10143 10144 static void netif_free_rx_queues(struct net_device *dev) 10145 { 10146 unsigned int i, count = dev->num_rx_queues; 10147 10148 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */ 10149 if (!dev->_rx) 10150 return; 10151 10152 for (i = 0; i < count; i++) 10153 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq); 10154 10155 kvfree(dev->_rx); 10156 } 10157 10158 static void netdev_init_one_queue(struct net_device *dev, 10159 struct netdev_queue *queue, void *_unused) 10160 { 10161 /* Initialize queue lock */ 10162 spin_lock_init(&queue->_xmit_lock); 10163 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 10164 queue->xmit_lock_owner = -1; 10165 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 10166 queue->dev = dev; 10167 #ifdef CONFIG_BQL 10168 dql_init(&queue->dql, HZ); 10169 #endif 10170 } 10171 10172 static void netif_free_tx_queues(struct net_device *dev) 10173 { 10174 kvfree(dev->_tx); 10175 } 10176 10177 static int netif_alloc_netdev_queues(struct net_device *dev) 10178 { 10179 unsigned int count = dev->num_tx_queues; 10180 struct netdev_queue *tx; 10181 size_t sz = count * sizeof(*tx); 10182 10183 if (count < 1 || count > 0xffff) 10184 return -EINVAL; 10185 10186 tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); 10187 if (!tx) 10188 return -ENOMEM; 10189 10190 dev->_tx = tx; 10191 10192 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 10193 spin_lock_init(&dev->tx_global_lock); 10194 10195 return 0; 10196 } 10197 10198 void netif_tx_stop_all_queues(struct net_device *dev) 10199 { 10200 unsigned int i; 10201 10202 for (i = 0; i < dev->num_tx_queues; i++) { 10203 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 10204 10205 netif_tx_stop_queue(txq); 10206 } 10207 } 10208 EXPORT_SYMBOL(netif_tx_stop_all_queues); 10209 10210 static int netdev_do_alloc_pcpu_stats(struct net_device *dev) 10211 { 10212 void __percpu *v; 10213 10214 /* Drivers implementing ndo_get_peer_dev must support tstat 10215 * accounting, so that skb_do_redirect() can bump the dev's 10216 * RX stats upon network namespace switch. 10217 */ 10218 if (dev->netdev_ops->ndo_get_peer_dev && 10219 dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS) 10220 return -EOPNOTSUPP; 10221 10222 switch (dev->pcpu_stat_type) { 10223 case NETDEV_PCPU_STAT_NONE: 10224 return 0; 10225 case NETDEV_PCPU_STAT_LSTATS: 10226 v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats); 10227 break; 10228 case NETDEV_PCPU_STAT_TSTATS: 10229 v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats); 10230 break; 10231 case NETDEV_PCPU_STAT_DSTATS: 10232 v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats); 10233 break; 10234 default: 10235 return -EINVAL; 10236 } 10237 10238 return v ? 0 : -ENOMEM; 10239 } 10240 10241 static void netdev_do_free_pcpu_stats(struct net_device *dev) 10242 { 10243 switch (dev->pcpu_stat_type) { 10244 case NETDEV_PCPU_STAT_NONE: 10245 return; 10246 case NETDEV_PCPU_STAT_LSTATS: 10247 free_percpu(dev->lstats); 10248 break; 10249 case NETDEV_PCPU_STAT_TSTATS: 10250 free_percpu(dev->tstats); 10251 break; 10252 case NETDEV_PCPU_STAT_DSTATS: 10253 free_percpu(dev->dstats); 10254 break; 10255 } 10256 } 10257 10258 /** 10259 * register_netdevice() - register a network device 10260 * @dev: device to register 10261 * 10262 * Take a prepared network device structure and make it externally accessible. 10263 * A %NETDEV_REGISTER message is sent to the netdev notifier chain. 10264 * Callers must hold the rtnl lock - you may want register_netdev() 10265 * instead of this. 10266 */ 10267 int register_netdevice(struct net_device *dev) 10268 { 10269 int ret; 10270 struct net *net = dev_net(dev); 10271 10272 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE < 10273 NETDEV_FEATURE_COUNT); 10274 BUG_ON(dev_boot_phase); 10275 ASSERT_RTNL(); 10276 10277 might_sleep(); 10278 10279 /* When net_device's are persistent, this will be fatal. */ 10280 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 10281 BUG_ON(!net); 10282 10283 ret = ethtool_check_ops(dev->ethtool_ops); 10284 if (ret) 10285 return ret; 10286 10287 spin_lock_init(&dev->addr_list_lock); 10288 netdev_set_addr_lockdep_class(dev); 10289 10290 ret = dev_get_valid_name(net, dev, dev->name); 10291 if (ret < 0) 10292 goto out; 10293 10294 ret = -ENOMEM; 10295 dev->name_node = netdev_name_node_head_alloc(dev); 10296 if (!dev->name_node) 10297 goto out; 10298 10299 /* Init, if this function is available */ 10300 if (dev->netdev_ops->ndo_init) { 10301 ret = dev->netdev_ops->ndo_init(dev); 10302 if (ret) { 10303 if (ret > 0) 10304 ret = -EIO; 10305 goto err_free_name; 10306 } 10307 } 10308 10309 if (((dev->hw_features | dev->features) & 10310 NETIF_F_HW_VLAN_CTAG_FILTER) && 10311 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 10312 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 10313 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 10314 ret = -EINVAL; 10315 goto err_uninit; 10316 } 10317 10318 ret = netdev_do_alloc_pcpu_stats(dev); 10319 if (ret) 10320 goto err_uninit; 10321 10322 ret = dev_index_reserve(net, dev->ifindex); 10323 if (ret < 0) 10324 goto err_free_pcpu; 10325 dev->ifindex = ret; 10326 10327 /* Transfer changeable features to wanted_features and enable 10328 * software offloads (GSO and GRO). 10329 */ 10330 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF); 10331 dev->features |= NETIF_F_SOFT_FEATURES; 10332 10333 if (dev->udp_tunnel_nic_info) { 10334 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT; 10335 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT; 10336 } 10337 10338 dev->wanted_features = dev->features & dev->hw_features; 10339 10340 if (!(dev->flags & IFF_LOOPBACK)) 10341 dev->hw_features |= NETIF_F_NOCACHE_COPY; 10342 10343 /* If IPv4 TCP segmentation offload is supported we should also 10344 * allow the device to enable segmenting the frame with the option 10345 * of ignoring a static IP ID value. This doesn't enable the 10346 * feature itself but allows the user to enable it later. 10347 */ 10348 if (dev->hw_features & NETIF_F_TSO) 10349 dev->hw_features |= NETIF_F_TSO_MANGLEID; 10350 if (dev->vlan_features & NETIF_F_TSO) 10351 dev->vlan_features |= NETIF_F_TSO_MANGLEID; 10352 if (dev->mpls_features & NETIF_F_TSO) 10353 dev->mpls_features |= NETIF_F_TSO_MANGLEID; 10354 if (dev->hw_enc_features & NETIF_F_TSO) 10355 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 10356 10357 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 10358 */ 10359 dev->vlan_features |= NETIF_F_HIGHDMA; 10360 10361 /* Make NETIF_F_SG inheritable to tunnel devices. 10362 */ 10363 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL; 10364 10365 /* Make NETIF_F_SG inheritable to MPLS. 10366 */ 10367 dev->mpls_features |= NETIF_F_SG; 10368 10369 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 10370 ret = notifier_to_errno(ret); 10371 if (ret) 10372 goto err_ifindex_release; 10373 10374 ret = netdev_register_kobject(dev); 10375 10376 WRITE_ONCE(dev->reg_state, ret ? NETREG_UNREGISTERED : NETREG_REGISTERED); 10377 10378 if (ret) 10379 goto err_uninit_notify; 10380 10381 __netdev_update_features(dev); 10382 10383 /* 10384 * Default initial state at registry is that the 10385 * device is present. 