xref: /linux/net/core/dev.c (revision 3ce095c16263630dde46d6051854073edaacf3d7)
1 /*
2  * 	NET3	Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  * 		Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *              			to 2 if register_netdev gets called
25  *              			before net_dev_init & also removed a
26  *              			few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *		Alan Cox	: 	Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *		Alan Cox	: 	Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *              			indefinitely on dev->refcnt
71  * 		J Hadi Salim	:	- Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/pkt_sched.h>
103 #include <net/checksum.h>
104 #include <net/xfrm.h>
105 #include <linux/highmem.h>
106 #include <linux/init.h>
107 #include <linux/module.h>
108 #include <linux/netpoll.h>
109 #include <linux/rcupdate.h>
110 #include <linux/delay.h>
111 #include <net/iw_handler.h>
112 #include <asm/current.h>
113 #include <linux/audit.h>
114 #include <linux/dmaengine.h>
115 #include <linux/err.h>
116 #include <linux/ctype.h>
117 #include <linux/if_arp.h>
118 #include <linux/if_vlan.h>
119 #include <linux/ip.h>
120 #include <net/ip.h>
121 #include <net/mpls.h>
122 #include <linux/ipv6.h>
123 #include <linux/in.h>
124 #include <linux/jhash.h>
125 #include <linux/random.h>
126 #include <trace/events/napi.h>
127 #include <trace/events/net.h>
128 #include <trace/events/skb.h>
129 #include <linux/pci.h>
130 #include <linux/inetdevice.h>
131 #include <linux/cpu_rmap.h>
132 #include <linux/static_key.h>
133 #include <linux/hashtable.h>
134 #include <linux/vmalloc.h>
135 #include <linux/if_macvlan.h>
136 #include <linux/errqueue.h>
137 #include <linux/hrtimer.h>
138 
139 #include "net-sysfs.h"
140 
141 /* Instead of increasing this, you should create a hash table. */
142 #define MAX_GRO_SKBS 8
143 
144 /* This should be increased if a protocol with a bigger head is added. */
145 #define GRO_MAX_HEAD (MAX_HEADER + 128)
146 
147 static DEFINE_SPINLOCK(ptype_lock);
148 static DEFINE_SPINLOCK(offload_lock);
149 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
150 struct list_head ptype_all __read_mostly;	/* Taps */
151 static struct list_head offload_base __read_mostly;
152 
153 static int netif_rx_internal(struct sk_buff *skb);
154 static int call_netdevice_notifiers_info(unsigned long val,
155 					 struct net_device *dev,
156 					 struct netdev_notifier_info *info);
157 
158 /*
159  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
160  * semaphore.
161  *
162  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
163  *
164  * Writers must hold the rtnl semaphore while they loop through the
165  * dev_base_head list, and hold dev_base_lock for writing when they do the
166  * actual updates.  This allows pure readers to access the list even
167  * while a writer is preparing to update it.
168  *
169  * To put it another way, dev_base_lock is held for writing only to
170  * protect against pure readers; the rtnl semaphore provides the
171  * protection against other writers.
172  *
173  * See, for example usages, register_netdevice() and
174  * unregister_netdevice(), which must be called with the rtnl
175  * semaphore held.
176  */
177 DEFINE_RWLOCK(dev_base_lock);
178 EXPORT_SYMBOL(dev_base_lock);
179 
180 /* protects napi_hash addition/deletion and napi_gen_id */
181 static DEFINE_SPINLOCK(napi_hash_lock);
182 
183 static unsigned int napi_gen_id;
184 static DEFINE_HASHTABLE(napi_hash, 8);
185 
186 static seqcount_t devnet_rename_seq;
187 
188 static inline void dev_base_seq_inc(struct net *net)
189 {
190 	while (++net->dev_base_seq == 0);
191 }
192 
193 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
194 {
195 	unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
196 
197 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
198 }
199 
200 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
201 {
202 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
203 }
204 
205 static inline void rps_lock(struct softnet_data *sd)
206 {
207 #ifdef CONFIG_RPS
208 	spin_lock(&sd->input_pkt_queue.lock);
209 #endif
210 }
211 
212 static inline void rps_unlock(struct softnet_data *sd)
213 {
214 #ifdef CONFIG_RPS
215 	spin_unlock(&sd->input_pkt_queue.lock);
216 #endif
217 }
218 
219 /* Device list insertion */
220 static void list_netdevice(struct net_device *dev)
221 {
222 	struct net *net = dev_net(dev);
223 
224 	ASSERT_RTNL();
225 
226 	write_lock_bh(&dev_base_lock);
227 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
228 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
229 	hlist_add_head_rcu(&dev->index_hlist,
230 			   dev_index_hash(net, dev->ifindex));
231 	write_unlock_bh(&dev_base_lock);
232 
233 	dev_base_seq_inc(net);
234 }
235 
236 /* Device list removal
237  * caller must respect a RCU grace period before freeing/reusing dev
238  */
239 static void unlist_netdevice(struct net_device *dev)
240 {
241 	ASSERT_RTNL();
242 
243 	/* Unlink dev from the device chain */
244 	write_lock_bh(&dev_base_lock);
245 	list_del_rcu(&dev->dev_list);
246 	hlist_del_rcu(&dev->name_hlist);
247 	hlist_del_rcu(&dev->index_hlist);
248 	write_unlock_bh(&dev_base_lock);
249 
250 	dev_base_seq_inc(dev_net(dev));
251 }
252 
253 /*
254  *	Our notifier list
255  */
256 
257 static RAW_NOTIFIER_HEAD(netdev_chain);
258 
259 /*
260  *	Device drivers call our routines to queue packets here. We empty the
261  *	queue in the local softnet handler.
262  */
263 
264 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
265 EXPORT_PER_CPU_SYMBOL(softnet_data);
266 
267 #ifdef CONFIG_LOCKDEP
268 /*
269  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
270  * according to dev->type
271  */
272 static const unsigned short netdev_lock_type[] =
273 	{ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
274 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
275 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
276 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
277 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
278 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
279 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
280 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
281 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
282 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
283 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
284 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
285 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
286 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
287 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
288 
289 static const char *const netdev_lock_name[] =
290 	{"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
291 	 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
292 	 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
293 	 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
294 	 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
295 	 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
296 	 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
297 	 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
298 	 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
299 	 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
300 	 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
301 	 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
302 	 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
303 	 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
304 	 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
305 
306 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
307 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
308 
309 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
310 {
311 	int i;
312 
313 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
314 		if (netdev_lock_type[i] == dev_type)
315 			return i;
316 	/* the last key is used by default */
317 	return ARRAY_SIZE(netdev_lock_type) - 1;
318 }
319 
320 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
321 						 unsigned short dev_type)
322 {
323 	int i;
324 
325 	i = netdev_lock_pos(dev_type);
326 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
327 				   netdev_lock_name[i]);
328 }
329 
330 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
331 {
332 	int i;
333 
334 	i = netdev_lock_pos(dev->type);
335 	lockdep_set_class_and_name(&dev->addr_list_lock,
336 				   &netdev_addr_lock_key[i],
337 				   netdev_lock_name[i]);
338 }
339 #else
340 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
341 						 unsigned short dev_type)
342 {
343 }
344 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
345 {
346 }
347 #endif
348 
349 /*******************************************************************************
350 
351 		Protocol management and registration routines
352 
353 *******************************************************************************/
354 
355 /*
356  *	Add a protocol ID to the list. Now that the input handler is
357  *	smarter we can dispense with all the messy stuff that used to be
358  *	here.
359  *
360  *	BEWARE!!! Protocol handlers, mangling input packets,
361  *	MUST BE last in hash buckets and checking protocol handlers
362  *	MUST start from promiscuous ptype_all chain in net_bh.
363  *	It is true now, do not change it.
364  *	Explanation follows: if protocol handler, mangling packet, will
365  *	be the first on list, it is not able to sense, that packet
366  *	is cloned and should be copied-on-write, so that it will
367  *	change it and subsequent readers will get broken packet.
368  *							--ANK (980803)
369  */
370 
371 static inline struct list_head *ptype_head(const struct packet_type *pt)
372 {
373 	if (pt->type == htons(ETH_P_ALL))
374 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
375 	else
376 		return pt->dev ? &pt->dev->ptype_specific :
377 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
378 }
379 
380 /**
381  *	dev_add_pack - add packet handler
382  *	@pt: packet type declaration
383  *
384  *	Add a protocol handler to the networking stack. The passed &packet_type
385  *	is linked into kernel lists and may not be freed until it has been
386  *	removed from the kernel lists.
387  *
388  *	This call does not sleep therefore it can not
389  *	guarantee all CPU's that are in middle of receiving packets
390  *	will see the new packet type (until the next received packet).
391  */
392 
393 void dev_add_pack(struct packet_type *pt)
394 {
395 	struct list_head *head = ptype_head(pt);
396 
397 	spin_lock(&ptype_lock);
398 	list_add_rcu(&pt->list, head);
399 	spin_unlock(&ptype_lock);
400 }
401 EXPORT_SYMBOL(dev_add_pack);
402 
403 /**
404  *	__dev_remove_pack	 - remove packet handler
405  *	@pt: packet type declaration
406  *
407  *	Remove a protocol handler that was previously added to the kernel
408  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
409  *	from the kernel lists and can be freed or reused once this function
410  *	returns.
411  *
412  *      The packet type might still be in use by receivers
413  *	and must not be freed until after all the CPU's have gone
414  *	through a quiescent state.
415  */
416 void __dev_remove_pack(struct packet_type *pt)
417 {
418 	struct list_head *head = ptype_head(pt);
419 	struct packet_type *pt1;
420 
421 	spin_lock(&ptype_lock);
422 
423 	list_for_each_entry(pt1, head, list) {
424 		if (pt == pt1) {
425 			list_del_rcu(&pt->list);
426 			goto out;
427 		}
428 	}
429 
430 	pr_warn("dev_remove_pack: %p not found\n", pt);
431 out:
432 	spin_unlock(&ptype_lock);
433 }
434 EXPORT_SYMBOL(__dev_remove_pack);
435 
436 /**
437  *	dev_remove_pack	 - remove packet handler
438  *	@pt: packet type declaration
439  *
440  *	Remove a protocol handler that was previously added to the kernel
441  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
442  *	from the kernel lists and can be freed or reused once this function
443  *	returns.
444  *
445  *	This call sleeps to guarantee that no CPU is looking at the packet
446  *	type after return.
447  */
448 void dev_remove_pack(struct packet_type *pt)
449 {
450 	__dev_remove_pack(pt);
451 
452 	synchronize_net();
453 }
454 EXPORT_SYMBOL(dev_remove_pack);
455 
456 
457 /**
458  *	dev_add_offload - register offload handlers
459  *	@po: protocol offload declaration
460  *
461  *	Add protocol offload handlers to the networking stack. The passed
462  *	&proto_offload is linked into kernel lists and may not be freed until
463  *	it has been removed from the kernel lists.
464  *
465  *	This call does not sleep therefore it can not
466  *	guarantee all CPU's that are in middle of receiving packets
467  *	will see the new offload handlers (until the next received packet).
468  */
469 void dev_add_offload(struct packet_offload *po)
470 {
471 	struct list_head *head = &offload_base;
472 
473 	spin_lock(&offload_lock);
474 	list_add_rcu(&po->list, head);
475 	spin_unlock(&offload_lock);
476 }
477 EXPORT_SYMBOL(dev_add_offload);
478 
479 /**
480  *	__dev_remove_offload	 - remove offload handler
481  *	@po: packet offload declaration
482  *
483  *	Remove a protocol offload handler that was previously added to the
484  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
485  *	is removed from the kernel lists and can be freed or reused once this
486  *	function returns.
487  *
488  *      The packet type might still be in use by receivers
489  *	and must not be freed until after all the CPU's have gone
490  *	through a quiescent state.
491  */
492 static void __dev_remove_offload(struct packet_offload *po)
493 {
494 	struct list_head *head = &offload_base;
495 	struct packet_offload *po1;
496 
497 	spin_lock(&offload_lock);
498 
499 	list_for_each_entry(po1, head, list) {
500 		if (po == po1) {
501 			list_del_rcu(&po->list);
502 			goto out;
503 		}
504 	}
505 
506 	pr_warn("dev_remove_offload: %p not found\n", po);
507 out:
508 	spin_unlock(&offload_lock);
509 }
510 
511 /**
512  *	dev_remove_offload	 - remove packet offload handler
513  *	@po: packet offload declaration
514  *
515  *	Remove a packet offload handler that was previously added to the kernel
516  *	offload handlers by dev_add_offload(). The passed &offload_type is
517  *	removed from the kernel lists and can be freed or reused once this
518  *	function returns.
519  *
520  *	This call sleeps to guarantee that no CPU is looking at the packet
521  *	type after return.
522  */
523 void dev_remove_offload(struct packet_offload *po)
524 {
525 	__dev_remove_offload(po);
526 
527 	synchronize_net();
528 }
529 EXPORT_SYMBOL(dev_remove_offload);
530 
531 /******************************************************************************
532 
533 		      Device Boot-time Settings Routines
534 
535 *******************************************************************************/
536 
537 /* Boot time configuration table */
538 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
539 
540 /**
541  *	netdev_boot_setup_add	- add new setup entry
542  *	@name: name of the device
543  *	@map: configured settings for the device
544  *
545  *	Adds new setup entry to the dev_boot_setup list.  The function
546  *	returns 0 on error and 1 on success.  This is a generic routine to
547  *	all netdevices.
548  */
549 static int netdev_boot_setup_add(char *name, struct ifmap *map)
550 {
551 	struct netdev_boot_setup *s;
552 	int i;
553 
554 	s = dev_boot_setup;
555 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
556 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
557 			memset(s[i].name, 0, sizeof(s[i].name));
558 			strlcpy(s[i].name, name, IFNAMSIZ);
559 			memcpy(&s[i].map, map, sizeof(s[i].map));
560 			break;
561 		}
562 	}
563 
564 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
565 }
566 
567 /**
568  *	netdev_boot_setup_check	- check boot time settings
569  *	@dev: the netdevice
570  *
571  * 	Check boot time settings for the device.
572  *	The found settings are set for the device to be used
573  *	later in the device probing.
574  *	Returns 0 if no settings found, 1 if they are.
575  */
576 int netdev_boot_setup_check(struct net_device *dev)
577 {
578 	struct netdev_boot_setup *s = dev_boot_setup;
579 	int i;
580 
581 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
582 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
583 		    !strcmp(dev->name, s[i].name)) {
584 			dev->irq 	= s[i].map.irq;
585 			dev->base_addr 	= s[i].map.base_addr;
586 			dev->mem_start 	= s[i].map.mem_start;
587 			dev->mem_end 	= s[i].map.mem_end;
588 			return 1;
589 		}
590 	}
591 	return 0;
592 }
593 EXPORT_SYMBOL(netdev_boot_setup_check);
594 
595 
596 /**
597  *	netdev_boot_base	- get address from boot time settings
598  *	@prefix: prefix for network device
599  *	@unit: id for network device
600  *
601  * 	Check boot time settings for the base address of device.
602  *	The found settings are set for the device to be used
603  *	later in the device probing.
604  *	Returns 0 if no settings found.
605  */
606 unsigned long netdev_boot_base(const char *prefix, int unit)
607 {
608 	const struct netdev_boot_setup *s = dev_boot_setup;
609 	char name[IFNAMSIZ];
610 	int i;
611 
612 	sprintf(name, "%s%d", prefix, unit);
613 
614 	/*
615 	 * If device already registered then return base of 1
616 	 * to indicate not to probe for this interface
617 	 */
618 	if (__dev_get_by_name(&init_net, name))
619 		return 1;
620 
621 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
622 		if (!strcmp(name, s[i].name))
623 			return s[i].map.base_addr;
624 	return 0;
625 }
626 
627 /*
628  * Saves at boot time configured settings for any netdevice.
629  */
630 int __init netdev_boot_setup(char *str)
631 {
632 	int ints[5];
633 	struct ifmap map;
634 
635 	str = get_options(str, ARRAY_SIZE(ints), ints);
636 	if (!str || !*str)
637 		return 0;
638 
639 	/* Save settings */
640 	memset(&map, 0, sizeof(map));
641 	if (ints[0] > 0)
642 		map.irq = ints[1];
643 	if (ints[0] > 1)
644 		map.base_addr = ints[2];
645 	if (ints[0] > 2)
646 		map.mem_start = ints[3];
647 	if (ints[0] > 3)
648 		map.mem_end = ints[4];
649 
650 	/* Add new entry to the list */
651 	return netdev_boot_setup_add(str, &map);
652 }
653 
654 __setup("netdev=", netdev_boot_setup);
655 
656 /*******************************************************************************
657 
658 			    Device Interface Subroutines
659 
660 *******************************************************************************/
661 
662 /**
663  *	dev_get_iflink	- get 'iflink' value of a interface
664  *	@dev: targeted interface
665  *
666  *	Indicates the ifindex the interface is linked to.
667  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
668  */
669 
670 int dev_get_iflink(const struct net_device *dev)
671 {
672 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
673 		return dev->netdev_ops->ndo_get_iflink(dev);
674 
675 	/* If dev->rtnl_link_ops is set, it's a virtual interface. */
676 	if (dev->rtnl_link_ops)
677 		return 0;
678 
679 	return dev->ifindex;
680 }
681 EXPORT_SYMBOL(dev_get_iflink);
682 
683 /**
684  *	__dev_get_by_name	- find a device by its name
685  *	@net: the applicable net namespace
686  *	@name: name to find
687  *
688  *	Find an interface by name. Must be called under RTNL semaphore
689  *	or @dev_base_lock. If the name is found a pointer to the device
690  *	is returned. If the name is not found then %NULL is returned. The
691  *	reference counters are not incremented so the caller must be
692  *	careful with locks.
693  */
694 
695 struct net_device *__dev_get_by_name(struct net *net, const char *name)
696 {
697 	struct net_device *dev;
698 	struct hlist_head *head = dev_name_hash(net, name);
699 
700 	hlist_for_each_entry(dev, head, name_hlist)
701 		if (!strncmp(dev->name, name, IFNAMSIZ))
702 			return dev;
703 
704 	return NULL;
705 }
706 EXPORT_SYMBOL(__dev_get_by_name);
707 
708 /**
709  *	dev_get_by_name_rcu	- find a device by its name
710  *	@net: the applicable net namespace
711  *	@name: name to find
712  *
713  *	Find an interface by name.
714  *	If the name is found a pointer to the device is returned.
715  * 	If the name is not found then %NULL is returned.
716  *	The reference counters are not incremented so the caller must be
717  *	careful with locks. The caller must hold RCU lock.
718  */
719 
720 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
721 {
722 	struct net_device *dev;
723 	struct hlist_head *head = dev_name_hash(net, name);
724 
725 	hlist_for_each_entry_rcu(dev, head, name_hlist)
726 		if (!strncmp(dev->name, name, IFNAMSIZ))
727 			return dev;
728 
729 	return NULL;
730 }
731 EXPORT_SYMBOL(dev_get_by_name_rcu);
732 
733 /**
734  *	dev_get_by_name		- find a device by its name
735  *	@net: the applicable net namespace
736  *	@name: name to find
737  *
738  *	Find an interface by name. This can be called from any
739  *	context and does its own locking. The returned handle has
740  *	the usage count incremented and the caller must use dev_put() to
741  *	release it when it is no longer needed. %NULL is returned if no
742  *	matching device is found.
743  */
744 
745 struct net_device *dev_get_by_name(struct net *net, const char *name)
746 {
747 	struct net_device *dev;
748 
749 	rcu_read_lock();
750 	dev = dev_get_by_name_rcu(net, name);
751 	if (dev)
752 		dev_hold(dev);
753 	rcu_read_unlock();
754 	return dev;
755 }
756 EXPORT_SYMBOL(dev_get_by_name);
757 
758 /**
759  *	__dev_get_by_index - find a device by its ifindex
760  *	@net: the applicable net namespace
761  *	@ifindex: index of device
762  *
763  *	Search for an interface by index. Returns %NULL if the device
764  *	is not found or a pointer to the device. The device has not
765  *	had its reference counter increased so the caller must be careful
766  *	about locking. The caller must hold either the RTNL semaphore
767  *	or @dev_base_lock.
768  */
769 
770 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
771 {
772 	struct net_device *dev;
773 	struct hlist_head *head = dev_index_hash(net, ifindex);
774 
775 	hlist_for_each_entry(dev, head, index_hlist)
776 		if (dev->ifindex == ifindex)
777 			return dev;
778 
779 	return NULL;
780 }
781 EXPORT_SYMBOL(__dev_get_by_index);
782 
783 /**
784  *	dev_get_by_index_rcu - find a device by its ifindex
785  *	@net: the applicable net namespace
786  *	@ifindex: index of device
787  *
788  *	Search for an interface by index. Returns %NULL if the device
789  *	is not found or a pointer to the device. The device has not
790  *	had its reference counter increased so the caller must be careful
791  *	about locking. The caller must hold RCU lock.
792  */
793 
794 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
795 {
796 	struct net_device *dev;
797 	struct hlist_head *head = dev_index_hash(net, ifindex);
798 
799 	hlist_for_each_entry_rcu(dev, head, index_hlist)
800 		if (dev->ifindex == ifindex)
801 			return dev;
802 
803 	return NULL;
804 }
805 EXPORT_SYMBOL(dev_get_by_index_rcu);
806 
807 
808 /**
809  *	dev_get_by_index - find a device by its ifindex
810  *	@net: the applicable net namespace
811  *	@ifindex: index of device
812  *
813  *	Search for an interface by index. Returns NULL if the device
814  *	is not found or a pointer to the device. The device returned has
815  *	had a reference added and the pointer is safe until the user calls
816  *	dev_put to indicate they have finished with it.
817  */
818 
819 struct net_device *dev_get_by_index(struct net *net, int ifindex)
820 {
821 	struct net_device *dev;
822 
823 	rcu_read_lock();
824 	dev = dev_get_by_index_rcu(net, ifindex);
825 	if (dev)
826 		dev_hold(dev);
827 	rcu_read_unlock();
828 	return dev;
829 }
830 EXPORT_SYMBOL(dev_get_by_index);
831 
832 /**
833  *	netdev_get_name - get a netdevice name, knowing its ifindex.
834  *	@net: network namespace
835  *	@name: a pointer to the buffer where the name will be stored.
836  *	@ifindex: the ifindex of the interface to get the name from.
837  *
838  *	The use of raw_seqcount_begin() and cond_resched() before
839  *	retrying is required as we want to give the writers a chance
840  *	to complete when CONFIG_PREEMPT is not set.
841  */
842 int netdev_get_name(struct net *net, char *name, int ifindex)
843 {
844 	struct net_device *dev;
845 	unsigned int seq;
846 
847 retry:
848 	seq = raw_seqcount_begin(&devnet_rename_seq);
849 	rcu_read_lock();
850 	dev = dev_get_by_index_rcu(net, ifindex);
851 	if (!dev) {
852 		rcu_read_unlock();
853 		return -ENODEV;
854 	}
855 
856 	strcpy(name, dev->name);
857 	rcu_read_unlock();
858 	if (read_seqcount_retry(&devnet_rename_seq, seq)) {
859 		cond_resched();
860 		goto retry;
861 	}
862 
863 	return 0;
864 }
865 
866 /**
867  *	dev_getbyhwaddr_rcu - find a device by its hardware address
868  *	@net: the applicable net namespace
869  *	@type: media type of device
870  *	@ha: hardware address
871  *
872  *	Search for an interface by MAC address. Returns NULL if the device
873  *	is not found or a pointer to the device.
874  *	The caller must hold RCU or RTNL.
875  *	The returned device has not had its ref count increased
876  *	and the caller must therefore be careful about locking
877  *
878  */
879 
880 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
881 				       const char *ha)
882 {
883 	struct net_device *dev;
884 
885 	for_each_netdev_rcu(net, dev)
886 		if (dev->type == type &&
887 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
888 			return dev;
889 
890 	return NULL;
891 }
892 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
893 
894 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
895 {
896 	struct net_device *dev;
897 
898 	ASSERT_RTNL();
899 	for_each_netdev(net, dev)
900 		if (dev->type == type)
901 			return dev;
902 
903 	return NULL;
904 }
905 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
906 
907 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
908 {
909 	struct net_device *dev, *ret = NULL;
910 
911 	rcu_read_lock();
912 	for_each_netdev_rcu(net, dev)
913 		if (dev->type == type) {
914 			dev_hold(dev);
915 			ret = dev;
916 			break;
917 		}
918 	rcu_read_unlock();
919 	return ret;
920 }
921 EXPORT_SYMBOL(dev_getfirstbyhwtype);
922 
923 /**
924  *	__dev_get_by_flags - find any device with given flags
925  *	@net: the applicable net namespace
926  *	@if_flags: IFF_* values
927  *	@mask: bitmask of bits in if_flags to check
928  *
929  *	Search for any interface with the given flags. Returns NULL if a device
930  *	is not found or a pointer to the device. Must be called inside
931  *	rtnl_lock(), and result refcount is unchanged.
932  */
933 
934 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
935 				      unsigned short mask)
936 {
937 	struct net_device *dev, *ret;
938 
939 	ASSERT_RTNL();
940 
941 	ret = NULL;
942 	for_each_netdev(net, dev) {
943 		if (((dev->flags ^ if_flags) & mask) == 0) {
944 			ret = dev;
945 			break;
946 		}
947 	}
948 	return ret;
949 }
950 EXPORT_SYMBOL(__dev_get_by_flags);
951 
952 /**
953  *	dev_valid_name - check if name is okay for network device
954  *	@name: name string
955  *
956  *	Network device names need to be valid file names to
957  *	to allow sysfs to work.  We also disallow any kind of
958  *	whitespace.
959  */
960 bool dev_valid_name(const char *name)
961 {
962 	if (*name == '\0')
963 		return false;
964 	if (strlen(name) >= IFNAMSIZ)
965 		return false;
966 	if (!strcmp(name, ".") || !strcmp(name, ".."))
967 		return false;
968 
969 	while (*name) {
970 		if (*name == '/' || *name == ':' || isspace(*name))
971 			return false;
972 		name++;
973 	}
974 	return true;
975 }
976 EXPORT_SYMBOL(dev_valid_name);
977 
978 /**
979  *	__dev_alloc_name - allocate a name for a device
980  *	@net: network namespace to allocate the device name in
981  *	@name: name format string
982  *	@buf:  scratch buffer and result name string
983  *
984  *	Passed a format string - eg "lt%d" it will try and find a suitable
985  *	id. It scans list of devices to build up a free map, then chooses
986  *	the first empty slot. The caller must hold the dev_base or rtnl lock
987  *	while allocating the name and adding the device in order to avoid
988  *	duplicates.
989  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
990  *	Returns the number of the unit assigned or a negative errno code.
991  */
992 
993 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
994 {
995 	int i = 0;
996 	const char *p;
997 	const int max_netdevices = 8*PAGE_SIZE;
998 	unsigned long *inuse;
999 	struct net_device *d;
1000 
1001 	p = strnchr(name, IFNAMSIZ-1, '%');
1002 	if (p) {
1003 		/*
1004 		 * Verify the string as this thing may have come from
1005 		 * the user.  There must be either one "%d" and no other "%"
1006 		 * characters.
1007 		 */
1008 		if (p[1] != 'd' || strchr(p + 2, '%'))
1009 			return -EINVAL;
1010 
1011 		/* Use one page as a bit array of possible slots */
1012 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1013 		if (!inuse)
1014 			return -ENOMEM;
1015 
1016 		for_each_netdev(net, d) {
1017 			if (!sscanf(d->name, name, &i))
1018 				continue;
1019 			if (i < 0 || i >= max_netdevices)
1020 				continue;
1021 
1022 			/*  avoid cases where sscanf is not exact inverse of printf */
1023 			snprintf(buf, IFNAMSIZ, name, i);
1024 			if (!strncmp(buf, d->name, IFNAMSIZ))
1025 				set_bit(i, inuse);
1026 		}
1027 
1028 		i = find_first_zero_bit(inuse, max_netdevices);
1029 		free_page((unsigned long) inuse);
1030 	}
1031 
1032 	if (buf != name)
1033 		snprintf(buf, IFNAMSIZ, name, i);
1034 	if (!__dev_get_by_name(net, buf))
1035 		return i;
1036 
1037 	/* It is possible to run out of possible slots
1038 	 * when the name is long and there isn't enough space left
1039 	 * for the digits, or if all bits are used.
1040 	 */
1041 	return -ENFILE;
1042 }
1043 
1044 /**
1045  *	dev_alloc_name - allocate a name for a device
1046  *	@dev: device
1047  *	@name: name format string
1048  *
1049  *	Passed a format string - eg "lt%d" it will try and find a suitable
1050  *	id. It scans list of devices to build up a free map, then chooses
1051  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1052  *	while allocating the name and adding the device in order to avoid
1053  *	duplicates.
1054  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1055  *	Returns the number of the unit assigned or a negative errno code.
