1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <asm/uaccess.h> 76 #include <asm/system.h> 77 #include <linux/bitops.h> 78 #include <linux/capability.h> 79 #include <linux/cpu.h> 80 #include <linux/types.h> 81 #include <linux/kernel.h> 82 #include <linux/hash.h> 83 #include <linux/slab.h> 84 #include <linux/sched.h> 85 #include <linux/mutex.h> 86 #include <linux/string.h> 87 #include <linux/mm.h> 88 #include <linux/socket.h> 89 #include <linux/sockios.h> 90 #include <linux/errno.h> 91 #include <linux/interrupt.h> 92 #include <linux/if_ether.h> 93 #include <linux/netdevice.h> 94 #include <linux/etherdevice.h> 95 #include <linux/ethtool.h> 96 #include <linux/notifier.h> 97 #include <linux/skbuff.h> 98 #include <net/net_namespace.h> 99 #include <net/sock.h> 100 #include <linux/rtnetlink.h> 101 #include <linux/proc_fs.h> 102 #include <linux/seq_file.h> 103 #include <linux/stat.h> 104 #include <net/dst.h> 105 #include <net/pkt_sched.h> 106 #include <net/checksum.h> 107 #include <net/xfrm.h> 108 #include <linux/highmem.h> 109 #include <linux/init.h> 110 #include <linux/kmod.h> 111 #include <linux/module.h> 112 #include <linux/netpoll.h> 113 #include <linux/rcupdate.h> 114 #include <linux/delay.h> 115 #include <net/wext.h> 116 #include <net/iw_handler.h> 117 #include <asm/current.h> 118 #include <linux/audit.h> 119 #include <linux/dmaengine.h> 120 #include <linux/err.h> 121 #include <linux/ctype.h> 122 #include <linux/if_arp.h> 123 #include <linux/if_vlan.h> 124 #include <linux/ip.h> 125 #include <net/ip.h> 126 #include <linux/ipv6.h> 127 #include <linux/in.h> 128 #include <linux/jhash.h> 129 #include <linux/random.h> 130 #include <trace/events/napi.h> 131 #include <trace/events/net.h> 132 #include <trace/events/skb.h> 133 #include <linux/pci.h> 134 #include <linux/inetdevice.h> 135 #include <linux/cpu_rmap.h> 136 137 #include "net-sysfs.h" 138 139 /* Instead of increasing this, you should create a hash table. */ 140 #define MAX_GRO_SKBS 8 141 142 /* This should be increased if a protocol with a bigger head is added. */ 143 #define GRO_MAX_HEAD (MAX_HEADER + 128) 144 145 /* 146 * The list of packet types we will receive (as opposed to discard) 147 * and the routines to invoke. 148 * 149 * Why 16. Because with 16 the only overlap we get on a hash of the 150 * low nibble of the protocol value is RARP/SNAP/X.25. 151 * 152 * NOTE: That is no longer true with the addition of VLAN tags. Not 153 * sure which should go first, but I bet it won't make much 154 * difference if we are running VLANs. The good news is that 155 * this protocol won't be in the list unless compiled in, so 156 * the average user (w/out VLANs) will not be adversely affected. 157 * --BLG 158 * 159 * 0800 IP 160 * 8100 802.1Q VLAN 161 * 0001 802.3 162 * 0002 AX.25 163 * 0004 802.2 164 * 8035 RARP 165 * 0005 SNAP 166 * 0805 X.25 167 * 0806 ARP 168 * 8137 IPX 169 * 0009 Localtalk 170 * 86DD IPv6 171 */ 172 173 #define PTYPE_HASH_SIZE (16) 174 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 175 176 static DEFINE_SPINLOCK(ptype_lock); 177 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 178 static struct list_head ptype_all __read_mostly; /* Taps */ 179 180 /* 181 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 182 * semaphore. 183 * 184 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 185 * 186 * Writers must hold the rtnl semaphore while they loop through the 187 * dev_base_head list, and hold dev_base_lock for writing when they do the 188 * actual updates. This allows pure readers to access the list even 189 * while a writer is preparing to update it. 190 * 191 * To put it another way, dev_base_lock is held for writing only to 192 * protect against pure readers; the rtnl semaphore provides the 193 * protection against other writers. 194 * 195 * See, for example usages, register_netdevice() and 196 * unregister_netdevice(), which must be called with the rtnl 197 * semaphore held. 198 */ 199 DEFINE_RWLOCK(dev_base_lock); 200 EXPORT_SYMBOL(dev_base_lock); 201 202 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 203 { 204 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 205 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 206 } 207 208 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 209 { 210 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 211 } 212 213 static inline void rps_lock(struct softnet_data *sd) 214 { 215 #ifdef CONFIG_RPS 216 spin_lock(&sd->input_pkt_queue.lock); 217 #endif 218 } 219 220 static inline void rps_unlock(struct softnet_data *sd) 221 { 222 #ifdef CONFIG_RPS 223 spin_unlock(&sd->input_pkt_queue.lock); 224 #endif 225 } 226 227 /* Device list insertion */ 228 static int list_netdevice(struct net_device *dev) 229 { 230 struct net *net = dev_net(dev); 231 232 ASSERT_RTNL(); 233 234 write_lock_bh(&dev_base_lock); 235 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 236 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 237 hlist_add_head_rcu(&dev->index_hlist, 238 dev_index_hash(net, dev->ifindex)); 239 write_unlock_bh(&dev_base_lock); 240 return 0; 241 } 242 243 /* Device list removal 244 * caller must respect a RCU grace period before freeing/reusing dev 245 */ 246 static void unlist_netdevice(struct net_device *dev) 247 { 248 ASSERT_RTNL(); 249 250 /* Unlink dev from the device chain */ 251 write_lock_bh(&dev_base_lock); 252 list_del_rcu(&dev->dev_list); 253 hlist_del_rcu(&dev->name_hlist); 254 hlist_del_rcu(&dev->index_hlist); 255 write_unlock_bh(&dev_base_lock); 256 } 257 258 /* 259 * Our notifier list 260 */ 261 262 static RAW_NOTIFIER_HEAD(netdev_chain); 263 264 /* 265 * Device drivers call our routines to queue packets here. We empty the 266 * queue in the local softnet handler. 267 */ 268 269 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 270 EXPORT_PER_CPU_SYMBOL(softnet_data); 271 272 #ifdef CONFIG_LOCKDEP 273 /* 274 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 275 * according to dev->type 276 */ 277 static const unsigned short netdev_lock_type[] = 278 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 279 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 280 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 281 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 282 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 283 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 284 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 285 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 286 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 287 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 288 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 289 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 290 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211, 291 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, 292 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154, 293 ARPHRD_VOID, ARPHRD_NONE}; 294 295 static const char *const netdev_lock_name[] = 296 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 297 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 298 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 299 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 300 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 301 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 302 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 303 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 304 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 305 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 306 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 307 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 308 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211", 309 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", 310 "_xmit_PHONET_PIPE", "_xmit_IEEE802154", 311 "_xmit_VOID", "_xmit_NONE"}; 312 313 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 314 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 315 316 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 317 { 318 int i; 319 320 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 321 if (netdev_lock_type[i] == dev_type) 322 return i; 323 /* the last key is used by default */ 324 return ARRAY_SIZE(netdev_lock_type) - 1; 325 } 326 327 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 328 unsigned short dev_type) 329 { 330 int i; 331 332 i = netdev_lock_pos(dev_type); 333 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 334 netdev_lock_name[i]); 335 } 336 337 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 338 { 339 int i; 340 341 i = netdev_lock_pos(dev->type); 342 lockdep_set_class_and_name(&dev->addr_list_lock, 343 &netdev_addr_lock_key[i], 344 netdev_lock_name[i]); 345 } 346 #else 347 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 348 unsigned short dev_type) 349 { 350 } 351 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 352 { 353 } 354 #endif 355 356 /******************************************************************************* 357 358 Protocol management and registration routines 359 360 *******************************************************************************/ 361 362 /* 363 * Add a protocol ID to the list. Now that the input handler is 364 * smarter we can dispense with all the messy stuff that used to be 365 * here. 366 * 367 * BEWARE!!! Protocol handlers, mangling input packets, 368 * MUST BE last in hash buckets and checking protocol handlers 369 * MUST start from promiscuous ptype_all chain in net_bh. 370 * It is true now, do not change it. 371 * Explanation follows: if protocol handler, mangling packet, will 372 * be the first on list, it is not able to sense, that packet 373 * is cloned and should be copied-on-write, so that it will 374 * change it and subsequent readers will get broken packet. 375 * --ANK (980803) 376 */ 377 378 static inline struct list_head *ptype_head(const struct packet_type *pt) 379 { 380 if (pt->type == htons(ETH_P_ALL)) 381 return &ptype_all; 382 else 383 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 384 } 385 386 /** 387 * dev_add_pack - add packet handler 388 * @pt: packet type declaration 389 * 390 * Add a protocol handler to the networking stack. The passed &packet_type 391 * is linked into kernel lists and may not be freed until it has been 392 * removed from the kernel lists. 393 * 394 * This call does not sleep therefore it can not 395 * guarantee all CPU's that are in middle of receiving packets 396 * will see the new packet type (until the next received packet). 397 */ 398 399 void dev_add_pack(struct packet_type *pt) 400 { 401 struct list_head *head = ptype_head(pt); 402 403 spin_lock(&ptype_lock); 404 list_add_rcu(&pt->list, head); 405 spin_unlock(&ptype_lock); 406 } 407 EXPORT_SYMBOL(dev_add_pack); 408 409 /** 410 * __dev_remove_pack - remove packet handler 411 * @pt: packet type declaration 412 * 413 * Remove a protocol handler that was previously added to the kernel 414 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 415 * from the kernel lists and can be freed or reused once this function 416 * returns. 417 * 418 * The packet type might still be in use by receivers 419 * and must not be freed until after all the CPU's have gone 420 * through a quiescent state. 421 */ 422 void __dev_remove_pack(struct packet_type *pt) 423 { 424 struct list_head *head = ptype_head(pt); 425 struct packet_type *pt1; 426 427 spin_lock(&ptype_lock); 428 429 list_for_each_entry(pt1, head, list) { 430 if (pt == pt1) { 431 list_del_rcu(&pt->list); 432 goto out; 433 } 434 } 435 436 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt); 437 out: 438 spin_unlock(&ptype_lock); 439 } 440 EXPORT_SYMBOL(__dev_remove_pack); 441 442 /** 443 * dev_remove_pack - remove packet handler 444 * @pt: packet type declaration 445 * 446 * Remove a protocol handler that was previously added to the kernel 447 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 448 * from the kernel lists and can be freed or reused once this function 449 * returns. 450 * 451 * This call sleeps to guarantee that no CPU is looking at the packet 452 * type after return. 453 */ 454 void dev_remove_pack(struct packet_type *pt) 455 { 456 __dev_remove_pack(pt); 457 458 synchronize_net(); 459 } 460 EXPORT_SYMBOL(dev_remove_pack); 461 462 /****************************************************************************** 463 464 Device Boot-time Settings Routines 465 466 *******************************************************************************/ 467 468 /* Boot time configuration table */ 469 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 470 471 /** 472 * netdev_boot_setup_add - add new setup entry 473 * @name: name of the device 474 * @map: configured settings for the device 475 * 476 * Adds new setup entry to the dev_boot_setup list. The function 477 * returns 0 on error and 1 on success. This is a generic routine to 478 * all netdevices. 479 */ 480 static int netdev_boot_setup_add(char *name, struct ifmap *map) 481 { 482 struct netdev_boot_setup *s; 483 int i; 484 485 s = dev_boot_setup; 486 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 487 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 488 memset(s[i].name, 0, sizeof(s[i].name)); 489 strlcpy(s[i].name, name, IFNAMSIZ); 490 memcpy(&s[i].map, map, sizeof(s[i].map)); 491 break; 492 } 493 } 494 495 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 496 } 497 498 /** 499 * netdev_boot_setup_check - check boot time settings 500 * @dev: the netdevice 501 * 502 * Check boot time settings for the device. 503 * The found settings are set for the device to be used 504 * later in the device probing. 505 * Returns 0 if no settings found, 1 if they are. 506 */ 507 int netdev_boot_setup_check(struct net_device *dev) 508 { 509 struct netdev_boot_setup *s = dev_boot_setup; 510 int i; 511 512 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 513 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 514 !strcmp(dev->name, s[i].name)) { 515 dev->irq = s[i].map.irq; 516 dev->base_addr = s[i].map.base_addr; 517 dev->mem_start = s[i].map.mem_start; 518 dev->mem_end = s[i].map.mem_end; 519 return 1; 520 } 521 } 522 return 0; 523 } 524 EXPORT_SYMBOL(netdev_boot_setup_check); 525 526 527 /** 528 * netdev_boot_base - get address from boot time settings 529 * @prefix: prefix for network device 530 * @unit: id for network device 531 * 532 * Check boot time settings for the base address of device. 533 * The found settings are set for the device to be used 534 * later in the device probing. 535 * Returns 0 if no settings found. 536 */ 537 unsigned long netdev_boot_base(const char *prefix, int unit) 538 { 539 const struct netdev_boot_setup *s = dev_boot_setup; 540 char name[IFNAMSIZ]; 541 int i; 542 543 sprintf(name, "%s%d", prefix, unit); 544 545 /* 546 * If device already registered then return base of 1 547 * to indicate not to probe for this interface 548 */ 549 if (__dev_get_by_name(&init_net, name)) 550 return 1; 551 552 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 553 if (!strcmp(name, s[i].name)) 554 return s[i].map.base_addr; 555 return 0; 556 } 557 558 /* 559 * Saves at boot time configured settings for any netdevice. 560 */ 561 int __init netdev_boot_setup(char *str) 562 { 563 int ints[5]; 564 struct ifmap map; 565 566 str = get_options(str, ARRAY_SIZE(ints), ints); 567 if (!str || !*str) 568 return 0; 569 570 /* Save settings */ 571 memset(&map, 0, sizeof(map)); 572 if (ints[0] > 0) 573 map.irq = ints[1]; 574 if (ints[0] > 1) 575 map.base_addr = ints[2]; 576 if (ints[0] > 2) 577 map.mem_start = ints[3]; 578 if (ints[0] > 3) 579 map.mem_end = ints[4]; 580 581 /* Add new entry to the list */ 582 return netdev_boot_setup_add(str, &map); 583 } 584 585 __setup("netdev=", netdev_boot_setup); 586 587 /******************************************************************************* 588 589 Device Interface Subroutines 590 591 *******************************************************************************/ 592 593 /** 594 * __dev_get_by_name - find a device by its name 595 * @net: the applicable net namespace 596 * @name: name to find 597 * 598 * Find an interface by name. Must be called under RTNL semaphore 599 * or @dev_base_lock. If the name is found a pointer to the device 600 * is returned. If the name is not found then %NULL is returned. The 601 * reference counters are not incremented so the caller must be 602 * careful with locks. 603 */ 604 605 struct net_device *__dev_get_by_name(struct net *net, const char *name) 606 { 607 struct hlist_node *p; 608 struct net_device *dev; 609 struct hlist_head *head = dev_name_hash(net, name); 610 611 hlist_for_each_entry(dev, p, head, name_hlist) 612 if (!strncmp(dev->name, name, IFNAMSIZ)) 613 return dev; 614 615 return NULL; 616 } 617 EXPORT_SYMBOL(__dev_get_by_name); 618 619 /** 620 * dev_get_by_name_rcu - find a device by its name 621 * @net: the applicable net namespace 622 * @name: name to find 623 * 624 * Find an interface by name. 625 * If the name is found a pointer to the device is returned. 626 * If the name is not found then %NULL is returned. 627 * The reference counters are not incremented so the caller must be 628 * careful with locks. The caller must hold RCU lock. 629 */ 630 631 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 632 { 633 struct hlist_node *p; 634 struct net_device *dev; 635 struct hlist_head *head = dev_name_hash(net, name); 636 637 hlist_for_each_entry_rcu(dev, p, head, name_hlist) 638 if (!strncmp(dev->name, name, IFNAMSIZ)) 639 return dev; 640 641 return NULL; 642 } 643 EXPORT_SYMBOL(dev_get_by_name_rcu); 644 645 /** 646 * dev_get_by_name - find a device by its name 647 * @net: the applicable net namespace 648 * @name: name to find 649 * 650 * Find an interface by name. This can be called from any 651 * context and does its own locking. The returned handle has 652 * the usage count incremented and the caller must use dev_put() to 653 * release it when it is no longer needed. %NULL is returned if no 654 * matching device is found. 655 */ 656 657 struct net_device *dev_get_by_name(struct net *net, const char *name) 658 { 659 struct net_device *dev; 660 661 rcu_read_lock(); 662 dev = dev_get_by_name_rcu(net, name); 663 if (dev) 664 dev_hold(dev); 665 rcu_read_unlock(); 666 return dev; 667 } 668 EXPORT_SYMBOL(dev_get_by_name); 669 670 /** 671 * __dev_get_by_index - find a device by its ifindex 672 * @net: the applicable net namespace 673 * @ifindex: index of device 674 * 675 * Search for an interface by index. Returns %NULL if the device 676 * is not found or a pointer to the device. The device has not 677 * had its reference counter increased so the caller must be careful 678 * about locking. The caller must hold either the RTNL semaphore 679 * or @dev_base_lock. 680 */ 681 682 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 683 { 684 struct hlist_node *p; 685 struct net_device *dev; 686 struct hlist_head *head = dev_index_hash(net, ifindex); 687 688 hlist_for_each_entry(dev, p, head, index_hlist) 689 if (dev->ifindex == ifindex) 690 return dev; 691 692 return NULL; 693 } 694 EXPORT_SYMBOL(__dev_get_by_index); 695 696 /** 697 * dev_get_by_index_rcu - find a device by its ifindex 698 * @net: the applicable net namespace 699 * @ifindex: index of device 700 * 701 * Search for an interface by index. Returns %NULL if the device 702 * is not found or a pointer to the device. The device has not 703 * had its reference counter increased so the caller must be careful 704 * about locking. The caller must hold RCU lock. 705 */ 706 707 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 708 { 709 struct hlist_node *p; 710 struct net_device *dev; 711 struct hlist_head *head = dev_index_hash(net, ifindex); 712 713 hlist_for_each_entry_rcu(dev, p, head, index_hlist) 714 if (dev->ifindex == ifindex) 715 return dev; 716 717 return NULL; 718 } 719 EXPORT_SYMBOL(dev_get_by_index_rcu); 720 721 722 /** 723 * dev_get_by_index - find a device by its ifindex 724 * @net: the applicable net namespace 725 * @ifindex: index of device 726 * 727 * Search for an interface by index. Returns NULL if the device 728 * is not found or a pointer to the device. The device returned has 729 * had a reference added and the pointer is safe until the user calls 730 * dev_put to indicate they have finished with it. 731 */ 732 733 struct net_device *dev_get_by_index(struct net *net, int ifindex) 734 { 735 struct net_device *dev; 736 737 rcu_read_lock(); 738 dev = dev_get_by_index_rcu(net, ifindex); 739 if (dev) 740 dev_hold(dev); 741 rcu_read_unlock(); 742 return dev; 743 } 744 EXPORT_SYMBOL(dev_get_by_index); 745 746 /** 747 * dev_getbyhwaddr_rcu - find a device by its hardware address 748 * @net: the applicable net namespace 749 * @type: media type of device 750 * @ha: hardware address 751 * 752 * Search for an interface by MAC address. Returns NULL if the device 753 * is not found or a pointer to the device. 754 * The caller must hold RCU or RTNL. 755 * The returned device has not had its ref count increased 756 * and the caller must therefore be careful about locking 757 * 758 */ 759 760 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 761 const char *ha) 762 { 763 struct net_device *dev; 764 765 for_each_netdev_rcu(net, dev) 766 if (dev->type == type && 767 !memcmp(dev->dev_addr, ha, dev->addr_len)) 768 return dev; 769 770 return NULL; 771 } 772 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 773 774 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 775 { 776 struct net_device *dev; 777 778 ASSERT_RTNL(); 779 for_each_netdev(net, dev) 780 if (dev->type == type) 781 return dev; 782 783 return NULL; 784 } 785 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 786 787 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 788 { 789 struct net_device *dev, *ret = NULL; 790 791 rcu_read_lock(); 792 for_each_netdev_rcu(net, dev) 793 if (dev->type == type) { 794 dev_hold(dev); 795 ret = dev; 796 break; 797 } 798 rcu_read_unlock(); 799 return ret; 800 } 801 EXPORT_SYMBOL(dev_getfirstbyhwtype); 802 803 /** 804 * dev_get_by_flags_rcu - find any device with given flags 805 * @net: the applicable net namespace 806 * @if_flags: IFF_* values 807 * @mask: bitmask of bits in if_flags to check 808 * 809 * Search for any interface with the given flags. Returns NULL if a device 810 * is not found or a pointer to the device. Must be called inside 811 * rcu_read_lock(), and result refcount is unchanged. 