10386 */ 10387 10388 set_bit(__LINK_STATE_PRESENT, &dev->state); 10389 10390 linkwatch_init_dev(dev); 10391 10392 dev_init_scheduler(dev); 10393 10394 netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL); 10395 list_netdevice(dev); 10396 10397 add_device_randomness(dev->dev_addr, dev->addr_len); 10398 10399 /* If the device has permanent device address, driver should 10400 * set dev_addr and also addr_assign_type should be set to 10401 * NET_ADDR_PERM (default value). 10402 */ 10403 if (dev->addr_assign_type == NET_ADDR_PERM) 10404 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 10405 10406 /* Notify protocols, that a new device appeared. */ 10407 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 10408 ret = notifier_to_errno(ret); 10409 if (ret) { 10410 /* Expect explicit free_netdev() on failure */ 10411 dev->needs_free_netdev = false; 10412 unregister_netdevice_queue(dev, NULL); 10413 goto out; 10414 } 10415 /* 10416 * Prevent userspace races by waiting until the network 10417 * device is fully setup before sending notifications. 10418 */ 10419 if (!dev->rtnl_link_ops || 10420 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 10421 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL); 10422 10423 out: 10424 return ret; 10425 10426 err_uninit_notify: 10427 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev); 10428 err_ifindex_release: 10429 dev_index_release(net, dev->ifindex); 10430 err_free_pcpu: 10431 netdev_do_free_pcpu_stats(dev); 10432 err_uninit: 10433 if (dev->netdev_ops->ndo_uninit) 10434 dev->netdev_ops->ndo_uninit(dev); 10435 if (dev->priv_destructor) 10436 dev->priv_destructor(dev); 10437 err_free_name: 10438 netdev_name_node_free(dev->name_node); 10439 goto out; 10440 } 10441 EXPORT_SYMBOL(register_netdevice); 10442 10443 /* Initialize the core of a dummy net device. 10444 * This is useful if you are calling this function after alloc_netdev(), 10445 * since it does not memset the net_device fields. 10446 */ 10447 static void init_dummy_netdev_core(struct net_device *dev) 10448 { 10449 /* make sure we BUG if trying to hit standard 10450 * register/unregister code path 10451 */ 10452 dev->reg_state = NETREG_DUMMY; 10453 10454 /* NAPI wants this */ 10455 INIT_LIST_HEAD(&dev->napi_list); 10456 10457 /* a dummy interface is started by default */ 10458 set_bit(__LINK_STATE_PRESENT, &dev->state); 10459 set_bit(__LINK_STATE_START, &dev->state); 10460 10461 /* napi_busy_loop stats accounting wants this */ 10462 dev_net_set(dev, &init_net); 10463 10464 /* Note : We dont allocate pcpu_refcnt for dummy devices, 10465 * because users of this 'device' dont need to change 10466 * its refcount. 10467 */ 10468 } 10469 10470 /** 10471 * init_dummy_netdev - init a dummy network device for NAPI 10472 * @dev: device to init 10473 * 10474 * This takes a network device structure and initializes the minimum 10475 * amount of fields so it can be used to schedule NAPI polls without 10476 * registering a full blown interface. This is to be used by drivers 10477 * that need to tie several hardware interfaces to a single NAPI 10478 * poll scheduler due to HW limitations. 10479 */ 10480 void init_dummy_netdev(struct net_device *dev) 10481 { 10482 /* Clear everything. Note we don't initialize spinlocks 10483 * as they aren't supposed to be taken by any of the 10484 * NAPI code and this dummy netdev is supposed to be 10485 * only ever used for NAPI polls 10486 */ 10487 memset(dev, 0, sizeof(struct net_device)); 10488 init_dummy_netdev_core(dev); 10489 } 10490 EXPORT_SYMBOL_GPL(init_dummy_netdev); 10491 10492 /** 10493 * register_netdev - register a network device 10494 * @dev: device to register 10495 * 10496 * Take a completed network device structure and add it to the kernel 10497 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 10498 * chain. 0 is returned on success. A negative errno code is returned 10499 * on a failure to set up the device, or if the name is a duplicate. 10500 * 10501 * This is a wrapper around register_netdevice that takes the rtnl semaphore 10502 * and expands the device name if you passed a format string to 10503 * alloc_netdev. 10504 */ 10505 int register_netdev(struct net_device *dev) 10506 { 10507 int err; 10508 10509 if (rtnl_lock_killable()) 10510 return -EINTR; 10511 err = register_netdevice(dev); 10512 rtnl_unlock(); 10513 return err; 10514 } 10515 EXPORT_SYMBOL(register_netdev); 10516 10517 int netdev_refcnt_read(const struct net_device *dev) 10518 { 10519 #ifdef CONFIG_PCPU_DEV_REFCNT 10520 int i, refcnt = 0; 10521 10522 for_each_possible_cpu(i) 10523 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 10524 return refcnt; 10525 #else 10526 return refcount_read(&dev->dev_refcnt); 10527 #endif 10528 } 10529 EXPORT_SYMBOL(netdev_refcnt_read); 10530 10531 int netdev_unregister_timeout_secs __read_mostly = 10; 10532 10533 #define WAIT_REFS_MIN_MSECS 1 10534 #define WAIT_REFS_MAX_MSECS 250 10535 /** 10536 * netdev_wait_allrefs_any - wait until all references are gone. 10537 * @list: list of net_devices to wait on 10538 * 10539 * This is called when unregistering network devices. 10540 * 10541 * Any protocol or device that holds a reference should register 10542 * for netdevice notification, and cleanup and put back the 10543 * reference if they receive an UNREGISTER event. 10544 * We can get stuck here if buggy protocols don't correctly 10545 * call dev_put. 10546 */ 10547 static struct net_device *netdev_wait_allrefs_any(struct list_head *list) 10548 { 10549 unsigned long rebroadcast_time, warning_time; 10550 struct net_device *dev; 10551 int wait = 0; 10552 10553 rebroadcast_time = warning_time = jiffies; 10554 10555 list_for_each_entry(dev, list, todo_list) 10556 if (netdev_refcnt_read(dev) == 1) 10557 return dev; 10558 10559 while (true) { 10560 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 10561 rtnl_lock(); 10562 10563 /* Rebroadcast unregister notification */ 10564 list_for_each_entry(dev, list, todo_list) 10565 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 10566 10567 __rtnl_unlock(); 10568 rcu_barrier(); 10569 rtnl_lock(); 10570 10571 list_for_each_entry(dev, list, todo_list) 10572 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 10573 &dev->state)) { 10574 /* We must not have linkwatch events 10575 * pending on unregister. If this 10576 * happens, we simply run the queue 10577 * unscheduled, resulting in a noop 10578 * for this device. 10579 */ 10580 linkwatch_run_queue(); 10581 break; 10582 } 10583 10584 __rtnl_unlock(); 10585 10586 rebroadcast_time = jiffies; 10587 } 10588 10589 rcu_barrier(); 10590 10591 if (!wait) { 10592 wait = WAIT_REFS_MIN_MSECS; 10593 } else { 10594 msleep(wait); 10595 wait = min(wait << 1, WAIT_REFS_MAX_MSECS); 10596 } 10597 10598 list_for_each_entry(dev, list, todo_list) 10599 if (netdev_refcnt_read(dev) == 1) 10600 return dev; 10601 10602 if (time_after(jiffies, warning_time + 10603 READ_ONCE(netdev_unregister_timeout_secs) * HZ)) { 10604 list_for_each_entry(dev, list, todo_list) { 10605 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 10606 dev->name, netdev_refcnt_read(dev)); 10607 ref_tracker_dir_print(&dev->refcnt_tracker, 10); 10608 } 10609 10610 warning_time = jiffies; 10611 } 10612 } 10613 } 10614 10615 /* The sequence is: 10616 * 10617 * rtnl_lock(); 10618 * ... 10619 * register_netdevice(x1); 10620 * register_netdevice(x2); 10621 * ... 