1056  */
1057 
1058 int dev_alloc_name(struct net_device *dev, const char *name)
1059 {
1060 	char buf[IFNAMSIZ];
1061 	struct net *net;
1062 	int ret;
1063 
1064 	BUG_ON(!dev_net(dev));
1065 	net = dev_net(dev);
1066 	ret = __dev_alloc_name(net, name, buf);
1067 	if (ret >= 0)
1068 		strlcpy(dev->name, buf, IFNAMSIZ);
1069 	return ret;
1070 }
1071 EXPORT_SYMBOL(dev_alloc_name);
1072 
1073 static int dev_alloc_name_ns(struct net *net,
1074 			     struct net_device *dev,
1075 			     const char *name)
1076 {
1077 	char buf[IFNAMSIZ];
1078 	int ret;
1079 
1080 	ret = __dev_alloc_name(net, name, buf);
1081 	if (ret >= 0)
1082 		strlcpy(dev->name, buf, IFNAMSIZ);
1083 	return ret;
1084 }
1085 
1086 static int dev_get_valid_name(struct net *net,
1087 			      struct net_device *dev,
1088 			      const char *name)
1089 {
1090 	BUG_ON(!net);
1091 
1092 	if (!dev_valid_name(name))
1093 		return -EINVAL;
1094 
1095 	if (strchr(name, '%'))
1096 		return dev_alloc_name_ns(net, dev, name);
1097 	else if (__dev_get_by_name(net, name))
1098 		return -EEXIST;
1099 	else if (dev->name != name)
1100 		strlcpy(dev->name, name, IFNAMSIZ);
1101 
1102 	return 0;
1103 }
1104 
1105 /**
1106  *	dev_change_name - change name of a device
1107  *	@dev: device
1108  *	@newname: name (or format string) must be at least IFNAMSIZ
1109  *
1110  *	Change name of a device, can pass format strings "eth%d".
1111  *	for wildcarding.
1112  */
1113 int dev_change_name(struct net_device *dev, const char *newname)
1114 {
1115 	unsigned char old_assign_type;
1116 	char oldname[IFNAMSIZ];
1117 	int err = 0;
1118 	int ret;
1119 	struct net *net;
1120 
1121 	ASSERT_RTNL();
1122 	BUG_ON(!dev_net(dev));
1123 
1124 	net = dev_net(dev);
1125 	if (dev->flags & IFF_UP)
1126 		return -EBUSY;
1127 
1128 	write_seqcount_begin(&devnet_rename_seq);
1129 
1130 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1131 		write_seqcount_end(&devnet_rename_seq);
1132 		return 0;
1133 	}
1134 
1135 	memcpy(oldname, dev->name, IFNAMSIZ);
1136 
1137 	err = dev_get_valid_name(net, dev, newname);
1138 	if (err < 0) {
1139 		write_seqcount_end(&devnet_rename_seq);
1140 		return err;
1141 	}
1142 
1143 	if (oldname[0] && !strchr(oldname, '%'))
1144 		netdev_info(dev, "renamed from %s\n", oldname);
1145 
1146 	old_assign_type = dev->name_assign_type;
1147 	dev->name_assign_type = NET_NAME_RENAMED;
1148 
1149 rollback:
1150 	ret = device_rename(&dev->dev, dev->name);
1151 	if (ret) {
1152 		memcpy(dev->name, oldname, IFNAMSIZ);
1153 		dev->name_assign_type = old_assign_type;
1154 		write_seqcount_end(&devnet_rename_seq);
1155 		return ret;
1156 	}
1157 
1158 	write_seqcount_end(&devnet_rename_seq);
1159 
1160 	netdev_adjacent_rename_links(dev, oldname);
1161 
1162 	write_lock_bh(&dev_base_lock);
1163 	hlist_del_rcu(&dev->name_hlist);
1164 	write_unlock_bh(&dev_base_lock);
1165 
1166 	synchronize_rcu();
1167 
1168 	write_lock_bh(&dev_base_lock);
1169 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1170 	write_unlock_bh(&dev_base_lock);
1171 
1172 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1173 	ret = notifier_to_errno(ret);
1174 
1175 	if (ret) {
1176 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1177 		if (err >= 0) {
1178 			err = ret;
1179 			write_seqcount_begin(&devnet_rename_seq);
1180 			memcpy(dev->name, oldname, IFNAMSIZ);
1181 			memcpy(oldname, newname, IFNAMSIZ);
1182 			dev->name_assign_type = old_assign_type;
1183 			old_assign_type = NET_NAME_RENAMED;
1184 			goto rollback;
1185 		} else {
1186 			pr_err("%s: name change rollback failed: %d\n",
1187 			       dev->name, ret);
1188 		}
1189 	}
1190 
1191 	return err;
1192 }
1193 
1194 /**
1195  *	dev_set_alias - change ifalias of a device
1196  *	@dev: device
1197  *	@alias: name up to IFALIASZ
1198  *	@len: limit of bytes to copy from info
1199  *
1200  *	Set ifalias for a device,
1201  */
1202 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1203 {
1204 	char *new_ifalias;
1205 
1206 	ASSERT_RTNL();
1207 
1208 	if (len >= IFALIASZ)
1209 		return -EINVAL;
1210 
1211 	if (!len) {
1212 		kfree(dev->ifalias);
1213 		dev->ifalias = NULL;
1214 		return 0;
1215 	}
1216 
1217 	new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1218 	if (!new_ifalias)
1219 		return -ENOMEM;
1220 	dev->ifalias = new_ifalias;
1221 
1222 	strlcpy(dev->ifalias, alias, len+1);
1223 	return len;
1224 }
1225 
1226 
1227 /**
1228  *	netdev_features_change - device changes features
1229  *	@dev: device to cause notification
1230  *
1231  *	Called to indicate a device has changed features.
1232  */
1233 void netdev_features_change(struct net_device *dev)
1234 {
1235 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1236 }
1237 EXPORT_SYMBOL(netdev_features_change);
1238 
1239 /**
1240  *	netdev_state_change - device changes state
1241  *	@dev: device to cause notification
1242  *
1243  *	Called to indicate a device has changed state. This function calls
1244  *	the notifier chains for netdev_chain and sends a NEWLINK message
1245  *	to the routing socket.
1246  */
1247 void netdev_state_change(struct net_device *dev)
1248 {
1249 	if (dev->flags & IFF_UP) {
1250 		struct netdev_notifier_change_info change_info;
1251 
1252 		change_info.flags_changed = 0;
1253 		call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1254 					      &change_info.info);
1255 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1256 	}
1257 }
1258 EXPORT_SYMBOL(netdev_state_change);
1259 
1260 /**
1261  * 	netdev_notify_peers - notify network peers about existence of @dev
1262  * 	@dev: network device
1263  *
1264  * Generate traffic such that interested network peers are aware of
1265  * @dev, such as by generating a gratuitous ARP. This may be used when
1266  * a device wants to inform the rest of the network about some sort of
1267  * reconfiguration such as a failover event or virtual machine
1268  * migration.
1269  */
1270 void netdev_notify_peers(struct net_device *dev)
1271 {
1272 	rtnl_lock();
1273 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1274 	rtnl_unlock();
1275 }
1276 EXPORT_SYMBOL(netdev_notify_peers);
1277 
1278 static int __dev_open(struct net_device *dev)
1279 {
1280 	const struct net_device_ops *ops = dev->netdev_ops;
1281 	int ret;
1282 
1283 	ASSERT_RTNL();
1284 
1285 	if (!netif_device_present(dev))
1286 		return -ENODEV;
1287 
1288 	/* Block netpoll from trying to do any rx path servicing.
1289 	 * If we don't do this there is a chance ndo_poll_controller
1290 	 * or ndo_poll may be running while we open the device
1291 	 */
1292 	netpoll_poll_disable(dev);
1293 
1294 	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1295 	ret = notifier_to_errno(ret);
1296 	if (ret)
1297 		return ret;
1298 
1299 	set_bit(__LINK_STATE_START, &dev->state);
1300 
1301 	if (ops->ndo_validate_addr)
1302 		ret = ops->ndo_validate_addr(dev);
1303 
1304 	if (!ret && ops->ndo_open)
1305 		ret = ops->ndo_open(dev);
1306 
1307 	netpoll_poll_enable(dev);
1308 
1309 	if (ret)
1310 		clear_bit(__LINK_STATE_START, &dev->state);
1311 	else {
1312 		dev->flags |= IFF_UP;
1313 		dev_set_rx_mode(dev);
1314 		dev_activate(dev);
1315 		add_device_randomness(dev->dev_addr, dev->addr_len);
1316 	}
1317 
1318 	return ret;
1319 }
1320 
1321 /**
1322  *	dev_open	- prepare an interface for use.
1323  *	@dev:	device to open
1324  *
1325  *	Takes a device from down to up state. The device's private open
1326  *	function is invoked and then the multicast lists are loaded. Finally
1327  *	the device is moved into the up state and a %NETDEV_UP message is
1328  *	sent to the netdev notifier chain.
1329  *
1330  *	Calling this function on an active interface is a nop. On a failure
1331  *	a negative errno code is returned.
1332  */
1333 int dev_open(struct net_device *dev)
1334 {
1335 	int ret;
1336 
1337 	if (dev->flags & IFF_UP)
1338 		return 0;
1339 
1340 	ret = __dev_open(dev);
1341 	if (ret < 0)
1342 		return ret;
1343 
1344 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1345 	call_netdevice_notifiers(NETDEV_UP, dev);
1346 
1347 	return ret;
1348 }
1349 EXPORT_SYMBOL(dev_open);
1350 
1351 static int __dev_close_many(struct list_head *head)
1352 {
1353 	struct net_device *dev;
1354 
1355 	ASSERT_RTNL();
1356 	might_sleep();
1357 
1358 	list_for_each_entry(dev, head, close_list) {
1359 		/* Temporarily disable netpoll until the interface is down */
1360 		netpoll_poll_disable(dev);
1361 
1362 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1363 
1364 		clear_bit(__LINK_STATE_START, &dev->state);
1365 
1366 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1367 		 * can be even on different cpu. So just clear netif_running().
1368 		 *
1369 		 * dev->stop() will invoke napi_disable() on all of it's
1370 		 * napi_struct instances on this device.
1371 		 */
1372 		smp_mb__after_atomic(); /* Commit netif_running(). */
1373 	}
1374 
1375 	dev_deactivate_many(head);
1376 
1377 	list_for_each_entry(dev, head, close_list) {
1378 		const struct net_device_ops *ops = dev->netdev_ops;
1379 
1380 		/*
1381 		 *	Call the device specific close. This cannot fail.
1382 		 *	Only if device is UP
1383 		 *
1384 		 *	We allow it to be called even after a DETACH hot-plug
1385 		 *	event.
1386 		 */
1387 		if (ops->ndo_stop)
1388 			ops->ndo_stop(dev);
1389 
1390 		dev->flags &= ~IFF_UP;
1391 		netpoll_poll_enable(dev);
1392 	}
1393 
1394 	return 0;
1395 }
1396 
1397 static int __dev_close(struct net_device *dev)
1398 {
1399 	int retval;
1400 	LIST_HEAD(single);
1401 
1402 	list_add(&dev->close_list, &single);
1403 	retval = __dev_close_many(&single);
1404 	list_del(&single);
1405 
1406 	return retval;
1407 }
1408 
1409 int dev_close_many(struct list_head *head, bool unlink)
1410 {
1411 	struct net_device *dev, *tmp;
1412 
1413 	/* Remove the devices that don't need to be closed */
1414 	list_for_each_entry_safe(dev, tmp, head, close_list)
1415 		if (!(dev->flags & IFF_UP))
1416 			list_del_init(&dev->close_list);
1417 
1418 	__dev_close_many(head);
1419 
1420 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1421 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1422 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1423 		if (unlink)
1424 			list_del_init(&dev->close_list);
1425 	}
1426 
1427 	return 0;
1428 }
1429 EXPORT_SYMBOL(dev_close_many);
1430 
1431 /**
1432  *	dev_close - shutdown an interface.
1433  *	@dev: device to shutdown
1434  *
1435  *	This function moves an active device into down state. A
1436  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1437  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1438  *	chain.
1439  */
1440 int dev_close(struct net_device *dev)
1441 {
1442 	if (dev->flags & IFF_UP) {
1443 		LIST_HEAD(single);
1444 
1445 		list_add(&dev->close_list, &single);
1446 		dev_close_many(&single, true);
1447 		list_del(&single);
1448 	}
1449 	return 0;
1450 }
1451 EXPORT_SYMBOL(dev_close);
1452 
1453 
1454 /**
1455  *	dev_disable_lro - disable Large Receive Offload on a device
1456  *	@dev: device
1457  *
1458  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1459  *	called under RTNL.  This is needed if received packets may be
1460  *	forwarded to another interface.
1461  */
1462 void dev_disable_lro(struct net_device *dev)
1463 {
1464 	struct net_device *lower_dev;
1465 	struct list_head *iter;
1466 
1467 	dev->wanted_features &= ~NETIF_F_LRO;
1468 	netdev_update_features(dev);
1469 
1470 	if (unlikely(dev->features & NETIF_F_LRO))
1471 		netdev_WARN(dev, "failed to disable LRO!\n");
1472 
1473 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1474 		dev_disable_lro(lower_dev);
1475 }
1476 EXPORT_SYMBOL(dev_disable_lro);
1477 
1478 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1479 				   struct net_device *dev)
1480 {
1481 	struct netdev_notifier_info info;
1482 
1483 	netdev_notifier_info_init(&info, dev);
1484 	return nb->notifier_call(nb, val, &info);
1485 }
1486 
1487 static int dev_boot_phase = 1;
1488 
1489 /**
1490  *	register_netdevice_notifier - register a network notifier block
1491  *	@nb: notifier
1492  *
1493  *	Register a notifier to be called when network device events occur.
1494  *	The notifier passed is linked into the kernel structures and must
1495  *	not be reused until it has been unregistered. A negative errno code
1496  *	is returned on a failure.
1497  *
1498  * 	When registered all registration and up events are replayed
1499  *	to the new notifier to allow device to have a race free
1500  *	view of the network device list.
1501  */
1502 
1503 int register_netdevice_notifier(struct notifier_block *nb)
1504 {
1505 	struct net_device *dev;
1506 	struct net_device *last;
1507 	struct net *net;
1508 	int err;
1509 
1510 	rtnl_lock();
1511 	err = raw_notifier_chain_register(&netdev_chain, nb);
1512 	if (err)
1513 		goto unlock;
1514 	if (dev_boot_phase)
1515 		goto unlock;
1516 	for_each_net(net) {
1517 		for_each_netdev(net, dev) {
1518 			err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1519 			err = notifier_to_errno(err);
1520 			if (err)
1521 				goto rollback;
1522 
1523 			if (!(dev->flags & IFF_UP))
1524 				continue;
1525 
1526 			call_netdevice_notifier(nb, NETDEV_UP, dev);
1527 		}
1528 	}
1529 
1530 unlock:
1531 	rtnl_unlock();
1532 	return err;
1533 
1534 rollback:
1535 	last = dev;
1536 	for_each_net(net) {
1537 		for_each_netdev(net, dev) {
1538 			if (dev == last)
1539 				goto outroll;
1540 
1541 			if (dev->flags & IFF_UP) {
1542 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1543 							dev);
1544 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1545 			}
1546 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1547 		}
1548 	}
1549 
1550 outroll:
1551 	raw_notifier_chain_unregister(&netdev_chain, nb);
1552 	goto unlock;
1553 }
1554 EXPORT_SYMBOL(register_netdevice_notifier);
1555 
1556 /**
1557  *	unregister_netdevice_notifier - unregister a network notifier block
1558  *	@nb: notifier
1559  *
1560  *	Unregister a notifier previously registered by
1561  *	register_netdevice_notifier(). The notifier is unlinked into the
1562  *	kernel structures and may then be reused. A negative errno code
1563  *	is returned on a failure.
1564  *
1565  * 	After unregistering unregister and down device events are synthesized
1566  *	for all devices on the device list to the removed notifier to remove
1567  *	the need for special case cleanup code.
1568  */
1569 
1570 int unregister_netdevice_notifier(struct notifier_block *nb)
1571 {
1572 	struct net_device *dev;
1573 	struct net *net;
1574 	int err;
1575 
1576 	rtnl_lock();
1577 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1578 	if (err)
1579 		goto unlock;
1580 
1581 	for_each_net(net) {
1582 		for_each_netdev(net, dev) {
1583 			if (dev->flags & IFF_UP) {
1584 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1585 							dev);
1586 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1587 			}
1588 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1589 		}
1590 	}
1591 unlock:
1592 	rtnl_unlock();
1593 	return err;
1594 }
1595 EXPORT_SYMBOL(unregister_netdevice_notifier);
1596 
1597 /**
1598  *	call_netdevice_notifiers_info - call all network notifier blocks
1599  *	@val: value passed unmodified to notifier function
1600  *	@dev: net_device pointer passed unmodified to notifier function
1601  *	@info: notifier information data
1602  *
1603  *	Call all network notifier blocks.  Parameters and return value
1604  *	are as for raw_notifier_call_chain().
1605  */
1606 
1607 static int call_netdevice_notifiers_info(unsigned long val,
1608 					 struct net_device *dev,
1609 					 struct netdev_notifier_info *info)
1610 {
1611 	ASSERT_RTNL();
1612 	netdev_notifier_info_init(info, dev);
1613 	return raw_notifier_call_chain(&netdev_chain, val, info);
1614 }
1615 
1616 /**
1617  *	call_netdevice_notifiers - call all network notifier blocks
1618  *      @val: value passed unmodified to notifier function
1619  *      @dev: net_device pointer passed unmodified to notifier function
1620  *
1621  *	Call all network notifier blocks.  Parameters and return value
1622  *	are as for raw_notifier_call_chain().
1623  */
1624 
1625 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1626 {
1627 	struct netdev_notifier_info info;
1628 
1629 	return call_netdevice_notifiers_info(val, dev, &info);
1630 }
1631 EXPORT_SYMBOL(call_netdevice_notifiers);
1632 
1633 #ifdef CONFIG_NET_CLS_ACT
1634 static struct static_key ingress_needed __read_mostly;
1635 
1636 void net_inc_ingress_queue(void)
1637 {
1638 	static_key_slow_inc(&ingress_needed);
1639 }
1640 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1641 
1642 void net_dec_ingress_queue(void)
1643 {
1644 	static_key_slow_dec(&ingress_needed);
1645 }
1646 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1647 #endif
1648 
1649 static struct static_key netstamp_needed __read_mostly;
1650 #ifdef HAVE_JUMP_LABEL
1651 /* We are not allowed to call static_key_slow_dec() from irq context
1652  * If net_disable_timestamp() is called from irq context, defer the
1653  * static_key_slow_dec() calls.
1654  */
1655 static atomic_t netstamp_needed_deferred;
1656 #endif
1657 
1658 void net_enable_timestamp(void)
1659 {
1660 #ifdef HAVE_JUMP_LABEL
1661 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1662 
1663 	if (deferred) {
1664 		while (--deferred)
1665 			static_key_slow_dec(&netstamp_needed);
1666 		return;
1667 	}
1668 #endif
1669 	static_key_slow_inc(&netstamp_needed);
1670 }
1671 EXPORT_SYMBOL(net_enable_timestamp);
1672 
1673 void net_disable_timestamp(void)
1674 {
1675 #ifdef HAVE_JUMP_LABEL
1676 	if (in_interrupt()) {
1677 		atomic_inc(&netstamp_needed_deferred);
1678 		return;
1679 	}
1680 #endif
1681 	static_key_slow_dec(&netstamp_needed);
1682 }
1683 EXPORT_SYMBOL(net_disable_timestamp);
1684 
1685 static inline void net_timestamp_set(struct sk_buff *skb)
1686 {
1687 	skb->tstamp.tv64 = 0;
1688 	if (static_key_false(&netstamp_needed))
1689 		__net_timestamp(skb);
1690 }
1691 
1692 #define net_timestamp_check(COND, SKB)			\
1693 	if (static_key_false(&netstamp_needed)) {		\
1694 		if ((COND) && !(SKB)->tstamp.tv64)	\
1695 			__net_timestamp(SKB);		\
1696 	}						\
1697 
1698 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
1699 {
1700 	unsigned int len;
1701 
1702 	if (!(dev->flags & IFF_UP))
1703 		return false;
1704 
1705 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1706 	if (skb->len <= len)
1707 		return true;
1708 
1709 	/* if TSO is enabled, we don't care about the length as the packet
1710 	 * could be forwarded without being segmented before
1711 	 */
1712 	if (skb_is_gso(skb))
1713 		return true;
1714 
1715 	return false;
1716 }
1717 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1718 
1719 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1720 {
1721 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
1722 	    unlikely(!is_skb_forwardable(dev, skb))) {
1723 		atomic_long_inc(&dev->rx_dropped);
1724 		kfree_skb(skb);
1725 		return NET_RX_DROP;
1726 	}
1727 
1728 	skb_scrub_packet(skb, true);
1729 	skb->priority = 0;
1730 	skb->protocol = eth_type_trans(skb, dev);
1731 	skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1732 
1733 	return 0;
1734 }
1735 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1736 
1737 /**
1738  * dev_forward_skb - loopback an skb to another netif
1739  *
1740  * @dev: destination network device
1741  * @skb: buffer to forward
1742  *
1743  * return values:
1744  *	NET_RX_SUCCESS	(no congestion)
1745  *	NET_RX_DROP     (packet was dropped, but freed)
1746  *
1747  * dev_forward_skb can be used for injecting an skb from the
1748  * start_xmit function of one device into the receive queue
1749  * of another device.
1750  *
1751  * The receiving device may be in another namespace, so
1752  * we have to clear all information in the skb that could
1753  * impact namespace isolation.
1754  */
1755 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1756 {
1757 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1758 }
1759 EXPORT_SYMBOL_GPL(dev_forward_skb);
1760 
1761 static inline int deliver_skb(struct sk_buff *skb,
1762 			      struct packet_type *pt_prev,
1763 			      struct net_device *orig_dev)
1764 {
1765 	if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1766 		return -ENOMEM;
1767 	atomic_inc(&skb->users);
1768 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1769 }
1770 
1771 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1772 					  struct packet_type **pt,
1773 					  struct net_device *orig_dev,
1774 					  __be16 type,
1775 					  struct list_head *ptype_list)
1776 {
1777 	struct packet_type *ptype, *pt_prev = *pt;
1778 
1779 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1780 		if (ptype->type != type)
1781 			continue;
1782 		if (pt_prev)
1783 			deliver_skb(skb, pt_prev, orig_dev);
1784 		pt_prev = ptype;
1785 	}
1786 	*pt = pt_prev;
1787 }
1788 
1789 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1790 {
1791 	if (!ptype->af_packet_priv || !skb->sk)
1792 		return false;
1793 
1794 	if (ptype->id_match)
1795 		return ptype->id_match(ptype, skb->sk);
1796 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1797 		return true;
1798 
1799 	return false;
1800 }
1801 
1802 /*
1803  *	Support routine. Sends outgoing frames to any network
1804  *	taps currently in use.
1805  */
1806 
1807 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1808 {
1809 	struct packet_type *ptype;
1810 	struct sk_buff *skb2 = NULL;
1811 	struct packet_type *pt_prev = NULL;
1812 	struct list_head *ptype_list = &ptype_all;
1813 
1814 	rcu_read_lock();
1815 again:
1816 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1817 		/* Never send packets back to the socket
1818 		 * they originated from - MvS (miquels@drinkel.ow.org)
1819 		 */
1820 		if (skb_loop_sk(ptype, skb))
1821 			continue;
1822 
1823 		if (pt_prev) {
1824 			deliver_skb(skb2, pt_prev, skb->dev);
1825 			pt_prev = ptype;
1826 			continue;
1827 		}
1828 
1829 		/* need to clone skb, done only once */
1830 		skb2 = skb_clone(skb, GFP_ATOMIC);
1831 		if (!skb2)
1832 			goto out_unlock;
1833 
1834 		net_timestamp_set(skb2);
1835 
1836 		/* skb->nh should be correctly
1837 		 * set by sender, so that the second statement is
1838 		 * just protection against buggy protocols.
1839 		 */
1840 		skb_reset_mac_header(skb2);
1841 
1842 		if (skb_network_header(skb2) < skb2->data ||
1843 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1844 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1845 					     ntohs(skb2->protocol),
1846 					     dev->name);
1847 			skb_reset_network_header(skb2);
1848 		}
1849 
1850 		skb2->transport_header = skb2->network_header;
1851 		skb2->pkt_type = PACKET_OUTGOING;
1852 		pt_prev = ptype;
1853 	}
1854 
1855 	if (ptype_list == &ptype_all) {
1856 		ptype_list = &dev->ptype_all;
1857 		goto again;
1858 	}
1859 out_unlock:
1860 	if (pt_prev)
1861 		pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1862 	rcu_read_unlock();
1863 }
1864 
1865 /**
1866  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1867  * @dev: Network device
1868  * @txq: number of queues available
1869  *
1870  * If real_num_tx_queues is changed the tc mappings may no longer be
1871  * valid. To resolve this verify the tc mapping remains valid and if
1872  * not NULL the mapping. With no priorities mapping to this
1873  * offset/count pair it will no longer be used. In the worst case TC0
1874  * is invalid nothing can be done so disable priority mappings. If is
1875  * expected that drivers will fix this mapping if they can before
1876  * calling netif_set_real_num_tx_queues.