812 */ 813 814 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags, 815 unsigned short mask) 816 { 817 struct net_device *dev, *ret; 818 819 ret = NULL; 820 for_each_netdev_rcu(net, dev) { 821 if (((dev->flags ^ if_flags) & mask) == 0) { 822 ret = dev; 823 break; 824 } 825 } 826 return ret; 827 } 828 EXPORT_SYMBOL(dev_get_by_flags_rcu); 829 830 /** 831 * dev_valid_name - check if name is okay for network device 832 * @name: name string 833 * 834 * Network device names need to be valid file names to 835 * to allow sysfs to work. We also disallow any kind of 836 * whitespace. 837 */ 838 int dev_valid_name(const char *name) 839 { 840 if (*name == '\0') 841 return 0; 842 if (strlen(name) >= IFNAMSIZ) 843 return 0; 844 if (!strcmp(name, ".") || !strcmp(name, "..")) 845 return 0; 846 847 while (*name) { 848 if (*name == '/' || isspace(*name)) 849 return 0; 850 name++; 851 } 852 return 1; 853 } 854 EXPORT_SYMBOL(dev_valid_name); 855 856 /** 857 * __dev_alloc_name - allocate a name for a device 858 * @net: network namespace to allocate the device name in 859 * @name: name format string 860 * @buf: scratch buffer and result name string 861 * 862 * Passed a format string - eg "lt%d" it will try and find a suitable 863 * id. It scans list of devices to build up a free map, then chooses 864 * the first empty slot. The caller must hold the dev_base or rtnl lock 865 * while allocating the name and adding the device in order to avoid 866 * duplicates. 867 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 868 * Returns the number of the unit assigned or a negative errno code. 869 */ 870 871 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 872 { 873 int i = 0; 874 const char *p; 875 const int max_netdevices = 8*PAGE_SIZE; 876 unsigned long *inuse; 877 struct net_device *d; 878 879 p = strnchr(name, IFNAMSIZ-1, '%'); 880 if (p) { 881 /* 882 * Verify the string as this thing may have come from 883 * the user. There must be either one "%d" and no other "%" 884 * characters. 885 */ 886 if (p[1] != 'd' || strchr(p + 2, '%')) 887 return -EINVAL; 888 889 /* Use one page as a bit array of possible slots */ 890 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 891 if (!inuse) 892 return -ENOMEM; 893 894 for_each_netdev(net, d) { 895 if (!sscanf(d->name, name, &i)) 896 continue; 897 if (i < 0 || i >= max_netdevices) 898 continue; 899 900 /* avoid cases where sscanf is not exact inverse of printf */ 901 snprintf(buf, IFNAMSIZ, name, i); 902 if (!strncmp(buf, d->name, IFNAMSIZ)) 903 set_bit(i, inuse); 904 } 905 906 i = find_first_zero_bit(inuse, max_netdevices); 907 free_page((unsigned long) inuse); 908 } 909 910 if (buf != name) 911 snprintf(buf, IFNAMSIZ, name, i); 912 if (!__dev_get_by_name(net, buf)) 913 return i; 914 915 /* It is possible to run out of possible slots 916 * when the name is long and there isn't enough space left 917 * for the digits, or if all bits are used. 918 */ 919 return -ENFILE; 920 } 921 922 /** 923 * dev_alloc_name - allocate a name for a device 924 * @dev: device 925 * @name: name format string 926 * 927 * Passed a format string - eg "lt%d" it will try and find a suitable 928 * id. It scans list of devices to build up a free map, then chooses 929 * the first empty slot. The caller must hold the dev_base or rtnl lock 930 * while allocating the name and adding the device in order to avoid 931 * duplicates. 932 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 933 * Returns the number of the unit assigned or a negative errno code. 934 */ 935 936 int dev_alloc_name(struct net_device *dev, const char *name) 937 { 938 char buf[IFNAMSIZ]; 939 struct net *net; 940 int ret; 941 942 BUG_ON(!dev_net(dev)); 943 net = dev_net(dev); 944 ret = __dev_alloc_name(net, name, buf); 945 if (ret >= 0) 946 strlcpy(dev->name, buf, IFNAMSIZ); 947 return ret; 948 } 949 EXPORT_SYMBOL(dev_alloc_name); 950 951 static int dev_get_valid_name(struct net_device *dev, const char *name, bool fmt) 952 { 953 struct net *net; 954 955 BUG_ON(!dev_net(dev)); 956 net = dev_net(dev); 957 958 if (!dev_valid_name(name)) 959 return -EINVAL; 960 961 if (fmt && strchr(name, '%')) 962 return dev_alloc_name(dev, name); 963 else if (__dev_get_by_name(net, name)) 964 return -EEXIST; 965 else if (dev->name != name) 966 strlcpy(dev->name, name, IFNAMSIZ); 967 968 return 0; 969 } 970 971 /** 972 * dev_change_name - change name of a device 973 * @dev: device 974 * @newname: name (or format string) must be at least IFNAMSIZ 975 * 976 * Change name of a device, can pass format strings "eth%d". 977 * for wildcarding. 978 */ 979 int dev_change_name(struct net_device *dev, const char *newname) 980 { 981 char oldname[IFNAMSIZ]; 982 int err = 0; 983 int ret; 984 struct net *net; 985 986 ASSERT_RTNL(); 987 BUG_ON(!dev_net(dev)); 988 989 net = dev_net(dev); 990 if (dev->flags & IFF_UP) 991 return -EBUSY; 992 993 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) 994 return 0; 995 996 memcpy(oldname, dev->name, IFNAMSIZ); 997 998 err = dev_get_valid_name(dev, newname, 1); 999 if (err < 0) 1000 return err; 1001 1002 rollback: 1003 ret = device_rename(&dev->dev, dev->name); 1004 if (ret) { 1005 memcpy(dev->name, oldname, IFNAMSIZ); 1006 return ret; 1007 } 1008 1009 write_lock_bh(&dev_base_lock); 1010 hlist_del(&dev->name_hlist); 1011 write_unlock_bh(&dev_base_lock); 1012 1013 synchronize_rcu(); 1014 1015 write_lock_bh(&dev_base_lock); 1016 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1017 write_unlock_bh(&dev_base_lock); 1018 1019 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1020 ret = notifier_to_errno(ret); 1021 1022 if (ret) { 1023 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1024 if (err >= 0) { 1025 err = ret; 1026 memcpy(dev->name, oldname, IFNAMSIZ); 1027 goto rollback; 1028 } else { 1029 printk(KERN_ERR 1030 "%s: name change rollback failed: %d.\n", 1031 dev->name, ret); 1032 } 1033 } 1034 1035 return err; 1036 } 1037 1038 /** 1039 * dev_set_alias - change ifalias of a device 1040 * @dev: device 1041 * @alias: name up to IFALIASZ 1042 * @len: limit of bytes to copy from info 1043 * 1044 * Set ifalias for a device, 1045 */ 1046 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1047 { 1048 ASSERT_RTNL(); 1049 1050 if (len >= IFALIASZ) 1051 return -EINVAL; 1052 1053 if (!len) { 1054 if (dev->ifalias) { 1055 kfree(dev->ifalias); 1056 dev->ifalias = NULL; 1057 } 1058 return 0; 1059 } 1060 1061 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL); 1062 if (!dev->ifalias) 1063 return -ENOMEM; 1064 1065 strlcpy(dev->ifalias, alias, len+1); 1066 return len; 1067 } 1068 1069 1070 /** 1071 * netdev_features_change - device changes features 1072 * @dev: device to cause notification 1073 * 1074 * Called to indicate a device has changed features. 1075 */ 1076 void netdev_features_change(struct net_device *dev) 1077 { 1078 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1079 } 1080 EXPORT_SYMBOL(netdev_features_change); 1081 1082 /** 1083 * netdev_state_change - device changes state 1084 * @dev: device to cause notification 1085 * 1086 * Called to indicate a device has changed state. This function calls 1087 * the notifier chains for netdev_chain and sends a NEWLINK message 1088 * to the routing socket. 1089 */ 1090 void netdev_state_change(struct net_device *dev) 1091 { 1092 if (dev->flags & IFF_UP) { 1093 call_netdevice_notifiers(NETDEV_CHANGE, dev); 1094 rtmsg_ifinfo(RTM_NEWLINK, dev, 0); 1095 } 1096 } 1097 EXPORT_SYMBOL(netdev_state_change); 1098 1099 int netdev_bonding_change(struct net_device *dev, unsigned long event) 1100 { 1101 return call_netdevice_notifiers(event, dev); 1102 } 1103 EXPORT_SYMBOL(netdev_bonding_change); 1104 1105 /** 1106 * dev_load - load a network module 1107 * @net: the applicable net namespace 1108 * @name: name of interface 1109 * 1110 * If a network interface is not present and the process has suitable 1111 * privileges this function loads the module. If module loading is not 1112 * available in this kernel then it becomes a nop. 1113 */ 1114 1115 void dev_load(struct net *net, const char *name) 1116 { 1117 struct net_device *dev; 1118 int no_module; 1119 1120 rcu_read_lock(); 1121 dev = dev_get_by_name_rcu(net, name); 1122 rcu_read_unlock(); 1123 1124 no_module = !dev; 1125 if (no_module && capable(CAP_NET_ADMIN)) 1126 no_module = request_module("netdev-%s", name); 1127 if (no_module && capable(CAP_SYS_MODULE)) { 1128 if (!request_module("%s", name)) 1129 pr_err("Loading kernel module for a network device " 1130 "with CAP_SYS_MODULE (deprecated). Use CAP_NET_ADMIN and alias netdev-%s " 1131 "instead\n", name); 1132 } 1133 } 1134 EXPORT_SYMBOL(dev_load); 1135 1136 static int __dev_open(struct net_device *dev) 1137 { 1138 const struct net_device_ops *ops = dev->netdev_ops; 1139 int ret; 1140 1141 ASSERT_RTNL(); 1142 1143 if (!netif_device_present(dev)) 1144 return -ENODEV; 1145 1146 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1147 ret = notifier_to_errno(ret); 1148 if (ret) 1149 return ret; 1150 1151 set_bit(__LINK_STATE_START, &dev->state); 1152 1153 if (ops->ndo_validate_addr) 1154 ret = ops->ndo_validate_addr(dev); 1155 1156 if (!ret && ops->ndo_open) 1157 ret = ops->ndo_open(dev); 1158 1159 if (ret) 1160 clear_bit(__LINK_STATE_START, &dev->state); 1161 else { 1162 dev->flags |= IFF_UP; 1163 net_dmaengine_get(); 1164 dev_set_rx_mode(dev); 1165 dev_activate(dev); 1166 } 1167 1168 return ret; 1169 } 1170 1171 /** 1172 * dev_open - prepare an interface for use. 1173 * @dev: device to open 1174 * 1175 * Takes a device from down to up state. The device's private open 1176 * function is invoked and then the multicast lists are loaded. Finally 1177 * the device is moved into the up state and a %NETDEV_UP message is 1178 * sent to the netdev notifier chain. 1179 * 1180 * Calling this function on an active interface is a nop. On a failure 1181 * a negative errno code is returned. 1182 */ 1183 int dev_open(struct net_device *dev) 1184 { 1185 int ret; 1186 1187 if (dev->flags & IFF_UP) 1188 return 0; 1189 1190 ret = __dev_open(dev); 1191 if (ret < 0) 1192 return ret; 1193 1194 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING); 1195 call_netdevice_notifiers(NETDEV_UP, dev); 1196 1197 return ret; 1198 } 1199 EXPORT_SYMBOL(dev_open); 1200 1201 static int __dev_close_many(struct list_head *head) 1202 { 1203 struct net_device *dev; 1204 1205 ASSERT_RTNL(); 1206 might_sleep(); 1207 1208 list_for_each_entry(dev, head, unreg_list) { 1209 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1210 1211 clear_bit(__LINK_STATE_START, &dev->state); 1212 1213 /* Synchronize to scheduled poll. We cannot touch poll list, it 1214 * can be even on different cpu. So just clear netif_running(). 1215 * 1216 * dev->stop() will invoke napi_disable() on all of it's 1217 * napi_struct instances on this device. 1218 */ 1219 smp_mb__after_clear_bit(); /* Commit netif_running(). */ 1220 } 1221 1222 dev_deactivate_many(head); 1223 1224 list_for_each_entry(dev, head, unreg_list) { 1225 const struct net_device_ops *ops = dev->netdev_ops; 1226 1227 /* 1228 * Call the device specific close. This cannot fail. 1229 * Only if device is UP 1230 * 1231 * We allow it to be called even after a DETACH hot-plug 1232 * event. 1233 */ 1234 if (ops->ndo_stop) 1235 ops->ndo_stop(dev); 1236 1237 dev->flags &= ~IFF_UP; 1238 net_dmaengine_put(); 1239 } 1240 1241 return 0; 1242 } 1243 1244 static int __dev_close(struct net_device *dev) 1245 { 1246 int retval; 1247 LIST_HEAD(single); 1248 1249 list_add(&dev->unreg_list, &single); 1250 retval = __dev_close_many(&single); 1251 list_del(&single); 1252 return retval; 1253 } 1254 1255 static int dev_close_many(struct list_head *head) 1256 { 1257 struct net_device *dev, *tmp; 1258 LIST_HEAD(tmp_list); 1259 1260 list_for_each_entry_safe(dev, tmp, head, unreg_list) 1261 if (!(dev->flags & IFF_UP)) 1262 list_move(&dev->unreg_list, &tmp_list); 1263 1264 __dev_close_many(head); 1265 1266 list_for_each_entry(dev, head, unreg_list) { 1267 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING); 1268 call_netdevice_notifiers(NETDEV_DOWN, dev); 1269 } 1270 1271 /* rollback_registered_many needs the complete original list */ 1272 list_splice(&tmp_list, head); 1273 return 0; 1274 } 1275 1276 /** 1277 * dev_close - shutdown an interface. 1278 * @dev: device to shutdown 1279 * 1280 * This function moves an active device into down state. A 1281 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1282 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1283 * chain. 1284 */ 1285 int dev_close(struct net_device *dev) 1286 { 1287 if (dev->flags & IFF_UP) { 1288 LIST_HEAD(single); 1289 1290 list_add(&dev->unreg_list, &single); 1291 dev_close_many(&single); 1292 list_del(&single); 1293 } 1294 return 0; 1295 } 1296 EXPORT_SYMBOL(dev_close); 1297 1298 1299 /** 1300 * dev_disable_lro - disable Large Receive Offload on a device 1301 * @dev: device 1302 * 1303 * Disable Large Receive Offload (LRO) on a net device. Must be 1304 * called under RTNL. This is needed if received packets may be 1305 * forwarded to another interface. 1306 */ 1307 void dev_disable_lro(struct net_device *dev) 1308 { 1309 u32 flags; 1310 1311 if (dev->ethtool_ops && dev->ethtool_ops->get_flags) 1312 flags = dev->ethtool_ops->get_flags(dev); 1313 else 1314 flags = ethtool_op_get_flags(dev); 1315 1316 if (!(flags & ETH_FLAG_LRO)) 1317 return; 1318 1319 __ethtool_set_flags(dev, flags & ~ETH_FLAG_LRO); 1320 WARN_ON(dev->features & NETIF_F_LRO); 1321 } 1322 EXPORT_SYMBOL(dev_disable_lro); 1323 1324 1325 static int dev_boot_phase = 1; 1326 1327 /** 1328 * register_netdevice_notifier - register a network notifier block 1329 * @nb: notifier 1330 * 1331 * Register a notifier to be called when network device events occur. 1332 * The notifier passed is linked into the kernel structures and must 1333 * not be reused until it has been unregistered. A negative errno code 1334 * is returned on a failure. 1335 * 1336 * When registered all registration and up events are replayed 1337 * to the new notifier to allow device to have a race free 1338 * view of the network device list. 1339 */ 1340 1341 int register_netdevice_notifier(struct notifier_block *nb) 1342 { 1343 struct net_device *dev; 1344 struct net_device *last; 1345 struct net *net; 1346 int err; 1347 1348 rtnl_lock(); 1349 err = raw_notifier_chain_register(&netdev_chain, nb); 1350 if (err) 1351 goto unlock; 1352 if (dev_boot_phase) 1353 goto unlock; 1354 for_each_net(net) { 1355 for_each_netdev(net, dev) { 1356 err = nb->notifier_call(nb, NETDEV_REGISTER, dev); 1357 err = notifier_to_errno(err); 1358 if (err) 1359 goto rollback; 1360 1361 if (!(dev->flags & IFF_UP)) 1362 continue; 1363 1364 nb->notifier_call(nb, NETDEV_UP, dev); 1365 } 1366 } 1367 1368 unlock: 1369 rtnl_unlock(); 1370 return err; 1371 1372 rollback: 1373 last = dev; 1374 for_each_net(net) { 1375 for_each_netdev(net, dev) { 1376 if (dev == last) 1377 break; 1378 1379 if (dev->flags & IFF_UP) { 1380 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev); 1381 nb->notifier_call(nb, NETDEV_DOWN, dev); 1382 } 1383 nb->notifier_call(nb, NETDEV_UNREGISTER, dev); 1384 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev); 1385 } 1386 } 1387 1388 raw_notifier_chain_unregister(&netdev_chain, nb); 1389 goto unlock; 1390 } 1391 EXPORT_SYMBOL(register_netdevice_notifier); 1392 1393 /** 1394 * unregister_netdevice_notifier - unregister a network notifier block 1395 * @nb: notifier 1396 * 1397 * Unregister a notifier previously registered by 1398 * register_netdevice_notifier(). The notifier is unlinked into the 1399 * kernel structures and may then be reused. A negative errno code 1400 * is returned on a failure. 1401 */ 1402 1403 int unregister_netdevice_notifier(struct notifier_block *nb) 1404 { 1405 int err; 1406 1407 rtnl_lock(); 1408 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1409 rtnl_unlock(); 1410 return err; 1411 } 1412 EXPORT_SYMBOL(unregister_netdevice_notifier); 1413 1414 /** 1415 * call_netdevice_notifiers - call all network notifier blocks 1416 * @val: value passed unmodified to notifier function 1417 * @dev: net_device pointer passed unmodified to notifier function 1418 * 1419 * Call all network notifier blocks. Parameters and return value 1420 * are as for raw_notifier_call_chain(). 1421 */ 1422 1423 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1424 { 1425 ASSERT_RTNL(); 1426 return raw_notifier_call_chain(&netdev_chain, val, dev); 1427 } 1428 EXPORT_SYMBOL(call_netdevice_notifiers); 1429 1430 /* When > 0 there are consumers of rx skb time stamps */ 1431 static atomic_t netstamp_needed = ATOMIC_INIT(0); 1432 1433 void net_enable_timestamp(void) 1434 { 1435 atomic_inc(&netstamp_needed); 1436 } 1437 EXPORT_SYMBOL(net_enable_timestamp); 1438 1439 void net_disable_timestamp(void) 1440 { 1441 atomic_dec(&netstamp_needed); 1442 } 1443 EXPORT_SYMBOL(net_disable_timestamp); 1444 1445 static inline void net_timestamp_set(struct sk_buff *skb) 1446 { 1447 if (atomic_read(&netstamp_needed)) 1448 __net_timestamp(skb); 1449 else 1450 skb->tstamp.tv64 = 0; 1451 } 1452 1453 static inline void net_timestamp_check(struct sk_buff *skb) 1454 { 1455 if (!skb->tstamp.tv64 && atomic_read(&netstamp_needed)) 1456 __net_timestamp(skb); 1457 } 1458 1459 static inline bool is_skb_forwardable(struct net_device *dev, 1460 struct sk_buff *skb) 1461 { 1462 unsigned int len; 1463 1464 if (!(dev->flags & IFF_UP)) 1465 return false; 1466 1467 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 1468 if (skb->len <= len) 1469 return true; 1470 1471 /* if TSO is enabled, we don't care about the length as the packet 1472 * could be forwarded without being segmented before 1473 */ 1474 if (skb_is_gso(skb)) 1475 return true; 1476 1477 return false; 1478 } 1479 1480 /** 1481 * dev_forward_skb - loopback an skb to another netif 1482 * 1483 * @dev: destination network device 1484 * @skb: buffer to forward 1485 * 1486 * return values: 1487 * NET_RX_SUCCESS (no congestion) 1488 * NET_RX_DROP (packet was dropped, but freed) 1489 * 1490 * dev_forward_skb can be used for injecting an skb from the 1491 * start_xmit function of one device into the receive queue 1492 * of another device. 1493 * 1494 * The receiving device may be in another namespace, so 1495 * we have to clear all information in the skb that could 1496 * impact namespace isolation. 1497 */ 1498 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1499 { 1500 skb_orphan(skb); 1501 nf_reset(skb); 1502 1503 if (unlikely(!is_skb_forwardable(dev, skb))) { 1504 atomic_long_inc(&dev->rx_dropped); 1505 kfree_skb(skb); 1506 return NET_RX_DROP; 1507 } 1508 skb_set_dev(skb, dev); 1509 skb->tstamp.tv64 = 0; 1510 skb->pkt_type = PACKET_HOST; 1511 skb->protocol = eth_type_trans(skb, dev); 1512 return netif_rx(skb); 1513 } 1514 EXPORT_SYMBOL_GPL(dev_forward_skb); 1515 1516 static inline int deliver_skb(struct sk_buff *skb, 1517 struct packet_type *pt_prev, 1518 struct net_device *orig_dev) 1519 { 1520 atomic_inc(&skb->users); 1521 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1522 } 1523 1524 /* 1525 * Support routine. Sends outgoing frames to any network 1526 * taps currently in use. 1527 */ 1528 1529 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1530 { 1531 struct packet_type *ptype; 1532 struct sk_buff *skb2 = NULL; 1533 struct packet_type *pt_prev = NULL; 1534 1535 rcu_read_lock(); 1536 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1537 /* Never send packets back to the socket 1538 * they originated from - MvS (miquels@drinkel.ow.org) 1539 */ 1540 if ((ptype->dev == dev || !ptype->dev) && 1541 (ptype->af_packet_priv == NULL || 1542 (struct sock *)ptype->af_packet_priv != skb->sk)) { 1543 if (pt_prev) { 1544 deliver_skb(skb2, pt_prev, skb->dev); 1545 pt_prev = ptype; 1546 continue; 1547 } 1548 1549 skb2 = skb_clone(skb, GFP_ATOMIC); 1550 if (!skb2) 1551 break; 1552 1553 net_timestamp_set(skb2); 1554 1555 /* skb->nh should be correctly 1556 set by sender, so that the second statement is 1557 just protection against buggy protocols. 1558 */ 1559 skb_reset_mac_header(skb2); 1560 1561 if (skb_network_header(skb2) < skb2->data || 1562 skb2->network_header > skb2->tail) { 1563 if (net_ratelimit()) 1564 printk(KERN_CRIT "protocol %04x is " 1565 "buggy, dev %s\n", 1566 ntohs(skb2->protocol), 1567 dev->name); 1568 skb_reset_network_header(skb2); 1569 } 1570 1571 skb2->transport_header = skb2->network_header; 1572 skb2->pkt_type = PACKET_OUTGOING; 1573 pt_prev = ptype; 1574 } 1575 } 1576 if (pt_prev) 1577 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 1578 rcu_read_unlock(); 1579 } 1580 1581 /* netif_setup_tc - Handle tc mappings on real_num_tx_queues change 1582 * @dev: Network device 1583 * @txq: number of queues available 1584 * 1585 * If real_num_tx_queues is changed the tc mappings may no longer be 1586 * valid. To resolve this verify the tc mapping remains valid and if 1587 * not NULL the mapping. With no priorities mapping to this 1588 * offset/count pair it will no longer be used. In the worst case TC0 1589 * is invalid nothing can be done so disable priority mappings. If is 1590 * expected that drivers will fix this mapping if they can before 1591 * calling netif_set_real_num_tx_queues. 1592 */ 1593 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 1594 { 1595 int i; 1596 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 1597 1598 /* If TC0 is invalidated disable TC mapping */ 1599 if (tc->offset + tc->count > txq) { 1600 pr_warning("Number of in use tx queues changed " 1601 "invalidating tc mappings. Priority " 1602 "traffic classification disabled!