10622 * unregister_netdevice(y1); 10623 * unregister_netdevice(y2); 10624 * ... 10625 * rtnl_unlock(); 10626 * free_netdev(y1); 10627 * free_netdev(y2); 10628 * 10629 * We are invoked by rtnl_unlock(). 10630 * This allows us to deal with problems: 10631 * 1) We can delete sysfs objects which invoke hotplug 10632 * without deadlocking with linkwatch via keventd. 10633 * 2) Since we run with the RTNL semaphore not held, we can sleep 10634 * safely in order to wait for the netdev refcnt to drop to zero. 10635 * 10636 * We must not return until all unregister events added during 10637 * the interval the lock was held have been completed. 10638 */ 10639 void netdev_run_todo(void) 10640 { 10641 struct net_device *dev, *tmp; 10642 struct list_head list; 10643 int cnt; 10644 #ifdef CONFIG_LOCKDEP 10645 struct list_head unlink_list; 10646 10647 list_replace_init(&net_unlink_list, &unlink_list); 10648 10649 while (!list_empty(&unlink_list)) { 10650 struct net_device *dev = list_first_entry(&unlink_list, 10651 struct net_device, 10652 unlink_list); 10653 list_del_init(&dev->unlink_list); 10654 dev->nested_level = dev->lower_level - 1; 10655 } 10656 #endif 10657 10658 /* Snapshot list, allow later requests */ 10659 list_replace_init(&net_todo_list, &list); 10660 10661 __rtnl_unlock(); 10662 10663 /* Wait for rcu callbacks to finish before next phase */ 10664 if (!list_empty(&list)) 10665 rcu_barrier(); 10666 10667 list_for_each_entry_safe(dev, tmp, &list, todo_list) { 10668 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 10669 netdev_WARN(dev, "run_todo but not unregistering\n"); 10670 list_del(&dev->todo_list); 10671 continue; 10672 } 10673 10674 WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERED); 10675 linkwatch_sync_dev(dev); 10676 } 10677 10678 cnt = 0; 10679 while (!list_empty(&list)) { 10680 dev = netdev_wait_allrefs_any(&list); 10681 list_del(&dev->todo_list); 10682 10683 /* paranoia */ 10684 BUG_ON(netdev_refcnt_read(dev) != 1); 10685 BUG_ON(!list_empty(&dev->ptype_all)); 10686 BUG_ON(!list_empty(&dev->ptype_specific)); 10687 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 10688 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 10689 10690 netdev_do_free_pcpu_stats(dev); 10691 if (dev->priv_destructor) 10692 dev->priv_destructor(dev); 10693 if (dev->needs_free_netdev) 10694 free_netdev(dev); 10695 10696 cnt++; 10697 10698 /* Free network device */ 10699 kobject_put(&dev->dev.kobj); 10700 } 10701 if (cnt && atomic_sub_and_test(cnt, &dev_unreg_count)) 10702 wake_up(&netdev_unregistering_wq); 10703 } 10704 10705 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has 10706 * all the same fields in the same order as net_device_stats, with only 10707 * the type differing, but rtnl_link_stats64 may have additional fields 10708 * at the end for newer counters. 10709 */ 10710 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 10711 const struct net_device_stats *netdev_stats) 10712 { 10713 size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t); 10714 const atomic_long_t *src = (atomic_long_t *)netdev_stats; 10715 u64 *dst = (u64 *)stats64; 10716 10717 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64)); 10718 for (i = 0; i < n; i++) 10719 dst[i] = (unsigned long)atomic_long_read(&src[i]); 10720 /* zero out counters that only exist in rtnl_link_stats64 */ 10721 memset((char *)stats64 + n * sizeof(u64), 0, 10722 sizeof(*stats64) - n * sizeof(u64)); 10723 } 10724 EXPORT_SYMBOL(netdev_stats_to_stats64); 10725 10726 static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc( 10727 struct net_device *dev) 10728 { 10729 struct net_device_core_stats __percpu *p; 10730 10731 p = alloc_percpu_gfp(struct net_device_core_stats, 10732 GFP_ATOMIC | __GFP_NOWARN); 10733 10734 if (p && cmpxchg(&dev->core_stats, NULL, p)) 10735 free_percpu(p); 10736 10737 /* This READ_ONCE() pairs with the cmpxchg() above */ 10738 return READ_ONCE(dev->core_stats); 10739 } 10740 10741 noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset) 10742 { 10743 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */ 10744 struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats); 10745 unsigned long __percpu *field; 10746 10747 if (unlikely(!p)) { 10748 p = netdev_core_stats_alloc(dev); 10749 if (!p) 10750 return; 10751 } 10752 10753 field = (__force unsigned long __percpu *)((__force void *)p + offset); 10754 this_cpu_inc(*field); 10755 } 10756 EXPORT_SYMBOL_GPL(netdev_core_stats_inc); 10757 10758 /** 10759 * dev_get_stats - get network device statistics 10760 * @dev: device to get statistics from 10761 * @storage: place to store stats 10762 * 10763 * Get network statistics from device. Return @storage. 10764 * The device driver may provide its own method by setting 10765 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 10766 * otherwise the internal statistics structure is used. 10767 */ 10768 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 10769 struct rtnl_link_stats64 *storage) 10770 { 10771 const struct net_device_ops *ops = dev->netdev_ops; 10772 const struct net_device_core_stats __percpu *p; 10773 10774 if (ops->ndo_get_stats64) { 10775 memset(storage, 0, sizeof(*storage)); 10776 ops->ndo_get_stats64(dev, storage); 10777 } else if (ops->ndo_get_stats) { 10778 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 10779 } else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_TSTATS) { 10780 dev_get_tstats64(dev, storage); 10781 } else { 10782 netdev_stats_to_stats64(storage, &dev->stats); 10783 } 10784 10785 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */ 10786 p = READ_ONCE(dev->core_stats); 10787 if (p) { 10788 const struct net_device_core_stats *core_stats; 10789 int i; 10790 10791 for_each_possible_cpu(i) { 10792 core_stats = per_cpu_ptr(p, i); 10793 storage->rx_dropped += READ_ONCE(core_stats->rx_dropped); 10794 storage->tx_dropped += READ_ONCE(core_stats->tx_dropped); 10795 storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler); 10796 storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped); 10797 } 10798 } 10799 return storage; 10800 } 10801 EXPORT_SYMBOL(dev_get_stats); 10802 10803 /** 10804 * dev_fetch_sw_netstats - get per-cpu network device statistics 10805 * @s: place to store stats 10806 * @netstats: per-cpu network stats to read from 10807 * 10808 * Read per-cpu network statistics and populate the related fields in @s. 10809 */ 10810 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s, 10811 const struct pcpu_sw_netstats __percpu *netstats) 10812 { 10813 int cpu; 10814 10815 for_each_possible_cpu(cpu) { 10816 u64 rx_packets, rx_bytes, tx_packets, tx_bytes; 10817 const struct pcpu_sw_netstats *stats; 10818 unsigned int start; 10819 10820 stats = per_cpu_ptr(netstats, cpu); 10821 do { 10822 start = u64_stats_fetch_begin(&stats->syncp); 10823 rx_packets = u64_stats_read(&stats->rx_packets); 10824 rx_bytes = u64_stats_read(&stats->rx_bytes); 10825 tx_packets = u64_stats_read(&stats->tx_packets); 10826 tx_bytes = u64_stats_read(&stats->tx_bytes); 10827 } while (u64_stats_fetch_retry(&stats->syncp, start)); 10828 10829 s->rx_packets += rx_packets; 10830 s->rx_bytes += rx_bytes; 10831 s->tx_packets += tx_packets; 10832 s->tx_bytes += tx_bytes; 10833 } 10834 } 10835 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats); 10836 10837 /** 10838 * dev_get_tstats64 - ndo_get_stats64 implementation 10839 * @dev: device to get statistics from 10840 * @s: place to store stats 10841 * 10842 * Populate @s from dev->stats and dev->tstats. Can be used as 10843 * ndo_get_stats64() callback. 