1877  */
1878 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1879 {
1880 	int i;
1881 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1882 
1883 	/* If TC0 is invalidated disable TC mapping */
1884 	if (tc->offset + tc->count > txq) {
1885 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1886 		dev->num_tc = 0;
1887 		return;
1888 	}
1889 
1890 	/* Invalidated prio to tc mappings set to TC0 */
1891 	for (i = 1; i < TC_BITMASK + 1; i++) {
1892 		int q = netdev_get_prio_tc_map(dev, i);
1893 
1894 		tc = &dev->tc_to_txq[q];
1895 		if (tc->offset + tc->count > txq) {
1896 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1897 				i, q);
1898 			netdev_set_prio_tc_map(dev, i, 0);
1899 		}
1900 	}
1901 }
1902 
1903 #ifdef CONFIG_XPS
1904 static DEFINE_MUTEX(xps_map_mutex);
1905 #define xmap_dereference(P)		\
1906 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1907 
1908 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1909 					int cpu, u16 index)
1910 {
1911 	struct xps_map *map = NULL;
1912 	int pos;
1913 
1914 	if (dev_maps)
1915 		map = xmap_dereference(dev_maps->cpu_map[cpu]);
1916 
1917 	for (pos = 0; map && pos < map->len; pos++) {
1918 		if (map->queues[pos] == index) {
1919 			if (map->len > 1) {
1920 				map->queues[pos] = map->queues[--map->len];
1921 			} else {
1922 				RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1923 				kfree_rcu(map, rcu);
1924 				map = NULL;
1925 			}
1926 			break;
1927 		}
1928 	}
1929 
1930 	return map;
1931 }
1932 
1933 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1934 {
1935 	struct xps_dev_maps *dev_maps;
1936 	int cpu, i;
1937 	bool active = false;
1938 
1939 	mutex_lock(&xps_map_mutex);
1940 	dev_maps = xmap_dereference(dev->xps_maps);
1941 
1942 	if (!dev_maps)
1943 		goto out_no_maps;
1944 
1945 	for_each_possible_cpu(cpu) {
1946 		for (i = index; i < dev->num_tx_queues; i++) {
1947 			if (!remove_xps_queue(dev_maps, cpu, i))
1948 				break;
1949 		}
1950 		if (i == dev->num_tx_queues)
1951 			active = true;
1952 	}
1953 
1954 	if (!active) {
1955 		RCU_INIT_POINTER(dev->xps_maps, NULL);
1956 		kfree_rcu(dev_maps, rcu);
1957 	}
1958 
1959 	for (i = index; i < dev->num_tx_queues; i++)
1960 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1961 					     NUMA_NO_NODE);
1962 
1963 out_no_maps:
1964 	mutex_unlock(&xps_map_mutex);
1965 }
1966 
1967 static struct xps_map *expand_xps_map(struct xps_map *map,
1968 				      int cpu, u16 index)
1969 {
1970 	struct xps_map *new_map;
1971 	int alloc_len = XPS_MIN_MAP_ALLOC;
1972 	int i, pos;
1973 
1974 	for (pos = 0; map && pos < map->len; pos++) {
1975 		if (map->queues[pos] != index)
1976 			continue;
1977 		return map;
1978 	}
1979 
1980 	/* Need to add queue to this CPU's existing map */
1981 	if (map) {
1982 		if (pos < map->alloc_len)
1983 			return map;
1984 
1985 		alloc_len = map->alloc_len * 2;
1986 	}
1987 
1988 	/* Need to allocate new map to store queue on this CPU's map */
1989 	new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1990 			       cpu_to_node(cpu));
1991 	if (!new_map)
1992 		return NULL;
1993 
1994 	for (i = 0; i < pos; i++)
1995 		new_map->queues[i] = map->queues[i];
1996 	new_map->alloc_len = alloc_len;
1997 	new_map->len = pos;
1998 
1999 	return new_map;
2000 }
2001 
2002 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2003 			u16 index)
2004 {
2005 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2006 	struct xps_map *map, *new_map;
2007 	int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
2008 	int cpu, numa_node_id = -2;
2009 	bool active = false;
2010 
2011 	mutex_lock(&xps_map_mutex);
2012 
2013 	dev_maps = xmap_dereference(dev->xps_maps);
2014 
2015 	/* allocate memory for queue storage */
2016 	for_each_online_cpu(cpu) {
2017 		if (!cpumask_test_cpu(cpu, mask))
2018 			continue;
2019 
2020 		if (!new_dev_maps)
2021 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2022 		if (!new_dev_maps) {
2023 			mutex_unlock(&xps_map_mutex);
2024 			return -ENOMEM;
2025 		}
2026 
2027 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2028 				 NULL;
2029 
2030 		map = expand_xps_map(map, cpu, index);
2031 		if (!map)
2032 			goto error;
2033 
2034 		RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2035 	}
2036 
2037 	if (!new_dev_maps)
2038 		goto out_no_new_maps;
2039 
2040 	for_each_possible_cpu(cpu) {
2041 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2042 			/* add queue to CPU maps */
2043 			int pos = 0;
2044 
2045 			map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2046 			while ((pos < map->len) && (map->queues[pos] != index))
2047 				pos++;
2048 
2049 			if (pos == map->len)
2050 				map->queues[map->len++] = index;
2051 #ifdef CONFIG_NUMA
2052 			if (numa_node_id == -2)
2053 				numa_node_id = cpu_to_node(cpu);
2054 			else if (numa_node_id != cpu_to_node(cpu))
2055 				numa_node_id = -1;
2056 #endif
2057 		} else if (dev_maps) {
2058 			/* fill in the new device map from the old device map */
2059 			map = xmap_dereference(dev_maps->cpu_map[cpu]);
2060 			RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2061 		}
2062 
2063 	}
2064 
2065 	rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2066 
2067 	/* Cleanup old maps */
2068 	if (dev_maps) {
2069 		for_each_possible_cpu(cpu) {
2070 			new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2071 			map = xmap_dereference(dev_maps->cpu_map[cpu]);
2072 			if (map && map != new_map)
2073 				kfree_rcu(map, rcu);
2074 		}
2075 
2076 		kfree_rcu(dev_maps, rcu);
2077 	}
2078 
2079 	dev_maps = new_dev_maps;
2080 	active = true;
2081 
2082 out_no_new_maps:
2083 	/* update Tx queue numa node */
2084 	netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2085 				     (numa_node_id >= 0) ? numa_node_id :
2086 				     NUMA_NO_NODE);
2087 
2088 	if (!dev_maps)
2089 		goto out_no_maps;
2090 
2091 	/* removes queue from unused CPUs */
2092 	for_each_possible_cpu(cpu) {
2093 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2094 			continue;
2095 
2096 		if (remove_xps_queue(dev_maps, cpu, index))
2097 			active = true;
2098 	}
2099 
2100 	/* free map if not active */
2101 	if (!active) {
2102 		RCU_INIT_POINTER(dev->xps_maps, NULL);
2103 		kfree_rcu(dev_maps, rcu);
2104 	}
2105 
2106 out_no_maps:
2107 	mutex_unlock(&xps_map_mutex);
2108 
2109 	return 0;
2110 error:
2111 	/* remove any maps that we added */
2112 	for_each_possible_cpu(cpu) {
2113 		new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2114 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2115 				 NULL;
2116 		if (new_map && new_map != map)
2117 			kfree(new_map);
2118 	}
2119 
2120 	mutex_unlock(&xps_map_mutex);
2121 
2122 	kfree(new_dev_maps);
2123 	return -ENOMEM;
2124 }
2125 EXPORT_SYMBOL(netif_set_xps_queue);
2126 
2127 #endif
2128 /*
2129  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2130  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2131  */
2132 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2133 {
2134 	int rc;
2135 
2136 	if (txq < 1 || txq > dev->num_tx_queues)
2137 		return -EINVAL;
2138 
2139 	if (dev->reg_state == NETREG_REGISTERED ||
2140 	    dev->reg_state == NETREG_UNREGISTERING) {
2141 		ASSERT_RTNL();
2142 
2143 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2144 						  txq);
2145 		if (rc)
2146 			return rc;
2147 
2148 		if (dev->num_tc)
2149 			netif_setup_tc(dev, txq);
2150 
2151 		if (txq < dev->real_num_tx_queues) {
2152 			qdisc_reset_all_tx_gt(dev, txq);
2153 #ifdef CONFIG_XPS
2154 			netif_reset_xps_queues_gt(dev, txq);
2155 #endif
2156 		}
2157 	}
2158 
2159 	dev->real_num_tx_queues = txq;
2160 	return 0;
2161 }
2162 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2163 
2164 #ifdef CONFIG_SYSFS
2165 /**
2166  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2167  *	@dev: Network device
2168  *	@rxq: Actual number of RX queues
2169  *
2170  *	This must be called either with the rtnl_lock held or before
2171  *	registration of the net device.  Returns 0 on success, or a
2172  *	negative error code.  If called before registration, it always
2173  *	succeeds.
2174  */
2175 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2176 {
2177 	int rc;
2178 
2179 	if (rxq < 1 || rxq > dev->num_rx_queues)
2180 		return -EINVAL;
2181 
2182 	if (dev->reg_state == NETREG_REGISTERED) {
2183 		ASSERT_RTNL();
2184 
2185 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2186 						  rxq);
2187 		if (rc)
2188 			return rc;
2189 	}
2190 
2191 	dev->real_num_rx_queues = rxq;
2192 	return 0;
2193 }
2194 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2195 #endif
2196 
2197 /**
2198  * netif_get_num_default_rss_queues - default number of RSS queues
2199  *
2200  * This routine should set an upper limit on the number of RSS queues
2201  * used by default by multiqueue devices.
2202  */
2203 int netif_get_num_default_rss_queues(void)
2204 {
2205 	return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2206 }
2207 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2208 
2209 static inline void __netif_reschedule(struct Qdisc *q)
2210 {
2211 	struct softnet_data *sd;
2212 	unsigned long flags;
2213 
2214 	local_irq_save(flags);
2215 	sd = this_cpu_ptr(&softnet_data);
2216 	q->next_sched = NULL;
2217 	*sd->output_queue_tailp = q;
2218 	sd->output_queue_tailp = &q->next_sched;
2219 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2220 	local_irq_restore(flags);
2221 }
2222 
2223 void __netif_schedule(struct Qdisc *q)
2224 {
2225 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2226 		__netif_reschedule(q);
2227 }
2228 EXPORT_SYMBOL(__netif_schedule);
2229 
2230 struct dev_kfree_skb_cb {
2231 	enum skb_free_reason reason;
2232 };
2233 
2234 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2235 {
2236 	return (struct dev_kfree_skb_cb *)skb->cb;
2237 }
2238 
2239 void netif_schedule_queue(struct netdev_queue *txq)
2240 {
2241 	rcu_read_lock();
2242 	if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2243 		struct Qdisc *q = rcu_dereference(txq->qdisc);
2244 
2245 		__netif_schedule(q);
2246 	}
2247 	rcu_read_unlock();
2248 }
2249 EXPORT_SYMBOL(netif_schedule_queue);
2250 
2251 /**
2252  *	netif_wake_subqueue - allow sending packets on subqueue
2253  *	@dev: network device
2254  *	@queue_index: sub queue index
2255  *
2256  * Resume individual transmit queue of a device with multiple transmit queues.
2257  */
2258 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2259 {
2260 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2261 
2262 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2263 		struct Qdisc *q;
2264 
2265 		rcu_read_lock();
2266 		q = rcu_dereference(txq->qdisc);
2267 		__netif_schedule(q);
2268 		rcu_read_unlock();
2269 	}
2270 }
2271 EXPORT_SYMBOL(netif_wake_subqueue);
2272 
2273 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2274 {
2275 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2276 		struct Qdisc *q;
2277 
2278 		rcu_read_lock();
2279 		q = rcu_dereference(dev_queue->qdisc);
2280 		__netif_schedule(q);
2281 		rcu_read_unlock();
2282 	}
2283 }
2284 EXPORT_SYMBOL(netif_tx_wake_queue);
2285 
2286 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2287 {
2288 	unsigned long flags;
2289 
2290 	if (likely(atomic_read(&skb->users) == 1)) {
2291 		smp_rmb();
2292 		atomic_set(&skb->users, 0);
2293 	} else if (likely(!atomic_dec_and_test(&skb->users))) {
2294 		return;
2295 	}
2296 	get_kfree_skb_cb(skb)->reason = reason;
2297 	local_irq_save(flags);
2298 	skb->next = __this_cpu_read(softnet_data.completion_queue);
2299 	__this_cpu_write(softnet_data.completion_queue, skb);
2300 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2301 	local_irq_restore(flags);
2302 }
2303 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2304 
2305 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2306 {
2307 	if (in_irq() || irqs_disabled())
2308 		__dev_kfree_skb_irq(skb, reason);
2309 	else
2310 		dev_kfree_skb(skb);
2311 }
2312 EXPORT_SYMBOL(__dev_kfree_skb_any);
2313 
2314 
2315 /**
2316  * netif_device_detach - mark device as removed
2317  * @dev: network device
2318  *
2319  * Mark device as removed from system and therefore no longer available.
2320  */
2321 void netif_device_detach(struct net_device *dev)
2322 {
2323 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2324 	    netif_running(dev)) {
2325 		netif_tx_stop_all_queues(dev);
2326 	}
2327 }
2328 EXPORT_SYMBOL(netif_device_detach);
2329 
2330 /**
2331  * netif_device_attach - mark device as attached
2332  * @dev: network device
2333  *
2334  * Mark device as attached from system and restart if needed.
2335  */
2336 void netif_device_attach(struct net_device *dev)
2337 {
2338 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2339 	    netif_running(dev)) {
2340 		netif_tx_wake_all_queues(dev);
2341 		__netdev_watchdog_up(dev);
2342 	}
2343 }
2344 EXPORT_SYMBOL(netif_device_attach);
2345 
2346 static void skb_warn_bad_offload(const struct sk_buff *skb)
2347 {
2348 	static const netdev_features_t null_features = 0;
2349 	struct net_device *dev = skb->dev;
2350 	const char *driver = "";
2351 
2352 	if (!net_ratelimit())
2353 		return;
2354 
2355 	if (dev && dev->dev.parent)
2356 		driver = dev_driver_string(dev->dev.parent);
2357 
2358 	WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2359 	     "gso_type=%d ip_summed=%d\n",
2360 	     driver, dev ? &dev->features : &null_features,
2361 	     skb->sk ? &skb->sk->sk_route_caps : &null_features,
2362 	     skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2363 	     skb_shinfo(skb)->gso_type, skb->ip_summed);
2364 }
2365 
2366 /*
2367  * Invalidate hardware checksum when packet is to be mangled, and
2368  * complete checksum manually on outgoing path.
2369  */
2370 int skb_checksum_help(struct sk_buff *skb)
2371 {
2372 	__wsum csum;
2373 	int ret = 0, offset;
2374 
2375 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2376 		goto out_set_summed;
2377 
2378 	if (unlikely(skb_shinfo(skb)->gso_size)) {
2379 		skb_warn_bad_offload(skb);
2380 		return -EINVAL;
2381 	}
2382 
2383 	/* Before computing a checksum, we should make sure no frag could
2384 	 * be modified by an external entity : checksum could be wrong.
2385 	 */
2386 	if (skb_has_shared_frag(skb)) {
2387 		ret = __skb_linearize(skb);
2388 		if (ret)
2389 			goto out;
2390 	}
2391 
2392 	offset = skb_checksum_start_offset(skb);
2393 	BUG_ON(offset >= skb_headlen(skb));
2394 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
2395 
2396 	offset += skb->csum_offset;
2397 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2398 
2399 	if (skb_cloned(skb) &&
2400 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2401 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2402 		if (ret)
2403 			goto out;
2404 	}
2405 
2406 	*(__sum16 *)(skb->data + offset) = csum_fold(csum);
2407 out_set_summed:
2408 	skb->ip_summed = CHECKSUM_NONE;
2409 out:
2410 	return ret;
2411 }
2412 EXPORT_SYMBOL(skb_checksum_help);
2413 
2414 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2415 {
2416 	__be16 type = skb->protocol;
2417 
2418 	/* Tunnel gso handlers can set protocol to ethernet. */
2419 	if (type == htons(ETH_P_TEB)) {
2420 		struct ethhdr *eth;
2421 
2422 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2423 			return 0;
2424 
2425 		eth = (struct ethhdr *)skb_mac_header(skb);
2426 		type = eth->h_proto;
2427 	}
2428 
2429 	return __vlan_get_protocol(skb, type, depth);
2430 }
2431 
2432 /**
2433  *	skb_mac_gso_segment - mac layer segmentation handler.
2434  *	@skb: buffer to segment
2435  *	@features: features for the output path (see dev->features)
2436  */
2437 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2438 				    netdev_features_t features)
2439 {
2440 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2441 	struct packet_offload *ptype;
2442 	int vlan_depth = skb->mac_len;
2443 	__be16 type = skb_network_protocol(skb, &vlan_depth);
2444 
2445 	if (unlikely(!type))
2446 		return ERR_PTR(-EINVAL);
2447 
2448 	__skb_pull(skb, vlan_depth);
2449 
2450 	rcu_read_lock();
2451 	list_for_each_entry_rcu(ptype, &offload_base, list) {
2452 		if (ptype->type == type && ptype->callbacks.gso_segment) {
2453 			segs = ptype->callbacks.gso_segment(skb, features);
2454 			break;
2455 		}
2456 	}
2457 	rcu_read_unlock();
2458 
2459 	__skb_push(skb, skb->data - skb_mac_header(skb));
2460 
2461 	return segs;
2462 }
2463 EXPORT_SYMBOL(skb_mac_gso_segment);
2464 
2465 
2466 /* openvswitch calls this on rx path, so we need a different check.
2467  */
2468 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2469 {
2470 	if (tx_path)
2471 		return skb->ip_summed != CHECKSUM_PARTIAL;
2472 	else
2473 		return skb->ip_summed == CHECKSUM_NONE;
2474 }
2475 
2476 /**
2477  *	__skb_gso_segment - Perform segmentation on skb.
2478  *	@skb: buffer to segment
2479  *	@features: features for the output path (see dev->features)
2480  *	@tx_path: whether it is called in TX path
2481  *
2482  *	This function segments the given skb and returns a list of segments.
2483  *
2484  *	It may return NULL if the skb requires no segmentation.  This is
2485  *	only possible when GSO is used for verifying header integrity.
2486  */
2487 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2488 				  netdev_features_t features, bool tx_path)
2489 {
2490 	if (unlikely(skb_needs_check(skb, tx_path))) {
2491 		int err;
2492 
2493 		skb_warn_bad_offload(skb);
2494 
2495 		err = skb_cow_head(skb, 0);
2496 		if (err < 0)
2497 			return ERR_PTR(err);
2498 	}
2499 
2500 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2501 	SKB_GSO_CB(skb)->encap_level = 0;
2502 
2503 	skb_reset_mac_header(skb);
2504 	skb_reset_mac_len(skb);
2505 
2506 	return skb_mac_gso_segment(skb, features);
2507 }
2508 EXPORT_SYMBOL(__skb_gso_segment);
2509 
2510 /* Take action when hardware reception checksum errors are detected. */
2511 #ifdef CONFIG_BUG
2512 void netdev_rx_csum_fault(struct net_device *dev)
2513 {
2514 	if (net_ratelimit()) {
2515 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2516 		dump_stack();
2517 	}
2518 }
2519 EXPORT_SYMBOL(netdev_rx_csum_fault);
2520 #endif
2521 
2522 /* Actually, we should eliminate this check as soon as we know, that:
2523  * 1. IOMMU is present and allows to map all the memory.
2524  * 2. No high memory really exists on this machine.
2525  */
2526 
2527 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2528 {
2529 #ifdef CONFIG_HIGHMEM
2530 	int i;
2531 	if (!(dev->features & NETIF_F_HIGHDMA)) {
2532 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2533 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2534 			if (PageHighMem(skb_frag_page(frag)))
2535 				return 1;
2536 		}
2537 	}
2538 
2539 	if (PCI_DMA_BUS_IS_PHYS) {
2540 		struct device *pdev = dev->dev.parent;
2541 
2542 		if (!pdev)
2543 			return 0;
2544 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2545 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2546 			dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2547 			if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2548 				return 1;
2549 		}
2550 	}
2551 #endif
2552 	return 0;
2553 }
2554 
2555 /* If MPLS offload request, verify we are testing hardware MPLS features
2556  * instead of standard features for the netdev.
2557  */
2558 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2559 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2560 					   netdev_features_t features,
2561 					   __be16 type)
2562 {
2563 	if (eth_p_mpls(type))
2564 		features &= skb->dev->mpls_features;
2565 
2566 	return features;
2567 }
2568 #else
2569 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2570 					   netdev_features_t features,
2571 					   __be16 type)
2572 {
2573 	return features;
2574 }
2575 #endif
2576 
2577 static netdev_features_t harmonize_features(struct sk_buff *skb,
2578 	netdev_features_t features)
2579 {
2580 	int tmp;
2581 	__be16 type;
2582 
2583 	type = skb_network_protocol(skb, &tmp);
2584 	features = net_mpls_features(skb, features, type);
2585 
2586 	if (skb->ip_summed != CHECKSUM_NONE &&
2587 	    !can_checksum_protocol(features, type)) {
2588 		features &= ~NETIF_F_ALL_CSUM;
2589 	} else if (illegal_highdma(skb->dev, skb)) {
2590 		features &= ~NETIF_F_SG;
2591 	}
2592 
2593 	return features;
2594 }
2595 
2596 netdev_features_t passthru_features_check(struct sk_buff *skb,
2597 					  struct net_device *dev,
2598 					  netdev_features_t features)
2599 {
2600 	return features;
2601 }
2602 EXPORT_SYMBOL(passthru_features_check);
2603 
2604 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2605 					     struct net_device *dev,
2606 					     netdev_features_t features)
2607 {
2608 	return vlan_features_check(skb, features);
2609 }
2610 
2611 netdev_features_t netif_skb_features(struct sk_buff *skb)
2612 {
2613 	struct net_device *dev = skb->dev;
2614 	netdev_features_t features = dev->features;
2615 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
2616 
2617 	if (gso_segs > dev->gso_max_segs || gso_segs < dev->gso_min_segs)
2618 		features &= ~NETIF_F_GSO_MASK;
2619 
2620 	/* If encapsulation offload request, verify we are testing
2621 	 * hardware encapsulation features instead of standard
2622 	 * features for the netdev
2623 	 */
2624 	if (skb->encapsulation)
2625 		features &= dev->hw_enc_features;
2626 
2627 	if (skb_vlan_tagged(skb))
2628 		features = netdev_intersect_features(features,
2629 						     dev->vlan_features |
2630 						     NETIF_F_HW_VLAN_CTAG_TX |
2631 						     NETIF_F_HW_VLAN_STAG_TX);
2632 
2633 	if (dev->netdev_ops->ndo_features_check)
2634 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
2635 								features);
2636 	else
2637 		features &= dflt_features_check(skb, dev, features);
2638 
2639 	return harmonize_features(skb, features);
2640 }
2641 EXPORT_SYMBOL(netif_skb_features);
2642 
2643 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2644 		    struct netdev_queue *txq, bool more)
2645 {
2646 	unsigned int len;
2647 	int rc;
2648 
2649 	if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2650 		dev_queue_xmit_nit(skb, dev);
2651 
2652 	len = skb->len;
2653 	trace_net_dev_start_xmit(skb, dev);
2654 	rc = netdev_start_xmit(skb, dev, txq, more);
2655 	trace_net_dev_xmit(skb, rc, dev, len);
2656 
2657 	return rc;
2658 }
2659 
2660 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2661 				    struct netdev_queue *txq, int *ret)
2662 {
2663 	struct sk_buff *skb = first;
2664 	int rc = NETDEV_TX_OK;
2665 
2666 	while (skb) {
2667 		struct sk_buff *next = skb->next;
2668 
2669 		skb->next = NULL;
2670 		rc = xmit_one(skb, dev, txq, next != NULL);
2671 		if (unlikely(!dev_xmit_complete(rc))) {
2672 			skb->next = next;
2673 			goto out;
2674 		}
2675 
2676 		skb = next;
2677 		if (netif_xmit_stopped(txq) && skb) {
2678 			rc = NETDEV_TX_BUSY;
2679 			break;
2680 		}
2681 	}
2682 
2683 out:
2684 	*ret = rc;
2685 	return skb;
2686 }
2687 
2688 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2689 					  netdev_features_t features)
2690 {
2691 	if (skb_vlan_tag_present(skb) &&
2692 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
2693 		skb = __vlan_hwaccel_push_inside(skb);
2694 	return skb;
2695 }
2696 
2697 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2698 {
2699 	netdev_features_t features;
2700 
2701 	if (skb->next)
2702 		return skb;
2703 
2704 	features = netif_skb_features(skb);
2705 	skb = validate_xmit_vlan(skb, features);
2706 	if (unlikely(!skb))
2707 		goto out_null;
2708 
2709 	if (netif_needs_gso(skb, features)) {
2710 		struct sk_buff *segs;
2711 
2712 		segs = skb_gso_segment(skb, features);
2713 		if (IS_ERR(segs)) {
2714 			goto out_kfree_skb;
2715 		} else if (segs) {
2716 			consume_skb(skb);
2717 			skb = segs;
2718 		}
2719 	} else {
2720 		if (skb_needs_linearize(skb, features) &&
2721 		    __skb_linearize(skb))
2722 			goto out_kfree_skb;
2723 
2724 		/* If packet is not checksummed and device does not
2725 		 * support checksumming for this protocol, complete
2726 		 * checksumming here.
2727 		 */
2728 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
2729 			if (skb->encapsulation)
2730 				skb_set_inner_transport_header(skb,
2731 							       skb_checksum_start_offset(skb));
2732 			else
2733 				skb_set_transport_header(skb,
2734 							 skb_checksum_start_offset(skb));
2735 			if (!(features & NETIF_F_ALL_CSUM) &&
2736 			    skb_checksum_help(skb))
2737 				goto out_kfree_skb;
2738 		}
2739 	}
2740 
2741 	return skb;
2742 
2743 out_kfree_skb:
2744 	kfree_skb(skb);
2745 out_null:
2746 	return NULL;
2747 }
2748 
2749 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2750 {
2751 	struct sk_buff *next, *head = NULL, *tail;
2752 
2753 	for (; skb != NULL; skb = next) {
2754 		next = skb->next;
2755 		skb->next = NULL;
2756 
2757 		/* in case skb wont be segmented, point to itself */
2758 		skb->prev = skb;
2759 
2760 		skb = validate_xmit_skb(skb, dev);
2761 		if (!skb)
2762 			continue;
2763 
2764 		if (!head)
2765 			head = skb;
2766 		else
2767 			tail->next = skb;
2768 		/* If skb was segmented, skb->prev points to
2769 		 * the last segment. If not, it still contains skb.
2770 		 */
2771 		tail = skb->prev;
2772 	}
2773 	return head;
2774 }
2775 
2776 static void qdisc_pkt_len_init(struct sk_buff *skb)
2777 {
2778 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
2779 
2780 	qdisc_skb_cb(skb)->pkt_len = skb->len;
2781 
2782 	/* To get more precise estimation of bytes sent on wire,
2783 	 * we add to pkt_len the headers size of all segments
2784 	 */
2785 	if (shinfo->gso_size)  {
2786 		unsigned int hdr_len;
2787 		u16 gso_segs = shinfo->gso_segs;
2788 
2789 		/* mac layer + network layer */
2790 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2791 
2792 		/* + transport layer */
2793 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2794 			hdr_len += tcp_hdrlen(skb);
2795 		else
2796 			hdr_len += sizeof(struct udphdr);
2797 
2798 		if (shinfo->gso_type & SKB_GSO_DODGY)
2799 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2800 						shinfo->gso_size);
2801 
2802 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2803 	}
2804 }
2805 
2806 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2807 				 struct net_device *dev,
2808 				 struct netdev_queue *txq)
2809 {
2810 	spinlock_t *root_lock = qdisc_lock(q);
2811 	bool contended;
2812 	int rc;
2813 
2814 	qdisc_pkt_len_init(skb);
2815 	qdisc_calculate_pkt_len(skb, q);
2816 	/*
2817 	 * Heuristic to force contended enqueues to serialize on a
2818 	 * separate lock before trying to get qdisc main lock.
2819 	 * This permits __QDISC___STATE_RUNNING owner to get the lock more
2820 	 * often and dequeue packets faster.
2821 	 */
2822 	contended = qdisc_is_running(q);
2823 	if (unlikely(contended))
2824 		spin_lock(&q->busylock);
2825 
2826 	spin_lock(root_lock);
2827 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2828 		kfree_skb(skb);
2829 		rc = NET_XMIT_DROP;
2830 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2831 		   qdisc_run_begin(q)) {
2832 		/*
2833 		 * This is a work-conserving queue; there are no old skbs
2834 		 * waiting to be sent out; and the qdisc is not running -
2835 		 * xmit the skb directly.
2836 		 */
2837 
2838 		qdisc_bstats_update(q, skb);
2839 
2840 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
2841 			if (unlikely(contended)) {
2842 				spin_unlock(&q->busylock);
2843 				contended = false;
2844 			}
2845 			__qdisc_run(q);
2846 		} else
2847 			qdisc_run_end(q);
2848 
2849 		rc = NET_XMIT_SUCCESS;
2850 	} else {
2851 		rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2852 		if (qdisc_run_begin(q)) {
2853 			if (unlikely(contended)) {
2854 				spin_unlock(&q->busylock);
2855 				contended = false;
2856 			}
2857 			__qdisc_run(q);
2858 		}
2859 	}
2860 	spin_unlock(root_lock);
2861 	if (unlikely(contended))
2862 		spin_unlock(&q->busylock);
2863 	return rc;
2864 }
2865 
2866 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2867 static void skb_update_prio(struct sk_buff *skb)
2868 {
2869 	struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2870 
2871 	if (!skb->priority && skb->sk && map) {
2872 		unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2873 
2874 		if (prioidx < map->priomap_len)
2875 			skb->priority = map->priomap[prioidx];
2876 	}
2877 }
2878 #else
2879 #define skb_update_prio(skb)
2880 #endif
2881 
2882 DEFINE_PER_CPU(int, xmit_recursion);
2883 EXPORT_SYMBOL(xmit_recursion);
2884 
2885 #define RECURSION_LIMIT 10
2886 
2887 /**
2888  *	dev_loopback_xmit - loop back @skb
2889  *	@skb: buffer to transmit
2890  */
2891 int dev_loopback_xmit(struct sock *sk, struct sk_buff *skb)
2892 {
2893 	skb_reset_mac_header(skb);
2894 	__skb_pull(skb, skb_network_offset(skb));
2895 	skb->pkt_type = PACKET_LOOPBACK;
2896 	skb->ip_summed = CHECKSUM_UNNECESSARY;
2897 	WARN_ON(!skb_dst(skb));
2898 	skb_dst_force(skb);
2899 	netif_rx_ni(skb);
2900 	return 0;
2901 }
2902 EXPORT_SYMBOL(dev_loopback_xmit);
2903 
2904 /**
2905  *	__dev_queue_xmit - transmit a buffer
2906  *	@skb: buffer to transmit
2907  *	@accel_priv: private data used for L2 forwarding offload
2908  *
2909  *	Queue a buffer for transmission to a network device. The caller must
2910  *	have set the device and priority and built the buffer before calling
2911  *	this function. The function can be called from an interrupt.
2912  *
2913  *	A negative errno code is returned on a failure. A success does not
2914  *	guarantee the frame will be transmitted as it may be dropped due
2915  *	to congestion or traffic shaping.
2916  *
2917  * -----------------------------------------------------------------------------------
2918  *      I notice this method can also return errors from the queue disciplines,
2919  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
2920  *      be positive.
2921  *
2922  *      Regardless of the return value, the skb is consumed, so it is currently
2923  *      difficult to retry a send to this method.  (You can bump the ref count
2924  *      before sending to hold a reference for retry if you are careful.)
2925  *
2926  *      When calling this method, interrupts MUST be enabled.  This is because
2927  *      the BH enable code must have IRQs enabled so that it will not deadlock.
2928  *          --BLG
2929  */
2930 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
2931 {
2932 	struct net_device *dev = skb->dev;
2933 	struct netdev_queue *txq;
2934 	struct Qdisc *q;
2935 	int rc = -ENOMEM;
2936 
2937 	skb_reset_mac_header(skb);
2938 
2939 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
2940 		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
2941 
2942 	/* Disable soft irqs for various locks below. Also
2943 	 * stops preemption for RCU.
2944 	 */
2945 	rcu_read_lock_bh();
2946 
2947 	skb_update_prio(skb);
2948 
2949 	/* If device/qdisc don't need skb->dst, release it right now while
2950 	 * its hot in this cpu cache.