\n"); 1603 dev->num_tc = 0; 1604 return; 1605 } 1606 1607 /* Invalidated prio to tc mappings set to TC0 */ 1608 for (i = 1; i < TC_BITMASK + 1; i++) { 1609 int q = netdev_get_prio_tc_map(dev, i); 1610 1611 tc = &dev->tc_to_txq[q]; 1612 if (tc->offset + tc->count > txq) { 1613 pr_warning("Number of in use tx queues " 1614 "changed. Priority %i to tc " 1615 "mapping %i is no longer valid " 1616 "setting map to 0\n", 1617 i, q); 1618 netdev_set_prio_tc_map(dev, i, 0); 1619 } 1620 } 1621 } 1622 1623 /* 1624 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 1625 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed. 1626 */ 1627 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 1628 { 1629 int rc; 1630 1631 if (txq < 1 || txq > dev->num_tx_queues) 1632 return -EINVAL; 1633 1634 if (dev->reg_state == NETREG_REGISTERED || 1635 dev->reg_state == NETREG_UNREGISTERING) { 1636 ASSERT_RTNL(); 1637 1638 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 1639 txq); 1640 if (rc) 1641 return rc; 1642 1643 if (dev->num_tc) 1644 netif_setup_tc(dev, txq); 1645 1646 if (txq < dev->real_num_tx_queues) 1647 qdisc_reset_all_tx_gt(dev, txq); 1648 } 1649 1650 dev->real_num_tx_queues = txq; 1651 return 0; 1652 } 1653 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 1654 1655 #ifdef CONFIG_RPS 1656 /** 1657 * netif_set_real_num_rx_queues - set actual number of RX queues used 1658 * @dev: Network device 1659 * @rxq: Actual number of RX queues 1660 * 1661 * This must be called either with the rtnl_lock held or before 1662 * registration of the net device. Returns 0 on success, or a 1663 * negative error code. If called before registration, it always 1664 * succeeds. 1665 */ 1666 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 1667 { 1668 int rc; 1669 1670 if (rxq < 1 || rxq > dev->num_rx_queues) 1671 return -EINVAL; 1672 1673 if (dev->reg_state == NETREG_REGISTERED) { 1674 ASSERT_RTNL(); 1675 1676 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 1677 rxq); 1678 if (rc) 1679 return rc; 1680 } 1681 1682 dev->real_num_rx_queues = rxq; 1683 return 0; 1684 } 1685 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 1686 #endif 1687 1688 static inline void __netif_reschedule(struct Qdisc *q) 1689 { 1690 struct softnet_data *sd; 1691 unsigned long flags; 1692 1693 local_irq_save(flags); 1694 sd = &__get_cpu_var(softnet_data); 1695 q->next_sched = NULL; 1696 *sd->output_queue_tailp = q; 1697 sd->output_queue_tailp = &q->next_sched; 1698 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1699 local_irq_restore(flags); 1700 } 1701 1702 void __netif_schedule(struct Qdisc *q) 1703 { 1704 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 1705 __netif_reschedule(q); 1706 } 1707 EXPORT_SYMBOL(__netif_schedule); 1708 1709 void dev_kfree_skb_irq(struct sk_buff *skb) 1710 { 1711 if (atomic_dec_and_test(&skb->users)) { 1712 struct softnet_data *sd; 1713 unsigned long flags; 1714 1715 local_irq_save(flags); 1716 sd = &__get_cpu_var(softnet_data); 1717 skb->next = sd->completion_queue; 1718 sd->completion_queue = skb; 1719 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1720 local_irq_restore(flags); 1721 } 1722 } 1723 EXPORT_SYMBOL(dev_kfree_skb_irq); 1724 1725 void dev_kfree_skb_any(struct sk_buff *skb) 1726 { 1727 if (in_irq() || irqs_disabled()) 1728 dev_kfree_skb_irq(skb); 1729 else 1730 dev_kfree_skb(skb); 1731 } 1732 EXPORT_SYMBOL(dev_kfree_skb_any); 1733 1734 1735 /** 1736 * netif_device_detach - mark device as removed 1737 * @dev: network device 1738 * 1739 * Mark device as removed from system and therefore no longer available. 1740 */ 1741 void netif_device_detach(struct net_device *dev) 1742 { 1743 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 1744 netif_running(dev)) { 1745 netif_tx_stop_all_queues(dev); 1746 } 1747 } 1748 EXPORT_SYMBOL(netif_device_detach); 1749 1750 /** 1751 * netif_device_attach - mark device as attached 1752 * @dev: network device 1753 * 1754 * Mark device as attached from system and restart if needed. 1755 */ 1756 void netif_device_attach(struct net_device *dev) 1757 { 1758 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 1759 netif_running(dev)) { 1760 netif_tx_wake_all_queues(dev); 1761 __netdev_watchdog_up(dev); 1762 } 1763 } 1764 EXPORT_SYMBOL(netif_device_attach); 1765 1766 /** 1767 * skb_dev_set -- assign a new device to a buffer 1768 * @skb: buffer for the new device 1769 * @dev: network device 1770 * 1771 * If an skb is owned by a device already, we have to reset 1772 * all data private to the namespace a device belongs to 1773 * before assigning it a new device. 1774 */ 1775 #ifdef CONFIG_NET_NS 1776 void skb_set_dev(struct sk_buff *skb, struct net_device *dev) 1777 { 1778 skb_dst_drop(skb); 1779 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) { 1780 secpath_reset(skb); 1781 nf_reset(skb); 1782 skb_init_secmark(skb); 1783 skb->mark = 0; 1784 skb->priority = 0; 1785 skb->nf_trace = 0; 1786 skb->ipvs_property = 0; 1787 #ifdef CONFIG_NET_SCHED 1788 skb->tc_index = 0; 1789 #endif 1790 } 1791 skb->dev = dev; 1792 } 1793 EXPORT_SYMBOL(skb_set_dev); 1794 #endif /* CONFIG_NET_NS */ 1795 1796 /* 1797 * Invalidate hardware checksum when packet is to be mangled, and 1798 * complete checksum manually on outgoing path. 1799 */ 1800 int skb_checksum_help(struct sk_buff *skb) 1801 { 1802 __wsum csum; 1803 int ret = 0, offset; 1804 1805 if (skb->ip_summed == CHECKSUM_COMPLETE) 1806 goto out_set_summed; 1807 1808 if (unlikely(skb_shinfo(skb)->gso_size)) { 1809 /* Let GSO fix up the checksum. */ 1810 goto out_set_summed; 1811 } 1812 1813 offset = skb_checksum_start_offset(skb); 1814 BUG_ON(offset >= skb_headlen(skb)); 1815 csum = skb_checksum(skb, offset, skb->len - offset, 0); 1816 1817 offset += skb->csum_offset; 1818 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 1819 1820 if (skb_cloned(skb) && 1821 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 1822 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 1823 if (ret) 1824 goto out; 1825 } 1826 1827 *(__sum16 *)(skb->data + offset) = csum_fold(csum); 1828 out_set_summed: 1829 skb->ip_summed = CHECKSUM_NONE; 1830 out: 1831 return ret; 1832 } 1833 EXPORT_SYMBOL(skb_checksum_help); 1834 1835 /** 1836 * skb_gso_segment - Perform segmentation on skb. 1837 * @skb: buffer to segment 1838 * @features: features for the output path (see dev->features) 1839 * 1840 * This function segments the given skb and returns a list of segments. 1841 * 1842 * It may return NULL if the skb requires no segmentation. This is 1843 * only possible when GSO is used for verifying header integrity. 1844 */ 1845 struct sk_buff *skb_gso_segment(struct sk_buff *skb, u32 features) 1846 { 1847 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 1848 struct packet_type *ptype; 1849 __be16 type = skb->protocol; 1850 int vlan_depth = ETH_HLEN; 1851 int err; 1852 1853 while (type == htons(ETH_P_8021Q)) { 1854 struct vlan_hdr *vh; 1855 1856 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN))) 1857 return ERR_PTR(-EINVAL); 1858 1859 vh = (struct vlan_hdr *)(skb->data + vlan_depth); 1860 type = vh->h_vlan_encapsulated_proto; 1861 vlan_depth += VLAN_HLEN; 1862 } 1863 1864 skb_reset_mac_header(skb); 1865 skb->mac_len = skb->network_header - skb->mac_header; 1866 __skb_pull(skb, skb->mac_len); 1867 1868 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1869 struct net_device *dev = skb->dev; 1870 struct ethtool_drvinfo info = {}; 1871 1872 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo) 1873 dev->ethtool_ops->get_drvinfo(dev, &info); 1874 1875 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d ip_summed=%d\n", 1876 info.driver, dev ? dev->features : 0L, 1877 skb->sk ? skb->sk->sk_route_caps : 0L, 1878 skb->len, skb->data_len, skb->ip_summed); 1879 1880 if (skb_header_cloned(skb) && 1881 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))) 1882 return ERR_PTR(err); 1883 } 1884 1885 rcu_read_lock(); 1886 list_for_each_entry_rcu(ptype, 1887 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 1888 if (ptype->type == type && !ptype->dev && ptype->gso_segment) { 1889 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1890 err = ptype->gso_send_check(skb); 1891 segs = ERR_PTR(err); 1892 if (err || skb_gso_ok(skb, features)) 1893 break; 1894 __skb_push(skb, (skb->data - 1895 skb_network_header(skb))); 1896 } 1897 segs = ptype->gso_segment(skb, features); 1898 break; 1899 } 1900 } 1901 rcu_read_unlock(); 1902 1903 __skb_push(skb, skb->data - skb_mac_header(skb)); 1904 1905 return segs; 1906 } 1907 EXPORT_SYMBOL(skb_gso_segment); 1908 1909 /* Take action when hardware reception checksum errors are detected. */ 1910 #ifdef CONFIG_BUG 1911 void netdev_rx_csum_fault(struct net_device *dev) 1912 { 1913 if (net_ratelimit()) { 1914 printk(KERN_ERR "%s: hw csum failure.\n", 1915 dev ? dev->name : "<unknown>"); 1916 dump_stack(); 1917 } 1918 } 1919 EXPORT_SYMBOL(netdev_rx_csum_fault); 1920 #endif 1921 1922 /* Actually, we should eliminate this check as soon as we know, that: 1923 * 1. IOMMU is present and allows to map all the memory. 1924 * 2. No high memory really exists on this machine. 1925 */ 1926 1927 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 1928 { 1929 #ifdef CONFIG_HIGHMEM 1930 int i; 1931 if (!(dev->features & NETIF_F_HIGHDMA)) { 1932 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1933 if (PageHighMem(skb_shinfo(skb)->frags[i].page)) 1934 return 1; 1935 } 1936 1937 if (PCI_DMA_BUS_IS_PHYS) { 1938 struct device *pdev = dev->dev.parent; 1939 1940 if (!pdev) 1941 return 0; 1942 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1943 dma_addr_t addr = page_to_phys(skb_shinfo(skb)->frags[i].page); 1944 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask) 1945 return 1; 1946 } 1947 } 1948 #endif 1949 return 0; 1950 } 1951 1952 struct dev_gso_cb { 1953 void (*destructor)(struct sk_buff *skb); 1954 }; 1955 1956 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb) 1957 1958 static void dev_gso_skb_destructor(struct sk_buff *skb) 1959 { 1960 struct dev_gso_cb *cb; 1961 1962 do { 1963 struct sk_buff *nskb = skb->next; 1964 1965 skb->next = nskb->next; 1966 nskb->next = NULL; 1967 kfree_skb(nskb); 1968 } while (skb->next); 1969 1970 cb = DEV_GSO_CB(skb); 1971 if (cb->destructor) 1972 cb->destructor(skb); 1973 } 1974 1975 /** 1976 * dev_gso_segment - Perform emulated hardware segmentation on skb. 1977 * @skb: buffer to segment 1978 * @features: device features as applicable to this skb 1979 * 1980 * This function segments the given skb and stores the list of segments 1981 * in skb->next. 1982 */ 1983 static int dev_gso_segment(struct sk_buff *skb, int features) 1984 { 1985 struct sk_buff *segs; 1986 1987 segs = skb_gso_segment(skb, features); 1988 1989 /* Verifying header integrity only. */ 1990 if (!segs) 1991 return 0; 1992 1993 if (IS_ERR(segs)) 1994 return PTR_ERR(segs); 1995 1996 skb->next = segs; 1997 DEV_GSO_CB(skb)->destructor = skb->destructor; 1998 skb->destructor = dev_gso_skb_destructor; 1999 2000 return 0; 2001 } 2002 2003 /* 2004 * Try to orphan skb early, right before transmission by the device. 2005 * We cannot orphan skb if tx timestamp is requested or the sk-reference 2006 * is needed on driver level for other reasons, e.g. see net/can/raw.c 2007 */ 2008 static inline void skb_orphan_try(struct sk_buff *skb) 2009 { 2010 struct sock *sk = skb->sk; 2011 2012 if (sk && !skb_shinfo(skb)->tx_flags) { 2013 /* skb_tx_hash() wont be able to get sk. 2014 * We copy sk_hash into skb->rxhash 2015 */ 2016 if (!skb->rxhash) 2017 skb->rxhash = sk->sk_hash; 2018 skb_orphan(skb); 2019 } 2020 } 2021 2022 static bool can_checksum_protocol(unsigned long features, __be16 protocol) 2023 { 2024 return ((features & NETIF_F_GEN_CSUM) || 2025 ((features & NETIF_F_V4_CSUM) && 2026 protocol == htons(ETH_P_IP)) || 2027 ((features & NETIF_F_V6_CSUM) && 2028 protocol == htons(ETH_P_IPV6)) || 2029 ((features & NETIF_F_FCOE_CRC) && 2030 protocol == htons(ETH_P_FCOE))); 2031 } 2032 2033 static u32 harmonize_features(struct sk_buff *skb, __be16 protocol, u32 features) 2034 { 2035 if (!can_checksum_protocol(features, protocol)) { 2036 features &= ~NETIF_F_ALL_CSUM; 2037 features &= ~NETIF_F_SG; 2038 } else if (illegal_highdma(skb->dev, skb)) { 2039 features &= ~NETIF_F_SG; 2040 } 2041 2042 return features; 2043 } 2044 2045 u32 netif_skb_features(struct sk_buff *skb) 2046 { 2047 __be16 protocol = skb->protocol; 2048 u32 features = skb->dev->features; 2049 2050 if (protocol == htons(ETH_P_8021Q)) { 2051 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data; 2052 protocol = veh->h_vlan_encapsulated_proto; 2053 } else if (!vlan_tx_tag_present(skb)) { 2054 return harmonize_features(skb, protocol, features); 2055 } 2056 2057 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX); 2058 2059 if (protocol != htons(ETH_P_8021Q)) { 2060 return harmonize_features(skb, protocol, features); 2061 } else { 2062 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST | 2063 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX; 2064 return harmonize_features(skb, protocol, features); 2065 } 2066 } 2067 EXPORT_SYMBOL(netif_skb_features); 2068 2069 /* 2070 * Returns true if either: 2071 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 2072 * 2. skb is fragmented and the device does not support SG, or if 2073 * at least one of fragments is in highmem and device does not 2074 * support DMA from it. 2075 */ 2076 static inline int skb_needs_linearize(struct sk_buff *skb, 2077 int features) 2078 { 2079 return skb_is_nonlinear(skb) && 2080 ((skb_has_frag_list(skb) && 2081 !(features & NETIF_F_FRAGLIST)) || 2082 (skb_shinfo(skb)->nr_frags && 2083 !(features & NETIF_F_SG))); 2084 } 2085 2086 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 2087 struct netdev_queue *txq) 2088 { 2089 const struct net_device_ops *ops = dev->netdev_ops; 2090 int rc = NETDEV_TX_OK; 2091 2092 if (likely(!skb->next)) { 2093 u32 features; 2094 2095 /* 2096 * If device doesn't need skb->dst, release it right now while 2097 * its hot in this cpu cache 2098 */ 2099 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 2100 skb_dst_drop(skb); 2101 2102 if (!list_empty(&ptype_all)) 2103 dev_queue_xmit_nit(skb, dev); 2104 2105 skb_orphan_try(skb); 2106 2107 features = netif_skb_features(skb); 2108 2109 if (vlan_tx_tag_present(skb) && 2110 !(features & NETIF_F_HW_VLAN_TX)) { 2111 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb)); 2112 if (unlikely(!skb)) 2113 goto out; 2114 2115 skb->vlan_tci = 0; 2116 } 2117 2118 if (netif_needs_gso(skb, features)) { 2119 if (unlikely(dev_gso_segment(skb, features))) 2120 goto out_kfree_skb; 2121 if (skb->next) 2122 goto gso; 2123 } else { 2124 if (skb_needs_linearize(skb, features) && 2125 __skb_linearize(skb)) 2126 goto out_kfree_skb; 2127 2128 /* If packet is not checksummed and device does not 2129 * support checksumming for this protocol, complete 2130 * checksumming here. 2131 */ 2132 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2133 skb_set_transport_header(skb, 2134 skb_checksum_start_offset(skb)); 2135 if (!(features & NETIF_F_ALL_CSUM) && 2136 skb_checksum_help(skb)) 2137 goto out_kfree_skb; 2138 } 2139 } 2140 2141 rc = ops->ndo_start_xmit(skb, dev); 2142 trace_net_dev_xmit(skb, rc); 2143 if (rc == NETDEV_TX_OK) 2144 txq_trans_update(txq); 2145 return rc; 2146 } 2147 2148 gso: 2149 do { 2150 struct sk_buff *nskb = skb->next; 2151 2152 skb->next = nskb->next; 2153 nskb->next = NULL; 2154 2155 /* 2156 * If device doesn't need nskb->dst, release it right now while 2157 * its hot in this cpu cache 2158 */ 2159 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 2160 skb_dst_drop(nskb); 2161 2162 rc = ops->ndo_start_xmit(nskb, dev); 2163 trace_net_dev_xmit(nskb, rc); 2164 if (unlikely(rc != NETDEV_TX_OK)) { 2165 if (rc & ~NETDEV_TX_MASK) 2166 goto out_kfree_gso_skb; 2167 nskb->next = skb->next; 2168 skb->next = nskb; 2169 return rc; 2170 } 2171 txq_trans_update(txq); 2172 if (unlikely(netif_tx_queue_stopped(txq) && skb->next)) 2173 return NETDEV_TX_BUSY; 2174 } while (skb->next); 2175 2176 out_kfree_gso_skb: 2177 if (likely(skb->next == NULL)) 2178 skb->destructor = DEV_GSO_CB(skb)->destructor; 2179 out_kfree_skb: 2180 kfree_skb(skb); 2181 out: 2182 return rc; 2183 } 2184 2185 static u32 hashrnd __read_mostly; 2186 2187 /* 2188 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 2189 * to be used as a distribution range. 2190 */ 2191 u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb, 2192 unsigned int num_tx_queues) 2193 { 2194 u32 hash; 2195 u16 qoffset = 0; 2196 u16 qcount = num_tx_queues; 2197 2198 if (skb_rx_queue_recorded(skb)) { 2199 hash = skb_get_rx_queue(skb); 2200 while (unlikely(hash >= num_tx_queues)) 2201 hash -= num_tx_queues; 2202 return hash; 2203 } 2204 2205 if (dev->num_tc) { 2206 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 2207 qoffset = dev->tc_to_txq[tc].offset; 2208 qcount = dev->tc_to_txq[tc].count; 2209 } 2210 2211 if (skb->sk && skb->sk->sk_hash) 2212 hash = skb->sk->sk_hash; 2213 else 2214 hash = (__force u16) skb->protocol ^ skb->rxhash; 2215 hash = jhash_1word(hash, hashrnd); 2216 2217 return (u16) (((u64) hash * qcount) >> 32) + qoffset; 2218 } 2219 EXPORT_SYMBOL(__skb_tx_hash); 2220 2221 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index) 2222 { 2223 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 2224 if (net_ratelimit()) { 2225 pr_warning("%s selects TX queue %d, but " 2226 "real number of TX queues is %d\n", 2227 dev->name, queue_index, dev->real_num_tx_queues); 2228 } 2229 return 0; 2230 } 2231 return queue_index; 2232 } 2233 2234 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb) 2235 { 2236 #ifdef CONFIG_XPS 2237 struct xps_dev_maps *dev_maps; 2238 struct xps_map *map; 2239 int queue_index = -1; 2240 2241 rcu_read_lock(); 2242 dev_maps = rcu_dereference(dev->xps_maps); 2243 if (dev_maps) { 2244 map = rcu_dereference( 2245 dev_maps->cpu_map[raw_smp_processor_id()]); 2246 if (map) { 2247 if (map->len == 1) 2248 queue_index = map->queues[0]; 2249 else { 2250 u32 hash; 2251 if (skb->sk && skb->sk->sk_hash) 2252 hash = skb->sk->sk_hash; 2253 else 2254 hash = (__force u16) skb->protocol ^ 2255 skb->rxhash; 2256 hash = jhash_1word(hash, hashrnd); 2257 queue_index = map->queues[ 2258 ((u64)hash * map->len) >> 32]; 2259 } 2260 if (unlikely(queue_index >= dev->real_num_tx_queues)) 2261 queue_index = -1; 2262 } 2263 } 2264 rcu_read_unlock(); 2265 2266 return queue_index; 2267 #else 2268 return -1; 2269 #endif 2270 } 2271 2272 static struct netdev_queue *dev_pick_tx(struct net_device *dev, 2273 struct sk_buff *skb) 2274 { 2275 int queue_index; 2276 const struct net_device_ops *ops = dev->netdev_ops; 2277 2278 if (dev->real_num_tx_queues == 1) 2279 queue_index = 0; 2280 else if (ops->ndo_select_queue) { 2281 queue_index = ops->ndo_select_queue(dev, skb); 2282 queue_index = dev_cap_txqueue(dev, queue_index); 2283 } else { 2284 struct sock *sk = skb->sk; 2285 queue_index = sk_tx_queue_get(sk); 2286 2287 if (queue_index < 0 || skb->ooo_okay || 2288 queue_index >= dev->real_num_tx_queues) { 2289 int old_index = queue_index; 2290 2291 queue_index = get_xps_queue(dev, skb); 2292 if (queue_index < 0) 2293 queue_index = skb_tx_hash(dev, skb); 2294 2295 if (queue_index != old_index && sk) { 2296 struct dst_entry *dst = 2297 rcu_dereference_check(sk->sk_dst_cache, 1); 2298 2299 if (dst && skb_dst(skb) == dst) 2300 sk_tx_queue_set(sk, queue_index); 2301 } 2302 } 2303 } 2304 2305 skb_set_queue_mapping(skb, queue_index); 2306 return netdev_get_tx_queue(dev, queue_index); 2307 } 2308 2309 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 2310 struct net_device *dev, 2311 struct netdev_queue *txq) 2312 { 2313 spinlock_t *root_lock = qdisc_lock(q); 2314 bool contended; 2315 int rc; 2316 2317 qdisc_skb_cb(skb)->pkt_len = skb->len; 2318 qdisc_calculate_pkt_len(skb, q); 2319 /* 2320 * Heuristic to force contended enqueues to serialize on a 2321 * separate lock before trying to get qdisc main lock. 2322 * This permits __QDISC_STATE_RUNNING owner to get the lock more often 2323 * and dequeue packets faster. 2324 */ 2325 contended = qdisc_is_running(q); 2326 if (unlikely(contended)) 2327 spin_lock(&q->busylock); 2328 2329 spin_lock(root_lock); 2330 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 2331 kfree_skb(skb); 2332 rc = NET_XMIT_DROP; 2333 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 2334 qdisc_run_begin(q)) { 2335 /* 2336 * This is a work-conserving queue; there are no old skbs 2337 * waiting to be sent out; and the qdisc is not running - 2338 * xmit the skb directly. 2339 */ 2340 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE)) 2341 skb_dst_force(skb); 2342 2343 qdisc_bstats_update(q, skb); 2344 2345 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) { 2346 if (unlikely(contended)) { 2347 spin_unlock(&q->busylock); 2348 contended = false; 2349 } 2350 __qdisc_run(q); 2351 } else 2352 qdisc_run_end(q); 2353 2354 rc = NET_XMIT_SUCCESS; 2355 } else { 2356 skb_dst_force(skb); 2357 rc = q->enqueue(skb, q) & NET_XMIT_MASK; 2358 if (qdisc_run_begin(q)) { 2359 if (unlikely(contended)) { 2360 spin_unlock(&q->busylock); 2361 contended = false; 2362 } 2363 __qdisc_run(q); 2364 } 2365 } 2366 spin_unlock(root_lock); 2367 if (unlikely(contended)) 2368 spin_unlock(&q->busylock); 2369 return rc; 2370 } 2371 2372 static DEFINE_PER_CPU(int, xmit_recursion); 2373 #define RECURSION_LIMIT 10 2374 2375 /** 2376 * dev_queue_xmit - transmit a buffer 2377 * @skb: buffer to transmit 2378 * 2379 * Queue a buffer for transmission to a network device. The caller must 2380 * have set the device and priority and built the buffer before calling 2381 * this function. The function can be called from an interrupt. 2382 * 2383 * A negative errno code is returned on a failure. A success does not 2384 * guarantee the frame will be transmitted as it may be dropped due 2385 * to congestion or traffic shaping. 2386 * 2387 * ----------------------------------------------------------------------------------- 2388 * I notice this method can also return errors from the queue disciplines, 2389 * including NET_XMIT_DROP, which is a positive value. So, errors can also 2390 * be positive. 2391 * 2392 * Regardless of the return value, the skb is consumed, so it is currently 2393 * difficult to retry a send to this method. (You can bump the ref count 2394 * before sending to hold a reference for retry if you are careful.) 2395 * 2396 * When calling this method, interrupts MUST be enabled. This is because 2397 * the BH enable code must have IRQs enabled so that it will not deadlock. 