10844 */ 10845 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s) 10846 { 10847 netdev_stats_to_stats64(s, &dev->stats); 10848 dev_fetch_sw_netstats(s, dev->tstats); 10849 } 10850 EXPORT_SYMBOL_GPL(dev_get_tstats64); 10851 10852 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 10853 { 10854 struct netdev_queue *queue = dev_ingress_queue(dev); 10855 10856 #ifdef CONFIG_NET_CLS_ACT 10857 if (queue) 10858 return queue; 10859 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 10860 if (!queue) 10861 return NULL; 10862 netdev_init_one_queue(dev, queue, NULL); 10863 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 10864 RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc); 10865 rcu_assign_pointer(dev->ingress_queue, queue); 10866 #endif 10867 return queue; 10868 } 10869 10870 static const struct ethtool_ops default_ethtool_ops; 10871 10872 void netdev_set_default_ethtool_ops(struct net_device *dev, 10873 const struct ethtool_ops *ops) 10874 { 10875 if (dev->ethtool_ops == &default_ethtool_ops) 10876 dev->ethtool_ops = ops; 10877 } 10878 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 10879 10880 /** 10881 * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default 10882 * @dev: netdev to enable the IRQ coalescing on 10883 * 10884 * Sets a conservative default for SW IRQ coalescing. Users can use 10885 * sysfs attributes to override the default values. 10886 */ 10887 void netdev_sw_irq_coalesce_default_on(struct net_device *dev) 10888 { 10889 WARN_ON(dev->reg_state == NETREG_REGISTERED); 10890 10891 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) { 10892 dev->gro_flush_timeout = 20000; 10893 dev->napi_defer_hard_irqs = 1; 10894 } 10895 } 10896 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on); 10897 10898 void netdev_freemem(struct net_device *dev) 10899 { 10900 char *addr = (char *)dev - dev->padded; 10901 10902 kvfree(addr); 10903 } 10904 10905 /** 10906 * alloc_netdev_mqs - allocate network device 10907 * @sizeof_priv: size of private data to allocate space for 10908 * @name: device name format string 10909 * @name_assign_type: origin of device name 10910 * @setup: callback to initialize device 10911 * @txqs: the number of TX subqueues to allocate 10912 * @rxqs: the number of RX subqueues to allocate 10913 * 10914 * Allocates a struct net_device with private data area for driver use 10915 * and performs basic initialization. Also allocates subqueue structs 10916 * for each queue on the device. 10917 */ 10918 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 10919 unsigned char name_assign_type, 10920 void (*setup)(struct net_device *), 10921 unsigned int txqs, unsigned int rxqs) 10922 { 10923 struct net_device *dev; 10924 unsigned int alloc_size; 10925 struct net_device *p; 10926 10927 BUG_ON(strlen(name) >= sizeof(dev->name)); 10928 10929 if (txqs < 1) { 10930 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 10931 return NULL; 10932 } 10933 10934 if (rxqs < 1) { 10935 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 10936 return NULL; 10937 } 10938 10939 alloc_size = sizeof(struct net_device); 10940 if (sizeof_priv) { 10941 /* ensure 32-byte alignment of private area */ 10942 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 10943 alloc_size += sizeof_priv; 10944 } 10945 /* ensure 32-byte alignment of whole construct */ 10946 alloc_size += NETDEV_ALIGN - 1; 10947 10948 p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); 10949 if (!p) 10950 return NULL; 10951 10952 dev = PTR_ALIGN(p, NETDEV_ALIGN); 10953 dev->padded = (char *)dev - (char *)p; 10954 10955 ref_tracker_dir_init(&dev->refcnt_tracker, 128, name); 10956 #ifdef CONFIG_PCPU_DEV_REFCNT 10957 dev->pcpu_refcnt = alloc_percpu(int); 10958 if (!dev->pcpu_refcnt) 10959 goto free_dev; 10960 __dev_hold(dev); 10961 #else 10962 refcount_set(&dev->dev_refcnt, 1); 10963 #endif 10964 10965 if (dev_addr_init(dev)) 10966 goto free_pcpu; 10967 10968 dev_mc_init(dev); 10969 dev_uc_init(dev); 10970 10971 dev_net_set(dev, &init_net); 10972 10973 dev->gso_max_size = GSO_LEGACY_MAX_SIZE; 10974 dev->xdp_zc_max_segs = 1; 10975 dev->gso_max_segs = GSO_MAX_SEGS; 10976 dev->gro_max_size = GRO_LEGACY_MAX_SIZE; 10977 dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE; 10978 dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE; 10979 dev->tso_max_size = TSO_LEGACY_MAX_SIZE; 10980 dev->tso_max_segs = TSO_MAX_SEGS; 10981 dev->upper_level = 1; 10982 dev->lower_level = 1; 10983 #ifdef CONFIG_LOCKDEP 10984 dev->nested_level = 0; 10985 INIT_LIST_HEAD(&dev->unlink_list); 10986 #endif 10987 10988 INIT_LIST_HEAD(&dev->napi_list); 10989 INIT_LIST_HEAD(&dev->unreg_list); 10990 INIT_LIST_HEAD(&dev->close_list); 10991 INIT_LIST_HEAD(&dev->link_watch_list); 10992 INIT_LIST_HEAD(&dev->adj_list.upper); 10993 INIT_LIST_HEAD(&dev->adj_list.lower); 10994 INIT_LIST_HEAD(&dev->ptype_all); 10995 INIT_LIST_HEAD(&dev->ptype_specific); 10996 INIT_LIST_HEAD(&dev->net_notifier_list); 10997 #ifdef CONFIG_NET_SCHED 10998 hash_init(dev->qdisc_hash); 10999 #endif 11000 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 11001 setup(dev); 11002 11003 if (!dev->tx_queue_len) { 11004 dev->priv_flags |= IFF_NO_QUEUE; 11005 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; 11006 } 11007 11008 dev->num_tx_queues = txqs; 11009 dev->real_num_tx_queues = txqs; 11010 if (netif_alloc_netdev_queues(dev)) 11011 goto free_all; 11012 11013 dev->num_rx_queues = rxqs; 11014 dev->real_num_rx_queues = rxqs; 11015 if (netif_alloc_rx_queues(dev)) 11016 goto free_all; 11017 11018 strcpy(dev->name, name); 11019 dev->name_assign_type = name_assign_type; 11020 dev->group = INIT_NETDEV_GROUP; 11021 if (!dev->ethtool_ops) 11022 dev->ethtool_ops = &default_ethtool_ops; 11023 11024 nf_hook_netdev_init(dev); 11025 11026 return dev; 11027 11028 free_all: 11029 free_netdev(dev); 11030 return NULL; 11031 11032 free_pcpu: 11033 #ifdef CONFIG_PCPU_DEV_REFCNT 11034 free_percpu(dev->pcpu_refcnt); 11035 free_dev: 11036 #endif 11037 netdev_freemem(dev); 11038 return NULL; 11039 } 11040 EXPORT_SYMBOL(alloc_netdev_mqs); 11041 11042 /** 11043 * free_netdev - free network device 11044 * @dev: device 11045 * 11046 * This function does the last stage of destroying an allocated device 11047 * interface. The reference to the device object is released. If this 11048 * is the last reference then it will be freed.Must be called in process 11049 * context. 