2951 	 */
2952 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2953 		skb_dst_drop(skb);
2954 	else
2955 		skb_dst_force(skb);
2956 
2957 	txq = netdev_pick_tx(dev, skb, accel_priv);
2958 	q = rcu_dereference_bh(txq->qdisc);
2959 
2960 #ifdef CONFIG_NET_CLS_ACT
2961 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2962 #endif
2963 	trace_net_dev_queue(skb);
2964 	if (q->enqueue) {
2965 		rc = __dev_xmit_skb(skb, q, dev, txq);
2966 		goto out;
2967 	}
2968 
2969 	/* The device has no queue. Common case for software devices:
2970 	   loopback, all the sorts of tunnels...
2971 
2972 	   Really, it is unlikely that netif_tx_lock protection is necessary
2973 	   here.  (f.e. loopback and IP tunnels are clean ignoring statistics
2974 	   counters.)
2975 	   However, it is possible, that they rely on protection
2976 	   made by us here.
2977 
2978 	   Check this and shot the lock. It is not prone from deadlocks.
2979 	   Either shot noqueue qdisc, it is even simpler 8)
2980 	 */
2981 	if (dev->flags & IFF_UP) {
2982 		int cpu = smp_processor_id(); /* ok because BHs are off */
2983 
2984 		if (txq->xmit_lock_owner != cpu) {
2985 
2986 			if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2987 				goto recursion_alert;
2988 
2989 			skb = validate_xmit_skb(skb, dev);
2990 			if (!skb)
2991 				goto drop;
2992 
2993 			HARD_TX_LOCK(dev, txq, cpu);
2994 
2995 			if (!netif_xmit_stopped(txq)) {
2996 				__this_cpu_inc(xmit_recursion);
2997 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
2998 				__this_cpu_dec(xmit_recursion);
2999 				if (dev_xmit_complete(rc)) {
3000 					HARD_TX_UNLOCK(dev, txq);
3001 					goto out;
3002 				}
3003 			}
3004 			HARD_TX_UNLOCK(dev, txq);
3005 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3006 					     dev->name);
3007 		} else {
3008 			/* Recursion is detected! It is possible,
3009 			 * unfortunately
3010 			 */
3011 recursion_alert:
3012 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3013 					     dev->name);
3014 		}
3015 	}
3016 
3017 	rc = -ENETDOWN;
3018 drop:
3019 	rcu_read_unlock_bh();
3020 
3021 	atomic_long_inc(&dev->tx_dropped);
3022 	kfree_skb_list(skb);
3023 	return rc;
3024 out:
3025 	rcu_read_unlock_bh();
3026 	return rc;
3027 }
3028 
3029 int dev_queue_xmit_sk(struct sock *sk, struct sk_buff *skb)
3030 {
3031 	return __dev_queue_xmit(skb, NULL);
3032 }
3033 EXPORT_SYMBOL(dev_queue_xmit_sk);
3034 
3035 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3036 {
3037 	return __dev_queue_xmit(skb, accel_priv);
3038 }
3039 EXPORT_SYMBOL(dev_queue_xmit_accel);
3040 
3041 
3042 /*=======================================================================
3043 			Receiver routines
3044   =======================================================================*/
3045 
3046 int netdev_max_backlog __read_mostly = 1000;
3047 EXPORT_SYMBOL(netdev_max_backlog);
3048 
3049 int netdev_tstamp_prequeue __read_mostly = 1;
3050 int netdev_budget __read_mostly = 300;
3051 int weight_p __read_mostly = 64;            /* old backlog weight */
3052 
3053 /* Called with irq disabled */
3054 static inline void ____napi_schedule(struct softnet_data *sd,
3055 				     struct napi_struct *napi)
3056 {
3057 	list_add_tail(&napi->poll_list, &sd->poll_list);
3058 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3059 }
3060 
3061 #ifdef CONFIG_RPS
3062 
3063 /* One global table that all flow-based protocols share. */
3064 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3065 EXPORT_SYMBOL(rps_sock_flow_table);
3066 u32 rps_cpu_mask __read_mostly;
3067 EXPORT_SYMBOL(rps_cpu_mask);
3068 
3069 struct static_key rps_needed __read_mostly;
3070 
3071 static struct rps_dev_flow *
3072 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3073 	    struct rps_dev_flow *rflow, u16 next_cpu)
3074 {
3075 	if (next_cpu < nr_cpu_ids) {
3076 #ifdef CONFIG_RFS_ACCEL
3077 		struct netdev_rx_queue *rxqueue;
3078 		struct rps_dev_flow_table *flow_table;
3079 		struct rps_dev_flow *old_rflow;
3080 		u32 flow_id;
3081 		u16 rxq_index;
3082 		int rc;
3083 
3084 		/* Should we steer this flow to a different hardware queue? */
3085 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3086 		    !(dev->features & NETIF_F_NTUPLE))
3087 			goto out;
3088 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3089 		if (rxq_index == skb_get_rx_queue(skb))
3090 			goto out;
3091 
3092 		rxqueue = dev->_rx + rxq_index;
3093 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
3094 		if (!flow_table)
3095 			goto out;
3096 		flow_id = skb_get_hash(skb) & flow_table->mask;
3097 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3098 							rxq_index, flow_id);
3099 		if (rc < 0)
3100 			goto out;
3101 		old_rflow = rflow;
3102 		rflow = &flow_table->flows[flow_id];
3103 		rflow->filter = rc;
3104 		if (old_rflow->filter == rflow->filter)
3105 			old_rflow->filter = RPS_NO_FILTER;
3106 	out:
3107 #endif
3108 		rflow->last_qtail =
3109 			per_cpu(softnet_data, next_cpu).input_queue_head;
3110 	}
3111 
3112 	rflow->cpu = next_cpu;
3113 	return rflow;
3114 }
3115 
3116 /*
3117  * get_rps_cpu is called from netif_receive_skb and returns the target
3118  * CPU from the RPS map of the receiving queue for a given skb.
3119  * rcu_read_lock must be held on entry.
3120  */
3121 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3122 		       struct rps_dev_flow **rflowp)
3123 {
3124 	const struct rps_sock_flow_table *sock_flow_table;
3125 	struct netdev_rx_queue *rxqueue = dev->_rx;
3126 	struct rps_dev_flow_table *flow_table;
3127 	struct rps_map *map;
3128 	int cpu = -1;
3129 	u32 tcpu;
3130 	u32 hash;
3131 
3132 	if (skb_rx_queue_recorded(skb)) {
3133 		u16 index = skb_get_rx_queue(skb);
3134 
3135 		if (unlikely(index >= dev->real_num_rx_queues)) {
3136 			WARN_ONCE(dev->real_num_rx_queues > 1,
3137 				  "%s received packet on queue %u, but number "
3138 				  "of RX queues is %u\n",
3139 				  dev->name, index, dev->real_num_rx_queues);
3140 			goto done;
3141 		}
3142 		rxqueue += index;
3143 	}
3144 
3145 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3146 
3147 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3148 	map = rcu_dereference(rxqueue->rps_map);
3149 	if (!flow_table && !map)
3150 		goto done;
3151 
3152 	skb_reset_network_header(skb);
3153 	hash = skb_get_hash(skb);
3154 	if (!hash)
3155 		goto done;
3156 
3157 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
3158 	if (flow_table && sock_flow_table) {
3159 		struct rps_dev_flow *rflow;
3160 		u32 next_cpu;
3161 		u32 ident;
3162 
3163 		/* First check into global flow table if there is a match */
3164 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3165 		if ((ident ^ hash) & ~rps_cpu_mask)
3166 			goto try_rps;
3167 
3168 		next_cpu = ident & rps_cpu_mask;
3169 
3170 		/* OK, now we know there is a match,
3171 		 * we can look at the local (per receive queue) flow table
3172 		 */
3173 		rflow = &flow_table->flows[hash & flow_table->mask];
3174 		tcpu = rflow->cpu;
3175 
3176 		/*
3177 		 * If the desired CPU (where last recvmsg was done) is
3178 		 * different from current CPU (one in the rx-queue flow
3179 		 * table entry), switch if one of the following holds:
3180 		 *   - Current CPU is unset (>= nr_cpu_ids).
3181 		 *   - Current CPU is offline.
3182 		 *   - The current CPU's queue tail has advanced beyond the
3183 		 *     last packet that was enqueued using this table entry.
3184 		 *     This guarantees that all previous packets for the flow
3185 		 *     have been dequeued, thus preserving in order delivery.
3186 		 */
3187 		if (unlikely(tcpu != next_cpu) &&
3188 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3189 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3190 		      rflow->last_qtail)) >= 0)) {
3191 			tcpu = next_cpu;
3192 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3193 		}
3194 
3195 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3196 			*rflowp = rflow;
3197 			cpu = tcpu;
3198 			goto done;
3199 		}
3200 	}
3201 
3202 try_rps:
3203 
3204 	if (map) {
3205 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3206 		if (cpu_online(tcpu)) {
3207 			cpu = tcpu;
3208 			goto done;
3209 		}
3210 	}
3211 
3212 done:
3213 	return cpu;
3214 }
3215 
3216 #ifdef CONFIG_RFS_ACCEL
3217 
3218 /**
3219  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3220  * @dev: Device on which the filter was set
3221  * @rxq_index: RX queue index
3222  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3223  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3224  *
3225  * Drivers that implement ndo_rx_flow_steer() should periodically call
3226  * this function for each installed filter and remove the filters for
3227  * which it returns %true.
3228  */
3229 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3230 			 u32 flow_id, u16 filter_id)
3231 {
3232 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3233 	struct rps_dev_flow_table *flow_table;
3234 	struct rps_dev_flow *rflow;
3235 	bool expire = true;
3236 	unsigned int cpu;
3237 
3238 	rcu_read_lock();
3239 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3240 	if (flow_table && flow_id <= flow_table->mask) {
3241 		rflow = &flow_table->flows[flow_id];
3242 		cpu = ACCESS_ONCE(rflow->cpu);
3243 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3244 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3245 			   rflow->last_qtail) <
3246 		     (int)(10 * flow_table->mask)))
3247 			expire = false;
3248 	}
3249 	rcu_read_unlock();
3250 	return expire;
3251 }
3252 EXPORT_SYMBOL(rps_may_expire_flow);
3253 
3254 #endif /* CONFIG_RFS_ACCEL */
3255 
3256 /* Called from hardirq (IPI) context */
3257 static void rps_trigger_softirq(void *data)
3258 {
3259 	struct softnet_data *sd = data;
3260 
3261 	____napi_schedule(sd, &sd->backlog);
3262 	sd->received_rps++;
3263 }
3264 
3265 #endif /* CONFIG_RPS */
3266 
3267 /*
3268  * Check if this softnet_data structure is another cpu one
3269  * If yes, queue it to our IPI list and return 1
3270  * If no, return 0
3271  */
3272 static int rps_ipi_queued(struct softnet_data *sd)
3273 {
3274 #ifdef CONFIG_RPS
3275 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3276 
3277 	if (sd != mysd) {
3278 		sd->rps_ipi_next = mysd->rps_ipi_list;
3279 		mysd->rps_ipi_list = sd;
3280 
3281 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3282 		return 1;
3283 	}
3284 #endif /* CONFIG_RPS */
3285 	return 0;
3286 }
3287 
3288 #ifdef CONFIG_NET_FLOW_LIMIT
3289 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3290 #endif
3291 
3292 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3293 {
3294 #ifdef CONFIG_NET_FLOW_LIMIT
3295 	struct sd_flow_limit *fl;
3296 	struct softnet_data *sd;
3297 	unsigned int old_flow, new_flow;
3298 
3299 	if (qlen < (netdev_max_backlog >> 1))
3300 		return false;
3301 
3302 	sd = this_cpu_ptr(&softnet_data);
3303 
3304 	rcu_read_lock();
3305 	fl = rcu_dereference(sd->flow_limit);
3306 	if (fl) {
3307 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3308 		old_flow = fl->history[fl->history_head];
3309 		fl->history[fl->history_head] = new_flow;
3310 
3311 		fl->history_head++;
3312 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3313 
3314 		if (likely(fl->buckets[old_flow]))
3315 			fl->buckets[old_flow]--;
3316 
3317 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3318 			fl->count++;
3319 			rcu_read_unlock();
3320 			return true;
3321 		}
3322 	}
3323 	rcu_read_unlock();
3324 #endif
3325 	return false;
3326 }
3327 
3328 /*
3329  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3330  * queue (may be a remote CPU queue).
3331  */
3332 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3333 			      unsigned int *qtail)
3334 {
3335 	struct softnet_data *sd;
3336 	unsigned long flags;
3337 	unsigned int qlen;
3338 
3339 	sd = &per_cpu(softnet_data, cpu);
3340 
3341 	local_irq_save(flags);
3342 
3343 	rps_lock(sd);
3344 	qlen = skb_queue_len(&sd->input_pkt_queue);
3345 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3346 		if (qlen) {
3347 enqueue:
3348 			__skb_queue_tail(&sd->input_pkt_queue, skb);
3349 			input_queue_tail_incr_save(sd, qtail);
3350 			rps_unlock(sd);
3351 			local_irq_restore(flags);
3352 			return NET_RX_SUCCESS;
3353 		}
3354 
3355 		/* Schedule NAPI for backlog device
3356 		 * We can use non atomic operation since we own the queue lock
3357 		 */
3358 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3359 			if (!rps_ipi_queued(sd))
3360 				____napi_schedule(sd, &sd->backlog);
3361 		}
3362 		goto enqueue;
3363 	}
3364 
3365 	sd->dropped++;
3366 	rps_unlock(sd);
3367 
3368 	local_irq_restore(flags);
3369 
3370 	atomic_long_inc(&skb->dev->rx_dropped);
3371 	kfree_skb(skb);
3372 	return NET_RX_DROP;
3373 }
3374 
3375 static int netif_rx_internal(struct sk_buff *skb)
3376 {
3377 	int ret;
3378 
3379 	net_timestamp_check(netdev_tstamp_prequeue, skb);
3380 
3381 	trace_netif_rx(skb);
3382 #ifdef CONFIG_RPS
3383 	if (static_key_false(&rps_needed)) {
3384 		struct rps_dev_flow voidflow, *rflow = &voidflow;
3385 		int cpu;
3386 
3387 		preempt_disable();
3388 		rcu_read_lock();
3389 
3390 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
3391 		if (cpu < 0)
3392 			cpu = smp_processor_id();
3393 
3394 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3395 
3396 		rcu_read_unlock();
3397 		preempt_enable();
3398 	} else
3399 #endif
3400 	{
3401 		unsigned int qtail;
3402 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3403 		put_cpu();
3404 	}
3405 	return ret;
3406 }
3407 
3408 /**
3409  *	netif_rx	-	post buffer to the network code
3410  *	@skb: buffer to post
3411  *
3412  *	This function receives a packet from a device driver and queues it for
3413  *	the upper (protocol) levels to process.  It always succeeds. The buffer
3414  *	may be dropped during processing for congestion control or by the
3415  *	protocol layers.
3416  *
3417  *	return values:
3418  *	NET_RX_SUCCESS	(no congestion)
3419  *	NET_RX_DROP     (packet was dropped)
3420  *
3421  */
3422 
3423 int netif_rx(struct sk_buff *skb)
3424 {
3425 	trace_netif_rx_entry(skb);
3426 
3427 	return netif_rx_internal(skb);
3428 }
3429 EXPORT_SYMBOL(netif_rx);
3430 
3431 int netif_rx_ni(struct sk_buff *skb)
3432 {
3433 	int err;
3434 
3435 	trace_netif_rx_ni_entry(skb);
3436 
3437 	preempt_disable();
3438 	err = netif_rx_internal(skb);
3439 	if (local_softirq_pending())
3440 		do_softirq();
3441 	preempt_enable();
3442 
3443 	return err;
3444 }
3445 EXPORT_SYMBOL(netif_rx_ni);
3446 
3447 static void net_tx_action(struct softirq_action *h)
3448 {
3449 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3450 
3451 	if (sd->completion_queue) {
3452 		struct sk_buff *clist;
3453 
3454 		local_irq_disable();
3455 		clist = sd->completion_queue;
3456 		sd->completion_queue = NULL;
3457 		local_irq_enable();
3458 
3459 		while (clist) {
3460 			struct sk_buff *skb = clist;
3461 			clist = clist->next;
3462 
3463 			WARN_ON(atomic_read(&skb->users));
3464 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3465 				trace_consume_skb(skb);
3466 			else
3467 				trace_kfree_skb(skb, net_tx_action);
3468 			__kfree_skb(skb);
3469 		}
3470 	}
3471 
3472 	if (sd->output_queue) {
3473 		struct Qdisc *head;
3474 
3475 		local_irq_disable();
3476 		head = sd->output_queue;
3477 		sd->output_queue = NULL;
3478 		sd->output_queue_tailp = &sd->output_queue;
3479 		local_irq_enable();
3480 
3481 		while (head) {
3482 			struct Qdisc *q = head;
3483 			spinlock_t *root_lock;
3484 
3485 			head = head->next_sched;
3486 
3487 			root_lock = qdisc_lock(q);
3488 			if (spin_trylock(root_lock)) {
3489 				smp_mb__before_atomic();
3490 				clear_bit(__QDISC_STATE_SCHED,
3491 					  &q->state);
3492 				qdisc_run(q);
3493 				spin_unlock(root_lock);
3494 			} else {
3495 				if (!test_bit(__QDISC_STATE_DEACTIVATED,
3496 					      &q->state)) {
3497 					__netif_reschedule(q);
3498 				} else {
3499 					smp_mb__before_atomic();
3500 					clear_bit(__QDISC_STATE_SCHED,
3501 						  &q->state);
3502 				}
3503 			}
3504 		}
3505 	}
3506 }
3507 
3508 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3509     (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3510 /* This hook is defined here for ATM LANE */
3511 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3512 			     unsigned char *addr) __read_mostly;
3513 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3514 #endif
3515 
3516 #ifdef CONFIG_NET_CLS_ACT
3517 /* TODO: Maybe we should just force sch_ingress to be compiled in
3518  * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3519  * a compare and 2 stores extra right now if we dont have it on
3520  * but have CONFIG_NET_CLS_ACT
3521  * NOTE: This doesn't stop any functionality; if you dont have
3522  * the ingress scheduler, you just can't add policies on ingress.
3523  *
3524  */
3525 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3526 {
3527 	struct net_device *dev = skb->dev;
3528 	u32 ttl = G_TC_RTTL(skb->tc_verd);
3529 	int result = TC_ACT_OK;
3530 	struct Qdisc *q;
3531 
3532 	if (unlikely(MAX_RED_LOOP < ttl++)) {
3533 		net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3534 				     skb->skb_iif, dev->ifindex);
3535 		return TC_ACT_SHOT;
3536 	}
3537 
3538 	skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3539 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3540 
3541 	q = rcu_dereference(rxq->qdisc);
3542 	if (q != &noop_qdisc) {
3543 		spin_lock(qdisc_lock(q));
3544 		if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3545 			result = qdisc_enqueue_root(skb, q);
3546 		spin_unlock(qdisc_lock(q));
3547 	}
3548 
3549 	return result;
3550 }
3551 
3552 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3553 					 struct packet_type **pt_prev,
3554 					 int *ret, struct net_device *orig_dev)
3555 {
3556 	struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3557 
3558 	if (!rxq || rcu_access_pointer(rxq->qdisc) == &noop_qdisc)
3559 		return skb;
3560 
3561 	if (*pt_prev) {
3562 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
3563 		*pt_prev = NULL;
3564 	}
3565 
3566 	switch (ing_filter(skb, rxq)) {
3567 	case TC_ACT_SHOT:
3568 	case TC_ACT_STOLEN:
3569 		kfree_skb(skb);
3570 		return NULL;
3571 	}
3572 
3573 	return skb;
3574 }
3575 #endif
3576 
3577 /**
3578  *	netdev_rx_handler_register - register receive handler
3579  *	@dev: device to register a handler for
3580  *	@rx_handler: receive handler to register
3581  *	@rx_handler_data: data pointer that is used by rx handler
3582  *
3583  *	Register a receive handler for a device. This handler will then be
3584  *	called from __netif_receive_skb. A negative errno code is returned
3585  *	on a failure.
3586  *
3587  *	The caller must hold the rtnl_mutex.
3588  *
3589  *	For a general description of rx_handler, see enum rx_handler_result.
3590  */
3591 int netdev_rx_handler_register(struct net_device *dev,
3592 			       rx_handler_func_t *rx_handler,
3593 			       void *rx_handler_data)
3594 {
3595 	ASSERT_RTNL();
3596 
3597 	if (dev->rx_handler)
3598 		return -EBUSY;
3599 
3600 	/* Note: rx_handler_data must be set before rx_handler */
3601 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3602 	rcu_assign_pointer(dev->rx_handler, rx_handler);
3603 
3604 	return 0;
3605 }
3606 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3607 
3608 /**
3609  *	netdev_rx_handler_unregister - unregister receive handler
3610  *	@dev: device to unregister a handler from
3611  *
3612  *	Unregister a receive handler from a device.
3613  *
3614  *	The caller must hold the rtnl_mutex.
3615  */
3616 void netdev_rx_handler_unregister(struct net_device *dev)
3617 {
3618 
3619 	ASSERT_RTNL();
3620 	RCU_INIT_POINTER(dev->rx_handler, NULL);
3621 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3622 	 * section has a guarantee to see a non NULL rx_handler_data
3623 	 * as well.
3624 	 */
3625 	synchronize_net();
3626 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3627 }
3628 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3629 
3630 /*
3631  * Limit the use of PFMEMALLOC reserves to those protocols that implement
3632  * the special handling of PFMEMALLOC skbs.
3633  */
3634 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3635 {
3636 	switch (skb->protocol) {
3637 	case htons(ETH_P_ARP):
3638 	case htons(ETH_P_IP):
3639 	case htons(ETH_P_IPV6):
3640 	case htons(ETH_P_8021Q):
3641 	case htons(ETH_P_8021AD):
3642 		return true;
3643 	default:
3644 		return false;
3645 	}
3646 }
3647 
3648 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3649 {
3650 	struct packet_type *ptype, *pt_prev;
3651 	rx_handler_func_t *rx_handler;
3652 	struct net_device *orig_dev;
3653 	bool deliver_exact = false;
3654 	int ret = NET_RX_DROP;
3655 	__be16 type;
3656 
3657 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
3658 
3659 	trace_netif_receive_skb(skb);
3660 
3661 	orig_dev = skb->dev;
3662 
3663 	skb_reset_network_header(skb);
3664 	if (!skb_transport_header_was_set(skb))
3665 		skb_reset_transport_header(skb);
3666 	skb_reset_mac_len(skb);
3667 
3668 	pt_prev = NULL;
3669 
3670 	rcu_read_lock();
3671 
3672 another_round:
3673 	skb->skb_iif = skb->dev->ifindex;
3674 
3675 	__this_cpu_inc(softnet_data.processed);
3676 
3677 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3678 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3679 		skb = skb_vlan_untag(skb);
3680 		if (unlikely(!skb))
3681 			goto unlock;
3682 	}
3683 
3684 #ifdef CONFIG_NET_CLS_ACT
3685 	if (skb->tc_verd & TC_NCLS) {
3686 		skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3687 		goto ncls;
3688 	}
3689 #endif
3690 
3691 	if (pfmemalloc)
3692 		goto skip_taps;
3693 
3694 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
3695 		if (pt_prev)
3696 			ret = deliver_skb(skb, pt_prev, orig_dev);
3697 		pt_prev = ptype;
3698 	}
3699 
3700 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
3701 		if (pt_prev)
3702 			ret = deliver_skb(skb, pt_prev, orig_dev);
3703 		pt_prev = ptype;
3704 	}
3705 
3706 skip_taps:
3707 #ifdef CONFIG_NET_CLS_ACT
3708 	if (static_key_false(&ingress_needed)) {
3709 		skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3710 		if (!skb)
3711 			goto unlock;
3712 	}
3713 
3714 	skb->tc_verd = 0;
3715 ncls:
3716 #endif
3717 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3718 		goto drop;
3719 
3720 	if (skb_vlan_tag_present(skb)) {
3721 		if (pt_prev) {
3722 			ret = deliver_skb(skb, pt_prev, orig_dev);
3723 			pt_prev = NULL;
3724 		}
3725 		if (vlan_do_receive(&skb))
3726 			goto another_round;
3727 		else if (unlikely(!skb))
3728 			goto unlock;
3729 	}
3730 
3731 	rx_handler = rcu_dereference(skb->dev->rx_handler);
3732 	if (rx_handler) {
3733 		if (pt_prev) {
3734 			ret = deliver_skb(skb, pt_prev, orig_dev);
3735 			pt_prev = NULL;
3736 		}
3737 		switch (rx_handler(&skb)) {
3738 		case RX_HANDLER_CONSUMED:
3739 			ret = NET_RX_SUCCESS;
3740 			goto unlock;
3741 		case RX_HANDLER_ANOTHER:
3742 			goto another_round;
3743 		case RX_HANDLER_EXACT:
3744 			deliver_exact = true;
3745 		case RX_HANDLER_PASS:
3746 			break;
3747 		default:
3748 			BUG();
3749 		}
3750 	}
3751 
3752 	if (unlikely(skb_vlan_tag_present(skb))) {
3753 		if (skb_vlan_tag_get_id(skb))
3754 			skb->pkt_type = PACKET_OTHERHOST;
3755 		/* Note: we might in the future use prio bits
3756 		 * and set skb->priority like in vlan_do_receive()
3757 		 * For the time being, just ignore Priority Code Point
3758 		 */
3759 		skb->vlan_tci = 0;
3760 	}
3761 
3762 	type = skb->protocol;
3763 
3764 	/* deliver only exact match when indicated */
3765 	if (likely(!deliver_exact)) {
3766 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3767 				       &ptype_base[ntohs(type) &
3768 						   PTYPE_HASH_MASK]);
3769 	}
3770 
3771 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3772 			       &orig_dev->ptype_specific);
3773 
3774 	if (unlikely(skb->dev != orig_dev)) {
3775 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3776 				       &skb->dev->ptype_specific);
3777 	}
3778 
3779 	if (pt_prev) {
3780 		if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3781 			goto drop;
3782 		else
3783 			ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3784 	} else {
3785 drop:
3786 		atomic_long_inc(&skb->dev->rx_dropped);
3787 		kfree_skb(skb);
3788 		/* Jamal, now you will not able to escape explaining
3789 		 * me how you were going to use this. :-)
3790 		 */
3791 		ret = NET_RX_DROP;
3792 	}
3793 
3794 unlock:
3795 	rcu_read_unlock();
3796 	return ret;
3797 }
3798 
3799 static int __netif_receive_skb(struct sk_buff *skb)
3800 {
3801 	int ret;
3802 
3803 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3804 		unsigned long pflags = current->flags;
3805 
3806 		/*
3807 		 * PFMEMALLOC skbs are special, they should
3808 		 * - be delivered to SOCK_MEMALLOC sockets only
3809 		 * - stay away from userspace
3810 		 * - have bounded memory usage
3811 		 *
3812 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
3813 		 * context down to all allocation sites.
3814 		 */
3815 		current->flags |= PF_MEMALLOC;
3816 		ret = __netif_receive_skb_core(skb, true);
3817 		tsk_restore_flags(current, pflags, PF_MEMALLOC);
3818 	} else
3819 		ret = __netif_receive_skb_core(skb, false);
3820 
3821 	return ret;
3822 }
3823 
3824 static int netif_receive_skb_internal(struct sk_buff *skb)
3825 {
3826 	net_timestamp_check(netdev_tstamp_prequeue, skb);
3827 
3828 	if (skb_defer_rx_timestamp(skb))
3829 		return NET_RX_SUCCESS;
3830 
3831 #ifdef CONFIG_RPS
3832 	if (static_key_false(&rps_needed)) {
3833 		struct rps_dev_flow voidflow, *rflow = &voidflow;
3834 		int cpu, ret;
3835 
3836 		rcu_read_lock();
3837 
3838 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
3839 
3840 		if (cpu >= 0) {
3841 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3842 			rcu_read_unlock();
3843 			return ret;
3844 		}
3845 		rcu_read_unlock();
3846 	}
3847 #endif
3848 	return __netif_receive_skb(skb);
3849 }
3850 
3851 /**
3852  *	netif_receive_skb - process receive buffer from network
3853  *	@skb: buffer to process
3854  *
3855  *	netif_receive_skb() is the main receive data processing function.
3856  *	It always succeeds. The buffer may be dropped during processing
3857  *	for congestion control or by the protocol layers.
3858  *
3859  *	This function may only be called from softirq context and interrupts
3860  *	should be enabled.
3861  *
3862  *	Return values (usually ignored):
3863  *	NET_RX_SUCCESS: no congestion
3864  *	NET_RX_DROP: packet was dropped
3865  */
3866 int netif_receive_skb_sk(struct sock *sk, struct sk_buff *skb)
3867 {
3868 	trace_netif_receive_skb_entry(skb);
3869 
3870 	return netif_receive_skb_internal(skb);
3871 }
3872 EXPORT_SYMBOL(netif_receive_skb_sk);
3873 
3874 /* Network device is going away, flush any packets still pending
3875  * Called with irqs disabled.