2398 * --BLG 2399 */ 2400 int dev_queue_xmit(struct sk_buff *skb) 2401 { 2402 struct net_device *dev = skb->dev; 2403 struct netdev_queue *txq; 2404 struct Qdisc *q; 2405 int rc = -ENOMEM; 2406 2407 /* Disable soft irqs for various locks below. Also 2408 * stops preemption for RCU. 2409 */ 2410 rcu_read_lock_bh(); 2411 2412 txq = dev_pick_tx(dev, skb); 2413 q = rcu_dereference_bh(txq->qdisc); 2414 2415 #ifdef CONFIG_NET_CLS_ACT 2416 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS); 2417 #endif 2418 trace_net_dev_queue(skb); 2419 if (q->enqueue) { 2420 rc = __dev_xmit_skb(skb, q, dev, txq); 2421 goto out; 2422 } 2423 2424 /* The device has no queue. Common case for software devices: 2425 loopback, all the sorts of tunnels... 2426 2427 Really, it is unlikely that netif_tx_lock protection is necessary 2428 here. (f.e. loopback and IP tunnels are clean ignoring statistics 2429 counters.) 2430 However, it is possible, that they rely on protection 2431 made by us here. 2432 2433 Check this and shot the lock. It is not prone from deadlocks. 2434 Either shot noqueue qdisc, it is even simpler 8) 2435 */ 2436 if (dev->flags & IFF_UP) { 2437 int cpu = smp_processor_id(); /* ok because BHs are off */ 2438 2439 if (txq->xmit_lock_owner != cpu) { 2440 2441 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT) 2442 goto recursion_alert; 2443 2444 HARD_TX_LOCK(dev, txq, cpu); 2445 2446 if (!netif_tx_queue_stopped(txq)) { 2447 __this_cpu_inc(xmit_recursion); 2448 rc = dev_hard_start_xmit(skb, dev, txq); 2449 __this_cpu_dec(xmit_recursion); 2450 if (dev_xmit_complete(rc)) { 2451 HARD_TX_UNLOCK(dev, txq); 2452 goto out; 2453 } 2454 } 2455 HARD_TX_UNLOCK(dev, txq); 2456 if (net_ratelimit()) 2457 printk(KERN_CRIT "Virtual device %s asks to " 2458 "queue packet!\n", dev->name); 2459 } else { 2460 /* Recursion is detected! It is possible, 2461 * unfortunately 2462 */ 2463 recursion_alert: 2464 if (net_ratelimit()) 2465 printk(KERN_CRIT "Dead loop on virtual device " 2466 "%s, fix it urgently!\n", dev->name); 2467 } 2468 } 2469 2470 rc = -ENETDOWN; 2471 rcu_read_unlock_bh(); 2472 2473 kfree_skb(skb); 2474 return rc; 2475 out: 2476 rcu_read_unlock_bh(); 2477 return rc; 2478 } 2479 EXPORT_SYMBOL(dev_queue_xmit); 2480 2481 2482 /*======================================================================= 2483 Receiver routines 2484 =======================================================================*/ 2485 2486 int netdev_max_backlog __read_mostly = 1000; 2487 int netdev_tstamp_prequeue __read_mostly = 1; 2488 int netdev_budget __read_mostly = 300; 2489 int weight_p __read_mostly = 64; /* old backlog weight */ 2490 2491 /* Called with irq disabled */ 2492 static inline void ____napi_schedule(struct softnet_data *sd, 2493 struct napi_struct *napi) 2494 { 2495 list_add_tail(&napi->poll_list, &sd->poll_list); 2496 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2497 } 2498 2499 /* 2500 * __skb_get_rxhash: calculate a flow hash based on src/dst addresses 2501 * and src/dst port numbers. Returns a non-zero hash number on success 2502 * and 0 on failure. 2503 */ 2504 __u32 __skb_get_rxhash(struct sk_buff *skb) 2505 { 2506 int nhoff, hash = 0, poff; 2507 struct ipv6hdr *ip6; 2508 struct iphdr *ip; 2509 u8 ip_proto; 2510 u32 addr1, addr2, ihl; 2511 union { 2512 u32 v32; 2513 u16 v16[2]; 2514 } ports; 2515 2516 nhoff = skb_network_offset(skb); 2517 2518 switch (skb->protocol) { 2519 case __constant_htons(ETH_P_IP): 2520 if (!pskb_may_pull(skb, sizeof(*ip) + nhoff)) 2521 goto done; 2522 2523 ip = (struct iphdr *) (skb->data + nhoff); 2524 if (ip->frag_off & htons(IP_MF | IP_OFFSET)) 2525 ip_proto = 0; 2526 else 2527 ip_proto = ip->protocol; 2528 addr1 = (__force u32) ip->saddr; 2529 addr2 = (__force u32) ip->daddr; 2530 ihl = ip->ihl; 2531 break; 2532 case __constant_htons(ETH_P_IPV6): 2533 if (!pskb_may_pull(skb, sizeof(*ip6) + nhoff)) 2534 goto done; 2535 2536 ip6 = (struct ipv6hdr *) (skb->data + nhoff); 2537 ip_proto = ip6->nexthdr; 2538 addr1 = (__force u32) ip6->saddr.s6_addr32[3]; 2539 addr2 = (__force u32) ip6->daddr.s6_addr32[3]; 2540 ihl = (40 >> 2); 2541 break; 2542 default: 2543 goto done; 2544 } 2545 2546 ports.v32 = 0; 2547 poff = proto_ports_offset(ip_proto); 2548 if (poff >= 0) { 2549 nhoff += ihl * 4 + poff; 2550 if (pskb_may_pull(skb, nhoff + 4)) { 2551 ports.v32 = * (__force u32 *) (skb->data + nhoff); 2552 if (ports.v16[1] < ports.v16[0]) 2553 swap(ports.v16[0], ports.v16[1]); 2554 } 2555 } 2556 2557 /* get a consistent hash (same value on both flow directions) */ 2558 if (addr2 < addr1) 2559 swap(addr1, addr2); 2560 2561 hash = jhash_3words(addr1, addr2, ports.v32, hashrnd); 2562 if (!hash) 2563 hash = 1; 2564 2565 done: 2566 return hash; 2567 } 2568 EXPORT_SYMBOL(__skb_get_rxhash); 2569 2570 #ifdef CONFIG_RPS 2571 2572 /* One global table that all flow-based protocols share. */ 2573 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 2574 EXPORT_SYMBOL(rps_sock_flow_table); 2575 2576 static struct rps_dev_flow * 2577 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 2578 struct rps_dev_flow *rflow, u16 next_cpu) 2579 { 2580 u16 tcpu; 2581 2582 tcpu = rflow->cpu = next_cpu; 2583 if (tcpu != RPS_NO_CPU) { 2584 #ifdef CONFIG_RFS_ACCEL 2585 struct netdev_rx_queue *rxqueue; 2586 struct rps_dev_flow_table *flow_table; 2587 struct rps_dev_flow *old_rflow; 2588 u32 flow_id; 2589 u16 rxq_index; 2590 int rc; 2591 2592 /* Should we steer this flow to a different hardware queue? */ 2593 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 2594 !(dev->features & NETIF_F_NTUPLE)) 2595 goto out; 2596 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 2597 if (rxq_index == skb_get_rx_queue(skb)) 2598 goto out; 2599 2600 rxqueue = dev->_rx + rxq_index; 2601 flow_table = rcu_dereference(rxqueue->rps_flow_table); 2602 if (!flow_table) 2603 goto out; 2604 flow_id = skb->rxhash & flow_table->mask; 2605 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 2606 rxq_index, flow_id); 2607 if (rc < 0) 2608 goto out; 2609 old_rflow = rflow; 2610 rflow = &flow_table->flows[flow_id]; 2611 rflow->cpu = next_cpu; 2612 rflow->filter = rc; 2613 if (old_rflow->filter == rflow->filter) 2614 old_rflow->filter = RPS_NO_FILTER; 2615 out: 2616 #endif 2617 rflow->last_qtail = 2618 per_cpu(softnet_data, tcpu).input_queue_head; 2619 } 2620 2621 return rflow; 2622 } 2623 2624 /* 2625 * get_rps_cpu is called from netif_receive_skb and returns the target 2626 * CPU from the RPS map of the receiving queue for a given skb. 2627 * rcu_read_lock must be held on entry. 2628 */ 2629 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 2630 struct rps_dev_flow **rflowp) 2631 { 2632 struct netdev_rx_queue *rxqueue; 2633 struct rps_map *map; 2634 struct rps_dev_flow_table *flow_table; 2635 struct rps_sock_flow_table *sock_flow_table; 2636 int cpu = -1; 2637 u16 tcpu; 2638 2639 if (skb_rx_queue_recorded(skb)) { 2640 u16 index = skb_get_rx_queue(skb); 2641 if (unlikely(index >= dev->real_num_rx_queues)) { 2642 WARN_ONCE(dev->real_num_rx_queues > 1, 2643 "%s received packet on queue %u, but number " 2644 "of RX queues is %u\n", 2645 dev->name, index, dev->real_num_rx_queues); 2646 goto done; 2647 } 2648 rxqueue = dev->_rx + index; 2649 } else 2650 rxqueue = dev->_rx; 2651 2652 map = rcu_dereference(rxqueue->rps_map); 2653 if (map) { 2654 if (map->len == 1 && 2655 !rcu_dereference_raw(rxqueue->rps_flow_table)) { 2656 tcpu = map->cpus[0]; 2657 if (cpu_online(tcpu)) 2658 cpu = tcpu; 2659 goto done; 2660 } 2661 } else if (!rcu_dereference_raw(rxqueue->rps_flow_table)) { 2662 goto done; 2663 } 2664 2665 skb_reset_network_header(skb); 2666 if (!skb_get_rxhash(skb)) 2667 goto done; 2668 2669 flow_table = rcu_dereference(rxqueue->rps_flow_table); 2670 sock_flow_table = rcu_dereference(rps_sock_flow_table); 2671 if (flow_table && sock_flow_table) { 2672 u16 next_cpu; 2673 struct rps_dev_flow *rflow; 2674 2675 rflow = &flow_table->flows[skb->rxhash & flow_table->mask]; 2676 tcpu = rflow->cpu; 2677 2678 next_cpu = sock_flow_table->ents[skb->rxhash & 2679 sock_flow_table->mask]; 2680 2681 /* 2682 * If the desired CPU (where last recvmsg was done) is 2683 * different from current CPU (one in the rx-queue flow 2684 * table entry), switch if one of the following holds: 2685 * - Current CPU is unset (equal to RPS_NO_CPU). 2686 * - Current CPU is offline. 2687 * - The current CPU's queue tail has advanced beyond the 2688 * last packet that was enqueued using this table entry. 2689 * This guarantees that all previous packets for the flow 2690 * have been dequeued, thus preserving in order delivery. 2691 */ 2692 if (unlikely(tcpu != next_cpu) && 2693 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) || 2694 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 2695 rflow->last_qtail)) >= 0)) 2696 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 2697 2698 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) { 2699 *rflowp = rflow; 2700 cpu = tcpu; 2701 goto done; 2702 } 2703 } 2704 2705 if (map) { 2706 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32]; 2707 2708 if (cpu_online(tcpu)) { 2709 cpu = tcpu; 2710 goto done; 2711 } 2712 } 2713 2714 done: 2715 return cpu; 2716 } 2717 2718 #ifdef CONFIG_RFS_ACCEL 2719 2720 /** 2721 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 2722 * @dev: Device on which the filter was set 2723 * @rxq_index: RX queue index 2724 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 2725 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 2726 * 2727 * Drivers that implement ndo_rx_flow_steer() should periodically call 2728 * this function for each installed filter and remove the filters for 2729 * which it returns %true. 2730 */ 2731 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 2732 u32 flow_id, u16 filter_id) 2733 { 2734 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 2735 struct rps_dev_flow_table *flow_table; 2736 struct rps_dev_flow *rflow; 2737 bool expire = true; 2738 int cpu; 2739 2740 rcu_read_lock(); 2741 flow_table = rcu_dereference(rxqueue->rps_flow_table); 2742 if (flow_table && flow_id <= flow_table->mask) { 2743 rflow = &flow_table->flows[flow_id]; 2744 cpu = ACCESS_ONCE(rflow->cpu); 2745 if (rflow->filter == filter_id && cpu != RPS_NO_CPU && 2746 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 2747 rflow->last_qtail) < 2748 (int)(10 * flow_table->mask))) 2749 expire = false; 2750 } 2751 rcu_read_unlock(); 2752 return expire; 2753 } 2754 EXPORT_SYMBOL(rps_may_expire_flow); 2755 2756 #endif /* CONFIG_RFS_ACCEL */ 2757 2758 /* Called from hardirq (IPI) context */ 2759 static void rps_trigger_softirq(void *data) 2760 { 2761 struct softnet_data *sd = data; 2762 2763 ____napi_schedule(sd, &sd->backlog); 2764 sd->received_rps++; 2765 } 2766 2767 #endif /* CONFIG_RPS */ 2768 2769 /* 2770 * Check if this softnet_data structure is another cpu one 2771 * If yes, queue it to our IPI list and return 1 2772 * If no, return 0 2773 */ 2774 static int rps_ipi_queued(struct softnet_data *sd) 2775 { 2776 #ifdef CONFIG_RPS 2777 struct softnet_data *mysd = &__get_cpu_var(softnet_data); 2778 2779 if (sd != mysd) { 2780 sd->rps_ipi_next = mysd->rps_ipi_list; 2781 mysd->rps_ipi_list = sd; 2782 2783 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2784 return 1; 2785 } 2786 #endif /* CONFIG_RPS */ 2787 return 0; 2788 } 2789 2790 /* 2791 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 2792 * queue (may be a remote CPU queue). 2793 */ 2794 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 2795 unsigned int *qtail) 2796 { 2797 struct softnet_data *sd; 2798 unsigned long flags; 2799 2800 sd = &per_cpu(softnet_data, cpu); 2801 2802 local_irq_save(flags); 2803 2804 rps_lock(sd); 2805 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) { 2806 if (skb_queue_len(&sd->input_pkt_queue)) { 2807 enqueue: 2808 __skb_queue_tail(&sd->input_pkt_queue, skb); 2809 input_queue_tail_incr_save(sd, qtail); 2810 rps_unlock(sd); 2811 local_irq_restore(flags); 2812 return NET_RX_SUCCESS; 2813 } 2814 2815 /* Schedule NAPI for backlog device 2816 * We can use non atomic operation since we own the queue lock 2817 */ 2818 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 2819 if (!rps_ipi_queued(sd)) 2820 ____napi_schedule(sd, &sd->backlog); 2821 } 2822 goto enqueue; 2823 } 2824 2825 sd->dropped++; 2826 rps_unlock(sd); 2827 2828 local_irq_restore(flags); 2829 2830 atomic_long_inc(&skb->dev->rx_dropped); 2831 kfree_skb(skb); 2832 return NET_RX_DROP; 2833 } 2834 2835 /** 2836 * netif_rx - post buffer to the network code 2837 * @skb: buffer to post 2838 * 2839 * This function receives a packet from a device driver and queues it for 2840 * the upper (protocol) levels to process. It always succeeds. The buffer 2841 * may be dropped during processing for congestion control or by the 2842 * protocol layers. 2843 * 2844 * return values: 2845 * NET_RX_SUCCESS (no congestion) 2846 * NET_RX_DROP (packet was dropped) 2847 * 2848 */ 2849 2850 int netif_rx(struct sk_buff *skb) 2851 { 2852 int ret; 2853 2854 /* if netpoll wants it, pretend we never saw it */ 2855 if (netpoll_rx(skb)) 2856 return NET_RX_DROP; 2857 2858 if (netdev_tstamp_prequeue) 2859 net_timestamp_check(skb); 2860 2861 trace_netif_rx(skb); 2862 #ifdef CONFIG_RPS 2863 { 2864 struct rps_dev_flow voidflow, *rflow = &voidflow; 2865 int cpu; 2866 2867 preempt_disable(); 2868 rcu_read_lock(); 2869 2870 cpu = get_rps_cpu(skb->dev, skb, &rflow); 2871 if (cpu < 0) 2872 cpu = smp_processor_id(); 2873 2874 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 2875 2876 rcu_read_unlock(); 2877 preempt_enable(); 2878 } 2879 #else 2880 { 2881 unsigned int qtail; 2882 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 2883 put_cpu(); 2884 } 2885 #endif 2886 return ret; 2887 } 2888 EXPORT_SYMBOL(netif_rx); 2889 2890 int netif_rx_ni(struct sk_buff *skb) 2891 { 2892 int err; 2893 2894 preempt_disable(); 2895 err = netif_rx(skb); 2896 if (local_softirq_pending()) 2897 do_softirq(); 2898 preempt_enable(); 2899 2900 return err; 2901 } 2902 EXPORT_SYMBOL(netif_rx_ni); 2903 2904 static void net_tx_action(struct softirq_action *h) 2905 { 2906 struct softnet_data *sd = &__get_cpu_var(softnet_data); 2907 2908 if (sd->completion_queue) { 2909 struct sk_buff *clist; 2910 2911 local_irq_disable(); 2912 clist = sd->completion_queue; 2913 sd->completion_queue = NULL; 2914 local_irq_enable(); 2915 2916 while (clist) { 2917 struct sk_buff *skb = clist; 2918 clist = clist->next; 2919 2920 WARN_ON(atomic_read(&skb->users)); 2921 trace_kfree_skb(skb, net_tx_action); 2922 __kfree_skb(skb); 2923 } 2924 } 2925 2926 if (sd->output_queue) { 2927 struct Qdisc *head; 2928 2929 local_irq_disable(); 2930 head = sd->output_queue; 2931 sd->output_queue = NULL; 2932 sd->output_queue_tailp = &sd->output_queue; 2933 local_irq_enable(); 2934 2935 while (head) { 2936 struct Qdisc *q = head; 2937 spinlock_t *root_lock; 2938 2939 head = head->next_sched; 2940 2941 root_lock = qdisc_lock(q); 2942 if (spin_trylock(root_lock)) { 2943 smp_mb__before_clear_bit(); 2944 clear_bit(__QDISC_STATE_SCHED, 2945 &q->state); 2946 qdisc_run(q); 2947 spin_unlock(root_lock); 2948 } else { 2949 if (!test_bit(__QDISC_STATE_DEACTIVATED, 2950 &q->state)) { 2951 __netif_reschedule(q); 2952 } else { 2953 smp_mb__before_clear_bit(); 2954 clear_bit(__QDISC_STATE_SCHED, 2955 &q->state); 2956 } 2957 } 2958 } 2959 } 2960 } 2961 2962 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \ 2963 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)) 2964 /* This hook is defined here for ATM LANE */ 2965 int (*br_fdb_test_addr_hook)(struct net_device *dev, 2966 unsigned char *addr) __read_mostly; 2967 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 2968 #endif 2969 2970 #ifdef CONFIG_NET_CLS_ACT 2971 /* TODO: Maybe we should just force sch_ingress to be compiled in 2972 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions 2973 * a compare and 2 stores extra right now if we dont have it on 2974 * but have CONFIG_NET_CLS_ACT 2975 * NOTE: This doesn't stop any functionality; if you dont have 2976 * the ingress scheduler, you just can't add policies on ingress. 2977 * 2978 */ 2979 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq) 2980 { 2981 struct net_device *dev = skb->dev; 2982 u32 ttl = G_TC_RTTL(skb->tc_verd); 2983 int result = TC_ACT_OK; 2984 struct Qdisc *q; 2985 2986 if (unlikely(MAX_RED_LOOP < ttl++)) { 2987 if (net_ratelimit()) 2988 pr_warning( "Redir loop detected Dropping packet (%d->%d)\n", 2989 skb->skb_iif, dev->ifindex); 2990 return TC_ACT_SHOT; 2991 } 2992 2993 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl); 2994 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS); 2995 2996 q = rxq->qdisc; 2997 if (q != &noop_qdisc) { 2998 spin_lock(qdisc_lock(q)); 2999 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) 3000 result = qdisc_enqueue_root(skb, q); 3001 spin_unlock(qdisc_lock(q)); 3002 } 3003 3004 return result; 3005 } 3006 3007 static inline struct sk_buff *handle_ing(struct sk_buff *skb, 3008 struct packet_type **pt_prev, 3009 int *ret, struct net_device *orig_dev) 3010 { 3011 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue); 3012 3013 if (!rxq || rxq->qdisc == &noop_qdisc) 3014 goto out; 3015 3016 if (*pt_prev) { 3017 *ret = deliver_skb(skb, *pt_prev, orig_dev); 3018 *pt_prev = NULL; 3019 } 3020 3021 switch (ing_filter(skb, rxq)) { 3022 case TC_ACT_SHOT: 3023 case TC_ACT_STOLEN: 3024 kfree_skb(skb); 3025 return NULL; 3026 } 3027 3028 out: 3029 skb->tc_verd = 0; 3030 return skb; 3031 } 3032 #endif 3033 3034 /** 3035 * netdev_rx_handler_register - register receive handler 3036 * @dev: device to register a handler for 3037 * @rx_handler: receive handler to register 3038 * @rx_handler_data: data pointer that is used by rx handler 3039 * 3040 * Register a receive hander for a device. This handler will then be 3041 * called from __netif_receive_skb. A negative errno code is returned 3042 * on a failure. 3043 * 3044 * The caller must hold the rtnl_mutex. 3045 * 3046 * For a general description of rx_handler, see enum rx_handler_result. 3047 */ 3048 int netdev_rx_handler_register(struct net_device *dev, 3049 rx_handler_func_t *rx_handler, 3050 void *rx_handler_data) 3051 { 3052 ASSERT_RTNL(); 3053 3054 if (dev->rx_handler) 3055 return -EBUSY; 3056 3057 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 3058 rcu_assign_pointer(dev->rx_handler, rx_handler); 3059 3060 return 0; 3061 } 3062 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 3063 3064 /** 3065 * netdev_rx_handler_unregister - unregister receive handler 3066 * @dev: device to unregister a handler from 3067 * 3068 * Unregister a receive hander from a device. 3069 * 3070 * The caller must hold the rtnl_mutex. 3071 */ 3072 void netdev_rx_handler_unregister(struct net_device *dev) 3073 { 3074 3075 ASSERT_RTNL(); 3076 rcu_assign_pointer(dev->rx_handler, NULL); 3077 rcu_assign_pointer(dev->rx_handler_data, NULL); 3078 } 3079 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 3080 3081 static void vlan_on_bond_hook(struct sk_buff *skb) 3082 { 3083 /* 3084 * Make sure ARP frames received on VLAN interfaces stacked on 3085 * bonding interfaces still make their way to any base bonding 3086 * device that may have registered for a specific ptype. 3087 */ 3088 if (skb->dev->priv_flags & IFF_802_1Q_VLAN && 3089 vlan_dev_real_dev(skb->dev)->priv_flags & IFF_BONDING && 3090 skb->protocol == htons(ETH_P_ARP)) { 3091 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); 3092 3093 if (!skb2) 3094 return; 3095 skb2->dev = vlan_dev_real_dev(skb->dev); 3096 netif_rx(skb2); 3097 } 3098 } 3099 3100 static int __netif_receive_skb(struct sk_buff *skb) 3101 { 3102 struct packet_type *ptype, *pt_prev; 3103 rx_handler_func_t *rx_handler; 3104 struct net_device *orig_dev; 3105 struct net_device *null_or_dev; 3106 bool deliver_exact = false; 3107 int ret = NET_RX_DROP; 3108 __be16 type; 3109 3110 if (!netdev_tstamp_prequeue) 3111 net_timestamp_check(skb); 3112 3113 trace_netif_receive_skb(skb); 3114 3115 /* if we've gotten here through NAPI, check netpoll */ 3116 if (netpoll_receive_skb(skb)) 3117 return NET_RX_DROP; 3118 3119 if (!skb->skb_iif) 3120 skb->skb_iif = skb->dev->ifindex; 3121 orig_dev = skb->dev; 3122 3123 skb_reset_network_header(skb); 3124 skb_reset_transport_header(skb); 3125 skb->mac_len = skb->network_header - skb->mac_header; 3126 3127 pt_prev = NULL; 3128 3129 rcu_read_lock(); 3130 3131 another_round: 3132 3133 __this_cpu_inc(softnet_data.processed); 3134 3135 #ifdef CONFIG_NET_CLS_ACT 3136 if (skb->tc_verd & TC_NCLS) { 3137 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 3138 goto ncls; 3139 } 3140 #endif 3141 3142 list_for_each_entry_rcu(ptype, &ptype_all, list) { 3143 if (!ptype->dev || ptype->dev == skb->dev) { 3144 if (pt_prev) 3145 ret = deliver_skb(skb, pt_prev, orig_dev); 3146 pt_prev = ptype; 3147 } 3148 } 3149 3150 #ifdef CONFIG_NET_CLS_ACT 3151 skb = handle_ing(skb, &pt_prev, &ret, orig_dev); 3152 if (!skb) 3153 goto out; 3154 ncls: 3155 #endif 3156 3157 rx_handler = rcu_dereference(skb->dev->rx_handler); 3158 if (rx_handler) { 3159 if (pt_prev) { 3160 ret = deliver_skb(skb, pt_prev, orig_dev); 3161 pt_prev = NULL; 3162 } 3163 switch (rx_handler(&skb)) { 3164 case RX_HANDLER_CONSUMED: 3165 goto out; 3166 case RX_HANDLER_ANOTHER: 3167 goto another_round; 3168 case RX_HANDLER_EXACT: 3169 deliver_exact = true; 3170 case RX_HANDLER_PASS: 3171 break; 3172 default: 3173 BUG(); 3174 } 3175 } 3176 3177 if (vlan_tx_tag_present(skb)) { 3178 if (pt_prev) { 3179 ret = deliver_skb(skb, pt_prev, orig_dev); 3180 pt_prev = NULL; 3181 } 3182 if (vlan_hwaccel_do_receive(&skb)) { 3183 ret = __netif_receive_skb(skb); 3184 goto out; 3185 } else if (unlikely(!skb)) 3186 goto out; 3187 } 3188 3189 vlan_on_bond_hook(skb); 3190 3191 /* deliver only exact match when indicated */ 3192 null_or_dev = deliver_exact ? skb->dev : NULL; 3193 3194 type = skb->protocol; 3195 list_for_each_entry_rcu(ptype, 3196 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 3197 if (ptype->type == type && 3198 (ptype->dev == null_or_dev || ptype->dev == skb->dev || 3199 ptype->dev == orig_dev)) { 3200 if (pt_prev) 3201 ret = deliver_skb(skb, pt_prev, orig_dev); 3202 pt_prev = ptype; 3203 } 3204 } 3205 3206 if (pt_prev) { 3207 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 3208 } else { 3209 atomic_long_inc(&skb->dev->rx_dropped); 3210 kfree_skb(skb); 3211 /* Jamal, now you will not able to escape explaining 3212 * me how you were going to use this. :-) 3213 */ 3214 ret = NET_RX_DROP; 3215 } 3216 3217 out: 3218 rcu_read_unlock(); 3219 return ret; 3220 } 3221 3222 /** 3223 * netif_receive_skb - process receive buffer from network 3224 * @skb: buffer to process 3225 * 3226 * netif_receive_skb() is the main receive data processing function. 