11050 */ 11051 void free_netdev(struct net_device *dev) 11052 { 11053 struct napi_struct *p, *n; 11054 11055 might_sleep(); 11056 11057 /* When called immediately after register_netdevice() failed the unwind 11058 * handling may still be dismantling the device. Handle that case by 11059 * deferring the free. 11060 */ 11061 if (dev->reg_state == NETREG_UNREGISTERING) { 11062 ASSERT_RTNL(); 11063 dev->needs_free_netdev = true; 11064 return; 11065 } 11066 11067 netif_free_tx_queues(dev); 11068 netif_free_rx_queues(dev); 11069 11070 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 11071 11072 /* Flush device addresses */ 11073 dev_addr_flush(dev); 11074 11075 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 11076 netif_napi_del(p); 11077 11078 ref_tracker_dir_exit(&dev->refcnt_tracker); 11079 #ifdef CONFIG_PCPU_DEV_REFCNT 11080 free_percpu(dev->pcpu_refcnt); 11081 dev->pcpu_refcnt = NULL; 11082 #endif 11083 free_percpu(dev->core_stats); 11084 dev->core_stats = NULL; 11085 free_percpu(dev->xdp_bulkq); 11086 dev->xdp_bulkq = NULL; 11087 11088 /* Compatibility with error handling in drivers */ 11089 if (dev->reg_state == NETREG_UNINITIALIZED || 11090 dev->reg_state == NETREG_DUMMY) { 11091 netdev_freemem(dev); 11092 return; 11093 } 11094 11095 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 11096 WRITE_ONCE(dev->reg_state, NETREG_RELEASED); 11097 11098 /* will free via device release */ 11099 put_device(&dev->dev); 11100 } 11101 EXPORT_SYMBOL(free_netdev); 11102 11103 /** 11104 * alloc_netdev_dummy - Allocate and initialize a dummy net device. 11105 * @sizeof_priv: size of private data to allocate space for 11106 * 11107 * Return: the allocated net_device on success, NULL otherwise 11108 */ 11109 struct net_device *alloc_netdev_dummy(int sizeof_priv) 11110 { 11111 return alloc_netdev(sizeof_priv, "dummy#", NET_NAME_UNKNOWN, 11112 init_dummy_netdev_core); 11113 } 11114 EXPORT_SYMBOL_GPL(alloc_netdev_dummy); 11115 11116 /** 11117 * synchronize_net - Synchronize with packet receive processing 11118 * 11119 * Wait for packets currently being received to be done. 11120 * Does not block later packets from starting. 11121 */ 11122 void synchronize_net(void) 11123 { 11124 might_sleep(); 11125 if (rtnl_is_locked()) 11126 synchronize_rcu_expedited(); 11127 else 11128 synchronize_rcu(); 11129 } 11130 EXPORT_SYMBOL(synchronize_net); 11131 11132 /** 11133 * unregister_netdevice_queue - remove device from the kernel 11134 * @dev: device 11135 * @head: list 11136 * 11137 * This function shuts down a device interface and removes it 11138 * from the kernel tables. 11139 * If head not NULL, device is queued to be unregistered later. 11140 * 11141 * Callers must hold the rtnl semaphore. You may want 11142 * unregister_netdev() instead of this. 11143 */ 11144 11145 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 11146 { 11147 ASSERT_RTNL(); 11148 11149 if (head) { 11150 list_move_tail(&dev->unreg_list, head); 11151 } else { 11152 LIST_HEAD(single); 11153 11154 list_add(&dev->unreg_list, &single); 11155 unregister_netdevice_many(&single); 11156 } 11157 } 11158 EXPORT_SYMBOL(unregister_netdevice_queue); 11159 11160 void unregister_netdevice_many_notify(struct list_head *head, 11161 u32 portid, const struct nlmsghdr *nlh) 11162 { 11163 struct net_device *dev, *tmp; 11164 LIST_HEAD(close_head); 11165 int cnt = 0; 11166 11167 BUG_ON(dev_boot_phase); 11168 ASSERT_RTNL(); 11169 11170 if (list_empty(head)) 11171 return; 11172 11173 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 11174 /* Some devices call without registering 11175 * for initialization unwind. Remove those 11176 * devices and proceed with the remaining. 11177 */ 11178 if (dev->reg_state == NETREG_UNINITIALIZED) { 11179 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 11180 dev->name, dev); 11181 11182 WARN_ON(1); 11183 list_del(&dev->unreg_list); 11184 continue; 11185 } 11186 dev->dismantle = true; 11187 BUG_ON(dev->reg_state != NETREG_REGISTERED); 11188 } 11189 11190 /* If device is running, close it first. */ 11191 list_for_each_entry(dev, head, unreg_list) 11192 list_add_tail(&dev->close_list, &close_head); 11193 dev_close_many(&close_head, true); 11194 11195 list_for_each_entry(dev, head, unreg_list) { 11196 /* And unlink it from device chain. */ 11197 unlist_netdevice(dev); 11198 WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERING); 11199 } 11200 flush_all_backlogs(); 11201 11202 synchronize_net(); 11203 11204 list_for_each_entry(dev, head, unreg_list) { 11205 struct sk_buff *skb = NULL; 11206 11207 /* Shutdown queueing discipline. */ 11208 dev_shutdown(dev); 11209 dev_tcx_uninstall(dev); 11210 dev_xdp_uninstall(dev); 11211 bpf_dev_bound_netdev_unregister(dev); 11212 11213 netdev_offload_xstats_disable_all(dev); 11214 11215 /* Notify protocols, that we are about to destroy 11216 * this device. They should clean all the things. 11217 */ 11218 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 11219 11220 if (!dev->rtnl_link_ops || 11221 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 11222 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0, 11223 GFP_KERNEL, NULL, 0, 11224 portid, nlh); 11225 11226 /* 11227 * Flush the unicast and multicast chains 11228 */ 11229 dev_uc_flush(dev); 11230 dev_mc_flush(dev); 11231 11232 netdev_name_node_alt_flush(dev); 11233 netdev_name_node_free(dev->name_node); 11234 11235 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev); 11236 11237 if (dev->netdev_ops->ndo_uninit) 11238 dev->netdev_ops->ndo_uninit(dev); 11239 11240 if (skb) 11241 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh); 11242 11243 /* Notifier chain MUST detach us all upper devices. */ 11244 WARN_ON(netdev_has_any_upper_dev(dev)); 11245 WARN_ON(netdev_has_any_lower_dev(dev)); 11246 11247 /* Remove entries from kobject tree */ 11248 netdev_unregister_kobject(dev); 11249 #ifdef CONFIG_XPS 11250 /* Remove XPS queueing entries */ 11251 netif_reset_xps_queues_gt(dev, 0); 11252 #endif 11253 } 11254 11255 synchronize_net(); 11256 11257 list_for_each_entry(dev, head, unreg_list) { 11258 netdev_put(dev, &dev->dev_registered_tracker); 11259 net_set_todo(dev); 11260 cnt++; 11261 } 11262 atomic_add(cnt, &dev_unreg_count); 11263 11264 list_del(head); 11265 } 11266 11267 /** 11268 * unregister_netdevice_many - unregister many devices 11269 * @head: list of devices 11270 * 11271 * Note: As most callers use a stack allocated list_head, 11272 * we force a list_del() to make sure stack wont be corrupted later. 11273 */ 11274 void unregister_netdevice_many(struct list_head *head) 11275 { 11276 unregister_netdevice_many_notify(head, 0, NULL); 11277 } 11278 EXPORT_SYMBOL(unregister_netdevice_many); 11279 11280 /** 11281 * unregister_netdev - remove device from the kernel 11282 * @dev: device 11283 * 11284 * This function shuts down a device interface and removes it 11285 * from the kernel tables. 11286 * 11287 * This is just a wrapper for unregister_netdevice that takes 11288 * the rtnl semaphore. In general you want to use this and not 11289 * unregister_netdevice. 11290 */ 11291 void unregister_netdev(struct net_device *dev) 11292 { 11293 rtnl_lock(); 11294 unregister_netdevice(dev); 11295 rtnl_unlock(); 11296 } 11297 EXPORT_SYMBOL(unregister_netdev); 11298 11299 /** 11300 * __dev_change_net_namespace - move device to different nethost namespace 11301 * @dev: device 11302 * @net: network namespace 11303 * @pat: If not NULL name pattern to try if the current device name 11304 * is already taken in the destination network namespace. 11305 * @new_ifindex: If not zero, specifies device index in the target 11306 * namespace. 11307 * 11308 * This function shuts down a device interface and moves it 11309 * to a new network namespace. On success 0 is returned, on 11310 * a failure a netagive errno code is returned. 11311 * 11312 * Callers must hold the rtnl semaphore. 