3876  */
3877 static void flush_backlog(void *arg)
3878 {
3879 	struct net_device *dev = arg;
3880 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3881 	struct sk_buff *skb, *tmp;
3882 
3883 	rps_lock(sd);
3884 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3885 		if (skb->dev == dev) {
3886 			__skb_unlink(skb, &sd->input_pkt_queue);
3887 			kfree_skb(skb);
3888 			input_queue_head_incr(sd);
3889 		}
3890 	}
3891 	rps_unlock(sd);
3892 
3893 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3894 		if (skb->dev == dev) {
3895 			__skb_unlink(skb, &sd->process_queue);
3896 			kfree_skb(skb);
3897 			input_queue_head_incr(sd);
3898 		}
3899 	}
3900 }
3901 
3902 static int napi_gro_complete(struct sk_buff *skb)
3903 {
3904 	struct packet_offload *ptype;
3905 	__be16 type = skb->protocol;
3906 	struct list_head *head = &offload_base;
3907 	int err = -ENOENT;
3908 
3909 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3910 
3911 	if (NAPI_GRO_CB(skb)->count == 1) {
3912 		skb_shinfo(skb)->gso_size = 0;
3913 		goto out;
3914 	}
3915 
3916 	rcu_read_lock();
3917 	list_for_each_entry_rcu(ptype, head, list) {
3918 		if (ptype->type != type || !ptype->callbacks.gro_complete)
3919 			continue;
3920 
3921 		err = ptype->callbacks.gro_complete(skb, 0);
3922 		break;
3923 	}
3924 	rcu_read_unlock();
3925 
3926 	if (err) {
3927 		WARN_ON(&ptype->list == head);
3928 		kfree_skb(skb);
3929 		return NET_RX_SUCCESS;
3930 	}
3931 
3932 out:
3933 	return netif_receive_skb_internal(skb);
3934 }
3935 
3936 /* napi->gro_list contains packets ordered by age.
3937  * youngest packets at the head of it.
3938  * Complete skbs in reverse order to reduce latencies.
3939  */
3940 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3941 {
3942 	struct sk_buff *skb, *prev = NULL;
3943 
3944 	/* scan list and build reverse chain */
3945 	for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3946 		skb->prev = prev;
3947 		prev = skb;
3948 	}
3949 
3950 	for (skb = prev; skb; skb = prev) {
3951 		skb->next = NULL;
3952 
3953 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3954 			return;
3955 
3956 		prev = skb->prev;
3957 		napi_gro_complete(skb);
3958 		napi->gro_count--;
3959 	}
3960 
3961 	napi->gro_list = NULL;
3962 }
3963 EXPORT_SYMBOL(napi_gro_flush);
3964 
3965 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3966 {
3967 	struct sk_buff *p;
3968 	unsigned int maclen = skb->dev->hard_header_len;
3969 	u32 hash = skb_get_hash_raw(skb);
3970 
3971 	for (p = napi->gro_list; p; p = p->next) {
3972 		unsigned long diffs;
3973 
3974 		NAPI_GRO_CB(p)->flush = 0;
3975 
3976 		if (hash != skb_get_hash_raw(p)) {
3977 			NAPI_GRO_CB(p)->same_flow = 0;
3978 			continue;
3979 		}
3980 
3981 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3982 		diffs |= p->vlan_tci ^ skb->vlan_tci;
3983 		if (maclen == ETH_HLEN)
3984 			diffs |= compare_ether_header(skb_mac_header(p),
3985 						      skb_mac_header(skb));
3986 		else if (!diffs)
3987 			diffs = memcmp(skb_mac_header(p),
3988 				       skb_mac_header(skb),
3989 				       maclen);
3990 		NAPI_GRO_CB(p)->same_flow = !diffs;
3991 	}
3992 }
3993 
3994 static void skb_gro_reset_offset(struct sk_buff *skb)
3995 {
3996 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
3997 	const skb_frag_t *frag0 = &pinfo->frags[0];
3998 
3999 	NAPI_GRO_CB(skb)->data_offset = 0;
4000 	NAPI_GRO_CB(skb)->frag0 = NULL;
4001 	NAPI_GRO_CB(skb)->frag0_len = 0;
4002 
4003 	if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4004 	    pinfo->nr_frags &&
4005 	    !PageHighMem(skb_frag_page(frag0))) {
4006 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4007 		NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
4008 	}
4009 }
4010 
4011 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4012 {
4013 	struct skb_shared_info *pinfo = skb_shinfo(skb);
4014 
4015 	BUG_ON(skb->end - skb->tail < grow);
4016 
4017 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4018 
4019 	skb->data_len -= grow;
4020 	skb->tail += grow;
4021 
4022 	pinfo->frags[0].page_offset += grow;
4023 	skb_frag_size_sub(&pinfo->frags[0], grow);
4024 
4025 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4026 		skb_frag_unref(skb, 0);
4027 		memmove(pinfo->frags, pinfo->frags + 1,
4028 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
4029 	}
4030 }
4031 
4032 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4033 {
4034 	struct sk_buff **pp = NULL;
4035 	struct packet_offload *ptype;
4036 	__be16 type = skb->protocol;
4037 	struct list_head *head = &offload_base;
4038 	int same_flow;
4039 	enum gro_result ret;
4040 	int grow;
4041 
4042 	if (!(skb->dev->features & NETIF_F_GRO))
4043 		goto normal;
4044 
4045 	if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
4046 		goto normal;
4047 
4048 	gro_list_prepare(napi, skb);
4049 
4050 	rcu_read_lock();
4051 	list_for_each_entry_rcu(ptype, head, list) {
4052 		if (ptype->type != type || !ptype->callbacks.gro_receive)
4053 			continue;
4054 
4055 		skb_set_network_header(skb, skb_gro_offset(skb));
4056 		skb_reset_mac_len(skb);
4057 		NAPI_GRO_CB(skb)->same_flow = 0;
4058 		NAPI_GRO_CB(skb)->flush = 0;
4059 		NAPI_GRO_CB(skb)->free = 0;
4060 		NAPI_GRO_CB(skb)->udp_mark = 0;
4061 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4062 
4063 		/* Setup for GRO checksum validation */
4064 		switch (skb->ip_summed) {
4065 		case CHECKSUM_COMPLETE:
4066 			NAPI_GRO_CB(skb)->csum = skb->csum;
4067 			NAPI_GRO_CB(skb)->csum_valid = 1;
4068 			NAPI_GRO_CB(skb)->csum_cnt = 0;
4069 			break;
4070 		case CHECKSUM_UNNECESSARY:
4071 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4072 			NAPI_GRO_CB(skb)->csum_valid = 0;
4073 			break;
4074 		default:
4075 			NAPI_GRO_CB(skb)->csum_cnt = 0;
4076 			NAPI_GRO_CB(skb)->csum_valid = 0;
4077 		}
4078 
4079 		pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4080 		break;
4081 	}
4082 	rcu_read_unlock();
4083 
4084 	if (&ptype->list == head)
4085 		goto normal;
4086 
4087 	same_flow = NAPI_GRO_CB(skb)->same_flow;
4088 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4089 
4090 	if (pp) {
4091 		struct sk_buff *nskb = *pp;
4092 
4093 		*pp = nskb->next;
4094 		nskb->next = NULL;
4095 		napi_gro_complete(nskb);
4096 		napi->gro_count--;
4097 	}
4098 
4099 	if (same_flow)
4100 		goto ok;
4101 
4102 	if (NAPI_GRO_CB(skb)->flush)
4103 		goto normal;
4104 
4105 	if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4106 		struct sk_buff *nskb = napi->gro_list;
4107 
4108 		/* locate the end of the list to select the 'oldest' flow */
4109 		while (nskb->next) {
4110 			pp = &nskb->next;
4111 			nskb = *pp;
4112 		}
4113 		*pp = NULL;
4114 		nskb->next = NULL;
4115 		napi_gro_complete(nskb);
4116 	} else {
4117 		napi->gro_count++;
4118 	}
4119 	NAPI_GRO_CB(skb)->count = 1;
4120 	NAPI_GRO_CB(skb)->age = jiffies;
4121 	NAPI_GRO_CB(skb)->last = skb;
4122 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4123 	skb->next = napi->gro_list;
4124 	napi->gro_list = skb;
4125 	ret = GRO_HELD;
4126 
4127 pull:
4128 	grow = skb_gro_offset(skb) - skb_headlen(skb);
4129 	if (grow > 0)
4130 		gro_pull_from_frag0(skb, grow);
4131 ok:
4132 	return ret;
4133 
4134 normal:
4135 	ret = GRO_NORMAL;
4136 	goto pull;
4137 }
4138 
4139 struct packet_offload *gro_find_receive_by_type(__be16 type)
4140 {
4141 	struct list_head *offload_head = &offload_base;
4142 	struct packet_offload *ptype;
4143 
4144 	list_for_each_entry_rcu(ptype, offload_head, list) {
4145 		if (ptype->type != type || !ptype->callbacks.gro_receive)
4146 			continue;
4147 		return ptype;
4148 	}
4149 	return NULL;
4150 }
4151 EXPORT_SYMBOL(gro_find_receive_by_type);
4152 
4153 struct packet_offload *gro_find_complete_by_type(__be16 type)
4154 {
4155 	struct list_head *offload_head = &offload_base;
4156 	struct packet_offload *ptype;
4157 
4158 	list_for_each_entry_rcu(ptype, offload_head, list) {
4159 		if (ptype->type != type || !ptype->callbacks.gro_complete)
4160 			continue;
4161 		return ptype;
4162 	}
4163 	return NULL;
4164 }
4165 EXPORT_SYMBOL(gro_find_complete_by_type);
4166 
4167 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4168 {
4169 	switch (ret) {
4170 	case GRO_NORMAL:
4171 		if (netif_receive_skb_internal(skb))
4172 			ret = GRO_DROP;
4173 		break;
4174 
4175 	case GRO_DROP:
4176 		kfree_skb(skb);
4177 		break;
4178 
4179 	case GRO_MERGED_FREE:
4180 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4181 			kmem_cache_free(skbuff_head_cache, skb);
4182 		else
4183 			__kfree_skb(skb);
4184 		break;
4185 
4186 	case GRO_HELD:
4187 	case GRO_MERGED:
4188 		break;
4189 	}
4190 
4191 	return ret;
4192 }
4193 
4194 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4195 {
4196 	trace_napi_gro_receive_entry(skb);
4197 
4198 	skb_gro_reset_offset(skb);
4199 
4200 	return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4201 }
4202 EXPORT_SYMBOL(napi_gro_receive);
4203 
4204 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4205 {
4206 	if (unlikely(skb->pfmemalloc)) {
4207 		consume_skb(skb);
4208 		return;
4209 	}
4210 	__skb_pull(skb, skb_headlen(skb));
4211 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
4212 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4213 	skb->vlan_tci = 0;
4214 	skb->dev = napi->dev;
4215 	skb->skb_iif = 0;
4216 	skb->encapsulation = 0;
4217 	skb_shinfo(skb)->gso_type = 0;
4218 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4219 
4220 	napi->skb = skb;
4221 }
4222 
4223 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4224 {
4225 	struct sk_buff *skb = napi->skb;
4226 
4227 	if (!skb) {
4228 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4229 		napi->skb = skb;
4230 	}
4231 	return skb;
4232 }
4233 EXPORT_SYMBOL(napi_get_frags);
4234 
4235 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4236 				      struct sk_buff *skb,
4237 				      gro_result_t ret)
4238 {
4239 	switch (ret) {
4240 	case GRO_NORMAL:
4241 	case GRO_HELD:
4242 		__skb_push(skb, ETH_HLEN);
4243 		skb->protocol = eth_type_trans(skb, skb->dev);
4244 		if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4245 			ret = GRO_DROP;
4246 		break;
4247 
4248 	case GRO_DROP:
4249 	case GRO_MERGED_FREE:
4250 		napi_reuse_skb(napi, skb);
4251 		break;
4252 
4253 	case GRO_MERGED:
4254 		break;
4255 	}
4256 
4257 	return ret;
4258 }
4259 
4260 /* Upper GRO stack assumes network header starts at gro_offset=0
4261  * Drivers could call both napi_gro_frags() and napi_gro_receive()
4262  * We copy ethernet header into skb->data to have a common layout.
4263  */
4264 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4265 {
4266 	struct sk_buff *skb = napi->skb;
4267 	const struct ethhdr *eth;
4268 	unsigned int hlen = sizeof(*eth);
4269 
4270 	napi->skb = NULL;
4271 
4272 	skb_reset_mac_header(skb);
4273 	skb_gro_reset_offset(skb);
4274 
4275 	eth = skb_gro_header_fast(skb, 0);
4276 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
4277 		eth = skb_gro_header_slow(skb, hlen, 0);
4278 		if (unlikely(!eth)) {
4279 			napi_reuse_skb(napi, skb);
4280 			return NULL;
4281 		}
4282 	} else {
4283 		gro_pull_from_frag0(skb, hlen);
4284 		NAPI_GRO_CB(skb)->frag0 += hlen;
4285 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
4286 	}
4287 	__skb_pull(skb, hlen);
4288 
4289 	/*
4290 	 * This works because the only protocols we care about don't require
4291 	 * special handling.
4292 	 * We'll fix it up properly in napi_frags_finish()
4293 	 */
4294 	skb->protocol = eth->h_proto;
4295 
4296 	return skb;
4297 }
4298 
4299 gro_result_t napi_gro_frags(struct napi_struct *napi)
4300 {
4301 	struct sk_buff *skb = napi_frags_skb(napi);
4302 
4303 	if (!skb)
4304 		return GRO_DROP;
4305 
4306 	trace_napi_gro_frags_entry(skb);
4307 
4308 	return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4309 }
4310 EXPORT_SYMBOL(napi_gro_frags);
4311 
4312 /* Compute the checksum from gro_offset and return the folded value
4313  * after adding in any pseudo checksum.
4314  */
4315 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4316 {
4317 	__wsum wsum;
4318 	__sum16 sum;
4319 
4320 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4321 
4322 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4323 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4324 	if (likely(!sum)) {
4325 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4326 		    !skb->csum_complete_sw)
4327 			netdev_rx_csum_fault(skb->dev);
4328 	}
4329 
4330 	NAPI_GRO_CB(skb)->csum = wsum;
4331 	NAPI_GRO_CB(skb)->csum_valid = 1;
4332 
4333 	return sum;
4334 }
4335 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4336 
4337 /*
4338  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4339  * Note: called with local irq disabled, but exits with local irq enabled.
4340  */
4341 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4342 {
4343 #ifdef CONFIG_RPS
4344 	struct softnet_data *remsd = sd->rps_ipi_list;
4345 
4346 	if (remsd) {
4347 		sd->rps_ipi_list = NULL;
4348 
4349 		local_irq_enable();
4350 
4351 		/* Send pending IPI's to kick RPS processing on remote cpus. */
4352 		while (remsd) {
4353 			struct softnet_data *next = remsd->rps_ipi_next;
4354 
4355 			if (cpu_online(remsd->cpu))
4356 				smp_call_function_single_async(remsd->cpu,
4357 							   &remsd->csd);
4358 			remsd = next;
4359 		}
4360 	} else
4361 #endif
4362 		local_irq_enable();
4363 }
4364 
4365 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4366 {
4367 #ifdef CONFIG_RPS
4368 	return sd->rps_ipi_list != NULL;
4369 #else
4370 	return false;
4371 #endif
4372 }
4373 
4374 static int process_backlog(struct napi_struct *napi, int quota)
4375 {
4376 	int work = 0;
4377 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4378 
4379 	/* Check if we have pending ipi, its better to send them now,
4380 	 * not waiting net_rx_action() end.
4381 	 */
4382 	if (sd_has_rps_ipi_waiting(sd)) {
4383 		local_irq_disable();
4384 		net_rps_action_and_irq_enable(sd);
4385 	}
4386 
4387 	napi->weight = weight_p;
4388 	local_irq_disable();
4389 	while (1) {
4390 		struct sk_buff *skb;
4391 
4392 		while ((skb = __skb_dequeue(&sd->process_queue))) {
4393 			local_irq_enable();
4394 			__netif_receive_skb(skb);
4395 			local_irq_disable();
4396 			input_queue_head_incr(sd);
4397 			if (++work >= quota) {
4398 				local_irq_enable();
4399 				return work;
4400 			}
4401 		}
4402 
4403 		rps_lock(sd);
4404 		if (skb_queue_empty(&sd->input_pkt_queue)) {
4405 			/*
4406 			 * Inline a custom version of __napi_complete().
4407 			 * only current cpu owns and manipulates this napi,
4408 			 * and NAPI_STATE_SCHED is the only possible flag set
4409 			 * on backlog.
4410 			 * We can use a plain write instead of clear_bit(),
4411 			 * and we dont need an smp_mb() memory barrier.
4412 			 */
4413 			napi->state = 0;
4414 			rps_unlock(sd);
4415 
4416 			break;
4417 		}
4418 
4419 		skb_queue_splice_tail_init(&sd->input_pkt_queue,
4420 					   &sd->process_queue);
4421 		rps_unlock(sd);
4422 	}
4423 	local_irq_enable();
4424 
4425 	return work;
4426 }
4427 
4428 /**
4429  * __napi_schedule - schedule for receive
4430  * @n: entry to schedule
4431  *
4432  * The entry's receive function will be scheduled to run.
4433  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4434  */
4435 void __napi_schedule(struct napi_struct *n)
4436 {
4437 	unsigned long flags;
4438 
4439 	local_irq_save(flags);
4440 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
4441 	local_irq_restore(flags);
4442 }
4443 EXPORT_SYMBOL(__napi_schedule);
4444 
4445 /**
4446  * __napi_schedule_irqoff - schedule for receive
4447  * @n: entry to schedule
4448  *
4449  * Variant of __napi_schedule() assuming hard irqs are masked
4450  */
4451 void __napi_schedule_irqoff(struct napi_struct *n)
4452 {
4453 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
4454 }
4455 EXPORT_SYMBOL(__napi_schedule_irqoff);
4456 
4457 void __napi_complete(struct napi_struct *n)
4458 {
4459 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4460 
4461 	list_del_init(&n->poll_list);
4462 	smp_mb__before_atomic();
4463 	clear_bit(NAPI_STATE_SCHED, &n->state);
4464 }
4465 EXPORT_SYMBOL(__napi_complete);
4466 
4467 void napi_complete_done(struct napi_struct *n, int work_done)
4468 {
4469 	unsigned long flags;
4470 
4471 	/*
4472 	 * don't let napi dequeue from the cpu poll list
4473 	 * just in case its running on a different cpu
4474 	 */
4475 	if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4476 		return;
4477 
4478 	if (n->gro_list) {
4479 		unsigned long timeout = 0;
4480 
4481 		if (work_done)
4482 			timeout = n->dev->gro_flush_timeout;
4483 
4484 		if (timeout)
4485 			hrtimer_start(&n->timer, ns_to_ktime(timeout),
4486 				      HRTIMER_MODE_REL_PINNED);
4487 		else
4488 			napi_gro_flush(n, false);
4489 	}
4490 	if (likely(list_empty(&n->poll_list))) {
4491 		WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4492 	} else {
4493 		/* If n->poll_list is not empty, we need to mask irqs */
4494 		local_irq_save(flags);
4495 		__napi_complete(n);
4496 		local_irq_restore(flags);
4497 	}
4498 }
4499 EXPORT_SYMBOL(napi_complete_done);
4500 
4501 /* must be called under rcu_read_lock(), as we dont take a reference */
4502 struct napi_struct *napi_by_id(unsigned int napi_id)
4503 {
4504 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4505 	struct napi_struct *napi;
4506 
4507 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4508 		if (napi->napi_id == napi_id)
4509 			return napi;
4510 
4511 	return NULL;
4512 }
4513 EXPORT_SYMBOL_GPL(napi_by_id);
4514 
4515 void napi_hash_add(struct napi_struct *napi)
4516 {
4517 	if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4518 
4519 		spin_lock(&napi_hash_lock);
4520 
4521 		/* 0 is not a valid id, we also skip an id that is taken
4522 		 * we expect both events to be extremely rare
4523 		 */
4524 		napi->napi_id = 0;
4525 		while (!napi->napi_id) {
4526 			napi->napi_id = ++napi_gen_id;
4527 			if (napi_by_id(napi->napi_id))
4528 				napi->napi_id = 0;
4529 		}
4530 
4531 		hlist_add_head_rcu(&napi->napi_hash_node,
4532 			&napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4533 
4534 		spin_unlock(&napi_hash_lock);
4535 	}
4536 }
4537 EXPORT_SYMBOL_GPL(napi_hash_add);
4538 
4539 /* Warning : caller is responsible to make sure rcu grace period
4540  * is respected before freeing memory containing @napi
4541  */
4542 void napi_hash_del(struct napi_struct *napi)
4543 {
4544 	spin_lock(&napi_hash_lock);
4545 
4546 	if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4547 		hlist_del_rcu(&napi->napi_hash_node);
4548 
4549 	spin_unlock(&napi_hash_lock);
4550 }
4551 EXPORT_SYMBOL_GPL(napi_hash_del);
4552 
4553 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
4554 {
4555 	struct napi_struct *napi;
4556 
4557 	napi = container_of(timer, struct napi_struct, timer);
4558 	if (napi->gro_list)
4559 		napi_schedule(napi);
4560 
4561 	return HRTIMER_NORESTART;
4562 }
4563 
4564 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4565 		    int (*poll)(struct napi_struct *, int), int weight)
4566 {
4567 	INIT_LIST_HEAD(&napi->poll_list);
4568 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
4569 	napi->timer.function = napi_watchdog;
4570 	napi->gro_count = 0;
4571 	napi->gro_list = NULL;
4572 	napi->skb = NULL;
4573 	napi->poll = poll;
4574 	if (weight > NAPI_POLL_WEIGHT)
4575 		pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4576 			    weight, dev->name);
4577 	napi->weight = weight;
4578 	list_add(&napi->dev_list, &dev->napi_list);
4579 	napi->dev = dev;
4580 #ifdef CONFIG_NETPOLL
4581 	spin_lock_init(&napi->poll_lock);
4582 	napi->poll_owner = -1;
4583 #endif
4584 	set_bit(NAPI_STATE_SCHED, &napi->state);
4585 }
4586 EXPORT_SYMBOL(netif_napi_add);
4587 
4588 void napi_disable(struct napi_struct *n)
4589 {
4590 	might_sleep();
4591 	set_bit(NAPI_STATE_DISABLE, &n->state);
4592 
4593 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
4594 		msleep(1);
4595 
4596 	hrtimer_cancel(&n->timer);
4597 
4598 	clear_bit(NAPI_STATE_DISABLE, &n->state);
4599 }
4600 EXPORT_SYMBOL(napi_disable);
4601 
4602 void netif_napi_del(struct napi_struct *napi)
4603 {
4604 	list_del_init(&napi->dev_list);
4605 	napi_free_frags(napi);
4606 
4607 	kfree_skb_list(napi->gro_list);
4608 	napi->gro_list = NULL;
4609 	napi->gro_count = 0;
4610 }
4611 EXPORT_SYMBOL(netif_napi_del);
4612 
4613 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
4614 {
4615 	void *have;
4616 	int work, weight;
4617 
4618 	list_del_init(&n->poll_list);
4619 
4620 	have = netpoll_poll_lock(n);
4621 
4622 	weight = n->weight;
4623 
4624 	/* This NAPI_STATE_SCHED test is for avoiding a race
4625 	 * with netpoll's poll_napi().  Only the entity which
4626 	 * obtains the lock and sees NAPI_STATE_SCHED set will
4627 	 * actually make the ->poll() call.  Therefore we avoid
4628 	 * accidentally calling ->poll() when NAPI is not scheduled.
4629 	 */
4630 	work = 0;
4631 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4632 		work = n->poll(n, weight);
4633 		trace_napi_poll(n);
4634 	}
4635 
4636 	WARN_ON_ONCE(work > weight);
4637 
4638 	if (likely(work < weight))
4639 		goto out_unlock;
4640 
4641 	/* Drivers must not modify the NAPI state if they
4642 	 * consume the entire weight.  In such cases this code
4643 	 * still "owns" the NAPI instance and therefore can
4644 	 * move the instance around on the list at-will.
4645 	 */
4646 	if (unlikely(napi_disable_pending(n))) {
4647 		napi_complete(n);
4648 		goto out_unlock;
4649 	}
4650 
4651 	if (n->gro_list) {
4652 		/* flush too old packets
4653 		 * If HZ < 1000, flush all packets.
4654 		 */
4655 		napi_gro_flush(n, HZ >= 1000);
4656 	}
4657 
4658 	/* Some drivers may have called napi_schedule
4659 	 * prior to exhausting their budget.
4660 	 */
4661 	if (unlikely(!list_empty(&n->poll_list))) {
4662 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
4663 			     n->dev ? n->dev->name : "backlog");
4664 		goto out_unlock;
4665 	}
4666 
4667 	list_add_tail(&n->poll_list, repoll);
4668 
4669 out_unlock:
4670 	netpoll_poll_unlock(have);
4671 
4672 	return work;
4673 }
4674 
4675 static void net_rx_action(struct softirq_action *h)
4676 {
4677 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4678 	unsigned long time_limit = jiffies + 2;
4679 	int budget = netdev_budget;
4680 	LIST_HEAD(list);
4681 	LIST_HEAD(repoll);
4682 
4683 	local_irq_disable();
4684 	list_splice_init(&sd->poll_list, &list);
4685 	local_irq_enable();
4686 
4687 	for (;;) {
4688 		struct napi_struct *n;
4689 
4690 		if (list_empty(&list)) {
4691 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
4692 				return;
4693 			break;
4694 		}
4695 
4696 		n = list_first_entry(&list, struct napi_struct, poll_list);
4697 		budget -= napi_poll(n, &repoll);
4698 
4699 		/* If softirq window is exhausted then punt.
4700 		 * Allow this to run for 2 jiffies since which will allow
4701 		 * an average latency of 1.5/HZ.
4702 		 */
4703 		if (unlikely(budget <= 0 ||
4704 			     time_after_eq(jiffies, time_limit))) {
4705 			sd->time_squeeze++;
4706 			break;
4707 		}
4708 	}
4709 
4710 	local_irq_disable();
4711 
4712 	list_splice_tail_init(&sd->poll_list, &list);
4713 	list_splice_tail(&repoll, &list);
4714 	list_splice(&list, &sd->poll_list);
4715 	if (!list_empty(&sd->poll_list))
4716 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4717 
4718 	net_rps_action_and_irq_enable(sd);
4719 }
4720 
4721 struct netdev_adjacent {
4722 	struct net_device *dev;
4723 
4724 	/* upper master flag, there can only be one master device per list */
4725 	bool master;
4726 
4727 	/* counter for the number of times this device was added to us */
4728 	u16 ref_nr;
4729 
4730 	/* private field for the users */
4731 	void *private;
4732 
4733 	struct list_head list;
4734 	struct rcu_head rcu;
4735 };
4736 
4737 static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev,
4738 						 struct net_device *adj_dev,
4739 						 struct list_head *adj_list)
4740 {
4741 	struct netdev_adjacent *adj;
4742 
4743 	list_for_each_entry(adj, adj_list, list) {
4744 		if (adj->dev == adj_dev)
4745 			return adj;
4746 	}
4747 	return NULL;
4748 }
4749 
4750 /**
4751  * netdev_has_upper_dev - Check if device is linked to an upper device
4752  * @dev: device
4753  * @upper_dev: upper device to check
4754  *
4755  * Find out if a device is linked to specified upper device and return true
4756  * in case it is. Note that this checks only immediate upper device,
4757  * not through a complete stack of devices. The caller must hold the RTNL lock.
4758  */
4759 bool netdev_has_upper_dev(struct net_device *dev,
4760 			  struct net_device *upper_dev)
4761 {
4762 	ASSERT_RTNL();
4763 
4764 	return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper);
4765 }
4766 EXPORT_SYMBOL(netdev_has_upper_dev);
4767 
4768 /**
4769  * netdev_has_any_upper_dev - Check if device is linked to some device
4770  * @dev: device
4771  *
4772  * Find out if a device is linked to an upper device and return true in case
4773  * it is. The caller must hold the RTNL lock.
4774  */
4775 static bool netdev_has_any_upper_dev(struct net_device *dev)
4776 {
4777 	ASSERT_RTNL();
4778 
4779 	return !list_empty(&dev->all_adj_list.upper);
4780 }
4781 
4782 /**
4783  * netdev_master_upper_dev_get - Get master upper device
4784  * @dev: device
4785  *
4786  * Find a master upper device and return pointer to it or NULL in case
4787  * it's not there. The caller must hold the RTNL lock.