3227 * It always succeeds. The buffer may be dropped during processing 3228 * for congestion control or by the protocol layers. 3229 * 3230 * This function may only be called from softirq context and interrupts 3231 * should be enabled. 3232 * 3233 * Return values (usually ignored): 3234 * NET_RX_SUCCESS: no congestion 3235 * NET_RX_DROP: packet was dropped 3236 */ 3237 int netif_receive_skb(struct sk_buff *skb) 3238 { 3239 if (netdev_tstamp_prequeue) 3240 net_timestamp_check(skb); 3241 3242 if (skb_defer_rx_timestamp(skb)) 3243 return NET_RX_SUCCESS; 3244 3245 #ifdef CONFIG_RPS 3246 { 3247 struct rps_dev_flow voidflow, *rflow = &voidflow; 3248 int cpu, ret; 3249 3250 rcu_read_lock(); 3251 3252 cpu = get_rps_cpu(skb->dev, skb, &rflow); 3253 3254 if (cpu >= 0) { 3255 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3256 rcu_read_unlock(); 3257 } else { 3258 rcu_read_unlock(); 3259 ret = __netif_receive_skb(skb); 3260 } 3261 3262 return ret; 3263 } 3264 #else 3265 return __netif_receive_skb(skb); 3266 #endif 3267 } 3268 EXPORT_SYMBOL(netif_receive_skb); 3269 3270 /* Network device is going away, flush any packets still pending 3271 * Called with irqs disabled. 3272 */ 3273 static void flush_backlog(void *arg) 3274 { 3275 struct net_device *dev = arg; 3276 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3277 struct sk_buff *skb, *tmp; 3278 3279 rps_lock(sd); 3280 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 3281 if (skb->dev == dev) { 3282 __skb_unlink(skb, &sd->input_pkt_queue); 3283 kfree_skb(skb); 3284 input_queue_head_incr(sd); 3285 } 3286 } 3287 rps_unlock(sd); 3288 3289 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 3290 if (skb->dev == dev) { 3291 __skb_unlink(skb, &sd->process_queue); 3292 kfree_skb(skb); 3293 input_queue_head_incr(sd); 3294 } 3295 } 3296 } 3297 3298 static int napi_gro_complete(struct sk_buff *skb) 3299 { 3300 struct packet_type *ptype; 3301 __be16 type = skb->protocol; 3302 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK]; 3303 int err = -ENOENT; 3304 3305 if (NAPI_GRO_CB(skb)->count == 1) { 3306 skb_shinfo(skb)->gso_size = 0; 3307 goto out; 3308 } 3309 3310 rcu_read_lock(); 3311 list_for_each_entry_rcu(ptype, head, list) { 3312 if (ptype->type != type || ptype->dev || !ptype->gro_complete) 3313 continue; 3314 3315 err = ptype->gro_complete(skb); 3316 break; 3317 } 3318 rcu_read_unlock(); 3319 3320 if (err) { 3321 WARN_ON(&ptype->list == head); 3322 kfree_skb(skb); 3323 return NET_RX_SUCCESS; 3324 } 3325 3326 out: 3327 return netif_receive_skb(skb); 3328 } 3329 3330 inline void napi_gro_flush(struct napi_struct *napi) 3331 { 3332 struct sk_buff *skb, *next; 3333 3334 for (skb = napi->gro_list; skb; skb = next) { 3335 next = skb->next; 3336 skb->next = NULL; 3337 napi_gro_complete(skb); 3338 } 3339 3340 napi->gro_count = 0; 3341 napi->gro_list = NULL; 3342 } 3343 EXPORT_SYMBOL(napi_gro_flush); 3344 3345 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3346 { 3347 struct sk_buff **pp = NULL; 3348 struct packet_type *ptype; 3349 __be16 type = skb->protocol; 3350 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK]; 3351 int same_flow; 3352 int mac_len; 3353 enum gro_result ret; 3354 3355 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb)) 3356 goto normal; 3357 3358 if (skb_is_gso(skb) || skb_has_frag_list(skb)) 3359 goto normal; 3360 3361 rcu_read_lock(); 3362 list_for_each_entry_rcu(ptype, head, list) { 3363 if (ptype->type != type || ptype->dev || !ptype->gro_receive) 3364 continue; 3365 3366 skb_set_network_header(skb, skb_gro_offset(skb)); 3367 mac_len = skb->network_header - skb->mac_header; 3368 skb->mac_len = mac_len; 3369 NAPI_GRO_CB(skb)->same_flow = 0; 3370 NAPI_GRO_CB(skb)->flush = 0; 3371 NAPI_GRO_CB(skb)->free = 0; 3372 3373 pp = ptype->gro_receive(&napi->gro_list, skb); 3374 break; 3375 } 3376 rcu_read_unlock(); 3377 3378 if (&ptype->list == head) 3379 goto normal; 3380 3381 same_flow = NAPI_GRO_CB(skb)->same_flow; 3382 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 3383 3384 if (pp) { 3385 struct sk_buff *nskb = *pp; 3386 3387 *pp = nskb->next; 3388 nskb->next = NULL; 3389 napi_gro_complete(nskb); 3390 napi->gro_count--; 3391 } 3392 3393 if (same_flow) 3394 goto ok; 3395 3396 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS) 3397 goto normal; 3398 3399 napi->gro_count++; 3400 NAPI_GRO_CB(skb)->count = 1; 3401 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 3402 skb->next = napi->gro_list; 3403 napi->gro_list = skb; 3404 ret = GRO_HELD; 3405 3406 pull: 3407 if (skb_headlen(skb) < skb_gro_offset(skb)) { 3408 int grow = skb_gro_offset(skb) - skb_headlen(skb); 3409 3410 BUG_ON(skb->end - skb->tail < grow); 3411 3412 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 3413 3414 skb->tail += grow; 3415 skb->data_len -= grow; 3416 3417 skb_shinfo(skb)->frags[0].page_offset += grow; 3418 skb_shinfo(skb)->frags[0].size -= grow; 3419 3420 if (unlikely(!skb_shinfo(skb)->frags[0].size)) { 3421 put_page(skb_shinfo(skb)->frags[0].page); 3422 memmove(skb_shinfo(skb)->frags, 3423 skb_shinfo(skb)->frags + 1, 3424 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t)); 3425 } 3426 } 3427 3428 ok: 3429 return ret; 3430 3431 normal: 3432 ret = GRO_NORMAL; 3433 goto pull; 3434 } 3435 EXPORT_SYMBOL(dev_gro_receive); 3436 3437 static inline gro_result_t 3438 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3439 { 3440 struct sk_buff *p; 3441 3442 for (p = napi->gro_list; p; p = p->next) { 3443 unsigned long diffs; 3444 3445 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 3446 diffs |= p->vlan_tci ^ skb->vlan_tci; 3447 diffs |= compare_ether_header(skb_mac_header(p), 3448 skb_gro_mac_header(skb)); 3449 NAPI_GRO_CB(p)->same_flow = !diffs; 3450 NAPI_GRO_CB(p)->flush = 0; 3451 } 3452 3453 return dev_gro_receive(napi, skb); 3454 } 3455 3456 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 3457 { 3458 switch (ret) { 3459 case GRO_NORMAL: 3460 if (netif_receive_skb(skb)) 3461 ret = GRO_DROP; 3462 break; 3463 3464 case GRO_DROP: 3465 case GRO_MERGED_FREE: 3466 kfree_skb(skb); 3467 break; 3468 3469 case GRO_HELD: 3470 case GRO_MERGED: 3471 break; 3472 } 3473 3474 return ret; 3475 } 3476 EXPORT_SYMBOL(napi_skb_finish); 3477 3478 void skb_gro_reset_offset(struct sk_buff *skb) 3479 { 3480 NAPI_GRO_CB(skb)->data_offset = 0; 3481 NAPI_GRO_CB(skb)->frag0 = NULL; 3482 NAPI_GRO_CB(skb)->frag0_len = 0; 3483 3484 if (skb->mac_header == skb->tail && 3485 !PageHighMem(skb_shinfo(skb)->frags[0].page)) { 3486 NAPI_GRO_CB(skb)->frag0 = 3487 page_address(skb_shinfo(skb)->frags[0].page) + 3488 skb_shinfo(skb)->frags[0].page_offset; 3489 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size; 3490 } 3491 } 3492 EXPORT_SYMBOL(skb_gro_reset_offset); 3493 3494 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3495 { 3496 skb_gro_reset_offset(skb); 3497 3498 return napi_skb_finish(__napi_gro_receive(napi, skb), skb); 3499 } 3500 EXPORT_SYMBOL(napi_gro_receive); 3501 3502 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 3503 { 3504 __skb_pull(skb, skb_headlen(skb)); 3505 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb)); 3506 skb->vlan_tci = 0; 3507 skb->dev = napi->dev; 3508 skb->skb_iif = 0; 3509 3510 napi->skb = skb; 3511 } 3512 3513 struct sk_buff *napi_get_frags(struct napi_struct *napi) 3514 { 3515 struct sk_buff *skb = napi->skb; 3516 3517 if (!skb) { 3518 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD); 3519 if (skb) 3520 napi->skb = skb; 3521 } 3522 return skb; 3523 } 3524 EXPORT_SYMBOL(napi_get_frags); 3525 3526 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb, 3527 gro_result_t ret) 3528 { 3529 switch (ret) { 3530 case GRO_NORMAL: 3531 case GRO_HELD: 3532 skb->protocol = eth_type_trans(skb, skb->dev); 3533 3534 if (ret == GRO_HELD) 3535 skb_gro_pull(skb, -ETH_HLEN); 3536 else if (netif_receive_skb(skb)) 3537 ret = GRO_DROP; 3538 break; 3539 3540 case GRO_DROP: 3541 case GRO_MERGED_FREE: 3542 napi_reuse_skb(napi, skb); 3543 break; 3544 3545 case GRO_MERGED: 3546 break; 3547 } 3548 3549 return ret; 3550 } 3551 EXPORT_SYMBOL(napi_frags_finish); 3552 3553 struct sk_buff *napi_frags_skb(struct napi_struct *napi) 3554 { 3555 struct sk_buff *skb = napi->skb; 3556 struct ethhdr *eth; 3557 unsigned int hlen; 3558 unsigned int off; 3559 3560 napi->skb = NULL; 3561 3562 skb_reset_mac_header(skb); 3563 skb_gro_reset_offset(skb); 3564 3565 off = skb_gro_offset(skb); 3566 hlen = off + sizeof(*eth); 3567 eth = skb_gro_header_fast(skb, off); 3568 if (skb_gro_header_hard(skb, hlen)) { 3569 eth = skb_gro_header_slow(skb, hlen, off); 3570 if (unlikely(!eth)) { 3571 napi_reuse_skb(napi, skb); 3572 skb = NULL; 3573 goto out; 3574 } 3575 } 3576 3577 skb_gro_pull(skb, sizeof(*eth)); 3578 3579 /* 3580 * This works because the only protocols we care about don't require 3581 * special handling. We'll fix it up properly at the end. 3582 */ 3583 skb->protocol = eth->h_proto; 3584 3585 out: 3586 return skb; 3587 } 3588 EXPORT_SYMBOL(napi_frags_skb); 3589 3590 gro_result_t napi_gro_frags(struct napi_struct *napi) 3591 { 3592 struct sk_buff *skb = napi_frags_skb(napi); 3593 3594 if (!skb) 3595 return GRO_DROP; 3596 3597 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb)); 3598 } 3599 EXPORT_SYMBOL(napi_gro_frags); 3600 3601 /* 3602 * net_rps_action sends any pending IPI's for rps. 3603 * Note: called with local irq disabled, but exits with local irq enabled. 3604 */ 3605 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 3606 { 3607 #ifdef CONFIG_RPS 3608 struct softnet_data *remsd = sd->rps_ipi_list; 3609 3610 if (remsd) { 3611 sd->rps_ipi_list = NULL; 3612 3613 local_irq_enable(); 3614 3615 /* Send pending IPI's to kick RPS processing on remote cpus. */ 3616 while (remsd) { 3617 struct softnet_data *next = remsd->rps_ipi_next; 3618 3619 if (cpu_online(remsd->cpu)) 3620 __smp_call_function_single(remsd->cpu, 3621 &remsd->csd, 0); 3622 remsd = next; 3623 } 3624 } else 3625 #endif 3626 local_irq_enable(); 3627 } 3628 3629 static int process_backlog(struct napi_struct *napi, int quota) 3630 { 3631 int work = 0; 3632 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 3633 3634 #ifdef CONFIG_RPS 3635 /* Check if we have pending ipi, its better to send them now, 3636 * not waiting net_rx_action() end. 3637 */ 3638 if (sd->rps_ipi_list) { 3639 local_irq_disable(); 3640 net_rps_action_and_irq_enable(sd); 3641 } 3642 #endif 3643 napi->weight = weight_p; 3644 local_irq_disable(); 3645 while (work < quota) { 3646 struct sk_buff *skb; 3647 unsigned int qlen; 3648 3649 while ((skb = __skb_dequeue(&sd->process_queue))) { 3650 local_irq_enable(); 3651 __netif_receive_skb(skb); 3652 local_irq_disable(); 3653 input_queue_head_incr(sd); 3654 if (++work >= quota) { 3655 local_irq_enable(); 3656 return work; 3657 } 3658 } 3659 3660 rps_lock(sd); 3661 qlen = skb_queue_len(&sd->input_pkt_queue); 3662 if (qlen) 3663 skb_queue_splice_tail_init(&sd->input_pkt_queue, 3664 &sd->process_queue); 3665 3666 if (qlen < quota - work) { 3667 /* 3668 * Inline a custom version of __napi_complete(). 3669 * only current cpu owns and manipulates this napi, 3670 * and NAPI_STATE_SCHED is the only possible flag set on backlog. 3671 * we can use a plain write instead of clear_bit(), 3672 * and we dont need an smp_mb() memory barrier. 3673 */ 3674 list_del(&napi->poll_list); 3675 napi->state = 0; 3676 3677 quota = work + qlen; 3678 } 3679 rps_unlock(sd); 3680 } 3681 local_irq_enable(); 3682 3683 return work; 3684 } 3685 3686 /** 3687 * __napi_schedule - schedule for receive 3688 * @n: entry to schedule 3689 * 3690 * The entry's receive function will be scheduled to run 3691 */ 3692 void __napi_schedule(struct napi_struct *n) 3693 { 3694 unsigned long flags; 3695 3696 local_irq_save(flags); 3697 ____napi_schedule(&__get_cpu_var(softnet_data), n); 3698 local_irq_restore(flags); 3699 } 3700 EXPORT_SYMBOL(__napi_schedule); 3701 3702 void __napi_complete(struct napi_struct *n) 3703 { 3704 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 3705 BUG_ON(n->gro_list); 3706 3707 list_del(&n->poll_list); 3708 smp_mb__before_clear_bit(); 3709 clear_bit(NAPI_STATE_SCHED, &n->state); 3710 } 3711 EXPORT_SYMBOL(__napi_complete); 3712 3713 void napi_complete(struct napi_struct *n) 3714 { 3715 unsigned long flags; 3716 3717 /* 3718 * don't let napi dequeue from the cpu poll list 3719 * just in case its running on a different cpu 3720 */ 3721 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state))) 3722 return; 3723 3724 napi_gro_flush(n); 3725 local_irq_save(flags); 3726 __napi_complete(n); 3727 local_irq_restore(flags); 3728 } 3729 EXPORT_SYMBOL(napi_complete); 3730 3731 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 3732 int (*poll)(struct napi_struct *, int), int weight) 3733 { 3734 INIT_LIST_HEAD(&napi->poll_list); 3735 napi->gro_count = 0; 3736 napi->gro_list = NULL; 3737 napi->skb = NULL; 3738 napi->poll = poll; 3739 napi->weight = weight; 3740 list_add(&napi->dev_list, &dev->napi_list); 3741 napi->dev = dev; 3742 #ifdef CONFIG_NETPOLL 3743 spin_lock_init(&napi->poll_lock); 3744 napi->poll_owner = -1; 3745 #endif 3746 set_bit(NAPI_STATE_SCHED, &napi->state); 3747 } 3748 EXPORT_SYMBOL(netif_napi_add); 3749 3750 void netif_napi_del(struct napi_struct *napi) 3751 { 3752 struct sk_buff *skb, *next; 3753 3754 list_del_init(&napi->dev_list); 3755 napi_free_frags(napi); 3756 3757 for (skb = napi->gro_list; skb; skb = next) { 3758 next = skb->next; 3759 skb->next = NULL; 3760 kfree_skb(skb); 3761 } 3762 3763 napi->gro_list = NULL; 3764 napi->gro_count = 0; 3765 } 3766 EXPORT_SYMBOL(netif_napi_del); 3767 3768 static void net_rx_action(struct softirq_action *h) 3769 { 3770 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3771 unsigned long time_limit = jiffies + 2; 3772 int budget = netdev_budget; 3773 void *have; 3774 3775 local_irq_disable(); 3776 3777 while (!list_empty(&sd->poll_list)) { 3778 struct napi_struct *n; 3779 int work, weight; 3780 3781 /* If softirq window is exhuasted then punt. 3782 * Allow this to run for 2 jiffies since which will allow 3783 * an average latency of 1.5/HZ. 3784 */ 3785 if (unlikely(budget <= 0 || time_after(jiffies, time_limit))) 3786 goto softnet_break; 3787 3788 local_irq_enable(); 3789 3790 /* Even though interrupts have been re-enabled, this 3791 * access is safe because interrupts can only add new 3792 * entries to the tail of this list, and only ->poll() 3793 * calls can remove this head entry from the list. 3794 */ 3795 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list); 3796 3797 have = netpoll_poll_lock(n); 3798 3799 weight = n->weight; 3800 3801 /* This NAPI_STATE_SCHED test is for avoiding a race 3802 * with netpoll's poll_napi(). Only the entity which 3803 * obtains the lock and sees NAPI_STATE_SCHED set will 3804 * actually make the ->poll() call. Therefore we avoid 3805 * accidentally calling ->poll() when NAPI is not scheduled. 3806 */ 3807 work = 0; 3808 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 3809 work = n->poll(n, weight); 3810 trace_napi_poll(n); 3811 } 3812 3813 WARN_ON_ONCE(work > weight); 3814 3815 budget -= work; 3816 3817 local_irq_disable(); 3818 3819 /* Drivers must not modify the NAPI state if they 3820 * consume the entire weight. In such cases this code 3821 * still "owns" the NAPI instance and therefore can 3822 * move the instance around on the list at-will. 3823 */ 3824 if (unlikely(work == weight)) { 3825 if (unlikely(napi_disable_pending(n))) { 3826 local_irq_enable(); 3827 napi_complete(n); 3828 local_irq_disable(); 3829 } else 3830 list_move_tail(&n->poll_list, &sd->poll_list); 3831 } 3832 3833 netpoll_poll_unlock(have); 3834 } 3835 out: 3836 net_rps_action_and_irq_enable(sd); 3837 3838 #ifdef CONFIG_NET_DMA 3839 /* 3840 * There may not be any more sk_buffs coming right now, so push 3841 * any pending DMA copies to hardware 3842 */ 3843 dma_issue_pending_all(); 3844 #endif 3845 3846 return; 3847 3848 softnet_break: 3849 sd->time_squeeze++; 3850 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3851 goto out; 3852 } 3853 3854 static gifconf_func_t *gifconf_list[NPROTO]; 3855 3856 /** 3857 * register_gifconf - register a SIOCGIF handler 3858 * @family: Address family 3859 * @gifconf: Function handler 3860 * 3861 * Register protocol dependent address dumping routines. The handler 3862 * that is passed must not be freed or reused until it has been replaced 3863 * by another handler. 3864 */ 3865 int register_gifconf(unsigned int family, gifconf_func_t *gifconf) 3866 { 3867 if (family >= NPROTO) 3868 return -EINVAL; 3869 gifconf_list[family] = gifconf; 3870 return 0; 3871 } 3872 EXPORT_SYMBOL(register_gifconf); 3873 3874 3875 /* 3876 * Map an interface index to its name (SIOCGIFNAME) 3877 */ 3878 3879 /* 3880 * We need this ioctl for efficient implementation of the 3881 * if_indextoname() function required by the IPv6 API. Without 3882 * it, we would have to search all the interfaces to find a 3883 * match. --pb 3884 */ 3885 3886 static int dev_ifname(struct net *net, struct ifreq __user *arg) 3887 { 3888 struct net_device *dev; 3889 struct ifreq ifr; 3890 3891 /* 3892 * Fetch the caller's info block. 3893 */ 3894 3895 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 3896 return -EFAULT; 3897 3898 rcu_read_lock(); 3899 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex); 3900 if (!dev) { 3901 rcu_read_unlock(); 3902 return -ENODEV; 3903 } 3904 3905 strcpy(ifr.ifr_name, dev->name); 3906 rcu_read_unlock(); 3907 3908 if (copy_to_user(arg, &ifr, sizeof(struct ifreq))) 3909 return -EFAULT; 3910 return 0; 3911 } 3912 3913 /* 3914 * Perform a SIOCGIFCONF call. This structure will change 3915 * size eventually, and there is nothing I can do about it. 3916 * Thus we will need a 'compatibility mode'. 3917 */ 3918 3919 static int dev_ifconf(struct net *net, char __user *arg) 3920 { 3921 struct ifconf ifc; 3922 struct net_device *dev; 3923 char __user *pos; 3924 int len; 3925 int total; 3926 int i; 3927 3928 /* 3929 * Fetch the caller's info block. 3930 */ 3931 3932 if (copy_from_user(&ifc, arg, sizeof(struct ifconf))) 3933 return -EFAULT; 3934 3935 pos = ifc.ifc_buf; 3936 len = ifc.ifc_len; 3937 3938 /* 3939 * Loop over the interfaces, and write an info block for each. 3940 */ 3941 3942 total = 0; 3943 for_each_netdev(net, dev) { 3944 for (i = 0; i < NPROTO; i++) { 3945 if (gifconf_list[i]) { 3946 int done; 3947 if (!pos) 3948 done = gifconf_list[i](dev, NULL, 0); 3949 else 3950 done = gifconf_list[i](dev, pos + total, 3951 len - total); 3952 if (done < 0) 3953 return -EFAULT; 3954 total += done; 3955 } 3956 } 3957 } 3958 3959 /* 3960 * All done. Write the updated control block back to the caller. 3961 */ 3962 ifc.ifc_len = total; 3963 3964 /* 3965 * Both BSD and Solaris return 0 here, so we do too. 3966 */ 3967 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0; 3968 } 3969 3970 #ifdef CONFIG_PROC_FS 3971 /* 3972 * This is invoked by the /proc filesystem handler to display a device 3973 * in detail. 3974 */ 3975 void *dev_seq_start(struct seq_file *seq, loff_t *pos) 3976 __acquires(RCU) 3977 { 3978 struct net *net = seq_file_net(seq); 3979 loff_t off; 3980 struct net_device *dev; 3981 3982 rcu_read_lock(); 3983 if (!