11313 */ 11314 11315 int __dev_change_net_namespace(struct net_device *dev, struct net *net, 11316 const char *pat, int new_ifindex) 11317 { 11318 struct netdev_name_node *name_node; 11319 struct net *net_old = dev_net(dev); 11320 char new_name[IFNAMSIZ] = {}; 11321 int err, new_nsid; 11322 11323 ASSERT_RTNL(); 11324 11325 /* Don't allow namespace local devices to be moved. */ 11326 err = -EINVAL; 11327 if (dev->features & NETIF_F_NETNS_LOCAL) 11328 goto out; 11329 11330 /* Ensure the device has been registrered */ 11331 if (dev->reg_state != NETREG_REGISTERED) 11332 goto out; 11333 11334 /* Get out if there is nothing todo */ 11335 err = 0; 11336 if (net_eq(net_old, net)) 11337 goto out; 11338 11339 /* Pick the destination device name, and ensure 11340 * we can use it in the destination network namespace. 11341 */ 11342 err = -EEXIST; 11343 if (netdev_name_in_use(net, dev->name)) { 11344 /* We get here if we can't use the current device name */ 11345 if (!pat) 11346 goto out; 11347 err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST); 11348 if (err < 0) 11349 goto out; 11350 } 11351 /* Check that none of the altnames conflicts. */ 11352 err = -EEXIST; 11353 netdev_for_each_altname(dev, name_node) 11354 if (netdev_name_in_use(net, name_node->name)) 11355 goto out; 11356 11357 /* Check that new_ifindex isn't used yet. */ 11358 if (new_ifindex) { 11359 err = dev_index_reserve(net, new_ifindex); 11360 if (err < 0) 11361 goto out; 11362 } else { 11363 /* If there is an ifindex conflict assign a new one */ 11364 err = dev_index_reserve(net, dev->ifindex); 11365 if (err == -EBUSY) 11366 err = dev_index_reserve(net, 0); 11367 if (err < 0) 11368 goto out; 11369 new_ifindex = err; 11370 } 11371 11372 /* 11373 * And now a mini version of register_netdevice unregister_netdevice. 11374 */ 11375 11376 /* If device is running close it first. */ 11377 dev_close(dev); 11378 11379 /* And unlink it from device chain */ 11380 unlist_netdevice(dev); 11381 11382 synchronize_net(); 11383 11384 /* Shutdown queueing discipline. */ 11385 dev_shutdown(dev); 11386 11387 /* Notify protocols, that we are about to destroy 11388 * this device. They should clean all the things. 11389 * 11390 * Note that dev->reg_state stays at NETREG_REGISTERED. 11391 * This is wanted because this way 8021q and macvlan know 11392 * the device is just moving and can keep their slaves up. 11393 */ 11394 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 11395 rcu_barrier(); 11396 11397 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL); 11398 11399 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid, 11400 new_ifindex); 11401 11402 /* 11403 * Flush the unicast and multicast chains 11404 */ 11405 dev_uc_flush(dev); 11406 dev_mc_flush(dev); 11407 11408 /* Send a netdev-removed uevent to the old namespace */ 11409 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 11410 netdev_adjacent_del_links(dev); 11411 11412 /* Move per-net netdevice notifiers that are following the netdevice */ 11413 move_netdevice_notifiers_dev_net(dev, net); 11414 11415 /* Actually switch the network namespace */ 11416 dev_net_set(dev, net); 11417 dev->ifindex = new_ifindex; 11418 11419 if (new_name[0]) { 11420 /* Rename the netdev to prepared name */ 11421 write_seqlock(&netdev_rename_lock); 11422 strscpy(dev->name, new_name, IFNAMSIZ); 11423 write_sequnlock(&netdev_rename_lock); 11424 } 11425 11426 /* Fixup kobjects */ 11427 dev_set_uevent_suppress(&dev->dev, 1); 11428 err = device_rename(&dev->dev, dev->name); 11429 dev_set_uevent_suppress(&dev->dev, 0); 11430 WARN_ON(err); 11431 11432 /* Send a netdev-add uevent to the new namespace */ 11433 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 11434 netdev_adjacent_add_links(dev); 11435 11436 /* Adapt owner in case owning user namespace of target network 11437 * namespace is different from the original one. 11438 */ 11439 err = netdev_change_owner(dev, net_old, net); 11440 WARN_ON(err); 11441 11442 /* Add the device back in the hashes */ 11443 list_netdevice(dev); 11444 11445 /* Notify protocols, that a new device appeared. */ 11446 call_netdevice_notifiers(NETDEV_REGISTER, dev); 11447 11448 /* 11449 * Prevent userspace races by waiting until the network 11450 * device is fully setup before sending notifications. 11451 */ 11452 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL); 11453 11454 synchronize_net(); 11455 err = 0; 11456 out: 11457 return err; 11458 } 11459 EXPORT_SYMBOL_GPL(__dev_change_net_namespace); 11460 11461 static int dev_cpu_dead(unsigned int oldcpu) 11462 { 11463 struct sk_buff **list_skb; 11464 struct sk_buff *skb; 11465 unsigned int cpu; 11466 struct softnet_data *sd, *oldsd, *remsd = NULL; 11467 11468 local_irq_disable(); 11469 cpu = smp_processor_id(); 11470 sd = &per_cpu(softnet_data, cpu); 11471 oldsd = &per_cpu(softnet_data, oldcpu); 11472 11473 /* Find end of our completion_queue. */ 11474 list_skb = &sd->completion_queue; 11475 while (*list_skb) 11476 list_skb = &(*list_skb)->next; 11477 /* Append completion queue from offline CPU. */ 11478 *list_skb = oldsd->completion_queue; 11479 oldsd->completion_queue = NULL; 11480 11481 /* Append output queue from offline CPU. */ 11482 if (oldsd->output_queue) { 11483 *sd->output_queue_tailp = oldsd->output_queue; 11484 sd->output_queue_tailp = oldsd->output_queue_tailp; 11485 oldsd->output_queue = NULL; 11486 oldsd->output_queue_tailp = &oldsd->output_queue; 11487 } 11488 /* Append NAPI poll list from offline CPU, with one exception : 11489 * process_backlog() must be called by cpu owning percpu backlog. 11490 * We properly handle process_queue & input_pkt_queue later. 11491 */ 11492 while (!list_empty(&oldsd->poll_list)) { 11493 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 11494 struct napi_struct, 11495 poll_list); 11496 11497 list_del_init(&napi->poll_list); 11498 if (napi->poll == process_backlog) 11499 napi->state &= NAPIF_STATE_THREADED; 11500 else 11501 ____napi_schedule(sd, napi); 11502 } 11503 11504 raise_softirq_irqoff(NET_TX_SOFTIRQ); 11505 local_irq_enable(); 11506 11507 if (!use_backlog_threads()) { 11508 #ifdef CONFIG_RPS 11509 remsd = oldsd->rps_ipi_list; 11510 oldsd->rps_ipi_list = NULL; 11511 #endif 11512 /* send out pending IPI's on offline CPU */ 11513 net_rps_send_ipi(remsd); 11514 } 11515 11516 /* Process offline CPU's input_pkt_queue */ 11517 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 11518 netif_rx(skb); 11519 rps_input_queue_head_incr(oldsd); 11520 } 11521 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 11522 netif_rx(skb); 11523 rps_input_queue_head_incr(oldsd); 11524 } 11525 11526 return 0; 11527 } 11528 11529 /** 11530 * netdev_increment_features - increment feature set by one 11531 * @all: current feature set 11532 * @one: new feature set 11533 * @mask: mask feature set 11534 * 11535 * Computes a new feature set after adding a device with feature set 11536 * @one to the master device with current feature set @all. Will not 11537 * enable anything that is off in @mask. Returns the new feature set. 11538 */ 11539 netdev_features_t netdev_increment_features(netdev_features_t all, 11540 netdev_features_t one, netdev_features_t mask) 11541 { 11542 if (mask & NETIF_F_HW_CSUM) 11543 mask |= NETIF_F_CSUM_MASK; 11544 mask |= NETIF_F_VLAN_CHALLENGED; 11545 11546 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask; 