4788  */
4789 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4790 {
4791 	struct netdev_adjacent *upper;
4792 
4793 	ASSERT_RTNL();
4794 
4795 	if (list_empty(&dev->adj_list.upper))
4796 		return NULL;
4797 
4798 	upper = list_first_entry(&dev->adj_list.upper,
4799 				 struct netdev_adjacent, list);
4800 	if (likely(upper->master))
4801 		return upper->dev;
4802 	return NULL;
4803 }
4804 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4805 
4806 void *netdev_adjacent_get_private(struct list_head *adj_list)
4807 {
4808 	struct netdev_adjacent *adj;
4809 
4810 	adj = list_entry(adj_list, struct netdev_adjacent, list);
4811 
4812 	return adj->private;
4813 }
4814 EXPORT_SYMBOL(netdev_adjacent_get_private);
4815 
4816 /**
4817  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
4818  * @dev: device
4819  * @iter: list_head ** of the current position
4820  *
4821  * Gets the next device from the dev's upper list, starting from iter
4822  * position. The caller must hold RCU read lock.
4823  */
4824 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4825 						 struct list_head **iter)
4826 {
4827 	struct netdev_adjacent *upper;
4828 
4829 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4830 
4831 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4832 
4833 	if (&upper->list == &dev->adj_list.upper)
4834 		return NULL;
4835 
4836 	*iter = &upper->list;
4837 
4838 	return upper->dev;
4839 }
4840 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
4841 
4842 /**
4843  * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
4844  * @dev: device
4845  * @iter: list_head ** of the current position
4846  *
4847  * Gets the next device from the dev's upper list, starting from iter
4848  * position. The caller must hold RCU read lock.
4849  */
4850 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4851 						     struct list_head **iter)
4852 {
4853 	struct netdev_adjacent *upper;
4854 
4855 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4856 
4857 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4858 
4859 	if (&upper->list == &dev->all_adj_list.upper)
4860 		return NULL;
4861 
4862 	*iter = &upper->list;
4863 
4864 	return upper->dev;
4865 }
4866 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
4867 
4868 /**
4869  * netdev_lower_get_next_private - Get the next ->private from the
4870  *				   lower neighbour list
4871  * @dev: device
4872  * @iter: list_head ** of the current position
4873  *
4874  * Gets the next netdev_adjacent->private from the dev's lower neighbour
4875  * list, starting from iter position. The caller must hold either hold the
4876  * RTNL lock or its own locking that guarantees that the neighbour lower
4877  * list will remain unchainged.
4878  */
4879 void *netdev_lower_get_next_private(struct net_device *dev,
4880 				    struct list_head **iter)
4881 {
4882 	struct netdev_adjacent *lower;
4883 
4884 	lower = list_entry(*iter, struct netdev_adjacent, list);
4885 
4886 	if (&lower->list == &dev->adj_list.lower)
4887 		return NULL;
4888 
4889 	*iter = lower->list.next;
4890 
4891 	return lower->private;
4892 }
4893 EXPORT_SYMBOL(netdev_lower_get_next_private);
4894 
4895 /**
4896  * netdev_lower_get_next_private_rcu - Get the next ->private from the
4897  *				       lower neighbour list, RCU
4898  *				       variant
4899  * @dev: device
4900  * @iter: list_head ** of the current position
4901  *
4902  * Gets the next netdev_adjacent->private from the dev's lower neighbour
4903  * list, starting from iter position. The caller must hold RCU read lock.
4904  */
4905 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4906 					struct list_head **iter)
4907 {
4908 	struct netdev_adjacent *lower;
4909 
4910 	WARN_ON_ONCE(!rcu_read_lock_held());
4911 
4912 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4913 
4914 	if (&lower->list == &dev->adj_list.lower)
4915 		return NULL;
4916 
4917 	*iter = &lower->list;
4918 
4919 	return lower->private;
4920 }
4921 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
4922 
4923 /**
4924  * netdev_lower_get_next - Get the next device from the lower neighbour
4925  *                         list
4926  * @dev: device
4927  * @iter: list_head ** of the current position
4928  *
4929  * Gets the next netdev_adjacent from the dev's lower neighbour
4930  * list, starting from iter position. The caller must hold RTNL lock or
4931  * its own locking that guarantees that the neighbour lower
4932  * list will remain unchainged.
4933  */
4934 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
4935 {
4936 	struct netdev_adjacent *lower;
4937 
4938 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
4939 
4940 	if (&lower->list == &dev->adj_list.lower)
4941 		return NULL;
4942 
4943 	*iter = &lower->list;
4944 
4945 	return lower->dev;
4946 }
4947 EXPORT_SYMBOL(netdev_lower_get_next);
4948 
4949 /**
4950  * netdev_lower_get_first_private_rcu - Get the first ->private from the
4951  *				       lower neighbour list, RCU
4952  *				       variant
4953  * @dev: device
4954  *
4955  * Gets the first netdev_adjacent->private from the dev's lower neighbour
4956  * list. The caller must hold RCU read lock.
4957  */
4958 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
4959 {
4960 	struct netdev_adjacent *lower;
4961 
4962 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
4963 			struct netdev_adjacent, list);
4964 	if (lower)
4965 		return lower->private;
4966 	return NULL;
4967 }
4968 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
4969 
4970 /**
4971  * netdev_master_upper_dev_get_rcu - Get master upper device
4972  * @dev: device
4973  *
4974  * Find a master upper device and return pointer to it or NULL in case
4975  * it's not there. The caller must hold the RCU read lock.
4976  */
4977 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4978 {
4979 	struct netdev_adjacent *upper;
4980 
4981 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
4982 				       struct netdev_adjacent, list);
4983 	if (upper && likely(upper->master))
4984 		return upper->dev;
4985 	return NULL;
4986 }
4987 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4988 
4989 static int netdev_adjacent_sysfs_add(struct net_device *dev,
4990 			      struct net_device *adj_dev,
4991 			      struct list_head *dev_list)
4992 {
4993 	char linkname[IFNAMSIZ+7];
4994 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
4995 		"upper_%s" : "lower_%s", adj_dev->name);
4996 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
4997 				 linkname);
4998 }
4999 static void netdev_adjacent_sysfs_del(struct net_device *dev,
5000 			       char *name,
5001 			       struct list_head *dev_list)
5002 {
5003 	char linkname[IFNAMSIZ+7];
5004 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
5005 		"upper_%s" : "lower_%s", name);
5006 	sysfs_remove_link(&(dev->dev.kobj), linkname);
5007 }
5008 
5009 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5010 						 struct net_device *adj_dev,
5011 						 struct list_head *dev_list)
5012 {
5013 	return (dev_list == &dev->adj_list.upper ||
5014 		dev_list == &dev->adj_list.lower) &&
5015 		net_eq(dev_net(dev), dev_net(adj_dev));
5016 }
5017 
5018 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5019 					struct net_device *adj_dev,
5020 					struct list_head *dev_list,
5021 					void *private, bool master)
5022 {
5023 	struct netdev_adjacent *adj;
5024 	int ret;
5025 
5026 	adj = __netdev_find_adj(dev, adj_dev, dev_list);
5027 
5028 	if (adj) {
5029 		adj->ref_nr++;
5030 		return 0;
5031 	}
5032 
5033 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5034 	if (!adj)
5035 		return -ENOMEM;
5036 
5037 	adj->dev = adj_dev;
5038 	adj->master = master;
5039 	adj->ref_nr = 1;
5040 	adj->private = private;
5041 	dev_hold(adj_dev);
5042 
5043 	pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5044 		 adj_dev->name, dev->name, adj_dev->name);
5045 
5046 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5047 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5048 		if (ret)
5049 			goto free_adj;
5050 	}
5051 
5052 	/* Ensure that master link is always the first item in list. */
5053 	if (master) {
5054 		ret = sysfs_create_link(&(dev->dev.kobj),
5055 					&(adj_dev->dev.kobj), "master");
5056 		if (ret)
5057 			goto remove_symlinks;
5058 
5059 		list_add_rcu(&adj->list, dev_list);
5060 	} else {
5061 		list_add_tail_rcu(&adj->list, dev_list);
5062 	}
5063 
5064 	return 0;
5065 
5066 remove_symlinks:
5067 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5068 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5069 free_adj:
5070 	kfree(adj);
5071 	dev_put(adj_dev);
5072 
5073 	return ret;
5074 }
5075 
5076 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5077 					 struct net_device *adj_dev,
5078 					 struct list_head *dev_list)
5079 {
5080 	struct netdev_adjacent *adj;
5081 
5082 	adj = __netdev_find_adj(dev, adj_dev, dev_list);
5083 
5084 	if (!adj) {
5085 		pr_err("tried to remove device %s from %s\n",
5086 		       dev->name, adj_dev->name);
5087 		BUG();
5088 	}
5089 
5090 	if (adj->ref_nr > 1) {
5091 		pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
5092 			 adj->ref_nr-1);
5093 		adj->ref_nr--;
5094 		return;
5095 	}
5096 
5097 	if (adj->master)
5098 		sysfs_remove_link(&(dev->dev.kobj), "master");
5099 
5100 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5101 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5102 
5103 	list_del_rcu(&adj->list);
5104 	pr_debug("dev_put for %s, because link removed from %s to %s\n",
5105 		 adj_dev->name, dev->name, adj_dev->name);
5106 	dev_put(adj_dev);
5107 	kfree_rcu(adj, rcu);
5108 }
5109 
5110 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5111 					    struct net_device *upper_dev,
5112 					    struct list_head *up_list,
5113 					    struct list_head *down_list,
5114 					    void *private, bool master)
5115 {
5116 	int ret;
5117 
5118 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
5119 					   master);
5120 	if (ret)
5121 		return ret;
5122 
5123 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5124 					   false);
5125 	if (ret) {
5126 		__netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5127 		return ret;
5128 	}
5129 
5130 	return 0;
5131 }
5132 
5133 static int __netdev_adjacent_dev_link(struct net_device *dev,
5134 				      struct net_device *upper_dev)
5135 {
5136 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5137 						&dev->all_adj_list.upper,
5138 						&upper_dev->all_adj_list.lower,
5139 						NULL, false);
5140 }
5141 
5142 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5143 					       struct net_device *upper_dev,
5144 					       struct list_head *up_list,
5145 					       struct list_head *down_list)
5146 {
5147 	__netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5148 	__netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5149 }
5150 
5151 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5152 					 struct net_device *upper_dev)
5153 {
5154 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5155 					   &dev->all_adj_list.upper,
5156 					   &upper_dev->all_adj_list.lower);
5157 }
5158 
5159 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5160 						struct net_device *upper_dev,
5161 						void *private, bool master)
5162 {
5163 	int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5164 
5165 	if (ret)
5166 		return ret;
5167 
5168 	ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5169 					       &dev->adj_list.upper,
5170 					       &upper_dev->adj_list.lower,
5171 					       private, master);
5172 	if (ret) {
5173 		__netdev_adjacent_dev_unlink(dev, upper_dev);
5174 		return ret;
5175 	}
5176 
5177 	return 0;
5178 }
5179 
5180 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5181 						   struct net_device *upper_dev)
5182 {
5183 	__netdev_adjacent_dev_unlink(dev, upper_dev);
5184 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5185 					   &dev->adj_list.upper,
5186 					   &upper_dev->adj_list.lower);
5187 }
5188 
5189 static int __netdev_upper_dev_link(struct net_device *dev,
5190 				   struct net_device *upper_dev, bool master,
5191 				   void *private)
5192 {
5193 	struct netdev_adjacent *i, *j, *to_i, *to_j;
5194 	int ret = 0;
5195 
5196 	ASSERT_RTNL();
5197 
5198 	if (dev == upper_dev)
5199 		return -EBUSY;
5200 
5201 	/* To prevent loops, check if dev is not upper device to upper_dev. */
5202 	if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper))
5203 		return -EBUSY;
5204 
5205 	if (__netdev_find_adj(dev, upper_dev, &dev->adj_list.upper))
5206 		return -EEXIST;
5207 
5208 	if (master && netdev_master_upper_dev_get(dev))
5209 		return -EBUSY;
5210 
5211 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
5212 						   master);
5213 	if (ret)
5214 		return ret;
5215 
5216 	/* Now that we linked these devs, make all the upper_dev's
5217 	 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5218 	 * versa, and don't forget the devices itself. All of these
5219 	 * links are non-neighbours.
5220 	 */
5221 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5222 		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5223 			pr_debug("Interlinking %s with %s, non-neighbour\n",
5224 				 i->dev->name, j->dev->name);
5225 			ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5226 			if (ret)
5227 				goto rollback_mesh;
5228 		}
5229 	}
5230 
5231 	/* add dev to every upper_dev's upper device */
5232 	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5233 		pr_debug("linking %s's upper device %s with %s\n",
5234 			 upper_dev->name, i->dev->name, dev->name);
5235 		ret = __netdev_adjacent_dev_link(dev, i->dev);
5236 		if (ret)
5237 			goto rollback_upper_mesh;
5238 	}
5239 
5240 	/* add upper_dev to every dev's lower device */
5241 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5242 		pr_debug("linking %s's lower device %s with %s\n", dev->name,
5243 			 i->dev->name, upper_dev->name);
5244 		ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5245 		if (ret)
5246 			goto rollback_lower_mesh;
5247 	}
5248 
5249 	call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5250 	return 0;
5251 
5252 rollback_lower_mesh:
5253 	to_i = i;
5254 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5255 		if (i == to_i)
5256 			break;
5257 		__netdev_adjacent_dev_unlink(i->dev, upper_dev);
5258 	}
5259 
5260 	i = NULL;
5261 
5262 rollback_upper_mesh:
5263 	to_i = i;
5264 	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5265 		if (i == to_i)
5266 			break;
5267 		__netdev_adjacent_dev_unlink(dev, i->dev);
5268 	}
5269 
5270 	i = j = NULL;
5271 
5272 rollback_mesh:
5273 	to_i = i;
5274 	to_j = j;
5275 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5276 		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5277 			if (i == to_i && j == to_j)
5278 				break;
5279 			__netdev_adjacent_dev_unlink(i->dev, j->dev);
5280 		}
5281 		if (i == to_i)
5282 			break;
5283 	}
5284 
5285 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5286 
5287 	return ret;
5288 }
5289 
5290 /**
5291  * netdev_upper_dev_link - Add a link to the upper device
5292  * @dev: device
5293  * @upper_dev: new upper device
5294  *
5295  * Adds a link to device which is upper to this one. The caller must hold
5296  * the RTNL lock. On a failure a negative errno code is returned.
5297  * On success the reference counts are adjusted and the function
5298  * returns zero.
5299  */
5300 int netdev_upper_dev_link(struct net_device *dev,
5301 			  struct net_device *upper_dev)
5302 {
5303 	return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
5304 }
5305 EXPORT_SYMBOL(netdev_upper_dev_link);
5306 
5307 /**
5308  * netdev_master_upper_dev_link - Add a master link to the upper device
5309  * @dev: device
5310  * @upper_dev: new upper device
5311  *
5312  * Adds a link to device which is upper to this one. In this case, only
5313  * one master upper device can be linked, although other non-master devices
5314  * might be linked as well. The caller must hold the RTNL lock.
5315  * On a failure a negative errno code is returned. On success the reference
5316  * counts are adjusted and the function returns zero.
5317  */
5318 int netdev_master_upper_dev_link(struct net_device *dev,
5319 				 struct net_device *upper_dev)
5320 {
5321 	return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
5322 }
5323 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5324 
5325 int netdev_master_upper_dev_link_private(struct net_device *dev,
5326 					 struct net_device *upper_dev,
5327 					 void *private)
5328 {
5329 	return __netdev_upper_dev_link(dev, upper_dev, true, private);
5330 }
5331 EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
5332 
5333 /**
5334  * netdev_upper_dev_unlink - Removes a link to upper device
5335  * @dev: device
5336  * @upper_dev: new upper device
5337  *
5338  * Removes a link to device which is upper to this one. The caller must hold
5339  * the RTNL lock.
5340  */
5341 void netdev_upper_dev_unlink(struct net_device *dev,
5342 			     struct net_device *upper_dev)
5343 {
5344 	struct netdev_adjacent *i, *j;
5345 	ASSERT_RTNL();
5346 
5347 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5348 
5349 	/* Here is the tricky part. We must remove all dev's lower
5350 	 * devices from all upper_dev's upper devices and vice
5351 	 * versa, to maintain the graph relationship.
5352 	 */
5353 	list_for_each_entry(i, &dev->all_adj_list.lower, list)
5354 		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5355 			__netdev_adjacent_dev_unlink(i->dev, j->dev);
5356 
5357 	/* remove also the devices itself from lower/upper device
5358 	 * list
5359 	 */
5360 	list_for_each_entry(i, &dev->all_adj_list.lower, list)
5361 		__netdev_adjacent_dev_unlink(i->dev, upper_dev);
5362 
5363 	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5364 		__netdev_adjacent_dev_unlink(dev, i->dev);
5365 
5366 	call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5367 }
5368 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5369 
5370 /**
5371  * netdev_bonding_info_change - Dispatch event about slave change
5372  * @dev: device
5373  * @bonding_info: info to dispatch
5374  *
5375  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5376  * The caller must hold the RTNL lock.
5377  */
5378 void netdev_bonding_info_change(struct net_device *dev,
5379 				struct netdev_bonding_info *bonding_info)
5380 {
5381 	struct netdev_notifier_bonding_info	info;
5382 
5383 	memcpy(&info.bonding_info, bonding_info,
5384 	       sizeof(struct netdev_bonding_info));
5385 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5386 				      &info.info);
5387 }
5388 EXPORT_SYMBOL(netdev_bonding_info_change);
5389 
5390 static void netdev_adjacent_add_links(struct net_device *dev)
5391 {
5392 	struct netdev_adjacent *iter;
5393 
5394 	struct net *net = dev_net(dev);
5395 
5396 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
5397 		if (!net_eq(net,dev_net(iter->dev)))
5398 			continue;
5399 		netdev_adjacent_sysfs_add(iter->dev, dev,
5400 					  &iter->dev->adj_list.lower);
5401 		netdev_adjacent_sysfs_add(dev, iter->dev,
5402 					  &dev->adj_list.upper);
5403 	}
5404 
5405 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
5406 		if (!net_eq(net,dev_net(iter->dev)))
5407 			continue;
5408 		netdev_adjacent_sysfs_add(iter->dev, dev,
5409 					  &iter->dev->adj_list.upper);
5410 		netdev_adjacent_sysfs_add(dev, iter->dev,
5411 					  &dev->adj_list.lower);
5412 	}
5413 }
5414 
5415 static void netdev_adjacent_del_links(struct net_device *dev)
5416 {
5417 	struct netdev_adjacent *iter;
5418 
5419 	struct net *net = dev_net(dev);
5420 
5421 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
5422 		if (!net_eq(net,dev_net(iter->dev)))
5423 			continue;
5424 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
5425 					  &iter->dev->adj_list.lower);
5426 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
5427 					  &dev->adj_list.upper);
5428 	}
5429 
5430 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
5431 		if (!net_eq(net,dev_net(iter->dev)))
5432 			continue;
5433 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
5434 					  &iter->dev->adj_list.upper);
5435 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
5436 					  &dev->adj_list.lower);
5437 	}
5438 }
5439 
5440 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5441 {
5442 	struct netdev_adjacent *iter;
5443 
5444 	struct net *net = dev_net(dev);
5445 
5446 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
5447 		if (!net_eq(net,dev_net(iter->dev)))
5448 			continue;
5449 		netdev_adjacent_sysfs_del(iter->dev, oldname,
5450 					  &iter->dev->adj_list.lower);
5451 		netdev_adjacent_sysfs_add(iter->dev, dev,
5452 					  &iter->dev->adj_list.lower);
5453 	}
5454 
5455 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
5456 		if (!net_eq(net,dev_net(iter->dev)))
5457 			continue;
5458 		netdev_adjacent_sysfs_del(iter->dev, oldname,
5459 					  &iter->dev->adj_list.upper);
5460 		netdev_adjacent_sysfs_add(iter->dev, dev,
5461 					  &iter->dev->adj_list.upper);
5462 	}
5463 }
5464 
5465 void *netdev_lower_dev_get_private(struct net_device *dev,
5466 				   struct net_device *lower_dev)
5467 {
5468 	struct netdev_adjacent *lower;
5469 
5470 	if (!lower_dev)
5471 		return NULL;
5472 	lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower);
5473 	if (!lower)
5474 		return NULL;
5475 
5476 	return lower->private;
5477 }
5478 EXPORT_SYMBOL(netdev_lower_dev_get_private);
5479 
5480 
5481 int dev_get_nest_level(struct net_device *dev,
5482 		       bool (*type_check)(struct net_device *dev))
5483 {
5484 	struct net_device *lower = NULL;
5485 	struct list_head *iter;
5486 	int max_nest = -1;
5487 	int nest;
5488 
5489 	ASSERT_RTNL();
5490 
5491 	netdev_for_each_lower_dev(dev, lower, iter) {
5492 		nest = dev_get_nest_level(lower, type_check);
5493 		if (max_nest < nest)
5494 			max_nest = nest;
5495 	}
5496 
5497 	if (type_check(dev))
5498 		max_nest++;
5499 
5500 	return max_nest;
5501 }
5502 EXPORT_SYMBOL(dev_get_nest_level);
5503 
5504 static void dev_change_rx_flags(struct net_device *dev, int flags)
5505 {
5506 	const struct net_device_ops *ops = dev->netdev_ops;
5507 
5508 	if (ops->ndo_change_rx_flags)
5509 		ops->ndo_change_rx_flags(dev, flags);
5510 }
5511 
5512 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
5513 {
5514 	unsigned int old_flags = dev->flags;
5515 	kuid_t uid;
5516 	kgid_t gid;
5517 
5518 	ASSERT_RTNL();
5519 
5520 	dev->flags |= IFF_PROMISC;
5521 	dev->promiscuity += inc;
5522 	if (dev->promiscuity == 0) {
5523 		/*
5524 		 * Avoid overflow.
5525 		 * If inc causes overflow, untouch promisc and return error.
5526 		 */
5527 		if (inc < 0)
5528 			dev->flags &= ~IFF_PROMISC;
5529 		else {
5530 			dev->promiscuity -= inc;
5531 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5532 				dev->name);
5533 			return -EOVERFLOW;
5534 		}
5535 	}
5536 	if (dev->flags != old_flags) {
5537 		pr_info("device %s %s promiscuous mode\n",
5538 			dev->name,
5539 			dev->flags & IFF_PROMISC ? "entered" : "left");
5540 		if (audit_enabled) {
5541 			current_uid_gid(&uid, &gid);
5542 			audit_log(current->audit_context, GFP_ATOMIC,
5543 				AUDIT_ANOM_PROMISCUOUS,
5544 				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5545 				dev->name, (dev->flags & IFF_PROMISC),
5546 				(old_flags & IFF_PROMISC),
5547 				from_kuid(&init_user_ns, audit_get_loginuid(current)),
5548 				from_kuid(&init_user_ns, uid),
5549 				from_kgid(&init_user_ns, gid),
5550 				audit_get_sessionid(current));
5551 		}
5552 
5553 		dev_change_rx_flags(dev, IFF_PROMISC);
5554 	}
5555 	if (notify)
5556 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
5557 	return 0;
5558 }
5559 
5560 /**
5561  *	dev_set_promiscuity	- update promiscuity count on a device
5562  *	@dev: device
5563  *	@inc: modifier
5564  *
5565  *	Add or remove promiscuity from a device. While the count in the device
5566  *	remains above zero the interface remains promiscuous. Once it hits zero
5567  *	the device reverts back to normal filtering operation. A negative inc
5568  *	value is used to drop promiscuity on the device.
5569  *	Return 0 if successful or a negative errno code on error.
5570  */
5571 int dev_set_promiscuity(struct net_device *dev, int inc)
5572 {
5573 	unsigned int old_flags = dev->flags;
5574 	int err;
5575 
5576 	err = __dev_set_promiscuity(dev, inc, true);
5577 	if (err < 0)
5578 		return err;
5579 	if (dev->flags != old_flags)
5580 		dev_set_rx_mode(dev);
5581 	return err;
5582 }
5583 EXPORT_SYMBOL(dev_set_promiscuity);
5584 
5585 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
5586 {
5587 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
5588 
5589 	ASSERT_RTNL();
5590 
5591 	dev->flags |= IFF_ALLMULTI;
5592 	dev->allmulti += inc;
5593 	if (dev->allmulti == 0) {
5594 		/*
5595 		 * Avoid overflow.
5596 		 * If inc causes overflow, untouch allmulti and return error.
5597 		 */
5598 		if (inc < 0)
5599 			dev->flags &= ~IFF_ALLMULTI;
5600 		else {
5601 			dev->allmulti -= inc;
5602 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5603 				dev->name);
5604 			return -EOVERFLOW;
5605 		}
5606 	}
5607 	if (dev->flags ^ old_flags) {
5608 		dev_change_rx_flags(dev, IFF_ALLMULTI);
5609 		dev_set_rx_mode(dev);
5610 		if (notify)
5611 			__dev_notify_flags(dev, old_flags,
5612 					   dev->gflags ^ old_gflags);
5613 	}
5614 	return 0;
5615 }
5616 
5617 /**
5618  *	dev_set_allmulti	- update allmulti count on a device
5619  *	@dev: device
5620  *	@inc: modifier
5621  *
5622  *	Add or remove reception of all multicast frames to a device. While the
5623  *	count in the device remains above zero the interface remains listening
5624  *	to all interfaces. Once it hits zero the device reverts back to normal
5625  *	filtering operation. A negative @inc value is used to drop the counter
5626  *	when releasing a resource needing all multicasts.
5627  *	Return 0 if successful or a negative errno code on error.
5628  */
5629 
5630 int dev_set_allmulti(struct net_device *dev, int inc)
5631 {
5632 	return __dev_set_allmulti(dev, inc, true);
5633 }
5634 EXPORT_SYMBOL(dev_set_allmulti);
5635 
5636 /*
5637  *	Upload unicast and multicast address lists to device and
5638  *	configure RX filtering. When the device doesn't support unicast
5639  *	filtering it is put in promiscuous mode while unicast addresses
5640  *	are present.
5641  */
5642 void __dev_set_rx_mode(struct net_device *dev)
5643 {
5644 	const struct net_device_ops *ops = dev->netdev_ops;
5645 
5646 	/* dev_open will call this function so the list will stay sane. */
5647 	if (!(dev->flags&IFF_UP))
5648 		return;
5649 
5650 	if (!netif_device_present(dev))
5651 		return;
5652 
5653 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
5654 		/* Unicast addresses changes may only happen under the rtnl,
5655 		 * therefore calling __dev_set_promiscuity here is safe.
5656 		 */
5657 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
5658 			__dev_set_promiscuity(dev, 1, false);
5659 			dev->uc_promisc = true;
5660 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
5661 			__dev_set_promiscuity(dev, -1, false);
5662 			dev->uc_promisc = false;
5663 		}
5664 	}
5665 
5666 	if (ops->ndo_set_rx_mode)
5667 		ops->ndo_set_rx_mode(dev);
5668 }
5669 
5670 void dev_set_rx_mode(struct net_device *dev)
5671 {
5672 	netif_addr_lock_bh(dev);
5673 	__dev_set_rx_mode(dev);
5674 	netif_addr_unlock_bh(dev);
5675 }
5676 
5677 /**
5678  *	dev_get_flags - get flags reported to userspace
5679  *	@dev: device
5680  *
5681  *	Get the combination of flag bits exported through APIs to userspace.
5682  */
5683 unsigned int dev_get_flags(const struct net_device *dev)
5684 {
5685 	unsigned int flags;
5686 
5687 	flags = (dev->flags & ~(IFF_PROMISC |
5688 				IFF_ALLMULTI |
5689 				IFF_RUNNING |
5690 				IFF_LOWER_UP |
5691 				IFF_DORMANT)) |
5692 		(dev->gflags & (IFF_PROMISC |
5693 				IFF_ALLMULTI));
5694 
5695 	if (netif_running(dev)) {
5696 		if (netif_oper_up(dev))
5697 			flags |= IFF_RUNNING;
5698 		if (netif_carrier_ok(dev))
5699 			flags |= IFF_LOWER_UP;
5700 		if (netif_dormant(dev))
5701 			flags |= IFF_DORMANT;
5702 	}
5703 
5704 	return flags;
5705 }
5706 EXPORT_SYMBOL(dev_get_flags);
5707 
5708 int __dev_change_flags(struct net_device *dev, unsigned int flags)
5709 {
5710 	unsigned int old_flags = dev->flags;
5711 	int ret;
5712 
5713 	ASSERT_RTNL();
5714 
5715 	/*
5716 	 *	Set the flags on our device.
5717 	 */
5718 
5719 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5720 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5721 			       IFF_AUTOMEDIA)) |
5722 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5723 				    IFF_ALLMULTI));
5724 
5725 	/*
5726 	 *	Load in the correct multicast list now the flags have changed.
5727 	 */
5728 
5729 	if ((old_flags ^ flags) & IFF_MULTICAST)
5730 		dev_change_rx_flags(dev, IFF_MULTICAST);
5731 
5732 	dev_set_rx_mode(dev);
5733 
5734 	/*
5735 	 *	Have we downed the interface. We handle IFF_UP ourselves
5736 	 *	according to user attempts to set it, rather than blindly
5737 	 *	setting it.