*pos) 3984 return SEQ_START_TOKEN; 3985 3986 off = 1; 3987 for_each_netdev_rcu(net, dev) 3988 if (off++ == *pos) 3989 return dev; 3990 3991 return NULL; 3992 } 3993 3994 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3995 { 3996 struct net_device *dev = v; 3997 3998 if (v == SEQ_START_TOKEN) 3999 dev = first_net_device_rcu(seq_file_net(seq)); 4000 else 4001 dev = next_net_device_rcu(dev); 4002 4003 ++*pos; 4004 return dev; 4005 } 4006 4007 void dev_seq_stop(struct seq_file *seq, void *v) 4008 __releases(RCU) 4009 { 4010 rcu_read_unlock(); 4011 } 4012 4013 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev) 4014 { 4015 struct rtnl_link_stats64 temp; 4016 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp); 4017 4018 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu " 4019 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n", 4020 dev->name, stats->rx_bytes, stats->rx_packets, 4021 stats->rx_errors, 4022 stats->rx_dropped + stats->rx_missed_errors, 4023 stats->rx_fifo_errors, 4024 stats->rx_length_errors + stats->rx_over_errors + 4025 stats->rx_crc_errors + stats->rx_frame_errors, 4026 stats->rx_compressed, stats->multicast, 4027 stats->tx_bytes, stats->tx_packets, 4028 stats->tx_errors, stats->tx_dropped, 4029 stats->tx_fifo_errors, stats->collisions, 4030 stats->tx_carrier_errors + 4031 stats->tx_aborted_errors + 4032 stats->tx_window_errors + 4033 stats->tx_heartbeat_errors, 4034 stats->tx_compressed); 4035 } 4036 4037 /* 4038 * Called from the PROCfs module. This now uses the new arbitrary sized 4039 * /proc/net interface to create /proc/net/dev 4040 */ 4041 static int dev_seq_show(struct seq_file *seq, void *v) 4042 { 4043 if (v == SEQ_START_TOKEN) 4044 seq_puts(seq, "Inter-| Receive " 4045 " | Transmit\n" 4046 " face |bytes packets errs drop fifo frame " 4047 "compressed multicast|bytes packets errs " 4048 "drop fifo colls carrier compressed\n"); 4049 else 4050 dev_seq_printf_stats(seq, v); 4051 return 0; 4052 } 4053 4054 static struct softnet_data *softnet_get_online(loff_t *pos) 4055 { 4056 struct softnet_data *sd = NULL; 4057 4058 while (*pos < nr_cpu_ids) 4059 if (cpu_online(*pos)) { 4060 sd = &per_cpu(softnet_data, *pos); 4061 break; 4062 } else 4063 ++*pos; 4064 return sd; 4065 } 4066 4067 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos) 4068 { 4069 return softnet_get_online(pos); 4070 } 4071 4072 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos) 4073 { 4074 ++*pos; 4075 return softnet_get_online(pos); 4076 } 4077 4078 static void softnet_seq_stop(struct seq_file *seq, void *v) 4079 { 4080 } 4081 4082 static int softnet_seq_show(struct seq_file *seq, void *v) 4083 { 4084 struct softnet_data *sd = v; 4085 4086 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n", 4087 sd->processed, sd->dropped, sd->time_squeeze, 0, 4088 0, 0, 0, 0, /* was fastroute */ 4089 sd->cpu_collision, sd->received_rps); 4090 return 0; 4091 } 4092 4093 static const struct seq_operations dev_seq_ops = { 4094 .start = dev_seq_start, 4095 .next = dev_seq_next, 4096 .stop = dev_seq_stop, 4097 .show = dev_seq_show, 4098 }; 4099 4100 static int dev_seq_open(struct inode *inode, struct file *file) 4101 { 4102 return seq_open_net(inode, file, &dev_seq_ops, 4103 sizeof(struct seq_net_private)); 4104 } 4105 4106 static const struct file_operations dev_seq_fops = { 4107 .owner = THIS_MODULE, 4108 .open = dev_seq_open, 4109 .read = seq_read, 4110 .llseek = seq_lseek, 4111 .release = seq_release_net, 4112 }; 4113 4114 static const struct seq_operations softnet_seq_ops = { 4115 .start = softnet_seq_start, 4116 .next = softnet_seq_next, 4117 .stop = softnet_seq_stop, 4118 .show = softnet_seq_show, 4119 }; 4120 4121 static int softnet_seq_open(struct inode *inode, struct file *file) 4122 { 4123 return seq_open(file, &softnet_seq_ops); 4124 } 4125 4126 static const struct file_operations softnet_seq_fops = { 4127 .owner = THIS_MODULE, 4128 .open = softnet_seq_open, 4129 .read = seq_read, 4130 .llseek = seq_lseek, 4131 .release = seq_release, 4132 }; 4133 4134 static void *ptype_get_idx(loff_t pos) 4135 { 4136 struct packet_type *pt = NULL; 4137 loff_t i = 0; 4138 int t; 4139 4140 list_for_each_entry_rcu(pt, &ptype_all, list) { 4141 if (i == pos) 4142 return pt; 4143 ++i; 4144 } 4145 4146 for (t = 0; t < PTYPE_HASH_SIZE; t++) { 4147 list_for_each_entry_rcu(pt, &ptype_base[t], list) { 4148 if (i == pos) 4149 return pt; 4150 ++i; 4151 } 4152 } 4153 return NULL; 4154 } 4155 4156 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos) 4157 __acquires(RCU) 4158 { 4159 rcu_read_lock(); 4160 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN; 4161 } 4162 4163 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos) 4164 { 4165 struct packet_type *pt; 4166 struct list_head *nxt; 4167 int hash; 4168 4169 ++*pos; 4170 if (v == SEQ_START_TOKEN) 4171 return ptype_get_idx(0); 4172 4173 pt = v; 4174 nxt = pt->list.next; 4175 if (pt->type == htons(ETH_P_ALL)) { 4176 if (nxt != &ptype_all) 4177 goto found; 4178 hash = 0; 4179 nxt = ptype_base[0].next; 4180 } else 4181 hash = ntohs(pt->type) & PTYPE_HASH_MASK; 4182 4183 while (nxt == &ptype_base[hash]) { 4184 if (++hash >= PTYPE_HASH_SIZE) 4185 return NULL; 4186 nxt = ptype_base[hash].next; 4187 } 4188 found: 4189 return list_entry(nxt, struct packet_type, list); 4190 } 4191 4192 static void ptype_seq_stop(struct seq_file *seq, void *v) 4193 __releases(RCU) 4194 { 4195 rcu_read_unlock(); 4196 } 4197 4198 static int ptype_seq_show(struct seq_file *seq, void *v) 4199 { 4200 struct packet_type *pt = v; 4201 4202 if (v == SEQ_START_TOKEN) 4203 seq_puts(seq, "Type Device Function\n"); 4204 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) { 4205 if (pt->type == htons(ETH_P_ALL)) 4206 seq_puts(seq, "ALL "); 4207 else 4208 seq_printf(seq, "%04x", ntohs(pt->type)); 4209 4210 seq_printf(seq, " %-8s %pF\n", 4211 pt->dev ? pt->dev->name : "", pt->func); 4212 } 4213 4214 return 0; 4215 } 4216 4217 static const struct seq_operations ptype_seq_ops = { 4218 .start = ptype_seq_start, 4219 .next = ptype_seq_next, 4220 .stop = ptype_seq_stop, 4221 .show = ptype_seq_show, 4222 }; 4223 4224 static int ptype_seq_open(struct inode *inode, struct file *file) 4225 { 4226 return seq_open_net(inode, file, &ptype_seq_ops, 4227 sizeof(struct seq_net_private)); 4228 } 4229 4230 static const struct file_operations ptype_seq_fops = { 4231 .owner = THIS_MODULE, 4232 .open = ptype_seq_open, 4233 .read = seq_read, 4234 .llseek = seq_lseek, 4235 .release = seq_release_net, 4236 }; 4237 4238 4239 static int __net_init dev_proc_net_init(struct net *net) 4240 { 4241 int rc = -ENOMEM; 4242 4243 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops)) 4244 goto out; 4245 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops)) 4246 goto out_dev; 4247 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops)) 4248 goto out_softnet; 4249 4250 if (wext_proc_init(net)) 4251 goto out_ptype; 4252 rc = 0; 4253 out: 4254 return rc; 4255 out_ptype: 4256 proc_net_remove(net, "ptype"); 4257 out_softnet: 4258 proc_net_remove(net, "softnet_stat"); 4259 out_dev: 4260 proc_net_remove(net, "dev"); 4261 goto out; 4262 } 4263 4264 static void __net_exit dev_proc_net_exit(struct net *net) 4265 { 4266 wext_proc_exit(net); 4267 4268 proc_net_remove(net, "ptype"); 4269 proc_net_remove(net, "softnet_stat"); 4270 proc_net_remove(net, "dev"); 4271 } 4272 4273 static struct pernet_operations __net_initdata dev_proc_ops = { 4274 .init = dev_proc_net_init, 4275 .exit = dev_proc_net_exit, 4276 }; 4277 4278 static int __init dev_proc_init(void) 4279 { 4280 return register_pernet_subsys(&dev_proc_ops); 4281 } 4282 #else 4283 #define dev_proc_init() 0 4284 #endif /* CONFIG_PROC_FS */ 4285 4286 4287 /** 4288 * netdev_set_master - set up master pointer 4289 * @slave: slave device 4290 * @master: new master device 4291 * 4292 * Changes the master device of the slave. Pass %NULL to break the 4293 * bonding. The caller must hold the RTNL semaphore. On a failure 4294 * a negative errno code is returned. On success the reference counts 4295 * are adjusted and the function returns zero. 4296 */ 4297 int netdev_set_master(struct net_device *slave, struct net_device *master) 4298 { 4299 struct net_device *old = slave->master; 4300 4301 ASSERT_RTNL(); 4302 4303 if (master) { 4304 if (old) 4305 return -EBUSY; 4306 dev_hold(master); 4307 } 4308 4309 slave->master = master; 4310 4311 if (old) { 4312 synchronize_net(); 4313 dev_put(old); 4314 } 4315 return 0; 4316 } 4317 EXPORT_SYMBOL(netdev_set_master); 4318 4319 /** 4320 * netdev_set_bond_master - set up bonding master/slave pair 4321 * @slave: slave device 4322 * @master: new master device 4323 * 4324 * Changes the master device of the slave. Pass %NULL to break the 4325 * bonding. The caller must hold the RTNL semaphore. On a failure 4326 * a negative errno code is returned. On success %RTM_NEWLINK is sent 4327 * to the routing socket and the function returns zero. 4328 */ 4329 int netdev_set_bond_master(struct net_device *slave, struct net_device *master) 4330 { 4331 int err; 4332 4333 ASSERT_RTNL(); 4334 4335 err = netdev_set_master(slave, master); 4336 if (err) 4337 return err; 4338 if (master) 4339 slave->flags |= IFF_SLAVE; 4340 else 4341 slave->flags &= ~IFF_SLAVE; 4342 4343 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE); 4344 return 0; 4345 } 4346 EXPORT_SYMBOL(netdev_set_bond_master); 4347 4348 static void dev_change_rx_flags(struct net_device *dev, int flags) 4349 { 4350 const struct net_device_ops *ops = dev->netdev_ops; 4351 4352 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags) 4353 ops->ndo_change_rx_flags(dev, flags); 4354 } 4355 4356 static int __dev_set_promiscuity(struct net_device *dev, int inc) 4357 { 4358 unsigned short old_flags = dev->flags; 4359 uid_t uid; 4360 gid_t gid; 4361 4362 ASSERT_RTNL(); 4363 4364 dev->flags |= IFF_PROMISC; 4365 dev->promiscuity += inc; 4366 if (dev->promiscuity == 0) { 4367 /* 4368 * Avoid overflow. 4369 * If inc causes overflow, untouch promisc and return error. 4370 */ 4371 if (inc < 0) 4372 dev->flags &= ~IFF_PROMISC; 4373 else { 4374 dev->promiscuity -= inc; 4375 printk(KERN_WARNING "%s: promiscuity touches roof, " 4376 "set promiscuity failed, promiscuity feature " 4377 "of device might be broken.\n", dev->name); 4378 return -EOVERFLOW; 4379 } 4380 } 4381 if (dev->flags != old_flags) { 4382 printk(KERN_INFO "device %s %s promiscuous mode\n", 4383 dev->name, (dev->flags & IFF_PROMISC) ? "entered" : 4384 "left"); 4385 if (audit_enabled) { 4386 current_uid_gid(&uid, &gid); 4387 audit_log(current->audit_context, GFP_ATOMIC, 4388 AUDIT_ANOM_PROMISCUOUS, 4389 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 4390 dev->name, (dev->flags & IFF_PROMISC), 4391 (old_flags & IFF_PROMISC), 4392 audit_get_loginuid(current), 4393 uid, gid, 4394 audit_get_sessionid(current)); 4395 } 4396 4397 dev_change_rx_flags(dev, IFF_PROMISC); 4398 } 4399 return 0; 4400 } 4401 4402 /** 4403 * dev_set_promiscuity - update promiscuity count on a device 4404 * @dev: device 4405 * @inc: modifier 4406 * 4407 * Add or remove promiscuity from a device. While the count in the device 4408 * remains above zero the interface remains promiscuous. Once it hits zero 4409 * the device reverts back to normal filtering operation. A negative inc 4410 * value is used to drop promiscuity on the device. 4411 * Return 0 if successful or a negative errno code on error. 4412 */ 4413 int dev_set_promiscuity(struct net_device *dev, int inc) 4414 { 4415 unsigned short old_flags = dev->flags; 4416 int err; 4417 4418 err = __dev_set_promiscuity(dev, inc); 4419 if (err < 0) 4420 return err; 4421 if (dev->flags != old_flags) 4422 dev_set_rx_mode(dev); 4423 return err; 4424 } 4425 EXPORT_SYMBOL(dev_set_promiscuity); 4426 4427 /** 4428 * dev_set_allmulti - update allmulti count on a device 4429 * @dev: device 4430 * @inc: modifier 4431 * 4432 * Add or remove reception of all multicast frames to a device. While the 4433 * count in the device remains above zero the interface remains listening 4434 * to all interfaces. Once it hits zero the device reverts back to normal 4435 * filtering operation. A negative @inc value is used to drop the counter 4436 * when releasing a resource needing all multicasts. 4437 * Return 0 if successful or a negative errno code on error. 4438 */ 4439 4440 int dev_set_allmulti(struct net_device *dev, int inc) 4441 { 4442 unsigned short old_flags = dev->flags; 4443 4444 ASSERT_RTNL(); 4445 4446 dev->flags |= IFF_ALLMULTI; 4447 dev->allmulti += inc; 4448 if (dev->allmulti == 0) { 4449 /* 4450 * Avoid overflow. 4451 * If inc causes overflow, untouch allmulti and return error. 4452 */ 4453 if (inc < 0) 4454 dev->flags &= ~IFF_ALLMULTI; 4455 else { 4456 dev->allmulti -= inc; 4457 printk(KERN_WARNING "%s: allmulti touches roof, " 4458 "set allmulti failed, allmulti feature of " 4459 "device might be broken.\n", dev->name); 4460 return -EOVERFLOW; 4461 } 4462 } 4463 if (dev->flags ^ old_flags) { 4464 dev_change_rx_flags(dev, IFF_ALLMULTI); 4465 dev_set_rx_mode(dev); 4466 } 4467 return 0; 4468 } 4469 EXPORT_SYMBOL(dev_set_allmulti); 4470 4471 /* 4472 * Upload unicast and multicast address lists to device and 4473 * configure RX filtering. When the device doesn't support unicast 4474 * filtering it is put in promiscuous mode while unicast addresses 4475 * are present. 4476 */ 4477 void __dev_set_rx_mode(struct net_device *dev) 4478 { 4479 const struct net_device_ops *ops = dev->netdev_ops; 4480 4481 /* dev_open will call this function so the list will stay sane. */ 4482 if (!(dev->flags&IFF_UP)) 4483 return; 4484 4485 if (!netif_device_present(dev)) 4486 return; 4487 4488 if (ops->ndo_set_rx_mode) 4489 ops->ndo_set_rx_mode(dev); 4490 else { 4491 /* Unicast addresses changes may only happen under the rtnl, 4492 * therefore calling __dev_set_promiscuity here is safe. 4493 */ 4494 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 4495 __dev_set_promiscuity(dev, 1); 4496 dev->uc_promisc = 1; 4497 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 4498 __dev_set_promiscuity(dev, -1); 4499 dev->uc_promisc = 0; 4500 } 4501 4502 if (ops->ndo_set_multicast_list) 4503 ops->ndo_set_multicast_list(dev); 4504 } 4505 } 4506 4507 void dev_set_rx_mode(struct net_device *dev) 4508 { 4509 netif_addr_lock_bh(dev); 4510 __dev_set_rx_mode(dev); 4511 netif_addr_unlock_bh(dev); 4512 } 4513 4514 /** 4515 * dev_get_flags - get flags reported to userspace 4516 * @dev: device 4517 * 4518 * Get the combination of flag bits exported through APIs to userspace. 4519 */ 4520 unsigned dev_get_flags(const struct net_device *dev) 4521 { 4522 unsigned flags; 4523 4524 flags = (dev->flags & ~(IFF_PROMISC | 4525 IFF_ALLMULTI | 4526 IFF_RUNNING | 4527 IFF_LOWER_UP | 4528 IFF_DORMANT)) | 4529 (dev->gflags & (IFF_PROMISC | 4530 IFF_ALLMULTI)); 4531 4532 if (netif_running(dev)) { 4533 if (netif_oper_up(dev)) 4534 flags |= IFF_RUNNING; 4535 if (netif_carrier_ok(dev)) 4536 flags |= IFF_LOWER_UP; 4537 if (netif_dormant(dev)) 4538 flags |= IFF_DORMANT; 4539 } 4540 4541 return flags; 4542 } 4543 EXPORT_SYMBOL(dev_get_flags); 4544 4545 int __dev_change_flags(struct net_device *dev, unsigned int flags) 4546 { 4547 int old_flags = dev->flags; 4548 int ret; 4549 4550 ASSERT_RTNL(); 4551 4552 /* 4553 * Set the flags on our device. 4554 */ 4555 4556 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 4557 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 4558 IFF_AUTOMEDIA)) | 4559 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 4560 IFF_ALLMULTI)); 4561 4562 /* 4563 * Load in the correct multicast list now the flags have changed. 4564 */ 4565 4566 if ((old_flags ^ flags) & IFF_MULTICAST) 4567 dev_change_rx_flags(dev, IFF_MULTICAST); 4568 4569 dev_set_rx_mode(dev); 4570 4571 /* 4572 * Have we downed the interface. We handle IFF_UP ourselves 4573 * according to user attempts to set it, rather than blindly 4574 * setting it. 4575 */ 4576 4577 ret = 0; 4578 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */ 4579 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev); 4580 4581 if (!ret) 4582 dev_set_rx_mode(dev); 4583 } 4584 4585 if ((flags ^ dev->gflags) & IFF_PROMISC) { 4586 int inc = (flags & IFF_PROMISC) ? 1 : -1; 4587 4588 dev->gflags ^= IFF_PROMISC; 4589 dev_set_promiscuity(dev, inc); 4590 } 4591 4592 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 4593 is important. Some (broken) drivers set IFF_PROMISC, when 4594 IFF_ALLMULTI is requested not asking us and not reporting. 4595 */ 4596 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 4597 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 4598 4599 dev->gflags ^= IFF_ALLMULTI; 4600 dev_set_allmulti(dev, inc); 4601 } 4602 4603 return ret; 4604 } 4605 4606 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags) 4607 { 4608 unsigned int changes = dev->flags ^ old_flags; 4609 4610 if (changes & IFF_UP) { 4611 if (dev->flags & IFF_UP) 4612 call_netdevice_notifiers(NETDEV_UP, dev); 4613 else 4614 call_netdevice_notifiers(NETDEV_DOWN, dev); 4615 } 4616 4617 if (dev->flags & IFF_UP && 4618 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) 4619 call_netdevice_notifiers(NETDEV_CHANGE, dev); 4620 } 4621 4622 /** 4623 * dev_change_flags - change device settings 4624 * @dev: device 4625 * @flags: device state flags 4626 * 4627 * Change settings on device based state flags. The flags are 4628 * in the userspace exported format. 4629 */ 4630 int dev_change_flags(struct net_device *dev, unsigned flags) 4631 { 4632 int ret, changes; 4633 int old_flags = dev->flags; 4634 4635 ret = __dev_change_flags(dev, flags); 4636 if (ret < 0) 4637 return ret; 4638 4639 changes = old_flags ^ dev->flags; 4640 if (changes) 4641 rtmsg_ifinfo(RTM_NEWLINK, dev, changes); 4642 4643 __dev_notify_flags(dev, old_flags); 4644 return ret; 4645 } 4646 EXPORT_SYMBOL(dev_change_flags); 4647 4648 /** 4649 * dev_set_mtu - Change maximum transfer unit 4650 * @dev: device 4651 * @new_mtu: new transfer unit 4652 * 4653 * Change the maximum transfer size of the network device. 4654 */ 4655 int dev_set_mtu(struct net_device *dev, int new_mtu) 4656 { 4657 const struct net_device_ops *ops = dev->netdev_ops; 4658 int err; 4659 4660 if (new_mtu == dev->mtu) 4661 return 0; 4662 4663 /* MTU must be positive. */ 4664 if (new_mtu < 0) 4665 return -EINVAL; 4666 4667 if (!netif_device_present(dev)) 4668 return -ENODEV; 4669 4670 err = 0; 4671 if (ops->ndo_change_mtu) 4672 err = ops->ndo_change_mtu(dev, new_mtu); 4673 else 4674 dev->mtu = new_mtu; 4675 4676 if (!err && dev->flags & IFF_UP) 4677 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 4678 return err; 4679 } 4680 EXPORT_SYMBOL(dev_set_mtu); 4681 4682 /** 4683 * dev_set_group - Change group this device belongs to 4684 * @dev: device 4685 * @new_group: group this device should belong to 4686 */ 4687 void dev_set_group(struct net_device *dev, int new_group) 4688 { 4689 dev->group = new_group; 4690 } 4691 EXPORT_SYMBOL(dev_set_group); 4692 4693 /** 4694 * dev_set_mac_address - Change Media Access Control Address 4695 * @dev: device 4696 * @sa: new address 4697 * 4698 * Change the hardware (MAC) address of the device 4699 */ 4700 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 4701 { 4702 const struct net_device_ops *ops = dev->netdev_ops; 4703 int err; 4704 4705 if (!ops->ndo_set_mac_address) 4706 return -EOPNOTSUPP; 4707 if (sa->sa_family != dev->type) 4708 return -EINVAL; 4709 if (!netif_device_present(dev)) 4710 return -ENODEV; 4711 err = ops->ndo_set_mac_address(dev, sa); 4712 if (!err) 4713 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 4714 return err; 4715 } 4716 EXPORT_SYMBOL(dev_set_mac_address); 4717 4718 /* 4719 * Perform the SIOCxIFxxx calls, inside rcu_read_lock() 4720 */ 4721 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd) 4722 { 4723 int err; 4724 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name); 4725 4726 if (!dev) 4727 return -ENODEV; 4728 4729 switch (cmd) { 4730 case SIOCGIFFLAGS: /* Get interface flags */ 4731 ifr->ifr_flags = (short) dev_get_flags(dev); 4732 return 0; 4733 4734 case SIOCGIFMETRIC: /* Get the metric on the interface 4735 (currently unused) */ 4736 ifr->ifr_metric = 0; 4737 return 0; 4738 4739 case SIOCGIFMTU: /* Get the MTU of a device */ 4740 ifr->ifr_mtu = dev->mtu; 4741 return 0; 4742 4743 case SIOCGIFHWADDR: 4744 if (!dev->addr_len) 4745 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data); 4746 else 4747 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr, 4748 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 4749 ifr->ifr_hwaddr.sa_family = dev->type; 4750 return 0; 4751 4752 case SIOCGIFSLAVE: 4753 err = -EINVAL; 4754 break; 4755 4756 case SIOCGIFMAP: 4757 ifr->ifr_map.mem_start = dev->mem_start; 4758 ifr->ifr_map.mem_end = dev->mem_end; 4759 ifr->ifr_map.base_addr = dev->base_addr; 4760 ifr->ifr_map.irq = dev->irq; 4761 ifr->ifr_map.dma = dev->dma; 4762 ifr->ifr_map.port = dev->if_port; 4763 return 0; 4764 4765 case SIOCGIFINDEX: 4766 ifr->ifr_ifindex = dev->ifindex; 4767 return 0; 4768 4769 case SIOCGIFTXQLEN: 4770 ifr->ifr_qlen = dev->tx_queue_len; 4771 return 0; 4772 4773 default: 4774 /* dev_ioctl() should ensure this case 4775 * is never reached 4776 */ 4777 WARN_ON(1); 4778 err = -ENOTTY; 4779 break; 4780 4781 } 4782 return err; 4783 } 4784 4785 /* 4786 * Perform the SIOCxIFxxx calls, inside rtnl_lock() 4787 */ 4788 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd) 4789 { 4790 int err; 4791 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name); 4792 const struct net_device_ops *ops; 4793 4794 if (!dev) 4795 return -ENODEV; 4796 4797 ops = dev->netdev_ops; 4798 4799 switch (cmd) { 4800 case SIOCSIFFLAGS: /* Set interface flags */ 4801 return dev_change_flags(dev, ifr->ifr_flags); 4802 4803 case SIOCSIFMETRIC: /* Set the metric on the interface 4804 (currently unused) */ 4805 return -EOPNOTSUPP; 4806 4807 case SIOCSIFMTU: /* Set the MTU of a device */ 4808 return dev_set_mtu(dev, ifr->ifr_mtu); 4809 4810 case SIOCSIFHWADDR: 4811 return dev_set_mac_address(dev, &ifr->ifr_hwaddr); 4812 4813 case SIOCSIFHWBROADCAST: 4814 if (ifr->ifr_hwaddr.sa_family != dev->type) 4815 return -EINVAL; 4816 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data, 4817 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 4818 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 4819 return 0; 4820 4821 case SIOCSIFMAP: 4822 if (ops->ndo_set_config) { 4823 if (!netif_device_present(dev)) 4824 return -ENODEV; 4825 return ops->ndo_set_config(dev, &ifr->ifr_map); 4826 } 4827 return -EOPNOTSUPP; 4828 4829 case SIOCADDMULTI: 4830 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) || 4831 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 4832 return -EINVAL; 4833 if (!netif_device_present(dev)) 4834 return -ENODEV; 4835 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data); 4836 4837 case SIOCDELMULTI: 4838 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) || 4839 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 4840 return -EINVAL; 4841 if (!netif_device_present(dev)) 4842 return -ENODEV; 4843 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data); 4844 4845 case SIOCSIFTXQLEN: 4846 if (ifr->ifr_qlen < 0) 4847 return -EINVAL; 4848 dev->tx_queue_len = ifr->ifr_qlen; 4849 return 0; 4850 4851 case SIOCSIFNAME: 4852 ifr->ifr_newname[IFNAMSIZ-1] = '\0'; 4853 return dev_change_name(dev, ifr->ifr_newname); 4854 4855 /* 4856 * Unknown or private ioctl 4857 */ 4858 default: 4859 if ((cmd >= SIOCDEVPRIVATE && 4860 cmd <= SIOCDEVPRIVATE + 15) || 4861 cmd == SIOCBONDENSLAVE || 4862 cmd == SIOCBONDRELEASE || 4863 cmd == SIOCBONDSETHWADDR || 4864 cmd == SIOCBONDSLAVEINFOQUERY || 4865 cmd == SIOCBONDINFOQUERY || 4866 cmd == SIOCBONDCHANGEACTIVE || 4867 cmd == SIOCGMIIPHY || 4868 cmd == SIOCGMIIREG || 4869 cmd == SIOCSMIIREG || 4870 cmd == SIOCBRADDIF || 4871 cmd == SIOCBRDELIF || 4872 cmd == SIOCSHWTSTAMP || 4873 cmd == SIOCWANDEV) { 4874 err = -EOPNOTSUPP; 4875 if (ops->ndo_do_ioctl) { 4876 if (netif_device_present(dev)) 4877 err = ops->ndo_do_ioctl(dev, ifr, cmd); 4878 else 4879 err = -ENODEV; 4880 } 4881 } else 4882 err = -EINVAL; 4883 4884 } 4885 return err; 4886 } 4887 4888 /* 4889 * This function handles all "interface"-type I/O control requests. The actual 4890 * 'doing' part of this is dev_ifsioc above. 4891 */ 4892 4893 /** 4894 * dev_ioctl - network device ioctl 4895 * @net: the applicable net namespace 4896 * @cmd: command to issue 4897 * @arg: pointer to a struct ifreq in user space 4898 * 4899 * Issue ioctl functions to devices. This is normally called by the 4900 * user space syscall interfaces but can sometimes be useful for 4901 * other purposes. The return value is the return from the syscall if 4902 * positive or a negative errno code on error. 