11547 all &= one | ~NETIF_F_ALL_FOR_ALL; 11548 11549 /* If one device supports hw checksumming, set for all. */ 11550 if (all & NETIF_F_HW_CSUM) 11551 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM); 11552 11553 return all; 11554 } 11555 EXPORT_SYMBOL(netdev_increment_features); 11556 11557 static struct hlist_head * __net_init netdev_create_hash(void) 11558 { 11559 int i; 11560 struct hlist_head *hash; 11561 11562 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL); 11563 if (hash != NULL) 11564 for (i = 0; i < NETDEV_HASHENTRIES; i++) 11565 INIT_HLIST_HEAD(&hash[i]); 11566 11567 return hash; 11568 } 11569 11570 /* Initialize per network namespace state */ 11571 static int __net_init netdev_init(struct net *net) 11572 { 11573 BUILD_BUG_ON(GRO_HASH_BUCKETS > 11574 8 * sizeof_field(struct napi_struct, gro_bitmask)); 11575 11576 INIT_LIST_HEAD(&net->dev_base_head); 11577 11578 net->dev_name_head = netdev_create_hash(); 11579 if (net->dev_name_head == NULL) 11580 goto err_name; 11581 11582 net->dev_index_head = netdev_create_hash(); 11583 if (net->dev_index_head == NULL) 11584 goto err_idx; 11585 11586 xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1); 11587 11588 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain); 11589 11590 return 0; 11591 11592 err_idx: 11593 kfree(net->dev_name_head); 11594 err_name: 11595 return -ENOMEM; 11596 } 11597 11598 /** 11599 * netdev_drivername - network driver for the device 11600 * @dev: network device 11601 * 11602 * Determine network driver for device. 11603 */ 11604 const char *netdev_drivername(const struct net_device *dev) 11605 { 11606 const struct device_driver *driver; 11607 const struct device *parent; 11608 const char *empty = ""; 11609 11610 parent = dev->dev.parent; 11611 if (!parent) 11612 return empty; 11613 11614 driver = parent->driver; 11615 if (driver && driver->name) 11616 return driver->name; 11617 return empty; 11618 } 11619 11620 static void __netdev_printk(const char *level, const struct net_device *dev, 11621 struct va_format *vaf) 11622 { 11623 if (dev && dev->dev.parent) { 11624 dev_printk_emit(level[1] - '0', 11625 dev->dev.parent, 11626 "%s %s %s%s: %pV", 11627 dev_driver_string(dev->dev.parent), 11628 dev_name(dev->dev.parent), 11629 netdev_name(dev), netdev_reg_state(dev), 11630 vaf); 11631 } else if (dev) { 11632 printk("%s%s%s: %pV", 11633 level, netdev_name(dev), netdev_reg_state(dev), vaf); 11634 } else { 11635 printk("%s(NULL net_device): %pV", level, vaf); 11636 } 11637 } 11638 11639 void netdev_printk(const char *level, const struct net_device *dev, 11640 const char *format, ...) 11641 { 11642 struct va_format vaf; 11643 va_list args; 11644 11645 va_start(args, format); 11646 11647 vaf.fmt = format; 11648 vaf.va = &args; 11649 11650 __netdev_printk(level, dev, &vaf); 11651 11652 va_end(args); 11653 } 11654 EXPORT_SYMBOL(netdev_printk); 11655 11656 #define define_netdev_printk_level(func, level) \ 11657 void func(const struct net_device *dev, const char *fmt, ...) \ 11658 { \ 11659 struct va_format vaf; \ 11660 va_list args; \ 11661 \ 11662 va_start(args, fmt); \ 11663 \ 11664 vaf.fmt = fmt; \ 11665 vaf.va = &args; \ 11666 \ 11667 __netdev_printk(level, dev, &vaf); \ 11668 \ 11669 va_end(args); \ 11670 } \ 11671 EXPORT_SYMBOL(func); 11672 11673 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 11674 define_netdev_printk_level(netdev_alert, KERN_ALERT); 11675 define_netdev_printk_level(netdev_crit, KERN_CRIT); 11676 define_netdev_printk_level(netdev_err, KERN_ERR); 11677 define_netdev_printk_level(netdev_warn, KERN_WARNING); 11678 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 11679 define_netdev_printk_level(netdev_info, KERN_INFO); 11680 11681 static void __net_exit netdev_exit(struct net *net) 11682 { 11683 kfree(net->dev_name_head); 11684 kfree(net->dev_index_head); 11685 xa_destroy(&net->dev_by_index); 11686 if (net != &init_net) 11687 WARN_ON_ONCE(!list_empty(&net->dev_base_head)); 11688 } 11689 11690 static struct pernet_operations __net_initdata netdev_net_ops = { 11691 .init = netdev_init, 11692 .exit = netdev_exit, 11693 }; 11694 11695 static void __net_exit default_device_exit_net(struct net *net) 11696 { 11697 struct netdev_name_node *name_node, *tmp; 11698 struct net_device *dev, *aux; 11699 /* 11700 * Push all migratable network devices back to the 11701 * initial network namespace 11702 */ 11703 ASSERT_RTNL(); 11704 for_each_netdev_safe(net, dev, aux) { 11705 int err; 11706 char fb_name[IFNAMSIZ]; 11707 11708 /* Ignore unmoveable devices (i.e. loopback) */ 11709 if (dev->features & NETIF_F_NETNS_LOCAL) 11710 continue; 11711 11712 /* Leave virtual devices for the generic cleanup */ 11713 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund) 11714 continue; 11715 11716 /* Push remaining network devices to init_net */ 11717 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 11718 if (netdev_name_in_use(&init_net, fb_name)) 11719 snprintf(fb_name, IFNAMSIZ, "dev%%d"); 11720 11721 netdev_for_each_altname_safe(dev, name_node, tmp) 11722 if (netdev_name_in_use(&init_net, name_node->name)) 11723 __netdev_name_node_alt_destroy(name_node); 11724 11725 err = dev_change_net_namespace(dev, &init_net, fb_name); 11726 if (err) { 11727 pr_emerg("%s: failed to move %s to init_net: %d\n", 11728 __func__, dev->name, err); 11729 BUG(); 11730 } 11731 } 11732 } 11733 11734 static void __net_exit default_device_exit_batch(struct list_head *net_list) 11735 { 11736 /* At exit all network devices most be removed from a network 11737 * namespace. Do this in the reverse order of registration. 11738 * Do this across as many network namespaces as possible to 11739 * improve batching efficiency. 11740 */ 11741 struct net_device *dev; 11742 struct net *net; 11743 LIST_HEAD(dev_kill_list); 11744 11745 rtnl_lock(); 11746 list_for_each_entry(net, net_list, exit_list) { 11747 default_device_exit_net(net); 11748 cond_resched(); 11749 } 11750 11751 list_for_each_entry(net, net_list, exit_list) { 11752 for_each_netdev_reverse(net, dev) { 11753 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 11754 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 11755 else 11756 unregister_netdevice_queue(dev, &dev_kill_list); 11757 } 11758 } 11759 unregister_netdevice_many(&dev_kill_list); 11760 rtnl_unlock(); 11761 } 11762 11763 static struct pernet_operations __net_initdata default_device_ops = { 11764 .exit_batch = default_device_exit_batch, 11765 }; 11766 11767 static void __init net_dev_struct_check(void) 11768 { 11769 /* TX read-mostly hotpath */ 11770 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, priv_flags); 11771 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, netdev_ops); 11772 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, header_ops); 11773 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, _tx); 11774 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, real_num_tx_queues); 11775 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_size); 11776 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_ipv4_max_size); 11777 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_segs); 11778 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_partial_features); 11779 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, num_tc); 11780 