5738 	 */
5739 
5740 	ret = 0;
5741 	if ((old_flags ^ flags) & IFF_UP)
5742 		ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
5743 
5744 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
5745 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
5746 		unsigned int old_flags = dev->flags;
5747 
5748 		dev->gflags ^= IFF_PROMISC;
5749 
5750 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
5751 			if (dev->flags != old_flags)
5752 				dev_set_rx_mode(dev);
5753 	}
5754 
5755 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5756 	   is important. Some (broken) drivers set IFF_PROMISC, when
5757 	   IFF_ALLMULTI is requested not asking us and not reporting.
5758 	 */
5759 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
5760 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5761 
5762 		dev->gflags ^= IFF_ALLMULTI;
5763 		__dev_set_allmulti(dev, inc, false);
5764 	}
5765 
5766 	return ret;
5767 }
5768 
5769 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5770 			unsigned int gchanges)
5771 {
5772 	unsigned int changes = dev->flags ^ old_flags;
5773 
5774 	if (gchanges)
5775 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
5776 
5777 	if (changes & IFF_UP) {
5778 		if (dev->flags & IFF_UP)
5779 			call_netdevice_notifiers(NETDEV_UP, dev);
5780 		else
5781 			call_netdevice_notifiers(NETDEV_DOWN, dev);
5782 	}
5783 
5784 	if (dev->flags & IFF_UP &&
5785 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5786 		struct netdev_notifier_change_info change_info;
5787 
5788 		change_info.flags_changed = changes;
5789 		call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5790 					      &change_info.info);
5791 	}
5792 }
5793 
5794 /**
5795  *	dev_change_flags - change device settings
5796  *	@dev: device
5797  *	@flags: device state flags
5798  *
5799  *	Change settings on device based state flags. The flags are
5800  *	in the userspace exported format.
5801  */
5802 int dev_change_flags(struct net_device *dev, unsigned int flags)
5803 {
5804 	int ret;
5805 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
5806 
5807 	ret = __dev_change_flags(dev, flags);
5808 	if (ret < 0)
5809 		return ret;
5810 
5811 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
5812 	__dev_notify_flags(dev, old_flags, changes);
5813 	return ret;
5814 }
5815 EXPORT_SYMBOL(dev_change_flags);
5816 
5817 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
5818 {
5819 	const struct net_device_ops *ops = dev->netdev_ops;
5820 
5821 	if (ops->ndo_change_mtu)
5822 		return ops->ndo_change_mtu(dev, new_mtu);
5823 
5824 	dev->mtu = new_mtu;
5825 	return 0;
5826 }
5827 
5828 /**
5829  *	dev_set_mtu - Change maximum transfer unit
5830  *	@dev: device
5831  *	@new_mtu: new transfer unit
5832  *
5833  *	Change the maximum transfer size of the network device.
5834  */
5835 int dev_set_mtu(struct net_device *dev, int new_mtu)
5836 {
5837 	int err, orig_mtu;
5838 
5839 	if (new_mtu == dev->mtu)
5840 		return 0;
5841 
5842 	/*	MTU must be positive.	 */
5843 	if (new_mtu < 0)
5844 		return -EINVAL;
5845 
5846 	if (!netif_device_present(dev))
5847 		return -ENODEV;
5848 
5849 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
5850 	err = notifier_to_errno(err);
5851 	if (err)
5852 		return err;
5853 
5854 	orig_mtu = dev->mtu;
5855 	err = __dev_set_mtu(dev, new_mtu);
5856 
5857 	if (!err) {
5858 		err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5859 		err = notifier_to_errno(err);
5860 		if (err) {
5861 			/* setting mtu back and notifying everyone again,
5862 			 * so that they have a chance to revert changes.
5863 			 */
5864 			__dev_set_mtu(dev, orig_mtu);
5865 			call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5866 		}
5867 	}
5868 	return err;
5869 }
5870 EXPORT_SYMBOL(dev_set_mtu);
5871 
5872 /**
5873  *	dev_set_group - Change group this device belongs to
5874  *	@dev: device
5875  *	@new_group: group this device should belong to
5876  */
5877 void dev_set_group(struct net_device *dev, int new_group)
5878 {
5879 	dev->group = new_group;
5880 }
5881 EXPORT_SYMBOL(dev_set_group);
5882 
5883 /**
5884  *	dev_set_mac_address - Change Media Access Control Address
5885  *	@dev: device
5886  *	@sa: new address
5887  *
5888  *	Change the hardware (MAC) address of the device
5889  */
5890 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
5891 {
5892 	const struct net_device_ops *ops = dev->netdev_ops;
5893 	int err;
5894 
5895 	if (!ops->ndo_set_mac_address)
5896 		return -EOPNOTSUPP;
5897 	if (sa->sa_family != dev->type)
5898 		return -EINVAL;
5899 	if (!netif_device_present(dev))
5900 		return -ENODEV;
5901 	err = ops->ndo_set_mac_address(dev, sa);
5902 	if (err)
5903 		return err;
5904 	dev->addr_assign_type = NET_ADDR_SET;
5905 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
5906 	add_device_randomness(dev->dev_addr, dev->addr_len);
5907 	return 0;
5908 }
5909 EXPORT_SYMBOL(dev_set_mac_address);
5910 
5911 /**
5912  *	dev_change_carrier - Change device carrier
5913  *	@dev: device
5914  *	@new_carrier: new value
5915  *
5916  *	Change device carrier
5917  */
5918 int dev_change_carrier(struct net_device *dev, bool new_carrier)
5919 {
5920 	const struct net_device_ops *ops = dev->netdev_ops;
5921 
5922 	if (!ops->ndo_change_carrier)
5923 		return -EOPNOTSUPP;
5924 	if (!netif_device_present(dev))
5925 		return -ENODEV;
5926 	return ops->ndo_change_carrier(dev, new_carrier);
5927 }
5928 EXPORT_SYMBOL(dev_change_carrier);
5929 
5930 /**
5931  *	dev_get_phys_port_id - Get device physical port ID
5932  *	@dev: device
5933  *	@ppid: port ID
5934  *
5935  *	Get device physical port ID
5936  */
5937 int dev_get_phys_port_id(struct net_device *dev,
5938 			 struct netdev_phys_item_id *ppid)
5939 {
5940 	const struct net_device_ops *ops = dev->netdev_ops;
5941 
5942 	if (!ops->ndo_get_phys_port_id)
5943 		return -EOPNOTSUPP;
5944 	return ops->ndo_get_phys_port_id(dev, ppid);
5945 }
5946 EXPORT_SYMBOL(dev_get_phys_port_id);
5947 
5948 /**
5949  *	dev_get_phys_port_name - Get device physical port name
5950  *	@dev: device
5951  *	@name: port name
5952  *
5953  *	Get device physical port name
5954  */
5955 int dev_get_phys_port_name(struct net_device *dev,
5956 			   char *name, size_t len)
5957 {
5958 	const struct net_device_ops *ops = dev->netdev_ops;
5959 
5960 	if (!ops->ndo_get_phys_port_name)
5961 		return -EOPNOTSUPP;
5962 	return ops->ndo_get_phys_port_name(dev, name, len);
5963 }
5964 EXPORT_SYMBOL(dev_get_phys_port_name);
5965 
5966 /**
5967  *	dev_new_index	-	allocate an ifindex
5968  *	@net: the applicable net namespace
5969  *
5970  *	Returns a suitable unique value for a new device interface
5971  *	number.  The caller must hold the rtnl semaphore or the
5972  *	dev_base_lock to be sure it remains unique.
5973  */
5974 static int dev_new_index(struct net *net)
5975 {
5976 	int ifindex = net->ifindex;
5977 	for (;;) {
5978 		if (++ifindex <= 0)
5979 			ifindex = 1;
5980 		if (!__dev_get_by_index(net, ifindex))
5981 			return net->ifindex = ifindex;
5982 	}
5983 }
5984 
5985 /* Delayed registration/unregisteration */
5986 static LIST_HEAD(net_todo_list);
5987 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
5988 
5989 static void net_set_todo(struct net_device *dev)
5990 {
5991 	list_add_tail(&dev->todo_list, &net_todo_list);
5992 	dev_net(dev)->dev_unreg_count++;
5993 }
5994 
5995 static void rollback_registered_many(struct list_head *head)
5996 {
5997 	struct net_device *dev, *tmp;
5998 	LIST_HEAD(close_head);
5999 
6000 	BUG_ON(dev_boot_phase);
6001 	ASSERT_RTNL();
6002 
6003 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6004 		/* Some devices call without registering
6005 		 * for initialization unwind. Remove those
6006 		 * devices and proceed with the remaining.
6007 		 */
6008 		if (dev->reg_state == NETREG_UNINITIALIZED) {
6009 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6010 				 dev->name, dev);
6011 
6012 			WARN_ON(1);
6013 			list_del(&dev->unreg_list);
6014 			continue;
6015 		}
6016 		dev->dismantle = true;
6017 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
6018 	}
6019 
6020 	/* If device is running, close it first. */
6021 	list_for_each_entry(dev, head, unreg_list)
6022 		list_add_tail(&dev->close_list, &close_head);
6023 	dev_close_many(&close_head, true);
6024 
6025 	list_for_each_entry(dev, head, unreg_list) {
6026 		/* And unlink it from device chain. */
6027 		unlist_netdevice(dev);
6028 
6029 		dev->reg_state = NETREG_UNREGISTERING;
6030 	}
6031 
6032 	synchronize_net();
6033 
6034 	list_for_each_entry(dev, head, unreg_list) {
6035 		struct sk_buff *skb = NULL;
6036 
6037 		/* Shutdown queueing discipline. */
6038 		dev_shutdown(dev);
6039 
6040 
6041 		/* Notify protocols, that we are about to destroy
6042 		   this device. They should clean all the things.
6043 		*/
6044 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6045 
6046 		if (!dev->rtnl_link_ops ||
6047 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6048 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6049 						     GFP_KERNEL);
6050 
6051 		/*
6052 		 *	Flush the unicast and multicast chains
6053 		 */
6054 		dev_uc_flush(dev);
6055 		dev_mc_flush(dev);
6056 
6057 		if (dev->netdev_ops->ndo_uninit)
6058 			dev->netdev_ops->ndo_uninit(dev);
6059 
6060 		if (skb)
6061 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6062 
6063 		/* Notifier chain MUST detach us all upper devices. */
6064 		WARN_ON(netdev_has_any_upper_dev(dev));
6065 
6066 		/* Remove entries from kobject tree */
6067 		netdev_unregister_kobject(dev);
6068 #ifdef CONFIG_XPS
6069 		/* Remove XPS queueing entries */
6070 		netif_reset_xps_queues_gt(dev, 0);
6071 #endif
6072 	}
6073 
6074 	synchronize_net();
6075 
6076 	list_for_each_entry(dev, head, unreg_list)
6077 		dev_put(dev);
6078 }
6079 
6080 static void rollback_registered(struct net_device *dev)
6081 {
6082 	LIST_HEAD(single);
6083 
6084 	list_add(&dev->unreg_list, &single);
6085 	rollback_registered_many(&single);
6086 	list_del(&single);
6087 }
6088 
6089 static netdev_features_t netdev_fix_features(struct net_device *dev,
6090 	netdev_features_t features)
6091 {
6092 	/* Fix illegal checksum combinations */
6093 	if ((features & NETIF_F_HW_CSUM) &&
6094 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6095 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6096 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6097 	}
6098 
6099 	/* TSO requires that SG is present as well. */
6100 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6101 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6102 		features &= ~NETIF_F_ALL_TSO;
6103 	}
6104 
6105 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6106 					!(features & NETIF_F_IP_CSUM)) {
6107 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6108 		features &= ~NETIF_F_TSO;
6109 		features &= ~NETIF_F_TSO_ECN;
6110 	}
6111 
6112 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6113 					 !(features & NETIF_F_IPV6_CSUM)) {
6114 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6115 		features &= ~NETIF_F_TSO6;
6116 	}
6117 
6118 	/* TSO ECN requires that TSO is present as well. */
6119 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6120 		features &= ~NETIF_F_TSO_ECN;
6121 
6122 	/* Software GSO depends on SG. */
6123 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6124 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6125 		features &= ~NETIF_F_GSO;
6126 	}
6127 
6128 	/* UFO needs SG and checksumming */
6129 	if (features & NETIF_F_UFO) {
6130 		/* maybe split UFO into V4 and V6? */
6131 		if (!((features & NETIF_F_GEN_CSUM) ||
6132 		    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
6133 			    == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6134 			netdev_dbg(dev,
6135 				"Dropping NETIF_F_UFO since no checksum offload features.\n");
6136 			features &= ~NETIF_F_UFO;
6137 		}
6138 
6139 		if (!(features & NETIF_F_SG)) {
6140 			netdev_dbg(dev,
6141 				"Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6142 			features &= ~NETIF_F_UFO;
6143 		}
6144 	}
6145 
6146 #ifdef CONFIG_NET_RX_BUSY_POLL
6147 	if (dev->netdev_ops->ndo_busy_poll)
6148 		features |= NETIF_F_BUSY_POLL;
6149 	else
6150 #endif
6151 		features &= ~NETIF_F_BUSY_POLL;
6152 
6153 	return features;
6154 }
6155 
6156 int __netdev_update_features(struct net_device *dev)
6157 {
6158 	netdev_features_t features;
6159 	int err = 0;
6160 
6161 	ASSERT_RTNL();
6162 
6163 	features = netdev_get_wanted_features(dev);
6164 
6165 	if (dev->netdev_ops->ndo_fix_features)
6166 		features = dev->netdev_ops->ndo_fix_features(dev, features);
6167 
6168 	/* driver might be less strict about feature dependencies */
6169 	features = netdev_fix_features(dev, features);
6170 
6171 	if (dev->features == features)
6172 		return 0;
6173 
6174 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6175 		&dev->features, &features);
6176 
6177 	if (dev->netdev_ops->ndo_set_features)
6178 		err = dev->netdev_ops->ndo_set_features(dev, features);
6179 
6180 	if (unlikely(err < 0)) {
6181 		netdev_err(dev,
6182 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
6183 			err, &features, &dev->features);
6184 		return -1;
6185 	}
6186 
6187 	if (!err)
6188 		dev->features = features;
6189 
6190 	return 1;
6191 }
6192 
6193 /**
6194  *	netdev_update_features - recalculate device features
6195  *	@dev: the device to check
6196  *
6197  *	Recalculate dev->features set and send notifications if it
6198  *	has changed. Should be called after driver or hardware dependent
6199  *	conditions might have changed that influence the features.
6200  */
6201 void netdev_update_features(struct net_device *dev)
6202 {
6203 	if (__netdev_update_features(dev))
6204 		netdev_features_change(dev);
6205 }
6206 EXPORT_SYMBOL(netdev_update_features);
6207 
6208 /**
6209  *	netdev_change_features - recalculate device features
6210  *	@dev: the device to check
6211  *
6212  *	Recalculate dev->features set and send notifications even
6213  *	if they have not changed. Should be called instead of
6214  *	netdev_update_features() if also dev->vlan_features might
6215  *	have changed to allow the changes to be propagated to stacked
6216  *	VLAN devices.
6217  */
6218 void netdev_change_features(struct net_device *dev)
6219 {
6220 	__netdev_update_features(dev);
6221 	netdev_features_change(dev);
6222 }
6223 EXPORT_SYMBOL(netdev_change_features);
6224 
6225 /**
6226  *	netif_stacked_transfer_operstate -	transfer operstate
6227  *	@rootdev: the root or lower level device to transfer state from
6228  *	@dev: the device to transfer operstate to
6229  *
6230  *	Transfer operational state from root to device. This is normally
6231  *	called when a stacking relationship exists between the root
6232  *	device and the device(a leaf device).
6233  */
6234 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6235 					struct net_device *dev)
6236 {
6237 	if (rootdev->operstate == IF_OPER_DORMANT)
6238 		netif_dormant_on(dev);
6239 	else
6240 		netif_dormant_off(dev);
6241 
6242 	if (netif_carrier_ok(rootdev)) {
6243 		if (!netif_carrier_ok(dev))
6244 			netif_carrier_on(dev);
6245 	} else {
6246 		if (netif_carrier_ok(dev))
6247 			netif_carrier_off(dev);
6248 	}
6249 }
6250 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6251 
6252 #ifdef CONFIG_SYSFS
6253 static int netif_alloc_rx_queues(struct net_device *dev)
6254 {
6255 	unsigned int i, count = dev->num_rx_queues;
6256 	struct netdev_rx_queue *rx;
6257 	size_t sz = count * sizeof(*rx);
6258 
6259 	BUG_ON(count < 1);
6260 
6261 	rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6262 	if (!rx) {
6263 		rx = vzalloc(sz);
6264 		if (!rx)
6265 			return -ENOMEM;
6266 	}
6267 	dev->_rx = rx;
6268 
6269 	for (i = 0; i < count; i++)
6270 		rx[i].dev = dev;
6271 	return 0;
6272 }
6273 #endif
6274 
6275 static void netdev_init_one_queue(struct net_device *dev,
6276 				  struct netdev_queue *queue, void *_unused)
6277 {
6278 	/* Initialize queue lock */
6279 	spin_lock_init(&queue->_xmit_lock);
6280 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6281 	queue->xmit_lock_owner = -1;
6282 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
6283 	queue->dev = dev;
6284 #ifdef CONFIG_BQL
6285 	dql_init(&queue->dql, HZ);
6286 #endif
6287 }
6288 
6289 static void netif_free_tx_queues(struct net_device *dev)
6290 {
6291 	kvfree(dev->_tx);
6292 }
6293 
6294 static int netif_alloc_netdev_queues(struct net_device *dev)
6295 {
6296 	unsigned int count = dev->num_tx_queues;
6297 	struct netdev_queue *tx;
6298 	size_t sz = count * sizeof(*tx);
6299 
6300 	BUG_ON(count < 1 || count > 0xffff);
6301 
6302 	tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6303 	if (!tx) {
6304 		tx = vzalloc(sz);
6305 		if (!tx)
6306 			return -ENOMEM;
6307 	}
6308 	dev->_tx = tx;
6309 
6310 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6311 	spin_lock_init(&dev->tx_global_lock);
6312 
6313 	return 0;
6314 }
6315 
6316 /**
6317  *	register_netdevice	- register a network device
6318  *	@dev: device to register
6319  *
6320  *	Take a completed network device structure and add it to the kernel
6321  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6322  *	chain. 0 is returned on success. A negative errno code is returned
6323  *	on a failure to set up the device, or if the name is a duplicate.
6324  *
6325  *	Callers must hold the rtnl semaphore. You may want
6326  *	register_netdev() instead of this.
6327  *
6328  *	BUGS:
6329  *	The locking appears insufficient to guarantee two parallel registers
6330  *	will not get the same name.
6331  */
6332 
6333 int register_netdevice(struct net_device *dev)
6334 {
6335 	int ret;
6336 	struct net *net = dev_net(dev);
6337 
6338 	BUG_ON(dev_boot_phase);
6339 	ASSERT_RTNL();
6340 
6341 	might_sleep();
6342 
6343 	/* When net_device's are persistent, this will be fatal. */
6344 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
6345 	BUG_ON(!net);
6346 
6347 	spin_lock_init(&dev->addr_list_lock);
6348 	netdev_set_addr_lockdep_class(dev);
6349 
6350 	ret = dev_get_valid_name(net, dev, dev->name);
6351 	if (ret < 0)
6352 		goto out;
6353 
6354 	/* Init, if this function is available */
6355 	if (dev->netdev_ops->ndo_init) {
6356 		ret = dev->netdev_ops->ndo_init(dev);
6357 		if (ret) {
6358 			if (ret > 0)
6359 				ret = -EIO;
6360 			goto out;
6361 		}
6362 	}
6363 
6364 	if (((dev->hw_features | dev->features) &
6365 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
6366 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6367 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6368 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6369 		ret = -EINVAL;
6370 		goto err_uninit;
6371 	}
6372 
6373 	ret = -EBUSY;
6374 	if (!dev->ifindex)
6375 		dev->ifindex = dev_new_index(net);
6376 	else if (__dev_get_by_index(net, dev->ifindex))
6377 		goto err_uninit;
6378 
6379 	/* Transfer changeable features to wanted_features and enable
6380 	 * software offloads (GSO and GRO).
6381 	 */
6382 	dev->hw_features |= NETIF_F_SOFT_FEATURES;
6383 	dev->features |= NETIF_F_SOFT_FEATURES;
6384 	dev->wanted_features = dev->features & dev->hw_features;
6385 
6386 	if (!(dev->flags & IFF_LOOPBACK)) {
6387 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
6388 	}
6389 
6390 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
6391 	 */
6392 	dev->vlan_features |= NETIF_F_HIGHDMA;
6393 
6394 	/* Make NETIF_F_SG inheritable to tunnel devices.
6395 	 */
6396 	dev->hw_enc_features |= NETIF_F_SG;
6397 
6398 	/* Make NETIF_F_SG inheritable to MPLS.
6399 	 */
6400 	dev->mpls_features |= NETIF_F_SG;
6401 
6402 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6403 	ret = notifier_to_errno(ret);
6404 	if (ret)
6405 		goto err_uninit;
6406 
6407 	ret = netdev_register_kobject(dev);
6408 	if (ret)
6409 		goto err_uninit;
6410 	dev->reg_state = NETREG_REGISTERED;
6411 
6412 	__netdev_update_features(dev);
6413 
6414 	/*
6415 	 *	Default initial state at registry is that the
6416 	 *	device is present.
6417 	 */
6418 
6419 	set_bit(__LINK_STATE_PRESENT, &dev->state);
6420 
6421 	linkwatch_init_dev(dev);
6422 
6423 	dev_init_scheduler(dev);
6424 	dev_hold(dev);
6425 	list_netdevice(dev);
6426 	add_device_randomness(dev->dev_addr, dev->addr_len);
6427 
6428 	/* If the device has permanent device address, driver should
6429 	 * set dev_addr and also addr_assign_type should be set to
6430 	 * NET_ADDR_PERM (default value).
6431 	 */
6432 	if (dev->addr_assign_type == NET_ADDR_PERM)
6433 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
6434 
6435 	/* Notify protocols, that a new device appeared. */
6436 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
6437 	ret = notifier_to_errno(ret);
6438 	if (ret) {
6439 		rollback_registered(dev);
6440 		dev->reg_state = NETREG_UNREGISTERED;
6441 	}
6442 	/*
6443 	 *	Prevent userspace races by waiting until the network
6444 	 *	device is fully setup before sending notifications.
6445 	 */
6446 	if (!dev->rtnl_link_ops ||
6447 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6448 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6449 
6450 out:
6451 	return ret;
6452 
6453 err_uninit:
6454 	if (dev->netdev_ops->ndo_uninit)
6455 		dev->netdev_ops->ndo_uninit(dev);
6456 	goto out;
6457 }
6458 EXPORT_SYMBOL(register_netdevice);
6459 
6460 /**
6461  *	init_dummy_netdev	- init a dummy network device for NAPI
6462  *	@dev: device to init
6463  *
6464  *	This takes a network device structure and initialize the minimum
6465  *	amount of fields so it can be used to schedule NAPI polls without
6466  *	registering a full blown interface. This is to be used by drivers
6467  *	that need to tie several hardware interfaces to a single NAPI
6468  *	poll scheduler due to HW limitations.
6469  */
6470 int init_dummy_netdev(struct net_device *dev)
6471 {
6472 	/* Clear everything. Note we don't initialize spinlocks
6473 	 * are they aren't supposed to be taken by any of the
6474 	 * NAPI code and this dummy netdev is supposed to be
6475 	 * only ever used for NAPI polls
6476 	 */
6477 	memset(dev, 0, sizeof(struct net_device));
6478 
6479 	/* make sure we BUG if trying to hit standard
6480 	 * register/unregister code path
6481 	 */
6482 	dev->reg_state = NETREG_DUMMY;
6483 
6484 	/* NAPI wants this */
6485 	INIT_LIST_HEAD(&dev->napi_list);
6486 
6487 	/* a dummy interface is started by default */
6488 	set_bit(__LINK_STATE_PRESENT, &dev->state);
6489 	set_bit(__LINK_STATE_START, &dev->state);
6490 
6491 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
6492 	 * because users of this 'device' dont need to change
6493 	 * its refcount.
6494 	 */
6495 
6496 	return 0;
6497 }
6498 EXPORT_SYMBOL_GPL(init_dummy_netdev);
6499 
6500 
6501 /**
6502  *	register_netdev	- register a network device
6503  *	@dev: device to register
6504  *
6505  *	Take a completed network device structure and add it to the kernel
6506  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6507  *	chain. 0 is returned on success. A negative errno code is returned
6508  *	on a failure to set up the device, or if the name is a duplicate.
6509  *
6510  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
6511  *	and expands the device name if you passed a format string to
6512  *	alloc_netdev.
6513  */
6514 int register_netdev(struct net_device *dev)
6515 {
6516 	int err;
6517 
6518 	rtnl_lock();
6519 	err = register_netdevice(dev);
6520 	rtnl_unlock();
6521 	return err;
6522 }
6523 EXPORT_SYMBOL(register_netdev);
6524 
6525 int netdev_refcnt_read(const struct net_device *dev)
6526 {
6527 	int i, refcnt = 0;
6528 
6529 	for_each_possible_cpu(i)
6530 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6531 	return refcnt;
6532 }
6533 EXPORT_SYMBOL(netdev_refcnt_read);
6534 
6535 /**
6536  * netdev_wait_allrefs - wait until all references are gone.
6537  * @dev: target net_device
6538  *
6539  * This is called when unregistering network devices.
6540  *
6541  * Any protocol or device that holds a reference should register
6542  * for netdevice notification, and cleanup and put back the
6543  * reference if they receive an UNREGISTER event.
6544  * We can get stuck here if buggy protocols don't correctly
6545  * call dev_put.
6546  */
6547 static void netdev_wait_allrefs(struct net_device *dev)
6548 {
6549 	unsigned long rebroadcast_time, warning_time;
6550 	int refcnt;
6551 
6552 	linkwatch_forget_dev(dev);
6553 
6554 	rebroadcast_time = warning_time = jiffies;
6555 	refcnt = netdev_refcnt_read(dev);
6556 
6557 	while (refcnt != 0) {
6558 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6559 			rtnl_lock();
6560 
6561 			/* Rebroadcast unregister notification */
6562 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6563 
6564 			__rtnl_unlock();
6565 			rcu_barrier();
6566 			rtnl_lock();
6567 
6568 			call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6569 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6570 				     &dev->state)) {
6571 				/* We must not have linkwatch events
6572 				 * pending on unregister. If this
6573 				 * happens, we simply run the queue
6574 				 * unscheduled, resulting in a noop
6575 				 * for this device.
6576 				 */
6577 				linkwatch_run_queue();
6578 			}
6579 
6580 			__rtnl_unlock();
6581 
6582 			rebroadcast_time = jiffies;
6583 		}
6584 
6585 		msleep(250);
6586 
6587 		refcnt = netdev_refcnt_read(dev);
6588 
6589 		if (time_after(jiffies, warning_time + 10 * HZ)) {
6590 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6591 				 dev->name, refcnt);
6592 			warning_time = jiffies;
6593 		}
6594 	}
6595 }
6596 
6597 /* The sequence is:
6598  *
6599  *	rtnl_lock();
6600  *	...
6601  *	register_netdevice(x1);
6602  *	register_netdevice(x2);
6603  *	...
6604  *	unregister_netdevice(y1);
6605  *	unregister_netdevice(y2);
6606  *      ...
6607  *	rtnl_unlock();
6608  *	free_netdev(y1);
6609  *	free_netdev(y2);
6610  *
6611  * We are invoked by rtnl_unlock().
6612  * This allows us to deal with problems:
6613  * 1) We can delete sysfs objects which invoke hotplug
6614  *    without deadlocking with linkwatch via keventd.
6615  * 2) Since we run with the RTNL semaphore not held, we can sleep
6616  *    safely in order to wait for the netdev refcnt to drop to zero.
6617  *
6618  * We must not return until all unregister events added during
6619  * the interval the lock was held have been completed.
6620  */
6621 void netdev_run_todo(void)
6622 {
6623 	struct list_head list;
6624 
6625 	/* Snapshot list, allow later requests */
6626 	list_replace_init(&net_todo_list, &list);
6627 
6628 	__rtnl_unlock();
6629 
6630 
6631 	/* Wait for rcu callbacks to finish before next phase */
6632 	if (!list_empty(&list))
6633 		rcu_barrier();
6634 
6635 	while (!list_empty(&list)) {
6636 		struct net_device *dev
6637 			= list_first_entry(&list, struct net_device, todo_list);
6638 		list_del(&dev->todo_list);
6639 
6640 		rtnl_lock();
6641 		call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6642 		__rtnl_unlock();
6643 
6644 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
6645 			pr_err("network todo '%s' but state %d\n",
6646 			       dev->name, dev->reg_state);
6647 			dump_stack();
6648 			continue;
6649 		}
6650 
6651 		dev->reg_state = NETREG_UNREGISTERED;
6652 
6653 		on_each_cpu(flush_backlog, dev, 1);
6654 
6655 		netdev_wait_allrefs(dev);
6656 
6657 		/* paranoia */
6658 		BUG_ON(netdev_refcnt_read(dev));
6659 		BUG_ON(!list_empty(&dev->ptype_all));
6660 		BUG_ON(!list_empty(&dev->ptype_specific));
6661 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
6662 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
6663 		WARN_ON(dev->dn_ptr);
6664 
6665 		if (dev->destructor)
6666 			dev->destructor(dev);
6667 
6668 		/* Report a network device has been unregistered */
6669 		rtnl_lock();
6670 		dev_net(dev)->dev_unreg_count--;
6671 		__rtnl_unlock();
6672 		wake_up(&netdev_unregistering_wq);
6673 
6674 		/* Free network device */
6675 		kobject_put(&dev->dev.kobj);
6676 	}
6677 }
6678 
6679 /* Convert net_device_stats to rtnl_link_stats64.  They have the same
6680  * fields in the same order, with only the type differing.