4903 */ 4904 4905 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg) 4906 { 4907 struct ifreq ifr; 4908 int ret; 4909 char *colon; 4910 4911 /* One special case: SIOCGIFCONF takes ifconf argument 4912 and requires shared lock, because it sleeps writing 4913 to user space. 4914 */ 4915 4916 if (cmd == SIOCGIFCONF) { 4917 rtnl_lock(); 4918 ret = dev_ifconf(net, (char __user *) arg); 4919 rtnl_unlock(); 4920 return ret; 4921 } 4922 if (cmd == SIOCGIFNAME) 4923 return dev_ifname(net, (struct ifreq __user *)arg); 4924 4925 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 4926 return -EFAULT; 4927 4928 ifr.ifr_name[IFNAMSIZ-1] = 0; 4929 4930 colon = strchr(ifr.ifr_name, ':'); 4931 if (colon) 4932 *colon = 0; 4933 4934 /* 4935 * See which interface the caller is talking about. 4936 */ 4937 4938 switch (cmd) { 4939 /* 4940 * These ioctl calls: 4941 * - can be done by all. 4942 * - atomic and do not require locking. 4943 * - return a value 4944 */ 4945 case SIOCGIFFLAGS: 4946 case SIOCGIFMETRIC: 4947 case SIOCGIFMTU: 4948 case SIOCGIFHWADDR: 4949 case SIOCGIFSLAVE: 4950 case SIOCGIFMAP: 4951 case SIOCGIFINDEX: 4952 case SIOCGIFTXQLEN: 4953 dev_load(net, ifr.ifr_name); 4954 rcu_read_lock(); 4955 ret = dev_ifsioc_locked(net, &ifr, cmd); 4956 rcu_read_unlock(); 4957 if (!ret) { 4958 if (colon) 4959 *colon = ':'; 4960 if (copy_to_user(arg, &ifr, 4961 sizeof(struct ifreq))) 4962 ret = -EFAULT; 4963 } 4964 return ret; 4965 4966 case SIOCETHTOOL: 4967 dev_load(net, ifr.ifr_name); 4968 rtnl_lock(); 4969 ret = dev_ethtool(net, &ifr); 4970 rtnl_unlock(); 4971 if (!ret) { 4972 if (colon) 4973 *colon = ':'; 4974 if (copy_to_user(arg, &ifr, 4975 sizeof(struct ifreq))) 4976 ret = -EFAULT; 4977 } 4978 return ret; 4979 4980 /* 4981 * These ioctl calls: 4982 * - require superuser power. 4983 * - require strict serialization. 4984 * - return a value 4985 */ 4986 case SIOCGMIIPHY: 4987 case SIOCGMIIREG: 4988 case SIOCSIFNAME: 4989 if (!capable(CAP_NET_ADMIN)) 4990 return -EPERM; 4991 dev_load(net, ifr.ifr_name); 4992 rtnl_lock(); 4993 ret = dev_ifsioc(net, &ifr, cmd); 4994 rtnl_unlock(); 4995 if (!ret) { 4996 if (colon) 4997 *colon = ':'; 4998 if (copy_to_user(arg, &ifr, 4999 sizeof(struct ifreq))) 5000 ret = -EFAULT; 5001 } 5002 return ret; 5003 5004 /* 5005 * These ioctl calls: 5006 * - require superuser power. 5007 * - require strict serialization. 5008 * - do not return a value 5009 */ 5010 case SIOCSIFFLAGS: 5011 case SIOCSIFMETRIC: 5012 case SIOCSIFMTU: 5013 case SIOCSIFMAP: 5014 case SIOCSIFHWADDR: 5015 case SIOCSIFSLAVE: 5016 case SIOCADDMULTI: 5017 case SIOCDELMULTI: 5018 case SIOCSIFHWBROADCAST: 5019 case SIOCSIFTXQLEN: 5020 case SIOCSMIIREG: 5021 case SIOCBONDENSLAVE: 5022 case SIOCBONDRELEASE: 5023 case SIOCBONDSETHWADDR: 5024 case SIOCBONDCHANGEACTIVE: 5025 case SIOCBRADDIF: 5026 case SIOCBRDELIF: 5027 case SIOCSHWTSTAMP: 5028 if (!capable(CAP_NET_ADMIN)) 5029 return -EPERM; 5030 /* fall through */ 5031 case SIOCBONDSLAVEINFOQUERY: 5032 case SIOCBONDINFOQUERY: 5033 dev_load(net, ifr.ifr_name); 5034 rtnl_lock(); 5035 ret = dev_ifsioc(net, &ifr, cmd); 5036 rtnl_unlock(); 5037 return ret; 5038 5039 case SIOCGIFMEM: 5040 /* Get the per device memory space. We can add this but 5041 * currently do not support it */ 5042 case SIOCSIFMEM: 5043 /* Set the per device memory buffer space. 5044 * Not applicable in our case */ 5045 case SIOCSIFLINK: 5046 return -ENOTTY; 5047 5048 /* 5049 * Unknown or private ioctl. 5050 */ 5051 default: 5052 if (cmd == SIOCWANDEV || 5053 (cmd >= SIOCDEVPRIVATE && 5054 cmd <= SIOCDEVPRIVATE + 15)) { 5055 dev_load(net, ifr.ifr_name); 5056 rtnl_lock(); 5057 ret = dev_ifsioc(net, &ifr, cmd); 5058 rtnl_unlock(); 5059 if (!ret && copy_to_user(arg, &ifr, 5060 sizeof(struct ifreq))) 5061 ret = -EFAULT; 5062 return ret; 5063 } 5064 /* Take care of Wireless Extensions */ 5065 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) 5066 return wext_handle_ioctl(net, &ifr, cmd, arg); 5067 return -ENOTTY; 5068 } 5069 } 5070 5071 5072 /** 5073 * dev_new_index - allocate an ifindex 5074 * @net: the applicable net namespace 5075 * 5076 * Returns a suitable unique value for a new device interface 5077 * number. The caller must hold the rtnl semaphore or the 5078 * dev_base_lock to be sure it remains unique. 5079 */ 5080 static int dev_new_index(struct net *net) 5081 { 5082 static int ifindex; 5083 for (;;) { 5084 if (++ifindex <= 0) 5085 ifindex = 1; 5086 if (!__dev_get_by_index(net, ifindex)) 5087 return ifindex; 5088 } 5089 } 5090 5091 /* Delayed registration/unregisteration */ 5092 static LIST_HEAD(net_todo_list); 5093 5094 static void net_set_todo(struct net_device *dev) 5095 { 5096 list_add_tail(&dev->todo_list, &net_todo_list); 5097 } 5098 5099 static void rollback_registered_many(struct list_head *head) 5100 { 5101 struct net_device *dev, *tmp; 5102 5103 BUG_ON(dev_boot_phase); 5104 ASSERT_RTNL(); 5105 5106 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 5107 /* Some devices call without registering 5108 * for initialization unwind. Remove those 5109 * devices and proceed with the remaining. 5110 */ 5111 if (dev->reg_state == NETREG_UNINITIALIZED) { 5112 pr_debug("unregister_netdevice: device %s/%p never " 5113 "was registered\n", dev->name, dev); 5114 5115 WARN_ON(1); 5116 list_del(&dev->unreg_list); 5117 continue; 5118 } 5119 5120 BUG_ON(dev->reg_state != NETREG_REGISTERED); 5121 } 5122 5123 /* If device is running, close it first. */ 5124 dev_close_many(head); 5125 5126 list_for_each_entry(dev, head, unreg_list) { 5127 /* And unlink it from device chain. */ 5128 unlist_netdevice(dev); 5129 5130 dev->reg_state = NETREG_UNREGISTERING; 5131 } 5132 5133 synchronize_net(); 5134 5135 list_for_each_entry(dev, head, unreg_list) { 5136 /* Shutdown queueing discipline. */ 5137 dev_shutdown(dev); 5138 5139 5140 /* Notify protocols, that we are about to destroy 5141 this device. They should clean all the things. 5142 */ 5143 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5144 5145 if (!dev->rtnl_link_ops || 5146 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 5147 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U); 5148 5149 /* 5150 * Flush the unicast and multicast chains 5151 */ 5152 dev_uc_flush(dev); 5153 dev_mc_flush(dev); 5154 5155 if (dev->netdev_ops->ndo_uninit) 5156 dev->netdev_ops->ndo_uninit(dev); 5157 5158 /* Notifier chain MUST detach us from master device. */ 5159 WARN_ON(dev->master); 5160 5161 /* Remove entries from kobject tree */ 5162 netdev_unregister_kobject(dev); 5163 } 5164 5165 /* Process any work delayed until the end of the batch */ 5166 dev = list_first_entry(head, struct net_device, unreg_list); 5167 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev); 5168 5169 rcu_barrier(); 5170 5171 list_for_each_entry(dev, head, unreg_list) 5172 dev_put(dev); 5173 } 5174 5175 static void rollback_registered(struct net_device *dev) 5176 { 5177 LIST_HEAD(single); 5178 5179 list_add(&dev->unreg_list, &single); 5180 rollback_registered_many(&single); 5181 list_del(&single); 5182 } 5183 5184 u32 netdev_fix_features(struct net_device *dev, u32 features) 5185 { 5186 /* Fix illegal checksum combinations */ 5187 if ((features & NETIF_F_HW_CSUM) && 5188 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5189 netdev_info(dev, "mixed HW and IP checksum settings.\n"); 5190 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 5191 } 5192 5193 if ((features & NETIF_F_NO_CSUM) && 5194 (features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5195 netdev_info(dev, "mixed no checksumming and other settings.\n"); 5196 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM); 5197 } 5198 5199 /* Fix illegal SG+CSUM combinations. */ 5200 if ((features & NETIF_F_SG) && 5201 !(features & NETIF_F_ALL_CSUM)) { 5202 netdev_info(dev, 5203 "Dropping NETIF_F_SG since no checksum feature.\n"); 5204 features &= ~NETIF_F_SG; 5205 } 5206 5207 /* TSO requires that SG is present as well. */ 5208 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 5209 netdev_info(dev, "Dropping TSO features since no SG feature.\n"); 5210 features &= ~NETIF_F_ALL_TSO; 5211 } 5212 5213 /* TSO ECN requires that TSO is present as well. */ 5214 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 5215 features &= ~NETIF_F_TSO_ECN; 5216 5217 /* Software GSO depends on SG. */ 5218 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 5219 netdev_info(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 5220 features &= ~NETIF_F_GSO; 5221 } 5222 5223 /* UFO needs SG and checksumming */ 5224 if (features & NETIF_F_UFO) { 5225 /* maybe split UFO into V4 and V6? */ 5226 if (!((features & NETIF_F_GEN_CSUM) || 5227 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM)) 5228 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5229 netdev_info(dev, 5230 "Dropping NETIF_F_UFO since no checksum offload features.\n"); 5231 features &= ~NETIF_F_UFO; 5232 } 5233 5234 if (!(features & NETIF_F_SG)) { 5235 netdev_info(dev, 5236 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n"); 5237 features &= ~NETIF_F_UFO; 5238 } 5239 } 5240 5241 return features; 5242 } 5243 EXPORT_SYMBOL(netdev_fix_features); 5244 5245 void netdev_update_features(struct net_device *dev) 5246 { 5247 u32 features; 5248 int err = 0; 5249 5250 features = netdev_get_wanted_features(dev); 5251 5252 if (dev->netdev_ops->ndo_fix_features) 5253 features = dev->netdev_ops->ndo_fix_features(dev, features); 5254 5255 /* driver might be less strict about feature dependencies */ 5256 features = netdev_fix_features(dev, features); 5257 5258 if (dev->features == features) 5259 return; 5260 5261 netdev_info(dev, "Features changed: 0x%08x -> 0x%08x\n", 5262 dev->features, features); 5263 5264 if (dev->netdev_ops->ndo_set_features) 5265 err = dev->netdev_ops->ndo_set_features(dev, features); 5266 5267 if (!err) 5268 dev->features = features; 5269 else if (err < 0) 5270 netdev_err(dev, 5271 "set_features() failed (%d); wanted 0x%08x, left 0x%08x\n", 5272 err, features, dev->features); 5273 } 5274 EXPORT_SYMBOL(netdev_update_features); 5275 5276 /** 5277 * netif_stacked_transfer_operstate - transfer operstate 5278 * @rootdev: the root or lower level device to transfer state from 5279 * @dev: the device to transfer operstate to 5280 * 5281 * Transfer operational state from root to device. This is normally 5282 * called when a stacking relationship exists between the root 5283 * device and the device(a leaf device). 5284 */ 5285 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 5286 struct net_device *dev) 5287 { 5288 if (rootdev->operstate == IF_OPER_DORMANT) 5289 netif_dormant_on(dev); 5290 else 5291 netif_dormant_off(dev); 5292 5293 if (netif_carrier_ok(rootdev)) { 5294 if (!netif_carrier_ok(dev)) 5295 netif_carrier_on(dev); 5296 } else { 5297 if (netif_carrier_ok(dev)) 5298 netif_carrier_off(dev); 5299 } 5300 } 5301 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 5302 5303 #ifdef CONFIG_RPS 5304 static int netif_alloc_rx_queues(struct net_device *dev) 5305 { 5306 unsigned int i, count = dev->num_rx_queues; 5307 struct netdev_rx_queue *rx; 5308 5309 BUG_ON(count < 1); 5310 5311 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL); 5312 if (!rx) { 5313 pr_err("netdev: Unable to allocate %u rx queues.\n", count); 5314 return -ENOMEM; 5315 } 5316 dev->_rx = rx; 5317 5318 for (i = 0; i < count; i++) 5319 rx[i].dev = dev; 5320 return 0; 5321 } 5322 #endif 5323 5324 static void netdev_init_one_queue(struct net_device *dev, 5325 struct netdev_queue *queue, void *_unused) 5326 { 5327 /* Initialize queue lock */ 5328 spin_lock_init(&queue->_xmit_lock); 5329 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 5330 queue->xmit_lock_owner = -1; 5331 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 5332 queue->dev = dev; 5333 } 5334 5335 static int netif_alloc_netdev_queues(struct net_device *dev) 5336 { 5337 unsigned int count = dev->num_tx_queues; 5338 struct netdev_queue *tx; 5339 5340 BUG_ON(count < 1); 5341 5342 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL); 5343 if (!tx) { 5344 pr_err("netdev: Unable to allocate %u tx queues.\n", 5345 count); 5346 return -ENOMEM; 5347 } 5348 dev->_tx = tx; 5349 5350 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 5351 spin_lock_init(&dev->tx_global_lock); 5352 5353 return 0; 5354 } 5355 5356 /** 5357 * register_netdevice - register a network device 5358 * @dev: device to register 5359 * 5360 * Take a completed network device structure and add it to the kernel 5361 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 5362 * chain. 0 is returned on success. A negative errno code is returned 5363 * on a failure to set up the device, or if the name is a duplicate. 5364 * 5365 * Callers must hold the rtnl semaphore. You may want 5366 * register_netdev() instead of this. 5367 * 5368 * BUGS: 5369 * The locking appears insufficient to guarantee two parallel registers 5370 * will not get the same name. 5371 */ 5372 5373 int register_netdevice(struct net_device *dev) 5374 { 5375 int ret; 5376 struct net *net = dev_net(dev); 5377 5378 BUG_ON(dev_boot_phase); 5379 ASSERT_RTNL(); 5380 5381 might_sleep(); 5382 5383 /* When net_device's are persistent, this will be fatal. */ 5384 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 5385 BUG_ON(!net); 5386 5387 spin_lock_init(&dev->addr_list_lock); 5388 netdev_set_addr_lockdep_class(dev); 5389 5390 dev->iflink = -1; 5391 5392 /* Init, if this function is available */ 5393 if (dev->netdev_ops->ndo_init) { 5394 ret = dev->netdev_ops->ndo_init(dev); 5395 if (ret) { 5396 if (ret > 0) 5397 ret = -EIO; 5398 goto out; 5399 } 5400 } 5401 5402 ret = dev_get_valid_name(dev, dev->name, 0); 5403 if (ret) 5404 goto err_uninit; 5405 5406 dev->ifindex = dev_new_index(net); 5407 if (dev->iflink == -1) 5408 dev->iflink = dev->ifindex; 5409 5410 /* Transfer changeable features to wanted_features and enable 5411 * software offloads (GSO and GRO). 5412 */ 5413 dev->hw_features |= NETIF_F_SOFT_FEATURES; 5414 dev->features |= NETIF_F_SOFT_FEATURES; 5415 dev->wanted_features = dev->features & dev->hw_features; 5416 5417 /* Avoid warning from netdev_fix_features() for GSO without SG */ 5418 if (!(dev->wanted_features & NETIF_F_SG)) { 5419 dev->wanted_features &= ~NETIF_F_GSO; 5420 dev->features &= ~NETIF_F_GSO; 5421 } 5422 5423 /* Enable GRO and NETIF_F_HIGHDMA for vlans by default, 5424 * vlan_dev_init() will do the dev->features check, so these features 5425 * are enabled only if supported by underlying device. 5426 */ 5427 dev->vlan_features |= (NETIF_F_GRO | NETIF_F_HIGHDMA); 5428 5429 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 5430 ret = notifier_to_errno(ret); 5431 if (ret) 5432 goto err_uninit; 5433 5434 ret = netdev_register_kobject(dev); 5435 if (ret) 5436 goto err_uninit; 5437 dev->reg_state = NETREG_REGISTERED; 5438 5439 netdev_update_features(dev); 5440 5441 /* 5442 * Default initial state at registry is that the 5443 * device is present. 5444 */ 5445 5446 set_bit(__LINK_STATE_PRESENT, &dev->state); 5447 5448 dev_init_scheduler(dev); 5449 dev_hold(dev); 5450 list_netdevice(dev); 5451 5452 /* Notify protocols, that a new device appeared. */ 5453 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 5454 ret = notifier_to_errno(ret); 5455 if (ret) { 5456 rollback_registered(dev); 5457 dev->reg_state = NETREG_UNREGISTERED; 5458 } 5459 /* 5460 * Prevent userspace races by waiting until the network 5461 * device is fully setup before sending notifications. 5462 */ 5463 if (!dev->rtnl_link_ops || 5464 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 5465 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U); 5466 5467 out: 5468 return ret; 5469 5470 err_uninit: 5471 if (dev->netdev_ops->ndo_uninit) 5472 dev->netdev_ops->ndo_uninit(dev); 5473 goto out; 5474 } 5475 EXPORT_SYMBOL(register_netdevice); 5476 5477 /** 5478 * init_dummy_netdev - init a dummy network device for NAPI 5479 * @dev: device to init 5480 * 5481 * This takes a network device structure and initialize the minimum 5482 * amount of fields so it can be used to schedule NAPI polls without 5483 * registering a full blown interface. This is to be used by drivers 5484 * that need to tie several hardware interfaces to a single NAPI 5485 * poll scheduler due to HW limitations. 5486 */ 5487 int init_dummy_netdev(struct net_device *dev) 5488 { 5489 /* Clear everything. Note we don't initialize spinlocks 5490 * are they aren't supposed to be taken by any of the 5491 * NAPI code and this dummy netdev is supposed to be 5492 * only ever used for NAPI polls 5493 */ 5494 memset(dev, 0, sizeof(struct net_device)); 5495 5496 /* make sure we BUG if trying to hit standard 5497 * register/unregister code path 5498 */ 5499 dev->reg_state = NETREG_DUMMY; 5500 5501 /* NAPI wants this */ 5502 INIT_LIST_HEAD(&dev->napi_list); 5503 5504 /* a dummy interface is started by default */ 5505 set_bit(__LINK_STATE_PRESENT, &dev->state); 5506 set_bit(__LINK_STATE_START, &dev->state); 5507 5508 /* Note : We dont allocate pcpu_refcnt for dummy devices, 5509 * because users of this 'device' dont need to change 5510 * its refcount. 5511 */ 5512 5513 return 0; 5514 } 5515 EXPORT_SYMBOL_GPL(init_dummy_netdev); 5516 5517 5518 /** 5519 * register_netdev - register a network device 5520 * @dev: device to register 5521 * 5522 * Take a completed network device structure and add it to the kernel 5523 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 5524 * chain. 0 is returned on success. A negative errno code is returned 5525 * on a failure to set up the device, or if the name is a duplicate. 5526 * 5527 * This is a wrapper around register_netdevice that takes the rtnl semaphore 5528 * and expands the device name if you passed a format string to 5529 * alloc_netdev. 5530 */ 5531 int register_netdev(struct net_device *dev) 5532 { 5533 int err; 5534 5535 rtnl_lock(); 5536 5537 /* 5538 * If the name is a format string the caller wants us to do a 5539 * name allocation. 5540 */ 5541 if (strchr(dev->name, '%')) { 5542 err = dev_alloc_name(dev, dev->name); 5543 if (err < 0) 5544 goto out; 5545 } 5546 5547 err = register_netdevice(dev); 5548 out: 5549 rtnl_unlock(); 5550 return err; 5551 } 5552 EXPORT_SYMBOL(register_netdev); 5553 5554 int netdev_refcnt_read(const struct net_device *dev) 5555 { 5556 int i, refcnt = 0; 5557 5558 for_each_possible_cpu(i) 5559 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 5560 return refcnt; 5561 } 5562 EXPORT_SYMBOL(netdev_refcnt_read); 5563 5564 /* 5565 * netdev_wait_allrefs - wait until all references are gone. 5566 * 5567 * This is called when unregistering network devices. 5568 * 5569 * Any protocol or device that holds a reference should register 5570 * for netdevice notification, and cleanup and put back the 5571 * reference if they receive an UNREGISTER event. 5572 * We can get stuck here if buggy protocols don't correctly 5573 * call dev_put. 5574 */ 5575 static void netdev_wait_allrefs(struct net_device *dev) 5576 { 5577 unsigned long rebroadcast_time, warning_time; 5578 int refcnt; 5579 5580 linkwatch_forget_dev(dev); 5581 5582 rebroadcast_time = warning_time = jiffies; 5583 refcnt = netdev_refcnt_read(dev); 5584 5585 while (refcnt != 0) { 5586 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 5587 rtnl_lock(); 5588 5589 /* Rebroadcast unregister notification */ 5590 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5591 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users 5592 * should have already handle it the first time */ 5593 5594 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 5595 &dev->state)) { 5596 /* We must not have linkwatch events 5597 * pending on unregister. If this 5598 * happens, we simply run the queue 5599 * unscheduled, resulting in a noop 5600 * for this device. 5601 */ 5602 linkwatch_run_queue(); 5603 } 5604 5605 __rtnl_unlock(); 5606 5607 rebroadcast_time = jiffies; 5608 } 5609 5610 msleep(250); 5611 5612 refcnt = netdev_refcnt_read(dev); 5613 5614 if (time_after(jiffies, warning_time + 10 * HZ)) { 5615 printk(KERN_EMERG "unregister_netdevice: " 5616 "waiting for %s to become free. Usage " 5617 "count = %d\n", 5618 dev->name, refcnt); 5619 warning_time = jiffies; 5620 } 5621 } 5622 } 5623 5624 /* The sequence is: 5625 * 5626 * rtnl_lock(); 5627 * ... 5628 * register_netdevice(x1); 5629 * register_netdevice(x2); 5630 * ... 5631 * unregister_netdevice(y1); 5632 * unregister_netdevice(y2); 5633 * ... 5634 * rtnl_unlock(); 5635 * free_netdev(y1); 5636 * free_netdev(y2); 5637 * 5638 * We are invoked by rtnl_unlock(). 5639 * This allows us to deal with problems: 5640 * 1) We can delete sysfs objects which invoke hotplug 5641 * without deadlocking with linkwatch via keventd. 5642 * 2) Since we run with the RTNL semaphore not held, we can sleep 5643 * safely in order to wait for the netdev refcnt to drop to zero. 5644 * 5645 * We must not return until all unregister events added during 5646 * the interval the lock was held have been completed. 5647 */ 5648 void netdev_run_todo(void) 5649 { 5650 struct list_head list; 5651 5652 /* Snapshot list, allow later requests */ 5653 list_replace_init(&net_todo_list, &list); 5654 5655 __rtnl_unlock(); 5656 5657 while (!list_empty(&list)) { 5658 struct net_device *dev 5659 = list_first_entry(&list, struct net_device, todo_list); 5660 list_del(&dev->todo_list); 5661 5662 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 5663 printk(KERN_ERR "network todo '%s' but state %d\n", 5664 dev->name, dev->reg_state); 5665 dump_stack(); 5666 continue; 5667 } 5668 5669 dev->reg_state = NETREG_UNREGISTERED; 5670 5671 on_each_cpu(flush_backlog, dev, 1); 5672 5673 netdev_wait_allrefs(dev); 5674 5675 /* paranoia */ 5676 BUG_ON(netdev_refcnt_read(dev)); 5677 WARN_ON(rcu_dereference_raw(dev->ip_ptr)); 5678 WARN_ON(rcu_dereference_raw(dev->ip6_ptr)); 5679 WARN_ON(dev->dn_ptr); 5680 5681 if (dev->destructor) 5682 dev->destructor(dev); 5683 5684 /* Free network device */ 5685 kobject_put(&dev->dev.kobj); 5686 } 5687 } 5688 5689 /* Convert net_device_stats to rtnl_link_stats64. They have the same 5690 * fields in the same order, with only the type differing. 