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, mtu); 11781 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, needed_headroom); 11782 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tc_to_txq); 11783 #ifdef CONFIG_XPS 11784 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, xps_maps); 11785 #endif 11786 #ifdef CONFIG_NETFILTER_EGRESS 11787 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, nf_hooks_egress); 11788 #endif 11789 #ifdef CONFIG_NET_XGRESS 11790 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tcx_egress); 11791 #endif 11792 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_tx, 160); 11793 11794 /* TXRX read-mostly hotpath */ 11795 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, lstats); 11796 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, state); 11797 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, flags); 11798 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, hard_header_len); 11799 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, features); 11800 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, ip6_ptr); 11801 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_txrx, 46); 11802 11803 /* RX read-mostly hotpath */ 11804 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ptype_specific); 11805 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ifindex); 11806 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, real_num_rx_queues); 11807 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, _rx); 11808 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_flush_timeout); 11809 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, napi_defer_hard_irqs); 11810 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_max_size); 11811 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_ipv4_max_size); 11812 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler); 11813 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler_data); 11814 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, nd_net); 11815 #ifdef CONFIG_NETPOLL 11816 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, npinfo); 11817 #endif 11818 #ifdef CONFIG_NET_XGRESS 11819 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, tcx_ingress); 11820 #endif 11821 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_rx, 104); 11822 } 11823 11824 /* 11825 * Initialize the DEV module. At boot time this walks the device list and 11826 * unhooks any devices that fail to initialise (normally hardware not 11827 * present) and leaves us with a valid list of present and active devices. 11828 * 11829 */ 11830 11831 /* We allocate 256 pages for each CPU if PAGE_SHIFT is 12 */ 11832 #define SYSTEM_PERCPU_PAGE_POOL_SIZE ((1 << 20) / PAGE_SIZE) 11833 11834 static int net_page_pool_create(int cpuid) 11835 { 11836 #if IS_ENABLED(CONFIG_PAGE_POOL) 11837 struct page_pool_params page_pool_params = { 11838 .pool_size = SYSTEM_PERCPU_PAGE_POOL_SIZE, 11839 .flags = PP_FLAG_SYSTEM_POOL, 11840 .nid = cpu_to_mem(cpuid), 11841 }; 11842 struct page_pool *pp_ptr; 11843 11844 pp_ptr = page_pool_create_percpu(&page_pool_params, cpuid); 11845 if (IS_ERR(pp_ptr)) 11846 return -ENOMEM; 11847 11848 per_cpu(system_page_pool, cpuid) = pp_ptr; 11849 #endif 11850 return 0; 11851 } 11852 11853 static int backlog_napi_should_run(unsigned int cpu) 11854 { 11855 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu); 11856 struct napi_struct *napi = &sd->backlog; 11857 11858 return test_bit(NAPI_STATE_SCHED_THREADED, &napi->state); 11859 } 11860 11861 static void run_backlog_napi(unsigned int cpu) 11862 { 11863 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu); 11864 11865 napi_threaded_poll_loop(&sd->backlog); 11866 } 11867 11868 static void backlog_napi_setup(unsigned int cpu) 11869 { 11870 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu); 11871 struct napi_struct *napi = &sd->backlog; 11872 11873 napi->thread = this_cpu_read(backlog_napi); 11874 set_bit(NAPI_STATE_THREADED, &napi->state); 11875 } 11876 11877 static struct smp_hotplug_thread backlog_threads = { 11878 .store = &backlog_napi, 11879 .thread_should_run = backlog_napi_should_run, 11880 .thread_fn = run_backlog_napi, 11881 .thread_comm = "backlog_napi/%u", 11882 .setup = backlog_napi_setup, 11883 }; 11884 11885 /* 11886 * This is called single threaded during boot, so no need 11887 * to take the rtnl semaphore. 11888 */ 11889 static int __init net_dev_init(void) 11890 { 11891 int i, rc = -ENOMEM; 11892 11893 BUG_ON(!dev_boot_phase); 11894 11895 net_dev_struct_check(); 11896 11897 if (dev_proc_init()) 11898 goto out; 11899 11900 if (netdev_kobject_init()) 11901 goto out; 11902 11903 for (i = 0; i < PTYPE_HASH_SIZE; i++) 11904 INIT_LIST_HEAD(&ptype_base[i]); 11905 11906 if (register_pernet_subsys(&netdev_net_ops)) 11907 goto out; 11908 11909 /* 11910 * Initialise the packet receive queues. 11911 */ 11912 11913 for_each_possible_cpu(i) { 11914 struct work_struct *flush = per_cpu_ptr(&flush_works, i); 11915 struct softnet_data *sd = &per_cpu(softnet_data, i); 11916 11917 INIT_WORK(flush, flush_backlog); 11918 11919 skb_queue_head_init(&sd->input_pkt_queue); 11920 skb_queue_head_init(&sd->process_queue); 11921 #ifdef CONFIG_XFRM_OFFLOAD 11922 skb_queue_head_init(&sd->xfrm_backlog); 11923 #endif 11924 INIT_LIST_HEAD(&sd->poll_list); 11925 sd->output_queue_tailp = &sd->output_queue; 11926 #ifdef CONFIG_RPS 11927 INIT_CSD(&sd->csd, rps_trigger_softirq, sd); 11928 sd->cpu = i; 11929 #endif 11930 INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd); 11931 spin_lock_init(&sd->defer_lock); 11932 11933 init_gro_hash(&sd->backlog); 11934 sd->backlog.poll = process_backlog; 11935 sd->backlog.weight = weight_p; 11936 INIT_LIST_HEAD(&sd->backlog.poll_list); 11937 11938 if (net_page_pool_create(i)) 11939 goto out; 11940 } 11941 if (use_backlog_threads()) 11942 smpboot_register_percpu_thread(&backlog_threads); 11943 11944 dev_boot_phase = 0; 11945 11946 /* The loopback device is special if any other network devices 11947 * is present in a network namespace the loopback device must 11948 * be present. Since we now dynamically allocate and free the 11949 * loopback device ensure this invariant is maintained by 11950 * keeping the loopback device as the first device on the 11951 * list of network devices. Ensuring the loopback devices 11952 * is the first device that appears and the last network device 11953 * that disappears. 11954 */ 11955 if (register_pernet_device(&loopback_net_ops)) 11956 goto out; 11957 11958 if (register_pernet_device(&default_device_ops)) 11959 goto out; 11960 11961 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 11962 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 11963 11964 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead", 11965 NULL, dev_cpu_dead); 11966 WARN_ON(rc < 0); 11967 rc = 0; 11968 11969 /* avoid static key IPIs to isolated CPUs */ 11970 if (housekeeping_enabled(HK_TYPE_MISC)) 11971 net_enable_timestamp(); 11972 out: 11973 if (rc < 0) { 11974 for_each_possible_cpu(i) { 11975 struct page_pool *pp_ptr; 11976 11977 pp_ptr = per_cpu(system_page_pool, i); 11978 if (!pp_ptr) 11979 continue; 11980 11981 page_pool_destroy(pp_ptr); 11982 per_cpu(system_page_pool, i) = NULL; 11983 } 11984 } 11985 11986 return rc; 11987 } 11988 11989 subsys_initcall(net_dev_init); 11990