6681  */
6682 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6683 			     const struct net_device_stats *netdev_stats)
6684 {
6685 #if BITS_PER_LONG == 64
6686 	BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6687 	memcpy(stats64, netdev_stats, sizeof(*stats64));
6688 #else
6689 	size_t i, n = sizeof(*stats64) / sizeof(u64);
6690 	const unsigned long *src = (const unsigned long *)netdev_stats;
6691 	u64 *dst = (u64 *)stats64;
6692 
6693 	BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6694 		     sizeof(*stats64) / sizeof(u64));
6695 	for (i = 0; i < n; i++)
6696 		dst[i] = src[i];
6697 #endif
6698 }
6699 EXPORT_SYMBOL(netdev_stats_to_stats64);
6700 
6701 /**
6702  *	dev_get_stats	- get network device statistics
6703  *	@dev: device to get statistics from
6704  *	@storage: place to store stats
6705  *
6706  *	Get network statistics from device. Return @storage.
6707  *	The device driver may provide its own method by setting
6708  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6709  *	otherwise the internal statistics structure is used.
6710  */
6711 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6712 					struct rtnl_link_stats64 *storage)
6713 {
6714 	const struct net_device_ops *ops = dev->netdev_ops;
6715 
6716 	if (ops->ndo_get_stats64) {
6717 		memset(storage, 0, sizeof(*storage));
6718 		ops->ndo_get_stats64(dev, storage);
6719 	} else if (ops->ndo_get_stats) {
6720 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
6721 	} else {
6722 		netdev_stats_to_stats64(storage, &dev->stats);
6723 	}
6724 	storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
6725 	storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
6726 	return storage;
6727 }
6728 EXPORT_SYMBOL(dev_get_stats);
6729 
6730 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
6731 {
6732 	struct netdev_queue *queue = dev_ingress_queue(dev);
6733 
6734 #ifdef CONFIG_NET_CLS_ACT
6735 	if (queue)
6736 		return queue;
6737 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6738 	if (!queue)
6739 		return NULL;
6740 	netdev_init_one_queue(dev, queue, NULL);
6741 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
6742 	queue->qdisc_sleeping = &noop_qdisc;
6743 	rcu_assign_pointer(dev->ingress_queue, queue);
6744 #endif
6745 	return queue;
6746 }
6747 
6748 static const struct ethtool_ops default_ethtool_ops;
6749 
6750 void netdev_set_default_ethtool_ops(struct net_device *dev,
6751 				    const struct ethtool_ops *ops)
6752 {
6753 	if (dev->ethtool_ops == &default_ethtool_ops)
6754 		dev->ethtool_ops = ops;
6755 }
6756 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6757 
6758 void netdev_freemem(struct net_device *dev)
6759 {
6760 	char *addr = (char *)dev - dev->padded;
6761 
6762 	kvfree(addr);
6763 }
6764 
6765 /**
6766  *	alloc_netdev_mqs - allocate network device
6767  *	@sizeof_priv:		size of private data to allocate space for
6768  *	@name:			device name format string
6769  *	@name_assign_type: 	origin of device name
6770  *	@setup:			callback to initialize device
6771  *	@txqs:			the number of TX subqueues to allocate
6772  *	@rxqs:			the number of RX subqueues to allocate
6773  *
6774  *	Allocates a struct net_device with private data area for driver use
6775  *	and performs basic initialization.  Also allocates subqueue structs
6776  *	for each queue on the device.
6777  */
6778 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
6779 		unsigned char name_assign_type,
6780 		void (*setup)(struct net_device *),
6781 		unsigned int txqs, unsigned int rxqs)
6782 {
6783 	struct net_device *dev;
6784 	size_t alloc_size;
6785 	struct net_device *p;
6786 
6787 	BUG_ON(strlen(name) >= sizeof(dev->name));
6788 
6789 	if (txqs < 1) {
6790 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
6791 		return NULL;
6792 	}
6793 
6794 #ifdef CONFIG_SYSFS
6795 	if (rxqs < 1) {
6796 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
6797 		return NULL;
6798 	}
6799 #endif
6800 
6801 	alloc_size = sizeof(struct net_device);
6802 	if (sizeof_priv) {
6803 		/* ensure 32-byte alignment of private area */
6804 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
6805 		alloc_size += sizeof_priv;
6806 	}
6807 	/* ensure 32-byte alignment of whole construct */
6808 	alloc_size += NETDEV_ALIGN - 1;
6809 
6810 	p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6811 	if (!p)
6812 		p = vzalloc(alloc_size);
6813 	if (!p)
6814 		return NULL;
6815 
6816 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
6817 	dev->padded = (char *)dev - (char *)p;
6818 
6819 	dev->pcpu_refcnt = alloc_percpu(int);
6820 	if (!dev->pcpu_refcnt)
6821 		goto free_dev;
6822 
6823 	if (dev_addr_init(dev))
6824 		goto free_pcpu;
6825 
6826 	dev_mc_init(dev);
6827 	dev_uc_init(dev);
6828 
6829 	dev_net_set(dev, &init_net);
6830 
6831 	dev->gso_max_size = GSO_MAX_SIZE;
6832 	dev->gso_max_segs = GSO_MAX_SEGS;
6833 	dev->gso_min_segs = 0;
6834 
6835 	INIT_LIST_HEAD(&dev->napi_list);
6836 	INIT_LIST_HEAD(&dev->unreg_list);
6837 	INIT_LIST_HEAD(&dev->close_list);
6838 	INIT_LIST_HEAD(&dev->link_watch_list);
6839 	INIT_LIST_HEAD(&dev->adj_list.upper);
6840 	INIT_LIST_HEAD(&dev->adj_list.lower);
6841 	INIT_LIST_HEAD(&dev->all_adj_list.upper);
6842 	INIT_LIST_HEAD(&dev->all_adj_list.lower);
6843 	INIT_LIST_HEAD(&dev->ptype_all);
6844 	INIT_LIST_HEAD(&dev->ptype_specific);
6845 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
6846 	setup(dev);
6847 
6848 	dev->num_tx_queues = txqs;
6849 	dev->real_num_tx_queues = txqs;
6850 	if (netif_alloc_netdev_queues(dev))
6851 		goto free_all;
6852 
6853 #ifdef CONFIG_SYSFS
6854 	dev->num_rx_queues = rxqs;
6855 	dev->real_num_rx_queues = rxqs;
6856 	if (netif_alloc_rx_queues(dev))
6857 		goto free_all;
6858 #endif
6859 
6860 	strcpy(dev->name, name);
6861 	dev->name_assign_type = name_assign_type;
6862 	dev->group = INIT_NETDEV_GROUP;
6863 	if (!dev->ethtool_ops)
6864 		dev->ethtool_ops = &default_ethtool_ops;
6865 	return dev;
6866 
6867 free_all:
6868 	free_netdev(dev);
6869 	return NULL;
6870 
6871 free_pcpu:
6872 	free_percpu(dev->pcpu_refcnt);
6873 free_dev:
6874 	netdev_freemem(dev);
6875 	return NULL;
6876 }
6877 EXPORT_SYMBOL(alloc_netdev_mqs);
6878 
6879 /**
6880  *	free_netdev - free network device
6881  *	@dev: device
6882  *
6883  *	This function does the last stage of destroying an allocated device
6884  * 	interface. The reference to the device object is released.
6885  *	If this is the last reference then it will be freed.
6886  */
6887 void free_netdev(struct net_device *dev)
6888 {
6889 	struct napi_struct *p, *n;
6890 
6891 	netif_free_tx_queues(dev);
6892 #ifdef CONFIG_SYSFS
6893 	kvfree(dev->_rx);
6894 #endif
6895 
6896 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6897 
6898 	/* Flush device addresses */
6899 	dev_addr_flush(dev);
6900 
6901 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6902 		netif_napi_del(p);
6903 
6904 	free_percpu(dev->pcpu_refcnt);
6905 	dev->pcpu_refcnt = NULL;
6906 
6907 	/*  Compatibility with error handling in drivers */
6908 	if (dev->reg_state == NETREG_UNINITIALIZED) {
6909 		netdev_freemem(dev);
6910 		return;
6911 	}
6912 
6913 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6914 	dev->reg_state = NETREG_RELEASED;
6915 
6916 	/* will free via device release */
6917 	put_device(&dev->dev);
6918 }
6919 EXPORT_SYMBOL(free_netdev);
6920 
6921 /**
6922  *	synchronize_net -  Synchronize with packet receive processing
6923  *
6924  *	Wait for packets currently being received to be done.
6925  *	Does not block later packets from starting.
6926  */
6927 void synchronize_net(void)
6928 {
6929 	might_sleep();
6930 	if (rtnl_is_locked())
6931 		synchronize_rcu_expedited();
6932 	else
6933 		synchronize_rcu();
6934 }
6935 EXPORT_SYMBOL(synchronize_net);
6936 
6937 /**
6938  *	unregister_netdevice_queue - remove device from the kernel
6939  *	@dev: device
6940  *	@head: list
6941  *
6942  *	This function shuts down a device interface and removes it
6943  *	from the kernel tables.
6944  *	If head not NULL, device is queued to be unregistered later.
6945  *
6946  *	Callers must hold the rtnl semaphore.  You may want
6947  *	unregister_netdev() instead of this.
6948  */
6949 
6950 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6951 {
6952 	ASSERT_RTNL();
6953 
6954 	if (head) {
6955 		list_move_tail(&dev->unreg_list, head);
6956 	} else {
6957 		rollback_registered(dev);
6958 		/* Finish processing unregister after unlock */
6959 		net_set_todo(dev);
6960 	}
6961 }
6962 EXPORT_SYMBOL(unregister_netdevice_queue);
6963 
6964 /**
6965  *	unregister_netdevice_many - unregister many devices
6966  *	@head: list of devices
6967  *
6968  *  Note: As most callers use a stack allocated list_head,
6969  *  we force a list_del() to make sure stack wont be corrupted later.
6970  */
6971 void unregister_netdevice_many(struct list_head *head)
6972 {
6973 	struct net_device *dev;
6974 
6975 	if (!list_empty(head)) {
6976 		rollback_registered_many(head);
6977 		list_for_each_entry(dev, head, unreg_list)
6978 			net_set_todo(dev);
6979 		list_del(head);
6980 	}
6981 }
6982 EXPORT_SYMBOL(unregister_netdevice_many);
6983 
6984 /**
6985  *	unregister_netdev - remove device from the kernel
6986  *	@dev: device
6987  *
6988  *	This function shuts down a device interface and removes it
6989  *	from the kernel tables.
6990  *
6991  *	This is just a wrapper for unregister_netdevice that takes
6992  *	the rtnl semaphore.  In general you want to use this and not
6993  *	unregister_netdevice.
6994  */
6995 void unregister_netdev(struct net_device *dev)
6996 {
6997 	rtnl_lock();
6998 	unregister_netdevice(dev);
6999 	rtnl_unlock();
7000 }
7001 EXPORT_SYMBOL(unregister_netdev);
7002 
7003 /**
7004  *	dev_change_net_namespace - move device to different nethost namespace
7005  *	@dev: device
7006  *	@net: network namespace
7007  *	@pat: If not NULL name pattern to try if the current device name
7008  *	      is already taken in the destination network namespace.
7009  *
7010  *	This function shuts down a device interface and moves it
7011  *	to a new network namespace. On success 0 is returned, on
7012  *	a failure a netagive errno code is returned.
7013  *
7014  *	Callers must hold the rtnl semaphore.
7015  */
7016 
7017 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7018 {
7019 	int err;
7020 
7021 	ASSERT_RTNL();
7022 
7023 	/* Don't allow namespace local devices to be moved. */
7024 	err = -EINVAL;
7025 	if (dev->features & NETIF_F_NETNS_LOCAL)
7026 		goto out;
7027 
7028 	/* Ensure the device has been registrered */
7029 	if (dev->reg_state != NETREG_REGISTERED)
7030 		goto out;
7031 
7032 	/* Get out if there is nothing todo */
7033 	err = 0;
7034 	if (net_eq(dev_net(dev), net))
7035 		goto out;
7036 
7037 	/* Pick the destination device name, and ensure
7038 	 * we can use it in the destination network namespace.
7039 	 */
7040 	err = -EEXIST;
7041 	if (__dev_get_by_name(net, dev->name)) {
7042 		/* We get here if we can't use the current device name */
7043 		if (!pat)
7044 			goto out;
7045 		if (dev_get_valid_name(net, dev, pat) < 0)
7046 			goto out;
7047 	}
7048 
7049 	/*
7050 	 * And now a mini version of register_netdevice unregister_netdevice.
7051 	 */
7052 
7053 	/* If device is running close it first. */
7054 	dev_close(dev);
7055 
7056 	/* And unlink it from device chain */
7057 	err = -ENODEV;
7058 	unlist_netdevice(dev);
7059 
7060 	synchronize_net();
7061 
7062 	/* Shutdown queueing discipline. */
7063 	dev_shutdown(dev);
7064 
7065 	/* Notify protocols, that we are about to destroy
7066 	   this device. They should clean all the things.
7067 
7068 	   Note that dev->reg_state stays at NETREG_REGISTERED.
7069 	   This is wanted because this way 8021q and macvlan know
7070 	   the device is just moving and can keep their slaves up.
7071 	*/
7072 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7073 	rcu_barrier();
7074 	call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7075 	rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7076 
7077 	/*
7078 	 *	Flush the unicast and multicast chains
7079 	 */
7080 	dev_uc_flush(dev);
7081 	dev_mc_flush(dev);
7082 
7083 	/* Send a netdev-removed uevent to the old namespace */
7084 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7085 	netdev_adjacent_del_links(dev);
7086 
7087 	/* Actually switch the network namespace */
7088 	dev_net_set(dev, net);
7089 
7090 	/* If there is an ifindex conflict assign a new one */
7091 	if (__dev_get_by_index(net, dev->ifindex))
7092 		dev->ifindex = dev_new_index(net);
7093 
7094 	/* Send a netdev-add uevent to the new namespace */
7095 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7096 	netdev_adjacent_add_links(dev);
7097 
7098 	/* Fixup kobjects */
7099 	err = device_rename(&dev->dev, dev->name);
7100 	WARN_ON(err);
7101 
7102 	/* Add the device back in the hashes */
7103 	list_netdevice(dev);
7104 
7105 	/* Notify protocols, that a new device appeared. */
7106 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
7107 
7108 	/*
7109 	 *	Prevent userspace races by waiting until the network
7110 	 *	device is fully setup before sending notifications.
7111 	 */
7112 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7113 
7114 	synchronize_net();
7115 	err = 0;
7116 out:
7117 	return err;
7118 }
7119 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
7120 
7121 static int dev_cpu_callback(struct notifier_block *nfb,
7122 			    unsigned long action,
7123 			    void *ocpu)
7124 {
7125 	struct sk_buff **list_skb;
7126 	struct sk_buff *skb;
7127 	unsigned int cpu, oldcpu = (unsigned long)ocpu;
7128 	struct softnet_data *sd, *oldsd;
7129 
7130 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
7131 		return NOTIFY_OK;
7132 
7133 	local_irq_disable();
7134 	cpu = smp_processor_id();
7135 	sd = &per_cpu(softnet_data, cpu);
7136 	oldsd = &per_cpu(softnet_data, oldcpu);
7137 
7138 	/* Find end of our completion_queue. */
7139 	list_skb = &sd->completion_queue;
7140 	while (*list_skb)
7141 		list_skb = &(*list_skb)->next;
7142 	/* Append completion queue from offline CPU. */
7143 	*list_skb = oldsd->completion_queue;
7144 	oldsd->completion_queue = NULL;
7145 
7146 	/* Append output queue from offline CPU. */
7147 	if (oldsd->output_queue) {
7148 		*sd->output_queue_tailp = oldsd->output_queue;
7149 		sd->output_queue_tailp = oldsd->output_queue_tailp;
7150 		oldsd->output_queue = NULL;
7151 		oldsd->output_queue_tailp = &oldsd->output_queue;
7152 	}
7153 	/* Append NAPI poll list from offline CPU, with one exception :
7154 	 * process_backlog() must be called by cpu owning percpu backlog.
7155 	 * We properly handle process_queue & input_pkt_queue later.
7156 	 */
7157 	while (!list_empty(&oldsd->poll_list)) {
7158 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7159 							    struct napi_struct,
7160 							    poll_list);
7161 
7162 		list_del_init(&napi->poll_list);
7163 		if (napi->poll == process_backlog)
7164 			napi->state = 0;
7165 		else
7166 			____napi_schedule(sd, napi);
7167 	}
7168 
7169 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
7170 	local_irq_enable();
7171 
7172 	/* Process offline CPU's input_pkt_queue */
7173 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
7174 		netif_rx_ni(skb);
7175 		input_queue_head_incr(oldsd);
7176 	}
7177 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
7178 		netif_rx_ni(skb);
7179 		input_queue_head_incr(oldsd);
7180 	}
7181 
7182 	return NOTIFY_OK;
7183 }
7184 
7185 
7186 /**
7187  *	netdev_increment_features - increment feature set by one
7188  *	@all: current feature set
7189  *	@one: new feature set
7190  *	@mask: mask feature set
7191  *
7192  *	Computes a new feature set after adding a device with feature set
7193  *	@one to the master device with current feature set @all.  Will not
7194  *	enable anything that is off in @mask. Returns the new feature set.
7195  */
7196 netdev_features_t netdev_increment_features(netdev_features_t all,
7197 	netdev_features_t one, netdev_features_t mask)
7198 {
7199 	if (mask & NETIF_F_GEN_CSUM)
7200 		mask |= NETIF_F_ALL_CSUM;
7201 	mask |= NETIF_F_VLAN_CHALLENGED;
7202 
7203 	all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
7204 	all &= one | ~NETIF_F_ALL_FOR_ALL;
7205 
7206 	/* If one device supports hw checksumming, set for all. */
7207 	if (all & NETIF_F_GEN_CSUM)
7208 		all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
7209 
7210 	return all;
7211 }
7212 EXPORT_SYMBOL(netdev_increment_features);
7213 
7214 static struct hlist_head * __net_init netdev_create_hash(void)
7215 {
7216 	int i;
7217 	struct hlist_head *hash;
7218 
7219 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7220 	if (hash != NULL)
7221 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
7222 			INIT_HLIST_HEAD(&hash[i]);
7223 
7224 	return hash;
7225 }
7226 
7227 /* Initialize per network namespace state */
7228 static int __net_init netdev_init(struct net *net)
7229 {
7230 	if (net != &init_net)
7231 		INIT_LIST_HEAD(&net->dev_base_head);
7232 
7233 	net->dev_name_head = netdev_create_hash();
7234 	if (net->dev_name_head == NULL)
7235 		goto err_name;
7236 
7237 	net->dev_index_head = netdev_create_hash();
7238 	if (net->dev_index_head == NULL)
7239 		goto err_idx;
7240 
7241 	return 0;
7242 
7243 err_idx:
7244 	kfree(net->dev_name_head);
7245 err_name:
7246 	return -ENOMEM;
7247 }
7248 
7249 /**
7250  *	netdev_drivername - network driver for the device
7251  *	@dev: network device
7252  *
7253  *	Determine network driver for device.
7254  */
7255 const char *netdev_drivername(const struct net_device *dev)
7256 {
7257 	const struct device_driver *driver;
7258 	const struct device *parent;
7259 	const char *empty = "";
7260 
7261 	parent = dev->dev.parent;
7262 	if (!parent)
7263 		return empty;
7264 
7265 	driver = parent->driver;
7266 	if (driver && driver->name)
7267 		return driver->name;
7268 	return empty;
7269 }
7270 
7271 static void __netdev_printk(const char *level, const struct net_device *dev,
7272 			    struct va_format *vaf)
7273 {
7274 	if (dev && dev->dev.parent) {
7275 		dev_printk_emit(level[1] - '0',
7276 				dev->dev.parent,
7277 				"%s %s %s%s: %pV",
7278 				dev_driver_string(dev->dev.parent),
7279 				dev_name(dev->dev.parent),
7280 				netdev_name(dev), netdev_reg_state(dev),
7281 				vaf);
7282 	} else if (dev) {
7283 		printk("%s%s%s: %pV",
7284 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
7285 	} else {
7286 		printk("%s(NULL net_device): %pV", level, vaf);
7287 	}
7288 }
7289 
7290 void netdev_printk(const char *level, const struct net_device *dev,
7291 		   const char *format, ...)
7292 {
7293 	struct va_format vaf;
7294 	va_list args;
7295 
7296 	va_start(args, format);
7297 
7298 	vaf.fmt = format;
7299 	vaf.va = &args;
7300 
7301 	__netdev_printk(level, dev, &vaf);
7302 
7303 	va_end(args);
7304 }
7305 EXPORT_SYMBOL(netdev_printk);
7306 
7307 #define define_netdev_printk_level(func, level)			\
7308 void func(const struct net_device *dev, const char *fmt, ...)	\
7309 {								\
7310 	struct va_format vaf;					\
7311 	va_list args;						\
7312 								\
7313 	va_start(args, fmt);					\
7314 								\
7315 	vaf.fmt = fmt;						\
7316 	vaf.va = &args;						\
7317 								\
7318 	__netdev_printk(level, dev, &vaf);			\
7319 								\
7320 	va_end(args);						\
7321 }								\
7322 EXPORT_SYMBOL(func);
7323 
7324 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7325 define_netdev_printk_level(netdev_alert, KERN_ALERT);
7326 define_netdev_printk_level(netdev_crit, KERN_CRIT);
7327 define_netdev_printk_level(netdev_err, KERN_ERR);
7328 define_netdev_printk_level(netdev_warn, KERN_WARNING);
7329 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7330 define_netdev_printk_level(netdev_info, KERN_INFO);
7331 
7332 static void __net_exit netdev_exit(struct net *net)
7333 {
7334 	kfree(net->dev_name_head);
7335 	kfree(net->dev_index_head);
7336 }
7337 
7338 static struct pernet_operations __net_initdata netdev_net_ops = {
7339 	.init = netdev_init,
7340 	.exit = netdev_exit,
7341 };
7342 
7343 static void __net_exit default_device_exit(struct net *net)
7344 {
7345 	struct net_device *dev, *aux;
7346 	/*
7347 	 * Push all migratable network devices back to the
7348 	 * initial network namespace
7349 	 */
7350 	rtnl_lock();
7351 	for_each_netdev_safe(net, dev, aux) {
7352 		int err;
7353 		char fb_name[IFNAMSIZ];
7354 
7355 		/* Ignore unmoveable devices (i.e. loopback) */
7356 		if (dev->features & NETIF_F_NETNS_LOCAL)
7357 			continue;
7358 
7359 		/* Leave virtual devices for the generic cleanup */
7360 		if (dev->rtnl_link_ops)
7361 			continue;
7362 
7363 		/* Push remaining network devices to init_net */
7364 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7365 		err = dev_change_net_namespace(dev, &init_net, fb_name);
7366 		if (err) {
7367 			pr_emerg("%s: failed to move %s to init_net: %d\n",
7368 				 __func__, dev->name, err);
7369 			BUG();
7370 		}
7371 	}
7372 	rtnl_unlock();
7373 }
7374 
7375 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7376 {
7377 	/* Return with the rtnl_lock held when there are no network
7378 	 * devices unregistering in any network namespace in net_list.
7379 	 */
7380 	struct net *net;
7381 	bool unregistering;
7382 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
7383 
7384 	add_wait_queue(&netdev_unregistering_wq, &wait);
7385 	for (;;) {
7386 		unregistering = false;
7387 		rtnl_lock();
7388 		list_for_each_entry(net, net_list, exit_list) {
7389 			if (net->dev_unreg_count > 0) {
7390 				unregistering = true;
7391 				break;
7392 			}
7393 		}
7394 		if (!unregistering)
7395 			break;
7396 		__rtnl_unlock();
7397 
7398 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
7399 	}
7400 	remove_wait_queue(&netdev_unregistering_wq, &wait);
7401 }
7402 
7403 static void __net_exit default_device_exit_batch(struct list_head *net_list)
7404 {
7405 	/* At exit all network devices most be removed from a network
7406 	 * namespace.  Do this in the reverse order of registration.
7407 	 * Do this across as many network namespaces as possible to
7408 	 * improve batching efficiency.
7409 	 */
7410 	struct net_device *dev;
7411 	struct net *net;
7412 	LIST_HEAD(dev_kill_list);
7413 
7414 	/* To prevent network device cleanup code from dereferencing
7415 	 * loopback devices or network devices that have been freed
7416 	 * wait here for all pending unregistrations to complete,
7417 	 * before unregistring the loopback device and allowing the
7418 	 * network namespace be freed.
7419 	 *
7420 	 * The netdev todo list containing all network devices
7421 	 * unregistrations that happen in default_device_exit_batch
7422 	 * will run in the rtnl_unlock() at the end of
7423 	 * default_device_exit_batch.
7424 	 */
7425 	rtnl_lock_unregistering(net_list);
7426 	list_for_each_entry(net, net_list, exit_list) {
7427 		for_each_netdev_reverse(net, dev) {
7428 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
7429 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
7430 			else
7431 				unregister_netdevice_queue(dev, &dev_kill_list);
7432 		}
7433 	}
7434 	unregister_netdevice_many(&dev_kill_list);
7435 	rtnl_unlock();
7436 }
7437 
7438 static struct pernet_operations __net_initdata default_device_ops = {
7439 	.exit = default_device_exit,
7440 	.exit_batch = default_device_exit_batch,
7441 };
7442 
7443 /*
7444  *	Initialize the DEV module. At boot time this walks the device list and
7445  *	unhooks any devices that fail to initialise (normally hardware not
7446  *	present) and leaves us with a valid list of present and active devices.
7447  *
7448  */
7449 
7450 /*
7451  *       This is called single threaded during boot, so no need
7452  *       to take the rtnl semaphore.
7453  */
7454 static int __init net_dev_init(void)
7455 {
7456 	int i, rc = -ENOMEM;
7457 
7458 	BUG_ON(!dev_boot_phase);
7459 
7460 	if (dev_proc_init())
7461 		goto out;
7462 
7463 	if (netdev_kobject_init())
7464 		goto out;
7465 
7466 	INIT_LIST_HEAD(&ptype_all);
7467 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
7468 		INIT_LIST_HEAD(&ptype_base[i]);
7469 
7470 	INIT_LIST_HEAD(&offload_base);
7471 
7472 	if (register_pernet_subsys(&netdev_net_ops))
7473 		goto out;
7474 
7475 	/*
7476 	 *	Initialise the packet receive queues.
7477 	 */
7478 
7479 	for_each_possible_cpu(i) {
7480 		struct softnet_data *sd = &per_cpu(softnet_data, i);
7481 
7482 		skb_queue_head_init(&sd->input_pkt_queue);
7483 		skb_queue_head_init(&sd->process_queue);
7484 		INIT_LIST_HEAD(&sd->poll_list);
7485 		sd->output_queue_tailp = &sd->output_queue;
7486 #ifdef CONFIG_RPS
7487 		sd->csd.func = rps_trigger_softirq;
7488 		sd->csd.info = sd;
7489 		sd->cpu = i;
7490 #endif
7491 
7492 		sd->backlog.poll = process_backlog;
7493 		sd->backlog.weight = weight_p;
7494 	}
7495 
7496 	dev_boot_phase = 0;
7497 
7498 	/* The loopback device is special if any other network devices
7499 	 * is present in a network namespace the loopback device must
7500 	 * be present. Since we now dynamically allocate and free the
7501 	 * loopback device ensure this invariant is maintained by
7502 	 * keeping the loopback device as the first device on the
7503 	 * list of network devices.  Ensuring the loopback devices
7504 	 * is the first device that appears and the last network device
7505 	 * that disappears.
7506 	 */
7507 	if (register_pernet_device(&loopback_net_ops))
7508 		goto out;
7509 
7510 	if (register_pernet_device(&default_device_ops))
7511 		goto out;
7512 
7513 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7514 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
7515 
7516 	hotcpu_notifier(dev_cpu_callback, 0);
7517 	dst_init();
7518 	rc = 0;
7519 out:
7520 	return rc;
7521 }
7522 
7523 subsys_initcall(net_dev_init);
7524