5691 */ 5692 static void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 5693 const struct net_device_stats *netdev_stats) 5694 { 5695 #if BITS_PER_LONG == 64 5696 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats)); 5697 memcpy(stats64, netdev_stats, sizeof(*stats64)); 5698 #else 5699 size_t i, n = sizeof(*stats64) / sizeof(u64); 5700 const unsigned long *src = (const unsigned long *)netdev_stats; 5701 u64 *dst = (u64 *)stats64; 5702 5703 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) != 5704 sizeof(*stats64) / sizeof(u64)); 5705 for (i = 0; i < n; i++) 5706 dst[i] = src[i]; 5707 #endif 5708 } 5709 5710 /** 5711 * dev_get_stats - get network device statistics 5712 * @dev: device to get statistics from 5713 * @storage: place to store stats 5714 * 5715 * Get network statistics from device. Return @storage. 5716 * The device driver may provide its own method by setting 5717 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 5718 * otherwise the internal statistics structure is used. 5719 */ 5720 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 5721 struct rtnl_link_stats64 *storage) 5722 { 5723 const struct net_device_ops *ops = dev->netdev_ops; 5724 5725 if (ops->ndo_get_stats64) { 5726 memset(storage, 0, sizeof(*storage)); 5727 ops->ndo_get_stats64(dev, storage); 5728 } else if (ops->ndo_get_stats) { 5729 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 5730 } else { 5731 netdev_stats_to_stats64(storage, &dev->stats); 5732 } 5733 storage->rx_dropped += atomic_long_read(&dev->rx_dropped); 5734 return storage; 5735 } 5736 EXPORT_SYMBOL(dev_get_stats); 5737 5738 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 5739 { 5740 struct netdev_queue *queue = dev_ingress_queue(dev); 5741 5742 #ifdef CONFIG_NET_CLS_ACT 5743 if (queue) 5744 return queue; 5745 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 5746 if (!queue) 5747 return NULL; 5748 netdev_init_one_queue(dev, queue, NULL); 5749 queue->qdisc = &noop_qdisc; 5750 queue->qdisc_sleeping = &noop_qdisc; 5751 rcu_assign_pointer(dev->ingress_queue, queue); 5752 #endif 5753 return queue; 5754 } 5755 5756 /** 5757 * alloc_netdev_mqs - allocate network device 5758 * @sizeof_priv: size of private data to allocate space for 5759 * @name: device name format string 5760 * @setup: callback to initialize device 5761 * @txqs: the number of TX subqueues to allocate 5762 * @rxqs: the number of RX subqueues to allocate 5763 * 5764 * Allocates a struct net_device with private data area for driver use 5765 * and performs basic initialization. Also allocates subquue structs 5766 * for each queue on the device. 5767 */ 5768 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 5769 void (*setup)(struct net_device *), 5770 unsigned int txqs, unsigned int rxqs) 5771 { 5772 struct net_device *dev; 5773 size_t alloc_size; 5774 struct net_device *p; 5775 5776 BUG_ON(strlen(name) >= sizeof(dev->name)); 5777 5778 if (txqs < 1) { 5779 pr_err("alloc_netdev: Unable to allocate device " 5780 "with zero queues.\n"); 5781 return NULL; 5782 } 5783 5784 #ifdef CONFIG_RPS 5785 if (rxqs < 1) { 5786 pr_err("alloc_netdev: Unable to allocate device " 5787 "with zero RX queues.\n"); 5788 return NULL; 5789 } 5790 #endif 5791 5792 alloc_size = sizeof(struct net_device); 5793 if (sizeof_priv) { 5794 /* ensure 32-byte alignment of private area */ 5795 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 5796 alloc_size += sizeof_priv; 5797 } 5798 /* ensure 32-byte alignment of whole construct */ 5799 alloc_size += NETDEV_ALIGN - 1; 5800 5801 p = kzalloc(alloc_size, GFP_KERNEL); 5802 if (!p) { 5803 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n"); 5804 return NULL; 5805 } 5806 5807 dev = PTR_ALIGN(p, NETDEV_ALIGN); 5808 dev->padded = (char *)dev - (char *)p; 5809 5810 dev->pcpu_refcnt = alloc_percpu(int); 5811 if (!dev->pcpu_refcnt) 5812 goto free_p; 5813 5814 if (dev_addr_init(dev)) 5815 goto free_pcpu; 5816 5817 dev_mc_init(dev); 5818 dev_uc_init(dev); 5819 5820 dev_net_set(dev, &init_net); 5821 5822 dev->gso_max_size = GSO_MAX_SIZE; 5823 5824 INIT_LIST_HEAD(&dev->ethtool_ntuple_list.list); 5825 dev->ethtool_ntuple_list.count = 0; 5826 INIT_LIST_HEAD(&dev->napi_list); 5827 INIT_LIST_HEAD(&dev->unreg_list); 5828 INIT_LIST_HEAD(&dev->link_watch_list); 5829 dev->priv_flags = IFF_XMIT_DST_RELEASE; 5830 setup(dev); 5831 5832 dev->num_tx_queues = txqs; 5833 dev->real_num_tx_queues = txqs; 5834 if (netif_alloc_netdev_queues(dev)) 5835 goto free_all; 5836 5837 #ifdef CONFIG_RPS 5838 dev->num_rx_queues = rxqs; 5839 dev->real_num_rx_queues = rxqs; 5840 if (netif_alloc_rx_queues(dev)) 5841 goto free_all; 5842 #endif 5843 5844 strcpy(dev->name, name); 5845 dev->group = INIT_NETDEV_GROUP; 5846 return dev; 5847 5848 free_all: 5849 free_netdev(dev); 5850 return NULL; 5851 5852 free_pcpu: 5853 free_percpu(dev->pcpu_refcnt); 5854 kfree(dev->_tx); 5855 #ifdef CONFIG_RPS 5856 kfree(dev->_rx); 5857 #endif 5858 5859 free_p: 5860 kfree(p); 5861 return NULL; 5862 } 5863 EXPORT_SYMBOL(alloc_netdev_mqs); 5864 5865 /** 5866 * free_netdev - free network device 5867 * @dev: device 5868 * 5869 * This function does the last stage of destroying an allocated device 5870 * interface. The reference to the device object is released. 5871 * If this is the last reference then it will be freed. 5872 */ 5873 void free_netdev(struct net_device *dev) 5874 { 5875 struct napi_struct *p, *n; 5876 5877 release_net(dev_net(dev)); 5878 5879 kfree(dev->_tx); 5880 #ifdef CONFIG_RPS 5881 kfree(dev->_rx); 5882 #endif 5883 5884 kfree(rcu_dereference_raw(dev->ingress_queue)); 5885 5886 /* Flush device addresses */ 5887 dev_addr_flush(dev); 5888 5889 /* Clear ethtool n-tuple list */ 5890 ethtool_ntuple_flush(dev); 5891 5892 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 5893 netif_napi_del(p); 5894 5895 free_percpu(dev->pcpu_refcnt); 5896 dev->pcpu_refcnt = NULL; 5897 5898 /* Compatibility with error handling in drivers */ 5899 if (dev->reg_state == NETREG_UNINITIALIZED) { 5900 kfree((char *)dev - dev->padded); 5901 return; 5902 } 5903 5904 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 5905 dev->reg_state = NETREG_RELEASED; 5906 5907 /* will free via device release */ 5908 put_device(&dev->dev); 5909 } 5910 EXPORT_SYMBOL(free_netdev); 5911 5912 /** 5913 * synchronize_net - Synchronize with packet receive processing 5914 * 5915 * Wait for packets currently being received to be done. 5916 * Does not block later packets from starting. 5917 */ 5918 void synchronize_net(void) 5919 { 5920 might_sleep(); 5921 synchronize_rcu(); 5922 } 5923 EXPORT_SYMBOL(synchronize_net); 5924 5925 /** 5926 * unregister_netdevice_queue - remove device from the kernel 5927 * @dev: device 5928 * @head: list 5929 * 5930 * This function shuts down a device interface and removes it 5931 * from the kernel tables. 5932 * If head not NULL, device is queued to be unregistered later. 5933 * 5934 * Callers must hold the rtnl semaphore. You may want 5935 * unregister_netdev() instead of this. 5936 */ 5937 5938 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 5939 { 5940 ASSERT_RTNL(); 5941 5942 if (head) { 5943 list_move_tail(&dev->unreg_list, head); 5944 } else { 5945 rollback_registered(dev); 5946 /* Finish processing unregister after unlock */ 5947 net_set_todo(dev); 5948 } 5949 } 5950 EXPORT_SYMBOL(unregister_netdevice_queue); 5951 5952 /** 5953 * unregister_netdevice_many - unregister many devices 5954 * @head: list of devices 5955 */ 5956 void unregister_netdevice_many(struct list_head *head) 5957 { 5958 struct net_device *dev; 5959 5960 if (!list_empty(head)) { 5961 rollback_registered_many(head); 5962 list_for_each_entry(dev, head, unreg_list) 5963 net_set_todo(dev); 5964 } 5965 } 5966 EXPORT_SYMBOL(unregister_netdevice_many); 5967 5968 /** 5969 * unregister_netdev - remove device from the kernel 5970 * @dev: device 5971 * 5972 * This function shuts down a device interface and removes it 5973 * from the kernel tables. 5974 * 5975 * This is just a wrapper for unregister_netdevice that takes 5976 * the rtnl semaphore. In general you want to use this and not 5977 * unregister_netdevice. 5978 */ 5979 void unregister_netdev(struct net_device *dev) 5980 { 5981 rtnl_lock(); 5982 unregister_netdevice(dev); 5983 rtnl_unlock(); 5984 } 5985 EXPORT_SYMBOL(unregister_netdev); 5986 5987 /** 5988 * dev_change_net_namespace - move device to different nethost namespace 5989 * @dev: device 5990 * @net: network namespace 5991 * @pat: If not NULL name pattern to try if the current device name 5992 * is already taken in the destination network namespace. 5993 * 5994 * This function shuts down a device interface and moves it 5995 * to a new network namespace. On success 0 is returned, on 5996 * a failure a netagive errno code is returned. 5997 * 5998 * Callers must hold the rtnl semaphore. 5999 */ 6000 6001 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 6002 { 6003 int err; 6004 6005 ASSERT_RTNL(); 6006 6007 /* Don't allow namespace local devices to be moved. */ 6008 err = -EINVAL; 6009 if (dev->features & NETIF_F_NETNS_LOCAL) 6010 goto out; 6011 6012 /* Ensure the device has been registrered */ 6013 err = -EINVAL; 6014 if (dev->reg_state != NETREG_REGISTERED) 6015 goto out; 6016 6017 /* Get out if there is nothing todo */ 6018 err = 0; 6019 if (net_eq(dev_net(dev), net)) 6020 goto out; 6021 6022 /* Pick the destination device name, and ensure 6023 * we can use it in the destination network namespace. 6024 */ 6025 err = -EEXIST; 6026 if (__dev_get_by_name(net, dev->name)) { 6027 /* We get here if we can't use the current device name */ 6028 if (!pat) 6029 goto out; 6030 if (dev_get_valid_name(dev, pat, 1)) 6031 goto out; 6032 } 6033 6034 /* 6035 * And now a mini version of register_netdevice unregister_netdevice. 6036 */ 6037 6038 /* If device is running close it first. */ 6039 dev_close(dev); 6040 6041 /* And unlink it from device chain */ 6042 err = -ENODEV; 6043 unlist_netdevice(dev); 6044 6045 synchronize_net(); 6046 6047 /* Shutdown queueing discipline. */ 6048 dev_shutdown(dev); 6049 6050 /* Notify protocols, that we are about to destroy 6051 this device. They should clean all the things. 6052 6053 Note that dev->reg_state stays at NETREG_REGISTERED. 6054 This is wanted because this way 8021q and macvlan know 6055 the device is just moving and can keep their slaves up. 6056 */ 6057 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 6058 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev); 6059 6060 /* 6061 * Flush the unicast and multicast chains 6062 */ 6063 dev_uc_flush(dev); 6064 dev_mc_flush(dev); 6065 6066 /* Actually switch the network namespace */ 6067 dev_net_set(dev, net); 6068 6069 /* If there is an ifindex conflict assign a new one */ 6070 if (__dev_get_by_index(net, dev->ifindex)) { 6071 int iflink = (dev->iflink == dev->ifindex); 6072 dev->ifindex = dev_new_index(net); 6073 if (iflink) 6074 dev->iflink = dev->ifindex; 6075 } 6076 6077 /* Fixup kobjects */ 6078 err = device_rename(&dev->dev, dev->name); 6079 WARN_ON(err); 6080 6081 /* Add the device back in the hashes */ 6082 list_netdevice(dev); 6083 6084 /* Notify protocols, that a new device appeared. */ 6085 call_netdevice_notifiers(NETDEV_REGISTER, dev); 6086 6087 /* 6088 * Prevent userspace races by waiting until the network 6089 * device is fully setup before sending notifications. 6090 */ 6091 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U); 6092 6093 synchronize_net(); 6094 err = 0; 6095 out: 6096 return err; 6097 } 6098 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 6099 6100 static int dev_cpu_callback(struct notifier_block *nfb, 6101 unsigned long action, 6102 void *ocpu) 6103 { 6104 struct sk_buff **list_skb; 6105 struct sk_buff *skb; 6106 unsigned int cpu, oldcpu = (unsigned long)ocpu; 6107 struct softnet_data *sd, *oldsd; 6108 6109 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 6110 return NOTIFY_OK; 6111 6112 local_irq_disable(); 6113 cpu = smp_processor_id(); 6114 sd = &per_cpu(softnet_data, cpu); 6115 oldsd = &per_cpu(softnet_data, oldcpu); 6116 6117 /* Find end of our completion_queue. */ 6118 list_skb = &sd->completion_queue; 6119 while (*list_skb) 6120 list_skb = &(*list_skb)->next; 6121 /* Append completion queue from offline CPU. */ 6122 *list_skb = oldsd->completion_queue; 6123 oldsd->completion_queue = NULL; 6124 6125 /* Append output queue from offline CPU. */ 6126 if (oldsd->output_queue) { 6127 *sd->output_queue_tailp = oldsd->output_queue; 6128 sd->output_queue_tailp = oldsd->output_queue_tailp; 6129 oldsd->output_queue = NULL; 6130 oldsd->output_queue_tailp = &oldsd->output_queue; 6131 } 6132 6133 raise_softirq_irqoff(NET_TX_SOFTIRQ); 6134 local_irq_enable(); 6135 6136 /* Process offline CPU's input_pkt_queue */ 6137 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 6138 netif_rx(skb); 6139 input_queue_head_incr(oldsd); 6140 } 6141 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) { 6142 netif_rx(skb); 6143 input_queue_head_incr(oldsd); 6144 } 6145 6146 return NOTIFY_OK; 6147 } 6148 6149 6150 /** 6151 * netdev_increment_features - increment feature set by one 6152 * @all: current feature set 6153 * @one: new feature set 6154 * @mask: mask feature set 6155 * 6156 * Computes a new feature set after adding a device with feature set 6157 * @one to the master device with current feature set @all. Will not 6158 * enable anything that is off in @mask. Returns the new feature set. 6159 */ 6160 u32 netdev_increment_features(u32 all, u32 one, u32 mask) 6161 { 6162 /* If device needs checksumming, downgrade to it. */ 6163 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM)) 6164 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM); 6165 else if (mask & NETIF_F_ALL_CSUM) { 6166 /* If one device supports v4/v6 checksumming, set for all. */ 6167 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) && 6168 !(all & NETIF_F_GEN_CSUM)) { 6169 all &= ~NETIF_F_ALL_CSUM; 6170 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM); 6171 } 6172 6173 /* If one device supports hw checksumming, set for all. */ 6174 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) { 6175 all &= ~NETIF_F_ALL_CSUM; 6176 all |= NETIF_F_HW_CSUM; 6177 } 6178 } 6179 6180 one |= NETIF_F_ALL_CSUM; 6181 6182 one |= all & NETIF_F_ONE_FOR_ALL; 6183 all &= one | NETIF_F_LLTX | NETIF_F_GSO | NETIF_F_UFO; 6184 all |= one & mask & NETIF_F_ONE_FOR_ALL; 6185 6186 return all; 6187 } 6188 EXPORT_SYMBOL(netdev_increment_features); 6189 6190 static struct hlist_head *netdev_create_hash(void) 6191 { 6192 int i; 6193 struct hlist_head *hash; 6194 6195 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 6196 if (hash != NULL) 6197 for (i = 0; i < NETDEV_HASHENTRIES; i++) 6198 INIT_HLIST_HEAD(&hash[i]); 6199 6200 return hash; 6201 } 6202 6203 /* Initialize per network namespace state */ 6204 static int __net_init netdev_init(struct net *net) 6205 { 6206 INIT_LIST_HEAD(&net->dev_base_head); 6207 6208 net->dev_name_head = netdev_create_hash(); 6209 if (net->dev_name_head == NULL) 6210 goto err_name; 6211 6212 net->dev_index_head = netdev_create_hash(); 6213 if (net->dev_index_head == NULL) 6214 goto err_idx; 6215 6216 return 0; 6217 6218 err_idx: 6219 kfree(net->dev_name_head); 6220 err_name: 6221 return -ENOMEM; 6222 } 6223 6224 /** 6225 * netdev_drivername - network driver for the device 6226 * @dev: network device 6227 * @buffer: buffer for resulting name 6228 * @len: size of buffer 6229 * 6230 * Determine network driver for device. 6231 */ 6232 char *netdev_drivername(const struct net_device *dev, char *buffer, int len) 6233 { 6234 const struct device_driver *driver; 6235 const struct device *parent; 6236 6237 if (len <= 0 || !buffer) 6238 return buffer; 6239 buffer[0] = 0; 6240 6241 parent = dev->dev.parent; 6242 6243 if (!parent) 6244 return buffer; 6245 6246 driver = parent->driver; 6247 if (driver && driver->name) 6248 strlcpy(buffer, driver->name, len); 6249 return buffer; 6250 } 6251 6252 static int __netdev_printk(const char *level, const struct net_device *dev, 6253 struct va_format *vaf) 6254 { 6255 int r; 6256 6257 if (dev && dev->dev.parent) 6258 r = dev_printk(level, dev->dev.parent, "%s: %pV", 6259 netdev_name(dev), vaf); 6260 else if (dev) 6261 r = printk("%s%s: %pV", level, netdev_name(dev), vaf); 6262 else 6263 r = printk("%s(NULL net_device): %pV", level, vaf); 6264 6265 return r; 6266 } 6267 6268 int netdev_printk(const char *level, const struct net_device *dev, 6269 const char *format, ...) 6270 { 6271 struct va_format vaf; 6272 va_list args; 6273 int r; 6274 6275 va_start(args, format); 6276 6277 vaf.fmt = format; 6278 vaf.va = &args; 6279 6280 r = __netdev_printk(level, dev, &vaf); 6281 va_end(args); 6282 6283 return r; 6284 } 6285 EXPORT_SYMBOL(netdev_printk); 6286 6287 #define define_netdev_printk_level(func, level) \ 6288 int func(const struct net_device *dev, const char *fmt, ...) \ 6289 { \ 6290 int r; \ 6291 struct va_format vaf; \ 6292 va_list args; \ 6293 \ 6294 va_start(args, fmt); \ 6295 \ 6296 vaf.fmt = fmt; \ 6297 vaf.va = &args; \ 6298 \ 6299 r = __netdev_printk(level, dev, &vaf); \ 6300 va_end(args); \ 6301 \ 6302 return r; \ 6303 } \ 6304 EXPORT_SYMBOL(func); 6305 6306 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 6307 define_netdev_printk_level(netdev_alert, KERN_ALERT); 6308 define_netdev_printk_level(netdev_crit, KERN_CRIT); 6309 define_netdev_printk_level(netdev_err, KERN_ERR); 6310 define_netdev_printk_level(netdev_warn, KERN_WARNING); 6311 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 6312 define_netdev_printk_level(netdev_info, KERN_INFO); 6313 6314 static void __net_exit netdev_exit(struct net *net) 6315 { 6316 kfree(net->dev_name_head); 6317 kfree(net->dev_index_head); 6318 } 6319 6320 static struct pernet_operations __net_initdata netdev_net_ops = { 6321 .init = netdev_init, 6322 .exit = netdev_exit, 6323 }; 6324 6325 static void __net_exit default_device_exit(struct net *net) 6326 { 6327 struct net_device *dev, *aux; 6328 /* 6329 * Push all migratable network devices back to the 6330 * initial network namespace 6331 */ 6332 rtnl_lock(); 6333 for_each_netdev_safe(net, dev, aux) { 6334 int err; 6335 char fb_name[IFNAMSIZ]; 6336 6337 /* Ignore unmoveable devices (i.e. loopback) */ 6338 if (dev->features & NETIF_F_NETNS_LOCAL) 6339 continue; 6340 6341 /* Leave virtual devices for the generic cleanup */ 6342 if (dev->rtnl_link_ops) 6343 continue; 6344 6345 /* Push remaining network devices to init_net */ 6346 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 6347 err = dev_change_net_namespace(dev, &init_net, fb_name); 6348 if (err) { 6349 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n", 6350 __func__, dev->name, err); 6351 BUG(); 6352 } 6353 } 6354 rtnl_unlock(); 6355 } 6356 6357 static void __net_exit default_device_exit_batch(struct list_head *net_list) 6358 { 6359 /* At exit all network devices most be removed from a network 6360 * namespace. Do this in the reverse order of registration. 6361 * Do this across as many network namespaces as possible to 6362 * improve batching efficiency. 6363 */ 6364 struct net_device *dev; 6365 struct net *net; 6366 LIST_HEAD(dev_kill_list); 6367 6368 rtnl_lock(); 6369 list_for_each_entry(net, net_list, exit_list) { 6370 for_each_netdev_reverse(net, dev) { 6371 if (dev->rtnl_link_ops) 6372 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 6373 else 6374 unregister_netdevice_queue(dev, &dev_kill_list); 6375 } 6376 } 6377 unregister_netdevice_many(&dev_kill_list); 6378 list_del(&dev_kill_list); 6379 rtnl_unlock(); 6380 } 6381 6382 static struct pernet_operations __net_initdata default_device_ops = { 6383 .exit = default_device_exit, 6384 .exit_batch = default_device_exit_batch, 6385 }; 6386 6387 /* 6388 * Initialize the DEV module. At boot time this walks the device list and 6389 * unhooks any devices that fail to initialise (normally hardware not 6390 * present) and leaves us with a valid list of present and active devices. 6391 * 6392 */ 6393 6394 /* 6395 * This is called single threaded during boot, so no need 6396 * to take the rtnl semaphore. 6397 */ 6398 static int __init net_dev_init(void) 6399 { 6400 int i, rc = -ENOMEM; 6401 6402 BUG_ON(!dev_boot_phase); 6403 6404 if (dev_proc_init()) 6405 goto out; 6406 6407 if (netdev_kobject_init()) 6408 goto out; 6409 6410 INIT_LIST_HEAD(&ptype_all); 6411 for (i = 0; i < PTYPE_HASH_SIZE; i++) 6412 INIT_LIST_HEAD(&ptype_base[i]); 6413 6414 if (register_pernet_subsys(&netdev_net_ops)) 6415 goto out; 6416 6417 /* 6418 * Initialise the packet receive queues. 6419 */ 6420 6421 for_each_possible_cpu(i) { 6422 struct softnet_data *sd = &per_cpu(softnet_data, i); 6423 6424 memset(sd, 0, sizeof(*sd)); 6425 skb_queue_head_init(&sd->input_pkt_queue); 6426 skb_queue_head_init(&sd->process_queue); 6427 sd->completion_queue = NULL; 6428 INIT_LIST_HEAD(&sd->poll_list); 6429 sd->output_queue = NULL; 6430 sd->output_queue_tailp = &sd->output_queue; 6431 #ifdef CONFIG_RPS 6432 sd->csd.func = rps_trigger_softirq; 6433 sd->csd.info = sd; 6434 sd->csd.flags = 0; 6435 sd->cpu = i; 6436 #endif 6437 6438 sd->backlog.poll = process_backlog; 6439 sd->backlog.weight = weight_p; 6440 sd->backlog.gro_list = NULL; 6441 sd->backlog.gro_count = 0; 6442 } 6443 6444 dev_boot_phase = 0; 6445 6446 /* The loopback device is special if any other network devices 6447 * is present in a network namespace the loopback device must 6448 * be present. Since we now dynamically allocate and free the 6449 * loopback device ensure this invariant is maintained by 6450 * keeping the loopback device as the first device on the 6451 * list of network devices. Ensuring the loopback devices 6452 * is the first device that appears and the last network device 6453 * that disappears. 6454 */ 6455 if (register_pernet_device(&loopback_net_ops)) 6456 goto out; 6457 6458 if (register_pernet_device(&default_device_ops)) 6459 goto out; 6460 6461 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 6462 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 6463 6464 hotcpu_notifier(dev_cpu_callback, 0); 6465 dst_init(); 6466 dev_mcast_init(); 6467 rc = 0; 6468 out: 6469 return rc; 6470 } 6471 6472 subsys_initcall(net_dev_init); 6473 6474 static int __init initialize_hashrnd(void) 6475 { 6476 get_random_bytes(&hashrnd, sizeof(hashrnd)); 6477 return 0; 6478 } 6479 6480 late_initcall_sync(initialize_hashrnd); 6481 6482